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Abstract

Non-equilibrium microscopic processes can drive macroscopic shape changes in soft ma-
terials. Feedback arises when such shape changes alter the geometry constraining the
microscopic dynamics. Although such feedback is common in living materials, which
can actively change their chemical composition in response to environmental signals, the
underlying theoretical principles, and the resulting dynamical phenomena are not well
understood.
Motivated by biological cells exchanging shape-dependent signals at physical contacts,
I investigated incompressible droplets adjusting their interfacial tensions in response to
contact-dependent signals. I derived a minimal set of equations governing the macroscopic
droplet states controlled by two dimensionless feedback parameters. I discovered that the
droplet’s adaptive wetting properties give rise to rich dynamical phenomena, including
regimes of multistability, symmetry-breaking, excitability, and self-sustained shape os-
cillations. For some configurations, the topology of the arising phase-space structures
is analogous to Hodgkin-Huxley type neuronal models, allowing me to identify parallels
between adaptive wetting dynamics and signal processing in neurons.
Applying these theoretical results to experimental shape measurements from imaging data
of zebrafish embryos, I found that the critical point arising from a shape multistability
promotes the formation of boundaries between different developing tissues. Moreover,
using fully data-derived contact-networks, I predicted cellular differentiation patterns
driven by contact-dependent signaling in mechanosensory epithelia of zebrafish larvae.
Together, this thesis provides new paradigms for physical signal processing through shape
adaptation in soft active materials, and uncovers novel modes of self-organisation in the
collective dynamics of biological tissues.
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Zusammenfassung

Mikroskopische Nichtgleichgewichtsprozesse können makroskopische Formänderungen in
weichen Materialien hervorrufen. Rückkopplungen entstehen, wenn diese Formänder-
ungen die Geometrie verändern, welche die Domäne der mikroskopischen Dynamiken
definiert. In lebenden Materialien kommen solche Rückkopplung häufig vor. Biologis-
che Zellen können beispielsweise auf Signale reagieren, indem sie ihre chemische Zusam-
mensetzung aktiv anpassen. Dennoch sind die zugrundeliegenden theoretischen Prinzip-
ien und die daraus resultierenden dynamischen Phänomene bislang unzureichend ver-
standen.
Motiviert durch biologische Zellen, die bei physischem Kontakt formabhängige Signale
austauschen, untersuchte ich inkompressible Tröpfchen, deren Grenzflächenspannungen
sich in Abhängigkeit von solchen kontaktvermittelten Signalen adaptiv verändern. Ich
leitete einen minimalen Satz von Gleichungen ab, der die makroskopischen Zustände der
Tröpfchen beschreibt und durch zwei Rückkopplungsparameter gesteuert wird. Die adap-
tive Benetzungsdynamik führt zu einer Vielfalt von dynamischen Phänomenen wie Mul-
tistabilität, Symmetriebruch und Formoszillationen. Ein Vergleich mit Hodgkin-Huxley-
Modellen offenbart Parallelen zur Signalverarbeitung in Neuronen.
Durch Anwendung dieser Gleichungen auf experimentelle Daten von Zebrafischembry-
onen identifizierte ich, dass mechanochemische Multistabilität die Ausbildung von Ge-
websgrenzen während der Embryonalentwicklung fördert. Zudem gelang mithilfe von
datenbasierten Zell-Kontakt-Netzwerken die Vorhersage von Zelldifferenzierungsmustern
in den mechanosensorischen Epithelien von Zebrafischen, die durch kontaktabhängige
Signalgebung zustandekommen.
Diese Arbeit liefert somit neue Paradigmen für die physikalische Signalverarbeitung durch
Formanpassung in weichen, aktiven Materialien, und offenbart bisher unbekannte Mech-
anismen der Selbstorganisation in biologischen Systemen.
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Chapter 1

Introduction

Living matter is a class of typically soft materials that operate far from thermodynamic
equilibrium [1]. Microscopic energy-consuming processes—including biomolecular pro-
duction and degradation, active transport that drives spatially varying concentration
fields, and the generation of active stresses—dynamically shape their material properties.
Studying such far-from-equilibrium systems can uncover new physics, where material
properties are not defined by thermodynamic equilibrium variables but by gradients, un-
balanced kinetic rates, and energy dissipation [2].
Material properties characterize a system’s response to external perturbations or stim-
uli, sometimes described as an input-output relation dictated by the material’s intrinsic
properties. For instance, a dielectric material responds to an applied electric field (input)
with the induction of a dipole moment (output) depending on its electric susceptibility
[3]. Near thermal equilibrium, response functions are linked to thermodynamic variables
[4, 5]. However, in active materials, input-output relations depend on non-equilibrium
properties and can be far more complex [2, 6, 7]. In living systems, where the output
often determines a biological function, this process is commonly referred to as signal pro-
cessing. For example, a biological tissue may respond to a chemical field with growth,
morphogenetic changes, or the release of biochemical substances [8, 9]. Similarly, electri-
cal fields can induce rhythmic contractions, collective migration, or differentiation into
new cell types [10, 11, 12, 13].
Biological signal processing often relies on chemical interactions confined within or-
ganelles, cells, or tissues. Reaction-diffusion dynamics depend on the domain geometry
and boundary conditions [14, 15, 16], making signal processing inherently geometry-
dependent. When chemical reactions induce mechanical changes and deformations, a
feedback loop emerges: shape changes in response to signals modify the space in which
chemical interactions occur, which in turn influences further signal processing [17]. Such
mechanochemical feedback can generate highly nonlinear dynamics with minimal degrees
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CHAPTER 1 Physics of capillarity and wetting

of freedom.
A striking example is the contact-dependent Notch signaling pathway, where biochem-
ical interactions of membrane-bound molecules across cell-cell interfaces trigger an in-
ternal cascade that ultimately alters cellular mechanical properties. These mechanical
changes, in turn, regulate the number and geometry of cell-cell contacts, coupling me-
chanical and biochemical interactions in a self-organizing process. A prominent example
are mechanosensory epithelia, where contact-dependent Notch signaling governs cell dif-
ferentiation accompanied by active mechanical processes inducing shape changes and the
global rearrangement of cells. Understanding this mechanochemical feedback is central to
the study of tissue organization and developmental processes [17, 18, 19, 20, 21, 22, 23],
and emergent properties in active soft matter [24, 25, 26, 27].

In this thesis, I develop a theoretical framework to study shape-dependent feedback dy-
namics in contact-dependent signaling. Drawing an analogy between cells and droplets,
I theoretically examine how droplets can adjust their interfacial tension in response to
contact-dependent signals. To provide the necessary background, I first introduce the
physics of wetting, following [28]. In particular, I derive an expression for the contact
area between interacting droplets, which is used throughout Chapter. 3 and 4. I then dis-
cuss efforts to engineer smart materials with adaptive wetting properties and I showcase
how biological systems leverage the interplay of signaling and adaptive adhesion to form
and maintain structures during development, regeneration, and homeostasis—focusing
on examples presented in my published review [17]. Finally, Section 1.3 outlines the key
objectives of this thesis in more detail.

1.1 Physics of capillarity and wetting

To this day, capillarity, the study of interfaces between liquids and other solid, fluid or
gaseous phases, remains an active field of research [30, 31]. Capillary phenomena are
abundant in many scientific disciplines like geo-, climate- or biophysics [32, 33, 34], and
they play a crucial role for various industrial manufacturing processes [35, 36].

1.1.1 Laplace’s theorem

Liquid interfaces are deformable and undergo shape changes minimizing the surface en-
ergy; yet, they can adopt extremely stable shapes when reaching an energy minimum [28].
For instance, oil droplets in water and soap bubbles form stable spheres—the minimal
surface configuration given a fixed fluid volume. Liquid interfaces can be treated like

2



CHAPTER 1 Physics of capillarity and wetting

Figure 1.1. Physics of wetting. (a) Schematic of the isotropic expansion of a surface
element with area xy and local radii of curvature R1, R2. (b) The equilibrium shape of
an adhesive droplet—and the contact angle θ—are set by the balance between Laplace
pressure p associated with volume V and surface tensions γf, γc associated with the free
and contact surface areas Af, Ac, and the tension γm at the substrate/medium interface.
(c) The balance of surface tensions at the contact and free surfaces defines the equilibrium
contact angle θ [Eq. (1.4)] of interacting droplets in a fixed-topology configuration. (d)
Droplet configurations for n = {2, 4, 6}. (e) Droplets with equal conserved volumes in
configurations with n contacts and no triple or higher-order junctions form equilibrium
configurations in which the total contact area per droplet depends on n and the tension
ratio γc/2γf [Eq. (1.7)] (points: numerical results [Appendix A], [29], empty circles: ap-
pearance of higher-order junctions, images for γc/2γf = {0.2, 0.4, 0.6, 0.8}).

membranes under a tension that opposes distortions [28]. In simple liquids, this tension
arises from the difference in cohesive forces between molecules in the bulk and those
exposed to the surface. The thermodynamic work δWA = γdA required to increase the
surface by an amount dA is proportional to the surface tension γ =

∂F

∂A

∣∣∣∣
T,V,n

, with F the

free energy and T, V, n the constant temperature, volume, and particle number.
The overpressure in the interior of a droplet due to the surface tension, i.e. the pressure
increase when traversing the fluid surface, is called the Laplace pressure p. At equilibrium,
the Laplace pressure balances the surface tension. Consider a surface element of area
A = xy as shown in Fig. 1.1(a). The work to isotropically expand the surface element
is δWA = γ(xdy + ydx), and the corresponding volume work is δWV = pdV = pxydR,
where dR is the change in the local radius of curvature. At equilibrium δWA = WV and
with dx = x

R1
dR, dy = y

R2
dR follows Laplace’s theorem

p = γ

(
1

R1
+

1

R2
.

)
. (1.1)

It implies that interfaces, across which the ratio of pressure and surface tension is constant,

3



CHAPTER 1 Physics of capillarity and wetting

have a constant mean curvature (1/R1+1/R2)/2 at equilibrium. This argument neglects
the gravitational acceleration g, which is valid depending on a droplet’s size. Comparison
of the Laplace pressure γ/lκ and the hydrostatic pressure ρglκ at a depth lκ for a liquid
of density ρ defines the capillary length scale lκ =

√
γ/ρg [28]. It is on the order of a

few millimeters for most liquids, thus, gravitational forces can often be neglected on the
nano- and micrometer scale [28], where many biological processes take place.

1.1.2 The Young-Dupré relation
When a liquid droplet is placed on a solid substrate, it forms an interface of area Ac

that depends on the interfacial forces—a process called wetting. From Eq. (1.1) follows
that the curvature at the free surface is constant, i.e. the droplet takes the shape of a
spherical cap [Fig. 1.1(b)]. Given that γc, γf and γm describe the surface tensions at the
droplet-substrate, droplet-medium and substrate-medium interface, respectively, one can
distinguish three regimes:

• total wetting: γm > γc + γf, droplet spreads completely

• partial wetting: γc − γf < γm < γc + γf , droplet spreads partially

• total dewetting: γm < γc − γf, droplet rounds up completely.

The surface tension—an energy per area—has units of N m−1 and acts like a force per unit
length. In particular, when an adhesive droplet reaches equilibrium, all forces acting on
the contact line, i.e. the triple line separating fluid, substrate and surrounding medium,
must be balanced. From the projection of the equilibrium forces onto the solid substrate
follows the Young-Dupré relation [37]

γc − γm
γf

= cos θ
2
, (1.2)

in which θ is the contact angle between droplet and substrate [Fig. 1.1(b)] [28]. It can
only be defined outside the total wetting regime. Measuring shape parameters like the
contact angle can thus inform about the relative magnitude of equilibrium forces.
Interestingly, materials can have similar contact angles, but vary greatly in their adhesion
energy. For instance, lotus leaves as well as rose pedals are superhydrophobic, however,
droplets stay pinned to a rose pedal, while they easily slide off the lotus leaf [38]. The
surface tension at solid-liquid interfaces can span several orders of magnitude: ionic or
metallic surfaces are considered high energy surfaces with γm ∼500–5000mN m−1 in air,
allowing nearly any liquid to spread. In contrast, many molecular crystals and plastics
are low energy surfaces with chemical binding energies on the order of kBT , resulting in
γm ∼10–50mN m−1 [28].

4
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1.1.3 Contact areas between Young-Laplace droplets
The total surface energy of a system of N interacting droplets is

E =
N∑

i=1

γc
2
Ac,i + γfAf,i. (1.3)

Consider a configuration in which each droplet has n neighbors, fixed volume V , and no
triple or higher-order junctions are present (i.e. no contact-lines separating more than
two droplet volumes) [Fig. 1.1(c-e)]. Similar to Eq. (1.2), the ratio of the uniform surface
tensions at droplet-droplet interfaces and at the free surface determines the contact angle
θ [Fig. 1.1(c)] through the force balance equation

γc
2γf

= cos θ
2
. (1.4)

From Eq. (1.1) follows that in the minimal surface configuration, the droplets take
the shape of truncated spheres from which n identical spherical caps were removed
[Fig. 1.1(c)], each with a volume

v =
A3/2

c

3π1/2

(
2 + cos θ

2

)(
1− cos θ

2

)2

. (1.5)

The total contact area can be related to the droplet volume V through

Ac = n

[
1− cos2 θ

2

]
⎡

⎢⎢⎢⎣
3π1/2(V + (n− 1)v))

(
2− cos θ

2

)(
1 + cos θ

2

)2

⎤

⎥⎥⎥⎦

2/3

, (1.6)

using that V +(n−1)v corresponds to the volume of a spherical cap. From Eqs. (1.4)–(1.6)
follows for the total contact area per droplet

Ac
A0

= n

[
1− cos2 θ

2

]
⎡

⎢⎢⎢⎣
2

(
2− cos θ

2

)(
1 + cos θ

2

)2

− (n− 1)

(
2 + cos θ

2

)(
1− cos θ

2

)2

⎤

⎥⎥⎥⎦

2
3

,

(1.7)

in which the reference area A0 = (3V /2)2/3π1/3 is defined by the conserved droplet volume
V [Fig. 1.1(d)]. While Eq. (1.7) holds for doublets within the full stable-contact regime
0 ≤ γc ≤ 2γf, square (n = 4) and cubic (n = 6) lattices form higher order junctions when
γc/2γf ≤ 1/

√
2 [Fig. 1.1(d)]. Note that in the case of droplets with four equally spaced

contacts, forming a tetrahedral configuration, the corresponding angle is θ = 109.5◦, how-
ever, tetrahedral arrangements are not space-filling in three dimensions. Equation (1.7)
is also true for a single, adherent droplet with n = 1 and a contact angle θ set by Eq. (1.2)
instead of Eq. (1.4).
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CHAPTER 1 Adaptive wettability and adhesion

1.2 Adaptive wettability and adhesion

The wettability of a surface can be controlled through different chemical and physical
parameters [39]. Coating a solid with a molecular layer can turn a high into a low
energy surface and vice versa. For instance, human tears deposit hydrophilic biomolecules
on the otherwise hydrophobic cornea to stabilize its protective fluid film [40]. Given a
surface chemical composition, wettability can also be tuned by changing its topography
[41]: increasing surface roughness typically enhances a material’s properties, making
hydrophilic (hydrophobic) surfaces even more hydrophilic (hydrophobic) [28].

1.2.1 Designing smart materials with switchable wettability

Given the broad range of phenomena that depend on wetting, from biology to industry,
there is a long-standing interest to control capillary forces and wettability of substrates
in an adaptive manner. To develop multifunctional and intelligent surfaces, many studies
concentrate on the design of stimuli-responsive materials, where wettability and adhe-
sion can be switched reversibly, for instance in response to stretching, magnetism, light,
electricity or temperature changes, via changes of the surface chemistry, the surface
roughness, its nanopore structure, or by creating asymmetric stress fields [38, 42, 43, 44].

1.2.2 Adaptive adhesion in biological systems

Biological systems have mastered the ability to dynamically regulate surface forces in
response to external stimuli [45, 46, 47]. For instance, the adhesion of cells is a dynamic
process mediated by specialized proteins that enable interactions with both substrates
and other cells.
Cells adhere to their surrounding matrix primarily via integrins, specialized transmem-
brane proteins that form part of large focal adhesion complexes [48, Chapter 19]. These
structures couple adhesion sites to the cytoskeleton, a dynamic intracellular polymer
network. The focal adhesions not only serve as mechanical anchors, but also act as
mechanosensors, allowing cells to probe the stiffness and topology of their environment
through contractile forces transmitted by the cytoskeleton [49]. Moreover, the cytoskele-
tal network itself continuously remodels in response to mechanical inputs and acts like
an adaptive material regulating the cell mechanical properties [2].
Similar to substrate adhesion, cell-cell adhesion relies on transmembrane proteins like
cadherins binding across the cell-cell interface. They are also coupled to the cytoskeleton
and facilitate force transmission across tissues [50]. Cells can actively tune their interfacial
properties by modulating the production, degradation and transport of these adhesion
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CHAPTER 1 Adaptive wettability and adhesion

molecules. In particular, cells produce varying types of adhesion molecules that interact
in either a homotypic (binding to the same molecule type) or heterotypic (binding to a
different molecule type) manner. This diversity forms an adhesion code that allows cells
to sort spatially based on their differential adhesion properties [51, 52, 53].

1.2.3 Mechanochemical feedback governs signal-dependent ad-
hesion

As outlined above, cells adapt their adhesion and other mechanical properties in response
to changing environmental conditions by controlling the concentration and spatial distri-
bution of adhesion molecules, cytoskeletal components, and their regulators [50, 54, 55].
Mechanochemical feedback arises when the coarse-grained material properties in turn con-
trol the chemical composition or spatial distribution of molecular constituents [14, 18, 56].
For instance, mechanical stresses can affect the synthesis of new molecules in cells [57],
active hydrodynamic flows control the transport of cytoskeletal components and molecu-
lar motors [18, 58, 59, 60], and active stresses lead to the disassembly of macro-molecular
complexes [61]. Moreover, deformations and shape changes can directly impact the mi-
croscopic dynamics by changing the domain on which these processes evolve [15, 62, 63,
64, 65, 66].

1.2.4 Contact signaling-dependent mechanochemical feedback

Environmental signals are often detected through biochemical reactions at the cell surface,
for example via binding of external ligand molecules to receptors, which change the bulk
concentration of proteins by regulating their production through gene transcription and
translation [48, Chapter 15]. A prominent example is the Notch signaling pathway,
where direct cell-cell contact is required for ligand-receptor interactions. Notch receptors
on one cell bind to ligands such as Delta or Jagged on an adjacent cell. Upon receptor
activation, a proteolytic cleavage event releases an intracellular receptor domain, which
then translocates to the nucleus to regulate gene expression. Such signaling interactions
depend on the geometry and duration of cell-cell contacts in various contexts [17, 72,
73, 74, 75]. For example, when signaling molecules bind to receptors at cell-cell or cell-
substrate interfaces, the resulting response can depend on the available contact area.
In many biological contexts, contact-based mechanochemical feedback enables the coor-
dination of signaling-dependent cellular processes with the dynamic spatial arrangement
of the cells [Fig. 1.2(b-c)]. For example, Notch signaling regulates the intercalation of
cone cells in the developing Drosophila eye [71] [Fig. 1.2(c)]. These cells are engaged in
Notch signaling while undergoing a slow T1 transition over approximately 10 hours, in
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CHAPTER 1 Adaptive wettability and adhesion

Figure 1.2. Contact-dependent signaling and mechanochemical feedback. (a) A
schematic bifurcation diagram for the signaling state of a cell u1 as a function of the
cell state u2 shows the sending state (green line) and the receiving state (gray line) sepa-
rated by an unstable state (dashed line) [67, 68]. Such symmetry-breaking of states can
arise when the ability of a cell to send a signal is suppressed upon receiving a signal. A
common example is the Notch lateral inhibition pathway [69, 70]. (b) Cell-cell signal-
ing upstream or downstream of adhesive or cytoskeletal components that control cellular
contact area gives rise to mechanochemical feedback. (c) Schematic representations show
a four-cell T1 transition in which a sending cell 1 loses contact with receiving cell 2,
which consequently becomes a sending cell. A similar topological transition occurs in
Drosophila cone cells and couples the timing of the transition to the signaling dynamics
[71]. Network schematics show the cell-cell contact changes. (d) Notch-dependent cell-
cell contact changes control distinct instances of signaling in zebrafish mechanosensory
organs. Notch signaling specifies a sensory progenitor cell (green) amongst supporting
cells (gray). This cell divides into two daughter cells that engage in a second instance
of signaling to specify opposite polarity fates (green and gray), triggering oppositely ori-
ented cell movements which terminate the signaling interactions by physically separating
the cells. Figure adapted from [17].
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CHAPTER 1 Adaptive wettability and adhesion

which the contact area between a signal-sending and a signal-receiving cell decreases and
is eventually lost. Blocking the contact-dependent transcription induced by Notch sig-
naling leads to intercalation defects, suggesting that the process is governed by feedback
between contact remodeling and signaling, likely through heterotypic adhesion between
the diverging cell types.

1.2.5 Mechanochemical feedback drives fate patterning
in mechanosensory epithelia

In the context of fate patterning, symmetry breaking describes a process in which two or
more initially similar cells acquire different properties, for example, through the ampli-
fication of small differences in biochemical composition or from a mechanical instability
[Fig. 1.2(a)]. In vertebrate mechanosensory epithelia, fate patterning is facilitated via
Notch-dependent lateral inhibition [76]. In these organs, the constituting cells acquire
a sensory fate or a supporting cell fate according to the outcome of mutually inhibitory
Notch signaling interactions [76, 77, 78], and the two cell types acquire a precise mosaic
organization in which each sensory cell is surrounded by non-sensory supporting cells
[Fig. 1.2(d), first schematic].
For instance, in vivo and explant studies of the developing mouse auditory organ have
shown that mechanical processes, including neighbor exchanges, affected by Notch-dependent
changes in cellular properties, impact final fate patterns. [79, 80, 81]. Live imaging of ex-
plants and simulations suggest that Notch signals create a salt-and-pepper distribution of
sensory cells and supporting cells that express heterotypic adhesion molecules and acquire
different mechanical properties, which—in interaction with tissue-level shear stresses in
the developing organ—facilitate a mechanical sorting process that arranges sensory and
supporting cells into a precise mosaic pattern.
In contrast to their mammalian counterparts, mechanosensory epithelia in other ver-
tebrates remain proliferative after patterning and, in some cases, exhibit remarkable
regenerative capacity [82, 83]. In the sensory organs of the zebrafish lateral line, for
example, live imaging shows high rates of proliferation with cells rearranging and contin-
uously reshaping the contact-network topology throughout development and regeneration
[68, 78]. Here, the Notch pathway regulates two interlinked fate decisions that are timed
by Notch-dependent contact dynamics [Fig. 1.2(d)]. In the lateral line, two subtypes of
sensory cells arise in pairs from the divisions of progenitor cells [84, 85]. One instance of
Notch signaling specifies the sensory progenitor cells among the supporting cells [78, 86],
while a second instance breaks the symmetry between the daughter cells to produce
one of each sensory subtype [68, 87, 88]. Subsequently, the two cells form oppositely
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CHAPTER 1 Adaptive wettability and adhesion

oriented actin protrusions and move away from one another, while supporting cells inter-
calate, possibly aided by heterotypic adhesion [68]. The two steps are coordinated by the
differentiation-induced changes in the topology of cell–cell contacts. First, the progenitor
division creates a new interface between the daughter cells through which they engage in
lateral inhibition, and then the elicited fate maturation process terminates this contact
in a self-coordinated fashion. Thus, the formation and elimination of physical contacts
between cells keep the different functions of the same pathway spatiotemporally separate.
It will be interesting to explore whether the mechanochemical self-organization of fate
decisions in this dynamically rearranging organ facilitates its capacity for regeneration.

1.2.6 Mechanochemical feedback in synthetic biosystems

Within a dynamic environment in vivo, cells receive a range of molecular signals that
influence each other and are affected by ongoing external processes. It is challenging, for
example, to decouple feedback effects between contact-dependent signaling and contact
remodeling from the cross-talk with other signaling pathways [89]. Engineering signaling
receptors to construct circuit motifs with desired properties facilitates isolating mecha-
nisms of interest and testing predictions [90, 91]. This approach can link contact-mediated
signaling to downstream effectors of cellular mechanics directly, that is, independent of
other molecular pathways. Synthetic Notch receptors permit the design of custom in-
put and output domains that can be used to program contact-dependent transcription
[52, 92, 93]. Indeed, engineering cells in which receptor activation suppresses the expres-
sion of the corresponding ligand leads to mutual inhibition that breaks the symmetry and
bifurcates cells into two groups of either high or low ligand expression. Moreover, pro-
gramming the circuits to induce the expression of homophilic adhesion molecules down-
stream of receptor activation gives rise to the formation of compact structures with a core
of receiving cells surrounded by ligand-expressing sending cells [52]. The results demon-
strate that a simple feedback between contact-based signaling and contact remodeling
can break the symmetry among initially uniform cells and drive spatial organization into
distinct layers.

1.2.7 New insights from studying mechanochemical feedbacks

Gaining a formal and predictive understanding of mechanochemical systems is a core
goal of theoretical biological physics [27]. It motivates novel combinations of theoret-
ical approaches from cellular biophysics, the collective dynamics of active matter, and
the nonlinear dynamics of cell–cell communication [67, 68, 94, 95]. For example, work
on communicating active matter outlines how modeling collective motion with signaling
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dynamics reveals new principles of multicellular organization [96]. New technologies, es-
pecially in the field of live imaging combined with optogenetics and the development of
novel ex vivo and in vitro platforms, allow to monitor and manipulate the spatial dynamics
of cells and their signaling states in unprecedented ways [90, 97, 98]. Increasingly com-
plemented by theoretical approaches [81, 99, 100, 101, 102, 103, 104], these advances will
reveal patterning regimes and self-organizing motifs specific to mechanochemical systems
and improve the targeted manipulation and reconstitution of dynamical multicellular
structures.

1.3 Objectives and Goals

Figure 1.3. Shape-dependent feedback in contact-dependent signaling across length
scales. (a) Starting from microscopic equations of contact-dependent signaling and cell
adhesion coupling dynamics in the bulk Ω and the free and contact surface domains
Γf,Γc, I derive coarse-grained equations for droplets adjusting their interfacial tensions
according to their internal states ui. (b, c) (Chapter 2), and I analyze the nonlinear dy-
namical landscape of state and shape dynamics (Chapter 3, 4), governed by two feedback
parameters: adaptive tension γA and signal susceptibility χ. (d) I infer feedback parame-
ters from contact angle measurements θ in microscopy images of foam-like fish embryonic
tissues (image: Camilla Autorino, Petridou group, EMBL) (Section 3.7). (e) I analyze
data-derived realistic contact networks in developing fish sensory organs to predict cell
fate decisions (image: Adrian Jacobo, Biohub SF). Scale bar: (d) 10 µm, (e) 5 µm.

In this thesis, I present a theoretical framework of shape-dependent feedback dynamics
considering various length scales, from molecular interactions at cell-cell interfaces to
single cells and finally tissue-wide communication networks [Fig. 1.3].
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In Chapter 2, I derive and analyze reaction-diffusion equations for signaling and adhe-
sion molecules at cellular contacts, examining how the system’s shape governs bulk and
surface densities. Using a time-scale separation argument, where feedback dynamics are
constrained by molecular production and degradation, I derive a set of coarse-grained
equations in which concentration fields determine global state variables associated with
each cell. Specifically, using the analogy between cells and droplets, I describe droplets
adjusting their interfacial tension in response to exchanged signals, providing a framework
with minimal degrees-of-freedom and two intrinsic feedback parameters.
In Chapters 3 and 4, I identify and analyze the dynamical regimes of the reduced equa-
tions that describe the adaptive wetting dynamics of signal-processing droplets and wet
foams. Using analytical arguments, simulations, and numerical continuation, I show
how the feedback between contact dynamics and signaling states drives rich phenomena,
including multistability, symmetry-breaking, excitability, and self-sustained oscillations
[105, 106]. For specific configurations, I recover bifurcation structures which are topolog-
ically equivalent to those found in conductance-based neuronal models of action poten-
tial generation. Interestingly however, the corresponding adaptive wetting dynamics are
driven by nonlinear terms arising from the system’s geometrical and mechanical prop-
erties. Collaborating with experimental experts, I apply my theoretical results, and use
imaging data from zebrafish embryos to infer the mechanochemical feedback parameters
operating in this system. I find that the critical point associated with mechanochemi-
cal multistability supports the establishment of the ectoderm-mesendoderm boundary,
determining the tissue region which later forms the internal parts of the organism.
Chapter 4 focuses on the collective scale where the topology of the contact network
determines the pattern formation of states. The framework is first analyzed in a sim-
plified one-dimensional model showcasing how patterning of states depends on short vs.
long-range signaling interactions, how multistability can arises from self-activating state
dynamics, and how traveling defects can appear from asymmetric coupling. I then apply
the framework to realistic contact network topologies derived from live microscopy data
of developing fish embryos, which enables the successful localization of cell differentiation
events.

Table 1.1. List of recurring mathematical symbols and bifurcation types

Symbol Description
Ω Bulk domain
Γ Surface domain
θ Contact angle

Continued on next page
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Table 1.1 – Continued from previous page
Symbol Description

γc Contact surface tension
γf Free surface tension
γm Surface tension at substrate-medium interface
Ac Contact surface area
Af Free surface area
V Droplet volume
ρ 3D radius of a spherical cap shaped droplet
ρ0 Volume-dependent reference radius (V = 4π

3 ρ
3
0)

r Radial coordinate at the contact site
(ϑ,φ) Spherical coordinates at the free surface
rmax Radius of the contact site
p Laplace pressure
E Surface energy
W Thermodynamic work
n Number of contacts per droplet
mX Surface density of molecule species X
cX Bulk concentration of molecule species X
DmX Lateral diffusion coefficient on the surface of molecule species X
DcX Bulk diffusion coefficient of molecule species X
jX Flux between bulk and surface of species X
kX

on Rate of binding to the surface (e.g exocytosis) of species X
kX

off Rate of molecule release from the surface (e.g. endocytosis) of species X
kX

p Bulk production rate of molecule species X
kX

d Bulk decay rate of molecule species X
ks Cleavage rate of receptor-ligand complexes
k+ Rate of receptor-ligand binding
k− Rate of receptor-ligand dissociation
τ Time scale parameter
ui Internal state of cell/droplet i

s Received signal
σ Response function
χ Signal susceptibility
φ Available signal
γA Adaptive adhesion coefficient

Continued on next page
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Table 1.1 – Continued from previous page
Symbol Description

γ0 Baseline tension at the contact site
h Hill coefficient in response functions
cij Coupling matrix containing the contact topology
SN Saddle node
H Hopf bifurcation

Hom Homoclinic bifurcation
HomSN Homoclinic-to-saddle-node bifurcation (SNIC)
SHET Saddle Heteroclinic bifurcation
LPC Limit point of cycles bifurcation
CP Cusp bifurcation
PF Pitchfork bifurcation
BT Bogdanov-Takens bifurcation
GH Generalized Hopf bifurcation

NCH Non-central homoclinic to saddle-node bifurcation
SP Saddle node pitchfork bifurcation

BTC Bogdanov-Takens-Cusp bifurcation
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Chapter 2

Microscopic dynamics of
contact-based signaling and adhesion

The macroscopic shape and state dynamics of active materials arise from nonequilibrium
microscopic processes. In living systems, active processes are driven by a large set of bio-
chemical interactions forming complex networks with nonlinearities arising, for instance,
from cooperative binding [67, 107, 108]. As molecular interactions take place in space and
time, additional nonlinearities arise from geometrical relations [109]. The involvement
of multiple molecular components and the coupling of reaction and transport processes
across different temporal and spatial scales makes it difficult to identify general princi-
ples. In this chapter, I address this gap by deriving tractable coarse-grained equations
from the microscopic dynamics for a class of mechanochemical systems, in which bio-
chemical signal processing is coupled to shape dynamics. Specifically, I introduce sets of
bulk and surface reaction-diffusion equations for molecules that mediate (i) the exchange
of contact-based chemical signals, and (ii) adhesion at contact surfaces. I discuss how
steady state concentrations of signaling molecules depend on the systems geometry, and
link these results to experiments reported in literature. In the last section of this chap-
ter, I derive a set of tractable coarse-grained equations for mechanochemical systems, in
which contact-based signals are coupled to the regulation of adhesion, by employing a
separation of time scales that arises naturally when changes in the chemical composition
depend on transcriptional and translational regulation, i.e. the slow synthesis of new
protein molecules. Chapters 3 and 4 present a detailed nonlinear dynamics analysis of
this set of equations and their application to model experimental data.
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CHAPTER 2 Reaction-diffusion equations with surface-bulk coupling

2.1 Reaction-diffusion equations with surface-bulk cou-
pling

Consider continuity equations for particle densities c in the bulk Ω and m on the surface
Γ of the form [110]

∂tc = Dc∇2c+Rc (2.1)
∂tm = Dm∇2m+Rm (2.2)

with diffusion coefficients Dc, Dm in three and two dimensions respectively, and reaction
terms Rc and Rm. I do not consider convective flows or other active transport processes
here. The boundary condition

−Dc(n ·∇) c|Γ = j (2.3)

couples the bulk and surface densities via the flux j between bulk and surface where n is
the normal vector to the surface pointing outwards. A simple form of this flux is given
by [74, 111]

j = konc|Γ − koffm (2.4)

with kon setting the rate with which molecules bind to the surface and koff the rate with
which they are released into the bulk. I consider the bulk reaction term [112]

Rc = kp − kdc (2.5)

with kp the active production of molecules (e.g. due to protein translation in cells) driv-
ing the system out of thermodynamic equilibrium, and kd the rate of decay. The surface
reactions Rm are specified in the following sections, where I consider different molecular
processes governing adhesion and contact-based signaling.

Averaging Eq. (2.1) over the bulk’s volume V and using Eqs. (2.3) and (2.5) yields the
dynamic equation for the average bulk concentration ⟨c⟩

d⟨c⟩
dt

= kp − kd⟨c⟩ −
1

V

∫

Γ

jdA. (2.6)

Defining the steady state average densities in the absence of boundary flux as the reference
density c0 = kp/kd and m0 = konc0/koff permits introducing normalized particle densities
c/c0 and m/m0.
With diffusion timescale τD = V 2/3/Dc and reaction timescales τR = 1/kd and τon =

V 1/3/kon, Eq. (2.1) and Eq. (2.3) with time rescaled in units of τ = t/τR read
τD
τR

∂τc

c0
= V 2/3∇2 c

c0
+

τD
τR

(
1− c

c0

)
, (2.7)

(n ·∇)
c

c0

∣∣∣
Γ
=

τD
τonV 1/3

( m

m0
− c

c0

)
. (2.8)
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The focus of this work are the long time scale dynamics dominated by protein synthesis
and decay. Given that the regulation of transcription, translation and the turnover of
proteins are slow processes that require tens of minutes to hours and can vary greatly
between different protein species [113, 114, 115], I assume that they dominate the dy-
namics. In comparison, biochemical interactions, diffusive transport across cellular scales
and frictional time scales are typically at least an order of magnitude faster – set by
diffusive, biochemical, and viscoelastic timescales on the order of seconds to minutes
[74, 114, 116, 117]. Accordingly, I assume that bulk and surface concentrations relax
to their steady state solutions, and that the system takes on equilibrium shapes. More
specifically, I consider the limit in which bulk diffusion is fast compared to the reaction
kinetics, i.e. τD ≪ τR and τD ≪ τon. In this limit, the boundary condition Eq. (2.8) is
reflective and Eq. (2.7) becomes a Laplace equation that is solved by a uniform concen-
tration set by the solution of Eq. (2.6) (shadow limit [118]).
The surface of a cell, which is in contact with another cell or a substrate, can be sep-
arated into the domain of the contact interface Γc and the free surface Γf [Fig. 2.1(a)].
At the free surface, molecules can be exchanged with the bulk, but interactions between
adhesion or signaling molecules are restricted to the contact interface. The reaction term
at the free surface is therefore Rm|Γf

= j.

In the following sections, I introduce the reaction terms and corresponding boundary
fluxes for contact-based signaling and adhesion dynamics and compute the steady state
bulk and surface densities that fulfill Eqs. (2.2), (2.6).Note that lateral diffusion coeffi-
cients of proteins on lipid membranes are variable and on the order of 0.01–10 µm2 s−1 [74,
117, 119, 120], allowing density fields to acquire their steady state within seconds over
micrometer length-scales, while equilibration takes substantially longer in larger systems,
such as synthetic biomimetic droplets [121].

2.2 Biochemical signaling interactions at contact sur-
faces

Cells respond to molecular signals from the environment by changing their internal prop-
erties. Many cellular signals are transmitted via the binding of chemicals to receptor
molecules located at the cell surface (Section 1). These chemical events trigger internal
processes, which result in changes to the molecular composition, spatial organisation, and
corresponding functions of cells [48, Chapter 15].
Following the example of the Delta-Notch signaling pathway (Section 1.2.4), I consider the
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reaction-diffusion dynamics of receptors (R), ligands (L), and receptor-ligand complexes
(RL) at a signaling interface, and derive how the bulk concentration of signal molecules
(S) depends on receptor-ligand binding at the boundary [Figs. 2.1, 2.8]. In particular, I
discuss different cases of active biochemical regulation and limits in which scaling laws
between the exchanged signal and different rates, concentration constants and geometrical
properties can be derived.

2.2.1 A cell on a signal-transmitting substrate

I begin by considering a single cell in contact with a solid substrate that is functionalized
with immobile ligands at a fixed uniform density mmax

L , similar to experimental systems
developed for the Notch pathway in in vitro assays [122] [Fig. 2.1(b)]. The cell contains
receptor molecules, signaling molecules, and regulator molecules with bulk concentrations
cR, cS, and cU respectively, whose dynamics are coupled via the reactions at the contact
surface. I do not explicitly consider a bulk concentration of ligands, because the substrate
has no receptor molecules to bind to—the cell is only receiving, but not sending signals.
To describe the signaling dynamics at the surface, I use Eq. (2.2) for the surface densities
of receptors mR, substrate-bound ligands mL and receptor-ligand complexes mRL with
the reaction terms adapted from Khait et al. (2016) [74]

RmR = kR
oncR − (kR

off + k+mL)mR + k−mRL, (2.9)
RmL = (k− + ks)mRL − k+mLmR, (2.10)
RmRL = k+mLmR − (k− + ks)mRL, (2.11)

which are explained in the following [Fig. 2.1(b)]. Receptors are recruited to the surface
with a rate set by kR

on (exocytosis) and they are removed from the surface with rate kR
off

(endocytosis) [123]. Receptors at the contact surface bind ligands at a rate determined
by k+ to form receptor-ligand complexes, which unbind with rate k−. Receptor-ligand
complexes undergo an irreversible enzymatic cleavage with rate ks upon which a fragment
of the bound receptor molecule is released into the bulk and acts as a signaling molecule
(S), the remaining part is degraded, and the ligand is released within the surface where
it can bind to a new receptor molecule. The bulk concentrations of receptors cR and
signaling molecules cS are coupled to the signaling dynamics at the contact via Eq. (2.6).
The ligands on the substrate are fixed in place such that DmL = 0, DmRL = 0 in Eq. (2.2).
The density of unbound ligands is the difference between the total density of ligands
covering the substrate and the density of receptor-ligand complexes mL = mmax

L −mRL.
Eqs. (2.2) and (2.11) together with this relation permit expressing the normalized steady
state concentration of receptor-ligand complexes in terms of the steady state receptor
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Figure 2.1. Microscopic interactions underlying signaling. (a) Schematics of a spherical-
cap shaped cell of radius ρ adhering to a substrate with bulk Ω and the free and contact
surface domains Γf,Γc, respectively. The radial symmetric contact has radius rmax. The
free surface can be parameterized in spherical coordinates (φ, θ). The fluorescence mi-
croscopy image shows the actin cortex of a 3T3 fibroblast on a micropatterned substrate,
stained with SiR-actin (Image courtesy of Alba Diz-Muñoz) . Scale bar: 5 µm. (b)
Contact-dependent signals are received from a ligand-coated substrate. Receptor (R,
gray) and ligand (L, green) molecules bind across the interface and form receptor-ligand
complexes (RL). Receptors are produced in the bulk, exchanged with the surface and
bind to substrate-bound ligands. Receptor-ligand complexes are cleaved irreversibly [70],
which releases a signaling molecule (S, gray) into the bulk. Regulator molecules (U, red)
are produced with a rate depending on the bulk concentration of signal molecules, and can
in turn determine the production rate of new ligands (Section 2.3.1). Substrate-bound
ligand molecules are released upon the cleavage event and can bind a new receptor. Here,
c and m denote bulk and surface concentrations respectively, and k denote the kinetic
rates of the reactions.
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concentration as

mRL
mmax

L
=

mR

mR +
ks + k−

k+

. (2.12)

The ratio of rate constants ks+k−
k+

defines the steady state receptor surface density at
which half of all ligands are bound in receptor-ligand complexes [Fig. 2.2].
Parameter values reported for the Notch signaling pathway are summarized in Tab. 2.1,
suggesting a value of ∼ 2.4 µm−2, far less than the typical receptor concentrations of
10–1000 µm−2 reported for biological cells [124, Chapter 15],[74].
Given Eqs. (2.2), (2.9) and (2.12), the steady state relation for the distribution of receptors
reads

0 = DmR∇2mR + kR
oncR −mR

(
kR

off +
ksk+mmax

L
k+mR + ks + k−

)
. (2.13)

The steady state bulk concentration of signaling molecules following Eq. (2.6) with jS =

−ksmRL and kS
p = 0 is then

cS =
ksmmax

L
kS

d

∫

Γc

mR

mR +
ks + k−

k+

dA, (2.14)

where I used Eq. (2.12). The cleavage of the receptor-ligand complex leading to the loss
of receptor molecules at the surface is characteristic for the Notch pathway and implies
that steady states are out of thermal equilibrium with a constant particle flux from
the bulk to the surface. In many other biochemical pathways, receptor molecules are
recycled and receptor-ligand complexes induce the production of downstream signaling
molecules, e.g. through enzymatic activity [48, Chapter 15], until they unbind. As I show
in the following, the cleavage process is key to observe non-uniform steady state surface
distributions. Note that despite their complexity and nonlinear relations, the reaction
terms (2.9)–(2.11) are still a simplification of the real biological system. For instance, the

Figure 2.2. Fraction of ligands bound in receptor-ligand complexes as a function of the
steady state receptor concentration [Eq. (2.12)].
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cleavage rate ks depends on other proteins and their concentration, cells posses different
versions of receptor and ligand molecules with different binding and unbinding rates,
and receptors can be chemically modified, which changes their reaction and diffusion
properties. Nevertheless, these terms have been used successfully to quantify relations
between molecule distributions, signal molecule production and contact area [74].

Constant bulk concentrations

To distinguish between effects arising from surface-bulk coupling and from the dynamics
within the surface, I start with the assumption that the steady state bulk concentration
of receptors cR = c0R is constant. This is the case, for instance, if feedback effects in
the production rate of receptor molecules compensate for the loss of receptors through
degradation in the bulk and at the surface [Eqs. (2.4), (2.6)], i.e.

kR
p = c0R

(
kR

d +
kR

onA

V

)
− kR

off
V

∫

Γ

mRdA. (2.15)

Indeed, biological cells possess a range of active feedback mechanisms to adapt their
protein synthesis and degradation rates to maintain constant protein levels [125, 126],
effectively acting as a chemostat that preserves a constant chemical potential. Similar
assumptions have been used successfully to study how signaling depends on the surface
distribution of receptor molecules in the Notch pathway [74].

The spherical cap geometry

In the following, I assume radial symmetry, which reduces Eq. (2.13) to the one-dimensional
equation

0 =
DmR

r

∂

∂r

(
r
∂mR
∂r

)
+ kR

onc
0
R −mR

(
kR

off +
ksk+mmax

L
k+mR + ks + k−

)
. (2.16)

with r ≥ 0 the radial coordinate. Such symmetry is given, for instance, in spherical
cap shaped droplets—the equilibrium shape of a Young-Laplace droplet set by the bal-
ance between the Laplace pressure and the uniform surface tensions associated with the
different surfaces (Section 1.1). Introducing the free diffusion length scale before a re-
ceptor is removed from the surface lD,f =

√
DmR/k

R
off and the reference receptor density

m0
R = kR

onc
0
R/k

R
off (lD ≈ 1 µm, m0

R ≈ 100 µm−2 for values in Tab. 2.1), I can write Eq. (2.16)
for the normalized receptor concentration MR = mR/m0

R as

0 =
l2D,f
r

∂

∂r

(
r
∂MR
∂r

)
+ 1−MR

(
1 +

ksk+mmax
L

kR
off(k+MRm0

R + ks + k−)

)
. (2.17)

At the free (non-contact) surface, molecules can be exchanged with the bulk, but inter-
actions of signaling molecules are restricted to the contact interface. The reaction term
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at the free surface is therefore Rm|Γf
= j. Given the spherical-cap geometry, the free

surface can be parameterized in terms of the spherical coordinates ϑ,φ [Fig. 2.1(a)] and
the steady state receptor concentration at the free surface follows

0 =
l2D,f

ρ2 sin(ϑ)2
∂

∂ϑ

(
sin(ϑ)∂MR

∂ϑ

)
+ 1−MR (2.18)

which is independent of the azimuthal angle φ due to axial symmetry. Note that the
receptor distribution at the free surface only depends on the diffusive length scale lD,f

relative to the system size ρ and the boundary conditions. Demanding that solutions are
smooth everywhere, in particular, ∂MR

∂ϑ

∣∣∣
ϑ=0

= 0, Eq. (2.18) is solved by

MR|Γf
= 1 + C1Pλ (cosϑ) (2.19)

where Pλ is the generalized Legendre polynomial of degree

λ = −1

2
+

√
l2D,f − 4ρ2

4l2D,f
(2.20)

with ρ the three-dimensional radius of the spherical cap [Fig. 2.1(a)], which is related to
the fixed volume V and the contact side radius rmax via

ρ =
r2max + z(rmax, V )2

2z(rmax, V )
(2.21)

with

z(rmax, V ) =
3

√
3

π
V +

√
9

π2
V 2 + (rmax)6 +

3

√
3

π
V −

√
9

π2
V 2 + (rmax)6 (2.22)

the height of the spherical cap [Appendix B].
Given that solutions are continuous and particles diffusing between free and contact
surface are conserved, the two surfaces are coupled by the boundary conditions

MR(ϑ)|∂Γf
= MR(r)|∂Γc

, (2.23)
1

ρ

∂MR(ϑ)

∂ϑ

∣∣∣∣
∂Γf

= − ∂MR(r)

∂r

∣∣∣∣
∂Γc

. (2.24)

In the following sections, I showcase three different limits in which Eqs. (2.17),(2.18) can
be solved analytically as well as numerical solutions to the more general case.

Limit 1: low ligand density

In the limit of low ligand density mmax
L , I can consider the binding rate of receptor

molecules to be small compared to their release rate into the bulk, i.e.

kR
off ≫ k+m

max
L . (2.25)
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Parameter Symbol Value
Endocytosis koff 0.02 s−1

Cleavage ks
0.34 s−1 (limit1,2)
34 s−1(limit3)

Binding k+ 0.167 µm2 s−1

Unbinding k− 0.034 s−1

Diffusion coefficients DmR , DmL 0.02–0.08 µm2 s−1

Exocytosis receptors kR
onc

0
R 2 µm−2 s−1

Exocytosis ligands kL
onc

0
L 0.2 µm−2 s−1

Cell radius ρ0 5 µm
Volume V 4

3πρ
3
0

Contact area Ac 0–125 µm2

Ligand density mmax
L

0.1 µm−2 (limit 1)
5 µm2 (limit 2)

10 µm−2 (limit 3)

Table 2.1. Measured and estimated parameter values for reaction and diffusion rates of
receptor and ligand molecules as reported in [74], and typical cellular length scales

It simplifies Eq. (2.17) to a Bessel equation

0 =
l2D,f
r

∂

∂r

(
r
∂MR
∂r

)
+ 1−MR. (2.26)

Demanding that solutions are smooth at the center of the contact, i.e. ∂MR
∂r

∣∣
r=0

= 0, it is
solved by

MR = 1 + C2I0 (r/lD,f) (2.27)

with In the modified Bessel function of first kind and order n and C2 an integration con-
stant that depends on the boundary conditions. Solving for the integration constants of
Eqs. (2.19),(2.27) given boundary conditions (2.23),(2.24) yields a uniform surface den-
sity of receptors MR = 1 (i.e. C1 = C2 = 0) at both surfaces, set by the balance between
receptor transport to and from the surface, because the loss of receptors due to signaling
is negligible and does not appear in Eq. (2.26). Correspondingly, the density of receptor-
ligand complexes at the contact side is uniform [Eq. (2.12)]. The bulk concentration of
signaling molecules [Eq. (2.14)]

cS =
ksk+m0

R
kS

d(k+m
0
R + (k− + ks))

mmax
L Ac (2.28)

scales linearly with the contact size Ac [Fig. 2.1(a)] and the ligand density on the sub-
strate. It approaches the limit cS = ks

kS
d
mmax

L Ac when m0
R is large due to high production
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Figure 2.4. Limit of low ligand density. (a) Normalized distribution of receptors and
receptor-ligand complexes are uniform due to negligible receptor loss at the surface. (b, c)
The bulk signal molecule concentration scales linear with contact area (b) and nearly
linear with the cleavage rate ks (c). Parameter values as given in Tab. 2.1.

and low decay in the bulk or fast transport to the surface. Alternatively, the limit
cS =

k+m0
R

kS
d

mmax
L Ac is valid when the right-hand-side of Eq. (2.28) is dominated by a fast

cleavage rate ks. The loss of receptors due to cleavage of the receptor-ligand complex is
characteristic for Notch signaling, while in many other biochemical pathways, receptor
molecules are recycled. In that case, Eq. (2.26) is generally valid [Appendix C] and steady
state surface densities are uniform.

Typical parameter values for the rate constants of the Notch signaling pathway are sum-
marized in Tab 2.1. The endocytosis rate kR

off was measured in in vitro experiments to
be ∼ 0.02 s−1 [74] and the receptor-ligand binding rate k+ estimated to 0.167 µm2 s−1,
thus, limit (2.25) would imply that mmax

L ≪ 0.12 µm−2. For biological cells with contacts
typically on the order of 0–100 µm2, it would imply the detection of single molecules per
contact side, making the system very susceptible to noise. Cells rather express 10–100m−2

ligands on their surface and in vitro experiments have been conducted on substrates cov-
ered with > 1000m−2 ligands [122]. In conclusion, the loss of receptor molecules due
to signaling is often not negligible compared to the endocytosis rate. In the following, I
show that the loss of molecules at the surface leads to non-uniform steady state surface
densities of receptor-ligand complexes, causing nonlinear relationship between contact
size and signal molecule concentration.

Limit 2: receptor excess

In the limit of a receptor excess compared to the ligand density mmax
L covering the sub-

strate, most receptors at the surface remain unbound. It allows to expand Eq. (2.12)
in the limit of small (ks + k−)/(k+mR0) ((ks + k−)/(k+m0

R) ≈ 0.02 given the values in
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Figure 2.5. Limit of receptor excess. (a) Non-uniform distributions of surface re-
ceptors (left) translate to nearly uniform receptor-ligand complexes distributions (right)
for small cleavage rates, because nearly all ligands are bound. (b-e) Varying the diffu-
sion length scales alters the surface densities of receptors (b, left) and receptor-ligand
complexes (b, right). Despite the non-uniform receptor-ligand complex distribution, the
signal molecule concentration scales nearly linearly with the ligand density (c) and con-
tact area (d). The nonlinearity is mainly visible in the derivative (e). Parameter values:
(b-e) ksmmax

L /(kR
onc

0
R) = 0.5. (a-c) rmax/ρ0 = 21/3 corresponding to a contact angle of

π/2 (hemispheric) and (c-e) ρ0 = 5 µm, such that the three diffusion length scales (b-e)
correspond to lD = {0.1, 1, 10}µm. Other parameter values as given in Tab. 2.1.

Tab. 2.1)

mRL = mmax
L

(
1− ks + k−

k+m0
RMR

)
+O

((
ks + k−
k+m0

R

)2
)
. (2.29)

Together with Eqs.(2.2),(2.9) follows then for the normalized receptor surface density

0 =
lD,f
r

∂

∂r

(
r
∂MR
∂r

)
+ 1−MR − ksmmax

L
kR

onc
0
R

− k−(k− + ks)

kR
offk+m

0
RMR

mmax
L
m0

R
. (2.30)
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In accordance with expansion Eq. (2.29) for small (ks + k−)/(k+m0
R), the last term can

be considered negligible. This is further justified considering the typically slow unbinding
rate k− (Tab. 2.1). For radially symmetric systems Eq. (2.30) is then solved by

MR = 1− ksmmax
L

kR
onc

0
R

+ C3I0 (r/lD,f) . (2.31)

Note that this limit is only valid if ksmmax
L /(kR

onc
0
R) < 1, otherwise the solution contains

regions with negative concentrations. Compared to Eq. (2.27), where the loss of receptor
molecules due to signaling was completely neglected, it enters here as a constant con-
tribution uniformly acting as a sink across the whole contact site, proportional to the
cleavage rate ks and total surface density of ligands mmax

L . The integration constants
of Eqs. (2.18),(2.31) derived from the boundary conditions Eqs. (2.23),(2.24) result in
lengthy expressions [Appendix D, Eq. 5.12], which depend on the relative length scales
lD,f/ρ0 and rmax/ρ0, and the ratio between cleavage and transport of new receptors to the
surface ksmmax

L /(kR
onc

0
R).

The additional loss of receptors due to signaling at the contact site compared to the
free surface leads to non-uniform steady state receptor densities [Fig. 2.5(a,b)]. Because
(ks + k−)/(k+m0

R) ≪ 1 in the receptor excess limit, most ligands are bound by recep-
tors [Fig. 2.2] and the non-uniform receptor distributions translate into rather uniform
distribution of receptor-ligand complexes [Fig. 2.5(a)], leading to uniform production of
signaling molecules across the contact site and a nearly linear scaling between maximum
ligand density and the number of signaling molecules [Fig. 2.5(c)]. For small diffusion
length scales lD ≪ rmax, profiles are uniform at the free and contact surface with a sharp
transition at the contact line [Fig. 2.5(b)], and when lD and ρ0 are of the same order
of magnitude, loss of molecules at the contact site can also deplete the receptors at the
free surface [Fig. 2.5(b)]. Even for non-uniform distributions of receptor-ligand complexes
[Fig. 2.5(b), right], scaling between the contact area and the bulk concentration of signal-
ing molecules is nearly linear [Fig. 2.5(d,e)]. Moreover, the signal increases weakly with
the diffusion length—especially at large contacts—due to a diffusive flux of receptors
from the free to the contact surface.

Limit 3: fast cleavage rate

Another limit to consider are systems where the sum of the cleavage and the unbinding
rate of receptor-ligand complex ks+k− is fast compared to the receptor binding rate such
that only a small fraction of ligands is found in a bound state at a given time point, i.e.

ks + k− ≫ k+m
0
R. (2.32)
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Figure 2.6. Limit of fast cleavage rate. (a) The normalized distribution of surface
receptors (left) and receptor-ligand complexes (right) for varying degree of receptor loss
at the contact due to signaling, k+ksmmax

L
(ks+k−)kR

off
= {1, 10, 100} (dark to light green), lD/rmax =

0.16. (b-e) Varying the diffusion length scale alters the surface densities of receptors (b,
left) and receptor-ligand complexes (b, right). (c) Signals increase with ligand density
and plateau in the regime where recruitment of new receptors is limited by diffusion.
(d, e) Scaling between signals and contact area has two regimes, a nonlinear (rmax < πlD)
and a linear regime (rmax > πlD). Parameter values: (a-c) rmax/ρ0 = 21/3 corresponding
to a contact angle of π/2 (hemispheric) and (c-e) ρ0 = 5 µm, such that the three diffusion
length scales (b-e) correspond to lD = {0.1, 1, 10}µm, ks = 34 in accordance with the fast
cleavage limit [Eq. (2.32)], mmax

L = 10 µm−2. Other parameter values as given in Tab. 2.1.

Note that the reference density m0
R—the steady state surface density without any physical

contact—is an upper limit for the concentration of surface receptors, because the signaling
process is removing additional molecules from the system. The example values reported
in Tab. 2.1 do not fall into this limit, however, it could be appropriate for systems with
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lower receptor concentrations (smaller m0
R), weaker receptor-ligand interactions (smaller

k+/k−) or faster conversion of the receptor-ligand complex into a signaling molecule
(larger ks), for instance when cleavage does not depend on the recruitment of another
enzyme.
In this limit, Eq. (2.17) can be simplified to

0 =
l2D,f
r

∂

∂r

(
r
∂MR
∂r

)
+ 1−

(
1 +

k+ksmmax
L

(ks + k−)kR
off

)
MR, (2.33)

where the term in the right brackets contains information about the number of receptor
molecules lost through signaling compared to receptors internalized back into the bulk.
The loss of receptor molecules due to signaling thus enters as a term proportional to the
surface density of receptors. The solution is

MR =
1

1 +
k+ksmmax

L
(ks + k−)kR

off

+ C4I0 (r/lD,c) (2.34)

with
lD,c =

lD,f√
1 +

k+ksmmax
L

(ks + k−)kR
off

(2.35)

a length scale containing information about the diffusion distance of a receptor molecule
at the contact site before it is removed from the surface due to endocytosis or ligand
binding and cleavage. The integration constant C4 of Eq. (2.34) can be derived together
with C1 [Eq. (2.19)] from boundary conditions Eqs. (2.23),(2.24) and Eq. (2.21) [Ap-
pendix D, Eq. 5.14]. They depend on the relative length scales rmax/ρ0, lD,f/ρ0 and the
loss term [Eq. (2.33), right bracket]. Given the parameter values in Tab. 2.1, the binding
and cleavage rate are much faster than the internalization (endocytosis) of receptors and
the steady state receptor density at the contact site is close to zero [Fig. 2.6(a), left].
Due to the high cleavage (or unbinding) rate, only a small fraction of ligands is bound
in receptor-ligand complexes [Fig. 2.6(a), right]. The signal increases with the ligand
density until the receptors at the surface are depleted and signaling is limited by the
diffusion of unbound receptors from the free to the contact surface [Fig. 2.6(c)]. Signals
scale nearly linear with the diffusion length and finally plateau for lD > ρ0, either because
receptors at the free and contact surface are depleted or–for small contacts—because all
ligands at the contact are saturated with bound receptors [Fig. 2.6(b)]. The right panel
in Fig. 2.6(d) shows the scaling between signal molecule concentration and contact area
for a cell of radius ρ0 = 5 µm with a contact radius rmax = 5 × 21/3µm (i.e. a contact
angle of π/2) and a diffusion length lD = 1 µm (i.e. lD/rmax ≈ 0.16). One can distinguish
two regimes, where signals increase more strongly with contact area if rmax < lD and
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converge to a linear scaling law for rmax > D. Indeed, in vitro experiments measuring
Notch signals at cell-cell contacts revealed a roughly linear relation between the Notch
signaling response and the contact area [74].
In conclusion, the Notch signaling pathway exhibits a unique feature in which receptor
molecules are irreversibly lost during the signaling process, effectively making the cell
surface a sink for receptors. Given parameter values reported in the literature (Tab. 2.1),
this molecular depletion is typically non-negligible (Limit 1), leading to non-uniform
steady state distributions of free receptor molecules. However, when receptors are ex-
pressed in excess and the majority of ligands are sequestered in signaling complexes,
the overall signal scales nearly linearly with the contact area, despite spatially heteroge-
neous receptor distributions (Limit 2). A notable departure from this behavior occurs
under conditions of rapid receptor-ligand complex turnover, such as in the case of a high
cleavage rate (Limit 3), or when ligands are in excess—as can be achieved in in vitro
experiments [122]. Under these conditions, the distribution of receptor-ligand complexes
follows radial gradients strong enough to induce significant nonlinear scaling between the
bulk signaling molecule concentration and the contact area.

2.2.2 Active processes at the contact line

In living cells, additional regulatory processes controlling the transport of receptor and
ligand molecules, for instance at the contact line, can produce molecular gradients [127,
128], which motivates to treat the boundary of the contact domain as a free parameter.
In the following, I thus consider the receptor concentration at the contact line MR|∂Γc

as a fixed control parameter and discuss the steady state solutions at the contact site.
Because signaling molecules are only produced at the contact, the free surface plays no
role for their bulk concentration. For fixed boundary concentration, the solutions of the
normalized steady state receptor density in the three limits are: Limit 1 [Eq. (2.26)]

MR = 1 +
(
MR|∂Γc

− 1
) I0 (r/lD,f)

I0 (rmax/lD,f)
, (2.36)

Limit 2 [Eq. (2.30)]

MR =

(
1− ksmmax

L
kR

onc
0
R

)
+

(
MR|∂Γc

−
(
1− ksmmax

L
kR

onc
0
R

))
I0 (r/lD,f)

I0 (rmax/lD,f)
, (2.37)

Limit 3 [Eq. (2.33)]

MR =
1

1 +
k+ksmmax

L
(ks + k−)kR

off

+

⎛

⎜⎜⎝MR|∂Γc
− 1

1 +
k+ksmmax

L
(ks + k−)kR

off

)

⎞

⎟⎟⎠
I0 (r/lD,c)

I0 (rmax/lD,c)
. (2.38)
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In the low ligand density limit [Eq. (2.25)], the fixed boundary concentration induces
non-uniform receptor profiles with surface densities increasing or decreasing towards the
boundary depending on the ratio between MR|Γc

and m0
R [Fig. 2.7(a)]. When the contact

radius is small compared to the free diffusion length lD,f, receptor profiles are nearly
uniform. Similarly, contact areas much larger than the diffusion length scale have nearly
uniform receptor profiles except for the regime close to the contact line. However, because
most ligands are bound at steady state, signals scale nearly linearly with the contact size
and independent of the boundary concentration [Eq. (2.7)(a)]. Similarly, non-uniform
receptor profiles in the limit 2 [Eq. (2.55)] lead to a nearly linear relation between signals
and contact area and a weak dependence on the boundary concentration [Fig. 2.7(b)].
In limit 3, due to the fast depletion of molecules at the contact site, receptor densities
are close to zero except near the contact line due to the limitless supply of receptors
from the boundary. Because the production of signaling molecules at the surface js is
proportional to mRL [Eq. (2.48)], the majority of signaling molecules are produced close to
the boundary, and signals scale nonlinearly with contact area. For large contacts rmax ≫
lD, the area in which most signaling occurs scales approximately with ∼ 2πlD,crmax, thus,
cS ∼

√
Ac.
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Figure 2.7. Active regulation at the contact line. (a, b) In the limits of low ligand density
(a) and receptor excess (b), fixed receptor concentrations at the contact line (MR|Γc

=

{0.1, 1, 2} dark to light blue) induce non-uniform receptor distributions, but translate into
nearly uniform receptor-ligand complex distribution and linear scaling between signals
and contact area due to saturation of available ligands. (c) In the fast cleavage limit,
the diffusive flux of molecules from the boundary induces a strong, nonlinear contact
area dependence of signals. For (a-c), top row corresponds to a contact radius rmax/ρ0 =

5× 21/3, bottom row rmax/ρ0 = 0.1, lD/ρ0 = 0.2 everywhere. Other parameter values as
listed in Tab. 2.1.
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Dynamically changing bulk concentrations

In the previous sections, I analyzed the distribution of receptors and signaling com-
plexes at the surface under the assumption of a constant bulk concentration of receptors
[Eq. (2.15)]. However, in most cells, proteins and other functional molecules are con-
stantly produced and degraded, leading to temporal variations of the cytoplasmic con-
centration. In the following, I consider a constant production and decay rate of receptors
in the bulk [Eq. (2.5)] and discuss how the surface-bulk coupling influences the bulk and
surface densities of receptors, receptor-ligand complexes and signaling molecules for vary-
ing contacts. To isolate the effects of surface-bulk coupling from the diffusive flow and
patterning dynamics within the surface, I assume in the following that the contact line
separating the free and contact surfaces forms a diffusive barrier, i.e. that no molecules
can diffuse laterally between the surfaces. This assumption substantially simplifies the
calculations, and indeed diffusion barriers based on protein structures associated with the
membrane, the lipid composition or extreme curvatures—as given at the contact line—
have been found to impede diffusive transport on cellular membranes [129, 130]. The
boundary conditions for the surface densities on the two domains then are

(n ·∇)m|∂Γf
= 0 (2.39)

(n ·∇)m|∂Γc
= 0 (2.40)

in which ∂Γf, ∂Γc denote the contact line. From Eqs. (2.2),(2.6) follows at steady state
j|Γf

= 0 and the uniform steady state bulk concentration

c =
kp
kd

− 1

kdV

∫

Γc

jdA (2.41)

only depends on processes in the bulk and at the contact site Γc. Considering typical
parameter values (Tab 2.1), the rate of receptors binding to ligands on the substrate is
large compared to the transport of receptors from the surface into the bulk, i.e.

k+m
max
L ≫ kR

off. (2.42)

In this limit, solutions of Eq. (2.13) are uniform and follow

mR =
kR

oncR(k− + ks)

k+(ksmmax
L − kR

oncR)
, (2.43)

under boundary condition Eq. (2.40). The bulk and surface densities of receptors are
coupled via the flux [Eq. (2.41)]

jR = kR
oncR − kR

offmR. (2.44)
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Using Eq. (2.43) and assuming (2.25), the flux can be approximated as jR = kR
oncR and

the steady state bulk and surface densities of receptors that follow from Eqs. (2.41) and
(2.43) are given by

cR =
kR

p V

kR
d V + kR

onAc
, (2.45)

mR =
kR

onk
R
p (k− + ks)V

k+[ksmmax
L (kR

onAc + kR
d V )− kR

onk
R
p V ]

. (2.46)

For Notch receptors, reported values are k+ = 0.167 µm2 s−1 and kR
off = 0.02 s−1 [74] and

Notch activation assays with cells on ligand-coated substrates are performed with surface
densities of up to mmax

L ≈ 105 µm−2 [122], which justifies limit (2.42) and allows to neglect
the kR

off-term in Eq. (2.13). Importantly, mR and cR have upper bounds: in the absence
of ligands (mmax

L = 0), the steady state receptor density is uniform at m0
R = kR

onc
0
R/k

R
off

with bulk concentration c0R = kR
p /k

R
d . Because receptors are removed upon receptor-

ligand binding and subsequent cleavage, m0
R and c0R are upper bounds to the steady state

concentrations. If I estimate the term in brackets of Eq. (2.13) using mR = m0
R and

typical parameter values as listed in Tab. 2.1, neglecting kR
off is valid if mmax

L ≫ 10 µm−2.
Given Eqs. (2.12) and (2.46), the steady state density of receptor-ligand complexes is

mRL =
kR

onk
R
p V

ks(kR
onAc + kR

d V )
. (2.47)

The bulk concentration of signaling molecules follows Eq. (2.41), without a bulk produc-
tion term (kS

p = 0) and with flux jS = −ksmRL, arising from the cleavage of receptor-
ligand molecules at the surface. The steady state bulk concentration is given by

cS =
kR

onk
R
p Ac

kS
d(k

R
onAc + kR

d V )
. (2.48)

This relation shows how the received signal depends on the receptor-ligand kinetics, the
volume, and the geometry of the adherent cell. In particular, it demonstrates that a
nonlinear relation between signal molecule concentration and contact area arises from
surface-bulk coupling due to the additional loss of receptor molecules in the signaling
process. For sufficiently large contacts (and high ligand density [Eq. (2.42)]), the loss of
receptors at the surface dominates over the turnover in the bulk and the signal molecule
concentration cS = kR

p /k
S
d is independent of the contact area and limited by the total

amount of receptors available in the system.

2.2.3 Signaling interactions between contacting cells
In this section, I consider receptor-ligand interactions at the interface between two cells
indexed with i, j ∈ {1, 2} [Fig. 2.8]. Each cell produces receptors as well as ligands, which

33



CHAPTER 2 Biochemical signaling interactions at contact surfaces

Figure 2.8. Microscopic details of cell-cell signaling. (a) Schematics of a cell pair with
a shared interface with fixed volumes V and uniform interfacial tensions γc, γf conjugate
to interfacial areas Ac, Af. Fluorescence microscopy image shows a pair of zebrafish
sensory cells exchanging Notch signals across their contact surface (adapted from [68]).
Scale bar: 5 µm. (b) Contact-dependent signals are exchanged at the cell-cell contact.
Receptor (R, gray) and ligand (L, green) molecules bind across the interface and form
receptor-ligand complexes (RL). Both receptors and ligands are produced in the bulk
and exchanged with the surface. Receptor-ligand complexes are cleaved irreversibly [70],
which releases a signaling molecule (S, gray) into the bulk. Regulator molecules (U, red)
are produced with a rate depending on the bulk concentration of signal molecules, and in
turn determine the production rate of new ligands (Section 2.3.1). The remaining part of
the RL complex is degraded after cleavage [70]. Here, c and m denote bulk and surface
concentrations respectively, and k denote the kinetic rates of the reactions.

exchange between bulk and surface—ligands are not substrate-bound with fixed positions
as I considered in the preceding part. The receptors on the surface of cell i bind to the
ligands on the surface of the other cell j and vice versa, producing respectively oriented
receptor-ligand complexes. Upon cleavage they release signal molecules into the receptor-
carrying cell i. Contrary to the way I treated substrate-bound ligands in the preceding
section, ligands at the droplet interface are not released after cleavage of the receptor-
ligand complexes, but are degraded together with the remaining receptor fragment instead
[131]. While some literature suggests that ligands can also be recycled after a signaling
event or enter alternative signaling pathways [132, 133], I here consider that receptors and
ligands are always degraded after cleavage. Signaling molecules control the production
of regulator molecules as before, which feed back onto the production terms. In line with
the typical molecular mechanisms in Notch signaling, I consider an active regulation of
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ligand production [70]. As explained in Section 2.1, the steady state bulk concentrations
of receptor, ligand, signaling, and regulator molecules are uniform within each cell with
a value set by the flux balance condition [Eq. (2.41)]. To capture the reaction-diffusion
dynamics at the interface, I use Eq. (2.2) for receptors, ligands, and complexes with the
reaction terms [74]

RR = kR
oncR,i − (kR

off + k+mL,j)mR,i + k−mRL,i, (2.49)
RL = kL

oncL,j − (kL
off + k+mR,i)mL,j + k−mRL,i, (2.50)

RRL = k+mR,imL,j − (k− + ks)mRL,i, (2.51)

with rate constants as described in Section 2.2.1. Under boundary condition Eq. (2.40),
steady state solutions of Eq. (2.2) for the densities of receptors, ligands and receptor-
ligand complexes with the reaction terms Eqs. (2.49)-(2.51) are uniform and follow the
relations

mR,i =
kR

oncR,i(ks + k−)

kR
off(ks + k−) + k+ksmL,j

, (2.52)

mL,j =
kL

oncL,j(ks + k−)

kL
off(ks + k−) + k+ksmR,i

. (2.53)

Ligand molecules are only produced in the bulk, but not at the surface, thus, the steady
state concentrations of bulk and surface densities have the upper limits c0

L = kL
p/k

L
d and

m0
L = kL

onc
0/kL

off. Together with Eqs. (2.52) and (2.41) for the receptor bulk concentration,
one can define a lower limit for the surface density of receptors

mmin
R =

kR
onk

L
off(k− + ks)kR

p k
L
dV

kL
onk+kskL

p (k
R
onAc + kR

d V ) + kL
dk

R
off(k− + ks)kR

d V
. (2.54)

In line with Khait et al. 2016 [74], I consider that cells produce an excess of receptors
compared to the number of ligands, i.e. kR

p ≫ kL
p , and similar to limit (2.25) for the

single cell I assume that the endocytosis rate of ligands is small compared to the rate of
binding

k+m
min
R ≫ kL

off, (2.55)

allowing me to neglect the kL
off-term in Eq. (2.50). The bulk and surface densities of

ligands are coupled in Eq. (2.41) via the flux

jL,j = kL
oncL,j − kL

offmL,j, (2.56)

which using Eq. (2.53) and assuming (2.55) can be written as jL,j = kL
oncL,j. In this limit,

solving Eq. (2.2) with the reaction terms Eqs. (2.49)–(2.51) under boundary condition
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Eq. (2.40) together with Eq. (2.41) and boundary flux Eq. (2.44) for the bulk density of
receptors yields

cR,i =
kR

p (k
L
onAc + kL

dV )− kL
pk

L
onAc

kR
d (k

L
onAc + kL

dV )
, (2.57)

cL,j =
kL

pV

kL
onAc + kL

dV
, (2.58)

mR,i =
AckL

onk
R
on(k

R
p − kL

p ) + (kL
dk

R
onk

R
p − kR

d k
L
onk

L
p )V

kR
d k

R
off(k

L
onAc + kL

dV )
, (2.59)

mL,j =
kL

onk
L
pk

R
d k

R
off(k− + ks)V

k+ks(AckL
onk

R
on(k

R
p − kL

p ) + (kL
dk

R
onk

R
p − kR

d k
L
onk

L
p )V )

, (2.60)

mRL,i =
kL

onk
L
pV

ks(kL
onAc + kL

dV )
. (2.61)

The steady state bulk concentration of signaling molecules following Eq. (2.41) with
jS = −ksmRL and kS

p = 0 as before is

cS,i =
kL

onk
L
pAc

kS
d(k

L
onAc + kL

dV )
. (2.62)

Similar to Eq. (2.48), this relation shows how the signal exchanged between interacting
cells depends on the receptor-ligand kinetics and the geometry of the cells. Contrary to
Eq. (2.48), the signal depends on the rate constants concerning turnover and transport
of ligands instead of receptors—expressing the ligand-limited case. Indeed, studies of
Notch signaling pairs of cells suggest that cells possess an excess of receptors compared
to ligands [74].

2.2.4 Modulation of interfacial tensions by adhesion
Cells produce integrin and cadherin molecules that form transmembrane complexes to
adhere to external structures or other cells [Section 1.2.2] [48, Chapter 19]. To derive
how the kinetics of such adhesion molecules change the coarse-grained interfacial tension
at contact surfaces, I consider droplets containing adhesion molecules N with a bulk
concentration cN, in contact either with an external substrate, or with another droplet
[Fig. 2.9]. At a droplet-substrate interface, these molecules can adhere to the substrate
with a surface density mN [Fig. 2.9(a)], whereas at a droplet-droplet interface, molecules
from the two droplets bind to each other and form complexes with surface concentration
mNN [Fig. 2.9(b)]. Similar problems are discussed in [47, 49, 134, 135, 136].

Tension at the contact interface of a droplet wetting a solid substrate

I first derive the adaptive adhesion term for a contact surface between a fluid droplet
and a solid substrate, to which adhesion molecules can bind [Fig. 2.9(a)]. A mass-action
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CHAPTER 2 Biochemical signaling interactions at contact surfaces

Figure 2.9. Adhesion molecules (N, blue) are exchanged between bulk and surface and
form complexes at the cell-substrate (a) or across the cell-cell interface (b), which reduce
the surface energy. The rate of adhesion molecule production due to transcriptional
regulation depends on the regulator concentration cU (red) (Section 2.3.1); decay rates
are constant. In general, c and m denote bulk and surface concentrations respectively,
and k denote the kinetic rates of the reactions.

based reaction term for the surface concentration Eq. (2.2) of adhesion molecules reads

RmN = kN
on(m

max
N −mN)cN − kN

offmN (2.63)

with mmax
N the density of available binding sites at the contact. The flux coupling bulk

and contact surface is jN = RmN and adhesion molecules bound to the substrate are
fixed in place, i.e. DmN = 0 in Eq. (2.2). At steady state, it follows from Eqs. (2.2),
(2.41),(2.63) and boundary condition Eq. (2.40) that jN = 0, cN = kN

p /k
N
d , and

mN =
kN

onk
N
p

kN
onk

N
p + kN

offk
N
d
mmax

N . (2.64)

The same expression can also be derived from the grand canonical ensemble (Appendix F).
Expansion in the dilute limit kN

onk
N
p /k

N
d ≪ kN

off, i.e. where saturation effects do not play
a role, yields

mN =
kN

onk
N
p

kN
offk

N
d
mmax

N +O

⎛

⎝
(
kN

onk
N
p

kN
offk

N
d

)2
⎞

⎠ . (2.65)

Given that each adhesion complex reduces the surface energy by ϵ [137], the surface
tension at a contact site [Fig. 2.1(a)] in this limit is

γc = γ0 − ϵ
kN

onk
N
p

kN
offk

N
d
mmax

N , (2.66)

with γ0 a baseline tension that contains all other components of the interfacial tension.
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Tension at the interface between two droplets

At contact surfaces between two droplets, adhesion molecules produced within the droplets
can bind across the interface and form adhesion complexes with surface density mNN

[Fig. 2.9(d)] [53]. Taking exclusion effects into account, adhesion complexes can only form
at unoccupied sites on the interface. The density of unoccupied sites is (mmax

NN − mNN)

with mmax
NN the maximum possible density of adhesion complexes. The reaction term for

the density of adhesion complexes is then

RmNN = kNN
on (mmax

NN −mNN)cN,1cN,2 − kNN
off mNN (2.67)

with indices {1, 2} labeling the two droplets. The flux coupling bulk and surface densi-
ties is jNN = RmNN , and the tension at the droplet-droplet interface in the dilute limit
kNN

on (kN
p /k

N
d )

2 ≪ kNN
off is

γc = γ0 − ϵ
kNN

on
kNN

off

(
kN

p
kN

d

)2

mmax
NN . (2.68)

Indeed, the force necessary to separate two adhesive cells has been shown to scale linearly
with the squared total number of adhesion molecules [137, 138]. In general, the kinetic
rates of adhesion molecules can differ between contacting cells, subject to internal regu-
latory mechanisms. In Section 2.3.3, I analyse the case in which the production rate of
adhesion molecules kN

p depends on a cell-intrinsic signaling state.

2.3 Mechanochemical feedback between adhesion and
cell-cell signaling

In response to external signals, cells typically change their gene expression through tran-
scription factors and transcriptional regulators, thereby controlling the production rates
of diverse proteins, including adhesion and signaling molecules [48, Chapter 7]. Respond-
ing to shape-dependent signals, and feeding back onto both mechanics and signaling,
these internal regulatory states couple the processes described in Sections. 2.2.4 and 2.2.
In the following, I derive the macroscopic equations that govern the evolution of such
internal states, taking into account how the received signals depend on contact geometry,
and how the contact geometry in turn is set by adaptive adhesion. In particular, from the
microscopic kinetics of adhesion and signaling molecules (Sections.2.2.4, 2.2) I obtain two
macroscopic feedback parameters: the signal susceptibility χ determines how the contact
area affects the magnitude of transmitted signals, and the adaptive adhesion coefficient
γA controls how the received signals feed back onto the contact mechanics [Fig. 1.3].
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2.3.1 Evolution of a macroscopic signaling state
I introduce a macroscopic internal cell state variable that responds to area-dependent
biochemical signals defined by the uniform bulk concentration of a regulator molecule U–
representing for instance a transcription factor. The bulk concentration cU is governed
by Eq. (2.6) with jU = 0, and I assume that the effective production rate of regulator
molecules depends on the steady state concentration of signal molecules kU

p (cs)—the more
signal molecules are present, the more regulator molecules are produced [Figs. 2.1, 2.8].
The regulation of genes and the synthesis of new proteins involve multiple steps and
molecular intermediates, which lead to the presence of nonlinear effects like cooperative
binding and multimerization, commonly captured using Hill functions [139]. Similar to
previous studies modeling canonical Notch signaling [67, 68, 99, 140], I therefore assume
that steady state concentrations of U are bounded within a range cmin

U ≤ cU ≤ cmax
U and

I consider a nonlinear production rate with Hill coefficient h

kU
p (cS) =

1

τu

⎛

⎜⎝cmin
U +

(cmax
U − cmin

U )

1 +
(

ccrit
S
cS

)h

⎞

⎟⎠ , (2.69)

in which τu = 1/kU
d is the characteristic time scale on which cU is changing, and ccrit

S is
the critical concentration at the inflection point.
The saturating response to the received signal [Eq. (2.69)] permits introducing a dimen-
sionless signaling state variable

u :=
cU − cmin

U
cmax

U − cmin
U

, (2.70)

normalized to the response range such that u ∈ [0, 1]. Eqs. (2.6), (2.69), and (2.70)
together with the definition of a normalized received signal

s = cS/c
crit
S (2.71)

lead to a dynamical equation for the evolution of the internal state

τu
du

dt
= σ(s)− u, (2.72)

with sigmoidal response function [Fig. 2.10]

σ(s) =
sh

1 + sh
. (2.73)

Given that the regulation of protein concentrations through transcriptional changes re-
quires tens of minutes to hours and can vary greatly between different protein species
[114, 115], I assume that the timescale associated with the regulator turnover τu dom-
inates the dynamics of the system. On this timescale, I assume that bulk and surface
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concentrations relax to their steady state solutions. In cells, concentration and shape
dynamics are indeed typically at least an order of magnitude faster—set by diffusive,
biochemical, and viscoelastic timescales which are on the order of seconds to minutes
[74, 114, 116, 117]. In the following sections, I discuss how the internal state dynamics
govern the production of adhesion and ligand molecules.

2.3.2 Signal susceptibility

In general, the received signal (2.71) depends nonlinearly on the size of the contact area,
i.e. s(Ac) according to e.g. Eqs. (2.48) or (2.62). When the number of receptors that
are recruited to the surface and lost in the signaling process is small compared to the
turnover of molecules in the bulk, I can expand the bulk concentration of signal molecules
[Eq. (2.48),(2.62)], and obtain a relation that is linear in the contact area. In the limit
in which receptors interact with an excess of ligands [Eq. (2.25)], e.g. for the single cell
on the functionalized substrate, the expression reads

cS =
kR

p k
R
onAc

kS
dk

R
d V

+O
((

kR
onAc
kR

d V

)2
)
. (2.74)

Indeed, in vitro experiments revealed a roughly linear relation between the Notch signaling
response and the contact area, including for large contacts [74]. The received signal
[Eq. (2.71)] can then be written as

s = χ
Ac
A0

, (2.75)

in which I introduced the signal susceptibility

χ =
kR

p k
R
on

ccrit
S kS

dk
R
d V

A0 (2.76)

Figure 2.10. Signals s are processed with a sigmoidal response function (Hill function
Eq. (2.73)). In the limit h → ±∞, the response is a step function: Light to dark blue:
h = {1, 2, 4,∞}.
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using the definition of the volume-dependent reference area A0 = (3V /2)2/3π1/3. The
volume-dependence of the susceptibility arises because the degradation of molecules in
the bulk scales with the volume, and due to the reference area A0, yielding a scaling
of χ ∝ V −1/3. However, in cells where protein degradation does not increase with the
cell volume, the signal susceptibility might increase with volume. One can estimate the
order of magnitude of the susceptibility [Eq. (2.76)] using kR

onk
R
p /k

R
d = 2 µm−2 s−1 [74],

V = 500 µm3, kS
d = 5× 10−3 min−1 [141, 142] and ccrit

S = 1000/V [120] yielding χ ∼ 3000.

Signal-dependent production of ligands

Mutually inhibitory Notch signals typically lead to a decrease in the production rate of
ligands in response to received signals [70, 143]. I therefore consider that the production
rate of ligands is a monotonously decreasing function of the regulator concentration cU.
I assume that no ligands are produced at cU = cmax

U , i.e. kL
p (c

max
U ) = 0, and I expand kL

p

to first order around cmax
U

kL
p (cU) =

dkL
p

dcU

∣∣∣∣∣
cmax

U

(cU − cmax
U ) +O

(
(cU − cmax

U )2
)
. (2.77)

Using the definition of u [Eq. (2.70)] it follows that

kL
p (u) =

⎛

⎝−
dkL

p
dcU

∣∣∣∣∣
cmax

U

⎞

⎠ (cmax
U − cmin

U )(1− u). (2.78)

Linearizing the bulk concentration of signal molecules [Eq. (2.62)] as before, I obtain

cS,i =
kL

pk
L
onAc

kS
dk

L
dV

+O
((

kL
onAc
kL

dV

)2
)
, (2.79)

with which the signal sij = cs,i/ccrit
s received by cell i from cell j is

sij = χ
Ac
A0

(1− uj) (2.80)

with the signal susceptibility in the ligand-limited case given by

χ =
kL

onA0(cmax
U − cmin

U )

ccrit
S kS

dk
L
dV

⎛

⎝−
dkL

p
dcU

∣∣∣∣∣
cmax

U

⎞

⎠ (2.81)

The expression of the susceptibility is similar to Eq. (2.76), but depends on the produc-
tion, decay and transport rates of ligands rather than receptors. While Eq. (2.76) holds
when receptors interact with an excess of ligands [Eq. (2.25)], an excess of receptors com-
pared to ligands [Eq. (2.55)] leads to Eq. (2.81). In the ligand-limited case, contributions
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to the susceptibility can be further distinguished based on properties of the signal sending
cell, specifically kL

pk
L
on/kd, and properties of the signal receiving cell, including ccrit

s and
kS

d [144]. In particular, instead of Eq. (2.80), one can define the signal as

sij = φχ
Ac
A0

(1− uj), (2.82)

where φ contains all contributions from the sending cell, i.e. the overall available signal,
and the susceptibility χ only the contributions from the receiving cell.
Interestingly, the signal susceptibility is independent of the cleavage rate ks. A com-
mon experimental perturbation to Notch signaling is the pharmacological inhibition of
the enzyme cleaving the receptor-ligand complexes (treatment of cells with γ-secretase in-
hibitors) [145]. Our result suggests that the signal susceptibility and thus the steady state
concentration of signaling molecules is independent of ks unless cleavage is completely
prevented.

2.3.3 Signal-dependent active mechanics and the adaptive ad-
hesion coefficient

In many biological systems, for instance mechanosensory epithelia [68, 81, 146] or synthet-
ically engineered systems [52], adhesion molecules are expressed downstream of contact-
based signals. Accordingly, I consider that the production rate of adhesion molecules
kN

p (cU) is a monotonously increasing function of the regulator concentration [Fig. 2.9(c)].
I assume that kN

p vanishes for cU ≤ cmin
U , i.e. no adhesion molecules are produced when

the regulator concentration drops below a concentration cmin
U , and I linearize kN

p around
cmin

U

kN
p (cU) =

dkN
p

dcU

∣∣∣∣∣
cmin

U

(cU − cmin
U ) +O

(
(cU − cmin

U )2
)
. (2.83)

With Eq. (2.70), the surface tension at the contact site of a single cell with an underlying
substrate [Eq. (2.66)] can then be written as

γc = γ0 − γAu (2.84)

where I define the adaptive adhesion coefficient

γA = ϵ
kN

on(c
max
U − cmin

U )

kN
offk

N
d

dkN
p

dcU

∣∣∣∣∣
cmin

U

mmax
L . (2.85)

Similarly, the tension at the interface between two contacting cells Eq. (2.68) is

γc = γ0 − γAu1u2, (2.86)
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with

γA = ϵ
kNN

on (cmax
U − cmin

U )2

kNN
off (k

N
d )

2

⎛

⎝ dkN
p

dcU

∣∣∣∣∣
cmax

U

⎞

⎠
2

mmax
NN . (2.87)

Eqs. (2.84) and (2.86) are identical except for the squared terms arising from the produc-
tion and decay of adhesion molecules, because both cells need to contribute molecules for
the formation of adhesion complexes at their shared interface [Fig. 2.9(b)].
The adaptive adhesion coefficient γA has units of energy per area. The tension at cellular
surfaces is usually dominated by the active contractility of the actomyosin cortex and
is on the order of 0.05–0.5 nN µm−1 [147, 148, 149, 150, 151]. The tension at a cell-cell
or cell-substrate interface can be inferred from the contact angle if the tension at the
free surface γf is known [152]. For instance, for γf = 0.1 nN µm−1, a range of contact
angles θ =10-100◦ corresponds to interfacial tensions of approx. 0.13–0.2 nN µm−1. Com-
bined fluorescence-based density measurements of the adhesion molecule E-cadherin in
C.elegans embryos suggests that changes in the interfacial tension γc due to expression of
adhesion molecules—as described by the adaptive adhesion term—are up to 0.41 nN µm−1

[147], demonstrating that regulation of adhesion molecule expression provides access to
a large range of shape configurations. Assuming a lateral distance of ∼ 10 nm between
adhesion molecules [153], i.e. a surface density of 10.000 µm−2, the effective surface en-
ergy per adhesion molecule would be ϵ ≈ 4 × 10−17 J—several orders larger than kBT .
Indeed, adhesion complexes in cells interact with different molecules and their formation
depends also on anchoring to the cytoskeleton, which itself exhibits complex dynamics
and feedback effects [46, 50, 53, 127], thus ϵ corresponds to an effective energy per ad-
hesion complex that captures more than just the binding energy between two adhesion
molecules.

2.3.4 Equilibrium shapes of cells with uniform interfacial ten-
sions

Equations (2.75),(2.80) and (2.84),(2.86) respectively describe how transmitted signals
depend on the area of the cell-cell or cell-substrate interface, and how the interfacial ten-
sion in turn depends on the internal states. Given that the mechanochemical dynamics
are dominated by the slowest timescale τu, set by transcriptional regulation, the contact
areas across which signals are exchanged are determined quasi-instantaneously by the
conjugate interfacial tension γc. Neglecting any non-uniform contributions to the surface
tensions, I assume that the cell shapes can be approximated by minimal surface config-
urations, i.e. that minimize the effective surface energy of N coupled, incompressible
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droplets [Eq. (1.3)]. In the minimal surface configuration, the droplets acquire spherical-
cap shapes with contact areas given by Eq. (1.7). Indeed, biological cells have been
found in minimal surface configurations in many contexts [Figs. 2.1(a), 2.8], including
[53, 68, 147, 148, 150, 154].

2.4 Outlook: Macroscopic dynamics of mechanochem-
ical droplets

Starting from microscopic equations, I have derived a macroscopic framework [Eqs. (2.72),
(2.75), (2.80),(2.84), (2.86) and (1.7)] describing the mechanochemical dynamics of shape-
adaptive cells, governed by two feedback parameters that couple shape changes to sig-
naling (susceptibility χ) and signaling to shape adaptation (adhesion coefficient γA)
[Fig. 1.3(a)]. By employing a minimal set of parameters and internal states, this frame-
work enables a tractable exploration of shape and state dynamics, allowing for a system-
atic identification of critical points that mark transitions in dynamic behavior.
In the following chapter, using a combination of linear stability analysis, simulations, and
numerical continuation, I analyze the dynamical states emerging from the interplay be-
tween shape changes and signaling. Specifically, I show how the positive feedback between
contact-dependent signals and area-increasing adhesion can produce multiple stable wet-
ting states, and I explain how it lowers the threshold susceptibility for symmetry-breaking
of internal states in interacting droplet pairs. Moreover, for large adaptive adhesion co-
efficients I show that mechanochemical feedback can drive excitability and self-sustained
oscillations of shapes and internal states.
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Macroscopic feedback dynamics

The macroscopic equations (2.72),(2.75),(2.80),(2.84),(2.86) and (1.7) describe the mechanochem-
ical dynamics of shape-adaptive cells, with two feedback parameters that couple shape
changes to signaling (susceptibility χ) and signaling to shape adaptation (adhesion co-
efficient γA), which I have derived from microscopic relations (Chapter 2). Using a
combination of linear stability analysis, simulations, and numerical continuation (Ap-
pendix G) for details), I analyze the dynamical states emerging from the interplay between
shape changes and signaling. In particular, I demonstrate how positive feedback between
contact-dependent signaling and adhesion-driven area expansion can induce shape bista-
bility, giving rise to multiple stable wetting states for individual droplets on functionalized
substrates. In the context of interacting cell pairs, this feedback mechanism lowers the
threshold susceptibility required for symmetry-breaking of internal states. Furthermore,
for sufficiently large adaptive adhesion coefficients, I demonstrate that mechanochemical
feedback can lead to excitability, giving rise to self-sustained oscillations in both shape
and internal states. I show that the underlying critical points and bifurcation structures
are topologically equivalent to those found in conductance-based models of neuronal
excitation, highlighting an interesting parallel between signal processing in neurons and
mechanochemical signal processing through adaptive shape change. Lastly, I explore how
variations in mechanical and signaling properties influence the feedback-driven dynamics.

3.1 Shape-dependent feedback creates bistability
Equations (2.72),(2.75),(2.84), and (1.7) describe the dynamics of the signaling state u

and contact area Ac of the single, adherent cell.
Depending on the combination of feedback parameters χ and γA relative to the ten-
sion ratio (γ0 − γm)/γf, Eq. (2.72) has either one or two stable steady state solutions
u∗ [Fig. 3.1(a)]. Using numerical continuation, I find a bistable regime above a critical
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Figure 3.1. Adaptive adhesion leads to bistability. (a) The parameter diagram, derived
via numerical continuation (Appendix G), contains a bistable regime (white) bounded
by saddle-node bifurcations (black lines) converging in a codimension-2 cusp point, sepa-
rating regimes of strong and weak substrate wetting. (b) The size of the bistable regime
increases with the tension ratio (γ0 − γm)/γf (top) and with the Hill coefficient h of the
nonlinear response function [Eq. (2.73)] (bottom) (χcusp

0 : reference susceptibility at cusp
for (γ0 − γm)/γf = 0.95, h = 2). Parameter values for each diagram listed in Appendix J.

value of the adaptive adhesion coefficient γcusp
A where two saddle-node bifurcation lines

(SN) emerge from a cusp bifurcation point [Fig. 3.1(a)]. For γA > γcusp
A and small χ, the

only stable solution is a configuration with small contact area Ac, correspondingly weak
signal transmission and a low signaling state u. For values of χ above the lower SN line, a
second stable configuration appears with large contact area Ac, which permits a stronger
signaling interaction with the substrate and a larger signaling state u [Fig. 3.1(a), inset].
This latter configuration is accessible only when the positive feedback between signal-
ing and adaptive mechanics is sufficiently strong. The position of the cusp point within
the feedback-parameter diagram, and the size of the associated bistable regime depends
on the tension ratio (γ0 − γm)/γf, and on the Hill coefficient h in the response func-
tion [Eq. (2.73)]—increasing either of the two parameters lowers the threshold adaptive
adhesion coefficient γcusp

A [Fig. 3.1(b)]. I find bistability for h ≥ 2.
In the limit h → ∞, i.e. where the internal states respond to signals in a step-wise
manner [Fig. 2.10], one can derive a simple relation between χ and γA for the two saddle-
node lines [Fig. 3.1(c)]. In this limit, the only possible stable steady state solutions of
Eq. (2.72) are u∗ ∈ {0; 1} and the corresponding surface tensions at the contact site are
γc ∈ {γ0; γ0 − γA} [Eq. (2.84)]. For small values of χ, signaling is weak and the only
stable steady state is u∗ = 0 with a small contact area set by γc = γ0. The second stable
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steady state u∗ = 1 appears for

s(Ac|γc=γ0−γA
) ≥ 1. (3.1)

For

s(Ac|γc=γ0
) > 1, (3.2)

the configuration with small contact area and u = 0 is no longer a steady state solution
and u∗ = 1 remains the only stable steady state. From conditions (3.1)–(3.2) together
with Eq. (2.75) follows that the critical susceptibilities at the saddle-node lines delineating
the bistable regime are given by

χ1 =
A0

Ac|γc=γ0−γA

(3.3)

and

χ2 =
A0

Ac|γc=γ0

. (3.4)

for the lower and upper lines respectively [Fig. 3.1(c)]. It shows that bifurcation curves
simply scale with the inverse of the steady state contact area, and it confirms that the
transition between the bistable regime and the single stable strong wetting state (upper
SN line) is independent of the adaptive adhesion coefficient (χ2).

3.2 Symmetry-breaking of internal states
Next, I study the dynamics of cell pairs exchanging mutually inhibitory signals Eqs.
(2.72), (2.80), (2.86) and (1.7). Strong mutually inhibitory interactions generically lead
to spontaneous symmetry-breaking, whereby initially small differences between inter-
acting units diverge to low- and high-value steady states [155], a mechanism relevant
for the patterning of different cell types [143]. Using numerical continuation, I find
that in the state-diagram of feedback parameters the regimes of uniform and symmetry-
broken steady states are separated by a line of supercritical pitchfork bifurcations (PF)
[Fig. 3.2(a)]. Below the critical value χPF, inhibition is not strong enough to produce
symmetry-breaking, and the cell pair converges to identical low internal states with a
small contact area. Linear stability analysis shows that this critical susceptibility scales
approximately inversely with the interfacial area χPF ∼ A0/Ac (Appendix H)—indicating
that the adaptive adhesion promotes symmetry-breaking: starting from low, nearly iden-
tical internal states, the active term in Eq. (2.68) transiently expands the contact area as
the trajectory approaches a saddle in the phase space of internal states [Fig. 3.2(a), inset].
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Figure 3.2. Adaptive adhesion promotes symmetry-breaking. (a) Mutually inhibitory
interactions between the signaling states of contacting droplets lead to symmetry-breaking
via a line of pitchfork bifurcations (PF), separating uniform (gray) and symmetry broken
(green) steady states. Adaptive adhesion promotes symmetry-breaking by transiently
increasing the contact area across which mutually inhibitory signals are exchanged (inset:
filled black circle: stable steady state, filled gray circle: saddle). (b) The relaxation time
to the symmetry-broken steady state Tsym (blue curve), is dominated by the inverse of the
maximum saddle eigenvalue (red crosses) and decreases with increasing γA, because the
larger transient interface allows for the exchange of stronger signals promoting symmetry-
breaking (χ/χPF

0 = 2, T0: reference relaxation time for γA/γ0 = 1), (Appendix H for
further details). (c) The baseline tension ratio γ0/2γf (top) and the Hill coefficient h of the
nonlinear response function [Eq. (2.73)] (bottom) determine how the critical susceptibility
changes with the adaptive adhesion coefficient (χPF

0 : reference susceptibility at PF for
γA = 0, γ0/2γf = 0.7, h = 2). Parameter values for each diagram listed in Appendix J.
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Figure 3.3. Excitability and oscillations of mechanochemically coupled cell pairs. (a)
Adaptive adhesion leads to self-sustained oscillations of signals and cell shapes (color
gradient and contour lines denote the oscillation period T ). The oscillatory regime is
surrounded by saddle-heteroclinic (SHET) and Hopf (H) bifurcation lines, which originate
from a saddle-node pitchfork codimension-2 point (SP) (PF−: supercritical pitchfork
PF+: subcritical pitchfork). Bottom panel: Enlarged view of the SP point environment
shows saddle-node (SN) and cusp bifurcations that preserve stable attractor structures.
The reference susceptibility is the critical value in the absence of adaptive tension (χ0 =

χPF|γA=0). (b) Phase portraits for parameter values marked with gray symbols (filled
black circles: stable steady states, filled gray circles: saddles, open circles: unstable steady
states, rose line: trajectory in the excitable regime, red lines: heteroclinics, black lines:
limit cycles). (c, d) Oscillation amplitudes decrease and the oscillation period increases
with waveforms changing from relaxation-like (near the SHET line) to sinusoidal (near
the Hopf line) for increasing χ. Parameter values given in Appendix J

The large contact effectively lowers the threshold susceptibility and drives the divergence
of the internal states, which in turn reduces adhesion and the contact area. Correspond-
ingly, starting from nearly uniform conditions, the time it takes for the internal states
to diverge decreases with increasing γA and correlates with the largest eigenvalue of the
saddle [Fig. 3.2(b)]. I find regimes of symmetry-breaking for h ≥ 2, which increase with
the baseline tension ratio γ0/2γf [Fig. 3.2(c)], as well as with increasing Hill coefficient h

[Fig. 3.2(d)]. Overall, I find that shape-dependent mechanochemical feedback increases

49



CHAPTER 3 Tunable self-sustained oscillations in droplet pairs

the robustness of symmetry-breaking, which could aid reliable fate determination in noisy
biological environments [17, 68, 146]. For instance, adaptive contact dynamics occur be-
tween sensory cell pairs in zebrafish embryos that exchange mutually inhibitory signals
to undergo robust symmetry breaking [68, 87].

3.3 Tunable self-sustained oscillations in droplet pairs

At large values of the adaptive adhesion coefficient, the coupling between signaling and
interface geometry can drive self-sustained oscillations of the internal states and shape of
interacting cell pairs. These oscillations are driven by competition between the adaptive
adhesion and the tendency of the pair to undergo symmetry-breaking: the product of
internal states u1u2 increases the contact area according to Eq. (2.68), thereby driving
their own inhibition, leading to negative feedback. The oscillatory regime, bounded by
Hopf (H) and saddle heteroclinic (SHET) bifurcation lines, separates the stable symmet-
ric and symmetry-broken states in the parameter diagram [Fig. 3.3(a-b)], derived via
numerical continuation (Appendix G). These lines originate from a saddle-node pitchfork
bifurcation point (SP)—a codimension-2 bifurcation at which the PF line tangentially
intersects with a saddle-node (SN) bifurcation line [Fig. 3.3(a, c)] [156].
When γA > γSP

A and χ reaches the critical susceptibility χPF, the inhibitory signals
induce symmetry-breaking and the unstable fixed point undergoes a subcritical pitchfork
bifurcation, producing a saddle and two new unstable fixed points [Fig. 3.3(b) star]. In
this regime the droplet pair is excitable: fluctuations moving the internal states beyond
the separatrices, which connect the saddle to the unstable fixed points, trigger a large
increase of both internal states and the contact area Ac, followed by transient symmetry-
breaking [Fig. 3.3(b) star]. Increasing χ shortens the distance between the uniform stable
dfixed point and the saddle, thus lowering the excitation threshold until the two points
collide at the SHET line and give rise to a pair of heteroclinic orbits that connect the
resulting transversely stable, nonhyperbolic point to the second saddle point [Fig. 3.3(b)
cross]. This nonhyperbolic point is destroyed as the heteroclinic orbits bifurcate into
two symmetric stable limit cycles [Fig. 3.3(b) pentagon], which remain the only stable
attractors of the system. Thus, cycles appear once transmitted signals are strong enough
to induce symmetry-breaking, which in turn lowers the adhesion—and thereby the contact
area—sufficiently to reduce signals below the symmetry-breaking threshold. In turn, the
product of states [Eq. (2.86)] increases again, thereby driving adhesion, contact area, and
signal amplitude back above the threshold. Depending on the two feedback parameters,
the mechanochemical oscillations exhibit a range of temporal profiles. Near the SHET line
the droplet pair exhibits relaxation-type oscillations in which it spends a large fraction of
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Figure 3.4. (a) Amplitude of contact area oscillations in droplet pairs. (b, c) The
location of the SP point and associated bifurcations in the state diagram depends on (b)
the Hill coefficient h of the response function and (c) the baseline tension ratio γ0/2γf.

Figure 3.5. Series of bifurcation diagrams close to the codimension-2 SP bifurcation.
Stable (solid line), unstable (dashed line) fixpoints and saddles (dotted line) computed
for variation of γA/γ0 as indicated by gray dotted lines in Fig. 3.3(a). Panels on the right
show how the PF and SN interact, turning the latter into a SHET.

the cycle in small-area configurations with nearly identical states, interrupted by spikes in
the contact area Ac and rapid, transient symmetry-breaking [Fig. 3.3(d)]. The oscillation
period diverges as χ approaches χSHET due to the ghost of the destroyed saddle point that
critically slows down the limit-cycle phase when passing through its vicinity [Fig. 3.3(a)].
With increasing χ, the time-averaged difference between the internal states increases
and the oscillation amplitudes decrease, reaching near-sinusoidal waveforms in states and
contact area close to the Hopf bifurcation line, where the limit cycles smoothly contract
into symmetry-broken fixed points [Fig. 3.3(b, d-e)].
The position of the SP point within the feedback-parameter diagram, and the size of the
associated regimes depend on the baseline tension ratio γ0/2γf, and on the Hill coefficient
h in the response function [Eq. (2.73)]. Increasing γ0 lowers the threshold adaptive tension
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for the onset of oscillations [Fig. 3.4(b)], while for low γ0 the adaptive adhesion can
push the interface into a regime where any area increase lowers the total surface energy,
leading to shape instabilities [157, 158]. Close to γA/γ0 = 1, such instabilities may remain
transient, i.e. restricted to fractions of the oscillation phase, before restabilizing due to
the decrease of adhesion upon symmetry-breaking of internal states, whereas at large
γA/γ0, these effects are expected to dominate the dynamics and lead to new phenomena.
I found shape bistabilities and symmetry-breaking for Hill coefficients h ≥ 2, and oscil-
lations for h ≥ 3. Strongly nonlinear response functions are commonly used to model
regulatory feedbacks in cells [67, 107, 159], and experimental evidence has been reported
for e.g. the Nodal pathways [108, 144]. Interestingly, I observe that strong adaptive ad-
hesion achieves lower thresholds for smaller Hill coefficients, i.e. that the PF bifurcation
lines for different Hill coefficients intersect in the feedback parameter space [Fig. 3.2(c),
Fig. 3.4(a)], indicating a non-trivial interplay between the response nonlinearity and the
geometry-dependent nonlinearity which together drive symmetry-breaking.
Together, these results illustrate how mechanochemical feedback can drive excitability
and self-sustained oscillations.

Figure 3.6. Different cell volumes δV /V̄ = {0.25, 0.5} (blue) or outer tensions
δγf/γ̄f = {0.25, 0.5} (brown) shift the SP point and associated bifurcation lines in the
state diagram. Parameter values given in Appendix J.

3.4 Feedback dynamics in asymmetric droplet pairs
The SP point arises for identical droplets. While such state-space structures have been
found and experimentally characterized for instance in optical cavities [156], most physical
systems exhibit non-negligible variations in their properties. Differences in the properties
of the interacting droplets change the state diagram shown in Fig. 3.3(a). For unequal
droplet volumes V1,2 = V̄ ± δV , symmetry-breaking and oscillatory dynamics emerge at
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Figure 3.7. Heterogeneous susceptibility in interacting cell pairs. (a) A difference in
signal susceptibilities δχ/χ̄ = 0.05 (i.e. χ1/χ2 ≈ 1.1) splits the SP point into a pair
of Bogdanov-Takens bifurcation points (BT), a non-central homoclinic to saddle-node
bifurcation (NCH) and associated bifurcation lines. Inset shows the state diagram close
to the second BT point (γA/γ0 ∈ [0.3896, 0.403], χ/χ0 ∈ [0.5388, 0.5441]). Note that
NCH and BT are connected by a homoclinic (Hom). (HSN: Saddle-node homoclinic).
(b) Phase portraits for parameter values marked with gray symbols in (b). (filled black
circle: stable steady state, filled gray circle: saddle, open circle: unstable steady state,
rose line: trajectory in the excitable regime, thick black line: limit cycle) (c) Wit unequal
signaling properties (χ1 ̸= χ2), the pitchfork bifurcation is replaced by a new saddle-node
bifurcation (compare to Fig. 3.3(c)). Parameter values given in Appendix J.

a larger signaling susceptibility χ than in pairs of identical droplets, whereas a difference
in the outer surface tensions γf,1,2 = γ̄f ± δγf promotes symmetry-breaking and oscilla-
tions at lower susceptibilities due to partial internalization resulting in larger equilibrium
contact areas [Fig. 3.6]. For details about parameterizing asymmetric droplet shapes,
about minimizing their surface energy and about computing the mutual contact area, see
Appendix I.
Tension and volume asymmetry do not favour any droplet to reach a higher or lower
internal state, because the signaling properties of each droplet remain unaffected, and thus
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the topology of the state space is preserved. In contrast, numerical continuation shows
that a difference in the signaling susceptibility χ1,2 = χ̄± δχ splits the SP point into two
Bogdanov-Takens (BT) codimension-2 points, and the SHET line into two homoclinics
(Hom) and a saddle-node homoclinic (HSN) bifurcation line emerging from a non-central
homoclinic to saddle-node (NCH) [Fig. 3.7(a)]. Accordingly, the limit cycle and the
corresponding symmetry-broken state, in which the less susceptible droplet maintains the
lower internal state, require lower values of χ and γA than the inverse symmetry-broken
states. Thus, two limit cycles appear at different susceptibilities through a HSN and a
Hom bifurcation [Fig. 3.7(b)], compared to homogeneous droplets, for which two limit
cycles appear simultaneously in a SHET bifurcation [Fig. 3.3(b) cross]. This allows for
parameter regimes with single limit cycles [Fig. 3.7(b) hexagon] or coexistence with stable
fixed points [Fig. 3.7(b) 4-pointed star]—contrary to the case of identical susceptibilities.
Heterogeneous material properties can thus produce an even wider spectrum of dynamics.

3.5 Shape oscillations and total wetting of adhesive
droplets

In the previous sections, I discussed the shape and state dynamics in droplet pairs
arising from contact-dependent mechanochemical feedback. Despite minimal degrees of
freedom—one state variable per droplet—I found a rich dynamical landscape including
multistability, excitability and self-sustained oscillations. Note that in this case, a pair of
droplets has two free state variables, the minimal degree of freedom necessary to observe
oscillations.
In the following, I return to the single droplet adhering to a functionalized stiff substrate.
Given a single, dynamic state variable, the Cusp bifurcation and the associated bistable
regime discussed in Section 3.1 already represent the range of bifurcation structures that
can be expected in a one-dimensional system. To further extend the scope of the analysis,
I consider in the following that the droplet has two internal states uR, uN, where uR

controls the signaling activity and uN the active surface mechanics. The one-state-per-
droplet case was motivated from microscopic equations, where a master regulator molecule
(Section 2.3.1), e.g. a transcription factor, changes it’s concentration in response to
signals on the slowest system time scale. For a two-state-model, however, the introduction
of a master regulator is not necessary. Instead, one can consider that uR represents the
normalized concentration of receptor molecules, while uN is the normalized concentration
of adhesion molecules. Considering a nonlinear production rate of receptor molecules (R)
and adhesion molecules (N) depending on the received signal s [Eq. (2.69)] leads to the
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system of equations [compare to Eq. (2.72)]

τN
duN
dt

= σN(s)− uN, (3.5)

τR
duR
dt

= σR(s)− uR, (3.6)

with a contact tension [compare to Eq. (2.66)]

γc = γ0 − γAuN (3.7)

and a received signal [compare to Eqs. (2.75),(2.82)]

s = φχ
Ac
A0

(uR + u0
R), (3.8)

in which u0
R is the normalized base line concentration of receptors independent of signal-

ing, χ the susceptibility and φ the available amount of signal. Similar to Section 2.3.1, I
thereby assume that the loss of receptors at the surface due to signaling can be neglected.
Otherwise, an additional contact area-dependent decay term has to be introduced in
Eq. (3.6). Note that if u0

R = 0 and σ(s = 0) = 0, then uR = 0 is always a fixpoint of
Eq. (3.6). Equation (3.8) introduces the coupled parameter χφ in order to emphasize
that it can not only change due to changes in the intrinsic susceptibility χ of the signal
receiving droplet, but also due to changes of the available, external signal φ. In previous
sections, both contributions were summarized in the parameter χ [compare Eqs. (2.80),
(2.82)].
The nonlinear response functions σN,σR can be increasing or decreasing functions of the
received signal, depending on the sign of the corresponding Hill coefficient hN, hR, which
fundamentally defines the feedback dynamics [Fig. 3.8. When both uR, uN decrease in
response to the received signal (hR, hN < 0), the feedback in both states acts to reduce
signals and prevent substrate wetting. In this case, the system has a single steady state
for any combination of feedback parameter, with a contact area that decreases with
increasing χφ.
On the other hand, when both uR, uN increase in response to received signals (hR, hN > 0),
then the positive feedback can induce a bistability between two states of weak and strong
wetting, as discussed in Section 3.1. The regime of bistability is demarcated by two SN
lines converging in two codimension-2 cusp bifurcation points [Fig. 3.8(b)]. The Cusp at
lower adaptive adhesion corresponds to the Cusp shown in Fig. 3.1.
Interestingly, for a sufficiently large adaptive adhesion coefficient, positive feedback in ei-
ther of the two dynamic states can push the system into a total wetting state [Fig. 3.8(b)].
From Eq. (3.7) and uN ≤ 1 follows that total wetting is accessible if γA ≥ γ0 + γf

[Fig. 3.8(b), vertical dashed line], and phase space dynamics are ill-defined if γAuN ≥
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Figure 3.8. Multi-stability of shape-adaptive adherent droplets. (a) The nonlinear
feedback dynamics that can possibly be observed depend on the Hill coefficients of the
response functions hR, hN and the time scale ratio τN/τR. (b) State-space with respect to
adaptive adhesion coefficient γA/γf and coupled parameter χφ. The top diagram depicts
the steady-state uN for χφ = 3. The vertical, dashed line indicates the minimal adaptive
adhesion coefficient for which total wetting is possible. Black lines correspond to saddle
node bifurcations (SN) converging in two Cusp points (CP). In the dark blue regime the
system always diverges towards total wetting (i.e. Ac → ∞). Below: phase portraits as
marked by symbols. hN = hR = 1, u0

R = 0.05, γ0/γf = 0.9, τN/τR = 1 (c, d) The size of the
bistable regime decreases with decreasing γ0/γf ((c) light to dark: γ0γf = {0.5, 0.7, 0.9}
or decreasing Hill coefficients ((d) light to dark: hN = hR = {0.8, 1, 1.2}).
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γ0+γf, which is depicted by the blue shaded regions in the phase portraits of Fig. 3.8(b).
For sufficiently large χφ and adaptive tension γA, the system is always driven towards
total wetting, independent of the initial conditions [Fig. 3.8(b), dark blue region]. This
regime is separated by a line of saddle-node bifurcations (SN) from the parameter regimes
with one or two stable solutions with partial wetting. Note that for physical droplets or
cells, total wetting would probably imply that the behavior is governed by physical forces
not captured in this simple framework, e.g. where spreading is opposed by elastic forces
of the nucleus resisting deformation, or by an active response of the cytoskeleton.
As discussed in Section 3.1, decreasing the Hill coefficients or increasing the base line
tension γ0 reduces the size of the bistable regime until it disappears in a single line of
saddle node bifurcations separating partial and total wetting regimes [Fig. 3.8(d)].
In the limit of an infinite sharp, positive feedback response, i.e. hR, hN → ∞, conditions
for bistability can be derived analytically, as I have shown in Section 3.1 [Eq. (3.3), (3.4)].
It is straightforward to derive the corresponding expressions for the two-state system

χφ1 =
A0

(1 + u0
R) Ac|γ0−γA

(3.9)

and

χφ2 =
A0

(1 + u0
R) Ac|γ0

. (3.10)

State and shape oscillations in adherent droplets
When the Hill coefficients hN and hR are of different sign, then the system combines a
positive and a negative feedback loop. Generically, when a fast positive feedback loop
is coupled to a delayed negative feedback, oscillations are possible. In the following,
I explore this case at the example of hN > 0 and hR < 0, i.e. where strong signals
promote wetting and produce a bistability between different states of partial wetting as
previously discussed [Fig. 3.1], but signals decrease the production of receptor molecules.
For τn/τR < 1, the mechanical, positive feedback is faster than the negative feedback of
receptor molecule regulation. As the time scale ratio is reduced, steady states in the par-
tial wetting regime with large contact area are destabilized, because the fast mechanical
adaptation allows the system to quickly relax back to the small contact area configuration
before an opposing, strong signal can be established that maintains a sufficiently high ad-
hesion molecule concentration. Therefore, part of the bistable regime is lost for excitable
dynamics: fluctuations around the unique stable state of the system (weak wetting) can
excite a transient trajectory with strong wetting and large contact interface [Fig. 3.9(c)
star]. When γA ≤ γ0 + γf, such excitations can drive the system towards total wetting
[Fig. 3.9(c) square].
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Figure 3.9. Oscillations in adherent droplets. (a) Adaptive tension feedback creates
regimes of excitability and self-sustained oscillations of droplet shapes and internal states.
hN = 4, hR = −4, u0

R = 0.05, γ0/γf = 0.9, τN/τR = 0.25. (b) Phase portraits for symbols
indicated in panel (a). (c) Zoomed-in state diagram as indicated in (a), GH: Generalized
Hopf, CP: Cusp, BT: Bogdanov-Takens, black, solid line: Saddle-node to a stable node;
black, dashed line: Saddle-node to an unstable node; red, solid line: supercritical Hopf;
red, dashed line: subcritical Hopf; solid, magenta line: Limit point of cycles (LPC).
Top and right diagrams depict steady state uN for χφ = 3.375 and γA/γf = 0.85 (gray
dashed lines). Light blue lines: Min/Max uN of limit cycles. (d) Conductance-based
neuronal excitation models, here for the INa,t-model [160] in the limit of an instantaneously
adjusting membrane potential, show topologically equivalent bifurcation structures. (e)
Oscillation waveforms range from near-sinusoidal to relaxation-type. (f) Shape dynamics
in adherent droplets correspond to gate dynamics in ion channels.
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Figure 3.10. (a) The difference between maximal and minimal contact area during limit
cycle oscillations. (b, c) Frequencies of self-sustained oscillations for γA/γf = {0.65, 0.95},
respectively. Close to the homoclinic (Hom), frequencies can be arbitrary small. Close
to the limit point of cycles (LPC) stable quiescent and oscillatory states coexist (marked
light gray). The subcritical bifurcation structure can lead to hysteresis (indicated by
arrows).

When the time scale ratio is sufficiently reduced, a codimension-2 Bogdanov-Takens bifur-
cation point (BT) moves from the lower to the upper SN branch, thereby passing through
the left CP bifurcation point. In the three-dimensional parameter space χφ, γA, τN/τR,
this transition marks a codimension-3 Bogdanov-Takens-Cusp (BTC) bifurcation point.
It coincides with the emergence of a regime of self-sustained shape and signaling oscilla-
tions [Fig. 3.9(a-c)]. As for the droplet pair [Fig. 3.3], the oscillation waveform depends
on the two feedback parameters χφ and γA: for small γA and large χφ—close to a su-
percritical Hopf bifurcation line—oscillations are near-sinusoidal with small oscillation
amplitudes. Increasing γA while decreasing χφ increases the amplitude of shape changes
and renders the oscillations more and more relaxation-like [Fig. 3.9(e)]. At the transition
between the oscillatory and excitable regimes, the oscillation period diverges due to the
presence of a homoclinic bifurcation associated with the BT point. The maximum shape
oscillation amplitude (i.e. (Amax

c − Amin
c )/A0 during an oscillation cycle for given γA/γf)

reveals a near linear scaling with the adaptive tension coefficient γA/γf [Fig. 3.10(a)].

In general, the amplitude, frequency and waveform of the oscillations can be understood
from the closest codimension-1 bifurcation delineating the oscillatory regime–especially
close to the transition between quiescent and oscillatory states [Fig. 3.10(b,c)]. These bi-
furcations are organized by several higher order, codimension-2 bifurcation points includ-
ing the Cusp, the BT point and two generalized Hopf (GH) bifurcation points [Fig. 3.9(c)],
which in turn descent from the codimension-3 BTC bifurcation [161]. At the GH bifur-
cation points, the line of supercritical Hopf bifurcations splits into a subcritical Hopf and
a saddle-node of limit cycles bifurcation [Fig. 3.9(c)]. Each GH point opens a parame-
ter regime at the transition between oscillatory and non-oscillatory states, in which the
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stable limit cycle coexist with a stable fixpoint solution [Fig. 3.9(c) and Fig. 3.10(b-c)].
Here, the droplet can experience hysteresis: for instance, given a fixed adaptive adhesion
coefficient, the external signal at which the system transitions from a steady state to a
limit cycle, and vice versa, are not identical [Fig. 3.10(c)]. Moreover, oscillation period
and amplitude at the transition are non-zero and finite.
In summary, transitions between the oscillatory and non-oscillatory regime can be grouped
in three classes: (i) at the supercritical Hopf bifurcation line (small γA), the period is
finite and the oscillation amplitude close to zero, (ii) at the LPCs, amplitude and fre-
quency are finite and non-zero at the onset of oscillations, and (iii) at the homoclinic
[Fig. 3.10(c)], amplitudes are large and the oscillation period diverges. It showcases how
tuning the adaptive adhesion coefficient, a mechanical coupling parameter, allows to tune
the onset of oscillations in response to an external signal φ in signal-processing droplets.

Shape-adaptation oscillations generate neuron-like dynamics

The bifurcation structures discussed above—in particular the BTC codimension-3 bifurcation—
are commonly encountered in neuroscience. More specifically, they are a hallmark of
conductance-based (Hodgkin-Huxley type) models describing the generation of action
potentials in firing neurons [160, 161, 162, 163]. The generation of action potentials is a
core process in neurons to produce and process signals. It raises the intriguing question,
how the variables and parameters in the conductance-based models map to internal states
and shape dynamics of signal processing adherent droplets [Fig. 3.9(f)].
In neurons, ion channels open stochastically with a time-dependent probability p(t) =

m(t)h(t) depending on the state of so-called activation and inactivation gates m(t) and
h(t). These variables represent the probability of ion channel subdomains to take a
configuration that allows ions to pass. All activation/inactivation variables must be in
an open state for ions to flow. Depending on the type of ion channel, activation and
inactivation gates can be coupled in various ways and proportions [160]. For instance,
consider the transient sodium channel model INa,t [160] in which the membrane potential
V changes over time as

C
dV

dt
= −Ie − gionm(t)h(t)(V − Vion)− gl(V − Vl) (3.11)

with C the membrane capacitance, Ie an externally applied current (the signal that
the neuron responds to), gion the conductance if all sodium ion channels are open, Vion

the sodium Nernst potential, gl the leak conductance at the membrane and Vl the leak
membrane potential. Following Fermi-Dirac statistics for a 2-state system (gates are
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either in an open or closed state), gate dynamics are commonly modeled as

τmm(t) = m∞ −m(t), (3.12)
τhh(t) = h∞ − h(t) (3.13)

with

m∞ =
1

1 + exp (V1 − V )/V2
, (3.14)

h∞ =
1

1 + exp (V3 − V )/V4
(3.15)

reflecting the steady-state probability for a gate to be open given a fixed membrane volt-
age V [160]. Its form can be derived from the free energy difference between open and
closed ion channel states [164]; Vi, i ∈ {1, 2, 3, 4} are usually treated as fit parameters.
Consider that m(t) is an activation variable that increases with the membrane voltage,
and h(t) an inactivation gate that decreases with rising voltage levels. Comparison of
Eqs. (3.5),(3.6) and Eqs. (3.12) ,(3.13) indicates that m(t) corresponds to the change of
adhesion molecules uN (fast positive feedback), while h(t) maps to the normalized recep-
tor concentration uR (delayed negative feedback). Moreover, changes in the membrane
potential V correspond to changing signals s received by the adherent droplet. As dis-
cussed in Chapter 2, the framework for shape-adapting droplets focuses on a time scale
regime governed by the production and decay rates of molecules, while shape and signal
adapt instantaneously. In the conductance-based neuron model, this corresponds to a
membrane potential that equilibrates much faster than changes in the gate dynamics. In
contrast, most studies of neuronal dynamics assume that the activation gate acts faster
than changes of the membrane potential V [160, 164]. However, because similar bifurca-
tion structures can be observed for both cases—in particular the Bogdanov-Takens-Cusp
bifurcation [161]—I assume in the following fast voltage dynamics (dV /dt = 0). The volt-
age is then given as a function of the two dynamic gate variables V (m(t), h(t)) [Eq. (3.11)].
When I define the normalized voltage v = (V − Vl)/(Vion − Vl), it follows from Eq. (3.11)
that

v =

Ie
gl(Vion − Vl)

+
gion
gl

m(t)h(t)

1 +
gion
gl

m(t)h(t)
, (3.16)

which only depends on two dimensionless parameters. Figure 3.9(d) shows part of the two-
dimensional parameter space spanned by the conductance ratio gion/gl—which tunes how
strongly the membrane voltage responds to the opening and closing of the ion channels—
and the normalized, externally applied current Ie/gl(Vion − Vl). The comparison between
neurons and the shape-adapting droplet model shows a striking resemblance of bifurca-
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tion topologies, and indeed, one finds the BTC and all descended lower codimensional
bifurcations, including the BT, CP and GH bifurcation points [Fig. 3.3(c-d)] [163].
In the quiescent state, neurons occupy the non-oscillatory (gray) or excitable (pink)
regime below the oscillatory regime [Fig. 3.9(d)]. When an external stimulus (in form of
current Ie) is applied, the neuron transitions into the oscillatory regime, where it starts
firing—creating a series of action potentials—until the external stimulus is withdrawn.
Neurons can tune the oscillation waveform, and in particular the frequency of action
potentials, via modification of the ion channel conductance gion, for instance via bio-
chemical ion channel modifications [161, 162]. Analogously, signal processing adherent
droplets can follow excitable and oscillatory dynamics in response to an external signal
φ, which are tunable by the mechanical coupling parameter γA [Fig. 3.9(c)].

In light of the intriguing parallel between tunable oscillations in neurons and shape-
adapting droplets, the question remains whether the corresponding parameter regimes
are indeed accessible to physical droplets and cells. Moreover, it raises the question
how the mechanochemical feedback dynamics in droplets influences signal processing. In
the next section, I analyze the signal processing capacity of oscillating droplets, i.e. the
ability to encode information via oscillations, in the limit case of an infinitely sharp signal
response (hR, hN → ±∞). Note that due to the slow, chemical time scales assumed for
the signal-processing droplets (Chapter 2), only a few oscillation cycles would be expected
to occur within minutes to hours. Neurons, on the other hand, can generate a series of
action potentials on a sub-second time scale [160], allowing for a much faster and cleaner
encoding of information in the frequency domain.
In Section 3.7, I apply the presented framework of signal processing droplets to infer the
feedback parameters χφ and γA from contact angle measurements in zebrafish embryos.
Although no oscillations are observed, I show in particular that the embryonic tissue
occupies a feedback parameter regime closely associated with the CP bifurcation point
that interacts with the BT point during the BTC codimension-3 bifurcation. In the
embryo, proximity to the CP point enables the prediction of an experimentally observed
tissue boundary formation.

3.6 How feedback dynamics encode information

Through evolution, biological systems have learned to position themselves close to critical
points markingtransition between regimes of qualitatively different behavior [165, 166].
Thereby, a system becomes sensitive to small parameter changes. For instance, quiescent
neurons are typically found in states close to the transition into the oscillatory regime such
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that small external perturbations can set the system into an oscillatory state [160, 166].
The computational properties of firing neurons depend on their firing characteristics at the
onset of self-sustained oscillations, e.g. the firing frequency [160]. For instance, neurons
of excitability class I can fire with arbitrary slow frequency, while class II neurons always
generate action potentials with a finite oscillation period.
In analogy to firing neurons, I consider the oscillation properties of shape-adapting
droplets close to the transition between excitable and oscillatory regime. In particu-
lar, I ask if features of the oscillation allow to encode information about system state
parameters in the presence of noise, focusing on encoding information in the frequency
domain.
To simplify the analysis, I consider the limit in which the concentration of adhesion
molecules uN adjusts instantaneously to changes in the receptor molecule concentration,
i.e. τN/τR → 0. The concentration of adhesion molecules is then given by uN = σN(s)

with σN(s) ∈ {0, 1} and the only dynamic equation to consider is

u̇R =

⎧
⎨

⎩
1− uR, if s < 1

−uR, if s ≥ 1.
(3.17)

Sketches of corresponding phase portraits in the excitable and oscillatory regime are
shown in Fig. 3.11(b) for the excitable regime (χφ ≤ χφcrit) and the oscillatory regime
(χφ > χφcrit). When the system is in the oscillatory state, one can compute the period
of oscillations via integration of the two parts of the trajectory T = T1 + T2 with

T1 =

∫ u1

u2

duR
1− uR

= ln
(
1− u2

1− u1

)
(3.18)

T2 =

∫ u2

u1

duR
−uR

= ln
(
u1

u2

)
, (3.19)

where T1, T2, u1, u2 are defined as shown in Fig. 3.11(b), and the overall period is given
by

T = ln
(
u2(1− u1)

u1(1− u2)

)
. (3.20)

As long as the system moves along one branch in the phase portrait, uN is constant.
In particular, during T2, uN = 1 and thus Ac = Ac((γ0 − γA)/γf), i.e. the droplet
takes a shape with large contact area (strong wetting), while during T1, uN = 0 and
the contact area Ac = Ac(γ0/γf) is minimal. The transition between the two branches
occurs whenever the signal passes the threshold s = 1. From Eq. (2.75) follows for the
corresponding receptor concentrations u1, u2

u1 =
A0

χφAc((γ0 − γA)/γf)
− u0

R (3.21)

u2 =
A0

χφAc(γ0/γf)
− u0

R. (3.22)
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The transition between oscillatory and excitable regime is an SN-like (or SNIC-like)
critical point, where the stable fixpoint (uN = 0, uR = 1) with small contact area Ac(γ0/γf)

is replaced by a limit cycle as the only stable attractor [Fig. 3.11(b)]. The condition for
the transition

s = χφ
Ac(γ0)

A0
(1 + u0

R) = 1 (3.23)

matches the condition where the period T diverges [Eq. (3.20)]. Moreover, it fits the con-
dition for one of the saddle node bifurcation points [Eq. (3.10)], thus, the period diverges
due to the ghost of the saddle-node—a result I also found for the general case of finite
Hill coefficients and non-zero time scale ratios using numerical continuation [Fig. 3.9(a)].

The ability of a system to oscillate with arbitrary slow frequency provides the capability
to encode information about state parameters in the frequency domain. Indeed, many
cellular processes respond not only to absolute concentration levels, but to temporal
signatures of bulk concentration changes [167, 168, 169]. However, close to the onset of
self-sustained oscillations, small perturbations can suffice to trigger an excitation. To
assess the ability to robustly encode information through temporal dynamics, oscillations
must therefore be studied under the presence of noise.
To gain a simple understanding of how features of shape- and state oscillations could
encode information in the presence of perturbations, I consider that the signal s is af-
fected by stochastic perturbations δs whenever the droplet is in the small contact area
configuration (uN = 0). In particular, I consider a Cox process with fluctuations follow-
ing Poisson distribution in time, and amplitudes drawn from a normal distribution with
mean µ = 0 and variance σ2

noise. Perturbations are assumed to decay fast, such that they
are non-additive. In the small contact area configuration (uN = 0), noise can trigger
an excitation, i.e. a transient increase in the contact area, when the signal passes the
threshold s ≥ 1. It follows that fluctuations trigger an excitation if

δs ≥ 1− s(t) = 1− χφ
Ac|γ0/γf

A0
(uR(t) + u0

R). (3.24)

As uR(t) changes over time, so does the probability that a fluctuation is sufficient to
trigger an excitation. During T1, uR decreases and thus the probability of excitation
increases. Note that I ignore fluctuations during T2 that could shift the system back to-
wards the small contact area configuration. The mean frequency of perturbation-induced
oscillations then depends on the first passage time of the signal to pass the threshold.
When fluctuations occur with rate λ, then the effective rate of fluctuations that suffice
to pass the excitation threshold is

λeff(t) = λ

(
1− Φ

(
1− s(t)

σnoise

))
(3.25)
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with Φ the cumulative density function of the normal distribution. It means that excitation-
triggering fluctuations follow a thinned, non-homogeneous Poisson process. In the ex-
citable regime, oscillations are solely noise-induced and their frequency is given by the
mean of the inverse period

f =

∫ ∞

0

1

T (t)
λeff(t)e

∫ t
0 λeff(η)dηdt, (3.26)

where λeff(t)e
∫ t
0 λeff(η)dηdt is the probability to observe the first fluctuation moving the

system from phase T1 to phase T2 in the time interval [t, t+ dt] and

T (t) = t+
ln
(

1−(1−u2)e−t

u2

)

Ac|γ0−γA

(3.27)

is the time of one oscillation cycle until the system returns to uR = u1 given that the
excitation was triggered at time t. In the regime of self-sustained oscillations, when
the system reaches uR = u2 (denoted as time tmax, Eq. (3.18)) before any fluctuation
has triggered an excitation, the system jumps to the large contact area state (uN = 1).
Taking this into account, the mean oscillation frequency is

f =

∫ tmax

0

1

T (t)
λeff(t)e

∫ t
0 λeff(η)dηdt+

1

T (tmax)
e
∫ tmax
0 λeff(η)dη. (3.28)

This gives a general expression for the mean oscillation frequency, in the excitable as
well as in the oscillatory regime, considering that in the excitable regime tmax → ∞ such
that the second term vanishes. The oscillation frequency was computed numerically and
plotted in Fig. 3.11(c) for a varying variance of the perturbation amplitude σ2

noise.
The sensitivity d ln f/d lnχφ describes the fractional change in frequency f given a frac-
tional change in χφ [Fig. 3.11(d)]. In general, it decreases with increase of χφ and also
decreases with the noise amplitude variance σ2

noise in the excitable regime, but plateaus
to a finite oscillation frequency determined by the frequency of self-sustained oscillations
in the absence of noise [Eq. (3.20)].
To robustly encode signals, a system needs to maximize its signal-to-noise ratio. I thus
compute the standard-deviation of the oscillation frequency relative to its mean value
[Fig. 3.11(e)]. Interestingly, in the excitable regime, this ratio decreases with increas-
ing perturbation amplitudes. In the oscillatory regime, where the frequency is mainly
determined by the limit cycle of self-sustained oscillations, variations in the frequency in-
stead increase with σ2

noise. In conclusion, under the presence of stochastic perturbations,
the ideal state for a system aiming for high sensitivity of the oscillation frequency with
respect to a changing signal susceptibility χφ while guaranteeing a high signal-to-noise
ratio is close to the bifurcation marking the transition between excitable and oscillatory
regime–as commonly observed in other excitable systems encoding information in the
frequency domain [166].
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Figure 3.11. Dynamically encoding signals in the presence of noise. (a) Signaling
response functions in the limit hN → ∞, hR → −∞. (b) In the time scale limit τN/τR → 0,
uN ∈ {0, 1} adapts instantaneously. All dynamics are captured in the uR phase diagram.
In the excitable regime (χφ < χφcrit), uR = 1 is a stable state, but small perturbations can
trigger an excitation (rose trajectory), thus , generating noise-induced oscillations. In the
oscillatory regime (χφ > χφcrit), the system follows a limit cycle with uR ∈ [u1, u2] and
with two phases of period T1 and T2 corresponding to small (Ac(γ0)) and large (Ac(γ0−γA)
contact areas. During T1, stochastic perturbations can trigger a contact area expansion
before uR has reached u2. (c) Frequency of oscillations f in the presence of perturbations
modeled as a Cox process with Poissonian distributed fluctuations of rate λ = 10 and
gaussian amplitude with zero mean and standard deviation σ = {0.01, 0.05, 0.1} (light to
dark blue). (d) The sensitivity d ln f/d lnχφ–i.e. the fractional frequency change df/f

relative to fractional changes of d(χφ)/χφ–decreases with increasing χφ and increasing
amplitudes of fluctuation σ (e). The standard deviation of the frequency σf relative to the
mean frequency ⟨f⟩ decreases with increasing χφ. Larger perturbations reduce the ratio
in the excitable regime, but slightly increases it in the oscillatory regime (χφ > χφcrit).
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3.7 Emerging tissue boundaries in zebrafish mesendo-
derm formation

In this section, by applying the framework of signal processing droplets to shape mea-
surements from zebrafish embryos, I show how feedback between cell-cell adhesion and
signaling can support the formation of distinct tissue regions, highlighting the regula-
tory role of mechanochemical interactions in developmental patterning. In particular, I
find that the experimental observations are best described by a combination of feedback
parameters φχ, γA close to the Cusp bifurcation point presented in Section 3.1. It sug-
gests that physical systems can indeed explore parts of the parameter regime that are
associated with the rich dynamical behavior outlined in previous sections.
This chapter starts with an overview of the main results obtained from the parameter
inference. Subsequent sections explain the underlying analysis in more detail. All exper-
imental data presented in this chapter was acquired by Camilla Autorino (Petridou lab,
EMBL).

3.7.1 Mesendoderm formation in zebrafish embryos
Mesendoderm formation in zebrafish embryos is an early developmental event in which the
cells that later form the organism’s internal organs differentiate and alter their material
properties. This process is guided by a spatial gradient of Nodal signaling activity, which
decreases along the animal-to-vegetal embryo axis (AV-axis) from the margin towards the
animal pole [Fig. 3.12(b)] [170], and involves changes in cell-cell adhesion [165]. Through
positive feedback signals exchanged between cells increase their mutual adhesiveness.
In contrast to Eq. (2.82), (where I considered mutually inhibitory signals), the signal
received by a cell i is thus here defined as

si = χφ
Ac
A0

. (3.29)

with χφ the product of signal susceptibility and available signal, and Ac the total contact
area per droplet.

3.7.2 Tension adaptation produces a shape transition
For constant external signals φ, numerical continuation of Eqs. (1.7), (2.72), (2.68), (3.29)
with varying coupling parameters γA and χ reveals that the bistability between weakly
and strongly adhesive states, and the associated bifurcation points already discussed in
earlier sections (Section 3.1), can be found more generally for droplet lattices, where each
droplet has the same number of contacts n [Fig. 3.12(a)].
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I expect this shape transition to occur in diverse systems in which area-dependent signals
affect mechanical changes. As an example of a specific mechanochemically regulated
system, I thus investigated the cell shapes in the zebrafish blastoderm. In this embryonic
tissue, it was previously shown that Nodal, an extracellular signaling molecule involved
in cell fate specification [172, 173], increases intercellular adhesion [165], and that cell-cell
contacts can in turn enhance the competence of cells to respond to Nodal [72]. Moreover,
the external level of Nodal varies spatially, decreasing from the tissue margin to the
embryo pole, thus allowing to test if the cells undergo the predicted switch from strong to
weak adhesion as a function of the external signal in Eq. (3.29), which thereby acts as the
control parameter. While the structure of the zebrafish blastoderm resembles a disordered
wet-limit foam with an average of six contacts per cell [174], I model it for simplicity as an
ordered lattice with n = 6 contacts (cubic) in the small-angle limit, consistent with the
data [Fig. 3.13]. Given the typically low concentrations of signaling molecules [175, 176],
I model fluctuations of the local level of Nodal by a Gamma distribution, whose mean
follows an exponentially decaying profile ⟨φ(y)⟩ = φ0 exp(−y/ξ) from its source at the
tissue margin with a characteristic length of ξ = 40 µm [173]. The variance of the Nodal
level σ2

φ = ⟨φ⟩ is motivated by the Poissonian statistics of density fluctuations [177,
Appendix III]. To test the predictions, our collaborators measured the distribution of cell-
cell contact angles θ from fluorescence microscopy images of embryos taken five hours
post fertilization at different positions yj ≥ 0 along the embryo axis [Fig. 3.12(b)]. I
evaluated Eqs. (1.7), (2.72), (2.68), (3.29) at each yj in the local approximation, i.e.
neglecting spatial variations of Nodal across nearest-neighbor cells and any non-local
effects of area coupling. Using simulation-based inference [171], I then estimated the
three unknown parameters from the samples of θ [Fig. 3.12(b)], obtaining γ0/2γf = 0.87±
0.01, γA/γ0 = 0.16±0.03 and χφ0 = 3.1±0.8 (standard error from cross-validation). The
small value of the ratio γA/γ0 is consistent with Eq. (2.68) being a lowest-order expansion
around a constant. Furthermore, genetic perturbation of adhesion regulation in silberblick
mutants [165, 178, 179] yielded a significant reduction in the adaptive tension coefficient
as expected (γA,SLB/γ0 = 0.05± 0.01, inferred with the two other parameters γ0/2γf and
χφ left unaltered [Fig. 3.12c]).

Overall, I find that the estimated parameters of blastoderm cells are close to the critical
cusp point of the bistable regime, which locates the transition between low- and high-
contact regimes at approximately 50–70 µm above the margin of the tissue [Fig. 3.12(d),
obtained without further fitting]. This length corresponds indeed to the observed size of
the subsequently developing rigid tissue region, which at later stages forms the internal
parts of the organism [180].

The following sections provide more details about the simulation-based inference approach
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as well as justifications for the different modeling assumptions.

3.7.3 Fluorescence imaging of mesendoderm formation in ze-
brafish

My collaborators, Camilla Autorino and Nicoletta Petridou (EMBL), obtained fluores-
cence imaging data of wild type (WT) and silberblick mutant (SLB) embryos 5 h after
fertilization, and measured the contact angles θj(yj) between cells of the blastoderm
at different positions yj along the AV-axis from the margin at y = 0. They obtained
N = 2132 contact angle datapoints from five WT embryos, and N = 806 datapoints
from three SLB embryos. I then used Eq. (1.4) to relate the measured contact angles
to the steady state tension ratios obtained from simulating the framework of signal pro-
cessing droplets (see below for details). In particular, I used simulation-based inference
(SBI) to infer parameters describing the distributions pWT(cos(θ/2)) and pSLB(cos(θ/2))
shown in Fig. 3.12(b).

3.7.4 Modeling tissues as wet-limit foams with fixed topology
in the small contact angle limit

Camilla Autorino measured the number of in-plane contacts per cell across the blastoderm
from 2D microscopy images (as described in [165]), and obtained 4.05± 0.05 in the WT
and 3.77 ± 0.07 in the SLB mutant [Fig. 3.13(e)](mean±standard error). Extrapolating
from these in-plane measurements suggests that blastoderm cells have an average of six
neighbors in three dimensions, and that the system is close to the rigidity percolation
threshold [165]. Therefore, I model the non-confluent 3D blastoderm tissue as a fixed-
topology configuration of droplets with n = 6 contacts, which corresponds to the contact
number of disordered wet-limit foams close to the jamming/unjamming transition [174].
For the cubic lattice, higher order junctions form at contact angles θ ≥ 90◦ [Fig. 3.13(b)],
corresponding to cos (θ/2) < 1/

√
2. Our contact angle measurements show that more

than 95% of all data points fall above this point [Fig. 3.13(d, e)]. In this small-angle
regime, contact areas are well approximated by linearizing Eq. (1.7) around the tension
ratio at detachment γc/2γf = 1 [Fig. 3.13(d)]

Ac
A0

= n21/3
(
1− γc

2γf

)
+O

((
1− γc

2γf

)2
)
, (3.30)

which I used for the parameter estimations.
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3.7.5 Cell state dynamics are governed by an external signaling
gradient

The blastoderm cells respond to extracellular Nodal signals [72, 173], which I model
as an exponentially decaying stochastic concentration field [Fig. 3.12(b)] [173] φ(y) =

⟨φ(y)⟩+η(y) including a Poissonian noise term to account for molecule fluctuations [177,
Appendix III]. For each position yj at which a contact-angle measurement is available, I
solve Eqs. (2.68),(2.72),(2.82) in the local approximation, i.e.

τu
du

dt
=

(
χφ(yj)

Ac
A0

)h

1 +

(
χφ(yj)

Ac
A0

)h − u, (3.31)

whereby I neglect differences in the external signal received by neighboring cells, and
nearest-neighbor variations in the contact areas. The steady states of Eq. (3.31) depend
on the parameters γ0/2γf, γA/γ0, the product χφ, and the Hill coefficient h.

3.7.6 Simulation-based inference analysis
I used simulation-based inference (SBI) to infer the unknown parameters from the statis-
tics of the measured contact angles across positions and samples [Fig. 3.12(b)]. SBI is
particularly suitable for scenarios where the likelihood function is intractable or difficult
to compute, but where simulating data from the model is straightforward. Given a set
of observations xobs (here the summary statistics of measured contact angles, see below),
SBI relies on Bayes’ theorem for the probable set of parameters ϑ describing the data. In
particular, I am interested in the posterior distribution

p(ϑ|xobs) =
p(ϑ)p(xobs|ϑ)

p(xobs)
(3.32)

with p(ϑ) the prior over the parameters, and p(xobs|ϑ) probed by stochastic simulations.

Simulation step. Given a set of model parameter values (Hill coefficient h, the ratios
of tension coefficients γ0/2γf and γA/γ0, and the product χφ), my simulator evaluates the
steady state of Eq. (3.31) using (2.68) and (3.30), starting from random initial conditions
u(t = 0) ∈ [0, 1] using solve_ivp with the RK45-method (explicit fourth order Runge-
Kutta) from the scipy python package. For each position y at which a contact angle
was measured, one simulation was performed. To account for the Poissonian statistics
of fluctuating concentrations in the external signal gradient, χφ was drawn from a Γ-
distribution with mean µχφ = ⟨χφ(y)⟩ and variance σχφ = ⟨χφ(y)⟩. I used Eq. (1.4) to
calculate contact angles from steady state tension ratios and added a relative error of
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15% to account for experimental measurement errors by drawing a new contact angle
from a normal distribution centered at µθ equal to the simulated steady state angle and
standard deviation σθ = 0.15µθ.
My preliminary analysis revealed that in contrast to the tension and susceptibility pa-
rameters, the Hill coefficient was not well constrained by the data, but the shape of the
inferred posterior suggests values of h > 2 to be most suitable, with a broad peak around
h = 7 [Fig. 3.15(a)]. Following common convention for biological signaling models, I
therefore fixed the Hill coefficient to h = 4 [107, 108, 159].
There remain three parameters ϑ = (γ0/2γf, γA/γ0,χφ), which can be identified from the
measurements and which are assumed distributed with uniform priors

p(γ0/2γf) = U([0.7, 1]),

p(γA/γ0) = U([0, 1]), (3.33)
p(χφ) = U([0, 20]),

where U([a, b]) denotes a uniform distribution on the interval [a, b]. The range of baseline
tension ratios γ0/2γf was chosen such that—considering Eqs. (1.4), (2.68) and γA = 0—
the corresponding values of contact angles cover the range of measurements. I also tested
that a broader prior p(γ0/2γf) = U([0, 1]) yields the same results, but considerably slows
down the inference procedure. The adaptive tension ratio γA/γ0 was sampled from the
full domain in which the theory is valid. For χφ I chose an upper limit of 20 (an order
of magnitude above (χφ)Cusp, [Fig. 3.12(a),(c)]), however, the same results were obtained
with a larger prior range of p(χφ) = U([0, 100]).
For the analysis of genetically perturbed embryos (SLB mutant), γ0/2γf and χφ were fixed
to the values inferred from the wildtype data, leaving γA/γ0 as the only free parameter.

Training As the summary statics xobs—the features extracted from the measurements
or results of simulations—I used the moments

ℓm = ⟨Lm(cos(θ/2))⟩

of the shifted Legendre polynomials Lm of orders m = 1, 2, ...8 (order m = 0 yields 1
due to the normalization of the probability density), which characterize the marginal
distribution of the contact angles pWT(cos(θ/2)) and pSLB(cos(θ/2)) [Fig. 3.14(a,b)].
To include information about the spatial structure in the data, I additionally computed
four cross-moments

cαβ =
1

N

N∑

j=1

yαj cosβ
[
θ(yj)

2

]
, (3.34)

71



CHAPTER 3 Emerging tissue boundaries in zebrafish mesendoderm formation

with α, β ∈ {1, 2} and N being the number of data points.
In total, I thus obtained twelve degrees of freedom xobs(8 Legendre moments and 4
cross-moments), which I used to train the posterior estimator p(ϑ|xobs). To this end, I
leveraged the python implementation of the SBI method [171]. In particular, I used the
sequential neural posterior estimator (SNPE) with the neural-spline flow representation
of distribution functions.
The training set included 5 × 105 simulations of wildtype embryos with three variable
parameters sampled from Eq. (3.33), and 105 simulations of the silberblick embryos. The
expected values of the inferred parameters were calculated over 2000 samples from the
obtained posterior distribution p(ϑ|xobs) [Fig. 3.14(c-d)].
To assess the error of the parameter inference arising from sample-to-sample variability
between different embryos (reported in the main text and Fig. 3.12(c)), I used cross-
validation. Specifically, I computed the standard error of inferred parameter ϑ using
jackknife resampling [181]

stdϑ =

√√√√ 1

M(M − 1)

M∑

k=1

(ϑk − ⟨ϑ⟩)2, (3.35)

where M is the number of embryos, ϑk is the inferred parameter value obtained using
all but the data from the k-th embryo for training the neural network to estimate the
posterior and ⟨ϑ⟩ is the mean of the M different inferred parameter values.
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Figure 3.12. Adaptive tension produces a shape transition supporting patterning in
zebrafish embryos. (a) Positive feedback between contact-dependent signals and adap-
tive adhesion produces bistability between small- and large-contact configurations (inset:
bifurcation curve along dotted line, n: number of neighbors, blue points: cusps). (b)
Cell-cell contact angle measurements θ from fluorescence microscopy images (inset) of
blastoderm in unperturbed wildtype zebrafish embryos (blue, 2132 cells from 5 embryos)
and silberblick mutants with disrupted adhesion regulation (gray, 806 cells from 3 em-
bryos) allow the estimation of parameters γ0/2γf, γA/γ0, and χφ using simulation-based
inference ([171] and Section 3.7.6) (solid lines: best fit).(c) The inferred parameter dis-
tributions locate wildtype embryos close to the cusp, whereas mutants lose adaptive
adhesion (shaded regions: standard error from cross-validation (Section 3.7.6), images
for γc/2γf = {0.87, 0.71}). (d) Mapping external signal levels to spatial positions (also
right axis in (c)), I predict—without further fitting—a switch from high- to low-contact
configurations at ∼ 50–70 µm above the tissue margin (inset), matching the size of the
subsequently forming rigid tissue (dark blue and red: experimental mean and standard
error at consecutive timepoints, shaded areas: standard deviations, dots: individual data
points, black: theoretical profile for inferred γA/γ0 = 0.16). (a)–(d) computed using
Eq. (3.30). 73
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Figure 3.13. (a) Linearization of Eq. (1.7) (solid curve, n = 6) around γc/2γf = 1

(dashed line) provides a good approximation for small contact angles, where the tension
ratios are near 1 [Eq. (3.30)]. (b) Contact angle measurements in zebrafish embryos show
that the data is well described by the small angle limit for cubic droplet configurations
(95.22% of WT and 98.75% of SLB data points are above 1/

√
2, the threshold for higher

order junction formation). Inset: Histogram of the number of contacts per cell measured
from 2D microscopy images n2D. WT: N = 871, SLB: N = 429. Data acquired by
Camilla Autorino (Petridou group, EMBL).
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Figure 3.14. SBI analysis of contact angle distributions. (a, b) Data: Legendre
and cross-moment coefficients [Eq. (3.34)] of the measured distribution of cos(θ(y)/2)
[Fig. 3.12(b)], SBI: Inferred parameters were used to simulate distributions of cos(θ(y)/2),
from which Legendre and cross-moment coefficients were computed. Error bars represent-
ing the standard deviation of the posterior are too small to be displayed due to the narrow
posterior distributions (compare to c, d). (c, d) Distribution of parameter predictions
from sampling the trained posterior 2000 times for the wild type (c) and SLB mutant
data (d).

Figure 3.15. Posterior distributions of four model parameters inferred using simulation-
based inference (SBI) on WT data. (a) Hill coefficient h, (b) ratio γ0/2γf (c) ratio
γA/γ0, and (d) χφ. While parameters (b–d) are well constrained by the data (γ0/2γf =

0.864 ± 0.002, γA/γ0 = 0.13 ± 0.03, χφ = 2.3 ± 0.4, errors are the standard deviations
of the posterior), the Hill coefficient h remains poorly constrained, though the analysis
suggests that h > 2 best describes the system. Distributions were obtained by sampling
the posterior 2000 times. I used priors as given in Eq. (3.33) for parameters (b-d) and a
prior of p(h) = U([0, 8]) for the Hill coefficient, otherwise SBI analysis was performed as
described in Section 3.7.6.
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Chapter 4

Contact topology-driven signaling
dynamics

In the previous chapter, I analyzed the feedback dynamics between contact-based signal-
ing and shape adaptation on the level of adherent droplets, droplet pairs, and regular
droplet lattices. In physical systems, e.g. multicellular structures and tissues, contact
topologies can be much more diverse, i.e. spatially heterogeneous and dynamically evolv-
ing over time. In proliferating matter, even the number of interacting constituents can
vary over time, adding another level of complexity [26].
In this chapter, I study this additional layer of complexity by focusing on systems where
the contact topology is a fixed parameter or a data-derived, autonomously developing
function over time. In particular, motivated by the Notch lateral inhibition pathway
[69], I start with a linear stability analysis of a minimal model of mutually inhibitory
contact-dependent signaling. I show how the patterning of states depends on the cou-
pling strength, the length scale of coupling, and how coupling asymmetries can generate
traveling pattern defects.

To generalize long-range coupling interactions, I introduce a kernel function that repre-
sents the distance over which cells can interact, i.e. send and receive signals from other
units, and I apply this framework to describe cell fate patterns observed in the developing
neuromasts, a sensory organ in the skin of fish.

Moreover, together with collaborators from the Jacobo group (CZ Biohub, San Francisco),
I have analyzed realistic contact networks derived from live microscopy data of developing
neuromasts. I will show that simulations of contact-dependent signaling on these networks
suggest that cell differentiation patterns can be predicted in time and space.
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CHAPTER 4 Contact-based fate patterning in one dimension

4.1 Contact-based fate patterning in one dimension
Consider a periodic system of N interacting cells, each with an internal state ui ∈ [0, 1]

[Fig. 4.1]. Cell states ui change over time according to a set of N differential equations

τu
du⃗

dt
=

⎛

⎜⎜⎝

f1(u1, u2, ...)

...

fN(u1, u2, ...),

⎞

⎟⎟⎠ (4.1)

where the vector u⃗ = (u1, u2, ..., uN) contains the states of all N cells. In the following, I
assume that

fi(u1, u2, .....uN) =
1 + tanh(k(ui − si))

2
− ui, (4.2)

where si ∈ R+ denotes the signal that a cell i receives from all other cells and k > 0 is
a free parameter that determines the degree of nonlinearity—i.e. the steepness—of the
cellular response to the received signal si [67]. The minus sign assures that signals are
inhibitory: signals prevent a cell from reaching a signal-sending high u state. Eq. (4.2)
has been used successfully to model the Notch signaling pathway [67, 68], where a high u

value describes a signal sending state (high ligand expression), while low u corresponds to
a signal receiving state (low ligand expression). It differs from Eq. (2.73) derived in Chap-
ter 2 in two aspects: (i) the nonlinear response function uses a hyperbolic instead of a Hill
function and (ii) the response function contains the internal state of the signal receiving
cell. While the choice of the sigmoid response function is somewhat arbitrary and only
has minor impact on the results—as long as the degree of nonlinearity is comparable—the
latter aspect introduces a crucial difference. In [67], including u in the response function
was motivated by Cis-inhibition: ligands expressed on a cell surface can laterally bind
to receptors of the same cell, preventing them to bind and be activated by ligands of
neighboring cells (Trans-activation). Thereby, two cells expressing higher levels of Notch
ligand can form physical contacts without breaking symmetry: their ligands inhibit their
own receptors, effectively decoupling the two interacting cells. Cis-inhibition creates a
positive feedback loop: increasing the ligand expression increases the fraction of impaired
receptors, which prevents the cell from receiving inhibitory signals and promotes further

Figure 4.1. Periodic chain of N interacting units, each with an internal state ui, which
can be coupled over arbitrary distances.
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CHAPTER 4 Linear stability analysis of state patterning

Figure 4.2. (a) The steady-state solutions of Eq. (4.2) for varying signal si show a
bistable regime. (b) Without the positive feedback from Cis-inhibition, no bistability is
observed (shown are the solutions of ui = (1 + tanh(4(0.5− si)))/2).

expression of ligands. If the positive feedback is strong enough, it creates a bistability,
where the same input signal can drive a cell into a signal-sending or -receiving state
[Fig. 4.2]. However, this bistability is not necessary to achieve symmetry-breaking of
states between interacting cells. The signal

si = χ
∑

j

ujcij (4.3)

is defined as the sum over all cells, where cij is a symmetric matrix describing how cell
i is coupled to cell j. In the following, I generally assume that cii = 0 for all i, because
cells are not self-signaling, however, the Cis-inhibition term could also be introduced as
negative, diagonal elements in the coupling matrix. The coupling is multiplied by the
respective signaling state uj and the signal susceptibility χ. Equation (4.3) is similar to
the definition of the signal presented in [67], but with a linear ligand activity, i.e. the
potential of a cell to send signals is proportional to its state u.

In the following sections, I consider different coupling topologies cij for a periodic chain of
cells, and I study how state patterning changes with varying signal susceptibility. Specif-
ically, I use linear stability analysis around uniform and patterned states to distinguish
patterning and non-patterning regimes and to determine patterning length scales.

4.2 Linear stability analysis of state patterning

Assume that u⃗∗ = (u∗, u∗, . . . , u∗) is a uniform steady state with du∗/dt = 0. It can be
shown that for each combination of parameters k and χ a unique uniform stationary state
exists [Appendix L]. Close to the uniform state, the time evolution of a small perturbation
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CHAPTER 4 Coupling to nearest neighbors

δui from the uniform state follows

δu̇i = Γδui +
∑

j ̸=i

ωijδuj, (4.4)

where I defined the partial derivatives

Γ =
∂fi
∂ui

∣∣∣∣
u⃗∗

=
k

2 cosh2(k(ui − si))
− 1, (4.5)

ωij =
∂fi
∂uj

∣∣∣∣
u⃗∗

=
−k

2 cosh2(k(ui − si))

∂si
∂uj

, (4.6)

to shorten the notation. Introducing the N discrete Fourier components ηq corresponding
to the wave numbers q/N with q ∈ (0, 1, . . . , N−1) allows to express perturbations around
the uniform state as

δui =
N−1∑

q=0

exp
(
2πI

N
iq

)
ηq, (4.7)

where I represents the imaginary unit. From Eqs. (4.4),(4.7) follows

dηq
dt

=
Γ

N

N−1∑

r=0

N∑

i=1

exp
(
2πI

N
i(r − q)

)
ηr +

1

N

N−1∑

r=0

N∑

i=1

∑

j ̸=i

ωij exp
(
2πI

N
(jr − iq)

)
ηr.

(4.8)

Using the relation

N∑

i=1

exp
(
2πI

N
ir

)
=

⎧
⎨

⎩
0, if 0 < r < N

N, if r ≡ 0 (mod N)
(4.9)

allows to rewrite Eq. (4.8) as

η̇q = Γηq +
1

N

N−1∑

r=0

N∑

i=1

∑

j ̸=i

ωij exp
(
2πI

N
(jr − iq)

)
ηr. (4.10)

In the following, I compute the dispersion relation, i.e. the growth rates of the discrete
Fourier components, for different examples of coupling cij.

4.3 Coupling to nearest neighbors
First, consider that each cell i only receives signals from its direct neighbours i + 1 and
i− 1, represented by the coupling matrix

cij =

⎧
⎨

⎩
1, if |i− j| = 1

0, otherwise.
(4.11)
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It follows for the evolution of small perturbations around the uniform state

δu̇i = Γδui + ω(δui−1 + δui+1) (4.12)

with

ω =
−kχ

2 cosh2(ku∗(1− 2χ))
. (4.13)

Using Eq. (4.9), it follows for the dynamics in Fourier space

η̇q = Γηq + 2ω cos
(
2π

N
q

)
ηq. (4.14)

Dynamics for the Fourier modes are completely decoupled, thus, they are eigenmodes of
the linearized, differential system. Using the ansatz ηq ∝ exp(σqt) yields the dispersion
relation

σq = Γ+ 2ω cos
(
2π

N
q

)
(4.15)

for the exponential growth rate σq.
From ω < 0 follows that σq is maximal at q = N/2 ((N ± 1)/2 for odd N) [Fig. 4.3],
i.e. the condition for patterning is 0 < Γ+ 2ω and the fastest growing mode is that of a
period two pattern with alternating high and low state values [Fig. 4.3(a)], as typical for
Notch lateral inhibition. Note that changing the sign in front of the signal s in Eq. (4.2)
would correspond to a system where cells exchange activating instead of inhibitory signals.
Such a mutual positive feedback favors uniform states, and accordingly in that case σq is
maximal for q = 0.
The linear stability analysis, performed here around uniform states, can analogously be
conducted for any patterned state, for example, for alternating patterns of high and
low value states. In that case, however, the Fourier modes are not the eigenmodes of
the linearized system. Note that the uniform state is a special case of an alternating
pattern in which the alternating states are identical. Thus, linear stability analysis of
the alternating pattern allows to identify the bifurcation types that mark the transition
between uniform and patterned regimes [Fig. 4.4]. The bifurcation type depends on
whether the positive feedback due to Cis-inhibition is included in Eq. 4.2. Without
the feedback, the system transitions from uniform to patterned state via a supercritical
pitchfork bifurcation [Fig. 4.4(c, d)]. However, including the feedback leads to a bistable
regime [Fig. 4.4(a, b)], in which uniform and patterned states coexist, with a transition
between uniform and patterned state that is marked by a combination of subcritical
pitchfork and saddle node bifurcations. Note that the scope of patterned states explored
in this brief analysis is not exhaustive: depending on the parameters other steady state
patterns can exist that deviate from a perfectly regular alternating state pattern.
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Figure 4.3. The growth rate of the discrete Fourier modes σq, given symmetric nearest
neighbor coupling [Eq. (4.11)], is maximal at q = N/2 (a) and generally increases with
the signal susceptibility (b) and the degree of nonlinearity k (c). N=24, k = 4 (b), χ = 1

(c).

Figure 4.4. (a) State diagram (left) and bifurcation diagram (k = 4) for contact-
signaling with Cis-inhibition. White: stable uniform state. Gray: stable alternating
patterns, blue: multistability of uniform and patterned states. The bifurcation diagram
shows a subcritical pitchfork at the transition between uniform and patterned states.
(b) Without Cis-inhibition term, the transition is marked by a supercritical pitchfork
bifurcation (here k = 4).
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CHAPTER 4 Asymmetric coupling

Figure 4.5. (a) State diagram for asymmetric coupling [Eq. (4.16)]. The system can
oscillate if the total number of cells N is odd. (b) Steady states (Square, Plus) from
simulations with random initial conditions ui ∈ [0, 1] for parameters as marked in (a).
Traveling defects cause cell state oscillations with non-sinusoidal wave form (Hexagon).

4.4 Asymmetric coupling
Active processes allows cells to break spatial symmetries, for instance, to recruit molecules
to specific cell site. In the following, I consider such an asymmetrically coupled system,
e.g. polarized cells, where each cell recruits its receptor and ligand molecules to opposite
poles. In particular, I consider the coupling matrix

cij =

⎧
⎨

⎩
1, if j = i− 1

0, otherwise,
(4.16)

where each cell only receives signal from one of its neighbors. The corresponding disper-
sion relation is

σq = Γ+ ω cos
(
2π

N
q

)
− ωI sin

(
2π

N
q

)
. (4.17)

The imaginary term indicates that the system can experience global oscillations. However,
in case of even N , the fastest growing mode q = N/2 has vanishing angular frequency,
and simulations confirm that the alternating pattern of high and low state values is
indeed a stable state for sufficiently large χ and k. In case of odd N , the N/2 mode
does not exist. Because all unstable modes have a non-zero imaginary part, the system
is expected to undergo sustained oscillations. Indeed, for sufficiently large k and χ,
simulations show self-sustained oscillations with non-sinusoidal wave form due to traveling
patterning defects [Fig. 4.5(b)]. Note that the imaginary part of the dispersion relation
[Eq. (4.17)] is insufficient to capture the oscillation period, as it only captures dynamics
close to the uniform state, but not the strong nonlinearities underlying the wave form
[Fig. 4.5(b)]. In the bistable regime, where uniform and non-uniform stable states coexist,
most simulations converge to heterogeneous steady states [Fig. 4.5, plus]. Because of
the bistability that originates from the Cis-inhibition term [Fig. 4.2(a)], steady states
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can maintain mutually interacting signal-sending cells, which promotes the stability of
heterogeneous patterns [Fig. 4.5(b)].

4.5 Coupling beyond nearest neighbors
Even in densely packed systems, cells can exchange contact-based signals over a distance
of several cell diameters due to the formation of signaling protrusions [94, 182]. In the
following, I consider a corresponding scenario by introducing the coupling term

cij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

1 + β
, if |i− j| = 1

β

1 + β
, if |i− j| = 2

0, otherwise,

(4.18)

where β describes the ratio between short and longer range coupling [Fig. 4.6(a)]. Lin-
earization of the state dynamics around the uniform state leads to the dispersion relation

σq = Γ+
2ω

1 + β
cos
(
2π

N
q

)
+

2ωβ

1 + β
cos
(
2π

N
2q

)
. (4.19)

The discrete Fourier modes are still the eigenmodes of the linearized system, independent
of the length scale over which cells interact. Because of the additional cosine term in
Eq. (4.19), the fastest growing Fourier mode

qmax
N

=
arccos

(
− 1

4β

)

2π
(4.20)

depends on the ratio between short and long range coupling β [Fig. 4.6(b, c)]. From
Eqs. (4.19), (4.20) follows for β > 0.25 the stability criterion of the uniform state

0 <
k

2 cosh(ku∗(1− 2χ))2

(
1 + χ

1 + 8β2

4(β + β2)

)
. (4.21)

Interestingly, close to the instability threshold of the uniform state, patterned states are
observed for small or large coupling ratio β (with different fastest growing modes leading
to different types of pattern), but disappear for intermediate values of β, where long and
short range coupling are comparable [Fig. 4.6(c, d)].

4.6 Generalized, non-local signaling interactions
When the signal processing time scale is slow or comparable to the time scale of cellular
movements, then cells can interact over even longer distances via migration and integra-
tion of signals. To describe such scenarios, in which cells can effectively communicate over
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Figure 4.6. Short vs. long range coupling [Eq. (4.18)]. (a) β describes the ratio
between short and longer range signaling interactions. (b) The dispersion relation (left)
and the fastest growing Fourier mode qmax (right) close to the uniform state depend on
β, k = 1,χ = 1. (c,d) Linear stability diagram of the uniform state (k = 1 (c), χ = 1

(d)).

much longer distances, I consider that the location probability of each cell i is represented
by a kernel of the form

ki(x) =
1√
2πλ2

e−
(x−xi)

2

2λ2 , (4.22)

a normalized Gaussian centered at position xi with variance λ2. The coupling cij between
two cells i and j is calculated as the convolution of their respective kernels in space

cij =

∫
ki(x)kj(x)dx =

1√
4πλ2

e−
(xi−xj)

2

4λ2 . (4.23)

It represents the spatially integrated interaction probability of two cells, given that their
kernels are independent. Within the 1D chain model [Fig. 4.1], I assume that the centers
of the cellular kernels are equally spaced with distance ∆x and that every cells has the
same kernel of variance λ2. It is natural to assume that the kernel function ki(x) decays
on a length scale much smaller than the system size (λ << (N/2)∆x), as otherwise cells
would be coupled multiple times due to the periodic boundary condition. The above
assumptions imply that

1. cii = 0 ∀ i

2. cij = cji ∀ i, j

3. cij = ci+n,j+n ∀n ∈ Z, ∀ i, j,
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CHAPTER 4 Generalized, non-local signaling interactions

Figure 4.7. Non-local signal interactions described by kernel functions. (a) Each cell is
represented by a Gaussian probability function in space centered around its mean position
xi and with standard deviation λ defining a coupling length scale. (b) For sufficiently
large signal susceptibility, short and long range coupling between cells can stabilize the
uniform states, while intermediate values of λ induce pattern formation.

where the last two conditions can also be expressed as cij = cij(|i−j|), i.e. the coupling is
symmetric and only depends on the absolute distance |i− j|∆x. From Eq. (4.10) follows
for the dynamics in Fourier space

η̇q = Γηq +
1

N

N−1∑

r=0

N∑

i=1

N
2 −1∑

α=−N
2 +1

ωi(i+α) exp
(
2πI

N
i(r − q)

)
exp

(
2πI

N
αq

)
ηr, (4.24)

in which I defined the new variable α = j − i ∈ Z. Due to property 3. of cij (and ωij),
ωi(i+α) only depends on α, and we can shorten the notation as ωα = ω0α. Using Eq. (4.9)
and the symmetry of ωij yields the dispersion relation

σq = Γ+

N
2 −1∑

α=1

2ωα cos
(
2π

N
αq

)
. (4.25)

The stability diagram for the coupling term Eq. (4.23) is shown in Fig. 4.7. Interestingly,
when the signal susceptibility is sufficiently strong, a similar trend as for the coupling
Eq. (4.18) can be observed: for very small λ, i.e. short range interactions, cells are
decoupled and all acquire a high u state. In the intermediate coupling range, uniform
states are unstable, however, for large values of λ, the uniform state is stable again with
signals sufficiently strong and spread through the system such that all cells are kept in
the same low u state.
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4.7 Non-local signaling interactions in 2D

While the one-dimensional model allows to explore first principles of topology-driven pat-
terning, the full complexity emerges at the multicellular stage in higher dimensions. One
can easily generalize the coupling term Eq. 4.23 to d-dimensional space by considering
probability functions k(x⃗) with x⃗ ∈ Rd and integration over d dimensions. Here, pat-
terning becomes more complex, for instance, when cell-cell coupling is anisotropic. Note
that a single signaling kernel does not need to represent individual cells, but could also
describe the spatial signaling activity of groups of cells as one unit.

Figure 4.8 presents simulations with different, but constant kernel size parameters λ⃗

(which is now a vector given that higher dimensional kernels can be anisotropic). Cells
at the boundary were fixed to u = 1 and isotropic kernel parameter λ⃗ = (0.6, 0.6), thus,
preventing other units to reach high u values in their vicinity. Note that in systems with
open, non-periodical boundary conditions, cells at the boundary reach high u values as
they have less neighbors sending an inhibitory signal. Similarly, it was shown for the
mechanosensory epithelium of the chick inner ear that smaller cells, which share an ac-
cordingly smaller contact area with their neighbors, have a higher probability to acquire
the primary cell fate [73]. For identical, isotropic kernels, the framework recovers the typ-
ical mosaic patterns of lateral inhibition, where cells of high state u are surrounded by
cells of low u [Fig. 4.8, left] [140]. Introduction of anisotropic kernels with λx ̸= λy trans-
lates into globally anisotropic patterns, e.g. a different average spacing of high u cells in
x and y directions [Fig. 4.8, center]. In biological systems, these axes can be considered
as previously established symmetries maintained by external cues or complementary sig-
naling fields like the PCP pathway [78]. Instead of anisotropic cell morphologies, such
kernels can also represent the effects of biased intracellular recruitment of receptors and
ligands to particular regions of the membrane. Alternatively, signaling dynamics can
vary locally due to lateral diffusion or clustering of receptors and ligands at the mem-
brane [74, 167]. Spatially varying properties of the cellular environment, e.g. the ECM
composition, could influence the signaling dynamics either directly [183] or indirectly due
to changes in cellular morphology, motility or proliferation [184], and result in patterns
differing on comparable length scales. In the signaling kernel, this is reflected by a spa-
tially varying kernel parameter [Fig. 4.8, right], which leads to patterns changing along
similar distances.

The simulation framework confirms that the kernel model can capture established modes
of contact-dependent Notch signaling like the mosaic patterns typical for lateral inhibi-
tion. Moreover, the simulations show that the model contains the flexibility to explore
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a broader range that arises from consideration of cellular morphology and cell dynamics
on timescales that are small compared to the signaling dynamics. In the following sec-
tions I introduce my collaboration on fate patterning in the zebrafish neuromast. Here,
I also exploited the capacity of the kernel model to predict how the orientation of cells
with anisotropic morphology translates into a global bilateral organ symmetry through
contact-dependent signaling (Section 4.13).

Figure 4.8. (a) Simulations of the two-dimensional kernel model. Cells were initialized
on a perturbed hexagonal grid with random initial u ∈ [0.1, 0.3] and fixed u = 1 at the
boundary. Top row shows the cell states u, the bottom row the received signal s after a
simulation time tmax. Kernels are indicated for the vertical midline cells - units with the
same y coordinate share the same kernel geometry. Simulations were run with isotropic
(left), anisotropic (center) or spatially varying (right) signaling kernels.

4.8 Simulation-based analysis of data-derived con-
tact networks

The lateral line, a mechanosensory epithelium in the skin of fish, has emerged as a model
system to study sensory organ development and regeneration (Section 1.2.5) [76, 77, 78].
Distributed along the lateral line are small organs called neuromasts that allow the fish
to detect changes in the surrounding water flow [Fig. 4.9(a)]. Neuromasts are initially
deposited by a migrating group of cells—the primordium—that originates near the otic
vesicle. As it moves posteriorly along the trunk of the developing fish embryo, clusters
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Figure 4.9. (a) Top: Schematic of a larval zebrafish. The red line indicates the lateral
line, the yellow dots the neuromasts. A neuromast is a mechanosensitive organ in the skin
that consist of hair cells (HC), supporting cells (SC) and surrounding mantle cells (MC).
The HC sense deflections of the cupula due to water currents. The topview presents
the perspective gained from imaging the plane indicated in the sideview. (b) During
development and regeneration, some support cells (SC) develop into progenitor cells (PC),
performing a single cell division and producing a pair of sensory hair cells that aligns
along the anteroposterior axis. (c) Left: Microscopy image of a zebrafish neuromast with
fluorescently marked cell membranes. Right: manual cell-type annotation of segmented
cell volumes. Scale bar: 5 µm. Image and annotations by Akilandeswari Balasubramanian
(Jacobo group).

of cells are periodically deposited which later form the neuromasts. The migration and
patterning of the primordium as well as the further growth and development of the
neuromasts are tightly regulated by a complex interplay of signaling pathways, including
Wnt, Fgf, and Notch [185].

Within each neuromast, a group of sensory cells called hair cells (HC) occupies the central
region [Fig. 4.9(a)]. On their apical surface, hair cells possess mechanosensitive structures
called hair bundles, which extends into a gelatinous cap (cupula) that protrudes into the
surrounding water. Bending of the hair bundles elicits a neuronal response and enables the
fish to detect minute water movements. The hair cells are surrounded by supporting cells
(SC), which play a crucial role in maintaining the functional structure of the neuromast
and serve as progenitors for hair cell development and regeneration [185]. A subtype of
support cells, called mantle cells (MC), forms the outer most layer of these organs.
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4.9 Hair cell differentiation

The specification of hair cells within the zebrafish neuromast is a tightly regulated pro-
cess that involves the interplay of multiple signaling pathways, including Notch [78, 185].
The differentiation process follows a characteristic sequence [Fig. 4.9(b)]: a supporting
cell (SC) first transitions into a progenitor cell (PC), which then divides symmetrically to
form two daughter cells. Initially, both daughter cells are equivalent, but through Notch-
mediated lateral inhibition, they break symmetry to develop into two distinct sensory
subtypes [68]. Once specified, these two hair cells undergo physical separation, facili-
tated by intercalation of neighboring supporting cells and possibly guided by heterotypic
interactions [87] (Section 1.2.5, Fig. 1.2(c)). This process ensures that hair cells are
properly arranged in the neuromast while maintaining an appropriate balance between
sensory hair cells and supporting cells.
The ratio between hair and supporting cells has been shown to depend on contact-
mediated Notch signaling [78]. In particular, this balance is thought to be maintained
through lateral inhibition, where differentiating hair cells express Delta ligands (e.g.
deltaA, deltaD [186]), which activate Notch receptors in neighboring cells and sup-
press their differentiation potential [86, 187]. Ensuring that only a subset of supporting
cells adopts the hair cell fate preserves the structural and functional integrity of the
neuromast. Inhibition of Notch signaling using γ−secretase inhibitors like N-[N-(3,5-
Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) results in an over-
production of hair cells at the expense of supporting cells [86]. Conversely, overactivation
of Notch signaling leads to a reduction in hair cell numbers [188]. During development,
Notch3 is the predominant receptor expressed in supporting cells [86]. Its activation leads
to the transcriptional repression of atoh1a, a key proneural gene required for hair cell
commitment. As the neuromast grows, Notch signaling becomes spatially compartmen-
talized, with lower Notch activity observed in dorsal and ventral compartments, where
hair cells predominantly differentiate [78, 189].

4.10 Regeneration of hair cells

The zebrafish lateral line system has a remarkable ability to regenerate hair cells follow-
ing damage. Unlike many other mechanosensory epithelia (e.g. the mammalian inner
ear), zebrafish can rapidly and efficiently replace lost hair cells throughout their lifetime
[83]. Following hair cell death, support cells in the neuromast proliferate and differentiate
to replace the lost hair cells, and Notch signaling has been shown to play a crucial role
in regulating hair cell regeneration. The expression of pathway components is rapidly
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upregulated following hair cell damage, including notch3, deltaA, and atoh1a within the
first 24 h post-injury [86], coinciding with the period of maximum support cell prolifera-
tion and hair cell progenitor formation. Inhibition of Notch signaling during regeneration
leads to an overproduction of hair cells, suggesting that Notch indeed acts to limit the
number of hair cells [86].

4.11 Fate patterning depends on mechanochemical
feedback

Notch signaling depends on the size and geometry of physical contacts between cells
[73, 93, 190] and several studies have demonstrated that Notch signaling is sensitive to
cellular rearrangements [17]. A combination of space-dependent signaling interactions
and Potts model of heterotypic mechanical interactions was used successfully to model
the size and cell-type ratio of regenerating neuromasts [191]. These findings raise the
question of whether the contact topology, i.e. knowledge about all cell-cell contacts
within the organ, and how they dynamically evolve during development, suffices to pre-
dict hair cell differentiation.

Together with experimental experts from the Jacobo group (Adrian Jacobo, Akilan-
deswari Balasubramanian and Tiger Lao, CZ Biohub, San Francisco), I have investigated
whether a minimal model of contact-based signaling can predict hair cell differentiation
patterns. In particular, I analyzed the location of sensory cell differentiation events,
confirming the bias towards dorsal and ventral organ regions reported in literature [78].
Moreover, I computed contact networks from segmented in vivo fluorescent microscopy
videos of developing zebrafish neuromasts, and I used them to inform simulations of
contact-based signaling and to predict the experimentally observed differentiation pat-
terns.

4.12 Hair cells differentiate in the dorsal and ventral
compartments

To investigate the spatial organization of hair cell differentiation in the zebrafish neuro-
mast, live imaging was performed on 2-day-old zebrafish embryos by the Jacobo group
using Tg(myo6b:actb1-EGFP) zebrafish, in which β-actin-GFP is expressed under the
control of the hair cell-specific myo6b promoter. This reporter line enables the selective
visualization of differentiating hair cells against a background of supporting cells. Imag-
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Figure 4.10. Location of sensory cell differentiation. (a) Analysis of live images from
developing progenitor hair cells. Middle row depicts segmentation and ellipse fitting
of the already established hair cell pair, the bottom row shows the segmentation and
tracking (red dot) of the new progenitor cell. Top row summarizes the results for each
frame. red line: major axis current frame, blue line: average major axis over all frames,
red dot: progenitor cell position current frame, blue dot: average progenitor cell position
from several frames (averaging the yellow trajectory). Scale bar: 5 µm. (b) Polar plot
summarizing the detection of progenitor cells relative to the anterio-posterior, N = 18.
(c) Simulation of kernel-based signaling following the neuromast geometry for initial
conditions (t0) and after simulation time (t1). Left: cell state u, right: received signal
s. The central unit has an anisotropic kernel shape, all others units isotropic shapes as
indicated on the right. (d) Parameter analysis of the kernel model, each panel summarizes
100 simulations as shown in (c). Red dots mark the position of the first cell reaching a
state u > 0.8 in a simulation. 1st row: variation of the center kernel aspect ratio. 2nd
row: variation of fixed boundary state uMC.
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ing was conducted in the apical plane of the neuromast using a super-resolution confocal
microscopy system (details, see [68]).
To extract the location of differentiating cells from the microscopy data, I developed a
custom macro for ImageJ [192]. Mature hair cell pairs were segmented using intensity
thresholding, and their orientation was determined by fitting a second-moment ellipse
[Fig. 4.10(a)]. As mature hair cell pairs align along the anteroposterior axis of the neu-
romast [68], this axis was defined as the average orientation of the mature hair cell pair
over up to ten successive frames preceding the emergence of a new hair cell progenitor
(imaging performed in 5min intervals). The appearance of new progenitor cells was iden-
tified based on the first detectable expression of the hair cell-specific fluorescent marker
in a previously non-fluorescent cell, which was determined using a combination of inten-
sity thresholding and morphological filtering [Fig. 4.10(a)]. Figure 4.10(b) summarizes
the spatial distribution of N = 18 differentiation events relative to the anteroposterior
axis, demonstrating a pronounced localization bias toward the dorsal and ventral com-
partments of the neuromast. These results confirmed that hair cell differentiation occurs
in a compartmentalized manner—in the dorsal and ventral region—in line with previous
findings [78, 185].

4.13 Kernel-based simulations recapitulate differen-
tiation patterns

Based on the evidence that compartmentalized differentiation of hair cells in the neuro-
mast depends on Notch lateral inhibition, I explored if the spatiotemporal patterns and
the emergent organ axis can be explained on the basis of morphological feedback effects.
In particular, I tested the hypothesis that the polarity-dependent oriented division of
ligand-expressing progenitor hair cells creates and maintains the bilateral organ symme-
try. To address this question, I started to implement simulations of the neuromast based
on the discrete kernel model as introduced in Section 4.6 [Fig. 4.10(c-d)]. The geometry
is shown in Fig. 4.10(c): I initialized signaling units on a hexagonal grid, adding small
random displacements. A single signaling unit in the center of the system was defined
with a high u value and anisotropic signaling kernel. It represents a first pair of (pre-
mature) hair cells sending inhibitory Notch signals and its kernel anisotropy reflects the
orientation of the hair cell pair. Moreover, it has been reported that these cells exhibit
outward cytoskeletal protrusions along the anterior-posterior axis [68]. All other cells
in the simulation possess the same, isotropic kernel. Mantle cells are not observed to
differentiate [78, 186], thus, their state u was assumed constant over time. Units at the
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boundary, corresponding to the MC, were defined with a fixed and non-changing state u.
After a certain simulation time, new units start to acquire a high u state in the ventral
and dorsal compartments, which are interpreted as differentiation events in the neuro-
mast [Fig. 4.10(c)]. The influence of various model parameters was tested systematically.
Results from a subset are summarized in Fig. 4.10(d). For each set of parameters, 100
simulations were computed. The red stars in each panel represent the first differentiation
event (i.e. the first cell reaching a value u > 0.8) in a given simulation run. Changing
the aspect ratio of the central signaling kernel transforms the system from isotropic to
a dorsal-ventral oriented differentiation as observed in experimental data [Fig. 4.10(d),
top row]. Due to the small size of the organ, it is strongly influenced by its boundary
conditions. High values of u at the boundary (i.e. strong inhibitory signal) prevent dif-
ferentiation events at the periphery and forces them in the center region [Fig. 4.10(d),
bottom row]. In conclusion, the data and simulations presented here confirm that the ker-
nel model can recover the general symmetry of the neuromast and the biased localization
of progenitor cell differentiation.

4.14 Derivation of cell-cell contact networks from live
microscopy data

To further test the hypothesis, that the contact-topology of the neuromast governs the
differentiation patterns of sensory cells, the next step was to quantitatively analyze the
cellular organization and contact dynamics within the epithelium.
For this analysis, the Jacobo group used structured illumination microscopy to acquire
high-resolution live imaging data from a zebrafish transgenic line expressing fluorescently
labeled claudin-b, a membrane marker that highlights all cell boundaries [Fig. 4.11].
To detect cellular volumes and the contacts between them, I setup an image segmenta-
tion pipeline combining the image segmentation softwares PlantSeg [194] and Cellpose
[195] to enhance the contrast of cell boundaries (PlantSeg) and subsequently segment
the cell volumes (Cellpose) (Appendix K). Tracking of cells was then performed using
a custom written ImageJ macro based on the ImageJ plugin TrackMate [196]. Despite
additional training of the Cellpose segmentation model, after manually correcting seg-
mentation errors, artifacts like split cell volumes and small segmentation fragments could
not be removed completely. Therefore, the segmentations of cellular volumes from which
I derived the contact networks used for the simulations presented in this thesis were per-
formed by the Jacobo group using an alternative neural network-assisted pipeline [197],
followed by manual refinement to correct errors and ensure high-quality cell volume de-
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Figure 4.11. (a) Cell-cell contact-networks were derived from segmentations of 3D
fluorescent microscopy images. The vertices denote cell centroids and the color code of
the connections indicates the size of mutual contacts. (b) Contact-networks were derived
from segmented EM datasets of zebrafish neuromasts [193]. (c) Average number of cell-cell
contacts found for supporting cells (green), mantle cells (purple), and hair cells (orange)
in EM (N = 3) and fluorescent microscopy datasets (N = 3) as a function of minimum
cut-off area (smallest area still counted as a contact). For mantle and support cells, more
small contacts (< 5 µm) are found in the EM datasets.

tection. Moreover, based on the cellular morphology [198], the three cell types—support
cells, hair cells, and mantle cells—were manually annotated by members of the Jacobo
group. [Fig. 4.9(c)]. Maturing hair cells are distinct by acquiring a spherical shape and
by forming an apical hair bundle structure, which is clearly visible in the microscope.
The segmented datasets exhibited gaps between adjacent cells. To address these gaps, I
dilated the segmented cell volumes in order to bring them into direct contact and to en-
able the measurement of contact areas between the cells [Appendix K]. Following volume
dilation, a custom Python script was used to compute the contact areas between cells by
computation of the 6-neighborhood of each voxel (i.e., the six nearest neighbor voxels).
All contact areas between adjacent volumes were stored in a symmetric matrix ci,j, where
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entry (i, j) represented the total measured contact area between cell i and cell j, taking
into account the non-isotropic voxel dimensions. While highly irregular surfaces (e.g.
due to segmentation errors) could, in principle, lead to (artificially) increased contact
areas, the initial segmentation volumes were already smooth [Figs. 4.9(c), 4.11(a)], and
the applied isotropic expansion further contributed to smoothing.

I applied the same pipeline to segmented electron microscopy (EM) data, published in
[193], to derive cell-cell contact networks of higher resolution. While fluorescent mi-
croscopy is typically limited to a resolution of ∼200 nm in the xy-plane and ∼1–2 µm
along the imaging axis due to the diffraction limit, electron microscopy can resolve struc-
tures down to the atomic scale [199, 200], however, it does not allow for live imaging.

4.15 Statistics of cell-cell contacts

Figure. 4.11(c) compares the average number of contacts found for support, mantle,
and hair cells in fluorescence and electron microscopy data. Mantle cells have the lowest
contact number, because they form the outer most layer of the organ. From the fluorescent
microscopy data ∼ 8 contacts were found per supporting cell, with ∼ 6 contacts ≥ 10 µm2.
For mantle and support cells, the numbers of large contacts are comparable between
fluorescent and EM data, however, ∼ 3− 4 additional small contacts ≤ 5 µm2 were found
in the EM data, indicating that cell-cell contacts at small protrusions could be missing
in the diffraction-limited fluorescence data. The additional hair cell contacts include

Figure 4.12. Number of hair cell - hair cell (HC-HC) and hair cell - supporting cell
(HC-SC) contacts > 1 µm computed from three EM and three fluorescence microscopy
datasets. More contacts were found in the fluorescence data.
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HC-HC as well as HC-SC contacts [Fig. 4.12]. As no information is available about the
subcellular location of receptor and ligand molecules, it generally cannot be said for sure
which cell-cell contacts contribute to signaling.
After division of a progenitor hair cell, daughter cells move apart and are separated by
intercalation of supporting cell protrusions [68], thus, the nearly vanishing number of
HC-HC contacts found in EM datasets is indeed expected. When analyzing simulations
of contact-based signaling on data-derived contact network, it is important to keep in
mind that the fluorescence microscopy data might miss contacts. As mature hair cells
experienced an irreversible fate decision, I assume in the following sections that their
signaling state is independent of their received signals, thus, results are independent of
HC-HC contacts. HC-SC contacts, however, that are missing in the contact networks
could affect the analysis outcome.

4.16 Modeling contact-based signaling on contact-
networks

To simulate contact-dependent Notch signaling, I use the dynamic equation

dui

dt
=

1

1 + shi
− ui (4.26)

with Hill coefficient h, similar to the framework introduced in Chapter 2 [Eq. (2.72)],
where each cell is represented by a single signaling state variable ui changing due to the
received signal si. Because each cell has multiple contacts, the total signal received by a
cell i is computed by summing over all cells in the system

si = χ
∑

j

cijuj + ξ(t) (4.27)

with cij the data-derived contact network multiplied by the state-dependent potential to
send inhibitory signals, χ is the signal susceptibility, and ξ a Gaussian noise term with
⟨ξ(t), ξ(t′)⟩ = η2δ(t − t′) and noise amplitude η. Note that this definition of the signal
differs from Eq. (2.72) (Chapter 2) in the sign of u, however, the Hill function Eq. (4.26)
is also flipped compared to Eq. 2.73, thus, the logic of the symmetry-breaking mutually
inhibitory feedback is conserved. The mantle cells are not observed to differentiate, thus,
their state u is assumed constant over time. Single cell RNA expression studies suggest
that mantle cells express the Notch ligands jagged2a and jagged2b [201]. Delta-Notch
signaling is typically associated with lateral inhibition mosaic patterning, because the
expression of the Delta ligand is decreased by Notch receptor activation. In contrast,
Notch signals typically stimulate the expression of ligands from the Jagged family, leading
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to a positive feedback [159]. Considering that I fix the state of the mantle cells and only
consider their role as signal sending cells for fate patterning, it does not matter if the
signal is transmitted through Delta or Jagged ligands, and I can represent the mantle cell
state with the same signaling state variable u. Similarly, the state uHC of sensory hair
cells is fixed as they already differentiated. Whenever a support cell is observed to divide
into a pair of hair cells, then the states of both of these cells are set and fixed to the hair
cell state for the remaining simulation. Simulations are performed with cij(t) informed
from the dynamically evolving contact networks derived from the data (images taken in
5min intervals).
To this end, I screen parameters of the model to identify regimes in which unique dif-
ferentiation events are predicted, in particular adjusting the signal susceptibility χ, the
signaling time scale τu, the Hill coefficient h in the signal response function [Eq. (2.73)]
and the noise amplitude. Hill coefficients of 2-4 are commonly used in models of bio-
chemical signaling feedback, including Notch [67, 107, 108, 159, 191]. In the following, I
thus use a Hill coefficient of h = 4 unless otherwise stated. Using larger Hill coefficients
does not impact the results, while smaller Hill coefficients (i.e. 2 ≤ h ≤ 4) alter the
number of predicted differentiation events unless the susceptibility χ is adjusted. The
signal susceptibility χ is empirically adjusted to create sufficient signal s in the model
for effective lateral inhibition (χ ∈ O(101) after normalizing cij against the largest con-
tact). The signaling time scale τu was varied from less than a minute to 1 hour and
more [Fig. 4.14(a)]. Longer time scales act as a low pass filter against fluctuations of the
contact network topology. Good predictions of differentiation patterns where achieved
for τu ≥ 15min. Considering the underlying biological processes changing the regulation
of genes, time scales of tenth of minutes are indeed expected [114].

4.17 Signaling simulations on contact networks can
predict cell differentiation patterns

Interestingly, simulations on the data-derived networks allow to predict regions of sensory
cell differentiation. Events of progenitor cells dividing into pairs of hair cells correlated
with neighboring supporting cells reaching a high u state within the same dorsal or ven-
tral region [Fig. 4.13]. Periods in which high u-state support cells appear, spaced around
500–1000min apart, are separated by longer periods without support cells reaching a
high u state [Fig. 4.13(b)]. Deterministic simulations without noise (η = 0) quickly
converge for almost arbitrary initial support cell states u ∈ [0, 1], indicating that the con-
tact network-topology in combination with the imposed hair cell and mantle cell states
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strongly constrains the system.

The observation that the actual progenitor cell which divides into a hair cell pair is in
contact with a high u-state cell while maintaining a low u value itself is surprising. Pro-
genitor cells and maturing hair cells are found to increase the expression of the Delta
ligand, thus, I expected that progenitor cells undergoing divisions would reach the sig-
nal sending high u states. In contrast, all six progenitor cell divisions observed in two
different neuromast organs correlate with low u-values in the progenitor cell and a high
u-value in one or two neighboring cells preceding the division [Fig. 4.13]. It is important
to note, however, that neuromast cells express different types of notch receptor and ligand
molecules [186], thus, it is possible that a more detailed model with multiple variables
and parameters, and including combinations of positive (Jagged ligand) and negative
feedbacks (Delta ligand) could resolve this conundrum.

The mutually inhibitory feedback of Notch signaling is thought to amplify small initial
differences between interacting cells, such that the cell with highest initial ligand concen-
tration further increases the amount of ligands, while the ligand production in contacting
cells is diminished [143]. This means signaling can amplify small noise-induced differences
[202], and it raises the question whether cell fate decisions cannot be predicted with sin-
gle cell precision based on the contact topology alone, because signaling amplifies small
random fluctuations, for instance, of intracellular molecule concentrations. To test this,
I performed simulations with varying noise amplitude [Fig. 4.14(b)]. Interestingly, even
for noise amplitudes up to η = 0.5min−1/2, the true progenitor cells are not predicted to
reach a signal sending high u state. This is independent of whether contact networks are
weighted according to the contact area or binarized (i.e. cij = 1 for every cell pair i and
j that shares a contact, otherwise cij = 0).

In conclusion, the simulation results suggest that the contact-topology contains sufficient
information to predict time windows and regions in which support cells differentiate into
sensory hair cells. It indicates that through the local interactions, cells are able to identify
their own position relative to global organ coordinates. Moreover, it suggests that the
local interactions allow these proliferative organs to sense the cell density and to initiate
differentiation events at time intervals that maintain a functional ratio between hair and
support cells. In the future, it will be exciting to study if the predicted differentiation
patterns are consistent for a larger amount of data sets. Moreover, studying perturbations
like laser ablation and optogenetic manipulation of hair and mantle cells would allow to
interrogate the fixed signaling states that I assumed in the simulations.
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Figure 4.13. Contact-dependent signaling simulations predict regions of differentiation.
(a) Three snap shots of data-derived contact networks before (left) and after (right)
the division of a progenitor cell into a hair cell pair (magenta arrows). Prior to each
division, a neighboring support cell reached a high u signal sending state (yellow arrow)
within the same dorsal or ventral pocket. Vertices are cell centroids, edge thickness
proportional to contact sizes (b) State diagram of support cell signaling states averaged
over 20 simulations with varying initial conditions uSC ∈ [0, 0.5]. Each row corresponds
to one cell label. Magenta vertical lines: progenitor division I-III as shown in (a)),
black dashed line: support cell division, yellow arrows indicate support cells with high u

states that were in contact with a subsequently dividing progenitor cell (magenta arrows).
States of cells are black before they are born and after they disappear through division.
χ = 1, h = 4, τu = 30min, η = 0, cij was normalized against the largest contact found in
the data set (158.6 µm−2).
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Figure 4.14. (a) Simulated support cell states averaged over 20 simulations, under
variation of the signaling time scale τu. Long signaling time scales act as a low pass filter
against fluctuations of the contact topology. (b) To provide intuition, the noise amplitude
is expressed in terms of standard deviation of signaling states after one hour, if state
changes were purely noise driven without signaling. Even for strong noise, progenitor
cells show low signaling states u prior to their division into hair cell pairs (magenta
arrows). Parameters and total simulation time (2500min) as in Fig.4.13.

101





Chapter 5

Summary and Outlook

Investigating the physics of capillarity has established how surface tension and curvature
control liquid interfaces, providing a formal understanding of diverse phenomena, includ-
ing droplet dynamics, thin films, and flows in porous media. In non-equilibrium systems
moreover, interfaces undergo dynamic, adaptive changes. When shape changes are driven
by environmental cues, materials can exhibit functional, responsive behavior. These ef-
fects are especially common in living matter: cells for example continuously adapt their
morphology in response to mechanical and biochemical signals, which themselves depend
on cell shape. Motivated by this phenomenon, my thesis investigated the new physics that
arises in systems of interacting droplets that tune their interfacial tensions in response
to contact-dependent signals–from microscopic scales to single droplets and foams.
Deriving and analyzing the microscopic dynamics of contact-dependent signaling and ad-
hesion molecules (Chapter 2), I identified several limits in which analytical expressions
for the surface and bulk densities of these particles can be obtained. I showed how the
molecular turnover—considering specific reactions and kinetics as reported for contact-
dependent Notch signaling—leads to non-uniform spatial distributions, resulting in non-
linear relations between contact size and transmitted signal. Furthermore, my results
reveal how the geometrical and physical constraints, such as system size and transport
coefficients, modulate the field dynamics of adhesion and signaling molecules on different
interfacial configurations.
From these microscopic dynamics, I derived coarse-grained equations that represent adap-
tive droplets, which adjust their interfacial tension in response to contact-dependent
signals. Using the separation of timescales in systems driven by molecular turnover, I
simplified expressions to two key parameters: an adaptive adhesion coefficient, which de-
scribes how signaling modulates interfacial tension, and the signal susceptibility, which
governs how physical contacts regulate signal levels. This minimal framework enabled a
comprehensive analysis of the system’s nonlinear dynamics and critical points (Chapter
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3), revealing a rich phenomenology, including multistability, oscillations, and excitabil-
ity. Notably, by comparison of the underlying bifurcation topology, I found that shape
changes can act analogously to electrical signals in neurons, suggesting a broader role for
mechanochemical computation in biological systems.

Extending the framework to multicellular, foam-like structures enabled the application of
my theoretical results to experimental data. In particular, using imaging data from ze-
brafish embryos in collaboration with developmental biologists (Petridou group, EMBL),
I inferred the two mechanochemical feedback parameters from cellular contact-angle mea-
surements in this system. Our results revealed that the system operates near the critical
point associated with shape bistability, leading to the emergence of a sharp boundary be-
tween tissue regions with distinct rheological properties, which later give rise to different
parts of the organism. These results show how shape-dependent feedback can convert a
chemical signal gradient into spatially organized mechanical states—an example of signal
processing in active matter.

Moreover, using fully data-derived contact topologies, obtained in collaboration with the
Jacobo group (CZ Biohub, San Francisco), I successfully predicted cell fate decision events
in time and space in developing zebrafish mechanosensory epithelia. Our results highlight
how cell-cell contact topology can encode spatial information, enabling individual cells
to infer their relative position through local interactions, and they contribute to our
understanding of tissue self-organisation in developing and regenerating organs.

Some of the nonlinear behaviors observed at the droplet scale could give rise to additional
collective regimes, such as traveling waves or synchronized oscillations. Such phenomena
have been observed in various biological and synthetic systems. For instance, intracellular
signaling networks exhibit oscillatory and wave-like patterns [203], while collective oscilla-
tions and waves emerge in bacterial suspensions due to motility [204]. Theoretical studies
suggest that excitable mechanical feedback can drive similar behaviors in vertex-based
models of tissues [205] and in pulsatory wave models driven by diffusing molecules [206].
In soft matter physics, active solids can generate wave-like responses through selective ac-
tivation of elastic modes [207], providing an example for how active force generation and
adaptive material properties can produce dynamic patterns. The precise nature of these
wave-like behaviors depends on how activity is introduced into the system. While active
tension fluctuations, self-propulsion, or volume regulation have been considered as specific
non-equilibrium terms in vertex models, my work focuses on an alternative mechanism,
in which internal production and degradation processes drive the system out of equilib-
rium. A possible experimental platform for observing the predicted collective dynamics is
provided by engineered synthetic systems that mimic contact-dependent signaling [121].
A promising approach involves switchable adhesion substrates, where droplets or cells

104



CHAPTER 5 Summary and Outlook

adhere dynamically in response to external stimuli, allowing for the implementation of
feedback-controlled adhesion [38]. Similarly, optogenetic tools could be used to control
cell adhesion, while signaling is simulated in silico [90], providing a quantitative testbed
for the interplay of shape and signal processing. Another direction is to leverage genetic
engineering [52], to express adhesion molecules downstream of contact-dependent signal-
ing. In particular in combination with tools that allow to control the system’s geometry
like micropatterned substrates [208] or micropipette aspiration could provide ways to di-
rectly test additional predictions of the theory of mechanochemical matter developed in
this thesis.
In cells, the production of functional proteins is controlled through transcriptional and
translational regulation, relying on relatively slow cellular processes that evolve on a
timescale from 10min to 1 h and longer [114, 209]), defining the time scale for the large-
scale dynamics of living matter, including development, regeneration and homeostasis
[68, 81, 146, 210]. While my analyses focus on the corresponding parameter regime, in
which regulatory timescales are much larger than the frictional timescale determining the
response dynamics of surface shape changes, other biochemical processes, including the
local phosphorylation of compounds, or the (dis)assembly of macromolecular, cytoskeletal
filaments can be much faster, and could give rise to novel mechanochemical feedback phe-
nomena. The frictional time scale of cell shape relaxations depends on the strength and
duration of the deforming stresses, because most living materials are viscoelastic: while
forces applied for a few seconds trigger an elastic response, force applied over longer times
usually induce the rearrangement of cytoskeletal structures, thus, inducing irreversible
shape changes. In cases, where signaling and frictional timescales are comparable, shape
can serve as a form of mechanical memory, encoding past states of the system.
In conclusion, by developing a theory of mechanochemical dynamics from microscopic to
macroscopic scales, this work reveals novel modes of collective self-organisation in adap-
tive materials. I demonstrated the relevance of these principles for the biology of develop-
ing and regenerating living systems by investigating specific instances of mechanochem-
ical self-organisation in collaboration with experimental experts. Together, our findings
contribute to a broader understanding of how biological systems compute, self-organize,
and adapt to changing environments. Moreover, this work opens up future lines of in-
vestigation at the interface of physics, material science, and biology. In particular, my
findings could inform and motivate the implementation of mechanochemical principles
in synthetic systems, towards translating insights from the physics of living matter into
new applications in bio-inspired materials design.
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A - Numerical surface energy minimization
To numerically verify Eq. (1.7), I used the finite-element based software surface evolver
to minimize surface energy [Eq. (1.3)] by the gradient descent method [29]. Initialization
and procedural-control scripts were implemented in Mathematica [211]. To numerically
verify Eq. (1.7), I computed the minimal energy configurations for a pair of droplets
(n = 1), a line of 7 droplets (n = 2), a 5× 5 lattice (n = 4) and a 5× 5× 5 droplet lattice
(n = 6) and measured the contact area of the central droplet. Bash scripts to rerun this
analysis are published at [105].

B - Geometrical relations for spherical caps
The energy of an adherent Young-Laplace droplet in contact with a solid surface is

H = (γc − γm)Ac + γfAf − pV (5.1)

with volume, areas, surface tensions and pressure as introduced in Section 1.1 [Fig. 1.1(b)].
Minimizing the energy leads to the equilibrium shape of a spherical cap with a base radius
rmax and a height z. The surface areas and the volume are

Af = π
(
r2max + z2

)
, Ac = πr2max, V =

π

6
h(3r2max + z2). (5.2)

The equilibrium shape is determined by the conditions

∂H(rmax, z)

∂rmax
= 0,

∂H(rmax, z)

∂z
= 0, V (rmax, z) = const (5.3)

assuming conserved volume. From Eq. (5.2) one can derive a depressed cubic equation

z3 + 3r2maxh− 6

π
V = 0, (5.4)

with a discriminant that is strictly negative for rmax > 0 and V > 0 and yields an
expression z = z(rmax|V ) [Eq. (2.22)]. The equilibrium shape is therefore determined by
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a single equation

∂

∂rmax
H[rmax, z(rmax)] = 0. (5.5)

From Pythagoras

ρ2 = r2max + (z − ρ)2

(5.6)

follows Eq. (2.21).

C - Signaling without cleavage
Similar to Section 2.2.1, consider a single cell in contact with a solid substrate that is
functionalized with immobile ligands at a fixed uniform density mmax

L . The cell contains
receptor molecules with bulk concentration cR, with dynamics coupled to the ligand
density via binding and unbinding reactions at the contact surface. In contrast to Sec-
tion 2.2.1, assume that receptor-ligand complexes are not cleaved (ks = 0) and signals are
transmitted to the interior without the loss of receptor molecules, e.g. through enzymatic
activity of the receptor-ligand complex [48, Chapter 15]. In that case, the reaction terms
are [Eq. (2.2)]

RmR = kR
oncR − (kR

off + k+mL)mR + k−mRL, (5.7)
RmL = k−mRL − k+mLmR, (5.8)
RmRL = k+mLmR − k−mRL, (5.9)

with densities and rates as defined in Section 2.2.1. The steady state relations of Eq. (2.2)
then fulfill

mRL =
mR

ks
k+

+mR

mmax
L (5.10)

0 =
DmR

r

∂

∂r

(
r
∂mR
∂r

)
+ kR

onc
0
R − kR

offmR (5.11)

where the latter is identical to Eq. (2.26)

D - Integration constants for receptor surface densities
In Section 2.2.1, I study the steady state receptor distribution in the limit of small
(ks + k−)/(k+mR0) [Eq. (2.29)], leading to the steady state solutions Eq. (2.18), (2.31) at
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the free and contact surface, respectively. Solving for the integration constants using the
boundary conditions Eq. (2.23), (2.24)yields

C1 =
ρksmmax

L I1

(
rmax
lD,f

)
sinϑmax

kR
onc

0
R

[
lD,f(λ+ 1)I0

(
rmax
lD,f

)
µ1 − ρI1

(
rmax
lD,f

)
Pλ (cos θmax) sinϑmax

]

C3 =
ksmmax

L lD,f(λ+ 1)µ1

kR
onc

0
R

[
lD,f(λ+ 1)I0

(
rmax
lD,f

)
µ1 − ρI1

(
rmax
lD,f

)
Pλ (cos θmax) sinϑmax

] (5.12)

where I shortened the notation using

µ1 = [cos θmaxPλ(cosϑmax)− Pλ+1(cosϑmax)] (5.13)

and where the angle θmax is related to the contact radius via rmax = ρ sin θmax.

In Section 2.2.1, I study the steady state receptor distribution in the limit of fast cleavage
rate ks, leading to the steady state solutions Eq. (2.18), (2.34) at the free and contact
surface, respectively. Solving for the integration constants using the boundary conditions
Eqs. (2.23), (2.24) yields

C1 =
ρµ2I1

(
rmax

√
1 + µ2

lD,f

)
sinϑmax

lD,f(1 + λ)
√
1 + µ2I0

(
rmax

√
1 + µ2

lD,f

)
µ1 − ρ(1 + µ2)µ3 sin θmax

C4 =
lD,f(1 + λ)µ2

lD,f(1 + λ)
√
1 + µ2I0

(
rmax

√
1 + µ2

lD,f

)
µ1 − ρ(1 + µ2)µ3 sin θmax

(5.14)

with µ1 as defined above[Eq. (5.13)],

µ2 =
k+ksmmax

L
(ks + k−)kR

off
(5.15)

and

µ3 = I1

(
rmax

√
1 + µ2

lD,f

)
Pλ(cos θmax). (5.16)

to shorten the notation.

E - Steady state receptor surface densities for fixed
boundary flux
In Section 2.2.2, I analyze the normalized steady state surface receptor densities for fixed
boundary conditions, e.g. due to active processes at the contact line. For a fixed boundary
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flux jR|∂Γc
= −DmR

∂mR
∂r , the steady state solutions are:

Limit 1 [Eq. (2.25)]

MR = 1−
jR|∂Γc

lD,f

DmR

I0 (r/lD,f)

I1 (rmax/lD,f)
, (5.17)

Limit 2 [Eq. (2.55)]

MR =

(
1− ksmmax

L
kR

onc
0
R

)
−

jR|∂Γc
lD,f

DmR

I0 (r/lD,f)

I1 (rmax/lD,f)
, (5.18)

Limit 3 [Eq. (2.32)]

MR =
1

1 +
k+ksmmax

L
(ks + k−)kR

off

−
jR|∂Γc

lD,f

DmR

√
1 +

k+ksmmax
L

(ks + k−)kR
off

I0 (r/lD,c)

I1 (rmax/lD,c)
. (5.19)

F - Statistical physics of adhesion molecule binding
At steady state, the flux coupling bulk and surface concentrations [Eq. (2.3)] vanishes and
the surface can be considered to be in chemical and thermal equilibrium with a constant
temperature T and in contact with a bath of constant chemical potential µ = µ(cN) set
by the steady state bulk concentration. Note that the chemical potential is kept constant
through a non-equilibrium process—the turnover of adhesion molecules. Each binding
site at the interface is a two-state system: a binding site is either occupied or unoccupied.
If n is the number of occupied binding sites, nmax the total number of available binding
sites at the surface and ϵ the binding energy, then the grand canonical partition sum for
the whole surface reads

Ξ =
nmax∑

n=0

(
nmax

n

)
eβn(µ−ϵ) =

(
1 + eβ(µ−ϵ)

)nmax
(5.20)

with β = (kBT )−1. The ensemble average of the number of occupied binding sites is

⟨n⟩ = 1

β

∂ lnΞ

∂µ
=

nmax

1 + eβ(ϵ−µ)
, (5.21)

showing that the system follows Fermi-Dirac statistics. In the chemical equilibrium, the
rates of binding and unbinding must be equal for each binding site. The binding rate of
adhesion molecules is

kbinding = kN
oncNpuoc (5.22)

with puoc = 1/(1 + eβ(µ−ϵ)) the probability that a binding site is not occupied, while the
unbinding rate is

kunbinding = kN
offpoc (5.23)
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with poc = eβ(µ−ϵ)/(1 + eβ(µ−ϵ)) the probability that a binding site is occupied. From
kbinding = kunbinding and Eqs. (5.22)–(5.23) follows

kN
off

kN
oncN

= eβ(ϵ−µ). (5.24)

From mN = ⟨n⟩/Ac and mmax
N = nmax/Ac together with Eq. (5.21) and cN = kN

p /k
N
d

follows then Eq. (2.64).

G - Numerical Continuation
The state and bifurcation diagrams presented in Chapters 3 were computed via continua-
tion with the MATLAB-based software package MatCont (MatCont7p4 [212] and MAT-
LAB R2021a [213], custom-written scripts with details and numerical settings are pub-
lished with [17, 105] and are available at https://git.embl.de/dullwebe/dullweber2024).
In general, fixpoints to initialize the continuation were computed by integration over time
using the Integrator Method ode45. Results of the continuation were confirmed using sim-
ulations and analysis in Mathematica 13.0 [211] (notebooks with a step-by-step explana-
tion of the analysis are published with [105, 106] and are available at https://git.embl.de/dullwebe/dullweber2024).
Specifically, I tested the number and types of stable attractors in different parameter
regimes with simulations using NDSolve and ParametricNDSolve with the equation sim-
plification method Residuals. Fixpoints shown in the phase plots Figs. 3.3, 3.7, 3.9 were
computed numerically in Mathematica from the intersections of nullclines. Oscillation
amplitudes and periods [Figs. 3.3, 3.4, 3.9, 3.10] were computed from the extrema of
simulated trajectories, and checked against the dominant Fourier components.

H - Symmetry-breaking of states is promoted by adap-
tive adhesion
In many biological systems, Notch signals are mutually inhibitory, i.e. signals suppress
the production of ligands [143]. Strong mutual inhibitory interactions generically lead to
spontaneous symmetry-breaking [155], whereby small initial differences in the signaling
states are amplified and diverge to high- and low-value steady states. At the onset of
symmetry-breaking, the uniform steady-state solution of Eq. (2.72) becomes unstable. To
derive an approximation for the onset of symmetry-breaking, I expand σ(si) [Eq. (2.73)]
for a general Hill coefficient h to first order around the inflection point si = 1

σ(si) =
1

2
+

h

4
(si − 1) +O((si − 1)2) (5.25)
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Figure 5.1. Uniform fixpoints of Eq. (2.72) computed numerically (gray) and approx-
imation from linearization of the response function σ(sij) around sij = 1 [Eq. (5.27)],
(orange), h = 4. (b) Comparison between Eq. (5.28) (orange) and the steady state
contact area computed numerically along the supercritical pitchfork bifurcation line de-
rived via continuation in MatCont (gray). (c) State diagram as shown in Fig. 3.3(a) for
γ0/2γf = 0.98. The color code indicates the normalized contact area at the fixpoint, i.e.
at the uniform fixpoint state below the PF and SHET line and at the symmetry-broken
fixpoints above the PF and Hopf line. The oscillatory regime between Hopf and SHET
line is white as it does not contain any stable fixpoints.

yielding the dynamic equation

τu
dui

dt
=

1

2
+

h

4
(si − 1)− ui (5.26)

and using the definition of the signal Eq. (2.80) the uniform steady-state is

u∗ = 1− 2 + h

4 + hχ
Ac
A0

. (5.27)

Linear stability analysis shows that this uniform steady state looses stability at

χPF =
4A0

hAc
, (5.28)

with Ac = Ac(γc) and γc = γ0 − γA(u∗)2. Comparison with the steady-state contact
area computed numerically along the supercritical pitchfork bifurcation line that was
derived via continuation in MatCont shows good agreement [Fig. 5.1(b)]. Moreover,
Figure 5.1(c) shows the normalized steady-state contact area Ac/A0 in the state space of
feedback parameters.

Timescale of symmetry-breaking

The time of symmetry-breaking Tsym [Fig. 3.2(b),blue curve] was computed as the simula-
tion time (Mathematica) until 99% of the steady-state internal state difference |u1 − u2|
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Figure 5.2. (a) Parameterization of a pair of asymmetric droplets adapted from [150].
(b) The droplet volumes can be expressed in terms of the three spherical cap volumes
v1, v2, vc. (c) Differences in droplet volumes δV /V̄ = {0.25, 0.5} (blue) or outer interfacial
tensions δγf/γ̄f = {0.25, 0.5} (brown) change how the contact area between the droplets
depends on the tension ratio γc/2γ̄f. Curves are obtained by numerically minimizing
Eq. (5.36).

is reached, starting from initial conditions (u1, u2) = (0.01, 0.02). The saddle and its
eigenvalues [Fig. 3.2(b),red crosses] were found numerically in Mathematica from the
intersections of nullclines. Eigenvalues were normalized against the maximum saddle
eigenvalue at χ/χPF

0 = 2, γA/γ0 = 1.

I - Equilibrium shapes of droplet pairs with asymmet-
ric mechanical properties
For pairs of droplets with unequal volumes (V1 ̸= V2) or outer surface tensions (γf,1 ̸= γf,2),
Eq. (1.7) does not describe the size of the contact area. To derive the equilibrium shape
and contact size of asymmetric droplets, I computed the minimum of the surface energy

E = γcAc + γf,1Af,1 + γf,2Af,2 (5.29)

under constant volume constraint. I followed the approach and used the parameterization
introduced in [150], which is shown in Fig. 5.2(a). The droplet volumes can be expressed
in terms of three spherical cap volumes vi with i ∈ {1, 2, c} [Fig. 5.2(b)] such that

V1 = v1 + vc (5.30)
V2 = v2 − vc. (5.31)
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Given the radii of curvature Ri and the radius r as shown in Fig. 5.2(a), I can define the
length scales

ai =
√

R2
i − r2 (5.32)

and surfaces

Hi(ai, r) =
1

2

(
a2i + r2 + ai

√
a2i + r2

)
, (5.33)

which allows to express the spherical cap volumes as

vi(ai, r) =
π

3

(
ai +

√
a2i + r2

)2(
2
√
a2i + r2 − ai

)
(5.34)

and the different droplet surfaces as

Ai(ai, r) = 4πHi(ai, r). (5.35)

Using these definitions and expressing the outer surface tensions as γf,1 = γ̄f + δγf, γf,2 =

γ̄f − δγf, I can rewrite Eq. (5.29) as
E

4πγ̄f
=

(
1 +

δγf
γ̄f

)
H1(a1, r) +

(
1− δγf

γ̄f

)
H2(a2, r)

+ 2

(
γc
2γ̄f

)
Hc(ac, r) (5.36)

with γ̄f = (γf,1 + γf,2)/2. The minima in terms of the four parameters (a1, a2, ac, r) under
constant volume constraints V1 = V̄ − δV, V2 = V̄ + δV were computed numerically,
allowing to derive the size of the contact area Ac = 4πHc(ac, r).
Specifically, to obtain estimates of the equilibrium shapes, I numerically computed the
minimum of Eq. (5.36) in Mathematica [211]. I computed the contact area Ac = 4πHc

for values of γc/2γ̄f evenly spaced on the interval [0, 1]. From these results, I fit the
contact area as a function of the tension ratio [Fig. 5.2(c)], because my implementation
of the numerical continuation method to obtain bifurcation lines required an explicit
expression that relates the contact area to the interfacial tensions. For unequal volumes
(V1 ̸= V2), but identical outer surface tensions, I used a 5th order polynomial to fit a
function Ac = Ac(γc/2γ̄f) on the interval [0, 1] using Mathematica’s function Fit with
the default LevenbergMarquardt method [Fig. (5.2)(c)]. For droplets with asymmetric
outer tension, but equal volumes, the droplet with higher outer tension is completely
internalized if γc/2γ̄f ≤ δγf [150], thus, I used a piecewise function to fit the contact
area with Ac = 24/3A0 on the interval [0, δγf]. The interval [δγf, 1] was fitted with a
combination of a rational function of the form a+ b/(γc/2γf − c)d close to the threshold
of internalization with fit parameters a − d and a 5th order polynomial [Fig. 5.2(c)].
Fits of the contact area were then used for continuation in MatCont and simulations in
Mathematica to derive the state diagrams shown in Fig. 3.6.
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J - Chapter 3 parameter values
The following table contains parameter values used in different figure panels of Chapter 3.

Physical quantity Symbol Values
Base line interfacial tension relative to
outer surface tension in a single adher-
ent droplet

(γ0 − γm)/2γf Fig. 3.1(a,c): 0.95

Base line interfacial tension relative to
outer surface tension

γ0/2γf Fig. 3.2(a): 0.9
Fig. 3.2(c): 0.7
Fig. 3.3-3.7, 3.2, 5.1

Reference susceptibility χ0 Fig. 3.1: χcusp
0 = 2.8612

Fig. 3.2: χPF
0 = 16.629

Fig. 3.3-3.7, 5.1(c): χ0 = 40.604

Adaptive adhesion coefficient relative
to outer surface tension

γA/2γf Fig. 3.1(a, inlet): 0.9
Fig. 3.2(a, inlet): 0.8
Fig. 3.3(b): {square, triangle: 0.15, quarter-
foil:0.21, star:0.23, cross:0.2352, pentagon:0.5}

Fig. 3.3(d): 0.8
Fig. 3.3(e,f): {0.4, 0.6, 0.8} Fig. 3.7(b): 0.637
Fig. 3.7(c): {0.245, 0.637}

Relative signal susceptibility χ/χ0 Fig. 3.2(a, inset): 2.8
Fig. 3.3(b): {square:0.1, quarterfoil:0.61,
star:0.604, cross:0.6021, pentagon:0.6, trian-
gle:0.95}
Fig. 3.3(c): {0.62,0.665,0.68}
Fig. 3.3(d): {0.4704, 0.7388}
Fig. 3.7(c): {0.3,0.465,0.4885 0.5,0.5221 0.6,
0.74,0.9 }

Volume asymmetry δV /V̄ Fig. 3.6: {0.25, 0.5}
Tension asymmetry δγf/γ̄f Fig. 3.6: {0.25, 0.5}
Hill coefficient h Fig. 3.1(a,b): 2

Fig. 3.2(a-c): 2
Fig. 3.3-3.7: 4

K - Computation of contact networks from neuromast
live imaging data
Image segmentation

I implemented and tested an image segmentation pipeline for the live fluorescence mi-
croscopy data of neuromasts from a claudinb:mscarlet transgenic zebrafish line [Fig. 5.3],
where a fluorophore is attached to proteins associated with the cell membrane, allowing
to visualize the cell boundaries in the neuromast. The neural network based software
PlantSeg [194] was used to enhance the membrane signal, which then served as input
for the image segmentation software Cellpose [195]. Additional training of the Cellpose
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Figure 5.3. 3D segmentation pipeline for fluorescence microscopy data - The neural
network based software PlantSeg [194] was used to enhance the membrane signal in fluo-
rescence microscopy images (left) of a claudinb:mscarlet transgenic zebrafish line (images
acquired by Adrian Jacobo, Biohub), which then served as input for the image segmen-
tation software Cellpose [195]. Additional training of the cell pose model improved the
segmentation results (bottom right), but did not suffice to completely remove artifacts
like split cell volumes and small segmentation fragments (yellow arrow heads)

model improved the segmentation results [Fig. 5.3, bottom right] but did not suffice
to completely remove artifacts like split cell volumes and small segmentation fragments
(yellow arrow heads). The contact networks and simulations of contact-based signaling
presented in this thesis (Section 4.8) were thus derived from images, segmented by Adrian
Jacobo, Akilandeswari Balasubramanian and Tiger Lao (Biohub, San Francisco), using
an alternative neural network-assisted pipeline [197], followed by manual refinement to
correct errors and ensure high-quality cell volume detection.

Computing contact networks

All segmented datasets exhibited gaps between adjacent cells [Fig. 5.3]. To address these
gaps, I applied a custom Python script dilating the segmented cell volumes to bring them
into direct contact and to enable the measurement of cell-cell contact areas. Specifically,
labeled volumes were iteratively convolved using the (binary_dilation function from the
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scipy package [214]) with an isotropic mask (ball) of the form
⎡

⎢⎢⎣

0 0 0

0 1 0

0 0 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0 1 0

1 1 1

0 1 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0 0 0

0 1 0

0 0 0

⎤

⎥⎥⎦ (5.37)

until volumes were in contact. Dilation with larger kernels (e.g. 5 × 5) only introduced
minor differences in the contact networks, however, it enhances the bias through the se-
lection of the labels expanded first in an iteration. Therefore, I chose the smallest possible
convolution kernel. Images had a voxel resolution of 0.075 µm × 0.075 µm × 0.25 µm. To
facilitate subsequent processing, images were binned in the x and y dimensions down to a
voxel size of 0.3 µm× 0.3 µm× 0.25 µm, which is close to isotropic and justifies the usage
of the above kernel.

L - Proof of existence of unique uniform states

Figure 5.4. h(u,α) = u has a
unique solution u ∈ [0, 1] ∀α ∈ R

In the following, I explain why for every parameter
combination k,χ ∈ R+, a unique uniform steady state
solution of Eq. (4.2) exists [Chapter 4]. Let’s define
the function h(u,α) = (1 + tanh(αu))/2, where α =

k(1 − χ
∑

j cij). If u∗ is a uniform steady state, then
h(α, u∗) = u∗. From the second derivative

∂2h(α, u)

∂u2
= −α2 sinh(αu)

cosh3(αu)
(5.38)

and u ∈ [0, 1] follows that h(u,α) is strictly concave
for α > 0 and strictly convex for α < 0 [Fig. 5.4].
Moreover, h(0,α) = 0.5 ∀α and 0 < h(α, u) < 1 ∀u ∈ [0, 1]. It follows that for each
α ∈ R, h(α, u∗) = u∗ has a unique solution and thus Eq. (4.2) a unique uniform steady
state.
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