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Chapter 1

Introduction

1.1 Background

During the development of a new treatment many requirements for the market authorization

must be met through various stages, as illustrated in Figure 1. After in vitro research, the

effectiveness is tested with pre-clinical treatment development investigations. Only treat-

ments, which satisfy the expectations of the company and the conditions of the authorities,

are taken to the last and essential step for market approval: the clinical development and

registration trials in humans. These trials are divided into three phases, where phase III trials

are the basis of market approval. The main objective of phase III trials is to verify whether

the results of the previous studies can also be achieved in a larger and broader population of

patients and hence ultimately proof efficacy of the new treatment. Furthermore, interactions

with other treatments and side effects of the new treatment can be spotted. Thus, a trial

with a large patient size and a long follow-up is performed, where the needed sample size is

usually calculated with the help of the observed effect of the prior performed studies. After

positive significant results of these phase III trials, a marketing authorisation application

including all trials (pre-clinical and clinical) with analyses and conclusions can be submitted

to an appropriate authority. If the treatment is approved, the additional benefit of the new

treatment is compared to the already established treatments with the help of the results of

the phase III trial(s) (see white path of Figure 1). This assessment can decide on the amount

of reimbursement of the new treatment on the market and can help to manage the uncertainty

of patients regarding the treatment medical effectiveness and toxicity (Weeks et al., 2012).

1
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Figure 1: Stages of treatment development

This thesis focuses on non-curative or advanced diseases like many types of cancer. Thus,

time-to-event endpoints such as overall survival (OS) are assumed to be present. For these

types of endpoints, three different additional benefit assessment methods have been developed

so far. Two of them have been developed in Europe (Institute for Quality and Efficiency in

Health Care (IQWiG), European Society for Medical Oncology (ESMO)) and one method

in the United States of America (American Society of Clinical Oncology (ASCO)). A short

summary of these methods is provided in Table 1.

In Germany, IQWiG evaluates the additional benefit of new treatments, which are approved

by the appropriate regulatory authorities. This evaluation is commissioned by the Federal

Joint Committee (GBA, germ. Gemeinsamer Bundesaussusch) and is carried out by com-

paring the new treatment against established treatments on the market. For time-to-event

endpoints, IQWiG determines the degree of additional benefit by comparing the upper limit

of the 95% hazard ratio (HR) confidence interval (CI) against specific relative risk based

thresholds. This comparison categorises the new treatment into the following three categories:

major, considerable, and minor (more than marginal) added benefit (Skipka et al., 2016). For

other endpoint types like continuous endpoints, the IQWiG assessment consists out of three

more and hence overall six categories: major, considerable, minor (more than marginal),
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nonquantifiable (potentially minor, considerable or major), no added benefit, and less ben-

efit (than the appropriate comparator therapy). IQWiG has chosen relative effect measures

like the HR to evaluate the benefit of new treatments because of the non-transferability of

absolute measures, e.g. the risk difference, from clinical studies to real life practice (Skipka

et al., 2016). Moreover, for classification into the above mentioned ranking IQWiG uses the

two-sided 95% CI instead of the point estimate because the variance and hence the precision

of the point estimate is considered in the CI. Skipka et al. (2016) also mention another ad-

vantage being that the probability of statistical errors of a CI can be controlled by the used

significance level, e.g. for a 95% CI it is limited to 5%. Based on the determined category of

IQWiG, the GBA decides on the additional benefit of the new treatment which can play an

important role in the negotiation of the reimbursement amount on the market between the

National Association of Statutory Health Insurance Funds (GKV-SV, germ. Spitzenverband

Bund der Krankenkassen) and the pharmaceutical company.

Table 1: Overview of additional benefit assessment methods

Method Main statistical quantity Levels of outcome
ASCO HR-PE Continuous

ESMO Lower limit of the
95% HR-CI (HR–)

Ordinal (5 categories):
• 1 to 3: low benefit
• 4 to 5: substantial benefit

IQWiG Upper limit of the
95% HR-CI (HR+)

Ordinal (3 categories):
• minor added benefit
• considerable added benefit
• major added benefit

Abbreviations: CI: Confidence interval, HR: Hazard ratio, HR+: Upper 95% confidence
interval limit of the HR-PE, HR–: Lower 95% confidence interval limit of the HR-PE,
PE: Point estimate

ESMO developed a method named Magnitude of Clinical Benefit Scale Version 1.1, which

has two different forms. Form 1 is used for the curative setting of adjuvant and neoadjuvant

therapies, where no time-to-event data like OS or progression free survival (PFS) is present.

For these cases other measures like disease-free survival or recurrence-free survival can be

used. Form 2 is used for non-curative settings and is divided into form 2a if the primary

outcome is OS and form 2b if it is PFS. Since this thesis focuses on the non-curative setting

with OS as primary outcome, form 2a is of interest, which uses a dual rule consisting out

of a relative and absolute benefit component to compute a preliminary scale. Based on the
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lower limit of the 95% HR-CI (relative benefit rule) and the observed absolute difference in

median treatment outcomes (absolute benefit rule) the new treatment is categorised into four

categories. This preliminary scale is then adjusted for toxicity, quality of life outcomes or

other bonus adjustments of the new treatment so that finally, a ranking into 5 categories

results. Here categories 1 to 3 represent low and categories 4 and 5 substantial benefit,

respectively (Cherny et al., 2015, 2017). The classification of ESMO affects the price paid for

the new medication in an indirect way. Cherny et al. (2015) mention that the ESMO method

is applied to every new anti-cancer treatment which has been approved by the European

Medicine Agency. Furthermore, ESMO emphasizes every treatment with substantial benefit

(category 5 or 4) in their guideline with the intent to stimulate prompt usage in Europe

with the help of other health authorities. Hence, ESMO’s classification has a rather indirect

influence on the treatment’s price.

Besides these two additional benefit assessment methods developed in Europe, an additional

method is used in the United States of America, which has been developed by ASCO and

is named Value Framework Net Health Benefit (NHB) Score. Since the United States has a

different health care system compared to Europe, the high costs of new treatments are often

not covered by statutory health insurance and have to be payed by the patients. This leads

to difficulties for many patients because they either do not have private health insurance or

cannot pay for the treatment on their own. This is especially the case for cancer treatments

as these treatments are relatively expensive (Danzon and Taylor, 2010). Thus, the main aim

of the society was to allow physicians and patients to assess the current possible treatment

options and make a shared decision between the different treatments and their price. Hence,

ASCO juxtaposes the cost of the treatment against the NHB score without influencing the

pricing of the treatment (Schnipper et al., 2015, 2016), which is the only method to do so.

The NHB score is defined differently for advanced diseases and for potentially curable diseases

(adjuvant therapy). As this thesis is focused on advanced diseases, the NHB score consists

of the clinical benefit, toxicity, and bonus points (quality of life, treatment-free interval, cost

and other characteristics of the new treatment). The main element of the NHB score is the

assessment of the clinical benefit, which is calculated by subtracting the HR point estimate

(PE) from 1 and then multiplying the result by 100. This score can then be adjusted by
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the other components of the method, for example percentage of toxicity grades adjustments,

leading to the final NHB score.

The main difference of the three above described methods for the assessment of the additional

benefit of new treatments is the evaluation of the clinical benefit. IQWiG uses the upper

limit of the 95% HR, ESMO uses the lower limit of the 95% HR-CI, and ASCO uses the HR-

PE. At first glance, there are several points of criticism to each of the assessment methods.

For example, the use of the HR-PE for the assessment of the clinical benefit could penalize

studies of substantial benefit by ignoring the precision of the estimate. In contrast, the upper

or lower limit of the HR-CI take into account the variability of the estimate and hence should

provide more information. Nevertheless, the use of the lower confidence interval limit could

lead to a higher probability of a better grading because it may credit studies with a smaller

sample size and hence with a wider confidence interval.

Moreover, the statistical quantities used for the three methods can but do not have to be

estimated using several studies, for example by using a meta analysis of two phase III studies.

This thesis focuses on single phase III studies with OS as primary endpoint and thus cases,

where two or more studies are combined for the methods application are not considered. Since

this simplification influences all benefit assessment methods in the same way, this does not

create any impact on the interpretation of the performed research. Furthermore, this thesis’

focus is on non-curable diseases and hence the advanced disease framework of ASCO and

non-curative settings of ESMO are implemented, i.e. overall survival and no progression free

survival efficacy endpoint is used. In addition, to achieve a fair comparison of the statistical

approaches between these methods, the statistical components of the methods are evaluated

and compared. Consequently, adjustments regarding non-statistical components like cost,

toxicity, quality of life or bonus point adjustments were not implemented. As a result ESMO

consists only out of the preliminary scale ranging from 1 to 4 and thus the maximal categories

of IQWiG and ESMO are comparable (major added benefit is considered as the equivalent

of substantial improvement).
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1.2 Previous work

Despite the publications for the additional benefit assessment methods itself (Schnipper et al.,

2015, 2016; Cherny et al., 2015, 2017; Skipka et al., 2016), the following research aspects have

already been investigated empirically.

Cherny et al. (2019) calculated ASCO cutoff values corresponding to categories of ESMO. In

their empirical investigation 102 randomized controlled trials were used for calculation of the

cutoff values, resulting in an ASCO score of 46 or greater and 41 or less to define substantial

benefit (category 4) and low benefit (category 1–3), respectively. In addition, the relationship

between ESMO and ASCO has been examined on the same sample of 102 trials using the

Spearman correlation between both methods. Other publications also using real studies for

the ASCO and ESMO application show different inconsistent negligible to low correlation

results of 0.17 (Cheng et al., 2017), 0.397 (Del Paggio et al., 2018), and 0.40 (Becker et al.,

2017) between ASCO and ESMO.

The aspect whether HR– or HR-PE might be better for the assessment of additional benefit

was investigated by Dafni et al. (2017). They stated that HR– should be preferred over HR-PE

as well as the fact that ESMO does not show discriminatory behavior in over-/underpowered

trials. In the same spirit the inventors of IQWiGs method (Skipka et al., 2016) mentioned

that HR-CI provides more information than HR-PE through the included variability in these

estimates and that HR-PE might introduce potential bias to the additional benefit assessment.

In addition, two Letters to the Editors (Muhonen et al., 2015; Wild et al., 2016) raised the

concern that HR– might lead to higher grades, especially in studies with smaller sample sizes

which could lead to deliberately overpowered studies.

1.3 Aim of this thesis

Besides the different health care systems in the world and the fact that the methods were

developed for different purposes, they share the objective to provide an assessment of the

clinical additional benefit of new treatments. As described above, the main difference be-

tween the three methods is the use of different statistical quantities for the clinical additional

benefit assessment: HR–, HR-PE, and HR+.

So far, the three different methods have only been compared empirically and hence this thesis
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aims to close this knowledge gap. Furthermore, in previous research the complete methods

were applied based on the results of clinical trials and hence did not focus on the statistical

quantities. Moreover, all three methods and their approaches have never been compared

collectively. Hence, the aim of this thesis is to obtain a better understanding of the differ-

ences between the additional benefit assessment methods and to answer the question which

statistical quantity has the best properties to assess additional benefit.

To achieve these objectives, this thesis evaluates and compares the above described three

methods for the clinical assessment of the additional benefit of new cancer treatments by

means of comprehensive simulation studies. Furthermore, it is investigated which category

of ESMO and IQWiG corresponds to which ASCO score in order to enable an easier com-

parison between all three methods. The simulation studies are constructed with the focus

to implement realistic phase III trials and hence comprise different failure time distributions,

treatment effects, power, allocation ratios, censoring types, and censoring rates. Further-

more, scenarios with non-proportional hazards, underpowered trials, and overpowered trials

are investigated.

1.4 Structure of this thesis

This thesis is structured as follows: In Chapter 2, the methods are provided, introducing the

methodological tools, the required knowledge needed for the elaboration of the results, a de-

tailed description of the additional benefit assessment methods, and an in-depth description

of the performed simulation studies. The results are presented in Chapter 3, which consists of

three sections: Section 3.1 presents the results of a simulation study using a censoring mech-

anism, which introduces bias in the HR estimation (Simulation 1). The results investigating

the robustness of Simulation 1 are shown in Section 3.2 (Simulation 2). Section 3.3 outlines

the application of the additional benefit assessment methods and determined ASCO cutoff

application illustrated by two clinical studies. In Chapter 4, the results are discussed together

with their contribution to research as well as limitations and directions for further research.

In Chapter 5 the thesis is summarized in English and Chapter 6 provides a direct translation

to German. Additional results of the simulation studies are presented in Appendix A, while

Appendix B contains information on R-Code structure and execution of the programs to

determine the results of this thesis. The performed simulation studies are reproducible with
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the provided R-Code https://www.github.com/cbuesch/SumulationStudyABAM. More-

over, Appendix C contains information of simulation parameters of Simulation 2.

https://www.github.com/cbuesch/SumulationStudyABAM


Chapter 2

Methodology

2.1 Background of time-to-event analysis

In the following, the theoretical background in time-to-event analysis will be given. The fun-

damental terms and formulas that form the basis of the simulation studies will be introduced.

One of the main advantages of time-to-event analysis is that it can handle data of patients

with unknown event time, e.g. due to a patient being event-free at end of study, patient

cannot be followed up (e.g. moved away) or other reasons. Hence, it can handle incom-

plete data. This occurrence of incomplete data is called censoring. Censored data should in

any case not be excluded from the analysis because important information would be lost and

thereby the average time-to-event and probability of an event would be incorrectly estimated.

For instance, lets assume a patient shows no event at the end of study due to the positive

effect of the new treatment. If one would leave this kind of patients out of the analysis and

ignore this patient is event-free throughout the study, the effect of the new drug would be

underestimated. In addition, one has to distinguish between three different censoring types:

• Right censoring: the event occurs later than the observed time.

• Left censoring: the event has occurred already before the study began.

• Interval censoring: the exact event time is unknown but it is known that the event

occurred between two time points.

In this thesis, left censoring has no relevance because all patients are assumed to be alive

at the beginning of the trial. Moreover, as a result of the simulation studies and hence of

the generated event times it can be assumed that one knows the exact event times of each

patient and thus no interval censoring is present as well.

9



10 Chapter 2. Methodology

Basics

T > 0 is a continuous random variable which defines the time to an event of interest. The

distribution is denoted by F (t) and the density by f(t). Given this setting the survival

function S(t) is defined the following way:

S(t) := P(T > t) = 1 − P(T ⩽ t) = 1 − F (t) =
∞∫
t

f(v)dv.

This function represents the probability that an event occurs at time point t and therefore

the function must be monotonic decreasing. Moreover, the survival function is always equal

to 1 at time point zero, S(0) = 1.

The density f(t) and the hazard h(t) can be expressed in terms of the survival function as:

f(t) := lim
∆t↘0

P(t ⩽ T ⩽ t + ∆t)
∆t

= F ′(t) = −S′(t),

h(t) := lim
∆t↘0

P(t ⩽ T ⩽ t + ∆t|T ⩾ t)
∆t

= f(t)
P(T ⩾ t) = f(t)

S(t) = −S′(t)
S(t) ,

where F ′(t) and S′(t) represent the first derivative of F (t) and S(t), respectively. The hazard

function is the ratio of the density function f(t) and the survival function S(t) and describes

the failure rate or force of mortality.

Moreover, H(t) denotes the cumulative hazard and hence is defined as follows

H(t) :=
t∫

0

h(x)dx =
t∫

0

−d ln S(x)
dx

dx = − ln S(t).

Cox proportional hazard model

With the help of the proportional hazard model proposed by Cox (1972) the influence of

covariates (e.g., age, treatment, etc.) on the survival time can be analysed. Let b = (b1, ..., bp)

be the p-dimensional covariate vector. The model is defined as follows:

h(t, b) := h0(t) · exp(b⋆ · β),

where h0(t) is an arbitrary baseline-hazard, b⋆ is the transpose of b, and β = (β1, . . . , βp) is

the parameter vector.
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Based on this model, the hazard ratio (HR), which is the ratio of the hazard rates between

two patients i and j (i ̸= j) with covariate vectors bi = (bi
1, . . . , bi

p) and bj = (bj
1, . . . , bj

p),

can be calculated as:

HR = h(t, bi)
h(t, bj)

= exp((bi − bj)⋆ · β).

Since the baseline hazards of both patients are the same, they cancel each other out and

hence, the HR is constant over time. "Proportional" refers to the fact that the HR is the

constant of proportionality and describes the factor by which these two hazards differ at every

time point.

Estimation of the parameter vector β

Let bi = (bi
1, . . . , bi

p) be the p dimensional covariate vector for patient i at the observed

event time ti. In addition, a censoring time or event time is handled by a binary variable

di, which is equal to 1 when an event occurred and equal to 0 when the event time is not

known, hence the patient is censored. For the estimation of the parameter vector β Cox

(Cox, 1972) estimated the conditional probability that patient i has an event at time point

ti given the previous observations. This function is called partial likelihood function Li and

can be written as:

Li(β) = h(ti, bi)∑
j∈{j|tj⩾ti}

h(ti, bj)
= h0(ti) · exp(bi · β)∑

j∈{j|tj⩾ti}
h0(ti) · exp(bj · β)

= exp(bi · β)∑
j∈{j|tj⩾ti}

exp(bj · β)
,

where the summation is only over the set of patients j where no event or censoring has

occurred before time point i.

With the help of the partial likelihood function and the assumption that the patients are

independent from each other, the joint partial likelihood function is defined as

L(β) =
∏

i∈{1,...,n|di=1}
Li(β).

This function is used for the estimation of the effect of the covariates without modeling the

change of the hazard over time. Hence, one has to maximize this function with respect to β

to obtain a maximum likelihood estimate of the model parameters. An easier way to perform
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this is to maximize the log joint partial likelihood function:

l(β) =
∑

i∈{1,...,n|di=1}

bi · β − log
∑

j∈{j:tj⩾ti}
exp(bj · β)

.

Thus, the parameter vector can be estimated by solving the equations

∂l(β)
∂βk

= 0,

where k ∈ {1, . . . , p}.

Interpretation of the HR

If the parameter vector only contains one binary covariate like for example the treatment

assignment of a study, the HR of patient i receiving the active treatment (bi
1 = 1) and

patient j receiving the control treatment (bj
1 = 0) reduces to

HR = h(t, bi
1)

h(t, bj
1)

= exp
(
(bi

1 − bj
1) · β1

)
= exp(β1).

There are three possible situations:

1. HR < 1: The risk of an event for a patient treated with the active treatment (bi
1 = 1)

is less than that of a patient treated with the control treatment (bj
1 = 0).

2. HR = 1: The risk of an event is the same in both treatment groups at any given time

point during the study.

3. HR > 1: The risk of an event for a patient treated with the active treatment (bi
1 = 1)

is higher than that of a patient treated with the control treatment (bj
1 = 0).

2.1.1 Distributions of time-to-event data

For the performed simulation studies in this thesis, exponential, Weibull, and Gompertz

distributions are of importance for the generation of time-to-event data. Therefore, the prob-

ability density function, cumulative distribution function, survival function, hazard function,

cumulative hazard function, median, expected value, and variance of the three distributions
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are illustrated below in Table 2. Furthermore, conditions for fulfilling proportional hazards

for the distributions are illustrated below.

Table 2: Distributions of time-to-event data

Distribution Exponential Weibull Gompertz

Probability density
function f(t)

λ · exp(−λ · t),
where t ⩾ 0, λ > 0

k · λ ·
(

t · λ
)k−1

· exp
(

−
(

t · λ
)k)

,

where t ⩾ 0, k ∈ (0, ∞) and λ ∈ (0, ∞)
b · exp(a · t) · exp

(
− b

a
· (exp(a · t) − 1)

)
,

where t ⩾ 0, a ∈ [0, ∞) and b ∈ (0, ∞)

Cumulative distribution
function F (t) 1 − exp(−λ · t) 1 − exp

(
−
(

t · λ
)k)

1 − exp
(

− b
a

· (exp(a · t) − 1)
)

Survival function S(t) exp(−λ · t) exp
(

−
(

t · λ
)k)

exp
(

− b
a

· (exp(a · t) − 1)
)

Hazard function h(t) λ k · λ ·
(

t · λ
)k−1

b · exp(a · t)

Cumulative hazard
function H(t) λ · t −

(
t · λ
)k

− b
a

· (exp(a · t) − 1)

Median ln(2)
λ

(ln(2))
1
k

λ
1
a

· ln
(

1 + a
b

· ln(2)
)

Expected value 1
λ

1
λ

· Γ( 1
k

+ 1) 1
a

· exp
(

b
a

)
· E1
(

b
a

)
Variance 1

λ2
1

λ2 ·
[

Γ
(

1 + 2
k

)
−
(

Γ
(

1 + 1
k

))2] 2
a2 exp

(
b
a

)
·
{

− b
a 3F3

[
1, 1, 1
2, 2, 2;;

b
a

]
+

1
2

[
π2
6 +

(
γ + ln

(
b
a

))2
]}

−[
1
b

exp
(

b
a

)
E1
(

b
a

)]2

Notes: Γ(n) =
∫∞

0
exp(−t)·tn−1dt, En(z) =

∫∞

1
exp(−z·t)

tn dt, n > 0, z > 0 is defined by Abramowitz and Stegun (1965), γ ≈ 0.57722 is

the Euler-Mascheroni constant and pFq

[
a1, ..., ap
b1, ..., bp;; z

]
=
∑∞

k=0
(a1)k...(ap)k
(b1)k...(bp)k

zk

k! denotes the generalized hypergeometric function

(Askey and Daalhuis, 2010).

In case of Weibull distribution, k ∈ (0, ∞) is called shape and λ ∈ (0, ∞) scale parameter.

The shape parameter can be interpreted in the following way:

• k < 1 indicates that the failure rate decreases over time leading to a monotonically

decreasing hazard function.

• k = 1 indicates that the failure rate is constant over time leading to a constant hazard

function.

• k > 1 indicates that the failure rate increases over time leading to a monotonically

increasing hazard function.

If the shape parameter is set to 1, the distribution simplifies to an exponential distribution

where the scale parameter of the Weibull distribution is equal to the parameter of the expo-

nential distribution
(
λexp = λweibull

)
.

In case of Gompertz distribution, a ∈ [0, ∞) is the shape parameter and b ∈ (0, ∞) is the
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rate parameter of the distribution. The shape parameter can be interpreted in the following

way:

• a < 0 indicates that the failure rate decreases over time leading to a monotonically

decreasing hazard function.

• a = 0 indicates that the failure rate is constant over time leading to a constant hazard

function.

• a > 0 indicates that the failure rate increases over time leading to a monotonically

increasing hazard function.

2.1.1.1 Condition for proportional hazards

The proportional hazard assumption between two distributions is fulfilled, if the ratio of the

two hazard functions (HR(t) = h1(t)
h2(t)) is constant over time t.

In case of two exponential distributions, the HR reduces to HR(t) = λ1
λ2

, where λ1 and λ2

are the parameters of two exponential distributions. Since time t does not influence the HR,

proportional hazards are always fulfilled in case of two exponential distributions.

In case of two Weibull distributions, the HR reduces to

HR(t) =
k1 · λ1 ·

(
t · λ1

)k1−1

k2 · λ2 ·
(
t · λ2

)k2−1 = λk1
1 · k1 · tk1−1

λk2
2 · k2 · tk2−1

,

where k1, k2, λ1, and λ2 are the shape and scale parameters of two Weibull distributions. To

achieve a constant HR over time t, the shape parameter k has to be chosen to be equal for

both Weibull distributions (k = k1 = k2) leading to HR(t) = λk
1

λk
2
.

In case of two Gompertz distributions, the HR reduces to

HR(t) = b1 · exp(a1 · t)
b2 · exp(a2 · t) ,

where a1, a2, b1, and b2 are the shape and rate parameters of two Gompertz distributions. To

achieve a constant HR over time t, the shape parameter a has to be chosen to be equal for

both Gompertz distributions (a = a1 = a2) leading to HR(t) = b1
b2

.



2.2. Additional benefit assessment methods (ABAMs) 15

2.2 Additional benefit assessment methods (ABAMs)

In the following, the additional benefit assessment methods are described, which are investi-

gated in this thesis. As outlined in Section 1.3 this thesis is focused on the statistical aspects

of the methods for advanced or non-curable diseases with OS outcome. Thus, only these

parts of the methods are described.

Parts of this Section 2.2 are already published in the articles A Comprehensive Comparison

of Additional Benefit Assessment Methods Applied by Institute for Quality and Efficiency in

Health Care and European Society for Medical Oncology for Time-to-Event Endpoints After

Significant Phase III Trials — a Simulation Study by Büsch et al. (2022) and A Comparison

of Additional Benefit Assessment Methods for Time-to-Event Endpoints Using Hazard Ratio

Point Estimates or Confidence Interval Limits by Means of a Simulation Study by Büsch et al.

(2024). The manuscripts have been written by the lead author but may contain comments

and corrections from the co-authors and the reviewers.

2.2.1 Institute for Quality and Efficiency in Health Care (IQWiG)

In case of time-to-event endpoints, IQWiG uses relative risk (RR) based thresholds derived for

a binary outcome for the hazard ratio as effect measurement. Hence, in this thesis, IQWiGRR

is defined as the method used for survival endpoints. For the main classification, the upper

limit of the 95% HR-CI (HR+) is compared to RR based thresholds of 0.85 and 0.95. Thus,

HR+<0.85 is considered as major, 0.85 ⩽ HR+ < 0.95 as considerable, and HR+ ⩾ 0.95 as

minor added benefit. An overview of the used thresholds by IQWiG is given in Table 3, where

the categories "less benefit", "no added benefit", and "nonquantifiable added benefit" cannot

be assigned because a statistically significant increase in the survival time (HR < 1) has to

be already shown by one or multiple phase III studies. Otherwise, the additional benefit

assessment method would not be applied. Thus, only the three remaining categories "minor

added benefit", "considerable added benefit", and "major added benefit" can be assigned.

In the following the derivation of the RR based thresholds by Skipka et al. (2016) are outlined:

At first, a (fictional) study is planned to assess the test problem

H0 : RR ⩾ RR0 vs. H1 : RR < RR0,
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where RR0 = 1 and RR = ptrt/pctl with pctl and ptrt represents the risk rate of the control (ctl)

and treatment (trt) group, respectively. Assuming further, a significance level of α, power of

1 − β, true risk rates of pctl,1 and ptrt,1 (and thus RR1 = ptrt,1/pctl,1), the overall sample size

N = nctl + ntrt with equal sample size in both groups can be calculated by

N = 4 · [z1−αφctl(pctl,1, ptrt,1) + z1−βφtrt(pctl,1, ptrt,1)]2
[ptrt,1 − RR0 · pctl,1] , (2.1)

where zk is the k-quantile of N(0, 1) and φctl(pctl,1, ptrt,1) as well as φtrt(pctl,1, ptrt,1) are

defined as follows:

φctl(pctl,1, ptrt,1) :=
√(pctl,1

2 + ptrt,1
2
)(

1 − pctl,1
2 − ptrt,1

2
)
,

φtrt(pctl,1, ptrt,1) :=

√
pctl,1(1 − pctl,1)

2 + ptrt,1(1 − ptrt,1)
2 .

Solving now the sample size formula (formula (2.1)) for RR0 and assuming that the alternative

hypothesis is true (ptrt,1 < RR0 · pctl,1) results in

RR0 = 1
pctl,1

[
ptrt,1 + 2√

N
(z1−αφctl(pctl,1, ptrt,1) + z1−βφtrt(pctl,1, ptrt,1))

]
. (2.2)

For one study assuming a power of 1 − β1 and the null hypothesis boundary RR0 = 1 (as

mentioned above), the sample size formula (formula (2.1)) reduces to

N1 = 4 · [z1−αφctl(pctl,1, ptrt,1) + z1−βφtrt(pctl,1, ptrt,1)]2
[ptrt,1 − pctl,1] .

Since multiple studies can be combined for the assessment of new treatments, the overall

sample size can increase by the factor c > 1, N = cN1, and the overall power changes to

1 − β2, which results in changes to the hypothesis boundary of formula (2.2) (still assuming

that the alternative hypothesis is true (ptrt,1 < RR0 · pctl,1)):
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RR0 = 1
pctl,1

ptrt,1 + 2(z1−αφctl(pctl,1, ptrt,1) + z1−β2φtrt(pctl,1, ptrt,1))√
c · 4 [z1−αφctl(pctl,1,ptrt,1)+z1−β1 φtrt(pctl,1,ptrt,1)]2

[ptrt,1−pctl,1]2


= 1

pctl,1

[
ptrt,1 − ptrt,1 − pctl,1√

c
· z1−αφctl(pctl,1, ptrt,1) + z1−β2φtrt(pctl,1, ptrt,1)

z1−αφctl(pctl,1, ptrt,1) + z1−β1φtrt(pctl,1, ptrt,1)

]
.

In the special case when the power of the combined studies is equal (β = β1 = β2), the null

hypothesis boundary is independent of the choice of β and reduces to

RR0 = 1
pctl,1

[
ptrt,1 − ptrt,1 − pctl,1√

c

]
=
(

1 − 1√
c

)
RR + 1√

c
.

This hypothesis boundary, RR0, can then be used as threshold CIS to compare the upper

limit of the 95% CI for the relative risk for the ranking of the new treatment. Assuming

further a sample size twice as large due to two studies (c = 2), the thresholds only depend

on the assumed true effect RR1:

CIS = RR1

(
1 − 1√

2

)
+ 1√

2
. (2.3)

IQWiG further defines an RR1 of 0.50 and 0.83 as an effect of major and considerable added

benefit, respectively (Skipka et al., 2016). Hence, plugging these values into formula (2.3)

results into the rounded thresholds of 0.85 and 0.95 shown in Table 3.

The comparison of the upper limit of the CI to specific thresholds is only a hypothesis shift

where a value different from 1 is chosen for RR0, which results in reduced power. However,

since data of multiple studies can be combined and thus pooled 95% CI limits can be obtained,

the power can be increased and thus the power reduction can be compensated. Although the

derivation of this threshold is based on two studies, IQWiG still uses the same thresholds

even if different amounts of studies are combined for a pooled 95% CI.
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Table 3: Categories of IQWiGRR and Mod-IQWiGHR for overall survival

Categories IQWiGRR Mod-IQWiGHR

less benefit Any statistically significant increase in
survival time is at least classified as

"minor added benefit", since for all-cause
mortality the ANV’s requirement that an

effect should be "more than marginal"
is regarded to be fulfilled by the outcome

itself (Skipka et al. (2016))

no added benefit

nonquantifiable added benefit

minor added benefit aHR+ ∈ [0.95, 1) aHR+ ∈ [0.93, 1)

considerable added benefit aaHR+ ∈ [0.85, 0.95) aaHR+ ∈ [0.79, 0.93)

major added benefit HR+ < 0.85 HR+ < 0.79

Abbreviations: ANV: Arzneimittel-Nutzenbewertungsverordnung (engl. Regulation for Early Benefit Assessment),
CI: Confidence interval, HR: Hazard ratio, HR+: Upper 95% confidence interval limit of the HR-PE, PE: Point
estimate

2.2.1.1 Mod-IQWiGHR: Modifying thresholds of IQWiG

As mentioned above, IQWiGRR uses RR based thresholds for the comparison to upper 95%

HR-CI limit for the additional benefit assessment of new treatments in case of time-to-event

endpoints. To investigate the influence of these wrongly-scaled thresholds, the RR based

thresholds were transformed to HR based ones using the conversion formula proposed by

VanderWeele (2020):

RR = 1 − 0.5
√

HR

1 − 0.5
√

1
HR

.

This formula, however, is not analytical solvable. Thus, a numerical approach (optimization)

using minimization without derivatives introduced by Brent and Brent (1974) was used to

calculate the HR based thresholds, which is implemented in the uniroot function of the

stats package in R. The solutions for the transformed thresholds are 0.79 and 0.93. This

version of IQWiGRR using HR based thresholds instead of RR based ones was defined as

Mod-IQWiGHR. Table 3 gives an an overview of IQWiGRR and Mod-IQWiGHR.
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2.2.2 European Society for Medical Oncology (ESMO)

The main aim of the society was to develop a clear and unbiased statement representing the

magnitude of the clinical benefit from new treatments regarding oncology treatments. Thus,

in 2015 Cherny et al. (2015) published their first version of a validated and reproducible

tool called the ESMO Magnitude of Clinical Benefit Scale. After the first implementation,

a revised version was published with modifications of the shortcomings of its first version

(Cherny et al., 2017). ESMO defined a dual rule consisting out of a relative and absolute

rule. The relative and absolute benefit is assessed using the lower limit of the 95% HR-CI

(HR–) and the observed gain, defined as difference between observed median survival in the

treatment (medtrt) and control group (medctl), respectively. These estimates are compared

to specific thresholds leading to a preliminary ordinal rating for the classification consisting

of categories 1 to 4. In addition, category 4 can already be achieved without fulfilling the

relative and absolute rule, if the survival rate increased by ⩾ 10% at key milestones. Table 4

gives an overview of specific thresholds and the key milestones stratified by different observed

medctl (Cherny et al., 2015, 2017).

If only the relative benefit rule is applied, the method compares only HR– against the thresh-

olds 0.7 and 0.65 in case of medctl ⩽ 12 months and medctl > 12 months, respectively (see

Table 4). Thus, only the categories "1" or "greater than 1" can be achieved using only the

relative benefit rule instead of the dual rule.



20 Chapter 2. Methodology

Table 4: ESMO categories: Non-curative setting for overall survival as efficacy endpoint
(form 2a)

ESMO categories for overall survival
medctl ⩽ 12 mon. medctl ∈ (12, 24] mon. medctl > 24 mon.

1
HR− > 0.7

OR
gain < 1.5 mon.

HR− > 0.75
OR

gain < 1.5 mon.

HR− > 0.75
OR

gain < 4 mon.

2

[
HR− ⩽ 0.65 AND

gain ∈ [1.5, 2) mon.

]
OR[

HR− ∈ (0.65, 0.7] AND
gain ⩾ 1.5 mon.

]

[
HR− ⩽ 0.7 AND

gain ∈ [1.5, 3) mon.

]
OR[

HR− ∈ (0.7, 0.75] AND
gain ⩾ 1.5 mon.

]

[
HR− ⩽ 0.7 AND
gain ∈ [4, 6) mon.

]
OR[

HR− ∈ (0.7, 0.75] AND
gain ⩾ 4 mon.

]

3 HR− ⩽ 0.65 AND
gain ∈ [2, 3) mon.

HR− ⩽ 0.7 AND
gain ∈ [3, 5) mon.

HR− ⩽ 0.7 AND
gain ∈ [6, 9) mon.

4

[
HR− ⩽ 0.65 AND

gain ⩾ 3 mon.

]
OR[

Increase in 2 year
survival ⩾ 10%

]

[
HR− ⩽ 0.7 AND

gain ⩾ 5 mon.

]
OR[

Increase in 3 year
survival ⩾ 10%

]

[
HR− ⩽ 0.7 AND

gain ⩾ 9 mon.

]
OR[

Increase in 5 year
survival ⩾ 10%

]

5 Only achievable with toxicity, QoL or other bonus point adjustments
Notes: Category 1-3 is defined as low benefit and 5-4 as substantial improvement.
Abbreviations: CI: Confidence interval, gain: Absolute difference in median survival times,
HR: Hazard ratio, HR–: Lower 95% confidence interval limit of the HR-PE, medctl: Me-
dian survival time in the control group, mon.: Month(s), PE: Point estimate

2.2.3 American Society of Clinical Oncology (ASCO)

Schnipper et al. (2015, 2016) developed the American Society of Clinical Oncology Value

Framework, which is defined as the sum of a clinical benefit score (CBS) and bonus points

(BP) to calculate the continuous Net Health Benefit (NHB) score. The NHB reflects the

clinical point of view of the treatment. Furthermore, information about the costs of the

treatment is also given besides the NHB score allowing the consideration of the financial

impact of the treatment for the patient. The main component CBS is defined as

CBS = 100 · (1 − HR-PE),
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where HR-PE is the HR point estimate of the significant phase III trial (or a combined

effect of multiple studies). The BP consists out of 4 components. This thesis focus is on

the statistical elements of the methods, hence only the statistical BP component "Tail of

the survival curve" is described: The time point on the survival curve that is two times the

median OS of the control group needs to be identified. If the proportion of patients alive in

the treatment compared to the control group improved by 50% or more (assuming > 20%

surviving in control group), 20 points are rewarded. If less than 20% survived in the control

group, no points are rewarded.

Table 5: Composition of ASCO for overall survival

ASCO

clinical benefit score (CBS) CBS = 100 · (1 − HR-PE)

bonus points (BP)

Tail of the survival curve:
The time point on the survival curve that is 2 · medctl, is
identified. If the proportion of patients alive in the
treatment compared to the control arm improved by 50%
or greater (assuming > 20% surviving in control arm),
20 points are rewarded.

net health benefit score (NHB) NHB = CBS+BP
Abbreviations: HR: Hazard ratio, medctl: Median survival time in the control group,
PE: Point estimate
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2.3 Simulation studies

In the following two simulation studies are described. Firstly, in Section 2.3.1 a simulation

study using an approach where the censoring times are dependent on the event times (Sim-

ulation 1) and hence might introduce bias into the HR and HR-CI estimation is outlined. If

this suspicion turns out to be true, it affects all additional benefit assessment method equally

and thus should not bias the comparison in a major way. Nevertheless, to rule out any un-

certainty in Section 2.3.2 another simulation study is performed using an unbiased approach

for the censoring mechanism (Simulation 2). Both simulation studies are described in detail

below using the ADEMP structure proposed by Morris et al. (2019) for planning simulation

studies with the goal of improving the design, analysis, and report of simulations. The abbre-

viation "ADEMP" stands for Aims, Data-generating mechanisms, Estimands, Methods, and

Performance measures. The performed simulation studies are reproducible with the provided

R-Code at https://www.github.com/cbuesch/SumulationStudyABAM. Additional informa-

tion on R-Code structure and execution of the programs to determine the results of this thesis

can be found in Appendix B.

2.3.1 Simulation 1 (censoring times dependent on event times)

Parts of this Section 2.3.1 are already published in the article A Comprehensive Comparison

of Additional Benefit Assessment Methods Applied by Institute for Quality and Efficiency in

Health Care and European Society for Medical Oncology for Time-to-Event Endpoints After

Significant Phase III Trials - a Simulation Study by Büsch et al. (2022). The manuscript

has been written by the lead author but may contain comments and corrections from the

co-authors and the reviewers.

2.3.1.1 Aim

The aim of this simulation study is the comparison of the statistical aspects of the additional

benefit assessment methods ASCO, IQWiGRR, Mod-IQWiGHR, and ESMO in non-curative

setting with overall survival as efficacy endpoint.

The three used quantities on which the methods are based (lower 95% HR-CI limit, HR-

https://www.github.com/cbuesch/SumulationStudyABAM
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PE, and upper 95% HR-CI limit) are assessed using sensitivity and specificity. Hence, the

question which statistical approach might be better for the assessment of additional benefit

will be examined. Further goals are the assessment of the relationship degree between all

methods as well as to determine which ASCO cutoff values correspond to the categories of

ESMO, IQWiGRR, and Mod-IQWiGHR. This enables an estimate of how the other methods

would assess a new treatment without the need to apply them.

2.3.1.2 Data-generating mechanisms

The methods are applied after a statistically significant phase III trial based on the log-rank

test. To perform phase III trials the failure time, censoring time, and sample size calcula-

tion needed to be determined. Subsequently, the precise definition of used data generation

including required parameters and choice of distribution is outlined:

Let T be the event time, C the censoring time, A the accrual time, and FU the follow-up

time. Moreover, dur denotes the duration of the study and is defined as dur := A + FU .

The density, distribution, and survival functions are denoted with f , F , and S, respectively.

A distinguishment between the true treatment effect (trueHR), which is used for the data

generation, and the design treatment effect (designHR), which is assumed for sample size cal-

culation, is made. HRvar is defined to measure the deviance between designHR and trueHR:

trueHR=designHR·HRvar.

• Data-generating algorithm: Each simulated randomized clinical phase III trial with

time-to-event outcome is defined to compare a treatment against a control group with

an allocation ration r and sample size of ntrt and nctl for treatment and control group,

respectively. The alogorithm consist out of two steps:

1. Set a seed to create reproducible results.

2. Generate independent failure times T with the failure times ftrt and fctl for the

treatment and control group, ntrt and nctl times, respectively. In addition, for

each patient generate independent right-censoring time C and independent ad-

ministrative censoring time A, which takes the accrual time into account. Then

select the minimum out of C, A, and T , which represents the final observed

time-to-event data of the trial. Therefore, the final data tuple is of the form
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(min(T, C, A),1(T ⩽ min(C, A))), where the entries represent the event time and

cause of event (failure or censoring), respectively.

• Scenarios / specification of parameters: An extensive simulation study was performed

by generating different scenarios of phase III trials making a comprehensive comparison

between all additional benefit assessment methods (IQWiGRR, Mod-IQWiGHR, ESMO,

and ASCO) possible. Furthermore, the influence of incorrect assumed designHR (over-

/ underpowered trials), various failure time distribution, non-proportional hazards (late

treatment effects), various allocation ratios, various censoring mechanism, and informa-

tive censoring on the different additional benefit assessment methods can be examined.

Each scenario consists out of multiple parameter combinations, i.e. sub-scenarios. In

the following an overview of all scenarios and sub-scenarios is given and in Table 6 the

differences between the performed scenarios are highlighted in bold.

1. Standard Scenario (Scenario 1): Failure time distribution following an exponential

distribution and a combination of administrative and exponential censoring for

the generation of censoring times. The following parameter combinations with

assumptions are used, which leads to (5 · 31 · 2 · 3 =) 930 sub-scenarios:

• medctl ∈ {6, 12, 18, 24, 30}

• designHR ∈ {0.3, 0.32, 0.34, ..., 0.86, 0.88, 0.9}

• HRvar = 1

• type-II-error rate β ∈ {0.1, 0.2}, hence power of 90% and 80%

• type-I-error rate α = 0.05 (two-sided)

• allocation ratio r = 1

• combination out of administrative censoring (accrual time of 2 years and a

follow-up time of 2·medctl) and exponential censoring so that an overall cen-

soring rate of pC ∈ {20%, 40%, 60%} equal in both treatment groups was

achieved.
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Table 6: Overview of simulation scenarios of simulation study with censoring times dependent
on event times

Scenario Parameters differences between the scenarios

HRvar
Failure time
distribution r Censoring distribution

Standard
Scenario 1 exponential 1

pC ∈ {20%, 40%, 60%} equal
in both treatment groups with

administrative (accrual: 2 years,
follow-up: 2·medctl) and

exponential censoring

Scenario 2
(HRvar)

Overpowered trials:{0.8,0.9}
Underpowered trials:{1.1,1.2} exponential 1

pC ∈ {20%, 40%, 60%} equal
in both treatment groups with

administrative (accrual: 2 years,
follow-up: 2·medctl) and

exponential censoring

Scenario 3
(failure time) 1 Weibull and

Gompertz 1

pC ∈ {20%, 40%, 60%} equal
in both treatment groups with

administrative (accrual: 2 years,
follow-up: 2·medctl) and

exponential censoring

Scenario 4
(non-prop.

hazards)
1

exponential with
delayed treatment effect

(starttrt = 1
3 · medctl)

1

pC ∈ {20%, 40%, 60%} equal
in both treatment groups with

administrative (accrual: 2 years,
follow-up: 2·medctl) and

exponential censoring

Scenario 5
(r) 1 exponential { 1

2 , 2
1 }

pC ∈ {20%, 40%, 60%} equal
in both treatment groups with

administrative (accrual: 2 years,
follow-up: 2·medctl) and

exponential censoring

Scenario 6
(censoring) 1 exponential 1

pC ∈ {20%, 40%, 60%} equal
in both treatment groups

with only exponential censoring

Scenario 7
(informative

censoring)
1 exponential 1

pC ∈ {20%, 40%, 60%} unequal
in both treatment groups

(pctl
C = 0.2 & ptrt

C = 0.4 or
pctl

C = 0.4 & ptrt
C = 0.2)

with administrative (accrual: 2 years,
follow-up: 2·medctl) and

exponential censoring

Notes: Differences to the standard scenario regarding the parameter choice were highlighted in bold. The following parameters were chosen
to be identical in each scenario and hence are not shown in the table: type-I-error rate of 0.05, power of 90% and 80%, medctl ∈
{6, 12, 18, 24, 30} and designHR ∈ {0.3, 0.32, ..., 0.88, 0.9}. Abbreviations: designHR: Design hazard ratio used for sample size calculation,
HR: Hazard ratio, HRvar: Factor for deviance between designHR and trueHR, pC : Overall censoring rate, pctl

C and ptrt
C : Censoring rate

of control and treatment group, medctl: Median survival time of control group, r: Allocation ratio, starttrt: Treatment starting time point,
trueHR: True underlying HR of data generation

2. Influence of incorrectly assumed designHR for sample size calculation (Scenario

2): Incorrect assumed treatment effects lead to over- and underpowered trials.

Hence, for the simulation a designHR unequal to the trueHR was choosen: HRvar

∈ {0.8, 0.9, 1.1, 1.2}. Hence, sub-scenarios with HRvar<1 are overpowered and sub-

scenarios with HRvar>1 are underpowered trials. Otherwise, the same parameters

as in the Standard Scenario were used. This leads to (5 · 31 · 4 · 2 · 3 =) 3,720

sub-scenarios.

3. Influence of different underlying failure time distributions (Scenario 3): Two dif-

ferent failure time distributions (Weibull and Gompertz) were used instead of the
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exponential distribution in the Standard Scenario. Otherwise, the same parame-

ters as in the Standard Scenario were used.

In general, non-proportional hazards have to be assumed as the hazards of Weibull

and Gompertz distribution are time-dependent. Since the Cox regression, which

is performed to apply the additional benefit assessment methods, assumes propor-

tional hazards (constant hazard ratio over time between the two treatment groups),

the shape parameter of the Weibull and Gompertz distribution was fixed to specific

values in both treatment groups causing again proportional hazards (see Section

2.1.1 for more detail). An example using a designHR of 0.9 (designHR=trueHR)

and medctl of 6 months can be found in Figure 2.

Figure 2: Hazard functions of exponential, Weibull, and Gompertz distribution with assumed
parameters for a designHR = 0.9, designHR=trueHR, and medctl = 6 months.
Abbrevations: designHR: Design hazard ratio used for sample size calculation, HR: Hazard
ratio, medctl: Median survival time of control group, trueHR: True underlying HR of data
generation
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– Weibull distribution: k ∈ {0.5, 1.5}

These two parameter values for k were chosen to include sub-scenarios where

the failure rate decreases (k < 1, failures occur earlier in time) and increases

over time (k > 1, failures occur later in time). This leads to (5 · 31 · 2 · ·3 · 2 =)

1,860 sub-scenarios.

– Gompertz distribution: a ∈ {−0.2, 0.2}

These two parameter values for a were chosen to include sub-scenarios where

the failure rate decreases (a < 0, failures occur earlier in time) and increases

over time (a > 0, failures occur later in time). This leads to (5 · 31 · 2 · ·3 · 2 =)

1,860 sub-scenarios.

4. Influence of non-proportional hazards using late treatment effects for the treatment

group (Scenario 4): For this objective, the same parameters as in the Standard

Scenario were used. This leads to (5 ·31 ·2 ·3 =) 930 sub-scenarios. The underlying

failure time distribution of both treatment groups, however, was chosen to be

exponential with a delayed treatment effect for the treatment group using a piece-

wise exponential failure time distribution. Hence, the HR is not constant over time

leading to one kind of non-proportional hazards. The underlying distribution of

the treatment group, Ftrt(x), was chosen to be exponential using the distribution

parameter λctl of the control group until the delayed treatment start at time point

starttrt and λtrt after starttrt:

Fctl(x) = 1 − exp(−λctl · x),

Ftrt(x) =

 1 − exp(−λctl · x) , x ∈ [0, starttrt]

1 − exp(−λctl · starttrt) · exp(−λtrt · (x − starttrt)) , otherwise,

where Fctl and Ftrt are the cumulative distribution functions of the treatment and

control group, λctl > 0 and λtrt > 0 are the parameters of the corresponding

exponential distributions, and starttrt (= 1
3 · medctl) is the time point of treatment

effect start for the treatment group.

ESMO uses the gain of the new treatment (absolute difference of median treatment

outcomes) to establish the different categories. Hence, if medtrt ≈ medctl, the
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method would only assign the lowest category to a new treatment. To not penalize

ESMO for its design, starttrt was set to 1
3 of the assumed median survival time

of the control group (medctl) for the simulations (starttrt ≪ medctl). An example

using a designHR of 0.7 (designHR=trueHR), medctl of 12 months, and starttrt of

4 months can be found in Figure 3.

Figure 3: Survival functions of piece-wise exponential distribution with late treatment effect,
assuming a designHR of 0.7, designHR=trueHR, medctl = 12 months, and medtrt = 4 months
(starttrt = 1/3 · medctl).
Abbrevations: designHR: Design hazard ratio used for sample size calculation, HR: Hazard
ratio, medctl: Median survival time of control group, medtrt: Median survival time of treatment
group, trueHR: True underlying HR of data generation

5. Influence of unequal sample sizes (Scenario 5): To simulate unequal sample sizes

between the treatment groups, an allocation ratio unequal 1 was used: r ∈ {1
2 , 2

1}.

Otherwise, the same parameters as in the Standard Scenario were used. This leads

to (5 · 31 · 2 · 2 · 3 =) 1,860 sub-scenarios.



2.3. Simulation studies 29

6. Influence of using only exponential distributed censoring distribution without ad-

ministrative censoring (Scenario 6): The same parameters as in the Standard

Scenario were used. This leads to (5 · 31 · 2 · 3 =) 930 sub-scenarios. Only the

generated censoring time is defined as exponential censoring distribution with-

out administrative censoring (C ∼ exp(λC)) so that an overall censoring rate of

pC ∈ {20%, 40%, 60%} equal in both treatment groups was achieved.

7. Influence of informative censoring due to treatment (Scenario 7): To simulate

informative censoring due to the new treatment, unequal censoring rates pctl
C and

ptrt
C were defined in the treatment and control group, respectively:

– pctl
C = 0.2 & ptrt

C = 0.4

– pctl
C = 0.4 & ptrt

C = 0.2

Due to the fact that one does not assume informative censoring at the planning

stage of a trial, the formula of the probability of an event for the sample size

calculation is computed with the censoring rate of the control group:

P(D) = 1 − pctl
C .

More information regarding the performed sample size calculation follows. in this

section. In addition, a combination of both censoring methods (administrative

censoring and exponential censoring) was used for this scenario using a fixed ac-

crual time (a) of 2 years and a follow-up time (FU) of 2·medctl (as in the Standard

Scenario). Otherwise, the same parameters as in the Standard Scenario were used.

This leads to (5 · 31 · 2 · 2 =) 620 sub-scenarios.

• Failure time distribution of control and treatment group (fctl and ftrt):

– Assuming failure times follow an exponential distribution, the median overall sur-

vival time of the control group (medctl), designHR, and trueHR (=HR · HRvar)

needed to be fixed to a specific value for calculation of the required parameters:

fC ∼ exp(λctl), ftrt ∼ exp(λtrt),
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where λctl was calculated using the assumed medctl:

medctl = ln(2)
λctl

⇒ λctl = ln(2)
medctl

(2.4)

and λtrt was calculated using the trueHR, the proportional hazards assumption

(ratio of the hazards is constant over time) as well as the conversion of λctl (formula

(2.4)):

trueHR = htrt(t)
hctl(t)

= λtrt

λctl

(2.4)⇒ λtrt = trueHR · ln(2)
medctl

.

– Assuming failure times follow a Weibull distribution, medctl, designHR, and trueHR

needed to be fixed to a specific value to calculate the required parameters:

fctl ∼ Weibull(λctl, kctl),

ftrt ∼ Weibull(λtrt, ktrt),

where λctl was calculated using the assumed medctl:

medctl = (ln(2))1/kctl

λctl
⇒ λctl = (ln(2))1/kctl

medctl
(2.5)

and λtrt was calculated using the trueHR, the proportional hazards assumption

(ratio of the hazards is constant over time) as well as the conversion of λctl (formula

(2.5)):

trueHR = htrt(t)
hctl(t)

= λktrt
trt · ktrt · tktrt−1

λkctl
ctl · kctl · tkctl−1

(∗)= λk
trt

λk
ctl

(2.5)⇒ λtrt =
(

trueHR · ln(2)
medk

ctl

) 1
k

,

where at (∗) the shape parameter k was chosen to be identical for both treatment

groups to achieve a constant hazard ratio over time (kctl = ktrt).
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– Assuming failure times follow a Gompertz distribution, medctl, designHR, and

trueHR needed to be fixed to a specific value to calculate the required parameters:

fctl ∼ gompertz(actl, bctl),

ftrt ∼ gompertz(atrt, btrt),

where bctl was calculated using medctl:

medctl = 1
actl

· ln
(
1 + actl

bctl
· ln(2)

)
⇒ bctl = actl · ln(2)

exp(medctl · actl) − 1 (2.6)

and btrt was calculated using the trueHR, the proportional hazards assumption

(ratio of the hazards is constant over time) as well as the conversion of bctl (formula

(2.6):

trueHR = htrt(t)
hctl(t)

= btrt · exp(atrt · x)
bctl · exp(actl · x)

(∗)= btrt

bctl

(2.6)⇒ btrt = trueHR · a · ln(2)
exp(medctl · a) − 1 ,

where at (∗) the shape parameter a was chosen to be same for both treatment

groups to achieve a constant hazard ratio over time (actl = atrt).

– Assuming failure times follow a piece-wise exponential distribution with an addi-

tional late treatment effect for the treatment group, medctl, designHR, and trueHR

needs to be fixed to a specific value. To achieve a late treatment effect for the

treatment group, a piece-wise exponential distribution was chosen in the following

way:

Fctl(x) = 1 − exp(−λctl · x),

Ftrt(x) =

 1 − exp(−λctl · x) , x ∈ [0, starttrt]

1 − exp(−λctl · starttrt) · exp(−λtrt · (x − starttrt)) , otherwise,

where Fctl(x) and Ftrt(x) are the cumulative distribution functions of the treatment

and control group, λctl > 0 and λtrt > 0 are the parameters of the corresponding
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exponential distributions, and starttrt (= 1
3 · medctl) is the time-point where the

treatment effect sets in. The failure times of the treatment groups were generated

using the inversion method by Kolonko (2008, Chapter 8, pg. 85-95): Assuming a

uniform random variable U on the interval [0,1], X := F −1
trt (U) is Ftrt is distributed,

meaning P(X ⩽ t) = Ftrt, t ∈ R. Therefore, the inversion of the cumulative

distribution Ftrt(x) is given by

F −1
trt (y) =


ln(1−y)
−λctl

, y ∈ [0, 1 − exp(−λctl · starttrt)]
ln(1−y)+λctl·starttrt

−λtrt
+ starttrt , otherwise.

Additionally, λctl and λtrt were defined in the same way as in the exponential case.

Hence,

medctl
!= ln(2)

λctl
⇒ λctl = ln(2)

medctl
,

HR · HRvar
!= htrt(t)

hctl(t)
= λtrt

λctl

(2.4)⇒ λtrt = (HR · HRvar) · ln(2)
medctl

.

• Censoring time distribution: Depending on the simulation scenario three different types

of censoring time generation were implemented. In the following these three types are

described:

1. Assuming only administrative censoring, the censoring time is set to be uniformly

distributed:

A ∼ U(a) + FU,

where A is the administrative censoring from tuple mentioned in the data generaion

algorithm. In addition, a represents the accrual time and FU the follow-up time.

2. Assuming a specific given censoring rate, pC, the simulated censoring time is set

to be exponentially distributed :

C ∼ exp(λC),
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where λC is calculated for every failure time t separately so that the specific

censoring rate pC is met:

P(TC ⩽ t) = 1 − exp(−λC · t) def= pC

⇒ λC = − ln(1 − pC)
t

.

Consequently the censoring is dependent on the failure time.

3. Assuming a combination of administrative and exponential censoring, the simu-

lated censoring time was generated in two steps:

(a) Generate administrative censoring times A as explained in 1.

(b) Generate exponential censoring time given a specific censoring rate for the

remaining simulated events, where the administrative censoring times were

not smaller than simulated event times, so that an overall censoring proportion

of pC is achieved:

C ∼ exp(λC),

where λC is calculated for every failure time t separately so that the specific

censoring rate pC is met:

P(TC ⩽ t) = 1 − exp(−λC · t) def= pneeded
C

⇒ λC = − ln(1 − pneeded
C )

t
,

where pneeded
C is the specific censoring rate still needed to achieve an overall

censoring proportion of pC. Hence,

pneeded
C = pC · (nAC + nSC) − nAC · pAC

C
nSC

,

where nAC and pAC
C are the sample size and rate of censored patients due to

administrative censoring (step (a)), respectively. In addition, nSC is the re-

maining sample size of patients which can be censored by the specific censoring

rate in step (b).



34 Chapter 2. Methodology

• Sample size calculations were performed for each sub-scenario with the approach of

Schoenfeld (1981, 1983):

1. Calculate the required number of events:

d = (1 + r)2

r
·

(z1− α
2

+ z1−β)2

(ln(designHR))2 ,

where α is the type-I-error rate, β is the type-II-error rate, r is the sample size

ratio between the treatment and the control group (r = ntrt/nctl), designHR is

the assumed hazard ratio / treatment effect, and zk is the k-quantile of N(0, 1).

2. Calculate the probability of an event P(D) and divide the number of required

events d by this probability to get the required sample size N. Hence, N = d
P(D) =

d
pC

.

• Software: The simulation was performed using the software R version 4.2.1 (R Core

Team, 2021) in combination with RStudio version 2022.07.2 (RStudio Team, 2021) and

packages "tidyverse" (Wickham et al., 2019), "survival" (Therneau, 2023; Therneau and

Grambsch, 2000), "flexsurv" (Jackson, 2016), "cutpointr" (Thiele and Hirschfeld, 2021),

"vcd" (Meyer et al., 2022), and "pcaPP" (Filzmoser et al., 2022) for data generation

and analysis. Additionally, the package "ggpubr" (Kassambara, 2023) and "ggplot2"

(Wickham, 2016) was to produce the graphics.

2.3.1.3 Estimands

In the following the estimands for comparing the additional benefit assessment methods are

described.

1. Estimation of median, θASCO
1 , for the method with continuous outcome (ASCO) and

category rates for methods with ordinal outcome, θi,j
1 , where i and j represent category

i of method j={IQWiGRR, Mod-IQWiGHR, and ESMO}, respectively. This includes

the estimation of the maximal category rates θmax,j
1 .
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2. Estimation of the relationship between the methods using pairwise correlation, θ2(x, y),

where x and y are two of the four methods (ASCO, IQWiGRR, Mod-IQWiGHR, and

ESMO).

3. Selection of best statistical quantity for additional benefit assessment (lower 95% HR-

CI limit, HR-PE, and upper 95% HR-CI limit) using sensitivity and specificity. More

detail is provided in the Section 2.3.1.5.

4. Estimation of ASCO cutoff values, which are consistent with categories of ESMO,

IQWiGRR, and Mod-IQWiGHR.

2.3.1.4 Methods

As there are two versions of IQWiGs method considered, four methods are compared in total

denoted by ASCO, IQWiGRR, Mod-IQWiGHR, and ESMO. A detailed overview of all meth-

ods is provided in Section 2.2. The methods are applied to a statistically significant phase

III trial based on the log-rank test. This thesis focuses on the application of single phase III

trials and does not consider cases where two or more phase III trials are used for more precise

parameter estimations.

For the application of the methods the HR-PE with corresponding 95% Wald-CI, and the 2-,

3- and 5-year survival increase were required. Additionally, for ASCO bonus point adjustment

"tail of the curve" and ESMO absolute benefit rule medctl or medtrt had to be calculated.

However, if the survival curve does not fall below 50%, e.g. due to large treatment effects,

the median survival time cannot be observed. In this case, a conservative approach was im-

plemented, using the last observed censoring or event time point of the survival curve instead.
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2.3.1.5 Performance measures, number of iterations (nsim) and seeds of the

simulation

Performance measures:

1. The category rate of each method (with an ordinal outcome) in each sub-scenario is

estimated by its proportion:

θ̂i,j
1 = M j

i

Number of significant trials ,

where Mi is the number of trials where method j = {ESMO, IQWiGRR, Mod-IQWiGHR}

assigned the treatment an additional benefit category i. The amount of categories differ

for each method:

• IQWiGRR and Mod-IQWiGHR: "minor added benefit", "considerable added bene-

fit", and "major added benefit"

• ESMO: 1, 2, 3, 4

This also includes the proportion of the maximal category in each sub-scenario and each

method, where the number of trials with a maximal added benefit treatment assignment

is divided by the number of significant trials:

̂
θ
max, j
1 = Number of maximal categories

Number of significant trials ,

where a maximal score is defined differently for each method:

• IQWiGRR and Mod-IQWiGHR: "major added benefit"

• ESMO: 4

Since ASCO has a continuous outcome, median estimates of the NHB score (θASCO
1 )

are reported.

2. To estimate the relationship between the methods, pairwise Spearman correlation was

calculated using the interpretation provided by Mukaka (2012) and examining the com-
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plete range of categories for the two methods:

θ̂2(x, y) =
∑

xiyi − nx̄ȳ

(n − 1)sxsy
,

where n is the sample size, xi, x̄, and sx are the individual scores/categories, sample

means, and sample standard deviations of the rank-converted scores/categories of the

additional benefit assessment method x. Analogously, the same applies for yi, ȳ, and

sy for additional benefit assessment method y.

As a sensitivity analysis for the relationship assessment Kendall-τb was calculated.

3. To evaluate which statistical quantity (lower 95% HR-CI limit, HR-PE, and upper 95%

HR-CI limit) is better suited for the additional benefit assessment of new treatments,

sensitivity, and specificity were estimated. In the following true positives rate (TPR)

instead of sensitivity and false positive rates (FPR) instead of 1 - specificity will be

used. FPR and TPR were estimated for thresholds ranging from 0.2 to 1 which are

used for defining a maximal additional benefit classification using HR-PE, HR–, and

HR+. In this context, a true positive and false positive event is defined as deserved

classification of a maximal category, or, respectively, not deserved classification of a

maximal category. Furthermore, a ground truth was needed for the estimation of TPR

and FPR but since no gold standard for additional benefit assessment method exists,

a maximal category was assumed to be justified if trueHR < δdeserved was met for dif-

ferent cut-offs values of δdeserved (0.7, 0.75, and 0.8).

For illustration purposes, ROC curves using the TPR and FPR estimations were used.

Example for TPR and FPR calculation:

Lets assume a sub-scenario with a specific designHR, power, censoring rate, and medctl.

If further a specific δdeserved is assumed, the simulation provides estimates for the num-

ber of false positives (FP), true negatives (TN), true positives (TP), and false negatives

(FN) like shown in Table 7. Hence, FPR and TPR can be estimated in the following

way:

F̂PR = FP
TN + FP ,

T̂PR = TP
TP + FN .
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Table 7: Example cross table for FPR and TPR calculation.

Deserved maximal score
(trueHR < δdeserved)

yes no
Achieved maximal score by ESMO,

IQWiGRR or Mod-IQWiGHR

yes TP FP
no FN TN

Abbreviations: FPR: False positive rate, FN: False negative, FP: False positive, HR: Haz-
ard ratio, TP: True positive, TN: True negative, TPR: True positive rate, trueHR: True
underlying HR of data generation, δdeserved: Ground truth of deserved maximal category
for TPR and FPR calculation (justified if trueHR < δ)

It is obvious that FPR and TPR can only be estimated when TN + FP ̸= 0 and

TP + FN ̸= 0, respectively. However, in sub-scenarios with trueHR < δdeserved the sum

TN + FP can be zero and vice versa in sub-scenarios with trueHR ≥ δdeserved the sum

TP + FN can be zero. For example, lets assume δdeserved = 0.7 and the sub-scenario

with designHR = 0.8 and HRvar = 1 (trueHR = 0.8) of the Standard Scenario. Hence,

a maximal category is not deserved (trueHR>δdeserved). Thereby, a FP can only occur

if an additional benefit assessment method awards a maximal category and a TN can

only occur if an additional benefit assessment method does not award a maximal cat-

egory. In other words, in this case TP and FN cannot occur and thus TPR cannot be

estimated.

Hence, to still be able to calculate FPR, TPR and thus display ROC curves, the com-

plete simulated treatment effect range was used. Thereby, in each simulation scenario

all sub-scenario with designHRs ranging from 0.3 until 0.9 were combined while fixing

the other parameters of the simulation scenario (e.g.: censoring rate, power, allocation

ratio, HRvar); for example in the Standard Scenario remained (5 · 2 · 3 =) 30 instead of

(5 · 31 · 2 · 3 =) 930 sub-scenarios.

Since the additional benefit assessment methods are applied for all new treatments

including ones with large and small treatment effects, the approach of combining the

complete range of treatment effects for an overall valuation of the methods can be seen

as realistic representation.

4. To investigate which ESMO, IQWiGRR, and Mod-IQWiGHR category corresponds to

which ASCO score, the maximizing weighted Cohens kappa approach for cutoff value
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determination was used (Cohen, 1960; Chang et al., 2015):

κ = 1 −
∑k

i=1
∑k

j=1 wij · xij∑k
i=1

∑k
j=1 wij · mij

,

where i = 1, . . . , k and j = 1, . . . , k are the categories of both methods, x is the observed

probability matrix, w the quadratic weights matrix, and m the expected probability

matrix. Since ESMO, IQWiGRR, and Mod-IQWiGHR have an ordinal outcome, dis-

agreements close to the diagonal implies a smaller disagreement than far from the

diagonal. Thus, Cohen kappa with "Fleiss-Cohen" weights were used.

To determine how different methods for cutoff determination impact the results and to

achieve a fair comparison between the research of this thesis and Cherny et al. (2019),

who calculated ASCO cutoff values corresponding to categories of ESMO using 102

real studies, the same methods for cutoff determination were used. Hence, beside the

maximizing Cohens kappa approach, sensitive analysis using receiver operating char-

acteristic (ROC) and Svenssons method (Svensson, 2000a,b) were performed. For the

former, the categories were separated pairwise and considered optimal when the point

on the ROC curve is closest to the point (0,1) (ROC01). For the latter, the cutoffs were

defined so that same marginal distribution of ordinal method and continuous ASCO

were present.

Number of iterations for each sub-scenario (nsim):

As one of the main estimands of this simulation study is the proportion of maximal category

(θmax
1 ) and the most additional benefit assessment methods have an ordinal rating scale, the

number of iterations for each sub-scenario is based on this estimand:

An indicator variable, Yi, was defined for iteration i to be 1 if an additional benefit assessment

method awarded a maximal category; otherwise Yi was set to be 0:

Yi :=

 1, if the maximal category is awarded,

0, another category is awarded.

Therefore, Yi is by definition a Bernoulli variable with a coverage probability of p, which can

be estimated by the sample proportion. The variance of the simulation-based estimate of p
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is given by

p̂ = p · (1 − p)
nsim

,

where nsim is the number of iterations. This estimation is derived by the variance of a

Bernoulli variable, which is given by p · (1 − p), and the fact that the simulation generated

independent and identically distributed Bernoulli variables. Furthermore, it can be shown

that
p · (1 − p)

nsim
⩽

1
4 · nsim

.

The final number of iterations nsim can then be calculated by assuming a variance of p less

than some pre-specified threshold δ

nsim ⩾
1

(4 · δ) .

In each simulated sub-scenario of this simulation study, the requirement of a standard devi-

ation of 0.25% for the coverage probability of a maximal score was implemented, assuming

a constant error variance. Thus, δ was set to 2.5 · 10−5, which corresponds to a standard

deviation of 0.5%, resulting in a number of nsim = 10, 000 iterations (phase III trials) for each

sub-scenario.

Since the additional benefit assessment methods are applied after a significant phase III trial,

only nsim − nns trials were used for the method comparison, where nns is the number of

non-significant trials. As a sample size calculation is performed, the resulting number of

significant iterations should be around 8,000 or 9,000, depending on the power of 90% or

80%. In case of underpowered or overpowered trials like in Scenario 2, the remaining number

of significant iterations might be less or more, respectively. In this scenario, the difference

between actual and the planned number of significant iterations of 8,000 or 9,000 was not

adjusted by increasing or decreasing nsim.

Seeds of the simulation:

To create reproducible results and to achieve comparability between the different scenarios,

the same integer numbers were used as seeds at the beginning of the 10,000 iterations of

each sub-scenario. Hence, 10,000 integer numbers were once randomly drawn out of a sample

ranging from 1 to 1 billion without replacement.
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2.3.2 Simulation 2 (censoring times independent of event times)

Parts of this Section 2.3.2 are already published in the article A Comparison of Additional

Benefit Assessment Methods for Time-to-Event Endpoints Using Hazard Ratio Point Esti-

mates or Confidence Interval Limits by Means of a Simulation Study by Büsch et al. (2024).

The manuscript has been written by the lead author but may contain comments and correc-

tions from the co-authors and the reviewers.

2.3.2.1 Aim

The possible introduced bias by the data generation of Simulation 1 (described in Section

2.3.1) is not affecting the method comparison to a substantial degree because it is affecting

all compared methods equally. The aim of this additional simulation is to investigate the

robustness of the results obtained from Simulation 1 (details in Section 2.3.1). The amount

of different scenarios, however, is reduced to the ones which showed the main differences in

the already performed simulation study. The ADEMP structures of both simulation studies

are in many aspects similar and hence, only the changed aspects of the ADEMP structure

are mentioned below.

2.3.2.2 Data-generating mechanisms

• Scenarios / specification of parameters

As this simulation study was performed to investigate the robustness of the results of

the simulation study described in Section 2.3.1, the amount of different scenarios is

reduced to the first four scenarios. Furthermore, in sub-scenarios with a monotonically

decreasing hazard rate like in scenarios with Weibull and Gompertz failure time distri-

bution, the hazard of an event is getting smaller over time. Thus, patients with no event

until a specific time t, almost cannot have an event anymore and must be censored at

the end of the trial (administrative censoring). Unfortunately, in some sub-scenarios

these patients are often present leading to censoring rate larger than the intended pC.

To still achieve the targeted censoring rate without biasing the hazard ratio estimation,

only the sub-scenarios with pC=60% were used.

An overview of all scenarios and sub-scenarios is given in Table 8, where the differences
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between the performed scenarios are highlighted in bold.

Table 8: Overview of simulation scenarios of simulation study with censoring times indepen-
dent on event times

Scenario Parameters differences between the scenarios

HRvar
Failure time
distribution r Censoring distribution

Standard
Scenario 1 exponential 1

pC = 60% equal
in both treatment groups with

administrative (accrual: 2 years,
follow-up: 2·medctl) and

exponential censoring

Scenario 2
(HRvar)

Overpowered trials:{0.8,0.9}
Underpowered trials:{1.1,1.2} exponential 1

pC = 60% equal
in both treatment groups with

administrative (accrual: 2 years,
follow-up: 2·medctl) and

exponential censoring

Scenario 3
(failure time) 1 Weibull and

Gompertz 1

pC = 60% equal
in both treatment groups with

administrative (accrual: 2 years,
follow-up: 2·medctl) and

exponential censoring

Scenario 4
(non-prop.

hazards)
1

exponential with
delayed treatment effect

(starttrt = 1
3 · medctl)

1

pC = 60% equal
in both treatment groups with

administrative (accrual: 2 years,
follow-up: 2·medctl) and

exponential censoring

Notes: Differences to the standard scenario regarding the parameter choice were highlighted in bold. The following parameters were chosen
to be identical in each scenario and hence are not shown in the table: significance level α of 0.05, power of 90% and 80%, medctl ∈
{6, 12, 18, 24, 30} and designHR ∈ {0.3, 0.32, ..., 0.88, 0.9}. Abbreviations: α: Significance level, designHR: Design hazard ratio used for
sample size calculation, HR: Hazard ratio, HRvar: Factor for deviance between designHR and trueHR, pC : Overall censoring rate, medctl:
Median survival time of control group, starttrt: Treatment starting time point, trueHR: True underlying HR of data generation

• Failure time distribution of control and treatment group (fctl and ftrt) were defined as

in Simulation 1. Details can be found in Section 2.3.1.2.

• Censoring time distribution:

To achieve a realistic phase III trial, the censoring was defined as a combination of

independent administrative censoring and independent right-censoring with an overall

targeted censoring proportion of pC for all scenarios and without introducing bias to

the HR estimation. Hence, administrative censoring, independent right-censoring and

failure times needed to be independent from each other. To achieve this, the following

considerations were made:

1. Censoring proportion for administrative censoring with an accrual period:

A patient with an event time T = t, who enters the trial at time point Acc = a

after study initiation, will be censored if the event would happen after end of the

study, i.e. if t + a > dur. Taking this into account, the censoring proportion can
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be calculated in the following way:

pC = P[T + Acc > dur]

=
∫
P[T + Acc > dur | A = a]fAcc(a)da

=
∫
P[T > dur − a]fAcc(a)da

=
∫

ST (dur − a)fAcc(a)da.

2. Censoring proportion for administrative and independent censoring:

In this case, it is assumed that all patients are recruited at the same time leading

to two reasons a patient can be censored: Firstly, a patient did not have an

event over the period of the trial and was not lost to follow-up. Hence, this

patient has a censoring time C = c and event time T = t later than the trial

duration (dur < min(c, t)), which is defined as administrative censoring (A = dur).

Secondly, a patient did have a censoring event C = c occurring before the event

T = t and the study duration (c < min(t, dur)); e.g. a patient moves away and is

lost to follow-up.

Furthermore, in case a patient with an event time after the end of the study (T >

dur) must be censored administratively (at the last follow-up visit) or censored

because of a censoring event during the course of the study. In addition, a patient

with an event during the trial, T ⩽ dur, can only be censored if the censoring

occurs before the event. Taking this into account, the censoring proportion can

be calculated solving the following integral:

pC =
∫ dur

0

∫ t

0
fT,C(t, c)dcdt +

∫ ∞

dur

∫ ∞

0
fT,C(t, c)dc︸ ︷︷ ︸

fT (t)

dt

=
∫ dur

0
fT (t)FC(t)dt + ST (dur).
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3. Censoring proportion for administrative (with accrual period) and

independent censoring:

The two above explained considerations need to be combined. This means that

the time under observation for each patient reduces by the time Acc = a that the

patient enters the study after its initiation. Hence, integrating the expression from

the last step over the accrual distribution yields:

pC =
∫ (∫ dur−a

0
fT (t)FC(t)dt + ST (dur − a)

)
fAcc(a)da

=
∫ ∫ dur−a

0
fT (t)FC(t)fAcc(a)dtda +

∫
ST (dur − a)fAcc(a)da. (2.7)

In the performed simulation study the censoring time distribution C is assumed to be

exponential distributed (C ∼ Exp(λC)). Furthermore, three different failure time dis-

tributions are assumed, leading to different pC equations. Each failure time distribution

has a different effect on the censoring probability pC and the censoring parameter λC .

More information regarding the different distributions and the obtaining of λC can be

found in Appendix C.

• Sample size calculations were performed as in Simulation 1. Details can be found in

Section 2.3.1.2.

• Software: The same software as in Simulation 1 was used. Details can be found in

Section 2.3.1.2.

2.3.2.3 Estimands

The first three estimands as in Simulation 1 were used. Details can be found in Section

2.3.1.3.

2.3.2.4 Methods

The same methods as in Simulation 1 was used. Details can be found in Section 2.3.1.4.
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2.3.2.5 Performance measures, number of iterations (nsim) and seeds of the

simulation

The same performance measures, nsim and seeds as in Simulation 1 was used. Details can be

found in Section 2.3.1.5.
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Chapter 3

Results
In this chapter, the results are outlined. Section 3.1 and Section 3.2 show the results of

Simulation 1 and Simulation 2, respectively. Overall in both simulation studies 15,810 sub-

scenarios were investigated. Section 3.3 depicts the application of the additional benefit

assessment methods and the results of the determined ASCO cutoff application on two study

examples.

Additional results of the performed simulation studies can be found in Appendix A.

3.1 Simulation 1

Parts of this Section 3.1 are already published in the article A Comprehensive Comparison

of Additional Benefit Assessment Methods Applied by Institute for Quality and Efficiency in

Health Care and European Society for Medical Oncology for Time-to-Event Endpoints After

Significant Phase III Trials — a Simulation Study by Büsch et al. (2022). The manuscript

has been written the lead author but may contain comments and corrections from the co-

authors and the reviewers.

In the following, the results of Simulation 1 are shown, where the generated censoring times

are dependent on the event times and hence might introduce bias into the HR and HR-CI

estimation. Further information of the ADEMP structure of the simulation study is outlined

in Section 2.3.1.

Firstly, the description of the additional benefit assessment methods is shown for each Sce-

nario, where the ASCO score distribution is illustrated using boxplots separated into the

categories of ESMO, IQWiGRR, Mod-IQWiGHR, and overall, respectively (y-axis). Secondly,

the relationship between the methods is shown by displaying pairwise Spearman correlations

between the additional benefit assessment methods. Thirdly, ROC curves are displayed to in-

vestigate the best statistical quantity for additional benefit assessment. Fourthly, the ASCO

cutoff values for corresponding ESMO, IQWiGRR, and Mod-IQWiGHR are laid out. Lastly,

the possible introduced bias due to the data generation is investigated by displaying HR

47
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estimation bias using line figures.

Important to mention is that in case of underpowered studies, the planned power of 80% or

90% was not achieved due to overoptimistic treatment effect assumptions (Scenario 2 with

HRvar>1). For example, over all sub-scenarios for HRvar=1.1 and HRvar=1.2 a mean power

of 69.84% and 50.00% was present, respectively. This power reduction occurs especially for

small treatment effects as a larger sample size is needed. As the additional benefit assessment

methods are only applied after a significant study, the results of this scenario are based on a

very limited amount of observations. This has to be kept in mind for interpretation.

3.1.1 Comparison of additional benefit assessment methods

In the following, the ASCO score distribution (x-axis) is illustrated for each Scenario using

boxplots separated into the categories of ESMO, IQWiGRR, Mod-IQWiGHR, and overall (ab-

breviated "all"), respectively (y-axis). Furthermore, the relative frequencies, i.e. proportions,

of each category of the ordinal methods (ESMO, IQWiGRR, and Mod-IQWiGHR) are shown

on the y-axis label. For these comparisons the results of all sub-scenarios of each simula-

tion scenario are combined and shown in separate panels. For Scenario 3a and 3b (different

failure time distributions) the results (ASCO distribution and category proportion of ordinal

methods) for the sub-scenarios with increasing and decreasing hazards over time are shown

combined and additionally separately color coded in the respective panel. The reason for this

illustration is that the additional benefit assessment methods respond differently on increas-

ing and decreasing hazards.

The figures for the pairwise comparisons of ASCO and each of the ordinal additional ben-

efit assessment methods are shown in the following subsections: Firstly, ESMO vs. ASCO,

secondly IQWiGRR vs. ASCO, and lastly Mod-IQWiGHR vs. ASCO.

3.1.1.1 ESMO vs. ASCO

In the Standard Scenario (Figure 4 and 5, upper left panel) ESMO shows a very high rate

of 80.57% for the maximum category. Other categories mainly do hardly exist. For exam-

ple category 2 and 3 have only a rate of 5.29% and 2.53%, respectively. Category 1 has

again an increased rate of 11.62% compared to category 2 and 3. This tendency or even

an higher rate of the maximal category is present in almost all scenarios: For the scenarios
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with Weibull distributed failure times (Scenario 3), non-proportional hazards (Scenario 4),

different treatment allocation ratios (Scenario 5, Figure 5), and only exponential censoring

without administrative censoring (Scenario 6) the distribution is similar to the Standard Sce-

nario. The maximal category rate is even larger in overpowered and underpowered studies

(Scenario 2, Figure 4) compared to the Standard Scenario, e.g. the maximal category rate

of 94.39% and 90.08% is present, respectively. In cases of informative censoring (Scenario 7,

Figure 5) the maximal category rate is also larger than in the Standard Scenario, e.g. 92.52%

and 95.79%, where the censoring rate of the control group is smaller than in the treatment

group and vice versa, respectively. An exception of this tendency is present with Gompertz

distributed failure time (Scenario 3) where the categories are more evenly distributed but the

maximal category has still the highest rate, i.e. the maximal category rate is at 44.25%.

ASCO has an overall median score of 42.41 in the Standard Scenario (Figure 4, upper left

panel). In case of other simulated scenarios, the overall median ASCO score stays very sim-

ilar. Only in case of wrongly assumed treatment effects leading to over- and underpowered

studies (Scenario 2; Figure 4, upper middle and right panel) as well as informative censor-

ing with a censoring rate larger in the control than in the treatment group (Scenario 7; pctl
C

> ptrt
C , Figure 5, lower right panel), the median ASCO score is increased to 49.60, 46.99,

and 49.36, respectively, compared to the Standard Scenario. Furthermore, non-proportional

hazards (Scenario 4; Figure 4, lower right panel) decrease the median score to 36.95.

As the majority of sub-scenarios are categorized as a maximal category by ESMO, the overall

median ASCO score and the median ASCO score of ESMOs maximal category are very

similar. Furthermore, the median values of the ASCO score of ESMO categories do increase

with increasing ESMO category and are quite similar in all scenarios, e.g. in the Standard

Scenario the median ASCO score is 13.44, 18.90, 23.00, and 48.72 for ESMO category 1, 2,

3, and 4, respectively. Only with Gompertz distributed failure times this is not the case,

meaning that category 3 has a higher median ASCO score than category 4, i.e. 56.39 and

54.68, respectively. This can be explained by the different category rate distributions of

increasing and decreasing hazards: With the former, category 4 has a rate of 15.45% and

with the latter a rate of 78.50% is present. Hence, for the combined results of increasing

and decreasing hazards, the sub-scenarios with decreasing hazards influence the combined

median ASCO score (Figure 4, Scenario 3b: Gompertz, blue boxplots) in a stronger way.
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For category 3 it is the other way round, meaning that the rate is higher in sub-scenarios

with increasing hazards, i.e. 16.12% vs. 0.01%. Thus, the combined category 4 rate is

mainly explained by sub-scenarios with decreasing hazards and category 3 by sub-scenarios

with increasing hazards. Moreover, as the median ASCO score of category 3 for increasing

hazards is larger than the median ASCO score of category 4 for decreasing hazards (56.41 vs.

49.75), the combined results for Gompertz distributed failure times have a smaller median

ASCO score for category 4 than category 3.

Figure 4: Description of ASCO score distribution (x-axis) separated into the categories of
ESMO and overall (y-axis) using boxplots for Scenarios 1 to 4.
The results of all sub-scenarios of each scenario are combined and shown in separate panels. The overall ASCO score
is abbreviated to "all". The proportions of each ESMO category are shown on the y-axis label. For Scenario 3a and
3b the ASCO distribution and category proportion of ESMO are shown combined (blue) and separately (red and green)
for the sub-scenarios with increasing and decreasing hazards over time.
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Figure 5: Description of ASCO score distribution (x-axis) separated into the categories of
ESMO and overall (y-axis) using boxplots for Scenarios 1 and 5 to 7.
The results of all sub-scenarios of each scenario are combined and shown in separate panels. The overall ASCO score
is abbreviated to "all". The proportions of each ESMO category are shown on the y-axis label. Abbreviations: pctl

C and
ptrt

C : Censoring rate of control and treatment group
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3.1.1.2 IQWiGRR vs. ASCO

IQWiGRR has an overall maximal category rate of 56.70% in the Standard Scenario (Figure

6 and 7, upper left panel), which is less than ESMOs maximal category rate. Other under-

lying failure time distributions like Weibull and Gompertz (Scenario 3, Figure 6), different

allocation ratios (Scenario 5, Figure 7) or without administrative censoring (Scenario 6, Fig-

ure 7) do impact the rate distributions of IQWiGRRs categories only marginally. However,

using wrongly assumed treatment effects for the sample size calculation and hence leading

to overpowered or underpowered studies do influence IQWiGRR compared to the Standard

Scenario (Figure 6). In case of overpowered studies, the maximal category rate increases by

30.76% to 87.46%. This increase is more than twice as large than the increase of ESMO max-

imal category (94.39%-80.57%=13.82%) because ESMO does already have a very large rate

in the Standard Scenario and hence cannot increase much further. Underpowered studies do

not influence IQWiGRR category distribution compared to the Standard Scenario. ESMO,

however, still shows (as described above) a similar increase in the maximal category rate

as for overpowered studies. If non-proportional hazards are present (Scenario 4) the rate of

the maximal category is reduced to 38.13% and the minimal category increased to 24.88%

compared to 56.70% and 12.50% in the Standard Scenario, respectively. Similar results with

category rates reduced to 46.40% or increased to 21.23% for the maximal and minimal cate-

gory can be seen in case of informative censoring with a censoring rate larger in the control

than in the treatment group (Scenario 7 (pctl
C > ptrt

C ), Figure 7 lower right panel). If the

treatment group has the larger censoring rate (pctl
C < ptrt

C ) an increase of the maximal cate-

gory rate is present, similar to overpowered studies (Scenario 2).

As for the ASCO and ESMO comparison, the median values of the ASCO score of IQWiGRR

categories do increase with increasing IQWiGRR category and are quite similar in all sce-

narios, e.g. in the Standard Scenario the median ASCO score is 55.94, 26.07, and 16.52 for

IQWiGRR category major, considerable, and minor, respectively. Only with overpowered

studies (Scenario 2) and present informative censoring (Scenario 7, pctl
C < ptrt

C ) this behavior

does change, meaning that the category "considerable" has a lower median ASCO score than

category minor. Furthermore, the overall median ASCO score is very similar to the maximal

category of IQWiGRR (Scenario 2, overpowered: 49.60 vs. 52.39; Scenario 7, pctl
C < ptrt

C :

42.48 vs. 45.07) because the rate of maximal category of IQWiGRR is very large.
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Figure 6: Description of ASCO score distribution (x-axis) separated into the categories of
IQWiGRR and overall (y-axis) using boxplots for Scenarios 1 to 4.
The results of all sub-scenarios of each scenario are combined and shown in separate panels. The overall ASCO score
is abbreviated to "all". The proportions of each IQWiGRR category are shown on the y-axis label. For Scenario 3a and
3b the ASCO distribution and category proportion of IQWiGRR are shown combined (blue) and separately (red and
green) for the sub-scenarios with increasing and decreasing hazards over time.
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Figure 7: Description of ASCO score distribution (x-axis) separated into the categories of
IQWiGRR and overall (y-axis) using boxplots for Scenarios 1 and 5 to 7.
The results of all sub-scenarios of each scenario are combined and shown in separate panels. The overall ASCO score
is abbreviated to "all". The proportions of each IQWiGRR category are shown on the y-axis label. Abbreviations: pctl

C

and ptrt
C : Censoring rate of control and treatment group
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3.1.1.3 Mod-IQWiGHR vs. ASCO

Mod-IQWiGHR has the lowest rate of the maximal category of all three ordinal additional

benefit methods. For example in the Standard Scenario, Mod-IQWiGHR has a rate of 42.62%

compared to 56.70% and 80.57% of IQWiGRR and ESMO, respectively. Otherwise, Mod-

IQWiGHR behaves very similar to IQWiGRR over the range of scenarios: The most scenarios

(Scenario 2 (with underpowered studies), 3, 5, and 6) do not affect IQWiGRR meaning that

the category rate distribution stays very similar to the Standard Scenario. Furthermore, in

these scenarios the median ASCO score of Mod-IQWiGHR categories does increase with in-

creasing Mod-IQWiGHR category and is quite similar (as for the comparison of ASCO/ESMO

and ASCO/IQWiGRR), e.g. in the Standard Scenario the median ASCO score is 61.41, 29.00,

and 17.59 for Mod-IQWiGHR category major, considerable, and minor, respectively. In case

of overpowered studies (Scenario 2) and present informative censoring (Scenario 7, pctl
C < ptrt

C ),

this behavior does change (as for the comparison of IQWiGRR and ASCO), meaning that

category considerable has a lower median ASCO score than category minor. Furthermore,

the overall median ASCO score is closest to the maximal category compared to the other cat-

egories of Mod-IQWiGHR (Scenario 2, overpowered: 49.60 vs. 56.00; Scenario 7, pctl
C < ptrt

C :

42.48 vs. 52.98). This, however, is not as similar as for IQWiGRR because the maximal

category rate of Mod-IQWiGRR is not as large as for IQWiGRR.

Furthermore, the same scenarios as for IQWiGRR influence Mod-IQWiGHR compared to

the Standard Scenario: Overpowered studies lead to a maximal category rate increase of

31.36%(=73.98%-42.62%), which is similar to IQWiGRR’s increase of 30.76%. The rate of

the maximal category, however, is still less than for IQWiGRR (and ESMO) because in the

Standard Scenario the rate is already smaller. Non-proportional hazards (Scenario 4) lead to

a reduction in almost half of the maximal category rate for Mod-IQWiGHR compared to the

Standard Scenario, which is again very similar to IQWiGRR. Furthermore, informative cen-

soring (Scenario 7) with the control group having a higher censoring rate lead to a decrease

of the maximal category and to very similar rates for all three categories (32.49%, 38.33%,

and 29.18%). If the treatment group has a higher censoring rate, the highest two categories

have very similar rates (49.69% and 44.02%), where both category rates are slightly increased

compared to the Standard Scenario.
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Figure 8: Description of ASCO score distribution (x-axis) separated into the categories of
Mod-IQWiGHR and overall (y-axis) using boxplots for Scenarios 1 to 4.
The results of all sub-scenarios of each scenario are combined and shown in separate panels. The overall ASCO score
is abbreviated to "all". The proportions of each Mod-IQWiGHR category are shown on the y-axis label. For Scenario
3a and 3b the ASCO distribution and category proportion of Mod-IQWiGHR are shown combined (blue) and separately
(red and green) for the sub-scenarios with increasing and decreasing hazards over time.
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Figure 9: Description of ASCO score distribution (x-axis) separated into the categories of
Mod-IQWiGHR and overall (y-axis) using boxplots for Scenarios 1 and 5 to 7.
The results of all sub-scenarios of each scenario are combined and shown in separate panels. The overall ASCO score
is abbreviated to "all". The proportions of each Mod-IQWiGHR category are shown on the y-axis label. Abbreviations:
pctl

C and ptrt
C : Censoring rate of control and treatment group

3.1.2 Relationship between additional benefit assessment methods

In this Section, the results of the pairwise Spearman correlation between all four additional

benefit assessment methods are illustrated using heatmaps and line figures. For the former,

all sub-scenarios - e.g. different treatment effects (designHR), different censoring rates, etc.

- were combined before calculating pairwise Spearman correlations for each scenario. For the

latter, the figures are separated by trueHR, medctl, power, pC, and a scenario specific param-

eter, which is unique for each scenario; e.g. for Scenario 2 the parameter HRvar for wrongly

assumed treatment effects is used. In sub-scenarios with very small trueHR (corresponding

to large treatment effects), only the same category is assigned by the ordinal additional bene-

fit assessment methods (IQWiGRR, Mod-IQWiGHR, and ESMO) leading to non-computable

correlations. Hence, in the line figures of sub-scenarios with large treatment effects, missing

values are present. In case of the heatmap, this issue did not occur because all sub-scenarios

including small and large treatment effects were combined and hence the whole range of the
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ordinal additional benefit assessment methods were assigned. Thus, Spearman correlation

could be calculated. Furthermore, the heatmaps and line figures use the same colour codes

for the pairwise method correlation results.

Since the results of the line figures of sub-scenarios with different underlying censoring rates

and power are very similar, the following results are mostly focused on sub-scenarios with a

censoring rate of 60% (pC=60%) and a power of 90%. The results for other assumed censor-

ing rates, i.e. 20% and 40%, and a power of 80% can be found in Appendix A.1 (only for the

Standard Scenario both power sub-scenarios are shown in the Results section).

Figure 10 illustrates the pairwise Spearman correlation (x-axis) using the above mentioned

heatmap, where all sub-scenarios of each scenario (y-axis) are combined. Some scenarios,

however, were again separated by specific parameters as different results are present. For

example, Scenario 2 is separated into underpowered (HRvar > 1) and overpowered (HRvar <

1) studies. The specific deviation is described on the y-axis label.

In the Standard Scenario all pairwise comparisons with ESMO (ASCO/ESMO, IQWiGRR/

ESMO, and Mod-IQWiGHR/ESMO) show a moderate positive correlation of 0.54, 0.58,

and 0.68, while all other pairwise comparisons have a high positive correlation of 0.74

for ASCO/IQWiGRR, 0.79 for ASCO/Mod-IQWiGHR, and even 0.84 for Mod-IQWiGHR/

IQWiGRR. Other scenarios lead to different correlation results compared to the Standard

Scenario. For example, in case of over- and underpowered studies, the ASCO/ESMO cor-

relation is strongly reduced to a low positive correlation of 0.39 and 0.5, respectively. This

behavior is again present for all comparisons with ESMO while the other pairwise compar-

isons such as ASCO/IQWiGRR, ASCO/Mod-IQWiGHR, and Mod-IQWiGHR/IQWiGRR are

only influenced by overpowered studies. The correlation in underpowered studies stays simi-

lar to the Standard Scenario.

Different failure time distributions (Scenario 3) do generally not change the correlation be-

tween the methods compared to the Standard Scenario. The only exceptions are the ESMO

comparisons where a reduced correlation is present for the Gompertz distribution. For the

ASCO/ESMO comparison this can be explained by the not increasing median ASCO score

with increasing ESMO categories. For the sub-scenarios with increasing and decreasing haz-

ards the median ASCO score does increase with increasing ESMO category as described in

detail in Section 3.1.1.1 and hence the correlation between ASCO/ESMO is similar to the
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Standard Scenario. Pairwise Spearman correlation behavior of IQWiGRR/ESMO and Mod-

IQWiGHR/ESMO can be interpreted similarly. In case of Weibull failure time distribution,

the correlation values stay similar for all pairwise comparisons compared to the Standard

Scenario. Splitting this scenario into sub-scenarios with increasing and decreasing hazards,

however, shows that the ESMO comparisons have an increased correlation for sub-scenarios

with increasing hazards and a decreased correlation for sub-scenarios decreasing hazards. For

example, the Spearman correlation of ESMO/ASCO is increased to 0.75 and decreased to

0.63 compared to the Standard Scenario with 0.68 for increasing and decreasing hazards,

respectively. All other pairwise comparisons without ESMO are not influenced by increasing

or decreasing hazards.

Even though non-proportional hazards (Scenario 4) influenced the descriptive measures of

the additional benefit methods, the pairwise Spearman correlation is not affected as much

compared to the Standard Scenario because all methods are influenced by non-proportional

hazard to some degree leading to only small changes in their relationship to one another.

Different allocation ratios (Scenario 5) and using only exponential censoring (Scenario 6)

do not influence all pairwise comparisons compared to the Standard Scenario. Informative

censoring (Scenario 7) with pctl
C < ptrt

C , however, does again impact all comparisons leading

to a heavily reduced correlation value, where even negligible correlation values of lower than

0.30 are present. For pctl
C > ptrt

C only comparisons with ESMO are impacted leading also to

a heavily reduced correlation compared to the Standard Scenario. The other pairwise corre-

lations stay similar to the Standard Scenario.

Similar results can be seen using Kendall-τb instead of Spearman correlation (see Appendix

A.1). The only difference is that Kendall-τb results show overall smaller values than Spear-

man correlation.

In the following sub-sections the results of the pairwise Spearman correlation between all four

additional benefit assessment methods are shown using the described line figures from above

for simulated scenarios without combining sub-scenarios.
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3.1.2.1 Standard Scenario

Focusing on each sub-scenario of the Standard Scenario with a censoring rate of 60% (pC=0.6,

Figure 11), all pairwise method comparisons with ESMO have similar Spearman correlation

curves (black, turquoise, and blue lines) ranging from low to high positive correlation. In

particular, decreasing underlying treatment effect (increasing trueHR) lead to stronger cor-

relation between the methods, e.g. in sub-scenarios with medctl=18 months and power of

90% correlation of 0.0165 and 0.6128 is present for ASCO/ESMO with a trueHR of 0.50 and

0.78, respectively. The correlation curve, however, has its maximum at "moderate" trueHR

of around 0.84 with a correlation value of approximately 0.75 to 0.90 for all sub-scenarios, i.e.

all panels of Figure 11. For example, in the sub-scenario with medctl=12 months and power

of 90%, the comparisons ASCO/ESMO, IQWiGRR/ESMO, and Mod-IQWiGHR/ESMO have

their maximum correlation of 0.9048, 0.7081, and 0.8312 at trueHR of 0.84, 0.82, and 0.84,

respectively. Nevertheless, only at moderate treatment effects these high correlation values

are present. All other sub-scenarios with different trueHR have negligible to low correlation

values.

The other three pairwise comparisons have more similar correlation values over all treat-

ment effects. For example, Mod-IQWiGHR/IQWiGRR (purple line) has a correlation value of

0.7685 at medctl=12 months, power of 90%, and trueHR=0.3. With larger trueHR (smaller

treatment effect) the correlation decreases, e.g. at trueHR=0.9 a correlation value of 0.5611

is present for the same sub-scenario. Furthermore, ASCO/IQWiGRR (red line) as well as

ASCO/Mod-IQWiGHR (green line) show a moderate to very high positive correlation over

the complete treatment effect range with a maximal correlation value of approximately 0.90 as

for the pairwise comparisons of ESMO. For example, at medctl=12 months and power of 90%

the maximal correlation value is 0.8991 and 0.9010 for ASCO/IQWiGRR and ASCO/Mod-

IQWiGHR, respectively.

These observations are in line with the heatmap (Figure 10), where all sub-scenarios were

combined resulting in a Spearman correlation value of 0.68, 0.74, and 0.79 for ASCO/ESMO,

ASCO/IQWiGRR, and ASCO/Mod-IQWiGHR, respectively.

Different simulated power and medctl marginally influence the above described correlation

pattern, e.g. at medctl=18 months the peak of ESMO comparisons is a bit smaller at around

0.75.
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3.1.2.2 Influence of incorrectly assumed designHR for sample size calculation

(Scenario 2)

Figure 12 illustrates the results of pairwise Spearman correlation between all methods for

each sub-scenario of Scenario 2 and is constructed in the same way as Figure 11. It con-

sists, however, out of five instead of two rows, where each row of panel stands for a different

HRvar and each coloumn of panel stands for a different medctl. The first two rows are the

sub-scenarios with overpowered studies and the last two rows are the sub-scenarios with un-

derpowered studies. Furthermore, the middle row is the same as the top row of Figure 11.

The range of trueHR dependents on HRvar and hence is different for each row, e.g. in the

first row trueHR ranges from 0.24 (= 0.3 · 0.8) to 0.72 (= 0.9 · 0.8).

The bottom two rows (underpowered studies) can only be compared to the Standard Sce-

nario when focusing on trueHRs ranging from 0.36 to 0.90 because in this range all rows have

simulated trueHR sub-scenarios and hence Spearman correlation results are present. The

behaviour of all pairwise Spearman correlation comparisons are similar in the underpowered

studies compared to the Standard Scenario in the above mentioned range of the trueHR. The

correlation maxima, however, of all pairwise ESMO comparisons (black, blue, and turquoise

line) are smaller with increasing HRvar meaning that in the lowest row of panels this extreme

is more visible as in the panel row second to last. This behavior leads to a reduced Spearman

correlation when combining all sub-scenarios as shown before in Figure 11. Nevertheless, in

general with a smaller treatment effect, the correlation is still increasing.

Furthermore, the pairwise comparison between ASCO and both IQWiG methods (green and

red line) flattens out more in underpowered studies with decreasing treatment effect compared

to the Standard Scenario. In the Standard Scenario these comparisons have a local maximum

at moderate treatment effect before decreasing and increasing again with smaller treatment

effects. In sub-scenarios with underpowered studies and trueHR>0.9, the Spearman correla-

tion value is reduced with decreasing treatment effect for all pairwise comparisons.

Similar as in underpowered studies, the top two rows (overpowered studies) can only be com-

pared to the Standard Scenario when focusing on trueHRs ranging from 0.30 to 0.72 because

in this range all rows have simulated trueHR sub-scenarios and hence Spearman correlation

results are present. In this trueHR range of the overpowered studies, all pairwise Spearman

correlations are reduced compared to the Standard Scenario, especially with smaller treat-
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ment effects. For example, Mod-IQWiGHR/IQWiGRR (violet line) has the largest reduction.

It is also reflected in all pairwise method correlations when combing all sub-scenarios as

shown above (Figure 10).
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3.1.2.3 Influence of different underlying failure time distributions (Scenario 3)

Figures 13 and 14 describe the pairwise Spearman correlations for each sub-scenario with

Gompertz and Weibull distributed failure times, respectively. Each row of panel stands

for different used shape parameters resulting in increasing, decreasing or constant hazards

(Standard Scenario) over time.

Underlying Gompertz distributed failure time distribution heavily influences the pairwise

correlations compared to the Standard Scenario (last row). For example, over time increasing

hazards in sub-scenarios with very large treatment effects results in an increase from no

correlation to a moderate positive correlation of around 0.25 to 0.5 for all pairwise ESMO

comparisons compared to the Standard Scenario. In sub-scenarios with moderate to small

treatment effect, the pairwise correlation drops down to almost no correlation. This behavior

is precise the other way round in the Standard Scenario. The other pairwise comparisons

ASCO/Mod-IQWiGHR, ASCO/IQWiGRR, and Mod-IQWiGHR/IQWiGRR (green, red, and

violet line) are not influenced and hence are very similar to the Standard Scenario (bottom

row of panels). Decreasing hazards (upper row of panels), however, do only influence all

pairwise method comparisons marginally compared to the Standard Scenario.

Weibull distributed failure times (see Figure 14) influence the pairwise Spearman correlation

only marginally and hence is not as strong as for underlying Gompertz distribution. In case

of over time decreasing hazards (upper row of panels), all pairwise comparisons including

ESMO (black, blue, and turquoise line) only have high positive correlations with moderate

treatment effect and hence the correlation does not increase over the range of trueHR as for the

Standard Scenario. This behavior is exactly the opposite in case of increasing hazards (middle

row of panels), where the pairwise Spearman correlation is increasing with larger treatment

effect even stronger than in the Standard Scenario and hence these pairwise comparisons

have an overall Spearman correlation which is slightly larger than for the Standard Scenario,

e.g. 0.75 vs. 0.68 (heatmap, Figure 10). The other pairwise comparisons ASCO/Mod-

IQWiGHR, ASCO/IQWiGRR, and Mod-IQWiGHR/IQWiGRR (green, red, and violet line)

are not influenced by increasing and decreasing hazards and hence are very similar to the

Standard Scenario (bottom row of panels).
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3.1.2.4 Influence of informative censoring due to treatment (Scenario 7)

Figure 15 shows the results of informative censoring on the pairwise Spearman correlation

between the methods for each sub-scenario. The panels in the middle row show the sub-

scenarios with a larger censoring rate in the treatment group and the bottom row of panels

the sub-scenarios with a larger censoring rate in the control group. The top row illustrates

again the results of the Standard Scenario, i.e. without informative censoring and hence equal

censoring rates in both treatment groups.

In case of a larger censoring rate in the treatment group, all pairwise Spearman correlations

are over the complete range of trueHR reduced compared to the Standard Scenario. For

example, the Spearman correlation increases with smaller treatment effect for all pairwise

ESMO comparisons as for the Standard Scenario. The reached maximum is, however, re-

duced. Moreover, with decreasing treatment effect the Mod-IQWiGHR/IQWiGRR correlation

is reduced as in the Standard Scenario but the reduction with present informative censoring

is stronger. ASCO/IQWiGRR does increase with decreasing treatment effect, but from a

trueHR approximately greater than 0.6 the correlation is reduced strongly, which is different

to the Standard Scenario.

In case of a larger censoring rate in the control group, all pairwise ESMO comparisons do not

reach the maxima of the Standard Scenario. Hence, the overall Spearman correlation is re-

duced. For the other three pairwise comparisons the overall Spearman correlation stays simi-

lar to the Standard Scenario as already shown in Figure 10. The behavior over the range of the

treatment effects, however, is different. For ASCO/Mod-IQWiGHR and ASCO/IQWiGRR,

the correlation with a large treatment effect is stronger than in the Standard Scenario. With

small treatment effects the correlation is smaller than in the Standard Scenario. Hence, these

divergence behaviors cancel each other out and lead to similar Spearman correlation when

combining all sub-scenarios.

Important to mention is, that with a larger censoring rate in the control group and with small

treatment effects, i.e. trueHR>0.82, all simulated studies did not show a statistically signif-

icant log rank test between the treatment groups. Hence, the additional benefit assessment

methods and Spearman correlations between them could not be calculated and are missing

in the corresponding panels.
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3.1.2.5 Remaining scenarios

All other remaining scenarios like non-proportional hazards using late treatment effects for

the treatment group (Scenario 4), unequal sample sizes (Scenario 5), and using exponential

censoring distribution (Scenario 6) have very similar pairwise Spearman correlation results

as in the Standard Scenario. Corresponding figures can be found in Appendix A.1.

3.1.3 ROC

In this Section, the results for ROC curves and the AUCs of the ROC curves of all ordi-

nal additional benefit assessment methods and all related statistical quantities are shown to

evaluate which statistical quantity is better suited for the additional benefit assessment of

new treatments. Furthermore, TPR and FPR results of statistical quantities of specific sub-

scenarios are shown as additional information. FPR and TPR were estimated for thresholds

ranging from 0.2 to 1 which are used for defining a maximal additional benefit classification

using HR-PE, HR–, and HR+. In this context, a true positive and false positive event is

defined as deserved classification of a maximal category, or, respectively, not deserved classi-

fication of a maximal category. Furthermore, a ground truth was needed for the estimation

of TPR and FPR but since no gold standard for additional benefit assessment method exists,

a maximal category was assumed to be justified if trueHR < δdeserved was met for different

cut-offs values of δdeserved (0.7, 0.75, and 0.8). For the TPR and FPR calculation all sub-

scenarios - e.g. different treatment effects (designHR), different censoring rates, etc. - were

combined (see Section 2.3.1.4 for more details).

Since the results of sub-scenarios with different underlying censoring rates are very similar,

the following results are focused on sub-scenarios with a censoring rate of 60% (pC=60%)

and a power of 90%. The results for other assumed censoring rates, i.e. 20% and 40%, and

a power of 80% can be found in Appendix A.1.

3.1.3.1 Standard Scenario

Figure 16 shows the ROC curves with estimated FPR and TPR of the Standard Scenario

with a power of 90%, medctl of 6 months, and pC of 60%. The different ROC lines represents

the three statistical quantities (HR-PE, HR–, and HR+) used for additional benefit. Further-

more, the TPR and FPR of each of the additional benefit assessment methods with ordinal
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outcome is shown as well (ESMO, Mod-IQWiGHR, IQWiGRR).

HR– (blue line) shows over the complete range of thresholds for a theoretical maximal cat-

egory the best ROC curve meaning that it is closest to the perfect classifier with 0% FPR

and 100% TPR (top left corner of each panel). The next best statistical quantity is HR-PE

(yellow line) followed by HR+ (black line). This described behavior of the three statistical

quantities can be seen for all δdeserved values, i.e. for all panels.

Important to note is that the choice of the threshold used to define a maximal category is

more important than the statistical quantity itself. For example, in Figure 16 and defining

HR+<0.75 as maximal category would lead to a small FPR of 0.0357, 0.0124 or 0.0006 for

δdeserved equal to 0.7, 0.75 or 0.8, respectively. On the other hand defining HR–<0.75 as max-

imal category would lead to a large FPR of 0.6956, 0.6195 or 0.3967 for δdeserved equal to 0.7,

0.75 or 0.8, respectively. Hence, even though HR– might be in general the better statistical

quantity for additional benefit assessment regarding ROC curves, the threshold used for the

definition of a maximal category is equally important.

ESMO has the largest TPR of the three additional benefit assessment methods with a cat-

egorical outcome. FPR, however, is also large compared to IQWiGRR and Mod-IQWiGHR,

except for δdeserved=0.8 (right panel) where the FPR is quite similar for all three methods

(IQWiGRR: 0.0805, Mod-IQWiGHR: 0.0060, and ESMO: 0.0242). Thus, ESMO is the most

liberal method, while Mod-IQWiGHR has the lowest FPR and TPR for all δdeserved values

and hence can be interpreted as the most conservative method.
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Figure 16: ROC curves of Standard Scenario with pC=60%, medctl=6, and power of 90%.
For each panel the sub-scenarios with designHRs ranging from 0.3 until 0.9 were used for FPR and TPR estimation,
where thresholds ranging from 0.2 to 1 were used for defining a maximal additional benefit classification using HR-PE,
HR–, and HR+. For TRP and FPR calculation a ground truth was needed: A maximal category was assumed to
be justified if trueHR < δdeserved was met for different cut-offs values of δdeserved (0.7, 0.75, and 0.8). In addition,
TPR and FPR of all ordinal additional benefit assessment methods were calculated. Each panel stands for different
δdeserved values. Abbreviations: FPR: False Positive Rate, HR-PE: Hazard Ratio Point Estimate, HR–: Lower 95%
confidence interval limit of the HR-PE, HR+: Upper 95% confidence interval limit of the HR-PE, medctl: Median
survival time in the control group, pC: Censoring rate, trueHR: True underlying Hazard Ratio of data generation,ROC:
Receiver Operating Characteristic, TPR: True Positive Rate, trueHR: True underlying Hazard Ratio of data generation,
δdeserved: Ground truth of deserved maximal category for TPR and FPR calculation (justified if trueHR < δ)

If one would define that the FPR should not be larger than 5% or 10% - similar to the used sig-

nificance level of 5% in clinical studies for controlling the type-I-error rate - HR– still obtains

higher TPR values for different δdeserved compared to HR+ and HR-PE. This is illustrated in

detail in Table 9, where the TPR results of Figure 16 for all three statistical quantities under

the condition that FPR is smaller than 5% or 10%, are shown. Furthermore, it can be seen

that the threshold defining a maximal category to achieve a FPR of less than 5% or 10%

and a δdeserved of 0.8 leads to very similar threshold values as used in the additional benefit

assessment methods of IQWiGRR (δdeserved = 0.8: 0.83 or 0.85; used threshold in method:
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0.85) and ESMO (δdeserved = 0.8: 0.66 or 0.68; used threshold in method: 0.65 and 0.7).

Nevertheless, the larger TPR values for HR– and hence ESMO, once again illustrates that

IQWiGRR is the more conservative method and ESMO the more liberal one.

In addition, Table 10 illustrates a similar consideration as Table 9, where the minimal needed

thresholds for all three statistical quantities under the condition that FPR is smaller than

5% or 10% in all sub-scenarios of the Standard Scenario are shown. Using these resulting

thresholds the corresponding TPR average and range (min, max) are shown as well. The

results are very similar to Table 9 and reinforce the described behavior from above: Using

δdeserved of 0.8 leads to a very similar threshold value as used in the additional benefit assess-

ment method of IQWiGRR. The needed threshold for HR–, however, is slightly reduced but

still similar to the threshold used in ESMO. Moreover, HR– has still larger TPR values than

HR+.

Table 9: Threshold and corresponding TPR allowing only a FPR of 5% or 10% of the Standard
Scenario with power of 90%, medctl of 6 months, and pC of 60%

δdeserved Method FPR ⩽ 5% FPR ⩽ 10%
Threshold TPR Threshold TPR

0.7 HR– 0.52 0.93 0.55 0.96
0.7 HR-PE 0.63 0.87 0.66 0.92
0.7 HR+ 0.76 0.65 0.79 0.72
0.75 HR– 0.58 0.95 0.60 0.97
0.75 HR-PE 0.68 0.90 0.70 0.93
0.75 HR+ 0.79 0.68 0.81 0.73
0.8 HR– 0.66 0.95 0.68 0.97
0.8 HR-PE 0.74 0.91 0.76 0.94
0.8 HR+ 0.83 0.72 0.85 0.77

Abbreviations: FPR: False positive rate, HR: Hazard ratio, HR–: Lower 95% confidence
interval limit of the HR-PE, HR+: Upper 95% confidence interval limit of the HR-PE,
medctl: Median survival time of control group, pC: Overall censoring rate, PE: Point esti-
mate, TPR: True positive rate, trueHR: True underlying HR of data generation, δdeserved:
Ground truth of deserved maximal category for TPR and FPR calculation (justified if
trueHR < δ)
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Table 10: Minimal threshold and corresponding TPR given as mean and range (min, max)
allowing only a FPR of 5% or 10% for the complete Standard Scenario

δdeserved Method FPR ⩽ 5% FPR ⩽ 10%
Threshold TPR Threshold TPR

0.7 HR– 0.50 0.90 (0.87, 0.94) 0.53 0.94 (0.91, 0.97)
0.7 HR-PE 0.62 0.83 (0.79, 0.87) 0.65 0.88 (0.85, 0.92)
0.7 HR+ 0.76 0.52 (0.45, 0.65) 0.79 0.60 (0.52, 0.72)
0.75 HR– 0.55 0.91 (0.88, 0.94) 0.58 0.95 (0.92, 0.97)
0.75 HR-PE 0.66 0.84 (0.81, 0.88) 0.69 0.90 (0.87, 0.93)
0.75 HR+ 0.79 0.56 (0.49, 0.68) 0.81 0.61 (0.54, 0.73)
0.8 HR– 0.64 0.93 (0.90, 0.95) 0.66 0.95 (0.93, 0.97)
0.8 HR-PE 0.73 0.88 (0.85, 0.91) 0.75 0.91 (0.88, 0.93)
0.8 HR+ 0.83 0.61 (0.54, 0.72) 0.85 0.67 (0.60, 0.77)

Abbreviations: FPR: False positive rate, HR: Hazard ratio, HR–: Lower 95% confidence
interval limit of the HR-PE, HR+: Upper 95% confidence interval limit of the HR-PE,
PE: Point estimate, TPR: True positive rate, trueHR: True underlying HR of data gener-
ation, δdeserved: Ground truth of deserved maximal category for TPR and FPR calculation
(justified if trueHR < δ)

The AUC values of the ROC curves for all sub-scenarios of the Standard Scenario including

the one shown in Figure 16 are shown in a nested loop-plot (see Figure 17). This nested

loop-plot is split into two panels, one for sub-scenarios with 90% and one for 80% power. In

each panel a nested loop plot is shown, meaning that the simulation results are reordered into

a lexicographical order. Hence, the results (AUC values) are arranged consecutively on the

horizontal axis and the criterion for the different sub-scenarios is presented on the vertical

axis (pC and medctl). Furthermore, the AUC results for each statistical quantity used for the

additional benefit assessment are highlighted in different colors and the AUC results for the

three δdeserved values are connected with each other for each of the sub-scenarios.

As already described above this figure underlines that HR– has the largest AUC value with

a mean of 0.9925 and hence ROC curve closest to 0% FPR and 100% TPR over all sub-

scenarios. HR-PE has consistent smaller AUC values with a mean of 0.9809, which is still

quite similar to HR–. HR+, however, shows the lowest AUC values with a mean of 0.8553

(slightly increasing with larger δdeserved). Overall, other sub-scenarios with different medctl,

pC, and power of the Standard Scenario show no differences in AUC values for the statistical

quantities and hence, the above described pattern between the statistical quantities stays the

same (see Figure 17).



76 Chapter 3. Results

Figure 17: AUC of ROC curves (y-axis) separated by δdeserved (x-axis) of Standard Scenario
for each sub-scenario.
Each panel stands for a different power. Abbreviations: AUC: Area Under the Curve, HR-PE: Hazard Ratio Point
Estimate, HR–: Lower 95% confidence interval limit of the HR-PE, HR+: Upper 95% confidence interval limit of the
HR-PE, medctl: Median survival time in the control group, pC: Censoring rate, trueHR: True underlying Hazard Ratio
of data generation, ROC: Receiver Operating Characteristic, δdeserved: Ground truth of deserved maximal category for
TPR and FPR calculation (justified if trueHR < δ)

Using constant sample size:

Figure 18 shows the ROC with estimated FPR and TPR of the same sub-scenario of Standard

Scenario as above (power: 90%, medctl=6, and pC=0.6). However, to examine, whether the

sample size calculation leads to the above described differences of the statistical quantities,

a simulation with constant sample size was performed. A sample size of 500 per group,

independent of the actual treatment effect, was used for each sub-scenario. This resulted in

exactly the same ROC curves for all three quantities, i.e. all three lines overlap (blue, yellow,

and black). To reach the same FPR and TPR for the different statistical quantities different

thresholds defining the maximal category have to be chosen. All statistical quantities show

the same AUC values within each sub-scenario. The corresponding AUC results of all sub-

scenarios of the Standard Scenario, i.e. the nested loop plot, can be found in Appendix A.1

(Figure 33).
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ESMO is again the most liberal method with the largest TPR and FPR. IQWiGRR and

Mod-IQWiGHR have lower FPR with slightly reduced TPR values. For example, with a

δdeserved of 0.8, ESMO has TPR and FPR of 0.97 and 0.60, while IQWiGRR has 0.87 and

0.11, respectively.

Figure 18: ROC curves of the Standard Scenario with pC=60%, medctl=6, and power of 90%
with constant sample size.
No sample size calculation for data generation was performed. Instead a sample size of 500 per group was used for each
sub-scenario. For each panel the sub-scenarios with designHRs ranging from 0.3 until 0.9 were used for FPR and TPR
estimation, where thresholds ranging from 0.2 to 1 were used for defining a maximal additional benefit classification
using HR-PE, HR–, and HR+. For TRP and FPR calculation a ground truth was needed: A maximal category was
assumed to be justified if trueHR < δdeserved was met for different cut-offs values of δdeserved (0.7, 0.75, and 0.8).
In addition, TPR and FPR of all ordinal additional benefit assessment methods were calculated. Each panel stands
for different δdeserved values. Abbreviations: ESMO: European Society for Medical Oncology, FPR: False Positive
Rate, HR-PE: Hazard Ratio Point Estimate, HR–: Lower 95% confidence interval limit of the HR-PE, HR+: Upper
95% confidence interval limit of the HR-PE, IQWiG: Institute for quality and efficiency in health care, IQWiGRR:
Original IQWiG method, medctl: Median survival time in the control group, Mod-IQWiGHR: Modified IQWiG method
using upper confidence interval limit based on IQWiG thresholds (transformation into HR based thresholds using the
conversion formula proposed by VanderWeele (2020), pC: Censoring rate, ROC: Receiver Operating Characteristic,
TPR: True Positive Rate, trueHR: True underlying Hazard Ratio of data generation, δdeserved: Ground truth of deserved
maximal category for TPR and FPR calculation (justified if trueHR < δ)
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Reason for this difference in TPR, FPR, and corresponding AUC values between with sample

size calculation and with constant sample size can be attributed to the difference in precise

estimation of HR, HR–, and HR+. Therefore, Figure 19 shows these estimations regarding

the simulation with sample size calculation and with constant sample size for the same sub-

scenario as above (power: 90%, medctl=6, and pC=0.6) using only significant studies. Hence,

especially in sub-scenarios with small treatment effects and with constant sample size (right

panel of Figure 19) the remaining significant studies for the estimations is reduced, leading

to not as precise estimations. For example, with a trueHR of 0.9, the estimated median of

HR is 0.78.

Furthermore, in the case of constant sample size (right panel), the slope of the estimations

of all three statistical quantities stays very similar over the range of trueHRs. In case of

performed sample size calculation (left panel), the slope is different between the statistical

quantities. Hence, combining all these sub-scenarios of the right panel for FPR and TPR

calculation lead to similar results. For example, defining a HR–<0.53 as maximal category

leads to a TPR of 0.9159 and FPR 0.1196 (for δdeserverd=0.7). For HR-PE and HR+ different

thresholds can be found that lead to similar TPR and FPR values: For HR-PE<0.65 and

HR+<0.79 a TPR of 0.9213 and 0.9187 as well as a FPR of 0.1302 and 0.1238 are present,

respectively. The threshold values of 0.53, 0.65, and 0.79 can also be seen to be very close

in the ROC curve of this sub-scenario (Figure 18, left panel). In the performed simulation

the used thresholds for defining a maximal category ranged from 0.2 to 1 in 0.01 equidistant

steps. If the step sequence would be smaller, the remaining difference in TPR and FPR would

also be smaller.

In case a sample size calculation is performed (left panel), the range (i.e. size of the boxplots)

of the three statistical quantity estimates are larger for large treatment effects, as the sample

size is smaller, and vice versa in case of small treatment effects. Hence, over the range of

trueHR the estimates are not following a similar slope as for the simulation with constant

sample size (right panel). HR– and HR-PE estimations have the steepest increase with

decreasing treatment effect (increasing trueHR). HR+ estimation does not increase as steep

as the other two quantities. Hence, combining all these sub-scenarios of the left panel for

FPR and TPR calculation lead to different results, as with steeper increase of the estimates,

it is easier to separate the sub-scenarios in a more distinct way.
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Figure 19: Description of HR-PE, HR–, and HR+ estimation distribution (y-axis) separated
by trueHR (x-axis) using boxplots with sample size calculation (left panel) and with constant
sample size (right panel) of the Standard Scenario with power of 90%, medctl = 6, and pC =
60%
In case of no performed sample size calculation for the data generation, a sample size of 500 per group was used for each
sub-scenario. Only significant studies were used for HR-PE, HR–, and HR+ estimation. Abbreviations: CI: Confidence
Interval, HR-PE: Hazard Ratio Point Estimate, HR–: Lower 95% confidence interval limit of the HR-PE, HR+: Upper
95% confidence interval limit of the HR-PE, medctl: Median survival time in the control group, pC: Censoring rate,
trueHR: True underlying Hazard Ratio of data generation

3.1.3.2 Remaining scenarios

All other remaining scenarios have generally no influence on TPR, FPR, and corresponding

ROC as well as AUC values compared to the Standard Scenario. Corresponding figures can

be found in Appendix A.1.

One exception is present for Scenario 2 with overpowered studies, i.e. HRvar<1. Here, the

FPR of IQWiGRR is strongly increased compared to the Standard Scenario (Figure 20),

e.g. for HRvar=0.9 and δdeserved = 0.8 from 0.0805 to 0.7357. ESMO and Mod-IQWiGHR

have increased FPR as well, e.g. for HRvar=0.9 and δdeserved=0.8 from 0.0896 to 0.1537 and

from 0.0060 to 0.0539, respectively. These increases, however, are not as strong. Overall,
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Mod-IQWiGHR is still the most conservative method. The general comparison between the

statistical quantities is not affected, meaning that HR– is still closest to the perfect classifier

with 0% FPR and 100% TPR (top left corner of each panel).

Similar different behavior compared to the Standard Scenario can also be seen in cases with

informative censoring (Scenario 7), where the treatment group has a larger censoring rate

than the control group. The results are shown in Figure 21. All methods have again an in-

creased FPR compared to the Standard Scenario, while IQWiGRR is influenced the strongest,

e.g. 0.0805 vs. 0.9134 for δdeserved = 0.8, and Mod-IQWiGHR is still the most conservative

method. The general comparison between the statistical quantities is again not affected.

Furthermore, different underlying failure time distributions (Scenario 3) with increasing haz-

ards over time reduce TPR of ESMO drastically. For example, in the same sub-scenario as

shown in Figure 16 of the Standard Scenario and with δdeserved = 0.8 the TPR is reduced by

0.2451 (0.9470 vs. 0.7019) for Weibull distributed failure times (shape=1.5). IQWiGRR and

Mod-IQWiGHR are hardly influenced by these distributions leading to similar TPR and FPR

values, e.g. in the same sub-scenario: 0.7704 vs. 0.7823 (TPR) and 0.0805 vs. 0.0826 (FPR)

for IQWiGRR, respectively, and 0.6170 vs. 0.6333 (TPR) and 0.0060 vs. 0.0056 (FPR) for

Mod-IQWiGHR. The general comparison between the statistical quantities is again not af-

fected. In addition, in case of decreasing hazards over time, similar results as for the Standard

Scenario are present.
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Figure 20: ROC curves of Scenario 2 with pC=60% medctl=6, HRvar=0.9 (overpowered stud-
ies), and power of 90%.
For each panel the sub-scenarios with designHRs ranging from 0.3 until 0.9 were used for FPR and TPR estimation,
where thresholds ranging from 0.2 to 1 were used for defining a maximal additional benefit classification using HR-PE,
HR–, and HR+. For TRP and FPR calculation a ground truth was needed: A maximal category was assumed to be
justified if trueHR < δdeserved was met for different cut-offs values of δdeserved (0.7, 0.75, and 0.8). In addition, TPR
and FPR of all ordinal additional benefit assessment methods were calculated. Each panel stands for different δdeserved

values. Abbreviations: designHR: Design Hazard Ratio used for sample size calculation, FPR: False Positive Rate,
HR-PE: Hazard Ratio Point Estimate, HR–: Lower 95% confidence interval limit of the HR-PE, HR+: Upper 95%
confidence interval limit of the HR-PE, HRvar: Factor for deviance between designHR and trueHR, medctl: Median
survival time in the control group, pC: Censoring rate, ROC: Receiver Operating Characteristic, TPR: True Positive
Rate, trueHR: True underlying Hazard Ratio of data generation, δdeserved: Ground truth of deserved maximal category
for TPR and FPR calculation (justified if trueHR < δ)
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Figure 21: ROC curves of Scenario 7 with medctl=6, pctl
C < ptrt

C (pctl
C =20%, ptrt

C =40%), and
power of 90%.
For each panel the sub-scenarios with designHRs ranging from 0.3 until 0.9 were used for FPR and TPR estimation,
where thresholds ranging from 0.2 to 1 were used for defining a maximal additional benefit classification using HR-PE,
HR–, and HR+. For TRP and FPR calculation a ground truth was needed: A maximal category was assumed to be
justified if trueHR < δdeserved was met for different cut-offs values of δdeserved (0.7, 0.75, and 0.8). In addition, TPR
and FPR of all ordinal additional benefit assessment methods were calculated. Each panel stands for different δdeserved

values. Abbreviations: FPR: False Positive Rate, HR-PE: Hazard Ratio Point Estimate, HR–: Lower 95% confidence
interval limit of the HR-PE, HR+: Upper 95% confidence interval limit of the HR-PE, medctl: Median survival
time in the control group, pctl

C and ptrt
C : Censoring rate of control and treatment group, ROC: Receiver Operating

Characteristic, TPR: True Positive Rate, trueHR: True underlying Hazard Ratio of data generation, δdeserved: Ground
truth of deserved maximal category for TPR and FPR calculation (justified if trueHR < δ)
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Figure 22: ROC curves of Scenario 3 with Gompertz failure time distribution (shape of 0.2:
increasing hazards over time), medctl=6, pC=60%, and power of 90%.
For each panel the sub-scenarios with designHRs ranging from 0.3 until 0.9 were used for FPR and TPR estimation,
where thresholds ranging from 0.2 to 1 were used for defining a maximal additional benefit classification using HR-PE,
HR–, and HR+. For TRP and FPR calculation a ground truth was needed: A maximal category was assumed to be
justified if trueHR < δdeserved was met for different cut-offs values of δdeserved (0.7, 0.75, and 0.8). In addition, TPR
and FPR of all ordinal additional benefit assessment methods were calculated. Each panel stands for different δdeserved

values. Abbreviations: FPR: False Positive Rate, HR-PE: Hazard Ratio Point Estimate, HR–: Lower 95% confidence
interval limit of the HR-PE, HR+: Upper 95% confidence interval limit of the HR-PE, medctl: Median survival time
in the control group, pC: Censoring rate, ROC: Receiver Operating Characteristic, TPR: True Positive Rate, trueHR:
True underlying Hazard Ratio of data generation, δdeserved: Ground truth of deserved maximal category for TPR and
FPR calculation (justified if trueHR < δ)
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Figure 23: ROC curves of Scenario 3 with Weibull failure time distribution (shape of 1.5:
increasing hazards over time), medctl=6, pC=60%, and power of 90%.
For each panel the sub-scenarios with designHRs ranging from 0.3 until 0.9 were used for FPR and TPR estimation,
where thresholds ranging from 0.2 to 1 were used for defining a maximal additional benefit classification using HR-PE,
HR–, and HR+. For TRP and FPR calculation a ground truth was needed: A maximal category was assumed to be
justified if trueHR < δdeserved was met for different cut-offs values of δdeserved (0.7, 0.75, and 0.8). In addition, TPR
and FPR of all ordinal additional benefit assessment methods were calculated. Each panel stands for different δdeserved

values. Abbreviations: FPR: False Positive Rate, HR-PE: Hazard Ratio Point Estimate, HR–: Lower 95% confidence
interval limit of the HR-PE, HR+: Upper 95% confidence interval limit of the HR-PE, medctl: Median survival time
in the control group, pC: Censoring rate, ROC: Receiver Operating Characteristic, TPR: True Positive Rate, trueHR:
True underlying Hazard Ratio of data generation, δdeserved: Ground truth of deserved maximal category for TPR and
FPR calculation (justified if trueHR < δ)
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3.1.4 Optimal cutoff determination

The calculated ASCO cutoff values, which correspond to categories of ESMO, IQWiGRR,

and Mod-IQWiGHR, using the maximizing weighted Cohens kappa approach, ROC01, and

Svensson method are shown in Figure 24.

It can be seen that for ESMO all three ASCO cutoff values separating the ASCO scale in the

four categories of ESMO are very similar over all simulated scenarios (top three panels), i.e.

the cutoff values for the Standard Scenario are 17.06, 20.07, and 23.30 using the maximizing

weighted Cohens kappa approach. This reflects the high rate of maximal categories and hence

the liberal behavior of ESMO as the cutoff value for the maximal ESMO category is quite

low and hence almost the complete range of ASCO values are categoriesed into the maximal

ESMO category. Furthermore, with underlying Gompertz distributed failure times with in-

creasing hazards, the cutoff values are increased to 37.72, 52.90, and 67.36, which logically

increases the cutoff values of the overall Gompertz scenario to 25.79, 30.89, and 54.83. The

sub-scenario with decreasing hazards is not affected and hence similar cutoff values as for the

Standard Scenario are present. This reflects the unusual behavior of ESMO to the Gompertz

distribution with increasing hazards as already mentioned in the sections above.

For IQWiGRR (middle two panels) and Mod-IQWiGHR (bottom two panels) the two cutoff

values separating ASCO into three categories of IQWiGRR and Mod-IQWiGHR are more dis-

tinguished, e.g. 20.06 and 36.48 for IQWiGRR as well as 22.56 and 45.34 for Mod-IQWiGHR

of the Standard Scenario using the maximizing weighted Cohens kappa approach. These

values stay very similar over all scenarios.

In general, all methods used for the calculation of the ASCO cutoff values (maximizing

weighted Cohens kappa, ROC01, and Svensson method) lead to very similar results. Only

ROC01 results in larger ASCO cutoff values, especially for the cutoff value separating the

lowest two categories of ESMO, IQWiGRR, and Mod-IQWiGHR (left three panels). Cohens

kappa approach and Svensson cutoff values are very similar for all additional benefit assess-

ment methods and simulated scenarios.
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Figure 24: Optimal ASCO cutoffs (y-axis) for the different scenarios (x-axis) where all sub-
scenarios were combined for cutoff determination.
Each row of panel stands for ASCO cutoff values between different categories of ordinal additional benefit assessment
methods and each coloumn of panel stands for different methods. Abbreviations: designHR: Design Hazard Ratio used
for sample size calculation, HRvar: Factor for deviance between designHR and trueHR, nctl and ntrt: Sample size
of control and treatment group, pctl

C and ptrt
C : Censoring rate of control and treatment group, r: Allocation ratio

(ntrt/nctl), trueHR: True underlying Hazard Ratio of data generation
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3.1.5 Bias evaluation

As already mentioned in the ADEMP structure of this simulation (see Section 2.3.1.2), the

data generation mechanism was defined with the goal to achieve a specific censoring rate

using a combination of administrative and exponential censoring mechanisms. To achieve

this, the censoring times were defined dependent on the generated event times, which could

introduce bias into the simulation study. This possible bias was investigated with an addi-

tionally performed simulation. For this data of the Standard Scenario with nsim= 10,000 and

a constant sample size of 1,000 (500 per treatment group) for each sub-scenario was gener-

ated. The results of this assessment is shown in Table 11 and Figure 25. As anticipated the

censoring mechanism for exponentially distributed censoring achieving a specific censoring

rate introduced bias to the HR estimation. With larger simulated censoring rate (pC) and

smaller medctl, the HR bias was increased, i.e. sub-scenarios with pC = 0.6 (blue line) and

medctl = 6 months (left panel) have the largest HR bias. Furthermore, treatment effects of

trueHR of around 0.5 lead to larger bias in the HR estimation. For example, with medctl

= 6 months, pC = 0.6, and power of 90%, the HR bias is -0.0378, -0.0471, and -0.0118 for

trueHR of 0.3, 0.5, 0.9, respectively. Similar results can also be seen in Table 11, where all

different trueHR of each sub-scenario are combined for the calculation of the mean HR bias

and Monte Carlo SE of the HR bias. Here, the same results can be seen: With larger pC and

smaller medctl, the HR bias was increased.

Overall, the HR was slightly underestimated, i.e. the overall HR bias of the Standard Sce-

nario, where all sub-scenarios were combined, was -0.0126 (Monte Carlo SE of HR bias:

0.000505).
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Figure 25: Biased introduced to HR estimation (y-axis) separated by trueHR (x-axis) of Stan-
dard Scenario of Simulation 1 (outlined in Section 2.3.1) with power of 90%, nsim= 10,000,
and constant sample size (N=1,000; 500 per group).
Each column of panel stands for different medctl. The simulated censoring rate is colour coded. Non-significant studies
were included in this analysis. Abbreviations: medctl: Median survival time in the control group, pC: Censoring rate,
trueHR: True underlying Hazard Ratio of data generation

Table 11: Mean HR bias (rounded to the 4th decimal place) with Monte Carlo SE (rounded to
the 6th decimal place) of Standard Scenario of Simulation 1 (outlined in Section 2.3.1) with
power of 90%, nsim= 10,000, and constant sample size (N=1,000; 500 per group).

Scenario Introduced bias
Censoring rate (pC) medctl HR Bias Monte Carlo SE of HR Bias

0.2 6 -0.0015 0.000432
0.2 12 0.0008 0.000438
0.2 18 0.0011 0.000445
0.2 24 0.0011 0.000449
0.2 30 0.0013 0.000453
0.4 6 -0.0166 0.000484
0.4 12 -0.0110 0.000488
0.4 18 -0.0085 0.000490
0.4 24 -0.0068 0.000491
0.4 30 -0.0057 0.000492
0.6 6 -0.0373 0.000573
0.6 12 -0.0305 0.000580
0.6 18 -0.0272 0.000583
0.6 24 -0.0251 0.000585
0.6 30 -0.0235 0.000587

Notes: Non-significant studies were included in this analysis. Abbreviations: HR: Hazard ratio, medctl: Median survival time of control
group, pC: Overall censoring rate, SE: Standard error
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3.2 Simulation 2

Parts of this Section 3.2 are already published in the article A Comparison of Additional Ben-

efit Assessment Methods for Time-to-Event Endpoints Using Hazard Ratio Point Estimates

or Confidence Interval Limits by Means of a Simulation Study by Büsch et al. (2024). The

manuscript has been written by the lead author but may contain comments and corrections

from the co-authors and the reviewers.

To investigate the robustness of the results of Simulation 1, another simulation study was

performed using an unbiased approach for the censoring mechanism. Further information of

the ADEMP structure of the simulation study is outlined in Section 2.3.2. In the following,

the results of Simulation 2 are shown.

This Section focuses only on important findings, where differences to the results of Simulation

1 are highlighted. Corresponding figures of the results not shown in this section can be found

in Appendix A.2.

Overall, the results of Simulation 2 are very similar to the first simulation. One difference is

present with small median survival times in the control group, i.e. medctl ∈ {6, 12}. Here,

pairwise Spearman correlations between ESMO and the other additional benefit assessment

methods have a reduced maximal value (black, blue, and turquise lines, Figure 26 first two

panel-coloumns of middle row) compared to Simulation 1 (black, blue, and turquise lines, Fig-

ure 11 first two panel-coloumns of top row). For example, for medctl=6 and power 90% (left

panel of middle row of Figure 12 and left panel of top row of Figure 26 for Simulation 1 and

2, respectively) the maximum Spearman correlation value between ASCO/ESMO is 0.8094

and 0.5240 for Simulation 1 and Simulation 2, respectively. The trueHR, however, where

the maxima occurs, did not change. Other pairwise comparisons (ASCO/Mod-IQWiGHR,

ASCO/IQWiGRR, and IQWiGRR/Mod-IQWiGHR) are very similar in all sub-scenarios as

for Simulation 1.

In case of overpowered studies (Scenario 2, HRvar=0.8), the comparison ASCO/Mod-IQWiGHR

has overall larger correlation values and the correlation increases with decreasing treatment

effect, while in Simulation 1 this was the other way round (see Figure 26, second row from

the top). For other HRvar values, this different behavior to Simulation 1 is not present.
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Moreover, the AUC values of the ROC curves of Simulation 1 and 2 of the Standard Scenario

are shown in Figure 27, where the former is shown in transparent colours. Furthermore,

the mean AUC values for all three statistical quantities of Standard Scenario 1 are shown in

Table 12. It can be seen that for the statistical quantity HR+ (black line) the AUC values

are slightly reduced in Simulation 2, e.g. on average by 0.0180, 0.0185, 0.0185 for δdeserved

0.7, 0.75, and 0.8, respectively. The results of Simulation 1 and Simulation 2 cannot be

distinguished from the other two statistical quantities (HR– and HR-PE) and hence have

very similar results compared to Simulation 1. The overall comparison between the three

statistical quantities, however, stays the same: HR– and HR-PE have very large AUC values,

where HR– performs slightly better, and HR+ has the lowest AUC results.

In case of Gompertz distributed failure times with decreasing hazard (shape=-0.2), the AUC

results are reduced with increasing medctl compared to Simulation 1 (see Figure 28). This

affects all statistical quantities in some degree, but HR+ shows the largest changes compared

to Simulation 1. For example, with medctl=30, power 90%, and δdeserved=0.8, the AUC dif-

ference is 0.0419, 0.0119, and 0.0047 for HR+, HR-PE, and HR–, respectively. In case of

increasing hazards (shape=0.2), only HR+ is changed similar as in the Standard Scenario.

Furthermore, all ordinal additional benefit assessment methods have slightly reduced TPR

and FPR values in all scenarios compared to Simulation 1. For example Table 13 shows

the mean TPR and FPR results for all ordinal additional benefit assessment methods of the

Standard Scenario separated for δdeserved and both simulations. The comparison between the

methods, however, stays the same as in Simulation 1: ESMO is more liberal compared to

IQWiGRR and Mod-IQWiGHR with Mod-IQWiGHR being the most conservative one.
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Table 12: Mean AUC values for different statistical quantities of Standard Scenario of Sim-
ulation 1 and Simulation 2 (rounded to the 4th decimal place)

Simulation δdeserved HR– HR-PE HR+

1 0.7 0.9911 0.9781 0.8545
2 0.7 0.9920 0.9795 0.8365
1 0.75 0.9922 0.9805 0.8633
2 0.75 0.9929 0.9817 0.8448
1 0.8 0.9931 0.9826 0.8755
2 0.8 0.9938 0.9837 0.8570

Abbreviations: AUC: Area under the curve, FPR: False positive rate, HR: Hazard Ratio,
HR+: Upper 95% confidence interval limit of the HR-PE, HR–: Lower 95% confidence
interval limit of the HR-PE, PE: Point estimate, TPR: True positive rate, trueHR:
True underlying HR of data generation, δdeserved: Ground truth of deserved maximal
category for TPR and FPR calculation (justified if trueHR < δ)

Table 13: Mean FPR and TPR of additional benefit assessment methods of Standard Scenario
1 of Simulation 1 and Simulation 2 (rounded to the 4th decimal place)

Simulation δdeserved
ESMO IQWiGRR Mod-IQWiGHR

TPR FPR TPR FPR TPR FPR
1 0.7 0.9980 0.5148 0.7889 0.2344 0.6536 0.0789
2 0.7 0.9793 0.3932 0.6993 0.1499 0.5462 0.0417
1 0.75 0.9946 0.4041 0.7639 0.1672 0.6170 0.0390
2 0.75 0.9641 0.2903 0.6696 0.0973 0.5102 0.0183
1 0.8 0.9717 0.1683 0.7137 0.0671 0.5560 0.0054
2 0.8 0.9199 0.1137 0.6159 0.0315 0.4563 0.0017

Abbreviations: FPR: False positive rate, HR: Hazard Ratio, TPR: True positive rate,
trueHR: True underlying HR of data generation, δdeserved: Ground truth of deserved
maximal category for TPR and FPR calculation (justified if trueHR < δ)
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Figure 27: AUC of ROC curves (y-axis) separated by δdeserved (x-axis) of Standard Scenario
with pC=0.6 (Simulation 2).
Each panel stands for a different power. The results of Simulation 1 are shown with transparent colours. For maximal
category rule using HR– and HR-PE thresholds, the results of Simulation 1 and 2 are almost identical. Hence, almost
no difference in lines and points can be seen between both simulations. Abbreviations: AUC: Area Under the Curve,
HR-PE: Hazard Ratio Point Estimate, HR–: Lower 95% confidence interval limit of the HR-PE, HR+: Upper 95%
confidence interval limit of the HR-PE, medctl: Median survival time in the control group, pC: Censoring rate, trueHR:
True underlying Hazard Ratio of data generation, ROC: Receiver Operating Characteristic, δdeserved: Ground truth of
deserved maximal category for TPR and FPR calculation (justified if trueHR < δ)
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Figure 28: AUC of ROC curves (y-axis) separated by δdeserved (x-axis) of Scenario 3 with
Gompertz failure time distribution and pC=0.6 (Simulation 2).
Each panel stands for a different power. The results of Simulation 1 are shown with transparent colours. For maximal
category rule using HR– and HR-PE thresholds, the results of Simulation 1 and 2 are almost identical. Hence, almost
no difference in lines and points can be seen between both simulations. Abbreviations: AUC: Area Under the Curve,
HR-PE: Hazard Ratio Point Estimate, HR–: Lower 95% confidence interval limit of the HR-PE, HR+: Upper 95%
confidence interval limit of the HR-PE, medctl: Median survival time in the control group, pC: Censoring rate, trueHR:
True underlying Hazard Ratio of data generation, ROC: Receiver Operating Characteristic, δdeserved: Ground truth of
deserved maximal category for TPR and FPR calculation (justified if trueHR < δ)
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3.2.1 Bias evaluation

To review whether the data generation mechanism of Simulation 2 indeed leads to unbiased

HR estimations, the results of the same investigation as for Simulation 1 (see Section 3.1.5)

are shown in this sub-section. Hence, data of the Standard Scenario with nsim= 10,000 and a

constant sample size of 1,000 (500 per treatment group) for each sub-scenario was generated.

The results of this assessment is shown in Table 14 and Figure 29 with the corresponding

results of Simulation 1. The HR bias is always very close to zero and hence is much smaller

than in Simulation 1. The simulation parameter medctl does not influence the HR estimation.

Nevertheless, with decreasing treatment effect, the HR bias is slightly increased as well. For

example, with medctl = 6 months, pC = 0.6, and power of 90%, the HR bias is 0.0013 and

0.0045 for trueHR of 0.3 and 0.9, respectively. The corresponding HR bias for Simulation 1,

however, are larger: -0.0378 and -0.0118, respectively.

Overall, the HR was slightly overestimated, i.e. the overall bias of the Standard Scenario was

0.00260 (Monte Carlo SE of HR bias: 0.000615) compared to the underestimation of the HR

in Simulation 1 with pC=0.6 (HR-Bias: -0.0287, Monte Carlo SE of HR bias: 0.000582).

Table 14: Mean HR bias (rounded to the 4th decimal place) with Monte Carlo SE (rounded to
the 6th decimal place) of Standard Scenario of Simulation 2 (outlined in Section 2.3.2) with
power of 90%, pC=0.6, nsim= 10,000, and constant sample size (N=1,000; 500 per group).

Scenario Introduced bias
Censoring rate (pC) medctl HR Bias Monte Carlo SE of HR Bias

0.6 6 0.0027 (-0.0373) 0.000615 (0.000573)
0.6 12 0.0026 (-0.0305) 0.000615 (0.000580)
0.6 18 0.0026 (-0.0272) 0.000615 (0.000583)
0.6 24 0.0026 (-0.0251) 0.000615 (0.000585)
0.6 30 0.0025 (-0.0235) 0.000614 (0.000587)

Abbreviations: HR: Hazard ratio, medctl: Median survival time of control group, pC: Over-
all censoring rate, SE: Standard error
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Figure 29: HR estimation bias (y-axis) separated by trueHR (x-axis) of Standard Scenario
of Simulation 2 (outlined in Section 2.3.2) with power of 90%, pC=0.6, nsim= 10,000, and
constant sample size (N=1,000; 500 per group).
Each panel stands for different medctl. The results of Simulation 1 are shown with transparent colours (see Figure
25). Non-significant studies were included in this analysis. Abbreviations: medctl: Median survival time in the control
group, pC: Censoring rate, trueHR: True underlying Hazard Ratio of data generation
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3.3 Study examples

This section outlines two phase III studies in an oncology setting with OS as endpoint to

exemplify the application of the additional benefit assessment methods. These studies were

selected to display a large and moderate treatment effect. To reflect the setting of this thesis,

the application of the additional benefit assessment methods is purely fictitious. Hence,

officially the methods were not applied and for the performed application in this thesis only

the statistical components of the methods are relevant as the statistical approaches between

the methods are of interest. In the following, both study examples are briefly summarised:

1. Example: Al-Sarraf et al. (1998) published the results of a randomized phase III trial

comparing chemoradiotherapy against radiotherapy alone in patients with nasopha-

ryngeal cancers. The analysis of the primary outcome overall survival included 147

(69 radiotherapy and 78 chemoradiotherapy) patients and yielded an estimated hazard

ratio of 0.40 (95% CI: [0.21, 0.78]).

2. Example: A study assessing the efficacy and safety of atezolizumab plus chemother-

apy versus chemotherapy alone as first-line therapy for nonsquamous non-small-cell

lung cancer (West et al., 2019). The analysis of the primary outcome overall survival

included 679 patients in the intention-to-treat wild-type population (451 atezolizumab

plus chemotherapy and 228 chemotherapy group) and yielded an estimated hazard ratio

of 0.79 (95% CI: [0.64, 0.98]).

As mentioned above this thesis focuses on the statistical parts of the methods. Hence, the

following statistical metrics of the two studies were required to apply these parts of the meth-

ods: HR-PE, upper (HR+), and lower limit (HR–) of the 95% HR-CI, median survival time of

the control group (medctl), gain (=medtrt - medctl), increase of survival rate at a specific time

point (depending on the observed medctl) and the "tail of the curve" bonus point adjustment

(proportion of patients alive in the treatment compared to the control group improved by

50% or more at a specific time point). Further information about the methods application,

e.g. bonus point adjustments and specific thresholds for categorization, are outlined in Sec-

tion 2.2.

The application results of the additional benefit assessment methods and determined ASCO
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cutoff application on the two clinical study examples are shown below in Table 15. The esti-

mated metrics of the study examples needed for the additional benefit assessment methods

application and resulting categories or scores of the two study examples are also provided in

Table 15. More information on the results of the ASCO cutoff value determination is depicted

in Section 3.1.4.

Table 15: Statistical metrics (column 1), resulting categories/scores of the additional benefit
assessment methods and application of ASCO cutoff values for the two study examples. For
further information on the methods application see Section 2.2.

Study ASCO ESMO IQWiGRR Mod-IQWiGHR

1. Al-Sarraf et al. (1998):

(1-0.40)·100
+ 20 = 80

Cutoff: 4
Method: 4

Cutoff: major
Method: major

Cutoff: major
Method: major

• HR-PE: 0.40
• HR–: 0.21
• HR+: 0.78
• medctl: 34 months
• gain: 26 months
• 5 year increase: 28%
• tail of the curve ⩾ 50%

2. West et al. (2019):

(1-0.79)·100
+ 0 = 21

Cutoff: 3
Method: 3

Cutoff: considerable⋆

Method: minor
Cutoff: minor

Method: minor

• HR-PE: 0.79
• HR–: 0.64
• HR+: 0.98
• medctl: 13.9 months
• gain: 4.7 months
• 3 year increase: miss-

ing
• tail of the curve < 50%

⋆: Applying ASCO cutoff value results in different category then method application.
Abbreviations: CI: Confidence interval, gain: Absolute difference in median survival
times, HR: Hazard ratio, HR+: Upper 95% confidence interval limit of the HR-PE,
HR–: Lower 95% confidence interval limit of the HR-PE, medctl: Median survival time
in the control group, PE: Point estimate

The application of the ASCO cutoff values led generally to identical categories as for the

method application. The only exception is for study example 2 of West et al. (2019), where

the ASCO cutoff values resulted in category "considerable added benefit" instead of "minor

added benefit" for IQWiGRR. This difference is, however, marginal because the proposed

ASCO cutoff value is very close to the ASCO score of this study (cutoff value: 20.06; ASCO

score: 21). Hence, the proposed ASCO cutoff values work well in real study examples.
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Discussion
In this Chapter, the results outlined in Chapter 3 of this thesis are discussed. The structure

follows the same sequence as the different performance measures outlined in Section 2.3.1.5.

In each Section, the corresponding results including the contribution to research are discussed.

Additionally, the strengths and weaknesses of each additional benefit assessment method are

outlined as well as limitations and directions for further research are depicted. The Discussion

Chapter ends with a conclusion of the results from this thesis.

Parts of this Chapter 4 are already published in the articles A Comprehensive Comparison

of Additional Benefit Assessment Methods Applied by Institute for Quality and Efficiency in

Health Care and European Society for Medical Oncology for Time-to-Event Endpoints After

Significant Phase III Trials — a Simulation Study by Büsch et al. (2022) and A Comparison

of Additional Benefit Assessment Methods for Time-to-Event Endpoints Using Hazard Ratio

Point Estimates or Confidence Interval Limits by Means of a Simulation Study by Büsch et al.

(2024). The manuscripts have been written by the lead author but may contain comments

and corrections from the co-authors and the reviewers.

4.1 Relationship between additional benefit assessment meth-

ods

The relationship between IQWiGRR/ESMO show a low positive Spearman correlation over

the range of treatment effects. The same can be said for the ASCO/ESMO relationship, only

with moderate treatment effects and a median survival time in the control group larger than

12 months lead to higher correlation. Furthermore, ASCO/Mod-IQWiGHR always show a

stronger or at least equal high positive relationship as ASCO/IQWiGRR. As IQWiGRR and

Mod-IQWiGHR use HR+ for the assessment of new treatments and hence are very similar in

their construction, the methods show a high positive relationship over almost every simulated

scenario.

However, combining all sub-scenarios, e.g. all treatment effects, the ASCO/ESMO com-
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parison shows a moderate positive relationship of 0.68, which is exactly the same as the

research of Cherny et al. (2019), where 102 real studies were used to apply both methods.

Other empirical investigations using also real studies for the ASCO and ESMO application

show different inconsistent negligible to low correlations of 0.17 (Cheng et al., 2017), 0.397

(Del Paggio et al., 2018), and 0.40 (Becker et al., 2017) for the ASCO/ESMO relationship.

This difference compared to the results of this thesis can be explained by the application of

the methods on real studies where the complete methods were applied; including bonus point

adjustments. To reach, however, a fair comparison of the statistical aspects of the methods,

this thesis focused on the statistical quantities and hence only bonus point adjustments com-

prising out of statistical measures were applied.

In case of underpowered studies, all pairwise non-ESMO correlations, i.e. ASCO/IQWiGRR,

ASCO/Mod-IQWiGHR, and IQWiGRR/Mod-IQWiGHR, stay similar to the Standard Sce-

nario. All pairwise ESMO comparisons, however, show a reduced correlation, indicating that

ESMO is influenced by underpowered studies. Nevertheless, with overpowered studies all

methods are influenced leading to reduced pairwise correlations. Hence, all method applica-

tions and interpretations in overpowered studies should be taken with precaution. One im-

portant note is that in the scenarios with over- and underpowered studies more sub-scenarios

with larger or smaller treatment effects were simulated and as the Spearman correlation is

reduced in these sub-scenarios, the overall Spearman correlation, where all sub-scenarios were

combined, had to be reduced.

Furthermore, informative censoring reduces the relationship between all methods. Only when

the treatment group has a higher censoring rate than the control group, the non-ESMO

pairwise comparisons of ASCO/IQWiGRR, ASCO/Mod-IQWiGHR, and IQWiGRR/Mod-

IQWiGHR show unchanged high positive relationships which shows again the fragile behaviour

of ESMO. Important to mention is that with a larger censoring rate in the control group and

small treatment effects, i.e. trueHR>0.82, no significant results were present in the simula-

tion studies. Hence, the additional benefit assessment methods and Spearman correlations

between them could not be calculated.

Other performed simulation scenarios such as non-proportional hazards using late treatment

effects for the treatment group, unequal sample sizes, and exponential censoring distribution

did not influence the described relationship behaviour between the methods.
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4.2 Which of the statistical approaches provide the best prop-

erties for additional benefit assessment

The main difference between the statistical aspects of the three additional benefit assessment

methods of ASCO, ESMO, and IQWiGRR are the used statistical quantity. ESMO uses

among other aspects the lower limit of the 95% HR-CI (HR–), IQWiG the upper limit (HR+),

and ASCO the HR-PE. This thesis evaluated which of these three statistical quantity is best

for the additional benefit assessment using TPR, FPR, and corresponding AUC values of the

ROC curves.

The results clearly show that HR– has the largest TPR and smallest FPR and hence overall

the largest AUC values over the complete range of simulated scenarios including different

allocation ratios, censoring rates, power, failure time distributions, and more. HR-PE has

very similar but nevertheless slightly smaller AUC values. On the contrary, HR+ provides the

lowest AUC values. For example, in case of the Standard Scenario, the average AUC values

of HR–, HR-PE, and HR+ are 0.99, 0.98, and 0.86, respectively. Reason for this difference

is that the slope of the estimates of HR– and HR-PE is larger over the complete range of

treatment effects. Thus, finding a cutoff value which classifies the complete range of treatment

effects into deserved and not deserved maximal categories, is easier for HR– and HR-PE than

for HR+. The complete range of treatment effects was always considered combined as the

additional benefit assessment methods have to be applied for all treatments on the market

and hence over the complete range of treatment effects. Interestingly, the slope difference over

the range of treatment effects is only different between the statistical quantity when a sample

size calculation is performed. In case of a constant sample size independent of the treatment

effect, the estimates of the three statistical quantities have the same slope hence leading to

the same ROC curves and the same AUC values. Important to note is that the results with

a constant sample size are slightly biased because the additional benefit assessment methods

can only be applied after a significant trial. Hence, only significant studies were considered

leading to a small number of simulation iterations used for estimations of the statistical

quantities in case of small treatment effects. Nonetheless, the results clearly depict that the

sample size calculation is the reason for the differences in the statistical quantities. However,

a sample size calculation is mandatory in phase III trials due to ethics, time, and costs.
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Therefore, HR– provides the best solution for additional benefit assessment.

In spite of that, the choice of the threshold used for defining a maximal category is even more

important than the used statistical quantity. For example, ESMO which uses HR–, has a

very large TPR but unfortunately a large FPR as well. For example, if a deserved maximal

category classification is defined as trueHR < 0.75, an average of 0.99 and 0.40 was present for

TPR and FPR in the Standard Scenario, respectively. IQWiGRR uses HR+ and has a smaller

FPR than ESMO, e.g. on average 0.17. Nevertheless, with HR– it is possible to achieve a

smaller FPR while maintaining a large TPR. For example, defining a maximal category with

a threshold of 0.55, an average TPR of 0.91 can be achieved while only allowing a FPR of 5%

and defining a deserved maximal category classification as trueHR < 0.75. With the same

constraints HR+ achieves only an average TPR of 0.68 with a threshold of 0.79.

For the definition of deserved maximal category classification no gold standard exists and

hence, no approach can be perfect. Nonetheless, in this thesis, different definitions for the

deserved maximal category classification are used trying to close this knowledge gap as best as

possible. The described interpretation above stays consistent over the range of different gold

standard definitions: The choice of the threshold used for defining a maximal category is more

important than the used statistical quantity. Nevertheless, HR– provides the best solution

for additional benefit assessment if appropriate thresholds are chosen. This substantiates the

research of Dafni et al. (2017), where HR– and HR-PE were investigated.

Hence, the concern that the use of HR– as main statistical quantity for the additional benefit

assessment would lead, especially for studies with smaller sample sizes, to higher awarded

grades (Muhonen et al., 2015; Wild et al., 2016), is only partly true. ESMO, which uses

HR–, indeed awards a higher rate of maximal categories than IQWiGRR, which uses HR+.

However, this is only due to ESMOs choice of thresholds defining the maximal category rather

than the used statistical quantity. Furthermore, the assumption that HR-CI provides more

information than HR-PE through the included variability in these estimates or that HR-PE

might introduce possible bias (Skipka et al., 2016), is not reflected by the simulation studies.

Other considered simulation scenarios such as non-proportional hazards using late treatment

effects for the treatment group, unequal sample sizes, and exponential censoring distribution

did not influence the described AUC, TPR, and FPR results of the statistical quantities and

methods.
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4.3 Corresponding ASCO cutoff values for categories of other

additional benefit assessment methods

To improve practical comparison between the additional benefit assessment methods without

the need to apply all methods, ASCO cutoff values were calculated, which correspond to

specific categories of ESMO, IQWiGRR, and Mod-IQWiGHR. An ASCO score larger than

17, 20, and 23 corresponds to ESMO categories 2, 3, and 4, respectively. For IQWiGRR

and Mod-IQWiGHR only two ASCO cutoffs are needed as these two methods consist out of

three categories. ASCO cutoff values of 20 (23) and 36 (45) separate the score of ASCO into

the three IQWiGRR (Mod-IQWiGHR) categories "minor", "considerable", and "major added

benefit". It is obvious that the cutoff values for IQWiGRR and Mod-IQWiGHR are wider

apart from each other compared to ESMO. As ESMO consists out of four and both IQWiG

methods out of three categories, the ASCO cutoff values must be closer for ESMO compared

to the other two methods. Nevertheless, the ASCO cutoff values for ESMO are almost iden-

tical and hence different additional reasons must exist. One explanation is that the ASCO

score can be better visually separated for IQWiGRR and Mod-IQWiGHR, i.e the ASCO score

distribution of the individual categories are further apart for IQWiGRR and Mod-IQWiGHR

compared to ESMO. Furthermore, the maximal category of ESMO can be achieved over the

complete ASCO scoring range leading to very similar ASCO cutoff values for the four ESMO

categories. This also illustrates the liberal nature of ESMO.

Moreover, in this thesis, the described ASCO cutoff values were also calculated for all con-

sidered simulation scenarios such as different allocation ratios, over-/underpowered studies,

different failure time distributions, and many more. Changing cutoff values between the

different scenarios would suggest that the additional benefit assessment methods somehow

react to the different settings. Overall, the above described cutoff values stay very similar over

the range of the different scenarios. However, different failure time distributions, especially

Gompertz distribution with increasing hazards over time, which still fulfill the proportional

hazard assumption, resulted in inconsistent ASCO cutoff values for ESMO. As the propor-

tional hazard assumption is still fulfilled, this difference is an unwanted behaviour.

Which ASCO score corresponds to which category of another ordinal method has also been

investigated by Cherny et al. (2019). In their investigation, 102 randomized controlled trials
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instead of a simulation study were used for calculation of the ASCO cutoff values for ESMO,

resulting in an ASCO score of 46 or greater and 41 or less to define substantial benefit (cat-

egory 4) and low benefit (category 1–3), respectively. The reason for the difference to the

calculated ASCO cutoff values in this thesis is probably due to the focus on the statistical

aspects of the additional benefit assessment methods. Hence, reduced versions of the methods

were applied, which is the opposite of the approach followed by Cherny et al. (2019).

4.4 Strength and weaknesses of additional benefit assessment

methods

Focusing on the maximal category of the ordinal additional benefit assessment methods,

ESMO has the largest rate of the maximal category, which is in most scenarios over 80%.

IQWiGRR and Mod-IQWiGHR show smaller rates for their maximal category of around 55%

and 40%, respectively. As the maximal category is assumed to be comparable between ESMO

and IQWiG methods, it can be said that ESMO is the most liberal method while IQWiGRR

and Mod-IQWiGHR are more conservative with Mod-IQWiGHR being the most conservative.

Even with the added absolute benefit rule added in the second ESMO version, ESMO stays

the most liberal method compared to the other ones. This is verified by the maximal category

rate and can also be affirmed by TPR and FPR values: ESMO has the largest FPR values

of up to 0.51. IQWiGRR and Mod-IQWiGHR have smaller FPR values of up to 0.23 and

0.08, respectively. In addition, ESMO has also the largest TPR values of up to 0.99, whilst

IQWiGRR and Mod-IQWiGHR reach only up to 0.79 and 0.65, respectively.

Moreover, all methods are affected by over- and underpowered studies, which lead to an in-

crease of the maximal category rate or score: Both ASCO and ESMO show in both scenarios

an increased score or an increased rate of the maximal category, respectively. IQWiGRR

and Mod-IQWiGHR show similar results for underpowered studies compared to the Standard

Scenario and hence can be seen as conservative. In case of overpowered studies, the maxi-

mal category rate increases for IQWiGRR more than twice as large compared to ESMO. As

ESMO already has a large rate of over 80% in the Standard Scenario, the maximal category

rate in other scenarios such as overpowered studies cannot increase much further. Hence,

it is not surprising that the maximal category rate of ESMO does not increase as much as
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for IQWiGRR and Mod-IQWiGHR. Furthermore, even though the maximal category rate of

ESMO does not increase as much as for the other methods, the maximal category rate of

ESMO is still the largest. This contradicts the results shown by Dafni et al. (2017), who

stated that ESMO has no discriminatory behavior in over- and underpowered trials. This

opposite result can be explained by the fact that the simulation study of Dafni et al. (2017)

applied different parameter ranges. Furthermore, at the publication time of Dafni et al.

(2017), ESMOs current version was v.1.0. However, in this thesis, the updated version (v.

1.1) was used, which uses different thresholds and additionally the absolute benefit rule.

Nevertheless, it is not surprising that all methods have this weakness in case of wrongly as-

sumed treatment effects because the true treatment effect in real studies is not known. Thus,

the additional benefit assessment methods cannot penalize over- and underpowered studies

appropriately. As a result, the treatment effect assumed for sample size calculation is even

more important and furthermore, all methods’ application and their results’ interpretation

should keep this weakness in mind. Nonetheless, in case of overpowered studies, the proposed

Mod-IQWiGHR method, which uses HR based HR+ thresholds instead of RR based thresh-

olds, provides the best behaviour with less increased maximal category rate. However, in

most of the other scenarios Mod-IQWiGHR might be too conservative, e.g. low TPR values.

Furthermore, in case of non-exponential distributed failure times, which still adhere to

the proportional hazard assumption, ESMO shows non-desired susceptible results meaning

changed category distribution. Especially in case of Gompertz distribution with increasing

hazards over time, the rate of the maximal category decreases drastically.

In this thesis, it was also investigated whether delayed treatment effects, which is a kind

of non-proportional hazards, do influence the additional benefit assessment methods. The

results show that all methods with ordinal outcome (ESMO, IQWiGRR, and Mod-IQWiGHR)

have a shift in category proportion with reduced maximal category and ASCO (continuous

outcome) has a reduced score compared to the Standard Scenario (proportional hazards),

which is a desired behavior as the proportional hazard assumption is violated. ESMOs re-

duction is, however, the lowest and thus is again the most liberal one. Important to note

is that in this scenario only situations with medtrt » medctl have been considered because

ESMO assigns only the lowest category when medtrt and medctl are similar. Thus, similar

medtrt and medctl have not been investigated to not penalize ESMO by its design.
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Another assumption of the Cox proportional hazard model is non-informative censoring. In

case of informative censoring a desired behaviour of the methods would be to have a de-

creased score/category because the results of the Cox proportional hazard model might be

biased. In the event that the control group has a higher censoring rate than the treatment

group (pctl
C < ptrt

C ) and vice versa (pctl
C > ptrt

C ), Mod-IQWiGHR shows the most desirable be-

haviour as the maximal category is decreased (pctl
C > ptrt

C ) or at least only slightly increased

(pctl
C < ptrt

C ).

4.5 Limitation and directions for further research

In this thesis, extensive simulation studies were performed with various scenarios including

different censoring rates, treatment effects, allocation ratios, power, failure time distribu-

tions as well as scenarios with non-proportional hazards, informative censoring, and over-

/underpowered trials. Moreover, the performed simulation studies are reproducible with the

provided R-Code at https://www.github.com/cbuesch/SumulationStudyABAM. Additional

information on R-Code structure and execution of the programs to determine the results of

this thesis can be found in Appendix B.

A limitation of the conducted research is that the focus is on the statistical aspects of each

additional benefit assessment method and hence most bonus point adjustments were not ap-

plied, e.g. toxicity adjustments leading to the application of reduced version of ASCO and

ESMO. Hence, an application of the complete methods on real studies could lead to different

results and conclusions. For example, the liberality of ESMO could be reduced by the bonus

point adjustments. Nevertheless, this thesis also investigates the general concept of the sta-

tistical quantities (HR–, HR-PE, HR+), which is not affected by this limitation.

Furthermore, the maximal categories of ESMO (substantial improvement) and IQWiGRR

(major added benefit) were assumed to be comparable. As already outlined in the Introduc-

tion (see Section 1.1), category 4 and 5 of ESMO are defined as "substantial improvement".

As category 5 can only be achieved by non-statistical bonus point adjustments, ESMO cat-

egories ranged from 1 to 4, leading to comparable maximal categories between ESMO and

IQWiGRR. Nevertheless, it can still be argued that this assumption might have led to false

conclusions in this research. This thesis, however, still presents other results without this

assumption (correlation, ROC including corresponding TPR and FRP, corresponding ASCO

https://www.github.com/cbuesch/SumulationStudyABAM
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values for IQWiGRR, Mod-IQWiGHR, and ESMO categories), which support the conclusions

drawn based on this assumption.

In addition, the applied data generation of Simulation 1 introduces bias into the HR and

corresponding CI estimation. Since, however, a combination of administrative censoring (not

dependent on the event time) and exponentially distributed censoring achieving specific cen-

soring rate (dependent on the event time) was implemented in Simulation 1, the introduced

bias was reduced. Furthermore, this bias does not affect the method comparison to a sub-

stantial degree because it affects all compared methods equally. Simulation 2, where the

generated censoring times are independent of the event times, proves the robustness of Sim-

ulation 1 as it shows similar results.

A validation examination of the additional benefit assessment method comparison was not

assessed because no gold standard method exist, i.e. a definition of a truly deserved maxi-

mal category classification is missing. Thus, future research might focus on defining a gold

standard. One possibility would be to include perceptions and opinions of patients as the

additional benefit of new treatments should include at least partly the end user.

Further research should also focus on exploration of the different results in category propor-

tions of ESMO, especially in case of Gompertz failure time distribution. One possible reason

for this behaviour is ESMOs combination of absolute and relative benefit rule. The AUC and

TPR/FPR results show that HR–, which is used by ESMOs relative benefit rule, is not in-

fluenced by different failure time distributions. Hence, it can be speculated that the absolute

benefit rule causes ESMOs susceptibility to Gompertz failure time distribution. Nevertheless,

this behaviour is still astonishing and thus future research should be conducted.

As mentioned above the outlined simulation studies covered a wide range of different real-life

study situations including non-proportional hazards as in the field of immunoncology treat-

ments the proportional hazard assumption is often not fulfilled. In these cases estimation

of HR, HR–, and HR+ are strongly influenced by the FU time. In this thesis, the FU time

is defined to be dependent on the median survival time of the control group (FU=2·medctl)

leading to always the same proportion between survival and FU time. Hence, future research

should also focus on different scenarios with non-proportional hazards.

Furthermore, the provided ASCO cutoff values to achieve corresponding ESMO, IQWiGRR,
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and Mod-IQWiGHR categories should be verified using real-world data where the complete

methods are applied. This would enable a more realistic interpretation of the cutoff values.

4.6 Conclusion

In conclusion, IQWiGRR and ESMO show a high positive association for moderate treatment

effects. ASCO and IQWiGRR as well as ASCO and Mod-IQWiGHR show a high positive

association over the whole range of treatment effects.

Moreover, ESMO excessively awards its maximal category over the whole range of treatment

effects and hence cannot distinguish between small and large treatment effects. ASCO and

IQWiGRR have a more conservative behaviour. Different violated assumptions such as non-

proportional hazards, over-/underpowered studies, and informative censoring, do not lead to

penalization in ESMOs grading; e.g. the maximal category rate is not reduced. Overall, the

used thresholds of ESMO are chosen too liberal, which leads to high FPR and easily achieved

maximal category. ASCO and IQWiGRR have a more desirable behaviour, though both

methods also portray unwanted behaviour in certain cases. In most cases Mod-IQWiGHR,

which uses different thresholds but the same statistical quantity for categorizations as the

original IQWiGRR, provides a better solution in case of violated assumptions, i.e. no exces-

sive increase of the maximal category. In most other scenarios where no assumptions are

violated it can be too conservative, resulting in a low TPR and a low maximal category rate.

Furthermore, ESMO shows an increased rate of maximal category in case of different fail-

ure time distributions, which still adhere to the proportional hazard assumptions and hence

no changes in the category distribution should be expected. The other methods (ASCO,

IQWiGRR, and Mod-IQWiGHR) do not show this undesired behaviour. Hence, ESMO is the

most liberal method.

Nonetheless, under the condition that appropriate thresholds are chosen, HR–, which ESMO

uses among other things, is the best statistical quantity to assess additional benefit assess-

ment. Even HR-PE provides better properties than HR+. As no gold standard for additional

benefit assessment exists, validation examination was performed with different definitions of

a truly deserved maximal category classification.

To improve practical comparison between the additional benefit assessment methods without

the need to apply all methods, this thesis has proposed ASCO cutoff values which correspond
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to the respective categories of the current methods.

Overall, this thesis demonstrates that HR– instead of HR+ should be used or the current

thresholds should be at least adjusted to optimize the true positive and false positive rate

for additional benefit assessment. Thus, in future this research can be used as a guide for

improvements of the methods and contributes to the enhancement of additional benefit as-

sessment.
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Summary
In the process of the development of a new treatment, many requirements for market autho-

rization must be met through various stages. After approval, the additional benefit of a new

treatment is compared to already established treatments. This assessment can decide on the

amount of reimbursement of the new treatment on the market and create transparency for

patients regarding the treatments’ medical effectiveness and toxicity.

In case of non-curative or advanced diseases like cancer, three different additional benefit as-

sessment methods have been developed. The European Society for Medical Oncology (ESMO)

and Institute for Quality and Efficiency in Health Care (IQWiG) constructed methods with

an ordinal outcome. For the main classification, IQWiG compares the upper limit of the 95%

hazard ratio (HR) confidence interval (CI) (HR+) against relative risk (RR) based thresholds

and ESMO uses mainly the lower limit of the 95% HR-CI (HR–). The American Society of

Clinical Oncology (ASCO) defined a continuous outcome using HR point estimate (PE).

Hence, the main difference of the three methods is the used statistical quantity. There are

several points of criticism to each of the assessment methods. For example, the use of the

HR-PE for the assessment of the clinical benefit could penalize studies of substantial benefit

by ignoring the precision of the estimate. In contrast, the upper or lower limit of the HR-CI

considers the variability of the estimate and hence should provide more information.

The aim of this thesis is to obtain a better understanding of the differences between the

methods and to answer the question which statistical quantity has the best properties to as-

sess additional benefit. Furthermore, it is investigated which category of ESMO and IQWiG

corresponds to which ASCO score in order to achieve an easier comparison between all three

methods. To achieve these objectives, this thesis evaluates and compares the above described

methods by means of simulation studies comprising different failure time distributions, treat-

ment effects, power, allocation ratios, censoring types, and censoring rates. Furthermore,

scenarios with non-proportional hazards, underpowered trials, and overpowered trials are in-

vestigated.

The original IQWiG method (IQWiGRR) and ESMO show a high positive association for

111
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moderate treatment effects. ASCO and IQWiGRR as well as ASCO and Mod-IQWiGHR

(proposed modification of IQWiGRR using HR based thresholds instead of RR based once)

show a high positive association over the whole range of treatment effects. Moreover, ESMO

excessively awards its maximal category over the whole range of treatment effects (in most

scenarios over 80%) and hence cannot distinguish between small and large treatment effects.

ASCO and IQWiGRR have a more conservative behaviour.

Different violated assumptions such as non-proportional hazards, over-/underpowered stud-

ies, and informative censoring, do not lead to penalization in ESMOs grading; e.g. the

maximal category rate is not reduced. Overall, the used thresholds of ESMO for catego-

rization are chosen too liberal, which lead to high false positive rates and easily achievable

maximal category grading. ASCO and IQWiGRR have a more desirable behaviour. In most

cases Mod-IQWiGHR does provide a better solution in case of violated assumptions, i.e. no

excessive increase of the maximal category rate. Nevertheless, in most other scenarios where

no assumptions are violated it might be too conservative, i.e. low true positive rate and low

maximal category rate.

Furthermore, ESMO shows an even increased rate of maximal category in case of different fail-

ure time distributions, which still adhere to the proportional hazard assumptions and hence

no changes in the category distribution should be expected. The other methods (ASCO,

IQWiGRR, and Mod-IQWiGHR) do not show this undesired behaviour. Hence, ESMO is

the most liberal method. Nonetheless, under the condition that appropriate thresholds are

chosen, HR–, which ESMO uses among other things, is the best statistical quantity to assess

additional benefit. Even HR-PE provides better properties than HR+.

To improve practical comparison between the methods, this thesis proposed ASCO cutoff

values which correspond to the respective categories of the current methods: An ASCO score

larger than 17, 20, and 23 corresponds to ESMO categories 2, 3, and 4, respectively. ASCO

cutoff values of 20 (23) and 36 (45) separate the score of ASCO into the three IQWiGRR

(Mod-IQWiGHR) categories "minor", "considerable", and "major added benefit".

Overall, this thesis demonstrates that HR– instead of HR+ should be used or the current

thresholds should be at least adjusted to optimize the true positive and false positive rate.

Thus, in future this research can be used as a guide for improvements of the methods and

contributes to the enhancement of additional benefit assessment.
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Zusammenfassung
Bei der Entwicklung neuer Therapien für die Marktzulassung müssen verschiedene Anfor-

derungen erfüllt werden. Nach der Zulassung wird zudem der Zusatznutzen mit bereits

etablierten Behandlungen verglichen. Diese Bewertung kann über die Höhe der Erstattung

der neuen Behandlung entscheiden und dazu beitragen, die Unsicherheit der Patienten hin-

sichtlich der Wirksamkeit und Toxizität zu beseitigen.

Im Falle von nicht heilbaren oder fortgeschrittenen Krankheiten wurden drei verschiedene

Zusatznutzenbewertungsmethoden entwickelt, welche sich hauptsächlich in der verwendeten

statistischen Metrik unterscheiden. Die Europäische Gesellschaft für Medizinische Onkologie

(ESMO) und das Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (IQWiG)

haben Methoden mit einem ordinalen Ergebnis konstruiert. Für die primäre kategorielle Be-

wertung vergleicht IQWiG die obere Grenze des 95% Hazard Ratio (HR) Konfidenzintervall

(KI) (HR+) gegen Relative Risiko (RR) skalierte Schwellenwerte. ESMO verwendet die un-

tere 95% HR-KI Grenze (HR–). Die Methode der Amerikanischen Gesellschaft für Klinische

Onkologie (ASCO) hat ein stetiges Ergebnis, welches den HR Punktschätzer (PS) verwendet.

Es gibt mehrere Kritikpunkte für jede der Methoden. Zum Beispiel könnte die Verwendung

des HR-PS dazu führen, dass Studien mit wesentlichem Zusatznutzen bestraft werden, weil

die Varianz des Schätzers nicht betrachtet wird. Dagegen berücksichtigen HR+ und HR– die

Variabilität vom HR-PS und sollten daher mehr Informationen enthalten.

Das Ziel dieser Thesis ist es ein besseres Verständnis der Methoden zu erlangen und die

Frage zu beantworten, welche statistische Metrik bessere Eigenschaften besitzt, um den

Zusatznutzen zu beurteilen. Um einen besseren Vergleich zwischen den verschiedenen Meth-

oden zu ermöglichen wurde zudem untersucht, welche ESMO und IQWiG Kategorie welcher

ASCO Punktzahl entspricht. Um diese Ziele zu erreichen, wurden die oben genannten Meth-

oden mit Hilfe von umfangreichen Simulationsstudien evaluiert und miteinander verglichen.

Die ursprüngliche IQWiG Methode (IQWiGRR) und ESMO zeigen einen großen positiven

Zusammenhang bei moderaten Behandlungseffekten. ASCO/IQWiGRR sowie ASCO/Mod-

IQWiGHR (vorgeschlagene Änderung von IQWiGRR, welche HR- anstatt RR-skalierte Schwel-
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lenwerte verwendet) zeigen hingegen einen großen positiven Zusammenhang über die gesamte

Breite von Behandlungseffekten. Zudem vergibt ESMO die maximale Kategorie exzessiv

über die gesamte Breite von Behandlungseffekten (in den meisten Szenarien über 80% der

Fälle) und kann daher zwischen kleinen und großen Behandlungseffekten nicht unterscheiden.

ASCO und IQWiGRR haben ein konservativeres Verhalten.

Verschiedene verletzte Annahmen wie über-/unterpowerte Studien, informative Zensierungen

und nicht proportionale Hazards werden von ESMO nicht bestraft. Zudem sind die verwen-

deten Schwellenwerte von ESMO zu liberal, was zu hohen falsch-positiven Raten und einfach

zu erreichender maximaler Kategorie führt. ASCO und IQWiGRR weisen dahingegen ein

erwünschtes Verhalten auf. In den meisten Fällen mit verletzten Annahmen ist die maximale

Kategorie bei Mod-IQWiGHR nicht exzessiv erhöht und daher eine bessere Lösung.

In anderen Szenarien, bei denen keine Annahmen verletzt sind, ist diese Methode aber zu

konservativ, was zu einer niedrigen richtig-positiven Rate und geringer Rate an maximaler

Kategorie führt. Bei vorliegen von verschiedenen Ereigniszeitverteilungen, welche die propor-

tionale Hazard Annahme einhalten und daher keine Veränderung der Resultate gewünscht

ist, zeigt ESMO weiterhin eine erhöhte Rate an maximaler Kategorie. ASCO, IQWiGRR, und

Mod-IQWiGHR weisen nicht dieses unerwünschte Verhalten auf. Daher kann man schlussfol-

gern, dass ESMO die liberalste Methode ist.

Nichtsdestotrotz ist HR–, welche ESMO unter anderem verwendet, die beste statistische

Metrik um den Zusatznutzen zu beurteilen, wenn geeignete Schwellenwerte verwendet wer-

den. Selbst HR-PS hat bessere Eigenschaften als HR+.

Um einen besseren Vergleich zwischen den verschiedenen Methoden zu ermöglichen, wurden

ASCO Grenzwerte vorgeschlagen, welche den ESMO und IQWiG Kategorien entsprechen:

Eine ASCO Punktzahl größer als 17, 20 und 23 entsprechen den ESMO Kategorien 2, 3 und

4. Eine ASCO Punktzahl größer als 20 (23) und 36 (45) entsprechen den IQWiGRR (Mod-

IQWiGHR) Kategorien "minor", "considerable" und "major added benefit".

Die Ergebnisse der Dissertation zeigen, dass um die richtig-positive und falsch-positive Rate

zu optimieren, HR– anstatt HR+ verwendet oder zu mindestens die derzeitigen Schwellen-

werte angepasst werden sollten. Daher kann diese Forschung als Hilfestellung bei zukünftigen

Verbesserungen der Zusatznutzenbewertungsmethoden verwendet werden und trägt zur Weit-

erentwicklung der Zusatznutzenbewertung bei.
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Appendix A

Additional results
In this Appendix, additional results of both simulation studies showing no influence compared

to the Standard Scenario are illustrated. The list of figures shown at the beginning of this

thesis provides a convenient overview of all figures provided in this Appendix.

The Appendix is structured as follows: In Section A.1 the results of Simulation 1 are out-

lined. Firstly, the relationship between the additional benefit assessment methods is shown

by displaying pairwise Spearman and/or Kendall-τb correlations between the methods using

heatmaps for each simulation scenario. Secondly, the description of the additional benefit

assessment methods are shown for each simulation scenario, where the ASCO score distribu-

tion is illustrated using boxplots separated into the categories of ESMO, IQWiGRR, Mod-

IQWiGHR, and overall, respectively (y-axis). Thirdly, the results of each specific simulation

scenario are shown including the relationship between methods (line figures of Spearman

correlation) and AUC values of ROC curves (nested loop plots).

In Section A.2 the results of Simulation 2 are outlined in the same way described above.
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A.1 Simulation 1

Figure 30: Pairwise Kendall-τ b correlation of the additional benefit assessment methods (x-
axis) for the different scenarios (y-axis) where all sub-scenarios were combined for correlation
calculation.
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A.1.1 Standard Scenario

A.1.1.1 Relationship between methods

Figure 31: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Standard
Scenario with pC=20%.

Figure 32: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Standard
Scenario with pC=40%.
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A.1.1.2 Using constant sample size:

Figure 33: AUC of ROC curves (y-axis) separated by δdeserved (x-axis) of Standard Scenario
for each sub-scenario with constant sample size.
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A.1.2 Scenario 2 (incorrect assumed designHR for sample size calculation)

A.1.2.1 Relationship between methods

Figure 34: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
2 with pC=20% and 90% power.

Figure 35: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
2 with pC=40% and 90% power.
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Figure 36: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
2 with pC=20% and 80% power.

Figure 37: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
2 with pC=40% and 80% power.
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Figure 38: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
2 with pC=60% and 80% power.

A.1.2.2 AUC

Figure 39: AUC of ROC curves (y-axis) separated by δdeserved (x-axis) of Scenario 2 for each
sub-scenario.
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A.1.3 Scenario 3 (different failure time distributions)

A.1.3.1 Relationship between methods

Figure 40: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
3 with Gompertz failure time distribution, pC=20%, and 90% power.

Figure 41: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
3 with Gompertz failure time distribution, pC=40%, and 90% power.
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Figure 42: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
3 with Gompertz failure time distribution, pC=20%, and 80% power.

Figure 43: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
3 with Gompertz failure time distribution, pC=40%, and 80% power.
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Figure 44: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
3 with Gompertz failure time distribution, pC=60%, and 80% power.

Figure 45: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
3 with Weibull failure time distribution, pC=20%, and 90% power.
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Figure 46: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
3 with Weibull failure time distribution, pC=40%, and 90% power.

Figure 47: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
3 with Weibull failure time distribution, pC=20%, and 80% power.
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Figure 48: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
3 with Weibull failure time distribution, pC=40%, and 80% power.

Figure 49: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
3 with Weibull failure time distribution, pC=60%, and 80% power.
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A.1.3.2 AUC

Figure 50: AUC of ROC curves (y-axis) separated by δdeserved (x-axis) of Scenario 3 with
Gompertz failure time distribution for each sub-scenario.

Figure 51: AUC of ROC curves (y-axis) separated by δdeserved (x-axis) of Scenario 3 with
Weibull failure time distribution for each sub-scenario.
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A.1.4 Scenario 4 (non-proportional hazards)

A.1.4.1 Relationship between methods

Figure 52: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
4 with pC=20% and 90% power.

Figure 53: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
4 with pC=40% and 90% power.
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Figure 54: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
4 with pC=60% and 90% power.

Figure 55: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
4 with pC=20% and 80% power.
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Figure 56: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
4 with pC=40% and 80% power.

Figure 57: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
4 with pC=60% and 80% power.
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A.1.4.2 AUC

Figure 58: AUC of ROC curves (y-axis) separated by δdeserved (x-axis) of Scenario 4 for each
sub-scenario.
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A.1.5 Scenario 5 (unequal sample sizes)

A.1.5.1 Relationship between methods

Figure 59: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
5 with pC=20% and 90% power.

Figure 60: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
5 with pC=40% and 90% power.
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Figure 61: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
5 with pC=60% and 90% power.

Figure 62: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
5 with pC=20% and 80% power.
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Figure 63: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
5 with pC=40% and 80% power.

Figure 64: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
5 with pC=60% and 80% power.
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A.1.5.2 AUC

Figure 65: AUC of ROC curves (y-axis) separated by δdeserved (x-axis) of Scenario 5 for each
sub-scenario.
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A.1.6 Scenario 6 (only exponential distributed censoring)

A.1.6.1 Relationship between methods

Figure 66: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
6 with pC=20% and 90% power.

Figure 67: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
6 with pC=40% and 90% power.
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Figure 68: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
6 with pC=60% and 90% power.

Figure 69: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
6 with pC=20% and 80% power.
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Figure 70: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
6 with pC=40% and 80% power.

Figure 71: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
6 with pC=60% and 80% power.
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A.1.6.2 AUC

Figure 72: AUC of ROC curves (y-axis) separated by δdeserved (x-axis) of Scenario 6 for each
sub-scenario.
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A.1.7 Scenario 7 (informative censoring)

A.1.7.1 Relationship between methods

Figure 73: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
7 with pC=20% and 90% power.

Figure 74: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
7 with pC=40% and 90% power.
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Figure 75: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
7 with pC=20% and 80% power.

Figure 76: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
7 with pC=40% and 80% power.
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Figure 77: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
7 with pC=60% and 80% power.

A.1.7.2 AUC

Figure 78: AUC of ROC curves (y-axis) separated by δdeserved (x-axis) of Scenario 7 for each
sub-scenario.
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A.2 Simulation 2

Figure 79: Pairwise Spearman correlation of the additional benefit assessment methods (x-
axis) for the different scenarios (y-axis) where all sub-scenarios were combined for correlation
calculation (Simulation 2).

Figure 80: Pairwise Kendall-τ b correlation of the additional benefit assessment methods (x-
axis) for the different scenarios (y-axis) where all sub-scenarios were combined for correlation
calculation (Simulation 2).
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Figure 81: Description of ASCO score distribution (x-axis) separated into the categories of
ESMO and overall (y-axis) using boxplots (Simulation 2).

Figure 82: Description of ASCO score distribution (x-axis) separated into the categories of
IQWiGRR and overall (y-axis) using boxplots (Simulation 2).
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Figure 83: Description of ASCO score distribution (x-axis) separated into the categories of
Mod-IQWiGHR and overall (y-axis) using boxplots (Simulation 2).
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A.2.1 Standard Scenario

A.2.1.1 Relationship between methods

Figure 84: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
2 with pC=60% (Simulation 2).

A.2.1.2 HR-PE, HR–, and HR+ estimations with sample size calculation and

with constant sample size

Figure 85: Description of HR-PE, HR–, and HR+ estimation distribution (y-axis) separated
by trueHR (x-axis) using boxplots with sample size calculation (left panel) and with constant
sample size (right panel) of the Standard Scenario with 90% power, medctl=6, and pC=60%
(Simulation 2).
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A.2.2 Scenario 2 (incorrect assumed designHR for sample size calculation)

A.2.2.1 Relationship between methods

Figure 86: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
2 with 80% power (Simulation 2).

A.2.2.2 AUC

Figure 87: AUC of ROC curves (y-axis) separated by δdeserved (x-axis) of Scenario 2 for each
sub-scenario (Simulation 2).
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A.2.3 Scenario 3 (different failure time distributions)

A.2.3.1 Relationship between methods

Figure 88: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
3 with Gompertz failure time distribution and 90% power (Simulation 2).

Figure 89: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
3 with Gompertz failure time distribution and 80% power (Simulation 2).
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Figure 90: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
3 with Weibull failure time distribution and 90% power (Simulation 2).

Figure 91: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
3 with Weibull failure time distribution and 80% power (Simulation 2).
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A.2.3.2 AUC

Figure 92: AUC of ROC curves (y-axis) separated by δdeserved (x-axis) of Scenario 3 with
Weibull failure time distribution for each sub-scenario (Simulation 2).
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A.2.4 Scenario 4 (non-proportional hazards)

A.2.4.1 Relationship between methods

Figure 93: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
4 with 90% power (Simulation 2).

Figure 94: Pairwise Spearman correlation (y-axis) separated by trueHR (x-axis) of Scenario
4 with 80% power (Simulation 2).
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A.2.4.2 AUC

Figure 95: AUC of ROC curves (y-axis) separated by δdeserved (x-axis) of Scenario 4 for each
sub-scenario (Simulation 2).



Appendix B

Information to reproduce

simulation studies
In this Appendix, additional information on R-Code structure and execution of the programs

to determine the results of this thesis for both simulation studies are shown. The R-Code is

provided at https://www.github.com/cbuesch/SumulationStudyABAM.

The following R-Packages need to be installed before R-Code usage: tidyverse, stringr, cut-

pointr, vcd, data.table, survival, flexsurv, irr, foreach, and doParallel. This can be done by

using the code provided hereafter:

1 i n s t a l l . packages ( c ( " t i d y v e r s e " , " s t r i n g r " , " c u t p o i n t r " , " vcd " , " data . t a b l e " ,

2 " s u r v i v a l " , " f l e x s u r v " , " i r r " , " f o r ea c h " , " d o P a r a l l e l " ) )

The provided programs are using the doParallel package for parallel computing in windows

systems. In case a unix-like system is used, the package doMC instead of doParallel needs

to be installed. Furthermore, all occurrences of

1 c l <− makeCluster (num. c l )

2 r e g i s t e r D o P a r a l l e l ( c l )

need to be replaced by

1 registerDoMC (num. c l )

Moreover, all lines containing

1 s to pC l us t e r ( c l )

need to be removed. In addition, the running time of the programs (especially the data

generation and data analysis) can take even with multiple cores for parallel computing several

days. Therefore, to reduce the running time, 40 cores or more are recommended. Another

solution is to reduce the number of iterations (n.sim), which decreases, however, the precision

of the simulation study.
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In the following, several R-Code-Scripts are explained, which can be found in the folder

"RPrograms" at https://www.github.com/cbuesch/SumulationStudyABAM:

• Costume functions for data generation and analysis of both simulation studies (Sim1_0

_Functions_DataGeneration.R, Sim2_0_Functions_DataGeneration.R, Sim1_0_Fun-

ctions_Analysis.R, and Sim2_0_Functions_Analysis.R):

These four scripts contain all needed functions for the data generation and analysis.

Hence, they need to be loaded before conducting the simulations.

• Data generation of both simulation studies (Sim1_1_DataGeneration.R and Sim2_1_

DataGeneration.R):

These scripts conduct the data generation for all scenarios of both simulation studies. At

the beginning the working directory needs to be set, where the file Sim1_Simulation.seed

and the script Sim1_0_Functions_DataGeneration.R for Simulation 1 or the file Sim2_

Simulation.seed and the script Sim2_0_Functions_DataGeneration.R for Simulation

2 are saved. Furthermore, as mentioned the number of cores (num.cl) and number of

iterations (n.sim) need to be kept in mind so that the running time is not increased too

much. At last the folder path for saving of the generated data needs to be specified.

• Data analysis of both simulation studies (Sim1_2_DataAnalysis.R and Sim2_2_Data-

Analysis.R):

These scripts conduct the data analysis of the generated data for all scenarios of

both simulation studies. At the beginning the working directory needs to be set,

where the script Sim1_0_Functions_Analysis.R for Simulation 1 or where the script

Sim2_0_Functions_Analysis.R for Simulation 2 is saved. Furthermore, as mentioned

the number of cores (num.cl) and number of iterations (n.sim) need to be kept in mind

so that the running time is not increased too much. At last the folder path, where the

generated data was saved (path_data), and the folder path, where the analysed data

should be saved (path_ana) needs to be specified.

• Optimal cutoff cutoff determination of both simulation studies (Sim1_3_DataAnalysis_

ASCO_CutoffValues.R and Sim2_3_DataAnalysis_ASCO_CutoffValues.R):

These scripts conduct the investigating which ESMO/IQWiGRR/Mod-IQWiGHR cat-

https://www.github.com/cbuesch/SumulationStudyABAM
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egory correspond to which ASCO score for both simulation studies. At the beginning

the folder path, where the generated data and analysed data was saved, needs to be

specified. As mentioned the number of cores (num.cl) and number of iterations (n.sim)

need to be kept in mind so that the running time is not increased too much.



Appendix C

Derivation of censoring distribution

parameter λC of Simulation 2

For Simulation 2 the censoring time distribution for the data generation was defined as a

combination of independent administrative censoring and independent right-censoring with

an overall targeted censoring proportion of pC without introducing bias to the HR estimation.

Hence, the distributions of administrative censoring, independent right-censoring, and failure

times needed to be independent from each other, yielding equation 2.7 for pC :

pC =
∫ (∫ dur−a

0
fT (t)FC(t)dt + ST (dur − a)

)
fAcc(a)da

=
∫ ∫ dur−a

0
fT (t)FC(t)fAcc(a)dtda +

∫
ST (dur − a)fAcc(a)da.

More information regarding derivation of pC can be found in Section 2.3.2.2.

In the performed simulation study (Simulation 2) the censoring time distribution C is as-

sumed to be exponential distributed (C ∼ Exp(λC)). Furthermore, three different failure

time distributions are assumed, leading to different pC equations. Thus, in the following

each failure time distribution, its effect on censoring probability pC and how the censoring

distribution parameter λC can be obtained, is outlined:

For improved readability, in the following part of this Appendix the abbreviations "1" and

"2" were used instead of "ctl" and "trt", respectively. Let us assume failure times T1 and T2

with the same underlying distribution for the control and treatment group of a phase III

clinical trial, respectively. Since the additional benefit assessment methods are only applied

after a significant trial, the simulated trial must have a positive treatment effect. Hence, the

parameters of the underlying distributions of T1 and T2 are different, leading to a hyper-

distributed failure time distribution T = p1 · T1 + p2 · T2, where p1 and p2 are the probability

of being allocated to the control and treatment group, respectively. In the following, the

164
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implications on parameter definition of the censoring distribution assuming different failure

time distributions is described:

• Assuming hyper-exponential distributed failure time T:

In case of a hyper-exponential failure time distribution for T1 ∼ Exp(λ1) and

T2 ∼ Exp(λ2), the density, distribution, and survival functions are defined as follows:

FT (t) = p1 · (1 − exp(−λ1 · t)) + p2 · (1 − exp(−λ2 · t)),

fT (t) = p1 · (λ1 · exp(−λ1 · t)) + p2 · (λ2 · exp(−λ2 · t)),

ST (t) = p1 · exp(−λ1 · t) + p2 exp(−λ2 · t).

Moreover, based on assumed independent exponential censoring time C ∼ Exp(λC)

and uniform accrual time Acc ∼ Unif[0, amax], the censoring probability pC can be

calculated using formula (2.7):

pC =
∫ amax

0

∫ dur−a

0
fT (t)FC(t)fAcc(a)dtda +

∫ amax

0
ST (dur − a)fAcc(a)da

=
∫ amax

0

∫ dur−a

0
(p1 · (λ1 · exp(−λ1 · t)) + p2 · (λ2 · exp(−λ2 · t)))

=
∫ amax

0

∫ dur−a

0
· (1 − exp(−λC · t)) · 1

amax
dtda+

=
∫ amax

0
(p1 · exp(−λ1 · (dur − a)) + p2 exp(−λ2 · (dur − a))) · 1

amax
da

= 1
amax

(
p1λ1

(λ1 + λC)2

(
exp((amax − dur)(λ1 + λC)) − exp(−dur(λ1 + λC))

)
+

= − 1
amax

(
p2λ2

(λ2 + λC)2

(
exp((amax − dur)(λ2 + λC)) − exp(−dur(λ2 + λC))

))
+

= −p1 + p2 − p1λ1
λ1 + λC

− p2λ2
λ2 + λC

.

As last step, this equation needed to be solved for λC , to receive the parameter of the

exponential distributed independent censoring distribution. As this equation has no

mathematical solution, a numerical approximation was used.
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• Assuming hyper-exponential distributed failure time T with delayed treatment effect in

the treatment group using piece-wise exponential failure time distributions:

In this case, a hyper-exponential failure time distribution is present for T1 ∼ Exp(λ1)

and T2 being piece-wise exponential distributed, where start2 is the time point of treat-

ment effect start for the treatment group. Hence, the density, distribution, and survival

functions are defined as follows:

FT (x) =



p1 · (1 − exp(−λ1t)) + p2 · (1 − exp(−λ2t)),

t ∈ [0, start2]

p1 · (1 − exp(−λ1t)) + p2 ·
(

1 − exp(−λ1 · start2) · exp(−λ2 · (t − start2))
)

,

otherwise,

fT (x) =



p1 · (λ1 exp(−λ1t)) + p2 · (λ2 exp(−λ2t)),

t ∈ [0, start2]

p1 · (λ1 exp(−λ1t)) + p2 ·
(

λ2 exp(−λ1 · start2) · exp(−λ2 · (t − start2))
)

,

otherwise,

ST (x) =



p1 · exp(−λ1t) + p2 · exp(−λ2t),

t ∈ [0, start2]

p1 · exp(−λ1t) + p2 ·
(

exp(−λ1 · start2) · exp(−λ2 · (t − start2))
)

,

otherwise.

Moreover, based on assumed independent exponential censoring time C ∼ Exp(λC)

and uniform accrual time Acc ∼ Unif[0, amax], the censoring probability pC can be

calculated using formula (2.7):
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Hence, combining the results from A and B yields:

pC = 1
amax

·
(

p1λ1
(λ1 + λC)2 ·

(
exp(−(dur − amax)(λ1 + λC)) − exp(−dur(λ1 + λC))

)
+

= 1
amax

·
(

p2λ2 exp(−λ1start2)
(λ2 + λC)2 ·

(
exp

(
− λ2(dur − amax − start2) − λC(dur − amax)

)
−

= 1
amax

·
(

p2λ2 exp(−λ1start2)
(λ2 + λC)2 ·

(
exp

(
− λ2(dur − start2) − λCdur

)))
+

=p1 − p2 ·
(

exp(−λ2start2) − exp(−λ1start2) − 1
)

− p1λ1
λ1 + λC

−

= p2λ2
λ2 + λC

·
(

exp(−start2(λ1 + λC)) − exp(−start2(λ2 + λC)) + 1
)
.

As last step, this equation needed to be solved for λC , to receive the parameter of the

exponential distributed independent censoring distribution. As this equation has no

mathematical solution, a numerical approximation was used.
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• Assuming hyperweibull distributed failure time T:

In case of a hyperweibull failure time distribution for T1 ∼ Weib(λ1, k1) and T2 ∼

Weib(λ2, k2), the density, distribution, and survival functions are defined as follows:

FT (t) = p1 ·
(
1 − exp(−(tλ1)k1)

)
+ p2 ·

(
1 − exp(−(tλ2)k2)

)
,

fT (t) = p1 ·
(
(k1λ1 · (tλ1)k1−1 exp(−(tλ1)k1))

)
+ p2 ·

(
(k2λ2 · (tλ2)k2−1 exp(−(tλ2)k2))

)
,

ST (t) = p1 · exp(−(tλ1)k1) + p2 · exp(−(tλ2)k2).

Moreover, based on assumed independent exponential censoring time C ∼ Exp(λC)

and uniform accrual time Acc ∼ Unif[0, amax], the censoring probability pC can be

calculated using formula (2.7):

pC =
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∫ dur−a
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fT (t)FC(t)fAcc(a)dtda +
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(
p1 ·

(
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)
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(
1 − exp(−(tλ2)k2)

))
·

(1 − exp(−λCt)) · 1
amax

dtda+
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· 1
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0
p2k2λ2(tλ2)k2−1 exp(−(tλ2)k2) exp(−λCt)dtda

)
.

As last step, this equation needed to be solved for λC , to receive the parameter of the

exponential distributed independent censoring distribution. As this equation has no

mathematical solution, a numerical approximation was used.
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• Assuming hyper-gompertz distributed failure time T:

In case of a hypergompertz failure time distribution for T1 ∼ Gomp(a1, b1) and T2 ∼

Gomp(a1, b2), the density, distribution, and survival functions are defined as follows:

FT (t) = p1 ·
(

1 − exp
(

− b1
a1

(exp(a1t) − 1)
))

+ p2 ·
(

1 − exp
(

− b2
a2

(exp(a2t) − 1)
))

,

fT (t) = p1 ·
(

b1 exp(a1t) exp
(

− b1
a1

(exp(a1t) − 1)
))

= + p2 ·
(

b2 exp(a2t) exp
(

− b2
a2

(exp(a2t) − 1)
))

,

ST (t) = p1 · exp
(

− b1
a1

(exp(a1t) − 1)
)

+ p2 · exp
(

− b2
a2

(exp(a2t) − 1)
)
.

Moreover, based on assumed independent exponential censoring time C ∼ Exp(λC)

and uniform accrual time Acc ∼ Unif[0, amax], the censoring probability pC can be

calculated using formula (2.7):
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= 1
amax
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0
p1 + p2da−
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p1 · b1 exp(a1t) exp
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As last step, this equation needed to be solved for λC to receive the parameter of the

exponential distributed independent censoring distribution. As this equation has no

mathematical solution, a numerical approximation was used.

In the performed simulation study, numerical approximation for solving double integrals was

performed by an algorithm proposed by Piessens (1983), which is implemented in the integrate

function of the stats package in R. Furthermore, minimization without derivatives introduced

by Brent and Brent (1974) was applied for solving for λC as no mathematical solution exists,

which is implemented in the uniroot function of the stats package in R.
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