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Chapter 1

Introduction

1.1 Background

Historically, the tissue of origin of a tumour was the decisive factor for how cancer was treated

and for how cancer drugs were developed (Redig and Jänne, 2015; Jørgensen, 2019). In recent

years, however, the availability of new genomic tools and a better understanding of cancer

pathogenesis have led to new cancer therapies that do not focus on tumour histology or

location but target tumours with a certain genetic alteration (Simon, 2018; Fridlyand et al.,

2013). As a consequence of this paradigm shift in cancer drug development, new clinical trial

designs were developed, as trials that only include patients with a certain tumour histology or

location may become infeasible when the targeted genetic alteration is rare. So-called basket

trials address this issue by including different patient subgroups which are called baskets. In

oncology, basket trials usually include patients with different primary tumour types, which

form the baskets, that all share a common feature, such as a genetic mutation (Hirakawa

et al., 2018). They are typically single-arm phase II trials with tumour response as the

binary endpoint. Many of these trials analyse each basket individually or pool the data of

all baskets for the analysis (Hobbs et al., 2022). However, a separate analysis of each basket

has no statistical benefits compared to separate studies for each subgroup, hence also leads

to low power when subgroups are small. A pooled analysis may increase the power, but is

only a sensible strategy when efficacy is similar in all patient subgroups. However, this is not

1



2 Chapter 1. Introduction

always the case. For example, a basket trial investigating vemurafenib showed response rates

of more than 40% in some subgroups, but response rates of less than 15% in other subgroups

of patients with a BRAF V600 mutation (Hyman et al., 2015). Hence, the challenge in

analysing basket trials is to use techniques that lead to higher power than a separate analysis

in each subgroup but combine the available data in a more nuanced way than by a simple

pooled analysis, to reliably identify the subgroups in which the treatment is effective.

1.2 Previous Work

A wide range of different designs for the analysis of basket trials using both frequentist

and Bayesian methodology have been suggested in recent years (Pohl et al., 2021). In the

frequentist design proposed by Cunanan et al. (2017), for example, a test for heterogeneity is

performed to decide whether the baskets are pooled or analysed individually. Similarly, in the

pruning-and-pooling design, baskets that reach a certain efficacy threshold are pooled for the

final analysis, whereas inactive baskets are excluded from the final analysis or already stopped

in an interim analysis (Chen et al., 2016, 2021; Zhou et al., 2019). Another frequentist design

was suggested by Krajewska and Rauch (2021), where k-means clustering is used to identify

clusters of baskets that respond similarly to the treatment. Baskets within a cluster are then

pooled for the analysis.

Bayesian methods are, however, more common as they have the advantage that sharing in-

formation between subgroups is possible in more sophisticated ways than by simply pooling

them and is a feature of many Bayesian models. The amount of data that is shared depends on

the observed data and pre-specified prior or other tuning parameters. Many designs utilise

Bayesian hierarchical modelling that assumes a common distribution of the (transformed)

response probabilities of all baskets. In the easiest case, the logit-transformed response prob-

abilities are assumed to arise from a single normal distribution (Thall et al., 2003; Berry

et al., 2013). Neuenschwander et al. (2016) extended this idea by fitting both a Bayesian hi-

erarchical model to all baskets and an individual model separately for each basket. These two

models are then combined with a pre-specified weight. Another Bayesian tool that is used for

analysing basket trials is Bayesian model averaging. In the design of Psioda et al. (2021), all

possible cluster configurations of baskets are constructed, ranging from single-basket clusters
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to one cluster that contains all baskets. Within the clusters all data are pooled and analysed

using a beta-binomial model. The different cluster configurations are then weighted by their

posterior probabilities.

Bayesian hierarchical modelling and Bayesian model averaging are computationally rela-

tively intense. The posterior distributions for response probabilities in the designs based on

Bayesian hierarchical modelling are not available in closed form. Therefore, Markov Chain

Monte Carlo (MCMC) sampling is necessary to obtain posterior probabilities (Thall et al.,

2003). In the Bayesian model averaging design, the posterior distributions can be derived

analytically, but as the number of baskets increases, the number of clusters and therefore the

computational burden increase exponentially.

Another design that uses Bayesian tools was proposed by Fujikawa et al. (2020), which is

henceforth called Fujikawa’s design. In this design, at first a beta-binomial model is applied to

analyse each basket individually. The similarity between individual baskets is then quantified

by computing the Jensen-Shannon divergence (JSD) of all pairs of posterior distributions that

arise from the beta-binomial models. Weights between 0 and 1 that determine the amount of

data that is shared between two baskets are then computed based on the JSD and two tuning

parameters. Beta-binomial models are then used again, where the posterior parameters are

computed as weighted sums of the posterior parameters of the individual models. Since the

weights are solely derived from the available data and no prior distribution is specified for

them, Fujikawa’s design can be considered an empirical Bayes design. Since the posteriors

are beta distributions, the posterior probabilities can be calculated without using MCMC

sampling. The weights necessary to compute the posterior parameters can also be computed

fast using numerical integration. Thus, Fujikawa’s design is computationally much cheaper

than other (fully) Bayesian designs. However, there is currently no comprehensive simulation

study that compares the performance of Fujikawa’s design to other basket trial designs and

how the performance of the design is influenced by the choice of tuning parameter values. A

further open question is whether Fujikawa’s design can be improved by using other measures

than the JSD to derive the weights.
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1.3 Objective and Structure of the Thesis

The main objective of the thesis is to extend Fujikawa’s design and thereby improve its per-

formance in terms of relevant operating characteristics and enable a better fine tuning of the

amount of shared information. Specifically, while this was not noted in their manuscript, Fu-

jikawa’s design is closely related to the concept of power priors, that was initially proposed to

use historical data in a prospective clinical trial (Ibrahim and Chen, 2000). This connection

is established in the thesis and different methods from the power prior literature are adapted

to basket trials. It is investigated how Fujikawa’s design and the newly proposed modifica-

tions perform under different scenarios compared to other Bayesian basket trial designs. A

further objective is to investigate nonmonotonicity of test decisions in the number of observed

responses. Nonmonotonic events are defined as outcomes for which a null hypothesis can be

rejected, while another outcome with a higher observed response rate exists that does not

lead to a rejected null hypothesis. These events can arise as a consequence of data-dependent

information sharing and have not been discussed in the literature in the context of basket

trials before.

The structure of the thesis is as follows: In Chapter 2, all methods used in the thesis are

described in detail. This chapter starts with the basic setup and notation in Section 2.1 and

continues with the description of some essential Bayesian tools that are used in basket trial

designs in Section 2.2. The JSD is introduced in Section 2.3. In Section 2.4, Fujikawa’s

design and other basket trial designs used for comparison are explained. The operating

characteristics used to compare the different designs are defined in Section 2.5. The concept

of power priors and the specific methods later adapted for basket trials are introduced in

Section 2.6. In Chapter 3, the results of the thesis are presented. In Section 3.1, it is

demonstrated how power priors can be used to share information in basket trials and how

this is connected to Fujikawa’s design. The setup and results of a comparison study are

shown in Section 3.2. In Section 3.3, nonmonotonicity of test decisions is investigated. The

R packages baskexact and basksim in which all newly proposed methods are implemented are

presented in Section 3.4 and Section 3.5. The thesis concludes with a discussion in Chapter

4.



Chapter 2

Methods

2.1 Setup and Notation

Throughout the thesis an uncontrolled single-arm basket trial is considered. A treatment is

investigated in K disjoint subgroups, which are called baskets. The sample size in each basket

is denoted by nk, with k ∈ {1, ...,K}. The observations of a given basket are considered

exchangeable. The objective of the trial is to evaluate in which baskets the treatment is

effective. The endpoint is binary, the number of responses in basket k, denoted by rk, are a

realisation from a random variable. The vector of realisations is denoted by r = (r1, . . . rK).

pk ∈ [0, 1] denotes the response probability in basket k. Note that throughout the thesis the

term "probability" refers to a true and in practice unknown quantity, i.e. the estimand, while

the estimates for these values are referred to as "rate".

Although basket trials are often evaluated using Bayesian tools, and all methods considered

in this thesis have at least some Bayesian elements, a (frequentist) hypothesis pair is often

defined. Since the considered trials are single-arm, the hypotheses include a fixed response

probability p0 ∈ (0, 1) which is for example derived from the estimated response probability

of the standard of care. While the null response probability may in general differ between

baskets, throughout the thesis it is assumed that p0 is equal for all baskets. The treatment

under investigation is considered of clinical interest if the response probability is larger than

5



6 Chapter 2. Methods

p0. Hence, the hypotheses to be tested are:

H0,k : pk ⩽ p0 vs. H1,k : pk > p0 (2.1)

for k ∈ {1, . . . ,K}.

2.2 Basic Bayesian Tools

In this section, some basic Bayesian methods are explained, which are necessary to better

understand the basket trial designs introduced in Section 2.4. The Bayesian tools introduced

here are applied in a wide range of areas in Bayesian statistics and are not specific to basket

trials. Therefore, they are also introduced here in more general terms. This is especially

important to emphasise to avoid confusion between the concept of Bayesian hierarchical

modelling (see Section 2.2.2) and the BHM basket trial design by Berry et al. (2013) (see

Section 2.4.4) as well as the concept of Bayesian model averaging (see Section 2.2.3) and the

BMA basket trial design by Psioda et al. (2021) (see Section 2.4.3) as in this thesis these two

designs are named after the Bayesian method they utilise. To distinguish between general

methods and basket trial designs, the abbreviations BMA and BHM are only used when

referring to the respective design.

2.2.1 Beta-Binomial Model

The beta-binomial model (e.g. Gelman et al., 2004, p. 33-34) is used to model the response

probability p of a binomially distributed variable with realisation r, that arises from the sum

of n exchangeable Bernoulli experiments, i.e. experiments with two possible outcomes: a

success or a non-success. The likelihood of p given r is:

L(p|r) = P(r|p) =
(
n

r

)
· pr · (1 − p)n−r. (2.2)

Note that P(r|p) could more formally be written as Pp(R = r), where R denotes the random

variable that r arises from. In the classical statistical literature, parameters of the distribution

are usually written as a subscript of P to emphasise that they are fixed values and not random
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variables, but in the Bayesian literature the notation P(r|p) is more common and therefore

also used in the following.

For p, a beta prior distribution with shape parameters s1 > 0 and s2 > 0, denoted by

π0(p) = Beta(s1, s2) is specified. The two parameters of the beta distribution correspond to

the number of successes r and non-successes n − r as is seen in Equation (2.2). Thus, if for

example s1 = s2 = 1, the beta prior contains as much information as observing one success

and one non-success.

The density of a beta distribution is (e.g. Christensen et al., 2011, p. 100):

f(p) = 1
B(s1, s2) · ps1−1 · (1 − p)s2−1,

where B(·, ·) is the beta function, which is defined as (e.g. Kruschke, 2015, p. 127):

B(x, y) =
∫ 1

0
tx−1 · (1 − t)y−1dt.

The posterior distribution of p given r, denoted by π(p|r), has a closed-form solution, since

the beta prior is conjugate for the binomial likelihood (e.g. Bernardo and Smith, 2000, p.

267):

π(p|r) ∝ L(p|r) · π0(p)

=
(
n

r

)
· pr · (1 − p)n−r · 1

B(s1, s2) · ps1−1 · (1 − p)s2−1

∝ pr · (1 − p)n−r · ps1−1 · (1 − p)s2−1

= ps1+r−1 · (1 − p)s2+n−r−1

∝ Beta(s1 + r, s2 + n− r). (2.2)

Hence, the posterior is a beta distribution and the shape parameters are found by adding the

number of successes r to the first prior shape parameter s1 and the number of non-successes

n− r to the second prior shape parameter s2.

The posterior predictive distribution is of interest to compute the probability of future ob-

servations. This distribution has a closed-form solution for the beta-binomial model (e.g.
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Figure 1: Prior and posterior (left-hand side) and posterior predictive distribution (right-
hand side) of a beta-binomial model. The prior distribution is Beta(1, 1) and the posterior
distribution is Beta (6, 16) which results from 5 successes in 20 Bernoulli experiments. The
posterior predictive distribution for a future observation is based on m = 10 Bernoulli exper-
iments given the observed data and the prior distribution.

Christensen et al., 2011, p. 25). Let r̃ be a future binomial observation, based on m Bernoulli

experiments, which is conditionally independent of r given p. With the posterior predictive

distribution one can compute the probability of observing r̃ out of m successes, given the

observed data r and the prior distribution:

P(r̃|r) =
∫ 1

0
P(r̃|r, p) · π(p|r)dp

=
∫ 1

0
P(r̃|p) · π(p|r)dp (conditional independence)

=
∫ 1

0

(
m

r̃

)
· pr̃ · (1 − p)m−r̃ · 1

B(s1 + r, s2 + n− r) · ps1+r−1 · (1 − p)s2+n−r−1dp

=
(
m

r̃

)
· 1

B(s1 + r, s2 + n− r) ·
∫ 1

0
ps1+r+r̃−1 · (1 − p)s2+n−r+m−r̃−1dp

=
(
m

r̃

)
· B(s1 + r + r̃, s2 + n− r +m− r̃)

B(s1 + r, s2 + n− r) , (2.3)

which is the density of a beta-binomial distribution with parameters s1 + r, s2 + n − r and

m (e.g. Bernardo and Smith, 2000, p. 117).

Figure 1 illustrates the prior, posterior and posterior predictive distribution with an example.

A Beta(1, 1) prior distribution is used and 20 Bernoulli experiments resulted in 5 successes.
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The posterior predictive distribution based on the prior and the observed data is shown for

m = 10.

2.2.2 Bayesian Hierarchical Model

A Bayesian hierarchical model is defined as a model where the parameters of the prior distri-

bution are also assigned a prior distribution, the so called hyperprior, with parameters that

are called hyperparameters (e.g. Ntzoufras, 2009, p. 305-306). They are often used when a

certain parameter of interest is estimated in K different units (such as the subgroups in a

basket trial) when it is implausible that the unit specific parameters θk, k ∈ {1, . . . ,K} are

identical or completely unrelated, but it can be assumed that they are exchangeable and arise

from a common distribution (e.g. Spiegelhalter et al., 2004, p. 91-92). Prior probabilities are

then also assigned to the parameters of this common distribution.

Let θ = (θ1, . . . , θK) be the vector of the parameters in the K subgroups and ζ be the

vector of hyperparameters. If the exchangeability assumption holds, the components of θ

are conditionally independent given ζ due to De Finetti’s theorem (e.g. Bernardo, 1996).

Unconditionally, however, the specification of a hyperprior leads to an association among the

components of θ (Thall et al., 2003). Specifically, the unconditional prior distribution of θ,

π0(θ) is:

π0(θ) =
∫ K∏

i=1
π(θi|ζ) · π0(ζ)dζ.

This also leads to dependent posterior distributions:

π(θ|y) =
∫
f(y,θ, ζ)dζ∫
f(y,θ, ζ)dθdζ ,

where f(y,θ, ζ) is the joint density of the data vector y and the parameters θ and ζ. This de-

pendency results in subgroup-specific estimates that are closer to the overall mean effect than

if they were estimated independently, which is called shrinkage. It also results in narrower

subgroup-specific credibility intervals (e.g. Lunn et al., 2013, p. 221 - 222).
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2.2.3 Bayesian Model Averaging

Model averaging is a Bayesian technique that can be applied when there is a set of plausible

models for a parameter θ (e.g. Hoeting et al., 1999). Instead of selecting one of the models,

the posterior distribution π(θ|y) for θ is computed as a weighted average of several models.

Specifically:

π(θ|y) =
J∑

j=1
π(θ|Mj ,y) · π(Mj |y),

where M1, . . .MJ are the different models, π(θ|Mj ,y) is the posterior distribution of θ given

model Mj and π(Mj |y) is the posterior distribution of Mj . Hence, the posterior probabilities

of the models are used as weights. Applying Bayes’ theorem, these are found as:

π(Mj |y) = L(Mj |y) · π0(Mj)
π(y) = L(Mj |y) · π0(Mj)∑J

k=1 L(Mk|y) · π0(Mk)
, (2.4)

where π0(Mj) is the prior probability for model Mj and L(Mj |y) is the marginal likelihood

of the data given model Mj . This marginal likelihood is found as:

L(Mj |y) =
∫ 1

0
L(Mj |y, ξj) · π0(ξj |Mj)dξj , (2.5)

where ξj is the parameter (or vector of parameters) in model Mj , L(ξj |y,Mj) is the likelihood

of ξj given the data and model Mj and π0(ξj |Mj) is the prior of ξj in model Mj .

2.3 Jensen-Shannon Divergence

The JSD is a measure to quantify the difference between two probability distributions. It is

used in Fujikawa’s design (see Section 2.4.2) to determine the amount of information that is

shared between two baskets. The JSD is defined based on the Kullback-Leibler divergence

(KLD) as follows:

JSD(Pk, Pi) = 1
2KLD

(
Pi,

1
2(Pi + Pk)

)
+ 1

2KLD
(
Pk,

1
2(Pi + Pk)

)
. (2.6)
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For two continuous distributions with densities fk and fi the KLD is defined as (e.g. Cover

and Thomas, 2006, p. 251):

KLD(fk, fi) =
∫
R

fk(x) log fk(x)
fi(x) dx.

Other than the KLD, the JSD is symmetric. The lower bound of the JSD is 0 and is reached

if and only if Pk is equal to Pi almost everywhere (Nielsen, 2021). The upper bound is log(2)

(Lin, 1991; Nielsen, 2021). Thus, the upper bound depends on the base of the logarithm that

is used in the computation of the KLD and is 1 if only if base 2 logarithms are used.

The JSD can also be extended to measure the divergence of more than two distributions. This

extension is applied to information sharing in basket trials in Section 3.1.3.3. The extended

JSD is defined as:

JSD(P ) = 1
K

K∑
i=1

KLD(Pi, P̄ ), (2.7)

where P = (P1, . . . , PK) is a vector of K probability distributions and P̄ = 1
K

∑K
i=1 Pi. Note

that for K = 2 Equation (2.7) and Equation (2.6) coincide. When the KLD is computed

using base K logarithms then 0 ⩽ JSD(P ) ⩽ 1 (Nielsen, 2021).

2.4 Basket Trial Designs

In this section at first some general considerations for designing basket trials are discussed,

before describing the specific designs that will be used in the thesis.

2.4.1 Components of a Basket Trial

Pohl et al. (2021) identify four components - two mandatory and two optional - of basket tri-

als. The first mandatory and - from a statistical perspective - the key component of a basket

trial is information sharing between subgroups. This is usually the methodologically most

complex component and the main focus in the basket trial literature. The second mandatory

component is the final analysis, commonly the decision about whether the treatment is ef-

fective in one or several baskets. The two optional components are interim assessments that

allow early stopping for futility and efficacy.
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While basket trial designs proposed in the literature usually include all four components,

Pohl et al. (2021) discuss that the components of different designs can be combined in various

ways. For example, the technique that is used to share information between baskets in one

design can be combined with the interim decision rule of another design. This increases the

complexity in comparing basket trial designs, as the influence of the different components

on the operating characteristics has to be considered. The emphasis of this thesis is on the

information sharing component. Therefore in the following sections, this is also the focus in

the description and discussion of the different basket trial designs. The interim components

are also reported as proposed by the authors to give a complete picture of the designs. The

possibility to combine the different components in other ways should be kept in mind.

2.4.2 Fujikawa’s Design

In Fujikawa’s design (Fujikawa et al., 2020), information is shared based on the similarity

of the basket-wise posterior distributions π(pk|rk) for the response probabilities pk, k ∈

{1, . . . ,K}. At first, each basket is analysed individually using a beta-binomial model (see

Section 2.2.1). Hence, given a beta prior distribution with shape parameters s1,k and s2,k,

the posterior distribution for the response rate pk in basket k is:

π(pk|rk) = Beta(s1,k + rk, s2,k + nk − rk).

To share information between baskets, a beta posterior distribution is used for pk where the

posterior parameters are calculated as weighted sums of the basket-wise posterior parameters:

π(pk|r,ωk) = Beta(
K∑

i=1
ωk,i · (s1,i + ri),

K∑
i=1

ωk,i · (s2,i + ni − ri)), (2.8)

where ωk = (ωk,1, . . . , ωk,K) are the weights. Hence, the weights determine how much in-

formation is shared between the baskets. Specifically, ωk,i specifies how much information

is shared between basket k and basket i. Note that ωk,k is always 1 for all k ∈ {1, . . . ,K},

which simply indicates that the entire information that is observed in basket k is used in its

analysis.
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The weights are derived from the pairwise JSD between the posterior distributions for the

response probabilities of the baskets without information sharing. Specifically:

ωk,i =


(1 − JSD(π(pk|rk), π(pi|ri)))ε if (1 − JSD(π(pk|rk), π(pi|ri)))ε > τ,

0 otherwise,

where ε and τ are tuning parameters. Note that Fujikawa et al. (2020) define the term

"weight" in a slightly different manner. In their manuscript, the weights are defined as

1 − JSD(π(pk|rk), π(pi|ri)). The tuning parameters ε and τ are added later in the definition

of the posterior distribution but are not seen as part of the calculation of the weights ωk,i.

This was changed here, such that the tuning parameters are included in the calculation of the

weights for better interpretability and better comparability with weights derived from other

methods. Note that this does not change the posterior distribution in any way, but simply

changes what is referred to as a weight.

Fujikawa et al. (2020) use the natural logarithm in the computation of the JSD. Thus, the

upper bound of the JSD is strictly smaller than 1 and the lower bound of the weights is

strictly greater than 0 (see Section 2.3) and depends on the choice of ε. For ε = 2, which is

the value suggested by Fujikawa et al., the lower bound is (1− loge(2))2 ≈ 0.09. However, for

ε = 1 it is already 1 − loge(2) ≈ 0.31, hence at least 31% of the information is always shared

between baskets if ε is set to 1. Therefore, in the rest of the thesis base 2 is used to compute

the logarithms in the JSD, to be able to explore a wider range of values for ε without having

lower bounds for the sharing weights greater than 0. Specifically, Fujikawa et al. state ε ⩾ 1

as a requirement, but ε ∈ (0, 1) can also be considered with the base 2 logarithm.

The amount of information that is shared between baskets can be tuned through the two

parameters ε and τ . ε controls how the amount of shared information decreases when the

difference of the posterior distributions increases. Weights resulting from different choices of

ε are shown in Figure 2. If τ > 0 would be used, then for a number of responses that results

in a weight equal to or less than τ in the figure, the weight would be set to 0.

Note that using log2 should have minor influence on the performance as ε can be chosen such

that the weights with log2 are similar to the weights with loge. Fujikawa et al. (2020) suggest
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Figure 2: Weights in Fujikawa’s design for different values of ε with τ = 0 and log2 that are
obtained when in one basket the number of responses is 10 and the number of responses r in
the other basket varies. A Beta(1, 1) prior and n = 20 is used for both baskets.

ε = 2 and either τ = 0 or τ = 0.5. Figure 3 shows that when log2 is used together with

ε = 1.25, the weights are very similar for most of the range of r. Relevant differences are

only seen when the difference in responses is high between the two baskets, as with log2 the

weights are then close to 0 while with loge they are not. But this is the intention of using

log2. When τ = 0.5 would be used, this difference would also disappear, as all weights equal

to or smaller than 0.5 would be set to 0 then.

The final decision for each basket is based on the posterior distribution with information

sharing as given in Equation (2.8):

P(pk > p0|r,ωk) ⩾ λ,

where λ ∈ (0, 1) is a prespecified probability threshold.

Interim analyses in Fujikawa’s design are based on the posterior predictive probabilities. The

posterior predictive distribution follows (although this was not noted by Fujikawa et al.) a

beta-binomial distribution, as described in Section 2.2.1. Specifically, baskets are stopped

based on the probability that a result for which the null hypothesis can be rejected will be

observed at the end of the trial, given all data observed up until the interim assessment,
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Figure 3: Weights in Fujikawa’s design with τ = 0 when ε = 1.25 is used with log2 and when
ε = 2 is used with loge that are obtained when in one basket the number of responses is 10
and the number of responses r in the other basket varies. A Beta(1, 1) prior is used for both
baskets.

denoted by r1 = (r1,1, . . . , r1,K). For a trial with one interim analysis, where n1,k denotes

the first-stage sample size of basket k, that is:

PPk =
nk−n1,k∑

r̃k=rk−ck

P(r̃k|r1,ω1,k),

where P(r̃k|r1,ω1,k) is the posterior predictive probability of r̃k given r1 and ωk,1, which is

the vector of weights for basket k obtained based on the interim data. Hence, the posterior

distribution π(pk|r1,ω1,k), which shares the information observed in the first stage between

baskets, is used in the computation as shown in Equation (2.3). ck is the critical value for

basket k, i.e.:

ck = min{r⋆ ∈ N : P(pk > p0|r⋆) ⩾ λ}. (2.9)

Basket k is then stopped for efficacy if PPk > λe and stopped fur futility if PPk < λf , where

λe, λf ∈ (0, 1) are prespecified probability thresholds. Note that baskets which are stopped

in an interim assessment are still considered for sharing information in the final analysis.
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2.4.3 BMA Design

In the design by Psioda et al. (2021), henceforth referred to as BMA design, all possible cluster

configurations of baskets are considered as possible models, and the posterior distributions for

the response probabilities are computed as a weighted average of the posterior distributions

conditional on the models, as described in Section 2.2.3. Within a cluster, all baskets share

a common response probability whereas between clusters the response probabilities differ.

Thus, in the case of K = 3 baskets for example, there are 5 different models: One in which all

baskets share the same response probability, one in which all baskets have different response

probabilities and three models where two baskets share the same response probability and

the third basket has a distinct response probability.

To derive at first the posterior probabilities of the response probabilities conditional on the

models, the following definitions are necessary: Let p(j,l) be l-th distinct response probability

in model Mj and p(j) = (p(j,1), . . . , p(j,Pj)) the vector of all response probabilities in model

Mj , where Pj is the number of distinct response probabilities in model Mj . Let further Ω(j,l)

be the subset of the vector (1, . . . ,K) that corresponds to the baskets that share the l-th

distinct response rate in model Mj . For example, Ω(j,1) = (1, 2) and Ω(j,2) = 3 if in model Mj

the first and second basket share a response probability and the third basket has a distinct

response probability.

The likelihood for p(j) conditional on model Mj can then be written as:

L(p(j)|r,Mj) =
Pj∏
l=1

 ∏
k∈Ω(j,l)

(
nk

rk

)
· prk

(j,l) · (1 − p(j,l))nk−rk

 .
Within each cluster, the data are modelled using a beta-binomial model. Hence, π(p(j,p)|Mj),

the prior distribution under model Mj , is a beta distribution with shape parameters s1 and

s2 (that are identical for all models) and thus the posterior distribution for p(j,l) given model

Mj is:

π(p(j,l)|r,Mj) = Beta(s1 +
∑

k∈Ω(j,l)

rk, s2 +
∑

k∈Ω(j,l)

(nk − rk)),

which is also the posterior probability of pk conditional on model Mj if k ∈ Ω(j,l).
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To derive the model posterior probabilities, the following prior probabilities are suggested:

π0(Mj) ∝ exp(Pj · ψ), (2.10)

where ψ is a tuning parameter. Psioda et al. (2021) suggest ψ ⩾ 0. With a value of ψ = 0

all models have the same prior probability. ψ > 0 results in higher prior probabilities for

models with more clusters, i.e. less information is shared. However, ψ < 0 can also be used,

which gives higher prior probabilities to models with less clusters and thus results in more

information sharing. Note that in the manuscript of Psioda et al. (2021) there is a typo in

the equation for the prior. All results of their paper are, however, based on Equation (2.10)

(Psioda, 2023).

Finally, the marginal likelihood (see Equation (2.5)) is:

P(r|Mj) =
K∏

k=1

(
nk

rk

)
·

Pj∏
l=1

B(s1 +∑
k∈Ω(j,l)

rk, s2 +∑
k∈Ω(j,l)

(nk − rk))
B(s1, s2) .

Hence, all terms from Equation (2.4) have closed-form solutions and thus the model posterior

probabilities and therefore also the posterior distributions for all response probabilities can

be computed analytically. In the BMA design, a basket is declared active if P(pk > p0|r) > λ.

This decision rule for the final analysis is also used for early stopping for efficacy if one or

several interim analyses are conducted. A basket is stopped for futility in an interim analysis,

if P(pk >
pA+p0

2 |r) ⩽ λf , where pA is a plausible response probability for an active treatment.

While the posterior quantiles can be calculated analytically, the number of models and thus

the computational burden increase exponentially in the number of baskets. The number of

models J is:

J =
K∑

l=1

 1
l!

l∑
j=0

(−1)l−j · jK

(
l

j

) .
For 5 baskets, for example, there are 52 models to consider and with 8 baskets the number

of models is already 4140. With the R package bmabasket (Alt, 2022), however, posterior

quantiles can still be calculated very fast for a moderate number of baskets.
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2.4.4 BHM Design

In the design by Berry et al. (2013), in the following referred to as BHM design, Bayesian

hierarchical modelling (see Section 2.2.2) is applied. The response probabilities are at first

transformed to the logit scale:

θBHM
k = log

(
pk

1 − pk

)
− log

(
pA,k

1 − pA,k

)
. (2.11)

pA,k are basket specific target response probabilities, which are the response probabilities

assumed under the alternative. Hence the parameters θBHM
k are defined as the log-odds

differences from the target probabilities. This facilitates the comparison of values between

baskets when the target probabilities are different and also enables modelling the parameters

of the baskets together. The parameters θBHM
k , k ∈ {1, . . . ,K} are assumed to follow a

common normal distribution, i.e.:

θBHM
k |µ, σ2 ∼ N(µ, σ2).

As the model is hierarchical, the mean µ and variance σ2 are also random variables and prior

distributions are assigned to them. For µ, a normal prior distribution is specified. Berry

et al. (2013) use a mean value close to the null hypothesis and a variance of 100 for the prior,

with the justification that this results in an almost non-informative prior distribution. For

the variance, different prior distributions can be used. Berry et al. use an inverse-gamma

prior for σ2, but half-normal and half-t for σ or uniform priors for σ2 or σ are also possible

(Cunanan et al., 2017; Neuenschwander et al., 2016).

As explained in Section 2.2.2, by modelling all θBHM
k , k ∈ {1, . . . ,K} in a hierarchical model,

information is shared between the baskets by shrinking the basket-wise effects to the overall

mean effect. How much information is shared depends on the heterogeneity of the results

in the baskets and on the prior distribution for σ2. The larger σ2 the less information

sharing occurs. Ideally, the amount of borrowing would mainly be determined by the observed

data with minimal influence of the selected prior. However, in basket trials the number

of subgroups is usually not large enough and thus there is a high sensitivity to the prior
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parameters. Freidlin and Korn (2013) find that even in a setting with 10 subgroups prior

influence is large. Therefore, careful selection of the prior parameters is essential.

The decision rule for the final analysis to determine whether a basket is active is P(pk >

p0|r) > λ. In interim analyses, early stopping for efficacy and futility is decided based on the

probability P(pk >
p0+pA,k

2 |r), with probability thresholds λe and λf for efficacy and futility,

respectively.

Other than for the designs based on the beta-binomial model, the posterior distributions of

the BHM design have no closed-form solutions (Thall et al., 2003). Therefore, inference is

usually conducted using MCMC sampling. The BHM design is implemented in the R package

bhmbasket (Wojciekowski, 2022).

2.4.5 EXNEX Design

In the EXNEX (exchangeability-nonexchangeability) design proposed by Neuenschwander

et al. (2016), the probabilities are also transformed to the logit scale, though without consid-

ering different target response probabilities:

θEX
j = log

(
pk

1 − pk

)
.

These parameters are then modelled as a mixture of two distributions, which are weighted by

(possibly basket-specific) fixed weights wk and 1 −wk. The first distribution is an exchange-

ability distribution, which is defined as in the BHM design:

θEX
k |µ, σ2 ∼ N(µ, σ2).

A weakly-informative normal prior for µ that is centred at a plausible value is suggested.

The variance is chosen such that the marginal variance for θk corresponds to approximately

one observation (Neuenschwander et al., 2016, online appendix). For σ2, a half-normal prior

is used.

The second distribution, the nonexchangeability distribution, is:

θNEX
k ∼ N(µk, σ

2
k),
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where each expected value µk is also chosen to correspond to a plausible value and each

variance σ2
k to a value that corresponds to approximately one observation.

The exchangeability distribution is given weight wk and the nonexchangebaility distribution

is given weight 1 −wk. By giving more weight to the nonexchangeable part, less information

is borrowed. Thus, the amount of borrowing can be tuned more flexibly than in the BHM

design, as in the EXNEX design it depends on both wk and the prior for σ2. Note that

although the weights are fixed, the posterior distribution is a mixture where the weights are

updated (e.g. Bolstad, 2007, p. 319 - 321).

No specific decision criteria for the final analysis or the interim assessments are proposed

as part of the design. As mentioned in Section 2.4.1, the information sharing component of

the EXNEX design can, however, be combined with the final analysis or interim assessment

components of any of the other designs discussed in this section. In the following, P(pk >

p0|r) > λ will be used as the criterion for the final analysis.

As for the BHM design, inference is based on MCMC sampling as there are no closed-form

solutions for the posterior. The EXNEX design is also implemented in the bhmbasket R

package.

2.5 Operating Characteristics

Although all designs in the previous section are Bayesian or have some Bayesian elements,

basket trial designs are usually compared in terms of their frequentist operating characteris-

tics. Thus, it is assumed the responses in each basket occur with a true fixed but unknown

response probability. In this section, the operating characteristics used in the thesis to com-

pare the designs are defined and discussed.

2.5.1 Type 1 Error Rate

The type 1 error rate (TOER) is the probability to falsely reject a null hypothesis. In the

context of basket trials there are two types of TOERs - the basket-wise TOERs and the family

wise TOER (FWER). Considering the hypotheses defined in Equation (2.1), the basket-wise

TOER is the probability to wrongly declare an inactive basket as active. The FWER is the
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probability to falsely reject at least one out of K null hypotheses, i.e. to incorrectly declare

at least one inactive basket as active.

It is important to note that the basket-wise TOERs also depend on the outcomes of all

baskets, due to the information sharing. Under the global null hypothesis, i.e. in a scenario

where the true response probability is p0 in all baskets, where a null hypothesis is rejected

if P(pk > p0|i1, . . . , iK) ⩾ λ, where i1, . . . rK are the responses, the TOER for basket k in a

single-stage design is:

TOERk =
n1∑

i1=1
· · ·

nK∑
iK=1

1 (P(pk > p0|i1, . . . , iK) ⩾ λ) · P(i1|p0) · . . . · P(iK |p0),

where 1 is the indicator function and P(i|p0) is the probability of a binomial distribution

as given in Equation (2.2). Note that P(pk > p0|i1, . . . , iK) ⩾ λ is used inside the indicator

function, which is the final decision rule of Fujikawa’s design. If a different decision rule

is used, then the equation has to be adapted accordingly. Note further that design specific

parameters necessary for the computation of the posterior probabilities, such as the weights

ωk,i in Fujikawa’s design, are omitted in the notation here. This concerns all equations in

this section.

The basket-wise TOERs under scenarios where some baskets are active are found by using the

alternative response probability p1,k instead of p0 for the respective baskets in the calculation

of the binomial probabilities.

The FWER under the global null hypothesis is:

FWER =
n1∑

i1=1
· · ·

nK∑
iK=1

1 ((P(p1 > p0|i1, . . . , iK) ⩾ λ) ∨ · · · ∨ (P(pK > p0|i1, . . . , iK) ⩾ λ))

· P(i1|p0) · . . . · P(iK |p0).

To compute the FWER under scenarios where some of the baskets are active, inside the

indicator function the probabilities that correspond to the active baskets have to be removed

and, as mentioned above, the binomial probabilities have to be changed accordingly.
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To protect the FWER, λ can be tuned such that the FWER under the global null hypothesis

does not exceed a certain level (also called weak FWER control). In confirmatory trials,

strong FWER control, which in the context of basket trial means controlling the FWER

also for any scenario where some of the baskets are active, is required. However, there

are currently no solutions for strong FWER control in basket trials where information is

shared based on observed similarity. Since basket trials are usually exploratory trials, strong

FWER is commonly not desired. If a stronger FWER control than just under the global

null hypothesis is wanted, then a weighted mean of FWERs under different scenarios can be

calculated and controlled (Kaizer et al., 2021). In this thesis, FWER always refers to the

FWER under the global null hypothesis.

2.5.2 Power

The power is the probability to correctly reject a null hypothesis, i.e. considering the hy-

potheses in Equation (2.1), to correctly declare a basket as active. While experiment-wise

power can also be considered, only basket-wise power is discussed and used in the following.

As the TOER, the basket-wise power also depends on the outcomes of all other baskets as

a result of the information sharing. Under a global alternative hypothesis, where the true

response probability in all baskets is p1, the power for basket k in a single-stage trial is:

Powk =
n1∑

i1=1
· · ·

nK∑
iK=1

1 (P(pk > p0|i1, . . . , iK) ⩾ λ) · P(i1|p1) · . . . · P(iK |p1).

Power can also be calculated under scenarios where some of the baskets are inactive or all

baskets are active, but with different response probabilities, by replacing p1 in the calculation

of the binomial probabilities with the respective probabilities.

Power is a standard operating characteristic to compare different designs e.g. in two-arm

trials. In basket trials, however, looking at the power alone gives an incomplete picture. This

is because, as mentioned in the previous section, the FWER can usually only be controlled

in the weak sense and therefore in scenarios with some active and some inactive baskets,

higher power in the active baskets in one design is often accompanied by higher type 1 error

inflation in the inactive baskets. Thus, when comparing power, TOER must always be taken

into consideration.
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2.5.3 Expected Number of Correct Decisions

A less frequently used operating characteristic is the expected number of correct decisions

(ECD) (e.g. Broglio et al., 2022). If a null hypothesis is true, then a "correct decision" means

that it is not rejected and if the null hypothesis is false, then a "correct decision" means that

it is rejected. When K hypotheses are tested, there are at most K correct decisions to be

made and thus ECD is a value between 0 and K. ECD is a useful operating characteristic for

basket trials, as it in a sense combines TOER and power and thus avoids the problem with

comparing power between designs mentioned in the last section. However, as it combines the

results of all baskets, ECD is always an operating characteristic for the whole trial.

Let p1,1, . . . , p1,K be the true response probabilities in the K baskets. Assume, without loss

of generality, that p1,1 = p0 and p1,k > p0 for 2 ⩽ k ⩽ K, hence the first basket is inactive

and all other baskets are active. Then, for a single-stage trial, the ECD is computed as:

ECD =
n1∑

i1=1
· · ·

nK∑
iK=1

(
1(P(p1 > p0|i1, . . . , iK) < λ) + 1(P(p2 > p0|i1, . . . , iK) ⩾ λ)+

. . .+ 1(P(pK > p0|i1, . . . , iK) ⩾ λ)
)

· P(i1|p1,1) · . . . · P(iK |p1,K).

Note that the term inside the first indicator function is P(p1 > p0|i1, . . . , iK) < λ since it

is assumed that this basket is inactive, and thus a non-rejection of the null hypothesis is a

correct decision. The equation has to be adapted according to the assumed response rate

scenario.

2.6 Power Prior

2.6.1 General Formulation for a Single and Multiple Historical Studies

The power prior method was developed as a way to generate informative priors based on

historical data (Ibrahim and Chen, 2000). The approach assumes that the true parameter

values of the historical data and the new data are close, so that the historical data are

informative about the parameter of interest θ (Gravestock and Held, 2017). The power prior

can, among other things, be applied to generalised linear models, mixed models and Cox

proportional hazard models (Ibrahim et al., 2015). To build a power prior for a parameter
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of interest θ, an initial prior π0(θ) and the likelihood L(θ|y0) of the historical data y0 =

(y0,1, . . . , y0,n0), with n0 being the sample size of the historical data set, are required. The

power prior is then defined as:

π(θ|y0, ω) ∝ L(θ|y0)ω · π0(θ),

where ω ∈ [0, 1] is a parameter that determines how much weight is given to the historical

data. If ω = 0, then the power prior reduces to the initial prior and therefore no information

is shared. If ω = 1, the historical data are used completely, hence the power prior is then the

posterior distribution of the historical data given the initial prior π0(θ). When the data arise

from a distribution from the exponential family, ω is the percentage of information that is

used from the historical data (Pan et al., 2017).

The weight parameter ω can either be treated as a random parameter or calculated based

on the current and the historical data and then treated as a fixed value. Neuenschwander

et al. (2009) found that when ω is random, information sharing is only moderate even when

historical and current data are in complete agreement and sample sizes are large and therefore

do not recommend this approach. In the following, only the case with fixed ω will be discussed.

When ω is a fixed value, computation of the posterior distribution is much simpler and in

some cases, e.g. when data are shared between binomial data sets, power prior and posterior

have closed-form solutions as is shown in the next section.

The power prior approach can also be used when several historical data sets are available.

Denote the historical data sets by Y0 = (y0,1, . . . ,y0,H), where H ⩾ 2 is the number of

historical data sets. Further let ω = (ω1, . . . , ωH) be the respective weight parameters. Then

the power prior extends to:

π(θ|Y0,ω) ∝
H∏

i=1
L(θ|y0,i)ωi · π0(θ).

Hence, each historical data set can be weighted with a different parameter ωh, where ωh ∈

[0, 1] for all h ∈ {1, . . . ,H}.
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The use of the power prior is theoretically justified by the fact that it minimises a convex

sum of two KLDs including the initial prior and the posterior distribution where the current

and the historical data are pooled (Ibrahim et al., 2003). More specifically, let d0 = π0(θ)

and d1 = π(θ|y0, ω = 1). Let further d = d(θ) be a density function and ω be non-random.

Then the expression:

(1 − ω) · KLD(d, d0) + ω · KLD(d, d1),

with ω ∈ [0, 1], is minimised if d is set to:

π(θ|y,y0, ω) ∝ L(θ|y) · L(θ|y0)ω · π0(θ),

which is the posterior distribution resulting from the power prior, where y = (y1, . . . , yn)

refers to the current data here.

A similar result holds for the power prior for multiple historical data sets. Let eh be a vector

of length H where the h-th element is 1 and all other elements are 0. Thus, if ω = eh, the

h-th historical data set is given weight 1 and all other historical data sets are given weight 0.

Now let dh = π(θ|y,Y0,ω = eh). Then the sum:

(
1 −

H∑
i=1

ωi

)
· KLD(d, d0) +

H∑
i=1

ωi · KLD(d, di),

where ∑H
i=1 ωi ⩽ 1 is minimised for d equal to

π(θ|y,Y0,ω) ∝ L(θ|y) ·
(

H∏
i=1

L(θ|y0,i)ωi

)
· π0(θ),

which is the posterior distribution resulting from the power prior in the case of multiple

historical data sets.

2.6.2 Power Prior for Binomial Data

When the data are binomial, the power prior and the resulting posterior distribution have a

closed-form solution (e.g. Gravestock and Held, 2017). For the case with a single historical

data set, let r0 be the number of responses in the historical data based on n0 observations.
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The initial prior is chosen as π0(p) = Beta(s1, s2). Then the power prior is:

π(p|r0, ω) ∝ L(p|r0)ω · π0(p)

=
((

n0
r0

)
· pr0 · (1 − p)n0−r0

)ω

· 1
B(s1, s2) · ps1−1 · (1 − p)s2−1

∝
(
pr0 · (1 − p)n0−r0

)ω · ps1−1 · (1 − p)s2−1

= pω·r0+s1−1 · (1 − p)ω·(n0−r0)+s2−1

∝ Beta(s1 + ω · r0, s2 + ω · (n0 − r0)).

Since the power prior is a beta distribution, the posterior is also a beta distribution as shown

in Section 2.2.1. Specifically, with r being the number of responses in the current data set

based on n observations:

π(p|r, r0, ω) = Beta(s1 + r + ω · r0, s2 + (n− r) + ω · (n0 − r0)).

Hence, ω · 100% of the responses and non-responses observed in the historical data are used

in the computation of the posterior when the power prior is applied. The effective sample

size (ignoring the information contained in the initial prior) is thus n+ ω · n0.

For the case with multiple historical studies (e.g. Gravestock and Held, 2019) let r0 =

(r0,1, . . . r0,H) be the H historical data sets (i.e. the vector of responses in the H studies)

based on sample sizes n0 = (n0,1, . . . , n0,H). Again, the initial prior is a beta distribution.

Then:

π(p|r0,ω) ∝
H∏

i=1
L(p|r0,i)ωi · π0(p)

=
H∏

i=1

((
n0,i

r0,i

)
· pr0,i · (1 − p)n0,i−r0,i

)ωi

· 1
B(s1, s2) · ps1−1 · (1 − p)s2−1

∝
H∏

i=1

(
pr0,i · (1 − p)n0,i−r0,i

)ωi · ps1−1 · (1 − p)s2−1

= p
∑H

i=1 ωi·r0,i+s1−1 · (1 − p)
∑H

i=1 ωi·(n0,i−r0,i)+s2−1

∝ Beta(s1 +
H∑

i=1
ωi · r0,i, s2 +

H∑
i=1

ωi · (n0,i − r0,i)).
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And the posterior distribution is therefore:

π(p|r, r0,ω) = Beta(s1 + r +
H∑

i=1
ωi · r0,i, s2 + (n− r) +

H∑
i=1

ωi · (n0,i − r0,i)).

Thus, the effective sample size in this case is n+∑H
i=1 ωi · n0,i.

2.6.3 Calculation of the Weights

A range of different ideas for calculating the weight ω based on the the current and historical

data have been suggested (see e.g. Ibrahim et al., 2015; Bennett et al., 2021; Thompson et al.,

2021). Most approaches were proposed for the case where only a single historical study is

available, but the methods can also be applied to several historical studies by calculating

each ωh separately based on the the h-th historical data set and the current data. In the

following, two approaches are introduced. One which was designed for borrowing from a

single historical study and can be adapted very flexibly and one with an explicit extension

for multiple historical studies. These are later adapted to basket trials in Section 3.1.3.

2.6.3.1 Calibrated Power Prior

Pan et al. (2017) suggested the calibrated power prior (CPP) for borrowing from a single

historical study, where ω is calculated based on a prespecified function that quantifies the

similarity between the current and the historical data. They discuss the case of normal and

binomial data. At first, the Kolmogorov-Smirnov (KS) test statistic between the two data

sets is calculated. For that, let D(t) and D0(t) be the empirical distribution functions of the

current and the historical data, respectively. Thus:

D(t) =
∑n

i=1 1(yi ⩽ t)
n

,

D0(t) =
∑n0

i=1 1(y0,i ⩽ t)
n0

.

To calculate the KS test statistic SKS, let y(1), . . . , y(n+n0) be the ordered values of the com-

bined data points of the current and the historical study. Then:

SKS = max
i∈{1,...,n+n0}

{|D(y(i)) −D0(y(i))|}.
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Note that for binomial data the KS statistic is simply the absolute rate difference between

the two samples. The KS statistic takes values between 0 and 1 where larger values indicate

larger differences. In the next step, the KS statistic is scaled in the following way:

S = max(n, n0)1/4 · SKS. (2.12)

Finally, ω is found as:

ω = 1
1 + exp(a+ b · log(S)) ,

where a ∈ R and b > 0 are tuning parameters. b > 0 is required to receive weights that

are strictly monotonically decreasing in SKS. For a, values smaller than 0 are possible, but

negative values lead to very large weights even when SKS is large.

The scaling step in Equation (2.12) is justified by the fact that with this definition ω converges

to 1 if the current and historical data arise from the same underlying distribution and to 0 if

they do not, for n and n0 → ∞.

Pan et al. (2017) propose an algorithm for calibrating the tuning parameters a and b based

on the historical data. However, this cannot be applied to basket trials as, in the setting

discussed in this thesis, there are no data available in the planning phase. Thus, this is not

further discussed here.

2.6.3.2 Weights Based on the Maximum Marginal Likelihood

For a setting in which a single historical study is available, Gravestock and Held (2017)

suggested to choose ω as the value that maximises its marginal likelihood. In the general

case, that is:

ω = arg max
ω∈[0,1]

L(ω|y,y0),

where

L(ω|y,y0) =
∫
L(θ|y) · π(θ|ω,y0)dθ

=
∫
L(θ|y0) · L(θ|y0)ωπ0(θ)dθ∫

L(θ|y0)ω · π0(θ)dθ .
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Constraining ω to the interval [0, 1] is necessary, as otherwise the weight can exceed these

limits.

For binomial data:

L(ω|r, r0) =
∫ 1

0
L(p|r) · π(p|ω, r0)dp.

Since L(p|r0) is a binomial likelihood and the posterior π(p|ω, r0) is a beta distribution, the

marginal likelihood L(ω|r, r0) follows by definition a beta-binomial distribution (e.g. Bernardo

and Smith, 2000, p. 117), with parameters s1 + ω · r0, s2 + ω · (n0 − r0) and n.

Gravestock and Held (2019) investigate how to use the maximum marginal likelihood (MML)

approach in a setting with multiple historical studies. They apply the MML weights for

a single historical study by estimating ωh separately for each data set and by pooling all

historical data sets and estimate one ω based on this pooled data set. However, they find

that these approaches are not ideal and instead suggest an extension of the method. The

weights are also found by maximising the marginal likelihood, but of the whole vector of

weights ω given all historical data sets and the current data. Hence:

ω = arg max
ω∈[0,1]H

L(ω|y,Y0),

where

L(ω|y,Y0) =
∫
L(θ|y) · π(θ|ω,Y0)dθ.

And specifically for binomial data:

L(ω|r, r0) =
∫
L(p|r) · π(p|ω, r0)dp.

As the posterior π(p|ω, r0) is also a beta distribution, this marginal likelihood also follows a

beta-binomial distribution, the parameters are s1 +∑H
i=1 ωi · r0,i, s2 +∑H

i=1 ωi · (n0,i − r0,i)

and n. Gravestock and Held (2019) argue that by using the marginal likelihood given all

historical data sets, the heterogeneity of the historical studies is taken into account and the

generated weights combine the historical data such that they have the highest compatibility

with the current data.
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Chapter 3

Results

In this chapter the results of the thesis are presented. The two main topics are the application

of the power prior approach for the analysis of basket trials (Section 3.1) which includes a

comprehensive comparison study (Section 3.2) and the investigation of nonmonotonicity as

a result of sharing information between baskets (Section 3.3). Two R packages that were

developed as part of the thesis are presented in Section 3.4 and Section 3.5.

Note that this chapter also includes new methods and the setup of the comparison study,

since these are also results of the thesis. These parts could have also been presented in the

previous chapter as methods. However, for the purpose of a continuous narrative and to

better distinguish between methods from the literature and methods and ideas developed as

part of this thesis, these sections are presented in this chapter.

3.1 Power Priors for Information Sharing in Basket Trials

In this section, the power prior method presented in Section 2.6.1 is adapted such that it

facilitates information sharing in basket trials. The connection between Fujikawa’s design and

the power prior approach is then established. Afterwards, different strategies to compute the

weights in the power prior approach, which determine the amount of information that is

shared between baskets, are derived.

31
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3.1.1 Adapting the Power Prior Approach to Basket Trials

Power priors, as explained in Section 2.6, are a method for building informative priors based

on one or several historical studies that are related to the current study. When in the context

of basket trials for a certain basket k the outcomes of all other baskets j ∈ {1, . . . ,K}\k are

treated in the same way as the historical data sets in the original power prior approach, then

many power prior methods can be directly applied to the analysis of basket trials by simply

changing the notation.

Let ωk = (ωk,1, . . . , ωk,K) be the vector of weights that determine the amount of information

that is shared between basket k and all other baskets. This includes ωk,k which is always 1.

The general formulation of the power prior for basket k is then:

π(pk|r[−k],ωk,[−k]) ∝

∏
i∈Ik

L(pk|ri)ωk,i

 · π0(pk), (3.1)

where the subscript [−k] means that the k-th element of the vector is excluded and Ik =

{1, . . . ,K}\k. The k-th element of r and ωk is excluded since they refer to basket k itself, but

the data of basket k are not part of the power prior. Note that the notation could be changed,

such that ωk does not include ωk,k, which seems natural since it is always 1 and could make

notation easier since then the subscript [−k] would not be necessary for the weights in the

equation above. However, then the j-th element of ωk would not correspond to the weight

that is shared between basket k and basket j if j > k which would make the notation more

complicated in other ways.

The posterior distribution for basket k resulting from the power prior in Equation (3.1) is

then (compare with the results from Section 2.6.2):

π(pk|r,ωk) = Beta(s1,k +
K∑

i=1
ωk,i · ri, s2,k +

K∑
i=1

ωk,i · (ni − ri)). (3.2)

Hence, the parameters of the posterior distribution of basket k are calculated as a weighted

sum of the responses and non-responses of all baskets plus the prior parameters of basket k.

Note that in the following, as in Fujikawa’s design, P(pk > p0|r,ωk) ⩾ λ is used as the

criterion to reject the null hypothesis in the final analysis.
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3.1.2 Connection Between Fujikawa’s Design and Power Priors

The posterior distribution given in Equation (3.2) resulting from applying the power prior

and the posterior distribution in Equation (2.8) which is used in Fujikawa’s design to share

information between baskets are clearly closely related to each other. Fujikawa et al. (2020),

however, do not mention this connection to power priors. In both methods, information is

generally shared in the same manner by computing a weighted sum of the available informa-

tion. The difference between the two approaches is, however, that in the posterior distribution

of Fujikawa’s design, the prior parameters of all baskets are also part of the weighted sums,

while with the power prior approach only the prior parameters of basket k are used in the

posterior distribution of basket k. Thus, not only the observed data, but also the prior in-

formation is shared in Fujikawa’s design. Of course weights based on the JSD can also be

used for sharing information with power priors to align Fujikawa’s design and the power prior

approach.

Whether sharing prior information is appropriate may depend on how the prior parameters are

chosen. If they are based on trial data from earlier phases, then also sharing this information

seems sensible. If, however, no prior information is available and a non-informative beta prior

is used, including the prior parameters of the other baskets in the posterior distribution is

not reasonable, and may potentially introduce additional bias. For example, Fujikawa et al.

(2020) use Beta(1, 1) priors, which contain as much information as observing two patients,

one with a response and one without a response. Thus, this prior indicates a response rate

of 0.5. If this prior is used for all baskets in a basket trial with a large number of baskets

and small sample sizes per basket, then the influence of sharing the prior information can

be non-negligible, especially when the observed response rates are either far below or above

0.5. On the other hand, if a prior distribution with much smaller prior parameters than 1,

for example Beta(0.001, 0.001), is used then the influence of the shared prior information is

irrelevant and Fujikawa’s design and the power prior approach will lead to almost identical

results.

It may seem that the posterior distribution from Fujikawa’s design can also be expressed as a

posterior distribution resulting from a power prior, by including the prior distributions of the

other baskets in the power prior. But this does not lead to the same posterior distribution
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as used in Fujikawa’s design. The power prior which includes all prior distributions is:

π(pk|r[−k],ωk,[−k]) ∝

∏
i∈Ik

(
L(pk|ri) · πi

0(pk)
)ωk,i

 · πk
0 (pk)

=
∏

i∈Ik

((
ni

ri

)
· pri

k · (1 − pk)ni−ri · 1
B(s1,i, s2,i)

· ps1,i−1
k · (1 − pk)s2,i−1

)ωk,i

·

1
B(s1,k, s2,k) · ps1,k−1

k · (1 − pk)s2,k−1

∝
∏

i∈Ik

(
pri

k · (1 − pk)ni−ri · ps1,i−1
k · (1 − pk)s2,i−1

)ωk,i · ps1,k−1
k · (1 − pk)s2,k−1

= p
s1,k−1+

∑
i∈Ik

ωk,i·(ri+s1,i−1)
k · (1 − pk)s2,k−1+

∑
i∈Ik

ωk,i·((ni−ri)+s2,i−1)

∝ Beta(s1,k +
∑
i∈Ik

ωk,i · (ri + s1,i − 1), s2,k +
∑
i∈Ik

ωk,i · ((ni − ri) + s2,i − 1))

= Beta(s1,k +
∑
i∈Ik

ωk,i · (ri + s1,i) −
∑
i∈Ik

ωk,i,

s2,k +
∑
i∈Ik

ωk,i · ((ni − ri) + s2,i) −
∑
i∈Ik

ωk,i).

Note the superscript i in πi
0(pk) is used here to indicate that the prior parameters chosen

for basket i are used, since the prior parameters may in general differ between baskets.

Normally, this superscript is not necessary as the subscript of the parameter indicates which

prior distribution is used - e.g. π0(pk) refers to the prior distribution of basket k. Since in

the equation above the power prior is built for basket k using the prior distributions of all

baskets, this is not clear and thus the superscript is introduced here.

The posterior distribution is then:

π(pk|r,ωk) = Beta(
K∑

i=1
ωk,i · (s1,i + ri) −

∑
i∈Ik

ωk,i,
K∑

i=1
ωk,i · (s2,i + (ni − ri)) −

∑
i∈Ik

ωk,i),

which differs from the posterior distribution of Fujikawa’s design by the term −
∑

i∈Ik
ωk,i in

both posterior parameters. If historical data are, however, available for any of the baskets,

these could of course also be used by including it as a further likelihood term in the power

prior. The historical data can be combined with the new data such that both receive the

same weight, or additional weights can be introduced to weight the historical and the current

data differently.
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3.1.3 Calculation of the Weights for Basket Trials

3.1.3.1 Calibrated Power Prior Weights for Basket Trials

The CPP approach described in Section 2.6.3.1 can easily be applied to basket trials. The

CPP method was proposed in the context of a single historical study, but as mentioned in

Section 2.6.3, power prior methods for single studies can be extended to the multiple studies

case by calculating the weight separately for each historical study. By further extension in

the setting of basket trials, the weights are found by calculating the weight individually for

each pair of baskets (as it is also done in Fujikawa’s design). Thus, in a single-stage trial

with K baskets there are
(K

2
)

weights to be calculated. Specifically, by adapting the notation

in Equation (2.6.3.1) to the basket trial setting, the weight ωk,i that determines how much

information is shared between basket k and basket i is:

ωk,i = 1
1 + exp(a+ b · log(Sk,i))

,

where Sk,i = max(nk, ni)1/4 · SKS;k,i is the scaled and SKS;k,i the unscaled KS test statistic

between basket k and i.

Figure 4: CPP weights in the power prior design for different values of the tuning parameters
a and b that are obtained when in one basket the number of responses is 10 and the number
of responses r in the other basket varies. n = 20 in each basket.
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Figure 4 displays different weights that are obtained for different choices for a and b.

3.1.3.2 Maximum Marginal Likelihood Weights for Basket Trials

In Section 2.6.3.2, two methods for calculating the power prior weights based on the maximum

of the marginal likelihood of ω (for a single historical study) or ω (for several historical studies)

were presented.

The method for a single historical study can again be extended to basket trials by calculating

the weights based on pairwise similarity. The weights are then calculated as:

ωk,i = arg max
ωk,i∈[0,1]

L(ωk,i|rk, ri)

= arg max
ωk,i∈[0,1]

fBetaBin(rk; s1,k + ωk,i · ri, s2,k + ωk,i · (ni − ri), nk)

where fBetaBin(·; t1, t2, n) is the density of a beta-binomial distribution with parameters t1, t2
and n.

However, this definition leads to asymmetric weights. For example, consider two baskets

each with n = 20 and outcomes r1 = 9 and r2 = 4. Given a Beta(1, 1) prior distribution, the

resulting weights are ω1,2 = 0.14 but ω2,1 = 0.118. CPP weights and weights in Fujikawa’s

design are always symmetric, since they only depend on the KS test statistic and the JSD,

respectively, which are both symmetric functions.

In the context of borrowing from a historical study this may not be an issue, since information

is only shared in one direction - the current study borrows from the historical study but

not the other way round. In basket trials, however, asymmetric weights based on pairwise

similarity seem counterintuitive. To receive a symmetric weight function, the weights can

be symmetrised by taking the mean of two weights ωk,i and ωi,k resulting from the MML

approach:

ωSym
k,i = 1

2( arg max
ωk,i∈[0,1]

fBetaBin(rk; s1,k + ωk,i · ri, s2,k + ωk,i · (ni − ri), nk)+

arg max
ωk,i∈[0,1]

fBetaBin(ri; s1,i + ωk,i · rk, s2,i + ωk,i · (nk − rk), ni)).
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Figure 5: Symmetrised MML weights and CPP weights with a = 8 and b = 8.5 in the power
prior design that are obtained when in one basket the number of responses is 10 and the
number of responses r in the other basket varies. A Beta(1, 1) prior and n = 20 is used for
both baskets.

Note, however, that a very similarly shaped weight function can be obtained by tuning

CPP weights accordingly. The symmetrised MML weights and CPP weights with tuning

parameters a = 8 and b = 8.5 are shown in Figure 5.

In the extension of the MML approach for multiple historical studies, the weights are not

found based on pairwise similarity. Instead, applying the method to basket trials, for each

basket k the weights that determine the amount of information that is shared from all other

baskets is found by maximising the marginal likelihood of ωk;[−k] given r. Thus:

ωk;[−k] = arg max
ωk;[−k]∈[0,1]K−1

L(ωk|r)

= arg max
ωk;[−k]∈[0,1]K−1

fBetaBin(rk; s1,k +
∑
i∈Ik

ωk,i · ri, s2,k +
∑
i∈Ik

ωk,i · (ni − ri), nk).

Therefore, when this approach is extended to basket trials, the arg max has to be calculated

K times, such that every basket is treated as the "current study" once, and all other baskets

act as the "historical studies".

When the weights are calculated based on all observations in this way, symmetry is in general

not expected. To extend the example above, consider now that four baskets were observed and
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the vector of outcomes is r = (4, 9, 10, 11). Now, again given Beta(1, 1) prior distributions,

the weight vector for the first basket is ω1 = (1, 0.12, 0, 0) and the weight vector for the

second basket is ω2 = (0.71, 1, 1, 1). This is, since for finding the weights for basket 1, the

marginal likelihood conditions on baskets 2 to 4 which are similar to each other but far

away from the results of basket 1. Thus, little information is shared from baskets 2 to 4.

However, when calculating the weights for basket 2, the parameters of the beta-binomial

density are calculated based on baskets 1, 3, and 4. Between these three baskets there is

more heterogeneity, but the results of basket 2 are in between the other three subgroups,

thus more information is shared from all other baskets.

3.1.3.3 Weights Based on Overall Heterogeneity for Basket Trials

The power prior design in which weights are based on pairwise similarity between baskets

(using either CPP weights or JSD weights as in Fujikawa’s design) can be extended to in-

corporate the finding of Gravestock and Held (2019) in the context of borrowing data from

historical studies, that using all available data simultaneously is preferable to only considering

the pairwise similarity to derive the weights.

For that purpose, global weights ω⋆ ∈ [0, 1] can be used, which quantify the overall hetero-

geneity of the data of all baskets. Larger values for ω⋆ indicate that little heterogeneity is

observed between the baskets and a smaller value for ω⋆ means that there is high heterogene-

ity. The global weight is then combined with the pairwise weights and the information that

is shared between two baskets is then found as:

ω′
k,i = ωk,i · ω⋆.

The idea is therefore that less information is shared between baskets when high heterogeneity

is observed, even when two baskets have very similar or identical results. Clearly, this still

leads to symmetric sharing between baskets, as the same value for ω⋆ is used for the calculation

of all weights.
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To quantify the overall heterogeneity and calculate ω⋆, one option is to use the extended

version of the JSD as given in Equation (2.7). ω⋆ can then be calculated as:

ω⋆ = (1 − JSD(π(p1|r1), . . . , π(pK |rK)))ε⋆

,

where ε⋆ is a tuning parameter. A disadvantage of using the JSD to calculate ω⋆ is, however,

that it requires numerical integration, which is computationally relatively expensive. When

the JSD is only used to compute the pairwise weights, as in Fujikawa’s design, this is not

an issue since the number of possible weights that can occur is at most (n+ 1)2 in a single-

stage design with equal sample sizes. But since ω⋆ is based on the outcomes of all baskets,

the JSD has to be computed for every vector of outcomes. This slows the computation of

operating characteristics based on simulation significantly and makes analytical computations

infeasible.

An alternative function h that quantifies the overall heterogeneity and is cheaper to compute

is derived from the following example and considerations: In a basket trial with K = 3

baskets, let rrk = rk/nk, k ∈ {1, . . . , 3} be the response rates. Let further rr(j) denote the

j-th of the ordered response rates and define d1 = rr(3) − rr(2) and d2 = rr(2) − rr(1). Hence,

d1 is the difference between the largest response rate and the response rate in the middle and

d2 is the difference between the middle and the smallest response rate, thus d1, d2 ∈ [0, 1]. h

is defined as a function of d1 and d2 and should fulfil the following criteria: First, when there

is no heterogeneity, the value of h should be 1. No heterogeneity is present when the response

rates of all baskets are identical. Second, when there is maximum heterogeneity, the value of

h should be 0. Maximum heterogeneity may be defined in other ways, but one possibility is

to define it - in the example with three baskets - as observing response rates of 0, 0.5 and

1, i.e. as an equidistant sequence on the parameter space [0, 1]. Thus, mathematically the

conditions for h are:

1. h(0, 0) = 1,

2. h(0.5, 0.5) = 0.
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Figure 6: Global weights based on h with ε⋆ = 2.5 and the extended JSD with ε⋆ = 1 with
K = 3 baskets that are obtained when in one basket the number of responses is 10 and the
responses r1 and r2 vary. A Beta(1, 1) prior and n = 20 are used for all baskets.

The following definition of h satisfies these conditions and also their generalisation to the

case of K > 3:

h(d) =
(

1 −
K−1∑
i=1

di · 10
∑K−1

i=1 (di−1/(K−1))2
)ε⋆

, (3.3)

where d = (d1, . . . dK−1) and di, i ∈ {1, . . . ,K−1} are defined analogously to the example with

three baskets and ε⋆ is a tuning parameter. The function could also be tuned in other ways.

For example, the "10" could be changed to another positive number and the function would

still satisfy the two conditions. But this is not further explored to not introduce too many

different tuning parameters. Clearly, since h only involves basic arithmetic operations, it is

much cheaper to compute than the JSD. Analytical computation of operating characteristics

is still feasible when global weights based on h are used. Figure 6 visualises the two global

weight functions. When for h the tuning parameter ε⋆ = 2.5 and for the JSD it is set to

ε⋆ = 1, the two functions look relatively similar.

Another option is to set ω⋆ to a fixed value between 0 and 1 without considering the observed

heterogeneity, such that more weight is given to the data observed in the basket itself and

less information is shared between baskets. This idea is in the spirit of the EXNEX design

as described in Section 2.4.5. However, other than the weight w in the EXNEX design, the

fixed ω⋆ is not updated based on the observed similarity.
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The three options to choose ω⋆ described above (based on the JSD, the heterogeneity function

h or as a fixed value) can be combined with any approach to determine pairwise weights. Two

natural combinations are to combine ω⋆ based on the JSD with pairwise weights also based on

the JSD and to combine ω⋆ based on the heterogeneity function h with pairwise weights based

on the CPP, since both h and the CPP weights are based on the response rate differences

between baskets.

3.2 Comparison Study

In this section, several variations of the power prior design proposed in the previous section

are compared with Fujikawa’s design and the EXNEX, BHM and BMA designs.

3.2.1 Setup

Designing a comparison study for different basket trial designs is complex, as the number of

design elements as well as the number of prior and tuning parameters involved in the different

designs is large. Relevant design elements and parameters include the number and sample

sizes of the baskets. If interim assessments should also be considered, then the number,

timing and type of interim assessments must be chosen. Furthermore, there is an enormous

amount of possible response probability scenarios. In some simulation studies, a single null

and a single alternative response probability are set, resulting in K + 1 different scenarios,

with 0 to K active baskets. However, in practice baskets which respond to the treatment

may show different response rates, hence mixed alternative scenarios can also be considered.

A further aspect to consider is TOER control. Often strong control of the FWER, i.e. under

all possible configurations of true null and alternative hypotheses, is desired. However, in

basket trials with information sharing only weak FWER control, i.e. under the global null

hypothesis is feasible as discussed in Section 2.5.1.

Finally, competing designs have to be chosen carefully. In their review, Pohl et al. (2021)

discuss around 20 different designs and new designs have been proposed since the article was

published. The number of comparison studies is, however, low and little is known about

which methods perform best under which circumstances. Therefore, it is difficult to choose
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Table 2: Response probability scenarios considered in the comparison study

Scenario Basket 1 Basket 2 Basket 3 Basket 4
Global Null 0.15 0.15 0.15 0.15
Global Alternative 0.4 0.4 0.4 0.4
One in the Middle 0.4 0.4 0.3 0.5
Linear 0.15 0.25 0.35 0.45
Good Nugget 0.15 0.15 0.15 0.4
Bad Nugget 0.15 0.4 0.4 0.4
Half 0.15 0.15 0.4 0.4

designs for a fair comparison. A further problem is that many designs are not implemented

in R packages or other software.

The focus of this comparison study is on the different sharing techniques, therefore a single-

stage trial without any interim analyses is considered. Equal sample sizes of n = 20 were

chosen and the number of baskets is set to K = 4. The response probability scenarios are

inspired by scenarios used in the simulation studies in Berry et al. (2013) and Broglio et al.

(2022). The investigated scenarios are shown in Table 2. The null response rate is set to

p0 = 0.15. For the Global Alternative scenario the response probability was set to 0.4.

The Good Nugget, Half and Bad Nugget scenario represent cases where 1, 2 and 3 baskets

are active, respectively, where the active baskets also have a response probability of 0.4.

Additionally, a Linear scenario and a One in the Middle scenario were considered. In the

former, 3 of the 4 baskets are active with linearly increasing response probabilities. In the

One in the Middle scenario, all baskets are active but with different response probabilities.

The following methods were investigated (ordered alphabetically):

• BHM design

• BMA design

• CPP: Power prior design with pairwise weights only, based on the CPP approach,

• CPP-Global: Power prior design with pairwise weights based on the CPP approach,

global weights based on h,
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• CPP-Nex: Power prior design with pairwise weights based on the CPP approach, fixed

global weight,

• EXNEX design

• Fujikawa’s design

• JSD-Global: Power prior design with pairwise and global weights, both based on the

JSD,

• MML: Power prior design with symmetrised pairwise weights based on the MML ap-

proach,

• MML-Global: Power prior design with weights based on the MML approach for multiple

historical studies.

The BMA, BHM and EXNEX designs were selected as comparators, since R packages that

allow applying these designs are available on the Comprehensive R Archive Network (CRAN).

The package bhmbasket (Wojciekowski, 2022) implements the BHM and the EXNEX design.

bmabasket (Alt, 2022) implements the BMA design. Fujikawa’s design is implemented in the

baskexact package (see Section 3.4), which also implements the power prior design CPP, CPP-

Global, CPP-Nex and MML weights. The remaining power prior variations are implemented

in the basksim package which is described in Section 3.5.

The tuning and prior parameter values were selected following an approach also used in a

simulation study by Broglio et al. (2022) using the ECD (see Section 2.5.3) as the target for

optimisation. The following steps were applied for each method to select the optimal tuning

and prior parameter values:

1. Define a set of potential values for each tuning and prior parameter that should be

optimised.

2. For each combination of values, find the smallest posterior probability threshold λ (up

to a margin of 0.001) such that the FWER under the global null hypothesis does not

exceed α = 0.05 (one-sided).
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3. For each combination of values and the respective λ found in step 2, compute the ECD

under each scenario. Calculate the mean ECD across all scenarios.

4. Select the combination of tuning and prior parameter values that results in the highest

mean ECD.

Based on the tuning and prior parameter values found optimal in this procedure, the designs

were compared based on the ECDs, rejection rates and posterior means.

Operating characteristics for the power prior design with CPP, CPP-Global, CPP-Nex and

MML weights as well as Fujikawa’s design were calculated analytically. For all other meth-

ods, simulations were used. For that purpose, 10,000 simulated data sets were created for

each scenario, which were used for all methods. For the BMA design and the power prior

design with JSD-Global and MML-Global weights, posterior probabilities were calculated

analytically, but for the BHM and EXNEX design posterior probabilities are based on 10,000

MCMC samples plus 1000 discarded burn-in MCMC samples.

For computation of the BHM and EXNEX design, minor modifications of the bhmbasket

package were made (modified version available on https://github.com/lbau7/bhmbasket).

First, in bhmbasket the results are computed using a nested for-loop with parallelisation using

the doRNG package (Gaujoux, 2023). However, nested parallel for-loops are not supported

according to the package’s vignette and thus unwanted correlations between MCMC samples

may be introduced. Therefore, the inner loop was changed to a normal for-loop without

parallelisation. Second, the number of burn-in samples and the number of chains used in the

MCMC sampling in bhmbasket cannot be changed by the user. In the modified version, the

number of chains was set to 1 and the number of burn-in samples was set to 1000.

3.2.2 Potential Tuning Parameter Values

Selection of potential tuning and prior parameter values was also guided by Broglio et al.

(2022). To limit the number of different parameter value combinations, parameters that have

little impact on information sharing were not considered in the optimisation. For all relevant

parameters a grid of values was specified.

https://github.com/lbau7/bhmbasket
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For all power prior design variations, the prior distributions were set to Beta(1, 1). With

CPP, CPP-Global and CPP-Nex weights, the information sharing only depends on the rate

differences and therefore the choice of beta prior parameters does not influence the amount of

shared information. With JSD-Global weights, the prior has minimal influence on information

sharing, since the JSD weights are derived from the individual posterior distributions which

depend on the prior choice. However, the numerical integration with R’s default integrate

function, which is used to compute the JSD, does not converge for some response vectors

when s1, s2 < 1 are used as prior parameters of the beta distribution.

For the pairwise CPP weights, the tuning parameters that influence information sharing are a

and b. For each of these two parameters, 6 equidistant values between 0.5 and 3 were tested.

This range for the tuning parameter values was determined by informal calculations with

K = 3 baskets. The same set of values was investigated for the parameter ε⋆ which is used to

compute the global heterogeneity component of the CPP-Global weights. For the fixed global

weight component of the CPP-Nex weights, 9 equidistant values between 0.1 and 0.9 were

considered. This results in 36 different parameter value combinations for CPP weights, 216

different combinations for CPP-Global weights and 288 possible values for CPP-Nex weights.

For the JSD-Global weights, information sharing is guided by ε and τ in the computation of

the pairwise weights and by ε⋆ in the computation of the global heterogeneity component.

For ε and ε⋆, values between 0.5 and 3 in steps of 0.5 were considered, and for τ 6 equidistant

values between 0 and 0.5 were used. Hence, 216 different value combinations were tested. In

the computation of the MML and MML-Global weights, no tuning parameters are involved.

Note that MML weights were used despite their similarity to CPP weights shown in Section

3.1.3.2, but the investigated range of CPP parameter values does not include the values that

result in a shape of the weight function similar to that of the MML weights. The choice of the

beta prior parameters has some influence on the weights, but to be consistent with the other

methods, s1 and s2 were held constant at 1. Gravestock and Held (2017) and Gravestock

and Held (2019) also used a Beta(1, 1) prior distribution.

For Fujikawa’s design, the prior distributions were also set to Beta(1, 1) due to the compu-

tational issue mentioned above and since this is also the prior used in Fujikawa et al. (2020).
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The values for τ and ε where chosen as for the power prior design with JSD-Global weights,

i.e. 36 different combinations were used.

The BMA design also involves beta priors for each cluster. For that, again Beta(1, 1) priors

were used. ψ influences the amount of information sharing since it determines the prior

probabilities for the models considered in the model averaging. For this parameter 17 values

between -4 and 4 with a step size of 0.5 were considered.

The BHM design requires specification of two prior distributions, one for µ and one for σ2.

The distribution for µ was set to N(−1.3291, 1002). The expected value −1.3921 of this

normal distribution is equal to the null hypothesis given p0 = 0.15 and ptarg = 0.4 - see

Equation (2.11). The variance of 1002 results in a practically non-informative prior. For σ,

a half-normal prior with varying scale parameters ϕ was used. The half-normal prior was

used as this is the only prior option implemented in the bhmbasket package, although Berry

et al. (2013) use an inverse-gamma prior for σ2. Broglio et al. (2022) however, also use a

half-normal prior for σ. For the scale parameter - again as used by Broglio et al. (2022) - 8

equidistant values ranging from 0.125 to 2 were investigated.

The EXNEX design also requires specification of a distribution for µ and σ2 and additionally

requires K prior distributions, one for the transformed individual response rate θNEX
k of each

basket. For µ and all θNEX
k , the prior distributions were set to N(−1.7346, 1002). The mean

of this prior distribution is not the same as in the prior used for µ in the BHM design, as

the target response probabilities that are used in the BHM design are not used to adjust the

transformed response probabilities in the EXNEX design. As a prior for σ, a half-normal

prior was used and the same 8 values for ϕ as in the BHM design were considered. For the

weight parameter w, 9 equidistant values between 0.1 and 0.9 were taken into consideration.

Thus in total 72 parameter value combinations were investigated.

3.2.3 Results of the Comparison Study

The prior and tuning parameter values that resulted in the highest mean ECD across the

seven investigated scenarios for all methods are shown in Table 3. Sensitivity of the results

with respect to the choice of tuning parameter values is discussed in the next section.
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Table 3: Optimal prior and tuning parameter values for all methods that resulted in the
highest mean ECD across the investigated scenario

Method Parameter Value
BHM ϕ 0.661
BMA ψ -2
CPP a 2

b 1.5
CPP-Global a 1.5

b 1
ε 0.5

CPP-Nex a 2
b 2
ω⋆ 0.8

EXNEX ϕ 0.393
w 0.6

Fujikawa ε 1.5
τ 0

JSD-Global ε 1
ε⋆ 0.5
τ 0

The results of the comparison regarding the ECDs for each scenario and the mean ECD

across all scenarios are shown in Table 4. In terms of the mean ECD, the results are all very

similar. All methods lead to mean ECDs between 3.5 and 3.6, differences are only seen in the

second decimal place. Note that since there are K = 4 baskets the theoretical maximum is 4.

The power prior method with CPP-based weights shows the best performance numerically,

but only by a very small margin. Numerically the CPP-Nex weights achieved the highest

mean ECD and the BMA and MML method showed the lowest values.

Across all scenarios, naturally the best results in terms of ECD are observed in homogeneous

scenarios, i.e. when all baskets are either active or inactive, since in these cases information

sharing has the highest benefit. Therefore, in the Global Alternative scenario all methods

except for MML-Global show more than 3.8 ECD, and in the One in the Middle scenario all

methods - excluding the two methods with MML weights - have on average more than 3.7

correct decisions. The scenario in which all methods showed the lowest ECD is the Linear

scenario, where all methods have an ECD of around 3. This is because this scenario includes

an active basket with a true response probability of only 0.25 and thus only 0.1 above the
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Table 4: ECDs under all scenarios using the optimal tuning parameter values for each method.
The best result per column is bold.

Method Global
Null

Global
Alt

One in the
Middle Linear Good

Nugget
Bad

Nugget Half Mean

BHM 3.928 3.865 3.734 2.999 3.442 3.468 3.365 3.543
BMA 3.904 3.871 3.719 2.964 3.342 3.451 3.319 3.510
CPP 3.916 3.910 3.817 3.066 3.403 3.497 3.321 3.561
CPP-Global 3.922 3.909 3.819 3.056 3.410 3.486 3.323 3.561
CPP-Nex 3.919 3.910 3.816 3.066 3.420 3.494 3.336 3.566
EXNEX 3.917 3.922 3.834 3.083 3.343 3.515 3.243 3.551
Fujikawa 3.908 3.882 3.738 3.068 3.340 3.520 3.352 3.544
JSD-Global 3.913 3.919 3.821 3.078 3.392 3.500 3.297 3.560
MML 3.923 3.807 3.624 2.990 3.431 3.516 3.370 3.523
MML-Global 3.932 3.640 3.469 2.985 3.489 3.528 3.527 3.510

null response probability. Therefore, low power is expected for this basket, even with two

baskets with a higher true response probability.

Looking at the results of the different methods, the BHM design is neither the best nor the

worst method in any of the scenarios or in terms of the mean ECD. The BMA design is

in the shared last place in terms of mean ECD, and also doesn’t show noticeable results in

any of the scenarios. The EXNEX design has numerically the best performance in three

scenarios, in the Global Alternative, the One in the Middle and the Linear scenario, which

indicates that much information is shared with the selected parameters. This leads, however,

to below average performance in the Good Nugget scenario and to the worst performance of

all methods in the Half scenario.

The three power prior variations with CPP-based weights all have very similar performance

in all scenarios. Adding a fixed weight led to a minimal improvement, results with the CPP-

Global method, however, are almost indistinguishable from the results of the CPP weights.

The CPP based methods are close to the EXNEX design in the Global Alternative, One in

the Middle and Linear Scenario, but show little higher ECDs in the Good Nugget and the

Half scenario.

Comparing Fujikawa’s design and the JSD-Global method, adding the global weights based

on the JSD had a bigger influence on the results than adding the global weights based on
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h on the results of the CPP method. On average, the JSD-Global method performs a little

better than Fujikawa’s design, the highest increase in ECD is seen in the One in the Middle

scenario. However, Fujikawa’s design has a higher ECD than the power prior design with

JSD-Global weights in the Bad Nugget and the Half scenario.

The method based on pairwise MML weights is also unremarkable and has average perfor-

mance in most scenarios, the most noticeable results are seen in the Bad Nugget and the

Half scenario, where it is tied with Fujikawa’s design for the second place and the sole second

place, respectively. The MML-Global method, however, shows the highest ECD in the Good

Nugget, Bad Nugget and Half scenario, where the lead in the Half scenario is remarkable, as

it beats the second best method by 0.15 ECD, which is the highest lead by any method in

any scenario. On the other hand, it takes the last place in the Global Alternative and the

One in the Middle scenario, by a similarly large margin.

Rejection rates and FWERs for scenarios with at least one true null hypothesis are shown

in Table 5. Note that the FWER in the Global Null scenario is slightly above the nominal

level for the BHM design although λ was chosen such that the significance level is protected

at 0.05 under the global null hypothesis. Although the simulated data sets are fixed, the

MCMC sampling was repeated in the calculation of the rejection rates which led to a slight

increase in the estimated FWER.

Table 5: Rejection rates under all scenarios using the optimal tuning parameter values for
each method

Scenario Method Basket 1 Basket 2 Basket 3 Basket 4 FWER
Global Null BHM 0.020 0.018 0.020 0.018 0.052

BMA 0.024 0.023 0.024 0.024 0.049
CPP 0.021 0.021 0.021 0.021 0.048

CPP-Global 0.019 0.019 0.019 0.019 0.048
CPP-Nex 0.020 0.020 0.020 0.020 0.049
EXNEX 0.022 0.020 0.021 0.020 0.049
Fujikawa 0.023 0.023 0.023 0.023 0.048

JSD-Global 0.023 0.021 0.023 0.021 0.049
MML 0.019 0.019 0.019 0.019 0.042

MML-Global 0.018 0.016 0.017 0.017 0.049
Global Alt BHM 0.965 0.969 0.966 0.968 .

BMA 0.967 0.970 0.968 0.967 .
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CPP 0.977 0.977 0.977 0.977 .
CPP-Global 0.977 0.977 0.977 0.977 .

CPP-Nex 0.978 0.978 0.978 0.978 .
EXNEX 0.980 0.982 0.979 0.980 .
Fujikawa 0.970 0.970 0.970 0.970 .

JSD-Global 0.980 0.981 0.979 0.980 .
MML 0.952 0.952 0.952 0.952 .

MML-Global 0.907 0.912 0.910 0.910 .
One in the Middle BHM 0.960 0.958 0.826 0.995 .

BMA 0.955 0.955 0.812 0.996 .
CPP 0.972 0.972 0.877 0.996 .

CPP-Global 0.972 0.972 0.878 0.996 .
CPP-Nex 0.971 0.971 0.877 0.996 .
EXNEX 0.979 0.978 0.879 0.998 .
Fujikawa 0.959 0.959 0.824 0.996 .

JSD-Global 0.975 0.973 0.876 0.997 .
MML 0.936 0.936 0.760 0.992 .

MML-Global 0.906 0.904 0.673 0.980 .
Linear BHM 0.194 0.483 0.781 0.928 0.194

BMA 0.240 0.492 0.781 0.931 0.240
CPP 0.247 0.566 0.805 0.942 0.247

CPP-Global 0.245 0.558 0.805 0.939 0.245
CPP-Nex 0.248 0.564 0.808 0.942 0.248
EXNEX 0.284 0.597 0.828 0.938 0.284
Fujikawa 0.236 0.553 0.807 0.944 0.236

JSD-Global 0.276 0.584 0.828 0.942 0.276
MML 0.184 0.486 0.757 0.931 0.184

MML-Global 0.092 0.391 0.760 0.926 0.092
Good Nugget BHM 0.060 0.063 0.066 0.628 0.144

BMA 0.076 0.077 0.080 0.575 0.152
CPP 0.075 0.075 0.075 0.629 0.154

CPP-Global 0.072 0.072 0.072 0.627 0.152
CPP-Nex 0.077 0.077 0.077 0.651 0.161
EXNEX 0.085 0.086 0.089 0.607 0.174
Fujikawa 0.087 0.087 0.087 0.602 0.178

JSD-Global 0.086 0.088 0.088 0.655 0.174
MML 0.070 0.070 0.070 0.642 0.147

MML-Global 0.059 0.060 0.061 0.669 0.159
Bad Nugget BHM 0.272 0.910 0.915 0.915 0.272

BMA 0.269 0.904 0.907 0.908 0.269
CPP 0.322 0.940 0.940 0.940 0.322

CPP-Global 0.322 0.936 0.936 0.936 0.322
CPP-Nex 0.323 0.939 0.939 0.939 0.323
EXNEX 0.338 0.947 0.950 0.949 0.338
Fujikawa 0.288 0.936 0.936 0.936 0.288
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JSD-Global 0.341 0.945 0.949 0.946 0.341
MML 0.217 0.911 0.911 0.911 0.217

MML-Global 0.116 0.881 0.880 0.883 0.116
Half BHM 0.139 0.134 0.821 0.817 0.224

BMA 0.158 0.157 0.818 0.816 0.222
CPP 0.179 0.179 0.839 0.839 0.278

CPP-Global 0.173 0.173 0.835 0.835 0.270
CPP-Nex 0.178 0.178 0.846 0.846 0.276
EXNEX 0.220 0.221 0.841 0.837 0.332
Fujikawa 0.176 0.176 0.852 0.852 0.274

JSD-Global 0.208 0.208 0.859 0.855 0.311
MML 0.139 0.139 0.825 0.825 0.225

MML-Global 0.080 0.079 0.844 0.843 0.144

Results in the Global Alternative scenario are very similar for most methods. All methods

expect MML-Global have power values between 0.95 and 0.98 in all baskets. As was already

seen in Table 4, this shows that the MML-Global method shares less information than other

designs, even in homogeneous scenarios, which results in power values of only around 0.91

in the Global Alternative scenario. The picture is similar in the One in the Middle scenario,

though there is more variation in the third basket which has a true response probability of

0.3. The EXNEX design, the CPP-based methods and the JSD-Global method have the

highest power in this basket with around 0.87, but other methods only achieve power values

that are at least 5 percentage points lower. Again, the two MML-based methods take the

last two positions, and MML-Global is far behind with a power of only 0.67.

Looking at the scenarios in which at least one basket is truly inactive, the FWERs are

considerably greater than the nominal significance level of 0.05 in most cases. Most methods

show the highest type 1 error inflation in the Bad Nugget scenario, where the EXNEX design,

the CPP-based methods and the JSD-Global method have FWERs of 0.3 or more. The BHM,

BMA and Fujikawa’s design still have FWERs of more than 0.25 and MML weights led to a

FWER of 0.22. Only with MML-Global weights the type 1 error inflation is more moderate

with an FWER of 0.12. However, as expected, the power is also lower and the highest power

is achieved by methods with the highest FWER. In the active baskets, the EXNEX design

has power of around 0.95, while the power is only 0.88 with MML-Global weights in the

power prior design.
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In the Good Nugget scenario, there is less variation in the FWER with values between 0.14

and 0.18. Power differences in the active basket are higher though. Here, MML-Global

weights show the highest power with 0.67, while the BMA design has the lowest value with

0.58. In this scenario, a large difference between Fujikawa’s design and the JSD-Global

method is seen, as the latter has a higher power by 5 percentage points while having almost

identical FWER.

FWERs are also substantially higher than 5 percent in the Linear scenario with values of up

to 0.28 for the EXNEX design and the JSD-Global method. As in the Bad Nugget scenario,

the MML-Global method sticks out with an FWER below 10 percent. While the variance of

power values in the third basket (p = 0.35) and the fourth basket (p = 0.45) is moderate, large

differences are seen in the second basket, with a true response probability of 0.25. EXNEX

and Fujikawa’s design as well as the CPP-based methods and the JSD-Global method achieve

power values far above 0.5, while with MML-Global weights the power in this basket is below

0.4.

Finally, in the Half scenario, there are again many methods with FWERs above 0.2 and

even above 0.3 with the EXNEX design and the JSD-Global method. In terms of power, the

JSD-Global method and Fujikawa’s design achieve the highest value here, with 0.85, but the

CPP-based methods and EXNEX are close behind. Interestingly, the MML-Global method

has the second highest power in the two active baskets, although the FWER is once again

far lower at only 0.14.

The means of the posterior means are displayed in Figure 7. The green lines correspond to

the true response probabilities. As expected, more bias is seen in methods and scenarios

where more information is shared with the tuning and prior parameters selected as optimal,

and where the true response probabilities are far apart. For example, in the Good Nugget

scenario, the mean posterior means for the active basket are between 0.3 and 0.32 for the

BHM, BMA and EXNEX design as well as for the CPP-based methods and JSD-Global.

Thus the bias is between 8 and 10 percentage points as the true response probability is 0.4.

Similarly, in the Bad Nugget scenario, all methods except for the power prior method with

MML based weights had mean posterior means above 0.24 in the null basket and thus a bias

of at least 9 percentage points. In homogeneous scenarios bias is obviously low.
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A mild negative effect of sharing prior information in Fujikawa’s design is seen in the Global

Null scenario, where its bias amounts to more than 3 percentage points, where for other

methods the bias is at most only around 1 percentage point. This is because of the Beta(1, 1)

prior, which contains as much information as two patients of which one showed a response.

Since all baskets are inactive in this case, much information is shared, thus adding relatively

much information through the shared prior parameters. In other scenarios, however, the bias

of Fujikawa’s design is not relevantly larger than that of the other methods.

3.2.4 Sensitivity Analyses

3.2.4.1 Sensitivity to Choice of Tuning Parameters

Figure 8 illustrates how the mean ECD across all seven scenarios vary, when the tuning

and prior parameter values are changed. The choice of the parameter values is obviously

important, but for all methods there are a several parameter values that result in high mean

ECD, and the results usually do not change drastically when a neighbouring value in the

investigated grid is chosen. For the BMA design, large values for ψ which lead to less sharing

result in much lower performance in terms of the mean ECD. For the BHM design, very

small values for the scale parameter ϕ result in lower mean ECD. In the EXNEX design,

interestingly, when holding ϕ fixed, the influence of w is relatively small, unless it is set to

0.1. For the CPP-based methods, there is a large number of parameter value choices for

a and b that lead to similar results. Changing ε⋆ with CPP-Global weights has very mild

effect. Interestingly, for the CPP-Nex weights, even with w as small as 0.3 good results are

achieved, when a and b are changed accordingly. Only with w = 0.2 and w = 0.1 the mean

ECDs decrease relevantly even for adapted a and b. For Fujikawa’s design and the power

prior design with JSD-Global weights, when the cut-off parameter τ is increased towards 0.5,

the performance gets worse for any choice of ε and ε⋆, but relevant decrease in mean ECD is

only seen for the highest values in the investigated grid. In Fujikawa’s design, small variations

in ε are tolerated without too much deterioration in mean ECD. In the power prior design

with JSD-Global weights, a similar sensitivity regarding the choice of ε is seen. Higher values

of ε⋆ also lead to worse results, but some compensation is possible when smaller values for ε

are used.
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Figure 7: Mean posterior means and true response probabilities (green lines) in all scenarios
with all investigated methods
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Figure 8: Influence of prior and tuning parameter values on the results in terms of the mean
ECD across the seven scenarios investigated in the comparison study
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3.2.4.2 Sensitivity to the Choice of Scenarios

As a further sensitivity analysis, optimal parameters were chosen based on the mean ECD

for only a subset of the seven scenarios. Specifically, the Linear and the One in the Middle

scenario were removed from the set of scenarios such that in the remaining scenarios all active

baskets have the same response probability of 0.4. This subset of scenarios was used, since

in many comparisons studies, such as in Fujikawa et al. (2020), only one alternative response

probability is considered in all scenarios.

The results are displayed in Table 6. As a result of removing the Linear scenario, the mean

ECDs are higher, but the methods are still very similar. For the limited set of scenarios all

methods achieved mean ECDs above 3.6 and again the differences are only seen in the second

decimal place. As in the full set of scenarios, the CPP-Nex method has the best numerical

mean ECD, but the other two CPP-based methods, the EXNEX and BHM design and also

the JSD-Global and MML-Global method are very close behind. Note that since the MML-

based methods do not have tuning parameters, the results are the same as in Table 4, but

are shown here again for better comparability with the results of the other methods.

Table 6: ECDs under a subset of scenarios with a single alternative response probability using
the optimal tuning parameter values that resulted in the highest mean ECD for each method.
The best result per column is bold.

Global
Null

Global
Alt

Good
Nugget

Bad
Nugget Half Mean

BHM 3.938 3.779 3.497 3.501 3.400 3.623
BMA 3.926 3.768 3.465 3.463 3.397 3.604
CPP 3.919 3.779 3.482 3.527 3.433 3.628
CPP-Global 3.930 3.777 3.503 3.507 3.410 3.625
CPP-Nex 3.930 3.813 3.483 3.520 3.409 3.631
EXNEX 3.937 3.771 3.498 3.518 3.400 3.625
Fujikawa 3.920 3.780 3.434 3.540 3.405 3.616
JSD-Global 3.926 3.783 3.470 3.535 3.406 3.624
MML 3.923 3.807 3.431 3.516 3.370 3.609
MML-Global 3.932 3.640 3.489 3.528 3.527 3.623

The tuning parameter values optimal for the reduced set of scenarios in terms of mean

ECD are shown in Table 7. Comparing these results with the optimal parameters across all
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scenarios in Table 3, changes are seen in all methods but in most cases the difference is small

and in many cases the values moved only a few positions in the investigated value-grid. In

all cases the changes are seen towards values that share less information, since the results

in the two scenarios that were ignored for the sensitivity analysis were better when more

information was shared.

Table 7: Optimal prior and tuning parameter values for the reduced set of scenarios for all
methods. Value refers to the tuning parameter values achieving the highest mean ECD across
the selected scenarios with a common alternative response probability.

Method Parameter Value
BHM ϕ 0.929
BMA ψ -1
CPP a 2.5

b 1.5
CPP-Global a 2

b 1
ε 0.5

CPP-Nex a 2.5
b 2.5
ω⋆ 0.6

EXNEX ϕ 0.929
w 0.7

Fujikawa ε 2
τ 0.1

JSD-Global ε 2
ε⋆ 0.5
τ 0

It was further explored how the methods can be tuned when only one specific scenario is

of interest. For that sensitivity analysis, the Bad Nugget, Half and Linear scenarios were

considered, as these are the most interesting ones for this purpose. For the Global Alternative

and One in the Middle scenario all baskets are active and thus pooling all results would be

the optimal sharing strategy. The Good Nugget scenario has only one active basket, thus in

terms of power nothing can be gained by sharing from the other inactive baskets. Therefore,

a basket-wise analysis would be optimal.

Results for all scenarios based on the tuning parameters that are optimal for each of the three

selected scenarios are shown in Table 8. In the Linear scenario, only minimal improvements
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could be achieved by adapting the tuning parameter values. Based on the parameter values

optimal across all scenarios, the EXNEX design achieved the highest ECD with 3.083, with

the values chosen specifically for the Linear scenario, Fujikawa’s design takes the lead with

3.111 ECD, but the resulting mean ECD is in the second to last place. In all methods,

the modified tuning parameter values resulted in some decrease in the mean ECD across

the seven scenarios. Only the power prior design with CPP, CPP-Global and JSD-Global

weights and the BHM design still have mean ECD above 3.5. A similar picture with relatively

little improvements is seen for the results tuned in favour of the Bad Nugget scenario. The

EXNEX design has the best performance in this scenario, the JSD-Global method is in

the second position and numerically has the highest mean ECD. Most methods are now

numerically better than the MML-Global method (not shown here since no tuning parameters

are involved, see Table 4). Minimal decrease is seen in the mean ECDs, all methods still have

values above 3.5. In the results optimal for the Half scenario, larger improvements are seen.

While in the results based on tuning parameters optimal across all scenarios ECD values

between 3.3 and 3.4 were seen for most methods, now all methods exceed 3.4 ECD. Note that

the MML-Global method still takes the lead in this scenario, being the only method with

more than 3.5 ECD. However, as a consequence of the larger improvements in this specific

scenario, there was more decrease in the mean ECD for many methods. Only the CPP-Nex

method is still above 3.5 mean ECD. The BMA design even deteriorates below 3.3 mean ECD

and the CPP and CPP-Global methods are below 3.4 mean ECD.

Table 8: ECDs under all scenarios using the tuning parameter values that are optimal for the
Linear, Bad Nugget and Half scenario.

Method Global
Null

Global
Alt

One in the
Middle Linear Good

Nugget
Bad

Nugget Half Mean

Optimal for Linear scenario
BHM 3.907 3.951 3.882 3.059 3.302 3.411 3.210 3.532
BMA 3.835 3.959 3.870 3.009 3.003 3.349 3.051 3.439
CPP 3.908 3.928 3.840 3.088 3.343 3.484 3.293 3.555
CPP-Global 3.890 3.976 3.935 3.071 3.225 3.338 3.097 3.504
CPP-Nex 3.891 3.979 3.942 3.078 3.208 3.322 3.046 3.495
EXNEX 3.884 3.926 3.818 3.101 3.204 3.525 2.966 3.489
Fujikawa 3.878 3.973 3.916 3.111 3.124 3.356 2.996 3.479
JSD-Global 3.89 3.965 3.892 3.093 3.237 3.378 3.079 3.505
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Optimal for Bad Nugget scenario
BHM 3.938 3.779 3.618 2.955 3.497 3.501 3.400 3.527
BMA 3.926 3.768 3.587 2.920 3.465 3.463 3.397 3.504
CPP 3.919 3.779 3.619 2.985 3.482 3.527 3.433 3.535
CPP-Global 3.922 3.766 3.594 2.963 3.486 3.513 3.438 3.526
CPP-Nex 3.921 3.810 3.649 3.017 3.468 3.535 3.406 3.544
EXNEX 3.895 3.891 3.762 3.089 3.281 3.566 3.111 3.514
Fujikawa 3.924 3.794 3.611 3.007 3.412 3.541 3.396 3.526
JSD-Global 3.919 3.846 3.687 3.049 3.435 3.542 3.352 3.547
Optimal for Half scenario
BHM 3.941 3.706 3.513 2.866 3.540 3.438 3.415 3.488
BMA 3.948 3.001 2.858 2.638 3.598 3.244 3.429 3.245
CPP 3.935 3.388 3.183 2.733 3.556 3.300 3.451 3.364
CPP-Global 3.937 3.431 3.209 2.735 3.563 3.309 3.448 3.376
CPP-Nex 3.924 3.765 3.596 2.962 3.485 3.510 3.445 3.527
EXNEX 3.941 3.687 3.491 2.872 3.546 3.453 3.417 3.487
Fujikawa 3.931 3.600 3.366 2.895 3.484 3.490 3.435 3.457
JSD-Global 3.93 3.604 3.395 2.888 3.51 3.491 3.447 3.467

Table 9 shows the parameters that are optimal for each method for the three selected sce-

narios. Large changes are especially seen in the Half scenario, where the optimal parameter

values share much less information than with the optimal parameter values across all scenar-

ios.
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Table 9: Optimal tuning parameter values for all methods in the Linear, Bad Nugget and
Half Scenario

Method Parameter Linear Bad Nugget Half
BHM ϕ 0.393 0.929 2
BMA ψ -3.5 -1 4
CPP a 2 2.5 3

b 2 1.5 0.5
CPP-Global a 1.5 3 2.5

b 2.5 2 0.5
ε 0.5 0.5 2

CPP-Nex a 1.5 2.5 3
b 3 2 2
ω⋆ 0.8 0.8 0.9

EXNEX ϕ 0.125 0.125 2
w 0.3 0.2 0.6

Fujikawa ε 0.5 2 3
τ 0.4 0 0.2

JSD-Global ε 0.5 1 3
ε⋆ 0.5 1 0.5
τ 0.4 0.3 0.2

3.2.5 Summary of the Comparison Study

To summarise the results of the comparison study, on average across all seven scenarios, all

methods performed relatively similar. In certain scenarios, in terms of ECD and also rejection

rates, some differences were seen, but obviously there is the usual trade-off between between

TOER and power, such that methods that had high power in active baskets with the selected

prior and tuning parameter values also tended to have high type 1 error inflation. The only

method that stood out in that aspect in some scenarios was the power prior design with

MML-Global weights, since it had much lower type 1 error inflation than other methods in

the Bad Nugget and the Half scenario, but power was on par with the other methods in

the Half scenario and only a few percentage points below some other methods in the Bad

Nugget scenario. However, the MML-Global methods has non-symmetric sharing weights as

explained in Section 3.1.3.2, which is a debatable property. Adding the heterogeneity weights

resulted in slightly better results with the JSD-Global method as compared to Fujikawa’s

design, but adding global weights based on the heterogeneity function h did not improve the

power prior design with CPP weights. Overall, the added complexity of the global weights
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had no relevant benefit. The sensitivity analyses showed that the ECDs in specific scenarios

can be improved when the methods are tuned towards these scenarios, but this leads to a

decrease in the ECD in other scenarios. However, the different weights for the power prior

design allow a better fine tuning to still have a good performance across all scenarios.

3.3 Nonmonotonic Decisions in Basket Trials

Information sharing between baskets based on observed similarity increases the power, but

can also lead to undesirable and unexpected consequences. In this section it will be shown

that when the sharing weights depend on the similarity between the subgroups, the posterior

probabilities for the response probabilities pk, k ∈ {1, . . . ,K} may become nonmonotonic in

the number of observed responses, which has unexpected and possibly undesired consequences

regarding the rejection of null hypotheses in two different ways. First, the null hypothesis of

a basket may be rejected even when another basket in the same trial with a higher number

of responses is not rejected. Second, one or several null hypotheses may be rejected in a trial,

but in another trial with the same number of baskets and the same sample sizes, a uniformly

higher number of responses can lead to no rejected null hypotheses.

Kopp-Schneider et al. (2020) describe a closely related issue in the context of borrowing

information from a single external study. They consider an example of a single-arm trial

with a sample size of n = 40 and a binary outcome where r = 12 responses were observed.

The null response rate is p0 = 0.2. It is further assumed that n0 = 100 external data points

are available and in this sample r0 = 30 responses were seen. Hence, the response rates

are identical in the current and the external study. The authors consider, among others, an

"extreme borrowing" approach where 100% of the external information is shared (i.e. the data

are pooled) if and only if the response rates of both data sets are identical. Using a probability

threshold of λ = 0.9976 and rejecting the null hypothesis if P(p > p0|r, r0) > λ in this case

leads to a one-sided TOER of 0.047, i.e. the one-sided significance level is protected at 0.05.

However, the extreme borrowing approach results in a posterior probability P(p > p0|r, r0)

that is not monotonic in r and as a consequence even in a non-connected rejection region:

The null hypothesis is rejected if r ∈ {12, 16, 17, 18, . . . , 39, 40}.
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Clearly, as the authors note, a non-connected rejection region would not be used in a real

clinical trial. In the context of borrowing information from a single external data source

in a single-arm trial, this issue is relatively easy to identify and generally does not occur

when more moderate borrowing approaches are used. In basket trials, however, information

is borrowed not only from one source, but from several other baskets. Furthermore, K

hypotheses are tested instead of one. This can lead to nonmonotonic decisions similar to the

example given above as is shown in the next sections. More specifically, there are two different

kinds of nonmonotonicity. The first (termed within-trial nonmonotonicity) is seen when test

decisions of the baskets in a single trial are compared. The second (termed between-trial

nonmonotonicity) occurs between the outcomes of different trials.

In the following, both types of nonmonotonicity are at first demonstrated using specific

examples. Then, nonmonotonicity is investigated systematically in Fujikawa’s design and the

power prior design with CPP weights.

3.3.1 Within-Trial Nonmonotonicity

Consider as an example a single-stage basket trial with K = 4 baskets, a null response rate

of p0 = 0.15 and n = 20 patients per basket. The power prior design with CPP weights

is used to analyse the results. The tuning parameters are set to a = 1.5 and b = 0.5, the

prior for each basket is Beta(1, 1). The probability threshold is set to λ = 0.99. Let the

observed outcome vector be r = (5, 5, 5, 6). Without sharing, the posterior distributions and

probabilities are:

π(pi|ri = 5) = Beta(6, 16), P(pi > 0.15|ri = 5) = 0.92, for i ∈ {1, 2, 3},

π(p4|r4 = 6) = Beta(7, 15), P(p4 > 0.15|r4 = 6) = 0.97.

Thus, if the baskets are analysed individually, no null hypothesis can be rejected. Clearly,

the posterior probabilities for pk > p0 are strictly monotonically increasing in rk. With the

above specified parameters for information sharing, the baskets with 5 responses share 100%

of the information with each other. Between the baskets with 5 responses and the basket

with 6 responses the sharing weight is 0.41. This leads to the posterior distributions and
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probabilities as follows:

π(pi|r,ωi) = Beta(18.4, 51.7), P(pi > 0.15|r,ωi) = 0.992, for i ∈ {1, 2, 3},

π(p4|r,ω4) = Beta(13.1, 33.3), P(p4 > 0.15|r,ω4) = 0.988.

Hence, for the three baskets with 5 responses the null hypothesis of p0 = 0.15 can be rejected.

For the fourth basket with 6 responses it cannot be rejected, although there was one additional

responder. This happens because the first three baskets share all of their information due to

the identical response rates, while the first basket only shares 41% of the information with

baskets 1 to 3. Note that the expected value of the posterior distribution of basket 4 is 0.28,

which is greater than that of the first three baskets with 0.26. However, the variance is also

greater - 4.27 · 10−3 vs. 2.72 · 10−3 - which leads to this result.

When there is prior evidence that the treatment under investigation leads to similar response

rates in a subset of the baskets, then it may be reasonable that efficacy is declared for these

baskets even when the probability threshold is not reached for another basket with a higher

response rate. However, when such information is not available, then this seems like a very

undesirable result.

3.3.2 Between-Trial Nonmonotonicity

Consider now again a single-stage basket trial with the same K, p0 and n as above. Now, the

power prior design with MML weights is used for the analysis, again with Beta(1, 1) priors.

The probability threshold is now set to λ = 0.97. At first, let the observed outcome vector

be r = (0, 1, 5, 6). The posterior distributions and probabilities with shared information are

as follows:

π(p1|r,ω1) = Beta(2.6, 40.9), P(p1 > 0.15|r,ω1) = 0.021,

π(p2|r,ω2) = Beta(3.3, 42.9), P(p2 > 0.15|r,ω2) = 0.039,

π(p3|r,ω3) = Beta(12.2, 34.5), P(p3 > 0.15|r,ω3) = 0.971,

π(p4|r,ω4) = Beta(12.1, 32.6), P(p4 > 0.15|r,ω4) = 0.978.
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Thus, with information sharing two of the four null hypotheses for the two baskets with 5

and 6 responses can be rejected. In a basket-wise analysis only the posterior probability of

the fourth basket would reach the threshold (P(p4 > 0.15|r4 = 6) = 0.971), but basket 3

borrows all information from basket 4 and very little information from the other two baskets,

thus also resulting in a posterior probability for which the null hypothesis is rejected.

Now assume that in the second basket 2 instead of 1 responses were observed, hence the

response vector is r = (0, 2, 5, 6). The following posterior distributions and probabilities are

then observed:

π(p1|r,ω1) = Beta(3.0, 35.5), P(p1 > 0.15|r,ω1) = 0.068,

π(p2|r,ω2) = Beta(6.7, 43.5), P(p2 > 0.15|r,ω2) = 0.332,

π(p3|r,ω3) = Beta(13.0, 40.3), P(p3 > 0.15|r,ω3) = 0.958,

π(p4|r,ω4) = Beta(12.4, 34.5), P(p4 > 0.15|r,ω4) = 0.975.

The additional response in basket 2 has the consequence that more information is shared

between this and the third and fourth basket, thus pulling the posterior mean of these two

baskets closer to the null response rate. The posterior mean of the third basket was 0.261

before and is now 0.244, that of the fourth basket was 0.271 and with the additional response

in the second basket is now 0.264. While in the basket with 6 responses the null hypothesis

can still be rejected, in basket 3 the posterior probability now decreased to 0.958 and thus

below the posterior threshold of λ = 0.97. Now, going one step further, assume that 2 more

responses were observed, one in basket 1 and one in basket 2, i.e. r = (1, 3, 5, 6). The results

are then:

π(p1|r,ω1) = Beta(5.7, 37.0), P(p1 > 0.15|r,ω1) = 0.338,

π(p2|r,ω2) = Beta(13.5, 56.6), P(p2 > 0.15|r,ω2) = 0.817,

π(p3|r,ω3) = Beta(15.2, 50.1), P(p3 > 0.15|r,ω3) = 0.954,

π(p4|r,ω4) = Beta(14.0, 42.3), P(p4 > 0.15|r,ω4) = 0.968.

Now, as a consequence of the increased number of responses in the first two baskets, the

heterogeneity of the results is decreased and more information is shared. This further reduces
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the posterior means of basket 3 and basket 4 which are now 0.232 and 0.248, respectively.

This also has the effect that now even for the fourth basket the null hypothesis can not be

rejected with a posterior probability of 0.968. Hence, although more responses were observed

in the first two baskets and the identical number of responses was observed in the third and

fourth basket, looking only at the rejected null hypotheses, the results changed entirely from

rejecting two null hypotheses to rejecting none. This is quite counterintuitive, as the same

or more evidence for an effective treatment was observed in all four baskets. Even if the

number of responses in the first basket is further increased to 3, the number of rejected null

hypotheses is still zero.

Even more extreme changes in the number of rejected null hypotheses may result from a

minimal change in the results. With the same design specifications as above, assume r =

(1, 5, 5, 5) to obtain the following results:

π(p1|r,ω1) = Beta(4.5, 27.4), P(p1 > 0.15|r,ω1) = 0.390,

π(pi|r,ωi) = Beta(16.2, 49.1), P(pi > 0.15|r,ωi) = 0.977, for i ∈ {2, 3, 4}.

Thus, three null hypotheses can be rejected for the three baskets in which 5 responses were

observed. But only adding one response to the the first basket, i.e. r = (2, 5, 5, 5), leads to

an entirely different conclusion in terms of rejected null hypotheses:

π(p1|r,ω1) = Beta(10.5, 41.4), P(p1 > 0.15|r,ω1) = 0.823,

π(pi|r,ωi) = Beta(17.0, 54.9), P(pi > 0.15|r,ωi) = 0.969, for i ∈ {2, 3, 4}.

Now, no null hypothesis can be rejected.

In other cases, however, nonmonotonicity can look more intuitive. Let now p0 = 0.3 and

λ = 0.99. The power prior design with CPP weights and a = 2.5 and b = 3 is used to analyse

the outcome vector r = (0, 0, 10, 10). The results are then:

π(pi|r,ωi) = Beta(2.3, 42.3), P(pi > 0.3|r,ωi) < 0.001 for i ∈ {1, 2},

π(pj |r,ωj) = Beta(21.0, 23.6), P(pj > 0.3|r,ωj) = 0.991, for j ∈ {3, 4}.
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Since the response rates are identical in basket 1 and basket 2 as well as in basket 3 and basket

4, the data in these baskets are fully shared. Between the baskets with different response

rates, very little information is shared due to the highly different response rates. Because of

the information sharing, the null hypotheses are rejected in the baskets with 10 responses (if

no information was shared, 11 responses would be necessary for a posterior probability above

0.99). Now compare this to the results obtained when the outcome vector is r = (5, 7, 10, 10):

π(p1|r,ω1) = Beta(19.4, 34.8), P(p1 > 0.3|r,ω1) = 0.813,

π(p2|r,ω2) = Beta(26.9, 41.9), P(p2 > 0.3|r,ω2) = 0.943,

π(pj |r,ωj) = Beta(27.8, 35.7), P(pi > 0.3|r,ωj) = 0.989, for j ∈ {3, 4}.

Due to the better outcome in baskets 1 and 2, more information is shared overall and as a

consequence the null hypotheses for basket 3 and 4 cannot be rejected anymore, although

the number of responses remains the same in these two baskets and 12 more responses were

observed in total. In this case, however, the nonmonotonicity seems more reasonable. For the

first outcome vector with 0 responses in the first two baskets, it seems natural to conclude

that there are two different basket clusters. In the first cluster with basket 1 and basket 2, the

treatment is futile and in the second cluster comprising basket 3 and basket 4, the treatment

looks effective. When in the second case the number of responses is increased to 5 and 7 in

the first two baskets, the results indicate more similar response rates in all baskets, with some

variation in the observed responses. Hence, sharing a high percentage of information across

all baskets seems appropriate. Of course this results in lower posterior means in the baskets

with a higher number of responses and in this case also in a posterior probability that drops

below the probability threshold.

3.3.3 Monotonicity Conditions

In the last sections, two types of nonmonotonicity that can appear as a consequence of sharing

information between baskets based on the observed similarity of their outcomes were shown.

The first type of nonmonotonicity appears within the outcome of a single trial, when the

null hypothesis is rejected for a basket, but it is not rejected for another basket in the trial

for which more responses were observed. The second type is seen when two outcome vectors
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are compared, where a uniformly higher number of responses across all baskets can reduce

the number of rejected null hypotheses to 0. When these two types of nonmonotonicity are

considered unacceptable, the following monotonicity conditions are suggested for a setting

with equal sample sizes in all baskets:

Within-Trial Monotonicity Condition: If a null hypothesis H0,k is rejected for a basket

k, k ∈ {1, . . . ,K}, in which rk responses were observed, then for any basket j, j ∈ {1, . . . ,K}

for which the number of responses is larger than or equal to the number of responses in basket

k, i.e. rj ⩾ rk, the null hypothesis H0,j must also be rejected.

Between-Trials Monotonicity Condition: If at least one null hypothesis H0,k, k ∈

{1, . . . ,K} can be rejected if the vector of responses is r = (r1, . . . , rK), then at least one null

hypothesis H0,j , j ∈ {1, . . . ,K} must also be rejected for all response vectors r′ = (r′
1, . . . , r

′
K)

for which r′
(i) ⩾ r(i) holds for all i ∈ {1, . . . ,K}, where r(i) refers to the i-th element of the

vector r with sorted elements.

The second condition is formulated rather weakly and a stronger version could be used instead.

It may seem more natural to require that the same number of null hypotheses is rejected for

the outcome vectors r and r′ when r′
(i) ⩾ r(i) holds for all i ∈ {1, . . .K}. However, this

stronger condition would only hold when information is shared even between baskets for

which the response rates are far apart. To illustrate this, consider a basket trial with only

K = 2 baskets with p0 = 0.15, n = 20 per basket and Beta(1, 1) priors in both baskets and

λ = 0.99. For the analysis, a power prior based design with pairwise weights is used, hence

information is fully shared if the number of responses is identical in the two baskets. If a

separate analysis is conducted in each basket and no information is shared, 7 response are

necessary to reject the null hypothesis. If r = (6, 6) is observed and information sharing

is used, then both null hypotheses can be rejected. Now assume that the outcome vector

r′ = (6, 20) is observed. Clearly, for any choice of sharing weights the null hypothesis for

the second basket can be rejected, so this does not violate the between-trials monotonicity

condition as formulated above. If it would be required, however, that the first null hypothesis

is also rejected, then necessarily some information has to be shared between these two baskets

despite their very different response rates, which seems too strong as a requirement. Some of
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the investigated methods still share some information in this case - e.g. the CPP method with

the selected optimal tuning parameter values results in weights of 0.063 which is still enough

to reject the null hypothesis for the first basket. With MML weights, for example, the weight

in this case is 0, thus H0,1 would not be rejected. The weak condition proposed above seems

more reasonable and sufficiently strict, especially in the context of proof of concept studies

in which the main purpose is to examine whether the investigated treatment is effective in

any of the baskets. The stronger version could of course still be used.

3.3.4 Avoiding Nonmonotonicity by Pruning Baskets

The examples of the previous section demonstrated that nonmonotonicity appears when in-

formation sharing between baskets with a different number of responses pulls the posterior

mean of the baskets with a better outcome closer towards p0. A simple approach to prevent

nonmonotonicity in many cases is thus to ignore baskets with few responses in the informa-

tion sharing, which is called pruning in the following. Let c = ck be the critical value as

defined in Equation (2.9), which is identical for all baskets since equal sample sizes and prior

distributions are assumed. Trivially, if baskets for which rk < c are pruned, the monotonicity

conditions hold. The null hypotheses are then rejected for baskets with rk ⩾ c, i.e. for all

baskets that are not pruned. But clearly there is no power gain from information sharing

in this case. Baskets could instead be pruned when rk is smaller than the "pooled critical

value", cpool, which is defined as:

cpool = min{r⋆ ∈ N : P(pk > p0|(r⋆, . . . , r⋆),ωk) ⩾ λ}.

cpool is therefore the smallest integer r⋆ for which the null hypotheses of all baskets can be

rejected if rk = r⋆ for all k ∈ {1, . . . ,K}. Note that this definition only makes sense when

sample sizes and prior distributions are equal in all baskets.

Note that cpool decreases with increasing K. For n = 20, p0 = 0.15, λ = 0.99 and with

Beta(1, 1) priors, cpool = 6 for the power prior design with K = 3 and cpool = 5 for K = 4.

The next decrease occurs at K = 15, where cpool = 4. cpool cannot decrease further, as with

20 observations and 3 responses the observed response rate is 0.15 and thus identical to p0.

Note further that for Fujikawa’s design cpool may differ from that of the power prior design,
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as in Fujikawa’s design the prior information is also shared. Using the same parameters as

above, for example, cpool = 5 with 3 baskets in Fujikawa’s design.

Pruning baskets when rk < cpool resolves between-trial nonmonotonicity in all examples

shown in Section 3.3.2. In the first example, where the vector of responses is increased from

(0, 1, 5, 6) to (0, 2, 5, 6) and then (1, 3, 5, 6), cpool = 5 and thus for all three vectors information

is only shared between the third and fourth basket. With the MML method the information

is still fully shared in this case, although the response rates are not identical, which leads to

posterior probabilities of 0.985 that are thus greater than λ for both baskets. In the second

example where the two response vectors are (1, 5, 5, 5) and (2, 5, 5, 5), the first basket is pruned

in both cases and thus there is also no nonmonotonicity. In the third example p0 = 0.3 was

assumed and thus the pooled critical value is different, namely cpool = 8. Therefore, in the

two vectors (0, 0, 10, 10) and (5, 7, 10, 10) the first two baskets are pruned in both cases. In

these three examples, the null hypotheses in the baskets with a number of responses greater

than or equal to cpool can still be rejected. Pruning can, however, also lead to cases where no

null hypothesis can be rejected as a consequence of pruning. The effect of pruning on power

is investigated in Section 3.3.6.

In the within-trial nonmonotonicity example in Section 3.3.1, pruning baskets with rk < cpool

does not resolve the issue. In this case p0 was set to 0.15 and thus cpool is again 5. Thus

nothing is pruned in the vector (5, 5, 5, 6). The nonmonotonicity would therefore only be

resolved if all baskets with less than 6 responses were pruned.

As was shown in this section, pruning baskets with a number of responses smaller than cpool

can resolve nonmonotonicity in many cases but not in all. When pruning is decided to be an

appropriate strategy, different values may be tried but cpool can be a starting point. Using the

smallest possible cut-off for pruning such that nonmonotonicity is resolved seems desirable

to avoid losing too much power. Pruning may also be seen as beneficial to prevent null

hypotheses in baskets with a very low response rate to be rejected, e.g. when the observed

response rate in a basket is below p0.

In the planning phase of a basket trial, researchers may at first investigate whether any

nonmonotonic events can occur with the chosen setup. If this is the case, then it can be
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decided whether the nonmonotonicity is acceptable or not. If not, then the pruning strategy

can be applied and the influence of different pruning cut-offs may be tested. The pruning

cut-off should be prespecified with the rest of the analysis strategy.

3.3.5 Investigation of the Monotonicity Conditions

In this section, it is investigated whether the monotonicity conditions defined in the previous

section hold in Fujikawa’s design and in the power prior design with CPP weights with

different tuning parameter values and with and without pruning baskets with rk < cpool.

K ∈ {4, 5, 6} baskets were considered. As before, the sample size was 20 in each basket and

Beta(1, 1) prior distributions were used for both designs. The probability threshold was set

to λ = 0.99. The same tuning parameter values as for the comparison study in Section 3.2

were tested: For the tuning parameters a and b of the CPP method and for ε in Fujikawa’s

design values between 0.5 and 3 in steps of 0.5 were used and for τ in Fujikawa’s design values

between 0 and 0.5 in steps of 0.1 were examined.

The results are shown in Table 10. Interestingly, the results without pruning are quite

different for the two methods. In Fujikawa’s design, the within-trial condition holds for most

investigated parameters. With 4 baskets the condition was never violated, for 5 and 6 baskets

it was only violated for ε = 2.5 with all choices of τ . The between-trial condition was violated

for most parameter choices in 4 baskets and for all examined parameter values for 5 and 6

baskets. With the CPP method, there are many parameter value combinations that do not

lead to a violation of the between-trial monotonicity condition. The number of values that

does violate the condition increases with K, but even with K = 6 the condition still holds for

the majority of the considered values of a and b. However, there are much more cases where

the within-trial condition is violated. The number of parameter values for which this is the

case also increases in K.

Pruning resolves nonmonotonicity in all tested cases in Fujikawa’s design. With the CPP

method, there are some parameter combinations left which violate the monotonicity condi-

tions. Note, however, that with the parameter values for which is the case - small values

of b and larger values of a - the sharing weights decline rapidly when the response rates
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differ, see Figure 4. These are cases that are close to the extreme borrowing discussed in

Kopp-Schneider et al. (2020).

Table 10: Results of the investigation of the monotonicity condition in Fujikawa’s design and
in the power prior design with CPP weights, with and without pruning. A cross means that
the monotonicity condition is violated, a tick means that the monotonicity condition holds.

Fujikawa - Without Pruning
Within-trial condition (K = 4) Between-trial condition (K = 4)
ε / τ 0 0.1 0.2 0.3 0.4 0.5 ε / τ 0 0.1 0.2 0.3 0.4 0.5
0.5 ✓ ✓ ✓ ✓ ✓ ✓ 0.5 ✗ ✗ ✗ ✗ ✗ ✗

1 ✓ ✓ ✓ ✓ ✓ ✓ 1 ✗ ✗ ✗ ✗ ✗ ✗

1.5 ✓ ✓ ✓ ✓ ✓ ✓ 1.5 ✗ ✗ ✗ ✗ ✗ ✗

2 ✓ ✓ ✓ ✓ ✓ ✓ 2 ✗ ✗ ✗ ✗ ✗ ✓
2.5 ✓ ✓ ✓ ✓ ✓ ✓ 2.5 ✗ ✗ ✗ ✗ ✓ ✓
3 ✓ ✓ ✓ ✓ ✓ ✓ 3 ✗ ✗ ✗ ✓ ✓ ✓

Within-trial condition (K = 5) Between-trial condition (K = 5)
ε / τ 0 0.1 0.2 0.3 0.4 0.5 ε / τ 0 0.1 0.2 0.3 0.4 0.5
0.5 ✓ ✓ ✓ ✓ ✓ ✓ 0.5 ✗ ✗ ✗ ✗ ✗ ✗

1 ✓ ✓ ✓ ✓ ✓ ✓ 1 ✗ ✗ ✗ ✗ ✗ ✗

1.5 ✓ ✓ ✓ ✓ ✓ ✓ 1.5 ✗ ✗ ✗ ✗ ✗ ✗

2 ✓ ✓ ✓ ✓ ✓ ✓ 2 ✗ ✗ ✗ ✗ ✗ ✗

2.5 ✗ ✗ ✗ ✗ ✗ ✗ 2.5 ✗ ✗ ✗ ✗ ✗ ✗

3 ✓ ✓ ✓ ✓ ✓ ✓ 3 ✗ ✗ ✗ ✗ ✗ ✗

Within-trial condition (K = 6) Between-trial condition (K = 6)
ε / τ 0 0.1 0.2 0.3 0.4 0.5 ε / τ 0 0.1 0.2 0.3 0.4 0.5
0.5 ✓ ✓ ✓ ✓ ✓ ✓ 0.5 ✗ ✗ ✗ ✗ ✗ ✗

1 ✓ ✓ ✓ ✓ ✓ ✓ 1 ✗ ✗ ✗ ✗ ✗ ✗

1.5 ✓ ✓ ✓ ✓ ✓ ✓ 1.5 ✗ ✗ ✗ ✗ ✗ ✗

2 ✓ ✓ ✓ ✓ ✓ ✓ 2 ✗ ✗ ✗ ✗ ✗ ✗

2.5 ✗ ✗ ✗ ✗ ✗ ✗ 2.5 ✗ ✗ ✗ ✗ ✗ ✗

3 ✓ ✓ ✓ ✓ ✓ ✓ 3 ✗ ✗ ✗ ✗ ✗ ✗

CPP - Without Pruning
Within-trial condition (K = 4) Between-trial condition (K = 4)
a / b 0.5 1 1.5 2 2.5 3 a / b 0.5 1 1.5 2 2.5 3
0.5 ✓ ✓ ✓ ✓ ✓ ✓ 0.5 ✓ ✓ ✓ ✓ ✓ ✓
1 ✓ ✓ ✓ ✓ ✓ ✓ 1 ✗ ✓ ✓ ✓ ✓ ✓

1.5 ✗ ✓ ✓ ✓ ✓ ✓ 1.5 ✓ ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓ ✓ ✓ 2 ✗ ✓ ✓ ✓ ✓ ✗

2.5 ✓ ✗ ✓ ✓ ✓ ✓ 2.5 ✗ ✓ ✓ ✓ ✓ ✗

3 ✓ ✗ ✓ ✓ ✓ ✓ 3 ✗ ✗ ✓ ✗ ✓ ✗
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Within-trial condition (K = 5) Between-trial condition (K = 5)
a / b 0.5 1 1.5 2 2.5 3 a / b 0.5 1 1.5 2 2.5 3
0.5 ✗ ✓ ✓ ✓ ✓ ✓ 0.5 ✓ ✓ ✓ ✓ ✓ ✓
1 ✗ ✗ ✓ ✓ ✓ ✓ 1 ✗ ✓ ✓ ✓ ✓ ✓

1.5 ✗ ✓ ✓ ✓ ✓ ✓ 1.5 ✗ ✓ ✓ ✓ ✓ ✓
2 ✗ ✗ ✓ ✓ ✓ ✓ 2 ✗ ✓ ✓ ✓ ✓ ✗

2.5 ✗ ✗ ✗ ✓ ✓ ✓ 2.5 ✗ ✗ ✓ ✓ ✗ ✗

3 ✗ ✗ ✗ ✓ ✓ ✓ 3 ✗ ✗ ✓ ✓ ✗ ✗

Within-trial condition (K = 6) Between-trial condition (K = 6)
a / b 0.5 1 1.5 2 2.5 3 a / b 0.5 1 1.5 2 2.5 3
0.5 ✗ ✗ ✓ ✓ ✓ ✓ 0.5 ✗ ✓ ✓ ✓ ✓ ✓
1 ✗ ✗ ✓ ✓ ✓ ✓ 1 ✗ ✓ ✓ ✓ ✓ ✓

1.5 ✗ ✗ ✓ ✓ ✓ ✓ 1.5 ✗ ✓ ✓ ✓ ✓ ✓
2 ✗ ✗ ✗ ✓ ✓ ✓ 2 ✗ ✗ ✓ ✓ ✓ ✗

2.5 ✗ ✗ ✗ ✓ ✓ ✓ 2.5 ✗ ✗ ✓ ✓ ✗ ✗

3 ✗ ✗ ✗ ✓ ✓ ✓ 3 ✗ ✗ ✓ ✗ ✗ ✗

Fujikawa - With Pruning
Within-trial condition (K = 4) Between-trial condition (K = 4)
ε / τ 0 0.1 0.2 0.3 0.4 0.5 ε / τ 0 0.1 0.2 0.3 0.4 0.5
0.5 ✓ ✓ ✓ ✓ ✓ ✓ 0.5 ✓ ✓ ✓ ✓ ✓ ✓
1 ✓ ✓ ✓ ✓ ✓ ✓ 1 ✓ ✓ ✓ ✓ ✓ ✓

1.5 ✓ ✓ ✓ ✓ ✓ ✓ 1.5 ✓ ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓

2.5 ✓ ✓ ✓ ✓ ✓ ✓ 2.5 ✓ ✓ ✓ ✓ ✓ ✓
3 ✓ ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ ✓

Within-trial condition (K = 5) Between-trial condition (K = 5)
ε / τ 0 0.1 0.2 0.3 0.4 0.5 ε / τ 0 0.1 0.2 0.3 0.4 0.5
0.5 ✓ ✓ ✓ ✓ ✓ ✓ 0.5 ✓ ✓ ✓ ✓ ✓ ✓
1 ✓ ✓ ✓ ✓ ✓ ✓ 1 ✓ ✓ ✓ ✓ ✓ ✓

1.5 ✓ ✓ ✓ ✓ ✓ ✓ 1.5 ✓ ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓

2.5 ✓ ✓ ✓ ✓ ✓ ✓ 2.5 ✓ ✓ ✓ ✓ ✓ ✓
3 ✓ ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ ✓

Within-trial condition (K = 6) Between-trial condition (K = 6)
ε / τ 0 0.1 0.2 0.3 0.4 0.5 ε / τ 0 0.1 0.2 0.3 0.4 0.5
0.5 ✓ ✓ ✓ ✓ ✓ ✓ 0.5 ✓ ✓ ✓ ✓ ✓ ✓
1 ✓ ✓ ✓ ✓ ✓ ✓ 1 ✓ ✓ ✓ ✓ ✓ ✓

1.5 ✓ ✓ ✓ ✓ ✓ ✓ 1.5 ✓ ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓

2.5 ✓ ✓ ✓ ✓ ✓ ✓ 2.5 ✓ ✓ ✓ ✓ ✓ ✓
3 ✓ ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ ✓

CPP - With Pruning
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Within-trial condition (K = 4) Between-trial condition (K = 4)
a / b 0.5 1 1.5 2 2.5 3 a / b 0.5 1 1.5 2 2.5 3
0.5 ✓ ✓ ✓ ✓ ✓ ✓ 0.5 ✓ ✓ ✓ ✓ ✓ ✓
1 ✓ ✓ ✓ ✓ ✓ ✓ 1 ✓ ✓ ✓ ✓ ✓ ✓

1.5 ✗ ✓ ✓ ✓ ✓ ✓ 1.5 ✓ ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓ ✓ ✓ 2 ✗ ✓ ✓ ✓ ✓ ✓

2.5 ✓ ✗ ✓ ✓ ✓ ✓ 2.5 ✗ ✓ ✓ ✓ ✓ ✓
3 ✓ ✗ ✓ ✓ ✓ ✓ 3 ✗ ✓ ✓ ✓ ✓ ✓

Within-trial condition (K = 5) Between-trial condition (K = 5)
a / b 0.5 1 1.5 2 2.5 3 a / b 0.5 1 1.5 2 2.5 3
0.5 ✓ ✓ ✓ ✓ ✓ ✓ 0.5 ✓ ✓ ✓ ✓ ✓ ✓
1 ✓ ✓ ✓ ✓ ✓ ✓ 1 ✓ ✓ ✓ ✓ ✓ ✓

1.5 ✗ ✓ ✓ ✓ ✓ ✓ 1.5 ✓ ✓ ✓ ✓ ✓ ✓
2 ✗ ✓ ✓ ✓ ✓ ✓ 2 ✗ ✓ ✓ ✓ ✓ ✓

2.5 ✗ ✗ ✓ ✓ ✓ ✓ 2.5 ✗ ✓ ✓ ✓ ✓ ✓
3 ✗ ✗ ✓ ✓ ✓ ✓ 3 ✗ ✓ ✓ ✓ ✓ ✓

Within-trial condition (K = 6) Between-trial condition (K = 6)
a / b 0.5 1 1.5 2 2.5 3 a / b 0.5 1 1.5 2 2.5 3
0.5 ✓ ✓ ✓ ✓ ✓ ✓ 0.5 ✓ ✓ ✓ ✓ ✓ ✓
1 ✓ ✓ ✓ ✓ ✓ ✓ 1 ✓ ✓ ✓ ✓ ✓ ✓

1.5 ✗ ✓ ✓ ✓ ✓ ✓ 1.5 ✓ ✓ ✓ ✓ ✓ ✓
2 ✗ ✓ ✓ ✓ ✓ ✓ 2 ✗ ✓ ✓ ✓ ✓ ✓

2.5 ✗ ✗ ✓ ✓ ✓ ✓ 2.5 ✗ ✓ ✓ ✓ ✓ ✓
3 ✗ ✗ ✓ ✓ ✓ ✓ 3 ✗ ✓ ✓ ✓ ✓ ✓

3.3.6 Influence of Pruning on the Operating Characteristics

In the previous section it was shown that pruning baskets with rk < cpool ensures that the

monotonicity conditions hold for most choices of tuning parameter values. The effect of

pruning on the operating characteristics is, however, not obvious. To investigate this, for

Fujikawa’s design and the power prior method with CPP weights the comparison study as

presented in Section 3.2 was performed again, but with pruning. Tuning parameter values

were again selected based on the highest mean ECD while controlling the FWER under the

global null hypothesis at 5%. Results in terms of the ECDs in all scenarios are shown in Table

11. Results without pruning are included again for better comparison, but are the same as

seen in Table 4.



74 Chapter 3. Results

Table 11: ECDs of Fujikawa’s design and the power prior design with CPP weights with and
without pruning under all scenarios using the optimal tuning parameter values

Method Global
Null

Global
Alt

One in the
Middle Linear Good

Nugget
Bad

Nugget Half Mean

CPP 3.916 3.910 3.817 3.066 3.403 3.497 3.321 3.561
CPP (pruning) 3.930 3.495 3.310 2.973 3.457 3.543 3.553 3.466
Fujikawa 3.908 3.882 3.738 3.068 3.340 3.520 3.352 3.544
Fujikawa (pruning) 3.919 3.792 3.648 3.146 3.383 3.644 3.393 3.561

The optimal parameter values for Fujikawa’s design are ε = 1 and τ = 0. For the power prior

design with CPP methods, 17 of the investigated 36 parameter value combinations resulted in

exactly the same mean ECD. The results are displayed in Table 11. The difference regarding

the effect of pruning on the results of the two methods is quite large. While the mean ECD

of the CPP method decreased from 3.56 to 3.47 with Fujikawa’s design it increased from 3.54

to 3.56. Interestingly, this difference seems to be a result of including the prior parameters

in the information sharing in Fujikawa’s design. Indeed, when Fujikawa’s design is modified

so that the prior parameters are not shared - so a power prior design with JSD weights - the

results of the optimisation are almost identical to those of the CPP method with pruning.

Table 12: Rejection rates of the power prior design with CPP weights and Fujikawa’s design
with and without pruning, under all scenarios using the optimal tuning parameter values for
each method

Scenario Method Basket 1 Basket 2 Basket 3 Basket 4 FWER
Global Null CPP 0.021 0.021 0.021 0.021 0.048

CPP (pruning) 0.018 0.018 0.018 0.018 0.044
Fujikawa 0.023 0.023 0.023 0.023 0.048

Fujikawa (pruning) 0.020 0.020 0.020 0.020 0.042
Global Alt CPP 0.977 0.977 0.977 0.977 .

CPP (pruning) 0.874 0.874 0.874 0.874 .
Fujikawa 0.970 0.970 0.970 0.970 .

Fujikawa (pruning) 0.948 0.948 0.948 0.948 .
One in the Middle CPP 0.972 0.972 0.877 0.996 .

CPP (pruning) 0.874 0.874 0.584 0.979 .
Fujikawa 0.959 0.959 0.824 0.996 .

Fujikawa (pruning) 0.947 0.947 0.761 0.993 .
Linear CPP 0.247 0.566 0.805 0.942 0.247
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CPP (pruning) 0.067 0.379 0.743 0.917 0.067
Fujikawa 0.236 0.553 0.807 0.944 0.236

Fujikawa (pruning) 0.162 0.553 0.817 0.938 0.162
Good Nugget CPP 0.075 0.075 0.075 0.629 0.154

CPP (pruning) 0.061 0.061 0.061 0.639 0.169
Fujikawa 0.087 0.087 0.087 0.602 0.178

Fujikawa (pruning) 0.085 0.085 0.085 0.639 0.181
Bad Nugget CPP 0.322 0.940 0.940 0.940 0.322

CPP (pruning) 0.067 0.870 0.870 0.870 0.067
Fujikawa 0.288 0.936 0.936 0.936 0.288

Fujikawa (pruning) 0.169 0.938 0.938 0.938 0.169
Half CPP 0.179 0.179 0.839 0.839 0.278

CPP (pruning) 0.066 0.066 0.843 0.843 0.128
Fujikawa 0.176 0.176 0.852 0.852 0.274

Fujikawa (pruning) 0.159 0.159 0.855 0.855 0.289

Rejection rates and FWERs are shown in Table 12. Results without pruning are again

included for better comparison. As could be expected, pruning on average leads to lower

power but also lower FWER as pruning prevents the null hypotheses of baskets with a number

of responses smaller than cpool from being rejected. Both power loss and lower FWER are

more pronounced with the CPP method. In the Global Alternative scenario, pruning reduces

the power by 10 percentage points with the CPP method but only by 2 percentage points

for Fujikawa’s design. In the One in the Middle scenario a similar loss in power is seen.

In the Linear scenario, power loss in the second basket is even more dramatic with almost

20 percentage points with the CPP method, but the FWER is also much lower - 7 percent

instead of 25 percent. With Fujikawa’s design, changes in power are minimal in this scenario

but pruning still reduces the FWER by 7 percentage points. In the Good Nugget scenario

pruning had little effect for both methods. In the Bad Nugget scenario, the FWER for the

CPP method is reduced by 25 percent, but power in the active baskets is lower by 7 percentage

points. FWER was also reduced in Fujikawa’s design without any consequences regarding

power. Finally in the Half scenario, pruning reduces the FWER by 15 percentage points

for the CPP method without losing power. With Fujikawa’s design, pruning had negligible

effects.

To summarise, with the suggested pruning method nonmonotonicity was resolved for all

relevant choices of tuning parameters for both the power prior design with CPP weights and
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Fujikawa’s design. Consequences regarding the performance are, however, quite large. In

most scenarios, pruning leads to a lower FWER but also to lower power. Thus if a large

inflation of the FWER is a concern, pruning could be applied even when violation of the

monotonicity conditions is acceptable.

3.4 R Package baskexact

In this section, the R package baskexact, that implements Fujikawa’s design and many power

prior design variations is described. As already mentioned, since the posterior of the power

prior design is a beta distribution and the posterior parameters are simply calculated by

adding weighted sums of the responses and non-responses in the baskets to the prior param-

eters, posterior probabilities are cheap to calculate. When the number of baskets is small

(up to 5), then analytical calculation of typical operating characteristics such as TOERs and

power is also feasible. baskexact enables efficient analytical computation of operating char-

acteristics for single-stage and two-stage basket trials with equal sample sizes and equal prior

distributions.

3.4.1 Usage

To use the package, at first the user has to create a design object using one of the two setup-

functions: setupOneStageBasket for a single-stage basket trial or setupTwoStageBasket for

a basket trial with one interim analysis. For example:

> library(baskexact)

> design <- setupOneStageBasket(k = 3, shape1 = 1, shape2 = 1, p0 = 0.2)

Here, k refers to the number of baskets and p0 to the response probability under the null

hypothesis. shape1 and shape2 refer to the prior shape parameters of the beta distribution,

s1 and s2, respectively. By default these parameters are set to 1. The setup function for the

two-stage design has the same arguments.

The idea of creating a design object is that it contains the most basic elements of the design,

that are commonly determined in advance and not varied in the planning process. Thus,

when calling a function of the package, the design object is always the first argument and
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the user does not have to repeatedly specify these elements since they are contained in the

object.

The operating characteristics can be calculated with the functions toer for TOERs, pow

for the power, ecd for the ECD and ess for the expected sample size - the latter only for

two-stage trials. With estim the mean posterior means and mean squared errors can be

calculated. These functions mostly take the same arguments. For example, to calculate the

TOER:

> toer(

> design = design,

> p1 = NULL,

> n = 20,

> lambda = 0.99,

> weight_fun = weights_cpp,

> weight_params = list(a = 2, b = 2),

> globalweight_fun = globalweights_fix,

> globalweight_params = list(w = 0.7),

> results = "group"

> )

$rejection_probabilities

[1] 0.009493424 0.009493424 0.009493424

$fwer

[1] 0.02232409

p1 is the response probability or vector of response probabilities of the baskets. By default

with p1 = NULL the TOER is calculated under the global null hypothesis, but it is also

possible to calculate the TOER under mixed scenarios as long as at least one basket is

truly inactive. n is the sample size per basket and lambda the probability threshold λ.

With weight_fun, the type of weight function used to calculate the pairwise weights can

be specified. The tuning parameters (passed as a list), that are specific to the function
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used to calculate the weights, are set with weight_params. The options for the power prior

design are weight_cpp, weight_jsd and weight_mml to use weights based on the CPP,

the JSD and the MML approach, respectively. Furthermore, weight_fujikawa implements

Fujikawa’s design, which uses the same weights as weight_jsd but also shares the prior

information. globalweight_fun specifies which function to calculate the global weights

should be used. Tuning parameters are passed again as a list via the globalweight_params

argument. By default globalweight_fun is set to NULL and thus only pairwise weights

are used. The options are globalweights_fix and globalweights_diff to use a fixed

global weight or global weights based on the heterogeneity function h, respectively. The

global weight function based on the JSD is not implemented since it is computationally

too expensive when operating characteristics are computed analytically. Finally, results =

"group" specifies that not only the FWER but also the basket-wise TOERs are calculated.

In the example above, the true response probability is equal to p0 in all baskets, thus the

output under rejection_probabilities are the TOERs, but rejection probabilities (thus

corresponding to the power) are also calculated in scenarios with some active baskets. The

other option is "fwer", which only calculates the FWER.

When the design object refers to a two-stage design, additional arguments are required to

specify the details of the interim analysis. For example:

> design2 <- setupTwoStageBasket(k = 3, p0 = 0.2)

> toer(

> design = design2,

> p1 = NULL,

> n = 20,

> n1 = 10,

> lambda = 0.99,

> interim_fun = interim_postpred,

> interim_params = list(prob_futstop = 0.1, prob_effstop = 0.9),

> weight_fun = weights_cpp,

> weight_params = list(a = 2, b = 2),

> globalweight_fun = globalweights_fix,
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> globalweight_params = list(w = 0.7),

> results = "group"

> )

$rejection_probabilities

[1] 0.01396859 0.01396859 0.01396859

$fwer

[1] 0.03748156

n1 defines the sample size per basket for the interim analysis. interim_fun specifies the type

of interim analysis. interim_postpred refers to an interim analysis based on the posterior

predictive probabilities, as was suggested by Fujikawa et al. (2020). Another option available

in baskexact is interim_posterior which implements interim decisions based on the poste-

rior probabilities. In interim_params, the parameters for the interim analysis are specified.

prob_futstop is the threshold for a futility stop and prob_effstop the threshold for an

efficacy stop. Hence, with the values specified in the example above, a basket is stopped for

futility if the posterior predictive probability for success is less than 0.1 and for efficacy if

this probability is greater than 0.9. See Section 2.4.2 for details about the interim analysis

based on the posterior predictive probabilities.

To find the largest probability threshold λα that ensures that the FWER is below a certain

level, the function adjust_lambda can be used. For example:

> adjust_lambda(

> design = design,

> alpha = 0.05,

> n = 20,

> weight_fun = weights_cpp,

> weight_params = list(a = 2, b = 3),

> prec_digits = 3

)
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$lambda

[1] 0.974

$toer

[1] 0.04555955

The main arguments are again the same (default values for p1 and globalweight_fun are

used in this example). The additional parameter in this function is prec_digits which

specifies the number of decimal places up to which lambda is determined. Since the outcome

is binary, usually there will be no λα for which the FWER is exactly α, but increasing the

number of of decimal places of λ might result in a FWER closer to the nominal level. In the

example above for instance, if prec_digits is increased to 4, then the solution is λα = 0.9738

which gives a FWER of 0.0498, hence much closer to the nominal level of 0.05. However,

further increasing prec_digits has no additional benefit.

The monotonicity conditions defined in Section 3.3.3 can be checked using the functions

check_mon_within and check_mon_between for the within-trial and the between-trials mono-

tonicity condition, respectively. The main arguments are again the same. When only a single

value is specified for every tuning parameter, then if the argument details is set to TRUE

all results that violate the respective monotonicity condition are shown - otherwise the func-

tion only returns TRUE or FALSE to indicate whether the monotonicity condition holds. For

illustration, the following function call corresponds to the example in Section 3.3.1:

> design <- setupOneStageBasket(k = 4, p0 = 0.15)

> check_mon_within(

> design = design,

> n = 20,

> lambda = 0.99,

> weight_fun = weights_cpp,

> weight_params = list(a = 1.5, b = 0.5),

> details = TRUE

> )



3.4. R Package baskexact 81

$Events

[1] 5 5 5 6

$Results

[1] 1 1 1 0

Under $Events the outcome vector r that violates the within-trial monotonicity rule is shown

and under $Results it is shown for which of the baskets the null hypothesis is rejected. 1

means that it is rejected and 0 means that it is not.

This function call corresponds to the first example in Section 3.3.2:

> check_mon_between(

> design = design,

> n = 20,

> lambda = 0.97,

> weight_fun = weights_mml

> )

[...]

[[2]]

[[2]]$Events

[,1] [,2] [,3] [,4]

[1,] 0 1 5 6

[2,] 1 3 5 6

[3,] 2 2 5 6

[4,] 2 3 5 6

[5,] 3 3 5 6

[[2]]$Results

[,1] [,2] [,3] [,4]

[1,] 0 0 1 1
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[2,] 0 0 0 0

[3,] 0 0 0 0

[4,] 0 0 0 0

[5,] 0 0 0 0

[...]

Only parts of the output of the above function call is shown, since there are more outcome

vectors that violate the between-trial monotonicity condition. Under $Events, the first row

displays the outcome vector for which at least one null hypothesis can be rejected (as seen

under $Results) and the rows below show the outcomes for which at least one basket has a

higher number of responses but no null hypothesis can be rejected.

When a vector of tuning parameters is passed, then a d-dimensional array is returned, where

d is the number of tuning parameters for which a vector is passed. For example:

> check_mon_between(

> design = design,

> n = 20,

> lambda = 0.99,

> weight_fun = weights_cpp,

> weight_params = list(a = 1:3, b = 1:3)

> )

b

a 1 2 3

1 TRUE TRUE TRUE

2 TRUE TRUE FALSE

3 FALSE FALSE FALSE

This also works when a vector is passed to globalweight_params when a function for com-

puting global weights is specified.

The function opt_design selects the optimal tuning parameters for a design with a specific

weight function, where optimisation is performed in the same ways as in the comparison
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study in Section 3.2: Based on the specified vectors for the tuning parameters, a grid search

is performed, where for each combination of tuning parameter values at first λ is chosen

such that the FWER under the global null hypothesis is smaller than or equal to a certain

level and then the mean ECD across the specified scenarios is calculated. With the func-

tion get_scenarios a scenario matrix is created which, based on an alternative response

probability, contains K + 1 scenarios with an increasing number of active baskets:

> get_scenarios(design, p1 = 0.4)

0 Active 1 Active 2 Active 3 Active 4 Active

[1,] 0.15 0.15 0.15 0.15 0.4

[2,] 0.15 0.15 0.15 0.40 0.4

[3,] 0.15 0.15 0.40 0.40 0.4

[4,] 0.15 0.40 0.40 0.40 0.4

> opt_design(

> design = design,

> n = 20,

> alpha = 0.05,

> weight_fun = weights_cpp,

> weight_params = list(a = 1, b = 1),

> scenarios = get_scenarios(design, p1 = 0.4),

> prec_digits = 3

> )

a b Lambda 0 Active 1 Active 2 Active 3 Active 4 Active Mean ECD

1 3 2 0.988 3.923076 3.478154 3.433560 3.522391 3.769971 3.625430

2 2 1 0.985 3.926489 3.482139 3.392680 3.478313 3.833700 3.622664

3 3 3 0.987 3.915711 3.418550 3.333606 3.482182 3.900351 3.610080

4 2 2 0.983 3.907648 3.343371 3.292666 3.484193 3.927709 3.591117

5 3 1 0.989 3.934446 3.544044 3.415599 3.485650 3.490657 3.574079

6 2 3 0.978 3.889992 3.219442 3.099822 3.338827 3.974875 3.504592
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7 1 1 0.977 3.904800 3.264166 3.097785 3.257325 3.976660 3.500147

8 1 2 0.973 3.880758 3.100604 2.871991 3.172228 3.991116 3.403339

9 1 3 0.972 3.877145 2.974921 2.710836 3.110448 3.994395 3.333549

The argument prec_digits is used as in the function adjust_lamda. In the output, Lambda

is the selected probability threshold that protects the one-sided FWER under the global null

hypothesis. The results are sorted decreasingly by the values in the column Mean ECD.

3.4.2 Implementation Details and Computational Efficiency

Since all operating characteristics are calculated analytically with baskexact, one of the main

design principles of the R package was computational efficiency to have acceptable com-

putation times. One important step to achieve that is that weights used for the pairwise

information sharing are only computed once in the beginning. Specifically, the functions that

can be passed to the argument weight_fun, such as weight_cpp create a matrix with all

possible pairwise sharing weights that can occur. In a single-stage design, there are only

(n + 1)2 possible weights for pairwise sharing (the +1 is necessary since 0 is also a possible

outcome) and in a two-stage design, (n + n1 + 2)2 weights are possible. (Note that with

some weight functions not all (n+ 1)2 weights in the matrix may be unique, as e.g. the CPP

weights only depend on the rate differences between baskets. However, the full matrix is

always computed.) Additionally to all possible weights for pairwise sharing, the matrix that

is returned by the weight functions is assigned a class, either pp, for the power prior design,

or fujikawa, for Fujikawa’s design. The class determines whether only the observed infor-

mation or also the prior parameters are shared in the functions that compute the posterior

parameters. Computation of the posterior distribution parameters after sharing is performed

by an internal function called beta_borrow.

To further reduce computational time, some internal functions were written in C++ using the

R packages Rcpp (Eddelbuettel et al., 2023a) and RcppArmadillo (Eddelbuettel et al., 2023b).

Furthermore, some of the functions are parallelised using the doFuture package (Bengtsson,

2023, 2021). Other than with older R packages that facilitate parallelisation, with doFuture

only a single line of code is necessary for the user of the package to run code that was written

using doFuture (e.g. for-loops) in parallel. Various backends for parallelisation are possible,
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e.g. depending on the operating system. On a standard Windows personal computer, the

following line can be run:

> plan(multisession, worker = 4)

This makes all parallelised code run in parallel on 4 cores.

baskexact was implemented using R’s S4 and S3 class systems. The objects created by the

functions setupOneStageBasket and setupTwoStageBasket are S4 objects and many func-

tions available to the user utilise the S4 class system. More specifically, most functions are

internally available in two varieties - one for single-stage designs and one for two-stage designs.

The correct version is chosen based on the class of the design object that is passed to it, which

is called method dispatch. All functions for the computation of operating characteristics as

well as adjust_lambda and opt_design are available for single-stage and two-stage designs.

The functions that check the monotonicity conditions are only available for single-stage de-

signs since the monotonicity conditions as proposed in Section 3.3.3 are not well defined for

two-stage trials.

Internally, S3 classes are used. As mentioned above, the weight matrices created by the weight

functions such as weight_cpp are either of class pp or fujikawa. These are S3 classes, and

the internal function beta_borrow also exists in two variants to handle the computation of

the posterior distribution parameters for both classes.

baskexact was also written to be easily extendable. Specifically, new methods to compute

pairwise or global sharing weights can be easily implemented. For the pairwise weights, a new

set of functions has to be written using R’s setMethod function for writing S4 functions. Due

to the object oriented programming approach, it is necessary to create a so called generic

function, which handles the method dispatch, and two functions for single-stage and two-

stage designs, respectively. The functions must return a weight matrix in the correct format

and assign either class pp or fujikawa to it. The new weight functions can then be passed to

the weight_fun argument of all functions as demonstrated in the previous section. Since the

global weights do not differentiate between single-stage and two-stage design, a standard R

function can be created that returns a single number (the weight). This function can then be
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passed to the globalweight_fun argument. The package includes a vignette which explains

in detail how new weight functions can be implemented.

3.4.3 Computation Times

Since operating characteristics are calculated analytically with baskexact, the computation

times heavily depend on the parameters of the design, most importantly the number of

baskets but also e.g. sample size and, in a two-stage design, stopping rules. Table 13 shows

computation times of FWER and basket-wise power for a single-stage and a two-stage power

prior design with CPP weights, with a sample size of n = 20 per basket and 3, 4 and 5

baskets. For the two-stage design, an interim analysis is performed after n1 = 10 observations

per basket, based on the posterior predictive probability. Baskets are stopped for futility if

this probability is below 0.1 and for efficacy if it is above 0.9. Computations were done on

a personal computer with an Intel Core i7-13700 processor with 2.1 GHz. Note that the two

functions toer and pow, which are used in these calculations, do not utilise parallelisation,

since for a small number of baskets the computation times are already low and parallelisation

introduces computational overhead which would actually increase the computation times in

some cases. Times were measured using the R package microbenchmark (Mersmann, 2023).

The median computation time of 5 function calls is reported, except for power in the two-stage

design which was only called once.

Table 13: Computation times of baskexact with a single-stage and a two-stage design

3 Baskets 4 Baskets 5 Baskets
FWER (Single-Stage) 62 msec 287 msec 1.5 sec
Power (Single-Stage) 208 msec 9.9 sec 1.9 min
FWER (Two-Stage) 524 msec 9.2 sec 4.0 min
Power (Two-Stage) 3.8 sec 2.1 min 65.6 min

With 3 and 4 baskets, computation times are low to moderate. Computations in the single-

stage design take at most 10 seconds for the calculation of basket-wise power and at most

around 2 minutes for the basket-wise power of a two-stage design. With 5 baskets, computa-

tions with the single-stage design are still moderate, but computation of basket-wise power

in the two-stage design already exceeds one hour.
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Note that FWER is computed much faster than the power due to a faster implementation of

experiment-wise operating characteristics - computation times of basket-wise TOERs would

be similar to those of basket-wise power.

3.4.4 Validation

A further design principle of baskexact was to ensure (to a certain degree) that the provided

output is correct. For that, the R package testthat (Wickham, 2023, 2011) was utilised. With

testthat, tests can be written that check whether a certain function call produces the expected

result. These tests can be run manually with the function test, but are also run when a

package is submitted to CRAN. Every line of baskexact is covered by at least one test and

in total more than 300 tests were written. For instance, many of the results from Fujikawa

et al. (2020) were used as a basis for tests. Other tests are based on internal consistency.

For example, it is tested whether the value for λ and the resulting FWER computed by

adjust_lambda can be reproduced when toer is called, and whether the nominal level is in

fact exceeded when 10−prec_digits is subtracted from λ.

Furthermore, several functions were implemented in two different ways. The functions that

compute the operating characteristics are generally based on creating a matrix of all possible

outcomes and then analysing all relevant outcomes using apply. Additionally, internal vali-

dation functions based on for-loops were written, that are usually slower but easier to follow

and do not use any computational shortcuts. Several tests compare the output of the two

versions of a function that compute the same result.

3.5 R Package basksim

The basksim package facilitates simulation based computation of operating characteristics

for single-stage basket trial designs with equal sample sizes. The supported designs include

methods also implemented in baskexact, bhmbasket and bmabasket, in order to provide a

unified syntax for comparisons.
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3.5.1 Usage

To use basksim, as in baskexact, a design object has to be created by the user with a setup

function. In basksim, the type of design object is not determined by the number of stages

but by the design that shall be used for the analysis. For example, to setup a design object

for the MML-Global method:

> library(basksim)

> design <- setup_mmlglobal(k = 3, p0 = 0.2, shape1 = 1, shape2 = 1)

All available setup functions are shown in Table 14.

Table 14: Setup functions available in the basksim package

Function Method
setup_bhm BHM
setup_bma BMA
setup_cpp CPP
setup_cppglobal CPP-Global
setup_exnex EXNEX
setup_fujikawa Fujikawa
setup_jsdglobal JSD-Global
setup_mml MML
setup_mmlglobal MML-Global

The main function for the user to calculate the operating characteristics of a design given

certain tuning parameters is get_details, which returns the rejection probabilities for each

basket, the FWER, the posterior means, mean squared error, the mean lower and upper

limits of the credibility intervals and the ECD. For example:

> get_details(

> design = design,

> n = 20,

> p1 = c(0.2, 0.5, 0.5),

> lambda = 0.95,

> level = 0.95,

> iter = 10000
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> )

$Rejection_Probabilities

[1] 0.2575 0.9593 0.9587

$FWER

[1] 0.2575

$Mean

[1] 0.2566678 0.4855678 0.4828403

$MSE

[1] 0.01181304 0.01025248 0.01015605

$Lower_CL

[1] 0.1179411 0.3375865 0.3352567

$Upper_CL

[1] 0.4065638 0.6336367 0.6306097

$ECD

[1] 2.6605

The arguments n, p1 and level have the same meaning as in the baskexact package. Addi-

tionally, the level argument here specifies the level of the credibility intervals and iter sets

the number of randomly created data sets that are used to estimate the operating character-

istics. Since a binary endpoint is investigated, a single data set is simply a vector of length K

which contains the number of observed responses per basket. In the example above, 10,000

data sets are created, but if a certain matrix of data sets should be used instead (e.g. for

better reproducibility), a data matrix can be passed to get_details via the argument data.

Random data can be generated with the function get_data.
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Another main function is get_results, which has the same arguments as get_details and

returns an iter×k matrix of 0s and 1s, where a 0 represents an unrejected null hypothesis and

a 1 a rejected null hypothesis. Two further important functions for users are opt_design and

adjust_lambda which work in the same way as in baskexact and are therefore not illustrated

here. Further available functions are toer and ecd to calculate the FWER and ECD of a

design, respectively. However, these are mainly used internally and provide no benefit as

compared to using get_details.

3.5.2 Implementation Details

Since basksim computes all results based on simulations, the implementation is much less

complex than that of baskexact. This is why with get_details a function is available that

returns several operating characteristics with just one function call. For the power prior based

methods and Fujikawa’s design, when get_details is called, a for-loop evaluates all iter

data sets by at first computing the posterior parameters after information sharing and based

on these estimates all operating characteristics. Since the computationally most expensive

part is to calculate the posterior parameters, calculating all operating characteristics in one

function adds little additional computation time and complexity to the implementation.

For the implementation of the BMA, BHM and EXNEX designs, functions in basksim are

mostly wrappers for functions of the bhmbasket and bmabasket package. For example, in the

implementation of get_details for the BMA design, the function bma of bmabasket is used,

which returns the posterior probabilities that the response probability is greater than p0 and

the posterior means for a given vector of responses. The rejection probabilities, FWER, mean

posterior means and mean squared errors are then calculated based on the output of bma.

Since no function to compute credibility intervals is available in bmabasket, BMA is the only

design for which get_details does not return mean credibility interval limits.

basksim also utilises object-oriented programming. The setup functions create S3 class objects

and get_details and get_results have a different implementation for each class. All other

functions, however, are standard functions without class specific implementations. They still

work for all methods, since internally they call the get_results function. Therefore, it is still
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relatively easy to implement new methods in basksim. Only a new version for get_details

and get_results must be provided for the new design.

As for baskexact, every line of code is tested with at least one unit test (more than 200 unit

tests in total) and the doFuture package is utilised to provide shorter computation times with

parallelised code.
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Chapter 4

Discussion

In this chapter, the results of the thesis and its contribution to the basket trial literature are

discussed. Furthermore, limitations and topics for further research are given. The discussion

is split into two parts corresponding to the two main topics of the thesis. In Section 4.1, the

power prior design and the results of the comparison study are covered. Section 4.2 discusses

the nonmonotonic decisions in basket trials and the proposed monotonicity conditions. The

chapter ends with a conclusion.

4.1 Power Prior Design and Comparison Study

4.1.1 Discussion and Contributions to Research

In this thesis, a new basket trial design based on power priors was presented which was shown

to be closely related to a design by Fujikawa et al. (2020). Different ways to calculate the

weights that determine the amount of shared information were suggested, which were mainly

adapted from methods in the power prior literature. Additionally, the idea of using global

weights was introduced which quantify the heterogeneity across all baskets. In an extensive

comparison study, the variations of the power prior design were compared to Fujikawa’s

design and three other Bayesian basket trial designs.

Fujikawa’s design has not been systematically investigated in a comparison study before.

While Fujikawa et al. (2020) provide some simulation results, they only compared the per-

93
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formance of the design with that of a Bayesian hierarchical model (Thall et al., 2003) and a

basket-wise analysis with K = 3 baskets and n = 24 per basket in a two-stage design in four

scenarios with an increasing number of active baskets and a common response probability

for active baskets. The authors argued that their design results in higher power and lower

excepted sample size, but the probability threshold λ was not tuned such that the FWER

was protected at a certain level and the tuning parameters were not selected based on any

optimality criteria.

The results of the comparison study in Section 3.2.3 show that when the tuning parameters

are chosen to be optimal in terms of the mean ECD and λ is tuned such that the FWER

under the global null hypothesis is at most 5%, then the results of Fujikawa’s design and

other Bayesian basket trial designs is very similar. Small improvements could be achieved

by calculating the sharing weights in different ways in the power prior design, but adding a

global weight based on the observed overall heterogeneity had no additional beneficial effect.

The results of the comparison study are in line with the results of Broglio et al. (2022). In

their simulation study, the authors compared the BHM and the EXNEX design, as well as

the multisource exchangeability model (MEM) design and the ROAR design (named after

the trial in which the model was used). In the MEM design (Hobbs and Landin, 2018)

information between baskets is shared using a very similar approach as in the BMA design.

In the ROAR design (Subbiah et al., 2020), baskets are at first clustered, where the number of

clusters is determined from the data, and then in each cluster a Bayesian hierarchical model is

calculated. Broglio et al. (2022) investigated the performance of these four designs in K = 8

baskets with n = 20 per basket, and also found very minor differences when the designs

were optimised based on the mean ECD across 6 scenarios (Global Null, Global Alternative,

Good Nugget, Bad Nugget, Half and Linear, but with different response probabilities than

used in Section 3.2 due to the higher number of baskets). They report that this was also the

case, when the target for optimisation was not the mean ECD but a utility function that put

greater penality on type 1 errors than on type 2 errors, and when the FWER under the global

null hypothesis was not controlled. The authors conclude that increasing the complexity of

the designs does not lead to a relevant benefit in performance.
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Note that a preprint was published on arXiv on 23 December 2023 by Zhou et al. (2023), also

suggesting the analysis of basket trials using power priors. I became aware of this preprint

on 20 March 2024 shortly before finalising this thesis. Those parts of the results presented in

Section 3.1 and 3.2 of my thesis, for which there is some overlapping with Zhou et al. (2023)

regarding the power prior design, were published in an arXiv preprint, the first version of

which was uploaded already on 13 September 2023 (see also Chapter 8).”

The main benefit of the power prior design - and thus in a broader sense also of Fujikawa’s

design - besides easy interpretability is computational speed, as calculation of posterior prob-

abilities does not require MCMC sampling and operating characteristics for many weights can

be computed analytically. Another advantage of the computational efficiency of the design

is the ability to identify nonmonotonic outcomes.

One characteristic of the power prior design results from the fact that the design is not

fully Bayesian. There is no straightforward way to incorporate prior information about the

similarity of subgroups into the design. The weights are calculated based on the observed

data only and there is no prior distribution involved. In the BMA design, for example, model

probabilities are updated based on the observed data and could then be used as the prior

probabilities in a further trial. In the power prior design, it would be, however, possible

to use different tuning parameters for different weights corresponding to the information

that is shared between different pairs of baskets. For example, if it is known a priori that

two baskets respond similarly to the investigated treatment then tuning parameters for the

pairwise calculation of these two baskets could be selected such that more information is

shared even when the observed response rates differ.

4.1.2 Limitations and Directions for Future Research

Due to the high number of design elements in a basket trial, the comparison study necessarily

has some limitations. First, sample sizes were assumed to be equal in all baskets which is

usually not the case in actual basket trials. When there is little fluctuation in the sample

sizes of the baskets, the consequences on the performance of the power prior design and other

methods are expected to be minor. In real basket trials, however, the sample size differences

in the baskets can be tremendous. In the ROAR trial (Subbiah et al., 2023), for example, the
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sample sizes in the 8 baskets ranged from 1 to 55. Hyman et al. (2015) report the results of

a basket trial (also mentioned in Section 1.1) in which 7 baskets with sample sizes between

5 and 37 were analysed.

When sample size differences are that large and sharing is not adapted to these differences,

severe bias in the small baskets is possible. While Neuenschwander et al. (2016) and Berry

et al. (2013) consider a scenario with unequal sample sizes, they do not specifically discuss

how the design may be adapted to accommodate these sample size differences. In the context

of borrowing from historical data, Ollier et al. (2020) proposed a power prior method that

limits the amount of information that is shared from the historical data through an additional

parameter when the sample size of the historical study has a larger sample size than that of

the current study. This could also be applied to basket trials. A systematic examination of

how the power prior design and other basket trial designs perform under different sample size

scenarios is an important and extensive topic for further research as many different sample

size configurations may appear in practice and could be considered.

A further limitation is that a setting with four baskets was assumed for the comparison

study and results may thus differ for trials with a different number of baskets. While it seems

plausible that the results are similar for a trial with e.g 3 or 5 baskets, this is less clear when

the number of baskets is larger. When in these settings the amount of information sharing is

not limited, sharing between a large number of baskets could also lead to high bias.

Furthermore, due to the focus on the information sharing component, a single-stage design

was used. Several research questions concerning the application of interim analyses in basket

trials are still unanswered, such as the optimal number, timing and type of interim analyses.

Interim analyses are used in many basket trial simulations and their benefit with respect to

expected sample size is apparent, but there are no systematic comparison studies investigating

the influence of different types of interim analyses.
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4.2 Nonmonotonic Decisions and Monotonicity Conditions

4.2.1 Discussion and Contributions to Research

Information sharing between subgroups is the defining design element of a basket trial from

a statistical perspective. While in terms of the operating characteristics information sharing

has clear benefits, it was shown in this thesis that data dependent information sharing can also

lead to decisions that are not monotonically increasing in the number of observed responses.

The issue has been mentioned by Kopp-Schneider et al. (2020) in the context of borrowing

from a single historical study with a binary endpoint. The authors showed that an extreme

borrowing approach that only utilises the historical data when the observed response rates

of the historical and the current data coincide exactly can lead to a nonconnected rejection

region.

In basket trials, two types of nonmonotonicity - within-trial and between-trial nonmono-

tonicity - were identified. Using different examples it was argued that in some cases non-

monotonicity could be appropriate, for example when prior information is available that

suggests that some baskets respond similarly to the treatment under investigation. Thus,

other than in the single-arm trial example given in Kopp-Schneider et al. (2020), where it

is clearly unacceptable, the relevance of monotonicity is ambiguous in the context of basket

trials. Nevertheless, with the monotonicity conditions proposed in this thesis researchers can

explore which nonmonotonic events may occur and can then decide whether the violations

are acceptable. Due to the computational efficiency of the power prior design, nonmono-

tonic events can be detected easily for a moderate number of baskets using the baskexact R

package.

To prevent nonmonotonicity, a pruning method was suggested in which baskets that do

not achieve a certain number of responses are pruned, i.e. excluded from the information

sharing. For the power prior design with CPP weights and Fujikawa’s design, it was shown

that events that violate the monotonicity conditions can occur for a range of different tuning

parameters. With Fujikawa’s design, the between-trial monotonicity condition was violated

for all investigated tuning parameter values when K ⩾ 5, but the within-trial condition held

in most cases. With the CPP method, there were still many parameter values for which the
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between-trial condition was not violated, but there were more cases in which the within-trial

condition did not hold. When pruning was applied, nonmonotonicity was resolved for most

tuning parameter values. When pruning is used, it has to be considered, however, that this

also affects the operating characteristics and leads to lower power but also lower inflation of

the FWER.

While for the investigation only the power prior design with CPP weights and Fujikawa’s

design were used, violation of the monotonicity condition is also expected to occur with

other basket trial designs in which information is shared based on observed similarity. For

the BMA design, events that violate the between-trial monotonicity condition can also be

found. Identifying nonmonotonic events in designs for which posterior probabilities cannot

be computed analytically is difficult, as often posterior probabilities that are exact up to the

second or third decimal place are necessary to decide whether nonmonotonicity is present.

This is computationally expensive to achieve when posterior probabilities are based on MCMC

sampling, such as in the BHM and EXNEX design. Within-trial nonmonotonicity may,

however, be resolved entirely by using designs such as the BHM, which model the transformed

response probabilities of all baskets using a single distribution.

4.2.2 Limitations and Directions for Future Research

As in the entire thesis, equal sample sizes and equal prior distributions in all baskets were

assumed. Without this assumption the definition of the monotonicity conditions in Section

3.3.3 based on the absolute number of responses would not make sense and therefore would

have to be modified. This is also relevant when interim analyses are conducted. When

stopping early is only possible for futility, then no modification is necessary, but when baskets

can also be stopped early for efficacy, the same issue arises, as null hypotheses in baskets with

different sample sizes then have the possibility to be rejected.

More general monotonicity conditions could be based on the basket-wise posterior probabil-

ities, i.e. P(pk > p0|rk) instead of rk. For equal sample sizes this would clearly lead to the

same results. The definition of the critical pooled value cpool is, however, not easily generalis-

able. A threshold for the basket-wise posterior probabilities could be used but, for example, a

grid search would be necessary to determine the cut-off that ensures that there is no violation



4.3. Conclusion 99

of the monotonicity conditions. More research is necessary to explore nonmonotonicity and

possible solutions in basket trials with unequal sample sizes.

4.3 Conclusion

In this thesis, the power prior design for the analysis of basket trials was proposed, which can

be seen as an extension of Fujikawa’s design. In a comparison study, Fujikawa’s design and

the power prior design were shown to have similar operating characteristics to other Bayesian

basket trial designs in a single-stage trial with equal sample sizes. While improvements of the

power prior design compared to Fujikawa’s design were very small, the different variations of

the power prior design allow to more flexibly tune the amount of information that is shared

between baskets based on the results observed in the trial.

One of the main advantages of the power prior design is that the sharing mechanism is driven

by weights that are easy to interpret as they represent the percentage of data that are used

from another basket in the computation of the posterior probabilities. A further benefit is

computational efficiency. Posterior probabilities can always be calculated analytically and in

some cases even analytical computation of TOER, power and other operating characteristics

is achievable. This also enables identification on nonmonotonic events.

While further research is necessary to investigate the performance of the power prior design

in settings with unequal sample sizes and interim analyses, the results of this thesis suggest

that the power prior design is suitable for the analysis of basket trials.
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Chapter 5

Summary

Basket trials are a new type of clinical trial in which a treatment is investigated in several

subgroups. They are often used in uncontrolled oncology trials with a binary endpoint such

as tumour response. The subgroups, for example, comprise patients with different tumour

locations but all patients in the trial share a common genetic feature. Several designs for the

analysis of such trials were proposed in the literature. The main element of basket trial designs

is information sharing between subgroups depending on the observed similarity. Mostly

Bayesian methods have been proposed for that. For example, in Fujikawa’s design information

is shared based on the pairwise similarity between the individual posterior distributions of

the subgroups.

The main objective of this thesis is to extend and improve Fujikawa’s design and to compare

the performance of the original and the modified design to that of other Bayesian basket trial

designs.

It is shown that the sharing mechanism in Fujikawa’s design is closely related to power priors,

which were originally proposed to borrow strength from historical data. The only difference

is that the proposed basket trial design based on power priors only shares the data observed

in the trial while Fujikawa’s design also shares prior information.

Using this connection, different methods for computing the sharing weights from the power

prior literature are adapted to basket trials. While in Fujikawa’s design the amount of infor-
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mation that is shared between subgroups only depends on their pairwise similarity, approaches

that additionally consider the overall heterogeneity were also explored.

In a comparison study, it is demonstrated that the design based on power priors performs

similarly to Fujikawa’s design and other Bayesian basket trial designs in terms of the expected

number of correct decisions and rejection probabilities across a range of different scenarios.

The power prior design leads to minimal improvements compared to Fujikawa’s design. Con-

sidering the overall heterogeneity had, however, no additional benefits. However, with the

different power prior variants better fine tuning of the information sharing is possible.

It is also shown that information sharing in basket trials can lead to a number of rejected

null hypotheses that is not monotonically increasing in the number of observed events. Two

types of nonmonotonicity are identified and monotonicity conditions are proposed. Results

that violate these conditions can occur in Fujikawa’s design and the power prior design. A

pruning strategy is suggested that helps to prevent nonmonotonicty in many cases but also

has relevant influence on the operating characteristics.

Two R packages, baskexact and basksim, in which the power prior design is implemented, were

developed. A benefit of the power prior design is that it is computationally very cheap such

that posterior probabilities can be calculated analytically and even analytical computation

of operating characteristics is feasible in some cases.

The finding that, regardless of their complexity, different basket trial designs perform simi-

larly, is in line with the existing literature. While further research is necessary to investigate

the power prior design in settings with different sample sizes per basket and with interim

assessments, the design is attractive as the sharing can be flexibly tuned and as it is compu-

tationally cheaper than other Bayesian basket trial designs.



Chapter 6

Zusammenfassung

Basket-Studien sind ein neuer Typ klinischer Studien, in denen eine Behandlung in verschiede-

nen Subgruppen untersucht wird. Sie werden häufig in unkontrollierten onkologischen Stu-

dien mit einem binären Endpunkt wie Tumoransprechen eingesetzt. Die Subgruppen setzen

sich beispielsweise aus Patientinnen und Patienten mit verschiedenen Tumorlokalisationen

zusammen, die ein gemeinsames genetisches Merkmal aufweisen. Für die Analyse solcher

Studien wurden verschiedene Designs in der Literatur vorgeschlagen. Das Kernelement von

Designs für Basket-Studien ist, dass Information zwischen den Subgruppen, basierend auf der

beobachteten Ähnlichkeit, geteilt wird. Dafür wurden hauptsächliche Bayesianische Meth-

oden vorgeschlagen. In Fujikawas Design beispielsweise wird Information basierend auf der

paarweisen Ähnlichkeit der individuellen A-posteriori-Verteilungen der Subgruppen geteilt.

Das Hauptziel dieser Dissertation ist es, Fujikawas Design zu erweitern und zu verbessern und

die Performance des ursprünglichen und des modifizierten Designs mit der anderer Bayesian-

ischer Basket-Studiendesigns zu vergleichen.

Es wird gezeigt, dass der Mechanismus zum Teilen von Information in Fujikawas Design

eng verwandt mit der Power-Prior-Methode ist, die ursprünglich vorgeschlagen wurde, um

historische Daten zu nutzen. Der einzige Unterschied ist, dass das vorgeschlagene Basket-

Studiendesign basierend auf der Power-Prior-Methode nur die Daten teilt, die in der Studie

beobachtet wurden, wohingegen in Fujikawas Design auch A-priori-Information geteilt wird.
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Basierend auf dieser Verbindung werden verschiedene Methoden zum Berechnen der Gewichte,

die die Menge an geteilter Information bestimmen, aus der Power-Prior-Literatur für Basket-

Studien adaptiert. Während in Fujikawas Design die Menge an Information, die zwischen

den Subgruppen geteilt wird, nur von deren paarweiser Ähnlichkeit abhängt, werden auch

Ansätze untersucht, die zusätzlich die Heterogenität aller Subgruppen berücksichtigen.

In einer Vergleichsstudie wird gezeigt, dass das Power-Prior-Design ähnliche Ergebnisse wie

Fujikawas Design und andere Bayesianische Designs bezüglich der erwarteten Anzahl an kor-

rekten Entscheidungen und Verwerfungswahrscheinlichkeiten in einer Reihe von verschiedenen

Szenarien erzielt. Das Power-Prior-Design führt zu einer minimalen Verbesserung gegenüber

Fujikawas Design, die Gesamtheterogenität zu berücksichtigen bringt jedoch keinen zusät-

zlichen Nutzen. Allerdings erlauben die verschiedenen Varianten des Power-Prior-Designs

eine bessere Feinabstimmung der Menge an geteilten Daten.

Es wird außerdem gezeigt, dass das Teilen von Information in Basket-Studien zu einer An-

zahl von verworfenen Nullhypothesen führen kann, die nicht monoton steigend in der Anzahl

an beobachteten Ereignissen ist. Zwei Arten von Nicht-Monotonie werden identifiziert und

Monotonie-Bedingungen vorgeschlagen. Ergebnisse, die diese Bedingungen verletzen, können

mit Fujikawas Design und dem Power-Prior-Design auftreten. Ein Verfahren zum Beschnei-

den von Subgruppen wird vorgeschlagen. Dieses verhindert Nicht-Monotonie in vielen Fällen,

hat aber auch relevanten Einfluss auf die Operationscharakteristiken.

Zwei R-Pakete, baskexact und basksim, in denen das Power-Prior-Design implementiert ist,

wurden entwickelt. Ein Vorteil des Power-Prior-Designs ist die schnelle Berechenbarkeit. So

können A-posteriori-Wahrscheinlichkeiten analytisch berechnet werden und sogar die ana-

lytische Berechnung von Operationscharakteristiken ist in manchen Fällen möglich.

Das Ergebnis, dass verschiedene Designs für Basket-Studien, unabhängig von ihrer Komplex-

izät, eine ähnliche Performance aufweisen, ist in Einklang mit der existierenden Literatur.

Auch wenn weitere Forschung notwendig ist, um das Power-Prior-Design in Szenarien mit

ungleichen Fallzahlen in den Subgruppen oder mit Zwischenauswertungen zu untersuchen,

ist das Design attraktiv, da das Teilen von Information flexibel angepasst werden kann und

es weniger rechenintensiv als andere Bayesianische Designs für Basket-Studien ist.
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R-Code

With the R code below, the results of this thesis can be reproduced using the two R packages

baskexact and basksim which were developed as part of this thesis and are described in Section

3.4 and Section 3.5. The source code of the two R packages can be viewed on GitHub (https:

//github.com/lbau7/baskexact and https://github.com/lbau7/basksim). Both R pack-

ages are also available on CRAN.
1 # Load packages
2 library ( baskexact )
3 library ( basksim )
4 # devtools :: install _ github (" https :// github .com/lbau7/ bhmbasket ")
5 library ( bhmbasket )
6 library ( doFuture )
7 library ( extraDistr )
8 library ( extrafont )
9 library ( ggplot 2)

10 library ( gridExtra )
11 library ( latex2exp)
12 library ( progressr )
13 library ( tidyverse )
14 library ( viridis )
15

16 ### Figure 1
17 # Prior and posterior
18 x <- seq(0, 1, by = 0.001)
19 yprior <- dbeta(x, 1, 1)
20 yposterior <- dbeta(x, 1 + 5, 1 + 15)
21

22 data <- data.frame (x = rep(x, 2), y = c(yprior , yposterior ),
23 type = factor (c(rep("prior ", 1001), rep(" posterior ", 1001)),
24 levels = c(" prior ", " posterior ")))
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25

26 p1 <- ggplot (data) +
27 geom_line(aes(x = x, y = y, colour = type)) + theme_bw() +
28 theme ( legend . title = element _ blank () ,
29 legend . position = c(0.8, 0.85)) +
30 ylab("f(x)")
31

32 # Posterior Predictive
33 x <- 0:10
34 ypostpred <- dbbinom (x, size = 10, alpha = 6, beta = 16)
35

36 data <- data.frame (x, ypostpred )
37 p2 <- ggplot (data , aes(x = x, y = ypostpred )) +
38 geom_bar(stat = " identity ", fill = " deepskyblue 3") +
39 scale _x_ continuous ( breaks = 0:10) + theme _bw() +
40 xlab(TeX("$\\ tilde {r}$")) + ylab(TeX("f(\\ tilde{r})$"))
41

42 grid. arrange (p1, p2, ncol = 2)
43

44 ### Figure 2
45 plot_ weights (
46 design = setupOneStageBasket (k = 3, p0 = 0.2),
47 n = 20, r1 = 10,
48 weight _fun = weights _fujikawa ,
49 weight _ params = list( epsilon = c(0.5, 1:4), tau = 0)
50 ) + scale _ colour _ discrete (name = TeX("$\\ epsilon "))
51

52 ### Figure 3
53 plot_old <- plot_ weights (
54 design = setupOneStageBasket (k = 3, p0 = 0.2),
55 n = 20, r1 = 10,
56 weight _fun = weights _fujikawa ,
57 weight _ params = list( epsilon = c(1.25, 2),
58 logbase = c(exp(1), 2), tau = 0))
59

60 plotdata <- as_ tibble (plot_old$data)
61 plotdata _new <- plotdata %>% filter (
62 ( param1 == "2" & param2 == "2.71828182845905") |
63 ( param1 == "1.25" & param2 == "2")
64 )
65

66 ggplot ( plotdata _new , aes(x = r, y = weight )) +
67 geom_line(aes(col = param2)) +
68 theme _bw() +
69 scale _color_ discrete (
70 labels = unname (c(TeX("$log_2, \\ epsilon = 1.25$"),
71 TeX("$log , \\ epsilon = 2$"))),
72 name = "")
73

74 ### Figure 4
75 plot_ weights (
76 design = setupOneStageBasket (k = 3, p0 = 0.2),
77 n = 20, r1 = 10,
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78 weight _fun = weights _cpp ,
79 weight _ params = list(a = 1:3, b = 1:3)
80 )
81

82 ### Figure 5
83 plot_a <- plot_ weights (
84 design = setupOneStageBasket (k = 3, p0 = 0.2),
85 n = 20, r1 = 10,
86 weight _fun = weights _mml
87 )
88

89 plot_b <- plot_ weights (
90 design = setupOneStageBasket (k = 3, p0 = 0.2),
91 n = 20, r1 = 10,
92 weight _fun = weights _cpp ,
93 weight _ params = list(a = 8, b = 8.5)
94 )
95

96 plotdata <- data. frame (
97 rbind (
98 cbind (" Method " = "MML", plot_a$data),
99 cbind (" Method " = "CPP (a = 8, b = 8.5)", plot_b$data)

100 ))
101

102 ggplot (plotdata , aes(x = r, y = weight )) +
103 geom_line(aes(col = Method )) +
104 theme _bw()
105

106 ### Figure 6
107 hlab <- "h (\u03B5* = 2.5)"
108 jsdlab <- "JSD (\u03B5* = 1)"
109 r1lab <- "r\u2081"
110 r2lab <- "r\u2082"
111 windowsFonts (font = windowsFont (" Microsoft Sans Serif "))
112

113 r1 <- r2 <- 0:20
114 h <- Vectorize ( function (x, y) basksim ::: diff_all(n = 20,
115 r = c(10, x, y), epsilon = 2.5))
116 zh <- outer (r1, r2, h)
117

118 jsd <- Vectorize ( function (x, y) {
119 shape1 <- c(1 + 10, 1 + x, 1 + y)
120 shape2 <- c(1 + 20 - 10, 1 + 20 - x, 1 + 20 - y)
121 shape <- rbind (shape1, shape2)
122

123 basksim ::: jsd_ global (shape , epsilon = 1)
124 })
125 zjsd <- outer(r1, r2, jsd)
126

127 par( mfrow = c(1, 2), mai = c(0.3, 0.3, 0.3, 0.3), family = "font")
128 persp (
129 r1, r2, zh ,
130 theta = 30, phi = 20, col = "cyan", ticktype = " detailed ",
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131 main = hlab , zlab = " weight ", xlab = r1lab , ylab = r2lab ,
132 cex.lab = 1, cex.axis = 0.7
133 )
134 persp (
135 r1, r2, zjsd ,
136 theta = 30, phi = 20, col = "cyan", ticktype = " detailed ",
137 main = jsdlab , zlab = " weight ", xlab = r1lab , ylab = r2lab ,
138 cex.lab = 1, cex.axis = 0.7
139 )
140

141 ### Comparison Study
142 handlers ( global = TRUE) # show progressbar
143 plan( multisession , workers = 10)
144

145 # Define Scenarios
146 scenarios <- data. frame (
147 " Global _Null" = c(0.15, 0.15, 0.15, 0.15),
148 " Global _ Alternative " = c(0.4, 0.4, 0.4, 0.4),
149 "One_in_the_ Middle " = c(0.4, 0.4, 0.3, 0.5),
150 " Linear " = c(0.15, 0.25, 0.35, 0.45),
151 "Good_ Nugget " = c(0.15, 0.15, 0.15, 0.4),
152 "Bad_ Nugget " = c(0.15, 0.4, 0.4, 0.4),
153 "Half" = c(0.15, 0.15, 0.4, 0.4)
154 )
155

156 # Calculations with baskexact
157 design _ exact <- setupOneStageBasket (k = 4, p0 = 0.15,
158 shape1 = 1, shape2 = 1)
159

160 # Parameter and argument list for all methods
161 params _ exact <- list(
162 "cpp" = list(
163 weight _fun = weights _cpp ,
164 weight _ params = list(
165 a = seq(from = 0.5, to = 3, by = 0.5),
166 b = seq(from = 0.5, to = 3, by = 0.5)
167 ),
168 globalweight _fun = NULL ,
169 globalweight _ params = list ()
170 ),
171 " cppglobal " = list(
172 weight _fun = weights _cpp ,
173 weight _ params = list(
174 a = seq(from = 0.5, to = 3, by = 0.5),
175 b = seq(from = 0.5, to = 3, by = 0.5)
176 ),
177 globalweight _fun = globalweights _diff ,
178 globalweight _ params = list(eps_ global =
179 seq(from = 0.5, to = 3, by = 0.5))
180 ),
181 " cppnex " = list(
182 weight _fun = weights _cpp ,
183 weight _ params = list(
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184 a = seq(from = 0.5, to = 3, by = 0.5),
185 b = seq(from = 0.5, to = 3, by = 0.5)
186 ),
187 globalweight _fun = globalweights _fix ,
188 globalweight _ params = list(w =
189 seq(from = 0.1, to = 0.9, by = 0.1))
190 ),
191 " fujikawa " = list(
192 weight _fun = weights _fujikawa ,
193 weight _ params = list(
194 epsilon = seq(from = 0.5, to = 3, by = 0.5),
195 tau = seq(from = 0, to = 0.5, by = 0.1)
196 ),
197 globalweight _fun = NULL ,
198 globalweight _ params = list ()
199 ),
200 "mml" = list(
201 weight _fun = weights _mml ,
202 weight _ params = list () ,
203 globalweight _fun = NULL ,
204 globalweight _ params = list ()
205 )
206 )
207

208 # Run optimisation
209 res_ exact <- list ()
210 methods _exact <- c("cpp", " cppglobal ", " cppnex ", " fujikawa ", "mml")
211 for (i in methods _ exact ) {
212 res_ exact [[i]] <- baskexact :: opt_ design (
213 design = design _exact ,
214 n = 20, alpha = 0.05,
215 weight _fun = params _ exact [[i]]$ weight _fun ,
216 weight _ params = params _ exact [[i]]$ weight _params ,
217 globalweight _fun = params _ exact [[i]]$ globalweight _fun ,
218 globalweight _ params = params _ exact [[i]]$ globalweight _params ,
219 scenarios = scenarios ,
220 prec_ digits = 3
221 )
222 }
223

224 # Calculations with basksim - methods not requiring MCMC sampling
225 # Create simulated data set
226 scenario _list <- as.list( scenarios )
227 set.seed(123)
228 data_list_mat <- lapply ( scenario _list ,
229 function (x) get_data(k = 4, n = 20, p = x, iter = 10000))
230

231 # Create design objects
232 design _bma <- setup _bma(k = 4, p0 = 0.15, shape1 = 1, shape2 = 1)
233 design _ jsdglobal <- setup_ jsdglobal (k = 4, p0 = 0.15,
234 shape1 = 1, shape2 = 1)
235 design _ mmlglobal <- setup_ mmlglobal (k = 4, p0 = 0.15,
236 shape1 = 1, shape2 = 1)
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237

238 # Parameter and argument list for all methods
239 params _sim = list(
240 "bma" = list(
241 design = design _bma ,
242 design _ params = list(pmp0 = seq(from = -4, to = 4, by = 0.5))
243 ),
244 " jsdglobal " = list(
245 design = design _jsdglobal ,
246 design _ params = list(
247 eps_pair = seq(from = 0.5, to = 3, by = 0.5),
248 eps_all = seq(from = 0.5, to = 3, by = 0.5),
249 tau = seq(from = 0, to = 0.5, by = 0.1),
250 logbase = 2
251 )
252 ),
253 " mmlglobal " = list(
254 design = design _mmlglobal ,
255 design _ params = list ()
256 )
257 )
258

259 # Run optimisation
260 res_sim <- list ()
261 methods _sim <- c("bma", " jsdglobal ", " mmlglobal ")
262 for (i in methods _sim) {
263 res_sim [[i]] <- basksim :: opt_ design (
264 design = params _sim [[i]]$ design ,
265 n = 20,
266 alpha = 0.05,
267 design _ params = params _sim [[i]]$ design _params ,
268 scenarios = scenarios ,
269 prec_ digits = 3,
270 iter = 10000,
271 data = data_list_mat
272 )
273 }
274

275 # Calculations with basksim - methods requiring MCMC sampling
276 # set same seed again to have the same simulated data sets for
277 # all methods
278 set.seed(123)
279 data_list_bhm <- lapply ( scenario _list ,
280 function (x) get_data(k = 4, n = 20, p = x, iter = 10000,
281 type = " bhmbasket "))
282

283 # Create design objects
284 design _bhm <- setup _bhm(k = 4, p0 = 0.15, p_ target = 0.4)
285 design _ exnex <- setup _exnex (k = 4, p0 = 0.15)
286

287 # Parameter and argument list for all methods
288 params _mcmc = list(
289 "bhm" = list(
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290 design = design _bhm ,
291 design _ params = list(tau_scale =
292 seq(from = 0.125, to = 2, length .out = 8)),
293 workers = 10
294 ),
295 " exnex" = list(
296 design = design _exnex ,
297 design _ params = list(
298 tau_ scale = seq(from = 0.125, to = 2, length .out = 8),
299 w = seq(from = 0.1, to = 0.9, by = 0.1)
300 ),
301 workers = 11
302 )
303 )
304

305 # Run optimisation
306 res_mcmc <- list ()
307 # Optimisation of EXNEX may take several days
308 methods _mcmc <- c("bhm", " exnex")
309 for (i in methods _mcmc) {
310 # calling registerdoFuture is necessary for parallelisation in
311 # bhmbasket , since an older version of the doFuture package is
312 # used there
313 # the number of cores cannot be changed for exact reproducibility of
314 # the results due to the way bhmbasket chunks tasks when it is run
315 # in parallel
316 registerDoFuture ()
317 plan( multisession , workers = params _mcmc [[i]]$ workers )
318 # setting the seed is necessary since MCMC sampling
319 # introduces randomness
320 set.seed(234)
321

322 res_mcmc [[i]] <- basksim :: opt_ design (
323 design = params _mcmc [[i]]$ design ,
324 n = 20, alpha = 0.05,
325 design _ params = params _mcmc [[i]]$ design _params ,
326 scenarios = scenarios ,
327 prec_ digits = 3, iter = 10000,
328 data = data_list_bhm
329 )
330 }
331

332 # Combine all results
333 res <- c(res_exact , res_sim , res_mcmc)
334

335 # Best results and tuning parameter values per method
336 # Table 3 & Table 4
337 lapply (res , function (x) x[1, ])
338

339 # Rejection rates and mean posterior means - baskexact
340 params _ exact _opt <- list(
341 "cpp" = list(
342 lambda = res_ exact$cpp$ Lambda [1],
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343 weight _fun = weights _cpp ,
344 weight _ params = list(
345 a = res_ exact $cpp$a[1],
346 b = res_ exact $cpp$b[1]
347 ),
348 globalweight _fun = NULL ,
349 globalweight _ params = list ()
350 ),
351 " cppglobal " = list(
352 lambda = res_ exact$ cppglobal $ Lambda [1],
353 weight _fun = weights _cpp ,
354 weight _ params = list(
355 a = res_ exact $ cppglobal $a[1],
356 b = res_ exact $ cppglobal $b[1]
357 ),
358 globalweight _fun = globalweights _diff ,
359 globalweight _ params = res_ exact$ cppglobal $eps_ global [1]
360 ),
361 " cppnex " = list(
362 lambda = res_ exact$ cppnex $ Lambda [1],
363 weight _fun = weights _cpp ,
364 weight _ params = list(
365 a = res_ exact $ cppnex $a[1],
366 b = res_ exact $ cppnex $b[1]
367 ),
368 globalweight _fun = globalweights _fix ,
369 globalweight _ params = res_ exact$ cppnex $w[1]
370 ),
371 " fujikawa " = list(
372 lambda = res_ exact$ fujikawa $ Lambda [1],
373 weight _fun = weights _fujikawa ,
374 weight _ params = list(
375 epsilon = res_ exact $ fujikawa $ epsilon [1],
376 tau = res_exact $ fujikawa $tau[1]
377 ),
378 globalweight _fun = NULL ,
379 globalweight _ params = list ()
380 ),
381 "mml" = list(
382 lambda = res_ exact$mml$ Lambda [1],
383 weight _fun = weights _mml ,
384 weight _ params = list () ,
385 globalweight _fun = NULL ,
386 globalweight _ params = list ()
387 )
388 )
389

390 scenarios _toer <- scenario _list[c(1, 4, 5, 6, 7)]
391 scenarios _pow <- scenario _list[c(2, 3)]
392

393 toer_ exact <- list ()
394 for (i in methods _ exact ) {
395 toer_ exact [[i]] <- t( sapply ( scenarios _toer , function (x)
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396 unlist ( unname ( baskexact :: toer(
397 design = design _exact ,
398 p1 = x, n = 20,
399 lambda = params _ exact _opt [[i]]$ lambda ,
400 weight _fun = params _ exact_opt [[i]]$ weight _fun ,
401 weight _ params = params _ exact _opt [[i]]$ weight _params ,
402 globalweight _fun = params _ exact_opt [[i]]$ globalweight _fun ,
403 globalweight _ params = params _ exact _opt [[i]]$ globalweight _params ,
404 results = " group "
405 )))))
406 }
407

408 pow_ exact <- list ()
409 for (i in methods _ exact ) {
410 pow_ exact [[i]] <- t( sapply ( scenarios _pow , function (x)
411 unlist ( unname ( baskexact :: pow(
412 design = design _exact ,
413 p1 = x, n = 20,
414 lambda = params _ exact _opt [[i]]$ lambda ,
415 weight _fun = params _ exact_opt [[i]]$ weight _fun ,
416 weight _ params = params _ exact _opt [[i]]$ weight _params ,
417 globalweight _fun = params _ exact_opt [[i]]$ globalweight _fun ,
418 globalweight _ params = params _ exact _opt [[i]]$ globalweight _params ,
419 results = " group "
420 )))))
421 }
422

423 # Combind toer and pow
424 rej_ exact <- lapply (1:5, function (x)
425 rbind (toer_ exact [[x]], pow_exact [[x]]))
426 names (rej_exact ) <- names (toer_ exact )
427

428 estim _exact <- list ()
429 for (i in methods _ exact ) {
430 estim _exact [[i]] <- t( sapply ( scenario _list , function (x)
431 unlist ( unname ( baskexact :: estim (
432 design = design _exact ,
433 p1 = x, n = 20,
434 lambda = params _ exact _opt [[i]]$ lambda ,
435 weight _fun = params _ exact_opt [[i]]$ weight _fun ,
436 weight _ params = params _ exact _opt [[i]]$ weight _params ,
437 globalweight _fun = params _ exact_opt [[i]]$ globalweight _fun ,
438 globalweight _ params = params _ exact _opt [[i]]$ globalweight _params ,
439 )))))
440 }
441 # Keep estimates , remove MSEs
442 estim _exact <- lapply (estim_exact , function (x) x[, 1:4])
443

444 # Rejection rates and mean posterior means - basksim without MCMC
445 details _bma <- t( sapply (1:7, function (x)
446 unlist ( unname ( basksim :: get_ details (
447 design = design _bma ,
448 n = 20, p1 = scenario _list [[x]],
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449 lambda = res_sim$bma$ Lambda [1],
450 pmp0 = res_sim$bma$pmp0[1],
451 iter = 10000, data = data_list_mat [[x]]
452 )))))
453

454 details _ jsdglobal <- t( sapply (1:7, function (x)
455 unlist ( unname ( basksim :: get_ details (
456 design = design _jsdglobal ,
457 n = 20, p1 = scenario _list [[x]],
458 lambda = res_sim$ jsdglobal $ Lambda [1],
459 eps_pair = res_sim$ jsdglobal $eps_pair[1],
460 tau = res_sim$ jsdglobal $tau[1],
461 eps_all = res_sim$ jsdglobal $eps_all[1],
462 logbase = 2,
463 iter = 10000, data = data_list_mat [[x]]
464 )))))
465

466 details _ mmlglobal <- t( sapply (1:7, function (x)
467 unlist ( unname ( basksim :: get_ details (
468 design = design _mmlglobal ,
469 n = 20, p1 = scenario _list [[x]],
470 lambda = res_sim$ mmlglobal [1],
471 iter = 10000, data = data_list_mat [[x]]
472 )))))
473

474 # Rejection rates and mean posterior means - basksim with MCMC
475 set.seed(345)
476 registerDoFuture ()
477 plan( multisession , workers = 10)
478 details _bhm <- t( sapply (1:7, function (x)
479 unlist ( unname ( basksim :: get_ details (
480 design = design _bhm ,
481 n = 20, p1 = scenario _list [[x]],
482 lambda = res_mcmc$bhm$ Lambda [1],
483 tau_ scale = res_mcmc$bhm$tau_scale [1],
484 iter = 10000, data = data_list_bhm [[x]]
485 )))))
486

487 set.seed(345)
488 registerDoFuture ()
489 plan( multisession , workers = 10)
490 details _exnex <- t( sapply (1:7, function (x)
491 unlist ( unname ( basksim :: get_ details (
492 design = design _exnex ,
493 n = 20, p1 = scenario _list [[x]],
494 lambda = res_mcmc$exnex $ Lambda [1],
495 tau_ scale = res_mcmc$exnex $tau_ scale[1],
496 w = res_mcmc$ exnex $w[1],
497 iter = 10000, data = data_list_bhm [[x]]
498 )))))
499

500 # All rejection rates
501 rej_all <- c(rej_exact ,
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502 list("bhm" = details _bhm[, 1:5]),
503 list(" exnex " = details _ exnex[, 1:5]),
504 list(" jsdglobal " = details _ jsdglobal [, 1:5]),
505 list("bma" = details _bma[, 1:5]),
506 list(" mmlglobal " = details _ mmlglobal [, 1:5])
507 )
508

509 # All posterior means
510 estim _all <- c(estim _exact ,
511 list("bhm" = details _bhm[, 6:9]),
512 list(" exnex " = details _ exnex[, 6:9]),
513 list(" jsdglobal " = details _ jsdglobal [, 6:9]),
514 list("bma" = details _bma[, 6:9]),
515 list(" mmlglobal " = details _ mmlglobal [, 6:9])
516 )
517

518 # Mean posterior mean plot - Figure 7
519 estim _df <- do.call(rbind , estim_all)
520 rownames ( estim _df) <- NULL
521 colnames ( estim _df) <- paste(" Basket ", 1:4)
522 scenario _ names <- c(" Global Null", " Global Alt", "One in the Middle ",
523 " Linear ", "Good Nugget ", "Bad Nugget ", "Half")
524 estim _df <- data. frame (
525 " Method " = rep(names ( estim_all), each = 7),
526 " Scenario " = rep( scenario _names , times = length (estim _all)),
527 estim _df
528 )
529

530 resprates <- data. frame ( scenario _names , t( scenarios ))
531 colnames ( resprates ) <- c(" Scenario ", paste (" Basket ", 1:4))
532 resprates <- as_ tibble ( resprates ) %>%
533 pivot _ longer (-1, names _to = " Basket ")
534

535 estim _long <- estim_df %>% pivot _ longer (-(1:2), names_to = " Basket ",
536 values _to = "Mean") %>%
537 mutate (
538 Basket = case_when(
539 Basket == " Basket .1" ~ " Basket 1",
540 Basket == " Basket .2" ~ " Basket 2",
541 Basket == " Basket .3" ~ " Basket 3",
542 Basket == " Basket .4" ~ " Basket 4"
543 ),
544 Scenario = factor (Scenario , levels = c(" Global Null", " Global Alt"

,
545 "One in the Middle ", " Linear ", "Good Nugget ", "Bad Nugget ", "

Half"))
546 ) %>%
547 left_join(resprates , by = c(" Scenario ", " Basket "))
548

549 ggplot ( estim _long , aes(x = 1, y = Mean , fill = Method )) +
550 geom_bar( position = position _ dodge2() , stat = " identity ") +
551 geom_ hline (aes( yintercept = value ), col = "green ", linewidth = 1) +
552 scale _fill_ viridis ( discrete = T) +
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553 facet _grid( Scenario ~ Basket ) +
554 theme _bw() +
555 theme (
556 axis.text.x = element _ blank () ,
557 axis. ticks .x = element _ blank ()
558 ) +
559 xlab("") +
560 ylab("mean posterior mean")
561

562

563 # Sensitivity Analyses - Figure 8
564 heat_bhm <- ggplot (res$bhm) +
565 geom_tile(aes(y = tau_scale , x = 1, fill = Mean_ECD)) +
566 scale _y_ continuous (
567 breaks = seq(0.125, 2, length .out = 4),
568 labels = function (x) round(x, 1),
569 expand = c(0, 0)) +
570 scale _x_ continuous ( expand = c(0, 0), breaks = NULL) +
571 scale _fill_ viridis _c(name = "Mean ECD", limits = c(3.17, 3.566),
572 option = "A") +
573 theme _bw() + xlab("") + ylab(TeX("$\\ phi")) + ggtitle ("BHM") +
574 theme ( legend . position = "none") + coord_flip ()
575

576 heat_bma <- ggplot (res$bma) +
577 geom_tile(aes(y = pmp0, x = 1, fill = Mean_ECD)) +
578 scale _y_ continuous (
579 breaks = round(seq(-4, 4, by = 1), 3),
580 expand = c(0, 0)) +
581 scale _x_ continuous ( expand = c(0, 0), breaks = NULL) +
582 scale _fill_ viridis _c(name = "Mean ECD", limits = c(3.17, 3.566),
583 option = "A") +
584 theme _bw() + xlab("") + ylab(TeX("$\\ psi")) + ggtitle ("BMA") +
585 theme ( legend . position = "none") +
586 coord _flip ()
587

588 heat_cpp <- ggplot (res$cpp) +
589 geom_tile(aes(x = a, y = b, fill = Mean_ECD)) +
590 scale _x_ continuous ( breaks = seq(0.5, 3, by = 1),
591 expand = c(0, 0)) +
592 scale _y_ continuous ( breaks = seq(0.5, 3, by = 0.5),
593 expand = c(0, 0)) +
594 scale _fill_ viridis _c(name = "Mean ECD", limits = c(3.17, 3.566),
595 option = "A") +
596 theme _bw() + ggtitle ("CPP") + theme( legend . position = "none")
597

598 heat_ cppglobal <- res$ cppglobal %>%
599 mutate (eps_ global = paste(TeX("$\\ epsilon ^*"),
600 eps_global , sep = ": ")) %>%
601 ggplot () +
602 geom_tile(aes(x = a, y = b, fill = Mean_ECD)) +
603 facet _wrap(vars(eps_ global ), ncol = 2,
604 labeller = label_ parsed ) +
605 scale _x_ continuous ( breaks = seq(0.5, 3, by = 1),



Appendix 133

606 expand = c(0, 0)) +
607 scale _y_ continuous ( breaks = seq(0.5, 3, by = 0.5),
608 expand = c(0, 0)) +
609 scale _fill_ viridis _c(name = "Mean ECD", limits = c(3.17, 3.566),
610 option = "A") +
611 theme _bw() + ggtitle ("CPP - Global ") + theme( legend . position = "none")
612

613 heat_ cppnex <- ggplot (res$ cppnex ) +
614 geom_tile(aes(x = a, y = b, fill = Mean_ECD)) +
615 facet _wrap(vars(w), ncol = 3,
616 labeller = labeller (. rows = label _both)) +
617 scale _x_ continuous ( breaks = seq(0.5, 3, by = 1),
618 expand = c(0, 0)) +
619 scale _y_ continuous ( breaks = seq(0.5, 3, by = 0.5),
620 expand = c(0, 0)) +
621 scale _fill_ viridis _c(name = "Mean ECD", limits = c(3.17, 3.566),
622 option = "A") +
623 theme _bw() + ggtitle ("CPP -Nex") + theme( legend . position = " bottom ")
624

625 heat_ exnex <- ggplot (res$ exnex ) +
626 geom_tile(aes(x = w, y = tau_scale , fill = Mean_ECD)) +
627 scale _y_ continuous (
628 breaks = seq(0.125, 2, length .out = 4),
629 labels = function (x) round(x, 1),
630 expand = c(0, 0)) +
631 scale _x_ continuous ( breaks = seq(0.1, 0.9, by = 0.2),
632 expand = c(0, 0)) +
633 scale _fill_ viridis _c(name = "Mean ECD", limits = c(3.17, 3.566),
634 option = "A") +
635 theme _bw() + coord _flip () + ylab(TeX("$\\ phi")) + ggtitle (" EXNEX") +
636 theme ( legend . position = "none")
637

638 heat_ fujikawa <- ggplot (res$ fujikawa ) +
639 geom_tile(aes(x = epsilon , y = tau , fill = Mean_ECD)) +
640 scale _x_ continuous ( breaks = seq(0.5, 3, by = 1),
641 expand = c(0, 0)) +
642 scale _y_ continuous ( breaks = seq(0, 0.5, by = 0.1),
643 expand = c(0, 0)) +
644 scale _fill_ viridis _c(name = "Mean ECD", limits = c(3.17, 3.566),
645 option = "A") +
646 theme _bw() + xlab(TeX("\\ epsilon ")) + ylab(TeX("\\ tau")) +
647 ggtitle (" Fujikawa ") +
648 theme ( legend . position = "none")
649

650 heat_ jsdglobal <- res$ jsdglobal %>%
651 mutate (eps_all = paste(TeX("$\\ epsilon ^*"), eps_all ,
652 sep = ": ")) %>%
653 ggplot () + geom_tile(aes(x = eps_pair , y = tau , fill = Mean_ECD)) +
654 facet _wrap(vars(eps_all), ncol = 2,
655 labeller = label_ parsed ) +
656 scale _x_ continuous ( breaks = seq(0.5, 3, by = 1), expand = c(0, 0)) +
657 scale _y_ continuous ( breaks = seq(0, 0.5, by = 0.1),
658 expand = c(0, 0)) +
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659 scale _fill_ viridis _c(name = "Mean ECD", limits = c(3.17, 3.566),
660 option = "A") +
661 theme _bw() + xlab(TeX("\\ epsilon ")) + ylab(TeX("\\ tau")) +
662 ggtitle ("JSD - Global ") + theme ( legend . position = "none")
663

664 laymat <- rbind(
665 c(1, 1, 2, 2, 3, 3, 4, 4),
666 c(5, 5, 2, 2, 3, 3, 4, 4),
667 c(6, 6, 6, 6, 7, 7, 7, 7),
668 c(6, 6, 6, 6, 7, 7, 7, 7),
669 c(6, 6, 6, 6, 7, 7, 7, 7),
670 c(6, 6, 6, 6, 7, 7, 7, 7),
671 c(6, 6, 6, 6, 7, 7, 7, 7),
672 c(NA , 8, 8, 8, 8, 8, 8, NA),
673 c(NA , 8, 8, 8, 8, 8, 8, NA),
674 c(NA , 8, 8, 8, 8, 8, 8, NA),
675 c(NA , 8, 8, 8, 8, 8, 8, NA),
676 c(NA , 8, 8, 8, 8, 8, 8, NA),
677 c(NA , 8, 8, 8, 8, 8, 8, NA)
678 )
679

680 # heatplot <- arrangeGrob (
681 heatplot <- arrangeGrob (
682 heat_bma , # 1
683 heat_exnex , # 2
684 heat_fujikawa , # 3
685 heat_cpp , # 4
686 heat_bhm , # 5
687 heat_jsdglobal , # 6
688 heat_cppglobal , # 7
689 heat_cppnex , # 8
690 layout _ matrix = laymat
691 )
692

693 # Sensitivity Analyses - Table 6 & 7
694 res_sens <- list ()
695 for (i in names (res)) {
696 temp <- res [[i]]
697 temp_mod <- as.data.frame(temp) %>%
698 select (-Mean_ECD) %>%
699 rowwise () %>%
700 mutate (mean_sens = mean(c( Global _Null , Global _ Alternative ,
701 Good_Nugget , Bad_Nugget , Half))) %>%
702 arrange (desc(mean_sens))
703 res_sens [[i]] <- as.data.frame (temp_mod[1, ])
704 }
705

706 # Sensitivity Analyses - Table 8 & 9
707 lapply (res , function (x)
708 as.data. frame (x)[ which.max(as.data. frame (x)$ Linear ), ])
709 lapply (res , function (x)
710 as.data. frame (x)[ which.max(as.data. frame (x)$Bad_ Nugget ), ])
711 lapply (res , function (x)
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712 as.data. frame (x)[ which.max(as.data. frame (x)$Half), ])
713

714 ### Non - Monotonicity Conditions
715 ## Examples
716 # Within -Trial Non - Monotonicity
717 basket _test( design = setupOneStageBasket (k = 4, p0 = 0.15), n = 20,
718 r = c(5, 5, 5, 6), lambda = 0.99,
719 weight _fun = weights _cpp , weight _ params = list(a = 1.5, b = 0.5))
720 # With Pruning
721 basket _test( design = setupOneStageBasket (k = 4, p0 = 0.15), n = 20,
722 r = c(5, 5, 5, 6), lambda = 0.99,
723 weight _fun = weights _cpp ,
724 weight _ params = list(a = 1.5, b = 0.5, prune = TRUE))
725

726 # Between - Trial Non - Monotonicity - Example 1
727 basket _test( design = setupOneStageBasket (k = 4, p0 = 0.15), n = 20,
728 r = c(0, 1, 5, 6), lambda = 0.97, weight _fun = weights _mml)
729 basket _test( design = setupOneStageBasket (k = 4, p0 = 0.15), n = 20,
730 r = c(0, 2, 5, 6), lambda = 0.97, weight _fun = weights _mml)
731 basket _test( design = setupOneStageBasket (k = 4, p0 = 0.15), n = 20,
732 r = c(1, 3, 5, 6), lambda = 0.97, weight _fun = weights _mml)
733 # With Pruning
734 basket _test( design = setupOneStageBasket (k = 4, p0 = 0.15), n = 20,
735 r = c(1, 3, 5, 6), lambda = 0.97, weight _fun = weights _mml ,
736 weight _ params = list(prune = TRUE))
737

738 # Between - Trial Non - Monotonicity - Example 2
739 basket _test( design = setupOneStageBasket (k = 4, p0 = 0.15), n = 20,
740 r = c(1, 5, 5, 5), lambda = 0.97,
741 weight _fun = weights _mml)
742 basket _test( design = setupOneStageBasket (k = 4, p0 = 0.15), n = 20,
743 r = c(2, 5, 5, 5), lambda = 0.97,
744 weight _fun = weights _mml)
745 # With Pruning
746 basket _test( design = setupOneStageBasket (k = 4, p0 = 0.15), n = 20,
747 r = c(2, 5, 5, 5), lambda = 0.97,
748 weight _fun = weights _mml , weight _ params = list(prune = TRUE))
749

750 # Between - Trial Non - Monotonicity - Example 3
751 basket _test( design = setupOneStageBasket (k = 4, p0 = 0.3), n = 20,
752 lambda = 0.99, weight _fun = weights _cpp ,
753 weight _ params = list(a = 2.5, b = 3), r = c(0, 0, 10, 10))
754 basket _test( design = setupOneStageBasket (k = 4, p0 = 0.3), n = 20,
755 lambda = 0.99, weight _fun = weights _cpp ,
756 weight _ params = list(a = 2.5, b = 3), r = c(5, 7, 10, 10))
757 # With Pruning
758 basket _test( design = setupOneStageBasket (k = 4, p0 = 0.3), n = 20,
759 lambda = 0.99, weight _fun = weights _cpp ,
760 weight _ params = list(a = 2.5, b = 3, prune = TRUE),
761 r = c(5, 7, 10, 10))
762

763 ## Investigation of Monotonicity Conditions - Table 10
764 # Fujikawa ’s Design - Without Pruning
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765 for (i in 4:6) {
766 cat("K =", i, "Within - Trial")
767 print (check_mon_ within (
768 design = setupOneStageBasket (k = i, p0 = 0.15),
769 n = 20, lambda = 0.99,
770 weight _fun = weights _fujikawa ,
771 weight _ params = list(
772 epsilon = seq(0.5, 3, by = 0.5),
773 tau = seq(0, 0.5, by = 0.1)
774 ),
775 details = FALSE
776 ))
777

778 cat("K =", i, "Between - Trials ")
779 print (check_mon_ between (
780 design = setupOneStageBasket (k = i, p0 = 0.15),
781 n = 20, lambda = 0.99,
782 weight _fun = weights _fujikawa ,
783 weight _ params = list(
784 epsilon = seq(0.5, 3, by = 0.5),
785 tau = seq(0, 0.5, by = 0.1)
786 ),
787 details = FALSE
788 ))
789 }
790

791 # Power Prior Design with CPP weights - Without Pruning
792 for (i in 4:6) {
793 cat("K =", i, "Within - Trial")
794 print (check_mon_ within (
795 design = setupOneStageBasket (k = i, p0 = 0.15),
796 n = 20, lambda = 0.99,
797 weight _fun = weights _cpp ,
798 weight _ params = list(
799 a = seq(0.5, 3, by = 0.5),
800 b = seq(0.5, 3, by = 0.5)
801 ),
802 details = FALSE
803 ))
804

805 cat("K =", i, "Between - Trials ")
806 print (check_mon_ between (
807 design = setupOneStageBasket (k = i, p0 = 0.15),
808 n = 20, lambda = 0.99,
809 weight _fun = weights _cpp ,
810 weight _ params = list(
811 a = seq(0.5, 3, by = 0.5),
812 b = seq(0.5, 3, by = 0.5)
813 ),
814 details = FALSE
815 ))
816 }
817
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818 # Fujikawa ’s Design - With Pruning
819 for (i in 4:6) {
820 cat("K =", i, "Within - Trial")
821 print (check_mon_ within (
822 design = setupOneStageBasket (k = i, p0 = 0.15),
823 n = 20, lambda = 0.99,
824 weight _fun = weights _fujikawa ,
825 weight _ params = list(
826 epsilon = seq(0.5, 3, by = 0.5),
827 tau = seq(0, 0.5, by = 0.1),
828 prune = TRUE
829 ),
830 details = FALSE
831 ))
832

833 cat("K =", i, "Between - Trials ")
834 print (check_mon_ between (
835 design = setupOneStageBasket (k = i, p0 = 0.15),
836 n = 20, lambda = 0.99,
837 weight _fun = weights _fujikawa ,
838 weight _ params = list(
839 epsilon = seq(0.5, 3, by = 0.5),
840 tau = seq(0, 0.5, by = 0.1),
841 prune = TRUE
842 ),
843 details = FALSE
844 ))
845 }
846

847 # Power Prior Design with CPP Weights - With Pruning
848 for (i in 4:6) {
849 cat("K =", i, "Within - Trial")
850 print (check_mon_ within (
851 design = setupOneStageBasket (k = i, p0 = 0.15),
852 n = 20, lambda = 0.99,
853 weight _fun = weights _cpp ,
854 weight _ params = list(
855 a = seq(0.5, 3, by = 0.5),
856 b = seq(0.5, 3, by = 0.5),
857 prune = TRUE
858 ),
859 details = FALSE ,
860 ))
861

862 cat("K =", i, "Between - Trials ")
863 print (check_mon_ between (
864 design = setupOneStageBasket (k = i, p0 = 0.15),
865 n = 20, lambda = 0.99,
866 weight _fun = weights _cpp ,
867 weight _ params = list(
868 a = seq(0.5, 3, by = 0.5),
869 b = seq(0.5, 3, by = 0.5),
870 prune = TRUE
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871 ),
872 details = FALSE
873 ))
874 }
875

876 # Influence of Pruning - Table 11
877 res_ prune_ fujikawa <- baskexact :: opt_ design (
878 design = design _exact ,
879 n = 20, alpha = 0.05,
880 weight _fun = weights _fujikawa ,
881 weight _ params = list(
882 epsilon = seq(from = 0.5, to = 3, by = 0.5),
883 tau = seq(from = 0, to = 0.5, by = 0.1),
884 prune = TRUE
885 ),
886 scenarios = scenarios ,
887 prec_ digits = 3
888 )
889

890 res_ prune_cpp <- baskexact :: opt_ design (
891 design = design _exact ,
892 n = 20, alpha = 0.05,
893 weight _fun = weights _cpp ,
894 weight _ params = list(
895 a = seq(from = 0.5, to = 3, by = 0.5),
896 b = seq(from = 0.5, to = 3, by = 0.5),
897 prune = TRUE
898 ),
899 scenarios = scenarios ,
900 prec_ digits = 3
901 )
902

903 # Rejection Rates with Pruning - Table 12
904 params _ prune <- list(
905 " fujikawa " = list(
906 lambda = res_ prune_ fujikawa $ Lambda [1],
907 weight _fun = weights _fujikawa ,
908 weight _ params = list(
909 epsilon = res_ prune _ fujikawa $ epsilon [1],
910 tau = res_prune _ fujikawa $tau[1],
911 prune = TRUE
912 )
913 ),
914 "cpp" = list(
915 lambda = res_ prune_cpp$ Lambda [1],
916 weight _fun = weights _cpp ,
917 weight _ params = list(
918 a = res_ prune _cpp$a[1],
919 b = res_ prune _cpp$b[1],
920 prune = TRUE
921 )
922 )
923 )
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924

925 methods _prune <- c(" fujikawa ", "cpp")
926 toer_ prune <- list ()
927 for (i in methods _ prune ) {
928 toer_ prune [[i]] <- t( sapply ( scenarios _toer , function (x)
929 unlist ( unname ( baskexact :: toer(
930 design = design _exact ,
931 p1 = x, n = 20,
932 lambda = params _ prune [[i]]$ lambda ,
933 weight _fun = params _ prune [[i]]$ weight _fun ,
934 weight _ params = params _ prune [[i]]$ weight _params ,
935 results = " group "
936 )))))
937 }
938

939 pow_ prune <- list ()
940 for (i in methods _ prune ) {
941 pow_ prune [[i]] <- t( sapply ( scenarios _pow , function (x)
942 unlist ( unname ( baskexact :: pow(
943 design = design _exact ,
944 p1 = x, n = 20,
945 lambda = params _ prune [[i]]$ lambda ,
946 weight _fun = params _ prune [[i]]$ weight _fun ,
947 weight _ params = params _ prune [[i]]$ weight _params ,
948 results = " group "
949 )))))
950 }
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