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Abstract

This thesis is concerned with the homotopy theory of stratified spaces as well as generalized
simple homotopy theory.
On the side of stratified homotopy theory, we establish a series of foundational results concern-
ing several different versions of stratified homotopy theory that have been suggested in the
literature. A central question in stratified homotopy theory is how the latter interacts with
classical, geometrical examples of stratified spaces. With the aim of answering this question, we
prove the existence of semi-model structures on the category of stratified spaces that present,
respectively, the homotopy theories of stratified spaces suggested by Doteau and Henriques,
Haine and Nand-Lal. Importantly, these structures are such that classical geometrical examples
of stratified spaces are bifibrant, and they are furthermore strongly related to Quinn’s approach
to stratified homotopy theory.
To prove the existence of these structures, we perform a detailed investigation of combinatorial
approaches to stratified homotopy theory, develop a theory of generalized regular neighbor-
hoods in stratified spaces, and use the latter to obtain cellular models of generalized stratified
homotopy links of stratified cell complexes.
Furthermore, we prove stratified analogues of the classical Kan-Quillen equivalence between
simplicial sets and topological spaces. As a consequence of our investigations, we obtain a
presentation of a stratified version of the homotopy hypothesis, as conjectured by Ayala, Francis
and Rozenblyum: We prove that Lurie’s construction of the infinity-category of Exit-paths
defines a Quillen equivalence, between a semi-model category of stratified spaces and the left
Bousfield localization of the Joyal model structure that presents the homotopy theory of such
small infinity-categories in which every endomorphism is invertible.
We apply our theoretical results in the topological data analysis of stratified spaces, proving
a sampling theorem that guarantees the recovery of persistent stratified homotopy-theoretic
information from large classes of two-strata Whitney stratified spaces.

On the side of generalized simple homotopy theory, we develop an axiomatic framework
that allows for the investigation of the latter in the context of (semi-)model categories that
are equipped with appropriate notions of generating boundary inclusions and elementary
expansions. We show that the resulting theory behaves much like the classical simple homotopy
theory of spaces or chain complexes, and encompasses these frameworks.
We furthermore perform a detailed investigation of the simple homotopy theory of diagram
categories, proving a decomposition theorem for their Whitehead groups and establishing
results on the compatibility of simple equivalences with certain colimits.
We then apply our general framework to some of the (semi-)model categories for stratified
homotopy theory which we investigated earlier in this thesis. In particular, we prove a decom-
position theorem for the resulting stratified Whitehead groups associated to Douteau’s theory
in terms of classical Whitehead groups of strata and generalized homotopy links.



Zusammenfassung

Diese Dissertationsschrift befasst sich mit der Homotopietheorie stratifizierter Räume und
generalisierter einfacher Homotopietheorie.
Auf Seiten der stratifizierten Homotopietheorie beweisen wir eine Reihe von grundlegenden
Resultaten zu verschiedenen Ansätzen zu selbiger in der Literatur.
Eine zentrale Fragestellung in stratifizierter Homotopietheorie ist, wie diese mit klassischen
geometrischen Beispielen stratifizierter Räume interagiert. Mit dem Ziel, diese Frage zu beant-
worten, beweisen wir die Existenz von Semi-Modellstrukturen auf Kategorien von stratifizierten
topologischen Räumen, in welchen solche klassischen geometrischen Beispiele bifasernd sind.
Diese präsentieren die Homotopietheorien stratifizierter Räume, die in den letzten Jahren
von Douteau und Henriques, Haine und Nand-Lal vorgeschlagen wurden und stehen in enger
Beziehung zu Quinns Ansatz zur stratifizierten Homotopietheorie.
Um die Existenz dieser Modellstrukturen zu beweisen, führen wir eine detaillierte Untersuchung
kombinatorischer Modelle für stratifizierte Homotopietheorie durch, entwickeln eine Theorie ve-
rallgemeinerter regulärer Umgebungen im stratifizierten Kontext und beweisen die Äquivalenz
von generalisierten Homotopielinks zu bestimmten einfachen zellulären Modellen.
Außerdem beweisen wir stratifizierte Analoga der klassischen Kan-Quillen-Äquivalenz zwis-
chen simplizialen Mengen und topologischen Räumen. Insbesondere ergibt sich aus un-
seren Untersuchungen eine Präsentation der stratifizierten Homotopiehypothese durch Semi-
Modellkategorien, wie sie von Ayala, Francis und Rozenblyum vermutet wurde: Wir beweisen
eine Quillen-Äquivalenz – gegeben durch Lurie’s Konstruktion der Unendlichkategorie der
Exit-Pfade – zwischen einer Semi-Modellkategorie topologischer stratifizierter Räume und der
Bousfield-Lokalisierung der Joyal-Modellstruktur, welche die Homotopietheorie solcher kleiner
Unendlichkategorien repräsentiert, in denen alle Endomorphismen Isomorphismen sind.
Zudem präsentieren wir eine Anwendung unserer theoretischen Resultate in stratifizierter topol-
ogischer Datenanalyse. Konkret beweisen wir einen Samplingsatz, der es erlaubt, persistente
stratifiziert-homotopietheoretische Informationen aus Samples von Whitney-stratifizierten
Räumen mit zwei Strata zurückzugewinnen.

Auf Seiten der einfachen Homotopietheorie entwickeln wir ein allgemeines axiomatisches
Framework, um selbige in einem semi-modellkategoriellen Kontext zu betreiben. Wir zeigen,
dass sich die resultierende verallgemeinerte Theorie in vielerlei Hinsicht wie die klassische
einfache Homotopietheorie von Räumen oder Kettenkomplexen verhält, und diese beinhaltet.
Weiterhin führen wir eine detaillierte Untersuchung der resultierenden einfachen Homotopi-
etheorie von Diagrammkategorien durch, beweisen in diesem Kontext ein Zerlegungsresultat
für die assoziierten Whitehead-Gruppen und zeigen Resultate zur Kompatibilität von verallge-
meinerten einfachen Äquivalenzen mit bestimmten Kolimites.
Zum Abschluss wenden wir unser allgemeines Framework auf Semi-Modellstrukturen für
stratifizierte Homotopietheorie an, die wir in der ersten Hälfte dieser Arbeit untersucht
haben. Insbesondere beweisen wir ein Zerlegungsresultat für die resultierenden stratifizierten
Whitehead-Gruppen in Douteaus Theorie, ausgedrückt durch klassische Whitehead-Gruppen
von Strata und generalisierten Homotopielinks.
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Foreword

This thesis presents my research on stratified homotopy theory and generalized simple homo-
topy theory, performed during my PhD at Heidelberg University from 2022 to the end of 2024.
During my master’s thesis in 2021, my advisor Markus Banagl suggested the following question
to me: “Is there a simple homotopy theory of stratified spaces?” This question originally
occurred in investigations of his into stratified methods in applied topology, but had evident
relations to classification questions of stratified spaces. Innocent as it may seem at first glance,
it has, of course, another two questions hidden in plain sight: “What is the homotopy theory
of stratified spaces, and what do we know about it?” and “What constitutes a simple homotopy
theory?”. Pursuing these two questions, in particular the first one, has been the main bulk
of my research for the duration of the last years. Before I get into a more mathematical
account, let me say a few words on how the several different pieces in this thesis came to be,
and how they relate to these original questions. First off, let me make clear that this is not a
thesis about simple stratified homotopy theory. It is a thesis about stratified homotopy theory,
and about a certain viewpoint on generalized simple homotopy theory (GSHT for short).
These two theories have an overlap, and one can use general techniques from both theories
to study that overlap, but I am personally not of the opinion that the results concerning
this overlap, which I will present in the final chapter, are the ultimate goal of all of the
other theory presented here. Rather, I took the questions about stratified simple homotopy
theory as a guiding incentive to explore both theories, which I think are of independent interest.

When I began writing my thesis, the first question (concerned with the homotopy theory
of stratified spaces) had just received a renewed wave of attention, with additional interest
coming from higher categorical perspectives, and at least three different PhD theses being
concerned with establishing the foundations of stratified homotopy theory (see the overview
chapter below for details and references). All of these theses take related, but slightly different
approaches to defining such a homotopy theory of stratified spaces and all of them made great
advances in their own rights. They left open two crucial questions, however, answers to which
seemed not only necessary for the approach to stratified simple homotopy that I had in mind,
but also for a general foundational view on stratified homotopy theory:
First off, the question of an analogue of the Kan-Quillen equivalence between topological spaces
and simplicial sets, which would freely allow one to pass between the stratified topological
and the stratified simplicial world. Secondly, the question after the existence of certain model
structures which enable one to relate the developed homotopy theory to classical, geometric
examples of stratified spaces.

Part II of this thesis is concerned with tackling these two fundamental questions. The
first of these two questions was answered in joint work with Sylvain Douteau (to appear
in the Mémoires de la Société Mathématique de France), during the first half of my PhD
years. In parallel to this, I was working on several collaborations concerned with applying
algebro-homotopical methods in topological data analysis. Most importantly for the topics
discussed here, my Ph.D. sibling Tim Mäder was pursuing the question of recovering stratified
homotopic/homological information from (possibly stratified) point samples near a sufficiently
regular stratified space. It turned out that the insights developed with Sylvain Douteau could
be applied to these questions, which resulted in joint work (now published in the Journal of
Applied and Computational Topology) that I also present here.
Following this, I tackled the second question on the existence of convenient model structures in
independent work. My results on these explorations, which I cover here, have also been made
preliminarily available in a series of preprints on the arXiv. These prove the existence of such
(semi-model) structures, illuminate and establish the precise connections between the several
different theories developed in recent years, and cover their relationships to∞-categories and to
more classical approaches to stratified homotopy theory. All of the investigations on stratified
homotopy theory I have discussed so far are presented in the first half of this thesis.
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Thus, having made progress on the foundations of stratified homotopy theory, in the remaining
time, I returned to questions of generalized simple homotopy theories. At this point, it had
become apparent to me, however, that there was a need to approach the question from a more
big-picture perspective.
In my master’s thesis, I had developed a simple homotopy theory for stratified simplicial
sets, based on Douteau’s model structure on stratified simplicial sets. It seemed likely that
the arguments used there would work in significantly larger generality for all sorts of model
categorical setups. Having several different versions (and models of these versions) for stratified
homotopy theory available, there was clearly a need for an axiomatic approach to generalized
simple homotopy theory. There were already two such general approaches on the market
(again, see the overview chapters for proper references). However, both of them did not
quite capture the perspective on generalized simple homotopy theory which I was looking to
incarnate. Namely, the study of non-uniqueness of presentations of homotopy types (in some
general homotopy theory) in terms of elementary building blocks, subject to certain elementary
operations.
Taking this perspective, I develop such a generalized approach in Part III of this thesis, leading
to a model categorical framework for generalized simple homotopy theory, investigations on
interactions of simple homotopy theory with diagrams and homotopy colimits, and transfer
theorems allowing one to switch between combinatorial and topological frameworks.
Equipped with such new tools in generalized simple homotopy theory, I then combined these
insights with the results on stratified homotopy theory obtained in the first half of this thesis.
In particular, this involved a computation of the Whitehead group constructed in my master’s
thesis, in terms of classical Whitehead groups of strata and links. This constitutes the final
chapter of this thesis.

From what I have described about my work process so far, the reader may already sus-
pect that I have a tendency towards establishing general theory, in order to tackle a specific
problem. This tendency is certainly partially responsible for the length of this text. I am
optimistic, however, that the degree of generality achieved here will prove useful in future
investigations into stratified homotopy theory, simple homotopy theory, and the interaction of
these disciplines with applied realms such as topological data analysis. Another reason for the
length of this text is that the first half of the thesis is structured in terms of chapters which
can be read independently and reflect the content of independent articles. This leads to a
certain amount of redundancy in introductory and notational sections. At the same time, I
expect that it will make chapters significantly more accessible to a reader only interested in
particular parts of the theory.

Nevertheless, this does not solve the fact that a thesis of this length, especially when covering
several different topics and structured into several partially independent pieces, written with
slightly different goals and a high degree of generality in mind, may make for a somewhat
lengthy reading experience. To address this, I wrote Part I of this thesis. It presents the
material and main results of the remaining five hundred or so pages in a coherent context.
The first chapter covers a general introduction to stratified homotopy theory, motivating and
explaining the different approaches and presenting my results in this context. The second
chapter surveys my results on generalized simple homotopy theory, with a specific focus on its
applications to the stratified setting.

Guide to the reader
As already alluded to, this text covers several different topics which can (and probably should)
to a certain degree be read independently. Let us now provide the reader with a general
overview of the structure of this thesis and the dependency relations of its several parts. First
off, this thesis does not feature an introduction in the classical sense of a few motivating words,
followed by a short survey of the main results. Instead, it features two separate chapters
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(Chapters 1 and 2 constituting Part I) which serve a similar purpose, but in more detail.
Shorter and more specified introductions are featured in the separate chapters of Part II.
Furthermore, this text contains two glossaries, one summarizing the most important recurring
notation of the stratified setting in Chapter 1 (see Section 1.5) and one featuring notation
used in Part III (see directly after Chapter 13).

Part I

Part I of this thesis is written in the style of an extended survey article. It summarizes the
main results of Parts II and III and puts them into mathematical context. While formal
definitions and theorems are given, the focus lies more on the conceptual side, providing
intuition, examples and motivations for definitions and results. For proofs and technical details,
we provide references to the latter parts. Chapter 1 also provides an introduction to stratified
homotopy theory, starting essentially from scratch, and presenting several of the approaches in
the literature. We expect that the quickest way to obtain a comprehensive overview of this
thesis and an understanding of the main results is to first read Part I, and then move on to
specific chapters in the latter parts for proofs and additional details.

The following two parts of the thesis can be read essentially independently, and both of
them can be read entirely independently from Part I. Only in the last chapter of Part III,
Chapter 13, are results from both parts used.

Part II

This part of the thesis is generally concerned with stratified homotopy theory and its appli-
cations. It is structured such that each chapter has the structure of an independent article.
For example, notation is introduced separately in each of these chapters. Hence, while cross-
referencing each other, each of them is accessible without having performed a detailed read
of the other chapters. Two of these chapters, Chapters 3 and 4 are essentially (up to minor
changes in notation) identical with the content of two articles which are, respectively, accepted
and published ([DW22; MW24]). [DW22] is joint work with Sylvain Douteau and [MW24]
is joint work with Tim Mäder. The remaining three chapters Chapters 5 to 7 present only
my own work. While they can, in theory, be read separately, they strongly build on each
other. Namely, Chapters 5 and 6 provides the technical groundwork for Chapter 7. The most
insightful way of reading these chapters is, in all likelihood, to first read Section 1.3.1, and
then read the chapters in order. Alternatively, one can jump into Chapter 7 right away, and
return to the other chapters of II whenever necessary. We also recommend Section 1.5 as a list
of some of the most important recurring notation.

Part III

Unlike the previous part, Part III, which is concerned with a model categorical approach to
generalized simple homotopy theory, is intended to be read as one coherent piece, and notation
is not introduced separately in each chapter. An index containing recurring notation can be
found after Chapter 13. As already mentioned above, up to the final chapter, Chapter 13,
none of the material relies on Part II though. Our model-categorical approach to simple
homotopy theory required the development of a calculus of structured cell complexes in an
abstract categorical setting. This language is covered in Chapter 8. This chapter is rather
technical in nature, and, to a large part, re-frames existing theory on cell complexes in model
categories in a setting that is suited to our purposes of simple homotopy theory. For a more
motivated reading experience, we certainly recommend to first read Chapter 2. Furthermore,
the subsequent chapters Chapters 9 and 10 do not rely on Section 8.3 of Chapter 8. We
recommend to first skip the latter, and then return to it when reading Chapter 11. The next
three chapters Chapters 9 to 12 all build upon each other, and are best read in linear order.
Finally, Chapter 13 relies on results spread all over Parts II and III, and should probably only
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be read after reading Part III (or its summary in Chapter 2) and at least the summary of
Part II in Chapter 1. A list of important recurring notation used in Part III can be found
after Chapter 13.



Part I

A detailed overview of this thesis
and its main results
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Chapter 1

Stratified homotopy theory

Note to the reader: This chapter contains an introduction to the homotopy theory of
stratified spaces and explains the main results of Part II in this context. Additional results,
details, and proofs can be found in Part II. This chapter also features a glossary of some of
the most important recurring notation in this chapter, which may also come in handy in latter
parts of this text (see Section 1.5). To follow the material presented here in detail, basic
familiarity with the language of model categories (see, for example, [Hir03]) and
(∞,1)-categories (∞-categories, henceforth, see [Lur09]) is required. However, we will
generally explain the conceptual role these formal theories play for our purposes in the text.
When we say ∞-category, we will usually mean quasi-category, in the sense of Joyal and Lurie,
but most of what we say below could just as well be phrased in any of the alternative,
equivalent models for ∞-categories (see [Ber07b]).

From a tonal perspective, the following is phrased akin to what would constitute an
introductory talk to the topic at a conference or an expository article. At times, we may
adopt a less formal or rigorous tone than in the remainder of this work, referring to Part II for
a completely rigorous treatment. We will also dedicate several pages to motivating the
approach to stratified homotopy theory detailed here, explaining, for example, how certain
homotopy-theoretic definitions naturally arise from geometric insights, or elaborating on the
role that model categories play in our investigations.

In more detail, we will begin with an introduction into the basic notions of stratified
homotopy theory in Section 1.1. We then present two slightly different approaches to
stratified homotopy theory that have been pursued by several authors in recent years, the
diagrammatic approach in Section 1.2 and the categorical approach in Section 1.3. We present
the new results in this thesis and how they fit into the broader context in Sections 1.2.4, 1.2.5,
1.3.3 to 1.3.5 and 1.4.2 to 1.4.5.

Contents
1.1 Poset-stratified spaces and stratified homotopy equivalences . . 8

1.1.1 The category of poset-stratified spaces . . . . . . . . . . . . . . . . . . 9
1.1.2 Stratified homotopy equivalences . . . . . . . . . . . . . . . . . . . . . 12

1.2 The diagrammatic approach to stratified homotopy theory . . . 15
1.2.1 Diagrammatic equivalences of stratified spaces . . . . . . . . . . . . . 15
1.2.2 Remarks on the use of model structures . . . . . . . . . . . . . . . . . 23
1.2.3 Simplicial models for diagrammatic stratified homotopy theory . . . 24
1.2.4 Results: A Kan-Quillen equivalence without model structures . . . 30
1.2.5 Results: An application of stratified homotopy theory to stratified

topological data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.2.6 The non-existence of good topological model structures . . . . . . . 35

1.3 The exit-path category approach . . . . . . . . . . . . . . . . . . . . 36
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1.3.1 The topological stratified homotopy hypothesis . . . . . . . . . . . . 36
1.3.2 Haine’s proof of a topological stratified homotopy hypothesis . . . . 41
1.3.3 Results: Extending Main Result A1 and Main Result B to the

categorical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.3.4 Results: Global combinatorial models for stratified homotopy theory 45
1.3.5 Results: Refined stratified simplicial sets and layered ∞-categories . 46

1.4 Semi-model categories of stratified spaces . . . . . . . . . . . . . . 50
1.4.1 Nand-Lals approach to stratified homotopy theory . . . . . . . . . . 50
1.4.2 Results: On the homotopy links of stratified cell complexes . . . . . 52
1.4.3 Results: The transferred semi-model structures for stratified spaces

and their consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.4.4 Results: Bifibrant stratified spaces . . . . . . . . . . . . . . . . . . . . 57
1.4.5 Results: A final look at the stratified homotopy hypothesis . . . . . 59

1.5 List of recurring notation used in this chapter . . . . . . . . . . . 60

1.1 Poset-stratified spaces and stratified homotopy equiv-
alences

In the broadest sense, a stratification of a space X is a decomposition X = ⊔p∈P Xp into
set-theoretically disjoint pieces – called strata – fulfilling a series of requirements on the strata
themselves and their topological interactions.

Figure 1.1: A stratified space (to the left)
and separate sketches of its strata (to the
right)

Historically, these types of decompositions pri-
marily arose in the context of studying singular
spaces, decomposing the latter into pieces that
are manifolds (see [Whi65b; Mat12; Mat73] as
well as the illustration in Fig. 1.1). For example,
every algebraic variety can be decomposed into
such manifold pieces in a way that equips the lat-
ter with a stratification particularly well suited to
investigations of differential topology, a so-called
Whitney stratification (see [Whi65b] and [Pfl01],
for a good overview of the theory of such objects).
From a highly conceptual perspective, stratified
homotopy theory can be seen as the attempt to perform homotopy theory in a way that keeps
track of homotopy-theoretic information of the strata as well as their interactions - the links.
This direction of research, started most prominently by Quinn in [Qui88] and continued, for
example, in [Hug99a; Mil13; Fri03; Woo09] has recently seen a renewed wave of attention and
results, stemming to a large part from the model- and ∞-categorical perspective on abstract
homotopy theory (see, for example, in no particular order [Lur17; AFR19; Nan19; BGH18;
Dou19b; Dou21a; Dou21b; Jan24; KY21; Vol22; Hai23; HPT24; CST24].)

Having given a first, philosophical taste of what stratified homotopy theory is, let us now
pass to a more rigorous context. Before we do so, let us begin with a caveat on the objects
that we will refer to as stratified spaces here. When performing abstract homotopy theory
based on some 1-category of objects that one is interested in studying, it is often preferable
to begin with a 1-category that enjoys excellent categorical properties (such as having all
limits and colimits, and being cartesian closed). This kind of requirement will generally come
at the price of having a large class of objects, some of which may be rather pathological in
nature. For example, the category of topological spaces certainly contains many examples that
a geometrically minded person would prefer not to have in their category of allowable objects.
From a homotopy theoretic perspective, however, this is usually not a major issue. Up to an
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appropriate notion of weak equivalence one can usually even replace such highly pathological
objects by something nicer. For example, it is a classical exercise in algebraic topology to prove
that every topological space is weakly homotopy equivalent to a CW-complex. In this sense,
the pathological objects are there to make the 1-category theory work, but they are ultimately
irrelevant to the resulting homotopy theory (∞-category). The approach to stratified homotopy
theory that we take here is analogous to this (we return to this question in Section 1.1.2).
The definition of stratified space that we will now give enjoys excellent categorical properties.
However, a more geometrically minded person may possibly refuse to call them stratified
spaces, as they lack many of the properties classically associated with geometric examples of
such objects. Just as in the example of classical spaces, up to appropriate notions of weak
equivalence, homotopy theoretic analogues of these classical properties will be restored.

1.1.1 The category of poset-stratified spaces
In geometric contexts, such as the theory of Whitney stratified spaces, the indexing set of the
strata P usually comes with an inherent partial ordering that arises from the so-called frontier
condition.

Definition 1.1.1.1. Given a topological space X, a set-theoretically disjoint decomposition
X = ⊔p∈P Xp is said to fulfill the frontier condition if the following holds:
For all p, q ∈ P , it holds that whenever the intersection of Xp with the closure of Xq, Xq, is
non-empty then Xp ⊂Xq.

Given the frontier condition and assuming that all strata are non-empty, one obtains a
partial ordering of the indexing set P , by setting p ≤ q, if Xp intersects the closure of Xq

non-trivially. One may thus think of a stratification of a stratified space X over a poset P as
a map s∶X → P , assigning to each point x ∈X the index of the stratum that it is contained
in. In most geometrical examples, this map is continuous, if one equips the poset P with
the so-called Alexandrov topology in which the downwards closed sets are the closed sets
(see [WWY24] for the precise set-theoretic-topological details). In the case of a finite poset,
continuity of the stratification map s∶X → P just means that the unions X≤p = ⋃q≤pXq are
closed sets. These insights lead to the following abstract definition of a stratified space. In the
following Top will always refer to the category of (compactly generated) topological spaces1

and Pos will refer to the category of posets and order-preserving maps.

Definition 1.1.1.2. A poset-stratified space X is a triple X = (X,PX , sX ), consisting of a
topological space X ∈ Top, a partially ordered set PX ∈ Pos and a continuous map sX ∶X → PX ,
called the stratification map, where PX is equipped with the Alexandrov topology. A stratified
map between poset-stratified spaces X and Y consists of a continuous map of the underlying
spaces f ∶X → Y together with an order-preserving map Pf ∶PX → PY , making the diagram

X Y

PX PY

f

sX sY

Pf

(1.1)

commute.
1Compactly generated in the sense of having the final topology with respect to compact Hausdorff spaces.

Whenever a space is not in this category, we apply the right adjoint of the inclusion of compactly generated
spaces into topological spaces (see [Rez17]). Most of what we say here, also applies to the ∆-generated spaces
of [Dug03], and any statement not involving internal mapping spaces even applies to general topological spaces.
For some purposes, it is preferable to work with ∆-generated spaces, in order to obtain a combinatorial model
category (see [Lur09]). For the homotopy theory that arises, these set theoretic questions are of no real
importance.
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Remark 1.1.1.3. One can translate back to the setting where a stratification is some type
of decomposition of a space, by considering the decomposition X = ⊔p∈PX s

−1
X (p). We will

thus also denote by Xp ∶= s
−1
X (p) the fibers of the stratification map, and refer to the latter as

strata.
In the case where the stratifications arise from the frontier condition and all strata are non-
empty, every stratified map is uniquely determined by its underlying map of topological spaces
f ∶X → Y , a map of topological spaces f ∶X → Y defines a stratified map, if and only if the
image of each stratum f(Xp), p ∈ PX , fulfills f(Xp) ⊂ Yq, for some q ∈ PY .

Example 1.1.1.4. The following figures show two possible stratification maps of the figure
eight-space over the poset with two elements {0 < 1}.

We used colors to indicate what stratum a point belongs to. Observe that the first stratification
fulfills the frontier condition, while the second fails to have this property.

Example 1.1.1.5. Any filtration X = ⋃p∈NX≤p of a space X by a sequence X≤0 ⊂X≤1 ⊂ . . . of
closed subspaces gives rise to a stratified space over N, by setting Xp ∶=X≤p ∖X≤p−1, for p ∈ N
(with X≤−1 = ∅). Conversely, any stratified space X stratified over PX = N gives rise to a filtered
space (X, (X≤p)p∈N), by defining X≤p ∶= s−1

X ({q ≤ p}) = ⋃q≤pXq. These two constructions are
inverse to each other. If one takes some care with local finiteness, then this bijection can be
generalized to arbitrary posets. One needs to be careful, however, that while this construction
defines a bijection on objects, it is only functorial in one direction on morphisms. Namely,
every stratified map gives rise to a filtered (filtration-preserving) map, but the converse is
evidently false. In this sense, our nomenclature of calling poset-stratified spaces stratified
rather than filtered emphasizes the class of morphisms we consider.2

Notation 1.1.1.6. Poset-stratified spaces together with stratified maps form a category,
which we denote by Strat. When we refer to a stratified space in the following context, we
will also mean a poset-stratified space. We will generally use calligraphic notation to refer
to stratified space X and use the same letter without the calligraphic font to refer to the
underlying topological space. We will often also restrict ourselves to studying the subcategory
of stratified spaces over some fixed poset P , where the maps on the poset level are given by
the identity. The latter will be denoted StratP , its objects are called P -stratified spaces and
morphisms in this category are called stratum-preserving maps.

We have yet to give definitions of stratified spaces that behave more like the classical
geometrical examples of stratified spaces. To this end, let us set up some additional general
constructions on stratified spaces.

2The bijection on the object level has historically led many authors to refer to poset-stratified spaces as
filtered spaces, and to reserve the term stratified for such filtered spaces which behave more like the classical
geometrical examples people had in mind. The more recent shift of terminology to use the term poset-stratified
is mainly because investigations have shifted from studying stratified spaces separately, to studying them in
families, i.e., from a categorical point of view. By speaking of stratified spaces, one makes sure to emphasize
that morphisms between them should not be filtered maps. Looking at the plethora of different definition of
stratified spaces in the literature, it seems to us that one ultimately has to add a prefix such as Whitney or
homotopically anyway, to emphasize what properties one expects the resulting stratified space to have. These
type of linguistic difficulties will disappear, when we move over to the world of stratified homotopy types later
on, as in this type of scenario stratified homotopy types will usually be represented by objects which have,
homotopically speaking, properties much like the stratified spaces considered in more classical scenarios.
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Figure 1.2: Stratified cone on the stratified figure eight, with cone-point stratum marked in
orange.

Example 1.1.1.7. Given a stratified space X and a topological space T , we can consider the
PX stratified space X × T , obtained by equipping X × T with the stratification

X × T
πX
ÐÐ→X

sX
Ð→ PX .

This is, equivalently, the product in the category Strat of X with the stratified space obtained
by treating T as trivially stratified over the poset with one element.
Example 1.1.1.8. Given a stratified space X ∈ Top, we can equip the topological cone
CX = X × [0,1]/X × {0} with a stratification over the poset P◁X obtained by adjoining a
minimal element ∗ to PX . The stratification of CX is given by

[(x, t)]↦

⎧⎪⎪
⎨
⎪⎪⎩

sX (x) t > 0,
∗ t = 0.

The resulting stratified space is denoted CX (see Fig. 1.2, for an illustration). One should note
that in the setting of stratified spaces the cone CX is often not equipped with the quotient
topology, but with the so-called teardrop topology (see [Qui88]). In the case where X is a
compact Hausdorff space, however, the two topologies agree.
Notation 1.1.1.9. Given a poset P , and an element p ∈ P , we will use the notation P>p and
P≥p to refer to the poset of all elements that are, respectively, greater or greater equal than p.
Definition 1.1.1.10. [Lur17] A stratified space X ∈ StratP is called conically stratified, if
for every p ∈ P and every point x ∈Xp, there is a neighborhood U of x in X that is stratum-
preserving homeomorphic (with respect to the stratification inherited from X ) to a stratified
space of the form CL × T , where L ∈ StratP>p , T ∈ Top, and we treat CL as stratified over P
by mapping the minimal element of P◁>p to p. The stratified spaces L are often referred to as
(the local) links3 of X at x ∈ X .

Most of the classical geometrical examples of stratified spaces – for example, Whitney
stratified spaces and topological pseudomanifolds – are of this nature. We will not introduce
these classes of stratified spaces here. For the reader unfamiliar with them, it will suffice to
think of them as conically stratified spaces with manifold strata for now (see, for example
[Pfl01; Ban07], for rigorous definitions). Any additional properties arising for such spaces will
be explained as we move forward.
Example 1.1.1.11. Consider the poset-stratified space illustrated below, to the left. It is
conically stratified over the poset {0 < 1 < 2,2′}.

3In the topological setting, local links at a point x may generally not be unique.
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To the right of it, we have illustrated local links at points that lie, respectively, in the 0, the 1,
the 2, and the 2′-stratum.

We will see later on that the property of local conicality is not only geometrically meaningful,
but also imparts the stratified space with certain desirable homotopical properties.

1.1.2 Stratified homotopy equivalences
If one follows the historical approach to homotopy theory, then the next step to defining a
homotopy theory of stratified spaces is to expose a cylinder in the stratified category. There is
an obvious cylinder in sight. Namely, given a stratified space X , we can consider the product
of the underlying topological space X with the unit interval [0,1], and equip it with the
stratification map given by

X × [0,1] πX
ÐÐ→X

sX
Ð→ PX .

We will denote the resulting stratified space by X × [0,1] (see Fig. 1.3, for an illustration).
This stratification is such that the two end-point inclusions i0, i1∶X ↪X × [0, 1] as well as the
projection X × [0,1]→X define stratum-preserving maps. We hence end up with a cylinder

Figure 1.3: Stratified cylinder on the local link of x0 in Example 1.1.1.11

functor on the category of stratified spaces, given by the functor X ↦ X × [0, 1] (acting in the
obvious way on stratified maps) together with the natural commutative diagrams

X

X × [0,1] X .

X

i0

πX

i1

(1.2)

Any such cylinder functor naturally gives rise to a notion of homotopy and of homotopy
equivalence, defined exactly analogously to the classical case of topological spaces (see Defini-
tion 3.2.3.4, for detailed definitions).

Notation 1.1.2.1. We will call homotopies with respect to the cylinder − × [0,1] stratified
homotopies and homotopy equivalences with respect to this cylinder stratified homotopy
equivalences. The stratified homotopy classes of stratified maps between two stratified spaces
X and Y will be denoted by the notation [X ,Y]s. When we consider stratified spaces over the
same poset P and only stratified homotopy classes of stratum-preserving maps, we will denote
the resulting stratified homotopy classes of stratum-preserving maps by [X ,Y]P .

Let us make some first immediate observations on these notions of homotopy and equivalence.

Remark 1.1.2.2. First off, the cylinder X ×[0, 1] is constructed precisely such that a stratified
homotopy H ∶X × [0,1]→ Y is a continuous [0,1]-indexed family of stratified maps, such that
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the underlying map on posets is constant, as we move along [0, 1]. In the case where all strata
are non-empty, and we can think of stratified maps as being entirely defined on the level of
spaces, the latter condition is equivalent to saying that

sY(Ht(x)) = sY(Ht′(x))

for x ∈ X and t, t′ ∈ [0,1]. Note that it also follows from the invariance of the poset map
along the homotopy that any stratified homotopy equivalence defines an isomorphism of the
underlying posets.

Remark 1.1.2.3. Fixing a class of equivalences W to be inverted in a 1-category C always
defines a homotopy theory, given by the (∞,1)-categorical localization C[W −1] (see [Lur23,
Tag 01M4]). We can ask ourselves what the resulting ∞-category obtained by localizing
Strat at the class of stratified homotopy equivalences Hs, denoted Strat[H−1

s ], looks like.
It follows from general theory developed in [DK87] that Strat[H−1

s ] admits a description in
terms of a simplicial category. Namely, given two stratified spaces X and Y, we denote by
Strat(X ,Y) the simplicial mapping space between X and Y, whose n-simplices are given by
simplicial maps X × ∣∆n∣→ Y , from the product of X with the topological n-simplex ∣∆n∣ into
Y. In particular, 0-simplices are given by stratified maps X → Y and 1-simplices are given by
stratified homotopies of such maps. We may thus equivalently think of the set of stratified
homotopy classes [X ,Y]s as the set of path-components π0Strat(X ,Y).

Notation 1.1.2.4. The simplicial mapping spaces in Remark 1.1.2.3 give rise to a simplicial
enrichment of Strat, i.e., the structure of a simplicial category, which we denote by Strat (see
Recollection 3.2.2.4). Similarly, for P ∈ Pos, we denote by StratP the simplicial enrichment of
StratP with the mapping spaces StratP (X ,Y) given by the sub-simplicial sets of Strat(X ,Y)
whose n-simplices are such stratified maps X × ∣∆n∣→ Y that are stratum-preserving over P .

For classical examples of stratified spaces, stratified homotopy equivalence is a rather well-
behaved notion. For example, it preserves the homotopy type of the strata of a stratified space,
and more than that, it preserves the so-called homotopy links, roughly the homotopy-theoretic
way the strata are connected. (These objects will be introduced in the next section, and
will become of central importance). It also preserves important classical invariants such as
intersection homology (of appropriately stratified topological pseudomanifolds, assuming that
the stratified maps are compatible with the perversities, see [Fri20]). If one also considers poset-
stratified spaces that do not arise from classical geometrical examples, stratified homotopy
equivalence often turns out to be too rigid a notion of equivalence, however.

Example 1.1.2.5. Consider, for example, the two stratifications of S1 sketched below. The
one on the left is obtained from the one on the right by slightly thickening the lowest stratum.

We denote the stratified space on the left by X and the one on the right by Xε. It is a fairly
straightforward exercise in elementary topology to show that these two stratified spaces are not
stratified homotopy equivalent. For example, one can reason that this is the case by observing
that any stratified homotopy equivalence would have to induce a homotopy equivalence of the
underlying spaces, in particular a map of degree ±1. However, no stratified map X → Xε can
be surjective, and, as every non-surjective map of spheres is contractible, also not of degree ±1.

This rigidity of stratified homotopy equivalences makes the homotopy theory arising
from them generally quite hard to work with. For example, just like classical homotopy
equivalences between non-CW-complexes, stratified homotopy equivalences lack a concise
algebraic recognition criterion. In fact, for many intents and purposes, one would like to regard

https://kerodon.net/tag/01M4
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the two stratified spaces in Example 1.1.2.5 to be treated as equal. Let us give two examples,
one from applied topology (specifically topological data analysis, TDA) and one from the
realm of algebraic topology (specifically sheaf theory):

• To be useful in applications in TDA, a crucial feature of the homotopy types of sufficiently
regular spaces embedded in euclidean space is that they are invariant under small
thickenings. This is of particular importance, as it allows for inference of homotopical
information from point-samples or slightly noisy data (see Chapter 4 for details). If one
is looking to use stratified methods in TDA, then one will often work with point samples,
and can generally only expect to detect strata up to such small amounts of noise. Thus,
one is generally interested in notions of equivalence that allow for such small thickenings.

• One of the core objects of study in the theory of stratified spaces are the categories of
constructible sheaves (in the classical or ∞-categorical sense) associated to a specific
stratification of a space (see [Ban07], for an introduction to the uses of such methods
for stratified algebraic topology). The collapsing map Xε → X , collapsing the thickened
stratum to a point, is such that it induces isomorphisms on these associated (∞-)categories
of constructible sheaves (see Section 1.3.1). Hence, from this sheaf theoretic perspective,
the two stratified spaces can be considered as equivalent.

There are two approaches to tackling this deficiency of stratified homotopy equivalences. One
may call these the (geometrically minded) topologists’ and the homotopy theorists’ answer to
the problem. Let us refer to these two fictive mathematicians by A and B, respectively. 4 A’s
answer goes something like this:

“One of the two stratified spaces you considered may not even deserve the name
stratified space. At least it is not in the class of objects studied in geometrical
investigations of stratified spaces. Reduce the class of objects you are considering,
and you will end up with a well working homotopy theory of stratified spaces.”

B’s answer may go something along the following lines:

“The class of stratified homotopy equivalences is too small. You need to increase
the class of morphisms you are inverting, while preserving the homotopical structure
you are mainly interested in. Then you may end up with a well-working homotopy
theory of stratified spaces. ”

Of course, if one asked either of the two about the other’s opinion, they would likely answer
that they are ultimately saying the same thing. It is a general phenomenon in (higher) category
theory that often the localization of an (∞-)category C at a class of morphisms is equivalent
to a fully faithful subcategory C (see classically, [DK80b, §7] for one rigorous incarnation of
this phenomenon).5 The most classical example in homotopy theory of this phenomenon is,
of course, the case of localizing the homotopy theory of all topological spaces - arising from
homotopy equivalences - at weak homotopy equivalences. It is ultimately a consequence of
Whitehead’s theorem that the homotopy theory one ends up with is the homotopy theory of
CW-complexes. This localization at weak equivalences makes the homotopy theory of spaces
significantly easier to handle (allowing, for example, the transition to the purely combinatorial
model of simplicial sets) while at the same time losing almost no information: As long as one
is interested in studying spaces with the homotopy type of a CW-complex, weak equivalence
and homotopy equivalence are really the same thing.
A’s approach to stratified homotopy theory of cutting down the class of stratified spaces is
precisely the approach started by Quinn in [Qui88] and pursued further by, for example, in
[Hug99b; Fri03; Mil13]. The approach we will pursue in this chapter is B’s approach: We

4Clearly, these groups are far from being disjoint. One may certainly often encounter a person giving both
answers, and in fact the two answers are equivalent, in a sense that we will make precise.

5Often, one even has a so-called (co)reflective localization, making the localization functor adjoint to the
inclusion of the subcategory, see [nLa24j], for an overview.
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study weaker notions of equivalence of stratified spaces. We will then see that the resulting
localizations of stratified homotopy theory can equivalently be achieved by restricting to a
subcategory of homotopically well-behaved stratified spaces. Interestingly, we will also see that
this approach leads to results very similar to Quinn’s approach.

1.2 The diagrammatic approach to stratified homotopy
theory

Having decided on the approach of localizing at a larger class than just stratified homotopy
equivalences, the obvious question arises to what that class should be. Any choice of class of
weak equivalences W may lead to a different choice of stratified homotopy theory, given by the
∞-categorical localization Strat[W −1]. As we will see in Section 1.3, this question may have
multiple legitimate answers. We can, however, begin by asking the question what properties a
class of weak equivalences should fulfill.

(R1) Firstly, from a practical perspective, one would like the class of weak equivalences to be
detectable, in the sense that there are reasonably easily verifiable, or at least conceptually
illuminating criteria that can be used to verify that a map is a weak equivalence.

(R2) In a best case scenario, one would like to end up with a homotopy theory that one has
a certain degree of control over, allowing for the explicit 1-categorical computation of
higher categorical constructions. This kind of property is usually achieved by requiring
that the class of weak equivalences extends to a model structure.

(R3) Furthermore, one would like the class of weak equivalences to be informed by the
geometric theory of stratified spaces. They should preserve at least the most crucial
homotopy theoretic features of classically relevant stratified spaces. Even more than
that, in a best case scenario one would expect the mapping spaces Strat[W −1](X ,Y) to
agree (homotopically speaking) with the classical simplicial mapping spaces Strat(X ,Y),
when X and Y are nice, geometric examples of stratified spaces. In other words, one
would want the classical stratified homotopy theory of geometric stratified spaces, using
stratified homotopy equivalences, to be fully faithfully included in the resulting homotopy
theory. In particular, this would imply a stratified Whitehead theorem for the class of
weak equivalences and sufficiently geometric examples of stratified spaces.

1.2.1 Diagrammatic equivalences of stratified spaces
Let us now study a class of equivalences that ultimately meets these criteria, and that was
suggested independently by Douteau and Henriques in [Dou21c; Hen], and extensively studied
and developed by Douteau in [Dou21b; Dou21a; DW22].
The goal here is to motivate how this class arises quite naturally from an inductive approach to
stratified homotopy theory and geometrical observations about classical examples of stratified
spaces. Let us begin with the case of stratified spaces with two strata, that is, the category
of stratified spaces StratP where P = {p < q} is a linear poset with two elements. It is
an observation that already follows from work of Thom and Mather (see [Tho69; Mat12;
Mat73]) that, for a Whitney stratified space W with two strata, the singular stratum Wp ⊂W
admits a neighborhood that is (stratum-preserving) homeomorphic to a mapping cylinder on
a topological fiber bundle ξ∶L → Wp, with fiber Lx a closed manifold. Here, the mapping
cylinder Mξ is stratified over {p < q} by setting Wp ⊂Mξ to be the p-stratum. In this fashion,
one obtains from a Whitney stratified space a diagram of topological spaces

Wp
ξ
←Ð L↪Wq,

with ξ a topological fiber bundle.
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The manifold L is often called the (global) link of W . Together with the two maps into the
strata, it can be seen as the homotopical datum that determines how the two strata are glued
together.

Example 1.2.1.1. To the left, below, is an illustration of a stratified space over the poset
{1 < 2}, obtained by gluing a disk to a 2-sphere by identifying the boundary of the disk with
the equator.

To the right is an illustration of the associated diagram consisting of the strata and the link.

It turns out that the diagrams constructed in this fashion (thought of as valued in the
homotopy theory of spaces) entirely determine the stratified homotopy type of a Whitney
stratified space with two strata (this will become apparent later in the text, see Chapter 4 for
an application where we make central use of this insight). In particular, it is a fairly elementary
exercise in using the homotopy lifting property of a fiber-bundle and the homotopy extension
property of cofibrations that a map of Whitney stratified spaces w∶W →W ′ that lifts to a
commutative diagram

Wp L Wq

W ′
p L′ W ′

q

wp

ξ

wq

ξ′

(1.3)

with all verticals (weak) homotopy equivalences is a stratified homotopy equivalence. We can
see this claim as a proto-Whitehead theorem for stratified spaces. In fact, much more can be
said, as we will see in a minute.
A similar scenario can be observed in the case of PL pseudomanifolds (roughly stratified
polyhedra with manifold strata that are conically stratified in a PL sense), where L is given
by the boundary of a regular neighborhood of Wp in W . Here, the topological fibration is
replaced by the collapsing map of a so-called cone block-bundle, however (see [Sto72]). Finally,
in the topological case of topological pseudomanifolds (see, for example, [Ban07]), the situation
is somewhat more subtle, and there is no obvious way to extract a link fibration. To tackle
this issue, Quinn (see [Qui88]) focused on the notion of homotopy links.

Definition 1.2.1.2. Let P be a general poset. Given a stratified space X ∈ StratP and a
pair of strata p < q ∈ P , we denote by HoLink{p<q}(X ) the subspace of the path space X[0,1],
given by such paths γ∶ [0,1] → X, that fulfill γ(0) ∈ Xp and γ((0,1]) ⊂ Xq (see, Fig. 1.4,
for an illustration of such a path). HoLink{p<q}(X ) is called the {p, q}-homotopy link of X .
HoLink{p<q}(X ) comes together with two evaluation maps

ev0∶HoLink{p<q}(X )→Xp;
ev1∶HoLink{p<q}(X )→Xq,

mapping a path to, respectively, its starting and its endpoint.

Homotopy links serve as a proxy for the links in the geometric scenarios detailed above.
In fact, one can show that in these scenarios the homotopy link is homotopy equivalent to
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Figure 1.4: A path in a stratified space with two strata X that defines an element of
HoLink{p<q}(X ).

the geometric link (whenever the latter is defined; see [Qui88; Fri03]) and that for all of the
scenarios mentioned above the evaluation map

HoLink{p<q}(X )→Xp

is a fibration (a Hurewicz fibration, to be precise; see [Qui88] for details). Homotopy links
have the crucial advantage over geometrical links that they are functorial in arbitrary stratum-
preserving maps (via postcomposition).
Inspired by the proto-Whitehead theorem above, the following class of weak equivalences for
spaces stratified over {p < q} is thus a natural candidate.
Definition 1.2.1.3. Let P = {p < q} be a poset with two elements. A stratum-preserving map
of P -stratified spaces w∶X → Y is called a diagrammatic equivalence6, if the induced maps

wp∶Xp → Yp;
wq ∶Xq → Yq;

HoLink{p<q}(w)∶HoLink{p<q}(X )→HoLink{p<q}(Y)

are weak homotopy equivalences.
This is already a promising candidate to meet Requirements (R1) to (R3). At least, weak

equivalences are reasonably easy to detect (modulo the difficulty of computing homotopy links)
and it fulfills a Whitehead theorem for a reasonably large class of classically relevant stratified
spaces, namely Whitney stratified spaces.
Example 1.2.1.4. Consider again the two stratified spaces of Example 1.1.2.5. There is
a collapsing map, Xε → X , that collapses the red stratum to a point and is given by a
homeomorphism on the blue stratum. This map is a diagrammatic equivalence. Indeed, for
both stratified spaces, the strata are contractible and the homotopy links have the homotopy
type of the disjoint union of two points. The collapsing map Xε → X induced a bijection on
path components of the link, and hence weak equivalences on all strata and homotopy links.

Suppose, for now, that we have accepted diagrammatic equivalences as a good definition of
weak equivalence in the case of two strata and let us move on to the three strata case. Again,
let us focus on the case of a Whitney stratified space W, this time with three strata, i.e.,
stratified over a poset P = {p0 < p1 < p2}. Given p ∈ P , we denote by W>p the stratified space
given by the union of all strata larger than p. Again, one can prove that a neighborhood around
the lowest stratum is of the form of a cylinder on a fiber-bundle L→Wp0 (see [Tho69; Mat12;
Mat73]). This time, however, the total space of the bundle L and the fibers are themselves
Whitney stratified spaces (with two strata) and stratification inherited from the inclusion
L↪W>p0 . Thus, in the three strata scenario (or more generally in the n-strata scenario), one
obtains a span

Wp0 ← L→W>p0

where the left arrow is a kind of stratified fiber bundle.
6The name diagrammatic comes from the fact that being a diagrammatic equivalence may be seen as

inducing equivalences of the associated diagrams of the form (Xp ←HoLink{p<q}(X )→ Xq) in the homotopy
theory of diagrams of spaces of the form ●← ●→ ●, obtained by localizing the 1-category of such diagrams in
Top at pointwise weak homotopy equivalences.



18 CHAPTER 1. STRATIFIED HOMOTOPY THEORY

Example 1.2.1.5. Consider the following illustration of the span arising from the stratified
space in Example 1.1.1.11.

In this special case, the p0-stratum is a point and hence the global link agrees with the local
link at the unique point in the p0-stratum.

Again, one can try to mirror this kind of structure homotopically, as was done in [Hug99b].
This requires treating the homotopy link itself as a stratified space.

Notation 1.2.1.6. Given a poset P and p ∈ P , we denote by P>p the poset consisting of
all elements greater than p. Given X ∈ StratP , we denote by X>p ∈ StratP>p the stratified
space s−1

X (P>p)→ P>p obtained by restricting the stratification map to P>p ⊂ P . We will use
analogous notation replacing “>” by other relations.

Notation 1.2.1.7. Let P be a general poset. Given a stratified space X ∈ StratP and p ∈ P ,
we denote by HoLinksp(X ) the P>p stratified space, whose underlying space is the subspace
of (with a slightly refined topology7) X[0,1], given by such paths γ∶ [0,1] → X that fulfill
γ(0) ∈ Xp and for which there exists a q > p such that γ((0,1]) ⊂ Xq. The stratification of
HoLink>p(X ) is given by

γ ↦ sX (γ(1)) ∈ P>p.

The stratified space HoLinksp(X ) is called the p-th stratified homotopy link of X . HoLinksp(X )
comes together with two evaluation maps

ev0∶HoLinksp(X )→Xp;
ev1∶HoLinksp(X )→ X>p,

the second of which is a stratum-preserving map over P>p.

Just as in the case of two strata, one can show that the stratified homotopy link is stratified
homotopy equivalent to the stratified geometric link, when one is working in a scenario where the
latter is available (see [Fri03, Proposition A.1.] for a rigorous statement). One can now take the
same approach to the three strata case, as we have taken in the two strata case, but proceeding
inductively. Namely, define a stratum-preserving map w∶X → Y of {p0 < p1 < p2}-stratified
spaces to be a diagrammatic equivalence if it is such that wp0 ∶Xp0 → Yp0 are weak homotopy
equivalences and such that the induced stratum-preserving mapsHoLinksp0

(X )→HoLinksp0
(Y)

and X>p0 → Y>p0 are themselves diagrammatic equivalences in the category Strat{p1<p2}. Let
us explicitly decode what this means.

Example 1.2.1.8. Let X be a {p0 < p1 < p2}-stratified space. If we first decompose X into a
span in Strat

Xp0 ←HoLinksp0
(X )→ X>p0

and then again decompose HoLinksp0
(X ) and X>p0 in this manner, we end up with the following

7In the case of infinitely many strata, the compactly generated subspace topology needs to be slightly
refined, in order to make the stratification map continuous (see Construction 7.2.2.6). We ignore this subtlety
for now.
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diagram of spaces (only the lower half of which commutes).

Xp0

HoLinksp0
(X )p1 HoLink{p1<p2}(HoLinksp0

(X )) HoLinksp0
(X )p2

Xp1 HoLink{p1<p2}(X ) Xp2

(1.4)
Observe that HoLinksp0

(X )p1 = HoLink{p0<p1}(X ) and HoLinksp0
(X )p2 = HoLink{p0<p2}(X ).

The most complicated space in this diagram seems to be the one centered at the barycenter of
the simplex, namely the double homotopy link HoLink{p1<p2}(HoLinksp0

(X )). Let us refer to
this space as the {p0 < p1 < p2}-homotopy link, for now. Having organized the situation as such,
we now see that w∶X → Y is a diagrammatic equivalence, if and only if it induces weak homotopy
equivalences on all strata, all pairwise homotopy links, and on the {p0 < p1 < p2}-homotopy
link.

We could now keep pursuing this inductive approach, and define diagrammatic equivalences
for n-strata stratified spaces. We hope that it is evident to the reader that decoding what these
definitions would mean in practice would become increasingly complicated. There is, however,
a systematic way of keeping track of the more and more involved iterated homotopy links
occurring in Example 1.2.1.8, through the use of stratified simplices. This approach to defining
weak equivalences of stratified spaces is (independently) due to Douteau and Henriques (see
[Dou21c; Hen]). We will first have to introduce some language and notation.

Notation 1.2.1.9. We denote by ∆ the full subcategory of the category of posets P , given
by finite linear posets of the form [n] ∶= {0,⋯, n}, for n ∈ N.

Notation 1.2.1.10. By a flag of a poset P , we mean a monotonous finite sequence p0 ≤ ⋅ ⋅ ⋅ ≤ pn
of elements of the posets. Equivalently, we may think of a flag of P as a map of partially
ordered sets [n]→ P . We will usually denote flags in the form [p0 ≤ ⋅ ⋅ ⋅ ≤ pn]. By the category
of flags of P , we mean the comma category ∆/P , under the inclusion ∆ ↪ Pos of ∆ into
the category of all posets Pos. In other words, ∆/P is the category whose objects are flags
[n]→ P , and whose morphisms are commutative triangles

[n] [m]

P .

(1.5)

We will often just denote this category by ∆P .
We say that a flag I ∶ [n]→ P is non-degenerate, or regular , if it has no repetitions, i.e., if it
is injective as a map of posets. We may just think of a non-degenerate flag as a finite linear
subset of P . Hence, we will also denote regular flags in the form {p0 < ⋅ ⋅ ⋅ < pn}.

Notation 1.2.1.11. We denote by sd(P ) the full subcategory of ∆P given by the non-
degenerate flags. If we think of non-degenerate flags as subsets of P , then morphisms in sd(P )
are just inclusions of subsets. Hence, the category sd(P ) can equivalently be seen as the
category given by the poset of finite linear subsets of P , ordered by inclusion. The latter is
often referred to as the subdivision of P , hence the notation. We will often use the opposite
category of sd(P ), which should formally be denoted sd(P )op. We will, at times, omit the
brackets, settling on the convention that sd is to be performed before (−)op, always.

Remark 1.2.1.12. The notation sd(P ) comes from the fact that, given a poset P , the
simplicial set (or complex) given by the nerve of sd(P ) is precisely the nerve of the barycentric
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Figure 1.5: Illustrations of the stratified simplices over a poset with three elements P = {p0 <
p1 < p2} associated to the flags [p0 < p2], [p0 ≤ p0 < p2], and [p0 < p1 < p2]

subdivision of the nerve of P . Consider, for example, the subdivision of the poset with three
elements {p0 < p1 < p2} illustrated below.

[p2]

[p0 < p2] [p0 < p1 < p2] [p1 < p2]

[p0] [p0 < p1] [p1]

(1.6)

Construction 1.2.1.13. Given a flag J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] of a poset P , we denote by ∣∆J ∣s
the P -stratified space obtained by equipping the topological n-simplex ∣∆n∣ ⊂ R{0,...,n} with the
following stratification. Under the inclusion ∣∆n∣ ⊂ R{0,...,n}, every element of ∣∆n∣ corresponds
to a vector t = (t0, . . . , tn) with positive real entries, such that ∑ ti = 1. Now define the
stratification map of ∣∆J ∣s as

∣∆n
∣→ P

t↦ pmax{i∈[n]∣ti>0}.

The stratified simplices of Construction 1.2.1.13 can be used to recover the iterated
homotopy links of Example 1.2.1.8.

Notation 1.2.1.14. In the following, we will use the notation C0
P (X ,Y) to refer to the space

of stratum-preserving maps between two P -stratified spaces X and Y (equipped with the
compactly generated subspace topology inherited from the mapping space Y X).

Example 1.2.1.15 (See Lemma 7.5.5.9.). Let P = {p0 < p1 < p2}. Given a P -stratified space
X and a regular flag I of P , let us study the spaces of stratum-preserving maps from ∣∆I ∣s
into X , denoted C0

P (∣∆I ∣s,Y). In the case I = {p}, these are the maps from a point into X,
which map into the p-stratum. Hence, keeping track of the topology, we obtain Xp. In the case
I = {p < q}, we may identify ∣∆1∣ affinely with [0,1] (with the obvious orientation). Under
this identification, a map ∣∆I ∣s → X is the same thing as a path starting in p and immediately
exiting into q, i.e., an element of HoLink{p<q}(X ). Hence, in this case we can identify the
space of stratum-preserving maps C0

P (∣∆I ∣s,Y) with HoLink{p<q}(X ). Finally, it remains to
consider the case I = {p0 < p1 < p2}. Denote by S the stratified space obtained by equipping
[0,1] × [0,1] with the stratification

(x, y)↦

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

p0 , if x = 0;
p1 , if x > 0 ∧ y = 0;
p2 , if y > 0 ∧ x > 0

(see the illustration on the left directly below, with the p0-stratum in red, the p1-stratum in
green, and the p2-stratum in blue).
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S ∣∆I ∣s

If we collapse the p0-stratum in S to a point, then the resulting stratified space is stratum-
preserving homeomorphic to ∣∆I ∣s (illustrated to the right, above). This collapsing map can
be seen to be a stratified homotopy equivalence (see the proof of Lemma 7.5.5.9). It follows
that up to homotopy equivalence we can identify C0

P (S,X ) with C0
P (∣∆I ∣s,X ). Under the

exponential law for mapping spaces, we can identify an element of C0
P (S,X ) with a path in

the space of paths X[0,1]. If we keep track of the stratification, we observe that there is a
canonical homeomorphism

C0
P (S,X ) ≅HoLink{p1<p2}(HoLinksp0

(X )).

Hence, it follows that up to natural homotopy equivalence, we may identify

C0
P (∣∆I ∣s,X ) ≃HoLink{p1<p2}(HoLinksp0

(X )).

This leads to the following definition of Douteau and Henriques:

Definition 1.2.1.16 ([Dou21c; Hen]). Given a poset P and a regular flag I ∈ sd(P ), we
denote by HoLinkI the functor

HoLinkI ∶StratP → Top
X ↦ C0

P (∣∆I ∣s,X )

acting on morphisms via postcomposition. Given a fixed stratified space X , the topological
space HoLinkI(X ) is called the I-th generalized homotopy link of X .

Given Example 1.2.1.15 and Definition 1.2.1.16, one may now give the following definition
for a class of weak equivalences of stratified spaces based on generalized homotopy links. It
provides a direct instead of an inductive definition, and was suggested in [Dou21c; Hen].

Definition 1.2.1.17. A stratum-preserving map w∶X → Y in StratP is called a diagrammatic
equivalence, if for each regular flag I ∈ sd(P ), the induced map

HoLinkI(X )→HoLinkI(Y)

is a weak homotopy equivalence.

Notation 1.2.1.18. Henceforth, we will denote by StratdP the ∞-category obtained by
localizing StratP at the class of diagrammatic equivalences.

Remark 1.2.1.19. [Dou21c] also defined a variant of this theory where the poset is allowed
to be flexible. We discuss this in more detail later on. It ultimately turns out that most
investigations of this theory can be entirely reduced to the case of a fixed poset. For now, we
will focus on the case of a fixed poset, however. Nevertheless, let us introduce the following
language and notation.

Definition 1.2.1.20. A stratified map w∶X → Y in Strat is called a poset-preserving
diagrammatic equivalence if it induces an isomorphism on the stratification posets, and a
diagrammatic equivalence in StratPX after treating Y as stratified over PX via the isomorphism
on the posets. The ∞-category obtained by localizing Strat at poset-preserving diagrammatic
equivalences will be denoted Stratd,p, with the p standing for poset-preserving.
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Notation 1.2.1.21. Henceforth, we will use two different notations to refer to the functor
categories of 1− and ∞-categories. Given two (∞)-categories C and D, we will denote the
associated (∞-)category of functors from C to D by either Fun(C,D) or, in exponential
notation, by DC.

One advantage of choosing generalized homotopy links over iterated applications of stratified
homotopy links is that the generalized homotopy links of a stratified space assemble into a
large commutative diagram.

Construction 1.2.1.22. The generalized homotopy link functors HoLinkI ∶StratP → Top
are also functorial in I. Given an inclusion of regular flags I ⊂ I ′, the associated face inclusion
of stratified simplices ∣∆I ∣s ↪ ∣∆I

′

∣s induces a natural transformation HoLinkI′ ⇒HoLinkI ,
given by restricting a stratified singular simplex ∣∆I′ ∣s → X along ∣∆I ∣s ↪ ∣∆I

′

∣s. For example,
in the case of I ′ = {p < q} and I = {p}, identifying HoLink{p}(X ) ≅ Xp, the value of this
natural transformation at X , HoLink{p<q}(X ) → HoLink{p}(X ), is simply the starting point
evaluation map. Together, these natural transformations define a functor

StratP × sd(P )op
→ Top

which, under the exponential law for categories, we may equivalently think of as a functor

HoLink∶StratP → Fun(sd(P )op,Top)

X ↦ {I ↦HoLinkI(X ).

Example 1.2.1.23. It can be useful to visualize the homotopy link diagram HoLink(X ) as a
diagram of spaces whose shape is given by the first barycentric subdivision of the nerve of P .
For example, in the case P = {p0 < p1 < p2}, the generalized homotopy links arrange into a
commutative diagram of the following shape

Xp2

HoLink{p0<p2}(X ) HoLink{p0<p1<p2}(X ) HoLink{p1<p2}(X )

Xp0 HoLink{p0<p1}(X ) Xp1 .
(1.7)

In the following, we will denote the ∞-category obtained by localizing the category of topo-
logical spaces at weak homotopy equivalences by Spaces. The category Fun(sd(P )op,Top)
has a natural notion of weak equivalence, namely such morphisms of diagrams that are given
by weak homotopy equivalence for each I ∈ sd(P ). Localizing this class of weak equivalences,
one equivalently obtains the ∞-category of functors Fun(sd(P )op,Spaces), or, in other words,
the ∞-category of space valued presheaves on sd(P ) (see Chapter 7, where such arguments are
provided with more detailed references). By definition of diagrammatic equivalences, and the
universal property of the localization, we obtain a canonical induced functor of ∞-categories

StratP Fun(sd(P )op,Top)

StratdP Fun(sd(P )op,Spaces)

HoLink

(1.8)

making the diagram commute (up to natural isomorphism, depending on the precise
model for localization one has in mind). We will also denote this functor by HoLink.
Fun(sd(P )op,Spaces) is an ∞-category that is reasonably easy to handle, being a presheaf
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category on a particularly simple category (a poset). This suggests the general approach of
using the functor HoLink to reduce questions about the homotopy theory StratdP to questions
about presheaves on sd(P ). The following result, which follows from [Dou21c, Thm. 3]
guarantees that this approach essentially loses no information.

Theorem 1.2.1.24 ([Dou21c]). The functor of ∞-categories

HoLink∶StratdP → Fun(sd(P )op,Spaces)

is an equivalence of ∞-categories.

This result turns out to be an extremely powerful tool, not only for studying the homotopy
theory StratdP , but also for studying alternative approaches to stratified homotopy theory,
which we will discuss in Section 1.3. When attempting to apply this result to classical examples
of stratified spaces, one will observe the following two challenges.

(O1) First off, to apply the theorem to geometrical examples, one needs to have a strong
understanding of how the ∞-category StratdP interacts with the 1-category StratP -
especially with such objects and morphisms arising from classical examples of stratified
spaces - and the simplicial category StratP . For example, one important thing to know
would be whether classical examples of stratified spaces fulfill a Whitehead theorem,
identifying diagrammatic equivalences between them with stratified homotopy equiva-
lences. This is essentially the question of whether the class of diagrammatic equivalences
fulfills Requirement (R3).

(O2) Secondly, the effectiveness of this theorem clearly correlates strongly with one’s under-
standing of the properties and the computability of the homotopy link functors and their
interaction with 1-categorical and geometrical constructions.

We will address these challenges later on.

1.2.2 Remarks on the use of model structures
For now, let us again return to Requirements (R2) and (R3). In general, ∞-categories obtained
through the localization of a category at some class of weak equivalences may be extremely
complicated and difficult to understand. Probably the most well-established theory of getting
better control over the resulting localizations, and connecting them with the 1-category one
started with is the theory of model categories (first defined in [Qui67], see [Hov07; Hir03] for
great introductions, as well as the appendix to [Lur09], for the connection to higher categories).
In addition to a class of weak equivalences, one equips the (bicomplete) 1-category in question
with two classes of morphisms, the so-called fibrations and cofibrations, which are assumed to
fulfill a series of lifting and factorization properties. These additional pieces of data can then be
used to perform ∞-categorical constructions, such as limits, colimits, or mapping spaces in the
associated ∞-localization purely in terms of constructions in the respective 1-category (or some
additional simplicial structure on it). Just to give an example, the classical Whitehead theorem
for topological spaces - relating weak homotopy equivalences with homotopy equivalences - is a
special instance of a general Whitehead theorem that holds in any model category (see [Hir03,
p. 7.5.10]). We are not looking to give an introduction to the language of model categories
here and expect a general degree of familiarity with basic terminology and methods of this
language here (see [Hov07] for an introduction and [Hir03] for a rather exhaustive overview).
Even for the reader not familiar with the basics of model categories, we think the following
more philosophical point towards the role which they conceptually play in this work may be of
interest.
The role that model categories take in the study of modern homotopy theory is often seen as
akin to the role of an atlas in differential topology. They are not strictly speaking intrinsic to
the theory, and the thing one is really interested in studying, but they can provide a useful
framework to perform certain computations and make things more explicit. This is a good
analogy, insofar as it illustrates two points:
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• It emphasizes the computational usefulness of model categories, and the great deal of
additional tractability over the behavior of the ∞-categorical localizations associated to
them;

• It emphasizes that there may be many different sets of coordinates leading to the same
intrinsic object of study;

• But it also emphasizes that only thinking of every construction for smooth manifolds in
terms of coordinates can be rather cumbersome, and at times a conceptual hindrance to
seeing the intrinsic nature of constructions.

The way the author usually interprets this analogy is that the role of smooth manifolds
corresponds to ∞-categories, the 1-category corresponds to open subsets of Euclidean space,
and the model category takes the role of the smooth charts. What seems to be slightly more
difficult to capture in this analogy is the following: Often people using homotopy theory start
with being interested in a specific 1-category of objects, and then want to know how these
objects behave under the passage to homotopy theory. Attempting to stay in the analogy,
they are very much interested in a specific point under some specific Euclidean chart. Keeping
with the analogy, it seems to us that the power of model categories does not just lie in the
fact that they allow for the computation of facts about some smooth manifold in charts, but
that they allow for the choice of very specific charts particularly adapted to studying some
very specific points in Euclidean space. For example, the fact that Serre fibrations are part of
a model structure on topological spaces does not just serve to compute homotopy fibers, it
also tells us that the ordinary fiber of some specific fiber bundle of manifolds we care about
is also the homotopy fiber and thus can be studied through all of the tools concerned with
homotopy fibers. In this kind of scenario, it is the fact that we can find a model structure
for topological spaces that relates strongly to classical geometrical objects – manifolds are
cofibrant, fiber bundles are fibrations, . . . – that enables us to apply the homotopy theory of
topological spaces, to infer theorems about geometry and topology from homotopy theory.
An analogy that may be slightly adapted to expressing this specific advantage of model
structures may be to compare the relationship of model categories with ∞-categories with the
relationship of presentations of a group (in terms of generators and relations) with the group
itself. Often the generators come with explicit geometric meaning (such as being reflections or
rotations) and knowing how a specific element of a group can be expressed in terms of the
generators and relations can be important information. Following this perspective, one often
says that a model category presents the ∞-category obtained by localizing weak equivalences.
This perspective will become particularly important in the second half of this thesis (Part III),
when (in addition to the model structure) we also fix generating cofibrations and acyclic
cofibrations, and perform investigations in generalized simple homotopy theory. Sticking to the
analogy of groups and generators, we will concern ourselves with the question of whether an
identity (weak equivalence) between two different expressions of a group element (homotopy
type) in terms of generators (generating cofibrations) can be verified purely in terms of a finite
sequence of modifications in terms of the relations (generating acyclic cofibrations).

1.2.3 Simplicial models for diagrammatic stratified homotopy theory
Having explained this, let us return to stratified spaces. To address Requirement (R3) and
Obvervation (O1), i.e., to relate the homotopy theory StratdP to geometrical examples of
stratified spaces (and more classical approaches to stratified homotopy theory) it would be
extremely useful to have a model structure on StratP that, at the very least, is such that
classical geometrical examples, such as Whitney stratified spaces, are both fibrant and cofibrant.
Already in [Dou21c] the existence of a model structure on StratP presenting StratdP was
proven. However, it was constructed in a way that makes all stratified spaces fibrant, and
almost no classical geometrical example of a stratified space cofibrant. The construction of
a model structure better adapted to geometrical examples turns out to be a surprisingly
subtle (and technically difficult) question, which we discuss in Section 1.4. In many ways, the
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requirement for maps to be stratified often makes homotopy theoretic proofs in the topological
category significantly more involved than similar arguments in a non-stratified setting. One
case, however, where such arguments can often be simplified is the case of stratified spaces X
that can be triangulated. By this we mean, that there exists a (non-stratified) triangulation
that is compatible with the stratification in the sense that the subspaces X≤p, for p ∈ PX ,
are themselves triangulated by a subcomplex. It is, for example, a classical fact in stratified
topology that Whitney stratified spaces have this property ([Gor78]). Much about such
triangulable stratified spaces can already be learned by considering model categories for
stratified homotopy theory that are using stratified simplicial sets instead. The following
definitions can be found in more detail in Chapter 3.

Notation 1.2.3.1. We will use the following language and notation.

1. We denote by sSet the category of simplicial sets, i.e., the category of set-valued
presheaves on ∆ (see, for example, [GJ12], for an introduction into the homotopy theory
of such objects). We will use much of the notation standard for simplicial sets, found,
for example, in [Lur09].

2. Given a poset P , we will often treat P as an element of sSet, by assigning to it its nerve
N(P ), i.e., the simplicial set whose n-simplices are given by the flags [n]→ P (with the
obvious face and degeneracy maps). Through the nerve functor, the category of posets
Pos is embedded into sSet as a full (reflexive) subcategory. By abuse of notation, we
will usually omit the nerve notation, and just treat posets as objects of sSet.

The category of stratified simplicial sets sStrat is now defined entirely analogously to
the category of poset-stratified spaces in Definition 1.1.1.2, replacing spaces by simplicial
sets, continuous maps by simplicial maps and the Alexandrov space associated to a poset
by the nerve of a poset (see Chapter 5 for a detailed definition). In particular, a stratified
simplicial set X is a triple X = (X,PX , sX ), consisting of a simplicial set X ∈ sSet, a partially
ordered set PX ∈ Pos and a simplicial map sX ∶X → PX , called the stratification map. The
subsimplicial set of X given by the fiber s−1

X (p) at p ∈ P , is called the p-stratum of X . We
use the terminology stratified simplicial map and stratum-preserving simplicial map entirely
analogously to the topological case.

Remark 1.2.3.2. The first important thing to observe about stratified simplicial sets is that
the nerve functor N∶Pos → sSet admits a left adjoint, given by mapping a simplicial set X
to the poset generated by equipping the set of vertices of X with the order generated by the
relation x ≤ y, whenever there is a 1-simplex x

τ
Ð→ y in X . It follows that a simplicial map

X → P is the same thing as a map from the vertices of X, s∶X0 → P , such that s(x) ≤ s(y)
whenever there is a 1-simplex x τ

Ð→ y. In this sense, a stratification of a simplicial set X over a
poset P is simply a choice of strata

x↦ sX (x) ∈ P

for the vertices of X, such that the paths in X, given by maps ∆1 → X, do not descend in
the stratification. From this perspective, a stratified simplicial map X → Y simply consists of
a simplicial map f ∶X → Y together with a map of posets Pf ∶PX → PY , such that sYf(x) =
Pf(sX (x)) holds for every vertex x ∈X0.

Example 1.2.3.3. In more classical simplicial investigations of stratified objects, people often
considered geometrical simplicial complexes K (in the sense of a subset of Euclidean space,
together with subsets defining the simplices) together with a filtration K≤0 ⊂K≤1 ⋅ ⋅ ⋅ ⊂Kn by
subcomplexes (see, for example, [Sto72]). If we take a first barycentric subdivision of such a
filtered simplicial complex

sdK≤0 ⊂ ⋅ ⋅ ⋅ ⊂ sdKn

(treated as an abstract simplicial complex whose vertices are the simplices of K) then the
vertices of sdK are naturally ordered (by thinking of them as simplices in K, and ordering
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them via inclusion). In fact, one can think of sdK as the nerve of the poset of simplices of K
ordered via face inclusion. Thus, sdK can be treated as a simplicial set. sdK comes with a
canonical stratification, given by the map

(sdK)0 → [n]
σ ↦min{k ∈ [n] ∣ σ ⊂K≤k}.

In this manner, all classical examples of stratified simplicial complexes or stratified PL objects
can be treated in the context of stratified simplicial sets.

Notation 1.2.3.4. Given any kind of category C (1-category, enriched category or quasi-
category), and two objects X,Y ∈C, we will refer to the object of morphisms from X to Y by
the notation C(X,Y ).

Analogously to the setting of stratified topological spaces, given a poset P , we denote
by sStratP the category of stratified simplicial sets whose stratification poset is given by P ,
equipped with stratum-preserving simplicial maps. The category sStratP has one decisive
technical advantage over StratP . Namely, that since sStratP = sSet/P is the slice category
of a presheaf category we may equivalently think of it as the category of presheaves over
∆/P =∆P . The isomorphism of categories

sStratP → Fun(∆P
op,Set)

is given by mapping a P -stratified simplicial set to the presheaf given by

J ↦ sStratP (N([n])
N(J )
ÐÐÐ→ N(P ),X ),

acting on morphisms of flags via precomposition. Under this identification, the presentable
presheaves associated to a flag J are given by N([n])

N(J )
ÐÐÐ→ N(P ). As N([n]) =∆n, we can

think of these as stratified simplices, with the stratification specified by the flag J . We thus
use the notation ∆J to refer to stratified simplicial sets of this form. Explicitly, this means ∆J ,
for J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn], is given by stratifying ∆n such that k ∈ [n] lies in the pk-stratum. The
stratified subsimplicial set given by the boundary of the underlying simplex will be denoted
∂∆J .

The theory of presheaf categories and how to construct model structures on the latter is
well understood and studied (see, for example, [Cis06]). Hence, it is generally a plausible
approach to understanding the simplicial stratified scenario first, and then transfer results from
the simplicial side to the topological stratified world. This kind of transfer is made possible
through the following adjunction, which is the stratified analogue of the classical realization
and singular-simplicial set adjunction for simplicial sets and topological spaces.

Construction 1.2.3.5. By the general yoga of nerve and realization functors (see, for example,
[Cis19]) it follows that any left-adjoint functor sStratP → StratP is uniquely defined (up to
canonical natural isomorphism) by its restriction along the Yoneda-inclusion

∆P ↪ sStratP
J ↦∆J .

Hence, to define a stratified realization functor from sStratP into StratP , it suffices to define
the realization functor for stratified simplices. We have already defined such a realization
functor for stratified simplices in Construction 1.2.1.13 (extending to morphisms in the obvious
way). The left Kan-extension of the functor

∆P → StratP
J ↦ ∣∆J ∣s
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to sStratP gives rise to an adjunction

∣ − ∣s∶ sStratP ⇌ StratP ∶Sings

called the stratified realization and stratified singular simplicial set adjunction.

Remark 1.2.3.6. Explicitly, this means that the realization of a stratified simplicial set X
is given by equipping the realization of its underlying simplicial set ∣X ∣ with the following
stratification. ∣N(P )∣ = ⋃I∈sd(P ) ∣∆I ∣s is naturally stratified over P , by gluing the stratifications
of the stratified realizations ∣∆I ∣s, I ∈ sd(P ). One may then stratify ∣X ∣, via the composition

∣X ∣
∣sX ∣
ÐÐ→ ∣N(P )∣→ P.

Conversely, the underlying simplicial set of SingsX , for a stratified space X ∈ StratP , can be
identified with a subsimplicial set of the usual singular simplicial set Sing(X). Specifically,
Sings(X ) is given by such singular simplices ∣∆n∣→X, for which the induced stratification

∣∆n
∣→X

sX
Ð→ P

arises from some choice of flag [n] JÐ→ P .

The adjunctions ∣ − ∣s ⊣ Sings, for varying P ∈ Pos, assemble to a global adjunction

∣ − ∣s∶ sStrat⇌ Strat∶Sings

which we denote the same, by abuse of notation.

Remark 1.2.3.7. The categories sStratP and sStrat, much like the categories StratP
and Strat inherit the structure of simplicial categories. Just as in the topological case, the
simplicial structure is induced by a tensoring (see [nLa24k] for an overview over simplicial model
categories), defined by setting X ⊗∆n ∶= (X ×∆n, PX ,X ×∆n πX

ÐÐ→ X
sX
Ð→ P ). In particular,

the n-simplices in the associated simplicial mapping spaces sStratP (X ,Y) (sStrat(X ,Y)) are
given by stratum-preserving (stratified) maps X ⊗∆n → Y.
In fact, in this fashion, one obtains not only simplicial categories, but simplicial categories
tensored and cotensored over sSet, i.e., the basic ingredients needed for a simplicial model
category. The adjunctions ∣ − ∣s ⊣ Sings are compatible with these structures and lift to an
adjunction of simplicial categories.

Notation 1.2.3.8. In the following, we will often deal with categories that extend to the
structure of a simplicial category. In this case, we will denote the simplicial category in the
form C and the underlying 1-category by C.

Recall that the unstratified analogue of this construction between simplicial sets and
topological spaces is a Quillen equivalence, if one equips topological spaces with the Quillen
model structure and simplicial sets with the Kan-Quillen model structure (see [Qui67], or
Theorem 1.2.4.1 below). In fact, the model structure on topological spaces can be seen as
transferred from the Kan-Quillen model structure, in the sense that a map of topological
spaces f ∶X → Y is a weak homotopy equivalence (resp. Serre-fibration), if and only if
Sing(f)∶Sing(X)→ Sing(Y ) is a (weak) homotopy equivalence (Kan-fibration). This classical
fact suggested a similar approach in the stratified world: Define a model structure in the
realm of stratified simplicial sets, and transfer it along the adjunction to the world of stratified
topological spaces (see, for example, [Nan19], where a similar approach was pursued, and see
Section 1.4 for more details). Such a model structure on the simplicial side was established by
Douteau in [Dou21a] and studied independently by Henriques in [Hen]. This uses a general
construction for model categories on presheaf categories constructed from the data of a cylinder
and a class of generating anodyne extensions. In the case of stratified simplicial sets, one uses
the cylinder functor given by the stratified cylinders X ⊗∆1, which is the obvious analogue to
the cylinder in the stratified topological case.
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Definition 1.2.3.9. The Douteau-Henriques model structure on sStratP is the minimal model
structure (in the sense of weak equivalences) such that the boundary inclusions X ↪ X ⊗∆1

are weak equivalences, and such that the cofibrations are exactly given by the monomorphisms.

Notation 1.2.3.10. The model category obtained by equipping sStratP with the Douteau-
Henriques model structure will be denoted sStratdP .

Notation 1.2.3.11. Henceforth, we will use the notation convention that given a model
category, denoted in the form Categoryabc, its associated ∞-category obtained by localizing
at weak equivalences will be denoted in the form Categoryabc, replacing the first letter with a
calligraphic one.

Definition 1.2.3.9 is, for now, a very abstract definition. The following result, using the
general calculus developed in [Cis06], makes it significantly more explicit. Given a simplex
∆n ∈ sSet, with n ≥ 1, and 0 ≤ k ≤ n, we denote by Λnk its k-th horn, i.e., the sub-simplicial
set obtained by removing from ∆n the unique non-degenerate n-dimensional simplex and the
(n − 1)-dimensional face opposite to the k-th vertex. Recall that in the Kan-Quillen model
structure for simplicial sets, the fibrations - i.e., the Kan-fibrations - can be characterized by
having the right lifting property with respect to all horn inclusions Λnk ↪ ∆n. It turns out that
a similar statement can be made in the stratified case.

Definition 1.2.3.12 ([Dou21a]). Given a stratified simplex ∆J , with J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn], and
k ∈ [n], we denote by ΛJk the stratified sub-simplicial set of ∆J whose underlying simplicial set
is the horn Λnk ⊂∆n . A horn inclusion ΛJk ↪∆J is called admissible, if one of the following
two equivalent conditions holds (see Chapter 3 for more details).

• The stratified realization ∣ΛJk ↪∆J ∣s is a stratified homotopy equivalence.

• The value pk is repeated in J .

Example 1.2.3.13. Consider the following three illustrations of stratified horn inclusions
over P = {p0 < p1 < p2}.

1. For k = 1 and J = [p0 ≤ p0 < p2] the associated inclusion ΛJk ↪∆J , illustrated directly
below, is admissible.

0 1

2

0 1

2

2. For k = 2 and J = [p0 ≤ p0 < p2] the associated inclusion ΛJk ↪∆J , illustrated directly
below, is not admissible.

0 1

2

0 1

2

3. For k = 1 and J = [p0 < p1 < p2] the associated inclusion ΛJk ↪∆J , illustrated directly
below, is not admissible.
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Recall that one says that a set of morphisms S provides a generating set of (acyclic)
cofibrations in a model category, if the (acyclic) cofibrations are generated from S under the
operations of cobase change (i.e., pushout along some arbitrary arrow), transfinite composition
and taking retracts (see, for example, [Hir03]). This is in turn equivalent to saying that a
morphism is a trivial fibration (fibration) if and only if it has the right lifting property with
respect to S. [Dou21a] showed the following result.

Theorem 1.2.3.14 ([Dou21a]). The model category sStratdP is simplicial (with respect to
the canonical structure) and has the following properties:

• Cofibrations are generated by the set of stratified boundary inclusions

{∂∆J ↪∆J ∣ J ∈∆P }.

In particular, every object is cofibrant.

• Acyclic cofibrations are generated by the set of admissible horn inclusions

{ΛJk ↪∆J ∣ J ∈∆P , k s.t. ΛJk ↪∆J is admissible.}

In particular, the fibrant objects are precisely such stratified simplicial sets that have the
horn filling property with respect to admissible horn inclusions.

• A morphism between fibrant objects X → Y is a weak equivalence if and only if, for each
regular flag I ∈ sd(P ), the associated map of simplicial mapping spaces

sStratP (∆I ,X )→ sStratP (∆I ,Y)

is a weak homotopy equivalence.

Remark 1.2.3.15. The characterization of weak equivalences in Theorem 1.2.3.14 can be seen
as an analogue of the definition of diagrammatic equivalences in the topological setting. The
restriction of this definition to fibrant objects is a priori not surprising. One should generally
only expect simplicial mapping spaces in a simplicial model category to be homotopically
well-behaved if the sources are cofibrant and the targets are fibrant, i.e., when they compute the
mapping space in the associated ∞-category. We will see, however, that in this special instance,
the fibrancy assumptions are actually superfluous, which will have far-reaching consequences
for the connection between topological and simplicial models for stratified homotopy theory.

Construction 1.2.3.16. The model category sStratdP also admits an extension to the case
of flexible posets, denoted sStratd,p, and called the poset-preserving diagrammatic model
structure or poset-preserving Douteau-Henriques model structure (with the d standing for
diagrammatic, and the p standing for poset-preserving). This uses a general construction of
[CM20], that glues a family of model structures on a Grothendieck bifibration to a global model
structure. In this case, the Grothendieck bifibration is the functor sStrat → Pos, sending
a stratified simplicial set to its underlying poset, whose fiber at P ∈ Pos is precisely the
stratum-preserving category sStratP . The details for this construction are not too surprising,
and can be found in Chapter 5, for example. For the purpose of this introduction, it will
suffice to know that weak equivalences are given by such stratified simplicial maps that induce
isomorphisms on posets and weak equivalences in sStratdP , after identifying the posets of the
source and target. Essentially anything one needs to know about these model structures can
be reduced to fiberwise arguments.
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These results already point towards the model categories sStratP being well suited to
connect the diagrammatic homotopy theory StratdP to geometric examples of stratified spaces.
This is for the following reasons:

1. All stratified simplicial sets being cofibrant ensures that every stratified space that admits
a compatible triangulation (such as a Whitney stratified space or a PL pseudo manifold)
is isomorphic to the stratified realization of a cofibrant object.

2. It follows by a result of Lurie’s (see [Lur17, Theorem A.6.4.]) that the characterization
for fibrant stratified simplicial sets is fulfilled by the stratified singular simplicial sets
associated to conically stratified spaces. It was furthermore shown in [Nan19] that this
also holds for the more general homotopically stratified spaces introduced by Quinn
([Qui88]).

3. The mapping spaces sStratP (∆I ,X ) provide simplicial analogue for homotopy links.
Indeed, given a stratified space Y there is a canonical isomorphism

Sing(HoLinkI(X )) ≅ sStratP (∆I ,Sings(X )).

In particular, it follows by Theorem 1.2.3.14 that a map w∶X → Y between two stratified
spaces, whose image under Sings is fibrant in the Douteau-Henriques model structure, is
a diagrammatic equivalence, if and only if Sings(w) is a weak equivalence in sStratdP .

These three facts can already be used to derive quite a bit about the diagrammatic homotopy
theory StratdP . For example, one consequence of these results is a Whitehead theorem for
stratified spaces which are triangulable and whose stratified singular simplicial set is fibrant
(for example, Whitney stratified spaces), first proven in [Dou21a].

1.2.4 Results: A Kan-Quillen equivalence without model structures
The obvious question arises on how strong of a link between the homotopy theories StratdP
and sStratdP ( Stratd,p and sStratd,p) is actually established by the adjunctions ∣ − ∣s ⊣ Sings.
Recall, for this purpose, the Kan-Quillen equivalence between topological spaces and simplicial
sets, which is at the heart of large parts of modern homotopy theory.

Theorem 1.2.4.1 ([Qui67]). The adjunction

∣ − ∣∶ sSet⇌ Top∶Sing

induces a Quillen equivalence between sSet, equipped with the Kan-Quillen model structure,
and Top, equipped with the Quillen model structure.

Just saying that this adjunction is a Quillen equivalence actually slightly obscures how
intimate the connection between these two theories established by the adjunction is. Recall
that one says that a functor F ∶C→D between two categories with weak equivalences creates
weak equivalences, if for every w ∈C it holds that w is a weak equivalence if and only if F (w)
is a weak equivalence. Theorem 1.2.4.1 together with the fact that all simplicial sets are
cofibrant and all topological spaces are fibrant actually implies that the following two equivalent
conditions hold, which are (if one already has a Quillen adjunction) generally stronger than
being a Quillen equivalence:

1. Sings and ∣ − ∣ create weak equivalences;

2. Sings and ∣− ∣ preserve weak equivalences and unit and counit of the adjunction are weak
equivalences.

In fact, the two conditions as stated above can be seen to be equivalent for general adjunctions
between categories equipped with a class of weak equivalences fulfilling the two-out-of-three
property and containing all isomorphisms. Such a pair, consisting of a category C together
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with a class of morphisms W ⊂C containing all isomorphisms and fulfilling two-out-of-three is
called a category with weak equivalences (see [nLa24b], for an overview). In the language of
categories with weak equivalences (or, more generally, so-called relative categories) we will refer
to the second condition above by saying that the adjunction ∣ − ∣ ⊣ Sing defines a homotopy
equivalence of categories with weak equivalences (of relative categories) (see [BK12b], where
this notion was defined). It follows immediately from the universal property of the localization
that a homotopy equivalence of categories with weak equivalences descends to an equivalence
of the associated ∞-categories, obtained by localizing weak equivalences.
One direct advantage of homotopy equivalences of categories with weak equivalences over
Quillen equivalences, or more generally functors of categories with weak equivalences over left
Quillen functors, is that there is no need to derive, i.e., fibrantly or cofibrantly replace, if one
wants them to descend to functors on the associated∞-categories. The obvious disadvantage is,
of course, that these types of functors are generally not required to respect the extra structure
of fibrations and cofibrations, which may contain relevant geometric or algebraic information.

Notation 1.2.4.2. In the following, we will often deal with categories with weak equivalences,
or more generally relative categories, i.e., categories equipped with some wide subcategory
of morphisms which are not necessarily stable under the two-out-of-three property and may
not contain all isomorphisms. We will generally use the format Category to refer to relative
categories, and denote the first letter in italics. If we are in the context of some model category
or ∞-category obtained by localizing a class of weak equivalences, then replacing the first
letter by an italic letter will indicate that we are referring to the respective relative category.
When we start with a relative category and localize to pass to an ∞-category (modelled as
quasi-categories) we replace the first letter by a calligraphic letter. For example, we denote by
Stratd,p the category with weak equivalences obtained by equipping Strat with the class of
poset-preserving diagrammatic equivalences, and denote by Stratd,p its associated ∞-category.
We will refer to the homotopy 1-category associated to a model category, simplicial category
or ∞-category by adding a prefix “ho”.

In [Dou21b], Douteau first proved a Quillen equivalence between sStratdP and StratP ,
where the latter was equipped with a model structure that generally does not interact well with
the geometry of classical examples of stratified spaces. The Quillen equivalence was, however,
not constructed in terms of the adjunction ∣ − ∣ ⊣ Sings, but through a modified version of the
latter, which, for example, does not produce triangulations of stratified spaces as they occur in
more classical scenarios such as [Sto72]. This fact limits the usefulness of the adjunction when
one is interested in studying geometrical examples of stratified spaces. For example, unlike the
adjunction ∣ − ∣ ⊣ Sings, it is generally unclear how to extract a Whitehead theorem for PL
pseudomanifolds from it.
In this sense, [Dou21b] produced the result that the resulting homotopy theories are equivalent,
but not in the way one would have, a-priori, wanted or expected. Furthermore, the adjunction
defined in [Dou21b] does not pass to a global equivalence between sStrat and Strat. Never-
theless, these results already served as a theoretical benchmark as well as a powerful tool used
in further investigations.

In lieu of a model structure for the diagrammatic homotopy theory on Strat (StratP )
that is compatible with the adjunction ∣ − ∣s ⊣ Sings, the next best thing to ask for was whether
the adjunctions defined homotopy equivalences of categories with weak equivalences. That
this holds is the first core result presented in this thesis, which we developed in joint work
with Douteau in [DW22]. This article is presented in Chapter 3 here. The following result
can either be directly derived from Theorem 3.1.0.3 in Chapter 3 or from the statements and
proofs of Lemmas 3.5.1.2 and 3.5.1.3. 8

8The reader reading [DW22] and comparing it with the way this introduction is phrased will notice a clear
difference in the language used to phrase things. Namely [DW22] is mostly expressed in the language of model
categories and homotopy categories, only occasionally eluding to the ∞-categorical consequences, while this
introduction starts from the perspective of ∞-categories and eludes to model categories mainly for the purpose
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Main Result A1. The adjunctions

∣ − ∣s∶ sStratd,p ⇌ Stratd,p∶Sings,
∣ − ∣s∶ sStratdP ⇌ StratdP ∶Sings

define homotopy equivalences of categories with weak equivalences. In particular, they descend
to equivalences of ∞-categories Stratd,p ≃ sStratd,p and StratdP ≃ sStratdP , after localizing
at weak equivalences.

This result can already be used to obtain crucial insights about the interaction of the
diagrammatic homotopy theory Stratd,p with geometrical examples of stratified spaces. Let
us denote by Con the full simplicial subcategory of Strat given by conically stratified spaces
that are stratum-preserving homeomorphic to the realization of a stratified simplicial set. In
particular, all PL pseudomanifolds or Whitney stratified spaces are within this category. In
Chapter 3, we prove the following results (see Theorem 3.1.0.2 and the comment following
it.)9

Corollary 1.2.4.3. The inclusion of simplicial categories Con ↪ Strat induces a fully
faithful embedding of the ∞-category (given by the homotopy coherent nerve of) Con into the
∞-category Stratd,p. In particular, it follows that for X ,Y ∈Con the set of morphisms in the
homotopy category hoStratd,p, between X and Y, is in canonical bijection

hoStratd,p(X ,Y) ≅ [X ,Y]s

with the set of stratified homotopy classes.

In fact, it follows from the way this result is proven in Chapter 3 that this holds more
generally for (appropriately triangulable) stratified spaces whose associated stratified singular
simplicial set Sings(X ) is fibrant in sStratdP . In other words, at least if we assume the
existence of triangulation, the requirements of Obvervation (O1) are fulfilled. When restricting
to the conically stratified, triangulable case, the more classical approach to stratified homotopy
theory investigated in [Qui88; Mil13] embeds fully faithfully into the homotopy theory Stratd,p.

In Chapter 3, we also prove an analogue of Theorem 1.2.1.24 for the case of stratified simplicial
sets: The simplicial homotopy link functor

HoLink∶ sStratP → Fun(sd(P )op, sSet)

built from the simplicial mapping space functors sStratP (∆I ,−) admits a left adjoint, given
by the coend formula

D ↦ ∫
I

∆I ⊗DI .

(See [RV13], for a short introduction to coend calculus). For the purpose of this introduction,
knowing that sStratP (∆I ,−) admits a left adjoint will suffice. [Dou21a] already showed
that this adjunction defines a Quillen equivalence between sStratP and the projective model
structure on Fun(sd(P )op, sSet) (this also holds for the injective model structure, see Recol-
lection 5.2.2.1). More than this, in Chapter 3, we also show the following (See Theorem 3.1.0.3
in Chapter 3).

Main Result B. The adjunction

∫

I
∆I ⊗ −∶Fun(sd(P )op, sSet)⇌ sStratP ∶HoLink

of tying homotopy theory to 1-categorical or geometrical phenomena. We hope both takes on the topic can be
useful to audiences with different preferences.

9In the context of this whole thesis, this is, in a sense, a preliminary result. In fact, we will discuss a
significantly stronger version in Section 1.3. As to not overstate our number of results, we have chosen to
enumerate this result and its derivatives in the form Ai, indicating that they build on the same mathematical
insights.
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defines a homotopy equivalence of the categories with weak equivalences sStratdP and Fun(sd(P )op, sSet)
(where the latter is equipped with pointwise weak homotopy equivalences).

The crucial new fact here is that the characterization for weak equivalences in sStratP in
Theorem 1.2.3.14 also holds for stratified simplicial sets that are not fibrant. In other words,
the functors sStratP (∆I ,−) always compute the correct ∞-categorical mapping spaces. In
fact, this result is also centrally used in the proof of Main Result A1.

Looking at the way StratdP and Stratd,p are defined, as well as the characterization of
weak equivalence in sStratP in Main Result B, it is not too surprising that these results
ultimately rely on having as good as possible of an understanding of the homotopy links of
stratified simplicial sets. They make use of several equivalent models for the homotopy links
of a stratified simplicial set X , each with their own technical or intuitive advantages. Let us
survey a few of these. Let I ∈ sd(P ) be a regular flag. One may then consider:

(D1) The derived simplicial homotopy link obtained by fibrantly replacing a stratified simplicial
set X , and then computing simplicial homotopy links.

(D2) The underived simplicial homotopy link HoLinkI(X );

(D3) The geometric link (illustrated in purple directly below) given by taking the inverse
image of the barycenter of ∣∆I ∣s ⊂ ∣N(P )∣s under the realization of the stratification map
∣X ∣→ ∣N(P )∣.

(D4) The combinatorial link (illustrated in purple directly below), given by taking the inverse
image in sSet of the vertex corresponding to the barycenter of ∆I under the first
barycentric subdivision of the stratification map, sdX → sdN(P ).

In the case of two strata, I = {p < q}, and a stratified simplicial complex, this is the
classical construction for the boundary of a regular neighborhood of Xp ⊂X.

(D5) The topological homotopy link HoLinkI(∣X ∣s).

In Chapter 3, we obtain the following result concerning these links (see Theorem 3.1.0.4),
which may be phrased somewhat sloppily as follows:
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Main Result C. All of the definitions for homotopy links of stratified simplicial sets in
(D1) to (D5) define the same homotopy type in Spaces (and this identification happens in a
sufficiently natural way).

This can be seen as a first step towards addressing Obvervation (O2). To just name one
advantage of the combinatorial models for generalized homotopy links in (D4): It defines a left
adjoint functor that preserves monomorphisms. This allows one to investigate its properties
in a cell-by-cell approach, significantly simplifying many proofs. Main Result C can be seen
as the first instantiation of a general paradigm of proof in stratified homotopy theory which
we will apply all over this thesis: Ultimately, it is in the nature of the homotopy theories of
stratified spaces we discuss in this thesis that many general statements can be reduced to an
equivalent statement about homotopy links. One can then often construct models for these
homotopy links that are specifically adapted to studying the statement in question.

1.2.5 Results: An application of stratified homotopy theory to strat-
ified topological data analysis

A first interesting consequence of Corollary 1.2.4.3 and Theorem 1.2.1.24 is that one obtains a
fully faithful embedding

ConP
HoLink
↪ÐÐÐÐ→ Fun(sd(P )op,Spaces)

of the homotopy theory defined by localizing triangulable conically stratified spaces over a
fixed poset P at stratified homotopy equivalences into the homotopy theory of Spaces valued
diagrams indexed over sd(P )op. In [MW24], which is joint work with Tim Mäder and another
article we present in this thesis, we leveraged this insight for the purpose of stratified topological
data analysis. These results are presented in Chapter 4.

Chapter 4 is itself equipped with a detailed introduction and we refer the reader there
for details. Let us just explain the core ideas of [MW24]. Considering the way the remainder of
this chapter was written, we expect the possible reader to most likely come from an algebraic
topology or homotopy theory background rather than from primarily the topological data
analysis (TDA) side of things. We will thus phrase things in the language of homotopy theory
and refer to Chapter 4 for a more TDA oriented account. We also refer to Chapter 4 for a list
of relevant references.

Probably the most successful tool of topological data analysis is what is called persistent
homology. Roughly speaking, the goal is to infer homological information from a data set,
given, for example, in the form of a point cloud in some Euclidean space or a finite metric
space. From an abstract, homotopy-theoretic point of view, these constructions can usually
be interpreted as a two-step process. Beginning from finite point cloud data, one constructs
a persistent homotopy type, which is just a functor from the category given by the poset of
non-negative reals R+ into the ∞-category of spaces Spaces, i.e., an element of the functor
category SpacesR+ . For example, one can associate to a point cloud X in R the functor given
by ε↦ Xε, where Xε denotes a closed thickening of X by ε, and the relation ε ≤ ε′ is mapped
to the obvious inclusion Xε ⊂ Xε′ . In a second step, one then computes homology of the
resulting spaces (usually with field coefficients) in some fixed dimension, thus obtaining a
functor from R+ into vector spaces over some field k. Such an object is called a persistence
module. It turns out that from the perspective of application, persistent homology has sur-
prisingly favorable properties, being computable, interpretable, and admitting inference and
stability results (see the introduction in Chapter 4 for detailed references). All in all, these
results allow one to stably infer homological information from discrete point samples. Many
of these properties are, from a theoretical point of view, not really properties only appear-
ing at the homology level, but already properties of the persistent homotopy type constructions.
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In practice, one often encounters data sets which are inherently singular, or come with
some decomposition into several subtypes. Based on this observation, several authors have
suggested the use of invariants of stratified spaces (such as intersection homology) for the
purpose of topological data analysis. Naturally, these approaches first attempt to construct
a stratified persistent homotopy type, in the sense that they refer to the homotopy theory
obtained by localizing stratified homotopy equivalences. Usually, these stratified homotopy
types are presented in terms of stratified simplicial complexes (i.e., stratified simplicial sets).
There is a general issue with these approaches, which many of them share: namely the fact
that stratified homotopy equivalences are generally too rigid to deal with the approximate
nature and thickening construction inherent to any application. For example, in application,
one will generally only be able to recover the singular stratum up to a controlled thickening,
which, as we have seen in Example 1.1.2.5, will almost always change the stratified homotopy
type (see Example 1.1.2.5). In Chapter 4, we thus suggest an alternative approach, based on
the diagrammatic homotopy theory StratdP . By passing to the weaker notion of diagrammatic
equivalence, many of the rigidity problems associated to stratified homotopy equivalences
can be circumvented. Furthermore, the equivalence of ∞-categories in Theorem 1.2.1.24,
allows one to present persistent diagrammatic stratified homotopy types in terms of diagram
R+ × sd(P )op → Spaces. It follows from the fully faithful embedding of conically stratified
spaces into Fun(sd(P )op,Spaces) that as long as one is interested in recovering stratified
homotopic information from geometrical examples such as Whitney stratified spaces, this
approach essentially loses no stratified homotopic information.

In Chapter 4, we describe an explicit construction of persistent stratified homotopy types in
terms of stratification diagrams in the two strata scenario and prove that, at least as long as
one focuses on recovering information from compact Whitney stratified spaces, it has many
of the favorable properties of the unstratified persistent homotopy types (see Main Result D
in Chapter 4). We furthermore prove an inference theorem that gives theoretical conditions
under which stratified homotopy theoretic information can be recovered from a non-stratified
point sample (see Main Result E in Chapter 4).

1.2.6 The non-existence of good topological model structures
Let us end our treatment of the diagrammatic approach to stratified homotopy theory for now,
by returning to the question of model categories. Corollary 3.5.2.4 very strongly points towards
the existence of a model structure as we hoped for in Requirement (R3), more specifically,
one transferred from the model structure on sStratP in which a stratified space X is fibrant,
if and only if Sings(X ) is fibrant in sStratdP (see Section 1.3, for details on the transfer of
model structures). Provided the existence of such a model structure, it would allow for a
significant generalization of Corollary 1.2.4.3, also to the case of more general cell complexes
and their retracts, instead of restricting to the triangulable case10. A related model structure
was conjectured by Stephen Nand-Lal in [Nan19], but could ultimately only be proven after
restricting to certain fibrant stratified spaces which are not closed under colimits, and hence
do not form a model category. In fact, in joint work with Douteau, we have shown that no
such model structure can exist (see Proposition 3.A.0.1 in Chapter 3).

Proposition 1.2.6.1. There does not exist a model structure on Strat or StratP (for P
not a discrete poset) for which every diagrammatic equivalence is a weak equivalence and the
realizations of stratified boundary inclusions, ∣∂∆J ∣s ↪ ∣∆J ∣s are cofibrations.

At first glance, this observation may be seen as a natural end point to the pursuit of model
structures connecting the stratified homotopy theory with classical geometrical examples. We
will return to this question in the next section, however, where we will explain that after a slight
weakening of the axioms of a model category, namely passing to so-called (left) semi-model

10Generally, not even topological manifolds admit triangulations (see [Man16] for an overview).
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categories (which has essentially no impacts on their usefulness) the existence of such structures
can be proven.

1.3 The exit-path category approach
In the previous section, we have seen that if one takes an inductive approach to stratified
homotopy theory and thinks of stratified homotopy types as inductively decomposable into
strata and links, then one naturally ends up with the diagrammatic notion of equivalence
described in Definition 1.2.1.17. In this sense, this is the minimal class of equivalences one
ends up with, if one takes the perspective that strata and stratified homotopy links should
detect weak equivalences. There is, however, a second perspective to stratified homotopy
theory which arises from a foundational paradigm of much of modern higher category theory:

Assigning to a space its ∞-groupoid of paths induces an equivalence between the homotopy
theory of spaces and the homotopy theory of ∞-groupoids.

This paradigm is often referred to as Grothendieck’s homotopy hypothesis (see [nLa24h], for
an overview). One rigorous interpretation of this paradigm in terms of a theorem is the
Kan-Quillen equivalence between topological spaces and simplicial sets (Theorem 1.2.4.1).
Indeed, if we pass to the associated ∞-categories of bifibrant objects in the model categories
in Theorem 1.2.4.1, then on the side of topological spaces we obtain the homotopy theory of
retracts of topological cell complexes (a dense subcategory of which is given by CW-complexes)
and on the simplicial side we obtain the homotopy theory of Kan complexes. The latter are
precisely the quasi-categories (∞-categories) in which every morphism is an isomorphism –
i.e., the ∞-groupoids – and the inclusion of Kan complexes into quasi-categories defines a
fully faithful embedding of homotopy theories. Hence, if we denote by CW the category of
CW-complexes, by Kan the (1-)category of Kan complexes and by H the respective classes
of homotopy equivalences, then the functor of singular simplices induces an equivalence of
∞-categories

Π∞∶CW[H−1
] ≃ Spaces ≃Ð→Kan[H−1

] = Grpd∞,

with the thus obtained ∞-category of (small) ∞-groupoids, Grpd∞. From this perspective,
Sings(T ) can be seen as a model for the ∞-groupoid of paths Π∞(T ) of a space T .

A more colloquial version of the homotopy hypothesis can be phrased as follows:

From a homotopy theoretical perspective, a space is the same thing as an ∞-category in
which every morphism is invertible.

Syntactically, one may infer from this statement the following (naive) question:

What kind of ∞-category is a stratified space?

It turns out that this question can also be made sense of from a rigorous mathematical
perspective.

1.3.1 The topological stratified homotopy hypothesis
Let us first summarize several historical insights into this question in not necessarily historical
order. To compare stratified spaces with (∞-)categories, one first needs an analogue of the
fundamental (∞-)groupoid.

1 and 2-categories of exit-paths:

The idea that stratified spaces should have associated to them a fundamental category goes
back to MacPherson (in unpublished work). It arises as follows: One of the core objects



1.3. THE EXIT-PATH CATEGORY APPROACH 37

of study in classical algebraic topology are locally constant sheaves on a space X, or local
coefficient systems, as the derived global sections of such objects give rise to cohomology with
respect to local coefficients. Given a space X, and some category (1-category, for now) of
coefficients C (let us say sets, abelian groups or modules over some fixed commutative ring R),
we will denote by Shvloc

C (X) the category of locally constant sheaves on X. For sufficiently
regular topological spaces, let us say CW-complexes, there is an equivalence of categories,
called the monodromy correspondence

Shvloc
C (X) ≃ Fun(Π1(X),C),

where Π1(X) denotes the fundamental groupoid of X. This equivalence is given by associating
to a locally constant sheaf F on X a functor on Π1(X) mapping a point x ∈X to the stalk Fx
at x and a path x → y to the monodromy action of this path on stalks. Most prominently,
in the case of C = Set, where one can identify locally constant sheaves with covering spaces,
this is just the classical monodromy correspondence for covering spaces (see, for example,
[May99]). If we take C =Veck the category of vector spaces over some field k, for example,
and assume that X is path connected, then we may take this statement as saying that locally
constant sheaves (with vector space coefficients) are the same things as presentations of the
fundamental group of X, allowing for an extremely concise and well understood definition of
locally constant sheaves.
If one is interested in studying cohomology theories of stratified spaces X – such as Goresky
and MacPherson’s intersection (co)homology (see [GM83] and [Ban07] for an overview) – then
the role of locally constant sheaves is taken by constructible sheaves, i.e., such sheaves that
become locally constant after restricting to the strata of X 11. Let us denote the category of
such objects by Shvcon

C (X ). MacPherson was interested in exposing a generalization of the
monodromy correspondence for the case of stratified spaces, that is, to expose a notion of
a fundamental category Π1(X ) associated to a stratified space X , such that one obtains an
equivalence of categories

Shvcon
C (X ) ≃ Fun(Π1(X ),C). (1.9)

In unpublished work, MacPherson constructed such a fundamental category Π1(X ) for a class
of conically stratified spaces with manifold strata (more precisely, topological pseudomanifolds
that are allowed to have non-empty codimension one strata, see [Tre09]). Objects in this
category are the points in X , while morphisms are given by paths that only ascend in the
stratification – so-called exit-paths – up to an appropriate stratified notion of homotopy.

Example 1.3.1.1. Consider the pinched torus (illustrated to the left, below). It is constructed
by collapsing a meridian in a torus to a point, and taking it as the singular stratum in a
stratification over {p0 < p2}. The associated category of exit-paths (fundamental category) is
given, up to equivalence of categories, by the category defined by the generators and relations
on the right-hand side.

11To be precise here, if one wants to think of intersection (co)homology to arise from an object in this
category, one should really either think of sheaves in the ∞-categorical sense (see [Lur09; Lur17]), valued in
some stable ∞-category, or of constructible objects in the classical derived sheaf categories, but we will return
to this point in a minute.
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x y

a

b

c c’

ca = a,

cb = b,

c′c = 1y = cc′

For his class of topological stratified spaces, MacPherson proved an equivalence as in Eq. (1.9)
for the case C = Set. The shift from loops (in fundamental groups) to exit-paths led to the
name exodromy correspondence, for correspondences such as the one in Eq. (1.9) (coined in
[BGH18]).

In [Tre09], Treuman constructed a 2-category Π2(X ) which generalized the exodromy cor-
respondence equivalence to constructible stacks instead of 1-categorical sheaves (taking C
to be the (2,1)-category of categories). Furthermore, in [Woo09] (using a slightly different
construction of the exit-path 1-category) Woolf generalized the case C = Set to those of
Quinn’s homotopically stratified spaces (see [Qui88] and below for details), whose strata fulfill
the usual local connectedness assumptions necessary for monodromy correspondences (this
used a slightly different construction of a fundamental category, see [Woo09]).

∞-categories of Exit-paths:

Unlike the classical local coefficient systems of algebraic topology, the constructible coefficient
systems defining intersection (co)homology cannot be expressed entirely in the 1-categorical
language of constructible sheaves. Instead, one needs to either pass to derived categories of
sheaves or (equivalently, see [Lur17]), allow for sheaves with coefficients in (∞,1)-categories.
More specifically, one wants versions of Eq. (1.9) for the case of coefficients in the stable
derived ∞-category, D(R), of chain complexes of R-modules, where R is a field, or some
sufficiently well-behaved ring. If one is looking to obtain an exodromy correspondence for
such higher sheaves, then evidently a higher version of the fundamental groupoid Π1(X ) is
needed. Treuman’s construction of a 2-category and generalization to stacks (i.e., sheaves
valued in groupoids) already pointed towards the fact that such a thing should be possible.
In [Lur17, A.6], Lurie proved that for a conically stratified space X the underlying simplicial
set of Sings(X ) is a quasi-category. The objects of this category are simply points in x. Its
morphisms are given by such paths in X which either remain in a stratum or immediately exit
into another stratum, i.e., by (particular) exit-paths. In this sense, the resulting ∞-category
is very similar to the 1-categories constructed by MacPherson, Treuman, and Woolf. In fact,
using the composition laws of a quasi-category, one can think of any ascending path in X
crossing finitely many strata as a 1-simplex of Sings(X ). Furthermore, Lurie proved that for a
sufficiently regular space X (let us say a CW-complex, for the sake of simplicity) equipped
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with a stratification over a poset Pos that has no infinitely ascending chains, and such that
the resulting stratified space X is conically stratified, there is an exodromy correspondence

Shvcon
Spaces(X ) ≃ Fun(Sings(X ),Spaces).

This correspondence was recently generalized by Haine, Porta and Teyssier in [HPT24] to
significantly larger classes of stratified spaces (including those for which Sings(X ) is not a
quasi-category) and more general coefficients, allowing for stable ∞-categories such as D(R),
which makes it a possible setting to study intersection (co)homology in.

The ∞-categorical exodromy correspondence pointed towards an alternative approach to
stratified homotopy theory than the one taken in Section 1.2. Namely, observe that in the
trivially stratified case (i.e., the case where PX is a point) the quasi-category Sings(X ) is the
usual singular simplicial set, or, in other words, the fundamental ∞-groupoid associated to
X, also denoted Π∞(X). It follows from the classical Kan-Quillen equivalence that a map
of topological spaces w∶X → Y is a weak homotopy equivalence if and only if it induces an
equivalence Π∞(X) → Π∞(Y ) on ∞-groupoids. This suggested an alternative approach to
defining weak equivalences of stratified topological spaces, namely to transfer the notion of
weak equivalence along a fundamental ∞-category construction (see [Nan19], to which we will
return later). Another series of insights that pointed in the direction that one may want to
localize a different class of weak equivalences than diagrammatic equivalences was the following
result of David Miller.

Quinn’s homotopically stratified spaces and Miller’s theorem:

In [Qui88], Quinn defined a class of stratified spaces which we will refer to as homotopically
stratified. Roughly speaking, these were metrizable poset-stratified spaces for which the starting
point evaluation maps HoLink{p<q}(X ) → Xp are Hurewicz fibrations and that additionally
fulfill a cofibrancy condition relating to the inclusions Xp ↪Xp ∪Xq, for p < q. For example,
all Whitney stratified spaces and topological pseudomanifolds belong to this class (see, for
example, [Rab22, Ex. 1.4.8]). Having in mind the way the iterative definition of diagrammatic
equivalences in Section 1.2.1 also required the study of the homotopy theoretic interactions
of more than two strata, it may at first glance be surprising that Quinn was able to obtain
a well-working homotopy theory by purely focusing on two strata interactions. In fact, in
[Mil13], Miller proved that a stratum-preserving map between homotopically stratified spaces
is a stratified homotopy equivalence if and only if it induces (not weak but ordinary) homotopy
equivalences on strata and pairwise links. 12 There is a conceptual reason for the fact that in
Quinn’s setting there was no need to consider generalized homotopy links.

Example 1.3.1.2. Let us explain why this is the case, for the special case of a triangulable
conically stratified space (i.e., a Whitney stratified space or a PL pseudo manifold). A
significantly more general statement holds, but requires the development of results not presented
here yet. The following observation was made in [Hai23; Nan19].
Suppose that X ∈ sStratP , is a stratified simplicial set, such that the underlying simplicial set
is a quasi-category and such that all of the (simplicial) strata Xp, for p ∈ P , are Kan complexes.
Then the associated (simplicial) homotopy link diagram has the property that the homotopy
types of generalized links I are entirely determined by the strata and the pairwise homotopy
links (and the maps between them). This is for the following reason:
Given a regular flag I = [p0 < ⋅ ⋅ ⋅ < pn] ∈ sd(P ), denote by Sp(I) ⊂ ∆I the stratified
simplicial set whose underlying simplicial set is the spine of ∆n, i.e., the union of the edges
0 → 1,1 → 2 . . . , n − 1 → n. It follows by the universal property of the colimit that there is a

12In fact, this theorem was the origin point for Douteau’s diagrammatic approach to stratified homotopy
theory.
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canonical isomorphism of simplicial sets

sStratP (Sp(I),X ) ≅
sStratP (∆{p0<p1},X ) ×sStratP (∆{p1},X) ⋅ ⋅ ⋅ ×sStratP (∆{pn},X) sStratP (∆{pn−1<pn},X ).

Under the assumption above, it is not hard to see that X is fibrant in the Douteau-Henriques
model structure. In particular sStratP (Sp(I),X ) is a Kan complex, and the iterated pullback
we just described is even a homotopy limit. We have already explained in Section 1.2.4 that
the simplicial sets sStratP (∆I ,X ) are simplicial analogues of the generalized homotopy links.
Hence, we obtain an natural equivalence

sStratP (Sp(I),X ) ≃ HoLink{p0<p1}(X ) ×
h
Xp1
⋅ ⋅ ⋅ ×

h
Xpn−1

HoLink{pn−1<pn}(X ),

where the ×h indicates a homotopy pullback. The inclusion Sp(I)↪ ∆I has as its underlying
simplicial map a Joyal equivalence (i.e., such a simplicial map that induces equivalences of
quasi-categories, after fibrantly replacing by a quasi-category, see [Lur09]). As the strata
of X are Kan complexes, it follows that the stratification map sX ∶X → P can be seen as a
conservative functor of quasi-categories (i.e., a functor that creates isomorphisms). It follows
from this, and the fact that P is a 1-category, that sX ∶X → P is a fibration in the Joyal
model structure for quasi-categories. Combining this information, a standard argument (more
specifically the fact that the Joyal model structure is cartesian, see [Lur09])) shows that the
induced map of simplicial sets

sStratP (∆I ,X )→ sStratP (Sp(I),X )

is a Joyal equivalence and in particular a homotopy equivalence of Kan complexes. Consequently,
it follows that the natural map

HoLinkI(X ) = sStratP (∆I ,X )→ HoLink{p0<p1}(X ) ×
h
Xp1
⋅ ⋅ ⋅ ×

h
Xpn−1

HoLink{pn−1<pn}(X )

(1.10)
associated to the simplicial homotopy link diagram of X is a homotopy equivalence of Kan
complexes. As a consequence, we obtain that a stratified map of two such simplicial sets
f ∶X → Y is a weak equivalence in sStratdP if an only if it induces homotopy equivalences on
strata and pairwise simplicial homotopy links.
Now, if W and W ′ are triangulable conically stratified spaces over P , then it follows by
Douteau’s Whitehead theorem (see [Dou21c, Thm. 4.23]) or by Corollary 1.2.4.3 that a
map between them is a stratified homotopy equivalence, if and only if it is a diagrammatic
equivalence, i.e., if it induces weak equivalences on all generalized homotopy links. Taking
singular simplicial sets, we may identify the (topological) generalized homotopy links of W and
W ′ with the simplicial generalized homotopy links of Sings(W) and Sings(W ′). By Lurie’s
result on conically stratified spaces, it follows that Sings(W) and Sings(W ′) fall into the class
of stratified simplicial sets we have discussed in the previous part of this example. Consequently,
it follows that any map Sings(W) → Sings(W ′) inducing weak equivalences on strata and
pairwise homotopy links also induces weak equivalences on all generalized homotopy links.
This proves (the non-trivial direction of) Miller’s theorem for the special case of triangulable,
conically stratified spaces (or more generally such triangulable stratified spaces for which
Sings(X ) is a quasi-category).

Diagrams D ∈ Fun(sd(P )op,Spaces) that fulfill the condition that the associated maps
into the iterated (homotopy) pullbacks

DI →D{p0<p1} ×Dp1
⋅ ⋅ ⋅ ×Dpn−1

D{pn−1<pn}

are isomorphisms in Spaces (i.e., arise from weak homotopy equivalences) were named
décollages in [BGH18]. Readers familiar with the theory of (complete) Segal spaces will
recognize this condition as very akin to one of the defining conditions of a complete Segal space
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(as introduced by Rezk in [Rez01]), another model for the theory of (∞,1)-categories. (See
[Ber07b], for an overview of some of the most frequently used models). It provides another
hint at the strong connection of stratified spaces and their invariants with ∞-categories. For
stratified spaces as in Example 1.3.1.2, the equivalence in Eq. (1.10) gives us another way
of thinking of generalized homotopy links associated to flags I = [p0 < ⋅ ⋅ ⋅ < pn], with n ≥ 2.
Namely, an element of the generalized homotopy link HoLinkI(X ) can be seen as a composable
sequence of exit-paths γ1, . . . , γn starting in the p0-stratum of X and ending in the pn stratum.

In fact, in [Mil13], Miller also constructed a kind of higher exit-path category internal to
Hurewicz homotopy theory associated to a homotopically stratified space and proved an equiv-
alence between a homotopy category of certain such categories and the category of stratified
homotopy classes of homotopically stratified spaces. In a sense, by considering categories
internal to topological spaces, Miller is performing some type of higher category theory, but
using the Hurewicz model structure on spaces instead of the Serre model structure. This
deviation from the standard approach to higher category theory makes it difficult to rigorously
interpret Miller’s result in the language we use here, but nevertheless Miller’s theorem can be
seen as a first instantiation of the paradigm that the homotopy theory of stratified spaces should
be the same as the homotopy theory of certain higher categories.13 We will henceforth refer to
this paradigm as the stratified homotopy hypothesis, a name first popularized in [AFR19].

Conically smooth stratified spaces and the stratified homotopy hypothesis:

In [AFR19], Ayala, Francis and Rozenblyum studied the homotopy theory associated to a
smooth notion of stratified space, so-called conically smooth stratified spaces. They asserted a
fully faithful embedding of their theory of conically smooth stratified spaces into the homotopy
theory of ∞-categories.14 This is also the first explicit mention of the topological stratified
homotopy hypothesis, which refers to the following conjecture. In the following, we denote by
Cat∞ the ∞-category of small quasi-categories, obtained by localizing the 1-category of small
quasi-categories at equivalences of quasi-categories.

Conjecture 1.3.1.3 ([AFR19]). Topological exit-paths define a fully faithful functor

Exit∶Strat↪ Cat∞

from a homotopy theory of topological stratified spaces Strat into ∞-categories, Cat∞.

This statement is, of course, only a precise conjecture after one has made a choice of
what the homotopy theory of topological stratified spaces should be. In fact, this situation
is somewhat reminiscent of the situation of the classical homotopy hypothesis, which, when
phrased by Grothendieck, pertained to a fairly different incarnation of ∞-groupoids than
the now common model of ∞-groupoids in terms of Kan complexes (see [Gro21]). That the
Kan-Quillen equivalence between spaces and simplicial sets (Theorem 1.2.4.1, which actually
predates Grothendieck’s conjecture) is now frequently taken as an answer to Grothendieck’s
hypothesis is mainly due to the fact that the work of Joyal and Lurie has demonstrated that
quasi-categories present a powerful model for higher category theory, and that Kan complexes
are exactly quasi-categories in which every morphism is an isomorphism. In the stratified
situation, one instead needs to expose a homotopy theory of topological stratified spaces, and
justify that this theory provides a good framework to perform stratified homotopy theory in.

1.3.2 Haine’s proof of a topological stratified homotopy hypothesis
A first rigorous interpretation of the topological stratified homotopy hypothesis that fits into
the commonly accepted frameworks for (∞,1)-categories was given by Haine in [Hai23]. The

13This result seems to be somewhat overlooked in the more recent literature. This may be due to the
non-standard approach to higher categories taken in [Mil13].

14[AFR19] lacks a precise definition of the category of objects that is considered, which makes us unable to
verify the correctness of the statement.
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crucial intermediary results to prove such a result made in [Hai23] are the following two:

• The full subcategory DécP ⊂ Fun(sd(P )op,Spaces) given by décollages is equivalent to
the ∞-category of conservative functors from a quasi-category X into P . [Hai23] calls
such stratified simplicial sets X = (X,X → P ) abstract stratified homotopy types over P ,
and denotes the ∞-category of such objects by AStratP (see [Hai23] or Chapter 5, for a
detailed definition).

• DécP is a reflective subcategory of Fun(sd(P )op,Spaces), i.e., the inclusion functor
DécP ↪ Fun(sd(P )op,Spaces) admits a left adjoint. In particular, there exists a class
of morphisms in W ⊂ Fun(sd(P )op,Spaces) such that there is an induced equivalence

Fun(sd(P )op,Spaces)[W −1
] ≃ DécP .

[Hai23] then combines this result with the equivalence in Theorem 1.2.1.24

HoLink∶StratdP
≃
Ð→ Fun(sd(P )op,Spaces).

Purely abstractly, one obtains a class of weak equivalences WP,c ⊂ StratP , together with an
equivalence

StratP [W −1
P,c] ≃ AStratP

(see [Hai23, Thm. 0.2.1]). If one takes a homotopy theory of topological stratified spaces to mean
some localization of the category of poset-stratified spaces Strat and takes the homotopy link
functor HoLink∶StratP → Fun(sd(P )op,Top) to be a Segal-space-style interpretation of the
Exit-path ∞-category, then this provides a rigorous (fixed poset) answer to Conjecture 1.3.1.3.
[Hai23] also asserts a version for the case of varying posets from this. We will return to this
question later.

For now, let us take a more detailed look at the class of weak equivalences WP,c that lead
to the equivalence above. By definition, WP,c is the class of such stratum-preserving maps
w∶X → Y, for which the transformation of diagrams HoLink(w)∶HoLink(X ) →HoLink(Y) ∈
Fun(sd(P )op,Top) becomes an equivalence in the left Bousfield localization of the injective
(or projective) model structure that presents décollages (see [Hir03], for an overview over
Bousfield localization). In other words, w∶X → Y is in WP,c, if and only if, for every décollage
D ∈ Fun(sd(P )op,Spaces), the induced map of mapping spaces

Fun(sd(P )op,Spaces)(HoLink(Y),D)→ Fun(sd(P )op,Spaces)(HoLink(X ),D)

is a weak homotopy equivalence.

This is still not a particularly concrete description. To become a little bit more concrete, let us
make explicit at least some facts that are immediate from this description, and can be found
in [Hai23].

Proposition 1.3.2.1. Every stratum-preserving diagrammatic equivalence is in WP,c. If X
and Y in sStratP are such that Sings maps them to quasi-categories15 (for example, because
X and Y are conically stratified) then the following are equivalent:

1. w∶X → Y ∈ sStratP is in WP,c;

2. w is a diagrammatic equivalence;

3. w induces weak equivalences on strata and pairwise homotopy links;
15In [Hai23] such stratified spaces were called exodromic. [Hai23] also contains a version of the stratified

homotopy hypothesis concerned with exodromic stratified spaces where the equivalence is given by Lurie’s
exit-path construction. The proof given there is, however, incorrect. See Section 7.D for details. It can be
fixed, using our results in Chapter 7.
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4. Sings(w) is an equivalence of quasi-categories;

5. Sings(w) is a stratum-preserving simplicial homotopy equivalence, i.e., is invertible up
to homotopies with respect to the stratified cylinder − ⊗∆1.

There is an obvious class of stratum-preserving maps that also fulfills Proposition 1.3.2.1.
Namely, the class of such stratum-preserving maps w, for which the underlying simplicial
map of Sings(w)→ Sings(w) is a Joyal equivalence (also called categorical equivalences), i.e.,
becomes an equivalence of quasi-categories, after replacing Sings(X ) and Sings(Y) fibrantly
by quasi-categories, in the Joyal-model structure on sSet. Conjecturally, this suggests the
following more direct characterization of the class WP,c.

Conjecture 1.3.2.2. A stratum-preserving map is in WP,c if and only if the associated
underlying simplicial map of stratified singular simplicial sets Sings(X )→ Sings(Y) is a Joyal
equivalence.

If it indeed were the case that Wp,c is the class of maps that induce isomorphism on posets
and Joyal equivalences after applying Sings, then this would have the beneficial consequence
that one can actually describe the equivalence in terms of the adjunction ∣ − ∣s ⊣ Sings (i.e.,
Lurie’s version of the Exit-path construction) instead of passing through décollages.

1.3.3 Results: Extending Main Result A1 and Main Result B to the
categorical approach

Let us now explain why Conjecture 1.3.2.2 does indeed hold. This uses new results of Chapter 5
in which we investigate and define several model structures for stratified homotopy using
only simplicial methods. To obtain an answer to Conjecture 1.3.2.2, which gives conjectures
a description of the class WP,c in the language of model categories, the obvious approach
is to first present abstract stratified homotopy types and décollages in terms of model structures.

[Hai23] defined a simplicial model structure on stratified simplicial sets that is obtained
by equipping the slice category sSet/N(P ) with the structure induced by the Joyal model
structure (see, for example, [Hir03]), and then (left Bousfield) localizing at the stratified
cylinder X ↦ X ⊗∆1 (see [Hai23], for details). It is called the Joyal-Kan model structure, and
the resulting simplicial model category is denoted sStratcP . Bifibrant objects in sStratcP are
quasi-categories together with a conservative functor into P and weak equivalences between
bifibrant objects are precisely such stratified simplicial maps whose underlying map is a Joyal
equivalence. In fact, sStratcP presents the ∞-category of abstract stratified homotopy types
over P (see [Hai23] and Proposition 5.3.1.8 for a proof of the statement). It will turn out that
this 1-categorical description can be used to answer Conjecture 1.3.2.2.

Throughout this subsection, we will use Theorem 1.2.4.1 to instead think of the ∞-category
Spaces as being given by localizing simplicial sets at weak homotopy equivalences. In this
spirit, we will present décollages in terms of diagrams sd(P )op → sSet. When we treat gener-
alized homotopy links as simplicial sets instead of topological spaces, this will mean that we
implicitly have applied the singular simplicial set functor.

Construction 1.3.3.1. Given a subcomplex K ⊂ N(P ), the simplicial homotopy link
HoLinkI(K) ∈ Fun(sd(P )op, sSet) is given by the unique diagram with value ∆0, at I,
with ∆I ⊂ K, and ∅ otherwise. Given a simplicial set S, we use the shorthand K ⊗D S, to
denote the tensoring HoLinkI(K)⊗ S, with respect to the (pointwise) simplicial product in
Fun(sd(P )op, sSet). We are mainly interested in the following three cases of subcomplexes
K ⊂ N(P ). Let I = [p0 < ⋅ ⋅ ⋅ < pn] ∈ sd(P ) be a regular flag. We may then consider the
following associated subcomplexes of N(P ):

1. A simplex ∆I ⊂ N(P ), for some regular flag I ∈ sd(P );
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2. Horns ΛIk ⊂∆I ⊂ N(P );

3. Spines Sp(I) ⊂∆I .

If one (simplicially) left Bousfield localizes the injective model structure on Fun(sd(P )op, sSet),
denoted Fun(sd(P )op, sSet)inj, at the class of spine inclusions

{Sp(I)⊗D ∆0
↪∆I ⊗D ∆0

∣ I ∈ sd(P )}

then one obtains a model structure that presents the ∞-category of décollages (this follows
by Proposition 5.2.2.19 and [Lur09, Prop. 4.2.4.4]). We denote this simplicial model category by
Fun(sd(P )op, sSet)dé. The left Quillen functor Fun(sd(P )op, sSet)inj → Fun(sd(P )op, sSet)dé

given by the identity presents the localization functor from space-valued presheaves on sd(P )
to décollages. In particular, it follows that Haine’s class of weak equivalences WP,c is given
precisely by such stratum-preserving maps w∶X → Y in StratP , for which HoLink(w) ∈
Fun(sd(P )op, sSet) (thought of as a diagram of Kan complexes) is a weak equivalence in
Fun(sd(P )op, sSet)dé. One then has the following result, relating several of the ∞-categories
discussed in [BGH18] from the model categorical perspective. It summarizes Theorem 5.2.2.20,
Proposition 5.2.1.3, and Corollary 5.2.2.2, and provides an extension of Main Result B.

Main Result F. There is a diagram of simplicial Quillen adjunctions (with left and right
part trivially commutative)

Fun(sd(P )op, sSet)inj sStratdP

Fun(sd(P )op, sSet)dé sStratcP

1
HoLink

1

HoLink

(1.11)

with the following properties.

• The downward pointing verticals are given by the left Bousfield localizations at respectively
the set of arrows {ΛIk ⊗D ⋆↪∆I ⊗D ⋆ ∣ I = [p0 < ⋅ ⋅ ⋅ < pn] ∈ sd(P ),0 < k < n} on the left
and the class of stratified inner horn inclusions on the right.

• Both horizontals are simplicial Quillen equivalences that create weak equivalences in both
directions.

The lower horizontal Quillen equivalence presents the equivalence of ∞-categories between
décollages and abstract stratified homotopy types. The crucial insight compared to the purely
∞-categorical statement is that the horizontals create weak equivalences between all, and not
just appropriately fibrant objects 16. As a corollary of this result, we obtain the following
characterization of WP,c (see Lemma 7.3.3.3).

Corollary 1.3.3.2. A stratum-preserving map w∶X → Y ∈ StratP is in WP,c if and only if
the associated stratum-preserving simplicial map Sings(w) ∈ sStratcP is a weak equivalence in
sStratcP .

In [Hai23] it was shown that a stratum-preserving simplicial map w∶X → Y between
stratified simplicial sets whose strata are Kan complexes is a weak equivalence in sStratcP
if and only if its underlying simplicial map is a Joyal equivalence. As this requirement
is always fulfilled for stratified singular simplicial sets, we obtain an affirmative answer to
Conjecture 1.3.2.2.

Corollary 1.3.3.3. A stratum-preserving map w∶X → Y ∈ StratP is in WP,c if and only if
the underlying simplicial map of Sings(w) is a Joyal-equivalence.

16This is, at least in our opinion, the part of the theorem that is the most difficult to prove and that was not
known at the time of writing of [Hai23]. The case of the lower horizontal can ultimately be derived from the
case of the upper horizontal, which we have proven in Chapter 3.
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This corollary justifies the following nomenclature:

Definition 1.3.3.4. We will call maps in WP,c stratum-preserving categorical equivalences
(over P ). We denote by StratcP the category with weak equivalences defined by equipping
StratP with stratum-preserving categorical equivalences.

We may use this corollary, together with Main Result A1, to obtain an alternative proof
of Haine’s fixed poset answer to the stratified homotopy hypothesis (see Theorem 7.3.3.1 in
Chapter 7).

Main Result A2. The adjunction

∣ − ∣s∶ sStratcP ⇌ StratcP ∶Sings

defines a homotopy equivalence of categories with weak equivalences.

The ∞-category sStratcP associated to sStratcP is equivalent to the ∞-category of abstract
stratified homotopy types over P , AStratP . It follows that this equivalence presents Haine’s
equivalence between StratcP and AStratP in terms of a homotopy equivalence of categories
with weak equivalences. Note that, in this version, there is no need to pass through décollages
and the equivalence is directly given through Lurie’s stratified realization and functor of
singular simplices adjunction.

1.3.4 Results: Global combinatorial models for stratified homotopy
theory

The obvious question after a global version of Main Result A2 that is also closer to the original
wording of the stratified homotopy hypothesis in Conjecture 1.3.1.3 arises. In [Hai23], the
author also defined a global version of the ∞-category of abstract stratified homotopy types.
Namely, denote by AStrat the full subcategory of the ∞-category of arrows Fun(∆1,Cat∞)
given by conservative functors whose target is a partially ordered set. [Hai23] also states a
version of a stratified homotopy hypothesis for this setting.17

To obtain an analogue of Main Result A2 for this setting, we pursue a similar approach
to the case of a fixed poset in the previous section. Namely, we present the categorical side
in terms of model structures on stratified simplicial sets. Procuring such model structures is
the content of the second half of Chapter 5. These model structures will serve an additional
purpose later on. Namely, they will actually allow us to define something very close to model
structures on the topological side of stratified homotopy theory.

The first approach to such global model structures is to glue the model structures over
varying posets together to a global model structure, using a technique of [CM20] that was also
employed in [Dou21c]. Our results in this line of investigation obtained in Section 5.3.1 can be
summarized as follows:

Theorem 1.3.4.1. The following classes determine the structure of a combinatorial, simplicial,
cartesian closed model category, denoted sStratd,p on the simplicial category sStrat.

• Cofibrations are precisely such maps for which the underlying simplicial map is a
monomorphism.

• Weak equivalences are given by such stratified maps w∶X → Y, that induce isomorphisms
on the underlying posets, and weak equivalences in sStratdPX after identifying PX ≅ PY
under this isomorphism.

17While the statement in [Hai23] is correct, there are some difficulties with the way the statement is derived.
See Remark 7.D.0.1, for details.
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• Fibrations are given by precisely such stratified maps that have the right lifting property
with respect to admissible stratified horn inclusions.

The analogous claim (omitting the statement on fibrations) where weak equivalences are defined
via the model categories sStratcP holds, and the resulting simplicial model category is denoted
sStratc,p. Here, fibrations between fibrant objects are given by precisely such stratified maps
that have the right lifting property with respect to admissible horn inclusions. sStratc,p is
obtained from sStratd,p by left-Bousfield localizing stratified inner horn inclusions and presents
the ∞-category of abstract stratified homotopy types AStrat.

Definition 1.3.4.2. Following the nomenclature in the diagrammatic case, we call a stratified
map f ∶X → Y ∈ Strat that induces isomorphisms on posets and is a stratum-preserving
categorical equivalence after identifying the posets along the isomorphism, a poset-preserving
categorical equivalence. The category with weak equivalences obtained by equipping Strat
with such stratified maps is denoted by Stratc,p.

As a corollary of Main Result A2, we obtain the following global version of the latter (see,
again Theorem 7.3.3.1 in Chapter 7).

Main Result A3. The adjunction

∣ − ∣s∶ sStratc,p ⇌ Stratc,p∶Sings

defines a homotopy equivalence of categories with weak equivalences. The ∞-category sStratc,p
associated to sStratc,p is equivalent to the ∞-category of abstract stratified homotopy types,
AStrat.

1.3.5 Results: Refined stratified simplicial sets and layered∞-categories
Observe that Main Result A3 does not quite provide one with a version of the stratified
homotopy hypothesis as in Conjecture 1.3.1.3. Namely, the objects on the left-hand side of
the equivalence are given not by a class of ∞-categories, but by ∞-categories together with a
conservative functor.

As already alluded to in [BGH18], a version where no additional datum of a functor needs to
be specified can be obtained by localizing further. To see this, let us take a short look at what
kind of object an abstract stratified homotopy type – i.e., a quasi-category with a conservative
functor into a poset – is.

Remark 1.3.5.1. Let X be a quasi-category. Suppose that there is a conservative functor
s∶X → P , for some poset P . As every endomorphism in a poset is the identity, and hence
an isomorphism, it follows that every endomorphism of X, x → x maps to an isomorphism
s(x)→ s(x). Since s is conservative, it follows that x→ x is an isomorphism.

A quasi-category that has the property that every endomorphism is an isomorphism is
called layered. We denote by Lay∞ ⊂ Cat∞ the full subcategory of the quasi-category of small
quasi-categories given by layered quasi-categories (see [BGH18]).

Remark 1.3.5.2. Observe that layered quasi-categories are the only quasi-categories we can
ever expect to arise from any Exit-path construction. Indeed, any endomorphism in X that
only ascends in stratification is necessarily a loop contained in a single stratum. Such a path
will always have an inverse, obtained by its opposite parametrization.

Notation 1.3.5.3. Recall from Remark 1.2.3.2 that the nerve functor Pos↪ sSet has a left
adjoint. Given a simplicial set X ∈ sSet, we denote the resulting poset - generated by the
vertices of X, subject to relations arising from 1-simplices - by P (X).
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Remark 1.3.5.4. One then obtains an adjunction of ∞-categories

Lay∞ ⇌ AStrat

with the left adjoint given by mapping a layered ∞-category X to X → P (X) and the
right adjoint given by forgetting the stratification poset. The unit of this adjunction is
an isomorphism (it is the identity, really), allowing us to think of Lay∞ as a coreflective
subcategory of AStrat. In particular, Lay∞ is given by the localization of AStrat at the
counits of adjunction

(X,X → P (X))→ (X,X → PX ).

Let us present this adjunction in the language of model categories. We note that the
following results are not new, from a purely ∞-categorical perspective. On this level, they were
already explained in [BGH18]. However, on the model categorical level, they will provide a useful
tool in the next section, to connect topological stratified homotopy theory with geometrical
examples of stratified spaces. This step requires a right Bousfield localization, which generally
involves fairly different, and less standard, methods than left Bousfield localizations. In the
following, we summarize the results of Section 5.3.2. Let us begin with some examples that
illustrate the change in perspective from posets being extrinsic to intrinsic:

Example 1.3.5.5. Consider the simplicial set ∂∆1 = {0} ⊔ {1}. We can equip the latter with
the following three possible stratifications:

• We can stratify ∂∆1 over the poset with no relations {0} ⊔ {0′}, by mapping 0↦ 0 and
1↦ 0′.

• We can stratify ∂∆1 over {0 < 1}, by mapping 0↦ 0 and 1↦ 1.

• We can stratify ∂∆1 over the poset with one element [0] (in the only way possible).

All of these stratifications are natural, depending on the perspective one starts from. The first
one is the one obtained by thinking of ∂∆1 as the coproduct of the terminal object with itself.
The second is obtained by equipping ∂∆1 with the inherited stratification from the stratified
simplex ∆[1] over [1]. The third is obtained by treating ∂∆1 as the coproduct of the terminal
object with itself in the category sStrat{0} ≅ sSet. There are obvious comparison morphisms

(∂∆1, [0] ⊔ [0], ∂∆1
→ [0] ⊔ [0])→ (∂∆1, [1], ∂∆1

→ [1])→ (∂∆1, [0], ∂∆1
→ [0]),

each of which is given by the identity on underlying simplicial sets, and none of which is a
poset-preserving categorical equivalence. For many intents and purposes, however, for example
when considering the categories of constructible sheaves on these objects, they are essentially
identical. From this perspective, the objects of the ∞-category AStrat of abstract stratified
homotopy types still contain too much redundant data. This can become even more evident
when one studies the case of empty stratified simplicial sets. Assigning to a poset P the
stratified simplicial set (∅, P,∅→ P ) defines a fully faithful embedding of the 1-category of
posets Pos into AStrat. In this sense, there are Pos many non-equivalent “empty” abstract
stratified homotopy types. 18

Notation 1.3.5.6. The notation ∆[n] ∈ sStrat[n] will always refer to the tautologically
stratified simplex given by 1∆n ∶∆n → ∆n ≅ N([n]). The previous example shows that there is
a bit of ambiguity of what precise stratified simplicial set one refers to when writing ∂∆[n],
for n = 0,1. We will use the convention that the empty boundary ∂∆[0] is stratified over
the empty poset, and that ∂∆[1] is stratified over the discrete poset [0] ⊔ [0]. These are the
stratifications arising from applying the left adjoint to the forgetful functor sStrat→ sSet to
∂∆n. For n ≥ 2, there is no room for ambiguity and the stratification of ∂∆n induced by this
left adjoint functor agrees with the stratification inherited from the inclusion ∂∆n ↪∆n.

18To avoid such pathologies, Nand-Lal restricted to surjectively stratified spaces in [Nan19]. We will have no
need for such a restriction on the level of 1-categories, however, as it will become automatic on the level of
∞-categories.
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When concerned with explicit examples, this observation hardly ever seems to be an actual
issue. From a conceptual perspective, however, one can obtain slightly cleaner results when
using the following more intrinsic notion of stratification.

Construction 1.3.5.7 (see Section 5.3.2). To a stratified simplicial set X ∈ sStrat, one can
associate the poset PX r , generated from the set of vertices of X subject to the generating
relations

x ≤ y

if there exists a 1-simplex x→ y in X, or if sX (x) = sX (y) and there exists a 1-simplex y → x
in X. The elements of PX r can be identified with the path components of the strata of X . This
construction defines a functor sStrat → Pos acting on morphisms in the obvious way. The
stratification map of X , sX ∶X → PX , factors uniquely through the map X → PX r , mapping a
vertex to its path component. We denote the resulting stratified simplicial set (X,PX r ,X →
PX r) by X r. This construction defines a functor, (−)r∶ sStrat→ sStrat, called the refinement
functor , and X r is called the refinement of X . A stratified simplicial set X , for which the
natural map PX r → PX is an isomorphism, is called refined and the refinement construction
defines a right adjoint to the inclusion of refined stratified simplicial sets into sStrat, with
counit given by the natural transformation (X,PX r ,X → PX r)→ (X,PX ,X → PX ) defined by
1X and PX r → PX .

Example 1.3.5.8. For any stratification of ∂∆1, the resulting refinement is stratified isomor-
phic to ∆[0] ⊔∆[0] ∈ sStrat. For any stratified simplicial set of the form (∅, P,∅ → P ), the
refinement is given by the initial object in sStrat, (∅,∅,1∅).

One can use the refinement functor to further localize the model category sStratc,p in order
for the stratification poset of a fibrant object to become intrinsic (the analogous construction
also works for sStratd,p, but we omit it here, for the sake of conciseness). The most important
facts about the resulting homotopy theory can then be summarized in the following theorem,
which agglomerates the results of Section 5.3.2:

Main Result H. Let S be the class of refinement morphisms {X r → X ∣ X ∈ sStrat}. Then
the right Bousfield localization of the simplicial model category sStratc,p at S exists and is
again combinatorial and cartesian. The defining classes of the resulting model category, denoted
sStratc and called the categorical model structure, can be characterized as follows:

1. The cofibrations are generated by the set of stratified boundary inclusions {∂∆[n] ↪ ∆[n] ∣
n ∈ N}, together with the inclusion of ∂∆[1] = ∆[0] ⊔∆[0] into the trivially stratified
1-simplex ∆1, ∂∆[1] ↪ ∆1 . The cofibrant objects are precisely the refined stratified
simplicial sets.

2. Weak equivalences are precisely those morphisms f ∶X → Y for which f r is a weak
equivalence in sStratc,p.

3. As sStratc is a right Bousfield localization, it follows that fibrations are the same as in
sStratc,p.

In particular, it follows that bifibrant objects of sStratc are precisely the abstract stratified
homotopy types that are refined.

In Section 5.3.2, we show that the equivalence between refined abstract stratified homotopy
types and layered ∞-categories can be presented in terms of the following Quillen equivalence,
the ∞-categorical version of which was first stated in [BGH18].

Theorem 1.3.5.9 (Theorem 5.3.3.6). The forgetful functor

sStrat→ sSet

defines the right part of a Quillen equivalence between sStratc and the left Bousfield localization
of the Joyal model structure on sSet that presents the ∞-category of small layered infinity
categories Lay∞.
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In this sense, it follows that the categorical model structure sStratc presents the∞-category
of small layered ∞-categories. The Quillen adjunction

sSetO ⇌ sStratc,p,

where sSetO is the left Bousfield localization of the Joyal model structure whose bifibrant
objects are precisely the layered quasi-categories, recovers the localization from abstract
stratified homotopy types to layered ∞-categories discussed in Remark 1.3.5.4.
Remark 1.3.5.10. Working with sStratc instead of sSetO has some (minor) technical
advantages. First off, unlike the Joyal model structure, the model category sStratc is simplicial,
and there is no need to pass to groupoid cores to obtain mapping spaces. Secondly, and in the
same line of argument, the category sStratc often allows for smaller models to present certain
abstract stratified homotopy types. For example, to present the inclusion ∆[0] ⊔∆[0] ↪ ∆1

into a trivially stratified simplex in sSet, one needs to glue in an additional inverse 1-simplex
together with a homotopy into ∆1, in order to ensure that both starting and end point lie in
the same stratum. In sStratc, one can simply use the trivially stratified simplex ∆1 → [0].
Finally, working with sStratc has the added advantage that all homotopy theories of stratified
spaces discussed here are presented in terms of the same underlying 1-category (simplicial
category).

We can now define a third class of weak equivalences for stratified spaces, by considering
the class of stratified maps that are mapped into weak equivalences in sStratc under Sings. It
turns out that there is a simpler description of this class of weak equivalences (which is part of
the content of Theorem 7.3.3.1).
Proposition 1.3.5.11. For a stratified map f ∶X → Y ∈ Strat the following are equivalent:

1. Sings(f) ∈ sStratc is a weak equivalence in sStratc.

2. The underlying simplicial map of Sings(f) is a Joyal equivalence.
Definition 1.3.5.12. A stratified map fulfilling any of the equivalent conditions in Propo-
sition 1.3.5.11 will be called a categorical equivalence. The associated category with weak
equivalences will be denoted by Stratc.19

In other words, categorical equivalences are such stratified maps that induce equivalences
of ∞-categories on the associated ∞-categories of Exit-paths obtained by fibrantly replacing
the associated stratified singular simplicial sets. It turns out that this definition of weak
equivalences of stratified spaces is not new. In fact, weak equivalences of stratified spaces
were defined like this by Nand-Lal in [Nan19]. We will return to the work of Nand-Lal in
a minute. For now, let us observe the following final version of Main Result A1 (see, again
Theorems 7.3.3.1 and 7.4.4.4 in Chapter 7).
Main Result A4. The adjunction

∣ − ∣s∶ sStratc ⇌ Stratc∶Sings
defines a homotopy equivalence of categories with weak equivalences. The composition of
functors

Strat
Sings
ÐÐÐ→ sStrat X↦XÐÐÐ→ sSet

(composed with Joyal-fibrant replacement) induces a fully faithful embedding

Stratc ↪ Cat∞.

The essential image of this embedding is given by Lay∞, the full subcategory of Cat∞ given by
layered ∞-categories.

19The nomenclature is compatible with the nomenclature for fixed posets, in the sense that a stratified map is
a stratum-preserving categorical equivalence if and only if it is a categorical equivalence and a stratum-preserving
map. It is also compatible with the poset-preserving nomenclature, in the sense that a stratified map is a
poset-preserving categorical equivalence if and only if it is given by an isomorphism on the underlying posets,
and is a categorical equivalence.
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This theorem provides an affirmative answer to Conjecture 1.3.1.3.

1.4 Semi-model categories of stratified spaces
Main Result A4 provides an answer to the topological stratified homotopy hypothesis that
is already very close to the answer given by the classical Kan-Quillen equivalence (Theo-
rem 1.2.4.1). To somebody interested in studying classical examples of stratified spaces, it
may nevertheless take some additional convincing that the localization Stratc deserves to
be called the homotopy theory of stratified spaces. For example, in the case of the classical
homotopy hypothesis, the Quillen model structure on topological spaces allows us to think of
the homotopy theory obtained by localizing topological spaces at weak homotopy equivalences,
Top[W −1], as the homotopy theory obtained by localizing CW-complexes at actual homotopy
equivalences, or rather as the simplicial category of CW-complexes. Let us now explain that in
the world of stratified spaces a similarly convenient situation can be achieved. In other words,
one can obtain an affirmative answer to Requirements (R2) and (R3).

1.4.1 Nand-Lals approach to stratified homotopy theory
In parallel work – independently from Douteau, Henriques and Haine – Nand-Lal (back then
a student of Woolf) also aimed to establish a homotopy theory for stratified spaces around
Lurie’s stratified singular simplicial set construction (see [Nan19]). Instead of working with
stratified simplicial sets, Nand-Lal considered the adjunction whose right adjoint is obtained by
composing Sings∶Strat→ sStrat with the forgetful functor sStrat→ sSet. The left adjoint
is given by left Kan-extension of the functor mapping ∆n to ∣∆[n] ≅Ð→ N([n])∣s.

Notation 1.4.1.1. By abuse of notation, we will also denote the resulting adjunction

sSet⇌ Strat

by ∣ − ∣s ⊣ Sings. Which adjunction is meant will usually be clear from context. There is,
however, a slight possibility of confusion when writing ∣∆n∣s, for n ∈ N, as it may not be clear
whether this refers to the realization of a trivially stratified simplex or to the realization of the
stratified simplex ∆n → [n]. To distinguish these two cases, we will write ∆[n] in the latter
case. We use analogous notation for horn and boundary inclusions. One should take care,
however, that the stratified boundary ∣∂∆[1]∣s is necessarily the coproduct of ∣∆[0]∣s ⊔ ∣∆[0]∣s
and thus stratified over [0] ⊔ [0], and not over [0], and similarly ∣∂∆[0]∣s is stratified over the
empty poset.

[Nan19] defines the class of weak equivalences to be precisely what we have called categorical
equivalences in the previous section.20 One of the goals of [Nan19] was to establish that the
homotopy theory defined in terms of this class of weak equivalences interacts well with classical
examples of stratified spaces, most prominently Quinn’s homotopically stratified spaces21. As
we have already explained in Requirement (R3), one way of doing this is to expose a model
structure in which the (co)fibrancy conditions interact well with the geometry (topology) of
such classical examples of stratified spaces. To construct such a model structure, [Nan19]
aimed to make use of the general machinery of transferred model structures (see [nLa23], for an
overview). Recall that if M is a model category, N is a bicomplete category and L∶M⇌N∶R
is an adjunction, then one says that the model structure on M right transfers to N, if the
classes

{w ∈N ∣ R(w) is a weak equivalence.}
20To our best knowledge, Nand-Lal already pursued this definition before a proof of a stratified Homotopy

hypothesis had been given by Haine.
21Strictly speaking, [Nan19] restricts to the case of stratified spaces with non-empty strata, but the difference

is negligible, and we will ignore it in this chapter.
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and
{f ∈N ∣ R(f) is a fibration.}

form the classes of, respectively, weak equivalences and fibrations of a model structure on N.
In the case of the adjunction ∣ − ∣s∶ sSet ⇌ Strat∶Sings, these classes necessarily determine
the class of cofibrations to be the saturated class (i.e., the retracts of relative cell complexes)
generated by the stratified boundary inclusions ∣∂∆[n] →∆[n]∣s.

Remark 1.4.1.2. Recall that a morphism c∶A→X in a category C is a relative cell complex
with respect to a class of morphisms I, if it can be written as a transfinite composition of
cobase changes (pushouts along an arbitrary morphism) of morphisms in I. c is called an
absolute cell complex, if A is initial in C. In this case, one can just identify c with an object
of C.

Definition 1.4.1.3. A stratified space X ∈ StratP is said to admit the structure of a stratified
cell complex if it is an absolute cell complex with respect to the class of stratified boundary
inclusions {∣∂∆J →∆J ∣s ∣ I ∈∆P }. In other words, the stratified map ∅→ X can be written
as a transfinite composition of pushouts of stratified boundary inclusions.
A stratified space is called triangularly cofibrant, if it is a retract of a stratified space that
admits the structure of a stratified cell complex.

The cofibrant objects in Nand-Lal’s conjectured model structure are precisely the trian-
gularly cofibrant stratified spaces that fulfill the additional condition that the stratification
poset contains no redundant elements and relations in the following sense (see Section 1.4.3,
for more details): All strata are nonempty and there is a relation sX (x) ≤ sX (y), if and
only if there is a sequence of composable exit-paths from x to y. Such a stratified space is
called refined. It is not hard to see that X is refined, if and only if Sings(X ) is a refined
stratified simplicial set (see Section 7.5.3 for details). In particular, being refined implies that
all strata are path-connected. In a sense, this means that the stratification of triangularly
stratified spaces is a lot closer to the stratifications classically considered, which were intrinsic
to the topology of a decomposition of a space. This additional requirement on strata being
path-connected is generally not a problem for classical examples, as it can generally be restored
by slightly refining the stratification.

Example 1.4.1.4. For the realization of a stratified simplicial set X that has non-empty
and path-connected strata, and where the stratification arises from the frontier condition, the
stratified realization ∣X ∣s is refined and triangularly cofibrant.

The fibrant objects in Nand-Lal’s conjectured structure are precisely those objects that
have the horn filling property with respect to all stratified inner horn inclusions ∣Λ[n]k ↪∆[n]∣s,
i.e., for which the underlying simplicial set of Sings(X ) is a quasi-category. This includes
all conically stratified spaces, but by using a result of [Mil09], [Nan19] also proves that this
applies to Quinn’s homotopically stratified spaces, thus providing a strong connection with
more classical approaches to stratified homotopy theory 22.

[Nan19, Sec. 8.4] makes very explicit that transferring a model structure along Sings turns
out to be significantly harder than performing the analogous transfer in the unstratified case

22[Nan19] also asserted a partial converse. Namely that triangularly cofibrant stratified spaces fulfill Quinn’s
cofibrancy condition and that fibrant spaces fulfill Quinn’s fibrancy condition, that the starting point maps
HoLink{p<q}(X )→ Xp are Hurewicz fibrations. The first of these statements should hold true (following from
Chapter 6), albeit the proof in [Nan19] seems to produce a non-continuous map, where continuity is needed.
The second statement does not seem plausible, since Quinn’s theory manifestly relies on having Hurewicz
fibrations, while fibrancy in the sense of [Nan19] only guarantees for Serre fibrations. Outside of the class of
CW-complexes, these two classes may very well differ. One should generally expect any theory transferred
from a combinatorial framework to produce Serre style fibrancy and cofibrancy conditions, as opposed to the
more geometric Hurewicz style definitions. This generally means that fibrancy in a Serre-style framework is
easier to achieve, while cofibrancy is a stronger condition. For many intents and purposes, in particular when
working with examples from geometry, the difference seems to be negligible however.
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(in fact, it follows from our result Proposition 1.2.6.1 that this is not possible at all). In
[Nan19], it is explained that the core difficulty really lies with proving that the pushout of
the stratified realization of a Joyal-acyclic cofibration is again a weak equivalence; as we
demonstrate in Section 3.A and Proposition 7.4.0.1 this is, in fact, false. To alleviate this
issue, [Nan19] conjectures that the classes he defined formed a so-called left semi-model
category (semi-model category henceforth). Recall that a semi-model category (see [BW24])
fulfills almost the same axioms as a model category. The essential difference is that only
morphisms with cofibrant source are assumed to factor into an acyclic cofibration followed
by a fibration and that only acyclic cofibrations with cofibrant source lift against fibrations
(see Definition 7.4.1.1, for the formal definition that we employ here). For the purpose of
this overview section, it suffices to know that it has been demonstrated by several authors
in recent years (see, for example [Spi04; Bar10; BW24; BDW23; WY18; Fre10]) that the
slight lack of symmetry of axioms comes at almost no price when it comes to the powerfulness
of the resulting framework of homotopical algebra. Namely, essentially any theorem about
model categories either directly holds or has an analogue in semi-model categories (see, for
example, [BW24, Rem 4, 5]). At the same time, semi-model categories have significantly
better existence theorems, making them a practical alternative in most cases where model
categories do not exist. In particular, semi-model categories are usually just as useful when
the goal is to present a specific∞-category and understand its interaction with some 1-category.

One way of proving that Nand-Lal’s classes form a semi-model category is to show (among
other things) that cobase changes of stratified realization of Joyal-acyclic cofibrations to a
triangularly stratified space are weak equivalences. This still turns out to be a technically
difficult to prove result (at least the only proof that we were able to achieve is rather involved
from a technical point of view), a proof of which we give in Chapter 7. Instead [Nan19] proves
the weaker statement that if one restricts to the category of fibrant objects, then the classes
form a model structure ([Nan19, Thm. B]). The existence of a model structure on fibrant ob-
jects already turns out to be very useful. For example, it can be used to derive a strengthening
of Douteau’s Whitehead theorem. As the category of fibrant objects lacks colimits, one does
not obtain a (semi-)model category, however. For the purposes of investigating the stratified
homotopy hypothesis and of simple homotopy theory (which we investigate in the second half
of this article) a semi-model category, together with the vast amount of literature pertaining to
model categories and transferring to the semi-model setting, is preferable (or necessary even).
[Nan19, Conj. 1] also conjectured that the units of adjunction 1→ Sings ○ ∣ − ∣s are categorical
equivalences. By Main Result A4, this is indeed the case.

Our strategy of proof for the existence of a semi-model structure is the following: We are
looking to transfer the model structures developed in Chapter 5 from the combinatorial setting
of stratified simplicial sets. The core obstruction to the transfer of semi-model categories
is to show that the cobase change (between cofibrant objects) of a realization of an acyclic
cofibration on the simplicial side remains a weak equivalence. It turns out (by a general
transfer theorem for semi-model categories, found, for example, in [WY18]) that it suffices to
study the case of stratified spaces that admit a stratified cell structure. To be able to deal
with such spaces, we need to be able to control the generalized homotopy links of such objects.
Doing so turns out to be significantly more technically involved than the investigations of
homotopy links in Chapter 3. Nevertheless, similar results can be obtained. This is the content
of Chapter 6, which we summarize in the following section, Section 1.4.2.

1.4.2 Results: On the homotopy links of stratified cell complexes

Let us now explain how having cellular models for the generalized homotopy links of stratified
cell complexes can be used to obtain the desired stability result on acyclic cofibrations under
pushouts. We will explain the case of a fixed poset P here. When we refer to a stratified
space X as a stratified cell complex, we will really mean a stratified space X together with a
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choice of characteristic maps {σi∶ ∣∆Ii ∣s → X} that arise from a presentation of X in terms of
a transfinite composition of pushouts of stratified boundary inclusions (see Section 6.2.3, for
details, and Chapter 8 for a general theory of what it means to be a structured cell complex).
By a subcomplex of a stratified cell complex, we will mean the obvious thing, i.e., a stratified
subspace A ⊂ X , together with a subset of characteristic maps on X that define the structure
of a stratified cell complex on A. Now, suppose we are given a pushout square

A X

B Y

⌟

(1.12)

where A,X and B admit stratified cell structures, such that the upper horizontal defines the
inclusion of a subcomplex. If the semi-model structure transferred from sStratdP to StratdP
existed, then it would follow that the above square defines a homotopy pushout diagram,
i.e., a pushout diagram in the associated ∞-category StratdP . It turns out that this single
consequence of the existence of the transferred semi-model structure is essentially the only
real technical obstruction to proving the existence of the latter. Indeed, assuming if A→ X is
an acyclic cofibration, then by stability of weak equivalences under homotopy pushouts, so
would be its parallel arrow B → Y.

As a consequence of Main Result B and Main Result A1, together with the general fact
that colimits in functor categories (of ∞-categories) can be detected point-wise, it follows that
Diagram (1.12) is a homotopy pushout diagram if and only if it holds that for every regular
flag I ∈ sd(P ) the associated commutative square of homotopy links

HoLinkIA HoLinkIX

HoLinkIB HoLinkIY

(1.13)

is a homotopy pushout square. Suppose, for a second, that we are in the case of two-strata
(P = {p < q}) and that Diagram (1.12) is given by inclusions of compact piecewise-linear
stratified spaces, with the singular stratum given by a PL subspace. Then, up to weak
homotopy equivalence, the pairwise homotopy link can equivalently be computed as the
complement of Xp in a regular regular neighborhood NX(Xp) of Xp in X (this is a classical
fact, see, for example, the appendix of [Fri03]). Taking compatible triangulations, one then
obtains the following pushout diagram of complements of regular neighborhoods.

NA(Ap) ∖Ap NX(Xp) ∖Xp

NB(Bp) ∖Bp NY (Yp) ∖ Yp.

⌟

(1.14)

As the diagram is a pushout and the horizontals are evidently Serre cofibrations, it follows
that Diagram (1.13) is a homotopy pushout.

The PL case suggests that if one can obtain an appropriate theory of generalized regu-
lar neighborhoods for multi-strata interactions in stratified cell complexes, then the same
argument can be replicated in the case of general stratified cell complexes.
The latter case turns out to be several magnitudes more complicated than the stratified PL
case, however (at least that is our personal opinion of the proof we were able to obtain).
This is essentially due to the fact that unlike in the PL case, the gluing maps involved in
stratified cell complexes can be highly pathological, and there is a priori no reason to assume
that (generalized) regular neighborhoods glue in a sufficiently coherent fashion. It is precisely
the interaction of such highly pathological gluing maps, together with the generalization
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to multi-strata homotopy links that makes it difficult to find a well-working definition of
regular neighborhood that is general enough to apply to all stratified cell complexes (see
Example 6.4.2.6, for some of the things that can possibly go wrong). Nevertheless, one can
develop a theory of regular neighborhoods that is powerful enough to produce the following
result (which is the main content of Chapter 6; see there for a more precise formulation of the
result)).

Main Result I (Theorems 6.2.4.14 and 6.4.2.7 and Proposition 6.3.2.11). Let X be a stratified
cell complex over a poset P and I = {p0 < ⋅ ⋅ ⋅ < pn} ⊂ P a regular flag. There exists a
(barycentric) subdivision of the cell structure on X , and a (systematic construction of a)
subcomplex NI ⊂ X of the subdivision of X , such that Xp0 ⊂ NI and such that there is a
canonical weak homotopy equivalence

HoLinkI(X ) ≃ (NI)pn .

Furthermore, subdivisions can be chosen such that the construction of NI is compatible with
stratum-preserving maps and pushouts along inclusions of subcomplexes.

In fact, we show that the subcomplexes NI can even be used to model the whole homotopy
link diagram of [Dou21c].

Example 1.4.2.1. To have an example for the kind of subcomplexes arising in Main Result I,
consider the following illustration (see Fig. 1.6) in the case of a cell structure for the pinched
torus. Here, the pinched torus is stratified with three strata, one corresponding to the pinch
point (red), and one to the equator with a single point removed (green), and one to the
complement of the equator (blue).

x x

y

y

x x

y

y

a b

ba

x x

a b

ba

x xx x

Figure 1.6: The upper left corner shows a stratified cell structure for the pinched torus,
stratified over the poset {0 < 1 < 2}. Vertices with the same name, and edges with the
same markings are being identified and the stratification is indicated by the coloring. To its
right, a barycentric subdivision of this cell structure is shown. In the following row there are
illustrations of the subcomplexes NI for I = [0 < 2], [0 < 1 < 2], [1 < 2].

Main Result I has the following corollary, which is central to the construction of semi-model
categories of stratified spaces.

Theorem 1.4.2.2 (Corollary 6.4.2.8). Any pushout diagram of stratified spaces as in Dia-
gram (1.13) descends to a pushout diagram in the ∞-category StratdP .
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1.4.3 Results: The transferred semi-model structures for stratified
spaces and their consequences

Then, having a good grasp on models for stratified homotopy theory on the combinatorial
side as well as well-behaved models for the homotopy links of stratified cell complexes, we
combine these insights to transfer the semi-model structures from the combinatorial side to
the topological side. Doing so, and studying the properties and consequences of the resulting
semi-model categories is the content of Chapter 7. Let us state our results here for the case of
flexible posets. Analogous claims in the case of a fixed poset also hold.
Main Result J (Theorems 7.3.3.1, 7.4.2.7 and 7.4.2.10 and Corollaries 7.4.2.3 and 7.4.3.3).
The simplicial model structures on sStratd,p, sStratc,p, and sStratc transfer to the simplicial
category of poset-stratified spaces Strat along the adjunction

∣ − ∣s∶ sStrat⇌ Strat∶Sings,

to simplicial, cofibrantly generated, cartesian closed semi-model categories.

In this way, we can equip the categories with weak equivalences Stratd,p,Stratc,p and
Stratc with the structure of a simplicial semi-model category. We denote the resulting simplicial
semi-model categories of stratified topological spaces by Stratd,p, Stratc,p and Stratc, and
call their associated model structures, respectively, the poset-preserving diagrammatic, poset-
preserving categorical, and categorical semi-model structure on Strat. We give detailed
descriptions of all of these semi-model categories (as well as of a fourth one, given by the
non-poset-preserving analogue of the poset-preserving diagrammatic structure) in Chapter 5.
Let us give, as an example, an explicit description of the semi-model category Stratc, whose
existence was conjectured in [Nan19].
Theorem 1.4.3.1. The simplicial category Strat admits the structures of a cofibrantly
generated simplicial semi-model category, Stratc - called the categorical semi-model structure -
with the following classes:

1. Cofibrations are generated by the set of stratified boundary inclusions

{∣∂∆[n] ↪∆[n]∣s ∣ n ∈ N}.

2. Weak equivalences are the categorical equivalences of stratified spaces.

3. Fibrations are the stratum-preserving maps that have the right lifting property with respect
to all acyclic cofibrations with cofibrant source.

Furthermore, fibrant objects in Stratc are precisely such stratified spaces X , for which Sings(X )
is a quasi-category and fibrations between fibrant objects are such stratified maps that have the
right lifting property with respect to, equivalently, realizations of inner stratified horn inclusions
or of admissible stratified horn inclusions.

Now that we have several different (semi-)model categories for stratified homotopy theory
available, it may be useful to observe how they are related. The situation can be described in
the following result, which also (partially) subsumes Main Results A1, A3 and A4.
Main Result A5 (Theorem 7.4.2.11). There is a diagram of simplicial Quillen adjunctions
(the right and the left adjoint parts of which are trivially commutative)

sStratd,p Stratd,p

sStratc,p Stratc,p

sStratc Stratc

∣−∣s
Sings

11

∣−∣s
Sings

11
∣−∣s

Sings

(1.15)
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with the following properties.

1. The upper downward verticals are given by left Bousfield localization of, respectively, the
set of inner stratified horn inclusions to the left, and their realizations on the right.

2. The lower downward verticals are respectively given by right Bousfield localization at the
refinement maps, and their topological analogues (see Section 7.5.3).

3. The horizontal adjunctions are Quillen equivalences that create weak equivalences in both
directions.

In particular, this elevates the answers to the topological stratified homotopy hypothesis ob-
tained in Main Results A3 and A4 to (particularly well-behaved) simplicial Quillen equivalences.

The existence of these semi-model structures has several immediate consequences for the
homotopy theories Stratd,p,Stratc,p and Stratc, which arise from the general theory of
(semi-)model categories, and demonstrate that Requirements (R2) and (R3) are fulfilled. Let
us just name two of the most prominent ones, which are strongly related. We state all results
for the homotopy theory Stratc, but analogous results for the alternative theories in Main
Result J can be found in Chapter 7. First off, it follows that under appropriate fibrancy
conditions, mapping spaces in the ∞-category Stratc can be computed in terms of simplicial
map spaces.
Corollary 1.4.3.2 (Corollary 7.4.4.2). Let A ∈ Stratc be a cofibrant stratified space and let
X ∈ Stratc be a fibrant stratified space. Then there is a canonical weak equivalence of mapping
spaces

Stratc(A,X ) ≃ Strat(A,X ).
In particular, it follows that there is a canonical bijection

π0Stratc(A,X ) ≅ [A,X ]s

between morphisms in the homotopy category hoStratc and stratified homotopy classes.

Thus, at least as long as we restrict to bifibrant spaces, the associated homotopy category
hoStratc is simply the naive homotopy category, obtained by identifying stratified homotopic
maps. In fact, one obtains the following equivalent descriptions of the homotopy theory Stratc.
In the following, we denote by Stratc,o the full simplicial subcategory of bifibrant objects in
Stratc.
Corollary 1.4.3.3 (Corollary 7.4.4.3). Denote by Hs the class of stratified homotopy equiv-
alences between bifibrant stratified spaces in Stratc. There are canonical equivalences of
∞-categories

Stratc,o ≃ Stratc,o[H−1
s ] ≃ Stratc

where equivalences between simplicial and quasi-categories are to be understood in terms of the
Quillen equivalence between quasi-categories and simplicial categories of [Ber07a].

This allows one to think of the homotopy theory Stratc as either the homotopy theory
obtained by localizing a subcategory of Strat at stratified homotopy equivalences, or as a full
simplicial subcategory of Strat. In this sense, the situation of the version of the stratified
homotopy hypothesis in Main Result A4 is very akin to the presentation of the classical
homotopy hypothesis in terms of the Kan-Quillen equivalence between spaces and simplicial
sets. Besides these immediate results, there is an enormous number of techniques and results
concerned with the general theory of (semi-)model categories which can be accessed through
Main Result J. Crucially for our purposes in the second half of this thesis, Main Result J
enables one to investigate the homotopy theories of stratified spaces from the perspective of
simple homotopy theory, which we discuss in in Part III. For more geometric applications,
however, results such as Corollary 1.4.3.2 are generally only as useful as one’s understanding
of the class of bifibrant objects (or more generally fibrations and cofibrations) and its relation
to geometrical examples.
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1.4.4 Results: Bifibrant stratified spaces
Let us now address Requirement (R3), and explain how the (co)fibrancy conditions in the
semimodel categories Stratd,p,Stratc,p and Stratc relate to geometric properties of stratified
spaces, summarizing some of the results of Section 7.5 of Chapter 7.

As a first immediate consequence of the definition of the model structures in terms of transfers,
one obtains that the cofibrant objects in Stratd,p and Stratc,p are precisely the triangularly
cofibrant stratified spaces, i.e., the retracts of stratified cell complexes. As we have already
noted, the cofibrant objects in Stratc are precisely such triangularly cofibrant stratified spaces
that have non-empty, path-connected strata, with all relations in the stratification poset
arising from exit-paths (see Proposition 7.5.3.9). Given a triangularly cofibrant stratified
space, this can always be achieved by subdividing strata into their path-components and
removing redundant relations. As we observed before, the triangular cofibrancy condition is
clearly fulfilled whenever the stratified space admits a triangulation that is compatible with
the stratification (in an appropriate sense). In particular, Whitney stratified spaces and PL
pseudo manifolds are triangularly cofibrant. Observe, however, that in the classical setting of
the Quillen model structure, even non-triangulable manifolds are cofibrant (they are Euclidean
neighborhood retracts, by [Han51], and hence retracts of triangulable objects). In the stratified
setting, something similar can be said, as long as one assumes that the strata admit stratified
mapping cylinder neighborhoods. Let us state the case of spaces stratified over [n] here, for
the sake of simplicity.

Definition 1.4.4.1. By a stratified mapping cylinder neighborhood of a stratum Xp, of
X ∈ Strat[n], we mean a neighborhood of Xp that is stratum-preserving homeomorphic to a
stratified mapping cylinder of a map f ∶L→Xp, with L stratified over {k > p}. More precisely,
by the stratified mapping cylinder of f (over PX = [n]), we mean the stratified space obtained
by equipping Mf = L × [0,1] ∪L×{0}Xp with the stratification

[l, t]↦

⎧⎪⎪
⎨
⎪⎪⎩

sL(l) , t > 0
p , t = 0

Xp ∋ x↦ p.

We can then prove the following results (see Proposition 7.5.2.10 for the more general
statement involving depth.)

Proposition 1.4.4.2. Let X ∈ Strat[n] be a stratified space whose strata are cofibrant in
the Quillen model structure on Top. Assume, furthermore, that every stratum of X admits a
stratified mapping cylinder neighborhood. Then X is triangularly cofibrant.

In particular, this proposition applies to topological pseudomanifolds that admit (stratified)
cylinder neighborhoods. We note that this condition is stronger than the pairwise cofibrancy
condition of Quinn in [Qui88]23. From a conceptual perspective, this is not surprising. Quinn
essentially performs in Hurewicz homotopy theory in [Qui88]. This means that cofibrancy
conditions in Quinn’s theory will generally be weaker, but fibrancy conditions will generally be
stronger.

As we have explained, the differences in cofibrant objects between Stratd,p,Stratc,p and
Stratc ultimately come down to rather non-invasive refinements of stratification. From the
∞-categorical perspective, Stratc,p forms a (proper) subcategory of Stratd,p (in the fixed
poset case, this is just the fact that being a décollage is a nontrivial condition). One would
thus generally expect there to be a major difference between the behavior of the two homotopy
theories. Interestingly, in any geometric scenario, this difference essentially disappears. In

23Generally, there may be obstructions to the existence of such neighborhoods. See [Qui88, Thm. 1.7].



58 CHAPTER 1. STRATIFIED HOMOTOPY THEORY

[Nan19], it was shown that Quinn’s homotopically stratified spaces are fibrant in Stratc and
hence also in Stratc,p. Observe that Quinn’s fibrancy condition, namely that the maps

HoLink{p<q}(X )→Xp

are Hurewicz fibrations, involves only pairwise conditions on strata. If one only considers
stratified horns with two strata, then the defining conditions for fibrancy in Stratc,p and
Stratd,p agree. Up to the difference between Serre and Hurewicz fibrations, this shows that
there is not much space left for stratified spaces that are fibrant in Stratd,p but not in Stratc,p
at all. It turns out that to produce such counterexamples, one needs to pass to a non-metrizable
scenario. In fact, we prove the following result.
Main Result K (Proposition 7.5.1.4 and Theorem 7.5.1.6). Let X ∈ Strat be a metrizable
stratified space. Then the following conditions are equivalent:

1. X is fibrant in Stratc.

2. X is fibrant in Stratc,p.

3. X is fibrant in Stratd,p.

4. For any pair p < q ∈ P , the starting point evaluation map HoLink{p<q}(X ) → Xp is a
Serre fibration.

In particular, when restricted to metrizable stratified spaces, the homotopy theories defined by
Stratc,p and Stratd,p (in terms of simplicial categories of bifibrant objects) agree.

One may read this result as stating that, as long as one works in a metrizable scenario,
then all fibrancy conditions are the obvious Serre-homotopy theory analogue of the fibrancy
condition for Quinn’s homotopically stratified spaces.24 Main Result K significantly simplifies
the verification of fibrancy for most classical examples of stratified spaces. For example, one
may derive from this result that fibrancy of metrizable stratified spaces is a local property that
can be verified purely by investigating two-strata interactions. The fact that all metrizable
conically stratified spaces (in particular, all topological pseudomanifolds) are fibrant follows
from this quite readily.
Finally, let us give another characterization of bifibrant objects in Stratc. Namely, they are
given by retracts of the following particularly nice class of stratified spaces:
Definition 1.4.4.3. A stratified space X ∈ Strat is called CFF-stratified25 if it fulfills the
following conditions:

1. X admits the structure of a stratified cell complex.

2. X has (necessarily non-empty) path-connected strata, these fulfill the frontier condition
and the stratification poset of X arises by equipping the set of strata with the relations
arising from the frontier condition.

3. SingsX is a quasi-category.
Using CFF-stratified spaces, one may equivalently describe the homotopy theory Stratc as

follows (see Corollary 7.5.4.9).
Corollary 1.4.4.4. Denote by CFF the full subcategory of Strat given by CFF-stratified
spaces and let Hs be the class of stratified homotopy equivalences in CFF. The inclusion of
CFF↪ Strat induces an equivalence of ∞-categories

CFF[H−1
s ] ≃ Stratc.

24As already mentioned Nand-Lal proved in [Nan19] that Quinn’s homotopically stratified spaces are fibrant
in Stratc,p, and hence in all of the theories above. He made use of Millers results on homotopically stratified
spaces, which manifestly used that the latter have Hurewicz fibrations of exit-paths. Our proof is entirely
independent from this, and produces a stronger result as we only require Serre fibrations, and no cofibrancy
assumptions on the interactions of strata.

25The “C” stands for cellular, the first “F” for fibrant and the second “F” for frontier.
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1.4.5 Results: A final look at the stratified homotopy hypothesis
In the previous section, we have addressed Requirements (R1) to (R3), and hopefully illustrated
that the semi-model categories of stratified spaces we defined present a useful tool to connect
classical and recent approaches to stratified homotopy theory with geometrical examples of
stratified spaces. Let us end this expository chapter with a final look at the stratified homotopy
hypothesis and explain that we can now derive an answer that is very much akin to the classical
(non-stratified) answer provided by Theorem 1.2.4.1. As a combination of Main Result A5 and
Theorem 1.3.5.9, one obtains the following formulation:

Theorem 1.4.5.1 (Theorem 7.4.4.4). The adjunction

∣ − ∣s∶ sSet⇌ Strat∶Sings

defines a Quillen equivalence between Stratc and the left Bousfield localization of the Joyal
model structure on sSet that presents the homotopy theory of small layered ∞-categories. This
Quillen equivalence creates weak equivalences in both directions.

Observe that, since not all objects of Strat are fibrant, the fact that both directions create
weak equivalences is relevant additional information here. Having a Quillen equivalence that
creates weak equivalences in both directions makes this a rather tractable correspondence.
Corollary 1.4.4.4 or Corollary 1.4.3.3 then provide us with the setting that, much like in the
classical scenario of topological spaces and CW-complexes, we can think of the homotopy
theory defined by Stratc as being given by localizing a class of stratified spaces (that contains
most geometrically relevant examples) at stratified homotopy equivalences. Finally, as the
equivalence is induced by Lurie’s stratified singular simplicial set functor, we may think of it
as presenting the ∞-category of exit-paths construction.
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Chapter 2

Generalized simple homotopy
theories

Note to the reader: This chapter presents the results of Part III of this thesis, which are
concerned with generalized simple homotopy theory (GSHT for short). Our focus will be on
presenting a model categorical approach to generalized simple homotopy theory. Hence, most
of the results presented in this chapter can be understood without having read Chapter 1.
Nevertheless, we will frequently return to the specific case of the stratified homotopy theories
presented in Chapter 1 as a motivational example, and Section 2.5 will be entirely concerned
with a simple homotopy theory associated to the diagrammatic stratified homotopy theory
StratdP . We will also make use of notation introduced in the previous chapter. We thus
recommend reading Chapter 1 before reading this chapter and furthermore refer to the
notation list in Section 1.5. Finally, we note that after Chapter 13 there is a list of notation
used in Part III that can be of use when reading this chapter.
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2.1 Introduction
A classical question in group theory is to decide whether two finite presentations, ⟨S∣R⟩
and ⟨S′∣R′⟩, present the same group. While this problem is generally undecidable (in the
mathematical sense, see [MKS04], for an overview), at least in the affirmative case – when the
two presentations do in fact present the same group – Tietze’s theorem states that this identity
can be verified by inductively modifying the presentations in terms of certain elementary
operations, the so-called Tietze transformations (see, for example, [MKS04, Cor. 1.5], for
details). A central question in the study of homotopy theory in the 30’s and 40’s, tackled most
prominently in Whitehead’s articles [Whi39; Whi50], was whether an analogous statement
could be made in the world of homotopy theory. The analogy should be translated as follows:

1. The role of groups is taken by homotopy types and the role of group isomorphisms is
taken by homotopy equivalences;

2. The role of finite group presentations is taken by finite (more or less) combinatorial
objects, such as simplicial complexes or CW-complexes, which present homotopy types;

3. The role of elementary operations is taken by so-called elementary expansions (and their
inverses, the elementary collapses) detailed below.

Let us give a precise version of the question for the case of CW-complexes.1 Here, we will
consider the decomposition into open cells of a CW-complex as part of its defining data. For
n ≥ 0, we denote by Dn+1 ⊂ Rn+1 the topological unit disk, by Sn its boundary, and by Sn− the
lower hemisphere of Sn, given by only such vectors whose (n+ 1)-th component is non-positive.
The inclusion Sn− ↪ Dn+1 has a natural relative cell structure, with the open cells given by
the interior of Dn+1 and the open upper hemisphere, i.e., the complement of Sn− in Sn. Now,
suppose we are given a finite CW-complex X, with underlying space X, together with a pushout
diagram

Sn− X

Dn+1 X ′ .

⌟

(2.1)

Observe first that as the left hand vertical of this diagram is a cofibration and a homotopy
equivalence, so is the right hand vertical. Furthermore, X ↪ X ′ has a natural relative cell
structure, given by the images of the two cells of Sn− ↪Dn+1 under the lower horizontal map.
Now, finally, suppose that the upper horizontal is such that it maps the boundary of Sn−

Figure 2.1: Illustration of an elementary expansion with the two new cells in different greens.

into the (n − 1)-skeleton of X, and such that it maps Sn− into the n-skeleton of X. Then X ′

inherits the structure of a CW-complex with its cell structure given by the cells of X, and
the two additional open cells of the relative cell complex X ↪ X ′. We denote the resulting
CW-complex, consisting of X ′ together with this choice of cell structure, by X′. To summarize,
we have obtained an inclusion of subcomplexes X↪ X′ that is a homotopy equivalence. A (cell

1Note that presenting the question in terms of CW-complexes is slightly a-historical. The original question
was phrased for simplicial complexes in [Whi39]. It was then rephrased for CW-complexes in [Whi50]. In fact,
this was one of the original motivations for the definition of a CW-complex.
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structure preserving) inclusion of finite CW-complex X↪Y is called an elementary expansion,
if it can be constructed in this manner (see Fig. 2.1, for an illustration).
Analogously to the group theoretic picture, one can now ask the question whether one can
verify that two finite CW-complexes X and Y present the same homotopy type purely in terms
of elementary expansions, and their (homotopy) inverses. Slightly more refinedly, one may ask
whether a specific homotopy equivalence φ∶X ≃Y can be verified in terms of such operations,
that is, whether its image in the homotopy category of spaces is given by a composition

X = X0
e±1

0
ÐÐ→ . . .

e±1
k
ÐÐ→ Xk =Y

of elementary expansions and their homotopy inverses. If this is the case, φ is called a simple
homotopy equivalence. The study of questions concerned with this notion of simple homotopy
equivalence is often referred to as simple homotopy theory.
In [Whi50], Whitehead defined a complete obstruction to a homotopy equivalence φ∶X→Y
being a simple homotopy equivalence, called the Whitehead torsion and denoted by ⟨φ⟩ here;
it is an element of an abelian group, Wh(X), that can be constructed entirely in terms of the
fundamental group π1(X) of X (for connected X). The abelian group Wh(X) is nowadays
known as the Whitehead group of X. In particular, it follows that whenever π1(X) is such that
Wh(X) vanishes, then every homotopy equivalence of finite CW-complexes with source X is a
simple homotopy equivalence. This holds, for example, if π1(X) vanishes or, more generally, is
a free abelian group (see, for example, [BHS64]).
Let us now recall some equivalent descriptions of the Whitehead group, beginning with
the algebraic perspective (see [Coh73; WJR13], for details). For the sake of simplicity, we
will generally assume spaces to be connected, even if this is only necessary for some of the
descriptions below.

(D1) Given a group G, we denote by Gl(Z[G]) = lim
Ð→

Gln(Z[G]) the infinite general linear
group2 of the group ring Z[G] (see, for example, [Coh73]). We then denote by Wh(G) the
(abelian) quotient group of Gl(Z[G]) obtained by modding out the subgroup generated
by:

• The (equivalence classes of) elementary matrices 1n×n + rEi,j , for 1 ≤ i, j ≤ n, where
r ∈ Z[G] and Ei,j is the n × n matrix with 1 at (i, j) and 0 everywhere else;

• The (equivalence classes of) the diagonal matrices 1n×n − (1 ∓ g)En,n, for g ∈ G and
n ≥ 1, which have ±g at the n-th entry of the diagonal, and 1 everywhere else.

If one only only mods out by the subgroup generated by elements as above, but requiring
g = 1 in the second point, then one obtains what is called the first reduced K-group of
Z[G], denoted K̃1(Z[G]). From the perspective of algebraic K-theory, this means that
Wh(G) is the cokernel of the map G→ K̃1(Z[G]) which sends an element g of G to the
diagonal matrix with g at its first entry, and 1 everywhere else. The Whitehead group
of a connected space X can then be defined as Wh(X) ∶=Wh(π1(X))

3. In fact, the
study of Whitehead groups of spaces was one of the original motivating questions for
algebraic K-theory. This purely algebraic description of the Whitehead group in terms of
the fundamental group makes is possible to compute Whitehead groups in certain cases,
and much progress has been made in this direction over the years since Whitehead’s
original definition (see, for example, [Oli88]).

(D2) When X is a topological space with the weak homotopy type of a finite CW-complex,
then Wh(X) is in bijection with the set of equivalence classes of presentations of X in
terms of finite CW-complexes modulo simple homotopy equivalences. More specifically,

2The colimit is taken over the embeddings of general linear groups Gln(Z[G]) ↪ Gln+1(Z[G]) given by
upper left blockmatrices.

3Choices of basepoint turn out to be irrelevant, even for a functorial formulation. One can also, instead,
construct the Whitehead group in terms of the fundamental groupoid.
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by a presentation of X we mean an isomorphism in the homotopy category of topological
spaces hoTop, w∶X ≃

Ð→Y, where Y is a finite CW-complex with fixed cell structure. Then
the Whitehead group Wh(X) is in natural bijection with the set of equivalence classes
of such presentations of X, subject to the relation that (w∶X ≃

Ð→ Y) ∼ (w′∶X
≃
Ð→ Y′),

if w ○w′−1 is given by a simple homotopy equivalence. In other words, the Whitehead
group Wh(X) measures the non-uniqueness of presentations of the (weak) homotopy
type of X in terms of finite CW-complexes, modulo elementary expansions.

(D3) If we fix the structure of a finite CW-complex X on a space X, then this determines
an isomorphism (induced by Whitehead torsions) between Wh(π1(X)) and a geometric
description of the Whitehead group defined as follows: Consider the set of inclusions of
finite CW-complexes X↪Y that are also homotopy equivalences.4 Then, consider the
quotient set of this set under the equivalence relation generated by (X↪Y) ∼ (X↪Y

e
↪Ð→

Y′) where e is an elementary expansion. This set can be given a group structure, with
neutral element given by the identity on X and addition given by taking the diagonal in
pushout squares of inclusions of cell complexes

X Y

Z Y ∪X Z .

≃

≃ ≃ ≃

≃

(2.2)

From this perspective, the Whitehead torsion of a homotopy equivalence φ∶X → Y
is given by the equivalence class of the (appropriately cellularized) inclusion into the
mapping cylinder of φ, X↪Mφ.

(D4) There are analogous descriptions of the Whitehead group as in the previous two points,
where one replaces CW-complexes by simplicial complexes. In this case, the role of
elementary expansions is taken by considering inclusions of simplicial complexes, K ↪ L,
that are given by filling in a horn Λn ⊂K (see [Whi39] and [Waa21, p. 2.4.1], for a proof
that this description agrees with the topological one).

(D5) In the case where X = M is a closed smooth manifold of dimension greater or equal
to 5, the s-cobordism theorem of Barden, Mazur and Stallings (see [LM24] for a great
overview) provides the following interpretation of the Whitehead group of M : Wh(M)
is in bijection with diffeomorphism classes of h-cobordisms M ↪W relative to M - i.e.,
6-dimensional compact smooth manifolds W with boundary, together with an inclusion
i∶M ↪W of M as a boundary component of W , such that i is a homotopy equivalence.5

(D6) The Whitehead group of a space X also arises as the first homotopy group of a spectrum
Wh(X) that is given by the homotopy cofiber of the assembly map in A-theory (see
[WJR13] for details and definitions).

Together, these different perspectives provide intricate connections between algebraic K-theory,
simple homotopy theory and the topology of manifolds. For example, in the topological case of
Description (D5), where M is simply connected, one obtains that Wh(M) =Wh(0) = K̃1(Z) =
0, and hence that every h-cobordism M ↪W is homeomorphic to a cylinder M × [0, 1]. As one
application, one can derive from this result an answer to the Poincaré conjecture in dimensions
greater than or equal to 6 (see, for example, [LM24]).

In this thesis, we want to study generalized versions of simple homotopy theory. That
is, we want to perform simple homotopy theory in other homotopy-theoretic frameworks
than just the setting of spaces (or chain complexes), which are the classical settings for such

4Strictly speaking, this may be a proper class, but up to cell structure preserving isomorphisms there is
only a set of such inclusions.

5Analogous claims hold in the PL and the topological world. See [LM24], for an overview.
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investigations. The approach we take here is derived from Description (D2). Namely, we will
focus on the following perspective:

Simple homotopy theory can be understood as the study of non-uniqueness of presentations
of homotopy types, up to certain elementary operations.

The original motivation to pursue generalized simple homotopy theory in this sense arose as
follows:
In the author’s master’s thesis, we investigated the question of defining an analogue of the
Whitehead group for stratified homotopy types (in this case presented by stratified simplicial
sets). Having seen the several different approaches to stratified homotopy theory in Chapter 1,
the reader may not be too surprised that the stratified setting presents one with several choices
to be made, which may not necessarily lead to the same group. Clearly, there are choices to
be made when it comes to the stratified homotopy theory that one considers, but there are
also choices to be made when it comes to the perspective from which one wants to define a
Whitehead group. In other words, one should have in mind the specific question of which
of the several perspectives in Descriptions (D1) to (D6) one wants the Whitehead group to
answer. For example, in [BQ79], Browder and Quinn defined a Whitehead torsion for stratified
h-cobordisms for a class of PL stratified spaces with manifold strata (of dimension greater than
or equal to 5), and showed that the obstruction to being stratum-preserving PL homeomorphic
to a cylinder lies in the abelian group given by the sum of the Whitehead groups of the strata
(see also [Wei94]).
On the other hand, the focus in [Waa21] was on answering the question of whether one
can present stratified homotopy equivalences (or weaker notions of equivalences of stratified
spaces) in terms of certain elementary combinatorial moves. In more recent years, this classical
combinatorial perspective on simple homotopy theory has again gained in importance, mainly
due to its applications in applied topology (see [For98; BP19; Bau21; CGN16]). In particular,
Banagl, Mäder and Sadlo applied such elementary combinatorial operations in stratified
topological data analysis in [BMS24]. To tackle the question of presenting stratified homotopy
equivalences in terms of elementary combinatorial moves, the Whitehead group that one
is concerned with should admit descriptions analogous to Descriptions (D2) to (D4). The
Whitehead group of stratified simplicial sets we defined in [Waa21] had precisely this property.
Let us recall the definition first.
Definition 2.1.0.1. Let P be a finite poset and let X ∈ sStratP be a finite stratified simplicial
set. The diagrammatic stratified Whitehead group of X , WhP (X ), is defined as follows.

• The underlying set is the set of acyclic cofibrations X ≃
↪Ð→ Y of finite stratified simplicial

sets in Douteau’s model structure sStratdP , subject to the relation generated by

(X
≃
↪Ð→ Y) ∼ (X

≃
↪Ð→ Y

≃
↪Ð→ Y ∪ΛJ

k
∆J )

where ΛJk ↪∆J is an admissible horn inclusion (i.e., a horn inclusion that realizes to a
stratified homotopy equivalence).

• The sum of two equivalence classes [(X ↪ Y)] and [(X ↪ Y ′)] is defined via diagonals
in pushout squares

[(X
≃
↪Ð→ Y)] + [(X

≃
↪Ð→ Y ′)] ∶= [(X

≃
↪Ð→ Y ∪X Y

′
)].

In this context, we define an isomorphism w∶X ≃ Y in hosStratdP between finite stratified
simplicial sets to be a simple diagrammatic equivalence, if it can be written as a composition
of morphisms that are presented by elementary expansions A ↪ A ∪ΛJ

k
∆J , with ΛJk ↪∆J

admissible, and their inverses in hosStratdP . To any weak equivalence of finite stratified
simplicial sets w∶X ≃ Y in sStratdP (or more generally to an isomorphism in hosStratdP ), one
can associate an element ⟨w⟩ ∈WhP (X ), called the Whitehead torsion of w, which vanishes if
and only if w is a diagrammatic simple equivalence.
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Example 2.1.0.2. Below, we have pictured a simple diagrammatic equivalence – between
a stratification of a simplicial model of S1 over {p < q} (to the right) and an alternative
stratification in which the p-stratum was thickened (to the left) – in terms of a sequence of
stratified elementary expansions and their inverse operations.

Next, let us explain to what extent the stratified diagrammatic Whitehead group admits
an analogue of Description (D2). In the following, given two stratified simplicial sets X ,X ′,
we will identify hosStratdP (X ,X ′) ≅ hoStratdP (∣X ∣s, ∣X ′∣s), under the equivalence of Main
Result A1. We will, furthermore, add an exponent “fin”, to the notation for categories of
stratified simplicial sets to indicate that we restrict to finite stratified simplicial sets.

Construction 2.1.0.3. Let T ∈ StratP be a poset-stratified space. Let

Pres(T ) ∶= {(X , ω′∶T ≃ ∣X ∣s) ∣ X ∈ sStratfin
P , ω ∈ hoStratdP }/ ∼

be the quotient set of isomorphisms of T in hoStratdP with the realization of a finite stratified
simplicial set, subject to the relation that (X1, ω1) ∼ (X2, ω2) if

ω2 ○ ω1
−1
∈ hoStratdP (∣X1∣s, ∣X2∣s) ≅ hosStratdP (X1,X2)

defines a simple diagrammatic equivalence between X1 and X2.

We can think of Pres(T ) as the set of presentations of the diagrammatic stratified homotopy
type of T in terms of finite stratified simplicial sets, subject to the relation that we identify
two presentations if they only differ by a finite sequence of gluing in and removing admissible
horn inclusions.
We then proved the following theorem.6

Theorem 2.1.0.4 ([Waa21]). Let T ∈ StratP be a poset-stratified space, let X ∈ sStratP be a
finite stratified simplicial set, and let ω∶T ≃ ∣X ∣s be an isomorphism in hoStratdP . Then the
map

Pres(T )→WhP (X )
[(X

′, ω′)]↦ ⟨ω′ ○ ω−1
⟩

is a bijection.

This bijection can be seen as a stratified analogue of the identity between the descrip-
tions of the classical Whitehead group in Descriptions (D2) and (D3). In particular, it
follows that the associated torsion elements in WhP (X ) provide complete obstructions to
the question of whether a stratum-preserving diagrammatic equivalence of stratified spaces
can be presented in terms of elementary expansions arising from admissible boundary inclusions.

The obvious question arises, whether one can also find analogues of the alternative descriptions
of the Whitehead group in Descriptions (D2) to (D4) in the stratified scenario. More specifically,
one may ask:

(Q1) Is there a topological version of WhP (X ) using stratified cell complexes instead of
stratified simplicial sets?

6This result of [Waa21] predated the proofs of the equivalence between the stratified simplicial and stratified
topological homotopy theories, which meant we had to resort to a rather technical proof of fully-faithfulness of
homotopy categories in the finite setting in terms of a stratified simplicial approximation theorem. With the
techniques now available, a proof becomes significantly easier.
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(Q2) Is there an algebraic description of WhP (X )? Or, in a similar vein of investigation, can
WhP (X ) be computed in terms of classical Whitehead groups associated to invariants of
X ?

(Q3) How does WhP (X ) relate to stratified h-cobordisms and to the Whitehead torsion of
Browder and Quinn?

(Q4) Can one construct similar Whitehead groups for the alternative approaches to stratified
homotopy theory we presented in Chapter 1?

The approach which we will take to address these questions will be quite general. In fact, we
only touch on stratified spaces at the very end of the investigation. Already Questions (Q1)
and (Q4) made it apparent to us that instead of constructing simple homotopy theories by
hand, for each theory one is interested in studying, an axiomatic approach is in order.

The notions of presentation and elementary expansions can essentially be made sense of
in any context of a (semi-)model category, equipped with a set of generating cofibrations
(thought of as boundary inclusions of cells) and generating acyclic cofibrations (thought of as
horn inclusions into a simplex, or hemisphere inclusions into a disk). It will turn out, that
given a solid grasp on the simple homotopy theories arising from such operations, as well as
their diagram categories and homotopy colimits, answers to Questions (Q1), (Q2) and (Q4) are
rather straightforward to obtain. Describing such a model-categorical approach to generalized
simple homotopy theory, and investigating its properties is the content of Part III. We think
that the main value of our investigations into model categorical approaches to simple homotopy
theory does not necessarily lie in their applications to the stratified scenario, but in their
general applicability to all sorts of homotopy theoretic frameworks. Nevertheless, we will use
the insights gained in this investigation to obtain a description of the diagrammatic Whitehead
groups WhP (X ) purely in terms of classical Whitehead groups of strata and generalized
homotopy links.

We will now move on to explaining the main results of Part III. As we have already mentioned,
a large part of these results is quite general, and can be understood without having any
knowledge of stratified homotopy theory. Nevertheless, we will regularly return to the case
of stratified homotopy theory, in order to give some immediate applications of the abstract
results. Let us finish with a remark on higher simple homotopy theory.

Remark 2.1.0.5. Whitehead groups have higher analogues, arising from the higher homotopy
groups of Whitehead spectra (see Description (D6)).7 The study of these higher Whitehead
groups started in [Hat75] by Hatcher, and was continued, for example, by Waldhausen (see
[WJR13])8. It is, at times, referred to as higher simple homotopy theory. We will explicitly
not be performing higher generalized simple homotopy theory here, at least not intentionally.
Rather, we restrict ourselves to the case n = 1, i.e., the study of simple equivalences in some
abstract homotopy theoretic setting and Whitehead groups in degree 1. This does not mean,
of course, that we will not use methods of higher category theory; in fact, they will be used on
a regular basis. It rather means that, while there are several natural candidates for Whitehead
spaces arising in our theory, we will only study their path components (or maybe fundamental
groups, depending on degree shifts). There are several reasons why we have chosen to not dive
into the higher setting here. On the one hand, we figure that one should first have a series
of examples of how simple homotopy theory (in the 1-truncated sense) works in scenarios
different from the classical, i.e., the topological or the algebraic one, before one attempts to

7In fact, they also have lower analogues. Namely, one can think of the 0-th reduced K-group K̃0(π1X) of
a finitely dominated space X as the group of Wall’s finiteness obstructions, which are the obstructions to a
finitely dominated space having the homotopy type of a finite CW-complex (see [FR01], for an overview).

8There is a degree shift in what people have referred to as the Whitehead spectrum, which one should be
aware of. For example, what Lurie calls the Whitehead spectrum in his lecture notes on simple homotopy
theory is a de-looping of what Hatcher calls the Whitehead spectrum
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define what a generalized higher simple homotopy theory is. Furthermore, at the very least, we
expect one should have an elaborate understanding of higher algebraic K-theory before one
attempts to generalize. At the point of writing this, the author cannot claim to have such a
deep understanding.
It may very well turn out that the model categorical approach to simple homotopy theory which
we present here will ultimately also cover the higher picture, but, at the same time, it may also
very well turn out that the notion of equivalences between simple homotopy theories which we
consider in the following text fails to preserve some relevant features beyond dimension 1.

2.2 Cell complexes, presentations and expansions
As we have already explained in the previous section, the approach to generalized simple
homotopy theory we take is that we are looking to study the uniqueness of presentations of
homotopy types in some generalized homotopy theory, up to certain elementary operations.
Roughly speaking, when we speak of a presentation of a homotopy type, then we mean
presentation in terms of a weak equivalence with a finite cell complex. We develop such a
general theory of cell complexes in Chapter 8.

2.2.1 Results: Cell complexes and cellularized categories
Let us first give a rigorous discussion of what we mean by a cell complex in a more general
categorical framework. To do so, we will quickly give some of the central definitions of
Chapter 8. To this end, recall the notion of a transfinite composition (see, [Hir03], for details).
Given an ordinal number λ, we will denote by λ + 1 its successor ordinal, given by the union
of λ with {λ}. Recall that a transfinite composition, in a category C with small colimits, is
a diagram X●∶λ + 1 → C,9 such that for each limit ordinal β ∈ λ + 1, the natural morphism
lim
Ð→α<β

Xα →Xβ is an isomorphism.

Definition 2.2.1.1. Let C be a category that has small colimits. Let B be a set of morphisms
in C (which we refer to as the set of generating boundary inclusions). By a structured relative
B-cell complex, c, we mean the following data:

• A morphism c∶A→X ∈C;

• A subset Cc ⊂ B ×⊔(∂D→D)∈B C(D,X), called the set of characteristic maps, consisting
of pairs of the form (∂D →D,D →X), such that the following holds10:
To keep notation concise, we will refer to an elements of e ∈ Cc in the fixed notation
(∂De →De, σe∶De →X).

– There exists an ordinal λ, a decomposition

Cc = ⊔
α∈λ

Iα

and a transfinite composition

A =X0
→X1

→ ⋅ ⋅ ⋅→Xλ
=X,

composing to c∶A→X.
– This transfinite composition is such that for each α ∈ λ, there exists a family of pairs

of morphisms (De →Xα+1, ∂De →Xα)e∈Iα , where De →Xα+1 is a factorization of
σe∶De → X through Xα+1 → X and ∂De → Xα is a factorization of ∂De → De →

9We think of λ + 1 as a category with morphisms given by relations.
10The ∂D notation is purely formal. We will always use it to refer to the source of morphisms in B.
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Xα+1 through Xα → Xα+1. These factorizations are furthermore required to be
such that the resulting square

⊔e∈Iα
∂De ⊔e∈Iα

De

Xα Xα+1

(2.3)

is a pushout square.

An absolute structured B-cell complex is a relative structured cell complex where A = ∅
is an initial object in C. In this case, we just think of ∅→X as the object X ∈C.

Observe that structured relative cell complexes are simply relative cell complexes in the
sense in which they also show up in the definition of cofibrantly generated model categories
(for example, in [Hir03]) together with the additional datum of a choice of characteristic maps.

Notation 2.2.1.2. We will use the general notational convention of referring to structured
relative cell complexes by small fraktur letters, i.e. c; and referring to absolute structured cell
complexes by capital fraktur letters, i.e. X. The underlying morphism (object) in C will be
denoted with the same letter, but using regular font. The associated set of characteristic maps
will be denoted in the form Cc or CX. We will also refer to the set of characteristic maps of
a (relative) cell complex as the set of cells of X. When we refer to a structured absolute or
relative complex as finite, we mean that its set of cells is finite.

A similar definition of cell complexes in a general category was given in [Hir03]11. For our
investigation of simple homotopy theory, it will be crucial that the set of characteristic maps
is part of the data of a relative structured cell complex (hence the “structured”). When a set
of boundary inclusion B is specified, then we will usually omit the B from “B-cell complex”
and just speak of structured cell complexes. In order to obtain a well-behaved theory of cell
complexes, some additional assumptions need to be made. These are encoded in the following
definition:

Definition 2.2.1.3. A celullarized category consists of the data of

1. a category C that has small colimits,

2. a set B of morphisms in C,

such that the following holds:

P(i) B contains no isomorphisms;

P(ii) All relative B-cell complexes a∶A→ B have the property that every pushout square

A B

A′ B′

a

a′

(2.4)

in C is also a pullback square.

The elements of B will be called generating boundary inclusions and denoted in the form
∂D →D. Property P(i), which states that no generating boundary inclusion is an isomorphism,
is a rather minor assumption. Clearly, it can always be ensured by removing some isomorphisms
from B. It is essentially only there because we prefer to work in a theory where isomorphisms

11Hirschhorn considered the transfinite composition and the pushout squares to be part of the data. We will
take the approach that only the set of characteristic maps is part of the data.
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of absolute structured cell complexes (which we define in a second) can be detected in terms
of bijections on the sets of cells. The second assumption, a slightly weaker version of which
was assumed in the definition of a cellular model category in [Hir03], has major consequences.
In particular, it ensures that every relative cell complex is a monomorphism, but significantly
more can be derived from it (see Section 8.1, for details). Let us first give some seminal
examples of cellularized categories and their structured cell complexes in order to convince the
reader of the naturality of these assumptions. Proofs that these examples form cellularized
categories are provided in Section 8.1.

Example 2.2.1.4. The category of sets, Set, equipped with the single boundary inclusion
∅→ ∗, is easily verified to be a cellularized category. The relative cell complexes are precisely
the inclusions of sets. Every inclusion of sets A↪X admits exactly one cell structure, namely
the one where the cells are given by the elements of X ∖A.

Example 2.2.1.5. The category of topological spaces (or one of its appropriately generated
derivatives) Top, equipped with the set of boundary inclusions given by inclusions of the
boundaries of disks B = {∂Dn ↪Dn ∣ n ≥ 0} is a cellularized category. The structured relative
cell complexes are essentially relative CW-complexes, together with choices of characteristic
maps, where the assumption that gluing maps ∂Dn →X need to map into the (n− 1)-skeleton
are dropped.

Example 2.2.1.6. If we are looking to recover CW-complexes, we need to introduce additional
data which ensures that dimensions are appropriately respected in the gluing process. Consider
the category of filtered topological spaces Filt, defined as follows. An object of Filt is a space
T ∈ Top, together with a family of subsets T 0 ⊂ ⋅ ⋅ ⋅ ⊂ Tn ⊂ ⋅ ⋅ ⋅ ⊂ T∞ = T . We will usually just
write T to refer to the whole filtered space. Morphisms from (T0, (T

n
0 )n∈N) to (T1, (T

n
1 )n∈N)

are given by continuous maps f ∶T0 → T1, such that f(Tn0 ) ⊂ Tn1 , for all n ∈ N. This category
has all small colimits. They are given by taking the colimit of the underlying spaces, and
then equipping it with the smallest filtration that makes the structure maps into the colimit
filtration preserving. For n ≥ 0, denote by En the filtered space obtained by equipping Dn

with the filtration.

k ↦

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∅ , k < n − 1
∂Dn , k = n − 1
Dn , k ≥ n .

Furthermore, denote by ∂En the filtered subspace of En given by

k ↦

⎧⎪⎪
⎨
⎪⎪⎩

∅ , k < n − 1
∂Dn , k ≥ n − 1.

If we set B = {∂En ↪ En ∣ n ≥ 0}, then a structured B-complex X∶ ∅ → X specifies exactly
the same data as a classical CW-complex, equipped with choices of characteristic maps.
Furthermore, the morphisms in Filt between two such complexes X and Y are precisely the
cellular maps.

Remark 2.2.1.7. We will not discuss the case of classical CW-complexes much from here on
out. This is for the following reason: When we move on to simple homotopy theory, this will
be done through the perspective of cofibrantly generated semi-model categories. We suspect
that one can define semi-model structures on filtered spaces that present the homotopy theory
of spaces in which generating cofibrations are as in Example 2.2.1.6. While this is certainly
an interesting avenue to pursue, for all intents and purposes we have in mind, using either
simplicial sets or topological spaces is entirely sufficient. Furthermore, in the way simple
homotopy theory of CW-complexes is classically performed, for example in [Coh73; Whi50], the
definition of cell complex that is used does not recall the characteristic map, but instead only
the decomposition into open cells. In this sense, the exact geometric definition of Whitehead
groups in [Coh73] does not really fit into the framework of cellularized categories anyway. We
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will use a more general framework for simple homotopy theory later on, to also incorporate
examples that do not arise from cellularized categories, in order to compare to the classical
definitions.

Example 2.2.1.8. The category of simplicial sets sSet equipped with the set of boundary
inclusions B = {∂∆n →∆n ∣ n ≥ 0} is a cellularized category. The relative cell complexes are
precisely the inclusions of simplicial sets A↪X. Every such inclusion admits exactly one cell
structure, namely the one given by the set of non-degenerate simplices in X that are not in A,
Xn.d. ∖An.d..

Example 2.2.1.9. The category of non-negatively graded chain complexes of (left)modules
over some (not-necessarily commutative) ring R, Ch≥0(R), admits the structure of a cellularized
category. In the following, we use shift notation in the form A●[−n], to indicate the chain
complex given in degree k by Ak−n. For n ≥ 0, we denote by Dn

● the chain complex

⋅ ⋅ ⋅→ 0→ R
1
Ð→ R → 0 ⋅ ⋅ ⋅→ 0

which is non-zero exactly in degree n and n − 1 (n, if n = 0). Observe that maps Dn
● →X●, for

X● ∈Ch≥0(R) are in natural one-to-one correspondence with the elements of Xn. Denote by
∂Dn

● = R[1 − n], the subcomplex given by R at n − 1 (supposing n ≥ 1) and 0 everywhere else
(given by ∂Dn

● = 0 if n = 0). Then set

B = {∂Dn
● ↪Dn

● ∣ n ≥ 0}.

An (absolute) structured cell complex X∶0→X● specifies the same data as a choice of basis
for a free chain complex X● in each degree. A structured relative cell complex c∶A● ↪ X●
specifies the data of elements {bi} ⊂Xn, for each n ≥ 0, such that {[bi]} is a basis of Xn/An.
In particular, it follows that an absolute structured cell complex X is essentially the same
thing as a free chain complex X● together with a choice of basis in each degree.

Remark 2.2.1.10. These examples already illustrate well the different roles that cell structures
can take in simple homotopy theory. When working in the realm of simplicial sets, the cell
structure is always intrinsic and there is no need to explicitly specify characteristic maps. When
working with CW-complexes, the cell structure (a priori) needs to be specified. However, it is a
deep result due to Chapman (see [Cha74]) that every homeomorphism of finite CW-complexes
is a simple homotopy equivalence, which makes it generally acceptable to omit cell structures.
When working in the world of algebra, then remembering the cell structure (i.e., the choice
of basis) is of utmost importance. Consider an isomorphism of free modules over a group
ring ϕ∶Z[G]n → Z[G]n. We can either think of ϕ as an isomorphism of chain complexes
concentrated in degree 0, or as a matrix in Gln(Z[G]), specifying an element in the Whitehead
group Wh(G). Clearly, this assignment relies on the choice of basis on Z[G]n, and if we are
allowed to choose an arbitrary alternative basis on the target, then we may very well take the
associated matrix to be the identity matrix, making the associated element in the Whitehead
group 0.

Finally, for our investigations of stratified simple homotopy theory, the following two
examples are important.

Example 2.2.1.11. Given a fixed poset P , we obtain a cellularized category by equipping
sStratP with the set of stratified boundary inclusions {∂∆J ↪ ∆J ∣ J ∈ ∆P }. Just as
in the non-stratified simplicial setting, each inclusion of stratified simplicial sets A ↪ X
has a unique-cell structure, given by the non-degenerate simplices of X not contained in A.
On the topological side, StratP , we may consider the set of stratified boundary inclusions
{∣∂∆J ↪∆J ∣s ∣ J ∈ ∆P }. The resulting structured cell complexes are precisely the structured
stratified cell complexes we used in Chapter 6.

Notation 2.2.1.12. We will generally denote a cellularized category just by its underlying
category, and keep the set of generating boundary inclusions B implicit. When multiple
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cellularized categories are involved, we will use the notation BC to refer to the generating
boundary inclusions of C. We will also assume that no two morphisms in B have the same
target (clearly, this can always be achieved by an immaterial set-theoretic modification). This
has the advantage that the characteristic maps (∂D → D,D → X) ∈ Cc, for a structured
relative cell complex c∶A→X, are uniquely specified by the map D →X, and we will regularly
use this to treat them as morphisms in C with target X, not as tuples. In particular, it allows
us to think of Cc as a subset of ⊔∂D→D∈B C(D,X).

Definition 2.2.1.13. Let C be a cellularized category. By a structure preserving morphism
of two such structured relative cell complexes A0

c1
↪Ð→ X0 and A1

c1
↪Ð→ X1, we mean a pair of

morphisms (fA∶A0 → A1, fX ∶X0 →X1) in C fitting into a commutative diagram

A0 A1

X0 X1 ,

c0

fA

c1

fX

(2.5)

in C such that, for every characteristic map σ ∈ Cc0 the induced map f ○ σ is in Cc1 . We
denote by RCell(C) the category of structured relative B-complexes and structure preserving
morphisms, with the obvious notions of identity and composition. Furthermore, given A ∈C,
we denote by RCell(C)A the subcategory of RCell(C) given by all relative structured cell
complexes with source A and with morphisms given by such morphisms of structured relative
cell complexes that are given by the identity on A.

Clearly, we are not only interested in studying (proper) relative cell complexes, but also
absolute cell complexes, obtained by letting the source be the initial object ∅ ∈C.

Notation 2.2.1.14. We denote by Cell(C) the full subcategory of RCell(C), given by such
structured relative cell complexes A c

↪Ð→ X, for which A ≅ ∅ is initial in C. As the maps on
initial objects are entirely redundant, we will just refer to objects of Cell(C) in the form X.

Remark 2.2.1.15. Observe that the category Cell(C) is rather discrete in nature. To be
more precise, just like in most examples of combinatorial categories, there is only a finite set of
morphisms between two finite structured cell complexes X and Y in Cell(C). Indeed, it is not
hard to see from the construction of absolute cell complexes in terms of colimits of generating
boundary inclusions that every structure preserving map X→Y is entirely determined by the
induced map CX → CY.

Next, let us consider two fundamental operations on relative cell complexes, well known
from the calculus of cofibrantly generated model categories.

Construction 2.2.1.16. Given a structured relative cell complex A0
c0
↪Ð→X0, and an arrow

g∶X0 →X1, we denote

gCc0 ∶= {g ○ σ ∣ σ ∈ Cc0} ⊂ ⊔
∂D→D∈B

C(D,X).

Generally, there is no reason why gCc0 should define the structure of a cell complex on X1, or
on some relative cell complex A1 ↪X1. However, in the following situations, this is indeed the
case.

1. Suppose that the diagram
A0 A1

X0 X1

c0

fA

c1

f ′

(2.6)

is a pushout square. Then it follows from the compatibility relations of transfinite
compositions and pushouts that c1 is a relative cell complex and f ′Cc0 defines a cell
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structure on c1, such that (f, f ′) defines a morphism of structured relative cell complexes.
These types of morphisms in RCell(C) will be called cobase change morphisms. We will
also call the associated squares with verticals given by structured relative cell complexes
cobase change squares.

2. Consider a transfinite composition

c∶A =X0
→X1

→ ⋅ ⋅ ⋅→Xλ
=X

of relative cell complexes, together with, for each α ∈ λ, a cell structure Cα on Xα →Xα+1.
Denote by fα the canonical morphism Xα →X. Then it follows from the composability
of transfinite compositions, that the set ⋃α∈λ fα+1Cα+1 defines a cell structure on c.
We call the resulting cell complex the vertical transfinite composition of the structured
relative cell complexes cα∶Xα ↪Xα+1. Vertical compositions with λ = 2 will be denoted
in the form c1 ○ c0.

Remark 2.2.1.17. Cobase changes will be of particular importance when investigating the
functoriality of Whitehead groups. Consider the forgetful functor

RCell(C)→C
(c∶A→X)↦ A.

Any arrow f ∶A→ A′ in C together with a structured relative cell complex c∶A→X lifts to a
cobase change morphism

A A′

X X ′

c

fA

c′

f ′

(2.7)

unique up to canonical isomorphism over fA. We denote the structured relative cell complex on
the right by f¡c ∶= c

′. Cobase changes have a universal property, which extends this construction
to a functor

f¡∶RCell(C)A →RCell(C)A′ .

In fact, RCell(C)→C is a cocartesian fibration (see [nLa24g]), which means we can think of
cobase change as a pseudo-functor into the (2,1)-category of categories Cat,

RCell(C)→Cat
A↦RCell(C)A
f ↦ f¡.

Much of Section 8.1 is dedicated to simply verifying that the theory of structured cell
complexes associated to a relative category behaves as one would expect a theory of cell
complexes to behave. As is often the case with such purely category-theoretic investigations,
the difficulty is mainly one of finding the right definition, and then most of the expected results
fall into place with rather straightforward proofs. Let us just name a few such statements,
without going into rigorous details, to give a flavor of the elementary results obtained in
Section 8.1. We will appeal to concrete results later on, when we need them.

• Section 8.1.3: There is a notion of subcomplex of a structured relative cell complex
c∶A→X, given by morphisms c̃→ c in RCell(C)A that induce injections on the sets of
cells. Equivalently, these can be characterized as the monomorphisms in RCell(C)A.
A subcomplex is uniquely specified by its set of cells (up to canonical isomorphism). If
c̃ ↪ c is the inclusion of a subcomplex, then the associated underlying map of objects
X̃ ↪X inherits the structure of a relative cell complex from c.

• Section 8.1.5: Subcomplexes admit intersections and unions.
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• Section 8.1.6: There is a theory of compactness, which ultimately ensures that morphisms
Y → X (from an appropriately compact object Y ) into a structured cell complex X factor
through some finite subcomplex of X.

• Section 8.2: There is a theory of cellularized functors, given by equipping colimit
preserving functors between cellularized categories with additional data, such that they
lift to functors between the associated categories of relative cell complexes, in a manner
that is compatible with the basic operations on relative cell complexes. Cellularization
of functors are uniquely determined by making choices of cell structure for the images of
each generating boundary inclusion.

2.2.2 Presentations and elementary expansions
Now that we have explained what we mean by a structured cell complex, let us explain what
we mean by a presentation. Suppose that C is a cellularized category and suppose that
C is additionally equipped with a class of morphisms W ⊂ C, which we think of as weak
equivalences. We write hoC for the 1-categorical localization of C at W.

By a (finite) presentation of the homotopy type of an object Y ∈ C, we mean a finite
structured cell complex X, together with an isomorphism ω∶Y ≃ X in hoC. For the sake of
simplicity of notation, we will just write presentations in the form ω∶Y ≃ X. Now, suppose
we are given two presentations ω1∶Y ≃ X1 and ω2∶Y ≃ X2. Composing ω−1

1 with ω2, we obtain
an isomorphism X1 ≃ X2 in hoC. We can then ask whether this isomorphism can be verified
purely in terms of certain elementary operations on the structured cell complexes X1 and X2.12

The elementary operations are defined as follows:

Definition 2.2.2.1. A cellularized category with expansions consists of:

1. A cellularized category C;

2. A set EC ⊂RCell(C) of finite structured relative cell complexes.

Elements of EC are called generating elementary expansions.

Clearly, any set of finite structured relative cell complexes in a cellularized category C will
define a category with expansions. Here are some more natural examples to keep in mind:

Example 2.2.2.2. The cellularized category of simplicial sets sSet (with the standard set of
boundary inclusions) can be equipped with the set of horn inclusions

{Λnk ↪∆n
∣ n ≥ 1,0 ≤ k ≤ n}.

We will see that these expansions lead to classical simple homotopy theory.

Example 2.2.2.3. The cellularized category of topological spaces Top (with the boundary
inclusions given by the boundary inclusions of disks) can be equipped with a class of gen-
erating elementary expansions as follows. First off, note that we may replace the boundary
inclusions of disks by boundary inclusions ∣∂∆n ↪ ∆n∣, without really changing the theory
(see Remark 8.2.3.3). We may then take

EC = {∣Λnk ↪∆n
∣ ∣ n ≥ 1,0 ≤ k ≤ n},

12The name presentation is also justified insofar as we could use the framework to discuss presentations
of groups. This can be achieved by localizing the category of filtered topological spaces T , which fulfill
T 0
= ∗, at such maps which induce isomorphisms on fundamental groups. The resulting homotopy category

is the category of groups. One may then consider cell complexes with respect to the boundary inclusions
⋆ ↪ (⋆ ⊂ S1

⊂ S1
⊂ . . . ) and (⋆ ⊂ S1

⊂ S1
⊂ . . . ) ↪ (⋆ ⊂ S1

⊂ D2
⊂ D2

⊂ . . . ). The resulting structured cell
complexes, which are simply 2-dimensional CW-complexes with a unique 0-cell, provide presentations of the
associated fundamental groups in terms of generators and relations. If we are looking to compare presentations
in this setting, we also need to allow for cells of the form (⋆ ⊂ ⋆ ⊂ S2

⊂ S2
⊂ . . . )↪ (⋆ ⊂ ⋆ ⊂ S2

⊂ D3
⊂ . . . ), in

order to define expansions that modify relations.
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with the cell structure on ∣Λnk ↪ ∆n∣ given by the two cells ∣∆n∣
1
Ð→ ∣∆n∣ and the inclusion

of the k-th face ∣∆n−1∣ ↪ ∣∆n∣. We could certainly also take a cubical approach to defining
expansions. We prefer the simplicial route here, for its evidently preferable interaction with
simplicial sets.
Example 2.2.2.4. The category of positively graded chain complexes Ch≥0(R) over some
not-necessarily commutative ring R, cellularized as in Example 8.1.1.15, can be equipped with
the following sets of generating expansions: We can consider the set of expansions

E′ = {0→Dn
● ∣ n ≥ 1}

where Dn
● is equipped with the cell structure arising from the obvious basis. This leads to a

rather small class of simple equivalences (see Example 2.2.2.9).
A more interesting simple homotopy theory arises if we consider the following class of expansions:

Denote by I● the chain complex given by

. . .0→ R
(−1,1)
ÐÐÐ→ R⊕R → 0

with R⊕R in degree 0. Denote by e0 the inclusions of R[0] into I● via inclusion in the left
component and analogously by e1 the inclusion in the right component. Given a unit g ∈ R,
we denote by e0,g the structured relative cell complex obtained by equipping e0 with the cell
structure given by the elements 1 ∈R in degree 1 and (0, g) ∈R⊕R in degree 0. e1,g is defined
analogously, using (g,0) as the second basis element. Then, given a subgroup G of the group
of units of R, we can consider the set of expansions

EG ∶= {ei,g[−n]∶R[−n]↪ I●[−n] ∣ i = 0,1, n ∈ N, g ∈ G} .

Example 2.2.2.5. We can equip the cellularized category of P -stratified simplicial sets
sStratP with a class of elementary expansions by considering the set of admissible horn
inclusions

{ΛJk ↪∆J ∣ J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] ∈∆P ,0 ≤ k ≤ n, ∣ΛJk ↪∆J ∣s is a stratified homotopy equivalence} .

However, we could also use the set of admissible horn inclusions and inner stratified horn
inclusions. Similarly to Example 2.2.2.3, we obtain the structures of a cellularized category
with expansions on StratP , by equipping it with the stratified realizations of these horn
inclusions.
Notation 2.2.2.6. Just as in the case of cellularized categories, we will omit the expansions
from the notation for a cellularized category with expansions, and just write C, to refer to the
latter. The associated set of generating expansions is always denoted by EC.
Definition 2.2.2.7. Let C be a cellularized category with expansions.

1. A relative cell complex e′ ∈RCell(C) that fits into a cobase change square

Λ A

D X

f

e e′ (2.8)

where e ∈ EC, or e is an empty relative cell complex is called an elementary expansion.

2. A transfinite vertical composition of elementary expansions is called an expansion.

3. The inclusion of a subcomplex

i∶ (A
c̃
↪Ð→ X̃)↪ (A

c
↪Ð→X)

in RCell(C)A, for A ∈ C, is called an expansion (an elementary expansion), if the
associated structured relative cell complex i∶ X̃ ↪ X is an expansion (an elementary
expansion).
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4. A finite structured relative cell complex s∶A↪X is called a structured simple equivalence,
if there exists a finite expansion e∶X ↪ Y , such that the vertical composition e ○ s∶A↪X
is an expansion. An inclusion of finite structured cell complexes i∶X ↪ Y is called a
simple equivalence, if the induced structured relative cell complex i∶X ↪ Y is a structured
simple equivalence.

Remark 2.2.2.8. Also allowing for empty relative cell complexes in the definition of an ele-
mentary expansion ensures that all isomorphisms of structured cell complexes define elementary
expansions.

Example 2.2.2.9. Let us make explicit what an elementary expansion is in the case of free
chain complexes of Example 2.2.2.4. If we take the first definition of generating elementary
expansions, then an elementary expansion is (either an isomorphism) or an inclusion

A● ↪ A● ⊕D
n
● ,

for n ≥ 1, equipped with the obvious choice of basis. General expansions are simply inclusions

A● ↪ A● ⊕⊕
i∈I
Dni
● .

It is not too surprising that this notion of expansion ultimately leads to a notion of simple
equivalence which is rather rigid. In particular, these operations can essentially only extend
the differential matrices of a based chain complex by taking the sum with an identity matrix.
The situation becomes a bit more interesting if we consider the more general set of expansions
EG, for G a subgroup of the group of units of R. Then, a (non-trivial) elementary expansion
of a chain complex A● amounts to adding two free generators bn and bn+1 in two degrees n
and n + 1, and extending the boundary operator d of A● via

d(bn) = 0

and
d(bn+1) = ±gbn + a,

for some a ∈ An and g ∈ G.

2.3 Whitehead model categories
Let us now present a set of axioms that guarantee that a cellularized category with expansions
induces a well-behaved simple homotopy theory. Roughly speaking, our approach will mirror
the geometric approach to defining Whitehead groups presented in [Coh73], albeit in the
framework of a general cofibrantly generated semi-model category, equipped with notions of
generating boundary inclusions and expansions. Before we do so, let us remark on two different
approaches to generalized simple homotopy theory in the literature.

(A minor change of axioms) Recovering an approach of Eckmann and Siebenmann

Already in [Eck06; Sie70], Eckmann and Siebenmann (independently) gave a very general
axiomatic categorical framework, in which one can make sense of the notions of expansions,
simple equivalence and Whitehead group. The framework uses as its input data a small category
C admitting pushouts, as well as a class of morphisms E ⊂C that contains all isomorphisms,
is stable under cobase change and composition, and fulfills an additional property simplifying
the structure of the (1-categorical) localization C[E−1]. [Eck06] then defines the Whitehead
group associated to an element X ∈C as the set of arrows

{f ∶X → Y ∈C ∣ f descends to an isomorphism in C[E−1
]}
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subject to the relation generated by composition with morphisms in E, with addition given
by taking pushouts. [Eck06; Sie70] demonstrate that many of the elementary properties of
Whitehead groups can already be derived under this minimal set of assumptions.

The intended use of this framework, suggested in this form in [Eck06], is that one should
take C to be a category in which the morphisms are given by inclusions of some notion of
cell complexes and should take E to be the class of expansions, associated to the respective
framework. These types of categories will essentially never have pushouts. To see this, observe
the following category-theoretical lemma, the proof of which is a straightforward exercise in
elementary category theory.
Lemma 2.3.0.1. Suppose that C is a category such that

• C has finite coproducts;

• every arrow in C is a monomorphism.

Then, for every X,Y ∈ C, the set C(X,Y ) is empty or a singleton. In other words, up to
equivalence of categories, C is a poset.

Any of the categories of inclusions of cell complexes or simplicial complexes that one could
have in mind have their morphisms given by monomorphisms, and have an initial object.
Hence, it follows that if they had pushouts, they would also have coproducts. They certainly
also generally do have morphism sets of cardinality greater or equal to 2, as there will generally
be multiple ways to include one cell complex into another.

We think what [Eck06; Sie70] had in mind was not to take the pushout in the category
of inclusion of subcomplexes, but instead take the pushout in a larger category containing more
morphisms. In any case, the arguments presented in [Eck06] really do not make use of the full
universal property of the pushout. All that is really needed is a sufficiently coherent family
of squares that behaves almost like pushout squares. In Chapter 9, we present an alternative
(more general) set of axioms that applies to both the classical scenarios which Eckmann and
Siebenmann had in mind as well as to the more general frameworks we presented in the
previous section. Modulo the change in axioms and the usage of some more modern category
theoretical methods, the results and proofs are really the same as presented in [Eck06]. We
will not go into detail here and refer the interested reader to Chapter 9. One should note,
however, that many of the results presented in the following sections at least partially rely on
the axiomatic results of Eckmann and Siebenmann.

Kamps and Porter’s approach to abstract simple homotopy theory

In [KP86], Kamps and Porter presented an alternative approach to abstract simple homotopy
theory in the framework of a category with cofibrations equipped with a generating cylinder (see
[KP86]). In this framework, one starts with a fixed cylinder functor −× I ∶C→C on a category
C (together with natural boundary inclusions X ⊔X ↪ X × I and projections X × I → X,
which together factor the fold map X ⊔X → X) and considers the homotopy theory given
by homotopy equivalences with respect to this cylinder. Simple equivalences are generated
under the two-out-of-three law and pushouts along cofibrations from the cylinder projections
X × I → X and isomorphisms. This approach has the advantage that the notion of simple
equivalence is intrinsic, after one has decided on a choice of cylinder. The authors demonstrate
that their axioms lead to a notion of simple homotopy theory that behaves much like the
classical case of CW-complexes. For our purposes, this framework is too restrictive for the
following reasons:

• In the scenarios which we consider, weak equivalences do not arise as the homotopy
equivalences with respect to a cylinder. While one could obtain such a framework by
passing to bifibrant objects, this would generally destroy the finiteness assumptions which
are essential to our investigations of simple homotopy theory.
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• Allowing for all isomorphisms to be simple equivalences does only make sense for our
purposes when we work in categories of cell structure preserving morphisms. Otherwise,
as is already apparent from the algebraic case, isomorphisms that ignore the cell structure
may generally not be simple equivalences in the sense which we want to study. More than
that, we really want to work in a framework where morphisms preserve cell structures.
The categories of structured cell complexes which we consider are generally too rigid to
admit cylinder projections, however.

• Finally, we are explicitly looking to work in a framework were we have control over
the generating expansions that we feed into the theory, both in the sense that we want
to know that every simple equivalence can be expressed as a zig-zag of elementary
expansions, and in the sense that we want to add in additional expansions, to enlarge the
class of simple equivalences. That such a change in homotopy theory can generally be
done without changing the underlying homotopy theory can be seen in Example 2.3.1.2,
for example.

Nevertheless, we will partially incorporate the perspective of Kamps and Porter into our theory,
namely, we will require the existence of a well-behaved cylinder. Requiring such a cylinder
has numerous convenient consequences. For example, it can be used to verify the (modified)
axioms of Eckmann and Siebenmann. Furthermore, many of the proofs we provide in our
framework are inspired by the ones in [KP86], which are in turn, in all likelihood, inspired by
the ones in [Whi50; Coh73].

2.3.1 Results: Elementary properties of Whitehead model categories
In this subsection, we explain our model categorical approach to generalized simple homotopy
theory and give the first foundational results that justify the usage of the theory. All definitions
and results in this subsection can be found in Chapter 10. Let us now give the axioms of what
we call a Whitehead model category and give the basic results on the resulting framework. We
will first spell them out, and then give definitions of the terminology used.

Definition 2.3.1.1. A cellularized category with expansions C is called a Whitehead model
category if C admits the structure of a cofibrantly generated (left) semi-model category, such
that the following holds:

(A1) BC provides a set of generating cofibrations and the source and target of every morphism
in BC are filtration compact.

(A2) For every generating elementary expansion e∶A↪X ∈ EC, it holds that the underlying
morphism e∶A ↪ X in C is an acyclic cofibration whose source, A, is cofibrant and
filtration compact.

(A3) An object X ∈C is fibrant if and only if X → ⋆ has the right lifting property with respect
to the underlying morphisms in EC.

(A4) C admits a simple cylinder.

Let us now explain the role of these axioms:

• Requiring that C admits the structure of a semi-model category ensures that we are in
a convenient framework to perform homotopy theory from a 1-categorical perspective.
While the definition is phrased in terms of existence, it is not hard to see (Remark 10.2.2.6)
that the remaining axioms are such that weak equivalences are uniquely determined by
the classes of generating boundary inclusions and elementary expansions. When we refer
to C as a semi-model category in the following, it will be with respect to this uniquely
determined structure.
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• Recall that a set of morphisms B in a semi-model category C generates cofibrations, if
every cofibration is retract of a relative cell complex in B. More than that, Axiom (A1)
ensures that every object in C is weakly equivalent to a B-cell complex, allowing us to
perform homotopy theory from the perspective of cell complexes.

• The filtration compactness assumptions in Axiom (A2), for D ∈ C, imply that every
morphism D → X into a finite cell complex factors through a finite subcomplex X̃ ⊂ X (see
Section 8.1.6 for rigorous definitions). For CW-complexes, it is a well known classical fact
that compact spaces D have this property. Together with Axiom (A3), this essentially
guarantees that one can perform homotopy theory of finite cell complexes without passing
through the transfinite setting. For example, it follows that every morphism in the
homotopy category hoC between finite structured cell complexes X and Y can be written
as a composition of a morphism between finite cell complexes X→ Z with the inverse of
an expansion Y↪ Z.

• Axiom (A3) deserves special attention, in the sense that we do not require expansion to
generate acyclic cofibration, but only to be able to detect fibrant objects. In particular,
this assumption is often fulfilled in the setting of Cisinksi model structures on presheaves
(see [Cis06]).

• The crucial final ingredient, required by Axiom (A4), is the notion of admitting a so-called
simple cylinder functor. Before we explain what this is, note that Axiom (A4) is again
phrased as an existence statement and the cylinder will not be part of the data of a
Whitehead model category.

Let us now explain what we mean by a simple cylinder functor. To this end, recall the following
classical fact about CW-complexes (see, for example, [Coh73]). Given a CW-complex X, the
cylinder X× [0, 1] inherits a cell structure from X, with open cells of the form e× (0, 1), e× {0}
and e × {1}, for e an open cell in X. This cell structure is essentially uniquely determined by
the cell structure on

Dn
× {0,1} ∪∂Dn×{0,1} ∂D

n
× [0,1]↪Dn

× [0,1],

for n ∈ N with one cell, and requiring certain compatibility conditions with cobase changes
and vertical transfinite compositions (see Section 8.2 for details). Given an inclusion of finite
CW-complexes A↪ X, one can consider the inclusions of subcomplexes

A × [0,1] ∪X × {i}↪ X × [0,1],
A × [0,1] ∪X × {0,1}↪ X × [0,1],

for i ∈ {0,1}. Then the following holds:

(O1) The first of these inclusions is always a simple equivalence;

(O2) The second inclusion is a simple equivalence if A↪ X is an expansion.

In fact, to prove this, one can easily reduce to the cases where A↪ X is the boundary inclusion
of a cell, or an elementary expansion.
A simple cylinder functor on a category with expansions C consists of a colimit preserving
functor (suggestively denoted) − ⊗ [0,1]∶C→C, together with a natural factorization of the
fold maps

X ⊔X X

X ⊗ [0,1]

(2.9)

and choices of cell structure on

(D ⊔D) ∪∂D⊔∂D ∂D × [0,1]⊗D →D ⊗ [0,1]
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for each arrow ∂D → D ∈ B, such that analogues of Observations (O1) and (O2) hold (see
Section 10.2.1, for a rigorous definition).

Example 2.3.1.2. All of the cellularized categories with expansions we presented in Ex-
amples 2.2.2.2 to 2.2.2.5, with the exception of the first class of generating expansions in
Example 2.2.2.4, are a Whitehead model category. In the cases of Examples 2.2.2.2, 2.2.2.3
and 2.2.2.5, one can use the simple cylinder given by −⊗∆1 from the tensor action of sSet on
the respective simplicial semi-model category. In the case of the second class of expansions in
Example 2.2.2.4, a simple cylinder is obtained by tensoring with the chain complex

I● = (⋅ ⋅ ⋅→ 0→ R
(−1,1)
ÐÐÐ→ R⊕R → 0)

with cell structures induced by the standard bases for tensor products.

Let us now begin by stating some of our main results on Whitehead model categories,
which demonstrate that they behave much like the classical setting of simple homotopy theory.
For the remainder of this subsection, we fix some Whitehead model category C. We will first
need some notation:

Notation 2.3.1.3. Let C↪ell(C) ⊂ Cell(C) be the wide subcategory given by inclusions of
subcomplexes. Let C↪ellc(C) ⊂C↪ell(C) be the full subcategory given by finite structured cell
complexes. We denote by hoC the (1-categorical) localization of C↪ell(C) at expansions. We
denote by hocC the localization of C↪ellc(C) at finite expansions.

Firstly, as long as one works on the level of homotopy categories, one may just as well work
entirely in the setting of inclusions of structured cell complexes:

Main Result L (Theorem 10.2.2.1 and Lemma 9.1.3.2). Let C be a Whitehead model category.
Then the following holds:

1. The canonical functor hoC→ hoC is an equivalence of categories.13

2. The canonical functor hocC→ hoC is fully faithful.

Furthermore, every morphism in hocC can be expressed in terms of a composition of an
inclusion of finite cell complexes with the inverse of an expansion.

In particular, Main Result L allows us to equivalently think of morphisms X → Y in hoC,
between the underlying objects of two cell complexes X and Y in terms of a morphism X→Y
in hoC (or even in hocC, if X and Y are finite). We will often pass back and forth through
this equivalence, without making explicit mention of it.
We may now define what it means for a morphism in hocC to be a simple equivalence.

Definition 2.3.1.4. A morphism s ∶ X→Y ∈ hocC is called a simple equivalence, if it can be
written in the form s = e−1

2 ○ e1, with e1 and e2 finite expansions.

Notation 2.3.1.5. Let X and Y be finite structured cell complexes. If we refer to a morphism
f ∶X → Y as a simple equivalence, we mean that the associated morphism f ∶X→Y in hocC is
a simple equivalence. We will at times also write things along the lines of “let f ∶X→Y be a
morphism in C” to refer to a morphism of the underlying objects in C.

It will turn out that this definition is compatible with the analogous language for inclusions
of subcomplexes. Let us list some of the expected elementary properties of simple equivalences.

Proposition 2.3.1.6. Simple equivalences have the following properties:
13We expect that this result has a higher analogue, which holds at least in the case where we can extend the

simple cylinder to a whole simple simplicial structure on C. For our purposes, the 1-categorical statement will
suffice.
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• They satisfy the two-out-of-three property and contain identities, and hence are stable
under inversion.

• Given a cobase change square of finite structured cell complexes14

X X′

Y Y′

f

a a′

f ′

(2.10)

with a an inclusion of a subcomplex and f a morphism in C, it holds that if a is a
simple equivalence, then so is a′ and if f is a simple equivalence, then so is f ′.

Just as in the classical scenario, there is a Whitehead group whose elements are precisely
the obstructions to being a simple equivalence.

Construction 2.3.1.7. Given a finite structured cell complex X ∈ hocC, we denote by
W̃hC(X) the abelian monoid defined as follows:

1. Objects are equivalence classes of inclusions of subcomplexes X ↪ Y subject to the
equivalence relation generated by composition with (elementary) expansions.

2. The neutral element is given by the identity X→ X.

3. Given two such equivalence classes ⟨X ↪ Y1⟩ and ⟨X ↪ Y2⟩, the sum is given by the
diagonal in the pushout square

X Y2

Y1 Y1 ∪X Y2

(2.11)

in Cell(C).

We denote by WhC(X) the abelian sub-group of W̃hC(X) given by the invertible elements.
W̃hC(X) will be referred to as the Whitehead monoid of X and WhC(X) will be referred to as
the Whitehead group of X.

Remark 2.3.1.8. One should note that there are no size issues in the definition of the
Whitehead group and Whitehead monoid. Indeed, as finite cell complexes are glued from a set
of generating cofibrations, along a set of morphisms, up to isomorphism, there is only a set of
finite structured cell complexes. Furthermore, between any two structured cell complexes, there
is only a set of morphisms. Consequently, choosing appropriate representatives of isomorphism
classes, the Whitehead monoid can be exposed as a quotient of a set of morphisms.

Whitehead group and Whitehead monoid define contravariant functors on the associated
homotopy categories of finite structured cell complexes (see Chapter 9 and Proposition 10.2.3.12,
for the following insight:)

Proposition 2.3.1.9. Whitehead group and Whitehead monoid extend to covariant functors
on hocC valued in abelian monoids (groups). Given two finite structured cell complexes X and
Y, and a morphism f ∶X→Y in C, the induced morphism

f∗∶W̃hC(X)→ W̃hC(Y)

14This means that the relative cell structure on a′ is the cobase change of the one on a along f .
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is given by mapping an equivalence class ⟨a∶X ↪ Y⟩ to the equivalence class of the parallel
arrow a′ in a cobase change square

X X′

Y Y′ .

f

a a′

f ′

(2.12)

By Main Result L, this entirely determines the functoriality of Whitehead group and monoid.

As we already suggested at the beginning of this chapter, the goal of our approach to
abstract simple homotopy theory was to answer the question of uniqueness of presentations up
to simple equivalence, or, equivalently, to obtain criteria when an equivalence can be expressed
in terms of a sequence of finite elementary moves. It turns out that Whitehead groups precisely
provide answers to this question.

Construction 2.3.1.10. By Main Result L, we may express any morphism α∶X→Y in hocC
in terms of an inclusion of a subcomplex a∶X↪Y′ into a finite complex Y′, followed by the
inverse of an expansion Y↪Y′. We denote by

⟨α⟩ ∈ W̃hC(X)

the equivalence class of a in W̃hC(X). This construction is well-defined (see Section 10.2.3).
We call this element the Whitehead torsion of α.

Supposing that one knows that the torsion is well-defined (which is the more difficult part
to show) then one immediately obtains:

Corollary 2.3.1.11. A morphism α∶X → Y in hocC is a simple equivalence if and only if
⟨α⟩ = 0.

Remark 2.3.1.12. The cell structure on a structured cell complex X is essentially entirely
irrelevant to the construction of W̃hC(X). In fact, if one uses relative structured cell complexes
instead of inclusions of subcomplexes, then one can replicate Construction 2.3.1.7 completely
analogously and define a Whitehead group and monoid for an arbitrary object of C. The cell
structure becomes relevant only when we associate Whitehead torsions to a morphism (see
Remark 10.1.2.10). Hence, when we are mainly interested in the isomorphism type of the
Whitehead group, we will at times simply write WhC(X), without specifying the structure of
a cell complex X on X.

Let us now relate the Whitehead group to presentations. To this end, we first explicitly
spell out the quotient sets of presentations:

Construction 2.3.1.13. Let C be a Whitehead model category and let X ∈ hoC. We denote
by PresC(X) the quotient set of presentations

PresC(X) ∶= {(Y, ω∶X → Y ) ∣Y ∈ hocC, ω ∈ hoC(X,Y ) is an isomorphism }/ ∼s ,

where the equivalence relation ∼s is given by (Y1, ω1) ∼s (Y2, ω2), if and only if Y1
ω2ω

−1
1

ÐÐÐ→Y2
is a simple equivalence. This construction is contravariantly functorial in isomorphisms in hoC,
the wide subcategory of which is denoted (hoC)≃, with functoriality given by precomposition,
inducing a functor

PresC∶ (hoC)≃,op
→ Set .

We may extend PresC(X) to a larger set, functorial in arbitrary morphisms, as follows: Define

P̃resC(X) ∶= {(Y, ω∶X → Y ) ∣Y ∈ hocC, α ∈ hoC(X,Y )}/ ∼s̃ ,
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where, ∼s̃ is the extension of ∼s, given by (Y1, ω1) ∼s (Y2, ω2), if and only if there exists a
simple equivalence γ∶Y1 → Y2, such that γ ○ ω1 = ω2. This construction is contravariantly
functorial in morphisms in hoC, with functoriality given by precomposition, inducing a functor

P̃resC∶ (hoC)op
→ Set .

The following theorem provides the relationship between presentations and the Whitehead
group.

Main Result M (Theorem 10.2.3.9). Let C be a Whitehead model category and let X ∈ hoC.
Let ω0∶X

≃
Ð→ X0 be a finite presentation of X. ω0 induces a bijection

P̃resC(X)
1∶1
Ð→ W̃hC(X0)

(Y, α)↦ ⟨X0
α○ω−1

0
ÐÐÐ→Y⟩ ,

which restricts to a bijection

PresC(X)
1∶1
Ð→WhC(X0)

(Y, ω)↦ ⟨X0
ω○ω−1

0
ÐÐÐ→Y⟩ .

As an immediate corollary of Main Result M, one obtains the following.

Corollary 2.3.1.14. Given a finite cell complex X, the Whitehead group WhC(X) consists of
precisely the equivalence classes of such inclusions of finite subcomplexes X ↪ Y that define
weak equivalences in C.

Most of what we have presented so far ultimately follows from the calculus of Eckmann
and Siebenmann (or, more precisely, its adapted version in Chapter 9) together with Main
Result L. Before we move on to examples as well as more involved results on Whitehead model
categories, let us recall one of the crucial formulas in classical simple homotopy theory in this
framework: Observe that Main Result M tells us that Whitehead groups (their underlying
sets, to be more precise) are functorial in isomorphisms in hocC in two different ways. First
off, there is the covariant functoriality described in Proposition 2.3.1.9. Secondly, there is
the contravariant functoriality arising from the functoriality of PresC(−). We will denote the
latter functoriality in the form ω∗. Then one has the following composition formula.

Proposition 2.3.1.15 (Lemma 9.1.3.11). Let ω∶X→Y be an isomorphism in hocC. Then
the following identity holds:

ω∗ω
∗
= 1WhC(Y) + ω∗⟨ω⟩.

In particular, it follows that
(ω∗)

−1
= ω∗ − ⟨ω⟩.

In the special case where ω is simple, we obtain

(ω∗)
−1
= ω∗.

If we insert elements of the Whitehead group a, b into this formula, we obtain

ω∗(a + b) = (ω∗)
−1
(a) + (ω∗)

−1
(b) + ⟨ω⟩

= ω∗(a) − ⟨ω⟩ + (ω∗)(b) − ⟨ω⟩ + ⟨ω⟩

= ω∗(a) + ω∗(b) − ⟨ω⟩.

This provides another interesting interpretation of the Whitehead torsion: It is the obstruction
to ω∗ being a group homomorphism.
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2.3.2 Results: Some examples of Whitehead groups
Let us now discuss some explicit examples of the Whitehead group functors associated to a
Whitehead model category. In the following, when we refer to the categories sSet and Top as
a Whitehead model category, it will be with respect to the choices of generating boundary
inclusions and extensions of Examples 2.2.2.2 and 2.2.2.3. As a minimum requirement for the
setting we have introduced in the previous subsection to provide a good abstract framework to
study Whitehead model categories, we would expect that the Whitehead groups associated to
sSet and Top agree with the classical Whitehead groups. We will explain why this is the case
in Section 2.3.4. Instead, let us start with some examples on the algebraic side.

Example 2.3.2.1. Given a not necessarily commutative unital ring R and a subgroup G
of its group of units, let us denote by WhG(−) the Whitehead group functor associated to
the Whitehead model category on Ch≥0(R) described in Example 2.2.2.4, using the set of
expansions EG. This simple homotopy theory has the peculiar property that the Whitehead
group functor hocCh≥0(R)→Ab is constant, in the sense that the terminal morphism A● → 0
induces an isomorphism

WhG(A●) ≅WhG(0).

To see this, observe that under Main Result M, we can identify the elements of WhG(0) with
simple equivalence classes of acyclic based chain complexes. Fix some choice of basis on A●
inducing a cell structure on A on A●. The map

0∗∶WhG(A)→WhG(0)

is given by mapping the class of a (basis element preserving) inclusion of based chain complexes
A↪B to the class of the associated quotient complex B●/A●, equipped with the basis given by
the classes of such basis elements in the basis of B● that are not in A●. We denote this based
free chain complex by B/A. 0∗ admits a section s∶WhG(0) →WhG(A), induced by 0 → A●.
Explicitly, this section is given by mapping the class of an acyclic based chain complex X to
the class of the inclusion of subcomplexes A

(1,0)
↪ÐÐ→ A⊕X. A priori, the image of s is given by

the equivalence classes of such inclusions of subcomplexes A→B, for which there is a basis
preserving splitting

B ≅ A⊕B/A,

under A. Observe that on the level of graded abelian groups, such a splitting trivially exists.
Simply map a basis element [b] ∈ Bn/An to b. This splitting defines a splitting of chain
complexes, if and only if, under this isomorphism, the differential of B● is of the form

(
dA 0
0 dB/A.

)

It turns out that, up to expansions, every inclusion of based chain complexes A↪B can be
brought into this form (compare [Whi50, Lem. 2]). This is a consequence of the cell trading
argument, which can be found in [Coh73, p. 7.3], for example. The completely analogous
argument in chain complexes allows one to modify B such that all basis elements in the com-
plement of A are in dimension n≫max{m ∈ N ∣ Am ≠ 0}. Then, the differential of B clearly
has the form described above. It follows that s is surjective, making s and 0∗ isomorphisms.

Example 2.3.2.2. Suppose, again, we are in the situation of the previous example. To any
based acyclic chain complex B, one can associate a torsion element τ(B) in the first reduced
K-group of R

K̃1(R) ≅ Ab(Gl(R))/{1,−1}

given taking the quotient of the abelianization of Gl(R), denoted K1(R), by the subgroup
{1,−1}. Roughly, one trades cells until B is concentrated in two degrees, and then treats the
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(appropriately signed) differential as an element of Gl(R) (see, for example, [Coh73]). If G = 1,
then this assignment induces an isomorphism

Wh1(0) ≅ K̃1(R).

If G is some larger group, then one only obtains a well-defined morphism after taking the
quotient of K1(R) by ±G instead of {−1,1}. One then obtains an isomorphism

WhG(0) ≅K1(R)/±G.

In particular, in the special case where R is the group ring Z[G], one obtains

WhG(0) ≅K1(Z[G])/±G ≅Wh(G).

We will not provide a proof of these statements here, as the computation is only supposed to
illustrate how our framework reproduces more classical approaches to simple homotopy theory.
A proof can be obtained by using arguments very much similar to the ones provided in [Whi50;
Coh73].

Another important point illustrated by Example 2.3.2.2 is that one should probably treat
the phenomenon that simple homotopy type is a homeomorphism invariant for CW-complexes
as a lucky coincidence, and not as something that one can generally expect for other simple
homotopy theories. Indeed, any isomorphism Rn → Rn that defines a non-trivial element in
K̃1(R) will provide a counterexample. We provide another example of isomorphisms in the
underlying category that do not induce simple homotopy equivalences for the case of stratified
spaces in Section 13.3.2, for the setting of stratified homotopy theory. Let us now return to
the case of stratified homotopy theory.

Example 2.3.2.3. In Example 2.2.2.5, we gave sets of generating boundary inclusions and
expansions for the category of stratified simplicial sets over some fixed poset P , sStratP
(namely the set of stratified boundary inclusions and the set of admissible horn inclusions).
These equip the category sStratP with the structure of a Whitehead model category (see
Theorem 13.1.1.2). The associated model category is precisely the model category sStratdP
of Theorem 1.2.3.14. Just like the associated model category, we will denote this Whitehead
model category by sStratdP . The associated notions of simple equivalence, Whitehead group,
and Whitehead torsion agree with the ones for the diagrammatic simple homotopy theory of
stratified simplicial sets (defined in [Waa21]) which we discussed in the introduction of this
chapter. In particular, given a finite stratified simplicial set X , we may interpret the stratified
diagrammatic Whitehead group WhP (X ) as the Whitehead group WhsStratd

P
(X ). For obvious

reasons of conciseness, we will stick to the notation WhP (X ).

The results we presented in Chapter 1, specifically the existence of semi-model categories
on the topological side which we prove in Chapter 7, also allow us to define a topological
version of the stratified diagrammatic Whitehead group. As we did not explicitly describe the
semi-model structures on StratP for a fixed poset in Chapter 1, we will state the result here,
for the convenience of the reader:

Theorem 2.3.2.4 (Theorem 7.4.2.6 and Lemma 7.5.1.1). Let P be a poset. The simplicial
category StratP admits the structure of two simplicial, cofibrantly generated left semi-model
categories, denoted StratdP and StratcP and called, respectively, the diagrammatic model
structure and the categorical model structure, such that the following holds:

1. Weak equivalences in StratdP are precisely the stratum-preserving diagrammatic equiva-
lences.

2. Weak equivalences in StratcP are precisely the stratum-preserving categorical equivalences.

3. In both model structures, a set of generating cofibrations is given by the set of stratified
boundary inclusions

{∣∂∆J ↪∆J ∣s ∣ J ∈∆P }.
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4. A set of generating acyclic cofibrations for StratdP is given by the set of realizations of
admissible boundary inclusions

{∣ΛJk ↪ ΛJ ∣s ∣ J ∈∆P , k is s.t. ΛJk ↪ ΛJ isadmissible}.

5. A stratified space is fibrant in StratcP , if and only if it has the horn filling property with
respect to all realizations of stratified inner horn inclusions over P .

Example 2.3.2.5. It follows from Theorem 2.3.2.4 that we can also obtain a Whitehead model
structure on StratP , by using the classes of generating boundary inclusions and elementary
expansions of Example 2.2.2.5 (see Theorem 13.1.2.5). That is, the generating boundary
inclusions are given by the cofibrant generators in StratdP , and the generating elementary
expansions are given by realizations of admissible horn inclusions (equipped with the cell
structure inherited from the simplicial structure). We will also denote this Whitehead model
category by StratdP .

Note that to define this theory and for the results in Chapter 10 to apply, it is crucial to
know that StratdP forms a semi-model category. Hence, the results on stratified homotopy
theory presented in Chapter 1 are fundamental to having a topological picture for simple
stratified homotopy theory available.

Remark 2.3.2.6. We can proceed similarly with the semi-model structure on StratcP that
presents the categorical stratified homotopy theory StratcP defined by Haine, obtaining
an answer to Question (Q4). In this case, generating elementary expansions are given by
realizations of admissible stratified horn inclusions and inner horn inclusions. We will only focus
on the diagrammatic Whitehead model category StratdP in this thesis, however. The main
reason we have focused on the diagrammatic instead of the categorical model structure here is
that it also provides an optimal starting point for any further investigation into the categorical
setting. Indeed, as StratcP is obtained by increasing the class of generating expansions in
StratdP , any simple equivalence in the diagrammatic scenario will also produce a simple
equivalence in the categorical scenario.

We do now return to some of the motivating questions described in the introduction of
this chapter. Namely, we can ask what the precise relationship between the Whitehead model
categories sStratdP and StratdP is, and whether we can compute the stratified diagrammatic
Whitehead groups WhP (X ) algebraically (Questions (Q1) and (Q2)). There is a rather
conceptual approach to answering these questions. Namely, using Main Result B and Main
Result A1 we obtain Quillen equivalences

Fun(sd(P )op, sSet) ≃ sStratdP ≃ StratdP ,

where the left-hand side is equipped with the injective model structure. Fun(sd(P )op, sSet)
has a natural notion of generating cofibrations and acyclic cofibrations (which we discuss in
detail later on) leading to an associated Whitehead model category. Suppose, for a second,
that we had a good notion of equivalence of Whitehead model categories, preserving all of
the relevant structures such as simple equivalences and Whitehead groups. Then one may
hope to lift these Quillen equivalences to such equivalences of Whitehead model categories. In
particular, this would allow for the free transition between the topological, the simplicial and
the diagrammatic theory. As the latter arises from a theory of presheaves, valued in simplicial
sets, we can furthermore expect that much of the theory can be understood by having a good
understanding of the simple homotopy theory of simplicial sets. This is precisely the approach
we make rigorous in the following subsections.

2.3.3 Results: Equivalence and transfer of Whitehead model cate-
gories

Let us begin by exposing a notion of functors of Whitehead model categories. Implicitly, we
have already referred to such objects when we discussed simple cylinders. First, we will give a
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definition of functors of cellularized categories. It turns out that, just like the theory of cell
complexes works best in a relative framework, the same holds true for cellularized functors. For
the sake of simplicity, we only give a definition of the absolute case here. The basic properties
of the relative case are covered in Section 8.2.
In the following, we denote by [1] the category with two objects 0 and 1 and one non-identity
arrow 0→ 1. In particular, given a category C, we denote by C[1] the category of arrows in C.

Definition 2.3.3.1. Let C and D be cellularized categories. A cellularization of a colimit
preserving functor F ∶C→D is a lift

RCell(C) RCell(D)

C[1] D[1]

F

F [1]

(2.13)

such that for any pair of structured relative cell complexes c∶A→X and d∶X → Y in RCell(C),
the vertical composition law

F(d ○ c) = F(d) ○ F(c)

holds. A colimit preserving functor F ∶C→D together with a choice of cellularization F will
be called a cellularized functor.

Notation 2.3.3.2. We abuse notation insofar as we generally denote cellularized functors in
the form F∶C→D, and refer to the underlying functor by F ∶C→D. We will, at times, also
refer to F as the cellularization.

Remark 2.3.3.3. The most basic facts about cellularized functors one can prove are that
they preserve both cobase changes as well as transfinite vertical compositions (see Section 8.2,
for details). As every relative cell complex can be built under these operations from generating
boundary inclusions, it follows that cellularizations of a colimit preserving functor F are in
bijection with families (F(b))b∈BC consisting of a relative cell structure on F (b) ∈D, for every
generating boundary inclusion b ∈ BC (see Proposition 8.3.3.6, for a precise statement).

Example 2.3.3.4. By the definition of the cellularizations of StratP , for P ∈ Pos, it follows
that the realization functors ∣ − ∣s∶ sStratP → StratP admit a canonical cellularization.

Example 2.3.3.5. The simplicial chain complex functor C●(−)∶ sSet→Ch≥0(Z), mapping a
simplicial set to the free chain complex on its non-degenerate simplices, admits a canonical
cellularization arising from the obvious bases.

Definition 2.3.3.6. A cellularized functor F∶C→D between Whitehead model categories is
called a Whitehead functor (W-functor, for short), if one of the following equivalent conditions
holds:

1. For every generating boundary inclusion b ∈ B, it holds that the associated structured
relative cell complex F(b) is finite and for every generating elementary expansion e ∈ EC,
it holds that the associated structured relative cell complex F(e) is a structured simple
equivalence.

2. F∶RCell(C)→RCell(D) preserves finite relative cell complexes and structured simple
equivalences.

Remark 2.3.3.7. Assume, for a second, that all Whitehead model categories are locally
presentable (see [nLa25d]). Supposing that one takes Top to be the category of ∆-generated
spaces, then all of the examples in Examples 2.2.2.2 to 2.2.2.5 have this property. It follows by
the adjoint functor theorem (see [nLa24a]) that any cellularized functor admits a right adjoint.
In Section 10.3, we show that under this condition every W-functor F∶C→D induces a left
Quillen functor of the associated semi-model categories.
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Notation 2.3.3.8. Given a Whitehead model category C, we denote by Cell(C) the quasi-
category whose objects are the absolute structured cell complexes in C and whose morphism
spaces are the morphism spaces of underlying objects in the associated quasi-categorical
localization C =C[W −1], where W is the class of weak equivalences in C. The forgetful functor
Cell(C)→ C is an equivalence of categories. We only use Cell(C) to additionally keep track of
cell structures for the purpose of simple homotopy theory. In particular, there is a canonical
isomorphism of homotopy categories hoCell(C) = hoC. We denote by Sim(C) ⊂ Cell(C) the
subgroupoid given by finite cell complexes and simple equivalences (i.e., such morphisms that
map to simple equivalences in hocC).

Using the fact that cell complexes in a Whitehead model category are always cofibrant, it
follows that a W-functor F∶C→D induces functors

Cell(C)→ Cell(D)
Sim(C)→ Sim(D)

which then descend to functors

hocC→ hocD;
hoC→ hoD;

hoSim(C)→ hoSim(D)

without any need to derive. We also denote these functors by F by abuse of notation.
Furthermore, as every W-functor preserves cobase changes and expansions, F also induces a
natural transformation of Whitehead monoids

W̃hC(X)→ W̃hD(F(X))

[X↪Y]↦ [F(X)↪ F(Y)]

which restricts to a natural transformation of Whitehead groups. We will denote the resulting
natural transformations by W̃hF∶W̃hC ⇒ W̃hD ○ F and WhF∶WhC ⇒WhD ○ F.

For the remainder of this section, we will generally assume local presentability of White-
head model categories. This is mainly in order to be in a scenario in which we can refer to the
familiar techniques of Quillen functors. In this case, the following conditions on a W-functor
F∶C→D turn out to be equivalent (see Section 10.3):

1. F defines the left part of a Quillen equivalence;

2. The induced (left derived) functor hoC→ hoD is an equivalence of categories;

3. The induced functor hoC→ hoD is an equivalence of categories;

4. The induced functor of ∞-categories F∶Cell(C) → Cell(D) is an equivalence of ∞-
categories.

Weak equivalences of Whitehead model categories are then defined as follows.

Definition 2.3.3.9 (See Section 10.3). Let F∶C→D be a W-functor of (locally presentable)
Whitehead model categories. Then F is called a weak equivalence of Whitehead model categories
if F defines the left part of a Quillen equivalence, and one of the following equivalent conditions
holds:

1. The induced functor hoSim(C) → hoSim(D) is an equivalence of categories, or more
explicitly:
Every finite cell complex in D has the simple homotopy type of a finite cell complex of
the form F(X), for some finite cell complex X in C. A morphism ω∶X→Y in hocC is a
simple equivalence, if and only if F(ω) ∈ hocC is a simple equivalence.
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2. The natural transformation of Whitehead groups WhF is an isomorphism.

We think that it is evident to the reader from this definition, that for most intents and
purposes of simple homotopy theory (for example, for the computation of Whitehead groups),
weakly equivalent Whitehead model categories can be treated as equal. We will also consider
a slightly stronger notion of equivalence, namely that one can construct an inverse in terms of
cellularized functors.

Example 2.3.3.10. Suppose that F∶C→D is a W-functor and suppose that there is another
W-functor G∶D → C together with natural transformations of the associated functor of
∞-categories

η∶1Cell(C) ≃ G ○ F

and
ε∶1Cell(D) ≃ F ○G,

which define simple equivalences, at every finite cell complex in, respectively, C and D. Then
F is a weak equivalence of Whitehead model categories. We will call such a W-functor an
(∞-categorical) homotopy equivalence of Whitehead model categories.15

We may now use the language we have just developed to lift the equivalences between the
several different models for the homotopy theory StratdP described in Chapter 1 to the level
of simple homotopy theory.

First off, in Section 12.1 of Chapter 12, we prove the following comparison theorem for
transferred Whitehead model categories. This will require the notion of a simplicial Whitehead
model category, which, roughly speaking, refers to a Whitehead model category C that is
equipped with the structure of a simplicial model category, such that the action of sSet on C
can be cellularized in a manner that is compatible with simple equivalences (see Section 12.1).
All of the examples defined in Examples 2.2.2.2 to 2.2.2.5 that define Whitehead model cate-
gories fall into this class. The seminal example to have in mind for the following theorem is
the case of the Whitehead model categories sSet and Top.

Main Result N (Theorem 12.1.0.4). Let C be a simplicial Whitehead model category. Suppose
that every generating boundary inclusion b ∈ BC has cofibrant source. Furthermore, let D be a
simplicial semi-model category, and

L∶C→D
be a simplicial left Quillen functor. Now, suppose that the following holds:

• L(BC) defines the structure of a cellularized category on D;

• Equipping this cellularized category with the class of expansions L(EC) (with the cell
structures induced by L) defines the structure of a Whitehead model category on D
(compatible with the semi-model structure);

• The functor of ∞-categories C → D induced by L is fully faithful.

Then L canonically inherits the structure of a W-functor L∶C→D that is a weak equivalence
of Whitehead model categories, with respect to the induced structure on D.

As an immediate corollary of this result together with the fixed poset version of Main
Result A5 (see Theorem 7.4.2.11) we obtain the following example:

Main Result O. Let P ∈ Pos. The stratified realization functor

∣ − ∣s∶ sStratP → StratP ,

equipped with the obvious cellularization, induces a weak equivalence of Whitehead model
categories between sStratdP and StratdP .

15We add the suffix ∞-categorical, as opposed to the case where one can present the natural transformations
above by zig-zag sequence of 1-categorical natural transformations of functors.
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This answers Question (Q1), and allows us to freely pass between the topological and the
simplicial diagrammatic stratified simple homotopy theories. In the special case where P = ⋆,
this produces a weak equivalence of Whitehead model categories between sSet and Top.

2.3.4 Results: Comparison with classical simple homotopy theory
For the approach to abstract simple homotopy theory that we take here to be justified at
all, a minimum requirement that one would expect to be fulfilled is that the Whitehead
groups associated to sSet and Top agree with the classical Whitehead groups of a finite
CW-complex. There is an obvious construction of the classical Whitehead group to compare
our Whitehead group with, namely the definition of the Whitehead group in terms of inclusions
of CW-complexes defined in [Coh73] (see Description (D3)). It turns out that the comparison
with the classical scenario is slightly more involved than one would expect at first glance. This
is mainly due to the fact that the definition of CW-complex in [Whi50] and [Coh73] specifies
only open cell decompositions, and not choices of characteristic maps.
Recollection 2.3.4.1. In [Coh73], Cohen used a definition of finite CW-complex, in which
CW-complexes consist of a space together with a decomposition into open cells. In particular,
Cohen’s definition of CW-complexes differs from the one we used in Example 2.2.1.6, insofar
as the characteristic maps of cells are not part of the data. Only the decomposition into open
cells is considered to be a part of the defining data of a CW-complex. Cohen then defines his
geometric Whitehead group WhCo(X), of a finite, not-necessarily connected CW-complex X as
in Description (D3).

The fact that Cohen does not make choices of characteristic maps part of the data makes
the theory, a priori, significantly more flexible and less combinatorial in nature than the theory
arising from the Whitehead model category StratP . Observe, for example, that given two
CW-complexes in this sense X and Y, the set of inclusions {X ↪ Y} is generally infinite.
Given any cell preserving inclusion X↪Y, any perturbation of the interior of a cell in X by a
homeomorphism that descends to the identity on the boundary defines a new inclusion X↪Y.
With CW-complexes in the sense of Example 2.2.1.6, the set of morphisms Cell(C)(X,Y)
can be seen as a subset of Set(CX,CY) and thus is finite if X and Y are finite. For our
purposes, where we are looking for the simple homotopy theory to be as combinatorial as
possible, the latter behavior is much preferable. At the same time, this makes the comparison
of Cohen’s Whitehead group with the Whitehead group functor WhTop(−) slightly difficult:
Cell complexes in Top are, at the same time, more rigid than Cohen’s CW-complexes since
they require fixed characteristic maps, and more flexible, as they allow for arbitrary gluings of
cells. There is, however, a direct comparison map from the setting of simplicial sets.
Namely, given a simplicial set X, one can equip ∣X ∣ with the cell structure whose open cells
are given by the open non-degenerate simplices in ∣X ∣. Denote by hosSetfin the homotopy
category of finite simplicial sets. In Chapter 12, specifically Section 12.2, we prove the following
theorem (phrased somewhat differently there)16.
Main Result P (Theorem 12.2.0.4). Topological realization of simplicial sets (equipped with
the obvious cell structures) induces a natural isomorphism

ϕ∶WhsSet(X) ≅WhCo(∣X ∣),

for X a finite simplicial set. ϕ is compatible with Whitehead torsion in the sense that

ϕ(⟨α∶X → Y ⟩) = ⟨∣α∣⟩

holds, for α∶X → Y ∈ hosSetfin with source and target a finite simplicial set. In particular,
it follows that α∶X → Y ∈ hosSetfin is a simple equivalence in the Whitehead model category
sSet, if and only if ∣α∣ is a simple homotopy equivalence in the classical sense.

16A version of this result was also obtained in [Waa21]. However, the latter used the computation of the
Whitehead group in terms of the fundamental group. Our new proof has no need for this, and is more conceptual
in nature.
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It is a classical fact that every finite CW-complex has the simple homotopy type of a finite
simplicial set (simplicial complex even, see [Coh73]). Together with the classical Kan-Quillen
equivalence and Main Result P, one can take this as stating that there is an equivalence
between the simple homotopy theory of simplicial sets and the simple homotopy theory of
CW-complexes. In fact, the way we handle this equivalence in Section 12.2 is through a notion
of Whitehead framework slightly different than the setting of Whitehead model categories
(roughly Eckmann’s and Siebenmann’s axiomatic framework) in which one can write out a
comparison functor between the two theories, which then turns out to be an equivalence, in a
sense specified in Section 9.2.

2.4 Simple homotopy theory of diagrams
Suppose that C is a Whitehead model category and that R is a reasonably well-behaved
small indexing category (we will make this explicit in a second). We may then ask the
following question: What is a good notion of presentation of a homotopy coherent diagram
F ∈ Fun(R,C) and what is a good notion of simple equivalence? There are two rather natural
approaches:

• One could define a presentation of a diagram F to consist of choices of presentation
F r ≃ Xr, at each r ∈R. Then, given two such choices of presentations (F r ≃ Xr)r∈R and
(F r ≃ X′r)r∈R, one could consider them as related, if the induced equivalences Xr ≃ X′r

are simple. The resulting set of presentations of the homotopy type of F , Pres(F ), would
then simply be the product Πr∈RPresC(F

r).

• Alternatively, one could present the ∞-category Fun(R,C) in terms of the structure of
a Whitehead model category on Fun(R,C). In particular, one then obtains associated
notions of structured cell complexes and expansions in the setting of diagrams.

While the former approach may be conceptually cleaner, we will pursue the latter approach
here. This is mainly due to the fact that we are specifically interested in the interaction of
the 1-categories of (structured) cell complexes with the resulting simple homotopy theories,
which makes a model categorical approach seem preferable. It will turn out, however, that at
least when it comes to the resulting notions of simple equivalence and presentation set, the
two approaches are essentially equivalent (for appropriate finite indexing categories). Let us
provide another motivation for studying the simple homotopy theory of diagrams aside from
stratified homotopy theory. Namely, the theory of simple homotopy colimits. The following
paragraph is lifted from the introduction of Chapter 11.

It is a classical question in homotopy theory what precise shape colimit diagrams need
to have in order for them to preserve (weak) homotopy equivalences. For example, a classical
statement is what is sometimes called the cube lemma (see [KP86], for example): Suppose we
are given a commutative diagram of spaces

● ●

● ●

● ●

● ●

f

w0

a

w2

a′

f ′

w1 w

(2.14)

with the front and back square pushout, all hooked arrows closed Hurewicz cofibrations, and
w0,w1,w2 homotopy equivalences. Then w is also a homotopy equivalence. Similarly, if the
hooked arrows are Serre-cofibrations and w0,w1,w2 are weak homotopy equivalences, then so
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is w. From a modern perspective, these claims may be interpreted as the back and front square
not just being pushout squares, but homotopy pushout squares or, even more modernly put,
pushout squares in the associated ∞-categories (of general spaces and, respectively, of spaces
with the homotopy type of a CW-complex; see, for example, [Lur09], specifically Theorem
4.2.4.1). Now, suppose that all objects in the above cube are equipped with cell structures in
Top, and with respect to these cell structures, w0,w1,w2 are simple equivalences. One may
then again repeat the question and ask whether w is a simple equivalence. In other words,
what shape do the front and the back face need to have in order for simple equivalences to be
preserved under pushout. More generally, we may ask the question whether we can compute
the Whitehead torsion of w in terms of the torsions of w0,w1,w2. In [Coh73, Prop.22], Cohen
gives such a criterion for the classical simple homotopy theory of CW-complexes. Namely, if
both the front and back face are given by pushout squares such that all arrows are given by
inclusions of subcomplexes, then

⟨w⟩ = f ′∗⟨w1⟩ + a
′
∗⟨w2⟩ − (f

′
○ a)∗⟨w0⟩ .

In particular, if w0,w1 and w2 are simple equivalences then the expression above is 0, and w is
also a simple equivalence. In [KP86, Theorem (4.34)], the authors gave such a formula (under
somewhat stronger conditions) for more general simple homotopy theories. Their frameworks
do not cover the combinatorial examples which we are interested in, however.

To study these kinds of questions, we will now study the simple homotopy theory of di-
agrams. In particular, we will provide similar results for finite colimit diagrams of significantly
more general shape, reprove the sum-formula for general Whitehead model categories under
weaker assumptions than [Coh73], and compute the general Whitehead groups associated to
diagram categories.

2.4.1 Reedy categories and Reedy model structures
To study diagram categories from the perspective of Whitehead model categories, we first need
to establish a notion of cell complex in a diagram category. It turns out that, modulo keeping
track of cell structures, this is already a well understood question, studied for example by Riehl
and Verity in [RV13] and most prominently by Hirschhorn in [Hir03] in the context of model
structures on Reedy categories. Let us recall some of the basic definitions in this context. First
off, one should note that given some indexing category I, there may generally be different
types of diagrams of cell complexes that one could consider. For example, in the case of spans,
i.e., I = {●← ●→ ●} one can consider diagrams where one, or where both legs are inclusions
of sub-complexes. These choices may differ depending on the concrete application that one
has in mind. We encode what types of diagrams one allows for in an additional structure on
the indexing category of the diagrams. Let us recall some basic facts about Reedy categories,
which can be found, for example in [RV13; Hir03].

Definition 2.4.1.1. A Reedy category consists of the data of

1. a small category R;

2. a map deg∶Ob(R)→ N on the objects of R, called the degree function;

3. two wide subcategories R+,R− ⊂R. Morphisms in R+ are sometimes called face maps,
and morphisms in R− are sometimes called degeneracy maps;

such that the following conditions hold:

1. For every non-identity morphism f ∶ r → r′ in R+, it holds that deg(r) < deg(r′).

2. For every non-identity morphism f ∶ r → r′ in R−, it holds that deg(r′) < deg(r).

3. Every morphism f ∈ R admits a unique factorization f = f+ ○ f− with f+ ∈ R+ and
f− ∈R−.
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Remark 2.4.1.2. For most intents and purposes, the concrete choice of degree function is
immaterial, and it suffices that such a function exists. We will thus usually not specify it.

Example 2.4.1.3. Let us give some guiding examples to keep in mind when thinking about
Reedy categories:

1. The terminal category ⋆ is a Reedy category, with the degree function taking the unique
object to 0, and ⋆+ = ⋆− = ⋆.

2. The category ∆, equipped with the obvious degree function [n]↦ n, and with ∆+ the
sub-category of order preserving injections and ∆− the sub-category of order preserving
surjections is a Reedy category. Analogously, given a poset P , one obtains a Reedy
structure on the categories of flags ∆P .

3. The poset N, with deg(n) = n, and N+ = N (and consequently N− a discrete category
with only identity arrows) is a Reedy category.

4. The category
● ●

●

(2.15)

with any (disjoint) choice of assignments + and − to the non-identity arrows defines a
Reedy category.

5. The poset categories sd(P ) form Reedy categories, with the degree function given by
mapping a flag I = [p0 < ⋅ ⋅ ⋅ < pn] ∈ sd(P ) to n, and with every morphism a face map.

6. The opposite of a Reedy category R is a Reedy category, with the roles of R+ and R−
exchanged.

In the following, we will always use the notation CI to refer to the 1-category of functors
from a category I into C. The evaluation of a functor F ∈CI at i ∈ I will be denoted by F i, in
the covariant and by Fi in the contravariant case. Given a cofibrantly generated (semi-)model
category C and a Reedy category R, the functor category CR inherits the structure of a
cofibrantly generated model category. Generating cofibrations and fibrations are given as
follows.

Construction 2.4.1.4. Given U ∈ SetR and D ∈C, we can consider the functor

R →C
r ↦ ⊔

x∈Ur

D

acting on morphisms in R via the universal property of the coproduct. We will denote the
resulting diagram in the form U ◯○ D here. This construction defines a bivariate functor

−◯○ −∶SetR
×C→CR

which is cocontinuous in both arguments.

Notation 2.4.1.5. In the context of a Reedy category R, we will denote the associated hom
sets R(r, s) by Rs

r. Following this notation, we denote the value of the covariant Yoneda
embedding Rop

↪ SetR at r ∈R by Rr, and by Rr the analogous covariant object. We denote
by ∂Rr the subfunctor of Rr given by only such morphisms f ∶ s→ r for which f+ ≠ 1. Dually,
in the covariant case, we denote by ∂Rr the subfunctor of Rr, given by such morphisms f
with source r for which f− ≠ 1. The inclusions ∂Rr →Rr will be denoted by ιr (and we use
analogous notation for the contravariant case).
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We will mainly state results for the setting of covariant functors R → C here. The
contravariant cases can be derived from this by dualizing and passing to opposite Reedy
categories.
The bifunctor −◯○ − embeds well into a whole calculus of weighted colimits which is discussed,
for example, in [RV13]. There, the authors prove that, given sets of generating cofibrations BC
and acyclic cofibrations EC of a model category C, one obtains generators for the so-called
Reedy model structure on CR in terms of the following sets. Before we spell them out, we will
need some additional notation.
Notation 2.4.1.6. Given any bivariate functor − ⊗ −∶D1 ×D2 → D, and two morphisms
i1∶X1 → Y1 ∈D1 and i2∶X2 → Y2 ∈D2, we denote by i1⊗̂i2, the morphism

i⊗̂j∶X1 ⊗ Y2 ∪X1⊗X2 Y1 ⊗X2 → Y1 ⊗ Y2

induced by the universal property of the product. We also call i1⊗̂i2 the Leibniz tensor of i1
and i2.

The following theorem is shown in the model category case in [RV13]. The semi-model
category case can be shown entirely analogously (see [Bar10]).
Theorem 2.4.1.7 ([RV13]). Let R be a Reedy category and C be a cofibrantly generated model
category with cofibrant generators BC and acyclic cofibrant generators EC. Then CR inherits
a model structure, in which the weak equivalences are the pointwise weak equivalences, and
which is cofibrantly generated by the two sets

{(∂Rr →Rr)◯̂○ b ∣ b ∈ BC}

and
{(∂Rr →Rr)◯̂○e ∣ e ∈ EC}.

The resulting model structure is called the Reedy model structure on CR. This result
provides the basis for our approach to the simple homotopy theory of diagram categories.
Before we move on to homotopy theory, let us say a few words on the resulting notion of cell
complex.

2.4.2 Results: Cell complexes on Reedy categories
For the remainder of this subsection, fix a cellularized category C. In the following, given
a Reedy category R, when we refer to CR as a cellularized category, it will be with respect
to the generating boundary inclusions in Theorem 2.4.1.7. In Section 8.3, we perform a
detailed investigation of the cellularized categories CR. Much of the results there build and
expand upon results in [RV13]. In particular, we interpret the calculus of weighted colimits in
Reedy categories defined in [RV13] in a cellularized framework, and investigate the question of
when colimits, or more generally left Kan extension functors and their right adjoints, admit
cellularizations. Our results are quite technical, and (modulo the emphasis on cell structures)
probably known. We will thus not present them here (see Section 8.3 for details), and instead
refer to them when we use them later on. Let us just present one crucial insight (from a more
elementary point of view), which we think is integral to understanding what a structured cell
complex in the cellularized categories CR is. Details can be found in Section 8.3 and Chapter 11.

Construction 2.4.2.1 (See Construction 11.1.1.11). A characteristic map in a cell complex
X in CR is just a map Rr◯○ D →X, where r ∈R and D is the target of a generating boundary
inclusion in BC. We will denote the set of characteristic maps of X, corresponding to some
fixed r ∈R, by CX,r. The functor Rr ◯○ − is left adjoint to the evaluation at r functor. Hence,
we may equivalently treat such a characteristic map as a morphism D →Xr and CX,r as a set
of morphisms with target Xr. Then the set of morphisms

⋃
f ∶r′→r∈R+

X(f)CX,r′
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defines a cell structure on Xr. Hence, we may think of X as a diagram R →C, together with
a choice of cell structure on Xr, for each r ∈ R. These cell structures fulfill two additional
properties. To state them, we need to introduce some additional notation. For r ∈R, denote by
Lr(X) the latching object of X, given by the colimit lim

Ð→f ∶r′→r∈R+,f≠1r

Xr′ , over the subcategory
of the overcategory R+/r given by all morphisms but the identity morphism. There is a canonical
morphism Lr(X)→Xr, and it is a classical fact that X is cofibrant in a Reedy model structure
if and only if this morphism is a cofibration. Then, for every r ∈R, the following two statements
hold:

1. The union of the images of the cell structures on Xr
′ under Xr′ → Lr(X), for f ∶ r′ →

r ∈R+, f ≠ 1, form a cell structure on Lr(X). We denote the associated structured cell
complex by Lr(X).

2. The induced map Lr(X)→ Xr is a subcomplex inclusion.

It turns out that mapping a cell structure on X ∶R →C to a family of cell structures (Xr)r∈R,
as described above, induces a bijection between cell structures on X in CR and families of
cell structures (Xr)r∈R on (Xr)r∈R fulfilling these two properties. Hence, we may equivalently
think of a structured cell complex in CR as a diagram of structured cell complexes in C (with
morphisms in C) fulfilling some additional conditions.

Let us look at some elementary examples to illustrate this.

Example 2.4.2.2. If we equip the span category ●← ●→ ● with the Reedy structure ● −←Ð ● +Ð→ ●
(where the signs indicate that a morphism is in R+ or R−) then the resulting diagrams in
Construction 2.4.2.1 are diagrams of structured cell complexes of the form Y← X↪ Z, with
the right arrow the inclusion of a subcomplex. If we take the Reedy structure ● +←Ð ● +Ð→ ●, then
we obtain diagrams of the form Y↩ X↪ Z, with both arrows inclusions of subcomplexes.

Example 2.4.2.3. If we equip the poset category N with the Reedy structure of Exam-
ple 2.4.1.3, then the resulting diagrams of structured cell complexes are of the form

X0
↪ X1

↪ . . .

with all arrows inclusions of subcomplexes.

Example 2.4.2.4. If we equip sd(P )op with the opposite structure inherited from sd(P ) with
all morphisms face maps, then the associated sd(P )op indexed diagrams of structured cell
complexes fulfill no additional conditions, i.e., a cell structure on a diagram D∶ sd(P )op →C is
simply a choice of cell structure for DI , for each I ∈ sd(P )op.

2.4.3 Results: Whitehead model structures on functor categories
Next, let us add expansions to the cellularized categories CR, for a Reedy category R. For the
remainder of this subsection, suppose that C is equipped with the structure of a Whitehead
model category. The cell structures on elementary expansions e ∈ EC induce canonical cell
structures on the relative cell complexes (ιr ∶∂Rr →Rr)◯̂○e, given by the morphisms 1Rr

◯○ σ,
for σ ∈ Ce. We denote the resulting structured relative cell complexes by ιr◯̂○ e. We can now
equip C with the set of generating elementary expansions given by

{ιr◯̂○ e ∣ e ∈ EC, r ∈R} .

In this fashion, the cellularized category CR is equipped with the structure of a cellularized
category with expansions. For this construction to define a Whitehead model category, one
needs the elementary expansion EC to actually define a set of generating acyclic cofibrations.
A Whitehead model category with this property will be called properly generated. Furthermore,
to ensure that the compactness criteria in Axioms (A1) and (A2) are fulfilled, one needs the
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Reedy category R to be such that for every r ∈ R there are only finitely many r′ ∈ R, such
that there exists a morphism r → r′ ∈R−. Such a Reedy category will be said to have locally
finitely many degeneracies. The dual notion will be referred to as having locally finitely many
faces. In Chapter 11 we show the following result:

Proposition 2.4.3.1 (Proposition 11.1.1.8). Let C be a properly generated Whitehead model
category, and let R be a Reedy category which has locally finitely many degeneracies. Equip
the cellularized category CR with the set of expansions

{ιr◯̂○ e ∣ e ∈ EC, r ∈R} .

Then, equipped with this class of expansions, CR is a properly generated Whitehead model
category.

Hence, we can now perform simple homotopy theory on diagram categories indexed over a
Reedy category and valued in a properly generated Whitehead model category.

Example 2.4.3.2. Given a poset P , the resulting Whitehead model category on sSetsd(P )op

has as its underlying model category the injective model structure on simplicial presheaves. It
has the following generating boundary inclusions. Given I ∈ sd(P ), the Yoneda diagram sd(P )I
is the diagram given by ∗, at I ′ ⊂ I, and by ∅ otherwise. The inclusion ιI ∶∂(sd(P ))I → sd(P )I
is the inclusion of the subdiagram given by ∗, at I ′ a proper subflag of I, and by ∅ otherwise.
It follows that the resulting generating boundary inclusions ιI◯̂○ (∂∆n →∆n) are simply the
inclusions of the diagram

I
′
↦

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∆n if I ′ ⊊ I,
∂∆n if I ′ = I,
∅ else

into the diagram

I
′
↦

⎧⎪⎪
⎨
⎪⎪⎩

∆n if I ′ ⊂ I,
∅ else.

The analogous description for generating expansions involving horn inclusions holds. One
special feature of the cell structures associated to a simple homotopy theory of simplicial
presheaves is that cell structures are always intrinsic to the isomorphism type of a diagram in
these theories (if they exist). It follows by Example 2.4.2.4 that every diagram D ∈ sSetsd(P )op

admits a unique cell structure. Furthermore, the model structure associated to the Whitehead
model category sSetsd(P )op

is the injective model structure on simplicial presheaves. These
results hold, more generally, whenever sd(P ) is replaced with a so-called elegant Reedy category
(see Section 8.3.5 for a definition).

Recall that weak equivalences in the Reedy model structures on diagrams are always given
by pointwise weak equivalences. For the Whitehead model structures on diagram categories to
be useful to the investigation of diagrams in a simple homotopy theory, one would of course
want this characterization on the pointwise level to also extend to simple equivalences. Indeed,
this turns out to be the case, at least under some appropriate finiteness assumptions:
Given a Whitehead model category C and a Reedy category R, the evaluation functors
(−)r ∶CR

→ C admit a canonical cellularization (see, Example 8.3.6.9; we have already seen
the absolute case in Construction 2.4.2.1). With respect to this cellularization, the evaluation
functors become W-functors (Remark 11.1.2.3).
Being a W-functor does, in particular, imply that evaluation preserves simple equivalences.
Hence, evaluation defines morphisms on Whitehead groups WhCR(X) → WhC(X

r). More
than this, we prove the following result, computing the Whitehead group of a cell complex in
the diagram category in terms of the pointwise Whitehead groups.
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Main Result Q (Theorem 11.1.2.6). Let C be a properly generated Whitehead model category
and let R be a finite Reedy category. The cellularized evaluation functors (−)r ∶CR

→C, for
r ∈R, induce a natural isomorphism

WhCR(X)
(Wh(−)r )r∈R
ÐÐÐÐÐÐÐ→ ∏

r∈R
WhC(X

r
)

for finite structured cell complexes X in CR.

Example 2.4.3.3. As a consequence of Main Results P and Q we obtain that for a finite
poset P the Whitehead groups associated to the Whitehead model category sSetsd(P )op

are
given by

WhsSetsd(P )op (D) ≅ ∏
I∈sd(P )

Wh(DI)

where Wh(DI) is the classical Whitehead group of (the realization of) DI .

Note that Main Result Q does, in particular, imply that the simple equivalences in CR are
exactly the pointwise simple equivalences, if we think of cell complexes in CR as diagrams of
cell complexes as in Construction 2.4.2.1. More than this, we obtain the Whitehead group in
terms of the products of pointwise presentation sets as we have alluded to in the introduction
of this section. The characterization of simple equivalences also holds beyond the finite, in the
locally finite case. Here we need the notion of a Reedy category having locally finitely many
faces, which is defined dually to the case of degeneracies:

Corollary 2.4.3.4 (Corollary 11.1.2.8). Let C be a properly generated Whitehead model
category and let R be a Reedy category which locally has finitely many faces and degeneracies.
Let X and Y be finite cell complexes in CR. Finally, let ω∶X→Y be a morphism in hoc(C

R
).

Then ω is a simple equivalence if and only if, for every r ∈R, the associated morphism

ωr ∶Xr →Yr

in hocC is a simple equivalence.

2.4.4 Results: Simple homotopy colimits
One important corollary of the characterization of simple equivalences in Corollary 2.4.3.4
is that it allows one to produce compatibility results of simple homotopy equivalences with
certain colimits and left Kan extensions. Essentially, the situation is such that a functor of
Reedy categories F ∶R → S (i.e., a functor preserving both degeneracies and faces) has the
property that the associated left Kan extension functor

F!∶CR
→CS

is a W-functor (and hence preserves simple equivalences) under exactly the same conditions
under which it is generally recognized to be a left Quillen functor, provided that some additional
finiteness assumptions hold(see [Bar07] and Corollary 11.1.2.2 for our result). Let us explicitly
state the case of colimits, i.e., the case where S is the terminal category. Then R is called left
fibrant, if, for every r ∈R, the category ∂(R−)r/, consisting of such arrows r → r′ in R− that
are not the identity, is empty or connected.

Example 2.4.4.1 (Example 8.3.7.11). Let R be a left fibrant Reedy category and C be a
cellularized category. Then the colimit functor

lim
Ð→
∶CR

→C

is naturally a cellularized functor. For a structured cell complex X in CR, the cell structure
on lim
Ð→

X is then explicitly given by

{D
σ
Ð→Xr

→ lim
Ð→

X ∣ r ∈R, σ ∈ CX,r ∶ ∄f ∶ r → r′s.t.f− ≠ 1}.
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Take, for example, the left fibrant Reedy category ● −←Ð ● +Ð→ ●. In this case, the colimit functor
is given by mapping a diagram Y

f
←Ð A

i
↪Ð→X to the lower right corner in the pushout square

A Y

X X ∪A Y .

f

i ⌟

(2.16)

Given an associated diagram Y
f
←Ð A

i
↪Ð→ X, the cell structure on Y ∪X Z is precisely the cell

structure inherited from the cobase change

A Y

X X ∪A Y.

f

i i′

f ′

⌟

(2.17)

In other words, the cells of X ∪A Y are given by

i′CY ⊔ f
′
(CX ∖ iCA).

It turns out that, under mild finiteness conditions, the cellularized colimit functors also
define W-functors.

Corollary 2.4.4.2 (Corollary 11.2.1.1). Let C be a properly generated Whitehead model
category. Let R be a left fibrant Reedy category that has locally finitely many degeneracies.
Then the cellularized colimit functor

lim
Ð→
∶CR

→C

of Example 8.3.7.11 is a W-functor. In particular, if R has locally many faces and degeneracies,
it follows that a morphism of diagrams

α∶X→Y

in hoc(C
R
), such that

αr ∶Xr →Yr

is a simple equivalence, for each r ∈R, induces a simple equivalence

lim
Ð→

Xr → lim
Ð→

Yr

with respect to the induced cell structures.

Example 2.4.4.3. In the special case where R = {● −←Ð ● +Ð→ ●} one obtains a gluing theorem
for simple equivalences. Namely, suppose one is given two diagrams {Y0 ← A0 ↪ X0} and
{Y1 ← A1 ↪ X1} of structured finite cell complexes in some Whitehead model category C.
Suppose, in addition to this, one is given a morphism

ω∶{Y0 ← A0 ↪ X0}→ {Y1 ← A1 ↪ X1}

in ho(CR
), that is given by simple equivalences, at each r ∈R. Then the induced morphism

(given by the derived colimit functor)

lim
Ð→

ω∶Y0 ∪A0 X0 →Y1 ∪A1 X1

is a simple homotopy equivalence.
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In fact, one can also derive a generalization of the well-known sum formula for simple
equivalences (see [Coh73, p. 23.1]). In the following, we denote by Q the Reedy category

(0,0) (1,0)

(0,1) (1,1).

−

+ +

−

(2.18)

Main Result R (Theorem 11.2.1.7). Let C be a properly generated Whitehead model category.
Let X,Y be two finite structured cell complexes in CQ, such that the associated diagrams

X(0,0) X(1,0) Y(0,0) Y(1,0)

X(0,1) X(1,1) Y(0,1) Y(1,1)

d

f

a a′

f ′

(2.19)

are cobase change. Suppose that we are given a morphism

ω∶X→Y

in hoc(C
Q
). Suppose, furthermore, that ω(0,0), ω(1,0), ω(0,1) are isomorphisms in hocC (i.e.,

come from zig-zags of weak equivalences in hoC). Then ω(1,1)∶X(1,1) → Y(1,1) is also an
isomorphism in hocC, and the identity of Whitehead torsions

⟨w(1,1)⟩ = f ′∗⟨w
(0,1)
⟩ + a′∗⟨w

(1,0)
⟩ − d∗⟨w

(0,0)
⟩

holds.

This result provides a generalization of the classical sum theorem in simple homotopy
theory (see [Coh73, p. 23.1]) in the following three ways:

1. The theorem applies to a general Whitehead model category C, not just the setting of
classical simple homotopy theory.

2. More general diagrams are allowed. ([Coh73] requires the diagram to consist entirely of
inclusions.)

3. The formula applies for morphism in ho(CR
), i.e., ultimately to morphism in the

homotopy coherent setting.

Finally, we may use the results on simple homotopy colimits to derive a very general recognition
criterion for two cellularized functors on presheaf categories valued in simple homotopy theories
to agree up to simple equivalence. We state a slightly weakened version here, for the case of
elegant Reedy categories (see Section 8.3.5). For the reader not familiar with this notion, it
will suffice to know that ∆,∆P and sd(P ) are elegant.

Main Result S (Theorem 11.2.3.13). Let R be an elegant Reedy category which locally has
finitely many degeneracies and faces. Let C be a properly generated Whitehead model category,
such that the underlying semi-model category is simplicial and locally presentable. Suppose
we are given two cellularized functors F,G∶SetRop

→ C that preserve finite cell complexes.
Suppose furthermore that the following conditions hold:

• For each pair r, r′ ∈R and I, J ∈ {F,G}, the derived mapping spaces C(I(Rr
), J(Rr′

)) are
empty or contractible and the derived mapping spaces C(F (Rr

),G(Rr
)) and C(G(Rr

), F (Rr
))

are non-empty.
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Then there exists an essentially unique natural transformation of the associated functors of
∞-categories

SetRop
Cell(C).

F

G

η (2.20)

This natural transformation is an isomorphism of functors of ∞-categories. Suppose, now,
that additionally the following holds:

• For each r ∈R, the unique morphism in hocC, F(Rr
)→ G(Rr

), is a simple equivalence
(for example, this is the case if WhC(F(Rr

)) = 0 holds).

Then, for each finite structured cell complex X in SetRop
, the induced morphism ηX ∶F(X)→

G(X) in Cell(C) is a simple equivalence (i.e., descends to a simple equivalence in hocC).

A natural isomorphism of the associated functors valued in∞-categories as in Main Result S
will be called a simple equivalence of cellularized functors.

The first part of this theorem, concerning the existence of an essentially unique natural
transformation, has nothing to do with simple homotopy theory, and is likely known to experts
in some shape or form. On its own, it already provides a useful criterion to compare functors,
which can be seen as a version of the theorem of acyclic models. For example, the theorem
applies if the two functors F and G take representable presheaves into objects which are
homotopically speaking terminal, or close to it (subterminal to be precise) and if there are
some necessarily essentially unique equivalences between the respective values of F and G
on representable presheaves. Then one gets a comparison transformation of the associated
functors of ∞-categories for free, and that transformation is necessarily an isomorphism. This
technique turns out to be very useful when one is attempting to verify that two evidently
related constructions are homotopically speaking the same, and it is hard to expose an explicit
natural transformation or verify that the latter defines a weak equivalence.
The crucial new information that we contribute in this result is that the resulting isomorphism
also produces a simple equivalence, as long as one is evaluating on finite structured cell com-
plexes. We use this result in the computation of diagrammatic stratified Whitehead groups,
which we describe in the next section. Let us give a toy example, to illustrate how the result
can be used.

Example 2.4.4.4. It is a well-known classical fact that the last vertex map l.v.∶ sdX → X
from a barycentric subdivision of a finite simplicial set to X is a weak equivalence, and a
simple equivalence if X is finite (a simple morphism, i.e., a morphism with contractible fibers,
even; see [WJR13]). Suppose, for a second, that we did not know of this classical fact, and
in fact, we had no idea how to construct a natural transformation sdX → X. Then we can
apply Main Result S. We only need to verify that ∆n and sd∆n are weakly contractible, for
each n ∈ N. Both simplicial sets are given by the nerves of a poset with a terminal element.
Hence, they are even contractible. It thus follows by Main Result S that there exists a natural
isomorphism of functors of ∞-categories sd ⇒ 1, which evaluates to simple equivalences at
finite simplicial sets. If somebody now told us about the classical last vertex map, Main
Result S would immediately imply that the last vertex map is that essentially unique natural
transformation (up to higher coherence). In particular, it follows that the last vertex map is a
simple equivalence, for X finite.

2.5 Simple diagrammatic stratified homotopy theory
Let us now return to the diagrammatic stratified Whitehead group of [Waa21]. The results we
present in this section can be found in detail in Chapter 13.
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2.5.1 Results: Computation of the diagrammatic stratified White-
head group

By Main Result O, we already know that the realization functor

∣ − ∣s∶ sStratdP → StratdP

induces a weak equivalence of Whitehead model categories. This allows us to freely switch
between the topological cellular setting and the setting of stratified simplicial sets in which cell
structures are intrinsic. At the end of Section 2.3.2, we already alluded to the idea of using the
Quillen equivalence Fun(sd(P )op, sSet) ≃ sStratdP to compute diagrammatic stratified White-
head groups.17 The left adjoint functor of this equivalence ∫

I∆I ⊗ −∶Fun(sd(P )op, sSet)→
sStratdP is a cellularized functor. However, for our purposes, we are primarily interested in
replacing the right adjoint, i.e., the simplicial homotopy link, by a cellularized functor.

Remark 2.5.1.1. Fun(sd(P )op, sSet), equipped with the cellularization of Example 2.4.3.2,
can itself be seen as a category of Set valued presheaves with respect to an induced Reedy
structure on sd(P )×∆. In Section 8.3.5, we explain that in these types of cellularized categories,
every object has an intrinsic cell structure and the inclusions of subcomplexes are precisely
the monomorphisms (sStratP is also a special case of this phenomenon). It follows from this
that being a cellularized functor with target such a cellularized category is a property, and
not an additional structure. Such a functor is cellularized if and only if it sends relative cell
complexes in the source into monomorphisms and preserves colimits.

Definition 2.5.1.2 (See also Corollary 13.2.1.14). A cellularized functor

L∶ sStratP → Fun(sd(P )op, sSet)

is called a cellular link functor if the following holds:

1. L preserves finite cell complexes;

2. L is weakly equivalent to HoLink∶ sStratP → Fun(sd(P )op, sSet). (That is, the two
functors become isomorphic, after ∞-categorically localizing weak equivalences in the
target category).

As a consequence of Main Result S we obtain the following equivalent characterization of
cellular link functors

Proposition 2.5.1.3 (Corollary 13.2.1.14). A cellularized functor

L∶ sStratP → Fun(sd(P )op, sSet)

that preserves finite cell complexes is a cellular link functor if and only if the following holds:
For every I ′ ∈ sd(P ) and J ∈ ∆P a flag degenerating from a regular flag I ∈ sd(P ), it holds
that

L(∆J )I′ ≃
⎧⎪⎪
⎨
⎪⎪⎩

∗ , if I ′ ⊂ I,
∅ , else.

This criterion makes cellular link functors rather easy to detect. Let us give some examples
of cellularized functors, all of which may easily be seen to be cellular link functors through
Proposition 2.5.1.3.

Example 2.5.1.4. We have already seen one example of a cellular link functor in Model (D4)
at least of its evaluations at regular flags I ∈ sd(P ). Namely, given a stratified simplicial set

17For reasons of formatting and to be coherent with the notation in Chapter 1, we write Fun(sd(P )op, sSet)
instead of sSet(sdP )op

in this section.
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X , take the first barycentric subdivision sd(sX )∶ sdX → sdN(P ) of the stratification map, and
then map

I ↦ Linksd
I (X ) = (sd(sX ))

−1
(I)

where we treat I as a vertex in sdN(P ) ≅ N(sd(P )). The structure maps of Linksd (between
different flags I) are most easily seen from the following equivalent description. Namely,
observe that since the functors Linksd

I described above preserve colimits, we may just as
well consider them as the left Kan extension of their restriction to stratified simplices. Here
Linksd

I (∆J ) is equivalently given by the nerve of the following poset. (We treat J as a map
[n]→ P , in the following).

{S ⊂ [n] ∣ J (S) = I}.

The structure map LinkI(∆J )→ LinkI′(∆J ), associated to I ′ ⊂ I, is given by

S ↦ S ∩J −1
(I
′
).

This construction defines a functor ∆P → Fun(sd(P )op, sSet) which then left Kan extends
to a functor Linksd

∶ sStratP → Fun(sd(P )op, sSet) that agglomerates the link functors of
Model (D4). Observe that Linksd

p (X ) = sd(Xp) and that in the two strata case Linksd
{p<q}(X )

recovers the classical construction of the boundary of a regular neighborhood of Xp ⊂X from
PL topology.

There is another, combinatorially more minimal, cellular link functor. It makes use of the
classical PL topology fact that the link of X in a join X ⋆Y , with X and Y compact polyhedra
is PL homeomorphic to X × Y . We have already used this link functor in Chapter 5.

Example 2.5.1.5. Given p ∈ Pos and a flag J ∈∆P , we will denote by Jp the subflag of J
given by the inverse image of p under J ∶ [n]→ P . The cellular link functor

Linkm∶ sStratP → Fun(sd(P )op, sSet)

is defined as the left Kan extension of the functor

∆J ↦ {I ↦ Πp∈I∆Jp}

acting on morphisms in the obvious way. One advantage of this version of a link functor is
that it does not perform any subdivisions on the level of strata, i.e., we have Linkmp X =Xp.

Example 2.5.1.6. Below we have illustrated a stratified simplicial set X over {p < q} and the
link Linkm{p<q}(X ).

Linkm{p<q}

The importance of cellular link functors is due to the following result, which we derive
from Main Result S.

Main Result T (Theorem 13.2.1.15 and Proposition 13.2.1.12). Let P ∈ Pos. Cellular link
functors L∶ sStratP → Fun(sd(P )op, sSet) have the following properties:

1. Any natural transformation of cellular link functors defines a simple equivalence of
cellularized functors.

2. Any two cellular link functors are simply equivalent, through an essentially unique natural
transformation of functors of ∞-categories.
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3. Any cellular link functor is a W-functor.

4. Any cellular link functor L defines an ∞-categorical homotopy equivalence of Whitehead
model categories L∶ sStratdP ≃ Fun(sd(P )op, sSet).

In particular, it follows that, given any finite stratified simplicial set X , there is a natural
isomorphism of Whitehead groups

WhP (X ) ≅WhFun(sd(P )op,sSet)(Link(X )),

where Link is any choice of cellular link functor. We may then combine this result with Main
Result Q to obtain the following result.

Main Result U. Let X ∈ sStratP be a finite stratified simplicial set and let Link be any
cellular link functor. Then Link induces an isomorphism of Whitehead groups

WhP (X ) ≅ ⊕
I∈sd(P )

Wh(LinkI(X )).

This answers Question (Q2) affirmatively. In particular, Main Result U provides an
answer to the original question of [Waa21], of what types of stratified homotopy equivalences
ω∶ ∣X ∣s → ∣Y ∣s between realizations of stratified simplicial sets (or more generally diagrammatic
equivalences) can be presented in terms of a zig-zag of pushouts of admissible horn inclusions.
By Main Result A1, ω lifts to a morphism ω̃∶X → Y in hosStratdP . The obstructions to ω being
simple in this sense are given precisely by the classical Whitehead torsion of the contributions
of ω to strata and generalized homotopy links

⟨LinkI(ω̃)⟩ ∈Wh(LinkIX ) ≅Wh(HoLinkI(∣X ∣s))

for I ∈ sd(P ).18 It also follows that not every stratum-preserving homeomorphism between
realizations of simplicial complexes is a simple equivalence in StratdP (see Section 13.3.2).

At first glance, the occurrence of obstructions in the Whitehead groups of generalized homotopy
links provides a different answer than the one obtained for the more geometric approaches to
stratified simple homotopy theory of Browder and Quinn (see [BQ79]), where the obstructions
lie in the Whitehead groups of the simplicial strata. Let us explain why this is the case,
providing an answer to Question (Q3) in the next and final subsection.

2.5.2 Outlook: The relationship with the geometric Whitehead tor-
sion of a stratified h-cobordism

In [BQ79], Browder and Quinn defined a notion of h-cobordism and Whitehead torsion for
several different categories of stratified spaces, in particular, the setting of certain PL stratified
spaces. In this subsection, we will discuss the relationship of this geometric take on simple
stratified homotopy theory with the combinatorial take we discussed so far. We will make
use of some results of ours which are not contained in this text and will appear in a later
article. We hope that, even without having access to the proofs yet, the elaborations here
can be insightful. As the following mainly serves as an outlook, we will be slightly loose with
the required definitions in PL topology and refer to [Sto72] for a good source of stratified PL
investigations.

To make the comparison with the simplicial world somewhat cleaner, we will purposefully
confuse piecewise linear objects with simplicial objects that triangulate them in the following.
More specifically, we work with triangulations of compact PL stratified spaces that are given

18We have, strictly speaking, not defined the Whitehead group of a non-connected space that is not a
CW-complex. It is given by the coproduct of the Whitehead groups of the fundamental groups of the path
components.
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by finite stratified simplicial complexes M ∈ sStrat[n] – i.e., finite stratified simplicial sets
such that every non-degenerate simplex is uniquely determined by its set of vertices. When we
refer to a finite stratified simplicial complexM ∈ sStrat[n] as a compact PL manifold stratified
space (with or without boundary), we inductively mean the following:
For n = −1, i.e. [n] = ∅, we mean an empty stratified simplicial complex. For n + 1, we mean a
stratified simplicial complex, M, such that, for each k ∈ [n + 1] and each x ∈ (∣M∣s)k, there
exists a closed PL neighborhood of x that is stratum-preserving PL homeomorphic to the
product of a PL disk of dimension k with the realization of a simplicial cone ∆0 ⋆Lx on a PL
manifold stratified space Lx ∈ sStrat[n−k−1] without boundary. Here, ∆0 ⋆Lx is the stratified
simplicial complex over [n] obtained by taking the simplicial join of ∆0 with Lx, mapping
the cone-point ∆0 to k, and shifting the stratum of the remaining vertices in Lx by k + 1 (see
Fig. 2.2, for an illustration). By definition, it follows that the strata of ∣M∣s are PL manifolds,
possibly with boundary. We say that M is without boundary, if the strata of ∣M∣s have empty
boundary.

Figure 2.2: Illustration of a stratified simplicial cone, which defines a compact stratified PL
manifold stratified space (with boundary) over the poset {0 < 1 < 2}.

By construction, it holds that for every compact PL manifold stratified space, M, the real-
ization is a conically stratified space that furthermore admits a stratified cell structure. In
particular, ∣M∣s is bifibrant in all of the model structures on StratP (see Theorem 2.3.2.4),
and hence well-suited to being investigated in terms of the homotopy theory we discussed in
Chapter 1. The points in the boundary of ∣M∣s – i.e., such points which lie in the boundaries of
the manifold strata – then inherit a triangulation in terms of a subcomplex ∂M of M, which
defines a PL manifold stratified space without boundary. One can prove that under these
assumptions ∣∂M∣s ↪ ∣M∣s always admits an appropriately stratified PL collar neighborhood
(see, for example, [Sto72]).

In this language, a stratified h-cobordism in Browder’s and Quinn’s sense is an inclusion
of compact PL manifold stratified spaces M↪W that induces a stratum-preserving simplicial
isomorphism of M onto a component of the boundary of W, and furthermore induces weak
homotopy equivalences on all strata. A stratified s-cobordism is a stratified h-cobordism whose
realization is stratum-preserving PL homeomorphic (relative to ∣M ∣s) to a product ∣M ∣s × [0, 1].
In [BQ79], Browder and Quinn provide an s-cobordism theorem for such stratified h-cobordisms
(see also [Wei94]). Namely, if W has empty strata in dimension less than or equal to 5 (or
more generally, if W≤5 is already an s-cobordism), then M ↪ W is an s-cobordism if and
only if the Whitehead torsions of the inclusions of simplicial strataMp ↪Wp, for p ∈ [n], vanish.

In light of Main Result U, this result may surprise in two ways. First off, one may be
surprised that the definition of h-cobordism only requires equivalences on strata, and not on
strata and links. Secondly, one may be surprised that the obstruction to being an s-cobordism
seems to have no contribution associated to links.
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The local and the global part of a stratified homotopy equivalence

Let us first explain why a stratified h-cobordism, as defined above, realizes to a stratified
homotopy equivalence. In Chapter 7, we prove the following result. Recall from Nota-
tion 1.2.1.7 the stratified homotopy links HoLinksp(X ), which come together with evaluation
maps HoLinksp(X )→ Xp. Furthermore, throughout this section, we will denote the fibers of
maps f ∶E → B at x ∈ B in the form Ex.

Proposition 2.5.2.1 (Corollary 7.5.5.14). Let w∶X → Y ∈ StratP be a stratum-preserving
map of stratified spaces that are fibrant in StratdP . Then the following are equivalent.

1. w is a diagrammatic equivalence;

2. For each p ∈ P , the induced map wp∶Xp → Yp is a weak homotopy equivalence, and for
each x ∈ Xp (or just for a representative system of path components) the induced map on
the stratified homotopy link fibers

HoLinksp(X )x →HoLinksp(Y)w(x)

is a diagrammatic equivalence.

The analogous equivalence holds for categorically fibrant spaces (i.e., stratified spaces
fibrant in StratcP ) and categorical equivalences. Even more, in this case it follows from the
décollage condition that these two statements are furthermore equivalent to the following
condition:

3. For each p ∈ P , the induced map wp∶Xp → Yp is a weak homotopy equivalence, and for
each x ∈ Xp (or just for a representative system of path components) the induced map
on stratified homotopy link fibers

HoLinksp(X )x →HoLinksp(Y)w(x)

induces weak equivalences on strata.

This condition is generally even easier to verify, as it only involves strata and unstratified,
pairwise homotopy links. The important point to make here is that the fibers of the homotopy
link fibrations HoLinksp(X ) → Xp are entirely local invariants. On the π0 level, this follows
from the fact that exit paths starting in x can be retracted into small neighborhoods of x (see
Lemma 7.5.5.15, for the general statement). If we apply the Whitehead theorem in StratdP ,
it follows that for bifibrant stratified spaces being a stratified homotopy equivalence can be
verified in two steps: There is a global condition to verify, on the level of strata, and there
is a local condition to verify, on the level of local links. Locally, using the existence of collar
neighborhoods, every stratified h-cobordism is of the form

U × {0}↪ U × [0,1],

and thus a stratified homotopy equivalence. Hence, one only needs to verify the global, i.e.,
the strata-wise weak equivalence condition.

The local and the global part of diagrammatic stratified Whitehead torsion

It turns out that the local plus global decomposition for stratified homotopy equivalences also
holds for Whitehead torsion, in a sense. To explain this, we will need transfer morphisms
for Whitehead groups. In [And74], Anderson defined a geometric transfer for Whitehead
groups and PL fiber bundles. Let ξ∶E → B be a PL fiber bundle of finite polyhedra. Then
ξ!∶Wh(E) → Wh(B) is defined as follows19. Represent an element α ∈ Wh(B) by the

19As homeomorphisms are simple homotopy equivalences, the choice of triangulation on B is irrelevant for
Whitehead torsions.
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Whitehead torsion of an inclusion of polyhedra B ↪ B′. Then, choose a PL homotopy inverse
B′ → B, and define ξ!(α) = ⟨w′−1⟩, where w′−1 is a homotopy inverse to the PL basechange.

E′ E

B′ B

w′

⌟
ξ

w

(2.21)

of w along ξ. It was later observed that significantly less was necessary to construct a transfer
(see [Lüc87]). For example, in [Lüc87] Lück showed that it suffices to have a fibration of CW-
complexes whose fiber has the homotopy type of a finite CW-complex and whose monodromy
action on the fiber can be constructed purely in terms of simple homotopy equivalences (fixing
some presentation of the fiber). The generalization in [Lüc87] was constructed entirely on the
algebraic side of simple homotopy theory.
In upcoming work, we will explain another approach to such a generalization, namely a
construction of a Whitehead group transfer that is analogous to Anderson’s construction,
but for a class of maps of finite simplicial sets. Specifically, we consider such maps of finite
simplicial sets for which the homotopy fibers of the realization agree with the classical fibers
(i.e., the realization is a quasi-fibration, see [DT58]), and which are furthermore such that
the fundamental groupoid of the base space acts on these fibers in terms of simple homotopy
equivalences. Let us call such maps SQS-fibrations here. SQS-fibrations provide a significantly
larger class of maps than (triangulations of) PL fiber bundles or PL fibrations, even, and are
generally easier to construct. They are classified by the faithful sub ∞-groupoid Sim(sSet)
of Spaces given by simple equivalences of finite simplicial sets.

Using geometric methods, Anderson obtained the following formula for the Whitehead torsion
of a fiber homotopy equivalence of PL fiber bundles (for the sake of simplicity, we present the
connected case here). Given a commutative square

E Ê

B B̂

ξ

w̃

w

(2.22)

with verticals PL fiber bundles and with w and w̃ PL homotopy equivalences of connected
polyhedra, Anderson showed an identity of Whitehead torsions

⟨w̃⟩ = ξ!
⟨w⟩ + χ(B)(ix)∗⟨w̃x⟩

where ix∶Ex → E is the inclusion of the fiber at some x ∈ B, χ denotes the Euler characteristic
and w̃x∶Ex → Êw(x) is the restriction of w̃ to fibers over x and w(x). Through methods of sim-
ple simplicial homotopy theory, one can obtain a generalization of this formula to SQS-fibrations.

For the purpose of investigating compact PL manifold stratified spaces M ∈ sStrat[n], this
generalization is quite useful: Namely, making use of Stone’s theory of cone-block bundles
(see [Sto72]), one can prove that, for each I ∈ sd(P ), the natural map fI ∶LinkmIM→MminI –
from the cellular link of Example 2.5.1.4 into the minimal stratum occurring in I – is an SQS-
fibration (it does generally not realize to a PL fibration, and certainly not to a PL fiber bundle).
It follows that one can compute the link contributions, for I ∈ sd[n], to Whitehead torsions
of a stratified homotopy equivalence of PL manifold stratified spaces ω∶M → N ∈ sStrat[n]
(given by a stratified simplicial map)20 in terms of the following formula:
Using analogous notation as in Anderson’s formula, it holds that

⟨LinkmI (ω)⟩ = f !
I⟨ωminI⟩ +∑

x

χ(Mx
minI)(ix)∗⟨(LinkmI (ω))x⟩.

20Being simplicial is no real restriction. There are stratified simplicial approximation theorems (see [Waa21;
Sch71]), which allow any stratified homotopy class of stratified maps to be presented by simplicial maps
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Here x ∈MminI ranges over a representative system of the path components ⊔Mx
minI =MminI

ofMminI . Using Main Result U and potentially a version of stratified simplicial approximation
as in [Sch71], one may read this result as stating the following.
The Whitehead torsion of a stratified homotopy equivalence between compact PL manifold
stratified spaces (presented by a stratified simplicial map ω) consists of a global part

∑
I∈sd(P )

f !
I⟨ωminI⟩

determined under transfers by the torsions on strata, and a sum of local parts

∑
I∈sd(P )

∑
x

χ(Mx
minI)(ix)∗⟨(LinkmI (ω))x⟩

given by torsions of the induced maps of fibers of generalized link SQS-fibrations. In case of a
stratified h-cobordism ω∶M ↪W, it is not too hard to see that the local parts vanish.21 It
follows, using Main Result U, that then the torsion ⟨ω⟩ ∈WhP (M) is entirely determined by
its strata-wise components.

21Weinberger called such maps simple homotopy transverse in [Wei94].
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Chapter 3

From homotopy links to stratified
homotopy theories

Note to the reader: The following chapter is almost verbatim identical with the article
[DW22], which was written in joint work with Sylvain Douteau. It is accepted to be published
in the Memoires de la Société Mathématique de France. Compared to [DW22], we have made
several minor corrections, which will also appear in the final published version. We have also
adapted notation for the main categories in order to be consistent with Part I and the following
chapters. Nevertheless, notation here differs slightly from the one in the single authors parts of
this thesis. For example, the hom sets in a category C are denoted in the form HomC(X,Y )
instead of C(X.Y ) as is the case everywhere else, and slightly different notation for stratified
realization functors and under-categories is used. The main notation difference is that in
this chapter we often refer to stratified spaces by their underlying object, while in the other
chapters, we take care to use calligraphic letters for stratified objects. As we will not run into
the case of having multiple stratifications on the same space in this chapter, this will not be
an issue. We note that there are no straight-up notational conflicts. Furthermore, the chapter
is entirely self contained when it comes to notation, meaning that any notation used will be
introduced, or provided with a reference. Furthermore, as this chapter only deals with one
specific type of stratified homotopy theory, we do not add prefixes, such as diagrammatic, to
the classes of weak equivalences (as we do in the chapters discussing multiple theories) and do
not add the additional superscripts that distinguish between the different model structures.

In previous work, Sylvain Douteau defined homotopy theories for stratified spaces from
a simplicial and a topological perspective. In both frameworks stratified weak equiv-
alences are detected by suitable generalizations of homotopy links. These two frame-
works are connected through a stratified version of the classical adjunction between
the realization and the functor of singular simplices. Using a modified version of this
adjunction, Douteau showed that over a fixed poset of strata the two homotopy theories
were equivalent. Building on this result we now show that the unmodified adjunction
induces an equivalence between the global homotopy theories of stratified spaces and
of stratified simplicial sets. We do so through an in depth study of the homotopy
links. As a consequence, we prove that the classical homotopy theory of conically strat-
ified spaces embeds fully-faithfully into the homotopy theory of all stratified spaces.

3.1 Introduction
Stratifications and stratified spaces were first introduced by Whitney [Whi65b], Thom [Tho69]
and Mather to describe manifolds with singularities. In this context, stratifications correspond
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to decompositions into strata that are themselves manifolds and satisfy certain compatibility
conditions. Stratified spaces of this kind are usually called pseudo-manifolds, since they provide
an extension of the class of manifolds over which many invariants can be extended while
retaining their key properties. Most notably, intersection cohomology, introduced by Goresky
and MacPherson in [GM80] is an extension of singular cohomology to pseudo-manifolds that
still satisfies Poincaré Duality. Intersection cohomology is only an invariant up to stratum-
preserving homotopy equivalence, not arbitrary homotopy equivalences, which motivates the
development of a homotopy theory for stratified spaces. This question was already asked by
Goresky and MacPherson (see for example [Bor+08, Problems 4 and 11]).

Motivated by the study of the homotopical properties of stratified objects, Quinn [Qui88]
introduced a more general notion of stratified spaces: Homotopically stratified sets. While for
pseudo-manifolds compatibility conditions between the strata are characterized by geometric
links, homotopically stratified sets make use of homotopy links (or holinks), which are spaces
of paths going from one stratum to another. As Miller later showed in [Mil13, Theorem 6.3],
stratified homotopy equivalences between homotopically stratified sets can be fully characterized
as those maps inducing homotopy equivalences on all strata and homotopy links. This inspired
the idea that homotopy links and strata should be the basic blocks for defining a stratified
homotopy type.

Let us now recall a few classical results of homotopy theory: In [Qui67] Quillen introduced
the notion of a model category and immediately gave two seminal examples. The model
category of topological spaces, Top, and the model category of simplicial sets, sSet. He also
showed that the adjunction relating those two categories ∣ − ∣∶ sSet↔ Top∶Sing was in fact a
Quillen equivalence, meaning that the two homotopy theories are equivalent. This is a key
result in homotopy theory since it allows one to prove results about the homotopy theory of
spaces while working in a purely combinatorial setting.

In this paper, we consider stratified spaces in the broadest sense - those are just spaces with
a continuous map towards a poset, X → P , as defined by Woolf in [Woo09] and popularized by
Lurie in [Lur17]. This point of view gives rise to two kind of categories. First, the categories of
stratified objects and stratum-preserving map over a fixed poset. Here, objects can be taken
to mean either topological spaces or simplicial sets, producing the categories StratP (resp
sStratP ), of topological spaces (resp simplicial sets) stratified over the poset P . Secondly, there
are the categories of stratified objects over all posets, where maps are given by commutative
squares. Those are denoted Strat and sStrat for the topological and simplicial versions. Note
that the categories StratP , correspond to the fibers of the functor Strat → Poset over the
discrete categories {P}, and similarly for sStratP and sStrat.

The emerging field of stratified homotopy theory has seen a lot of recent activity (See for
example [AFR19; Nan19; Hai23], and [Lur17, Appendix A]) with applications to algebraic
geometry [BGH18], G-isovariant homotopy theory [KY21], and to the study of classical
invariants of stratified spaces [CT20]. In this context, the first author showed that there exist
two independent model structures on the category StratP , of spaces [Dou21c] and sStratP ,
of simplicial sets [Dou21a], stratified over a fixed poset P . See also [Dou19a]. Both are defined
from appropriate notions of homotopy links (and generalization of those to tuples of strata), i.e.
weak equivalences between stratified objects are maps inducing weak equivalences between all
strata and homotopy links. In addition, it is shown in [Dou21c] that the model structures on
StratP and sStratP , for varying P , assemble to form model structures on Strat and sStrat
respectively. Furthermore, the classical adjunction ∣ − ∣∶ sSet ↔ Top∶Sing admits stratified
versions, ∣ − ∣P ∶ sStratP ↔ StratP ∶SingP , for all posets P . Those can be glued together,
producing a global adjunction ∣ − ∣s∶ sStrat↔ Strat∶Sings.

The adjunction ∣ − ∣s∶ sStrat ↔ Strat∶Sings is not a Quillen equivalence, however. In
fact, if P is not discrete, the adjunction ∣ − ∣P ∶ sStratP ↔ StratP ∶SingP is not even a Quillen
adjunction. Nevertheless, by composing the above adjunction with a suitably defined stratified
subdivision, the first author showed in [Dou21b] that there exists a modified Quillen equivalence

∣sdP (−)∣P ∶ sStratP ↔ StratP ∶ExPSingP , (3.1)
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meaning that the homotopy theory of spaces, and simplicial sets, stratified over the same
poset, coincide. On the other hand the adjunction (3.1) is no longer compatible with the
gluing process producing Strat and sStrat, which means that it does not allow for a direct
comparison between the homotopy theory associated to the two global model categories.

Relatedly, one would want to interpret Miller’s theorem [Mil13, Theorem 6.3] - which
characterizes stratum-preseving homotopy equivalences between suitably nice stratified spaces
- as a statement about cofibrant-fibrant objects in a model category. But in fact, the objects
appearing in Miller’s theorem are almost never cofibrant as objects of Strat.

Both of those observations might motivate one to consider some other model structure
for the category of stratified spaces, to remedy these problems. It turns out however that
such a structure does not exist, without making major changes to the topological setup, as we
show in Section 3.A. What we show instead is that even though the adjunctions (∣ − ∣P ,SingP )
and (∣ − ∣s,Sings) are not Quillen equivalences, they still induce - in a very strong sense -
isomorphisms between the homotopy theories of stratified simplicial sets and stratified spaces
(see Theorem 3.5.1.1 and Remark 3.5.1.4).

Theorem 3.1.0.1. The adjoint pairs ∣ − ∣P ⊣ SingP and ∣ − ∣s ⊣ Sings descend to equivalences
of homotopy categories

∣ − ∣P ∶hosStratP ↔ hoStratP ∶SingP ,
∣ − ∣s∶hosStrat↔ hoStrat∶Sings.

Note that an even stronger statement holds. Instead of the homotopy categories, one
can consider the simplicial localizations in the sense of Dwyer and Kan [DK80a]. Then,
one sees that in addition to inducing equivalences between the homotopy categories, the
pairs ∣ − ∣P ⊣ SingP and ∣ − ∣s ⊣ Sings induce Dwyer-Kan equivalences between the simplicial
localizations. In particular, this means that the ∞-categories associated to stratified spaces
and stratified simplicial sets are equivalent.

We also consider the case of triangulable conically stratified spaces (see Remark 3.2.4.4).
As mentioned earlier, stratum-preserving homotopy equivalences between those spaces can
be explicitly characterized (see [Mil13, Theorem 6, 3]). In particular, for those objects weak
equivalences and stratum-preserving homotopy equivalences coincide. In fact, even though
those objects are not fibrant-cofibrant, they behave as if they were. What this means is that
in order to study their homotopy theory, one does not need to work with their hom-set in the
homotopy category hoStrat, but one can work instead with the much more explicit set of
stratified maps up to stratum-preserving homotopies, because the two coincide. This can be
phrased more rigorously as follows (Corollary 3.5.2.4 and Remark 3.5.2.5):

Theorem 3.1.0.2. Let Con ⊂ Strat be the full subcategory of triangulable conically stratified
spaces, and ≃ the relation of stratified homotopy. Then the induced functor

Con/≃↪ hoStrat

is a fully faithful embedding.
Let ConP ⊂ StratP be the full subcategory of triangulable conically stratified spaces over P ,
and ≃P be the relation of stratum-preserving homotopy. Then the induced functor

ConP /≃P ↪ hoStratP

is a fully faithful embedding.

Again, this statement can also be strengthened to a fully faithful inclusion of infinity
categories. In the proofs contained in this paper, we mainly focus on stratified objects over
a fixed poset, P . In this context, our approach is twofold. On one hand, we give a precise
comparison of three model categories, and in particular of their classes of weak equivalences.
Those model categories are those of spaces and simplicial sets stratified over P , as well as
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the category of diagrams of simplicial sets, indexed by strictly increasing chains in P (which
we call regular flags). An object in this last category corresponds to the data of the strata
and (generalized) homotopy links of a stratified object. This is summed up in the following
theorem (Corollaries 3.4.5.2 to 3.4.5.4 and 3.6.0.2 and Theorem 3.3.2.1).
Theorem 3.1.0.3. All functors in the following diagram of adjunctions (the right and left
parts of which are commutative up to natural isomorphism) preserve and characterize weak
equivalences between arbitrary objects.

sStratP

DiagP StratP
DP

∣−∣PCP

SingP

(3.2)

Furthermore, all of these functors descend to equivalences of the underlying homotopy categories.

Again, Theorem 3.1.0.3 strengthens to a statement about the corresponding infinity
categories. Theorem 3.1.0.3 suggests a somewhat richer picture than what one has in the
non-stratified case. Indeed, in the case where P = {∗}, the categories DiagP and sStratP
are both canonically equivalent to sSet, turning this triangle into the familiar adjoint pair
sSet↔ Top. In general however, the categories DiagP and sStratP are very different, and
the usefulness of thinking in terms of diagrams is illustrated in Sections 3.B and 3.6.2, through
the lens of vertical objects.

Furthermore, the fact that the functors in Diagram (3.2) preserve and reflect all weak
equivalences is a stronger property than one might expect. Indeed, four of those six functors
are part of Quillen equivalences. One expects such a functor to only reflect weak equivalences
either between cofibrant or between fibrant objects. In fact, weak equivalences in sStratP can
even be defined as those maps that are sent to weak equivalences in DiagP , after a suitable
fibrant replacement. Theorem 3.1.0.3 then implies that this fibrant replacement is not needed.
This gives some insight as to why the model structure on sStratP described by Henriques in
[Hen] and the one studied here coincide (see Remark 3.6.0.3).

On the other hand, we also have a more topological approach. Recall that pseudo-manifolds
(and more generally conically stratified objects) can be described locally via the data of their
strata and their (local) links. Indeed, in such a space, any stratum has a neighborhood that is
locally homeomorphic to the product of the stratum and a cone on the (local) link. This is the
phenomenon that we want to generalize to be able to reconstruct a stratified homotopy type,
from the data of strata and homotopy links.

First note that the geometric definitions for the (global) link in terms of a boundary of
a regular neighborhood readily extend to arbitrary stratified simplicial objects. This can be
done either through the simplicial structure (by making use of the subdivision), or by working
topologically. On the other hand, the homotopy links - which are nothing more than spaces of
exit-paths - can be defined, as certain mapping spaces, for arbitrary stratified objects. Though,
a priori, the result might depend on the category in which we compute those mapping spaces.

Note also that while the historical definition of homotopy links, given by Quinn in [Qui88],
is only concerned with pairs of strata [p < q], we study a generalized version of those homotopy
links, which is defined for any increasing chain of strata I = [p0 < ⋅ ⋅ ⋅ < pn]. In this case, instead
of exit-paths, the elements of the I-th homotopy link of a stratified object can be thought of
as ”exit-simplices”.

We show that, for a stratified simplicial set, all definitions of links and homotopy links
coincide up to weak equivalence (see Theorems 3.4.5.1 and 3.6.0.1 and Remark 3.6.0.3). This
is summed up in the following theorem, where the geometric interpretations given for the
different definitions hold when investigating pairs of strata, i.e. when I = [p < q]. The two
notions of links are illustrated in Fig. 3.1 and elements of the three different homotopy links
are represented in Fig. 3.2.
Theorem 3.1.0.4. Let K ∈ sStratP be a stratified simplicial set, I a flag and b ∈ ∣∆I ∣ the
barycenter. Then the following spaces are weakly equivalent:
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Figure 3.1: A simplicial set K stratified over P = {0 < 1}, its simplicial link, Link[0<1](K), and
the topological link, ∣K ∣b, with b in the interior of the interval N({0 < 1}).

• ∣HoLinkI(K)∣, a simplicial version of the space of exit-paths,

• ∣HoLinkI(KFib)∣, same as the above, but computed on a fibrant replacement,

• ∣LinkI(K)∣, the usual simplicial link, defined in terms of the subdivision,

• ∣K ∣b, a geometric notion of link, defined from the realization,

• HoLinkI(∣K ∣N(P )), a space of exit-paths with extra conditions,

• HoLinkI(∣K ∣P ), the space of exit-paths defined by Quinn.

Figure 3.2: In green, from left to right, a 0-simplex in HoLinkI(∆J ), an exit path in
HoLinkI(∣∆J ∣N(P )) and an exit-path in HoLinkI(∣∆J ∣P ), with P = {0 < 1}, I = [0 < 1],
and J = [0 ≤ 1 ≤ 1]

While Theorems 3.1.0.3 and 3.1.0.4 might look very different, they are closely related.
Indeed, in the model categories we study, weak equivalences are defined in terms of strata and
homotopy links, in the sense that a map is a weak equivalence if and only if it induces weak
equivalences between all strata and homotopy links. This means that a comparison between
different notions of homotopy links immediatly induces a comparison between the corresponding
class of weak equivalences. The converse is also true, albeit in a less straightforward way. In
fact, we prove Theorems 3.1.0.3 and 3.1.0.4 in parallel throughout the paper, going back and
forth between the topological and the homotopical point of view.

The article is organized as follows.



118CHAPTER 3. FROM HOMOTOPY LINKS TO STRATIFIED HOMOTOPY THEORIES

Section 3.2 contains a recollection of all the necessary notions from [Dou21a; Dou21c;
Dou21b], as well as definitions for all notions of link and homotopy link appearing in this
article.

In Section 3.3, we prove that SingP characterizes all weak equivalences. We do so by first
proving in Section 3.3.1 that the natural map K → ExP (K) is a strong anodyne extension. In
particular, this completes the proof that Ex∞P is a fibrant replacement functor for stratified
simplicial sets, see Corollary 3.3.1.2. The proof relies on the notion of strong anodyne extensions,
introduced by Moss in [Mos19] and already applied to stratified simplicial sets in [Dou21a].

In Section 3.4 we prove that the functor ∣ − ∣P ∶ sStratP → StratP characterizes weak equiv-
alences between arbitrary objects. We do so by showing that, for a stratified simplicial set K,
∣LinkI(K)∣P , ∣K ∣b, HoLinkI(∣K ∣N(P )) and HoLinkI(∣K ∣P ) are all weakly-equivalent. The key
technical part, which consists mostly of point-set topology, is the proof that HoLinkI(∣K ∣N(P ))
and HoLinkI(∣K ∣P ) are weakly equivalent.

In Section 3.5, we use the results of Sections 3.3 and 3.4 to show that the adjunctions
∣ − ∣s ⊣ Sings and ∣ − ∣P ⊣ SingP descend to equivalences between the homotopy categories
of stratified simplicial sets and stratified spaces. We then use this result to show that the
homotopy theory of triangulable conically stratified objects embeds fully faithfully in the
homotopy category of stratified spaces (Corollary 3.5.2.4). Finally, in Section 3.5.3, we deduce
a stratified simplicial approximation theorem from the comparison between the homotopy
categories.

In Section 3.6, we prove that for a stratified simplicial set K, the holinks ∣HoLinkI(K)∣,
∣HoLinkI(KFib)∣ and HoLinkI(∣K ∣P ) are all weakly-equivalent. We do so by investigating a
well-behaved classes of stratified spaces, vertically stratified CW-complexes and simplicial
sets, in Section 3.6.2 and proving a series of approximation theorems (Propositions 3.6.2.9
and 3.6.2.16). Along the way, we show that the class of vertically stratified CW-complex, with
their vertical maps and homotopies, model the homotopy category of stratified spaces (see
Theorem 3.6.2.18). Finally, Section 3.6.3 gives the proof of Proposition 3.6.1.4 which is the
key technical argument in comparing the homotopy links.

In Section 3.A, we give an example of a particular stratum-preserving map which obstructs
the transport of the model structure from sStratP to StratP , and constrains the kind of
model structures that one can hope to obtain on StratP . We also discuss how this example
translates for other work on the subject such as [Nan19] and [Hai23].

Section 3.B expands on Section 3.6.2, making the relationship between vertical objects and
diagrams more precise, and giving an alternate higher level proof of Theorem 3.6.2.18.

3.2 Preliminaries
We begin by recalling the framework of stratified homotopy theory used in [Dou21a; Dou21c;
Dou21b] as well as several of the central results of the theory. These preliminaries are intended
to be rather exhaustive, making the remainder of the paper generally accessible to the reader
with general knowledge of model categories and abstract homotopy theory. While introducing
the necessary language and notation, these preliminaries also serve to put the results discussed
in Section 3.1 into rigorous context. The reader already familiar with the framework used in
[Dou21a; Dou21c; Dou21b] can safely skip most of those preliminaries, reading only Section 3.2.5
for the definitions of generalized links and homotopy links and Sections 3.2.10 to 3.2.12 for a
precise recollection of the needed results.

First, we introduce the categories of stratified objects we are studying (Sections 3.2.1
to 3.2.3). We equip these objects with notions of generalized homotopy links and introduce the
basic relationships between the latter (Sections 3.2.4 to 3.2.6). These generalized homotopy
links entail notions of weak equivalence on categories of stratified objects in question, which are
integrated into model structures in Sections 3.2.7 to 3.2.9. Finally, the homotopical properties
of the functors connecting the resulting model categories are discussed in Sections 3.2.10
to 3.2.12.
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3.2.1 Partially ordered sets
We begin by recalling a few general construction for partially ordered sets, which will serve as
the indexing sets for stratifications.

Definition 3.2.1.1. Recall that a partially ordered set (or poset) is the data of a set P ,
equipped with an irreflexive, transitive and asymmetric relation, that is generically denoted
”<”. We will also consider the weak relation, ”≤”, defined in the usual way via p ≤ q if p < q or
p = q. In this paper, a poset map is a map α∶P → Q such that if p ≤ p′ in P , then α(p) ≤ α(p′)
in Q. The category of posets and poset maps is denoted Pos.

Definition 3.2.1.2. Given a poset, P , define the order topology on P as follows. A subset
A ⊂ P is closed if and only if it is a downset, i.e. it fulfills the condition:

p ∈ A, q ≤ p⇒ q ∈ A.

Remark 3.2.1.3. A basis of closed sets for this topology is given by the sets Ap, p ∈ P , defined
as follows:

Ap = {q ∈ P ∣ q ≤ p}.

Remark 3.2.1.4. Note that given a map of sets α∶P → Q between posets, the map α is a map
of posets if and only if it is a continuous map between the posets equipped with their order
topologies. This means that the order topology defines a fully-faithful functor Pos↪ Top.

Definition 3.2.1.5. Let P be a poset.

• A flag of P , J , is a finite sequence in P , J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn].

• A regular flag of P , I, is a finite sequence in P with no repeated entries I = [q0 < ⋅ ⋅ ⋅ < qk].
We will usually reserve the letter I for regular flags.

• Given a flag J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn], we denote its underlying regular flag (obtained by
deleting repeated entries) by {p0 ≤ ⋅ ⋅ ⋅ ≤ pn}.

A map of flags f ∶ [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] → [q0 ≤ ⋅ ⋅ ⋅ ≤ qm] is a non decreasing map f ∶{0, . . . , n} →
{0, . . . ,m} such that qf(i) = pi, for all 0 ≤ i ≤ n. Let ∆P be the category of flags and maps of
flags and sd(P ) ⊂∆P be the full subcategory of regular flags.

Definition 3.2.1.6. The nerve of a poset P is the simplicial set N(P ) whose simplices are
the flags of P . The k-th face operation is given by omitting the k-th entry in a flag while the
k-th degeneracy is given by repeating the k-th entry. For J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn], we will write ∆J
for the associated n-simplex of N(P ), ∆n → N(P ), seen as a simplicial set.

Remark 3.2.1.7. Note that, as was the case for spaces, a map of sets α∶P → Q between
posets is a map of posets if and only if it extends to a simplicial map N(α)∶N(P ) → N(Q).
In other words, there is a fully-faithful embedding N ∶Pos↪ sSet.

Remark 3.2.1.8. It is also classical to see a poset as a (small) category where there are
no non-identity endomorphisms, and where there is at most one map between two objects.
Starting from a set-theoretic poset P one gets such a category by taking P to be the set of
objects, and having an arrow from p→ q whenever p ≤ q. Note that from this point of view,
the nerve of the poset is nothing more than the nerve of the corresponding category. Similarly,
the category of regular flags sd(P ) is the subdivision of P , seen as a category.

Definition 3.2.1.9. Let P be a poset. Define φP ∶ ∣N(P )∣→ P as follows. For I = [p0 < ⋅ ⋅ ⋅ < pn]
a regular flag, using the identification

∣∆I ∣ ≅ {(t0, . . . , tn) ∣ 0 ≤ ti ≤ 1, 0 ≤ i ≤ n, ∑
i

ti = 1} ⊂ Rn+1,

we set
φP (t0, . . . , tn) = pm, m =max{i ∣ ti /= 0}.
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3.2.2 Stratified spaces
Before we define stratified spaces, a technical remark about the nature of the topological spaces
considered is in order.

Remark 3.2.2.1. In this paper, Top stands for the category of ∆-generated spaces (see
[Dug03] and [FR08]) and all continuous maps between them. This is to ensure that the category
is locally presentable, which is needed to get the model structure described in Theorem 3.2.8.1
(see also Remark 3.2.8.5). It shouldn’t be of much concern however, since all the usual examples
of stratified spaces, as well as posets themselves, are ∆-generated spaces. The implications of
this choice of category for mapping spaces are discussed in Remark 3.2.2.5.

In this paper, we consider the most general notion of stratified spaces among those commonly
used.

Definition 3.2.2.2. A stratified space is the data of:

• a topological space X,

• a poset P ,

• a continuous map φX ∶X → P , called the stratification.

By abuse of notation, we will often refer to the above data just by the space X. The strata of
X are the subspaces φ−1

X (p) =Xp ⊂X for p ∈ P . A stratified map between two stratified spaces
X → P and Y → Q is a commutative square of continuous maps

X Y

P Q

f

φX φY

f̄

We will often refer to such a square just by the map f . The category of stratified spaces and
stratified maps is denoted Strat.

Given a poset P , a stratum-preserving map between two spaces stratified over P , X and
Y , is a continuous map f ∶X → Y such that the following triangle commutes:

X Y

P .

f

φX φY

The category of spaces stratified over P and stratum-preserving maps is denoted StratP .

Remark 3.2.2.3. Consider the functor Strat → Pos sending X → P to P and a stratified
map f to f̄ . This functor is a bifibration (see [CM20, Section 2.1]), and the fiber over a poset
P is the subcategory StratP . This situation is pictured in the following diagram:

StratP Strat

{P,1P } Pos .

Recollection 3.2.2.4. The category StratP admits the structure of a simplicial category.
The tensoring of StratP for X ∈ StratP and S ∈ sSet is given by X × ∣S∣ with the stratification
induced by first projecting to the first component. By abuse of notation, this stratified space
will be denoted X × S. Consequently, for X,Y ∈ StratP the simplicial hom is defined via

Map(X,Y )n = StratP (X ×∆n, Y ).
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Furthermore, StratP is also a tensored and cotensored category over Top, again with the
tensoring induced by taking the product and stratifying via projection to the stratified
component. The mapping space

C
0
P (X,Y ) ⊂ C

0
(X,Y )

is obtained by considering the topology on StratP (X,Y ) induced by the inclusion into
C0(X,Y ). By construction, we obtain natural isomorphisms

Sing(C0
P (X,Y )) ≅Map(X,Y )

relating the simplicial and the topological enrichment of StratP .
Note that the category Strat also admits simplicial and topological enrichment, defined in

a similar way, as well as internal hom-sets (see [Nan19, section 6.2]).

Remark 3.2.2.5. There is some ambiguity on the topology that should be assigned to
the mapping space C0

P (X,Y ). In this work, the category Top stands for the category of
∆-generated space, (see [FR08; Dug03]), and so C0

P (X,Y ) should be equipped with the ∆-
ification of the compact open topology. On the other hand, note that Sing(C0

P (X,Y )) gives
the same simplicial set whether one uses the compact open topology or its ∆-ification, and
in particular, the map C0,∆

P (X,Y )→ C0,c.o.
P (X,Y ) given by the change in topology is a weak

equivalence. Since we are only interested in the (weak) homotopy type of those objects, we
will always consider C0

P (X,Y ) as equipped with the compact open topology.
Furthermore, if X is some compact stratified space and K is a locally finite stratified simpli-

cial set, then C0
P (X, ∣K ∣P ) will be metrizable. In particular, HoLinkI(∣K ∣P ) = C0

P (∣∆I ∣P , ∣K ∣P ),
will be metrizable if K is a locally finite stratified simplicial set (see Definition 3.2.5.1). This
observation will be useful in the proof of Theorem 3.4.4.1.

The simplicial structure immediately induces a notion of homotopy.

Definition 3.2.2.6. Let f, g∶X → Y be two maps in Strat. A stratified homotopy between
f and g is the data of a stratified map H ∶X ×∆1 → Y such that the restriction to X × {0}
and X × {1} are equal to f and g respectively. We denote this relation by f ≃s g. A stratified
homotopy equivalence is a stratified map f ∶X → Y such that there exists a stratified map
g∶Y →X, such that g ○ f ≃s 1X and f ○ g ≃s 1Y . For X,Y ∈ StratP , we will write [X,Y ]P for
the set of stratified homotopy classes of stratum-preserving maps between X and Y .

Remark 3.2.2.7. One can rephrase the above definition as follows: given two stratified spaces
X → P and Y → Q and two maps between them, f and g, a stratified homotopy between f
and g corresponds to a commutative square in Top:

X × [0,1] Y

P Q .

φX○prX

H

φY

H̄

There are several things to note here.

• If two maps are stratified homotopic, the underlying maps of spaces are homotopic, since
H is also a homotopy in the usual sense.

• Since the homotopy is constant at the level of posets, one must have H̄ = f̄ = ḡ. In
particular, any stratified homotopy between stratum-preserving maps is given by a
stratum-preserving homotopy, H. For this reason we will not make a distinction between
stratum-preserving and stratified homotopies, and just use ”stratified homotopy” as a
generic term.

• Since the homotopy is constant at the poset level, any stratified homotopy equivalence
must be over an isomorphism of posets.
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We will also make use of a stronger notion of stratified spaces, for which, in addition to a
decomposition into strata, the stratification also encodes information about the neighborhoods
of strata.

Definition 3.2.2.8. A strongly stratified space is the data of

• a space X,

• a poset P ,

• a continuous map φX ∶X → ∣N(P )∣ called the (strong) stratification.

Stratum-preserving maps between strongly stratified spaces are defined analogously to Defini-
tion 3.2.2.2 as commutative triangles

X Y

∣N(P )∣ .

f

φX φY

This leads to the category TopN(P ), of spaces strongly stratified over P and stratum-preserving
maps. By abuse of language, we will call the objects of TopN(P ) spaces stratified over N(P ).

Recollection 3.2.2.9. The map φP ∶ ∣N(P )∣→ P , of Definition 3.2.1.9 induces a functor:

φP ○ −∶TopN(P ) → StratP
(X,φX ∶X → ∣N(P )∣)↦ (X,φP ○ φX ∶X → P ).

This functor admits a right-adjoint, − ×P ∣N(P )∣∶StratP → TopN(P ), defined on objects as
the following pull-back:

Y ×P ∣N(P )∣ Y

∣N(P )∣ P ,

φY

φP

where the strong stratification on Y ×P ∣N(P )∣ is given by the projection on the second
factor. Note that TopN(P ) also admits a simplicial and topological enrichment, as in Recollec-
tion 3.2.2.4, which analogously to the stratified setting, induces a notion of strongly stratified ho-
motopies. These enrichment structures are compatible with the adjunction φP ○− ⊣ −×P ∣N(P )∣.
In particular, this adjoint pair preserves the respective notions of stratified homotopies.

3.2.3 Stratified simplicial sets
We will also consider a simplicial version of stratified spaces, the stratified simplicial sets.

Definition 3.2.3.1. A stratified simplicial set is the data of:

• a simplicial set K,

• a poset P ,

• a simplicial map φK ∶K → N(P ), called the stratification.

By abuse of notation, we will often refer to the above data just by the simplicial set K. A
stratified map between two stratified simplicial sets K → N(P ), L→ N(Q) is a commutative
square of simplicial maps.

K L

N(P ) N(Q)

f

φK φL

N(f̄)
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The category of stratified simplicial sets and stratified maps is denoted sStrat.
Given a poset P , a stratum-preserving map between two simplicial sets stratified over P ,

K and L, is a simplicial map f ∶K → L, such that the following triangle commutes:

K L

N(P ) .

f

φK φL

The category of simplicial sets stratified over P is denoted sStratP .

Remark 3.2.3.2. The category sStratP can alternatively be defined as a presheaf category.
Indeed, there is an equivalence of categories sStratP ≅ Fun(∆op

P ,Set) (see Definition 3.2.1.5).
Note that under this identification, a flag J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] is sent to the stratified simplicial
set φJ ∶∆n → N(P ), satisfying φJ (k) = pk, where k stands for the k-th vertex of ∆n. We
will denote this stratified simplicial set ∆J , and call all such objects stratified simplices. See
[Dou21a, Proposition 1.3]. Note that this is consistent with the convention of Definition 3.2.1.6.

Recollection 3.2.3.3. The category sStratP admits the structure of a simplicial category.
The tensoring between K ∈ sStratP and S ∈ sSet is given by the product K × S with the
stratification given by the composition K ×S →K → N(P ). For K,L ∈ sStratP the simplicial
hom is defined via

Map(K,L)n = sStratP (K ×∆n, L).

Just as for stratified spaces, the simplicial structure induces a notion of homotopy equiva-
lences.

Definition 3.2.3.4. Let f, g∶K → L be two maps in sStrat. An elementary stratified homotopy
between f and g is the data of a stratified map H ∶K ×∆1 → L, whose restrictions to K × {0}
and K × {1} give f and g respectively. The maps f and g are said to be stratified homotopic
if there exists a finite sequence of maps fi, 0 ≤ i ≤ n such that f0 = f , fn = g, and for all
0 ≤ i ≤ n−1, fi and fi+1 are related by an elementary stratified homotopy. A stratified homotopy
equivalence is a stratified map f ∶K → L such that there exists a stratified map g∶L→K such
that g ○ f and f ○ g are respectively stratified homotopic to 1K and 1L. For K,L ∈ sStratP ,
we will write [K,L]P for the set of stratum-preserving maps between K and L up to stratified
homotopy.

Recollection 3.2.3.5. The categories of stratified simplicial sets and stratified spaces are
connected through a ∣ − ∣ ⊣ Sing style adjunction, just as in the unstratified context. It can be
described explicitly as follows. Given some fixed poset P , we define a realization style functor

∣ − ∣N(P )∶ sStratP → TopN(P )
(φK ∶K → N(P ))↦ (∣φK ∣∶ ∣K ∣→ ∣N(P )∣) .

Composing with the functor φP ○−∶TopN(P ) → StratP (see Recollection 3.2.2.9) gives a functor
∣ − ∣P ∶ sStratP → StratP . Both functors admit right adjoints, SingP ∶StratP → sStratP and
SingN(P )∶TopN(P ) → sStratP , defined as follows. Given a stratified space φX ∶X → P , its
stratified singular simplicial set, SingP (X), is given by the pullback

SingP (X) Sing(X)

N(P ) Sing(P ) ,

Sing(φX)

where the bottom map is the adjoint map to φP from Definition 3.2.1.9 under ∣ − ∣ ⊣ Sing.
Equivalently, as a presheaf on ∆P , SingP (X) can be constructed via

SingP (X)J = StratP (∣∆J ∣P ,X).
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Note that the collection of adjunctions ∣ − ∣P ⊣ SingP extend to an adjunction

∣ − ∣s∶ sStrat↔ Strat∶Sings.

The definition of SingN(P ) is entirely analogous.

Note also that the adjunctions ∣ − ∣P ⊣ SingP and ∣ − ∣s ⊣ Sings are compatible with the
simplicial structures (see [Dou21a, Proposition 4.9]).

Proposition 3.2.3.6. The adjunctions ∣ − ∣P ⊣ SingP and ∣ − ∣s ⊣ Sings are simplicial, and
preserve stratified homotopies (see Definitions 3.2.2.6 and 3.2.3.4).

3.2.4 Classical links and homotopy links
Recall that pseudo-manifolds are particular kinds of stratified spaces whose strata are manifolds
satisfying gluing conditions. Those conditions can be expressed through the use of some smooth
structures, as in [Whi65b] or [Tho69]. Or they can be expressed in a purely topological fashion
by asking that all points should have neighborhoods that are stratum-preserving homeomorphic
to products of appropriately stratified cones with trivially stratified spaces. We recall the more
recent and more general definition of conically stratified spaces, which will be sufficient for our
purpose. Note that pseudo-manifolds are examples of conically stratified spaces.

Definition 3.2.4.1 ([Lur17, Definition A.5.5]). Let P be a poset, and define c(P ) = {∗}∐P ,
with ∗ < p for all p ∈ P . Let φL∶L→ P be a stratified space. Its (stratified) cone is the stratified
space

c(L) = L × [0,1)/L × {0}→ c(P )

(l, t)↦ {
φL(l) , if t > 0
∗ , if t = 0.

equipped with the teardrop topology, (see Remark 3.2.4.2). A stratified space X → P is
conically stratified if, for every x ∈X, in some stratum Xp, there exists

• a stratified space L→ P>p = {q ∈ P ∣ q > p}, the (local) link at x,

• an open neighborhood x ∈ U ⊂X,

• a space Z,

• and a stratified homeomorphism Z × c(L) ≅ U , over the poset identification c(P>p) ≅
P≥p ⊂ P .

Remark 3.2.4.2. In the above definition, one considers the teardrop topology on the cone
c(L) (see [Lur17, Definition A.5.3]). Note that for a compact (stratified) space, L, it coincides
with the quotient topology. Since pseudo-manifolds are always assumed to have compact links,
this subtlety does not come into play when studying those objects. However, when studying
more general examples of conically stratified spaces, this distinction is crucial. In fact, we will
use throughout a result of Lurie [Lur17, Theorem A.6.4] (see Theorem 3.2.10.2) whose proof
relies on the properties of the teardrop topology.

An even more general notion, more suited for the study of stratified homotopies, was
introduced by Quinn in [Qui88], that of homotopically stratified sets. For those objects,
instead of considering local links, one considers pairwise homotopy links, which provide a
homotopy-theoretic global approach to the former.

Definition 3.2.4.3 ([Qui88, Definition 2.1]). Let X → P be a stratified space and p < q ∈ P .
The homotopy link of the p-stratum in the q-stratum is the topological space

HoLinkp<q(X) = {γ∶ [0,1]→X ∣ γ(0) ∈Xp, γ(t) ∈Xq, ∀t > 0},

whose topology is induced by the inclusion HoLinkp<q(X) ⊂ C0([0,1],X).
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Quinn then defined (see [Qui88, Definition 3.1]) homotopically stratified sets as those
(metric) stratified spaces satisfying:

• evaluation at 0, ev0∶HoLinkp<q(X)→Xp is a Hurewicz-fibration in Top, for all p < q ∈ P ,

• inclusions Xp ↪Xp ∪Xq are tame, for all p < q ∈ P .

Remark 3.2.4.4. In this paper, we will not be overly concerned with the distinctions between
those classes of spaces. As we will see in Theorem 3.2.10.2, pseudo-manifolds, conically
stratified spaces, and homotopically stratified sets share a common homotopical property. It is
this property - and not their geometrical definitions directly - that is leveraged in the proof of
Theorem 3.1.0.2. We only state results about conically stratified spaces - since it is both a
large class, and reasonably easy to define - but Theorem 3.1.0.2 also holds for pseudo-manifolds
or homotopically stratified sets.

Homotopy links are known to characterize the stratified homotopy equivalences between
homotopically stratified sets, as was shown in [Mil13].

Theorem 3.2.4.5 ([Mil13, Theorem 6.3]). A stratified map f ∶X → Y ∈ StratP , between two
homotopically stratified sets is a stratified homotopy equivalence if and only if the induced maps
of spaces

• Xp → Yp,

• HoLinkp<q(X)→HoLinkp<q(Y ),

are homotopy equivalences, for all p ∈ P and q ∈ P with p < q.

It is also possible to get a similar statement, while only asking the maps between strata
and homotopy links to be weak-equivalences. In this case, one has to ask that X and Y are
realizations of stratified simplicial sets, (see [Dou21a, Theorem 5, 4]). In any case, these results
suggest that homotopy links are a good starting point to build a general homotopy theory of
stratified spaces. On the other hand, consider the following example.

Example 3.2.4.6. Consider the stratified simplex ∆J for the (regular) flag J = [p0 < p1 < p2]
in P as well as its boundary ∂∆J ⊂ ∆J with the induced stratification (see Fig. 3.3). The
inclusion

i∶ ∣∂∆J ∣P ↪ ∣∆
J
∣P

induces homotopy equivalences on all strata and pairwise homotopy links, since for both spaces
all of these are contractible. However, i is clearly not a stratified homotopy equivalence since
if we forget the stratification, then the underlying map of topological spaces is not even a
weak equivalence. Note that this is not in contradiction to Theorem 3.2.4.5 as ∣∂∆J ∣P is not
a homotopically stratified set. Indeed, the natural map HoLinkI(∣∂∆J ∣P )→ (∣∂∆J ∣P )p1 , for
I = {p1 < p2}, is not a fibration as it has a nonempty source but is not surjective. If we want
the stratified homotopy type to be finer than the homotopy type of the underlying space, ∂∆J
and ∆J need to have a distinct stratified homotopy type, which can not be defined through
strata and homotopy links alone.
On the other hand, note that the homotopy links of Definition 3.2.4.3 can be equivalently
defined as HoLinkI(X) = C0

P (∣∆I ∣P ,X), for I = {p < q} a regular flag of P . Note that this
definition readily extends to arbitrary regular flags I = {p0 < ⋅ ⋅ ⋅ < pn}. In particular, for the
example at hand, one checks that the inclusion HoLinkI(∣∂∆J ∣P )→HoLinkI(∣∆J ∣P ) is not a
weak equivalence for I = J . Indeed, the domain is empty, as there exists no stratified maps
∣∆J ∣P → ∣∂∆J ∣P , while the codomain contains the identity map. This illustrates the necessity
to consider generalized homotopy links. Indeed, at least when restricting to stratified spaces
that admit (stratified) triangulations, stratified maps inducing weak equivalences between
all strata and generalized homotopy links are weak equivalence of the underlying spaces (see
Example 3.2.8.3 and Remark 3.2.8.4).
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Figure 3.3: The simplex ∆J and its boundary ∂∆J , with J = [p0 < p1 < p2]. The first has a
non-empty J -holink, while HoLinkJ (∂∆J ) = ∅. For all other flags I ≠ J , ∆J and ∂∆J have
equivalent I-holinks.

3.2.5 Generalized links and homotopy links
We now turn to the more general notion of homotopy links, that was suggested in Exam-
ple 3.2.4.6. Note that we will simply call those homotopy links, instead of generalized homotopy
links, and refer to the homotopy links of Quinn as classical homotopy links. Since the latter is
just a particular case of the former, as pointed out in Example 3.2.4.6, this should not cause
too much confusion.

Definition 3.2.5.1. Let K ∈ sStratP , X ∈ TopN(P ), Y ∈ StratP and I = [p0 < ⋅ ⋅ ⋅ < pn] a
regular flag. We define I-th homotopy links, in each of the three categories, as follows:

• HoLinkI(K) =Map(∆I ,K) ∈ sSet,

• HoLinkI(X) =C0
N(P )(∣∆I ∣N(P ),X) ∈ Top,

• HoLinkI(Y ) =C0
P (∣∆I ∣P , Y ) ∈ Top.

When there is a need to distinguish between them, the first two will be respectively called the
simplicial homotopy link and the strong homotopy link, while the last one will always just be
called the homotopy link.

Remark 3.2.5.2. There is a simple mnemonic underlying the choice of font for HoLinkI ,
HoLinkI and HoLinkI . Vertices of HoLinkI(K) are given by simplicial maps from a stratified
simplex into K. Meanwhile, elements of HoLinkI(X) are given by strongly stratum-preserving
maps from (the realization) of a stratified simplex into a space X and elements of HoLinkI(Y )
by stratum-preserving ones. Hence, the degree of rigidity required from these maps decreases
in the order of listing, see Fig. 3.2. This is reflected by the font used for the ”Ho” part of the
respective notation.

Remark 3.2.5.3. Let X ∈ StratP be a P -stratified space and I a regular flag. Then, by
Recollection 3.2.2.4 and Recollection 3.2.2.9 we have natural isomorphisms:

HoLinkI(SingP (X)) ≅ Sing(HoLinkI(X)) ≅ Sing(HoLinkI(X ×P ∣N(P )∣)).

Before considering a converse statement with K ∈ sStratP , we first introduce a generaliza-
tion of the classical notion of links of sub-complex of a simplicial complex.

Definition 3.2.5.4. Let K ∈ sStratP be a stratified simplicial set, and I a regular flag. The
I-th simplicial link of K, LinkI(K), is defined via the following pullback diagram:

LinkI(K) sd(K)

∆0 sd(N(P )) ,

sd(φK)

iI

where sd is the usual barycentric subdivision, and iI is the map sending the point to the
unique vertex in sd(N(P )) corresponding to the regular flag I. This construction induces a
functor

LinkI ∶ sStratP → sSet.
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Remark 3.2.5.5. In the case when K ∈ sStratP comes from a simplicial complex and
P = I = {p0 < p1}, the simplicial set LinkI(K) is the simplicial link of the p0 stratum in K. In
other words, it is the complex obtained by taking the boundary of the simplicial complex given
by simplices which contain a vertex in the p0 stratum. As already noted in [Qui88], from this
it follows that ∣LinkI(K)∣ and HoLinkI(∣K ∣P ) are weakly equivalent. One of the key result in
this paper (Theorem 3.1.0.4), is that this generalizes to arbitrary regular flags and stratified
simplicial sets, and to all the notions of homotopy links considered here.

Definition 3.2.5.6. Let φK ∶K → N(P ) be a stratified simplicial set, I a regular flag and
b ∈ ∣∆I ∣ be the barycenter. Let ∣K ∣b ⊂ ∣K ∣ be the subspace given by ∣φK ∣−1(b). In other words,
∣K ∣b is the space defined via the following pullback:

∣K ∣b ∣K ∣

{b} ∣N(P )∣ .

∣φK ∣

Remark 3.2.5.7. One can also think of ∣K ∣b as a geometric link (see, [Mil68, Theorem
2.10]). Consider the case where P = {0 < 1} = I, with the identification ∣N(P )∣ ≃ [0,1], and
K ∈ sStratP is a triangulation of some pseudo-manifold with an isolated singularity. Then,
∣φX ∣

−1
N(P )([0, 1[) is a neighborhood of the singular point, and must be isomorphic to some cone,

c(L), for some compact manifold L. The subspace ∣K ∣b = ∣φX ∣−1
N(P )(

1
2) is then homeomorphic

to the subspace L×{ 1
2}, or in other words, to the link. See Fig. 3.1 for a side by side comparison

between LinkI(K) and ∣K ∣b.

Let K ∈ sStratP be a stratified simplicial set, I a regular flag and b ∈ ∣∆I ∣ the barycenter.
We will be interested in the following maps:

∣HoLinkI(K)∣ HoLinkI(∣K ∣N(P )) HoLinkI(∣K ∣P )

∣K ∣b

∣LinkI(K)∣

1 2

3

∗

(3.3)

The map labeled ∗ is a non-natural homeomorphism and will be defined at the begining of
Section 3.4, Proposition 3.4.1.1. On the other hand the other maps are both easily defined,
and seen to be natural. Using the structure described so far, the first map is equivalently given
as a map Map(∆I ,X) = HoLinkI(X) → Sing(HoLinkI(∣X ∣N(P ))) =Map(∣∆I ∣N(P ), ∣X ∣N(P )).
It is the map sending a map ∆I ×∆n →X to its realization. The second map just corresponds
to the inclusion C0

N(P )(∣∆I ∣N(P ), ∣X ∣N(P )) ↪ C0
N(P )(∣∆I ∣P , ∣X ∣P ). Finally, the third map is

given by evaluating maps of the form ∣∆I ∣N(P ) → ∣X ∣N(P ) at b ∈ ∣∆I ∣. Section 3.4 is devoted
to proving that the second and the third map in Diagram (3.3) are weak equivalences, while
Section 3.6 handles the first map (or rather, equivalently, it deals with the composition of the
first and the second).

3.2.6 Homotopy links and diagrams
Recollection 3.2.6.1. Let K be a stratified simplicial set, and I ⊂ I ′ two regular flags. The
inclusion ∆I → ∆I′ induces a map HoLinkI′(K) → HoLinkI(K). In fact, the data of the
holinks can be synthesized as the following diagram

sd(P )op
→ sSet
I ↦ HoLinkI(K),
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where sd(P ) is the category of regular P -flags (see Definition 3.2.1.5). We write DiagP =
Fun(sd(P )op, sSet) for the category of such diagrams. Note that DiagP can equivalently be
described as the category of presheaves over sd(P )×∆, i.e. DiagP ≅ Fun((sd(P )×∆)op,Set),
though we will mostly consider objects of DiagP as diagrams of simplicial sets.

We have a functor

DP ∶ sStratP →DiagP
K ↦ (I ↦ HoLinkI(K))

The functor admits a left adjoint, CP ∶DiagP → sStratP . Since DiagP is a presheaf category
over sd(P ) ×∆, it is enough to define CP on pairs (I, n) ∈ sd(P ) ×∆ and then take the left
Kan extension along the Yoneda embedding sd(P ) ×∆↪DiagP . On sd(P ) ×∆, one defines
CP (I, n) = ∆I ×∆n. A more explicit definition can be found in [Dou21c, Definition 2.5].
Similarily, there are functors DTop

P ∶StratP →DiagP , as well as DTopN(P )

P ∶TopN(P ) →DiagP
defined as follows

DTop
P ∶StratP →DiagP

Y ↦ (I ↦ Sing(HoLinkI(Y )))

D
TopN(P )

P ∶TopN(P ) →DiagP
X ↦ (I ↦ Sing(HoLinkI(X)))

DTop
P and DTopN(P )

P both admit left adjoints, CTop
P ∶DiagP → StratP , and CTopN(P )

P ∶DiagP →
TopN(P ). Note that the six functors defined above satisfy several relations, which can be
summed up by the following diagram of adjunctions:

sStratP

TopN(P )

DiagP StratP

DP

∣−∣P

∣−∣N(P )

φP ○−

SingN(P )CP

CTop
P

SingP

DTop
P

−×P ∣N(P )∣

(3.4)

In the above diagram, all pairs of parallel maps are adjoint pairs. Furthermore, if one restricts
to left adjoints, then one gets a commutative diagram (up to natural isomorphisms), and
similarly for the right adjoints. Given the compatibility between all those functors, we will
mostly omit the superscript Top and TopN(P ).

The values of the functors DP on stratified objects compile all the information about their
(generalized) homotopy links. This suggests that diagrams form a reasonable basis to build
stratified homotopy types from.

3.2.7 The model category of diagrams
Recall that any category of functors into a model category admits a projective model structure.
Note that throughout the paper, we consider the category of simplicial sets with the Kan-Quillen
model structure.

Theorem 3.2.7.1 ([Hir03, Theorem 11.6.1]). There exists a projective model structure on
DiagP = Fun(sd(P )op, sSet), such that:
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• fibrations are maps f ∶F → G, such that f(I)∶F (I) → G(I) is a Kan fibration for all
I ∈ sd(P ),

• weak equivalences are maps f ∶F → G, such that f(I)∶F (I)→ G(I) is a weak equivalence
of simplicial sets, for all I ∈ sd(P ).

This model structure is cofibrantly generated, and we need the following definition to make
explicit the sets of generating (trivial) cofibrations.

Definition 3.2.7.2. Let S be a simplicial set and I a regular flag. Let SI ∈DiagP be the
diagram defined as follows:

SI(I ′) = {
S if I ′ ⊂ I,
∅ else.

Proposition 3.2.7.3. The set of generating cofibrations for the model structure of Theo-
rem 3.2.7.1 is given by:

{(∂∆n
)
I
→ (∆n

)
I
∣ n ≥ 0, I ∈ sd(P )}.

The set of generating trivial cofibrations is given by:

{(Λnk)I → (∆n
)
I
∣ n ≥ 1, 0 ≤ k ≤ n, I ∈ sd(P )}.

Where Λnk is the k-th horn on ∆n, i.e. Λnk = ∪i/=kdi(∆n) ⊂∆n.

It is difficult to give an explicit description of the cofibrant objects in a projective model
structure in general, but in the case of DiagP there exists a simple characterization. Since
cofibrant diagrams are related to the vertical objects we will use in Section 3.6.2 (see Re-
mark 3.6.2.8), we give such a description here.

Proposition 3.2.7.4. Assume that P is of finite length, and let F ∈ DiagP be a diagram.
Then F is cofibrant if and only if the following two conditions are satisfied:

1. For all regular flags I ⊂ I ′, the map F (I ′)→ F (I) is a monomorphism,

2. If I1,I2 are two regular flags such that I0 = I1 ∩ I2 /= ∅, then either

• I3 = I1 ∪ I2 is a flag, and F (I1) ∩ F (I2) = F (I3) ⊂ F (I0),
• or I1 ∪ I2 is not a flag, and F (I1) ∩ F (I2) = ∅.

Proof. We give a brief sketch of the proof. For the direct implication, note that a projectively
cofibrant diagram must satisfy Condition (1) whenever the indexing category is a poset. For
Condition (2), one easily checks that it is satisfied by the domains and codomains of generating
cofibrations. Then, it is a matter of checking that this property is preserved by taking disjoint
unions, pushouts and retracts.

For the reverse implication, consider the following characterization of projectively cofibrant
diagrams of simplicial sets [Dug01, Corollary 9.4]. A diagram F ∶ sd(P )op → sSet is projectively
cofibrant if and only if the following two conditions are satisfied:

(a) For all n ≥ 0, the functor of n-simplicies Fn∶ sd(P )op → Set splits into two sub-functors
Fn = F

degen
n ∐F non-degen

n where the former reaches exactly the degenerate n-simplices of
F (I), for all I.

(b) For all n ≥ 0, Fn can be further decomposed into a coproduct of representables.

We will first prove that (1) ⇒ (a). Let σ ∈ F (I)n for some I ∈ sd(P ). Define the set
Fσ ⊂∐I F (I)n as the smallest subset such that

• σ ∈ Fσ,
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• ∀ I,I ′ ∈ sd(P ), if τ ∈ F (I) ∩ Fσ and I ′ ⊂ I, then the image of τ in F (I ′) is in Fσ

• ∀ I,I ′ ∈ sd(P ), if τ ∈ F (I) and I ′ ⊂ I, and the image of τ in F (I ′) is in Fσ, then τ is
in Fσ.

First note that by construction, if σ ∈ F (I) and τ ∈ F (I ′), then either Fσ ∩ Fτ = ∅ or
Fσ = Fτ . Next, by (1), if σ is non-degenerate, then so are all the simplices in Fσ, since
cofibrations send non-degenerate simplices to non-degenerate simplices, and similarly, if σ
is degenerate all simplices in Fσ are degenerate. Now, note that Fσ defines a subfunctor of
Fn by setting Fσ(I) = Fσ ∩ F (I). To prove that (1) + (2) ⇒ (b), it is enough to show that
the Fσ defined above are representable. Let Qσ = {(τ,I) ∣ τ ∈ Fσ(I)}, and equip it with
the order relation (τ1,I1) < (τ2,I2) if I1 ⊂ I2 and the image of τ2 in F (I1) is τ1. Then, by
construction of Fσ, the poset Qσ is connected. In particular, if (τ,I) and (τ ′,I) are two
elements of Qσ, then they must be related by a zigzag. Note that by (2), any zigzag of the
form (τ1,I1) > (τ0,I0) < (τ2,I2) can be replaced by a zigzag (τ1,I1) < (τ3,I3) > (τ2,I2).
Then, by repeated application of (2), one can assume that there exists (τ ′′,I ′), such that,
(τ,I) < (τ ′′,I ′) > (τ ′,I), which implies that τ = τ ′. This has two consequences. First, Qσ is
a subposet of sd(P )op, and second, Fσ(I) is either empty or is a point. To show that Fσ is
reprensentable, it remains to be showed that Qσ admits a maximal element. Once again, by
repeated application of (2), any two elements (τ1,I1), (τ2,I2) must admit an upper bound
(τ3,I3) ≥ (τ1,I1), (τ2,I2), but now, I3 is a regular flag of length greater or equal than the
length of I1 and I2, with possible equality only if I1 = I2. Since P is assumed to be of finite
length, the length of regular flags is bounded, and thus Qσ admits a maximal element, Iσ.
The functor Fσ ∶ sd(P )op → Set is then represented by Iσ.

3.2.8 Model categories for stratified spaces
We can now describe the model category of stratified spaces as introduced in [Dou21c].

Theorem 3.2.8.1 ([Dou21c, Theorem 2.15]). There exists a model structure on StratP , where
a map f ∶X → Y is

• a fibration if the induced maps HoLinkI(X) → HoLinkI(Y ) are fibrations for all I ∈
sd(P ),

• a weak equivalence if the induced maps HoLinkI(X)→HoLinkI(Y ) are weak equivalences
for all I ∈ sd(P ).

This model structure is cofibrantly generated and the set of generating cofibrations is given by

{∣∆I ∣P × S
n−1
↪ ∣∆I ∣P ×B

n
∣ n ≥ 0, I ∈ sd(P )},

while the set of generating trivial cofibrations is given by

{∣∆I ∣P ×B
n
× {0}↪ ∣∆I ∣P ×B

n
× [0,1] ∣ n ≥ 0, I ∈ sd(P )},

where Bn and Sn−1 are respectively the n-dimensional ball and the (n − 1)-dimensional sphere
bounding it.

Remark 3.2.8.2. The model category StratP has the notable property that all of its objects
are fibrant, which is a property also enjoyed by the classical model structure on Top. To see
this, note that for all I ∈ sd(P ), HoLinkI(P ) = ∗, in particular, for all X ∈ StratP , the map
HoLinkI(X)→HoLinkI(P ) = ∗ is a fibration in Top, which implies that the map X → P is a
fibration in StratP .

Example 3.2.8.3. For arbitrary stratified spaces in StratP it is not the case that the forgetful
functor StratP → Top preserves weak equivalences. Indeed, let E be the Hawaiian Earring
(see for ex. [EK00]) and f ∶ E′ = ⋁n∈N S

1 → E the bijection obtained by decomposing H
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into its circles, and gluing these along the basepoint. f is far from being a weak equivalence
of topological spaces. Indeed, [EK00, Thm. 3.1] shows that it does not even induce an
isomorphism on singular homology in degree 1. Nevertheless, if we consider E and E′ as
stratified over P = {0 < 1}, by sending the singular point to 0, then f induces a weak equivalence
of stratified spaces. Indeed, it even induces a homeomorphism on strata and homotopy links.
This should not be excessively surprising. The forgetful functor StratP → Top is left Quillen,
which means it is only expected to preserve weak equivalences between cofibrant objects.
However, not every object in StratP , in particular not the Hawaiian Earring, is cofibrant.

Remark 3.2.8.4. Despite Example 3.2.8.3, it holds true that the forgetful functor StratP →
Top preserves weak equivalences for a much larger class than that of cofibrant objects. In
fact, it preserves weak equivalences between realizations of stratified simplicial sets. This is a
consequence of Theorem 3.5.1.1, together with the fact that sStratP → sSet preserves weak
equivalences, by a direct application of Ken Brown’s Lemma ([Hir03, Cor. 7.7.2].

Remark 3.2.8.5. The model structure defined above was originally obtained by transporting
the model structure from DiagP along the adjunction CP ∶DiagP ↔ StratP ∶DP (see Recol-
lection 3.2.6.1). This uses the transport theorem [Hes+17, Corollary 3.3.4], and this is where
the necessity to restrict to ∆-generated spaces arose, since the theorem requires StratP to be
locally presentable (see Remark 3.2.2.1). Using the alternative transfer theorem [Ste13, A.1]
instead, one can prove the existence of an identically defined model structure on the category
of P -stratified spaces defined using all topological spaces. Denote the larger model category
constructed in this fashion by TP . Then TP has identically defined acyclic cofibrations and
fibrations as StratP . In particular, the adjunction

TP ↔ StratP

given by inclusion and ∆-generation is a Quillen adjunction. It follows immediately from
the universal property of ∆-generation and the definition of homotopy links that both unit
and counit of this adjunction are weak equivalences. In particular, the two model categories
are Quillen-equivalent. Hence, from the perspective of homotopy theory, the restriction to
∆-generated spaces can be neglected. At the same time, StratP enjoys the additional benefit
of being a combinatorial model category enriched over Top, (and over sSet, through the
functor Sing) making it generally preferable to work with. Even more, one easily checks that
with its simplicial structure described in Recollection 3.2.2.4, StratP is a simplicial model
category.

There is a similar model structure for TopN(P ), also obtained by transporting along the
adjunction with DiagP .

Theorem 3.2.8.6 ([Dou21c, Theorem 2.8]). There exists a model structure on TopN(P ),
where a map f ∶X → Y is

• a fibration if the induced maps HoLinkI(X) → HoLinkI(Y ) are fibrations for all I ∈
sd(P ),

• a weak equivalence if the induced maps HoLinkI(X)→ HoLinkI(Y ) are weak equivalences
for all I ∈ sd(P ).

This model structure is cofibrantly generated and the set of generating cofibrations is given by

{∣∆I ∣N(P ) × Sn−1
↪ ∣∆I ∣N(P ) ×Bn ∣ n ≥ 0, I ∈ sd(P )},

while the set of generating trivial cofibrations is given by

{∣∆I ∣N(P ) ×Bn × {0}↪ ∣∆I ∣N(P ) ×Bn × [0,1] ∣ n ≥ 0, I ∈ sd(P )},

where Bn and Sn−1 are respectively the n-dimensional ball and the (n − 1)-dimensional sphere
bounding it.
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The model categories from Theorems 3.2.8.1 and 3.2.8.6 are Quillen-equivalent, through
the adjunction φP ○ − ⊣ − ×P ∣N(P )∣ described in Recollection 3.2.2.9, see [Dou21c, Theorem
2.15] together with the correction in [Dou21b, Theorem 3.15] for a proof.

Theorem 3.2.8.7. The adjunction φP ○ −∶TopN(P ) ↔ StratP ∶ − ×P ∣N(P )∣ is a Quillen
equivalence.

The model categories TopN(P ) and StratP are also Quillen-equivalent to DiagP .

Theorem 3.2.8.8 ([Dou21c, Theorem 2.12]). The adjunctions CP ∶DiagP ↔ TopN(P )∶DP

and CP ∶DiagP ↔ StratP ∶DP are Quillen equivalences.

Leveraging the structure described in Remark 3.2.2.3, one can construct a model structure
on Strat through the theory of Quillen-bifibrations, see [CM20]. Note that any isomorphism
of posets α∶P → Q induces an equivalence of categories DiagQ →DiagP . In particular, given
a map in Strat

X Y

P Q ,

f

φX φY

f̄

(3.5)

where f̄ is an isomorphism, one can consider the diagram associated to Y as a diagram
in DiagP , and consider f as inducing a map in DiagP . From this, it follows that a weak
equivalence induces a map of homotopy links. The original version of the following result in
[Dou21c] and [DW22] is lacking two cofibrant generators. We have added them below. That
these are the correct generators follows from Lemma 5.3.1.9.

Theorem 3.2.8.9 ([Dou21c, Theorem 3.6]). There exists a model structure on Strat where a
map f ∶ (X → P )→ (Y → Q) is a weak equivalence if and only if f̄ ∶P → Q is an isomorphism,
and the maps induced by f

HoLinkI(X)→HoLinkf̄(I)(Y ),

are weak equivalences for all I ∈ sd(P ).
This model category is cofibrantly generated with the set of generating cofibrations given by

{∣∆I ∣N × Sn−1
↪ ∣∆I ∣N ×Bn ∣ n ≥ 0, I ∈∆N},

together with the following two maps of stratified spaces with empty underlying space:

∅ ∅ ∅ ∅

∅ [0] , [0] ⊔ [0] [1] .

(3.6)

The set of generating trivial cofibrations is given by

{∣∆I ∣N ×Bn × {0}↪ ∣∆I ∣N ×Bn × [0,1] ∣ n ≥ 0, I ∈∆N}.

3.2.9 The model category of stratified simplicial sets
Before defining a model structure for stratified simplicial sets, we need to define a particular
set of stratified horn inclusions.

Definition 3.2.9.1. A stratified horn inclusion is an inclusion ΛJk → ∆J ∈ sStratP , where J
is a flag and ΛJk = ∪i/=kdi(∆J ), i.e. it is the union of all proper faces of ∆J other than its k-th
face. An admissible horn inclusion is a stratified horn inclusion ΛJk →∆J such that any of
the following equivalent conditions is satisfied:
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• The map ΛJk →∆J is a stratified homotopy equivalence (see Definition 3.2.3.4).

• There exists a flag J ′ such that ∆J is either the k-th or (k + 1)-th degeneracy of ∆J ′ .

• J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] and pk = pk+1 or pk = pk−1.

For a proof that the above conditions are equivalent, see [Dou21a, Proposition 1.13].

Theorem 3.2.9.2 ([Dou21a, Theorem 2.14]). There exists a cofibrantly generated model
structure on sStratP where the generating set of cofibrations is given by

{∂∆J →∆J ∣∆J ∈∆P },

and the generating set of trivial cofibrations is given by

{ιJk ∶Λ
J
k →∆J ∣ ιJk is an admissible horn inclusion}.

Weak equivalences in this category are the maps f ∶K → L such that for all I ∈ sd(P ), the
induced maps

HoLinkI(KFib
)→ HoLinkI(LFib

) (3.7)

are weak equivalences, where (−)Fib means passing to a fibrant replacement.

Remark 3.2.9.3. As is usual for a model category of presheaves, all objects of sStratP are
cofibrant. In fact, the class of cofibrations is exactly the class of monomorphisms in sStratP .
Indeed, the set of generating cofibrations is the set of boundary inclusions of (stratified)
simplices, which can easily be seen to generate all monomorphisms.

Remark 3.2.9.4. Note that stratified homotopy equivalences in the sense of Definition 3.2.3.4
are weak equivalences in the model category described above. Furthermore, this model structure
is minimal among model structures satisfying this property and having monomorphisms as
cofibrations, i.e. it has the smallest possible class of weak equivalences. This comes from
the fact that the model structure of Theorem 3.2.9.2 is built using Cisinski’s theory [Cis06].
By [Cis06, Théorème 1.3.22], such a model category is specified by the data of a cylinder
(Definition 3.2.3.4) and a class of anodyne extension. In the case of sStratP , since admissible
horn inclusions are stratified homotopy equivalences, the class of anodyne extensions is the one
generated by the empty set, see [Cis06, 1.3.12, Proposition 1.3.13]. This implies in particular
that if a model structure on sStratP is such that

• the cofibrations are monomorphisms,

• stratified homotopy equivalences are weak equivalences,

then it is a right Bousfield localization of the structure of Theorem 3.2.9.2. One particular
example of interest is the model structure sStratJoyal-Kan

P defined by Haine in [Hai23]. Haine
starts from the Joyal model structure, and then localizes the structure along the inclusions of
stratified simplicial sets into their cylinders. In particular, sStratJoyal-Kan

P is a right Bousfield
localization of sStratP .

Remark 3.2.9.5. Note that, contrary to the case of stratified spaces (Theorem 3.2.8.1), the
weak equivalences for stratified simplicial sets are not defined as the maps inducing weak
equivalences between homotopy links, but only as those maps satisfying this property after a
suitable fibrant replacement. In particular, the model structure on sStratP is not transported
from the category of diagrams DiagP . On the other hand, consider the model structure
described by Henriques in [Hen], in which weak equivalences are defined as those maps inducing
weak equivalences between all simplicial homotopy links. The two model structures are known
to be the same for very general reasons (for example, consider the previous remark), but it is
not immediately clear why the classes of weak equivalences coincide. We investigate this in
Section 3.6, see also Remark 3.6.0.3.
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Similarly to the case of stratified spaces, there is a model structure on all stratified simplicial
sets. The original version of the following result in [DW22] is lacking two cofibrant generators.
We have added them below. That these are the correct generators follows from Lemma 5.3.1.9.
See Corollary 5.3.1.10.

Theorem 3.2.9.6. There exists a model structure on sStrat where a map f ∶ (K → N(P ))→
(L → N(Q)) is a weak equivalence if and only if f̄ ∶P → Q is an isomorphism and the maps
induced by f

HoLinkI(KFib
)→ HoLinkf̄(I)(LFib

)

are weak equivalences for all I ∈ sd(P ), where (−)Fib is a fibrant replacement in sStratP .
The model category is cofibrantly generated, and the set of generating cofibrations is given

by
{∂∆I ↪∆I ∣ I ∈ sd(N)}

together with the following two maps of stratified simplicial sets with empty underlying simplicial
set:

∅ ∅ ∅ ∅

∅ [0] , [0] ⊔ [0] [1] .

(3.8)

The set of generating trivial cofibrations is given by

{ιIk ∶ΛIk ↪∆I ∣ ιIk is admissible in sStratN}.

3.2.10 Failure to be a Quillen equivalence
Now that we have two homotopy theories, one for stratified simplicial sets, and one for stratified
spaces, we want to show that they coincide through the adjunction ∣ − ∣s∶ sStrat↔ Strat∶Sings.
In the language of model categories, this would mean showing that the adjunction is a Quillen
equivalence. However, this adjunction already fails to be a Quillen adjunction, since the right
adjoint Sings does not preserve fibrancy, as we show in the following recollection.

Recollection 3.2.10.1. Let X → P be a stratified space. For X to be fibrant, one has to
check that for all regular flags I ∈ sd(P ), DP (X)(I) is a Kan-complex. But note that by
definition, those are equal to Sing(HoLinkI(X)), and so, are Kan-complexes, which means
that any stratified space is fibrant as already observed in Remark 3.2.8.2. On the other hand,
for SingP (X) to be fibrant means that in any diagram of the form

ΛJk SingP (X)

∆J N(P ) ,

where ΛJk is admissible, there exists a lift. Using the adjunction ∣ − ∣P ⊣ SingP , and the fact
that SingP (P ) = N(P ), this is equivalent to asking for a lift in diagrams of the form

∣ΛJk ∣P X

∣∆J ∣P P .

Now consider the poset P = {0 < 1}, and the stratified space X = ∣ΛJ1 ∣P with J = [0 ≤ 0 ≤ 1].
Then, ΛJ1 is admissible, and so for SingP (X) to be fibrant, there must be a lift in the following
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diagram
∣ΛJ1 ∣P ∣ΛJ1 ∣P

∣∆J ∣P P ,

1

but there exist no stratified section ∣∆J ∣P → ∣ΛJ1 ∣P , as illustrated in Fig. 3.4, which means
that SingP (∣ΛJ1 ∣P ) is not fibrant. In particular, the functor SingP does not preserve fibrations.

Figure 3.4: The inclusion ∣ΛJ1 ∣P ↪ ∣∆
J ∣P , with J = [0 ≤ 0 ≤ 1], admits no stratified retraction,

since any retraction would send some part of the interior of ∣∆2∣ to the singular stratum.

On the other hand, stratified spaces that are in one of the three classes mentioned in
Section 3.2.4, pseudo-manifolds, conically stratified spaces and homotopically stratified sets,
have better behaved SingP .

Theorem 3.2.10.2 ([Lur17, Theorem A.6.4][Nan19, Proposition 8.1.2.6]). Let X → P be
a stratified space. If it is either a conically stratified space or if P is finite and X is a
homotopically stratified set, then the simplicial set underlying SingP (X) is a quasi-category.

In those cases, this implies that SingP (X) is a fibrant object in sStratP , see [Dou21a,
Proposition 4.12]. Note that while Recollection 3.2.10.1 implies that the adjunction ∣ − ∣P ⊣
SingP is not a Quillen adjunction, we can still use it to deduce results about objects for
which SingP is fibrant, such as those mentioned above. In fact, it is possible to recover an
independent proof of Miller’s Theorem (Theorem 3.2.4.5), this way (see [Dou21a, Section 5]).
Relatedly, Theorem 3.1.0.2 (Corollary 3.5.2.4) states that those objects do behave like fibrant
objects in the homotopy category hoStrat.

3.2.11 The stratified subdivision and its adjoint
As we have seen in the previous section, the model structure on StratP and sStratP cannot be
compared directly through the adjunction ∣ − ∣P ⊣ SingP . To achieve a comparison, one needs
to work with a suitably defined stratified subdivision. Note that this stratified subdivision was
already used to characterize the model structure of Theorem 3.2.9.2 in [Dou21a], and that,
through its adjoint, it allows for the definition of a fibrant replacement functor in sStratP , see
Section 3.3.1 and Corollary 3.3.1.2.

Remark 3.2.11.1. In this subsection and through the remainder of this paper, we will often
abuse notation by identifying an n-dimensional stratified simplex ∆J with its underlying
simplex ∆n. This allows for notation such as ∆J0 to refer to the set of vertices of ∆n.

Recollection 3.2.11.2. Denote by sd∶ sSet → sSet the classical barycentric subdivision
[Kan57, Section 2]. Given a stratified simplex ∆J , J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] its stratified subdivision
is the subcomplex sdP (∆J ) ⊂ sd(∆n) ×∆J , given by such simplices [(σ0, q0), . . . , (σk, qk)]
fulfilling {q0, . . . , qk} ⊂ {pi ∣ i ∈ σ0}. It is stratified via projection to the second component.
This construction left Kan extends to a functor

sdP ∶ sStratP → sStratP .

For a stratified simplicial set K ∈ sStratP , we can also describe the stratified simplicial set
sdP (K) more explicitly. Note that we have an inclusion sdP (N(P )) ⊂ sd(N(P )) ×N(P ),
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composing it with the projection on the first factor gives a map sdP (N(P ))→ sd(N(P )). The
stratified simplicial set sdP (K) can then be seen as the following pullback:

sdP (K) sd(K)

sdP (N(P )) sd(N(P )) ,

sd(φK)

and the stratification is given by the composition sdP (K)→ sdP (N(P ))→ N(P ).
The functor sdP naturally comes with a natural transformation, l.v.P ∶ sdP → 1sStratP

, the
stratified last vertex map. We define it on stratified simplices by giving its value on vertices:

l.v.P ∶ sdP (∆J )0 →∆J0
([q0 ≤ ⋅ ⋅ ⋅ ≤ qk], q)↦max{i ∣ qi = q}.

Then, since the above is a map between simplicial complexes, its value on vertices uniquely
defines a simplicial map l.v.P ∶ sdP (∆J )→∆J .

The functor sdP admits a right adjoint, defined as

ExP ∶ sStratP → sStratP
K ↦ sStratP (sdP (∆−),K)

where again, by Remark 3.2.3.2, we consider sStratP as a category of presheaves over ∆P . The
adjoints of the maps l.v.P ∶ sdP (K)→K give natural maps ιK ∶K ↪ ExP (K), which assemble
into a natural transformation ι∶1sStratP

→ ExP . Finally, we denote by sdnP , ExnP , l.v.nP , ιn the
obvious functors obtained by iteration and by Ex∞P the colimit of the diagram

1sStratP
↪ ExP ↪ Ex2

P ↪ . . . .

Given K ∈ sStratP the stratified simplicial set Ex∞P (K) is fibrant [Dou21a, Lemma 2.10]. It is
the content of Corollary 3.3.1.2 that X ↪ Ex∞P (X) in fact defines a fibrant replacement of K.

Figure 3.5: From left to right, the simplex ∆[0≤0≤1], its ”naive” subdivision, its stratified
subdivision sdP (∆[0≤0≤1]), and the stratified subdivision of ∆[0≤1≤2]

We will also use some properties of the subdivision functor.
Proposition 3.2.11.3. For all stratified simplicial sets K ∈ sStratP , the last vertex map
l.v.P ∶ sdP (K)→K is a weak equivalence. In particular, if f ∶K → L is a map in sStratP , then
f is a weak equivalence if and only if sdP (f) is a weak equivalence.
Proof. Consider the following commutative diagram

sdP (K) sdP (L)

K L .

sdP (f)

l.v.P l.v.P

f

The first part of the proposition asserts that the vertical morphisms are weak equivalences.
Thus, by the two out of three law, the first assertion of the proposition implies the second
assertion. For the first assertion, consider [Dou21a, Lemma A.3], which applies to sdP and l.v.P
as shown in the proof of [Dou21a, Theorem 2.14]. One can also prove this directly by checking
that it holds on representables, then using the cube lemma in an inductive argument.
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3.2.12 Recovering a Quillen equivalence
Composing the adjoint pairs sdP ⊣ ExP and ∣ − ∣P ⊣ SingP , one gets a Quillen equivalence.
Theorem 3.2.12.1 ([Dou21b, Theorem 1.15]). The adjoint pair

∣sdP (−)∣P ∶ sStratP ↔ StratP ∶ExPSingP (3.9)
is a Quillen equivalence.

In particular, this means that the homotopy theories of spaces and simplicial sets stratified
over P coincide.
Remark 3.2.12.2. The Quillen equivalence obtained above is only partially satisfactory for
several reasons.

• First, the adjunction (3.9) is not very well suited for the study of conically stratified
objects, since even reasonable PL-pseudomanifolds are not cofibrant objects of StratP .
In particular, they are not in the image of ∣sdP (−)∣P . Thus, it makes it difficult to relate
the homotopy theory of those classical objects with that of stratified spaces. On the
other hand, by working with the ∣ − ∣P ⊣ SingP adjunction, we are able to show that the
classical homotopy theory of conically stratified spaces embeds fully faithfully in that
of stratified spaces (Corollary 3.5.2.4). The proof relies on the fact that triangulated
conically stratified spaces are in the image of ∣ − ∣P and have fibrant SingP . This illustrates
the usefulness of working with the more natural adjunction ∣ − ∣P ⊣ SingP .

• The functors sdP and ExP are not at all compatible with the Quillen adjunctions
sStratP ↔ sSetQ, induced by maps of posets α∶P → Q. In particular, one cannot
recover a global adjunction sStrat↔ Strat by gluing the adjunctions (3.9) for all P .
This means that in order to compare the homotopy theory of all stratified spaces and
stratified simplicial sets, then one needs to work directly with the adjunction ∣ − ∣s ⊣ Sings.

• Finally, the stratified setting is very similar to the classical setting. In the latter, the
∣ − ∣ ⊣ Sing adjunction is already a Quillen equivalence, with no need for subdivision.
Given the fact that the homotopy theory associated to sStrat and Strat can actually
be related in a meaningful way (Theorem 3.5.1.1), through the ∣ − ∣s ⊣ Sings adjunction,
the appearance of sdP and ExP in (3.9) can appear as artificial.

With that said, Theorem 3.2.12.1 can be seen as the first step to obtain a comparison
of the topological and simplicial setting through the ∣ − ∣P ⊣ SingP adjunction. Since the
latter adjunction is not a Quillen adjunction, we will need to work with categories with weak
equivalences instead of the full model structures, see Section 3.5. In particular, we will need to
prove that the functors ∣ − ∣P and SingP characterize all weak equivalences (Corollary 3.4.5.2
and Theorem 3.3.2.1). By that, we mean that those functor preserve and reflect weak
equivalences. By Theorem 3.2.12.1, this is already known for the functors ∣sdP (−)∣P and
ExPSingP , since they are part of a Quillen equivalence and all objects of sStratP are cofibrant
and all objects of StratP are fibrant. Thus, it suffices to show that for any K ∈ sStratP ,
∣sdP (K)∣P → ∣K ∣P is a weak equivalence, (see Section 3.4, and the proof of Corollary 3.4.5.2),
and that for any X ∈ StratP , the map SingP (X) → ExP (SingP (X)) is a weak equivalence
(Proposition 3.3.1.1).

3.3 ExP and SingP characterize weak equivalences
In the category of simplicial sets, an explicit and particularly convenient fibrant replacement
functor is given by the Kan fibrant replacement S ↪ Ex∞(S) (see [Kan57; GJ12]). The
inclusion map is a trivial cofibration S ↪ Ex∞(S) which can be obtained (through transfinite
composition) by glueing on simplices along horns (see [Mos19]). In this section, we show that
the same can be said for Ex∞P , in particular that it gives a fibrant replacement functor in the
category sStratP . From this, we then also obtain that the functor SingP ∶ StratP → sStratP
characterizes weak equivalences.
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3.3.1 Fibrant replacement a la Kan, in sStratP

The main content of this subsection is proving the following result.

Proposition 3.3.1.1. Let K ∈ sStratP be a stratified simplicial set, then the map K →
ExP (K) is a trivial cofibration.

Together with the results from [Dou21a], we will then obtain as an immediate consequence:

Corollary 3.3.1.2. The functor Ex∞P ∶ sStratP → sStratP is a fibrant replacement functor.

We prove Proposition 3.3.1.1 by adapting a proof of the equivalent statement in the non-
stratified case from [Mos19]. This relies on the notion of a stratified strong anodyne extension,
already used in [Dou21a]. Some intermediary results of [Mos19] immediately extend to the
stratified case and their proofs will be omitted. We refer the reader to the proof of [Mos19,
Theorem 22] for more details. Nevertheless, a significant amount of technical preparation is
required to replicate the necessary arguments in the stratified framework.

Definition 3.3.1.3. A (stratified) strong anodyne extension, (S)SAE for short, is a morphism
A↪ B in sStratP that is given by a transfinite composition of cobase changes of admissible
horn inclusions.

For the sake of brevity, we are just going to omit the stratified and just refer to SAEs from
here on out.

Remark 3.3.1.4. By definition, all SAEs are trivial cofibrations. In particular, an SAE
A → B is a monomorphism, and can be safely identified with the inclusion of a (stratified)
sub-simplicial set.

Strong anodyne extensions enjoy an entirely combinatorial characterization, given as follows.
Given a stratified simplicial set K, let Kn.d. be its set of non-degenerate simplices.

Definition 3.3.1.5. Let m∶A↪ B be a cofibration in sStratP .

1. A pairing on m is a partition of Bn.d. ∖An.d. into two sets BI and BII together with a
bijection T ∶ BII → BI . The elements of BI and BII are referred to as type I and type II
simplices respectively.

Now let T ∶BII → BI be a pairing on m.

2. T is called proper if for each σ ∈ BII , σ is a codimension one face of T (σ) in a unique
way.

3. T is called admissible, if in addition, for any type II simplex, σ, such that T (σ)∶∆J → B,
and σ = dk(T (σ)), ΛJk →∆J is an admissible horn inclusion.

4. Given a pairing T on m, the ancestral relation is the transitive binary relation on BII
generated by σ ≺T τ if σ /= τ and σ is a face of T (τ)

5. T is called regular if the ancestral relation ≺T is well founded.

Proposition 3.3.1.6. A cofibration A↪ B in sStratP is a SAE if and only if it admits an
admissible proper regular pairing.

Proof. The proof of [Mos19, Proposition 12] directly generalizes. The extra admissibility
hypothesis guarantees that only admissible horns are being filled.

Now, since SAEs are trivial cofibrations, we can prove Proposition 3.3.1.1 by exhibiting a
suitable pairing. We will achieve this by decomposing the map K → ExP (K) into two maps,
and exhibiting a presentation for each of the factors.
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Definition 3.3.1.7. Let K ∈ sStratP be a stratified simplicial set. Its naive subdivision is
sdnaiv
P (K) = (sd(K), φK ○ l.v.). This defines a functor

sdnaiv
P ∶ sStratP → sStratP

which admits a right adjoint, Exnaiv
P ∶ sStratP → sStratP . The latter can also be described as

a simplicial subset Exnaiv
P (K) ⊂ Ex(K)

Exnaiv
P (K) = {σ∶ sd(∆J )→K ∣ σ is stratum-preserving}

Now, let J be some flag [p0 ≤ ⋅ ⋅ ⋅ ≤ pn], define the following map on vertices:

tJ ∶ sdP (∆J )→ sdnaiv
P (∆J )

(q0 ≤ ⋅ ⋅ ⋅ ≤ qm, r)↦ (q0 ≤ ⋅ ⋅ ⋅ ≤ ql)

where ql = r and ql+1 > r. This extends to a map of stratified simplicial sets, tJ ∶ sdP (∆J )→
sdnaiv
P (∆J ), and further into a natural transformation t∶ sdP → sdnaiv

P .

Note that the natural transformation t∶ sdP → sdnaiv
P fits into a commutative diagram

sdP 1sStratP

sdnaiv
P

l.v.P

t l.v.
(3.10)

which, by adjunction, gives the following diagram

1sStratP
ExP

Exnaiv
P ,

(3.11)

where the horizontal arrow is the map of interest. We will show that the maps to, and from
Exnaiv

P are SAEs. In particular, this will imply that their composition is an SAE, which in
turn implies Proposition 3.3.1.1. We start by showing that they are cofibrations.

Lemma 3.3.1.8. All natural transformations in Diagram (3.11) are cofibrations.

Proof. It suffices to show, that all of the natural transformations in (3.10) are epimorphisms
of simplicial sets when evaluated at ∆J . For l.v. this is well known. Thus, by closedness of
epimorphisms under composition, it remains to show that tJ is an epimorphism, for each flag
J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn]. Label e0, . . . , en the vertices of ∆J , and let σ = (σ0, . . . , σk) be a simplex
in sdnaiv

P (∆J ). For 0 ≤ i ≤ k, let qi ∶= max{pj ∣ ej ∈ σi}. Note that qi specifies the stratum to
which the vertex σi of sdnaiv

P (∆J ) belongs. For q ∈ P , denote jq =min{i ∣ qi = q}. Next, define
σ̃ ⊂ ∆J as σ̃ = {ei ∣ ei ∈ σjpi

}. In other words, σ̃ is the simplex given by such vertices e, which
lie in the smallest σi which, considered as a simplex of sdnaiv

P (∆J ), has the same stratum as e.
Note, that σ̃ is built such that for each qi it contain some vertex of stratum qi. In particular,

σ′ = ((σ0 ∪ σ̃, q0), . . . , (σk ∪ σ̃, qk))

defines a simplex of sdP (∆J ). An elementary computation shows that t(σ′) = σ.

Proposition 3.3.1.9. Let K ∈ sStratP be a stratified simplicial set, the map K ↪ Exnaiv
P (K)

is an SAE.
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Proof. By Lemma 3.3.1.8 we already know that it is a cofibration, and so we need to exhibit a
proper regular admissible pairing. Consider the (non-stratified) composition

K → Exnaiv
P (K)→ Ex(K).

We know of a proper regular pairing for the composition from [Mos19, Theorem 22]. By
Lemma 3.3.1.10, it is enough to show that this pairing correctly restricts to Exnaiv

P (K), and
that the restricted pairing is admissible. Note that in [Mos19], the pairing T is defined by
pre-composing with certain maps rkn∶ sd(∆n+1)→ sd(∆n), for 0 ≤ k ≤ n defined on vertices as
follows (see [Mos19, Definition 25], the pairing is defined immediately afterwards). First, for
vertices of sd(∆n+1) of the form {i}, one has :

rkn({i}) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

{i} if 0 ≤ i ≤ k
{0, . . . , k} if i = k + 1
{i − 1} if i > k + 1

And, then for an arbitrary vertex σ ∈ sd(∆n+1), one has

rkn(σ) = ⋃
i∈σ
rkn({i})

Now let J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] be some flag, and J k the flag obtained by repeating pk. Then, note
that rkn gives a stratum-preserving map

rkn∶ sdnaiv
P (∆J

k

)→ sdnaiv
P (∆J )

Now, if f ∶ sd(∆n) → K is some simplex of type II which happens to be in Exnaiv
P (K), then

there is some flag J such that f ∶ sdnaiv
P (∆J )→K is a stratum-preserving map. Furthermore,

one has T (f) = f ○ rkn for some 0 ≤ k ≤ n, but then, f ○ rkn∶ sdnaiv
P (∆J k

)→K is also a stratum-
preserving map. Which implies that T restricts to a proper and regular pairing to the inclusion
K → Exnaiv

P (K). Finally, the pairing is admissible since the horn inclusion ΛJ
k

k → ∆J k is
admissible, by definition of J k.

Lemma 3.3.1.10. Suppose one is given two cofibrations of simplicial sets m1 ∶ B0 ↪ B1,
m2 ∶ B1 ↪ B2. Then, a proper regular pairing T on m2 ○m1 restricts to proper regular pairings
on m1 and on m2 if and only if we have T (BII ∩B1,n.d.) ⊂ B1,n.d.. This also holds for stratified
simplicial sets and admissible pairings.

Proof. Note first that properness and admissibility are clearly sustained under restriction. As
any subset of a well founded set is well founded, the same holds for regularity. Hence, the
only thing to verify is that T restricts to a bijection. The condition on T guarantees that the
restriction of T to BII ∩B1,n.d. → BI ∩B1,n.d. is well defined. Injectivity is automatic, and
surjectivity follows from the fact that for σ ∈ BI , T −1σ is always a face of σ. In particular, if
σ ∈ B1,I , then T −1(σ) ⊂ σ ⊂ B1. Finally, the restriction of T on B1,n.d. gives a proper regular
pairing. This also implies that the restriction of T on B2 ∖B1 is a proper regular pairing.

We are left with showing, that Exnaiv
P (K) ↪ ExP (K) is an SAE for K ∈ sStratP . We

will do so in two steps. We will first construct some sub-object of Exnaiv
P (K), Ĵ , such that

Ĵ ↪ ExP (K) is an SAE, following Moss’s proof in [Mos19], and then use Lemma 3.3.1.10 to
show that it restricts to the desired SAE. To describe Ĵ and the pairing, we need to introduce
some maps on subdivisions.

Definition 3.3.1.11. Let n ≥ 0, and 0 ≤ k ≤ n. Define maps j̃kn∶ sd(∆n) → sd(∆n) and
r̃kn∶ sd(∆n+1)→ sd(∆n) as follows. On vertices of the form {i}, they are defined as

j̃kn({i}) = {
{i, . . . , n} if i < k
{i} if i ≥ k and r̃kn({i}) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

{i} if i < k
{k, . . . , n} if i = k
{i − 1} if i > k
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On vertices σ, they are defined as

j̃kn(σ) = ⋃
i∈σ
j̃kn({i}) and r̃kn(σ) = ⋃

i∈σ
r̃kn({i})

And then, they are extended linearly to maps of simplicial sets. Then, given a flag J = [p0 ≤
⋅ ⋅ ⋅ ≤ pn], the product maps

j̃kn × 1∶ sd(∆n
) ×N(P )→ sd(∆n

) ×N(P )

r̃kn × 1∶ sd(∆n+1
) ×N(P )→ sd(∆n

) ×N(P )

Restrict to stratum-preserving maps

jkn∶ sdP (∆J )→ sdP (∆J );

rkn∶ sdP (∆J
k

)→ sdP (∆J ),

where J k is the flag obtained from J by repeating pk.
For K some fixed stratified simplicial set, n ≥ 0, and 0 ≤ k ≤ n, let Jkn be the subset of

ExP (K)n defined as follows

Jkn = {σ∶ sdP (∆J )→K ∣ σ ○ jkn = σ}

The maps jkn and rkn satisfy a lot of relations, somewhat similar to the simplicial relations.

Proposition 3.3.1.12. The morphisms jk, rk fulfill the following equations (for any fixed flag
J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] as the target of all the compositions)

rk ○ sdP (dk) = 1∆J 0 ≤ k ≤ n (1’)
jk ○ rk ○ sdP (di) ○ jk+1

= jk ○ rk ○ sdP (di) 0 ≤ k < i ≤ n (2’)
rk ○ sdP (di) = sdP (di) ○ rk−1 0 ≤ i < k ≤ n (3’)

rk ○ jh+1
= jh ○ rk 0 ≤ h ≤ k ≤ n (4’)

jk ○ sdP (di) ○ jk−1
= jk ○ sdP (di) 1 ≤ k ≤ n, 0 ≤ i ≤ n (5’)

jh ○ rk = jh ○ sdP (sk) 1 ≤ k < h ≤ n (6’)

jk ○ rk ○ rk+1
= jk ○ rk ○ sdP (sk) 0 ≤ k ≤ n (7’)

sdP (sh) ○ jk ○ rk = jk ○ rk ○ sdP (sh+1
) 0 ≤ k ≤ h ≤ n (8’)

sdP (sh) ○ jk+1
○ rk+1

= jk ○ rk ○ sdP (sh) 0 ≤ h ≤ k ≤ n (9’)

Proof. The maps jkn and rkn are obtained from the corresponding maps in [Mos19] by conjugating
them with the automorphisms Dn∶ sd(∆n) → sd(∆n) sending {i} to {n − i}. Equation (1′)
through (9′) are then obtained by conjugating Moss’ equations (1) through (9) [Mos19, Lemma
26].

Lemma 3.3.1.13. The subset Ĵ ⊂ ExP (K), defined as

Ĵn = J
n
n

is a simplicial subset. Furthermore, Ĵ ⊂ Exnaiv
P (K).

Proof. For the first part, it suffices to show that if σ∶ sdP (∆J ) → K is in Jnn , then for all
0 ≤ k ≤ n, we have both

σ ○ sd(dk) ∈ Jn−1
n−1 and σ ○ sd(sk) ∈ Jn+1

n+1 .
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The former comes from equality (5’), while the later follows from the following equality:

jnn ○ sdP (sk) ○ jn+1
n+1 = j

n
n ○ sdP (sk) (10’)

Given the definitions of the jk, it is enough to check that Eq. (10’) holds on vertices of sd(∆n+1)
of the form {i}, for the j̃ and sd(sk). But evaluating the transformed equation on {i} gives on
both sides either {i, . . . , n}, if k ≥ i, or {i − 1, . . . , n} if k < i, which concludes the first part of
the proof.

For the second part, Let J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn], and consider the factorization problem

sdP (∆J ) sdP (∆J )

sdnaiv
P (∆J )

jn

tJ f

One checks that the map f , defined on vertices as f(σ) = (̃jnn(σ),max{pi ∣ i ∈ σ}), makes
the diagram commute. But then, any simplex σ ∈ Ĵ must satisfy σ = σ ○ jn = σ ○ f ○ tJ . In
particular, such a simplex is in Exnaiv

P (K), which concludes the proof.

Lemma 3.3.1.14. The inclusion Ĵ → ExP (K) is an SAE.

Proof. Moss’ proof of [Mos19, Theorem 22] directly translates into a proof that the inclusion of
Lemma 3.3.1.14 is an SAE. Note that due to the conjugation with Dn, the inclusion relations
between the Jkn are reversed from those in [Mos19]. Additionally, the key difference is that
in our setting, Ĵ does not coincide with K. Nevertheless, [Mos19, Lemmas 27, 28 and 29]
generalize in our setting since they are direct consequences of the equalities of [Mos19, Lemma
26], which also hold in our context in the form of Proposition 3.3.1.12.

To see that the pairing from [Mos19] is admissible, let J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] be some flag, and
σ∶ sdP (∆J ) → K a type II simplex. Then, there is some k ≥ 0 such that T (σ) = σ ○ rk, and
σ = dkT (σ). In particular, T (σ) is of the form sdP (∆J

k

)→K, with J k obtained from J by
repeating pk. This means that ΛJ

k

k → ∆J k is an admissible horn inclusion, and so the pairing
is admissible.

Proposition 3.3.1.15. Let K ∈ sStratP be a stratified simplicial set, the map Exnaiv
P (K)→

ExP (K) is an SAE.

Proof. By Lemma 3.3.1.10, it is enough to show that the pairing given in the proof of
Lemma 3.3.1.14 correctly restricts to Exnaiv

P (K). Let J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] be a flag, and
σ∶ sdnaiv

P (∆J ) → K a type II simplex in Exnaiv
P (K). Its image under the pairing T is the

simplex of ExP (K), σ ○ tJ ○ rk, for some 0 ≤ k ≤ n, and we need to find some τ ∈ Exnaiv
P (K)

such that σ ○ tJ ○ rk = τ ○ tJ k , where J k is obtained from J by repeating pk. Consider the
following diagram:

sdP (∆J
k

) sdP (∆J )

sdnaiv
P (∆J k

) sdnaiv
P (∆J )

rk

t
Jk tJ

g

It suffices to find a stratum-preserving map g∶ sdnaiv
P (∆J k

)→ sdnaiv
P (∆J ) making the diagram

commute, since then τ = σ ○ g would satisfy σ ○ tJ ○ r
k = τ ○ tJ k . We define g on vertices as

follows.
g(µ) = {i ∈ r̃kn(µ) ∣ pi ≤max{pj ∣ j ∈ µ}}

for µ a vertex of sd(∆n+1). An elementary computation now gives commutativity.

Proposition 3.3.1.9 and Proposition 3.3.1.15 together complete the proof of Proposi-
tion 3.3.1.1. Indeed, we have proven that the map K → Exnaiv

P (K) → ExP (X) is the
composition of two SAE, hence it is a SAE.
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3.3.2 SingP characterizes weak equivalences
Proposition 3.3.1.1 has the following immediate consequence.

Theorem 3.3.2.1. Let f ∶X → Y be a map in StratP . It is a weak equivalence if and only if
SingP (f)∶SingP (X)→ SingP (Y ) is a weak equivalence in sStratP . The analgous result holds
for SingN(P ) and maps in TopN(P )

Proof. By [Dou21b] we know that ExPSingP is the right functor of a Quillen equivalence. In
particular, if f ∶X → Y is a map in StratP , since all objects of StratP are fibrant, it is a weak
equivalence if and only if ExPSingP (f)∶ExPSingP (X)→ ExPSingP (Y ) is a weak equivalence
in sStratP . Now consider the following commutative diagram:

SingP (X) SingP (Y )

ExPSingP (X) ExPSingP (Y )

By Proposition 3.3.1.1, the vertical maps are trivial cofibrations and in particular weak
equivalences. By two out of three, this implies that SingP (f) is a weak equivalence if and only
if ExPSingP (f) is a weak equivalence if and only if f is a weak equivalence. The proof for
SingN(P ) is identical.

3.4 Realizations characterize weak equivalences
In this section, we prove that a stratum-preserving simplicial map f ∶K → L in sStratP is a
weak equivalence if and only if ∣f ∣P is a weak equivalence in StratP . In light of the results in
[Dou21b] which establish that ∣sdP (−)∣P is the left functor in a Quillen equivalence, and those
in [Dou21a] which imply that sdP (K)→K is a weak equivalence in sStratP , the main part is
to show that ∣ − ∣P does preserve weak equivalences. We show this result by obtaining all but
the first of the weak equivalences in Diagram (3.3).

3.4.1 Comparing the simplicial links and the geometrical links
We start with a comparison between the simplicial link, ∣LinkI(−)∣, and the geometrical link,
∣ − ∣b, see Definitions 3.2.5.4 and 3.2.5.6.

Proposition 3.4.1.1. Let K ∈ sStratP be a stratified simplicial set and A ⊂ K a stratified
simplicial subset. Let I be a regular flag in P , and b ∈ ∣∆I ∣ the barycenter. Then, there is a
commutative diagram in Top

∣LinkI(A)∣ ∣LinkI(K)∣

∣A∣b ∣K ∣b

∼ ∼

where the vertical maps are homeomorphisms.

The proof of the proposition relies on the following lemma, which is a direct consequence
of [WJR13, Theorem 2.3.2].

Lemma 3.4.1.2. Let hP ∶ ∣sd(N(P ))∣→ ∣N(P )∣ be the usual homeomorphism between a sim-
plicial complex and its barycentric subdivision. Let (K,φK) ∈ sStratP be a stratified simplicial
set. There exists a homeomorphism hK ∶ ∣sd(K)∣ → ∣K ∣, which induces an isomorphism in
TopN(P ) :

hK ∶ (∣sd(K)∣, hP ○ ∣sd(φK)∣)→ ∣(K,φK)∣N(P )
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Furthermore, the homeomorphism hK restricts to homeomorphisms on all non-degenerate sim-
plices. In particular, if (A,φA) ⊂ (K,φK) is a stratified simplicial subset, then the restriction
of hK induces an isomorphism in TopN(P )

(hK)∣A∶ (∣sd(A)∣, hP ○ ∣sd(φA)∣)→ ∣(A,φA)∣N(P )

Proof. Consider the simplicial map φK ∶K → N(P ). Its codomain is a non-singular simplicial
set, and so by [WJR13, Theorem 2.3.2], there exists a homeomorphism hK such that the
following diagram commutes:

∣sd(K)∣ ∣K ∣

∣sd(N(P ))∣ ∣N(P )∣

hK

∣sd(φK)∣ ∣φK ∣
hP

The commutativity of the diagram implies that hK is an isomorphism in TopN(P ), which is the
first part of the lemma. The second part of the lemma is the content of [WJR13, Proposition
2.3.23].

Proof of Proposition 3.4.1.1. Let A ⊂K be an inclusion of stratified simplicial sets. Since the
realization functor ∣ − ∣∶ sSet→ Top preserves pullbacks, ∣LinkI(K)∣ is given by the following
pullback:

∣LinkI(K)∣ ∣sd(K)∣

{∗} ∣sd(N(P ))∣

∣sd(φK)∣
∣iI ∣

On the other hand, ∣K ∣b is defined as the following pullback:

∣K ∣b ∣K ∣

{b} ∣N(P )∣

∣φK ∣

By Lemma 3.4.1.2, hK and hP give an isomorphism between the arrows on the right-hand side
of both squares. On the other hand, hP (∣iI ∣(∗)) = b, since b is the barycenter of ∣∆I ∣, which
means that there is an isomorphism between the pullback squares, producing the isomorphism
∣LinkI(K)∣ → ∣K ∣b. Since hK correctly restricts to simplicial subsets, by Lemma 3.4.1.2, we
obtain the left side of the square in Proposition 3.4.1.1 as well as its commutativity.

3.4.2 From links to homotopy links
We begin by showing that, up to homotopy, the geometric link given by ∣K ∣b agrees with
HoLinkI(∣K ∣N(P )).

Lemma 3.4.2.1. Let K be a stratified simplicial set, I a regular flag, and y = (y0, . . . , yn) a
point in the interior of ∣∆I ∣. The inclusion {y}↪ ∣∆I ∣N(P ) induces a weak equivalence

ry ∶HoLinkI(∣K ∣N(P ))→ ∣K ∣y. (3.12)

The proof will take the remainder of the subsection. However, we begin with an immediate
corollary.

Corollary 3.4.2.2. Let K and L be two stratified simplicial sets, and f ∶ ∣K ∣N(P ) → ∣L∣N(P )
any map in TopN(P ). Then f is a weak equivalence if and only if f induces weak equivalences
∣K ∣b → ∣L∣b for all barycenters of simplices in ∣N(P )∣.
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Proof. By definition of the model structure on TopN(P ), f ∶X → Y is a weak equivalence if
and only if f induces weak equivalences HoLinkI(X)→ HoLinkI(Y ), for all regular flags, I.
Thus, it is enough to show that the evaluation at b map

HoLinkI(∣K ∣N(P ))→ ∣K ∣b

is a weak equivalence. This is the content of Lemma 3.4.2.1.

We will actually prove that the map (3.12) is a homotopy equivalence. To define an inverse,
we need a way to define a map ∣∆I ∣N(P ) → ∣K ∣N(P ) from the data of a point in ∣K ∣b. This is
the purpose of the next lemma.

Lemma 3.4.2.3. Let K be a stratified simplicial set, and I a regular flag. Let ∣K ∣Int(∣∆I ∣) be
the pre-image of Int(∣∆I ∣) under ∣φK ∣N(P ) and consider ∣K ∣Int(∣∆I ∣) × ∣∆I ∣N(P ) as a strongly
stratified space via the projection on the second factor. Then there exists a map in TopN(P )

ρ∶ ∣K ∣Int(∣∆I ∣) × ∣∆I ∣N(P ) → ∣K ∣N(P ),

such that the restriction of ρ to the fiber-product ∣K ∣Int(∣∆I ∣) ×∣φK ∣ ∣∆I ∣N(P ) coincides with the
projection on the first factor, and extends in this way to ∣K ∣ ×∣φK ∣ ∣∆I ∣N(P ).

Proof. Any point in ∣K ∣Int(∣∆I ∣) can be described uniquely as a pair (σ, (t0, . . . , tm)), where
σ∶∆m → K is a non-degenerate simplex such that φK(∆m) is some degeneracy of ∆I , and
(t0, . . . , tm) is a point in the standard m-simplex (that is, a (m + 1)-tuple satisfying 0 ≤ ti ≤ 1,
for all i and ∑ ti = 1). We can relabel the (m+1)-tuple (t0, . . . , tm) as (t00, . . . , t0k0

, t10, . . . , t
n
kn
) so

that the coordinates of ∣φK ∣(σ, (t00, . . . , t0k0
, t10, . . . , t

n
kn
)) are (∑ t0i ,∑ t1i , . . . ,∑ tni ). The condition

that ∣φK ∣(σ, (t00, . . . , t0k0
, t10, . . . , t

n
kn
)) ∈ Int∣∆I ∣ thus guarantees that ∑ tki > 0, for all 0 ≤ k ≤ n.

Now, given a point in ∣∆I ∣N(P ), (q0, . . . , qn), let ρ be the continuous map:

ρ∶ ∣K ∣Int(∣∆I ∣) × ∣∆I ∣N(P ) → ∣K ∣N(P )
((σ, (t0, . . . , tm)), (q0, . . . , qn)) = (σ, (

q0

∑i t
0
i

t00, . . . ,
q0

∑i t
0
i

t0k0
,
q1

∑i t
1
i

t10, . . . ,
qn

∑i t
n
i

tnkn
))

For a point in the fibered product, one must have ∑i tli = ql for all 0 ≤ l ≤ n, and ρ extends on
it as:

∣K ∣ ×∣φK ∣ ∣∆
I
∣→ ∣K ∣

((σ, (t00, . . . , t
0
k0
, t10, . . . , t

n
kn
)), (q0, . . . , qn))↦ (σ, (t

0
0, . . . , t

0
k0
, t10, . . . , t

n
kn
))

proof of Lemma 3.4.2.1. Let y = (y0, . . . , yn) be a point in Int(∣∆I ∣). We show that the
evaluation at y

ry ∶HoLinkI(∣K ∣N(P )) = C0
N(P )(∣∆I ∣N(P ), ∣K ∣N(P ))→ ∣K ∣y

is a homotopy equivalence. We define a section ∣K ∣y → HoLinkI(K) as follows

cy ∶ ∣K ∣y → HoLinkI(K)

x↦ {
∣∆I ∣N(P ) → ∣K ∣N(P )
(q0, . . . , qn) ↦ ρ(x, (q0, . . . , qn))

By the previous lemma, one has ry ○ cy = 1∣K∣y . To construct the homotopy in the other
direction, we will use the following (non-stratified) identification:

∣∂∆I ∣ × [0,1]/∣∂∆I ∣ × {0} ≃ ∣∆I ∣
((a0, . . . , an), s)↦ (sa0 + (1 − s)y0, . . . , san + (1 − s)yn).
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We now define the homotopy from cy ○ ry to the identity.

H ∶HoLinkI(∣K ∣N(P )) × [0,1]→ HoLinkI(∣K ∣N(P ))

(f, t)↦ {
∣∆I ∣N(P ) → ∣K ∣N(P )
(ā, s) ↦ ρ(f(ā, st), (ā, s))

Note that H is well defined, since when t /= 1, f(ā, st) is in ∣K ∣Int(∣∆I ∣), for all (ā, s) ∈ ∣∆I ∣, and
for t = 1, either s /= 1, and f(ā, s) ∈ ∣K ∣Int(∣∆I)∣, or s = 1 and (f(ā,1), (ā,1)) ∈ ∣K ∣ ×∣φK ∣ ∣∆I ∣,
and ρ is defined as the projection on the first factor.

3.4.3 ∣ − ∣N(P ) preserves weak equivalences
Next, we use Corollary 3.4.2.2 to derive the following result.

Proposition 3.4.3.1. The functor

∣ − ∣N(P ) ∶ sStratP → TopN(P )

preserves weak equivalences.

Proof. Note first, that by Ken Brown’s Lemma, it suffices to show that ∣ − ∣N(P ) sends trivial
cofibrations into weak equivalences. Now assume that f ∶A ↪ K is a trivial cofibration. By
Corollary 3.4.2.2 it is enough to show that for any b ∈ ∣N(P )∣, the barycenter of some simplex
∆I , the inclusion ∣A∣b → ∣K ∣b is a weak equivalence. By Proposition 3.4.1.1 this is equivalent
to showing that the inclusion ∣LinkI(A)∣ ↪ ∣LinkI(K)∣ is a weak equivalence. But since the
functor ∣ − ∣ preserves weak equivalences, it is enough to show that LinkI(A)↪ LinkI(K) is a
weak equivalence, which follows from Lemma 3.4.3.2.

Lemma 3.4.3.2. The functor LinkI ∶ sStratP → sSet preserves trivial cofibrations.

Proof. It is sufficient to prove that LinkI sends strong anodyne extensions to strong anodyne
extensions (see Section 3.3) because in both model structures, trivial cofibrations are given by
retracts of strong anodyne extensions. The functor LinkI is constructed by first applying a left
adjoint (subdivision) and then pulling back to a vertex of sd(N(P )). In particular, it is given
by the composition of two functors preserving colimits and therefore preserves all colimits itself.
Thus, it suffices to show that LinkI sends admissible horn inclusions into (strong) anodyne
extensions in sSet. Further, if we show the statement for admissible horn inclusions up to
a certain dimension n, then it automatically follows that LinkI sends all stratified strong
anodyne extensions A → B with B of dimension lesser or equal to n into strong anodyne
extensions.

We proceed via induction over n. The case n = 0 is trivial. So let J be a flag in P of
length n + 1 and k ≤ n + 1 such that ΛJk ↪∆J is an admissible horn inclusion. We show that
LinkI(ΛJk ) ↪ LinkI(∆J ) is a strong anodyne extension. Let τ ∶∆J → ∆J be the maximal
non-degenerate simplex of ∆J and τk ∶∆J

′

↪∆J be its k-th face. If J does not degenerate
from I, then by construction neither does J ′, since ΛJk is admissible. In particular, LinkI(∆J )
does not contain the vertices corresponding to τ and τk. These are precisely the vertices
of sd(∆J ) that are missing in sd(ΛJk ). Hence, LinkI(ΛJk ↪∆J ) is a bijection and there is
nothing to show.

Now, if J degenerates from I, then so does J ′ and hence both τk and τ define vertices
in LinkI(∆J ). Let D be the full subcomplex of sd(∆J ) spanned by all vertices, but the one
corresponding to τk, and let DI be its intersection with LinkI(∆J ). We obtain a pairing on the
inclusion A ∶=DI ↪ LinkI(∆J ) =∶ B by taking BI to be the set of non-degenerate simplices
in Bn.d. ∖ An.d., of the form [σ0, ..., σm−1, τk, τ], and BII the set of simplices of the form
[σ0, . . . , σm−1, τk], for m ≥ 0. Then, the map sending [σ0, ..., σm−1, τk] to [σ0, ..., σm−1, τk, τ]
is a proper regular pairing BII → BI . Thus, DI ↪ LinkI(∆J ) is a SAE. Now, DI is a
cone on LinkI(ΛJk ) with conepoint τ . Hence by a simplicial set version of [Whi39, Corollary
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p. 249] it is enough to find a strong anodyne extension ∆0 → LinkI(ΛJk ) to conclude that
LinkI(ΛJk )↪DI is also a strong anodyne extension. Note that since ΛJk is an admissible horn
and J degenerates from I, any stratum-preserving inclusion ∆I ↪ ΛJk is a strong anodyne
extension. Passing to the links, we get a map ∆0 = LinkI(∆I)↪ LinkI(ΛJk ), which is a strong
anodyne extension by the inductive hypothesis. Finally, we have found two strong anodyne
extensions LinkI(ΛJk )→DI and DI → LinkI(∆J ), which compose to give the desired strong
anodyne extension.

3.4.4 Comparing homotopy links in TopN(P ) and StratP

In this section, we prove the following theorem.

Theorem 3.4.4.1. Let K be a stratified simplicial set, and I be some regular flag. The natural
map

HoLinkI(∣K ∣N(P ))→HoLinkI(∣K ∣P )

is a weak equivalence.

Given that the proof of the above theorem is fairly long and somewhat involved, we give
a brief summary here. First, we show Lemmas 3.4.4.2 and 3.4.4.3, allowing us to make
two simplifying assumptions: that I = P , and that K is locally finite. Then, we show (in
Lemma 3.4.4.5) that up to homotopy, the map HoLinkI(∣K ∣N(P )) → HoLinkI(∣K ∣P ) factors
through HoLinkI(∣K ∣red

P ), where ∣K ∣red
P ⊂ ∣K ∣P is a subspace obtained by taking away some

of the least singular simplices of K (see Definition 3.4.4.4 and Fig. 3.6). We then prove that
the map HoLinkI(∣K ∣N(P )) → HoLinkI(∣K ∣red

P ) is a homotopy equivalence (Lemma 3.4.4.5).
This simplifies the problem because now we need to compare two homotopy links in StratP ,
HoLinkI(∣K ∣red

P ) and HoLinkI(∣K ∣P ). To compare these two, we will decompose the inclusion
∣K ∣

red
P ⊂ ∣K ∣P into ∣K ∣red,k

P ⊂ ⋅ ⋅ ⋅ ⊂ ∣K ∣
red,0
P = ∣K ∣P , see Definition 3.4.4.8, and prove that each

of those induces a homotopy equivalence between homotopy links. Intuitively, homotopy
inverses are obtained by sending a map f ∶ ∣∆I ∣P → ∣K ∣

red,l
P to some homotopic map g∶ ∣∆I ∣P →

∣K ∣
red,l+1
P ⊂ ∣K ∣

red,l
P , where the homotopy between f and g comes from precomposing f by

some homotopy H ∶ ∣∆I ∣P × [0,1] → ∣∆I ∣P . This homotopy should stratifiedly homotope the
identity on ∣∆I ∣P into a smaller space, which f maps into ∣K ∣red,l+1

P . As one might expect, there
exists no single homotopy H that works for arbitrary f ∈HoLinkI(∣K ∣red,l

P ). Instead, we first
define some homotopy Sl∶ ∣∆I ∣P × [0,1]→ ∣∆I ∣P (Definition 3.4.4.10), as well as a parameter
α∶HoLinkI(∣K ∣red,l

P ) × [0,1]→ [0,1] (Lemma 3.4.4.13). For any given f , the homotopy we are
looking for is then obtained by combining the homotopy Sl and the parameter α. Note that a
partition of unity in HoLinkI(∣K ∣red,l

P ) appears in the construction of α. Such a partition of
unity exists thanks to the assumption that K is locally finite, see Remark 3.2.2.5.

Before moving on to the proof, we will need the following simplifying assumptions:

As.(1) K is a locally finite simplicial set. This ensures that

HoLinkI(∣K ∣P ) =C0
P (∣∆I ∣P , ∣K ∣P )

is metrizable (when equipped with the compact open topology, see Remark 3.2.2.5).
Lemma 3.4.4.2 implies that we can assume that K is locally finite without loss of
generality.

As.(2) P = I. Lemma 3.4.4.3 implies that we can assume this is true without loss of generality.

Lemma 3.4.4.2. Let K be a stratified simplicial set, and let A be the category of finite
stratified simplicial subsets, Kα ⊂K, and inclusions. Then, for all n ≥ 0 and all pointings, the
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following natural maps are isomorphisms:

lim→
α∈A

πn(HoLinkI(∣Kα
∣N(P )),∗)→ πn(HoLinkI(∣K ∣N(P )),∗),

lim→
α∈A

πn(HoLinkI(∣Kα
∣P ),∗)→ πn(HoLinkI(∣K ∣P ),∗).

Proof. Through adjunction, one sees that an element in the homotopy group πn(HoLinkI(∣K ∣N(P )), x)
is nothing more than a map Sn × ∣∆I ∣N(P ) → ∣K ∣N(P ), in TopN(P ), sending ∗ × ∣∆I ∣N(P ) to
x. In particular, such a map only reaches a finite simplicial subset of K, which implies
the surjectivity of the map under study. The same observation for homotopies implies the
injectivity.

Lemma 3.4.4.3. Let K be a stratified simplicial set. Let K̃ be the simplicial subset defined as
the following pullback:

K̃ K

∆I N(P ) .

φK

The inclusion K̃ →K induces weak equivalences

HoLinkI(∣K̃ ∣N(P ))→ HoLinkI(∣K ∣N(P )),
HoLinkI(∣K̃ ∣P )→HoLinkI(∣K ∣P ).

Proof. The first map is even an isomorphism. Indeed, Let f ∶ ∣∆I ∣N(P ) → ∣K ∣N(P ) be a map in
TopN(P ). Since geometric realization preserves pullbacks, such a map must factor through
∣K̃ ∣N(P ).

For the second map, consider the following subspace of ∣K ∣P :

Z = {x ∈ ∣K ∣P ∣ φP ○ ∣φK ∣(x) ∈ I}

By construction, one has HoLinkI(Z) ≅ HoLinkI(∣K ∣P ), so it is enough to show that the
inclusion ι∶ ∣K̃ ∣P → Z is a stratified homotopy equivalence. Now, recall that the points of ∣K ∣P
can be described by pairs (σ∶∆J →K,ξ = (ξ0, . . . , ξn)), where J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] is some flag.
With those notations, one can give an alternative description of Z as

Z = {(σ, ξ) ∈ ∣K ∣P ∣ pmξ
∈ I },

where mξ =max{i ∣ ξi /= 0}. Given a point (σ, ξ) in Z, let ξI = ∑pi∈I ξi, and let ϵi be 0 if pi /∈ I
and 1 if pi ∈ I. With this notation, we can define a stratified retract, r∶Z → K̃, at the level of
simplices :

rσ ∶Z ∩ σ(∆J )→ ∣K̃ ∣ ∩ σ(∆J )

(ξ0, . . . , ξn)↦
1
ξI
(ϵ0ξ0, . . . , ϵnξn)

One checks easily that those maps are compatible with faces and degeneracies, and produce a
global retract r∶Z → K̃, satisfying r ○ i = 1K̃ . Furthermore, if (ξ0, . . . , ξn) ∈ Z ∩ σ(∆J ), then
pmξ
∈ I and ϵmξ

= 1. This implies that

pmξ
= φP ○ ∣φK ∣(ξ0, . . . , ξn) = φP ○ ∣φK ∣(r(ξ0, . . . , ξn)) = pmξ

,

and so r is a stratified map. Finally, the straight-line homotopies between ισ ○rσ and 1Z∩σ(∆J )
assemble to produce a stratified homotopy between ι ○ r and 1Z
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In the remainder of the subsection, we use the following notations: J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] is
a flag, and I = [q0 < ⋅ ⋅ ⋅ < qk] is the regular flag such that I = {p0 ≤ ⋅ ⋅ ⋅ ≤ pn}. In other words,
∆J is degenerated from ∆I . Furthermore, if p ∈ P , let Jp = {i ∣ 0 ≤ i ≤ n, pi = p}. Then,
for a point (ξ0, . . . , ξn) ∈ ∣∆J ∣, let ξp = ∑i∈Jp

ξi. Note that by construction, the stratification
∣∆J ∣→ ∣N(P )∣ is given by the map (ξ0, . . . , ξn)↦ (ξq0 , . . . , ξqk

).

Definition 3.4.4.4. Let K ∈ sStratP be a stratified simplicial set. We define the subspace
∣K ∣

red
P ⊂ ∣K ∣P as follows:

∣K ∣
red
P = {(σ, ξ) ∣ ξp = 0⇒ ξp′ = 0 ∀p′ ≥ p}

Equivalently, ∣K ∣red
P is defined as the following pullback

∣K ∣
red
P ∣K ∣P

∣∆I ∣red
P ∣N(P )∣P .

∣φK ∣

Figure 3.6: The stratified space ∣∆I ∣P and the subspace ∣∆I ∣red
P , with I = [p0 < p1 < p2]. The

dashed blue lines and the green circle indicate the missing faces.

Lemma 3.4.4.5. Let K be a stratified simplicial set. There exists a homotopy equivalence,
λ∗∶HoLinkI(∣K ∣N(P ))→HoLinkI(∣K ∣red

P ) making the following diagram commute up to homo-
topy:

HoLinkI(∣K ∣N(P )) HoLinkI(∣K ∣P )

HoLinkI(∣K ∣red
P )

λ∗ (3.13)

Proof. Let I = [q0 < ⋅ ⋅ ⋅ < qk] be a regular flag, and consider the linear map λ∶ ∣∆I ∣ → ∣∆I ∣
sending the vertex qi to the barycenter of ∆[q0<⋅⋅⋅<qi] ⊂∆I . We will show that the map

λ∗∶HoLinkI(∣K ∣N(P ))→HoLinkI(∣K ∣red
P )

f ↦ {x↦ (f ○ λ)(x)}

has the desired properties. First, note that the map λ∶ ∣∆I ∣P → ∣∆I ∣P is a stratum-preserving
map, which means that for any f ∈ HoLinkI(∣K ∣N(P )), f ○ λ ∈HoLinkI(∣K ∣P ). Furthermore,
by construction, λ(∣∆I ∣) ⊂ ∣∆I ∣red. In particular, λ∗ takes values in HoLinkI(∣K ∣red

P ), and it is
well-defined.

Now, let H ∶ ∣∆I ∣P ×[0, 1]→ ∣∆I ∣P be the straight-line homotopy between λ and 1∣∆I ∣. Then
the map

H∗∶HoLinkI(∣K ∣N(P )) × [0,1]→HoLinkI(∣K ∣P )

(f, s)↦ {ξ ↦ f(H(ξ, s))}
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gives the homotopy between the two paths in Diagram (3.13).
It remains to be shown that λ∗ is a homotopy equivalence. Consider the map ρ∶ ∣K ∣

red
P ×P

∣N(P )∣ → ∣K ∣N(P ) from Lemma 3.4.4.6. Using the natural isomorphism HoLinkI(∣K ∣red
P ) ≃

HoLinkI(∣K ∣red
P ×P ∣N(P )∣), ρ induces a map

ρ∗∶HoLinkI(∣K ∣red
P ) ≅ HoLinkI(∣K ∣red

P ×P ∣N(P )∣)→ HoLinkI(∣K ∣N(P ))

We will show that ρ∗ is a homotopy inverse to λ∗. We first consider the composition ρ∗ ○ λ
∗.

Consider the homotopy H∗ defined above. For f ∈ HoLinkI(∣K ∣N(P )), H∗(f, s) lands in
HoLinkI(∣K ∣red

P ) ≅ HoLinkI(∣K ∣red
P ×P ∣N(P )∣) if s < 1 and lands in HoLinkI(∣K ∣N(P )) for s = 1.

Let ∣̂K ∣ be the strongly stratified space defined as the following union:

∣̂K ∣ = ∣K ∣
red
P ×P ∣N(P )∣ ∪ ∣K ∣N(P ) ×∣N(P )∣ ∣N(P )∣ ⊂ ∣K ∣ ×P ∣N(P )∣ ⊂ ∣K ∣ × ∣N(P )∣

where the stratification is given by projecting on the second factor. The homotopy H∗ factors
through a map

H∗∶HoLinkI(∣K ∣N(P )) × [0,1]→ HoLinkI(∣̂K ∣).

By Lemma 3.4.4.6, ρ extends to ∣̂K ∣ as the identity on ∣K ∣N(P ). In particular, the composition
ρ∗ ○H

∗ gives a homotopy between ρ∗ ○ λ
∗ and 1.

For the other composition, λ∗ ○ ρ∗, consider the homotopy in StratP , from Lemma 3.4.4.6

R∶ (∣K ∣
red
P ×P ∣N(P )∣) × [0,1]→ ∣K ∣P .

Given a map in TopN(P ), f ∶ ∣∆I ∣N(P ) → ∣K ∣
red
P ×P ∣N(P )∣, and s ∈ [0, 1], consider the composi-

tion
∣∆I ∣P ∣∆I ∣P ∣K ∣

red
P ×P ∣N(P )∣ ∣K ∣P

Hs f Rs

If s > 0, Rs takes value in ∣K ∣red
P . On the other hand, if s = 0, R0 = ρ, H0 = λ, and f ○ λ takes

value in ∣K ∣red
P ×P ∣∆I ∣

red
P . By Remark 3.4.4.7, this implies that R0 ○f ○H0 takes value in ∣K ∣red

P .
Now consider the following homotopy:

G∶HoLinkI(∣K ∣red
P ×P ∣N(P )∣) × [0,1]→HoLinkI(∣K ∣red

P )

(f, s)↦ Rs ○ f ○Hs

At s = 1, H1 = 1, and R1 is the projection to ∣K ∣red
P . In particular, G1 is the natural

homeomorphism HoLinkI(∣K ∣red
P ×P ∣N(P )∣) ≃ HoLinkI(∣K ∣red

P ). At s = 0, G0 is λ∗ ○ ρ∗,
precomposed with the aforementioned natural homeomorphism. In particular, λ∗ is a homotopy
equivalence.

Lemma 3.4.4.6. There exists a map in TopN(P )

ρ∶ ∣K ∣
red
P ×P ∣N(P )∣→ ∣K ∣N(P ),

which extends continuously to ∣K ∣N(P ) ×∣N(P )∣ ∣N(P )∣ as 1∣K∣, where the stratification on the
domain is given by the projection on the second factor. Furthermore, there exists a homotopy
in StratP

R∶ (∣K ∣
red
P ×P ∣N(P )∣) × [0,1]→ ∣K ∣P

between ρ and the projection to ∣K ∣red
P , such that for all s > 0, Rs takes value in ∣K ∣red

P .

Remark 3.4.4.7. Note that, since the map ρ∶ ∣K ∣red
P ×P ∣N(P )∣→ ∣K ∣N(P ) from Lemma 3.4.4.6

is a strongly stratified map, its restriction to ∣K ∣red
P ×P ∣∆I ∣

red
P must take value in ∣K ∣red

P =

∣φK ∣
−1(∣∆I ∣red

P ).
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Proof of Lemma 3.4.4.6. Recall that if (ξ0, . . . , ξn) ∈ ∣∆J ∣, with J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn], and p ∈ P ,
then ξp = ∑pi=p ξi. Now, write I = [q0 < ⋅ ⋅ ⋅ < qk]. By As.(2), P = I, which means that for
all 0 ≤ i ≤ n there exists 0 ≤ j ≤ k such that pi = qj . Furthermore, we will label the points in
∣N(P )∣ = ∣∆I ∣ as (tq0 , . . . , tqk

). We will construct ρ on simplices, let σ∶∆J →K be a stratified
simplex. Define ρJ as :

ρJ ∶ ∣∆J ∣
red
P ×P ∣N(P )∣→ ∣∆

J
∣N(P )

((ξ0, . . . , ξn), (tq0 , . . . , tqk
))↦ (α0ξ0, . . . , αnξn)

where αi =
tpi

ξpi
, if ξpi /= 0, and αi = 0 if ξpi = 0. Now, if ξq = 0 for some q ∈ P , since

(ξ0, . . . , ξn) is in ∣σ(∆J )∣red
P , this implies that ξq′ = 0, for q′ ≥ q. In turn, φP (tq0 , . . . , tqk

) =

φP ○∣φK ∣(ξ0, . . . , ξn) < q. In particular, in this case, one must have tq′ = 0 for q′ ≥ q, and ∑αiξi =
∑ tqj = 1, which implies that ρJ is well defined. If one sets (ξ′0, . . . , ξ′n) = (α0ξ0, . . . , αnξn), one
has ξ′q = tq for all q ∈ P . In particular, ρJ is a map in TopN(P ). Furthermore, if we restrict
ρJ to pairs ((ξ0, . . . , ξn), (tq0 , . . . , tqk

)) such that ∣φK ∣(ξ0, . . . , ξn) = (tq0 , . . . , tqk
), then, for all

0 ≤ i ≤ n, either ξpi /= 0 and αi = 1, or ξpi = 0, and in both cases, αiξi = ξi. Using this ρJ can
be extended to ∣∆J ∣N(P ) ×∣N(P )∣ ∣N(P )∣ by the identity (or, more precisely, the projection on
the first factor). Assembling all the ρJ together gives the desired map.

Now, to produce the homotopy R, consider the following straight-line homotopy defined on
simplices, where the αi are defined as above:

RJ ∶ (∣∆J ∣
red
P ×P ∣N(P )∣) × [0,1]→ ∣∆

J
∣P

((ξ0, . . . , ξn), (tq0 , . . . , tqk
), s)↦ ((s + (1 − s)α0)ξ0, . . . , (s + (1 − s)αn)ξn)

To see that RJ is a stratum-preserving map, notice that if s = 0, RJ is just ρJ which is a map
in TopN(P ). If s > 0, (s + (1 − s)αi) /= 0 for all 0 ≤ i ≤ n and so (s + (1 − s)αi)ξi = 0⇔ ξi = 0
for all 0 ≤ i ≤ n. This implies two things. First, φP ○ ∣φK ∣(ξ0, . . . , ξn) = φP ○ ∣φK ∣((s + (1 −
s)α0)ξ0, . . . , (s + (1 − s)αn)ξn), and so RJ is a stratified homotopy, and second, RJ takes
value in ∣∆J ∣red

P for all s > 0. Finally, notice that for s = 1, RJ is the projection on ∣∆J ∣P , and
so RJ is a homotopy between ρJ and this projection. Assembling the RJ gives the desired
homotopy.

In order to prove Theorem 3.4.4.1, it remains to be shown that the map induced by the
inclusion HoLinkI(∣K ∣red

P )→HoLinkI(∣K ∣P ) is a weak equivalence. We will do so by further
decomposition.

Definition 3.4.4.8. Write I = [q0 < ⋅ ⋅ ⋅ < qk], and let 0 ≤ l ≤ k. Define the following subspace
of ∣K ∣P :

∣K ∣
red,l
P = {(σ, ξ) ∣ ξp = 0⇒ ξp′ = 0, ∀p′ ≥ p, ∀p < ql}.

We then have a sequence of inclusions

∣K ∣
red
P = ∣K ∣

red,k
P ⊂ ⋅ ⋅ ⋅ ⊂ ∣K ∣

red,0
P = ∣K ∣P .

Theorem 3.4.4.1 then follows from the following lemma.

Lemma 3.4.4.9. Let 0 ≤ l ≤ k − 1, the inclusion ∣K ∣red,l+1
P → ∣K ∣

red,l
P induces a homotopy

equivalence
HoLinkI(∣K ∣red,l+1

P )→HoLinkI(∣K ∣red,l
P )

In order to prove Lemma 3.4.4.9, we will need a few more technical results.

Definition 3.4.4.10. Let 0 ≤ l ≤ k − 1, define the map Sl as

Sl∶ ∣∆I ∣ × [0,1]→ ∣∆I ∣

((tq0 , . . . , tqk
), s)↦ (tq0 , . . . , tql−1 , tql

+ (1 − s)
k

∑
j=l+1

tqj , stql+1 , . . . , stqk
).
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Lemma 3.4.4.11. The map Sl is stratum-preserving outside of s = 0, and it restricts to the
projection on the first factor on the subspace

∣∆[q0<⋅⋅⋅<ql]∣ = {(tq0 , . . . , tqk
) ∣ tq = 0 ∀q > ql}.

Proof. Let t = (tq0 , . . . , tqk
), and s ∈ [0,1], and write t′ = Sl(t, s). If φP (t) = q ≤ ql, then

tq′ = t
′
q′ = 0 for all q′ > q, and Sl(t, s) = t for all s, this addresses the second part of the lemma.

If φP (t) = q > ql, then for s > 0, one has t′q = stq > 0, and t′q′ = 0 for all q′ > q. In particular,
φP (t

′) = q, and Sl(−, s) is a stratum-preserving map.

Lemma 3.4.4.12. For all 0 ≤ l ≤ k−1, ∣K ∣red,l+1
P is a neighborhood of the ql-stratum of ∣K ∣red,l

P

Proof. Note that the subspace ∣K ∣red,l
P can be defined as the following pullback square:

∣K ∣
red,l
P ∣K ∣P

∣∆I ∣red,l
P ∣∆I ∣P

∣φK ∣P

Now since ∣φK ∣P is a continuous, stratum-preserving map, it is enough to show that ∣∆I ∣red,l+1
P

is a neighborhood of the ql-stratum of ∣∆I ∣red,l
P . Now, a point in the ql-stratum of ∣∆I ∣red,l

P is of
the form (tq0 , . . . , tqk

), with tql
/= 0 and tq = 0 for all q > ql. Furthermore, the defining condition

of ∣∆I ∣red,l
P implies that tq /= 0 for all q < ql. This means that there exists a neighborhood of

t, U ⊂ ∣∆I ∣, such that for any t′ ∈ U , q ≤ ql ⇒ t′q /= 0. But this means that all points in U

satisfy the defining condition of ∣∆I ∣red,l+1
P . In particular, U ⊂ ∣∆I ∣red,l+1

P , and the latter is a
neighborhood of the ql-stratum of ∣∆I ∣red,l

P .

Lemma 3.4.4.13. There exists a continuous map α∶HoLinkI(∣K ∣red,l
P ) × [0,1]→ [0,1], such

that

1. α(f, s) = 0⇒ s = 0,

2. f(Sl(t, α(f,∑kj=l+1 tqj))) ∈ ∣K ∣
red,l+1
P , for all t = (tq0 , . . . , tqk

) ∈ ∣∆I ∣ and for all f ∈
HoLinkI(∣K ∣red,l

P ).

Proof. Let ϵ > 0, and define ∣∆I ∣ϵ,l as the following subset of ∣∆I ∣:

∣∆I ∣ϵ,l = {t ∈ ∣∆I ∣ ∣
k

∑
i=l
tqi ≥ ϵ}

Now, pick some stratified map f ∶ ∣∆I ∣P → ∣K ∣
red,l
P , and consider the intersection of the following

nested family of compact subsets:

⋂
α>0

f(Sl(∣∆I ∣ϵ,l × [0, α])) = f(Sl(∣∆I ∣ϵ,l × {0}))

Note that if t ∈ ∣∆I ∣ϵ,l, Sl(t, 0) is in the ql-stratum of ∣∆I ∣P . In particular, f(Sl(∣∆I ∣ϵ,l ×{0}))
is a compact subset of the ql-stratum of ∣K ∣red,l

P . Since, by Lemma 3.4.4.12, ∣K ∣red,l+1
P is a

neighborhood of the ql-stratum of ∣K ∣red,l
P , there must exist αϵ > 0 such that f(Sl(∣∆I ∣ϵ,l ×

[0, αϵ])) ⊂ ∣K ∣red,l+1
P . By the definition of the compact-open topology, this also holds for any g

in a neighborhood U of f in HoLinkI(∣K ∣red,l
P ). Hence, we can cover HoLinkI(∣K ∣red,l

P ) by a
family of opens Ui such that there exists αϵi > 0 satisfying g ∈ Ui ⇒ g(Sl(∣∆I ∣ϵ,l × [0, αϵi])) ⊂
∣K ∣

red,l+1
P . By Lemma 3.4.4.2, we may assume that K is locally finite. But this implies

that HoLinkI(∣K ∣red,l
P ) is metrizable, and hence, paracompact (see also Remark 3.2.2.5). In
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particular, one can find a partition of unity (ϕi) subordinated to the open cover (Ui). We can
now define the following continuous map:

αϵ∶HoLinkI(∣K ∣red,l
P )→ [0,1]

f ↦∑
i

ϕi(f)α
ϵ
i

Note that by construction, for all f ∈HoLinkI(∣K ∣red,l
P ), we have αϵ(f) ≤ αϵi , for some i such

that f ∈ Ui. In particular, we have

f(Sl(∣∆I ∣ϵ,l × [0, αϵ(f)])) ⊂ ∣K ∣red,l+1
P (3.14)

Now, to construct α, we will use the family of functions αϵ, for ϵ = 1
2n , n ≥ 1. Consider the

covering of (0, 1] given by the family In = ( 1
2n+1 ,

1
2n−2 ), n ≥ 1, and the family of closed intervals

Jn = [
1

2n ,
1

2n−1 ], n ≥ 1. Pick a family of bump functions on [0,1], ψn, n ≥ 1 satisfying :

• ψn(s) ∈ [0,1], for all s ∈ (0,1],

• ψn(s) = 1 if s ∈ Jn,

• ψn(s) = 0 if s /∈ In,

and define the continuous map:

α∶HoLinkI(∣K ∣red,l
P ) × [0,1]→ [0,1]

(f, s)↦ s∏
n≥1
(1 − ψn(s)(1 − α

1
2n (f)))

Note that for s ∈ [0, 1], there is only a finite number of n ≥ 1 such that ψn(s) /= 0, which means
that the above product only has a finite amount of non-trivial terms. We need to check that it
satisfies both conditions of Lemma 3.4.4.13. Let f ∈HoLinkI(∣K ∣red,l

P ). The first part is clear,
since α(f, s) = 0 implies that either s = 0, or that the product is 0, which is not possible, since
it only has a finite number of non-trivial terms which are all non-zero. For the second part,
first note that if s ∈ Jn

α(f, s) ≤ α
1

2n (f) (3.15)

Now, if t ∈ ∣∆I ∣, then

• either ∑kj=l+1 tqj = 0, but then t ∈ ∣∆q0<⋅⋅⋅<ql ∣, and by Lemma 3.4.4.11, in this case
Sl(t, u) = t for any u ∈ [0,1]. In particular, the expression in Lemma 3.4.4.13 reduces
to f(t). Now, f(t) is of the form (σ, (ξ0, . . . , ξn)), but since f is stratum-preserving, it
must satisfy ξp = 0 for all p > ql. Additionally, since f takes value in ∣K ∣red,l

P , we have
ξp = 0⇒ ξp′ = 0 for p′ ≥ p and p < ql. Now, since we already now that ξp′ = 0 for p′ > ql, we
trivially have the implication ξql

= 0⇒ ξp′ = 0 for p′ ≥ ql. In particular f(t) ∈ ∣K ∣red,l+1
P .

• or ∑kj=l+1 tqj > 0. Then let n be such that ∑kj=l+1 tqj ∈ Jn = [
1

2n ,
1

2n−1 ]. By definition,
t ∈ ∣∆I ∣ϵ,l, for ϵ = 1

2n . Combining equations (3.15) and (3.14), we get :

f(Sl(t, α(f,
k

∑
j=l+1

tqj))) ∈ f(S
l
(∣∆I ∣ϵ,l × [0, αϵ(f)])) ⊂ ∣K ∣red,l

P

which concludes the proof.
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Proof of Lemma 3.4.4.9. Using the map α∶HoLinkI(∣K ∣red,l
P )×[0, 1]→ [0, 1] from Lemma 3.4.4.13,

we define the following homotopy:

H ∶HoLinkI(∣K ∣red,l
P ) × [0,1]→HoLinkI(∣K ∣red,l

P )

(f, s)↦ {
∣∆I ∣P → ∣K ∣

red,l
P

t = (tq0 , . . . , tqk
) ↦ f(Sl(t, (1 − s) + sα(f,∑kj=l+1 tqj)))

We first check that H(f, s) is a stratum-preserving map. By Lemma 3.4.4.11, f(Sl(t, u)) has
the correct stratification, except maybe when u = 0. In the latter case, one must have s = 1
and α(f,∑kj=l+1 tqj) = 0, but by Lemma 3.4.4.13, this is only possible when ∑kj=l+1 tqj = 0. This
corresponds to t ∈ ∣∆[q0<⋅⋅⋅<ql]∣, and by Lemma 3.4.4.11, in this case one has Sl(t, u) = t for
all values of u. We conclude that H(f, s) is indeed a stratum-preserving map. Furthermore,
its image lies in ∣K ∣red,l

P , by construction, which means that H is well-defined. But now, H0
is the identity map, since Sl(t,1) = t for all t ∈ ∣∆I ∣. By the second part of Lemma 3.4.4.13,
for all f ∈ HoLinkI(∣K ∣red,l

P ), the image of H(f,1)∶∆I → ∣K ∣red,l
P lies in ∣K ∣red,l+1

P . This
implies that H1 lands in HoLinkI(∣K ∣red,l+1

P ). On the other hand, if f ∈ HoLinkI(∣K ∣red,l+1
P ),

then H(f, s) lies in HoLinkI(∣K ∣red,l+1
P ) for all s ∈ [0,1]. This shows that the inclusion

HoLinkI(∣K ∣red,l+1
P )↪HoLinkI(∣K ∣red,l

P ) defines a homotopy equivalence (with inverse induced
by H1), which concludes the proof.

3.4.5 Realizations characterize weak equivalences
We summarize the results of the previous subsections in the following theorem.

Theorem 3.4.5.1. Let K be a stratified simplicial set, I a regular flag and b a point in the
interior of ∣∆I ∣. Then all maps in the following diagram are weak equivalences:

HoLinkI(∣K ∣N(P )) HoLinkI(∣K ∣P )

∣LinkI(K)∣ ∣K ∣b

Corollary 3.4.5.2. Let f ∶K → L be in sStratP . The following assertions are equivalent:

• f is a weak equivalence in sStratP ,

• ∣f ∣N(P )∶ ∣K ∣N(P ) → ∣L∣N(P ) is a weak equivalence in TopN(P ),

• ∣f ∣P ∶ ∣K ∣P → ∣L∣P is a weak equivalence in StratP .

Furthermore, if g∶ ∣K ∣N(P ) → ∣L∣N(P ) is a map in TopN(P ), then it is a weak equivalence if and
only if its image by the functor φP ○ −∶TopN(P ) → StratP is a weak equivalence in StratP .

Proof. Let us first prove the second part. Let g∶ ∣K ∣N(P ) → ∣L∣N(P ) be a map in TopN(P ). It
is a weak equivalence if and only if, for all regular flags I, the maps induced by g,

HoLinkI(∣K ∣N(P ))→ HoLinkI(∣L∣N(P ))

are weak equivalences. But, by Theorem 3.4.4.1, this is equivalent to asking that the following
maps are weak equivalences:

HoLinkI(∣K ∣P )→HoLinkI(∣L∣P )

This, in turn, is equivalent to (φP ○ −)(g) being a weak equivalence in StratP .
For the first part of the lemma, we know from [Dou21b, Theorem 1.15] that the functor

∣sdP (−)∣P ∶ sStratP → TopP is the left part of a Quillen equivalence. In particular, it charac-
terizes weak equivalences between cofibrant objects. Since all objects of sStratP are cofibrant,
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this implies that f is a weak equivalence if and only if ∣sdP (f)∣P is a weak equivalence. Now
consider the following commutative diagram:

∣sdP (K)∣N(P ) ∣sdP (L)∣N(P )

∣K ∣N(P ) ∣L∣N(P )

∣sdP (f)∣N(P )

∣l.v.P ∣N(P ) ∣l.v.P ∣N(P )
∣f ∣N(P )

By [Dou21a, Lemma A.3], we know that l.v.P ∶ sdP (K) → K is a weak equivalence for all
K ∈ sStratP , and by Proposition 3.4.3.1, we also know that ∣−∣N(P ) preserves weak equivalences.
This implies that the vertical arrows in the previous diagram are weak equivalences. By two
out of three, this means that f is a weak equivalence if and only if ∣f ∣N(P ) is a weak equivalence,
which concludes the proof.

Corollary 3.4.5.3. The functor ∣CP (−)∣P ∶DiagP → StratP characterizes all weak equiva-
lences.
Proof. A map in DiagP , f ∶F → G is a weak equivalence if and only if, for all regular flags
I, F (I) → G(I) is a weak equivalence. On the other hand, the map ∣CP (f)∣P ∶ ∣CP (F )∣P →
∣CP (G)∣P is a weak equivalence in StratP if and only if the map HoLinkI(∣CP (F )∣P ) →
HoLinkI(∣CP (G)∣P ) is a weak equivalence for all I. In particular, it is enough to show that
for any F ∈DiagP , the natural map F (I)→ Sing(HoLinkI(∣CP (F )∣P )) is a weak equivalence
for all regular flags I. Consider the following commutative diagram, where b is the barycenter
of ∣∆I ∣:

HoLinkI(∣CP (F )∣P )

∣F (I)∣ HoLinkI(∣CP (F )∣N(P ))

∣CP (F )∣b .

We need to prove that the top map is a weak equivalence, but by Theorem 3.4.5.1, it is enough
to show that the bottom map is a weak equivalence. Now, note that ∣CP (F )∣b ≅ ∣F (I)∣ × {b},
as can be computed directly from the definition of CP . In particular, the bottom map is an
isomorphism, which concludes the proof.

Corollary 3.4.5.4. The functor CP ∶DiagP → sStratP characterizes all weak equivalences.
Proof. Let f ∶F → G be a map in DiagP . By Corollary 3.4.5.3, f is a weak equivalence if and
only if ∣CP (f)∣P is a weak equivalence. But by Corollary 3.4.5.2, the latter is true if and only
if CP (f) is a weak equivalence.

3.5 Equivalence of homotopy categories and applications
The goal of this section is to show that the adjoint functors

∣ − ∣s∶ sStrat↔ Strat∶Sings,

as well as the fiberwise pairs ∣ − ∣P ∶ sStratP ↔ StratP ∶SingP descend to equivalences between
the homotopy categories of stratified simplicial sets and stratified spaces. We deduce from this
that the naive homotopy theory of conically stratified spaces embeds fully faithfully in the
homotopy theory of stratified spaces, as well as a simplicial approximation theorem.
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3.5.1 Equivalence between homotopy theories
In this subsection, we prove that the adjunctions ∣ − ∣P ⊣ SingP and ∣ − ∣s ⊣ Sings induce
equivalences of homotopy categories. As neither is part of a Quillen adjunction, this is not to
be understood in terms of derived functors in the sense of model categories. Instead, consider
the homotopy categories as explicitly constructed by formally inverting the weak equivalences.
All functors involved are shown to preserve weak equivalences and hence induce functors of
the homotopy categories. The following theorem then states that these induced functors give
equivalences of categories.
Theorem 3.5.1.1. The adjoint pairs ∣ − ∣P ⊣ SingP , and ∣ − ∣s ⊣ Sings induce well-defined
equivalences between homotopy categories,

∣ − ∣P ∶hosStratP ↔ hoStratP ∶SingP
∣ − ∣s∶hosStrat↔ hoStrat∶Sings.

We first prove that the functors of Theorem 3.5.1.1 pass to the homotopy categories.
Lemma 3.5.1.2. The adjoint pairs ∣ − ∣P ⊣ SingP and ∣ − ∣s ⊣ Sings induce well-defined functors
at the level of homotopy categories.
Proof. By Corollary 3.4.5.2, the functor ∣ − ∣P ∶ sStratP → StratP preserves weak equivalences
for all posets P . By construction of the model structures on Strat and sStrat, this implies
that ∣ − ∣s also preserves all weak equivalences. Since the homotopy categories are nothing
more than the localization of the categories at the classes of weak equivalences, this implies
that ∣ − ∣P and ∣ − ∣s both induce functors between homotopy categories. By Theorem 3.3.2.1,
SingP ∶StratP → sStratP also preserves all weak equivalences, and so the same is true for
Sings∶Strat→ sStrat, which means that they also induce well-defined functors at the level of
homotopy categories.

To conclude the proof of Theorem 3.5.1.1, we need the following lemma.
Lemma 3.5.1.3. Let X be a space stratified over P , then the co-unit of the adjunction
∣ − ∣P ⊣ SingP ,

∣SingP (X)∣P →X

is a weak equivalence in StratP . Let K be a simplicial set stratified over P , then the unit of
the adjunction ∣ − ∣P ⊣ SingP ,

K → SingP (∣K ∣P )
is a weak equivalence in sStratP .

This also holds for the unit and co-unit of the adjunction ∣ − ∣s ⊣ Sings.
Proof. Consider first the adjunction sdP ⊣ ExP . For any simplicial set stratified over P , K,
we have the commutative diagram

sdP (K) K ,

sdPExP (K)

l.v.P

sdP (ιK)
ϵK

where the map ϵK is the co-unit. Now, by Proposition 3.2.11.3, l.v.P is a weak equivalence, and
sdP preserves weak equivalences. By Proposition 3.3.1.1, ιK is a weak equivalence, which means
that sdP (ιK) is a weak equivalence. By two out of three, this implies that ϵK ∶ sdPExP (K)→K
is a weak equivalence.

Now let X be a space stratified over P , and consider the commutative diagram:

∣sdPExPSingP (X)∣P X

∣SingP (X)∣P
∣ϵSingP (X)

∣
P
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By Corollary 3.4.5.2, the functor ∣ − ∣P preserves weak equivalences, which means that the map
∣ϵSingP (X)∣P is a weak equivalence. Furthermore, the co-unit of the adjunction ∣sdP (−)∣P ⊣
ExPSingP , is also a weak equivalence, since the adjunction is a Quillen equivalence [Dou21b,
Theorem 1.15], and all objects in StratP (resp. sStratP ) are fibrant (resp. cofibrant). This
means that by two out of three the co-unit ∣SingP (X)∣P →X is a weak equivalence.

Now, let K be a simplicial set stratified over P , and consider the following composition:

∣K ∣P → ∣SingP (∣K ∣P )∣P → ∣K ∣P ,

where the first map is the realization of the unit of the adjunction ∣ − ∣P ⊣ SingP , and the
second map is the co-unit evaluated at ∣K ∣P . The composition gives the identity, and we have
proved that the second map is a weak equivalence in StratP , which means that the map
∣K ∣P → ∣SingP (∣K ∣P )∣P is a weak equivalence in StratP , by two out of three. But since, by
Corollary 3.4.5.2, the realization functor characterizes weak equivalences, this means that the
unit K → SingP (∣K ∣P ) is a weak equivalence in sStratP .

For the case of ∣ − ∣s ⊣ Sings, note that if X is a space stratified over P , then ∣Sings(X)∣s =
∣SingP (X)∣P , by definition, which immediately gives the proof.

Proof of Theorem 3.5.1.1. Consider the natural transformations ∣SingP (−)∣P → 1StratP
and

1sStratP
→ SingP (∣ − ∣P ). By Lemma 3.5.1.3 they take value in weak equivalences. Since the

functors ∣ − ∣P and SingP pass to the homotopy categories, so do the natural transformations
∣SingP (−)∣P → 1hoStratP

and 1hosStratP
→ SingP (∣ − ∣P ). Those now take value in isomorphisms,

meaning that (∣ − ∣P ,SingP ) gives an equivalence between the homotopy categories. The same
argument gives that (∣ − ∣s,Sings) induces an equivalence between the homotopy categories.

Remark 3.5.1.4. Theorem 3.5.1.1 is only stated in terms of homotopy categories because
that is all that is needed for the applications of Sections 3.5.2 and 3.5.3, but a much stronger
version holds. Consider the simplicial localization defined by Dwyer and Kan in [DK80a], in
terms of hammocks. Lemmas 3.5.1.2 and 3.5.1.3 give precisely the hypothesis needed to apply
[DK80a, Corollary 3.6]. In particular, the functors (∣ − ∣s,Sings) and (∣ − ∣P ,SingP ) induce
Dwyer-Kan equivalences between the simplicial localizations:

LHsStrat↔ LHStrat and LHsStratP ↔ LHStratP .

With the stronger result, one can say that the pairs of adjoint functors, (∣ − ∣s,Sings) and
(∣ − ∣P ,SingP ) induce equivalences between the homotopy theories of stratified spaces and
stratified simplicial sets. In particular, they induce equivalences between the underlying
∞-categories, which can be explicitly described as the Dwyer-Kan localizations.

3.5.2 Embedding the classical stratified homotopy category
It follows from Proposition 3.A.0.1 that there exists no model structure on StratP which
is transported from sStratP , along SingP ∶StratP → sStratP . Nevertheless, it turns out
that stratified spaces with fibrant SingP and realizations of stratified simplicial sets behave
respectively much like fibrant and cofibrant objects of a model category.

Recollection 3.5.2.1. Recall that particularly nice stratified spaces, such as pseudo manifolds
or more generally homotopically and conically stratified spaces, have the right lifting property
with respect to realizations of admissible horn inclusions (see Theorem 3.2.10.2, and [Lur17,
Theorem A.6.4][Nan19, Proposition 8.1.2.6]). In other words, such spaces map to fibrant
objects under SingP .

Recall that for X,Y ∈ StratP , [X,Y ]P stands for the set of stratified homotopy classes of
stratified maps between X and Y (Definition 3.2.2.6). Similarly, if K,L ∈ sStratP , [K,L]P
stands for the set of stratified homotopy classes of stratified simplicial maps between K and L.
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Lemma 3.5.2.2. Let X ∈ StratP be a stratified space such that SingP (X) ∈ sStratP is fibrant.
Then, for any weak equivalence of stratified simplicial sets f ∶K → L in sStratP , the induced
map

[∣L∣P ,X]P → [∣K ∣P ,X]P

is a bijection.

Proof. We have a commutative diagram

[∣L∣P ,X]P [∣K ∣P ,X]P

[L,SingP (X)]P [K,SingP (X)]P ,

≅ ≅
f∗

where the vertical maps are bijections, thanks to the fact that the adjunction (∣ − ∣P ,SingP ) is
simplicial [Dou21a, Proposition 4.9]. Since f ∶K → L is a weak equivalence and SingP (X) is
fibrant, the lower horizontal is a bijection. Thus, by commutativity of the diagram, so is the
upper horizontal, as was to be shown.

As an immediate corollary of this lemma, we obtain:

Theorem 3.5.2.3. Let K ∈ sStratP and X ∈ StratP such that SingP (X) is a fibrant object
of sStratP . Then, the natural map

[∣K ∣P ,X]P → hoStratP (∣K ∣P ,X)

is a bijection.

Proof. Consider the realization of the last vertex map ∣sdP (K)∣P
∣l.v.P ∣P
ÐÐÐÐ→ ∣K ∣P . Since l.v.P is a

weak equivalence (Proposition 3.2.11.3) by Corollary 3.4.5.2 so is its realization. Furthermore,
it follows from [Dou21b, Theorem 1.15] that ∣sdP (K)∣P is a cofibrant object in StratP . Thus,
it follows that ∣l.v.P ∣P ∶ ∣sdP (K)∣P → ∣K ∣P defines a cofibrant replacement of ∣K ∣P . We obtain
a commutative diagram

[∣K ∣P ,X]P hoStratP (∣K ∣P ,X)

[∣sdP (K)∣P ,X]P hoStratP (∣sdP (K)∣P ,X]P )

≅ ≅

≅

Since ∣l.v.P ∣P is a weak equivalence, the right vertical map is a bijection. By Lemma 3.5.2.2,
the same holds for the left vertical map. Since ∣sdP (K)∣P is cofibrant, and all objects of
StratP are fibrant, the bottom horizontal map is also a bijection. Hence, by commutativity of
the diagram, the upper horizontal is a bijection, as was to be shown.

By Recollection 3.5.2.1 we obtain the following immediate corollary of Theorem 3.5.2.3.

Corollary 3.5.2.4. Let ConP ⊂ StratP the full subcategory of conically P -stratified which
are triangulable (stratum-preserving homeomorphic to the realization of a stratified simplicial
set). Denote by ConP /≃P the category obtained by identifying stratum-preserving homotopic
maps. Then, the inclusion

ConP ↪ StratP
induces a fully faithful embedding

ConP /≃P ↪ hoStratP .

Remark 3.5.2.5. Theorem 3.5.2.3 and Corollary 3.5.2.4 also hold over varying posets, i.e.,
in Strat. Indeed, it follows from the equivalence between the homotopy categories of Strat
and sStrat which is Theorem 3.5.1.1, and the fibrancy property of conically stratified spaces,
which also holds in sStrat since fibrant objects of sStrat are characterized fiberwise.
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Remark 3.5.2.6. Note, that Lemma 3.5.2.2, Theorem 3.5.2.3 and Corollary 3.5.2.4 admit
a strengthening in terms of simplicial categories. More precisely, if for X,Y ∈ StratP and
K,L ∈ sStratP one replaces the set of homotopy classes of maps [X,Y ]P and [K,L]P , by
the simplicial mapping spaces, and the sets hoStratP (X,Y ) and hosStratP (K,L) by derived
mapping spaces, the statements remain true with analogous proofs. In practice, this means
that when working with spaces satisfying the hypothesis of Theorem 3.5.2.3 the classical
mapping spaces has the correct homotopy type and there is no need to derive. This applies to
triangulable conically stratified spaces as detailed in Remark 3.5.2.7.
Remark 3.5.2.7. The simplicial perspective described in Remark 3.5.2.6 can be used to
strengthen Corollary 3.5.2.4 to a statement about infinity categories. Indeed, ConP , as a
subcategory of StratP , inherits the structure of a simplicial category, while StratP itself is a
simplicial model category. This means that the inclusion of the full simplicial sub-category
ConP ↪ StratP descends to a functor

ConP ↪ LHsimp(StratP )

Where LHsimp(StratP ) is the diagonal hammock localization of a simplicial model category,
described in [DK80b, Prop. 4.8]. Corollary 3.5.2.4 then generalizes to the statement that the
above map is a fully faithful embedding of simplicial categories. Combining this with the fact
that LHsimp(StratP ) ≃ LH(StratP ) ([DK80b, Prop. 4.8]), this means that the ”naive” infinity
category of conically P -stratified and triangulable stratified spaces embeds fully faithfully in
that of P -stratified spaces. The analogous statement for Con and Strat also holds by the
same argument.

3.5.3 A simplicial approximation theorem
Exposing Ex∞P as a fibrant replacement functor in sStratP allows one to study the homotopy
category of sStratP through actual maps in sStratP from some subdivision of the domain.
Using Theorem 3.5.1.1, one can then transport those results to StratP and its homotopy
category to obtain stratified versions of the classical simplicial approximation theorems.
Proposition 3.5.3.1. Let K ∈ sStratP be finite and L ∈ sStratP . Then, for any mor-
phism ϕ∶K → L in the homotopy category hosStratP there exists an n ∈ N and a morphism
f ∶ sdnP (K)→ L such that the diagram

sdnPK

K L

l.v.n
P f

ϕ

commutes in hosStratP .
Remark 3.5.3.2. Proposition 3.5.3.1 also holds as a relative version. To be more precise,
this involves the following replacements: Replace K by a pair A↪K and L by some stratum-
preserving simplicial map g ∶ A→ L. The role of sStratP is then taken by the under category
sStratAP with the induced model structure from [Hir03, Theorem 7.6.5]. However, one needs to
be mindful of the fact that, for the relative version, sdnP maps into sStratsdn

P (A)
P . In particular,

the final commutativity condition holds in the homotopy category of the latter. Aside from
this, the proof is formally identical.

As an immediate corollary of this result (its relative version), and Theorem 3.5.1.1 we
obtain the following corollary, which we prove first.
Proposition 3.5.3.3. Suppose we are given a commutative diagram in StratP :

∣A∣P ∣L∣P

∣K ∣P ,

∣g∣P

∣i∣P ϕ
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where A,K and L are stratified simplicial sets, with A and K finite, i∶A↪K is an inclusion,
g∶A → L some arbitrary map in sStratP and ϕ∶ ∣K ∣P → ∣L∣P some map in StratP . Then,
there exists an n ∈ N and a map f̂ ∶ sdnP (K)→ L ∈ sStratP such that:

• the following diagram commutes in sStratP

sdnP (A)

A L

l.v.n
P

f̂∣sdn
P
(A)

g

• the following diagram commutes in hoStrat∣sdn
P (A)∣P

P

∣sdnP (K)∣P

∣K ∣P ∣L∣P

∣l.v.n
P ∣P

∣f̂ ∣P

ϕ

(3.16)

In particular, for n ≥ 1, Diagram (3.16) can even be assumed to commute up to stratified
homotopy relative to ∣sdnP (A)∣P , since then ∣sdnP (i)∣P is a cofibrant object in Top∣sdn

P (A)∣P
P .

Proof. Note that, by subdividing the source once, we may without loss of generality assume
that i is such that its realization is cofibrant in StratP . As every object is fibrant, this means
that morphisms in the homotopy category hoStrat∣A∣P from ∣i∣P to ∣g∣P agree with homotopy
classes of maps in Strat∣A∣PP (i.e. homotopy classes rel ∣A∣P ). Using this and (a relative version
of) Theorem 3.5.1.1 we obtain

[∣i∣P , ∣g∣P ]
∣A∣P
P = hoStrat∣A∣PP (∣i∣P , ∣g∣P ) ≅ hosStratPA(i, g).

where the left hand side denotes relative stratum-preserving homotopy classes and the right
hand side bijection is given by realization. Now, apply Proposition 3.5.3.1, to obtain the
result.

We now move on to the proof of Proposition 3.5.3.1. We are going to prove the non-relative
version. The relative proof is structurally almost identical. First, we need two equations
involving subdivision and ExP which are easily verified. Recall that we denote ιn ∶ L↪ ExnP (L)
the natural inclusion induced by pulling back a simplex along l.v.nP .

Lemma 3.5.3.4. Denote by η and ε the unit and counit of sdnP ⊣ ExnP respectively. Then, the
equations

ε ○ sdnP (ιn) = l.v.nP
ExnP (l.v.nP ) ○ η = ιn

hold.

As an immediate corollary, we obtain:

Corollary 3.5.3.5. Let K,L ∈ sStratP . Then, the following diagram of bijections commutes:

hosStratP (K,L)

hosStratP (K,ExnP (L)) hosStratP (sdnP (K), L)

,
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where the right diagonal is given by pre-composing with l.v.n, the left diagonal by post-composing
with ιn and the bottom horizontal is the adjunction map.

Proof. Let ϕ ∈ hosStratP (K,L). Let ϕ̂ be the adjoint morphism to ιn ○ ϕ. It is given by
ε ○ sdn(ιn ○ ϕ). By Lemma 3.5.3.4 we have

ε ○ sdn(ιn ○ ϕ) = l.v.nP ○ sdnP (ϕ)
= ϕ ○ l.v.nP .

In particular, this shows the required commutativity.

We now have everything necessary available to derive Proposition 3.5.3.1.

Proof of Proposition 3.5.3.1. By Corollary 3.3.1.2, ι∞ ∶ L ↪ Ex∞P L defines a fibrant replace-
ment of L. Now, consider the following commutative diagram:

sStratP (K,L) hosStratP (K,L)

sStratP (K,Ex∞P (L)) hosStratP (K,Ex∞P (L))

with the verticals given by postcomposition with ι∞. Since Ex∞P is fibrant, the lower horizontal
is surjective. As K is finite, sStratP (K,Ex∞P (L)) = lim

Ð→
sStratP (K,ExnP (L)). In particular,

for any ϕ ∈ hosStratP (K,L), we find some f ′∶K → ExnP (L) mapping to the same element as ϕ
in hosStratP (K,Ex∞P L). As ι∞ is a weak equivalence and thus postcomposing with it gives a
bijection in the homotopy category, we get that in particular f ′ = ιn○ϕ in hosSetP (K,ExnP (L)).
Next, consider the following diagram, which is commutative by Corollary 3.5.3.5:

sStratP (K,L) hosStratP (K,L)

sStratP (sdnP (K), L) hosSetP (sdnP (K), L)

sStratP (K,ExnP (L)) hosStratP (K,ExnP (L))

≅

≅

≅ ≅

Bijections are marked by ≅. We have shown that f ′ ∈ sStratP (K,ExnP (L)) and ϕ ∈ hosStratP (K,L)
have the same image in hosStratP (K,ExnP (L)). But the commutativity of the diagram gives
that the map f ∶ sdnP (K) → L ∈ sStratP , adjoint to f ′, and ϕ ∈ hosStratP (K,L) must have
the same image in hosStratP (sdnP (K), L), which concludes the proof.

3.6 Simplicial homotopy links and vertically stratified
complexes

Consider again the following diagram of categories with weak equivalences:

DiagP

sStratP StratP .

DP

∣−∣P

SingP

DTop
P

In Section 3.4 we have seen that weak equivalences in sStratP are detected by (combinatorial)
links and that (up to realization), those naturally have the same weak homotopy type as
the homotopy links in StratP . As a particular consequence, we obtained the fact that the
realization functor ∣ − ∣P characterizes weak equivalences. The functor DTop

P characterizes
weak equivalences by definition and it is the content of Section 3.3 that SingP characterizes
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weak equivalences. We have also shown (Corollaries 3.4.5.3 and 3.4.5.4) that CP and thus
CTop
P = ∣CP (−)∣P characterize weak equivalences. To complete this picture, it remains to

investigate the functor DP ∶ sStratP →DiagP . Rephrasing this question in terms of links, we
need to compare the combinatorial homotopy link HoLink to the other notions of (homotopy)
link, which we have already shown to agree (up to the Quillen equivalence ∣ − ∣ ⊣ Sing). There
is an obvious natural comparison map

HoLinkI(K) =Map(∆I ,K)→Map(∣∆I ∣P , ∣K ∣P ) = Sing(HoLinkI(∣K ∣P )

given by realization. The goal of this section is to prove the following theorem.

Theorem 3.6.0.1. Let K ∈ sStratP . Then the natural inclusion

HoLinkI(K)↪ Sing(HoLinkI(∣K ∣P ))

is a weak equivalence of simplicial sets. Hence, equivalently, so is the adjoint map

∣HoLinkI(K)∣→HoLinkI(∣K ∣P ).

As an immediate corollary of this result and Corollary 3.4.5.2, one obtains:

Corollary 3.6.0.2. The functor DP ∶ sStratP →DiagP characterizes weak equivalences.

Proof. By Corollary 3.4.5.2, a map f ∶K → L in sStratP is a weak equivalence if and only if
∣f ∣P ∶ ∣K ∣P → ∣L∣P is a weak equivalence in StratP . This implies that f is a weak equivalence if
and only if for all regular flags I, f induces weak equivalencesHoLinkI(∣K ∣P )→HoLinkI(∣L∣P ).
By Theorem 3.6.0.1 this is equivalent to asking that f induces weak equivalences DP (K)(I) =
HoLinkI(K)→ HoLinkI(L) =DP (L)(I), which concludes the proof.

Remark 3.6.0.3. Corollary 3.6.0.2 applies in particular to fibrant replacement maps K →
KFib (for example, the map K ↪ Ex∞P (K)). This means that the map HoLinkI(K) →
HoLinkI(KFib) is a weak equivalence, or in other words, that the näıve simplicial homotopy
link and the fibrantly defined homotopy link coincide. This result provides insight as to why
the model structure on sStratP described in [Hen] and the one studied in this paper coincide,
even though they have very different descriptions. Philosophically, the former has a class of
weak equivalences defined from the näıve homotopy links HoLinkI(K) while the latter has a
class of weak equivalences defined from HoLinkI(KFib), and the weak equivalence between
those mapping spaces implies that the two model structures indeed have the same class of
weak equivalences. In fact, they coincide.

3.6.1 Sketch of proof of Theorem 3.6.0.1
We are going to prove Theorem 3.6.0.1 through a comparison of homotopy groups using
simplicial approximation style results. Note that using simplicial approximation to produce
homotopies between simplicial maps leads to an uncommon type of cylinder object. To handle
these cylinder objects, we define sd-homotopies. Remark 3.6.1.5, at the end of this subsection,
provides some insight into sd-homotopies.

Definition 3.6.1.1. Let S,S′ be simplicial sets, k ≥ 0, and f, f ′∶ sdk(S)→ S′ be two simplicial
maps. Then f and f ′ are sd-homotopic, if there exists a simplicial map

H ∶ sdk(S ×∆1
)→ S′

such that H restricts on either end of the cylinder to f and f ′. Such a map is called an
sd-homotopy. If f and f ′ are pointed maps, a pointed sd-homotopy is instead a pointed map

H ∶ sdk(S ∧∆1
+)→ S′,
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where ∧ stands for the smash product, and ∆1
+ stands for the 1-simplex with a freely adjoined

base-point.
Now, let K ∈ sStratP be a stratified simplicial set, I ∈ sd(P ) a regular flag and f, f ′∶ sdk(S) ×
∆I →K two stratified simplicial maps. The maps f and f ′ are called (stratified) sd-homotopic
if there exists a stratum-preserving simplicial map

H ∶ sdk(S ×∆1
) ×∆I →K,

called a (stratified) sd-homotopy in sStratP , such that H restricts on either end of the cylinder
to f and f ′. If in addition ∗ ∈ S and ∆I → K are pointed, and f and f ′ are pointed maps,
then a stratified, pointed sd-homotopy is instead a pointed stratified map

H ∶ sdk(S ∧∆1
+) ×∆I →K.

(Stratified) pointed sd-homotopies generate equivalence relations on the sets of pointed maps
sSet∗(sdk(S), S′) and sStrat∆I

P (sdk(S)×∆I ,K). We write ∼∗ for both equivalence relations
defined this way.
Remark 3.6.1.2. Let f, f ′∶ sdk(S) → S′ be two simplicial map, related by a simplicial
homotopy H ∶ sdk(S) ×∆1 → S′. Note that there is a simplicial map

Q∶ sdk(S ×∆1
)→ sdk(S) × sdk(∆1

)
1×l.v.k

ÐÐÐÐ→ sdk(S) ×∆1.

Precomposing H with Q gives a sd-homtopy

H ○Q∶ sdk(S ×∆1
)→ S′

between f and f ′. In particular, if two maps are homotopic, they are also sd-homotopic. The
analogous statement holds for stratified homotopies as well as in the pointed case.

Lemma 3.6.1.3. Let ∆I →K ∈ sStrat∆I
P be an I pointed stratified simplicial set. Consider

HoLinkI(K) with the induced pointing. Then, for each n ≥ 0 there are natural bijections

lim
Ð→

sStrat∆I
P (sdk(Sn) ×∆I ,K)/∼∗ ≅ lim

Ð→
sSet∗(sdk(Sn),HoLinkI(K))/∼∗

≅ πn(HoLinkI(K))

where Sn is some triangulation of the n-sphere. The first bijection is induced by the adjunction
− ×∆I ⊣Map(∆I ,−), and the second by composing with an inverse to l.v.k (in the homotopy
category).

Proof. The first map is a bijection since, by construction, the simplicial adjunction − ×∆I ⊣
Map(∆I ,−) preserves sd-homotopies. The second follows from the adjunction sd ⊣ Ex, the
fact that Ex∞ defines a fibrant replacement in sSet, and that Sn is a finite simplicial set
(see Remark 3.6.1.5 for more details). Note that the commutativity conditions needed to
ensure that the map from the colimit is well defined were already checked in the proof of
Proposition 3.5.3.1, specifically, in Corollary 3.5.3.5.

We can now conclude the proof of Theorem 3.6.0.1.

proof of Theorem 3.6.0.1. Let K be a stratified simplicial set, together with some pointing
ϕ∶∆I →K corresponding to a basepoint in HoLinkI(K). Consider the commutative diagram

lim
Ð→

sStrat∆I
P (sdk(Sn) ×∆I ,K)/∼∗ [∣Sn ×∆I ∣P , ∣K ∣P ]

∣∆I ∣P
P

lim
Ð→

sSet∗(sdk(Sn),HoLinkI(K))/∼∗ [∣Sn∣,HoLinkI(∣K ∣P )]
∗

πn(HoLinkI(K)) πn(HoLinkI(∣K ∣P )) ,

≅ ≅

≅ ≅
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where the bottom horizontal map is induced by HoLinkI(K)→ Sing(HoLinkI(∣K ∣P )) and the
top horizontal is given by first realizing and then precomposing with a homotopy inverse to
∣l.v.k ∣ × 1∆I . Note that the top horizontal map is well-defined since (stratified) sd-homotopies
realize to (stratified) homotopies, by the fact that ∣sdk(Sn × ∆1) × ∆I ∣ is a cylinder for
∣sdk(Sn) ×∆I ∣.

All the vertical maps are already known to be bijections. To finish the proof of Theo-
rem 3.6.0.1, it suffices to show that the top horizontal map is a bijection. This is a consequence
of Proposition 3.6.1.4. Indeed, the direct statement of Proposition 3.6.1.4 gives surjectivity,
while the homotopy statement shows that if two pointed maps f, f ′∶ sdk(Sn)×∆I →K realize to
homotopic maps, then they are related by a pointed sd-homotopy sdk

′

(sdk(Sn)∧∆1
+)×∆I →K.

By Remark 3.6.1.2, this also means that f ○ (l.v.k
′

× 1∆I) ∼∗ f
′ ○ (l.v.k

′

× 1∆I), which proves
injectivity.

Proposition 3.6.1.4. Let S ∈ sSet⋆ be a pointed finite simplicial set, I a regular flag and
K ∈ sStrat∆I

P a pointed stratified simplicial set. Then, for any pointed stratum-preserving map
ϕ∶ ∣S ×∆I ∣P → ∣K ∣P and k ≫ 0, there exists a pointed stratified simplicial map f ∶ sdk(S)×∆I →
K such that

ϕ ○ ∣l.v.k × 1∆I ∣P ≃P ∣f ∣P rel ∗ ×∣∆I ∣P .

Conversely, if any two pointed stratified simplicial maps f0, f1 ∶ S ×∆I →K fulfill

∣f0∣P ≃P ∣f1∣P rel ∗ ×∣∆I ∣P ,

then, for k ≫ 0, there exists a pointed sd-homotopy H ∶ sdk(S ∧ ∆1
+) × ∆I → K between

f0 ○ (l.v.k × 1∆I) and f1 ○ (l.v.k × 1∆I).

Note, that in comparison to Proposition 3.5.3.3, the left hand side only subdivides in the
nonstratified part of Sn ×∆I . That such a more efficient subdivision suffices, is a consequence
of the particularly simple shape of this stratified simplicial set. It is a special example of a
vertically stratified object. We will study those in details in Section 3.6.2. This will serve
a dual purpose. First off, we use these objects to obtain a proof of Proposition 3.6.1.4 in
Section 3.6.3. Secondly, they give a simple and convenient model for the homotopy category of
stratified spaces (see Theorem 3.6.2.18).

Remark 3.6.1.5. Simplicial approximation theorems, such as Proposition 3.5.3.3, allow one
to produce a simplical maps f ∶ sdk(S) → S′ from the data of a continuous map ϕ∶ ∣S∣ → ∣S′∣.
The two maps will then be related by a (topological) homotopy

H ∶ ∣sdk(S)∣ × [0,1]→ ∣S′∣

relating ∣f ∣ and ϕ ○ ∣l.v.k ∣. In its relative version, one can in addition assume that if ϕ was
already simplicial on some subobject A ⊂ S, i.e. ϕ∣∣A∣ = ∣g∣, with g∶A→ S′, then f can be chosen
such that fsdk(A) = g ○ l.v.k, and the homotopy H can then be taken relative to ∣sdk(A)∣.
One common use of the relative statement is when one has a pair of simplicial maps f, f ′∶S → S′

whose realizations happen to be homotopic, through some map H ′∶ ∣S ×∆1∣ ≅ ∣S∣ × [0, 1]→ ∣S′∣.
Through relative simplicial approximations, one gets a map

H ∶ sdk(S ×∆1
)→ S′,

which restricts to f ○ l.v.k and f ′ ○ l.v.k on either side of the cylinder sdk(S ×∆1). Now, note
that H is not an elementary simplicial homotopy (see Definition 3.2.3.4), but instead an sd-
homtopy. In particular, unless one is given an appropriate simplicial map sdk

′

(S)×sdk
′′

(∆1)→
sdk(S×∆1), one cannot deduce that, after enough subdivisions, the maps f ○ l.v.k and f ′ ○ l.v.k
become simplicially homotopic in the usual sense. It does not seem unreasonable to assume
that such a map can generally be exposed. In fact in the unordered simplicial complex case,
such a result follows from the material presented in [Spa89, Chapter 3, Section 4]. We have
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no need for such a result in the following proof, however, and will work with the alternative
cylinder instead. Of course, f and f ′ are still equal in the homotopy category, and if S′ is
fibrant, this is enough to show that they must be related through a simplicial homotopy.

One way to derive these type of simplicial approximation results, which we already employed
in the proof of Proposition 3.5.3.1, is by leveraging the Ex∞ functor. Let us again illustrate
this for homotopies. Let f, f ′∶S → S′ be two maps who become equal in the homotopy category
(this is equivalent to asking that they realize to homotopic maps). ι∶S′ → Ex∞(S′) be the
usual inclusion. Then, since Ex∞ is a fibrant replacement functor, f ○ ι and f ′ ○ ι must be
related through a simplicial homotopy Ĥ ∶S ×∆1 → Ex∞(S′). Now, if S is finite, the map
Ĥ must factor through Exn(S′) for some n ≥ 0. Using the adjunction sdn ⊣ Exn, we get an
sd-homtopy

H ∶ sdn(S ×∆1
)→ S′

which restricts on either side of the cylinder sdn(S ×∆1) to f ○ l.v.n and f ′ ○ l.v.n. Again,
note that, a priori, this is not enough to conclude that after enough subdivisions, f ○ l.v.n and
f ′ ○ l.v.n become simplicially homotopic in the usual sense.

3.6.2 Vertically stratified objects
Throughout this subsection, if σ∶∆n → S is a possibly degenerate simplex, σ̂ stands for the
unique non-degenerate simplex of S, of which σ is a degeneracy.

Definition 3.6.2.1. A P -labelled simplicial set is the data of

• a simplicial set S;

• a labelling map, λS ∶Sn.d. → N(P )n.d.,

such that, for any σ ⊂ τ in S, λS(τ) ⊂ λS(σ). A label-preserving map f ∶ (S,λS) → (S
′, λS′)

is a simplicial map f ∶S → S′, such that for all σ ∈ Sn.d., λS(σ) ⊂ λS′(f̂(σ)). We denote by
P -sSet the category of P -labelled simplicial sets with label-preserving maps.

Example 3.6.2.2. Let K ∈ sStratP be a stratified simplicial set. Consider the (non-stratified)
simplicial set sd(K). Define a labelling map, λ∶ sd(K)n.d. → N(P )n.d. as follows. If (µ,σ) is a
vertex in sd(K), with µ ⊂ ∆n and σ∶∆n →K, let λ(µ,σ) = ̂φK ○ σ ○ µ. For higher dimensional
simplices, set λ((µ0, . . . , µk), σ) = λ(µ0, σ). Then (sd(K), λ) is a P -labelled simplicial set,
and for any stratum-preserving simplicial map f ∶K → L, sd(f)∶ (sd(K), λ)→ (sd(L), λ) is a
label-preserving map.

Definition 3.6.2.3. Let (S,λS) be a P -labelled simplicial set. Its verticalization is the
inclusion of stratified simplicial sets V (S,λS)↪ S ×N(P ), where V (S,λS) is defined as the
following subset:

V (S,λS) = ⋃
σ∶∆n→S , n.d.

Im(σ) × λS(σ) ⊂ S ×N(P ) ,

where the union is taken over all non-degenerate simplices of S. If f ∶ (S,λS)→ (S′, λS′) is a
label-preserving map, then the map f × 1N(P ) restricts to a stratified map V (f)∶V (S,λS)→
V (S′, λS′) and V defines a functor P -sSet→ sStratP in this fashion.

Next, let us pay some more attention to the stratified simplicials sets which lie in the
essential image of the verticalization functor.

Definition 3.6.2.4. A pre-verticalization on a stratified simplicial set K is the data of

• a simplicial set K̄;

• a monomorphism in sStratP , K ↪ K̄ ×N(P ).
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A vertical map between stratified simplicial sets equipped with pre-verticalizations K ⊂
K̄ ×N(P ) and L ⊂ L̄ ×N(P ) is a stratum-preserving map f ∶K → L such that there exists a
simplicial map f̄ ∶ K̄ → L̄ making the following diagram commute:

K L

K̄ ×N(P ) L̄ ×N(P ) .

f

f̄×1N(P )

Definition 3.6.2.5. A vertically stratified simplicial set is a stratified simplicial set, K,
equipped with a pre-verticalization, K ↪ K̄ ×N(P ), which is isomorphic to the verticalization
of a P -labelled simplicial set through some vertical map:

K V (S,λS)

K̄ ×N(P ) S ×N(P ) .

≃

≃

Remark 3.6.2.6. Note that for a stratified simplicial set, having a pre-verticalization is
not enough to be a vertically stratified simplicial set. All stratified simplicial sets admit a
tautological pre-verticalization, K → K ×N(P ). However, we are only interested in those
pre-verticalizations that come from taking the verticalizations of P -labelled simplicial sets.
Furthermore, when considering vertical maps between those, one need not keep track of the
associated simplicial map f̄ ∶ K̄ → L̄ since in those cases, if such a map exists, it is unique. To
see this, observe that for a vertically stratified simplicial set K → K̄ ×N(P ), the composition
K → K̄ ×N(P ) → K̄ must be surjective, leaving at most one choice for f̄ (see also the fully
faithfulness part of Proposition 3.B.0.3).

Example 3.6.2.7. Let K ∈ sStratP be a stratified simplicial set, and (sd(K), λ) the P -
labelled simplicial set from Example 3.6.2.2. Then V (sd(K), λ) = sdP (K) ⊂ sd(K) ×N(P ).
Furthermore, if f ∶K → L is a stratified map, then sdP (f) = V (sd(f)) is a vertical map. See
Fig. 3.7.

Remark 3.6.2.8. Vertically stratified simplicial sets can be characterized in another way. They
are precisely the images of cofibrant objects in DiagP under the functor CP ∶DiagP → sStratP .
Indeed, one can go from a P -labelled simplicial set, (S,λS), to a (cofibrant) diagram, F , by
setting F (I) = {σ ∈ S ∣ ∆I ⊂ λS(σ̂)}, for regular flags I,. Conversely, given a cofibrant diagram
F , set S = ∪IF (I), and λS(σ) = max{∆I ∣ σ ∈ F (I)}. To see why this labelling map is
well-defined, recall from Proposition 3.2.7.4 that cofibrant objects in DiagP are precisely the
diagrams, F , such that:

• For all I ′ ⊂ I, the map F (I)→ F (I ′) is a monomorphism.

• If I0 ⊂ I1,I
′
1, then F (I0) ⊃ F (I1) ∩ F (I

′
1) /= ∅ if and only if there exist I2 such that

I1,I
′
1 ⊂ I2, and in this case, F (I1) ∩ F (I

′
1) = F (I2), for the smallest such I2.

One then checks that the verticalization process corresponds to applying CP to the correspond-
ing diagram.

This relation between vertically stratified simplicial sets and diagrams fits into a larger
picture, which is explored in more details in Section 3.B, more specifically Proposition 3.B.0.2.

Proposition 3.6.2.9. Let f ∶S × ∆I → L in sStratP be a stratum-preserving simplicial
map between vertically stratified simplicial sets. There exists a stratum-preserving homotopy,
H ∶ (S ×∆I)×∆1 → L such that H0 = f and H1 is a vertical map. Furthermore, if f is already
vertical on A ×∆I ⊂ S ×∆I , then the homotopy H, can be taken relative to A ×∆I .
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[1] [1]

[0]

[0]

[0 < 1]

[0 < 1]

Figure 3.7: The figure 8 as a stratified simplicial set over P = {0 < 1}, its subdivision as a
P -labelled simplicial set, and the associated vertically stratified simplicial set, sdP (K).

Proof. We give an explicit definition of the homotopy for the case S = ∆n which is natural
in n and hence extends to the general case. Note that f factors through S′ ×∆I ⊂ L, where
L = V (L̄, λL̄), and S′ ⊂ L̄ is spanned by the simplices σ such that ∆I ⊂ λL̄(σ). Hence, we
may without loss of generality assume L to be of the form S′ ×∆I for some S′ ∈ sSet. In
particular, as f is stratum-preserving, it is uniquely determined by the map f̂ ∶∆n ×∆I → S′

obtained by composing with the projection to S′, and we may equivalently show the existence
of a simplicial map (natural in ∆n and S′) Ĥ ∶∆n ×∆I ×∆1 → S′ such that Ĥ0 = f̂ and Ĥ1
factors through ∆n ×∆I → ∆n. Any k-simplex in ∆n ×∆I ×∆1 is given by the data of a flag

(x0, p0) ≤ ⋅ ⋅ ⋅ ≤ (xk, pk)

with xi ∈ [n] and pi ∈ I, together with some l ∈ [k + 1] indicating whether the vertices (xi, pi)
project to 0 or 1 ∈ ∆1. More explicitely, l stands for the k-simplex of ∆1, [0, . . . ,0,1, . . .1],
where the first 1 appears at the l-th position. Note that a simplex ([(x0, p0), . . . (xk, pk)], l)
lies in the sub-object ∆n ×∆I × {0} (resp. ∆n ×∆I × {1}) if and only if l = k + 1 (resp. l = 0).
Using this, consider the (not stratum-preserving) simplicial map

Rn∶∆n
×∆I ×∆1

→∆n
×∆I

([(x0, p0), . . . (xk, pk)], l)↦ [(x0, p0), . . . , (xl, pl), (xl+1, pm), . . . , (xk, pm)],

where pm is the maximum of I. It is immediate from the definition, that Rn is natural in n
and furthermore, that Rn0 = 1 and Rn1 factors through ∆n ×∆I →∆n. Now, finally define Ĥ
as the composition

Ĥ ∶∆n
×∆I ×∆1 Rn

ÐÐ→∆n
×∆I f̂

Ð→ S′,

which fufills the requirements by the respective properties of Rn, and is natural in n. Finally,
for the relative statement, note that if f̂ already factors through ∆n ×∆I → ∆n, i.e. f is
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vertical on ∆n ×∆I , then we have a commutative diagram

∆n ×∆I ×∆1 ∆n ×∆I

∆n ×∆I ∆n S′

Rn

π∆n×∆I
f̂

In other words, Ĥ factors through π∆n×∆I ∶∆n ×∆I ×∆1 →∆n ×∆I and thus is a constant
homotopy, which shows the relative statement.

The theory of P -labelled and of vertically stratified simplicial sets has a topological
counterpart, which we briefly introduce here.

Definition 3.6.2.10. A P -labelled CW-complex is the data of

• a CW-complex, T ;

• a labelling map, λT ∶{cells of T}→ N(P )n.d..

Such that, for any pair of cells eα, eβ such that eα∩eβ /= ∅, λT (eβ) ⊂ λT (eα). A label-preserving
map f ∶ (T,λT )→ (T ′, λT ′) is a continuous map f ∶T → T ′, such that for any cells eα ∈ T, eβ ∈ T ′
such that f(eα) ∩ eβ /= ∅, one has λT (eα) ⊂ λT ′(eβ). We denote the category of P -labeled
CW-complexes by P -CW.

Example 3.6.2.11. Given a P -labelled simplicial set (T,λT ), its realization admits the
structure of a P -labelled CW-complex with a cell for each non-degenerate simplex, which is
given the same label as the simplex.

As for P -labelled simplicial sets, we are interested in the verticalization of a P -labelled
CW-complex.

Definition 3.6.2.12. Let (T,λT ) be a P -labelled CW-complex. Its verticalization is the
inclusion V (T,λT )↪ T × ∣N(P )∣P , where V (T,λT ) is the following subset:

V (T,λT ) = ⋃
eα∈{cells of T}

eα × ∣λT (eα)∣P ⊂ T × ∣N(P )∣P .

Extending to morphisms in the obvious way, this construction defines a functor V ∶P -CW →

StratP , which factors through V ∶P -CW→ TopN(P ).

Again, it can be useful to study the objects in the essential image of the verticalization
functor. These lead to a particularly convenient class of stratified spaces which admit a cell
decomposition similar to classical CW-complexes (see Remark 3.6.2.14). We give a brief
outlook into the resulting theory here, without going too much into detail. The definitions
require a definition of a pre-verticalization and vertical map, which we omit here, since they
are entirely analogous to the simplicial definition in Definition 3.6.2.4, replacing N(P ) by
∣N(P )∣P .

Definition 3.6.2.13. A vertically stratified CW-space is a stratified space equipped with a
pre-verticalization, which is vertically isomorphic to the verticalization of a P -labeled CW-
complex. When such an isomorphism is fixed we speak of a vertically stratified CW-complex.
We will consider those objects in the categories StratP and TopN(P ).

Remark 3.6.2.14. Vertically stratified CW-spaces can also be characterized explicitly through
the existence of a cell decomposition. Though, in this case, one has to be careful to also impose
verticality conditions on the gluing of cells. Since the cells are of shape Bn × ∣∆I ∣N(P ), for
n ≥ 0, and regular flags I, and are glued along their boundaries Sn−1 × ∣∆I ∣N(P ), this implies
that vertically stratified CW-spaces are actual cell complexes in TopN(P ) (and in StratP ). In
particular, they are cofibrant objects.
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Example 3.6.2.15. Following Examples 3.6.2.7 and 3.6.2.11, given a stratified simplicial
set K ∈ sStratP , we have a P -labelled CW-complex (∣sd(K)∣, ∣λ∣). Its verticalization gives a
vertically stratified CW-structure on ∣sdP (K)∣P :

∣sdP (K)∣P ↪ ∣sd(K)∣ × ∣N(P )∣P .

See Proposition 3.B.0.3 for a complete picture of the relationship between labelled objects,
vertical objects and diagrams indexed over sd(P ).

Proposition 3.6.2.16. Let f ∶X → Y be a map in TopN(P ) between vertically stratified
CW-spaces, X ≅ V (X̄, λX̄) and Y ≅ V (Ȳ , λȲ ). Then f is strongly stratified homotopic to a
vertical map. Furthermore, if Ā ⊂ X̄ is a subcomplex equipped with the induced labelling, then
the homotopy can be taken relative to A = V (Ā, λĀ) ⊂X. The analogous statement also holds
for maps and homotopies in StratP .

Proof. Here, we give a proof using the cellular structure of vertically stratified CW-spaces.
A proof going through abstract homotopy theory is given in Section 3.B. We first prove
the statement for maps in TopN(P ) by the usual induction on skeletons argument. Let us
write Xn = V (Ā ∪ X̄n, λX̄), for n ≥ −1. We will construct a sequence of maps, gi∶X → Y ,
i ≥ −1, with g−1 = f , and gn vertical on Xn, and gn and gn−1 homotopic relative to Xn−1,
for n ≥ 0, through some homotopy in TopN(P ), Hn. By subdividing the interval, one can
then concatenate the homotopies Hn, to a homotopy H ∶X × [0,1)→ Y . By construction, the
map g∶x↦ limt→1H(x, t) is well defined, vertical and extends H to X × [0,1]. Hence, g is as
required in the statement of the proposition.

Now, let n ≥ 0, and assume gn−1 has been constructed. Let eα be some n-cell of X of shape
Bn ×∆I and define the homotopy

H ′n,α∶B
n
× ∣∆I ∣N(P ) × [0,1]→ Y ⊂ Ȳ × ∣N(P )∣N(P )

((x, ξ), s)↦ (prȲ (gn−1(x, s(1,0, . . . ,0) + (1 − s)ξ)), ξ)

Assembling the H ′n,α gives a homotopy on the n-skeleton H ′n∶Xn×[0, 1]→ Y , which is constant
on the n− 1 skeleton, by the induction hypothesis. But now, by Remark 3.6.2.14, the inclusion
Xn → X is a cofibration in TopN(P ), and thus has the homotopy extension property. This
means that H ′n extends to the desired homotopy Hn∶X × [0,1]→ Y , between gn−1 and some
map gn with the required properties, which concludes the proof for TopN(P ).

For maps in StratP , first note that, as noticed in Remark 3.6.2.14, X and Y are cofibrant
objects, in StratP , and in fact come from cofibrant objects in TopN(P ). Since all objects in
StratP and TopN(P ) are fibrant, and since φP ○−∶TopN(P ) → StratP is a Quillen equivalence
between the two model categories, this implies that we have canonical bijections

HomStratP
(X,Y )/≃P ≅ HomhoStratP

(X,Y )

≅ HomhoTopN(P )
(X,Y )

≅ HomTopN(P )
(X,Y )/≃N(P ).

Where ≃P and ≃N(P ) stand for the homotopy relations in StratP and TopN(P ) respectively.
In particular, this implies that there must exist f ′∶X → Y a map in TopN(P ) homotopic to
f as a map in StratP . For the relative statement, consider the relative categories StratAP ,
and TopAN(P ). The Quillen equivalence between StratP and TopN(P ) passes to the relative
categories, and the above argument then gives the existence of a map in TopAN(P ), f ′∶X → Y ,
homotopic to f as a map of StratAP . In other words, it is homotopic to f relative to A. We
then conclude the proof by applying the first part of the proposition to f ′.

Definition 3.6.2.17. Two vertical maps between vertically stratified CW-spaces, f, g∶X → Y ,
are said to be vertically homotopic if there exists a vertical map H ∶X × [0,1] → Y which is
a homotopy between f and g. Write f ≃V g when f and g are vertically homotopic, and let
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VCWP /≃V be the category whose objects are vertically stratified CW-spaces and whose set of
morphisms between X and Y is the set of vertical maps quotiented by the equivalence relation
≃V .

Now, as a corollary of Proposition 3.6.2.16, we obtain that the homotopy category hoStratP
may equivalently be described as the homotopy category of vertically stratified CW-spaces
VCWP /≃V , and vertical maps and homotopies. The comparison is given by the forgetful
functor, sending a vertically stratified CW-space X ↪ X̄ × ∣N(P )∣P to the stratified space X.

Theorem 3.6.2.18. the forgetful functor induces an equivalence of categories

VCWP /≃V ≅ hoStratP .

Proof. By classical results, we know that hoStratP ≅ StratCof
P /≃P . Furthermore, for all

X ∈ StratP , X is weakly equivalent to ∣sdP (SingP (X))∣P , which admits the structure of
a vertically stratified CW-complex by Example 3.6.2.15. Since stratified spaces admitting
the structure of a vertically stratified CW-complexes are cofibrant objects, when X is also
a cofibrant object it is in fact homotopy equivalent to the vertically stratified CW-complex
∣sdP (SingP (X))∣P . Thus, one can restrict from the subcategory of cofibrant objects, to the
subcategory of vertically stratified CW-spaces (while still retaining all stratum-preserving maps
and homotopies). But then, by Proposition 3.6.2.16, it is enough to consider only vertical maps,
and, from the relative case, we see that it is also enough to consider only vertical homotopies
between vertical maps, which concludes the proof.

Remark 3.6.2.19. Theorem 3.6.2.18 implies that vertically stratified CW-complexes and ver-
tical maps (and equivalently labeled CW-complex with label-preserving maps, see Section 3.B,
specifically Corollary 3.B.0.6) are a model for the homotopy category of stratified spaces. This
is particularly convenient for a few reasons.

• As illustrated in the proof of Proposition 3.6.2.16, vertically stratified CW-complexes
allow for inductive arguments on their skeletons, giving access to reasonably elementary
and topological proofs.

• Vertically stratified CW complexes allow for a nice interpretation of the homotopy
links, and the stratified homotopy groups. Indeed, let X ≅ V (X̄, λX̄) ⊂ X̄ × ∣N(P )∣P
be a vertically stratified CW-complex, let I be a regular flag, and let X̄I ⊂ X̄ be the
subcomplex containing all cells eα ⊂ X̄, such that ∆I ⊂ λX̄(eα). Then, there is a
homotopy equivalence

HoLinkI(X) ≃ X̄I
where the map from HoLinkI(X) to X̄I is given by evaluating at the 0-th vertex, then
projecting to X̄, while its homotopy inverse is the map sending a point x ∈ X̄I to
the composition {x} × ∣∆I ∣P ↪ X̄I × ∣∆I ∣P ↪ X. In particular, the p-stratum of X is
homotopy equivalent to the subobject X̄p ⊂ X̄, and for all regular flags I = {p0 < ⋅ ⋅ ⋅ < pn},
the above equivalence can be rewritten as

HoLinkI(X) ≃ X̄p0 ∩ ⋅ ⋅ ⋅ ∩ X̄pn .

In particular, for a vertically stratified CW-complex, its strata - and homotopy links - can
be interpreted as subobjects - and intersections of those subobjects - of the associated
P -labelled CW-complex. Even more, a pointing x of X̄ in a cell with label ∆I gives a
stratified pointing ϕ∶ ∣∆I ∣P → X (and all pointing of X come from restrictions of such
pointings, up to homotopy). Thus, the stratified homotopy groups of [Dou21c] associated
to the pointing ϕ are nothing more than the data of the homotopy groups of the X̄I′ , for
I ′ ⊂ I, with respect to the pointing x.

• Given a vertically stratified CW-complex X ≅ V (X̄, λX̄) its underlying (non-stratified)
homotopy type is that of the CW-complex X̄. Indeed, to see this, consider the diagram
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of spaces associated to V (X,λX), F ∶I ↦ X̄I defined as in the previous bulletpoint (in
the appendix this construction is denoted UTop, see Proposition 3.B.0.2 for more details).
Then, the underlying space of X ≅ V (X̄, λX̄) is a simplicial model for the homotopy
colimit of F (compare for ex [Hir03, Sec. 18.1]). At the same time X̄ is the regular
colimit of F . Furthermore, it follows immediately from the construction of F , that it
is a cofibrant diagram in the projective model structure, on the category of functors
from sd(P )op to Top (Proposition 3.B.0.2). In particular (see for example [Dug08, Prop
9.11]), we have weak equivalences of topological spaces:

X = hocolimF
∼
Ð→ lim
Ð→

F = X̄.

The analogous result holds for vertically stratified simplicial sets.

3.6.3 One last approximation theorem
We now move on to the proof of Proposition 3.6.1.4. We first need a technical lemma on how
to concatenate sd-homotopies.

Lemma 3.6.3.1. Let S,S′ be simplicials sets and Let H ∶ sdk(S ×∆1) → S′ as well as H ′ ∶
sdk(S ×∆1)→ S′ be sd-homotopies between simplicial maps f and g, and g and h respectively.
Then, there exists a concatenated sd-homotopy H ′′∶ sdk+2

(S ×∆1) from f ○ l.v.2 to h○ l.v.2. The
analogous result for pointed and stratified sd-homotopies also holds.

Proof. We prove the non-pointed non-stratified case. The other cases work completely analo-
gously. First consider a gluing

H ∪H ′∶ sdk(S ×∆1
) ∪sdk(S) sdk(S ×∆1

)→ S′ ,

gluing H to H ′ along g. The left hand side of this map is equivalently given by

sdk(S × (∆1
∪1,0 ∆1

)) = sdk(S × (∆1
∪1,0 ∆1

)) .

Note, that we may naturally identify

sd2
(∆1
) =∆1

∪1,1 ∆1
∪0,0 ∆1

∪1,1 ∪∆1.

Using this identification, one obtains a map

c∶ sd2
(∆1
)→ (∆1

∪1,0 ∆1
)

given by collapsing the second and the fourth interval of sd2
(∆1) to a point. In particular,

this map maps left endpoint to left endpoints and right endpoints to right endpoints. From c,
we in turn now obtain the composition

c′∶ sd2
(S ×∆1

)→ sd2
(S) × sd2

(∆1
)

l.v.2×c
ÐÐÐ→ S × (∆1

∪1,0 ∆1
)

mapping the left boundary of the subdivided cylinder sd2
(S ×∆1) to the left boundary of

the glued cylinder S × (∆1 ∪1,0 ∆1) and analogously for the right boundary. Precomposing
H ′ ∪H ′, with sdk(c′) produces an sd-homotopy H ′′ as required.

Next, we show the following.

Lemma 3.6.3.2. Let S ∈ sSet be a finite simplicial set with simplicial subset S0 ⊂ S. Further,
let K ≅ V (K̄, λK̄) ∈ sStratP be a vertically stratified simplicial set, and I a regular flag of
P . Assume that we are given a map in StratP , ϕ∶ ∣S ×∆I ∣P → ∣K ∣P and a vertical map in
sStratP g∶S0 ×∆I →K, such that

ϕ∣∣S0×∆I ∣P = ∣g∣P .
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Then for k ≫ 0 there exists a vertical, simplicial map f ∶ sdk(S) ×∆I →K, such that

f ∣sdk(S0)×∆I = g ○ (l.v.k × 1∆I)

and such that ∣f ∣P is stratum-preserving homotopic to ϕ○∣l.v.k × 1∆I ∣P relative to ∣sdk(S0) ×∆I ∣P .

Proof. By Proposition 3.6.2.16, there exists a vertical map h∶ ∣S ×∆I ∣P → ∣K ∣P , that is stratified
homotopic to ϕ relative to ∣S0 ×∆I ∣P . The image of h̄ must be contained in the cells with
labels containing ∆I . We write KI for the corresponding subsimplicial set of K̄. The situation
can be summed up by the following commutative diagram:

∣S0∣ ∣KI ∣

∣S∣

∣ḡ∣

h̄

Now, by the non-stratified, relative version of Proposition 3.5.3.1 (see also Remark 3.5.3.2),
there exists some k ≥ 0 and some simplicial map h′∶ sdk(S) → KI such that the following
diagram commutes:

sdk(S0) KI

sdk(S)

ḡ○l.v.k

h′

and such that ∣h′∣ is homotopic to h̄ ○ ∣l.v.k ∣ relative to sdk(S0). But now the composition

sdk(S) ×∆I
h′×1∆I
ÐÐÐÐ→KI ×∆I ↪K

is the desired map.

We may now combine the previous two lemmas, to obtain the following proposition.

Proposition 3.6.3.3. Let S be a finite pointed simplicial set and I some regular flag in P .
Then, for any S0 ⊂ S a simplicial subset containing the base point, there exists a pointed vertical
simplicial map ℓ∶ sdk(S) ×∆I → sdP (S ×∆I) which restricts to a pointed vertical simplicial
map ℓ0∶ sdk(S0) ×∆I → sdP (S0 ×∆I) such that the diagram

sdk(S0) ×∆I sdP (S0 ×∆I)

S0 ×∆I
l.v.×1∆I

ℓ0

l.v.P
(3.17)

commutes up to pointed sd-homotopy.

Before we begin with the proof, let us quickly remark on the somewhat specific wording of
Proposition 3.6.3.3.

Remark 3.6.3.4. Proposition 3.6.3.3 is at the heart of the proof of Proposition 3.6.1.4. We
effectively use it in two ways. First, for the existence part of Proposition 3.6.1.4, one uses the
case S0 = S guaranteeing the existence of a global l with certain commutativity properties.
Then, for the uniqueness part (up to sd-homotopy) one considers the case where S is a cylinder
with boundary S0. In that case, it is crucial that the restriction of the global map ℓ to
sdk(S0) ×∆I has its image in sdP (S0 ×∆I), however, the commutativity property is then
only needed for that restriction.
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Proof of Proposition 3.6.3.3. To simplify notation, we omit all exponents from last vertex
maps. Note, that ∣l.v.P ∣P ∶ ∣sdP (S ×∆I)∣P → ∣S ×∆I ∣P is a weak equivalence between cofibrant,
fibrant objects with respect to the model structure on Strat∣∆

I ∣P
P . In particular, it has an

inverse, up to stratum-preserving pointed homotopy equivalence. Denote these by γS and γS0

respectively. By naturality of l.v.P the diagram

∣S0 ×∆I ∣P ∣sdP (S0 ×∆I)∣P

∣S ×∆I ∣P ∣sdP (S ×∆I)∣P

γS0

γS

is commutative in hoStrat∆I
P . Now, since all objects involved are cofibrant, the diagram is

commutative up to pointed stratum-preserving homotopy. Now, first apply Lemma 3.6.3.2 to
γS0 with the role of the simplicial subset taken by the basepoint. For some k′ ≥ 0, we obtain
a pointed vertical simplicial map ℓ1

S0
∶ sdk

′

(S0) ×∆I → sdP (S0 ×∆I) such that the following
solid diagram commutes up to pointed, stratum-preserving homotopy. To reduce the overload
of notation, we omit the indices P for stratified realizations.

∣sdk
′+k′′
(S0) ×∆I ∣ ∣sdk

′

(S0) ×∆I ∣ ∣S0 ×∆I ∣ ∣sdP (S0 ×∆I)∣

∣sdk
′+k′′
(S) ×∆I ∣ ∣sdk

′

(S) ×∆I ∣ ∣S ×∆I ∣ ∣sdP (S ×∆I)∣.

∣l.v.×1∆I ∣

∣ℓ1
S0 ∣

∣l.v.×1∆I ∣ γS0

∣ℓ2
S ∣

∣l.v.×1∆I ∣

γ̃S

∣l.v.×1∆I ∣ γS

Now, in this diagram the vertical left solid arrow is a cofibration in Strat∣∆
I ∣P

P and all objects
are cofibrant fibrant. Since the outer solid arrow diagram is commutative up to stratum-
preserving pointed homotopy, the homotopy extension property of cofibrations against fibrant
objects gives the existence of a dashed map γ̃S , making the square commute on the nose, and
making the lower right triangle commute up to stratum-preserving homotopy. Now, apply
Lemma 3.6.3.2 to γ̃S and ℓ1

S0
to obtain a pointed vertical simplicial map ℓ2

S in the dotted
part of the diagram, for k′′ sufficently large. Again, the most outer part of the complete
diagram commutes on the nose (in sStratP ) and the lower left triangle commutes up to
stratum-preserving pointed homotopy.

Now ℓ2
S is not yet the map we are looking for, since we still need to check that (3.17)

commutes up to pointed sd-homotopy. Write ℓ2
S0
= ℓ1

S0
○ (l.v.k

′′

× 1∆I), for the restriction of
ℓ2
S to sdk

′+k′′
(S0) ×∆I . We want to construct a simplicial homotopy between l.v.P ○ ℓ2

S0
and

l.v. × 1∆I , but to apply Lemma 3.6.3.2 we need two vertical simplicial maps. What we will do
instead is, first replace l.v.P ○ ℓ2

S0
by a vertical map, and then, exhibit a sd-homotopy from the

latter to l.v. × 1∆I . Finally we will concatenate the two sd-homotopies using Lemma 3.6.3.1.
By Proposition 3.6.2.9 there exists a simplicial pointed stratum-preserving homotopy

H1∶ sdk
′+k′′
(S0) ∧∆1

+ ×∆I → S0 ×∆I

from l.v.P ○ ℓ2
S0

to a basepoint preserving vertical simplicial map f ∶ sdk
′+k′′
(S0)×∆I → S0 ×∆I .

Note that, by construction, l.v.P ○ ℓ2
S0

realizes to a map that is stratum-preserving pointed
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homotopic to the realization of l.v. × 1∆I , and so it must also be true of f . More specifically,
there must exist a pointed stratified homotopy

H ′∶ ∣sdk
′+k′′
(S0) ∧∆1

+ ×∆I ∣P → ∣S0 ×∆I ∣P

Between ∣f ∣P and ∣l.v. × 1∆I ∣N(P ). Since f and l.v. × 1∆I are both pointed vertical maps, they
define a vertical map

f ∨ (l.v. × 1∆I)∶ sdk
′+k′′
(S0) ×∆I ∨ sdk

′+k′′
(S0) ×∆I → S0 ×∆I

We can now apply the relative version of Lemma 3.6.3.2 to H ′ and f ∨ (l.v. × 1∆I) to get a
simplicial map

H2∶ sd
k′′′
(sdk

′+k′′
(S0) ∧∆1

+) ×∆I → S0 ×∆I

Now consider boundary preserving maps

α1∶sdk
′+k′′
(S0 ∧∆1

+)→ sdk
′+k′′
(S0) ∧∆1

+

α2 = sdk
′′′

(α1)∶sdk
′+k′′+k′′′

(S0 ∧∆1
+)→ sdk

′′′

(sdk
′+k′′
(S0) ∧∆1

+).

The compositions H ′1 = H1 ○ (α1 × 1∆I) ○ (l.v. × 1∆I) and H ′2 = H2 ○ (α × 1∆I) give pointed
sd-homotopies respectively between l.v.P ○ ℓ2

S0
○ (l.v. × 1∆I) and f ○ (l.v. × 1∆I) and between

f ○ (l.v. × 1∆I) and l.v. × 1∆I . Using Lemma 3.6.3.1 we may concatenate these sd-homotopies
to a sd-homotopy

H ∶ sdk
′+k′′+k′′′+2

(S0 ∧∆1
+) ×∆I → S0 ×∆I ,

between l.v.P ○ ℓ2
S0
○ (l.v. ×∆I) and l.v. ×∆I .

Finally, we take k = k′ + k′′ + k′′′ + 2, and ℓ to be the composition

sdk(S) ×∆I sdk
′+k′′
(S) ×∆I sdP (S ×∆I).

l.v.×1∆I ℓ2
S

As, we have just proven, the restriction of this map to sdk(S0) ×∆I satisfies the homotopy
commutativity of (3.17).

We now have all the necessary technical results to prove Proposition 3.6.1.4.

proof of Proposition 3.6.1.4. We first prove the direct statement. Note that a pointing ∆I →K
canonically lifts along l.v.P to a pointing ∆I → sdP (K). The lift is given by the composition

∆I → sdP (∆I)→ sdP (K)

where the first map is specified by sending the the maximal non-degenate simplex µ of ∆I to
[(µ, p0), . . . , (µ, pn)], for I = [p0 < ⋯ < pn]. We then have a diagram in the pointed category

∣S ×∆I ∣P ∣sdP (K)∣P

∣K ∣P .

ϕ

ϕ̂

∣l.v.P ∣P

Note, that ∣l.v.P ∣P is a weak equivalence between fibrant objects in Strat∣∆
I ∣P

P , and thus, ϕ
admits a lift, ϕ̂ , making the above diagram commutative up to stratum-preserving pointed
homotopy. Now, apply the relative version of Lemma 3.6.3.2 to ϕ̂, to produce a pointed map
f̂ ∶ sdk(S) ×∆I → sdP (K). The map f = l.v.P ○ f̂ ∶ sdk(S) ×∆I → K is then the desired map.
Indeed, we have the following pointed stratum-preserving homotopies:

∣f ∣P = ∣l.v.P ○ f̂ ∣P ≃P ∣l.v.P ∣P ○ ϕ̂ ○ ∣l.v. × 1∆I ∣P ≃P ϕ ○ ∣l.v. × 1∆I ∣P .
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Now, for the homotopy statement, take S′0 ∶= S ∨ S ↪ S ∧∆1
+ =∶ S

′, and set

g′ = f0 ∪∆I f1 ∶ S0
′
×∆I →K

and let H ′∶ ∣S′ ×∆I ∣P → ∣K ∣P be the stratified pointed homotopy between ∣f0∣P and ∣f1∣P .
Next, consider the commutative diagram

∣sdP (S′0 ×∆I)∣P ∣sdPK ∣P

∣sdP (S′ ×∆I)∣P ∣K ∣P .

∣sdP (g′)∣P

∣l.v.P ∣P
ϕ′

H′○∣l.v.P ∣P

Since the left hand vertical is a cofibration in StratP and the right hand vertical is a weak
equivalence between fibrant objects, there must exist some lift up to homotopy, ϕ′, making
the upper left triangle commute on the nose and the lower right triangle commute up to
stratified homotopy relative to ∣sdP (S′0 ×∆I)∣P . Now, precompose this diagram with ℓ from
Proposition 3.6.3.3, for k ≫ 0 to obtain the following commutative diagram:

∣sdk(S′0) ×∆I ∣P ∣sdP (S′0 ×∆I)∣P ∣sdPK ∣P

∣sdk(S′) ×∆I ∣P ∣sdP (S′ ×∆I)∣P

∣ℓ0∣P ∣sdP (g′)∣P

∣ℓ∣P

ϕ′

Set ϕ = ϕ′ ○ ∣ℓ∣P and g = sdP (g′) ○ ℓ0. Now, apply Lemma 3.6.3.2 to ϕ and g. For k′ ≫ 0,
we obtain a simplicial map

H1
∶ sdk+k

′

(S′) ×∆I → sdP (K)

whose restriction to sdk+k
′

(S′0) ×∆I is given by sdP (g′) ○ ℓ0 ○ (l.v. × 1∆I). By naturality of
l.v.P one has l.v.P ○ sdP (g′) = g′ ○ l.v.P . In particular, l.v.P ○H1∶ sdk+k

′

(S′)×∆I →K restricts
on the boundary to g′ ○ l.v.P ○ℓ0 ○(l.v.×1∆I). By Proposition 3.6.3.3, this map is sd-homotopic
to g′ ○ (l.v. × 1∆I) through a map of the form

H2
∶ sdk+k

′

(S′0 ∧∆1
+) ×∆I →K

Now, the two sd-homotopies l.v.P ○H1 and H2 can be concatenated. More explicitely, consider
the inclusion i1∶S

′
0 → S′ and i2∶S

′
0 = S

′
0 ∧ {0}+ → S′0 ∧∆1

+. These maps induce inclusions

i′1∶sdk+k
′

(S′0) ×∆I ↪ sdk+k
′

(S′) ×∆I

i′2∶sdk+k
′

(S′0) ×∆I ↪ sdk+k
′

(S′0 ∧∆1
+) ×∆I

The restrictions l.v.P ○H1 ○ i′1 and H2 ○ i′2 are both equal to g′ ○ l.v.P ○ ℓ0 ○ (l.v. × 1∆I), by
construction. In particular, l.v.P ○H1 and H2 can be glued along sdk+k

′

(S′0) ×∆I to obtain a
map

H3
∶ sdk+k

′

(S′ ∪S′0 (S
′
0 ∧∆1

+)) ×∆I →K,

which restricts to g′ ○ (l.v. × 1∆I) = (f0 ∪∆I f1) ○ (l.v. × 1∆I) on the boundary. Now to turn
this map into an sd-homotopy, consider the following composition:

α∶ sdk+k
′+2
(S ∧∆1

+)→ sdk+k
′

(S ∧ sd2
(∆1
+))→ sdk+k

′

(S′ ∪S′0 (S
′
0 ∧∆1

+)),

where the left hand map comes from the natural map sd2
(S ∧∆1

+)→ S ∧ sd2
(∆1
+) and the right

hand map is the one suggested by Fig. 3.8. To construct the latter explicitely, it is enough to
note that there is an isomorphism

S′ ∪S′0 (S
′
0 ∧∆1

+) ≅ S ∧ (∆1
∪1,0 ∆1

∪1,1 ∆1
)+,
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and a boundary preserving map sd2
(∆1) → ∆1 ∪1,0 ∆1 ∪1,1 ∆1. Now, the desired pointed

sd-homotopy is given by the composition

H =H3
○ (α × 1∆I)∶ sdk+k

′+2
(S ∧∆1

+) ×∆I →K.

H1 H2 H3 H3 ○ α

Figure 3.8: From left to right, schematic pictures of the simplicial sets, S, S′0, S′, S′0 ∧∆1
+, the

union S′ ∪S′0 (S
′
0 ∧∆1

+) and the smash product S ∧ sd2
(∆1
+). Pointing are indicated by large

dots, and arrows indicate direction of homotopies.

3.A Incompatible criteria for model structures of strati-
fied spaces

The goal of this section is to prove the following proposition, and its corollary.

Proposition 3.A.0.1. For P a non-discrete poset, there exists no model structure on StratP
satisfying all of the following properties:

1. Realizations of monomorphisms are cofibrations.

2. Stratified homotopy equivalences are weak equivalences.

3. For a weak equivalence, the induced map between classical homotopy links is also a
weak-equivalence.

Remark 3.A.0.2. In fact, we will prove a slightly stronger version of Proposition 3.A.0.1,
where condition 3 is replaced by the following:

(3’) For some fixed flag, I = {p < q}, the homotopy link functor HoLinkI sends weak
equivalences to weak equivalences of topological spaces.

Corollary 3.A.0.3. If P is a non-discrete poset, then the model structure on StratP trans-
ported from sStratP along the adjunction ∣ − ∣P ∶ sStratP ↔ StratP ∶SingP does not exist.

Let us first deduce the corollary from the proposition.

Proof. Assume that the transported model structure on StratP exists. Then ∣ − ∣P ⊣ SingP
is a Quillen adjunction and so the functor ∣ − ∣P must preserve cofibrations, which implies
that the model structure satisfies (1). Furthermore, SingP preserves stratified homotopy
equivalences, so the model structure must satisfy (2). Finally, if f ∶X → Y is a weak-equivalence,
then, by definition, SingP (f) must be a weak-equivalence in sStratP . By Corollary 3.6.0.2,
this implies that f induces weak-equivalences HoLinkI(SingP (X)) → HoLinkI(SingP (Y ))
for all regular flags I. By Remark 3.2.5.3, this implies that f induces weak-equivalences
HoLinkI(X)→HoLinkI(Y ) for all regular flags I. In particular, the model category must also
satisfy (3). But then, it satisfies simultaneously (1), (2) and (3), which is a contradiction.

Proposition 3.A.0.1 also has implications for other model structures.
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Remark 3.A.0.4. Consider Haine’s model stucture on the category of stratified simplicial
sets, sStratJoyal-Kan

P [Hai23]. It can not be transported along the adjunction (∣ − ∣P ,SingP )
to a model structure on StratP . Indeed, supposing this is possible, this hypothetical model
structure would satisfy (1), since the cofibrations in sStratJoyal-Kan

P are the monomorphisms.
Furthermore, it would satisfy (2), since SingP preserves stratified homotopy equivalences,
and those are weak-equivalences in sStratJoyal-Kan

P . But then, it can not satisfy (3), by
Proposition 3.A.0.1. This implies that if such a model structure existed, the classical homotopy
links would not be invariants of the stratified homotopy type.

However, we can show that some homotopy links would have to be preserved, preventing the
existence of this model structure altogether, by the strengthened version of Proposition 3.A.0.1
(see Remark 3.A.0.2). Indeed, let us first assume that P admits a successor pair, that is
p < q ∈ P such that there exists no m ∈ P satisfying p <m < q. Then, by Lemma 3.A.0.8, and
recalling that

Sing(HoLinkI(X)) = HoLinkI(SingP (X)),

we see that HoLinkI sends weak equivalences to weak equivalences of spaces, for I = [p < q].
The argument is slightly more subtle if P does not admit successor pairs. Let p < q ∈ P , and
consider stratified spaces of the form X → P such that the m stratum of X is empty for all
p < m < q. Then, HoLinkI sends weak equivalences between such stratified spaces to weak
equivalences of topological spaces, for I = [p < q]. But this also leads to a contradiction when
considering Example 3.A.0.6 as stratified over {p < q} ⊂ P .

Remark 3.A.0.5. Similarly, let StratN be the category of such stratified spaces, which have
no empty strata, as defined in [Nan19]. In [Nan19] the author asked the question, whether the
structure on the model category for quasi categories sSetJoyal can be transferred to StratN
along an adjunction defined using the functors (∣ − ∣,SingStrat). Arguing as in the proof of
Proposition 3.A.0.1, and using Example 3.A.0.6, we may show that it is indeed not possible.

Assume that the transported model structure exists. Then, since cofibrations in sSetJoyal

are monomorphisms, the model category would satisfy the analogue of (1). Furthermore,
assume that H ∶X×[0, 1]→ Y is a stratified homotopy, between two stratified maps f, g∶X → Y ,
and consider the following composition

SingStrat(X) × Sing([0,1])→ SingStrat(X × [0,1]))→ SingStrat(Y ). (3.18)

This composition is a homotopy (in the Joyal model structure) between SingStrat(f) and
SingStrat(g). This follows from the fact that Sing([0,1]) is a cylinder in the Joyal model
structure. In particular, in the transported model structure on StratN , stratum-preserving
homotopy equivalences are weak-equivalences, i.e. the model category satisfies the analoge of (2).
Now, assume that f ∶X → Y , is a stratum-preserving map over the poset P = {0 < 1} such that
SingStrat(f) is a Joyal equivalence in sSet. Then, the map SingP (f)∶SingP (X)→ SingP (Y )
is a map in sStratP , and is a weak equivalence in the structure sStratJoyal

P (that is, the slice
model category). But since sStratJoyal-Kan

P is a Bousfield localization of the former, SingP (f)
is also a weak equivalence in sStratJoyal-Kan

P . Finally, note that for P = {0 < 1}, the model
structure on sStratJoyal-Kan

P coincides with the one studied in this paper, giving that SingP (f)
must be a weak equivalence in sStratP , and hence, must induce weak-equivalences

HoLinkI(X)→HoLinkI(Y ).

Applying the above to the map of Example 3.A.0.6 gives a contradiction, hence the transported
model structure on StratN may not exist.

Proposition 3.A.0.1 is a direct consequence of the following example.

Example 3.A.0.6. Consider the simplicial complex Y with vertices a, b, c, d, e, f generated
by the simplices {a, b, c, d}, {a, c, e} and {a, d, f} and with the stratification over P = {0 < 1}
defined as follows. The entire segment {a, b} is sent to 0, then, consider two segments between
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a and the middle of {d, f} and between a and the middle of {e, c}, which we will promptly
identify with two copies of the interval [0,1] (with a at 0). In those intervals, send all the
points of the sequence 1

2n+1 , for n ≥ 0, to 0 (any decreasing sequence converging to 0 will give
an isomorphic result). The remaining points are mapped to 1.

Note that the stratified space obtained in this way is not isomorphic in StratP to the
realization of a stratified simplicial set. In particular, Y does not come from a strongly stratified
space. Nevertheless one can compute its homotopy link with respect to the flag I = [0 < 1].
We will also consider the subspace X ⊂ Y obtained by deleting the maximal simplex {a, b, c, d}
and its face {a, c, d}, see Fig. 3.9.

We will only be interested in π0(HoLinkI(X)), and π0(HoLinkI(Y )) or in other words,
in exit-paths up to stratum-preserving homotopies. Note that any exit path starting from
one of the isolated points is entirely determined - up to stratum-preserving homotopy - by its
starting point. Similarly, any point starting in the interval (a, b] is equivalent to the exit-path
spanning the segment [b, d].

On the other hand, there are a vast number of inequivalent classes of exit-paths starting
from a. A particular set of exit-paths that can be easily described is those that get away from
a steadily (as in Fig. 3.9). For such an exit-path in X, it is enough to specify which face
({a, d, f} or {a, c, e}) it lies on, and then for each isolated singular point if the path passes
under, or over. This can be summarized as a binary sequence (where the first few terms,
corresponding to points away from a might be ill-defined). One then checks that two such
exit-paths in X are equivalent if and only if they lie on the same face and their associated
sequence differ in only finitely many places. This implies in particular that π0(HoLinkI(X))
is uncountable.

Now consider π0(HoLinkI(Y )). The paths we just described in X also exist as exit-paths
in Y , but there also exist paths going back on forth between the faces {a, c, e} and {a, d, f}. If
one restricts to those paths that are moving away from a, it is still possible to parametrize
those by ternary sequences, where the n-th entry indicates if the path passes to the left, right
or middle of the n-th pair of isolated singular points. One can show again that two such paths
are equivalent up to stratum-preserving homotopies if and only if their associated sequences
differ only at finitely many places. But now, note that an exit-path in Y zig-zaging infinitely
many times between the left side of {a, c, e} and the right side of {a, d, f} can not be in the
image of π0(HoLinkI(X))→ π0(HoLinkI(Y )). This implies that HoLinkI(X)→HoLinkI(Y )
is not a weak-equivalence, and in turn that X → Y is not a weak-equivalence in StratP .

a b

c d

e f

a b

c d

e f

Figure 3.9: the simplicial complexes X and Y with their pathological stratifications over
P = {0 < 1}. The isolated singular points admit a as an accumulation point. Two exit-paths
starting from a have been represented in blue.

Proof of Proposition 3.A.0.1. Assume that there exists a model structure on StratP satisfying
(1) and (2). This implies that ∣ΛJk ∣P → ∣∆

J ∣P is a trivial cofibration in this model structure
for any admissible horn inclusion ΛJk → ∆J since it is simultaneously the realization of a
cofibration and a stratified homotopy equivalence (see [Dou21a, Proposition 1.13]). Now note
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that the inclusion X ↪ Y from Example 3.A.0.6 can be obtained as the following pushout

∣ΛJk ∣P X

∣∆J ∣P Y

where ΛJk → ∆J is an admissible horn inclusion. In particular, X → Y is the pushout of a
trivial cofibration, so it must be a trivial cofibration. But as demonstrated in Example 3.A.0.6,
the inclusion X → Y does not induce weak-equivalences on all classical homotopy links. In
particular, the model structure can not satisfy (3), which concludes the proof.

Remark 3.A.0.7. One might object, that Example 3.A.0.6 is pathological insofar, as the
0-stratum considered as a subspace in the usual subspace topology is not ∆-generated. It may
be possible to pass to an appropriate tamer subcategory of StratP , which would then allow for
the structure of a model category fulfilling all of the requirements of Proposition 3.A.0.1. The
main point of this article however, is that even without attempting to change the underlying
point-set topological framework and defining such a model structure, many of the consequences
of its existence may nevertheless be obtained.

Lemma 3.A.0.8. Let I = {p < q} be a flag in P and let X ∈ sStratJoyal−KanP be such that Xm

is empty, for all p < m < q. Then, for any weak equivalence X → Y in sStratJoyal−KanP , the
induced map on simplicial homotopy links, HoLinkI(X)→ HoLinkI(Y ), is a weak equivalence
in the Kan model structure on simplicial sets.

Proof. Recall that the fibrant objects in sSetJoyal−Kan
P are those that admit the right lifting

property against all stratified horn inclusions ΛJk which are either inner horn inclusions,
or admissible horn inclusions. Call those horn inclusions weakly admissible. Now, given a
weak-equivalence in sSetJoyal−Kan

P , f ∶X → Y , where the m-stratum of X is empty for all
p <m < q, consider fibrant replacements for X and Y obtained by the small object argument
applied to the set of weakly admissible horn inclusions. We get a commutative diagram of
weak equivalences

X Y

Xfib Y fib

f

ffib

Now, since sSetJoyal−Kan
P is a left Bousfield localization of sStratP (see Remark 3.2.9.4), and

since the map ffib is a weak equivalence between fibrant object in sSetJoyal−Kan
P , it must also

be a weak equivalence in sStratP . But then, by Corollary 3.6.0.2, ffib must induce a weak
equivalence HoLinkI(Xfib)→ HoLinkI(Y fib). By two out of three, it is thus enough to show
Lemma 3.A.0.8 for maps of the form X ↪Xfib (noting that the m-strata of Y must also be
empty for p <m < q, since weak equivalences in sSetJoyal−Kan

P preserve the homotopy type of
strata). Now, by Theorem 3.1.0.4, together with the (pseudo)-naturality of LinkI with respect
to monomorphisms (see Proposition 3.4.1.1), we can reduce to comparing LinkI(X) and
LinkI(XFib). Finally, since the map X ↪Xfib is a transfinite composition of pushouts along
weakly admissible horn inclusions, and since LinkI preserves colimits, it is enough to prove
Lemma 3.A.0.8 for maps X ↪ Y obtained by pushing out along a single weakly admissible
horn inclusion, ΛJk → ∆J . Now, note that since X has empty m strata for all p <m < q, so
must have ΛJk , and ∆J . Finally, it is enough to show that

LinkI(ΛJk )↪ LinkI(∆J )

is a weak equivalence of simplicial sets, whenever ∆J has empty m-strata, for p <m < q. Let
J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn], and consider the following cases.
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• if ΛJk is an admissible horn, then this follows from Lemma 3.4.3.2.

• else, ΛJk is an inner horn, and thus n ≥ 2. But then, the only vertices that can possibly
be in LinkI(∆J ) but not in LinkI(ΛJk ) are those corresponding to the simplex ∆J

and to its face, ∆J ′ = dk(∆J ). Those would be in LinkI(∆J ) if and only if they
degenerate from ∆I . If the former degenerates from ∆I , ΛJk is an admissible horn. If
the latter degenerates from ∆I , then ∆J ′ = [p0, . . . , p̂k, . . . , pn] with pi = p or q for all
i /= k. But since pk−1 ≤ pk ≤ pk+1, and since ∆J has empty m-strata for all p < m < q,
then pk = p or q, and the horn is also admissible. Finally, in all the remaining cases, we
have LinkI(ΛJk ) = LinkI(∆J ).

3.B Relating labellings, vertical stratifications and dia-
grams.

In Remark 3.6.2.8 we have already hinted at the fact that P -labelled simplicial sets can be
thought of as a particularly concise description of certain cofibrant diagrams in DiagP . Let
us now expand on this and make the relationship between labelled objects, diagrams and
vertical objects precise. Before we do so, let us quickly remark on the topological counterpart
of DiagP . We denote DiagTop

P ∶= Fun(sd(P )op,Top).

Remark 3.B.0.1. Just like its simplicial counterpart DiagTop
P can be equipped with the

projective model structure (use for example [Hir03, Thrm. 11.6.1]). Assigning to a P -stratified
space X the diagram given by its (topological) homotopy links I ↦HoLinkI(X), and conversely
sending a diagram F to ∫

I
F (I) × ∣∆I ∣P then defines a Quillen adjunction

D′P ∶DiagTop
P ↔ StratP ∶C ′P .

We obtain a diagram of Quillen functors

DiagTop
P

DiagP StratP ,

C′P

CP

DP

D′P

(3.19)

where the left diagonals are induced by the adjunction ∣ − ∣ ⊣ Sing. Both the left adjoint, as
well as the right adjoint part of this diagram commute up to natural isomorphism. Hence, it
follows from the two out of three property for Quillen equivalences that C ′P ⊣ D′P is also a
Quillen equivalence.

Next, let us describe the relationship between labelled objects and diagrams defined on
sd(P )op. Both P -labeled simplicial sets, as well as CW-complexes can readily be equipped
with a functor

U ∶P -sSet→DiagP ,
UTop

∶P -CW→DiagTop
P

respectively. In case of a P -labeled CW-complex (T,λT ), the diagram UTop(T,λT ) ∈DiagTop
P ,

at a regular flag I, is given by the unions of cells

UTop
(T,λT )(I) = ⋃

eα, ∆I⊂λT (eα)
eα,
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and structure maps are given by inclusions. One extends this construction to morphisms
in the obvious way. The definition for simplicial sets is analogous, replacing open cells by
non-degenerate simplices. The precise behavior of the U functors is then described in the
following proposition:
Proposition 3.B.0.2. The functors U and UTop are fully faithful and fit into a commutative
diagram

P -sSet DiagP

P -CW DiagTop
P

U

UTop

with verticals induced by realization. Both U and UTop factor through the respective subcate-
gories of cofibrant diagrams. Furthermore, U induces an equivalence of categories P -sSet ∼Ð→
DiagCof

P .
Proof. Commutativity is easily verified from the constructions, while fully-faithfulness is
an immediate consequence of the definition of labelled maps. That both U functors have
image in the subcategories of cofibrant objects follows from the characterization of generating
cofibrations in a projective model structure in [Hir03, Thrm. 11.6.1]. Finally, that every
cofibrant diagram in DiagP is in fact (up to natural isomorphism) of the form U(S,λS), for
(S,λS) ∈ P -sSet, follows from the characterization of cofibrant diagrams in Proposition 3.2.7.4
(see also Remark 3.6.2.8).

In this sense, P -labeled simplicial sets are a particularly concise, but equivalent, description
of cofibrant diagrams. Since not every absolute cell complex is a CW-complex, the analogous
essential surjectivity fails for P -labelled CW-complexes. However, as a consequence of Theo-
rem 3.6.2.18, essential surjectivity is restored when passing to homotopy categories.

Next, let us study the precise relationship of diagrams with verticalization. One easily
verifies that the two diagrams

P -sSet DiagP ,

sStratP
V

U

CP

P -CW DiagTop
P ,

StratP
V

UTop

C′P

commute up to natural isomorphism. In this sense, we can think of verticalization as an
alternative description of the CP functors. Now, clearly the verticalization functors are not
full. We can amend this by passing to the vertical setting. Denote by VsStratP and VCWP

respectively the categories of vertically stratified simplicial sets and CW-spaces, with vertical
maps. Using the natural pre-verticalizations which the verticalization functors come with, we
obtain lifts

V ∶P -sSet→ VsStratP
(S,λS)→ {V (S,λS)↪ S ×N(P )},

V ∶P -CW→ VCWP

(T,λT )→ {V (T,λT )↪ T × ∣N(P )∣P },

denoted the same by abuse of notation. It turns out that both these functors induce equivalences
of categories. One may immediately verify from the definition of label preserving maps that
these two functors are fully faithful. They are essentially surjective, by construction of the
categories of vertical objects.
Hence, verticalization defines equivalences between P -labeled and vertical objects. In this
sense, using Proposition 3.B.0.2, the vertical categories give a description of (certain) cofibrant
diagrams, which is more intrinsic to sStratP or StratP . Together with Proposition 3.B.0.2
we may summarize the whole situation in the following proposition.
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Proposition 3.B.0.3. The following diagram of functors commutes up to natural isomorphism.

sStratP VsStratP P -sSet DiagCof
P

StratP VCWP P -CW DiagTop,Cof
P

V
∼

U

f.f.

CP

V
∼

UTop

f.f

C′P

(3.20)

Here, all verticals are induced by realization, and the left two horizontals are given by the
forgetful functors forgetting the pre-verticalizations. Both V functors define equivalences of
categories. The U functors are both fully faithful, and the upper one is even an equivalence of
categories.

The fact that P -labeled CW-complexes embed fully faithfully into DiagTop,Cof
P (Proposi-

tion 3.B.0.2), allows one to model the homotopy category hoStratP through these objects. To
see this, we first need a definition of label preserving homotopy.

Definition 3.B.0.4. Let f, g∶ (T,λT ) → (T ′, λT ′) be two label preserving maps between
P -labelled CW-complexes. A label preserving homotopy from f to g is a map,

H ∶T × [0,1]→ T ′,

such that for all cells eα ∈ T and eβ ∈ T
′, if H(eα × [0,1]) ∩ eβ /= ∅, then λT (eα) ⊂ λT ′(eβ).

Equivalently, H is a label-preserving map for the induced labelling on T × [0,1]. If such a
homotopy exists, we say f and g are label preserving homotopic, writing f ≃lab g. We write
P -CW/≃lab for the category whose objects are P -labelled CW-complex and whose sets of
morphisms between (T,λT ) and (T ′, λT ′) is P -CW((T,λT ), (T ′, λT ′))/≃lab.

Remark 3.B.0.5. Note, that under the fully faithful functor V ∶P -CW→ VCWP , P -labelled
homotopies correspond one to one to vertical homotopies. Furthermore, under the fully
faithful functor UTop∶P -CW→DiagTop,Cof

P they correspond one to one to those homotopies
in DiagTop

P which are defined through the cylinder given by (F × [0,1])(I) = F (I) × [0,1].

We may use Proposition 3.B.0.3 to obtain a more high-level proof of part of Proposi-
tion 3.6.2.16. We focus on the StratP part here. A proof for TopN(P ) works analogously.

Alternative proof of Proposition 3.6.2.16. Let us first focus on the absolute case. By Re-
mark 3.B.0.5 and Proposition 3.B.0.3, we may equivalently show that in the following following
commutative diagram of categories

P -CW DiagTop,Cof
P TopCof

P

P -CW/≃lab DiagTop,Cof
P /∼ hoStratP ,

V

UTop

f.f.

C′P

the lower horizontal composition is fully faithful. Here, by DiagTop,Cof
P /∼ we denote the

category obtained by identifying morphisms which are homotopic through the cylinder given
by (F × [0,1])(I) = F (I) × [0,1]. By Proposition 3.B.0.3, the left upper horizontal is fully
faithful. Using the second part of Remark 3.B.0.5, we also obtain that the left lower horizontal
is fully faithful. Since every object in DiagTop

P is fibrant, we have a natural equivalence
DiagTop,Cof

P /∼ ≅ hoDiagTop
P . Now, finally note that C ′Top

P ∶DiagTop
P → StratP is the left
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part of a Quillen equivalence (see Remark 3.B.0.1). It follows, that the last remaining lower
horizontal arrow is also fully faithful, finishing the proof of the absolute case. The relative case
follows analogously, after verifying that UTop maps inclusion (A,λA)↪ (T,λT ) (where λA is
the induced labelling) to a cofibration in the projective model structure on DiagTop

P .

Finally, we may also use Proposition 3.B.0.3 together with Remark 3.B.0.5 to obtain
the following alternative version of Theorem 3.6.2.18, which allows one to perform stratified
homotopy theory in the labelled setting.

Corollary 3.B.0.6. Verticalization induces an equivalence of categories

P -CW/≃lab ≅ hoStratP .
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Chapter 4

From samples to persistent
stratified homotopy types

Note to the reader: The following chapter presents the article [MW24], which was written
in joint work with Tim Mäder and appeared in the Journal of Applied and Computational
Topology. We have slightly adapted some notation in order to be consistent with Chapter 1.
The only major notation difference is that stratified spaces are referred to with calligraphic
notation, in Chapter 1, while we will usually just use a different letter for the stratified space
and its underlying topological space in this chapter.

The natural occurrence of singular spaces in applications has led to recent investigations
on performing topological data analysis (TDA) in a stratified framework. In many
applications, there is no a priori information on what points should be regarded as
singular or regular. For this purpose we describe a fully implementable process that
provably approximates the stratification for a large class of two-strata Whitney stratified
spaces from sufficiently close non-stratified samples.
Additionally, in this work, we establish a notion of persistent stratified homotopy type
obtained from a sample with two strata. In analogy to the non-stratified applications in
TDA which rely on a series of convenient properties of (persistent) homotopy types of
sufficiently regular spaces, we show that our persistent stratified homotopy type behaves
much like its non-stratified counterpart and exhibits many properties (such as stability,
and inference results) necessary for an application in TDA.
In total, our results combine to a sampling theorem guaranteeing the (approximate)
inference of (persistent) stratified homotopy types of sufficiently regular two-strata Whitney
stratified spaces.

4.1 Introduction
Topological data analysis has proven itself to be a source of qualitative and quantitative
data features that were not readily accessible by other means. Arguably, the most important
concept for the development of this field is persistent homology ([ELZ00; ZC05; CEH07; Ghr08;
NSW08; Car09; Oud15]). Both in practice, as well as abstractly speaking, persistent homology
usually is divided up into a two-step process. First, one assigns to a data set X a filtration of
topological or combinatorial objects (Xα)α≥0. Most prominently, this is done for X ⊂ RN , by
taking Xα to be an α-thickening of X, which is the case we will consider in the following. Then,
from this filtered object, a persistence module is computed, essentially given by computing
homology in each filtration degree while keeping track of the functoriality of homology on
the inclusions. As homology is a homotopy invariant what is relevant to this computation

185
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is only what one may call the persistent homotopy type of X. More precisely, if we think of
(Xα)α≥0 as a functor from the non-negative reals R+ into the category of topological spaces
Top then the persistent homotopy type is the isomorphism class of (Xα)α≥0 in the homotopy
category hoTopR+ obtained by inverting pointwise (weak) homotopy equivalences. From this
perspective, persistent homology is the composition

PHi∶Sam P
Ð→ hoTopR+ HR+

i
ÐÐ→VecR+

k . (4.1)

Here Sam is the category of subspaces of some fixed RN , P assigns an object in the persistent
homotopy category (for example, through thickening spaces or possibly using combinatorial
models thereof) and HR+

i computes homology degree-wise. The composition produces an
object in the category of persistence modules over some field k, denoted VecR+

k . Many of the
advantages of persistent homology turn out to not be properties of the right-hand side of
this composition but of the left-hand side P. That is, they are properties of the persistent
homotopy type. Such properties include, for example:

P(1): The fact that persistent homology defined through thickenings is computable at all; (This
is a consequence of the nerve theorem (see e.g. [Hat02, Prop. 4G.3] or [Bor48]), which
states that for X ⊂ RN the persistent stratified homotopy type P(X) may equivalently
be represented by a filtered Čech complex.)

P(2): The stability of persistent homology with respect to Hausdorff and interleaving type
distances (see [CEH07; Cha+09; BL15]);

P(3): The possibility to infer information from the sampling source by using persistent homology.
(This is usually justified by stability together with the result that P(T )α

≃
←Ð P(T )0 = T

for α sufficiently small and T a sufficiently regular space such as a compact smooth
submanifold of Euclidean space (compare to [NSW08]).)

At the same time, many of the limitations of persistent homology also stem from the factorization
in (4.1). Consider, for example, the two subspaces of R2 depicted in Fig. 4.1. It is not hard to
see that (up to a rescaling) they have the same persistent homotopy type and thus have the
same persistent homology.

Figure 4.1: The lemniscate V = {x ∈ R2 ∣ x4
1 − x

2
1 + x

2
2 = 0} on the left and a circle with a

diameter filament on the right

Of course, the spaces themselves are topologically quite different, the lemniscate shown in
Fig. 4.1 and the circle with a filament having two singularities. Depending on the application,
one may be interested in an invariant capable of distinguishing the two. For example, one may
consider the two spaces in Fig. 4.1 as so-called stratified spaces, taking care to mark their
singularities.
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The topological data analysis of stratified objects has recently received increased interest (see,
for example, [Mil21; Sto+20; Nan20; SW14; BWM12; FW16]). However, as suggested by the
properties of the non-stratified scenario described in P(1) to P(3), to successfully establish
persistent methods in a stratified framework a notion of persistent stratified homotopy type
is needed. No such thing was available so far, at least not to our knowledge and not in a
way that satisfies analogs to the properties P(1) to P(3). This is because stratified homotopy
theory has only recently received a wave of renewed attention from the theoretical perspective
[Woo09; Lur17; Mil13; Hai23; Dou21c; Dou21b; DW22]. A series of new results in this field
now lay the foundation for stratified investigations in topological data analysis.
Establishing such a notion of persistent stratified homotopy type and showing that it fulfills
properties much like the non-stratified persistent homotopy type is precisely what this work is
concerned with. Thus, the focus lies entirely on the left-hand side of the factorization in (4.1),
leaving investigating algebraic invariants of the latter (for example, intersection homology,
as in [BH11]) for future work. Note, however, that whatever invariants they may be, they
automatically inherit many of the convenient properties of persistent homology.

4.1.1 Persistent stratified homotopy types
Let us illustrate our methods and results by following the example of the lemniscate V
shown in Fig. 4.1. We may treat the lemniscate as a so-called Whitney stratified space (see
Recollection 4.2.1.10) W , with two strata given by Wp = {0}, the singularity, and Wq = V ∖Wp

given by the regular part. It follows from results in [Dou19b; DW22] (see Theorem 4.2.2.10
and Recollection 4.2.3.5) that, for a Whitney stratified space with two strata, the so-called
stratified homotopy type (the analogue of the classical homotopy type, obtained by considering
a stratum-preserving notion of map and homotopy) may equivalently be thought of as (the
homotopy type of) a diagram of spaces of the form

D(W )p D(W ){p,q} D(W )q. (4.2)

Here, the spaces D(W )p and D(W )q correspond respectively to the strata of the stratified
space W , while D(W ){p,q} corresponds to the homotopy type of the space connecting the
two strata, the so-called (homotopy)link (see Definition 4.2.2.4). More explicitly, it follows
from Proposition 4.3.1.14 that for sufficiently small positive real numbers vl < vh the stratified
homotopy type of W is encoded in the diagram

d−1
Wp
[0, vh] d−1

Wp
[vl, vh] d−1

Wp
[vl,∞], (4.3)

where dWp is the function assigning to a point its distance to the singular stratum Wp.

Example 4.1.1.1. For the lemniscate, as shown in Fig. 4.1, the Diagram (4.3) with parameter
v = (0.2,0.3) can be visualized as follows:

This diagram is (weakly) equivalent to the simpler diagram of discrete spaces

{c} {a, b} × {x, y} {x, y}.
π2 (4.4)

In the case of the space shown in Fig. 4.1 on the right, with the singular stratum given by the
singularities, Diagram (4.3) is given by:
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From the perspective of homotopy theory, this diagram simplifies to the diagram of discrete
spaces

{a, b} {a, b} × {x, y, z} {x, y, z}.
π1 π2 (4.5)

A simple point count already shows that Diagrams (4.4) and (4.5) distinguish the lemniscate
from the circle with a filament shown in Fig. 4.1.

This example illustrates how the stratified homotopy type provides a significantly finer
invariant than the classical homotopy type.
In order to perform topological data analysis with such diagram representations of stratified
homotopy types, we need a persistent analogue, i.e. a persistent stratified homotopy type. (In
this paper, we focus on the two strata case, for reasons elaborated in more detail in the end of
the introduction.)
In Section 4.3, we construct such an object by separately thickening the pieces of Diagram (4.3)
in a surrounding Euclidean space. In this fashion, after having chosen parameters v = (vl, vh),
we may associate to a stratified subset S ⊂ RN a persistent stratified homotopy type, Pv(S).
By construction, for each S the persistent stratified homotopy type Pv(S) is represented by a
space valued functor

{p← {p, q}→ q} ×R+ → Top,

where {p← {p, q}→ q} is the indexing category for diagrams such as Diagram (4.2). For each
fixed ε ∈ R+ we recover a diagram indexed over {p ← {p, q} → q} (see Example 4.1.1.2 for a
visualization), which under Recollection 4.2.3.5 corresponds to a (weak) stratified homotopy
type. Our main results pertaining to this construction may be summarized as follows:

Main Result D. The assignment
S ↦ Pv(S),

sending a stratified subset S of RN with two strata to its persistent stratified homotopy type
(depending on a choice of parameters v) fulfills stratified analogues of P(1) to P(3).

More specifically, the analogue of P(1) is guaranteed by the fact, that for finite stratified
point clouds, we may encode diagrams of the form Diagram (4.3) in terms of diagrams of Čech
complexes (see Remark 4.3.1.17). The invariance under thickenings part of P(3) is guaranteed
by Propositions 4.3.1.19 and 4.3.1.20. Proposition 4.3.1.19 roughly states that for sufficiently
constructible two strata subspaces S ⊂ RN , and sufficiently small choices of v, the (weak)
stratified homotopy type given by Pv(S)ε agrees with the one of S for sufficiently small ε > 0.
In other words, the stratified homotopy type does not change under small thickenings.

Example 4.1.1.2. Again, consider the example of the lemniscate, using parameter values
v = (0.2,0.3). For ε = 0.12, the homotopy type of the thickened diagram
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agrees with the unthickened diagram in Example 4.1.1.1. If instead we take ε = 0.24, then we
obtain:

The latter diagram is (weakly) equivalent to the diagram

⋆ ⋆ S1 ∪⋆ S
1, (4.6)

which is not (weakly) equivalent to Diagram (4.4).

Finally, a version of stability - and hence an analogue of P(2) - is guaranteed by Theo-
rems 4.3.3.11 and 4.3.4.8. It follows from these results that for a two strata Whitney stratified
W ⊂ RN and a sequence of stratified space Si ⊂ RN converging to W (in a stratified version of
the Hausdorff distance, see Definition 4.3.1.4) the associated persistent stratified homotopy
types Pv(Si) converge to Pv(W ), and for small v this convergence is even of Lipschitz type.

Example 4.1.1.3. Convergence in the stratified version of the Hausdorff distance that we
used is equivalent to convergence in both the underlying spaces, as well as in the singular
strata. For example, consider the family of real algebraic varieties

V s ∶= {x ∈ R2
∣ fs(x) = x

4
1 − x

2
1 + x

2
2 = s}, for s ∈ R,

equipped with the stratification given by singular loci (see Fig. 4.2). In other words, the
singular stratum of V s is given by the intersection of V s with the vanishing set of the Jacobian
of fs.

Figure 4.2: The real algebraic variety V s, for s ∈ {−0.1,0,0.1 }, with singularities marked in
red

Note that V 0 is the lemniscate as in Fig. 4.1. We may not expect convergence

Pv(V
s
)
s→0
ÐÐ→ Pv(V

0
)

in stratified Hausdorff distance, since for s ≠ 0 the variety has no singular points, and hence
the singular stratum is empty. In particular, the stratified Hausdorff distance between V s and
V 0 is in fact infinite for s ≠ 0.
However, instead of classifying points as singular by the vanishing of the Jacobian of fs, we could,
for example, use a more quantitative measure of singularity and let V s0 = {x ∈ V s ∣ ∣∣Jfx∣∣ ≤ 3

√
s}

(see Fig. 4.3 for an illustration). With these alternative stratifications V s converges to V 0

in stratified Hausdorff distance, as indicated in Fig. 4.3. Hence, convergence of persistent
stratified homotopy types also holds. The general approach of using a more quantitative
measure of singularity is also central in Section 4.4, which deals with stratifying point clouds.
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s→ 0

Figure 4.3: V s for s = 0.1, 0.5, 0.05 with bottom stratum in red given by {x ∈ V s ∣ ∣∣Jfx∣∣ ≤ 3
√
s}.

Figure 4.4: Tangent cone (red) at origin of the lemniscate and magnification at the origin for
ζ = 3

Together, the statements of Main Result D allow for the computational inference of
stratified homotopy theoretic information about a two strata Whitney stratified space W from
a sufficiently close (potentially noisy), finite, stratified sample.

4.1.2 Stratification learning through tangent cones
In an applied scenario we would generally not expect a point cloud to already be equipped
with an appropriate stratification. Much attention has been paid to how such stratifications
can be obtained [Mil21; Sto+20; Nan20; SW14; BWM12; FW16]. In Section 4.4, we provide a
method as well as theoretical guarantees (Theorem 4.4.5.8) for the scenario of approximating
a stratified space from a non-stratified sample, in the stratified Hausdorff distance. Our
approach is inspired by the approaches to persistent local homology in [BWM12; SW14; Nan20;
Mil21], which detects singularities using local data of the form B 1

ζ
(x) ∩W , for large ζ > 0

and x ∈W ⊂ RN . From a scale independent point of view, one may equivalently consider the
so-called magnifications

M
ζ
x(W ) ∶= ζ(W − x) ∩B1(0).

If W is a sufficiently constructible Whitney stratified space, then it is a classical result
(see [Hir69; BL07]) that as ζ converges to ∞ these magnifications converge to the (unit ball
in the) so-called extrinsic tangent cone at x ∈ W (see Definition 4.4.1.5) - a generalization
of tangent spaces in the singular setting. Thus, the class of stratified spaces we investigate
are the tangentially stratified (see Definition 4.4.1.8) spaces, for which singularities may be
detected by their extrinsic tangent cones.

Example 4.1.2.1. In the case of the lemniscate, for example, the tangent cone at the origin
is given by the algebraic variety

{x ∈ R2
∣ (x1 − x2)(x1 + x2) = 0}

which identifies the origin as singular (see Fig. 4.4). Hence, with respect to the standard
stratification, the lemniscate is tangentially stratified.



4.1. INTRODUCTION 191

For the purpose of topological data analysis, we needed a global sampling version of the
convergence results of [Hir69]. More specifically, we needed a version which at the same time
allows for the replacement of W by a sufficiently close sample, and furthermore holds with
respect a global notion of convergence, where a single tangent cone is replaced by a bundle of
tangent cones. We prove such convergence results in Propositions 4.4.2.7 and 4.4.4.6.

In Section 4.4.5, we leverage the convergence guaranteed by Proposition 4.4.4.6 to provide
theoretical guarantees for learning stratifications with two strata from a non-stratified sample
X ⊂ RN close to a tangentially Whitney stratified space W . To decide which points of X should
be considered singular, we consider specific functions (see Definition 4.4.1.10)

Φ∶{Local Data}→ [0,1],

which quantifiy the degree of degeneracy of Mζ
x(X) (with 1 being regular and 0 highly

singular). Examples of such functions Φ come from minimizing truncated Hausdorff distances
to q-dimensional linear subspaces (where q is the dimension of W , see Example 4.4.1.11) and
local persistent homology (see Example 4.4.1.12).
A Whitney stratified space W ⊂ RN , with two strata, for which the singular stratum Wp

is precisely given by such points x ∈ W , for which Φ(Tex
x (W )) < 1, is called (tangentially)

Φ-stratified. In other words, Φ-stratifications are precisely the stratifications which we may
hope to learn through the lens of Φ. Tangentially stratified spaces, for example, are precisely
the Φ-stratified spaces, with respect to the function of Example 4.4.1.11.
After a choice of cutoff parameter u ∈ (0,1), one may then turn a non-stratified point cloud
X ⊂ RN into a stratified point cloud with two strata, denoted SζΦ,u(X), by taking the singular
stratum to be

S
ζ
Φ,u(X)p = {x ∈ X ∣ Φ(M

ζ
x(X)) ≤ u}.

This construction depends, of course, on the magnification parameter ζ > 0. Our main result
on stratification learning through tangent cones then describes the convergence behavior of
S
ζ
Φ,u(X) in ζ and X. In the following dHD(W )(−,−) denotes non-stratified Hausdorff distance:

Main Result E (Theorem 4.4.5.8). Let W ⊂ RN be a compact (sufficiently constructible, see
Definition 4.4.2.2) Whitney stratified space, which is Φ-stratified with respect to a function Φ
as in Definition 4.4.1.10. Denote by X the underlying space of W . Then there exists u0 ∈ (0, 1)
such that for all u ∈ [u0,1), the convergence in stratified Hausdorff distance

S
ζ
Φ,u(X)→W,

holds, for ζ →∞ and X→X such that ζdHD(W )(X,X)→ 0.

In other words, we may approximate the singular stratum Wp of W by SζΦ,u(X)p if ζ is
sufficiently large and given that X is a sufficiently fine approximation of X, where the sufficient
degree of fineness depends on ζ. This dependence on ζ is not surprising at all, in fact, it is
simply a rigorous restatement of the following principle: To recover local information from a
sample, the quality of the sample needs to be finer by some magnitude than the locality scale
we work at.

Example 4.1.2.2. Below, we depict a family of point clouds converging to the lemniscate V 0

in Hausdorff distance. These samples have been stratified using Φ as in Example 4.4.1.11 with
u = 0.6, and we marked points in SζΦ,u(X)p with thickened red dots. In horizontal direction
from left to right the non-stratified Hausdorff distance, denoted d, to V 0 decreases. In vertical
direction going downwards we increase the magnification parameter ζ.
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d ≈ 0.07 d ≈ 0.035 d ≈ 0.023

ζ

=

3

ζ

=

6

ζ

=

9

In practice, these choices of Φ and u often tend to be too sensitive, especially when it comes
to detecting curvature (see also Example 4.4.1.11). In this example, however, they serve well
to illustrate the convergence behavior in magnification parameter and Hausdorff distance.
First, note that for ζ = 3, points in regions with high curvature are generally classified as
belonging to SζΦ,u(X)p. This is not surprising as for such comparatively small values, we may
not expect magnifications at regular points to be close to the tangent spaces yet. By doubling
ζ, we may correctly classify these regions, provided that the sample quality is good enough
to also approximate things at a local level (see the middle row). In this case, only an area
around the singularity is classified as belonging to SζΦ,u(X)p. If we want to further shrink this
area, and thus obtain a better approximation in stratified Hausdorff distance, we may again
decrease ζ (see third row, in particular the most right picture). In case our sample quality is
not sufficient, this may also classify several points far away from the singularity as singular
though (see the second picture of the third row).
For less sensitive choices of parameter u and alternative choice of Φ, samples of lesser quality
and smaller ζ may lead to good approximations in stratified Hausdorff distance. Consider, for
example, Fig. 4.5 which was obtained with the same Φ and u = 0.4.

Finally, combining our two methods, i.e. persistent stratified homotopy types and stratifi-
cation learning through tangent cones, we obtain a pipeline which associates to a non-stratified
sample a persistent stratified homotopy type. The combination of Theorem 4.3.4.8 and Theo-
rem 4.4.5.8, which is Corollary 4.4.5.9, guarantees that we may indeed approximate persistent
stratified homotopy types of sufficiently regular Whitney stratified spaces from nearby samples,
under the assumptions of Theorem 4.4.5.8. Using Proposition 4.3.1.19 we may then infer from
these approximations information about the stratified homotopy type of W .
Example 4.1.2.3. As an illustration of the convergence of persistent stratified homotopy types
obtained from non-stratified samples, consider Fig. 4.6. It shows the barcode of the 0-homology
of the link part of the persistent stratified homotopy types associated to the stratified point
clouds of Example 4.1.2.2, going in a zigzag above the diagonal from the upper left to the lower
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Figure 4.5: Approximated stratification of a sample around the lemniscate with ζ = 3 and
u = 0.4.

right corner. Note that for ζ = 3, five disjoint regions are detected as singular and the link

d = 0.07

ζ = 3

d = 0.035

ζ = 3

d = 0.035

ζ = 6

d = 0.023

ζ = 6

d = 0.023

ζ = 9

Figure 4.6: Barcodes (showing the 14 longest bars) of the 0-th homology of the link part of
Pv(S

ζ
Φ,u(X)), with varying X and ζ. Here X is a point cloud of Hausdorff distance to V 0

approximately d.

ends up having twelve path components. For ζ = 6 and ζ = 9, however, the stratified samples
are close to V 0 in stratified Hausdorff distance and we detect four path components in the
link. This is the expected number of path components from Example 4.1.1.1.

4.1.3 The case of more than two strata
Let us end this introduction with some remarks on the case of multiple strata. In fact, many
of the constructions throughout this paper (such as the construction of diagrams representing
stratified homotopy types) can be generalized to the case of more than two strata through a
serious amount of inductive and technical effort. We have chosen to focus on the two strata
case for the following reasons:

1. The main goal of this paper is to establish a pipeline going all the way from a (non-
stratified) sample of a stratified space to a persistent stratified homotopy type and
investigate the properties of such a construction. In this sense, it is partially intended as
a proof of concept, leaving room for many improvements and generalizations at several
steps of the pipeline for future works. While some of the steps are fairly easy to replicate
in a multi-strata scenario, this is not the case for all of them. In particular, learning
stratifications from non-stratified data gets significantly harder when the underlying
stratification poset is more complicated (this is due to examples such as the Whitney
Umbrella, see for example [HN22] or [Ban07, p. 128-129]). Note that our results on
convergence of magnifications to tangent cones are proven in the setting of more than
two strata (Proposition 4.4.2.7), and thus may allow generalizations for appropriate
families of functions Φ, for suitably nice spaces, avoiding examples such as the Whitney
Umbrella. We are aware that these types of stratification learning questions are currently
the research focus of several other groups.

2. While it is certainly possible to generalize the definition of the persistent stratified
homotopy type to more complicated posets (note that a lot of the abstract homotopy
theory is already in place [Dou19b; DW22; Hai23; AFR19]), this significantly increases the
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technical complexity of definitions and proofs involved, adding an inductive component.
This adds another technical difficulty to an already somewhat lengthy paper, which we
wanted to avoid at this point.

3. In the case of multiple strata, there are several slightly different approaches to what the
homotopy category of stratified spaces should be (compare [Hai23] and [DW22]). While
all of these approaches agree in the two strata case and on the class of Whitney stratified
spaces, the investigation and comparison of the multi-strata case is still the content
of ongoing research. New results and insights on the theoretical side may still greatly
influence and simplify the transfer to topological data analysis, making it worthwhile to
save the development of the multi-strata case for future projects. In particular, having
inductive interpretations of the stratified homotopy theories defined in [Dou19b; DW22;
Hai23; AFR19] would significantly streamline the transfer to the setting of topological
data analysis.

4.2 Stratified homotopy theory
In this section, we summarize material concerning stratified spaces and their homotopy theory,
as far as it is relevant to our investigations (Sections 4.2.1 to 4.2.3). The exposition on stratified
homotopy theory should be accessible for a reader familiar with basic notions in algebraic
topology and category theory. Both for details and the complete model categorical picture
we refer the reader to [DW22] (or Chapter 3 in this text), which contains a comprehensive
overview. For more details on stratified spaces and their invariants consider, for example,
[Ban07].

4.2.1 Stratified spaces
We begin by recalling some of the basic notions relevant to the theory of stratified space.
Recall that the Alexandrov topology on a poset P , is the topology in which the closed sets are
the sets which are closed below, under the relation on P .

Definition 4.2.1.1. A stratified space (over a poset P ) is a pair S = (T, s ∶ T → P ) where T is
a topological space and s is continuous with respect to the Alexandrov topology on P . The
map s is called the stratification of S. The fiber of the stratification over p ∈ P

Sp ∶= s
−1
{p}

is called the p-stratum of S.

Example 4.2.1.2. From an abstract point of view, any filtration (T≤0 ⊂ ... ⊂ T≤n = X) by
closed subsets of a topological space T induces a stratification over the poset [n] = {0 < ... < n}.
However, stratified spaces also arise quite naturally in different fields of mathematics, and are
often assumed to have manifold strata.

• Let (M,∂M) be a compact manifold with boundary and let T be the space obtained by
coning off the boundary of M , i.e. T =M ∪∂M C(∂M), where

C(Y ) = Y × [0,1]Ò(y,0) ∼ (y′,0)

denotes the cone on a space Y . One obtains a stratification of T by the map

s∶X → {p, q};
⎧⎪⎪
⎨
⎪⎪⎩

x↦ q, for x ∈X ∖ {cone point},
x↦ p, for x = cone point.

The resulting stratified space is locally Euclidean away from one isolated singularity, at
which arbitrarily small neighborhoods are homeomorphic to the open cone C̊(∂M) =
C(∂M) ∖ {1} × ∂M .
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Figure 4.7: Pinched torus

• Given a smooth manifold M with a compact Lie group G acting smoothly and properly
on M . The orbit space M/G can then be stratified by orbit types (see, e.g., [Pfl01,
Chapter 4] for more details).

• Any n-dimensional complex algebraic variety T can be equipped with the structure of a
stratified space. A filtration by closed subsets is given by iteratively taking singular loci.

Example 4.2.1.3. The so-called pinched torus PT 2 can be described as the quotient space
of the torus T 2 = S1 × S1 by collapsing one circle ∗ × S1 to a point, see Fig. 4.7. The image
of this circle is the singular point, denoted s, of the pinched torus. The filtration {s} ⊂ PT 2

induces a stratification over the poset {0 < 2}. The pinched torus is an example of a so-called
pseudomanifold, an important class of stratified spaces that have been the subject of research
to recover a form of generalized Poincaré duality for singular spaces ([GM80; GM83]).

Remark 4.2.1.4. It is common to abuse notation insofar as one usually refers to the stratified
space by its underlying topological space. Thus, we will freely use notation such as x ∈ S,
when we mean x ∈ T . However, as the second half of this paper is particularly concerned with
learning stratifications, we will take care to differentiate rigorously between stratified and
non-stratified objects then.

Definition 4.2.1.5. A stratum-preserving map between two P -stratified spaces T → P and
Y → P is a continuous map f ∶T → Y , making the diagram

T Y

P

f

commute.

Notation 4.2.1.6. Stratified spaces over a poset P together with stratum-preserving maps
define a category which we denote StratP . Isomorphisms in StratP - i.e. stratum-preserving
homeomorphisms - will be denoted by ≅P .

Remark 4.2.1.7. There is a slight technical issue here insofar, as the homotopy theoretical
perspective needs assumptions on the underlying topological spaces used. We assure the reader
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unfamiliar with the following technicalities that they can safely ignore them. We generally
denote by Top the category of ∆-generated spaces, i.e. spaces which have the final topology
with respect to maps coming from simplices (see [Dug03] for details). We generally assume all
topological spaces involved to have this property. At times, this will mean that the topology
on a space has to be slightly modified and replaced by a ∆-generated one (for example Q ⊂ R
is not ∆-generated, its ∆-ification is given by a discrete countable space). However, since this
operation does not change weak homotopy types, it is mostly irrelevant to our investigations
of homotopy theory (see also [DW22, Rem 2.10] which is Remark 3.2.2.1 in this text).

Notation 4.2.1.8. Given a stratified space S = (T, s ∶ T → P ) and p ∈ P we write

S≤p ∶= s
−1
({q ≤ p}),

S<p ∶= s
−1
({q < p}),

S≥p ∶= s−1
({q ≥ p}),

S>p ∶= s−1
({q > p}).

For many theoretical as well as for our more applied investigations of stratified spaces,
it is fruitful to impose additional regularity assumptions on the strata (such as manifold
assumptions) and the way they interact. The notion central to this paper is the notion of a
Whitney stratified space. These are characterized by the convergence behavior of secant lines
around singularities.

Notation 4.2.1.9. Given two distinct vectors v, u ∈ RN, with v ≠ u, we denote by l(v, u) the
1-dimensional subspace of RN spanned by v − u.

Recollection 4.2.1.10. A stratified space W = (T, s∶T → P ) with T ⊂ RN locally closed is
called Whitney stratified, if it fulfills the following properties.

1. Local finiteness: Every point x ∈ T has a neighborhood intersecting only finitely many of
the strata of W .

2. Frontier condition: Wp is dense in W≤p, for all p ∈ P .

3. Manifold condition: Wp is a smooth submanifold of RN , for all p ∈ P .

4. Whitney’s condition (b): Let p, q ∈ P such that p < q and let xn, yn be sequences in Wq

and Wp respectively, both convergent to some y ∈Wp. Furthermore, assume that the
secant lines l(xn, yn) converge to a 1-dimensional space l ⊂ RN and that the tangent
spaces Txn(Wq) converge to a linear subspace τ ⊂ RN . Then l ⊂ τ . (By convergence of
vector spaces we mean convergence in the respective Grassmannians.)

Example 4.2.1.11. Whitney’s work ([Whi65a], [Whi65b]) states that every algebraic and
analytic variety admits a Whitney stratification. More general, Whitney stratifications can
even be given to spaces such as semianalytic sets (see e.g. [ Loj65]) or o-minimally definable
sets (see e.g. [Loi98]). Finally, if T is such that it has only isolated singularities and admits a
Whitney stratification, then any stratification of T , fulfilling frontier and boundary condition,
with smooth strata is automatically a Whitney stratification. In particular, any definable set
with isolated singularities and a dense open submanifold is canonically Whitney stratified with
two strata. Another class of Whitney stratified spaces arises from G-manifolds, already noted
in Example 4.2.1.2. For a proof, see [Pfl01, Theorem 4.3.7].

Whitney’s condition (b) has a series of immanent topological consequences, which ultimately
led to the more general notion of a conically stratified space. The latter are (with some
additional assumptions) one of the main objects of interest in the algebro-topological study of
stratified spaces [Sie72; GM80; GM83; Qui88; Lur17]. In addition to the Whitney stratification
assumption, we will frequently need additional control over how pathological the subsets of
Euclidean space we allow for can be. To obtain such additional control, we use the notion of a
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set T ⊂ RN , definable with respect to some o-minimal structure (see [Dri98] for a definition).
For the reader entirely unfamiliar with these notions it suffices to know that all semialgebraic
or compact subanalytic sets have this property. On the one hand, definability assumptions
guarantee the existence of certain mapping cylinder neighborhoods (see Example 4.2.3.16) that
allow thickenings that do not change the homotopy type (see Lemma 4.B.1.1). At the same
time, asserting additional control over the functions defining a set (polynomially bounded), has
several consequences for the convergence behavior of tangent cones, already noted in [Hir69;
BL07]. We will use these to recover stratifications from samples in Section 4.4.

Definition 4.2.1.12. We say that a stratified space S = (T, s∶T → P ), with T ⊂ RN and P
finite, is definable (or definably stratified) if all of its strata are definable with respect to some
fixed o-minimal structure.

4.2.2 Homotopy categories of stratified spaces
Many of the algebraic invariants of stratified spaces - most prominently intersection homology
- are invariant under a stratified notion of homotopy equivalence.

Definition 4.2.2.1. Let f, f ′∶S → S′ be stratum-preserving maps. We call f and f ′ stratified
homotopic, if there exists a stratum-preserving

H∶ (T × [0,1], T × [0,1]→ T
s
Ð→ P )→ S′

such that H∣T×{0} = f and H∣T×{1} = f ′. Furthermore, f is called a stratified homotopy
equivalence, if there exists another stratum-preserving map g∶S′ → S such that f ○ g and g ○ f
are stratified homotopic to idS′ and idS respectively.

Remark 4.2.2.2. Since we use different notions of equivalences of stratified spaces in this
paper, we use the convention of speaking of strict stratified homotopy equivalences instead
of stratified homotopy equivalences, to avoid any possibility of confusion. The class of all
stratified spaces strictly stratified homotopy equivalent to a stratified space S is called the strict
stratified homotopy type of S.

The use of strict stratified homotopy equivalence for topological data analysis faces one
apparent issue. Many of the justifications for the use of persistent approaches to the analysis
of geometrical data rely on the fact that homotopy types of (sufficiently regular) spaces do
not change under small thickenings (see for example [NSW08]). Unlike classical homotopy
equivalence, however, stratified homotopy equivalence is a rather rigid notion.

Example 4.2.2.3. Consider the space T = S1 ∨ S1 embedded in R2 as a curve, shown in
Fig. 4.8 on the left. It features a singular point at the self-crossing. Denote the resulting
stratified space over P = {0 < 1} with the singularity sent to 0 and the remainder to 1 by S.
While there generally seems to be no canonical way to thicken such a space, one possibility
is to thicken both the total space as well as the singularity as in Fig. 4.8 on the right. The
resulting thickened space S′′ is strictly stratified homotopy equivalent to the original curve
with the singular stratum extended from a point to the crossing, denoted S′, see Fig. 4.8.
However, S and S′ (and hence S′′) are not strictly stratified homotopy equivalent. To see
this, note that a stratified homotopy equivalence between S and S′ would also have to be
a homotopy equivalence of the underlying spaces. Such a map has to send a circle S1 with
degree ±1 onto another circle. But the image of any stratum-preserving map between S and
S′ is (non-stratifiedly) contractible.

In some sense, the failure of stratified homotopy equivalence in Example 4.2.2.3 is due to
the fact that the two thickenings are not sufficiently regular (i.e. Whitney stratified, or more
generally conically stratified in the sense of [Lur17]) spaces anymore (this will become more
apparent later on from Theorem 4.2.2.10 and Fig. 4.11). Here, we already encounter the issue
that to perform topological data analysis on nicely stratified spaces, one generally needs to
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Figure 4.8: From left to right: A stratified singular curve S; an alternative stratification S′;
and a stratified thickening S′′

Figure 4.9: Geometric models of homotopy links marked in purple

leave the nice category. To make the intuition of why this phenomenon leads to the failure of
stratified homotopy equivalence in Example 4.2.2.3 more rigorous, we need the notion of a
homotopy link. These were first introduced in [Qui88] and can be thought of as a homotopy
theoretical analog of the boundary of a regular neighborhood in the piecewise linear scenario.
See also [DW22] for more geometrical intuitions.

Definition 4.2.2.4. Let S be a stratified space and p, q ∈ P with p < q. The homotopy link of
the p-stratum in the q-stratum is the space of so-called exit paths

HoLink{p<q}(S) = {γ∶ [0,1]→ T ∣ γ(0) ∈ Sp, γ(t) ∈ Sq,∀t > 0}

with its topology induced by HoLink{p<q}(S) ⊂ C0([0,1], T ), where the latter denotes the
space of continuous functions equipped with the compact open topology. The induced functors

StratP → Top

come with natural transformations

Sp ←HoLink{p<q}(S)→ Sq,

given by the starting point and end point evaluation map.

Example 4.2.2.5. Let us return to Example 4.2.2.3 to give an illustration of the homotopy
link. For the original singular curve and both thickenings, the homotopy links are all homotopy
equivalent to four isolated points (see Fig. 4.9). This can be seen from Construction 4.2.3.19,
which states that the homotopy links are homotopy equivalent to the boundary of a cylinder
neighborhood of the singular stratum.

In [Mil13, Theorem 6.3], it was first shown that a stratum-preserving between sufficiently
regular stratified spaces is a stratified homotopy equivalence, if and only if it induces homotopy
equivalences on all homotopy links and strata. This behavior is akin to the one described by
the classical Whitehead theorem (see [Whi49a], [Whi49b]) or more generally the behavior of
cofibrant, fibrant objects in a model category. It is a general paradigm in abstract homotopy
theory that to study a class of in some sense regular objects within a larger class of objects,
up to a notion of equivalence, it can be useful to weaken that notion in a way, that it becomes
less rigid on the whole class, but still agrees with the original notion on the class of regular
objects. This is also the perspective on stratified homotopy theory that we take here that also
allows us to circumvent the issue alluded to in Example 4.2.2.3.



4.2. STRATIFIED HOMOTOPY THEORY 199

Figure 4.10: Regular strata, homotopy links and singular strata of the spaces in Example 4.2.2.3

Recollection 4.2.2.6. The definition of a homotopy link for pairs {p < q} generalizes to the
case where {p < q} is replaced by a regular, i.e. strictly increasing, flag I = {p0 < ... < pn}. The
resulting spaces are denoted

HoLinkI(S).

One then needs to replace the stratified interval [0,1] by a stratified simplex corresponding to
I. In the case of I = {p} a singleton, this definition comes down to

HoLinkI(S) = Sp.

Since we are mainly concerned with the two strata case here, we refer the interested reader to
[DW22] (Chapter 3 in this text) for rigorous definitions.

Definition 4.2.2.7. A stratum-preserving map f ∶S → S′ in StratP is called a weak equivalence
of stratified spaces, if it induces weak equivalences of topological spaces

HoLinkI(S)→HoLinkI(S′),

for all regular flags I ⊂ P .

Notation 4.2.2.8. We denote by hoStratP the category obtained by localizing StratP at
the class of weak equivalences. The isomorphism class of S ∈ hoStratP is called the stratified
homotopy type of S. Isomorphisms in hoTopP will be denoted by ≃P .

It is an immediate consequence of the fact that homotopy links map stratified homotopy
equivalences to homotopy equivalences that any strict stratified homotopy equivalence is also
a weak equivalence of stratified spaces. The converse is generally false.

Example 4.2.2.9. Let us illustrate these concepts for the spaces from Example 4.2.2.3 where
we already discussed that there is no strict stratified homotopy equivalence between the original
curve and any of the described thickenings. However, all the spaces are weakly stratified
homotopy equivalent. Indeed, this is already hinted at by the fact that we may find a homotopy
equivalence between the respective regular and singular parts as well as the homotopy links as
described in Example 4.2.2.5. Consider Fig. 4.10 for an illustration.

Miller’s result ([Mil13, Thm. 6.3]) can in fact be strengthened to a fully faithful embedding
of homotopy categories. Roughly speaking, a stratified space is called triangulable if it admits
a triangulation compatible with the stratification (for details see [DW22]). For the purpose of
this paper, it suffices to know that Whitney stratified and (locally compact) definably stratified
spaces even admit a PL-structure compatible with the stratification and are thus triangulable,
see [Gor78], [Shi05], [Cza12]. As a consequence of [DW22, Theorem 1.2] (Theorem 3.1.0.2 in
this text), one then obtains the following result:

Theorem 4.2.2.10. [DW22, Theorem 1.2] Let WhitP ⊂ StratP be the full subcategory
of Whitney stratified spaces over P , and ≃ be the relation of stratified homotopy. Denote by
WhitP /

≃
the category obtained by identifiying stratified homotopic morphisms in WhitP .

Then the induced functor
WhitP /

≃
→ hoStratP

is a fully faithful embedding.
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Figure 4.11: Three possible thickenings

For our purpose, this result entails that for the study of stratified homotopy invariants of
sufficiently regular stratified spaces through topological data analysis, one may as well work in
the category hoStratP . As long as the spaces we investigate have these regularity properties,
no information is lost by considering the stratified homotopy type instead of the strict stratified
homotopy type. At the same time, Proposition 4.3.1.19 and Theorems 4.3.4.8 and 4.4.5.8 point
towards the fact that stratified homotopy types are well suited for applications in topological
data analysis, ultimately fulfilling many of the relevant properties of the classical homotopy
type.

4.2.3 Stratification Diagrams
As noted in the previous section, for the passage to a persistent scenario, some notion of
thickening of a stratified space is needed. In analogy to the classical scenario, this should assign
to a stratified space S ⊂ RN , a functor from the category given by the (positive) reals with the
usual order R+ into some category representing stratified homotopy types C. In the classical
scenario, C is often taken to be the category of simplicial complexes (sets) using constructions
such as the Čech or Vietoris-Rips complex. For now, let us refer to the image under such a
functor P(S) as the persistent stratified homotopy type of S, and similarly to the non-stratified
construction using thickenings or Čech complexes as the persistent homotopy type.

This leaves us with the following question: How does one thicken a stratified subspace
S ⊂ RN while fulfilling a series of stability and invariance properties that justify the use for
topological data analysis (compare with P(1) to P(3)). We explain and show a series of such
properties in Section 4.3.

Example 4.2.3.1. In Fig. 4.11 we exhibit three different thickenings of the original space from
Example 4.2.2.3. The first thickening is neither weakly nor strictly stratified homotopy equiva-
lent to the original curve (as can be seen by comparing homotopy links). The second thickening,
being only weakly equivalent to the unthickened space, was discussed in Example 4.2.2.9.
However, note that the inclusion of the original curve into it is not stratum-preserving. Hence,
this notion of thickening does not allow for a persistent approach. For the third thickening,
the inclusion of the original curve is even a strict stratified homotopy equivalence. However,
it seems unclear how to systematically achieve such a thickening, particularly when working
with samples.

As illustrated in detail in Section 4.3, thickenings can be done successfully by representing
stratified homotopy types by so-called stratification diagrams.

Definition 4.2.3.2. We denote by R(P ) the category with objects given by regular (i.e.
strictly increasing) flags I = {p0 < ⋅ ⋅ ⋅ < pk} in P and morphisms given by inclusion relations of
flags. We denote by

DiagP ∶= Fun(R(P )op,Top)

the category of R(P )op indexed diagrams of topological spaces. We call elements of DiagP
(stratification) diagrams.

Definition 4.2.3.3. A morphism f ∶D →D′ in DiagP , for which fI is a weak equivalence at
all I ∈ R(P ) is called a weak equivalence of (stratification) diagrams.
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Notation 4.2.3.4. We denote by hoDiagP the category obtained by localizing DiagP at
weak equivalences of diagrams.

For our purposes, the important result on stratification diagrams is that they can equiv-
alently be used to describe stratified homotopy types. This is due to the following result.

Recollection 4.2.3.5. (For details see [Dou19b; DW22]). (Generalized) homotopy links
induce a functor

DP ∶StratP →DiagP
S ↦ {I ↦HoLinkI(S)}.

By definition, a stratum-preserving map is a weak equivalence, if and only if its image under
DP is a weak equivalence. In particular, one obtains an induced functor

DP ∶hoStratP → hoDiagP
which turns out to be an equivalence of categories. In this sense, the stratification diagram
encodes the same homotopy theoretic information as the original space. We will use this
equivalence to identify these two homotopy categories and often not distinguish between a
stratified space and its stratification diagram.

Homotopy links (and thus also stratification diagrams) defined as subspaces of mapping
spaces are, at first glance, objects unsuited to a computational or algorithmic approach. To
obtain more geometrical and combinatorially interpretable models of the latter, we will also use
another equivalent description of stratified homotopy types, which occur naturally, particularly
when trying to quantitatively recover stratifications from non-stratified data in Section 4.4.
Since our TDA investigation is mainly concerned with the two strata case, we will only consider
P = {p < q} for the remainder of this section and only give definitions in this scenario. The
relevant observation (see [Dou19b]) is that instead of considering the poset P as a space with
Alexandrov topology, we may instead consider it as a simplicial complex via its nerve N(P )
(with vertices the elements of P and simplices given by flags) and then consider its realization.
In the particular case {p < q}, the resulting space is canonically homeomorphic to [0,1], with
p corresponding to 0 and q corresponding to (0,1]. This leads to the following definition:
Definition 4.2.3.6. A strongly stratified space (over P = {p < q}) is a pair

S = (T, s ∶ T → [0,1])

where T is a topological space and s is continuous. A strongly stratum-preserving map
f ∶ S = (T, s)→ (T ′, s′) = S′ is a map of topological spaces f ∶ T → T ′ making the diagram

X X ′

[0,1]
s

f

s′

commute.
Remark 4.2.3.7. The name strongly stratified space S = (T, s ∶ T → [0,1]) relates to the fact
that we may recover a stratified space by postcomposing with the stratification of [0,1] given
by

[0,1]→ {p < q}

t↦

⎧⎪⎪
⎨
⎪⎪⎩

p t = 0;
q t > 0

.

In this sense, a strong stratification is a stronger notion than a stratification, which is obtained
by storing the additional information of a parametrization of a neighborhood around the
singular stratum.
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Notation 4.2.3.8. We denote by TopN(P ) the category with objects given by strongly
stratified spaces and morphisms given by strongly stratum-preserving maps. Isomorphisms in
this category - i.e. strongly stratum-preserving homeomorphisms - will be denoted by ≅N(P ).

In a TDA scenario, where one usually works with metric spaces, strong stratifications arise
naturally from stratifications.
Example 4.2.3.9. Let S = (T, s) be a stratified space equipped with a metric d(−,−) on T .
Then, S can be equipped with the structure of a strongly stratified space, compatible with the
original stratification. The strong stratification map is given by the minimum of the distance
to the singular stratum function and 1, i.e. by

dSp ∶T → [0,1]
x↦min{d(x,Sp),1}.

The central examples of particularly well-behaved strongly stratified spaces are those that
have the structure of a mapping cylinder close to the singular stratum (see Definition 4.2.3.13).
The structure of such spaces near the singular stratum is specified by the following example.
Example 4.2.3.10. Given a map of topological spaces r∶L→ T , we can consider the mapping
cylinder of r

Mr ∶= L × [0,1] ∪L×0,r T

equipped with the teardrop topology [Qui88, Definition 2.1] as a strongly stratified space via

π[0,1] ∶Mr → [0,1]
[(x, t)]↦ t.

Note that if the above r is a proper map between locally compact Hausdorff spaces, then the
usual quotient space topology agrees with the teardrop topology on the mapping cylinder
[Hug99a]. When working with metric spaces, there is the following criterion for a map

f ∶Mr → Z

into a metric space Z to be continuous. The map f is continuous, if and only if its restrictions
to L× (0, 1] and T are continuous, and the family of maps f(−, t) ∶ L→ Z with t > 0, converges
uniformly to f ∣X ○r, as t→ 0 (consider [Qui88, Definition 2.1]).

Similar to the relation between diagrams and stratified spaces, strongly stratified spaces can
also be used to describe stratified homotopy types, as explained in the following recollection.
Recollection 4.2.3.11. We have only described the construction of TopN(P ) in the case of
P = {p < q} here. For the more general case see [Dou19b; DW22]. Similarly to the stratified
case, the strongly stratified category can be equipped with a notion of weak equivalence,
leading to a homotopy category hoTopN(P ). The forgetful functor

TopN(P ) → StratP ,

obtained by post composing the strong stratification with the stratification of the interval

[0,1]→ {p < q}

given by taking 0 as the p-stratum, then (by passing to derived functors with respect to the
model structures explained in [Dou21c]) induces an equivalence of homotopy categories

hoTopN(P ) → hoStratP .

We will often treat strongly stratified spaces as stratified spaces under this forgetful functor.
The equivalence of homotopy categories guarantees that no homotopy theoretical information
is lost.

We will not be making mathematical use of this result here. Nevertheless, it conceptually
explains the multiple occurrences of strongly stratified spaces in our investigations of strongly
stratified homotopy types.
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As in the stratified scenario we make frequent use of some short notation to access the
analogs of strata in the strongly stratified case.

Notation 4.2.3.12. Let S be a strongly stratified space and v′ ≤ v ∈ [0,1]. We use the
following notation:

Sv ∶= s
−1
{v},

S≤v ∶= s
−1
[0, v],

S≥v
′

∶= s−1
[v′,1],

Sv
′

v ∶= s
−1
[v′, v].

For values of v, v′ outside of [0,1] we define these as above, using the closest allowable value.

It turns out that for particularly nice strongly stratified spaces, these sub- and superlevel
sets can be used to recover the stratification diagram, cf. [Qui88; Mil94; DW22]. However, for
the sake of completeness, we include details of this behavior with Example 4.2.3.16. As already
alluded to above, these are stratified spaces for which the strata have cylinder neighborhoods.

Definition 4.2.3.13. We say a stratified space S over P = {p < q} is cylindrically stratified, if
there exists a neighborhood N of Tp and a space L and a map of spaces r∶L→ Tp, such that

N ≅P Mr,

where Mr denotes the stratified mapping cylinder of r from Example 4.2.3.10. We say a
strongly stratified space S = (T, s∶T → [0,1)]) is cylindrically stratified, if it is cylindrically
stratified as a stratified space and there is a homeomorphism f ∶ s−1(0, 1) ∼Ð→ S 1

2
× (0, 1), making

the diagram
s−1(0,1) S 1

2
× (0,1)

(0,1)
s∣s−1(0,1)

∼
f

π(0,1)
(4.7)

commute (i.e. a strongly stratum-preserving homeomorphism, with respect to the strong
stratifications induced by s and π[0,1].)

Remark 4.2.3.14. Note, that the definition of a cylindrically stratified space in the strong
case is slightly weaker than assuming a strongly stratified mapping cylinder neighborhood. We
choose this definition for our purposes as it has precisely the same consequences and is much
easier to verify. Nevertheless, for compact S, it follows by an application of the two-out-of-six
property, as in Lemma 4.B.1.1, that the inclusions

Sp ↪ S≤v

for 0 ≤ v < 1, are homotopy equivalences.

Definition 4.2.3.15. A cylindrically stratified metric space S over P = {p < q} is a stratified
space equipped with a metric d(−,−), which is cylindrically stratified when considered as
a strongly stratified space, with respect to the strong stratification induced by the metric
(Example 4.2.3.9).

It turns out that many of the stratified spaces, that we are interested in, are cylindrically
stratified.

Example 4.2.3.16. Whitney stratified spaces, equipped with the metric induced by the
inclusion into RN , are cylindrically stratified up to a rescaling. They even admit neighborhoods
that are strongly stratum-preserving homeomorphic to a strongly stratified mapping cylinder
of a fiber bundle (in particular, they are conically stratified). This is a classical result, found
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for example already in [Tho69; Mat12]. We sketch a proof here for the sake of completeness.
Let S = (T,T → {p < q}) be a Whitney stratified space with Sp compact and T ⊂ RN . By
passing to a sufficiently small neighborhood of Sp we may assume X to lie in a (standard)
tubular neighborhood N of Sp in RN , such that the retraction map

r ∶ N → Sp

x↦ ym,

where ym minimizes d(x, y), is well defined and smooth. Next, consider the distance to Sp
map

dSp ∶T → R
x↦ d(x,Sp).

It is then a consequence of Thom’s first isotopy lemma (which in this two strata case amounts
to Ehresmann’s Lemma [Ehr51], see e.g.[Tho69] and [Ban07, Thm. 6.7] for a modern source),
that the map

T ∩N → Sp ×R
x↦ (r(x),dSp(x))

restricts to a fiber bundle over Sp × (0, ε], for ε small enough. If we denote by Nε(Sp) a closed
ε-neighborhood of Sp in X and set L = d−1

Sp
(ε) this means that there is a homeomorphism

f ∶ Nε(Sp) ∖ Sp
∼
Ð→ L × (0, ε]

such that the diagram

Nε(Sp) ∖ Sp L × (0, ε]

Sp × (0, ε]

f

r×dSp
r×π(0,ε]

(4.8)

commutes. By rescaling, we may assume without loss of generality that ε = 1 and let
N = N1(Sp), the closed neighborhood of points with distance ≤ 1 to Sp.
Now, consider the map

g∶Mr → N ;
⎧⎪⎪
⎨
⎪⎪⎩

(x, t)↦ f(x, t), for t > 0,
[(x,0)] = [y]↦ r(x) = y, for t = 0.

g is clearly bijective and continuous on Sp and L × (0,1]. Furthermore, by the commutativity
of Diagram 4.8, for t → 0, f(−, t) ∶ L → N converges uniformly to r ∣L. By the alternative
characterization of the mapping cylinder topology in Example 4.2.3.10, it follows that g is a
continuous bijection, from a compactum to a Hausdorff space, and thus a homeomorphism.
Example 4.2.3.17. Compact definably stratified spaces S = (T, s ∶ T → {p < q}), are (up
to a rescaling) cylindrically stratified. Indeed, note first that they are cylindrically stratified
as topological spaces. This follows from the fact that they are triangulable in a way that is
compatible with the strata (see [Dri98]). In particular, Sp always admits a mapping cylinder
neighborhood given by a regular neighborhood in the piecewise linear sense. Furthermore,
note that the map

dSp ∶ T → R
again is definable. Thus, by Hardt’s Theorem for definable sets (see [Dri98]), it restricts to
a trivial fiber bundle over (0, ε], for ε sufficiently small. In other words, after rescaling, we
indeed have a homeomorphism

d−1
Sp
(0,1)→ S 1

2
× (0,1).

over (0,1).
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Remark 4.2.3.18. We will generally consider all compact definably or Whitney stratified
spaces to be appropriately rescaled, such that they are cylindrically stratified. Similar assump-
tions will be made for definably stratified spaces when using Lemma 4.B.1.1.

Finally, the following construction, together with Proposition 4.2.3.20, tells us that stratifi-
cation diagrams of cylindrically stratified spaces have more interpretable geometric models,
usable for TDA.

Construction 4.2.3.19. Given a stratified mapping cylinder Mr for r ∶ L → Y a map of
metrizable spaces, we may consider the map

α∶L→HoLink{p<q}Mr

x↦ {t↦ [(x, t)]},

mapping a point x to the corresponding line segment in Mr. A homotopy inverse to this map
is given by

β∶HoLink{p<q}Mr → L

γ ↦ πL(γ(1)).

Clearly, β ○ α = 1L. A homotopy α ○ β ≃ 1HoLink{p<q}Mrr is given by

HoLink{p<q}Mr × [0,1]→HoLink{p<q}Mr

(γ, s)↦ {t↦ (πL(γ(s + (1 − s)t), t).

Compare [DW22], [Fri03] and [Qui88] for similar, more detailed arguments covering the
continuity of such maps. Now, if S is a metrizable, cylindrically stratified space over P = {p < q}
and N ≅Mr is a stratified mapping cylinder neighborhood of Sp with boundary L, then the
inclusion

HoLink{p<q}N ↪HoLink{p<q}S
is a (weak) homotopy equivalence. Essentially, the idea of the proof is to continuously retract
paths in S into N (see [Fri03, Appendix] for details under slightly stronger assumptions). In
particular, we then have a commutative diagram

Sq Sq

L × {v} HoLink{p<q}(N) HoLink{p<q}(S),

Sp Sp ,

r

≃ ≃

for v ∈ (0,1]

Proposition 4.2.3.20. Let S be a compact, cylindrically stratified metric space and (vl, vh),
such that 0 < vl ≤ vh < 1. Then there is an isomorphism in hoDiagP

{S≤vh
↩ Svl

vh
↪ S≥vl} ≃ DP (S).

Proof. Let s be the strong stratification induced by the metric on S. By assumption, S admits
a mapping cylinder neighborhood N ≅Mr, for some map r∶L→ Sp. Denote s̃∶N → [0,1], the
alternative strong stratification induced by this choice of mapping cylinder neighborhood. Since
we assume that Sp is compact, we may assume, without loss of generality, that N ⊂ s−1[0,1).
By Construction 4.2.3.19 (using the same notation), it suffices to expose a (canonical) zigzag
of weak equivalence to the diagram

{Sp ← L × {v}↪ Sq},
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for some v ∈ (0,1]. Such a zigzag between diagrams is given as follows:

{S≤vh
Svl
vh

S≥vl}

{s−1[0,1) s−1(0,1) s−1(0,1]}

{s−1[0,1) L × {v} s−1(0,1] = Sq}

{Sp L Sq}.

≃

≃

≃

r

(4.9)

We describe the morphisms of diagrams from top to bottom, and show that they are weak
equivalences. The first morphism is given by inclusions. Since we have assumed that s−1(0, 1)
has the shape of an open cylinder L′×(0, 1), this morphism is clearly given by weak equivalences
at {p},{q} and {p < q}. The next morphism is again given by inclusions. To see that it is a
weak equivalence, we need to show that

L × {v}↪ s̃−1
(0,1]↪ s−1

(0,1) ≅ L′ × (0,1)

is a weak equivalence. Since the first of these maps is a weak equivalence, it suffices to show
that the second is one too. Since Sp is compact we find ε, ε′ > 0 such that

s̃−1
(0, ε′) ⊂ s−1

(0, ε) ⊂ s̃−1
(0,1) ⊂ s−1

(0,1).

Now, note that since all sets involved are given by open cylinders (on L and L′ respectively),
these inclusions fulfill the requirements for the two-out-of-six property of homotopy equivalences.
In particular, all maps involved are weak equivalences (even homotopy equivalences). Finally,
the last morphism is constructed as follows. Both at q and {p < q} it is given by the identity.
Assume that v ∈ (0,1] was taken such that

L × {v} ≅ s̃−1
{v} ⊂ s−1

(0, ε] ⊂ s̃−1
(0,1),

for some ε > 0 sufficiently small. Note that this is indeed possible by the compactness of Sp.
Then, at {p} the morphism is given by the composition

s−1
[0,1)→ s−1

[0, ε]↪ N ≅Mr → Sp

where the first of these maps is given by

(x, t)↦ (x,min{t, ε})

under the identification s−1(0,1) ≅ L′ × (0,1). By the assumption that L × {v} maps into
s−1[0, ε], this map induces a morphism of diagrams. It remains to show that it is a weak
equivalence. By the cylinder structure of s−1(0,1), the first map in this composition is a
homotopy equivalence. The same holds true for the second map by a two-out-of-six argument,
completely analogous to the one performed when comparing L and L′ × (0, 1). Finally, the last
map is the retraction of a mapping cylinder and thus also a homotopy equivalence. Combining
this, we have shown that the final morphism is also a weak equivalence of diagrams.

4.3 Persistent stratified homotopy types
In this section, we introduce the notion of persistent stratified homotopy type (Section 4.3.1)
and investigate its stability properties (Section 4.3.3), in the particular case of Whitney strati-
fied spaces with two strata (Section 4.3.4). Before we focus on the specific case of persistent
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stratified homotopy types, let us first make a little more precise what we mean by persistent
homotopy types and their role in topological data analysis. As already alluded to, for the case of
persistent homology in the introduction, the perspective we take here on persistent approaches
to TDA is that they can usually be decomposed into a two-step process. Conceptually, it can
be described as follows:

Let S denote some categories of objects representing datasets which contain geometrical
information. For example, we can take the category given by all subsets of RN , with mor-
phisms given by inclusions. Let T denote some category of geometrical and or combinatorial
objects, for example the categories Top, sSet (the category of simplicial sets), StratP , DiagP ,
equipped with a class of morphisms called weak equivalences. Let A denote some category of
algebraic objects, for example, the category of vector spaces over some fixed field. Finally, let

H ∶T→A

be a functor that sends weak equivalences to isomorphisms, for example for T = Top this could
be a homology functor. We denote R+ the category given by the poset of nonnegative reals.

Notation 4.3.0.1. Given any category C and another category U (most prominently R+).
We denote by CU the category of functors from U to C, with morphisms given by natural
transformations.

Then, a persistent version of H is constructed by taking a composition

S P
Ð→ TR+ HR+

ÐÐ→AR+ ,

for some functor S P
Ð→ TR+ turning objects in S into persistent objects in T, i.e. elements

of TR+ . Examples of such functors include sending a subspace of RN to the family of its ε
thickenings, filtered Čech- or Vietoris-Rips complexes. Since H sends weak equivalences into
isomorphisms, we obtain a factorization

S TR+ AR+

hoTR+

P

PH

HR+

(4.10)

Notation 4.3.0.2. All throughout this paper, hoTR+ denotes the category obtained by
localizing TR+ at such natural transformations, which are given by a weak equivalence at each
α ∈ R+. Such natural transformations will be called weak equivalences of functors. We will
also refer to isomorphisms in the homotopy category hoTR+ (which are always represented by
zigzags of weak equivalences in TR+) as weak equivalences. The same notation and language is
used when R+ is replaced by a more general indexing category. (The reader wondering about
the relation of this construction to taking the homotopy category first and then passing to
persistent objects is referred to Remark 4.A.0.1.)

The functor P can then be understood as assigning to an object in S a persistent homotopy
type. By a slight abuse of language, we thus refer to P(X) as the persistent homotopy type
of X ∈ S, even though it depends on a choice of functor S→ TR+ . (Note, however, that this
abuse of language is no more incorrect than speaking of the persistent homology, which also
depends on choices such as Čech- or Vietoris-Rips complexes.) Then, as we illustrated in the
introduction to the scenario of classical persistent homology, many properties of the functor
PH may already be understood by studying the functor P. At the same time, the advantage
of such a modular approach is that it quickly allows obtaining results for all sorts of choices of
H.
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4.3.1 Definition of the persistent stratified homotopy type
Let us now move to the specific case of persistent stratified homotopy types. The goal is to
expose a functor P with values in the category hoStratR+P . Furthermore, for the values of such
functor to deserve the name, persistent stratified homotopy types, we need to show it fulfills
properties analogous to the properties P(1), P(2) and P(3) of the non-stratified persistent
homotopy type. Let us summarize the pipeline suggested by Sections 4.2.2 and 4.2.3.
We start with a Whitney stratified or definably stratified space S ⊂ RN (or later on a
sample of any of the latter) aiming to obtain a persistent version of its stratified homotopy
type. By Recollection 4.2.3.5 the stratified homotopy type of S is equivalently described
by its stratification diagram DP (S). It is an immediate consequence of [Dou21c, Thm.
2.12] (which is a stronger version of Recollection 4.2.3.5) that the homotopy link functor
from Recollection 4.2.3.5 sending a stratified space to a stratification diagram, induces an
equivalence of categories

hoStratR+P
∼
Ð→ hoDiagR+

P . (4.11)

Hence, we may equivalently expose a functor P valued in hoDiagR+
P . To do so, we need to

obtain a geometric description of the stratification diagram DP (S), which admits thickenings.
By Examples 4.2.3.16 and 4.2.3.17, S naturally admits the structure of a cylindrically stratified
space (up to a rescaling). Then, by Proposition 4.2.3.20, up to a weak equivalence we may
recover the stratification diagram DP (S) of S by the diagram of sub- and superlevel sets

S≤vh
↩ Svl

vh
↪ S≥vl .

The diagram obtained in this fashion has the advantage that it admits an obvious notion of
thickening. One simply thickens the parts of the diagram contained in RN separately.

Let us now set up the framework to analyze the stability properties of these constructions and
their interactions with sampling. For the remainder of this subsection let P = {p < q} be a
poset with two elements. Next, we define a series of spaces of subspaces of RN . One should
mainly think of elements of these spaces as samples, sampled nearby a continuous space, whose
convergence behavior we are investigating. Nevertheless, in the generality below all sorts of
complicated, non-finite sets are permitted. We will follow the naming convention of using
blackboard bold letters like X, when suggesting an object conceptually takes the role of a
sample. We use usual letters, like T , when an objects takes the role of a space nearby which
samples are taken. Of course, this convention does not apply to the fields Q,R and C.

Remark 4.3.1.1. Throughout the remainder of this paper, we will be defining several distances
on categories and spaces whose elements are themselves some version of spaces. In this context,
the term metric will mean symmetric Lawvere metric, that is, we allow for the value ∞, and
do not require nonidentical elements to have positive distance.

Notation 4.3.1.2. Throughout the remainder of this paper, ∣∣− ∣∣ always denotes the Euclidean
norm on RN . Given a subset X ⊂ RN , and some non-negative real number α ≥ 0, we denote by
Xα the α thickening of X, given by

{y ∈ RN ∣ ∃x ∈ X ∶ ∣∣x − y∣∣ ≤ α}.

We will take care, to always use greek letters for thickenings, as to avoid any possible confusion
with the indexing letters denoting strata.

Definition 4.3.1.3. Denote by Sam the space of subspaces of RN , {X ⊂ RN}, equipped with
the (extended pseudo) metric given by the Hausdorff-distance. That is, for X,X′ ∈ Sam, we set

dHD(W )(X,X′) = inf{α > 0 ∣ X ⊂ X′α,X′ ⊂ Xα}.

We refer to Sam as the space of samples (of RN ).
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Next, we define a metric on the set of stratified samples.

Definition 4.3.1.4. Denote by SamP the space of pairs in RN ,

{(X,Xp) ∣ Xp ⊂ X} ⊂ Sam2,

equipped with the (extended pseudo) metric induced by the inclusion.
That is, for X,X′ ∈ SamP , we set

dSamP
((X,Xp), (X′,X′p)) ∶=max{dHD(W )(X,X′),dHD(W )(Xp,X′p)}.

We also refer to SamP as the space of (P -)stratified samples (of RN ).

We can think of SamP as a metricized, sample version of the category StratP . Next, we
need an analogous construction for the category DiagP .

Definition 4.3.1.5. Denote by DPSam the space of triples of subspaces of RN

{(Dp,D{p<q},Dq) ∣ Dq ⊃ D{p<q} ⊂ Dp,} ⊂ Sam3,

equipped with the subspace metric. That is, for D,D′ ∈DPSam we set

dDP Sam(D,D′) ∶= max
I∈R(P )

dHD(W )(DI ,D′I).

We also refer to DPSam as the space of stratification diagram samples (of RN ).

Finally, we repeat a similar process for TopN(P ).

Definition 4.3.1.6. Denote by SamN(P ) the space

{(X, s∶X→ [0,1]) ∣ X ⊂ RN},

equipped with the (extended pseudo) metric given as follows. Embed SamN(P ) into the space
of subspaces of RN × [0,1], equipped with the Hausdorff distance on the product metric, by
sending s to its graph. The metric on SamN(P ) is then given by the subspace metric under
this embedding.
Equivalently, this comes down to the following. For (X, s), (X′, s′) ∈ SamN(P ), we set

dSamN(P )((X, s), (X
′, s′)) ∶= max

X0,X1∈{X,X′}2
{inf{ε > 0 ∣ ∀x ∈ X0∃y ∈ X1 ∶

∣∣x − y∣∣, ∣s0(x) − s1(y)∣ ≤ ε}}.

We also refer to SamN(P ) as the space of strongly (P -)stratified samples (of RN ).

Notation 4.3.1.7. For the remainder of this work, we denote v = (vl, vh) ∈ (0, 1)2 with vl < vh,
and u ∈ (0,1). Furthermore, we equip (0,1)2 with the usual order in the second, and the
opposite order in the first component, that is we write

v ≤ v′ ⇐⇒ v′l ≤ vl and vh ≤ v
′
h.

We denote by Ω ⊂ (0,1)2 the subposet of (0,1)2 with this order, consisting of (vl, vh) with
0 < vl < vh < 1.

Finally, let us model the several constructions connecting stratified spaces, strongly stratified
spaces and stratification diagrams we described in Section 4.2 in this framework.

Construction 4.3.1.8. Consider the following three maps.

SamP SamN(P ) DPSam
N

Fu

Dv
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Figure 4.12: From left to right, illustrations of: The pinched torus PT as an element of PT ;
the strongly stratified space N (PT ); the associated diagram Dv(N (PT ))

These are defined via:

(X,Xp)
N
≳Ð→ (X,min{dXp ,1}),

S = (X, s)
Fu

≳Ð→ (X,S≤u),

S = (X, s)
Dv

≳Ð→ (S≤vh
,Svl
vh
,S≥vl) .

The map N corresponds to the assignment of a strong stratification to a stratified metric space
(see Example 4.2.3.9). Fu gives a family of models for the forgetful functor, TopN(P ) → StratP ,
described in Recollection 4.2.3.11. Finally, by Proposition 4.2.3.20, Dv (composed with N )
provides a model for the functor assigning to a stratified space its stratification diagram,
DP ∶StratP →DiagP (see Recollection 4.2.3.5).

Example 4.3.1.9. Consider the three pictures in Fig. 4.12. The first shows the pinched torus
PT as a stratified subspace of R3, with the singularity marked in red. The second shows
N (PT ), where the color coding indicates the strong stratification. Finally, the third shows
the image under Dv for v = (0.2,0.4). Specifically, the union of the red and purple part give
the p-part of the diagram, the purple part the {p < q}-part, and the union of the purple and
the blue one the q-part.

We will later make use of the following immediate elementary relation between Dv and Fu.

Lemma 4.3.1.10. Let v = (vl, u) ∈ Ω. Then,

Fu(S) = (Dv(S)p ∪Dv(S){p<q} ∪Dv(S)q,Dv(S)p)

for all S ∈ SamN(P ).

Remark 4.3.1.11. Note, that all of the described sample spaces naturally admit the structure
of a poset. In the case of Sam, SamP and DPSam it is simply given by inclusions. In case
of SamN(P ), it is obtained by treating elements of SamN(P ) as their graph, i.e. as a subset of
RN × [0,1] and then using the inclusion relation. Equivalently, this means

(X, s) ≤ (X′, s′) ⇐⇒ (x ∈ X Ô⇒ (x ∈ X′ & s(x) = s′(x))).

In this fashion, the spaces of samples may also be treated as categories and the maps of
Construction 4.3.1.8 are functors. Furthermore, from this perspective we can treat SamP

as a subcategory of StratP treating the equivalence in Proposition 4.3.1.14 as a natural
equivalence. We will not make much use of this perspective here. However, it allows for
notation such as SamI , where I is some indexing category to make sense, and we will use this
freely. Furthermore, from this perspective the metrics on SamP and DPSam are induced by
the flow given by componentwise thickening (see Example 4.3.2.3 for details).
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Notation 4.3.1.12. In the remainder of the section, we will frequently state that certain
functors are homotopically constant, which means the following: If T is a category with weak
equivalences and U some indexing category, then we say F ∈ hoTU is homotopically constant
with value T ∈ T, if there is an isomorphism in hoTU

F ≃ T,

where we treat T as as object of the functor category TU by sending it to the constant
functor of value T . Note that this implies in particular that all structure maps of F are weak
equivalences.

The categorical perspective on the sampling spaces can be used to define a parameter
independent version of Dv.

Construction 4.3.1.13. Note that for v ≤ v′ we have natural inclusions

Dv ↪ Dv′ .

These induce a map
D∶SamN(P ) →DPSamΩ.

Proposition 4.2.3.20 may then be rephrased as follows.

Proposition 4.3.1.14. Let S ∈ SamP be cylindrically stratified. Then, for all v ∈ Ω we have
a weak equivalence

DP (S) ≃ Dv ○N (S).

In fact, even more, there is an isomorphism in the homotopy category hoDiagΩ
P

DP (S) ≃ D ○N (S).

Proof. Note, that in the proof of Proposition 4.2.3.20 we in fact first constructed a weak
equivalence of Dv○N (S) with a diagram independent of v. It is immediate from the construction
there, that this weak equivalences induces a weak equivalence from D ○N (S) to a constant
functor. The second part of the proof then shows that this constant functor is weakly equivalent
to the constant functor with value DP (S).

In particular, under the equivalence of homotopy categories hoStratP ≅ hoDiagP , S and
Dv ○N (S) represent the same stratified homotopy type. As a consequence, to define persistent
stratified homotopy types, we can thicken stratification diagrams instead of stratified spaces.

Construction 4.3.1.15. Define the thickening of D by α ≥ 0 via:

Dα ∶= ((Dq)α, (D{p<q})α, (Dq)α).

For α ≤ α′ there are the obvious inclusions of diagrams

Dα ↪ Dα′

We thus obtain a map (functor from the categorical perspective)

DPSam →DPSamR+

D↦ {α ↦ Dα}

with the structure maps given by inclusions. We may then treat the sample diagrams as
elements of DiagP , ultimately obtaining the composition:

DP ∶DPSam →DPSamR+ → hoDiagR+
P ≃ hoStratR+P .
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We now have everything in place to define persistent stratified homotopy types.
Definition 4.3.1.16. The persistent stratified homotopy type of a stratified sample S ∈ SamP

(depending on the parameter v) is defined as the image of S under the composition

Pv ∶SamP
N
Ð→ SamN(P )

Dv
Ð→DPSam DP

ÐÐ→ hoStratR+ ,

where the final map is the one defined in Construction 4.3.1.15.
Remark 4.3.1.17. Note, that by construction, Pv fulfills an analog of Property P(1), i.e. it
admits a combinatorial interpretation which, for finite samples, can be stored on a computer.
Indeed, by construction the persistent stratified homotopy type of S ∈ SamP is equivalently
represented by the image of S under

Pv ∶SamP
N
Ð→ SamN(P )

Dv
Ð→DPSam DP

ÐÐ→ hoDiagR+
P ,

named the same by abuse of notation. Then, it is a consequence of the classical nerve theorem
(see e.g. [Hat02, Prop. 4G.3] or [Bor48]) that for S ∈ SamP , Pv(S) is equivalently represented
by the diagram of Čech complexes

α ↦ {I ↦ Čα(Dv(N (S))I)}

where Čα denotes the Čech complex with respect to α. When S is finite, this data can be
stored on a computer and algorithmically evaluated.
Definition 4.3.1.18. The (parameter-free) persistent stratified homotopy type of a stratified
sample S ∈ SamP is defined as the image of S under the composition

P ∶SamP
N
Ð→ SamN(P )

D
Ð→DPSamΩ DPΩ

ÐÐÐ→ (hoStratR+)Ω ≅ hoStratR+×Ω.

Then, the following two results guarantee that for sufficiently regular stratified spaces the
homotopy type does not change under small thickenings (this is Property P(3), see [NSW08] for
the analogous result in the non-stratified smooth setting). This justifies the use of persistent
stratified homotopy types as a means to infer stratified homotopic information. Recall that the
weak feature size of a subspace T of RN ([CL05]), is a non-negative real number ε associated
to T , which has the property that the natural inclusion Tα ↪ Tα′ is a homotopy equivalences,
for 0 < α ≤ α′ < ε.
Proposition 4.3.1.19. Let S ∈ SamP be a compact, definable stratified metric space. Then,
for any v ∈ Ω, there exists an ε > 0, such that the structure map

Pv(S)(α)→ Pv(S)(α
′
)

is a weak equivalence, for all 0 ≤ α ≤ α′ < ε. In particular,

Pv(S) ∣[0,ε)≃ S.

In other words, the persistent stratified homotopy type of S at v restricted to [0, ε), is weakly
equivalent to the constant functor with value S. Furthermore, ε can be taken to be the minimum
of the weak feature size of the entries of Dv(T ) (see [CL05]), and the latter is positive.
Proof. Note that by definition of a weak equivalence in the category of stratification diagrams,
this statement really just says there exists an ε > 0, such that for each flag I in P the inclusions

Dv(S)I ↪ (Dv(S)I)α

are weak equivalences, for α ≤ ε. Note, however, that by the definability assumption Dv(S)I is
again definable. Hence, this follows from the fact that the homotopy type of compact definable
sets is invariant under slight thickenings (see Lemma 4.B.1.1 for the precise statement and the
fact that ε can be taken as the minimum of the weak feature size of the entries of Dv(T )). For
α = 0, we have

Pv(S)(0) ≃ S
by Proposition 4.3.1.14.
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Proposition 4.3.1.20. Let S ∈ SamP be a compact, definably stratified space. Then (up to a
linear rescaling), the persistent stratified homotopy type

P(S)∶Ω ×R+ → hoStratP

is homotopically constant with value S on an open neighborhood of Ω × {0}.

Proof. That the functor is homotopically constant with value S on Ω × {0} is the content of
Proposition 4.3.1.14. Let ωv denote the minimum of the weak feature sizes (compare to [CL05])
of the entries of Dv(S). An elementary argument shows that ωv varies continuously in v. By
Lemma 4.B.1.1 all weak feature sizes involved are positive. We take

U ∶= {(v,α) ∣ α is smaller than ωv}.

From Proposition 4.3.1.19 it follows, that all structure maps of P(S) on U in direction R+
are weak equivalences. From this, it already follows that all structure maps of P(S) ∣U are
weak equivalences. For the slightly stronger result that this already implies that P(S) ∣U is
homotopically constant, see Lemma 4.A.0.3.

4.3.2 Metrics on categories of persistent objects
One of the central requirements for the use of persistent homology in practice is the fact that
it is stable with respect to Hausdorff and interleaving distance (P(2), first shown in [Cha+09]).
Investigating the use of metrics in persistent scenarios and the stability of functors with respect
to them has since been the content of ongoing research ([BW20; Hof+17; Les15; BL21; BSS20]).
The stability of persistent homology with respect to the interleaving distance may, however,
already be phrased at the level of persistent homotopy types (even on the level of persistent
spaces), as we explain in the remainder of this subsection. The goal of Section 4.3.3 is to
investigate the stability behavior of the persistent stratified homotopy type. To do so, we
make us of the notion of a flow introduced [SMS18]. For the sake of conciseness, we recall a
slightly less general definition here.

Recollection 4.3.2.1 ([SMS18]). A strict flow on a category C is a strict monoidal functor
(−)−∶R+ → End(C). In other words, to each ε ∈ R+ we assign an endofunctor (−)ε and
whenever ε ≤ ε′ we assign (functorially) a natural transformation sε→ε′ ∶ (−)ε → (−)ε′ . Being
strict monoidal means that (−)0 = 1C , (−)ε′ ○ (−)ε = (−)ε+ε′ and (sε≤ε′)δ = sε+δ≤ε′+δ. Generally,
one should think of flows as a notion of shift on C. Then, just as in the scenario of the
interleaving distance for persistence modules [Cha+09], one says that X,Y ∈ C are ε-interleaved
if there are morphisms f ∶X → Yε and g∶Y →Xε and such that the diagram

X Y

Yε Xε

X2ε Y2ε

f g

gε fε

(4.12)

commutes (all unlabelled morphisms are given by the flow). One then obtains a (symmetric
Lawvere) metric space by setting

dIn(X,Y ) ∶= inf{ε ≥ 0 ∣X,Y are ε-interleaved}. (4.13)

An immediate consequence of this definition is that any functor F ∶C → D between categories
with a (strict) flow that fulfills (−)ε ○ F = F ○ (−)ε for all ε ∈ R+ is necessary 1-Lipschitz with
respect to the interleaving distances, that is it fulfills

dIn(F (X), F (Y )) ≤ dIn(X,Y ),

for X,Y ∈ C.
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Example 4.3.2.2. Consider Rk equipped with the product partial ordering, given by u ≤ v ∶
⇐⇒ ∀i ∈ {1, . . . , n}∶ui ≤ vi. Let U ⊂ Rk be a generalized interval (i.e. a subset of Rk, such
that u, v ∈ U,u ≤ w ≤ v implies w ∈ U). Furthermore, let T be a category with a terminal object
∗. Then any functor category TU is naturally equipped with a shift type flow, given by

Xε(u) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

X(u + ε(1, . . . ,1)) , for u + ε(1, . . . ,1) ∈ U ;
∗ , for u + ε(1, . . . ,1) ∉ U.

If T is equipped with a notion of weak equivalence (which includes all isomorphisms), then by
construction the flow respects weak equivalences in TU . Thus, it descends to a flow on the
homotopy category hoTU obtained by localizing weak equivalences of functors. In particular,
this construction equips the persistent homotopy category hoTopR+ with a symmetric Lawvere
metric, such that the functor

TopR+ → hoTopR+

is 1-Lipschitz. More generally, the same construction works for the cases T = StratP ,DiagP .
We call distances of this type interleaving distances. Furthermore, for any functor between
two such categories T,T′, which descends to the homotopy category, the induced functors

TR+ → T′R+ ,
hoTR+ → hoT′R+

commute with shifting and are thus 1-Lipschitz. Whenever we refer to a metric on such a
functor category (or its homotopy category), we will be referring to the interleaving distance.

Example 4.3.2.3. Denote by Sam the category of subsets of RN , with morphisms given by
inclusions. If we take Xε to be given by an ε thickening, for ε ∈ R+ then this construction
defines a strict flow on Sam. The distance induced by the flow is the Hausdorff distance
(compare [SMS18]). Clearly, the functor

P ∶Sam → TopR+

X↦ {ε↦ Xε}

commutes with flows. In particular, this gives an, albeit somewhat unnecessarily abstract, proof
of the fact that persistent homotopy types are stable with respect to Hausdorff and interleaving
distance, which immediately implies the stability of persistent homology ([Cha+09]). More
generally, if we define thickening componentwise, then the Hausdorff style distances on SamP

and DPSam (Definitions 4.3.1.4 and 4.3.1.5) are also induced by the thickening flow.

In the next subsection, we are going to make frequent use of tautological stability results
as in Examples 4.3.2.2 and 4.3.2.3. For example, from the flow perspective, just as in the
non-stratified scenario, one immediately obtains:

Lemma 4.3.2.4. DP ∶DPSam → hoStratR+ is 1-Lipschitz.

Example 4.3.2.5. We may identify Ω with the subset

U = {(x, y) ∈ (−1,0) × (0,1) ∣ −x < y}

by mapping (vl, vh) ↦ (−vl, vh). Note that this defines an order preserving map. Then the
construction in Example 4.3.2.2 defines a flow distance on hoStratR+×Ω.

4.3.3 Stability of persistent stratified homotopy types
As we have seen in Section 4.3.2, especially Example 4.3.2.3, the stability of persistent homotopy
type with respect to the Hausdorff distance is almost tautological. When beginning with a
stratification diagram of samples, the situation is similarly easy for the stratified scenario (see
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Lemma 4.3.2.4). The situation for persistent stratified homotopy types when starting from a
stratified sample is a little more subtle. This stems from the fact that taking sublevel sets
with respect to some function (or equivalently intersecting with a closed subset) is generally
not even a continuous operation with respect to the Hausdorff distance.

Example 4.3.3.1. Let N = 1, i.e. RN = R and A = (−∞,0]. Let X = {0} and Xn = { 1
n
}. Xn

converges to X in the Hausdorff distance. However, the intersections A ∩Xn are empty, while
A ∩X = X. In particular, we have

dHD(W )(A ∩Xn,A ∩X) =∞,

for all n > 0.

The problem in Example 4.3.3.1 is that X is lacking a certain amount of homogeneity while
passing into the interior of A. Indeed, if we replaced X by [−ε, 0] then no such phenomena occur
and one can easily show that A ∩ − is continuous in [−ε,0]. As a more involved incarnation
of this phenomenon, we now show stability of persistent stratified homotopy types, when
sampling around a compact cylindrically stratified metric space.
A peculiarity of the stratified setting is that stability of persistent stratified homotopy types
does generally not hold globally, as it does in the non-stratified case, but only at sufficiently
regular elements of SamP . To capture this notion of stability, we need the following notion of
local Lipschitz continuity.

Definition 4.3.3.2. Let K ∈ [0,∞). We say that a function of (symmetric Lawvere) metric
spaces f ∶M →M ′ is K-Lipschitz (continuous) at x ∈M , if there is a δ > 0, such that

d(f(x), f(y)) ≤Kd(x, y),

for all y ∈M with d(x, y) ≤ δ. We say f is K-Lipschitz (continuous), if it is K-Lipschitz for
δ =∞, at every x ∈M .

Let us begin by gathering some of the more obvious elementary results. For the remainder
of this subsection let P = {p < q} be a poset with two elements and let v = (vl, vh) ∈ Ω and
u ∈ [0,1].

Proposition 4.3.3.3. The map

N ∶SamP → SamN(P )

is 2-Lipschitz.

Proof. This is immediate from the triangle inequality.

As an immediate consequence of the definition of the metric for strongly stratified samples,
one obtains.

Lemma 4.3.3.4. Let S,S′ ∈ SamN(P ) and v′ ≤ v ∈ [0,1]. Then

(S′)v
′

v ⊂ (S
v′−δ
v+δ )δ,

for any δ > dSamN(P )(S,S
′).

As a corollary of Lemma 4.3.3.4 and Proposition 4.3.3.3 together with the definition of the
flow distance on hoStratR+×Ω (Example 4.3.2.5), we obtain:

Corollary 4.3.3.5. The map

P ∶SamP → hoStratR+×Ω

is 2-Lipschitz.
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The case of the persistent stratified homotopy type depending on v is more subtle, since
one lacks the possibility of diagonal interleavings. The following technical lemma is the decisive
argument in showing stability nevertheless.

Lemma 4.3.3.6. Let S,S′ ∈ SamN(P ). Let δ > dSamN(P )(S,S
′) and suppose v+δ ∶= (vl −δ, vh+

δ) ∈ Ω and v − δ ∶= (vl + δ, vh − δ) ∈ Ω. Then

dDP Sam(Dv(S),Dv(S′)) ≤ δ +max{dDP Sam(Dv(S),Dv±δ(S))}.

Similarly, if u ± δ ∈ (0,1), then

dSamP
(Fu(S),Fu(S′)) ≤ δ +max{dSamP

(Fu(S),Fu±δ(S))}.

Proof. We prove the diagram case, the other one can be shown completely analogously. Let
α > dDP Sam(Dv(S),Dv±δ(S)). We then have inclusions

Dv(S) Dv−δ(S)α Dv(S′)δ+α ,

Dv(S′) Dv+δ(S)δ Dv(S)δ+α .

The upper left and lower right inclusion follow by the assumption on α. The lower left and
upper right inclusions follow by Lemma 4.3.3.4. Hence, the result follows by considering the
diagram distance as coming from a thickening flow as in Example 4.3.2.3.

Morally speaking, the way we should think of Lemma 4.3.3.6, is that the continuity of Dv
in a strongly stratified sample S depends on the continuity of Dv(S) in the parameter v. As
an immediate corollary of the second part of Lemma 4.3.3.6 we obtain the following result,
which will come in handy in Section 4.4.5.

Corollary 4.3.3.7. Let δ > 0 such that u ± δ ∈ (0,1). Let S = (X, s) ∈ SamN(P ) be such that
S≤u = S≤u±δ. Then

Fu∶SamN(P ) → SamP

is 1-Lipschitz at S (on an open ball with radius δ).

The continuity of Dv(S) in v can furthermore be reduced to the continuity of the {p < q}
parts of diagrams, by the following lemma.

Lemma 4.3.3.8. Let S ∈ SamN(P ) and v, v′ ∈ Ω and set a =min{vl, v′l}, b =max{vh, v′h}, then

dDP Sam(Dv(S),Dv′(S)) ≤max{dHD(W )(Svl
vh
,Sv

′
l

v′
h
),dHD(W )(Sav′

h
,Savh
),dHD(W )(Svl

b ,S
v′l
b )}.

Proof. This is an immediate consequence of the fact that

dHD(W )(X,Y) ≤ dHD(W )(X ∖A,Y ∖A),

for A ⊂ X,Y ∈ Sam.

In case of compact cylindrically stratified spaces, Dv(S) does indeed vary continuously in
v.

Proposition 4.3.3.9. Let S ∈ SamN(P ) be compact and cylindrically stratified. Then

(0,1)→ SamP

u↦ Fu(S)

and

Ω→DPSam
v ↦ Dv(S)

are continuous.
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Proof. Note that it suffices to show the case of Dv, since the nontrivial part of the continuity for
Fu is given by the (Fu)p component, and the latter is defined identically to the p-component
of Dv(S). By Lemma 4.3.3.8 it suffices to show that for v → v0, we also have

dHD(W )(S
vl
vh
, S

v0
l

v0
h

)→ 0.

Next, note that the topology of the Hausdorff distance on the space of compact subspaces
of a space only depends on the topology of the latter. Set L ∶= S

1
2
1
2

. Then by the cylinder
assumption we may without loss of generality compute d in L × (0,1) equipped with the
product metric. In particular, Svl

vh
= L × [vl, vh]. We then have

dHD(W )(S
vl
vh
, S

v0
l

v0
h

) = dHD(W )(L × [vl, vh], L × [v
0
l , v

0
h])

≤max{∣vl − v0
l ∣, ∣vh − v

0
h∣}

v→v0

ÐÐÐ→ 0.

From Proposition 4.3.3.9 and Lemma 4.3.3.6 we obtain the following result. Here Ω is
equipped with the metric induced by the maximum norm.
Corollary 4.3.3.10. Let S ∈ SamN(P ) be compact and cylindrically stratified. Then

Fu∶SamN(P ) → SamP ,

Dv ∶SamN(P ) →DPSam

are continuous at S.
Even more, if S≤−∶ (0,1) → Sam is K-Lipschitz in a neighborhood of u (respectively S−− in a
neighborhood of v), then Fu (Dv) is (K + 1)-Lipschitz at S.

In total, we finally obtain the following stability result for persistent stratified homotopy
types, which can be seen as a (slightly weaker) version of the classical, non-stratified Property
P(1). In the next subsection (specifically in Theorem 4.3.4.8), we strengthen this general
stability result significantly for the case of Whitney stratified spaces.
Theorem 4.3.3.11. Let S ∈ SamP be compact and cylindrically stratified. Then

Pv ∶SamP → hoStratR+

is continuous at S. Even more, if S−− ∶Ω → Sam is K-Lipschitz in a neighborhood of v, then
Pv is 2(K + 1)-Lipschitz at S.

Proof. Recall that Pv = DP ○Dv ○N . N is 2-Lipschitz by Proposition 4.3.3.3. Furthermore,
by Corollary 4.3.3.10, Dv is continuous in N (S). Finally, DP is 1-Lipschitz by Lemma 4.3.2.4.
The second statement follows similarly.

4.3.4 Stability at Whitney stratified spaces
One way to think of Whitney’s condition (b) is that it gives additional control over the
derivatives of the rays of the mapping cylinder neighborhood of a stratified space. This
additional control can be used to improve the stability result in Theorem 4.3.3.11 to Lipschitz
continuity (Proposition 4.3.4.7). To show this, we need to first consider an asymmetric version
of the Hausdorff distance for subspaces of RN . For the remainder of this subsection, P is not
restricted to the case of two elements.
Definition 4.3.4.1. Let V,U ⊂ RN be linear subspaces. The (asymmetric) distance of V to
U is given by

d⃗(V,U) = sup
v∈V,∣∣v∣∣=1

inf{∣∣v − u∣∣ ∣ u ∈ U} = sup
v∈V,∣∣v∣∣=1

{∣∣πU⊥(v)∣∣},

where πU⊥ denotes the orthonormal projection to the orthogonal complement of U .
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Whitney’s condition (b) can be expressed in terms of a function, which measures the failure
of secants being contained in the tangent space, as follows (compare [Hir69]).

Construction 4.3.4.2. Let S = (T, s∶T → P ) be a stratified space with smooth strata,
contained in RN . Consider the function

β∶T × T → R;
⎧⎪⎪
⎨
⎪⎪⎩

(x, y) ↦ d⃗(l(x, y),Tx(Xs(x))) if x ≠ y,
(x,x) ↦ 0 else

where we consider all tangent spaces involved as linear subspaces of RN .

Condition (b) can be formulated as β restricting to a continuous function on certain
subspaces of X ×X.

Proposition 4.3.4.3. Let S = (T, s∶T → P ), be as in the assumption of Construction 4.3.4.2
and further so that the frontier and local finiteness condition are fulfilled. Then, S is a Whitney
stratified space if and only if

β ∣(Tq×Tp)∪∆Tp
∶ (Tq × Tp) ∪∆Tp → R,

is continuous, for all pairs q ≥ p ∈ P . Here ∆Tp denotes the diagonal of Tp × Tp,

Proof. This statement is somewhat folklore. For the sake of completeness, we provide a proof
in Section 4.B.2.

Next, we need the notion of integral curves, as defined for example in [Hir69].

Proposition 4.3.4.4. [Hir69, Lemma 4.1.1] Let W = (T, s∶T → P ) be a Whitney stratified
space and y ∈Wp, for some p ∈ P . Let B = Bd(y) ⊂ RN be a ball of radius d around y, such
that β(−, y) is bounded uniformly by some δ < 1, on W≥p ∩ B. Then, for any x ∈ W≥p ∩ B,
x ≠ y, there exists a unique curve ϕ∶ [0, d]→W ∩B, fulfilling

1. ϕ(0) = y and ϕ(∣∣y − x∣∣) = x,

2. ϕ is almost everywhere differentiable. At differentiable points, t ≠ 0, the differential is
given by

ϕ′(t) =
∣∣ϕ(t) − y∣∣

∣∣πϕ(t)(ϕ(t) − y)∣∣2
πϕ(t)(ϕ(t) − y),

where πϕ(t) denotes the projection to Tϕ(t)(Ws(ϕ(t))).

Definition 4.3.4.5. A curve as in Proposition 4.3.4.4 is called the integral curve associated to
the pair x, y.

The existence of integral curves allows for additional control over the mapping cylinder
neighborhoods defined in Example 4.2.3.16. This is essentially due to the following result.

Proposition 4.3.4.6. [Hir69, Proof of 4.1.1] Let W be a Whitney stratified space over P and
let ϕ∶ [0, d]→W be the integral curve associated to x ∈Wq, y ∈Wp, q ≥ p ∈ P , with notation as
in Proposition 4.3.4.4. Then ϕ has the following properties.

1. ∣∣ϕ(t) − y∣∣ = t, for t ∈ [0, d].

2. ∣∣ϕ(t) − ϕ(t′)∣∣ ≤ 1√
1−δ2 ∣t − t

′∣, for t, t′ ∈ [0, d].

As a consequence of this result, the continuity result of Theorem 4.3.3.11 can be improved
to Lipschitz continuity.



4.4. LEARNING STRATIFICATIONS 219

Proposition 4.3.4.7. Let P = {p < q} and let W ∈ SamP be a Whitney stratified space with
compact singular stratum Wp. Then, for any C > 1, there exists an R > 0, such that the
function

Ω ∩ (0,R)2 →DPSam
v ↦ Dv(N (W ))

is C-Lipschitz continuous.

Proof. We omit the N , to keep notation concise. By Lemma 4.3.3.8, it again suffices to consider
the link part of the diagrams given by W vl

vh
. Choose δ < 1 such that 1√

1−δ2 < C. Next, take
R small enough such that NR(Wp), with retraction r∶NR(Wp) → Wp is a standard tubular
neighborhood of Wp. By [NV23, Lemma 2.1], for R small enough the spaces W y = r−1(y) ∩W
of y are given by Whitney stratified spaces with singular stratum given by a point. Then,
using Construction 4.B.3.1, we may also choose R so small, that

β(x, y) ≤ δ,

for the respective β on the fiber W y. Now, let v, v′ ∈ Ω ∩ [0,R]. Let x ∈W vl
vh

and assume that
vh > v

′
h (the other cases work similarly). Now, consider the integral curve ϕ from y ∶= r(x) ∈Wp

to x in r−1(y) ∩W . By Proposition 4.3.4.6 we have,

∣x − ϕ(v′h)∣ = ∣ϕ(∣x∣) − ϕ(v
′
h)∣ ≤ C ∣∣x∣ − v

′
h∣ ≤ C ∣vh − v

′
h∣ ≤ C ∣v − v

′
∣.

Since ϕ(v′h) ∈W
v′l
v′

h
, going through all the cases, we obtain

W vl
vh
⊂ (W

v′l
v′

h
)C∣v−v′∣.

Thus, the result follows by symmetry.

We thus obtain, as a corollary of Theorem 4.3.3.11, that for v sufficiently small the persistent
stratified homotopy type Pv is even Lipschitz continuous at a Whitney stratified space.

Theorem 4.3.4.8. Let P = {p < q} and W ∈ SamP be Whitney stratified with Wp compact.
Then, for any C > 1, there exists some R > 0, such that the map

Pv ∶ SamP → hoStratR+

is 2(C + 1)-Lipschitz continuous at W , for all v ∈ Ω ∩ (0,R)2.

4.4 Learning stratifications
In practice, we can generally not expect that sample data is already equipped with a strat-
ification. This requires for notions of stratification which are intrinsic to the geometry of a
space. One such example are homology stratifications, as used by Goresky and MacPherson in
[GM83].

Example 4.4.0.1. For the sake of simplicity, we describe the case of two strata. Suppose
S = (s∶T → {p < q}) is stratified conically as follows:
Sq is locally Euclidean of dimension q, and Sp of dimension p, and x ∈ Sp admits a neighborhood

U ≅P Rp ×C(L)

for some q − (p + 1) dimensional compact manifold L, called the link of x. Here C(L) is the
stratified cone on L, stratified over {p < q}, by sending only the cone point to p. This holds,
for example, if S is a Whitney stratified space. Suppose further that L is not a homology
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sphere, and that the strata are connected. Then, the stratification of S can be recovered from
the underlying space as follows. For each x ∈ T , we can compute the local homology of X at x

H●(T ;x) ∶= H●(T,T ∖ {x}) = lim
Ð→

H●(T,T ∖U),

where the colimit ranges over the open subsets of T containing x. By the assumption on the
local geometry of T , for any x ∈ T there exists a small open neighborhood Ux such that the
natural map

H●(T,T ∖Ux)→ H●(T ;x)

is an isomorphism. In particular, for each x ∈ T one obtains natural maps

H●(T ;x) ≅ H●(T,T ∖Ux)→ H●(T ; y)

for y ∈ Ux. If x, y are contained in the same stratum, then all of these maps are given by
isomorphisms. By the path connectedness assumption any two points in the same strata are
connected by such a sequence of isomorphisms. Conversely, since we assumed that L is not a
homology sphere, we have

H●(T ;x) ≅ H●(Ux;x) ≅ H●(Rp ×C(L);x) ≅ H̃●−(p+1)(L) ≠ H●(T ; y),

whenever x ∈ Sp and y ∈ Sq. Thus, we can reobtain the stratification of S, by assigning to points
the same stratum, if and only if they are connected through such a sequence of isomorphisms.
Stratifications with the property that all the induced maps of local homologies on a stratum
are isomorphisms are called homology stratifications.

Local homology as a means to obtain stratifications of point clouds (or combinatorial objects)
have recently been investigated in several works ([BWM12; SW14; FW16; Nan20; Sto+20;
Mil21]). Both [BWM12] and [Nan20] make use of the structure maps H●(T ;x)→ H●(T ; y) to
determine the strata. Note, however, that in the case of two strata it suffices to study the
isomorphism type at each point, and there is no need to study the maps themselves, as stated
by the following lemma.

Lemma 4.4.0.2. Let S = (T, s∶T → {p < q}) be a Whitney stratified space (more generally
conically stratified space) with manifold strata of dimension q and p respectively. Then s is a
homology stratification.

Furthermore, if the local homology of T is different from H●(Rq; 0), at each y ∈ Sp, then
s is the only homology stratification of T with two strata.

Conversely, one always obtains a homology stratification s̃ ∶ T → {p < q} defined by:

s̃(x) = q ⇐⇒ H●(T ;x) ≅ H●(Rq; 0),

for x ∈ T .

Proof. See Section 4.B.6.

Now, let us consider the scenario of working with a (potentially noisy) sample X instead
of considering the whole space T . Even when working persistently, to obtain non-trivial
information, one can not pass all the way to the limit, when computing local homology.
Indeed, for any thickening Xα, α > 0, H●(Xα;x) = H●(RN ; 0). Instead, one considers persistent
local homology of the sample, with respect to a parameter 1

ζ
, specifying the radius of the

ball representing Ux (see [BWM12], [SW14]). In other words, one computes persistent local
homology using the spaces

(Xα,Xα ∖ B̊ 1
2ζ
(x)).
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For computational reasons, it is beneficial to use the intrinsically local notion of this structure.
By the excision theorem, one may equivalently work with:

((X ∩B 1
ζ
(x))α, (X ∩B 1

ζ
(x))α ∖ B̊ 1

2ζ
(x)).

If one does not want the resulting barcodes to become shorter as ζ →∞ and instead wants a
measure of singularity that is comparable for different scales, then this needs to be normalized,
and one may instead compute persistent homology via the stretched pair

((ζX ∩B1(ζx))α, (ζX ∩B1(ζx))α ∖ B̊ 1
2
(ζx)).

Let us take a bit more of a conceptual look on this procedure in the following remark.

Remark 4.4.0.3. The procedure we just described may abstractly be rephrased as follows.
We want to obtain a stratification of X using local data. Hence, we only consider sets of the
form

ζX ∩B1(ζx).

By shifting into the origin, we may equivalently investigate the space

M
ζ
x(X) ∶= ζ(X − x) ∩B1(0) ⊂ RN ,

with X−x = {y−x ∣ y ∈ X}. We can think ofMζ
x(X) as zooming into X at x by a magnification

parameter ζ. We then want to determine how far from a q-dimensional euclidean unit disk
Dq ⊂ Rq ↪ RN the space Mζ

x(X) is. In the particular case of persistent local homology, we
apply the map

PL● ∶M ↦ {α ↦ H●(Mα,Mα ∖ B̊ 1
2
(0))}

to obtain a persistence module indexed over [0, 1
2) and thus a quantitative invariant. The

interleaving distance to PL●(Dq) ≅ PL●(Rq) then gives a quantitative measure of singularity.

4.4.1 Magnifications and Φ-stratifications
Let us now put our observations on persistent local homology made in the beginning of this
section and especially in Remark 4.4.0.3 into a more abstract framework.

Definition 4.4.1.1. Denote by Sam⋆ the (symmetric Lawvere) metric space

Sam⋆ ∶= {X ∣ X ⊂ RN},

equipped with the following truncated version of the Hausdorff distance: We pull back the
metric on Sam along

Sam⋆ → Sam
B↦ B1(0) ∩B.

We call Sam⋆ the space of local samples (of RN ), and denote its metric by dSam⋆
(−,−).

Remark 4.4.1.2. Note that the way the metric on Sam⋆ is defined, it automatically identifies
a local sample with its intersection with a unit ball around the origin. Indeed, Sam⋆ is by
definition isometric to the space of subspaces of B1(0) ⊂ RN . One may as well have used the
latter, however, that involves a series of inconvenient truncations, so the above perspective is
notationally preferable. In particular, in this context it makes sense to write V ∈ Sam⋆, for
V ⊂ RN a linear subspace.

Next, we define the magnified spaces which showed up in our analysis of local homology in
Remark 4.4.0.3.
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Figure 4.13: Three magnifications of X at the origin

Figure 4.14: Three magnifications of Y at the origin.

Definition 4.4.1.3. Let X ∈ Sam, x ∈ RN and ζ > 0. We denote by

M
ζ
x(X) ∶= ζ(X − x) ∩B1(0) ∈ Sam⋆,

with X = {y − x ∣ y ∈ X}, the ζ-magnification of X at x.

Let us assume for a second that X = T and the latter admits a locally conelike stratification
(as in Example 4.4.0.1), such that we need not worry about zooming in too far. Then,
theoretically speaking, to make sure we identify every locally Euclidean region as such, we want
the information obtained to be as local as possible, i.e. we want to consider the case ζ →∞.
Local homology, as described in Remark 4.4.0.3, defines a continuous map on Sam⋆. Hence,
to understand the behavior of local persistent homology for ζ →∞ it suffices to understand
the behavior of Mζ

x(T ), for ζ →∞. The following example illustrates when this limit can be
used to determine local singularity.

Example 4.4.1.4. Consider the two real algebraic varieties

X = {(x1, x2) ∈ R2
∣ x4

1 − x
2
1 + x

2
2 = 0}

and
Y = {(x1, x2) ∈ R2

∣ ((x1 + 0.5)2 + x2
2 − 0.25)((x1 − 0.5)2 + (x2)

2
− 0.25) = 0}.

These varieties are Whitney stratified spaces with the singular set containing only the origin.
In Fig. 4.13, we show magnifications of X at the origin x = (0,0), i.e. Mζ

x(X) for three
different ζ ∈ {1,3,45}. We can observe that the homeomorphism type of the magnifications
stabilizes as we increase ζ. In the limit the spaces Mζ

x(X) converge (in Hausdorff distance
for ζ → ∞), to a space of the same homeomorphism type. In contrast, Y shows a different
convergence behavior. Although the spaces Mζ

x(Y ) share the same homeomorphism type
with the magnifications of X at the origin, for ζ large enough, Fig. 4.14 illustrates that the
homeomorphism type changes when passing to the limit (see also Fig. 4.15).

If T admits a (subanalytic) Whitney stratification, then limit spaces of magnifications (in
Sam⋆) exist and are known as the (extrinsic) tangent cones of T at x. For a more detailed
investigation of metric tangent cones see [Lyt04; BL07]. For our purpose, the following
definition will suffice.
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Definition 4.4.1.5. Let T ⊂ RN . The (extrinsic) tangent cone of T at x ∈ T is defined as

Tex
x (T ) ∶= {v ∈ R

N
∣ ∀ε > 0∃y ∈ Bε(x) ∩ T ∶ v ∈ (R≥0(y − x))ε}.

The extrinsic tangent cones define a map

Tex
(T ) ∶ T → Sam⋆

x↦ Tex
x (T ).

Example 4.4.1.6. By Taylor’s expansion theorem one has

Tex
x (T ) = Tex

x (U) = Tx(U)

where U ⊂ T ⊂ RN is a neighborhood of x in X and furthermore U is a smooth submanifold of
RN .

Example 4.4.1.7. For an (affine) complex algebraic variety T the tangent cone at the origin
coincides with the algebraic tangent cone, i.e. the set of common zeroes of all polynomials
in the ideal generated by the homogeneous elements of lowest degree of all polynomials that
vanish identically on T .

It is a classical result (see e.g. [Hir69], [BL07]) that when T admits a subanalytic Whitney
stratification, then

M
ζ
x(T )

ζ→∞
ÐÐÐ→ Tex

x (T )

in Sam⋆. Since we are mostly interested in the case of what happens when one replaces T by
samples and needs uniform versions of this result, we will recover this result as a special case of
Section 4.4.2. However, it already points at what kind of information one may expect to obtain
when one uses local features such as local persistent homology obtained from magnifications
to stratify a data set. In the limit ζ →∞ one can only expect to extract information that is
contained in the extrinsic tangent cones. This leads to the following definition.

Definition 4.4.1.8. Let P = {p < q}. Let W = (T, s) ∈ SamP be a q-dimensional Whitney
stratified space. We say that W is tangentially stratified if

dSam⋆
(Tex

x (W ), V ) > 0,

for all x ∈Wp and for all V ⊂ RN q-dimensional linear subspaces of RN .

Tangentially stratified spaces are precisely the type of Whitney stratified spaces for which
we may expect to recover stratifications by using magnifications with large ζ > 0. That this
holds true rigorously is essentially the content of Section 4.4.5.

Example 4.4.1.9. Not every Whitney stratified space is tangentially stratified. Consider again
Y = {(x1, x2) ∈ R2 ∣ ((x1+0.5)2+x2

2−0.25)((x1−0.5)2+(x2)
2−0.25) = 0} from Example 4.4.1.4.

In this case, the above condition specifies to dSam⋆
(Tex
(0,0)(Y ), V ) > 0, for all 1-dimensional

linear subspaces V ⊂ RN . The tangent cone of Y at the origin is a 1-dimensional linear space
given by

Tex
(0,0)(Y ) = {(x1, x2) ∈ R2

∣ x1 = 0},

see Fig. 4.15 on the right, which already serves as a linear subspace V ⊂ R2 such that
dSam⋆

(Tex
(0,0)(Y ), V ) = 0. For the space

T = {(x1, x2) ∈ R2
∣ x4

1 − x
2
1 + x

2
2 = 0}

on the other hand we find that the tangent cone at the origin is given by

Tex
(0,0)(T ){(x1, x2) ∈ R2

∣ (x1 + x2)(x2 − x1) = 0},

see Fig. 4.15 on the left. Clearly, there is no 1-dimensional linear subspace V ⊂ R2 such that
dSam⋆

(Tex
(0,0)(T ), V ) = 0.
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Figure 4.15: Two curves with their respective tangent cones (red) at their singular stratum

In practice, we may want to use other local invariants, such as local persistent homology in
Remark 4.4.0.3, to identify singular points as in Lemma 4.4.0.2. This leads to the following
definition. Again, for the remainder of this subsection, let P = {p < q}.

Definition 4.4.1.10. Let Φ ∶ Sam⋆ → [0,1] be a continuous function, such that Φ(V,0) = 1,
whenever V is a q-dimensional linear subspace of RN . Let W ∈ SamP be q-dimensional
Whitney stratified space. We say that W is (tangentially) Φ-stratified if

Φ(Tex
x (W )) < 1,

for all x ∈Wp.

Let us begin with some examples of functions Φ ∶ Sam⋆ → [0,1] which may be used to
detect singularities.

Example 4.4.1.11. Consider the continuous map

Φq ∶Sam⋆ → [0,1]
B↦ 1 − inf{dSam⋆

(B, V )},

where V ranges over the q-dimensional linear subspaces of RN . A q-dimensional Whitney
stratified space W ∈ SamP is tangentially stratified if and only if it is Φq- stratified. Φq is thus
universal in the sense that if W is Φ-stratified for some Φ as in Definition 4.4.1.10, then it is
Φq-stratified.

Example 4.4.1.12. Persistent local homology can be used as a function Φ, as was done
similarly in [BWM12; Sto+20; Nan20; Mil21]. Precisely, we use PLi ∶ Sam⋆ → Vec[0,

1
2 )

k

as defined in Remark 4.4.0.3. Consider a linear embedding Rq ⊂ RN , allowing us to write
Rq ∈ Sam⋆ and set

Φ∶Sam⋆ → [0,1]
B↦ 1 − 2 max

i≤q
dIn(PLi(B),PLi(Rq)).

Indeed, as no bar in PLi can be longer than 1
2 , this function is well defined. Let W ∈ SamP be

a (definable) q-dimensional Whitney stratified such that for all x ∈Wp we have PL●(Tex
x (W )) ≠

PL●(Rq), i.e. the two persistence modules are not isomorphic. Then, W is a Φ-stratified space.

One of the advantages of allowing for different Φ than just the universal one is that in
practice one may use a series of rougher invariants which may be easier to compute.
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Example 4.4.1.13. Instead of using

B↦ 1 − inf{d(B, V )},

as in Example 4.4.1.11, one can only use half of the numbers used to compute Hausdorff
distance, i.e. only consider

B↦ inf{ε ∣ B1(0) ∩B ⊂ B1(0) ∩ Vε}.

Note that this definition of Φ will identify points in the boundary of a smooth manifold as
regular. While this decreases the class of Φ-stratified spaces, this Φ can generally be easier
to compute when using optimization techniques to find an optimal V . Similarly, instead of
computing PL●(B) as in Example 4.4.1.12 one may use a Vietoris-Rips version of the latter as
described in [SW14] or only consider certain dimensions.

4.4.2 Lojasiewicz-Whitney stratified spaces
The previous section illustrates that in order to reconstruct stratifications from sample data
we have to obtain a better understanding of the convergence properties of the magnification
spaces to tangent cones. Such results are the content of Section 4.4.4. Before we investigate
these, we need a series of results on Whitney stratified spaces which are definable with respect
to particularly well behaved o-minimal structures. Our methods heavily rely on the work of
[Hir69] and [BL07]. However, note that the results there are local, while ours are more global
in nature, and that we consider the case of magnifications of samples as well. We use the
following result due to Hironaka, which gives us additional control over integral curves.

Lemma 4.4.2.1. Let W → P be a Whitney stratified space, p ∈ P and y ∈Wp. Suppose there
exists d0 > 0 such that there exists α > 0, with

β(x, y) ≤ ∣∣y − x∣∣α

for all x ∈W≥p ∩Bd0(y). Then, for any C > 0, there exists d > 0 only depending on d0, α (and
the dimension of W ), such that for any integral curve ϕ ∶ [0, d]→W starting in y and ending
in Bd(y) the inequality

∣∣
1
t
(ϕ(t) − ϕ(0)) − 1

s
(ϕ(s) − ϕ(0))∣∣ ≤ C ∣t − s∣α

holds for all t, s ∈ [0, d]. In particular, all integral curves starting at y are differentiable at 0.

Proof. A complete proof of this statement can be found in [Hir69].

Spaces fulfilling a local version of the above condition were investigated in [Hir69]. It was
called the strict Whitney condition there.

Definition 4.4.2.2. A Whitney stratified space fulfilling the requirements of Lemma 4.4.2.1 on
any compactum K contained in some pure stratum Wp of W , is called a Lojasiewicz-Whitney
stratified space. That is, W is called Lojasiewicz-Whitney stratified, if the following condition
holds. Let K ⊂Wp be a compact, definable subset of some stratum Wp of W . Then there exist
α > 0, d0 > 0 such that

β(x, y) ≤ ∣∣y − x∣∣α,

for all y ∈K and x ∈W ∩Bd0(y).

In other words, Lojasiewicz-Whitney stratified spaces are Whitney stratified spaces for
which the speed at which secant lines diverge from the tangent spaces is bounded by some
root. It turns out that most of the definably stratified spaces one is interested in i.e. compact
subanalytic or semialgebraic are Lojasiewicz-Whitney stratified (Proposition 4.4.2.4).
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Recollection 4.4.2.3. Recall that an o-minimal structure is called polynomially bounded, if
for all f ∶R→ R definable with respect to the structure, there exists an n ∈ N such that

∣f(t)∣ ≤ ∣t∣n,

for t sufficiently large. Polynomially bounded structures include the structure of semialgebraic
sets and finitely subanalytic sets (see [Dri86] and [Mil94]). In particular, any compact
subanalytically definable stratified space is definable with respect to a polynomially bounded
o-minimal structure.

A proof of the following statement can be found in Section 4.B.5.

Proposition 4.4.2.4. Let W be a Whitney stratified space which is definable with respect to
some polynomially bounded o-minimal structure. Then, W is Lojasiewicz-Whitney stratified.

Remark 4.4.2.5. In this section and in the Sections 4.4.3 and 4.4.4, there is no need to
restrict to the two strata case. The results hold for general P .

As an almost immediate consequence of Lemma 4.4.2.1 and Proposition 4.4.2.4, we obtain:

Proposition 4.4.2.6. Let W be a Lojasiewicz-Whitney stratified space. Then, for any x ∈W ,
every integral curve starting at x is differentiable in 0. Furthermore, we have

Tex
x (W ) ∩ ∂B1(x) = {ϕ′(0) ∣ ϕ is an integral curve starting at x}.

Hence,
Tex
x (W ) = {αϕ

′(0) ∣ ϕ is an integral curve starting at x,α ≥ 0}.

Proof. First, note that Tex
x (W ) is closed by definition. The containment of the right hand side in

the left hand side is immediate by definition of the derivative (compare to Proposition 4.3.4.4).
For the converse inclusion, let v ∈ Tex

x (W ) ∩ ∂B1(x). For ε > 0 small enough, we have
y ∈W≥p ∩Bε(x), with p = s(x), such that

∣∣v − λ(y − x)∣∣ < ε,

for some λ ≥ 0. In particular, we also obtain

∣1 − λ∣∣y − x∣∣∣ < ε.

Now, t = ∣∣y − x∣∣ and let ϕ ∶ [0, d]→W be the integral curve starting at x and passing through
y. We then have

∣∣v − ϕ′(0)∣∣ ≤ ∣∣v − λ(y − x)∣∣ + ∣∣λ(y − x) − y − x

∣∣y − x∣∣
∣∣ + ∣∣

y − x

∣∣y − x∣∣
− ϕ′(0)∣∣

= ∣∣v − λ(y − x)∣∣ + ∣1 − λ∣∣y − x∣∣∣ + ∣∣ϕ(t) − x
t

− ϕ′(0)∣∣

≤ ε + ε +Cεα,

for some C,α > 0 independent of the choices above. In particular, we can choose ϕ such that
ϕ′(0) is arbitrarily close to v.

We can now obtain the following key technical result, to investigate the convergence
behavior of magnifications of samples.

Proposition 4.4.2.7. Let W be a Lojasiewicz-Whitney stratified space over P , with underlying
space X ⊂ RN . Let p ∈ P and K ⊂Wp be a compact subset. Then, there exist d,C,α > 0 such
that the following holds.
For all ζ such that 1

ζ
∈ [0, d] there exists ε0 > 0, such that

dSam⋆
(Tex

x (W ),M
ζ
w(X)) ≤ C(ζ

−α
+ ζε),

for X ∈ Sam with dHD(W )(X,X) = ε ≤ ε0, w ∈ RN and x ∈K with ∣x −w∣ ≤ ε.
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Proof. Denote r ∶= 1
ζ
. We work with the non-normalized spaces instead, that is instead of

working in the unit ball ofMζ
x(X), we work in the ball of radius r in X. Furthermore, without

loss of generality let x = 0. Again, choose d,C ′, α as in Lemma 4.4.2.1, possibly slightly
decreasing d, such that the requirements on r still hold for r + 2ε. Let c ∈ Tex

x (W ) with ∣c∣ ≤ r.
Let c̃ ∶= r−2ε

r
c. We have

∣c − c̃∣ ≤ 2ε.

Next, using Proposition 4.4.2.6, consider the integral curve starting in 0 with initial direction c
∣c∣ ,

ϕ ∶ [0, d]→W (or, by passing to the limit if necessary a curve with initial direction arbitrarily
close to c

∣∣c∣∣ ). We then have
∣∣c̃ − ϕ(∣∣c̃∣∣)∣∣ ≤ C ′rα+1

and
∣ϕ(∣c̃∣) −w∣ ≤ ∣c̃∣ + ε ≤ r − ε. (4.14)

Choose w′ ∈ X with ∣w′ − ϕ(∣∣c̃∣∣)∣ ≤ ε. Then, by Eq. (4.14) w′ ∈ Br(w) ∩X. Summarizing, we
have

∣c +w −w′∣ ≤ 2ε + ε +C ′rα+1
+ ε ≤ C(rα+1

+ ε),

for appropriate C > 0.

Conversely, let w′ ∈ X with ∣w − w′∣ ≤ r. By assumption, we find y ∈ W with ∣y − w′∣ ≤ ε
and have ∣y∣ ≤ r + 2ε. Thus, for ϕy the integral curve starting in 0 through y we have

∣∣y∣ϕ′y(0) − y∣ ≤ C ′(r + 2ε)α+1.

Take c = (r − ε) ∣y∣
r+2εϕ

′
y(0) ∈ Tex

x (W ) ∩ Br−ε(x). Note, that ∣c + w∣ ≤ ∣w∣ + ∣c∣ ≤ r i.e. c + w ∈
Br(w) ∩ (Tex

x (W ) +w). We further have

∣c − ∣y∣ϕ′y(0)∣ ≤ ∣y∣(1 −
r − ε

r + 2ε
) ≤ 3ε.

Summarizing, we have

∣c +w −w′∣ ≤ ε + ∣c −w′∣ ≤ ε + ∣c − ∣y∣ϕ′y(0)∣ + ∣∣y∣ϕ′y(0) − y∣ + ∣y −w′∣
≤ ε + 4ε +C ′(r + 2ε)α+1

≤ C(rα+1
+ ε)

for appropriate C > 0 and ε < r/2. We obtain the result by multiplying with ζ to pass to the
magnification.

As a first corollary of Proposition 4.4.2.7, we obtain that the tangent cones of a Lojasiewicz-
Whitney stratified space vary continuously on each stratum.

Proposition 4.4.2.8. Let W be a Lojasiewicz-Whitney stratified space over P and p ∈ P .
Then, the map

Tex
− (W ) ∶Wp → Sam⋆

x↦ Tex
x (W )

is continuous.

Proof. To see this, note that by Proposition 4.4.2.7, restricted to any compactum, Tex
− (X)

is the uniform limit of the family of maps given by fζ ∶x ↦M
ζ
x(W ). By exhausting Wp by

compacta it suffices to see that the fζ are continuous for ζ large enough. Again, set r = 1
ζ
. So,

let K ⊂Wp be a compactum and let r be small enough, such that Nr(K) ∩W ⊂W≥p. In other
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words, we may assume without loss of generality that Wp is the minimal stratum of W . Next,
note that

dSam⋆
(M

ζ
x(W ),M

ζ
x′(W )) ≤ rdHD(W )(Br(x) ∩W,Br(x′) ∩W ) + ∣∣x − x′∣∣, (4.15)

for x,x′ ∈Wp. By an application of Thom’s isotopy lemma, the map

ĝ ∶W ×Wp → [0,∞) ×Wp

(x, y)↦ (∣∣x − y∣∣, y)

restricts to a fiber bundle over (0, r] ×Wp for r small enough. In particular, it follows that if
we set X = {(x, y) ∈W ×Wp ∣ ∣∣x − y∣∣ ≤ r}, we obtain an induced fiber bundle

g ∶X →Wp

(x, y)↦ y

with fiber Br(y) ∩W over y. Again, locally using the independence of the Hausdorff-distance
topology of the choice of metric, we obtain that Br(y)∩W varies continuously in y. Hence, by
Eq. (4.15) so does Mζ

y(W ).

4.4.3 Pointwise convergence of magnifications of a sample
As an immediate consequence of Proposition 4.4.2.7, we obtain that for a Lojasiewicz-Whitney
stratified space W we have

M
ζ
x(W )

ζ→∞
ÐÐÐ→ Tex

x (W ),

for all x ∈W . This result can already be found in similar form in [Hir69]. What we want to
do, however, is to describe the case occurring in application. That is, we aim to analyse the
convergence behavior of magnifications for samples of T , as ζ →∞. At first glance, this is a
nonsensical question. For a fixed sample X, Mζ

x(X) has distance 0 to a one point (or empty)
space, when ζ is large enough. Instead, the correct notion of convergence is already suggested
by the inequality in Proposition 4.4.2.7. What needs to be described is a convergence behavior
where the quality of the sample is allowed to improve at the same time as ζ →∞.

Notation 4.4.3.1. Given a function f ∶M × (0,∞)→ T , where M is a metric space and T a
topological space, we write

f(X, ζ)
ζ→∞

999999999
ζd(X,T )→0

K Y

for T ∈M and Y ∈ T to state that for any pair of sequences ζn ∈ (0,∞) converging to ∞, and
Xn ∈M , such that ζnd(Xn, T ) converges to 0, the sequence f(Xn, ζn) converges to Y .

Remark 4.4.3.2. We may think of the type of convergence in Notation 4.4.3.1, as convergence
of f(X, ζ) to Y , for X→X and ζ →∞, under the additional condition that the convergence in
the X variable is faster than the convergence in the ζ variable. This corresponds to the idea
that if we want to zoom in further by a magnitude of k, and investigate some point locally,
the quality of the sample also needs to improve by more than this magnitude k, so that we
do not zoom in too far and end up only considering a single point. We can think of this as
a notion of convergence in ζ, while improving the quality of the sample. Hence, we will also
speak of convergence while sampling.

Now, we can interpret Proposition 4.4.2.7 with X =X, x = w and K = {x} as the following
convergence while sampling result.

Corollary 4.4.3.3. Let T ∈ Sam be a Lojasiewicz-Whitney stratifiable space. Let x ∈ T . Then,

M
ζ
x(X)

ζ→∞
9999999999999
ζdHD(W )(X,T )→0

K Tex
x (T ).

Furthermore, this convergence is uniform on any compactum K contained in a stratum.
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4.4.4 Convergence of tangent bundles
To prove a global recovery of stratifications result, we need to obtain a more global version
of Corollary 4.4.3.3. For this we need to treat tangent cones not as separate spaces but as a
(stratified) bundle of cones. To describe the resulting convergence result, we need a space of
samples of bundles.

Definition 4.4.4.1. Denote by BSam the set

{(X, F ∶ X→ Sam⋆) ∣ X ∈ Sam},

equipped with the (extended pseudo) metric given by regarding F as a subset of RN × Sam⋆,
equipping the latter with the product metric, and then using the resulting Hausdorff distance.
That is, for (X, F ), (X′, F ′) ∈ BSam, we define

dBSam((X, F ), (X′, F ′)) ∶= max
(X0,X1)∈{X,X′}2

inf{ε > 0 ∣∀x ∈ X0∃y ∈ X1 ∶ ∣∣x − y∣∣,

dB(F0(x), F1(y)) ≤ ε}.

We also refer to BSam as the space of bundle samples (of RN ).

Definition 4.4.4.2. The ζ-magnification bundle of X ∈ Sam is defined as the image of X
under the map

M
ζ
∶ Sam → BSam
X↦(X,{x↦Mζ

x(X)}).

The tangent cone bundle of T ∈ Sam is defined as the image of T under the map

Tex
∶ Sam → BSam
T ↦(T,{x↦ Tex

x (T )}).

Remark 4.4.4.3. Note that the nomenclature warrants some care, as for an arbitrary space X,
neitherMζ nor Tex(X) are anything close to a fiber bundle and even for a Lojasiewicz-Whitney
stratified space they are stratified fiber bundles at best.

Note that Proposition 4.4.2.7 does not imply convergence of magnification bundles in the
metric on BSam, as the convergence is only uniform on compacta contained in pure strata.
However, we may equip the spaces BSam with alternative topologies, allowing us to formulate
notions of convergence on a compactum. Again, for the remainder of this subsection let
P = {p < q}.

Construction 4.4.4.4. Let K ∈ Sam and let T be any of the spaces SamN(P ), BSam. Let
ε ∶ Sam → R+ be some continuous map. Define a map

gKε ∶ T → T

(X, f)↦ (X ∩Kε(X), f ∣Kε(X)).

If K = (E, ε) is a pair consisting of a set E ⊂ Sam, together with a continuous map ε ∶ Sam →
R+, we denote by TK, the space with the same underlying set as T , but equipped with the
initial topology with respect to the maps gKε and T → Sam ε

Ð→ R+. In particular, with respect
to this topology, a sequence Bn = (Xn, Fn) in T converges to B = (X, F ) ∈ T , if and only if

gKε (Bn)
n→∞
ÐÐÐ→ gKε (B),

for all K ∈ E and
ε(Xn)

n→∞
ÐÐÐ→ ε(X).
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Remark 4.4.4.5. In the case where E is a countable set, the topology on TK is still first
countable. All cases we consider here can be reduce to this scenario. Alternatively, all of the
proofs using sequences below work identically when using nets instead of sequences.

We can now rephrase Proposition 4.4.2.7 as a global convergence result, which is essential
for the stratification learning theorems of Section 4.4.5.

Proposition 4.4.4.6. Let T ∈ Sam be equipped with a Lojasiewicz-Whitney stratification
W = (T,T → P ). Denote ε ∶= dHD(W )(T,−) . Let E ⊂ Sam be such that for all K ∈ E there
exist a decomposition into compacta K = Kp ⊔Kq such that Kp ⊂ Wp, Kq ⊂ Wq. Denote
K = (E, ε). Then,

M
ζ
(X)

ζ→∞
9999999999999
ζdHD(W )(X,T )→0

K Tex
(T ) in BSamK.

Proof. Let K ∈ E. We need to show

gKε (M
ζ
(X))

ζ→∞
9999999999999
ζdHD(W )(X,T )→0

K gKε (Tex
(T )).

Note that since K ⊂W , gKε (Tex(T )) = Tex(T )∣K . The result is now an immediate consequence
of Proposition 4.4.2.7.

4.4.5 The stratification learning theorem
We now have all the tools in place to recover stratifications from samples. We have seen
in Theorem 4.3.4.8 that the persistent stratified homotopy type is (Lipschitz) continuous in
compact Whitney stratified spaces W over P = {p < q}. In particular, we can approximate
the persistent stratified homotopy type of W from a stratified sample W close to W in the
metric on SamP . In practice, we can generally only expect to be given non-stratified samples.
Even naively, if one had a means to decide when a point has ended up precisely in the singular
stratum, one should expect the latter to be a 0-set with respect to the used density, and hence
usually end up with non-stratified sets. Nevertheless, our investigations of magnifications and
Φ-stratifications already suggest that local tangent cones may be used to recover stratifications
which approximate the original one. Let us first illustrate how the procedure works in case one
is given a perfect sample, i.e. one can work with the whole of W . Again, for the remainder of
this section let P = {p < q}.

Construction 4.4.5.1. Let W ∈ SamP be a compact Lojasiewicz-Whitney Φ-stratified space,
with respect to a function Φ as in Definition 4.4.1.10. Suppose we forget the stratification
of W = (T, s), and only have the data given by T . We can then associate to T its tangent
cone bundle TexT ∈ BSam. Next, we use the function Φ to decide which regions should be
considered singular. We can do so by applying Φ to TexT fiberwise. As a result we obtain a
strong stratification s̃ of T , given by

x↦ Tex
x (T )↦ Φ(Tex

x (T )).

By Proposition 4.4.2.8, this map is continuous on all strata. In particular, by assumption, it
takes a maximum value m < 1 on Wp. Since Wq is a manifold, we have

Tex
x (T ) = Tex

x (Wq) = Tx(Wq) = Rq

for x ∈Wq, and thus the strong stratification has constant value 1 on Wq. Therefore, we may
recover the stratification of s by choosing u >m and applying Fu:

Fu(T, s̃) =W.

We now replicate the procedure described in Construction 4.4.5.1 in case of working with
samples and investigate its convergence behavior.
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Lemma 4.4.5.2. Let Φ ∶ Sam⋆ → [0,1] be a continuous map. Then, the induced map

Φ∗ ∶ BSam → SamN(P )

(X, F )↦ (X,Φ ○ F )

is continuous. Even more, if Φ is C-Lipschitz, then so is Φ∗.

Proof. Since Sam⋆ is isometric to the space of compact subspaces of B1(0) ⊂ RN and thus
compact, Φ is a uniformly continuous map. Hence, the result follows immediately by definition
of the metrics on BSam and SamN(P ).

It turns out Φ∗ also descends to a continuous map on the alternative topologies of Con-
struction 4.4.4.4.

Lemma 4.4.5.3. Let Φ ∶ Sam⋆ → [0, 1] be a continuous map. Let E ⊂ Sam, ε ∶ Sam → R+ be
some continuous function and K = (E, ε). Then, the map

Φ∗ ∶ BSamK
→ SamK

N(P )

(X, F )↦ (X,Φ ○ F )

is continuous.

Proof. By definition of the topologies on BSamK
→ SamK

N(P ), it suffices to show the result
for the case where E = {K} is a singleton. Continuity of BSamK

→ SamK
N(P ) → Sam ε

Ð→ R+
holds trivially. Next, note that the diagram

BSamK SamK
N(P )

BSam SamN(P )

gK
ε

Φ∗

gK
ε

Φ∗

trivially commutes, since the g are given by restricting, i.e. precomposition and Φ∗ by
postcomposition.

Then, for a sequence Bn ∈ BSamK and B ∈ SamK
N(P ) we have:

Bn
n→∞
ÐÐÐ→ B in BSamK

⇐⇒ gKε (Bn)
n→∞
ÐÐÐ→ gKε (B) in BSam

Ô⇒ Φ∗(gKε (Bn))
n→∞
ÐÐÐ→ Φ∗(gKε (B)) in SamN(P )

⇐⇒ gKε (Φ∗(Bn))
n→∞
ÐÐÐ→ gKε (Φ∗(B)) in SamN(P )

⇐⇒ Φ∗(Bn)
n→∞
ÐÐÐ→ Φ∗(B) in SamK

N(P ),

where the implication in the second line follows by Lemma 4.4.5.2.

We have already seen, that with respect to the alternative topologies the magnification
bundles do indeed converge uniformly to the tangent cone bundle. This is however not the case
with the usual topologies. Hence, to approximate stratifications using a magnification version
of Construction 4.4.5.1, we need to show that Fu is continuous in the respective tangent cone
bundles with respect to the alternative topology.

Proposition 4.4.5.4. Let S = (T, s) ∈ SamN(P ), T compact. Let u ∈ [0, 1] be such that S≤u is
closed and such that S≤u±δ = S≤u for δ sufficiently small. Let ε = dHD(W )(T,−). Finally, let

K = ({K ∈ Sam ∣K =Kp ⊔Kq,Kp,Kq compact,Kp ⊂ S≤u,Kq ⊂ s
−1
(u,1]}, ε).

Then
Fu∶SamK

N(P ) → SamP

is continuous at S.
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Proof. Let S = (X, s′) ∈ SamK
N(P ). Note that convergence in SamP may be verified componen-

twise. Since convergence in SamK
N(P ) also implies ε(X) = dHD(W )(T,X)→ 0, we only need to

verify convergence in the component S≤u. We have

dHD(W )(S≤u,S≤u) ≤ dHD(W )(S≤u,S≤u ∩Kε(X)) + dHD(W )(S≤u,S≤u ∩ (S≤u)γ),

whenever K = (T − (S≤u) γ
2
) ⊔ S≤u and γ > 0 such that, X ⊂Kε(X) ∪ (S≤u)γ . Note, that for this

to hold, it suffices that ε(X) ≤ γ
2 . For the left summand we obtain,

dHD(W )(S≤u,S≤u ∩Kε(X)) = dHD(W )(Fu(g
K
ε (S)),Fu(g

K
ε (S))) ≤ dSamN(P )(g

K
ε (S), g

K
ε (S)),

by Corollary 4.3.3.7, for ε(X) sufficiently small and gKε (S) close to gKε (S). For the other
summand we first split the Hausdorff distance into the directed distances

dHD(W )(S≤u,S≤u ∩ (S≤u)γ) ≤ dL(S≤u,S≤u ∩ (S≤u)γ) + dL(S≤u ∩ (S≤u)γ , S≤u)

where dL(A,B) = inf{δ ≥ 0 ∣ A ⊂ Bδ}. Then, the second summand is bounded by γ and for the
first summand we observe that

dL(S≤u,S≤u ∩ (S≤u)γ) ≤ dL(S≤u,S≤u ∩ (S≤u)ε(X)).

This is due to the fact that ε(X) < γ and S≤u ∩ (S≤u)ε(X) ⊂ S≤u ∩ (S≤u)γ . If we set K ′ = S≤u
and invoke Corollary 4.3.3.7 again we obtain

dL(S≤u,S≤u ∩ (S≤u)ε(X)) = dL(Fu(gK
′

ε (S)),Fu(g
K′

ε (S)))

≤ dSamN(P )(g
K′

ε (S), g
K′

ε (S)),

for gK′ε (S) close to gK′ε (S). Summarizing, we have:

dHD(W )(S≤u,S≤u) ≤ dSamN(P )(g
K
ε (S), g

K
ε (S)) + dSamN(P )(g

K′

ε (S), g
K′

ε (S)) + γ.

In particular, we may first fix some γ while the other terms converge to 0 for S→ S in SamK
N(P )

by assumption. Since γ can be taken arbitrarily small, the result follows.

We are now finally in shape to define a map which equips samples with stratifications,
depending on their approximate tangential structure.

Definition 4.4.5.5. Let Φ ∶ Sam⋆ → [0,1] be a continuous map and u ∈ [0,1), ζ ∈ R+. Let
X ∈ Sam⋆. We call the image of X under the composition

S
ζ
Φ,u ∶ Sam Mζ

ÐÐ→ BSam Φ∗
Ð→ SamN(P )

Fu
Ð→ SamP

the ζ-th Φ-stratification of X (with respect to u). In the case where ζ =∞, replaceMζ by Tex.

Example 4.4.5.6. To illustrate the concepts in Definition 4.4.5.5 let us walk through every
component of the composition defining SζΦ,u for a specific sample. Let T denote the algebraic
variety given by

{(x, y, z) ∈ R3
∣ (x2

+ y2
+ z2
+ 1.44)2 − 7.84x2

+ 1.44y2
= 0}. (4.16)

In the bottom left of Fig. 4.16, a visual representation of T can be found. A finite sample from
this variety, denoted X, was obtained by randomly picking points from an enclosing rectangular
cuboid and only keeping points that satisfy (4.16) up to a small error. Choosing a magnification
parameter ζ = 5 we obtain the magnification bundle Mζ(X) for X, depicted in the top middle
of Fig. 4.16. Φ was chosen as in Example 4.4.1.12. Evaluating the fibers of Mζ(X) we obtain
a strongly stratified sample Φ∗(Mζ(X)), shown on the left of Fig. 4.16. Next, picking the
threshold value u ∈ [0,1) to be 0.83 induces a stratified sample via Fu. A visual comparison
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indicates that the resulting stratified sample is close to the Whitney stratified space given by
T with two isolated singularities. This already points at the convergence behavior predicted
by Theorem 4.4.5.8.

Figure 4.16: Illustration of SζΦ,u for a sample from a 2-dimensional real algebraic variety

Using Definition 4.4.5.5, we can restate the content of Construction 4.4.5.1 as follows.

Proposition 4.4.5.7. Let W ∈ SamP be a Lojasiewicz-Whitney stratified space, Φ-stratified
with respect to Φ ∶ Sam⋆ → [0,1] as in Definition 4.4.1.10. Then,

sup{Φ(Tex
x (T )) ∣ x ∈Wp} < 1.

In particular,
S
ζ
Φ,u(T ) =W,

for sup{Φ(Tex
x (T )) ∣ x ∈Wp} < u < 1.

Proof. This was already covered in Construction 4.4.5.1.

We can now finally state the main theorem about approximating the stratification of a
Lojasiewicz-Whitney Φ-stratified space W . In practice, it guarantees that for ζ large enough
and given a sufficiently good sample one can use the ζ-th Φ-stratification to approximate the
stratified space W . In particular, this result can be applied to all compact, subanalytically
Whitney stratified spaces.

Theorem 4.4.5.8. Let P = {p < q} and let W = (T,T → P ) ∈ SamP be a compact Lojasiewicz-
Whitney stratified space, Φ-stratified with respect to Φ ∶ Sam⋆ → [0,1]. Then there exists
u0 ∈ (0,1) such that

S
ζ
Φ,u(X)

ζ→∞
9999999999999
ζdHD(W )(X,T )→0

K W,

for u ∈ [u0,1).
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Proof. Let K be as in Proposition 4.4.4.6. It is the content of the latter proposition that

M
ζ
(X)

ζ→∞
9999999999999
ζdHD(W )(X,T )→0

K Tex
(T ) in BSamK.

Applying Φ∗ to this and using Lemma 4.4.5.3, we obtain

Φ∗ ○Mζ
(X)

ζ→∞
9999999999999
ζdHD(W )(X,T )→0

K Φ∗ ○Tex
(W ) in SamK

N(P ).

Now, note that Φ∗ ○Tex(T ) fulfills the requirements of Proposition 4.4.5.4, if we take 1 > u >
max{Φ∗ ○Tex(T )(x) ∣ x ∈ T}. Hence,

S
ζ
Φ,u(X) = Fu ○Φ∗ ○Mζ

(X)
ζ→∞

9999999999999
ζdHD(W )(X,T )→0

K Fu ○Φ∗ ○Tex
(T ) =W,

where the equality follows by Proposition 4.4.5.7.

Finally, we can now combine this result with Corollary 4.3.3.5 and Theorem 4.3.3.11 which
guarantees that SζΦ,u may be used to infer stratified homotopy types from non-stratified samples.
Note that in the following we again assume W to be linearly rescaled in such a way that it is
cylindrically stratified. Equivalently, this does not need to be assumed if Ω is reparametrized
by the scaling factor.

Corollary 4.4.5.9. Let P = {p < q} and let W = (T,T → P ) ∈ SamP be a compact Lojasiewicz-
Whitney stratified space, Φ-stratified with respect to Φ ∶ Sam⋆ → [0,1]. Then there exists
u0 ∈ (0,1) such that

P ○ S
ζ
Φ,u(X)

ζ→∞
9999999999999
ζdHD(W )(X,T )→0

K P(W ),

for u ∈ [u0,1). Furthermore,

Pv ○ S
ζ
Φ,u(X)

ζ→∞
9999999999999
ζdHD(W )(X,T )→0

K Pv(W ),

for u ∈ [u0,1) and v ∈ Ω.

4.5 Conclusion
The central advantage of the approach to stratified TDA we have described in this work is
that it is highly modular. In summary, it can be decomposed into three steps.

1. From non-stratified data obtain stratified data (Section 4.4.5).

2. From stratified data obtain a persistent stratified homotopy type (Section 4.3.1).

3. From a stratified homotopy type compute algebraic invariants.

The goal of this work was to show the feasibility of the first two steps in the restricted case of
two strata. Our results in Sections 4.3 and 4.4 show that the resulting notion of persistent
stratified homotopy type fulfills many of the properties required in application (P(1), P(2)
and P(3)), which are fulfilled by the classical persistent homotopy type, such as stability
(Theorem 4.3.4.8), computability (Remark 4.3.1.17) and the availability of inference results
(Proposition 4.3.1.20, Theorem 4.4.5.8, and Corollary 4.4.5.9). There are a series of promising
avenues arising from this first step in persistent stratified homotopy theory.
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1. So far, our constructions are mostly developed for the case of two strata. In the
introduction, we have already described in some detail why we decided to restrict to
this scenario. Nevertheless, for possible applications, the case of multiple strata seems of
great interest. We are aware that there is currently ongoing research concerning how to
recover stratifications in the case of arbitrary posets, which could greatly increase the
possible realm of application. At the same time, such an approach would also require
a generalization of the inference and stability results of Sections 4.3.1, 4.3.3 and 4.3.4
to persistent stratified homotopy types with more than two strata. Proofs of such are
expected to be inductive in nature, which suggests an inductive approach to stratified
homotopy theory on the theoretical side. This has yet to be established in detail.

2. While our results in this work are mostly theoretical, we are currently working on imple-
menting the stratification learning method and persistent stratified homotopy types on a
computer. One possible next step is then to apply these methods to inherently singular
data sets such as retinal artery photos, and investigate the stability and expressiveness
of our approach in practice. This also requires a more detailed study and evaluation of
choices of functions Φ, for the construction of Φ-stratifications (see Definition 4.4.1.10)
in an applied scenario.

3. The application of persistent stratified homotopy types to real-world data also requires
a further investigation of the last step - i.e. passing to algebraic invariants such as
persistent homology. While there are some expressive and well-understood algebraic
invariants at hand - for example the persistent homology of the links and strata - there
is a series of more intricate invariants to consider. These include a persistent version of
intersection homology, as well as an interpretation of the persistent stratified homotopy
type as a multi-parameter persistence module. Studying the properties of such invariants,
ranging from computability to expressiveness, leaves much room for future research
projects both in theory as well as in application.

4.A Some details on abstract homotopy theory
Remark 4.A.0.1. There are some subtleties to be considered, which come down to the
order in which one passes to the persistent and homotopical perspective. We emphasize that
by hoTI , for some indexing category I, we mean the localization of the functor category at
pointwise weak equivalences, and not the functor category (hoT)I , obtained by localizing at
weak equivalences first. The universal property of the localization induces a canonical functor

hoTI
→ (hoT)I .

This functor is essentially never an equivalence of categories. For example, for T = Top with
the usual class of weak equivalences, the notion of isomorphism on the left-hand side is fine
enough to compute homotopy limits and colimits. This is not the case on the right-hand side
(see for example [Hir03], for an introduction to the theory). Generally, the functor will be
neither essentially surjective nor fully faithful. Essential surjectivity, for example, comes down
to whether or not a homotopy commutative diagram is equivalent to an actual commutative
diagram (see [DK84] for a detailed discussion.)
To see that faithfulness is generally not the case, consider replacing R+ by I = {0 < 1}, and
taking T = Top, D = {∗ → S1} and D′ = {∗ → X}, for some pointed space X. Both objects
may be considered as pointed spaces. Then, the hom-objects from D to D′ in hoTI are the
homotopy groups of X. In (hoT)I , however, the hom-object is given by free homotopy classes
from S1 to X, i.e. by the abelianization of the homotopy group of X.
In the special case where I = R+ and T = Top this leaves, a priori, an ambivalence by what
one means by a persistent homotopy type. Given a persistent space, i.e. an object in TopR+ ,
one can either consider its isomorphism class in ho(TopR+) or in (hoTop)R+ . We argue that
the former is the conceptually better notion since properties P(1) to Item P(3) may already
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be stated on this level. At the same time, due to the comparison functor between the two
categories, results obtained in ho(TopR+) are generally stronger than results in (hoTop)R+ .
However, one should note that when passing to the algebraic world by applying homology
index-wise, both perspectives agree. Finally, we may add that for most applications the
difference is negligible. This is a consequence of Lemma 4.A.0.2 which, among other things,
implies, as long as one restricts to persistent objects which are tame in the sense that their
homotopy type only changes at finitely many points, then the functor

hoTR+ → (hoT)R+ (4.17)

induces a bijection on isomorphism classes. In particular, there is no difference in the resulting
notion of persistent homotopy type.

Lemma 4.A.0.2. LetM be a (simplicial) model category and I be any small indexing category.
Then,

F ∶ hoMI
→ (hoM)I

reflects isomorphisms. Furthermore, let I be a finite, totally ordered poset. Then F is essentially
surjective and full. In particular, two objects in hoMI are isomorphic, if and only if their
images under F are isomorphic.

Proof. Ultimately, this comes down to the fact that homotopy coherent diagrams of the
particularly simple shapes involved are easy to understand. The proof requires a series of
standard arguments in the theory of model categories. See [Hir03] for a comprehensive overview.
To see that the functor characterizes isomorphisms, note that a morphism in a functor category
is an isomorphism, if and only if is so pointwise. Since a morphism descends to an isomorphism
in the homotopy category, if and only if it is a weak equivalence, and weak equivalences
in MI (equipped with any of the usual model structures) are defined pointwise, this shows
that a morphism in MI is an isomorphism in ho(MI) if and only if its image under F is an
isomorphism.
The next statement holds in general. However, we show only the case of a simplicial model
category, since all model categories relevant in this paper fulfill this property and the availability
of a canonical cylinder object makes the proof somewhat more digestible. Essential surjectivity
is immediate, as functors D defined on a totally ordered set I ≅ [n] = {0, ..., n} are entirely
determined by their values valued on D(i ≤ i + 1) and conversely any sequence of morphisms
Xi → Xi+1, uniquely determines a functor. Thus, (up to an isomorphism in the right-hand
side category) being a functor with values in the homotopy category hoMI is equivalent to
being a functor with values in MI .
Now, to see fullness, consider objects D and D′ on the left-hand side. Without loss of generality,
we may assume that D is a cofibrant and D′ a fibrant object with respect to the injective
model structure (which exists since I is a Reedy category in the obvious fashion. See [Hir03]
for an introduction to Reedy model structures.) In particular, morphisms in the homotopy
categories between D and D′ and between Di,D

′
i are given by (simplicial) homotopy classes.

We now proceed to show fullness by induction over n. The case n = 0 is trivial. Now let
f ∶D →D′ be a morphism in (hoM)I , i.e. we are given a homotopy commutative diagram

D0 . . . Dn Dn+1

D′0 . . . D′n D′n+1

f0 fn

in

fn+1

i′n

(4.18)

by inductive assumption, we can assume that up to Dn the diagram is actually commutative.
It remains to show, that there exists a morphism gn+1, simplicially homotopic to fn+1, such
that the right-hand square commutes on the nose. Let H ∶Dn →D′∆

1

n+1 be the adjoint to the
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simplicial homotopy from the right down to the down right composition. We may instead solve
the induced lifting problem

Dn D′n+1
∆1

Dn+1 D′n+1

H

in ev1

fn+1

(4.19)

such a lift exists, since, by assumption, the left-hand side map is a cofibration and the
right-hand side map is a fibration. Thus, we have shown fullness.

Lemma 4.A.0.3. Let M be a relative category (i.e. a category equipped with a notion of
weak equivalence). Let U ⊂ Ω ×R+ be a subset containing Ω × {0}. Let D ∈MU , be such that

D(v,0)→D(v,α)

is a weak equivalence, for all (v,α) ∈ U . Let D ∣Ω×{0} be homotopically constant of value
M ∈M. Then D is also homotopically constant of value M .

Proof. This follows from the fact that Ω is initial in U . Let i∶Ω × {0} ↪ U be the inclusion.
Note that, in this specific scenario

i∗(D
′
)(v,α) =D′(v,0)

since any slice involved in the right Kan-extension have a terminal object of the form (v, 0). In
particular, this means that i∗ preserves weak equivalences between all objects. Furthermore,
by assumption, this equality implies that the natural transformation

i∗D ∣(Ω,0)→D

is a weak equivalence. Now, by assumption, D ∣(Ω,0) is weakly equivalent to some constant
functor C in MΩ×{0}. In particular, this implies that there is a zigzag of weak equivalences

C D′ . . . D ∣Ω×0 (4.20)

applying i∗ and using the fact that it preserves weak equivalences between all objects, we
thus obtain a zigzag of weak equivalences

i∗C i∗D
′ . . . i∗D ∣(Ω,0) D (4.21)

which induces an isomorphism in hoMU . Finally, note that if C is constant of value M ∈M,
then so is i∗C.

4.B Results on definable and Whitney stratified spaces

4.B.1 Definable sets can be thickened
The following lemma seems folklore knowledge to some degree. We provide it here for the sake
of completeness. It seems to us that, with some extra technical effort, methods used in [CL05]
may even be used to obtain strongly stratified mapping cylinder neighborhoods. However, the
following result suffices for our purposes.

Lemma 4.B.1.1. Let T ⊂ Y ⊂ RN be definable with respect to some o-minimal structure and
X compact. Then, there exists a ε > 0 such for 0 < α < ε the following holds:

1. T ↪ Tα ∩ Y is a strong deformation retract.
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2. There is a homeomorphism (Tα ∩ Y ) ∖X ≅ d−1
T (

α
2 ) × (0, α], such that the diagram

(Tα ∩ Y ) ∖X d−1
T (

α
2 ) × (0, α]

(0, α]
dX

∼

π(0,α]

commutes.

Furthermore, if Y = RN , then ε may be taken to be the weak feature size of T as in [CL05,
Definition 3.1].

Proof. The statement on the homemomorphism type of the complements is an immediate
application of Hardt’s theorem for definable sets together with the fact that dX is definable
(see e.g. [Dri98]). One may then use the isotopies induced by flows used for example in
[CL05] to extend this homeomorphism to the case where Y = RN and ε is the weak feature
size. To see that the latter is positive, note that the argument for positivity of weak feature
sizes of semialgebraic sets in [Fu85, Remark 5.3] also applies to the definable case. Finally,
we need to see that the inclusion is a strong deformation retraction. Note that by the
triangulability of definable sets (see for example [Dri98, Theorem 2.9]), RN may be equipped
with a triangulation compatible with X and Y . In particular, by subdividing if necessary, X
has arbitrarily small mapping cylinder neighborhoods in Y , given by piecewise linear regular
neighborhoods. Furthermore, this means that X ↪Xα ∩Y is a cofibration. Thus, it suffices to
show that X ↪ Xα ∩ Y is a homotopy equivalence. Now, for α < α′ < ε, with ε such that 2
holds. Then, we have inclusions

X ↪Xα ∩ Y ↪ N ↪Xα′ ∩ Y,

where N and N ′ are regular neighborhoods with respect to the piecewise linear structure
induced by the triangulation. By the open cylinder structure (assumption 2) of the set
(Xα′ ∩ Y ) ∖X, the inclusion Xα ∩ Y ↪ Xα′ ∩ Y is a homotopy equivalence. The same holds
for the inclusion X ↪ N . It follows by the two-out-of-six property of homotopy equivalences,
that all maps are homotopy equivalences.

4.B.2 Proof of Proposition 4.3.4.3
Proof of Proposition 4.3.4.3. The map β is clearly continuous on Sq × Sp. The condition on β
is thus equivalent to the extension by 0 to ∆Sp being continuous. Indeed, by continuity of
d⃗(−,−), this extension condition immediately implies condition (b). For the converse, as β ≥ 0,
it suffices to show upper semi-continuity. This is the content of Proposition 4.B.2.1.

Proposition 4.B.2.1. Let W = (X,s ∶ X → P ) be a Whitney stratified space. Then, the
restriction of β to W≥p ×Wp → R is upper semi-continuous.

Proof. β is clearly continuous on the strata of W ×W . Now, suppose (xn, yn) ∈ W≥p ×Wp

is a sequence converging to a point (x, y) ∈Wp′ ×Wp, for some p′ ≥ p. Then, for sufficiently
large n ∈ N, we have s(xn) ≥ p′. To show upper semi-continuity, we may thus without loss
of generality assume that xn lies in the same stratum Wq. We show that any subsequence
of (xn, yn) has a further subsequence (all named the same by abuse of notation), for which
β(xn, yn) converges to a value lesser or equal then β(x, y). By compactness of Grassmannians,
we may first restrict to a subsequence such that Txn(Wq) and l(xn, yn) converge to τ and
l respectively. By Whitney’s condition (a) ([Whi65a], [Whi65b]) - which by [Mat12] follows
from condition (b) - we have Tx(Wp′) ⊂ τ . Summarizing, this gives:

limβ(xn, yn) = d⃗(l, τ) ≤ d⃗(l,Tx(Wp′)).
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Now, in case when x ≠ y, the last expression equals β(x, y) by definition. In the case when
x = y then, by condition (b), l ⊂ τ . Thus, again, we have

limβ(xn, yn) = d⃗(l, τ) = 0 = β(y, y)

finishing the proof.

4.B.3 A normal bundle version of β

Furthermore, we are going to make use of the following fiberwise version of β.
Construction 4.B.3.1. Again, in the framework of Construction 4.3.4.2, assume that W =
(T, s∶T → P ) is a Whitney stratified space, with Wp compact. Take N to be a standard tubular
neighborhood of Wp in RN with retraction r ∶ N →Wp. Note that by Whitney’s condition (a),
for N sufficiently small, r∣Wq

is a submersion for q ≥ p. In particular, by [NV23, Lemma 2.1]
the fiber of

W y
∶= (r)−1

∣N∩W ≥p(y)

is a Whitney stratified space over {q ∈ P ∣ q ≥ p} with the p-stratum given by {y}. Furthermore,
we have

Tx(Wq) ∩ νr(x)(Wp) = Tx(W r(x)
q ),

where νr(x)(Wp) denotes the normal space of Wp at r(x). In particular, the dimension of these
spaces is constant, and they vary continuously in x. Then, consider the following function:

β̃p(−) ∶ N ∩W
≥p
→ R

⎧⎪⎪
⎨
⎪⎪⎩

x ↦ d⃗(l(x, r(x)),Tx(W r(x)
s(x) )), for s(x) > p

x ↦ 0, for s(x) = p.

Noting that l(x, r(x)) ∈ νr(x)(Wp), by an analogous argument to the proof of Proposition 4.3.4.3,
one obtains that β̃p(−) is continuous on Wq ∪Wp. Note that if we restrict β̃p(−) to W y, then
we obtain the function β(−, y) associated to W y. Let us denote this βy. In particular, by
compactness of Wp, we obtain that the functions βy can be globally bounded by any δ > 0, for
N sufficiently small.

4.B.4 Definability of β

Proposition 4.B.4.1. Let S = (T, s∶T → P ) be as in Construction 4.3.4.2. Then, if T ⊂ RN
is definable, then so is β.

Proof. As all the strata of T × T are again definable, it suffices to show that β is definable on
the strata of T ×T . Furthermore, as β is 0 along ∆T , it suffices to show definability away from
the diagonal. Here β is equivalently given by

β(x, y) = inf
v∈Tx(Ts(x))

∣∣
x − y

∣∣x − y∣∣
− v∣∣.

It follows from the fact that for q ∈ P , T(Tq) ⊂ RN × RN is definable (see [Cos00] and
Lemma 4.B.5.1) that this defines a definable function Tq × Tp → R.

4.B.5 Proof of Proposition 4.4.2.4
We begin by proving a series of technical lemmas.
Lemma 4.B.5.1. Consider two definable maps f ∶X → R, π ∶X → Y such that f is bounded
from above on every fiber of π. Then the map

g ∶ Y → R
y ↦ sup

x∈π−1(y)
f(x)

is again definable.
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Proof. This is immediate, if one interprets the graph of g in terms of a formula being expressible
with respect to the o-minimal structure.

Lemma 4.B.5.2. Let X → {p < q} be a stratified metric space and Y a first countable, locally
compact Hausdorff space. Let π ∶ X → Y be a proper map, such that both the fibers of π, as
well as the fibers of π∣Xp

vary continuously in the Hausdorff distance. Let f ∶X → R be upper
semi-continuous and continuous on the strata. Then,

g ∶ Y → R
y ↦ sup

x∈π−1(y)
f(x)

is continuous.

Proof. Note first that as the fibers of π are compact and f is upper semi continuous, it takes
its maximum on every fiber. Now, let yn → y be a convergent sequence in Y . We show that
any of its subsequences y′n, has a further subsequence ỹn → y, with

sup
x∈π−1(ỹn)

f(x)→ sup
x∈π−1(y)

f(x).

Let x′n ∈ π−1(yn) for all n such that f(x′n) = supx∈π−1(y′n) f(x). As Y is locally compact and π
is proper, x′n has a convergent subsequence x̃n → x̃. Define ỹn ∶= π(x̃n). Since the fibers of π
vary continuously and ỹn → y, we also have x̃ ∈ π−1(y). Thus, we have

lim sup sup
x∈π−1(ỹn)

f(x) = lim sup f(x̃n) ≤ f(x̃) ≤ g(y).

It remains to see the converse inequality for a subsequence of ỹn. Let x̂ ∈ π−1(y) be such
that f(x̂) = supx∈π−1(y) f(x). By assumption we can find a sequence x′′n with x′′n ∈ π

−1(ỹn)

converging to x̂. If x̂ ∈ Xp, then x′′n can be taken to be in Xp, as π−1(ỹn) ∩Xp converges
to π−1(y) ∩Xp. If x̂ ∈ Xq, then, as the latter is open, x′′n ultimately lies in Xq. Hence, by
continuity of f on the strata, we have

g(y) = f(x̂) = lim f(x′′n) = lim inf f(x′′n) ≤ lim inf sup
x∈π−1(ỹn)

f(x).

As a consequence of the prior two lemmas we obtain:

Lemma 4.B.5.3. If W is a definably Whitney stratified over P = {p < q}. Then the map

β̂ ∶Wp ×R≥0 → R
(y, d)↦ sup

∣∣x−y∣∣=d,x∈W
β(x, y)

is continuous in a neighborhood of Wp × {0}, definable and vanishes on Wp × {0}.

Proof. Definability follows immediately from Lemma 4.B.5.1. consider the map

B ∶W ×Wp →Wp ×R≥0

(x, y)↦ (y, ∣∣x − y∣∣).

Over Wp ×R>0 it is given by submersion on each stratum of W ×Wp. In particular, by Thom’s
first isotopy lemma [Mat12, Proposition 11.1] it is a fiber bundle with fibers ∂Bd(y) at (y, d)
over R>0. In particular, the fibers of B vary continuously over Wp × R>0. Additionally, for
(yn, dn) → (y,0) the fiber converges to the point y. Hence, B fulfills the requirements of
Lemma 4.B.5.2. Furthermore, β ∶W ×Wp → R also fulfills the requirements of Lemma 4.B.5.2,
showing the continuity of β̂. Lastly, β̂ vanishes on Wp ×R≤0 by definition of β.
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We now have all the tools available to obtain a proof of Proposition 4.4.2.4,

Proof of Proposition 4.4.2.4. We conduct this proof for the case of P = {p < q} and K =Wp

(with notation as in Definition 4.4.2.2). The general case follows analogously by working
strata-wise and then passing to maxima. By Lemma 4.B.5.3 for d small enough, the function
β̂ ∶Wp ×R≥0 → R fulfills the requirements of Lojasiewicz’ theorem for (polynomially bounded)
o-minimal structures [Loi16]. Hence, we find ϕ̂ ∶ R≥0 → R≥0 to be a definable and monotonous
bijection such that on Wp × [0, d] we have

ϕ̂(β̂(y, t)) ≤ t.

If the relevant o-minimal structure is polynomially bounded, then there exist n > 0, such that

tn ≤ ϕ̂(t)

for t ∈ [0, d′]. Hence, we obtain

β̂(y, t)n ≤ ϕ̂(β̂(y, t)) ≤ t.

Ô⇒ β̂(y, t) ≤ tα

for t ∈ [0, d], α = 1
n

and d ∶= ϕ−1(d′).

4.B.6 Proof of Lemma 4.4.0.2
Proof of Lemma 4.4.0.2. The first result is immediate from the local conical structure of T .
The second is immediate from the definition of a homology stratification, as clearly T −Sp is a
homology manifold. For the final result, note first that by the local conical structure, having
local homology isomorphic to H●(Rq; 0) is an open condition on Sp. In particular, since this
condition holds on all of T − Sp it is an open condition on all of T . Thus, s ∶ T → {p < q} as
defined in the statement is actually a stratification of T . To see that this is indeed a homology
stratification we need to see that the local isomorphism condition is fulfilled. By construction,
we have T − Sp ⊂ s̃−1{q}. Within Sp ∩ s̃

−1{p} the local isomorphism condition again holds
by the local conical structure of T . Thus, it remains to consider the case where x ∈ Sp, and
H●(T ;x) ≅ H●(Rq; 0). We need to show that, for Ux ≅ Rq−p−1 × C̊(Lx), an open neighborhood
of x, the natural map

H●(T ;x) ≅ H●(W,W −Ux)→ H●(T ; y)

is an isomorphism, for all y ∈ Ux. The only nontrivial degree in this case is q = dimW . By
an application of the Künneth formula Lx is again an orientable manifold. Hence, up to
suspension, from this perspective, the claim reduces to the fact that if Lx is an orientable,
closed manifold. Then, under the natural isomorphism

H●(CLx, Lx) ≅ H̃●−1(Lx)

the fundamental class of Lx induces a fundamental class of CLx.
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Chapter 5

Combinatorial models for
stratified homotopy theory

Note to the reader: The following chapter was structured as an independent article, in
order to allow for easier accessibility. A preliminary version was made publicly available on
the arXiv (see [Waa24a]). Notation in this chapter is entirely consistent with Chapter 1.
There may be minor notation differences compared to Chapter 3. However, as all notation is
introduced separately in this chapter, this should not pose an issue.

This paper is part of a series of three articles with the objective of investigating a stratified
version of the homotopy hypothesis in terms of semimodel structures that interact well with
classical examples of stratified spaces, such as Whitney stratified spaces. To this end, we
prove the existence of several combinatorial simplicial model structures in the combinato-
rial setting of stratified simplicial sets. One of these we show to be Quillen equivalent to the
left Bousfield localization of the Joyal model structure that presents the (∞, 1)-category of
small layered (∞, 1)-categories, i.e., such small (∞, 1)-categories in which every endomor-
phism is an isomorphism.

5.1 Introduction
Stratified spaces were originally introduced by Whitney, Thom and Mather as a tool to
investigate spaces with singularities (see [Whi65b; Mat12; Mat73; Tho69]). In the broadest
sense, a stratified space consists of the data of a topological space together with a decomposition
into disjoint pieces, with additional varying assumptions on the properties of these pieces - the
so-called strata - and their interactions. In more recent years, the investigation of such objects
has shifted from being primarily concerned with studying a single object to studying classes of
stratified spaces and the stratified maps between them (such maps that map strata into strata).
Even more, instead of focusing on this 1-categorical perspective, the focus has been on the
(∞,1)-categorical point of view: Studying homotopy theories of (certain classes of) stratified
spaces, induced by stratified notions of homotopy (see [Qui88; Hug99b; Mil13; AFT17; AFR19;
Dou21c; DW22; Hai23; Nan19]). Starting with Quinn’s theory of homotopically stratified
spaces (named homotopically stratified sets in [Qui88]), several homotopy theories of stratified
spaces were introduced and studied, for example, in [DW22; Hai23; Nan19]. This paper is
part of a three-part series of articles concerned with these homotopy theories of stratified
spaces, the goal of which is to develop (semi-)model structures for stratified homotopy theory
which interact well with classical geometric and topological examples of stratified spaces, and
ultimately lead to a tractable and interpretable version of the so-called topological stratified
homotopy hypothesis:

243
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The homotopy theory of stratified topological spaces is the same as the homotopy
theory of such (∞,1)-categories in which every endomorphism is an isomorphism.

It is a general paradigm in homotopy theory (most prominently realized in [Qui67]) that
homotopy theoretic phenomena are often easier understood after being translated into the
world of combinatorics. Thus, our approach to constructing model structures for stratified
homotopy theory consists of developing the theory in a combinatorial framework first and then
transferring it to the world of stratified topological spaces.
The goal of this paper is to cover the purely combinatorial part of this program. To this end,
we survey several model structures for stratified simplicial sets over a fixed poset already on
the market, exposing the precise connections between them. We then extend these model
categories to model categories of stratified simplicial sets with varying poset, and connect the
latter to the Joyal model category for (∞,1)-categories. Let us explicitly state that our goal
here is not to obtain results which are new from a purely conceptual (∞-categorical) point
of view, but rather to produce an overview of combinatorial models for stratified homotopy
theory and mirror several results and structures already known on the ∞-categorical level
from [BGH18; Hai23] in the language of model categories. This has the advantage that it
will ultimately allow us to transfer these structures and results to the topological stratified
framework, in which the additional structure of a (semi)model category is necessary to connect
the homotopy theory with the geometry and topology of stratified spaces.

In more detail, the content of this paper is as follows. First, in Section 5.2.1, we recall
the Douteau-Henriques model structure (defined by Douteau in [Dou21a], and independently
defined by Henriques in [Hen]), as well as the Joyal-Kan model structure defined by Haine in
[Hai23], which are both defined on categories of simplicial sets stratified over a fixed poset. The
latter of these presents ∞-categories with a conservative functor into a poset, so-called abstract
stratified homotopy types. We show that the Joyal-Kan model structure is the left Bousfield
localization of the Douteau-Henriques model structure at the class of inner stratified horn
inclusions (Proposition 5.2.1.3). This provides a useful approach to investigating the categorical
homotopy theories of stratified spaces defined by Haine, and the one defined by Nand-Lal in
[Nan19]: One can often obtain results about the categorical theories from results about the
Douteau-Henriques theories, which often turn out to be significantly easier to handle, due to
the explicit description of weak equivalences in the latter (see, for example, the proof of [Hai23,
Thm 0.1.1]). To illustrate this method, in Section 5.2.2, we provide combinatorial simplicial
model structure for the homotopy theory of décollages described in [Hai23] - roughly space
valued presheaves indexed over the finite increasing sequences over a poset fulfilling a Segal
style fibrancy condition - and prove a Quillen equivalence between Haine’s model structure for
abstract stratified homotopy types and the model structure for décollages (Theorem 5.2.2.20).
This Quillen equivalence presents an equivalence of ∞-categories already proven in [Hai23],
without appealing to the theory of complete Segal spaces. Our proof works by constructing a
new left Quillen functor model for the functors of homotopy links studied in detail in [DW22]
(Construction 5.2.2.4 and Proposition 5.2.2.11).
Then, in Section 5.3.1 we move from the case of a fixed poset to the case of flexible posets by
gluing the model structures described in [Dou21a; Hai23] using a method of [CM20], already
employed in [Dou21c]. These model structures provide combinatorial simplicial models for the
homotopy theories of stratified spaces with varying posets investigated in [Dou21c; Hai23] (see
Proposition 5.3.1.8).
Both of the homotopy theories of stratified simplicial sets constructed in Section 5.3.1 have
the property that morphisms in them are not entirely determined by the underlying map
of spaces but include the additional data of a map of posets, in opposition to the classical
scenario (see, for example, [Wei94]) where stratification was purely a property of a map (see
the beginning of Section 5.3.2 and particularly Remark 5.3.2.1). If one is looking to get closer
to the classical scenario, one can instead work with so-called refined stratified simplicial sets
(called 0-connected in the case of abstract stratified homotopy types in [BGH18]), which
are, roughly speaking, the class of stratified simplicial sets for which the underlying poset is
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entirely encoded in the closure relations of the strata (see Definition 5.3.2.12). To account for
this, in Section 5.3.2, we provide right Bousfield localizations of the global model structures
in which maps between bifibrant objects have the property that maps are defined entirely
on the space (simplicial set) level. Our main results in this subsection may be summarized
as follows. The category of stratified simplicial sets sStrat admits the structures of two
combinatorial simplicial model categories, sStratd and sStratc which are respectively right
Bousfield localizations of the global versions of the Douteau-Henriques and the Joyal-Kan
model structures (Theorem 5.3.2.19). In both model structures, the cofibrant objects are
precisely the refined stratified simplicial sets. sStratc is the left Bousfield localization of
sStratd at inner stratified horn inclusions and presents the ∞-category of refined (0-connected)
abstract stratified homotopy types (Propositions 5.3.1.8 and 5.3.2.24). We furthermore show
that weak equivalences in both sStratc and sStratd are stable under filtered colimits, which
is one of the key ingredients to transferring these model structures to the topological realm
(Proposition 5.3.1.5).
In the next subsection (Section 5.3.3), we then show that one of these model structures is
Quillen equivalent to the left Bousfield localization of the Joyal model structure on simplicial
sets that presents the ∞-category of small ∞-categories in which every endomorphism is
an isomorphism (Theorem 5.3.3.6). This lifts a result proven on the ∞-categorical level in
[BGH18, p. 2.3.8] to the level of model categories, and provides one necessary core result for
our version of the topological stratified homotopy hypothesis proven in [Waa24c]. Finally, we
prove that all of the model structures on sStrat defined in this paper are cartesian closed (The-
orem 5.3.5.4), which allows us to recover a result of Bruce Hughes (see [Hug99b, Main Result])
on homotopically stratified spaces in our purely combinatorial setting (Construction 5.3.5.5).

5.1.1 Language and notation
Let us begin by introducing some of the relevant categories and recalling some notation. We
will follow the convention of denoting 1-categories in bold letters, simplicial categories in
bold underlined letters, and (∞,1)-categories (modeled by quasi-categories) by writing their
first capital letter in caligraphic script. If we wish to denote the underlying 1-category of a
simplicial category, we do so by simply omitting the line under the name. We use the same
notation for model categories mutatis mutandis.

Notation 5.1.1.1. We are going to use the following terminology and notation for partially
ordered sets, drawn partially from [Dou21a] and [Hai23]:

• We denote by Pos the category of partially ordered sets, with morphisms given by
order-preserving maps.

• We denote by ∆ the full subcategory of Pos given by the finite, nonempty, linearly
ordered posets of the form [n] ∶= {0,⋯, n}, for n ∈ N.

• Given P ∈ Pos, we denote by ∆P the slice category ∆/P . That is, objects are given by
arrows [n]→ P in Pos, n ∈ N, and morphisms are given by commutative triangles.

• We denote by sd(P ) the subdivision of P , given by the full subcategory of ∆P of such
arrows [n]→ P , which are injective.

• The objects of ∆P are called flags of P . We represent them by strings [p0 ≤ ⋯ ≤ pn], of
pi ∈ P . We refer to n as the length of the flag [p0 ≤ ⋯ ≤ pn].

• Objects of sd(P ) are called regular flags of P . We represent them by strings [p0 < ⋯ < pn],
of pi ∈ P .

Notation 5.1.1.2. We use the following terminology and notation for (stratified) simplicial
sets, drawn partially from [Dou21a] and [Hai23]:
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• We denote by sSet the simplicial category of simplicial sets, i.e. the category of set
valued presheaves on ∆op, equipped with the canonical simplicial structure induced by
the product (see [Lur09] for all of the standard notation used for simplicial sets).

• When we treat sSet as a model category this will generally be with respect to the
Kan-Quillen model structure (see [Qui67]), unless otherwise noted. When we use Joyal’s
model structure for quasi-categories ([JT08]) instead, we will denote this model category
by sSetJ.

• We think of Pos as being fully faithfully embedded in sSet, via the nerve functor
(compare [Hai23]). By abuse of notation, we just write P for the simplicial set given by
the nerve of P ∈ Pos.

• For P ∈ Pos, we denote by sStratP the slice category sSet/P , which is equivalently
given by the category of set-valued presheaves on ∆P . We treat sStratP as a simplicial
category, denoted sStratP , with the structure inherited from sSet (see [DW22, Recol.
2.21.], which is Recollection 3.2.3.3 in this text).

• Objects of sStratP are called P -stratified simplicial sets. They are given by a tuple
X = (X,sX ∶X → P ). In the literature, a P -stratified simplicial set X = (X,sX ∶X → P )
is often simply referred to by its underlying simplicial set X, omitting the so-called
stratification sX ∶X → P . We are not going to adopt this notation here, as we will
frequently consider the same simplicial set with changing stratifications. We are always
going to use calligraphic letters for stratified simplicial sets and their non-calligraphic
counterparts for the underlying simplicial set.

• Morphisms in sStratP are called stratum-preserving simplicial maps. Simplicial ho-
motopies in sStratP are called stratified simplicial homotopies. Simplicial homotopy
equivalences in sStratP are called stratum-preserving simplicial homotopy equivalences.

• Given a map of posets f ∶Q → P and X ∈ sStratP , we denote by f∗X ∈ sStratQ the
stratified simplicial set X ×P Q → Q. We are mostly concerned with the case where f
is given by the inclusion of a singleton {p}, of a subset {q ∼ p ∣ q ∈ P}, for p ∈ P and ∼
some relation on the partially ordered set P (such as ≤), or more generally, a subposet
Q ⊂ P . We then write Xp (or, respectively, X∼p, XQ) instead of f∗X . The simplicial sets
Xp, for p ∈ P are called the strata of X .

• For f ∶Q → P in Pos, we denote by f! the left adjoint to the simplicial functor
f∗∶ sStratP → sStratQ, given on objects by (sX ∶X → Q)↦ (f ○ sX ∶X → Q→ P ).

• Let sSet[1] be the category of arrows of simplicial sets. We denote by sStrat the category
of all stratified simplicial sets, given by the full sub-category of sSet[1] of such arrows
X → P , where X ∈ sSet and P ∈ Pos is (the nerve of) a poset. In particular, every object
of sStrat is given by a P -stratified simplicial set, for some P ∈ Pos, and a morphism
(X → P ) → (Y → Q) is given by a pair of morphisms f ∶X → Y and g∶P → Q, where f
is a simplicial map and g can be seen as a map of posets, making the obvious square
commute (see also [DW22, Def. 2.19], which is Definition 3.2.3.1 in this text). Morphisms
are called stratified simplicial maps.

• Given X ∈ sStrat, we are going to use the notational convention X = (X,sX , PX ) to
refer, respectively, to the underlying simplicial set, the stratification and the poset and
proceed analogously for morphisms.

• We equip sStrat with the structure of a simplicial category, tensored and cotensored
over sSet, denoted sStrat, with the tensoring induced by setting

X ⊗∆n
= (X ×∆n

→X → PX ) .

Simplicial homotopies in sStrat are called stratified simplicial homotopies. Simplicial
homotopy equivalences in sStrat are called stratified simplicial homotopy equivalences.
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• The forgetful functor sStrat→ sSet, X ↦X will be denoted F , and has a right adjoint
and a left adjoint. The left adjoint is given by left Kan extending the functor on simplices:
∆n ↦ {∆n 1∆n

ÐÐ→ ∆n = [n]}. We denote it by L∶ sSet→ sStrat. The right adjoint is given
by mapping K ∈ sSet to the trivially stratified simplicial set {K → [0]}. By abuse of
notation, we will often write K to refer to the trivially stratified simplicial set associated
to a simplicial set K.

Remark 5.1.1.3. There is a canonical forgetful functor, sStrat → Pos given by X ↦ PX
and we may identify its fiber at P ∈ Pos with sStratP . This functor is easily seen to be a
Grothendieck bifibration, with right action given by f ↦ f∗ and left action given by f ↦ f!. It
follows that we may use the results in [CM20] to glue local model structures on the fibers to
global model structures.

Remark 5.1.1.4. Both sStrat and sStratP , for P ∈ Pos, are bicomplete categories (see, for
example, [Dou21a]). Limits and colimits in sStratP are simply given by the limits and colimits
in a slice category. Both limits and colimits in sStrat are computed by taking, respectively,
the limit or colimit both on the simplicial set and on the poset level.

Notation 5.1.1.5. We are going to need some additional notation for flags and stratified
simplices.

• For a flag J = [p0 ≤ ⋯ ≤ pn] ∈ ∆P , we write ∆J for the image of J in sStratP under the
Yoneda embedding ∆P ↪ sStratP . Equivalently, ∆J is given by the unique simplicial
map ∆n → P mapping i↦ pi. ∆J is called the stratified simplex associated to J .

• Given a stratified simplex ∆J , for J = [p0 ≤ ⋯ ≤ pn], we write ∂∆J for its stratified
boundary, given by the composition ∂∆n →∆n → P .

• Furthermore, for 0 ≤ k ≤ n, we write ΛJk ⊂∆J for the stratified subsimplicial set given
by the composition Λnk → ∆n → P (we use the horn notation as in [Lur09]). The
stratum-preserving map ΛJk ↪ ∆I is called the stratified horn inclusion associated to
J and k. The inclusion ΛJk ↪ ∆I is called admissible, if pk = pk+1 or pk = pk−1. The
inclusion ΛJk ↪∆I is called inner if 0 < k < n.

• Using the fully faithful (and continuous) embedding ∆P ↪ sStratP , we extend the
base-change notation for stratified simplicial sets to flags. That is, for f ∶Q→ P we write
f∗J for the unique flag of Q corresponding to f∗(∆J ). We use the same shorthand
notation for subsets Q ⊂ P . For example, J≤p is the flag obtained from J , by removing
all entries not less than or equal to p.

• It will also be convenient to have a concise notation for the images of simplices, horns, and
boundaries under L∶ sSet→ sStrat. These are denoted by replacing the exponent n ∈ N,
by the poset [n]. That is, we write ∆[n] ∶= L(∆n), ∂∆[n] ∶= L(∂∆n), Λ[n]k ∶= L(Λnk), for
0 ≤ k ≤ n.

5.2 Combinatorial models over a fixed poset

Before we begin with the construction of model structures for the category of stratified simplicial
sets over varying posets sStrat, we first cover the case of categories of stratum-preserving
maps. Later, in Section 5.3, we will piece together the model structures defined in this section
for one fixed poset, to obtain model structures on sStrat. For the remainder of this subsection,
fix some poset P .
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5.2.1 The minimalist- and the Joyal-Kan approach
In this subsection, we recall the model structures on P -stratified simplicial sets defined in
[Dou21a] and [Hai23] and point out the precise relationship between them. Since sStratP is
isomorphic to the category of set-valued presheaves on ∆P , we may use the methods of [Cis06]
to construct model structures on it.

Recollection 5.2.1.1 ([DW22]). The Douteau-Henriques model structure on sStratP , defined
first in [Dou21a], is the Cisinski model structure (see [Cis19, Thm. 2.4.19]) induced by the
simplicial cylinder X ↦ X ⊗∆1, with the empty set of anodyne extensions. This defines a
combinatorial, cofibrant, simplicial model structure on sStratP whose defining classes may
be characterized as follows (see [DW22], specifically Theorem 3.1.0.3 in this text) for this
characterization, which is stronger than the one provided in [Dou21a]):

1. Cofibrations are precisely the monomorphisms in sStratP .

2. Weak equivalences are precisely such stratum-preserving simplicial maps X → Y for
which the induced map of simplicial sets

sStratP (∆I ,X )→ sStratP (∆I ,Y)

is a weak homotopy equivalence, for all I ∈ sd(P ). We call such a map a diagrammatic
equivalence.

3. Fibrations are precisely the simplicial maps which have the right lifting property with
respect to all admissible horn inclusions.

We denote the resulting simplicial model category by sStratdP . It carries the minimal model
structure (with respect to weak equivalences) in which the cofibrations are the monomorphisms,
and stratified simplicial homotopy equivalences are weak equivalences. sStratdP is cofibrantly
generated by the classes of stratified boundary inclusions and admissible horn inclusions.

Since sStratdP is in some sense minimal among model structures on sStratP , it is not
surprising that alternative theories arise as a localization of the homotopy theory presented by
sStratdP . In particular, this is the case for the model structure defined in [Hai23].

Recollection 5.2.1.2 ([Hai23]). The Joyal-Kan model structure on sStratP is the one
obtained by localizing the model structure inherited from the Joyal-model structure on sSet
at the cylinder − ⊗∆1. The Joyal-Kan model structure is simplicial, cofibrantly generated,
and its defining classes have the following descriptions:

1. Cofibrations are precisely the monomorphisms in sStratP .

2. Fibrant objects are precisely the stratified simplicial sets X for which the underlying
simplicial set X is a quasi-category and sX ∶X → PX is a conservative functor. Fibrations
between fibrant objects are precisely the stratum-preserving simplicial maps that have the
right lifting property with respect to all inner and admissible stratified horn inclusions.

3. Weak equivalences between fibrant objects are equivalently characterized as the class of

(a) stratified homotopy equivalences;
(b) Joyal equivalences (over P );
(c) stratum-preserving maps that induce weak equivalences on sStratP (∆I ,−), for all

regular flags I of length lesser or equal to 1.

We denote the model category (uniquely determined by these classes) by sStratcP . Weak
equivalences in this model structure will be called Joyal-Kan equivalences. It follows by the
characterization of weak equivalences and fibrant objects above that sStratcP presents the
∞-category of conservative functors from a quasi-category into P , also called abstract stratified
homotopy types over P .
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In view of the minimality of sStratdP , the following is not surprising:

Proposition 5.2.1.3. The simplicial model category sStratcP is the left Bousfield localization
of sStratdP at the class of stratified inner horn inclusions.

Proof. It suffices to see that the localization described above has the same fibrant objects
as sStratcP . Let X be fibrant in the localization. In particular, X has the filler property
for all admissible and inner stratified horn inclusions. It follows that X is a quasi-category.
Furthermore, as X → P has the right lifting property with respect to every admissible horn
inclusion (which includes horn inclusions entirely contained in one stratum) for every p ∈ P
the stratum Xp is a Kan complex. In particular, sX ∶X → P is conservative. Now, conversely,
suppose that X is such that sX ∶X → PX is a conservative functor of quasi-categories. Then,
since P is the nerve of a 1-category, sX is also an inner fibration, which shows that X
admits fillers for all inner horn inclusions. Now, consider a horn inclusion ΛJk ↪ ∆J , with
J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn], which is not inner, but admissible. We cover the case k = n, as the other
is analogous. Hence, we may assume that pn−1 = pn. Since sX is conservative, it follows that
the edge of Λnk from n − 1 to n maps to an isomorphism f in X. In particular, f is cartesian
([Lur09, Prop. 2.4.1.5]) and a lift with respect to ΛIk ↪ ∆J exists by [Lur09, Rem. 2.4.1.4].
Therefore, X admits a filler for all inner and all admissible horn inclusions. The latter shows
that it is fibrant in sStratdP . To see that X is local with respect to inner horn inclusions
ΛIk ↪ ∆I , we may equivalently show that X → P has the right lifting property with respect to
the maps

ΛIk ⊗∆n
∪ΛI

k
⊗∂∆n ∆I ⊗ ∂∆n

↪∆I ⊗∆n.

It is a standard argument that these may be decomposed into a composition of pushouts of
inner horn inclusions (see, for example, [Cis19, Cor 3.2.4]).

Again, using [Cis19, Cor 3.2.4], we obtain:

Corollary 5.2.1.4. Fibrant objects in sStratcP are precisely such stratified simplicial sets that
have the horn filling property with respect to all admissible and inner stratified horn inclusions.

Proposition 5.2.1.3 is particularly useful, because it provides a criterion to check for
weak equivalences sStratcP . Generally, in sStratcP , the lack of an explicit criterion for weak
equivalences can make such verifications challenging. In many cases, however, we may already
verify the relevant property in sStratdP and then use the fact that they are preserved under left
Bousfield localization.1 In this sense, the homotopy theories defined by sStratcP and sStratdP
are really not in a competing, but in a mutually supportive relationship. Let us finish this
subsection with a general remark and a proposition which we use to transfer model structures
from the simplicial to the topological world in [Waa24c].

Remark 5.2.1.5. Every stratified simplicial set X ∈ sStratdP (or in sStratcP ) is the homotopy
colimit of its stratified simplices. In fact, by [Cis06, Ex. 8.2.5, Prop. 8.2.9], this holds for any
Cisinski model structure on sStratP .

Proposition 5.2.1.6. Weak equivalences in sStratdP and sStratcP are stable under filtered
colimits.

Proof. For sStratcP this is [Hai23, p. 2.5.9]. For sStratdP this follows from the fact that weak
equivalences are detected by a finite set of functors with values in simplicial sets, that preserve
filtered colimits. That weak equivalences of simplicial sets are stable under filtered colimits
follows, for example, as an application of Kan’s Ex∞ functor, which preserves all filtered
colimits (see [Kan57]).

1See for example the approach to proving the existence of semi-models tructures on the topological side we
take in [Waa24c]. Similarly, the proof of a version of a stratified homotopy hypothesis in [Hai23] was built on
[Dou21c].
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5.2.2 Homotopy links and a model structure for décollages
As is apparent from the characterization of weak equivalences in sStratdP (Recollection 5.2.1.1),
the simplicial mapping spaces sStratP (∆I ,X ), for X ∈ sStratP , play a central role in
understanding the homotopy theory of sStratdP .

Recollection 5.2.2.1. For I ∈ sd(P ) and X ∈ sStratP , the simplicial set sStratP (∆I ,X ) is
called the I-th (simplicial) homotopy link of X . It is denoted HoLinkI(X ) (see also [DW22,
Def. 2.31], which is Definition 3.2.5.1 in this text). The simplicial sets HoLinkI(X ) are
organized in the structure of a simplicial presheaf on sd(P ), denoted HoLink(X ). Denote
by DiagP the simplicial category of simplicial presheaves on sdP . Homotopy links induce a
nerve-style functor

HoLink∶ sStratP →DiagP

that admits a left adjoint, given by mapping D ∈DiagP to the coend ∫
I∆I ⊗DI . This left

adjoint functor preserves all monomorphisms. Furthermore, it preserves all weak equivalences
in both directions, by [DW22, Thm. 1.3] (which is Theorem 3.1.0.3 in this text). Hence, we
obtain a pair of (simplicial) Quillen adjoint functors

∫

I
∆I ⊗ −I ∶Diaginj

P ⇌ sStratdP ∶HoLink

between sStratdP and DiagP equipped with the injective model structure.

As an immediate corollary of [DW22, Thm. 1.3] (Theorem 3.1.0.3), one obtains the
following. Recall that a functor F between categories with weak equivalences is said to create
weak equivalences, if it has the property that F (w) is a weak equivalence, if and only if w is a
weak equivalence, for every morphism w in the source category.

Corollary 5.2.2.2. The simplicial Quillen adjunction

∫

I
∆I ⊗ −I ∶Diaginj

P ⇌ sStratdP ∶HoLink

is a Quillen equivalence that creates weak equivalences in both directions.

Remark 5.2.2.3. Note that the condition for an adjunction between model categories (more
generally, categories with weak equivalences) to create weak equivalences in both directions is
equivalent to both functors preserving weak equivalences and the unit and counit being given
by weak equivalences.

We may interpret Corollary 5.2.2.2 as follows. If one takes the perspective that inclusions of
stratified simplicial sets should be the cofibrations, and that at least the stratified (simplicial)
homotopy equivalences should be weak equivalences, then the minimal homotopy theory one
ends up with is the one of simplicial presheaves on sd(P ). Consequently, one would also expect
to be able to interpret the homotopy theory of sStratcP in terms of a category of (certain)
presheaves on sd(P ). Such a result was first shown in [BGH18, Thm. 2.7.4] and in [Hai23].
Here, we are going to give a version of this result in the language of model categories. This
serves to illustrate a method of proof, which we are also going to employ when we show the
existence of convenient model structures for topological stratified spaces in [Waa24c]:
Up to weak equivalence, the functor HoLink ∶ sStratP → DiagP is both a right and a left
Quillen adjoint.

Construction 5.2.2.4. Homotopy links admit a more geometric model, which is constructed
as follows. Let I = [p0 < ⋯ < pn] be a regular flag of P . We then obtain a functor

LinkI ∶∆P → sSet
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by mapping
J ↦ ∏

pi∈I
∆Jpi .

If I0 ⊂ I1, then the projections of the product induce a natural transformation

LinkI1 → LinkI0 ,

Under left Kan extension, we therefore obtain a functor

Link∶ sStratP →DiagP .

Let us explicitly compute LinkI for a stratified version of Joyal’s join functor.

Construction 5.2.2.5. Suppose that I ∈ sd(P ) is a non-degenerate flag such that I = I0 ∪I1,
with I0 and I1 disjoint (and non-empty). Given two flags J0 an J1 degenerating from a subflag
of I0 and I1 respectively, the associated object J0,J1 ∈ ∆P admits a coproduct, denoted
J0 ⊔ J1. It is given by the (appropriately ordered) union of the sequences defining J0 and
J1. In particular, whenever J degenerates from a subflag of I that intersects I0 and I1
non-trivially, then J = J0 ⊔J1, where J0 and J1 denote the respective restrictions of J to I0
and I1. Let X ∈ sStratI0 and Y ∈ sStratI1 . We denote by X ∗P Y the stratified simplicial set
given by the presheaf on ∆P mapping

J ↦

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∅ , if J does not degenerate from a subflag of I
X (J ) , if J degenerates from a subflag of I0

Y(J ) , if J degenerates from a subflag of I1

X (J0) ×Y(J1) , if J = J0 ⊔J1 for J0 and J1 as above

with all face and degeneracy maps induced by the ones on X and Y, the functoriality of
restriction to I0 and I1 and the universal property of the product. This construction induces
a functor

− ∗P −∶ sStratI0 × sStratI1 → sStratP ,

functorial in morphisms in the obvious way. It comes together with a natural transformation

X ⊔Y ↪ X ∗P Y.

where we treat X ⊔ Y as a stratified simplicial set over P . We call this construction the
P -stratified join functor. Indeed, if we restrict to stratified simplices, then there is a canonical
natural isomorphism

∆J0 ∗P ∆J1 ≅∆J0⊔J1

If we fix any of the two arguments (say the first, which suffices, since the construction is
symmetric), then we may use this natural transformation to obtain a lift of the stratified join
functor.

X ∗P −∶ sStratI1 → (sStratP )X /
Y ↦ (X ↪ X ⊔Y ↪ X ∗P Y).

It follows immediately from the definition of X ∗P − and the elementary laws for computing
colimits in presheaf and under-categories that X ∗P − is cocontinuous as a functor with image
in (sStratP )X /.

Let us now take a look at the interaction of the stratified join functor with the link functors.
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Lemma 5.2.2.6. Using the notation of Construction 5.2.2.5, there is a natural isomorphism
of bifunctors

LinkI(− ∗P −) ≅ LinkI0(−) × LinkI1(−).

Proof. We use the notation of Construction 5.2.2.5. Observe that that there is a canonical
isomorphism

LinkI(∆J0⊔J1) ≅ LinkI0(∆J0) × LinkI1(∆J1) .
We have already seen that there is an isomorphism

∆J0 ∗P ∆J0 ≅∆J0⊔J1

natural in J0 and J1. Hence, after restricting to ∆I0 ×∆I1 , there is a natural isomorphism of
bivariate functors

LinkI(− ∗P −) ≅ LinkI0 × LinkI1 .

We now want to extend this isomorphism to a natural isomorphism of functors on all of
sStratI0 × sStratI1 . To see this, via left Kan extension in both arguments, it suffices to show
that LinkI(− ∗P −) is cocontinuous in both arguments. Note that X ∗P − is only cocontinuous
as a functor into the under-category, hence an additional argument is required. To this end,
observe that colimits in the under category (sStratP )X / of a diagram of arrows i↦ (X fi

Ð→ Yi)
can be computed as the lower horizontal arrow in the following pushout

lim
Ð→
X lim

Ð→
Yi

X Z .

lim
Ð→

fi

⌟

(5.1)

In particular, given a colimit of a diagram of stratified i ↦ Yi ∈ sStratI1 and X ∈ sStratI0

there is a pushout square

lim
Ð→
X lim

Ð→
(X ∗P Yi)

X X ∗P lim
Ð→
Yi .

lim
Ð→

fi

⌟

(5.2)

in sStratP . If we apply the colimit preserving functor LinkI to this square, we obtain a
pushout square of simplicial sets

lim
Ð→

LinkI(X ) lim
Ð→

LinkI(X ∗P Yi)

LinkI(X ) LinkI(X ∗P lim
Ð→
Yi) .

lim
Ð→

fi

⌟

(5.3)

Observe that since I1 is non-empty, it follows that LinkI(X ) = ∅. Hence, the left hand
vertical in the last pushout square is an isomorphism, showing that the right hand vertical is
also an isomorphism. This shows that LinkI(− ∗P −) preserves colimits in the right argument.
The case of the left argument follows by symmetry.

Example 5.2.2.7. We may use the stratified join to compute the links of stratified horns. Let
I be a regular flag, J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pl] be some arbitrary flag of P and k ∈ [l]. Furthermore,
denote by J the unique regular flag from which J degenerates. Then, the horn inclusion
ΛJk ↪∆J has the following image under LinkI :

1. If I is not a subflag of J , it is immediate from the definition of LinkI that

LinkIΛJk = ∅ = LinkI∆J .
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2. If I = J ∖ {pk} and Jpk
has length 0, then ΛJk ≅ ∂∆JI ∗P ∆[pk] and it follows that the

image is given by the inclusion

LinkIΛJk = LinkI(ΛJk )I = LinkI∂∆JI ⊂ LinkI∆JI = LinkI∆J .

LinkI(ΛJk )I is precisely given by the boundary of the polygon LinkI∆J =∏pi∈I∆Jpi .

3. If I ⊊ J , and furthermore I ≠ J ∖ {pk} or the length of Jpk
is not 0, then we obtain the

identity
LinkIΛJk = LinkI∆JI = LinkI∆J .

4. If I = J , then we may represent ΛJk as a join as follows. Denote I0 = I ∖ {pk}, I1 = {pk},
and by J0 the restriction of J to I0. Let k0 be minimal with the property that pk0 = pk.
Denote by Fk the (k − k0)-th face of ∆Jpk . Then

ΛJk = (∆
J0 ∗P Fk) ∪∂∆J0∗PFk

(∂∆J0 ∗P ∆Jpk ).

Therefore, if we apply LinkI and use the interaction with stratified joins, we obtain

LinkIΛJk = (LinkI0∆J0 × Fk) ∪LinkI0(∂∆J0)×Fk
(LinkI0(∂∆J0) ×∆Jpk )

⊂ LinkI0∆J0 ×∆Jpk = LinkI∆J .

As a consequence of our computations in Example 5.2.2.7, we obtain the following corollary,
characterizing admissible horn inclusions:

Corollary 5.2.2.8. A stratified horn inclusion j∶ΛJk ↪ ∆J is admissible if and only if LinkIj
is a weak homotopy equivalence for all regular flags I.

Proof. Example 5.2.2.7 covers all possible examples of combinations of I and J . Let J and k
be such that j is admissible. Then, in the first and third cases, the induced map LinkIj is an
isomorphism. The second case cannot occur, as it is assumed that Jpk

has a length greater
than or equal to 1, by the definition of admissibility. Therefore, the only remaining case is
the fourth. Note that Fk ↪ ∆Jpk is an acyclic cofibration in the Quillen model structure.
Hence, in the fourth case it follows from the description of LinkIj∶LinkIΛJk ↪ LinkI∆J
in Example 5.2.2.7 that LinkIj is given by the box product of a cofibration and an acyclic
cofibration, and hence is also an acyclic cofibration of simplicial sets. Conversely, suppose that
LinkIj is an acyclic cofibration for all I. Then, in particular, Jpk

cannot have length 0, as
this would imply that for I = J ∖ {pk} the second case of Example 5.2.2.7 applies. In this
case, LinkI is given by the boundary inclusion of a polygon, which is not a weak homotopy
equivalence.

Proposition 5.2.2.9. The functor

Link∶ sStratP →DiagP

is the left part of a Quillen adjunction between sStratdP and Diaginj
P .

Proof. That Link admits a right adjoint is immediate from its construction via Kan extension
on a category of presheaves. Furthermore, one may easily see that, for any regular flag I, LinkI
sends monomorphisms to pointwise monomorphisms, and hence preserves all cofibrations. A
generating set of acyclic cofibrations in sStratdP is given by the admissible horn inclusions
([Dou21a, Thm. 2.14]). Therefore, we only need to show that, for any regular flag I and any
admissible horn inclusion ΛJk ↪∆J , the induced simplicial map

LinkIΛJk ↪ LinkI∆J

is a weak homotopy equivalence. This is the content of Corollary 5.2.2.8.
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Let us now compare LinkI with the simplicial homotopy link.

Construction 5.2.2.10. A natural transformation

Link → HoLink

is constructed as follows: Given a flag J of length m of P , which contains a regular flag
I = [p0 < ⋯ < pn], a k-simplex τ of LinkI(∆J ) is given by an n + 1-tuple (τ0, τ1,⋯, τn), with
τi∶∆k →∆Jpi . Under the inclusions ∆Jpi ↪∆J , we may equivalently interpret these data as
a [m] valued matrix (ilj)l∈[n],j∈[k], with the properties:

• qilj
= pj for all l ∈ [n], j ∈ [k];

• ilj ≤ il(j+1), for all l ∈ [n], j ∈ [k − 1].

As a consequence of the first property, any such matrix also fulfills

• ilj < il+1j for all l ∈ [n − 1], j ∈ [k].

Together, the second and the third property imply that

• ilj ≤ il′j′ , for l ≤ l′ ∈ [n] and j ≤ j′ ∈ [k].

Equivalently, such a matrix is precisely the data of a stratum-preserving simplicial map

τ̂ ∶∆I ×∆k
→∆J

given by uniquely extending the map of vertices

(l, j)↦ (ilj).

One may easily check that this construction is compatible with face and degeneracy maps.
Thus, we obtain an induced isomorphism of simplicial sets

LinkI(∆J )→ HoLinkI(∆J )
τ ↦ τ̂

natural in J and I (when I is not a subflag of J , both simplicial sets are empty by definition).
Therefore, again by left Kan extension, we obtain a natural transformation

Link → HoLink.

Proposition 5.2.2.11. The natural transformation τ ∶Link → HoLink is given by weak
equivalences in Diaginj

P .

We are going to give a purely abstract proof here. Before we do so, let us, however, give a
geometrical intuition for why the statement holds.

Example 5.2.2.12. Suppose P = {p < q} is a poset with two strata. For a stratified simplex
∆J , the image of ∆J under Link is the diagram

D = {∆Jp ←∆Jp ×∆Jq →∆Jq }.

If we apply ∫
I ∆I ⊗ −I to this diagram, we obtain the quotient of the stratified simplicial set

∆Jp ×∆Jq ×∆[p<q]

obtained by collapsing ∆Jp ×∆Jq to ∆Jp and ∆Jq , respectively, at the ends of the interval
∆[p<q]. Note that this construction is just a stratified version of Joyal’s alternative join (see,
for example, [Cis19, p. 4.2.1]). We obtain a natural comparison map

∫

I
∆I ⊗DI →∆Jp ∗P ∆Jq =∆J .



5.2. COMBINATORIAL MODELS OVER A FIXED POSET 255

This comparison is natural in J , and we thus obtain a natural transformation

∫

I
∆I ⊗ LinkI(−)→ 1sStratP

.

This map is not an isomorphism. However, it is stratified homotopic to a stratified homeomor-
phism after passing to the topological stratified world. In this sense, Link can be thought of
as an actual (left) inverse to ∫

I∆I ⊗ −I up to passing from combinatorics to topology. We
may just think of this as the statement that a piecewise linear space may be decomposed into
a double mapping cylinder along the boundary of some regular neighborhood.

Proof of Proposition 5.2.2.11. As a consequence of Corollary 5.2.2.2, HoLinkI preserves ho-
motopy colimits. Since LinkI is the left part of a Quillen adjunction (with source a cofibrant
model category), the same holds for LinkI . As every stratified simplicial set is the homotopy
colimit of its stratified simplices (Remark 5.2.1.5), it hence suffices to show that τ is a weak
equivalence on the latter. However, on stratified simplices, τ is even an isomorphism of
simplicial sets.

The fact that, up to weak equivalence, this makes HoLinkI both the left part and the right
part of a Quillen equivalence turns out to be quite useful in practice. Let us illustrate this
by providing some model structures for décollages, as defined in [Hai23]. In particular, this
gives an example of how results on abstract stratified homotopy types can be deduced from a
deeper understanding of the Douteau-Henriques model structure.

Recollection 5.2.2.13. A diagram D ∈ DiagP is called a décollage over Pos, if for every
regular flag I = [p0 < ⋯ < pn] in sd(P ) the induced simplicial map from DI into the homotopy
limit of

Dp0 ←D[p0,p1] → ⋯←D[pn−1,pn] →Dpn

is a weak homotopy equivalence. In [Hai23, Thm. 1.1.7] the author shows that the homotopy
link construction induces an equivalence of ∞-categories between abstract stratified homotopy
types and décollages (using a homotopy coherent model of décollages).

Let us construct a model structure presenting the ∞-category of décollages. We will need
the following observation.

Observation 5.2.2.14. Observe that, for a subcomplex K ⊂ N(P ), the associated simplicial
homotopy link diagram HoLink(K) ∈ DiagP is given by ∅, at I with ∆I ⊄ K and by the
terminal simplicial set ∆0 otherwise. Consequently, for any simplicial set S, a morphism
HoLink(K) ⊗∆n → D specifies the same data as a morphism from the constant simplicial
presheaf on sd(K)op ⊂ sd(P )op with value ∆n into D∣sd(K)op . It follows that, for D ∈DiagP ,
there is a canonical isomorphism

DiagP (HoLink(K),D) ≅ lim
←Ð

I∈sd(K)op

DI ,

where sd(K) denotes the subcategory of sd(P ) given by the simplices of K.

Notation 5.2.2.15. Given K ⊂ N(P ), and S ∈ sSet, we denote

K ⊗D S ∶= HoLink(K)⊗ S ∈DiagP .

This construction defines a functor from the product of the category of subobjects of N(P )
with the category sSet into DiagP .

Observation 5.2.2.16. By Observation 5.2.2.14 and the simplicial adjunction HoLink(K)⊗
− ⊣DiagP (HoLink(K),−), it follows that morphisms

K ⊗D S →D
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are in natural bijection with arrows

S → lim
←Ð

I∈sd(K)op

DI .

In the special case where K = ∆I , the category sd(K) has the terminal object ∆I , and we
obtain a canonical isomorphism

lim
←Ð

I′∈sd(K)op

DI′ =DI .

Notation 5.2.2.17. Given a flag J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] ∈ ∆P , we denote by Sp(J ) ⊂ ∆J the
stratified subsimplicial set whose underlying simplicial set is the spine of ∆n, i.e. the union of
all 1-simplices of the form ∆{k,k+1}, for 0 ≤ k ≤ n − 1.

Observe that the diagrams that one takes a homotopy limit over in Recollection 5.2.2.13
are precisely the restriction of D to sd(Sp(J ))op.

Construction 5.2.2.18. As sSet (with the Kan-Quillen model structure) is a left proper,
combinatorial, simplicial model category, so is Diaginj

P ([Lur09, Rem. 2.8.4, A.3.3.2]). By
[Bar10, Thm. 4.7], we can therefore localize Diaginj

P with respect to either of the following
sets of morphisms:

{ΛIk ⊗D ∆0
↪∆I ⊗D ∆0

∣ I ∈ sd(P ),ΛIk ↪∆I is inner};
{Sp(I)⊗D ∆0

↪∆I ⊗D ∆0
∣ I ∈ sd(P )}.

It turns out that these two localizers result in the same left Bousfield localization (see the
proof below). An injectively fibrant diagram D is then local with respect to these inclusions, if
and only if the induced maps

DI ≅DiagP (∆I ⊗D ∆0,D)→DiagP (Sp(I)⊗D ∆0,D) ≅ lim
←Ð

I′∈sd(Sp(I))op

DI′ ,

for I ∈ sd(P ), are weak equivalences. The resulting simplicial model category is called the
model category of décollages and denoted Diagdé

P .

Let us show that these two localizers do indeed produce the same localizations:

Proof. We denote the first localizer by L0 and the second by L1. It suffices to see that each
of the two localizers is contained, respectively, in the set of acyclic cofibrations generated by
the other. To this end, observe that within the class of cofibrations, acyclic cofibrations in a
model-category are closed under the operations

1. pushouts along monomorphisms2;

2. right cancellation;

3. composition.

Hence, it suffices to see that each element of L0 is generated under these operations by the
elements of L1, and vice versa. Next, observe that the functor K ↦ K ⊗D ∆0 (from the
category of subobjects of N(P )) maps such squares that define pushouts in sStratP into
pushouts. Hence, it suffices to see that the class of inner horn inclusions and spine inclusions
of subobjects of N(P ) generate the same class under the three operations

1. pushouts in sStratP along arrows in the category of subobjects of N(P );

2. right cancellation;
2Of course, they are also closed under more general pushouts, but this will suffice here.
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3. composition.

Indeed, any spine inclusion Sp(I)↪∆I can be written as a composition of pushouts of inner
horn inclusions, along inclusions (see, for example, the proof of [Lan21, Prop. 1.3.22]). For the
converse inclusion, consider the proof of [JT07, Lem. 3.5].

Let us verify that the bifibrant objects of Diagdé
P are indeed precisely such injectively

fibrant diagrams that fulfill the décollage condition.

Proposition 5.2.2.19. A bifibrant object D ∈ Diaginj
P is a décollage if and only if it is a

bifibrant object in Diagdé
P .

Proof. Observe that all objects in Diaginj
P are cofibrant, and thus that bifibrancy is equivalent

to fibrancy. Under both conditions D is a fibrant object in Diaginj
P . By definition, D is fibrant

in Diagdé
P if and only if

DI → lim
←Ð

I′∈sd(Sp(I))op

DI′

is a weak equivalence, for each I ∈ sd(P ). To show that this is equivalent to being a décollage,
it suffices to show that the right-hand expression computes the homotopy limit of the restriction
of D to sd(Sp(I))op. Observe that

E ↦ lim
←Ð

I′∈sd(Sp(I))op

EI =DiagP (Sp(I)⊗D ∆0,E)

defines a right Quillen functor (since Diaginj
P is a cofibrant simplicial model category). Let

us denote this functor by F . Equivalently, we may write F as the composition of the right
Quillen functor

lim
←Ð
∶Fun(sd(Sp)(I)op, sSet)→ sSet

with the restriction functor along

j∶ sd(Sp(I))op
→ sd(P )op,

denoted j∗. That is, we have F = lim
←Ð
○j∗. Observe that j∗ is also a right Quillen functor.

To see this, we may treat sd(P )op as a Reedy category, with all morphisms being degree
decreasing and apply [Bar07, Thm 2.7], from which the claim follows. In the following, given a
right Quillen functor G, we denote by RG its right derived functor. As D was assumed to be
fibrant, it follows that lim

←ÐI′∈sd(Sp(I))op DI′ computes the right derived functor of F . Hence,
we have

lim
←Ð

I′∈sd(Sp(I))op

DI′ = R(lim
←Ð
○j∗)(D) = (R lim

←Ð
) ○ (Rj∗)(D) = (R lim

←Ð
)j∗D ≃ ho lim

←Ð
(j∗D),

and we have shown that lim
←ÐI′∈sd(Sp(I))op DI′ computes precisely the homotopy limit in the

defining property of a décollage.

Theorem 5.2.2.20. The adjunction

∫

I
∆I ⊗ −I ∶DiagP ⇌ sStratP ∶HoLink

defines a simplicial Quillen equivalence between sStratcP and Diagdé
P , creating weak equivalences

in both directions.

Proof. We are first going to show that ∫
I ∆I ⊗−I sends the localizer defining Diagdé

P to weak
equivalences in sStratcP . It then follows by the universal property of Bousfield localization that
the adjunction in the statement of the theorem is a Quillen adjunction. We then show that
HoLink also preserves all weak equivalences. Since the ordinary unit of adjunction is given
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by weak equivalences, it follows from HoLinkI preserving weak equivalences that the derived
unit is also a weak equivalence. Consequently, the induced Quillen adjunction is a Quillen
equivalence, with (ordinary) unit and counit given by weak equivalences (Remark 5.2.2.3). To
see the statement about ∫

I∆I ⊗ −I , note that for K ⊂ N(P ) a subcomplex, we have

∫

I
∆I ⊗ (K ⊗D ∆0

)I =K.

Hence, the elements of the localizer defining Diagdé
P are mapped to the stratified inner horn

inclusions
ΛIk ↪∆I ,

which are acyclic cofibrations by definition of the model structure on sStratcP . To show the
statement about HoLinkI , observe that by Proposition 5.2.2.11 we may equivalently show that
Link preserves weak equivalences. As every object in sStratcP is cofibrant, this follows if we
can show that Link defines a left Quillen functor with respect to the localizations. Again, by
the universal property of the left Bousfield localization, it suffices to show that, for ΛJk →∆I
an inner horn inclusion (J = [q0 ≤ ⋯ ≤ qn]) that is not also admissible, the induced morphism

Link(ΛJk )↪ Link(∆J )

is a weak equivalence. Let J be the unique non-degenerate flag which J degenerates from.
Denote J0 ∶= J ∖ {pk} and J 0 = J ∖ {pk}. Since ΛJk ↪ ∆J is not admissible, we have that
Jpk

has length 0. If we apply Example 5.2.2.7, we obtain the following computations of
Link(ΛJk )↪ Link(∆J ) at I ∈ sd(P ):

(i) If I is not a subflag of J :
∅↪ ∅;

(ii) If I ⊂ J , I ≠ J and I ≠ J 0:

LinkI∆J → LinkI∆J ;

(iii) If I = J ,J 0:
LinkJ 0

(∂∆J0)↪ LinkJ 0
(∆J0).

Let us denote the inclusion of Description (iii) by S ↪D. Consider the canonical morphisms
(adjoint to the identities on S and D)

∆J ⊗D S → Link(ΛJk );

∆J ⊗D D → Link(∆J ) .

These morphisms induce a commutative diagram

∆J ⊗D S ∪ΛJ
l
⊗DS

ΛJl ⊗D D Link(ΛJk )

∆J ⊗D D Link(∆J ),

(5.4)

where l is uniquely determined by J = [q0 < ⋯ < qm] fulfilling, ql = pk. We claim that this
diagram is pushout. Proving this finishes the proof, since the left vertical is given by a box
product of a localizer defining Diagdé

P (namely ΛJl ⊗D ∆0 → ∆J ⊗D ∆0) with a cofibration
of simplicial sets (namely S ↪ D). Let us verify the cocartesianity of this diagram at each
I ∈ sd(P ). If I is not a subflag of J , then Diagram (5.4) is empty by Description (i). For
I ⊂ J , I ≠ J ,J 0, by Description (ii), both verticals are isomorphisms, which makes the
diagram cocartesian. Finally, by Description (iii), if I = J ,J0, then both horizontals are
isomorphisms.
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5.3 Combinatorial models over varying posets
In this section, we define global analogues of the Douteau-Henriques and the Joyal-Kan model
structures described in the previous section.

5.3.1 From local to global model structures
Now, let us piece the model structures on sStratP , where P varies over all posets, together to
model structures on sStrat. To do so, we make use of the following general principle, which is
the special case of the characterization of bifibrations over a model category in [CM20], where
the base category carries the trivial model structure (we use the notation of [CM20]). This
approach was first used in [Dou21c].
Lemma 5.3.1.1 ([CM20, Thm. 4.4]). Suppose that we are given a Grothendieck bifibration
P ∶M→ B. Suppose further that , for every A ∈ B, the fiber MA is equipped with the structure
of a model category and that, for every morphism u ∶ A → B in B, the induced functor
u!∶MA →MB is a left Quillen functor. Then M carries the structure of a model category with
the following defining classes. Let f ∶X → Y be a morphism in M:

1. f is a weak equivalence, if and only if P (f) is an isomorphism and f◁ is a weak
equivalence in MP (Y ) (or equivalently f▷ is a weak equivalence in MP (X)).

2. f is a cofibration, if and only if f▷ is a cofibration in MP (Y ).

3. f is a fibration, if and only if f◁ is a fibration in MP (X).

Furthermore, assume that M is a simplicial category and P a simplicial functor (with respect
to the discrete structure on B) such that u! ⊣ u

∗ is a simplicial adjunction, for all u ∈ B. If
for each A ∈ B, the category MA is a simplicial model category with respect to the simplicial
structure inherited from M, then so is M.

To apply Lemma 5.3.1.1 to glue the fiberwise model structures on sStratP , we need the
following lemma.
Proposition 5.3.1.2. For any morphism of posets u∶P → P ′, the induced adjunction

u!∶ sStratP ⇌ sStratP ′ ∶u
∗

- given by postcomposition and pulling back along u - is a simplicial Quillen adjunction, with
respect to the Douteau-Henriques and the Joyal-Kan model structures (taken the same on both
sides, respectively). Furthermore, again in both scenarios, u! reflects fibrations and creates
acyclic fibrations.

Proof. Simpliciality is immediate by definition. Clearly, u! preserves all cofibrations. Further-
more, u! preserves admissible horn inclusions, which shows the case of the Douteau-Henriques
model structure, as the latter generate the acyclic cofibrations. For the case of the Joyal-Kan
model structure, by Proposition 5.2.1.3, it suffices to show that u! sends stratified inner horn
inclusions to acyclic cofibrations. Clearly, the image of every stratified inner horn inclusion
under u! remains an inner horn inclusion. This shows that u! is left Quillen. Now to see that
u! reflects (acyclic) fibrations, note that for any lifting diagram

A X

B Y

(5.5)

any dashed solution to
u!A u!X

u!B u!Y

(5.6)
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already provides a solution to Diagram (5.5). Indeed, commutativity at the level of simplicial
sets already implies that B → X is stratum-preserving, as all these diagrams can be considered
in the slice category over Y , which is independent from the stratifications. Hence, the reflection
property follows from u! being left Quillen. That u! preserves acyclic fibrations follows similarly,
if we note that every lifting diagram

A u!X

B u!Y

(5.7)

lies in the image of u! and that u! creates cofibrations.

Definition 5.3.1.3. We denote by sStratd,p and sStratc,p the simplicial model categories
with underlying category sStrat, defined by applying Lemma 5.3.1.1 to the forgetful functor

sStrat→ Pos,

with the fiberwise model structures given by sStratdP and sStratcP , for P ∈ Pos, respectively.
The model structure on sStratd,p is called the Douteau-Henriques model structure on sStrat.
The model structure on sStratc,p, is called the Joyal-Kan model structure on sStrat. Weak
equivalences in these model categories are called poset-preserving diagrammatic equivalences
and poset-preserving Joyal-Kan equivalences, respectively.

Let us begin our investigation of these model structures with the following observation:

Lemma 5.3.1.4. Let X ∈ sStrat and let f ∶Q → PX , g∶PX → Q′ ∈ Pos. Then the induced
natural map f∗X → X is a fibration and the natural map X → g!X is a cofibration, in sStratc,p
and sStratd,p.

Proof. This is immediate from the simple observation that f◁ and g▷ are both given by
isomorphisms (the identity even).

Proposition 5.3.1.5. Weak equivalences in sStratc,p and sStratd,p are stable under filtered
colimits.

Proof. Note that as every weak equivalence is given on posets by an isomorphism, and filtered
diagrams lack monodromy, it follows that the colimit of all posets involved is canonically
isomorphic to any of the posets in the filtered diagram, and we may easily reduce the statement
to such diagrams of weak equivalences, which are given by the identity on the poset level. Now,
the result follows from Proposition 5.2.1.6.

Remark 5.3.1.6. Note that the acyclic fibrations in sStratd,p and sStratc,p are precisely the
stratified maps that induce an isomorphism on posets and an acyclic fibration (in the Joyal or
Kan model structure) on simplicial sets. Indeed, this follows by applying Proposition 5.3.1.2
to u∶P → [0].

We may then state the following global version of [Hai23, Cor. 2.5.11].

Recollection 5.3.1.7. Recall by [Lur09] that the quasi-category of all (small) quasi-categories
Cat∞ is given by the homotopy coherent nerve of the simplicial category Cat∞, whose objects
are small quasi-categories X, and whose mapping spaces are given by the Kan complexes
s̃Set(X,Y )≃, given by the maximal Kan complex in s̃Set(X,Y ). The infinity category of
abstract stratified homotopy types (see [Hai23]), denoted AStrat, is the full subcategory of the
arrow quasi-category Cat∆1

∞ of conservative functors F ∶X → P , where P is a poset. (The tilde
over sSet indicates that, in order to avoid set-theoretic issues, s̃Set is modeled on a larger
Grothendieck universe than sSet.)

Proposition 5.3.1.8. sStratc,p presents the ∞-category of abstract stratified homotopy types.
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Proof. A stratified simplicial set X ∈ sStratc,p is fibrant, if and only if it is fibrant as an
element of sStratcP , with P = PX . It follows that the bifibrant objects of sStratc,p are precisely
the abstract stratified homotopy types. Next, consider the simplicial functor category Cat[1]∞ ,
i.e. the simplicial category of arrows in Cat∞. Given two such fibrant objects X and Y,
Cat[1]∞ (X ,Y)[n] is given by the set of such morphisms

F ∶ (X ×∆n
→ PX ×∆n

)→ (Y → PY)

which fulfill
F0({x} ×∆n

) ⊂ Y ≃ and F1({p} ×∆n
) ⊂ P ≃Y for x ∈X,p ∈ P.

Note that since sY is a conservative functor, the condition that F ({x} ×∆n) ⊂ Y ≃, for x ∈X,
is redundant. Furthermore, P ≃ is discrete (every isomorphism in a poset is the identity).
Therefore, the condition F1({p} ×∆n) ⊂ P ≃Y is equivalent to saying that F1∶P ×∆n → PY is of
the form P ×∆n → P

u
Ð→ PY . Hence, Cat[1]∞ (X ,Y)[n] is equivalently the set of stratified maps

X ⊗∆n
→ Y

which is precisely sStrat(X ,Y)[n]. To summarize, we have shown that if we denote by sStrato
the simplicial category of bifibrant objects in sStratc,p, then sStrato is even isomorphic to
the full subcategory of Cat[1]∞ given by conservative functors into a poset. Making use of this,
we treat sStrato as a full subcategory of Cat[1]∞ . Denote by (Cat[1]∞ )o the full subcategory
of Cat[1]∞ given by such functors f ∶X → Y that are an iso-fibration, i.e. the full simplicial
subcategory of bifibrant objects in the injective model structure. (Cat[1]∞ )o is a model for
the category of arrows in Cat∞ in terms of simplicial categories. More precisely, if we denote
by Isofib the full subcategory of Cat∆1

∞ of isofibrations, then there is a natural zig-zag of
Joyal-equivalences

Cat∆1

∞
≃
←Ð↩ Isofib ≃

Ð→ N((Cat[1]∞ )
o) .

The left-hand side equivalence follows from fibrant replacement in the Joyal model structure.
The right-hand equivalence is induced by the natural transformations S(∆n×∆1)→ S(∆n)×[1],
where S is the left-adjoint of the homotopy coherent nerve, and is a weak equivalence by [Lur09,
A.3.4.13.] applied to the model structure of marked simplicial sets presenting (∞, 1)-categories.
Note that every conservative functor from a quasi-category into a poset is necessarily an
isofibration. Indeed, every functor with target the nerve of a 1-category is an inner fibration,
and every isomorphism in a poset is the identity, which clearly admits a lift. It follows that
AStrat ⊂ Isofib as a full subcategory and that sStrato ⊂ (Cat[1]∞ )o. We thus obtain a
commutative square

Isofib N((Cat[1]∞ )o)

AStrat N(sStrato) ,

≃

f.f. f.f.
(5.8)

with the lower horizontal induced by the fact that the composition of the left vertical and
right horizontal has image in N(sStrato). This dashed functor even is a bijection on objects,
as we have already noted in the beginning of this proof. Furthermore, by commutativity of
the diagram, it is fully faithful. Hence, we have constructed an equivalence of quasi-categories
AStrat ≃ N(sStrato) as claimed.

Next, we gather some general properties of the model categories sStratc,p and sStratd,p.
We begin with the following general lemma.

Lemma 5.3.1.9. In the situation of Lemma 5.3.1.1, assume that P ∶M → B admits a left
adjoint L∶B→M. Furthermore, let S be a set of morphisms in B, such that a morphism u in
B is an isomorphism if and only if it has the right lifting property with respect to S. Let I be
a set of (acyclic) cofibrations in M such that:
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1. Each i ∈ I is contained in some fiber MA, for some A ∈ B.

2. For each A ∈ B, the set
{u!i ∣ i ∈ I, u∶B → A,B ∈ B}

is a set of generating (acyclic) cofibrations for MA.

Then L(S) ∪ I (I) is a set of generating (acyclic) cofibrations for M.

Proof. We prove the case of cofibrations. Consider a morphism f ∶X → Y in M. We need to
show that f is an acyclic fibration (i.e. P (f) is an isomorphism and f◁ is an acyclic fibration
in MP (X)), if and only if f has the right lifting property with respect to L(S) ∪ I. Note that
by the adjunction L ⊣ P , the map P (f) is an isomorphism, if and only if f has the right
lifting property with respect to L(S). Hence, in the following we may assume without loss of
generality that P (f) = 1X . Next, note that since P is a Grothendieck left fibration, any lifting
problem

X0 X

X1 Y

i

g

f (5.9)

with P (i) an identity is equivalent to a unique lifting problem

P (g)!X0 X

P (g)!X1 Y.

P (g)!i f (5.10)

Hence, as {u!i ∣ i ∈ I, u∶B → A,B ∈ A} is a set of generating cofibrations for MP (X), follows
that f◁ is an acyclic fibration, if and only if f has the right lifting property with respect to
I.

Corollary 5.3.1.10. The model category sStratd,p is cofibrantly generated. A generating
set of cofibrations is given by the set of stratified boundary inclusions {∂∆[n] ↪∆[n] ∣ n ∈ N},
together with the two morphisms

∅ ∅ ∅ ∅

∅ [0] , [0] ⊔ [0] [1] .

(5.11)

A generating set of acyclic cofibrations for sStratd,p is given by the set of admissible horn
inclusions

Λnk ∆n

[m] ,

(5.12)

for n,m ∈ N.

Proof. This is a consequence of Lemma 5.3.1.9. Note that i∶L(∂∆1 ↪∆1) = (∂∆[1] ↪∆[n])
while being a cofibration, is not contained in a fiber of sStrat→ Pos. However, we may replace
i by the stratified simplicial map obtained by pushing out along the stratified simplicial map

∂∆1 ∂∆1

[0] ⊔ [0] [1] .

1

s
L(∂∆1) (5.13)
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Denote by I the class of cofibrations in sStrat obtained in this manner. Now, let us verify the
requirements of Lemma 5.3.1.9. First, note that the forgetful functor sStrat → Pos admits
a left adjoint given by mapping P to ∅ → P . The two morphisms of posets ∅ → [0] and
[0] ⊔ [0] ↪ [1] detect all isomorphisms of posets. Indeed, the former detects surjectivity.
The latter detects surjectivity on relations. Any morphism of posets which is surjective on
points and relations is necessarily an isomorphism. For any P ∈ Pos, the stratified boundary
inclusions over P , together with the admissible horn inclusions, form sets of (acyclic) cofibrant
generators (see Recollection 5.2.1.1). Clearly, the elements of these sets are respectively of
the form u!(i), for i ∈ I or i an admissible horn inclusion as in the statement of the corollary,
where u is an appropriate map of posets with target P .

Next, we show that sStratc,p is cofibrantly generated. However, since we lack an explicit
set of acyclic generators for sStratcP , some additional work needs to be done to show that
there is a set of acyclic generators for sStratc,p. We are going to take a slight detour to see
this. As a corollary of Proposition 5.2.1.3, we have:

Proposition 5.3.1.11. sStratc,p is the left Bousfield localization of sStratd,p at the class of
inner stratified horn inclusions

Λ[n]k ↪∆[n]

for 0 < k < n.

We may then conclude:

Proposition 5.3.1.12. The simplicial model categories sStratc,p and sStratd,p are cofibrant
and combinatorial.

Proof. Cofibrancy is obvious. It is not hard to see that sStrat is generated by the sources and
targets of the generating cofibrations in Corollary 5.3.1.10, under filtered colimits. It follows
that sStrat is finitely locally presentable. Since sStratd,p is cofibrantly generated, we may
hence conclude that sStratd,p is combinatorial. As sStratc,p is a left Bousfield localization
of sStratd,p at a set of morphisms, it follows by [Bar10, Thm. 4.7] that sStratc,p is also
combinatorial.

5.3.2 Model structures of refined stratified simplicial sets
For classical examples of stratified spaces the stratification poset is usually strongly related
to the topology of the underlying space. In fact, originally, the poset structure arises from
the closure containment relation on a partition of a space into disjoint subsets ([Mat12]). For
general stratified simplicial sets, X , the only relationship between the underlying object and
P is that the existence of an edge x → y implies a relation sX (x) ≤ sX (y). This degree of
generality is, of course, necessary when we are working over a fixed poset, at least if we want
to have access to all stratified simplices over Pos. If we allow for flexible posets, however, then
this amount of generality has some peculiar side effects. In fact, we may take it to the extreme
as follows:

Remark 5.3.2.1. Denote by L∶Pos→ sStrat the left adjoint to the forgetful functor sStrat→
Pos, given by P ↦ (∅ → P ). Clearly, L is fully faithful. If we equip Pos with the trivial
model structure (in which weak equivalences are precisely the isomorphisms, and all maps
are cofibrations and fibrations), then L becomes a left Quillen functor with target sStratc,p
(sStratd,p). One may then verify that L induces a fully faithful embedding Pos↪ hosStratc,p
(hosStratd,p). In other words, the homotopy category hosStratc,p contains a complete copy
of Pos, consisting of empty stratified simplicial sets.

We may aim for a notion of stratified simplicial sets for which the poset structure is minimal
in some sense, which at least should imply that maps are uniquely determined on the level of
simplicial sets. To do so, let us first consider the following functor:
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Construction 5.3.2.2. Consider the fully faithful inclusion

Pos↪ sSet

given by taking the nerve of a poset. It admits a left adjoint, which we denote P , explicitly
constructed by sending K to the poset generated from K0 by adding the relation

x ≤ y ⇐⇒ ∃f ∶x→ y with f ∈ τ(X).

where τ(X) is the homotopy category of X. In particular, this means that whenever there are
arrows f ∶x→ y, g∶ y → x in τ(X), then x = y in P (X).

Remark 5.3.2.3. One should be careful to note that there is a certain overload of notation
here. Namely, there are two ways of associating to a stratified simplicial set X a poset. We
may either associate to it the poset PX , or the poset P (X). These two posets will generally
be different, as is evident from the fact that P (X) does not depend on the stratification of X .

It follows immediately from the definition in Construction 5.3.2.2 that the construction
factors through taking homotopy categories and one obtains:

Lemma 5.3.2.4. Let f ∶X → Y in sSet be a categorical equivalence. Then P (f) is an
isomorphism.

Remark 5.3.2.5. Now, to remove redundancies in the stratification poset, at first glance, one
may try to invert the stratified maps

X X

P (X) PX .

1

sX (5.14)

This does, however, not lead to a meaningful homotopy theory of stratified spaces. Denote
the functor X ↦ (X → P (X)) by (−)red. Consider a stratified simplicial set X , and consider
X as a trivially stratified simplicial set. Then, if we invert X red → X and Xred →X, we obtain
weak equivalences

X ≃Xred
= X

red
≃ X ,

in other words: We forget all stratifications and simply recover classical homotopy theory.
Instead, we need to work with a derived version of the functor X ↦ P (X), which remembers
which paths are within a stratum and should be considered invertible.

Proposition 5.3.2.6. Let X ,Y ∈ sStrat such that all strata of X and Y are Kan complexes.
Then, for any weak equivalence f ∶X → Y in sStratc,p the induced morphism of posets P (X)→
P (Y ) is an isomorphism.

Proof. Without loss of generality, we may assume that f is the identity on posets PX = PY = P ,
i.e., that f is a weak equivalence in sStratcP . sStratcP is equivalently constructed by localizing
the model structure on the overcategory sSet/P , coming from the Joyal model structure on
sSet, at inclusions ∆[p≤p] ↪∆[p≤p≤p] ∪∆{0,2} ∆[p], for p ∈ P . Indeed, being local with respect
to these inclusions precisely means that every morphism in the fibers is an isomorphism,
that is, that X → P induces a conservative functor of infinity categories (after fibrantly
replacing X). It follows that X and Y are local with respect to these inclusions. Hence, f
is a Joyal-Kan equivalence in sStratP , if and only if the underlying simplicial map X → Y
is a categorical equivalence ([nLa24i, Prop. 6.3]). Consequently, f induces an equivalence
of homotopy categories τ(X) → τ(Y ). It follows by construction of P ∶ sSet → Pos that the
induced morphism P (f) is an isomorphism.

In particular, the right derived functors of P ○F ∶ sStratc,p, sStratd,p → Pos agree and may
be computed by only replacing strata by Kan complexes.
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Notation 5.3.2.7. We denote the right derived functor (with respect to sStratc,p or sStratd,p)
of the composition

sStrat FÐ→ sSet
P (−)
ÐÐÐ→ Pos

by P−r . For X ∈ sStrat, we call PX r the refined poset associated to X .

As an immediate corollary of Proposition 5.3.2.6 we have:

Corollary 5.3.2.8. Let X ∈ sStrat such that all strata of X are Kan complexes. Then, the
canonical map

P (X)→ PX r ,

is an isomorphism.

We obtain the following explicit description of PX r .

Proposition 5.3.2.9. Let X ∈ sStrat. Then the underlying set of PX r is the set of path
components of non-empty strata of X . Furthermore, for any two such components [x] and [y],
for x, y ∈X, there is a relation x ≤ y, if and only if there is a path of 1-simplices

x = x0 ↔ x1 ↔ x2 ↔ ⋯↔ xn = y

where only simplices that are contained within a stratum of X are allowed to point in direction
of x.

The following lemma follows from the explicit description Proposition 5.3.2.9.

Lemma 5.3.2.10. The functor P−r ∶ sStrat→ Pos preserves filtered colimits.

Construction 5.3.2.11. For X ∈ sStrat we denote by X r, its so-called refinement, is given
by the canonical simplicial map X → PX r that maps a vertex to the path component of its
stratum (using the explicit construction of PX r as in Proposition 5.3.2.9). This construction
induces an idempotent functor

(−)
r
∶ sStrat→ sStrat

together with a natural transformation X r → X , given by

X X

PX r PX

1X

(5.15)

where the lower map maps a path component to the stratum it is contained in.

Definition 5.3.2.12. A stratified simplicial set X ∈ sStrat is called refined if the natural
stratified map X r → X is an isomorphism.

Being refined may be interpreted as being stratified in a way that uses the minimal poset
(in the sense of minimal amounts of elements and relations) capable of reflecting the same
stratified topology (see [Waa24c], or specifically Section 7.5.3 in this text, for topological
characterizations).

Remark 5.3.2.13. Note that by Proposition 5.3.2.9, it follows that a stratified simplicial set
X ∈ sStrat is refined if and only if sX ∶X → PX does not have empty strata, and whenever
there is a relation sX (x) ≤ sX (y), for x, y ∈X([0]) there is a sequence

x = x0 ↔ x1 ↔ x2 ↔ ⋯↔ xn = y

of 1-simplices in X, with sX (x) = p and sX (y) = q, and such that only simplices that are
contained in one stratum are allowed to point in the direction of x. In particular, all strata
are path connected.
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Remark 5.3.2.14. If X ∈ Strat is fibrant in sStratc,p, that is, given by a quasi-category
X together with a conservative functor X → PX then being refined is equivalent to being
0-connected, in the sense of [BGH18, Def. 2.3.6]. See also Remark 5.3.2.21.

One may now easily verify the following:

Proposition 5.3.2.15. The refinement functor X ↦ X r has image in the full simplicial
subcategory of refined stratified simplicial sets X r. It induces the right adjoint to the inclusion
of refined stratified simplicial sets into all stratified simplicial sets. The counit of adjunction is
given by the refinement morphisms X r → X .

By Lemma 5.3.2.10 we have:

Lemma 5.3.2.16. The functor (−)r∶ sStrat→ sStrat preserves filtered colimits.

Let us begin by investigating how (−)r interacts with the model structures on sStrat.

Construction 5.3.2.17. We will make use of the stratified Ex∞ functors of [DW22, Def. 3.7]
(these were referred to with a “naiv” exponent in Definition 3.3.1.7). Denote by sd∶ sSet →
sSet the barycentric subdivision functor and by Ex its right-adjoint (see [Kan57]). These
constructions are extended to stratified spaces as follows: For X ∈ sStrat, we denote by ExX
the stratified simplicial set obtained by the left vertical in the pullback square

F(ExX ) ExX

PX ExPX .

(5.16)

This construction induces a right adjoint to the stratified subdivision functor X ↦ (sdX →
X → PX ) . There is a natural inclusion X ↪ ExX adjoint to the stratified last vertex map
sdX → X . We denote by Ex∞X the colimit of the diagram

X ↪ ExX ↪ Ex2
X ↪ ⋯ .

One may easily verify that Ex∞ is compatible with taking strata, in the sense that (Ex∞X )p =
Ex∞(Xp), for p ∈ PX . It follows from the classical results of [Kan57] that Ex∞X has strata
given by Kan complexes. We have shown in [DW22, Prop. 3.9] (see Proposition 3.3.1.9 in
this text) that the natural inclusion X ↪ Ex∞X is an acyclic cofibration in sStratd,p. In
particular, we can compute

PX r = P (F(Ex∞X )),
for all X ∈ sStrat.

Proposition 5.3.2.18. The functors

(−)
r
∶ sStratd,p → sStratd,p;

(−)
r
∶ sStratc,p → sStratc,p

preserve cofibrations, acyclic fibrations, and acyclic cofibrations. In particular, they preserve
weak equivalences. Furthermore, a cofibration j that induces an isomorphism on posets is
acyclic if and only if jr is an acyclic cofibration.

Proof. To see the statement concerning acyclic fibrations, note that both model categories we
are concerned with have the same acyclic fibrations, and by Remark 5.3.1.6 these are precisely
given by such morphisms which induce isomorphisms on posets, and acyclic fibrations in the
Joyal model structure on the underlying simplicial sets. Hence, we only need to show that for
an acyclic fibration X → Y , without loss of generality over the same poset P , the induced map
PX r → PYr is an isomorphism. Now, just as in the classical scenario [Kan57], one may show
that the functor Ex∞∶ sStrat→ sStrat preserves acyclic fibrations. Therefore, we may assume
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without loss of generality that X and Y have strata given by Kan complexes, and hence that
PX r = P (X) and PYr = P (Y ). As any acyclic fibration is a categorical equivalence in sSet, it
follows that f induces an isomorphism P (X) = PX r → PYr = P (Y ), as was to be shown. It
remains to show the statement on acyclic cofibrations. Clearly, (−)r creates cofibrations, as
these are defined only in terms of the underlying simplicial sets. Thus, it suffices to show that
a cofibration j∶A↪ B that is an isomorphism on posets is a weak equivalence, if and only if jr
is a weak equivalence. Without loss of generality, we may assume that j is the identity on
posets. Furthermore, since (−)r is given by P−r on the posets level, which is a derived functor,
it follows that jr also is given by an isomorphism on posets. Hence, we also assume that jr is
given by the identity on the latter. Denote by Q = PBr and by Q the stratified simplicial set
given by Q→ P . We may thus consider j as an object of the slice category (sStratP )/Q. We
may then instead show the following stronger claim: The isomorphism of simplicial categories

(sStratP )/Q → sStratQ

is an isomorphism of model categories, where on the left-hand side we use the slice model
structure (with respect to sStratdP or sStratcP ).
Note that as this is an isomorphism of simplicial categories, and the cofibrations in all categories
involved are given by monomorphisms, it suffices to show that the isomorphism identifies
the classes of fibrant objects. On the left-hand side, these are given by fibrations X → Q
(respectively in sStratdP and sStratcP ). By Proposition 5.3.2.9, the map f ∶Q→ P has fibers
which contain no relations, but the identity. In other words, the functor f ∶Q→ P is conservative.
It follows from this (using [Lur09, Prop. 2.4.1.5]), that f has the right lifting property with
respect to all inner and admissible horn inclusions. Hence, Q is a fibrant object of sStratdP
and of sStratcP . Consequently, we only need to show that X being fibrant implies X → Q
being a fibration, in both scenarios. Since Q is fibrant in both scenarios, fibrancy of X → Q
can be checked by having the right lifting property with respect to admissible, and inner and
admissible horn inclusions, respectively. Now, consider a lifting diagram

ΛJk X

Q

∆J P

(5.17)

where the solid part of the diagram commutes, and the dashed map makes the upper and
lower triangle of the outer rectangle diagram commute. Furthermore, assume that the left
vertical horn inclusion is either admissible or inner. To finish the proof, it suffices to prove that
this also implies that the middle triangle commutes. Since Q is a simplicial complex, it suffices
to verify commutativity on vertices. If a vertex x ∈∆J lies in ΛJk , then, by commutativity of
the upper left triangle, there is nothing to show. Hence, we may restrict to the case where ΛJk
is admissible and ∆J of dimension 1, i.e. J = [p ≤ p] and k = 0 or k = 1. Then, however, we
may without loss of generality assume that P = {p} is a singleton. Since f ∶Q→ P has discrete
fibers, this means that Q is discrete. In this case, commutativity of the middle triangle follows
immediately from commutativity of the upper left triangle, using path connectedness of ∆J .

We may now use the refinement functor to obtain model structures which will take care of
the pathologies we explain in Remark 5.3.2.1. The model structure derived from the Joyal-Kan
model structure on sStrat will allow us to think of stratified spaces as fully faithfully embedded
into ∞-categories (Theorem 5.3.3.6). We now define model categories presenting homotopy
theories of (certain) refined stratified simplicial sets. These are constructed by forcing X r → X

to be a weak equivalence, and hence turn out to be right Bousfield localizations (and thus
coreflective localizations).
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Theorem 5.3.2.19. Let S be the class of refinement morphisms {X r → X ∣ X ∈ sStrat}. Then
the right Bousfield localization of sStratd,p (sStratc,p) at S exists and is again combinatorial
and simplicial. Its defining classes can be characterized as follows:

(i) The cofibrations are generated by the set of stratified boundary inclusions ∂∆[n] ↪∆[n]
together with the boundary inclusion ∂∆[1] ↪∆1 into the trivially stratified simplex.
Equivalently, cofibrations are precisely those morphisms j∶A→ B that induce a monomor-
phism on simplicial sets (i.e. are a cofibration in sStratd,p or sStratc,p) and are
furthermore such that the diagram

Ar Br

A B

(5.18)

is pushout. In particular, the cofibrant objects are precisely the refined stratified simplicial
sets.

(ii) Weak equivalences are precisely those morphisms f ∶X → Y for which f r is a weak
equivalence in sStratd,p (sStratc,p).

(iii) Acyclic fibrations are precisely those morphisms f ∶X → Y, for which f r is an acyclic
fibration in sStratd,p (or equivalently in sStratc,p). In other words, f induces an
isomorphism on refined posets and an acyclic fibration on the underlying simplicial sets.

(iv) Fibrations and acyclic cofibrations are the same as in sStratd,p (sStratc,p).

Proof. We denote by I the set of generating cofibrations described in (i) and by W the class of
weak equivalences described in (ii). Furthermore, we denote by inj(I) the class of morphisms
that have the right lifting property with respect to I, and denote cof(I) the class of morphisms
that have the left lifting property with respect to inj(I). Finally, denote by AC and F the
classes of acyclic cofibrations and fibrations in sStratd,p (sStratc,p). To prove the existence
of the localization above, it suffices to show the following:

(a) inj(I) is precisely the class of morphisms described in (iii).

(b) cof(I) ∩W = AC.

To see this, note first that it follows from the small object argument that cof(I) and inj(I) form
a weak factorization system. AC and F form a weak factorization system, by the respective
property of sStratd,p (sStratc,p). Hence, it only remains to show F ∩W = inj(I). That
inj(I) ⊂W follows by the characterization in (iii). That inj(I) ⊂ F follows from F = inj(AC)
and AC ⊂ cof(I). Finally, to see that F ∩W = inj(I), consider f ∶X → Y ∈ F ∩W as well as
factorization

X
i
↪Ð→ X̂

f̂
Ð→ Y

of f into i ∈ cof(I) and f̂ ∈ inj(I). Since f, f̂ ∈W , it follows by two-out-of-three, that the same
holds for i. It follows from Claim (b) that i ∈ AC. In particular, i has the left lifting property
with respect to f from which it follows that f is a retract of f̂ , and hence an element of inj(I).
Let us assume that we have shown Claims (a) and (b) as well as the equivalence in (i) for now.
Note that the thus defined model category is again combinatorial. Indeed, we have provided a
set of generators for cofibrations in (i) and a set of generators for acyclic cofibrations is given
by the ones for sStratd,p (sStratc,p). Next, let us verify simpliciality. Suppose that i∶A→ B
lies in cof(I) and that j∶A→ B is a cofibration of simplicial sets. We need to show that

f ∶C ∶= B ⊗A ∪A⊗A A⊗B → B ⊗B =∶ D
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again lies in cof(I). That the induced map of simplicial sets is a monomorphism is immediate
from the corresponding statement on simplicial sets. Note that, by the equivalent characteriza-
tion of cof(I) in (i), cof(I) has the property that for any morphism g ∈ sStrat that induces a
monomorphism on simplicial sets and any i′ ∈ cof(I) with target the source of g, it holds that

g ∈ cof(I) ⇐⇒ g ○ i′ ∈ cof(I).

Thus, it suffices to show that

B ⊗A→ B ⊗B

and
B ⊗A→ B ⊗A ∪A⊗A A⊗B

are in cof(I). Using the stability of cof(I) under pushouts, we may thus reduce to the cases
where either A or A is empty, i.e. C is of the form B ⊗A or A⊗B. Now, again using (i), and
the fact that pushout diagrams in sStrat are detected on the poset and simplicial set level, it
suffices to show that

PCr PDr

PC PD

(5.19)

is a pushout diagram in Pos. Finally, note that applying −⊗K acts as −×π0(A) (with π0(A)
equipped with the discrete poset structure) both on the level of posets as well as on the level
of refined posets. If A = ∅, then by assumption PBr → PB is an isomorphism and it follows
that Diagram (5.19) is of the form

PBr × π0(A) PBr × π0(B)

PB × π0(A) PB × π0(B) ,

≅ ≅ (5.20)

with horizontals induced by j. Since both verticals are isomorphisms, this diagram is pushout.
If A is empty, then Diagram (5.19) is of the form

PAr × π0(B) PBr × π0(B)

PA × π0(B) PB × π0(B) ,

(5.21)

with horizontal induced by i. Consequently, it follows from

PAr PBr

PA PB

(5.22)

being pushout by assumption, that Diagram (5.19) is also pushout in this case.
Finally, if either i or j is an acyclic cofibration, then it follows by the simpliciality of sStratd,p
(sStratc,p) and Claim (b) that f is also an acyclic cofibration.
To finish the proof, it remains to show Claims (a) and (b) as well as the equivalence in (i).
This is the content of Lemmas 5.3.2.28 to 5.3.2.30.

Definition 5.3.2.20. We denote by sStratd and sStratc, respectively, the simplicial right
Bousfield localizations in Theorem 5.3.2.19. They are, respectively, called the diagrammatic
and the categorical model structure on sStrat. Weak equivalences in sStratd are called
diagrammatic equivalences. Weak equivalences in sStratc are called Joyal-Kan equivalences.
We call the homotopy theory presented by sStratc the (∞,1)-category of refined abstract
homotopy types and denote it by AStratr.
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Remark 5.3.2.21. It follows from Remark 5.3.2.14 that the refined abstract stratified
homotopy types are precisely what [BGH18] calls 0-connected stratified spaces. In this sense,
the part of Theorem 5.3.2.19 that is concerned with the Joyal-Kan model structure can be
taken to be the construction of a model structure presenting 0-connected stratified spaces.

Let us also make the following observation, which is immediate from the characterization
of the defining classes in Theorem 5.3.2.19.

Lemma 5.3.2.22. For any X ∈ sStrat, the natural transformation X r → X is an acyclic
fibration in sStratd (sStratc). It defines a cofibrant replacement of X ∈ sStratd (sStratc).

Furthermore, we are going to need the following property of the refined model structures,
which follows from Lemma 5.3.2.16 and Proposition 5.3.1.5.

Lemma 5.3.2.23. Weak equivalences in sStratd and sStratc are stable under filtered colimits.

Also note that it follows from Theorem 5.3.2.19 together with Proposition 5.3.1.11 that:

Proposition 5.3.2.24. sStratc is the left Bousfield localization of sStratd at the set of
stratified inner horn inclusions {Λ[n]k ↪∆[n] ↪∆n ∣ 0 < k < n}.

Finally, the following observation will be useful when passing to the topological scenario:

Proposition 5.3.2.25. Let f ∶X → Y be a stratified simplicial map between stratified simplicial
sets X ,Y whose strata are Kan complexes. Then f is a Joyal-Kan equivalence if and only
if the underlying map of simplicial sets F(f) is a categorical equivalence (also called Joyal
equivalences).

Proof. By definition, f is a Joyal-Kan equivalence if and only if f r is a categorical equivalence.
By [Hai23, Thm. 0.2.2.2] this is, in turn, equivalent to the following two conditions being
fulfilled.

1. The underlying simplicial map of f , F(f), is a categorical equivalence.

2. f induces an isomorphism on refined posets.

However, to compute the map on refined posets, by Corollary 5.3.2.8, there is no need to derive
at all, and it is given by P (F(f)). Since F(f) is a categorical equivalence, it follows from
Lemma 5.3.2.4 that the second condition is redundant, as was to be shown.

We may summarize the whole situation as follows.

Proposition 5.3.2.26. The simplicial, combinatorial model structures on sStrat fit into a
diagram of Bousfield localizations

sStratd,p sStratc,p

sStratd sStratc

(5.23)

with the verticals right Bousfield and the horizontals left Bousfield. The verticals are obtained
by localizing the stratified inner horn inclusions. The horizontals are obtained by localizing the
refinement morphisms X r → X .

Furthermore, consider the following result which - retroactively - justifies the naming
conventions for the different notions of equivalences of stratified simplicial sets:

Proposition 5.3.2.27. Let f ∶X → Y be a stratified simplicial map. Then f is a poset-
preserving Joyal-Kan equivalence if and only if f is a Joyal-Kan equivalence and the underlying
map of posets, P (f)∶PX → PY , is an isomorphism. The analogous result for diagrammatic
equivalences holds.
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Proof. Both in the diagrammatic and categorical scenario, the only if case is immediate
by Proposition 5.3.2.18 together with the idempotency of the refinement functor, and the
characterization of weak equivalences in Theorem 5.3.2.19. Next, let us show the if case in the
case of Joyal-Kan equivalences. Consider the commutative diagram

X Y

Ex∞X Ex∞Y

Ex∞X r Ex∞Yr

X r Yr ,

≃

≃

≃

≃

≃

≃ ≃

(5.24)

and note that all but the upper most row has the property that all stratified simplicial sets
involved have strata given by Kan complexes. We have marked all maps which are known
to be Joyal-Kan equivalences from previous results in this article with a ≃ symbol. That
these maps are weak equivalences follows either by assumption, or from the natural map
1 → Ex∞ even being a poset-preserving diagrammatic equivalence (see [DW22, Prop. 3.9],
which is Proposition 3.3.1.9 in this text). A quick diagram chase using the two-out-of-three
property shows that all morphisms in the diagram are Joyal-Kan equivalences. It follows from
Proposition 5.3.2.25 that the underlying simplicial map of Ex∞X → Ex∞Y is a categorical
equivalence. Hence, by [Hai23, Thm. 0.2.2.2], using the assumption that X → Y induces
an isomorphism on posets, it follows that Ex∞X → Ex∞Y is a poset-preserving Joyal-Kan
equivalence. Finally, the upper two verticals are also poset-preserving Joyal-Kan equivalences
(diagrammatic even), from which, again by two-out-of-three, it follows that X → Y is a poset-
preserving Joyal-Kan equivalence. It remains to show that a stratified simplicial map that
induces isomorphisms on the poset level and is a diagrammatic equivalence is a poset-preserving
diagrammatic equivalence. Let I be a non-degenerate flag of PX . We obtain an induced
commutative diagram of simplicial sets

⊔I′↦I HoLinkI′(X r) ⊔I′↦P (f)(I)HoLinkI′(Yr)

HoLinkI(X ) HoLinkP (f)(I)(Y) ,

(5.25)

where the coproducts are indexed over regular flags mapping to I (respectively P (f)(I))
under PX r → PX (PYr → PY). Since X → Y and X r → Yr are assumed to be injective on the
poset level, the two horizontals are well-defined. By assumption, the upper horizontal is a
weak homotopy equivalence of simplicial sets. Furthermore, it follows from an application of
Proposition 5.3.2.15 that the two verticals are isomorphisms of simplicial sets. Hence, the lower
vertical is a weak homotopy equivalence. Since X → Y is assumed to induce an isomorphism
on the poset level, it follows that it is a poset-preserving diagrammatic equivalence.

Now, let us prove the remaining open statements.

Lemma 5.3.2.28. In the framework of Theorem 5.3.2.19 and its proof, inj(I) is the class of
stratified maps f ∶X → Y such that f r is an isomorphism on posets and the underlying simplicial
map of f is a trivial fibration (with respect to any of the model structures on presheaves on
sSet). In other words, f ∈ inj(I) if and only if f r is an acyclic fibration in sStratd,p (or
equivalently in sStratc,p).

Proof. Denote by S the set of boundary inclusions in sSet and by i ∈ sStrat the remaining
cofibration ∂∆[1] → ∆1 specified in the statement of the theorem. It follows from the adjunction
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of L∶ sSet→ sStrat with the forgetful functor sStrat→ sSet, that f ∈ inj(L(S)) if and only if
the underlying simplicial map is an acyclic fibration. Let us now assume that f ∈ L(S). Under
this assumption, we show that f ∈ inj(i) is equivalent to the induced map f̃ ∶PX r → PYr being
an isomorphism. f̃ is an isomorphism, if and only if f̃ is surjective on elements and relations.
Assume that f ∈ inj(i∪L(S)). Surjectivity on elements follows from the fact that the underlying
simplicial map of f is surjective (as it is an acyclic fibration). Now, by Proposition 5.3.2.9,
it suffices to show that any zigzag as in Proposition 5.3.2.9 lifts. For 1-simplices that point
in direction of y, this follows from f ∈ inj({∂∆[1] → ∆[1]}) . For 1-simplices pointing in the
direction of x, this follows from f ∈ inj(i). Conversely, let f̃ be an isomorphism. Given a lifting
problem as the right square in

∂∆[1] ∂∆[1] X

∆[1] ∆1 Y,

1

g′

g
(5.26)

by the assumption that f ∈ inj(L(S)) it follows that a solution g′ of the outer rectangle exists.
Since f̃ is an isomorphism, any two points in X that are mapped into the same stratum of Y
and are connected by a path in the latter, already lie in the same stratum of X . It follows by
commutativity of the outer rectangle that g′ factors through ∂∆[1] → ∆1 into a stratified map
g∶∆1 → X . Since both left horizontals are epimorphisms, g is a solution for the right lifting
square.

Lemma 5.3.2.29. In the framework of Theorem 5.3.2.19 and its proof, cof(I) is precisely the
class of stratified maps f ∶A→ B such that the diagram

Ar Br

A B

(5.27)

is pushout and such that f is a cofibration in sStratd,p (or equivalently sStratc,p) (i.e. f
induces a monomorphism on the simplicial set level).

Proof. First, let us show that any A ↪ B in cof(I) has the pushout property (that it is a
monomorphism on simplicial sets is immediate). We only need to show that

PAr PBr

PA PB

(5.28)

is pushout. Using the small object argument, we may reduce to showing that this is true for
any j ∈ I, and A→ B a pushout of j. Let us compute explicitly the maps

PAr → PBr

PA → PB

in terms of generators and relations (using the explicit description in Proposition 5.3.2.9). If
the codomain of j is a simplex of dimension greater than 1, then both maps on the poset level
are isomorphisms. It remains to consider the three cases:

∅↪∆[0];
∂∆[1] ↪∆[1];
∂∆[1] ↪∆1.
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The first of these adds an extra element to PAr and PA. For the second and third case let
p0, p1 ∈ PA be the strata corresponding to the images of the points in ∂∆[1]. For the second
case, we obtain PB by adding precisely one generating relation r ∶ p0 ≤ p1 to PA. This identifies
all elements of PA that are now contained in a finite ordered cycle of relations. For the third
case, two generating relations r∶p0 ≤ p1 and r−1∶p1 ≤ p0 are added to PA. In both the second
and the third case, PBr is obtained from PAr by adding one additional generating relation r̂,
added from [x0] to [x1], where x0 and x1 are the respective boundary vertices of the glued
in 1-simplex, and furthermore, one generating relation (pointing in the opposite direction) is
added for every 1-simplex, whose strata become identical in PX after adding r, (r, r−1). We
may now check by hand that Diagram (5.28) is pushout. To do this, note that pushouts in
partially ordered sets are computed from elements and relations by taking a pushout of the
elements in sets and taking the generating relations coming from PBr and PA. If none of the
three cases above apply, then all horizontals are isomorphisms and there is nothing to be
shown. In the first case, Diagram (5.28) is of the form

PAr PAr ⊔ [0]

PA PA ⊔ [0]

(5.29)

and therefore pushout. In the second and third case, the upper horizontal is surjective on
elements. It follows by the explicit construction above that the pushout PA ∪PAr ∪PBr may
simply be constructed by adding to PA, all relations of the form sA(x) ≤ sA(y), where [y] ≤ [x]
is a generating relation in PBr , not already present in PAr . Hence, by our explicit description
above, in these cases the pushout is computed by adding the relation r ∶ sA(x0) ≤ sA(x1),
as well as one additional relation sA(y0) ≤ sA(y1), for all edges y0 → y1, whose endpoint
strata are identified after adding r, (r, r−1). Note how in both cases the additional relations
sA(y0) ≤ sA(y1) are redundant, by their definition. To summarize, we have presented the
pushout PA ∪PAr ∪PBr in terms of the same generators and relations as PB, which finishes this
part of the proof.
Let us now, conversely, show that any map f ∶A → B that induces a monomorphism of the
underlying simplicial sets, and a pushout square as in the claim, lies in cof(I). Suppose that
we are given a lifting diagram

A X

B Y ,

(5.30)

with X → Y in inj(I). Note that the induced diagram

Ar X r

Br Yr .

(5.31)

admits a solution. Indeed, the left vertical is a cofibration in sStratd,p and, by Lemma 5.3.2.28,
the right vertical is an acyclic fibration sStratd,p. In particular, we have a solution to the
composed diagram

Ar X r X

Br Yr Y .

(5.32)
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Now, consider the solid commutative diagram

Ar X

A

Br Y

B .

(5.33)

A diagram chase shows that the universal property of the pushout induced a dashed solution
to our original lifting problem.

Lemma 5.3.2.30. In the framework of Theorem 5.3.2.19 and its proof, cof(I)∩W is precisely
the class of acyclic cofibrations in sStratd,p (sStratc,p).

Proof. Suppose that j∶A → B is an acyclic cofibration in sStratd,p (sStratc,p). By Proposi-
tion 5.3.2.18, it follows that jr is an isomorphism on posets. Consequently, the diagram

Ar Br

A B

(5.34)

is pushout, which by Lemma 5.3.2.29 implies that j lies in cof(I). Furthermore, again by
Proposition 5.3.2.18, we also have that jr is a weak equivalence, i.e., that j ∈ W . Now,
conversely, assume that j ∈ cof(I) ∩W . By the definition of W , it follows that jr is a weak
equivalence in sStratd,p (sStratc,p). As j is given by a monomorphism on simplicial sets, it
thus follows that jr is an acyclic cofibration in sStratd,p (sStratc,p). Since, by Lemma 5.3.2.29,
the diagram

Ar Br

A B

(5.35)

is pushout, it follows that j is also an acyclic cofibration in sStratd,p (sStratc,p).

5.3.3 Refined abstract stratified homotopy types and layered ∞-
categories

Let us give an alternative description of the homotopy theory defined by categorical model
structure on sStrat. It turns out that it is a fully faithful subcategory of the infinity category
of all small infinity categories Cat∞.

Definition 5.3.3.1. [BGH18] Let X ∈ sSet be a quasi-category. We say X is layered, if the
natural functor

X → P (X)

is conservative. More generally, we say that an arbitrary Y ∈ sSet is layered, if this holds for
any fibrant replacement of Y in the Joyal model structure, sSetJ.

Remark 5.3.3.2. In other words, a quasi-category X ∈ sSet is layered if and only if each
endomorphism in X is an isomorphism. This has the effect that the isomorphism classes
naturally carry the structure of a poset, with a relation [x] ≤ [y] if and only if there is a
morphism x→ y. This poset then agrees with P (X).
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Notation 5.3.3.3. We denote by Lay∞ the full subcategory of Cat∞ given by the layered
quasi-categories.

Let us construct a model structure on sSet corresponding to Lay∞.

Construction 5.3.3.4. Denote by E the quotient of ∆2 obtained by collapsing the edge [0, 2]
and identifying the vertices [0] and [1]. In other words, we have specified the generating data
for a free endomorphism, which has a right inverse. Furthermore, denote by S1 the quotient
of ∆1 by ∂∆1. The inclusion ∆1 ↪ ∆2, mapping to the [0,1] face, induces an inclusion of
simplicial sets

l∶S1
↪ E.

We denote by sSetO the left Bousfield localization of sSetJ at l, which exists by [Bar10, Thm.
4.7].

Proposition 5.3.3.5. sSetO is a model for the ∞-category Lay∞.

Proof. Since, Lay∞ is a full subcategory of Cat∞ and sSetO is a left Bousfield localization
of sSetJ, which models Cat∞, we only need to show that the fibrant objects of sSetO are
precisely the layered quasi-categories. Now, note that a quasi-category X is l-local, if and only
if the induced simplicial map

sSet(E,X)≃ → sSet(S1,X)≃,

where (−)≃ denotes the maximal Kan complex contained in these quasi categories, is a weak
homotopy equivalence (indeed this follows from the fact that the latter Kan complexes define
derived mapping spaces for sSetJ). The path components of the left-hand side correspond
to (isomorphism classes of) morphisms which have a right inverse. The path components on
the right-hand side correspond to (isomorphism classes of) endomorphisms. Hence, this map
being a weak equivalence implies that every endomorphism in X has a right inverse. Since
this also holds for the respective right inverses, it follows that every endomorphism in X is an
isomorphism, i.e. that X is layered (Remark 5.3.3.2). Conversely, if every endomorphism of X
is an isomorphism, then every simplicial map from A = E,S1 to X has image in X≃. Hence, it
follows (by [Cis19, Cor. 3.5.12.] ) that

sSet(A,X)≃ = sSet(A,X≃)≃ = sSet(A,X≃),

as the middle term is already a Kan complex. It is not hard to see that S1 ↪ E is a weak
homotopy equivalence of simplicial sets (see the proof of Theorem 5.3.3.6 below), which implies
that

sSet(E,X)≃ = sSet(E,X)→ sSet(S1,X) = sSet(S1,X)≃,

is also a weak homotopy equivalence.

We may now expose sStratc as a different model for the homotopy theory of layered
∞-categories. The ∞-categorical version of this statement was already proven in [BGH18,
2.3.8]. Here is the model-categorical version of this statement:

Theorem 5.3.3.6. The adjunction

L∶ sSet⇌ sStrat∶F

induces a Quillen equivalence between sSetO and sStratc.

Proof. We begin by showing that L is left Quillen. It follows immediately from the construction
of sStratc that L is left Quillen as a functor with domain sSetJ. For cofibrations, this follows
by construction. For acyclic cofibrations, note that any categorical equivalence X → Y induces
a morphism L(X) → L(Y ) that is an isomorphism on posets P (X) → P (Y ). In particular,
by definition of the model structure on sStratc,p, L(X)→ L(Y ) is a weak equivalence. Now,
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consider L(l) ∈ sStrat. On the poset level, L(l) is given by the identity on the poset [0]. It
follows, by construction of sStratc,p that L(l) is a weak equivalence if and only if it is a weak
homotopy equivalence of (trivially stratified) simplicial sets. Indeed, l is given by the pushout

∆1 (∆2)/∆[0,2]

S1 E.

(5.36)

The upper horizontal is an acyclic cofibration in the Kan-Quillen model structure on simplicial
sets, hence so is l. By the universal property of the left Bousfield localization, it follows that
L∶ sSetO → sStrat is indeed left Quillen. It remains to show that L ⊣ F is a Quillen equivalence.
Let Y ∈ sStratc be fibrant (i.e. sY ∶Y → PY a conservative functor of quasi-categories) and
X ∈ sSet. Consider a morphism

f ∶L(X)→ Y

and its adjoint
g∶X → Y.

We need to show that f is a weak equivalence, if and only if g is a weak equivalence. By
replacing X and Y fibrantly and cofibrantly, respectively, we may without loss of generality
assume that X and Y are bifibrant. Note that by definition of the model structure on sSetO,
L sends fibrant objects in sSetO (i.e. layered infinity categories) to fibrant objects in sStratc.
Similarly, as every object in sSetO is cofibrant, F preserves cofibrant objects. It follows by
the construction of sStratc as a right Bousfield localization (and the Whitehead theorem for
Bousfield localizations [Hir03, Thm. 3.2.13]), that f is a weak equivalence in sStratc, if and
only if it is a weak equivalence in sStratc,p. Hence, we may without loss of generality, assume
that f is the identity on posets, for P = PY . Thus, from Recollection 5.2.1.2 it follows that
f is a weak equivalence, if and only if the underlying map of simplicial sets (which is g) is a
categorical equivalence. Finally, again using the local Whitehead theorem, g is a categorical
equivalence if and only if it is a weak equivalence in sSetO.

Remark 5.3.3.7. Denote by AStratr the full coreflective subcategory of AStrat given by
refined abstract stratified homotopy types. Then it follows from Theorem 5.3.3.6 that the
forgetful functor sStrat→ sSet induces a fully faithful reflective embedding

AStratr ↪ Cat∞

with essential image the full subcategory of layered ∞-categories Lay∞.

5.3.4 Homotopy links for the global stratified setting
Weak equivalences in sStratdP can be detected entirely in terms of generalized homotopy links.
The question arises whether we can make a similar argument in the global scenario. To do so,
we first need a global version of the homotopy link.

Definition 5.3.4.1. For n ∈ N and X ∈ sStrat, we denote

ĤoLinkn(X ) ∶= sStrat(∆[n],X )

and call this simplicial set the n-th extended homotopy link of X .

Remark 5.3.4.2. Note that we may decompose the extended homotopy link into two parts:

ĤoLinkn(X ) = ⊔
I∈(NP )n,I n.d.

HoLinkI(X ) ⊔ ⊔
J ∈(NP )n,J d.

sStratPX (∆
J ,X ),

where the left-hand union ranges over regular flags, and the right-hand union over degenerate
flags. Now if J degenerates from a regular flag I of PX , then ∆J and ∆I are stratum-
preserving homotopy equivalent. It follows that sStratPX (∆

J ,X ) is naturally homotopy
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equivalent to sStratPX (∆
I ,X ) = HoLinkI(X ). In other words, ĤoLinkn carries a lot of

homotopy-theoretically redundant data, which is already contained in links of lower dimension.
This extra data is only necessary to make ĤoLinkn functorial in morphisms that do not induce
injections on the poset level.

Extended homotopy links turn out to create weak equivalences in sStratd. To see this,
note first that:

Proposition 5.3.4.3. A stratified simplicial map f ∶X → Y ∈ sStrat that induces isomorphisms
on π0ĤoLink0 and π0ĤoLink1 induces an isomorphism PX r → PYr .

Proof. Consider the explicit construction of PX r in terms of elements and relations in Propo-
sition 5.3.2.9. The elements correspond precisely to the elements of π0ĤoLink0(X ). The
generating relations correspond precisely to the elements of π0ĤoLink1(X ) (with components
of degenerate flags corresponding to equalities). Hence, the result follows.

We may then show:

Proposition 5.3.4.4. A stratified simplicial map f ∶X → Y is a diagrammatic equivalence if
and only if it induces weak homotopy equivalences on all extended homotopy links ĤoLinkn,
for n ≥ 0.

Proof. It follows from Proposition 5.3.2.15, that ĤoLinkn sends the refinement morphisms
X r → X into isomorphisms. Consequently, by the characterization of refined diagrammatic
equivalences in Theorem 5.3.2.19, we may, without loss of generality, assume that X and Y are
refined. By Proposition 5.3.4.3, under both assumptions that we want to show are equivalent
the induced map PX = PX r → PYr = PY is an isomorphism. Hence, we may, without loss of
generality, assume that it is given by the identity. Since X and Y are colocal objects with
respect to the right Bousfield localization defining sStratd, f is a diagrammatic equivalence if
and only if it is a poset-preserving diagrammatic equivalence. In particular, this is the case if
and only if f induces weak equivalences on all homotopy links. Since the extended homotopy
links are given as coproducts of all homotopy links and spaces naturally weakly equivalent
to the latter, it follows that f is poset-preserving diagrammatic equivalence if and only if it
induces an equivalence on extended homotopy links.

Remark 5.3.4.5. We may rephrase Proposition 5.3.4.4 in the sense that the weak equivalences
on sStratd are transported from weak equivalences of bisimplicial sets (interpreted as simplicial
presheaves on ∆), under the functor into bisimplicial sets

ĤoLink∶ sStrat→ ssSet

induced by the functoriality of ĤoLinkn in n. This justifies the name diagrammatic equivalences,
as these equivalences are created by the diagram of extended homotopy links. It seems plausible
that sStratd is Quillen equivalent to a localization of ssSet equipped with the Reedy model
structure. This is also supported by the fact that sStratc is a left Bousfield localization of
sStratd, which is equivalent to sSetO, whose homotopy theory may in turn be presented as a
left Bousfield localization of complete Segal spaces.

5.3.5 Stratified mapping spaces
Give two layered ∞-categories X and Y , the ∞-category of functors Y X is itself layered.
Indeed, it follows from the fact that isomorphisms of functors are detected pointwise that it
even suffices for Y to be layered. Similarly, in the world of topological stratified spaces (more
specifically homotopically stratified spaces) [Hug99b] equipped the space of stratified maps
with a natural decomposition (which generally may not be a stratification) and investigated
the lifting properties of such mapping spaces. In [Nan19], the author refined the topology on
these mapping spaces in order to obtain internal mapping spaces, at least for stratified spaces
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with non-empty strata. Hence, it is not surprising that the homotopy theories on stratified
simplicial sets defined in this paper admit a notion of stratified mapping space. In other words,
in this subsection we prove that all of the model structures on sStrat presented in this paper
are cartesian closed (Theorem 5.3.5.4). Let us begin with the corresponding statement on
1-categories.

Proposition 5.3.5.1. sStrat is a cartesian closed category.

Proof. Recall first that the category Pos is also cartesian closed. Given two posets P,Q, the
inner hom PQ is obtained by equipping Pos(P,Q) with the poset structure given by

f ≤ g ⇐⇒ ∀p ∈ P ∶ f(p) ≤ g(p),

for f, g ∈ Pos(P,Q). Next, note that the adjunction P (−) ⊣ N(−) between simplicial sets and
posets has the property that the left adjoint preserves finite products. It follows by an easy
application of the Yoneda lemma that there is a natural isomorphism

N(P )N(Q) → N(PQ).

On vertices, it is simply given by the identification sSet(N(P ),N(Q)) ≅ Pos(P,Q), which
under the adjunction P ⊣ N entirely describes the map. Now, let X ,Y ∈ sStrat. We construct
the exponential object YX , that is, we construct a stratified simplicial set YX together with
a natural isomorphism sStrat(− ×X ,Y) ≅ sStrat(−,YX ). Consider the pullback diagram of
simplicial sets

Y X ×N(PY)X N(PY)N(PX ) Y X

N(PPXY ) ≅ N(PY)N(PX ) N(PY)X .

(5.37)

The left-hand side defines a stratified simplicial set over the poset PPXY . Let us denote the
latter by YX . A morphism from a stratified simplicial set Z into this stratified simplicial set
corresponds to the data of a morphism N(PZ)→ N(PPXY ), together with a morphism Z → Y X

making the induced diagram

Z Y X

N(PZ) N(PPXY ) ≅ N(PY)N(PX ) N(PY)X .

(5.38)

commute. Using the cartesian structure of sSet, this in turn specifies the same data as a
commutative diagram

Z ×X Y

N(PZ × PX ) ≅ N(PZ) ×N(PX ) PY

sZ×sX sY (5.39)

that is of a morphism Z ×X → Y. The naturality of the thus constructed bijection

sStrat(Z ×X ,Y) ≅ sStrat(Z,YX )

shows that YX defines the required exponential object.

Lemma 5.3.5.2. The functor −×−∶ sStrat→ sStrat preserves (poset-preserving) diagrammatic
and (poset-preserving) Joyal-Kan equivalences.
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Proof. Clearly, if f ∶X → Y induces an isomorphism on posets, then so does every product
f × 1Z , for Z ∈ sStrat. Thus, it follows from Proposition 5.3.2.27 that it suffices to show
the diagrammatic and the Joyal-Kan case, and the poset-preserving versions follow from the
latter. The case of diagrammatic equivalences is immediate from Proposition 5.3.4.4, which
states that the functor ĤoLink∶ ssSet creates weak equivalences and the fact that the latter
commutes with products. Finally, for the Joyal-Kan case, suppose that f ∶X → Y is a Joyal-Kan
equivalence and consider the following induced commutative diagram:

X ×Z Ex∞X ×Ex∞Z

Y ×Z Ex∞Y ×Ex∞Z .

(5.40)

Since the natural transformation 1 → Ex∞ is a poset-preserving diagrammatic equivalence,
it follows from the diagrammatic case that both horizontals are diagrammatic and thus also
Joyal-Kan equivalences. Hence, by two-out-of-three, we only need to show that the right
vertical is a Joyal-Kan equivalence. By Proposition 5.3.2.25, using the fact that a product of
Kan complexes is a Kan complex, it follows that the right vertical is a Joyal-Kan equivalence
if and only if the underlying simplicial map is a categorical equivalence. This map is given
by the product of the underlying simplicial maps of 1Ex∞Z and Ex∞(f). By assumption, and
since Ex∞ preserves Joyal-Kan equivalences, Ex∞(f) is a Joyal-Kan equivalence. We may
again apply Proposition 5.3.2.25, from which it follows that the underlying simplicial map of
Ex∞(f) is a categorical equivalence. Thus, the claim follows from the fact that products in
sSet preserve categorical equivalences.

Lemma 5.3.5.3. Given a model category M, suppose that the product functor −×−∶M×M→M
preserves colimits and weak equivalences in both arguments, and also is such that for any pair
of cofibrations i∶A→ B and j∶A′ → B′ the induced morphism

i ⊠ j∶A ×B′ ∪A×A′ B ×A
′
→ B ×B′

is a cofibration. Then − × − is a Quillen bifunctor.

Proof. We need to show that, given two cofibrations as in the statement of the lemma, if
(without loss of generality) i is additionally a weak equivalence, then so is i ⊠ j. Consider the
diagram

A ×A′ B ×A′

A ×B′ A ×B′ ∪A×A′ B ×A
′ B ×B′.

(5.41)

By assumption, the upper horizontal and lower horizontal compositions are weak equivalences.
Since, in addition to this, the upper horizontal is a cofibration and the square is pushout, it
follows that its parallel is also a weak equivalence. Hence, by two out of three, so is the right
lower horizontal.

Theorem 5.3.5.4. Let sStrat be equipped with any of the model structures of Sections 5.3.1
and 5.3.2. Then sStrat is a cartesian closed model category.

Proof. We need to show that the map from the initial object ∅ ∈ sStrat to the terminal objects
⋆ ∈ sStrat is a cofibration and, furthermore, that − × −∶ sStrat × sStrat→ sStrat is a Quillen
bifunctor. The former statement holds, since (∅→ ⋆) ≅ (∂∆[0] ↪∆[0]), which is a generator
for the cofibrations in any of the model structures (by Corollary 5.3.1.10 and Theorem 5.3.2.19).
For the second statement, we make use of Proposition 5.3.5.1 and Lemmas 5.3.5.2 and 5.3.5.3
and it remains to show that for every pair of cofibrations i∶A ↪ B, j∶A′ ↪ B′ the induced
stratified simplicial map

i ⊠ j∶A × B′ ∪A×A′ B ×A
′
→ B × B

′
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is a cofibration. Both in sStratc,p and in sStratd,p a map is a cofibration, if and only if the
underlying simplicial map is a cofibration (i.e. a monomorphism) hence in these cases the i⊠ j
is a cofibration, since the underlying simplicial map F(i ⊠ j) ≅ F(i) ⊠F(j) is a cofibration.
Even more, by [Hov07, Cor. 4.2.5] we only need to consider the cases where i and j are
generating cofibrations. For the cases sStratc and sStratd, it follows that we only need to
show that

∂∆[n] ×∆[m] ∪∂∆[n]×∂∆[m] ∆[n] × ∂∆[m] →∆[n] ×∆[m]

is a cofibration. Since both the source and target of this cofibration are refined, it follows
from the cases sStratc,p and sStratd,p, together with the characterization of cofibrations
between cofibrant objects in a right-bousfield localization ([Hir03, p. 3.3.16]) that i ⊠ j is a
cofibration.

One of the main results of [Hug99b] was that for certain particularly convenient stratified
spaces X - so-called homotopically stratified spaces - for any closed union of strata A ↪ X
the starting point evaluation map from the space of stratified paths ∣∆[1]∣s → X starting in
A, Pathnsp(A,X ), is a stratified fibration (i.e., has the right lifting property with respect to
inclusions into the stratified cylinder). Homotopically stratified spaces have the property that
they are mapped into fibrant objects in sStratc,p, and being a fibration in sStratc,p is even a
stronger property than just lifting (simplicial) stratified homotopies. Thus, we may interpret
the following result as a combinatorial analogue of [Hug99b, Main Result].

Construction 5.3.5.5. Let sStrat be equipped with one of the model structures of Sec-
tion 5.3.2. Let X ∈ sStrat and let A ⊂ X be a simplicial subset. Denote by A the stratified
simplicial set A→X → PX . Now, consider the pullback diagram in Strat

Pathnsp(X ,A) ∶= X∆[1] ×ev0 A X∆[1]

A X .

ev0
(5.42)

Pathnsp(X ,A) is a stratified space over {(p, q) ∈ PX × PX ∣ p ≤ q}. Its vertices are precisely
the 1-simplices (i.e. paths) in X , starting in A. Now, if X is fibrant, then it follows from the
cartesian closedness of Strat that the right-hand vertical is a fibration. Consequently, so is
the starting point evaluation map Pathnsp(X ,A)→ A. In particular, this map has the right
lifting property with respect to the acyclic cofibrations B ↪ B ⊗∆1.



Chapter 6

On the homotopy links of
stratified cell complexes

Note to the reader: The following chapter was structured as an independent article, in
order to allow for easier accessibility. A preliminary version was made publicly available on the
arXiv (see [Waa24b]). Notation in this chapter is entirely consistent with Chapters 1 and 5.
There may be minor notation differences compared to Chapter 3. However, as all notation is
introduced separately in this chapter, this should not pose an issue.

Homotopy links have proven to be one of the most powerful tools of stratified homotopy
theory. In previous work, we described combinatorial models for the generalized homotopy
links of a stratified simplicial set. For many purposes, in particular to investigate the strat-
ified homotopy hypothesis, a more general version of this result pertaining to stratified cell
complexes is needed. Here we prove that, given a stratified cell complex X, the generalized
homotopy links can be computed in terms of a certain subcomplex of a subdivision of X.
As a consequence, it follows that generalized homotopy links map certain pushout dia-
grams of stratified cell complexes into homotopy pushout diagrams. This result is crucial
to the development of (semi-)model structures for stratified homotopy theory in which
geometric examples of stratified spaces, such as Whitney stratified spaces, are bifibrant.

6.1 Introduction
Stratified spaces were first introduced by Whitney, Thom and Mather to investigate spaces
with singularities (see [Whi65b; Mat12; Mat73; Tho69]). One of the central insights of [Mat73]
was that a key ingredient in the study of stratified spaces with smooth manifold strata was
having a theory of tubular neighborhoods of strata available. These made it possible to
study stratified spaces in terms of their strata and the so-called link bundles, connecting the
latter. In a less geometric scenario, such tubular (or regular) neighborhoods may generally not
be available. To avoid this difficulty, [Qui88] introduced the notion of a homotopy link - a
homotopy-theoretic proxy for the boundary of a regular neighborhood. Given two strata Xp

and Xq in a poset-stratified space sX ∶X → P , with p < q ∈ P , the associated homotopy link is
the space of paths starting in Xp and immediately exiting into Xq.
It turns out that much of the homotopy theory of stratified spaces may be understood in
terms of the homotopy types of homotopy links and strata (and the structure maps between
them). For example, [Mil13] proved that a stratum-preserving map between two sufficiently
regular stratified spaces is a stratum-preserving homotopy equivalence, if and only if it induces
equivalences on strata and (pairwise) homotopy links. [Dou21c; Hen] built on this insight, and
developed a homotopy theory of stratified spaces in which weak equivalences are defined as such

281



282 CHAPTER 6. ON THE HOMOTOPY LINKS OF STRATIFIED CELL COMPLEXES

stratified maps that induce weak equivalences on all generalized homotopy links, which replace
exit-paths by more general stratified singular simplices. We call this theory the Douteau-
Henriques homotopy theory, henceforth. It turns out that the Douteau-Henriques homotopy
theory is in some sense minimal among many stratified homotopy theories (see [Dou21a]).
Thus, it is not surprising that many other approaches to stratified homotopy theory turn out to
be localizations, global versions, or subtheories of the latter (see [Waa24a]). It follows from this
that much about stratified homotopy theory (not only about the Douteau-Henriques one) can
be understood in terms of generalized homotopy links. For example, in [DW22], we obtained
explicit combinatorial models - in terms of a subobject of a subdivision - for the homotopy
link of a stratified simplicial set. We used this to prove a stratified ∞-categorical analogue
of the Kan-Quillen equivalence between topological spaces and simplicial sets ([DW22, Thm.
5.1, Rem. 5.4], which are Theorem 3.5.1.1 and Remark 3.5.1.4 here). The latter can be used
to prove a Quillen equivalence version of the topological stratified homotopy hypothesis (see
[Waa24c], which is Chapter 7 here).
The applications in [DW22] show the strength of a general paradigm: Homotopy links as
a mathematical tool become most powerful when geometric or combinatorial, as well as
homotopy-theoretic models are available.

The main goal of this article is to extend the availability of such models to the case of
so-called stratified cell complexes. Roughly speaking, a stratified cell complex is a stratified
space obtained by inductively gluing in stratified simplices along stratum-preserving maps
defined on the boundaries of the simplices. From a technical point of view, constructing and
verifying models for generalized homotopy links in terms of subcomplexes of a subdivision of a
stratified cell complex turns out to be significantly more involved than the simplicial set case.
This is mainly due to the fact that the case of cell complexes allows arbitrarily complicated
gluing maps, rather than only allowing for (piecewise) linear ones (see Example 6.4.2.6).
Nevertheless, here we show the following.
We describe a construction that, given a stratified cell complex X , stratified over a poset
P , and I = {p0 < ⋅ ⋅ ⋅ < pn} ⊂ P a finite increasing sequence, produces a stratified subspace
UΨ
X (I) of X . This construction relies on a choice of (appropriate topological barycentric)

subdivision Ψ of the cell structure on X , and is such that UΨ
X (I) ⊂ X defines a subcomplex of

this subdivision that contains the stratum Xp0 . It can be seen as a generalization of regular
neighborhoods in the PL setting, both to the case of more than two strata, as well as to the
case of more general stratified cell complexes. Crucially, the construction has the following
property:

Theorem HA (Theorems 6.2.4.14 and 6.4.2.7 and Proposition 6.3.2.11). Let X be a stratified
cell complex, stratified over a poset P , and I = {p0 < ⋅ ⋅ ⋅ < pn} ⊂ P a finite increasing sequence.
Denote by HoLinkIX the I-th generalized homotopy link of X (see [Dou21c; DW22]). There
exists a subdivision Ψ of the cell structure on X , such that UΨ

X (I) defines a well-defined
subcomplex with respect to this subdivision. Given such a Ψ, there is a canonical weak
homotopy equivalence

HoLinkIX ≃ UΨ
X (I)pn ,

between the I-th generalized homotopy link and the pn-stratum of UΨ
X (I). Furthermore,

subdivisions can be chosen such that the construction of UΨ
X (I) is compatible with stratum-

preserving maps and pushouts along inclusions of subcomplexes.

In fact, we show that the subcomplexes UΨ
X (I) can even be used to model the whole

homotopy link diagram of [Dou21c]. Theorem HA has the following corollary, which is central
to the construction of semimodel categories of stratified spaces in [Waa24c].

Theorem HB (Corollary 6.4.2.8). Let P be a poset and I = {p0 < ⋅ ⋅ ⋅ < pn} ⊂ P a finite
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Figure 6.1: The upper left corner shows a stratified cell structure for the pinched torus,
stratified over the poset {0 < 1 < 2}. Vertices with the same name, and edges with the same
markings are being identified and the stratification is indicated by the coloring. To its right,
a barycentric subdivision Ψ of this cell structure is shown. In the following row there are
illustrations of the subcomplexes UΨ

X (I) for I = {0 < 2},{0 < 1 < 2},{1 < 2}.

increasing sequence. Consider a pushout diagram of P -stratified cell complexes

A B

X Y,

c

f (6.1)

with c an inclusion of a stratified subcomplex. Then the induced diagram of spaces

HoLinkIA HoLinkIB

HoLinkIX HoLinkIY,

(6.2)

obtained by taking generalized homotopy links, is homotopy cocartesian.

In [Waa24c] we use the latter result to construct new (semi-)model structures for stratified
homotopy theory in which classical examples of stratified spaces such as Whitney stratified
spaces are bifibrant. Furthermore, we derive from this semimodel structure a version of the
stratified homotopy hypothesis pertaining to a conjecture of [AFR19] ([Waa24c, Thm. B]).

6.1.1 Overview of the article
It is a well-known classical result that the (pairwise) homotopy link of a piecewise linear two
strata stratified space may be computed in terms of the boundary of a regular neighborhood
of the lower stratum. Equivalently, one may take the homotopy type of the complement of the
lower stratum in the regular neighborhood. In [Qui88] the author generalized this result to
more general topological notions of regular neighborhood Xp ⊂ N ⊂X of a stratum Xp, which
admit a so-called nearly stratum-preserving deformation retraction (this nomenclature was first
used in [Mil13], Quinn speaks of tame inclusions of strata). These are given by homotopies

R∶N × [0,1]→X

such that R× (0, 1] is stratum-preserving, R1 is the inclusion N ↪X, R is constant on Xp and
such that R0 has image entirely in Xp. In the case of the realization of a stratified-simplicial
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set, such regular neighborhoods can be obtained by first taking a barycentric subdivision,
and then taking the union of closed simplices intersecting the lower stratum (see [Qui88]).
The goal here is a two-fold generalization. Firstly, we aim to replace pairwise homotopy links
with generalized homotopy links, obtained by replacing the stratified interval with stratified
simplices. Secondly, we generalize from stratified simplicial sets to stratified cell complexes.
The case of generalized homotopy links of stratified simplicial sets was studied in detail in
[DW22] (Chapter 3). To further generalize these results to stratified cell complexes, we need to
generalize the notions of neighborhood and nearly stratum-preserving deformation retraction
to the n-strata case. We proceed to do so in the following steps.

1. In Section 6.2.4, we introduce the notion of a system of strata-neighborhoods of a stratified
space X . These are defined in a way that they allow for a computation of homotopy
links close to a singularity. The ultimate goal of the theory is to identify a class of such
neighborhood systems for which the topology of the neighborhoods themselves may be
used to compute the homotopy type of homotopy links, and there is no need to pass to
path-spaces. Such neighborhood systems are called homotopy link models. Following
from this, our strategy of proof is then to show that every stratified cell complex may be
equipped with a homotopy link model, and furthermore that this can be done in a way
that is compatible with pushout diagrams.

2. A first step lies in constructing the so-called standard neighborhood-systems for realizations
of stratified simplicial sets (Section 6.4.1). We show that these standard neighborhoods
turn out to be universal in some sense (Proposition 6.3.1.19). This result is crucial
to obtain homotopy link models that are compatible with given maps of stratified cell
complexes. Furthermore, it provides a new proof of a locality principle for homotopy
links of strata-neighborhoods, which ultimately provides a more conceptual proof of
[DW22, Thm. 4.8] (Theorem 3.4.4.1 in this text).

3. In Section 6.3.2, we then use the results on strata-neighborhoods of stratified simplicial
sets to generalize the construction of standard neighborhood systems to stratified cell
complexes.

4. Having strengthened our understanding of strata-neighborhood systems, we return to the
notion of a homotopy link model. At this point, we have all the results necessary available
to prove that the regular complement diagram (Construction 6.2.4.11) associated to
a homotopy link model is weakly equivalent to the diagram of homotopy links of the
associated stratified space (Theorem 6.2.4.14).

5. Finally, it remains to prove that the standard neighborhood systems we have constructed
for stratified cell complexes are homotopy link models. To accomplish this, we first
define an adaptation to the n-strata scenario of the notion of nearly stratum-preserving
neighborhood retracts (as they were defined in [Qui88]) a so-called ASPIR (see Defini-
tion 6.4.0.1). In Section 6.4, we show that the existence of these ASPIRs provides a way
to guarantee that a neighborhood system is a homotopy link model (Proposition 6.4.0.7).

6. In Section 6.4.1, we then return to the standard neighborhood systems of realization of
stratified simplicial sets and show that these can be equipped with ASPIRs (Proposi-
tion 6.4.1.6). In particular, this result has [DW22, Thm. 4.8] (Theorem 3.4.4.1 in this
article) as a corollary.

7. Finally, in Section 6.4.2, we generalize the results of the previous section to standard neigh-
borhood systems of stratified cell complexes. To do so, we first provide a technical gluing
lemma that ultimately allows a cell-by-cell construction of ASPIRs (Lemma 6.4.2.2). It
then remains to investigate the case of a single cell (Lemma 6.4.2.3), to finish the proof
that standard-neighborhood systems provide homotopy link models (Proposition 6.4.2.4).
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6.2 Basic notions: From homotopy links to their models
The goal of this section is to introduce the basic objects and notions under investigation.
We begin by recalling the necessary language and notation from stratified homotopy theory
Section 6.2.1 in particular the notion of homotopy link Section 6.2.2. We then introduce the
central objects of study to this paper: Stratified cell complexes (Section 6.2.3). Our goal is to
find convenient models for the homotopy links of such stratified cell complexes. We make this
idea rigorous with the notions of strata-neighborhood systems and homotopy link models in
Section 6.2.4.

6.2.1 Language and notation
Let us first fix some language and notation pertaining to stratified homotopy theory, mostly
lifted from [Dou21a; Dou21c; DW22; Hai23].

Notation 6.2.1.1. We will denote simplicial categories in the form S and their underlying
categories in the form S. Given two categories C and D, we denote by Fun(C,D) the category
of functors between the two categories.

Notation 6.2.1.2. We use the following notation for categories of simplicial sets.

• We denote by ∆ the category of finite, linearly ordered posets of the form [n] ∶= {0,⋯, n},
for n ∈ N.

• We denote by sSet the simplicial category of simplicial sets, i.e., the category of set-
valued presheaves on ∆op, equipped with the canonical simplicial structure induced by
the product (see [Lur09] for all of the standard notation used for simplicial sets).

• When we treat sSet as a (simplicial) model category, this will generally be with respect
to the Kan-Quillen model structure (see [Qui67]), unless otherwise noted. When we use
Joyal’s model structure for quasi-categories ([JT08]) instead, we will denote this model
category by sSetJ.

Notation 6.2.1.3. Top is going to denote either of the following three categories of topological
spaces.

1. The category of all topological spaces, which we will also refer to as general topological
spaces.

2. The category of compactly generated topological spaces, i.e., such spaces that have the
final topology with respect to compact Hausdorff spaces (see, for example, [Rez17]).

3. The category of ∆-generated topological spaces, i.e., such spaces which have the final
topology with respect to realizations of simplices, or equivalently just with respect to
the unit interval (compare [Dug03; Gau21]).

We denote by ∣−∣∶ sSet→ Top the realization functor of simplicial sets and by Sing∶Top→ sSet
its right adjoint. Top naturally carries the structure of a simplicial category, tensored and
powered over sSet, induced by left Kan extension of the construction

T ⊗∆n
∶= T × ∣∆n

∣.

We denote the resulting simplicial category by TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop. Furthermore, we will always consider
TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop to be equipped with the Quillen-model structure [Qui67], which makes ∣ − ∣ ⊣ Sing a

simplicial Quillen equivalence, between TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop and sSet, which creates weak equivalences in
both directions.
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Remark 6.2.1.4. Note that one commonly only defines the simplicial structure for compactly
or ∆-generated spaces. This is, however, mostly due to the fact that, for general topological
spaces T and infinite simplicial sets K, the tensoring T ⊗K does not agree with the inner
product T × ∣K ∣. Instead, it is given by a colimit of products of T with the simplices of K.
Similarly, the power TK is not given by an internal mapping space (which does not necessarily
exist for arbitrary K) but by the limit of the mapping spaces of simplices of K, equipped with
the compact open topology. The reason we do not take the regular approach of restricting
to one fixed convenient category of topological spaces is that much of the literature has been
formulated for the ∆-generated case, while we will make several arguments in the category of
general topological spaces later on, which seem to lack an internal analogue in the category
of ∆-generated spaces. Note that from a homotopy-theoretic perspective these choices in
set-theoretic-topological foundations are usually not relevant, as any space is canonically weakly
equivalent to its ∆-fication (compactly generated replacement). Furthermore, all our results
concern spaces in the ∆-generated category (which is included in the other two categories)
and the choice of larger framework is thus mostly inessential.

For the remainder of this section, we fix some category of topological spaces Top as in
Notation 6.2.1.3.

Notation 6.2.1.5. We are going to use the following terminology and notation for partially
ordered sets, drawn partially from [Dou21a] and [Hai23]:

• We denote by Pos the category of partially ordered sets, with morphisms given by
order-preserving maps.

• We consider ∆ as a subcategory of Pos in the obvious fashion. Given P ∈ Pos, we denote
by ∆P the slice category ∆/P . That is, objects are given by arrows [n] → P in Pos,
n ∈ N, and morphisms are given by commutative triangles.

• We denote by sd(P ) the subdivision of P , given by the full subcategory of ∆P of such
arrows [n]→ P , which are injective.

• The objects of ∆P are called flags of P . We represent them by strings [p0 ≤ ⋯ ≤ pn], of
pi ∈ P .

• Objects of sd(P ) are called regular flags of P . We represent them by strings [p0 < ⋯ < pn],
of pi ∈ P .

Notation 6.2.1.6. Having fixed a category of topological spaces Top, we then use the
following notation for stratified topological spaces (all of these constructions can be found in
[Dou21c] among other places).

• We think of the 1-category Pos as naturally embedded in Top, via the Alexandrov
topology functor, equipping a poset P with the topology where the closed sets are given
by the downward closed sets. By abuse of notation, we just write P , for the Alexandrov
space corresponding to it (compare [DW22, Def. 2.2], which is Definition 3.2.1.2 in this
article).

• For P ∈ Pos, we denote by StratP the slice category Top/P .

• Objects of StratP are called P -stratified spaces. They are given by a tuple (T, s∶T → P ).
We will usually use calligraphic letters for stratified spaces and stick to the notational
convention X = (X,sX ) to refer to the underlying space and the stratification.

• Morphisms in StratP are called stratum-preserving maps.

• Given a map of posets f ∶Q → P and X ∈ StratP , we denote by f∗X ∈ StratQ the
stratified space X ×P Q→ Q. We are mostly concerned with the case where f is given by
the inclusion of a singleton {p}, of a subset {q ∼ p ∣ q ∈ P}, for p ∈ P and ∼ some relation
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on the partially ordered set P (such as ≤), or more generally a subposet Q ⊂ P . We then
write Xp (or, respectively, X∼p, XQ) instead of f∗X . The spaces Xp, for p ∈ P are called
the strata of X .

Notation 6.2.1.7. Throughout this article, we will consider a series of subspaces of stratified
spaces in the category Top, that is, use maps on them that are not stratum-preserving. We
keep following the convention (Notation 6.2.1.3), which is that calligraphic letters indicate the
stratified context, and regular letters the non-stratified one. For example, for X ∈ StratP and
p ∈ P , X≤p is the stratified space over {q ∈ P ∣ q ≤ p}, given by restricting X and X≤p is its
underlying topological space. Note that in the case of the strata there is no notational conflict
with using both Xp and Xp, if we identify stratified spaces over a poset with one element with
topological spaces. This type of notational convention reaches its syntactic limits when applied
to expressions such as ∣∆I ∣s, which do not have calligraphic counterparts. In this case, we will
simply write ∣∆I ∣ to indicate the underlying topological space.

Notation 6.2.1.8. We use the following terminology and notation for (stratified) simplicial
sets, drawn partially from [Dou21a] and [Hai23]:

• We think of Pos as being naturally embedded in sSet, via the nerve functor (compare
[Hai23]). By abuse of notation, we just write P , for the simplicial set given by the nerve
of P ∈ Pos.

• For P ∈ Pos, we denote by sStratP the slice category sSet/P , which is equivalently
given by the category of set valued presheaves on ∆P .

• Objects of sStratP are called P -stratified simplicial sets. They are given by a tuple
X = (X,sX ∶X → P ).

• Morphisms in sStratP are called stratum-preserving simplicial maps. Simplicial ho-
motopies in sStratP are called stratified simplicial homotopies. Simplicial homotopy
equivalences in sStratP are called stratum-preserving simplicial homotopy equivalences.

• Given a map of posets f ∶Q → P and X ∈ sStratP , we denote by f∗X ∈ sStratQ the
stratified simplicial set X ×P Q → Q. We are mostly concerned with the case where f
is given by the inclusion of a singleton {p}, of a subset {q ∼ p ∣ q ∈ P}, for p ∈ P and ∼
some relation on the partially ordered set P (such as ≤), or more generally, a subposet
Q ⊂ P . We then write Xp (or, respectively, X∼p, XQ) instead of f∗X . The simplicial sets
Xp, for p ∈ P are called the strata of X .

• For a flag J = [p0 ≤ ⋯ ≤ pn] ∈ ∆P , we write ∆J for the image of J in sStratP under the
Yoneda embedding ∆P ↪ sStratP . Equivalently, ∆J is given by the unique simplicial
map ∆n → P mapping i↦ pi. ∆J is called the stratified simplex associated to J .

• Using the fully faithful (and continuous) embedding ∆P ↪ sStratP , we extend the base
change notation for stratified simplicial sets to flags. That is, for f ∶Q→ P we write f∗J
for the unique flag of Q corresponding to f∗(∆J ). We use the same shorthand notation
for subsets Q ⊂ P . For example J≤p is the flag obtained from J by removing all entries
not lesser equal to p.

• Given a stratified simplex ∆J , for J = [p0 ≤ ⋯ ≤ pn], we write ∂∆J for its stratified
boundary, given by the composition ∂∆n →∆n → P .

Recollection 6.2.1.9 ([Dou21a]). For fixed P ∈ Pos, the two categories StratP and sStratP
are connected through a singular simplicial set, realization style adjunction, denoted

∣ − ∣s∶ sStratP ⇌ StratP ∶Sings.
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The left adjoint is constructed by mapping a stratified simplex ∆J → P , with J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn],
to the stratified space

∣∆n
∣→ P

x↦ sup{pi ∈ J ∣ xi > 0},

where we consider ∣∆n∣ as embedded in Rn+1 ≅ RJ . If we consider sStratP as the category of
set-valued presheaves on ∆P , then by the logic of a nerve and realization functor, SingsX is
hence given the stratified simplicial set

SingsX (J ) = StratP (∣∆J ∣s,X )

with the obvious structure morphisms.

6.2.2 Generalized homotopy links
Homotopy links were originally introduced in [Qui88] order to obtain a homotopy-theoretic
replacement for the boundary of a regular neighborhood in the piecewise-linear scenario. As
functors, they may be understood as the right adjoint to taking products with stratified
simplices.

Notation 6.2.2.1. In the following subsections, we will make frequent use of the action of
Top on StratP , given by

Top × StratP → StratP
(T,X )↦ T ×X ∶= (T ×X

πX
ÐÐ→X

sX
Ð→ P ).

In case there is any possibility of confusion, the stratification always arises from the second
component.

Recollection 6.2.2.2 (See [Dou21c]). Given a (locally compact in the case of general topo-
logical spaces) stratified space S, the functor

− × S ∶Top→ StratP

admits a right adjoint. It is given by equipping StratP (S,X ) with the respective subspace
topology (depending on the choice of category Top) of the space of all continuous maps,
equipped with the compact open topology. We are particularly interested in the case S = ∣∆I ∣s,
for I ∈ sd(P ) a regular flag. For X ∈ StratP , the image under the right adjoint to − × ∣∆I ∣s is
called the I-th (generalized) homotopy link of X . Explicitly, it is given by topologizing the set
of stratum-preserving maps

{∣∆I ∣s → X}
as described above. We then can summarize the homotopy links in a global functor

HoLink∶StratP → Fun(sd(P )op,Top),

with structure maps of the diagram HoLinkI(X ), HoLinkI(X ) → HoLinkI′(X ) given by
restricting along the inclusion ∣∆I′ ∣s ⊂ ∣∆I ∣s, for I ′ ⊂ I.

Example 6.2.2.3. If I = [p] is a singleton, then HoLinkIX is naturally homeomorphic to
the stratum Xp. For I = [p0 < p1] a pair, the homotopy link HoLinkIX is the space of paths
starting in Xp and immediately exiting into Xq, so-called exit paths defined in [Qui88].

Example 6.2.2.4. Let I ∈ sd(P ) and X ∈ sStratP be a stratified simplicial set. We can
consider the first barycentric subdivision of the underlying simplicial set sdX. The vertices
of sd(P ) correspond to pairs (∆J → X ,J ′) with J ′ ⊂ J ∈∆P and ∆J → X non-degenerate.
We may then consider the full subsimplicial set of sdX spanned by such vertices for which
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J ′ degenerates from I. The latter is called the simplicial link, denoted LinkIX . In the case
of two strata, for I = [p < q], ∣LinkI ∣ is precisely the boundary of a regular neighborhood of
(∣X ∣s)p. In particular, in this case, it is weakly equivalent to the homotopy link of ∣X ∣s. In
[DW22], we proved the case of general I of this result obtaining weak homotopy equivalences

HoLinkI ∣X ∣s ≃ ∣LinkIX ∣.

6.2.3 Stratified cell complexes
Let us now move on to the case of more general stratified cell complexes. We perform a general
investigation of structured cell complexes in an abstract categorical scenario in Chapter 8. For
the purposes of this chapter, the following will suffices.

Definition 6.2.3.1. Let X ∈ StratP . A stratified cell structure on X is a family of stratum-
preserving maps (σi∶ ∣∆Ji ∣s → X )i∈I such that the following properties hold.

1. X has the final topology with respect to the maps σi.

2. For each i ∈ I, σi induces a homeomorphism from ∣∆Ji ∣s ∖ ∣∂∆Ji ∣s onto its image. Denote
these images by ei. Furthermore, denote the image of ∣∂∆Ji ∣s under σ by ∂ei.

3. X is given by the (set-theoretic) disjoint union of the cells ei.

4. Denote by ≺ the relation on I, which is generated under transitivity by

i ≺ j ⇐⇒ ei ∩ ∂ej ≠ ∅.

Then ≺ is irreflexive, and every element of I only has finitely many precursors with
respect to ≺.

A stratified Hausdorff space X together with a stratified cell structure (σi)i∈I on it is called a
stratified cell complex. A stratified subcomplex of (X , (σi)i∈I), is a stratified subspace A ⊂ X ,
together with a subset I ′ ⊂ I such that I ′, A = ⋃i∈I′ ei, and such that I ′ is closed below under
≺.

Remark 6.2.3.2. In many respects, stratified cell complexes behave much like their unstratified
counterparts. In particular, it is not hard to see that every stratified subcomplex is closed,
and itself a stratified cell complex, with the induced cell structure. We will usually refer to
a stratified cell complex just by its underlying stratified space, and keep the cell structure
implicit. At times, we will say X is a stratified cell complex, to refer to the fact that it is
Hausdorff and admits a stratified cell structure.

Example 6.2.3.3. Every realization of a stratified simplicial set X ∈ sStratP naturally
inherits the structure of a stratified cell complexes, with cells given by the realizations of
non-degenerate simplices ∆J → X .

If we forget about the cell structure, stratified cell complexes are simply the spaces that
arise as absolute cell complexes (in the sense of [Hir03]) from the set of stratified boundary
inclusions {∣∂∆J ∣s ↪ ∣∆J ∣s ∣ J ∈∆P }.

Proposition 6.2.3.4. Let X ∈ StratP . Then the following are equivalent:

1. X is an absolute cell complex with respect to the set {∣∂∆J ↪∆J ∣s ∣ J ∈∆P }.

2. X is Hausdorff and admits a stratified cell structure.

Furthermore, the following relative version of this result holds. Suppose that A is a stratified
cell complex. Then, for a stratified map i∶A→ X , the following are equivalent.

1. i is a relative cell complex with respect to the set {∣∂∆J ↪∆J ∣s ∣ J ∈∆P }.
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2. X is Hausdorff and admits a stratified cell structure, which makes A a stratified subcom-
plex.

Proof. Essentially, this argument is identical with the non-stratified case. For some reason, we
were unable to find a reference for this in the literature. First, note that being an absolute
cell complex as above implies that X is Hausdorff. Indeed, this already holds for absolute cell
complexes in the Quillen model structure, and may be seen by extending disjoint opens cell by
cell, via a transfinite inductive argument. The remaining translation of structures is handled
by Construction 6.2.3.5 below.

Construction 6.2.3.5. Let X ∈ StratP . If we write ∅→ X as a transfinite compositions

X
0
→ X

1
→ ⋅ ⋅ ⋅→ X

α
= X

with pushout diagrams

∣∂∆Jβ ∣s ∣∆Jβ ∣s

X β X β+1,

(6.3)

then the compositions
∣∆Jβ ∣s → X

β
→ X

define a cell structure on X . The finite precursor conditions follows from the fact that every
compactum in an absolute cell complex is contained in a finite subcomplex (see [Hir03, Prop.
10.7.4], for the topological case). Conversely, if X admits a stratified cell structure, (σi)i∈I , then
we may extend the precursor order on I to a well-order as follows: By well-founded induction,
we obtain an order-preserving map ν∶ I ↦ N, inductively defined via τ ↦ sup{ν(τ ′) ∣ τ ′ ≺ τ}.
Then, for every fiber ν−1(n), choose a well order ≺n, and finally equip

I = ⊔
n∈N

ν−1
(n)

with the lexicographic order

i < p ⇐⇒ i ≺ j ∨ (ν(i) = ν(j) = n ∧ i ≺n j).

Under this construction, we can identify I as an ordinal αI . Then, for β ≤ αI denote
X β = ⋃j<i eβ ⊂ X . By construction, ∣∂∆Jβ ∣s ↪ ∣∆Jβ ∣s

σβ

Ð→ X factors through X β , and one may
check that the diagrams

∣∂∆Jβ ∣s ∣∆Jβ ∣s

X β X β+1,

(6.4)

are pushout and that whenever β is a limit element, then X β = lim
Ð→β′<β

X β
′ . The relative case

is essentially analogous.

As a consequence of [Hir03, Prop. 10.7.6], one obtains the following.

Lemma 6.2.3.6. If X ∈ StratP is a stratified cell complex, then every compactum K ⊂ X is
contained in a finite subcomplex A of X .
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6.2.4 Systems of strata-neighborhoods
One of the central properties of pairwise homotopy links is that they may be computed locally
using neighborhoods of a stratum (compare [Qui88]). This type of argument was also central
in the proof of [DW22, Thm 4.8] (Theorem 3.4.4.1). In this subsection, we introduce the notion
of a strata-neighborhood system of a stratified space X which provide a general framework for
these type of local computations. We then move on to the question of when the homotopy
links may instead be computed entirely in terms of these strata-neighborhood systems, in
which case we speak of a homotopy link model.

Definition 6.2.4.1. Let X ∈ StratP and S ⊂ X . A ∆P -neighborhood of S in X is a subset
U ⊂ X such that for any flag J of P and any stratum-preserving map σ∶ ∣∆J ∣s → X the set
σ−1(U) is a neighborhood of σ−1(S) in ∣∆J ∣s.

The following elementary property follows immediately from the definition of a ∆P -
neighborhood.

Lemma 6.2.4.2. Let f ∶X → Y in StratP . If U ⊂ Y is a ∆P -neighborhood of S ⊂ Y, then
f−1(U) is a ∆P -neighborhood of f−1(S) in Y.

Roughly speaking, we should think of ∆P -neighborhoods as subsets of X that look like a
neighborhood if one takes the perspective of a finite stratified cell complex. This heuristic is
made rigorous by the following lemma.

Lemma 6.2.4.3. If X ∈ StratP is equipped with the structure of a finite stratified cell complex
and S ⊂ U ⊂X, then the following are equivalent:

1. U is a ∆P -neighborhood of S.

2. For every cell σ∶ ∣∆J ∣s → X , the set σ−1(U) is a neighborhood of σ−1(S).

3. U is a neighborhood of S.

Proof. That the first condition implies the second is trivial. Clearly, also the third implies the
first. It remains to show that the second condition implies the third. This is the content of
Lemma 6.A.0.1.

For infinite stratified cell complexes we may still state the following lemma.

Lemma 6.2.4.4. If X admits the structure of a cell complex, then U ⊂ X is a ∆P -neighborhood
of S ⊂ U ⊂ X , if and only if the inverse image under every cell σ∶ ∣∆J ∣s → X of U is a
neighborhood of σ−1(S) in ∣∆J ∣.

Proof. The only if case is immediate by the definition of a ∆P -neighborhood. Now, for the
converse, note that any continuous map ∣∆J ∣s → X factors through a finite subcomplex A of
X . It follows from this that it suffices to show that U ∩A is a ∆P -neighborhood of S ∩A, for
any finite subcomplex A of X . Therefore, the result follows from Lemma 6.2.4.3.

Next, let us define the notion of a strata-neighborhood system.

Definition 6.2.4.5. A strata-neighborhood system of a stratified space X ∈ StratP is a family
of subspaces UX = (UX (p))p∈P such that UX (p) is a ∆P -neighborhood of Xp in X that further
fulfills X≤p ⊂ UX (p).

Remark 6.2.4.6. The additional requirement that X≤p ⊂ UX (p) is only there for the sake
of notational convenience, when passing to flags in Notation 6.2.4.9. Aside from this, this is
immaterial for the constructions in this section. We decided to add this condition, as it is
automatically fulfilled for the strata-neighborhood systems we construct in this article, and
can always be achieved by replacing UX (p) with UX (p) ∪X<p.
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The goal of a strata-neighborhood system is ultimately to provide a geometric model for
the homotopy link diagram of a stratified space. However, we do not only need to model the
homotopy links, but also the functoriality of the latter. This requires the following definition.

Definition 6.2.4.7. Let X ,Y ∈ StratP be equipped with strata-neighborhood systems UX
and UY , respectively. We say f ∶X → Y lifts to a map of strata-neighborhood systems UX → UY ,
if f(UX (p)) ⊂ UY(p), for all p ∈ P .

Notation 6.2.4.8. Denote by SNS the category which is defined as follows. Objects are
given by pairs (X ,UX ) with X ∈ StratP and UX a strata-neighborhood system of X . The set
of morphisms from (X ,UX ) to (Y,UY) is given by such stratum-preserving maps f ∶X → Y
which lift to a map of neighborhood systems UX → UY . We will usually just refer to a pair
(X ,UX ) just by UX .

To extract an object of Fun(sd(P )op,Top) from a strata-neighborhood system, we need
the following construction.

Notation 6.2.4.9. For UX a strata-neighborhood system of X ∈ StratP and I ∈ sd(P ) a
regular flag, we write UX (I) ∶= ⋂p∈I UX (p).

Notation 6.2.4.10. Given a strata-neighborhood system UX a strata-neighborhood system
of X ∈ StratP , and I ∈ sd(P ), we are going to follow our conventions on stratified and non-
stratified objects (see Notation 6.2.1.6), and write UX (I), for the P -stratified space obtained
by equipping UX (I) with the stratification inherited from X . In particular, for p ∈ P , it makes
sense to use expressions such as UX (I)≤p, which in this case refers to the subspace of UX (I),
given by the strata of index lesser or equal to p.

Construction 6.2.4.11. Let UX be a strata-neighborhood system for X ∈ StratP . We denote
by DT

(UX ) ∈ Fun(sd(P )op,Top) the diagram

I = [p0 < ⋯ < pn]↦ UX (I)≥pn

with structure maps given by inclusions. The resulting object DT
(UX ) ∈ Fun(sd(P )op,Top)

is called the regular complement diagram of X ∈ StratP . This construction defines a functor

DT
∶SNS→ Fun(sd(P )op,Top).

We may now ask the question under which conditions on a neighborhood system UX , on a
stratified space X , there is a canonical weak equivalence of diagrams between HoLink(X ) and
DT
(UX ).

Definition 6.2.4.12. Let X ∈ StratP . We say that a strata-neighborhood system UX of X is
a model for the homotopy links of X (is a homotopy link model) if the natural maps

HoLinkI(UX (I))
ev
Ð→HoLinkpn

(UX (I)) = UX (I)pn ,

and
UX (I)pn ↪ UX (I)≥pn

are weak equivalences of topological spaces, for each regular flag I = [p0 < ⋯ < pn] ⊂ P .
We denote by HLMod the full subcategory of SNS given by pairs (X ,UX ) with UX a
homotopy link model for X .

Remark 6.2.4.13. We should note that the second condition in the definition of a homotopy
link model is necessary since (using the notation of Construction 6.2.4.11) DT

(UX )(I) is
defined as UX (I)≥pn rather than just using UX (I)pn . This in turn is necessary if we want
DT
(UX ) to provide a model for the whole diagram HoLink(X ), not just its pointwise values. To

obtain the structure maps of DT
(UX ) we need to have inclusions DT

(UX )(I1) ⊂ DT
(UX )(I0),

whenever I0 ⊂ I1. In particular, if we also want this inclusion to hold when I0 and I1 do not
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share a maximal element, then we need to define DT as in Construction 6.2.4.11. In any case,
the second condition for being a homotopy link model will usually turn out to be the easy one
to verify, as it can be verified entirely in the language of classical homotopy theory, unlike the
first one which requires stratified considerations.

Let us now finish this subsection by stating the result that legitimizes the nomenclature of
homotopy link models.

Theorem 6.2.4.14. The diagram

HLMod SNS

StratP Fun(sd(P )op,Top)
DT

HoLink

(6.5)

commutes up to weak equivalence.

At this point, we do not yet have the tools necessary for a proof of Theorem 6.2.4.14. The
proof follows in Section 6.3.3.

6.3 Strata-neighborhood systems for stratified simplicial
sets and cell complexes

From the perspective of Theorem 6.2.4.14, the goal of this paper is to construct homotopy
link models for stratified cell complexes. In this section, we provide a general construction
for strata-neighborhood systems, first for the simplicial case (Section 6.3.1) and later the
case of stratified cell complexes (Section 6.3.2). Importantly, we prove that this construction
can be made compatible with stratum-preserving maps, which ultimately leads to a proof of
Theorem 6.2.4.14.

6.3.1 Standard strata-neighborhood systems for stratified simplicial
sets

Before we move on to investigating strata-neighborhood systems on stratified cell complexes,
let us first consider the simpler case of the realization of a stratified simplicial set. To do so,
we are going to make heavy use of the following coordinates.

Construction 6.3.1.1. Let J be a flag in P . For p ∈ P , we denote Jp the unique maximal
subflag of J that degenerates from the regular flag [p] (see Notation 6.2.1.8 for an overview).
The inclusion Jp ⊂ J induces a natural projection

RJ → RJp ,

where RJ denotes the vector space spanned by the elements of J (counted with repetition).
Next, consider the canonical embedding ∣∆∣sJ ↪ RJ , which embeds ∣∆J ∣s as the affine hull of
the standard basis vectors. For x ∈ ∣∆J ∣s, we write xp for the image of x under the composition

∣∆J ∣s ↪ RJ → RJp .

Now, if I = [p0 < ⋯ < pn] is the regular flag such that all elements of J are contained in I,
then J is equivalently given by the concatenation

Jp0 ∪⋯ ∪Jpn .

(Note that we may indeed allow pi that are not in J , as then Jpi is the empty flag.) In
particular, we have a canonical isomorphism

RJ ≅ Πi∈[n]RJpi ,
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which allows us to make sense of the expression

x = (xp0 ,⋯, xpn).

Further, recall from Notation 6.2.1.8 that J≤p denotes the maximal subflag given by such
entries of J , of value lesser or equal to p. Analogously, we denote by J/≤p the maximal subflag
given by such entries of J , of value not lesser equal to p, and so on. Just as in the case of a
singleton, we denote by x≤p the image of x ∈ ∣∆J ∣s under

∣∆J ∣s ↪ RJ → RJ≤p ,

and similarly proceed with x/≤p, x<p and so on.

Next, we need a normalized version of the coordinates defined in Construction 6.3.1.1,
so-called join coordinates. The notation here will be somewhat sloppy, in the sense that we
are often going to write expressions like yp, when we formally should be writing yp(x).

Construction 6.3.1.2. We again use the setup of Construction 6.3.1.1. At the level of
underlying simplicial sets, we may then identify ∆J as the join

∆J =∆Jp0 ∗⋯ ∗∆Jpn .

Doing so, we can equip ∣∆J ∣s ⊂ RJ with n-fold join coordinates. Explicitly, the topological
join

∣∆Jp0 ∣ ∗⋯ ∗ ∣∆Jpn ∣

can be described as follows. For I ⊂ [n], denote by ∣∆I ∣ ⊂ ∣∆n∣ the face corresponding to I.
Furthermore, for I ′ ⊂ I, denote by πI,I′ the obvious projection Πi∈I ∣∆Jpi ∣→ Πi∈I′ ∣∆Jpi ∣. Then,
the n-fold join can be described as the quotient space of

⊔
I⊂[n]
(Πi∈I ∣∆Jpi ∣) × ∣∆I

∣

where we mod out by the equivalence relation generated by

(y, s) ∼ (πI,I′(y), s)

whenever y ∈ Πi∈I ∣∆Jpi ∣ and s ∈ ∣∆I′ ∣ ⊂ ∣∆I ∣. The homeomorphism to ∣∆J ∣ is then given by
mapping

∣∆Jp0 ∣ ∗⋯ ∗ ∣∆Jpn ∣ ∋ [(y, s)]↦ ∑
i∈[n]

siyi ∈ ∣∆J ∣.

Note that if yi is not defined, then si = 0 and this expression makes sense. Conversely, an
inverse is obtained by

∣∆J ∣ ∋ x↦ (( xp0

∣xp0 ∣
,⋯,

xpn

∣xpn ∣
), (∣xp0 ∣,⋯, ∣xpn ∣)) ∈ ∣∆Jp0 ∣ ∗⋯ ∗ ∣∆Jpn ∣.

Again, note that this expression makes sense, even if ∣xp∣ = 0. This leads us to the following
change to join coordinates, which we are going to use frequently in this section. For x ∈ ∣∆J ∣s
we denote

yp ∶=
xp

∣xp∣
;

sp ∶= ∣xp∣.

Finally, we will need another set of coordinates using the decomposition x = (x≤p, x/≤p), for
x ∈ ∣∆J ∣s and p ∈ P .
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Construction 6.3.1.3. Again, in the setup of Construction 6.3.1.1, we may - just as in
Construction 6.3.1.2 - identify

∆I =∆I<p ∗∆I/<p ,

∆I =∆I≤p ∗∆I/≤p ,

⋯ = ⋯

etc. This leads to a change of coordinates

s<p ∶= ∣x<p∣; s/<p ∶= ∣x/<p∣; ⋯ = ⋯

y<p ∶=
x<p
∣x<p∣

; y/<p ∶=
x/<p
∣x/<p∣

; ⋯ = ⋯

Remark 6.3.1.4. Let us remark on some immediate facts on the s-coordinates of Construc-
tion 6.3.1.2 and Construction 6.3.1.3. First, note that they are indeed invariant under stratified
face and degeneracy maps and therefore extend to any realization of a stratified simplicial
set X ∈ sStratP . Then, the s-coordinates interact with the stratification of ∣X ∣s as follows.
In the following, as the notation s∣X ∣s(x), for x ∈ ∣X ∣s, is rather cumbersome, we will use the
shortened notation s(x) ∶= s∣X ∣s(x) ∈ P to refer to the stratum of x. Let x ∈ ∣X ∣s. Then, we
have equivalences

• s(x) < p ⇐⇒ s<p = 1 ⇐⇒ s/<p = 0.

• s(x) ≤ p ⇐⇒ s≤p = 1 ⇐⇒ s/≤p = 0.

• ⋯.

It immediately follows that

• s(x) = p ⇐⇒ s≤p = 1 ∧ sp > 0 ⇐⇒ s/≤p = 0 ∧ sp > 0 ⇐⇒ ⋯.

We are now going to use these coordinates to define strata-neighborhoods for realizations
of stratified simplicial sets.

Construction 6.3.1.5. Suppose p ∈ P and φp ∶ [0,1]→ [0,1] is a continuous function such
that φp(s) > 0, whenever s > 0. Let X ∈ sStratP . We may then consider the following
subspaces of ∣X ∣s. We set

U
φp

X (p) ∶= {x ∈ ∣X ∣s ∣ s/≤p ≤ φp(s/<p)sp}

and call it the φp-standard neighborhood associated to X . Note that, since all s-coordinates
are invariant under realizations of maps of stratified simplicial sets, this construction extends
to a functor

U
φp

− (p)∶ sStratP → StratP .

Example 6.3.1.6. Consider the stratified simplex ∣∆[0<1<2]∣s, pictured below with the strata
colored in red, green and blue, in ascending order. If we set φp = 1 for p = 0,1 we obtain the
following standard neighborhoods shaded in red and green respectively for p = 0,1.

For a smaller choice of φ1, here with φ1(0) = 0, we obtain a φ1-standard neighborhood whose
boundary is tangential to the 1-stratum at the 0-stratum:
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Proposition 6.3.1.7. Let φp be as in Construction 6.3.1.5. For any stratified simplicial set
X ∈ sStratP the space Uφp

X (p) ⊂ ∣X ∣s defines a p-stratum neighborhood.

Proof. Consider the open subset of O ⊂ Uφp

X (p) ⊂ (∣X ∣s)/<p defined by the condition

s/≤p < φp(s/<p)sp.

By Remark 6.3.1.4, for any x ∈ (∣X ∣s)p the value of s/≤p is 0, sp > 0 and s/<p ≥ sp > 0. As
φp(s) > 0 for s > 0, it follows that

s/≤p = 0 < φp(s/<p)sp.

Consequently, (∣X ∣s)p ⊂ O ⊂ Uφp

X (p) and U
φp

X (p) is even a neighborhood of the p-stratum in
the strong sense.

In particular, standard neighborhoods allow us to factor stratified realization through the
category of strata-neighborhood systems:

Corollary 6.3.1.8. Let φ = (φp)p∈P be a family of functions as in Construction 6.3.1.5. Then,
X ↦ UφX = (∣X ∣s, (U

φp

X (p))p∈P ) defines a factorization

sStratP SNS

StratP .
∣−∣s

Uφ
−

(6.6)

Proof. By Proposition 6.3.1.7, it suffices to verify that (∣X ∣s)≤p ⊂ Uφp

X (p), for X ∈ sStratP and
p ∈ P . This is immediate from Remark 6.3.1.4.

Example 6.3.1.9. The most important case to consider is the case where all functions φp are
given by the constant function with value 1. In this case, the condition for a point x to lie in
U
φp

X (p) is simply that
s/≤p ≤ sp.

In this case, we denote the resulting neighborhood system by UX and call it the standard
neighborhood system.

Let us also remark on some of the more degenerate examples of standard neighborhoods:

Lemma 6.3.1.10. Let φp be as in Construction 6.3.1.5. If p ∉ J , then Uφp

∆J (p) = ∣∆
J<p ∣s.

Proof. Indeed, when p ∉ J , then for any x ∈ ∣∆J ∣s it holds that sp = 0. Hence, the defining
condition for Uφp

∆J (p) is fulfilled if and only if s/≤p = 0, that is, when x ∈ (∣∆J ∣s)≤p = ∣∆J<p ∣s.

Next, we give a purely combinatorial description of the standard neighborhood in the special
case where X is a stratified simplicial complex, by making use of barycentric subdivisions. By
a stratified simplicial complex, we mean a stratified simplicial set, such that its underlying
simplicial set has the property that every non-degenerate simplex is uniquely determined by
its set of vertices. In particular, this means that every face of every non-degenerate simplex is
non-degenerate.



6.3. SNSS FOR STRATIFIED SIMPLICIAL SETS AND CELL COMPLEXES 297

Construction 6.3.1.11. For X ∈ sStratP , consider the first barycentric subdivision of X ,
equipped with the stratification induced by the last vertex map sdX →X, and denote it sdX
(see [DW22, Def. 3.7], which is Definition 3.3.1.7 in this text). If X = ∆J , for some flag J
of P , then we denote by N∆J (p) ⊂ sd∆J the subcomplex, spanned by those vertices that
correspond to the subflags J ′ of J such that

p ∈ J ′ ∨ ∀q ∈ J ′ ∶ q < p.

We denote by N∆J (p) the stratified simplicial set obtained by equipping N∆J (p), with the
stratification inherited from sd∆J . This construction is functorial with respect to maps of
stratified simplices and hence extends to a functor

N−(p)∶ sStratP → sStratP ,

via left Kan extension, together with a natural transformation N−(p)↪ sd, identifying NX (p)
with a stratified subsimplicial set of sdX , for X ∈ sStratP .

Construction 6.3.1.12. If X ∈ sStratP is a stratified simplicial complex (i.e., every non-
degenerate simplex in X is uniquely determined by its set of vertices), then we may identify
UX (p) with the realization of NX (p)1. A stratum-preserving homeomorphism ∣NX (p)∣s →
UX (p) is constructed as follows. On each stratified simplex ∣∆J ∣s, where J degenerates from
a regular flag [p0 < ⋯ < pn], consider the weighted barycenter bJ , given in join coordinates by

bJ ∶= [(bp0 ,⋯, bpn), (
1
2
,
1
4
,⋯,

1
2n
,

1
2n
)],

where bpi is the barycenter of ∣∆Jpi ∣s. We denote

Ψ ∶ ∣sdX ∣s → ∣X ∣s

the stratum-preserving homeomorphism which is affinely extended from the map on vertices

v ↦ ∣σv ∣s(bJ ),

where v corresponds to a non-degenerate simplex σv ∶∆J → X with flag J . Then, the content
of Proposition 6.3.1.15 is that Ψ restricts to a homeomorphism from ∣NX (p)∣s to UX (p).

Example 6.3.1.13. In the context of Example 6.3.1.14, the following figure shows the weighted
barycentric subdivision given by Construction 6.3.1.12. As indicated in the following picture,
the standard neighborhoods of the 0 and 1-stratum are precisely spanned by such vertices in
the subdivision fulfilling the condition of Construction 6.3.1.11.

Example 6.3.1.14. For a non-degenerate flag I = [p0 < ⋯ < pn] and X ∈ sStratP , we denote
by NX (I) the intersection ⋂p∈INX (p). If X =∆I , then NX (I) is given by the image of the
unique embedding ∆I ↪ sd∆I .

The following proposition then shows that the construction in Construction 6.3.1.12 does
indeed provide a combinatorial model for standard neighborhoods.

1This also works in the general simplicial set case. However, the constructions become significantly more
involved, and we have no need for this case here.
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Proposition 6.3.1.15. Let p ∈ P and X ∈ sStratP be a stratified simplicial complex. Then
Ψ∶ ∣sdX ∣s → ∣X ∣s - as defined in Construction 6.3.1.12 - restricts to a stratum-preserving
homeomorphism ∣NX (p)∣s

∼
Ð→ UX (p).

Proof. The statement is easily reduced to the case where X = ∆J , for J a flag of P that
degenerates from a non-degenerate flag [p0 < ⋯ < pn]. Let us begin by computing the value of
s/≤p(bJ ) and sp(bJ ) : If p = pn, then

s/≤p(bJ ) = 0 < 2−n = sp(bJ ). (6.7)

If p = pk, for some k ∈ [n − 1], then bJ fulfills

s/≤p(bJ ) = 2−(k+1)
= sp(bJ ). (6.8)

If pk < p, for all k ∈ [n], then
s/≤p(bJ ) = 0 ≤ 0 = sp(bJ ). (6.9)

Finally, if p ∉ J and k ∈ [n] is minimal with the property that pk /≤ p, then

s/≤p(bJ ) = 2−k > 0 = sp(bJ ). (6.10)

It follows, from the inequalities (6.7) to (6.9) that Ψ does indeed restrict to an embedding
∣NX (p)∣s → UX (p). It remains to show surjectivity of this restriction. So, let x ∈ U∆J (p) ⊂
∣∆J ∣s be a point in ∣∆J ∣s. Let {J0 ⊂ ⋯ ⊂ Jm}, be the minimal set of subflags of J such that
x lies in the affine span of (bJi)i∈m, i.e., we have

x = t0bJ0 +⋯ + tmbJm

with ti > 0, for all i ∈ [m]. We need to show that for each i ∈ [m] either p ∈ Ji or q < p, for all
q ∈ Ji. In other words, we need to show that the set

S = {i ∈ [m] ∣ p ∉ Ji ∧ (∃q ∈ Ji∶ q /≤ p)}

is empty. Since x ∈ U∆J (p), we have

s/≤p(x) ≤ sp(x)

and thus

t0s/≤p(bJ0) +⋯ + tms/≤p(bJm) = s/≤p(x) ≤ sp(x) = t0sp(bJ0) +⋯ + tmsp(bJm)

Using Eqs. (6.8) and (6.9) it follows that

∑
i∈S
tis/≤p(bJi) ≤∑

i∈S
tisp(bJi). (6.11)

By Eq. (6.10), the right-hand side of this equality is 0 and the left-hand side is a (possibly
empty) sum of strictly positive numbers. It follows that S = ∅, as was to be shown.

We will need the following technical lemma. Roughly speaking, it states that, for a finite
simplicial set X , the strata-neighborhood system UφX of Construction 6.3.1.5 are universal.

Lemma 6.3.1.16. Let X ∈ sStratP be a finite stratified simplicial set. Let U∣X ∣s be any
neighborhood system on ∣X ∣s. Then there exists a family of functions φ as in Corollary 6.3.1.8
such that, for any p ∈ P , we have

U
φp

X (p) ⊂ U∣X ∣s(p).

In other words, the identity on ∣X ∣s lifts to a map of neighborhood systems UφX → U∣X ∣s .
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Proof. Note first that it suffices to solve the problem on each simplex and then define φp by
passing to minima. Hence, without loss of generality we may assume that X =∆J , for some
flag J . Fix some p ∈ P and denote U = U∣∆J ∣s(p). By Lemma 6.2.4.3, we may therefore assume
that U is actually a neighborhood of the p-stratum. Next, note that for any 0 < α ≤ 1 the set

Sα ∶= {x ∈ (∣∆J ∣s)p ∣ s/<p ≥ α}

is compact. A neighborhood basis for Sα in ∣∆J ∣s is given by the sets

Sα,β ∶= {x ∈ ∣∆J ∣s ∣ s/<p ≥ α − β ∧ s/≤p ≤ β},

where β > 0. Hence, for any n ∈ N there exists some βn > 0 such that for any x ∈ ∣X ∣s, the
implication

s/<p ≥
1
n
∧ s/≤p ≤ βn Ô⇒ x ∈ U

holds. Without loss of generality, we may assume that the sequence βn is decreasing. Choosing
a partition of unity σn on the family (( 1

n
,1])n∈N covering (0,1], we set

φp(s) = ∑
n∈N

σn(s)βn.

In this fashion, we obtain a continuous function φp∶ [0, 1]→ [0, 1], which is positive outside of 0.
Now, let x ∈ ∣X ∣s be such that s/<p ∈ ( 1

m
, 1
m−1 ], for some m > 1, and suppose that s/≤p ≤ φp(s/<p).

Then, since σn(s) = 0 for s < 1
n

, we obtain

s/≤p ≤ φp(s/<p) = ∑
n∈N

σn(s/<p)βn

= ∑
n≥m

σn(s/<p)βn

≤ βm ,

where the last inequality follows as ∑n≥m σn(s/<p)βn is a convex combination and (βn)n∈N is a
decreasing sequence. Thus, it follows that

s/<p > 0 ∧ s/≤p ≤ φp(s/<p) Ô⇒ x ∈ U,

and in particular also
s/<p > 0 ∧ s/≤p ≤ φp(s/<p)sp Ô⇒ x ∈ U,

for any x ∈ ∣∆J ∣s. We deduce that

(U
φp

∆J (p))/<p ⊂ U.

Since U contains (∣X ∣s)≤p by assumption, it follows that

U
φp

∆J (p) ⊂ U

as was to be shown.

In the next step, we show that (up to a stratum-preserving homeomorphism) we may really
replace UφX by UX , making the latter universal among strata-neighborhood systems in this
sense. Before we do so, let us introduce another set of coordinates, to simplify notation.

Construction 6.3.1.17. In the framework of Construction 6.3.1.3 we may repeat the procedure
described there with ∆J/<p , and decompose

∆J/<p =∆Jp ∗∆J/≤p .
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We denote the resulting coordinates by

tp ∶= ∣yp∣; t/≤p ∶= ∣y/≤p∣; zp ∶=
yp

∣yp∣
; z/≤p ∶=

y/≤p
∣y/≤p∣

.

Using the affine relations between the several variables (such as 1 = s<p + s/<p), we may then
express x entirely in terms of y<p, zp, z/≤p and s/<p, t/≤p. Explicitly, we have

x = (1 − s/<p)y<p + s/<p(t/≤pz/≤p + (1 − t/≤p)zp).

Remark 6.3.1.18. By construction, whenever t/≤p is defined, we have an equality

t/≤p =
s/≤p
s/<p

.

Using this, the condition for x ∈ ∣X ∣s to lie in U
φp

X (p) may equivalently be rewritten as

s/<p = 0 ∨ t/≤p ≤
φp(s/<p)

1 + φp(s/<p)
.

Proposition 6.3.1.19. Let φ be a system of functions as in Construction 6.3.1.5. Then there
exists a natural stratum-preserving automorphism

Φ∶ ∣ − ∣s → ∣ − ∣s

that, for each X ∈ sStratP , lifts to a map UX → UφX . In particular, Φ induces a natural
transformation

U− → Uφ−

in SNS. Furthermore, Φ can be taken naturally stratum-preserving homotopic to the identity,
through a family of natural homeomorphisms which lift to maps UX → UX .

Proof. We use the coordinates as in Construction 6.3.1.17. We first define separate homeomor-
phisms for each p ∈ P , Φp. Note that by left Kan extension it suffices to construct the natural
transformation Φp for stratified simplices. On ∣∆J ∣s, we define Φp via

[(y<p, zp, z/≤p), (s/<p, t/≤p)]↦ [(y<p, zp, z/≤p), (s/<p, t̂/≤p)]

where

t̂/≤p ∶=
⎧⎪⎪
⎨
⎪⎪⎩

2t/≤p − 1 + (2 − 2t/≤p)
φp(s/<p)

1+φp(s/<p) , for t/≤p ≥ 1
2

2t/≤p
φp(s/<p)

1+φp(s/<p) , for t/≤p ≤ 1
2 .

One may easily verify that this assignment is well defined (under the identifications in the
join), using the fact that the only coordinate that changes is t/≤p that t/≤p = 1 ⇐⇒ t̂/≤p = 1 and
that t/≤p = 0 ⇐⇒ t̂/≤p = 0. Similarly, one can easily verify that the resulting map

Φp ∶ ∣∆J ∣s → ∣∆J ∣s

is stratum-preserving. Naturality follows from the fact that both s/<p and t/≤p are invariant
under stratified face inclusions and degeneracy maps. Let us assume for a second that p ∈ J .
Then, if s/<p > 0 and all coordinates except t/≤p remain fixed, the t̂/≤p component of Φp is
given by gluing affine homeomorphisms [0, 1

2 ]
∼
Ð→ [0, φp(s/<p)

1+φp(s/<p) ] and [ 1
2 ,1]

∼
Ð→ [

φp(s/<p)
1+φp(s/<p) ,1]. It

follows from this fiberwise decomposition that Φp does indeed define a bijection (which is
clearly continuous). Since source and target are compact Hausdorff spaces, this already shows
that Φp defines a stratum-preserving homeomorphism. Next, let us agglomerate some more
observations about Φp, the first of which verifies that Φp is a homeomorphism if p ∉ J .

(i)Φ Whenever p ∉ J , then t/≤p = 1 for all x ∈ ∣∆J ∣s. Hence, then Φp is given by the identity.
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(ii)Φ For any p ∈ P , we have Φp(U∆J (p)) ⊂ U
φp

∆J (p).

(iii)Φ For q ≤ p, Φp(Uφq

∆J (q))) ⊂ Φp(Uφq

∆J (q))).

(iv)Φ For any q ∈ P , Φp(U∆J (q))) ⊂ Φp(U∆J (q)).

Properties (i)Φ and (ii)Φ are immediate from the construction of Φp. Let us verify Proper-
ties (iii)Φ and (iv)Φ. Note first that by Property (i)Φ, we may assume that p ∈ J . Furthermore,
by Lemma 6.3.1.10 we may assume that q ∈ J . Therefore, since J is a flag, we may proceed
with the remaining cases q < p, q = p, and q > p. Furthermore, since any of the relevant q-strata
neighborhoods contains (∣∆J ∣s)<q and Φp is stratum-preserving, we may always assume s/<q > 0.
For q < p, note that Φp(x)≤q = x≤q, for all x ∈ ∣∆J ∣s (this follows from the computation of x in
Construction 6.3.1.17). From this it follows that

s/<q(Φp(x)) = 1 − s<p(Φp(x)) = 1 − s<p(x) = s/<q(x)

and similarly
t/≤q(Φp(x)) = t/≤q(x)

(whenever the latter is defined). In particular, this immediately implies Properties (iii)Φ
and (iv)Φ. If q = p, then by Property (ii)Φ and since Uφp

∆J (p) ⊂ U∆J (p), we have

Φp(Uφp

∆J (p)) ⊂ Φp(U∆J (p)) ⊂ U
φp

∆J (p) ⊂ U∆J (p).

It remains to consider the case where q > p for Property (iv)Φ. In this case, one can compute
from the description of x ∈ ∣∆J ∣s in Construction 6.3.1.17 the equalities

s/<q(Φp(x)) =
t/≤p(Φp(x))
t/≤p(x)

s/<q(x) (6.12)

s/≤q(Φp(x)) =
t/≤p(Φp(x))
t/≤p(x)

s/≤q(x) (6.13)

whenever these expressions are defined. An elementary verification shows that this is indeed
the case whenever t/≤q(Φp(x)) > 0. It follows that in this case

t/≤q(Φp(x)) =
s/≤q(Φp(x))
s/<q(Φp(x))

=
s/≤q(x)

s/<q(x)
= t/≤q(x).

In particular, Property (iv)Φ holds for the remaining case q > p . This finishes the verification
of the properties of the natural transformation Φp. Next, for a flag J degenerating from a
regular flag [p0 < ⋯ < pn], we set

Φ = Φpn ○ ⋯ ○Φp0 ∶ ∣∆J ∣s → ∣∆J ∣s.

Note that this still defines a natural transformation of the realization functor (on the
stratified simplex category). Indeed, whenever there is a stratum-preserving simplicial map

∆J →∆J
′

and J ′ degenerates from [q0 < ⋯ < qm], then [p0 < ⋯ < pn] ⊂ [q0 < ⋯ < qm]. Thus, it follows
from Property (i)Φ that on ∣∆J ∣s

Φpn ○ ⋯ ○Φp0 = Φqm ○ ⋯ ○Φq0 .

Using this equation, the naturality of Φ follows from the naturality of the Φqn . By left Kan
extension Φ extends to a natural automorphism of ∣ − ∣s. It remains to verify that ΦX lifts to a
map UX → UφX . By construction of these neighborhood systems, it suffices to verify this on
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stratified simplices ∆J , where J degenerates from the regular flag [p0 < ⋯ < pn]. As before,
we may assume that p ∈ J , i.e., p = pk, for some k ∈ [n]. Then, we have

Φ(U∆J (p)) = Φpn ○ ⋯ ○Φp0(U∆J (p))

⊂ Φpn ○ ⋯ ○Φpk
(U∆J (p))

⊂ Φpn ○ ⋯ ○Φpk+1(U
φp

∆J (p))

⊂ U
φp

∆J (p),

where the first inclusion follows by Property (iv)Φ, the second inclusions follows by Prop-
erty (ii)Φ, and the final inclusion follows by Property (iii)Φ.
It remains to see that Φ is stratum-preserving homotopic to the identity. Given any family
of functions φ as in the assumption, we write Φ(φ) for the corresponding Φ, constructed as
above. Note that Φ varies continuously in each φp (with respect to the supremum distance
on C0([0,1], [0,1]) and that Φ(φ) = 1, if φ is given by the constant functions of value 1. For
t ∈ [0,1], define φt via φtp(s) = (1 − t) + tφp, for p ∈ P . Then, t ↦ Φ(φt) defines the required
natural homotopy.

We may combine Lemma 6.3.1.16 and Proposition 6.3.1.19 as the following result, which
will be central to generalizing our construction of strata-neighborhood systems to stratified
cell complexes.

Proposition 6.3.1.20. Let X ∈ sStratP be a finite stratified simplicial set. Let UY be a
strata-neighborhood system on Y ∈ StratP and f ∶ ∣X ∣s → Y be any stratum-preserving map.
Then, there exists a natural stratum-preserving automorphism Φ of ∣ − ∣s, naturally stratified
homotopic to the identity through a family of automorphisms which lift to maps UX → UX such
that f ○ΦX ∶ ∣X ∣s → Y lifts to a map UX → UY .

A first consequence of Proposition 6.3.1.20 is that strata-neighborhood systems may be
used to compute homotopy links using only data close to a stratum. Such an argument was
essentially the decisive step in the proof of [DW22, Theorem 4.8] (see Theorem 3.4.4.1 in
this text), where we gave an elementary proof of a special case of the following more general
statement.

Proposition 6.3.1.21. Let (X ,UX ) ∈ SNS and I ⊂ P be a regular flag. Then the inclusion
UX (I)↪ X induces a weak equivalence

HoLinkI(UX (I))→HoLinkI(X ).

Proof. We use Lemma 6.B.0.1. Under the adjunction

− × ∣∆I ∣s∶Top⇌ StratP ∶HoLinkI ,

we may thus equivalently show that every stratum-preserving map g0 ∶D
n+1 × ∣∆I ∣s → X which

maps Sn × ∣∆I ∣s to UX (I) is stratum-preserving homotopic to a map g1 ∶ D
n+1 × ∣∆I ∣s → X

with image in UX (I) through a homotopy mapping Sn × ∣∆I ∣s to UX (I). Now, fix some
identification ∣∆n+1∣ ≅Dn+1. Under this identification, we obtain a canonical isomorphism

∣∆n+1
×∆I ∣s ≅ ∣∆n+1

∣ × ∣∆I ∣s ≅Dn+1
× ∣∆I ∣s,

identifying ∣∂∆n+1 ×∆I ∣s with Sn × ∣∆I ∣s. We can now apply Proposition 6.3.1.20 to

g0∶ ∣∆n+1
×∆I ∣s ≅Dn+1

× ∣∆I ∣s → X ,

from which it follows that g0 is stratum-preserving homotopic to a stratum-preserving map
g′0∶ ∣∆n+1 ×∆I ∣s ≅ Dn+1 × ∣∆I ∣s → X that maps U∆n+1×∆I(I) into UX (I). Furthermore, by
naturality of the homotopy in Proposition 6.3.1.20, it follows that the homotopy between g0 and
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g′0 maps Sn × ∣∆I ∣s into UX (I). Next, note that the identification ∣∆n+1 ×∆I ∣s ≅Dn+1 × ∣∆I ∣s
restricts to an identification

U∆n+1×∆I(I) ≅D
n+1
×U∆I(I).

Hence, we may assume without loss of generality that g0 maps Dn+1 × U∆I(I) into UX (I).
Finally, note that, by Example 6.3.1.14, the inclusion U∆I(I)↪ ∣∆I ∣s , equivalently given by

∣∆I ∣s ↪ ∣sd∆I ∣s ≅ ∣∆I ∣s.

Choose any strong (stratum-preserving) deformation retraction R ∶ ∣∆I ∣s × [0,1] → ∣∆I ∣s of
the inclusion ∣∆I ∣s ↪ ∣sd∆I ∣s ≅ ∣∆I ∣s (given, for example, by affine interpolation between the
identity and the last vertex map). Then the homotopy

g0 ○ (1Dn+1 ×R)∶Dn+1
× ∣∆I ∣s × [0,1]→Dn+1

× ∣∆I ∣s

has the required properties.

6.3.2 Strata-neighborhood systems for stratified cell complexes
Next, let us generalize the construction of standard neighborhood systems to stratified cell
complexes. The obvious issue at hand is that we may generally not expect the choices of
standard neighborhood on cells to be compatible with attaching maps. To amend this difficulty,
we first need a notion of subdivision of a stratified cell complex. For the remainder of this
section, by a stratified cell complex we will always mean a P -stratified space, together with a
fixed choice of cell structure (σi∶ ∣∆Ji ∣s → X )i∈I . By a slight abuse of notation, we will often
just refer to the underlying space.

Definition 6.3.2.1. Let X be a stratified cell complex, defined by cells (σi∶ ∣∆Ji ∣s → X )i∈I .
By a barycentric subdivision of X we mean a family of stratum-preserving homeomorphisms
Ψi∶ ∣sd∆Ji ∣s

∼
Ð→ ∣∆Ji ∣s, for i ∈ I, which fulfill Ψi(∣sd∆J ∣s) ⊂ ∣∆J ∣s, for J ⊂ Ji.

Remark 6.3.2.2. Note that any choice of barycentric subdivision (Ψi)i∈I on a stratified cell
complex X naturally induces a new cell structure on X which is indexed over

{(i, τ) ∣ i ∈ I, τ simplex of sd∆Ji s.t. Ji ∈ τ}.

We write sdΨX , for the underlying space of X equipped with this new cell structure.

Example 6.3.2.3. If X ∈ StratP is the realization of a stratified simplicial complex K,
equipped with the induced cell structure, and we take Ψi∶ ∣sd∆Ji ∣s → ∣∆Ji ∣s to be the barycentric
subdivision homeomorphism, then the cell structure induced by the subdivision Ψ is the one
coming from the barycentric subdivision homeomorphism ∣sdK∣s ≅ ∣K∣s = X .

Definition 6.3.2.4. Let X be a stratified cell complex, and Ψ a choice of subdivision of X .
We say that Ψ defines a standard neighborhood system on X if for every p ∈ P and every i ∈ I
the inclusion

σi ○Ψi(∣N∂∆Ji (p)∣s) ⊂ ⋃
j≺i
σj ○Ψj(∣N∆Jj (p)∣s),

holds (here ≺ denotes the precursor order of Definition 6.2.3.1).

Example 6.3.2.5. Consider the pinched torus S1 ×S1/(S1 ×x0), stratified over {0 < 2} taking
the equivalence class S1 × x0 as the 0-stratum. To the left, a stratified cell structure induced
by a simplicial model is shown, with the stratification indicated by the coloring. To the right,
we show a subdivision of this cell structure, which defines a standard neighborhood system on
the pinched torus. The standard-neighborhood of the p-stratum induced by this subdivision is
shown shaded in red.
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Note that the definition of a stratified cell complex allows for the attachment of n-cells to
n-cells, as long as this does not lead to cycles in attachment.

Remark 6.3.2.6. Note that the condition in Definition 6.3.2.4 can be equivalently defined by
replacing the precursor order by any ordinal structure on I, which exposes X as an absolute cell
complex with respect to stratified boundary inclusions of simplices (see Construction 6.2.3.5).

Construction 6.3.2.7. The condition in Definition 6.3.2.4 precisely guarantees that when a
subdivision Ψ of a cell complex X defines a standard neighborhood system on X , then the
indexing set

{(i, τ) ∣ i ∈ I,Ji ∈ τ ; τ ⊂ N∆Ji (p)}

corresponding to such cells in sdX that lie in standard neighborhoods in the stratified cells
define a subcomplex of sdΨX . As a stratified space, it is given by the union

⋃
i∈I
σi ○Ψi(∣N∆Ji (p)∣s) ⊂ X .

We denote this subcomplex by UΨ
X (I). We call UΨ

X (I) the p-th standard neighborhood associated
to the subdivision Ψ. Furthermore, we denote

UΨ
X ∶= (U

Ψ
X (p))p∈P

and call this family the standard neighborhood system of X associated to the subdivision Ψ.

Let us verify that the nomenclature of Construction 6.3.2.7 does make sense, that is, that
we have indeed defined a strata-neighborhood system. Before we do so, note the following
remark.

Remark 6.3.2.8. For any stratified simplicial complex X ∈ sStratP we may use Proposi-
tion 6.3.1.15 to identify ∣NX (p)∣s with UΨ

∣X ∣s(I), where Ψ is the barycentric subdivision of
Construction 6.3.1.12.

Proposition 6.3.2.9. In the setting of Construction 6.3.2.7, the family UΨ
X defines a strata-

neighborhood system on X . Furthermore, UΨ
X has the property that UΨ

X (I) ⊂ X is a subcomplex
of sdΨX , for every regular flag I ⊂ P .

Proof. That, for any p ∈ P , it holds that X≤p ⊂ UΨ
X (p), is immediate from Remark 6.3.2.8,

Proposition 6.3.1.15 and Corollary 6.3.1.8. Next, let us verify that UΨ
X (I) does indeed define a

p-stratum neighborhood. By Lemma 6.2.4.4, it suffices to show that, for every p ∈ P and every
cell σ∶ ∣∆Ji ∣s → X of X , the set σ−1(UΨ

X (I)) defines a neighborhood of the p-stratum. Since Ψi

is a stratum-preserving homeomorphism, we may equivalently show that (σ ○Ψi)
−1(UΨ

X (I))
has this property. Note that by construction we have

∣N∆Ji (p)∣ ⊂ (σ ○Ψi)
−1
(UΨ
X (I)).

By Proposition 6.3.1.15, up to a stratum-preserving homeomorphism of ∣∆Ji ∣s we have

∣N∆Ji (p)∣s = U∆Ji (p),

which shows that both ∣N∆Ji (p)∣ and thus also (Ψ ○ σ)−1(UΨ
X (I)) is a neighborhood of the

p-stratum. The statement on subcomplexes is immediate from the fact that the intersection of
subcomplexes is again a subcomplex.
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Example 6.3.2.10. If X ∈ StratP is the realization of a stratified simplicial complex K,
equipped with the induced cell structure, and we take Ψi∶ ∣sd∆Ji ∣s → ∣∆Ji ∣s to be the subdivision
homeomorphism of Construction 6.3.1.12, then UΨ

X (I) = UK(I).

Next, let us show that there always exists a subdivision which defines a standard neigh-
borhood system on a stratified cell complex X . This is ultimately a consequence of Proposi-
tion 6.3.1.19, and provides a first step towards Theorem HA.

Proposition 6.3.2.11. For every stratified cell complex X , there exists a subdivision Ψ of X
such that Ψ defines a standard neighborhood system on X . Additionally, for any P -stratified
space Y equipped with a strata-neighborhood system UY and any stratum-preserving map
f ∶X → Y, Ψ may be chosen such that f lifts to a map UΨ

X → UY . Furthermore, if such a
subdivision ΨA has already been chosen on a subcomplex of A ⊂ X , then Ψ may be taken such
that

ΨA,i = Ψi

whenever i ∈ I defines a cell of A.

Proof. Via transfinite induction, it suffices to show the following. For any commutative
diagram

∣∂∆Ji ∣s A

∣∆Ji ∣s Y ,

(6.14)

where A → Y lifts to a map of neighborhood systems UA → UY , there exists a stratum-
preserving homeomorphism Ψi∶ ∣sd∆Ji ∣s → ∣∆Ji ∣s (which is compatible with faces) with the
following properties.

1. The composition ∣sd∂∆Ji ∣s

Ψi∣
∣sd∂∆Ji ∣s

ÐÐÐÐÐÐÐ→ ∣∂∆Ji ∣s → A lifts to a map of neighborhood
systems

(∣N∂∆Ji (p)∣s)p∈P → UA.

2. The composition ∣sd∆Ji ∣s
Ψi
Ð→ ∣∆Ji ∣s → Y lifts to a map of neighborhood systems

(∣N∆Ji (p)∣s)p∈P → UY .

We may first apply Proposition 6.3.1.15 and instead show the analogous statement with sd∆Ji

replaced by ∆Ji and (∣N∆Ji (p)∣s)p∈P replaced by U∆Ji . Next, apply Proposition 6.3.1.20
twice, first to ∣∆Ji ∣s → Y, obtaining a natural stratum-preserving automorphism ΦY of ∣ − ∣s,
and then to the composition ∣∂∆Ji ∣s

ΦY
ÐÐ→ ∣∂∆Ji ∣s → A, obtaining a natural stratum-preserving

automorphism ΦA of ∣ − ∣s. By construction, these have the following properties:

1. The composition ∣∂∆Ji ∣s
ΦY○ΦA
ÐÐÐÐ→ ∣∂∆Ji ∣s → A lifts to a map U∂∆Ji → UA.

2. ∣∆Ji ∣s
ΦA
ÐÐ→ ∣∆Ji ∣s lifts to a map U∆Ji → U∆Ji .

3. The composition ∣∆Ji ∣s
ΦY
ÐÐ→ ∣∆Ji ∣s → Y lifts to a map U∆Ji → UY .

In particular, by the composability of morphisms of strata-neighborhood systems, it follows
that the composition Ψi ∶= ΦY ○ΦA also has the property that ∣∆Ji ∣s

Ψi
Ð→ ∣∆Ji ∣s → Y also lifts

to a map U∆Ji → UY .

Furthermore, we can now prove a first result towards Theorem HB.
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Corollary 6.3.2.12. Suppose, we are given a pushout square in StratP

A B

X Y,

c

f (6.15)

with A,X stratified cell complexes and c an inclusion of a stratified subcomplex. Let (σi)i∈I be
the cell structure on X , (σj)j∈J be the cell structure on A and (σj)j∈J⊔J ′ be the cell structure
on B, extending the one on A along c. Then, there exist barycentric subdivisions Ψ of X and
Φ̂ of B such that the following holds:
Denote by Φ the restriction of Φ̂ to A. Denote by Ψ̂ the subdivision of the induced cell structure
on Y, given by (Ψi)i∈I∪(Φj)j∈J ′ . Then, Diagram (6.15) lifts to a diagram of strata-neighborhood
systems

UΦ
A UΦ̂

B

UΨ
X UΨ̂

Y .

c̃

(6.16)

Proof. By Proposition 6.3.2.11, we obtain subdivisions Φ̂ and Ψ as in the claim such that
A→ X lift to maps of strata-neighborhood systems UΦ

A → UΨ
X . Now, define Ψ̂ as above. Let us

show that Ψ̂ does define a strata-neighborhood system on the induced cell structure on Y . Via
transfinite induction, we may without loss of generality assume that B is given by gluing a
single cell σm∶ ∣∆J ∣s → B to A. Then, Y is given by gluing ∣∆J ∣s to X along ∣∂∆J ∣s → A→ X .
Denote the resulting cell of Y, by σ̂m∶ ∣∆J ∣s → Y. Then, by construction, we have

σ̂m ○ Ψ̂m(∣N∂∆J (p)∣s) = f ○ σm ○Φm(∣N∂∆J (p)∣s)

⊂ f(UΦ
A(p))

⊂ UΨ
X (p)

=⋃
i∈I
σj ○Ψj(∣N∆Jj (p)∣s)

for all p ∈ P , which (by Remark 6.3.2.6) was to be shown. It is then immediate by construction
that B → Y also lifts to a map of strata-neighborhood systems.

Next, let us verify that the functor DT
∶SNS→ Fun(sd(P )op,Top) sends Diagram (6.16)

to a homotopy pushout square.

Lemma 6.3.2.13. In the situation of Corollary 6.3.2.12, the image of Diagram (6.16) under
DT has the following property. For each I ∈ sd(P ), the resulting square

DT
(UΦ
A)(I) DT

(UΦ̂
B(I))

DT
(UΨ
X (I)) DT

(UΨ̂
Y(I))

(6.17)

is such that:

1. All objects of the square are cell complexes in Top;

2. The square is a pushout in Top;

3. The horizontals are relative cell complexes in Top.

In particular, Diagram (6.17) is a homotopy pushout diagram in Top.
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Proof. It is immediate from the construction of the standard neighborhoods of a stratified cell
complex that the diagrams

UΦ
A(I) U Φ̂

B (I)

UΨ
X (I) U Ψ̂

Y (I)

(6.18)

are pushout diagrams of stratified cell complexes (see also Proposition 6.3.2.9), with the upper
vertical a relative (stratified) cell complex, for every I ∈ sd(P ). Indeed, note that the cells
missing in UΨ

X (I) from U Ψ̂
Y (I) correspond precisely to the respective cells missing in UΦ0

A (I)

from UΦ
B (I). What remains to be shown is that these properties are preserved under applying

the functor (−)≥p∶StratP → Top. This is an immediate consequence of Lemma 6.A.0.4 and
Lemma 6.A.0.3. We can thus summarize that Diagram (6.17) is a pushout diagram of cell
complexes where the upper horizontal is given by a relative cell complex, in particular a
cofibration. It follows from [Lur09, A.2.4.4] that the diagram is homotopy cocartesian.

6.3.3 The proof of Theorem 6.2.4.14
As a consequence of Proposition 6.3.1.21 we are now ready to give a proof of Theorem 6.2.4.14,
which tells us that we may indeed use homotopy link models to compute homotopy links.
Precisely, Proposition 6.3.1.21 guarantees us that for X ∈ StratP the diagram HoLink(X )
may equivalently computed via the diagram given by I ↦HoLinkI(UX (I)), where UX is any
strata-neighborhood system of X .

Notation 6.3.3.1. Let (X ,UX ) ∈ SNS. We denote by DH
(UX ) the element of Fun(sd(P )op,Top)

given by
I ↦HoLinkI(UX (I))

with the obvious structure maps induced by the ones on HoLinkI(X ). We denote

DH
∶SNS→ Fun(sd(P )op,Top)

the functor induced by this construction.

We may then rephrase Proposition 6.3.1.21 as follows.

Corollary 6.3.3.2. The inclusions UX (I)↪ X , for (X ,UX ) ∈ SNS and I ∈ sd(P ), induce a
natural weak equivalence of functors

DH ≃
Ð→HoLink.

The obvious next step to prove Theorem 6.2.4.14 is to show that DH is in turn weakly
equivalent to DT . The definition of a homotopy link model suggests to use the maximal vertex
evaluation maps

HoLinkI(UX (I))
evpn
ÐÐ→ UX (I)pn ↪ UX (I)≥pn

However, there is a technical difficulty to overcome first. In fact, these maps do not induce a
morphisms of diagrams. Already in the case where I = [p0 < p1] the diagram

HoLinkp0<p1(UX (p0 < p1)) UX (p0 < p1)≥p1

HoLinkp0(UX (p0)) = (UX (p0))p0 UX (p0)≥p0

evp1

(6.19)

is only commutative up to homotopy. What we may do instead is to construct a natural
transformation DH

→ DT only up to homotopy coherence. We may then use rigidification
results such as [Lur09, Prop. A.3.4.12] to obtain a weak equivalence of functors.
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Remark 6.3.3.3. There will occur a slight set-theoretical difficulty when using [Lur09, Prop.
A.3.4.12]. Namely, we will want to consider the homotopy coherent nerve of TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop as an element
of sSet. Size issues require us to pass to a larger Grothendieck universe. To make this rigorous,
we need to assume large cardinals κ < κ′, and denote by sSet the category of simplicial sets of
size smaller than κ some fixed large cardinal, and by s̃Set the category of simplicial sets of
cardinality smaller than κ′.

Definition 6.3.3.4. In the case where Top denotes either ∆-generated or topologically
generated spaces (i.e., StratP is cartesian closed). We denote by XY the internal mapping
space of Y,X ∈ Top. For any X ∈ TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop, this constructions defines a simplicial functor

X−∶ TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopop
→ TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop,

by mapping an n-simplex
σ∶ ∣∆n

∣ ×Z → Y

of TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop(Z,Y ) to the adjoint map of

XY
× ∣∆n

∣ ×Z
1×σ
ÐÐ→XY

× Y
ev
Ð→X,

which indeed defines an n-simplex of TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop(XY ,XZ).

Construction 6.3.3.5. We only construct the weak equivalence for a fixed (X ,UX ) ∈ DT .
Generalizing to the case of a whole natural transformation essentially just comes down to an
increase in notation. Furthermore, we only prove the case where TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop is cartesian closed. The
general case follows from this using that every space is weakly equivalent to its kelleyfication
with respect to ∆-generated spaecs. We denote by N the homotopy coherent nerve functor
from the category of (κ′) small simplicial categories s̃Cat to s̃Set. We denote its leftadjoint
by S.
Denote by Pos the category of all (κ small) posets, with its simplicial structure inherited from
sSet. Furthermore, consider the posets Q = sd(P ) × [1]op as a category. Now, consider the
assigment E∶Q→ Pos by mapping

(I,1)↦ [0]
(I,0)↦ I

and

(I,1) ≤ (I ′,1)↦ ([0]→ [0]])
(I,1) ≤ (I ′,0)↦ {0↦max I ′}
(I,0) ≤ (I ′,0)↦ (I ↪ I ′).

This assignment does not define a functor! However, we can turn it into a homotopy coherent
functor. This is due to the fact that E has the property

E(f ○ g)(p) ≥ E(f) ○E(g)(p), (6.20)

for composable f, g ∈ Q and p in the source of E(g). For α1, α0 ∈ Q, denote by Qα1,α0 ⊂ Q the
poset of all regular flags S ⊂ Q, with minS = α1 and maxS = α0 ordered by reverse inclusion.
Next, consider map

E ∶Qα1,α0 ×E(α1)→ E(α0)

([S0 < ⋯ < Sn], p)↦ E(Sn−1 ≤ Sn) ○ ⋯ ○E(S0 ≤ S1)(p).

It follows by Eq. (6.20) that E defines a map of posets. Thus, equivalently E specifies a
simplicial map

N(Qα1,α0)→ sSet(N(E(α1)),N(E(α0))).



6.3. SNSS FOR STRATIFIED SIMPLICIAL SETS AND CELL COMPLEXES 309

In this manner, we have defined a simplicial functor

E ∶S(sd(P ) × [1]op
)→ Pos,

where S is the left adjoint to the homotopy coherent nerve (see for example [Lur09, Sec. 1.1.5])
and where the simplicial structure on the right hand side is inherited from the one on sSet.
Next, consider the composition of simplicial functors

S(sd(P )op
× [1]) EÐ→ Posop N

Ð→ sSetop ∣−∣
Ð→ TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopop X−

ÐÐ→ TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop.

It specifies a homotopy coherent diagram D in TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop, indexed over sd(P )op × [1], which
restricts to the constant diagram of value X at 1 and to the diagram D0 given by I ↦X ∣∆

I ∣ at
0. We may then consider DH

(UX ) as a subdiagram of D0 and DT
(UX ) as a subdiagram of D1.

For α0 = (I0,0) and α1 = (I1,1), and p ∈ I1, Eα1,α0 has the property that E(−, p) has image
in {q ∈ I0 ∣ q ≥ max I0}. It follows from this that restricting to DH

(UX ) at 0 and DT
(UX )

at 1 defines a homotopy coherent subdiagram of D. To summarize, we have constructed a
simplicial functor

ev ∈ s̃Cat(S(sd(P )op
× [1]), TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop) ≅ s̃Set(sd(P )op

× [1],N ( TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop))

which restricts to DH at 0 and DT at 1, or in other words by the identity

s̃Set(sd(P )op
× [1],N ( TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop)) ≅ Fun(sd(P )op,N ( TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop))1.

a natural transformation of functors of quasi categories between

N (sd(P )op DH(UX )
ÐÐÐÐÐ→ TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop)

and
N (sd(P )op DT (UX )

ÐÐÐÐÐ→ TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop).

For any fixed flag I = [p0 < ⋯ < pn] this natural transformation is given by

HoLinkI(UX (I))
evpn
ÐÐ→ UX (I)≥pn .

Now, if UX is a homotopy link model for X , then the latter map is a weak equivalence. Hence,
if we pass to Kan-complex (sSeto) by applying singular simplicial sets, then this natural
transformation is given pointwise by an isomorphism in the quasi-category N (sSeto). We
have thus defined an isomorphism between the functors of quasi-categories

N (sd(P )op DH(UX )
ÐÐÐÐÐ→ TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop→ sSeto),

N (sd(P )op DT (UX )
ÐÐÐÐÐ→ TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop→ sSeto).

We may now finish the proof of Theorem 6.2.4.14.

Proof of Theorem 6.2.4.14. We only provide a weak equivalence for some fixed homotopy link
model UX . The global case is essentially analogous. We consider s̃Cat as equipped with
the model structure for simplicial categories (see [Ber07a]) making the adjunction S ⊣ N a
Quillen equivalence between s̃Cat and simplicial sets equipped with the Joyal model structure,
s̃Set

J ([Joy, Thm. 1.21]). If not indicated otherwise by an superscript J, we consider sSet
to be equipped with the Kan-Quillen model structure. Let UX be a homotopy link model
for a stratified space X ∈ StratP . We need to show that HoLinkX and DT

(UX ) are weakly
equivalent. By Corollary 6.3.3.2, we may instead show that DT

(UX ) and DH
(UX ) are weakly

equivalent. Using the Quillen equivalence between TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop and sSet, we may equivalently show
that Sing○DT

(UX )∶ sd(P )op → sSet and Sing○DH
(UX )∶ sd(P )op → sSet are weakly equivalent.
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In other words, we need to show that these two functors present the same path component
in π0(Fun((sdP )op, sSet)) (using the notation of [Lur09, Prop. A.3.4.12].) By [Lur09, Prop.
A.3.4.12] there is a canonical bijection:

π0(Fun((sdP )op, sSet)) = hos̃Cat(sd(P )op, sSeto).

Furthermore, under the Quillen equivalence between simplicial and quasi-categories [Joy, Thm.
1.21], this bijection extends to

π0(Fun((sdP )op, sSet)) = hos̃Cat(sd(P )op, sSeto) = hos̃Set
J
(sd(P )op,N (sSeto)).

hos̃Set
J
(sd(P )op,N (sSeto)) is the set of isomorphism classes of functors of quasi-categories

sd(P )op → N (sSeto). We have constructed such an isomorphism between N (Sing ○DT
(UX ))

and N (Sing ○DH
(UX )) in Construction 6.3.3.5.

6.4 Regular neighborhoods and homotopy link models
In the previous section, we have constructed strata-neighborhood systems for stratified simplicial
sets and stratified cell complexes. For a proof of Theorem HA, in light of Theorem 6.2.4.14, it
remains to show that these strata-neighborhood systems are homotopy link models. To do
so, we develop a generalized notion of regular neighborhoods for stratified spaces, which also
applies to flags I ∈ sd(P ) of length greater equal to two. Recall from [Fri03, A] the notion of
a nearly stratum-preserving deformation retraction (introduced in similar form in [Qui88]).
The following generalizes this notion to the case of more than two strata. In the following
sections, we will generally omit the index from the stratification maps sX ∶X → P and just
write s(x) ∈ P , for x ∈ X .

Definition 6.4.0.1. Let X ∈ StratP be a stratified space and let I = [p0 < ⋯ < pn] be a
regular flag in P . We say that X admits an almost2 stratum-preserving I-retraction - ASPIR
for short - if the following holds: There exists a stratum-preserving map R∶Xpn × ∣∆I ∣s → X
such that, for each p ∈ I, the map of (general topological) spaces

(Xpn ∪X≤p) × ∣∆I≥p ∣s →X

(x,u)↦

⎧⎪⎪
⎨
⎪⎪⎩

R(x,u) s(x) = pn

x s(x) ≤ p

is well defined and continuous.

Remark 6.4.0.2. To get a first intuition for Definition 6.4.0.1, let us decode what the
requirements in Definition 6.4.0.1 mean in the case where I = [p0 < p1] = P . Then, we may
identify ∣∆I ∣s with the (stratified) interval [0,1]. Suppose a (stratified) neighborhood N ⊂ X
of Xp0 admits an ASPIR R. Then, equivalently R is a stratum-preserving map

R∶Np1 × [0,1] ≅ Np1 × ∣∆I ∣s → N

which extends to
N × [0,1]→ N

by taking the constant homotopy of the inclusion on Xp0 ↪ N , and furthermore R restricted
to Npn × {1} is given by the inclusion Npn ↪ N .
We may summarize this information as R defining a strong deformation retraction from N to
Xp0 , which is stratum-preserving, except at time 0 when all of N is mapped into Xp0 . Note
that this is (up to a slight but inessential variation in target space) the definition of a nearly
stratum-preserving strong deformation retraction given in [Fri03, A] (adapted from [Qui88]).

2The usage of ’almost’ instead of ’nearly’ is purely for the sake of having a phonetically pleasant acronym.
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It is a consequence of [Fri03, Prop. A.1] that (under some additional conditions on X ) the
existence of such a deformation retraction guarantees that the map

HoLinkp0<p1(N)
evp1
ÐÐ→ Np1

is a homotopy equivalence. Note that this is half the condition required for N to be part of a
homotopy link model for X . This already makes it plausible that ASPIRs may be used to
verify that certain strata-neighborhood systems are homotopy link models.

Another technical remark on questions of set theoretic topology is in order.

Remark 6.4.0.3. In Definition 6.4.0.1, we required the map (Xpn
∪X≤p)× ∣∆I≥p ∣s →X to be

a continuous map of general topological spaces. In particular, we take (Xpn ∪X≤p) ⊂ X to
have the classical relative topology, not the ∆-generated or compactly generated one. Indeed,
since (Xpn ∪X≤p) is not open in X, this is generally a stronger requirement. For example, this
subtlety will be important in the proof of Proposition 6.4.0.9.

Remark 6.4.0.4. We are often going to treat an ASPIR R∶Xpn × ∣∆I ∣s → X as a (not-
necessarily continuous) map

Xpn × ∣∆I ∣s ∪ ⋃
p∈I

X≤p × ∣∆I≥p ∣s →X.

In this sense, we also write
R(x,u) ∶= x

for x ∈Xp and u ∈ ∣∆I≥p ∣s. Furthermore, under the adjunction − × ∣∆I ∣s ⊣HoLinkI it can be
useful to treat an ASPIR R as a map Xpn

→ HoLinkI(X ), the value of which at x ∈ X we
denote by Rx.

Finally, let us give another characterization of ASPIRs in the case where X is a metric
space, which may be somewhat more intuitive.

Remark 6.4.0.5. When X is metrizable, we may equivalently require the stratum-preserving
map R as in Definition 6.4.0.1 to have the following property. Whenever a sequence xm ∈Xpn

converges to x ∈Xp, then the sequence of stratum-preserving simplices

Rxm ∣∣∆I≥p ∣s ∶ ∣∆
I≥p ∣s → X ,

converges uniformly to the constant map

cx∶ ∣∆I≥p ∣→X

of value x. In particular, if we denote by vn the maximal vertex of ∣∆I ∣s, then R(x, vn) = x.

Remark 6.4.0.6. The question may arise, why we have chosen to use the more technical
condition, to only require ASPIRs to extend continuously to certain subspaces of X≤pn × ∣∆I ∣s,
and not to the whole space. For realizations of standard neighborhoods of stratified simplicial
sets one can indeed produce ASPIRs which extends to the whole space (see Proposition 6.4.1.6).
For stratified cell complexes, however, this is not the case (see Example 6.4.2.6). This is
ultimately due to the fact that stratified cell complexes allow for vastly pathological gluing
maps, which are generally far from being piecewise linear. Nevertheless, the more general
definition of ASPIRs we have chosen here also applies to stratified cell complexes.

Remark 6.4.0.2 already suggests the following proposition.

Proposition 6.4.0.7. Let X ∈ StratP and let I = [p0 < ⋯ < pn] ⊂ P be a regular flag. If X
admits an ASPIR, then

HoLinkI(X )
ev
Ð→Xpn

is a weak homotopy equivalence in Top.
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Figure 6.2: Illustration in barycentric coordinates of the maps σ ⋆t R for t = 1
2 , t = 3

4 and
I = [0 < 1 < 2]. As t increases from 0 to 1, the stratified simplex σ is gradually replaced by
simplices of the form Rσ(u), ending in Rσ(vn), for t = 1.

To prove this proposition, we need the following construction:

Construction 6.4.0.8. Let X ∈ StratP and let I = [p0 < ⋯ < pn] ⊂ P be a regular flag. Let
R∶Apn × ∣∆I ∣s → A define an ASPIR on a closed subspace A of X . Then, for any p ∈ P , it
follows from A ⊂ X being closed that the restriction of R to Apn × ∣∆I≥p ∣s extends continuously
to a map

(Apn ∪X≤p) × ∣∆I≥p ∣s →X

by mapping (x,u) to x, whenever s(x) ≤ p. For notational simplicity, we consider R as a (not
necessarily continuous) map

R∶⋃
p∈I
(Apn ∪X≤p) × ∣∆I≥p ∣s →X

in this fashion. We may identify ∣∆I ∣s × [0,1] = ∣∆I ×∆1∣s. Having done so, we can consider
the natural embedding

∣∆I ×∆1
∣s ↪ ∣∆I ∗∆I ∣

under which ∣∆I ×∆1∣s corresponds to the union of joins ∣∆I≤p ∗∆I≥p ∣, p ∈ I. This embedding
induces join coordinates (u, t) =̂ [y0, y1, t] on ∣∆I ×∆1∣s.
Now, denote by vn the maximal vertex of ∣∆I ∣. Let σ∶ ∣∆I ∣s → X be a stratum-preserving map,
and t ∈ [0,1] such that σ(u) ∈ A ∪X<pn , if upn = t. We define

σ ⋆t R∶ ∣∆I ∣s → X
u↦ R(σ((1 − t)y0 + tvn), y1) .

See also the illustration of σ⋆tR in Fig. 6.2. If σ(u) ∈ A, for all u ∈ ∣∆I ∣s, then this construction
extends to a homotopy

σ ⋆R∶ ∣∆I ∣s × [0,1]→ X
(u, t)↦ σ ⋆t R(u).

Proposition 6.4.0.9. Using the notation of Construction 6.4.0.8, σ ⋆R is well defined and
has the following properties:

1. σ ⋆t R is stratum-preserving.
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2. (σ ⋆R)0 = σ and (σ ⋆R)1 = R(σ(vn),−).

3. Consider X≤p0 as a subspace of the space of continuous maps from ∣∆I ∣ to X, C0(∣∆I ∣,X),
equipped with the compact open topology, by mapping x to the constant map cx with value
x. Furthermore, let S denote the union of

{(σ, t) ∣ σ ∈HoLinkI(X ) ∧ ∀u ∈ ∣∆I ∣s ∶ upn = t Ô⇒ σ(u) ∈ A}

with X≤p0 × [0,1] in C0(∣∆I ∣,X) × [0,1]. We equip S with the compactly generated
topology, that is, the Kelleyfication of the subspace topology in C0(∣∆I ∣,X) × [0,1] with
respect to compact Hausdorff spaces.
Then, the map

− ⋆R∶S →HoLinkI(X ) ∪X≤p0

(σ, t)↦ σ ⋆t R.

(x, t)↦ x

is continuous.

In particular, if X = A, then we obtain a homotopy

− ⋆R∶HoLinkI(X ) × [0,1]→HoLinkI(X )
(σ, t)↦ σ ⋆t R.

(with respect to the Kelleyfication topology) between the identity and σ ↦ Rσ(vn).

Proof. Let us first verify that σ ⋆t R is indeed well defined on each join ∣∆I≤p ∗∆I≥p ∣. For
p = pn, and u ∈ ∣∆I≤p ∗∆I≥p ∣ the coordinate y1(u) is given by vn. It follows that R(−, y1) is
given by the identity on X and there is nothing to show.
For any t > 0 and p < pn the point (1 − t)y0 + tvn satisfies ((1 − t)y0 + tvn))pn = t. As σ is
stratum-preserving, this also implies σ((1− t)y0+ tvn) ∈ Apn , making R(σ((1− t)y0+ tvn), y1) a
well-defined expression, as long as we show independence from a choice of representatives in join
coordinates. If t = 0, then (1− t)y0 + tvn = y0 = u, and hence σ((1− t)y0 + tvn)) ∈Xpk

, for some
pk ≤ p. As y1 ∈ ∣∆I≥p ∣s ⊂ ∣∆I≥pk ∣s, it follows that then the expression R(σ((1 − t)y0 + tvn), y1)
is independent of y1, hence well defined in join coordinates. Precisely, we have

R(σ((1 − t)y0 + tvn), y1) = σ(u).

Conversely, if t = 1, R(σ((1 − t)y0 + tvn), y1) is clearly independent of y0 and given by

R(σ((1 − t)y0 + tvn), y1) = R(σ(vn), y1).

Next, note that σ ⋆t R is stratum-preserving. We only need to check the case t > 0. Then,
(1 − t)x + tvn ∈ (∣∆I ∣s)pn . Hence, as σ was assumed to be stratum-preserving, it also follows
that σ((1 − t)x + tvn) ∈ Xpn . Now, the stratum of [y0, y1, t] (in join coordinates) is given by
s(y1), whenever t > 0. Hence, it follows from the assumption that R is stratum-preserving that
we indeed have

s(R(σ((1 − t)y0 + tvn), y1)) = s(y1) = s(y0, y1, t),

as was to be shown. It remains to verify the continuity of

− ⋆R∶S →HoLinkI(X ) ∪X≤p0

(σ, t)↦ σ ⋆t R

(x, t)↦ x.

Using mapping space adjunctions, it suffices to verify the following statement: Let D be a
compact Hausdorff space and let f ∶D × ∣∆I ∣s → X and τ ∶D → [0,1] be a pair of maps such
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that for all a ∈D either f(a,−) is stratum-preserving and f(a, u) ∈ A whenever upn = τ(a), or
f is constant with value in X≤p0 . Then the map

f ′∶D × ∣∆I ∣s → X

(a, u)↦ R(f(a, (1 − τ(a))y0(u, τ(a)) + τ(a)vn, τ(a)), y1(u, τ(a)))

is continuous.
For p ∈ I, denote by T p the pushout of general topological spaces

(X≤p ∪Apn) × ∣∆I≥p ∣s ∪X≤p×∣∆I≥p ∣s X≤p.

Note that R induces a continuous maps

Rp∶T p →X .

We obtain a closed covering of D × ∣∆I ∣s by the sets Dp, for p ∈ I, where

Dp
= {(a, u) ∈D × ∣∆I ∣s ∣ (u, τ(a)) ∈ ∣∆I≤p ∗∆I≥p ∣},

and verify continuity of f ′ separately on these pieces. Now, on each Dp, f ′ is given by a
composition

Dp
→Dp

×τ,t ∣∆I≤p ∗∆I≥p ∣→ T p
Rp

Ð→ X

with the respective maps defined by

(a, u)↦ ((a, u), [y0(a, u), y1(a, u), τ(a)])

((a, u), [y0, y1, t])↦ [f(a, (1 − t)y0 + tvn), y1]

[z, y]↦ Rp[z, y].

To verify the continuity of the first of these maps, one needs to treat the set Dp×τ,t ∣∆I≤p ∗∆I≥p ∣

as a pullback, while for the second, one needs to use the topology given by taking the pushout
of

Dp ×τ,π{0,1} (∣∆I≤p ∣ × ∣∆I≥p ∣ × {0,1}) Dp ×τ,π[0,1] (∣∆I≤p ∣ × ∣∆I≥p ∣ × [0,1])

Dp ×τ,π{0} ∣∆I≤p ∣ × {0} ⊔Dp ×τ,π{1} ∣∆I≥p ∣ × {1} .
(6.21)

The latter is, a priori, finer than the former. Since Dp ×τ,t ∣∆I≤p ∗∆I≥p ∣ is Hausdorff, with
respect to the former topology, and compact, with respect to the latter, the two topologies do
in fact agree. Summarizing, we have shown continuity of f ′ on each Dp, and hence continuity
of f ′.

We can now prove Proposition 6.4.0.7.

Proof of Proposition 6.4.0.7. We are going to show that ev is a homotopy equivalence, if we
pass to the ∆-generated topology. Note that since the ∆-generated topology on S, as in
Proposition 6.4.0.9, is finer than the Kelleyfication with respect to compact Hausdorff spaces,
−⋆R is also continuous with respect to the ∆-generated topology. Since any space is naturally
weakly equivalent to its ∆-ification, this shows the result also for the case of compactly
generated and general topological spaces. Let R∶Xpn × ∣∆I ∣s → X define an ASPIR on X .
Consider the map

ι ∶Xpn →HoLinkIX
x↦ {u↦ R(x,u)}.
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Since R is stratum-preserving, this map is indeed well defined. Furthermore, since R(x, vn) = x,
we have

ev ○ ι = 1.
By Proposition 6.4.0.9, the map

− ⋆R∶HoLinkI(X ) × [0,1]→HoLinkI(X )
(σ, t)↦ σ ⋆t R.

defines a homotopy between the identity and ι ○ ev.

6.4.1 ASPIRs of standard neighborhoods
Now, let us construct ASPIRs for the standard neighborhoods of stratified simplicial sets
of Construction 6.3.1.5. To accomplish this, let us first describe a class of retracts of the
inclusions X≤p ↪ UX (p).

Construction 6.4.1.1. Let p ∈ P and J ⊂ P be a flag. We use coordinates y≤p, y/≤p and s≤p
(as in Construction 6.3.1.17) on ∣∆J ∣s. Consider the map

ρp∶U∆J (p)→ (∣∆J ∣s)≤p
[y≤p, y/≤p, s≤p]↦ [y≤p, y/≤p,1] = [y≤p].

Note that since s≤p ≥ 1
2 , for x ∈ U∆J (p), this map is indeed well defined. Under left Kan

extension, ρp extends to a natural transformation

ρp∶UX (p)→ (∣X ∣s)≤p

which defines a retract to the natural inclusion

(∣X ∣s)≤p ↪ UX (p)

of functors sStratP → Top. In fact, ρp extends to a strong deformation through the natural
homotopy defined simplexwise by

([y≤p, y/≤p, s≤p], t)↦ [y≤p, y/≤p, (1 − t)s≤p + t].

If we consider UX (p) as stratified over P≤p via

x↦

⎧⎪⎪
⎨
⎪⎪⎩

s(x) s(x) ≤ p

p s(x) /≤ p

then this construction, in fact, defines a natural stratum-preserving strong deformation
retraction of functors sStratP → StratP≤p .

Next, we verify that the retractions ρp are compatible with intersections of p-standard
neighborhoods.

Lemma 6.4.1.2. Let X ∈ sStratP . Then, for any q ≤ p, the inclusion

ρp(UX (q) ∩UX (p)) ⊂ UX (q)

holds.

Proof. Similarly to the proof of Lemma 6.3.1.16 one may easily verify that

sq(ρ
p
(x)) =

sq(x)

s≤p(x)
, (6.22)

s/≤q(ρ
p
(x)) = 1 − s≤q(ρp(x)) = 1 − s≤q(x)

s≤p(x)
. (6.23)
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Let x ∈ UX (q) ∩UX (p). Then by Eqs. (6.22) and (6.23)

s/≤q(ρ
p
(x)) = 1 − s≤q(x)

s≤p(x)

=
1

s≤p(x)
(s≤p(x) − s≤q(x))

≤
1

s≤p(x)
(1 − s≤q(x))

≤
sq(x)

s≤p(x)

= sq(ρ
p
(x)),

that is, ρp(x) ∈ UX (q), as was to be shown.

Using the simplex-wise convexity of the standard neighborhoods, we immediately obtain.

Corollary 6.4.1.3. For any regular flag I = [p0 < ⋯ < pn] ⊂ P and any X ∈ sStratP the
natural transformation ρpn ∶UX (pn)→ (∣X ∣s)≤pn restricts to a natural transformation

ρI ∶UX (I)→ UX (I)≤pn .

Even more, ρI is part of a natural strong deformation retraction (over P≤pn) of the inclusion

UX (I)≤pn ↪ UX (I).

As a first consequence of Corollary 6.4.1.3 we obtain that the standard neighborhood
systems UX , for X ∈ sStratP , fulfill the second requirement of being a homotopy link model:

Corollary 6.4.1.4. For any X ∈ sStratP and I = [p0 < ⋯ < pn] ∈ sd(P ) the inclusion

UX (I)pn ↪ UX (I)≥pn

is a homotopy equivalence of topological spaces.

Proof. By Corollary 6.4.1.3, the inclusion UX (I)≤pn ↪ UX (I) is a stratum-preserving homotopy
equivalence over P≤pn . Consequently, the restriction of this inclusion to the pn-stratum is a
homotopy equivalence, as was to be shown.

Next, we use the retractions ρp to define ASPIRs for standard neighborhoods.

Construction 6.4.1.5. Let I = [p0 < ⋯ < pn] be a regular flag in P and let J be some other
flag. It follows from Lemma 6.4.1.2 and the convexity of standard neighborhoods that the map

U∆J (I) × ∣∆I ∣s → U∆J (I)

(x, t)↦ ∑
p∈I

tpρ
p
(x)

is well defined. One may easily verify that this construction is natural in J , and thus induces
a natural transformation

RI ∶U−(I) × ∣∆I ∣s → U−(I),

of functors sStratP → Top.

Proposition 6.4.1.6. For any X ∈ sStratP , the natural transformation RI ∶UX (I) × ∣∆I ∣s →
UX (I) restricts to an ASPIR on UX (I).
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Proof. Denote U ∶= UX (I). Note that by construction RI may even be defined continuously on
all of UX (I) × ∣∆I ∣s. Let us first verify that the restriction RI ∣Upn×∣∆I ∣s is stratum-preserving.
First, note that for x ∈ Upn , and p < pn we have

sp ≥ s/≤p ≥ spn > 0.

It follows that ρp(x) ∈ Up, for all p ∈ I. It follows from this that ∑p∈I tpρp(x) lies in the stratum
corresponding to the maximal p with tp > 0, as was to be shown. Furthermore, whenever
x ∈ U≤p and t ∈ ∣∆I≥p ∣s, then

RI(x, t) = ∑
q∈I

tqρ
q
(x) = ∑

q∈I≥p

tqρ
q
(x) = ∑

q∈I≥p

tqx = x

as required.

We may now summarize Proposition 6.4.0.7, Section 6.4.1, and Corollary 6.4.1.4 as:

Corollary 6.4.1.7. For any X ∈ sStratP , the standard neighborhood system UX is a homotopy
link model for ∣X ∣s.

6.4.2 ASPIRs for stratified cell complexes
The problem with extending the construction of an ASPIR as in Construction 6.4.1.5 to
stratified cell complexes is of course that ASPIRs may generally not be compatible with gluing.
This is circumvented by the following construction.

Construction 6.4.2.1. Let I = [p0 < ⋯ < pn] be a regular flag in P and suppose we are given
a pushout diagram of finite stratified cell complexes in StratP

A B

X X ∪A B = Y .

f g

i

(6.24)

where A ↪ B is the inclusion of a subcomplex. Furthermore, suppose we are given the
following data:

1. A function ψ∶Bpn → [0,1] such that ψ−1(1) = Apn , which we consider as extended by 1
to Ypn ;

2. An ASPIR RX ∶Xpn × ∣∆I ∣s → X ;

3. An ASPIR RB ∶Bpn × ∣∆I ∣s → B such that RB(x,u) ∈ A, whenever upn = ψ(x).

Then, we denote by RY the map

RY ∶Ypn × ∣∆I ∣s → Y

([x], u)↦ ((g ○RB,x) ⋆ψ(x) RX )(u) , for x ∈ B
([x], u)↦ RX (x,u) , for x ∈X.

Lemma 6.4.2.2. RY as in Construction 6.4.2.1 defines an ASPIR on Y, which extends RX .

Proof. Note first that since all the spaces involved are finite cell complexes, we need not
distinguish between the ∆-generated topology and the relative topology on subspaces of the
form Tpn ∪ T≤pi

(see Proposition 6.A.0.5). In particular, both of these topologies also agree
with the compactly generated topology. RY may then equivalently be constructed as follows.
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Consider the set S ⊂ C0(∣∆I ∣, Y ) × [0,1], defined as in Proposition 6.4.0.9 with respect to the
closed inclusion X ↪ Y. Furthermore, consider the map

R′0∶Bpn → S
−⋆RX
ÐÐÐ→HoLinkI(Y) ∪ Y≤p0

b↦ (g ○RB,b, ψ(b)) ↦ (g ○RB,b) ⋆ψ(b) RX

which is continuous by Proposition 6.4.0.9. Note that, for a ∈ A, this map is given by

a↦ (g ○RB,a,1)↦ RX (g(a)) = i ○RX ,f(a).

We claim that R′0 extends to a continuous map

R0
∶Bpn ∪B≤p0 →HoLinkI(Y) ∪ Y≤p0

by mapping b↦ g(b), for b ∈ B≤p0 . Since Bpn ∪B≤p0 is metrizable, it suffices to see that, for any
sequence bm ∈ Bpn converging to b ∈ B≤p0 , it also holds that R′0(bm) converges to R0(b) = g(b)
(with respect to the topology of uniform convergence on HoLinkI(Y) ∪ Y≤p0). Furthermore,
we may without loss of generality assume that the sequence ψ(bm) converges. Indeed, this
follows from the standard argument that a sequence yn converges to y, if and only if each
of its subsequences has, in turn, a subsequence converging to y, together with compactness
of [0,1]. For ease of notation, denote ψ(b) ∶= limm→∞ ψ(bm). Let D denote the subspace of
Bpn
∪B≤p0 , given by the elements of the sequence bm and b. Since bm converges to b, D is a

compact Hausdorff space. It follows that the map

D → S

bm ↦ (g ○RB,bm , ψ(bm))

b↦ (g ○RB,b, ψ(b))

is continuous, both with respect to the subspace topology on S as well as with respect to the
compactly generated topology. In particular, the composition of the last map with − ⋆RX is
also continuous. It follows that

lim
m→∞

R′0(bm) = g ○RB,b ⋆ψ(b) RX = g(b) ⋆ψ(b) RX = g(b)

as was to be shown.
It follows from the assumption on i and g being closed and Lemma 6.A.0.2 that the square

A≤p0 ∪Apn B≤p0 ∪Bpn

X≤p0 ∪Xpn Y≤p0 ∪ Ypn

(6.25)

remains a pushout square. Hence, together with

R1
∶Xpn ∪X≤p0 →HoLinkI(Y) ∪ Y≤p0

x↦ i ○RX ,x ,

R0 glues to a map
R∶Ypn ∪ Y≤p0 →HoLinkI(Y) ∪ Y≤p0

whose adjoint is the extension of RY to (Ypn ∪ Y≤p0) × ∣∆I ∣s as defined in the proposition.
This shows that RY is indeed well-defined and stratum-preserving. It remains to verify that
RY interacts with lower strata, as required in the definition of an ASPIR. We have already
covered the case p = p0. All other cases can be reduced to this one, by replacing I by I≥p and
restricting RB and RX accordingly. That RY extends RX is immediate by definition.

Suppose now, for a second, that we have already shown the following lemma.



6.4. REGULAR NEIGHBORHOODS AND HOMOTOPY LINK MODELS 319

Lemma 6.4.2.3. Let I = [p0 < ⋯ < pn] be a regular flag in P . Then, for any flag J , there
exists a function ψ∶U∆J (I)pn

→ [0, 1], together with an ASPIR R∶U∆J (I)pn
×∣∆I ∣s → U∆J (I)

such that

1. ψ−1(1) = U∂∆J (I)pn ;

2. R restricts to the standard ASPIR on U∂∆J (I) (see Construction 6.4.1.5);

3. For u ∈ ∣∆I ∣s, and x ∈ U∆J (I)pn such that upn = ψ(x), we have R(x,u) ∈ U∂∆J (I).

Then we may proceed to show the following statement.

Proposition 6.4.2.4. Let X be a finite stratified cell complex and Ψ a barycentric subdivision
of X that defines a standard neighborhood system of X . Then, for any regular flag I ⊂ P ,
UΨ
X (I) admits an ASPIRthat is compatible with subcomplexes, i.e. whenever B ⊂ X is a

subcomplex of X , then the ASPIR on UΨ
X (I) restricts to one on UΨ∣B

B (I). Furthermore, if
A ⊂ X is a subcomplex, then for any such ASPIR RA on UΨ∣A

A (I), the ASPIR on UΨ
X (I)

may be taken to extend RA.

Proof. Via induction over the number of cells, it suffices to consider the case where A ⊂ X
differ only in one cell. Then, using Proposition 6.3.1.15, we have a pushout diagram

U∂∆Ji (I) U∆Ji (I)

U
Ψ∣A
A (I) UΨ

X (I)

(6.26)

of finite stratified cell complexes. We may then use Construction 6.4.2.1 together with
Lemma 6.4.2.3 to extend the ASPIR on UΨ∣A

A (I) to one on UΨ
X(I). One may verify directly

from the construction in Construction 6.4.2.1 that the ASPIRs defined inductively in this
fashion are compatible with subcomplexes.

Remark 6.4.2.5. One may hope that the construction in Proposition 6.4.2.4 generalizes to
arbitrary cell complexes via transfinite composition. While it is true that the construction
goes through, note that Construction 6.4.2.1 requires X to be a finite cell complex. This
assumption was needed to circumvent the subtle differences between ∆-generated topology
and relative topology described in Example 6.A.0.6. Note, however that the main purpose of
ASPIRs in this work is to compute homotopy links. For this, existence of ASPIRs on finite
subcomplexes is sufficient.

The analogue of Proposition 6.4.2.4 fails, if one instead changes the definition of ASPIRs
such that they are required to extend continuously to UI × ∣∆I ∣s → U . Let us give an example
to illustrate this:

Example 6.4.2.6. Let I = P = {p < p1 < p2}. Consider the flag J = [p0 ≤ p1 ≤ p1 ≤ p2]. Now,
we may glue ∣∆I ∣s to ∣∆J ∣s, along any stratum-preserving map ξ∶ ∣∆[p0<p1]∣s → ∣∆J ∣s. Denote
the resulting stratified cell complex by X and let A be the subcomplex defined by ∣∆J ∣s. Next,
fix any barycentric subdivision Ψ of the stratified cell complex X , and denote by Φ the induced
subdivision of ∣∆I ∣s (by treating the latter as a cell of X ). Furthermore, denote U ∶= UΨ

X (I)

and V ∶= UΨA
A (I) ⊂ U , and by V ′ the image of UΦ

∣∆I ∣s in X . Suppose we are given a map

R∶U × ∣∆I ∣s → U,

which is stratum-preserving when restricted to (U ∩ Xpn) × ∣∆I ∣s, and fulfills R(x, vi) = x,
for i ∈ [2], vi the vertex of ∣∆I ∣s corresponding to pi ∈ I and x ∈ Xpi . In particular, all of
these properties are consequences of the altered definition of ASPIRs we are investigating.
For connectivity reasons, using the fact that the p2 stratum consists of two disjoint cells, R
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must also fulfill R(x,u) ∈ V , for any x ∈ V , as well as R(x,u) ∈ V ′, for any x ∈ V ′ and all
u ∈ ∣∆I ∣s. Consequently, it follows that R(V ∩ V ′ × ∣∆I ∣s) ⊂ V ∩ V ′. In particular, it follows
that R restricts to a map

R′∶ (V ∩ V ′) × ∣∆[p0<p1]∣s → V ∩ V ′.

By identifying ∣∆[p0<p1]∣s with the interval [0, 1], it follows that R′ defines a homotopy between
the identity and the constant map with value the unique point y in the p0 stratum of X . Note
that V ∩ V ′ is of the form ξ([0, a]), for some a > 0. Since ξ was allowed to be arbitrarily
complicated, there is no reason to assume that the image ξ([0, a]) is contractible, for any
choice of a (think of a spiral converging to y which intersects itself infinitely often, as it does
so). Note that if ξ was piecewise linear, we could indeed assume contractibility for sufficiently
small a.

We may now finally prove the following theorem:

Theorem 6.4.2.7. Let X be a P -stratified cell complex and let Ψ be any subdivision of X
that induces a strata-neighborhood system. Then UΨ

X defines a homotopy link model for X .

Proof. By the standard compactness arguments, it suffices to show the case where X is a
finite stratified cell complex. First, let us show that the maps UΨ

X (I)pn ↪ UΨ
X (I)≥pn are weak

equivalences. Let us first note that the result holds when X is the realization of a stratified
simplicial complex K = ∂∆J ,∆J , for some flag J in P and Ψ is the subdivision given by
Construction 6.3.1.12. Indeed, then we have UΨ

∣K∣s(I) = UK(I), for which the result holds by
Proposition 6.3.1.15. Next, let us proceed to show the result for X a finite cell complex, via
induction over the number of cells. Suppose X is obtained by gluing a cell σ∶ ∣∆J ∣s → X along
∣∂∆J ∣s → A, for some finite complex A. Using Proposition 6.3.1.15 it follows that there is a
pushout diagram of P -stratified spaces

U∂∆J (I) U∆J (I)

U
Ψ∣A
A (I) UΨ

X (I).

(6.27)

From this, we obtain the following commutative cube.

U∂∆J (I)≥pn
U∆J (I)≥pn

U∂∆J (I)pn
U∆J (I)pn

U
Ψ∣A
A (I)≥pn

UΨ
X (I)≥pn

U
Ψ∣A
A (I)

pn
UΨ
X (I)pn .

≃ ≃

≃

(6.28)

By inductive assumption all the diagonal maps but the lower vertical one are known to be
weak homotopy equivalences in Top. By the standard properties of homotopy pushouts (see for
example [Hir03, Prop 13.5.4]) it suffices to show that the front and the back face of this cube
are homotopy cocartesian. This follows from Lemma 6.A.0.4 together with Lemma 6.A.0.2
and the characterization of homotopy cocartesian squares in a model category in [Lur09, Prop.
A.2.4.4].
Next, we need to show that for any regular flag I = [p0 < ⋯ < pn] ⊂ P , the natural map

HoLinkI(UΨ
X (I))

ev
Ð→ UΨ

X (I)pn
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is a weak equivalence. This follows directly from Proposition 6.4.2.4 together with Proposi-
tion 6.4.0.7.

As a corollary of Theorem 6.4.2.7, we obtain the following result, which is central to our
investigation of the stratified homotopy hypothesis in [Waa24c].
Corollary 6.4.2.8. Let I = [p0 < ⋯ < pn] be a regular flag in P and suppose we are given a
pushout diagram of stratified cell complexes in StratP

A B

X X ∪A B = Y

f g

i

(6.29)

where A↪ B is the inclusion of a subcomplex. Then the image of this square under HoLinkI

HoLinkIA HoLinkIB

HoLinkIX HoLinkIY

(6.30)

is homotopy cocartesian in Top.

Proof. By Corollary 6.3.2.12, Diagram (6.29) lifts to a diagram of strata-neighborhood systems

UΦ
A UΦ̂

B

UΨ
X UΨ̂

Y ,

(6.31)

for appropriate choice of subdivisions Φ, Φ̂,Ψ, Ψ̂. By Theorem 6.4.2.7, Diagram (6.31) is
a diagram of homotopy link models. Thus, by Theorem 6.2.4.14, Diagram (6.30) is weakly
equivalent to the image of Diagram (6.31) under DT at I. That the latter is homotopy
cocartesian is the content of Lemma 6.3.2.13.

Finally, to finish this section, we still need to provide a proof of Lemma 6.4.2.3.

Proof of Lemma 6.4.2.3. Using Proposition 6.3.1.15 we may identify U∆J (p) with the realiza-
tion of N∆J (I) = ⋂p∈I N∆J (p) as defined in Construction 6.3.1.12 and proceed analogously
with ∂∆J . As full subcomplexes of sd∆J the two complexes N∆J (I) and N∂∆J (I) only
differ in the vertex corresponding to the maximal simplex of ∆J , xJ . If xJ ∈ S∆J (I), then
either I ⊂ J or maxJ < pk, for some k ∈ [n]. If maxJ < pk < pn, then U∆J (I)pn = ∅ and
there is nothing to show. Hence, we may assume that maxJ = pn and I ⊂ J .
Step 1: Let x0 ∈ ∣∆J ∣s ∖⋃p∈I,p<pn

U∆J (p)∪ ∣∂∆J ∣s. That such a point exists is a consequence
of the inclusion I ⊂ J . Indeed, any point x in the interior of ∣∆J ∣s, with spn(x) >

1
2 will do.

Next, consider the straight line projection through x0

r∶ ∣∆J ∣s ∖ {x0}→ ∣∂∆J ∣s.

Let us show that r maps U∆J (I) to U∂∆J (I). By definition of U−(I), and using that
maxJ = pn, we may instead show that r maps U∆J (p) to U∂∆J (p) for all p ∈ I<pn

. The map
r maps x to the intersection point of the ray

{x + α(x − x0) ∣ α ≥ 0}

with U∂∆J (p). Let αx be the unique value in [0,1], specifying this intersection point. In
particular, for any p ∈ I<pn , we may compute

s/≤p(r(x)) = s/≤p(x + αx(x − x0)) = (1 + αx)s/≤p(x) − αxs/≤p(x0)

sp(r(x)) = ⋯ = (1 + αx)sp(x) − αxsp(x0).
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By assumption, s/≤p(x0) > sp(x0) and s/≤p(x) ≤ sp(x). Since, αx ≥ 0, it follows that

s/≤p(r(x)) = (1 + αx)s/≤p(x) − αxs/≤p(x0) ≤ (1 + αx)sp(x) − αxsp(x0) = sp(r(x)),

as was to be shown.
Step 2: We need to verify an additional property of r, namely that it is close to being
stratum-preserving. We show that for x ∈ U∆J (I)pn

s(r(x)) ≥ pn−1. (6.32)

Assume, to the contrary that αx > 0 and sq(r(x)) = 0 , for all q ≥ pn−1. Then, for such q, we
have

sq(x) =
αx

1 + αx
sq(x0)

and
s/≤q(x) =

αx
1 + αx

s/≤q(x0)

and obtain
spn−1(x) =

αx
1 + αx

spn−1(x0) <
αx

1 + αx
s/≤pn−1(x0) = s/≤pn−1(x)

in contradiction to the assumption that x ∈ U∆J (I).
Step 3: Denote by R the standard ASPIR on U∆J (I) (see Construction 6.4.1.5). Furthermore,
denote by R̂∶U∆J (I) × ∣∆I ∣s the (extended) ASPIR obtained by affinely extending

(x, vk)↦ x , for k = n
(x, vk)↦ ρpk(r(x)) , for k < n

where vk denotes the k-th vertex of ∣∆I ∣s and ρp are as in Construction 6.4.1.1. R̂ is well defined
by Lemma 6.4.1.2 and the fact that r maps into U∆J (I). If x ∈ U∂∆J (I)pn , then r(x) = x and
hence R̂x agrees with R. Furthermore, it follows from the inclusion U∆J (I)<pn ⊂ U∂∆J (I) that
R̂ agrees with R on U∆J (I)≤p× ∣∆I≥p ∣s, for any p ∈ I, p < pn. Clearly, also R̂(x, vn) = x. Hence,
to see that R̂ does indeed define an ASPIR, we only need to verify that R̂x is stratum-preserving
for x ∈ U∆J (I)pn . Just as for the proof of the analogous statement in Proposition 6.4.1.6,
one shows that R̂x being stratum-preserving is equivalent to showing that r(x) ∈ U∆J (I)≥pn−1

which is the content of Eq. (6.32).
Step 4: The idea of the remainder of the proof is to now combine R̂ and R. To do so, we will
make use of a (continuous) function ψ∶U∆J (I)pn → [0,1], with the properties that

1. ψ−1(0) = r−1(U∂∆J (I)<pn) ∩U∆J (I)pn ;

2. ψ−1(1) = U∂∆J (I)pn .

Notice that both of these sets are closed subsets of U∆J (I)pn and that since r(x) = x, for
x ∈ U∂∆J (I), they are also disjoint. Hence, such a function ψ exists. Furthermore, we are
going to need another interpolation function

H ∶U∆J (I) × ∣∆I ∣s × [0,1]→ U∆J (I)

(x,u, t)↦ (1 − t)R̂(x,u) + tR(r(x), u).

Then one may verify the following properties of H:

(i) H0 = R̂ and H1 has value in U∂∆J (I)pn .

(ii) If x ∈ U∂∆J (I), then H(x,−,−) is the constant homotopy with value Rx.

(iii) If s(x) = pn, then for any t < 1, H(x,−, t) is stratum-preserving.

(iv) If ψ(x) > 0 and s(x) = pn, then H(x,−,−) is stratum-preserving.
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(v) Restricted to U∆J (I)×∣∆I<pn ∣s, H is given by the constant homotopy of valueRr(x)∣∣∆I<pn ∣s .

(vi) If s(x) = pn and ψ(x) = 1, then H(x,−,−) is the constant homotopy with value Rr(x) =
Rx.

Step 5: We may now finally define the ASPIR promised in the statement of the proposition.
Consider the map

R∶U∆J (I) × ∣∆I ∣s → U∆J (I)

(x,u)↦H(x,u,1) , for x ∈ U∆J (I)<pn

(x,u)↦H(x,u,1) , for x ∈ U∆J (I)pn and upn ≤ ψ(x)

(x,u)↦H(x,u,
1 − upn

1 − ψ(x)
) , for x ∈ U∆J (I)pn and upn > ψ(x).

Let us verify the continuity of R. Notice that the first two conditions on (x, t) define a
closed subspace D ⊂ U∆J (I) × ∣∆I ∣s. Hence, the only thing to check is that for any sequence
(xi, ui), i ∈ N, with xi ∈ U∆J (I)pn and (ui)pn > ψ(xi), converging to (x,u) ∈ D, it also
follows that H(xi, ui, 1−(ui)pn

1−ψ(xi) ) converges to H(x,u,1). In the following, by convergence
of functions we will always mean uniform convergence. There are two cases to consider.
If x ∈ U∆J (I)<pn ⊂ U∂∆J (I), then by Property (ii) H(xi,−,−) converges to a constant
homotopy and hence H(xi, ui, 1−(ui)pn

1−ψ(xi) ) converges to H(x,u,1). If x ∈ U∆J (I)pn , then, by
assumption, upn = ψ(x) and thus if ψ(x) < 1 continuity is immediate from the definition. It
remains to consider the case upn = ψ(x) = 1. In this case, it follows from Property (vi) that
H(xi,−,−) converges to the constant homotopy with value Rx. Hence, again it follows that
H(xi, ui,

1−(ui)pn

1−ψ(xi) ) converges to H(x,u,1).
Step 6: Let us now verify that R restricts to an ASPIR. If x ∈ U∆J (I)pn and ψ(x) > 0,
then Rx∶ ∣∆I ∣s → U∆J (I) is stratum-preserving by Property (iv). If ψ(x) = 0, then Rx(s) =
H(x,u,1 − upn). Hence, by Property (iii), we obtain preservation of strata for upn > 0. For
upn = 0 and ψ(x) = 0, it follows by Property (v) that then H(x,u,1)) = R(r(x), u). Since
s(r(x)) ≥ pn−1, by Eq. (6.32), it follows that Rr(x)∣∣∆I<pn−1 ∣s is stratum-preserving. This shows
that the restriction of R

R∶U∆J (I)pn
× ∣∆I ∣s → U∆J (I)

is stratum-preserving. Finally, let p ∈ I, u ∈ ∣∆I≥p ∣s and x ∈ U∆J (I)≤p. Note first that whenever
s(x) < pn or ψ(x) = 1, then x ∈ U∂∆J (I) and thus

R(x,u) =H(x,u,1) = R(x,u) = x

by Property (ii). Furthermore, If s(x) = pn and ψ(x) < 1 then, by the assumption that s(x) ≤ p
and u ∈ ∣∆I≥p ∣s, it follows that upn = 1 and hence

R(x,u) =H(x,u,0) = R̂(x,u) = x

by Property (i). To summarize, we have shown that R is an ASPIR. By Property (ii),
R defines an extension of the standard ASPIR on U∂∆I(I). Finally, if ψ(x) = upn , for
(x,u) ∈ U∆I(I)pn × ∣∆I ∣s, then R(x,u) =H(x,u, 1) ∈ U∂∆J (I), by Property (i), which finishes
the proof.

6.A A series of tools from point-set topology
In this section, we list a series of elementary results in point-set topology.
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Lemma 6.A.0.1. Consider a pushout diagram of compact Hausdorff spaces

A B

X Y .

f ′

g′

(6.33)

Let Z ⊂ U ⊂ Y . If both g′−1(U) is a neighborhood of g′−1(Z) in X and f ′−1(U) is a neighborhood
of f ′−1(Z) in B, then U is a neighborhood of Z in Y .

Proof. It is generally true that for any quotient map π∶T → Ỹ of compact Hausdorff spaces the
image of any neighborhood Ṽ of π−1(Z̃) is a neighborhood of Z̃. Indeed, for any open O ⊂ Ṽ ,
containing π−1(Z), the set T ∖ π−1(π(T ∖O)) is a saturated open set (this uses that T ∖O is
closed, due to the compact-Hausdorff assumptions), which contains π−1(Z̃) and is contained
in Ṽ . Since the map X ⊔B → Y is such a quotient map and by assumption g′−1(U) ⊔ f ′−1(U)
is a neighborhood of g′−1(Z) ⊔ f ′−1(Z), it follows that U = g′(g′−1(U)) ∪ f ′(f ′−1(U)) is a
neighborhood of Z.

Lemma 6.A.0.2. Let
A B

X Y

(6.34)

be a cocartesian square in StratP such that all arrows pointing into Y are closed maps (or
open maps). Then, for any subset Q ⊂ P , the square of general topological spaces

AQ BQ

XQ YQ

(6.35)

remains cocartesian. Furthermore, if Q is open or closed in P , then the square remains
cocartesian without any assumptions on the maps.

Proof. We cover the closed cases. We need to verify that the bijection

ϕ∶XQ ∪AQ
BQ → YQ

is a closed map. Now, any closed set Z ⊂ XQ ∪AQ
BQ is given by the image of some closed

set ZX ⊔ ZB ⊂ XQ ⊔ BQ. The latter is given by the restriction to Q, of some closed set
Z̃X ⊔ Z̃B ⊂ X ⊔B. Denote by Z̃ the image of Z̃X ⊔ Z̃B in Y = X ∪A B. By assumption, Z̃ is
again closed, and by construction we have ϕ(Z) = Z̃Q. The second statement follows similarly,
using the fact that then YQ ↪ Y is given by a closed inclusion.

Lemma 6.A.0.3. Let p ∈ P . Furthermore, let Top be any of the categories of topological
spaces in Notation 6.2.1.3. The functor

(−)≥p∶StratP → Top

preserves all colimits.

Proof. First, let us show that (−)≥p preserves all colimits of general topological spaces. It is an
immediate consequence of the more general statement on over-categories of topological spaces,
which one may easily verify using the elementary construction of colimits via final topologies.
For any space T ∈ Top and any open subspace U ⊂ T , the restriction functor

Top/T → Top/U
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preserves all colimits. Since {q ≥ p} ⊂ Pos is an open subset in the Alexandrow topology and
the forgetful functor Top/U → Top admits a right adjoint, the result follows. Next, let us
cover the case of ∆-generated spaces. The one of compactly generated spaces is analogous.
If D∶ I → StratP is a diagram of ∆-generated stratified spaces, then since the inclusion into
general topological spaces is left adjoint (see, for example, [Gau21]), the colimit of D in
∆-generated spaces also defines the colimit in general topological spaces. Hence, we may apply
the previous case, to see that lim

Ð→
D≥p = (lim

Ð→
D)≥p in general topological spaces. Now, since

(T )≥p ⊂ T always defines an open subspace, and open subspaces of ∆-generated subspaces
are again ∆-generated (see [Gau21, Sec. 2]), the diagram D≥p lives in the category of ∆-
generated spaces. Since the inclusion into general spaces preserves all colimits, we also have
lim
Ð→

D≥p = (lim
Ð→

D)≥p in ∆-generated spaces, as was to be shown.

Lemma 6.A.0.4. Let p ∈ P . The functors

(−)≥p, (−)p∶StratP → Top

and
(−)≤p∶StratP → StratP

send relative stratified cell complexes into relative (stratified) cell complexes.

Proof. Let us begin with (−)≥p. By Lemma 6.A.0.3, it suffices to show that (−)≥p sends
stratified boundary inclusions ∣∂∆J ∣s ↪ ∣∆J ∣s into a relative cell complex of topological spaces.
Let us assume that not all elements of J are smaller then p, otherwise both spaces are empty
after applying (−)≥p, and there is nothing to be shown. Then, applying (−)≥p corresponds to
removing a face of the simplex ∣∆J ∣s from both spaces. In particular, we may reduce to the
following general statement: Let T ↪ T ′ be an inclusion of a piecewise linear closed subspace
into a piecewise linear space T . Let A ⊂ T be a further inclusion of a piecewise linear closed
subspace. Then, T ∖A↪ T ′ ∖A also admits the structure of a closed inclusion of a piecewise
linear subspace (this is ultimately a consequence of the existence of piecewise linear regular
neighborhoods). In particular, there is a compatible triangulation of T ∖A and T ′ ∖A, which
makes T ∖A↪ T ′∖A a relative cell complex. The case of (−)≤p follows similarly by the natural
isomorphisms (∣X ∣s)≤p ≅ ∣X≤p∣s, for X ∈ sStratP . Finally, the case of (−)p follows from the
equality (−)p = (−)≥p ○ (−)≤p.

Proposition 6.A.0.5. Let X ∈ StratP be a finite stratified cell complex. Then for any Q ⊂ P
the relative topology on XQ ⊂X makes XQ a ∆-generated space.

Proof. First, let us show that for any flag J of P , the space (∣∆J ∣s)Q with the relative topology
is ∆-generated. (∣∆J ∣s)Q ⊂ ∣∆J ∣s ⊂ RJ may equivalently described by

{s ∈ ∣∆J ∣s ∣ ∀p ∈ P ∖Q∶ (∃q ∈ Q∶ q > p ∧ sq > 0) ∨ sp = 0}.

It follows from this description that (∣∆J ∣s)Q ⊂ ∣∆J ∣s ⊂ RJ is a convex set. It turns out
that every convex subset C of Rn is ∆-generated. Indeed, let A ⊂ C be such that σ−1(A)
is closed, for every continuous map σ∶ ∣∆1∣ → C. Let xn, n ∈ N, be a sequence in A which
converges to c ∈ C. Since C is convex, we may use affine interpolation to define a continuous
map σ∶ [0,1] → C with σ(2−n) = xn. In particular, the inverse image of A under σ contains
{2−n ∣ n ∈ N}. As σ−1(A) is closed, it follows that 0 ∈ σ−1(A). By continuity of σ, we hence
have c = σ(0) ∈ A, showing that A is closed.
We now proceed to show the case of a general complex X via induction over the number of
cells. The case n = 0 is trivial, so let X admit the structure of a stratified cell complex with
n + 1 cells. In other words X fits into a pushout diagram

∣∂∆J ∣s ∣∆J ∣s

A X ,

(6.36)
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with A a stratified space admitting a cell structure with n cells. By Lemma 6.A.0.2, the
diagram

(∣∂∆J ∣)Q (∣∆J ∣)Q

AQ XQ

(6.37)

is a pushout diagram of general topological spaces. In particular XQ is a quotient of
AQ ⊔ (∣∆J ∣s)Q. We have already seen that (∣∆J ∣s)Q is ∆-generated. By the inductive
assumption, the same holds for AQ. Thus XQ is ∆-generated as a quotient of ∆-generated
spaces.

Example 6.A.0.6. The statement of Proposition 6.A.0.5 is generally not true for infinite
stratified cell complexes, even if X is given by the realization of a stratified simplicial set. Let
P = {p0 < p1 < p2} and Q = {p0 < p2}. Consider the realization of the stratified simplicial set
given by gluing countably many ∆P along ∆{p0<p1}, i.e., there is a pushout diagram

⊔n∈N ∣∆{p0<p1}∣s ⊔n∈N ∣∆P ∣s

∣∆{p0<p1}∣s X .i

(6.38)

Then, XQ is not ∆-generated. In the following, we denote closures in the form A. To see that
XQ is not ∆-generated, consider the subset S of X given by

⋃
n∈N

Sn

where
Sn = {s ∈ ∣∆P

∣s ∣ sp0 ≤ 1 − 1
n
}

lies in the n-th copy of ∣∆P ∣s in X. The set SQ ⊂XQ is not closed in the relative topology on
XQ. To see this, let A ⊂X be any closed set containing SQ. Then, as (Sn)Q is dense in Sn, it
follows that A contains S. Observe that S contains the image of the p1-stratum of ∣∆{p0<p1}∣s
under i∶ ∣∆{p0<p1}∣s → X , but it does not contain any point in the p0-stratum of X. Denote by
x0 the unique element in the p0-stratum of ∣∆{p0<p1}∣s. It lies in the closure of (∣∆{p0<p1}∣s)p1

.
As A is closed and contains S, it follows that we have

i(x0) ∈ i((∣∆{p0<p1}∣s)p1) = i((∣∆{p0<p1}∣s)p1) ⊂ S ⊂ A.

To summarize, we have i(x0) ∈ A ∩XQ, for any closed subset A ⊂ X, which shows that the
closure of SQ in XQ contains i(x0). As i(x0) ∉ SQ, SQ is not closed in XQ.
However, SQ is ∆-closed in XQ. To see this, denote by Xn the union of the first n copies of
∣∆P ∣s in X. Note that since ∣∆1∣ is compact, it follows that any map continuous f ∶ ∣∆1∣→XQ

factors through some (Xn)Q, for n sufficiently large. Furthermore, we have

SQ ∩ (Xn)Q = ( ⊔
m≤n

Sm)Q

which shows that SQ ∩ (Xn)Q is a closed subset of XQ. Consequently, f−1(SQ) = f
−1(SQ ∩

(Xn)Q) is closed in ∣∆1∣, which proves that SQ is ∆-closed.

6.B A characterization of weak equivalences of topological
spaces

The following characterization of weak equivalences is certainly well known. For a lack of
convenient reference, we nevertheless give a proof here.
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Lemma 6.B.0.1. A map f ∶T → T ′ is a weak homotopy equivalence in Top, if and only if for
every solid commutative diagram

Sn T

Dn+1 T ′ ,

g1

f

g0

l (6.39)

with n ≥ −1, there exists a dashed arrow l such that (1T , f) ○ (l∣Sn , l) is homotopic to (g1, g0)
as a map of arrows (i.e. homotopic in the presheaf category Fun(([1]])op,Top) with respect
to the cylinder given by the pointwise product with [0,1]).

Proof. We use the classical characterization of weak equivalences found for example in [May99,
Ch. 9.6]. Indeed, the classical characterization of weak equivalences even guarantees a lift,
where the homotopy may be taken constant on S1. Conversely, if we are given such a lift l,
together with a homotopy (H1,H0) ∶ (g1, g0) Ô⇒ (1T , f) ○ (l∣Sn , l), then any extension

Sn × [0,1] ×Dn+1 × {1} T

Dn+1 × [0,1]

H1∪l

L̂
(6.40)

will provide l̂ = L̂0 such that the upper left triangle in

Sn T

Dn+1 T ′

g1

f

g0

l̂ (6.41)

commutes on the nose. Furthermore, then f ○ L̂ and H0 both provide extensions

Sn × [0,1] ×Dn+1 × {1} T ′

Dn+1 × [0,1] .

f○(H1∪l)

(6.42)

Since the left hand vertical of the last diagram is an acyclic cofibration, any two such extensions
are homotopic relative to Sn × [0,1]×Dn+1×{1}. It follows that f ○ l̂ = (f ○ L̂)0 and g0 = (H0)0
are homotopic relative to Sn.
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Chapter 7

Presenting the stratified
homotopy hypothesis

Note to the reader: The following chapter was structured as an independent article, in
order to allow for easier accessibility. A preliminary version was made publicly available on the
arXiv (see [Waa24c]). Notation in this chapter is entirely consistent with Chapters 1, 5 and 6.
There may be minor notation differences compared to Chapter 3. However, as all notation is
introduced separately in this chapter, this should not pose an issue.

This article is concerned with three different homotopy theories of stratified spaces:
The one defined by Douteau and Henriques, the one defined by Haine, and the one
defined by Nand-Lal. One of the central questions concerning these theories has been
how precisely they connect with geometric and topological examples of stratified spaces,
such as piecewise linear pseudomanifolds, Whitney stratified spaces, or more recently
Ayala, Francis and Tanaka’s conically smooth stratified spaces. More precisely, so far,
it has been an open question whether there exist (semi-)model structures on stratified
topological spaces that present these theories, in which such relevant examples of stratified
spaces are bifibrant. Here, we prove an affirmative answer to this question. As a
consequence, we obtain a model categorical interpretation of a stratified homotopy
hypothesis. Specifically, we show that Lurie’s stratified singular simplicial set functor
induces a Quillen equivalence between the semi-model category of stratified topological
spaces presenting Nand-Lal’s homotopy theory of stratified spaces and the left Bousfield
localization of the Joyal model structure that corresponds to such ∞-categories in which
every endomorphism is an isomorphism. We then perform a detailed investigation of
bifibrant objects in these model structures of stratified spaces, proving a series of detection
criteria and illuminating the relationship to Quinn’s homotopically stratified spaces.

7.1 Introduction
Conceptually speaking, Grothendieck’s homotopy hypothesis refers to the following statement:

Assigning to a topological space its ∞-groupoid of paths induces an equivalence
between the homotopy theory of spaces (more precisely, CW-complexes) and the
homotopy theory of ∞-groupoids.

Whether this statement is regarded as a theorem or a conjecture, of course, strongly relies
on the precise model of ∞-categories - and consequently of ∞-groupoids - one has in mind.
Nowadays, the following result due to Kan and Quillen is often taken as a formal interpretation
of the homotopy hypothesis:

329
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Theorem HH. [Qui67] The geometric realization and singular simplicial set adjunction

∣ − ∣∶ sSet⇌ Top ∶ Sing

induces a Quillen equivalence between the Quillen model structure on topological spaces and
the Kan-Quillen model structure on simplicial sets.

That this is a formal interpretation of the homotopy hypothesis can be argued as follows.

1. The Quillen equivalence induces an equivalence

Top[W −1
] ≃Kan[H−1

k ]

between topological spaces localized at weak homotopy equivalences and Kan complexes
localized at homotopy equivalences of Kan complexes.

2. Quasi-categories (as introduced by Joyal and popularized by Lurie in [Lur09]) have
proven to be a powerful and versatile model for the theory of (∞,1)-categories (∞-
categories henceforth). Kan complexes are the ∞-groupoid within the framework of
quasi-categories, and it follows from the existence of the Kan-Quillen and the Joyal model
structure that the right-hand side thus defines the homotopy theory of ∞-groupoids
Grpd∞. The singular simplicial set then provides a model for the ∞-groupoid of paths
in this interpretation of ∞-categories. This justifies the usage of Kan complexes as a
model for ∞-groupoids.

3. It follows from the existence of the Quillen model structure on Top, or more classically
an argument involving Whitehead’s theorem, that the inclusion of CW complexes into
topological spaces, CW ↪ Top induces an equivalence CW[H−1] ≃ Top[W −1], where
H is the class of homotopy equivalences. Since most spaces of geometric interest at least
have the homotopy type of a CW complex (see, for example, [Mil59]), it follows that
if one is interested in studying the homotopy types of such classical spaces, one may
perform such an investigation in Top[W −1]. Thus, the latter can rightfully be called
the homotopy theory of spaces.

Combining these insights, one obtains an equivalence

Spaces =CW[H−1
] ≃ Top[W −1

] ≃Kan[H−1
k ] = Grpd∞,

as asserted in the homotopy hypothesis.
One of the central assertions of [AFR19] is a smooth stratified version of the homotopy
hypothesis. Recall that, roughly speaking and in the broadest sense, a stratified space is a
topological space together with a decomposition into disjoint pieces, the so-called strata. A
stratified map is, again roughly speaking, a continuous map between such objects that has the
property that the image of each stratum in the source is completely contained in a stratum in
the target. Stratifications of topological spaces often arise naturally when investigating spaces
with singularities, by decomposing a singular space into manifold pieces (see, for example,
[Whi65b; Mat12; Mat73; Tho69]) and in these scenarios the set of strata tends to naturally
inherit the structure of a poset from the topological closure relation. The homotopy theory of
such stratified spaces, using homotopies that also preserve the strata, was first investigated
in detail by Quinn in [Qui88]. Quinn focused on a class of stratified spaces with excellent
homotopical properties, the so-called homotopically stratified spaces (called homotopically
stratified sets in [Qui88]), proving, among other results, a stratified version of the s-cobordism
theorem for certain homotopically stratified spaces with manifold strata. Following a more
differential topological framework, which they established in [AFT17], in [AFR19] Ayala,
Francis, and Rozenblyum developed a homotopy theory of stratified spaces within the context
of differential topology. One of their central assertions was the following statement:
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Let StratC∞ denote the category of conically smooth stratified spaces (with coni-
cally smooth stratified maps), and Hs the class of stratified homotopy equivalences
(in the conically smooth sense). Then there is a fully faithful embedding

StratC∞[H−1
s ]↪ Cat∞

into the homotopy theory of ∞-categories1.

Furthermore, they conjectured a topological analogue of this result. This relies on the exit path
construction of McPherson, Treuman, Woolf, and Lurie ([Woo09; Tre09; Lur17]). Roughly
speaking, this construction associates to a stratified space an ∞-category in which morphisms
are given by paths that either remain within one stratum, or start in one stratum and
immediately exit into a higher one.

Conjecture 7.1.0.1. [AFR19] Topological exit paths define a fully faithful functor

Exit∶Strat↪ Cat∞

from a homotopy theory of topological stratified spaces Strat into ∞-categories.

Again, just as in the case of the classical homotopy hypothesis, any answer to this conjecture
must first provide a formal interpretation of the homotopy theories in question. In this case,
the difficulty lies with the left-hand side, specifically the question after a homotopy theory of
topological stratified spaces. In recent years, three of such theories have been independently
proposed (not all with the intent to tackle the topological stratified homotopy hypothesis). In
the following Strat will always denote the category of all poset-stratified spaces, with stratified
maps between them (see, for example, [DW22], which is Chapter 3 here, for an overview).
Similarly, we denote by StratP , for a partially ordered set P , the category of poset-stratified
spaces over a fixed poset, with morphisms given by stratified maps that descend to the identity
on P , so-called stratum-preserving maps. One way of defining a homotopy theory of stratified
spaces is, of course, to specify a category of topologically stratified spaces, in these cases, the
category of all poset-stratified spaces with stratified maps, and then to localize the latter at
an appropriate class of stratified weak equivalences.

1. In [Dou21c; Hen] Douteau and Henriques independently built on a result of Miller’s in
[Mil13], concerning Quinn’s homotopically stratified spaces. In [Mil13], it was shown
that stratum-preserving homotopy equivalences between homotopically stratified spaces
are precisely such maps that induce homotopy equivalence on the strata and on the
so-called [p < q]-homotopy links (where p < q are elements of the stratifying poset).
Recall, that these are given by the spaces of exit-paths, starting in the p-stratum
and immediately exiting into the q-stratum. Since for general poset-stratified spaces
pairwise homotopy links are insufficient to even guarantee that the underlying map is a
weak equivalence of topological spaces, [Dou21c; Hen] additionally considered so-called
generalized homotopy links, obtained by replacing the stratified interval by a stratified
simplex. Then a weak equivalence of stratified spaces is defined to be a stratified map that
induces an isomorphism on stratifying posets and weak equivalences on all generalized
homotopy links (which include the strata). We call such stratified maps poset-preserving
diagrammatic equivalences and denote the resulting ∞-category obtained by localizing
poset-preserving diagrammatic equivalences by Stratd,p. Analogously, given a fixed
poset P , we denote the localization of StratP at stratum-preserving (poset-preserving)

1At the current point in time, it appears that [AFR19] is missing a definition of what exactly the category
of conically smooth stratified spaces they consider is. Note that one cannot simply use the category of conically
smooth stratified spaces of [AFT17], since the latter does not contain the stratified simplices. Without a
definition of the stratified smooth category accommodating such spaces with corners (and the development
of the necessary theory), it is currently not possible to verify the truth of the smooth stratified homotopy
hypothesis.
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diagrammatic equivalences over P by StratdP . Then taking generalized homotopy links
induces an equivalence of ∞-categories

HoLink∶StratdP ≃ Fun(sd(P )op,Spaces)

where the right hand side denotes the category of Spaces valued presheaves on the
subdivision on the poset P . Explicitly, sd(P ) is the category whose objects are finite
increasing sequences [p0 < ⋯ < pn] in P (so-called regular flags) and whose morphisms
are inclusions of subsequences.

2. In [Hai23], Haine followed the insight that the categories of exit paths associated to a
classical stratified space (for example, conically stratified space or homotopically stratified
space) always come with a conservative functor into the stratification poset. This is
simply due to the fact that restricted to each stratum the construction produces the
classical∞-groupoid of paths. Furthermore, the fact that exit-paths define an∞-category
at all implies that, for such stratified spaces, the natural maps from the generalized
homotopy links into the homotopy pullbacks of pairwise homotopy links

HoLink[p0<⋅⋅⋅<pn](X )→HoLinkp0<p1(X ) ×
H
Xp1
⋅ ⋅ ⋅ ×

H
Xpn−1

HoLinkpn−1<pn(X )

are weak homotopy equivalences. Hence, only certain diagramsD ∈ Fun(sd(P )op,Spaces)
— those were the corresponding morphism is an isomorphism in the ∞-category of
spaces — may arise as the homotopy-link diagram of classical examples of stratified
spaces. Diagrams that satisfy this property are called décollages (see [Hai23; BGH18]).
The full ∞-subcategory of décollages, DécP , turns out to be a (left) localization of
Fun(sd(P )op,Spaces) (i.e. a reflective subcategory). [Hai23] then defines his class of
weak equivalences of stratified spaces over a fixed poset P as the class of such stratified
maps that map into isomorphisms under the composition

StratP
HoLink
ÐÐÐÐ→ Fun(sd(P )op,Spaces)→ DécP .

We call such weak equivalences (stratum-preserving) categorical equivalences, and denote
the resulting homotopy theory by StratcP . This makes StratcP a left localization of
Douteau and Henriques’ theory StratdP , that is canonically equivalent to DécP . One
may then extend this class of weak equivalences to the case of varying poset Strat, by
requiring a weak equivalence to induce isomorphisms on stratifying posets and a stratum-
preserving categorical equivalence after identifying the posets along the isomorphism.
We call such stratified maps poset-preserving categorical equivalences (for reasons which
will become apparent later) and denote the resulting homotopy theory by Stratc,p.

3. Finally, in [Nan19], Nand-Lal took the approach of transferring the weak equivalences
along Lurie’s functor of stratified singular simplices, which provides a model for the
∞-category of exit paths associated to a stratified space2:

Sings∶Strat→ sSet.

More precisely, a stratified map X → Y is called a categorical equivalence if the induced
simplicial map Sings(X ) → Sings(Y) is a Joyal equivalence (also called categorical
equivalences; see [Lur09]). One major difference compared to the previous two theories is
that weak equivalences in this setting are not required to preserve the stratification poset.
In this sense, the stratification posets are only essential to a stratified homotopy type
insofar as they determine what paths are exit paths (what simplices are exit-simplices).
We denote the induced homotopy theory by Stratc.

2Strictly speaking, Nand Lal works with a full subcategory of Strat, but from a homotopy theoretic
perspective this difference turns out to be irrelevant (see Proposition 7.A.0.2)
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The first answer to Conjecture 7.1.0.1 was given in [Hai23], where Haine used a result of
Douteau ([Dou21c, Thm. 3]) to prove an equivalence of ∞-categories

StratcP ≃ AStratP ,

where AStratP is the ∞-category of conservative functors of ∞-categories with target P ,
so-called abstract stratified homotopy types. Thus, the equivalence provides an answer to
Conjecture 7.1.0.1 for the setting of a fixed poset. The equivalence is constructed by passing
through the equivalence of StratcP with DécP , and then, in turn, constructing an equivalence
of the latter with a model for AStratP given in the language of complete Segal spaces. In this
sense, the equivalence is not constructed directly in terms of Lurie’s Sings construction (from
a 1-categorical perspective at least). A priori, it is unclear whether the weak equivalences
defining StratcP can be characterized through Sings.

Here, we aim to provide an answer to the topological stratified homotopy hypothesis that
is similarly tractable to the incarnation of the classical homotopy hypothesis in terms of
Theorem HH. To begin with, this means we want to obtain tractable versions of the comparison
functors between stratified spaces and ∞-categories, in terms of a presentation through the
stratified singular simplicial set functor and its left adjoint given by stratified realization.
Secondly, we want to obtain a better understanding of the homotopy theories of stratified
spaces – Stratd,p ,Stratc,p and Stratc, and their fixed poset counterparts – and how they
interact with the 1-category Strat as well as classical approaches to stratified homotopy theory,
such as the one pursued in [Qui88].

Question 7.1.0.2. More specifically, we aim to answer the following questions.

Q(1) Can the equivalence StratcP ≃ AStratP be presented through Lurie’s stratified singular
simplicial set (Exit-path) construction, and does Sings create stratum-preserving
categorical equivalences, in the sense that a stratum-preserving map is a categorical
equivalence, if and only if Sings(f) is a Joyal equivalence? If yes, do analogous results
hold for the homotopy theories of stratified spaces with varying stratification posets,
thereby presenting a global version of the topological stratified homotopy hypothesis?

Q(2) Without additional structure, ∞-categorical localizations of 1-categories are generally
difficult objects to study. What can we say about the homotopy theories of stratified
spaces from a stratified topological perspective? For example, can we express Stratc
as a subcategory of stratified spaces C localized at stratified homotopy equivalences,
analogously to the situation of topological spaces and CW complexes? Such a category
C should contain as many stratified spaces of classical interest as possible, to allow us
to investigate the stratified homotopy-theoretic properties of geometrically interesting
examples through the language of ∞-categories.

Q(3) In the same line of questioning as in the previous question: The category Strat admits
a naive notion of mapping space, with points given by stratified maps and paths given
by stratified homotopies. For what stratified spaces, X and Y, can we expect the
mapping space Stratc(X ,Y) to have the homotopy type of this naive mapping space,
or similarly, which classical examples of stratified spaces are contained in C?

Q(4) What are the precise relationships between the several stratified homotopy theories
introduced above and the more classical approach due to Quinn? In particular, how
large are the differences when restricting to classical, geometrical examples of stratified
spaces?

Q(5) How can ∞-categorical construction, such as colimits in a quasi-category (i.e., homo-
topy colimits), be interpreted in terms of the 1-category Strat? For instance, when
is a pushout diagram of stratified spaces homotopy pushout in one of the homotopy
theories of stratified spaces above?
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Q(6) The sets of stratified maps can even be equipped with the structure of a stratified space,
with each stratum corresponding to a map of the underlying posets (see [Nan19]).
In [Hug99b], such stratified (decomposed) mapping spaces and their relations with
stratified notions of fibrations were studied. The central result states a stratified
exit path version of the classical path-space fibration. Can we replicate this result in
the stratified homotopy theories described above, using methods of modern abstract
homotopy theory?

Q(7) What is the relationship of the homotopy theories described above with the homotopy
theory of conically smooth stratified spaces discussed in [AFR19]?

Classically, such questions concerning the relationship of a homotopy theory and a 1-
category from which it is obtained by localization are answered through the language of model
categories. Thus, we may at least partially rephrase the questions above:

Question 7.1.0.3. Do the classes of weak equivalences defining the homotopy theories
Stratd,p, Stratc,p and Stratc (and their fixed, poset counterparts) extend to model structures
on Strat (StratP )? Specifically, do model structures exist in which stratified spaces of classical
interest – for example, Whitney stratified spaces or, more recently, conically smooth stratified
spaces – are bifibrant? Supposing an affirmative answer, what are the properties of this model
category, such as admitting a simplicial structure, cartesian closedness, cofibrant generation?
Can one prove an answer to the stratified homotopy hypothesis in terms of Quillen equivalences
through the adjunction of stratified realization and stratified singular simplicial sets?

In [Dou21c; Hen] model structures on Strat presenting Stratd,p were defined. However,
these model structures fail the criterion of having convenient bifibrant objects: Not even the
stratified cone on a closed manifold is a cofibrant object. In [Nan19], the author defined a
model structure for the subcategory of such stratified spaces, X , for which Sings(X ) is a
quasi-category and used it to prove a Whitehead theorem for stratified spaces. The existence
of a (semi-)model structure as above was left open as a conjecture ([Nan19, p. 8.4.1]). While
this makes, for example, (appropriately stratified) piecewise linear pseudo-manifolds bifibrant,
a full model category (in particular fibrant replacement) is needed to present the stratified
homotopy hypothesis. Finally, in [DW22], we showed that such model structures cannot exist
(see Proposition 7.4.0.1 for a detailed proof adapted to the setting of this paper).

7.1.1 Content of this article
One main result of this paper is to prove that we can answer Question 7.1.0.3 affirmatively if
we generalize to (left) semi-model categories (see, for example, [Bar10; BW24]). We note that,
in practice, these usually turn out to be just as powerful as model categories (see, for example,
[BW24, Rem. 4.5]. In particular, the existence of left semi-model structures (just semi-model
structures henceforth) allows us to obtain answers to Question 7.1.0.2. Building on the work
of [Hai23], [Dou21c], and [Dou21b], we have laid the foundation to prove the existence of these
semi-model structures in the two preceding papers: [Waa24b] and [Waa24a]. The remaining
task is to combine these results as follows:

1. In [Dou21b] and [Hai23] Douteau and Haine each defined simplicial counterparts to
their stratified homotopy theories for the case of a fixed poset P . In [Waa24a], we
extended these models to model structures for stratified simplicial sets with varying
stratification poset, the category of which we denote sStrat,. Doing so, we obtain
simplicial model categories sStratd,p, sStratd, sStratc,p and sStratc. The latter two
of these do, respectively, present the homotopy theories of abstract stratified homotopy
types (with varying stratification poset) and of (small) layered ∞-categories, which are
the ∞-categories in which every endomorphism is invertible. We recall these results in
Section 7.3.2.
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2. We want to construct model structures for Stratc,p,Stratd,p,Stratc and their fixed
poset analogues by transferring the model structures on the simplicial side along the
stratified singular simplicial set and realization adjunction. To this end, we need to
prove that the functor Sings∶Strat→ sStrat creates weak equivalences for the respective
theories. This is proven in Section 7.3.3. In fact, more than that, we show that the functor
induces homotopy equivalences of categories with weak equivalences (Theorem 7.3.3.1).

3. Then, in Section 7.4, we transfer the model structures from the combinatorial framework to
the topological one, through a transfer lemma for semi-model categories (Lemma 7.4.1.6).
Applying this lemma requires a deeper understanding of the interaction of the homotopy
link functor with topological stratified constructions, such as pushouts along inclusions of
cell complexes. This is achieved through Theorem HB, which establishes the existence of
certain regular neighborhoods for multistrata interactions in stratified cell complexes. In
many ways, these are the topological (as opposed to smooth) analogues of the Unzip con-
struction of [AFT17]: They provide the necessary glue to connect the geometry/topology
of stratified spaces with their homotopy theory.

We then combine these insights to obtain the following result, which – using standard results on
(semi-)model categories – ultimately addresses Questions Q(2), Q(5) and Q(6) (see, particularly,
Section 7.4.4). For the sake of conciseness, we only cover the case of varying posets in this
introduction.

Theorem A (Theorems 7.3.3.1, 7.4.2.7 and 7.4.2.10 and Corollaries 7.4.2.3 and 7.4.3.3). The
category of stratified topological spaces Strat admits the structure of three distinct simplicial,
cofibrantly generated, and cartesian closed left semi-model categories: Stratd,p, Stratc,p, and
Stratc. Weak equivalences are given, respectively, by the poset-preserving diagrammatic,
poset-preserving categorical, and categorical equivalences. They are right-transferred along the
adjunction

∣ − ∣s∶ sStrat⇌ Strat∶Sings
from their respective counterpart on sStrat. Moreover, with respect to these transferred struc-
tures, the adjunction defines simplicial Quillen equivalences (between the respective topological
and simplicial counterparts) that create weak equivalences in both directions.

Stratc,p is obtained from Stratd,p in terms of a left Bousfield localization at stratified
inner horn inclusions (providing a first step towards an answer to Question Q(4)). In turn,
Stratc is obtained from Stratc,p in terms of a right Bousfield localization (Theorem 7.3.3.1).
As a corollary of this result and Theorem 5.3.3.6, we obtain the following version of the
stratified homotopy hypothesis, providing answers to Question Q(1):

Theorem B (Theorem 7.4.4.4). Mapping a simplicial set to its stratified realization (as in
[Nan19]) and conversely mapping a stratified space X to the underlying simplicial set of SingsX
induces a Quillen equivalence of (semi-)model categories

sSetO
≃
Ð⇀↽Ð Stratc

that creates weak equivalences in both directions.
Here, sSetO is the left Bousfield localization of the Joyal model structure on sSet that presents
layered ∞-categories.

To obtain a similarly convenient situation to the setup of the classical homotopy hypothesis,
an answer to Question Q(3) remains to be obtained. We do so in Section 7.5. It is an
immediate consequence of the way that the model structures are constructed via transfer from
stratified simplicial sets that any stratified space which admits a piecewise linear structure
(or, more generally, a cell structure) that is compatible with the stratification is cofibrant in
the semi-model categories presenting Stratd,p and Stratc,p, namely Stratd,p and Stratc,p.
Hence, for example, by [Gor78], all Whitney stratified spaces are cofibrant. Even more, we
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show Proposition 7.5.2.10, from which it follows that any stratified space (over a finite poset)
whose strata are manifolds that additionally admit a stratified notion of mapping cylinder
neighborhood is cofibrant. In particular, assuming the correctness of a result of [AFR19], this
implies that conically smooth stratified spaces are cofibrant. The semi-model category Stratc
turns out to be a right Bousfield localization of Stratc,p, whose cofibrant objects are precisely
the cofibrant objects in Stratc,p that fulfill a weak version of the classical frontier condition
and have connected strata (Proposition 7.5.4.5). Conceptually, these are the stratified spaces
(cofibrant in Stratc,p) in which the stratification poset structure arises entirely in terms of the
topological relations of the strata.
Faced with several different model structures and homotopy theories for stratified spaces,
the obvious question about the precise relationship between these theories, in particular in
application to geometric examples, arises. We have already illustrated above that the passage
from Stratc,p to Stratc essentially amounts to requiring that the poset structure is intrinsic
to the topology of the space. The difference between Stratc,p and Stratd,p (that is, answering
Question Q(4)) is more subtle. As the cofibrant objects in the categorical and the diagrammatic
semi-model categories agree, the difference between the resulting homotopy theories must lie
in the conditions for fibrancy. It is a result of [Lur17] that conically smooth stratified spaces
are fibrant in Stratc, and hence also in Stratc,p and Stratd,p. In [Nan19], it was shown that
the same holds for Quinn’s homotopically stratified spaces ([Qui88]). This already covers
most classically relevant examples of stratified spaces. Thus, it appears that at least in a
geometric scenario there is not much difference between the two homotopy theories Stratc,p
and Stratd,p at all. In fact, we make this result rigorous in terms of the following answer to
Questions Q(3) and Q(4).
Theorem C (Proposition 7.5.1.4 and Theorem 7.5.1.6). Let X ∈ Strat be a metrizable
stratified space. Then the following conditions are equivalent:

(i) X is fibrant in Stratc;

(ii) X is fibrant in Stratc,p;

(iii) X is fibrant in Stratd,p;

(iv) For any pair of strata [p < q], the starting point evaluation map HoLinkp<q(X )→ Xp
is a Serre fibration.

In particular, when restricted to metrizable stratified spaces, the homotopy theories defined by
Stratc,p and Stratd,p (in terms of simplicial categories of bifibrant objects) agree.

Similarly to the case of the classical homotopy hypothesis, it can be useful to restrict to
a class of particularly convenient stratified spaces that mimic some of the properties of CW
complexes. This is handled by Corollary 7.5.4.8, which in particular states that the bifibrant
stratified spaces in Stratc are precisely the retracts of the so-called CFF stratified spaces, i.e.,
the stratified spaces X ∈ Strat fulfilling:

1. SingsX is a quasi-category.

2. X admits cell structure that is (in a sense which we will specify) compatible with the
stratification.

3. X has non-empty connected strata, and the structure of the stratification poset arises
from the classical frontier condition.

It follows that we may rephrase Theorem B as the following statement:
Theorem B’. Denote by CFF the full subcategory of Strat given by CFF stratified spaces and
let Hs be the class of stratified homotopy equivalences in CFF. Lurie’s exit-path construction
([Lur17]) induces an equivalence of ∞-categories

Exit∶CFF[H−1
s ]

≃
Ð→ Lay∞

where Lay∞ denotes the ∞-category of small layered ∞-categories.
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At the end of Section 7.5 in Section 7.5.5, we study the stratified homotopy link fibrations
of [Hug99b] from a model categorical perspective, thus providing further connections between
our model categorical approach to stratified homotopy theory and more classical approaches.

Finally, let us comment on the relationship of the homotopy theories investigated in this
article with the homotopy theory of conically smooth stratified spaces investigated in [AFR19]
(Question Q(7)). Supposing the existence of stratified mapping cylinder neighborhoods (tubular
neighborhoods), as asserted in [AFT17, Prop. 8.2.3], it follows from Proposition 7.5.2.10,
Proposition 7.5.4.5 and Theorem C that conically smooth stratified spaces are bifibrant in
Stratc. Note that it follows from this result and Theorem B that the following two statements
are equivalent:

1. The exit path construction induces a fully faithful embedding from the ∞-category of
conically smooth stratified spaces into ∞-categories (as asserted in [AFR19]).

2. For any pair of conically smooth stratified spaces X ,Y, the natural map

StratC∞(X ,Y)→ Strat(X ,Y)

from the mapping space of conically smooth maps (defined in [AFR19]) into the mapping
space of continuous stratified maps is a homotopy equivalence of Kan complexes.

In this sense, the smooth version of the stratified homotopy hypothesis as it is stated above is
equivalent to a stratified smooth approximation theorem, as conjectured in [AFT17, Conjecture
1.5.1].

7.2 Preliminaries
In this section, we introduce and recall some of the necessary language and notation, especially
for 1-categorical aspects of stratified spaces and higher homotopical frameworks.

7.2.1 Models for (∞, 1)-categories
This paper is concerned with investigating several homotopy theories of stratified spaces.
By a homotopy theory we mean an (∞,1)-category, not restricting to a specific model for
(∞,1)-categories. For the sake of readability, we will always drop the 1 and use the term
∞-category and homotopy theory synonymously. For our purposes, it is going to be extremely
useful to have several different models for ∞-categories available. Specifically, we are going to
use the following models.

Notation 7.2.1.1. 1. The relative categories of [BK12b], given by pairs (C,W ) of a 1-
category C with a wide subcategory W ⊂C. Names for relative categories will always
begin with an italic letter, that is, they will be of the form Name.

2. Categories enriched over simplicial sets, also called simplicial categories (see [DK80c;
Ber07a]): Names for simplicial categories will always be underlined, that is, written in
the form Name.

3. Quasi-categories in the sense of [Lur09]: Names for quasi-categories will always be bold
and begin with a calligraphic letter, i.e. they will be of the form Name.

If C is an ∞-category (in particular a 1-category), the mapping spaces between objects
X,Y ∈ C will be denoted by C(X,Y ). In the case of simplicial categories, these have an
explicit model in the obvious way. For relative categories, they are given by the hammock
localization of [DK80a; BK12a]. For quasi-categories, we use any of the equivalent models of
mapping spaces of [Lur09].
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Notation 7.2.1.2. To study ∞-categories through some underlying 1-category which they
are a localization of, we are going to make use of the language of (semi)model categories (see
[Hir03] for model categories and [Bar10; BW24] for a good overview of semi-model categories).
We will usually denote ordinary categories in bold letters in the form Name). The model
structure will always be marked by adding some additional ornamentation - in the form Names

or Names - to the name of the underlying simplicial or 1-category.

Notation 7.2.1.3. Functor categories, between two 1-categorical, simplicial categories or
quasi-categories C,D will always be denoted in the form Fun(C,D). This is to be understood
in the sense that the type of categories inserted into Fun(−,−) specifies whether the resulting
functor category is itself a 1-category, quasi-category, or simplicial category. In case that the
source is a 1-category, and the target a quasi or simplicial category, we treat the 1-category,
respectively, as a quasi-category (via its nerve) or as a simplicial category with discrete mapping
spaces. At times, we will also use exponential notation DC to refer to functor categories.

Notation 7.2.1.4. Often we are going to pass between different models of a homotopy theory.
These passages will always follow the following ruleset for nomenclature:

1. Starting with a relative category Name or simplicial category Name, the underlying
1-category will be denoted Name. Similarly, if Names is a simplicial model category,
then we denote its underlying 1-model category by Names.

2. Starting with a model category Names, we denote by Names the relative category
obtained by its underlying 1-category, together with the wide subcategory of weak
equivalences.

3. Starting with a relative category Name = (Name,W ), we denote by Name the quasi-
category Name[W −1] obtained by taking the nerve of the underlying 1-category of
Name, and then localizing at W .

4. In particular, following this language, if we start with a model category Names, then the
relative category Names and the quasi-category Names model the same ∞-category.

5. If we start with a simplicial model category Names, then we denote by Names,o the
full simplicial subcategory of bifibrant objects. Following our notation, under the Quillen
equivalence between simplicial categories and quasi-categories of [Ber07b], Names,o

models the same ∞-category as Names (this follows from [DK80b, Prop. 4.8] together
with [Hin16, Prop. 1.2.1]).

For the sake of completeness, one could of course also introduce notation to pass from relative
to simplicial categories, etc., but we will not make use of this change of model in this article,
and thus do not take this extra step.

7.2.2 Poset-stratified spaces
Next, let us introduce the basic objects of study: topological spaces that are stratified over a
partially ordered set (poset). We begin with notation for the world of posets.

Notation 7.2.2.1. We are going to use the following terminology and notation for partially
ordered sets, drawn partially from [Dou21a] and [Hai23]:

• We denote by Pos the category of partially ordered sets, with morphisms given by
order-preserving maps.

• We denote by ∆ the full subcategory of Pos given by the finite, nonempty, linearly
ordered posets of the form [n] ∶= {0,⋯, n}, for n ∈ N.

• Given P ∈ Pos, we denote by ∆P the slice category ∆/P . That is, objects are given by
arrows [n]→ P in Pos, n ∈ N, and morphisms are given by commutative triangles.



7.2. PRELIMINARIES 339

• We denote by sd(P ) the subdivision of P , given by the full subcategory of ∆P of such
arrows [n]→ P , which are injective.

• The objects of ∆P are called flags of P . We represent them by strings [p0 ≤ ⋯ ≤ pn], of
pi ∈ P .

• Objects of sd(P ) are called regular flags of P . We represent them by strings [p0 < ⋯ < pn],
of pi ∈ P .

Notation 7.2.2.2. Top is going to denote either of the following three categories of topological
spaces.

1. The category of all topological spaces, which we will also refer to as general topological
spaces.

2. The category of compactly generated topological spaces, i.e. such spaces which have the
final topology with respect to compact Hausdorff spaces (see, for example, [Rez17]).

3. The category of ∆-generated topological spaces, i.e. such spaces which have the final
topology with respect to realizations of simplices, or equivalently just with respect to
the unit interval (compare [Dug03; Gau21]).

We denote by sSet the simplicial category of simplicial sets, i.e. the category of set-valued
presheaves on ∆op, equipped with the canonical simplicial structure induced by the product (see
[Lur09] for all of the standard notation used for simplicial sets). We denote by ∣− ∣∶ sSet→ Top
the realization functor of simplicial sets and by Sing∶Top → sSet its right adjoint. Top
naturally carries the structure of a simplicial category, tensored and powered over sSet,
induced by left Kan extension of the construction

T ⊗∆n
∶= T × ∣∆n

∣.

We denote the resulting simplicial category by TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop. Furthermore, we will always consider
TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop to be equipped with the Quillen model structure [Qui67], which makes ∣ − ∣ ⊣ Sing a

simplicial Quillen equivalence, between TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop and sSet (with the latter equipped with the
Kan-Quillen model structure), which creates all weak equivalences in both directions.

Remark 7.2.2.3. Note that one commonly only defines the simplicial structure for compactly
or ∆-generated spaces. However, this is mostly due to the fact that for general topological
spaces T and infinite simplicial sets K, the tensor T ⊗K does not agree with the inner product
T × ∣K ∣. Instead, it is given by a colimit of products of T with the simplices of K. Similarly,
the power TK is not given by an internal mapping space (which does not even necessarily
exist for arbitrary K) but by the limit of the mapping spaces with source given by simplices of
K, which are equipped with the compact-open topology. We want to emphasize that for the
resulting homotopy theory the choice in underlying set-theoretic assumptions on topological
spaces is immaterial.

For the remainder of this subsection, we fix some category of topological spaces Top as in
Notation 7.2.2.2.

Notation 7.2.2.4. Having fixed a category of topological spaces Top, we then use the
following notation for stratified topological spaces (all of these constructions already appear
in [Dou21c] among other places). The notation and language is mostly analogous with the
language for the simplicial framework.

• We think of the 1-category Pos as fully faithfully embedded in Top, via the Alexandrov
topology functor A∶Pos→ Top, equipping a poset P with the topology where the closed
sets are given by the downward closed sets. By abuse of notation, we usually just write
P , for the Alexandrov space corresponding to the poset P (compare [DW22, Def. 2.2],
which is Definition 3.2.1.2 here).
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• For P ∈ Pos, we denote by StratP the slice category Top/P . We treat StratP as a
simplicial category, denoted StratP , with the structure inherited from TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop (see [DW22,
Recol. 2.13], which is Recollection 3.2.2.4 in this text, for a detailed definition in the
∆-generated case).

• Objects of StratP are called P -stratified spaces. They are given by a tuple (X , s∶X → P ).
In the literature, a P -stratified space (X , s∶X → P ) is often simply referred to by its
underlying space X, omitting the so-called stratification s∶X → P . We are not going to
adopt this notation here and will generally use calligraphic letters for stratified spaces
and stick to the notational convention X = (X,sX ) to refer to the underlying space and
stratification.

• Morphisms in StratP are called stratum-preserving maps.

• Given a map of posets f ∶Q → P and X ∈ StratP , we denote by f∗X ∈ StratQ the
stratified space X ×P Q→ Q. We are mostly concerned with the case where f is given by
the inclusion of a singleton {p}, of a subset {q ∼ p ∣ q ∈ P}, for p ∈ P and ∼ some relation
on the partially ordered set P (such as ≤), or more generally, a subposet Q ⊂ P . We then
write Xp (or, respectively, X∼p, XQ) instead of f∗X . The spaces Xp, for p ∈ P are called
the strata of X .

• For f ∶Q → P in Pos, we denote by f! the left adjoint to the simplicial functor
f∗∶StratQ → StratP . f! is given on objects by (sX ∶X → Q)↦ (f ○ sX ∶X → Q→ P ).

• Let Top[1] be the category of arrows of topological spaces. We denote by Strat the
category of all (poset-)stratified spaces, given by the full sub-category of Top[1] of such
arrows X → P , where X ∈ Top and P ∈ Pos is a poset (equipped with the Alexandrov
topology). In particular, every object of Strat is given by a P -stratified space, for some
P ∈ Pos, and a morphism (X → P )→ (Y → Q) is given by a pair of morphisms f ∶X → Y
and g∶P → Q, where f is a continuous map and g can be seen as a map of posets, making
the obvious square commute (see also [DW22, Def. 2.11], which is Definition 3.2.2.2 in
this text). Morphisms are called stratified maps.

• Given X ∈ Strat, we are going to use the notations X = (X,PX , sX ) to refer, respectively,
to the underlying space, the poset, and the stratification and proceed analogously for
morphisms.

• Strat is equipped with the structure of a simplicial category (tensored and powered over
sSet), Strat, with the simplicial structure induced by X ⊗∆n = (X × ∣∆n∣→X → PX ).
Note that since X ⊗ − preserves colimits, this means that X ⊗ ∅ is not stratified over
P , but instead over the empty poset. Simplicial homotopies, that is, homotopies with
respect to the cylinder − ⊗∆1 in Strat, are called stratified homotopies. Simplicial
homotopy equivalences are called stratified homotopy equivalences.

• The forgetful functor Strat→ TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop, X ↦X, has a right adjoint. It is given by mapping
T ∈ TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop to the trivially stratified space (T → [0]). By abuse of notation, we will often
write T to refer to the trivially stratified space associated to a space T .

Remark 7.2.2.5. Both Strat and StratP , for P ∈ Pos, are bicomplete categories (see, for
example, [Dou21c]). Limits and colimits in StratP are simply given by the limits and colimits
in a slice category. Colimits in Strat are computed by taking the colimit both on the space
and on the poset level. Limits in Strat are computed by taking the limit on the space and
poset level, and then pulling back the map lim

←Ði
Xi → lim

←Ð
A(Pi) along the natural comparison

map A(lim
←Ði

Pi)→ lim
←Ði
A(Pi), which is an isomorphism for finite diagrams.

Construction 7.2.2.6. If our choice of Top is Cartesian closed (that is, if we are in the
compactly generated or ∆-generated case) then Strat is also a Cartesian closed category (see
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also [Nan19], for the slightly different setting of surjectively stratified spaces). We use the
notation XY to refer to exponential in a Cartesian closed category. To be able to distinguish
exponential objects in posets from those in topological spaces, we use the notation A(P ) to
denote the Alexandrov space associated to a poset P . Given a stratified space X ∈ Strat, the
right adjoint −X to the functor − ×X ∶Strat → Strat is constructed as follows. Given Z in
Strat, consider a pullback square in Top

A(PZ
PX ) ×A(PZ)X ZX ZX

A(PZ
PX ) A(PZ)

A(PX ) A(PZ)
X ,

(7.1)

where PPXZ is the poset obtained by equipping Pos(PX , PZ) with the poset structure given by

f ≤ g ∶⇐⇒ f(p) ≤ g(p),∀p ∈ PX ,

which defines the exponential object PPXZ in Pos. The lower left horizontal map between the
resulting space equipped with the Alexandrov topology into the mapping space A(PZ)A(PX )
is always continuous, but generally only a homeomorphism if PX and PZ are finite ([May16,
Cor. 2.2.11]). The stratified mapping space ZX is defined by the left vertical of this pullback
diagram 3. This construction (and its functoriality in stratified maps) induces the right adjoint
−X ∶Strat → Strat to − × X . In particular, we may treat Strat as a symmetric monoidal
category (with monoidal structure induced by the product) enriched over itself.

7.2.3 Stratified simplicial sets and stratified realization
The approach to constructing and investigating homotopy theories of stratified spaces that we
take in this article is to transfer homotopy theoretic structure from the combinatorial to the
topological world. Let us quickly recall some notation and terminology concerning stratified
simplicial sets, as introduced and investigated in [Dou21a; Hai23]. We have surveyed and
expanded the results on homotopy theories of stratified simplicial sets in [Waa24a] (which is
Chapter 5 in this text), to which we refer for more details.

Notation 7.2.3.1. We use the following terminology and notation for (stratified) simplicial
sets, drawn partially from [Dou21a] and [Hai23]:

• When we treat sSet as a model category, this will generally be with respect to the
Kan-Quillen model structure (see [Qui67]), unless otherwise noted. When we use Joyal’s
model structure for quasi-categories ([JT08]) instead, we will denote this model category
by sSetJ.

• We think of Pos as being fully faithfully embedded in sSet, via the nerve functor
(compare [Hai23]). By abuse of notation, we just write P , for the simplicial set given by
the nerve of P ∈ Pos.

• For P ∈ Pos, we denote by sStratP the slice category sSet/P , which is equivalently
given by the category of set-valued presheaves on ∆P . We treat sStratP as a simplicial
category, denoted sStratP , with the structure inherited from sSet (see [DW22, Recol.
2.21.], which is Definition 3.2.3.1 in this text). Objects of sStratP are called P -stratified
simplicial sets.

• Most of the remaining language and notation we are going to use for stratified simplicial
sets can be copied mutatis mutandis from the topological setting in Section 7.2.2. See
Section 5.1.1, for a detailed list.

3Note that the underlying set of A(PZPX ) ×A(PZ)X ZX is in natural bijection with Strat(X ,Z), which
shows that we can interpret this construction as a choice of topology on Strat(X ,Z), which will generally be
finer than the initial topology inherited from ZX .
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• The forgetful functor sStrat → sSet, X ↦ X, which will be denoted F , has a right
adjoint and a left adjoint. The left adjoint is given by left Kan extending the functor
on simplices: ∆n ↦ {∆n 1∆n

ÐÐ→∆n = [n]}. We denote it by L∶ sSet→ sStrat. The right
adjoint is given by mapping K ∈ sSet to the trivially stratified simplicial set {K → [0]}.
By abuse of notation, we will often write K to refer to the trivially stratified simplicial
set associated to a simplicial set K.

Notation 7.2.3.2. We are going to need some additional notation for flags and stratified
simplices.

• For a flag J = [p0 ≤ ⋯ ≤ pn] ∈ ∆P , we write ∆J for the image of J in sStratP under the
Yoneda embedding ∆P ↪ sStratP . Equivalently, ∆J is given by the unique simplicial
map ∆n → P mapping i↦ pi. ∆J is called the stratified simplex associated to J .

• Given a stratified simplex ∆J , for J = [p0 ≤ ⋯ ≤ pn], we write ∂∆J for its stratified
boundary, given by the composition ∂∆n →∆n → P .

• Furthermore, for 0 ≤ k ≤ n, we write ΛJk ⊂ ∆J , for the stratified subsimplicial set
given by the composition Λnk →∆n → P (we use the horn notation as in [Lur09]). The
stratum-preserving map ΛJk ↪ ∆I is called the stratified horn inclusion associated to
J and k. The inclusion ΛJk ↪ ∆I is called admissible, if pk = pk+1 or pk = pk−1. The
inclusion ΛJk ↪∆I is called inner if 0 < k < n.

• It will also be convenient to have a concise notation for the images of simplices, horns, and
boundaries under L∶ sSet→ sStrat. These are denoted by replacing the exponent n ∈ N,
by the poset [n]. That is, we write ∆[n] ∶= L(∆n), ∂∆[n] ∶= L(∂∆n) =, Λ[n]k ∶= L(Λnk),
for 0 ≤ k ≤ n.

Recollection 7.2.3.3. [Dou21a] For fixed P ∈ Pos, the two simplicial categories StratP
and sStratP are connected through a realization and functor of singular simplices type of
adjunction, denoted

∣ − ∣s∶ sStratP ⇌ StratP ∶Sings.

The left adjoint is constructed by mapping a stratified simplex ∆J → P , with J = [p0 ≤ . . . ,≤
pn], to the stratified space

∣∆n
∣→ P

x↦ sup{pi ∈ J ∣ xi > 0},

where we consider ∣∆n∣ as embedded in Rn+1 ≅ RJ . If we consider sStratP as the category of
set-valued presheaves on ∆P , then by the logic of a nerve and realization functor, SingsX is
hence given the stratified simplicial set

SingsX (J ) = StratP (∣∆J ∣s,X )

with the obvious structure morphisms. The adjunction ∣ − ∣s ⊣ Sings is simplicial.

Recollection 7.2.3.4 ([DW22, Recol. 2.23] which is Recollection 3.2.3.5 here). The two
functors ∣ − ∣s and Sings are compatible with functoriality in the poset, in the sense that for
any morphism f ∶P → Q there are natural isomorphisms

∣ − ∣sf! ≅ f!∣ − ∣s

Singsf∗ ≅ f∗Sings.

It follows that the adjunctions

∣ − ∣s∶ sStratP ⇌ StratP ∶Sings,
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extend to a global adjunction

∣ − ∣s∶ sStrat⇌ Strat∶Sings,

denoted the same, by a slight abuse of notation. Specifically, the maps of simplicial mapping
spaces are given by applying the fixed poset versions of ∣ − ∣s ⊣ Sings component-wise, under
the identifications

Strat(S,T ) ≅ ⊔
f∈Pos(PS ,PT )

StratPS (S, f
∗
T ) ≅ ⊔

f∈Pos(PS ,PT )
StratPT (f!S,T );

sStrat(X ,Y) ≅ ⊔
f∈Pos(PX ,PY)

sStratPX (X , f
∗
Y) ≅ ⊔

f∈Pos(PX ,PY)
sStratPY (f!X ,Y).

7.3 Homotopy theories of stratified objects
Equipping Strat with a simplicial structure and powers (even an enrichment over Kan
complexes) allows us to study stratified spaces from a homotopy-theoretic perspective. It
follows from [DK87, §2.5, 2.6] that the ∞-category defined by Strat is equivalently given by
localizing Strat at stratified homotopy equivalences Hs

4. It is, however, a general paradigm in
abstract homotopy theory that it is often more fruitful to consider a class of weak equivalences
larger than the homotopy equivalences with respect to the simplicial structure (for example,
weak homotopy equivalences of topological spaces, instead of homotopy equivalences). We
may encode this information in terms of a relative category given by equipping Strat with the
additional data of a class of weak equivalences W . The ∞-categorical localization Strat[W −1]
then defines a homotopy theory of stratified spaces. In the presence of sufficient extra structure,
this process of localizing a larger class of maps is often equivalent to restricting the simplicial
category to a subclass of particularly nice (i.e., bifibrant) objects (formally, this is [GH05,
Prop. 1.1.10] or, more classically, [DK80b, §7]). For example, if one is interested in studying
topological manifolds, by Whitehead’s theorem (and the fact that topological manifolds have
the homotopy type of CW complexes), it is often perfectly sufficient to do so in the setting of
weak homotopy equivalences. Following this perspective from classical homotopy theory, the
question of a good notion of weak equivalence of stratified spaces and hence after a convenient
homotopy theory of (poset) stratified spaces arose.

7.3.1 Homotopy theories of stratified topological spaces
The question after a convenient homotopy theory of stratified spaces was already investigated
in [Qui88] by Quinn, who took the approach of restricting the class of objects, rather than
increasing the class of weak equivalences. Quinn followed the insight that in geometric scenarios
a stratified space W, with finitely many strata and minimal stratum p, can be decomposed
into a diagram

W
′
↩ L→Wp

with X →Wp a fiber bundle with fiber stratified over P>p, and W ′ ↩ L a stratum-preserving
boundary inclusion over P>p. If we inductively repeat this process with W>p and L, we
ultimately end up with a diagram of spaces indexed over the regular flags P , that is, over
sd(P )op. In a less geometric scenario, we may not have access to the geometric link L and its
further decomposition into smaller pieces. However, we may still consider a homotopy-theoretic
analogue.

Recollection 7.3.1.1. Let X ∈ StratP , and I ∈ sd(P ). The I-th homotopy link of X ,
HoLinkI(X ) ∈ Top, is the topological space obtained by equipping StratP (∣∆I ∣s,X ) with

4We make now use of this statement, so we omit a proof, but this formally follows from the fact that the
powering of Strat under sSet can be used to define an equivalence of relative categories between (Strat, Hs)

and the flattening of Strat.
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the subspace topology inherited from the compact-open topology (or the respective Kelley-
fication thereof, to end up in compactly generated or ∆-generated spaces). If I = {p}, then
HoLinkI(X ) = Xp and if I = [p < q], then HoLinkI(X ) is the space of paths which start in Xp
and immediately exit into the q-stratum. This construction is functorial, both in I and X ,
inducing a right-adjoint, simplicial functor

HoLink∶StratP → Fun(sd(P )op, TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop).

It will often be more convenient to present HoLinkIX as a simplicial set. By abuse of notation,
we will also denote by HoLink the composition

HoLink∶StratP → Fun(sd(P )op, TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop)
Sing∗
ÐÐÐ→ Fun(sd(P )op, sSet).

If W is a Whitney stratified space with two strata, then the diagram HoLink(W) is weakly
equivalent to the geometric decomposition diagram illustrated above.

Quinn studied a class of (metrizable) stratified spaces, for which the natural evaluation maps
HoLinkp<qX → Xp are Hurewicz fibrations and which additionally fulfill a cofibrancy condition
for inclusions of strata (see [Qui88] for details), so-called homotopically stratified spaces (also
called homotopically stratified sets). In this type of framework he showed, for example, a
stratified analogue of the s-cobordism theorem. In [Mil13], Miller proved a Whitehead-style
theorem for homotopically stratified spaces: A stratum-preserving map between the latter is a
stratified homotopy equivalence if and only if it induces homotopy equivalences on all pairwise
homotopy links and strata. Inspired by this, both Douteau and Henriques (see [Dou21c; Hen])
independently suggested the following class of weak equivalences for stratified spaces.

Recollection 7.3.1.2. [Dou21c; DW22] We call a stratum-preserving map X → Y ∈ StratP
a diagrammatic equivalence, if and only if it induces weak homotopy equivalences on all
generalized homotopy links HoLinkI , I ∈ sd(P ). We denote by StratdP , the relative category
obtained by equipping StratP with the class of diagrammatic equivalences. It follows from
[Dou21c, Thm. 3] that the homotopy link functor

HoLink∶StratP → Fun(sd(P )op, TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop)

induces an equivalence of quasi-categories

StratdP ≃ Fun(sd(P )op,Top)[{pointwise weak equivalences}−1
] ≃ Fun(sd(P )op,Spaces).

This result can be extremely useful insofar, as it allows one to study stratified spaces in
terms of presheaves on a fairly simple category, which is a homotopy theoretical setting that is
well understood. At first glance, if one takes the perspective of Miller’s Whitehead theorem for
homotopically stratified sets, it may seem surprising that generalized homotopy links of flags I
containing more than two elements are part of the data detecting weak equivalences. Roughly
speaking, higher homotopy links cannot be ignored, as even though they are not necessary
to detect stratified homotopy equivalences between two homotopically stratified spaces, they
nevertheless provide obstructions for such maps to exist at all. Compare this to the situation of
equivalences of categories: Whether a functor is an equivalence of categories may be detected
in terms of objects and hom-sets, but whether a functor exists at all requires us to consider
higher-dimensional data. Namely, one needs to take into account the composition laws in the
categories involved.

There is, however, another way of homotopically approximating the framework of homo-
topically stratified spaces. It follows from [Lur17, A.5] or [Nan19, Thm. 8.1.2.6.] that the
homotopy link diagrams arising from classical examples of stratified spaces usually have the
following property:
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Recollection 7.3.1.3. [Hai23; Waa24a] A diagram D ∈ Fun(sd(P )op,Spaces) is called a
décollage, if for every regular flag I = [p0 < ⋯ < pn] ∈ sd(P ), the canonical morphism

D(I)→D(p0 < p1) ×D(p1) ⋯×D(pn−1)D(pn−1 < pn).

is a weak homotopy equivalence (that is, an isomorphism in the ∞-category of spaces). If D is
presented by a commutative diagram in topological spaces or simplicial sets, this condition is
equivalent to the natural map

D(I)→D(p0 < p1) ×
H
D(p1) ⋯×

H
D(pn−1)D(pn−1 < pn).

into the iterative homotopy pullback being a weak homotopy equivalence. In particular, if
the homotopy link diagram HoLink(X ) of a stratified space X is a décollage, then, roughly
speaking, exit paths in X admit compositions which are unique up to higher coherence. The
homotopy theory of such décollages can be constructed in terms of a left Bousfield localization
of DiagP ∶= Fun(sd(P )op, sSet), equipped with the injective model structure, by localizing
at such weak equivalences, which are local with respect to décollages (see Section 5.2.2). In
other words, f ∶E → E′ is a weak equivalence in the model structure that presents décollages,
if and only if for every injectively fibrant diagram D ∈DiagP that has the décollage property
the induced map of mapping spaces

DiagP (E′,D)→DiagP (E,D)

is a weak homotopy equivalence. We denote this left-Bousfield localization of the injective model
structure on DiagP by Diagdé

P . We say that a stratum-preserving map f ∶X → Y ∈ StratP
is a categorical equivalence, if and only if the induced morphism HoLink(X ) → HoLink(Y)
is a weak equivalence in Diagdé

P , and denote the corresponding relative category by StratcP .
Categorical weak equivalences are precisely the weak equivalences of stratified spaces suggested
by Haine in [Hai23]. It follows by construction and [Dou21c, Thm. 3] that the induced functor
of quasi-categories

HoLink∶StratcP → Diagdé
P

is an equivalence. That is, if we localize categorical equivalences in StratP , we obtain the
homotopy theory of décollages. [BGH18; Hai23, Thm. 1.1.7] states that Diagdé

P is in turn
equivalent to the homotopy theory of quasi-categories with a conservative functor in P , so-
called abstract stratified homotopy types. This already shows that StratcP fulfills a version of a
stratified homotopy hypothesis ([Hai23]).

However, in [Hai23] it was not yet known whether the equivalence between abstract stratified
homotopy types and StratcP could be constructed on the nose through the stratified singular
simplicial set construction. In fact, it was not known whether any categorical equivalence even
induced a categorical equivalence (Joyal-equivalence) on stratified singular simplicial sets. We
are going to prove that this is indeed the case (see Theorem 7.3.3.1). Before we do so, let
us generalize from the setting of stratum-preserving maps to flexible posets. There are two
apparent ways to generalize to the case of a flexible poset. The first essentially amounts to first
requiring an isomorphism on the poset level, and then a weak equivalence under the resulting
of homotopy theories over fixed posets:

Recollection 7.3.1.4. Let f ∶X → Y ∈ Strat. We say f is a poset-preserving diagrammatic
(categorical) equivalence if the underlying map of posets P (f)∶PX → PY is an isomorphism and
the induced stratum-preserving map P (f)!X → Y is a diagrammatic (categorical) equivalence.
We denote the resulting relative categories on Strat by Stratd,p and Stratc,p. This is how
weak equivalence in Strat are defined, respectively, in [Dou21a; Hai23].

This definition of homotopy theories on Strat has the advantage that by making use of the
Grothendieck bifibration Strat → Pos, most questions about the global homotopy theories
may be reduced to questions of the fibers. From a conceptual point of view, however, it has the
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side effect that the resulting homotopy theory contains a lot of highly pathological stratified
spaces. Namely, both Stratd,p and Stratc,p contain a fully faithful copy of Pos, given by
empty stratified spaces. If we are looking to obtain a theory which embeds fully faithfully
into the homotopy theory of (small) quasi-categories Cat∞, i.e., fulfills a homotopy hypothesis
closer to the classical one, then the stratification poset should generally not be a homotopy
invariant, but merely an additional piece of data used to specify the allowable paths in a
stratified space. This can be achieved by following the other possible approach to generalize
the definitions in Recollections 7.3.1.2 and 7.3.1.3. Namely, one can transfer weak equivalences
along a functor defined on stratified maps:
Construction 7.3.1.5. The extended homotopy link ĤoLink(X ) of a stratified space X ∈
Strat is the bisimplicial set given by

n↦ Strat(∣∆[n]∣s,X ),
with the obvious functoriality in n. Note that

Strat(∣∆[n]∣s,X ) = ⊔
I∈N(P )n

StratPX (∣∆
I
∣s,X )

= ⊔
I∈sdPX

HoLinkI(X ) ⊔ ⊔
J ∈N(PX )n,degenerate

StratPX (∣∆
J
∣s,X ).

In particular, ĤoLink(X ) contains the data of all homotopy links of X . Furthermore, whenever
J is a flag that degenerates from a regular flag I, then the degeneracy map induces weak
equivalences HoLinkI(X ) → StratPX (∣∆

J ∣s,X ). In this sense, if we remove homotopically
redundant data, then ĤoLink(X ) stores exactly the data of all homotopy links of X . At the
same time, allowing for degenerate simplices in homotopy links makes ĤoLink functorial in
stratified maps, not only stratum-preserving ones.
Definition 7.3.1.6. A stratified map f ∶X → Y is called a diagrammatic equivalence, if
it induces weak homotopy equivalences of simplicial sets on all extended homotopy links
ĤoLinkn(X ) → ĤoLinkn(Y), for n ∈ N. We denote by Stratd the relative category given by
Strat together with diagrammatic equivalences.

Finally, let us consider the categorical analogue of Stratd.
Recollection 7.3.1.7. In [Nan19], Nand-Lal defined a stratified map f ∶X → Y to be a
categorical equivalence, if and only if the underlying simplicial map of

Sings(f)∶Sings(X )→ Sings(Y)
is a categorical equivalence of simplicial sets (also called Joyal equivalences). We denote by
Stratc the relative category given by Strat together with categorical equivalences.

As we have already illustrated in the introduction, defining a homotopy theory of stratified
spaces in terms of an ∞-categorical localization, especially in terms of maps which are
themselves obtained through a localization, comes with an immediate series of questions. To
just name a few: Are the stratum-preserving categorical equivalences detected by Sings? Do
we have any intrinsic description of the mapping spaces in the ∞-categorical localizations?
More precisely, how do they relate to the classical mapping spaces of stratified maps given by
the simplicial structure on Strat? In the same vein of questioning, if we restrict ourselves to
classical examples of stratified space, do we obtain the same homotopy theory as is investigated
in [Qui88]? And if this is the case, how come [Qui88] has no need for higher homotopy links in
his definition of a good class of stratified spaces? The classical way of making localizations
of 1-categories more tractable is, of course, the theory of model categories. In [Dou21c],
the relative categories StratdP and Stratd,p, were extended to model structures. However,
these model structures have only limited expressive power when it comes to investigating
classical examples of stratified spaces, since these are almost never bifibrant (for example, no
stratified cone on a non-empty manifold is ever bifibrant). As we have already illustrated in the
introduction, the goal of this work is to construct (semi-)model structures for the homotopy
theories defined in this section that make as many of such classical examples bifibrant.
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7.3.2 Combinatorial models for stratified homotopy theory
One general strategy of constructing model categories is to first construct a model structure
in a framework where this can easily be done, i.e., a category of presheaves or a similarly
convenient setting, and then to transfer the theory along some adjunction. In this section, we
will discuss simplicial analogues to the homotopy theories defined in the last section. We have
investigated these theories in detail in [Waa24a], connecting the theories of [Hai23; Dou21a]
and constructing combinatorial models for Stratc and Stratd. Let us begin with the case of
StratdP .

Recollection 7.3.2.1 ([Dou21a; DW22]). The Douteau-Henriques model structure on sStratP ,
defined first in [Dou21a], is the Cisinski model structure (see [Cis19, Thm. 2.4.19]) induced
by the simplicial cylinder X ↦ X ⊗∆1, with the empty set of anodyne extensions. This
defines a combinatorial, cofibrant, simplicial model structure on sStratP , which may be
characterized as the minimal model structure (in the sense of the smallest possible class
of weak equivalences) in which the cofibrations are the monomorphisms and all stratified
simplicial homotopy equivalences are weak equivalences. We denote the resulting simplicial
model category sStratdP . sStratdP is cofibrantly generated by the classes of stratified boundary
inclusions and admissible horn inclusions. It follows purely abstractly that weak equivalences
between stratified simplicial sets X ,Y that have the horn filling property with respect to
admissible horn inclusions are precisely such stratum-preserving simplicial maps X → Y, for
which the induced simplicial map of the simplicial homotopy links

HoLinkI(X ) ∶= sStratP (∆I ,X )→ sStratP (∆I ,Y) =∶ HoLinkI(Y)

is a weak homotopy equivalence, for all I ∈ sd(P ). More surprisingly, in [DW22] (specifically
Corollary 3.6.0.2 in this text) it was shown that this detection criterion holds for all X ,Y
and that no fibrancy assumptions are necessary. Furthermore, mapping X ∈ sStrat to the
simplicial presheaf on sd(P ) given by I ↦ Strat(∆I ,X ) induces a Quillen equivalence

DiagP
≃
Ð⇀↽Ð sStratdP ∶HoLink,

where the left-hand side denotes the category of simplicial presheaves, Fun(sd(P )op, sSet)
equipped with the injective (or projective) model structure. Even more, this Quillen equivalence
creates weak equivalences in both directions (see Eq. (3.2)). In particular, sStratdP presents
the ∞-category of space-valued diagrams indexed over sd(P )op.

Recollection 7.3.2.2. [Hai23] The Joyal-Kan model structure on sStratP is obtained by left
Bousfield localizing sStratdP at the class of stratified inner horn inclusions. Fibrant objects
are precisely the stratified simplicial sets X , for which the underlying simplicial set X is a
quasi-category and sX ∶X → PX is a conservative functor. It follows that sStratcP presents the
∞-category of conservative functors from a quasi-category into P , also called abstract stratified
homotopy types over P . We can explicitly present the equivalence between décollages and
abstract stratified homotopy types of [Hai23] in terms of a Quillen equivalence. In Section 5.2.2,
we have shown that the adjunction

Diagdé
P Ð⇀↽Ð sStratcP ∶HoLink

induces a Quillen equivalence between sStratcP and the model structure for décollages, which
creates weak equivalences in both directions. This lifts the equivalence between abstract
stratified homotopy types and décollages already proven in [BGH18] to the level of model
categories.

Recollection 7.3.2.3. [Waa24a] Both the Douteau-Henriques as well as the Joyal-Kan model
structures admit a global analogue on sStrat (named accordingly) obtained by gluing the
model structures together along the Grothendieck bifibration sStrat→ P , using [CM20, Thm
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4.4]. We denote by sStratd,p and sStratc,p the simplicial model categories with underlying
category sStrat, defined by applying [CM20, Thm 4.4] to the forgetful functor

P ∶ sStrat→ Pos,

with the fiberwise model structures given by sStratdP and sStratcP , for P ∈ Pos, respectively.
In more detail, a stratified simplicial map f ∶X → Y is a cofibration, if and only if the induced
map P (f)!X → Y is a monomorphism, and weak equivalences are precisely such maps for
which P (f) is an isomorphism, and P (f)!X → Y is a weak equivalence in sStratdPY (sStratcPY ).
sStratd,p and sStratc,p are cofibrant combinatorial model categories. A set of generating
cofibrations for both model categories is given by the set of stratified boundary inclusions
{∂∆[n] ↪∆[n] ∣ n ∈ N}, together with the two morphisms

∅ ∅ ∅ ∅

∅ [0] , [0] ⊔ [0] [1] .

(7.2)

Furthermore, in sStratd,p acyclic cofibrations are generated by the stratified admissible horn
inclusions

Λnk ∆n

[m] ,

(7.3)

for n,m ∈ N.

Generally, the poset of a stratified simplicial set may contain a lot of redundant elements
and relations that do not reflect in the simplicial set itself. For example, sStratc,p does
not present a subcategory of Cat∞, but instead an ∞-category of categories together with a
conservative functor into a poset, and contains a fully faithful copy of the category of posets,
given by mapping a poset P to the functor ∅ → P . If we are looking to obtain a version
of a stratified homotopy hypothesis, referring only to layered ∞-categories without a choice
of additional data, a further (right) localization is necessary. This uses the fact that any
layered ∞-category naturally comes with a functor to the poset of its isomorphism classes,
with relations induced by morphisms between the latter.

Recollection 7.3.2.4 (Section 5.3.2). Given a stratified simplicial set X ∈ Strat, its refined
poset PX r is the poset generated with elements the vertices of X , and a relation x ≤ y, if and
only if there is a path of 1-simplices

x = x0 ↔ x1 ↔ x2 ↔ ⋯↔ xn = y

where only simplices that are contained within a stratum of X are allowed to point in direction
of x. In other words, PX r is the poset whose elements are the path component of strata of X
and whose relations are generated by exit paths in X . The stratification map of X , sX ∶X → PX ,
factors through PX r , inducing a new stratification of X. The resulting stratified simplicial set is
called the refinement of X and denoted X r, and comes with a natural stratified simplicial map
X r → X . Stratified simplicial sets for which this map is an isomorphism are called refined. We
denote by sStratd (sStratc) the two (simplicial) right Bousfield localizations of respectively
sStratd,p and sStratc,p obtained by localizing the refinement maps (the existence of these
localizations was proven in Theorem 5.3.2.19). They are respectively called the diagrammatic
and categorical model structure on sStrat. Both form a combinatorial model category, with
cofibrations generated by the class of stratified boundary inclusions {∂∆[n] ↪ ∆[n] ∣ n ∈ N},
together with the boundary inclusion ∂∆[1] → ∆1, into the trivially stratified simplex. The
fibrant objects of sStratc, i.e., the refined abstract stratified homotopy types are precisely
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what [BGH18] call the 0-connected abstract stratified homotopy types - such abstract stratified
homotopy types which have 0-connected strata and pairwise homotopy links. Forgetting the
underlying stratification poset induces an equivalence

AStratr ≃ Lay∞

between the the homotopy theory of refined abstract stratified homotopy types AStratr and
the homotopy theory of layered ∞-categories Lay∞ (see [BGH18] and Proposition 5.3.1.8
and Theorem 5.3.3.6).

7.3.3 Equivalences of homotopy theories of stratified objects
Now that we have introduced both topological as well as simplicial homotopy theories of
stratified spaces, the obvious question concerning the relation between the two arises. More
precisely, what are the homotopy-theoretic properties of the adjunctions ∣ − ∣s ⊣ Sings? We
prove that each homotopy theory of stratified topological spaces is, in fact, equivalent to its
simplicial counterpart, with the equivalence induced through the adjunctions ∣ − ∣s ⊣ Sings.

Theorem 7.3.3.1 (Partially already found in [DW22; Hai23]). Let R be any of the relative
categories of topological stratified spaces of Section 7.3.1 and let sR be its simplicial counterpart
from Section 7.3.2. Then, the adjunction ∣ − ∣s ⊣ Sings preserves all weak equivalences in
both directions (i.e. induces functors of relative categories), and has unit and counit a weak
equivalence (in other words, it is a strict homotopy equivalence of relative categories in the
sense of [BK12b]). In particular, the adjunctions induce equivalences of quasi-categories

sStratdP ≃ StratdP ; sStratcP ≃ StratcP ,

for each P ∈ Pos, as well as equivalences of quasi-categories

sStratd,p ≃ Stratd,p; sStratc,p ≃ Stratc,p;
sStratd ≃ Stratd; sStratc ≃ Stratc.

Before we give a proof, let us remark on the history of these results.

Remark 7.3.3.2. The existence of an equivalence of quasi-categories sStratd,p ≃ Stratd,p
was first shown in [Dou21b], in terms of a Quillen equivalence. [Hai23] used the equivalence
between abstract stratified homotopy types and décollages, sStratcP ≃ Diagdé

P , proven in
[BGH18], as well as [Dou21c, Thm. 3], to subsume that sStratcP was equivalent to a left
localization of StratdP . If one carefully follows the argument in [Hai23], this localization turns
out to be precisely StratcP . However, a priori, the resulting equivalence sStratcP ≃ StratcP
is not induced by the adjunction ∣ − ∣s ⊣ Sings, but rather as a composition of equivalences
StratcP

HoLink
ÐÐÐÐ→ Diagdé

P

≃
Ð→ sStratcP . At this point, it was not yet known that Sings∶StratP →

sStratP maps categorical equivalences to weak equivalences in the Joyal-Kan model structure.
The strict homotopy equivalence of relative categories version for the cases Stratd,p and
StratdP was first shown in [DW22, Sec. 5] (see Section 3.5 here), albeit it is stated there in
slightly different language. As we will see, all other cases can be derived from this one quite
readily.

Let us first show that the nomenclature for categorical equivalences in StratP is justified:

Lemma 7.3.3.3. Let f ∶X → Y ∈ StratP be a stratum-preserving map. Then the following
are equivalent:

1. f is a categorical equivalence;

2. Sings(f) is an equivalence in the Joyal-Kan model structure;

3. The underlying simplicial map of Sings(f) is a categorical equivalence.
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Proof. There is a natural isomorphism of functors of 1-categories HoLinkI ○ Sings ≅HoLinkI .
By definition, f is a categorical equivalence if and only if HoLink(f) is an equivalence in the
model structure for décollages. Hence, to prove that equivalence of the first two conditions
holds, it suffices to see that HoLink creates weak equivalences, which is part of the statement
of Theorem 5.2.2.20. The final equivalence is a consequence of [Hai23, Thm. 0.2.2].

As an immediate corollary, we obtain:

Corollary 7.3.3.4. Let f ∶X → Y ∈ Strat be a stratified map. Then the following are
equivalent:

1. f is a poset-preserving categorical equivalence;

2. Sings(f) is an equivalence in the poset-preserving Joyal-Kan model structure;

3. f is a categorical equivalence and induces an isomorphism on posets.

Furthermore, the following equivalence for diagrammatic equivalences holds:

Lemma 7.3.3.5. A stratified map f ∶X → Y in Strat is a poset-preserving diagrammatic
equivalence if and only if Sings(f) is a weak equivalence in sStratd,p.

Proof. This follows from Proposition 5.3.4.4 together with the natural isomorphism of ĤoLink
with the composition of its simplicial counterpart with Sings.

Furthermore, we are going to make use of the following lemma:

Lemma 7.3.3.6. Given two categories with weak equivalences (C,WC), (D,WD) suppose
that a pair of functors

L∶C⇌D∶R,

together with natural transformations ε∶1C → RL and η∶LR → 1D define a strict homotopy
equivalence of relative categories. Let W ′

C be any wide subcategory such that WC ⊂W
′
C, and

such that (C,W ′
C) is again a category with weak equivalences. Denote W ′

D = R
−1(W ′

C). Then
the quadruple (L,R, ε, η) also defines a strict homotopy equivalence between (C,W ′

C) and
(D,W ′

D).

Proof. Clearly, WD ⊂W
′
D and R(W ′

D) ⊂W
′
C. Really, the only thing one needs to verify is that

L remains a functor of relative categories, i.e., maps W ′
C into W ′

D. So let w∶X → Y ∈ W ′
C.

Consider the commutative diagram

X RL(X)

Y RL(Y ) .

εX

w LR(w)

εY

(7.4)

By the two-out-of-three property for weak equivalences, and the assumption that εX , εY ∈
WC ⊂ W

′
C, it follows that w being in W ′

C implies that RL(w) ∈ W ′
C. As R creates weak

equivalences, this is the case if and only if L(w) is in W ′
D. This finishes the proof.

Proof of Theorem 7.3.3.1. Note that all model structures on the simplicial side are obtained in
terms of Bousfield localizations from sStratdP or sStratd,p (see Propositions 5.2.1.3 and 5.3.2.26).
It follows from Lemma 7.3.3.6 together with Lemmas 7.3.3.3 and 7.3.3.5 and Corollary 7.3.3.4
that it suffices to show the cases of StratdP and Stratd,p. These were proven in the proof of
[DW22, Thm. 5.1] (which is Theorem 3.5.1.1 in this text). Specifically, see Lemmas 3.5.1.2
and 3.5.1.3 and their proofs.



7.4. (SEMI-)MODEL CATEGORIES OF STRATIFIED SPACES 351

7.4 (Semi-)model categories of stratified spaces
The difficulty with the results in Theorem 7.3.3.1 is their interpretability. Without some
additional structure on the side of Strat, the only real information that we have is that the
homotopy theories we defined are equivalent to the combinatorial world we transferred them
from. We thus encounter the difficulty of interpreting what these results actually say about
classical examples of stratified spaces. That is, we need to determine how the localizations of
Theorem 7.3.3.1 relate to stratified maps, stratified homotopies or more generally the stratified
simplicial mapping spaces of Strat. The usual approach to relating a localization to a simplicial
category is the language of simplicial model categories. In [Dou21c], such simplicial model
structures were suggested for Stratd,p and StratdP . The difficulty with these model structures,
however, is that classically relevant examples such as (for example) Whitney stratified spaces
are not bifibrant in the latter (in fact, no stratified cone on a manifold is cofibrant). Hence,
the expressive power of these model structures when it comes to investigating mapping spaces
for such spaces is limited. In [Lur17, A.5] or [Nan19, Thm. 8.1.2.6.], it was shown that
for essentially all stratified spaces of classical relevance X the stratified singular simplicial
set Sings(X ) is fibrant in sStratc, and hence in any of the model structures for stratified
simplicial sets. Furthermore, at least Whitney stratified spaces or PL-pseudo manifolds admit
triangulations compatible with their stratifications ([Gor78]), and are thus stratum-preserving
homeomorphic to the realization of a stratified simplicial set. This suggests the approach
of transferring the simplicial model structures on stratified simplicial sets to the topological
setting. Constructing such a model structure in the case of Stratc was one of the stated goals
and conjectures of [Nan19], which was ultimately left as a conjecture. In fact, it turns out that
the model structures in the combinatorial setting do not transfer to the topological framework,
which was first shown in [DW22, A.5] (see Section 3.A in this text). We repeat the result here,
in slightly different form and with a more detailed proof, as it illustrates well the difficulties
which may arise in the topological but not in the combinatorial world.

Proposition 7.4.0.1 ([DW22, Prop. A.1, Rem. A.4, Rem. A.5]). There does not exist a
model structure on Strat, for which all poset-preserving diagrammatic equivalences are weak
equivalences, and the inclusion ∣Λ[3]1 ↪∆[3]∣s is a cofibration. The analogous result for StratP ,
for P non-discrete, also holds.

Proof. Consider the stratum-preserving map over {p < q} illustrated in the following picture:
a

bb’ c’ c’
a’

a

bb’ c’ c’

r

The picture shows two stratifications over {p < q} of the realization of simplicial complexes
(ignoring the white path from a to b for now), embedded in R2. Denote, from right to left,
the corresponding stratified spaces by X and Y. The p-stratum is marked in red. In X the
p-stratum consists of a vertical line and two sequences, given in barycentric coordinates with
respect to a, b, b′ and a, c, c′ by (1− 1

2n ,
1

2n+1 ,
1

2n+1 ). In Y , the vertical line is replaced by a single
point. Denote these sequences, respectively, by bn and cn. The map r is given by convexly
extending the map which keeps all vertices besides a′ the same and maps the latter to a. This
map is not a categorical equivalence. Indeed, consider the induced map of simplicial sets

Sings(X )→ Sings(Y)

and the induced map of hom-sets

hoSings(X )(a, b)
r∗
Ð→ hoSings(Y)(a, b)
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in the associated homotopy categories. First, note that Sings(Y) is, in fact, a quasi-category.
This can be seen, for example, from the fact that every non-trivially stratified horn ∣ΛJ ∣s → X ,
J = [p ≤ p ≤ ⋯ ≤ q] is constant on the p-stratum. It follows that it suffices to show that Y
admits extensions with respect to ∣ΛJ /∆Jp ∣s ↪ ∣∆J /∆Jp ∣s, which always admits a stratified
retraction. Consequently, elements of Sings(Y)(a, b) are given by stratified homotopy classes
(rel boundary) of exit paths from a to b. It turns out that r∗ is not surjective: Consider a path
γ from a to b that (described as starting from b) ascends monotonously in height and passes
to the left of b1, to the right of c2, to the left of b3 etc., as illustrated in the right picture. The
class of γ does not lie in the image of r∗. Roughly speaking, this is due to the fact that no
exit path in X can oscillate around the points of both sequences (bn) and (cn). For a formal
proof, see Section 7.C. Next, let J = [p ≤ p < q ≤ q] and J ′ = [p < q ≤ q] consider the following
diagram of pushout squares

∣Λ[3]1 ∣s ∣∆[3]∣s ∣∆[2]∣s

∣ΛJ1 ∣s ∣∆J ∣s ∣∆I ∣s

X Z Y ,

∣s1∣s

r′

(7.5)

with the upper verticals induces by the identity on spaces and the flags J and J ′, the
lower left vertical given by affinely extending the map of vertices e0 ↦ a′, e1 ↦ a and e2 ↦ b
and e3 ↦ c, and with s1 the degeneracy map collapsing the edge {1,2} to {1}. The bottom
composition is precisely r, by construction of the latter. Now, the middle left horizontal
is the realization of a diagrammatic equivalence and hence a diagrammatic equivalence. It
follows that if a model structure as claimed in the statement of the proposition existed, then
the left lower horizontal would be an acyclic cofibration. Now, suppose that the lower right
vertical r′ was also a categorical equivalence. Then it would follow that r is also a categorical
equivalence, in contradiction to what we have just shown. In fact, the lower left vertical is
even a stratum-preserving homotopy equivalence, and hence a categorical equivalence. To see
this, note that r′ admits a section, induced by the pushout

∣∆I ∣s ∣∆J ∣s

Y Z .

∣d0∣s

s′

(7.6)

∣d0∣s is even a stratum-preserving strong deformation retract (that is, admits a deformation
retraction which is also stratum-preserving). It follows that s′ is also a stratum-preserving
deformation retraction, and in particular a stratum-preserving homotopy equivalence. Since r′
is a retraction of s′, it follows that r′ is a stratified homotopy equivalence. For the case of a
fixed poset P , construct X and Y over any trivial relation p < q in P , and simply repeat the
argument omitting the first line in Diagram (7.5).

7.4.1 A transfer lemma for cofibrantly generated semi-model struc-
tures

If one takes a precise look at the counterexample in Proposition 7.4.0.1, one will notice that it
involves a pushout of an acyclic cofibration along a stratified map whose target is somewhat
pathologically stratified. In particular, we cannot expect the target to be cofibrant. Hence,
what one may nevertheless hope to obtain is a left semi-model structure. Semi-model structures
provide a weaker version of model structures in which one can only expect pushouts of acyclic
cofibrations to remain acyclic if all objects involved are cofibrant. Despite having slightly weaker
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axioms, for almost all intents and purposes, semi-model categories (cofibrantly generated ones
to be more precise) are just as useful as regular model categories. Essentially, every theorem
about model categories admits an analogue in the world of semi-model categories, as long
as one takes care that sources of morphisms often need to be assumed to be cofibrant (see,
for example, [BW24] for an overview of some results). We will not go through the ordeal of
reproducing every necessary result from the model category world in the semi-model category
world here. Instead, when necessary, we will often reference a proof in the model-categorical
setting and explain what needs to be adapted in the setting of semi-model categories. Since
we only ever make use of the cofibrantly generated scenario in this paper, and the latter tends
to be significantly more well-behaved, we are going to use the following definition. Recall first
the notion of weak factorization system (for example, from [Rie14, Ch. 11])

Definition 7.4.1.1. Let M be a bicomplete category. A cofibrantly generated left semi-model
structure on M is the data of three classes (C,W,F ), called respectively cofibrations, weak
equivalences, and fibrations, such that:

1. W contains all isomorphisms and is closed under two-out-of-three and retracts;

2. (C,W ∩ F ) is a (functorial) weak factorization system;

3. F consists exactly of those morphisms which have the right lifting property with respect
to all morphisms in W ∩C with cofibrant source;

4. Every morphism with cofibrant source factors (functorially) into a morphism in W ∩C,
followed by a fibration.

Furthermore, we assume that there exist sets of cofibrations I and of acyclic cofibrations with
cofibrant source J , such that F is the class of morphisms that have the right lifting property
with respect to J , and F ∩W is precisely the class of morphisms that have the right lifting
property with respect to I. A (cofibrantly generated, left) semi-model category is the data of a
complete and cocomplete category C, together with a (cofibrantly generated) model structure
on C. Since we are only concerned with left semi-model categories in this work, we will just
speak of semi-model categories when we mean left semi-model category.

It is a routine exercise to show that since we assumed cofibrant generation, our definition
is equivalent to [BW24, Def. 2.1]. Note that this definition is slightly stronger than the one
used, for example, in [Fre09, p. 12.1.1]. We use the following definition of simpliciality:

Definition 7.4.1.2. Let M be a bi-complete simplicial category, admitting powers and tensors,
with the underlying 1-category equipped with a semi-model structure. We say that M is a
simplicial semi-model category, if for every cofibration i∶A ↪ B in the Kan-Quillen model
structure on simplicial sets (that is, for every monomorphism), and for every fibration f ∶X → Y
in M, the induced morphism

XB
→XA

×Y A Y B

is a fibration, and furthermore a weak equivalence if i or f is a weak equivalence.

Remark 7.4.1.3. Note that this is a slightly different definition of simplicial semi-model
category than the one in [BW24, Def. 2.3] or [GH05, Def. 1.1.8]. Our definition is a priori
stronger than the ones in [BW24; GH05]. The latter only implies that when i is a cofibration
and f a fibration, then Y B → XB ×XA Y A has the right lifting property with respect to all
acyclic cofibrations with cofibrant source. However, since in our cases all relevant semi-model
categories are generated by (acyclic) cofibrations with cofibrant source, for the semi-model
categories we are concerned with, all of these definitions agree.

Definition 7.4.1.4. Let D be a bicomplete category. Consider an adjunction

L∶C⇌D∶R

and assume that C is a model category. We say that the right transferred semi-model structure
on D along R exists, if the following classes form a semi-model structure on C:
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1. Fibrations (weak equivalences) in D are precisely such f ∈ D, for which R(f) is a
fibration (weak equivalence).

2. Cofibrations in D are those morphisms that have the left lifting property with respect to
all acyclic fibrations (i.e. morphisms which are both a weak equivalence and a fibration).

We then call this structure the right transferred semi-model structure on D (with respect to
R).

Given a class of morphisms I in a bicomplete category C, we denote by cell(I) the class of
relative cell complexes with respect to I (see [Hir03, Def. 10.5.8]). Similarly to the scenario of
regular model categories (see, for example, [nLa23] for a proof), one obtains:

Lemma 7.4.1.5. In the situation of Definition 7.4.1.2, suppose that C is cofibrantly generated
by cofibrations I and acyclic cofibrations with cofibrant source J . Suppose furthermore that:

1. Every morphism in D factors into an element of cellL(I), followed by an acyclic fibration.

2. Every morphism in D with cofibrant source factors into an element of cellL(J), followed
by a fibration.

3. Every element of cellL(J) with cofibrant source is a weak equivalence.

Then the right transferred model structure on D exists and is cofibrantly generated by L(I)
and L(J).

Let us now consider the following transfer lemma for semi-model structures. We note that
this result (omitting the simplicial part) can also be obtained as a special case of [WY18, Thm.
2.2.2] (see also [Fre10, Thm. 3.3]). We provide a proof here, purely in order for the reader not
to have to translate back and forth between the slightly different setup in [WY18].

Lemma 7.4.1.6. Let D be a complete and cocomplete category. Consider an adjunction

L∶C⇌D∶R

and assume that C is a cofibrantly generated model category, with cofibrations generated by a
set I and acyclic cofibrations generated by a set of morphisms with cofibrant source J , arrows
in which have κ-small source, for some cardinal κ. Assume furthermore the following:

(i) R preserves transfinite compositions of morphisms in cellL(I) and cellL(J) respec-
tively;

(ii) Weak equivalences in C are stable under transfinite composition;

(iii) For any a pushout diagram in D

L(A) L(B)

X Y

L(j)

j′

(7.7)

with j ∈ J and X ∈ cell(L(I)) an absolute cell complex, the map j′ is a weak
equivalence.

Then the right transferred semi-model structure on D exists, and it is furthermore cofibrantly
generated by L(I) and L(J). Even more, if L ⊣ R is an adjunction of simplicial categories, with
D admitting a simplicial tensoring and powering, and the model structure on C is simplicial,
then so is the induced semi-model structure on D.
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Proof. It follows from Assumption (i) and the assumption on small sources that the classes L(I)
and L(J) permit the small object argument. In fact, it follows under the adjunction L ⊣ R that
the sources of L(I) and L(J) are κ small, with respect to cellL(I) and cellL(J). Consequently,
the only remaining requirement of Lemma 7.4.1.5 is that every element j′ ∈ cellL(J) with
cofibrant source is a weak equivalence. It follows by Assumptions (i) and (ii) that we only
need to consider the case of a pushout diagram

L(A) L(B)

X Y

L(j)

j′

(7.8)

with j ∈ J and X cofibrant. Furthermore, since X is cofibrant, it is the retract of an absolute
L(I) cell complex X ′, through morphisms X i

↪Ð→ X ′ and X ′
r
Ð→ X, with r ○ i = 1X . We may

extend the square in question to a diagram of pushout squares

L(A) L(B)

X Y

X ′ Y ′

X Y .

j′

i

1X 1Y
j′′

r

j′

(7.9)

In particular j′ is a retract of j′′, and it suffices to show that the latter is a weak equivalence.
By the composability of pushout squares, it follows that we have thus reduced to the case
where X is an absolute L(I)-cell complex. This case is precisely the content of Assumption (iii).
Simpliciality follows immediately by using that

R(XB
→XA

×Y A Y B) ≅ (R(X)B → R(X)A ×R(Y )A R(Y )
B),

and the explicit definition of (acyclic) fibrations in D in terms of R.

7.4.2 Semi-model structures on Strat
To transfer the model structures from the combinatorial world to StratP and Strat, we now
need to verify the assumptions of Lemma 7.4.1.6. Most of these will turn out to be fairly
standard abstract arguments. The difficult part is showing Assumption (iii). This requires an
in-depth study of the behavior of homotopy links of absolute cell complexes, with respect to
realizations of stratified boundary inclusions, which was performed in [Waa24b] (Chapter 6 in
this text).
Definition 7.4.2.1. Denote I ∶= {∣∂∆J ↪∆J ∣s ∣ J ∈ ∆P } ⊂ StratP . Absolute cell complexes
with respect to I are called cellularly stratified spaces. If A and X are cellularly stratified
spaces, then we call a stratum-preserving map f ∶A↪ X which is a relative I-cell complex an
inclusion of cellularly stratified spaces.

The following result is the decisive argument to apply Lemma 7.4.1.6 to transfer the model
structure on combinatorially stratified objects to the stratified framework. It is a corollary of
Theorem HB, which is one of the main result of [Waa24b].
Lemma 7.4.2.2. Consider a pushout diagram in Strat,

∣A∣s ∣B∣s

X Y

∣i∣s

i′

(7.10)
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with X cellularly stratified. Suppose that i is an acyclic cofibration in sStratd,p. Then, i′ is a
weak equivalence in Stratd,p, i.e., an isomorphism in Stratd,p. The analogous result holds
for any of the model categories of stratified simplicial sets and their corresponding topological
∞-category in Notation 7.4.2.5.

Before we give a proof, note that Lemma 7.4.2.2 can be taken as a statement about certain
pushout diagrams of stratified spaces being homotopy pushout, i.e. pushout in the associated
∞-category obtained by inverting weak equivalences. This already shows that the existence of
semi-model structures is closely related with Question Q(5).

Proof. Let us begin with the case over a fixed poset P , and all morphisms on posets given
by the identity. We claim that the diagram in the statement of the proposition is a pushout
diagram in the quasi-categories StratdP and StratcP . We already know that StratcP is a
left-localization of StratdP (by Theorem 7.3.3.1 and the fact that sStratcP is a left Bousfield
localization of sStratdP , together with [Lur09, Prop. 5.2.4.6]) and in particular that the
canonical functor StratdP → StratcP is left adjoint. Therefore, by [Lur09, p. 5.2.3.5], which
states that left-adjoint functors preserve colimits, it suffices to show the case of StratdP . Recall
from Recollection 7.3.2.1 that taking homotopy links induces equivalences between StratdP
and Fun(sd(P )op,Spaces). Thus, it suffices to show that the diagram becomes pushout after
applying homotopy links. Now, by [Lur09, Cor. 5.1.2.3] a diagram in a functor quasi-category
is pushout if and only if it is so after evaluating at every point. Thus, it suffices to show that
the diagram in Spaces

HoLinkI ∣A∣s HoLinkI ∣B∣s

HoLinkIX HoLinkIY

(7.11)

is pushout. Now, the quasi-category Spaces is given by the homotopy coherent nerve of TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopo.
Theorem HB states that the diagram in TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop corresponding to Diagram (7.11) is a homotopy
pushout square. Finally, by [Lur09, Thm. 4.2.4.1.], this is equivalent to Diagram (7.11) being
a pushout diagram in Spaces.
We have established that the diagram in the statement of the lemma is pushout in StratdP
and StratcP . Consequently, by Theorem 7.3.3.1, so is its image under Sings in sStratdP
(sStratcP ). By assumption, i defines an isomorphism in sStratdP (sStratcP ). It follows,
again by Theorem 7.3.3.1, that Sings(∣i∣s) also defines an isomorphism in sStratdP (sStratcP ).
Consequently, since pushouts preserve isomorphisms, it follows that Sings(i′) is an isomorphism
in the quasi-category sStratdP (sStratcP ), and thus a weak equivalence in sStratdP (sStratcP )
(by [Hir03, Thm. 8.3.10.] and the fact that the homotopy category functor from quasi-categories
to 1-categories commutes with localization). It follows that i is a weak equivalence, as was to
be shown.
Next, let us cover the poset-preserving cases in sStrat. Note that i induces an isomorphism on
posets. By pushing forward with PA → PX , and using the fact that this preserves realizations
of acyclic cofibrations (by Proposition 7.4.2.8), we may assume that the whole diagram lies
in StratPX . Hence, this case follows from the previous cases. Finally, for the non-poset
preserving cases, note that the model structure sStratd (sStratc) on sStrat has the same
acyclic cofibrations as sStratd,p (sStratc,p) as it is obtained via right Bousfield localization.
Hence, this case follows from the case sStratd,p (sStratc,p).

We may now prove the following.
Corollary 7.4.2.3. Let cS be any of the simplicial model categories of stratified simplicial sets
listed in Section 7.3.2. Let S be correspondingly the simplicial category of topological stratified
spaces StratP or Strat. Then, along the adjunction

∣ − ∣s∶cS⇌ S∶Sings,

the simplicial model structure on cS right-transfers to a cofibrantly generated simplicial semi-
model structure on S.
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Proof. We verify the assumptions of Lemma 7.4.1.6. Note first that cS is a cofibrantly
generated simplicial model category (with acyclic generators with cofibrant source) as we have
recalled in Section 7.3.2. Assumption (i) follows from the classical fact that any compactum
in a relative cell complex only intersects finitely many cells (see, for example, [Hir03, Prop.
10.7.4]). Assumption (ii) was verified in Propositions 5.2.1.6 and 5.3.1.5 and Lemma 5.3.2.23.
Finally, Assumption (iii) follows from Lemma 7.4.2.2.

Remark 7.4.2.4. We note that the analogous proof of Corollary 7.4.2.3 also applies to the
category of surjectively stratified spaces, as investigated in [Nan19], Strats, and one may
replace sStrat by sSet with the Joyal-model structure (omitting the simpliciality statement).
Indeed, Lemma 7.4.2.2 also applies to surjectively stratified spaces and realizations of Joyal
acyclic cofibrations, using Proposition 7.A.0.2 and that surjectively stratified spaces form a
coreflective subcategory of Strat. In particular, this also gives an affirmative answer to the semi-
model structure conjectured in [Nan19, Subsec. 8.4.1]. As a consequence of Proposition 7.A.0.2,
the resulting semi-model category is Quillen equivalent to the one on all stratified spaces Strat
transferred from sStratc. We also note that the alternative method suggested for the proof in
[Nan19] cannot succeed, as [Nan19, Conjecture 2] is false (realizations of fibrant simplicial sets
are generally not fibrant). We will provide a counterexample in future work.

Notation 7.4.2.5. We denote by StratdP (StratcP ), Stratd,p (Stratc,p) and Stratd (Stratc),
respectively, the corresponding simplicial semi-model categories whose existence is guaranteed
by Corollary 7.4.2.3. We, respectively, call the corresponding semi-model structures the
diagrammatic (categorical), poset-preserving diagrammatic (poset-preserving categorical) and
diagrammatic (categorical) model structures.

We use the remainder of the section to make Corollary 7.4.2.3 more explicit by restricting
it to its special cases. From Recollections 7.3.2.1 and 7.3.2.2 and Corollary 7.4.2.3 we obtain:

Theorem 7.4.2.6. Let P ∈ Pos. The simplicial category StratP admits the structures
of cofibrantly generated simplicial semi-model categories, StratdP and StratcP - called the
diagrammatic and categorical model structure - defined by the following classes:

1. Cofibrations are generated by the set of stratified boundary inclusions

{∣∂∆J ↪∆J ∣s ∣ J ∈∆P }.

2. Weak equivalences are the stratum-preserving diagrammatic equivalences or respectively
the stratum-preserving categorical equivalences of P -stratified spaces.

3. Fibrations are the stratum-preserving maps that have the right lifting property with respect
to all acyclic cofibrations with cofibrant source. In StratdP they are equivalently charac-
terized by having the right lifting property with respect to all realizations of admissible
stratified horn inclusions ∣ΛJk ↪∆J ∣s, J ∈∆P .

Next, let us consider the global version of StratP , allowing for varying stratification posets.
From Recollection 7.3.2.1 and Corollary 7.4.2.3 we obtain the following two results:

Theorem 7.4.2.7. The simplicial category Strat admits the structures of cofibrantly gen-
erated simplicial semi-model categories, Stratd,p and Stratc,p - called the poset-preserving
diagrammatic and poset-preserving categorical model structure - with the following classes:

1. Cofibrations are generated by the set of stratified boundary inclusions

{∣∂∆[n] ↪∆[n]∣s ∣ n ∈ N},

together with the maps of empty stratified spaces over [0] ⊔ [0]↪ {0 < 1} and ∅↪ [0].

2. Weak equivalences are the poset-preserving diagrammatic equivalences or, respectively,
the poset-preserving categorical equivalences of stratified spaces.
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3. Fibrations are the stratum-preserving maps that have the right lifting property with respect
to all acyclic cofibrations with cofibrant source. In Stratd,p they are equivalently charac-
terized by having the right lifting property with respect to all realizations of admissible
stratified horn inclusions ∣ΛJk ↪∆J ∣s, J ∈∆[m], for m ∈ N.

Similarly, to the case of stratified simplicial sets, the global diagrammatic and categorical
model structures can essentially be understood entirely from the ones over a fixed poset and
the functoriality of base changes along the poset. This is due to the fact that they may again
be interpreted as being pieced together from the local pieces along a cartesian bifibration:
Proposition 7.4.2.8. The model structure on Stratd,p ( Stratc,p ) is the unique semi-model
structure on Strat pieced together (in the sense of [CM20], using notation from there)5 from
the diagrammatic (categorical) model structures on the fibers StratP of the Grothendieck
bifibration

P ∶Strat→ Pos.
In particular, a stratified map f ∶X → Y is a fibration if and only if the canonical map
f◁∶X → P (f)∗Y is a fibration, and f is a cofibration if and only if f▷∶P (f)!X → Y is a
cofibration.
Proof. We cover the case of Stratd,p, the case of Stratc,p is completely analogous. Consider
the forgetful functor P ∶Strat→ Pos, mapping a stratified space X to its stratification poset
PX . It is a Grothendieck bifibration ([CM20]), with the left action given by f ↦ f! and the
right action given by g ↦ g∗. If we equip Pos with the trivial model structure, with all
morphisms bifibrations and weak equivalences given by isomorphisms, then P ∶Strat→ Pos
tautologically forms a Quillen bifibration in the sense of [CM20] (replacing model categories
by cofibrantly generated semi-model categories). We obtain two commutative diagrams (one
for each horizontal) with diagonals Quillen bifibrations

Stratd,p sStratd,p

Pos ,

≃

(7.12)

where the right adjoint horizontal preserves the right action, and the left adjoint the left
actions. The fibers of the right hand vertical are the model categories sStratdP (see the
construction of the global model categories in Section 5.3.1). Since the semi-model structure
on Stratd,p is transferred along the horizontal adjunction, it follows that its restriction to
the fibers of the left vertical StratP , are precisely the transfers of the model structure on
sStratdP to StratP , which is StratdP . Using the obvious cofibrantly generated semi-model
categorical version of [CM20, Prop. 3.4, 3.5] (see also [BDW23]), which is proven identically,
the characterization of cofibrations and fibrations follows.

Finally, let us state the explicit results for the refined framework. We also are going to
need the following construction.
Construction 7.4.2.9. Consider the pushout diagram in Strat

∣∂∆[1]∣s ∣∆[1]∣s

∣∆[1]∣s S1 ,

t (7.13)

where the vertical t is given by the opposite inclusion of the boundary points of the stratified
interval. The pushout is a trivially stratified S1. In particular, the diagonal of this diagram -
which is the inclusion of two points lying over separate strata into a trivially stratified S1 - is a
cofibration in the refined model structures. The realization of the stratified boundary inclusion
∂∆[1] ↪∆1, where ∆1 is trivially stratified, is a retract of the diagonal of this diagram.

5[CM20] covers the case of model structures. For a generalization to semi-model structures see [BDW23].
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The following are a consequence of Theorem 5.3.2.19, which we recalled in Recollec-
tion 7.3.2.4, and Corollary 7.4.2.3. Note that, by Construction 7.4.2.9, the topological frame-
work needs one less generator of cofibrations than the combinatorial framework.

Theorem 7.4.2.10. The simplicial category Strat admits the structures of cofibrantly
generated simplicial semi-model categories, Stratd and Stratc - called the diagrammatic and
categorical model structures - with the following classes:

1. Cofibrations are generated by the set of stratified boundary inclusions

{∣∂∆[n] ↪∆[n]∣s ∣ n ∈ N}.

2. Weak equivalences are the diagrammatic equivalences or respectively the categorical
equivalences of stratified spaces.

3. Fibrations are the stratum-preserving maps that have the right lifting property with respect
to all acyclic cofibrations with cofibrant source. In Stratd, they are equivalently charac-
terized by having the right lifting property with respect to all realizations of admissible
stratified horn inclusions ∣ΛJk ↪∆J ∣s, J ∈∆[m], for all m ∈ N.

Finally, we may summarize the connections between the various semi-model categories of
stratified objects in the following result, which follows by Propositions 5.2.1.3, 5.3.1.11, 5.3.2.24
and 5.3.2.26 and Theorem 5.3.2.19 and Proposition 7.5.3.7 and Theorems 7.3.3.1 and 7.4.2.10.
Here, by a Quillen equivalence of (cofibrantly generated left) semi-model categories, we mean
an adjunction fulfilling any (or equivalently all) of the classical characterizations for model
categories (see, for example, [nLa25f]). In the definition of a Quillen adjunction of cofibrantly
generated left semi-model categories (see [nLa25e]), one only needs to take care that the left
adjoint generally only is required to preserve acyclic cofibrations with cofibrant source.

Theorem 7.4.2.11. The various simplicial semi-model categories discussed in this section fit
into a diagram

sStratdP StratdP

sStratcP StratcP

sStratd,p Stratd,p

sStratc,p Stratc,p

sStratd Stratd

sStratc Stratc

≃

≃

≃

≃≃

≃

≃

(7.14)

of simplicial functors, with all horizontals induced by the adjunction ∣ − ∣s ⊣ Sings, and
all remaining functors given by inclusions or the identity. This diagram has the following
properties.

1. The arrows pointing in two directions are simplicial Quillen adjunctions, where the upper
(left) arrow is the left part of the adjunction.

2. The left adjunction part (and, respectively, the right adjunction part) together with the
inclusions form a commutative diagram.
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3. All horizontals are Quillen equivalences, which create weak equivalences in both directions.

4. The upper vertical maps are given by including the fibers under the Quillen bifibrations
to Pos.

5. The diagonals pointing downward are given by left Bousfield localization at inner horn
inclusions.

6. The lower verticals that point downward are given by right Bousfield localization at the
refinement maps (−)r → 1 (see Section 7.5.3, for the topological case).

7.4.3 Topological stratified mapping spaces
Give two layered∞-categories X and Y , the∞-category of functors Y X is itself layered. Indeed,
it follows from the fact that isomorphisms of functors are detected pointwise that it even
suffices for Y to be layered. Together with Theorem 7.3.3.1, this already shows that at least
the homotopy theory Stratc admits a notion of internal mapping space on the ∞-categorical
level. Similarly, in the world of topological stratified spaces (more specifically homotopically
stratified spaces) [Hug99b] equipped the space of stratified maps with a natural decomposition
(which generally may not be a stratification) and investigated the lifting properties of such
mapping spaces.
If we are looking to bring these two notions of internal (i.e. stratified) mapping spaces - one on
the ∞-categorical and one on the 1-categorical level together - the language of (semi-)model
categories provides the notion of a cartesian closed (semi-)model category (see, for example,
[Rez10] for the case of model categories).

Definition 7.4.3.1. Let M be a semi-model category the underlying 1-category of which
is cartesian closed. We say that M is a cartesian closed semi-model category, if for every
cofibration i∶A→ B and every fibration f ∶X → Y , the induced morphism of exponential objects

XB
→ Y B ×Y A XA

is a fibration and furthermore is a weak equivalence, if additionally f is a weak equivalence, or
i is a weak equivalence with cofibrant source.

In Section 5.3.5, we proved that all of the model structures for stratified homotopy theory
defined on sStrat (see Section 7.3.2) are, in fact, cartesian closed. We may use the following
lemma to transfer this result to the topological setting.

Lemma 7.4.3.2. Let M be a cartesian semi-model category and N a cartesian closed, bicom-
plete category. Suppose that there is an adjunction

L∶M⇌N∶R,

such that L preserves finite products and the right transferred semi-model structure on N exists.
Then, together with this model structure, N is a cartesian closed semi-model category.

Proof. Note first that if L preserves products, then there are canonical isomorphisms

R(XL(A
)) ≅ R(X)A

for A ∈ M and X ∈ N. Now, let us verify the hypothesis in the definition of a cartesian
closed semi-model category. Suppose that we are given a cofibration i∶A→ B and a fibration
f ∶X → Y in the transferred semi-model structure on N. In the context of Definition 7.4.3.1
in N, let us first reduce to the case where A → B is of the form L(A′ → B′), for A → B a
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cofibration (acyclic cofibration with cofibrant source). For the general case, we need to show
that R(XB → Y B ×Y A XA) is a fibration in M, or equivalently, that every lifting problem

L(A′) XB

L(B′) Y B ×Y A XA

(7.15)

with A′ → B′ an (acyclic) cofibration (with cofibrant source) has a solution. Every such lifting
problem is, in turn, equivalent to a lifting problem of the form

A XL(B′)

B Y L(B
′) ×Y L(A′) XL(A′).

(7.16)

Hence, it suffices to see that the right-hand map is an (acyclic) fibration, which implies the
reduction. Finally, under the natural isomorphism we mentioned at the beginning of the proof,
using the fact that right adjoint functors preserve fiber products, the map

R(XL(B′)
→ R(Y L(B

′)
×Y L(A′) X

L(A′)
)

is equivalently given by the induced morphism

R(X)B
′

→ R(Y )B
′

×R(Y )A′ R(X)
A′ ,

which is an (acyclic) fibration in M by the assumption that the latter is a cartesian semi-model
category.

Corollary 7.4.3.3. Whenever Top is a cartesian closed category (i.e., in the compactly
generated or ∆-generated case), the semi-model categories Stratd,p,Stratd,Stratc,p,Stratc
are cartesian closed.

From this corollary, one may deduce that whenever X is a fibrant stratified space and A a
cofibrant stratified space, in any of the semi-model structures on Strat, then the stratified
mapping space XA presents the ∞-categorical internal mapping space in the corresponding
∞-category. In Section 7.5.4, we discuss the relationship with the stratified mapping spaces of
[Hug99b].

7.4.4 Applying the semi-model structures of stratified spaces
Corollary 7.4.2.3 opens up the study of homotopy theories of stratified spaces to all of the tools
available for cofibrantly generated simplicial semi-model categories. Notably, these essentially
include all of the tools available for model categories, as long as one is willing to assume
cofibrancy in the appropriate places (see, for example, [Bar10; BW24] for a good overview of
the literature). In this section, we are going to name a few that stand out, as they provide
answers to some questions that have been open for a while (see Questions Q(1), Q(2) and Q(5)
in the introduction). Let us begin by noting that the situation is even better than what one
can usually expect from a semi-model category. Namely, the simplicial structure gives us
simplicial resolutions of fibrant objects (see [DK80b]), without having to cofibrantly replace
first.
Corollary 7.4.4.1. Let S be any of the simplicial semi-model categories for stratified spaces
of Notation 7.4.2.5. Then, for any X ∈ S which is fibrant, the functor

∆op
→ Strat

[n]↦ X∆n

defines a simplicial resolution of X .
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In particular, even non-cofibrant objects that are fibrant admit path-objects, and right
and left homotopy classes of morphisms with a cofibrant source and fibrant target agree. We
may now compute ∞-categorical mapping spaces of stratified spaces in terms of the simplicial
structures.

Corollary 7.4.4.2. Let S be any of the simplicial semi-model categories for stratified spaces
defined in Section 7.4.2. Let W be the class of weak equivalences in S and denote S[W −1] the
quasi-categorical localization of S at W . Let A ∈ S be cofibrant and X be fibrant. Then there is
a natural (zigzag) of weak equivalences between mapping spaces

S[W −1
](A,X ) ≃ S(A,X ).

In particular, the canonical map bijection

[A,X ]s → π0(S[W −1
](A,X ))

is a bijection, where the right-hand expression denotes homotopy classes of stratified (stratum-
preserving when the poset is fixed) maps with respect to stratified homotopies.

Proof. This follows from [GH05, Prop. 1.1.10] which is the left semi-model category version of
the argument in [DK80b, §7], together with [Hin16, p. 1.2].

Note that Corollary 7.4.4.2 applies to all piecewise linear pseudomanifolds or, more generally,
conically stratified spaces, (equipped with the refined stratification, when necessary) and
provides, in particular, a strengthened version of [DW22, Theorem 5.7].
From a global perspective, we obtain the following result, which states that the homotopy theory
of stratified spaces obtained by inverting weak equivalences may equivalently be described in
terms of the simplicial categories of bifibrant stratified spaces, or equivalently a localization of
bifibrant stratified spaces at stratified homotopy equivalences, answering Question Q(2).

Corollary 7.4.4.3. In the setting of Corollary 7.4.4.2, denote by So the full simplicial
subcategory of bifibrant objects. Denote by Hs the class of stratified homotopy equivalences
between bifibrant stratified spaces. There are canonical equivalences of ∞-categories

So ≃ So[H−1
s ] ≃ S[W −1

]

where equivalences between simplicial and quasi-categories are to be understood in terms of the
Quillen equivalence between quasi-categories and simplicial categories of [Ber07a].

Proof. This is the semi-model category version of [DK80b, Prop. 4.8] the proof of which
is identical. We note that the first equivalence also follows from the existence of cofibrant
replacements and the powering of the stratified categories over sSet, using a similar flattening
argument as in [DK87, p. 2.5]. Therefore, the full power of a semi-model category is not
necessary to obtain this result. The second equivalence, however, needs both fibrant replacement
and cofibrant replacement, as well as the Whitehead theorem in a semi-model category.

Furthermore, we obtain the following two versions of the stratified homotopy hypothesis,
providing an answer to Question Q(1).

Theorem 7.4.4.4. Mapping a simplicial set to K to the stratified realization of its stratified
simplicial set L(K), and conversely mapping a stratified space X to the underlying simplicial
set of SingsX , F(SingsX ), induces a Quillen equivalence of (semi-)model categories

sSetO
≃
Ð⇀↽Ð Stratc,

that creates weak equivalences in both directions.
The left-hand model category sSetO is the left Bousfield localization of sSetJ which presents the
full reflective subcategory Lay∞ ⊂ Cat∞ of small ∞-categories in which every endomorphism
is an isomorphism.
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Proof. This is the combination of Corollary 7.4.2.3 and Theorem 7.4.2.10 and Theorem 5.3.3.6.
The only thing we need to pay extra attention to is the statement that both functors create
weak equivalences. In the case of the right adjoint, note that the forgetful functor

sStratc → sSetO

does not create weak equivalences. However, it creates weak equivalences between such
stratified simplicial sets whose strata are Kan-complexes (Proposition 5.3.2.25). Since Sings
has image in this category, it follows that the composition of Sings with the functor forgetting
the stratification creates weak equivalences. Conversely, note that ∣ − ∣s ○L is left Quillen, with
source a cofibrant model category. Since the adjunction above is a Quillen equivalence (as the
composition of two Quillen equivalences), the derived unit of adjunction is a weak equivalence.
For X ∈ sSet, It is given by

X → F(Sings∣L(X)∣s)→ F(SingsY)

where ∣L(X)∣s → Y is a fibrant replacement of ∣L(X)∣s. Note, however, that as we have
already shown that F ○ Sings preserves weak equivalences, it follows by two-out-of three that
the ordinary unit of adjunction is also a weak equivalence. It follows, again by two-out-of
three, that f ∶X → Y in sSetO is a weak equivalence, if and only if F(Sings∣L(f)∣s) is a weak
equivalence. Finally, since F ○ Sings creates weak equivalences, this is equivalent to ∣ − ∣s ○L
creating weak equivalences.

A quasi-categorical counterpart of this result, using Corollary 7.4.4.3 is:
Corollary 7.4.4.5. Denote by Strato the full subcategory of Stratc of bifibrant stratified
spaces. Denote by Hs the wide subcategory of stratified homotopy equivalences. Sings (i.e.,
Lurie’s exit-path construction of [Lur17]) induces an equivalence of quasi-categories

Exit∶Strato[H−1
s ]

≃
Ð→ Lay∞,

where Lay∞ denotes the quasi-category of small quasi-categories, in which every endomorphism
is an isomorphism.

Finally, let us comment on Question Q(5), concerning the relationship between homotopy
colimits and 1-categorical colimits of stratified spaces. The main application for the methods of
regular neighborhoods in stratified cell complexes we developed in [Waa24b] (Chapter 6) was
to prove that certain pushout diagrams of stratified spaces are homotopy pushout. Note that,
a posteriori, this also follows from the existence of semi-model structures making inclusions
of cellularly stratified spaces cofibrations. In fact, we can now use the full machinery for the
computation of homotopy colimits in a simplicial (semi-)model category (see, for example,
[Hir03]) to compute the latter. As a particular consequence, we obtain the following result.
Corollary 7.4.4.6. Suppose we are given a pushout diagram of in StratP

A B

X Y,

c

(7.17)

all of which are cofibrant in StratdP or equivalently StratcP (that is, retracts of cellularly
stratified spaces, by Proposition 7.5.2.1), with the upper vertical given by a cofibration. Then
this diagram descends to a pushout diagram in StratdP and StratcP .
In particular, this holds when all spaces involved are cellularly stratified spaces and c is an
inclusion of cellularly stratified spaces. The analogous claim for Strat and Stratd,p, Stratc,p
holds.

Clearly, Lemma 7.4.2.2 is implied by this result. Lemma 7.4.2.2 was used to prove the
existence of semi-model structures. Now, however, we can see that the existence of semi-model
structures is essentially equivalent to diagrams of stratified cell complexes as in Diagram (7.17)
being homotopy pushout, which illustrates the importance of Question Q(5).
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7.5 (Co)fibrant stratified spaces
In the previous section, we have established the existence of semi-model structures of stratified
spaces, which were transferred from the combinatorial setting of stratified simplicial sets. These
were constructed with the specific goal of connecting the various homotopy theories of stratified
spaces with their topology and geometry. If we are looking to deepen our understanding of
this connection, the obvious question at hand is how classical examples of stratified spaces
interact with these model structures. In particular, which classical examples of stratified spaces
are bifibrant (Question Q(3)). For example, [Mil13; Dou21c; Nan19] all showed Whitehead
theorems for certain stratified spaces, which characterize the stratified homotopy equivalences
between them in terms of a priori weaker conditions. Every simplicial semi-model category
comes with its own Whitehead theorem, stating that the homotopy equivalences with respect
to the simplicial cylinder between the bifibrant objects are precisely the weak equivalences.
The case of sStratc was already proven through a direct proof in [Nan19]. Summarizing old
and proving new criteria for (co)fibrancy and studying how these properties relate to more
classical properties of stratified spaces is the main content of this section. Finally, at the end
of this section, we provide a short investigation of stratified versions of the homotopy link as
investigated in [Hug99a] in our model categorical framework.

7.5.1 Fibrant stratified spaces and Quinn’s homotopically stratified
sets

Let us begin by studying the class of fibrant objects in the model structures constructed
in Section 7.4.2. The question of what classical examples are fibrant in Stratc was already
investigated in [Nan19] and [Lur17], with the core results that both Quinn’s homotopically
stratified spaces and Siebenmann’s conically stratified spaces (see later in this section) are
such that the associated stratified singular simplicial set is a quasi-category. Hence, it turns
out that most examples of stratified spaces of classical geometrical interest fall into the class of
fibrant objects in the semi-model structures we defined. The central new contribution from our
side in this section is that we prove that, as long as one restricts to metrizable spaces, the class
of fibrant objects is in fact independent of the choice of model structure we presented here
(see Proposition 7.5.1.4). A consequence of this is Theorem 7.5.1.6, which may be taken as the
statement that in any geometric scenario there really is no difference between the diagrammatic
homotopy theories for stratified spaces and their categorical counterparts at all.

Before we begin, note that we really only need to study fibrancy in the scenario of a fixed
poset, due to the following fact.

Lemma 7.5.1.1. Let X ∈ Strat. Then the following statements are equivalent:

1. X has the horn filling property over PX with respect to all realizations of admissible
stratified horn inclusions. That is, it admits fillers

∣ΛJk ∣s X

∣∆J ∣s

(7.18)

in StratPX , for all admissible pairs J ∈∆P , 0 ≤ k ≤ nJ .

2. X is fibrant in all of the semi-model categories StratdPX ,Stratd,p,Stratd.

3. X is fibrant in one of the semi-model categories StratdPX ,Stratd,p,Stratd.

Furthermore, the following analogous statements about the categorical semi-model are equivalent:
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1. X has the horn filling property over PX with respect to all realizations of admissible
stratified horn inclusions, and all inner stratified horn inclusions.

2. X has the horn filling property over PX with respect to all realizations of inner stratified
horn inclusions.

3. X is fibrant in all of the semi-model categories StratcPX ,Stratc,p,Stratc.

4. X is fibrant in one of the semi-model categories StratcPX ,Stratc,p,Stratc.

Proof. The diagrammatic case is immediate by the construction of the left model structures
via left-transfer and Proposition 7.4.2.8 together with the fact that Stratd is obtained from
Stratd,p via a right Bousfield localization Theorem 7.4.2.11. For the categorical statement, the
proof is almost identical; special attention only needs to be paid to the implication from the
second to the first property. Note that for any stratified space X the strata of the stratified-
simplicial set SingsX are Kan-complexes. Hence, the implication follows from [Hai23, Prop.
2.2.3].

Definition 7.5.1.2. We call a stratified topological space X that satisfies any of the equivalent
conditions of Lemma 7.5.1.1 concerning the diagrammatic (categorical) semi-model structures
diagrammatically (categorically) fibrant.

Clearly, every categorically fibrant stratified space is diagrammatically fibrant. The converse
must necessarily be false. If it were true, then by Corollary 7.4.4.3 and Theorem 7.3.3.1 together
with [Hai23, Thm. 1.1.7] and [Dou21c, Thm. 3], it would imply that the inclusion from
the ∞-category of décollages into Fun(sd(P )op,Spaces) is an equivalence of ∞-categories6.
However, it is surprisingly hard to provide a geometrical example for a stratified space that
is diagrammatically fibrant and not categorically fibrant (depending on your definition of
geometric, it is not possible at all). Before we investigate this question further, let us first
recall results on which classical examples of stratified space we can expect to be fibrant.

Remark 7.5.1.3. It was first shown in [Lur17, A.5] that all conically stratified spaces - roughly
a stratified space that locally has the structure U ×C(L), where C(L) is the stratified cone of
a stratified space L - are categorically fibrant. In particular, this implies that all topological
pseudomanifolds (see, for example, [Ban07]), as well as all conically smooth stratified spaces
(see [AFT17]) and hence also all Whitney stratified spaces ([NV23] or classically [Tho69]), are
categorically and hence also diagrammatically fibrant.

It turns out, however, that fibrancy can already be obtained under significantly less
geometric conditions. One of the crucial insights contributing to the foundations of stratified
homotopy theory was Quinn’s observation that a powerful homotopy theoretical setup for
stratified spaces can already be achieved by only posing requirements on pairs of strata
([Qui88]). Quinn defined a notion of homotopically stratified set (with slightly more restrictive
conditions on the stratification poset) by requiring X ∈ Strat to be metrizable, and requiring
that for any two-element flag [p < q] ∈∆P it holds that:

1. Xp ↪ Xp<q is tame, i.e. admits a nearly strict neighborhood deformation retraction (see
[Qui88]).

2. HoLinkp<qX → Xp is a Hurewicz fibration.

Together, these assumptions provided an excellent homotopy theoretic framework for classifi-
cation results concerning manifold stratified spaces (see [Qui88; Wei94]). Note that both of
these assumptions are more in line with the Hurewicz approach (see [Str72]), than with the
Serre-Quillen approach to homotopy theory ([Qui67]). Since the approach we pursue here is
combinatorial (i.e. following Serre and Quillen), we should expect cofibrancy in our semi-model

6It is easy to write down an example of a diagram which is not a décollage. For example, take the constant
diagram over (sd[2])op and replace the entry at [0 < 1 < 2] by the empty set.
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categories to be a stronger condition than condition (1) above. Indeed, it is a consequence of
Proposition 6.4.2.4 that any locally compact cofibrant stratified space (in any of the model
structures of Section 7.4.2) satisfies the tameness condition above. Conversely, in the two
strata case it is not hard to see that HoLinkp<qX → Xp being a Serre fibration is equivalent
to diagrammatic and equivalently categorical fibrancy (see the proof of Proposition 7.5.1.4
below). Surprisingly, it follows from [Mil09, Thm. 4.9] that every homotopically stratified
set is, in fact, categorically fibrant ([Nan19, Prop. 8.1.2.6]), without any restrictions on the
stratification poset. Note that being fibrant is manifestly a statement about the interaction of
more than two strata, which makes it so surprising that it can be achieved by only making
requirements on two-strata interaction. Even more, this result does not leave much space for
diagrammatically fibrant spaces that are not categorically fibrant at all (see Question Q(4)). If
we assume pairwise tameness and metrizability, then it would follow that any counterexample
would involve HoLinkp<qX → Xp being a Serre fibration, but not a Hurewicz fibration. It turns
out that no cofibrancy assumptions are necessary whatsoever, and in fact in any geometric
setting diagrammatic and categorical fibrancy are equivalent conditions, which are further-
more equivalent to the Serre fibration analogue of Quinn’s pairwise homotopy link condition.
Furthermore, this result does not require any additional tameness assumptions.

Proposition 7.5.1.4. Let X ∈ Strat be a metrizable stratified space. Then the following
conditions are equivalent:

(i) X is categorically fibrant.

(ii) X is diagrammatically fibrant.

(iii) For any pair [p < q] ∈∆PX , the starting point evaluation map HoLinkp<q(X )→ Xp is
a Serre fibration.

(iv) For any pair [p < q] ∈∆PX , and for any flag J = [p = ⋯ = pk < q = ⋯ = q = pnJ ] with
k ≥ 1, X has the horn filling property with respect to ∣ΛJk ↪∆J ∣s.

Before we give a proof, we note the implications of this result. By Theorem 7.4.2.11, the
categorical setting is always obtained as a left Bousfield localization of the diagrammatic one.
In particular, the two settings have the same cofibrations; furthermore, we obtain:

Corollary 7.5.1.5. Let X ,Y ∈ Strat be metrizable stratified spaces, X diagrammatically
fibrant and f ∶Y → X a stratified map. Then there are equivalences:

1. f is a fibration in StratdP ⇐⇒ f is a fibration in StratcP ;

2. f is a fibration in Stratd,p ⇐⇒ f is a fibration in Stratc,p;

3. f is a fibration in Stratd ⇐⇒ f is a fibration in Stratc.

Proof. This is immediate from Proposition 7.5.1.4, together with Theorem 7.4.2.11, and the
characterization of fibrations between fibrant objects in a left Bousfield localizations (the
semi-model category version of [Hir03, Prop. 3.3.16.], see [WY18, Rem. 4.5].)

We may hence interpret Proposition 7.5.1.4 as stating that in any geometrical framework
the diagrammatic approach is really the same as the categorical approach, obtaining an answer
to Question Q(4). More rigorously, we can phrase this insight as follows.

Theorem 7.5.1.6. Let D be any of the diagrammatic simplicial semi-model categories of
Section 7.4.2 and let C be its categorical pendant. Denote by Df

m and Cf
m the respective

restrictions of the semi-model structures to the full simplicial subcategory of fibrant, metrizable
stratified spaces. Then equality

Df
m =Cf

m
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holds (on the nose). In particular, if we denote by Do
m and Co

m the corresponding simplicial
categories of bifibrant metrizable stratified spaces, then

Do
m =Co

m

and hence the full sub-∞-categories of bifibrant metrizable stratified spaces agree.

Proof. Equality on the object level follows by Proposition 7.5.1.4. Equality of cofibrations holds
even without additional assumptions. Equality of fibrations was shown in Corollary 7.5.1.5. It
remains to verify the equality of weak equivalences. We prove the stratum-preserving case; the
others are analogous: Let f ∶X → Y be a stratum-preserving map in Df

m. We may factorize f
as a cofibration and an acyclic fibration

X → Z → Y,

with Z not necessarily metrizable. Note that since cofibrations in both structures agree, so do
acyclic fibrations. By Proposition 7.5.1.4, it follows that Z is also categorically fibrant (this
did not use any metrizability assumptions on Z). f is a weak equivalence if and only if the first
of these two maps is a weak equivalence. However, the latter is a map between categorically
fibrant spaces. In particular, by the semi-model category version of the Whitehead theorem
for Bousfield localizations (see [Hir03, Thm 3.2.13] for the model category version)7, it is a
diagrammatic equivalence if and only if it is a categorical equivalence.

In other words, for geometric examples, the two homotopy theories agree.
Before we provide a proof of Proposition 7.5.1.4, we need the following elementary set-theoretic
topological lemma, the proof of which is provided in Section 7.B. It is the only place where
the metrizability of X comes into play. In the following, Dn+1 denotes the euclidean unit disk
of dimension n + 1, for n ∈ N, Sn denotes its boundary, and D̊n+1 =Dn+1 ∖ Sn its interior.

Lemma 7.5.1.7. Let n ≥ 0, X a metrizable topological space and suppose that we are given a
solid commutative diagram of (general) topological spaces of the following form:

Dn+1 × {0} ∪ Sn × [0,1]

Dn+1 × {0} ∪ Sn × [0,1) Dn+1 × [0,1] X

Dn+1 × [0,1) .

f

f̃

f ′

(7.19)

Then there exists f̃ ∶Dn+1 × [0,1]→X making the upper triangle commute, and furthermore
such that the inclusion

f̃(D̊n+1
× [0,1]) ⊂ f ′(D̊n+1

× [0,1))

holds.

As a consequence of Lemma 7.5.1.7 we obtain:

Lemma 7.5.1.8. Let X ∈ StratP be a metrizable stratified space and J = [p0 ≤ ⋯ ≤ pn] be a
flag in P . Let 0 < k < n and denote by I the regular flag containing all pi ∈ J with i ≥ k. If XI
is categorically fibrant, then X has the horn filling property with respect to ∣ΛJk ↪∆J ∣s.

7[BW24, Rem. 4.5] states the semi-model category case for bifibrant objects in the localized model structure.
Note, however, that we may always assume bifibrancy, by replacing both source and target cofibrantly first,
which is done through acyclic fibrations, which are the same in both model structures. Alternatively, we can
just use the full model categorical result and pass to the simplicial setting using the fact that all semi-model
structures are transferred.
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Proof. Let Jk be the flag obtained by removing pk from J , corresponding to the k-th face
of ∆J . We may identify ∣∆J ∣s with an (appropriately stratified) join ∣∆[pk]∣s ⋆ ∣∆Jk ∣s. This
identification induces join coordinates [s, x], s ∈ [0, 1], x ∈ ∣∆Jk ∣s on ∣∆J ∣s, with the point [0, x]
corresponding to the unique element of ∣∆[pk]∣s

8. Under this identification, ∣ΛJk ∣s corresponds
to the join ∣∆pk ∣s ⋆ ∣∂∆Jk ∣s. For 0 ≤ α ≤ α′ < 1, we write

S≤α
′

≥α = {[x, s] ∈ ∣∆[pk]∣s ⋆ ∣∆Jk ∣s ∣ α ≤ s ≤ α
′
},

and use analogous notation replacing ≤ by < and ≥ by >. We may then decompose ∣∆J ∣s into

∣∆J ∣s = S
≤ 1

2
≥0 ∪ S

≤1
≥ 1

2
.

It is immediate by the definition of the stratified simplex ∣∆J ∣s, that the inclusion

∣ΛJk ∣ ∩ S
≤ 1

2
≥0 ↪ S

≤ 1
2
≥0

is stratum-preserving homeomorphic to the inclusion

∣ΛJ
′

k ∣s ↪ ∣∆
J ′
∣s,

where ∆J ′ is obtained by replacing every entry pi in J with i < k by pk. In particular, by the
assumption on XI , X admits a filler with respect to the latter inclusion. Thus, it suffices to
show that X admits fillers with respect to

A ∶= S≤1
≥ 1

2
∩ ∣ΛJk ∣ ∪ S

≤ 1
2
≥ 1

2
↪ S≤1

≥ 1
2
=∶ B.

Choosing any homeomorphism ∣∆n∣ ≅ Dm+1, where m = n − 1, and using the affine order
preserving homeomorphism [ 1

2 ,1] ≅ [0,1] we may identify the latter inclusion with a non-
stratified inclusion

Dm+1
× {0} ∪ Sm × [0,1]↪Dm+1

× [0,1].

Since pk ≤ pn, under this identification D̊m+1 × [0, 1] is entirely contained in the pn-stratum
of ∣∆J ∣s. Thus, given a stratum-preserving map f ∶A → X , an extension of f to B is the
same data as an extension of f to Dm+1 × [0,1] mapping D̊m+1 × [0,1] to Xpn . We may
now apply Lemma 7.5.1.7, from which it follows that it suffices to obtain an extension of
fDm+1×{0}∪Sm×[0,1) to Dm+1 × [0,1) ≅ S<1

1
2

. Now write

S<1
1
2
= ⋃
l≥1
S
≤1− 1

2l+1

≥1− 1
2l

,

which defines a locally finite, closed cover of S<1
1
2

. Inductively, we may hence reduce to solving
extension problems with respect to

S
≤1− 1

2l

≥1− 1
2

l ∪ (∣ΛJk ∣s ∩ S
≤1− 1

2l+1

≥1− 1
2l

)↪ S
≤1− 1

2l+1

≥1− 1
2l

.

Finally, if we denote by J ′k the k-th face of J ′, then the latter inclusion is stratum-preserving
homeomorphic to the simplicial box product

∣∆J
′
k ∣s ⊗∆0

∪∣∂∆J
′
k ∣s⊗∆0 ∣∂∆J

′
k ∣s ⊗∆1

↪ ∣∆J
′
k ∣s ⊗∆1,

for the inclusion of ∆0 into ∆1 at 0. Since StratcI is a simplicial semi-model category, the latter
defines an acyclic cofibration in StratcI . Since XI was assumed to be fibrant, the existence of
extensions with respect to such an inclusion follows.

8Beware that at other points in the text, we have parametrized joins the wother way around.
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We may now complete the following proof.

Proof of Proposition 7.5.1.4. Clearly, Property (i) implies Property (ii). To see that Prop-
erty (ii) implies Property (iii), note that any lifting problem

∣Λn∣ HoLinkp<q(X )

∣∆n∣ Xp

(7.20)

is equivalent to a lifting problem (over PX )

∣∆[p]∣s ⊗∆n ∪∣∆[p]∣s⊗Λn ∣∆[p<q]∣s ⊗Λn X

∣∆[p<q]∣s ⊗∆n .

(7.21)

Hence, Property (iii) follows from the simpliciality of the semi-model category StratdPX . For
the implication Property (iii) Ô⇒ Property (iv), note that using the identification ∣∆J ∣s
with the (appropriately stratified) join ∣∆Jp ∣s ⋆ ∣∆Jq ∣s, we can interpret ∣∆J ∣s as a stratified
quotient space of

∣∆[p<q]∣s ⊗ (∆k
×∆n−k−1

),

obtained by collapsing ∣∆[p]∣s ⊗ (∆k ×∆n−k−1) to ∣∆[p]∣s ⊗∆k and ∣∆[q]∣s ⊗ (∆k ×∆n−k−1) to
∣∆[q]∣s ⊗∆n−k−1. Within ∣∆[p<q]∣s ⊗ (∆k ×∆n−k−1), ∣ΛJk ∣s corresponds to

∣∆[p<q]∣s ⊗ (Λkk ×∆n−k−1) ∪ ∣∆[p]∣s ⊗ (∆k ×∆n−k−1) ∪ ∣∆q ∣s ⊗ (∆k ×∆n−k−1)

∣∆[p<q]∣s ⊗ (∆k ×∆n−k−1)

(7.22)

Hence, it suffices to show that X has the extension property with respect to this stratum-
preserving map over PX . Denote A = Λkk×∆n−k−1 and B = ∆k×∆n−k−1. Under the identification
∣∆[p<q]∣s ≅ ∣∆[p<q]∣s ∪∣∆[q]∣s ∣∆

[q≤q]∣s we may decompose (7.22) into pushouts of inclusions

∣∆[p]∣s ⊗B ∪∣∆[p]∣s⊗A ∣∆
[p<q]
∣s ⊗A↪ ∣∆[p<q]∣s ⊗B (7.23)

and

∣∂∆[q≤q]∣s ⊗B ∪∣∂∆[q≤q]∣s⊗A ∣∆
[q<q]
∣s ⊗A↪ ∣∆[q≤q]∣s ⊗B. (7.24)

The inclusion A↪ B is an anodyne map of simplicial sets. It follows that the inclusion (7.24)
which lies entirely over one stratum is given by an acyclic Quillen cofibration. Consequently,
X has the right lifting property with respect to the inclusion (7.24). Finally, lifting problems
with respect to (7.23) are equivalent to lifting problems of the form

∣A∣ HoLinkp<q(X )

∣B∣ Xp ,

(7.25)

since A ↪ B is an anodyne extension, the left-hand vertical is an acyclic cofibration in the
Quillen model structure, showing the existence of a lift.
It remains to show that Property (iv) implies Property (i). It suffices to show that XI is
categorically fibrant for all regular flags I = [q0 < ⋯ < qn] of PX . We only need to cover the
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case where n ≥ 1, that is, where J has at least two different elements (otherwise, we are in the
trivially stratified case, that is, the classical case). First, note that Property (i) already implies
the case where I = [p < q]. Indeed, let J = [p0 ≤ ⋯ ≤ pnJ ] be a flag that degenerates from I.
When pk = p we may without loss of generality assume that k is maximal with the property
that pk = p, by permuting the corners of ∣∆J ∣s by a stratum-preserving homeomorphism. Then
we are in the situation of Property (iv). In case when pk = q, the inclusion ∣ΛJk ↪∆J ∣s admits
a stratum-preserving retraction. (Consider a homeomorphism of ∣∆J ∣s with Dn, mapping
the k-th face to the northern hemisphere. Then the p-stratum is entirely contained in the
equator, and projecting vertically down to the southern hemisphere defines a retraction.) We
now proceed to show the horn filling property with respect to arbitrary J , by induction over
nI , the length of I. We have already covered the case nI = 1. Now for the inductive step
let J = [p0 ≤ ⋯ ≤ pm] be a flag degenerating from a subflag of I, and 0 < k <m. For such J ,
denote by tJ the length of Jp0 and by oJ the length of Jqn−1 . We proceed by double induction
on tJ and oJ , keeping k flexible. If oJ = −1, then J degenerates from a proper subflag of I,
and we are reduced to the inductive assumption in the induction on nI . If p0 ≠ pk, which is in
particular the case when tJ = 0 (since 0 < k < n), then {qi ∣ i ∈ [nI], qi ≥ pk} has cardinality
smaller than I, and by inductive assumption (in nI) we can apply Lemma 7.5.1.8 proving
the existence of a filler with respect to J , k. So, suppose tJ ≥ 1, p0 = pk and we have already
proven the result for all cases J̃ , k̃ where either tJ̃ < tJ or oJ̃ < oJ . Let s ∈ [nJ ] be such that
es ∈ ∣∆J ∣s is the maximal vertex lying in the qnI−1 stratum and enJ ∈ ∣∆J ∣s the nJ -th vertex
of ∣∆J ∣s. We may assume that s ≥ 2, as tJ ≥ 1 and nI ≥ 2. Furthermore, we may assume that
enJ lies in the qn stratum, as otherwise J degenerates from a proper subflag of I, and we are
reduced to the inductive assumption. Now, let

e′ =
1
2
es +

1
2
enJ

be the halfway point between these two vertices, which by assumption also lies in the qnI
stratum. Consider the two affine stratum-preserving embeddings

i1∶ ∣∆J ∣s ↪ ∣∆J ∣s

ei ↦

⎧⎪⎪
⎨
⎪⎪⎩

ei i < nJ

e′ i = nJ

and

i2∶ ∣∆J
′

∣s ↪ ∣∆J ∣s

ei ↦

⎧⎪⎪
⎨
⎪⎪⎩

ei i ≠ s

e′ i = s

where J ′ is obtained from J by replacing the s-th entry by qnI . The images of these two
embeddings cover ∣∆J ∣s and intersect in the convex span

< {e′, ei ∣ i ∈ [nJ ], i ≠ nJ , s} > .

Under i1 this span corresponds to the s-th face of ∆J , and under i2 to the nJ -th face of ∆J ′ ,
which are both given by the flag J ′′ obtained by removing ps from J . We obtain an induced
stratum-preserving homeomorphism (see Fig. 7.1 for an illustration)

∣∆J ∪∆J ′′ ∆J
′

∣s ≅ ∣∆J ∣s ∪∣∆J ′′ ∣s ∣∆
J ′
∣s
(i1,i2)
ÐÐÐ→ ∣∆J ∣s.
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e2

e1

e0

e3
e′

Figure 7.1: Depiction of ∆J ∪∆J ′′ ∆J ′ with ∆J spanned by e0, e1, e2, e
′ and ∆J ′ spanned by

e0, e1, e
′, e3.

Under this identification ΛJk corresponds to the subcomplex A of ∆J ∪∆J ′′ ∆J ′ =∶ B given
by removing:

• The simplices corresponding to ∆J and ∆J ′ ;

• The k-th face of ∆J , ∆Jk , and of ∆J ′ , ∆J ′k ;

• The s-th face of ∆J , ∆Js , which is equivalently the nJ -th face of ∆J ′ , or the top
dimensional simplex of ∆J ′′ .

• The k-th face of ∆J ′′ , ∆J ′′k , which is equivalently the (s − 1)-th face of ∆Jk .

e2

e0

e′

e2

e0

e′

e1 e1

e0

e3
e′

Figure 7.2: Depiction of ∆Jk ,∆J and ∆J ′ with the vertices respectively opposite to ∆J ′′k ,∆J ′′

and ∆J ′k marked in green.

Next, consider the inclusions

1. j1∶ΛJk

s−1 ↪∆Jk ;

2. j2∶ΛJs ↪∆J ;

3. j3∶ΛJ
′

k ↪∆J ′ .

Gluing ∆Jk to A along j1 adds in the missing simplices ∆Jk and ∆J ′′k . Then, gluing in ∆J
along j2 adds the missing simplices ∆J and ∆J ′′ (consider Fig. 7.2, for an illustration). Finally,
gluing in ∆J ′ along j3 adds the missing simplices ∆J ′ and ∆J ′k . We have thus exposed A↪ B
as a composition of the pushouts of horn inclusions j1, j2 and j3. Since ∣ − ∣s preserves pushouts,
it suffices to show that X has the horn filling property with respect to (the realizations of)
j1, j2 and j3. Since s ≥ 2, j1 is an inner horn inclusion, and furthermore since p0 = pk we have
tJk
< tJ , which is covered by the inductive assumption. j2 is an inner horn inclusion, in which

the s-th entry is not minimal, which we have already covered above through Lemma 7.5.1.8.
Finally, j3 is an inner horn inclusion with oJ ′ < oJ , and hence is also covered by the inductive
assumption. This finishes the induction.
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7.5.2 Cofibrant stratified spaces and cellularly stratified spaces
Next, let us investigate the class of cofibrant objects in the stratum-preserving and poset-
preserving semi-model categories, both categorical and diagrammatic.
Proposition 7.5.2.1. Let X ∈ Strat. Then the following statements are equivalent:

1. X is a retract in StratPX of a cellularly stratified space;

2. X is cofibrant in all of the semi-model categories StratdPX ,StratcPX ,Stratd,p,Stratc,p;

3. X is cofibrant in one of the semi-model categories StratdPX ,StratcPX ,Stratd,p,Stratc,p.
Proof. Note that there is no need to differentiate between the diagrammatic and categorical
scenarios, as the latter are obtained from the former via left Bousfield localization (Theo-
rem 7.4.2.11), and hence both settings have the same cofibrant objects. That being a retract of a
cellularly stratified space is equivalent to being cofibrant over PX is immediate by the cofibrant
generators of Theorem 7.4.2.7. It remains to see that X being cofibrant in Stratd,p is equivalent
to X being cofibrant in StratdPX . This follows immediately from Proposition 7.4.2.8.

Definition 7.5.2.2. We call a stratified topological space X that satisfies any of the equivalent
conditions of Lemma 7.5.1.1 triangularly cofibrant.
Remark 7.5.2.3. Clearly every stratified space that admits a triangulation compatible with
the stratification (i.e., in particular is the realization of a stratified simplicial set) is triangularly
cofibrant. In particular, this holds for piece-linear pseudomanifolds (see, for example, [Ban07])
or locally compact stratified spaces which are definable (with definable stratification) in some
o-minimal structure on the reals ([Dri98, Thm. 1.7]). Furthermore, by [Gor78], all Whitney
stratified spaces are in this class.

However, one should not restrict oneself to stratified spaces that admit a cell structure.
Topological manifolds, for example, are (to the best of our knowledge) not known to admit CW
structures in dimension 4 (see [KS69] for all other dimensions). However, every topological
manifold is a Euclidean neighborhood retract ([Han51]) and thus a retract of a CW complex.
Supposing the existence of certain stratified cylinder neighborhoods, our theory also covers
examples of stratified spaces with manifold strata (see Proposition 7.5.2.10). Let us begin
by proving that stratified neighborhood retracts of triangularly cofibrant stratified spaces are
triangularly cofibrant:
Proposition 7.5.2.4. Let X ∈ Strat be a triangularly cofibrant stratified space. Let A ⊂ X
be a closed subspace such that the following holds: There is a neighborhood U ⊂ X of A, such
that A = (A, sX (U), sX ∣A∶A→ sX (U)) is a stratum-preserving retract of U = (U, sX (U), sX ∣U
∶U → sX (U)). Then A is also triangularly cofibrant.
Proof. We will make frequent use of results on stratified cell complexes developed in [Waa24b]
(see Chapter 6). Let Y be a cellularly stratified space and i∶X ↪ Y, r∶Y → X such that
r ○ i = 1X . We claim that there is a subcomplex B of a cell structure on Y that contains i(A)
and is entirely contained in r−1(U). Then we can compose

B → U → A,

where B is considered a stratified space over PU , to obtain a retraction of A ↪ B. Fix a
stratified cell structure (σi∶ ∣∆Ji ∣s → Y)i∈I on Y (see Section 6.2.3, for a definition and basic
properties). Every cell in Y defined by a map σi is contained in a finite subcomplex of Y
(Lemma 6.2.3.6). We proceed to inductively construct a subdivision of Y (in the sense of
Definition 6.3.2.1), via induction over the minimal number of cells, ni, required in a subcomplex
that contains a cell σi. Denote by Y(n−1) the subcomplex constructed from cells σi with ni = n.
We construct a subdivision of the cell structure of Y , denoted Y ′, through induction on n. For
n = 1, we simply take the cell structure on Y(0) inherited from Y. Now, suppose that we have
already defined a cell structure Y ′(n) on Y(n) for n > 1, and a subcomplex Bn ⊂ Y(n) of this
cell structure, fulfilling the following properties:
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1. r−1(A) ∩ Y(n) ⊂ Bn and Bn is a ∆P -neighborhood of r−1(A) ∩ Y(n) (in the sense of
Definition 6.2.4.1);

2. Bn is contained in the interior of r−1(U).

Next, let us construct Y ′(n+1) and Bn+1, i.e., we now add cells σi with ni = n + 2 to Y(n). For
any cell σi with ni = n+ 2, we can barycentrically subdivide ∣∆Ii ∣s (sufficiently many times) so
that for every τ ⊂ ∣∆Ji ∣s that is contained in a simplex τ ′ intersecting (r ○ σ)−1(A) we have
the following.

1. τ is entirely contained in the interior of (r ○ σ)−1(U);

2. τ ∩ ∣∂∆Ii ∣s is entirely contained in σ−1(Bn).

Indeed, the first property is possible, since (r ○ σ)−1(A) is compact and contained in the
interior of (r ○ σ)−1(U) by (inductive) assumption. It follows that (r ○ σ)−1(A) has a positive
distance (for any choice of compatible metric on ∣∆Ji ∣s), to the complement of the interior
of (r ○ σ)−1(U), which implies that simplices of sufficiently small diameter cannot intersect
(r ○ σ)−1(A) ∪ σ−1(Bn) and the complement of the interior of (r ○ σ)−1(U). That the second
property can be assumed is argued similarly. Having chosen such a subdivision for any cell σi
with ni = n+ 2, we then obtain an induced cell structure Y ′(n+1) on Y(n+1) given by the cells of
Y
′n and the cells corresponding to (open) simplices in the interior of the subdivisions of ∣∆Ii ∣s,

for ni = n + 2. Finally, we let Bn+1 be the subcomplex given by adding to Bn all such cells
of Y ′(n+1) ∖ Y

′(n), σi, which correspond to an (open) simplex in the interior of some ∣∆Ii ∣s,
contained in a closed simplex intersecting (r ○ σ)−1(A). Note that this does indeed define
a cell complex, since the intersection of the boundary of such a simplex with the boundary
of ∣∆Ii ∣s is assumed to be mapped to Bn. Bn+1 defined in this fashion fulfills the inductive
assumptions by construction and Lemma 6.2.4.4. Then, finally, set B = ⋃n∈N Bn, with the
induced cell structure.

Construction 7.5.2.5 (Stratified mapping cylinders). Given f ∶X → Y in Strat, the stratified
mapping cylinder of f , Ms(f), is defined as the pushout

X × ∣∆0∣s X × ∣∆[1]∣s

Y Ms(f).

1×i0

f (7.26)

Under the (nonstratified) identification ∣∆[1]∣s = [0,1], this equips the classical mapping
cylinder of f with an alternative stratification over the lower right corner of the following
pushout diagram of posets.

PX PX × [1]

PY PY ⊔≤f
PX .

1×i0

f (7.27)

Here, PY ⊔≤f
PX is explicitly given by equipping the disjoint union PY ⊔PX , with an additional

relation p ≤ q, for p ∈ PY and q ∈ PX , whenever p ≤ f(q). In the special case where PY is a
poset with one element, this amounts to adjoining a minimal element to PX .

Remark 7.5.2.6. Note that Ms(f) is generally not a mapping cylinder of f with respect to
any of the model structures on Strat. Indeed, the inclusion Y ↪Ms(f) can only be a weak
equivalence (in any of the model structures on Strat) if X is empty. From the perspective
of ∞-categories of exit paths, no point x ∈ X × ∣∆{1}∣s ⊂Ms(f) can lie in the essential image
corresponding to the map Y ↪Ms(f), as this would imply a non-stratified path from a point
y ∈ Y to x.
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Corollary 7.5.2.7. Suppose that L,X ,Y ∈ Strat are triangularly cofibrant. Let f ∶L →
Y, g∶L → X be stratified maps. Then the stratified double mapping cylinder Ms(f) ∪g X is
triangularly cofibrant.

Proof. Ms(f) ∪g X fits into a pushout diagram of stratified spaces

L × ∣∂∆[1]∣s = L ⊔L L × ∣∆[1]∣s

Y ⊔X Ms(f) ∪g X .

f⊔g (7.28)

Note that we may, without loss of generality, assume that we are in the ∆-generated scenario,
as every triangularly cofibrant stratified space is ∆-generated. By Corollary 7.4.3.3 the upper
horizontal is a cofibration, from which it follows that the lower horizontal is a cofibration.
Y ⊔X is cofibrant by assumption, which, together with the cofibrancy Y ⊔X ↪ of Ms(f)∪g X ,
implies the claim.

Definition 7.5.2.8. Let U ⊂ X and A ⊂ U be a closed subset contained in the interior of U .
Denote A = (sX ∣A∶A → sX (A)) and U = (sX ∣U ∶U → sX (U)). We say that U is a (closed)
stratified mapping cylinder neighborhood of A, if the following holds:
There exists a stratified space L together with a stratified map f ∶L → A, as well as a
stratum-preserving homeomorphism ϕ∶Ms(f)↪ U under A, such that ϕ−1(∂U) = L × {1}.

Definition 7.5.2.9. Let P be a poset and p ∈ P . We call

sup{n ∈ N ∣ ∃p0,⋯, pn∶p = p0 < p1 < ⋯ < pn}

the depth of p in P . We call the supremum over the depths of all p ∈ P the depth of P . Given
k ∈ N and X ∈ Strat, we denote by Xk the stratified subspace given by restricting X along

(PX )k ∶= {p ∈ P ∣ p has depth k}↪ P.

Similarly, we denote by Xk the stratified subspace of X obtained by restricting X along

(PX )k ∶= {p ∈ P ∣ p has depth ≤ k}↪ P.

Proposition 7.5.2.10. Let X be a stratified space with PX finite depth. Suppose that the
following holds:

1. Each stratum of X is cofibrant in the Quillen model structure, i.e. a retract of a
non-stratified absolute cell complex.

2. For each k ∈ N, there is a family of pairwise disjoint subsets of X , (Up)p∈(PX )k , in-
dexed over strata of depth k such that, for each p, Up is a stratified mapping cylinder
neighborhood of Xp.

Then X is triangularly cofibrant.

Proof. For ease of notation, we denote P ∶= PX . We proceed via induction over the depth
of P , denoted d. In the case d = 0, X is simply a disjoint union of trivially stratified spaces,
each of which is cellularly stratified by assumption. Now, for the inductive step d to d + 1: By
assumption, there are stratified maps fp∶Lp → Xp, for each p ∈ Pd+1, together with an injective
(on the space level) stratified map

⊔
p∈(Pd+1)

M(fp)↪ X ,

which restricts to an open inclusion on the open cylinders (obtained by removing XLp × {1}
and denoted by M̊(fp)). Setting, L = ⊔p∈Pd+1 Lp and f = ⊔p∈Pd+1 f

p, we obtain a stratified
open inclusion

i∶ ⊔
p∈(Pd+1)

M̊(fp) ≅ M̊s(f)↪ X ,
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which defines a neighborhood of Xd+1. Note that i is not necessarily an inclusion on the poset
level. Now, consider M̊s(f) as reparametrized (over [0, 2)), denoted M̊ ′

s(f), such that we may
consider Ms(f) (with the usual parametrization) as a closed stratified subspace of M̊s(f). With
this new notation, we have inclusion M̊s(f)↪Ms(f)↪ M̊ ′

s(f)↪ X . Then M̊s(f) ⊂ M̊
′
s(f) is

an open neighborhood of Xd+1 with boundary L × {1}. We obtain a commutative diagram of
stratified maps

L × {1} X ∖ M̊s(f)

Ms(f) X ,

g

(7.29)

where X ∖ M̊s(f) is stratified over Pd. Denote by X̃ the pushout in Strat. Now, on the level
of topological spaces, this diagram is clearly pushout. Therefore, the induced map g∶ X̃ → X is
a homeomorphism on the underlying spaces. Consider the commutative diagram

X̃ P (g)!X̃

X .

(7.30)

Since g is a homeomorphism on the underlying spaces, it follows that the right vertical is
an isomorphism. The upper vertical is always a cofibration (Proposition 7.4.2.8), hence it
follows that X̃ → X is a cofibration. Therefore, it suffices to show that X̃ is cofibrant. For
this, in turn, it suffices to show that the left-hand vertical is a cofibration and X ∖ M̊s(f) is
cofibrant. The latter is a retract of Xd. Hence, cofibrancy follows by inductive assumption.
For the left vertical, by Corollary 7.5.2.7, it suffices to see that Lp and Xp are cofibrant. The
latter is cofibrant by assumption. By construction, Lp embeds into X with an open (stratified)
neighborhood of the form Lp × (0,1). Clearly, Lp is a retract of the latter, making Lp a
stratified neighborhood retract of Xd, which is cofibrant by inductive assumption. Hence, the
case of Lp follows by Proposition 7.5.2.4.

Remark 7.5.2.11. Every topological manifold is a Euclidean neighborhood retract ([Han51])
and since every open subset of Euclidean space can be triangulated, it follows that every
topological manifold is cofibrant in the Quillen model structure. Consequently, it follows by
Proposition 7.5.2.10 that every stratified space with manifold strata, each of which admits
appropriate stratified mapping cylinder neighborhoods, is cofibrant. [AFT17, Prop. 8.2.3]
asserts the existence of stratified mapping cylinder neighborhoods for conically smooth stratified
spaces, which would make the latter triangularly cofibrant. More generally, for homotopically
stratified spaces with manifold strata there are obstructions to the existence of (pairwise)
stratified mapping cylinder neighborhoods ([Qui88, Thm. 1.7]).

7.5.3 Refined stratified spaces
Let us take a more detailed look at the cofibrant objects in the semi-model categories Stratd
and Stratc. In particular, our aim is to relate them to more classical properties of stratified
spaces.

Definition 7.5.3.1. A stratified space X ∈ Strat is called refined if the following holds:

• X is surjectively stratified, that is, sX ∶X → PX is surjective.

• For each pair x, y ∈ X , the relation sX (x) ≤ sX (y) holds if and only if there is a finite
sequence of stratified maps γi∶ ∣∆[1]∣s → X , i = 1, . . . , n, with γ1(0) = x, γn(1) = y and
γi(1) = γi+1(0), for i < n.

We can think of being refined as the poset PX being completely reflected in the stratified
paths of PX . Next, note the following elementary properties about refinedness.
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Proposition 7.5.3.2. Let X ,Y ∈ Strat and A ∈ sStrat. Then the following holds:

1. X is refined, if and only if Sings(X ) is refined;

2. If f ∶X → Y is a poset-preserving categorical equivalence, then X is refined, if and only if
Y is refined;

3. A is refined, if and only if ∣A∣s is refined;

4. If A ∈ sStratc,p is fibrant, i.e. A a quasi category and A → P a conservative functor,
then A is refined if and only if A is 0-connected, in the sense of [BGH18], as an abstract
stratified homotopy type.

It follows that being refined is really purely a property of the homotopy type in Stratd,p
defined by X . The model categories Stratc and Stratd,p may now be interpreted as the
respective right Bousfield localizations presenting the full sub-∞-categories of refined stratified
spaces. Even more, we may essentially construct the left adjoints of this adjunction on the
1-categorical level.
Definition 7.5.3.3. A stratified space X ∈ Strat is said to carry the ∆s topology if one of
the following equivalent conditions holds:

1. X has the final topology with respect to the set of stratified maps ∣∆[n]∣s → X , for n ∈ N.

2. X has the final topology with respect to the set of stratified maps ∣∆[1]∣s → X .
Proof. Let us show that these conditions are equivalent. We need to see that every stratified
simplex ∣∆[n]∣s, for n ∈ N, carries the final topology with respect to stratified maps with
source ∣∆[1]∣s. Note that it suffices to see that for any convergent sequence in ∣∆[n]∣s, there
exists a subsequence (xi)i∈N, as well as a stratified map γ∶ [0,1] ≅ ∣∆[1]∣s → ∣∆[n]∣s, with
γ( 1

2i ) = xi, for i ∈ N. Indeed, the topology on ∣∆[n]∣s is entirely determined by convergent
sequences, and the latter conditions mean that these are detected by ∣∆[1]∣s. So suppose
that we are given a convergent sequence (x̂i)i∈N in ∣∆[n]∣s. By passing to a subsequence,
we may assume that the sequence is contained in a single stratum j ∈ [n]. Then, the limit
point lies in some stratum k ≤ j. Now define γ∶ [0,1] ≅ ∣∆[1]∣s → ∣∆[n]∣s by setting γ( 1

2i ) ∶= xi,
convexly interpolating between xi and xi+1 and sending 0 to the limit point of xi. This map is
continuous. Furthermore, as the strata of ∣∆[n]∣s are convex, it is also stratified.

Definition 7.5.3.4. A stratified space X ∈ Strat is called strongly refined, if X is refined and
carries the ∆s-topology.
Construction 7.5.3.5. For a stratified space X ∈ Strat, its refined poset, denoted PX r , is
the poset generated by the following elements and relations:

• An element for each x ∈ X .

• A relation x ≤ y, whenever there is a sequence of stratified paths from x to y, as in
Definition 7.5.3.1.

Equivalently, PX r is given by the set of path components of strata of X , together with a
generating relation whenever there is an exit path from one component to another. Consider
the (generally non-continuous) map X → PX r , given by x↦ [x]. It provides a factorization of
sX through the map of posets

PX r → PX

[x]↦ sX (x)

as follows:
X PX r

PX

sX
(7.31)
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Although X → PX r is not necessarily continuous, its precomposition with any stratified map
∣∆[1]∣s → X is continuous, by construction. We denote by X r the stratified space given by
Xr → PX r , where Xr has the same underlying set as X and is equipped with the final topology
with respect to stratified maps ∣∆[1]∣s → X . By construction, Xr → PX r is indeed continuous
and X r is a strongly refined stratified space. This construction induces a simplicial functor
from Strat into the full subcategory of strongly refined stratified spaces, called the refinement
functor , which exposes the latter as a full coreflective subcategory of Strat. The counit of
adjunction, given by the commutative squares

Xr X

PX r PX ,

sXr sX (7.32)

is called the refinement map.

As a consequence of the existence of the refinement functor, which makes the inclusion of
strongly refined stratified spaces a left adjoint, we obtain:

Corollary 7.5.3.6. Every colimit of strongly refined stratified spaces in Strat is again strongly
refined.

The refinement construction of Construction 7.5.3.5 is really the topological analogue of
Definition 5.3.2.12.

Proposition 7.5.3.7 (See Section 5.3.2, for notation). For any X ∈ Strat, applying Sings to
the refinement map induces a natural transformation (dashed) that makes the diagram.

(SingsX )r Sings(X r)

Sings(X )

(7.33)

commute. The dashed transformation is an isomorphism.

Proof. SingsX r is refined by Proposition 7.5.3.2. Hence, the dashed map is induced by the
fact that (simplicial) refinement is right adjoint to the inclusion of refined stratified simplicial
sets. That this map is an isomorphism on posets follows immediately by the construction
of PX r in Construction 7.5.3.5 and Proposition 5.3.2.9. Furthermore, since every stratified
simplex ∣∆[n]∣s is refined, note that the map is an isomorphism on simplicial sets, given by

(SingsX )r[n] = (SingsX ) = Strat(∣∆[n]∣s,X ) = Strat(∣∆[n]∣s,X r
) = Sings(X r

)[n].

We may think of Proposition 7.5.3.7 as stating that Sings sends the topological refinement
map to the simplicial refinement map. As an immediate corollary, using Recollection 7.3.2.4,
we obtain the missing part of Theorem 7.3.3.1:

Corollary 7.5.3.8. The simplicial semi-model categories Stratd and Stratc are obtained,
respectively, from Stratd,p and Stratc,p by right Bousfield localizing at the refinement maps
X r → X .

In particular, we have the following description of cofibrant objects in Stratd and Stratc:

Proposition 7.5.3.9. Let X ∈ Strat. Then the following statements are equivalent:

1. X is cofibrant in Stratd;
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2. X is cofibrant in Stratc;

3. X is triangularly cofibrant and refined;

4. X is a retract of a refined, cellularly stratified space.
Proof. The equivalence between the first two statements is immediate from both semi-model
categories having the same generating cofibrations. Since every cellularly stratified space
carries the ∆s-topology (by definition), it follows that a refined cellularly stratified space is
strongly refined. Since the latter form a full coreflective subcategory, by Construction 7.5.3.5,
any retract of strongly refined spaces is strongly refined. In particular, the fourth statement
implies the third. To see that the third implies the second, note that cofibrant objects X
in Stratc are characterized by ∅ ↪ X having the left lifting property, with respect to all
stratified maps f ∶Y → Z, which are acyclic fibrations in Stratc. By Proposition 7.5.3.7 and
Theorem 5.3.2.19, this, in turn, is equivalent to f r being an acyclic fibration in Stratc,p. Since
X is assumed to be refined, a lifting diagram

Y

X Z

f (7.34)

admits a solution if and only if the induced diagram

Yr

X Zr.

fr (7.35)

admits a solution. The latter holds, as X was assumed cofibrant in Stratc,p. Finally, to see
that the first characterization implies the fourth, note that every cofibrant object in Stratc
is a retract of an absolute cell complex with respect to the stratified boundary inclusions
{∣∂∆[n] ↪∆[n]∣s ∣ n ∈ N}. It follows by Proposition 7.5.3.2, stratified simplices carrying the
∆s-topology and Corollary 7.5.3.6, that every such absolute cell complex is a refined cellularly
stratified space.

7.5.4 Frontier conditions and refinement
It turns out that being refined is strongly related to the way the poset structure on the strata
of a stratified space is classically constructed:
Recollection 7.5.4.1. Classically, stratifications often arise from the so-called frontier condi-
tion (see, for example, [Mat12]). Namely, one starts with a topological space X and a locally
finite decomposition into nonempty locally closed pieces (Xi)i∈I . One assumes that for any
i ∈ I, the closure Xi is given by the disjoint union (Xj)j∈J , for some subset J ⊂ I. Then, I
naturally carries the structure of a poset, setting i ≤ j, whenever Xi ⊂Xj , and X → I defines
a stratification of X.

In our framework, such poset structures induced by closure relations can be constructed as
follows.
Construction 7.5.4.2. Let X ∈ Strat, and denote

I = {S ⊂X ∣ S ≠ ∅∃p ∈ PX ∶S = Xp.}

We consider IX as equipped with the structure of a poset, by equipping it with the relation
generated by

S ≤ S′ ⇐⇒ S ∩ S ≠ ∅.

It follows immediately by construction that mapping S to the unique p ∈ PX , for which S = Xp,
induces a map of posets

IX → PX .
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Definition 7.5.4.3. We say that X is weakly frontier stratified, if the induced map IX → PX
is an isomorphism of posets. We say that X is frontier stratified, if in addition to this it fulfills

Xp ∩Xq ≠ ∅ Ô⇒ Xp ⊂ Xq,

for all p, q ∈ PX .

Remark 7.5.4.4. If one describes stratified spaces X and Y as the data of spaces X and Y
equipped, respectively, with decompositions (Xi)i∈I and (Yj)j∈J into non-empty pieces, then
classically the morphisms which are considered between such spaces are given by continuous
maps f ∶X → Y , such that for each i ∈ I there exists a j ∈ J with f(Xi) ⊂ Yj [Hug99b]. Let
us call such objects decomposition spaces, and such maps decomposed maps, and denote the
corresponding category by D. Homotopies in this setting are defined through the cylinder
given by equipping X × [0,1] with the decomposition (Xi × [0,1])i∈I . There is an obvious
forgetful functor from the category D∶Strat→D, given by equipping a stratified space with
its decomposition into nonempty strata. Now, if X is weakly frontier stratified, then it is not
hard to see that for any Y ∈ Strat the induced map

Strat(X ,Y)→D(X ,Y)

is a bijection. Furthermore, the forgetful functor commutes with cylinders. It follows that
as long as one restricts to bifibrant objects (in Stratd,p,Stratc,p) that are weakly frontier
stratified then the resulting homotopy theory agrees with the classical homotopy theory of
stratified spaces as studied in [Qui88; Hug99b; Mil13].

It turns out that the triangularly cofibrant objects that have path-connected strata and
are weakly frontier stratified are precisely the cofibrant objects in the refined setting (see
Proposition 7.5.4.5 below).
Note that for strongly frontier stratified spaces the generating relations of Construction 7.5.4.2
already define a partial order. This leads to the following alternative characterization of
refinedness, for specific stratified spaces.

Proposition 7.5.4.5. Let X ∈ Strat, and consider the following conditions:

1. X is refined.

2. X has path-connected strata and is frontier stratified.

3. X has path-connected strata and is weakly frontier stratified.

The first and the second property imply the third. Furthermore, if X is triangularly cofibrant,
then the third property implies the first. Finally, if X is categorically fibrant, then the first
property implies the third. In particular, for bifibrant stratified spaces in Stratc,p all three
properties are equivalent.

Proof. The first two implications are obvious, using the fact that for any continuous map
f ∶X → Y , x ∈ S implies f(x) ∈ f(S). Suppose the third condition holds and X is triangularly
cofibrant. To see that X is refined, we need to expose for any x, y ∈ X with p ∶= sX (x) < sX (y) ∶=
q a sequence of stratified paths γi∶ ∣∆[1]∣s → X from x to y, as in Definition 7.5.3.1. Since X is
weakly frontier stratified, it suffices to show that for any pair p, q ∈ PX and x ∈ Xp, y ∈ Xq with

Xp ∩Xq ≠ ∅,

there is a stratified path from x to y. Furthermore, since strata are assumed to be path-
connected, it suffices to construct a path from any element in Xp to any element in Xq. Now,
let X i

Ð→ Y
r
Ð→ X expose X as a retract of a cellularly stratified space Y (Proposition 7.5.2.1).

Any nonempty closure intersection
Xp ∩Xq ≠ ∅
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in X implies a non-empty closure intersection

Yi(p) ∩Yi(q) ≠ ∅.

Conversely, every sequence of stratified paths in Y, starting and ending in X , descends to a
sequence of stratified paths in X with the same starting and end points. Hence, it suffices to
show that a closure relation

Yi(p) ∩Yi(q) ≠ ∅,

implies the existence of a concatenable sequence of stratified paths starting in Yi(p) and ending
in Yi(q). Choose a cell structure for Y (see Definition 6.2.3.1), with open cells ei, i ∈ I. Note
that each open cell is entirely contained in only one stratum. We write sY(ei) ∈ PY to denote
the latter. Furthermore, note that if ei intersects the closure of ej , then sY(ei) ≤ sY(ej).
Suppose that x ∈ Yi(p) ∩Yi(q). In particular, x is contained in the minimal subcomplex of Y
that contains Yi(q). This implies that there is a sequence of cells e0, e1, e2, . . . , en, such that
x ∈ e0 and en ⊂ Yq, and for each i ∈ [n − 1], ei intersects the closure of ei+1. For i ∈ [n − 1],
let xi ∈ ei ∩ ei+1. Since ei+1 is the quotient of a stratified simplex ∣∆J ∣s over PY , there is a
stratified path γ′i∶ ∣∆[1]∣s → Y, starting in xi, immediately entering and staying in ei+1, and
ending in xi+1.
The converse implication is immediate. Finally, assume that X is categorically fibrant and
refined (and is thus weakly frontier stratified). Then, whenever sX (x) ≤ sX (y), any concaten-
able sequence of stratified paths from x to y induces a stratified path, γ∶ ∣∆[1]∣s → X from x to
y, which implies

x = γ(0) ⊂ γ(0,1] ⊂ XsX (y).

In particular, it follows that
Xp ∩Xq ≠ ∅ Ô⇒ Xp ⊂ Xq.

The characterization of refinedness in Proposition 7.5.4.5 allows us to represent all homotopy
types in Stratc through the following particularly convenient stratified spaces.

Definition 7.5.4.6. A stratified space X ∈ Strat is called CFF stratified (C for cellular, first
F for frontier, second F for fibrant), if it fulfills the following conditions:

1. X is cellularly stratified.

2. X has nonempty, connected strata and is frontier stratified.

3. X has the horn filling property with respect realizations of inner stratified horn inclusions
∣Λ[n]k ↪∆[n]∣s, 0 < k < n.

We denote the full simplicial subcategory of Strat given by CFF stratified spaces by CFF.

CFF stratified spaces can be seen as an analogue to CW complexes in the classical scenario.
However, note that no assumptions are made that the attaching maps of cells only map to cells
of certain dimensions. This is necessary for the small object argument to be able to produce
CFF stratified spaces.

Example 7.5.4.7. Every stratified space that admits a PL structure that is compatible
with its stratification is cellularly stratified. Furthermore, in increasing order of generality,
every Whitney stratified space, Thom-Mather stratified space, pseudomanifold, or conically
stratified space (in the sense of [Lur17, A.5]) has the inner horn filling property, by [Lur17,
Thm. A.6.5]. Hence, it follows that if we equip such spaces with the refined stratification
(induced by the frontier condition, and by taking path components of strata) and additionally
assume a piecewise linear structure, then they provide examples of CFF stratified spaces.
Note also that for Thom-Mather (and hence for Whitney stratified spaces) a piecewise linear
structure (compatible with the stratification) always exists ([Gor78]).
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Let us now characterize the bifibrant objects of sStratc in terms of CFF stratified spaces.
Using the small object argument on the generating classes in Theorem 7.4.2.10, together with
Propositions 7.5.3.9 and 7.5.4.5, we obtain the following corollary.

Corollary 7.5.4.8. A stratified space X ∈ Stratc is bifibrant if and only if it is a retract
of a CFF stratified space. Furthermore, every bifibrant stratified space is stratified homotopy
equivalent to a CFF stratified space. Every stratified space is categorically equivalent to a CFF
stratified space.

In particular, it follows that the homotopy theory defined by Stratc may equivalently be
interpreted in terms of CFF stratified spaces:

Corollary 7.5.4.9. Denote by Hs the class of stratified homotopy equivalences between CFF
stratified spaces. The inclusion CFF→ Strat induces an equivalence of ∞-categories

CFF[H−1
s ]

≃
Ð→ Stratc.

Combining this result with Corollary 7.4.4.5, we obtain the following version of the stratified
homotopy hypothesis:

Corollary 7.5.4.10. Luries exit-path construction induces an equivalence of ∞-categories

CFF[H−1
s ]

≃
Ð→ Lay∞

between CFF stratified spaces localized at stratified homotopy equivalences and layered ∞-
categories.

7.5.5 Stratified homotopy link fibrations
Much of the literature on stratified spaces takes an inductive approach to the study of stratified
spaces. This follows the observation that in many geometric scenarios a stratified space X
over a finite linear poset P with minimal element p can be decomposed into a diagram

Xp ← E → Y

where E and Y are stratified over P>p and E → Xp is a kind of fibration with stratified fiber
or a retraction associated to some stratified notion of a block bundle. See [Wei94] for a
good overview of such phenomena and [Tho69; Sto72; Wei94; Hug99b], for some examples of
this approach. If one keeps inductively repeating this kind of procedure with E and Y, one
ultimately ends up with a diagram of stratified spaces indexed over the poset of linear flags
in P , sd(P ). Whatever geometric construction one uses to decompose one’s stratified space,
at least from a homotopy-theoretic perspective, one ultimately ends up with the associated
diagram of generalized homotopy links HoLink(X ) ∈ Fun((sd(P ))op,Spaces) 9. In order to
capture the homotopy-theoretic essence of these types of constructions, Hughes (see [Hug99b])
used a stratified version of the pairwise homotopy links of [Qui88], thus obtaining a functorial,
homotopy-theoretic version of such decompositions. In this subsection, we replicate this
construction using the cartesian structure on Strat, and derive a series of homotopy-theoretic
consequences. Most of these are probably known to the expert, at least in the alternative
framework of homotopically stratified spaces. However, we think they may also help to connect
the classical inductive approach to stratified algebraic topology with our results on stratified
homotopy theory.

Notation 7.5.5.1. In the following, we will often cover both the categorical as well as the
diagrammatic cases in one statement. When we add the prefix diagrammatic or categorical
to names of stratum-preserving maps, such as fibrations, we mean that they are fibrations in
the respective model structure on StratP . We will then often add the alternative prefix in
parenthesis to indicate that both cases hold.

9This is more of a meta theorem, which at least holds in all of the cases known to the author. The reader
should think of it as a heuristic to motivate the rigorous mathematics performed below.
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Construction 7.5.5.2. Let P be some poset, and let X ∈ StratP . Consider the evaluation
map

X
∣∆[1]∣s → X ∣∂∆[1]∣s = X ×X ,

where the left component of this map is given by evaluation of a stratified path at 0 and
the right component by evaluation at 1. We denote by HoLinksp(X ) the P>p stratified space,
obtained via the following diagram of pullback squares in Strat.

HoLinksp(X ) X ∣∆
[1]∣s

Xp ×X>p X ×X

P>p ≅ {p} × P>p P × P

⌟

⌟

(7.36)

In other words, we may either think of HoLinksp(X ) as a restriction of ∣X ∣s∣∆
1∣s to {p}×X>p, or

as the stratified space of such stratified paths in X that start in the p-stratum, and immediately
exit. We call this stratified space the p-th stratified homotopy link of X . We may then compose
HoLinksp(X )→ Xp ×X>p with the projections to Xp and X>p, to obtain a diagram in Strat

Xp↞HoLinksp(X )→ X>p

where the two maps are respectively given by evaluating a stratified path in X at the start
and end-point. This construction extends to a functor from StratP into the category of spans
in Strat

B ← E → Y

where T is trivially stratified, and E → Y is a stratum-preserving map over P>p.

As a corollary of the cartesianity of the semi-model structures on Strat, one obtains:

Lemma 7.5.5.3. Let X ∈ StratP be diagrammatically fibrant (categorically fibrant). Then
the starting point evaluation map

HoLinksp(X )→ Xp

is a diagrammatic (categorical) fibration.

Proof. It follows from the cartesianity of the model structures on Strat, that the right vertical
in the pullback square

HoLinksp(X ) X ∣∆
[1]∣s

Xp ×X>p X ×X

⌟ (7.37)

is a diagrammatic (categorical) fibration. Consequently, so is the left vertical. As X
is diagrammatically (categorically) fibrant, the projection map Xp × X>p → Xp is also a
diagrammatic (categorical) fibration. The evaluation map in question is now the composition
of these two diagrammatic (categorical) fibrations.

Let us quickly compare our framework to the stratified path spaces studied in [Hug99b].
This first requires another remark on spaces with decompositions:

Remark 7.5.5.4. Remark 7.5.4.4 also holds in a self-enriched sense, providing an answer
to Question Q(6): In [Hug99b] the author studied stratified notions of mapping space, given
by equipping the set of decomposition maps CD(X ,Y) with the subspace topology of the
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compact-open topology, and the decomposition over PPXY induced by mapping a stratified
space to its underlying map of posets. If we work in the setting where Top is the category of
∆-generated spaces or compactly generated spaces, and thus replace the subspace topology
with its respective Kelleyfication, then this construction defines the internal mapping space in
the category of decomposition spaces. There is an obvious map of decomposition spaces

D(Y
X
)→ D(Y)

D(X),

given on the set level by the map Strat(X ,Y) → D(X ,Y). Therefore, whenever X is
refined, the comparison map of stratified mapping spaces above is bijective. Furthermore, by
construction of YX and [May16, Cor. 2.2.11], it is a decomposition preserving homeomorphism,
whenever PX and PY are finite. In other cases, it is the map that refines the topology on
D(Y)D(X) such that the induced map

D(Y)
D(X)

→ PPXY

is continuous.

Remark 7.5.5.5. In [Hug99b], Hughe’s main object of study was the space of stratified paths
in a stratified space X with finitely many strata, which start in a closed union of strata A ⊂ X ,
which we denote by Pathnsp(X ,A). In the special case when A = Xp, for some p ∈ P , then
we can think of Pathnsp(X ,A) as the union of HoLinksp(X ) with the space of paths entirely
contained in Xp. One of the main results of [Hug99b] is that when X is a homotopically
stratified space, then the starting point evaluation map Pathnsp(X ,A) → A lifts stratified
homotopies. Using the cartesian closedness of the semi-model structures on Strat we may
recover a version of this result in Strat: Given a categorically (respectively, diagrammatically)
fibrant stratified space X ∈ Strat, the starting point evaluation map X ∣∆[1]∣s → X is a stratified
fibration. Now, for any subspace A ⊂ X , equipped with the induced stratification, we may
consider the pullback diagram

X ∣∆
[1]∣s ×ev0 A X ∣∆

[1]∣s

A X .

ev0
(7.38)

It follows that the right vertical is a categorical (or, respectively, diagrammatic) fibration.
In particular, it has the lifting property with respect to stratified homotopies with cofibrant
source. Since ∣∆[1]∣s is clearly strongly frontier stratified, the natural comparison map in
(7.5.5.4) induces a natural continuous bijection

D(X
∣∆[1]∣s ×ev0 A)→ Pathnsp(X ,A),

which refines the topology on Pathnsp(X ,A) in order to turn it into a poset-stratified space
(and make it compactly or ∆-generated). Hence, one obtains a Serre (as opposed to Hurewicz-
style homotopy theory) version of Hughes’s result, replacing homotopically stratified spaces
with the weaker condition of diagrammatic fibrancy and not requiring that A is a closed
union of strata, but only obtaining the homotopy lifting property with respect to triangularly
cofibrant stratified spaces.

Much like generalized homotopy links, stratified homotopy links can be computed in terms
of appropriately stratified regular neighborhoods. Let us first observe that stratified homotopy
links can be computed locally:

Lemma 7.5.5.6. Let X ∈ StratP , p ∈ P and N ⊂ X be a neighborhood of the p-stratum
Xp ⊂ X . Then the induced map

HoLinkspN →HoLinkspX

is a diagrammatic equivalence.
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Proof. This is a consequence of Proposition 6.3.1.21 and Lemma 7.5.5.9 below.

Furthermore, one obtains the following stratified analogue of the two strata case of Propo-
sition 6.4.0.7.

Lemma 7.5.5.7. Let N be a stratified space, and suppose we are given a stratified map

R∶N≥p × ∣∆[1]∣s → N≥p

such that

1. R(x, t) = x, for x ∈ Np or t = 1;

2. R(x,0) ∈ Np, for all x ∈ X .

Then the evaluation map
ev1∶HoLinksp(N )→ N>p

is a stratum-preserving homotopy equivalence.

Proof. A section s∶N>p →HoLinksp(N ) of this map is provided by

x↦ {t↦ R(x, t)}.

A homotopy between s○ ev1 and 1HoLinks
p(N ) is constructed exactly as in the two strata case of

Proposition 6.4.0.9. One easily verifies that the homotopy given there is stratum-preserving.

Combining these two results, one obtains:

Corollary 7.5.5.8. Let X ∈ StratP , p ∈ P and N ⊂ X be a neighborhood of the p-stratum
Xp ⊂ X . Suppose that it admits a stratified map R∶N≥p × ∣∆[1]∣s → N≥p as in Lemma 7.5.5.7.
Then there is a zig-zag of diagrammatic equivalences

N>p
ev1
←ÐÐHoLinkspN

≃
Ð→HoLinkspX .

In the introduction, we already alluded to the fact that one can think of generalized
homotopy links as arising as the iterated stratified homotopy links of a stratified space. This
follows from the following observation:

Lemma 7.5.5.9. Let I = [p1 < ⋅ ⋅ ⋅ < pn] ∈ sd(P>p) be a regular flag in P of length n − 1,
containing only elements larger than p ∈ P and let X ∈ StratP . There is a natural weak
homotopy equivalence of simplicial sets

HoLinkI(HoLinksp(X )) ≃HoLink{p}∪I(X ).

Proof. By definition of HoLinksp(X ) as a restriction of X ∣∆[1]∣s to certain strata, we can identify
the I-th homotopy link HoLinkI(HoLinksp(X )) with the I ′-th homotopy link of X ∣∆[1]∣s , where
I ′, is the flag

[(p, p1) < ⋅ ⋅ ⋅ < (p, pn)]

in P × P . Observe that under the natural isomorphism

Strat(∣∆[n−1]
∣s,X

∣∆[1]∣s) ≅ Strat(∣∆[n−1]
∣s × ∣∆[1]∣s,X ) ≅ Strat(∣∆[n−1]

×∆[1]∣s,X )

the component of Strat(∣∆[n−1]∣s,X
∣∆[1]∣s) which is given by HoLinkI′(X ∣∆

[1]∣s) is identi-
fied with the component of Strat(∣∆[n−1] ×∆[1]∣s,X ) given by such stratified maps whose
underlying map of posets is given by

(k, i)↦

⎧⎪⎪
⎨
⎪⎪⎩

pk , if i = 1
p otherwise.
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We may equivalently identify this component with the simplicial mapping space

StratP (Y,X )

where Y is the stratified space obtained by equipping ∣∆n−1 ×∆1∣ with the stratification

(x, t)↦

⎧⎪⎪
⎨
⎪⎪⎩

s∣∆I ∣s(x) , if t > 0
p, otherwise.

In this way, we have obtained an identification

HoLinkI(HoLinksp(X )) ≅ StratP (Y,X )

Now, consider ∣∆I ∣s as embedded into ∣∆{p}∪I ∣s as its I-face. The collapsing map

Y → ∣∆{p}∪I ∣s
(x, t)↦ ((1 − t)e0 + tx)

fits into a pushout square
∣∆n−1∣ × {p} {p}

Y ∣∆{p}∪I ∣s

⌟

(7.39)

of cofibrant objects in StratdP , with verticals given by cofibrations. In particular, this square
is a homotopy pushout. As the upper horizontal is a weak diagrammatic equivalence, so is
the lower horizontal. As both stratified spaces in the lower horizontal are diagrammatically
fibrant and triangularly cofibrant, it follows that the lower horizontal is a stratified homotopy
equivalence. Hence, precomposing with this map defines a homotopy equivalence of simplicial
sets

StratP (Y,X ) ≃ StratP (∣∆{p}∪I ∣s,X ) =HoLink{p}∪I(X ).

This completes the proof.

Remark 7.5.5.10. Applying Lemma 7.5.5.9 inductively, one obtains that the generalized
homotopy link HoLinkI(X ) (modeled by a topological mapping space instead of a simplicial
set, as in [DW22]) associated to a stratified space X ∈ StratP and a flag I = [p0 < ⋅ ⋅ ⋅ < pn] can
be homotopically identified with the iterated stratified homotopy link

(HoLinkspn
○ ⋅ ⋅ ⋅ ○HoLinksp0

)(X ).

As an immediate corollary of Lemma 7.5.5.9, one obtains:

Corollary 7.5.5.11. Let w∶X → Y ∈ StratP be a stratum-preserving map. w is a diagrammatic
equivalence if and only if, for each p ∈ P , the following holds:

1. wp∶X → Y is a weak homotopy equivalence;

2. The induced map of stratified homotopy links HoLinksp(X )→HoLinksp(Y) is a diagram-
matic equivalence.

The true power of this criterion lies in the fact that it allows one to think of stratum-
preserving maps between fibrant objects as having a tangential component along the strata, as
well as a normal component, given by the fibers of stratified homotopy links. To explain this
more rigorously, we need the following lemma:
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Lemma 7.5.5.12. Suppose we are given a commutative square in Strat

X Y

B

w̃

(7.40)

with B trivially stratified and X → Y a stratum-preserving map over PX = PY . Suppose that
both diagonals are diagrammatic (categorical) fibrations.

1. For every x ∈ B, the induced map on fibers Xx → Yx is a diagrammatic (categorical)
equivalence;

2. For every path component of B, there exists a representative x ∈ B such that the induced
map on fibers Xx → Yx is a diagrammatic (categorical) equivalence;

3. w̃ is a diagrammatic (categorical) equivalence.

Proof. Observe that we only need to prove the diagrammatic case. The categorical case then
follows by the Whitehead theorem for left Bousfield localizations. That the first condition
implies the second is trivial. That the last condition implies the first follows by observing that
the two squares

Xx X Yx Y

⋆ B ⋆ Bx x

(7.41)

are not just pullback, but (by the assumption on fibrancy of the right verticals and since
every trivially stratified space is fibrant) even homotopy pullback, in the sense that the
underlying square in the associated ∞-category Stratd is pullback. (There are many ways to
see this. One of them is applying the equivalence of ∞-categories induced by Sings together
with the dual of [Lur09, Thm. 4.2.4.1.].) Thus it follows that the induced map on fibers
Xx → Yx is an isomorphism in Stratd and hence a diagrammatic equivalence. To see the
final remaining implication, observe that since diagrammatic equivalences can be verified on
connected components, we may without loss of generality assume that B is connected. Now,
let n ∈ N. Observe that ĤoLinkn(⋆) =∆0. Applying ĤoLinkn to the pullback squares above,
and using the commutativity of ĤoLinkn with pullbacks, we thus obtain a morphism of fiber
sequences

ĤoLinkn(Xx) ĤoLinkn(Yx)

ĤoLinkn(X ) ĤoLinkn(Y)

ĤoLinkn(B) ĤoLinkn(B).

≃

(7.42)

Observe that by simpliciality of the model structure on Strat, both lower verticals are Kan-
fibrations. Hence, the left and the right vertical sequence are homotopy fiber sequences. Fur-
thermore, as B is trivially stratified, we have that ĤoLinkn(B) ≃ TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop(∣∆n∣,B) ≃ Sings(B) is
path-connected. Hence, it follows by the classical fiberwise characterization of weak equivalences
between Kan-fibrations that ĤoLinkn(X )→ ĤoLinkn(Y) is a weak homotopy equivalence.

Notation 7.5.5.13. Given a diagrammatically fibrant stratified space X , we call the (homo-
topy) fiber of HoLinkspX → Xp at x ∈ Xp the local homotopy link of X at x.

As a corollary, combining Lemma 7.5.5.12 and Corollary 7.5.5.11, as well as the stability of
weak equivalences between fibrant objects under pullbacks along fibrations, one obtains the
following detection criterion for diagrammatic equivalences.
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Corollary 7.5.5.14. Let w∶X → Y ∈ StratP be a stratum-preserving map of diagrammatically
fibrant stratified spaces. Then the following are equivalent:

1. w is a diagrammatic equivalence;

2. For each p ∈ P , the induced map wp∶Xp → Yp is a weak homotopy equivalence, and for
each x ∈ Xp (or just for a representative system of path components) the induced map on
local homotopy links

HoLinksp(X )x →HoLinksp(Y)w(x)
is a diagrammatic equivalence.

The analogous equivalence holds for categorically fibrant spaces and categorical equivalences.
Even more, in this case it follows from the décollage condition that these two statements are
furthermore equivalent to

3. For each p ∈ P , the induced map wp∶Xp → Yp is a weak homotopy equivalence, and for
each x ∈ Xp (or just for a representative system of path components) the induced map on
local homotopy links

HoLinksp(X )x →HoLinksp(Y)w(x)
induces weak equivalences on strata.

Using an analogous (but significantly easier) argument to the proof of Proposition 6.3.1.21,
one can show that local homotopy links are indeed local, in the following sense.
Lemma 7.5.5.15. Let X be a diagrammatically fibrant stratified space. Let p ∈ P , x ∈ Xp and
let N be a neighborhood of x ∈ X . Then the inclusion of local homotopy links

HoLinksp(N )x →HoLinksp(X )x
is a diagrammatic equivalence.
Remark 7.5.5.16. Together with Corollary 7.5.5.14, Lemma 7.5.5.15 allows us to verify
stratified homotopy equivalence between bifibrant stratified spaces in terms of a two-step
procedure, involving a global computation, which is only concerned with strata, and a purely
local computation, concerning the local homotopy links. In the case of categorically fibrant
stratified spaces, one even only needs to verify strata-wise weak equivalence on the local level.

In many cases of geometric stratified spaces, such as topological pseudo manifolds, local
stratified homotopy links admit explicit geometric models.
Remark 7.5.5.17. Let X ∈ StratP be a conically stratified space (see [Lur17]). Recall that
this means that, for every p ∈ P and every x ∈ Xp, there exists a neighborhood N of x, that
is locally stratum-preserving homeomorphic to a product Ux ×CLx, where Ux is a trivially
stratified space and CLx is the stratified cone on a stratified space Lx ∈ StratP>p obtained by
equipping the (teardrop) cone on Lx with the stratification

[y, t]↦

⎧⎪⎪
⎨
⎪⎪⎩

p , if t = 0
sLx(y) , otherwise.

Suppose, furthermore, that the strata of X are locally (weakly) contractible, such that we
may choose Ux to be (weakly) contractible. Then, combining Lemmas 7.5.5.7 and 7.5.5.15 we
obtain a sequence of diagrammatic equivalences over P :

HoLinksp(X )x ≃HoLinksp(N )x
≅HoLinksp(Ux ×CLx)x
≃HoLinksp(Ux ×CLx)
≃ Ux × (CLx)>p

≃ (CLx)>p

≅ (0,1] ×Lx
≃ Lx.
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It follows that the local homotopy link can be homotopically identified with what is often
referred to as the (local) link of a topological pseudomanifold (see, for example [Ban07]).

7.A Refined stratified spaces and Nand-Lal’s homotopy
theory

In this section, we relate the homotopy theory Stratc to the work of [Nan19]:

Recollection 7.A.0.1 ([Nan19]). To avoid dealing with empty strata, [Nan19] introduced
the notion of a surjectively stratified space, defined as follows: Denote by Strats the full
subcategory of Strat given by such stratified spaces X , for which the stratification sX ∶X → PX
is surjective. In other words, such stratified spaces whose stratification poset contains no
redundant elements (but possibly redundant relations). Such a stratified space is called
surjectively stratified. In [Nan19], Nand-Lal constructs a homotopy theory for Strats via
transfer along the composition

Strats ↪ Strat
Sings
ÐÐÐ→ sStrat FÐ→ sSet,

using the Joyal model structure on sSet. In other words, a weak equivalence in the resulting
homotopy theory is a map of stratified spaces f ∶X → T , for which the underlying simplicial
map of the stratified simplicial map Sings(f) is a categorical equivalence. It follows that this
class of weak equivalences is precisely the class of categorical equivalences with source and
target in Strats. We denote by Stratcs the relative category given by Strats, together with
such weak equivalences.

Let us now relate Stratcs to Stratc.

Proposition 7.A.0.2. The inclusion Strats ↪ Strat induces a homotopy equivalence of
relative categories

Stratcs
≃
Ð→ Stratc,

and hence an equivalence of the corresponding ∞-categories.

Proof. The functor (−)r∶Strat → Strat has image in Strats. By Proposition 7.5.3.7, there
is a natural isomorphism Sings ○ (−)r ≅ (−)r ○ Sings, which shows that (−)r preserves refined
categorical equivalences. Furthermore, since (again by Proposition 7.5.3.7) the refinement map
is a categorical equivalence, it follows that (−)r defines a homotopy inverse to the inclusion of
relative categories Stratcs ↪ Stratc. One homotopy is given by the refinement map and one
by the identity.

7.B An elementary extension lemma
In this section, we give a proof of Lemma 7.5.1.7. Before we give a proof, let us introduce
some notation and quickly illustrate where metrizability comes into play. It is not hard to
see that there is a continuous map i∶Dn+1 × [0,1] → Dn+1 × [0,1) ∪ Sn × [0,1], which is the
identity on Dn+1 × {0} ∪ Sn × [0,1] and maps D̊n+1 × [0,1] into D̊n+1 × [0,1). Hence, the
obvious thing to do would be to simply glue f and f ′ along Dn+1 × {0} ∪ Sn × [0, 1) to a map
f̂ ∶Dn+1 × [0, 1)∪Sn × [0, 1]→X and then set f̃ = f̂ ○ i. The issue with this approach is that the
map f̂ obtained in this way will generally not be continuous. Indeed, it is obtained by gluing
two maps defined respectively on an open and a closed subset of Dn+1 × [0, 1) ∪Sn × [0, 1]. To
illustrate this point a little better, consider the homeomorphism

Dn+1
→ Sn × [0,1]ÒSn × {1}

y ↦ [
y

∣∣y∣∣
,1 − ∣∣y∣∣]
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mapping 0 to the point given by Sn × {1}. We obtain a change of coordinates y ≙ [x, s]. By
setting

f ′x,t(s) = f
′
([x, s], t)

we can interpret the data of a map f ′∶Dn+1 × [0,1] → X as a continuous family of paths
f ′x,t∶ [0,1]→X, indexed over (x, t) ∈ Sn × [0,1), which fulfill

γx,t(1) = γx′,t(1),

for all x,x′ ∈ Sn, t ∈ [0,1]. If we want f̂ = f ∪ f ′ to be continuous, then we precisely need
convergence

f ′xn,tn(sn)→ f([x,0],1)
for sequences ([xn, sn], tn)→ ([x,0],1). Let d∶X ×X → [0,∞) denote a metric that induces
the topology on X and suppose that there is a uniform bound

d(f ′x,t(s), f
′
x,t(0)) = d(f ′x,t(s), f([x,0], t)) ≤ φ(s)

by some continuous function φ∶ [0,1]→ [0,1] with φ(0) = 0, at least for (s, t) ∈ [0, 1
2 ] × [

1
2 ,1].

It follows from the triangle inequality that

d(f ′xn,tn(sn), f([x,0],1)) ≤ φ(sn) + d(f([xn,0], tn), f([x,0],1)),

for (sn, tn) close to (0,1). In particular, it then follows from the continuity of f that this
expression converges to 0. If the speed at which the paths f ′xn,tn leave f ′xn,tn(0) becomes
arbitrarily large as (xn, tn)→ (x,1), then such a bound φ may generally not exist. We may,
however, use the metrizability of X to reparametrize the paths f ′x,t in a way to enforce such
global bounds. We proceed as follows.

Proof of Lemma 7.5.1.7. Using the notation above, i is given by

i ∶Dn+1
× [0,1]→Dn+1

× [0,1) ∪ Sn × [0,1]

([x, s], t)↦ ([x, s], s
t

2
+ (1 − s)t).

It remains to show that we may without loss of generality assume that f ′ admits a bounding
function φ∶ [0, 1]→ [0, 1] as above. For two topological spaces T,T ′, denote by TT ′ the mapping
space equipped with the compact open topology. If T ′ is locally compact Hausdorff, then this
construction defines the right adjoint to the functor − × T ′ ([DK70]). Furthermore, if T is
metrizable, then the topology on TT ′ is easily seen to be the topology of uniform convergence
on every compactum. Finally, denote by Aut(R≥0) the subspace of self-homeomorphisms of
R≥0. Consider the following three maps.

M [0,1]
→ Aut(R≥0)

γ ↦ σγ ∶= {s↦ sup
t≤s,1

d(γ(t), γ(0)) + s};

Aut(R≥0)→ Aut(R≥0)

σ ↦ σ−1;

Aut(R≥0)→ [0,1][0,1]

σ ↦ {s↦min{σ(s),1}}.

It is not hard to see, using the topology of uniform convergence, that the first and last of these
maps are continuous. That inversion is continuous follows from [Are46, Thm. 4]. Now, let

ρ ∶M [0,1]
→ [0,1][0,1].

be the composition of these three maps. Then ρ has the following properties:
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(i)ρ ρ(γ)(0) = 0 if and only if s = 0;

(ii)ρ d(γ(ρ(γ)(s)), γ(0)) ≤ s,

for all s ∈ [0,1], γ ∈X[0,1]. The first property is immediate by construction of ρ. The second
inequality is obtained from

d(γ(ρ(γ)(s)), γ(0)) ≤ sup
t≤ρ(γ)(s),1

d(γ(t), γ(0)) + ρ(γ)(s) = σγ(ρ(γ)(s))

≤ σγ(σ
−1
γ (s))

= s.

Next, denote by ϕ ∶ [0,1]2 → [0,1] a function fulfilling

(i)ϕ ϕ(s, t) = 0, (s, t) ∈ [0, 1
2 ] × [

1
2 ,1] ;

(ii)ϕ ϕ(s, t) = 1, (s, t) ∈ [0,1] × {0} ∪ {1} × [0,1],

and, define

Φ ∶Dn+1
× [0,1)→Dn+1

× [0,1)
([x, s], t)↦ ([x, (1 − ϕ(s, t))ρ(f ′x,t, s) + ϕ(s, t)s], t).

Note first that Φ is well defined, that is, its value is independent of x ∈ Sn when s = 1, since
then also (1 − ϕ(s, t))ρ(f ′x,t, s) + ϕ(s, t)s = 1. Furthermore, Φ, has the following properties:

(i)Φ Φ([x, s], t) = ([x, s], t), for ([x, s], t) ∈Dn+1 × {0} ∪ Sn × [0,1);

(ii)Φ Φ(D̊n+1 × [0,1)) ⊂ D̊n+1 × [0,1);

(iii)Φ Φ([x, s], t) = ρ(f ′x,t, s), for (s, t) ∈ [0, 1
2 ] × [

1
2 ,1].

Property (i)Φ follows from Property (i)ϕ and Property (i)ρ. Property (ii)Φ follows from
Property (i)ρ, and finally Property (iii)Φ follows from Property (ii)ϕ. We may then replace f ′
by f ′′ = f ′ ○Φ, obtaining

(i)f ′′ f ′′([x, s], t) = f ′([x, s], t) = f([x, s], t), for ([x, s], t) ∈Dn+1 × {0} ∪ Sn × [0,1);

(ii)f ′′ f ′′(D̊n+1 × [0,1)) ⊂ f ′(D̊n+1 × [0,1));

(iii)f ′′ d(f ′x,t(s), f ′x,t(0)) ≤ s, for (s, t) ∈ [0, 1
2 ] × [

1
2 ,1].

Properties (i)f ′′ and (ii)f ′′ are immediate by Properties (i)Φ and (ii)Φ respectively, while
Property (iii)f ′′ follows from Property (iii)Φ and Property (ii)ρ.

7.C Remaining part of the proof of the nonexistence
proposition

In Proposition 7.4.0.1 (using the notation there) we claimed that a path γ from a to b that
(described as starting from b) ascends monotonously in height and passes to the left of b1, to
the right of c2, to the left of b3 etc., as illustrated, cannot lie in the image of r∗ (even up to
stratified homotopy). Here, we provide a rigorous proof of this statement.

Proof. This insight can be formalized as follows: For n ∈ N, denote by Xbn the stratified
spaces obtained from X by taking only the point bn as the p-stratum. The identity at the
space level 1X does not induce stratified maps X ,Y → Xbn . However, it nevertheless induces
(non-)stratified maps of stratified singular simplicial sets. Furthermore, by the same argument
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as above, Sings(Xbn) are quasi-categories. In addition to this, on Xbn , r is stratified homotopic
to the identity relative to a and b. It follows that we obtain a commutative diagram

hoSings(X )(a, b) hoSings(Y)(a, b)

hoSings(Xbn)(a, b)

r∗

τcn

σbn

(7.43)

Now, Sings(Xbn)(a, b) is simply the set of homotopy classes of paths in X ∖ {bn}, which is
homotopy equivalent to S1. Under post-composition with the straight line path from b to a,
we may thus identify

hoSings(Xbn)(a, b) ≅ hoSings(Xbn)(a, a) ≅ π1(S
1
) ≅ Z.

We may proceed mutatis mutandis replacing bn with cn. Then, under this identification with
the integers, the sequences σbn([γ]), σcn([γ]) ∈ Z are (modulo signs, originating from choices
of orientation) given by:

(1,0,1,0,1,⋯)
(0,1,0,1,0,⋯).

However, for every morphism g ∈ hoSings(X )(a, b) at least one of the sequences τbn(g) or
τcn(g) has only finitely many non-zero values. Indeed, assume that g is such that both τbn(g)
and τcn(g) have infinitely many non-zero values. Every such g can be represented by a path γ′
which stays in Xp for [0, 1

2 ] and then exits into Xq. For τbn(g) (τcn(g)) to be non-zero, γ′ must
intersect the line segment connecting a and bn (cn), as otherwise γ′ maps into a contractible
subspace of Xbn (Xcn). Since these intersection points necessarily converge to a as n→∞, it
follows that a ∈ γ[ 1

2 ,1] and therefore γ( 1
2) = a. It follows that γ′(t) lies strictly above a′ (in

direction of the y-axis), for all t > 1
2 greater than some th ∈ 1

2 . Furthermore, it follows from
the stratification of γ and the assumption on infinitely many intersection points with the line
segment bn and a above, that we find tb, tc ∈ (

1
2 , th), such that γ′(tb) lies on a line segment

between a and bn for some n > 0, and γ′(tc) lies on a line segment between a and cm, for some
m > 0. To see this (in the case of (bn)), consider a sequence ti such that each γ′(ti) lies on the
line segment between a and bi. By compactness of [ 1

2 , 1], we may assume that ti converges to
some t′ ∈ [ 1

2 ,1]. Since the intersection points of the line segments from a to bi converge to a,
it follows that γ′(t′) = a. But 1

2 is the only value in [ 1
2 , 1] with γ′(t′) ∈ Xp, hence t′ = 1

2 , and it
follows that ti converges to 1

2 . Finally, the set of points strictly above a′ in Xq is disconnected,
with the line segments between a and bm and a and cn lying in different components, for all
m,n, in contradiction to the connectedness of γ′( 1

2 , th).

7.D On the proof of [Hai23, Thm. 0.1.1/3.2.4]
In this section, we take a detailed look at the proof of [Hai23, Thm. 0.1.1/3.2.4], pointing out
a gap in the latter which stems from different uses of the terminology Segal space.

Remark 7.D.0.1. On the proof of [Hai23, Thm. 0.1.1/3.2.4]: Let Stratex
P denote the full

subcategory of StratP given by the fibrant stratified spaces in the categorical model structure
and denote by Wex the class of categorical equivalences between the latter. It was already
asserted in [Hai23, Thm. 0.1.1/3.2.4] that Sings induces an equivalence of quasi-categories

Stratex
P [W

−1
ex ]

≃
Ð→ AStratP .

While this result is a consequence of the existence of the categorical semi-model structure on
StratP together with Theorem 7.3.3.1, [Hai23] suggested a proof that did not assume the
existence of such a structure. We want to point out two gaps within this proof, which seem to
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require a notion of fibrant replacement in StratcP to be closed. Let us first sketch the proof in
[Hai23]. Some of the equivalences of ∞-categories in [Hai23] are not made explicit. We will
choose explicit models which, to the best of our knowledge, present the intended functors of
∞-categories.

1. Denote by sStratex
P the full subcategory of sStratP given by the (bi)fibrant objects

in sStratcP (i.e. quasi-categories with a conservative functor into P ) and by H the
class of equivalences of quasi-categories over P , between the latter. The quasi-category
sStratex

P [H
−1] is one possible model for the ∞-category of abstract stratified homotopy

types over P , AStratP . One may then consider a diagram of 1-categories (commutative
up to natural isomorphism)

Stratex
P sStratex

P

StratP Fun(sd(P )op, sSet) .

HoLink

HoLink

(7.44)

Now, letWdé be the class of morphisms in Fun(sd(P )op, sSet) that are weak equivalences
in the model structure presenting décollages over P . The class of categorical equivalences
in StratP , denoted Wc is precisely the inverse image of Wdé under HoLink. Furthermore,
[Hai23] proves that H is precisely the inverse image of Wdé under the right vertical, and
that Wex is precisely the inverse image of H under Sings. Hence, there is an induced
diagram of quasi-categories

Stratex
P [W

−1
ex ] sStratex

P [H
−1] ≃ AStratP

StratcP = StratP [W −1
c ] Fun(sd(P )op, sSet)[W −1

dé ] ,

Sings

HoLink

HoLink

(7.45)

commutative up to natural isomorphism. It follows from [Dou21c, Thm. 3], that the
lower horizontal is an equivalence. Furthermore, it follows either from Theorem 5.2.2.20
or from [BGH18, Thm 2.7.4] that the right vertical is an equivalence. This already
proves one of the central results of [Hai23], namely the existence of an equivalence
StratcP ≃ AStratP . In addition to this result, [Hai23] aims to show that the upper
horizontal in Diagram (7.45) is also an equivalence. This follows from commutativity of
Diagram (7.45), if one can show the following two additional claims:

2. The left vertical in Diagram (7.45)

Stratex
P [W

−1
ex ]→ StratP [W −1

c ] = StratcP

is fully faithful: This is not commented on further in [Hai23]. Note that there is
generally no reason to assume that in a category with weak equivalences (C,W ) with
full subcategory A the natural functor A[A ∩W −1] → C[W −1] is an equivalence of
quasi-categories. Consider, for example, the flattening of a quasi-category C ∈ sSet, given
by the 1-category (∆/C)op. The flattening of C has a full discrete subcategory C0 given
by the objects of C. If we denote by W the class of morphisms in (∆/C)op that map 0 to
0, there is a natural equivalence of quasi-categories, (∆/C)op[W −1] ≃ C, which fixes the
objects in C0 (see, for example, [Lan21, Thm. 3.3.8]). However, C0[W ∩ C

−1
0 ] remains a

discrete category. A classical condition to even ensure equivalence between C[W −1] and
A[A∩W −1] is the existence of an endofunctor F ∶C→C, with image in A, together with
a zig-zag of natural transformations 1↔ F , given by morphisms in W . In the situation
of Diagram (7.45) this amounts to constructing a fibrant replacement in StratcP , which
we have done in this work, but whose existence was not yet known at the time of writing
of [Hai23].
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3. The diagonal in Diagram (7.45)

Stratex
P [W

−1
ex ]→ Fun(sd(P )op, sSet)[W −1

dé ]

(and hence also the left vertical) is essentially surjective: Again, this claim is close to
requiring fibrant replacements in StratcP . Recall that DiagP denotes the localization of
Fun(sd(P )op, sSet) at pointwise-weak homotopy equivalences of diagrams. It follows
from the equivalence StratdP ≃ DiagP , that every décollage in DiagP lies in the image of

StratP
HoLink
ÐÐÐÐ→ Fun(sdP, sSet)→ DiagP .

In other words, if we denote by Stratdé
P the full subcategory of stratified spaces X for

which HoLink(X ) is a décollage, then the restricted functor

Stratdé
P → Fun(sd(P )op, sSet)[W −1

dé ]

is essentially surjective. [Hai23] then claims that Stratdé
P = Stratex

P , from which essential
surjectivity of the diagonal would follow. With the definition of décollages we used here
and which is also used in [Hai23] this is incorrect. The confusion arises from two possible
definitions of décollages and complete Segal spaces: One is expressed purely intrinsically
to the ∞-categories Fun(sd(P )op,Grpd∞) and Fun(∆op,Grpd∞) and one expressed
in terms of injective model structures on the 1-categories Fun(sd(P )op, sSet) and
Fun(∆op, sSet). Here, we have defined décollages intrinsically to Fun(sd(P )op

,Grpd∞)
and complete Segal spaces in [Hai23] are also defined intrinsically to Fun(∆op,Grpd∞).
Alternatively, one can define décollages as fibrant objects in the model category Fun(sd(P )op

, sSet)dé

(defined in Section 5.2.2, as a left Bousfield localization of the injective model struc-
ture) and, as it is classically done, complete Segal spaces as (certain) fibrant objects
in the injective model structure on Fun(∆op, sSet). Let us call the former definition
∞-categorical and the latter 1-categorical. [Hai23] makes use of a result of Joyal and Tier-
ney concerning the relationship of quasi-categories and 1-categorical Segal spaces [JT07,
Cor. 3.6], from which it follows that Stratex

P consists exactly of such stratified spaces for
which HoLink(X ) is a 1-categorical décollage. Due to the overlap in terminology, [Hai23]
then reasons that Stratdé

P = Stratex
P . This is false. Indeed, every stratified space with

two strata, X over P = {p < q}, has the property that HoLink(X ) is an ∞-categorical
décollage (there are no conditions to be verified). But for HoLink(X ) to be injectively
fibrant the map HoLinkI(X ) → Xp, for I = [p < q], needs to be a Serre fibration. For
example, ∣ΛJ0 ∣s with J = [p ≤ p < q] fails to have this property.
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Note to the reader: The following part of this thesis presents our results on generalized
simple homotopy theory. For a less technical and more straight-to-the-point account, not
containing any proofs, we refer to Chapter 2. This part of this thesis is written as one cohesive
text, and results in one chapter often strongly rely on the notation, language, and results of
the previous chapters.
Our model categorical approach to simple homotopy theory required the development of a
calculus of structured cell complexes in an abstract categorical setting. This language is
covered in Chapter 8. This chapter is rather technical in nature, and, to a large part, re-frames
existing theory on cell complexes in model categories in a setting that is suited to our purposes
of simple homotopy theory. For a more motivated reading experience, we certainly recommend
first reading Chapter 2. Furthermore, the subsequent chapters Chapters 9 and 10 do not rely
on Section 8.3 of Chapter 8. As Section 8.3 is particularly technical, we recommend skipping
it first, and then returning to it when reading Chapter 11. The next three chapters Chapters 9
to 12 all build upon each other and are best read in linear order. Finally, Chapter 13 relies on
results spread all over Parts II and III, and should probably only be read after reading Part III
and at least the summary of Part II in Chapter 2.
We will introduce a rather large amount of new notation in this part of the thesis. In order
for this to not pose an obstruction to readability, we have added a notation list with page
references that cover most of the recurring notation. It can be found after Chapter 13.

7.5 Category-theoretical notation
Finally, we will constantly and freely make use of the language of category theory (see, for
example, [Mac13; Rie17] for an overview) and in the latter half of this part of model categories
and higher categories (see [Hir03; Lur17; Bar10]). Let us quickly fix some notation. When we
say category in the following notation section, we mean a locally small 1-category. When we
speak of a category in the extended sense, this may not just refer to 1-categories but also to
all sorts of other variations, such as enriched categories, quasi-categories or bicategories (see
[JY20], for an introduction to bicategories).

Notation 7.5.0.1. Among the most commonly occurring categories in this part will be the
following:

1. ∅ will denote the empty category; ⋆ will denote the terminal category with one object and
one arrow; [1] = {0→ 1}, will denote the category with two objects and one non-identity
arrow from 0 to 1;

2. Set will denote the category of sets;

3. Top will denote the category of compactly or ∆-generated spaces (see [Rez17; Dug03])10;

4. Ab will denote the category of abelian groups and AbMon will denote the category of
abelian, unital monoids;

5. Given a (not necessarily commutative) unital ring R, Ch≥0(R) will denote the category
of non-negatively graded chain complexes of (left) R-modules;

6. ∆ will denote the category of finite linear posets of the form [n] ∶= {0, . . . , n}, for n ≥ 0
and sSet will denote the category of simplicial sets, i.e., of Set valued presheaves on ∆;

We will generally assume the existence of Grothendieck universes (see [nLa25c], for an
overview), and not pay much heed to set theoretical issues of size, passing to a larger
Grothendieck universe whenever necessary. We ensure the reader that at least the Whitehead

10If we use compactly or ∆-generated spaces is mainly irrelevant, the only important part will be that we
work in a cartesian closed category of topological spaces. Assuming ∆-generation may at time be useful, in
order to obtain local presentability (see [nLa25d]).
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groups and Whitehead monoids we construct later on will be small in the sense that they are
of set size. We will furthermore make use of the following (large) 2-category (by 2-categories
we mean categories enriched over the 1-category of sufficiently small categories and functors).

Notation 7.5.0.2. Cat will refer to the (large) 2-category of (sufficiently small) categories,
with 1-morphisms given by functors and 2-morphisms given by natural transformations.

We we speak of a bicategory, we will mean a category that is weakly enriched over the
category of (sufficiently small) categories, in the sense that associativity and unit laws are
only guaranteed up to certain canonical isomorphisms (see [nLa25a], for a concrete definition
and [JY20], for an introduction). The term (∞, 1)-category, or just ∞-category, for short, will
refer to quasi-categories as in [Lur09]. Often, it will be useful to distinguish between higher
categories, such as quasi-categories or simplicial categories, and 1-categories, which both arise
from some underlying 1-category. In this case, we use the following notation.

Notation 7.5.0.3. 1. Categories will usually be denoted by bold letters, i.e., in the form
C.

2. Quasi-categories will be denoted by calligraphic letters, i.e., in the form C.

3. Simplicial categories will be denoted by underlining bold letters, i.e., in the form C.
When we treat a 1-category as a quasi-category or simplicial category, this will mean we

are referring to the associated nerve or, respectively, the associated simplicial category with
discrete mapping spaces. In a context where multiple such letters are used, and there is a
preferred way of passing between the different settings, the quasi-category C will always be
associated to the 1-category C, C will be the underlying 1-category of C, and so on.

We furthermore use the following notation for constructions on categories in the extended
sense.

Notation 7.5.0.4. Many of the following constructions we will only need in the case of
1-categories, and hence not introduce them for the extended case.

1. Given a category C, the associated (possibly large) set of objects will be denoted by
Ob(C).

2. Given a category in the extended sense C and objects X,Y ∈C, the notation C(X,Y )
will refer to the set (simplicial set, space, object in some category, . . . ) of morphisms
X → Y .

3. Dual categories will be denoted in the form Cop.

4. Given two categories in the (same) extended sense, C and D, the notation Fun(C,D)
or DC refers to the (respective) extended category of functors from C to D.

5. In particular, given a 1-category C, the notation C[1] will refer to the category of arrows
in C, with morphisms from f ∶X0 →X1 to g∶Y0 → Y1 given by commutative squares

X0 Y0

X1 Y1 .

f g (7.46)

The evaluation functors C[1] →C will be denoted by ev0 and ev1, respectively.

6. Given a functor of 1-categories F ∶C → D and X ∈ D, we denote by FX/ the comma
category, whose objects are pairs (Y, f ∶X → F (Y )) with Y ∈ C and f ∈ D and whose
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morphisms (Y0, f0∶X0 → F (Y0))→ (Y1, f1∶X1 → F (Y1)) are arrows g∶Y0 → Y1 in C, such
that the diagram

X

F (Y0) F (Y1)

f0 f1

F (g)

(7.47)

commutes. The dual construction, using arrows F (Y ) → X instead is denoted F/X .
At times, when there is a preferred functor F ∶C→D, we will also write CX/ and C/X
instead. In the particular case where F = 1D, this produces the under and overcategories
of X, DX/ and D/X , also called coslice and slice categories.

7. Given a 1-category or quasi-category C, the notation C≃ will refer to the groupoid-core,
given by the wide subcategory of C of isomorphisms.

8. Given a functor of 1-categories F ∶ I→ J, and a third category C, we denote by

F ∗∶CJ
→CI

the precomposition functor, mapping D∶J→C to D ○F ∶ I→C and acting in the obvious
way on morphisms. Supposing that it exists (for example if I is small and C has small
colimits), we denote by

F!∶CI
→CJ

the left adjoint functor of F ∗, given by left Kan extension.

9. Given a 1-category or quasi-category C and a class of morphism W ⊂C, the notation
C[W −1] will denote either the 1-categorical or quasi-categorical localization of (the nerve
of) C at W . We will always explicitly make clear what localization we mean.

10. Homotopy categories (to be understood in the respective sense) of a quasi-category,
simplicial category or (semi-)model-category C will be denoted by hoC. In the case of a
quasi-category, this means considering the category obtained by considering 1-morphisms
given by simplices subject to the relations generated by 2-simplices (see [Lur09]). In the
case of a simplicial category, this means we consider the 1-category obtained by taking
path-components of mapping spaces. In the case of a (semi-)model-category, we mean
the 1-category obtained by localizing at weak equivalences.
We follow the general convention that, if not stated otherwise, any other operation on
categories is to be executed before passing to homotopy categories. For example, hoCI

refers to a homotopy category of a functor category CI, and not to a functor category
with values in the homotopy category hoC.
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Chapter 8

On the yoga of general cell
complexes

In many areas of mathematics, one of the core techniques of proof and investigation is the
idea of a presentation of a complicated object in terms of simpler, elementary objects. In the
world of linear algebra, this is most prominent in the concept of a basis, in group theory in
the concept of a presentation of a group and in (classical) homotopy theory in the notion
of a CW-complex. More recently, and abstractly speaking, in the language of ∞-categories
this principle is often captured in the notion of a presentable ∞-category and in the language
of model categories, it is usually captured in the notions of combinatorial or cellular model
categories and (absolute) cell complexes (see, for example, [Hir03; Lur09]). Before we recall an
explicit definition of abstract cell complexes, recall the following two guiding examples:

1. Let Top be the category of topological spaces and Dn be the n-dimensional disk.
A CW-complex X, consisting of a space X and a set of characteristic maps CX ⊂

⊔n∈N Top(Dn,X), is - roughly speaking - a space that can be built inductively by gluing
in cells Dn along the boundaries of the characteristic maps ∂σ∶∂Dn ↪ Dn σ

Ð→ X, for
σ ∈ CX. Explicitly, we may then write X as a transfinite composition of the so-called
skeletons of X,

∅ =X−1
↪X0

↪X1
↪ ⋅ ⋅ ⋅↪X∞ =X

where the inclusions Xn ↪Xn+1 are inductively defined through pushout squares

∐σ∈Cn
X
∂Dn

∐σ∈Cn
X
Dn

Xn−1 Xn

⌟

(8.1)

with the left vertical induced from an (assumed) factorization

∂Dn Dn

Xn−1 X

σ (8.2)

of the boundaries of the characteristic maps σ ∈ CnX of dimension n.

2. Let Ch≥0(R) be the category of positively graded chain complexes of R-modules, over
some not-necessarily commutative unital ring R. A free chain-complex F● = (Fi, di) ∈
Ch≥0(R) can be presented through homological spheres and disks as follows: Observe
first that F● may be written as transfinite composition

0 = F −1
● ↪ F 0

● ↪ F 1
● ↪ ⋅ ⋅ ⋅↪ F∞● = F●

401



402 CHAPTER 8. ON THE YOGA OF GENERAL CELL COMPLEXES

where we denote by Fn● the subcomplex of F● obtained by setting groups of degree
greater than n to 0. As in the case of CW-complexes, the inclusion Fn−1

● ↪ Fn● can be
interpreted as a gluing of cells procedure:
For n ≥ 1, denote by Dn

● the chain complex

⋅ ⋅ ⋅→ 0→ R
1
Ð→ R → 0 ⋅ ⋅ ⋅→ 0

which is non-zero exactly in degree n and n − 1. Denote by ∂Dn
● = R[−n + 1], the

subcomplex given by R at n − 1 and 0 everywhere else. For n = 0, denote by Dn
● the

chain complex R[0], given by R in degree 0 and set ∂Dn−1
● = 0.

A choice of basis (bi,n)i∈In ⊂ Fn, in each degree n, specifies the same data as a map
⊕i∈In

Dn
● → F● (given by mapping 1 ∈ R =Dn

n in the i-th component of ⊕i∈In
Dn
● to bi,n).

Then the induced diagram

⊕i∈In
∂Dn

● ⊕i∈In
Dn
●

Fn−1
● Fn●

⌟

(8.3)

is a pushout square. In this sense, we can think of a basis of a free chain complex as a
choice of cell structure on the latter.

The decisive feature of such cell-structures, exhaustively exploited all over the world of algebra
and homotopy theory, is that they allow for the reduction of theorems and constructions
concerning complicated objects to statements about simple objects, on which the statement
often becomes elementary to handle. In the world of classical homotopy theory, this is often
summarized under what people call induction by cells (see any introductory textbook on
algebraic topology, such as [Hat02]). It turns out that these cellular techniques are quite
general and can be applied in many homotopy theoretic contexts (see, for example, [Hir03]).
To successfully apply these techniques, one first needs a solid understanding of the fundamental
notions, operations, and properties in a context of cell complexes – such as subcomplexes,
finiteness, and gluing operations. One goal of this section is to expose these basic principles in
a general, 1-categorical context. More specifically, we will do so while keeping track of fixed cell
structures on the objects. This will be of importance in our investigations of generalized simple
homotopy theory in the subsequent chapters, when the questions of (homotopical) uniqueness
of cell structures (up to certain elementary operations) will be the core line of investigation.
Most of what we present here is certainly known in some form and has occurred in the literature
numerous times in different shapes and forms. The goal here is mainly to present the relevant
structures and results in a cohesive context and have a rigorous and compatible source for
citations available. Our investigations here will explicitly not yet be homotopy-theoretic or
higher categorical. However, they are clearly performed while having the homotopical context
of (cofibrantly generated or cellular) model categories in mind.

8.1 Cellularized categories
In this section, we introduce the language of presentations, structured cell complexes and
cellularized categories, as well as the basic operations within the latter.

8.1.1 Presentations and structured relative cell complexes
Let us first introduce the definition of a presentation of a relative cell complex. This notion is
inspired by [Hir03, p. 10.6.2] however, it is not entirely equivalent (see Remark 8.1.1.8).

Definition 8.1.1.1. Let C be a cocomplete category and let B be a set of morphisms in C.
Let c∶A→ B be a morphism in C. By a B-filtration-presentation p of c we mean the following
data:
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• A transfinite composition diagram

A = B0
→ ⋅ ⋅ ⋅→ Bα → Bα+1

→ ⋅ ⋅ ⋅→ Bλ = B ,

indexed over some ordinal λ, such that c is the (transfinite) composition A→ B.

• For every α ∈ λ, a family (ιi∶∂Di → Di, σi∶Di → Bα+1)i∈Iα , with ιi ∈ B, such that
factorizations

∂Di Di

Bα Bα+1

φi

ιi

(8.4)

exist. Furthermore, we require that the induced diagram

⊔i∈Iα
∂Di ⊔Di

Bα Bα+1

⊔ ιi

⊔φi ⊔σi
(8.5)

is a pushout square.

Remark 8.1.1.2. It follows from the general commutativity properties of colimits and pushouts
that a morphism admits a B-filtration-presentation if and only if it lies in the smallest class of
morphisms which contains B and is closed under transfinite composition and pushouts. This
class of morphisms is also called the class of relative B-cell complexes (see [Hir03, p. 10.5.8]).

Remark 8.1.1.3. The reason we use the terminology filtration-presentation, instead of just
presentation is because we want to distinguish this notion from a more homotopy-theoretic
notion of presentation that appears later in the text.

Observation 8.1.1.4. Observe that an empty filtration-presentation, with ordinal λ = 0, is
simply the data of the identity morphisms A→ A. A filtration-presentation with ordinal λ = 1
and I0 = ∅ specifies the data of a morphism A = B0 → B1 = B, which fits into a pushout
square

∅ ∅

A B

⌟

(8.6)

where ∅ = ∐∅ is the empty coproduct, which specifies the initial object of C. As the
upper horizontal is an isomorphism, so is the lower horizontal. It follows that an empty
filtration-presentation with λ = 1 simply specifies the data of an isomorphism A ≅ B.

Example 8.1.1.5. As we have discussed in the introduction of this section, any CW-complex
admits a B-filtration-presentation, where B is the class of boundary inclusions, and the
presentation ordinal λ is ω0, the first infinite ordinal.

There is a general ambiguity in the language of algebraic topology, whether the term
CW-complex should refer to a space, together with a choice of cell structure, or just to
a space which admits the structure of a CW-complex. Of course, for many theorems this
linguistic ambiguity is entirely irrelevant, but in other contexts, such as the definition of cellular
chain-complexes, the cell structure is clearly part of the data required to obtain well-defined
definitions. For the purpose of studying different possible presentations of an object (especially
in the homotopy theoretic sense, when doing simple homotopy theory), the presentation clearly
needs to be part of the data in some sense. However, what one is really interested in is not the
whole data of a filtration-presentation, but only the data of the cells or characteristic maps.
In other words, we do not want to distinguish between two filtration-presentations which are
obtained by gluing things in a different order, or through different choices of pushout squares.
This is captured in the following definitions.
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Definition 8.1.1.6. Let C be a cocomplete category and let B be a set of morphisms in C.

1. Let c∶A→ B be a morphism in C and let p be a B-filtration-presentation of c. Using the
notation of Definition 8.1.1.1, the set of characteristic maps associated to p, is the set

Cp = {(ιi∶∂Di ↪Di,Di
σi
Ð→ Bα+1

→ B) ∣ i ∈ Iα, α ∈ λ} ⊂ B × ⊔
∂D↪D∈B

C(D,B) .

2. A structured relative B-cell complex c = (c∶A↪ B,Cc) consists of the data of

• A morphism c∶A→ B in C;
• A set of morphisms Bc ⊂ B ×⊔∂D↪D∈B C(D,B), such that Bc is the set of charac-

teristic maps with respect to some filtration-presentation of c.

At times, we will refer to the elements of Cc as the characteristic maps of c and also as the
the cells of c. By a presentation p of a cell complex c we mean any filtration-presentation
of c, such that Cp = Cc.

Notation 8.1.1.7. We will follow the convention of writing c∶A→X, when we want to refer
to a cell complex as a structured object, and c∶A → X, when we think of the underlying
morphism. This general convention of changing to regular font, when referring to an underlying
object, will be used all over this thesis.

Remark 8.1.1.8. A remark comparing the definitions of presentation in [Hir03, p. 10.6.2]
and Definition 8.1.1.1 is in order. The crucial difference is that the data of a presentation in
Hirschhorn emphasizes the boundary maps ∂Di → Bα, while our definition emphasizes the
characteristic maps Di → Bα+1. In all scenarios which we are interested in, the morphisms
Bα → Bα+1 are monomorphisms. Hence, the characteristic maps recall the boundary maps.
However, the converse is clearly false. This can already be illustrated with the following simple
example from algebra, which illustrates well why the definition of a presentation in [Hir03]
does not encapsulate the concept of presentation which we had in mind: Let k be a field and
let C be the category of k-vector spaces. We can equip C with the singleton of boundary
inclusions B = {0→ k}. Then a cell structure on a vector space V with respect to B is simply
a choice of unordered basis B ⊂ V . In Hirschhorn’s sense, however, a presentation only recalls
the maps 0 → k → V , which contain no information. For Hirschhorn’s purposes, this notion
is entirely sufficient, as [Hir03] only uses presentations as a tool whose existence has useful
implications for homotopical arguments, but does not study them as objects of interest on
their own. In this sense, the two notions are often equivalent when it comes to existence claims,
but may differ when one is looking to classify cell-structures up to some notion of equivalence.
The questions of simple homotopy theory that we have developed the theory of abstract cell
complexes for are of the latter type. Hence, we will take great care to mind the differences in
notions, when citing results from Hirschhorn.

Notation 8.1.1.9. It is unlikely that all throughout this work, we will recall to add the
(somewhat superfluous) word structured whenever a structured cell complex occurs. We will,
however, make sure to use fraktur font for all structured relative cell complexes, in order to
remind the reader of the cell structure hidden in the background.

In order for the theory of structured relative cell complexes associated with a set of boundary
inclusions B to be well-behaved, we will make a series of categorical assumptions.

Definition 8.1.1.10. A celullarized category consists of the following data:

1. A category C, having all colimits;

2. A set B of morphisms in C, elements of which will be denoted in the form ∂D →D and
called boundary inclusions.

Such that the following holds:
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P(i) B contains no isomorphisms;

P(ii) All relative B-cell complexes a have the property that every pushout square

A B

A′ B′

a

a′

(8.7)

in C is also a pullback square.

Example 8.1.1.11. The category of sets, Set, equipped with the single boundary inclusion
∅→ ∗, is easily verified to be a cellularized category. The relative cell complexes are precisely
the inclusions of sets. Every inclusion of sets A↪X admits exactly one cell structure, namely
the one where the cells are given by the elements of X ∖A.

Example 8.1.1.12. The category of topological spaces (or one of its appropriately generated
derivatives, see [Dug03]) Top, equipped with the set of boundary inclusions B = {∂Dn ↪Dn ∣

n ≥ 0} is a cellularized category. The relative cell complexes are essentially CW-complexes
where the assumption that gluing maps ∂Dn → X need to map into Xn−1 are dropped.
Observe that every such relative cell complex is a closed inclusion. Modifying the source by
a homeomorphism if necessary, we may assume that for a relative cell complex A ↪ X we
actually have A ⊂X. Then, in a pushout diagram

A X

A′ X ′

f ′⌟

(8.8)

one may easily compute that f ′−1(A′) = A, which shows Property P(ii).

Example 8.1.1.13. If we are looking to recover CW-complexes, we need to introduce additional
data which ensures that dimensions are preserved in the gluing process. Consider the category
of filtered topological spaces Filt, defined as follows. An object of Filt is a space T ∈ Top,
together with a family of subsets T 0 ⊂ ⋅ ⋅ ⋅ ⊂ Tn ⊂ ⋅ ⋅ ⋅ ⊂ T∞ = T . We will usually just write T to
refer to the whole filtered space. indexed over the naturals. Morphisms from f ∶ (T0, (T

n
0 )n∈N)

to (T1, (T
n
1 )n∈N) are given by continuous maps f ∶T0 → T1, such that f(Tn0 ) ⊂ Tn1 , for all n ∈ N.

This category is cocomplete. The colimit of a diagram F ∶ I → Filt is given by equipping the
topological space lim

Ð→
F∞i with the filtration

⋃
i∈I

im(F 0
i → lim
Ð→

F 0
i ) ⊂ ⋅ ⋅ ⋅ ⊂⋃

i∈I
im(Fni → lim

Ð→
Fni ) ⊂ ⋅ ⋅ ⋅ ⊂ lim

Ð→
F∞i = lim

Ð→
Fi .

Denote by En the filtered space obtained by equipping Dn with the filtration.

k ↦

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∅ k < n − 1
∂Dn k = n − 1
Dn k ≥ n .

Furthermore, denote by ∂En the filtered subspace of En given by

k ↦

⎧⎪⎪
⎨
⎪⎪⎩

∅ k < n − 1
∂Dn k ≥ n − 1.

If we set B = {∂En ↪ En ∣ n ≥ 0}, then a structured B-complex X∶ ∅→X specifies exactly the
same data as a classical CW-complex. Furthermore, the morphisms in Filt between two such
complexes X and Y are precisely the cellular maps. Similarly, using constant filtered space
(A, (A)n∈N), for A ∈ Top, one can recover relative CW-complexes. Having this information at
hand, one may easily verify Property P(ii).
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Example 8.1.1.14. The category of simplicial sets sSet equipped with the set of boundary
inclusions B = {∂∆n → ∆n ∣ n ≥ 0} is a cellularized category (where Property P(ii) is inherited
from the analogous property in Set, using that limits and colimits in functor categories can be
computed pointwise). The relative cell complexes are precisely the inclusions of simplicial sets
A↪X. Every such inclusion admits exactly one cell structure, namely the one given by the
non-degenerate simplices Xn.d. ∖An.d.. This phenomenon of uniqueness of cell structures for
certain presheaf categories will be studied in more detail in Section 8.3.
Example 8.1.1.15. The category of positively graded chain complexes of modules over some
(not-necessarily commutative) ring R, Ch≥0(R), admits the structure of a cellularized category.
Using notation as in the introduction of this chapter, set B = {∂Dn

● ↪ Dn
● ∣ n ≥ 0}. An

(absolute) structured cell complex X●∶0→X● specifies precisely the same data as a choice of
basis for a free chain complex X● in each degree. A structured relative cell complex X∶A● ↪X●
specifies the same data as a family of elements {bi} ⊂Xn, for each n ≥ 0, such that {[bi]} is a
basis of Xn/An.
Notation 8.1.1.16. Given a cellularized category (C,B), we will generally refer to the whole
tuple by C, and sometimes write BC for the set of boundary inclusions in order to circumvent
any possible ambiguities. Furthermore, given the context of a cellularized category (C,B), we
will often omit B from the language, and simply speak of structured cell complexes instead of
structured B-cell complexes.
Remark 8.1.1.17. The assumption that B contains no isomorphisms is purely in order to
assure that cell-structures contain no redundant data. This ensures that isomorphisms of
absolute cell complexes can be identified on the level of the sets of characteristic maps (see
Corollaries 8.1.4.1 and 8.1.4.5). The second condition ensures that every relative B-cell complex
is an effective monomorphism. Hence this assumption is slightly stronger than the ones made
in the context of a cellular model category in [Hir03, Def.12.1.1]. Having relative cell complexes
be effective monomorphisms ensures that we have a well-behaved theory of subcomplexes, as
discussed in Proposition 8.1.3.1. We use the slightly stronger assumption in order to ensure
that filtration-presentations cannot contain the same characteristic map twice, i.e., that it is
sensible to work with a set of characteristic maps instead of a family of characteristic maps.
Remark 8.1.1.18. Observe that any category with colimits necessarily has an initial object:
The colimit over the empty diagram. Up to equivalence of categories, there is really no harm
in assuming that this initial object is unique, which we will always do in the following, and
denote the initial object by ∅. This has the added advantage of all absolute cell complexes,
i.e., relative cell complexes with source an initial object, all having the same source.
Lemma 8.1.1.19. Let and c∶A → X be a relative cell complex. Given (ι∶∂D → D) ∈ B,
suppose that there is a filtration-presentation p of c and indices α,α′ < λp, i ∈ Iα, i′ ∈ Iα′ , such
that

D Xα+1

Xα′+1 Y

σi

σi′ (8.9)

commutes. Then (i, α) = (i′, α′), or ι is an isomorphism.
Proof. Without loss of generality, we may assume α ≤ α′. Furthermore, by refining p if
necessary, we may even assume α < α′. We are thus in the situation of the following solid
diagram

D ∂D D

Xα+1 Xα′ Xα′+1 X

1

(8.10)
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with a pushout square to the left and all paths ending in X commuting. Since Xα′+1 →X is
a monomorphism, the whole diagram commutes. It follows that we obtain a dashed arrow
making the diagram commute. In particular, ∂D is a retract of D. However, since ∂D ↪D
was assumed to be a monomorphism, it follows that ∂D ↪D is an isomorphism.

In particular, every characteristic map in Cc can only appear once in a filtration-presentation
of c. We are going to make a second assumption, which is purely for notational reasons, but
will significantly simplify notation.

Assumptions 8.1.1.20. Given a cellularized category C, we will assume that B has the
additional property that whenever ι∶∂D →D and ι′∶∂D′ →D′ in B fulfill D =D′, then ι = ι′.

Remark 8.1.1.21. Assumptions 8.1.1.20 is really not a substantial assumption to make. Up
to equivalence of categories, we may always assume that there are Set many representatives
in any given isomorphism class of an object. Then, as B was assumed to be a set, we can
hence always modify the targets of morphisms in B up to an isomorphism, in order for this
property to hold. The crucial notation advantage of Assumptions 8.1.1.20, is that we can
uniquely identify a cell (ι∶∂Dι → Dι, σ∶Dι → X) of a relative cell complex A c

↪Ð→ X, with the
map σ∶Dι →X. We will often use this to our notational advantage, simply writing σ∶Dι →X,
instead of (ι∶∂Dι →Dι, σ∶Dι →X).

8.1.2 Categories of structured (relative) cell complexes
Let us now define the associated categories of relative cell complexes, not the least to have a
notion of isomorphism, and hence a concrete idea of when two structured relative complexes are
considered the same from the perspective we take here. For the remainder of this subsection,
we fix the context of a cellularized category C.

Definition 8.1.2.1. By a structure preserving morphism of two structured relative cell
complexes A1

c1
↪Ð→X1 and A1

c1
↪Ð→X1, we mean a pair of morphisms (fA∶A0 → A1, fX ∶X0 →X1)

in C fitting into a commutative diagram

A0 A1

X0 X1 ,

c0

fA

c1

fX

(8.11)

in C such that, for every characteristic map σ ∈ Cc0 the induced map fX ○ σ is in Cc1 . We
denote by RCell(C) the category of structured relative B-complexes and structure preserving
morphisms, with the obvious notions of identity and composition.

Notation 8.1.2.2. Generally, we will use the notational convention that given a cell complex
ci, its source will be denoted Ai and its target Xi. Similarly, given a morphism f ∶ ci → cj , we
denote the underlying pair of morphisms in C in the form (fA, fX).

Clearly, we are not only interested in studying (proper) relative cell complexes, but also
absolute cell complexes, obtained by letting the source be the initial object ∅ ∈C.

Definition 8.1.2.3. We denote by Cell(C) the full subcategory of RCell(C), given by
such structured relative cell complexes A c

↪Ð→X, for which A ≅ ∅ is initial in C. Elements of
Cell(C) are called absolute structured cell complexes.

Notation 8.1.2.4. We will denote absolute structured cell complexes in the form X = (X,CX).

Next, let us list some elementary properties of structured relative cell-complexes which are
easily verified.
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Notation 8.1.2.5. It will be convenient to treat the set of characteristic maps C as a functor
into the overcategory Set/B, with functoriality induced by postcomposition of characteristic
maps:

C∶RCell(C)→ Set/B
c↦ Cc

(f ∶ c0 → c1)↦ C(f)

with C(f) given by

C(fA, fX)∶Cc0 → Cc1

(ι,Dι →X0)↦ (ι,Dι →X0
fX
Ð→X1) .

Observation 8.1.2.6. When working with morphisms of relative cell complexes f ∈RCell(C),
it is generally convenient to observe that as every structured relative cell complex c0∶A0 →X0
can be constructed inductively in terms of colimits of its cells, a morphism (fA, fB)∶ c0 →

(A1
c1
Ð→ B1) of cell complexes is uniquely determined by the data of:

1. The morphism fA∶A0 → A1;

2. The morphism C(f).

In other words, we obtain an inclusion

RCell(C)(c0, c1)↪C(A0,A1) × Set/B(Cc0 ,Cc1)

f ↦ (fA,C(f))

and thus a faithful functor

RCell(C)→C × Set/B
(A

c
↪Ð→X)↦ (A,Cc)

f ↦ (fA,C(f))

It particular, in the case when fA is the identity, or unique as A = ∅, this means we can entirely
think of a morphism of relative cell complexes as a map of sets, which can be significantly
easier to work with.

Next, let us consider the two fundamental constructions to any theory of relative cell
complexes: Cobase change and transfinite (vertical) composition:

Construction 8.1.2.7. Given a structured relative cell complex A0
c0
↪Ð→ X0, and an arrow

g∶X0 →X1, we denote

gCc0 ∶= {g ○ σ ∣ σ ∈ Cc0} ⊂ ⊔
∂D→D∈B

C(D,X1).

Generally, there is no reason why gCc0 should define the structure of a cell complex on X1, or
on some relative cell complex A1 ↪X1. However, in the following situations, this is indeed the
case.

1. Suppose that the diagram
A0 A1

X0 X1 .

c0

f

c1

f ′

(8.12)

is a pushout square. Then it follows from the compatibility relations of transfinite
compositions and pushouts, that c1 is a relative cell complex and f ′Cc0 defines a cell
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structure on c1, such that (f, f ′) defines a morphism of structured relative cell complexes.
These types of morphisms in RCell(C) will be called cobase change morphisms. We will
also call the associate squares with verticals given by structured relative cell complexes
cobase change squares.

2. Consider a transfinite composition

c∶A =X0
→X1

→ ⋅ ⋅ ⋅→Xλ
=X

of relative cell complexes, together with, for each α ∈ λ, a cell structure Cα on Xα →Xα+1,
defining a structured relative cell complex cα. Denote by fα the canonical morphism
Xα →X. Then it follows from the composability of transfinite compositions, that the set
⋃α∈λ f

α+1Cα defines a cell structure on c. We call the resulting cell complex the vertical
transfinite composition of the structured relative cell complexes cα∶Xα ↪Xα+1. In the
case, λ = 2, i.e., the case of an ordinary composition, we will write c1 ○ c0 to denote the
induced relative structured cell complex. We also use this notation when c0 = X is an
absolute structured cell complex, treating it as a relative structured cell complex with
source ∅, and thus obtaining a new absolute structured cell complex c1 ○X.

Lemma 8.1.2.8. Given a cobase change square

A A′

X X ′ .

c

f

c′

f ′

(8.13)

the associated morphism (f, f ′)∶ c→ c′ has the following universal property:
Given any further morphism of cell complexes (g, g1)∶ c→ (B

d
↪Ð→ Y ), together with a factoriza-

tion
A B

A′

g

f h
(8.14)

there exists a unique morphism h1∶X
′ ⇢ Y , such that (h,h1) defines a morphism of structured

relative cell complexes c′ → d making the diagram

c d

c′

(g,g1)

(f,f ′) (h,h1)
(8.15)

commute. In particular c′ is uniquely determined by c and f , up to canonical isomorphism of
relative structured cell complexes.

Proof. This is immediate from the universal property of the pushout and the definition of the
cobase change cell structure.

Notation 8.1.2.9. In the situation of Lemma 8.1.2.8, we will write f¡c ∶= c
′ for the induced

relative structured cell complex (determined up to canonical isomorphism).

Remark 8.1.2.10. The reason why we do not use a regular shriek to denote cobase changes
is that the notation f! is usually used to suggest that f! is left adjoint to some base change
functor f∗ depending on f . However, in the case of structured cell complexes, there is no such
right adjoint in sight. Hence, we use ¡, in order to not give any false intuition.
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Construction 8.1.2.11. Consider the forgetful functor

RCell(C)→C

(A
c
Ð→X)↦ A .

We denote its fiber at A ∈ C by RCell(C)A. Morphisms in the fiber can be identified with
commutative diagrams

A

X0 X1

c0 c1

f

(8.16)

f such that fCc0 ⊂ Cc1 . It is precisely the content of Lemma 8.1.2.8, together with the
assumption that C has pushouts, that

RCell(C)→C

(A
c
Ð→X)↦ A .

is a cocartesian fibration (see [GR04], for the original source, and [nLa24g] for an excellent
overview). The cocartesian arrows are precisely the cobase change morphisms (squares) of
Construction 8.1.2.7. It follows from the fundamental theorem of (co)cartesian fibrations (see
[nLa24g]) that we obtain an induced pseudo-functor

RCell(C)−∶C→Cat
A↦RCell(C)A

(A
f
Ð→ A′)↦

⎧⎪⎪
⎨
⎪⎪⎩

f¡∶RCell(C)A →RCell(C)A′
c ↦ f¡c

.

In this sense, we can think of C as acting on the category of structured relative cell complexes
RCell(C) via cobase change.

As we have identified cobase change squares as cocartesian morphisms with respect to the
evaluation at 0-functor RCell(C)→C, it follows that they fulfill the horizontal pasting law:

Corollary 8.1.2.12. Given a commutative diagram

A A′ A′′

X X ′ X ′′

c c′ c′′ (8.17)

defining morphisms of structured relative cell complexes c→ c′, c′ → c′′, where the left square is
a cobase change, then the right square is a cobase change, if and only if the composition of the
two squares is a cobase change.

Observation 8.1.2.13. The two constructions in Construction 8.1.2.7 are compatible with
each other, in the sense that if we are given a diagram

A0 X1

X1
0 X1

1

. . . . . .

Xλ
0 Xλ

1

(8.18)
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with vertical transfinite compositions and all successor squares pushout, with left horizontals
relative cell complexes, then the two constructions commute, in the sense that the vertical
transfinite composition of the cell structures obtained via cobase change is the cobase change
of the transfinite composition on the left.

Remark 8.1.2.14. From a categorical perspective, it would, of course, be preferable to have a
universal characterization of vertical transfinite composition as defined in Construction 8.1.2.7.
There is a conceptual reason why this is hard to do with what we have defined so far. Observe
that vertical composition, restricted to the case λ = 2, equips the category RCell(C) with
another notion of composition, given by composing relative cell complexes. Formally, the correct
language to describe a category with two directions of composition is the language of double
categories, i.e., a category internal to categories. While it seems extremely plausible that much
of what we say here has an elegant and concise interpretation in this language, we did not want
to burden this expository material with another level of categorical complexity. Furthermore,
there is a way around this issue. Namely, we can reinterpret the vertical composition as a
horizontal composition, as soon as we have exposed an appropriate theory of subcomplexes.
This will be the content of the next section.

8.1.3 Subcomplexes and their properties

One of the main classes of objects we are going to study, in particular in the context of simple
homotopy theory, are inclusions of subcomplexes. These were studied in an abstract categorical
context in [Hir03, Def. 10.6.7]. Modulo the difference in focusing on characteristic or boundary
maps, and [Hir03] only defining what a subcomplex is with respect to a fixed presentation, our
theory of subcomplexes will essentially agree with the one in [Hir03]. Let us now study what
morphisms of cell complexes arise from sub-presentations.

Proposition 8.1.3.1. Given a morphism i∶ (A
c̃
↪Ð→ X̃) → (A

c
↪Ð→ X) in RCell(C)A, the

following conditions are equivalent:

(i) i∶ X̃ →X itself defines a relative cell complex, with cell structure given by Cc ∖ iCc̃.

(ii) i is a monomorphism in C.

(iii) The map C(i)∶Cc̃ → Cc is injective.

(iv) i is a monomorphism in RCell(C).

Proof. We show equivalence of the first three conditions first. Equivalence with the final
condition is shown in Lemma 8.1.3.3. That Property (i) implies Property (ii) was discussed
in Remark 8.1.1.17. The implication Property (ii) to Property (iii) is trivial. Finally, to
see that Property (iii) implies Property (iv), choose filtration-presentations p̃ of c̃ and p of
c indexed over ordinals β̃, β, such that exactly one cell is added in each step. Via these
filtration-presentations, we can think of the sets of characteristic maps as being identified with
β̃ and β, respectively. C(i) then induces an injective map

f ∶ β̃ → β.

We will write

1. α̃ ⪯ α if f(α̃) ≤ α;

2. And α ⪯ α̃ if there exists α̃′ ≤ α̃ such that f(α̃′) = α.
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We claim the existence of the following extension of the filtration-presentation of c̃ and c to a
commutative diagram over X

X̃ β̃ X̃ β̃,2 X̃ β̃,1 . . . Xβ

. . . . . . . . . . . . Xβ

X̃1 X̃2,1 X̃2,2 . . . Xβ

X̃0 X̃1,1 X̃1,2 . . . Xβ

A =X−1 X0 X1 . . . Xβ

1

1

1

1

(8.19)

with the following properties:

1. Each row and each column is a transfinite composition of identities, or pushouts of one
boundary inclusion in B.

2. Given a commutative square of successors

X̃ α̃,α+1 X̃ α̃+1,α+1

X̃ α̃,α X̃ α̃,α+1
(8.20)

there are the following cases:

(a) If f(α̃) ≠ α, then the square is a pushout.
(b) If α̃ ⪯ α then the right vertical is given by the identity.
(c) If α ⪯ α̃, then the upper horizontal is given by the identity.

3. The left column and the bottom horizontal row are, respectively, given by the filtration-
presentations p̃ and p.

In such a diagram the top row defines a filtration-presentation of X̃ →X with characteristic
maps Cc ∖ iCc̃. Note, furthermore, that every row defines a filtration-presentation of a relative
cell complex, making all arrows pointing into Xβ =X monomorphisms. Hence, the diagram is
entirely a diagram of subobjects of X. Note that, if X ′ →X is a monomorphism, then there
can be at most one morphism A′ →X ′ over X. Hence, we may safely identify subobjects of X
which are isomorphic as identical, and need not verify any commutativity conditions or specify
morphisms involving such objects at the target. Let us construct such a diagram via transfinite
induction over β0 ≤ β̃. In particular, this allows us to inductively assume that below β0, the
whole diagram is given by subobjects. In case of a limit ordinal β0, we may use uniqueness of
morphisms between subobjects over X to glue the subdiagrams for α̃ < β0 together and set
X̃β0,α = lim

Ð→α̃<β0
X α̃,α. We need to verify that both rows and columns still fulfill the properties

above. For the columns this is immediate. For the new row, the commutativity of transfinite
compositions shows it is a transfinite composition. It remains to show that every successor
morphism is either an identity or a pushout of a cell, as required above. Consider

X̃β0,α → X̃β0,α+1.
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There are two cases to consider. If there exists α′ < β0 such that α ⪯ α′, then the colimit
over X α̃′,α → X α̃′,α+1 is ultimately given by the colimit over identities, and hence given by
an identity. Otherwise, it follows that at each α̃ < β0, we have that f(α̃) ≠ α. Hence, we may
write X̃β0,α → X̃β0,α+1 as fitting into a colimit diagram

X̃β0,α X̃β0,α+1

. . . . . .

Xα Xα+1

(8.21)

which, at each successor step, is given by a pushout. In particular, it follows by the transfinite
composability of pushout squares that X̃β0,α → X̃β0,α+1 is the pushout of ∂Dα → Dα along
∂Dα →Xα → X̃β0,α, as required.

Next, assume that β0 = α̃ + 1 is a successor. We may then proceed to construct Xβ0,α

(together with the respective structure morphisms between the latter), for α ≤ β via transfinite
induction as follows. For α a limit ordinal, set Xβ0,α to the colimit of its predecessors. In the
case of a successor, α + 1, there are the following cases to consider:

1. If α ≠ f(α̃), then define Xβ0,α+1 via the pushout square

X α̃+1,α X α̃+1,α+1

X α̃,α X α̃,α+1 .

(8.22)

2. If f(α̃) = α, then we claim X α̃+1,α+1 =X α̃+1,α and set X α̃+1,α+1 =X α̃+1,α;

Then, supposing that this definition is well defined, one may easily show via inductive
assumption that the requirements about the properties of the squares are met. It remains
to show that with the family of subobjects X β̃0,α constructed in this fashion, the target of
their transfinite composition is Xβ =X. In the limit ordinal case, this is immediate from the
commutativity of colimits. In the case of a successor β0 = α̃ + 1, note that by construction,
for values of α greater than f(α̃) the morphism X α̃,α → X α̃+1,α is given by the identity. In
particular, so is the induced morphism

X α̃,β
=Xβ

→X α̃+1,β .

Let us finally show that if f(α̃) = α then X α̃,α+1 =X α̃+1,α. Note that in this case, by inductive
assumption, both X α̃,α →X α̃,α+1 as well as X α̃,α →X α̃+1,α, are given by a cobase change of
(∂D ↪D) ∶= (∂Dα →Dα) = (∂Dα̃ →Dα̃) along a map ∂D →X α̃,α (over X). We are looking
to show that the two maps σ∶D → X α̃+1,α → X and σα∶D → X are the same as objects in
the slice category over X. Then the identity X α̃,α+1 = X α̃+1,α follows as we have identified
isomorphic subobjects, and from the fact that in any pushout square over X of the form

∂D D

X ′ X̂

(8.23)

with X ′, X̂ subobjects of X, X̂ is already uniquely determined by ∂D →D and D →X, up
to natural isomorphism over X. Now, to see that σ = σα, consider the following diagram in
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which all (small) quadrilaterals and triangles are commutative by construction

X̃

X̃ α̃+1 X α̃+1,α X

X̃ α̃ X α̃,α X α̃,α+1

Xα Xα+1

D .

i

σα̃

σα

(8.24)

The morphism σ is given by the composition D → X̃ α̃+1 →X α̃+1,α →X. By commutativity,
this is the same as the path D

σα

Ð→ X̃ →X. But the latter is, by definition of f in terms of i,
the same as σα∶D →X. This finishes the proof.

Definition 8.1.3.2. A morphism i∶ (A
c̃
↪Ð→ X̃)→ (A

c
↪Ð→X) in RCell(C)A is called an inclusion

of a relative subcomplex, if it fulfills one of the equivalent conditions in Proposition 8.1.3.1.

Lemma 8.1.3.3. A morphism i∶ c̃ → c in RCell(C)A is a monomorphism in RCell(C) if
and only if it is an inclusion of a subcomplex.

Proof. Observe that, clearly every morphism in RCell(C)A, whose underlying morphism is
a monomorphism is also a monomorphism in RCell(C)A. Hence, by the equivalence of the
first three conditions of Proposition 8.1.3.1, the if-direction follows. It remains to show the
only-if part. We use the criterion of Proposition 8.1.3.1 which characterizes a subcomplex
via injectivity on the level of cells. We proceed via transfinite induction over the minimal
presentation ordinal β of c̃. In the case β = 0, c̃ is given by the identity and the result is
obvious. Now, if β is a limit ordinal, then C(i) fits into a diagram

S0 . . . Sα . . . Cc̃

Cc

(8.25)

of sets, with the upper vertical a transfinite composition, and all solid diagonals an injection.
In follows that the dashed induced morphism is also an injection. Now, suppose that β = α + 1
is a successor ordinal, and fix a filtration-presentation of A → Xα+1, of c̃, denoted as in
Definition 8.1.1.1. We are now in the following situation

A

⊔I ∂Dj Xα

⊔I Dj Xα+1 X

cα

i

(8.26)
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with the upper vertical admitting a filtration-presentation of length α, and the square
pushout. Furthermore, we have assumed that (1A,Xα+1 → X) induces a monomorphism.
Since (1A,Xα →Xα+1) is the inclusion of a subcomplex, it is also a monomorphism. It follows
that (1A,Xα → X) is a monomorphism. By inductive assumption, it is thus injective on
cells and its underlying map in C is a monomorphism. Now, let σ0, σ1∶D → Xα+1 be two
characteristic maps, which are identified under composition with Xα+1 →X. There are two
cases to consider:

1. The two cells σ0 and σ1 which are identified in Cc have characteristic maps factoring
through Xα. Then they are already identical, by inductive assumption.

2. The cell σ1 is (without loss of generality) added in the step α to α + 1, and the cell σ0 is
added in some step α′ ≤ α. In this case, consider the diagram

∂D D Xα X

D Xα+1

∂σ1

σ0

σ0

σ1

(8.27)

in which all paths ending in X commute. Chasing the diagram, and using that by
inductive assumption Xα → X is a monomorphism, it follows that ∂σ1 = ∂σ0. In
particular, we may find an alternative filtration-presentation of c̃, indexed again over
α + 1, in which σ1 is attached at an earlier step. We may thus assume, without loss of
generality, that this case does not occur.

3. Both σ0 and σ1 are added in the final step α to α+1, i.e., respectively present a component
j0 and j1 of ⊔I Dj → Xα+1. Observe that, again as in the previous diagram chase, it
follows that the (induced morphisms) ∂σi ⇢Xα agree. Hence, we obtain a well defined
automorphism of Xα+1, induced by the automorphism of ⊔I Dj exchanging j0 and j1. If
σ0 ≠ σ1, this defines a non-trivial (by Observation 8.1.2.6) automorphism of c̃. However,
under composition with i, this automorphism agrees with the identity (by the universal
property of the pushout). As i is assumed to be a monomorphsm, it thus follows that
σ0 = σ1, as was to be shown.

Remark 8.1.3.4. It follows from Proposition 8.1.3.1 that a morphism c̃→ c in RCell(C)A
defines a subcomplex in our sense, if and only if it is a subcomplex in the sense of [Hir03, Def.
10.6.7] with respect to any filtration-presentation of the cell structure Cc, or equivalently with
respect to one fixed filtration-presentation of the cell structure Cc. Indeed, an argument via
transfinite induction shows that the conditions in Proposition 8.1.3.1 imply the requirements
in [Hir03], with respect to any presentation of Cc. In turn, if the condition in Hirschhorn holds
for one fixed filtration-presentation, then i is trivially injective on characteristic maps.

Let us make some observations concerning the interaction of cell complexes and the
constructions in Construction 8.1.2.7.

Observation 8.1.3.5. Given two relative cell complexes A c̃
↪Ð→ X̃

i
↪Ð→X, equip the composition

i ○ c̃ with the induced cell structure of Construction 8.1.2.7. Then, by Proposition 8.1.3.1, i
defines an inclusion of subcomplexes

c̃↪ i ○ c̃.

Conversely, by Proposition 8.1.3.1, given any inclusion of cell complexes i∶ c̃ ↪ c, (X̃ ↪ X)
equipped with Cc ∖ Cc̃ defines a relative cell complex. These two constructions are inverse to
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each other, inducing a bijection

{(c̃, i) ∣ c̃ ∈RCell(C), c̃ i
↪Ð→ c is an inclusion of subcomplexes }

{(c̃, i) ∣ (A
c̃
Ð→ X̃), (X̃

i
Ð→X) ∈RCell(C), i ○ c̃ = c}

1∶1 (8.28)

between decompositions of c into relative cell complexes and subcomplexes of c. In this
sense, many statements about vertical composition can alternatively be expressed in terms of
inclusions of subcomplexes.

Observation 8.1.3.6. Suppose we are given a transfinite composition diagram

c∶A =X0
→X1

→ ⋅ ⋅ ⋅→Xλ
=X

together with, for each α ∈ λ, the structure of a structured relative cell complex iα on Xα →

Xα+1. Then the structured relative cell complex c∶A→X, constructed in Construction 8.1.2.7
can be seen as a transfinite composition of inclusions of subcomplexes. For α < λ, denote by
cα∶A→Xα the relative cell complex obtained by vertical transfinite composition up to α. In
fact, for any α ≤ α′ < λ, the canonical map Xα → Xα′ defines an inclusion of subcomplexes
cα ↪ cα

′ . Then the induced diagram

c0
↪ c1

↪ ⋅ ⋅ ⋅↪ cλ = c

in RCell(C) is a transfinite composition diagram.

It can be convenient to have language available which mimics the classical scenario of
CW-complexes as closely as possible. To this end, we use the following language.

Notation 8.1.3.7. Given a structured relative cell complex c, and a subcomplex i∶ c̃↪ c, we
will generally think of the cells of Cc̃ as being a subset of Cc, via C(i). We say that a cell σ ∈ Cc

is contained in c̃, if σ ∈ Cc̃, under this identification. We will say that the boundary of a cell σ,
∂σ, is contained in c̃, if ∂σ∶∂D →X factors through i.

Another way of thinking of a subcomplex of a structured relative cell complex c is in terms
of a universal object, associated to a subset of the cells of c.

Proposition 8.1.3.8. Given a structured relative cell complex c∶A ↪ X, together with a
subcomplex c̃

i
↪Ð→ c. Suppose we are given another morphism of relative cell complexes f =

(fA, fX)∶ (A0
c0
Ð→X0)→ c. Then, f factors through i, if and only if C(f) factors through C(i),

Cc0 c

Cc̃

C(f)

C(i)
(8.29)

i.e., if every cell in Cc0 maps to a cell contained in Cc̃. In other words, if we denote DCc̃
the

full subcategory of overcategory RCell(C)/c, consisting only of morphisms f ∶ c0 → c, fulfilling

imC(f) ⊂ Cc̃

then i is a terminal object in this category.
Conversely, if we are given a subset C̃ ⊂ Cc, then C̃ = Cc̃, for some subcomplex i∶ c̃→ c of c, if
and only if the analogously constructed category DC̃ has a terminal object and has at least one
object f ∶ c̃→ c, such that (im)C(f) = C̃.
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Proof. The only if part of the first statement is immediate from the functoriality of C. For
the converse, we proceed with transfinite induction over the minimal ordinal β of filtration-
presentations of c0. In the case of β = 0, there is nothing to be shown. Now, if β = α + 1 is a
successor ordinal, then we may consider the subcomplex cα

j
↪Ð→ c0, given by all cells but the

one glued in at the step α. By inductive assumption, we have a factorization

cα0 c

c̃

f○j

i (8.30)

Now, j, interpreted as a structured relative cell complex, is by definition given by gluing in a
single cell, along a cobase change square, as pictured below.

∂D Xα

D X0

X̃

X

j

C(f)(σ)

σ

i

(8.31)

The outer diagram commutes by assumption. The two bend factorizations exist, respectively,
by inductive assumption and the assumption that C(f) factors through C(i). Now, using
the fact that i is a monomorphism, we obtain commutativity of all paths from ∂D to X̃. In
particular, using that cobase change squares define cocartesian arrows (over the evaluation
at A functor RCell(C)→C), we obtain a dashed arrow X0 → X̃, as required. The case of a
limit ordinal is handled similarly using Observation 8.1.3.6.
Now, conversely, suppose that a terminal object i∶ c̃1 → c in DCc̃

exists. Then, as it is a terminal
object, it must be given by a monomorphism. Furthermore, using trivial relative cell complexes
A′

1
Ð→ A′, we may easily see that iA∶A0 → A must be given by the identity (up to changing A0

by an isomorphism, if necessary). Thus, by Proposition 8.1.3.1, i is a subcomplex of c. By the
assumption of it being terminal, and there existing an object mapping surjectively onto Cc̃ we
have Cc̃ = C̃.

Notation 8.1.3.9. As the category of subobjects of an object is always equivalent to a poset
(i.e., admits at most one morphism between any two objects), it is safe to use notation like
c̃ ⊂ c̃1, when we want to express that there exists a morphism over between two subcomplexes
over a structured relative cell complex c.
Observation 8.1.3.10. One immediate consequence of Proposition 8.1.3.8 is that two sub-
complexes i0∶ c0 ↪ c and i1∶ c1 ↪ c of a structured relative cell complex c are isomorphic as
subobjects of c, if and only if they determine the same subset of cells in c. Up to canonical
isomorphism, a sub-complex i∶ c̃↪ c is thus uniquely determined by its set of cells Cc̃ ⊂ Cc, and
the category of subobjects of c in RCell(C)A is equivalent to a sub-poset of the power set of
Cc, via the functor associating to a subcomplex its set of cells.

8.1.4 Reduction to sets of cells
One central advantage of cellular frameworks is that categorical statements about cell complexes
can often be verified purely at the level of sets of cells. As the category of sets is generally
extremely well-behaved, with universal constructions being easy to handle, this can often
significantly reduce the complexity of proofs. First, the forgetful functor C∶Cell(C)A → Set is
conservative, which is a corollary of Proposition 8.1.3.1:
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Corollary 8.1.4.1. For f ∶ c0 → c1 in RCell(C)A the following conditions are equivalent

1. f is an isomorphism;

2. The underlying morphism in C, f ∶X0 →X1 is an isomorphism;

3. C(f) is a bijection.

Proof. That the first condition implies the two others is an immediate consequence of the
functoriality of C and the forgetful functor to C. By Proposition 8.1.3.1, the second condition
implies the third. Now, conversely, if f induces a bijection on the set of cells, then by
Proposition 8.1.3.1, there exists, in particular, a filtration-presentation of f ∶X0 →X1 with an
empty set of cells. It follows that f is an isomorphism in C. Then, an inverse to f in C is
also structure preserving (as it induces C(f)−1 on the level of cells) and defines an inverse in
RCell(C)A.

Corollary 8.1.4.2. For f ∶ c0 → c1 in RCell(C) the following conditions are equivalent.

1. f is a cobase change (i.e., a cocartesian arrow with respect to RCell(C) ev0
ÐÐ→C);

2. The underlying diagram of f in C is a pushout square;

3. The map on cells C(f) is a bijection.

Proof. By invariance of cocartesian arrows under isomorphism over A0, the f is cocartesian, if
and only if the dashed arrow in the diagram

A0 A1

X0 X ′1

X1

fA

c0 (fA)¡c0
c1

fX

⌟

(8.32)

defines an isomorphism in RCell(C)A1 . By Corollary 8.1.4.1, this is in turn equivalent to
the remaining two conditions.

As Corollary 8.1.4.2 allows us to verify cobase changes entirely on the level of the underlying
commutative squares, we also obtain a vertical pasting law:

Corollary 8.1.4.3. Suppose we are given a commutative diagram with verticals given by
relative cell complexes

A A′

X̃ X̃ ′

X X ′ ,

c̃

i○c̃

c̃′

i′○c̃′

i i′

(8.33)

with the upper square cobase change. Then the lower square is a cobase change if and only if
the outer square, given by the vertical composition of the two squares is a cobase change.

As another immediate consequence of Corollary 8.1.4.2 and Proposition 8.1.3.1, we obtain

Corollary 8.1.4.4. For f ∶ c0 → c1 in RCell(C) the following conditions are equivalent:

1. The map on cells C(f) is an injection;
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2. The canonical arrow (fA)¡c0 → c1 is an inclusion of cell complexes.

Furthermore, we may combine Corollary 8.1.4.2 and Corollary 8.1.4.1, together with the
fact that a cocartesian lift of an isomorphism along a cocartesian fibration is an isomorphism,
to obtain:

Corollary 8.1.4.5. For f ∶ c0 → c1 in RCell(C) the following conditions are equivalent

1. f is an isomorphism;

2. The underlying morphisms in C, fA∶A0 → A1 and f ∶X0 →X1 are isomorphisms;

3. fA∶A0 → A1 is an isomorphism and C(f) is a bijection.

To finish this section, let us say a few words about colimits in the categories of structured
relative cell complexes. Let us begin with the following lemma:

Notation 8.1.4.6. Given a category I, we will use the notation I▷ for the right cone on I,
obtained by adjoining a formal terminal object ∞ to I.

Lemma 8.1.4.7. Let A ∈ C. Suppose that we are given a diagram c●∶ I → RCell(C)
(RCell(C)A), together with a cocone on it, specified by an absolute cell complex c∞, and
morphisms ci → c∞, which agglomerate into an extension of c● to a functor, c●∶ I▷ →RCell(C)
(RCell(C)A). Suppose, furthermore, that this cocone has the following two properties:

1. The induced map on cells ⊔i∈I Cci → Cc∞ is surjective.

2. The underlying cocone c● of c● in C (CA/) is a colimit diagram.

Then c● defines a colimit diagram in RCell(C) (RCell(C)A), that is, the colimit of c● exists
and is given by c∞ = lim

Ð→I
ci.

Proof. The proof in both cases (the one for fixed A and the flexible one) is completely analogous.
We only cover the former. This is essentially immediate from the definition of a morphism
of relative structured cell complexes. By the second condition, any further cone ĉ● admits
a unique morphism of cones on c●, c● → ĉ●. As a morphism of structured cell complexes is
entirely determined by its underlying morphism in the arrow category C[1], this already shows
the uniqueness part of the universal property of the colimit. To prove existence, it suffices
to show that the unique morphism f ∶ (A∞

c∞

↪Ð→ X∞) → (Â∞
d̂∞

↪Ð→ X̂∞) defines a morphism of
relative structured cell complexes. In other words, we need to show that the underlying map
fX ∶ X̂

∞ →X∞ fulfills,
fX ○ σ ∈ Cĉ∞ ,

for each σ ∈ Cc∞ . By assumption, each such σ is of the form ιi ○ σ
′, for some i ∈ I and

σ ∈ Cci ,with ιi∶Xi → X∞ induced by the structure morphism ci → c∞. As f was assumed to
define a morphism of cocones, we obtain

fX ○ ι
i
○ σ′ = ι̂i ○ σ′,

with ι̂i∶Xi → X̂∞ induced by the structure morphism ci → ĉ∞. In particular, as the latter is a
morphism in RCell(C), it follows that fX ○ ιi ○ σ′ = ι̂i ○ σ′ ∈ Cĉ∞ , as was to be shown.

Corollary 8.1.4.8. The category of structure relative cell complexes under A, RCell(C)A,
has pushouts for solid spans of the form

c̃ c̃′

c c′

i

f

i′

f ′

(8.34)
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with c̃
i
↪Ð→ c an inclusion of a subcomplex. Explicitly, a pushout is given by the diagram of

relative structured cell complexes.
c̃ c̃′

c f¡i ○ c̃
′

i

f

(8.35)

where i is the relative cell complex associated to i under Observation 8.1.3.5.

Proof. It is immediate by the construction of cobase change and vertical composition, that the
canonical diagram

c̃ c̃′

c f¡i ○ c̃
′

i

f

(8.36)

fulfills the requirements of Lemma 8.1.4.7.

Observe that diagrams as in Corollary 8.1.4.8 are also pullback.

Lemma 8.1.4.9. Any pushout diagram as in Corollary 8.1.4.8 is pullback in RCell(C)A,
and its underlying diagram in C is also pullback.

Proof. To see the latter claim, observe that the underlying diagram in C is a pushout diagram
with vertical given by a relative B-cell complex. Hence it is a pullback diagram by the axioms
of a cellularized category. Now, suppose we are given a solid commutative diagram

d

c̃ c̃′

c c′ .

(8.37)

As the underlying diagram in C of the lower square is pullback, any dotted arrow making the
diagram commute is necessarily unique. To see that such an arrow exists, it suffices to verify
that the arrow induced by the pullback property in C defines a morphism in RCell(C)A. By
Proposition 8.1.3.8, this is the case if and only if the morphism d→ c factors through c̃ on the
cell level.

Hence, it suffices to verify that the associated diagram of sets of cells

Cc̃ Cc̃′

Cc Cc′

(8.38)

is also pullback. This is immediate by the explicit description of the cell structure on the
pushout in Corollary 8.1.4.8.

Corollary 8.1.4.10. Let A ∈ C, and suppose we are given a any commutative square of
inclusions of subcomplexes

c0 c2

c1 c

(8.39)

in RCell(C)A, such that the associated square of sets of cells is pullback, i.e., such that
Cc0 = Cc1 ∩ Cc2 . Then the underlying square in C, and the square itself are pullback.
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Proof. Using Corollary 8.1.4.8, we may factor the square in question as
c0 c1

c2 c1 ∪c0 ∪c2

c

(8.40)

with the inner square pushout. By Lemma 8.1.4.9 and the fact that a square is pullback, if
and only if a modification of the lowest corner by a monomorphism is pullback, it suffices
to see that the dashed arrow is a monomorphism, i.e., by (Proposition 8.1.3.1), is injective
on cells. The claim now follows from the elementary fact that in a commutative diagram of
inclusions of sets

U0 U1

U2 U1 ∪U0 U2

U

(8.41)

with inner square pushout and outer square pullback, the induced dashed arrow is an
injection.

As a further corollary of Lemma 8.1.4.7, we obtain the following:
Corollary 8.1.4.11. Suppose we are given two inclusions of subcomplexes Xi ↪ X in Cell(C),
with i = 1,2, such that CX1

∪ CX2
= CX. Then the pullback diagram

X1 ∩X2 X2

X1 X

⌟

(8.42)

is also pushout.
Corollary 8.1.4.12. The category RCell(C) has pushouts for solid spans of the form

c̃ c̃′

c c′

i

f

f ′

(8.43)

with c̃
i
Ð→ c injective on the level of cells.

Proof. Consider first the underlying (solid) span at the sources of the relative cell complexes

Ã Ã′

A A′ .

fA

iA i′A

f ′A

⌟

(8.44)

As C was assumed to be cocomplete, it admits a pushout as indicated in the dotted part
of the diagram above. Now, using the universal property of the cobase change, consider the
induced solid diagram

(f ′A ○ iA)¡c̃ (i′A)¡c̃
′

(f ′A)¡c
′ c′

i

f

(8.45)
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in RCell(C)A. By assumption, the left vertical is injective on cells, and hence defines the
inclusion of a subcomplex. Thus, by Corollary 8.1.4.8, we may complete the diagram to a
colimit diagram as indicated. Using the universal property of the cobase change, we may
extend this diagram to the following commutative diagram

c̃ (fA)¡c̃ c̃′

(iA)¡c̃ (f ′A ○ iA)¡c̃ (i′A)¡c̃
′

c (f ′A)¡c
′ c′ .

(8.46)

We claim that the outer large square defines the required pushout. That the underlying
diagram in C is a pushout follows by the construction of the cobase change and the elementary
pasting laws for pushouts. To see that on the level of cells, the right vertical composition and
the lower horizontal composition are jointly surjective, note that this holds in the lower corner
square, by the explicit construction in Corollary 8.1.4.8 and that the upper right vertical and
lower left horizontal are bijective on cells. We may now apply Lemma 8.1.4.7, from which it
follows that the large composed square is a pushout.

Observation 8.1.4.13. For every A ∈C, the morphism from the empty relative cell complex
(A

1
Ð→ A) to a relative cell complex c defines the inclusion of a subcomplex. It follows by

Corollary 8.1.4.8 that the category of relative cell complexes RCell(C)A has finite coproducts.
In particular, it has a canonical symmetric monoidal structure, given by the coproduct.

Lemma 8.1.4.14. For every morphism f ∶A→ A′ in C, the induced functor

f¡∶RCell(C)A →RCell(C)A′

preserves coproducts.

Proof. Consider the following commutative diagram of categories

RCell(C)A RCell(C)A′

CA/ CA/

f¡

f!

(8.47)

with vertical given by forgetful functors. By Corollary 8.1.4.1, the verticals are conservative.
The lower horizontal is a left adjoint functor, and hence preserves coproducts. By Corol-
lary 8.1.4.8, the underlying diagram in C of a coproduct diagram is a coproduct in CA/, which
shows that the verticals preserve coproducts. Consequently, the upper horizontal preserves
coproducts.

Corollary 8.1.4.15. Equipping the categories of relative cell complexes cA, for A ∈C, with
the symmetric monoidal structure induced by the coproduct, induces a canonical lift of the
pseudo functor

RCell(C)−∶C→Cat
A↦RCell(C)A
f ↦ f¡ .
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to the bicategory of (sufficiently small) symmetric monoidal categories equipped with symmetric
monoidal functors (denoted SymMonCat)

SymMonCat

C Cat .
RCell(C)−

(8.48)

8.1.5 Constructing subcomplexes
By Observation 8.1.3.10, we can safely identify subcomplexes of a structured relative cell
complex c with certain subsets of Cc. The obvious question arises, what requirements such a
subset needs to fulfill in order to arise from a subcomplex of c. Moreover, one may ask what
operations on these subsets, such as intersection and union, do define new sub-complexes. To
this end, let us introduce the notion of a sub-presentation, which is strongly related to the
more rigid way subcomplexes are handled in [Hir03]. Let us first introduce the analogue to
Hirschhorn’s definition of a subcomplex (while keeping track of characteristic maps). Again,
throughout this subsection, we assume the context of a cellularized category C.

Notation 8.1.5.1. For the remainder of this subsection, we will always treat the disjoint
union of the indexing sets Iα of a filtration-presentation p of a structured cell complex c∶A→X
as identified with Cc, via

⊔
α<λ

Iα
≅
Ð→ Cc

j ↦ (σj ∶D →X) .

Definition 8.1.5.2. Let c∶A↪X be a relative cell complex and let p (using notation as in
Definition 8.1.1.1), be a filtration-presentation of c. A sub-presentation of p consists of the
data of:

• A morphism i∶ (c̃∶A→ X̃)→ (c∶A→X) in CA/.

• A filtration-presentation p̃, of c̃ (using notation as in Definition 8.1.1.1, but adding ”−̃”
in the obvious way), such that λ̃ = λ and Ĩα ⊂ Iα, for all α < λ.

• A morphisms of transfinite composition diagrams

A X̃0 X̃1 . . . X̃λ X̃

A X0 X1 . . . Xλ X

i0 i1 iλ i (8.49)

such that iα ○ σ̃iα = σiα, for all α < λ and i ∈ Ĩα ⊂ Iα.

Observation 8.1.5.3. In the situation of Definition 8.1.5.2, it is immediate from the definition
of a sub-presentation and Proposition 8.1.3.1 that (c̃∶A → X̃) → (c∶A → X) defines the
inclusion of a subcomplex with respect to the cell structures given by p̃ and p. The set of cells
of the subcomplex c̃ defined by p̃ is precisely given by the subset ⊔α<λ Ĩα under the canonical
identification ⊔α<λ Iα ≅ Cc.

Notation 8.1.5.4. Let c be a structured relative cell complex with a filtration-presentation p
inducing c. We say that a subset C̃ ⊂ Cc is the set of cells of a sub-presentation p̃ of p (with
notation as in Definition 8.1.5.2) if C̃ = ⊔α<λ Ĩα.

Next, let us study the relationship between subcomplexes and sub-presentations. We first
need the following proposition.
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Proposition 8.1.5.5. Let c∶A → X be a structured relative cell complex and C̃ ⊂ Cc. The
following are equivalent:

1. C̃ defines a subcomplex of c.

2. There exists a filtration-presentation p of c together with a sub-presentation p̃ of p, such
that C̃ is the set of cells of p̃.

3. For any filtration-presentation p of c, there exists a sub-presentation p̃ of p, such that C̃
is the set of cells of p̃.

Proof. Clearly, the third claim implies the first and the second implies the first (see Observa-
tion 8.1.5.3). Now, suppose that C̃ defines a subcomplex of c and fix some filtration-presentation
p. We are going to construct a sub-presentation of p, which gives rise to C̃ via a transfinitely
inductive process. Denote by S ⊂ λ + 1, the set of ordinals β for which C̃ ∩⊔α<β I

α does not
arise from a sub-presentation of p. The complement of S is closed below. Indeed, if C̃∩⊔α<β Iα
arises from a sub-presentation p̃β a sub-presentation for C̃ ∩⊔α<β′ I

α, for β′ ≤ β, is obtained
by restricting p̃β . If S is empty, then λ ∉ S, and we are done. Otherwise, let β be a minimal
element of S. For β′ ≤ λ not in S, denote by c̃β

′ the thus defined subcomplex of c and by cβ
′

the subcomplex of c defined by the set of cells ⊔α<β′ Iα. Now, if β is a limit ordinal, then for all
β′ < β, the set C̃ ∩⊔α<β′ I

α arises from a sub-presentation, and thus defines a subcomplex of c,
by the implication which we have already shown. By Proposition 8.1.3.8, these subcomplexes
of c arrange into a commutative diagram over c,

c̃0 c̃1 . . .

c0 c1 . . . cβ . . . cλ

(8.50)

where the upper row is indexed over β. Using Observation 8.1.3.6, we may pass to the colimit
in the upper row, to extend this diagram to a diagram of subobjects

c̃0 c̃1 . . . c̃β . . . c̃β

c0 c1 . . . cβ . . . cλ

(8.51)

Now, we claim that in each successor step, the associated structured relative complex
X̃α →Xα+1 fits into a cobase change square

⊔j∈Iα∩C̃ ∂Dj ⊔j∈Iα∩C̃Dj

X̃α X̃α+1

(σj)j∈Iα∩C̃
(8.52)

where we denote factorizations of characteristic maps by the same name, by abuse of notation.
It follows, that the underlying diagram of Definition 8.1.5.2 gives rise to a sub-presentation of
Cc̃β = C̃ ∩⊔α<β I

α, in contradiction to the assumption. To see that cobase change diagrams
as in Diagram (8.52) exist note that Iα ∩ C̃ specifies precisely the set of cells missing in
c̃α ⊂ ˜cα+1. It follows by Corollary 8.1.4.2, that it suffices to expose a commutative square as in
Diagram (8.52), and we need not show that the latter is a pushout. To expose such a square,
it suffices to expose the dotted left hand vertical, making the diagram commute. Consequently,
it suffices to see that the underlying commutative square

X̃α X̃α+1

Xα X

(8.53)
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is pullback. This follows by Corollary 8.1.4.10 Now, finally assume that β = α+1 is a successor
ordinal. Arguing analogously to how we did in the case of a limit ordinal, it suffices to see that
Cc̃ ∩⊔α′≤α I

α′ defines a sub-complex of c. One may easily reduce this claim to showing that
the boundary maps ∂σj ∶∂Dj →Xα factor through X̃α. This, in turn, follows by showing that

X̃α X̃

Xα X

(8.54)

is pullback, which again follows by Corollary 8.1.4.10.

If we carefully trace the proof of Proposition 8.1.5.5, we obtain the following general
detection principle for subcomplexes.

Corollary 8.1.5.6. Let c∶A→X be a structured relative cell complex and C̃ ⊂ Cc. Fix some
filtration-presentation p of c. For β < λ, denote C̃β ∶= C̃ ∩ ⊔α<β I

α. Then the following are
equivalent:

1. C̃ defines a subcomplex of c;

2. For all β < λ, C̃β defines a subcomplex (cβ ∶A→ X̃β) ⊂ c, and for every cell σ∶D →X in
Iβ ∩ C̃, the associated boundary map ∂σ∶D →X factors through X̃β.

As an immediate corollary, we obtain that the union of subcomplexes always exists.

Corollary 8.1.5.7. Let (ci)j∈I be a family of subcomplexes of a structured relative cell complex
c. Then the union ⋃i∈I Cci ⊂ Cc defines a subcomplex in c.

Notation 8.1.5.8. In the situation of Corollary 8.1.5.7, we are going to denote the associated
subcomplex specified by ⋃i∈I Cci ⊂ Cc by ⋃i∈I ci.

Furthermore, we obtain from Corollaries 8.1.4.10 and 8.1.5.6 that the intersection of two
subcomplexes exists. Such a claim was first proven in [Hir03, Thm. 12.2.4]. The proof is
essentially identical to the one in [Hir03], using Corollaries 8.1.4.10 and 8.1.5.6.

Corollary 8.1.5.9. Let c1, c2 ⊂ c be subcomplexes of a structured relative cell complex c. Then
the set of cells Cc1 ∩Cc2 ⊂ C defines a subcomplex of c, denoted c1∩ c2. Furthermore, the induced
diagram of subcomplexes

c1 ∩ c2 c2

c2 c1 ∪ c2

(8.55)

is bicartesian in RCell(C)A and RCell(C) and its underlying diagram in C is also bicarte-
sian.

Corollary 8.1.5.10. Let c∶A→X be a structured relative cell complex and let I be a directed
set. Furthermore, let c●∶ I▷ →RCell(C)A send the terminal object∞ of I▷ to c, be furthermore
such that each arrow i → ∞ is mapped to an inclusion ci → c. Then the colimit of c ∣I in
RCell(C)A and RCell(C)A exists, and is given by extending c●∣I to I▷ by ∞ ↦ ⋃i∈I ci ⊂ c,
with all arrows pointing into i, given by the canonical inclusions of subcomplexes ci → ⋃i∈I c

i.
Furthermore, the forgetful functor RCell(C)A →C preserves this colimit.

Proof. By Lemma 8.1.4.7, we only need to show that the specified cocone on c●∣I is such that
its underlying diagram in C defines the colimit of the underlying diagram in C of c●∣I . In other
words, if we denote by c̃(A ↪ X) ↪ c the underlying subobject of c specified by ⋃i∈I ci ⊂ c,
then we need to show that the induced arrow lim

Ð→I
ci → c̃ is an isomorphism. An inverse can be

constructed via transfinite induction, by fixing a filtration-presentation of c̃, and inductively
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constructing a coherent family of morphisms X̃β → lim
Ð→I

Xi, as follows. If β = 0, then X̃β = A

and there is a canonical morphism to choose. If β is a limit ordinal, then we may use that
X̃β = lim

Ð→α<β
Xα to obtain an induced morphism X̃β →Xi. Finally, if β = α + 1 is a successor

ordinal, then for each j ∈ Ĩα, it holds by assumption that there exists some i ∈ I, such that
σj ∶Dj → Xα+1 → X factors through Xi → X. Furthermore, as Xi → X is a monomorphism,
the resulting composition σ′j ∶X ⇢Xi → lim

Ð→I
Xi is independent of the choice of factorization

and i. By the universal property of the colimit, we obtain an induced dashed morphism

⊔j∈Ĩα ∂Dj ⊔j∈Ĩα Dj

X̃α X̃α+1

lim
Ð→

Xi .

(σ′j)j∈Ĩα

(8.56)

That the thus inductively defined morphism X̃ → lim
Ð→I

Xi defines an inverse to the canonical
morphism lim

Ð→I
Xi → X̃, follows from it being constructed in a way such that it commutes

with the (induced) morphism σ∶D → X̃ and D
σ
Ð→Xi → lim

Ð→I
Xi, for σ ∈ Cc̃, and from the fact

that the induced arrows ⊔σ∈Cc̃
Dσ → X̃, lim

Ð→I
Xi are both epimorphisms.

Notation 8.1.5.11. A cocone c●∶ I▷ →RCell(C)A as in Corollary 8.1.5.10 such that ⋃i∈I ci = c
will be called a filtration of c by subcomplexes.

8.1.6 On compactness
Recall the classical fact from algebraic topology that every compact subset of a CW-complex
is contained in a finite subcomplex. For our purposes, it will be convenient to have a similar
tool available in the context of general structured cell complexes.
Remark 8.1.6.1. There are several incompatible notions of compactness in category theory.
One commonly used notion is that an object X in a category C is called compact, if the
hom-functor C(X,−) preserves filtered colimits. This notion is, however, often too strong
for the purpose of abstract homotopy theory. For example, compact topological spaces are
not compact in this sense, and it is thus not helpful to recover the classical fact we have
mentioned above. One way to weaken this notion is to only require that the hom-functor
preserves filtered colimits of a certain shape. Namely, given a regular cardinal κ, an object
X is often called κ-compact, if C(X,−) preserves such filtered colimits, where the indexing
poset I is such that every subset J ⊂ I of size strictly smaller than κ admits an element p ∈ I,
such that q ≤ p, for all q ∈ J . Another way to generalize compactness is that one often only
requires the compactness of the object relative to certain other objects and diagrams. One
such relative notion of compactness is the one introduced in [Hir03, Prop. 10.8.1.], where the
author defines an object B to be κ-compact with respect to a class of boundary inclusions
B, if for every structured relative B-complex c∶A→X, and every morphism f ∶B →X, there
exists a subcomplex (A c̃

↪Ð→ X̃)↪ c with a set of cells smaller or equal to κ, such that f factors
through X̃ ↪X. [Hir03] then defines an object to be compact, if it is compact with respect to
any cardinal κ. We find this nomenclature somewhat inconvenient, both for our purposes, as
well as in comparison to the competing definitions, for two reasons:

1. In the first definition, being κ-compact is a weaker notion than being compact. In the
definition of [Hir03], it is a stronger notion.

2. Using the language of [Hir03], there is no way to express that arrows should factor
through finite subcomplexes. One would have to amend his definition by requiring the
set of cells to be strictly smaller than κ.
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While the latter limitation is no real hurdle when the specific size of the cardinal one refers to
is irrelevant, for our investigations of finite cell complexes in the context of simple homotopy
theory it cannot be used. We thus introduce the following notion of compactness.

Definition 8.1.6.2. Let C be a cellularized category. We say that an object B ∈C is filtration
compact, if the following condition holds: Let c∶A→X be a structured relative cell complex
and let c●∶ I▷ → RCell(C)A be a filtration of c by subcomplexes. Denote by X●∶ I → C the
underlying diagram of c● ∣I in C. Then the canonical morphism

lim
Ð→
I

C(B,Xi
)→C(B,X)

is an isomorphism. We say that C has filtration compact boundaries, if the source generating
boundary inclusion b ∈ B is filtration compact.

Remark 8.1.6.3. Observe that, as every inclusion of a subcomplex defines a monomorphism
in C, the defining condition in Definition 8.1.6.2 is equivalent to saying that every morphism
f ∶B →X factors through Xi →X, for some i ∈ I.

Let us give a second notion of compactness, which is the finite version of the notion of
compactness considered in [Hir03].

Notation 8.1.6.4. Let C be a cellularized category and let c∶A→X be a structured relative
cell complex in C. We say that a morphism f ∶B → X in C factors through a subcomplex
(c̃∶A→ X̃) ⊂ c, if f factors through X̃ ↪X.

Definition 8.1.6.5. Let C be a cellularized category. We say that an object B ∈ C is
subcomplex compact, if the following condition holds. For every structured relative cell
complex c∶A→X in C and for every morphism B →X, there exists a finite subcomplex c̃ ⊂ c,
such that f factors through c̃. We say that C has subcomplex compact boundaries, if the
source of every generating boundary inclusion b ∈ B is subcomplex compact.

Remark 8.1.6.6. Clearly, Definitions 8.1.6.2 and 8.1.6.5 have analogues where ℵ0 is replaced
with any regular cardinal. The generalization of the theory we describe here to this case is
essentially purely formal and we will have no need for it here.

Let us now study the relation between these two notions of compactness. For the remainder
of this section, fix some cellularized category C. We begin with an elementary observation.

Lemma 8.1.6.7. Suppose we are given a pushout diagram in C

X0 X1

X2 X

⌟

(8.57)

with X1 and X2 filtration compact (subcomplex compact). Then X is also filtration compact
(subcomplex compact).

Proof. This is an immediate consequence of the universal property of the pushout and every
inclusion of a subcomplex inducing a monomorphism in C.

Proposition 8.1.6.8. Let B ∈ C. Then if B is subcomplex compact, it is also filtration
compact.

Proof. Let c●∶ I▷ → RCell(C)A be a filtration of c by subcomplexes. Let c̃ be a finite
subcomplex of f through which f factors. Then, for every cell σ of c̃, there exists an i ∈ I, such
that σ ∈ Cci . Consequently, as I is filtered and c̃ finite, there exists an m ∈ I, such that σ ∈ Ccm

for all σ ∈ Cc̃. It follows by Observation 8.1.3.10 that c̃ ⊂ cm, and hence f factors through
Xm →X, as required.
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Proposition 8.1.6.9. If C has filtration compact boundaries or subcomplex compact boundaries,
then the following holds. An object B ∈C is filtration compact, if and only if it is subcomplex
compact.

Proof. We have already seen that subcomplex compactness implies filtration compactness
in Proposition 8.1.6.8. We proceed to show the remaining implication from the filtration
factorization condition to the subcomplex factorization condition, where we induce over the
minimal presentation ordinal λ of the target structured relative cell complexes c∶A→X, and
we only allow for such filtration-presentations, which only add a single cell in each step. Clearly,
for λ = 0, there is nothing to be shown. Now, let λ be a a limit ordinal, and c∶A → X and
f ∶B → X in C. Let us show that the filtration condition implies the subcomplex condition.
Then fixing some filtration-presentation of X

A =X0
↪X1

↪ . . .Xλ
=X .

denote, for β < λ, by cβ ∶A → Xβ the induced subcomplex of c. Then lim
Ð→

cλ = c, and by
definition of filtration compactness, it follows that f factors through Xβ , for some β < λ.
Consequently, we find a finite subcomplex of cβ , c̃∶A→ X̃, such that f factors through X̃. But
then c̃↪ cβ ↪ c defines a finite subcomplex of c, through which f factors.
Now, for the case of a successor ordinal λ = β+1, observe first that, by the inductive assumption
applied to the sources of generating boundary inclusions b ∈ B, under any of the two assumptions
it follows by Corollary 8.1.5.6 that every cell of c is contained in a finite subcomplex of c.

Let S be the set of all finite subcomplexes of c (choosing one representative for each subob-
jects). Equip S with the partial order given by inclusion of subcomplexes. By Corollary 8.1.5.7,
S is a filtered poset. Now, consider the filtration by subcomplexes of c, c●∶S▷ →RCell(C)A,
given by cs = s, for a finite subcomplex s ∈ S, equipped with the obvious functoriality on
objects. Since we have shown that every cell of c is contained in a finite subcomplex of c, it
follows that this cocone does indeed define a filtration of subcomplexes. Hence, by definition
of filtration compactness, every morphism f ∶B →X factors through some Xs ↪X, for some
s ∈ S.

Corollary 8.1.6.10. A cellularized category C has filtration compact boundaries if and only
if it has subcomplex compact boundaries.

Notation 8.1.6.11. If a cellularized category C has filtration compact or equivalently
subcomplex compact boundaries, we will just say that it has strictly compact boundaries.

As we have seen in the proof of Proposition 8.1.6.9, in the scenario of filtration (or
equivalently subcomplex) compact boundaries, cells are always contained in finite subcomplexes.

Corollary 8.1.6.12. If a cellularized category C has strictly compact boundaries, then every
cell σ ∈ Cc of a structured relative cell complex c is contained in some finite subcomplex c̃↪ c.

We have also seen in the proof of Proposition 8.1.6.9:

Corollary 8.1.6.13. In a cellularized category C with strictly compact boundaries, every
structured relative cell complex c admits a filtration by its finite subcomplexes.

Next, let us investigate when cell complexes are filtered or subcomplex compact:

Proposition 8.1.6.14. Let C be a cellularized category. Assuming that, for every b∶∂D →D ∈
B, it holds that D is subcomplex compact, then an absolute structured cell complex X ∈Cell(C)
is subcomplex compact, if and only if it is finite. If every target D of b ∈ B is filtration
compact, then every finite absolute cell complex is filtration compact. If C has strictly compact
boundaries, then the converse statement for filtration compactness holds.
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Proof. The final claim is immediate from the first claim, by Proposition 8.1.6.9. Now, for
the first statement, the only if statement is trivially true. It remains to show the if case for
subcomplex and filtration compactness. Inducing over the number of cells, this is an immediate
consequence of Lemma 8.1.6.7.

Another claim which is immediate from the definition of filtration and subcomplex com-
pactness is the following.

Lemma 8.1.6.15. Let C be a cellularized category. Any retract of a filtration compact
(subcomplex compact) object is again filtration compact (subcomplex compact).

Finally, let us end this subsection with two observations on compactness which will be
extremely useful when investigating the homotopy theory of finite complexes in a cofibrantly
generated model category.

Observation 8.1.6.16. Let C be a cellularized category. It is immediate from the definition
of filtration compactness that every filtration compact object is ℵ0-small with respect to
relative cell complexes. It follows that if EC is a set of morphisms in C, each of which admits
the structure of a finite relative structured cell complex, and is such that every source of a
morphism in EC is filtration compact, then EC permits the small object argument (see [Hir03,
pp. 10, 5]), and the latter can be performed with countable transfinite compositions indexed
over the naturals.

Proposition 8.1.6.17. Let C be a cellularized category. Let EC be a set of finite structured
relative cell complexes in EC, each of which has filtration compact source. Let E be the smallest
class of structured relative cell complexes in C, such that

1. E contains EC;

2. E is closed under cobase changes;

3. E is closed under vertical transfinite composition.

Let e∶A→X ∈ E let B ∈C be filtration compact, and let f ∶B →X be a morphism in C. Then
there exists a finite subcomplex (ẽ∶A→ X̃) ⊂ e, such that f factors through X̃ ↪ X and such
that ẽ ∈ E.

Remark 8.1.6.18. Carefully tracing the proof of Proposition 8.1.6.17 below, one observes that
it suffices for the sources of EC to be filtration compact with respect to EC (after removing
isomorphisms).

Proof of Proposition 8.1.6.17. By the composability of transfinite vertical compositions and
Observation 8.1.2.13, every morphism in E is a transfinite composition of cobase changes of
morphisms in EC. Observe that, in any such transfinite composition, we may always reduce
the latter such that only the first morphism is a cobase change of an isomorphism. Clearly,
precomposing with an isomorphism has no impact on the claimed factorization conditions.
Hence, we may assume that EC contains no isomorphism. In particular, it follows that if we
equip C with the class of generating boundary inclusions given by the underlying morphisms of
EC, then this defines the structure of a cellularized category with strictly compact boundaries.
As B is filtration compact with respect to B and every filtration by EC subcomplexes refines to
a filtration of B-subcomplexes, B is also filtration compact with respect to EC. Now, as e ∈ E,
we may write the latter in terms of a transfinite composition of cobase changes of elements of
EC. This defines a coarsening of the B-cell structure on e to a EC-cell structure, which we
denote e′. As B is filtration compact with respect to EC, it follows by Proposition 8.1.6.9 that
B is also subcomplex compact with respect to EC. Hence, f ∶B → X (as in the claim of the
proposition), factors through a finite structured EC-subcomplex ẽ′∶A→ X̃ of e′. We may now
refine the cell structure on e′ to a B-cell structure again, by using the cell structures on the
generators e0 ∈ EC. This equips e′∶A→ X̃ with the structure of a B-subcomplex of e, denoted
ẽ. As ẽ′ was finite and every e0 ∈ EC is assumed to be finite, ẽ is finite.
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8.2 Cellularized functors: Bookkeeping
In this section, we develop the theory of functors between cellularized categories. As our
notion of structured cell complexes was developed in the full generality of relative structured
cell complex, our notion of functor will consequently also be relative. We emphasize that this
section summarizes a lot of basic facts about the interaction of colimit preserving functors
with cell complexes that are well known and used in the theory of model categories (see, for
example, [Hir03]). The purpose is mainly to keep to list these classical facts in a coherent form,
while keeping track of cell structures. Hence, we will often only provide sketches of proofs.

8.2.1 Some generalities on Leibniz-style constructions
The guiding example of a relative cellularized functor is the actions of a simplicial category
on a simplicial model category, or of a topological category on a (tensored and powered)
topological category. As to connect to the classical scenario, however, let us recall the case of
CW-complexes. To simplify things a little bit, in particular in order to not have to keep track
of dimension conditions, we will describe the case of topological cell complexes, omitting any
requirements on the gluing maps.

Example 8.2.1.1. Given a structured topological cell complex X (equipped with a choice of
cell structure), the functor

X × −∶Top→ Top

(of compactly generated topological spaces) lifts to a functor of relative structured cell complexes,
which can be seen as follows. To define a cell structure on X × B → X × Y , for a relative
structured cell complex d∶B ↪ Y , observe first that (as we are working in compactly generated
spaces) X × c can be written as a transfinite composition

X ×A→X × (Y 0
∪A)→X × (Y 1

∪A)→ ⋅ ⋅ ⋅→X × Y λ =X × Y.

For each α < λ, we obtain an induced pushout diagram

⊔X × ∂Dni,α ⊔X ×Dni,α

X × (Y α ∪A) X × (Y α+1 ∪A)

X×⊔σ⌟ (8.58)

Using cobase change of cell structures and transfinite composition, it follows that to expose
a cell structure on X × Y , it suffices to expose the structure of a relative cell complex on
X × (∂Dn → Dn). Making this a bit more formal, we will see that, a lift of the functor on
arrows induced by X × − to a functor

RCell(Top)→RCell(Top)

which preserves vertical composition, is entirely determined by a choice of relative cell structures
on X × (∂Dn → Dn). So far we have not used the cell structure on X at all. Taking it into
account, we can choose a filtration-presentation of X and observe that we may write may write
X × (∂Dn →Dn) as a transfinite composition

(X × ∂Dn
)→ (X × ∂Dn

) ∪ (X0
×Dn

)→ (X × ∂Dn
) ∪ (X1

×Dn
)→ ⋅ ⋅ ⋅→Xβ

×Dn .

Again, we obtain pushout squares

⊔i∈Iα(Dki,α × ∂Dn) ∪ (∂Dki,α ×Dn) ⊔i∈Iα Dki,α ×Dn

(X × ∂Dn) ∪ (Xk−1 ×Dn) (X × ∂Dn) ∪ (Xk ×Dn)

(8.59)
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for α < β. Hence, we may reduce to exposing a cell structure on

∂(Dk+n
) ≅ (Dk

× ∂Dn
) ∪ (∂Dk

×Dn
)↪Dk

×Dn
≅Dk+n.

In this case, having chosen an identification Dk ×Dn ≅ Dk+n, there is of course a canonical
one available. However, there is a deeper principle to be studied here: When defining functors
of cellularized frameworks, the decisive structures to study are Leibniz formula morphisms of
the form

X ×B ∪A×B A × Y →X × Y

induced by morphisms A→X and B → Y .

Notation 8.2.1.2. Suppose we are given a natural transformation

C D

F

G

ι (8.60)

where D is a category that admits pushouts. Given f ∶X0 →X1 in C, consider the induced
diagram

F (X0) G(X0)

F (X1) F (X1) ∪F (X0) G(X0)

G(X1).

ιX0

F (f)
G(f)

ιX1

ι̂(f)

(8.61)

We denote by ι̂ the induced functor

C[1] →D[1]

f ↦ ι̂(f)

with functoriality induced by the universal property of the pushout. We call ι̂ the Leibniz
construction associated to ι∶F → G.

Let us recall some of the elementary properties of the Leibniz construction, which show
up in one form or another in most textbooks on model categories (see for example [Hir03,
p. 10.2.17] where the simplicial cases are proven and [RV13], for some context where these
properties are excessively used).

Recollection 8.2.1.3. Let ι∶F ⇒ G a natural transformation of functors F,G∶C → D be
such that F,G both preserve colimits. The Leibniz construction has the following properties:

1. Given a pushout square
A A′

X X ′

f f ′⌟

(8.62)

in C, the induced commutative square in D

F (X) ∪F (A) G(A) F (X ′) ∪F (A′) G(A
′)

G(X) G(X ′)

(8.63)

is again pushout.



432 CHAPTER 8. ON THE YOGA OF GENERAL CELL COMPLEXES

2. Given a (transfinite) composition

X0 X1 . . . Xλ (8.64)

with pairwise arrows denoted fα,α
′

∶Xα → Xα′ then ι̂(f0,λ) is given by a transfinite
composition

F (Xλ) ∪F (X0) G(X
0) F (Xλ) ∪F (X1) G(X

1) . . . G(Xλ)

ι̂(f0,λ)

ι̂(f1,λ)

(8.65)

where the arrows F (Xλ) ∪F (Xα) G(X
α) → F (Xλ)∪F (Xα′)G(X

α′) fit into pushout
squares

F (Xα′) ∪F (Xα) G(X
α) G(Xα′)

F (Xλ) ∪F (Xα) G(X
α) F (Xλ) ∪F (Xα′) G(X

α′) .

ι̂(fα,α′)

⌟ (8.66)

Notation 8.2.1.4. To keep the language analogous to the framework of cellularized categories,
we will call a natural transformation ι∶F ⇒ G a relative functor . We are going to consider the
following two notions of composition of relative functors.

1. The regular composition of natural transformations

F G Hι

τ○ι

τ (8.67)

will be called vertical composition and denoted by ○.

2. We are furthermore going to consider an additional Leibniz-style composition of functors,
constructed in Construction 8.2.1.5, denoted ○̂.

Construction 8.2.1.5. Suppose we are given a diagram of categories which have pushouts

C D E .

F0

G0

F1

G1

ι0 ι1 (8.68)

We denote by ι1○̂ι0 the induced horizontal Leibniz composition,

F1 ○ F0 F1 ○G0

G1 ○ F0 F1 ○G0 ∪F1○F0 G1 ○ F0

G1 ○G0

F1ι0

ι1F0 ι1G0

G1ι0

⌟

ι1○̂ι0

(8.69)

induced through the universal property of the pushout of functors. This construction is
associative and unital up to canonical isomorphism. We may summarize the whole situation in
the following bicategory (see [JY20], for basic language and definition in bicategories), which
we denote by Leib:
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1. Objects of Leib are categories C with finite colimits.

2. The category of morphisms between C and D is the 1-category of relative functors
Funcol(C,D)[1] which preserve colimits, with unit object given by the unique transfor-
mation ∅→ 1C.

3. Composition
Leib(D,E) ×Leib(C,D)→ Leib(C,E)

is given by the Leibniz compostion −○̂−.

4. All associators and unitors are induced by the universal property of the pushout.

Observation 8.2.1.6. Given a diagram

C D E .

F0

G0

F1

G1

ι0 ι1 (8.70)

as in Construction 8.2.1.5, the universal property of the pushout induces a canonical isomor-
phism

(̂−)(ι1○̂ι0) ≅ ι̂1 ○ ι̂0.

Checking the relevant identities, we may summarize this as the Leibniz construction inducing
a pseudo-functor

Leib→Cat

C↦C[1]

ι↦ ι̂

where functoriality on 2-morphisms is again induced by the universal property of the pushout.

Recollection 8.2.1.7. Finally, recall that the symmetric analogue of Recollection 8.2.1.3
holds, with the roles of relative functors and morphisms exchanged (using cobase changes and
transfinite compositions of natural transformations).

8.2.2 Cellularizing functors

Having recalled the Leibniz calculus of functors, let us now study cellularized versions of
functors as suggested by the guiding examples of the tensor actions on topological or simplicial
model categories:

Definition 8.2.2.1. Let C and D be cellularized categories. A relative cellularized functor i
from C to D consists of the data of:

1. A natural transformation of colimit preserving functors ι∶F ⇒ G.

2. A lift

RCell(BC) RCell(BD)

C[1] D[1] ,

î

ι̂

(8.71)
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such that, for any inclusion of relative cell complexes j∶ (A c̃
↪Ð→ X̃) ↪ (A

c
↪Ð→ X), î(c)

carries the cell structure given by the right vertical composition

F (X̃) ∪F (A) G(A) F (X) ∪F (A) G(A)

G(X̃) F (X) ∪F (X̃) G(X̃)

G(X)

î(c̃)

î(c)
î(j)

(8.72)

with the square cobase change.

By an (absolute) cellularized functor , we mean a relative cellularized functor i of the form
ι∶ ∅⇒ F .

Notation 8.2.2.2. We follow the notational convention of denoting structured objects by
special fonts, such as calligraphic or fraktur-font, and the underlying object in regular font.
Hence, given an absolute cellularized functor F, we refer to the underlying (ordinary) functor
by F .

Observation 8.2.2.3. Observe that, by the essential uniqueness of initial objects, we may
simply think of an absolute cellularized functor as a functor F ∶C→D, together with a lift

RCell(BC) RCell(BD)

C[1] D[1] ,

F̂

F̂

(8.73)

Observe, furthermore, that for a relative cell complex c∶A→X, F̂ (c) = (F (A) ∪∅ ∅→ F (X))
is canonically isomorphic to F (c). Hence, the data of a cellularization of F is the same as
choosing for each structured relative cell complex c a cell structure on F (c), in a way that is
compatible with the functoriality of F and vertical composition.

Notation 8.2.2.4. Given a cellularized category C, and an element b∶∂D →D of B, we will
denote by b∶∂D → D, the associated structured relative cell complex, with exactly one cell
given by D 1D

Ð→D.

Lemma 8.2.2.5. Given a relative cellularized functor i∶F ⇒ G , we may consider the family

(Cî(b)))b∈BC .

This construction induces a bijection

{̂i∶RCell(BC)→RCell(BD) ∣ î cellularizes ι}
≅

{(Cî(b))b∈B ∣ Cî(b) defines a cell structure on ι̂(b)} .

The inverse is defined as follows. Suppose we are given cell structures (Cî(b))b∈B, on ι̂(b), for
b ∈ B. For c∶A↪X, the cell structure on ι̂(c) is explicitly given by a disjoint union

⊔
σ∈Cc

G(σ)Cî(bσ) ,

with bσ the generating boundary inclusion associated to σ.
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Proof. We first show that the explicit construction above does indeed define a cell structure.
That it then defines a cellularized functor is easily verified from the construction. Let c∶A↪X
be a structured relative cell complex, and let

A =X0 X1 X2 . . . Xλ X≅ (8.74)

together with
∂Dα Dα

Xα Xα+1 ,

⌟ (8.75)

for α < λ, be a filtration-presentation of c, with one cell in each degree. It follows by
Recollection 8.2.1.3, that we obtain an induced transfinite composition

F (X) ∪F (A) G(A) F (X) ∪F (X1) G(X
1) . . . F (X) ∪F (Xλ) G(X

λ) G(X)≅

(8.76)
together with composed pushout squares

F (Dα) ∪F (∂Dα) G(∂D
α) G(Dα)

F (Xα+1) ∪F (Xα) G(X
α) G(Xα+1)

F (X) ∪F (Xα) G(X
α) F (X) ∪F (Xα+1) G(X

α+1)

ι̂(bα)

⌟

⌟

(8.77)

for α < λ. Hence, we can write ι̂(c) as a transfinite composition of cobase changes of the
relative cell complexes ι̂(b), for b ∈ B. The induced cell structure is precisely the one described
in the statement of the proposition. It is not hard to verify, that the thus constructed functor
fulfills the vertical composition law stated above. Now, for the uniqueness statement, we show
that the set of cells Cî(c) associated to a structured relative cell complex c needs to contain
⋃(b,σ)∈Cc

G(σ)Cî(b). Using the first part of this proof, we then obtain an alternative structured
relative cell complex c′∶A→X, together with a morphism inclusion of cell complexes c′ ↪ c,
given by the identity on objects. By Corollary 8.1.4.5, it follows that c′ = c. To see that this
containment holds, again choose a filtration-presentation

A =X0
→ ⋅ ⋅ ⋅→Xλ

≅X,

of c∶A→X as above, and proceed to prove the statement via transfinite induction over λ. For
λ = 1, i.e., the case of a single cell, the claim is immediate since, by the functoriality of î, the
induced diagram

F (D) ∪F (∂D) G(∂D) F (X) ∪F (A) G(A)

G(D) G(X)

î(b) î(c)

G(σ)

(8.78)

defines a morphism of structured relative cell complexes. In the case where λ is a limit
ordinal, for every cell (b, σ) of c, there is some Xα, α < λ, through which σ factors. Using
Proposition 8.1.3.1 and Observation 8.1.3.5, we may factor c into a subcomplex cα∶A→Xα,
together with an inclusion of subcomplexes i∶ cα ↪ c, and we can think of σ as a cell of cα. We
denote this factorization of σ by σ′. By the functoriality of î, the diagram

F (Xα) ∪F (A) G(A) F (X) ∪F (A) G(A)

G(Xα) G(X)

î(cα) î(c) (8.79)
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defines a morphism of cell complexes. By inductive assumption G(σ′)Cî(b) is contained in the
set of cells of the left hand side morphism. It follows, that

G(i)G(σ′)Cî(b) = G(σ)Cî(b)

is contained in the cell of the right hand vertical, as was to be shown. Finally, the case of a
successor ordinal follows from the vertical composition rule for cellularized functors, as well as
the case of a single cell.

Corollary 8.2.2.6. In the special case of a relative functor ι∶ ∅→ F , which we may just think
of as a functor F , we obtain from Lemma 8.2.2.5 a unique lift

RCell(C) RCell(D)

C[1] D[1]

F̂

F○−

(8.80)

which also behaves functorial under vertical composition.

Example 8.2.2.7. The cellularized identity functor 1C of a cellularized category C, is given
by equipping ι∶ ∅⇒ 1C with the cell structures given by the canonical isomorphism

ι̂(b) = (∂D ∪∅ ∅→D) ≅ (∂D
b
Ð→D)

for b∶∂D →D ∈ B.

Example 8.2.2.8. Not every relevant functor of structured cell complexes necessarily arises
by cellularizing a functor of the underlying categories. Consider, for example, the reduced
cellular chain-complex functor

C∶Cell(Filt)→Cell(Ch(Z)≥0)

mapping a CW-complex X to is cellular chain complex C●(X), with the cell structure on the
cellular chain complex Cell●(X) given by the canonical basis induced by the cells of X. It can
be obtained as a lift of the functor

Filt→Ch(Z)≥0

which sends a filtered space
∅

f0
Ð→X0 f1

Ð→X1
→ . . .

to the chain complex whose n-th entry is the reduced homology of the homotopy cofiber of fn

H̃n(C(fn))

with boundary maps induced by the Barrat-Puppe maps

C(fn)→ Σ(Xn−1)→ Σ(C(fn−1)).

This functor is, however, not colimit preserving (homology does not preserve pushouts), and
it seems likely that a case can be made that no colimit preserving extension of the cellular
chain-complex to Filt exists. (At least if we assume preservation of monomorphisms, then one
can derive non-existence from the fact that not every pushout of inclusions of spaces induces a
homotopy pushout of chain complexes.)

Cellularized functors have the following elementary properties, each of which are direct
consequences of Recollection 8.2.1.3 and Lemma 8.2.2.5.
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Corollary 8.2.2.9. Given a cellularized functor i∶F ⇒ G, then the functor

î∶RCell(C)→RCell(D)

has the following properties:

1. It is compatible with (transfinite) vertical composition in the sense that the analogue of
Recollection 8.2.1.3 holds (where all pushouts are replace by cobase change squares and
all transfinite compositions by transfinite vertical compositions of structured relative cell
complexes).

2. It preserves cobase change morphisms.

3. If f ∶ c0 → c1 is injective on cells, then so is î(f).

We can now arrange cellularized categories and relative cellularized functors into a bicategory
(see [JY20] for an introduction to the theory and language of bicategories) as follows. First, let
us define the category of cellularized functors with fixed source and target:

Definition 8.2.2.10. By a morphism of relative cellularized functors i0∶F0 → G0 and i1∶F1 →
G1, we mean a pair of natural transformations ηF ∶F0 ⇒ F1 and ηG∶G0 ⇒ G1, such that the
diagram

F0 F1

G0 G1

ηF

ι0 ι1

ηG

(8.81)

commutes, and such that, for every relative cell complex c ∈RCell(C), the induced morphism

î0(c)→ î1(c)

is a morphism of structured relative cell complexes. Given two cellularized categories C and
D, we denote by CellCat→(C,D) the 1-category of cellularized functors and morphisms of
cellularized functors (with the obvious choice of composition and identities).

Observation 8.2.2.11. By the same inductive argument used in the proof of Lemma 8.2.2.5 it
follows that to verify whether a pair of natural transformations (ηF , ηG) as in Definition 8.2.2.10
defines a morphism of cellularized functors, it suffices to verify that the induced morphism

î0(b)→ î1(b)

is a morphism of structured relative cell complexes for all b ∈ B.

8.2.3 Categories of cellularized categories
It will be useful to think of cellularized categories and relative cellularized functors as themselves
forming a kind of category. The following subsection is mainly bookkeeping (even more so
than the previous one). While conceptually nice to have, and useful in some arguments in
simple homotopy theory, parts of it are unsatisfying in the sense that there is no non-surprising
argument in sight, and in fact, we will omit most of the straightforward verifications. We
recommend returning to this section when a reference to it occurs later in the text.
To assemble all cellularized categories into one larger category, we may modify the Leibniz
category of Construction 8.2.1.5 as follows:

Construction 8.2.3.1. We denote by CellCat→ the following bicategory, obtained by
equipping the constructions in Leib with cell structures.

• Objects are given by (sufficiently small) cellularized categories C.



438 CHAPTER 8. ON THE YOGA OF GENERAL CELL COMPLEXES

• The category of morphism from C to D, is given by the category of relative cellularized
functors CellCat→(C,D). The identity object in CellCat→(C,C) is given by 1C∶ ∅→

1C.

• The composition functor

CellCat→(D,E)) ×CellCat→(C,D)→CellCat→(C,E)

is given by cellularizing the Leibniz compositions ι1○̂ι0 (see Construction 8.2.1.5) via the
canonical isomorphisms

ι̂1(ι̂0(b)) ≅ ((̂−)(ι1○̂ι0))(b)

for b ∈ BC.

• Unitors and associators are inherited from Leib.

We may then think of

RCell(−)∶CellCat→ →Cat
(C,B)↦RCell(C)

i↦ î

as a functor of bicategories.
We denote by CellCat the wide subcategory, of (absolute) cellularized functors. Note that
CellCat can be made into a strict bicategory, by simply omitting the initial objects of absolute
cellularized functors, and observing that in this case Leibniz composition comes down to regular
composition. Restricting to absolute cellularized functors, we obtain an induced functor of
strict bicategories

Cell(−)∶CellCat→Cat
C↦Cell(C) .

Observation 8.2.3.2. The two functors

CellCat
Cell(−)
ÐÐÐÐ→Cat;

CellCat↪CellCat→
RCell(−)
ÐÐÐÐÐ→Cat

are representable. Denote by ⋆ the terminal object in Set, given by a set with one element. By
abuse of notation, we also denote the category with one object and one morphism by ⋆. The
first of these two functors is represented by the cellularized category Set with the equivalence
given via the evaluation functor

CellCat(Set,C)→Cell(C)
F↦ F(⋆).

That this defines an equivalence of categories follows by left Kan extension along the inclusion
of the terminal category as the terminal object of Set, ⋆↪ Set, together with Lemma 8.2.2.5
and Observation 8.2.2.11.
To present the second functor, consider the category of arrows in Set, Set[1], and equip it
with the single generating boundary inclusion given by the (unique) natural transformation of
representables

u ∶∆1
(1,−)→∆1

(0,−).
Then, again using left Kan extension together with Lemma 8.2.2.5 and Observation 8.2.2.11,
one obtains an equivalence of categories

CellCat((Set[1],{u}),C) ≃Ð→RCell(C)
F↦ F(u) .
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Let us end this subsection with an observation on the invariance of cellularized categories
under replacing a generating boundary inclusion by an isomorphic boundary inclusion.
Remark 8.2.3.3. Especially in the case of the category of topological spaces, the choice of
generating boundary inclusions and generating expansions is extremely non-canonical. For
example, it seems to depend on what precise choice for the disk Dn we have in mind. We
could use the subspace of Rn given by the vectors of Euclidean norm lesser or equal to 1, but
we may just as well use the n-dimensional cube [0,1]n or, which seems preferable from the
perspective of simplicial homotopy theory, the topological n-simplex ∣∆n∣. These choices are
essentially irrelevant, however. To see this, observe the following. Suppose we are given a
category C, equipped with two different sets of generating boundary inclusions B0 and B1,
which both make it a cellularized category. We denote the resulting cellularized categories by
C0 and C1, respectively. Suppose, furthermore, that we are given the data of

1. A bijection Φ∶B0 → B1;

2. For every b ∈ B0, a choice of isomorphism of arrows ϕb∶Φ(b) ≅ b.
For b ∈ B, let us denote the induced isomorphism on targets associated to ϕb by ϕb1. Let F be
the identity functor

C→C,
which we denote F , to make clear if we think about the source or the target category. Under
Lemma 8.2.2.5, we obtain a cellularization of F , by equipping F (b∶∂Db →Db), for b ∈ B0 with
the cell structure given by the single cell ϕb1∶DΦ(b) ≅Ð→Db. The resulting cellularized functor F is
an isomorphism of cellularized categories. An inverse is constructed, by applying the analogous
construction to Φ−1 and ((ϕΦ−1(b))−1)

b∈B1
. This shows that the associated cellularized category

is effectively independent of the choice of representative of the isomorphism class of generating
boundary inclusions.

8.2.4 Operations of cellularized functors
It is a general principle in category theory that a functor category with targets D generally
inherits a large class of constructions and properties from D. Such a claim also holds in the
cellularized world. Namely, the category of cellularized functors CellCat→(C,D) between
two cellularized categories behaves itself much like a cellularized category. To be more precise,
it inherits notions of cobase change, vertical (transfinite) compositions and subcomplexes.
Construction 8.2.4.1. Consider the left evaluation functor

CellCat→(C,D)→Cat(C,D)

(F
ι
Ô⇒ G, î)↦ F

(ηF , ηG)↦ ηF

It is a cocartesian fibration. Indeed, given a relative cellularized functor (F ι
Ô⇒ G, î) and given

a natural transformation η∶F ⇒ F ′ (with F ′ colimit preserving), we can consider a pushout
square of functors

F F ′

G G′ .

ι

η

ι′

η′

(8.82)

Then, by Recollection 8.2.1.7, for every relative cell complex c∶A↪X in c the induced square

F (X) ∪F (A) G(A) F ′(X) ∪F ′(A) G
′(A)

G(X) G′(A) .

ι (8.83)
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is again pushout. In particular, the right hand vertical inherits the structure of a relative
cell complex from the left hand vertical. In this fashion, ι′ inherits the structure of a relative
cellularized functor, and (η, η′) becomes a morphism of relative cellularized functors. The lift
(η, η′) of η obtained in this fashion is by construction cocartesian. We also call this construction
the cobase change of cellularized functors, and will denote it in the form η¡.

Construction 8.2.4.2. Cellularized relative functors also admit a notion of vertical compo-
sition. Given two cellularized relative functors i0∶F ⇒ G and i1∶G⇒ H, a cell structure on
ι1 ○ ι0 is obtained as follows. Given b ∈ B, consider the commutative diagram

F (D) ∪F (∂D) G(∂D) F (D) ∪F (∂D)H(∂D)

G(D) G(D) ∪G(∂D)H(∂D)

H(D) ,

î0(b)
ι̂1○ι0(b)

⌟

î1(b)

(8.84)

for b ∈ B. The left square is a pushout. In particular, we may equip the right vertical with the
relative cell structure induced via the cobase change. Then, ι̂1 ○ ι0(b) can be equipped with
the cell structure given by vertical composition of the induced relative cell complex with î1(b).
By Lemma 8.2.2.5, this induces the structure of a cellularized functor on ι1 ○ ι0. One can verify
that the resulting cell structure is such that for any c ∈RCell(C), ̂(i1 ○ i0)(c) is given by the
right vertical composition

F (X) ∪F (A) G(A) F (X) ∪F (A)H(A)

G(X) G(X) ∪G(A)H(A)

H(X) ,

F (X)∪F (A)(ι1)

î0(c) (F (X)∪F (A)(ι1))¡)î0(c)
(̂i1○i0)(c)

⌟

î1(c)

(8.85)

where the left square is a cobase change. In particular, by Proposition 8.1.3.1, ι1 induces a
morphism of cellularized functors i0 → i1 ○ i0, such that for every c ∈RCell(C), the induced
morphism of structured relative cell complexes

î0(c)→ î1 ○ i0(c)

induces an injection on the level of cells.

Construction 8.2.4.2 together with Proposition 8.1.3.1, suggests the following definition of
a cellularized subfunctor:

Definition 8.2.4.3. A morphism of cellularized functors (1, η)∶ (F i
Ô⇒ G̃) → (F

j
Ô⇒ G) is

called an inclusion of cellularized relative functors, if one of the following equivalent conditions
holds.

1. The cellularized functor j is given by the vertical composition of ĩ and a (necessarily
unique) cell structure on G̃

η
Ô⇒ G.

2. For b ∈ BC, the induced morphism on cells Cî(b) → Cĵ(b) is injective on the level of cells.

3. For c ∈RCell(C), the induced morphism on cells Cî(c) → Cĵ(c) is injective.
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Observation 8.2.4.4. By Proposition 8.1.3.1, an inclusion of (absolute) cellularized functors
η∶F↪ G induces inclusions of absolute cell complexes

F(X)↪ G(X)

for every absolute cell complex X ∈Cell(C).

We may now use Observation 8.1.3.6, to define a notion of transfinite composition of
cellularized functors.

Construction 8.2.4.5. Let C and D be cellularized functors. Suppose we are given a
transfinite composition of functors from C to D

F = F 0
⇒ F 1

⇒ ⋅ ⋅ ⋅⇒ Fλ = G

together with, for each α < α′ ∈ λ, the structure of a relative cellularized functor on

ια,α′ ∶F
α
⇒ Fα

′

compatible under vertical composition. By Definition 8.2.4.3, we may equivalently think of
such a diagram as a diagram of inclusions of cellularized subfunctors iα∶F → Fα

i0 ↪ i1 ↪ i2 . . . .

The colimit of this diagram exists, and specifies the structure of a cellularized functor i on
F ⇒ G. For c ∈RCell(C), the cell structure Cî(c) is explicitly given by

⋃
α<λ

ια+1,λCîα+1(c) .

Lemma 8.2.4.6. Suppose we are given a solid span of absolute cellularized functors

F F′

G η¡i ○ F
′

η

ι ι′⌟

(8.86)

in CellCat(C,D) where the vertical morphism is an inclusion of cellularized functors. Then
the pushout of this span exists and is given by equipping G′ in the pushout diagram of functors

F F ′

G G′

η

ι ι′

η′

⌟

(8.87)

with the cellularization given by η¡i ○ F
′, where i is the relative cellularized functor associated

to the inclusion i∶F↪ G. In other words, the complete diagram of functors Diagram (8.86) is
a pushout.

Proof. Unravelling the definitions, observe that if evaluate Diagram (8.86) at a structured
relative cell complex c∶A↪X, the cell structure on η¡i ○ F

′(c) is given by the set

ι′CF(c) ∪ η
′Cî(c).

Since ηCF(c) ⊂ CF′(c) and Cî(c) = CG(c) ∖ ιCF(c), we may furthermore rewrite this union as

(ι′CF(c) ∪ ι
′ηCF(c)) ∪ η

′
(CG(c) ∖ ιCF(c)) = (ι

′CF(c)) ∪ η
′ιCF(c) ∪ η

′
(CG(c) ∖ ιCF(c))

= (ι′CF(c)) ∪ η
′CG(c) .
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In particular, it follows that Diagram (8.86) is indeed a well-defined commutative diagram
in CellCat(C,D). Furthermore, using Lemma 8.1.4.7, it also follows from this that for each
c ∈RCell(C), the induced diagram

F(c) F′(c)

G(c) η¡i ○ F
′(c)

η

ι ι′⌟

(8.88)

is a pushout. From this, one may immediately derive that η¡i ○ F
′ does not only fulfill the

universal property of the pushout in Fun(C,D), but that for any solid commutative diagram
in CellCat(C,D)

F F′

G

H

(8.89)

the unique dashed natural transformation

F F ′

G G′

H

(8.90)

making the diagram commute, defines a morphism of cellularized functors η¡i ○ F
′ → H, which

(by the faithfulness of the functor forgetting cellularization) is unique with the property that it
makes the diagram

F F′

G η¡i ○ F
′

H

⌟

(8.91)

commute.

8.2.5 Cellularized bifunctors
Many examples of cellularized functors, for example ones arising from actions of the category
of simplicial sets on a cofibrantly generated model category, arise by fixing one of the variables
in a bivariate functor.
Notation 8.2.5.1. Given a bivariate functor − ⊗ −C∶ ×D → E into a category with finite
colimits E, we denote by

−⊗̂−∶C[1] ×D[1] → E[1]

the functor obtained by mapping a pair of arrows f ∶X0 →X1 and g∶Y0 → Y1 to the canonical
induced arrow

X1 ⊗ Y0 ∪X0⊗Y0 X0 ⊗ Y1 →X1 ⊗ Y1

with functoriality induced by the universal property of the pushout.
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Observation 8.2.5.2. Observe that the notation for Leibniz tensors is compatible with
the notation of the Leibniz construction in Notation 8.2.1.2, in the sense that the Leibniz
construction f̂ ⊗ − associated to the relative functor X0⊗−

f⊗−
ÐÐ→X1⊗−, for an arrow f ∶X0 →X1

in C, is equivalently given by the functor f ⊗̂−∶D[1] → E[1] obtained by fixing f .

Definition 8.2.5.3. Let C,D,E be cellularized categories. By a cellularized bifunctor of
celularized categories, ⊗∶C ×D→ E, we mean a bifunctor

− ⊗ −∶C ×D→ E ,

preserving colimits in both arguments, together with a fixed lift

RCell(C) ×RCell(D) RCell(E)

C[1] ×D[1] E[1]

⊗̂

−⊗̂−

(8.92)

such that, for each A1
c1
↪Ð→X1 ∈RCell(BC) and A2

c2
↪Ð→X2 ∈RCell(BD), the induced functors

c1⊗̂−,−⊗̂c2

do, respectively, define the structure of a cellularized functor on the relative functors c1⊗−
and −⊗c2. The lift −⊗̂− is called the cellularization − ⊗ −.

Observation 8.2.5.4. It follows by Lemma 8.2.2.5 that a choice of cellularization of bifunctor
− ⊗ −∶C ×D→ E is specified uniquely by the data of a choice of cell structure Cb1⊗̂b2

on

b1⊗̂b2∶D1 ⊗ ∂D2 ∪∂D1⊗∂D2 ∂D1 ⊗D2 →D1 ⊗D2 ,

for each pair of boundary inclusions ∂D1
b1
↪Ð→D1 ∈ BC and ∂D2

b2
↪Ð→D2 ∈ BD.

Example 8.2.5.5. Let Set be the cellularization of the category of sets given by the single
boundary inclusion ∅↪ ⋆. Let C be a cellularized category. Consider the canonical actions of
Set on C, that is, the bifunctor

− ∗ −∶Set ×C→C

given by mapping (S,X)↦ ⊔s∈SX, with functoriality defined by mapping (f, g)∶ (S0,X0)→
(S1,X1) to the morphism

⊔
s∈S0

X0 → ⊔
t∈S1

X1,

mapping the component associated to s ∈ S0 to the f(s) component, via g. Observe that

{∅→ ⋆}⊗̂a ≅ a .

Hence, there is a canonical cell structure on − ∗ −, given by equipping

{∅→ ⋆}∗̂b ≅ b

with the tautological cell structure, for b ∈ B. Observe that this cellularization is such
that for any relative cellularized functor i∶F → G, from a cellularized category C to a
cellularized category D, and every a ∈RCell(Set) the canonical isomorphism, induced by the
commutativity of F and G with coproducts,

(a ∗ −)○̂i ≅ i○̂(a ∗ −)

(using the Leibniz composition of Construction 8.2.1.5) is an isomorphism of cellularized
functors.
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Example 8.2.5.6. The product functor

− × −∶ sSet × sSet→ sSet

is canonically equipped with the structure of a cellularized bifunctor. To verify this, observe
that every morphism in sSet can admit at most one cell structure, and is a relative cell complex
if and only if it is a monomorphism (see also Section 8.3.5). From this, the claim that − × −
has a unique structure of a cellularized bifunctor is easily verified.

The exponential law for functor categories has the following analogue in the world of
cellularized functors:

Construction 8.2.5.7. Recall that in the 1-category of small categories, there is a isomorphism
of categories

Φ∶Fun(C ×D,E) ≅ Fun(C,ED
)

F ↦ {X ↦ F (X,−)}

Under this isomorphism, a bivariate functor which is cocontinuous in both variables corresponds
to a cocontinuous functor into the full subcategory Cocon(ED

) ⊂ ED of cocontinuous functors.
If we are given a cellularization ⊗ of a bivariate functor ⊗ (cocontinuous in both variables),
then, by definition, for any fixed relative cell complex (A c

↪Ð→ B) ∈ RCell(C), the induced
natural transformation

Φ(⊗)c∶A⊗ −
c⊗−
ÐÐ→ B ⊗ −

is canonically equipped with the structure of a cellularized functor, and similarly any morphism
of cell complexes is mapped to a transformation of cellularized functors.

In this fashion, we obtain a map

Φ∶ [CellBiFun](C ×D,E)→CellCat→(D,E)RCell(C) ,

where [CellBiFun](C×D,E) denotes the (possibly large) set of cellular bifunctors from C×D
to E. Observe, that given a fixed cellularized bifunctor ⊗, the associated functor R ∶= Φ(⊗)
has the following properties

(i) R preserves vertical composition.

(ii) The diagram
RCell(C) CellCat→(D,E)

C[1] Fun(D,E)[1]

R

Φ(⊗)[1]
(8.93)

commutes.

Proposition 8.2.5.8. In the framework of Construction 8.2.5.7, the assignment ⊗↦ Φ(⊗) in-
duces a bijection between cellularizations of −⊗− and functors F ∶RCell(C)→CellCat→(D,E),
that fulfill Properties (i) and (ii).

Proof. The inverse is constructed by composing

F ∶RCell(C)→CellCat→(D,E)

with the functor

RCell(−)∶CellCat→(D,E)→ Fun(RCell(D),RCell(E)) ,

and then considering the associated functor

RCell(C) ×RCell(D)→RCell(E) .



8.2. CELLULARIZED FUNCTORS: BOOKKEEPING 445

By Property (ii), it specifies a lift of

−⊗̂−∶C[1] ×D[1] → E[1].

Furthermore, by Property (i) and the assumption that R had image in cellularized functors, it
follows that this lift defines a cellularization of −⊗−. One may now verify that this construction
defines the required inverse.

Finally, let us observe the following properties of the bijection constructed in Construc-
tion 8.2.5.7, the elementary verifications of which we will not perform here.

Lemma 8.2.5.9. Given a cellularized bifunctor ⊗, as in Construction 8.2.5.7, the associated
functor Φ(⊗)∶RCell(C)→CellCat→(D,E) has the following properties:

1. It maps absolute cell complexes into absolute cellularized functors.

2. It maps cobase changes into cobase changes.

3. It maps inclusions of relative cell complexes into inclusions of cellularized functors.

4. It maps (transfinite) vertical composition into (transfinite) vertical compositions.

Next, let us categorify the class of cellularized bifunctors.

Construction 8.2.5.10. Given three cellularized categories C, D, E, we equip the class of
cellular bifunctors

CellBiFun(C ×D,E)

with the structure of a category, by taking as morphisms such natural transformations
η∶ ⊗0 ⇒ ⊗1, which have the property that, for each pair of relative cell complexes c ∈RCell(C)
and d ∈RCell(D), the induced morphism

c⊗̂0d→ c⊗̂1d

defines a morphism of structured relative cell complexes. In analogy to Observation 8.2.2.11,
this holds for all c,d as above if and only if it holds for generating boundary inclusions b1 ∈ BC
and b2 ∈ BD.

Observation 8.2.5.11. One would expect that a cellularized bifunctor with no degree of
freedom in the second argument should be essentially the same as a cellularized functor. Indeed,
similarly to Observation 8.2.3.2, one can use the fact that the category Set is generated under
coproducts by the singleton to see that the functor

CellBiFun(C × Set,D)→CellCat(C,D)
⊗↦ −⊗ ⋆ .

induces an equivalence of categories. In this sense, Set behaves like a unital object, if cellularized
bifunctors were indeed presented by a monoidal structure. Similarly, using the cellularized
category (Set[1],{u}) of Observation 8.2.3.2, one obtains an equivalence of categories

CellBiFun(C × (Set[1],{u}),D) ≃Ð→CellCat→(C,D)
⊗↦ −⊗u .

Observation 8.2.5.12. Finally, observe that, given a cellularized bifunctor ⊗∶C×D→ E and
cellularized functors F∶C0 →C and G∶E→ E1, the composed bifunctor

G(− ⊗ F (−))



446 CHAPTER 8. ON THE YOGA OF GENERAL CELL COMPLEXES

inherits a canonical cellularization through the composition

RCell(C0) ×RCell(D) RCell(C) ×RCell(D) RCell(E) RCell(E1) .F̂×1 ⊗̂ Ĝ (8.94)

Setting F = 1, this composition is compatible with the Leibniz composition of cellularized
relative functors insofar, as that for any fixed relative cell complex d ∈RCell(D), there is a
canonical isomorphism (in fact, an identity for appropriately defined choices of pushouts in
the Leibniz composition) of relative cellularized functors between G○̂(−⊗d) and the relative
cellularized functor obtained by fixing d in the second variable of G(−⊗−).

8.3 Diagrams and colimits of cell complexes
We have seen in Corollary 8.1.4.8 that the category of absolute cell complexes Cell(C)
associated to a cellularized category C has pushouts of spans of two inclusions of subcomplexes.
More generally, using the language of cobase changes (Construction 8.1.2.7), we have also
observed that given a more general (solid) span

X X′

Y Y′

(8.95)

where only the vertical is an inclusion of subcomplexes and the horizontal is an arbitrary
morphism in C, the pushout in C inherits a canonical cell structure. We may ask this question
more generally: For what kind of diagrams of structured cell complexes, using morphisms in
C, can we expect the colimit to again come with a canonical cell structure? This question
is of particular interest when one is looking to understand the behavior of simple homotopy
equivalences under colimits. One way to approach this question is to ask when the colimit
functor, CI

→C, for some small indexing category I, can be equipped with the structure of a
cellularized functor. To even make this question well defined, we need a good theory of what a
structured cell complex in CI should be. It turns out that such a theory was already developed
in-depth in the context of model structures on functor categories: Namely, the theory of Reedy
categories and their associated model structure (see [RV13; Hir03]). In this section, we will
investigate the functor categories on a Reedy category from the perspective of cellularized
categories and cellularized functors. This will strongly rely on the insights and calculus of
[RV13; Bar07].

8.3.1 Weighted colimits
Before we focus on the setting of Reedy categories, let us recall some general notation and
techniques concerning functor categories and weighted colimits which can, for example, be
found in [RV13]. The latter article follows the paradigm “It’s all in the weights”. We will
strongly embrace this philosophy in our study of cellularized diagram categories and the
functors between them. Ultimately, this calculus will allow us to reduce all the statements we
need to well-known results about presheaves. A detailed overview, also surveying claims below
can also be found in [nLa24e].

Notation 8.3.1.1. Throughout this section, we will be dealing with functors of the form
X ∶R →C, where R is a small category, which we think of as diagrams in C. For such functors,
we denote the value of X at r by Xr, and the morphism induced by f ∶ r → r′ by Xf or by
X(f). In the contravariant case, i.e. the case of a functor X ∶Rop

→C, we will use subscript
notation – Xr,Xf – instead. We will sometimes also use ●-notation (in the form X●) to
indicate that we treat a construction as a functor in the variable marked by ●. We are aware
that this notation can, at times, be ambiguous, in the sense that it may sometimes be unclear
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whether one should insert a variable for ● first, or perform some operation on the functor
first. If in doubt, any operation is to be performed before a variable is inserted. Usually, there
should be no room for confusion, however.

Notation 8.3.1.2. Given some indexing category R, we will often denote the bivariate hom
functor R(−,−) in the form

Rr
r ∶=R(r, r) .

Following this notation, we write Rr
∶Rop

→ Set for the contravariant representable associated
to r and Rr for the covariant representable.

Notation 8.3.1.3. Given a covariant functor W ∶R → Set, we denote by el(W ) its category of
elements, whose objects are given by pairs (r, x), with r ∈R and x ∈W r, and whose morphisms
(r, x)→ (r′, x′) are given by arrows f ∶ r → r′, such that W f(x) = x . In the context of a fixed
category R, we will also denote by el(U) the category of elements of a contravariant functor
U ∶R → Set, i.e.,a covariant functor U ′∶Rop

→ Set, given by el(U) ∶= el(U ′)op. In particular,
the forgetful functor el(U) → R is always covariant, no matter if U is co- or contravariant.
Observe that for contravariant U , el(U) is equivalently the comma category R/U , under the
Yoneda embedding R ↪ SetRop

.

Recollection 8.3.1.4. Let R be some small category, and C an arbitrary category.

1. Given a diagram X ∈CR and a so-called diagram of weights W ∈ SetRop
one may ask

the question, whether the functor

C→ Set

C ↦ SetRop
(W,C(X●,C))

is representable. I.e., does there exist an object U ∈ C, such that there is a canonical
natural isomorphism

SetRop
(W,C(X●,C)) ≅C(U,C)?

For example, if W is the constant weight r ↦ ⋆, then this is the defining universal
property of the colimit of the diagram X in C. If such an object exists we denote it
in the form W ⊛X, and call it the colimit of X weighted by W . If C has all weighted
colimits, indexed over R, then applying the Yoneda lemma to the universal property
makes − ⊛ − a bivariate functor

− ⊛ −∶SetRop
×CR

→C .

2. If (and only if) C has all colimits, then W ⊛X always exists and is explicitly given by
the coend formula

∫

r∈R
Wr ∗X

r
= coequ( ∐

f ∶r→r∈R
(Wr ∗X

r
)⇉ ∐

r∈R
(Wr ∗X

r
))

with the two arrows induced respectively by the families of arrows

{Wr ∗X
r0

Wf∗Xr0

ÐÐÐÐÐ→Wr0 ∗X
r0 ↪ ∐

r∈R
(∐
Wr

Xr
))}f ∶r0→r∈R,w∈Wr

and
{Wr ∗X

r0 Wr∗Xf

ÐÐÐÐ→Wr ∗X
r
↪ ∐

r∈R
(∐
Wr

Xr
))}f ∶r0→r∈R,w∈Wr

.

In the special case where R = ⋆, and hence SetRop
≅ Set and CRop

≅ C, we may thus
identify ⊛ with the weighting tensor ∗ of Example 8.2.5.5.
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3. There is another useful construction of the colimit of X ∈CR weighted by W ∈ SetRop
,

supposing that C is cocomplete. Namely, consider the covariant category of elements
el(W ) of W . Then W ⊛X is equivalently given by the colimit of the composition

el(W )→R X
Ð→C .

4. Using this language, the Yoneda lemma gives us natural isomorphisms

C(Rr
⊛X,C) ≅ SetRop

(Rr,C(X●,C)) ≅C(Xr,C)

and thus a canonical isomorphism

Rr
⊛X ≅Xr.

In this sense, taking weighted colimits by Rr is simply evaluation at r.

We are going to make use of the following expanded version of the weighted colimit, which,
we will refer to as the composition tensoring.

Construction 8.3.1.5. Given a cocomplete category C, and three small categories R and T
and S, consider the bi-functor

−◯○ −∶SetSop×T
×CRop×S

→CRop×T

(W,X)↦ {(r, t)↦W t
● ⊛X

●
r}

with the obvious functoriality and action on morphisms induced by the functoriality of ⊛. It
follows from the elementary properties of weighted colimits (specifically the Fubini-theorem
found in [RV13], for example), that this construction is associative in the sense that, given
another small category U, there is a canonical natural isomorphism making the diagram

SetTop×U
× SetSop×T

×CRop×S SetSop×U
×CRop×S

SetTop×U
×CRop×T CRop×U

(−◯○−)◯○−

−◯○ (−◯○−) −◯○−≅

−◯○−

(8.96)

commute.

Example 8.3.1.6. Special examples of the composition tensoring in Construction 8.3.1.5
include the following more elementary constructions, where we identified D⋆ ≅D and D×⋆ ≅D,
for the terminal category ⋆.

(i) If we set R = S = T = ⋆, then ◯○ = ∗.

(ii) If we set R = T = ⋆, then ◯○ = ⊛.

(iii) If we set S = ⋆, and replace R with Rop then ◯○ is given by the outer weighting

SetT
×CR

→CR×T

(W,X)↦ {(t, r)↦W t
∗Xr

} .

(iv) Set R = ⋆. Suppose we are given a functor F ∶S → T. Consider the two functors
TF (●)
● ∈ SetTop×S and T●F (●) ∈ SetSop×T. Then there are canonical isomorphisms

CT CS

F ∗

TF (●)
●

◯○−

∼ (8.97)
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and

CS CT .

F!

T●F (●)◯○−

∼ (8.98)

where F! is the left adjoint to the precomposition functor F ∗ given by left Kan extension.
To see that these canonical isomorphisms hold, observe first that for s ∈ S, the category of
elements el(TF (s)

● ) is equivalently given by the slice category T/F (s) and has a terminal
object given by 1F (s). Thus

lim
Ð→
(el(TF (s)

● )→ T X
Ð→C) =XF (r)

= (F ∗X)r

which provides the first canonical isomorphism. For the second isomorphism, observe
that, for t ∈ T, the category of elements el(Tt

F (●)) is equivalently given by the comma
category F/t, and for X ∈ CS, the colimit of F/t → S X

Ð→ C is precisely the explicit
description of the left Kan extension (F!X)

t found for example in [nLa24e], exposing the
second canonical isomorphism.

Notation 8.3.1.7. Following Example (iv), we will at times denote all of the constructions
in Example (iv) in the form − ◯○ −. This will usually require that some of the categories in
Construction 8.3.1.5 are set to the terminal category. It will always be clear from context,
which categories those are.

8.3.2 Reedy categories
The canonical way of making diagrams compatible with homotopy theoretic constructions
such as colimits is to replace cofibrantly (or fibrantly) in the projective or injective model
structure (see [Hir03]). For many examples, however, one can get away with significantly less.
For example, for a pushout square of cofibrant objects

X Y

X ′ Y ′

⌟

(8.99)

in some model category M to be a homotopy pushout diagram, it suffices for one of the two
maps in the span to be a cofibration. This additional degree of asymmetry, of only certain
parts of a diagram needing to be well behaved, can be encoded by equipping the indexing
category with additional structure. The following notion, due to Reedy (unpublished, but well
summarized in [RV13; Hir03; Bar07]), has turned out to be particularly well suited in order to
perform inductive arguments:

Definition 8.3.2.1. A Reedy category consists of the data of:

1. A small category R;

2. A map deg∶Ob(R)→ N, called the degree function;

3. Two wide subcategories R+,R− ⊂R. Morphisms in R+ are sometimes called face maps,
and morphisms in R− are sometimes called degeneracy maps1;

such that the following conditions hold:

1. For every non-identity morphism f ∶ r → r′ in R+, it holds that deg(r) < deg(r′).
1At times, the prefix co is added, in order to emphasize that the actual correct face and degeneracy maps

should be given by the functoriality of some presheaf on R. We will not follow this language.
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2. For every non-identity morphism f ∶ r → r′ in R−, it holds that deg(r′) < deg(r).

3. Every morphism f ∈ R admits a unique factorization f = f+ ○ f− with f+ ∈ R+ and
f− ∈R−.

Example 8.3.2.2. Let us give some guiding examples to keep in mind when thinking about
Reedy categories:

1. The terminal category ⋆ is a Reedy category, with the degree function taking the unique
object to 0, and ⋆+ = ⋆− = ⋆.

2. The category ∆, equipped with the obvious degree function [n]↦ n, and with ∆− the
subcategory of order preserving surjections and ∆+ the category of order preserving
injections is a Reedy category.

3. The poset N, with deg(n) = n, and N+ = N (and consequently N− the discrete category)
is a Reedy category.

4. The category
● ●

●

(8.100)

with (disjoint) choice of assignments + and − to the non-identity arrows defines a Reedy
category (for appropriate choices of degree function).

More generally, it can be useful to know how to generate new Reedy categories from old
ones:

Example 8.3.2.3. If R is a Reedy category, then the following categories inherit the structure
of a Reedy category from R:

1. The opposite category Rop, using the same degree function, and swapping the roles of
R+ and R−.

2. For n ∈ N, the full subcategory R≤n ⊂R, of all objects of degree lesser or equal to n is
equipped with the structure of a Reedy category, by restricting the degree function to
R≤n, and taking R+≤n =R≤n ∩R+ and R−≤n =R≤n ∩R−.

3. More generally, any full subcategory S ⊂ R, which has the property that, for every
morphism f ∈ S, the factorization morphisms f+ and f− are again in S, inherits the
structure of a Reedy category from R, by restricting the degree function to S and defining
S+ = S ∩R+ and S− = S ∩R−.

4. Given a functor F ∶R →C, into any category C, then for any object C ∈C, the comma
category FC/, whose objects are arrows of the form C → F (r), inherits the structure
of a Reedy category, with the degree of (r,C → F (r)) ∈ FC/ given by deg(r), and with
a morphism f ∈ FC/ in (FC/)+ ((FC/)−) if and only if the underlying morphism in R
is in R+ (R−). The analogous construction for the comma category F/C also defines
a Reedy category. In particular, we may use this construction to equip the category
of elements el(U) of a co- or contravariant functor U ∶R → Set with the structure of a
Reedy category.

5. Given two Reedy categories R and S, their product R × S inherits the structure of a
Reedy category, by setting (R ×T)+ = R+ ×T+, (R ×T)− = R− ×T−, and deg(r, s) =
deg(r) + deg(s).

Next, let us recall some of the basic constructions involving Reedy categories, which can
be found in detail in [RV13]. For the sake of dealing with cell complexes, we will essentially
only need half of the constructions usually relevant for Reedy categories (the parts interacting
with cofibrations).
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Recollection 8.3.2.4. Let R be a reedy category and C be a category which has all colimits.
For n ∈ N, denote by in∶R≤n ↪R the obvious inclusion functor.

1. We write i∗n∶CR
→CR≤n for the restriction functor, and denote by (in)!∶CR≤n →CR its

left adjoint (whose existence is guaranteed by Kan extension). The functor (in)! defines
a fully faithful embedding

CR≤n ↪CR ,
or, in other words, the unit of adjunction 1→ i∗n ○ (in)!is an isomorphism. We are mainly
interested in the functor skn, when it is precomposed with i∗n. We denote the composition
(in)! ○ i

∗
n by

skn∶CR
→CR.

2. Now, let r ∈R be of degree n. Recall that the latching object of X ∈CR at r is defined
as LrX ∶= (skn−1X)

r. The counit

LrX = (skn−1X)
r
= ((in−1)!i

∗
n−1X)

r
→Xr .

is then referred to as the latching map. These latching objects (and their duals, the
matching objects) are at the core of the inductive arguments used in the yoga of Reedy
model structures (see [RV13]).

3. For n ≥ 0, denote the inclusion R≤n ↪R by in. By Example (iv), we may present the
functor skn∶CR

→CR in the form

sknX ≅ (R●in(●) ◯○ Rin(●)
● )◯○ X .

The diagram
(R●in(●) ◯○ Rin(●)

● ) ∈ SetRop×R

is thus of particular importance. It can explicitly be computed as

(R●in(●) ◯○ Rin(●)
● )

r
r ≅ (sknR●r)r ≅ {f ∶ r → r ∣ f factors through R≤n},

which canonically identifies it with the subfunctor of R●● ∈ SetRop×R given by such arrows
that factor through R≤n. We will also denote this subfunctor in the form sknR●●.

4. Consequently, we may identify the latching object LrX, for r ∈R with deg(r) = n as:

(Rr
◯○ skn−1R●●)◯○ X

and we denote
∂Rr

∶= (Rr
◯○ skn−1R●●).

By the explicit description of sknRr
r above, we obtain that the morphism ∂Rr

→ Rr

obtained by evaluating sknR●● →R●● at r is given by the inclusion of the subfunctor of
Rr
∈ SetRop

specified by
(∂Rr

)r = {f ∶ r → r ∣ f+ ≠ 1r} .

5. Dually, (replacing R by Rop) we denote by ∂Rr ↪ Rr ∈ SetR the subfunctor of Rr

given by
(∂Rr)

r
= {f ∶ r → r ∣ f− ≠ 1r} .

Observation 8.3.2.5. Observe that the claim that {f ∶ r → r ∣ f+ ≠ 1r} is functorial in r
does in particular require that any precomposition of a morphism f with f+ ≠ 1, f ○ g, again
has the property that (f ○ g)+ ≠ 1. Indeed, the unique factorization of f ○ g is given by
(f+ ○ (f− ○ g)+, (f− ○ g)−), and as f+ increases the degree, so does f+ ○ (f− ○ g)+.

Remark 8.3.2.6. One should be careful to note that, for r, r ∈ R, the equality (∂Rr
)r =

(∂Rr)
r is generally false.
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Let us furthermore investigate the relations between the boundary inclusions ∂Rr
→Rr

and ∂Rr →Rr under the operation ◯○ .

Notation 8.3.2.7. In the following, we will frequently be concerned with the bivariate
Yoneda functor associated to Q = Rop

× S. Formally speaking, the latter is an object of
Set(R

op×S)op×(Rop×S). As a quadrivariate functor, we will denote the value of this functor at
(x,x) = ((r, s), (r, s)) in the form

Qx
x =Rr

r × Sss .

Remark 8.3.2.8. There is a notational hurdle that seems hard to overcome in a clean way
here. Namely, given x = (r, s), x = (r, s) ∈ Rop

× S ∈ Q, one has Qx
x = Rr

r × Sss, leading to a
wholly unpleasant cross-exchange of variables. We will thus also use the notation Qr,s

r,s to refer
to Qx

x. Consequently, we will also use the notation ∂Q●,sr,● in order to refer to ∂Qx and similarly
∂Qr,●

●,s for ∂Qx .

Example 8.3.2.9. Let r, r ∈R. In the following, we use the canonical isomorphism Rr
◯○ Rr ≅

Rr
r to identify the two objects. Then the following explicit descriptions hold:

1. The induced morphism
∂Rr

◯○ ∂Rr →Rr
◯○ Rr

is (canonically isomorphic to) the suboject of Rr
r given by the inclusion

{f ∶ r → r ∣ f− ≠ 1r, f+ ≠ 1r} = (∂Rr
)r ∩ (∂Rr)

r
↪Rr

r .

2. The Leibniz tensor
(∂Rr

↪Rr
)◯̂○ (∂Rr ↪Rr)

is (canonically isomorphic to) the subobject of Rr
r given by the inclusion

{f ∶ r → r ∣ f ≠ 1r} = (∂Rr
)r ∪ (∂Rr)

r
↪Rr

r .

3. Let S be another Reedy category and let Q =Rop
× S. Consider the exterior action

◯○ ∶SetS
× SetRop

→ SetQ

(U,V )↦ {(r, s)↦ Us ∗ Vr = Vr ×U
s
} .

as described in Example 8.3.1.6 (iv). Let x = (r, s) ∈Rop
×S. Then the induced morphism

(∂Ss ↪ Ss)◯̂○ (∂Rr
↪Rr

)∶Ss ◯○ ∂Rr
∪∂Ss◯○∂Rr ∂Ss ◯○ Rr

→ Ss ◯○ Rr

is canonically isomorphic to the inclusion

∂Qx ↪Qx .

Remark 8.3.2.10. Mnemonically, we can think of the third identity in Example 8.3.2.9 as
the Leibniz formula, stating that the boundary of A×B is given by the union A×∂B ∪∂A×B
with intersection ∂A × ∂B.

Let us explain how the identities above can be obtained:

Proof of the identities in Example 8.3.2.9. For the first identity, observe that ∂Rr
◯○ ∂Rr =

∂Rr
⊛ ∂Rr through the coequalizer formula for weighted colimits, may explicitly be written

as the quotient of the set ⊔r′∈R(∂Rr
)r′ × (∂Rr)

r′ by the relation generated by

(f ○ h, g) ∼ (f, h ○ g) .
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The canonical map into Rr
r is given by composition. Now, for any such element (f, g) ∈ (∂Rr)

r′ ,
consider the commutative diagram

r r′ r

● ●

● .

g

g−

f

f−g+

(f−○g+)−

f+

(f−○g+)+

(8.101)

It provides a sequence of relations

(f, g) ∼ (f+, f− ○ g+ ○ g−) ∼ (f+, (f− ○ g+)+ ○ (f− ○ g+)− ○ g−) ∼ (f+ ○ (f− ○ g+)+, (f− ○ g+)− ○ g−) .

By uniqueness of factorizations, we have

(f+ ○ (f− ○ g+)+, (f− ○ g+)− ○ g−) = ((f ○ g)+, (f ○ g)−).

It follows from this that every equivalence class [(f, g)] admits a canonical form, which only
depends on f ○ g. Consequently, the induced map

∂Rr
⊛ ∂Rr →Rr

r

is injective. By the functoriality of ∂Rr and ∂Rr, its image is contained in the intersection
(∂Rr

)r ∩ (∂Rr)
r. Furthermore, every element in this intersection f can be written as f+ ○ f−,

with f+ ≠ 1 and f− ≠ 1. Hence, the image of the injection

∂Rr
⊛ ∂Rr ↪Rr

r

is precisely (∂Rr
)r ∩ (∂Rr)

r. For the second identity, we may use that − ⊛Rr and Rr
⊛ −

correspond respectively to contra and covariant evaluation at r and r, and use the previous
identity to compute the Leibniz tensor in question as

(∂Rr
)r ∪∂Rr∩∂Rr

(∂Rr)
r
→Rr

r.

In other words, the Leibniz tensor is given by the inclusion of the subset

(∂Rr
)r ∪ (∂Rr)

r
↪Rr

r .

Now, observe that as morphisms in R+ increase degree and morphisms in R− decrease degree,
a morphism f ∶ r → r is an identity, if and only if f+ and f− are identities. Hence, it follows
that

(∂Rr
)r ∪ (∂Rr)

r
= {f ∶ r → r ∣ f ≠ 1r} .

Finally, let us prove the remaining identity. To this end, observe first that as the incarnation
of ◯○ is given by pointwise products, we may identify the Leibniz tensor in question at a point
x = (r, s) as the canonical morphism

Rr
r × (∂Ss)s ∪(∂Rr)r×(∂Ss)s (∂Rr

)r × Sss →Rr
r × Sss =Qx

x .

The claim is now immediate from the definition of the product Reedy category.

8.3.3 Cellularizing the weighted colimit calculus
Next, let us investigate diagrams of structured cell complexes indexed over a Reedy category.
As we explained in the introduction of this section, we aim to answer the question of what a
good diagram of cell complexes should be. The approach we are going to take is to embrace the
following guiding principle which will turn out to be quite fruitful, in particular when applied
to our investigations of the simple homotopy theory of diagrams:
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A diagram of complexes should be the same thing as a complex in diagrams.

To make this more rigorous, we need to cellularize the categories CR, for C a cellularized
category and R a Reedy category.

Remark 8.3.3.1. As the dual of a Reedy category is again a Reedy category in a canonical
way, every statement we make concerning covariant functor categories CR, where R is Reedy
category, will have an analogue for contravariant functor categories. We will not go through
the trouble of spelling every result out in both variances. It is, however, also not going to
be possible to stick to a single variance, as weighted colimits will generally involve functor
colimits of both variances. In this subsection, we will generally state things for the covariant
case, and (keeping calm and minding the variances) the contravariant cases can be derived by
replacing R by Rop, and replacing Rr by Rr, etc.

The cellularizations of functor categories over a Reedy category R are all derived from
cellularizing categories of set-valued functors SetR.

Notation 8.3.3.2. Given a fixed Reedy category R, we will denote the inclusion ∂Rr
↪Rr

by ιr, and the inclusion ∂Rr ↪Rr by ιr.

Construction 8.3.3.3. Given a Reedy category R, the category of set valued functors SetR

admits a canonical cellularization, with the generating boundary inclusions given by

{∂Rr ↪Rr ∣ r ∈R} .

Observe that, for every pair r, r ∈R, the induced map

(∂Rr)
r
↪Rr

r

is the inclusion of a subset, i.e., a structured cell complex in Set. It follows from the stability of
monomorphisms in Set under cobase change and transfinite composition that every structured
relative cell complex c∶A↪X in SetR with respect to these boundary inclusions is a pointwise
monomorphism, and hence a monomorphism. Consequently, using that limits and colimits can
be detected pointwise, it follows that the second defining property of a cellularized category
(bicartesianity of pushouts of relative cell complexes, see Definition 8.1.1.10) is fulfilled. Clearly,

{∂Rr ↪Rr ∣ r ∈R}

does not contain any isomorphisms, as (∂Rr)
r does not contain the identity. Hence, we have

verified that with respect to the above set of boundary inclusions SetR is indeed a cellularized
category.

Notation 8.3.3.4. We will see later on in Corollary 8.3.4.11 that cell structures on relative
cell complexes c ∈ SetR are unique, if they exist. Therefore, in this case we will not distinguish
between a structured relative cell complex and a relative cell complex, and not make use of
the notation c to indicate the presence of a fixed structure.

Example 8.3.3.5. If R = ∆op, then the set of boundary inclusions defined in Construc-
tion 8.3.3.3 is simply the set of boundary inclusions of simplices

{∂∆n
↪∆n

∣ n ≥ 0} .

Next, let us extend this cellularization to functor categories CR, where C is a cellularized
category.

Proposition 8.3.3.6. Let C be a cellularized category and R a Reedy category. Consider the
bifunctor

−◯○ −∶SetR
×C→CR

(W,X)↦ {r ↦W r
∗X}
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constructed in Construction 8.3.1.5 (by replacing S with ⋆, R with ⋆ and T with R there).
The set of boundary inclusions

BCR ∶= {ιr◯̂○ b∶Rr ◯○ D ∪∂Rr◯○∂D ∂Rr ◯○ D →Rr ◯○ D ∣ r ∈R, b∶∂D →D ∈ BC}

defines the structure of a cellularized category on CR.

Proof. Observe first that by the associativity and compatibility with colimits of ◯○ , for r, r ∈R
and c∶A→X ∈C, there are canonical isomorphisms

(ιr◯̂○ c)
r
≅Rr

⊛ (ιr◯̂○ c) ≅ (Rr
⊛ ιr)◯̂○ c = ((ιr)

r
∶ (∂Rr)

r
↪Rr

r)∗̂c .

Taking r = r, it follows from the proper containment (∂Rr
)r ↪ Rr

r that, for any b ∈ BC,
the associated structured cell complex (ιr◯̂○ b)r is a relative cell complex with at least one
cell. Consequently, by Corollary 8.1.4.1, it follows that ιr◯̂○ b is not an isomorphism, which
verifies the first defining property for a cellularized category. Furthermore, it follows from
Recollection 8.2.1.3 and the canonical cellularization for − ∗ − (see Example 8.2.5.5) that, for
any r ∈ R, the image of a relative structured cell complex with respect to BCR under the
evaluation functor at r is a relative structured cell complex in C. In particular, for any pushout
diagram

A X

A′ X ′

c

⌟

(8.102)

with c a relative BCR -cell complex, the induced pushout diagram

Ar Xr

A′
r

X ′
r

cr

⌟

(8.103)

has upper horizontal a relative BC cell complex. It follows that it is also a pullback diagram.
As r was arbitrary and limits in functor categoies are detected pointwise, it follows that
Diagram (8.102) is a pullback diagram, which verifies the second defining property of a
cellularized category.

Observation 8.3.3.7. If C = Set, then the boundary inclusions in defined in Proposi-
tion 8.3.3.6 are (up to canonical isomorphism) given by

ιr◯̂○ (∅→ ∗) ≅ ιr .

Observation 8.3.3.8. Given two Reedy categories R,T, the canonical isomorphism of
categories

(CR
)

T
≅CR×T

lifts to an isomorphism of cellularized categories, via the identifications (see Construction 8.3.1.5
and Example 8.3.2.9), taking care to exchange variances as needed.

ιt◯̂○ (ιr◯̂○ b)=̂(ιt◯̂○ ιr)◯̂○ b ≅ ιt,r◯̂○ b ,

for r ∈R, t ∈ T and b ∈ BC.
Notation 8.3.3.9. From here on out, given a Reedy category R and a cellularized category
C, when we refer to CR as a cellularized category, it will always be with respect to the cell
structure constructed in Proposition 8.3.3.6.
Proposition 8.3.3.10. Given a cellularized category C, the bifunctors

−◯○ −∶SetT×Sop
×CRop×S

→CRop×T

constructed in Construction 8.3.1.5, where R and T and S are Reedy categories, admit a
canonical cellularization, which is uniquely determined by the following two properties.
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1. For the case T ≅ S ≅ ∗, the cellularization is the one given by

− ⊛ − = − ∗ −∶Set ×CRop
→CRop

constructed in Example 8.2.5.5.

2. For every quadruple of Reedy categories R,S,T,U and every triple of structured relative
cell complexes a ∈ RCell(SetTop×U

), b ∈ RCell(SetSop×T
), c ∈ CRop×S the canonical

isomorphism
a◯̂○ (b◯̂○ c) ≅ a◯̂○ (b◯̂○ c)

induced by the associator isomorphisms of Construction 8.3.1.5 defines an isomorphism
of structured relative cell complexes.

Proof. Following the notation of Notation 8.3.2.7, we denote the generating boundary inclusions
associated to SetSop×T in the form ιs,●●,t , for t ∈ T, s ∈ S. To construct such cellularizations, we
may use Observation 8.2.5.4, which states that is suffices to determine cell structures on

ιs,●●,t
◯̂○ (ιr,●●,s◯̂○ b) ∈CRop×T

for t ∈ T, s, s ∈ S, r ∈R. By Example 8.3.2.9, we have ιs,●●,t ≅ ιt ◯○ ι
s2 and thus have canonical

isomorphisms

ιs,●●,t
◯̂○ (ιr,●●,s◯̂○ b) ≅ (ιt◯̂○ ι

s
)◯̂○ ((ιs◯̂○ ι

r
)◯̂○ b

≅ ιt◯̂○ (ι
s
◯̂○ ιs)◯̂○ (ι

r
◯̂○ b)

= ιt◯̂○ (ι
s
⊛̂ιs)∗̂(ι

r
◯̂○ b)

≅ (ιs⊛̂ιs)∗̂((ιt ◯○ ι
r
)◯○ b)

≅ (ιs⊛̂ιs)∗̂((ι
r,●
●,t)

◯○ b)

where the second to last lines use the linearity of cellularized functors with respect to ∗ (see
Example 8.2.5.5). As (ιs⊛̂ιs) ∈ Set and (ιr,●●,t)◯○ b ∈CRop×T is a generating boundary inclusion,
the assumed compatibility of the cellularizations of ◯○ with ∗ and the assumption that all of
the associator morphisms above define morphisms of structured relative cell complexes leaves
a unique possible cellularization for ιs,●●,t ◯̂○ (ι

r,●
●,s◯̂○ b). Conversely, it is not hard to verify that the

cellularization determined in this fashion has the required associativity property.

Notation 8.3.3.11. We are not going to introduce additional notation to denote the cellularized
versions of the bifunctors ◯○ . When the latter are treated as cellularized will usually be clear
from their arguments.

The crucial use-case for Proposition 8.3.3.10 is that it provides a general machinery to
construct cellularized functors CR

→ CT between functor categories from structured cell
complexes in SetRop×T.

Observation 8.3.3.12. Given a fixed cellularized category C, and two Reedy categories R
and T, we can apply Construction 8.2.5.7, to obtain a functor

RCell(SetRop×T
)→CellCat→(CR,CT

)

a↦ a◯̂○ − .

2The exchange in variables stems from the age old misfortune of compositions being spelled from right to
left. Since ◯○ is primarily used to turn functors into cell complexes, it inherits this misfortune, and all the
notational errors that come with it. We apologize to the reader, for the mistakes of that type which we have
certainly commited.
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By Lemma 8.2.5.9, this assignment is essentially compatible with all of the relevant con-
structions on cell complexes on SetRop×T. In particular, from any structured cell complex
W ∈Cell(SetRop×T

), we obtain an associated (absolute) cellularized functor
W ◯○ −∶CR

→CT

As we have seen in Example 8.3.1.6, a large class of functors CR
→ CT arise from the ◯○

construction. It follows that to cellularize these functors, it suffices to construct cell structures
on the associated objects in SetRop×T. In particular, if we are looking to obtain a cellularized
version of the colimit functor CR

→C, this means we need to obtain a cell structure on the
constant weight ⋆ ∈ SetRop

.
Let us finish this subsection by investigating the interaction of the cellularized bifunctors ◯○

with functors of cellularized categories C→D. The following provides a significant expansion
of the linearity assertion of Example 8.2.5.5. Roughly speaking, it can be summarized as
cellularized functors being linear with respect to ◯○ .
Construction 8.3.3.13. In the situation of Proposition 8.3.3.10, consider a relative cellularized
functor i∶F → G between cellularized categories C and D. Applying the functor of strict
2-categories (−)Rop×S and (−)Rop×T to the underlying natural transformation ι of i, we obtain
natural transformations

CRop×S DRop×S

FRop×S

GRop×S

ιR
op×S (8.104)

and

CRop×T DRop×T .

FRop×T

GRop×T

ιR
op×T (8.105)

An elementary computation using the commutativity of F and G with weighted colimits
(using that −◯○ − is constructed entirely in terms of weighted colimits) shows that there is a
canonical natural isomorphism

ιR
op×T
○̂(f ◯○ −) ≅ (f ◯○ −)○̂ιR

op×S

for f ∶U → V ∈ SetSop×T (using the Leibniz composition of Construction 8.2.1.5).
In particular, if we set R,S = ⋆ and use Construction 8.2.1.5, we obtain a canonical isomorphism

ι̂T(ιt◯̂○ b) ≅ ιt◯̂○ ι̂(b)

for b ∈ B and t ∈ T. By Lemma 8.2.2.5, these canonical isomorphisms uniquely define the
structure of a relative cellularized functor on ιT, which we will denote by iT. As a family of
cellularized functors (with varying T) these cellularizations are uniquely characterized by the
property that, given any pair of Reedy categories R and T, the induced canonical isomorphism

ιR
op×T
○̂(f ◯○ −) ≅ (f ◯○ −)○̂ιR

op×S,

for a ∈RCell(SetSop×T
), induces an isomorphism of relative cellularized functors

iR
op×T
○̂(a◯○ −) ≅ (a◯○ −)○̂iR

op×S .
The uniqueness claim is immediate by Lemma 8.2.2.5 and Construction 8.2.1.5, and the
resulting isomorphisms

îT(ιt◯̂○b) ≅ ιt◯̂○ î(b)

for b ∈ B and t ∈ T. That this linearity property holds in general, follows from Observa-
tion 8.2.2.11 and a lengthy elementary computation, much in line with the one performed in
the proof of Proposition 8.3.3.10.
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8.3.4 Structured cell complexes in functor categories
For the remainder of this subsection, we fix some Reedy category R and some cellularized
category C. So far, we have only really discussed the cellularized functor categories CR, in
families, considering the interaction between several such categories in terms of the composition
tensoring ◯○ . Now, let us focus on a single such category, and get a better understanding of
what it means to be a structured cell complex in CR. Unsurprisingly, this is going to be
strongly related to the way cofibrant objects are detected in Reedy model structures (see, for
example, [RV13]). Before we begin, let us alert the reader of a notation change in covariance
though:

Remark 8.3.4.1. Throughout this section, we will make a choice which may, at first glance,
be surprising. Namely, when investigating cell complexes in functor categories, we are going
to change variance, and generally phrase statements as pertaining to contravariant functors,
i.e.,elements of CRop

. From a theoretical point of view, this is no limitation, as we already
explained in Remark 8.3.3.1. Nevertheless, this choice of focusing on the contravariant
perspective may seem unnecessarily complicated at first glance. We found it preferable,
however, mainly for the following three reasons:

1. The main example of structured cell complexes in a functor category which one should
have in mind are simplicial sets, i.e.,objects in the covariant functor category (category
of presheaves) Set∆op

.

2. Similarly, in Section 13.1, when we discuss the simple homotopy theory of stratified
spaces, we will be mainly concerned with the category sSetsd(P )op

, of simplicial presheaves
indexed over the subdivision of a poset.

3. Towards the end of this section, the Yoneda embeddings R ↪ SetRop
will play a major

role, and it generally seems preferable for these embeddings to be covariant.

Nevertheless, both variances will frequently occur in this section, as we will make frequent use
of the composition tensoring defined in Construction 8.3.1.5.

Notation 8.3.4.2. As a consequence of Example 8.3.1.6(iv), it follows that

Rr
◯○ −∶C→CRop

defines the left adjoint to the evaluation at r, which is equivalently given by Rr ◯○ −.3 In
particular, there is a canonical natural isomorphism

CRop
(Rr

◯○ D,X) ≅C(D,Xr)

for D ∈C and X ∈CRop
, and r ∈R. Under this canonical isomorphism, we will not distinguish

notationally between a morphism σ∶Rr
◯○ D →X and its pendant D →Xr.

Observation 8.3.4.3. Under Notation 8.3.4.2, we may equivalently think of a cell structure
Cc on a relative cell complex c∶A→X ∈CRop

as a family of sets of morphisms (Cr,b)r∈R,b∈BC ,
with Cr,b ⊂C(D,Xr), for b∶∂D →D in BC.

Notation 8.3.4.4. Given a structured relative cell complex c∶A↪X in CRop
, we denote by

Cc,r ∶= ⋃
b∈B

Cr,b

its set of cells of the form Rr
◯○ D → X (or equivalently D → Xr). Elements of this set are

called cells of type r.
3Mind the fact that as opposed to the preceding section, all variances have changed, and hence Rr

◯○ − turns
objects in C into functors, as opposed to the other way around.
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Before we state the main result concerning cell structures on diagrams, let us prove a useful
lemma.
Notation 8.3.4.5. In the following, whenever we consider a characteristic map σ∶Rr

◯○D →X
of a structured cell complex X ∈CRop

, the associated generating boundary inclusion ∂D →D
in C will be denoted by b. Its associated 1-cell structured relative cell complex will be denoted
by b.
Notation 8.3.4.6. We will constantly encounter the source of the Leibniz construction
applied to the relative latching functor (Lr → (−)r) = (∂Rr → Rr) ⊛ −. It will be useful to
have a notation to refer to the latter. Given r ∈ R and c∶A → X ∈ CRop

, we will use the
notation

sL̂r(c) ∶= Lr(X) ∪Lr(A) Ar.

We use analogous notation in the covariant case.
Lemma 8.3.4.7. Let c∶A ↪ X be a structured relative cell complex in CRop

and let r ∈ R.
Then, under the identification Rr ⊛X ≅Xr, the set of cells of ιr⊛̂c∶ sL̂r(c)→Xr is given by

Cιr⊛̂c = Cc,r .

Proof. By Lemma 8.2.2.5 the set of cells of Cιr⊛̂c is given by

⊔
σ∶Rr◯○D→X∈Cc

(Rr ◯○ σ)Cιr◯̂○ (ιr◯̂○ b)

where we denoted b∶∂D →D ∈ B. Under the canonical associator isomorphisms of cellularized
bifunctors of Proposition 8.3.3.10, we obtain the equalities

(Rr ◯○ σ∶ (Rr ◯○ (Rr
◯○ σ)→Rr ◯○ X)Cιr◯̂○ (ιr◯̂○b) =((Rr ◯○ Rr

)◯○ c→Rr ◯○ X)C(ιr◯̂○ ιr)◯̂○b

= (Rr
r ∗D →Xr)C(ιr⊛̂ιr)∗b

Now, by Example 8.3.2.9, (ιr⊛̂ιr) is a relative cell complex with empty set of cells, whenever
r ≠ r, and given by a single cell (the identity on r), otherwise. In other words, it fits into a
cobase change square

∅ Rr ⊛ ∂Rr
∪∂Rr⊛∂Rr ∂Rr ⊛Rr

{1r} Rr ⊛Rr

Rr
r

(8.106)

By the compatibility of cellularized functors with cobase changes, it thus follows that

(Rr
r ∗D →Xr)C(ιr⊛̂ιr)∗b = ({1r} ∗D

σ
Ð→Xr)C(∅→{1r})∗̂b = σCb = {σ∶D →Xr

} .

Hence,
Cιr⊛̂c = ⊔

σ∶Rr◯○D→X∈Cc

(Rr ◯○ σ)Cιr◯̂○ (ιr◯̂○ b) = {σ∶D →Xr ∣ r = r, σ ∈ Cc} .

Theorem 8.3.4.8. Given a morphism c∶A→X ∈CRop
the following map is a bijection

{Cc ∣ Cc defines a relative cell structure on c}

→ Πr∈R{Cdr ∣ Cdr defines a relative cell structure on ιr◯̂○ c ∶ sL̂r(c)→Xr},

Cc ↦ (Cιr◯̂○ c)r∈R .

The inverse is given by mapping a family of cell structures (Cdr)r∈R to the cell structure

{Rr
◯○ D

σ
Ð→X ∣ r ∈R, σ ∈ Cdr}
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In other words, to cellularize a morphism c∶A→X ∈CRop
is the same as to cellularize its

relative latching maps.

Proof. Observe that, if we can show that the specified inverse is a well defined map, then by
Lemma 8.3.4.7 the two constructions are clearly inverse to each other. To see this, we only
need to show that, for a family of cell structures (Cdr)R with dr ∶ sL̂r(c)→Xr, the set

{Rr ◯○ D
σ
Ð→X ∣ r ∈R, σ ∈ Cdr

}

defines a cell structure on c. In [RV13], it is shown that c can be written as a transfinite
composition

A→ A ∪sk0A sk0X → ⋅ ⋅ ⋅→ A ∪sknA sknX → ⋅ ⋅ ⋅→X .

Furthermore, the morphism A ∪skn−1A skn−1 → A ∪sknA sknX fits into a pushout diagram

⊔∂Rr
◯○ Xr ∪∂Rr◯○sL̂r(c) Rr

◯○ sL̂r(c) A ∪skn−1A skn−1X

⊔deg(r)=nRr
◯○ Xr A ∪sknA sknX .

ιr◯̂○ (ιr⊛̂c) (8.107)

Then the claimed cell structure on c, is exactly the vertical transfinite composition of these
cell structures on A ∪sknA sknX → A ∪skn+1A skn+1X.

Next, let us study the consequences of this result for the special case where C = Set.

Notation 8.3.4.9. Under the Yoneda lemma, there is a canonical natural isomorphism

SetRop
(Rr,A) ≅ Ar

for A ∈ SetRop
and r ∈R, given by evaluating a natural transformation at 1r ∈Rr

r. We will
generally think of this isomorphism as an identity, and make no distinction between elements of
Ar and morphisms Rr

→ A. Furthermore, we will always treat R as a subcategory of SetRop

via the covariant Yoneda embedding. In particular, it makes perfect sense to write σ ○ f , for
f ∶ r → r and σ ∈ Ar, to refer to the element Af(σ).

Notation 8.3.4.10. Given a presheaf A ∈ SetRop
, r ∈R, and an element σ ∈ Ar, we say that

σ is degenerate, if σ is of the form
σ = τ ○ f

where f ∶ r → r′ in R−, f ≠ 1 is a non-trivial degeneracy map and τ ∈ Ar′ . We will denote the
subset of Ar given by non-degenerate elements by Ar,n.d..

In turns out that in the cellularized category SetRop
, being a cell complex is a property,

rather than an additional structure. Unlike in the world of simplicial sets, however, not every
presheaf A ∈ SetRop

needs to admit a cell structure.

Corollary 8.3.4.11. Let A c
Ð→ Y ∈ SetRop

. Then c admits at most one cell structure.
Furthermore, the following are equivalent:

1. c admits a cell structure;

2. For every r ∈R, the relative latching map

ιr⊛̂c∶ sL̂r(c) = ∂Rr ⊛ Y ∪∂Rr⊛A Ar → Yr

is injective.
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Suppose that one of these two equivalent conditions holds. Then the unique cell structure on c
is given by the set of non-degenerate elements in Y that are not in the image of A.

Cc ∶= ⊔
r∈R
{σ∶Rr σ

Ð→ Y ∣ σ ∈ (Yr ∖ c(Ar)) ∩ Yr,n.d.)} .

Proof. The first two claims are immediate from Theorem 8.3.4.8, using the fact that in Set,
every morphism admits at most one cell structure, and the latter exists if and only if the
morphisms is an injection. For the remaining claim, again using the bijection in Theorem 8.3.4.8,
it suffices to see that, for r ∈R, the set

S = {σ∶Rr σ
Ð→ Y ∣ σ ∈ Yr,n.d. ∖ c(Ar) ∩ Yr,n.d.)}

defines a cell structure on ιr⊛̂c∶Ar ∪∂Rr⊛A ∂Rr ⊛ A → Yr. In other words, as this is now
a statement concerning relative cell complexes in Set, we need to show that S is precisely
the complement of the image of ιr⊛̂c. By definition, the latter complement is given by the
intersection

Yr ∖ (c(Ar) ∪ im(ιr ⊛ Y )) = (Yr ∖ c(Ar)) ∩ (Yr ∖ im(ιr ⊛ Y )).

Now, observe that
(ιr ⊛ Y )∶∂Rr ⊛ Y → Yr

(using the explicit description of weighted colimits in terms of coequalizers) is given by

[(f, τ)]↦ (τ ○ f)

for τ ∈ Yr′ , f ∈ (∂Rr)
r′ . As (∂Rr)

r′ consists precisely of such morphisms f ∶ r → r′, for which
f− ≠ 1, it follows that the image of ιr ⊛ Y is the set of degenerate elements of Yr, and hence
that Yr ∖ im(ιr ⊛ Y ) is the set of non-degenerate elements. Consequently, we obtain

Yr ∖ (c(Ar) ∪ im(ιr ⊛ Y )) = (Yr ∖ c(Ar)) ∩ (Yr ∖ im(ιr ⊛ Y )) = (Yr ∖ c(Ar)) ∩ Yr,n.d.,

as was to be shown.

In particular, we obtain a simple criterion to identify morphisms of structured relative cell
complexes in SetRop

.

Corollary 8.3.4.12. Given two relative cell complexes c∶A ↪ X and d∶B ↪ Y in SetRop
,

then a commutative square
A B

X Y

c d

f

(8.108)

defines a morphism of structured relative cell complexes if and only if f maps the non-
degenerate elements of X that are not in A to non-degenerate elements of Y that are not in
B.

Remark 8.3.4.13. In particular, it follows from Corollary 8.3.4.12, that every isomorphism
between relative cell complexes in SetRop

defines an isomorphism of the associated (unique)
structured relative cell complexes.

8.3.5 Elegant Reedy categories
The obvious question arises, for what kind of Reedy categories we can expect every presheaf
to admit a (necessarily unique) cell structure, or more generally, when we can expect the
monomorphisms to be exactly the relative cell complexes. The latter equivalence holds exactly
when working with so-called elegant Reedy categories. These were introduced in [BR12]. We
recommend [nLa24d] for a concise overview.
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Recollection 8.3.5.1. Recall that a reedy category R is called elegant, if one of the following
equivalent conditions holds:

1. For every pair of arrows f1∶ r0 → r1, f2∶ r0 → r2 ∈R−, there exists a diagram

r0 r1

r2 r

f1

f2 (8.109)

in R−, which is absolute pushout in R. Recall that a square is called absolute pushout,
if its image under the covariant Yoneda embedding R → SetRop

is pushout.

2. For every presheaf X on R, an every element x ∈ Xr, with r ∈ R, there exists unique
arrow s∶ r → r′ in R− and a unique element x′ ∈Xr′ , such that

X(r)x′ = x

and x′ is non-degenerate.

3. For every monomorphism of presheaves c∶X ↪ Y ∈ SetRop
, and every r ∈R the induced

morphism
Xr ∪∂rX ∂rY → Y

is a monomorphism.

Example 8.3.5.2. The most prominent example for an elegant Reedy category is probably
the Reedy category ∆ of finite, non-empty, linear posets of the form [n] = {0, . . . , n}, with face
maps given by inclusions and degeneracy maps given by surjections.

Example 8.3.5.3. Any Reedy category without degeneracies is elegant. In particular, if we
equip a poset P with the Reedy structure where all morphisms are face maps, then P forms
an elegant Reedy category.

Example 8.3.5.4. Given any presheaf on an elegant Reedy R, X ∈ SetRop
, its category of

elements el(X) ≅R/X , equipped with the induced Reedy structure (Example 8.3.2.3) is again
an elegant Reedy category.

In the context of elegant Reedy categories, the notion of a presheaf which is a cell complex
becomes essentially superfluous, as indicated by the following corollary of Corollary 8.3.4.11:

Corollary 8.3.5.5. Let R be an elegant Reedy category. Then every presheaf X ∈ SetRop

admits a unique cell structure. Furthermore, a morphism of presheaves X → Y admits the
(unique) structure of a relative cell complex, if and only if it is a monomorphism.

In Section 13.1, we are particularly interested in studying presheaf categories of the form
Set(S×R)op

≅ (SetRop
)S

op , where R and S are elegant Reedy categories. For these contexts, it
will be useful to have the following result at hand.

Lemma 8.3.5.6. Let R and S be elegant Reedy categories. Then R × S, equipped with the
inherited Reedy structure, is again an elegant Reedy category.

Proof. Let c∶X ↪ Y ∈ Set(R×S)op
be a monomorphism of presheafs. We show that, for any

pair r ∈R, s ∈ S the latching map

Xr,s ∪∂r,sX ∂r,sY → Yr,s

is a monomorphism. Using Example 8.3.2.9, we may equivalently express this map as

ιr⊛̂(ιs◯̂○ c)
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in other words, it suffices to see that the relative latching maps of ιs◯̂○ c are monomorphisms. It
follows by [nLa24d, Thm. 2.6], which is a generalization of [BR12, Proposition 3.15], that this
is in turn equivalent to ιs◯̂○ c being a monomorphism. In other words, it suffices to show that

Rr⊛̂(ιs◯̂○ c)

is a monomorphism. By commutativity of colimits (changing the order of R and S), the latter
map is isomorphic to

ιs⊛̂(cr,●)

which is the relative latching map of cr,●. As S is elegant, the latter latching map is a
monomorphism if cr,● is a monomorphism. Since monomorphisms in functor categories are
detected pointwise, this is immediate from c being a monomorphism.

As a consequence of this lemma, together with Observation 8.3.3.8, we obtain:

Corollary 8.3.5.7. Let R and S be elegant Reedy categories. Then the statement of Corol-
lary 8.3.5.5 also applies to the cellularized category of diagrams (SetRop

)S
op

.

Finally, it will be useful to observe that degeneracy maps in an elegant Reedy category
admit sections by face maps.

Lemma 8.3.5.8. Let R be an elegant Reedy category and let f ∶ r → r′ ∈R− be a degeneracy
map. Then there exists a face map s∶ r′ → r ∈R+ such that 1r′ = f ○ s.

Proof. In [nLa24d, Lem. 2.1] it is shown that every degeneracy map in an elegant Reedy
category admits a section. Such a section is, by assumption, a split monomorphism. Hence, it
remains to show that every split monomorphism is a face map. Indeed, let s∶ r′ → r be a split
monomorphism. Consider the canonical factorization s = s+ ○ s− of s into a degeneracy map
followed by a face map. It suffices to show that s− is the identity. Observe that since s is a
split monomorphism, so is s−. As s− is also a degeneracy map, it follows that s− is also a split
epimorphism. Consequently, s− is an isomorphism. As every isomorphism in a Reedy category
is already the identity, it follows that s− = 1, as was to be shown.

8.3.6 Functors between cellularized categories of diagrams
Now that we have a better understanding of the precise nature of structured cell complexes in
CR, we obtain the following alternative characterization of the cellularized CR. Recall the
definition of the bicategories of cellularized categories from Construction 8.2.1.5 as well as
the definition of the category of cellular bifunctors from Construction 8.2.5.10. We can think
of CR as representing the functor which associates to a category D the category of cellular
bifunctors CellBiFun(SetRop

×C,D).

Notation 8.3.6.1. Given a cellularized functor F∶C→D, we denote by

− ⊛ F(−)∶SetRop
×C→D

the cellularized bifunctor obtained by precomposing the cellularized bifunctor − ⊛ − with F in
the first argument (see Observation 8.2.5.12).

Proposition 8.3.6.2. Let C and D be cellularized categories and R a Reedy category. The
functor

CellCat(C,DR
)→CellBiFun(SetRop

×C,D)
F↦ − ⊛ F(−) .

acting on morphisms in the obvious fashion, is an equivalence of categories.
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Proof. To a cellularized bifunctor ⊗F, we associate the functor

F ∶C→DR

X ↦R● ⊗F X

acting on morphisms in the obvious fashion. Let us explain how to cellularize this cocontinuous
functor. By Lemma 8.2.2.5 and Theorem 8.3.4.8, to specify a cell structure on F , it suffices to
expose cell structures after application of ιr⊛̂F (b), for each r ∈R and b ∈ BC. By definition of
F (−), we have F (−)r =Rr

⊗F −. As − ⊗F − preserves colimits in the first variable, it follows
that there is a canonical isomorphism

U ⊛ F (X) ≅ U ⊗F X

for X ∈C and U ∈ SetRop
. Consequently, for each r ∈R, there is a canonical isomorphism

ιr⊛̂F (b) ≅ ιr⊗̂F b ,

for b ∈ BC. By Theorem 8.3.4.8, we may thus use the cell structure of ιr⊗̂Fb to cellularize F .
Given G ∈CellCat(C,DR

), let us denote the associated cellularized bifunctor by ⊗G∶SetRop
×

C → D. Starting with a bivariate functor ⊗F , cocontinuous in both variables we then have
canonical natural isomorphisms

U ⊛ F (X) ≅ U ⊛ (R● ⊗F X) ≅ (U ⊛R●)⊗F X ≅ U ⊗F X

and conversely starting with G ∈CellCat(C,DR
)

Rr
⊗GX =Rr

⊛G(X) ≅ G(X)r

showing that the two functors ⊗F ↦ F and G ↦ ⊗G are inverse to each other, up to natural
isomorphism, if we ignore cell structures for now. That these isomorphisms are also isomorphism
on the cellular level can then be verified directly form the construction via Theorem 8.3.4.8.

The above proposition gives us one way to characterize the Reedy cellularizations on
CR. Another insightful perspective is given by the following cellularized version of left Kan
extension.

Corollary 8.3.6.3. The functor

RCell(CR
)→CellCat→(SetRop

,C)

(X
c
↪Ð→ Y )↦ (− ⊛X

−⊗c
ÐÐ→ ⊛Y ) ,

acting on morphisms in the obvious way, is an equivalence of categories, which preserves

1. (transfinite) vertical composition,

2. cobase changes,

3. inclusions of subcomplexes,

and restricts to an equivalence

Cell(CR
) ≃CellCat(SetRop

,C) .

Proof. The preservation properties below are an incarnation of Lemma 8.2.5.9. The two
claimed equivalences follow from Proposition 8.3.6.2 by setting, respectively, C = (Set[1],{u})
and C = Set there (with (Set[1],{u}) as in Observation 8.2.3.2) and using Observation 8.2.3.2,
together with Observation 8.2.5.11.
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Notation 8.3.6.4. Given a cellularized functor F ∈ CellCat(SetRop
,C), we denote the

associated cellularized functor absolute cell complex in Cell(CR
) (determined uniquely up to

natural isomorphism) by F∣R. This notation makes sense insofar as the underlying functor of
F∣R is indeed the restriction of F along the Yoneda embedding R ↪ SetRop

.

Observation 8.3.6.5. Note that, by definition of the equivalence

Cell(CR
) ≃CellCat(SetRop

,C)

one obtains a formula computing the value of a relative cellularized functor F ∈CellCat(SetRop
,C)

at a relative cell complex, in terms of its associated absolute cell complex F ∣R∈ Cell(CR
).

Namely, given c∶U ↪ V ∈RCell(SetRop
), we may compute F(c) as

F(c) ≅ c⊛ F∣R .

A particularly interesting case of Corollary 8.3.6.3 is the following corollary:

Corollary 8.3.6.6. Given two Reedy categories R and T, the functor

RCell(SetRop×T
) ≅RCell(SetT)R

op

)→CellCat→(SetR,SetT
)

(X
c
↪Ð→ Y )↦ (− ⊗X

−⊗c
ÐÐ→ ⊗Y )

defined in the obvious way on morphisms defines an equivalence of categories, which restricts
to a natural equivalence

Cell(SetRop×T
) ≃CellCat(SetR,SetT

) .

Remark 8.3.6.7. Observe that it follows by Corollary 8.3.4.11 that being a cellularized
functor SetR

→ SetT is really a property, and not an additional structure. This mirrors the
situation that being a cell complex in Cell(SetRop×R

) is a property.

In particular, specifying a cellularized functor categories SetR
→ SetT is really the same

data as specifying a cell complex in SetRop×T. Let us give some specific examples of such
functors and their corresponding cell complexes:

Example 8.3.6.8. The identity functor 1SetR corresponds to R●● ∈ SetRop×R. Under Corol-
lary 8.3.4.11, its set of cells is given by the set of elements

{1r ∈Rr
r ∣ r ∈R}.

Example 8.3.6.9. The evaluation at r functor (−)r ∶SetR
→ Set corresponds to the presheaf

Rr
∈ SetRop

. Its set of non-degenerate elements is given by the set

⊔
r∈R
{f ∶ r → r ∣ f ∈R+}.

Example 8.3.6.10. The latching functor Lr(−)∶SetR
→ Set corresponds to the presheaf

∂Rr
∈ SetRop

. Its set of non-degenerate elements is given by the set

⊔
r∈R
{f ∶ r → r ∣ f ∈R+, f ≠ 1r}.

We may thus think of the canonical relative cell complex ιr ∶∂Rr
→Rr as the inclusion of a

subcomplex.

Example 8.3.6.11. As we have seen in Recollection 8.3.2.4, the skeleton functor skn∶SetR
→

SetR, for n ∈ N, corresponds to sknR●● ∈ SetRop×R given by

(sknR●●)rr = {f ∶ r → r ∣ f factors through R≤n}.
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Under Corollary 8.3.4.11, its set of cells is given by the set of elements

{1r ∈Rr
r ∣ r ∈R,deg(r) ≤ n}.

In particular, we obtain a sequence of inclusions of subcomplexes

∅ = sk−1R●● ↪ sk0R●● ↪ sk1R●● ↪ ⋅ ⋅ ⋅↪ sknR●● ↪ . . .

the transfinite composition of which is given by R●●.

Example 8.3.6.12. Denote Q =Rop
×R, using notation as in Notation 8.3.2.7. Observe that

there is a cobase change of relative cell complexes in SetRop×R

∐r∈R,deg(r)=n ∂Qr,●
●,r skn−1R●●

∐r∈R,deg(r)=nQr,●
●,r sknR●●

⌟

(8.110)

with the lower vertical given by (f, g)↦ f ○g. Indeed, observe that the lower horizontal induces
a bijection on cells mapping the set of non-degenerate elements {(1r,1r) ∣ r ∈R,deg(r) = n}
on the left-hand side to precisely the set of non-degenerate elements {1r ∣ r ∈R,deg(r) = n},
which specifies the relative cell structure on skn−1R●● ↪ sknR●●. Hence, the claim follows by
Corollary 8.1.4.2.

We obtain the following corollary, which was observed in somewhat different languag in
[RV13].

Corollary 8.3.6.13. Let C be any cellularized category. For any n ≥ −1, the n-skeleton functor
skn∶CR

→CR carries the structure of a cellularized functor, such that the canonical morphism
skn → 1C is an inclusion of cellularized functors. These cellularized functors assemble into a
transfinite composition diagram

∅→ sk−1 ↪ sk0 ↪ sk1 ↪ ⋅ ⋅ ⋅↪ skn ↪ ⋅ ⋅ ⋅↪ 1C.

of inclusions of cellularized subfunctors. At each n ≥ 0, the associated cellularized relative
functor skn → skn+1 (see Definition 8.2.4.3) fits into a cobase change square of cellularized
functors

∐deg(r)=n(Rr ◯○ ∂Rr
∪∂Rr◯○∂Rr ∂Rr ◯○ Rr

)◯○ − skn−1

∐deg(r)=n(Rr ◯○ Rr
)◯○ − skn .

(ιr◯̂○ ιr)◯○ ⌟

(8.111)

Proof. This follows by applying Lemma 8.2.5.9 to Example 8.3.6.11 and Example 8.3.6.12 and
using Example 8.3.2.9.

Remark 8.3.6.14. Evaluating Corollary 8.3.6.13 at a relative cell complex c∶A↪X in CR,
provides the decomposition of c into relative cell complexes

A→ A ∪sk0A sk0X → ⋅ ⋅ ⋅→ A ∪sknA sknX → ⋅ ⋅ ⋅→X .

with cobase change diagrams

∐deg(r)=n ∂Rr ◯○ X
r ∪∂Rr◯○sL̂r(c) Rr ◯○ sL̂

r(c) A ∪skn−1A skn−1X

∐deg(r)=nRr ◯○ X
r A ∪sknA sknX

ιr◯̂○ (ιr⊛̂c) (8.112)
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from [RV13], which we already used in the proof of Theorem 8.3.4.8. In particular, in the
case of absolute cell complex X, we obtain a canonical exhaustion by subcomplexes

∅↪ sk0X↪ sk1X↪ ⋅ ⋅ ⋅↪ X

such that the associated relative cell complexes fit into cobase change squares

∐deg(r)=n ∂Rr ◯○ X
r ∪∂Rr◯○Lr(X) Rr ◯○ L

r(X) skn−1X

∐deg(r)=nRr ◯○ X
r sknX .

ιr◯̂○ (ιr⊛X) (8.113)

8.3.7 Change of Reedy category and cellularized colimits
The obvious question arises, when a functor of Reedy categories f ∶R → T has the property
that its induced functors f∗, f!, define cellularized functors. The guiding example which we
should have in mind here is the case of the constant functor f ∶R → ⋆. Replacing the word
cellularized with left Quillen-functors, for a second, this question was discussed in great detail
in [Bar07]. It turns out that the answer and methodology to tackle this question is much the
same. Hence, we will make frequent use of [Bar07] in this subsection. We will furthermore
constantly employ the calculus of final functors (i.e.,such functors which have the property
that restriction along them does not change the colimits). A good overview can be found in
[nLa24f].

Recollection 8.3.7.1. [Bar07] Recall that a morphism of Reedy categories F ∶R → T is a
functor of the underlying categories, such that F (R+) ⊂ T+ and such that F (R−) ⊂ T−. We
will denote the respective restrictions of F by F + and F −.

Notation 8.3.7.2. Given a Reedy category R and r ∈R, we will denote by ∂Rr/ (∂R/r) the
full subcategory of the slice (coslice) category given by only such arrows f ∶ r → r′ which fulfill
f− ≠ 1 ( f ∶ r′ → r which fulfill f+ ≠ 1).

Observation 8.3.7.3. Observe that ∂Rr/ is the category of elements of ∂Rr ∈ SetR and that
∂R/r is the category of elements of ∂Rr

∈ SetRop
(where we use the convention that el(W )→R

is always a covariant functor, independently of the variance of the functor W ∶R → Set).

Observation 8.3.7.4. Given a Reedy category R, observe that R+ is again a Reedy category,
with the degree function inherited from R and (R+)+ =R+ and (R+)− the discrete category
given by the objects of R. Then, for r ∈R the inclusion of categories

I ∶∂(R+)/r → ∂R/r

is a final functor, i.e., restricting along it does not change colimits. Indeed, the comma category
If/ of I at f ∶ r′ → r is the category of factorizations (f1, f0), f = f1 ○ f0, with f1 ∈R+, which
has the terminal object (f+, f−). Dually, it follows that

∂(R−)r/ → ∂Rr/

is an initial functor.

Recollection 8.3.7.5 ([Bar07; Hir03]). Recall that a Reedy category R is called left fibrant
if one of the following equivalent conditions holds.

1. For every model category M, the colimit functor lim
Ð→
∶MR

→M is a left Quillen functor.

2. For every r ∈R, the category ∂Rr/ is empty or connected.

3. For every r ∈R, the category ∂(R−)r/ is empty or connected.
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Dually, R is called right fibrant if one of the following equivalent conditions holds.

1. For every model category M, the constant diagram functor c∗∶M→MR is a left Quillen
functor.

2. For every r ∈R, the category ∂R/r is empty or connected.

3. For every r ∈R, the category ∂(R+)/r is empty or connected.

Fibrant Reedy categories are a special case of fibrations of Reedy categories:

Recollection 8.3.7.6. [Bar07] Recall that a Reedy morphism of Reedy categories F ∶R → T
is called a left fibration if one of the following equivalent conditions holds.

1. For every model category M, the left Kan extension functor F!∶MR
→ MT is a left

Quillen functor.

2. For every t ∈ T, the Reedy category F/t is left fibrant.

3. For every t ∈ T, the Reedy category F −/t is left fibrant.

Dually, F ∶R → T is called a right fibration if one of the following equivalent conditions holds.

1. For every model category M, the precomposition functor F ∗∶MT
→MR is a left Quillen

functor.

2. For every t ∈ T, the Reedy category Ft/ is right fibrant.

3. For every t ∈ T, the Reedy category F +t/ is right fibrant.

It follows that F is left fibrant if and only if F op is right fibrant.

Let us now connect these results with the theory of cellularized functors.

Proposition 8.3.7.7. Given a morphism of Reedy categories F ∶R → T, the following condi-
tions are equivalent:

1. F is a left fibration.

2. T●F (●) ∈ SetRop×T is an absolute cell complex.

3. F!∶SetR
→ SetT defines a cellularized funtor (i.e., by Corollary 8.3.4.11, preserves

relative cell complexes).

Dually, the following conditions are equivalent:

1. F is a right fibration.

2. TF (●)
● ∈ SetTop×R is an absolute cell complex.

3. F ∗∶SetT
→ SetR defines a cellularized functor (i.e., by Corollary 8.3.4.11, preserves

relative cell complexes).

Proof. In both series of equivalences, the latter two conditions are equivalent by Corollary 8.3.6.6
together with the identities F! ≅ T●F (●)◯○ − and F ∗ ≅ TF (●)

● ◯○ − we explained in Example 8.3.1.6
(iv). For the final remaining two equivalences, observe that (by dualizing) it suffices to show
the case of left fibrancy. Observe that, by Corollary 8.3.4.11 being a relative cell complex c in
SetR or SetT is equivalent to the latching maps being injections. This, in turn is equivalent
to c being a cofibration in the Reedy model structure on SetR (or SetT), where Set is
equipped with the model structure in which cofibrations are given by injective maps and
weak equivalences are given by isomorphisms. Since F! defines a cellularized functor, if and
only if it preserves relative cell complexes, this is in turn equivalent to F! preserving Reedy
cofibrations. In particular, it follows that F being left fibrant implies that F! is a cellularized
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functor. Finally, let us show that T●F (●) being a cell complex implies that F is left fibrant. To
this end, denote Q =Rop

×T, let (r, t) ∈Q, and consider the latching map

Ltr(T
●
F (●)) = ∂Q●,tr,● ⊛T●F (●) →Q●,tr,● ⊛T●F (●) = T(F (r), t).

By Corollary 8.3.4.11, T●F (●) is a cell complex, if and only if this map is an injection, for every
pair (r, t). Using the description of ⊛ in terms of the category of elements (Recollection 8.3.1.4),
we may compute ∂Q●,tr,● ⊛T●F (●) as the colimit of

el(∂Q●,tr,●)→Q
T(F (−),−)
ÐÐÐÐÐÐ→ Set .

Explictitly, el(∂Q●,tr,●) is the twisted arrow category, with objects given by pairs (f ∶ r → r′, g∶ t′ →
t), such that either f− ≠ 1 or g+ ≠ 1 and and morphisms from (f0, g0) to (f1, g1) given by pairs
of arrows (r′1 → r′0, t

′
0 → t′1) such that the diagrams

r t′1 t′0

r′1 r′0 t

f1 f0

g1 g0
(8.114)

commute. Using Observation 8.3.7.4, we may furthermore restrict to the full subcategory of
el(∂Q●,tr,●) given by such pairs (f, g) where f ∈ R− and g ∈ R+. Let us denote the latter by
TW. We may, in turn, compute the colimit of

D∶TW→ el(∂Q●,tr,●)→Q
T(F (−),−)
ÐÐÐÐÐÐ→ Set .

as the set of path components of the associated category of elements of el(D), which is
explicitly given by the following category: Objects are triples (f ∶ r → r′, g∶ t′ → t, s∶F (r′)→ t′),
with f ∈R−, g ∈R+ and f ≠ 1 or g ≠ 1, and morphisms (f0, g0, s0)→ (f1, g1, s1) are given by
pairs of arrows (r′1 → r′0, t

′
0 → t′1) ∈R− ×R+ such that the diagrams

r t′1 t′0 F (r′1) F (r′0)

r′1 r′0 t t′1 t0

f1 f0

g1 g0
s1 s0 (8.115)

commute. From this perspective, the latching map

Ltr(T
●
F (●)) = ∂Q●,tr,● ⊛T●F (●) →Q●,tr,● ⊛T●F (●) = T(F (r), t)

is given by
[(f, g, s)]↦ (g ○ s ○ F (f)) .

The fiber of the latching map at s̃ ∈ T(F (r), t) may thus be computed as the set of path
components of the full subcategory D of TW, given by such triples (f, g, s), for which
g ○ s ○ F (f) = s̃. Now, suppose that s̃ ∈ R−. Then, for any such triple, (f, g, s) it follows by
uniqueness of factorizations, and the assumption that g ∈ R+, that g = 1. Consequently, we
have s̃ = s ○ F (s). Repeating the argument, we obtain s ∈ R−. Hence, in this case we may
identify D with the category whose objects are pairs (f ∶ r → r′, s∶F (r′)→ t) ∈R− ×R−, with
f ≠ 1 and s ○ F (s) = s̃ and whose morphisms from (f0, s0) to (f1, s1) are given by arrows
r′1 → r′0, such that the diagrams

r F (r′1) F (r′0)

r′1 r′0 t

f1 f0

s1 s0
(8.116)

commute. However, this is just the opposite of the category ∂(F −/t)s̃/. By assumption, D is
empty or connected. Hence, it follows that F is a left fibration.
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As an immediate corollary, using the cellularized bifunctor −◯○ − of Proposition 8.3.3.10
and Example 8.3.1.6 (iv), we obtain:

Corollary 8.3.7.8. If F ∶R → T is a left fibration, and C a cellularized category, then the
canonical natural isomorphism

CR CT

F!

T●F (●)◯○−

∼ (8.117)

equips F! with the structure of a cellularized functor. Dually, if F is a right fibration, then the
canonical natural isomorphism

CT CR

F ∗

TF (●)
●

◯○−

∼ (8.118)

equips F ∗ with the structure of a cellularized functor.

It will be useful to have an explicit description of the cell structures that arise from
restrictions and left Kan extensions.

Proposition 8.3.7.9. In the situation of Corollary 8.3.7.8, let F be a left fibration. For r ∈R
and t ∈ T, denote by CtF (r) ⊂ Tt

F (r) the set of morphisms f ∶F (r) → t in T− and which are
furthermore not of the following form

• f = f ′ ○ F (g), for some g∶ r → r′ ∈R, with g− ≠ 1 and f ′∶F (r′)→ t ∈ T.

Then, for any relative cell complex c∶A→X in CR, the set of cells of F!(X) of type t is given
by

{D
σ
Ð→Xr ρf

Ð→ lim
Ð→

F (r′)→t
Xr′
= (F!X)

t
∣ r ∈R, f ∈ CtF (r), σ∶D →Xr

∈ Cc,r} .

where ρf ∶Xr → lim
Ð→F (r′)→t

Xr′ is the canonical morphism associated to the element f ∈ F/t.

Similarly, if F is a right fibration, denote by CF (r)t ⊂ TF (r)
t the set of morphisms f ∶ t→ F (r)

in T+ and which are furthermore not of the form

• f = F (g) ○ f ′, for some g∶ r′ → r ∈R, with g+ ≠ 1 and f ′∶ t→ F (r′) ∈ T.

Then, for any relative cell complex c∶A→X in CR, the set of cells of F ∗(X) of type r is given
by

{D
σ
Ð→Xt Xf

ÐÐ→XF (r)
∣ f ∶ t→ F (r) ∈ C

F (r)
t , σ∶D →Xt

∈ Cc,t} .

Remark 8.3.7.10. Before we give a proof, observe that, by the uniqueness of degeneracy face
factorizations in a Reedy category, the sets CtF (r) and C

F (r)
t of Proposition 8.3.7.9 are either

empty or singletons.

Proof. We only compute the case of F!, the case of F ∗ is similar. By Lemma 8.2.2.5, the cell
structure on ιt⊛̂F!c is given by

⋃
σ∶(ιr◯○ b,Rr◯○D→X)∈CX

(F!σ)
tCιt⊛̂F!(ιr◯̂○b) .

Using the associativity of −◯○ − and the canonical isomorphism F! ≅ T●F (●) ◯○ −, we obtain

ιt⊛̂F!(ιr◯̂○b) ≅ (ι
t
◯̂○T●F (●)◯̂○ ιr)∗̂b.
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Under the identification Tt
◯○ T●F (●) ◯○ Rr ≅ Tt

F (r), the subobject of Tt
F (r) given by

(ιt◯̂○T●F (●)◯̂○ ιr) = Tt
◯○ T●F (●) ◯○ ∂Rr ∪∂Tt◯○T●

F (●)
∂Rr

∂Tt
◯○ T●F (●) ◯○ Rr

≅ Tt
F (●) ⊛ ∂Rr ∪... ∂Tt

⊛TF (r)

is given by the inclusion of the subset

{f ○ F (g)∶F (r)→ t ∣ r′ ∈R, g∶ r → r′, f ∶F (r′)→ r, g− ≠ 1} ∪ {f ∶F (r)→ t ∣ f ∶ t′ → t, f+ ≠ 1} .

The complement of this set is precisely CtF (r). It follows, that under the canonical isomorphisms
above the set of cells of (ιt◯̂○T●F (●)◯̂○ ιr)∗̂b, for b∶∂D →D, is given by

{D
if
↪Ð→ ⊔

Tt
F (r)

D = Tt
F (r) ∗D ∣ f ∈ C

t
F (r) .}

Furthermore, under these canonical isomorphisms, (F!σ)
t∶ (F!(Rr◯○D))

t → (F!X)
t = lim
Ð→F (r′)→t

Xr′

is given by the morphism

Tt
F (r) ∗D = ⊔

Tt
F (r)

D → lim
Ð→

F (r′)→t
Xr′

specified on the f ∈ Tt
F (r) component by

D →XF (r)
ρf

Ð→ lim
Ð→

F (r′)→t
Xr′

where ρf is the canonical morphism Xr → lim
Ð→F/t

Xr′ associated to the object f ∶F (r)→ t ∈ F/t.
Using this, and chasing the appropriate diagrams of canonical isomorphism, we may compute
the set of cells of ιt⊛̂F!c as

{D
σ
Ð→Xr ρf

Ð→ lim
Ð→

F (r′)→t
Xr′
= (F!X)

t
∣ r ∈R, f ∈ CtF (r), σ∶D →Xr

∈ Cc,r}.

Example 8.3.7.11. For the special case of Corollary 8.3.7.8 where F is given by the con-
stant functor R → ⋆, (and hence R is a left fibrant Reedy category) we obtain a canonical
cellularization of the colimit functor

lim
Ð→
∶CR

→C .

By Proposition 8.3.7.9, it follows that the set of cells of lim
Ð→

X, for a structured cell complex X

in CR, is then explicitly given by

{D
σ
Ð→Xr

→ lim
Ð→

X ∣ r ∈R, σ ∈ CX,r ∶ ∄f ∶ r → r′s.t.f− ≠ 1}.

Example 8.3.7.12. Let r ∈ R. Denote by ir ∶ ⋆ → R the inclusion of the single object at r.
Then, under the identification C⋆ =C and i∗rX = Xr =Rr

⊛X, the set of cells of the structured
cell complex Xr is given by

{D
σ
Ð→Xr Xf

ÐÐ→Xr
∣ r ∈R, σ ∈ CX,r, f ∶ r → r ∈R+} .

Applying Construction 8.3.3.13, we obtain:
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Corollary 8.3.7.13. Given a relative cellularized functor i∶F → G from and a left fibrant
Reedy category R, there is a canonical isomorphism of cellularized functors

i ○ lim
Ð→
≅ lim
Ð→
○iR,

using the cellularization of ιR from Construction 8.3.3.13.

Notation 8.3.7.14. Suppose we are given a subcategory of a Reedy category S ⊂ R that
fulfills the requirements of Example 8.3.2.3 and thus inherits the structure of a Reedy category
from R. We say that S is −-closed in R+, if for every morphism f ∶ s→ r, in R−, with s ∈ S,
it follows that r ∈ S. Dually, we say that S is +-closed, if Sop is −-closed in R. In case both
conditions hold, we will call such a subcategory ±-closed.

Example 8.3.7.15. Given a Reedy category R and n ≥ −1, the inclusion R≤n ↪R is always
±-closed.

Lemma 8.3.7.16. The inclusion of a −-closed Reedy subcategory S↪R into a Reedy category
R is always a left fibration. Dually, the inclusion of a +-closed subcategory is a right fibration.

Proof. Let S be −-closed. We denote the inclusion functor by I. Let r ∈ R. There are two
cases to consider. If r ∉ S, then the category I−/r is necessarily empty, and hence left fibrant. If
r ∈ S, I−/r is a Reedy category with a terminal object. It is immediate from the definition of
left fibrancy that such a Reedy category is left fibrant.

8.3.8 Functorial computation via non-degenerate elements
It is a classical observation that the value of a colimit preserving functor F defined on simplicial
sets (or more generally a presheaf on an Eilenberg-Zilber category, see [nLa24c]) at a simplicial
set X can be computed in terms of a certain colimit involving the non-degenerate simplices of
X. This is a particularly useful result insofar as whenever X is finite, this allows one to reduce
the computation of F to the computation of a finite colimit. An analogous result holds if we
replace ∆ with a more general Reedy category and Set with an arbitrary cellularized category.
Before we can show this, let us introduce some language and elementary results: Recall that,
given a Reedy category R and a presheaf X ∈ SetRop

, the category of elements of X, el(X),
inherits the structure of a Reedy category from R (see Example 8.3.2.3).

Proposition 8.3.8.1. Let R be a Reedy category and let X ∈ SetRop
. The following are

equivalent:

1. el(X) is left fibrant.

2. X is a cell complex.

Proof. X is a cell complex, if and only if ιr ⊛X ∶Lr(X)→Xr is an inclusion, for each r ∈R.
Lr(X) is equivalently the set of path components of the category of elements (f ∶ r → r′, σ ∈Xr′),
f− ≠ 1. From this perspective, the fiber of ιr ⊛X at σ is the set of path components of the
full subcategory given by such pairs (f, σ′), for which σ′ ○ f = σ. Hence, ιr ⊛X is injective, if
and only if this category is empty or connected. However, the category in question is, up to
isomorphism, the category ∂el(X)σ/, which shows equivalence of the two properties.

Notation 8.3.8.2. Given a Reedy category R, a presheaf X ∈ SetRop
, and r, r ∈ R we say

that an element τ ∈Xr is a face of an element σ ∈Xr′ , if there exists a morphism f ∈R+, such
that σ ○ f = τ .

Notation 8.3.8.3. Given a Reedy category R and X ∈ SetRop
, we denote by eln.d.(X) ⊂

el(X), the full subcategory of el(X) given by all non-degenerate elements of X and all of
their faces. As this category is, by construction, closed under the unique factorization in a
Reedy category, by Example 8.3.2.3, it inherits the structure of a Reedy category from el(X).
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Proposition 8.3.8.4. If X ∈ SetRop
is a cell complex, then the inclusion functor

I ∶eln.d.(X)↪ el(X)

is a final functor.

Proof. The comma category Iσ/ at (σ∶Rr
→ X) ∈ el(X) is the category of factorizations of

σ into a pair (f, σ′) where σ′ is a face of a non-degenerate element. We proceed to prove
that Iσ/ is connected via induction over the degree of r. Note that if σ is itself a face of a
non-degenerate element, then clearly, this category has an initial object and is thus contractible.
If deg(r) = 0, then σ is non-degenerate, which provides the start of the induction. Now, for
the inductive step, we may again assume that σ is not the face of a degenerate object. Then
for all pairs (f, σ′) ∈ Iσ/, it holds that f− ≠ 1. Consequently, there is a well-defined inclusion

Iσ/ ↪ ∂(el(X))σ/.

By Proposition 8.3.8.1 and Proposition 8.3.7.7, the category ∂(el(X))σ/ is connected or empty.
Note that, since X is a cell complex, it follows from Corollary 8.3.4.11 that every element of
X degenerates from some non-degenerate element. Hence, Iσ/ is non-empty. Consequently, it
suffices to show that

J ∶ Iσ/ → ∂(el(X))σ/.

induces a bijection on path components. The comma category J(f ′,σ′)/ at (f ′, σ′) of J is the
category of commutative diagrams

Rr

Rr′ Rr′′

X

σ

f ′

f ′′

σ′

σ′′

(8.119)

where σ′′ is the face of a non-degenerate element. By pulling back along f ′, the category
J(f ′,σ′)/ is canonically isomorphic to Iσ′/. By assumption, f ′− ≠ 1. We may thus repeat the
same argument with (f ′−, σ′ ○ f+), and obtain that

J(f ′,σ′)/ ≅ Iσ′○f+/ ≅ J(f ′−,σ′○f+)/.

Note, however, that as f− ≠ 1, the source of σ′ ○ f+ has strictly smaller degree than r. Hence,
it is connected by inductive assumption.

Proposition 8.3.8.5. Given a presheaf X ∈ SetRop
, the forgetful functor

FX ∶el(X)→R

is a right fibration.

Proof. To see that FX is right fibrant, i.e.,that F ∗X is a cellularized functor, observe that the
comma category (F +X)r/ at r is the category of pairs (f ∶ r → r′, σ∶Rr′

→X) with f ∈R+, where
arrows (f ∶ r → r′0, σ0∶Rr′0 →X)→ (f ∶ r → r′1, σ1∶Rr′1 →X) are given by arrows r0 → r1 making
the obvious diagrams commute. Now, fixing such a pair (f ∶ r → r′, σ∶Rr′

→X), the category

∂((F +X)r/)/(f,σ)
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has as objects given by triples (f ′, f ′′, σ′), fitting into commutative diagrams

Rr

Rr′′ Rr′

X

f ′
f

f ′′

σ′
σ

(8.120)

with f ′′ ≠ 1 ∈R+. Morphisms between two such triples (f ′0, f ′′0 , σ′0) and (f ′1, f ′′1 , σ′1) (with the
subscripts inherited by all further notation) are given by arrows r′′0 → r′′1 , making the obvious
diagram commute. Now, if f ≠ 1, then this category has a terminal object, given by (1, f, σ).
If f = 1, then the category is empty, by the uniqueness of factorizations.

Proposition 8.3.8.6. Let R be a Reedy category and let X ∈ SetRop
. The inclusion functor

eln.d.(X)→ el(X)

is a right fibration. Suppose now, additionally, that R is such that every morphism in R−
admits a section by a morphism in R+. Then eln.d.(X)→ el(X) is also a left fibration.

Proof. By definition eln.d.(X) → el(X) is +-closed in el(X). It follows by Lemma 8.3.7.16,
that eln.d.(X)→ el(X) is a right fibration. To see that it is also a left fibration, we need to
show −-closedness. So suppose we are given a commutative diagram

Rr Rr′

X

σ

f

−
σ′

(8.121)

with σ ∈ eln.d.(X). Then a section of f given by s ∈ R+ also defines a section of f as a
morphism in el(X)

Rr′ Rr Rr′

X .

g

+

1

σ′
σ

f

−

σ′
(8.122)

Consequently, σ′ ∈ eln.d.(X), as was to be shown.

Definition 8.3.8.7. We will say that a Reedy category as in Proposition 8.3.8.6 admits
positive sections.

Example 8.3.8.8. The Reedy category ∆ admits positive sections. Indeed, any order
preserving surjection [n] → [m], for n,m ∈ N admits an order preserving section. More
generally, every elegant Reedy category (see Section 8.3.5) admits positive sections.

We may now state the main result concerning the computation of cellularized functors of
presheaf categories in terms of non-degenerate elements.

Theorem 8.3.8.9. Let R be a Reedy category which admits positive sections. Let X ∈ SetRop

and suppose that X is a cell complex. Denote by In.d.∶eln.d.(X)→ el(X) the obvious inclusion
functor, and by FX ∶el(X) → R the forgetful functor. Under Corollary 8.3.7.8, all of the
functors

• F ∗X ∶C
R
→Cel(X);
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• I∗n.d.∶C
el(X)

→Celn.d.(X);

• lim
Ð→
∶Cel(X)

→C;

• lim
Ð→
∶Celn.d.(X) →C,

are canonically equipped with the structure of a cellularized functor.
Given a cellularized functor F∶SetRop

→C, there is an isomorphism of structured cell complexes
(natural in F)

F(X) ≅ lim
Ð→
((In.d. ○ FX)

∗
(F∣R)) .

In other words, the following diagram of categories (using the equivalence of categories from
Corollary 8.3.6.3) commutes up to natural isomorphism

Cell(CR
) CellCat(SetRop

,C)

Cell(Cel(X)
) Cell(C) .

Cell(Celn.d.(X))

F ∗X

≃

evX

lim
Ð→

I∗n.d.

lim
Ð→

(8.123)

Proof. Observe first that by Propositions 8.3.7.7 and 8.3.8.6 the functors FX and In.d. are
right fibrations, and hence induce well defined cellularized functors under precomposition,
given by Corollary 8.3.7.8. Furthermore, by Proposition 8.3.8.1, el(X) is left fibrant, equip-
ping lim

Ð→
Cel(X)

→ R with the structure of a cellularized functor (by Corollary 8.3.7.8).
Finally, again by Proposition 8.3.8.6 and the assumption on the existence of positive sections,
eln.d.(X) → el(X) is a left fibration. In particular, as el(X) is left fibrant, it follows by
Proposition 8.3.7.7 and the composability of Quillen functors that eln.d.(X) is left fibrant.
Consequently, lim

Ð→
Celn.d.(X) →R is also equipped with the structure of a cellularized functor

under Corollary 8.3.6.3. Now, using Corollary 8.3.6.3 and Observation 8.3.6.5, the paths in
the diagram in question are presented under Corollary 8.3.7.8 by

X ∈ SetRop
(8.124)

⋆ ◯○ RFX(●)
● ∈ SetRop

(8.125)
⋆ ◯○ el(X)In.d.(●)

● ◯○ RFX(●)
● ∈ SetRop

, (8.126)

where ⋆ denotes the respective constant terminal presheaves. Consequently, it suffices to
expose an isomorphism between these presheaves. However, under Corollary 8.3.6.6, this is
equivalent to showing that the diagram of cellularized functors

SetR

Setel(X) Set

Seteln.d.(X)

F ∗X

X⊛−

lim
Ð→

I∗n.d.

lim
Ð→

(8.127)

commutes up to isomorphism of cellularized functors. By Corollary 8.3.6.6 and Remark 8.3.4.13,
it suffices to expose a natural isomorphism of regular functors. Such an isomorphism is
immediate by Proposition 8.3.8.4 and the definition of the weighted colimit in terms of the
category of elements.
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Chapter 9

Eckmann and Siebenmann’s
generalized simple homotopy
theory axioms revisited

Note to the reader:

In [Sie70; Eck06] both Eckmann and Siebenmann suggested an axiomatic setup for generalized
simple homotopy theory. While this setup seems somewhat too general to derive much
beyond the existence of a Whitehead group, its relation to the homotopy category and the
basic composition formulas, it will serve as a useful starting point for our model categorical
investigations of simple homotopy theory. There is a technical difficulty with the given set
of axioms though. Namely, they require the existence of certain pushouts in order to define
addition and functoriality of Whitehead groups. The contexts which they then apply their
theory to, namely the category whose arrows are inclusions of CW-complexes, does not admit
pushouts(see also Section 2.3). However, what is really used in the proofs in [Sie70; Eck06], is
not the universal property of the pushout, but only certain well-known consequences of the
latter, such as symmetry and the pasting laws for pushout squares. In this chapter, we recover
the results of Eckmann and Siebenmann under more general axiomatic assumptions, which
apply to the examples we (and they) had in mind. Thus, most of what we present here is not
new from a conceptual point of view. Rather, this chapter can be seen as a category theoretical
hotfix. Only Section 9.2, which covers the study of functors between simple homotopy details
results not already in the literature. Essentially all results before this should, in spirit, be
attributed to Eckmann or Siebenmann. Many of the proofs below can be found in [Sie70;
Eck06] in different language.

9.1 General Whitehead frameworks
In this section, we replicate the axiomatic approach of Eckmann and Siebenmann under different
assumptions, making use of the calculus of cocartesian fibrations, rather than pushouts.

9.1.1 Categories with cobase changes
Let us first give an axiomatic category theoretical setting, in which one has a class of squares
that are almost like pushout squares. This makes use of Grothendieck’s notion of a cocartesian
fibration. See [nLa24g] for an overview. Recall that, given a category C, we denote by C[1]
the category of arrows in C, or in other words the category of functors from the category
[1] = {0→ 1} to C. We denote the functors C[1] →C given by evaluating at 0,1 ∈ [1] by ev0
and ev1, respectively.

477
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Definition 9.1.1.1. A category with symmetric cobase changes consists of the following data.

1. A category C;

2. A subcategory Q ⊂C[1], such that the following conditions hold:

• The composition F ∶Q→C[1] ev0
ÐÐ→C is a cocartesian fibration.

• The fiber of F at X ∈C is the whole slice category CX/.
• If Q∶ f → g ∈Q is a cocartesian arrow, with respect to the above fibration, presented

by a commutative square
X0 Y0

X1 Y1

h0

f g

h1

Q (9.1)

then the mirrored square
X0 X1

Y0 Y1

f

h0 h1

g

Q′ (9.2)

defines a cocartesian morphism in Q from h0 to h1.

Notation 9.1.1.2. For the sake of brevity, we will often omit the symmetric and simply speak
of a category with cobase changes.

Remark 9.1.1.3. Since F ∶Q→C is a cocartesian fibration, it has an associated pseudo-functor

C→Cat

associating to X ∈C the slice category CX/, and to a morphism f ∶X →X ′, a functor

f¡∶CX/ →CX′/

associating to a morphism a∶X → Y the target of a cocartesian lift f̃ of f at a. One should be
careful, however, to note that f¡ is not left adjoint to the precomposition functor

f∗∶CX′/ →CX/.

In fact, if it were, then that would imply that C has pushouts and that Q can be taken to be
the whole category C[1]. In this case, there is no need to assume the extra structure of the
category Q. In order to not produce any confusion, we use ¡ to draw attention to the fact that
we do not generally expect f¡ to be the left adjoint of f∗. (In fact, for all examples we have in
mind, this is certainly not the case).

There is a somewhat more elementary description of a category with symmetric cobase
changes, which we describe in the following.

Notation 9.1.1.4. Given a category with cobase changes (C,Q), denote by Q the class of all
commutative squares

X0 Y0

X1 Y1

h0

f g

h1

Q (9.3)

which define a cocartesian morphism in Q. Such squares will be called cobase change squares.
We will, at times, also just say the square is a cobase change, to refer to it being a cobase
change square.
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Lemma 9.1.1.5. The class of cobase change squares Q, associated to a category with cobase
change squares (C,Q) has the following properties:

Q(i) Closure under isomorphism: Suppose we are given a commutative diagram

X0 X ′0

X1 X ′1

X̂ ′1

≅

Q

(9.4)

with Q cobase change and X ′1 → X̂ ′1 an isomorphism. Then the outer commutative
square is also cobase change.

Q(ii) Existence: For every pair of arrows X0
f
Ð→X ′0 and X0

a
Ð→ Y2, there exists a cobase change

square
X0 X ′0

X1 X ′1 .

f

a1 (9.5)

Q(iii) Uniqueness of arrows: Squares in Q fulfill the uniqueness part of the universal property
of the pushout, i.e., given a solid commutative diagram

X X ′0

X1 X ′1

Y1

(9.6)

with the inner square a cobase change, there exists at most one dashed arrow as above
making the diagram commute.

Q(iv) Uniqueness: Given a solid commutative diagram

X0 X ′0

X1 X ′1

X̂ ′1

(9.7)

with both squares cobase change, the unique dashed arrow making the diagram commute
exists.

Q(v) Identities: For every morphism f ∶X0 →X1, the canonical square with horizontal identi-
ties

X0 X0

X1 X1 ,

1

f f

1

(9.8)
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is a cobase change.

Q(vi) Pasting Law: Given a commutative diagram

X0 X ′0 X ′′0

X1 X ′1 X ′′1

Q1 Q2 (9.9)

denote by Q2 ○Q1 the outer rectangle, given by the horizontal composition of Q1 and
Q2. Suppose Q1 is a cobase change. Then Q2 is a cobase change, if and only if Q2 ○Q1
is a cobase change.

Q(vii) Symmetry: If
X Y1

Y2 Y

(9.10)

is a cobase change, then so is
X Y2

Y1 Y .

(9.11)

It turns out that this list of axioms uniquely specifies a category with cobase changes. In
this sense, Definition 9.1.1.1 can be seen as a concise way of encoding these axioms.

Proposition 9.1.1.6. Given a category C, the construction in Notation 9.1.1.4 induces a
bijection

{Q ⊂C[1] ∣ (C,Q) defines a category with cobase changes }

{Classes of squares Q, fulfilling Properties Q(i) to Q(vii)}

≅ (9.12)

Proof. The inverse is constructed as follows. Given a category C and a family of squares Q
fulfilling Properties Q(i) to Q(vii), then we can construct a category Q ⊂C[1] such that (C,Q)
defines a category with cobase change squares as follows: let us say a commutative square in
C

X0 X ′0

X1 Y1

a b (9.13)

is good if it admits a factorization

X0 X ′0

X1 X ′1 Y1

Q (9.14)

where Q ∈ Q. Denote by Q the wide subcategory of C[1], whose morphisms are given by good
squares. Let us suppose, for now, that we have already shown that Q does indeed define a
category. It then follows by Property Q(v), that the fibers of F ∶Q→C[1] ev1

ÐÐ→C are the full
slice categories CX/. That F defines a cocartesian fibration follows by Properties Q(ii) to Q(iv)
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and the definition of good squares. By Property Q(i), the cocartesian arrows associated
to F are precisely given by the cobase change squares Q. The symmetry axioms holds by
Property Q(vii). Hence, we have constructed the required inverse. It remains to show that we
have indeed defined a well defined category, i.e., that the (horizontal) composition of two good
squares is again good. Observe that the smallest category containing all good squares is the
subcategory of C[1] generated by morphisms of the form

X0 X0 X0 X ′0

X̃1 X1 X1 X ′1

Q (9.15)

with Q cobase change. By Property Q(vi) squares of the second type are closed under
composition. Clearly, the same holds for squares of the first type. Hence, to see that Q is a
category, it suffices to see that every horizontal composition of the form

X0 X0 X ′0

X̃1 X1 X ′1

Q (9.16)

with Q cobase change, is again a good square. To see this, consider the following commutative
diagram

X0 X ′0 X ′0

X̃1 X̃ ′1

X1 X̂ ′1 X1
′

Q0

Q1

(9.17)

with Q0 and Q1 induced by Property Q(ii). By Property Q(vii) and Property Q(vi), the
vertical composition of Q0 and Q1 is again cobase change. Hence, by Property Q(iv), a dashed
arrow as indicated exists. The induced composition of squares

X0 X ′0 X ′0

X̃1 X̃ ′1 X̂ ′1 X ′1

Q0 (9.18)

exposes the horizontal composition in Diagram (9.16) as a good square.

Example 9.1.1.7. If C is a category with pushouts, then the class of pushout squares in C
defines a class of cobase change squares as in Proposition 9.1.1.6. More generally, let F ∶C↪D
be a faithful functor. Assume, in addition to this, that F has the following properties:

1. Given any solid span in C as indicated to the left in

X X1 F (X) F (X1)

X2 Y F (X2) F (Y )

⌟

F (9.19)

there exists a completion to a square, as indicated by the dashed arrows, such that the
image of this square under F is a pushout square.
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2. Given two such completions of a span {Y1 ← X → Y2} in C to squares (that map to
pushout squares under F )

X Y2

Y1 Y

Y ′ ,

(9.20)

the canonical arrow F (Y )⇢ F (Y ′) induced by the universal property of the pushout
lifts to an arrow Y ⇢ Y ′.

Then the class of squares Q in C, for which F ○Q is a pushout square, defines the structure of
a category with cobase changes on Q.

Example 9.1.1.8. The following pairs of categories and subcategories fulfill the requirements
of Example 9.1.1.7:

1. The category of CW-complexes (equipped with choices of characteristic maps, with mor-
phisms given by cellular maps) and the wide subcategory of inclusions of subcomplexes.

2. The category of simplicial sets, and the wide subcategory of inclusions of sub-simplicial
sets.

We will see a significantly larger class of examples and general machinery to generate the latter
in Chapter 10.

For many intents and purposes, cobase change squares behave much like pushout squares,
just that the existence property only holds with respect to other cobase change squares. One
easily derives the following:

Observation 9.1.1.9. Cobase change squares have the following properties:

1. It follows from Properties Q(iii) and Q(iv) that the completion of a span Y1
a1
←ÐX

a2
Ð→ Y2

to a commutative square guaranteed by the existence axiom is uniquely determined up
to canonical isomorphism. We denote the thus determined diagonal morphism

X Y1

Y2 Y

a1

(9.21)

X → Y (canonically determined up to an isomorphism in the slice category CX/) by
a1 ⊕Q a2. We will often write Y1 ∪

Q
X Y2 for the target of this morphism (determined up

to canonical isomorphism), to suggest the reminiscence to the behavior of a pushout.

2. The list of properties in Lemma 9.1.1.5 mirroring much of the behavior of pushout squares
guarantee that cobase change squares fulfill essentially all of the relevant identities known
for pushouts. That is, one has canonical isomorphisms.

Y1 ∪
Q
X X ≅ Y1 (9.22)

Y1 ∪
Q
X Y2 ≅ Y2 ∪

Q
X Y1 (9.23)

(Y1 ∪
Q
X Y2) ∪

Q
Y2
Y3 ≅ Y1 ∪

Q
X Y3 (9.24)

(Y1 ∪
Q
X Y2) ∪

Q
X Y3 ≅ Y1 ∪

Q
X (Y2 ∪

Q
X Y3), (9.25)

commuting with all relevant structure morphisms.
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3. Supposing one has made a choice of cobase change square for each span. Then Proper-
ties Q(iii) and Q(iv) guarantee that the map

⊕Q∶CX̂/ ×CX̂/ →CX̂/

(a1, a2)↦ a1 ⊕Q a2

canonically extends to a functor. On morphisms, ⊕ acts as follows: Given a solid
commutative diagram

X Y2 Z2

Y1 Y1 ∪
Q
X Y2 ●

Z1 ● ●

Z1 ∪
Q
X Z2

a2

b2

a1

b1

f2

f1 (9.26)

we may complete it by dotted cobase change squares as indicated, using Property Q(ii).
Then, by Property Q(iv), a dashed arrow making the diagram commute exists. The diag-
onal composition Y1 ∪

Q
X Y2 → Z1 ∪

Q
X Z2 defines a morphism a1 ⊕Q a2 → b1 ⊕Q b2, induced

by the morphisms of arrows under X, f1 and f2. Functoriality of this construction follows
by Property Q(iii). This functor is independent of the choice of squares, up to canonical
isomorphism. ⊕Q can be extended on CX/ to the structure of a symmetric monoidal
category (where the structure is again uniquely defined up to canonical isomorphism).
Units are given by X 1X

Ð→X. Identitors, associators and symmetrizers are guaranteed by
Eq. (9.22). The relevant coherence axioms are verified by Property Q(iv).

Construction 9.1.1.10. Consider the pseudo-functor

C→Cat
X ↦CX/

f ↦ f¡

associated to the cocartesian fibration F ∶Q→C. For each X
f
Ð→X ′ ∈C, the induced functor

f¡∶CX/ →CX′/

is canonically equipped with the structure of a monoidal functor. By Property Q(v), f¡ can
be chosen to preserve unit objects. The structure isomorphism f¡(a)⊕Q f¡(a)

≅
Ð→ f¡(a⊕Q b) is

obtained as follows: Consider the diagram

X X X

X ′ X ′ X ′

1

f f

1

f

1 1

(9.27)

in C. Fixing cocartesian lifts f̃a, f̃a⊕Qb, f̃b of f at a, b, a⊕Q b respectively, we obtain a solid
commutative diagram

a a⊕Q b b

f¡a f¡(a⊕Q b) f¡b

f̃ f̃ f̃ (9.28)
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which, by assumed cocartesianity, completes to a lift of Diagram (9.27) as indicated with
dashed arrows. We may translate this lift into a diagram in C, as a commutative cube

X Y

Z Y ∪QX Z

X ′ Y ′2

Y ′1 Ẑ

b

a
a⊕Qb

f

f¡b

f¡a f¡(a⊕Qb)

(9.29)

By assumption, the left face, the back face and the vertical diagonal square are cobase change.
By the pasting law Property Q(vi), it follows that the right face and front face are cobase
change. By assumption, the top face is a cobase change. Using symmetry of cobase change
squares and the pasting law, it follows that the composition of the top face and the front face
is a cobase change. Again using the pasting law and that the back face is a cobase change, it
follows that the bottom face is a cobase change. In particular, by uniqueness of cobase change
squares up to isomorphism, we obtain a canonical isomorphism f¡(a⊕Q b) ≅ f¡(a)⊕Q f¡(a) as
required. By Property Q(iii), the latter defines a natural isomorphism. It is not hard to see,
using the symmetry axiom and Property Q(iii), that f¡ even defines a symmetric monoidal
functor. One can verify, again by Property Q(iii), that the associated monoical functors
f¡ define a lift of the induced pseudo functor into Cat, to a functor into the 2-category of
symmetric monoidal categories SymMonCat (equipped with symmetric monoidal functors
and symmetric monoidal natural transformations, see [nLa25g])

(−)¡∶C→ SymMonCat
X ↦CX/

f ↦ f¡ .

9.1.2 Adding in expansions: Pre-Whitehead frameworks
The framework of cobase change squares equips a category C with the necessary amount of
algebraic structure to define (covariant) functoriality and the addition in Whitehead groups.
Now, let us add the remaining ingredient, namely the class of elementary expansions, which
determines what it means for a morphism to be a simple equivalence.

Definition 9.1.2.1. A pre-Whitehead framework W consists of

• a category with cobase changes (C,Q);

• a wide subcategory E ⊂C, called the expansions, such that:

1. E contains all isomorphisms.
2. Given a cobase change square

X Y

X ′ Y ′ .

e e′ (9.30)

if e is an expansion, then so is e′.

For the remainder of this subsection, we fix a pre-Whitehead framework W = (C,Q,E).
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Construction 9.1.2.2. Given X ∈C, denote by WhW(X) the pullback category

WhW(X) ∶=CX/ ×C E.

In other words, this is the wide subcategory of CX/, obtained by allowing as morphisms only
such commutative triangles

X

Y0 Y1
e

(9.31)

that fulfill e ∈ E. Now, suppose that we are given two morphisms e1∶a1 → a′1 and e2∶a2 → a′2
in WhW(X). Consider a diagram

X Y1 Z1

Y2 Y1 ∪
Q
X Y2 ●

Z2 ● ●

Z1 ∪
Q
X Z2

a1

a2

e1

e2

≅

(9.32)

with all squares cobase change. The functoriality of − ⊕Q − on e1, e2 is then given by the
diagonal composition Y1 ∪

Q
X Y2 → Z1 ∪

Q
X Z2. By stability of E under cobase change, all arrows

in the lower right cobase change square are in E. The dashed arrow is an isomorphism, and
thus in E. It follows that Y1 ∪

Q
X Y2 → Z1 ∪

Q
X Z2 is in E. Together with the assumption that

all isomorphisms are in E, it follows that the symmetric monoidal structure on CX/ restricts
to a symmetric monoidal structure on WhW(X). As WhW(X) is a symmetric monoidal
category, the set of path components π0WhW(X) canonically carries a (well defined) monoidal
structure, given by

([a], [b])↦ [a⊕Q b],

with unit element given by [1X]. We denote

W̃hW(X) ∶= π0(WhW(X))

the resulting monoid, and call it the Whitehead monoid of X associated to the pre-Whitehead
framework W.

Notation 9.1.2.3. Given a morphism a∶X → Y , we denote by ⟨a⟩ ∈ W̃hW(X) the path
component of a in WhW(X).

Observation 9.1.2.4. A priori, by the definition of path components, two arrows in a1∶X → Y1
and a2∶X → Y2 define the same element of W̃hW(X), if and only if a1 can be transformed
into a2 through a zig-zag of expansions. However, any such zigzag can be reduced to a cospan
Y1

e1
Ð→ Y

e2
←Ð Y2, by changing directions through cobase change squares. As a consequence, we

obtain:

1. Given a1∶X → Y1 and a2∶X → Y2, the identity ⟨a1⟩ = ⟨a2⟩ in W̃hW(X) holds, if and only
if there are e1∶Y1 → Z and e2∶Y2 → Z, such that e1 ○ a1 = e2 ○ a2.

2. A morphism a∶X → Y maps to 0 in W̃hW(X), if and only if there exists a morphism
e∶Y → Z in E, such that e ○ a ∈ E.

Definition 9.1.2.5. A morphism a∶X → Y that fulfills any of the equivalent properties in the
second point of Observation 9.1.2.4 is called a simple equivalence.
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Given a pre-Whitehead framework W, the assignment X ↦ W̃hW(X) is functorial in two
different ways:

Construction 9.1.2.6. The category C acts on the categories WhW(X) contravariantly by
precomposition: To a morphism f ∶X →X ′, we may associate the precomposition functor

f∗∶WhW(X
′
)→WhW(X)

(g∶X ′ → Y )↦ g ○ f .

In total, these functors agglomerate into a functor

Cop
→Cat

X ↦WhW(X
′
)

f ↦ f∗.

If we compose with π0, we obtain a functor valued in sets

Cop
→ Set

X ↦ W̃hW(X
′
)

f ↦ {⟨a⟩↦ ⟨a ○ f⟩.

Given a morphism f ∶X →X ′ in C, we will also denote the induced map of sets

W̃hW(X
′
)→ W̃hW(X)

by f∗. Observe, that this is explicitly only a map of sets, not of monoids, as there is no reason
to assume that f∗ can be given the structure of a symmetric monoidal functor.

Construction 9.1.2.7. The more important notion of functoriality associated to Whitehead
monoids will be the covariant one, constructed as follows. Recall the pseudo-functor

(−)¡∶C→ SymMonCat

of Construction 9.1.1.10. Given f ∶X →X ′ in C, and a morphism a0
e
Ð→ a1 in WhW(X) ⊂CX/,

the image of e under f¡ is given by the lower right vertical in the diagram

X X ′

Y0 Y ′0

Y1 Y ′1

f

a0

a1

a′1

a′1

e e′

(9.33)

with upper square and outer rectangle cobase change. By the pasting law, the lower square is
again cobase change. Consequently, e′ is again an expansion. It follows that the functor f¡
restricts to a functor W̃hW(X)→ W̃hW(X

′). By abuse of notation, we will also denote this
restriction by f¡. As every isomorphism is in E, this restriction also inherits the structure of a
symmetric monoidal functor. To summarize, we obtain a covariant functor

C→ SymMonCat
X ↦WhW(X)

f ↦ f¡.

Composing with π0, we obtain a covariant functoriality of Whitehead monoids, as a functor
valued in the category abelian monoids AbMon,

W̃hW∶C
WhW
ÐÐÐ→ SymMonCat π0N

ÐÐ→AbMon
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associating to a morphism f ∶X →X ′ a morphism of monoids

f∗∶W̃hW(X)→ W̃hW(X
′
)

⟨a⟩↦ ⟨f¡a⟩ .

Notation 9.1.2.8. When we treat W̃hW as a functor C→AbMon, we will generally mean
with respect to the covariant functoriality.
Remark 9.1.2.9. Note that, for the monoid structure on W̃hW(X) the specific choices of
cobase change squares in Q defining the monoidal structure on CX/ is inessential, as it is
uniquely defined up to canonical isomorphism. In other words, the equality

⟨a1⟩ + ⟨a2⟩ = ⟨a⟩,

for a1∶X → Y1, a2∶X → Y2 and a∶X → Y , holds in W̃hW(X), if (up to modifying a by a zig-zag
of expansions) there is a cobase change square

X Y1

Y2 Y

a1

a2 (9.34)

with diagonal given by a or, again in other words, if a and a1 ⊕Q a2 are in the same path
component of WhW(X). Similarly, functoriality is induced by the equality

⟨a′⟩ = f∗⟨a⟩,

holding, if and only if (up to changing a′ by expansions) there is a cobase change square

X X ′

Y Y ′ .

f

a

a′

(9.35)

We will make frequent use of the following elementary lemma concerning the interaction of
the two possible functorialities. These are simple consequences of the elementary properties of
cobase change squares in Lemma 9.1.1.5.
Lemma 9.1.2.10. For a∶X → Y in C, the equality

a∗a
∗
(−) = (−) + a∗⟨a⟩

holds.

Proof. Given b∶Y → Z in C, consider the composition of cobase change squares

X Y Z

Y Y ′ Z ′ .

a

a

b

a¡a b⊕Qa¡a

a¡a

(9.36)

As the composition of two cobase change squares is a cobase change, the lower horizontal
composition defines a∗a∗⟨b⟩. By commutativity of the diagram, this composition is equivalently
given by the diagonal in the right square. The latter does, by definition, present the class
⟨b⟩ + a∗⟨a⟩.

Corollary 9.1.2.11. For e∶X →X ′ in E, the equalities

e∗e
∗
= 1W̃hW(X′)

e∗e∗ = 1W̃hW(X)

hold.
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Proof. The first equality follows by Lemma 9.1.2.10, using that ⟨e⟩ = 0. For the second identity,
it now suffices to see that e∗ is injective. For i = 1,2, consider ai∶X → Yi in C fitting into a
cobase change square

X Yi

X ′ Y ′i .

ai

e e′

a′i

(9.37)

Then e∗⟨ai⟩ = ⟨a
′
i⟩ is given by the lower horizontal. Now, suppose that e∗⟨a1⟩ = e∗⟨a2⟩. In

particular, by Observation 9.1.2.4, it follows that there exist e1∶Y
′

1 → Z and e2∶Y
′

2 → Z in E
such that e1 ○ a

′
1 = e2 ○ a

′
2. By commutativity of Diagram (9.37), we have

(e1 ○ e
′
) ○ a1 = e1 ○ a

′
1 = e2 ○ a

′
2 = (e2 ○ e

′
) ○ a2

and may surmise that ⟨a1⟩ = ⟨a2⟩.

An immediate consequence of this lemma is that extensions are sent to isomorphisms under
W̃hW. In the following, the notation C[E−1] will refer to the 1-categorical localization of a
category C at a class of arrows, or a subcategory E.

Corollary 9.1.2.12. For e∶X →X ′ ∈ E, the induced morphism e∗∶W̃hW(X)→ W̃hW(X
′) is

an isomorphism. In particular, W̃hW descends to a functor

C AbMon

C[E−1] .

W̃hW

(9.38)

Notation 9.1.2.13. By abuse of notation, we will again denote the induced functor C[E−1]→
AbMon by W̃hW, and again denote the induced functoriality on morphisms in the form α∗.

As a consequence of Corollary 9.1.2.12, Corollary 9.1.2.11 and the covariant functoriality of
Whitehead monoids, one can derive the following elementary properties of simple equivalences.

Lemma 9.1.2.14. Simple equivalences in C have the following properties:

1. Simple equivalences are stable under cobase change;

2. Simple equivalences fulfill the two-out-of-three property;

3. If s∶Y → Z is a simple equivalence and a∶X → Y an arbitrary morphism in C, then

⟨s ○ a⟩ = ⟨a⟩.

4. For simple equivalences s the induced map of Whiteheads monoids s∗ is invertible, with
inverse given by s∗.

9.1.3 Relating the Whitehead constructions to a homotopy category
Already having homotopical frameworks in mind, we can now begin to study the relation of
W̃hW with the associated homotopy category C[E−1].

Notation 9.1.3.1. When referring to the image of a morphism a ∈C in a localization C[E−1],
we will generally just again write a. How exactly equalities are to be understood will always
be clear from context.

Let us make an elementary observation about the structure of morphisms in C[E−1].



9.1. GENERAL WHITEHEAD FRAMEWORKS 489

Lemma 9.1.3.2. For every α∶X → Y in C[E−1], there exist Y ′ ∈C and morphisms a∶X → Y ′

in C and e∶Y → Y ′, such that
α = e−1

○ a

in C[E−1]. If α is in the image of E[E−1], then a may be taken such that a ∈ E.

Proof. We prove the first claim; the second claim is shown analogously. By the classical
construction of the localization of C[E−1] α can be expressed as a composition

α = b±1
n ○ ⋅ ⋅ ⋅ ○ b

±1
0

where the exponent of bi is negative only if bi ∈ E. We proceed via induction over the minimal
length n, necessary to produce such a zig-zag. The case n = 0 is obvious. Now, for the inductive
step from n to n + 1, by inductive assumption we may rewrite b±n ○ ⋅ ⋅ ⋅ ○ b±0 as e′−1 ○ a′, for
appropriate a′ ∈C and e ∈ E. Now, there are two cases to consider. If the exponent of b±1

n+1 is
negative, then bn+1 ∈ E and we may write

α = (e′ ○ bn+1)
−1
○ a′,

with e ○ bn+1 ∈ E. In case the exponent of b±1
n+1 is positive, consider a cobase change square

Yn+1

X Yn

Y ′ .

bn+1 e′

e

b′n+1

(9.39)

By stability under cobase changes, e is again an expansion. By commutativity of the diagram,
it follows that

bn+1 ○ e
′−1
= e−1

○ b′n+1 in C[E−1
].

We may thus write α as
α = bn+1 ○ e

′−1
○ a′ = e−1

○ (b′n+1 ○ a
′
) ,

as was to be shown.

As we illustrated in the overview section (Chapter 2), our perspective on simple homotopy
theory is that it is concerned with presentations of homotopy types, and whether certain
identities between them can be verified in terms of elementary operations. We can think
of the objects in the pre-Whitehead frameworks we have defined so far as fixed choices of
presentations. We will think of an (alternative) presentation of the homotopy type defined by
X ∈C, as a choice of isomorphism X

α
Ð→ Y in the homotopy category C[E−1]. The role of the

elementary operations is taken by the morphisms in E. In other words, we are interested in
studying the following set:

Construction 9.1.3.3. Let E ⊂C[E−1] be the wide subcategory generated by the morphisms
in E and their inverses. We denote

P̃resW(X) ∶= π0(C[E−1
]X/ ×C[E−1] E)

Equivalently, this is the quotient set of the set of morphisms in C[E−1] with source X, under
the relation of post-composing with morphisms in E. As we are mainly interested in studying
isomorphisms in C[E−1], we denote by

PresW(X) ⊂ P̃resW(X)

the subset given by equivalence classes of arrows α∶X → Y that are isomorphisms. Equivalently,
this is the quotient set of the set of isomorphisms in C[E−1] with source X, under the relation
of post-composing with morphisms in E.
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The functor
WhW(X) =CX/ ×C E →C[E−1

]X/ ×C[E−1] E

induced by C→C[E−1] induces a map on path components

W̃hW(X)→ P̃resW(X) .

In order for the Whitehead monoid to answer questions about presentations in a homotopy-
theoretic context, we want this map to be a bijection. Conditions for this to hold were first
provided by [Eck06; Sie70]:

Theorem 9.1.3.4 ([Eck06; Sie70]). Suppose that W has the following property: For any two
morphisms a1, a2∶X → Y in C, if it holds that

a1 = a2, in C[E−1
],

then there exists a morphism e1, e2∶Y → Z in E, such that

e1 ○ a1 = e2 ○ a2 in C .

Then the following map is a bijection:

W̃hW(X)→ P̃resW(X)

⟨a∶X → Y ⟩↦ [a∶X → Y ]

Furthermore, this map restricts to a bijection

W̃hW(X)
∗ 1∶1
Ð→ PresW(X),

where W̃hW(X)
∗ ⊂ W̃hW(X) is the subgroup of invertible elements in W̃hW(X).

Proof. Let us first show that the map

W̃hW(X)→ P̃resW(X)

is surjective. By Lemma 9.1.3.2, every morphism α∶X → Y , for Y ∈C, is of the form

e−1
○ a

for (appropriately composable) morphisms a ∈C and e ∈ E. Hence, it follows that

e ○ α = a, in C[E−1
]

and hence [α] = [a] in P̃resW(X). To see injectivity, suppose we are given two morphisms
a1∶X → Y1 and a2∶X → Y2 such that [a1] = [a2] in P̃resW(X), i.e., we find morphisms
en, . . . , e1 ∈ E, such that

e′n
±1
○ ⋅ ⋅ ⋅ ○ e′1

±1
a1 = a2 in C[E−1

].

By Lemma 9.1.3.2, we may write e′n
±1
○ ⋅ ⋅ ⋅ ○ e′1 = e

−1
2 e1, for appropriate e1, e2 ∈ E. Hence, we

obtain
e1 ○ a1 = e2 ○ a2 in C[E−1

] .

By the second assumption, we find ẽ1, ẽ2 ∈ E, such that

(ẽ1 ○ e1) ○ a1 = (ẽ2 ○ e2) ○ a2 in C ,

and in particular, that ⟨a1⟩ = ⟨a2⟩, as was to be shown. In remains to show that we obtain a
restricted bijection

W̃hW(X)
∗ 1∶1
Ð→ PresW(X).
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To see that the map is well defined, suppose that a∶X → Y has an additive inverse, i.e., that
there exists b∶X → Y , such that

⟨a⟩ + ⟨b⟩ = 0.
By Observation 9.1.2.4, this is equivalent to the existence of an (appropriately composable)
e ∈ E, such that

e ○ (a⊕Q b) ∈ E.

In particular, since every morphism in E maps to an isomorphism in C[E−1], a ⊕Q b is an
isomorphism in C[E−1]. Consider the cobase change square

X Y

X ′ Y ′ ,

a

b b′

a′

(9.40)

with diagonal given by a⊕Q b. It follows that a has a left inverse in C[E−1] and b′ has a right
inverse in C[E−1]. By construction of the functoriality of the Whitehead monoid, we have

⟨b′⟩ = a∗⟨b⟩.

Consequently, it follows that ⟨b′⟩ also has an additive inverse. We may thus repeat the
argument, and obtain that b′ has a left inverse in C[E−1], making b′ an isomorphism. Since a
is the left inverse of an isomorphism (in C[E−1]) it follows that a is an isomorphism in C[E−1].
Now, finally, to prove surjectivity, let a∶X → Y in C be such that a is an isomorphism in
C[E−1]. By Lemma 9.1.3.2 and the assumption on identities in C[E−1], this implies that we
find a morphism b ∈C, such that

b ○ a ∈ E.

In particular, we may apply Lemma 9.1.2.10, and obtain

0 = a∗⟨b ○ a⟩ = a∗⟨a⟩ + ⟨b⟩.

It follows that the image of ⟨a⟩ under a∗ has an additive inverse. However, since a is an
isomorphism in C[E−1], it follows by Corollary 9.1.2.12, that a∗ is an isomorphism of monoids.
In particular, it follows that ⟨a⟩ also has an additive inverse, finishing the proof.

It follows from Theorem 9.1.3.4, that in order to study presentations of X, we may as well
study the group of invertible elements in W̃hW(X).

Definition 9.1.3.5. A pre-Whitehead framework (C,Q,E) is called a Whitehead framework
if it fulfills the additional condition of Theorem 9.1.3.4.

Hence, we make the following definition:

Definition 9.1.3.6. The Whitehead group functor is defined by composing the covariant
Whitehead monoid functor with the group core functor, mapping into the category of abelian
groups AbGrp:

WhW∶C
WhW
ÐÐÐ→ SymMonCat π0N

ÐÐ→AbMon −∗
Ð→AbGrp.

That is, given X ∈C, we denote by WhW(X) the group of invertible elements in W̃hW(X).

Notation 9.1.3.7. Given Theorem 9.1.3.4, it makes sense to speak of the class in W̃hW(X)
associated with a morphism α∶X → Y in C[E−1]. We denote this class by ⟨α⟩, and call it the
Whitehead torsion of α.

Definition 9.1.3.8. Let W = (C,Q,E) be a Whitehead framework. A morphism α∶X → Y
in C[E−1] is called a simple equivalence, if one of the following conditions holds (which are
equivalent by Theorem 9.1.3.4):
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1. ⟨α⟩ = 0 ∈ W̃hW.

2. There exist e1∶X → Z and e2∶Y → Z in E such that α = e−1
2 e1.

Observe that this definition of simple equivalence is compatible with the definition of a simple
equivalence a∶X → Y in C. In other words, a ∈ C is a simple equivalence if and only if the
associated morphism in C[E−1] is a simple equivalence.

Another consequence of Theorem 9.1.3.4, is that the contravariant functoriality of Whitehead
monoids also descends to homotopy categories.

Corollary 9.1.3.9. Given a Whitehead framework W = (C,Q,E), the contravariant functo-
riality of Whitehead monoids

Cop
→ Set

defined in Construction 9.1.2.6, descends to a functor

C[E−1
]→ Set.

Proof. It is immediate from the definition of P̃resW(X), that the latter defines a contravariant
functor of C under precomposition. This makes the bijection verified in Theorem 9.1.3.4 a
natural isomorphism. For P̃resW(X), the claim that extensions are mapped into isomorphisms
is immediate from the latter being defined entirely on the level of C[E−1].

Notation 9.1.3.10. Given a morphism α∶X → Y ∈C[E−1], we will also denote the induced
functoriality on the level of sets

W̃hW(Y )→ W̃hW(X)

by α∗.

We then obtain the following extension of the composition formula to the homotopy category.

Lemma 9.1.3.11. Let W = (C,Q,E) be a Whitehead framework, and α∶X → Y be a morphism
in C[E−1]. The equality

α∗α
∗
(−) = (−) + α∗⟨α⟩

holds. In particular, if α is a simple equivalence, then

α∗ = (α∗)
−1 .

Proof. By Lemma 9.1.3.2, we may write α = e−1a, for morphism a ∈C and e ∈ E. Hence, using
Lemma 9.1.2.10 and Corollary 9.1.2.11, we compute

α∗α
∗
= (e−1a)∗(e

−1a)∗

= e−1
∗ a∗a

∗e∗

= e−1
∗ (1W̃hW(Y ) + a∗⟨a⟩)e∗

= e−1
∗ e∗ + e

−1
∗ (a∗⟨a⟩)

= 1W̃hW(Y ) + α∗⟨a⟩)

= 1W̃hW(Y ) + α∗⟨α⟩ .

Corollary 9.1.3.12. Let γ ∶X → Y be an isomorphism in C[E−1]. Then

γ∗(⟨α⟩ + ⟨β⟩) = γ∗⟨α⟩ + γ∗⟨β⟩ − ⟨γ⟩
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Proof. Since γ∗ is an isomorphism, it suffices to show that the equation holds after applying
γ∗. Using Lemma 9.1.3.11, we derive

γ∗γ
∗
(⟨α⟩ + ⟨β⟩) = ⟨α⟩ + ⟨β⟩ + γ∗⟨γ⟩

= ⟨α⟩ + γ∗⟨γ⟩ + ⟨β⟩ + γ∗⟨γ⟩ − γ∗⟨γ⟩

= γ∗γ
∗
⟨α⟩ + γ∗γ

∗
⟨β⟩ − γ∗⟨γ⟩

= γ∗(γ
∗
⟨α⟩ + γ∗⟨β⟩ − ⟨γ⟩) .

as was to be shown.

In other words, we may think of the Whitehead torsion ⟨γ⟩ as the defect to additivity of
γ∗. Finally, one may now easily verify the following elementary properties of this extended
definition of simple equivalence.
Observation 9.1.3.13. Let W = (C,Q,E) be a Whitehead framework. Simple equivalences
in C[E−1] have the following properties:

1. Every identity morphism is a simple equivalence;

2. Simple equivalences are isomorphism in C[E−1];

3. Simple equivalences fulfill the two-out-of-three property;

4. The inverse of a simple equivalence is a simple equivalence;

5. If γ∶Y → Z is a simple equivalence and α∶X → Y an arbitrary morphism in C, then

⟨γ ○ α⟩ = ⟨α⟩.

6. For simple equivalences γ the induced map of Whiteheads monoids γ∗ is invertible, with
inverse given by γ∗.

9.2 A category of (pre-)Whitehead frameworks
For our investigations of stratified simple homotopy theory, it will be crucial to be able to
compare different Whitehead frameworks. In this section, we study notions of functors between
Whitehead frameworks and their properties.
Notation 9.2.0.1. For the remainder of this subsection, we denote pre-Whitehead frameworks
in the form Wi ∶= (Ci,Qi,Ei). In other words, Ci will always be the associated category to
some Whitehead framework Wi, etc. The associated class of cobase change squares will be
denoted by Qi.
Definition 9.2.0.2. By a functor of pre-Whitehead frameworks F ∶W0 →W1 we mean a
functor F ∶C0 →C1, such that the following holds

1. For every e ∈ E0, the associated morphism F (e) is a simple equivalence.

2. For every cobase change square Q ∈ Q0, the associated square F ○Q is a cobase change
in W1, i.e., F ○Q ∈ Q1.

We denote by WES (standing for Whitehead-Eckmann-Siebenmann) the category of pre-
Whitehead frameworks, with morphisms given by functors of pre-Whitehead frameworks.
Observation 9.2.0.3. Observe that, as every simple equivalence in Ci is an isomorphism in
Ci[E

−1
i ], every Whitehead functor F ∶W0 →W1 descends to a functor

F ∶C0[E
−1
0 ]→C1[E

−1
1 ],

denoted the same by abuse of notation. If W0 and W1 are Whitehead frameworks, then as
every simple equivalence in Ci[E

−1
i ] can be written as a zig-zag of expansions, it follows that

F ∶C0[E
−1
0 ]→C1[E

−1
1 ] preserves simple equivalences.
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To study the functoriality of the construction of Whitehead monoids, we next need an
appropriate target category.

Construction 9.2.0.4. Consider the bicategory of (small) categories Cat, and let Cat/AbMon
be the slice bicategory of functors into abelian monoids (see, for example, [JY20, Def. 7.1.1],
an explicit description will be given below). We denote by Fun(−,AbMon) the strict (2,1)-
category obtained by restricting the 2-cells in the slice bicategory Cat/AbMon to isomorphisms.
In practice, this means an object is a functor M ∶D→AbMon where D is a (sufficiently small)
category. A 1-morphism between two such functors M0∶D0 →AbMon and M1∶D1 →AbMon
is given by a functor G∶D0 →D1, and a natural transformation η∶M0 ⇒M1 ○G

D0 D1

AbMon .

G

M0 M1

η
(9.41)

A 2-morphism between two 1-morphisms (G0, η0)⇒ (G1, η1) is given by a natural isomorphism
G0

ϕ
Ô⇒ G1, such that the ice-cream cone equality of pastings

D0 D1 D0 D1

AbMon AbMon

G0

G1

M0 M1 M0 M1
η0

ϕ

η1 (9.42)

or in other words η1 =M1ϕ ○ η0, holds. We use analogous language and notation, replacing
AbMon by the category of abelian groups AbGrp.

Remark 9.2.0.5. Given a strict 2-category (strict bicategory) D and an object A ∈D, consider
the slice 2-category D/A. Suppose that we are given a homotopy equivalence in D/A, specified
by the data of two morphisms

D0 D1 D1 D0

A A

F

f0 f1

G

f1 f0

σ τ (9.43)

as well as 2-isomorphisms

ε∶G ○ F ≅ 1D0 ,
η∶F ○G ≅ 1D1

fulfilling the respective ice-cream cone identities with respect to σ and τ . Then it is an easily
verifiable fact about 2-categories that σ (and by symmetry also τ) is an isomorphism. A left
inverse to σ is given by the pasting

D0

D1 D0

A ,

F

1

f1

G

f0

τ

ε

(9.44)

which explicitly is
(f0ε) ○ (τF ).
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Construction 9.2.0.6. Let F ∶W0 →W1 be a functor of pre-Whitehead frameworks. Since
F (E0) is a subset of the class of simple equivalences, and every simple equivalence defines an
isomorphism in C1[E

−1
1 ], F descends to a functor of the localization F ∶C0[E

−1
0 ]→C1[E

−1
1 ],

denoted the same by abuse of notation. Now, for X̂ ∈C, consider the map

W̃hF ∶W̃hW0(X)→ W̃hW1(F (X))

⟨a⟩↦ ⟨F (a)⟩ .

As F maps expansions into simple equivalences, this map is well defined (see Lemma 9.1.2.14).
Furthermore, as F preserves cobase change squares and identities, it is a monoid morphism.
Even more, again by the assumption that F preserves cobase change squares, W̃hF defines a
natural transformation

W̃hW0

W̃hF
ÔÔ⇒ W̃hW1 ○ F .

On a global level, this construction induces a functor of 1-categories

W̃h−∶WES→ Fun(−,AbMon)
W↦ (W̃hW∶C[E−1

]→AbMon)
F ↦ W̃hF .

Restricting to invertible elements we obtain a functor

Wh−∶WES→ Fun(−,Ab)
W↦ (WhW∶C[E−1

]→Ab)
F ↦WhF .

Proposition 9.2.0.7. Let F ∶W0 →W1 be a functor of Whitehead frameworks. The following
statements are equivalent:

E(i) W̃hF is a homotopy equivalence in the (2,1)-category Fun(−,AbMon).

E(ii) F descends to an equivalence of categories C0[E
−1
0 ]

≃
Ð→C1[E

−1
1 ] and induces isomorphisms

on Whitehead monoids W̃hW0(X)
≅
Ð→ W̃hW1(F (X)), for all X ∈C0.

E(iii) WhF is a homotopy equivalence in the (2,1)-category Fun(−,Ab);

E(iv) F descends to an equivalence of categories C0[E
−1
0 ]

≃
Ð→C1[E

−1
1 ] and induces isomorphisms

on Whitehead groups WhW0(X)
≅
Ð→WhW1(F (X)), for all X ∈C0.

E(v) The induced functor F ∶C0[E
−1
0 ]→C1[E

−1
1 ] is an equivalence of categories, and further-

more the following holds. Every object Y ∈C1[E
−1
1 ] is simply equivalent to an object of

the form F (X), for X ∈ C1[E
−1
1 ], and a morphism α∶X → X ′ in C0[E

−1
0 ] is a simple

equivalence if and only if F (α) is a simple equivalence.

E(vi) The induced functor F ∶C0[E
−1
0 ] → C1[E

−1
1 ] is an equivalence of categories, and its

restriction to the wide subcategories of simple equivalences is an equivalence of categories.

E(vii) There exists a functor G∶C1[E
−1
1 ]

≃
Ð→C0[E

−1
0 ] together with natural isomorphisms

ε∶G ○ F ≅ 1C0[E−1
0 ]

η∶F ○G ≅ 1C1[E−1
1 ]

such that, for every X ∈C0 and Y ∈C1, εX and ηY are simple equivalences.
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Proof. We first show the following sequences of implications

E(iii)

E(vii) E(i) E(iv) E(vii)

E(ii)

(9.45)

For the implication, E(vii) Ô⇒ E(i), by Remark 9.2.0.5, it suffices to show that ε and η define
2-morphisms in Fun(−,AbMon), i.e., that the ice-cream cone identities of Remark 9.2.0.5
hold. In more elementary terms, this just means that, for each X ∈C and a∶X → Y , we need
to verify the identity

ε∗⟨G ○ F (a)⟩ = ⟨a⟩ .
or equivalently

⟨G ○ F (a)⟩ = (ε∗)
−1
⟨a⟩ ,

(and the respective identity for η). By symmetry, we only verify the case of ε. By Lemma 9.1.3.11,
we have

(ε∗)
−1
⟨a⟩ .= ⟨a ○ ε⟩

and by the naturality of ε,

⟨a ○ ε⟩ = ⟨ε ○ (G ○ F (a))⟩

and finally

⟨ε ○ (G ○ F (a))⟩ = ⟨G ○ F (a)⟩

by assumption on ε being simple. This finishes the proof of the implication E(vii) ⇒ E(i).
For the implications Property E(i) ⇒ Property E(iii) and Property E(ii) ⇒ Property E(iv),
simply apply the functor associating to a monoid its invertible elements. The impliciations
Property E(i) ⇒ Property E(ii) and Property E(iii) ⇒ Property E(iv), hold by Remark 9.2.0.5.
It remains to show the implication Property E(iv) ⇒ Property E(vii). Let first construct G
and ε. Let Y ∈C1. We have assumed F to be an equivalence of categories. In particular, we
find some X ∈ C1, such that there is an isomorphism F (X)

α
Ð→ Y in C[E−1]. α specifies an

element of WhW1(FX). We have assumed that

WhF ∶WhW0(X)→WhW1(FX)

is an isomorphism. Under Theorem 9.1.3.4, there is another way of rewriting this map. Namely,
if we identify WhW0(X) and WhW1(FX) with equivalence classes of isomorphisms in C0[E

−1
0 ]

and C1[E
−1
1 ], then, for such an isomorphism α with source X,

WhF ⟨α⟩ = ⟨Fα⟩ .

In particular, we find an imorphism X ≅ X ′ mapping to ⟨α⟩. It follows, that there exists
a simple equivalence F (X ′) η′

Ð→ Y in C1[E
−1
1 ]. Now set G(Y ) = X ′, and ηY = η

′, with the
functoriality of G uniquely determined by η being natural (and F fully faithful). By definition,
η∶F ○G→ 1 is given by simple equivalences. Now, consider

ηF ∶F ○G ○ F → F .

Since F is a fully faithful functor, at each X ∈C0, ηFX admits a unique inverse image

εX ∶G ○ F (X)→X .
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It follows from the fully faithfulness of F , that these ε agglomerate into a natural isomorphism

ε∶G ○ F → 1C0[E−1
0 ].

Finally, it follows from the injectivity of WhF and Definition 9.1.3.8, that F (α) is a simple
equivalence, if and only if α is a simple equivalence. As η was assumed to be given by simple
equivalences, and FεX = ηF (X), it follows that ε is given by simple equivalences. It remains
to show that any of the already covered characterizations is equivalent to Property E(v) and
Property E(vi). That the latter two are equivalent, is straightforward. Finally, let us show
that, Proposition 9.2.0.7 is equivalent to Property E(iv). Under the assumption that F induces
an equivalence of categories after localization, injectivity on Whitehead groups corresponds to
the condition that F reflects simple equivalences. Finally, we need to show that under these
assumptions, surjectivity on Whitehead groups is equivalent to F being surjective up to simple
equivalence. Let F have the latter property. Then, by Theorem 9.1.3.4, F induces a surjection
on Whitehead groups if and only if, for X ∈C and every isomorphism F (X)→ Y in C1[E

−1
1 ],

there exists X ′ ∈ C, and a simple equivalence Y ≃ F (X ′), such that F (X) → Y ≃ F (X ′) is
in the image of F . By assumption, F is essentially surjective. Hence, the latter condition is
equivalent to F being surjective up to simple equivalence.

Definition 9.2.0.8. A functor of pre-Whitehead frameworks F ∶W0 → W1 is called a τ -
equivalence of Whitehead frameworks if it fulfills Property E(ii).

Remark 9.2.0.9. We speak of a τ -equivalence, instead of an equivalence, as these equivalences
are truncated in the sense that they only consider 1-categorical data happening on the level of
the associated homotopy categories. There is a case to be made that one should also consider
higher categorical perspectives to simple homotopy theory, at some later point in time, and that
the name equivalence of Whitehead frameworks should be reserved for this kind of framework.

Corollary 9.2.0.10. Let F ∶W0 →W1, be a functor of pre-Whitehead frameworks. Suppose
that C0 has an initial object, ∅, and suppose that F (∅) is again initial in C1. Then F is a
τ -equivalence if and only if F descends to a fully faithful functor C0[E

−1
0 ] → C1[E

−1
1 ] and

induces isomorphisms on Whitehead monoids W̃hW0(X)
≅
Ð→ W̃hW1(FX), for all X ∈C0.

Proof. By Proposition 9.2.0.7, we only need to show that the induced functor C0[E
−1
0 ]

≃
Ð→

C1[E
−1
1 ] is essentially surjective. To this end, consider the map of Whitehead monoids

W̃hW0(∅)
≅
Ð→ W̃hW1(F (∅))

associated to the initial objects. Observe that W̃hW0(∅) is simply the set of equivalence
classes of objects in W0 under simple equivalence. As F preserves initial objects, the analogous
statement for W̃hW1(F (∅)) holds. Consequently, it follows that F induces a bijection on
simple equivalence classes of objects. As every simple equivalence induces an isomorphism in
C1[E

−1
1 ], it follows that the induced functor C0[E

−1
0 ]

≃
Ð→C1[E

−1
1 ] is essentially surjective.
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Chapter 10

A model categorical approach to
generalized simple homotopy
theory

In this chapter, we finally combine the ingredients developed over the previous chapters to
perform generalized simple homotopy theory in the way we envisioned it in Chapter 2: We
apply the axiomatic approach of Eckmann and Siebenmann to frameworks of generalized cell
complexes arising from certain cellular (semi-)model categories in the sense of [Hir03] (the
semi-model category analogue of the latter). If in doubt how to generalize a definition from
the model categorical to the semi-model categorical setting, any references to semi-model
categories will the language of Chapter 7. In particular, by a semi-model category we will
always mean a cofibrantly generated left semi-model category.

10.1 From cellularized categories to pre-Whitehead frame-
works

Let us first explain how to associate to a cellularized category (see Definition 8.1.1.10) with
a notion of expansion a pre-Whitehead framework. This will be a very general procedure
that does not require the language of model categories. Only when we are aiming to produce
actual Whitehead frameworks, and thus pass to a context where the interactions of Whitehead
monoids and homotopy theory become important, will we need the latter. The first step is to
associate to a cellularized category a category with cobase changes.

10.1.1 Cellularized categories give rise to categories with cobase
changes

The definition of a category with cobase changes is so general that essentially any cellularized
category, together with some restriction to the size of structured cell complexes, gives rise to
such a framework. Here, we will restrict ourselves to the setting of finite cell complexes, i.e.,
such cell complexes whose set of cells has cardinality smaller than the countable cardinal ℵ0.
We note, however, that there is really nothing special about ℵ0 here, and much of what we
will say below has an analogue for larger cardinals.

Notation 10.1.1.1. Let C be a cellularized category. We denote by C↪ell(C) the subcategory
of Cell(C), whose objects are finite absolute structured cell complexes and whose morphisms
are inclusions of subcomplexes. We denote by C↪ellc(C) ⊂C↪ell(C) the full subcategory given
by finite absolute structured cell complexes.

499
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Construction 10.1.1.2. Let C be a cellularized category. Let Q be the class of all squares
in C↪ellc(C) that are pushout in Cell(C). Observe that, by Corollary 8.1.4.8, every span in
C↪ellc(C), Y1 ↩ X↪Y2, completes to a pushout square

X Y1

Y2 Y

⌟

(10.1)

in Cell(C), with all arrows inclusions of cell complexes. Consequently, the requirements
of Example 9.1.1.7 are fulfilled, and under Proposition 9.1.1.6, Q defines the structure of a
category with cobase changes on C↪ellc(C).

Definition 10.1.1.3. Let us say a morphism d∶X0 ↪ X1 in C↪ellc(C) is elementary, if its
relative set of cells is either empty (i.e., if it defines an isomorphism in C↪ellc(C)) or given by
a single cell.

Clearly, the category C↪ellc(C) is generated by elementary morphisms. Let us now study
the relations which need to be added to present C↪ellc(C) by generators and relations.

Lemma 10.1.1.4. Given a pushout diagram

X Y1

Y2 Y

a1

b2

⌟

(10.2)

in Cell(C), with a1 and a2 elementary, then b1 and b1 are also elementary

Proof. This follows by Corollary 8.1.4.8.

Lemma 10.1.1.5. The category C↪ellc(D) is given by the free category generated by the
elementary inclusions (taking the identities as identities), subject to the relations

b1 ○ a1 ∼ b2 ○ a2

whenever there is a pushout diagram of elementary inclusions

X Y1

Y2 Y

a1

a2 b1

b2

⌟

(10.3)

in Cell(C).

Proof. Let T be the category described above. There is an obvious functor

Φ∶T→C↪ellc(C)

given by the identity on objects, and by mapping the generator a to the morphism a. This
functor is an isomorphism of categories. It certainly defines an bijection on objects. Furthermore,
by Proposition 8.1.3.1, it is full. Now, let us see that is is faithful. To this end, observe first
that if a∶Y0 ↪Y1 is elementary and has an empty relative set of cells, i.e., is an isomorphism,
then for any morphism b∶Y1 →Y′1 the induced square

Y0 Y1

Y′1 Y′1

a

b○a b (10.4)
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is a pushout. In particular, the equality b ○ a = (b ○ a) holds. We may use this rule to remove
isomorphisms from a word in the generators of T. Removing isomorphisms, every morphism
a ∈ T can be represented by composition

a = an+1 ○ ⋅ ⋅ ⋅ ○ a0,

where a1 to an are elementary and a0 is given by an elementary morphism with empty set of
cells, i.e., an isomorphism of cell complexes. Note that n is uniquely determined by Φ(a), as it
specifies the number of cells of Φ(a). Hence, it suffices to show that whenever two equivalence
classes of words

a = X
a0
Ð→
≅

Y1
↪Yn an

↪Ð→Y, (10.5)

a′ = X
a′0
Ð→
≅

Y′1 ↪Y′n
a′n
↪Ð→Y, (10.6)

presented in the form above, map to the same morphism in C↪ellc(C), then a = a′. We show
this by induction over n. The case n = 0 is obvious, as in this case a′0 and a0 and a′0 are given
by a single isomorphism, which is necessarily uniquely determined by Φ(a0) = Φ(b0). Now,

for the inductive step, consider the following two cases: If Yn+1
an+1
↪ÐÐ→Y and Y′n+1

a′n+1
↪ÐÐ→Y are

given by gluing in the same cell of Y, then by Observation 8.1.3.10, there is an isomorphism of
structured complexes Yn+1

b
Ð→Y′n+1 making the diagram

Yn+1 Y′n+1

Y

b

an+1 a′n+1

(10.7)

commute. Consequently, we obtain identities

an+1 ○ an ○ ⋅ ⋅ ⋅ ○ a0 = a
′
n+1 ○ b ○ an ⋅ ⋅ ⋅ ○ a0 = a

′
n+1 ○ (b ○ an) ○ ⋅ ⋅ ⋅ ○ a0.

Using the fact that Φ(a′n+1) is a monomorphism, it follows that

Φ((b ○ an) ○ ⋅ ⋅ ⋅ ○ a0) = Φ(a′n ○ ⋅ ⋅ ⋅ ○ a′0).

Hence, the claim follows by inductive assumption. If this is not the case consider the following
diagram of pullback squares in Cell(C).

X ∩Y′n+1 . . . Yn ∩Y′n+1 Yn+1 ∩Y′n+1 Y′n+1

X . . . Yn Yn+1 Y

f

bn

cn a′n+1⌟
an+1

⌟

(10.8)

Observe that the left vertical f is a bijection on cells and hence (by Corollary 8.1.4.1) is an
isomorphism. Furthermore, observe that since we assumed that Yn+1 and Y′n+1 define different
sets of cells, it follows that the upper right horizontal is not an isomorphism. Consequently,
counting cells, at least one of the upper horizontals is an isomorphism. We may thus rewrite
the composition from the lower left corner, taking the inverse of f and then taking the upper
horizontal composition, up to Y′n+1 ∩Yn+1 in the form

bn−1 ○ ⋅ ⋅ ⋅ ○ b0

with all bi elementary and b0 an isomorphism. Then, by commutativity of the diagram,

Φ(cn ○ bn−1 ⋅ ⋅ ⋅ ○ b0) = Φ(an ⋅ ⋅ ⋅ ○ a0) .
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By inductive assumption, it follows that

cn ○ bn−1 ⋅ ⋅ ⋅ ○ b0 = an ⋅ ⋅ ⋅ ○ a0

in T. Furthermore, again by the assumption that Yn+1 and Y′n+1 define different sets of
cells, it follows by Corollary 8.1.4.2 and Lemma 8.1.4.7 that the right square is a pushout. In
particular, we have the identity

a′n+1 ○ bn = an+1 ○ cn

in T. Together, these two identities show that

an+1 ○ an ⋅ ⋅ ⋅ ○ a0 = an+1 ○ cn ○ bn−1 ⋅ ⋅ ⋅ ○ b0 = a
′
n+1 ○ bn ○ bn−1 ⋅ ⋅ ⋅ ○ b0 .

in T. In particular, it suffices to show that

a′n+1 ○ bn ○ bn−1 ⋅ ⋅ ⋅ ○ b0 = a
′
n+1 ○ a

′
n ○ ⋅ ⋅ ⋅ ○ a

′
0

in T. Now we are again in the situation, where the final elementary morphisms add the same
cell, which we have already covered.

10.1.2 Pre-Whitehead frameworks from elementary expansions
Next, let us turn the category with cobase changes associated to a cellularized category into a
Pre-Whitehead framework, by adding a notion of expansion.

Notation 10.1.2.1. Let C be a cellularized category. When we treat C↪ellc(C) as a category
with cobase changes, we always mean with respect to the class of cobase change squares
constructed in Construction 10.1.1.2.

Next, let us equip the category with cobase changes C↪ellc(C) with a notion of expansion.

Definition 10.1.2.2. A cellularized category with expansions consists of

1. a cellularized category C;

2. a set EC ⊂RCell(C) of finite structured relative cell complexes.

Elements of EC are called generating elementary expansions.

Example 10.1.2.3. Clearly, any set of relative cell complexes will define a category with
expansions. Here are some more natural examples to keep in mind:

• The cellularized category of simplicial sets sSet (with the standard set of boundary
inclusions) is usually equipped with the set of horn inclusions

{Λnk ↪∆n
∣ n ≥ 1,0 ≤ k ≤ n},

at least if one is interested in doing classical simple homotopy theory.

• The cellularized category of topological space Top (with the boundary inclusions given by
the boundary inclusions of disks) can be equipped with a class of expansions as follows. By
Remark 8.2.3.3, we may replace the boundary inclusions of disks by boundary inclusions
∣∂∆n ↪ ∆n∣, without really changing the theory. In particular, using Lemma 8.2.2.5, this
makes ∣ − ∣∶ sSet→ Top a cellularized functor in a canonical way. We may then take

EC = {∣Λnk ↪∆n
∣ ∣ n ≥ 1,0 ≤ k ≤ n} .
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• The category of positively graded chain complexes Ch≥0(R) over some not-necessarily
commutative Ring R, cellularized as in Example 8.1.1.15, can be equipped with the
following set of expansions. Denote by I● the graded chain complex given by

. . .0→ R
(−1,1)
ÐÐÐ→ R⊕R → 0

with R⊕R in degree 0. Denote by e0 the inclusions of R[0] into I● via inclusion in the
left component and analogously by e1 the inclusion in the right component. e0 obtains
the structure of a relative cell complex, by taking the cells defined by the remaining basis
elements 1 ∈ R in degree 1 and (0, 1) ∈ R⊕R in degree 0 and one may proceed analogously
to construct a cell structure on e1. Then, we can consider the set of expansions

{ei[−n]∶R[−n]↪ I●[−n] ∣ i = 0,1, n ∈ N} .

Notation 10.1.2.4. Just as in the case of cellularized categories, we will omit the expansions
from the notation for a cellularized category with expansions, and just write C, to refer to the
latter. The associated set of generating expansions is always denoted by EC.
Definition 10.1.2.5. Let C be a cellularized category with expansions.

1. A relative cell complex e′ ∈ cA′ that fits into a cobase change square

Λ A

D X

f

e e′ (10.9)

where e is either an empty cell complex, or in EC, is called an elementary expansion.

2. A (possibly empty) transfinite vertical composition of elementary expansions is called an
expansion.

3. The inclusion of a subcomplex i ↪ (A c̃
↪Ð→ X̃) ↪ (A

c
↪Ð→ X) in RCell(C)A, for A ∈ C, is

called an expansion, if the associated relative cell complex X̃ i
↪Ð→X is an expansion.

As an immediate consequence of Observation 8.1.2.13, we obtain the following lemma.
Lemma 10.1.2.6. Let C be a cellularized category with expansions. The class of expansions
contains all empty cell complexes (i.e., isomorphisms) and is closed under cobase change and
transfinite vertical composition.
Construction 10.1.2.7. Let C be a cellularized category. Denote by EC the wide subcategory
of C↪ellc(C), given by all such inclusions of subcomplexes i∶X↪Y that are expansions. Observe
that, by closure under vertical composition (Lemma 10.1.2.6), this does indeed define a wide
subcategory. Since we allowed for empty cell complexes in the definition of expansions, EC
contains all isomorphisms. Finally, for e ∈ EC, and any cobase change square

X X′

Y Y′

(10.10)

in C↪ellc(C), then, by Corollary 8.1.4.8, the associated square

X X ′

Y Y ′

e e′ (10.11)

is a cobase change. Consequently, e′ is again an expansion. To summarize, we have shown that
(C↪ellc(C),EC) is a pre-Whitehead framework. We will denote this pre-Whitehead framework
by W(C).
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Finally, it can be useful to observe that the covariant Whitehead monoid functor

W̃hW(C)∶C↪ellc(C)→AbMon

associated to a cellularized category with expansions can be extended to C.

Construction 10.1.2.8. Let C be a cellularized category with expansions. For A ∈C, denote
by WhC(A) the subcategory of RCell(C)A, whose objects are finite structured relative cell
complexes and whose morphisms are such inclusions of subcomplexes i∶ c̃ ↪ c, for which the
associated relative cell complex i∶X ↪ Y is an expansion. By Lemma 10.1.2.6, this is indeed
a well-defined sub-category, which furthermore is closed under co-products and contains all
isomorphisms between its objects. As finite structured relative cell complexes and expansions
are preserved under cobase change, this construction defines a subpseudo-functor

C SymMonCat

WhC(−)

RCell(C)−

(10.12)

Now, given a fixed absolute cell complex A, we may consider the forgetful functor

C↪ellc(C)A/ →RCell(C)A

which associates to an inclusion of subcomplexes A
i
↪Ð→ X, the induced relative cell complex

i∶A ↪ X (under Observation 8.1.3.5) and acts as the identity on morphisms. This functor
is injective on objects, and has as image the finite structured relative cell complexes with
inclusions of subcomplexes between them. If we restrict the target category to finite structured
relative cell complexes and inclusions of subcomplexes, denoted RCell(C)↪,cA , then it follows
from Observation 8.1.3.5 that the induced functor is fully faithful and bijective on objects. In
other words, it induces an isomorphism of categories

C↪ellc(C)A/
≅
Ð→RCell(C)↪,cA .

If we now restrict to only allowing for expansions as morphisms on both sides, we obtain an
isomorphism of categories

WhW(C)(A)
≅
Ð→WhC(A) .

This construction is natural in A, inducing a natural isomorphism

C↪ellc(C) SymMonCat

C .

WhW(C)

WhC

≅
(10.13)

If we now pass to path components of categories, we obtain an extension (up to natural
isomorphism) of the Whitehead monoid

C↪ellc(C) AbMon .

C

W̃hW(C)

W̃hC

(10.14)

Notation 10.1.2.9. Just as in the case of pre-Whitehead frameworks, we will denote the
equivalence class in W̃hC(A) associated to a relative cell complex c∶A → X by ⟨c⟩, and the
covariant functoriality in the form (−)∗.
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Remark 10.1.2.10. Construction 10.1.2.8 is important insofar as it illustrates that for every
pre-Whitehead framework arising from a cellularized framework, the cellular structure of
X ∈C↪ellc(C) is essentially irrelevant to the monoid

W̃hW(C)(X)

and consequently also not relevant to the underlying Whitehead group of invertible elements.
Nevertheless, the cell structure of X is relevant for the sake of simple homotopy theory, in order
to associate a well-defined Whitehead torsion to a morphism X→Y. This is a phenomenon
that does not arise in the world of classical simple homotopy theory, as every homeomorphism
of finite CW-complexes is a simple equivalence( [Cha74]), but is a relevant phenomenon in the
stratified world (Section 13.3.2).

Notation 10.1.2.11. Keeping Remark 10.1.2.10 in mind, we will nevertheless make notational
use of Construction 10.1.2.8 insofar as we will simply write WhC(X) to refer to the Whitehead
group WhW(C)(X). The cell structure on X is tracked via the notation here. We use analogous
notation for Whitehead monoids.

Completely analogously to the proof of Lemma 9.1.3.11, one may show the following identity.

Lemma 10.1.2.12. Let C be a cellularized category with expansions. Given two finite relative
cell complexes c∶A→X and d∶X → Y , the identity

c∗⟨d ○ c⟩ = ⟨d⟩ + c∗⟨c⟩

holds. If e∶A→X is a finite expansion, then e∗ is invertible, with inverse given by

(e∗)
−1
⟨d⟩ = ⟨d ○ e⟩ .

We will also make use of the following extension of the definition of simple equivalences.

Definition 10.1.2.13. Let C be a cellularized category with expansions. We say that a finite
structured relative cell complex s∶A↪X is a structured simple equivalence, if it defines the
0-element in W̃hC(A).

Using analogous arguments as in the case of a pre-Whitehead framework one may then
deduce the following properties of structured simple equivalences.

Lemma 10.1.2.14. Let C be a cellularized category with expansions. The following statements
hold:

1. A structured relative cell complex c∶A↪X is a structured simple equivalence, if and only
if there exists a finite expansion e∶X ↪ Y such that e ○ c is a finite expansion.

2. Structured simple equivalences are stable under cobase change.

3. Structured simple equivalences fulfill the two-out-of-three property for vertical composition.

4. Structured simple equivalences are closed under the two-out-of-three property.

Furthermore, the definition is compatible with Definition 9.1.3.8, in the sense that if W(C) is
a Whitehead framework, and A a finite relative cell complex, then a finite relative cell complex
s∶A→X is a structured simple equivalence, if and only if the induced inclusion of absolute cell
complexes A↪ s ○A is a simple equivalence in W(C).

To keep language a bit more concise, we will use the following language:

Notation 10.1.2.15. A transfinite vertical composition of (structured) simple equivalences
will be called a transfinite (structured) simple equivalence.
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Observation 10.1.2.16. Using the basic interactions between transfinite compositions and
cobase changes, it follows that transfinite (structured) simple equivalences are stable under
cobase change and vertical transfinite composition. Furthermore, as every transfinite simple
equivalence s∶X↪Y, between finite absolute cell complexes X and Y is necessarily given by a
finite composition of simple equivalences, s is already a simple equivalence.

Lemma 10.1.2.17. Let A s
↪Ð→X be a transfinite structured simple equivalence in a cellularized

category with expansion C. Then there exists an expansion e′∶X ↪X ′, such that e′ ○ s is an
expansion.

Proof. Fix a filtration-presentation of s as a transfinite composition of finite structured simple
equivalences

A =X0 s0

↪Ð→X1
↪ ⋅ ⋅ ⋅↪Xλ

=X.

Under these assumptions, one may now produce a diagram with arrows given by structured
relative cell complexes (commutative under composition of structured relative cell complexes)
indexed over {(α,β) ∣ α,β ∈ λ,α ≥ β}

X0 X1 X2 . . . Xλ

X1,1 X2,1 . . . Xλ,1

X2,2 . . . . . .

Xλ,λ

(10.15)

with the following properties:

1. Every horizontal and every vertical restriction of the diagram to a line is a vertical
transfinite composition diagram of structured cell complexes.

2. Every square
Xα,β Xα+1,β

Xα+1,β Xα+1,β+1

(10.16)

forms a cobase change square, and so does its reflection at the diagonal.

3. For every α < λ, the vertical relative cell complex Xα,α+1 ↪Xα+1,α+1 is a finite expansion.

4. For every α < λ, the diagonal composition Xα,α ↪Xα+1,α+1 is a finite expansion.

The diagram can be constructed via transfinite induction in the vertical direction, using
the inductive assumption that all horizontal successor complexes Xα,α ↪ Xα+1,α are finite
structured simple equivalences. Then the diagonal of this diagram

X0
↪X1,1

↪X2,2
↪ ⋅ ⋅ ⋅↪Xλ,λ

is a transfinite composition diagram of finite expansions and equips X0 → Xλ,λ with the
structure of an expansion, which we denote by e′. Similarly, the vertical at λ

Xλ
↪Xλ,1

↪Xλ,2
↪ ⋅ ⋅ ⋅↪Xλ,λ

equips Xλ → Xλ,λ with the structure of a structured relative cell complex. Observe that it
follows by the compatibility of pushouts and transfinite compositions and Corollary 8.1.4.2
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that every successor complex Xλ,α ↪Xλ,α+1 is a finite expansion. Consequently, the induced
structured relative cell complex Xλ ↪ Xλ,λ is an expansion, which we denote by e. Finally,
observe that, by commutativity of the diagram, it holds that e = e′ ○ s, which shows the
claim.

Remark 10.1.2.18. One should be careful to note that the converse of Lemma 10.1.2.17
is generally false. Namely, there can be an inclusion of finite cell complexes i∶X ↪ Y, such
that a composition of the latter with a (transfinite) expansion is an expansion, but i is not a
simple equivalence. Counterexamples can be produced by performing Eilenberg Swindles on
non-trivial PL-h-cobordisms, but as we have not shown that classical simple homotopy theory
fits into the frameworks we discuss here yet, we will not give a detailed example here.

10.1.3 Functors of cellularized categories with expansions
To finish this section, let us study the functoriality of the construction which assigns to a
cellularized category with expansions its associated pre-Whitehead framework. This makes
use of the calculus of cellularized functors described in Section 8.2. Notation and language can
be found there.

Definition 10.1.3.1. Let C and D be cellularized categories. We say that a cellularized
relative functor i∶F → G, from C to D, is finite, if î∶RCell(C)→RCell(D) preserves finite
relative structured cell complexes.

Remark 10.1.3.2. By Corollary 8.2.2.9, a cellularized relative functor i is finite, if and only
if i maps generating boundary inclusions into finite relative structured cell complexes

Definition 10.1.3.3. Let C and D be cellularized categories with expansions. We say that a
cellularized relative functor i∶F → G, from C to D, is called a functor of cellularized categories
with expansions, if the following conditions hold:

1. i is finite;

2. î∶RCell(C)→RCell(D) maps transfinite structured simple equivalences into transfinite
structured simple equivalences.

Notation 10.1.3.4. The expression “functor of cellularized categories with expansions” is
significantly too long to keep spelling it out on a regular basis. We will call such a functor a
relative W-functor, with W standing for Whitehead.

Example 10.1.3.5. Using the cellularizations from Example 10.1.2.3, the cellularized functor
∣ − ∣∶ sSet→ Top is tautologically a W-functor.

Example 10.1.3.6. Consider the cellularized action of Set on a category with expansions
(and a non-empty set of boundary inclusions) C (Example 8.2.5.5). Given an inclusion of sets
i∶S ↪ S′, the associated functor is a relative W-functor if and only if the image of i has finite
complement. Indeed, given any relative cell complex c, the relative structured cell complex
i∗̂c is a cobase change of ⊔S′∖i(S) c. Hence, expansions are always preserved, and finite cell
complexes are preserved if and only if S′ ∖ i(S) is finite.

By Corollary 8.2.2.9 and Construction 8.2.3.1 and stability under cobase change and
finite vertical composition of all notions of relative cell complex involved in the definition of
Definition 10.1.3.3, one obtains the following elementary properties of W-functors.

Lemma 10.1.3.7. Let i∶C → D be a cellularized relative functor between two cellularized
categories with expansions. i is a W-functor if and only if î maps generating boundary inclusions
b ∈ B into finite structured relative cell complexes and generating elementary expansions e ∈ EC
into structured simple equivalences.

Lemma 10.1.3.8. The vertical composition of two W-functors (whenever defined) is again a
cellularized W-functor.
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Lemma 10.1.3.9. The Leibniz composition of two W-functors (whenever defined, see Con-
struction 8.2.3.1) is again a cellularized W-functor.

Construction 10.1.3.10. If F∶C →D is a relative W-functor of the form ∅⇒ F , i.e., an
absolute W-functor (or just a W-functor), then we obtain an induced functor

Cell(F)∶Cell(C)→Cell(D).

By Corollary 8.2.2.9, this functor preserves inclusions of subcomplexes. Furthermore, by
assumption, it maps finite absolute cell complexes into finite absolute cell complexes and
expansions into simple equivalences. As F̂ preserves cobase changes (see Corollary 8.2.2.9) and
it follows by Corollary 8.1.4.8 that Cell(F) preserves pushouts of inclusions of subcomplexes.
Consequently, we obtain an induced functor

W(F)∶C↪ellc(C)→C↪ellc(D)

which preserves cobase change squares and maps expansions into simple equivalences. In other
words, we obtain an induced functor of pre-Whitehead categories. Denote by CellCatExp
the category whose objects are cellularized categories with expansions and whose morphisms
are absolute W-functors. Composition is given by Leibniz composition, which in the case of
absolute functors is indeed associative (see Construction 8.2.3.1). Clearly, the identity functor
is always a W-functor. By Lemma 10.1.3.9, CellCatExp does indeed define a category. Using
the functoriality of Abs, it follows that we obtain a functor

CellCatExp→WES
C↦W(C)
F↦W(F) ,

associating to a cellular category with expansions its associated pre-Whitehead framework.

10.2 Simple cylinders and Whitehead model categories
So far, we have not described how the pre-Whitehead framework associated to a cellularized
category with expansions relates to homotopy theoretic considerations. Let us now give
conditions under which the pre-Whitehead framework becomes a Whitehead framework and
the Whitehead groups can be thought of as groups of presentations of a homotopy type, as
described in Chapter 2.

10.2.1 Simple cylinders
We are first going to need an appropriate notion of cylinder that mimics the interaction of the
topological cylinder with simple homotopy equivalences (see [Coh73; KP86]). To this end, let
us introduce some additional language for cellularized functors.

Definition 10.2.1.1. We say that a relative cellularized functor (i∶F ⇒ G)∶C → D, with
target a cellularized category with expansions, is simple, if for every structured relative cell
complex c∶A→X in RCell(C), the induced relative cell complex

î(c)∶F (X) ∪F (A) G(A)→ G(X)

is a (possibly transfinite) structured simple equivalence.

Remark 10.2.1.2. It follows, by Corollary 8.2.2.9 and the stability of transfinite structured
simple equivalences under cobase change and transfinite composition, that to check whether a
cellularized functor C→D is simple, it suffices to verify that the defining property holds for
generating boundary inclusion b ∈ B. Similarly, it is not hard to see that simple cellularized
functors are stable under cobase change and vertical transfinite composition.
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Recall that the fold map, associated to an object X ∈C, in a category with coproducts C,
is the canonical morphism X ⊔X →X, induced by the identities on X. The fold map induces
a natural transformation of functors − ⊔ −⇒ 1C∶C→C.

Observation 10.2.1.3. We can think of − ⊔ −∶C→C as the cellularized functor {0,1}⊗ −
of Example 8.2.5.5. In particular, the inclusions {i}↪ {0,1} induce inclusions of cellularized
functors ιi∶1C ↪ {0,1}⊗ −, for i = 0,1. It is immediate from the definition of Example 8.2.5.5
that ιi defines a relative W-functor.

Definition 10.2.1.4. Let C be a cellularized category with expansions. A simple cylinder
consists of the data of

1. a factorization of the fold transformation

{0,1}⊗ − 1C

Cyl;

fold

ι∂ π
(10.17)

2. the structure of a cellularized functor on ι∂ , denoted i∂ , such that i∂ is a W-functor,
that furthermore has the following property: For i = 0,1, the vertical composition of
W-functors

ii∶{i}⊗ −↪ {0,1}⊗ −
i∂
↪Ð→ Cyl .

is simple.

Notation 10.2.1.5. We will use the suggestive notation of denoting simple cylinders in the
form i∂ ∶{0,1} ⊗ − ↪ [0,1] ⊗ −. This does not necessarily mean that the functor [0,1] ⊗ −
comes from some action of spaces or simplicial sets on C. However, in all relevant examples
we consider [0, 1]⊗− does indeed arise from a cellularized bifunctor sSet×C→C, induced by
the structure of a simplicial (semi-)model category on C.

For the remainder of this subsection, fix a cellularized category with expansions C and a
simple cylinder (i∂ ∶{0, 1}⊗−⇒ [0,1]⊗−, π∶ [0,1]⊗⇒ 1C) on C. As an immediate consequence
of Corollary 8.2.2.9, and the stability of structured transfinite simple equivalences under
transfinite compositions and cobase change, one obtains the following lemma.

Lemma 10.2.1.6. To verify that a W-functor i∂ as in Definition 10.2.1.4 has the second
defining property of a simple cylinder, it suffices to verify that, for every boundary inclusion
b∶∂D →D ∈ B, the induced morphism

îi(b)∶{i}⊗D ∪{i}⊗∂D [0,1]⊗ ∂D ↪ [0,1]⊗D

is a structured simple equivalence.

Observation 10.2.1.7. We have seen in Observation 10.2.1.3 that the inclusions {i}⊗ −↪
{0,} ⊗ − are canonically W-functors. As {i} ⊗ − ≅ 1C, the inclusion ∅ ↪ {i} ⊗ − is the
cellularized relative identity functor, and hence also carries the structure of a W-functor. Now,
let i∂ ∶{0, 1}⊗−→ [0, 1]⊗− be part of a simple cylinder. Then, by Lemma 10.1.3.8, the vertical
compositions

{0}⊗ −

∅ {0,1}⊗ − [0,1]⊗ −

{1}⊗ −

i∂ (10.18)
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equip ∅→ [0, 1]⊗− with the structure of an absolute W-functor, which fits into a diagram of
inclusions of cellularized functors (see Definition 8.2.4.3)

1C {0}⊗ −

{0,1}⊗ − [0,1]⊗ −

1C {1}⊗ − ,

∼

i0

∼

(10.19)

each of which induces a relative W-functor (under Definition 8.2.4.3). In particular, it follows
from this observation that given any absolute cell complex X, we obtain an induced diagram
of inclusions of subcomplexes

X {0}⊗X

{0,1}⊗X [0,1]⊗X

X {1}⊗X .

∼

i0

∼

(10.20)

Given that we now have cellularized versions of the cylinder available, a cellularized version
of the mapping cylinder is, of course, not far off.

Construction 10.2.1.8. Let X ∈ Cell(C) be an absolute cell complex. Given a morphism
f ∶X → Y in C, we can consider the cobase change square

{0}⊗X Y

[0,1]⊗X Y ∪{0}⊗X [0,1]⊗X ,

î0(X) iY (10.21)

with î0 as described in Observation 10.2.1.7. If X is finite, then by assumption and stability
of simple equivalences under vertical composition and cobase change (Lemma 10.1.2.14) and
compatibility of cellularized functors with the latter operations (Corollary 8.2.2.9), the left-hand
vertical in Diagram (10.21) is a structured simple equivalence. If X is infinite, then it is at
least a transfinite vertical composition of structured simple equivalences, which we will keep in
mind for later. Consequently, the right vertical is a structured simple equivalence (transfinite
structured simple equivalence). If we now assume the existence of a cell structure Y on Y ,
then we may compose iY with this cell structure to obtain an inclusion of cell complexes

Y↪Y ∪{0}⊗X [0,1]⊗X.

We denote the right-hand absolute cell complex by Mf , the associated inclusion by iY, and
the underlying object in C by Mf . This notation needs to be taken with the caveat that Mf

is not entirely a functor of f , but of f together with choice of cell structures on X and Y . If X
and Y are finite, then by construction iY∶Y↪Mf is a simple equivalence.

Notation 10.2.1.9. As we have already seen in Construction 10.2.1.8 we will from now on
often be in the situation where we refer to a morphism f ∶X → Y in C, while having two specific
cell structures X on X and Y on Y . The correct category to handle these kinds of arrows is
the fiber product C ×Ob(C) Ob(Cell(C)), whose objects are structured cell complexes, and
whose morphisms are morphisms of the underlying object in C (where all object categories
are equipped with the indiscrete structure, making every object terminal). It will be useful
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to have a shorthand notation for this category available, and we will denote it by Cell(C).
We can think of Cell(C) as embedded into Cell(C) as a wide subcategory. We say that a
morphism in Cell(C), f ∶X→Y is a morphism of structured cell complexes, if it is in Cell(C).
We furthermore say that f is an

• inclusions of subcomplexes;

• expansion;

if f is in Cell(C) and has the respective property. We denote by Cellc(C) the full subcategory
of Cell(C), whose objects are given by finite structured cell complexes.

Construction 10.2.1.10. In the situation of Construction 10.2.1.8, the morphism iY ∶Y →
Y ∪{0}⊗X [0, 1]⊗X admits a retract in C, induced by the universal property of the pushout in
the diagram

X ⊗ 0 X ⊗ [0,1] X

Y Y ∪{0}⊗X [0,1]⊗X Y .

πX

f⊔1Y

rY

(10.22)

Together with the composition iX ∶X ≅ {1}⊗X ↪ [0,1]⊗X →Mf , rY defines a functorial
factorization of f

X Y

Mf .

f

iX rY
(10.23)

which lifts to a functorial factorization in Cell(C).

Construction 10.2.1.11. Let f ∶X→Y be a morphism in Cell(C). Consider the composition
of morphisms

{1}⊗X ↪ [0,1]⊗X →Mf .

While the right hand morphism does generally not define a morphism of structured cell
complexes [0,1]⊗X→Mf , its composition with the left hand morphism nevertheless defines
an inclusion of structured cell complexes X↪Mf . To see this, observe first that as {0,1}⊗X↪
[0,1]⊗X is an inclusion of a subcomplex, the sets of cells of {0}⊗X and {1}⊗X in [0,1]⊗X
are disjoint. Consequently, the set of cells of the structured relative cell complex associated to
{0}⊗X↪ [0,1]⊗X contains all cells of {1}⊗X. In other words, the square

∅ {0}⊗X

{1}⊗X [0,1]⊗X

{1}⊗X î0(X) (10.24)

defines a morphism of relative cell complexes {1}⊗X→ î0(X). In particular, the horizontal
composition of squares

∅ {0}⊗X {0}⊗ Y

{1}⊗X [0,1]⊗X Y ∪{0}⊗X [0,1]⊗X

{1}⊗X î0(X) iY (10.25)
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defines a morphism of structured cell complexes {1} ⊗ X → iY , which as both parts of the
composition are injective on cells, is also injective on cells. As, by definition, CMf

contains
all cells of iY , it follows in particular that the morphism {1}⊗X →Mf defines a morphism
of cell complexes {1} ⊗X →Mf , which is injective on cells. By Proposition 8.1.3.1, it thus
defines the inclusion of a subcomplex. Importantly, using Construction 10.2.1.10, it follows
that up to inverting iY we may represent f by a span of inclusions of subcomplexes

X Mf Y .iX iY (10.26)

Similarly, we may represent homotopies in terms of [0, 1]⊗− as inclusions of subcomplexes.

Construction 10.2.1.12. Given a morphism H ∶ [0,1] ⊗ X → Y in Cell(C), we denote by
MH , the object in Cell(C) obtained as follows: First, consider the following cobase change

[0,1]⊗X X

MH MH

π

i[0,1]⊗X (10.27)

of structured relative cell complexes. Composing the right-hand vertical cell structure with
the one on X induces the structure of an absolute cell complex MH on MH , together with an
inclusion of subcomplexes

X↪MH .

It is then not hard to verify that the composition

Y
iY
↪Ð→MH →MH

induces a morphism of cell complexes Y→MH , which is injective on the level of cells, i.e., we
obtain a subcomplex inclusion

Y↪MH .

Remark 10.2.1.13. In a topological scenario using the canonical simple cylinder [0,1] × −,
the space MH of Construction 10.2.1.11 is the cell complex obtained by collapsing the subspace
[0,1] ×X in MH to X.

Notation 10.2.1.14. As in the case of a mapping cylinder, we will often encounter the
following situation. We are given structured cell complexes X,Y and X′ together with a
pushout square in C

X X ′

Y Y ′

f

a

⌟

(10.28)

such that the left vertical defines an inclusion of a subcomplex X↪Y. We may then equip
Y ′ with the cell structure f¡a ○X

′. We will write

X′ ∪X Y

for the resulting structured cell complex on Y . We then obtain a pushout diagram in Cell(C)
(and C),

X X′

Y X′ ∪X Y

f

a ⌟ (10.29)
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such that the verticals are both inclusions of subcomplexes, and the relative cell structure
on the right is obtained via cobase change from the relative cell structure on the left. Such a
diagram will be called cobase change in Cell(C). Note that this notation is slightly misleading
insofar as it refers to additional data compared to just being the pushout in Cell(C) (as
pushouts in this category do not determine the cell structure). This notation is compatible
with Corollary 8.1.4.8 in the sense that whenever the pushout in Cell(C) exists, it agrees with
this construction.

Next, let us study the interaction of the mapping cylinder construction with the pre-
Whitehead framework associated to C. These are reminiscent of the classical interactions of
mapping cylinders with simple equivalences, found, for example, in [Coh73]. Note that, in a
setting without cell structures, similar results were proven in [KP86].

Proposition 10.2.1.15. Let X,Y,A,B ∈Cell(C) be absolute cell complexes. Let a∶A↪B
be an inclusion of a subcomplex, and let s∶B ↪ X be a subcomplex inclusion that is also
a transfinite simple equivalence. Finally, let f ∶X → Y be a morphism in Cell(C) and let
H ∶ [0,1]⊗X→Y be a homotopy from f to a morphism g. Then the following holds:

S(i) The canonical morphism X ∪{1}⊗BMf○s →Mf induces the inclusion of a subcomplex

X ∪1⊗B Mf○s ↪Mf ,

which is a transfinite simple equivalence.

S(ii) The canonical morphism Mf○a →Mf induces the inclusion of a subcomplex Mf○a ↪Mf ,
which is a transfinite simple equivalence.

S(iii) The canonical morphisms
Mf ,Mg →MH

induces inclusions of subcomplexes

Mf ,Mg ↪MH ,

which are transfinite simple equivalences.

In particular, if X and Y are finite, it follows that all transfinite simple equivalences above
define simple equivalences.

Proof. Explicitly, the set of cells of X ∪B Mf○s can canonically be identified with the set

C{1}⊗X ⊔ (C[0,1]⊗B ∖ C{0,1}⊗B) ⊔ C{0}⊗Y

and Mf○s can be identified with

C{1}⊗X ⊔ (C[0,1]⊗X ∖ C{0,1}⊗X) ⊔ C{0}⊗Y ..

By Corollary 8.2.2.9, the induced morphism [0,1]⊗B → [0,1]⊗X is injective on cells, and
maps C{0,1}⊗B into C{0,1}⊗X. In particular, it induces a well defined injective map on cells
(C[0,1]⊗B ∖ C{0,1}⊗B)→ (C[0,1]⊗X ∖ C{0,1}⊗X). From this perspective, the morphism X ∪{1}⊗B
Mf○s →Mf acts on cells as the injection

1C{1}⊗X ⊔ C([0,1]⊗ s)∣... ⊔ 1C{0}⊗Y .

In particular, it induces a well defined inclusion of cell complexes

X ∪1⊗B Mf○s ↪Mf .

Using the identifications of sets of cells above, the cells of the induced relative cell complex

X ∪1⊗BMf○s ↪Mf
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can be canonically identified with

C[0,1]⊗X ∖ (C{0,1}⊗X ∪ C[0,1]⊗B) .

Observe that, by definition, this also defines the set of cells of the relative cell complex î(s).
Hence, the commutative square

{0,1}⊗X ∪{0,1}⊗B ⊗[0,1]⊗B X ∪1⊗BMf○s

[0,1]⊗X Mf

î(s) (10.30)

defines a morphism of structured relative cell complexes, which is bijective on cells. By
Corollary 8.1.4.2, it follows that the latter square defines a cobase change. As [0,1]⊗− is a
W-functor, it follows that the left hand vertical is a (transfinite) structured simple equivalence.
Consequently, by stability under cobase change, the same holds for the right hand vertical, as
was to be shown.
That the remaining morphisms define inclusions of subcomplexes can be shown in a similar
manner. We will only verify that these inclusions define simple equivalences. For the second
morphism, denote by c∶Mf○a →Mf the relative cell complex, induced by the inclusion of cell
complexes Mf○a ↪Mf . Then the commutative diagram

{0}⊗X ∪{0}⊗A [0,1]⊗A {0}⊗ Y ∪{0}⊗A [0,1]⊗A

[0,1]⊗X {0}⊗ Y ∪{0}⊗X [0,1]⊗X
î c (10.31)

defines a morphism of relative cell complexes, which one may easily verify to be a bijection
on cells. Consequently, by Corollary 8.1.4.2, the latter square is a cobase change. By the
definition of a simple cylinder, the left hand morphism is a structured transfinite simple
equivalence. Consequently, c is a transfinite simple equivalence, as was to be shown. Finally,
for the remaining pair of inclusions of cell complexes Mf ,Mg ↪MH , we only prove the case
of g, which suffices by symmetry of the situation. Denote the associated relative cell complex
Mg ↪MH by c′. Consider the following commutative diagram of squares which can all be
verified to define morphisms of structured cell complexes.

{1}⊗X [0,1]⊗X X

Mg [0,1]⊗X ∪{1}⊗X Mg Mg

MH MH .

iX i[0,1]⊗X iX

c c′

(10.32)

Here c is the inclusions of subcomplexes associated to the pair of morphisms {1}⊗X ↪
[0,1]⊗X, H ∶X ⊗ [0, 1]→ Y , given by Property S(i). Observe that the outer vertical rectangle
(which is the defining diagram for MH) is a cobase change by definition. The left upper square
is a cobase change by definition, and the upper horizontal rectangle is a square with horizontals
identities (isomorphisms), and hence also cobase change. Using the pasting law for cobase
changes (Corollaries 8.1.2.12 and 8.1.4.3) it follows that all squares in the diagram are cobase
change. By Property S(i), c is a transfinite structured simple equivalence. Consequently, the
same holds for c′, as was to be shown.

Next, let us use the simple cylinder to connect the Whitehead framework to the associated
homotopy category. For the following proofs, it will be useful for the cylinder to be symmetric,
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in the sense that one can mirror it at t = 1
2 , in a way that preserves cell structures. It turns out

that by gluing together two (not necessarily symmetric) cylinders, this can always be achieved.

Proposition 10.2.1.16. Suppose that C is a cellularized category with expansions which
admits a simple cylinder functor. Then C admits a (possibly different) simple cylinder
(i∂ ∶{0,1} ⊗ − ⇒ [0,1] ⊗ −, π), such that the following holds: There exists an inclusion of a
cellularized subfunctor

i 1
2
∶1C ↪ [0,1]⊗ −

and an isomorphism of cellularized functors

t∶ [0,1]⊗ −
≅
Ð→ [0,1]⊗ −

fulfilling the following properties:

1. The relative cellularized functor i 1
2

associated to i 1
2

is simple.

2. The identities

t ○ i 1
2
= i 1

2

t ○ i0 = i1

hold.

Proof. We will suggestively denote the cylinder whose existence we assume in the form

i′∂ ∶{0,
1

2
}⊗ −↪ [0,

1

2
]⊗ − ,

where we shifted notation from 0 to 0 and 1 to 1
2 . To make the notation even more suggestive,

we will also denote the very same cylinder in the form

{
1

2
,1}⊗ −↪ [

1

2
,1]⊗ − .

where this time, however, we replaced notation from 0 to 1 and from 1 to 1
2 . Now, consider

the diagram of absolute cellularized functors

{1
2
}⊗ − {0, 1

2
}⊗ − [0, 1

2
]⊗ −

{1
2
,1}⊗ − ({0, 1

2
} ∪{ 1

2 } {
1
2
,1})⊗ − ([0, 1

2
]⊗ −) ⊔ {1}⊗ −

[1
2
,1]⊗ − ([1

2
,1]⊗ −) ⊔ {0}⊗ − [0,1]⊗ −

(10.33)

in which all squares are given by pushouts (which exist by Lemma 8.2.4.6). The inclusion ι∂
is given by the composition

{0,1}⊗ −↪ ({0,
1

2
} ∪{ 1

2 } {
1

2
,1})⊗ −↪ [0,1]⊗ − .

The required natural transformation [0,1]⊗ −→ 1C is given by the gluing of the associated
transformations [0, 1

2 ] ⊗ −, [
1
2 ,1] ⊗ − → 0, and together with ι∂ , is easily seen to define a

factorization of the fold map. Observe that, by assumption, all upper horizontal and left
vertical arrows in Diagram (10.33) define relative W-functors. By Lemma 8.2.4.6, all remaining
inclusions are given by cobase changes of these relative W-functors. Hence, every inclusion of
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cellularized functors in the diagram is a W-functor. In particular, by stability of W-functors
under composition, the inclusion

{0,1}⊗ −↪ ({0,
1

2
} ∪{ 1

2 } {
1

2
,1})⊗ −↪ [0,1]⊗ − .

is a W-functor. Next, consider the commutative diagram

{0}⊗ −

{1
2
}⊗ − [0, 1

2
]⊗ −

{1}⊗ − [1
2
,1]⊗ − [0,1]⊗ −

(10.34)

with the inner square being pushout. All of the relative cellularized functors (induced by
the inclusions of subfunctors) in this diagram, besides the two arrows with target [0,1]⊗ −,
were assumed to be simple. The remaining two cellularized relative functors, however, are by
Lemma 8.2.4.6, given by cobase changes of simple cellularized relative functors. In particular,
they are also simple. It follows that all arrows in the latter diagram, and all of their compositions,
define simple cellularized relative functors. It remains to expose the automorphism t∶ [0,1]→
[0,1]. It is induced by applying the universal property of the pushout to the diagram

{1
2
}⊗ − [0, 1

2
]⊗ − [0,1]′ ⊗ −

[1
2
,1]⊗ − [0,1]⊗ − [1

2
,1]⊗ −

[0,1]′ ⊗ − [0, 1
2
]⊗ − [0,1]⊗ −

t

(10.35)

and is readily verified to have the required properties.

We will also need the following lemma:

Lemma 10.2.1.17. Let E ⊂C↪ell(C) be the class of expansions. Let a, b∶X↪Y be such that
X ⊔B

(a,b)
ÐÐÐ→ Y extends to an inclusion H ∶ [0,1]⊗X → Y. Then a = b in C↪ell(C)[E−1]. The

analogous statement for C↪ellc(C) holds.

Proof. Observe first that by the two-out-of-three property for isomorphism, every transfinite
simple equivalence is an isomorphism in C↪ell(C)[E−1]. Next, observe that the two inclusions
of subcomplexes

ιi∶{i}⊗X→ [0,1]⊗X

are identified in C↪ell(C)[E−1]. Indeed, by assumption, we have

t ○ i 1
2
= 1X̂⊗[0,1] ○ i 1

2

Furthermore, as i 1
2
∶{1

2
}⊗X ↪ [0,1]⊗X is a simple equivalence, it defines an isomorphism

and in particular an epimorphism in C↪ell(C)[E−1]. It follows that

t = 1[0,1]⊗X

in C↪ell(C)[E−1]. Consequently, we obtain the equalities

i0 = t ○ i1 = 1[0,1]⊗X ○ i1 = i1
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in C↪ell(C)[E−1], as was to be shown. It follows that any two inclusions of cell complexes
a, b∶X ↪ Y (with Y not necessarily fibrant), which extend to the inclusion of subcomplexes
H ∶ [0,1]⊗X→Y, are identified in C↪ell(C)[E−1] via

a =H ○ i0 =H ○ i1 = b .

The proof for C↪ellc(C) is identical.

In the next section, we will additionally assume that the choices of generating boundary
inclusions and expansions can be used as generating data for a (semi-)model category. It turns
out that these assumptions guarantee that one obtains a Whitehead framework that interacts
well with the associated homotopy category of the model category.

10.2.2 Whitehead model categories
We now state the main result of this section, which shows that in a large class of homotopy
theoretical frameworks the associated homotopy category can be described entirely in terms of
structured absolute cell complexes and expansions. First, however, recall from Section 8.1.6
the notion of filtration compactness in a cellularized category and from [Hir03] the notion of a
class of arrows permitting the small object argument.

Theorem 10.2.2.1. Let C be a cellularized category with expansions. Now, suppose the
following additional assumptions are fulfilled:

T(i) C admits the structure of a cofibrantly generated (left) semi-model category (see, for
example, Definition 7.4.1.1), with class of weak equivalences W .

T(ii) BC provides a class of generating cofibrations for the semi-model structure.

T(iii) The underlying set of morphisms of EC permits the small object argument.

T(iv) Every underlying morphism in EC defines an acyclic cofibration with cofibrant source.

T(v) An object X ∈C for which the terminal morphism X → ⋆ has the right lifting property
with respect to every morphism in EC is fibrant.

T(vi) C admits a simple cylinder.

Denote by E ⊂C↪ell(C) the wide subcategory given by such inclusions of subcomplexes which
define expansions. Then the forgetful functor

C↪ell(C)→C

descends to an equivalence of categories

C↪ell(C) C

C↪ell(C)[E−1] C[W −1] .≃

(10.36)

Suppose, additionally, that every target of an arrow in BC is filtration compact, and every
source of an arrow in EC is filtration compact. Then the induced functor

C↪ellc(C) C

C↪ellc(C)[E−1
W(C)] C[W −1]

f.f.

(10.37)

is fully faithful.
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Before we give the proof, let us keep track of the following useful facts about fibrant
replacement under the conditions of Theorem 10.2.2.1.

Lemma 10.2.2.2. Under the complete assumptions of Theorem 10.2.2.1 the following two
statements hold:

1. Let X ∈ Cell(C). Then there exists an expansion e∶X ↪ Y, such that the underlying
object of Y, Y , is fibrant in C.

2. Let Z be a finite cell complex and let e∶X↪Y be a (possibly infinite) expansion. Then,
for every morphism f ∶Z→Y in Cell(C), there exists a factorization X

ẽ
↪Ð→ Ỹ

e′

↪Ð→Y of e,
such that f factors through e′, and such that ẽ is a finite expansion.

Proof. The first claim follows by applying the small object argument (see Observation 8.1.6.16
and [Hir03, Sec. 10.5]) to EC, and using that EC detects fibrant objects. The second claim
follows from Propositions 8.1.6.14 and 8.1.6.17.

Let us now provide a proof of Theorem 10.2.2.1.

Proof. We will freely make us of standard arguments involving model categories (see, for
example, [Hir03]). As all objects in sight are cofibrant, their analogues for semi-model
categories hold. Let us first observe that, by Property T(ii), the underlying object of every
absolute cell complex X is cofibrant in C. In particular, by Property T(iv), expansions between
two such objects are given by transfinite compositions of cobase changes of acyclic cofibrations
with cofibrant source, and thus define acyclic cofibrations. It follows that every morphism
in E maps to a weak equivalence, i.e., that a factorization as indicated in the statement
of the theorem does exist. Observe, furthermore, that by the small object argument and
Property T(ii), every object in C is weakly equivalent to an absolute cell complex. Hence, it
follows that the induced functor

C↪ell(C)[E−1
]→C[W −1

]

is essentially surjective. Next, observe that every transfinite simple equivalence in C↪ell(C)
descends to an isomorphism in C↪ell(C)[E−1], as it admits a composition with an isomorphism
(an expansion) which is an isomorphism (see Lemma 10.1.2.17). We may thus just assume that
we have inverted all transfinite simple equivalences, instead of only expansions. In particular,
every transfinite simple equivalence in C↪ell(C) descends to a weak equivalence in C. To see
fully-faithfullness, observe that by the small object argument applied to Property T(iii) and
and Property T(v), every object in C↪ell(C) is, up to an expansion, given by a fibrant object
in C. Hence, to show fully-faithfulness, we may restrict to such absolute cell complexes X
whose underlying object is fibrant. In particular, for such objects X,Y, the set of morphisms
C[W −1](X,Y ) is given by homotopy classes of morphisms f ∶X → Y , with respect to any choice
of cylinder X ⊔X ↪ Cyl(X) ≃Ð→X, with the right hand morphism given by a weak equivalence
and the left hand morphism given by a cofibration. We may use the simple cylinder whose
existence is guaranteed by Property T(vi). Indeed, by the assumption that {0, 1}⊗−→ [0, 1]⊗−
is a cellularized relative functor and Property T(ii), it follows that for any absolute cell complex
X, the induced map {0,1} ⊗ X = X ⊔ X → [0,1] ⊗ X is a cofibration. Furthermore, the
morphism π∶ [0, 1]⊗X →X, admits a section {0}⊗X→ [0,1]⊗X, which is given by a simple
equivalence, and hence induces a weak equivalence in C. By the two-out-of-three property
for weak equivalences, it follows that π∶ [0,1] ⊗X → X is a weak equivalence. Now, to see
fullness of the functor, observe that by Construction 10.2.1.11, every morphism f ∶X → Y
of the underlying objects may be written in C[W −1] as a composition of an inclusion of
structured absolute subcomplexes, followed by a transfinite simple equivalence. To verify that
C↪ell(C)[E−1]→C[W −1] defines an equivalence of categories, it remains to verify faithfullness.
Let α,β∶X → Y be two morphisms in C↪ell(C)[E−1] which map to the same element in
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C[W −1](X,Y ). Observe that, using cobase changes in C↪ell(C), α and β can be represented
in the form

α = e−1
a a,

β = e−1
b b .

Consider the commutative diagram

Ya

X Y Y′

Yb

e′a

α

a

b

β

ea

eb

e0

e′b

(10.38)

with the square induced by the pushout in Cell(C), which exists by Corollary 8.1.4.8. By
stability of expansions under cobase change, every morphism denoted with an e in this diagram
is an expansion. Chasing the diagram, to see that α = β, it suffices to see that

e0 ○ a = e0 ○ b

in C↪ell(C)[E−1]. Composing with an expansion Y′ ↪ Ŷ, we may again assume that the
target of e0 ○ a, e0 ○ b is fibrant. By assumption, the underlying diagram in C[W −1] com-
mutes. In particular, we have thus reduced to showing that if a, b∶X → Y are inclusions
of subcomplexes which induce the same morphism in C[W −1], then they induce the same
morphism in C↪ell(C)[E−1]. By assumption that the target is fibrant, a and b are identified
if they are homotopic in C, with respect to any choice of cylinder. Now, observe that by
Proposition 10.2.1.16 we may without loss of generality assume that the simple cylinder is as
in Diagram (10.33). To this end, let H ∶ [0,1]⊗X → Y be a homotopy between a and b in C,
and consider the following diagram in C↪ell(C)

Ma

{1}⊗X Y MH

Mb

a

b

(10.39)

with morphisms as constructed in Proposition 10.2.1.15. One should be careful to note that
this is not a commutative diagram in C↪ell(C). Only the right part of the diagram, as well as
the two outer composed paths commute. Assume, for now, that we have shown that the left
two triangles commute in C↪ell(C)[E−1]. Observe, furthermore, that by Proposition 10.2.1.15,
the right part of the diagram is given by isomorphisms in C↪ell(C)[E−1]. Then, by chasing
the diagram and using the given commutativity, it follows that a = b in C↪ell(C)[E−1]. Finally,
to see that the remaining two triangles commute, consider again the defining pushout square
for the mapping cylinder of a (and analogously for b):

{0}⊗X Y

[0,1]⊗X Ma

a

i0 ⌟

(10.40)

As a defines a morphism of cell complexes, this commutative diagram lifts to a diagram of
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morphisms of absolute cell complexes

{0}⊗X Y

[0,1]⊗X Ma .

a

i0 ⌟

(10.41)

Since a is a relative cell complex, so is its parallel morphism [0,1]⊗X →Ma, making it a
monomorphism, in particular. Consequently, the bottom morphism defines the inclusion of a
subcomplex. It follows that

[0,1]⊗X↪Ma

defines a homotopy that X
a
Ð→Y↪Ma and X = {1}⊗X↪Ma as required in Lemma 10.2.1.17,

and it follows that the left two triangles in Diagram (10.39) commute. This finishes the proof
that

C↪ell(C)[E−1
]→C[W −1

]

defines an equivalence of categories. It remains to show the fully faithfulness claim about

C↪ellc(C)[E−1
W(C)]→C[W −1

].

The proof of this claim is essentially identical with the one of the previous fully-faithfulness
statement. The only difference is that we may not assume that the target Y has underlying
fibrant Y . However, by Lemma 10.2.2.2, we may first replace Y fibrantly by an expansion
Y ↪ Ŷ. Then, again by Lemma 10.2.2.2 it follows that every morphism X → Ŷ in Cell(C)
and every homotopy [0,1]⊗X → Y in Cell(C) factors through some Ỹ ⊂ Ŷ containing Y,
such that Y ↪ Ỹ is a finite expansion. As every finite expansion defines an isomorphism in
C↪ellc(C)[E−1], it follows that in the proof of fully faithfulness we may, whenever necessary,
replace Y by an isomorphic Ỹ, in order to present a morphism in C[W −1] or a homotopy in C
with respect to [0, 1]⊗ −. Clearly, this does not change any claims about existence or identity
of morphisms. One may then essentially repeat the previous fully faithfulness proof, increasing
the size of Y by a finite expansion, whenever necessary.

It turns out that the assumptions of Theorem 10.2.2.1 provide a convenient framework to
perform simple homotopy theory in. Let us condense them (in slightly strengthened form) in a
definition.

Definition 10.2.2.3. A cellularized category with expansions C is called a Whitehead semi-
model category if the following axioms are fulfilled.

1. C admits the structure of a cofibrantly generated semi-model category that is compatible
with the generating boundary inclusions BC and generating elementary expansions EC
in the following sense.

2. BC provides a set of generating cofibrations and the source and target of every morphisms
in BC is filtration compact.

3. For every generating elementary expansion e∶A↪X ∈ EC, it holds that the underlying
morphism e∶A ↪ X in C is an acyclic cofibration whose source, A, is cofibrant and
filtration compact.

4. An object X ∈ C is fibrant, if and only if the terminal morphism X → ⋆ has the right
lifting property with respect to the set of underlying arrows in C of elements of EC.

5. C admits a simple cylinder.

Notation 10.2.2.4. We will usually just omit the “semi” from the name “Whitehead semi-
model category”. In the cellularized context, most objects considered are cell complexes anyway,
and the theory of semi-model categories and model categories behaves essentially identically.
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Remark 10.2.2.5. Definition 10.2.2.3 is a slight strengthening of the assumptions of The-
orem 10.2.2.1. Indeed, observe that for a Whitehead model category, EC even permits the
small object argument with respect to ℵ0 (by Observation 8.1.6.16). The assumptions of
Definition 10.2.2.3 are slightly stronger only insofar as we have assumed that the sources of
BC are also filtration compact and cofibrant. These assumptions will not be needed in this
section, but they will play a crucial role in the core arguments of Theorem 12.1.0.4.

Remark 10.2.2.6. Observe that a Whitehead model category uniquely determines the semi-
model structure which it expands to. Indeed, the equivalence of homotopy categories proven
in Theorem 10.2.2.1 uniquely determines the class of weak equivalences. The cofibrations
are determined by Property T(ii). As the fibrations in a (cofibrantly generated) semi-model
category are determined as the morphisms that have the right lifting property with respect to
acyclic cofibrations with cofibrant source, it follows that the triple (C,BC,EC) extends to at
most one semi-model structure.

Example 10.2.2.7. The category of simplicial sets, with boundary inclusions and expansions as
in Example 10.1.2.3 defines a Whitehead model category. Indeed, the associated combinatorial
model category is simply the Kan-Quillen model structure, which is well known to fulfill
the required compactness assumptions on generators (indeed, every finite simplicial set is a
compact object in the sense that its associated covariant hom-functor preserves all filtered
colimits). A simple cylinder is given by ∂∆1 × −→∆1 × −. This is canonically a cellularized
functor as it is given by the restriction of the cellularized bifunctor given by the product of
simplicial sets (see Example 8.2.5.6). The requirements of a simple cylinder were, for example,
verified in [Mos19], where it is even shown that the product of a monomorphism with an
expansion is again an expansion.

Example 10.2.2.8. The category of topological spaces, with boundary inclusions and ex-
pansion as in Example 10.1.2.3 defines a Whitehead model category. The associated combi-
natorial model category is given by the Quillen model structure on topological spaces. The
required compactness assumption is a well-known classical result, which follows, for example,
by [Hir03, p. 10.7.4.] and Proposition 8.1.6.8. A simple cylinder is given by cellularizing
{0,1} × −↪ [0,1] × −, under Lemma 8.2.2.5, as follows. First, fix an (oriented) identification
[0,1] ≅ ∣∆1∣. Then, this choice induces an isomorphism

[0,1] × ∣∆n
∣ ≅ ∣∆1

∣ × ∣∆n
∣ ≅ ∣∆1

×∆n
∣

which maps {0,1} × ∣∆n∣ ∪ [0,1] × ∣∂∆n∣ homeomorphically to ∣∂∆1 ×∆n ∪∆1 × ∂∆n∣. Hence,
one may use Lemma 8.2.2.5 and the cellularization of ∣ − ∣ to obtain a cell structure on
{0, 1}×−↪ [0, 1]×−. It is then immediate from Remark 10.2.1.2 and the respective properties
for simplicial sets that the thus-defined cellularized cylinder is simple.

Example 10.2.2.9. The category of positively graded chain complexes over some not-
necessarily commutative ring R, equipped with the expansions in Example 10.1.2.3 defines a
Whitehead model category. The associated model structure is the projective model structure
(see [Qui67; Hir03]) on positively graded chain complexes. The compactness assumptions are
a classical elementary fact in commutative algebra. As a simple cylinder, one can use the
tensor product with the interval complex I● ⊗ −. To see this, observe first that the tensor
product of chain complexes obtains the structure of a cellularized bifunctor, by equipping
(∂Dn

● ↪Dn
● )⊗̂(∂D

m
● ↪Dm

● ) with a single cell given by the basis element 1⊗ 1 ∈ R⊗R ≅ R in
degree n +m. It is then not hard to see that tensoring with I● (with the cell structure given
by the cellularization of ⊗) defines a simple cylinder.

Corollary 10.2.2.10. If C is a Whitehead model category, then its associated pre-Whitehead
framework W(C) is a Whitehead framework.

Proof. Let a, b∶X↪Y be two inclusions of finite cell complexes which agree in C↪ellc(C)[E−1
W(C)].

We need to show that there exist (appropriately composable) finite expansion ea, eb, such that
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eaa = ebb. In other words, we need to show that a and b define the same class in W̃hW(C). By
faithfulness of the functor

C↪ellc(C)[E−1
W(C)]→C[W −1

],

it follows that a, b∶X → Y define the same morphism in hoC =C[W −1]. Using Lemma 10.2.2.2,
and arguing as in the proof of Theorem 10.2.2.1, it follows that there exists a finite expansion
Y

e
↪Ð→ Ŷ as well as a homotopy H ∶ [0,1]⊗X → Ŷ between ea and eb. We may hence assume

without loss of generality that a and b are homotopic through a homotopy H ∶ [0,1]⊗X → Y .
By definition of W̃hW(C), it suffices to connect a and b through a zig-zag of expansions under
X. More than that, it suffices to expose a zig-zag of simple equivalences in C↪ellc(C)X/. By
Proposition 10.2.1.15, such a zig-zag is given by the diagram

{1}⊗X

{1}⊗Y {1}⊗Y

[0,1]⊗Y Ma MH Mb [0,1]⊗Y .

a b

≃ ≃

≃ ≃ ≃ ≃

(10.42)

10.2.3 Simple equivalences and presentations
Let us now expose some of the consequences of the definition of a Whitehead model category.
We remark that most proofs in this section are abstractifications of proofs in [Coh73] from the
setting of simple homotopy theory of spaces to general Whitehead model categories. For the
remainder of this subsection, fix a Whitehead model category C. We denote the 1-categorical
localization of C at its associated class of weak equivalences by hoC. The first consequence of
Theorem 10.2.2.1 and Corollary 10.2.2.10 is that it allows us to associate a Whitehead torsion
to any morphism α∶X → Y in hoC, provided that we have fixed the structure of finite cell
complexes X and Y on X and Y , respectively. To make these types of statements a bit less
wordy, let us introduce the following notation.
Notation 10.2.3.1. From an aesthetic perspective, the expressions C↪ell(C)[E−1] and
C↪ellc(C)[E−1

W(C)] can get rather overwhelming. Observe that by Theorem 10.2.2.1, we
may respectively identify these categories with hoC ×ObC ×Ob(Cell(C)) (where we equip the
categories of objects with the indiscrete structure, making every object terminal) and the full
subcategory of this category only given by finite cell complexes. In other words, these are the
categories having objects in Cell(C), but morphisms given by morphisms of the underlying
objects in hoC. We denote the former category by hoC, and the latter category, restricting to
finite objects, by hocC, where the fraktur font in ho indicates that objects in these categories
come with cell structures.
Observation 10.2.3.2. The various localization and forgetful functors agglomerate into a
commutative diagram of categories

C↪ell(C) Cell(C) hoC

C hoC .

f.f. (10.43)

If we refer to an arrow in some of the upper left categories as an arrow somewhere lower down
this commutative diagram, we will mean with respect to these functors.
Notation 10.2.3.3. In the following, we will often refer to the Whitehead framework W(C)
associated to a Whitehead model category C just by C. In particular, we will write WhC to
refer to the Whitehead group functor, and use analogous notation for Whitehead monoids.
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Notation 10.2.3.4. Let α∶X→Y be a morphism in hocC. Under Notation 9.1.3.7, we may
associate to α its Whitehead torsion, denoted

⟨X
α
Ð→Y⟩ ∈ W̃hC(X).

Recall that α is a simple equivalence, if ⟨X α
Ð→ Y⟩ = 0. Given a morphism α∶X → Y , we will

sometimes speak of the Whitehead torsion of α with respect to the cell structures X and Y, to
refer to the Whitehead torsion of the associated morphism in hocC.

Observe that this definition of simple equivalence is compatible with previous definitions,
in the sense that a morphism α∶X → Y in hocC is a simple equivalence in the sense of
Definition 9.1.3.8, if and only if the associated morphism in hocC defines a simple equivalence.

Remark 10.2.3.5. There are a series of properties of simple equivalences in hocC, such
as being isomorphisms, stable under inversion and fulfilling the two-out-of-three property,
which are immediately inherited from Observation 9.1.3.13 under the fully faithful inclusion of
Theorem 9.1.3.4. We will not explicitly list them here and use them freely.

Example 10.2.3.6. Let X,X′ and Y be finite structured cell complexes. Let a∶X↪Y be an
inclusion of a subcomplex and f ∶X→ X′ be a morphism in Cell(C). Then the following two
morphisms in C are simple equivalences:

1. The retraction r∶Mf → X′ constructed in Construction 10.2.1.11;

2. The canonical morphism Mf ∪{1}⊗X Y→ X′ ∪X Y, induced by Mf
r
Ð→ X′.

The first morphism is a retraction of a simple equivalence (by Construction 10.2.1.11), and
hence a simple equivalence by the two-out-of-three property. For the second morphism . . .

Proof. . . . , consider the following diagram of morphisms in C

X {0}⊗ Y [0,1]⊗ Y Y

X ′ X ′ ∪X Y X ′ ∪{0}⊗X [0,1]⊗Y X ′ ∪X Y .

1

ϕ π′

(10.44)

Using cobase changes of the inclusions of subcomplexes in horizontal direction, we obtain an
inclusion of subcomplexes

X′ ∪X Y↪ X′ ∪{0}⊗X [0,1]⊗Y

the underlying structured relative cell complex of which is a cobase change of a structured
simple equivalence. In particular, this inclusion is a simple equivalence. It follows by the
two-out-of-three property that its retraction

π′∶X′ ∪{0}⊗X [0,1]⊗Y→ X′ ∪X Y

in C is a simple equivalence. The latter fits into a commutative diagram in Cell(C),

Y ∪{1}⊗X Mf

[0,1]⊗Y ∪{0}⊗X X′ Y ∪X X′

π′ (10.45)
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where the left vertical defines the inclusion of a subcomplex. Consequently, by the two-out-
of-three law for simple equivalences, it suffices to show that the left hand vertical is a simple
equivalence. The latter morphism fits into a commutative square in C

[0,1]⊗X ∪{1}⊗X {1}⊗ Y Y ∪{1}⊗X Mf

[0,1]⊗ Y [0,1]⊗ Y ∪{0}⊗X X ′ .

(10.46)

One can verify, similarly to the proof of Proposition 10.2.1.15 that the horizontals induce a
bijection on cells between the relative structured cell complex

î1(a)∶ [0,1]⊗X ∪{1}⊗X {1}⊗ Y ↪ [0,1]⊗ Y

and the relative cell structure associated to the inclusion

Y ∪{1}⊗X Mf ↪ [0,1]⊗Y ∪{0}⊗X X′ .

It follows, by Corollary 8.1.4.2, that the latter is obtained as a cobase change of the former
(alternatively, this is also readily derived from the pasting laws for cobase change squares). By
assumption, the former is a structured simple equivalence. As structured simple equivalences
are stable under cobase change, it follows that the right vertical defines a simple equivalence,
as was to be shown.

We may now finally connect the Whitehead group to the set of presentations of a homotopy
type Y ∈ hoC.

Notation 10.2.3.7. Given an object X ∈ hoC, a pair (Y, ω∶X ≅
Ð→ Y ), with Y a (finite)

structured cell complex and ω ∈ hoC(X,Y ) an isomorphism, will be called a (finite) presentation
of X. In the following, all presentations will be assumed to be finite.

Construction 10.2.3.8. Let C be a Whitehead model category and let X ∈ hoC. We denote
by PresC(X) the quotient set of finite presentations

PresC(X) ∶= {(Y, ω∶X → Y ) ∣Y ∈ hocC, ω ∈ hoC(X,Y ) is an isomorphism. }/ ∼s ,

where the equivalence relation ∼s is given by (Y1, ω1) ∼s (Y2, ω2), if and only if Y1
ω2ω

−1
1

ÐÐÐ→Y2
is a simple equivalence. This construction is contravariantly functorial in isomorphisms in
hoC, with functoriality given by precomposition, inducing a functor

PresC∶ (hoC)≃,op
→ Set ,

defined on the maximal subgroupoid (hoC)≃ ⊂ hoC, given by taking as morphisms the
isomorphisms in hoC. We may extend PresC(X) to a larger set, functorial in arbitrary
morphisms, as follows:
Define

P̃resC(X) ∶= {(Y, ω∶X → Y ) ∣Y ∈ hocC, α ∈ hoC(X,Y )}/ ∼s̃ ,
where, ∼s̃ is the extension of ∼s, given by (Y1, ω1) ∼s (Y2, ω2), if and only if there exists a
simple equivalence γ∶Y1 → Y2, such that γ ○ ω1 = ω2. This construction is contravariantly
functorial in morphisms in hoC, with functoriality given by precomposition, inducing a functor

P̃resC∶ (hoC)op
→ Set .

Theorem 10.2.3.9. Let C be a Whitehead model category and let X ∈ hoC. Let ω0∶X
≃
Ð→ X0

be a finite presentation of X. ω0 induces a bijection

P̃resC(X)
1∶1
Ð→ W̃hC(X0)

(Y, α)↦ ⟨X0
α○ω−1

0
ÐÐÐ→Y⟩ .
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which restricts to a bijection

PresC(X)
1∶1
Ð→WhC(X0)

(Y, ω)↦ ⟨X0
ω○ω−1

0
ÐÐÐ→Y⟩ .

Proof. This is simply a combination of Theorem 9.1.3.4 with Theorem 10.2.2.1 and the
two-out-of-three property for simple equivalences.

Observation 10.2.3.10. If we fix two different presentations of X, X ωi
Ð→ Xi, for i = 1, 2, then

the diagram
PresC(X)

WhC(X2) WhC(X1)

≅ ≅

(ω2ω
−1
1 )

∗

(10.47)

commutes. By Corollary 9.1.3.12, the failure of the lower morphism to be a group homomor-
phism is precisely measured by the Whitehead torsion ⟨ω2ω

−1
1 ⟩ ∈WhC(X1).

Finally, let us make a few observations on computing the addition and functoriality of
Whitehead monoids.

Lemma 10.2.3.11. Let X,Y be finite structured cell complexes and f ∶X→Y a morphism in
C. Then the equality ⟨f⟩ = ⟨X

iX
↪Ð→Mf ⟩ holds.

Proof. By Construction 10.2.1.11, f fits into a commutative diagram

X Y

Mf

rY
(10.48)

where rY is a simple equivalence by Example 10.2.3.6.

Proposition 10.2.3.12. Let X,X′ and Y be finite structured cell complexes. Let a∶X↪Y be
an inclusion of subcomplexes and let f ∶X→ X′ be a morphism in C. Consider a cobase change
diagram

X X′

Y X′ ∪X Y

f

a a′

f ′

⌟

(10.49)

in Cell(C) (i.e., we take the lower right corner equipped with the induced cell structure
f¡a ○X

′). Then the equalities

f∗⟨a⟩ = ⟨a
′
⟩;

a∗⟨f⟩ = ⟨f
′
⟩;

⟨a⟩ + ⟨f⟩ = ⟨a′ ○ f⟩ = ⟨f ′ ○ a⟩

hold.

Proof. The first equality follows by Construction 10.1.2.8. For the second and the third
equality, consider the factorization

X Mf X′

Y Mf ∪{1}⊗X Y X′ ∪X Y

(10.50)
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of the pushout square Diagram (10.21), with all cell structures induced via vertical composition
and cobase change. The left square is a cobase change square in C↪ellc(C). By the pasting law
for cobase change squares, the right square is again cobase change (in the cellularized category
C, where the verticals are equipped with the relative cell structure given by Observation 8.1.3.5).
By definition of addition and functoriality of W̃hC, together with Lemma 10.2.3.11, the middle
vertical defines a∗⟨f⟩ and the diagonal of the left square defines ⟨a⟩ + ⟨f⟩. Consequently, to
see that the claimed equalities hold, it suffices to see that the lower right horizontal is a simple
equivalence. This was shown in Example 10.2.3.6.

In particular, we obtain the following stability law for cobase changing simple equivalences
of the form f ∶X→ X′ in C.

Corollary 10.2.3.13. In the situation of Proposition 10.2.3.12, if f is a simple equivalence,
then so is f ′, and if a is a simple equivalence, then so is a′.

10.3 Equivalences of Whitehead model categories
Let us finish this chapter with a detailed look at W-functors in the setting of Whitehead model
categories, in particular investigating different resulting notions of equivalence.

10.3.1 W-functors and Quillen functors
Let us first investigate the relationship between W-functors and Quillen functors. For the
convenience of the reader, let us spell out some characterizations of Quillen adjunctions for
the less common case of semi-model categories.

Recollection 10.3.1.1 (See, for example [BW24]). Recall that an adjunction of (cofibrantly
generated, left) semi-model categories L∶M⇌N∶R is called a Quillen adjunction if one of the
following equivalent conditions holds:

1. The right adjoint R preserves fibrations and acyclic fibrations.

2. The left adjoint L preserves cofibrations and acyclic cofibrations between cofibrant
objects.

3. The left adjoint L preserves cofibrations and weak equivalences between cofibrant objects.

That the first two conditions are equivalent is shown, for example, in [BW24, Lem 4.4]. That
the last condition implies the second is immediate. That the second condition implies the last
follows by Ken Brown’s lemma (see the dual of [nLa25b, Prop.3.1]), applied to the category
of cofibrant objects. We will use the basic properties of Quillen adjunctions, such as the
construction of the derived functors, freely (see, for example, [Hir03] for the model-category
case). When there is a difference between the theory of semi-model categories and model
categories we will explicitly remark this.

Remark 10.3.1.2. The first obvious difference between W-functors between Whitehead model
categories and left Quillen functors is that the former are only assumed to preserve colimits,
while the latter are assumed to be left adjoint. Observe, however, that the main examples of
cellularized categories which we consider are locally presentable, or at least can be modified
to have this property without changing the categories of structured cell complexes (replacing
compactly generated spaces by ∆-generated spaces, for example). In this case, it follows by a
version of the adjoint functor theorem (see [nLa24a]) that preserving colimits is equivalent to
being left adjoint.
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Observation 10.3.1.3. Let F∶C → D be a cellularized functor between Whitehead model
categories. Assume F is a left-Quillen functor, and hence preserves weak equivalences between
cofibrant objects. Consider the induced functor

C↪ell(C)→C↪ell(D)
X↦ F(X)

a↦ F (a) .

It follows by Theorem 10.2.2.1 that localizing C↪ell(C) (or C↪ell(D)) at expansions is the
same as localizing at such inclusions of subcomplexes which are weak equivalences. As
every underlying object of a complex in C↪ell(C) is cofibrant, we obtain an induced functor
hoC→ hoD, making the diagram

C↪ell(C) C↪ell(D)

hoC hoD

(10.51)

commute. Under the equivalence of categories hoC ≃ hoC and hoD ≃ hoD, this functor
computes the left derived functor of F .

As a consequence, we obtain the following equivalent characterization of W-functors.

Proposition 10.3.1.4. Let F∶C→D a cellularized functor between Whitehead model categories
which preserves finite structured relative cell complexes. Then the following are equivalent:

1. The underlying functor F ∶C→D preserves cofibrations and weak equivalences between
cofibrant objects, and the induced functor

hocC→ hocD

preserves simple equivalences.

2. F is a W-functor.

In particular, it follows that any left adjoint W-functor induces a left Quillen functor of
semi-model categories.

Proof. In the following proof, we will often treat structured cell complexes as objects of C or
D. This is to be understood as a reference to their underlying objects. If F is a W-functor,
then it necessarily preserves relative cell complexes (with respect to the cofibrant generators
induced by the structures of cellularized categories on C and D). As every cofibration is
a retract of a relative cell complex, it follows that F preserves cofibrations. To see that F
preserves weak equivalences between cofibrant objects, we may first reduce to the case where
both the source and the target are cell complexes, as follows. Observe that the property for
a weak equivalence, w, to be preserved under F is stable under retracts. It thus suffices to
expose w as a retract of a weak equivalence between cell complexes. Now let w∶A→ B be a
weak equivalence between cofibrant objects in C. As A is cofibrant, it follows by the small
object argument that A is a retract of a cell complex A

A↪ A→ A

such that A↪ A is a weak equivalence. Now, consider the diagram of pushout squares

A A A

B B′ B .

w w′ w (10.52)
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Observe that A ↪ A is a retract of the identity cofibration on A. In particular, it is a
cofibration. Hence, A ↪ A is an acyclic cofibration of cofibrant objects, and thus so is its
parallel morphism B → B′. By the two-out-of-three property from weak equivalences, it follows
that w′ is a weak homotopy equivalence. Hence w is a retract of a weak equivalence with
source a cell complex. We have thus reduced to the case where the source of w is a cell complex.
Now, to reduce to the case where the target is also a cell complex, we may expose B as a
retract of a cell complex

B
i
Ð→B′

r
Ð→ B

with B
i
Ð→ B′ a weak equivalence. Then w is a retract of the weak equivalence w ○ i, which

shows the reduction claim. Now, let w∶A→B be a weak equivalence between cell complexes in
C. Applying the small object argument with respect to expansions, we obtain a commutative
square

A B

Â B̂

w

ŵ

(10.53)

with verticals expansions and horizontals weak equivalences, where Â and B̂ are bifibrant cell
complexes. Observe that as F is a W-functor, it maps expansions between cofibrant objects
into acyclic cofibrations. Hence, by the two-out-of-three property for weak equivalences, it
suffices to see that F preserves weak equivalences between bifibrant cell complexes. By the
Whitehead Theorem, any such weak equivalence is a homotopy equivalence with respect to any
choice of cylinder. In particular, we may use a simple cylinder {0,1}→ [0,1]⊗ −→ 1, whose
existence is guaranteed by C being a Whitehead model category. Given a structured complex
A in C, the associated cylinder retractions

[0,1]⊗A→ A

admits a section by a structured simple equivalence. As F is a W-functor, it preserves structured
simple equivalences, and hence maps this section into a structured simple equivalence between
absolute cell complexes. As every structured simple equivalence between cofibrant objects
is an acyclic cofibration (as a transfinite composition of acyclic cofibrations with cofibrant
source), it follows that F maps the cylinder retraction [0,1]⊗A→ A into a weak equivalence.
As F preserves cofibrations, it thus follows that

F(A) ⊔ F(A) ≅ F(A ⊔A)→ F([0,1]⊗A)→ F(A)

defines a cylinder for A. In particular, F preserves the relation of homotopy of maps between
cell complexes. Consequently, F preserves homotopy equivalences between cell complexes, and
hence weak equivalences between bifibrant cell complexes. The induced functor hocC→ hocD
associated to F is the functor of homotopy categories associated to the functor of Whitehead
frameworks F (see Construction 10.1.3.10). Hence, it preserves simple equivalences.
Now, conversely, suppose that F preserves cofibrations and weak equivalences between cofibrant
objects, and that

hocC→ hocD

preserves simple equivalences. We need to show that the image of every elementary expansion
e∶A↪X in EC under F is a simple equivalence. As A is cofibrant, we may write A as a retract

A
i
↪Ð→ A′

r
Ð→ A

of a structured cell complex A′. Furthermore, as A was assumed to be filtration compact, it
follows by Proposition 8.1.6.9 that the inclusion A↪ A′ factors through a finite subcomplex of
A′. Hence, we may without loss of generality assume that A′ is a finite cell complex. Now,
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consider the commutative diagram of cobase change squares

A A′ A

X X ′ X .

1

e i¡e e

1

(10.54)

If we apply F to this diagram, we obtain a diagram of cobase change squares.

F (A) F (A′) F (A)

F (X) F (X ′) F (X)

1

F(e) F (i)¡F(e) F(e)

1

(10.55)

Using that a morphism is a structured simple equivalence, if and only if defines the 0-
element in the extended Whitehead monoids of Construction 10.1.2.8 , it follows that F(e) is a
structured simple equivalence, if and only if the middle vertical in the last diagram defines
a simple equivalence F(A′) → F (i)¡F(e) ○ F(A

′). As F preserves cobase changes, we have
F (i)¡F(e) = F(i¡e). i¡e is a cobase change of a structured simple equivalence, and hence a
structured simple equivalence. Hence, again using Construction 10.1.2.8, it follows that i¡e
defines a simple equivalence between A′ → i¡e ○ A

′. In particular, by assumption on F , the
image of this morphism under F, which is F(A′)→ F (i)¡F(e) ○ F(A

′) is a simple equivalence.
This finishes the proof.

10.3.2 Equivalences of Whitehead model categories
Next, let us study several possible notions of equivalences between Whitehead model categories.
Before we do so, recall the fact that a Quillen functor C→D of (semi-)model categories is a
Quillen equivalence (defined just as in the case of ordinary model categories, see [Hir03]) if and
only if the induced (respectively left or right derived) functor of ∞-categories is an equivalence
of ∞-categories. For the purpose of simple homotopy theory, it can be useful to also have
∞-categorical versions of equivalences available. In the following subsection, localizations are
to be understood in the ∞-categorical sense, if not explicitly stated otherwise.

Definition 10.3.2.1. Let C be a Whitehead model category, with associated ∞-category
C =C[W −1], which we present as an (∞-categorical) localization of quasi-categories here. Let
Ob(Cell(C)) be the indiscrete category of absolute structured cell complexes in C (with
objects given by absolute cell complexes, and exactly one morphism between any two objects).
We denote by Cell(C) the quasi-category obtained via the following pullback of simplicial sets
(where we treat categories as quasi-categories, via the nerve construction).

Cell(C) C

Ob(Cell(C)) Ob(C).

⌟ (10.56)

In other words, Cell(C) denotes the quasi-category whose objects are given by the absolute
structured cell complexes in C, mapping spaces and given by the mapping spaces of the
underlying objects in C.

Observation 10.3.2.2. Observe that the forgetful functor

Cell(C)→ C
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is always an equivalence of ∞-categories. Indeed, by definition, it is fully faithful. The small
object argument applied to the generating boundary inclusions in C shows that it is also
essentially surjective.

Definition 10.3.2.3. Given a Whitehead model category C, with associated∞-category of cell
complexes Cell(C), we say that a morphism between finite cell complexes f ∶X→Y ∈ Cell(C)
is a simple equivalence if the associated morphism in hoCell(C) = hoC is a simple equivalence.
We denote by Sim(C) the wide subcategory of Cell(C), given by finite cell complexes and
simple equivalences.

Observation 10.3.2.4. For any cellularized category Cell(C), the composition of functors

Cell(C)→C→ C

induces a functor
Cell(C)→ Cell(C).

This functor maps weak equivalences into isomorphisms, and hence induces a functor of
quasi-categories

Cell(C)[W −1
]→ Cell(C).

This functor is an equivalence of ∞-categories, which is bijective on objects. Indeed, to see
that it is fully faithful, observe that there is a commutative diagram of functors

Cell(C)[W −1] Cell(C)

C .

(10.57)

The diagonal is an equivalence of ∞-categories, with inverse induced by replacing an object in
C by an absolute cell complex through the small object argument. The right vertical is fully
faithful by construction. Hence, it follows that all functors in the diagram are fully faithful. In
this sense, we can also treat Cell(C) as the localization of the 1-category Cell(C) at weak
equivalences.

Observation 10.3.2.5. It follows by Proposition 10.3.1.4 that every W-functor of Whitehead
model categories F∶C→D descends to a functor of ∞-categories.

Cell(C) Cell(D)

Cell(C) Cell(D)

F

(10.58)

which preserves simple equivalences, and hence restricts furthermore to a functor

Sim(C)→ Sim(D) .

Notation 10.3.2.6. In the context of Observation 10.3.2.5, we will usually also denote the
induced functor (unique up to homotopy equivalence relative to Cell(C) → Cell(C)) by
F∶Cell(C)→ Cell(D) .

There are now three relevant notions of equivalences to study in the context of these
functors.

Definition 10.3.2.7. Given two W-functors F,G∶C→D between Whitehead model categories
C and D, we say that an isomorphism of the associated functors of ∞-categories Cell(C)→
Cell(D)

F ≃ G

is an (∞-categorical) simple equivalence if the induced isomorphism F(X) ≃ G(X) in hocD is a
simple equivalence, for each finite structured cell complex X in C.
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Remark 10.3.2.8. Observe that any∞-categorical simple equivalence of W-functors η∶F ⇒ G
as in Definition 10.3.2.7 descends to a natural isomorphism

hocC hocD

F

G

≅ (10.59)

given by pointwise simple equivalences. It follows from Lemma 9.1.3.11 that η induces a
natural isomorphism of Whitehead groups WhC ○ F ≅WhC ○G (and monoids), making the
diagram

WhC(X)

WhD(F(X)) WhD(G(X))

WhF WhG

η∗

(10.60)

commute. Hence, for most of the purposes of simple homotopy theory, the two functors F and
G can be identified.

Definition 10.3.2.9. We say that a W-functor of Whitehead model categories F∶C→D is
an ∞-categorical homotopy equivalence (of Whitehead model categories), if there exists another
W-functor G∶D→G together with ∞-categorical simple equivalences of cellularized functors

F ○G ≃ 1C and G ○ F ≃ 1D .

Definition 10.3.2.10. We say that a W-functor of Whitehead model categories F∶C→D is
a weak equivalence (of Whitehead model categories), if the induced functor

F∶Cell(C)→ Cell(D)

is an equivalence of ∞-categories, and the induced functor

F∶Sim(C)→ Sim(D)

is also an equivalence of ∞-categories.

Let us observe some of the obvious relations of the several different possible notions of
equivalence.

Observation 10.3.2.11. Clearly, whenever F∶C→D is an ∞-categorical homotopy equiva-
lence of Whitehead model categories, then it is also a weak equivalence.

Lemma 10.3.2.12. Let F∶C→D be a W-functor of Whitehead model categories. Then the
first of the following three conditions implies the remaining two.

1. F is a weak equivalence of Whitehead model categories.

2. The following two conditions hold.

• Every finite structured cell complex X ∈ hocD is simply equivalent to a finite cell
complex of the form F(Y), for a finite structured cell complex Y in C.

• An morphism ω∶X → Y ∈ hocC is a simple equivalence, if and only if F(ω) is a
simple equivalence.

3. The induced functor of Whitehead frameworks W(C)→W(D) is a τ -equivalence (see
Definition 9.2.0.8).

Suppose, furthermore, that F∶Cell(C)→ Cell(D) is an equivalence of ∞-categories; then the
converse implications also hold.
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Proof. Observe that for any Whitehead model category C the full subcategory of hoCell(C)
given by the finite cell complexes is canonically identified with hoC. By the assumption on
the induced functor F, it follows that F induces a fully faithful functor

hocC→ hocD .

Furthermore, by the assumption that F restricts to an equivalence of categories on the associated
categories of finite cell complexes and simple equivalences, it follows that this functor is also
essentially surjective, and thus an equivalence of categories. Proposition 9.2.0.7 states that

hocC→ hocD

being an equivalence of categories together with the second condition in the statement of
the lemma is equivalent to F inducing a τ -equivalence. Hence, it remains to prove that
the first condition implies the second. In fact, we will show that under the assumption that
F∶Cell(C)→ Cell(D) is an equivalence of categories, the two conditions are equivalent. Indeed,

Sim(C)→ Sim(D)

being essentially surjective is exactly the claim that every finite cell complex in D lies in the
image of F, up to simple equivalence. Next, observe that by the definition of a subcategory in the
∞-categorical sense, the mapping spaces in Sim(C) and Sim(D) are given by path components
of the mapping spaces in Cell(C) and Cell(D), respectively. As F∶Cell(C)→ Cell(D) is fully
faithful, it follows that the functor Sim(C)→ Sim(D) is fully faithful, if and only if it induces
a surjection on path components, i.e., is full. In other words, it is fully faithful, if and only if
the following holds: A morphism in ω∶X→Y in hocC is a simple equivalence, if and only if
F(ω) is a simple equivalence.



Chapter 11

Simple homotopy theory of
diagrams

It is a classical question in homotopy theory what precise shape colimit diagrams need to
have, in order for them to preserve (weak) homotopy equivalences. For example, a classical
statement is what is sometimes called the cube lemma (see [KP86], for example): Suppose we
are given a commutative diagram of spaces

● ●

● ●

● ●

● ●

f

w0

a

w2

a′

f ′

w1 w

(11.1)

with the front and back square pushout, all hooked arrows closed Hurewicz cofibrations, and
w0,w1,w2 homotopy equivalences. Then w is also a homotopy equivalence. Similarly, if the
hooked arrows are Serre-cofibrations and w0,w1,w2 are weak homotopy equivalences, then so
is w. From a modern perspective, these claims may be interpreted as the back and front square
not just being pushout squares, but homotopy pushout squares or, even more modernly put,
pushout squares in the associated ∞-categories (of general spaces and, respectively, of spaces
with the homotopy type of a CW-complex; see, for example, [Lur09], specifically Theorem
4.2.4.1). Now, suppose that all objects in the above cube are equipped with cell structures in
Top, and with respect to these cell structures, w0,w1,w2 are simple equivalences. One may
then again repeat the question and ask whether w is a simple equivalence. In other words,
what shape do the front and the back face need to have in order for simple equivalences to be
preserved under pushout. More generally, we may ask the question whether we can compute
the Whitehead torsion of w in terms of the torsions of w0,w1,w2. In [Coh73, Prop.22], Cohen
gives such a criterion for the classical simple homotopy theory of CW-complexes. Namely, if
both the front and back face are given by pushout squares such that all arrows are given by
inclusions of subcomplexes, then

⟨w⟩ = f ′∗⟨w1⟩ + a
′
∗⟨w2⟩ − (f

′
○ a)∗⟨w0⟩ .

In particular, if w0,w1 and w2 are simple equivalences then the expression above is 0, and w is
also a simple equivalence. In [KP86, Theorem (4.34)], the authors gave such a formula (under
somewhat stronger conditions) for more general simple homotopy theories. Their frameworks
do not cover the combinatorial examples which we are interested in, however. To obtain
general answers to this question, for arbitrary Whitehead model categories, we will now study

533
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the simple homotopy theory of diagrams. In particular, we will provide similar results for
finite colimit diagrams of significantly more general shape, reprove the sum-formula for general
Whitehead model categories under weaker assumptions than [Coh73], and compute the general
Whitehead groups associated to categories of diagrams indexed over a Reedy category. This
will ultimately allow us to compute the stratified Whitehead groups defined in [Waa21].

11.1 Simple homotopy theory of Reedy diagrams
We first need to consider an appropriate framework to specify which shapes of diagrams of
cell complexes we allow for. As in Section 8.3, we follow the paradigm: Good diagrams of
cell complexes, are cell complexes of diagrams. In Section 8.3 we developed the theory of cell
complexes in functor categories in much detail. We refer to Section 8.3, for language and
notation.

11.1.1 Reedy Whitehead model categories
For the theory of diagrams in a Whitehead model category to be well-behaved, we will need
the following slightly stronger assumption on the expansions. When we refer to expansions as
morphism in C, this will mean we refer to the underlying morphism of the structured relative
cell complex.

Definition 11.1.1.1. Let C be a Whitehead model category. We say that C is properly
generated if a morphism f ∶X → Y in C is a fibration if and only if it has the lifting property
with respect to all morphisms in EC, or equivalently, if EC is a generating set for acyclic
cofibrations.

Example 11.1.1.2. The Whitehead model categories sSet and Top are properly generated.

We will also need the following lemma on the preservation of compactness properties:

Lemma 11.1.1.3. Suppose that we are given two cellularized categories C,D as well as a
functor L∶C→D, which admits a right adjoint L ⊣ R, such that R can be cellularized. Then
L preserves filtration compact objects.

Proof. Let c∶A → X be a structured relative cell complex in D and let B ∈ C be filtration
compact. Now, let c●∶ I▷ →RCell(C)A be a filtration of c by subcomplexes, with underlying
cocone X●∶ I▷ →D. Consider the following composition of canonical isomorphisms

lim
Ð→
I

C(L(B),Xi
) ≅ lim
Ð→
I

C(B,R(Xi
))

≅C(B, lim
Ð→
I

R(Xi
))

≅C(B,R(lim
Ð→
I

Xi
))

≅C(B,R(X))
≅C(L(B),X) .

The first follows by the adjunction L ⊣ R, the second follows from B being filtration compact
and R(X●) being the underlying diagram in C of the diagram filtration of subcomplexes R○ c●,
where R is some cellularization of R. The third follows from R being cellularizable and hence
preserving colimits. The final isomorphism is again given by adjunction. The composition
of these canonical isomorphisms is the canonical comparison morphism lim

Ð→I
C(L(B),Xi)→

C(L(B),X) induced via the universal property of the colimit.

We now recommend that the reader recall the general notation for the cellularized compo-
sition products −◯○ − which we studied in Section 8.3.



11.1. SIMPLE HOMOTOPY THEORY OF REEDY DIAGRAMS 535

Lemma 11.1.1.4. Let R be a Reedy category C be a cellularized category. Then, for every
finite cell complex U ∈ SetR and every filtration compact object B ∈C, the induced diagram
U ◯○ B ∈CR is filtration compact.

Proof. Via induction over the number of cells of U and Lemma 8.1.6.7, it suffices to see
that Rr ◯○ B is filtration compact, for each r ∈ R. This follows by Lemma 11.1.1.3 and
Example 8.3.7.12.

Definition 11.1.1.5. A Reedy category R will be said to have locally finitely many degenera-
cies, if for every r ∈R, there are only finitely many r′ ∈R, such that there exists a morphism
r → r′ in R−. Dually, a Reedy category R have locally finitely many faces if for every r ∈R,
there are only finitely many r ∈R, such that there exists a morphism r → r in R+.

Observation 11.1.1.6. It follows immediately from Example 8.3.6.9 that a Reedy category R
has locally finitely many degeneracies if and only if, for each r ∈R, the cell complex Rr ∈ SetR

has only finitely many cells.

Notation 11.1.1.7. For the remainder of this section, we drop the indices from the sets of
generating boundary inclusions and expansions of a Whitehead model category C and just
write B and E.

Recall that, given r an element of a Reedy category R, we denote by ιr ∶∂Rr ↪ Rr the
canonical inclusion (see Notation 8.3.3.2).

Proposition 11.1.1.8. Let C be a properly generated Whitehead model category, and let R
be a Reedy category that has locally finitely many degeneracies. Equip the cellularized category
CR with the set of expansions

{ιr◯̂○ e ∣ e ∈ E, r ∈R} .

Then, equipped with this class of expansions, CR is a properly generated Whitehead model
category.

Proof. The relevant cofibrantly generated (semi)-model structure is the Reedy (semi) model
structure as discussed in [Hir03, Thm. 15.6.27] (the case of semi-model categories is proven
entirely analogously to the case of model categories). Indeed, as we have assumed that B and
E provide sets of generating cofibrations and acyclic cofibrations, it follows by the construction
of the Reedy (semi)model structure, that

BR
= {ιr◯̂○ b ∣ b ∈ B, r ∈R}

and
ER
= {ιr◯̂○ e ∣ e ∈ E, r ∈R}

define generating sets of cofibrations and acyclic cofibrations for the Reedy (semi)-model
structure. For the filtration compactness assumption on the objects ∂Rr◯○ A, observe first that
the targets of BR are filtration compact by Lemma 11.1.1.4. For the sources of BR and ER,
we apply the same argument, and hence only show the case of the former. Let b∶∂D →D ∈ B
and r ∈R. Observe that the source of ιr◯̂○ b ∣ b is a pushout of a span with targets ∂Rr ◯○ D
and Rr ◯○ ∂D. By Lemma 8.1.6.7, it suffices to see that the latter two are filtration compact.
As ∂Rr is a subcomplex of Rr, and the latter is assumed to be finite, it follows that ∂Rr

is also finite. Hence the filtration compactness of both ∂Rr ◯○ D and Rr ◯○ ∂D follows by
Lemma 11.1.1.4. Finally, we need to expose a simple cylinder on CR. To this end, fix a simple
cylinder

{0,1}⊗ − i
↪Ð→ [0,1]⊗ −

together with
π∶ [0,1]⊗ −→ 1C
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on C. We claim that the associated relative cellularized functor

iR∶ ({0,1}⊗ −)R ↪ ([0,1]⊗ −)R

as constructed in Construction 8.3.3.13, together with πR defines a simple cylinder on CR.
AS ({0,1} ⊗ −)R = (−) ⊔ (−) and 1R

C = 1CR , it is immediate that this provides a factor-
ization of the fold map. To see that the resulting cylinder is simple, use Remark 10.2.1.2
and Construction 8.3.3.13 together with the explicit description of the elementary expansions
in ER.

Notation 11.1.1.9. Given a properly generated Whitehead model category, if we refer to CR

as a Whitehead model category, it will always be with respect to the structure of a cellularized
category with expansions described in Proposition 11.1.1.8.

For the remainder of this section, fix a properly generated Whitehead model category C
and a Reedy category with locally finitely many degeneracies. Let us make a first observation
about CR, which follows by Example 10.1.3.6 and Remark 8.3.6.14:

Corollary 11.1.1.10. A structured relative cell complex c∶X ↪ Y ∈CR is an expansion if and
only if, for every r ∈R, the associated structured relative cell complex ιr⊛̂c is an expansion.

We will want to think of cell complexes in CR as specific types of commutative diagrams,
indexed over R, in Cell(C). This makes rigorous the proclaimed paradigm:
“Good diagrams in cell complexes are cell complexes in diagrams.”

Construction 11.1.1.11. Let r ∈R. In Example 8.3.6.9 we have seen that the evaluation at
r functor (−)r ∶CR

→C is equipped with the structure of a cellularized functor, given by the
canonical isomorphism (−)r ≅Rr

⊛ −. If X ∈Cell(CR
) is a structured cell complex, then we

may explicitly compute the set of cells of Xr as given by the set of compositions

{D
σ
Ð→Xr′ X

f

ÐÐ→Xr
∣ σ∶Rr′ ◯○ D →X ∈ CX, f ∶ r

′
→ r ∈R+}

using the notational conventions of Notation 8.3.4.2. Considering all evaluation functors at
the same time, we obtain a commutative diagram D given by

r ↦ Xr

(r
f
Ð→ r′)↦ (Xr

Xf

ÐÐ→ Xr
′

)

in Cell(C). This diagram has the following additional properties:

1. Recall that ∂R+/r ⊂R+/r denotes the full subcategory of the overcategory R+/r, given by
such arrows f ∶ r′ → r ∈R+ that are not the identity. For every r ∈R, the colimit

lim
Ð→

(r′→r)∈∂R+
/r

Xr′

obtains a cell structure via the set of cells

⋃
f ∶r′→r∈R+,f≠1r

XfCXr′ .

(This is simply the cell structure on ∂Rr
⊛X).

2. For every r ∈R, the canonical morphism

lim
Ð→

(r′→r)∈∂R+
/r

Xr′
→Xr

defines an inclusion of structured cell complexes, with respect to these structures. (This
is the cellularized latching map at r, obtained through the cellularized functor ιr ⊛ −).
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It follows, by Theorem 8.3.4.8, that the diagrams in Cell(C), indexed over R that fulfill these
two properties are precisely the diagrams which we can expect to arise from a structured cell
complex in CR.

In the following, we will not specify the degree functions of Reedy categories; it is not
relevant to the associated shapes of diagrams.

Example 11.1.1.12. Let R be the Reedy category of the following shape

● ●

● ● .

−

+ +

−

(11.2)

Then the diagrams in Cell(C) arising from Construction 11.1.1.11 are the diagrams that are
simply commutative squares

X0 X2

X1 X

(11.3)

with both vertical arrows inclusions of subcomplexes.

Example 11.1.1.13. Let R be the Reedy category of the following shape

● ●

● ●

+

+ +

+

(11.4)

Then the diagrams in Cell(C) arising from Construction 11.1.1.11 are the diagrams

X0 X2

X1 X

(11.5)

which are such that all morphisms are inclusions of subcomplexes, and the induced morphism
in Cell(C)

X1 ∪X0 X2 → X

is also an inclusion of subcomplexes.

Example 11.1.1.14. Let R be the Reedy category of the following shape

0 1 2 3 . . .+ + + + (11.6)

with objects indexed over the naturals. The diagrams in Cell(C) arising from Construc-
tion 11.1.1.11 are the diagrams

X0 X1 X2 X3 . . . (11.7)

with all morphisms given by inclusions of subcomplexes.

We are now faced with two possible definitions of what a simple equivalence of diagrams
should be. If we think of a diagram X as a finite structured cell complex in the Whitehead
model category CR, then there is a canonical notion of simple equivalence associated to
this simple homotopy theory (Notation 9.1.3.7). However, if we think of this diagram as
a diagram valued in Cellc(C), then the obvious notion of simple equivalence is pointwise
simple equivalence. It will turn out that these two notions are in fact the same, at least under
appropriate finiteness assumptions on R.
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11.1.2 Computation of the diagrammatic Whitehead group
The final claim of the last subsection will be a consequence of the computation of Whitehead
groups in functor categories, which we now perform. To this end, let us first investigate which
functors between Reedy categories induce W-functors.

Proposition 11.1.2.1. Let R and T be Reedy categories with locally finitely many degeneracies.
Let U c

↪Ð→W be a relative cell complex in SetRop×T (with its necessarily unique structure by
Corollary 8.3.4.11). Such that for every r ∈R and t ∈ T images of the relative latching maps

ι●,tr,●⊛̂c∶L
t
r(W ) ∪Lt

r(U) U
t
r →W t

r

has finite complement, which is furthermore non-empty for only finitely many t. Then

c◯○ −∶U ◯○ −→W ◯○ −

defines a relative W-functor from CR to CT. In particular, this is the case whenever c is a
finite cell complex.

Proof. By Proposition 8.3.3.10, the functor above is canonically a cellularized functor. We verify
the requirements of Lemma 10.2.1.6. Let us first see that c◯̂○− maps elementary expansions
into (possibly transfinite) simple equivalences. It thus suffices to show that it maps elementary
expansions into simple equivalences. By Corollary 11.1.1.10, it furthermore suffices to see that

ιt◯̂○ (c◯̂○ (ιr◯̂○ e)) ≅ (ι
t
◯̂○ c◯̂○ ιr)⊛̂e

is an expansion, for every r ∈ R, t ∈ T and e ∈ E. As (ιt ◯○ c ◯○ ιr) ∈ Set⋆ = Set, this claim
follows by Example 10.1.3.6. Now, to see that c◯̂○− preserves finite cell complexes, let b be a
generating boundary inclusion of C and r ∈R. We then compute

ιt◯̂○ (c◯̂○ (ιr◯̂○b)) ≅ (ι
t
◯̂○ c◯̂○ ιr)⊛̂b .

By Example 10.1.3.6 and Theorem 8.3.4.8, it suffices to see that (ιt ◯○ c◯○ ιr) ∈ Set only has
finitely many cells (i.e., has finite complement), and has no cells for only finitely many t.
Finally, observe that (by exchanging the order of variables), we have

(ιt◯̂○ c◯̂○ ιr) ≅ (ι
t
◯̂○ ιr)⊛̂c.

By Example 8.3.2.9, these maps are equivalently given by the relative latching maps

(ι●,tr,●)⊛̂c,

finishing the proof.

As a corollary of this result and Corollary 8.3.6.3 and Remark 8.3.7.10 as well as the
computation of latching maps in the last proof, we obtain W-functor versions of Kan extensions
and restrictions.

Corollary 11.1.2.2. Let R and T be Reedy categories with locally finitely many degeneracies.
Let F ∶R → T be a functor of Reedy categories, such that the following holds

1. F is a left fibration;

2. For every r ∈ R, the associated (cardinality ≤ 1) set CtF (r) ⊂ Tt
F (r) (see Proposi-

tion 8.3.7.9) is only non-empty for finitely many t ∈ T.

Then the cellularized functor F!∶CR
→CT is a W-functor.

Dually, suppose that

1. F is a right fibration;
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2. For every t ∈ T, the associated (cardinality ≤ 1) set CF (r)t ⊂ TF (r)
t (see Proposition 8.3.7.9)

is only non-empty for finitely many r ∈R.

Then the cellularized functor F ∗∶CT
→CR is a W-functor.

Remark 11.1.2.3. Observe that the first condition of Corollary 11.1.2.2 is trivially met, if T
is a finite Reedy category. However, by the explicit computation in Example 8.3.6.9 together
with Proposition 8.3.7.7 they also clearly hold for the inclusion functors {r}↪R, for r ∈R, if
R has locally finitely many degeneracies. While an easier proof would have certainly been
available, this shows that both functors of the adjunction Rr ◯○ − ⊣ (−)

r are W-functors.

Example 11.1.2.4. By Example 8.3.7.15 and Lemma 8.3.7.16, the inclusion functor i∶R≤n ↪R
is always a bifibration. The set Cri(r) computes to

{f ∶ r → r ∣ f = 1}

for r ∈R≤n and r ∈R and dually to Ci(r)r

{f ∶ r → r ∣ f = 1}

for r ∈ R≤n and r ∈ R. Hence, this set is non-empty if and only if r = r. Consequently,
the restriction and extension functors always define W-functors. We may use these explicit
descriptions of the inclusions in Corollary 11.1.2.2 to give (non-surprising) descriptions of the
sets of cells of i∗c, for a relative cell complex c∶A↪X in CR. Namely, under Theorem 8.3.4.8,
using Notation 8.3.4.2, it is simply given by

{σ∶D →Xr
∣ r ∈R,deg(r) ≤ n,σ ∈ Cc,r}.

Similarly, the set of cells of i!d, for d∶B ↪ Y ∈CR≤n is given by

{D
σ
Ð→ Y r ≅ (i!Y )

r
∣ r ∈R≤n, σ ∈ Cd,r .} ≅ Cd .

Remark 11.1.2.5. Example 11.1.2.4 generalizes to any subcategory R′ ⊂R which is ±-closed,
by exactly the same arguments.

We can now state the main result on the structure of Whitehead groups of diagram
categories.

Theorem 11.1.2.6. Let C be a properly generated Whitehead model category and let R be a
finite Reedy category. The cellularized evaluation functor (−)r ∶CR

→C, for r ∈R, induces a
natural isomorphism

WhCR(X)
(Wh(−)r )r∈R
ÐÐÐÐÐÐÐ→ ∏

r∈R
WhC(X

r
)

for finite structured cell complexes X in CR.

Remark 11.1.2.7. The reader may also be interested in the analogous statement of Theo-
rem 11.1.2.6, where Whitehead monoids are used instead. This is clearly false. If we set X = ∅,
then W̃hCR(∅) is the set of equivalence classes of all cellularized diagrams (with finitely many
cells), modulo simple equivalence. ∏r∈R WhC(∅) is then the product of simple homotopy
types in C. Clearly, for two diagrams to be even weakly equivalent, it does not suffice that
their values at every r ∈R are simply equivalent. Take, for example, the diagrams on 0 −

Ð→ 1
given by S1 1

Ð→ S1 and S1 f
Ð→ S1, where f is a map of degree 2.

Proof of Theorem 11.1.2.6. We proceed via induction over the maximal degree n of an element
in R. In the case where n = 0, R is a discrete category, and the claim is immediate from the



540 CHAPTER 11. SIMPLE HOMOTOPY THEORY OF DIAGRAMS

construction of the Whitehead framework on CR. Now, for the inductive step, denote by i∗

the cellularized restriction functor associated to R≤n
i
↪Ð→R. Consider the factorization

WhCR(X) ∏r∈R WhC(X
r)

WhCR≤n (i
∗X) ×∏r∈R,deg(r)=n+1WhC(X

r) .

(Wh(−)r )r∈R

(Whi∗ ,∏r∈R,deg(r)=n+1 Wh(−)r ) (∏r∈R≤n
Wh(−)r ,1)

(11.8)
Note that the right diagonal morphism is an isomorphism by the inductive assumption applied

to CR≤n . It thus suffices to show that the left diagonal is an isomorphism. Let us begin, by
showing injectivity. So, suppose we are given an inclusion of subcomplex, which is also a weak
equivalence, X a

↪Ð→ Y, such that i∗(a)∶ i∗X → i∗Y and ar ∶Xr ↪ Yr, for deg(r) = n + 1, have
trivial Whitehead torsion. Recall that i!i∗ = skn. Consider the natural inclusion of cellularized
functors

j∶ skn ↪ skn+1 = 1CR ,
of Example 8.3.6.11. Under Corollary 8.1.4.8, we obtain an induced diagram

sknX X

sknY sknY ∪sknX X Y .

skna=i!i∗a
ĵ(a)

(11.9)

in C↪ellc(C), with the left square cobase change. As i∗a was assumed to be a simple equivalence,
and i! is a W-functor (Example 11.1.2.4), it follows that the left hand vertical is a simple
equivalence. By stability of simple equivalences under cobase change, it follows that the right
hand vertical is a simple equivalence. It hence suffices to show that ĵ(a) is a simple equivalence.
By Remark 8.3.6.14, it is given by a cobase change of the coproduct of the relative cell complex

∐
deg(r)=n+1

(∂Rr →Rr)∗R(∂Rr
→Rr

)⊛̂a,

with deg(r) = n + 1. By Example 10.1.3.6, (and stability of simple equivalences under cobase
change) it thus suffices to show that (∂Rr

→Rr
)⊛̂a is a simple equivalence. The latter fits

into a commutative diagram in C↪ellc(C)

∂Rr
⊛X Xr

∂Rr
⊛Y ∂Rr

⊛Y ∪∂Rr⊛X Xr Yr

∂Rr⊛a (11.10)

with the left square cobase change. Arguing as we have just done for the analogous diagram
involving skn, it thus suffices to see that the left hand vertical is a simple equivalence. Observe
that, by definition of ∂Rr, the identity ∂Rr

≅ (sknR)r ≅Rr
◯○ (sknR) holds. Furthermore, as

skn = i!i∗, we way use the associativity law for ◯○ (Proposition 8.3.3.10) to obtain

∂Rr
≅Rr

◯○ (sknR)

≅Rr
◯○ (R●i(●) ◯○ Ri(●)

● )

≅ (Rr
◯○ R●i(●))◯○ Ri(●)

● .

Using Proposition 8.3.3.10, we use associativity up to canonical isomorphism of ◯○ to omit
some brackets from here on. We then obtain

∂Rr
⊛ a ≅Rr

◯○ R●i(●) ◯○ Ri(●)
● ◯○ a

≅Rr
◯○ R●i(●) ◯○ (i

∗a)

≅ ((−)
r
○ i!)(i

∗a) .
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By assumption, i∗a is a simple equivalence. Furthermore, by Remark 11.1.2.3 and Exam-
ple 11.1.2.4, i! and (−)r are W-functors, and hence preserve simple equivalences. Hence, it
follows that ∂Rr

⊛ a is a simple equivalence, as was to be shown. This finishes the proof of
injectivity.
Finally, let us show surjectivity. We first show that, for every element of the form ⟨a′∶ i∗X↪
Y′⟩ ∈ WhR≤n(i

∗X), with a′∶ i∗X ↪ Y′ a weak equivalence (i.e., an acyclic cofibration) in
RCell(BR≤n), there exists an acyclic cofibration a∶X→Y, such that Whi∗⟨a⟩ = ⟨a′⟩. Indeed,
consider the pushout square in Cell(CR

)

i!i
∗X X

i!Y
′ Y .

a (11.11)

Observe that as i! is a left Quillen functor and i∗X ↪ Y′ is an acyclic cofibration (with
cofibrant source), it follows that the left vertical in Diagram (11.11) is an acyclic cofibration.
Hence, by stability of the latter under cobase change it follows that a∶X↪Y is again an acyclic
cofibration, i.e., defines an element of the Whitehead group. As cellularized functors preserve
pushout squares in Cell(C), we obtain a cobase change diagram

i∗i!i
∗X i∗X

i∗i!Y
′ i∗Y Y′ .

≅

≅

(11.12)

Recall, furthermore, that the embedding i∶R≤n ↪R has the property that i! is fully faithful,
i.e., that unit 1 → i∗i! is an isomorphism (see, for example, [RV13]). It follows that the
upper horizontal and lower bend horizontals are isomorphisms. As the square is a pushout, it
follows that the lower horizontal is an isomorphism too. Consequently, by the two-out-of-three
property, the dashed morphism is an isomorphism showing that

Whi∗(⟨X→Y⟩) = ⟨i∗X→Y′⟩ .

We have now shown that the composition of

WhCR(X)→WhCR≤n (i
∗X) × ∏

r∈R,deg(r)=n+1
WhC(X

r
)

with projection to the first component is surjective. Hence, showing that elements of the form

(0, . . . ,0, ⟨Xr a′

↪Ð→ Z⟩,0, . . . )

with deg(r) = n + 1 lie in the image of the map finishes proof of surjectivity. Let us show that
this holds.
Consider the counit of adjunction Rr ◯○ Xr → X, together with the canonical morphism
Rr ◯○ X

r →Rr ◯○ X
r ∪∂Rr◯○Xr ∂Rr ◯○ Z. The latter is a cobase change of ∂Rr ◯○ X

r → ∂Rr ◯○ Z,
which is an acyclic cofibration (as by Proposition 11.1.2.1 ∂Rr ◯○ − is a W-functor). Let
e∶X↪ X̂ be a fibrant replacement of X through a (transfinite) expansion (using the small object
argument, and the assumption that elementary expansions generate acyclic cofibrations). It
follows that the following lifting diagram admits a solution

Rr ◯○ X
r X X̂

Rr ◯○ X
r ∪∂Rr◯○Xr ∂Rr ◯○ Z .g

(11.13)
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Furthermore, by the compactness assumptions in Theorem 10.2.2.1, it follows that this lift
factors through a finite subexpansion of X ↪ X̂. We may thus assume that X̂ is given by a
finite expansion of X. Next, observe that as e, er and i∗e are all simple equivalences, they all
induce isomorphisms on Whitehead groups. Performing a quick diagram chase shows that
we may without loss of generality replace X by X̂ or, in other words, assume that g factors
through X. Now let a∶X→Y be the structured relative cell complex obtained via the following
cobase change:

Rr ◯○ X
r ∪∂Rr◯○Xr ∂Rr ◯○ Z X

Rr ◯○ Z Y .

g

a (11.14)

As the left vertical is an acyclic cofibration, so is a, which shows that it defines a well
defined element in the Whitehead group of X. By construction, the structured relative cell
complex associated to a only has cells of the form Rr ◯○ D → Y . It thus follows, by the explicit
computation of the sets of cells of evaluation and restriction in Construction 11.1.1.11 and
Example 11.1.2.4 that the Whitehead torsion ⟨a⟩ maps to an element of the form

(0, . . . , ⟨ar⟩,0, . . . )

in WhCR≤n (i
∗X) ×∏r∈R,deg(r)=n+1WhC(X

r). It remains to show that ⟨ar⟩ = ⟨a′∶Xr → Z⟩.
Applying (−)r to Diagram (11.14), we obtain the right square in the following diagram of
cobase changes of relative cell complexes

Xr (∐Rr
r,f≠1 Z) ⊔X

r Xr

Z ∐Rr
r
Z Yr .

1Xr

i1r

a′ 1⊔a′

gr

ar

i1r

(11.15)

Hence, ar is a cobase change of a′ along the identity, and we have

Wh(−)r(⟨a⟩) = ⟨ar⟩ = 1∗⟨a′⟩ = ⟨a′⟩ ,

as was to be shown.

As a consequence of this theorem, we obtain the following equivalent characterizations of
simple equivalences in a diagram category.

Corollary 11.1.2.8. Let C be a properly generated Whitehead model category and let R be a
Reedy category that locally has finitely many degeneracies and faces. Let X and Y be finite
cell complexes in CR. Finally, let ω∶X → Y be a morphism in hocC

R. Then ω is a simple
equivalence if and only if, for every r ∈R, the associated morphism

ωr ∶Xr →Yr

in hocC is a simple equivalence.

Proof. The finite case is immediate from Theorem 11.1.2.6. For the locally finite case, observe
first that the only if part is immediate from (−)r being a W-functor. For the converse, a
straightforward inductive argument shows that every object r ∈R of the Reedy category R
is contained in a finite full subcategory S ±-closed. Furthermore, the union of any two such
sub-categories is again a finite ±-closed subcategory of R. Consequently, any finite subset of
objects of R is contained in a full finite ±-closed subcategory. By Remark 11.1.2.5, it holds
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that for a ±-closed subcategory S ⊂R the associated inclusion functor i∶S↪R induces adjoint
W-functors i! ⊣ i∗. The counit of adjunction is the inclusion of a cellularized subfunctor

i! ○ i
∗
↪ 1

with the set of relative cells of i! ○ i∗X ↪ X and i! ○ i
∗Y ↪ Y given by the respective unions

over the sets of cells of type r, for r ∉ S. Since X and Y are finite cell complexes, it follows
that there exists a finite ±-closed subcategory S, such that i! ○ i∗X↪ X and i! ○ i

∗Y↪Y are
bijective on cells, and hence isomorphisms of cell complexes by Corollary 8.1.4.1. In particular,
we obtain a commutative diagram in hocC

R,

i!i
∗X i!i

∗Y

X Y

i!i
∗ω

≅ ≅

ω

(11.16)

with verticals given by isomorphisms of cell complexes. As i! is a W-functor and hence
preserves simple equivalences, it follows that ω is a simple equivalence if i∗ω is a simple
equivalence. By assumption, and using the identity (i∗ω)r = ωr, for r ∈ S, it follows that
(i∗ω)r is a pointwise simple equivalence. We have thus reduced the assertion to the finite case,
which we have already shown.

11.2 Simple homotopy colimits and their applications
Now, having a good understanding of the simple equivalences in a category of diagrams, we
may easily leverage our investigations of cellularized left Kan extensions in Section 8.3.7 to
study the interaction of appropriately cellularized colimits with Whitehead torsion.

11.2.1 Simple homotopy colimits and the gluing formula for White-
head torsions

Let us begin by showing that pointwise simple equivalences between appropriately cellularized
diagrams descend to simple equivalences on the appropriately cellularized colimits. This is a
special case of Corollary 11.1.2.2, together with Corollary 11.1.2.8.

Corollary 11.2.1.1. Let C be a properly generated Whitehead model category. Let R be a
left fibrant Reedy category that has locally finitely many degeneracies. Then the cellularized
colimit functor

lim
Ð→

CR
→C

of Example 8.3.7.11 is a W-functor.
Now, let R have locally finitely many faces and degeneracies and let

α∶X→Y

in hocC
R, such that

αr ∶Xr →Yr

is a simple equivalence in hocC, for each r ∈R. Then the induced morphism

lim
Ð→

Xr → lim
Ð→

Yr

in hocC is a simple equivalence.

Let us now derive the cube lemma and sum formula for properly generated Whitehead
model categories.
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Notation 11.2.1.2. In the following, we denote by Q the category {0→ 1}×{0→ 1} equipped
with the structure of a Reedy category given by

(0,0) (1,0)

(0,1) (1,1)

−

+ +

−

(11.17)

(see Example 11.1.1.12). The explicit choice of degree function will not be relevant to our
discussion. Denote by S ⊂Q the full Reedy subcategory

(0,0) (1,0)

(0,1) .

−

+ (11.18)

We denote by i∶S↪Q the inclusion functor.

Let us first compute the Whitehead torsion associated to cellularized pushouts, given by
the cellularized functor lim

Ð→
∶CS
→C. To this end, let us explicitly describe the inverse of the

decomposition isomorphism in Theorem 11.1.2.6 for the case R = S.

Construction 11.2.1.3. Let X ∈Cell(CS
) be a finite structured cell complex, with associated

diagram

X(0,0) X(1,0)

X(0,1)

X(0,0)→(1,0)

X(0,0)→(0,1) (11.19)

in Cell(C). We now give an explicit description of the inverse to the isomorphism

WhCS(X)
(Wh(−)r )r∈S
ÐÐÐÐÐÐÐ→ ⊕

r∈R
WhC(X

r
)

of Theorem 11.1.2.6. Given r ∈ S denote by ir ∶ ∗ ↪ S the inclusion at r. Now, given the
inclusion of a subcomplex (ir)∗X = Xr ↪Y, consider the cobase change square

(ir)!i
∗
rX X

i!Y i!Y ∪(ir)!i∗rX X

(ir)!a ((ir)!a)′ (11.20)

Let us consider, what happens if we evaluate this diagram at r′ ∈ S. As i∗r′ is a cellularized
functor, the associated diagram will again be cobase change. Under the canonical identifications
i∗r′ ≅Rr′

⊛ − and i!r ≅Rr ◯○ −, we obtain canonical isomorphisms of cellularized functor

i∗r′ ○ i
!
r =Rr′

◯○ Rr ◯○ − =Rr′

r ∗ − .

Observe that Rr′

r is a singleton, if r ≤ r′ (in the product order on S ⊂ {0,1}2) and the empty
set otherwise. Hence, we obtain identities of cellularized functors

i∗r′ ○ i
!
r ≅ 1C

for r ≤ r′ and
i∗r′ ○ i

!
r = ∅
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otherwise. Under these identifications, the evaluation of Diagram (11.20) at r′ (i.e., its image
under i∗r′) is given by a cobase change square

Xr Xr
′

Y Y′

Xr→r′

a (11.21)

for r ≤ r′ and by
∅ Xr

′

∅ Xr
′

1
Xr′ (11.22)

otherwise. Now, suppose that a is also a weak equivalence. Denote by ψr the map

ψr ∶WhC(X
r
)→WhCS(X)

⟨a⟩↦ ⟨((ir)!a)
′
⟩ .

That this map is well defined, is easily seen from (ir)! being a W-functor. We may then
apply the description of the functoriality of the Whitehead groups in Proposition 10.2.3.12
and obtain:

Wh(−)r′ψr⟨a⟩ =Wh(−)r′ ⟨((ir)!a)
′
⟩ = (Xr→r′

)∗⟨a⟩ (11.23)

for r ≤ r′ and

Wh(−)r′ψr⟨a⟩ =Wh(−)r′ ⟨(ir)!a)′⟩ = ⟨(((ir)!a)′)r
′

⟩ = ⟨1Xr ⟩ = 0 (11.24)

otherwise. Now, using this construction we define

Ψ∶WhC(X
(1,0)
)⊕WhC(X

(0,1)
)⊕WhC(X

(0,0)
)→WhCS(X)

as the sum of

Ψr = ψr ∶WhC(X
r
)→WhCS(X)

for r = (0,1), (1,0) and

Ψ(0,0) = ψ(0,0) − ψ(0,1) ○ (X(0,0)→(1,0))∗ − ψ(1,0) ○ (X(0,0)→(0,1))∗∶WhC(X
(0,0)
)→WhCS(X) .

A short elementary computation involving Eqs. (11.23) and (11.24) shows that Ψ is the inverse
to (Wh(−)r)r∈S.

Proposition 11.2.1.4. Let X ∈Cell(CS
) be a finite structured cell complex, with associated

diagram
X(0,0) X(1,0)

X(0,1)

f

a (11.25)

in Cell(C). Denote by d∶X(0,0) → lim
Ð→

X, a′∶X(0,1) → lim
Ð→

X and f ′∶X(0,1) → lim
Ð→

X the associated
structure morphisms of the colimit.
Then the group homomorphism

Whlim
Ð→
∶WhCS(X)→WhC(lim

Ð→
X)

is given by
Whlim
Ð→
= a′∗Wh(−)(1,0) + f ′∗Wh(−)(0,1) − d∗ ○Wh(−)(0,0) .
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Proof. We denote X(1,1) ∶= lim
Ð→

X. The claim is equivalent to the commutativity of the diagram

WhCS(X) WhC(X
(1,1))

WhC(X
(1,0))⊕WhC(X

(0,1))⊕WhC(lim
Ð→

X)

Whlim
Ð→

≅
a′∗+f

′
∗−d∗

(11.26)

with the left vertical the isomorphism of Theorem 11.1.2.6 given by pointwise evaluation. To
see that this commutativity holds, we verify commutativity after inverting the left hand vertical.
We use the notation of Construction 11.2.1.3, with a = X(0,0)→(0,1) and f = X(0,0)→(1,0) and
explicitly compute the compositions

Whlim
Ð→
○Ψr .

Recall that ψr⟨b∶Xr ↪Y⟩ is given by the Whitehead torsion of the right hand vertical in the
cobase change square

(ir)!i
∗
rX X

i!Y i!Y ∪(ir)!i∗rX X .

(ir)!b ((ir)!b)′ (11.27)

Now, observe that by functoriality of (cellularized) left Kan extension, we have lim
Ð→
(ir)! =

c!(ir)! ≅ (c ○ ir)! = 1! = 1, for c∶S → ⋆ the constant functor. As cellularized functors preserve
cobase changes, the image of Diagram (11.27) under lim

Ð→
is given by a cobase change square

Xr lim
Ð→

X

Y Y′

b (11.28)

with the upper horizontal given respectively by a′, f ′ and d. In particular, it follows that

Whlim
Ð→
ψr⟨b⟩ = g∗⟨b⟩

with g = d, a′, f ′ respectively. We thus compute

Whlim
Ð→
○Ψ(0,0) =Whlim

Ð→
○ ψ(0,0) −Whlim

Ð→
○ ψ(0,1) ○ f∗ −Whlim

Ð→
○ ψ(1,0) ○ a∗

= d∗ − a
′
∗ ○ f∗ − f

′
∗ ○ a∗ = d∗ − (a

′
○ f)∗ − (f

′
○ a)∗

= d∗ − d∗ − d∗

= −d∗

as well as

Whlim
Ð→
○Ψ(0,1) =Whlim

Ð→
○ ψ(0,1) = a

′
∗;

Whlim
Ð→
○Ψ(1,0) =Whlim

Ð→
○ ψ(1,0) = f

′
∗ .

Hence, it follows that

Whlim
Ð→
○Ψ =Whlim

Ð→
○ (Ψ(0,1) +Ψ(1,0) +Ψ(0,0)) = a′∗ + f ′∗ − d∗

as was to be shown.
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Construction 11.2.1.5. It is easily verified that the inclusion i∶S↪Q is a left and a right
fibration. Let us take an explicit look at the cell structures arising from the associated cellular-
ized functor, from the perspective of Construction 11.1.1.11. We have seen in Example 11.1.1.12,
that a structured cell complex X ∈Cell(CQ

) corresponds to a commutative square

X(0,0) X(1,0)

X(0,1) X(1,1)

(11.29)

in Cell(C), with both verticals given by inclusions of a subcomplex. Similarly, a structured
cell complex X ∈Cell(CS

) corresponds to a span

X(0,0) X(1,0)

X(0,1)

(11.30)

in Cell(C), with the vertical leg given by an inclusion of a subcomplex. Using Proposi-
tion 8.3.7.9, it is a simple computation that the diagram in Cell(C) associated to the restriction
i∗X, for X ∈ Cell(CQ

) is simply the restriction of the diagram in Cell(C) associated to X,
i.e., the cellularized functor i∗ corresponds to removing X(1,1) from Diagram (11.29). A more
interesting computation arises in the case of the cellularized left Kan extension functor i!. The
underlying functor of i! is given by left Kan extension. It follows that the underlying diagram
in C associated to i!X, for X as in Diagram (11.25) is a pushout square

X(0,0) X(1,0)

X(0,1) X(1,1) .

f

a a′

f ′

⌟

(11.31)

Let us now use Proposition 8.3.7.9 to compute the cell structure on this square. First, we
compute the sets Cti(r) ⊂Qt

r, for r ∈ S and t ∈Q.

1. If t < r, in the product partial order, then Qt
r and hence also Cti(r) ⊂Qt

r is empty.

2. If t ∈Q, then Cti(r) is the set of morphisms f ∶ r → t with f ∈Q− (i.e., f = f−) with f− = 1,
i.e can only contain identities. It follows that Cti(r) is empty, if r ≠ t and given by 1r if
r = t.

3. Finally, if t = (1,1), then the only object r ∈ S which admits a morphism r → t in Q− is
(0,1). It follows that Cti(r) is empty, for r ≠ (0,1), and given by the unique morphisms
(0,1)→ (1,1) if r = (0,1).

Hence, we may compute the set of cells of i!X as follows:

1. Cells of type r, with r ∈ S are

{D
σ
Ð→Xr X1

ÐÐ→Xr
∣ σ ∈ CX,r} = CX,r .

2. Cells of type (1,1) are

{D
σ
Ð→X(0,1)

f ′

Ð→X(1,1) ∣ σ ∈ CX,(0,1)} = f
′CX,(0,1) .
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Hence, using Construction 11.1.1.11, we compute

C(i!X)r = CXr

for r ≠ (1,1) and
C(i!X)r = a

′CX(1,0) ⊔ f ′CX,(0,1) .
Observe that the cell structure on CX(1,1) is precisely the cell structure on a cobase change
square in Cell(C) as described in Notation 10.2.1.14. We may summarize this insight as in the
following observation, which we spell out separately, in order to make it more easily accessible
via cross reference.

Observation 11.2.1.6. In the situation of Construction 11.2.1.5: A commutative diagram

X(0,0) X(1,0)

X(0,1) X(1,1)

(11.32)

in Cell(C) with both verticals inclusions of subcomplexes is a cobase change square, if and
only if the associated structured cell complex X ∈ Cell(CQ

) lies in the essential image of
i!∶Cell(CS

)→Cell(CQ
), or, again in other words, if the counit of adjunction

i!i
∗X →X

induces an isomorphism of cell complexes

i!i
∗X ≅ X .

Observation 11.2.1.6 will be very useful insofar as it allows us to translate back and forth
between the more classical context of cobase change squares and their associated cell complexes
and our language of cellularized Kan extensions. We can now prove a generalization of Cohen’s
sum formula [Coh73, Prop.22], that extends the latter in several different directions:

1. Our result holds for general properly generated Whitehead model categories, not just for
the one of spaces.

2. Our result has weaker assumptions on the shape of the pushout diagrams involved, only
requiring one of the legs of a span to be the inclusion of a subcomplex.

3. Our result allows for morphisms hocC
Q, not just such isomorphisms which come from a

cube in Cellc(C).
Theorem 11.2.1.7. Let C be a properly generated Whitehead model category. Let X,Y be
two finite structured cell complexes in CQ, such that the associated diagrams

X(0,0) X(1,0) Y(0,0) Y(1,0)

X(0,1) X(1,1) Y(0,1) Y(1,1)

d

f

a a′

f ′

(11.33)

in Cell(C) are cobase change. Suppose that we are given a morphism

ω∶X→Y

in hocC
Q. Suppose, furthermore, that ω(0,0), ω(1,0), ω(0,1) are isomorphisms in hocC (i.e.,

come from zig-zags of weak equivalences in hoC). Then ω(1,1)∶X(1,1) → Y(1,1) is also an
isomorphism in hocC, and the identity of Whitehead torsions

⟨w(1,1)⟩ = f ′∗⟨w
(0,1)
⟩ + a′∗⟨w

(1,0)
⟩ − d∗⟨w

(0,0)
⟩

holds.
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Let us first state two immediate corollaries, following from this result and Corollary 11.1.2.8:

Corollary 11.2.1.8. Under the assumptions of Theorem 11.2.1.7, the following claims are
equivalent:

1. ω(0,0), ω(1,0) and ω(0,1) are simple equivalences.

2. ω is a simple equivalence.

3. ω(0,0), ω(1,0), ω(0,1) and ω(1,1) are simple equivalences.

We also obtain the following formulation in terms of cubes, which is more akin to the way
[Coh73] phrased the sum formula.

Corollary 11.2.1.9. Let C be a properly generated Whitehead model category. Suppose we
are given a commutative cube in Cellc(C)

X0 Y0

X′0 Y′0

X1 Y1

X′1 Y′1

w0

f

a

b

w1

f ′

w′1

w′0

a′

(11.34)

with left and right face cobase change, a, b inclusion of subcomplexes and w0,w1,w2 weak
equivalences in C. Then the equality of Whitehead torsions

⟨w′1⟩ = f
′
∗⟨w1⟩ + a

′
∗⟨w

′
0⟩ − (f

′a)∗⟨w0⟩

holds.

Let us now provide a proof of Theorem 11.2.1.7:

Proof of Theorem 11.2.1.7. The claim that ω(1,1) is an isomorphism is classical. We provide
it here for the convenience of the reader. By Theorem 10.2.2.1, we may identify hoCQ

= hoCQ

and hoCS
= hoCS. As all structured cell complexes define cofibrant objects, i! is a left Quillen

functor and i∗ is both a right and a left Quillen functor (see [Bar07]), it follows that on hoCQ

we have Li! = i! and Ri∗ = i∗ = Li∗ (using standard notation for left and right derived functors).
Observe, furthermore, that the unit of adjunction 1→ i∗i! (which agrees with the derived unit
here) is an isomorphism. By Observation 11.2.1.6, we may without loss of generality assume
that X = i!i

∗X and Y = i!i
∗Y. Doing so, we obtain i!i

∗ω = ω. By assumption, i∗ω evaluates
to an isomorphism at each r ∈ S. Thus, by the definition of weak equivalences in a functor
category, it follows that i∗ω is an isomorphism. Consequently i!i

∗ω = ω is an isomorphism,
and hence induces an isomorphism after evaluating at (1,1) (using that evaluation can be
cellularized, and is thus left Quillen). Let us now compute the Whitehead torsion of ω(1,1).
We have already seen that up to natural isomorphisms we have ω = i!i∗ω. Observe now, that
we have a commutative diagram of W-functors

CS CQ

C .

i!

lim
Ð→

(−)(1,1) (11.35)
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We obtain an induced commutative diagram of Whitehead groups

WhCS(i∗X) WhCQ(X)

WhC(X
(1,1))

Whi!

Whlim
Ð→

Wh
(−)(1,1) (11.36)

In particular, we have

⟨ω(1,1)⟩ =Wh(−)(1,1)⟨ω⟩

=Wh(−)(1,1)⟨i!i
∗ω⟩

=Wh(−)(1,1) ○Whi!⟨i∗ω⟩
=Whlim

Ð→
⟨i∗ω⟩

=Whlim
Ð→
○Whi∗⟨ω⟩ .

By Proposition 11.2.1.4, we may use the identities (−)ri∗ = (−)r, for r ∈ S, to compute

⟨ω(1,1)⟩ =Whlim
Ð→
○Whi∗⟨ω⟩

= a′∗Wh(−)(1,0) ○Whi∗⟨ω⟩ + f ′∗Wh(−)(0,1) ○Whi∗⟨ω⟩ − d∗ ○Wh(−)(0,0) ○Whi∗⟨ω⟩
= a′∗Wh(−)(1,0)○i∗⟨ω⟩ + f

′
∗Wh(−)(0,1)○i∗⟨ω⟩ − d∗ ○Wh(−)(0,0)○i∗⟨ω⟩

= a′∗⟨ω
(1,0)
⟩ + f ′∗⟨ω

(0,1)
⟩ − d∗⟨ω

(0,0)
⟩

as was to be shown.

11.2.2 Subdivisions of structured cell complexes
In many topological scenarios, it can be useful to observe that the simple homotopy type is
often invariant under subdivision. Let us investigate this type of scenario in the full generality
of Whitehead model categories.

Construction 11.2.2.1. Suppose we are given a cellularized category C and a structured
relative cell complex c∶A ↪ X in C. For every cell (∂D → D,σ∶D → X), we may fix an
alternative cell structure on the generating boundary inclusion ∂D →D, denoted iσ. Then we
can consider the set of cells

Cc′ ∶= ⋃
σ∈Cc

σCiσ ⊂ ⊔
(b∶∂D→D∈B)

C(D,X).

This set defines a new cell structure on c∶A↪X. To see this, fix any filtration-presentation p of
c, with one cell in each transfinite inductive step. Denote the associated transfinite composition
diagram in the form

A =X0
→ ⋅ ⋅ ⋅→X1

→ ⋅ ⋅ ⋅→Xλ
=X.

We may then use the associated pushout squares

∂Dα Dα

Xα Xα+1

σα

⌟

(11.37)

to equip Xα → Xα+1 with the structure of a relative cell complex, obtained as the cobase
change of the relative structured cell complex iσα ∶D

α →Dα. Then Cc′ is precisely the transfinite
composition of all of these cell structures.
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Example 11.2.2.2. Let X ∈ sSet be a simplicial complex (i.e., a simplicial set whose non-
degenerate simplices are uniquely determined by their set of vertices). Then any subdivision
of ∣X ∣ in the classical sense, by some ordered simplicial complex X ′, defined by a simplexwise
affine homeomorphism ∣X ′∣ ≅ ∣X ∣ defines a subdivision of ∣X ∣ (by using the cell structure on
∣X ∣ transported from ∣X ′∣ along the fixed homeomorphism).

Definition 11.2.2.3. Let C be a cellularized category and c∶A↪X be a structured relative
cell complex. We call another cell structure c′∶A ↪ X on the same morphism c∶A ↪ X a
subdivision of c, if it arises from Construction 11.2.2.1.

Proposition 11.2.2.4. Let C be a properly generated Whitehead model category. Suppose
that the following holds.

1. For every generating boundary inclusion ∂D →D ∈ B, the source ∂D admits the structure
of a finite cell complex.

2. Let ∂D → D ∈ B be a generating boundary inclusion. For some (and hence any) finite
cell structure on ∂D, ∂D, the following holds: Denote by D the structured cell complex
on D, induced by adding the identity cell D →D to ∂D. Then

WhC(D) = 0 .

Then, for any finite structured cell complex X and any finite subdivision X′ of X, the identity
map 1X ∶X →X, defines a simple equivalence X′ → X.

Proof. We proceed via induction over the number of cells of X. The case of an empty cell
complex is obvious. For the inductive step, we may write X in terms of a cobase change of
structured cell complexes

∂D A

D X .

∂σ

σ

⌟

(11.38)

identifying X with the structured cell complex X = A∪∂DD. The subdivision of X, X′, induces
the structure of a subdivision on D, denoted D′, which does not subdivide ∂D. Furthermore,
it induces a subdivision A′ of A. We obtain a commutative cube

∂D A′

∂D A

D′ X′

D X

(11.39)

with front and back face cobase change squares of structured cell complexes, and all diagonal
maps given by the identity on the underlying objects in C. By inductive assumption, it follows
that A′ → A is a simple equivalence. By the assumption on triviality of Whitehead groups of
D, it follows that D′ →D is a simple equivalence. Thus, it follows by Corollary 11.2.1.9, that
X′ → X is a simple equivalence.

Example 11.2.2.5. Suppose for a second that we have already shown that the Whitehead
groups associated to the properly generated Whitehead model category Top agree with the
classical Whitehead group (this is the content of Theorem 12.2.0.4). Then we recover from
Proposition 11.2.2.4 the classical result that the simple homotopy type is invariant under
subdivisions of simplicial complexes.
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11.2.3 Simple acyclic models: Constructing simple equivalences of
cellularized functors

We will finish our investigation of the simple homotopy theory of diagrams and functors with
a simple homotopy theoretic version of the principle of acyclic models. Roughly speaking,
we will give a purely abstract criterion for two cellularized functors F and G, defined on a
category of presheaves, to be weakly equivalent in a way such that the induced equivalence
F(X) ≃ G(X) is a simple equivalence for every finite cell complex X. The criterion only requires
the computation of the homotopy types and Whitehead groups of the values on F and G on
the representables of the presheaf category. This turns out to be a rather useful result, as it
often allows one to prove simple homotopy equivalence of two cell complexes, purely through
homotopy theoretic arguments involving elementary objects.

Notation 11.2.3.1. In the following, we will often look at homotopy categories associated to
some category of diagrams, denoted in the form hoCR. We use the notational convention that
(−)R always has preference over ho(−) in the order of application, i.e., we always mean the
homotopy category of the diagram category, and not diagrams in the homotopy category.

Let us begin with a remark on finiteness.

Lemma 11.2.3.2. Let R be a Reedy category which has locally finitely many faces. Let C be
a cellularized category. Let F ∈ CellCat(SetRop

,C). Then F is a finite cellularized functor
if and only if, for every r ∈ R, the structured cell complex F(Rr

) is finite. If R is finite,
then F is finite if and only if the associated structured cell complex F∣R ∈ Cell(CR

) (under
Corollary 8.3.6.3) is finite.

Proof. For the first claim, observe that, by the assumption on finiteness of faces Rr is a finite
cell complex. Hence, the only if part of the claim is trivial. For the if part, we need to see that,
for each r ∈R, F(ιr) is a finite structured relative cell complex. Observe, however, that F(ιr)
corresponds to the inclusion of subcomplexes F(∂Rr

)↪ F(Rr
) (under Observation 8.1.3.5). In

particular, F(ιr) is finite if F(Rr
) is a finite structured cell complex. For the remaining claim,

it suffices to see that a structured cell complex X ∈Cell(CR
), for a finite Reedy category R is

finite, if and only if Xr is finite, for each r ∈R. This is immediate from the explicit description
of the cell structure of Xr in Construction 11.1.1.11.

Recall the definition of a Reedy category which admits positive sections from Defini-
tion 8.3.8.7. Recall, furthermore, that given a model category C, we denote the associated
quasi-category obtained by localizing weak equivalences by C.

Theorem 11.2.3.3. Let R be a Reedy category that admits positive sections and has locally
finitely many degeneracies and faces. Let C be a properly generated Whitehead model category,
such that the underlying model category C is simplicial and locally presentable. Let F,G ∈

CellCat(SetRop
,C) be two finite cellularized functors and let η∶F ⇒ G ∈ C(SetRop

) be a
natural transformation of the associated functors of ∞-categories. Then the following are
equivalent:

1. ηX is a simple equivalence, at each finite X ∈ SetRop
.

2. ηRr is a simple equivalence for each r ∈R.

Proof. Let us prove the non-trivial implication. Let us first note that the functors of (∞,1)-
categories

Cell(SetRop
)↪ SetRop F,G

ÐÐ→C→ C

are given by ∞-categorical left Kan extension along R ↪Cellc(SetRop
). We cover the case

of F . Let X ∈Cellc(SetRop
). By Theorem 8.3.8.9, we have a canonical identification of cell

complexes
F(X) = lim

Ð→
el(X)

F(Rr
).
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A priori, this colimit is only 1-categorical. The diagram which we are taking the colimit over is

D∶el(X)→R
F ∣R
ÐÐ→C .

It follows by Corollary 8.3.6.3, that F ∣R defines a cofibrant object in the Reedy (semi)model
structure on CRop

. It follows by Proposition 8.3.8.5 that D defines a cofibrant object in the
Reedy (semi)model structure on Cel(X). By Proposition 8.3.8.1 and the (analogously proven)
semimodel category version of [Bar07, Theorem 2.7.], the colimit functor Cel(X)

→ C is a
left-Quillen functor, and hence provides a construction for the homotopy colimit. Thus, it
follows by [Lur09, Thm. 4.2.4.1] (and the semi-model category version of [DK80b], the proof
of which is identical), that

lim
Ð→

el(X)
F (Rr

)

is actually a colimit in the ∞-category C, exposing the functor Cellc(SetRop
)→ C induced by

F as a Kan extension in the ∞-categorical sense. It follows that, at each finite cell complex
X ∈ SetRop

, ηX is induced by taking the colimit of the natural transformation (of functors of
(∞,1)-categories)

ηev∶F ○ f ⇒ G ○ f ,

where f denotes the composition el(X)→R ↪ SetRop
.

By Proposition 8.3.8.4, the inclusion I ∶eln.d.(X) ↪ el(X) is a final functor of 1-categories,
i.e., Iσ/ is connected, for σ ∈ el(X). By Proposition 8.3.8.6, Iσ/ is also a right fibrant Reedy
category. In particular, the constant diagram of spaces on Iσ/ is cofibrant. At the same time,
by Proposition 8.3.8.6, Iσ/ is also left fibrant. Thus, again by [Bar07, Theorem 2.7.], the
colimit functor is a left Quillen functor, and the homotopy colimit of the constant diagram in
spaces agrees with the usual colimit, i.e., the point. As the homotopy colimit of a constant
diagram in Spaces is equivalently the homotopy type of the nerve of the underlying diagram
(this follows, for example, by the cobar construction of the homotopy colimit found in [Hir03,
Ch.18]) it follows that that Iσ/ is contractible. Thus, I is also a final functor of ∞-categories.
Consequently, we may compute ηX as the ∞-categorical colimit of

η′ ∶= ηf○I .

Now, denote by F∣R,G∣R the structured cell complexes in CR associated to F and G under
Corollary 8.3.6.3. Observe that by Theorem 8.3.8.9 that F′ ∶= I∗F∣R,G ∶= I

∗G∣R obtain
canonical structures of cell complexes, such that lim

Ð→
I∗F ≅ F(X) (and analogously for G). Note

that eln.d.(X) is a finite Reedy category, by the assumption on finiteness of degeneracies
and faces. It follows by Lemma 11.2.3.2, that F′ and G′ are finite structured cell complexes.
As they define cell complexes, their underlying diagrams F ′ = F ○ f ○ I and G′ = G ○ f ○ I
are both cofibrant in Celn.d.(X). It follows by (the semi-model category version of) [Lur09,
Prop. 4.2.4.4] and the semi-model category version of [DK80b], that we may identify Celn.d.(X)

with the ∞-categorical localization of Celn.d.(X) at pointwise weak equivalences. Using the
Reedy semi-model structure on Celn.d.(X), and Theorem 10.2.2.1, it follows that η′ defines a
morphism F′ → G′ in hocC

eln.d.(X), which we also denote η′, by abuse of notation, such that
evaluation of η′ at (Rr

→X) ∈ eln.d.(X) is given by ηRr . Now, finally passing to the colimit,
by Corollary 11.2.1.1 and the left fibrancy of eln.d.(X) (see Theorem 8.3.8.9), we obtain that

lim
Ð→

η′∶F(X) ≅ lim
Ð→

I∗F→ lim
Ð→

I∗G ≅ G(X)

is a simple equivalence. As we have computed above, that ηX = lim
Ð→

η′, also in the∞-categorical
sense, it follows that ηX ∶F(X)→ G(X) is a simple equivalence.

In the first part of the proof of Theorem 11.2.3.3, we have shown the following statement
(which is certainly known in the setting where SetRop

is equipped with some model structure).
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Lemma 11.2.3.4. Let C be a cofibrantly generated simplicial semi-model category with a
fixed set of cofibrant generators, making it a cellularized category. Let R be a Reedy category
that admits positive sections. Let F ∈CellCat(SetRop

,C) be a cellularized functor. Then the
commutative diagram of functors of ∞-categories

R SetRop
C C

C

Cell(SetRop
) SetRop

F

F

1 (11.40)

is a left Kan extension.

Remark 11.2.3.5. Observe that, in the case where we are given 1-categorical transformation
of functors F ⇒ G, the proof of Theorem 11.2.3.3 significantly simplifies, and we can drop the
assumption that C is locally presentable and simplicial.

Having this remark in mind, we make the following two definitions.

Definition 11.2.3.6. Let C be a properly generated simple homotopy theory. Let F,G ∈
CellCat(SetRop

,C) be two finite cellularized functors. A natural transformation of functors
of 1-categories η∶F ⇒ G is a simple equivalence of cellularized functors, if it fulfills one of the
two equivalent properties stated in Theorem 11.2.3.3.

Let us take the time, to draw the connection between Definition 11.2.3.6 and Theo-
rem 11.2.3.3 more closely.

Remark 11.2.3.7. Suppose we are in the setting of Theorem 11.2.3.3. Restriction along the
Yoneda embedding R ↪ SetRop

induces a map

ho(CSetRop

)(F,G)→ hoCR
(F ∣R,G∣R).

We may furthermore compose this map with the series of bijections

hoCR
(F ∣R,G∣R) ≅ hoCR

(F ∣R,G∣R) = hocC
R
(F∣R,G∣R).

In this fashion, we obtain a map

R∶ho(CSetRop

)(F,G)→ hocC
R
(F∣R,G∣R)

associating to any natural transformation of the associated functors of ∞-categories η∶F → G
a morphism in hocC

R
(F∣R,G∣R) between cellularized diagrams. Theorem 11.2.3.3 together

with Corollary 11.1.2.8 state that ηX ∶F(X) → G(X) is a simple equivalence, for every finite
cell complex X ∈Cellc(C), if and only if R(η)∶F∣R → G∣R is a simple equivalence. If R is an
elegant Reedy category, and thus Cell(SetRop

) = SetRop
, then it follows from Lemma 11.2.3.4

that R is even a bijection. Hence, we may rephrase Theorem 11.2.3.3 as stating that R restricts
to a bijection

{η∶F ⇒ G ∈ ho(CSetRop

) ∣ ηX ∶F(X)→ G(X) is a simple equivalence, for X finite}

{α∶F∣R → G∣R ∈ hocC
R
∣ αr is a simple equivalence, for r ∈R}

≅ (11.41)

Now, suppose that R is finite, and hence that F∣R and G∣R are finite cell complexes. Then
it follows by Corollary 11.1.2.8, that a morphism α∶F∣R → G∣R as described in the source
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of R is a simple equivalence of cell complexes of diagrams. As every simple equivalence in
the homotopy category associated to a Whitehead model category lifts to a zig-zag of simple
equivalence on the level of 1-categories, any element of the target of this bijection can be
expressed in the form

F∣R
s0
Ð→ Ẽ

s1
←Ð G∣R

with s0 and s1 simple equivalences. Under Corollary 8.3.6.3 and Theorem 11.2.3.3, this zigzag
is lifted to a zigzag of simple equivalences of finite cellularized functors

F
s0
Ð→ E

s1
←Ð G .

In particular, it follows that under these assumptions, any natural transformation

η∶F ⇒ G ∈ (CSetRop

)

as in the source of R, can be expressed in terms of a zig-zag of simple equivalences of finite
cellularized functors

F
≃
Ð→ E

≃
←Ð G .

If R is elegant, but not finite, then one can at least expose such a zig-zag of weak equivalences
with E not necessarily finite, which evaluates to ηX , for X ∈ SetRop

, after passing to homotopy
categories. If elegance is also dropped, this still holds for cell complexes X ∈ SetRop

.

Thus, the following nomenclature seems justified.

Definition 11.2.3.8. Let R be an elegant Reedy category that locally has finitely many
degeneracies and faces. Let C be a properly generated simplicial Whitehead model category,
the underlying category of which is locally presentable. Let F,G ∈CellCat(SetRop

,C) be two
finite cellularized functors. A natural transformation of the associated functors of ∞-categories
η∶F ⇒ G is called an ∞-categorical simple equivalence of cellularized functors if it fulfills one
of the two equivalent properties stated in Theorem 11.2.3.3.

Remark 11.2.3.9. It follows by Lemma 11.2.3.4, that whenever R is elegant, then any
∞-categorical equivalence of cellularized functors is an isomorphism of functors, in the ∞-
categorical sense. We will also speak of an ∞-categorical equivalence between cellularized
functors when R is not necessarily elegant, but just admits positive sections. In this case, one
should be careful to note that Lemma 11.2.3.4 does not guarantee that such a transformation η
is an isomorphism of functors ∞-categories on all of SetRop

. This is true only after restricting
to absolute cell complexes. In any case, it follows that this usage of nomenclature is compatible
with the one used in Definition 10.3.2.7.

Let us apply this result to derive a well-known classical example.

Example 11.2.3.10. Let R = ∆ and C be the (Whitehead model category of) simplicial sets.
Consider the identity functor

1∶ sSet→ sSet

as well as the subdivision functor
sd∶ sSet→ sSet,

given by left Kan extension of the ∆→ sSet mapping [n] to the nerve of the poset of non-empty
subsets of [n], ordered by inclusion. Both functors preserve colimits and monomorphisms and
are thus (uniquely) cellularized. Now, let η∶ sd→ 1 be given by the last vertex map. For every
simplex ∆n ∈ sSet, the last vertex map sd∆n → ∆n is a simple equivalence. This is either
immediate if one already assumes to know that the Whitehead model category sSet produces
classical simple homotopy theory, or it can be derived by an easy elementary combinatorial
argument (see [Waa21, Prop. 2.3.19], for a proof). Hence, one immediately obtains from
Theorem 11.2.3.3 that

sdX →X
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is a simple equivalence in sSet, for every finite simplicial set X. If one already supposes to
know that the simple homotopy theory of sSet is just classical simple homotopy theory, this is
of course a well-known result. We will, however, use it in Section 12.2 to derive precisely this
claim.

It turns out that for most of the examples we are interested in, one does not need to
construct a natural transformation between the cellularized functors by hand. Instead, one
can use the following lemma.

Lemma 11.2.3.11. Let R be an elegant Reedy category. Let C be a simplicial combinatorial
semi-model category. Let F,G∶SetRop

→C be two left adjoint functors. Now, suppose that the
following conditions hold.

1. For each pair r, r′ ∈ R and X ∈ C, the (derived) mapping spaces C(F (Rr
), F (Rr′

)),
C(G(Rr

),G(Rr′
)), C(F (Rr

), G(Rr′
)) and C(G(Rr

), F (Rr′
)) are empty, or contractible.

2. For each r ∈R, the mapping spaces C(F (Rr
),G(Rr

)) and C(G(Rr
), F (Rr

)) are non-
empty.

Then there exists a natural transformation (unique up to homotopy)

SetRop
C

F

G

≃ (11.42)

of the associated functor of ∞-categories. This natural transformation is an isomorphism of
functors of ∞-categories.

Proof. By Lemma 11.2.3.4 the functors of ∞-categories

Cellc(SetRop
)↪ SetRop F,G

ÐÐ→C→ C

are both given by left Kan extension along R ↪ Cellc(SetRop
). As R is elegant, the

equality Cellc(SetRop
) = SetRop

holds. Hence, it follows that homotopy classes of natural
transformation F and G (thought of as functors of ∞-categories with target C), are in one-to-
one correspondence with homotopy classes of transformations of the functors of ∞-categories
F ∣R and G∣R (see, for example, [Cis19, Proposition 6.4.9.], using that C is cocomplete, by the
existence of homotopy colimits given by the injective model structure). Now, observe that
by the first assumption, F ∣R and G∣R factor through a full subcategory P of C, such that all
mapping spaces are either empty or contractible. Such a category is equivalent to a poset
(given by choosing one representative of each isomorphism class, and passing to the homotopy
category). Two functors F ′,G′ into an ∞-category equivalent to a poset admit at most one
natural transformation F ′ ⇒ G′, up to homotopy, and such a natural transformation exists
under the second condition in the statement of the lemma. Finally, the claim on isomorphisms
is immediate from the uniqueness statement we have just made, inverting the roles of F and
G.

Remark 11.2.3.12. In most examples which we have encountered so far, the conditions
of Lemma 11.2.3.11 are fulfilled because the objects F (Rr

),G(Rr
) are equivalent, and −1-

truncated (subterminal). Recall that this means that the mapping spaces C(X,F (Rr
)) are

contractible or empty, for each X ∈C. For example, if C is sSet or Top, Y being subterminal
means that Y is equivalent either to the point or the empty space.

We can now combine Theorem 11.2.3.3 with Lemma 11.2.3.11 to obtain a general identifi-
cation principle for cellularized functors, up to simple equivalence.
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Theorem 11.2.3.13 (Simple acyclic models). Let R be an elegant Reedy category that has
locally finitely many degeneracies and faces. Let C be a properly generated Whitehead model
category, such that the underlying model category is simplicial and locally presentable. Suppose
we are given two finite cellularized functors F,G ∈CellCat(SetRop

,C). Suppose furthermore
that the following conditions hold:

• For each pair r, r′ ∈R and I, J ∈ {F,G}, the derived mapping spaces C(I(Rr
), J(Rr′

)) are
empty or contractible and the mapping spaces C(F (Rr

),G(Rr
)) and C(G(Rr

), F (Rr
))

are non-empty.

• For each r ∈R, the unique morphism in hocC, F(Rr
)→ G(Rr

), is a simple equivalence
(for example, because WhC(F(Rr

)) = 0 =WhC(G(Rr
)) holds).

Then there exists an essentially unique natural transformation of functors of ∞-categories
F ⇒ G. This natural transformation is an ∞-categorical simple equivalence of cellularized
functors.

Proof. By Lemma 11.2.3.11 a natural transformation of the associated functors of ∞-categories
exists. Furthermore, by Lemma 8.3.5.8, the requirements of Theorem 11.2.3.3 are met. Hence,
the assertion follows.
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Chapter 12

Relating combinatorial and
topological generalized simple
homotopy theories

A typical situation in simple homotopy theory, already encountered in Whitehead’s original
articles [Whi39; Whi50], is that one wants to pass from one model for a specific simple homotopy
theory to another. For example, one could define classical simple homotopy theory in terms
of simplicial sets, or in terms of CW-complexes. It is a well-known fact (and for example, a
consequence of the Kan-Quillen equivalence between topological spaces and simplicial sets)
that these different models lead to the same homotopy theory. The question is, however,
whether they also lead to the same simple homotopy theory. For example, one may ask: “Is
the Whitehead group defined in terms of inclusions of subsimplicial sets and horn inclusions
the same as the one defined in the language of CW-complexes?”. In this chapter, we are going
to prove the following two main results. Firstly, we will prove a general theorem that gives
conditions under which one may transfer the structure of a Whitehead model category to
another Whitehead model category along a left adjoint, such that the induced cellularized
functor becomes a weak equivalence of Whitehead model categories (see Theorem 12.1.0.4). We
will refer to this statement as the change of models theorem, from here on out. In particular,
it follows from this that the realization functor sSet → Top induces a weak equivalence of
Whitehead model categories. Proving the change of models theorem will take up the largest
part of this chapter. Then, we will use this result to show that the Whitehead model categories
sSet and Top give rise to classical simple homotopy theory, as introduced by Whitehead, and
discussed in great detail in [Coh73] (Theorem 12.2.0.4).

12.1 A theorem on transferred Whitehead model struc-
tures

Our proof of the change of models theorem will make use of additional simplicial structure on
Whitehead model categories. Simplicial Whitehead model categories are defined as follows.

Definition 12.1.0.1. A simplicial Whitehead model category consists of the following data:

• A Whitehead model category C;

• The structure of a simplicial semi-model category on C (in the sense of Definition 7.4.1.2);

• The structure of a cellularized bifunctor on the simplicial action

− ⊗ −∶ sSet ×C→C;

559
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Such that the following holds:

1. For every boundary inclusion ∂∆n →∆n, the induced cellularized relative functor

∂∆n
⊗ −↪∆n

⊗ −

is a W-functor.

2. For every horn inclusion Λnk →∆n, the induced cellularized relative functor

Λnk ⊗ −↪∆n
⊗ −

is a simple cellularized relative functor.

Notation 12.1.0.2. Following the notation conventions of Notation 7.2.1.4, we will denote
simplicial Whitehead model categories in the form C, and the associated underlying semi-model
category by C.

Observe that in a simplicial Whitehead model category, one may use the cellularization of
∂∆1 ⊗ −↪∆1 ⊗ − as a simple cylinder.

Example 12.1.0.3. The simplicial category of simplicial sets equipped with the Kan-Quillen
model structure, and horn inclusions as expansions defines a simplicial combinatorial homotopy
theory. That ∆n × − is a W-functor and Λnk × − a simple cellularized functor is verified, for
example, in great detail in [Mos19].

Theorem 12.1.0.4. Let C be a simplicial Whitehead model category. Suppose that every
generating boundary inclusion b ∈ BC has cofibrant source. Furthermore, let D be a simplicial
semi-model category, and

L∶C→D .

be a simplicial left Quillen functor. Now, suppose that the following holds:

• L(BC) defines the structure of a cellularized category on D.

• Equipping this cellularized category with the class of expansions L(EC) (with the cell
structures induced by L) defines the structure of a Whitehead model category on D (that
is compatible with the semi-model structure).

• The functor of ∞-categories C → D induced by L is fully faithful.

Then, L canonically inherits the structure of a W-functor L∶C→D that is a weak equivalence
of Whitehead model categories, with respect to the induced structure on D.

Example 12.1.0.5. We may take C = sSet, D = TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop and L = ∣−∣. The resulting structure of a
cellularized category with expansions on Top is precisely the one described in Example 10.1.2.3.
Hence, we obtain a weak equivalence of Whitehead model categories

∣ − ∣∶ sSet ≃Ð→ Top.

In particular, we obtain an isomorphism of Whitehead groups

WhsSet(X) ≅WhTop(∣X ∣)

for every finite simplicial set X ∈ sSet.

The proof of this theorem is the content of this section.
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Remark 12.1.0.6. The new part of Theorem 12.1.0.4 is not that L induces an equivalence of
the associated homotopy theories (or equivalently a Quillen equivalence). By assumption, it is
fully faithful. This shows that we may think of the associated∞-category C as a full subcategory
of D. Furthermore, as L defines a left Quillen functor, this inclusion of ∞-categories preserves
colimits. Now, by the assumption that the semi-model category D is cofibrantly generated by
arrows in the image of L, it follows that every object in D can be written in terms of pushouts
and transfinite compositions of objects in C. As C → D preserves colimits and is faithful, it thus
follows that C → D is also essentially surjective, making it an equivalence of categories. The
new part of Theorem 12.1.0.4 is that one of the two equivalent conditions in Lemma 10.3.2.12
for a W-functor that is a Quillen equivalence, to define a weak equivalence of Whitehead model
categories holds. Namely, we show that L induces a τ -equivalence of Whitehead frameworks,
or in other words, induces isomorphisms on Whitehead monoids (see Proposition 9.2.0.7).

Remark 12.1.0.7. In fact, it follows from the proof below that it suffices that we are given the
cellularized simplicial structure up to simplices of dimension n ≤ 2, and that L induces a fully
faithful functor of (2, 1)-categories, obtained by truncating homotopically. Much of the rather
technical proof we provide below points towards there being an easier and more conceptual
proof if one generally takes an ∞-categorical as opposed to a model categorical approach
to generalized simple homotopy theories. While we will not pursue this interesting avenue
of investigation, incorporating higher simple homotopy theory as pursued by Hatcher and
Waldhausen ([Hat75; WJR13]) here, this is certainly a promising direction of future research.

Proving that L defines a τ -equivalence (i.e., induces isomorphisms on Whitehead groups)
will take up the remainder of this section. Let us begin by fixing up some useful notational
conventions.

Notation 12.1.0.8. In the following, we will often encounter the situation where we glue a
structured cell complex a∶A → B to an absolute cell complex X∶ ∅ → X, along a morphism
f ∶A→X. That is, in the language of cobase changes and vertical compositions, we consider
the structured cell complex

f¡a ○X.

We found that this notation, while formally correct, can be somewhat distracting. We will,
instead, denote the resulting structured cell complex by

X ∪f B.

From a purely formal point of view, this notation is clearly lacking, as it does not make any
mention of the data of a, which is necessary for this construction. This is, however, not so
different from the standard notation for pushouts X ∪AB, which also omits the crucial data of
the morphism from the notation. In our context, the structured relative cell complex a will
always be uniquely identifiable through B, so there will not be a risk of confusion. We will,
however, encounter the situation of having several different choices of morphism A→X, which
is why we keep track of this morphism with the notation ∪f . Whether we are referring to the
absolute structured cell complex or its underlying object in C (given by the pushout) will be
indicated by writing X ∪f B or X ∪f B, respectively.

Notation 12.1.0.9. We will also not add to notational overload by choosing several different
tensor notations for the simplicial actions on different categories, and their cellularized versions.
What tensor is meant will always be clear from the arguments.

Next, let us make some immediate observations about the setup in Theorem 12.1.0.4.

Observation 12.1.0.10. Under the assumptions of Theorem 12.1.0.4, the left Quillen functor
L canonically inherits the structure of a cellularized functor. Namely, for b ∈ BC, L(b) is,
by definition, an element of BD = L(BC), and hence admits a canonical one-cell structure.
Furthermore, by the definition of the generating expansions in D as L(EC), it follows that the
thus obtained cellularized functor

L∶C→D
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is a W-functor. In particular, it descends to a functor

L∶hocC→ hocD

which preserves simple equivalences. The bifunctor

− ⊗ −∶ sSet ×D→D

inherits a unique cellularization from the cellularization of the simplicial action on C, which
makes the natural isomorphism L(−⊗ −) ≅ −⊗L(−) an isomorphism of cellularized bifunctors.
Explicitly, given a boundary inclusion i∶∂∆n →∆n in sSet and (L(b)∶L(∂D)→ L(D)) ∈ BD,
simply equip i⊗̂L(b) with the cell structure of L(i⊗̂b), transported under the canonical
isomorphism

L(∆n
⊗ ∂D ∪∂∆n⊗∂D ∂∆n

⊗D →∆n
⊗D)

≅ (L(∆n
⊗ ∂D) ∪L(∂∆n⊗∂D) L(∂∆n

⊗D)→∆n
⊗L(D))

≅ (∆n
⊗L(∂D) ∪∂∆n⊗L(∂D) (∂∆n

⊗L(D))→∆n
⊗L(D)) .

It then follows from Lemma 10.2.1.6 and Remark 10.2.1.2 that this cellularization of the
simplicial action on D equips D with the structure of a simplicial Whitehead model category.

The core idea of the proof is simple. Using Proposition 9.2.0.7 and Lemma 10.3.2.12, it
suffices to construct an inverse to the map of Whitehead monoids

W̃hL∶W̃hC(X)→ W̃hD(L(X)) .

Given a structured cell complex X ∈ Cell(C), and the inclusion of a finite subcomplex
a∶L(X) ↪ Y, we need to find an inclusion of a finite structured cell complex ã∶X ↪ Ỹ, and
a simple equivalence L(Ỹ)

γ
Ð→ Y, which identifies ⟨F(ã)⟩ with ⟨a⟩. Suppose, for a second,

that we are in the special scenario where X and L(X) are fibrant, and that a is given by
gluing in a single cell L(b)∶L(∂D → D), along a morphism f ∶L(∂D) → L(X), i.e., that a is
L(X)↪ L(X)∪f L(D). Using the fact that L defines a fully faithful functor of ∞-categories, as
well as ∂D,L(∂D) being cofibrant and X, L(X) bifibrant, it follows that f may be approximated,
up to a simplicial homotopy H ∶∆1 ⊗ ∂D → L(X), by a morphism L(f̃), with f̃ ∶∂D →X. Let
Ỹ = X ∪f̃ D, and consider the zig-zag under X

L(X)

Y L(X) ∪f {0}⊗L(D) L(X) ∪H ∆1 ⊗L(D) L(X) ∪L(f̃) {1}⊗L(D) L(X ∪f̃ D)

a
L(ã)

∼

(12.1)
Both horizontals are inclusions of subcomplexes, with relative cell structure obtained via the

cobase change diagram.

{0}⊗L(D) ∪{0}⊗L(∂D) ∆1 ⊗L(D) L(X) ∪f {0}⊗L(D)

∆1 ⊗L(D) L(X) ∪H ∆1 ⊗L(D)

i0⊗̂L(b) (12.2)

and the analogous diagram for i1 and f̃ . In particular, by the assumption that ({i}↪ ∆1)⊗−
is a simple cellularized relative functor, for i = 0,1, it follows that both inclusions are simple
equivalences. Hence, the morphism Y→ L(Ỹ) induced by the zig-zag is a simple equivalence,
which identifies ⟨a⟩ and ⟨L(ã)⟩. The difficulty of the actual proof is to show that this
construction can be performed inductively, without fibrancy assumptions, and in a well-defined
manner.
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Construction 12.1.0.11. The way we extend the argument which we have just made is as
follows. Let I be the walking isomorphism, i.e., the category with two objects 0 and 1 and a
unique isomorphism between the two. Consider the path fibration PL → hocD given by the
pullback

PL (hocD)I

hocC hocD .

ev0

L

(12.3)

Explicitly, this is the category with objects given by triples (X,Y, ω∶L(X) ≅Ð→Y) and morphisms
(X0,Y0, ω0)→ (X1,Y1, ω1) given by pairs (α∶X0 → X1, β∶Y0 →Y1), such that the diagram

L(X0) L(X1)

Y0 Y1

L(α)

ω0 ω1

β

(12.4)

commutes. Observe that, as we assumed that L is fully faithful as a functor of ∞-categories,
by Theorem 10.2.2.1, the functor L∶hocC→ hocC is also fully faithful. In particular, it follows
that β and α as above uniquely determine each other. Hence, we will often just write α,
when we are referring to a morphism. Now, consider the full subcategory PL,s ⊂ PL given
only by such objects (X,Y, ω), where ω∶L(X) → Y is a simple equivalence. We will call
the restriction PL,s → hocC the simple path fibration. The simple path fibration provides a
canonical factorization of L

PL,s

hocC hocD

ρ F

L

(12.5)

where ρ is given by mapping X to (X,L(X),1L(X)), and F is the obvious forgetful functor.
The evaluation at 0-map r∶PL → hocC defines a retraction of ρ, which comes equipped with a
canonical natural isomorphism

ρ ○ r ≅ 1PL

given by
(1X, ω)∶ (X,L(X),1L(X))→ (X,Y, ω) .

Define a morphism in PL,s to be a simple equivalence, if and only if it descends to simple
equivalences in hocC and hocD. Observe that, as L preserve simple equivalence, it follows by
the two-out-of-three property for simple equivalence that this is the case if and only if the
morphism descends to a simple equivalence in hocC.

As we have illustrated in the introduction of this proof, showing the claim ultimately
comes down to solving certain lifting problems along PL,s → hocD. In order to deal with some
annoyances when it comes to the non-uniqueness of lifts, let us introduce an intermediary
category.

Construction 12.1.0.12. Denote by S the wide subcategory PL,s only given by such
morphisms (α,β), where β = 1Y, for some Y ∈ hocC, and α ∈ X is a simple equivalence.
Observe that this is an essentially discrete category, i.e., that it is equivalent to a category in
which the only morphisms are the identities. Indeed, we may write S as the disjoint union
of the subcategories SY ⊂ FY, given only by such morphisms α that are simple equivalences.
Here FY denotes the fiber of F at Y. It can be equivalently described as the category whose
objects are triples (X, ω∶L(X) ≅Ð→Y) and whose morphisms are given by arrows α∶X0 → X1 in
hocC, such that L(α) = ω−1

1 ω0. As L is fully faithful, these equalities uniquely determine α and
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show that α defines a morphism if and only if α−1 defines a morphism. Hence S is a category
with at most one morphism between two objects, and every morphism an isomorphism, i.e., a
category that is equivalent to a discrete category.
Given an object x ∈ PL,s, we will denote by [x] its isomorphism class in S. Given a morphism
α∶x → y in PL,s, we will denote by [α] the equivalence class of α, under pre- and post-
composition with morphisms in S, and call this the simple fiber homotopy class of [α].
One elementary consequence of the (essential) discreteness of S is that we may collapse its
path components in PL,s, and still obtain a well-defined, equivalent category. That is, we
define E to be the category whose objects are path components of S and whose morphisms
are simple fiber homotopy classes. Composition is defined by composing appropriate choices of
representatives, and it is not hard to verify from the essential discreteness of S that this still
defines a well-defined category. A particular consequence of the collapsing functor PL,s → E
being an equivalence of categories is that, given a morphism α∶ [x0] → [x1], there exists a
unique morphism x0 → x1 representing α. By abuse of notation, we will denote this morphism
by the same notation. Let us call a morphism [α] ∈ E a simple equivalence if any (and hence
all) of its representatives α ∈ hocC is a simple equivalence.
Notation 12.1.0.13. To clean up notation a little bit, we will denote objects of E by [x] ∈ E,
where x always refers to a triple denoted (X,Y, ω) ∈ PL,s. If x is equipped with some subscript
(writing x0), then so will the notation of the associated triple (writing (X0,Y0, ω0)). We
proceed analogously with ornaments such as x̃ and x′.
Observation 12.1.0.14. Using this definition, we obtain an induced diagram of functors

PL,s

E

hocD

π

p

(12.6)

with the first vertical an equivalence of categories.

Observation 12.1.0.15. Observe that, since PL,s
F
Ð→ hocD is faithful, and PL,s → E is an

equivalence of categories, p∶E → hocD is again a faithful functor. In other words, if we are
given a morphism β ∈ hocD, then a lift of β under p is uniquely determined by its source and
target.
Notation 12.1.0.16. In the following, given Y ∈ hocD, we denote by EY the fiber category
of p∶E → hocD at Y. Explicitly, this is the category whose objects are given by equivalence
classes [x] with x of the form (X,Y, ω) and with morphisms given by equivalence classes of
tuples of the form (α,1Y).
Observation 12.1.0.17. Given Y ∈ hocD and [x̃] ∈ EY, the class of objects Ob(EY) is in
bijection with WhC(X̃). A bijection is constructed as follows: Given another element [x] ∈ EY,
denote by α(x)∶ X̃ → X the unique morphism in hocC mapping to ω ○ ω̃−1 under L. Now
consider the map

Ob(EY)→WhC(X̃)

[x]↦ ⟨α(x)⟩.

It follows by Theorem 10.2.3.9 that this assignment defines a well-defined bijection. In
particular, the class of objects of EY forms a set.
Definition 12.1.0.18. Consider the map of sets

Ob(E−)∶Ob(hocD)→ Set
Y↦ Ob(EY)
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mapping an object Y to the fiber Ob(p)−1(Y). By a coherent family of lifts along p, we mean
an extension of this map to a functor

l∶hocD→ Set

such that

1. For every morphism β∶Y0 → Y1 ∈ hocD and [x0] ∈ EY0 , there exists a (necessarily
unique) morphism β̃[x0]∶ [x0]→ l(β)([x0]) in E, such that p(β̃[x0]) = β.

2. Whenever γ∶Y0 →Y1 is a simple equivalence, then, for every [x0] ∈ EY0 , the unique lift
γ̃∶ [x0]→ l([x0]) is a simple equivalence.

Construction 12.1.0.19. Given such a coherent family of lifts l, a morphism β∶Y0 →Y1 ∈
hocD and [x0] ∈ EY0 , we will denote by β̃[x0]∶ [x0] → l(β)[x0] the unique lift of β. If we fix
x0 ∈ [x0], then any two representatives of the underlying morphism of β̃[x0] of the form

α̃[x0]∶x0 → x1

only differ by a post-composition with a simple equivalence. We denote by αx0 ∶X0 → X1 the
underlying morphism in hocC (defined up to composition with a simple equivalence).

Lemma 12.1.0.20. Suppose that we are given a coherent family of lifts l and suppose that l
has the additional property that for every morphism a∶X0 ↪ X1 in C↪ellc(C), it holds that

l(L(a))([ρ(X0)]) = [ρ(X1)] .

Then W̃hL is a natural isomorphism.

Proof. Recall that, given β∶Y0 →Y1 ∈ hocD and x0 with [x0] ∈ EY0 , the associated morphism
αx0 as constructed in Construction 12.1.0.19 is well defined up to composition with a simple
equivalence. Consequently, for any X ∈ hocC, we obtain a well defined map

ϕ∶W̃hD(L(X))→ W̃hC(X) (12.7)
⟨β⟩↦ ⟨α[ρ(X)]⟩ . (12.8)

By definition, the morphism αρ(X0) fits into a commutative diagram

L(X0) L(X1)

L(X0) Y1

L(αρ(X0))

1 ω1

β

(12.9)

with the right vertical given by a simple equivalence. In particular, it holds that

W̃hL⟨αρ(X0)⟩ = ⟨L(αρ(X0))⟩ = ⟨ω
−1
1 ○ β⟩ = ⟨β⟩ .

Consequently, ψ defines a section to W̃hL. Now, recall that we additionally assumed that for
any morphism a∶X0 ↪ X1 in C↪ellc(C), it holds that

l(L(a))([ρ(X0)]) = [ρ(X1)] .

Then, by the faithfulness of p, it follows that L̃(a)[ρ(X0)] = [ρ(a)]. Hence, in this case we may
choose α̃[x0] (using notation as in Construction 12.1.0.19) as a. Consequently, it holds that

ψ(W̃hL⟨a⟩) = ψ⟨L(a)⟩ = ⟨a⟩ .

In particular, ψ defines a two sided inverse to W̃hL, showing that the latter is an isomorphism.
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So far, we have reduced the proof of Theorem 12.1.0.4 to proving the existence of a coherent
family of lifts as in Definition 12.1.0.18. Next, let us reduce to proving the existence of such a
family for a very specific class of morphisms in hocC.
Lemma 12.1.0.21. Suppose, we are given an extension of the map

C↪ellc(D)→ Set
Y↦ Ob(EY)

to a functor

l∶C↪ellc(D)→ Set

such that, for every morphism a∶Y↪Y′ in C↪ellc(C), and [x0] ∈ EY, there exists a (necessarily
unique) morphism β∶ [x0]→ l(a)[x1], such that p(β) = a in hocD. Suppose, furthermore, that
whenever a is an expansion, then the associated lift is a simple equivalence. Then l descends
to a functor on hocD that defines coherent family of lifts.
Proof. Recall that hocD is given by the localization of C↪ellc(D) at finite expansions. As any
such finite expansion can be decomposed into a composition of elementary expansions, one may
equivalently obtain hocD by localizing C↪ellc(D) at elementary expansions. Let a∶Y0 ↪Y1 in
C↪ellc(C) be an elementary expansion. Consider the induced map of fibers of p∶E→ hocD

la∶Ob(EY0)→ Ob(EY1).

If a = e is an elementary expansion, this map is a bijection. To see this, fix some x̃0 ∈ PL,s

representing an element on the left hand side and x̃1 representing l(e)[x̃0]. Let η∶ X̃0 → X̃1 be
the unique lift of the morphism

L(X̃0)
ω̃0
Ð→Y0

e
Ð→Y1

ω̃−1
1
ÐÐ→ L(X̃1)

to hocC. It presents ẽ[x̃0]. In particular η is a simple equivalence. Now, consider the diagram

Ob(EY0) Ob(EY1)

WhC(X̃0) WhC(X̃1)η∗

(12.10)

with verticals given by
[xi]↦ ⟨α(xi)⟩

where α(xi)∶ X̃i → Xi is the unique morphism mapping to ω−1
i ○ω̃i. Observe that by definition of

E, α(xi) only depends on the choice of representative of [xi] up to composition with a simple
equivalence. In particular, the verticals are independent of this choice. By Observation 12.1.0.17,
the verticals of this square are bijections. To see that l(e) is a bijection, it thus suffices to
show, that Diagram (12.10) commutes. Indeed, as η was assumed to be simple, it follows by
Lemma 9.1.3.11 that the inverse of η∗ is given by η∗. Hence, it suffices to see that

Ob(EY0) Ob(EY1)

WhC(X̃0) WhC(X̃1)
η∗

(12.11)

commutes. For [x0] in EY0 and [x1] the target of ẽ[x0], η is constructed precisely so that, by
the fully faithfulness of L, the associated diagram

X0 X1

X̃0 X̃1

ẽ[x0]

α(x1)α(x0)

η

(12.12)
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commutes. As ẽ[x0] was assumed to be a simple equivalence, this ensures the identity

⟨α(x0)⟩ = ⟨α(x1) ○ η⟩ = η
∗
⟨[x0]⟩ .

We have now shown that any expansion e is mapped by l into a bijection. Consequently, it
follows that l descends to a functor on hocD

C↪ellc(D) Set

hocD,

l

(12.13)

which we denote the same by abuse of notation. Now, recall that by Lemma 9.1.3.2, every
morphism of hocD is of the form e−1a, for a ∈C↪ellc(D) and e ∈C↪ellc(D) an expansion. Observe
that then for any [y0] in the fiber of the source of e−1, it follows that l(e−1)[y0] = l(e)

−1[y0].
Let η̃l(e−1)[y0]∶ l(e)

−1[y0]→ [y0] be the unique lift of e. Then η̃l(e−1)[y0] specifies the unique lift
of e−1 from [y0]→ l(e)−1[y0]. In particular, this lift is again a simple equivalence. Denote by
α̃[x0]∶ [x0]→ l(a)[x0] the lift of a which exists by assumption. Then

η̃−1
l(e−1)l(a)[x0] ○ α̃[x0]

specifies a morphism [x0] → l(e−1)l(a)[x0] = l(e
−1a)[x0] which lifts e−1 ○ a. Finally, observe

that if γ∶Y0 →Y1 ∈ hocD is a simple equivalence, then by Definition 9.1.3.8, we may write it
in the form

e−1
○ a

where a is also an expansion. Consequently, for any [x0] ∈ EY0
the associated lift

η̃−1
l(e−1)l(a)[x0] ○ α̃[x0]

is a composition of two simple equivalences. This finishes the proof that l∶hocD→ Set defines
a coherent family of lifts.

Let us now construct a functor as in Lemma 12.1.0.21. For notational reasons, it will be
preferable to also use the notation x ∈ E, to refer to elements of E, instead of only using
equivalence class notation with brackets.

Construction 12.1.0.22. Suppose we are given the following data

1. A relative structured cell complex a∶A ↪ B in RCell(C), where A is cofibrant and
filtration compact.

2. A morphism f ∶L(A)→ Y in D, where Y ∈C↪ellc(D) is a finite structured cell complex.

3. An element x ∈ EY.

We will now construct a lift of the morphism

Y↪Y ∪f L(B)

in hocC at x along p, which we denote l(a, f, x). Observe that, as such a lift is uniquely
determined by its target, we may as well construct an element x1 of EY∪fL(B), together with
a morphism x → x1. We will be slightly sloppy in language insofar as we sometimes do not
distinguish between the lift and its target. To construct such a lift, we make the following
choices:

1. A fibrant replacement e∶Y ↪ Ŷ given by an expansion to an (infinite) structured cell
complex Ŷ (which exists by Lemma 10.2.2.2).
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2. A choice of representative x = (X, ω∶L(X)→Y), of x.

3. A morphism f̃ ∶A→X in C, such that ω ○L(f̃) = f .

4. A representation of e ○ ω in terms of a morphism w∶L(X)→ Ŷ .

5. A choice of homotopy H ∶∆1 ⊗L(A)→ Ŷ from w ○L(f̃) to e ○ f .

Observe that such choices can indeed be made. Fixing any pair (X′, ω′) ∈ x, it follows from the
assumption that L induces a fully faithful functor on homotopy categories that there exists
a morphism α∶A→X such that ω ○L(α) = f . Now, we may choose a fibrant replacement of
X′, given by an expansion ι∶X′ ↪ X̂. Then, since A was assumed to be cofibrant, ι ○ α can be
represented by a morphism f̂ ∶A → X̂ in C. As A was assumed to be filtration compact, it
follows by Lemma 10.2.2.2 that f̂ factors through a finite expansion e∶X′ ↪ X. Denote the
resulting morphism A → X by f̃ . Then, setting ω = ω′ ○ e−1, it follows that x = (X, ω) is as
described above. Finally, since L(X) is an absolute cell complex and thus cofibrant, we may
represent e ○ ω by w as above. Similarly, as by construction w ○L(f̃) = e ○ f in hoD, it follows
again from the cofibrancy of L(A) and the fibrancy of Ŷ that a homotopy H as specified above
exists. We now proceed analogously to how we did in the introduction of this proof, and define
X1 = X ∪f̃ B and ω1 as defined via the zig-zag of weak equivalences

L(X ∪f̃ B) Ŷ ∪w○L(f̃) {0}⊗L(B) Ŷ ∪e○L(f̃) ∆1 ⊗L(B) Ŷ ∪w○f {0}⊗L(B) Y ∪f B

(12.14)
A priori, this defines a morphism in hoD. However, by Theorem 10.2.2.1, it can also be

presented by a morphism in hocD. To see that ω1 is a simple equivalence, observe first that
since A is filtration compact and cofibrant, L(A) is also filtration compact. Indeed, under this
assumption A can be exposed as a retract of a finite cell complex. Hence, L(A) is also a retract
of a finite cell complex and compactness of L(A) follows by Lemmas 8.1.6.7 and 8.1.6.15.
Consequently, the homotopy H factors through a finite subexpansion Y ↪ Y′ ↪ Ŷ of e. By
abuse of notation, we will denote all resulting factorizations through Y ′ by the same name.
We obtain a new diagram

L(X ∪f̃ B) Ŷ ∪w○L(f̃) {0}⊗L(B) Ŷ ∪H ∆1 ⊗L(B) Ŷ ∪e○f {1}⊗L(B) Y ∪f B

Y′ ∪w○L(f̃) {0}⊗L(B) Y′ ∪H ∆1 ⊗L(B) Y′ ∪e○f {1}⊗L(B)

≃ ≃ ≃

(12.15)
with verticals given by acyclic cofibrations. In particular, the upper horizontal composition

(taking inverse wherever necessary) defines the same morphism in hocD as the lower composition.
Hence it suffices to show that the bottom row is given by simple equivalences. The first
morphism is a simple equivalence by Corollary 10.2.3.13. Similary, the remaining two morphisms
are given by cobase changes of inclusions of the form îi(a)∶∆1 ⊗A ∪{i}⊗A {i}⊗B, and hence
are simple equivalences by the simplicity of the cylinder ∆1⊗−. To summarize, we have shown
that x1 = (X ∪f̃ B,ω1) defines an element of EY∪fL(B). Finally, a quick diagram chase shows
that the diagram

L(X) L(X ∪f̃ B)

Y Y ∪f B

ω ω1 (12.16)

commutes in hocD, which shows that there does indeed exists a lift of Y↪Y ∪f B from x to
[x1]. We thus define

l(a, f, x, e, x,w, f̃ ,H) ∶= [x1] .

We will now need to see that this definition is independent from the choices (e, x,w, f̃ ,H).
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Now, let us move on with the proof of Theorem 12.1.0.4, and show independence of the
construction in Construction 12.1.0.22 from the list of choices we made.
Lemma 12.1.0.23. Suppose that we are given choices (e, x,w, f̃ ,H) as in Construction 12.1.0.22.
Suppose, furthermore, we consider a finite expansion ê∶X↪ X̂, and denote by ω̂ a weak equiva-
lence making the diagram

L(X) L(X̂)

Ŷ

L(ê)

w
ŵ

(12.17)

commute. (This morphism exists because the upper horizontal is an acyclic cofibration between
cofibrant objects and Ŷ is fibrant.) Denote x̂ = (X̂, ω ○L(ê)−1). Then

l(a, f, x, e, x,w, f̃ ,H) = l(a, f, x, e, x̂, ŵ, ê ○ f̃ ,H) .

Proof. Observe that the diagram

L(X ∪f̃ B) Ŷ ∪w○L(f̃) {0}⊗L(B)

L(X̂ ∪ê○f̃ B) Ŷ ∪ŵ○L(ê○f̃) {0}⊗L(B)

(12.18)

commutes. It follows that if we denote by ω̂1 the isomorphism L(X̂)→Y ∪f B associated to
((a, f, x, e, x̂, ŵ, ê ○ f̃ ,H)), then the diagram

L(X ∪f̃ B) L(X̂ ∪ê○f̃ B)

Y ∪f L(B)

ω1 ω̂1

(12.19)

in hoD commutes. The morphism X ∪f̃ B → X̂ ∪ê○f̃ B is the cobase change of an expansion,
and thus a simple equivalence. Consequently, (X ∪f̃ B,ω1) and (X̂ ∪ê○f̃ B, ω̂1) define the same
element in E.

This allows us to always increase X by finite expansions, without changing the associated
class in E.
Lemma 12.1.0.24. Provided one has made a choice of x such that a f̃ as described exists,
then the construction in Construction 12.1.0.22 is independent of the choice of f̃ and H.
Proof. So suppose we are given (f̃ ,H) and (f̃ ′,H ′) as above and denote the associated elements
of PL,s by x1 = (X1, ω1) and x′1 = (X

′
1, ω

′
1). We may glue the homotopies H and H ′ at e ○ f

to obtain a morphism Λ2
2 ⊗ L(A) → Ŷ . Now, using fibrancy of Ŷ and cofibrancy of L(A),

let R∶∆2 ⊗ L(A) → Y be a filler to this morphism, and consider its restriction to the face
opposite to 2, H ′′∶∆1 ⊗L(A)→ Ŷ . H ′′ provides a homotopy between w ○L(f̃) and w ○L(f̃ ′).
Denote by ê∶X↪ X̂ a fibrant replacement of X through a transfinite composition of elementary
expansions. Denote by ŵ an expansion of w to L(X̂). Now, consider the following associated
(solid) commutative diagram.

∂∆1 C(A, X̂)

D(L(A), L(X̂))

∆1 D(L(A), Ŷ )

(êf̃ ,êf̃ ′)

L

ŵ○−

H′′

H̃ (12.20)
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The composition
C(A, X̂) LÐ→D(L(A), L(X̂)) ŵ○−ÐÐ→D(L(A), Ŷ )

is a weak homotopy equivalence. To see this, observe that ω̂∶L(X̂) → Ŷ defines a fibrant
replacement of L(X̂) in D. In particular, as A is cofibrant and X̂ is fibrant, it follows that the
composition in question computes the map induced by L on derived mapping spaces, i.e., on
the mapping spaces in the ∞-categorical sense (see, for example, [GH05] for the semi-model
category case). By the assumption that L induces a fully faithful functor of ∞-categories, this
map is a weak homotopy equivalence.
It is a classical fact that the right vertical composition in Diagram (12.20) being a homotopy
equivalence of Kan-complexes implies that the diagram admits a diagonal, making the upper
left triangle commute on the nose, and the lower right triangle commute up to homotopy relative
to ∂∆1 (see, for example, [Vog10]). In other words, we obtain a homotopy H̃ ∶∆1 ⊗A → X̂
between f̃ and f̃ ′ as well as a homotopy R′∶∆1⊗ (∆1⊗L(A))→ Ŷ between ŵ ○L(H̃) and H ′′,
relative to ∂∆1 ⊗L(A). Using a compactness argument, as we have now done several times in
this section, we may again factor H̃ through a finite subexpansion of X↪ X̂ and hence assume
that X̂ is finite. Furthermore, using Lemma 12.1.0.23, we may then assume without loss of
generality that X̂ =X. Now, consider the morphism specified by

X ∪f̃ B ↪ X ∪H̃ (∆
1
⊗B)↩ X ∪f̃ ′ B

in hocC. As a cobase change of a simple equivalence, both morphisms are given by simple
equivalences. We claim that it maps to (ω′1)−1 ○ ω1, under L, which shows that [x1] = [x

′
1] in

E. Indeed, this follows from the commutative diagram in Cell(D) of weak equivalences in D.
We will use notation such as {1} for ∆0 and ∆{1,2} for ∆1 here, to indicate how we consider
the latter as embedded in potential larger simplices such as ∆2.

L(X ∪f̃ {0}⊗ {0}⊗B) L(X ∪H̃ {0}⊗∆1 ⊗B) L(X ∪f̃ ′ {0}⊗ {1}⊗B)

Ŷ ∪w○L(f̃) {0}⊗ {0}⊗L(B) Ŷ ∪w○L(H̃) {0}⊗∆1 ⊗L(B) Ŷ ∪w○L(f̃ ′) {0}⊗ {1}⊗L(B)

Ŷ ∪w○L(f̃) ∆1 ⊗ {0}⊗L(B) Ŷ ∪R′ ∆1 ⊗∆1 ⊗L(B) Ŷ ∪w○L(f̃ ′) ∆1 ⊗ {1}⊗L(B)

Ŷ ∪w○L(f̃) {1}⊗ {0}⊗L(B) Ŷ ∪H′′ {1}⊗∆1 ⊗L(B) Ŷ ∪w○L(f̃ ′) {1}⊗ {1}⊗L(B)

Ŷ ∪w○L(f̃) {0}⊗L(B) Ŷ ∪H′′ ∆{0,1} ⊗L(B) Ŷ ∪w○L(f̃ ′) {1}⊗L(B)

Ŷ ∪H ∆{0,1} ⊗L(B) Ŷ ∪R ∆2 ⊗L(B) Ŷ ∪H′ ∆{1,2} ⊗L(B)

Ŷ ∪f {2}⊗L(B)

Y ∪f L(B)

≃

(12.21)
Passing to hoD, note first that the composition in the left vertical (inverting arrows appropri-

ately)

Ŷ ∪w○L(f̃) {0}⊗ {0}⊗L(B)↪ Ŷ ∪w○L(f̃) ∆1
⊗ {0}⊗L(B)↩ Ŷ ∪w○L(f̃) {1}⊗ {0}⊗L(B)
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is the identity , and the analogous result at the right hand side holds. It follows from this
that the composition following the left vertical, and finally going diagonally to the right and
then down is ω1, and one similarly obtains ω′1 on the right hand side. Hence, it follows from
commutativity of the diagram that the top horizontal composition specifies (ω′1)−1 ○ ω1.

Given this new information, we will just write

l(a, f, x, e, x,w)

from here on out.

Lemma 12.1.0.25. The construction in Construction 12.1.0.22 is independent of w.

Proof. Let G be a homotopy from w to w′. Glue H and G ○ (∆1 ⊗ f̃) along e ○ f to obtain a
horn Λ2

1 ⊗L(A)→ Ŷ , and denote by R∶∆2 ⊗L(A)→ Ŷ a filler to this horn, and by H ′ its face
opposing the 1-vertex. Next, consider the commutative diagram of weak equivalences

L(X ∪f̃ {1}⊗B) L(∆1 ⊗ (X ∪f B)) L(X ∪f̃ {2}⊗B)

Ŷ ∪w○L(f̃) L({1}⊗B) Ŷ ∪G○f̃⊗∆1 (∆{1,2} ⊗L(B)) Ŷ ∪w′○L(f̃) {2}⊗L(B)

Ŷ ∪H (∆{0,1} ⊗L(B)) Ŷ ∪R (∆2 ⊗L(B)) Ŷ ∪H′ (∆{0,2} ⊗L(B))

Ŷ ∪f {0}⊗L(B)

Y ∪f B

(G,G○(f̃⊗∆1))

(12.22)
in Cell(D). Observe that the path from the top, going down all the way on the left defines
ω1. The upper horizontal defines a simple equivalence (the identity even). The path from the
top right, following the right all the way down is ω′1 (constructed as in Construction 12.1.0.22),
for the choices (e, x,w′,H ′, f̃). Hence, it follows by the invariance of choice of homotopy in
Lemma 12.1.0.24 that

l(a, f, x, e, x,w) = l(a, f, x, e, x,w′) .

Using this insight, we will just write

l(a, f, x, e, x)

from here on out. Next, let us prove independence of the choice of x.

Lemma 12.1.0.26. Construction 12.1.0.22, is independent of the choice of x.

Proof. Suppose we are given two representatives x,x′ ∈ x. In particular, this means that the
unique lift of ω′1

−1
○ω1 to a morphism X→ X′ in hocC is a simple equivalence. Increasing X by

an expansion, if necessary, which by Lemma 12.1.0.23 does not change l(f,a, x, e, x) it follows
from Definition 9.1.3.8, that we may assume that X→ X′ is presented by an expansion X↪ X′.
Now, the claim follows from Lemmas 12.1.0.23 to 12.1.0.25.

Finally, let us show independence of the choice of e.

Lemma 12.1.0.27. Construction 12.1.0.22 is independent of the choice of e.
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Proof. Observe that any two such fibrant replacements ei∶X↪ Ŷi, i = 1, 2, fit into a commuta-
tive diagram

Y Ŷ1

Ŷ2 Ŷ

(12.23)

in C↪ell(C) with all morphisms given by (transfinite expansions). To see this, simply take the
pushout of e1 and e2 (which exists by Corollary 8.1.4.8) and replace the latter fibrantly. It
thus follows that we only need to consider the case where e2 is obtained from e1 by composing
with an expansion e′. Then, we obtain a commutative diagram

L(X ∪
f̃

B) Ŷ2 ∪e′○w○L(f̃)
{0}⊗L(B) Ŷ2 ∪e′○H ∆1 ⊗L(B) Ŷ2 ∪e′○e○f {1}⊗L(B) Y ∪f B

Ŷ1 ∪w○L(f̃)
{0}⊗L(B) Ŷ1 ∪H ∆1 ⊗L(B) Ŷ1 ∪e○f {1}⊗L(B)

≃ ≃ ≃ (12.24)

with verticals given by acyclic cofibrations. The upper horizontal defines l(a, f, x, e1) and
the path along the lower horizontal defines l(a, f, x, e2). In particular, using the fact that
all verticals define isomorphisms in hoD, it follows by commutativity of the diagram that
l(a, f, x, e1) = l(a, f, x, e2).

This finishes our proof of the independence of the construction of l from choices. We are
furthermore going to need the following lemmata to obtain functoriality.

Lemma 12.1.0.28. Suppose we are given a structured relative cell complex a∶A ↪ B in
RCell(C) and a morphism g∶A → A′, such that A and A′ both fulfill the requirements of
Construction 12.1.0.22. Suppose, furthermore, we are given a morphism f ∶A′ → Y , with
Y ∈C↪ellc(D). Consider the diagram of pushout squares

L(A) L(B)

L(A′) L(B′)

Y Y ∪f○L(g) L(B)

L(a)

L(g)

L(b)

⌟

⌟

(12.25)

which identifies Y ∪f○L(g) L(B) with Y ∪f L(B
′). Then, for any x ∈ EY the equality

l(a, f ○L(g), x) = l(g¡a, f, x)

holds.

Proof. Choose e,w, f̃ ,H associated to a, f , x as in Construction 12.1.0.22. We then obtain a
commutative diagram in Cell(D)

L(X ∪f̃○g B) Ŷ ∪w○L(f̃○g) {0}⊗L(B) Ŷ ∪H○(∆1⊗g) ∆1 ⊗L(B)

L(X ∪f̃ B′) Ŷ ∪w○L(f̃) {0}⊗L(B′) Ŷ ∪H ∆1 ⊗L(B′) Ŷ ∪e○f {1}⊗L(B′) Y ∪f B′

≅ ≅ ≅

(12.26)
with all verticals isomorphisms. The left vertical is induced by the canonical isomorphism
X∪f̃○gB ≅ X∪f̃B

′ in C↪ellc(C) (stemming from functoriality of cobase change). In particular, it
defines a simple equivalence. The upper composition defines a representative of l(a, f ○L(g), x).
The lower composition defines a representative of l(g¡a, f, x). As the two representatives only
differ by a simple equivalence in (PL,s)Y, the two classes agree.
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Lemma 12.1.0.29. Suppose we are given two finite structured cell complexes a∶A → B ∈
RCell(C) into two relative cell complexes a1,a2, a = a2 ○ a1, where A is as in Construc-
tion 12.1.0.22. Suppose furthermore, we are given a morphism f ∶A→ Y , for a finite structured
cell complex Y. Consider the diagram of pushout squares

L(A) L(A′) L(B)

Y Y ∪f L(A
′) (Y ∪f L(A

′)) ∪f ′ L(B) Y ∪f L(B)

L(a1)

f

L(a2)

f ′⌟ ⌟

(12.27)

in D, which equips the inclusion of subcomplexes Y↪Y ∪f L(B) with a factorization

Y Y ∪f L(A
′) Y ∪f L(B) (12.28)

in C↪ellc(D). Then, for any x ∈ EY, the equality

l(a, f, x) = l(a2, f
′, l(a1, f, x))

holds.

Proof. Choose e, x,w, f̃ ,H for a, f, x as in Construction 12.1.0.22. Observe that this is also a
compatible family of choices for a1, f . We obtain a commutative diagram

L(X ∪f̃ A
′) L(X ∪f̃ B)

Ŷ ∪w○L(f̃) {0}⊗L(A′) Ŷ ∪w○L(f̃) {0}⊗L(B)

Ŷ ∪H ∆1 ⊗L(A′) Ŷ ∪H ∆1 ⊗L(A′)

Ŷ ∪e○f {1}⊗L(A′) Ŷ ∪e○f {1}⊗L(B)

Y ∪f L(A
′) Y ∪f L(B)

(12.29)

with the verticals specifying simple equivalences in hocD. We need to show that if we apply
l(a2, f

′,−) to the element of E specified by the left vertical that this produces the morphism
specified by the right vertical. We will denote all associated choices as in Construction 12.1.0.22
in the form −′. Choose a fibrant replacement by an expansion e′∶Y ∪f L(A

′) ↪ Ŷ′. Now,
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consider the solid diagram

L(X ∪f̃ A
′)

Ŷ ∪w○L(f̃) {0}⊗L(A′)

Ŷ ∪H ∆1 ⊗L(A′)

Ŷ ∪e○f {1}⊗L(A′)

Y ∪f L(A
′) Ŷ′

g

j

(12.30)

As all upward pointing vertical morphisms are acyclic cofibrations between cofibrant objects,
it follows that a dashed arrow as indicated exists, which makes the diagram commute. We
may hence choose w′ (representing the left vertical) as the composition all the way from the
top to Ŷ′. Notably, this leaves us with a canonical choice for f̃ ′ and H ′. Namely, take f̃ ′ as

A′ →X ∪f̃ A
′

and the homotopy H ′ from e′ ○ f ′ to w′ ○L(f̃ ′) as the composition

∆1
⊗L(A′)→ Ŷ ∪H ∆1

⊗L(A′)→ Ŷ′ .

With these choices, we obtain a commutative diagram in C:

L((X ∪f̃ A′) ∪f̃ ′ B) L((X ∪f̃ A′) ∪f̃ ′ B) L(X ∪f̃ B)

Ŷ′ ∪w′○L(f̃ ′) {0}⊗L(B) (Ŷ ∪w○L(f̃) {0}⊗L(A′)) ∪{0}⊗L(A′) {0}⊗L(B) Ŷ ∪w○L(f̃) {0}⊗L(B)

Ŷ′ ∪H′ ∆1 ⊗L(B) (Ŷ ∪H ∆1 ⊗L(A′)) ∪∆1⊗L(A′) ∆1 ⊗L(B) Ŷ ∪H ∆1 ⊗L(B)

Ŷ′ ∪e′○f ′ {1}⊗L(B) (Ŷ ∪f {1}⊗L(A)) ∪f ′ {1}⊗L(B) Ŷ ∪e○f L(B)

(Y ∪f L(A)) ∪f ′ L(B) (Y ∪f L(A)) ∪f ′ L(B) Y ∪f L(B)
(12.31)

A diagram chase using the stability of acyclic cofibrations with cofibrant source under
cobase change shows that all horizontals in this diagram are acyclic cofibrations. Passing to
hoD, the left vertical defines l(a2, f ′, l(a1, f, x)), and the right vertical defines l(a, f, x). By
commutativity of this diagram, these two arrows agree (up to canonical isomorphism of cobase
changes in C↪ellc(C)), which finishes the proof.

We may now finish the proof of the theorem.

Proof of Theorem 12.1.0.4. By Proposition 9.2.0.7, it suffices to show that W̃hF is an isomor-
phism. By Lemma 12.1.0.20, we may furthermore reduce to constructing a coherent family of
lifts, such that the additional requirement of Lemma 12.1.0.20 holds. By Lemma 12.1.0.21, it
suffices to construct a functor

l∶C↪ellc(D)→ Set
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as in Lemma 12.1.0.21, which has the property that, for every morphism a∶X0 ↪ X1, the
unique morphism in E given by lifting L(a) to a morphism [ρ(X0)] → l(a)[ρ(X0)] is given
by ρ(a). Let us now define such a functor. On objects, l is already uniquely specified by
l(Y) = Ob(EY).
Now, on morphisms we use Lemma 10.1.1.5. Recall that Lemma 10.1.1.5 states that the
category C↪ellc(D) is the free category on the elementary inclusions (inclusions of subcomplexes
with one or zero cells) subject to certain relations arising from changing the order in which
cells are glued in. Hence, it suffices to define l on elementary inclusions, and then verify
compatibility with these exchange relations.
Let c∶Y0 ↪Y1 be an elementary inclusion. By definition, the associated relative cell complex c
is given by a cobase change of a relative cell complex L(a)∶L(A)→ L(B), where either a ∈ BC,
or A = B = ∅. In particular, there is a canonical morphism σ∶L(B)→ Y1 (given either by the
initial morphism) or by the unique cell of c, such that L(A)→ L(B)

σ
Ð→ Y1 factors through Y0,

and such that the diagram

L(A) Y0

L(B) Y1

f

a c

σ

(12.32)

is a cobase change. That is, we may write c as Y0 ↪Y0 ∪f L(B). Now set

l(c)∶Ob(EY0)→ Ob(EY1)

x↦ l(a, f, x) .

Supposing we have shown that this assignment descends to a well-defined functor on C↪ellc(D)
– i.e., that we have compatibility with the relations in Lemma 10.1.1.5 – it follows from
Construction 12.1.0.22 that the existence of lift condition of Lemma 12.1.0.21 holds. Let us
now verify compatibility with the relations of Lemma 10.1.1.5. Clearly, in case c is the identity,
then l(a, f, x) = x (by making appropriate trivial choices in the construction of l(a, f, x)). Now,
to see compatibility with the exchange relations, we are going to use the following stronger
statement, which is an immediate consequence of an inductive application of Lemma 12.1.0.29.
Suppose that A a

↪Ð→ B ∈ RCell(C) is as in Construction 12.1.0.22. Choosing an appropriate
filtration-presentation of a, we may write a as a vertical composition

an ○ ⋅ ⋅ ⋅ ○ a0

of cobase changes of boundary inclusions bi, i > 0 and possibly an isomorphism a0. Given a
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morphism f ∶L(A)→Y in D, we obtain an induced diagram of cobase changes

∅

∅ L(A) Y

L(∂D1) L(B0) Y ′

D1 L(B1) Y ∪f1○L(g1) L(D
0)

. . . . . . . . .

∂Dn L(Bn) Y ∪fn○L(gn) B

Dn L(Bn+1) Y ∪f B

L(b0)
f

≅L(a0) ≅

L(g1)
L(b1)

f1

L(a1)

f2

L(bn)

fn

L(an)

(12.33)

Under these conditions, it follows from Lemma 12.1.0.28 and an inductive application of
Lemma 12.1.0.29 that

l(a, f, x) = (l(bn, fn ○L(gn),−) ○ ⋅ ⋅ ⋅ ○ l(b1, f1 ○L(g1),−) ○ l(b0, f,−))(x) . (12.34)

Observe that it follows from this that the definition of l∶C↪ellc(C) → Set as above does
compatibly extend from elementary inclusions to any morphism Y0 ↪Y1 given by a cobase
change as in Construction 12.1.0.22. Now, suppose we are given a pushout diagram

Y0 Y2

Y1 Y

c1

c2 c′2

c′1

⌟

(12.35)

in Cell(D) with c1 and c2 given by elementary inclusions. Suppose that c1 is given by a
cobasechange of L(b1) along f1∶L(A1)→ Y0, for a structured relative cell complex b1∶A1 ↪ B1,
and analogously c2 is given a cobasechange of L(b2) along f1∶L(A2) → Y0, for a structured
relative cell complex b2∶A2 ↪ B2. Then it follows from Eq. (12.34) that

l(c′2) ○ l(c1) = l(b1 ⊔ b2, (f1, f2),−) = l(c2) ○ l(c
′
1)

which shows compatibility with the relations of Lemma 10.1.1.5. To summarize, we have
constructed a well defined functor l on C↪ellc(D), uniquely determined by

l(c)(x) = l(a, f, x)

for Y ∈ hocD, x ∈ EY, a∶A↪ B, f ∶L(A)→ Y and c∶Y→Y∪fL(B) as in Construction 12.1.0.22.
In particular, we obtain that for every expansion e the associated lift [x0]→ l(e)[x0] is given
by a simple equivalence (represented by an expansion even). Finally, by making appropriate
choices in Construction 12.1.0.22), one also obtains that for any inclusion of subcomplexes
a∶X↪ X′ the value of l(L(a)) at [ρ(X)] is given by [ρ(X′)]. This finishes the proof.

12.2 Connection to the classical framework
From what we have explained so far, there are two obvious candidates to model the simple
homotopy theory of spaces, namely the structures of Whitehead model categories on simplicial
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sets and on topological spaces, defined in Example 10.1.2.3. For the remainder of this subsection,
when we refer to sSet or Top as Whitehead model categories, it will always be with respect
to these structures. There is a third, more classical theory available. Namely, one can consider
the Whitehead framework that is defined as follows. In the following, we use the notation
D̊n to refer to the interior of an n-dimensional disk. We will also generally identify disks Dn

with the realization of the n-simplex ∣∆n∣, using some fixed homeomorphism throughout this
section.

Construction 12.2.0.1. See Example 8.1.1.13 for some of the notation used below. Denote
by C̃W the following pre-Whitehead framework.

• Objects are filtered spaces X, together with a finite set of pairwise disjoint subspaces Z
of X, such that

1. X = ⋃e∈Z e;
2. There exists the structure of a CW-complex X on X (as defined in Example 8.1.1.13),

such that
Z = {σ(D̊n

) ∣ σ∶Dn
→X ∈ CX}.

• Morphisms between two such tuples (X1, Z1) and (X2, Z2) are given by maps f ∶X1 →X2,
such that there exist compatible (in the sense we just described) choices of cell structures
X1 and X2, such that f ∶X1 → X2 defines an inclusion of structured cell complexes
f ∶X1 ↪ X2.

• Cobase change squares are given by such commutative squares in C̃W, for which the
underlying diagram of filtered spaces is a pushout.

• Expansions are given by finite compositions of morphisms of the following type:

1. Isomorphisms;
2. Morphisms e∶ (X0, Z0)↪ (X1, Z1), such that there exist compatible cell structures

X0 ↪ X1, making e an inclusion of subcomplexes, such that the associated structured
relative cell complex of filtered spaces e∶X0 ↪X1 fits into a cobase change square

Hn X0

Ẽn+1 X1

en e (12.36)

for some n ∈ N, where en is the following structured relative cell complex:
(a) Ẽn+1 is the filtered space

∅ = ⋅ ⋅ ⋅ = ∅ ⊂ Sn−1
⊂ Sn− ⊂ S

n
⊂Dn+1

= . . .

with Dn+1 in degree n + 1, Sn− the lower hemisphere of Sn, given by all vectors
with the final entry non-positive, and Sn−1 embedded into Dn+1 by expanding
a vector in Rn by 0 in the final coordinate. Hn is given by the filtered subspace

∅ = ⋅ ⋅ ⋅ = ∅ ⊂ Sn−1
⊂ Sn− = S

n
− = . . .

given by the lower hemisphere Sn− and its boundary.
(b) en∶Hn ↪ Ẽn+1, is the obvious inclusion, equipped with two cells, one given by

including En as the upper hemisphere, and one given by En+1 → Ẽn+1, with
underlying map the identity on Dn+1.
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It is not hard to verify that the assumptions of a pre-Whitehead framework are fulfilled. In
fact, this is the original example of a Whitehead framework, as was explained in [Eck06; Sie70].
The resulting Whitehead group WhC̃W(X,Z) is precisely the geometric construction of the
classical Whitehead group as it was discussed in great detail in [Coh73]. (Cohen uses cubes
instead of disks, but these two approaches clearly translate into each other in a straightforward
manner).

The really important point to note here is that C̃W is different from the Whitehead
frameworks arising from cellularized categories in the sense that cell structures are only part
of the data insofar as they specify a decomposition into open cells. A priori, this category
allows for significantly more morphisms. For example, any self-homeomorphism of a disk that
fixes the boundary will give rise to all sorts of automorphisms in C̃W. The advantage of this
additional degree of flexibility is demonstrated in [Coh73], where it is used all over the place.
The disadvantage is, of course, that at least a priori, it makes being a simple equivalence a
significantly weaker condition than the ones we have considered so far. It turns out that,
nevertheless, this Whitehead framework is τ -equivalent to the ones arising from sSet and Top.
To prove this, we are going to make use of another intermediary framework.

Construction 12.2.0.2. One may proceed entirely analogously with structured cell complexes
in Top, to obtain a pre-Whitehead framework T̃op, given as follows:

1. Objects are spaces X, together with a finite set of pairwise disjoint subspaces Z of X,

(a) X = ⋃e∈Z e;
(b) There exists the structure of a structured cell complex in Top X on X (as defined

in Example 8.1.1.13), such that

Z = {σ(D̊n
) ∣ σ∶Dn

→X ∈ CX}.

2. Morphisms between two such tuples (X0, Z0) and (X1, Z1) are given by maps f ∶X0 →X1,
such that there exist compatible (in the sense we just described) choices of cell structures
X0 and X1, such that f ∶X0 → X1 defines the inclusion of a subcomplex in Cell(Top).

3. Cobase change squares are given by such squares in T̃op, for which the underlying square
in Top is a pushout.

4. Expansions are given by such morphisms e∶ (X0, Z0) → (X0, Z0), such that there exist
compatible choices of cell structures X0 and X1 making e∶X0 ↪ X1 an expansion in the
Whitehead framework W(Top).

Construction 12.2.0.3. There is an obvious forgetful functor C̃W→ T̃op that is easily seen
to define a functor of pre-Whitehead frameworks. Furthermore, consider the functor

∣ − ∣f ∶C↪ellc(sSet)→ C̃W,

associating to a finite simplicial set the filtered space given by its filtration by skeletons,
together with the decomposition of its realization into the interiors of non-degenerate simplices.
It induces a functor of Whitehead frameworks W(sSet) → C̃W (clearly, cobase change
squares are preserved and it is a classical fact that horn inclusions define simple homotopy
equivalences). Together with the obvious forgetful functors, and the cellularized realization
functor ∣ − ∣∶ sSet→ Top, we obtain a commutative diagram of (pre)-Whitehead frameworks

W(sSet) W(Top)

C̃W T̃op .

(12.37)
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Let us now prove the following results, which show that we may equivalently use the
Whitehead model categories sSet or Top to describe classical simple homotopy theory:

Theorem 12.2.0.4. All functors of (pre-)Whitehead frameworks in the commutative diagram

W(sSet) W(Top)

C̃W T̃op .

(12.38)

are τ -equivalences.

Before we provide a proof, let us perform a sanity check, in the form of the following
lemmata.

Lemma 12.2.0.5. Let n ≥ 0. Any weak equivalence

f ∶ ∣∂∆n
∣→ ∣∂∆n

∣

in Top is a simple equivalence (in the sense of a simple equivalence in the Whitehead model
category Top).

Proof. Observe that as the underlying space of ∣∂∆n∣ is homeomorphic to Sn−1, there are
exactly two such auto-equivalences, up to homotopy. The first is given by the identity; the
second (the orientation-inverting one, which we denote by −1 here) can be defined by affinely
extending the map

f ∶ (∂∆n
)0 = [n]→ [n] = (∂∆n

)0

0↦ 1
1↦ 0
k ↦ k, for k > 1 .

Geometrically speaking, thinking of ∣∂∆n∣ as embedded in R[n], this is the restriction of
the map that permutes the first two components. Now, consider the following commutative
diagram, with verticals given by the barycentric subdivision homeomorphisms, and the upper
horizontal uniquely defined by commutativity.

∣sd∂∆n∣ ∣sd∂∆n∣

∣∂∆n∣ ∣∂∆n∣ .

ρ

≅ ≅

−1

(12.39)

The barycentric subdivision homeomorphisms are homotopic to the realizations of the last
vertex map. As these are realizations of simple equivalences in sSet (see Example 11.2.3.10) and
the cellularization of ∣ − ∣ is a W-functor, it follows that the horizontals are simple equivalences
in Top. Consequently, it suffices to see that the upper horizontal ρ is a simple equivalence.
Finally, observe that the upper horizontal is the realization of a simplicial map. Namely, the
map

sd∂∆n
→ sd∂∆n

defined on the vertices of sd∂∆n, given by flags I ⊂ [n] as

I ↦ f(I) .

This map is bijective on non-degenerate simplices, and hence an isomorphism of simplicial
sets. In particular, it is a simple equivalence in sSet, showing that ρ is a simple equivalence in
Top.
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Next, let us prove that the cell structure on a structured cell complex in Top is only
relevant insofar as it determines a set of open cells.

Lemma 12.2.0.6. Let X be a finite cell complex in Top. Suppose we are given another cell
structure on X, which has the same open cells as X, denoted by X′. Then the identity on X
induces a simple equivalence

X→ X′

in Top.

Proof. We proceed via induction over the number of cells of X. In the case of 0 cells, there
is nothing to be shown. Now, for the inductive step, let e̊m ⊂X be an open cell of maximal
dimension in X and X′. Then, it follows by inductive assumption that the identity on A =X ∖ e̊
induces a simple equivalence between the associated restricted structured cell complexes A and
A′. Now, consider the cell structure X′′ on X, given by using the characteristic maps of X, for
all open cells in A, and the characteristic map of X′ for e̊m. Then we obtain a commutative
diagram (pushout in Top, trivially so, as all horizontals are identities),

A A′

X′′ X′

(12.40)

where both verticals define inclusions of subcomplexes and the relative cell structure on the
right is given by the cobase change of the relative cell structure on the left. Furthermore, the
upper horizontal is a simple equivalence. Hence, we may use Corollary 10.2.3.13, from which it
follows that the lower horizontal defines a simple equivalence. The diagram

X′′

X X′

(12.41)

in hocTop is trivially commutative, as all underlying morphisms are given by the identity.
Hence, by the two-out-of-three property for simple equivalences, it suffices to see that X→ X′′

is a simple equivalence. In this fashion, we have reduced to the case of changing a single
characteristic map of a cell which can be glued in the final step of a filtration-presentation. In
other words, we have two pushout diagrams

∣∂∆n∣ A

∣∆n∣ X

∂σi

σi

(12.42)

for i = 1, 2, with the same verticals, and want to show that the identity on X induces a simple
equivalence

A ∪∂σ1 ∣∆n
∣→ A ∪∂σ2 ∣∆n

∣ .
Denote by b ∈ ∣∆n∣ the barycenter. Now, observe first that, without loss of generality, we can
always change σi by a homeomorphism on ∣∆n∣ which fixes the boundary and is homotopic
to the identity relative to the boundary, to assume that σ1(b) = σ2(b). Denote by e̊ ⊂X the
open cells given by σ1, σ2, and by abuse of notation, by b ∈ e̊ the point corresponding to the
barycenter of ∣∆n∣ (under both σ1 and σ2). Next, consider the following diagrams of pushout
squares

e̊ ∖ {b} e̊ ∣∂∆n∣ ∣∆n∣ ∣∂∆n∣ ∣∆n∣

X ∖ {b} X M∂σi M∂σi ∪∣∂∆n∣ ∣∆n∣ A X .
Q Q′i ⌟ Qi ⌟

(12.43)
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Let us describe the morphisms of the square indicated by arrows of the form ⇒. As all
squares are pushout, it suffices to specify the morphisms between the objects in the spans.
The arrows pointing to the right are given by the identity at ∣∂∆n∣, ∣∆n∣, and by the collapsing
the cylinder map at M∂σi . If we consider ∣∂∆n∣ as equipped with its canonical cell structure,
then it follows by Example 10.2.3.6 that M∂σi ∪∣∂∆n∣ ∣∆n∣→ Xi is a simple equivalence. The
arrows pointing to the left are given as follows: For i = 1,2, let

fi∶ ∣∆n
∣→ e̊

be the map given by
x↦ σi(

1
2
x +

1
2
b) .

Clearly, this map maps ∣∂∆n∣ to e̊ ∖ {b}. fi, and its restriction to ∣∂∆n∣, specify the maps at
∣∆n∣ and ∣∂∆n∣. Finally, the map M∂σi →X ∖ b is given by

[a]↦ [a]

for a ∈ A, and by
[(x, t)]↦ σi(t(

1
2
x +

1
2
b) + (1 − t)x)

for (x, t) ∈ [0, 1]× ∣∂∆n∣. Continuity and well-definedness of this map are easily verified through
the universal property of the pushout. Now, it is not hard to see, using appropriate retractions,
that all arrows associated to objects in the spans which we have specified are weak equivalences.
The left pointing morphism with target X is even a homeomorphism, and the right pointing
arrow a simple equivalence in Top. Hence, we may agglomerate all of these squares into a
diagram of weak equivalences of functors ∆1 ×∆1 → Top.

Q′1 Q Q′2

Q1 Q2 .

(12.44)

As all arrows between these squares are weak equivalences, we can complete this diagram to a
commutative diagram of isomorphisms in ho(Top∆1×∆1

)

Q′1 Q Q′2

Q1 Q2 .
η

(12.45)

If we evaluate this diagram at {(1,1)}, we obtain a commutative diagram

M∂σ1 ∪∣∂∆n∣ ∣∆n∣ X M∂σ2 ∪∣∂∆n∣ ∣∆n∣

X X

≅

≃

≅

≃ (12.46)

in hoTop, with the upper horizontals presented by homeomorphisms. Now, observe that
by the construction of the horizontal homeomorphisms and the vertical collapse maps, the
compositions X ≅M∂σi ∪∣∂∆n∣ ∣∆n∣ → X are homotopic to the identity on X. It follows that
all dotted arrows in Diagram (12.46) are given by the identity on X in hoTop. Now, denote
by Q the Reedy category, obtained by equipping ∆1 ×∆1 with the Reedy model structure
indicated below.

(0,0) (1,0)

(0,1) (1,1) .

−

+ +

−

(12.47)
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Next, consider ∣∂∆n∣ as equipped with its canonical cell structure. Then equipping Q1 and
Q2 with the associated cell structures

∣∂∆n∣ A

∣∆n∣ Xi

(12.48)

defines cell structures on Q1 and Q2 in TopQ, denoted Q1 and Q2. Then there are natural
isomorphisms of cell complexes

(Qi)
(1,1)

≅Q(1,1) ⊛Qi ,

using notation as in Section 8.3. By Corollary 11.2.1.8, it suffices to see that η(0,0), η(0,1) and
η(1,0) are simple equivalences. At (1,0), η is given by a map ∣∆n∣ → ∣∆n∣. Any such map is
homotopic to the identity, and hence a simple equivalence. At (0, 1), η is given by the identity
on A, and thus a simple equivalence. At (0,0), η is a simple equivalence by Lemma 12.2.0.5.
This finishes the proof.

proof of Theorem 12.2.0.4. We already know that the upper horizontal is a τ -equivalence, by
Example 12.1.0.5. Let us first show that the remaining associated functors on localizations
are all fully faithful. We will denote the associated localizations in the form hocC. Using the
forgetful functors into topological spaces, we obtain a commutative diagram

hocC̃W hocT̃op hocTop

hoTop .

(12.49)

It suffices to see that all downwards pointing arrows are fully faithful. For the right hand
diagonal arrow, this follows by Theorem 10.2.2.1. For the left hand diagonal, this is classical,
and was explained (for example) in [Eck06; Sie70]. The argument is essentially a more
elementary version of the proof of Theorem 10.2.2.1, and can easily be derived from the latter.
The same argument applies to the middle vertical, replacing CW-complexes by structured
cell complexes of spaces. This actually simplifies the argument, as there is no more need for
cellular approximation. Now, to see essential surjectivity in the diagram

hocsSet hocTop

hocC̃W hocT̃op

(12.50)

observe that the right hand vertical is essentially surjective by definition of T̃op. The horizontal
is already known to be essentially surjective. Consequently, the diagonal composition is also
essentially surjective, which implies that the lower horizontal is essentially surjective. As the
lower vertical is fully faithful, it follows from essential surjectivity of the diagonal that the left
vertical is also essentially surjective. It remains to show that all functors induce isomorphisms
on Whitehead monoids. So, given a simplicial set X, consider the associated commutative
diagram

W̃hsSet(X) W̃hTop(∣X ∣)

W̃hC̃W(∣X ∣f) W̃hT̃op(∣X ∣, Z)

(12.51)

where Z is the decomposition of ∣X ∣ into its open, non-degenerate simplices. As C̃W is a
Whitehead framework, the elements of W̃hC̃W(∣X ∣f) can be identified with homotopy classes
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of maps of CW-complexes ∣X ∣f →Y, modulo post-composition with simple equivalences (see
Theorem 9.1.3.4). It is a classical fact that every CW-complex has the simple homotopy type
of a simplicial complex, and hence of a simplicial set. Consequently, using Theorem 9.1.3.4,
every element of W̃hC̃W(∣X ∣f) is of the form ⟨∣X ∣f → ∣Y ∣f ⟩, for some finite simplicial set Y .
As we have already seen that hocsSet→ hocC̃W is full, this shows that the left hand vertical
in Diagram (12.51) is a surjection (again using Theorem 9.1.3.4). We already know the top
horizontal to be an isomorphism. Consequently, to see that all maps are isomorphisms, it
suffices to see that the right vertical is an isomorphism. Then it follows that the left vertical is
injective, and hence also an isomorphism, which also implies that the lower horizontal is an
isomorphism. Using Construction 10.1.2.8, which shows that W̃hTop(∣X ∣) does not depend on
the cell structure of ∣X ∣, it immediately follows that the right hand vertical is surjective. Hence,
it remains to be shown that the right hand vertical is injective. This is a straightforward
consequence of Lemma 12.2.0.6 and Theorem 10.2.3.9.
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Chapter 13

Decomposing the diagrammatic
stratified Whitehead group

Note to the reader In this chapter, we finally apply the new tools in generalized simple
homotopy theory developed in the previous chapters to stratified homotopy theory. We
thus recommend that the reader be familiar with the notation of stratified homotopy theory
introduced in Part II. All notation that we use on the stratified side can either be found in
Chapter 7 or already in Chapter 1.

13.1 Simple diagrammatic stratified homotopy theory

In [Waa21], we developed a simple homotopy theory for the category of stratified simplicial
sets sStratP over a finite poset P , equipped with the diagrammatic model structure (also
called the Douteau model structure, see Definition 1.2.3.9 and Theorem 1.2.3.14, for example).
The stratified Whitehead group WhP (X ) associated to a finite stratified simplicial set X
over P , defined there, was given as follows. Recall first that a stratified horn inclusion
ΛJk ↪ ∆J ∈ sStratP , with J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] is called an admissible horn inclusion, if pk is
repeated in ∆J . Equivalently, this is the case if and only if the stratified realization ∣ΛJk ↪∆J ∣s
is a stratified homotopy equivalence (see Definition 3.2.9.1).

1. As a set WhP (X ) is a quotient set of acyclic cofibrations of finite stratified simplicial
sets a∶X ↪ Y in the Douteau model structure on sStratP . The equivalence relation is
generated by composition with pushouts of admissible horn inclusions.

2. The group structure on WhP (X ) is induced by pushouts (see [Waa21]) for details.

In [Waa21], we developed the resulting simple homotopy theory by elementary means. Let us
now interpret this theory in terms of the general framework of Whitehead model categories,
which we developed in Chapter 10. As a consequence, we will obtain a topological version
of the purely combinatorially defined Whitehead group WhP (X ), and compute the latter in
terms of classical Whitehead groups of generalized links and strata. For the remainder of this
chapter, let P be a fixed poset.

Let us investigate the simple homotopy theory developed in [Waa21] through the tools provided
by our language of Whitehead model categories. We will end up using essentially all of the
core results of Chapters 10 to 12 in the process.

585
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13.1.1 The diagrammatic Whitehead model structure on stratified
simplicial sets

We begin by investigating the purely combinatorial setting of stratified simplicial sets. Let us
begin with a few elementary observations.

Observation 13.1.1.1. As we have frequently done in Chapters 3 and 7, we can equivalently
think of sStratP as the category of presheaves Set∆op

P on the category of flags in P , ∆P =

∆/N(P ). We consider ∆ as a Reedy category equipped with the classical Reedy structure. ∆
forms an elegant Reedy category (see Section 8.3.5). It follows that ∆P inherits the structure of
an elegant Reedy category (see Example 8.3.5.4) from ∆. Given a flag J ∈ ∆P , the associated
boundary inclusion

ιJ ∶∂∆JP →∆JP
(see Recollection 8.3.2.4) is simply the boundary inclusion of the stratified simplex associated
to J , which we have usually just denoted by

∂∆J ↪∆J .

It follows by Corollary 8.3.5.5 that every stratified simplicial X set over P admits a unique
cell structure with respect to these inclusions. The cells of this cell structure are precisely the
non-degenerate stratified simplices of X (see Corollary 8.3.4.11). Furthermore, the inclusions
of subcomplexes between such objects are precisely monomorphisms. Consequently, as long as
we are working with stratified simplicial sets, cell structures are entirely intrinsic, and there is
no need to make explicit mention of them.

Recall the definition of a simplicial Whitehead model category (Definitions 10.2.2.3
and 12.1.0.1) as well as proper generation (Definition 11.1.1.1). We then obtain the fol-
lowing result.

Theorem 13.1.1.2. Equipping sStratP with the following two sets of maps defines a properly
generated simplicial Whitehead model category:

1. The set of generating boundary inclusions is given by

BP ∶= {∂∆J ↪∆J ∣ J ∈∆P } .

2. The set of generating expansions is given by

EP ∶= {ΛJk ↪∆J ∣ J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] ∈∆P ,0 ≤ k ≤ n fulfills pk ∈ {pk−1, pk+1}} .

Proof. That equipping sStratP with the class of boundary inclusions BP defines a cellularized
category follows by Construction 8.3.3.3 together with Observation 13.1.1.1. That the two
classes above define cofibrant generators for a combinatorial model category was recalled, for
example, in Recollection 5.2.1.1, and first proven in [Dou21a]. In particular, the requirements
for proper generation are fulfilled. Any compactness assumptions are immediate from the
finiteness of all simplicial sets involved. That the simplicial structure on sStratP fulfills the
requirements of a simplicial Whitehead model category was shown in [Waa21, Prop. 2.2.33.].
In particular, the simplicial cylinder (∂∆1 ⊗ − → ∆1 ⊗ −,∆1 ⊗ − → ∆0 ⊗ −) defines a simple
cylinder.

We now have all of the abstract tools developed in Chapter 9 available to study the stratified
simple homotopy theory which we originally defined in [Waa21].

Notation 13.1.1.3. In this section, we will denote by sStratdP not only the simplicial
model category defining the diagrammatic homotopy theory of stratified simplicial sets over
P , but also the simplicial Whitehead model category specified in Theorem 13.1.1.2. To keep
notation concise, we will denote the associated Whitehead monoids and Whitehead groups by,
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respectively, W̃hP (X ) and WhP (X ), for a finite P -stratified simplicial set X . We will call this
Whitehead group (monoid) the diagrammatic stratified Whitehead group (monoid). At times,
we will omit the diagrammatic, as this is the only stratified theory which we investigate in
this chapter. We will generally refer to simple equivalences in the Whitehead model category
sStratdP as simple diagrammatic equivalences. When the context is clear, we will also just
speak of simple equivalences.

Let us quickly recall what this explicitly means for simple diagrammatic equivalences.

Remark 13.1.1.4. It is immediate from the definition and Observation 13.1.1.1 that the
Whitehead model category sStratdP agrees with the one defined in [Waa21]. In particular, a
diagrammatic equivalence of finite stratified simplicial sets in ω∶X → Y ∈ hosStratdP is a simple
diagrammatic equivalence if and only if it can be written as a zig-zag of finitely many cobase
changes of admissible horn inclusions. In this sense, the Whitehead torsion ⟨ω⟩ ∈WhP (X ) is a
complete obstruction to expressing ω in terms of a sequence of such elementary combinatorial
moves.

13.1.2 A topological stratified diagrammatic Whitehead group
For many intents and purposes, it can be useful to have the tools of simple homotopy theory
available not only in the purely combinatorial scenario of stratified simplicial sets, but also
in the more flexible scenario of structured stratified cell complexes. Let us now develop the
topological analogue to the Whitehead model structure on stratified simplicial sets which we
developed in the previous section.

Lemma 13.1.2.1. The set of stratified boundary inclusions

{∣∂∆J ↪∆J ∣s ∣ J ∈∆P }

defines the structure of a cellularized category on StratP .

Proof. That StratP is a cocomplete category was already used all over Chapters 3 and 7, and
recalled there separately. The only non-obvious part to verify for the definition of a cellularized
category is that any pushout diagram

A B

A′ B′

(13.1)

of stratified spaces, with upper horizontal a relative stratified cell complex, is also pullback. As
StratP is simply the overcategory Top/P , where P is equipped with the Alexandrov topology,
it follows from the general fact that the forgetful functor, C/X → C, from an overcategory
reflects pullbacks that it suffices to verify that the underlying diagram of topological spaces

A B

A′ B′

(13.2)

is pullback. As the forgetful functor Top/P → Top is left adjoint, it follows that this is a
pushout diagram with upper horizontal given by a topological relative cell complex. Such a
diagram is pullback by Example 8.1.1.12.

Notation 13.1.2.2. When we refer to StratP as a cellularized category, it will always be
with respect to the class of generating boundary inclusions specified in Lemma 13.1.2.1.
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Construction 13.1.2.3. By construction of the cellularization of StratP , the stratified
realization functor

∣ − ∣s∶ sStratP → StratP
obtains a tautological cellularization, given by equipping

∣∂∆J →∆J ∣,
for J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn], with the one cell structure defined by 1∣∆J ∣s . When we refer to ∣ − ∣s as a
cellularized functor, or to a cell structure on the realization of a stratified simplicial set, it will
generally be with respect to this cellularization of ∣ − ∣s. In particular, we obtain a canonical
relative cell structure on the realization of the stratified horn inclusion ∣ΛJk ↪∆J ∣s, with two
cells; one cell given by the total simplex ∣∆n∣, and one by the face opposite to the k-th vertex.
Notation 13.1.2.4. We denote by StratdP the cellularized category with expansions, obtained
by equipping the cellularized category StratP with the set of generating elementary expansions
given by the structured relative cell complexes

{∣ΛJk →∆J ∣s ∣ J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn] ∈∆P ,0 ≤ k ≤ n,ΛJk ↪∆J is admissible}.
Observe that this notation is consistent with the notation for the semi-model category

StratdP insofar as the generating boundary inclusions and elementary expansions are pre-
cisely the cofibrant generators for the semi-model category StratdP which we specified in
Theorem 7.4.2.6.
Theorem 13.1.2.5. StratdP is a properly generated Whitehead model category. It extends
to a simplicial Whitehead model category on StratdP (under the construction detailed in
Observation 12.1.0.10).
Proof. Let us first verify that the set of boundary inclusions defines a cellularized category.
Among the axioms in Definition 10.2.2.3, only the compactness axioms and the existence of a
simple cylinder are not an immediate consequence of Theorem 7.4.2.6. To see that the source
and target of every generating boundary inclusion and expansion are filtration compact, observe
that by Corollary 8.1.6.10 and Proposition 8.1.6.9, this follows if we can show that every map
from a finite stratified cell complex into a relative structured stratified cell complex factors
through a finite relative subcomplex. The existence of such a factorization can be verified
entirely on the level of the underlying topological spaces. That the analogous assertion holds for
classical topological spaces is classical, and shown, for example, in [Hir03, p. 10.7.4.]. It remains
to show the existence of a simple cylinder. In fact, by Observation 12.1.0.10, we even obtain
that the simplicial structure on StratdP with its cellularization as in Observation 12.1.0.10
defines the structure of a simplicial Whitehead model category, and we may simply use the
simplicial cylinder as a simple cylinder.

Notation 13.1.2.6. We will generally refer to simple equivalences in the Whitehead model
category StratdP as simple diagrammatic equivalences. When the context is clear, we will also
just speak of simple equivalences.

We may now apply Theorem 12.1.0.4 together with Theorem 7.4.2.11 to derive the following
theorem.
Theorem 13.1.2.7. The cellularized functor

∣ − ∣s∶ sStratdP → StratdP
defines a weak equivalence of Whitehead model categories. In particular, it follows that for
every finite stratified simplicial set X ∈ sStratP , the induced morphism of Whitehead groups

Wh∣−∣s ∶WhP (X )→WhStratd
P
(∣X ∣s)

is an isomorphism.
Theorem 13.1.2.7 justifies the following notation.

Notation 13.1.2.8. Given a structured stratified cell complex X in StratdP , we also denote
the associated Whitehead group WhStratd

P
(X) by WhP (X).
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13.2 Computation of the diagrammatic stratified White-
head group

In [Waa21], we asked the question of whether the stratified Whitehead groups WhP (X )
can be computed entirely in terms of classical Whitehead groups associated to strata and
homotopy links. Having all of the new technology developed in Chapters 10 and 11 available,
obtaining a positive answer to this question turns out to be a fairly easy task. The strategy
of computation will be to entirely transform the question into a question of the associated
diagrams of (homotopy) links. Then we can use the methods for the computation of simple
homotopy theories of diagrams which we developed in Chapter 11.

Remark 13.2.0.1. For the remainder of this section, we will only be considering cellularized
categories of the form SetRop

, where R is an elegant Reedy category (see Section 8.3.5). In
particular, as we already discussed in Observation 13.1.1.1, in this kind of framework (relative)
cell structures are always intrinsic, every object naturally carries a unique cell structure, and a
morphism is a relative cell complex if and only if it is a monomorphism. This also implies that
being a cellularized functor between such presheaf categories does not involve any choice of
additional structure. A functor

L∶SetRop
→ SetSop

with R and S elegant Reedy categories, admits a (necessarily unique) cellularization, if and
only if it preserves colimits and monomorphisms. Observe that any such functor is necessarily
left adjoint, with right adjoint given by

X ↦ {r ↦ SetSop
(L(Rr

),X)},

extending to morphisms in the obvious way.

Construction 13.2.0.2. Recall that we denote by sd(P ), the subdivision of a poset P , given
by the set of regular flags in P ordered by inclusion. Considered as a category, sd(P ) admits
the structure of a Reedy category where we set sd(P )+ = sd(P ). In particular, sd(P ) has no
(non-trivial) degeneracy maps, and is thus an elegant Reedy category.

13.2.1 Cellular link functors
The crucial idea to compute the stratified Whitehead groups is to work with versions of the
simplicial homotopy link functor that are W-functors. In this section, we give an axiomatic
approach to what properties such a functor needs to fulfill, and show that these characterize
the functor up to essentially unique simple equivalence.

Construction 13.2.1.1. Recall that we denote by DiagP the simplicial category of simplicial
presheaves sSetsd(P )op

, equipped with the injective model structure, inherited from the
Kan-Quillen model structure on sSet. By [BR12, Proposition 3.15] this is equivalently the
Reedy model structure on sSetsd(P )op

. We may thus use Proposition 11.1.1.8 to lift the
Whitehead model category structure on sSet (given by boundary inclusions of simplices and
horn inclusions) to DiagP . When we refer to DiagP as a Whitehead model category, it will
always be with respect to this structure.

Observation 13.2.1.2. It follows by Corollary 8.3.5.7 that Remark 13.2.0.1 also applies to
the Whitehead model categories DiagP , for P a poset. Hence, there is no need to specify
cell structures in this context. Finite cell complexes in DiagP are precisely such diagrams
D ∈ DiagP , for which DI is finite, for each I ∈ sd(P ) and empty, for all but finitely many
I ∈ sd(P ). It follows by Corollary 11.1.2.8 that a morphism ω∶D → D′ ∈ hoDiagP between
two such finite diagrams is a simple equivalence, if and only if the induced morphisms in
the homotopy category of finite simplicial sets ωI ∶DI →D′I are simple equivalences, for each
I ∈ sd(P ).
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The core idea to computing the stratified Whitehead groups WhP (X ) is to use the
diagrammatic homotopy link functor

HoLinkI ∶ sStratdP →DiagP

(see, for example, Recollection 5.2.2.1) to translate the computation into a purely diagrammatic
one. HoLinkI does generally not preserve colimits (unless we are working over a discrete poset)
and thus is not a cellularized functor. We have already seen in Chapter 5 that there are left
adjoint models for the homotopy link functor available. It will be useful to freely be able to
switch between such models. Let us therefore give a general definition of the types of functors
that we will consider.

Definition 13.2.1.3. A functor

L∶ sStratP →DiagP

is called a cellular link functor if it fulfills the following properties:

1. L is a finite cellularized functor.

2. For each flag J ∈ ∆P , with underlying regular flag I, it holds that L(∆J )I′ is contractible,
whenever I ′ ⊂ I, and is empty, whenever I ′ ∈ sd(P ) is not a subset of I.

Notation 13.2.1.4. Given a cellular link functor L∶ sStratP →DiagP and a flag I ∈ sd(P ),
we denote by

LI ∶ sStratP
L
Ð→DiagP

evI
ÐÐ→ sSet

the composition of L with evaluation at I.

Remark 13.2.1.5. As we have explained in Remark 13.2.0.1, L as in Definition 13.2.1.3 being
a cellularized functor is equivalent to it preserving monomorphisms and colimits. It follows by
Lemma 11.2.3.2 that L being finite is equivalent to L(∆J ) being a finite diagram, for each
J ∈∆P .

It will also be useful to observe the following equivalent characterization of the second
defining condition of a cellular link functor.

Recollection 13.2.1.6. Given a simplicial set X ∈ sSet and a presheaf F ∈ Setsd(P )op
, recall

that the notation F ◯○ X (see Section 8.3) refers to the presheaf on sd(P ) ×∆, given by

(I, n)↦ ⊔
i∈FI

Xn

with the obvious functoriality induced by the one of F and X. Under the exponential law for
functor categories

Setsd(P )op×∆op
≅ sSetsd(P )op

we can identify this presheaf with an element of DiagP . Here, we will mainly refer to the
special case where F = sd(P )I , for some flag I ∈ sd(P ), and X = ⋆ = ∆0. In this case,
sd(P )I ◯○ ⋆ is the unique diagram that fulfills

I
′
↦

⎧⎪⎪
⎨
⎪⎪⎩

∅ , if I ′ /⊂ I
⋆ , if I ′ ⊂ I

.

Observation 13.2.1.7. Given I ∈ sd(P ), the diagram sd(P )I ◯○ ⋆ is fibrant. It follows that
for any D ∈DiagP , there is a canonical equivalence

DiagP (D, sd(P )I ◯○ ⋆) ≃ DiagP (D, sd(P )I ◯○ ⋆)
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between the simplicial and the derived mapping spaces, computing the mapping spaces in the
∞-category DiagP . Observe that the simplicial mapping spaces

DiagP (D, sd(P )I ◯○ ⋆)

are empty, or a point, and are non-empty if and only if DI′ is empty, whenever I ′ /⊂ I. It
follows that sd(P )I ◯○ ⋆ defines the (essentially) unique subterminal object in DiagP that has
the following characterizing property.

• For any D ∈DiagP , DiagP (D, sdI ◯○ ⋆) is non-empty empty, if and only if DI′ is empty,
for each I ′ /⊂ I.

Lemma 13.2.1.8. Let I ∈ sd(P ), and let D ∈DiagP be a finite diagram. Then the following
are equivalent:

1. DI′ is contractible, whenever I ′ ⊂ I, and empty otherwise.

2. There is a (necessarily unique) simple equivalence

D
≃
Ð→ sd(P )I ◯○ ⋆ .

Proof. That the latter condition implies the former is immediate by Observation 13.2.1.7. For
the converse, it follows by the description of simplicial mapping spaces in Observation 13.2.1.7
that such a unique morphism exists. By assumption on D, at each I ∈ sd(P ), this morphism
has both source and target empty, or both source and target contractible. In particular, it is
given by a simple equivalence, for each I ∈ P . Hence, it follows by Corollary 11.1.2.8 that the
unique morphism defines a simple equivalence of diagrams.

Let us now give three examples of cellular link functors. All of these are derived from
different combinatorial models for the regular neighborhood of strata in a stratified simplicial
complex.

Example 13.2.1.9. In Construction 5.2.2.4, we constructed a cellular link functor

Linkm∶ sStratP →DiagP ,

via left Kan-extension, by mapping the stratified simplex ∆J to the diagram

I ↦∏
p∈I

∆Jp

with structure morphisms given by the obvious projections between products. Here, ∆Jp

denotes the trivially stratified simplex given by the subflag Jp ⊂ J , of all entries that
correspond to p. It follows by Propositions 5.2.2.9 and 5.2.2.11 and Recollection 5.2.2.1 that
this construction defines a left Quillen equivalence between the diagrammatic model structure
on stratified simplicial sets and the injective model structure on diagrams. In particular, it
defines a cellularized functor, which is evidently finite. Clearly,

∏
p∈I

∆Jp

is empty, if and only if I is not a subset of the regular flag which J degenerates from, and
is contractible otherwise. The basic idea behind this link functor is best illustrated in the
scenario of two strata, P = {p < q}, and a stratified simplicial complex X ∈ sStratdP . Then the
simplicial neighborhood of Xp ⊂X, NXp(X) ⊂X, is given by a subcomplex of the simplicial
join

NXp(X) ⊂Xp ⋆Xq .
Passing to realizations, one obtains an inclusion

NXp(X) ⊂ ∣Xp ⋆Xq ∣ ≅ ∣Xp∣ ⋆ ∣Xq ∣
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into the topological join, which is given by the pushout

∣Xp∣ × ∣Xq ∣ × {0} ⊔ ∣Xp∣ × ∣Xq ∣ × {1} ∣Xp∣ × ∣Xq ∣ × [0,1]

∣Xp∣ × {0} ⊔ ∣Xq ∣ × {1} ∣Xp∣ ⋆ ∣Xq ∣ .

⌟

(13.3)

One then obtains a boundary B for a regular neighborhood of ∣Xp∣ ⊂ ∣X ∣, by intersecting
∣NXp(X)∣ ⊂ ∣Xp ⋆Xq ∣ with the inverse image of 1

2 under the join coordinate map ∣Xp∣ ⋆ ∣Xq ∣→

[0,1]. Observe that this inverse image is naturally homeomorphic to ∣Xp∣ × ∣Xq ∣ ≅ ∣Xp ×Xq ∣.
Linkm{p<q}(X ) then provides an explicit triangulation for B in terms of a subcomplex of Xp×Xq.
Example 13.2.1.10. In Definition 3.2.5.4, we provided another cellular link functor (we only
gave a pointwise definition there). At a flag I, it is given by associating a stratified simplicial
set X to P , the fiber over the barycenter of the first barycentric subdivision of the nerve of P
at I. In other words, it is given by the pullback.

(sdX)I sdX

⋆ N(sd(P )) ≅ sdN(P ) .

sdsX

I

⌟ (13.4)

We will denote this simplicial set by (sdX )I , in order to keep track of the stratification.
Combinatorially speaking, (sdX )I is the subcomplex of sdX, spanned by the vertices coming
from such stratified simplices which degenerate from I. In the case of two strata, P = {p < q},
(sdX ){p<q} is simply the classical construction for the boundary of a regular neighborhood
of X , and (sdX ){p} and (sdX ){q} are given by the barycentric subdivision of the simplicial
strata.
From this perspective, it is not surprising that this construction admits a functoriality in
I (in fact, it was already described in [Hat75]). For the sake of completeness, let us repeat
the construction here: As (sd−)I is a colimit and monomorphism preserving functor, it is
uniquely determined by its values on stratified simplices and via left Kan extension, we only
need to expose functoriality in I after restriction to ∆P . For a stratified simplex ∆J , with
J = [p0 ≤ ⋅ ⋅ ⋅ ≤ pn], it follows from the fact that the nerve preserves limits, that we can identify
the defining pullback diagram of (sd∆J )I with the nerve of the pullback diagram of posets

(sdJ )−1(I) sd[n]

{I} sd(P ) .

sdJ (13.5)

In other words, (sd∆J )I is given by the nerve of the subposet of sd[n] given by such subsets
S ⊂ [n], for which I = {pi ∣ i ∈ S}. If I ′ ⊂ I, we obtain a map of posets via

(sdJ )−1
(I)→ (sdJ )−1

(I
′
)

S ↦ (sdJ )−1
(I
′
) ∩ S .

This map can easily be seen to be natural in ∆P , hence, passing to nerves and left Kan-
extending, we obtain a natural transformation

ρI′⊂I(sdX )I → (sdX )I′ .

These natural transformations are also clearly contravariantly functorial in I, and hence
agglomerate into a functor

Linksd
∶ sStratP →DiagP

X ↦

⎧⎪⎪
⎨
⎪⎪⎩

I ↦ (sdX )I
(I ′ ⊂ I) ↦ ρI′⊂I .
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To see that Linksd preserves colimits and monomorphisms, we only need to see that this is the
fact flagwise. For any such regular flag I ∈ sd(P ), Linksd

I is a composition of subdivision and
base change, both of which preserve colimits and monomorphisms, and hence has the required
property. Finiteness of Linksd is immediate by construction. Finally, to see that the homotopy
theoretic conditions on Linksd hold, observe that the poset (sdJ )−1(I) is empty, if and only
if I is contained in the non-degenerate flag which J degenerates from, and that whenever it
is non-empty, it contains a maximal element, given by the flag J −1(I). In particular, this
implies that its nerve Linksd

I (∆J ) ≅ N((sdJ )−1(I)) is contractible.

Example 13.2.1.11. A third example of a cellular link functor was provided in [Dou21b]. It
was denoted SdP there. We will use the notation LinkNI here. Given a regular flag I, denote by
LinkNI (∆I) the subcomplex of sdN(P ) ≅ N(sd(P )), given by the nerve of the poset given by
such flags I ′ ∈ sd(P ) that contain I. Then, for a general stratified simplicial set X ∈ sStratP ,
LinkNI (X ) is defined as the subsimplicial set of sdX, defined via the pullback square

LinkNI (X ) sdX

LinkNI (∆I) N(sd(P )) .

sdsX

I

⌟ (13.6)

Whenever I ′ ⊂ I, then there is a containment LinkNI (X ) ⊂ LinkNI′(X ). Hence, the construction
agglomerates into a functor

LinkN ∶ sStratP →DiagP

X ↦

⎧⎪⎪
⎨
⎪⎪⎩

I ↦ LinkNI (X )
(I ′ ⊂ I) ↦ (LinkNI (X ) ⊂ LinkNI′(X )) .

with the obvious functoriality on morphisms. If I = [p] is singleton, then LinkNp (X ) is the
standard model for the regular neighborhood N(Xp) ⊂ sdX of the simplicial stratum Xp ⊂X.
For a more general flag I, LinkNI (X ) can be computed as the intersection of such neighborhoods

LinkNI (X ) = ⋂
p∈I

N(Xp) .

Applying this observation to simplices, it is not hard to show that this construction defines a
cellular link functor.

It turns out that for the purpose of simple homotopy theory, the choice of concrete combi-
natorial model is essentially irrelevant. Following the notational convention of Notation 7.2.1.4,
we denote the ∞-category obtained by localizing DiagP at pointwise weak equivalences by
DiagP .

Proposition 13.2.1.12. Let L,L′∶ sStratP →DiagP be two cellular link functors. Then there
exists a unique (up to homotopy) natural transformation of functors of ∞-categories

DiagP

sStratP DiagP .

DiagP

η

L

L′

(13.7)

η is an ∞-categorical simple equivalence of cellularized functors.
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Proof. We apply Theorem 11.2.3.13, where we treat sStratP as a category of presheaves on
∆P . Since sSet is a properly generated Whitehead model category, so is DiagP (Proposi-
tion 11.1.1.8). DiagP is locally presentable and admits the structure of a simplicial model
category. Hence, we only need to verify the requirements on mapping spaces and Whitehead
groups. It follows by Corollary 11.1.2.8 that simple equivalences in DiagP are precisely the
flag-wise simple equivalences. Using this, the requirements on mapping spaces and Whitehead
groups follow from Observation 13.2.1.7 and Lemma 13.2.1.8.

Proposition 13.2.1.12 is extremely useful in so far, as it often allows us to verify a property
for some choice of cellular link functor, and it immediately follows for all link functors. First
off, let us observe that any link functor is a W-functor.

Proposition 13.2.1.13. Every cellular link functor L∶ sStratP →DiagP defines a W-functor
of Whitehead model categories

sStratdP →DiagP .

In particular, it follows by Proposition 10.3.1.4 that L also defines a left Quillen functor
between the associated model categories.

Proof. Suppose that we expose a single cellular link functor which preserves weak equivalences.
Then, it follows by Proposition 13.2.1.12 and the fact that a morphism in a model category
is a weak equivalence, if and only if the associated morphisms in its localization at weak
equivalences is an isomorphism, that all link functors preserve weak equivalences. As both
model categories involved are cofibrant, a left adjoint functor between them is left Quillen,
if and only if it preserves cofibrations and weak equivalences. The monomorphisms in both
structures are precisely the relative cell complexes. Consequently, any cellular functor between
the two categories preserves cofibrations, which shows that under the assumption at the
beginning of this proof every cellular link functor is left Quillen. By Proposition 10.3.1.4, it
now suffices to show that the induced functor of homotopy categories of finite cell complexes

L∶hocsStratdP → hocDiagP

preserves simple equivalences. By the two-out-of-three property for simple equivalences, this
property is invariant under ∞-categorical simple equivalence of cellularized functors. Using
Proposition 13.2.1.12, we have thus reduced the proof to showing the existence of a single
cellular link functor which is a W-functor. Let us show that Linksd which we recalled in
Example 13.2.1.10 is such a cellularized functor. By Corollary 11.1.2.8 and Proposition 10.3.1.4,
it suffices to see that Linksd

I is a W-functor, for each I ∈∆P . By Lemma 10.1.3.7, it suffices
to show that Linksd

I maps admissible horn inclusions into simple equivalences. In fact, in the
proof of Lemma 3.4.3.2, we have even shown that the functor Linksd maps admissible horn
inclusions into expansions.

From Propositions 5.2.2.11 and 13.2.1.12 we can obtain another characterization of cellular
link functors.

Corollary 13.2.1.14. A finite cellularized functor L∶ sStratP → DiagP is a cellular link
functor if and only if the induced functor of ∞-categories obtained by composing with DiagP →
DiagP is isomorphic to HoLink∶ sStratP →DiagP → DiagP .

Next, we will show that cellular link functors define an (∞-categorical) homotopy equivalence
of Whitehead model categories in the sense of Definition 10.3.2.9.

Theorem 13.2.1.15. Let L∶ sStratdP →DiagP be a cellular link functor. Denote by I ∶DiagP →
sStratP the left adjoint to the simplicial homotopy link functor, given by

D ↦ ∫
I
DI ⊗∆I .
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I defines a W-functor. There are essentially unique natural transformations of the associated
functors of ∞-categories

I ○L⇒ 1sStratd
P

and L ○ I ⇒ 1DiagP
.

These natural transformations are ∞-categorical simple equivalences. In particular, it holds
that L and I are ∞-categorical homotopy equivalences of Whitehead model categories.

Proof. I is a left Quillen functor, and hence preserves cofibrations and colimits. Consequently, it
follows by Remark 13.2.0.1 that I is a cellularized functor. I is clearly finite. To show that I is a
W-functor, it remains to show that I preserves simple equivalences, or by Lemma 10.1.3.7 that I
maps generating elementary expansions into simple equivalences. It follows by Corollary 11.1.2.8
that the canonical simplicial structure on DiagP equips the latter with the structure of a
simplicial Whitehead model category. The generating elementary expansions of DiagP are
given by the Leibniz tensors

(Λnk →∆n
)⊗̂(∂sd(P )I ↪ sd(P )I).

Observe that I defines a simplicial functor. Hence, up to isomorphisms of relative cell complexes,
the generating acyclic fibrations above are mapped to

(Λnk →∆n
)⊗̂I(∂sd(P )I ↪ sd(P )I) = (Λnk →∆n

)⊗̂(∂∆I →∆I).

As sStratdP is a simplicial Whitehead model category, it follows that this map is a simple
equivalence. To prove the uniqueness and existence part on the claimed natural transformations,
we use Lemma 11.2.3.11. We first expose a unique natural transformation I ○L⇒ 1sStratd

P
.

Let J ∈ ∆P . By Lemma 13.2.1.8 it follows that L(∆J ) is weakly equivalent to sd(P )I ◯○ ⋆,
where I is the underlying regular flag of I. Consequently, I ○L(∆J ) is weakly equivalent to
∆I ≃∆J = 1(∆J ). Observe that ∆I is subterminal in the simplicial category sStratP , and
fibrant, and hence a subterminal object in sStratdP . Hence, the requirements of Lemma 11.2.3.11
are fulfilled and we obtain the existence of an essentially unique natural transformation

sStratP

sStratP sStratdP

sStratP .

L○I

1

(13.8)

By the universal property of the localization, the latter descends to an essentially unique
natural transformation of functors of ∞-categories

sStratdP sStratdP .

I○L

1

(13.9)

An essentially entirely analogous argument produces the converse natural transformation
of functors of ∞-categories L ○ I ⇒ 1. Under the isomorphism of categories DiagP ≅
Set∆op×sd(P )op

, the representable presheaves are precisely given by the diagrams of the form

sd(P )I ◯○ ∆n
≅∆n

⊗ (sd(P )I ◯○ ⋆) .

It follows by Theorem 11.1.2.6 that the Whitehead groups of these diagrams are trivial. Hence,
it follows Theorem 11.2.3.13 that the transformation L ○ I ⇒ 1 is a simple equivalence. It
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remains to be shown that the transformation I ○L⇒ 1 is a simple equivalence. By uniqueness
of this natural transformation, together with Proposition 13.2.1.12 it suffices to prove this claim
for a fixed cellular link functor L. We use the cellular link functor LinkN of Example 13.2.1.11.
In [Dou21b], it was shown that the composition of functors of 1-categories I ○ LinkN is
naturally isomorphic to the stratified subdivision functor sdP ∶ sStratP → sStratP of [Dou21b].
In [Waa21, Prop. 2.3.19], we showed that the last vertex map transformation sdP → 1sStratP

is
a simple equivalence of cellularized functors. Consequently, it also descends to an∞-categorical
simple equivalence I ○LinkN ≅ sdP ⇒ 1sStratP

. By the essential uniqueness, it thus follows that
any ∞-categorical natural transformation I ○ LinkN ⇒ 1sStratP

is a simple equivalence.

13.2.2 The decomposition theorem
In Theorem 11.1.2.6, we computed the Whitehead group of a diagram indexed over a finite
Reedy category in terms of the product of the Whitehead groups of its pointwise values. We
may now combine this result with Theorem 13.2.1.15, to compute the stratified Whitehead
groups WhP (X ).

Corollary 13.2.2.1. Let Link∶ sStratP → DiagP be a cellular link functor. Then, the
associated W-functors LinkI ∶ sStratdP → sSet , for I ∈ sd(P ), induce an isomorphism

WhP (X )
≅
Ð→ ⊕
I∈sd(P )

Wh(LinkI(X ))

⟨ω⟩↦ ∑
I∈sd(P )

⟨LinkI(ω)⟩ .

Proof. In the case where P is a finite poset the claimed isomorphism is simply the composition
of the isomorphism on Whitehead groups

WhLink ∶WhP (X )→WhDiagP
(Link(X ))

with the isomorphism

WhDiagP
(Link(X )) ≅ ∏

I∈sd(P )
Wh(LinkI(X )) = ⊕

I∈sd(P )
Wh(LinkI(X ))

of Theorem 11.1.2.6. For the infinite case, observe the following. Given a subposet Q ⊂ P ,
denote by

i!∶ sStratQ ↪ sStratP
the left adjoint to the restriction functor X ↦ X ∣Q, given by postcomposing the stratification
map with Q→ P . Observe that this functor defines a fully faithful inclusion of categories, and
that it preserves cofibrations and admissible boundary inclusions. In particular, it defines a
W-functor. More than that, i! has the property that its image is closed under weak equivalences
in sStratdP . It follows from this, that for any finite Y ∈ sStratQ the induced map of Whitehead
groups

WhQ(Y)→WhP (i!Y)

is an isomorphism. Next, observe that for any finite stratified simplicial set X , there is a finite
poset Q i

↪Ð→ P , such that the counit of adjunction i!(X ∣Q)→ X is an isomorphism (the identity
even). Hence, one obtains a canonical isomorphism

Whi! ∶WhQ(X ∣Q)→WhP (i!(X ∣Q)) =WhP (X ).

Furthermore, for any flag I ∈ sd(P ) that is not contained in Q, it holds that LinkI(X ) = ∅
and hence that Wh(LinkI(X )) = 0. Consequently, the canonical morphism

⊕
I∈sd(Q)

Wh(LinkI(X ))→ ⊕
I∈sd(P )

Wh(LinkI(X ))
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is an isomorphism. Now, consider the commutative diagram

WhQ(X ∣Q) ⊕I∈sd(Q)Wh(LinkI(X ))

WhP (X ) ⊕I∈sd(P )Wh(LinkI(X )) ,

≅ ≅ (13.10)

with lower horizontal as in the statement of the theorem, and the dashed map uniquely
determined by commutativity. Next, observe that the composition

sStratQ
i!
↪Ð→ sStratP

Link
ÐÐ→DiagP

(−)∣sd(Q)
ÐÐÐÐÐ→DiagQ

fulfills the defining properties of a cellular link functor. The dashed horizontal in the last
commutative diagram is precisely the map in the statement of the theorem associated to this
link functor. Hence, it follows from the finite case that it is an isomorphism. Consequently, so
is the lower horizontal.

Notation 13.2.2.2. Given the isomorphism in Corollary 13.2.2.1, we will always denote the
projection to the I-th component of ⟨ω⟩ ∈WhP (X ) by ⟨ω⟩I . Observe that, up to the unique
identification of cellular homotopy links guaranteed by Proposition 13.2.1.12, this expression is
well-defined.

13.3 Some final observations
We can summarize the key insights of what we have determined about diagrammatic stratified
simple homotopy theory so far in terms of the following two statements.

1. Stratified realization induces an equivalence of Whitehead model categories

sStratdP ≃ StratdP ,

between the simplicial and the topological setting.

2. Any choice of cellular link functor induces a natural isomorphism

WhP (X ) ≅ ⊕
I∈sd(P )

Wh(LinkI(X )),

where X ranges over finite P -stratified simplicial sets.

We can now use these results to derive a few immediate consequences about the diagrammatic
topological stratified simple homotopy theory.

Observation 13.3.0.1. Let Y in StratdP be a finite structured stratified cell complex with
underlying stratified space Y. Then it follows by Theorem 13.1.2.7 that there exists a finite
stratified simplicial set X ∈ sStratP , together with a simple equivalence

∣X ∣s ≃Y.

If we now fix some cellular link functor Link, then it follows from Corollary 13.2.1.14 that we
obtain canonical equivalences

LinkI(X ) ≃ HoLinkI(X ) ≃ HoLinkI(Sings(Y)) ≅HoLinkI(Y) ,

for I ∈ sd(P ). Here, we consider HoLinkI(Y) as a simplicial set, by passing to singular
simplices as in Recollection 7.3.1.1. Observe that it also follows by Theorem 13.1.2.7 that for
any other choice of stratified simplicial set and simple equivalence

∣X
′
∣s ≃ Y
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the induced composition

LinkI(X ) ≃HoLinkI(Y) ≃ LinkI(X ′)

is a simple equivalence. In this sense, any choice of finite cell structure on a stratified topological
space Y (or more generally a choice of presentation of the diagrammatic homotopy type up to
simple equivalence) determines a choice of simple homotopy type for all generalized homotopy
links. Combining Theorem 13.1.2.7 with Corollary 13.2.2.1 produces isomorphisms

WhP (Y) ≅WhP (∣X ∣s) ≅WhP (X ) ≅ ⊕
I∈sd(P )

Wh(LinkI(X ))

Under Theorem 10.2.3.9, we may interpret this result as stating that a choice of presentation
of the diagrammatic stratified homotopy type of Y in terms of a finite stratified cell complex
is, modulo simple equivalences, the same as a choice of presentation of each homotopy link in
terms of a finite cell complex (CW-complex, simplicial set, simplicial complex).

Observation 13.3.0.2. Taking the perspective that finite cell structures on a stratified
space X ∈ StratdP correspond to fixing a presentation in terms of a finite cell complex for
all homotopy links of X , we may characterize simple homotopy equivalences between finite
structured stratified cell complexes as such maps that induce simple homotopy equivalences on
all generalized homotopy links (with respect to the induced presentations).

Remark 13.3.0.3. One can also deduce through an inductive argument involving Theo-
rems 13.1.2.7 and 13.2.1.15 that a stratified space X over a finite poset P has the diagrammatic
homotopy type of a finite stratified cell complex, if and only if for each I ∈ sd(P ), the homotopy
link HoLinkI(X ) has the weak homotopy type of a finite cell complex.

As a first corollary, we obtain the Whitehead groups of a stratified simplex.

Corollary 13.3.0.4. Let J ∈∆P . Then

WhP (∣∆J ∣s) = 0.

Proof. As Whitehead groups are invariant under weak equivalences and every stratified simplex
is weakly equivalent to a stratified simplex ∣∆I ∣s, where I ∈ ∆P is regular, we only need to
cover the case of a regular flag. We may then use the link functor of Example 13.2.1.10, which
produces

LinkI′(∆I) =
⎧⎪⎪
⎨
⎪⎪⎩

⋆ , if I ′ ⊂ I
∅ , if I ′ /⊂ I.

Consequently, it follows that

WhP (∣∆I ∣s) =WhP (∆I) = ⊕
I′∈sd(P )

Wh(LinkI′∆I) = 0 .

As a particular corollary of Corollary 13.3.0.4, we obtain the invariance of simple stratified
homotopy types under subdivisions of cell structures:

Recollection 13.3.0.5. Recall that a subdivision of a stratified cell complex X in StratP is
a cell structure X′ on X of the form

CX′ = {σ ○ τ ∣ σ∶ ∣∆I ∣s → X ∈ CX, τ ∈ Cσ}

where Cσ, for each σ ∈ CX, is a choice of relative cell structure on ∣∂∆I →∆J ∣s (see, Def-
inition 11.2.2.3). We will slightly extend this definition in the sense that we also call a
stratum-preserving homeomorphism between stratified cell complexes ϕ∶X→Y a subdivision,
if the cell structure Y′ = ϕCX on Y obtained by transporting the cell structure on X to Y along
ϕ is a subdivision of Y.



13.3. SOME FINAL OBSERVATIONS 599

As an immediate corollary of Corollary 13.3.0.4 and Proposition 11.2.2.4, we obtain:

Corollary 13.3.0.6. Let X be a finite structured stratified cell complex and let ϕ∶X′ ≅Ð→ X be a
subdivision of X. Then ϕ is a simple diagrammatic equivalence.

Remark 13.3.0.7. One should be careful to note that the definition of subdivision on
Recollection 13.3.0.5 is significantly more general than just being a subdivision in the classical,
piece-wise linear sense. In particular, one is generally allowed to subdivide in ways which are
highly non-linear and furthermore can subdivide the interior of a cell, without subdividing any
of the cells intersecting its boundary.

13.3.1 Connection with the piecewise linear setting
Much of the investigations of stratified spaces which admit some type of triangulation were
performed not in the framework of simplicial sets, but instead in the piecewise linear world,
using the language of polyhedra (see [Sto72] and [Wei94] for an overview). Let us quickly make
the connection to this framework. The transition is fairly elementary and we will not give too
many details here.

Definition 13.3.1.1. We call a simplicial set X ∈ sSet an (ordered) simplicial complex, if
each non-degenerate simplex of X is uniquely determined by its set of vertices, i.e., if for each
n ∈ N, the map

f ∶ ⊔
n∈N

Xn,n.d. →X0

σ ↦ {σi ∈X0 ∣ i ∈ [n]}

– assigning to a non-degenerate simplex its set of vertices – is injective.

Remark 13.3.1.2. Note that if X is a simplicial complex, then it follows in particular that
every face τ of a non-degenerate simplex σ∶∆n → X is non-degenerate. Indeed, if this were
not the case, then σ would have a set of vertices that is of cardinality smaller than n + 1, and
one can show that there exists a non-degenerate face σ′ of σ such that σ′ and σ have the same
vertices. It is not hard to see that the full subcategory of such X is equivalent to the category
of what is classically referred to as ordered abstract simplicial complexes and order-preserving
simplicial maps.

Definition 13.3.1.3. Given simplicial complex X ∈ sSet, a simplicial subdivision of X consists
of a simplicial complex X ′, together with a homeomorphism

ϕ∶ ∣X ′∣
≅
Ð→ ∣X ∣

such that, for every non-degenerate simplex σ′ of X ′, the following holds. There exists a
non-degenerate simplex σ of X such that the following factorization exists

∣∆n∣ ∣∆m∣

∣X ∣ ∣X ′∣

∣σ′∣ ∣σ∣

≅
ϕ

(13.11)

and such that the dashed map is an affine map.

Remark 13.3.1.4. If X is finite, then we can embed ∣X ∣ into RX0 by affinely embedding the
(non-degenerate) simplices of ∣X ∣ via

∣∆n
∣→ RX0

ei ↦ eσi
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where we consider ∣∆n∣ as embedded in R[n], and denote by es ∈ RS , for a set S and s ∈ S,
the standard basis vector given by 1 at s and 0 everywhere else. Then the definition of
subdivision in Definition 13.3.1.3 is equivalent to the classical definition of subdivision of
simplicial complexes in the sense of [RS12] in the sense that the images of the non-degenerate
simplices of ∣X ′∣ under ϕ in ∣X ∣ ⊂ RX0 define a subdivision of the (classical) simplicial structure
on ∣X ∣ (given by the non-degenerate simplices of X).

Definition 13.3.1.5. Given simplicial complexes X,Y ∈ sSet, we say that a continuous map

f ∶ ∣X ∣→ ∣Y ∣

is piecewise linear if there exists a simplicial subdivision ϕ∶ ∣X ′∣
≅
Ð→ ∣X ∣ such that the induced

map ϕ ○ f ∶ ∣X ′∣→ ∣Y ∣ has the following property: For every non-degenerate simplex σ′ of X ′,
there exists a non-degenerate simplex τ of Y such that the following factorization exists

∣∆n∣ ∣∆m∣

∣X ∣ ∣X ′∣

∣σ′∣ ∣τ ∣

≅
ϕ○f

(13.12)

and such that the dashed map is affine.

Remark 13.3.1.6. In the case of finite simplicial complexes X and Y it is not hard to see
that this definition of piecewise linearity agrees with the classical one (see for example [RS12])
modulo appropriate embeddings into Euclidean space.

Remark 13.3.1.7. Using stellar subdivisions, one can see that every subdivision of a subcom-
plex K ⊂X, ∣K ′∣s ≅ ∣K ∣ can be extended to a subdivision of X. It follows that being piecewise
linear is a property that can be verified after restriction to simplices. In particular, using the
compactness of simplices, checking piecewise linearity can be reduced to a verification on finite
simplicial sets. It follows from this that most classical statements on piecewise linearity, such
as being stable under composition and inversion of homeomorphisms, translate to our slightly
more general setting.

Remark 13.3.1.8. The thus-defined category of simplicial complexes and piecewise linear
maps embeds fully faithfully into what Zeeman defined to be the category of polyspaces in
[ZI63].

Notation 13.3.1.9. We will generalize most of the language introduced for the non-stratified
scenario here to the stratified scenario, by referring to the underlying non-stratified objects.
In this sense, by a stratified simplicial complex, we mean a stratified simplicial set, whose
underlying simplicial set is a simplicial complex. We proceed analogously for piecewise linear
maps etc.

Any piecewise linear stratum-preserving homeomorphism defines a simple equivalence in
the Whitehead model category StratdP :

Corollary 13.3.1.10. Let X ,Y ∈ sStratP be finite stratified simplicial complexes. Let

ϕ∶ ∣X ∣s → ∣Y ∣s

be a stratum-preserving homeomorphism that is piecewise linear with respect to the induced
polyhedral structure on ∣X ∣ and ∣Y ∣. Then ϕ is a simple diagrammatic equivalence, with respect
to the induced cell structures on source and target.

Proof. It is a classical fact that any piecewise linear map between realizations of finite simplicial
complexes can be made simplicial, up to a subdivision of source and target ([RS12, Theo.
2.14]). Subdividing barycentrically once more, we may ensure that the resulting subdivisions
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come from ordered simplicial complexes, which define simplicial sets. Hence, we obtain a
commutative diagram of stratified cell complexes

∣X ∣s ∣Y ∣s

∣X ′∣s ∣Y ′∣s

ϕ

≅ ≅

∣f ′∣

(13.13)

where the two verticals are given by subdivisions in the classical simplicial complex sense,
and f ′∶X ′ → Y ′ is a map of stratified simplicial sets. By commutativity of the diagram,
it follows that ∣f ′∣s is an isomorphism. Consequently, the underlying topological map is a
homeomorphism, and it follows from the fact that ∣− ∣ is a conservative functor that f ′∶X → Y is
an isomorphism of stratified simplicial sets. In particular, it is an isomorphism of cell complexes
(with respect to the canonical unique cell structures) and thus a simple equivalence. Hence, it
follows from Corollary 13.3.0.6 and the two-out-of-three property for simple equivalences that
ϕ is a simple equivalence.

There is another useful consequence to Corollary 13.3.0.6. Namely, it allows us to define a
Whitehead group for stratified polyhedra, where the cell structure is only well defined up to
PL homeomorphism. It will be useful to also have a notion of polyhedron available, which
allows for flexible triangulations. We will emulate the definition used in [Sto72; ZI63].

Definition 13.3.1.11. By a triangulation of a stratified space X ∈ StratdP , we mean a pair
consisting of a stratified simplicial complex K ∈ sStratP together with a stratum-preserving
homeomorphism

ϕ∶ ∣K∣s
≅
Ð→ X .

We say that two triangulations (K, ϕ) and (K′, ϕ′) are related, if the induced stratum-preserving
homeomorphism

∣K∣s
ϕ
Ð→ X

ϕ′−1

ÐÐ→ ∣K
′
∣s

(and hence also its inverse) is piecewise linear.

Observation 13.3.1.12. Observe that given a triangulation of a stratified space ∣K∣s ≅ X ,
the space is compact if and only if X is finite.

Definition 13.3.1.13. By a stratified finite polyhedron, we mean a compact stratified topo-
logical space X ∈ StratP together with a maximal set of related triangulations.

Remark 13.3.1.14. There is a slightly set-theoretical issue here, in the sense that the class
of all triangulations ∣K′∣s ≅ X related to a fixed triangulation is not a set. Hence, from this
set-theoretic perspective, such a set cannot exist. This is of course easily circumvented, by
fixing some set-sized category of finite sets beforehand (for example, all subsets of N) and then
defining a finite simplicial set to be a presheaf valued in this category. Equivalently, we can
take the quotient set where we mod out by the relation of isomorphism of finite simplicial
sets. The resulting quotient set has only countably many elements. We will freely ignore these
set-theoretic issues here, noting that the ∞-categorical methods which we have made excessive
use of often assume the existence of larger cardinals anyway.

We will generally drop the finite from the name for polyhedra, and assume that for our
purposes all polyhedra are compact.

Notation 13.3.1.15. At this point, we have used the calligraphic font for stratified things,
fraktur font for cell complexes and bold font for categories. Having run out of fonts at this
point, we are also going to use fraktur font for polyhedra. This is at least not entirely wrong,
in-so-far, as wherever there is a polyhedron a family of cell structures is included.
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Remark 13.3.1.16. In the case where P = [n], a stratified polyhedron is essentially the same
thing as what Stone calls a filtered (compact) polyhedron in [Sto72]. The subtle differences
are the following:
We use simplicial sets as a model for simplicial complexes, while Stone uses geometric simplicial
complexes embedded in some Euclidean space. As we elaborated in Remark 13.3.1.4 and
Remark 13.3.1.6, in the finite scenario these two theories are equivalent (as categories) after
passing to the piecewise linear (PL for short) world. The advantage for our language is that
all simplicial complexes are intrinsically ordered and that the subcomplexes X≤p ⊂ X , for p ∈ P
are full subcomplexes. Stone usually ensures these conditions by subdividing triangulations
once barycentrically, before stating any kind of result. Clearly, up to PL isomorphisms, these
conditions can always be achieved.

Construction 13.3.1.17. We can now associate to a stratified polyhedron X a stratified
Whitehead group as follows: The obvious thing to do is to fix some triangulation ϕ∶ ∣K∣s

≅
Ð→ X

and set
WhP (X) ∶=WhP (∣K∣s).

While there is clearly a choice being made here, for any other choice of triangulation ϕ′∶ ∣K∣s
≅
Ð→ X ,

the induced stratum-preserving homeomorphism ϕ′−1 ○ ϕ defines a canonical isomorphism

WhP (∣K∣s)
(ϕ′−1○ϕ)∗
ÐÐÐÐÐ→WhP (∣K′∣s).

For the sake of cleanliness, it can be nice to not have to constantly refer to a specific choice of
triangulation. We can circumvent this, by considering the indiscrete (small) category T(X)
whose objects are triangulations of X, and which has exactly one morphism between any two
objects. We then consider the diagram of abelian groups defined by

(K, ϕ)↦WhP (∣K∣s)
((K, ϕ)→ (K′, ϕ′))↦ (ϕ′−1

○ ϕ)∗ .

and set WhP (X) to the colimit of this diagram. As this is a colimit over a diagram over
an indiscrete category with all morphisms given by isomorphisms, the canonical associated
morphisms

WhP (∣K∣s)→WhP (X)
are all isomorphisms, and we can safely identify WhP (X) with the Whitehead group of any
of its triangulations. In this fashion, this construction also becomes covariantly functorial
in morphisms between polyhedra in hoStratdP , by pre- and postcomposing the latter appro-
priately and using the functoriality of the Whitehead group on the associated morphisms of
triangulations.

The crucial point to be made here is that not only the choice of Whitehead group functor
for polyhedra is independent of the choice of triangulation, but also the choice of Whitehead
torsion:

Construction 13.3.1.18. Let X and Y be stratified polyhedra, and let α∶X → Y be a
morphism of the underlying stratified spaces in hoStratdP . The Whitehead torsion of α,
denoted

⟨α⟩ ∈WhP (X)
is defined as follows. Fix two triangulations ϕ∶ ∣K∣s ≅ X and ψ∶ ∣L∣s ≅ Y of X and Y. Then

ψ−1
○ α ○ ϕ∶ ∣K∣s

ϕ
Ð→ X

α
Ð→ Y

ψ−1

ÐÐ→ ∣L∣s

is a morphism between structured stratified cell complexes, and hence has a well defined
Whitehead torsion in ⟨ψ−1 ○ α ○ ϕ⟩ ∈ WhP (K). We define ⟨α⟩ as the image of ⟨ψ−1 ○ α ○ ϕ⟩
under the canonical isomorphism

WhP (∣K∣s) ≅WhP (X) .
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Let us verify the invariance of this construction of Whitehead torsion of the choices of
triangulations made.

Proof. Observe first that this class is invariant of the choice of ψ. For any other choice ψ′, the
two morphisms ψ−1○α○ϕ and ψ′−1○α○ϕ differ by the postcomposition with the piecewise linear
stratified homeomorphism ψ′−1 ○ ψ. By Corollary 13.3.1.10, the latter is a simple equivalence.
Hence, it follows that

⟨ψ−1
○ α ○ ϕ⟩ = ⟨ψ′−1

○ α ○ ϕ⟩ .

To see invariance of the choice of ϕ, observe that for any other choice (K′, ϕ′), the identifications
of Whitehead groups of triangulations with the Whitehead group of X fit into a commutative
diagram

WhP (∣K∣s) WhP (∣K′∣s).

WhP (X)

(ϕ′−1○ϕ)∗

≅ ≅
(13.14)

Hence, we only need to verify that

(ϕ′−1
○ ϕ)∗⟨ψ

−1
○ α ○ ϕ⟩ = ⟨ψ−1

○ α ○ ϕ′⟩.

Indeed, as (ϕ′−1 ○ ϕ) is a simple diagrammatic equivalence, it follows by Lemma 9.1.3.11 that

(ϕ′−1
○ ϕ)∗⟨ψ

−1
○ α ○ ϕ⟩ = ⟨ψ−1

○ α ○ ϕ ○ (ϕ′−1
○ ϕ)−1

⟩ = ⟨ψ−1
○ α ○ ϕ′⟩

as was to be shown.

13.3.2 Stratum-preserving homeomorphisms of stratified cell com-
plexes are generally not simple diagrammatic equivalences.

In the previous section, we have seen that every stratum-preserving PL homeomorphism is a
simple diagrammatic equivalence. One should be careful, however, not to draw the following
conclusion in analogy to the classical scenario of CW-complexes: It is a classical result due to
Chapman that any homeomorphism of finite CW-complexes is a simple homotopy equivalence
(see [Cha74]). Hence, in the classical topological scenario, one can even associate a well-defined
Whitehead torsion to any map of spaces which have the homeomorphism type of a CW-complex,
without any need for fixing cell structures on target and source. In the stratified world, this
is no longer the case. In fact, without a choice of cell structure, one can generally not even
assign a well-defined simple homotopy type to strata.
This is certainly a fact well known to the expert in slightly different language, which is handled
with techniques involving cosheaves of Whitehead spectra in Quinn’s study of cobordism
theorems for homotopically stratified spaces in [Qui88]. We will spell out the argument in
some detail in the remainder of this section, as it illustrates well the possible pitfalls when
working with simple stratified homotopy types. It may also be seen as a first step from
the homotopy-theoretic approach to simple stratified homotopy theory to more geometric
approaches. For a detailed outlook into how these scenarios connect, see Section 2.5.2.

Recollection 13.3.2.1. In the following, we will think of cobordisms as arrows in the piecewise
linear cobordism category (of some fixed dimension n), where objects are given by closed
piecewise linear manifolds of dimension n and morphisms from M to M ′ are given by piecewise
linear homeomorphism classes of arrows

i∶M ⊔M ′
→W,

where W is a compact PL n + 1-manifold with boundary, such that i defines a PL homeomor-
phism onto the boundary of W . The identity on M is given by the inclusion of the boundary
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of the cylinder M ⊔M ↪M × [0, 1]. Composition is given by gluing of cobordisms as indicated
in the diagram below.

M ′

M ⊔M ′ M ⊔M ′′ M ′ ⊔M ′′

W1 M ⊔M ′ ⊔M ′′ W2

W1 ∪M ′ W2

(13.15)

We will use sloppy notation insofar, as we will just refer to a cobordism M
W
Ð→ M ′, when

referring to a morphism, and keep the fact that we are actually dealing with an equivalence
class of boundary inclusions implicit. We will also often omit the inclusions into the boundary,
and just think of M and M ′ as submanifolds of W .

Recollection 13.3.2.2. It is a consequence of the PL version of the s-cobordism theorem
of Mazur, Stallings and Barden (see, for example, [Coh73]), that in dimension n ≥ 5 every
h-cobordism M

W
Ð→M ′ defines an invertible morphism in the PL cobordism category. To see

this, denote by iM ∶M ↪W and iM ′ ∶M ′ ↪W the two associated boundary inclusions. As iM
is a homotopy equivalence, so is iM ′ (by the Whitehead theorem, the Hurewicz theorem and
Lefschetz duality). In particular, the two maps (the first being a map of sets) of Whitehead
groups

i∗M ∶Wh(W )→Wh(M)
(iM ′)∗∶Wh(M ′

)→Wh(W )

define bijections (we use the fact that PL isomorphisms are simple equivalences to suppress
any mention of triangulations here). It follows that there is an element of α ∈Wh(M ′) such
that i∗M(iM ′)∗α = 0. By the realization part of the s-cobordism theorem, we can represent
α in terms of the inclusion jM ′ ∶M ′ ↪ V into a piecewise linear h-cobordism M ′ VÐ→M ′′. By
definition of (iM ′)∗, it follows that

(iM ′)∗⟨jM ′⟩

is given by the Whitehead torsion of the inclusion W ↪W ∪M ′ V. Observe that the composition
of inclusions

M ↪W ↪W ∪M ′ V

is the (left) boundary inclusion associated to the composition of cobordisms M W
Ð→M ′ VÐ→M ′′.

By construction, we have

0 = i∗M(iM ′)∗⟨jM ′⟩ = ⟨M ↪W ↪W ∪M ′ V ⟩ = ⟨M ↪ (V ○W )⟩.

Hence, it follows by the s-cobordism theorem that V ○W is PL homeomorphic to a cylinder
M × [0,1] (relative to M). In particular, we have a PL homeomorphism M ′′ ≅M , and may
assume without loss of generality (by replacing M ′′ ↪ V by M ≅ M ′′ ↪ V ) that M ′′ = M .
Then the PL homeomorphism W ○ V ≅M × [0,1] is relative to M ⊔M , and hence it follows
that V ○W defines the identity in the cobordism category. Repeating the argument with the
h-cobordism V , it follows that V also has a right inverse, which is necessarily given by W .

Recollection 13.3.2.3. Given a PL h-cobordism of 5-manifolds

M
W
Ð→M ′

the space W ∖M is homeomorphic to M × [0,1) relative to M . This is a consequence of the
following Eilenberg swindle: It is a classical fact in PL topology (and a consequence of the
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existence of collar neighborhoods) that the gluing W ∪M ′ M ′ × [0,∞) is homeomorphic to
W ∖M ′ (relative to M). We may rewrite M ′ × [0,∞) as the colimit

lim
Ð→
n

M ′
× [0, n]

along the obvious diagram of inclusions. Then, using the inverse cobordism V to W , we may
rewrite this colimit as

lim
Ð→
n

((W ○ V ) ○ ⋅ ⋅ ⋅ ○ (W ○ V )),

where the composition in the n-th step is 2n-fold. Putting all of this information together, we
obtain a PL homeomorphism

W ∖M ′
≅W ∪M ′ M ′

× [0,∞)
≅W ∪M ′ lim

Ð→
n

((W ○ V ○ ⋅ ⋅ ⋅ ○W ○ V )

≅ lim
Ð→
n

(W ○ V ○ ⋅ ⋅ ⋅ ○W ○ V ○W ).

≅ lim
Ð→
n

((W ○ V ○ ⋅ ⋅ ⋅ ○W ) ○ V ○W )

≅ lim
Ð→
n

(W ○ V ○ ⋅ ⋅ ⋅ ○W ) ○M × [0,1]

≅ lim
Ð→
n

((W ○ V ○ ⋅ ⋅ ⋅ ○W )

relative to M . Performing an Eilenberg swindle on the colimit in the last step, we obtain

lim
Ð→
n

(W ○ V ○ ⋅ ⋅ ⋅ ○W ) ≅ lim
Ð→
n

(V ○ ⋅ ⋅ ⋅ ○W )

≅ lim
Ð→
n

((V ○W ) ○ . . . (V ○W ))

≅ lim
Ð→
n

M × [0, n]

≅M × [0,∞) ≅M × [0,1) .

We can now give a counterexample that shows that not every stratified homeomorphism
defines a simple diagrammatic equivalence.

Example 13.3.2.4. Let M be a closed PL manifold of dimension greater or equal to 5 and
let M W

Ð→M ′ be a PL h-cobordism with non-trivial Whitehead torsion. Fix any triangulation
of W in terms of a simplicial complex K ∈ sSet, such that there is a subcomplex L of K
triangulating M and L′ triangulating M ′. Subdividing barycentrically once, we may assume
that K is such that there exists a map s∶K → N({p < q}) with s−1(p) = L′.
We denote by K the thus obtained stratified simplicial set with lower stratum L′. Denote by

CM ∶=M × ∣∆{p<q}∣s/M × ∣∆{p}∣s ,

the stratified cone one M over a poset with two elements {p < q}. The triangulation ∣L∣s ≅M ,
equips the stratified cone with a stratified cell structure arising from the stratum-preserving
homeomorphism

∣L ×∆{p<q}/L ×∆{p}∣s ≅M × ∣∆{p<q}∣s/M × ∣∆{p}∣s ≅ CM.

There is, however, another cell structure available, arising from K. To see this, observe that
we may treat W as a stratified space over {p < q}, taking M ′ to be the p-stratum. Then there
is a stratum-preserving homeomorphism

W /M ′
≅ CM,
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obtained by fixing a homeomorphism ϕ∶W ∖M ′ ≅M × [0,1) and then passing to one-point-
compactifications. A priori, this produces cones with the teardrop topology (see [Qui88]).
However, as M is compact and Hausdorff, teardrop topology and quotient topologies agree.
Using this stratum-preserving homeomorphism, we obtain another cell structure on CM via
the stratum-preserving homeomorphisms

∣K/Kp∣s ≅W /M
′
≅ CM.

We claim that the identity map between these two cell structures is not a simple diagrammatic
equivalence, or in other words, that the induced stratum-preserving homeomorphism

ϕ∶ ∣L ×∆{p<q}/L ×∆{p}∣s ≅ ∣K/Kp∣s

is not a simple diagrammatic equivalence. Under Theorem 13.1.2.7, we may equivalently show
that the associated isomorphism in hosStratP ,

ω∶L ×∆{p<q}/L ×∆{p} ≃ K/Kp.

is not a simple diagrammatic equivalence. By Theorem 11.1.2.6, it suffices to show that ω does
not descend to a simple equivalence on some cellular link. In fact, ω does not even induce
simple equivalences on q-strata. We use the cellular link functor of Example 13.2.1.9. Then
Linkq is simply the functor sending a stratified simplicial set over {p < q} to its q-stratum.
Applying Linkq, we obtain a weak equivalence of simplicial sets

ωq ∶L = Linkq(L ×∆{p<q}) ≃ Kq = Linkq(K).

To see that ω is not a simple diagrammatic equivalence, it suffices to show that ωq is not a
simple equivalence. Using the natural weak equivalence (∣ − ∣s)p ≃ ∣ −p ∣ (which follows, for
example, by Theorem 3.1.0.4), it follows that the realization of this weak equivalence fits into
a homotopy commutative diagram

∣L∣ ∣Kq ∣

(CM)q .

≃

≃ ≃ (13.16)

This uniquely determines the homotopy class of ∣L∣ ≃ ∣K ∣ as the homotopy class of the
realization of the inclusion L↪ Kq. Now, observe that by construction of K as a barycentric
subdivision of a simplicial complex, we are in the following situation (this follows, for example,
from the techniques discussed in [Sto72, Ch. 1, Sec. 3]):

1. The subcomplex Np given by all simplices contained in a simplex intersecting Kp non-
trivially defines a collar neighborhood of M ′ in W .

2. The subcomplex Kq given by all simplices not intersecting Kp realizes to a manifold with
boundary M ⊔M ′.

We may thus think of ∣Kq ∣ as a cobordism from M to M ′. In fact, this cobordism is PL
homeomorphic to W , relative to M ⊔M ′, by the chain of PL isomorphisms

∣Kq ∣ ≅M
′
× [0,1] ○ ∣Kq ∣ ≅ ∣Kq ∣ ∪Kq∩Np ∣Np∣ ≅ ∣K ∣ ≅W.

It follows that up to PL homeomorphisms in source and target, we may identify ∣ωq ∣∶ ∣L∣ ≃ ∣Kq ∣
with the inclusion M ↪W . By the assumption that ⟨M ↪W ⟩ ≠ 0 and the fact that every PL
homeomorphism is a simple equivalence, it follows that ∣ωq ∣ is not a simple equivalence, and
hence that ωq is not a simple equivalence.



List of notation of Part III

Important general categories

⋆ Terminal category P. 397
[1] Category {0→ 1} P. 397
Set Category of sets P. 397
∆ Category of finite linear posets of the form [n] ∶= {0,⋯, n},

for n ∈ N
P. 397

sSet Category of simplicial sets P. 397
sSet Simplicial category of simplicial sets P. 397, 398
Top Category of (compactly generated or ∆-generated) spaces P. 397
TopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTopTop Simplicial category of (compactly generated or ∆-

generated) spaces
P. 397, 398

Ab Category of abelian groups P. 397
AbMon Category of unital abelian monoids P. 397
Ch≥0(R) Category of non-negatively graded chain-complexes of

R-modules
P. 397

Filt Category of filtered topological spaces P. 405
Cat 2-Category of (sufficiently small) categories P. 398
SymMonCat 2-Category of (sufficiently small) symmetric monoidal

categories
P. 484

Leib A certain bicategory using Leibniz composition of func-
tors

P. 432

CellCat 2-category of cellularized categories and absolute cellu-
larized functors

P. 438

CellCat→ Bi-category of cellularized categories and relative cellu-
larized functors

P. 437

WES Category of pre-Whitehead frameworks P. 493

Constructions on categories

Ob(C) Class or set of objects of C P. 398
Cop Opposite category of C P. 398
C(X,Y ) Object of morphisms from X to Y in C P. 398
Fun(C,D) Category of functors from C to D P. 398
DC Alternative notation for category of functors from C to

D
P. 398

C[1] Category of arrows in C P. 398
F/X , FX/ Comma-categories associated to a functor F and object

X
P. 399

C/X , CX/ Over- and undercategory of X ∈C P. 399
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C≃ Groupoid core of C, given by the wide subcategory of
isomorphisms

P. 399

F ∗ Precomposition functor associated to a functor F P. 399
F! Left adjoint to pre-composition functor F ∗ P. 399
C[W −1] ∞- or 1-categorical localization of C at W (depending

on context)
P. 399

Notation associated to categories with cobase changes and pre-Whitehead
frameworks W

Y1 ∪
Q
X Y2 Notation for a gluing operation induced by cobasechange

squares
P. 482

a1 ⊕Q a2 Notation for a certain monoidal structure induced on
undercategories

P. 482

f¡ The cobase change functor associated to f P. 478
WhW(X) A certain category whose path-components give rise to

the Whitehead monoid of X
P. 485

W̃hW(X) Whitehead monoid of X P. 485
WhW(X) Whitehead group of X P. 491
f∗ Notation for covariant functoriality on Whitehead groups

and monoids associated to f
P. 487, 488, 504, 523

f∗ Notation for contravariant functoriality on the underlying
sets of Whitehead groups and monoids associated to f

P. 492

⟨α⟩ Whitehead torsion of α P. 491, 504, 523

Notation associated to structured cell complexes

Cc Set of characteristic maps of c P. 404
C(f) Map of sets of characteristic maps of c induced by struc-

ture preserving morphisms f
P. 408

fCc Set of postcompositions of characteristic maps of c with
a map f

P. 408, 409

d ○ c Structured relative cell complex obtained through vertical
composition of relative structured cell complex c and d

P. 409

c ○X Structured absolute cell complex obtained through ex-
tension of a structured absolute cell X by a structured
relative cell complex c

P. 409

X ∪A B,X ∪A B Notations for certain gleanings of structured cell com-
plexes

P. 512, 561

Mf Cellularized version of mapping cylinder P. 511
MH Modified cellularized mapping cylinder of homotopy H P. 512
WhC(X) Whitehead group of a finite structured cell complex X in

a Whitehead model category C
P. 505

Constructions associated to a cellularized category, a category with
expansions or a Whitehead model category C

BC Set of generating boundary inclusions P. 406
EC Set of generating elementary expansions P. 502
−̂ Notation used for all sorts of Leibniz operations P. 431, 432
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Cell(C) Category of absolute structured cell complexes P. 407
RCell(C) Category of relative structured cell complexes P. 407
RCell(C)A Category of relative structured cell complexes with source

A
P. 410

C↪ellc(C) Wide subcategory of Cell(C) given inclusions of finite
structured cell complexes

P. 499

C↪ell(C) Wide subcategory of Cell(C) given inclusions of not-
necessarily finite structured cell complexes

P. 499

Cell(C) Category with objects in Cell(C) but morphisms in C P. 511
Cellc(C) Category with objects finite complexes in Cell(C) but

morphisms in C
P. 511

CellCat(C,D) Category of absolute cellularized functors from C to D P. 437
CellCat→(C,D) Category of relative cellularized functors from C to D P. 437
CellBiFun(C ×D,E) Category of cellular bifunctors on C ×D with target E P. 445
W(C) (Pre)-Whitehead framework associated to C P. 503
WhF Natural transformation of Whitehead groups associated

to a cellularized functor F
P. 508

PresC(X) Set of presentations of the homotopy type of X in terms
of finite structured cell complexes, modulo simple equiv-
alences

P. 524

P̃resC(X) An extension of PresC(X) that incorporates non-
isomorphisms

P. 524

hocC Homotopy category of finite structured cell complexes P. 522
hoC Homotopy category of not-necessarily finite structured

cell complexes
P. 522

Cell(C) ∞-category of structured cell complexes P. 529
Sim(C) ∞-category of finite structured cell complexes and simple

equivalences
P. 530

Notation associated to diagram categories, especially over a Reedy
category R

el(X) Category of elements of X P. 447, 462
eln.d.(X) Category of non-degenerate elements of X and their faces P. 472
R+,R− Wide subcategories of face and degeneracies P. 449
f+, f− Unique face f+ and degeneracy f− such that f = f+ ○ f− P. 450
Rr,Rr Yoneda embeddings of r ∈R P. 447
∂Rr, ∂Rr Certain subdiagrams of Rr and Rr P. 451
ιr, ιr Inclusions of, respectively, ∂Rr, ∂Rr into Rr,Rr P. 454
ι●,sr,● Inclusion ∂(Rr × Ss)→Rr × Ss P. 452
Lr, Lr Notation for the latching functors at r ∈R P. 451, 465
sL̂r(c), sL̂r(c) Notation for source of relative latching maps P. 459
skn n-skeleton functor P. 451, 465
S ∗X Notation for the S-fold coproduct of an object X P. 443, 456
W ⊛X Notation for the weighted colimit of X with weights W P. 447, 456
X ◯○ Y Notation for the composition tensor of X and Y P. 448, 456
Cc,r Cells of a relative cell complex c of diagrams on R of

type r ∈R
P. 458

Notation related to the stratified setting
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∆P Category of flags of P P. 338
sd(P ) Category of regular flags of P P. 339
StratP Category of P -stratified spaces P. 340
StratP Simplicial category of P -stratified spaces P. 340
StratdP Category of P -stratified spaces equipped with diagram-

matic semi-model structure
P. 357, 588

StratdP Simplicial category of P -stratified spaces equipped with
diagrammatic semi-model structure

P. 357

sStratP Category of P -stratified simplicial sets P. 341
sStratP Simplicial category of P -stratified simplicial sets P. 341
sStratdP Category of P -stratified simplicial sets equipped with

Douteau-Henriques model structure
P. 347, 586

sStratdP Simplicial category of P -stratified simplicial sets
equipped with Douteau-Henriques model structure

P. 347

HoLinkI(X ) I-th generalized homotopy link of X P. 343
HoLink Homotopy link diagram functor P. 343
HoLinkI(X ) I-th generalized simplicial homotopy link of X P. 347
HoLink Simplicial homotopy link diagram functor P. 347
Linksd,Linkm,LinkN Several cellular link functors P. 591–593
WhP (X) Diagrammatic stratified Whitehead group of X P. 586, 588, 602
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Astérisque 308 (2006), pp. xxiv+390.

[Cis19] Denis-Charles Cisinski. Higher categories and homotopical algebra. Vol. 180. Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
2019, pp. xviii+430. doi: 10.1017/9781108588737. url: https://doi.org/10.
1017/9781108588737.

[Coh73] M.M. Cohen. A Course in Simple-homotopy Theory. Graduate texts in math-
ematics. Springer-Verlag, 1973. url: https://books.google.de/books?id=
MFrvAAAAMAAJ.

[CEH07] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. “Stability of per-
sistence diagrams”. Discrete Comput. Geom. 37.1 (2007), pp. 103–120. doi: 10.
1007/s00454-006-1276-5.

[Cos00] Michel Coste. An introduction to o-minimal geometry. Pisa, Italy: Istituti editoriali
e poligrafici internazionali, 2000.

[CGN16] Justin Curry, Robert Ghrist, and Vidit Nanda. “Discrete Morse theory for com-
puting cellular sheaf cohomology”. Foundations of Computational Mathematics 16
(2016), pp. 875–897.

[Cza12] Ma lgorzata Czapla. “Definable triangulations with regularity conditions”. Geom.
Topol. 16.4 (2012), pp. 2067–2095. doi: 10.2140/gt.2012.16.2067.

[DK70] B. J. Day and G. M. Kelly. “On topological quotient maps preserved by pullbacks
or products”. Proc. Cambridge Philos. Soc. 67 (1970), pp. 553–558. doi: 10.1017/
s0305004100045850. url: https://doi.org/10.1017/s0305004100045850.
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