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Abstract

Computer vision has played a crucial role in the recent increase in interest in artificial in-
telligence. Neural networks, in particular, have led to breakthroughs in many application
areas, ranging from the recognition of lung cancer in CRT images to novel ways of creating
virtual immersive environments and photorealistic avatars.

Most computer vision research focuses on demonstrating new technological solutions
and showcasing their capabilities. This dissertation attempts a change of perspective from
a technology-centred to a user-centred focus to ensure the successful deployment of inno-
vations in real-world scenarios. It explores the intersection of human-computer interaction
(HCI) and computer vision, with particular emphasis on the domains of interpretable vision
and gaze-aware video conferencing. Comparative user studies with robust baseline condi-
tions are central to this work and form the cornerstone of the methodological strategy.

The first part of this dissertation delves into interpretable vision, evaluating the efficacy
of different explanation methods in enhancing users’ understanding of image classifiers.
Through rigorous experimental design and the development of a novel synthetic dataset,
two studies provide nuanced insights into the effectiveness of these explanation methods.
Results show that saliencymaps can draw users’ attention to specific features, while counter-
factuals help discover model biases. Notably, results also show that simple example-based
explanations can be overall just as effective as more sophisticated methods while being eas-
ier to implement. We argue that these explanations should serve as a benchmark for evalu-
ating any future explanation methods. These results highlight the importance of measuring
how well users can reason about a model rather than solely relying on technical evaluations
or proxy tasks when assessing the explanation techniques.

The second part of this dissertation shifts the focus to image synthesis. It addresses the
quality of the video-conferencing user experience by exploring a conceptual system capable
of conveying gaze and attention. Gazing Heads is a round-table virtual meeting concept
that enables direct eye contact and signals gaze via controlled head rotation. We built a
four-party camera-based simulation to evaluate Gazing Heads against a conventional “Tiled
View” video-conferencing system. In contrast to prior concepts, Gazing Heads increases
social presence, mutual eye contact, and user engagement. We attribute these novel results
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to the amplifying effect of head rotations for conveying gaze. In its current design, Gazing
Heads unequivocally enhances the experience of users in highly interactive small group
meetings. Our work also highlights the remaining challenges in implement Gazing Heads on
commodity hardware and in achieving seamless integration into daily video-conferencing.

Overall, this dissertation contributes to the fields of HCI and computer vision by pro-
viding empirical insights into the benefits and limitations of current computer vision ap-
plications from a user-centred perspective. Published across top-tier machine learning and
HCI venues, this research emphasises the need for more meticulously designed user studies
in computer vision. It provides foundational artefacts, such as benchmark datasets, study
designs, and system concepts, which can serve as a starting point for future research.



Zusammenfassung

Fortschritte in der Wissenschaft der Computervision (CV), die sich mit computerbasiertem
Sehen beschäftigt, haben in den letzten Jahren zu einem gestiegenen Interesse an künstlicher
Intelligenz (KI/AI) beigetragen. Mit Hilfe von neuronalen Netzen kam es in einer Vielzahl
von Bereichen zu unerwarteten Durchbrüchen. Es ist zum Beispiel nun technisch möglich,
Lungenkrebs in Computertomografiebildern automatisierter und zuverlässiger zu erkennen.
Darüber hinaus lassen sich immersive virtuelle Umgebungen schaffen, die nicht nur sehr
realistisch wirken, sondern menschliche Akteure darin fast realitätsgetreu nachbilden.

Angesichts dieser Errungenschaften ist es nicht verwunderlich, dass primär eine tech-
nologiezentrierte Betrachtungsweise in den beteiligten Wissenschaften vorherrscht. Es wird
besondererWert auf die Entwicklung innovativer Lösungen gelegt, die möglichst eindrucks-
voll präsentiert werden sollen. Diese Arbeit unternimmt den Versuch eines Perspektivwech-
sels und nährt sich dem Feld mit einer kritischeren, nutzerzentrierten Sichtweise. Dabei sind
Nutzerstudien, die neue Ansätze evaluieren und mit einfacheren, bereits etablierteren Lö-
sungen vergleichen, integraler Bestandteil der Methodik.

DieseArbeit hat zwei Teile, wobei sich jedermit einem eigenen Feld der Computervision
beschäftigt. Der erste Teil befasst sich mit erklärbarer künstlicher Intelligenz. Es werden al-
gorithmische Erklärungsmethoden evaluiert, die Bildklassifizierungsmodele verständlicher
machen sollen. Gegenstand der vorgestellten Studien sind Saliency-Maps, Counterfactu-
als und Concept-Maps. Zum Vergleich kommt eine einfachere Methode zum Einsatz, die
eine Auswahl von Bildern und deren Klassifizierungsergebnisse zeigt. Die Interpretation
der Klassifikationsgründe wird also mehr dem Nutzer überlassen. Diese Studien wurden
iterativ und mit besonderer Sorgfalt entworfen. Dabei wurde auch ein synthetischer Daten-
satz geschaffen, der auf den Einsatz in Nutzerstudien abgestimmt ist. Diese strukturierte
Vorgehensweise erlaubt einen nuancieren Einblick in die Wirksamkeit verschiedener Er-
klärungsmethoden. Die Ergebnisse der zwei Studien sind überraschend. Die einfach zu im-
plementierende Methode, die Beispielbilder verwendet, erzielt vergleichbare und zum Teil
sogar bessere Ergebnisse als die komplexerenMethoden. Daraus wird unter anderem die Er-
kenntnis gezogen, dass Erklärungen mit Beispielbildern als Benchmark für alle zukünftigen
Evaluierungen von Erklärungstechniken dienen sollten. Neben den detaillierten Erkennt-
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nissen zu jeder evaluierten Erklärungstechnik leistet diese Arbeit auch einen wissenschaft-
lichen Beitrag, indem sie die konkrete Umsetzung der Benchmarkmethode, ein passendes
Studiendesign und einen auf Nutzstudien abgestimmten Datensatz bereitstellt.

Im zweiten Teil der Arbeit verlagert sich der Fokus auf die Bildsynthese. Es wird un-
tersucht, ob sich Videokonferenzen verbessern lassen, indem man die Blickrichtung der
Teilnehmer mittels synthetisierter Kopfdrehungen visualisiert. Es wird ein Konzept für ein
solches System namens Gazing Heads vorgestellt. Dieses wird mit Hilfe von mehreren Ka-
meras prototypisch umgesetzt und einer umfassenden Nutzerstudie unterzogen. Als Ver-
gleichssystem dient die marktübliche Videokachelansicht. Dabei wird untersucht, wie sich
Gazing Heads auf die Kommunikation, soziale Präsenz und Natürlichkeit der Interaktion
auswirkt. Die Ergebnisse zeigen, dass sich die Blickrichtungen der Teilnehmer eindeutig
mit synthetischen Kopfrotationen vermitteln lassen. Dies hatte im Experiment zur Folge,
dass die Probanden Gazing Heads klar bevorzugten. Sie fühlten sich stärker in die Unter-
haltung eingebunden und nahmen eine gesteigerte soziale Präsenz wahr. Daraus wird die
Schlussfolgerung gezogen, dass sich das Videokonferenzerlebnis mit dem Einsatz von syn-
thetisierten Kopfdrehungen signifikant verbessern lässt. Um diese Vorteile allerdings in der
Praxis nutzen zu können, muss eine nahtlose Integration in bestehende Anwendungsfälle ge-
währleistet werden. Darüber hinaus gilt es, technische Herausforderungen zu überwinden,
damit Kopfrotationen und Gesichter als möglichst realitätsgetreu empfunden werden.

Insgesamt leistet diese interdisziplinäre Arbeit Beiträge zu zwei Wissenschaftsberei-
chen, den der Mensch-Computer-Interaktion und den der Computervision. Sie liefert em-
pirische Erkenntnisse zu den Vorteilen und Grenzen aktueller Anwendungen von künstli-
cher Intelligenz. Darüber hinaus zeigt sie den Mehrwert empirischer Netzwerkstudien im
Computervision-Bereich auf. Da dieser Perspektivwechsel wichtige wissenschaftliche Er-
kenntnisse liefert, erkennt man nicht zuletzt auch daran, dass die hier vorgestellten Studien
auf führenden Konferenzen und in Journalen veröffentlicht wurden.

Neben den neuen Erkenntnissen und offenen Forschungsfragen liefert diese Arbeit auch
wiederverwendbare Artefakte wie Systemkonzepte, Datensätze und Studiendesigns für zu-
künftige Forschungsvorhaben.
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Conceptual and Methodological Prelude

User Studies as a Contribution to the Field of Computer Vi-
sion

In my collaborative projects, my primary focus was on the conceptualisation and orchestra-
tion of user studies. I must point out that, despite their relative scarcity in computer vision,
they are no less significant or complex than technical contributions. Throughout the peer-
review process, in which I engaged as both an author and reviewer, I encountered a shared
challenge among my colleagues: there is a lack of recognition in the field of computer vi-
sion for the time and effort required in conducting such evaluations (a sentiment echoed by
Doshi-Velez and Kim [52]).

Alongside technical contributions, the conceptualisation of user studies is a meticulous
and iterative endeavour. It begins with a foundational theoretical idea and culminates in
a robust design that offers credible empirical insights. The many iterations one must go
through may not be obvious here, as I have intentionally omitted details of intermediate
phases, such as my prototypes and pilot studies, from the main text to maintain clarity and
conciseness. However, minute inaccuracies in study designs have the potential to skew
final measurements, leading to erroneous interpretations. Therefore, I engage in a thorough
reflection on the validity of my studies in this work, alongside a critical examination of
related literature. The designs presented here are intended to lay the groundwork for future
rigorous user studies in computer vision, hopefully inspiring and guiding subsequent human-
centred research in this domain.

Key Psychological Research Design Concepts

This section offers a concise overview of key principles in psychological experimental de-
sign, drawn from a lecture presented by the author at the BIFOLD summer school. This
summary is particularly relevant for readers less familiar with experiments involving hu-
man subjects. In line with the theme of this work, the review is tailored to the context where
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an experimenter evaluates different computer vision systems or their variations through a
user study. The definitions and frameworks discussed here are primarily influenced by the
works of MacKenzie [139] and Field et al. [67].

Validity of discovery is the primary concern in any experimental design. The principal
challenge lies in managing the delicate equilibrium between internal and external validity.
Internal validity indicates the extent to which the outcomes observed can be attributed un-
equivocally to the test conditions. External validity refers to the degree to which the results
of the experiment can be extrapolated to other contexts, essentially questioning whether the
effects on user experience observed in the study can be confidently expected to occur under
similar conditions elsewhere.

Experimental Variables

In user study design, broad research inquiries, such as “What impact does System X have
on user experience?”, are distilled into precise, testable hypotheses, such as “System A
positively affects Aspect X.” It is essential to carefully identify and consider all pertinent
experimental variables in this process, ensuring a comprehensive and targeted exploration
of the hypotheses.

Factors (also referred to as independent variables) are manipulated by experimenters to
test hypotheses and elucidate effects. These typically include categorical variables with
distinct levels. For instance, the factor “System” might have levels, such as “System A”,
“SystemB”, etc. Aminimum of two levels per factor is essential for conducting comparative
statistical analyses.

Outcome or response variables (also termed dependent variables) quantify the experi-
ment’s results and are suspected to be influenced by the chosen factors. For instance, the
“System” factor could influence a user experience outcome, such as the error rate.

Measurement scales are pivotal in defining the outcome variable’s resolution and appli-
cable statistical tests. Measurement scales can be categorised as follows: nominal, as in the
case of categorical outcomes, such as users choosing a favourite system from A, B, or C;
ordinal, which involves ordered categorical outcomes, such as users ranking systems A–C
by preference; interval, which refers to a continuous scale with equal intervals indicating
equal distances, such as task completion time; and ratio, an interval scale with a meaningful
zero, such as percentage of correct answers. The classification of scales for self-reported



Acknowledgements 5

data obtained from questionnaire ratings remains an ongoing subject of debate. The prevail-
ing opinion is that self-reported questionnaire ratings should be considered ordinal unless
a verified Likert-Scale questionnaire has been used [67]. Yet, the problematic practices of
treating unverified Likert items or custom questions as interval scales persist in many stud-
ies, often without ensuring that the underlying assumptions of statistical tests have been
met.

Circumstantial factors (for example, participant demographics) may affect experiment
outcomes but are not directly tied to the hypothesis. Randomisation approaches, such as
inviting random participants from the target population, can be used to mitigate circumstan-
tial factors and are advisable when generalisability is the priority, despite the potential to
impact internal validity by adding noise and introducing the risk of overlooking relevant ef-
fects, such as those related to gender or education. Fixed settings that avoid extremes, such
as equal male-female participation or a fixed common display size for the experimental in-
terface, improve internal validity by controlling variability but might limit generalisability
to real-world scenarios.

Confounding factors alter the outcome and co-vary with independent variables, posing
a substantial threat to validity. Consider a study where participants invariably interact with
SystemA first and System B second while performing a demanding task. If System B shows
lower performance, it could be partially due to increasing fatigue rather than issues with the
system. This scenario demonstrates how the order of administering conditions acts as a
confounding factor and misleads the interpretation of results.

Conditions

In most studies, participants are allocated to Conditions, which are combinations of factor
levels. When conditions encompass all possible combinations of factor levels, this consti-
tutes a full-factorial design. Paired with suitable statistical methods, such designs enable the
clear delineation of each factor’s impact on the outcome. Studies in HCI typically limit their
designs to 1–3 factors because of the exponential increase in statistical complexity with the
inclusion of additional factors and levels [139].

Baseline

When evaluating systems, it is advisable to think of them as “treatments” administered to
participants. The inclusion of a baseline condition is essential in the assessment of the ef-
fectiveness of these treatments. Here the treatment system or configuration is absent but
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replaced by a viable alternative, such as a commonly used alternative or the default con-
figuration. For instance, in evaluating a novel spatial navigation technique for handheld
devices, a suitable baseline might be multi-touch navigation, commonly used in everyday
handhelds 2. This comparative approach enables quantifying improvements over the state
of the art and is used in all the author’s studies in this work.

2Refer to a prior study by the author for such a study design [217].
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Chapter 1

Introduction

Machine learning continues to be integrated into numerous computer applications, thereby
extending its influence on society across a diverse range of fields. Given its broad utility, its
deployment can influence decision-making in many domains, including those that are more
sensitive within society. Examples range from predictive policing [149], to healthcare [33],
to social services [116], and many others [223, 34]. These predictors may yield remarkable
accuracy, particularly when trained on abundant data, but many function as black-box mod-
els. Their “black-box” nature can stem from either proprietary closed models or intricate
architectures, such as deep neural networks [190]. This means their internals “are either
unknown to the observer or they are known but uninterpretable by humans” [78]. There-
fore, there is a growing acceptance that they need to be made accountable and capable of
explaining their behaviour in human-understandable terms [205, 231]. There has also been
a scholarly debate as to whether the General Data Protection Regulation (GDPR) necessi-
tates the provision of explanations for automated systems [244, 43]. Whether engineer or
user, insurance company, or regulatory body, all require reliable information about what the
model has learned or why the model provides a certain output. To address this challenge,
much research is being conducted within the domains of explainable artificial intelligence
(XAI) and interpretable machine learning (IML) on developing interpretable models, meth-
ods, and interfaces [78, 152].

However, research within the field largely focuses on computational issues, with a no-
table lack of human subject experiments to verify their effectiveness [3, 52, 147, 53, 240,
170, 162]. There is no consensus on evaluation methods for suggested approaches and
scholars agree that the comparison and validation of diverse explanation techniques is an
important open challenge [3, 52, 147, 53]. The work we present here takes an HCI per-
spective on this challenge and conducts rigid empirical evaluations with user studies. We
focused on the evaluation of explanation techniques for image classification models. We
first review applicable explanation methods and survey existing literature for best practices
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to evaluate them. We then conduct two peer-reviewed studies that investigate the ability of
four explanation types to increase model understanding. They reveal the unexpected result
that example-based explanations are a robust competitor to other explanation methods and
that saliency maps, counterfactual explanations, and automatically discovered concepts are
less effective for images than previously claimed. Based on this, we emphasise the need for
more rigorous studies that include example-based explanations as a baseline. We contribute
a synthetic dataset with known feature importance and a baseline explanation method, both
specifically designed for such evaluations. In addition, we identify usability issues in all
methods and find that users’ cognitive heuristics limit the usefulness of currently available
local explanations. The work presented here contributes to bridging the gap between AI/ML
and HCI communities and establishes more rigorous human evaluation procedures in inter-
pretable vision. The open-source materials, including the Two4Two dataset, study designs,
and code, are intended to support the replication of results and adaptation of the study design
to other explanation techniques.



Chapter 2

Foundations and Literature Review

2.1 Research Questions and Publication

This chapter introduces the interdisciplinary field of explainable artificial intelligence (XAI),
highlighting the empirical evaluation debate and clarifying key terminologies and concepts
essential for the studies presented in later Chapters 3–4. We first present a high-level litera-
ture review, before narrowing our focus to explanation techniques for image classification
to increase model understanding.

Research Questions

• RQ 1—Which explanation methods are suitable for explaining image classifiers?

• RQ 2—Which evaluation approaches have been proposed and discussed across dis-
ciplines in the field of XAI?

• RQ 3—Which study design decisions have researchers made in previous evaluations
with human subjects?

• RQ 4 — What study results (including our own) have been obtained regarding the
ability of explanation techniques to facilitate users’ understanding of image classifi-
cation models?

• RQ 5 — What are the best practices for assessing model understanding of image
classification models in user studies?

We provide a technical review of explanation methods for image classification, addressing
RQ 2 (Section 2.3.) We then derive a taxonomy that describes the main aspects of user
studies in the field of XAI, thereby answering RQ 2–3 (Section 2.5.) We conduct a focused
literature review in chronological order, which covers RQ 4 (Section 2.6) to show how our
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work has advanced the state of the art and relates to other studies. Finally, we answer RQ 5
based on our review, taxonomy, and experience from conducting studies by deriving rec-
ommendations for future studies (Section 2.7.)

Publication The taxonomy shown in Figure 2.8 has been published as an ExSS-ATEC
workshop paper, which has been cited 78 times since its publication. It was presented vir-
tually at the 2020 Annual ACM Conference on Intelligent User Interfaces (IUI).

Michael Chromik and Martin Schuessler. 2020. A Taxonomy for Human
Subject Evaluation of Black-Box Explanations in XAI. in Proceedings of the
IUI workshop on Explainable Smart Systems and Algorithmic Transparency in
Emerging Technologies (IUI). Vol. 2582. http://ceur-ws.org/Vol-2582
/paper9.pdf

Author Contributions The taxonomy in Section 2.5 was jointly developed with Michael
Chromik. Michael Chromik formulated the research idea, concept, and methodology. Mar-
tin Schuessler contributed a literature review that he had conducted individually before start-
ing this work. Paper writing was a shared effort. Martin Schuessler revised and extended
the description of the dimensions after the initial publication. Sections 2.5.3–2.5.3 are still
based on the original publication but have been substantially revised. All remaining sections
in this chapter are unpublished and exclusive to this seminal work.

2.2 Explaining Machine Learning Models

Understanding the mechanisms that lead to the prediction of complex machine-learning
models is extremely challenging. This is problematic, since users, even those who lack
expertise in ML, ought to have the capacity to determine when they should rely on predic-
tions. Several disciplines are currently involved in the effort to solve this challenge.

Machine Learning Interpretable machine learning (IML) commonly refers to studies on
transparent models and algorithms, while explainable AI (XAI) primarily addresses the gen-
eration of explanations for complex, opaque models [190, 20]. Interpretability in machine
learning, as Lipton [134] notes, is not amonolithic concept, rather, it is an effort to ensure im-
portant aspects like fairness, reliability, and trust in different machine learning contexts [52].
This is evident in the goal statement of DARPA’s influential XAI program:

“Enable human users to understand, appropriately trust, and effectively manage
the emerging generation of artificially intelligent partners”—Gunning andAha
[83].

http://ceur-ws.org/Vol-2582/paper9.pdf
http://ceur-ws.org/Vol-2582/paper9.pdf
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The field is characterised by a rapidly expanding literature and a diverse range of technical
solutions claiming to enhance interpretability while lacking empirical validation for this
claim [3, 52, 147, 53, 240, 170, 162]. This work addresses this gap.

Human-Computer Interaction Users’ understanding of systems is a primary research
area in the HCI community, as evidenced by an extensive body of literature. The concept
of mental models, a user’s internal representation of a system [168, 155], is fundamental
to the field and this work. Reflections on the impact of deep neural networks (DNN) on
interpretability can be traced back to as early as 1992 [49]. Even before their prevalence,
research on explanations for improved system understanding was conducted in areas such
as information retrieval [118], recommender systems [91, 44, 122], and context-aware sys-
tems [132, 46]. Studies from this era show that accurate mental models enhance system
interaction efficiency [26, 16, 106] and user satisfaction [44, 122], while inaccurate mod-
els lead to confusion, misconceptions, dissatisfaction, and erroneous interactions [121, 236].
Overestimating a system’s capabilities also adversely affects user interaction [6, 114], poten-
tially resulting in over-reliance [131, 32], decreased vigilance towards system failures [258],
and unrealistic expectations [258].

Social Science and Psychology Explanations are a subject of longstanding interest in
psychology and social science. Miller defines explanation as either a process or a prod-
uct [146]. Explanation, as a process, involves identifying the causes of events and also
functions as a social interaction between an explainer and an explainee, aiming to transfer
knowledge about the cognitive process. Explanation, as a product, represents the outcome
of this process, crafted to address a specific question. In this work, we adopt the product
perspective. The evaluation of explanations involves the explainee’s assessment of an expla-
nation’s adequacy [146]. Research in these fields, involving presenting varied explanations
to participants, reveals that cognitive biases and heuristics often influence preference for one
explanation over another [104]. Key criteria for explainees include consistency with prior
beliefs, simplicity, generalisability, and alignment with current information needs [146].
This suggests that the context of use is crucial in determining an explanation’s effective-
ness. Research on trust in automation further reveals that users’ trust in machine learning
models is potentially influenced by numerous factors [131], which are very challenging to
manage in a study [219].
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Explaining
Image

Classifiers
Interpretable
Classifiers

Prototype
Models

Explaining
Black-Box
Classifiers

Model
Inspection

Feature
Visualisations

Output
Explanation

Concept-
Based

Counterfactuals

Feature
Attribution

Example-
Based

Figure 2.1. Categorisation of explanation types: We categorise relevant approaches us-
ing the taxonomy of Guidotti et al. [82]. A key distinction is whether an approach pursues
inherently transparent systems or seeks to explain a black-box model without fully uncov-
ering the underlying mechanisms [82, 134]. The latter category is subdivided as follows:
output explanation, which involves creating local explanations for individual predictions,
and model inspection, which includes creating visualisation techniques that help to eluci-
date how a model functions internally.

2.3 Explaining Image Classifiers – A Technical Review

Image classification models, such as convolutional neural networks (CNN), assign labels
to images or image regions. They have demonstrated impressive results in computer vi-
sion, with a broad range of applications [179]. Such models are typically trained with large
amounts of labelled images (supervised learning). They are inherently complex and often
learn sub-symbolic patterns devoid of semantic meaning [21, 134]. These properties make
it very challenging for users to understand how they operate. Many different methods are
available to explain them. However, when we began our investigations in 2018, only two
studies had investigated their ability to increase users’ understanding [184, 108]. We set out
to address this research gap. Consequently, we limit our technical review to interpretabil-
ity approaches for image classification but refer the interested reader to reviews covering
additional methods [134, 78, 82, 3, 152]. Figure 2.1 provides an overview of the covered
approaches.
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2.3.1 Example-Based Explanations

Figure 2.2. Example-based explanation: Showing correct and incorrect predictions for
images of squirrel monkeys may help users understand how the system predicts this class
and under which circumstance it is more likely to make a mistake. This illustrative example
was created with real predictions from a visual transformer model [255].

Various methods use samples from the dataset and their corresponding predictions by
the model to generate explanations. The beauty of this approach lies in the decoupling of
the explanation generation from the model’s internal processing, making it applicable to any
model. These model-agnostic approaches are usually easier to implement and compute than
more complex model-dependent methods. However, the real challenge lies in selecting and
presenting the most informative examples in an interface that facilitates understanding. As
Figure 2.2 illustrates, selected samples could highlight similar outcomes, such as images
classified under the same category [33, 31]. They could also highlight a model’s shortcom-
ings by showing where it diverges from ground-truth data [107].

2.3.2 Saliency Maps

Feature attribution methods calculate a relevance score for each feature of an input that is
used for prediction [134]. As shown in Figure 2.3, these scores can be visualised as heat
maps, known as saliency maps, which highlight the most relevant features of an image.
Such “why” explanations are claimed to make it easy for even novice users, to spot unusual
behaviour [128], and build appropriate trust in the system [184]. However, it is important
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(a) Gradient [208] (b) LRP [12] (c) Grad-Cam [202] (d) LIME [184]

Figure 2.3. Saliency map explanations: Different feature relevance explanations for the
same “squirrel monkey” prediction of a ResNet50 model [87]. Red indicates supporting
evidence, while blue indicates contradicting evidence. Different methods for calculating
feature relevance yield different saliency maps. The first three explanations are taken
from Schulz et al. [200]; the last image was generated using LIME [184].

to assess whether the relevance scores themselves, and not just the sample images for which
they are computed, are contributing to the user’s understanding. There are two broad ap-
proaches to calculating relevance scores: gradient-based and surrogate methods [5, 151].

Gradient-Based Methods (e.g. [12, 208, 202, 215, 218, 154]), compute the gradient of
a prediction (e.g., the likelihood of a “cat” label) against input features (such as pixels).
However, as Figure 2.3a shows, vanilla gradient-based saliency maps [208] are not very
informative, which is why several variations of these methods exist. Explanation methods
mainly differ in how the gradient is computed. The works of Adebayo et al. [5] and Molnar
[151] cover the key differences. This work mainly looks at Layer-wise Relevance Propa-
gation (LRP) [12] (Figure 2.3b). Unlike gradient-only methods, LRP governs propagation
through the neural network from the output to the input layer with distinct rules, allowing
for adjustable explanation properties.

An important limitation of gradient-based methods is that some of them partially ignore
the network’s parameters while others can be easilymanipulated [167, 4, 74, 51, 130, 8, 211].
This unfaithfulness to the model has raised concerns about how accurately and truthfully
these methods explain predictions.

Occlusion-BasedApproaches (e.g. [184, 138, 66]), create a local feature relevancemodel
for a prediction. They create perturbations of the input image where some regions are re-
moved. These regions can be rectangular [262] or pixels with a similar colour, called su-
perpixels [184, 138]. Occlusion-based methods obtain predictions for these perturbations to
determine how missing regions affect the model and train a local feature-relevance model
to encode feature relevance. LIME [184] uses a linear model for this purpose, whereas
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(a) Base Image (b) “Unattractive” (c) “Attractive”

Figure 2.4. Counterfactual explanation: A base image used by an attractiveness classifier
to generate counterfactuals via an invertible neural network [212], altering only learned
attractiveness features. This method, faithful to the model’s logic, uncovers biases towards
skin colour and hair. Note: Images were generated for a submission of the author that is
unpublished [213].

SHAP [138] uses Shapely values. The weight assigned to each region can then be used to
create a saliency map, as shown in Figure 2.3d. Surrogate approaches also struggle with
unfaithfulness, as they are vulnerable to attacks [214].

2.3.3 Counterfactual Explanations

Counterfactuals are created by minimally adjusting the features of an input to yield a dif-
ferent prediction [245] (Figure 2.4). Such hypothetical “what-if” examples can help users
understand which features are relevant to a model. While various methods exist for simpler
data types, image counterfactuals are most commonly created with a Generative Adversarial
Network (GAN) [79, 142, 195, 209, 135, 15, 38]. However, GANs may not be faithful to
the model they explain, as they train a separate model to generate explanations, potentially
overlooking relevant features and introducing irrelevant ones in the process. Invertible neu-
ral networks (INN) are a promising alternative for interoperability (e.g. [96, 189, 62, 140,
97, 113]). INNs create counterfactual images by interpolating a sample in classifier space to
change its prediction and then translating this adjustment back to the input space. This pro-
cedure is faithful to the model because the generative function synthesising counterfactual
explanations is the analytic inverse of the forward function used for predictions.

2.3.4 Concept-Based Explanations

Concept-based explanations utilise abstract image attributes (concepts) linked to a prediction
for model explanations (Figure 2.5). Several approaches introduce concepts into the expla-
nation process in different ways. TCAV [108] requires users to manually define concepts
after the model’s training phase and prior to generating explanations. Concepts are mapped
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Figure 2.5. Concept activation explanation: These explanations show which concepts
were involved in a prediction. In this example, taken from Ramaswamy et al. [181], the
prediction is explained as a linear combination of 37 concepts. The authors found that the
number of presented concepts should be limited to a maximum of 32 to avoid overwhelming
users.

to high-level feature activations to generate explanations, and their similarity is determined
by the dot product of the network’s internal activations with a concept vector. Although this
yields semantically meaningful concepts, it does not ensure the model’s reliance on these
for predictions, leading to potentially unfaithful explanations.

Later research used k-means [75] and non-negative matrix factorisation [263] to au-
tomatically discover concepts in trained models, which were presented as superpixels or
prototypes, visualising them as superpixels [75] or prototypes [263]. This automation raises
questions about the semantic value of such concepts. Although Ghorbani et al. [75] affirmed
the consistency of discovered concepts, it is unproven that they are more meaningful than
simpler explanation methods.

Concept bottleneck models (CBMs) [119] are an alternative that introduces concepts dur-
ing training, requiring labelled concepts in training data, but only two datasets currentlymeet
this requirement [246, 14]. CBMs also need training and input data of similar distribution
to function effectively.

2.3.5 Feature Visualisations

Feature visualisations generate synthetic images to illustrate what activates a specific neu-
ral network unit (Figure 2.6). Generation methods use gradient ascent to refine a synthetic
image, maximising targeted unit activation [165]. They try to isolate and highlight the ele-
ments that cause a unit’s response [173], potentially revealing both local and global model
insights. However, a complete understanding of the model is unattainable because of com-
plex unit interactions and the tendency of users to only interpret units that express human-
understandable concepts [24].
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(a) Channel Visualisation (b) Example images

Figure 2.6. Feature visualisation: Visualisations of the patterns (a) that positively activate
unit 400 in layer 40 of GoogLeNet [227] accompanied by maximally activating example
images (b). Images are taken from the appendix of Olah et al. [173].

Figure 2.7. Prototypical explanation: ProtoPNet [39] compares input images to learned
prototypes, calculating a label’s relevance score based on similarity and prototype-label rel-
evance. Summing these scores gives a prediction score, transparently combining prediction
and explanation. The images and scores are sourced from the original study and rearranged
for clarity.
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2.3.6 Prototypical Explanations

Following the taxonomy of Guidotti et al. [82], the methods presented thus far fall into the
category of “explaining black-box classifiers” (Figure 2.1). Another approach is to create
more interpretable classifiers. For images, this can be achieved using image patches as pro-
totypes. For example, BagNet [27] processes image patches separately and applies a linear
classifier to each patch to obtain class evidence. Averaging the evidence produces the final
class probabilities. ProtoPNet [39] dissects images to identify prototypical parts and com-
bines evidence from these prototypes to make a final classification decision (Figure 2.7).
Prototype-based explanations operate on a “this looks like that” analogy, ensuring faithful-
ness as the same prototypes underpin prediction and explanation—although this does not
extend to their saliency maps [253]. However, a semantic gap between latent and input
space similarity may limit their usefulness, as prototypes and input often diverge in appear-
ance [111].

2.4 Necessity of Explanation Evaluation in User Studies

In recent years, scholarly discourse has increasingly noted a gap in rigorous evaluations of
explanation methods [52, 240, 3, 170, 162]. Adadi and Berrada [3] found that only 5% of
reviewed papers evaluated XAI methods and quantified their relevance. Similarly, Nunes
and Jannach [170] observed that a substantial 78% of papers on explanations in decision
support systems omitted structured evaluations, frequently relying on anecdotal “toy exam-
ples.” This trend appears persistent, as recent findings byNauta et al. [162] showed that from
2016–2020, approximately a third of papers relied solely on anecdotal evidence for evalua-
tions, while only one-fifth involved user evaluations. Most evaluations are functional, using
benchmark data or metrics to prove generalisability. This approach is effective for showing
technical feasibility but lacks a formal definition of a correct or best explanation [170].

Kim et al. [111] showed a weak link between functional interpretability metrics and
participant model understanding. This discrepancy highlights that even a robust formal
foundation does not inherently translate to any practical utility or an increase in user under-
standing [52]. Currently, user studies stand as the most dependable method to incorporate
human behaviour in the evaluation of explanations.

To date, they are rare, possibly due to the difficulty in creating realistic settings while
avoiding overburdening participants [52, 240, 3, 170]. Their value is undeniable: Some
prior studies showed that explanations may help find bugs, biases, or spurious correla-
tions [123, 184, 5]. Others raised questions about the effectiveness of explanations in en-
hancing model understanding [5, 108], trust calibration [32, 103, 31, 41], and error under-
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standing [203, 5], highlighting the need for human experiments to validate intelligibility
claims.

2.5 A Taxonomy for XAI User Studies

We employed the conceptual-to-empirical approach [166] to systematically identify suit-
able study designs for evaluating explanations, avoiding the need for an exhaustive review
of each study, and derived a taxonomy. This taxonomy was refined through an analysis of
52 publications, selected via a structured literature review using the empirical-to-conceptual
method (search criteria and references detailed in Appendix B). We synthesised categories
from previous XAI studies and integrated them with key empirical study literature. The fi-
nal taxonomy, illustrated in Figure 2.8, covers the main features of different study designs.
Of course, ”there is no standard design for user studies that evaluate forms of explana-
tions” [170]. However, this taxonomy provides guidance for researchers (including our-
selves) to systematically plan studies. In the following sections, we categorise key aspects
of explanation evaluation with human subjects into task-related, participant-related, and
study design-related dimensions. (Note that this categorisation builds upon and extends the
terminology introduced on pages 3-5.)

2.5.1 Participant Dimensions

Participant Types Mohseni et al. [150] distinguish between AI novices (typically end-
users), data and domain experts, and AI experts. This distinction is vital as it impacts other
task-related and participant-related dimensions. For example, Doshi-Velez and Kim [52],
referencing the work of Neath and Surprenant [163], note that participants’ expertise in-
fluences their cognitive strategies. However, studies by Kaur et al. [103] and Borowski et
al. [25] suggest that AI expertise may not significantly affect the ability to understand and
evaluate explanations. Yet, Feng and Boyd-Graber [66] found notable differences between
experts and novices in their trust and use of explanations.

Recruiting Method and Number of Participants Recruiting difficulty tends to increase
with the level of participant expertise needed [52], affecting both the suitable recruitment
methods and the number of participants feasible for the study. While crowdsourcing plat-
forms are effective for enlisting large numbers of novices, domain or AI experts are harder
to find here. They need to be individually contacted and invited to, typically smaller, online,
lab, or field studies.
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Abstraction Level

Human-grounded

Application-grounded

Human Involvement

Feedback

Feedforward

Task Type Input Explanation O utput

Verification x x? x

(Binary) Forced Choice x n? x

Forward Simulation x x ?

Counterfactual Simulation x / ? x x / x

Bias Detection x x x

Model-in-the-loop x x x?

Annotation x ? x

Information given to Participant

Evaluation Level

Test of Satisfaction

Test of Comprehension

Test of Performance

Participant Foresight

Intrinsic

Extrinsic

Participant Recruiting

Field Study

Lab Study

Online Study

Crowd-sourcing

Participant Incentivation

Monetary

Non-Monetary

Number of Participants

Low

High

Intended Explanation Goal

Transparency Persuasiveness Satisfaction

Scrutability Effectiveness Efficiency

Trust Education Debugging

Study Approach

Qualitative

Quantitative

Mixed

Participant Type AI Domain

(AI) Novice User low low

Domain Expert low high

AI Expert high low

Level of Expertise

? = information inquired of participant

Treat. Combination

Single Explanation

With and Without Explanation

Altern. Explanation

Altern. Explanation Interface

Treat. Assignment

Within-subjects

Between-subjects

Figure 2.8. XAI User Study Taxonomy: Preliminary taxonomy of human subject evalua-
tion in XAI based on the conceptual-to-empirical approach.

Participant Foresight Narayanan et al. [161], suggest two settings based on the antici-
pated impact of participant foresight on study outcomes. In an intrinsic setting, participants,
generally novices, have similar levels of knowledge and rely solely on the information pro-
vided in the study. This greatly benefits internal validity. In contrast, an extrinsic setting
allows for the use of additional, external knowledge, such as data domain or machine learn-
ing expertise. This can help participants to evaluate explanation quality or identify model
inaccuracies, but it poses a risk to internal validity.

Incentivisation According to Sova and Nielsen [216], choosing the right incentives for
a study depends on study length, task difficulty, and required participant expertise. Stadt-
müller and Porst [221] suggest using a monetary incentive [221], but non-monetary incen-
tives, such as gifts for paid employees are also effective [216, 178]. Porst and von Briel
[178] found that participants might join a study out of altruistic motives, due to interest,
or personal incentives, such as a promise made to the experimenter. Esser [61] points out
that the combined benefits of all incentives should outweigh the perceived costs. Special
incentivisation for high-quality answers is needed in crowdsourcing experiments, to prevent
participants from rushing through them, potentially leading to less useful answers.
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2.5.2 Study Design Dimensions

Study Approach and Treatment Combinations Study designs may adopt a qualitative,
quantitative, ormixed-methods approach. In such studies, experimenters assign explanation
methods as treatments to groups of participants. Based on our review and the work of Nunes
and Jannach [170], four combinations are common. The first, single treatment provides
no baseline treatment. The second, with and without explanation, establishes a baseline
treatment were no explanations are provided. The third, alternative explanation, presents
different explanations while keeping the user interface consistent. Finally, the alternative
explanation interface method changes the user interface across treatments. It is important
to note that the choice of explanation methods is influenced by the underlying model’s input
and output data, the specific machine learning problem it addresses, and its architectural
design.

Treatment Assignment Study designs can also differ in their method of assigning treat-
ments. Between-groups designs study the differences in understanding between groups of
participants, each usually assigned to one treatment. In contrast, within-subjects designs
study differences among individual participants who are assigned to multiple treatments.

2.5.3 Task Dimensions

Human Involvement Mohseni et al. [150] distinguish two main ways in which partici-
pants take part in testing explanations. The first, a feedback approach, involves participants
assessing given explanations. Their feedback can be explicit, such as direct comments, or
implicit, such as selecting one explanation over another. The quality of explanations is then
assessed based on this feedback. The second, a less common feed-forward approach, does
not involve presenting existing explanations. Here, participants create examples of what
they consider reasonable explanations, which then act as benchmarks for algorithmic expla-
nations.

Abstraction Level Doshi-Velez and Kim [52] split human evaluations into two types.
Application-grounded evaluations happen in real-world settings and usually require partic-
ipants with high expertise. Here, the value of explanations is measured by how well they
fit the task at hand and key performance indicators, such as trust in decisions made or the
count of cases handled. This setting offers high external validity but makes it difficult to
ensure internal validity because of the many factors affecting the outcome. Obtaining field
access is the biggest challenge for these experiments, making them less common.

Human-grounded evaluations, involve simplified or abstracted versions of application
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scenarios, naturally reducing external validity. Internal validity is improved in this setting
because it allows researchers to control more of the factors that could change the outcome.

Explanation Goals Explanations have various intended purposes, and the study scenario
must match them to ensure the experiment’s validity. Participants must receive appropriate
guidance and incentives within the scenario to align with these objectives [239]. Drawing
from earlier work [232, 170, 247], we identify nine primary explanation goals:

• Transparency: Make the system’s workings clear.

• Scrutability: Allow users to challenge the system upon errors.

• Trust: Enhance or calibrate users’ trust in the system.

• Persuasiveness: Convince users to act.

• Satisfaction: Improve user experience and ease of use.

• Effectiveness: Aid informed decision-making.

• Efficiency: Accelerate decision-making.

• Education: Enable user learning and extrapolation.

• Debugging: Assist in identifying and fixing system flaws.

In the case of multiple goals, their dependencies may be complementary, contradictory,
or even unknown. For example, studies have shown that higher transparency can lead to
misaligned trust [32], reduced trust [220], and lower satisfaction [31]. Random explana-
tions, on the other hand, which are harmful to transparency, have been found to increase
users’ trust in a model (text-classier: [219, 124], image-classifier: [41]).

Evaluation Level A study requires a measurement to determine whether the explanation
goals have been achieved. Hoffman et al. [92] describe three levels and corresponding met-
rics for explanation evaluation. Tests of performance measure the resulting human-XAI
system performance. Tests of satisfaction focus on participants’ self-reported explanation
satisfaction and their perceived understanding of the system but cannot confirm the actual
depth of understanding. Tests of comprehension evaluate participants’ mental models and
understanding of the system, typically through prediction tasks and generative activities. In
this work, we set our focus on the latter since human understanding is the central element
of definitions of interpretability found in the literature:

“To interpret means to give or provide the meaning or to explain and present in
understandable terms some concepts” — Gilpin et al. [78].
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“In the context ofML systems, we define interpretability as the ability to explain
or to present in understandable terms to a human”—Doshi-Velez and Kim [52]

“Interpretability of a model: the degree to which an observer can understand
the cause of a decision” — Miller [146] based on Biran and Cotton [20].

In line with our HCI perspective, we define our metric of interpretability as:

Model Understanding: The degree of alignment of the user’s mental model
with the machine learning model’s operational processes. — Own definition

This definition addresses the explanation goals of transparency, scrutability, and effective-
ness but does not consider the potentially conflicting goals of trust, persuasiveness, and
satisfaction. This strict definition allowed us to create study designs with high validity,
reproducibility, and adaptability while avoiding complex interactions between factors.

Task Type

We base our categorisation of tasks on the information provided to participants [52, 150]
and discuss their ability to measure model understanding in more detail.

Verification Tasks involve participants reviewing the input, explanation, and output and
then rating their satisfaction with the explanation.

Forced choice tasks build on this by having participants select the best explanation from
multiple options [33, 31]. Both verification and forced choice mainly measure satisfaction
with explanations, not model understanding.

Forward Simulation Tasks assess participants’ ability to predict a system’s output from
given inputs and explanations [134]. This method was initially used to test the explainability
of search engines and is based on the idea that a high model understanding should enable
accurate predictions of its behaviour [160]. In direct forward simulation (direct fwd. sim.),
participants predict a system’s output without explanations for the current input, relying
simultaneously on their understanding of relevant and irrelevant features and their combi-
nation [142]. Of the tasks presented here, it is the most comprehensive measure of model
understanding but also the most challenging. Proxy forward simulation (proxy fwd. sim.),
allows access to the explanation of the current input [31, 203]. This leaks some informa-
tion about the prediction, but the task often remains challenging given the complexity of the
non-linear feature processing of neural networks. In classification models, forward simula-
tion can be compounded by a confirmation bias when the correct label appears obvious and
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explanations are provided, leading participants to anticipate that the model is going to yield
the correct prediction [111].

Annotation Tasks require participants to create a suitable explanation for a given input
and output of a model. Assessing model understanding involves verifying the correctness
of the provided explanation, which is particularly challenging in the case of images.

Counterfactual Simulation Tasks offer participants an input, an explanation, an output,
and an alternate output and ask them to generate the necessary input changes to obtain the
alternate outcome. This requires identifying which features could influence the model’s
prediction when added or removed. These tasks assess similar aspects of a participant’s
mental model as proxy forward simulation tasks. Manual creation of image counterfactuals
is time-consuming and has not yet been applied in studies focusing on the understanding of
image classification models.

Model-in-the-Loop Tasks show users the model’s prediction for an input, requiring them
to follow it or reject it as untrustworthy [31, 41]. They provide strong external validity by
testing participants’ ability to spot errors. However, there are several internal validity issues.
Results for participants with high data domain knowledge provide no insights, as they can
select the correct answer without relying on a prediction or explanation. Participants may
also misjudge their domain expertise due to the Dunning-Kruger effect, influencing which
prediction they accept [196]. Lastly, Kim et al. [111] showed that explanations introduce
a confirmation bias, convoluting the measurement of “model understanding” and “trust” in
one task.

BiasDetectionTasks ask participants to determinewhether amodel has biases by analysing
inputs, explanations, and outputs [128, 184, 5, 108]. For simplicity, we refer to each relevant
feature as a bias in this work 1. A correct mental model of feature relevance is needed to
fulfil this task. However, whether users understand how feature combinations influence the
prediction is not assessed. This task is easier thanmodel-in-the-loop and forward-simulation
tasks but has lower external validity, as it provides a less comprehensive measure for model
understanding. In proxy bias detection (proxy bias det.), model understanding is measured
by asking participants whether a model is fit for deployment [4]. The underlying assump-
tion is that participants would not deploy a biased model. However, in our pilot studies, we
found that this assumption may not be warranted as some participants did judge a model
“good enough” for deployment even though they were aware it was biased. In direct bias

1Note that bias has a more complex yet overlapping meaning in ethical and responsible AI.
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detection, participants need to directly identify biases, for example, by rating feature rele-
vance [108]. This task poses a challenge for internal validity since it requires controlling
relevant and irrelevant features to allow accurate validation of participants’ answers.

2.5.4 Dataset

In image classification, certain tasks may not be a good fit for every dataset.

Unmodified Images Natural images [108, 31, 203, 25, 111, 181], especially those depict-
ing animals [107, 5, 79, 7], are the most common choice for user studies. Model-in-the-loop
tasks require a dataset where assigning the correct label is challenging without the help of
a model, even for participants with domain knowledge. For images of everyday objects or
animals, this may not be the case. Domain-specific datasets, such as medical imagery [142],
can raise the level of difficulty but may limit the availability of participants. Hence, they
are less commonly used.

Modified Images Direct bias detection requires a model with ground-truth feature impor-
tance [257], which effectively excludes unmodified images because they contain too many
relevant features. A common approach is to deliberately bias natural image datasets to in-
troduce a single artificial bias, such as a watermark [108] or biased background [184]. The
BAM dataset by Yang and Kim [257] is designed to help with this process. It overlays a
labelled foreground object on top of a natural background image while introducing corre-
lations between the foreground and background. However, such modified images appear
artificial, eliminating a major advantage of natural images for user studies. For example,
when a dog is randomly placed on a bamboo forest background participants can easily infer
that the background is a relevant feature. Furthermore, this modification approach is limited
to introducing a single feature with known relevance, leaving other relevant and irrelevant
features unaddressed. This is problematic since when participants identify irrelevant fea-
tures as relevant, it indicates a lower level of model understanding.

Synthetic Images Synthetic datasets offer better control over features, improving internal
validity. CLEVER [101] and CLEVER-XAI [11] are examples of such datasets, but they
still introduce too many features with control over their presence but not their relevance.
This makes them ill-suited for bias detection user studies. We created the Two4Two dataset
to fill this gap. Its data-generating factors can be correlated with the target class, thereby
creating arbitrarily strong biases. After model training, we can verify feature relevance by
removing each bias individually and quantifying prediction changes. The dataset and its use
in one of our studies are detailed in Chapter 4.
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2.6 Our Studies in Relation to the Evolving State of the Art

In this section, we systematically review studies, including our own, that measure the impact
of explanation methods on users’ model understanding of image classifiers. A structured
overview in Figure 2.9 organises studies by their publication date (after peer review). We
show the contribution of each study to the field in chronological order. This allows us
to draw a broader conclusion about the most effective explanation methods and critically
examine common methodological limitations to identify future best practices for research
(Section 5). We acknowledge the relevance of studies that assess explanations on other
data types but our focus is exclusively on images, as we assert that results do not generalise
between data types.

2016 — Evaluation of Surrogate-Based Feature Attribution Ribeiro et al. conducted
a user study (N = 27) with a binary classifier distinguishing wolves from huskies, biased
towards snow in backgrounds [184]. In the within-subjects study, an example-based expla-
nation, which was always shown first, served as the baseline, showing eight correct and two
incorrect predictions. In the treatment condition, the same examples were supplemented
with LIME saliency maps. The measure of success was whether participants mentioned
the background as a feature (direct bias detection task, chance of random success approx.
50%). While only 12 of 27 participants mentioned the bias in the baseline, 25 mentioned
it after the treatment, indicating LIME benefited users’ model understanding. The study
design could be strengthened by randomising the sequence of explanations shown, reduc-
ing the risk of ordering effects. Furthermore, ensuring that participants are not repeatedly
exposed to the same images could help isolate the impact of the explanation technique from
increased familiarity with the images. Finally, testing the results for statistical significance,
such as using a McNemar test, would enhance the robustness of the findings.

2018—Evaluation of Gradient-Based Feature Attribution Kim et al. [108] conducted
a similar direct bias detection study (N = 50) with two gradient-based feature attribution
methods [226, 215]. They intentionally introduced bias into the data by imprinting the class
label on each image, enabling them to train two models: one that exploited this bias and the
other that disregarded it. The study employed a mixed design where participants interacted
with one model as a between-groups factor and engaged with both explanation techniques
as a within-groups factor. They assessed the importance of the biased feature versus the
rest of the image on a 10-point scale (main dependent variable) and their confidence on a
5-point scale. Rating the bias higher than the rest for the biased model indicated correct
model understanding. The reverse was true for the unbiased model. Participants performed
marginally but not significantly better than the calculated chance level of success (50%),
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Figure 2.9. Extensive comparison of reviewed studies: Example-based explanations, of-
ten regarded as mere baselines, are surprisingly difficult to surpass.



30 Our Studies in Relation to the Evolving State of the Art

suggesting that explanations barely increased model understanding. No significant differ-
ence in confidence between correct and incorrect answers was observed, indicating that
saliency maps may be more confusing than helpful.

2020—Study I: Evaluation of Gradient-Based Feature Attribution Both prior studies
focused on bias detection using classifiers with simple biases, such as background [184] or
image captions [108]. Although insightful, these studies were secondary to the main objec-
tives of their publications. Our first study (N = 64), detailed in Chapter 3, set the evaluation
of an explanation technique as its main objective. It focused on saliency maps generated by
LRP [12] and pioneered the challenging task of direct forward simulation in interpretable
vision. Participants predicted whether a CNN would recognise a specific object in an image
(50% chance of random success.) The proportion of correct answers served as the main de-
pendent variable. Performance was compared to an example-based baseline. In our design,
the main factor was whether example images were supplemented with saliency maps. It
also included classification score visibility as a second factor in a 2x2 full-factorial between-
groups design. Consequently, half of the participants were shown supplementary saliency
maps, while others were not, and half of each received detailed CNN classification scores.
Counterbalancing task image sequences avoided ordering effects. Overall, attribution meth-
ods did not substantially increase participants’ model understanding. However, they gave
rise to a very small, but significant, performance improvement. Classification scores did
not increase model understanding. We asked participants to identify relevant and irrelevant
features to justify their predictions. Upon analysis, we found that the saliency maps caused
the participants to concentrate on the highlighted features. However, it is uncertain whether
this caused them to overlook other important attributes not emphasised by the maps. This
observation suggested that it would be beneficial to enhance our study design using a model
with known but subtle feature importance, enabling direct comparison with actual biases.
This was implemented in Study II.

2020 — Evaluation of Example-Based Explanations Buçinca et al. [31] conducted two
studies comparing inductive and deductive example-based explanations. The first study
(N = 10) had a within-subjects design where participants used the input, the ground truth,
and an explanation for a proxy forward simulation task (50% chance of random success.)
The proportion of correct answers served as their main dependent variable. No significant
differences in model understanding were measured. The second study (N = 23) used a
between-groups design and a model-in-the-loop task (50% chance of random success), with
explanations supplementing the model output instead of the ground-truth label. In addition,
the study introduced two additional baseline conditions. In the initial baseline, participants
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viewed only the input, assessing their performance without the model’s help. The second
baseline added the model’s prediction, evaluating their performance with model assistance.
This design effectively quantifies the impact of model assistance on performance and the ex-
tent to which explanations contribute to model understanding, as measured by the resulting
incremental performance increase. Displaying predictions resulted in a significant perfor-
mance improvement. Both explanation techniques increased performance significantly over
both baselines. Since there was no significant difference between the two techniques, this
study indicated that both example-based explanation techniques equally increased users’
model understanding.

2020 — Evaluation of Perturbation-Based and Gradient-Based Feature Attribution
Techniques The second study2 by Shen and Huang [203] (N = 105) used a variation of
a proxy forward simulation task and a between-groups design. Participants were told that
the model’s prediction was incorrect and were given five possible labels that the model
might have falsely predicted (chance of random success 20%). The proportion of correct
answers served as their main dependent variable. In the baseline condition, participants
were only shown the input image. The three treatment conditions each displayed a dif-
ferent saliency map, generated using either extremal perturbations [68], Grad-Cam [202]
or SmoothGrad [215]. These explanations were detrimental to participants’ performance.
Consequently, this study concluded that feature attribution explanations were harmful to
model understanding.

2020 — Evaluation of Bug Detection Capabilities of Gradient-Based Feature Attri-
bution The study by Adebayo et al. [5] (N = 54) used a proxy bias detection task. Par-
ticipants used a 5-point scale to rate whether they would recommend selling a model to
an external customer. Since the rating scale’s midpoint was marked as “unsure/maybe”, it
measured confidence but not success 3. This rating was the main dependent variable. In this
within-subjects design, participants were shown saliency maps generated with the vanilla
gradient [208], Integrated Gradients [226] or SmoothGrad [215]. They viewed these expla-
nations for five models, four of which had bugs. The baseline model was correctly trained
and received standard input images. The first faulty model was trained on random labels,
leading to the learning of incorrect features. The second was biased by spurious correla-
tions in its training data, akin to the approach by Ribeiro et al. [184]. The final layer of the
third faulty model was randomised, hindering proper feature combination. The fourth faulty
model was correctly trained on out-of-distribution images, resulting in a lack of relevant fea-

2We do not review the first study as its design is less elaborate and showed similar results.
3Ratings could be converted to a measure of success, but the results were not analysed this way.
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tures for classification. Significance in differences of ratings across conditions was assessed
using a Wilcoxon signed-rank test. It was complemented by paired t-tests assessing differ-
ences within participants under different model conditions 4. Participants were significantly
less likely to recommend the faulty models, except for the out-of-distribution model, which
received similar ratings to the correct model. Observations during the study showed that
participants paid little attention to saliency maps and instead focused on predictions. Fur-
thermore, an analysis of saliency maps showed that they were similar for both correct and
incorrect predictions, which led the authors to question the usefulness of saliency maps. A
baseline condition without saliency maps could improve this study design and substantiate
this conclusion.

2021 — Evaluation of Exemplary-Based and Synthesised Feature Visualisations In
both studies by Borowski et al. [25], participants compared two images to determine which
was more likely to activate the network (chance of random success 50%). The proportion
of correct answers served as the main dependent variable. Although the authors classify
their task as a direct-forward prediction task, it is important to clarify that participants pre-
dicted the activation of a hidden layer, not the output layer. In the first study (N = 10),
three conditions were tested: random guessing with no information provided, example-
based explanations displaying minimally and maximally activating images for a feature,
and synthetic feature visualisations by Olah et al. [173]. This rigorous design included ran-
dom guessing to ensure that task images did not have a bias leading to a success rate other
than random chance 5. Example-based baseline explanations improved model understand-
ing compared to random guessing and synthetic visualisations. The result was unexpected
as example images were included as a baseline, not a treatment. In the second study (N =
23), random guessing could be removed safely, and three factors were added: participants’
machine learning expertise (Lay, Expert), number of examples, and presentation scheme
(Max1, Max9, Min+Max1, Min+Max9). Schemes varied in the number and types of exam-
ples that were presented: one maximally activating example (Max1); one minimally and one
maximally activating example (Min+Max1); nine maximally activating examples (Max9);
and nine minimally and nine maximally activating examples. This refined design confirmed
that example-based explanations lead to higher model understanding than feature visualisa-
tion, even across various levels of participant expertise. This result aligns with the findings
of Kaur et al. [103], which suggest that expertise does not significantly influence the effec-
tiveness of explanations, contrary to common belief. Additionally, the study demonstrated

4A Friedman test could provide a more robust and comprehensive analysis, as it is better suited to handling
the repeated measures design and allows for the analysis of multiple factors and their interactions.

5The main author clarified this upon request.
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that providing more examples correlates with improved model understanding. From our
perspective, this study further indicates that example-based explanations must be included
as a baseline whenever possible.

2022 — Study II: Evaluation of Example-Based, Concept-Based, and Counterfactual
Explanations Our second work, detailed in Chapter 4 uses a direct bias detection task.
Participants evaluated five attributes as either relevant or irrelevant (with a 50% chance of
random success). The number of correct answers served as the main dependent variable.
To address the need for a model with known feature importance, we propose a synthetic
dataset, Two4Two, depicting two abstract animals. It allowed us to bias an invertible neural
network (INN) arbitrarily. We designed a custom example-based baseline explanation tech-
nique that allows users to inspect all attributes that potentially predict the target class. An
initial study (N = 50) with a within-subjects design used only this technique. It confirmed
that identifying the model’s main feature and the shape bias is relatively easy while finding
the colour bias is difficult. The main study (N = 240) used a between-groups design. It
compared our baseline against two state-of-the-art explanations: automatically discovered
concepts [263] and faithful counterfactual interpolations generated with an invertible neural
network. Surprisingly, no method outperformed our baseline, while concept-based expla-
nations performed significantly worse. Even though counterfactuals were more helpful in
discovering the strongest bias in the model, some participants rated the relevance of the
background incorrectly, as slight changes in the interpolations were still sufficiently salient
to be considered relevant.

This work builds on the methodological improvements of Study I and uses an even more
rigorous study design. In addition to these findings, this work has contributed a benchmark
dataset, benchmark model, and benchmark explanation technique. Section 4 outlines these
findings and contributions in greater detail.

2022 — Evaluation of Counterfactuals and Feature Attribution The study (N = 118)
conducted byMertes et al. [142] used a proxy forward simulation task and a between-groups
design. Participants predicted whether a model would assign the label Pneumonia to an X-
ray image (the chance of random success was 50%). The proportion of correct answers
served as the main dependent variable. Task images were supplemented with a slider. In the
first condition, moving the slider created a linearly interpolated counterfactual image. The
two feature attribution conditions overlaid the image with a saliency map either generated
with LIME [184] or LRP [12]. The results show that model understanding was significantly
higher with counterfactuals than with the feature attribution methods. This study did not
consider an example-based explanation but chose saliency maps as their baseline.
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2023 – Evaluation of Concept-Based and Example-Based Explanations The study (N
= 125) conducted by Ramaswamy et al. [181] evaluated concept-based explanations in three
variations, using 8, 12, or 32 concepts and example-based explanations as the baseline. Con-
cepts were generated using the Concept Bottleneck Model by Koh et al. [119]. Participants
used each explanation technique to predict which of four abstract labels would be assigned
by the model (within-subjects design, chance of random success: 25%.) This task is a
crossover between direct and proxy forward simulations. Participants first had to select the
concepts present in the task image. If this selection was correct, the concept-based expla-
nation would reveal the correct answer by assigning the highest score to the correct label.
The proportion of correct answers served as the main dependent variable. The results show
that model understanding did not differ between example-based explanations and concepts,
while participants were slower in using concepts. However, no assessment of statistical
significance is reported.

2.7 Best Practices for XAI Human Evaluations

As demonstrated in the previous section, study designs in computer vision have significantly
advanced over time. We propose several best practices based on our experiments and exten-
sive literature review, to further enhance the rigour and reliability of future studies, ensuring
that they are aligned more closely with accepted practices in HCI and the empirical sciences.

Clear Explanation Goal Researchers should clearly define the explanation goal their ex-
periential hypothesis targets from the outset of their studies. All design decisions need to
align with this focus. All methods should be treated equally and fairly. For example, they
must be presented in a similar fashion and with a comparable amount of visual information.

Focus on Actual Challenges We recommend focusing on model understanding or build-
ing appropriate trust in a model, which are themes for grand research. While increased user
satisfaction and a method’s persuasiveness are important, they are no measure of model
interpretability. As such, they may not advance the goal of making AI more fair or ethical.

Participants Participants should be placed in a context where the evaluated explanation
goal matters and is relevant to them. Application-grounded evaluations often naturally pro-
vide such a context. Human-grounded evaluations are a valuable alternative for researchers,
such as ourselves, who have limited field access or concerns about internal validity. How-
ever, careful attention is crucial when setting the context, particularly when preparing par-
ticipants for the experiment. Click workers trying to finish another 2$ task with unclear
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instructions may choose to just move on to the next task quickly rather than caring how an
image classifier works. The Appendix D.1 and D.6 provide details on our instructions and
screening mechanisms, which may serve as a source of inspiration.

Preregistration and Statistical Rigour A statistical analysis plan should be finalised be-
fore any participant engagement and, ideally, automated for execution after data collection.
This pre-emptive clarity prevents methodological shortcomings, such as inappropriate mea-
surement scales, conditions, or significance tests. Universities often offer statistical consul-
tation to vet study designs and analyses in advance. Additionally, and whenever possible,
finalising and preregistering6 your study protocol is highly recommended.

Mixed Methods Gathering qualitative data along with quantitative data offers consider-
able benefits. This aids the researcher’s understanding of the participants throughout the
experiment and can be used as an additional validity check. Moreover, it also provides
deeper insight into participants’ reasoning with explanations.

Baseline Comparison We recommend a comparative study design with several alterna-
tive explanations. As we have shown in our review, omission of a baseline may lead to
limited empirical insight ([108, 5]), while including one can lead to unexpected but insight-
ful results (Study I–II, [25].) One evaluated method should serve as a reasonable baseline;
we suggest example-based explanations for this purpose. We encourage the community to
take on the challenge of surpassing our simple example-based method presented in Study II.

6Example of a preregistration: https://aspredicted.org/blind.php?x=/62X_15J

https://aspredicted.org/blind.php?x=/62X_15J




Chapter 3

Evaluating Saliency Map Explanations
for Convolutional Neural Networks: A
User Study

3.1 Research Questions and Publication

In this chapter, we report in detail on our Study I, an online between-group user study de-
signed to evaluate saliency maps (generated with LRP [12]). We measured model under-
standing by asking participants whether the model would correctly predict labels for 14
images (direct forward simulation). In a 2x2 design, the presence and absence of saliency
maps and CNN prediction scores served as our two independent variables.

Research Questions

• RQ 6—Do saliency maps allow users to develop a better understanding of how the
CNN model classifies a class of images?

• RQ 7— Do scores influence the participants’ ability to predict the system outcome
on the task images?

• RQ 8 — When saliency maps are present, do users pay attention to features differ-
ently?

We answer all research questions with the user study. Our results indicate that when
saliency maps were available, participants answered correctly more frequently than when
they were absent (60.7% vs. 55.1%, p = 0.045). However, the overall performance was
generally low even with the presence of saliency maps. Our data also indicates that saliency
maps influenced people to notice saliency-maps-features. However, it is unclear whether

37



38 Research Questions and Publication

such explanations deter them from considering other attributes that are usually not high-
lighted by saliency maps.

Contributions

• The first empirical evaluation that compares example-based to feature-attribution ex-
planations.

• A more rigorous comparative study design in comparison to prior work.

• Demonstrating that forward simulation is a comprehensive but challenging task for
measuring model understanding.

• The finding that feature-attribution methods provide little benefit for model under-
standing over simple example-based explanations.

• Findings about the limitations of saliency maps and local explanations in general.

• The finding that prediction scores do not benefit model understanding.

• The finding that saliencymaps can help participants to notice localised saliency-maps-
features, but also draw them away from considering general attributes that are usually
not highlighted.

Publication This study has been published as a full paper at the 2020 Annual ACM Con-
ference on Intelligent User Interfaces (IUI)1. At the time of writing, it has been cited 219

times in the four years since its publication.

Ahmed Alqaraawi, Martin Schuessler, Philipp Weiß, Enrico Costanza, and Na-
dia Berthouze. 2020. Evaluating SaliencyMap Explanations for Convolutional
Neural Networks: A User Study. In Proceedings of the 25th International Con-
ference on Intelligent User Interfaces (IUI). ACM, 263–274. doi: 10.1145/3
377325.3377519

The sections of this chapter are taken from the original publication. However, to avoid
repetitions, the abstract, introduction, related work section, and conclusion have been re-
moved. Their contents are covered in significantly more detail in Chapter 1–2 and 5.

Author Contribution The study apparatus is the contribution of Ahmed Alqaraawi (in-
terface implementation, model training, and provisioning of explanation techniques). Once
aware that Ahmed Alqaraawi, and Martin Schuessler each separately planned a user study

1A paper presentation had been scheduled, but the conference fell victim to the COVID-19 Pandemic:
https://iui.acm.org/2020/index.html

https://doi.org/10.1145/3377325.3377519
https://doi.org/10.1145/3377325.3377519
https://iui.acm.org/2020/index.html
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evaluating saliency maps, Enrico Costanza suggested that they join their efforts. He closely
supervised the entire process and contributed to all aspects of this work. Martin Schuessler
refined the study design and interface. He also conducted the data analysis.

In a series of pilot studies, Martin Schuessler compared whether saliency maps gener-
ated with LIME [184] or LRP [12] are more informative to users, identifying LRP as the
evaluation candidate for this study. Martin Schuessler and Ahmed Alqaraawi designed an
example-based baseline explanation method that showed correct and incorrect predictions.
During the study, Ahmed Alqaraawi and Enrico Costanza handled participant recruitment
and data collection. Martin Schuessler and Ahmed Alqaraawi worked on the qualitative
analysis. Paper writing was a shared effort.

3.2 User Study Design

We designed a between-group online study to evaluate whether saliency maps can help users
understanding of a highly complex CNN used for multi-label image classification. In the
multi-label image classification problem, an image can contain multiple objects. For ex-
ample, the assignment of the labels “horse, train” is considered correct if both, a horse and
a train are visible in the image. We choose this problem because in this context, saliency
maps have the potential to highlight specific parts of the image that correspond to one label,
as well as parts that correspond to alternative labels.

The study included two independent variables that varied between groups, with a full
factorial design. Both were related to the amount of information shown to participants:
presence of saliency maps and presence of classification scores.

A screenshot of the experimental setup is shown in Figure 3.1. In the following sections,
we lay out a more elaborate description of the study. At this point, it is essential to point out
that we needed to strike a balance between the number of participants, the duration of the
study and the variation of experimental factors.

3.2.1 Model and Evaluated Methods

Dataset, CNN Model Architecture and Training

Various public datasets, algorithms and configuration options exist for the multi-class image
classification problem. We used the PASCAL Visual Object Classes (VOC) dataset (19714
images), because of its popularity, and its limited number of classes (20).

Additionally, we used theKeras library for Python, starting from an existingKerasmodel
trained on the ImageNet dataset [45], utilizing the VGG16 architecture [208].We then fine-
tuned the model on the train-val part of the PASCAL VOC 2012 dataset [64], achieving an
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Figure 3.1. The interface: A demonstration of examples and questions are displayed in the
Saliency-map and Score condition

Average Precision (AP) score of 0.91 on the training-set and 0.73 on a the validation-set.
On a hold-out test-set (the PASCAL VOC 2007 test data [63]), the AP was 0.74. We did
not train the model to reach state of the art performance. This was an intentional design
choice to understand how explanation techniques could facilitate user understanding about
the strengths and limitations of the model.

Saliency Maps and Scores Generation

A variety of algorithms have been proposed for generating saliencymaps (cf. Section 2.3.2).
In our pilot studies, we investigated two popular implementations: LIME [184] and LRP [12].
With LRP, saliency maps are not restricted to super-pixel patches but highlight contours of
objects, which was preferred by most of our pilot study participants. For this reason and to
simplify our setting, we chose to focus on the LRP algorithm only. Concretely, we used the
α-β propagation rule [12] with α = 2 and β = 1. Figure 3.2a shows a true positive (TP)
example, where the model correctly predicts a train. The saliency map suggests that the
red part of the image containing the rail supports the classification of this image as a train.
Figure 3.2b shows a false positive (FP) example where the system falsely predicts a train.
The red part of the image contains what looks like a rail. They support the classification of
this image as a train. The blue parts are against this classification.
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(a) True Positive (True Positive) image for
“train”

(b) False Positive (False Positive) image for
“train”

Figure 3.2. Examples of a saliency map explanations for the label “train”: The TP on
the left highlights the contours of the lines below the train. A possible interpretation is that
the CNN has learned to recognise trains when rails are present. A possible interpretation
of the FP on the right is that edges in the lower part appeared similar to rails, which could
explain this error.

Score Thresholds Since an image in the PASCAL VOC dataset can contain multiple ob-
jects, for each object class, the CNN computes a classification score between 0 and 1. Hence,
a threshold needs to be defined so that the score can be translated into an outcome: detected
when the score is above the threshold, or missed otherwise. We calculated threshold values
for each class (e.g. horse, cat) because the CNN performs differently across classes. In par-
ticular, we obtained each threshold by maximising the F1-score for the class on the training
dataset. In Figure 3.1, the small vertical red lines represent these selected thresholds.

Presentation

The interface of the study (Figure 3.1) was implemented as aWeb application, usingHTML5
and Python with the Django framework. We served the application from a standard Web
server. The view-port of the participant browser window needed to be at least a 1000px
wide and 600px high during the study.

3.2.2 Tasks

We gave our participants the task to predict the classification outcome of the CNN described
above for a fixed set of 14 task images from the hold-out test set. More specifically, for
each task image, we asked them to list 2-3 features they believe the system is sensitive
to and 2-3 features the system ignores. We then asked participants to predict whether the
system will recognise an object of interest (‘cat’ or ‘horse’) in the given task image (strict
forward simulation - cf. Section 2.5.3). We also asked them to rate their confidence in
their forecast on a 4-point forced Likert item. Figure 3.1 depicts the interface for one task
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image (with a reduced number of example images). Half of the participants started with
images of horses, while the other half, began with images of cats. To increase participants
engagement in the study, in addition to an £8 payment for their time, participants received an
additional performance-based bonus of £0.5 for each correct answer as an incentive. Seven
task images were concerned with the class “cat” and another seven with the class “horse”.
For each task image, participants were shown 12 example images from the CNN training
set to inform their judgement. All participants worked on the same task images and were
shown the same example images.

Selection of Example Images

We selected the example images for every task image from the PASCAL training set, based
on their cosine distance from the task image in the embeddings space generated from the
penultimate layer of the network. The assumption was that user understanding might benefit
from looking at visually similar images. Showing the outcome of the classifier (i.e. TP,
FN and FP) for the examples has been found to be important for the utility of explanation
techniques [124]. For this reason, we sampled examples of different outcomes for each task
image:

• 6 examples of True Positives (TP), where a label had been correctly assigned;

• 3 examples of False Negatives (FN), where the CNN had failed to assign the label;

• 3 examples of False Positives (FP), where the CNN had incorrectly assigned the label.

We also based our decision, regarding the number of shown examples, on experience
from pilot studies. We had noticed that if we presented too many examples, participants
were likely to only look at a random subset of them. At the same time, if the number was
too low, there was a risk that not enough information was made available to participants.
For this study, we selected 12 as a compromise. We also noticed that the saliency maps of
TP examples are more informative than FN and FP. Thus we decided to show more TP than
FN or FP examples.

Selection of Task Images

We intended our study to be no longer than 40 minutes to avoid fatigue effects. This design
choice limited the possible number of task images. Consequently, we had to choose between
sampling from a variety of classes or sampling from a subset of classes. In our pilot studies,
participants found predicting model behaviour very confusing when the class in question
was continually switching. Furthermore, the more classes they had to reason about the more
challenging the tasks became, because they were not able to “learn” much about the model’s
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behaviour regarding a specific class. We also wanted to capture a variety of cases where the
model had given correct as well as incorrect output. For these reasons, we decided to limit
our experiment to two classes but included three TP, two FN and two FP for each class.

We drew task images randomly from the hold-out test dataset, with the constraint of
having a mid-range classification score. In our pilot studies we had found that images with
a low classification score (close to the threshold) were almost unpredictable for participants,
while images with a high score were easily predictable. Consequently, we chose to sample
from the middle, as we expect to see the most performance variation this way.

3.2.3 Conditions

The study included the following two independent variables:

Presence of Saliency Maps This factor had two levels: shown or omitted. When shown,
the saliency map for the relevant class was displayed next to each example image. It is
important to note that saliency maps were not shown for the task image but only for the
examples (strict forward simulation task).

Presence of Classification Scores This factor also had two levels: shown or omitted.
When shown, a bar chart of the top 10 classification scores was displayed next to each ex-
ample image. Classification scores produced by the CNN are the default sources of explana-
tory information on the instance level. Hence, we aimed to investigate whether visualising
this additional numerical information would outperform, compliment or interact with the
presence of saliency maps.

The two independent variables were combined in a full factorial design, resulting in the
following four conditions:

• Saliency maps not shown and scores not shown (Baseline)

• Saliency maps not shown and scores shown

• Saliency maps shown and scores not shown

• Saliency maps shown and scores shown.

Figure 3.1 illustrates the saliency maps shown and scores shown condition. In other
conditions, the interface looked the same, except not showing the saliency maps or scores.
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3.2.4 Participants

We recruited 64 participants (16 per condition) through Prolific 2, an online crowdsourcing
platform. For the sake of data quality, we required participants to have an approval rate
above 95% on the Prolific Academic platform, have normal or corrected to normal vision,
and to be fluent in English. Moreover, we also made it mandatory for participants to be
above 18 years of age and to have a technical background (i.e. a degree in computing or
engineering), because of the technical concepts used in our study (i.e. neural networks,
classification outcomes, scores, image pixels).

3.2.5 Procedure

After providing informed consent, each participant went through a short tutorial providing
the necessary background about the experiment as well as clear instructions for using the
system. The tutorial included examples of how the model classified a specific image and
clear definitions of TP, FN and FP. We presented participants who belonged to conditions
that would show saliency maps with additional information and examples that described
this explanation technique and how they can be interpreted (See Appendix C.2). Similarly,
participants assigned to a condition showing scores received additional advice on their in-
terpretation.

Upon completion of the introduction, participants commenced completing their 14 tasks.
At the end of the study, we gave them feedback for each task images and showed them their
earned bonus.

3.3 Results

3.3.1 Outcome Prediction Accuracy

We were interested in investigating the effect that the presence of saliency maps and scores
has on the ability of participants to forecast the CNN classification outcomes of images.
We based our performance assessment on the percentage of correct forecasts per partici-
pant. We summarized the data in Figure 3.3. A Shapiro-Wilk test revealed that the per-
centage of correct forecasts within groups were approximately normally distributed (W =

0.957, p = 0.027). A Levene’s Test showed performance variances between groups were
similar (F(3,60) = 0.156, p = 0.925).

A two-way independent ANOVA revealed a statistically significant main effect of the
presence of saliency maps on the performance (F (1,60) = 4.191, p = 0.045, η2 = 0.063).

2https://prolific.ac/
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Figure 3.3. Performance results: When saliency maps were shown, participants were
significantly more accurate in predicting the outcome of the classifier (left). Scores did not
significantly influence the participant’s prediction performance (right). Success rates were
relatively low across conditions, showing that tasks were very challenging.

In the presence of saliency maps participants were more accurate in predicting the outcome
of the classifier (M = 60.7%, SD = 11.0% vs. M = 55.1%, SD = 10.8%). There was
no significant main effect of the presences of scores on performance (F(1,60) = 1.938, p =

0.169, η2 = 0.029). Furthermore, there was no interaction effect (F(1,60) = 0.060, p =

0.807, η2 = 0.001).

3.3.2 Confidence

We also asked participants to rate their confidence in their forecast on a 4-point forced Likert
item. Answers were coded by numbers 1-4 and summed up per participant. A one-way
independent Kruskal-Wallis test showed that confidence was similar across conditions (H(3)
= 1.130, p = 0.770). On average participants tended to be “slightly confident” in their
answers (Median = 3.000). We also consider participants’ accuracy on the subsets of images
corresponding to different outcomes (i.e. TP, FP, FN). Overall the accuracy was higher for
TP images, on average 79.4%, it was lower for FP, on average 46.9%, and even lower for
FN, on average 36.7%.
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(a) The normalised frequencies of individual features mentioned by participants for images of cats.
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(b) The normalised frequencies of individual features mentioned by participants for images of horses.

Figure 3.4. Frequencies of individual features mentioned by participants: The top
shows frequencies for images of cats, the bottom for horses. The left side shows features
belonging to the Saliency-Features. The right side shows features belonging to the General-
Attributes (frequencies were normalised for each participant).
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Figure 3.5. The ratio ofmentioned Saliency-Features: It summaries the share of saliency-
features participants mentioned per task. They mentioned significantly more such features
when saliency maps were present (Left). Scores did not have an influence (Right).

3.3.3 Mentioned Saliency Maps Features

Besides making a prediction, we asked participants what features they think the classifier is
sensitive to and what features it ignored.

Excluded Data

An analysis of the qualitative data revealed that two participants misunderstood these tasks.
Consequently, they were excluded from this analysis. It also became apparent that many
of the remaining participants misinterpreted the question about the features the system ig-
nored. Therefore, we focused only on replies participants gave regarding the sensitivity of
the classifier to features.

Mixed-Method Analysis of Answers

We carried out a qualitative content analysis [141] on the free text replies. In the first pass,
two of the authors coded the answers inductively. Each response could be assigned sev-
eral open codes based on the features or concepts it addressed. Subsequently, coders dis-
cussed their individually established codes and agreed on a shared and simplified codebook.
We decided to assign each code to one of two mayor code groups: Saliency-Features and
General-Attributes.
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Saliency-Features This group included codes referring to features, which could be local-
ized to pixels in the proximity of the object of interest and that saliencymaps could highlight.
The rationale for this was that we aimed to compare how frequently participants mentioned
concepts related features that saliency maps could potentially highlight. Besides the some-
what obvious feature codes such as Ears and Legs, this group also included: Equipment
- which applied to all objects associated with domestication such as “leash”or “saddle”,
Outline which applied to answers referring to the “shape” or “contour” of the object of
interest and “Fur” which was used for utterances referring explicitly to the “fur”, “skin”
or texture pattern on the animal.

General-Attributes This group included codes that refer to utterances of generic prop-
erties of the image. An example is the code Background - which applied to answers refer-
ring generically to “surroundings” or “context” but also objects in the background such as
“trees”. Another example is Image Quality which was used for replies addressing issues of
“contrast”, “blur” , “lighting condition” or “occlusion”. The code Texture was assigned
when answers referred to images “texture” generically (i.e. “Fur patterns” are considered
as a Saliency-Features).

Saliency-FeaturesRatio For the quantitative analysis, we counted the number of Saliency-
Features codes and General-Attributes codes. We noticed that some participants wrote a lot
in the qualitative response and therefore mentioned a lot of features, while others did not.
To prevent this from skewing the results, we calculated a ratio. We obtained the Saliency-
Features ratio for each participant by dividing the number of Saliency-Features codes by the
total number of Saliency-Features and General-Attribute codes that we had assigned to their
answers. Therefore a ratio of 0.6means that 60%of the features that a participant mentioned
were Saliency-Features. In the same fashion, we calculated ratios for all codes. The top of
Figure 3.4b shows the ratios for the answers participants gave for images of cats, while the
bottom of Figure 3.4b shows them for images of horses.

Ratio Analysis The Saliency-Features ratio was subjected to a statistical analysis. The
data is summarized in Figure 3.5. A Shapiro-Wilk test revealed that the rate of Saliency-
Features within groups were approximately normally distributed (W = 0.900, p < 0.01).
A Levene’s Test showed that the variances between groups were significantly different
(F(3,58) = 3.749, p = 0.016). To account for heteroscedasticity we ran a two-way in-
dependent measures ANOVA using white-corrected coefficient covariance matrix [251].
It revealed a statistically significant main effect of the presence of saliency maps on the
rate of mentioned Saliency-Features (F(1,58) = 23.427, p < 0.01, η2 = 0.295). Partic-
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ipants mentioned a larger share of Saliency-Features when saliency maps were present
(M = 83.9%, SD = 15.4% vs. M = 54.6%, SD = 28.4%). There was no significant
main effect for the presences of scores (F(1,58) = 1.384, p = 0.244, η2 = 0.013) and no
interaction effect (F(1,58) = 0.004, p = 0.948, η2 = 0.001).

3.4 Discussion

Through a combination of quantitative and qualitative analysis, the results of our study high-
light the potential to use saliency maps as an explanatory tool for non-expert AI users, as
well as their limitations. In the following subsections, we reflect on the key issues and
highlight implications for design and further research.

3.4.1 The Utility of Saliency Maps exists, but It Is Limited

Our results show that when saliency maps were shown, participants predicted the outcome
of the classifier significantly more accurately. Scores, instead, did not have a statistically
significant effect. However, even with the presence of saliency maps, success rates were
still relatively low (60.7%). Hence, the task of estimating the system’s predictions on a new
image remained challenging. This is also reflected by our participant’s self-reported confi-
dence in their answers, which was not affected by the presence of saliency maps or scores,
and was on average still quite low. To explain this moderate outcome, we investigated
participants’ performance in more detail on subsets of images corresponding to different
outcomes. Participants across conditions seemed to be better in predicting the system’s out-
come when it was correct (true positives: 79.4%). They were mainly struggling with the
prediction of errors, performing worse than chance (false postives: 46.9% and false nega-
tives: 36.7%). An interpretation of this result is that participants are possibly inclined to
over-estimate the performance of the systems on challenging cases. Such cases are repre-
sented by FP and FN images. In fact, in 67.3% of all cases, participants predicted that the
system would be correct, whereas it was only correct in 42.9% of the cases. One of the
envisioned applications of explanations is aiding users in building appropriate trust into a
system [56, 32]. Unexpected and unpredictable failures of a system affect trust more nega-
tively than those that can be understood and anticipated [131, 56]. Therefore, it is important
that users can understand when the system will fail. As detecting errors is a claimed utility
of instance-level explanations [184, 128], we suggest that future work should evaluate this
empirically in more detail. Our study design did not allow to draw conclusions in this regard
because we did not fully counterbalance the order of tasks and True Negatives (TN) were
not part of the task set.
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3.4.2 Reasoning on Examples

In our study, we based the sampling strategy on the similarity distance between the task
image and the training set. The rationale behind this was that people might learn more
effectively from examples that are similar in appearance to the task image. It might help
them to reflect upon the visually similar images that the system had successfully classified
(i.e. TPs) and images the system had classified incorrectly (i.e FN, FP).We hypothesised that
such contrasting reasoning can help users to understand the system’s causes of successes and
failures. However, when considering the examples presented to participants, we noticed that
the usefulness of FN saliency maps is negligible. They usually highlight very little evidence
(see i.e. the FN example in Figure 3.1). For FN examples, the actual image and the other
saliency maps (TP, FN) become the only source of information for understanding why an
example has not been recognised by the system. This insight suggests that the utility of
saliency maps varies according to the classification score. In other words, a saliency map
may highlight what supports the prediction of some class, but it will fail to provide counter-
factual evidence, namely, the absence of evidence.

We would like to emphasise that for a human, it is easy to spot and point to the absence
of a feature concept, while it is not for a CNN. Humans can easily break down an image
into meaningful regions (semantics) [65]. In contrast, CNNs look for patterns in a sub-
symbolic fashion that lead to an outcome [21, 134]. Because CNNs do not process data in
a ‘semantic‘ fashion, other patterns in an image (which may not belong to the concept) can
contribute towards a classification outcome in unexpected ways [128]. An implication for
the design is that we need to develop explanation algorithms that bridge the gap between
humans and machines by leading the user to understand that the system is not basing its
classification decision on higher-level ‘semantics’ of the image. Furthermore, we would
like to emphasise that choosing representative examples with their corresponding saliency
maps, which summarise the behaviour of the system well, is an under-explored topic. New
approaches for generating saliency maps and for applying them to various machine learning
problems are presented (see review [3]). However, very little work exists that investigates
for which instances users should examine salience maps. Researchers have acknowledged
that users can only inspect a limited number of saliency maps [184], but to the best of our
knowledge, only two works explore sampling strategies [184, 128] - none of which where
applicable for this work. An important implication, then, is that further research needs to
characterise the effect of different sampling strategies of saliency map examples on users
interpretation of the system operation.



Discussion 51

3.4.3 Saliency Maps Can Help Participants Notice Features

Our results clearly indicate that saliency maps influenced our participants to notice the high-
lighted saliency features and to suggest that such features are important for the classifica-
tion outcome. The ratio of mentioned Saliency-Features (e.g. legs, outline) compared to
General-Attributes (e.g. color, image quality) was significantly higher when saliency maps
were present while scores had no influence (Figure 3.5).

This effect can be explored in more detail in Figure 3.4b. It shows that saliency maps
seem to lead people to pay attention to specific parts of the object of interest. For example,
Figure 3.4b depicts the share of mentioned features for images of horses. It is evident that
some features such as legs, outline, tail and belly were mentioned much more frequently
by participants exposed to saliency maps, while general-attributes such as background and
colour are mentioned more often when the saliency maps are not shown.

3.4.4 Facilitating Global Model Understanding by Explaining Local
Features

It is worth emphasising that even when users notice features, this does not necessarily im-
ply that they will perform better in predicting the outcome of the CNN or reach a global
understanding of the model. Saliency maps provide only a visualisation of the importance
of pixels in a single image. Transferring knowledge about potential features to new images,
where they are presented in different orientations, scales, forms and perspectives, is very
challenging. Furthermore, it is hard to get a quantifiable measure of the importance of in-
dividual features in an image. Again complexity increases if one attempts to quantify the
importance of a feature on new images. In other words, it is difficult to estimate how the
classification score would change if a feature would be absent. Would the score go down by
a factor of 0.1, 0.2 or 0.6? Moreover, does the presence of different features cause an inter-
action effect? It is challenging for users to reason about this, especially when considering
that CNNs process the input data in a non-linear fashion [21].

An implication for the design of explanation systems, then, is that saliency maps should
be complemented by a global measure that explains how sensitive the presence of a feature
is to the prediction of some class. For example, how sensitive the presence of nose is to
the prediction of cat? In that regard, complementing saliency maps with this additional
information could be valuable for users to build quantifiable measures of saliency maps,
and perhaps avoid biases that might arise from exploring an unrepresentative subset of the
dataset. Concept activation explanation, prototypical explanations and feature visualisations
are global explanation techniques that could compliment saliency maps (cf. Section 2.3).
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3.4.5 The Importance of General Attributes

Another reason why noticing Saliency-features does not necessarily facilitate a better under-
standing of a model is that general-attributes (e.g. colour, contrast) might influence the clas-
sification outcome. However, these general-attributes are usually not directly highlighted
by saliency maps, because as a more general image property, they can not be localised to in-
dividual pixels. This points to the previously stated limitation of the expressive capabilities
of saliency maps [198]. In fact, saliency maps might even prime participants to primar-
ily consider only highlighted features, and give less weight to other attributes that are not
highlighted but important. In contrast, users preconceptions may cause them to focus on
attributes such as the brightness of the image, even if it is not a major cause of failure. An
implication for design is to develop explanations that convey the right expectation to users.
We suggest that saliency maps should be complemented by more global representations of
the image features. For example, saliency information could be related to global descriptors
of the images, such as overall contrast or brightness measures.

3.5 Limitations

The design space for the study we presented was vast. Our design choices outlined in Sec-
tion 3.2 introduced some limitations, which we make explicit in this section.

The first limitation is the small number of image classes we considered. We decided for
this compromise considering the limited time for each session, and the limited knowledge
participant would have been able to obtain about class-specific behaviour. Future work
should run a long-term evaluation (i.e. lasting several days or weeks) to allow participants
to explore a large dataset with multiple classes in more depth. Another limitation of our
design is that we used one specific network architecture (VGG16 [208]) and one specific
technique to generate saliency maps (LRP [12]). With a series of pilot studies, we have tried
to identify a combination of both techniques which provided saliency maps that participants
found to be informative. However, this also means that results might be different with a
different combination of techniques.

A limitation of our analysis is that the study design did not allow us to draw conclusions
about users performance for different outcomes types (e.g. TP, FN, FP). The reason for this
was that we did fully counterbalanced tasks, and True Negatives (TN) were not part of the
task set. Future studies should address this limitation and study this aspect in more detail.

Finally, our participants were required to have a technical background, but we did not
control for ML expertise. We see potential to repeat our study with different participant
populations, such as ML-experts, or lay users.



Chapter 4

Do Users Benefit from Interpretable
Vision? A User Study, Baseline, and
Dataset

4.1 Research Questions and Publication

This chapter reports on our synthetic dataset and Study II, an online between-groups user
study to evaluate counterfactual and concept-based explanations against an example-based
baseline. After conducting Study I, we realised that forward simulation assesses two im-
portant aspects simultaneously: whether users understand which features are relevant to the
model and how the model combines these features to make a prediction. Although it pro-
vides a comprehensive and effective measure of model understanding, it does not allow us to
determine which aspects users struggle with. Our Study I and our technical review showed
that different explanation techniques draw users’ attention to different features. Whether
they draw attention to the model’s used features is unclear. Our next experiment was de-
signed to answer this question. We had to use a different task, direct bias detection, which
requires a model with known feature importance, as explained in Section 2.5.4 We aimed to
create amodel with at least one hidden bias that could not be easily spotted by example-based
explanations, which were again chosen as our baseline. We decided to omit feature attribu-
tion methods from Study II due to their unfaithfulness and issues with spatially overlapping
features (Cf. Section 2.3.2). This time, counterfactuals generated with an invertible neural
network that did not have these issues were chosen as our primary evaluation candidate.

53
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Research questions

• RQ 9—Can a synthetic dataset be used to bias a model arbitrarily?

• RQ 10—Can we create a model with multiple biases where at least one bias is hard
to detect with example-based explanations?

• RQ 11 — Do counterfactuals allow users to develop a better model understanding
than concept-based or example-based explanations?

We answer RQ9, by creating Two4Two: a synthetic dataset depicting two abstract an-
imals. Its data-generating factors can be correlated with the binary target class, thereby
creating arbitrarily strong biases. A biased dataset does not guarantee a biased model. We
empirically confirmed that, despite the default main feature (the leg position of the abstract
animals), the model also uses the animal’s shape and colour for its prediction. A biased
model does not guarantee that its biases are difficult to detect. An initial user study (N =
43), answered RQ 10 by validating that participants were struggling to find both biases con-
tained in our model using this technique. We improved our baseline explanation method
used in Study I by optimising it for bias discovery. Example images are arranged in a grid
grouped by the model’s logit predictions. This design allows users to inspect all attributes
that potentially predict the target class.

The main study (N = 192), answered RQ 11, where we compared the baseline against
two state-of-the-art explanations: automatically discovered [263] concepts and counterfac-
tual interpolations generated with an invertible neural network. We found that none of these
explanations outperformed the baseline, even though some features were identified more ac-
curately with counterfactuals. We qualitatively analysed participants’ textual justifications
and obtained insights into their use of explanations.

Contributions

• The Two4Two dataset with full control over the biases it contains.

• The dataset was specifically designed for user studies and to challenge existing inter-
pretability approaches.

• A model with three relevant features, one of which is difficult to detect.

• A method to verify ground-truth feature importance for models trained on Two4Two;

• We provide a carefully crafted adoptable study design as a template for future empir-
ical evaluations of interpretable vision using the task of bias detection.
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• Our design is suitable for lay users and integrates several measures to ensure high-
quality crowdsourced responses, including professionally produced instruction videos
and extensive screening with multiple-choice tests.

• Our design includes a simple, yet powerful baseline technique that relies on themodel’s
outputs only, allowing participants to scan easily through different model outputs,
which we propose as a benchmark for future studies;

• We provide open access to our dataset, explanation techniques, model, and study de-
sign, including instructions and videos, to support the replication of our results and
the adaptation of our design to other explanation techniques.

• The finding that example-based explanations outperform concept-based explanations.

• The finding that counterfactuals performed similarly to example-based explanations.

• Findings on mental heuristics that influence users’ model understanding and usability
issues encountered with all methods.

Publications An early version of the dataset, of which Martin Schuessler is the main au-
thor, was published as a worksop poster and was presented at the 2021 International Con-
ference on Learning Representations (ICLR):

Martin Schuessler, Philipp Weiß, and Leon Sixt. 2021. Two4Two: Evaluating
Interpretable Machine Learning - A Synthetic Dataset For Controlled Experi-
ments. In Responsible AI – Workshop (ICLR). doi: 10.48550/arXiv.2105
.02825

The refined dataset and the studies have been jointly published as a full paper (Shared first
author). It was presented at the 2022 International Conference on Learning Representations
(ICLR):

Leon Sixt, Martin Schuessler, Oana-Iuliana Popescu, Philipp Weiß, and Tim
Landgraf. 2022. Do Users Benefit From Interpretable Vision? A User Study,
Baseline, And Dataset. In Proceedings of the International Conference on
Learning Representations (ICLR). https://openreview.net/forum?id
=v6s3HVjPerv. doi: 10.48550/arXiv.2204.11642

The sections of this chapter are taken from the original publication. Once again, the abstract,
introduction, and relatedwork section have been removed. Their contents have been covered
in significantly more detail in Chapters 1–2 and 5.

https://doi.org/10.48550/arXiv.2105.02825
https://doi.org/10.48550/arXiv.2105.02825
https://openreview.net/forum?id=v6s3HVjPerv
https://openreview.net/forum?id=v6s3HVjPerv
https://doi.org/10.48550/arXiv.2204.11642
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Author Contributions Initially, the effort to develop Two4Two and to create a new coun-
terfactual explanationmethodwere two separate projects. Based on the insights fromStudy I,
Two4Two was jointly conceptualised by Martin Schuessler and Phillip Weiß. Under the su-
pervision of Martin Schuessler, Phillip Weiß implemented the first version of the synthetic
dataset generator. Leon Sixt invented and built the method for generating counterfactuals.
Martin Schuessler designed and conducted a study to evaluate this method. We used the
CelebA dataset for this study but encountered difficulties as participants’ reasoning was
influenced by their prior knowledge of human faces. Our initial submission did not pass
peer review [213]. As a result, the two projects, Two4Two and INN Counterfactuals, were
combined to conduct a more rigorous evaluation. Many refinements were needed to adapt
Two4Two for this study and to make it available under an open-source license for future
research. Leon Sixt and Martin Schuessler implemented this. Most contributions for the
accepted paper, on which this chapter is based, are a collaborative effort. Due to the highly
collaborative nature of our work, we influenced each other’s ideas and shared responsibil-
ities. Leon Sixt created the method to quantify the importance of the ground-truth feature.
It is inspired and enabled by the Two4Two data generator. Martin Schuessler revised Leon
Sixt’s method for generating counterfactuals based on the results of pilot studies. Martin
Schuessler conceptualised and refined the layout of all explanation techniques in pilot stud-
ies. All aspects of the study designs and conduction were the responsibility and contribution
of Martin Schuessler, with the following exceptions: A pilot run that Oana-Iuliana Popescu
conducted considerably influenced the design, and Leon Sixt implemented a revision to the
statistical analysis (prior to conducting the study). Martin Schuessler iteratively created a
study design, which was a significant improvement over the design of Study I and the de-
signs used in Sixt et al. [213] and Schuessler et al. [199]. The design ensured that participants
had a full understanding of their task using professionally created voiced instruction videos
and extensive participant screening involving several multiple-choice tests. Paper writing
was a shared effort.
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Animal Color Block Shape

Body PostureBackgroundLegs stretched outHead peeking out

Peeky Stretchy

Figure 4.1. The left panel depicts the main difference between Peeky and Stretchy: the legs’
position. While Peeky shows one pair of legs moved inwards, Stretchy’s legs are moved
outwards. Two4Two offers different attributes: animal color, background color, the shape
of the blocks and the animal’s body posture. All of which can be controlled and biased
separately.

4.2 Two4Two: Datasets with Known Feature Importance

We developed an open source library that allows researchers to render synthetic image data
suitable for human-subject evaluations. It was engineered for the task of bias detection (cf.
Section 2.5.3.

4.2.1 Dataset Description

Datasets generated with Two4Two consist of two abstract animal classes, called Peeky and
Stretchy. Both consist of eight blocks: four for the spine and four for the legs – Two4Two.
For both animals, one pair of legs is always at an extended position. The other pair moves
parallel to the spine inward and outward. The attribute legs’ position, a scalar in [0,1],
controls the position. At a value of 0.5, the pair of legs are at the same vertical position as
the last block of the spine. Peekies have a leg position ≤ 0.52 which means legs are moved
mostly inwards to the body centre. In the same fashion, Stretchies are extended outwards,
legs’ position ≥ 0.48. We added some ambiguity to ensure a model has an incentive to
use possible biases. Therefore, Peekies and Stretchies are equally likely for a legs’ position
between 0.48 and 0.52. It is also difficult for humans to tell if the legs are outward or inwards
in this range. Besides the legs’ position, the dataset has the following parameters which can
be changed arbitrarily and continuously:

• body posture (bending and three rotation angles)

• position

• animal color (e.g. from red to blue)

• blocks’ shape (from cubes to spheres)
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• background color (e.g. from red to blue)

When designing the dataset, we wanted to ensure that

1. Participants can become experts within a few minutes of training.

2. It allows for the creation of multiple biases that are difficult to find.

3. It provides a challenge for existing interpretability methods.

Goal (1) is met as participants can be instructed using only a few examples (see the tutorial
video in Appendix D.1). The high number of controllable attributes achieve Goal (2). Biases
can be introduced by correlating different attributes with an animal type. Figure 4.3 on page
60 shows a code snippet that creates a rotation bias. We validate in our first study that
this can be used to bias a model in such a way that its biases do not stand out. Goal (3)
is met by spatially overlapping attributes and long-range image dependencies. Spatially
overlapping attributes, like colour and shape, directly challenge saliency map explanations.
Long-range image dependencies, like the legs’ positions relative to the spine, can not be
explained when analyzing patches separately as done in Chen et al. [39] and Brendel and
Bethge [27]. Both properties are common in real-world datasets: For example, race and
gender in facial datasets are encoded by spatially overlapping features. Long-range image
dependencies are particularly relevant for pose estimation and visual reasoning [101].

4.2.2 Introducing Biases

For our studies’ dataset, we sampled the block’s shape in a non-predictive biased fashion.
This means that for legs’ positions that clearly showed a Peeky [0, 0.45] most blocks were
rather cubic, while for legs’ positions that clearly showed a Stretchy [0.55, 1] most blocks
were rather round. However, for the legs’ positions between [0.45, 0.55] the blocks shape
was uniformly distributed. In particular, in the even narrower interval [0.48, 0.52] where a
classifier can only be as good as random guessing, the block’s shape does not provide any
additional information about the target class. In Figure 4.4, we show the joint distribution
of the block’s shape and legs’ position.

We sampled the animals’ color to be predictive for the target class. At the small interval
where the legs overlap [0.48; 0.52], we distributed the animal color to provide additional
class information. Stretchies were more likely to be red, and Peekies were more likely to
be blue. Outside of this centered interval, the color gradually became uniformly distributed
(see Figure 4.4). Hence, color was more equally distributed than the shape, making the color
bias harder to detect visually. The remaining attributes, background color and body posture,
were sampled independently of the class, and we expected our model to ignore them.
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Factor Range Distribution Biased Class Information

Legs’ Position [0, 1] Uniform with overlap Yes -
Color [0, 1] See Figure 4.4 Yes Yes
Shape [0, 1] See Figure 4.4 Yes No
Position Y [-0.8, 0] Uniform No No
Position X [-0.8, 0] Uniform No No
Background [0.05, 0.95] Uniform No No
Rotation Yaw [0, 2π] Uniform No No
Rotation Roll [−π/4, π/4] Truncated Normal(0, 0.03π/4) No No
Rotation Pitch [−π/6, π/6] Truncated Normal(0, π / 8) No No
Bending [−π/10, π/10] Truncated Normal(0, π / 20) No No

Figure 4.2. Distribution of each attribute in the study’s dataset: Biased denotes whether
an attribute is unequally distributed for the two classes. Additional Class Information show
if an attribute contains any additional information about the target class not already given
by the legs’ position.

4.2.3 Measuring Ground-Truth Feature Importance

Even if a dataset contains biases, it is unclear how relevant they will be to a neural network
after training. Feature importance also depends on the network architecture, the optimization
process, and even the weight initialization. As Two4Two allows us to change any parameter
in isolation, we can directly compare the model prediction between two images that differ
in only one parameter. For these two images, we measured both the median absolute logit
change and also for how many samples the predicted class was flipped. Both measures
quantify how influential each parameter is (see Figure 4.5).

As expected, the legs’ position had a strong influence on the prediction. The model
relied more on animal color than on the blocks’ shape, which is expected as the color con-
tains additional information about the class. Surprisingly, the prediction flip for unrelated
attributes such as background was only slightly lower than for blocks’ shape.

To analyze this further, we calculated a linear fit for each parameter change to the logit
change. We reported the coefficient of determination R2, which indicates how much of the
variance in the prediction can be explained linearly by the analyzed property. While the
unrelated properties sometimes flip a prediction, the direction of that flip is random (R2

≈ 0). In contrast, the biased parameters influence predictions in a directed fashion, with
animal color (R2=0.751) being clearly more directed than blocks’ shape (R2=0.307).



60 Two4Two: Datasets with Known Feature Importance

1 import dataclasses
2 import numpy as np
3 import matplotlib.pyplot as plt
4

5 from two4two.blender import render
6 from two4two.bias import Sampler , Continouos
7 from two4two.scene_parameters import SceneParameters
8

9 @dataclasses.dataclass
10 class RotationBiasSampler(Sampler):
11 """A rotation -biased sampler.
12

13 The rotation is sampled conditionally depending on the object type.
14 Positive rotations for peaky and negative rotations for stretchy.
15 """
16

17 obj_rotation_yaw: Continouos = dataclasses.field(
18 default_factory=lambda: {
19 'peaky': np.random.uniform(-np.pi / 4, 0),
20 'stretchy': np.random.uniform(0, np.pi / 4),
21 })
22

23 # sample a 4 images
24 sampler = RotationBiasSampler()
25 params = [sampler.sample() for _ in range(4)]
26 for img, mask, param in render(params):
27 plt.imshow(img)
28 plt.title(f"{param.obj_name}: {param.obj_rotation_yaw}")
29 plt.show()

Figure 4.3. Source code example to create a biased sampler with Two4Two: High posi-
tive rotations are predictive of Stretchy and low negative rotations of Peaky. This illustrative
example differs from the sampler used in the study.
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Figure 4.4. The joint distributions of legs’ position and three other attributes: back-
ground (left), shape (middle), and color (right). Datapoints are yellow for Peekies and blue
for Stretchies. The background is not biased. The shape is biased for legs’ position lower
than (0.45) or greater (0.55), but is uniform in the centre. The colour contains additional
predictive information about the target class, as it allow to discriminate between Peeky and
Stretchy where the legs’ position overlaps. However, for more extreme arms’ positions the
colour is uniform and not biased.

4.3 INN Model and Evaluated Methods

As discussed in Section 4.2, Two4Two was designed to challenge existing interpretability
methods, e.g., saliency map explanations and patch-based models. We selected two meth-
ods that might provide the user with the necessary information: counterfactuals generated
with an invertible neural network (INN) and concept-based explanations [263] (C.f. Sec-
tion 2.3.3-2.3.4).

4.3.1 INN Counterfactuals

We trained an INN using both a supervised and an unsupervised objective [48, 47]. To
predict the target class, the model first applies the forward function φ to map a data point x
to a feature vector z = φ(x). Then, a linear classifier takes those features z and predicts
the logit score f(x) = wTz+ b. Any input can be reconstructed from the feature vector by
applying the inverse function x = φ−1(z). The model has a test accuracy of 96.7%. Further
details can be found in Appendix D.2. The baseline and concept techniques are also applied
to this model. To create a counterfactual example x̃ for a data point x, we can exploit the
linearity of the classifier. Moving along the weight vectorw, i.e., addingw to the features z,
changes the model’s prediction. By controlling the step size with a scalar α, we can directly
quantify the change in the logit value ∆y = αwTw. The modified feature vector z + αw

can be inverted back to the input domain, resulting in a counterfactual x̃ = φ−1(z + αw)

which visualizes the changes introduced by a step αw in z-space. The INN’s explanations
are visualized in a grid where each row shows a single counterfactual interpolation (see
Figure 4.6b).



62 INN Model and Evaluated Methods

Factor Prediciton Flip [%] Median Logit Change R2

Legs’ Position 41.680 2.493 0.933
Color 7.080 0.886 0.751
Shape 3.920 0.577 0.307
Position Y 2.960 0.597 0.007
Background 2.640 0.523 0.006
Rotation Yaw 3.480 0.669 0.001
Rotation Roll 2.260 0.413 0.001
Bending 3.640 0.605 0.000
Rotation Pitch 3.500 0.627 0.000
Position X 3.380 0.581 0.000

Figure 4.5. Importance of the data generating factors to the model’s prediction: The
Mean Logit Change reports themedian of the absolute change in logit values. ThePrediction
Flip column quantifies how often the model’s prediction changed the sign when changing
the attribute. For the R2 score, we fitted an ordinary least squares from the factors’ deltas
to the deltas of the model’s logits and then report the coefficient of determination (R2).

4.3.2 Automatically-Discovered Concepts

We adapted the NMF approach of Zhang et al. [263] to our specific network architecture.
Because the network’s internal representations also contain negative values, we used matrix
factorization instead of NMF.We generated the concepts using layer 342 (from a total of 641
layers). The layer has a feature map resolution of 8x8. This choice represents a trade-off
between enough spatial resolution and high-level information. We ran the matrix factor-
ization with 10 components and selected the five components that correlated most with the
logit score (r is in the range [0.21, 0.34]).

Our presentation of concept-based explanations was very similar to Zhang et al. [263]:
we visualized concepts with five exemplary images per row and highlighted regions corre-
sponding to a concept. Since our classifier is binary, a negative contribution for Stretchy
actually means a positive contribution for Peeky. Hence, we could have characterized a
concept as more Peeky and more Stretchy, to make the design similar to the other two ex-
planation techniques. However, as the concepts did not strongly correlate with the model’s
output, presenting them as class-related could confuse participants: a more Peeky column
would have contained some images showing Stretchies and vice versa. Thus, we presented
them separately in two consecutive rows (See Figure 4.6c). Presenting concepts in this fash-
ion gives them a fair chance in the study because participants rated the relevance of each
attribute for the model rather than for each class separately.
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4.4 Human Subject Study

We share the view of Doshi-Velez and Kim [52] and Vaughan and Wallach [240] that user-
testing of explanation techniques is a crucial but challenging endeavor. As our second main
contribution, we propose and conduct a user study based on the Two4Two dataset which can
act as a blue-print for future investigations. Our design has been iterated in over ten pilot
studies and proposes solutions to common problems that arise when evaluating explanation
techniques on crowd-sourcing platforms with lay participants.

4.4.1 Design Considerations

Data without Prior Domain Knowlege

We specifically designed the Two4Two dataset to avoid overburdening participants, asmight
be the case with other types of data. Within a few minutes, participants can easily become
domain experts. Since the data is unknown to them prior to the study, we avoid introducing
any prior domain knowledge as a confounding factor.

Manageable but not Oversimplified Tasks

We use the task of direct bias detection: participants had to rate features as either relevant
or irrelevant to a model. The task directly reflects users’ perception of feature importance.
Furthermore, it has the advantage of being suitable for lay participants. At the same time, it
is also grounded in the model’s behaviour. This is an advantage over tasks used in several
previous studies, which only evaluated whether explanations were accessible to users, e.g.
by identifying the target property smiling using image interpolations [209] or assigning im-
ages to a concept class [263, 75]. However, these tasks are an oversimplification and cannot
measure any insights the users gained about the model. In contrast, the task of forward pre-
diction requires substantial model understanding and is very challenging, as reflected by the
participants’ low accuracy in our previous study (Section 3).

Baseline Explanation Technique

To quantify whether an explanation is beneficial for users, it must be compared to an al-
ternative explanation. In this work, we argue that a very simple and reasonable alternative
for users is to inspect the model’s logits assigned to a set of input images. Others studies
already discovered that users predominantly rely on predictions rather than on sophisticated
complimentary explanations when reasoning about a model [41, 5]. Simple example-based
explanations have surfaced as a strong baseline in studies by [25]. We designed such a base-
line explanation as shown in Figure 4.6a. After several design iterations, we settled for a
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(a) Baseline (b) Invertible Neural Networks

(c) Concepts [263]

Figure 4.6. Examples of the explanations used in the study: We tested whether users
can identify the class-relevant features of images showing two types of animals. We biased
attributes like the animal’s color to be predictive of the class and investigated whether ex-
planation techniques enabled users to discover these biases. We tested a simple baseline (a)
which shows random samples grouped by the model’s output logit, counterfactual samples
generated by an invertible neural network (b), and automatically discovered concepts (c).
A participant viewed only one of the above conditions.
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Figure 4.7. Participant flow and screening: We recruited proficient English-speaking
participants from Prolific with a high approval rate. They viewed three tutorial videos,
followed by a written summary and multiple-choice comprehension questions. Participants
who failed the test twice were excluded from the study. See Appendix D.1 for details.

visually dense image grid with 5 columns sorted by the logit score, each column covering
20% of the logit values. The columns were labeled very certain for Peeky/Stretchy, certain
for Peeky/Stretchy, and as unsure. Pilot studies showed that participants’ attention is lim-
ited. We thus decided to display a total of 50 images, i.e. an image grid of 10 rows. The
number of images was held constant between explanation techniques to ensure the same
amount of visual information and a fair comparison. In this work, we focused on binary
classifications. For a multi-class setting, one could adapt the baseline by contrasting one
class verses another class.

High Response Quality

We took extensive measures to ensure participants understood their task and the expla-
nation techniques as illustrated in Figure 4.7. Participants were required to watch three
professionally-spoken tutorial videos, each under four minutes long. The videos explained,
on a high level, the Two4Two dataset, machine learning and how to use an assigned ex-
planation technique to discover relevant features. To avoid influencing participants, we
prototyped idealized explanations using images from Two4Two. The explanations showed
different biases than those in the study. Each video was followed by a written summary and
set of multiple choice comprehension questions. After failing such a test once, participants
could study the video and summary again. When failing a test for a second time, partici-
pants were excluded from the study. We also excluded participants if their written answers
reflected a serious misunderstanding of the task, indicated by very short answers copied for
all attributes or reasoning that is very different from the tutorial. We recruited participants
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from Prolific who are fluent in English, hold an academic degree and have an approval rate
of≥ 90%. To ensure they are also motivated, we compensated them with an average hourly
pay of £11.45 which included a bonus of £0.40 per correct answer.

4.4.2 Experimental Design

We conducted two online user studies. Before starting the data collection, we formulated
our hypotheses, chose appropriate statistical tests, and pre-registered our studies (see Ap-
pendix D.5-D.6). This way, we follow the gold-standard of defining the statistical analysis
before the data collection, thus ensuring that our statistical results are reliable [42]. The first
study (N=50) analyzed whether the task was challenging enough that other methods could
potentially improve over the baseline. We tested if at least one bias in our model (either
the animal’s color or the blocks’ shape) was difficult to find using the baseline technique.
Consequently, we used a within-subjects design.

In the second study (N=240), we evaluated the two explanation techniques described
in Section 4.3 against the baseline using a between-groups design. Participants were ran-
domly, but equally assigned to one of the explanation techniques. We specified two directed
hypotheses. We expected participants in the INN condition to perform better than those in
baseline, because the baseline does not clearly highlight relevant features, whereas interpo-
lations highlight features in isolation. We expected participants viewing concepts to perform
worse than those in the baseline, due to their inability to highlight spatially overlapping fea-
tures.

For both studies, participants completed a tutorial phase first. Using their assigned ex-
planations, they then assessed the relevance of five attributes: legs’ position relative to the
spine, animal color, background, rotation or bending, and blocks’ shape. The questions
were formulated as: ”How relevant is<attribute> for the system?”, and participants had to
choose between irrelevant or relevant. The percentage of correct answers (accuracy) served
as our primary metric. Participants also had to write a short, fully-sentenced justification
for their answers.

4.5 Results

4.5.1 Data Exclusions

As stated in the preregistration, we automatically excluded all participants who withdrew
their consent, failed one of the comprehension questions twice, skipped a video, or exceeded
Prolific’s time limit for completion. If a participant was excluded, a new participant’s place
wasmade available until the pre-registered number of completed responses was reached. We
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Condition Ncollected Nfiltered Overall Legs Color Backgr. Shape Posture

Study 1 50 43 73.4 86.0 48.8 86.0 74.4 72.1

Study 2 240 192 67.0 78.2 58.9 66.8 73.1 59.1
INN 80 62 84.5 ***100.0 *82.3 *79.0 90.3 71.0
Baseline 80 71 80.8 85.9 59.2 95.8 93.0 70.4
Concepts 80 59 32.2 45.8 32.2 18.6 32.2 32.2

Figure 4.8. Performance results per attribute: The mean accuracy for each attribute by
condition. Ncollected provide the number of participants collected and Nfiltered the number of
remaining participants after the filtering. Stars mark statistical significance.
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Figure 4.9. Performance results per condition: The proportion of correct answers for
baseline (Baseline), concepts (CON), and INN.

excluded 63 study respondents for the first study, and 145 for the second study in this fashion.
We ensured that all participants were naive about the dataset. Once they participated in a
study, they were blacklisted for future studies.

For completed studies, two annotators independently marked the participants’ written
answers and excluded those with copy and paste answers or indications of grave misunder-
standings of the instructions. Participants were labeled as: include, unsure, or exclude. Both
anotators had an agreement of κ = 0.545 for the first study and κ = 0.643 for the second
(measured include vs. unsure and exclude). Disagreements were solved by discussion. In
total, we excluded 7 participants from the first study (14%) and 48 participants from the
second study (20%).

4.5.2 First Study

For the accepted 43 participants, we used two-sided exact McNemar tests on their answers
about the relevance of the legs position compared with animal color (first test) and back-
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ground (second test). Participants found the color bias less often than the legs’ positions
(p<0.0001). The success rate for the color attribute was 49% vs. 86% for legs. The shape
bias was not significantly harder to find than the legs’ positions and was identified correctly
with 74% accuracy (p=0.3036). Hence, we confirmed our hypothesis and concluded that
other methods still have room for improvement over the baseline.

4.5.3 Second Study

In the second study, we evaluated 192 valid participant responses (62 INN, 71 BASE, 59
CON).We expected data to be different from the normal distribution, and a Shapiro-Wilk test
for all conditions confirmed this (p< 0.001). We depict the number of correct answers per
condition in Figure 4.9. A Kruskal-Wallis test showed a significant differences in accuracy
scores between conditions (p < 0.001). For focused comparisons, we used two Wilcoxon-
rank-sum tests with Bonferroni correction to correct for multiple comparisons. The accu-
racy scores differed significantly between the baseline and concept conditions (p < 0.001,
r=0.778). The performance of participants using concepts was rather poor, with only 31.7%
accuracy, considering that random answers would yield a score of 50%. For concepts, not a
single attribute surpassed the 50% barrier. We found no significant difference when compar-
ing the baseline and counterfactuals (p=0.441, r=0.091). Their mean accuracies are close,
with 80.8% for baseline and 84.5% for counterfactuals. INN counterfactuals helped users
to discover the main attribute, legs’ position, (p<0.001) and color bias (p=0.033) more reli-
ably.1 However, counterfactuals performed significantly worse for the background attribute
(p=0.033), while for blocks’ shape and position we found no significant difference (for both,
p=1).

4.5.4 Qualitative Results

To understand how participants integrated the explanation techniques into their reasoning,
we analyzed the textual answers of each feature qualitatively. Two annotators first applied
open coding to the answers. They performed another pass of closed coding after agreeing
on a subset of the relevant codes, on which the following analysis is based. Overall, the
participants perceived the task as challenging, as they expressed being unsure about their
answers (N=71).

We designed our image grid to show both possible classes and provide information about
the model’s certainty. We found that many participants integrated this additional source of

1The statistical analysis of the attributes for INN vs. baseline was not pre-registered. The reported p-values
for the attributes were corrected for eight tests (including the pre-registered tests) using the Holm–Bonferroni
method.
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information into their reasoning. This was especially prevalent in the baseline condition
(N=51). Participants particularly focused on the columns ’very certain Peeky’ and ’very
certain Stretchy’, as well as on the column ’unsure’. While this may have helped confirm
or reject their own hypotheses, it sometimes led to confusion; for example, when an image
that exhibited a pronounced leg position, and therefore could easily be identified as Peeky
or Stretchy, was classified by the model as ’unsure’ (N=14).

Across conditions, we also observed that participants expect that all images needed to
support a hypothesis. ”The animals are in different colors, there are blue stretchy and also
blue peeky animals, If the color was relevant peeky/stretchy would be in one color etc” (P73,
BASE). Across conditions, most participants that applied such deterministic reasoning failed
to find the color bias. In contrast, other participants applied more probabilistic reasoning,
which helped them deal with such contradictions: ”Peeky is more likely to be blue in colour,
whereas Stretchy is more likely to be pink. This is not always true (e.g. the shapes can be
white in colour at either ends of the spectrum) but it might be somewhat relevant to help the
system decide” (P197, INN).

Another observed strategy of participants was to reference how often they saw evidence
for the relevance of a feature (N=35), which was very prevalent in the concepts condition
(N=20). Especially concepts were rather difficult for participants to interpret. A common
issue was that they expected a relevant feature to be highlighted completely and consistently
(N=38). Several instances show that participants struggled to interpret how a highlighted
region can explain the relevance of a feature, ”If this [the legs position] were relevant I
would have expected the system to highlight only the portion of the image that contains the
legs and spine. (e.g. only the legs and one block of the spine at each end). Instead, every
image had minimally the entire animal highlighted” (P82, CON). Furthermore, spatially
overlaping features were another cause of confusion: ”there are rows in which the animal
is highlighted but not the background so it could be because of color, shape or rotation”
(P157, CON)

Participants erred more often for the background in the INN condition than for the base-
line. We conducted an analysis to investigate this issue. We found that 29 participants stated
that they perceived no changes in the background of the counterfactuals and hence consid-
ered this feature irrelevant. Another 21 participants noted that they saw such a change,
which let 12 of them to believe its a relevant feature. ”The background color changes in
every case, it’s also a little subtle but it does” (P205). Another 9 participants decided that
the changes were too subtle to be relevant. ”The background colour does not change an
awful lot along each row, maybe in a couple of rows it changes slightly but I do not feel the
change is significant enough that this is a relevant factor in the machine decision” (P184).
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Figure 4.10. Attribute changes along counterfactual interpolations: Changes were mea-
sured by an observer convnet. Each line corresponds to a single sample whose logit score
is modified through linear interpolations in the classifier space.

4.5.5 Do Counterfactuals Highlight Irrelevant Features?

Indeed, subtle perceptual changes in background color are present (Figure 4.6b). To quan-
tify these changes, we decided to use an objective observer: a convolutional neural network.
We trained a MobileNetV2 [193] to predict the parameter values of individual attributes of
an image (e.g., background color, object color, etc.) using a completely unbiased version
of Two4Two. After training, the model could predict the parameter values almost exactly
(MSE < 0.0022, for details, see Figure D.1 in the Appendix). We then used this model
to evaluate the parameter values of counterfactual INN interpolations, each spanning 99%
of the logit distribution. We visualize the predictions of MobileNetV2 in Figure 4.10. All
predictive properties (legs’ position, body color, blocks’ shape) are changed by the counter-
factuals consistently. For the background, the changes are subtle but present. We also quan-
tified the change in parameters using the difference between the maximum and minimum
predicted value per individual interpolation which is shown in Figure 4.11. This supports
the finding that relevant attributes change the most and the background changes just slightly
like other irrelevant attribute. However, this seems enough to give some participants a false
impression about its relevance.

4.6 Limitations

Synthetic Data We presented a user study on a synthetic dataset. We believe that the
results also have implications for natural image data. When we created Two4Two, our
objective was to translate challenges faced on ”real” computer vision data (like spatially
overlapping features) into an abstract domain. Although some properties of photorealistic
datasets are lost in this abstraction, a method performing poorly on Two4Two would likely
not perform well on a natural dataset with spatially overlapping features.

Limited Factors and Resolution Due to budget constraints, we limited the number of
factors in our experimental design (external vs. internal validity trade-off). Our study intro-
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Attribute Mean Maximal Change SD

Legs’ Position * 0.662 0.140
Color * 0.440 0.190
Shapes * 0.624 0.208
Bending 0.059 0.042
Background 0.045 0.044
Rotation Pitch 0.186 0.126
Rotation Yaw 0.102 0.182
Rotation Roll 0.003 0.001
Position X 0.105 0.078
Position Y 0.103 0.078

Figure 4.11. Influence of all attributes on the model’s predictions: Differences for each
attribute between the maximum and minimum predicted value encountered when interpo-
lating along the weight vector. Relevant attributes (*) change the most (values in bold). The
background shows no considerable difference to the other irrelevant attributes.

duced a predictive bias for the animal’s color and a non-predictive bias for the blocks’ shape.
It remains unclear how our results may have changed for a different dataset configuration:
certain biases could exhibit different visual saliency. It remains also left for future work
to determine which visual interface design is optimal for a given method. Furthermore, our
study design restricted participants to make binary choices and provide textual justifications
– limiting our understanding of the participants issues.





Chapter 5

Conclusions of Part I

At the outset of our research, there was limited empirical evidence on the effectiveness of
novel explanation techniques to increase user understanding of computer vision models,
and it was unclear which types were most beneficial. This gap stemmed from the initial
separation of the AI/ML and HCI research communities [1]. Human-centric insights and
best practices for experimental design were often not considered in machine learning re-
search. HCI researchers, on the other hand, were limited by their engagement with sim-
pler models or mockups for explainability studies [146]. Our work bridges this divide by
rigorously evaluating advanced explanation techniques against complex models, thereby
enhancing methodological standards in interpretable vision and fostering insights that are
valuable to both domains. This section aims to distil essential insights and implications for
future research and practical applications, reflecting on the evolution of our understanding
throughout this endeavour.

5.1 Example-Based Explanations Are More Than a Base-
line

Initially, our expectations differed significantly from the outcomes observed in our research,
leading to an unforeseen revelation: Example-based explanations are not only a baseline but
a robust competitor to all other explanation methods. As our review showed, this surprising
observation was validated by subsequent studies [25, 41, 181], underscoring the reliability
of this conclusion.

While it is a sobering realisation for XAI research that they have not been surpassed by
more sophisticated methods for over a decade now, it allows us to make a clear recommen-
dation for practitioners: Since example-based explanations are very easy to implement,
they should be used whenever possible. From a practical point of view, they stand out

73



74 Three Explanation Methods Are Less Effective for Images Than Claimed

among other methods because they are just as effective for model understanding but offer
model-agnostic flexibility and avoid the need for model-specific architectures or access to
model internals. They also sidestep the accuracy-explainability trade-off seen with custom
models, such as invertible networks or concept bottleneck models.

Their main limitation is that they are local explanations, placing the interpretive burden
on users to deduce influential features and concepts. We argue that reaching a solid model
understanding is impossible with the sole use of local explanations. However, example-
based explanations are often preferred by users [100] and perceived as intuitive [112]. They
may appear uninformative at times [112], but avoid visually overstating their ability to ex-
plain a model, unlike unfaithful methods such as feature attribution, GANs, or manually
annotated concepts. When implementing them, it is crucial to carefully choose the images
used as examples and how they will be presented. This is because showing examples of ac-
curate classifications can increase users’ trust in the model while highlighting examples of
incorrect classifications can decrease it [19, 220]. We suggest presenting both types of ex-
amples to help users understand the capabilities and limitations of the model. The interface
we designed for Study II was adequate for detecting bias and explaining binary classifica-
tion. Correct and incorrect classifications were arranged in a grid based on the model score,
which is an improvement over the design used in Study I, where they were visually sepa-
rated. Study I showed that showing plain scores was not helpful. In Study II, users could
vertically scan the image grid for relevant features, and they primarily focused on high-
certainty examples and those at the class boundary. So, we suggest focusing on displaying
examples from these certainty classes. Our latest design can be adapted for multi-class clas-
sification to compare one class to another. However, since this requires inspecting more
examples, the effectiveness of this variation is uncertain.

5.2 Three ExplanationMethods Are Less Effective for Im-
ages Than Claimed

Saliency Maps

Even though feature-attribution methods have been shown to be effective for text classi-
fiers [123, 121, 184, 124, 66], we cannot confirm that generating saliency maps using these
methods [184, 12] is equally effective for image classifiers. The results of Study I indicate
that saliency maps can help users learn about some specific image features the system is sen-
sitive to and slightly enhance their ability to predict the network’s outcome for new images.
However, even with saliency maps present, the CNN model remained largely unpredictable
for participants (60.7% prediction accuracy). For misclassified images, prediction accuracy
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remained well below chance level (43.8% for False Negatives and 49.2% for False Posi-
tives). That feature-attribution methods perform worse on the images than on text might be
due to the higher complexity of models and input space. However, throughout our work,
we became aware of the numerous limitations of saliency maps.

Limited to Local Features Even with very informative examples, saliency maps can only
highlight the importance of features that are localisable to pixel regions, a limitation shared
with local concepts. Our studies revealed that when a region contains multiple features, it
may lead to difficulties for users. Researchers can use our Two4Two dataset, which has
several spatially overlapping features, as a challenge to address this. According to Study I,
saliency maps distract users from global features. Therefore, we recommend using them
with concept explanations focusing only on global features.

PotentiallyMisleading As discussed in Section 2.3.2, saliencymaps are unfaithful, which
may be acceptable if explanations are helpful. However, our Study I and other studies found
little benefit in using saliency maps (Section 2.6 and [108, 5, 142, 41]). The study of Chu
et al. [41] even found them harmful to model understanding. Their presence influences how
users think about a model [220]. Even if randomly generated, they increase users’ trust in
a model [41]. As an Implication for practitioners, we recommend using other faithful ex-
planation techniques, such as example-based explanations or INN counterfactuals, to avoid
misleading users with unfaithful saliency maps.

Limited to Feature Presence Saliency maps only convey that a feature is present and
relevant. They do not easily convey its relevancy or the effect of its absence on the outcome.
In contrast, counterfactuals give clearer insights by altering only relevant features, often
adding missing ones during creation.

Counterfactuals

Our motivation for including INN counterfactuals in Study II was to support contrastive
reasoning and faithfully explain the model. Although they calculate feature relevance ac-
curately, they fail to communicate this to users. In the counterfactual images, the model’s
main features were changed significantly more than the background, which was irrelevant.
However, every pixel or feature is marginally relevant to the model and can cause slight
changes in the resulting image. In our study, participants perceived that the background,
which constitutes a significant portion of the image, was a relevant feature due to subtle
changes.
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Automatically Discovered Concepts

In study II, the use of concepts was detrimental to participants’ model understanding as
their performed was worse than chance (31.7%) and significantly worse than when using
counterfactuals and examples. The main issue was that concepts failed to completely and
consistently highlight relevant features, providing evidence that while discovered concepts
may been consistent [75], they are not guaranteed to be semantically meaningful. A re-
cent study by Ramaswamy et al. [181] partially replicated our result, finding that concepts
provide no benefit over example-based explanations. Manually annotated concepts are no
alternative either, as they have faithfulness issues. We suggest that future studies investi-
gate concept bottleneck models as an alternative.

5.3 Cognitive Heuristics Limit Explanation Understand-
ing

The analysis of the qualitative answers of participants in both of our studies revealed sev-
eral misconceptions that influence users’ interpretation of explanations (Section 4.5.4, 3.4.2
and 3.4.4).

Semantic Reasoning Many users assume AI systems semantically process input. There-
fore, it is important to communicate to users that neural networks primarily look for patterns
in a sub-symbolic fashion and do not process the higher-level semantics of an image [21,
134]. We believe that prototypical explanation and feature visualisation are most suitable
for conveying this to users.

Deterministic Reasoning Users often create hypotheses based on the relevance of fea-
tures and expect them to be true for every classification in a deterministic manner. However,
this demonstrates a significant limitation of any local explanation method because neural
networks process features non-linearly [21], which is more akin to probabilistic reasoning.
This contradicts users’ intuition. Even if they detect which features are important for the
network, this knowledge only contributes to a limited increase in the overall understanding
of the model.

5.4 Open Challenges to Enhance Model Understanding

Our studies provide a critical evaluation of four interpretability methods. When considered
alongside the studies reviewed in section 2.6, we conclude that users continue to struggle
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with understanding image classifiers, regardless of the explanation technique employed.
These findings serve as a reminder that making AI explainable is still very much an open
technical challenge. We emphasise that interpretability for computer vision should remain
an active field of enquiry. We recommend less emphasis on algorithmic-centred contri-
butions, which simply derive new methods. Instead, we suggest addressing some of the
following technical challenges:

• Which sampling method finds images for example-based explanations that increase
users’ model understanding the most? (Section 3.2.2)

• How do we generate faithful counterfactuals that highlight only the most relevant
features to benefit from their contrastive abilities? (Section 4.5.5)

• How can feature-attribution methods become faithful to the model, and which faithful
saliencymaps increase users’model understanding themost? (Section 2.3.2 and 3.4.2)

• How do we automatically discover semantically meaningful concepts faithful to the
model?

• How do we visualise spatially overlapping features or concepts?

• How can we create a dataset as controllable as Two4Two but with natural images?

• Can we design an explanation method that is aligned with or rectifies users’ cognitive
heuristics? (Section 5.3)

• Can we design a global explanation method that uses a linear combination of a limited
number1 of semantically meaningful features, concepts or prototypes?

5.5 More and Better User Studies Are Needed

As AI models become increasingly complex, further studies are necessary. Recall that, ac-
cording to Miller [146], interpretability is “the degree to which an observer can understand
the cause of a decision”. Hence, any claims of advancing interpretability without empiri-
cal evidence must be considered unverified. There is now sufficient insight that automatic
metrics, cherry-picked anecdotal evidence, and measurements of explanation satisfaction do
not reliably provide such evidence (Section 2.4.) User studies are laborious and expensive
but crucial for future interpretability research. In addition to validating explanation meth-
ods, these studies can guide technical innovations by identifying areas where users struggle.
Such studies must be conducted with rigour. Our taxonomy and identified best practices can
serve as guidelines for planning future studies (Section 2.5 and 2.7). We echo the verdict
of Doshi-Velez and Kim [52] that XAI researchers and reviewers need to “respect the time

1Based on the findings of Ramaswamy et al. [181] no more than 32.
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and effort involved to do such evaluations”. We argue that the HCI community is well-
placed to collaborate with machine learning researchers to conduct better evaluations. We
hope the work here can serve as an example. We open-source our experimental guidelines,
videos, study designs, and code, and we encourage the community to use them.



Part II

Investigating Gaze Perception in
Video-Mediated Communication

79





Chapter 6

Investigating Gaze Perception in
Video-Mediated Communication

6.1 Research Questions and Publication

In this chapter, we shift our focus from improving human-AI interaction in the context of
interpretable vision to improving human-to-human interaction mediated by computer vision
applications. While previous chapters scrutinised users’ comprehension and trust in image
classifiers, here we extend our exploration to how computer vision can enrich digital conver-
sations. This shift in research focus happened amid the COVID pandemic, which elevated
video conferences to a critical communication tool. Millions of users working from home
face challenges in virtual collaboration, such as Zoom fatigue. Leveraging our user-centric
design experience covered in the first part of this work, we tackled one fatigue factor: the
lack of gaze information and eye contact.

We explore an enhanced system concept, Gazing Heads, with the capability of convey-
ing gaze and attention. It is a round-table virtual meeting approach that enables direct eye
contact and signals gaze via controlled head rotation. Similar to the explanation techniques
for image classifiers, the technology to achieve Gazing Heads is not quite mature. We built
a camera-based simulation of Gazing Heads for four simultaneous video conference users
to investigate the potential benefits of our proposed concepts and inform the development
of new synthetisation algorithms.

Research Questions

• RQ 12—Do synthesised head rotations using view transition convey users’ gaze and
attention?

• RQ 13 — How does the presence of perceivable gaze cues in video conferencing

81
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systems affect users’ experience and communication behaviour?

• RQ 14—Does Gazing Heads increase social presence?

• RQ 15 — Does Gazing Heads influence how often and how long users gaze at one
another?

• RQ 16—What technical challenges and user experience issues need to be addressed
to implement gaze-aware video conferencing on standard laptop computers?

We conducted another rigorously designed user study comparing Gazing Heads (GH)
with our baseline condition, the conventional “Tiled View” (TV) video conferencing sys-
tem, for 20 groups of 4 people, on each of two tasks. The study found that head rotation
clearly conveys gaze and strongly enhances the perception of attention. Measurements of
turn-taking behaviour did not differ decisively between the two systems (though there were
significant differences between the two tasks). A novel insight in comparison to prior stud-
ies is that there was a significant increase in mutual eye contact with Gazing Heads, and that
users clearly felt more engaged, encouraged to participate, and more socially present.

Overall, participants expressed a clear preference for Gazing Heads. These results sug-
gest that fully implementing the Gazing Heads concept, using modern computer vision tech-
nology as it matures, could significantly enhance the experience of video conferencing.

Contributions

• We conceptualised Gazing Heads which provides higher levels of gaze realism and
is anticipated to be feasibly implementable on standard laptop computers in the near
future;

• We built a four-party experimental rig to test the hypothesis that synthetic head rota-
tion enhances video conferencing;

• We ran a study with more participants (N = 80) and using a wider range of measures
than earlier work;

• Making gaze perceivable (Gazing Heads) is found to improve the perception of atten-
tion in video conferences;

• Control over head rotation significantly enhances mutual eye contact, social presence
and user engagement;

• Interviews and questionnaires show that users prefer Gazing Heads over Tiled View.
This suggests that by addressing missing gaze cues one can alleviate a major factor
of Zoom fatigue, once the technicalities of real-time synthesised head rotation are
resolved.
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Publication This work has been accepted as a journal paper in ACM Transactions on
Computer-Human Interaction and will be presented at the 2025 ACMConference on Human
Factors in Computing Systems (CHI):

Martin Schuessler, Luca Hormann, Raimund Dachselt, Andrew Blake, and
Carsten Rother. 2024. Gazing Heads: Investigating Gaze Perception in Video-
Mediated Communication. ACM Transactions on Computer-Human Interac-
tion. TOCHI 31, 3. doi: 10.1145/3660343

The sections presented are an extended version of the original publication and include
additional details.

Author Contribution Carsten Rother and Andrew Blake conceived the idea of synthe-
sising head rotations using an advanced computer vision method and eye-tracking. Mar-
tin Schuessler designed, and conducted all aspects of the study, supervised by Raimund
Dachselt. Inspired by Hydra [201], Martin Schuessler suggested the simulation of the con-
cept based on cameras. Martin Schuessler and Lucas Horman built the Gazing Heads Sim-
ulation. Luca Horman assisted in conducting the studies and provided technical supervision
of the experimental rig during these studies. All authors contributed iterative refinements
of the experimental rig and interaction concept. Martin Schuessler and Luca Horman con-
ducted the qualitative analysis. Martin Schuessler conducted the quantitative analysis. Pa-
per writing was primarily shared between Martin Schuessler, and Andrew Blake. Raimund
Dachsel and Carsten Rother made revisions.

6.2 Introduction

Since the beginning of the Covid-19 pandemic, video-conferencing has seen an unprece-
dented scale of adoption. Despite the benefits, “zoom fatigue” has become a major concern.
One cause is the lack of non-verbal communication cues [13, 186], including gaze. Gaze
cues serves crucial functions in regulating turn-taking, providing feedback, signalling atten-
tion, and conveying intimacy and emotions [117, 9, 105]. They increase group engagement,
collective performance, and creativity [23, 187]. In today’s typical video conferencing sys-
tems, each user views the other users only frontally, confined to a small screen. We refer
to this kind of layout as a “Tiled View”. Because of gaze misalignment, and because all
users receive the same view, users cannot perceive who is gazing at whom. Conversation
is measurably and palpably different from a face-to-face encounter [201, 136]. Alterna-
tive communication cues are needed [13] to help perceive others’ communicative acts and
avoid misunderstandings [187]. Augmented (AR) and Virtual Reality (VR) systems might

https://doi.org/10.1145/3660343
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address this problem by representing users as gaze-aware avatars in an immersive envi-
ronment (e.g. [177]). However, a challenge for these systems is to achieve graphical and
behavioural realism, both of which are subject to ongoing research [188]. Existing AR/VR
systems heavily rely on head-mounted displays which introduces a major inconvenience and
a barrier to adoption. Meeting systems using cameras, on the other hand, can capture natural
and realistic images of users without wearables. Two major directions have been taken to
correctly convey interlocutors’ gaze using cameras. The first is to use multiple screens in
each workstation so that every interlocutor that is shown to the user is assigned their own,
physically separated, screen and camera, preserving gaze and head rotation as non-verbal
cues (e.g. [201, 172]). However, separate screens and cameras constitute a barrier to adop-
tion and a potential usability issue. They require users to actively turn their heads to follow
the conversation and they place interlocutors in peripheral vision. It has been hypothesised
that this could attenuate the effect of non-verbal communication cues [201]. The second
direction is to artificially modify the captured image to convey gaze [89, 243]. However,
the resulting modified images often appear unnatural, and no empirical evidence exists that
this approach provides any benefit over the well-established Tiled View layout.

We envision a system, Gazing Heads, in which each user sees the others displayed on
their single-screen display, with gaze and attention conveyed through synthesised head ro-
tation. Gazing Heads would use hardware which all video-conference users already own
— a single screen, single camera, and microphone, with no need for additional displays or
wearables. We anticipate that head rotation could soon be synthesisable in real-time, with
sufficient realism, using software only [248, 80], once issues such as graphical realism [88],
the uncanny valley effect, delays and synchronisation issues in high-quality video transmis-
sion are solved.

We built a simulation of Gazing Heads for four users using seven cameras placed around
each user. The illusion of head rotation is created by transitioning between cameras. Our
within-groups user study (N=80) compared Gazing Heads with Tiled View (Figure 6.1),
with 20 groups of 4 participants, all tackling two different tasks. The first task was a group
discussion about a controversial topic; the second was a game where participants were as-
signed specific roles with conflicting objectives. We used a wider variety of measures than
prior gaze studies [201, 89, 183, 225, 115, 242] to gain more detailed insights. Objective
measures of gazing behaviour and turn-taking were recorded, together with subjective ones,
via questionnaires inspired by previous work. There were interviews at the end of each
session to obtain qualitative insights.

Results show that simulated head rotation in Gazing Heads indeed conveys gaze and
attention. Participants knew better when they or others were being addressed. Compared
with Tiled View, users experienced a higher degree of social presence and engagement. We
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(a) Gazing Heads: Round-table discussion where gaze between all interlocutors is present due to
rotation of heads.

(b) Tiled View: Traditional video conferencing where gaze cues are absent.

Figure 6.1. Snapshots of the Gazing Heads (a) and Tiled View (b) simulations taken
during our user study: They show the view of the fourth participant in a virtual discussion.
We found that with Gazing Heads it is effortlessly apparent who is looking at whom. Gazing
Heads proved beneficial for social presence and user engagement.

observed a significant increase in mutual gaze but there was no significant difference in
turn-taking.

6.3 Background and Related Work

Gazing Heads would operate on a single screen without additional hardware while provid-
ing live, gaze-aware video, including third-party gaze. But what are the alternatives? There
are four classes of telepresence systems that make gaze perceivable. Group-to-group sys-
tems (e.g. [165, 176, 175]) enable video-mediated communication for spatially separated
groups of people. One-to-many systems (e.g. [102, 210, 110]) represent one remotely lo-
cated interlocutor to a group. One-to-one systems (e.g. [129]) focus on the video-mediated
conversation between two interlocutors. Virtual meeting room systems (e.g. [201, 243])
have each spatially separated interlocutor joining individually, and Gazing Heads is in this
class. In standard virtual meeting room systems, the same view of each user, taken from that
user’s single camera, usually placed above the screen, is transmitted to all other participants.
This introduces misalignments hindering gaze-awareness. Direct eye contact misalignment
occurs when a user is being looked at but that gaze is misaligned. Third-party gaze mis-
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alignment occurs when one user is being looked at by another user, but the observing third
party does not perceive this gaze. Many methods only focus on direct eye contact but ignor
third-party gaze [99, 115, 89, 71, 94, 254]. Gazing Heads addresses both issues.

6.3.1 Technology for Virtual Meeting Rooms

Gaze-aware Virtual meetings can also be created using Virtual Reality (VR) (e.g. [222])
or Augmented Reality (AR) (e.g. [177]) but they demand substantial hardware: tracking
devices, head-mounted displays, and powerful GPUs. Moreover, avatars lack realism [18,
35, 188, 17], obscure social cues [174, 156], and uncanny valley effects are evident [174,
156].

Given that AR/VR is expensive and unrealistic, an alternative is camera-based systems,
and we found five precedents, as depicted in Figure 6.2. Their technical capabilities are
compared with standard video-conferencing in Figure 6.3.

The first three systems use ante-hoc correction — avoiding gaze misalignment before
images are recorded. A 1:1 physical-virtual space mapping, with dedicated cameras and
displays for each interlocutor, is arranged to coincide with the virtual mapping and foster
active head turning. The MAJIC system by Okada et al. [172] places cameras behind two
life-sized projections of interlocutors (Figure 6.2a) — three users in all. The Hydra sys-
tem by Sellen [201] uses three small screens with integrated cameras instead of projections
(Figure 6.2b), supporting four users. Both systems require special hardware, and are hard
to extend for more users. The IC3 system by Sun and Regenbrecht [225] addresses some of
these issues by using a single display. The three-party video conference system places the
two interlocutors to the far left and far right of a screen with a camera mounted next to them
(Figure 6.2c). The setup is simple and compact but cannot be extended to more than three
users, nor does it address the third-party gaze problem, given that it has only two views.
The four-party system GAZE-2 by Vertegaal et al. [243] uses a single semi-transparent dis-
play with three cameras behind it (Figure 6.2d). In principle, more cameras could be added
to support further users. The 2D mages are rotated in a 3D virtual space to attempt to con-
vey third party gaze direction, which largely fails because of the well-known “Mona Lisa
effect”: the eyes of Mona Lisa gaze towards the observer, rather than rotating with the 2D
display.

GazeChat byHe et al. [89] is the only systemwhich can be used on a conventional laptop
without additional hardware. However it transmits animated 3D profile photos (created by
neural rendering) (Figure 6.2e), without head rotations or live video. It animates users’ gaze
but other parts of the face are inanimate — verbal cues and facial expressions are lost.
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(a) MAJIC [172]: Two cam-
eras are placed behind the life-
sized projections of interlocu-
tors on half-transparent film.
The spatial arrangements of
displays and cameras preserve
direct eye contact and third-
party-directed gaze. This setup
introduces considerable hard-
ware requirements.

(b) Hydra [201]: Each in-
terlocutor is assigned their
own, physically separated
screen and camera, preserving
gaze and head rotation as
non-verbal cues. The small
separated displays encourage
active head turning but also
introduce usability issues.

(c) IC3 [225]: Using a cam-
era for each interlocutor shown
on screen, this compact three-
party system allows for direct
eye-contact. Observers can
recognise whether they are be-
ing looked at, but third party-
directed gaze is not conveyed
accurately.

(d) GAZE-2 [243]: Three cameras are
placed behind interlocutor video tiles.
Third-party-directed gaze is conveyed by
rotating 2D video tiles in 3D, which is
inferior to any actual 3D rotation of the
head due to distorted visual gaze cues.

(e) GazeChat [89]: A single camera per user is used
for eye-tracking. Gaze information is used to ani-
mate the user profile image. In this screenshot, all
interlocutors are gazing at user zhenyi. Besides the
modification of gaze, the images remain inanimate.
They convey fewer cues than live video. Zhenyi is
smiling (top left mirror view) but that is not con-
veyed by her avatar.

Figure 6.2. Screenshots of five gaze-aware meeting room systems: different approaches
to preserve gaze in video conferencing have been pursued, each introducing their own issues
with usability or barriers to adoption. All images reproduced with the kind permission of
their respective authors.
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Direct eye contact
method

Third-party gaze
method

Users
Displays
per User

Cameras
per User

Live
video

Zoom None None N 1 1 Yes

MAJIC [172]
ante-hoc
(camera behind)

ante-hoc
(camera behind)

3 2 2 Yes

Hydra [201]
ante-hoc
(camera close)

ante-hoc
(camera close)

4 3 3 Yes

Gaze-2 [243]
ante-hoc
(camera behind)

post-hoc
(approximating gaze)

4 1 1 Yes

IC3 [225]
ante-hoc
(camera close)

None 3 1 2 Yes

GazeChat [89]
post-hoc
(synthesised gaze)

post-hoc
(synthesised gaze)

N 1 1 No

Figure 6.3. Key properties of prior gaze-aware systems in relation to standard video
conferencing: Systems that use a single display (Zoom, Gaze-2, IC3 and GazeChat) have
limited or no gaze-awareness support or lack live video. Systems that offer full gaze cor-
rection and live video (Hydra and MAJIC) rely on multiple displays and cameras. Note that
Zoom was included as a representative of common video conferencing solutions, of which
it has the highest market share [28].
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6.3.2 Related Prior User Studies

Only two of the five related systems mentioned in the previous section have been evaluated
in an extensive user study. GazeChat [89] was evaluated by four groups of four people
(N=12), each having a group discussion. Each group tested four conditions: two variations
of GazeChat, an audio-only meeting, and Tiled View with live video (within-group design).
Questionnaires were employed to measure social presence, user engagement, and general
user experience. GazeChat proved superior to the audio-only interface in some ways but,
compared with TileView, GazeChat was worse at signalling direct eye contact and did not
provide any other improvements – presumably because there was no live video. Turn-taking
and gaze behaviour were not investigated in that study. It was not the objective of GazeChat
to compete with live video conferencing but rather for use where live video is not an option
due to privacy concerns or bandwidth limitations.

The user study conducted with the Hydra system [201] is the most relevant for our work.
Twelve groups of four people (N=48) had a discussion in three conditions: face-to-face,
Tiled View, and the Hydra (within-group design). A questionnaire was used to measure user
experience and some aspects of social presence. Turn-taking behaviour was measured by
processing participants’ voice recordings but no significant differences were found between
Hydra and Tiled View. Nonetheless Hydra was preferred by participants and was rated as
superior for perceiving gaze and attention. The study also investigated the difference be-
tween the two video-mediated systems and face-to-face. It found that video-mediated con-
versations were significantly less dynamic. Hydra did show that gaze-awareness and head
rotation could make attention perceivable in video conferencing and served as an inspiration
for our study.

Our Gazing Heads study aims to determine whether future systems using synthetic head
rotation, once the technology ismature, are actually likely to improve the video-conferencing
experience. Given current technical limitations, we have built a simulation of Gazing Heads
using additional cameras. The study provides more detailed insights than the prior work. It
represents a substantial update in the light of modern developments in hardware and pro-
cessing. It tested 4 users together, where some of the prior studies had only 3. It included a
larger number of participants (N=80), employed a more comprehensive questionnaire, and
also analysed eye-tracking data.

6.4 Simulating Gazing Heads

Gazing Heads was developed through a sequence of pilot studies, and is illustrated in Fig-
ures 6.1a and 6.4. Since technology is not yet mature enough and the goal was to conduct a
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(a)Workstation equipment: 7 web-
cams, 3 lights, 4K display and eye-
tracker. We built four such work-
stations for our study.

(b) Virtual arrangement:
Users form a virtual cir-
cle among workstations.

User
gaze at

Send view to
left IL centre IL right IL

Left IL Cam 6 Cam 1 Cam 3
Centre IL Cam 5 Cam 0 Cam 2
Right IL Cam 4 Cam 6 Cam 1

(c) Gaze mapping: We send separate camera
views to each interlocutor (IL) depending on the
users gaze. Figure 6.4d shows an example.

(d) Camera angles and mapping example: This user gazes at her right interlocutor (IL). Based on the
mapping shown in Figure 6.4c, we send the following camera views: Direct eye contact via camera
1 to right IL, slight head rotation via camera 6 to centre IL and strong head rotation via camera 4 to
left IL.

Figure 6.4. Setup of Gazing Heads: We use eye-tracking to convey gaze by sending differ-
ent camera views to each interlocutor. Note that in all subfigures, cameras are consistently
numbered (0− 6), and colours denote interlocutors and their respective views.
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user study to evaluate the concept, rather than providing a full implementation, we did not
yet build a system that uses only a single camera.

6.4.1 Sitting in a Circle

Interlocutors (IL) were arranged on a single screen to enable ready perception of gaze. We
created the illusion of a circular arrangement which encourages the exchange of gazes [98]
by displaying the middle one of three interlocutors slightly smaller and higher than the oth-
ers (Figure 6.1 top). On each user’s workstation, the other users are displayed on the left,
centre, and right, in a way that is consistent with four users around a table. The user in each
of these three positions can turn to any of the other three. Hence, nine rotation angles for
every user are needed: three positions on the screen, each with three unique head rotations.
Note that we did not include a self-view as they are believed to have numerous negative
effects [13], such as absorbing visual attention [73] and reducing the perception of others’
emotional responses [204].
Available computer vision methods to synthesise rotation angles from a single camera per-
spective face substantial technical challenges: low realism [207], artefacts [109, 70, 260],
and limited rotation angles [248, 70]. Some more advanced methods do not work with par-
ticipants that wear glasses or have long hair [35]. We therefore used several cameras to
obtain the required views (ante-hoc gaze correction) and switch between them. In principle
nine cameras are needed — one for each of three screens, then one for each of three head
rotations. By careful selection of viewing angles, we reduced nine cameras to seven, with
two doing double duty — cameras 1 and 6 in the illustration of Figure 6.4d.

6.4.2 Gaze Switching

Dedicated hardware (Tobii Eye Tracker 5) tracks gaze on a 4k 27-inch display (for details
on accuracy, see Appendix E.6). Each user’s screen splits into focus areas to map gaze
to camera views (Figure 6.5). When a user changes gaze, a camera transition is triggered
appropriately. Users typically switch gaze about every second, often just glancing briefly
which often goes unnoticed in physical settings [9]. When a gaze switch is detected, two
criteria are continuously assessed: gaze duration on the same user for at least 750ms (dwell
time) and a 2000ms lapse since the last transition (refractory period). The moment both are
met, a new transition is initiated. This approach avoids over frequent transitions, yet allows
quicker gaze switches following a period without transitions. Both values were determined
through pilot studies. Instant transitions between camera views are visually distracting, so
scaled alpha-blending was used to blend the current view with the subsequent view:

g(x) = (1− α)f0(x) + αf1(x), (6.1)
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Figure 6.5. The six focus areas of the Gazing Heads prototype in the game task: We
used these areas to decide which camera view to send to the other interlocutors. We also
used them in the eye-tracking analysis of our user study. Participants changed their gaze
from one area to another roughly every second. Note that in the discussion task, the content
area was removed.

where g is the new image and f0 and f1 are the images that are blended. Here α is increased
from 0 to 1 as time t increases from 0 to T :

α = (e
3t
T − 1)/(e3 − 1). (6.2)

This scaled exponential function for α gives a strong visual hint initially of the transition and
then smoothly fades out. We tested several blending functions and found this one to be an
effective compromise between rapid initial signalling of change in attention andmaintaining
an illusion of smooth head rotation.

Consistency Between Camera Views We configured exposure time, focus, and white
balance to capture visually consistent images from every view at a constant frame rate for
seamless transitions. Three cameras were mounted above the screen on a DIY rack. Four
cameras capturing the side views were mounted on microphone stands of equal height. Con-
sistent diffuse lighting from all angles was obtained from two softboxes (85W compact
fluorescent lamp light bulb, 5500K) mounted overhead and an LED ring for facial illumi-
nation (35W, 5500K). Each camera captures a different background so chroma-keying with
U-shaped green screens removes the backgrounds. Chroma-keying removes all regions of
an image matching a specific colour range. We used a U-shaped green background screen
but faced the problem that the cameras recording the side views needed to face the green
screen. To also remove them, we processed the image so that only the largest continuous re-
gion, which was always the user, would be left in the final image. The use of a green screen
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is unrealistic in a commodity implementation but acceptable in a simulation. Note that we
also explored background matting [133] using prior knowledge learned via a deep neural
network to separate images into foreground and background. Even with a GPU the method
introduced considerable delay. Sometimes the background would “leak” through glasses or
hair. This method did not satisfy our requirements for our simulation. A black background
strengthens the illusion of 3D head rotations since heads have a rough ellipsoidal shape. It
also masks small errors in background segmentation.

View Stabilisation Interlocutors are centred and scaled to similar size in their respective
views by software that tracks faces after background removal, and crops them, with temporal
filtering to suppress jitter. This is done gracefully over time to allow for some margin for
natural head movements (e.g. leaning into a conversation).

Shoulder Removal A typical user shifts gaze by rotating the head and changing eye-gaze
but alters upper body posture only slightly. Switching between camera views creates a ”stiff-
necked” illusion of substantial upper body rotation, and that looks unnatural. Therefore
participants wore green turtlenecks so the chroma-keying background segmentation omitted
neck and shoulders. This enhanced the illusion of head rotation since heads have a rough
ellipsoidal shape.

LowLatency Architecture We explored several design alternatives to reduce latency and
skew while maintaining a frame rate of 30 Hz. Ultimately we chose a client-to-client archi-
tecture, sending 12 separate audio and 12 separate H264-encoded video streams over the
local network without synchronising them. Measured latency was 80.0 ± 0.2ms for audio
and 133.33 ± 33.33ms for video (see Appendix E.7 for details). Consequently, skew is
53.33 ± 33.53ms, falling within ITU recommendations G.114 and BT.1359-1 [69, 30]. It
also outperforms common video conferencing solutions for which Xu et al. [256] reported
delays of 130 to 270ms for audio and 230 to 270ms for video latency, for common mul-
tiparty video conferencing solutions. (For details on latency measurement see Appendix
E.7.)

High Quality Spatial Audio To ensure high-quality audio, we used Røde Lavalier GO
microphones and In-Ear headphones with a feedback loop from the microphone to the head-
phones ensure high quality spatial audio, matching the direction of perceived audio approx-
imately to speaker location.
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6.5 User Study Methodology

We conducted a user study to test our concept and investigate whether head rotation can be
used for conveying gaze and attention in video conferencing. We also wanted to understand
how Gazing Heads influences users’ experience and communication behaviour. Concretely,
we expected Gazing heads to influence turn-taking behaviour due to the regulatory function
of gaze as a turn-taking cue [105, 54, 55, 117]. We also expect it to create a more personal,
intimate and immersive experience [117] leading to an increase in social presence [136, 37,
206]. Lastly, wewere investigatingwhether GazingHeads influences users engagement [36]
and gazing behaviour. Two tasks — discussion and game—were used with a wider variety
of measures than previous gaze-awareness studies [201, 89, 183, 225, 115, 242], and with
the largest number of participants (N = 80) used in studies of this kind to date. Participants
used the two different systems (Gazing Heads and Tiled View) in a within-group design.

6.5.1 Experimental Setup

The Gazing Heads simulation as described above served as the treatment system, with the
Tiled View as a comparative baseline system. We did not compare against other gaze-aware
solutions as no empirical evidence exists that they would outperform the Tiled View (e.g.
[201]) but instead may perform worse (e.g. [89]). In Tiled View, three equally sized video
tiles were placed at screen locations similar to those used in Gazing Heads. Head rotation
was disabled and only central cameras were used, ignoring the 6 off-centre cameras. Back-
ground segmentation remained active but without the green turtlenecks, so the upper body
was not segmented out — see Figure 6.1 on page 85.

We recruited 42 male, 35 female, and 3 non-binary or non-conforming gender subjects,
and relatively young with 76% younger than 25 and only 6% 35 years or older. Participants
were accustomed to video conferencing; 96% of them used it at least once a month and
81% at least every week. One group conducted the experiment in Russian, two groups in
Spanish and the remainder in German (all native speakers). Thereby we ensured proficiency
in their respective languages. All participants received a 30€ Amazon voucher for their
participation.

6.5.2 The Group Discussion and the Survival Game

Prior studies have mostly used group discussion [201, 89, 175, 225, 183, 115] – though a
few used collaborative problem-solving [242, 241, 238] – and it is evident that task type
can significantly affect behaviour. Group discussion as in Sellen [201] resulted in higher
turn-taking frequencies (3.9 − 4.3min−1) than the problem-solving task used by Vertegaal
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et al. [242] (1.0−1.3min−1). In a problem-solving task there is reduced need for eye contact
which may well reduce the likelihood of a measurable effect [225].

Group discussion has good external validity because it represents a real-world situation.
One drawback is reduced internal validity as participants’ prior knowledge, individual traits
such as extroversion, and group dynamics, can influence the conversation. In extreme cases,
pilot studies showed one or two participants holding the floor most of the time, masking the
effects being measured. We nonetheless included group discussion, for comparability with
other studies [201, 89, 175, 225, 183, 115]. We also included the problem-solving task for
increased internal validity.

Controversial Group Discussion

Five controversial statements were tested:

• Research and development of brain-machine interfaces, such as Elon Musk’s Neu-
ralink, should be prohibited or at least placed under strict regulation, as reading one’s
thoughts has dramatic ethical implications.

• Covid vaccination should be compulsory for all those who are not expected to suffer
long-term adverse health effects from vaccination.

• Industrial livestock farming should be progressively banned.

• Short-distance flights should be banned or taxed heavily.

• Physically healthy people should have the right to euthanasia (e.g. by taking a deadly
pill under a doctor’s supervision) if this is their own explicit wish.

In each group, prior to the main experiment, participants rated agreement with each of five
statements. The two statements whose ratings varied the most were selected as the two
topics for discussion. Then for each topic, participants were instructed to find consensus as
a group within five minutes. They were not stopped dead at five minutes, to avoid lowering
engagement for later tasks. Instead, we interrupted the task when the current speaker(s)
finished their turn or the group reached an agreement.

Game: Surviving in the Wild

Our second task was designed to:

• incentivise participants to take the floor;

• make turn-taking more dynamic and more evenly distributed;

• encourage participants to pay attention to non-verbal communication and understand
others’ intentions.
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Players travelling to a remote island have to reach consensus on the choice of items shown
on screen, to bring with them (Figure 6.5). We instructed them that several items would be
crucial for survival. At each stage, they picked one item out of three they take with them.
Once consensus, based on a majority vote was reached, we present the next set of items.
They were given seven minutes to agree on as many items as possible. One player was
randomly selected to be a clandestine saboteur so they would be incentivised to focus even
more intensely on one another (details in Appendix E.2). Again we allowed players to reach
agreement rather than stopping the game dead at seven minutes.

6.5.3 Three Questionnaires: Semantic Differential, UX, and Compar-
ative

We reviewed similar studies for potential questions [259, 201, 23, 158, 238, 206, 86, 259]
and categorised them by the concept or property dimension they measure. The most relevant
were: presence, turn-taking, engagement, user satisfaction and usability. No existing ques-
tionnaire covered all dimension we were interested in so that we selected a few questions
for each dimension to create two custom questionnaires. The comparative questionnaire
asks about seven aspects of system preference relating to turn-taking, perceived attention
and naturalness of interaction (see Figures E.3, in Appendix E.3 for details). The UX (User
Experience) questionnaire asks about direct eye contact, directed third-party gazes, and “off-
gazes” directed at no one. In addition a standard Semantic Differential questionnaire mea-
sures social presence [206]. The UX and Semantic Differential questionnaires were filled
out twice, once after using each system.

Presence Lombard and Ditton [136] refer to “presence as social richness” which we call
social presence which is measured by the semantic differential questionnaire. They term
“presence as transportation [to a virtual room]” which we call virtual presence and which
is measured in the UX questionnaire via a question about the feeling of “being in the same
room”. Two statements were included about the perceptibility of interlocutors’ reactions
and becoming acquainted with them. The comparative questionnaire asked which system
participants would use for persuading others. These questions are known to be correlated
with social presence [37, 206]. We also added a question about which systemwas considered
to be more social.

Engagement Two statements about participants’ excitement and the interactiveness of
the conversation were included in the UX questionnaire. We also added a question to the
comparative questionnaire measuring participants’ satisfaction with their contribution to
problem-solving [238], and one addressing engagement/excitement.
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Usability During pilots, some participants complained that they felt excluded when in-
terlocutors turned away from them. Others found the head rotation and camera transitions
distracting. We added two questions addressing these issues to the custom UX question-
naire.

Overall Preference andWillingness toAdopt The comparative questionnaire askedwhich
system allowed for a more natural interaction — this can be seen as a measure of pres-
ence [252], and also as a high-level quality metric for video-mediated communication. As
indicators of overall user experience, participants were asked which system they would rec-
ommend to others and which system they wanted to use for a final interview.

6.5.4 Procedure

Upon arrival, participants were instructed that the goal of the study was to evaluate two
video conferencing systems. Each workstation was calibrated to the individual participant.
Once set up, participants filled in a demographic questionnaire and rated their agreement
to the five controversial group discussion statements. A server gathered live experimental
data, administered conditions and questionnaires, supervised the experiment, and channelled
communications to participants. Each session was screen-recorded . A full factorial within-
group design was used, each group using both Gazing Heads and Tiled View systems for
the group discussion, and for the game. The system to use first was distributed evenly
across groups. Each session began with the group discussion, followed by the game. Then,
switching systems, there was a game session followed by another discussion on a different
topic. The discussion lasted about 6 minutes (M = 5:58, SD = 1:27) and the game took
around 8 minutes (M = 8:22, SD = 2:16). The social presence and the UX questionnaire
were filled out after using the first system and then again after using the second system,
together with the comparative questionnaire. A final interview of roughly 14minutes (M =

13:37, SD = 6:49) was conducted using the system favoured by the majority. In case of a
tie, the group was asked to reach a consensus on which system should be used. Altogether
the experiment took 90−120minutes, which included calibration, answering questionnaires
and extensive Covid-19 protection measures.

Covid-19 Protection Measures We took extensive measures to comply with local Covid
regulations. The selection of possible participants was restricted to vaccinated or negative
tested members or guests of the university. They were required to wear an FFP2 mask until
they were alone in their assigned room. We ventilated all rooms prior to any experimental
session. Further, we disinfected all materials and surfaces that participants interacted with.
Based on the finding of Abraham et al. [2], turtlenecks were ensured to be SARS-CoV-2
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virus free by treating them for at least 5 min with 65°C hot air or 20 min with 40° hot
water. Further, we used waterproofed in-ear headphones cleaned and disinfected in a 15
min ultrasonic bath using a 4% Instrusol AF+ solution. Our governing authority approved
our documented safety measures before conducting the experiment.
(Additional details of the study procedure can be found in Appendix E.1.)

6.5.5 Data Analysis

Speech We recorded participants separately in each station. Quantitative measures for
video-mediated communication are generally based on simultaneity of speech and on turn-
taking [235]. We used the definitions of terms and measures from Sellen [201], which are
sensitive enough to detect difference between a physical and virtual conversation.

A turn consists of the sequence of talk-spurts and pauses by a speaker who “has
the floor”. A speaker gains the floor when they begin speaking to the exclusion
of everyone else and when they are not interrupted by anyone else for at least
1.5 seconds. The duration of a turn begins with the first unilateral sound, and
ends when another individual turn or a “group turn” begins. Note that turns
therefore include periods of mutual silence at the end of utterances, when no
one else has yet taken the floor.

A group turn begins the moment an individual turn taker has fallen silent and
two or more others are speaking together; the group turn ends the moment any
individual is again speaking alone.

Simultaneous speech is speech by one or more speakers who do not have the
floor. [We] further distinguish between overlaps and simultaneous speechwhich
do not lead to a speaker switch. Simultaneous speech which does not precede
a speaker switch is called non-interruptive simultaneous speech.

We converted any absolute measures to frequency or proportion measures as our ses-
sion duration varied in length. Audio streams were analysed using a Voice Activity Detec-
tor [228], based on a deep learning transformer model. Pure laughter, detected by a residual
neural network [77, 191], was distinguished from speech activity. Manual annotation sepa-
rated pure laughter from any utterances made while laughing.

Gaze Times We defined six layered rectangular gaze areas as in Figure 6.5 corresponding
to: the three participants, the display area for the game task, the rest of the screen, and
off-screen. Once again, dependent variables for duration were converted into frequency of
occurrence or proportional duration.
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Shared Eye Contact Shared eye contact is perceivable in Gazing Heads (but not in Tiled
View) and we investigated whether this affects how long and how frequently participants
gaze at one another. A mutual gaze event begins when participant A focuses on the area
where participant B is displayed on screen A, and vice-versa. It ends as soon as either is
focusing on a different area.

Significance Tests For ordinal self-reported data, we used a single-tailed proportions test
(p0 = 0.5) for comparative questions and Wilcoxon signed-rank test for all others. For
comparative questions Participants had the option, in the questionnaire, to like both systems
equally. In those cases votes were omitted from analysis, treated solely as an indicator of un-
certainty about that question. For social presence, the reliability of the semantic differential
attributes to measure the underlying concepts was assessed Cronbachα. The social presence
score was calculated as the median score of the four attributes. We used a factorial repeated
measures ANOVA for the metric speech and gaze measures, assessing the assumptions of
normality and sphericity with Shapiro-Wilk and Mauchly’s tests, respectively.

Interview Insights Thematic analysis [29] was applied to recordings of group interviews,
and captured using a coding scheme. A scheme was devised with three major domains of
technology and experience and a total of 11 topics described by 47 codes. Appendix E.5
provides descriptions of the domains, their topics and the codes used. Codes were applied,
checked and resolved by two of the authors.

6.6 Results

Here are the main results from the three sources of data: recorded speech, gaze data, and
user experience questionnaires.

6.6.1 Speech Activity

Only one significant difference between systems was found in speech activity, that group
turns occur 21%more frequently in Tiled View than in Gazing Heads, as Figure 6.6 shows.
However they are rare and so are not a strong indicator of difference in turn-taking be-
haviour. No significant differences are observed between systems for the other 10 turn-
taking measures, refuting our assumption that Gazing Heads would make speech activity
more akin to physical rather than virtual interaction. Between tasks, there are significant
differences in 10 out of the 11measures, indicating that the game was a more dynamic task:

• Turn switches occurred more frequently.
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• Turns were shorter.

• Group turns occurred more frequently.

• Less time was spent with only one person speaking.

• More Simultaneous speech occurred.

• More non-interruptive simultaneous speech took place.

• Turns were more evenly distributed.

• No differences in simultaneous speech taking control.

• Higher overlaps in speaker switches.

• Reduced switching times.

Those differences confirm that the measures are indeed sensitive to changes in communica-
tion behaviour.
(Note 1 of the 20 sessions didn’t produce speech data usable for analysis due to recording
issues.)

6.6.2 Gaze and Eye Contact

Eye contact occurs just a bit more frequently (Figure 6.7) with Gazing Heads, both during
the discussion (+8.9% more frequently) , and the game (+3.6%) (p < 0.01). Such mutual
gaze as did occur in Tiled View was also not so useful — participants were “somewhat not”
able to distinguish whether gaze was actually directed at them (Figure 6.11). Change of
focus would be another potentially interesting variable, happening on average every second.
However there is no significant difference across tasks or systems. As an aside, there are
marked differences between tasks. For example mutual gaze is significantly reduced in the
game task, for both systems (p < 0.001), because more time is spent in the game gazing at
the content area which contains the information needed to play (Appendix E.4 provides a
more detailed analysis).

6.6.3 Overall System Preference

Users prefer Gazing Heads for most aspects of interaction, as Figure 6.8 shows. It is more
engaging (87%) and makes it easier to sense the attention of others (91%). There is a clear
tendency to choose Gazing Heads for the final discussion session (72%). Participants tended
to find Gazing Heads more natural (62%) and social (62%), suitable for a persuasive dis-
cussion (51%, p = 0.015), and to provide a better turn-taking experience (49%, p = 0.052).
Gazing Heads is favoured for facilitating interactive conversation, getting to know people



Results 101

Discussion Task Game Task p-Value

Hydra
[201]*

GH TV GH TV Task System

Turn Frequency per Minute 4.29
2.69

(1.2)
2.75

(0.9)
6.31

(1.1)
6.32

(1.2)
< 0.001 0.869

Turn Duration 16.62 s
24.48 s
(9.8)

22.97 s
(10.5)

8.04 s
(1.8)

7.74 s
(2.0)

< 0.001 0.535

Group Turn Freq. per Minute 0.24
0.22

(0.2)
0.23

(0.2)
1.43

(0.6)
1.76

(0.8)
< 0.001 0.037

Turn Distribution (H) 1.83
1.90

(0.1)
1.90

(0.1)
1.95

(0.0)
1.97

(0.0)
0.001 0.620

Time one Person spoke 74.70%
90.5%
(4.4)

90.3%
(3.3)

73.0%
(6.0)

70.9%
(5.8)

< 0.001 0.300

Simultaneous Speech 5.40%
2.5%
(3.0)

3.3%
(2.3)

11.1%
(5.4)

13.2%
(6.5)

< 0.001 0.062

non-Int. Simult. Speech 10.22%
2.4%
(2.5)

3.1%
(1.9)

10.9%
(4.7)

11.9%
(5.1)

< 0.001 0.187

Interruptive Simult. Speech 3.50%
1.0%
(1.3)

1.1%
(1.0)

4.0%
(1.8)

4.5%
(2.1)

< 0.001 0.276

Sim. Speech Taking Control 41.60%
30.9%
(21.5)

22.8%
(14.0)

31.3%
(8.5)

30.5%
(6.9)

0.113 0.212

Speaker Switches Overlaps 43.50%
23.7%
(14.9)

25.6%
(17.9)

45.0%
(12.2)

44.3%
(9.3)

< 0.001 0.810

Switching Time 0.25 s
1.00 s
(0.8)

0.69 s
(0.7)

0.18 s
(0.4)

0.14 s
(0.4)

< 0.001 0.171

Figure 6.6. Speech analysis. The middle four columns compare our two systems GH and
TV within the two tasks. Differences between systems are significant only for the group
turns. Differences between tasks are significant for most measures, indicating that the mea-
sures are sensitive. Figure E.4 in Appendix E.3 has additional descriptive statistics along
with F values.
* The first column shows the results of Sellen’s study with the Hydra system for compar-
ison [201]. Interestingly, even after 30 years, measures are broadly consistent with our
measurements, lying between the value for the discussion and the game.

(p = 0.01) and for making the discussion more exciting. Overall, however, participants
were undecided about recommending Gazing Heads, in its current state, over Tiled View.
(All reported differences are significant at p < 0.001, unless otherwise stated.)
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Discussion Task Game Task p-Value

GH TV GH TV Task System

Focus Changes per Minute
58.25

(24.0)
58.34

(22.9)
59.28

(19.9)
62.49

(22.5)
0.109 0.053

Eye Contact per Minute
30.71

(13.2)
28.21

(10.9)
13.60

(6.9)
13.13

(7.0)
< 0.001 0.008

Eye Contact (% of Session)
27.8%
(10.9)

26.0%
(9.6)

10.1%
(5.3)

9.3%
(4.9)

< 0.001 0.035

Eye Contact Duration
0.58 s
(0.2)

0.58 s
(0.2)

0.46 s
(0.1)

0.45 s
(0.1)

< 0.001 0.548

Figure 6.7. Eye-gaze analysis. Four columns comparing the average measures obtained in
the two tasks with our two systems. There was a small but significant system effect: partic-
ipants had more eye contact when using Gazing Heads. The mean and sd were aggregated
across tasks for column 3–4 and system for column 6–7

Would recommend it to others
Easier turn taking ***

Suitability for persuading people *
More social interaction ***
More natural interaction ***
Preferred for future use ***

Perceived other’s attention ***
More engaging/exciting ***

0% 20% 40% 60% 80% 100%

System
Gazing Heads

no Preference
Tiled View

Figure 6.8. Participants’ system preference ratings. Participants generally preferred
Gazing Heads (significance levels: p < 0.05 *, p<0.01 **, p<0.001 ***).

6.6.4 Social Presence, User Experience, and Awareness

The four attributes used to measure social presence are reliable with Cronbach α = 0.85

— they are plotted in Figure 6.9, together with an overall score. The first conclusion is
that participants experienced a higher degree of social presence with Gazing Heads (p =

0.02), and 62% of participants preferred it over the Tiled View for a more social interaction.
Figure 6.10 shows us exactly which aspects of social presence are different: Gazing Heads
made it easier to get to know people (p = 0.01); and also made them a little more aware of
others’ presence (p < 0.01). With both systems, participants found it exciting to follow
the discussion and perceived the conversation as highly interactive; still, they significantly
preferred Gazing Heads (p = 0.04, p < 0.001). Gazing Heads makes participants feel
significantly more in the same room as one another (p < 0.001), and although it is perceived
as “somewhat” safe from distraction, it is not felt to be as safe as TiledView (p < 0.001). The
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Figure 6.9. Participants’ social presence ratings. The social presence score was based on
participants’ median ratings of four attributes (sociable, personal, sensitive, warm) for the
two systems. Scores are significantly higher for Gazing Heads (p = 0.02). (Dots outside
the whiskers indicate outlier scores.)

Easier turn taking
Reactions more perceivable

Was able to take control
Did not feel excluded
Was not distracted ***
Was able to contribute

Same room experience ***
More interactive conversation ***
Was aware of partners presence *
Exciting to follow the discussion *

Could get to know people *

-3 -2 -1 0 1 2 3

System

TileView

Gazing Heads

Figure 6.10. Participants’ user-experience ratings. Ratings for several aspects of the
user experience ratings. The scale ranges from strongly disagree (−3) to strongly agree (3).
(Significance levels: p < 0.05 *, p<0.01 **, p<0.001 ***.)

two systems are similar in several respects: the ability they give an individual to contribute
to their team’s solution (p = 0.246); degree of exclusion from the conversation (p = 0.790);
and ability to take control of it when they want to (p = 0.176). The reactions of others
are only “somewhat” perceivable (p = 0.263) in both systems. Turn-taking is “easy” with
Gazing Heads, and “somewhat easy” with Tiled View, but the difference is not significant
(p = 0.084). Gazing Heads also performs significantly better on awareness of gaze and
attention, and awareness of who is being addressed (Figure 6.11), with 91% of participants
reporting that they perceived attention more easily (Figure 6.8, p < 0.001). They also found
it easier to reason about who is being addressed or attended to (Figure 6.11, p < 0.001 for
all six ratings). It was unclear whether either system could convey disengagement — i.e.
”gazing at no one”.
(Note: The responses of 1 group were excluded from the analysis due to a procedural error.
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Knew when interlocutor was thinking
Knew when interlocutor attended to NO ONE
Knew when interlocutor gazed at NO ONE

Knew when interlocutor addressed OTHERS ***
Knew when interlocutor attended to OTHERS ***
Knew when interlocutor gazed at OTHERS ***

Knew when interlocutor addressed ME ***
Knew when interlocutor attended to ME ***
Knew when interlocutor gazed at ME ***

-3 -2 -1 0 1 2 3

System

Tiled View

Gazing Heads

Figure 6.11. Participants’ awareness ratings. Ratings for perceiving gaze, perceiving
attention, and awareness of being addressed. (Significance levels: p < 0.05 *, p<0.01 **,
p<0.001 ***).

One participant lost his replies by accidentally logging out of the system.)

6.7 Discussion

Our study has shown that the GazingHeads concept improves video conferencing, providing
gaze awareness via synthesised head rotation. This section explores the implications of
results from the previous section, making particular use of insights gained from the exit
interviews.

6.7.1 Conveying Attention

Participants (all but 2) understood intuitively, within the first two minutes of using Gazing
Heads, that head rotation conveys visual attention. The questionnaires showed already that
they perceived attention more readily in Gazing Heads, and during interviews they often
mentioned that Gazing Heads conveyed attention better (N = 36), made it more perceivable
(N = 69), and made it easier to gain attention (N = 16). (Here N denotes the number of
participants for which a codewas applied at least once.) One implication is that correcting a
user’s frontal viewwithout adding head rotation as in [99, 115, 89, 71, 94, 254] is insufficient
to achieve gaze awareness. The user study for Gaze Chat [89] which only used such a
correction showed that it did not improve users ability to perceive attention. Hydra [201]
did use head rotation, and did find an improvement. Users’ accuracy in estimating the gaze
of others may be low [117] so head rotation provides an additional cue for attention [88].
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6.7.2 Subjectively Higher Engagement

In the last section, we saw that Gazing Heads felt more engaging and this was a common
topic in interviews (N = 39). Interviewees occasionally even felt social pressure to partic-
ipate because the signalling of attention was so clear (N = 32):

“If your goal is that everyone is taking part in a discussion, you HAVE TO use
this system. Because you are simply forced to stay engaged.” “[Especially]
when everyone starts looking at one person.”

Our findings contrast with the studies of Hydra [201] (and GazeChat [89]) where no im-
provement of engagement over Tiled View was found. With Hydra, users needed to actively
turn their heads and were reluctant to do that. Gazing Heads translates almost every gaze
into a head rotation and makes them salient by placing them in users central vision rather
than in peripheral vision on small screens. We believe this increased users engagement.

6.7.3 Conveying Disengagement and Gazing-Away

During interviews, users took issuewith the camera selection rulewhich showed them turned
towards another participant, even when they were not gazing at anyone (N = 11):

“The only thing that is missing, perhaps, is that you cannot look at nobody.
So even if I am just staring in front of me, then I am still [being displayed as]
looking at someone.”

They also want to be able to disengage, which Gazing Heads does not facilitate:

“if people could like watch me very closely ... when I am looking at my phone
or something like that [...] in larger groups when you want to disengage from
the discussion ... then it’s almost creepy.”

To address these concerns, a future system could add a neutral object like a table, as sug-
gested in interviews (N = 10), similar to the content area which for us was present only
during the game. However, this would risk reducing mutual eye contact and attenuating the
effects of gaze cues [10] (see also the gaze analysis in Appendix E.4). One might also show
disengaged users as greyed, inanimate or separated, allowing them to be listeners only, or to
work on something in parallel. Systems could offer different layouts depending on whether
high engagement is a major objective, and future work might look into that.

6.7.4 Increased Social Presence in a Virtual Space

We saw in the previous section that Gazing Heads increases the feeling of social presence.
Also in the interviews, an increase of social presence was frequently (N = 58) mentioned as
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an advantage of Gazing Heads. It was usually described as a feeling of “being closer” to the
other participants or having a more personal experience. Similarly, interviewees described
improved virtual presence (N = 50) but were divided as to whether the improvement was
substantial enough to feel “in the same room” (N = 23), or not (N = 14), for example:

“With heads floating in a black room it is totally unclear in which real distance
we are actually located to one another [...] we are all floating in this empty
black thing.”

or

“Well I still think the situation ... uhm ... is still video-telephony .. and that’s
just not so immersive that it completely detaches you [from your current sur-
roundings].”

It was also evident that the concepts of social and virtual presence are considered as related
(see also Lombard and Ditton [136]), for example:

“Here you feel closer, because it’s [rather] simulating a room and not just [a]
screen.”

As for other design aspects that may contribute to physical and social presence, participants
frequently praised the consistent placement of interlocutors in a virtual circle (N = 15).
Participants also commented that the separate backgrounds in Tiled View were a strong
visual indicator that they were not in a shared space (N = 16). For Gazing Heads our
design choice of using a plain black background was a frequent topic. Several participants
disliked it (N = 21) because it was perceived as cold, providing too little context. Others
preferred it in plain black (N = 8) for increasing contrast and reducing distraction. Various
suggestions for alternative backgrounds were made during the interviews (N = 25).

“This [the black background] is optimal considering potential distraction, but
you have to meet people where they are and it would possibly be easier to get
used to the system if you – I don’t know – would have a typical Zoom back-
ground.”

Our study leaves open how virtual backgrounds impact physical and social presence. Fu-
ture research could examine whether a photorealistic scene with a unified background and
elements like a table or a bonfire enhance presence and convey virtual togetherness.
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6.7.5 Subjective Effect of Eye Contact

Although participants spent only a little more time gazing at one another in Gazing Heads,
eye contact changed their perception substantially. Since gaze is hardly noticeable in Tiled
View (see questionnaires) any ”eye contact” was probably guided by auditory perception not
visual cues. In interviews (N = 7) eye contact in Gazing Heads revealed a clear, positive
effect on participants’ experience:

“For a discussion, the second system [Gazing Heads] is much more comfort-
able. You just have more of a feeling of being part of a group. For me, in
seminars, [...] others were just sitting inside of their tiles simply looking [some-
where], not really taking part. Here you have the feeling of being integrated,
even if you are not saying anything, especially when you are being looked at.”

Interviews suggested, as also indicated by prior work [187], that eye contact in GazingHeads
facilitated a stronger feeling of engagement and social presence:

“I think it’s more personal because, when you are looking at me, I have the
feeling you are actually looking in[to] my eyes, and then I want to [...] explain
my point of view to you [...] and I know [...] if you are looking at my face you
will see also my eyes.”

Our observations from recordings suggest that synthesised head rotations make eye contact
and attention selective and salient. They amplify associated positive effects such as increased
social presence and higher engagement.

6.7.6 Comparison to Other Systems

So far we have seen that Gazing Heads conveys attention and improves engagement and so-
cial presence, unlike previous studies. What are the reasons for this difference? GazeChat
did not improve users ability to perceive the attention of others, when compared to the Tiled
View and no improvement in engagement, eye-contact or social presence could be mea-
sured [89]. This may partly be because GazeChat provides no live video. However, the
mock-up study of He et al. [88] provides evidence that head rotations are superior to gaze
correction for conveying attention. This is further backed up by Hydra’s [201] user study,
which used head rotations and found it improved users ability to perceive attention compared
with TiledView— but no positive effects on social presence and engagement emerged here
either. We argue that synthesised head rotations convey attention most clearly. Our inter-
pretation is that they amplify the positive effects associated with gaze-awareness. A head
rotation towards the new person in focus combined with instant direct eye contact creates
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strong observable reactions evident in many of our recordings. An implication for future
gaze-aware systems is that correcting a users frontal view without adding head rotation [71,
94, 254] is insufficient.

6.7.7 Inconclusive Results Regarding Turn-Taking

The speech and turn-taking analysis saw no significant difference between the two systems
for 10 of the 11 measures suggested by Sellen [201], nor did the questionnaire. This may
be explained by video recordings of sessions, in which participants seemed to rely more
heavily on auditory cues for turn-taking. Participants gave partly contradictory answers
about turn-taking: 51% found Gazing Heads easier with 19% for Tiled View, and 30% had
no preference, the largest degree of ambiguity we observed in any direct comparison ques-
tion. Participants made several comments in interviews about turn-taking being easier with
Gazing Heads (N = 28):

“Who is talking next or who is generally talking right now ... emerged organi-
cally.” “Yeah right [...] when you started talking and you notice the others are
looking at you or are turning towards you, then you knew ok I can talk right
now.”

and

“You could directly address people. When I asked [other participant] his name,
I just looked at him and that worked.”

6.7.8 Camera Transitions Can Be Distracting

Using transitions between camera views instead of computer vision methods to synthesise
head rotation was a limitation of our simulation, necessitated by technical limitations. Im-
plementing the Gazing Heads concept this way came with limitations on its own, which may
have negatively influenced the results of our experiment. In the previous chapter we saw
Gazing Heads rated as less protected from distraction. Interviews indicated that this was
due to the transitions between cameras (N = 27), for example:

“You see this short fade between perspectives [...] and that instantly distracted
me for half a second and I thought: Oh cool where is he looking right now?
And then it was like ... ok what just happened [in the discussion]?”

Frequently, participants described the animated transitions not as head rotation but as fading,
vanishing, switching or flickering (N = 41) , and others perceived transitions as too slow
or lagging (N = 8).
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“I just don’t like the way – I know it is still in development – but I just don’t
like the way we are turning into shadows when we are turning. It looks kind of
weird (two group members agree).”

“Suddenly they are looking at you and then suddenly [the] other person ... but
you don’t see the transition from one camera to another [all group members
express their agreement].” “Exactly - you are lagging somehow.”

Similar to the quote above some participants perceived transitions as too slow or lagging
(N = 8). Some complained that not every gaze switch resulted in a transition, but that was
a deliberate design choice made to reduce the number of transitions, as they are visually
very salient.

“[The transitions] are slower than my gaze. I frequently gaze from one head to
another and the animation takes longer than my switching. Not sure if one can
see that? [switches gaze to demonstrate the delay].”

With one group that suggested the dwell and animation time was too slow, we tried a
Gazing Heads configuration where head rotations occurred more promptly and frequently.
After four minutes of testing the group agreed it was “more natural” and preferable. This
raises an open question about the optimal frequency for transmitting gaze among users.
While transmitting every gaze would be overwhelming, as participants shift focus about
every second, our chosen dwell and recovery times might have been too conservative.

6.7.9 Realism and Nonverbal Cues

Another prevalent interview topic was the design choice to show only heads, without cloth-
ing or shoulders (N = 52). Participants noticed that this strengthened the 3D illusion
(N = 13). It also made the experience somewhat artificial (similar to a game) and gave
the impression of a “work in progress” (N = 25). The most common concern was the
absence of non-verbal communication from posture, shoulder shrugging and hand gestures
(N = 46).

“At some point during the game I shrugged my shoulders and I thought – ok –
do they even see that? Then I thought ... oh no ... now I have to say something
like ‘‘I don’t care’’ or something like that.”

At the same time it was noticed that reducing non-verbal communication to just the head
increased the saliency of facial expressions (N = 15).

“I think it’s not that bad to have floating heads, because that way you focus on
the facial expressions much more.”
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There was a variety of opinions about showing the upper body and clothing. Arguments
against showing gestures or posture were rare, but not all participants wanted the actual
appearance of their upper body to be visible since, amongst other things, it meant having to
dress appropriately for a meeting:

“Think about fat-shaming for example, or women who are often exposed to
unpleasant gazes.”

We tried 13 interview groups using the system without green turtlenecks, adding shoulders
back into view, at the expense of less natural camera switches and exaggerated upper body
movement. They were unsure whether this experience was more (N = 27) or less natural
(N = 30) – some described this configuration as a “hybrid”, that means, easier to adapt to,
given stronger similarity to Tiled View, yet providing gaze awareness benefits (N = 12).
An open question is the mapping of upper body movement which needs to be consistent
with head rotation (”inverse kinematics”) while still appearing natural.

6.7.10 Implementation on Commodity Hardware

Overall, our interviews confirmed that technical maturity and realism are the main obstacles
to a full implementation of Gazing Heads. Even under sub-optimal lighting conditions, with
users wearing glasses or having long hair, systems need to realistically convey users’ gaze,
unique facial expressions and facial features. Current solutions may degrade the experi-
ence to a point where standard single-view video conferencing is preferred over unrealistic
gaze-aware solutions. There are several implications for future research. Computer vision
methods which modify users gaze, e.g. by using Generative Adversarial Networks or cre-
ating avatars) need to tackle two issues: realism [18, 17] and latency [22, 69, 256]. For
example, the head rotations shown by He et al. [89] appear fairly realistic but incidentally
affect facial expression1. Several recent works [80, 180, 192] have claimed higher levels
of realism since our study was performed in 2022, and it remains to be seen how effec-
tive they are in a system like Gazing Heads. There is a need of an objective evaluation of
available methods under realistic conditions instead of clean benchmark data sets or cherry
picked examples. Latency needs to be held down to an acceptable level (cf. Gazing Heads:
133.33±33.33ms) [69]. Gazing Heads also needs webcam eye-tracking with 4.86◦ of accu-
racy (Appendix E.6.) This is achievable with modern methods under ideal conditions [90]
but accuracy under realistic system conditions remains to be confirmed.

1https://youtu.be/dGY8NbG11Ng

https://youtu.be/dGY8NbG11Ng
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6.7.11 Finding More Sensitive Measures

We saw earlier that the nature of the task had a dominant influence on quantitative be-
havioural measures, consistent with prior work [225, 10, 117]. One implication is that
quantitative results on gaze awareness may not generalise well across different studies with
varying task scenarios and interface layouts. It also raises the question of exactly what alter-
native measures could be used. The measures of turn-taking [201] seem sufficient only to
detect gross changes between tasks or comparing a physical to a virtual setting [201]. One
possible interpretation is that artificially introduced gaze leaves video-mediated communi-
cation behaviour unchanged. Alternatively they may be the wrong measures [229]: “how
many turns people take, how long those turns are, how many pauses people take [..] doesn’t
reflect people’s real experiences of what those conversations are like.” Compared to other
studies, our wider range of measures did capture some differences in users’ experiences. It
remains for future work to find better quantitative measures to avoid relying on self-reported
data. Since it is known that “People generally get along better and communicate more ef-
fectively when they look at each other” [117], one potential approach in the game setting
may be to adapt measures of user cooperation and responsibility from social psychology and
behavioural game theory.

6.7.12 Limitations

We are aware of four areas in which our experiments have limitations.

Realistic Setting The tasks (game and discussion) may not entirely represent typical video
conferencing sessions in domestic or business settings. We chose unusually dynamic tasks.
However this was done to help participants engage and get socially comfortable as quickly
as possible, given that they generally did not know each other beforehand.

Questionnaires Neglected Differences Between Tasks Questionnaires asked about dif-
ferences between the two systems, but did not explore differences between the game and
the discussion. This was to avoid overburdening participants with questions and consum-
ing more time, but admittedly may have caused some relevant and interesting effects to
be missed. However, no differences in experience between tasks were mentioned during
interviews.

Novelty Effect The novelty of the systems, especially Gazing Heads, may have influ-
enced participants’ behaviour and ratings. During interviews, many participants (N = 50)
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emphasised that Gazing Heads was novel, though they clearly understood that Tiled View
represented familiar video-conferencing applications.

Participant Demographics Most participants were young students (Section 6.5.1), ac-
customed to video conferencing, so results may not generalise well to older populations less
familiar with technology. We conducted experiments in three languages for variety but the
speech analysis results may not entirely generalise across languages. Lastly, gaze is believed
to be influenced by socio-cultural norms [84, 249], and our population was predominantly
Northern European and Western Caucasian, so that is another potential limitation to gener-
ality.

6.8 Conclusion

The Tiled View layout for video-conferencing is well-established, and our user study and
prior work [201, 89] have all shown how challenging it is to improve upon it. There are two
obstacles to realising that improvement: convincing realism [18] and low latency [22, 69,
30] — without which the user experience is severely compromised. In this study we have
addressed the realism issue.

We have found that Gazing Heads represents a clear advance over present day video-
conferencing in its capacity for conveying gaze and attention. In contrast to earlier studies
by Sellen [201] and by He et al. [89], which also took Tiled View as baseline, Gazing Heads
has been found to increase social presence, mutual eye contact, and user engagement. It
unequivocally enhances the experience of users. We attribute these results to the amplifying
effect of head rotations for conveying gaze. In its current design, Gazing Heads enhances
highly interactive small group meetings. For other communication scenarios, like collab-
orative content editing or presentations with a large audience, alternative designs may be
beneficial — an idea that is somewhat supported by our interviews. For meetings however,
conveying attention to content, and to other participants, and reducing distractions for the
presenter, seem to be particularly important.

Human communication in virtual space is a topic of considerable and growing signifi-
cance because remote working has become a permanent and prominent feature of working
life, but Zoom fatigue is a challenge. Any technical progress that may mitigate it could
substantially impact the effectiveness, health and well-being of users. We believe that this
study, and the Gazing Heads concept in particular, could represent an important step towards
that goal.



Appendix A

Additional Publications During PhD
Candidacy

During my time as a PhD candidate, before transitioning to the University of Heidelberg, I
made several other contributions, which are not included in the main text. To fully explain
my academic contributions as a PhD candidate, this appendix chapter briefly describes these
works and includes a copy of each publication.

A.1 Minimalistic Explanations: Capturing the Essence of
Decisions

When commencing research on the evaluation of explanation methods, I conducted a small
study investigating whether the regions selected by a feature attribution explanation (LIME
[184]) reduce the image to the regions users find to be semantically meaningful. This early
work is not included in the main text due to its exploratory character. I include it here as it
influenced my subsequent study designs and research questions. In particular, it led to the
insight that highlighting pixels is very limiting for explaining a classification decision.

Publication This work was published as a Late-Breaking work in the Extended Abstracts
of the 2019 CHI Conference on Human Factors in Computing Systems.

Martin Schuessler and Philipp Weiß. 2019. Minimalistic Explanations: Cap-
turing the Essence of Decisions. In Extended Abstracts of the 2019 CHI Con-
ference on Human Factors in Computing Systems (CHI). ACM, LBW2810:1–
LBW2810:6. doi: 10.1145/3290607.3312823
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ABSTRACT 

The use of complex machine learning models can make systems opaque to users. Machine learning 
research proposes the use of post-hoc explanations. However, it is unclear if they give users insights 
into otherwise uninterpretable models. One minimalistic way of explaining image classifications by 
a deep neural network is to show only the areas that were decisive for the assignment of a label. 
In a pilot study, 20 participants looked at 14 of such explanations generated either by a human or 
the LIME algorithm. For explanations of correct decisions, they identified the explained object with 
significantly higher accuracy (75.64 % vs. 18.52 %). We argue that this shows that explanations can be 
very minimalistic while retaining the essence of a decision, but the decision-making contexts that can 
be conveyed in this manner is limited. Finally, we found that explanations are unique to the explainer 
and human-generated explanations were assigned 79 % higher trust ratings. As a starting point for 
further studies, this work shares our first insights into quality criteria of post-hoc explanations. 
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INTRODUCTION 

The impact of machine learning on our society is growing as it is becoming an integral part of 
many computer programs. Unfortunately, systems like deep neural networks that have significantly 
promoted the revival of machine learning research are inherently uninterpretable due to their sub-
symbolic nature. Hence researchers are faced with a fundamental technical barrier to transparency as 
they have limited understanding of what these systems are learning and are unable to prove that 
they will work on unseen problems [8]. Nevertheless, transparency and explainability are an integral 
component of ethically aligned design [5, 14]. Consequently, interpretable machine learning research 
has seen a surge in interest and publications with two main streams of research: The first suggest new 
“simpler” models that are mathematically more interpretable yet exhibit comparable performance 
to uninterpretable models. The second seeks to explain black-box model predictions with post-hoc 
explanations without uncovering the mechanism behind them [8]. The running hypothesis that 
motivates such research is that displaying explanations can help novice and expert users to develop 
trust into a model [11]. However, there is minimal consensus on a definition for interpretability [6, 8] 
and scholars have argued that research in this field needs to build more strongly on research on 
explanation in philosophy, psychology and cognitive science [9]. Furthermore, human factors and 
real-world usability aspects are ofen neglected when new approaches are proposed, which may be 
because current interpretable machine learning research is relatively isolated from HCI research [2]. 

However, interaction with intelligent systems and agents is a traditional field of HCI. For example, 
Kulesza et al. [7] introduced Explanatory Debugging Systems that explain their decisions and incor-
porate user feedback, which was shown to lead to beter predictions, sounder mental models and 
higher user satisfaction. Since their implementation has been limited to simple Naïve Bayes classifiers, 
these principles and findings may not translate to complex deep learning models. More recent work 
from our community includes work by Binns et al. [3] studying how diferent presentation styles of 
explanation influence justice perception or work by Rader et al. [10] studying how explanations of 
the Facebook news feed algorithm influence the beliefs and judgments. 

In this work, we add to this body of research by investigating if minimalistic post-hoc explanations 
can capture the essence of a decision and if they align with human intuition. 

CHI 2019 Late-Breaking Work CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

LBW2810, Page 2

114 Minimalistic Explanations: Capturing the Essence of Decisions



Figure 1: Anchor generation scheme: On 
the lef branch a human assigns a label 
and highlights the anchor. On the right 
branch, a deep neural network assigns the 
label, and the LIME [11] algorithm creates 
the anchor. Both anchors are printed on 
paper and cut out by hand to smooth the 
edges. 

METHOD 

A “full” explanation of a complex model is ofen not feasible or even understandable for humans, 
which is why explanations need to be selective in the causes they present [9]. For the machine learning 
task of image classification where an image is assigned one of several possible labels, anchors are 
one possible way of providing such minimalistic explanations. An anchor is the reduction of the 
input image to the regions that supported the assignment of a label. In our pilot study, we compared 
algorithmically generated anchors to the gold standard of human explanations. For this purpose, we 
photographed several everyday objects and generated anchors for them algorithmically and manually. 

Algorithmically Generated Anchors 
To generate anchors algorithmically we used the Keras framework [4] with tensorflow [1]. We predicted 
a label for each photo using the Inception v3 model [13] trained with the 1000 class ImageNet training 
data (Figure 1 - Step 1). For the post-hoc explanation method, we restricted our experiment to local 
interpretable model-agnostic explanations, generated with the LIME algorithm. This algorithm was 
developed by Ribeiro et al. [11] in 2016. In a user study, they also demonstrated its ability to support 
users in identifying generalisation error and skewed datasets. 
For a decision, LIME creates a sparse, linear model д with super-pixels as input. The resulting 

model is interpretable for two reasons: Firstly, the domain of д is a super-pixel representation of the 
image, which is meaningful for a human. Secondly, the sparsity constraint enforces that just a few of 
all super-pixels contribute to the classification by д, creating a very selective model. The anchor is 
obtained by reducing the input image to pixels that supported the decision (Figure 1 - Section B2). 
Anchors generated in this fashion can exhibit some rough edges which we smoothed manually. It is 
important to note here that diferent model architectures (e.g., vgg16) produce diferent anchors and 
how the architecture influences the anchors is an open research question. 

Manually Generated Anchors 
We showed photos of seven everyday objects to four volunteers recruited within our institute and 
asked them to assign a label to the image (Figure 1 - Step 1). Next, we instructed them to mark up 
regions of the image that they considered most relevant for their decision (Figure 1 - Step 2). If in 
doubt explainers were instructed to consider what regions they considered essential in such a way 
that their removal would make it much harder to identify the object. Finally, their selections were cut 
out from paper and glued back to paper smoothing the edges if necessary. Once we had created a 
couple of anchors in this fashion, they appeared to be considerably diferent from the algorithmically 
generated ones. 
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Figure 2: First stage of the experiment: For 
each image one of the two anchors are 
shown to subjects. They decide what the 
original label was, how dificult it is to 
recognise the label and finally how the an-
chor was created. 

Figure 3: The second stage of the ex-
periment: The subjects see both anchors 
and the original image. Again they decide 
which anchor was created by the algo-
rithm. They also judge if they would trust 
the classifier given each explanation and 
assuming the machine created it. 

Study Design 

If anchors are selective in a human-understandable way, they should reduce an image to the essential 
parts. If this is the case, humans should be able to identify the object for which an anchor was 
generated if the anchor was generated for the correct object label. We hosted a pilot study with 
twenty participants, researchers from multiple disciplines, at the Weizenbaum Institute. In the first 
half participants were individually presented with seven anchors of the seven objects, randomly either 
algorithmically or manually created. In a questionnaire, they were asked to identify the object 
outlined by the anchor, give a dificulty rating for this task (five-point Likert scale) and select whether 
they think the anchor was generated by a human or by an algorithm (Figure 2). In the second part, we 
showed participants the original images of the object along with the anchors they had already seen 
and the ones they had not seen. Hence a manually and an algorithmically generated anchor were on 
display for each object. We also marked the anchors that explained a wrong label. In the questionnaire, 
we asked participants once again to determine for each anchor if a human or an algorithm generated 
it. Lastly, assuming the anchor had been generated by an algorithm they were asked to rate the 
likelihood that they trusted the underlying classifier to classify objects of the same type correctly in 
the future (Figure 3). 

RESULTS 

Fifeen out of twenty participants submited their questionnaire which was optional. We analysed 
the data using two-way repeated measurement ANOVAs and report only significant results in this 
short work. As shown in Figure 4 the recognition rate was significantly lower for explanations that 
explained the wrong label (18.52% vs. 75.64%; F(1,105) = 40.14, p < 0.001). Similarly, the dificulty rate 
was significantly higher (M = 4.70, SD = 0.53 vs. M = 2.66, SD = 1.59; F(1,99) = 43.0754, p < 0.001). In 
the first part of the experiment participants were able to distinguish between algorithmically and 
manually generated anchors with an average accuracy of 57.45 % which increased to 82.52 % in the 
second part where anchors where displayed pairwise along with the original image. If an anchor 
explained an incorrect label, trust ratings were significantly lower as when it explained the correct 
label (M = 2.17, SD = 1.05 vs. M = 3.89, SD = 1.09; F(1,205) = 82.45, p < 0.001) and participants 
trusted manually generated explanations significantly more than algorithmically generated ones 
(M = 3.83, SD = 1.25 vs. M = 2.99, SD = 1.29; F(1,205) = 6.90, p = 0.009). 

DISCUSSION 

In our pilot study participants were able to identify the original object more accurately and with more 
ease when an anchor explained the right label. Hence, in most cases, anchors seemed to reduce 
images to their essential parts for a given label while being very selective. Nevertheless, an 

CHI 2019 Late-Breaking Work CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

LBW2810, Page 4

Minimalistic Explanations: Capturing the Essence of Decisions 115



Figure 4: Study results. The three graphs 
compare diferent metrics for anchors of 
correctly and incorrectly labeled images 
(lef), as well as anchors generated by hu-
mans and algorithms (right). Top: Identifi-
cation rate of the correct object label. Mid-
dle: Dificulty rating of identifying the ob-
ject. Botom: Trust in the classifier’s deci-
sion. 

identification rate of 75.64 % is still leaving room for improvement. In future studies, we plan to allow 
participants to reveal additional regions interactively, which could identify important regions that had 
been lef out by the explainer. Such feedback data could be used to improve or debug the classifier. 
We also found that explanations were unique to the explainer (human subject or machine 

learning model respectively) and therefore considerably diferent from one another (i.e., anchors C1 
and C2 in Figure 1). Hence it was easy for participants to distinguish between them once they were 
displayed side by side. Some participants mentioned that they saw a patern in how they difered, 
stating that humans are more focused on the objects overall shape and the co-occurrence of region 
whereas the algorithm focussed on object-specific paterns in sub-regions. They also trusted the 
manually created anchors significantly more (3.89 vs. 2.17). Whether this is due to a general tendency 
to trust humans more is lef to be investigated. Interestingly participants mentioned that they did not 
expect explanations to overlap or to be similar, but they expected them to align with their intuition. 
This shows that there can be more than one reasonable explanation for a given decision. 

When creating anchors manually, participants ofen circled diferent regions that were overlapping 
or connected stating that the occurrence of both regions together or in a particular spatial arrangement 
is what made them assign a specific label (see Figure 5). However, mapping such an explanation to a 
set of sub-regions is not possible. Hence, anchors can only communicate very few reasons for a 
given decision. Future research could consult expertise from cognitive psychology and social science 
[9] about how humans generate and look at explanations. Such insights can be used to extend LIME 
or other post-hoc methods to convey more decision making context such as the relationships between 
regions. It is important to mention here that many interpretable models such as rule-based systems 
or classification trees provide explanations for the combination of features to a decision. Furthermore, 
explanations are not limited to the use of input features. Their expressiveness can be enhanced with 
the use of other media and modalities (see [8] for examples). Sevastjanova et al. [12] even outlined a 
very promising design space for the combination of verbalisation and visualisation to produce even 
richer explanations. 

FUTURE WORK AND CONCLUSION 

We aim to repeat this study with a more thorough design (no convenience sampling, beter isolation 
of factors, improved shape of anchors, standardised questionnaires). In this experiment, we studied a 
very abstract notion of trust as the faith in a models performance. Following the argumentation of 
Doshi-Velez et al. [6] trust should instead be evaluated in respect to some real-world desiderata and 
more carefully operationalised. For example, one could base the reward for the experiment on the 
participant’s ability to rely on the system appropriately. In such an experiment post-hoc explanations 
could be compared to real explanations, placebo explanation or simple model performance statistics. In 
future studies, we also seek to asses another quality indicator of explanations: their decision-contrasting 
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Figure 5: Participants highlights used to 
explain why s/he saw a key in this image 
of a botle opener. Several circles cover 
almost the entire object because their ar-
rangement as a whole was considered sig-
nificant. The hatched area indicates that 
this region was of lesser importance. 
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capabilities [8, 9]. Since anchors only provide information about why a label was assigned, we plan to 
investigated if they can also provide useful information about why another label was not chosen. 
In this work, we found that anchors are very minimalistic explanations that can be very selective. 

Even though they retain the essence of a decision, it is worth investigating how they could convey 
more decision-making contexts. We see this early work as a starting point for a series of human 
grounded evaluations [6] that asses the practical interpretability provided by post-hoc explanations 
and interpretable models. 
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A.2 Power Dynamics in Data Annotation for Computer
Vision

Along with the research presented in this work, the author contributed to several interdis-
ciplinary research projects at the Weizenbaum Institute. Milagors Miceli, Tianling Yang,
and I critically reflected on how ground-truth data is created for training computer vision
models. This work has a strong connection to explaining image classifiers. Instead of fo-
cusing on black-box models, it focused on black-box datasets. Before image classification
models can be trained, they require annotated data. When annotators assign meaning to raw
data through the use of labels, they create an abstraction of reality that is later learned by
computer vision models trained on this annotated data. Less attention is paid in the machine
learning community to the fact that these models learn an arbitrary abstraction of reality that
was created during the annotation process. We investigated image data annotation practices
performed in industrial contexts to gain a deeper understanding of this sense-making pro-
cess. Following a constructivist grounded theory approach, we conducted several weeks of
fieldwork at two annotation companies. We analysed which structures, power relations, and
naturalised impositions shape annotators’ sense-making of data. We found that annotators
are influenced by the interests, values, and priorities of actors above their station. Arbitrary
classifications were vertically imposed on annotators and, through them, on data. This is
in stark contrast to the prevailing notion that views data annotation as a neutral and objec-
tive practice that simply creates ground-truth labels. Instead, it is an exercise of power with
multiple implications for individuals and society.

Publication Thisworkwas published in the Proceedings of theACMonHuman-Computer
Interaction, won a Best Paper Award, and has been cited 134 times in the four years since
its publication. It was presented at the 23rd ACM Conference on Computer-Supported Co-
operative Work and Social Computing (CSCW):

Milagros Miceli, Martin Schuessler, and Tianling Yang. 2020. Between Sub-
jectivity and Imposition: Power Dynamics in Data Annotation for Computer
Vision. Proceedings of the ACM on Human-Computer Interaction, 4, CSCW2.
doi: 10.1145/3415186
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The interpretation of data is fundamental to machine learning. This paper investigates practices of image
data annotation as performed in industrial contexts. We define data annotation as a sense-making practice,
where annotators assign meaning to data through the use of labels. Previous human-centered investigations
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filtering [4, 62], and even advertisement [1]. Critical academic work has furthermore discussed the
politics involved in data-driven systems [27, 30, 56] and highlighted the importance of investigating
the capitalistic logics woven into them [20, 26, 81]. What the enthusiasm of technologists seems to
render invisible is that algorithmic systems are crafted by humans and hence laden with subjective
judgments, values, and interests [31, 44]. Moreover, before the smartest system is able to make
predictions, humans first need to make sense of the data that feeds it [61, 66, 72]. Despite its
highly interpretative character, data-related work is still often believed to be neutral, “comprising
unambiguous data, and proceeding through regularized steps of analysis” [61].
The present paper investigates data annotation for computer vision based on three research

questions: How do data annotators make sense of data? What conditions, structures, and standards
shape that sense-making praxis? Who, and at what stages of the annotation process, decides which
classifications best define each data point? We present a constructivist grounded theory [21, 59, 60]
investigation comprising several weeks of fieldwork at two annotation companies and 24 interviews
with annotators, management, and computer vision practitioners. We define data annotation as a
sense-making [52] process where actors classify data by assigning meaning to its content through
the use of labels. As we have observed, this process involves several actors and iterations and begins
as clients transform their needs and expectations into annotation instructions. The sensemaking of
data, so we argue, does not happen in a vacuum and cannot be analyzed independently from the
context in which it is carried out.

We use Bourdieu’s [13] concept of symbolic power, defined as the authority to impose meanings
that will appear as legitimate and part of a natural order of things, as a lens to analyze the dynamics
of imposition and naturalization inscribed in the classification, sorting, and labeling of data. Previous
research in the field of data annotation has largely focused on workers’ individual subjectivities as
a major cause for biased labels [18, 40, 48, 77]. Conversely, our investigation introduces a power-
oriented perspective and shows that hierarchical structures broadly inform the interpretation of
data. Top-down meaning impositions that follow the demands of clients and the market shape data
profoundly.
With this investigation, we seek to orient the discussion towards the interests and values

embedded in the systems that potentially shape our individual life-chances [37]. Through the
description of three observed annotation projects, we expose the deeply normative nature of
such forms of data classification and discuss their effects on labels and datasets. Building on this
perspective, we propose the incorporation of power-aware documentation in processes of data
annotation as a method to restore context. We argue that reflexive practices can improve deliberative
accountability, compliance to regulations, and the explication and preservation of effective data
work knowledge. With this work, we also hope to inspire researchers to adopt a situated and
power-aware perspective not only to investigate practices of data creation but also as a tool for
reflecting power dynamics in their own research process.

2 RELATEDWORK
2.1 Data Work as Human Activity
Previous work has argued that data-driven systems are often linked to “a technologically-inflected
promise of mechanical neutrality” [41]. However, these systems require, in many cases, the in-
tervention of human discretion in their deployment [2, 64], and even more frequently, in their
creation [18, 22, 35, 36, 39, 48, 51, 61, 66, 67]. Moreover, critical research has argued that data-driven
systems embody the personal and corporate values and interests of the people and organizations
involved in their development [31, 51, 53, 57]. As Klinger and Svensson state, “arguments that
technology had agency on its own hide the individuals, structures, and relations in power and
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thus serve their interests, interests that become increasingly blurred” [53]. A view into the power
dynamics encoded in data and systems is, as we will argue, of fundamental importance, especially
considering that “the technical nature of the procedures tends to mask the presumptions that enter
into the programming process, the choices that are made, and the conceivable alternatives that are
ruled out” [57].
Besides technical exercise and operation, the development of data-driven products involves

“mastering forms of discretion” [66] and is conditioned by the networked systems in which they
are created, developed, and deployed [51, 73]. Kitchin [51] pinpoints various processes and factors
that reveal extensive human interventions in data-driven systems, such as the translation of tasks
into algorithmic models, available resources, the choice of training data, hardware and platform,
the creative process of programming, and adaptation of systems to meet requirements of standards
and regulations. He further argues that algorithmic systems are subject to the purposes of their
creation: “to create value and capital; to nudge behaviour and structure preferences in a certain
way; and to identify, sort and classify people” [51].

The examination of the provenance of data and the work practices involved in their creation
is fundamental for the investigation of subjectivities and assumptions embedded in algorithmic
systems. Passi and Jackson [66] propose the concept of data vision to describe the ability to
successfully work with data through an effective combination of formal knowledge and tools, and
situated decisions in the face of empirical contingency. Mastery of this interplay is essential to data
analysts, which reveals “the breadth and depth of human work” inscribed in data [66].
Embedded in such processes are not only individual subjectivities, but also narratives, prefer-

ences, and values related to larger socio-economic contexts [8, 50, 67]: “Numbers not only signify
model performance or validity, but also embody specific technical ideals and business values.” [67].
Data practices such as the choice of training data, data capturing measurement interfaces [68], and
the selection of data attributes [61] as well as the design of data in an algorithmically recognizable,
tractable, and analyzable way [35, 61], all indicate that data is created through human interven-
tion [61]. Feinberg points to the “interpretive flexibility” and situated nature of data and considers
data as a product of “interlocking design decisions” made by data designers [35]. According to
Muller et al. [61], the degree of human intervention will determine how deep and fundamental
subjective interpretations are inscribed in data and its analysis.
The present paper unpacks data annotation practices with a human-centered perspective. The

practices we have observed and analyzed are situated in outsourcing companies that provide
annotation services for commissioning clients. As previous work has argued, service is situated
in local, cultural, and social contexts [50] and is co-produced and co-created in the interactions
between service providers and recipients [8]. This perspective sheds light on the situated [33, 66]
and collaborative [35, 67] nature of data work, as clients and annotation teams both participate in
the creation of datasets. Scrutinizing data annotation with a service perspective further requires
taking into consideration institutional structures and organizational routines [3, 50].
Annotation tasks are, as we will argue, mainly about sensemaking [52], i.e. framing data to

make it categorizable, sortable, and interpretable. Previous work in this space has largely focused
on individual preconceptions, considering annotators’ subjectivities to be a major source for
labeling bias [18, 40, 48, 77]. Other researchers (we among them) explore factors beyond individual
subjectivities that influence workers and labels, such as loosely-defined annotation guidelines and
annotation context [36], the choice of annotation styles [22], and the interference between items
in the same data batch [80]. In a thorough investigation into annotation practices in academic
research, Geiger et al. [39] draw attention to the background of annotators, formal definitions and
qualifications, training, pre-screening for crowdwork platforms, and inter-rater reliability processes.
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The authors consider these factors to be likely to influence the annotations and advocate for their
documentation.
With the present paper, we join the discussion around subjectivity in data annotation. By

examining the processes and contexts that shape this line of work, we argue that subjectivity can
also be shaped by power structures that enable the imposition of meanings and classifications.

2.2 Data, Classification, Power
Practices related to classifying and naming constitute the core of data annotation work. As Bowker
and Star [16] have most prominently argued, classifications represent subjective social and technical
choices that have significant yet usually hidden or blurry ethical and political implications [79].
Classification practices are constructed and, at the same time, construct the social reality we
perceive and live in [11]. Therefore, they are also culturally and historically specific [46]. Adopting
a critical position to examine these practices is essential because, as Durkheim and Mauss argue,
“every classification implies a hierarchical order for which neither the tangible world nor our mind
gives us the model. We therefore have reason to ask where it was found” [32].

Humans collect, label, and analyze data in the usually invisible context of a plan that determines
what is considered data [17, 68] and how that data is to be classified [16]. “A dataset is a worldview”,
as Davis [29] wonderfully puts it. Accordingly, it can never be objective nor exhaustive because, “it
encompasses the worldview of the labelers, whether they labeled the data manually, unknowingly,
or through a third party service likeMechanical Turk, which comes with its own demographic biases.
It encompasses the worldview of the built-in taxonomies created by the organizers, which in many
cases are corporations whose motives are directly incompatible with a high quality of life.” [29].
Furthermore, decisions about what information to collect and how to measure and interpret data
define possibilities for action by making certain aspects of the social world visible – thus measurable
– while excluding other aspects [30, 68]. Data-related decisions are infrastructural decisions [16, 68]
as they “exercise covert political power by bringing certain things into spreadsheets and data
infrastructures, and thus into management and policy” [68]. This way, datasets are powerful
technologies [16] that bring into existence what they contain, and render invisible what they
exclude. As Bowker argues, “the database itself will ultimately shape the world in its image: it will
be performative.” [15].
The performative character of datasets, that is, the power of creating reality through inclusion

and exclusion, relates to Pierre Bourdieu’s theorization of symbolic power. Symbolic power is
the authority to sort social reality by separating groups, classifying, and naming them [10, 13].
Every act of classification is an attempt to impose a specific reading of the social world over other
possible interpretations [57]. Thus, symbolic power is not merely a matter of naming or describing
social reality but a way of “making the world through utterance” [13]. The power aspect here
relates to the authority to lend legitimacy to certain definitions while delegitimizing others. This
authority is unevenly distributed and correlates with the possession of economic, cultural, and
social capital [11].
According to Bourdieu [13], dominant worldviews find their origin in arbitrary classifications

that serve to legitimize and perpetuate power asymmetries, by making seem natural what is in
fact political: “Every established order tends to produce (to very different degrees and with very
different means) the naturalization of its own arbitrariness” [9]. The systems of meaning created
through acts of symbolic power are arbitrary because they are not deducted from any natural
principle but subject to the interests and values of those in a dominant position at a given place and
time in history [12]. A combination of recognition and misrecognition is necessary to guarantee the
efficacy of arbitrary classifications [9]: the authority to impose classifications must be recognized as
legitimate, for the imposition to actually be misrecognized in its arbitrariness and be perceived as
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natural. This process of naturalization allows arbitrary ways of sorting the social world to become
so deeply ingrained that people come to accept them as natural and indisputable. As argued by
D’Ignazio and Klein [30], “once a [classification] system is in place, it becomes naturalized as ‘the
way things are’”. Thus, the worldviews imposed through symbolic power are rendered less and less
visible in their arbitrariness, until disappearing into the realms of what is considered common sense.
As we will argue, the interplay between recognition of authority and naturalization of arbitrary
classifications decisively shapes annotations and data.
Previous investigations have related discriminatory or exclusionary outputs of data-driven

systems to symbolic power: Mau argues that “advancing digitalization and the growing importance
of Big Data have led to the rapid rise of algorithms as the primary instruments of nomination
power” [57]. Here, nomination refers to the authority to name and classify. The author describes
the ubiquity of an algorithmic authority embedded in a wide range of procedures and increasingly
participating in the reinforcement of social classifications. Crawford and Paglen [27] discuss the
politics involved in training sets for image classification. The authors expose the power dynamics
implicit in the interpretation of images as it constitutes “a form of politics, filled with questions
about who gets to decide what images mean and what kinds of social and political work those
representations perform” [27]. Even if not directly referenced to Bourdieu, Crawford and Paglen’s
conclusion closely relates to what the French sociologist has described as the “social magic” [13]
of creating reality through naming and classifying: “There’s a kind of sorcery that goes into the
creation of categories. To create a category or to name things is to divide an almost infinitely
complex universe into separate phenomena. To impose order onto an undifferentiated mass, to
ascribe phenomena to a category—that is, to name a thing—is in turn a means of reifying the
existence of that category.” [27]

Investigating data as a human-influenced entity [61] informed by power asymmetries [5] means
understanding both data and power relationally. Data exists as such through human interven-
tion [61] because, as we have seen, “raw data is an oxymoron” [42]. Similarly, Bourdieu [10] offers
a relational view of power as enacted in the interaction among actors as well as between actors and
field. In the discussion section, we will analyze the relation between annotators, data, and corporate
structures. The symbolic power construct will then offer a valuable contribution to the discussion
of assumptions encoded in datasets that reflect the naturalization of practices and meanings [9, 28].

3 METHOD
This investigation was guided by three research questions:

RQ1: How do data annotators make sense of data?
RQ2: What conditions, structures, and standards shape that sense-making praxis?
RQ3: Who, and at what stages of the annotation process, decides which classifications best

define each data point?
We followed a constructivist variation of grounded theory methodology (GTM) [21, 59, 60]. The

central premise of constructivist grounded theory is that neither data nor theories are discovered,
but are formed by the researcher’s interactions with the field and its participants [76]. This method
provided tools to systematically reflect on our position, subjectivity, and interpretative work during
fieldwork and at the coding stage.

Data was obtained through participatory observation (with varying degrees of involvement) and
qualitative interviewing (in-depth and expert interviews). Fieldwork was approached exploratorily,
guided by sensitizing concepts [21]. They helped to organize the complex stimuli in the field
without acting as hypotheses or preconceptions. Phases of data collection and analysis were
intertwined. Observations and interviews informed one another: while ideas emerging from the
observations served to identify areas of inquiry for the interviews and even possible relevant
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interview partners, statements from the interviews pointed many times at interesting actors, tasks,
or processes needing to be more attentively observed. Through constant comparison [43], we were
able to identify differences and similarities between procedures and sites.

3.1 Data Collection
3.1.1 Participatory Observations. Part of the value of open-ended observations guided by GTM
is the opportunity to see the field inductively and allowing themes to emerge from the research
process and the data collected. However, once in the field, researchers must somehow organize
the complex stimuli experienced so that observing becomes and remains manageable because it is
certainly not possible to observe all details of all situations. At this point, sensitizing concepts come
into play to orient fieldwork [21]. Sensitizing concepts in this investigation include loosely defined
notions such as “impact sourcing”, “subjectivity”, “quality assurance”, “training”, and “company’s
structure”, which provided some initial direction to guide the observation during data gathering.
Fieldwork was conducted at two data annotation companies. At both locations, the level of

involvement regarding observations varied from shadowing to active participant observations [58].
At both annotation companies, fieldwork was allowed to commence after a representative of the
company and the researcher on the field signed non-disclosure agreements (NDA) and respectively
consented for participating in the present study. Consequently, we are restrained from disclosing
or using confidential information in this paper, particularly concerning the companies’ clients.

3.1.2 Qualitative Interviews. Part of the fieldwork conducted consisted of intensively interviewing
annotators and management. All interview partners were allowed to choose their code names or
were anonymized post-hoc to preserve the identity of related informants.

Interviews with management in additional annotation companies were framed as expert inter-
views. While in-depth interviews aim at studying the informant’s practices and perceptions, “the
purpose of the expert interview is to obtain additional unknown or reliable information, author-
itative opinions, serious and professional assessments on the research topic” [54]. The sampled
interview partners were considered experts because they provided unique insights into the struc-
tures and processes within their companies and the overall market (see table 1 and section 3.2,
Sample, for a detailed list of informants).

3.2 Sample
Four sources of information were exhaustively explored: we started with two impact sourcing
companies dedicated to data annotation located in Buenos Aires, Argentina (S1) and Sofia, Bulgaria
(S2). Impact sourcing refers to a branch of the outsourcing industry employing workers from poor
and vulnerable populations to provide information-based services at very competitive prices. We
chose annotation companies with rather traditional management structures over crowdsourcing
platforms where hierarchies appear not as evident We assumed that clear hierarchical structures
would make it easier to trace back labeling decisions and structures to real people. We also had the
preconception that tensions related to exercising power would be more prominent with workers
from vulnerable populations. Field access was another reason for our choice. Impact sourcing
companies responded most openly to our proposed ethnographic research.
While conducting fieldwork in S2, we decided to look closer into the translation of clients’

needs into annotation tasks and quality standards. Consequently, we also interviewed management
employees in three similar yet larger annotation companies (S3) and engineers with a computer
vision company using annotated training sets in Berlin, Germany (S4).

3.2.1 S1: The Annotation Company in Buenos Aires. At the time of this investigation in June 2019,
S1 is a medium-sized enterprise centrally located in Buenos Aires and dedicated to data-related
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Table 1. Overview of Informants and Fieldwork Sites

Interview method Medium and Language Code name Role

S1: FIELDWORK
(Annotation company
in Buenos Aires,
Argentina)

Qual. in-depth
interview Face to face; Spanish (Native)

Sole Team leader
Elisabeth Annotator, reviewer
Noah Annotator, tech leader
Natalia Project manager
Paula Founder
Nati QA analyst

S2: FIELDWORK
(Annotation company
in Sofia, Bulgaria)

Qual. expert interview Skype, Face-to-face; English (Proficient) Eva Founder
Qual. in-depth interview Face-to-face; English (Proficient)

Qual. expert interview Face to face; English (Proficient) Anna Intern in charge of impact assess-
ment

Face to face; English (Low-intermediate) Ali Project manager, reviewer

Qual. in-depth
interview

Face to face; English (Low-Intermediate) Savel Annotator
Face to face; English (Upper-
Intermediate)

Diana Annotator

Face to face; English (Low-Intermediate)
with occasional translation by another in-
formant

Hiva Annotator

Face to face; English (Intermediate)
Mahmud Annotator
Mariam Annotator
Martin Annotator

Face to face; English (Advanced) Sarah Annotator
Face to face; another informant trans-
lated into English (Advanced)

Muzhgan Annotator

S3: EXPERTS
(Managers in large
annotation companies)

Qual. expert interview
Zoom, English (Proficient) Jeff General manager in annotation com-

pany in Iraq
Gina Program manager in annotation

company in Iraq
Zoom, English (Native) Adam Country manager in annotation

company in Kenya
Zoom, English (Advanced) Robert Director in annotation company in

India
S4: PRACTITIONERS
(Computer vision
company in Berlin,
Germany)

Qual. in-depth
interview

Face to face; English (Proficient) Ines Project manager, data protection of-
ficer

Face to face; English (Advanced) Dani Product manager
Face to face; English (Advanced) German
(Native)

Michael Computer vision engineer

Face to face; English (Proficient) Dean Research scientist, lead engineer

microwork. The company has further branches in Uruguay and Colombia. The Buenos Aires office
occupies a whole floor with large common work areas. This location employs around 200 data
workers, mainly young people living in very poor neighborhoods or slums in and around Buenos
Aires. The companyäs employment strategy is a conscious decision as part of its impact sourcing
mission. At S1, workers are divided into four teams. Each team includes a project manager and
several team leaders and tech leaders. Annotators perform their tasks in-house and assume mainly
two roles: creators, doing the actual labeling work, or reviewers, who confirm or correct annotations.
Besides annotations for visual data, the company also conducts content moderation and software
testing projects. Most of the clients are large local or regional companies, including media, oil, and
technology corporations. At the time of this investigation, S1 had just started to expand to Brazil
and other international markets, which resulted in the need to train their workers in Portuguese
and English.
One particularity of S1 is that they provide workers with a steady part- or full-time salary and

benefits. This form of employment contrasts with the widespread contractor-based model in data
annotation. Even so, annotators at S1 received USD1.70 per hour, the minimum legal wage in
Argentina at the time of this investigation. These salaries left workers way below the poverty line
in a country that accumulated around 53% annual inflation in 2019. Low salaries are not the only
downside perceived by workers: informants also complained about the fixed work shifts and the
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impossibility to work remotely, as the company does not allow its workers to take laptops or any
other equipment home.

The interviews at the Argentine company were conducted in Spanish, the mother tongue of both
interviewer and informants. Interview transcripts were coded and interpreted without translating
them by the first and third authors, native and intermediate Spanish speakers, respectively. Coding
without translation was done to preserve the original meaning of the statements. The quotations
in this paper were translated upon completion of the analysis.

3.2.2 S2: The Annotation Company in Sofia. S2 is a small annotation company in the center of
Sofia, Bulgaria. The company occupies a relatively small office. Work at this location can be quite
chaotic, with workers coming and going to receive paychecks or instructions for new projects. The
company focuses on the annotation of visual data, especially image segmentation and labeling.
The visual data involves various types of images, including medical residue, food, and satellite
imagery. The company’s clients are mostly located in Europe and North America. At the time of
this investigation in July 2019, ten active projects were handled by three employees in salaried
positions and a pool of around 60 freelance contractors. As an impact sourcing company, S2 is
committed to fair payment and works exclusively with refugees and migrants from the Middle
East. The company also favors female workers among them. Contractors mostly work remotely
with their own or company-provided laptops, with flexible hours. They are paid per picture and,
sometimes, per annotation. Payment varies according to the project and the level of difficulty. Most
informants were satisfied with the remuneration and flexible conditions. However, many of them
expressed the desire to have more stability and continuity of work and income.
All interviews at this location were conducted in English. Most annotators had low to medium

English skills, which represented a significant difficulty for the conduction of interviews. For
example, some informants over-simplified their statements and were often not able to provide
in-depth answers. The language barrier could not have been foreseen or mitigated, as the founder,
whose English skills are impeccable, had assured us a selection of interview partners with similar
language skills. The misunderstanding probably originated in the fact that all proposed informants
were indeed able to understand English at a level that was sufficient to perform their work. It
was, however, not enough for them to easily tell their stories. The language barrier required
improvisation on researchers end, including the simplification of questions and the introduction
of walk-through questions [58], allowing informants to show procedures directly while reducing
language requirements (see table 1 for more details).

3.2.3 S3: The Experts. In grounded theory investigations, decisions regarding theoretical saturation
often happen simultaneously with the gathering of data, forcing researchers to make quick decisions
on whether the collection of further or different data is necessary. While conducting fieldwork
in Bulgaria, the idea emerged that expert interviews with management in other, more prominent
impact sourcing companies could provide further insights about the translation of clients’ needs
into actual annotation tasks, standards, and quality assurance (QA). Through this form of inquiry,
we additionally sought to frame some of the fieldwork observations.

Three expert interviews were conducted: Jeff and Gina are, respectively, general and program
manager with a microwork company based in Iraq. Jeff is also in charge of training future workers
on data annotation. The company had initially been founded by a worldwide organization dedicated
to humanitarian aid and quickly became a for-profit impact sourcing company. Jeff and Gina were
interviewed simultaneously. Adam is the general manager at the Kenyan branch of an impact
sourcing company with many hubs for data annotation throughout Asia and Africa. Robert is
based in India and works as a director of machine learning with one of the oldest impact sourcing
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companies dedicated to data annotation. The company has many branches in different Asian
countries.
The informants are identified through code names. The names of their companies remain

anonymous.

3.2.4 S4: The Practitioners. The demands, rules, and processes of clients represented a recurring
topic of the interviews conducted within data labeling companies. It seemed that managerial roles
within labeling companies implied the ability to mediate and translate the client’s requirements
into factual tasks for workers.

How do such requirements originate? On whose needs are they based? To start exploring these
questions, we decided to briefly investigate companies ordering and deploying labeled datasets for
their machine learning products. A visit to a computer vision company based in Berlin was then
arranged and carried out. Four relevant actors were interviewed in-depth at this location: a project
manager, the data protection officer, the lead engineer, and a data engineer.

While this company is not a direct client of S1, S2, or S3, it does commissions and utilizes labeled
images for its main product.

3.3 Data Analysis
The resulting 24 interviews were transcribed. Transcriptions were integrated with several pages of
field notes and various documents such as specific instructions provided by clients with labeling
requirements, metrics for quality assurance, and impact assessments. We followed the grounded
theory coding system [21] for the interpretation of data: Phases of open, axial, and selective coding
were systematically applied.

By the end of the open coding phase, a set of 28 codes had emerged. The process of axial coding
followed. We applied a set of premises [25] to make links between categories visible. The material
was then meticulously coded using the renewed set of axial categories. As part of this process,
we iteratively returned to the material to look for additional evidence and to test and revise the
emergent understanding. This analysis led to a core set of seven axial codes (see Table 2). Finally,
for the selective coding, we combined several axial codes to the core phenomenon “imposition of
meaning”. Selective coding indicates deliberate interpretive choices by the researchers. Making such
choices explicit during the analysis process is fundamental in constructivist grounded theory [21].
As a final step, we connected salient codes and categories to the core phenomenon as causal

conditions, context, intervening conditions, action/interactional strategies, or consequences [25]
(see Figure 2 “Paradigm Model”).

4 FINDINGS
The annotation of visual data consists of a set of practices aiming at interpreting the content of
images and assigning labels according to that interpretation. The observed work practices involve
mainly two tasks: labeling and segmenting. Segmenting, formally called semantic segmentation,
refers to the separation of objects within an image, thus classifying them as belonging to different
kinds. Labeling is mainly about giving a name to each of the objects that were previously classified
as different from each other. Sometimes, labeling also includes the assignment of keywords and
attributes. Those attributes fill the ascribed classifications with meaning by putting in words what
constitutes each class.
To illustrate our findings, we describe three of the observed annotation projects, that were

particularly relevant to our research questions. Several of the practices and tensions described in
these cases remained consistent across projects and even companies. Finally, we report four salient
observations that emerged from the collected data as part of the coding process.
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Table 2. Table of core phenomenon, axial categories, open codes, and explanatory memos.

IM
PO

SI
T
IO

N
O
F
M
EA

N
IN

G

Axial Categories Open Codes Memos

CLASSIFICATION
AS POWER
EXERCISE

Briefing Information of labeling instruction to labelers. Communication of client’s wishes and expec-
tations. Communication chain from client to labelers.

Struggle over meaning Struggle over the meaning of things. Power struggles to name things. Also moments of sub-
version from labelers.

Imposition One-way, top-down imposition of meaning during team meetings. Imposition of client’s de-
sires and/or views in view of discrepancies.

Team Agreement Democratic alignment of concepts and opinions within the team. Teamwork to reach an agree-
ment on how to name things.

Layering Nomination instances within annotation companies. Actors deciding over the interpretation
of data at different stages of the process.

LABELING OF
DATA

Tools Different tools to perform tasks of data annotation, where they come from and how they may
represent a constraint for the work.

Agency Room for agency while performing labeling tasks; agency here refers to the possession of
resources to achieve desired results.

Constraints Things that could count as a constraint for subjectivity when performing tasks of data anno-
tation.

Standardization How labeling is standardized. Efforts from company or client to standardize labeling tasks.
REFLEXIVITY ON
WORK IMPACT

Visions of future How workers imagine the future in relation to the tasks they perform.
Tech Visions of impact of technology/AI on society. Impact of their work on society.

IMPACT
SOURCING

Training Training received as part of the impact sourcing model. Training that could be helpful for
future jobs (languages, software, etc).

Chance Chances to learn, to work in the desired field. Chances related to impact sourcing companies.
Opportunities offered by companies to their employees.

Impact on lives Impact of job onworker’s lives.What this jobmeans for them and how their lives have changed
with this job.

Closeness to management Indicators for flat hierarchies. Accessibility to management. Possibility to talk directly and
honestly to management.

Recruting How the interviewee was recruited to work in the company. How she/he got to work there.
Mobility chances Chances to grow and/or be promoted within the company.

BIAS
Misunderstanding When the interviewer asks about biases and the interview partner offers an answer showing

they have misunderstood the question.
Unawareness Not knowing what the concept of bias refers to. Not being aware of biases as a hazard related

to their tasks.
Not bias related Claim that biases are not relevant for the type of projects they handle within the company

CAPITALISTIC
LOGISTICS

Company
structure

Speed Optimization of processes, so that they are faster and the client is satisfied.

QA Quality Assurance Processes. Especially QA as a selling argument for clients. Control as a
selling point.

Productivity Processes related to increasing or controlling productivity, making workers produce more.
Flexibility Flexibility in working time, work place; not as a fixed/ regular employee; work with children

etc.
Roles The division of roles and tasks in the work/ in the company.

Market’s logics Things that are done in a certain way to go according to the demands of the market.
Worker’s struggle Workers asking for better conditions/benefits. Expressions of disagreement with aspects of

the working conditions.
Control Control mechanisms. Control of results. Control of employees.
Clients All things clients. Communication with clients, desires of the clients, relation to clients. Client

as king.

PERSONAL
SITUATION

Plans Plans for the future at a personal level. Hopes and dreams.
Vulnerability Related to the vulnerable background of workers. Personal struggle/difficulties.
Previous work experience What workers did before becoming labelers.
Education Related to workers’ background. Achieved academic level. Plans for further education.

4.1 Project 1: Drawing Polygons
This project, conducted by S2 in Bulgaria, consisted of analyzing, marking, and labeling pictures of
vehicles for a Spanish client. The client had provided several image collections, each containing
photographs of damaged car exteriors. The source of the images and the exact purpose of the
dataset were unclear for the Bulgarian team. Only Eva, the founder of the annotation company,
was capable of sharing some vague information about the client and the planned product:

“I think it’s a company working for insurance companies. So, they are providing
insurance companies with a tool or a service I believe that’s going to be in the form of
an app that their users, who are using the insurance or maybe car rental companies
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and so on, can use in order to report damages. And so, these damages can be processed
very quickly and identify them automatically. I think this is the final goal. I believe
they are in the very early stage still. They are still trying to gather enough photos and
train enough, use enough data to train their models.”

Eva was in charge of client communications and the final quality control for every project at S2.
Ali, an annotator who generally acted as mediator between Eva and the team, worked on the
project as well. Besides regular annotation tasks, Ali was in charge of selecting the annotators
for this project, briefing them with the instructions, and answering questions. For this purpose,
he maintained a project-specific Slack channel. Daily, he monitored the progress made by every
labeler and reviewed the annotated pictures. Despite his prominent role, Ali had no information
about the planned product or the purpose of the annotations. Lack of information and general
unawareness of the machine learning pipeline was very common among annotators at S2 and, to a
lesser extent, at S1 in Argentina. Eva agreed with this observation and added:

“I think that in many cases it’s too difficult for a lot people to imagine what’s the data
they’re working on for.”

Besides Eva, none of the annotators we interviewed in S1 could relate the terms “machine learning”
or “artificial intelligence” to their work. Ali did not inquire about further details beyond the specific
instructions for the “car accidents project” because the instruction sent by clients normally provided
“all we need” to complete annotation tasks:

I: “But why does the client need all these pictures annotated like this? Do you know?”
B: “No. But I think ... I am not sure, because I don’t ask about this.”

In this case, the client had sent a PDF document containing step-by-step instructions and example
pictures. Moreover, the client had provided the platform where the segmentation and annotation
tasks were to be performed. The platform had been specially developed for this purpose and tailored
to the client’s needs.
The first task for the annotators was to select the part of the vehicle that appeared damaged

from a sidebar containing different classes (e.g., door, tire, hood). After that, they drew a polygon
around the damaged area. The drawing was very time-consuming, and Ali seemed to pay special
attention to the correct demarcation of the damaged areas. After drawing the polygon, they would
classify the type of damage and its severity. Unfortunately, the company commissioning these
annotations requested that no further details about the specific commands and labels are shared in
this investigation as the company considers them one of their strategic advantage.
Apart from Eva and Ali, five annotators working remotely completed the project team. For the

general briefing and the project kick-off, they were summoned to the office. Eva explained the
client’s instructions in English and showed some examples of the pictures and the procedure. Ali
translated into Arabic for annotators with low English skills. Afterward, each annotator sat at
one of the work stations in the office and tested the task while Ali walked around observing how
annotators performed, answering questions, and continuously commenting on how easy the work
was. For the duration of the project, annotators working remotely would resolve questions with Ali
via Slack. Occasionally, if Ali was not satisfied with the quality of the polygons, he would summon
the annotators to the office and work with them for a few hours. The same procedure was followed
in cases of visible labeling inconsistencies among workers. Eva highlighted the importance of these
“alignment meetings” to ensure the uniformity of the labels through the standardization of workers’
subjectivities:
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“Normally, issues in data labeling do not come so much from being lazy or not doing
your work that well. They come from a lack of understanding of the specific require-
ments for the task or maybe different interpretations because a lot of the things ... Two
people can interpret differently so it’s very important to share consistency and like
having everyone understand the images or the data in the same way [...]. But because
a lot of these tasks are not that straightforward, it’s just not ... It’s not just choosing A
or B. It’s more like okay for example I have this car, where do I track the exact scratch
or deformation? What kind of a level is it? Like, it’s a little bit more complicated and
that’s why it’s better to invest in the human capability and let’s say the standardization
of everyone’s understanding.”

4.2 Project 2: Building Categories
This project was conducted at S1, the Argentine annotation company. It constituted a test for the
acquisition of an important client, namely a sizable local corporation. The potential client had
simultaneously outsourced the project with different annotation companies, planning to sign a
contract with the best performing team.
We find this project to be particularly interesting as it constitutes an exception to the usual

procedure of labeling data according to categories instructed by clients. In this case, the annotators
were in charge of developing a classification system for the annotations. Concretely, the task
consisted of analyzing camera footage, counting, and classifying vehicles driving in a gas station.
The annotators were in charge of coming up with logical, mutually exclusive categories for the
labeling.

Three annotators, a reviewer, a team leader, and a quality assurance (QA) analyst sat together to
analyze the first, 60-minutes-long video. They started by counting all vehicles driving in the gas
station. After a fewminutes, some analysts lost track and claimed they did not expect “just counting”
to be so complicated. To simplify the task, the team leader suggested establishing categories first,
so that each annotator could focus on counting only one category. They promptly agreed on five
categories, namely cars, buses, trucks, motorcycles, and vans. While counting, new categories such
as pick-ups, SUVs, and semi-trucks were suggested by annotators, approved by the team leader and
the QA analyst, and finally added to the list. Also, several questions arose: Can SUVs be considered
cars? Do ambulances and police cars constitute categories for themselves?

Several teammembers expressed being worried about not knowing the client’s exact expectations.
“We are not really used to this kind of ambiguity” reviewer Elisabeth said. She also shared an
experience from a former project, where inconsistencies between the interpretations of client and
annotators had arisen, even though the client had provided clear instructions for the annotations.
On that occasion, Elisabeth had been entirely sure that her interpretation was right until the client
corrected her work: “and you think you’re doing everything right until the client comes and says,
‘No, that’s all wrong!’” The client’s correction had led Elisabeth to the conclusion that “I had been
wrong all along. It put us [the team] back on track.”

As for the “gas station project”, Nati, the QA analyst, announced to the team that, despite the
freedom offered by the project, they would proceed "as usual" to resolve questions and, most
importantly, to assess the correctness of allocated labels. Upon request of the interviewer, reviewer
Elisabeth described the usual process in detail:

“Whenever I cannot resolve the questions annotators bring to me, I ask the leader. If
the leader cannot solve them either, we ask QA. Otherwise, they ask the contact person
at the client’s company.”
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Interviewer: “So, the client has the final say?”
Elisabeth: “Yes. And the client surely has their hierarchies to discuss a solution as well.”

Despite the room offered to the team by the “gas station project” to shape data according to their
own judgment, the client’s figure seemed to be tacitly present at all times to orient annotators’
subjectivities. QA analyst Nati summarized this observation most clearly:

“We try to guess what the client would value the most, what will interest them, trying
to put ourselves in their shoes, thinking, imagining [the client] wants this or that.”

In her QA analyst role, Nati also paid special attention to optimizing the time needed to annotate
each video. Having one annotator counting only one category significantly reduced task completion
time but raised important questions about quality control and cost optimization, as Nati pointed
out:

“How are we going to check for accuracy if only one annotator is responsible for each
class and we do not have enough reviewers?”

Nati additionally mentioned that the client would not accept the costs of cross-checking results.
For Nati and the QA department, this project involved two challenges: the first was guessing

what the client was expecting from the annotations and which taxonomy would best serve that
expectation. The second consisted in optimizing the performance of annotators to present a
competitive offer to the potential client. Indeed, the Buenos Aires-based company seemed to put
much effort into developing better ways of measuring performance and output quality. In this sense,
Nati acknowledged the singularity of the “gas station project” as being uncommonly ambiguous
compared to the rest of their projects which generally included clear guidelines for the labels.
However, she still saw a good opportunity emerging from the open character of the project:

“This is where the QA department makes its move and says, okay, we can measure
all this. We try to offer value [...] going into details to see what we can measure and
offer the client something they would value because then we also participate in the
‘farming’ process. If we offer clients valuable QA data, they will probably buy more
hours from us.”

4.3 Project 3: Classifying Faces
The third project brings us back to the Bulgarian company (S2). It dealt with collections of images
depicting people. All images resembled those commonly found in a mobile phone’s gallery: several
selfies, group pictures of what seemed to be a family, a couple, a child holding a cat. Eva, the founder
of S2, explained that the dataset was intended for a facial recognition model for mobile phones.
The annotations had been commissioned by a local computer vision company.

The first task for the annotators consisted of classifying the faces in the images according to a
very concise set of instruction sent via email by the commissioning client:

(1) For each photo, draw a rectangular bounding box around each face in the photo.
(2) Annotate each such face with the following labels: Sex: male or female. Age: baby
(0-2 years old), boy or girl (2-16 years old), man or woman (16-65 years old), old man
or old woman (65+ years old). Ethnicity: Caucasian, Chinese, Indian, Japanese, Korean,
Latino, Afroamerican.

Additionally, five freely chosen keywords were to be attached to each image.
Founder Eva was in charge of the general quality control. Apart from her, three annotators

completed the team. Ali, one of the annotators, also managed the project, mostly briefing annotators,
tracking the completion of the task, and revising the bounding boxes. Despite the project’s sensitive
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character, Eva did not have further information about the images’ provenance and whether the
people depicted were aware their picture would be used in a computer vision product.
Because of the highly subjective character of this project and the specificity of the classes

provided, we insistently asked annotators how they were able to differentiate and assign such
labels that were, at least to the eye of the researcher on the field, not at all straightforward. Ali
reacted very surprised to this kind of question, almost as if he would not understand our strong
interest in this topic:

“It’s not difficult, it’s easy! Because all information here [shows the email with the
instructions]. You have information. The woman is between 15 to 65, I think. The old
woman, 65 to more. Old woman and old man.”
Interviewer: “Yeah, but that’s what I’m saying, I would have had difficulties telling
whether the person in the picture is over 65.”
Ali: “No, no, because you see this picture, you make the zoom, and you see the face
[he zooms in and points at the area around the eyes, probably trying to show wrinkles
that are hard to recognize as such]. Everything is clear!”

Furthermore, Ali stated that this project was significantly easier to manage than others, given
the fact that annotators had not raised any questions or difficulties: “I think this is a project
nobody asked me about,” he said. Ali’s remarks coincide with the claims of the other annotators
involved: the classification of the people shown in the images in terms of race, age, and sex seemed
straightforward to them. The annotator in charge of keywording also claimed that this task was
very easy because the attributes were, in most of the cases, “pretty obvious.” When asked what
would be the procedure if they were unsure about what labels to assign, Eva, the founder, answered
that they would immediately seek the client’s opinion:

“In this case we usually obey everything that they say because you know their inter-
pretations is usually the one that makes sense.”

Later on, Eva referred to “the mobile libraries project” as one of the most “controversial” projects
in her company’s portfolio. While discussing bias-related issues and how these can affect labels,
she also highlighted the importance of raising moral questions around this type of projects and
working in solutions for undesirable biases. However, Eva argued that her clients would probably
not be interested in investing time or money in these issues. Similarly, Anna, the intern in charge
of conducting an impact assessment at S2, commented on clients’ general attitude towards ethical
issues related to the commissioned labels:

“I think even if they knew they should be sensitive or should be a little conscious about
these things I think it works in their favor to not be. It’s totally about digital ethics
but I feel like it maybe from a company perspective [...] that they would prefer an
outsourcing company that doesn’t ask too many questions.”

Anna also allocated some responsibility with the annotation companies. She commented on the
difficulty of explaining sensitive categories, such as race and gender, whenworkers andmanagement
have different mother tongues. In S2, around 98% of the workers are refugees from the Middle East:

“Yes, I have observed the [mobile libraries] project ... I feel a lot of it is not that the
company is not aware of these things, but I think it’s maybe too complicated to explain
to refugees. I think some of us are lacking the vocabulary that would translate all these
nuances. [...] And I’ve never heard any of them... any of the refugees ask... I think that’s
also another factor. I think it’s a combination of a lot of these: The difficulties to explain
it and, maybe, the lack of curiosity or explicit curiosity on their end.”
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4.4 Salient Observations
4.4.1 Standardization. At both annotation companies and in all projects observed, data annotation
was performed following the requirements and expectations of commissioning clients. Guidelines
were generally tailored to meet the requirements of the product that would be trained on the
annotated datasets, its desired outcome, and its revenue plan. Instructions and briefings, while
providing orientation, aimed at shaping the interpretation of data and, as described by Eva in
section 4.1, “standardizing everyone’s understanding.” As shown in Projects 1 and 2, quality assur-
ance constituted another decisive instance towards standardization and compliance with clients’
expectations. Encouraged to define what quality means in the context of their company, informants
at both locations (S1 and S2) and among the experts (S3) gave more or less different versions of a
similar answer: quality means doing what the client expects.

4.4.2 Layering. As shown in project 2, many roles and departments participate in annotation
assignments. Annotators occupy the lower layer of the hierarchical structure where the actual
labeling of data is carried out (see Fig. 1). In amore or less official way, every company has at least two
more layers where control is exercised: reviewers and quality assurance analysts (QA). In between
reviewers and QA, some companies also place team leaders, tech leaders, and project managers.
Finding more layers is possible, depending on the project’s and company’s size. As described in
Project 2, large corporations sometimes outsource the labeling of the same dataset with different
annotation companies. The results will later be controlled and compared. Also, important clients
often hire external consultants to evaluate the performance of annotation companies independently.
Furthermore, some annotation companies outsource parts of large labeling projects, if they lack
the human resources to complete the task. These practices add even more layers to the annotation
process. According to the experts (S3) and practitioners (S4) we interviewed, the layered character of
these procedures is not exclusive of S1 and S2 but can be generalized to other annotation companies.
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Fig. 1. Multiple actors on several layers of classification participate in processes of data annotation. The
layers are hierarchical and involve different levels of payment, occupational status, and epistemic authority.
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4.4.3 Naturalization. Our findings show that the top-down ascription of meanings to data through
multi-layered structures were, for the most part, not perceived as an imposition by annotators. The
interviews are abundant in statements such as “the labels are generally self-evident,” and “the work
is very straightforward.”
The labels commissioned by clients and instructed by managers seemed to coincide in most

cases with annotators’ perceptions. In consequence, labels were hardly ever put under scrutiny
or discussed. Moreover, annotators and managers generally perceived clients to be the ones to
know exactly how data was supposed to be labeled since they held decisive information about
the product they aimed at developing and the corresponding business plan. Additionally, in some
cases, the image data to be labeled had been directly gathered by the commissioning company,
which reinforced the idea that the client would know best how to interpret those images. This
was reported by Eva (Founder of S2) in relation to a project involving satellite imagery. These
perceptions contribute to the naturalization of the layers of classification depicted in Fig. 1. As
illustrated by the projects described throughout this section, annotators broadly resolve doubts or
ambiguities regarding the labels by asking their superiors. Both at S1 and S2, we found that the
vertical resolution of questions prevailed over horizontal discussions and inter-rater agreement.

4.4.4 Profit-Orientation. Annotation companies mostly seek to optimize the speed and homogene-
ity of annotations to offer reasonable prices in the competitive market of outsourcing services.
Several annotators (especially in S2) stated that project deadlines were often so short, that they
were difficult to meet. Looking to cope with such a fast pace, workers relied even more on clear
guidelines and efficient tools. Several informants at S1 and S2 stated that they found their work
easier when clients provided clear instructions, a rather simple platform for the annotations, and a
smaller number of classes to label. As shown by the “gas station project” (section 4.2), annotators
tended to feel overwhelmed otherwise. In this sense, hierarchical structures did not solely aim at
constraining workers’ subjectivity but also provided orientation.
As expected from for-profit organizations, commissioning clients and annotation companies

are primarily concerned with product and revenue plans. Moreover, as stated by Eva and Anna in
section 4.3, some annotation companies may perceive a general disinterest of clients regarding the
application of ethics-oriented approaches, i.e., transparent documentation and quality control for
biased labels. A similar observation was reported by a QA analyst in S2 and confirmed by the four
experts interviewed (S3). However, this does not mean that detrimental intentions guide clients. It
merely states that ethical approaches involve monetary costs that clients cannot or will not bear. In
short, several informants in S1, S2, S3, and S4 described an environment where market logics and
profit-oriented priorities get inscribed in labels, even in projects involving sensitive classifications,
as described in section 4.3.

5 DISCUSSION
Our observations show that annotators’ subjectivities are, in most of the cases, subdued to interpre-
tations that are hierarchically instructed to them and imposed on data. We relate this process to the
concept of symbolic power, defined by Pierre Bourdieu [13] as the authority to impose arbitrary
meanings that will appear as legitimate and part of a natural order of things. Arbitrariness is, in
Bourdieu’s conception [12, 14, 28], not a synonym of randomness. It refers to the discretionary
character of imposed classifications and their subsumption to the interests of the powerful.

A twofold naturalization in the Bourdieusian sense [9] seems to facilitate the top-down imposition
of meaning in data annotation: First, we found that classifications used to ascribe meaning to data
are broadly naturalized. Annotators mostly perceive the labels instructed by clients and reassured
by managers and QA as correct and self-evident. In a recent investigation, Scheuerman et al.
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present a similar observation, describing how race and gender categories are generally presented
as indisputable in image datasets [72]. In most of the cases observed by us, annotators, managers,
and clients do not perceive assigned classifications as arbitrary or imposed. Hence, the labels
are hardly ever questioned. Second, we have observed that the epistemic authority of managers
and clients is also broadly naturalized by annotators. They are perceived to know better what
labels correctly describe each data point. The higher the position occupied by an actor, the more
accepted and respected their judgments. Even if annotators or management ever perceive principles
of classifications as opposing personal or corporate values, the view persists that “the one who
is paying” has the right to impose meaning. This way, clients have the faculty to impose their
preferred classifications, just as they have the financial means to pay for labelers to execute
that imposition. As illustrated by the “gas station project” in section 4.2, workers might even
feel overwhelmed when clients do not overtly exercise their authority to instruct principles of
classification. When annotators are challenged with making sense of the data themselves, the main
rationale becomes “what would the client want?” in contrast to “what is contained in this data?”. In
this twofold naturalization lies, we argue, the efficacy of interpretations imposed on data: labels
must be naturalized and thus perceived as self-evident if actors are to misrecognize the arbitrariness
of their imposition [9].
As shown by our findings, the standardization of annotation practices and labels is assured

throughout several layers of classification and control. The positions are depicted in Figure 1
as hierarchical layers positioned one above the other because they involve different levels of
responsibility, payment, and occupational status. The number of layers, actors, and iterations
involved hinders the identification of specific responsibilities. Moreover, no information regarding
actors involved and criteria behind data-related decisions is registered. Annotation steps and
iterations remain broadly undocumented. Accountability is diluted in these widespread practices.
A problematic implication is that this multi-layered standardization process is hardly ever oriented
towards social responsibility and usually responds to economic interests only [49]. There is no
intention, however, to imply here that standardization is fundamentally harmful or that detrimental
intentions lead the actors involved.We rather aim at showing how power structures can be stabilized
through imposed standards [16] and argue that standardization can be dangerous if it is solely
guided by profit maximization.

In this sense, we argue that the discussion on workers’ subjectivity and personal values around
data annotation should not let us researchers forget that datasets are generally created as part of
large industrial structures, subject to market vicissitudes, and deeply intertwined with naturalized
capitalistic interests. The challenge here is “to explicate the assumptions, concepts, values, and
methods that today seem commonplace” [8] in this (and other) forms of service.

The main contribution of our investigation is the introduction of a power-oriented perspective
to discuss the dynamics of imposition and naturalization inscribed in the classification, sorting,
and labeling of data. Through this lens, we shed light on power imbalances informing annotation
practices and shaping datasets at their origins. Our main argument is that power asymmetries
inherent to capitalistic labor and service relationships have a fundamental effect on annotations.
They are at the core of the interpretation of data and profoundly shape datasets and computer
vision products.

There are at least two close-connected reasons why imposition and naturalization in the context
of data creation are socially relevant and, in a way, different from power imbalances enacted through
work practices in other settings: First, data practices involve particular ethical concerns because
assumptions and values that inform data can potentially have devastating effects for individuals
and communities [34, 63]. Algorithms trained on data that reproduces racists, sexist, or classist
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classifications can reinforce discriminatory visions [62] “by suggesting that historically disadvan-
taged groups actually deserve less favorable treatment” [6]. Moreover, data about human behavior
is increasingly sold for profit [81], which could result in surveillance [81] and exploitation [26].
Second, data-related decisions define possibilities for action, by making certain aspects of reality
visible in datasets, while excluding others [15, 68]. This is relevant for state management and
policy, i.e., to pinpoint places where intervention or allocation of resources is needed. However,
the tendency of classification practices towards the erasure of residual categories [16] can cause
tension and even be harmful for individuals who remain unseen or misclassified by data-driven
systems [19, 71].

NEED FOR STANDARDIZED
LABELS AND PROCESSES

IN ANNOTATION
(contextual condition)
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CLASSIFICATION INSTANCES
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Fig. 2. Paradigm model resulting from the process of selective coding. It depicts the top-down allocation of
meanings, its stabilization through annotation practices, and its effects on data (derived from the Grounded
Theory Paradigm Model, by Corbin and Strauss). [25]

5.1 Implications for Practitioners
While annotation companies and their clients may or may not be aware that they are actively
shaping data, the opacity surrounding embedded interests and preconceptions [72] is a significant
threat to fairness, transparency, accountability, and explainability. Therefore, it is important that
practitioners, i.e., corporations commissioning datasets and management at annotation companies,
take steps to reflect, document, and communicate their subjective choices [38, 61, 65, 66, 72].
Promoting the intelligibility of datasets is fundamental because they play a key role in the training
and evaluation of ML systems. Understanding datasets’ origin, purpose, and characteristics can
help better understand the behavior of models and uncover broad ethical issues [78].
Recent research work has highlighted the importance of structured disclosure documents that

should accompany datasets [7, 38, 39, 47, 55, 78]. Fortunately, the machine learning research commu-
nity has begun to promote similar reflexive practices: Following Pineau’s suggestion [69], authors
of NeurIPS and ICML conference are now requested to include a reproducibility checklist which
encourages “a complete description of the data collection process, such as instructions to annota-
tors and methods for quality control” if a new dataset is used in a paper. NeurIPS further requires
authors to disclose funding and competing interests. They are also asked to discuss “the potential
broader impact of their work, including its ethical aspects and future societal consequences.” These
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conferences are highly influential for ML practitioners and facilitate the adoption of the latest
machine learning capabilities. It is certainly our hope that they will also inspire them to adopt such
reasonable best practices and to engage in reflexive documentation.

In line with previous literature [7, 38, 49, 74, 78], we advocate for the documentation of purpose,
composition, and intention of datasets. Moreover, the structures, decisions, actors, and frameworks
which shape data annotation should be made explicit [39, 72]. We furthermore propose orienting
documentation towards a reflexion of power dynamics. D’Ignazio and Klein [30] propose askingwho
questions to examine how power operates in data science. In this vein, we propose that disclosure
documents include answers to questions such as: Whose product do the annotations serve, and how?
Whose rationale is behind the taxonomies that were applied to data? Who resolved discrepancies
in the annotation process? Who decided if labels were correctly allocated?
We argue that the annotation process already begins as clients transform their needs and

expectations into annotation instructions. Therefore, the responsibility for documenting should not
be solely placed with annotators but should be seen as a collaborative project involving annotation
companies and commissioning clients. Given the hierarchical structures and power imbalances
described in this paper, we find it extremely important that clients keep a record of the instructions
that were given to annotators, the platforms on which annotations were performed, and the reasons
for that platform choice, as well as the procedure employed for solving ambiguities, creating
homogeneity, and establishing inter-annotator agreements. Extending dataset factsheets with a
power-aware perspective couldmake power asymmetries visible and raise awareness aboutmeaning
impositions and naturalization. Yet, it is vital that documentation checklists are not prescriptive
and produced exclusively in the vacuum of academia [38]. Instead, disclosure documents should be
developed in an open and democratic exchange with annotation companies and their clients to
accommodate real-world needs and scenarios [55].

Annotation companies and their clients might be reluctant to implement such a time-consuming
documentation process. Moreover, they may regard some of the information as trade secrets,
especially if it involves details about the intended product or if the structuring of the annotation
process is considered a strategic advantage. We argue that allocating resources for documentation
could nevertheless bring three pay-offs for organizations:
The first benefit is that proper documentation can foster deliberative accountability [67] and

improve inter-organizational traceability, for instance, between annotation companies and clients.
In addition, transparent documentation can help address the problematic dilution of accountability
as a result of various actors and layers in the annotation process. In the context of this service
relationship, accountability involves not only specific individuals but also organizations and includes
factors such as organizational routines and processes of value co-creation [50]. Given the power
imbalances that are inherent to this relationship [8], annotation companies could be motivated to
keep track of decisions and procedures in the event of discrepancies with clients.

The second benefit is that documentation can facilitate compliance with regulations such as the
GDPR and especially the “Right to Explanation” [67]. Serving as an external motivation, legal
frameworks and regulations urge companies to put transparency as well as societal and ethical
consequences of their products and services above the rationale of profit-maximization [49]. If there
is no legal incentive and companies perceive transparency as coming at the cost of profit-oriented
goals (as shown in our data), independently created transparency certifications and quality seals
for datasets may provide an additional incentive given the momentum created around FATE AI.

The third benefit is that documentation may create a long term business asset because knowledge
about practical data work ismade explicit and persistent.Without documentation, such knowledge is
often confined toworkerswith the “craftsmanship” tomake situated and discretionary decisions [66],
bearing the risk of knowledge loss due to worker flow or lack of traceability. At the same time,
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documentation can have analytical value, improve communication in interdisciplinary teams, and
ease comprehension “for people with diverse backgrounds and expertise” [61].

5.2 Implications for (CSCW) Researchers
Our research highlights the relation between human intervention and hierarchical structures in
processes of data creation. It shows that power imbalances not only translate into asymmetrical
labor conditions but also concretely shape labels and data. We firmly believe that researchers
studying socio-technical systems in general, and data practices, in particular, could benefit from
including a similar, power-aware perspective in their analysis. Such a perspective would primarily
aim at making asymmetrical relations visible. Making power visible means exposing naturalized
imbalances that get inscribed in datasets and systems [30].

We propose four (interconnected) reasons for integrating such a perspective into research:
First, this perspective could contribute to making work visible [30, 44, 75]. Especially in the case

of machine learning systems where the enthusiasm of technologists tends to render human work
invisible [44], research should emphasize the value of the human labor that makes automation
possible. Furthermore, making “humans behind the machines” [53] visible could help contest any
pretension of calculative neutrality attributed to automated systems.
Second, this paper argues that power relationships inscribed in datasets are as problematic

as individual subjectivities. A power-oriented perspective allows researchers to “shift the gaze
upwards” [5] and move beyond a simplistic view of individual behaviors and interpretations that,
in many cases, could end up allocating responsibilities with workers exclusively. A view into
coroporate structures and market demands can offer a broader perspective to this line of research.
Third, the investigation of organizational routines and hierarchies could help researchers ap-

proach the real-world practice of data work [67], develop context-situated recommendations, and
assess their applicability in corporate scenarios. This could help establish open and democratic dis-
cussions between researchers and practitioners regarding the conception of solutions for undesired
data-related issues [38, 55].

Finally, rigorous reflexion and documentation of power dynamics is not only advisable for practi-
tioners working with data but is also fundamental for researchers investigating those work practices.
Acknowledging that, just like data, theories are not discovered, but they are co-constructed by
researchers and participants [76] is a significant step in this direction. Throughout this investigation,
the constructivist variation of grounded theory [21] has constituted a fantastic tool to methodically
reflect on the researchers’ perspectives, interpretations, and position.

5.3 Limitations and Future Work
This paper has focused on the annotation of image data for machine learning as performed within
impact sourcing companies. While our current results are bound to this context, the framework
presented here could inspire further (comparative) research involving diverse actors in other
annotation settings, such as crowdsourcing platforms.

6 CONCLUSION
This paper has presented a constructivist grounded theory investigation of the sensemaking of
data as performed by data annotators. Based on several weeks of fieldwork at two companies
and interviews with annotators, managers, and computer vision practitioners, we have described
structures and standards that influence the classification and labeling of data.We aimed at contesting
the supposed neutrality of data-driven systems by setting the spotlight on the power dynamics
that inform data creation.
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We found that workers’ subjectivity is structurally constrained and profoundly shaped by
classifications imposed by actors above annotators’ station. Briefings, annotation guidelines, and
quality control all aim at meeting the demands of clients and the market. We have argued that the
creation of datasets follows the logics of cost effectiveness, optimization of workers’ output, and
standardization of labels, often at the expense of ethical considerations.

We have observed the presence of multiple instances of classification, with diverse actors among
several hierarchical layers that are related to the possession of capital. We have argued that the
many layers, actors, and iterations involved contribute to the imposition of meaning and, finally, to
the dilution of responsibilities and accountability for the possible harms caused by arbitrary labels.
Furthermore, our findings have shown that workers naturalize the imposed classifications as well
as the epistemic authority of those actors higher in the hierarchy. Our observations indicate that
power asymmetries, which are inherent to labor relations and to the service relationship between
annotation companies and their clients, fundamentally shape labels, datasets, and systems.

We have furthermore discussed implications for practitioners and researchers and advocated for
the adoption of a power-aware perspective to document actors and rationale behind the meanings
assigned to data in annotation work. Finally, we have emphasized the importance of adopting a
similar power-aware perspective in the CSCW research agenda, not only as a possible focus for
future work but also as a tool for reflecting on researchers’ own position and power.
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A.3 Documenting Computer Vision Datasets

The question remains as to how the data annotation process can be made more transparent.
Scholars have suggested checklist approaches to document this process. However, based
on the data we gathered and additional interviews, we found that this is insufficient to in-
terrogate power differentials and naturalised preconceptions encoded in annotated data. We
identified four key issues that hinder the documentation of image datasets and the effective
retrieval of production contexts: the involvement of various actors, the diverse purposes and
forms of documentation, the perception of documentation as a burden, and problems with
the intelligibility of documentation. To address these issues, we suggest considering the so-
cial and intellectual factors that lead to the practice of data annotation to make the context
of data production more explicit in the documentation. We believe that transparency and
adherence to ethical standards can be improved by a collective consideration of the social
and intellectual factors that shape data practices, which we refer to as reflexive documenta-
tion. We argue that it helps to expose the contexts, relations, routines, and power structures
that shape data.
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ABSTRACT
In industrial computer vision, discretionary decisions surrounding
the production of image training data remain widely undocumented.
Recent research taking issue with such opacity has proposed stan-
dardized processes for dataset documentation. In this paper, we
expand this space of inquiry through fieldwork at two data pro-
cessing companies and thirty interviews with data workers and
computer vision practitioners. We identify four key issues that hin-
der the documentation of image datasets and the effective retrieval
of production contexts. Finally, we propose reflexivity, understood
as a collective consideration of social and intellectual factors that
lead to praxis, as a necessary precondition for documentation. Re-
flexive documentation can help to expose the contexts, relations,
routines, and power structures that shape data.
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1 INTRODUCTION
Since the rise of deep learning and convolution neural nets, the field
of computer vision has demonstrated some of the most impressive
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results in machine learning [41]. Reaching a new high in popularity,
computer vision models are used in a broad range of applications,
penetrating ever more aspects of daily life. Creating datasets for
computer vision is not straightforward. Work practices involved in
gathering, annotating, and cleaning image data comprise subjec-
tive choices and discretionary decision-making [35, 39, 40]. Such
decisions range from the framing of real-world questions as compu-
tational problems [5, 38] to the establishment of taxonomies to label
images [32]. Data is also “the product of unequal social relations”
[19] that are present among data workers as well as in the relation-
ship between those whose data is collected and those who make
use of data for research and/or profit. The opacity of industrial
practices regarding computer vision datasets is a significant threat
to ethical data work and intelligible systems [49].

Recent research has proposed implementing structured disclo-
sure documents to accompany machine learning datasets [4, 22,
23, 27]. Despite their good intentions, those efforts fail to effec-
tively reflect power dynamics and their effects on data [19, 32].
For instance, Gebru et al. [22] propose that datasheets include the
question “does the dataset identify any subpopulations?” [22] e.g.
by race, age, or gender. This way of documenting dataset compo-
sition is helpful. However, we argue that disclosing if a dataset
includes racial categories does not speak to the problem of such
categories’ reductiveness, nor makes the assumptions behind race
classifications embedded in datasets explicit. In the same way, ask-
ing “who created this dataset?” [22] and “who was involved in the
data collection process (...) and how were they compensated?” [22]
remains insufficient to interrogate hierarchies in industrial settings
and their effects on data [32] . Reflecting on interests, preconcep-
tions, and power encoded in training data [16, 19, 46] is essential
for addressing many of the ethical concerns surrounding computer
vision products.

In this paper, we lay our focus at the intersection of manual
data processing and computer vision engineering. We investigate
how work practices involved in the production of computer vision
datasets can be made explicit in documentation. Although data
processing can cover a variety of activities, we refer to companies
where human workers collect, segment, and label image training
data. Data processing companies of this kind provide data services at
the request of computer vision companies (hereinafter "requesters")
that wish to outsource parts of dataset production. Work between
service providers and requesters requires strong coordination ef-
forts as it comprises many actors and iterations [32]. Collaboration
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is informed by negotiation over the meanings that are ascribed
to images [16]. In this context, not all actors hold equal power to
shape datasets: Data processing companies generally collect and
interpret data according to categories instructed by requesters, and
workers often trust the judgment of their managers in case of doubt
or disagreement [32]. These dynamics have a crucial effect on the
datasets that train commercial computer vision products. Making
them explicit in documentation can help better understand models’
behavior and uncover broader ethical issues.

We base our investigation on fieldwork at two data process-
ing companies, and several interviews with data collectors, an-
notators, managers, and computer vision practitioners. We iden-
tify key aspects of the effective documentation of responsibilities,
decision-making, and power asymmetries that decisively shape im-
age datasets. Our investigation is framed by the following research
questions: (RQ1) How can the specific contexts that inform the
production of image datasets be made explicit in documentation?
(RQ2) Which factors hinder documentation in this space? (RQ3)
How can documentation be incentivized?

Given the complex interweaving of actors, iteration, and respon-
sibilities involved, documenting the context of data transformations
is crucial, yet hard to achieve. We propose reflexivity, understood
as the consideration of social and intellectual factors that predeter-
mine and shape praxis [7], as a crucial component for retrieving
and documenting power dynamics in data creation. We borrow
Bourdieu’s “Invitation to Reflexive Sociology” [8] and translate it
into an invitation to reflexive data practices. Our invitation regards
reflexivity not as personal introspection but as a collective and
collaborative endeavor [8].

We start by reviewing work that investigates the documentation
of machine learning datasets and models. Then, we explore differ-
ent conceptualizations of reflexivity. After offering an overview of
research methods, informants, and fieldwork sites, we present our
findings. These are organized around four salient documentation-
related issues emerging from our analysis, namely the variety of
actors involved and the collaboration among them, the different pur-
poses and forms of documentation, the perception of documentation
as burden, and problems around the intelligibility of documentation.
Next, we discuss the implications of our findings and propose the
implementation of reflexivity in disclosure documents. Finally, we
introduce and discuss four motivations which could lead companies
to implement reflexivity-driven documentation, namely, preserva-
tion of knowledge, inter-organizational accountability, auditability,
and regulatory intervention.

2 RELATEDWORK
2.1 Documentation of Datasets and Models
Previous work has pointed at the need for opening black-box al-
gorithms by explicating their outcomes [37, 44] and documenting
their modeling [26, 34]. A growing body of literature has investi-
gated and developed structured disclosure documents or checklists
for artificial intelligence models and services, which document
their intended uses, testing methodologies and outcomes, actors
involved, possible bias, and ethical problems [3, 15, 26, 34]. While

these disclosure documents primarily focus on AI models and ser-
vices, information relevant to training datasets is also required to
be reported.

Recent research [4, 22, 23, 27] has called for applying similar
structured procedures for documenting datasets specifically. This
line of research advocates for and applies the systematic docu-
mentation of datasets’ purpose, composition, collection process,
preprocessing, uses, distribution [22, 23, 47], and maintenance
[11, 22, 27, 47]. Several studies also draw special attention to the
documentation of actors involved, including their characteristics
and roles [4, 22, 23], the use of software and other tools [4, 22, 47],
availability of training and additional resources for documentation
[4, 23], and fair pay for workers [22, 23, 47]. Furthermore, ethical
concerns have been raised in documentation regarding privacy
[22, 27, 47] and potential harms of datasets [22, 47] (see Table 1).

Most prominently, Gebru et al [22] argue that documentation
can improve transparency, accountability and reproducibility, and
facilitate the communication between "dataset consumers and pro-
ducers". They propose that every dataset be accompanied by a
checklist which should be flexible enough to accommodate specific
domains and “existing organizational infrastructure and workflows”
[22]. Holland et al. [27] argue that documentation of datasets can
enable consumers to select appropriate datasets better and, at the
same time, improve data collection practices among dataset cre-
ators, as they would need to explain and justify their practices. They
propose a dataset nutrition label that is composed of modules to
be filled in through a combination of manual work and automated
procedures. Geiger et al. [23] focus primarily on documentation of
datasets in academic settings. They maintain that documentation
not only contributes to increasing reproducibility and open science,
but is also a matter of “research validity and integrity” [23].

Whereas current proposals and practices of documentation of-
ten prioritize reproducibility, power imbalances in contexts of data
creation are not often accounted for. In their investigation of data
annotation services, Miceli et al. [32] present evidence of how power
asymmetries shape computer vision datasets. In particular, the au-
thors show how the judgements of managers and, even more, of
requesters remain unquestioned when it comes to interpreting and
labeling data. In view of these dynamics, D’Ignazio and Klein [19]
underline the importance of restoring the context where datasets
are produced, be it “social, cultural, historical, institutional, (...) [or]
material,” and the identities of dataset creators. They explain that
“one feminist strategy for considering context is to consider the
cooking process that produces ‘raw’ “data” [19] and propose ask-
ing “who questions” to drive reflection and analysis on power and
privilege. In line with this research, we highlight the importance of
looking into processes of data creation and foster disclosure docu-
ments that go beyond datasets’ technical features. We argue that
the dimensions proposed or applied in structured dataset documen-
tation formats (see Table 1) are necessary but insufficient to drive a
much-needed reflection of industry practitioners’ and researchers’
position and influence on data. For such a reflection to be possible,
datasets must be placed in the context of their production. This per-
spective would not only provide a better understanding of datasets’
“functional limitations” but can also make power asymmetries in
data settings [19] visible.
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Table 1: Summary of descriptive dimensions in documentation frameworks proposed or applied in previous research. It should
be noted that the dimensions are often interconnected and not mutually exclusive.

Authors / Proposed or Applied Documentation Form
Descriptive Dimensions in Documentation Gebru et

al. [22]:
Datasheets

Geiger
et al. [23]:
manual and
technology-
assisted
documen-
tation

Bender and
Friedman[4]:
Data state-
ments

Holland
et al. [27]:
Dataset
Nutrition
Label

Seck et
al. [47]:
Datasheets

Choi et
al. [11]:
Datasheets

Description of dataset’s motivation: private or public? single
use or open dataset?

✓ ✓ ✓ ✓

Description of actors involved: e.g. funding providers, data
workers, data subjects and so on

✓ ✓ ✓ ✓ ✓

Description of dataset’s composition ✓ ✓ ✓ ✓ ✓

Description of dataset’s collection process ✓ ✓ ✓ ✓ ✓

Account of data (pre-)processing steps (e.g., cleaning,labeling) ✓ ✓ ✓ ✓ ✓

Description of dataset’s intended and recommended uses ✓ ✓ ✓ ✓

Description of datasets’ distribution ✓ ✓ ✓ ✓ ✓

Description of datasets’ maintenance ✓ ✓ ✓ ✓

Description of software and other tools used in data work ✓ ✓ ✓

Reflection on potential impacts and ethical issues relevant to
datasets

✓ ✓ ✓ ✓

Description of training for data workers ✓ ✓

Formal definitions and instructions for annotation ✓ ✓

Payment for workers ✓ ✓ ✓

Team composition and diversity ✓ ✓ ✓ ✓

Account for production settings and hierarchies ✓

Procedures for solving discrepencies in data production ✓

Rationale for data collection framing and labeling taxonomies ✓

2.2 The Notion of Reflexivity
According to D’Ignazio & Klein [19], reflexivity is a precondition
for restoring context in data creation. The authors define reflex-
ivity as “the ability to reflect on and take responsibility for one’s
own position within the multiple, intersecting dimensions of the
matrix of domination” [19]. The matrix of domination is a concept
first termed by Patricia Hill Collins [13] to explain how systems
of power are configured and experienced. Black feminist scholars
and critical race theorists have given considerable attention to the
importance of one’s positionality with regard to race, gender, and
class in scientific practice. The work of Dorothy Smith [48], Patricia
Hill Collins [13], and Sandra Harding [25] in standpoint theory
is an important strand in this space. Researchers in critical race
theory further interrogate ideological positioning of privileged and
dominant groups [2, 6, 18]. More broadly, scholars on positionality
frame actors’ positions in socio-political contexts and scrutinize
researchers’ personal identities and stances concerning the con-
texts of knowledge and study [9, 12, 31]. These positions shape
researchers’ view of the world and thereby the whole research
process, i.e., how they perceive, construct and approach a research
problem, how they report research findings, and the process of
knowledge construction and production [9, 12].

Previous investigations in sociotechnical systems have intro-
duced reflexivity by drawing experiences and methodologies from
other disciplines to examine presumptions and taken-for-granted
practices in machine learning and data science. Viewing machine
learning via computational ethnography, Elish and boyd [20] un-
derline the situated nature of knowledge work and argue in favor
of methodological reflections and reflexive practices. Drawing on
critical race methodologies and operationalization of race in other
disciplines, Hanna and Denton et al. [24] argue that the widespread
conception and operationalization of race in algorithmic systems as
a fixed attribute is decontextualized and, therefore, problematic. Pre-
vious work has furthermore argued that machine learning systems
have positionality. Among other factors, “they inherit positionality
from data” [1]. Preconceptions and values get embedded in data,
for instance, through collection and analysis methods and through
the taxonomies used in data annotation. The sensemaking and clas-
sification of data through labels as performed by annotators [32] is
“a judgement and as such informed by the knowledge, experiences,
perspectives, and value commitments of annotators or labelers” [1].

As we will explain in Discussion, Pierre Bourdieu’s conceptu-
alization of reflexivity, understood as a relational construct and
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an integral part of inquiry praxis, is at the core of the documenta-
tion framework we present in this paper. Bourdieu’s writings on
reflexivity offer a systematic investigation into social and intellec-
tual factors that predetermine and shape researchers’ practices in
scientific work [7, 8, 21]. The Bourdieusian notion of reflexivity
goes beyond personal experiences and regards researchers’ posi-
tion at the collective level, that is, in relation to other actors and
the field of inquiry as a whole. Moreover, Bourdieu’s reflexivity
does not aim to undermine objectivity. Instead, it is presented as
an analytical tool to sensitize researchers to “the social and intel-
lectual unconscious” that condition their thoughts and practices
in research, and is, therefore, an integral part of and a “necessary
prerequisite” for scientific inquiry [8]. The French sociologist pin-
points three types of bias that may influence scientific research,
which may be mitigated by introducing reflexivity.The first bias
results from researchers’ positions in the social structure, such as
class, gender, and ethnicity. The second bias comes from researchers’
position in academic disciplines, i.e., academic traditions, prevailing
currents, and socio-organizational structures in specific disciplines
that determine specific field epistemologies. The third bias, termed
by Bourdieu as the intellectualist bias, is embedded in the scholarly
gaze that places researchers outside or above the object of research
and considers their engagement with problems as purely scientific
and unconstrained from social positions and economic interests.
In opposition to this idea, Bourdieu argues that researchers are
participants rather than external observers and restores research
practices as knowledge-producing activities rather than pure and
disinterested investigations. In the Discussion section, we will come
back to this notion of reflexivity. The three Bourdieusian levels of
bias will be the base to discuss why reflexivity is fundamental for
documenting data practices. Reflexivity to make individual and
collective positions explicit and acknowledge their effects on data
is not only crucial for conducting better science, as Bourdieu [8]
argues. It could also help researchers and practitioners uncover
broader ethical issues in computer vision systems.

3 METHOD
3.1 Data Collection
This investigation was organized around two phases, involving
different (yet related) research foci and methods. Documentation
practices are a critical aspect we investigated at both stages:

In the first phase, we focused on work practices in data processing
companies, where human workers collect, segment, and label image
training data. We conducted ethnographic fieldwork at two data
processing companies of the "impact sourcing" sector located in
Buenos Aires, Argentina, and Sofia, Bulgaria. Impact sourcing refers
to a special type of business outsourcing processing company that
intentionally employs workers from marginalized communities. As
described on their websites and confirmed by our observations, the
Argentine company employs young people living in slums, while
the Bulgarian organization works with refugees from the Middle
East.

The Buenos Aires-located company that we will call “Emérita” is
a medium-sized organization. With branches in three Latin Ameri-
can countries, Emérita conducts projects in data annotation, content

moderation, and software testing. Its clients are large regional cor-
porations in diverse fields such as security, e-commerce, and energy.
At the time of the observations, between May and June 2019, the
Buenos Aires branch of Emérita had around 200 data-related em-
ployees who mostly worked 4 hours shifts, Mondays to Fridays,
and were paid at the minimum wage.

“Action Data” is the code-name of the Bulgarian company. Ac-
tion Data specializes in image data collection, segmentation, and
labeling. Its clients are computer vision companies, mostly located
in North America and western Europe. The company offers its
workers contractor-based work and the possibility to complete
their assignments remotely, with flexible hours. Contractors are
paid per picture or annotation, and payment varies according to
each project and its difficulty. At the time of the observations, in
July 2019, the Bulgarian company was very small in size. Three
employees in salaried positions and a pool of around 60 contractors
handled operations.

At both sites, we conducted several weeks of observations, with
different levels of interaction and involvement. All tasks observed
were related to the production of datasets for computer vision and
requested by computer vision companies. Moreover, we observed
the on-boarding, briefing, and further training of workers as well
as instances of communication between managers and teams, and
managers and requesters. It is important to mention that the obser-
vations were primary conducted with a different research question
in mind and focused on general work practices and not specifi-
cally on documentation. However, the exploratory character of the
method and the rich interactions observed allowed us to extract
useful insights for this investigation that were later corroborated
by our interview partners.

In addition to the observations, fieldwork at both sites also con-
sisted of intensively interviewing data collectors, annotators, and
management. In total, we conducted sixteen in-depth interviews
with an average length of 65 minutes, face-to-face, at both loca-
tions. Informants were aged 21 to 40. Eleven of them identified as
female and four as male. None of them had received an education in
tech-related fields or had technical knowledge prior to their current
employment. At Emérita in Argentina, we conducted five in-depth
interviews with data workers and employees in managerial posi-
tions. At Action Data, we conducted eleven in-depth interviews
with workers and managers. Interview partners were asked to
choose code names to preserve their identity and that of related
informants. The interviews included accounts of specific work situ-
ations involving the interpretation of data, the communication with
managers and clients, and the documentation of responsibilities
and decisions. Moreover, the interviews covered task descriptions,
general views on the company and the work, informant’s profes-
sional and educational background, expectations for the future, and
biographical details.

The second phase of this investigation dealt with the role of stake-
holders at the opposite end of the service relationship, namely, the
computer vision companies requesting data processing services.
At fieldwork, we observed that requesters have a major influence
on the documentation practice of data processing companies and
decided to pursue this line of inquiry. Through expert interviews
with computer vision engineers, data quality analysts, and man-
agers, we investigated how task instructions are formulated and
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communicated to data processing workers, and how this process is
documented. The interviews revolved around the object, purpose,
and responsibilities of documentation. Moreover, we discussed is-
sues and possible solutions for implementing broader forms of
documentation in industrial contexts at the intersection of data
processing and computer vision.

We conducted a total of fourteen expert interviews. Four infor-
mants were managers with large data processing companies located
in Kenya, India, and Iraq. In addition, six expert interviews were
conducted with computer vision practitioners working on products
including an aesthetics model that sorts and rates personal image
libraries, a scanner that detects contamination on hands, and optical
sorting equipment for the classification of waste. The computer
vision practitioners work for companies located in Germany, Spain,
and the United States. Finally, four of the interviews conducted at
Emérita and Action Data revolved almost exclusively around the
role of requesters in documentation and were framed as expert
interviews.

While the goal of in-depth interviews is revealing practices and
perceptions, the purpose of expert interviews is to obtain additional
professional assessments on the research topic [29]. The sampled
interview partners were considered experts because they were able
to provide unique insights into widespread routines and practices
in their and other companies. With an average length of 48 min-
utes and conducted face-to-face or remotely, the expert interviews
allowed us to contextualize some of the practices observed at field-
work and analize to what extent observations could be generalized
to other settings.

3.2 Data Analysis
For the analysis, we integrated field notes with a total of thirty
interview transcriptions and used constructivist grounded theory
principles [10] to code and interpret the data. We conducted phases
of open, axial, and selective coding and let the categories emerge
from the data. We applied a set of premises [14] to make links
between categories visible and make them explicit in our research
documentation and in open discussions among three coders. We
constantly compared the collected data to revise our emergent
understanding or find additional evidence of observed phenomena.
Four salient axial dimensions identified during the analysis process
constitute the base for the findings we present in the following
section.

4 FINDINGS
As stated in Introduction, this paper explores three research ques-
tions: (RQ1) How can the specific contexts that inform the produc-
tion of image datasets be made explicit in documentation? (RQ2)
Which factors hinder documentation in this space? (RQ3) How can
documentation be incentivized? Our findings unpack documenta-
tion practices at the intersection of data collection, data annotation,
and computer vision engineering. Through descriptions and in-
terview excerpts, we describe salient dimensions emerging from
our data: actors and collaboration, documentation purpose, docu-
mentation as burden, and intelligibility of documentation. These
four dimensions reveal scenarios that should be taken into account

for creating effective documentation procedures that are based on
workers’ needs and possibilities.

4.1 Actors and Collaboration
Our first research question inquires about ways of making the
specific production contexts of image datasets explicit in documen-
tation. In this section, we take a first step towards unpacking RQ1
by describing the characteristics of such production contexts.

The creation of computer vision datasets requires the collabo-
ration of actors that often work in different organizations. At the
intersection of data collection, data annotation, and computer vi-
sion engineering, not every actor has the same influence on data
[32]. Power differentials become evident when deciding which data
to collect, how to classify it, and how to label it. Many datasets are
produced with a specific computer vision product in mind. Dataset
design begins as the expected outcome of that product (in terms
of computational output but also of revenue) is transformed into
task instructions for data collectors and annotators. A typical as-
signments is illustrated by a data collection project of Active Data:
the company received task instructions to collect images of diverse
human faces from a Western European company, producing identi-
fication and verification systems. Eva, the founder of Active Data,
offered more details:

“They were interested in a diversity of five differ-
ent ethnicities, so Caucasian, African, Middle Eastern,
Latin American and Asian. Of course, very debatable
whether these can be the five categories that can clas-
sify people around the world ”

This type of assignment generally revolves around a client‘s envi-
sioned computer vision product and underlying business idea. The
technical assumptions of a classification system demand mutually
exclusive categories, in this case even for a problematic concept
such as race. Whether such categorisation captures the realities
of data subjects or coincides with the values and believes of data
workers is not negotiated. Written instructions formulated by the
requester are passed along to project managers who brief workers.
Workers then start collecting the images. For outsourcing compa-
nies, the rationale behind data-related decisions is “doing what
the client ordered” and “offering value to the client.” Conversely,
the rationale shaping datasets in computer vision companies is
“data needs to fit the model” and “data processing should be fast,
cost-efficient, and high-quality.”

Power differentials between service providers and requesters be-
come even more evident given that the data processing companies
participating in this investigation are located in developing coun-
tries, while their clients are in the Global North. In view of such
asymmetries, decisions about what to document and the financial
means to do so largely depend on the most powerful actors. Anna,
an intern working at Action Data and in charge of auditing the com-
pany and conducting an impact assessment, concisely described
these dynamics:

Q: “What do you think are the potential drivers or rea-
sons for the implementation of the more transparent
approach to documenting systems and processes?”
A: “If the customer demands it.”
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Q: “Is this something you have heard before, cus-
tomers demanding a more ...”
A: “No.”

Moreover, computer vision companies often regard some of the
information that could or should be documented as confidential,
especially if it involves details about the intended product or if some
of the processes involved in producing the dataset are considered a
strategic advantage. Given the collaborative nature of data creation,
one stakeholder’s opacity may affect others’ inclination towards
transparency. As Active Data’s founder Eva (and several others of
our informants) described, secrecy in computer vision hinders her
company’s attempts to document work processes:

“It’s also a small challenge of how to preserve some
of the know-how throughout the different projects
without of course revealing too much about the dif-
ferent processes that each client has, you know, the
confidential information from each project.”

In many cases, this issue leads to reluctance to share existing
documentation with other stakeholders and the general public or
to not document at all.

4.2 Documentation Purpose
The reasons for documenting the production of datasets and the
forms of documentation vary with each organization. To start con-
sidering ways of incentivizing documentation (RQ3), we first must
look into common needs and goals that different stakeholders may
have in relation to disclosure documents. In this sense, we have
identified four common documentation purposes: preservation of
knowledge, improvement of work practices, accountability, and dis-
closure of dataset’s specifications.

All data processing companies participating in this investigation
carry out some form of project documentation. In a more or less
structured way, companies document task instructions provided by
clients. Instructions may change as projects develop, or workers
might develop new practices according to clients’ feedback. Soo is
a project manager at the Kenyan branch of a large data processing
company. During our interview, he explained how this form of
documentation can help improve existing processes and practices:

“We have a ‘lessons learned’- folder where we put all
these items. Like the client has said, ‘You did not do
well here.’ We’ll find in our process, there was this
flaw. We will document that. And then what happens
after we document is that information is stored to be
used for that project and some future projects with
the same kind of process work.”

The preservation of this form of praxis-based knowledge is crucial
because it helps organizations resolve doubts that might emerge,
train future workers, and apply situated solutions to future projects.
Similarly, documentation can also serve to revise and improve work
practices and flows, as further described by Soo:

“How can we improve this process? This did not go
well. What was the issue? How did we solve it? How
can we avoid this in future? And you will get infor-
mation for a project that was done five years ago [...]
The documentation helps us in making sure that we

avoid repeating the same mistakes. And also, it helps
us in looking for better ways of doing the work, how
to measure where it is possible and also what other
process we can improve, like in the process flow”

Given the differentials of power described in the previous section,
documentation is many times perceived as useful for accountability
between outsourcers and requeters. Several informants working at
data processing companies highlight the importance of preserving
task instructions and documenting changes instructed by clients.
Keeping this type of record might serve as proof that tasks were
carried out as instructed. In the next interview excerpt, the founder
of Active Data describes how documentation might help resolve
discrepancies if clients are not satisfied with the quality of the
service provided or decide to demand more:

“We also keep the client accountable so that they don’t
come up with a new requirement or something that
we haven’t mentioned before. So, SoWs [scope of work
documents] are also for accountability of us towards
the client as well so that the client can have a docu-
ment where they can keep track of what the arrange-
ment is and so on beyond our contract”

However, accountability within teams can become surveillance
for workers: several informants account for the connection be-
tween project documentation and the measurement of workers’
performance in data processing companies. The Argentine com-
pany, Emérita, directs great efforts to measure workers’ perfor-
mance and output quality and to transform those into numbers and
charts. Nati, Emérita’s continuous improvement analyst, described
this process:

“Within the project documentation, we have an ex-
ternal person who checks if the work the team did
is right or wrong, then documents the percentage
of right and wrong. [...] If something is wrong, we
fix it before the client notices. But still, even when
it is fixed, we record that there was something that
was wrong and record who was responsible for the
mistake.”

Finally, in the case of datasets for public use or without a pre-
established purpose, organizations might find it important to docu-
ment and disclose datasets’ specifications. This particular case was
reported by our informants at Action Data, as the company had
recently released two datasets for public use. During an interview,
Eva contemplated the possibility of releasing a disclosure document
along with the datasets:

“It might be nice to implement some type of docu-
mentation at least for them [datasets for open use]
because they’re for external use and it might be good
to know what the origin of the images are, what the
process of annotation had been and so on.”

It is worth mentioning that releasing datasets for public use is
usually not within the scope of outsourcing companies. Investing
resources to produce a pro-bono dataset represents a considerable
effort for these companies. In the case of Active Data, the dataset
was made publicly available as part of the company’s marketing
strategy.
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4.3 Documentation as Burden
Relevant to start unpacking factors that hinder documentation
(RQ2) is the fact that several informants see documentation as
time-consuming, extra work that is likely to delay the completion
of workers’ “actual” tasks. This is a widespread view among the
computer vision practitioners interviewed for this investigation
and coincides with the observation that, among the different roles
explored in this study, computer vision companies seem to be the
least inclined to document work practices.

“Lack of time” is the most widespread answer when informants
are asked why there are not more aspects of data creation reflected
in reports. Documentation is broadly perceived as optional, a nice-
to-have feature that is implemented only once all “important” issues
are sorted. Andre, a US-based computer vision engineer with a start-
up dedicated to producing scanners that detect contamination on
hands, described his company’s position on this issue:

“[Documenting] is lower on our priority list than a
bunch of other things that we need to do. It’s just
not the company’s priority at this moment. There
are other more valuable things to keep the company
successful. As the engineering team grows, as we have
more time to do those things and our work to meet
the company’s exact needs are less burdensome, then
we’d go to more documentation.”

Among our informants in computer vision companies, the view
persists that documentation is an activity only large corporations
can afford. As further reported by Andre, start-up teams are smaller,
and workers are multitasking, which reinforces the view that there
are more pressing issues than documentation:

“That’s one of the interesting things about start-ups.
You don’t have the time to document everything. [...]
There is a lot of knowledge in every single person
here that would take far too long to pull out of them
and transfer to a new person and keep the company
still running at the same time.”

A similar observation was made by Eva, the founder of the Bul-
garian data processing company, regarding her company’s clients:

“We’ve been working with quite a lot of new compa-
nies recently. Some of them are bigger corporations
that have more let’s say bureaucratic procedures and
more detailed processes of description of everything
that’s happening around the project, while others are
just start-ups that prefer very lightweight, minimum
involvement and paperwork around their projects.”

Lack of incentives, external or internal, is another reason why
documentation might be perceived as a burden. For instance, some
informants agreed that laws and regulations would be an excellent
external incentive for technology companies to integrate documen-
tation as a constitutive part of their work. In the absence of regula-
tions, documentation is seen as optional extra work. As for internal
incentives within organizations, several computer vision practi-
tioners explained that documenting was not a part of their work
routines and was therefore not encouraged by the company’s struc-
tures. Emmanuel, a computer vision engineer based in Barcelona
and working on optical sorting equipment for waste’s classification,

discussed the need for integrating documentation in existing work-
flows. He moreover imagines that extending projects’ deadlines to
prioritize documentation would not be seen as acceptable within
his company’s culture:

“Time is a huge issue. I mean, I think planning is very
important, get the time to do it [documenting] and
that everybody knows this is supposed to be done.
Because right now, documenting is not a task and I
don’t know that I would have a gap between projects
so I could document. And this is never a priority for
the company, they expect me to meet my deadlines, I
can’t just drop my deadlines to document. And this is
a problem. If documenting was part of the deadline,
companies wouldn’t just leave it for another time”

Even in companies that integrate laborious documentation in
their work processes, as is the case of Emérita, there are instances
where documenting is just not profitable. Nati, one of our infor-
mants with the Argentine data processing company, describes one
of those situations:

“It happens sometimes that we do one-time projects
that go only for one or two weeks. In those cases,
documentation is a waste of time and money, because
the client buys, let’s say, eighty hours and you spend
twenty documenting. It’s just not profitable.”

As expected, financial incentives, or the lack thereof, can also
influence views on documentation.

4.4 Intelligibility of Documentation
To further investigate factors that hinder documentation (RQ2) it is
necessary to explore issues around creating compelling, retrievable,
and intelligible disclosure documents. To illustrate some relevant as-
pects related to structuring and providing access to documentation,
we draw on the observations made during fieldwork at both data
processing companies, Emérita and Active Data. Both companies
have vast experience in the documentation of data collection and
annotation projects.

In the case of the Argentine company, Emérita, due to the exten-
sion of documentation and the large number of projects conducted,
navigating and maintaining disclosure documents has become dif-
ficult. Nati, a continuous improvement analyst, is in charge of
addressing this issue:

“What happened a lot was that information was re-
peated in many places. The objectives were written
in three different documents. The people who were
in the project were in two different systems [...] So,
having that repeated was horrible, because every time
people in the team changed, well, you needed to up-
date many things and credentials”

Nati works on optimizing some of her company’s internal pro-
cesses, including documentation. For that purpose, she has surveyed
project documents, observed how the company teams work, and dis-
cussed with them how documentation can be improved. Her main
focus lies in producing documentation that can be easily retrieved
and used, which can be very challenging:
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“For example, in the case of project guides, it was not
clear what documentation had to be done, so everyone
did what they wanted, or what they remembered, or
what they knew, because someone told them, and
when information was needed, they didn’t know if
it had been documented or not, or they didn’t know
where to find it. We lost a lot of information like this.”

Further issues related to the intelligibility of documentation may
arise depending on who is in charge of documenting and who are
the users of documentation. In the case of Active Data, the Bulgarian
company working with refugees from the Middle East, language
and lack of technical knowledge is one of those issues:

“Sincewe’reworkingwith peoplewho very frequently
do not have high levels of education or do not speak
good English, I’ve heard a lot of complaints that peo-
ple are not reading the training documents or they’re
not following them or they’re asking questions that
appear or are already answered in the training docu-
ments. So, it can be quite frustrating because people
may not be used to following such documentation
and they might need additional training just to know
how to use this recommendation, how to read it and
how to follow it”

Creating useful reports that can be easily retrieved and under-
stood is challenging. How disclosure documents are created, in-
dexed, and stored depends to a greater extent on the intended
addressees of documentation. As illustrated by the previous inter-
view excerpt, language is important if stakeholders with different
levels of literacy will make use of documentation.

5 DISCUSSION
As described in Findings, work at the intersection of data collec-
tion, annotation, and computer vision engineering requires strong
coordination efforts among actors that occupy different (social) posi-
tions. Documentation purpose, organizational priorities, and needs
around documentation intelligibility vary across stakeholders. In
such heterogeneous contexts, some actors hold more power than
others and decisions made at the most powerful end will inevitably
affect work practices and outputs at every level. These power differ-
entials and their effects are broadly naturalized [17, 19, 32]. Despite
their decisive effects on data, decisions and instructions that are
rooted in such naturalized power imbalances are mostly perceived
as self-evident and remain undocumented as a consequence.

Previous research has emphasized the importance of document-
ingmachine learning datasets [22, 23, 27, 30, 49].While we acknowl-
edge that work for creating the foundations for our investigation,
we also argue that the frameworks proposed are not sufficient to
interrogate power differentials and naturalized preconceptions en-
coded in data. With our investigation, we move the focus away
from documenting datasets’ technical features and highlight the
importance of accounting for production contexts. Our research
questions address the challenge of documenting production pro-
cesses that are characterized by the multiplicity of actors, needs,
and decision-making power. In this and the following sections, we

lay out implications of our observations and outline a documen-
tation framework to address the contexts and issues described in
Findings.

Given the collaborative nature of datasets production, we argue
that documentation should not be carried out in the vacuum of each
organization. The framework we propose regards dataset documen-
tation as a collaborative project involving all actors participating
in the production chain. This is not easy for sure. To address such
challenge, we propose that reflexivity, understood as a collective
endeavor [7], be an integral part of such collaborative documenta-
tion. As argued by Bourdieu [8], this form of collective reflexivity
accounts for actors’ social position and aims to interrogate praxis
fields and the relations that constitute them. In a similar manner, re-
flexive documentation should help to make visible the interpersonal
and inter-organizational relations that shape datasets. As described
in the Related Work section, Bourdieu’s notion of reflexivity cov-
ers three levels of hidden presupposition: the researcher’s social
position, the epistemology of each disciplinary field, and “the intel-
lectualist bias”, described as the scholarly gaze researchers use to
analyze the social world as if they were not part of it [7, 8]. We take
this perspective and transform Bourdieu’s “Invitation to Reflexive
Sociology” [8] into an invitation to reflexive data practices. What
constitutes our invitation entails much more than observing how
one actors’ positionality affects data: If documentation is to be seen
as a collaborative project, reflexivity of work practices should be un-
derstood as a collective endeavor, where widespread assumptions,
field methodologies, and power relations are interrogated.

With this framework, we regard documentation in a two-fold
manner: First, as an artifact (the resulting documentation) that
enables permanent exchange among stakeholders participating in
data creation. We envision disclosure documents that travel among
actors and organizations, across cultural, social, and professional
boundaries, and are able to ease communication and promote inter-
organizational accountability. Second, we regard documentation
as a set of reflexive practices (the act of documenting) intended to
make naturalized preconceptions and routines explicit. Just as Bour-
dieu regards reflexivity as a “necessary prerequisite” for scientific
inquiry [8], the reflexive practices involved in our documentation
framework should be seen as a constitutive part of data work. If
reflexivity is only regarded as a desirable goal related to AI ethics
and not as actual part of the job, documentation will never be con-
sidered a priority and, as described in Findings, it will continue to
be perceived as a burden.

5.1 Why Reflexivity?
Our research questions enquire about ways of making the contexts
that inform the production of image datasets explict in documenta-
tion and about factors that hinder or incentivize the implementation
of documentation in industry settings. In view of our findings, we
argue that effective documentation should be able to reflect the
dynamics of power and negotiation shaping datasets through work
practices. However, making visible the hierarchies, worldviews,
and interests driving decisions and instructions is extremely chal-
lenging. One major difficulty lies in their taken-for-grantedness:
documenting naturalized power dynamics and decisions that are
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largely perceived as self-evident [33] require intensive reflexive
practice.

The three previously-mentioned levels of reflexivity proposed
by Bourdieu (social position, field epistemology, and intellectualist
gaze) can be useful to discuss why reflexivity should be at the core
of documentation practices in data creation for computer vision.
They provide an additional lens through which data practices can
be approached, and as such, serve as a complement to on-going
work and discussions regarding the documentation of datasets:

First, reflexive documentation should consider the social posi-
tion of workers involved in dataset production, not just individu-
ally but in their relation to other stakeholders. Such consideration
could help produce documentation that brings power imbalances
into light and questions taken-for-granted instructions and hier-
archies. This relational examination is especially important due
to the widespread use of outsourced services for the collection
and annotation of data: Workers at crowdsourcing platforms are
subject to precarious employment conditions [28, 45]. In the im-
pact sourcing companies presented in this paper, workers come
from marginalized communities (refugees in Active Data, slum res-
idents in Emérita). Most of them have no technical education. How
does their social position affect these workers’ ability and power
to question the instructions commanded by computer vision engi-
neers or data scientists in tech companies? This question becomes
even more pressing if we examine the relationship that connects
data processing services in developing countries with computer
vision companies in the Global North. Documentation frameworks
that are oblivious to the fact that production chains are shaped by
asymmetrical relationships will never be effective in reflecting how
those asymmetries affect data. In this sense, reflexive documenta-
tion should bring power differentials to light and, ideally, empower
those in vulnerable positions to speak up and raise questions.

Second, reflexive documentation should serve to question field
epistemologies. Examining the epistemology of computer vision
might shed light on the assumptions, methods, and framings un-
derlying the production of image datasets. As Crawford and Paglen
[16] argue, computer vision is “built on a foundation of unsubstan-
tiated and unstable epistemological and metaphysical assumptions
about the nature of images, labels, categorization, and represen-
tation.” Bringing these assumptions forward in documentation is
important because socially-constructed categories, such as race and
gender, are generally presented as indisputable in image datasets
[46]. Furthermore, a fixed and universal nature is not only ascribed
to the categories as such, but also to the correspondence that sup-
posedly exists between images and categories, appearances and
essences [16]. Reflexivity should help reveal the political work such
assumptions perform behind their purely technical appearance.

Finally, reflexive documentation should help practitioners ques-
tion the "intellectualist gaze" [7] in data work. This type of bias is
the inclination to place ourselves outside the object of research. This
form of examination would highlight the role of workers and or-
ganizations in creating data while questioning widespread notions
such as “raw data” and “ground truth labels”. Reflexivity should
therefore help to adopt a relational view on data and data work,
acknowledging data as a “human-influenced entity” [35] that is
shaped by individual discretion, (inter-)organizational routines,
and power dynamics.

5.2 Why Document?
Data processing services and computer vision companies might be
reluctant to implement such an elaborate approach to documen-
tation. Our third research question asks how can documentation
be incentivized. In this section, we consider four ways in which
the Bourdieusian framework previously outlined can constitute
an asset for organizations, and thus serve as an incentive for the
uptake of reflexive documentation.

5.2.1 Preservation of Knowledge. Reflexive documentation could
make praxis-based and situated decision-making explicit and help
preserve it in documentation. This knowledge can become long
term business assets for companies. Moreover, reflexive documen-
tation can preserve know-how relevant to data work [39] that may
get lost due to workers flow. As the flow of workers brings about
problems in task transfer and reinvestment in training new em-
ployees, documentation that preserves knowledge and methods for
effective data work, be they project-specific or not, can ease the
transition.

Furthermore, documentation can “have analytical value [and]
improve communication in interdisciplinary teams” [32]. The frame-
work offered in this paper highlights the collective nature of re-
flexivity. We argue that documentation that preserves praxis-based
knowledge and best practices (as described in section 4.2) should be
circulated among collaborating companies rather than be produced
and retrieved in the vacuum of each organization. For one thing,
sharing such documentation with other stakeholders may improve
the quality of data work and of the datasets that are produced as
a result. For another, documentation providing more details on
discretionary decision-making and its contexts can enhance trans-
parency and facilitate a better understanding of datasets before
model development.

5.2.2 Inter-organizational accountability. Tracking decisions and
responsibilities in environments and processes that involve multiple
organizations can be challenging. As described in Findings, data pro-
cessing companies use documentation to foster inter-organizational
accountability and protect themselves in the face of disagreements
with clients. At the same time, computer vision companies might
consider documentation as a tool to keep track of the processing
status of projects and audit requested tasks. Reflexive documen-
tation could be especially useful to improve traceability, as the
participation of many actors and iterations in data creation may
lead to accountability dilution [32]. Moreover, documentation could
provide “organizational infrastructure” that empowers individual
advocates among workers to raise concerns and reduces the social
costs for such actions [30]. An infrastructure based on the reflexivity
framework outlined in this paper could facilitate the interrogation
of intra- and inter-organizational relations, normative assumptions,
and workflows shaping data at the three levels described in the
previous section.

Conducting documentation at a collaborative level, which means
to engage various actors and to accommodate documentation to
their needs, can serve as a platform for permanent exchange among
stakeholders. Enabling permanent exchange could help anticipate
disagreements and misunderstandings, thus improving task quality
and reducing completion time.
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5.2.3 Auditability. Documentation based on reflexivity could con-
stitute an asset for organizations to prevent issues before they are
made public or weather the storm in the face of PR failures. Dis-
closure documents that are able to retrieve the context of dataset
production could constitute a useful tool for auditability, for in-
stance, when computer vision outputs are publicly questioned or
for internal ethics teams who would like to perform an assess-
ment for potential fairness concerns prior to the release of a model
trained on such data [42, 43]. Such documents could help to identify
problematic issues before they become public pushbacks. Moreover,
in case of public failures, documentation could provide an audit
trail that would allow organizations to address problems and offer
solutions promptly. In this sense, public pressure could constitute
an incentive for companies towards documentation.

In such cases, counting with reflexive documentation to au-
dit datasets could help companies offer solutions that go beyond
“throwing in more data“ and are able to address issues at the three
Bourdieusian levels previously described: identifying asymmetrical
relationships that might have been encoded in datasets, interrogat-
ing widespread assumptions in computer vision, and questioning
data, even “raw” data.

5.2.4 Regulatory Intervention. Organizations could also be pushed
towards documentation through regulatory intervention. Yet, be-
fore any form of reflection, including the documentation thereof,
can be imposed, a few observations can be made:

First, while documentation might be considered an important
component or step of the reflexive process, it is neither constitutive
to, nor sufficient for, reflection. Reflexivity represents a state of
awareness, an encouragement for actors involved in data creation
to more widely consider the impact of their practices. Reflexivity
can already be valuable in itself. The policy end-goal is therefore
to stimulate a reflexive mindset and to establish the right condi-
tions for such a mindset to fully come to fruition. Conversely, if
regulation only aims at pushing documentation, the danger exists
that such regulatory requirements are approached as merely an
administrative exercise towards compliance.

Second, if the encouragement of reflexivity through legal means
would be desired, such mechanisms may already be (partially)
present in existing initiatives. For instance, it could be argued that
the EU General Data Protection Regulation’s increased emphasis
on accountability and risk-based responsibility stimulates some
level of reflection where personal data are involved [36]. Reflexiv-
ity could moreover become an additional supportive tool for data
workers as a means to detect and mitigate the impact data actions
have on (fundamental) rights, and as such, contribute towards the
compliance with existing legal frameworks.

Third, given the multiplicity of actors involved in data creation,
regulatory initiatives should also carefully consider the actors they
wish to target. Stakeholders should not only be targeted in isolation;
instead, policy makers should understand the relationships these
actors hold vis-a-vis one another, and the consequences that their
relationships bear on the activities performed.

Finally, any regulatory response must adequately consider the
power asymmetries described in this paper, including their mani-
festation within a globalized, international environment. Mecha-
nisms of provenance, such as documentation, could help ensure and

demonstrate that societal values and fundamental rights, as well as
an appropriate level of reflexivity, have beenmaintained throughout
the computer vision value chain, rather than purposefully avoided
via outsourcing strategies and/or the exercise of power. Similarly,
provenance may increase the accountability and responsibility of
powerful entities in both their actions and their given instructions.

6 LIMITATIONS AND FUTUREWORK
This investigation was designed to be qualitative and exploratory.
Our findings are bound to the specific contexts of the companies
and individuals participating in our studies and cannot be general-
ized to all computer vision production settings. In the future, we
seek to broaden this research by investigating ways of integrat-
ing the framework outlined in this paper in real-world production
workflows and co-designing actionable guidelines for reflexive doc-
umentation together with industry practitioners.

7 CONCLUSION
Based on fieldwork at two data processing companies and inter-
views with data collectors, annotators, managers, quality assurance
analysts, and computer vision practitioners, we described wide-
spread documentation practices and presented observations related
to the purpose, challenges, and intelligibility of documentation.

In view of these findings, we proposed a reflexivity-based ap-
proach for the documentation of datasets, with a special focus on
the context of their production. We described documentation as a
set of reflexive practices and an artifact that enables permanent ex-
change among actors and organizations. We argued that disclosure
documents should travel across organizational boundaries, and be
able to ease communication and foster inter-organizational account-
ability. We imagined documentation as a collaborative project and
argued that reflexivity of work practices should therefore be under-
stood as a collective endeavor, where not only personal positions
but also praxis fields are interrogated.

Achieving a healthy balance between these elements and in-
centivizing practitioners and organizations to implement reflexive
documentation is not easy. The challenge is nevertheless worth
exploring if we aim at addressing some of the ethical issues related
to the production of data for computer vision systems.
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A.4 Legal Framework forRegulatingAlgorithmicDecision-
Making

My critical perspective on the obscurity of many machine learning models led to collabora-
tions with legal scholar Ferdinand Müller and computer scientist Elsa Kirchner. In our joint
work, we join the debate on whether Europe needs a regulatory body akin to a “KI-TÜV”
to ensure the safe and responsible use of algorithmic decision systems. We suggest an EU-
wide regulatory approach to manage the risks of these systems effectively to ensure safety
and transparency while supporting technological progress and innovation. Concretely, we
recommend jointly considering systemic and application-specific risks. To illustrate this,
we present three examples of systemic risk from our research: biased models, black box
predictors, and self-adopting systems. Based on this, we suggest regulating AI use on five
ordinal risk levels.

Publication This work, written in German1, has been published and presented at the 6th
GRUR Conference. Three years after this publication, a risk-based approach of less granu-
larity was adopted in Article 9 of the European Union’s Artificial Intelligence Act [237].

Ferdinand Müller, Elsa Kirchner, and Martin Schüßler. 2021. Ein „KI-TÜV“
für Europa? Eckpunkte einer horizontalenRegulierung algorithmischer Entschei-
dungssysteme. In GRUR Junge Wissenschaft Intelligente Systeme – Intelli-
gentes Recht. Vol. 2020/21. Nomos Verlagsgesellschaft, 85–106. isbn: 978-3-
8487-8142-3. https://www.nomos-shop.de/nomos/titel/intelligent
e-systeme-intelligentes-recht-id-99401/

1An English summary is available at https://www.weizenbaum-institut.de/en/news/detail/ei
n-ki-tuev-fuer-europa0/.

https://www.nomos-shop.de/nomos/titel/intelligente-systeme-intelligentes-recht-id-99401/
https://www.nomos-shop.de/nomos/titel/intelligente-systeme-intelligentes-recht-id-99401/
https://www.weizenbaum-institut.de/en/news/detail/ein-ki-tuev-fuer-europa0/
https://www.weizenbaum-institut.de/en/news/detail/ein-ki-tuev-fuer-europa0/
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Appendix B

XAI User Study Literature Review

In this part of the appendix, we provide additional details on our structured literature re-
view of study designs for evaluating explanations, as presented in Section 2.5. We report
the search query and selection criteria used with the empirical-to-conceptual method [166].
Finally, we list all the publications that were considered.

B.1 Search Query

Our search queries were composed of groups and terms. Groups refer to a specific aspect
of the research question and limit the search scope. Terms have a similar semantic meaning
within the group domain or are often used interchangeably. We were interested in the in-
tersection of 3 groups that can be phrased using different terms. Table B.1 shows our used
groups and terms.

Group Terms

1 - Explainable explainability, explainable, explanation, explanatory, inter-
pretability, interpretable, intelligibility, intelligible, scrutability,
scrutable, justification

2 - AI XAI, AI, artificial intelligence, machine learning, black-box, rec-
ommender system, intelligent system, expert system, intelligent
agent, decision support system

3 - Human Subject Evaluation user study, lab study, empirical study, online experiment, hu-
man experiment, human evaluation, user evaluation, participant,
within-subject, between-subject, probe, crowdsourcing, Mechan-
ical Turk

Table B.1. Search query: The query was composed of groups and terms.
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B.2 Selection Criteria

The search, executed on Scopus in September 2019, returned a total of 653 publications.
We filtered the search results by six exclusion criteria (EC) and one inclusion criterion (IC).
We were interested in primary studies that report the setup and result of human subject
evaluations in the XAI context (IC-1). We limited the survey to publications written in
English (EC-1), which address the black-box explanation problem, according to Guidotti et
al. [82] (EC-2). We exclude publications that do not report human-grounded or application-
grounded evaluations according to Doshi-Velez and Kim [52] (EC-3). Naturally, we also
excluded publications where the full text could not be retrieved (EC-4). We further limited
the review to scientific papers (EC-5). Finally, we removed duplicates, like copies from
arXiv (EC-6). We applied the exclusion criteria in cascading order, which means if we
excluded publications due to one EC, we did not assess any of the following criteria.

B.3 Reviewed Publications

After screening, 133 publications remained for analysis, of which we reviewed 35 for the
initial taxonomy which was published as a workshop paper (1-35 in the list below.) Subse-
quent studies drew resources away from the planned more extensive review. However, we
keep reviewing studies as they were published (36-52 in the list). Based on this, the author
refined the taxonomy. In its current version, the types of tasks are more detailed than in the
initial version.

1. Bussone et al., “The Role of Explanations on Trust and Reliance in Clinical Decision Support
Systems” [32]

2. Schaffer et al., “I Can Do Better than Your AI: Expertise and Explanations” [196]

3. Kulesza et al., “Principles of Explanatory Debugging to Personalize Interactive Machine
Learning” [121]

4. Lim et al., “Why and Why Not Explanations Improve the Intelligibility of Context-Aware In-
telligent Systems” [132]

5. Weitz et al., ““Do you trust me?”: Increasing User-Trust by Integrating Virtual Agents in
Explainable AI Interaction Design” [250]

6. Teso and Kersting, “Explanatory Interactive Machine Learning” [230]

7. El Bekri et al., “A Study on Trust in Black Box Models and Post-hoc Explanations” [59]

8. Zhou et al., “Interpretable Basis Decomposition for Visual Explanation” [264]

9. ElShawi et al., “Interpretability in healthcare: A comparative study of local machine learning
interpretability techniques” [60]
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10. Hutton et al., “Crowdsourcing Evaluations of Classifier Interpretability” [95]

11. Ehsan et al., “Automated Rationale Generation: A Technique for Explainable AI and its Ef-
fects on Human Perceptions” [57]

12. Kouki et al., “Personalized Explanations for Hybrid Recommender Systems” [120]

13. Lakkaraju et al., “Faithful and Customizable Explanations of Black Box Models” [126]

14. Nunes et al., “Pattern-based Explanation for Automated Decisions” [171]

15. Harbers et al., “Design and Evaluation of Explainable BDI Agents” [85]

16. Sato et al., “Explaining Recommendations Using Contexts” [194]

17. Ming et al., “Interpretable and Steerable Sequence Learning via Prototypes” [148]

18. Tsai and Brusilovsky, “Evaluating Visual Explanations for Similarity-Based Recommenda-
tions: User Perception and Performance” [234]

19. Grover et al., “BEEF: Balanced English Explanations of Forecasts” [81]

20. Tintarev and Masthoff, “Evaluating the effectiveness of explanations for recommender sys-
tems” [233]

21. Razak et al., “Interpretability and Complexity of Design in the Creation of Fuzzy Logic Sys-
tems — A User Study” [182]

22. Lamy et al., “Explainable artificial intelligence for breast cancer: A visual case-based rea-
soning approach” [127]

23. Lakkaraju et al., “Interpretable Decision Sets: A Joint Framework for Description and Pre-
diction” [125]

24. Hohman et al., “Gamut: A Design Probe to Understand How Data Scientists Understand
Machine Learning Models” [93]

25. Ribeiro et al., “Anchors: High-Precision Model-Agnostic Explanations” [185]

26. Dodge et al., “Explaining Models: An Empirical Study of How Explanations Impact Fairness
Judgment” [50]

27. Millecamp et al., “To Explain or not to Explain: the Effects of Personal Characteristics when
Explaining Music Recommendations” [145]

28. Gedikli et al., “How should I explain? A comparison of different explanation types for rec-
ommender systems” [72]

29. Nugent et al., “The Best Way to Instil Confidence Is by Being Right” [169]

30. Subramanian et al., “SPINE: SParse Interpretable Neural Embeddings” [224]

31. Nguyen et al., “An Interpretable Joint Graphical Model for Fact-Checking From Crowds”
[164]
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32. Muhammad et al., “A Live-User Study of Opinionated Explanations for Recommender Sys-
tems” [157]

33. Eisenstadt et al., “Explainable Distributed Case-Based Support Systems: Patterns for En-
hancement and Validation of Design Recommendations” [58]

34. Zanker, “The Influence of Knowledgeable Explanations on Users’ Perception of a Recom-
mender System” [261]

35. Lully et al., “Enhancing explanations in recommender systems with knowledge graphs” [137]

36. Adebayo et al., “Debugging Tests for Model Explanations” [5]

37. Borowski et al., “Exemplary Natural Images Explain CNN Activations Better than State-of-
the-Art Feature Visualization” [25]

38. Chu et al., “Are Visual Explanations Useful? A Case Study in Model-in-the-Loop Prediction”
[41]

39. Kaur et al., “Interpreting Interpretability: UnderstandingData Scientists’ Use of Interpretabil-
ity Tools for Machine Learning” [103]

40. Mertes et al., “GANterfactual — Counterfactual Explanations for Medical Non-experts Using
Generative Adversarial Learning” [142]

41. Kim et al., “Interpretability Beyond Feature Attribution: Quantitative Testing with Concept
Activation Vectors (TCAV)” [108]

42. Cai et al., “The Effects of Example-Based Explanations in a Machine Learning Interface”
[33]

43. Shen and Huang, “HowUseful Are the Machine-Generated Interpretations to General Users?
A Human Evaluation on Guessing the Incorrectly Predicted Labels” [203]

44. Ribeiro et al., “”Why Should I Trust You?” [184]

45. Kulesza et al., “Fixing the Program My Computer Learned” [123]

46. Springer and Whittaker, “Progressive Disclosure” [220]

47. Springer et al., “Dice in the Black Box: User Experiences with an Inscrutable Algorithm”
[219]

48. Feng and Boyd-Graber, “What Can AI Do for Me?” [66]

49. Lai and Tan, “OnHuman Predictions with Explanations and Predictions of Machine Learning
Models” [124]

50. Buçinca et al., “Proxy Tasks and Subjective Measures Can Be Misleading in Evaluating Ex-
plainable AI Systems” [31]

51. Kim et al., “HIVE: Evaluating the Human Interpretability of Visual Explanations” [111]

52. Ramaswamy et al., “Overlooked Factors in Concept-Based Explanations: Dataset Choice,
Concept Learnability, and Human Capability” [181]



Appendix C

XAI Study I: Instructions and Collected
Replies

C.1 Collected Replies

Participants’ answers were anonymised and made available as a public dataset:

https://doi.org/10.5522/04/11638275.v2

C.2 Participant Instructions

Study participants had to complete a tutorial spanning 8 pages.

Page 1

Hello and thank you for participating in this study. Please read the following
instruction carefully. It contains valuable information which will allow you to
earn additional rewards during this study.

One of the successful applications of machine learning (ML) is image recogni-
tion. It can be used to assign ”labels” of recognized objects to photos. For this,
the ML system has to be ”trained” on a large number of photos, which were
manually labeled. The set of photos used for training is called the “training
set.”

For this study, we pre-trained a system to recognize 20 different labels. The 20
labels are: aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining
table, dog, horse, motorbike, person, potted plant, sheep, sofa, train, tv monitor.

So if any of these appear in a photo, the system should recognize them and
assign the corresponding label.
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Page 2

So when is the system correct and when is it wrong? For each label, the system
calculates a score (from 0 to 1). The score will be higher if the system is very
sure about assigning a label and it will be lower if it is unsure. Each photo can
contain multiple objects. Therefore it could need to be assigned multiple labels.
The system will assign all labels which scores are higher than a predefined
threshold. Please note that ML systems are generally not 100% accurate. They
may work well on some photos (hopefully most of them), but make mistakes on
other photos (hopefully just a few of them). It is useful to consider the following
4 outcomes where the system makes mistakes or is correct.

1. The image contains object X (e.g. a cat) and the system correctly recog-
nizes it (hurrah!) – this is a “true positive” (TP).

2. The image does NOT contain object X (e.g. a cat) and the system correctly
recognizes that there is no such object (hurrah!) – this is a “true negative”
(TN).

3. The image contains object X (e.g. a cat), but the system does not recognize
it (oops!) – this is a “false negative” (FN).

4. The image does NOT contain object X (e.g. a cat), but the system falsely
recognized such an object in the image (oops!) – this is a “false positive”
(FP).

Looking at some examples for each of the outcomes can reveal which images
the system recognizes well and with which images it is struggling. In this study,
we ask you to study such examples and estimate how the system will perform.

Page 3

Your main task is to estimate whether the system can successfully assign a label
to several photos. To help you with this, we will show you 12 example photos
from the training set that are visually similar to the photo you are currently
working on. Concretely you will be shown:

• 6 photos that are True Positive (TP) examples

• 3 photos that are False Negative (FN) examples

• 3 photos that are False Positive (FP) examples
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Page 4

Because each image can contain multiple objects, the system accepts the pre-
dicted labels which satisfy the following criterion: The score of the predicted
label has to be higher than a pre-defined threshold. Please note that each
“category” has its own threshold, which is shown as small red lines. See this
images as an example:

Figure C.1. Screenshot of participants’ instructions on how to read classification re-
sults, scores, and score thresholds.

Page 5 (Participants were shown Figure C.2)

Figure C.2. Screenshot of participants’ instructions for saliency maps.
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Page 6 (Participants were shown Figure C.3)

Figure C.3. Screenshot of instructions for the study interface.

Page 7 For each example, we show you the following information (Figure C.4).

Figure C.4. Screenshot of instructions for example images.
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Page 8

Before you start the task, please answer the following question(s): (you can
refer to the previous pages) [see Figure C.5a and C.5b]

Ready? The total number of questions are 12. Remember, for each correct
answer, you will receive £0.5 extra!

(a) Questions: (1) Is this a False Negative (FN) exam-
ple of bicycle? (2) Is this a False Negative (FN) exam-
ple of motorbike?

(b) Questions: (1) The heatmap expla-
nation suggests that the prediction of
’car’ is supported by the presence of a
rear window. (2) The heatmap expla-
nation suggests that the prediction of
’car’ is supported by the presence of a
tire/wheel.

Figure C.5. Attention checks: Participants had to answer four question with Yes or No.





Appendix D

XAI Study II: Instructions,
Preregistration, and Models

D.1 Instruction Videos and Screening Questions

Before participants could work on their task, they had to watch a tutorial video accompanied
by a written summary. They then had to answer screening questions. The screening question
of each stage could be attempted twice. When participants failed a screening, they were
compensated for their time.

Introduction Tutorial for Peeky and Stretchy

All participants viewed the following video:

https://f002.backblazeb2.com/file/iclr2022/Intro_Peeky_Stret
chy.mp4

Screening 1 After watching the video, they had to identify two Peekies and two Stretchies
from four images correctly and had to select all correct statements from the following se-
lection:

✓ “Peeky and Stretchy are made of 8 blocks: 4 for the legs, 4 for the spine.”

✓ “The blocks that make up the animals can be more rounded or more rectangular.”

× “The animals always have the same background color.”

✓ “Each animal can have a different color.”

Introduction Tutorial for Machine Learning and Biases

All participants viewed the following video:
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https://f002.backblazeb2.com/file/iclr2022/Second_Intro_ML.m
p4

Screening 2 Participants had to select all correct statements from the following selection:

× “We know exactly which characteristics the trained machine learning system uses to
distinguish between the two animals. It is the leg position relative to the spine. The
system will not use any other characteristics.”

✓ “After the learning phase, given an image, the machine learning system can predict
which animal is shown in that image. To do that, it may use any combination of
characteristics.”

✓ “We trained a machine learning system by feeding it with thousands of images of the
two animals.”

Tutorial for Baseline Condition

Participants assigned to the baseline condition viewed the following video:

https://f002.backblazeb2.com/file/iclr2022/condition_BASE.mp
4

Screening 3 After watching the video, they had to select all correct statements from the
following selection:

✓ “Your task is to discover which characteristics the system is using.”

✓ “The images are ordered on the horizontal axis according to the certainty of the sys-
tem about its prediction (on the left - very certain Peeky, on the right - very certain
Stretchy).”

× “If the system is using the background as characteristic, all ”very certain Stretchy”
images will have the same background color.”

× “It is enough to look at one row of images to understand which characteristics are
relevant for the system.”

Tutorial for Invertible Neural Network Interpolations Condition

Participants assigned to the INN condition viewed the following video:

https://f002.backblazeb2.com/file/iclr2022/condition_INN.mp4

https://f002.backblazeb2.com/file/iclr2022/Second_Intro_ML.mp4
https://f002.backblazeb2.com/file/iclr2022/Second_Intro_ML.mp4
https://f002.backblazeb2.com/file/iclr2022/condition_BASE.mp4
https://f002.backblazeb2.com/file/iclr2022/condition_BASE.mp4
https://f002.backblazeb2.com/file/iclr2022/condition_INN.mp4
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Screening 3 After watching the video, they had to select all correct statements from the
following selection:

✓ “Your task is to discover which characteristics the system is using.”

✓ “On each row, the system modifies the characteristics of the image. The character-
istics are modified so that the system changes its prediction (whether the image is a
Peeky or Stretchy).”

× “A characteristic is only relevant for the system if it changes in every row.”

× “It is enough to look at a single row to understand which characteristics are relevant
for the system.”

Tutorial for Automatically Discovered Concepts Condition

Participants assigned to the CON condition viewed the following video:

https://f002.backblazeb2.com/file/iclr2022/condition_CONCEPT
S.mp4

Screening 3 After watching the video, they had to select all correct statements from the
following selection:

✓ “Your task is to discover which characteristics the system is using.”

× “The dark regions in the image highlight the concept that the system has learned.”

× “A concept always contains only one characteristic.”

✓ “You have to look at several of these concepts to understand which characteristics are
important for the system.”

D.2 Architecture of the Invertible Neural Network

Leon Sixt developed the model and is his contribution. It is included here as a technical
detail. The model is based on the Glow architecture [113] and contains 7 blocks. A block
is a collection of 32 flow steps, followed by a down-sampling layer, and ends with a fade-
out layer. A single flow step consists of actnorm, invertible 1 × 1 convolution and affine
coupling layer. The down-sampling keeps all dimensions, e.g. a shape of (h,w, c) becomes
(h/2, w/2, 4c). The fade-out layer maps removes half of the channels. The out-faded chan-
nels are than mapped to a standard normal distribution to compute the unsupervised loss.
For generating counterfactuals, the out-faded values are not thrown away but rather stored
to be used when computing the inverse.

https://f002.backblazeb2.com/file/iclr2022/condition_CONCEPTS.mp4
https://f002.backblazeb2.com/file/iclr2022/condition_CONCEPTS.mp4
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The model was trained using a supervised loss and an unsupervised objective. In total
the model had 687 layers and 261 million parameters. The classifier used the output of layer
641. The remaining layers 642-687 were optimized using the standard unsupervised flow
objective. For the first 641 layers, we also trained on the classifier’s supervised loss.

Let φ denote the first 641 layers and µ : Rn 7→ Rn the last. φ was trained on both, a
supervised loss from the classifier f(x) and an unsupervised loss from matching the prior
distribution N (0, I) and the log determinante of the Jacobian. µ is only trained on the
unsupervised loss:

arg min
θφ,θµ,θf

Lun(µ ◦ φ(x)) + β Lsup(w
Tφ(x) + b, ytrue). (D.1)

For the supervised loss Lsup, binary cross entropy was used. As unsupervised loss Lun, the
commonly used standard flow loss obtained from the change of variables trick was used
[48]. The unsupervised loss ensures that inverting the function results in realistic-looking
images, which can also be seen as a regularization.

The layer 342 used for the concept explanations is an affine coupling layer.

D.3 Supervised MobileNet-V2 for Attribute Prediction

We used a MobileNet-V2 trained on the unbiased version of Two4Two to predict the at-
tribute values from an image. As Figure D.1 shows, this model could predict each attribute
with a marginal small error. Consequently, we could pass interpolated images to this model
and quantify how much each attribute had changed as described in Section 4.5.5.

Attribute Test MSE

Legs’ Position 0.000891
Bending 0.000192
Background 0.000113
Color 0.000560
Rotation Pitch 0.000924
Rotation Roll 0.000562
Rotation Yaw 0.002243
Position X 0.000445
Position Y 0.000391
Shapes 0.001102

Figure D.1. Supervised model performance: Test performance of the supervised trained
model MobileNet-V2 measured using a mean squared error (MSE).



Access to Code, Datasets, and Models 193

D.4 Access to Code, Datasets, and Models

Two4Two has been published as an Open Source Github repository. The repository contains
Links to the used dataset and model.

https://github.com/mschuessler/two4two

All additional code which is the contribution of Leon Sixt has been published as a seper-
ate repository:

https://github.com/berleon/do_users_benefit_from_interpretab
le_vision

D.5 Study Preregistration for the Validation of Two4Two

The Preregistrations can also be viewed under the following URL:

https://aspredicted.org/blind.php?x=/62X_15J

1) Have any data been collected for this study already? No, no data have been collected
for this study yet.

2)What’s themain question being asked or hypothesis being tested in this study? This
study investigates whether users identify biases learned by a neural network (NN). The neu-
ral networks task is to discriminate between two abstract animals (”Peeky” and ”Stretchy”).
Each participant is presented with predictions of the system in a 10x5 image grid. After an
initial tutorial phase, the participants have to find biases in the model. They do this by scor-
ing different characteristics as relevant or irrelevant. The characteristics are: ”legs position
relative to the spine (LEGS)”, ”object color (COLOR)”, ”background (BACK)”, ”rounded
or rectangular shape of the blocks (SHAPE)”, and ”rotation and bending (ROT)”. The main
research question is whether we succeeded in creating a model that contains at least one bias
that is hard to detect, i.e. either COLOR or SHAPE should be harder to detect than LEGS.

HB: Participants can identify the biases in COLOR or SHAPE less frequently
than LEGS.

3) Describe the key dependent variable(s) specifying how they will be measured. Par-
ticipant will answer the following questions:

• LEGS: How relevant is the legs position relative to the spine for the system?: Relevant
or Irrelevant?

https://github.com/mschuessler/two4two
https://github.com/berleon/do_users_benefit_from_interpretable_vision
https://github.com/berleon/do_users_benefit_from_interpretable_vision
https://aspredicted.org/blind.php?x=/62X_15J
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• COLOR: How relevant is the color of the animal for the system? Relevant or Irrele-
vant?

• BACK: How relevant is the background of the animal for the system? Relevant or
Irrelevant?

• SHAPE: How relevant is the rounded or rectangular shape of the animal’s blocks for
the system? Relevant or Irrelevant?

• ROT : How relevant is the rotation and bending of the animal for the system? Relevant
or Irrelevant?

The ground truth answer is that LEGS, COLOR, SHAPE are relevant while BACK and
ROT are irrelevant. Our first dependent variable is the number of times the head position
was selected as relevant. Our second dependent variable is the number of times the color
of the animal was selected as relevant. Our third dependent variable is the number of times
the rounded or rectangular shape of the animal’s blocks was selected as relevant.

4) How many and which conditions will participants be assigned to? Our study fol-
lows a within-subject design and has only one condition. We first show the participants
introductory videos about the two abstract animals, the machine learning system, and some
guidance on how to interpret the predictions of the system. Each video is accompanied by
a written summary. We then show the predictions of the system in a grid of images: 10
sorted rows of 5 images drawn from the validation set (50 original images). Each of the five
columns represents the neural netwoks’s logit range. Similarly rated images are assigned to
the same column.

5) Specify exactly which analyses you will conduct to examine the main question/hy-
pothesis. We will conduct two exact one-sided McNemar-tests with LEGS acting as our
control: one between SHAPE and LEGS and a second between COLOR and LEGS. We
will use a one-sided test as we expect that SHAPE and COLOR are harder to identify. The
significance level of both tests will be Bonferroni adjusted to α = 0.025.

6) Describe exactly how outliers will be defined and handled, and your precise rule(s)
for excluding observations. We reject participants with low effort responses or who failed
to understand the dataset, machine learning concept, or explanation method. We have im-
plemented hard-coded exclusion criteria directly in the survey (implemented with Qualtrics
and Prolific).

• did not finish experiment at all or not within 77 minutes
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• did not watch tutorial videos completely (there are 3 videos) or failed a multiple-
choice comprehension test twice (there are four such tests), unless participants ex-
plicitly ask us to retake the study

• using a device smaller than a tablet (min. 600 px in width or height)

• provided answers about relevant characteristics in under 30 seconds

• withdrawn data consent / returned task on Prolific

• circumvented Qualtrics protection against retaking the entire survey again (first com-
plete submission will be counted)

We do not plan to exclude any participants who passed all of the above criteria unless
the qualitative answers reveal a serious misunderstanding of the study instructions that the
multiple choice tests did not cover.

7)Howmany observationswill be collected orwhatwill determine sample size? 50 par-
ticipants from Prolific with the background:

• Fluent in English

• Hold an academic degree

• Prolific approval rate of at least 90%

• Did not participate in pilot studies

• Passed hard coded exclusion criteria (see 8).

We pay participants max. 8.00 GBP (6.00 GBP base salary + 2.00 GBP max bonus).
For those failing any comprehension questions or not watching the video, we pay:

• First comprehension task: no compensation

• Second comprehension task: 0.5 GBP

• Third comprehension task: 1.75 GBP

• Failed to watch first video: no compensation

• Failed to watch second video: 1 GBP

• Failed to watch third video: 2 GBP

8) Anything else you would like to pre-register? We ask participants to answer three
multiple choice comprehension tests in the form of true/false statements to ensure that they
understood the task and the dataset. We also ask them to provide some free-text justification
of why they chose a relevant / irrelevant rating to the questions in Section 3.
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D.6 Study Preregistration for the Main Study

The Preregistrations can also be viewed under the following URL:

https://aspredicted.org/blind.php?x=/7XN_77P

1) Have any data been collected for this study already? No, no data have been collected
for this study yet.

2) What’s the main question being asked or hypothesis being tested in this study?
This study investigates whether users identify biases learned by a neural network (NN).
The neural networks task is to discriminate between two abstract animals (”Peeky” and
”Stretchy”). Each participant is presented one of three different explanation methods: base-
line (B), counterfactuals obtained using invertible neural networks (CF) and prototypes (P).
Each participant is randomly assigned to a method. After an initial tutorial phase, the par-
ticipants have to find biases in the model. They do this by scoring different characteris-
tics as relevant or irrelevant. The characteristics are: ”legs position relative to the spine
(LEGS)”, ”object color (COLOR)”, ”background (BACK)”, ”rounded or rectangular shape
of the blocks (SHAPE)”, and ”rotation and bending (ROT)”.

The main question of our study is whether the participants can correctly identify relevant
and irrelevant attributes using these explanation methods (B, CF, P). This is reflected by two
hypotheses:

H1: Participants identify relevant and irrelevant attributes with less accuracy
using P compared to B.

H2: Participants identify relevant and irrelevant attributes with higher accu-
racy using CF compared to B.

3) Describe the key dependent variable(s) specifying how they will be measured. Par-
ticipant will answer the following questions:

• LEGS: How relevant is the legs position relative to the spine for the system?: Relevant
or Irrelevant?

• COLOR: How relevant is the color of the animal for the system? Relevant or Irrele-
vant?

• BACK: How relevant is the background of the animal for the system? Relevant or
Irrelevant?

https://aspredicted.org/blind.php?x=/7XN_77P
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• SHAPE: How relevant is the rounded or rectangular shape of the animal’s blocks for
the system? Relevant or Irrelevant?

• ROT : How relevant is the rotation and bending of the animal for the system? Relevant
or Irrelevant?

The ground truth answer is that LEGS, COLOR, SHAPE are relevant while BACK and
ROT are irrelevant. Our dependent variable is the percentage of correctly answered ques-
tions per participant (accuracy, which is computed as (true positives + true negatives)/number
of total answers).

4)Howmany andwhich conditionswill participants be assigned to? We run a between-
subject study, with randomly but equally assigned participants to 1 of 3 conditions. We first
show introductory videos about the two abstract animals, the machine learning system, the
explanation technique and some guidance on how to interpret the technique. Each video is
accompanied by a written summary. We then show a grid of (10x5) images:

• B: NN predictions explained with 10 sorted rows of 5 images drawn from the vali-
dation set (50 original images). Each of the five columns represents a score range.
Similarly rated images are assigned to the same column.

• CF: Same grid layout as B, but the NN is explained by counterfactual interpolations.
Each row contains interpolations which change the prediction of the NN to fit the
designated score. Original images are used as starting points but are not shown.

• P: We found concepts based on the work by Zhang et al. [263]. Each row shows a set
of relevant concepts. We only used concepts correlated with at least r=0.2 with the
model logit values. In total, we display 10 rows where each row contains a concept.
Each row contains a set of 5 example images for which the concept is relevant.

5) Specify exactly which analyses you will conduct to examine the main question/hy-
pothesis. We will compute the accuracy scores for each participant and then compare the
accuracy scores between the conditions. We expect the data to be non-normally distributed,
and will test this assumption using a Shapiro-Wilk test with a significance level of α = 0.05.
If our assumption is true, we plan to conduct a Kruskal-Wallis test, followed by post-hoc
analysis using Wilcoxon’s-rank-sum tests for focused comparison between the groups CF
and B (expecting higher accuracy in CF) and P and B (expecting lower accuracy in P). If the
data is normally distributed, we will conduct a one-way ANOVA with planned contrasts, if
the following assumptions of ANOVAs are met:

Homogeneity of the variance of the population (assessed with a Levene-Test
with a significance level of α = 0.05.)
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If the homogeneity of variance assumption of ANOVA is violated (assessed with a
Levene-Test with a significance level of α = 0.05.), we plan to perform Welch’s Anova.

6) Describe exactly how outliers will be defined and handled, and your precise rule(s)
for excluding observations. We reject participants with low effort responses or who failed
to understand the dataset, machine learning concept, or explanation method. We have im-
plemented hard-coded exclusion criteria directly in the survey (implemented with Qualtrics
and Prolific).

• did not finish experiment at all or not within 77 minutes

• did not watch the tutorial videos completely (there are 3 videos) or failed a multiple-
choice comprehension test twice (there are four such tests), unless participants explic-
itly ask us to retake the study

• using a device smaller than a tablet (min. 600 px in width or height)

• provided answers about relevant characteristics in under 30 seconds

• withdrawn data consent / returned task on Prolific

• circumvented Qualtrics protection against retaking the entire survey again (first com-
plete submission will be counted)

We do not plan to exclude any participants who passed all of the above criteria unless
the qualitative answers reveal a serious misunderstanding of the study instructions that the
multiple choice tests did not cover.

7) How many observations will be collected or what will determine sample size? No
need to justify decision, but be precise about exactly how the number will be deter-
mined. 240 (80 per condition) participants from Prolific with the background:

• Fluent in English

• First, we sample participants with an academic degree. If we do not reach the desired
participant number, which is likely given the limited availability of such subjects,
we will supplement with participants with an academic degree in other subjects. All
participants will be randomly and equally split into the 4 conditions.

• Prolific approval rate of at least 90%

• Did not participate in pilot studies

• Passed hard coded exclusion criteria (see 8).
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We pay participants max. 6.50 GBP (4.50 GBP base salary + 2.00 GBP max bonus).
For those failing any comprehension questions or not watching the video, we pay:

• First comprehension task: 0.5 GBP

• Second comprehension task: 1.75 GBP

• Third comprehension task: 3.50GBP

• Failed to watch first video: no compensation

• Failed to watch second video: 1 GBP

• Failed to watch third video: 2 GBP

8) Anything else you would like to pre-register? In a previous study, we collected 50
responses for the baseline condition only (Preregistration #75056)). We do not plan to use
the data for this study. We ask participants to answer three multiple choice comprehen-
sion tests in the form of true/false statements to ensure that they understood the task and
the dataset. We also ask them to provide some free-text justification of why they chose a
relevant / irrelevant rating to the questions in Section 3. Additionally, we ask the partici-
pants about their machine learning expertise level. Participants can rate their expertise as:
complete novice, some expertise, or expert in the topic. We plan to use descriptive statistics
to see how accuracies change per condition for each expertise level and how expertise was
distributed within our sample. We are also planning a qualitative thematic analysis of the
open-text questions in our survey via open and axial coding, with the aim of understanding
how participants integrated explanations in their reasoning about the relevance of attributes.





Appendix E

Gazing Heads Study: Experimental
Procedure, System Performance and
Statistical Results

In this part of the appendix, we provide additional details on our user study presented in
Chapter II:

• Section E.1 provides more detail on the study procedure.

• Section E.2 describes the game participants played and the rationale for its design.

• Section E.3 reports additional details on the measurements obtained during the study
in four Figures.

• Section E.4 reports on a visual attention analysis which reveals that focus areas re-
ceived different amounts of attention depending on the task type.

• Section E.5 provides details on the thematic analysis we conducted to better under-
stand participants’ experiences with the Gazing Heads.

• Section E.6 reports on the accuracy of our eye-tracking solution and the calculated
minimum accuracy for implementing our concept with webcam eye tracking.

• Section E.7 describes how we obtained latency measurement of our system.

E.1 Detailed Study Procedure

Upon arrival, participants were greeted and instructed that the study’s goal was to evaluate
two video conference systems. The two experimenters guided them to their rooms, adjusting
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their seating height for the cameras and calibrating the eye-tracker. Once set up, participants
filled in an initial questionnaire. It recorded basic demographics (gender, age, level of educa-
tion), frequency of use of video conferencing system, and whether they pursue a knowledge
worker occupation or education. Additionally, participants rated their agreements to five
controversial statements, which were the potential topics for the group discussion. (State-
ments are listed in Section 6.5.2.)
We controlled the main part of the experiment from an operations room equipped with a
server, allowing us to control the workstations to change between conditions, administer
questionnaires, and receive live experimental data. We also used it to supervise the experi-
ment and to talk to participants. For the main part of the study, we launched the first system
on all stations simultaneously. We told participants to use the system for a few minutes to
introduce themselves.
The first measurement was always a group discussion. We announced the statement that
they should discuss, which we selected based on the agreement ratings collected earlier. We
chose topics where ratings were most diverse. Participants were instructed to find a consen-
sus on the topic within five minutes. However, rather than strictly interrupting participants
after 5 minutes, we allowed the conversation to continue a little longer until we found a
good opportunity to turn the video system off without an awkward interruption. The second
measurement was always the game. Before commencing, participants listened to prere-
corded audio instructions and read about them and their assigned roles. (Audio instructions
are stored for 10 years in the digital research archival of the University of Heidelberg and
are available upon request.) Once everyone confirmed they understood the game, we reac-
tivated the video conferencing system. When participants reached the threshold of seven
minutes, we allowed them to reach a consensus on the last set of items. Then they were
told the game would continue using the other system. However, before that, participants
needed to answer our UX questionnaire. Once completed, we activated the second system.
Again participants could familiarise themselves with the system for a few minutes. The
third measurement began by continuing the game with the second system. We interrupted
participants again after roughly 7 minutes. Upon announcing the topic for the last discus-
sion, the fourth measurement began and concluded after roughly 5 minutes by turning the
system off again. Participants filled in the UX questionnaire a second time for the system
they had just used. In addition, they filled in a questionnaire that compared the two systems
directly. One question also asked them which system they would like to use for the final
part of the experiment. Once the questionnaires were filled in, we reactivated the system the
majority of the group chose. Using the system, we conducted a semi-structured interview
based on an interview guideline. We asked participants about the advantages and disadvan-
tages of both systems. Furthermore, we ensured that every interview addressed at least two
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dimensions of the questionnaire, as this would enable us to understand the questionnaire
ratings better. For some groups that mentioned that they were missing shoulders in Gazing
Heads, we offered them the chance to try the system with shoulders by removing the green
turtleneck. We concluded the interviews once the time slot for the experiment was up, and
hence they varied in length. Finally, we helped participants to leave the workstations. They
received their voucher and, after a short farewell in the hallway, left the building.

E.2 Details of Game Design

The survival game involves four players. Based on a majority vote, they have to decide
on one out of three items to bring to the island. Once they reach a consensus, we present
the next set of items. We instructed them that several items would be crucial for survival.
Wanting to bring as many items as possible within the seven minutes they are allowed to
play provided an incentive to reach an agreement quickly on each item. However, before
commencing the game, each player was assigned a role undisclosed to the others. Three
players are cooperative. Each received information about a different set of two items nec-
essary for survival (six items in total.) We were inspired by Vertegaal and Ding [241], who
also distributed information necessary for success among participants. In addition to these
crucial items, we also assigned them a non-crucial item. Their secondary task was to con-
vince the group to choose it at least once. They win the game if, at the moment time runs
out, the group has chosen this item at least once in addition to all other items necessary for
survival. The fourth player is uncooperative with the goal of jeopardising the survival plan
and is given a lot of information about crucial items. In addition, we made them aware of
a doom item. The uncooperative player wins if the group is convinced to take this item or
fails to select all necessary items.
We chose this game design because the screen needed to show very little information, al-
lowing players to still focus on their interlocutors. They were incentivised to do so since
facial expressions might reveal who the uncooperative player is. At the same time, every
player would eventually suggest an item non-crucial for survival to win the game, adding
distrust to the social dynamics. We decided against using the survival of the team as a per-
formance measure. Such measures are typically only sensitive to substantial manipulations
of the experimental factors [153, 242], which we did not expect.

E.3 Questionnaire Items and Statistical Details

We provide a collection of Figures (E.1–E.4), which report additional details on the mea-
surements obtained during the study. All Figures report significance values accompanied
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Attribute pairs Gazing Heads Tiled View

Left (−3) Right (3) Q1 Q2 Q3 Q1 Q2 Q3

Unsociable Sociable 1 2 3 0 1 2
Impersonal Personal 1 2 3 -1 1 2
Insensitive Sensitive 1 1 2 0 1 2
Cold Warm 1 2 2 0 1 2

Social presence 1 2 2 0 1 2

Figure E.1. Detailed results of the semantic differential: Questions were based on the
smallest adequate set to measure social presence. These four attribute pairs were suggested
by Short et al. [206]. The social presence is significantly higher for Gazing Heads (p =

0.020).

by additional information. Figure E.1–E.3 show the questionnaire items, together with a
record of prior publications from which they were derived. Figure E.1-E.2 report the quan-
tiles (Q1, Q3) and median (Q2) as descriptive statistics, while Figure E.3 shows what share
of participants have preferred which system. Note that the UX questionnaire (Figure E.2)
included statements assessing participants’ perception and interpretation of three types of
gazes: direct eye contact, third-party gazes, and “off-gazes” directed at no one. For each of
those three gaze types, three statements were included. They are shown in the bottom sec-
tion of the table. One asked whether such gazes were perceivable; another asked whether
they helped to notice interlocutors’ attention; and a last one inquired if they clarified who
was addressed. Figure E.3 shows the results of the speech and gaze analysis previously pre-
sented in Figure 6.6 on page 101. The figure here shows different descriptive statistics that
help understand the factorial repeated measures ANOVA results. We also show the F-value
of the significance test.
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Gazing Heads Tiled View

Question (adopted from source) measures Q1 Q2 Q3 Q1 Q2 Q3 p-Value

It was exciting to follow the discussion [201] Engagement 1.5 2 3 1 2 2 0.044
Turn-taking was difficult [23] * Turn-Tak. 1* 2* 2* 0* 1* 2* 0.084
I was able to take control of the conversation
when I wanted to [201]

Turn-Tak. 1 2 3 1 2 2 0.176

The conversation was highly interactive [201] Engagement 1 2 3 0 2 2 <0.001
Sometimes I had the feeling I was excluded
from the conversation *

UX Issue 1* 2* 3* 1* 2* 2* 0.790

I could not contribute anything to the solution
we came up with [86]

Satisfaction 2* 2* 3* 1* 2* 3* 0.246

The system was distracting me from the conver-
sation *

UX Issue -.5* 1* 2* 2* 2* 3* <0.001

During the experiment I had the feeling we were
all in the same room [86]

Virtual
Presence

-.5 1 2 -2 -1 1 <0.001

One does not get a good enough idea of how
people at the other end are reacting [37] *

Social
Presence

-1* 1* 2* -1* 1* 2* 0.263

I couldn’t get to know people very well if I only
met them over this system [37] *

Social
Presence

-1* 1* 2* -1* 0* 2* 0.010

I was always aware of my partner’s pres-
ence [86]

Social
Presence

1 2 3 1 2 2 0.002

It was easy for me to notice when my conversa-
tion partners looked at me [86, 23]

Eye Con-
tact

1 2 3 -2 -1 0 <0.001

I knew when I was being addressed by some-
one [23]

Being Ad-
dressed

1 2 3 -1 1 2 <0.001

I knew when someone was listening to me or
paying attention to me [201, 23]

Being At-
tended to

2 2 3 -1 1 2 <0.001

It was easy to noticewhenmy conversation part-
ners looked at someone else (other thanme) [86]

3rd-party
Gaze

1 2 3 -2 -1 0 <0.001

I knew when I was not addressed (but instead
someone else was) [23]

Addressed
others

1 2 2 -1 0 1 <0.001

I knew when someone was listening or paying
attention to someone else (other than me) [201]

Attended
others

1 2 3 -1 0 1.5 <0.001

It was easy to noticewhenmy conversation part-
ners looked at no one (not at me or anybody)

Off Gaze -2 0 1 -2 -1 1 0.708

I knew when someone was not following the
conversation, was thinking about something or
became distracted [86]

No Atten-
tion

0 1 1 0 1 2 0.289

I knewwhen someonewas thinking about some-
thing [86]

Thinking -1 1 1 -1 0 1 0.993

Figure E.2. Questions and detailed results of the UX questionnaire: Quantiles (Q1, Q2
Q3) and p-Values of participants ratings of 20 statements on a 7-point Likert scale ranging
from “strongly disagree” (−3) to “strongly agree” (3). Note: * indicates that the rating had
been multiplied with -1 to account for the inverse phrasing.
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Question (adopted from source) measures
Chose
GH

Both
Equal

Chose
TV

p-Value

Which system would you recommend to your
friends and colleagues?

Satisfaction 49% 19% 32% 0.052

For which system was turn-taking easier? [23] Turn-Tak. 51% 30% 19% < 0.001

Which system facilitated a more natural inter-
action with your conversation partners? [252]

Social Pres-
ence&Satis-
faction

62% 19% 19% < 0.001

Withwhich systemwas the interactionmore en-
gaging/exciting? [201]

Engagement 87% 9% 4% < 0.001

Which system was better for noticing if your
conversation partners were paying attention to
you or someone/something else? [201, 23]

Non-verb.
Cues

91% 6% 3% < 0.001

Withwhich systemwas the interactionmore so-
cial?

Social Pres-
ence

62% 25% 13% < 0.001

Which system would you choose for a meet-
ing where you intend to persuade other peo-
ple? [37]

Social Pres-
ence

50% 22% 28% 0.015

Which system would you like to use for the in-
terview?

Satisfaction 72% 8% 20% < 0.001

Figure E.3. Detailed results of the comparative questionnaire: Participants’ preferences
regarding the two systems.
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Factor: System Factor: Task

GH TV F and p-Value Discuss Game F and p-Value

Turn Frequency
per Minute

4.50

(1.1)

4.54

(0.7)

F (1, 18) = 0.028

p = 0.869
2.72

(1.1)

6.32

(1.1)

F (1, 18) = 291.247

p < 0.001

Turn Duration
16.26s

(10.9)

15.36

(10.7)

F (1, 18) = 0.400

p = 0.535
23.73

(10.1)

7.89

(1.9)

F (1, 18) = 82.083

p < 0.001

Group Turn
Freq./Minute

0.82

(0.8)

1.00

(1.0)

F (1, 18) = 5.046

p = 0.037
0.23

(0.2)

1.60

(0.7)

F (1, 18) = 123.869

p < 0.001

Turn
Distribution (H)

1.93

(0.1)

1.93

(0.1)

F (1, 18) = 0.255

p = 0.620
1.90

(0.1)

1.96

(0.0)

F (1, 18) = 14.431

p = 0.001

Time one
Person spoke

81.72%
(10.3)

80.62%
(10.9)

F (1, 18) = 1.140

p = 0.300
90.40%
(3.8)

72.0%
(5.9)

F (1, 18) = 242.338

p < 0.001

Simultaneous
Speech

6.78%
(6.1)

8.23%
(6.9)

F (1, 18) = 3.949073

p = 0.062
2.90%
(2.7)

12.12%
(6.0)

F (1, 18) = 101.303

p < 0.001

Non-Int.
Simult. Speech

6.64%
(5.7)

7.50%
(5.8)

F (1, 18) = 1.883

p = 0.187
2.76%
(2.2)

11.39%
(4.9)

F (1, 18) = 135.425

p < 0.001

Interruptive
Simult. Speech

2.48%
(2.2)

2.83%
(2.4)

F (1, 18) = 1.263

p = 0.276
1.04%
(1.2)

4.28%
(2.0)

F (1, 18) = 157.325

p < 0.001

Sim. Speech
Taking Control

31.08%
(16.1)

26.67%
(11.6)

F (1, 18) = 1.677

p = 0.212
26.85%
(18.4)

30.90%
(7.7)

F (1, 18) = 2.771

p = 0.113

Speaker Switches
Overlaps

34.34%
(17.2)

34.96

(17.0)

F (1, 18) = 0.059

p = 0.810
24.65%
(16.3)

44.64%
(10.7)

F (1, 18) = 67.024

p < 0.001

Switching Time
0.59s

(0.8)

0.42s

(0.6)

F (1, 18) = 2.037

p = 0.171
0.85s

(0.8)

0.16s

(0.4)

F (1, 18) = 37.438

p < 0.001

Focus Changes
per Minute

58.76

(22.0)

60.42

(22.7)

F (1, 75) = 3.874

p = 0.053
58.29

(23.4)

60.88

(21.2)

F (1, 75) = 2.632

p = 0.109

Eye Contact
per Minute

22.15

(13.6)

20.67

(11.8)

F (1, 75) = 7.480

p = 0.008
29.46

(12.1)

13.36

(6.9)

F (1, 75) = 195.247

p < 0.001

Eye Contact
(% of Session)

18.9%
(12.3)

17.6%
(11.3)

F (1, 75) = 4.630

p = 0.036
26.88%
(10.32)

9.69%
(5.12)

F (1, 75) = 304.942

p < 0.001

Eye Contact
Duration

0.52s
(0.2)

0.51s
(0.2)

F (1, 75) = 0.365

p = 0.365
0.58s
(0.2)

0.46s
(0.1)

F (1, 75) = 83.649

p < 0.001

Figure E.4. Speech and eye-gaze analysis. The first three columns compare our two
systems, while averaging over the two tasks. The remaining three columns compare tasks,
while averaging over the two systems. Note that one session was interrupted due to network
problems. Hence, it needed to be excluded from the voice and eye-tracking analysis.
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E.4 Visual Attention Analysis

We analysed what proportion of a session participants spent looking at the different focus ar-
eas. The focus area was added as the third predictor to the repeatedmeasures ANOVA. Since
Mauchly’s test indicated that the assumption of sphericity had been violated for this predictor
and all its interactions, the degrees of freedom were Greenhouse-Geisser corrected. Interac-
tion effects were analysed using a Bonferroni post-hoc test. As expected, the proportion of
time spent gazing was different among focus areas (F (3.21, 241.09) = 169.495, p < 0.001).
More importantly, there was an interaction effect between the task participants worked
on and the proportion of time they gazed at different focus areas (F (3.21, 241) = 415,
p < 0.001). As shown in Figure E.6, for the discussion task, participants spend most of their
time looking at the centre interlocutor (M = 32.1%, SD = 12.2%). The second and third
largest proportions of time were spent looking at the left (M = 25.9%, SD = 11.8%) and
the right interlocutor (M = 24.0%, SD = 10.3%) with no significant difference between
them. The fourth largest proportion of time was spent looking off-screen (M = 14.6%,
SD = 12.2%). The significantly smallest amount of time was spent looking at the empty
content area (M = 1.42%, SD = 3.04%) and the remaining screen (M = 0.98%, SD =

1.21%) with no significant difference between them.

For the game, the main difference is that participants looked at the content area (M =

46.2%, SD = 15.1%) significantly more than any other focus area, which is unsurprising
since it contained game-relevant information. The second, third and fourth largest propor-
tion of time was spent looking at the centre (M = 18.9%, SD = 8.31%),
left (M = 14.0%, SD = 6.59%) and right interlocutor (M = 13.4%, SD = 6.79%). Again
the centre interlocutor was gazed at significantly more than the left and right one. The left
and right interlocutors received similar gaze times.
Participants looked off-screen (M = 5.60%, SD = 5.30%) significantly less than any face
or the content areas but significantly more frequently than on the remaining screen showing
no content (M = 0.83%, SD = 0.67%).

As a result the frequency of mutual eye was significantly (F = 195, p = 0.08) re-
duced by 54.6% during the game (M = 13.380min−1) in comparison to the discussion
(M = 29.460min−1). The duration of mutual eye contact was also significantly (F = 83.6,
p < 0.001) reduced by 20% during the game (M = 0.458s, SD = 0.144s) in com-
parison to the discussion (M = 0.577s, SD = 0.193s). The overall share of session
spend gazing with mutual gazes was significantly (F = 305, p < 0.001) lower the game
(M = 9.69%, SD = 5.12%) in comparison to the discussion (M = 26.9%, SD = 10.3%).
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Figure E.5. Heatmap of visual attention: In the game task, the content area at the bottom
of the screen received significantly more attention than the faces or any other area.
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Figure E.6. Distribution of visual attention: The proportion of session time participants
spent gazing at the different focus areas was distributed differently during the game and the
discussion.
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E.5 Thematic Analysis

For our analysis of participants’ experiences with the Gazing Heads reported in group in-
terviews, we chose thematic analysis to help us capture both the subjective experience and
technical feedback. Our chosen method is thematic analysis, a widely used qualitative HCI
research tool [29]. It is particularly valuable when one seeks to understand user experiences,
perceptions, and behaviours. It allows us to identify, analyse, and report patterns (themes)
within data, making it a practical and applicable tool for qualitative research. Figure E.7
outlines the domains. This is followed by Figure E.8, which lists the topics within those
domains. Finally, Figure E.9 lists all codes with which interviews were coded.

Domain Summary

Technical
Feedback
(TF)

This domain encompasses user reflections on the system’s technical features,
detailing positive and negative impacts on their experience. It also incorporates
user suggestions for improvements and desired changes to system functionalities.

Experiential
Feedback
(EF)

This domain captures participants’ subjective experiences and feelings as they
interacted with the system during the experiment. In contrast to purely technical
feedback, this domain focuses on how the system affected users on an emotional
and experiential level.

Adoption
Potential
(AP)

This domain captures participants’ reflections on the system’s future potential,
including their willingness to adopt it and its novelty compared to existing tech-
nologies. These reflections move beyond the immediate experimental experi-
ence and focus on forward-looking scenarios where the system could be useful
and those where it may not be the right fit.

Figure E.7. Domain overview: The three domains used in the thematic analysis and their
description.
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Domain Topic Description

TF Transitions Visual perception of transitions compared to a normal conversation.
Background Visual background of the video conference system.
Shoulders Effects of the upper body being visible.
Spatial Audio Effects of Spatial Audio.
Mirror View Reflection on not having a mirror view.

EF Immersion Visual aspects of immersion and the same-room experience.
Social Presence Reduction of social distance and higher social engagement.
Floating Heads Social and visual effects of seeing only floating heads and no bodies.
Turn Taking Difference in turn-taking difficulty.

AP Novelty Novelty aspects and willingness to adopt the system.
Use Cases Future use case scenarios of the system.

Figure E.8. Topic overview: The 11 topics within the three domain and their descriptions.
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Theme Code Description

Transitions t_slow Dwell time and/or animation to slow.
t_distracting Transitions are distracting.
t_mature Transitions are perceived as animations, not a head rotation.
t_jittering Issues with heads jittering due to tracking issues.

Background bg_request Suggestions for different background.
not_bg_request Request to leave background unchanged.
bg_no_black Expression of dislike for the black background.

Shoulder shoulder_natural Shoulders have a positive influence on naturalness, 3D illusion and immersion.
not_shoulder_natural Shoulders have a negative influence on naturalness and immersion.
shoulder_worse_illusion Shoulders have a negative influence 3D illusion.
shoulder_hybrid Shoulders make gaze-aware video conferencing feel more familiar.

Spatial Audio audio_quality Great audio quality.
audio_spatial Spatial audio recognised.

Mirror View m_request Request to add mirror view as a feature.
not_m_request Statements that mirror view is not needed.
m_distract Mirror views are or may be distracting.
m_immersive Increased immersion by omission of mirror view.
m_control Mirror view needed for control over own appearance.

Immersion i_together_same_room Feeling of being in the same room.
i_circle Noticing or commenting on the circular arrangement of users.
i_arrangement Noticing the circular arrangement is consistent.
i_bg_seperate Unified background increases immersion.
i_not Experience is not more immersive than normal video conferencing.
i_table Request to add a table to the scene.

Social Presence sp_intimate Experience is more personal.
sp_social Experience is more social.
sp_engagement Experience is more (socially) engaging.
sp_presence Feeling of increased presence of oneself and/or others.

Floating Heads fh_reductive Floating heads are too reductive.
fh_reductive_mimic Floating heads increase focus on mimic.
fh_none_verbal_missing Missing verbal cues from the upper body.
fh_3D_illusion Floating heads benefit 3D illusion.
fh_unnatrual Floating heads look unnatural.

Turn Taking turn_taking Perception of easier turn taking.

Novelty new_not_used_to Feeling unfamiliar with the system and needing time to get used to it.
new_attoptation_willingness Considerations of willingness to adopt the system.
new_adoptation_easy Opinion that the system is easy to adapt to.
not_new_adoptation_easy Opinion that system is hard to adapt to.
new_hardware Concerns about necessary hardware.

Use Cases exploiting_potential Reflections about use case which would benefit the most from this system.
uc_leisure Anticipated usage for leisure.
not_uc_leisure Anticipated non-usage for leisure.
uc_formal Anticipated usage for professional purposes.
uc_friends Anticipated usage for meeting friends and or family.
uc_workgroup Anticipated usage for small work group meetings.
uc_presentation Anticipated usage for presentations.
uc_more_participants Concerns about the usefulness with more than six participants.

Figure E.9. Coding scheme: Two authors developed and refined 47 codes collaboratively
through multiple rounds of open coding, synchronisation, and closed coding.
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E.6 Eye-Tracking Accuracy

We tracked participants’ gaze using a Tobii Eye Tracker 5. It uses a near-infrared and colour
sensor operating at an interlaced sampling rate of 133Hz and a non-interlaced rate of 33Hz.
The maximum supported field of view in each direction is 40 degrees. It can recover lost
gaze using neural head tracking. Gibaldi et al. [76] tested an older version of the Tobii
eye tracker. They found it has at least an accuracy of 0.6° and an end-to-end latency of
around 47 ± 4 ms when receiving the data via a local UDP connection. We found these
specifications suitable for our design, and since the gaze elements in question were rather
large, we encountered no issues with the eye-tracker’s accuracy.

For the implementation of our concept with web cam eye tracking, we calculated a min-
imum accuracy using triangulation and the smallest margin for error in our interface. A
gaze focused on centre interlocutor (Figure 6.5) can horizontally deviate by 6.75 cm on a 24
inch desk screen, and by 4.25 cm on 13 inch laptop before it leads to an error. Assuming a
viewing distance of 70 cm for the desk monitor, and 50 cm for the laptop screen the required
accuracy is 5.51◦ for the desktop, and 4.86◦ for the laptop.

E.7 Latency Measurement

For video conferencing, latency between two clients can be described as the total time it takes
captured data from Client A to be processed and sent over the network to be represented on
Client B. Hence, the total latency consists of the input latency (camera/microphone), pro-
cessing time (segmentation, view stabilisation, camera transitions, compression), network
delay, post-processing time (decompression, visualisation), and output delay (screen, head-
phones). We used an estimation measure to obtain our system’s auditory and visual latency.
We ran all clients in their standard configuration to simulate a realistic load situation. We
arranged two clients such that their microphone and one of their cameras simultaneously
captured a lab member clapping their hands. We modified one client to store the received
data from the sender jointly with the unprocessed data captured from the input devices. This
way, we could determine the differences in frames on the receiver between the raw input
and the received data from the sender. Dividing the difference by the respective frame–rate
yields the latency in seconds introduced by all processing and the network delay. It ignores
the delay introduced by the input and output devices which is marginal.
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