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Zusammenfassung

Diese Dissertation bietet eine umfassende Untersuchung sowohl analytischer als auch nu-
merischer Techniken zur Modellierung von Prozessen in der ultrarelativistischen Stark-
feld Quanten-Elektrodynamik (SFQED). Wir haben SFQEDtoolkit entwickelt, eine Open-
Source-Bibliothek, die fortschrittliche Funktionsnäherungsverfahren verwendet, um die
nichtlineare Compton-Emission (NIC) und die nichtlineare Breit-Wheeler-Paarerzeugung
(NBW) präzise zu modellieren. Simulationen, die Particle-in-Cell (PIC)-Codes mit SFQED-
toolkit kombinieren, wurden eingesetzt, um Kollisionen zwischen ultrarelativistischen dichten
Elektronenstrahlen und Plasmazielen zu untersuchen. Dabei wurde gezeigt, dass sich
Elektron-Positron-Jets mit Dichten oberhalb der von Festkörpern innerhalb selbstgener-
ierter Magnetfelder von bis zu 10 MT bilden können. Diese Ergebnisse offenbaren ein
neuartiges Regime, in dem SFQED, Atom- und Plasmaphysik untrennbar miteinander ver-
woben sind, und eröffnen somit einen neuen Forschungsbereich in der SFQED. Darüber
hinaus leiten wir analytische Ausdrücke für die differentiellen Verteilungen der NIC- und
NBW-Prozesse her, die die Energie-, Winkel-, Spin- und Polarisationscharakteristika der
erzeugten Teilchen beschreiben. Bemerkenswerterweise führt die Herleitung dieser Verteilun-
gen unter Anwendung modernster Methoden zu Ergebnissen, die in bestimmten Parameter-
bereichen negative Werte annehmen können, was ihre probabilistische Interpretation unter-
gräbt. Wir zeigen, dass eine Integration dieser Verteilungen über die „Formationszeit“ des
Quantenprozesses ihre konventionelle physikalische Bedeutung wiederherstellt. Insgesamt
tragen die in dieser Dissertation präsentierten Arbeiten zur Weiterentwicklung der analytis-
chen und numerischen Modellierung von SFQED-Prozessen bei. Sie liefern ein solides
Fundament für zukünftige experimentelle Studien zur SFQED, die für die extremfeld-
Plasmaphysik sowie die Mikrophysik von Pulsaren und Magnetaren von entscheidender
Bedeutung sind.
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Abstract

This thesis presents a comprehensive exploration of both analytical and numerical tech-
niques used to model processes in ultrarelativistic strong-field quantum electrodynamics
(SFQED). We developed SFQEDtoolkit, an open-source library that employs advanced
function approximation techniques to accurately model nonlinear Compton (NIC) emis-
sion and nonlinear Breit-Wheeler (NBW) pair creation processes. Simulations combin-
ing particle-in-cell (PIC) codes with SFQEDtoolkit have been used to investigate colli-
sions between ultrarelativistic dense electron beams and plasma targets, demonstrating that
electron-positron jets exceeding solid densities can be produced within self-generated mag-
netic fields up to 10 MT. These findings reveal a novel regime where SFQED, atomic, and
plasma physics are intrinsically interwoven, opening a new avenue of research in SFQED.
Furthermore, we derive analytical expressions for NIC and NBW differential distributions
that describe the energy, angular, spin, and polarization characteristics of the produced
particles. Notably, the derivation of these distributions, following state-of-the-art method-
ologies, yields results that can give negative values over certain parameter intervals, under-
mining their probabilistic interpretation. We demonstrate that integrating these distribu-
tions over the “formation time” of the quantum process restores their conventional physi-
cal meaning. Overall, the contributions of this thesis advance the analytical and numerical
modeling of SFQED processes, providing a robust framework for forthcoming experimen-
tal studies of SFQED, which are critically relevant for extreme-field plasma physics and
the microphysics of pulsars and magnetars.
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Chapter 1

Introduction

Twenty years after the first laser was realized [1], the introduction of chirped
pulse amplification (CPA) [2] enabled optical laser systems to reach intensities of
1014−1015 W/cm2, generating electric field amplitudes comparable to the Coulomb
field in atoms. Continuous technological advancements further pushed this thresh-
old to 1017−1018 W/cm2, entering the relativistic regime, where the laser’s electro-
magnetic (EM) fields can accelerate electrons (e−) to relativistic velocities within
a single cycle. Today, the highest recorded laser intensity has been achieved using
multi-PW laser systems at CoReLs [3], reaching 1.1 × 1023 W/cm2 [4]. Mean-
while, 10-PW-class lasers are expected to become operational in several facilities
worldwide, including Apollon [5], CoReLs [3], ELI [6], NIF [7] and ZEUS [8]
for instance (see map in Fig. 1.1 and [9]). These systems are projected to achieve
intensities approaching 1024 W/cm2. This progress could soon enable experimen-
tal investigations into an unexplored regime of quantum electrodynamics (QED).
QED remains the most precisely tested quantum field theory (QFT) and a corner-
stone of the Standard Model (SM): the remarkable agreement between theoretical
predictions and experimental results underscores its success.

In order to grasp the mysteries that QED still conceals, let us pause for a moment
and consider the Heisenberg uncertainty principle in its time-energy form:

∆ϵ∆t ≥
ℏ

2
.

This celebrated inequality, which from our human perspective represents one of
the most counterintuitive aspects of quantum mechanics, implies that, for an ex-
tremely short duration ∆t, nature can seemingly “violate” or temporarily “ignore”
energy conservation. As a consequence, a virtual particle-antiparticle pair can mo-
mentarily emerge from the vacuum, only to annihilate shortly after. Specifically,
an electron-positron (e−-e+) pair with energy ε ∼ mec2 may appear for a time com-
parable to the Compton scale: τC =

ℏ
mec2 ∼ 1.3×10−21 s. Here, c denotes the speed

of light in vacuum, ℏ is the reduced Planck constant, while me and e represent the
electron mass and charge, respectively. These quantum fluctuations can be brought
on-shell, transitioning from virtual to real particles, when subjected to a strong,
uniform electric field capable of supplying energy on the order of the pair’s rest
energy (2mec2) across a distance comparable to the reduced Compton wavelength
λC =

ℏ
mec ∼ 3.86× 10−13 m. The QED critical field, Ecr =

m2
ec3

|e|ℏ ∼ 1.3× 1016 V/cm,

1
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Figure 1.1: Location of the main ultrahigh intenisty laser facilities worldwide, in 2009
(top) and 2020 (bottom). The rapid growth of this research field is evident in the significant
increase in the number of new laser facilities established within just a decade. See [9] for
further details.

serves precisely this purpose, rendering the vacuum unstable with respect to spon-
taneous pair creation (Fig. 1.2). This process, first proposed by Sauter [10] and
later formalized by Schwinger [11], became known as Schwinger pair production.

Despite the significant theoretical and experimental efforts driven by new experi-
mental capabilities, achieving an electromagnetic field strength of Ecr in the lab-
oratory remains far from feasible. Reaching this threshold would require a laser
with a critical intensity of Icr = 4.6 × 1029 W/cm2. While this prevents direct in-
vestigation of exotic phenomena such as Schwinger pair production in vacuum, it
is still possible to study the behavior of ultra-relativistic particles in strong elec-
tromagnetic fields. Indeed, according to classical electrodynamics, during a time
interval t a constant electric field with peak strength E0 can impart an energy of ap-
proximately ε ∼ |eE0ct| to an electron [12]. For electrons interacting with a laser,
the angular frequency ω sets the characteristic time scale, so that t ∼ 1

ω . Thus,
by introducing the gauge- and Lorentz-invariant classical nonlinearity parameter
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Ecr field

e+

e−

Figure 1.2: A virtual electron-positron pair emerges from the vacuum, momentarily vi-
olating energy conservation. The energy supplied by the critical field Ecr brings the pair
on-shell. The region enclosed by the dashed circle corresponds to the Compton wavelength
λC .

ξ (see Chap. 3)

ξ =
|e|E0

mecω
,

we observe that an electron initially at rest reaches relativistic speeds within a sin-
gle laser cycle when ξ ∼ 1. Modern petawatt-class lasers enable access to the
Strong-Field QED (SFQED) regime, characterized by ξ ≫ 1. In this regime,
coupling such high-intensity optical systems with ultrarelativistic charged parti-
cle beams enables the particles to experience, in their instantaneous rest frame,
an electric field E that exceeds Ecr (E > Ecr) and drives the emergence of novel
quantum phenomena. In this thesis we will specifically focus on two key SFQED
processes: the nonlinear inverse (or multiphoton) Compton scattering (NIC) and
the nonlinear Breit-Wheeler pair production (NBW).

The first process occurs when a charged particle, such as an electron, moves through
an intense electromagnetic field. In essence, the electron can absorb multiple pho-
tons from the field, along with their energy and momentum, and subsequently emit
a high-energy photon, altering its trajectory (Fig. 1.3). Multiphoton Compton scat-
tering was first observed in 1996 at the Stanford Linear Accelerator (SLAC) [13].
In this experiment, an ultra-relativistic electron beam with an energy of approxi-
mately 46.6 GeV collided with an intense laser pulse (I ∼ 1018 W/cm2), leading to
the detection of the scattering via a nonlinear energy shift in the outgoing electron
spectrum (see Fig. 1.4). Another fundamental and perhaps even more intriguing
QED prediction is the possibility of converting light into matter. If two photons
collide with a total energy above the threshold εtot ≥ 2mec2, the creation of an e+-
e− pair becomes kinematically allowed [14], defining the linear Breit-Wheeler pair
production process. However, realizing an experimental setup where high-energy
photon beams collide is an enormous challenge. The inherently small cross-section
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Figure 1.3: Sketch of the nonlinear inverse Compton scattering: an electron absorbs n
photons γ from the field it moves within and then emits a hard, energetic, photon γsc.
Source: Wikipedia.

Figure 1.4: Illustration of the 1996 SLAC experiment that first revealed the NIC effect:
a 1018 W/cm2 intense laser pulse collides head-on with a 46.6 GeV electron bunch. The
energy shift in the spectrum of the electrons produced in the interaction (inset from [13])
enabled the detection of four-photon nonlinear scattering.

of this process makes it exceedingly difficult to trigger and detect, and to date,
linear Breit-Wheeler pair production remains unobserved. In contrast to the lin-
ear process, the nonlinear Breit-Wheeler mechanism, where a single high-energy
photon interacts with multiple lower-energy photons (from an intense background
field) to produce an electron-positron pair, was successfully detected in 1997 at
SLAC [15]. In an experiment nearly identical to the one conducted a year earlier to
observe NIC [13], the photons produced via NIC were themselves able to absorb
additional photons from the laser field, ultimately decaying into electron-positron
pairs.

The study of SFQED processes in plasmas−including the potential to generate ex-
tended dense electron-positron jets [16, 17]−offers unprecedented access to the
microphysics governing both plasma dynamics and the intense emission processes
observed around compact astrophysical objects such as pulsars and magnetars [18–
21]. These unique opportunities have spurred growing interest and experimental
effort in exploring SFQED effects in extreme-field plasma physics. A prominent
example is provided by QED cascades, whose dynamics is governed by the in-
terplay between SFQED processes and the collective plasma response [22–34].
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Cascades are chain reactions occurring in intense EM fields where self-sustaining
cycles of NIC and NBW processes alternate with each other, leading to the ex-
ponential multiplication of electrons, positrons, and photons. According to Bell
and Kirk [22], even a single electron initially at rest in a standing wave formed
by two identical counterpropagating, circularly polarized laser fields can trigger an
avalanche process at field intensities on the order of 1024 W/cm2.

It is clear that SFQED-dominated plasmas are complex, strongly nonlinear sys-
tems. Understanding and modeling the intrinsically multiscale dynamics of these
plasmas in realistic conditions critically depend on the development of advanced
numerical tools and codes that can run efficiently on high-performance computing
(HPC) machines. These considerations have motivated the project presented in this
thesis, which is thoroughly outlined in the following sections and chapters.

1.1 This Thesis

In recent decades, Monte-Carlo (MC) and Particle-in-Cell (PIC) codes have been
developed to study beam physics and classical plasma dynamics [35]. Some of
these codes have been further enhanced with specialized routines designed to sim-
ulate high-energy photon emission and electron-positron pair creation in strong
electromagnetic fields [24, 32, 36–42]. Motivated by the computational challenges
posed by SFQED distributions, which involve numerically expensive special func-
tions and integrals, state-of-the-art codes model the NIC and NBW mechanisms by
employing binary search and interpolation on pre-computed lookup tables. In these
tables, the required distributions are sampled over a limited number of points1 [36,
39, 41]. However, this approach presents two significant challenges: (i) it strug-
gles to cover the entire range of parameters (for example, a cut-off in the photon
spectrum is often introduced), and (ii) achieving high accuracy demands a very
high number of sampling points, which substantially increases computational cost.
Conversely, an insufficient resolution in the lookup tables can introduce substantial
systematic errors and numerical artifacts (see Ref.[42] and section3.3), potentially
compromising both the viability of simulations and the reliability of their results.
For these reasons, after a concise overview of plasma physics and the PIC method
is provided in chapter 1, the SFQED-oriented library SFQEDtoolkit is presented
in chapter 3. Designed for the implementation into existing PIC and MC codes,
SFQEDtoolkit is a suite of modules that leverages advanced function approxima-
tion techniques (detailed in Chapter 2) to overcome the aforementioned challenges
while maintaining an impressive better then 0.1% accuracy.

Following the standard methodology for incorporating SFQED processes into a
code, the library operates in two main steps: first, it determines whether a NIC or

1The sampling points are logarithmically distributed between a minimum and a maximum value
to span several orders of magnitude.
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NBW event occurs based on its probability per unit time; then, it samples the final
state from the corresponding distribution. In Chapter 4, we present the results of
several resource-demanding simulations performed using CALDER [43], a mas-
sively parallel PIC code equipped with the basic version of SFQEDtoolkit, avail-
able on GitHub2. These simulations involved a 9 GeV or 90 GeV electron beam
colliding with a fixed plasma target composed of either lithium or gold. As the
ultrarelativistic electrons traverse the plasma, the extremely intense self-generated
electromagnetic fields trigger a cascade of photon generation and pair production
processes. These effects are so pronounced, especially in the 90 GeV case, that
they would be unmanageable without the assistance of SFQEDtoolkit. Remark-
ably, the intense magnetic fields generated within the target reach up to 10 MT, a
magnitude comparable to those found near pulsars, suggesting a viable pathway
for recreating the microphysics of these astrophysical entities in the laboratory. Fi-
nally, the large number of produced e+-e− pairs, combined with their high energy
and tight collimation, indicates the potential for realizing an apparatus capable of
delivering a multi-GeV, solid-density, plasma composed entirely of electrons and
positrons.

Complying with standard practices in modern SFQED codes, the basic implemen-
tation of SFQEDtoolkit (introduced in chapter 3) employs the collinear emission
approximation and averages the NIC and NBW distributions over the polariza-
tion states of the particles involved—thus neglecting photon polarization, lepton
spin, and angular distributions. Motivated by the increasing need for a numerical
tool that supports precision SFQED tests—one that is both accurate and efficient
while fully resolving all particle degrees of freedom—we present in Chapter 5 fully
resolved expressions for the NIC and NBW distributions. Derived via the quasi-
classical operator approach developed by Baier and Katkov [44], these expressions
explicitly depend on energy, emission angle, and spin/polarization. Remarkably,
and quite unexpectedly, these fully resolved distributions prove to be improper, as
they can become negative over certain parameter intervals, rendering a direct prob-
abilistic interpretation untenable. This critical issue, previously unaddressed in the
literature, must be resolved to restore their conventional stochastic meaning. By
incorporating the concept of formation time3 τ f (or equivalently, formation length
λ f ), we show that the fully resolved NIC distribution4 regains its standard proba-
bilistic interpretation only when integrated over the time interval of the order of its
formation time. In this context, τ f is confirmed to be the minimal time required for
the conversion of the initial field excitations (ingoing particles) into the final ones
(outgoing particles), i.e., for a particle to transition from a state with momentum p⃗
and spin ζ⃗, to one with momentum p⃗ ′ and ζ⃗ ′.

The following sections introduce the basics of plasma physics and the fundamental

2https://github.com/QuantumPlasma/SFQEDtoolkit
3In our case, the formation time corresponds to either the time taken by an electron to emit a

NIC photon or the time needed by a photon to decay into a NBW pair.
4An analogous argument holds for the NBW distributions.

https://github.com/QuantumPlasma/SFQEDtoolkit
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equations that describe its dynamics. In particular, we present the Maxwell-Vlasov
model, a system of coupled equations governing the evolution of charged particles
within the self-consistent electromagnetic fields they generate, and the PIC method,
the numerical tool used to solve these equations.

1.2 The Maxwell-Vlasov model

Plasma, often referred to as the fourth state of matter, is an ionized gas composed of
charged particles, such as free electrons, positrons, and ions, that exhibit distinctive
properties. Due to their charged nature, plasma constituents interact strongly with
electric and magnetic fields, leading to collective behaviors where long-range elec-
tromagnetic forces dominate over short-range collisions. Additionally, plasmas are
typically quasineutral, meaning that the densities of positive and negative charges
are nearly equal on macroscopic scales, and they exhibit high electrical conduc-
tivity. Together, these characteristics facilitate the formation of complex structures
and phenomena, such as waves, instabilities, and turbulence.

Plasmas are typically characterized by two fundamental length scales: (i) the dis-
tance over which EM radiation propagates in the plasma, and (ii) the characteristic
separation over which electrons redistribute to effectively screen internal electric
fields. By classical electrodynamics, the first length scale is related to the oscilla-
tion frequency of electrons around their equilibrium positions, given by

ωe =
(4πnee2

me

) 1
2 , (1.1)

where ne is the electron density. The associated distance, known as the skin depth,
is then defined as

le =
c
ωe
. (1.2)

In contrast, the characteristic length scale for electron redistribution, the Debye
length, is given by

λD =
( kBTe

4πnee2

) 1
2 , (1.3)

where kB is the Boltzmann constant and Te is the electron temperature. Model-
ing the dynamics of charged particles requires a framework that self-consistently
couples the motion of the particles with the electromagnetic fields they generate.
For collisionless plasmas, where collective EM interactions dominate over binary
collisions, kinetic theory provides the Vlasov equation

∂

∂t
[ f (x⃗, v⃗, t)] + v⃗( p⃗) · ∇⃗x[ f (x⃗, v⃗, t)] + F⃗L · ∇⃗p[ f (x⃗, v⃗, t)] = 0. (1.4)

which expresses the conservation of the particle distribution function f (x⃗, v⃗, t) in
six-dimensional phase space. Here, the particles, with momentum p⃗ (or equiva-
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lently velocity v⃗) and charge q, evolve under the influence of the Lorentz force

F⃗L = q(E⃗ +
v⃗
c
× B⃗), (1.5)

where E⃗ and B⃗ denote the electric and magnetic fields, respectively. If the plasma
consists of Ns distinct charged species, each with distribution function fi, the total
charge density is given by

ρ(x⃗, t) =
Ns∑
i

qi

∫
fi(x⃗, p⃗, t)dp⃗ (1.6)

and the current density is

j⃗(x⃗, t) =
Ns∑
i

qi

∫
fi(x⃗, p⃗, t)⃗vi( p⃗)dp⃗. (1.7)

These quantities serve as sources for the electromagnetic fields, which are governed
by Maxwell’s equations:

∇⃗ · B⃗ = 0,

∇⃗ · E⃗ = 4πρ,

∇⃗ × B⃗ =
1
c
∂E⃗
∂t
+

4π
c

j⃗,

∇⃗ × E⃗ = −
1
c
∂B⃗
∂t
. (1.8)

Equations (1.5)–(1.8) constitute the Maxwell-Vlasov system, a set of coupled equa-
tions that describe the interaction between charged particles and electromagnetic
fields. In realistic scenarios, finding an analytic solution to these partial differential
equations is nearly impossible, necessitating numerical methods. Among these, the
PIC method is one of the most effective and well-validated approaches. The next
section discusses the PIC technique in detail.

1.3 Particle-in-Cell method

The PIC method leverages the collective nature of plasmas by solving the Maxwell-
Vlasov equations (1.5)–(1.8) through the discrete evolution of representative par-
ticles over a computational grid (see Fig. 1.5). This grid’s spatial dimensions are
tailored to the specific problem at hand, while the total simulation time is divided
into smaller intervals known as timesteps. In this framework, the concept of a par-
ticle is redefined, giving rise to the numerical construct of a macro-particle. In
addition to its physical mass m and charge q, each macro-particle is assigned a
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Figure 1.5: Schematic of a two-dimensional Particle-In-Cell computational grid: three
macro-particles (large red circles), representing four and three real particles (small red
dots within), move with momenta p⃗i (i = 1, 2, 3) over a grid with resolution ∆x × ∆y. The
charge current carried by the particles is deposited at the mesh nodes, where Maxwell’s
equations are solved.

weight w, allowing it to represent multiple real plasma particles. This approach
effectively reinstates the collective and stochastic properties of a physical plasma.
Once the macro-particles are initialized5 and the initial electromagnetic fields are
determined6, the core PIC algorithm proceeds in a loop where four fundamental
operations are repeated at each timestep ∆t:

1. Particle push: Macro-particles’ positions and velocities are updated on the
grid using a standard function integrator method7, based on their equations of
motion. These equations can be directly derived from (1.5)-(1.8), assuming
the phase space distribution function f (x⃗, p⃗, t) takes the form

f (x⃗, p⃗, t) =
Np∑
i

wi S (x⃗ − x⃗i(t)) δ( p⃗ − p⃗i(t)), (1.9)

where S (x⃗) defines the spatial shape of each macro-particle and is normal-
5The initialization follows spatial and/or momentum distributions characteristic of the plasma,

ensuring that each macro-particle has well-defined mass, charge, weight, position, and momentum.
6Typically, charge and current densities are interpolated onto the grid nodes, from which the

electric and magnetic fields are computed by solving the relativistic Poisson equation. A detailed
explanation of these numerical techniques is beyond the scope of this manuscript, but interested
readers may refer to [45].

7See Boris pusher [35] or Runge-Kutta method [46].
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ized to 1, while the Dirac delta selects its momentum. Substituting (1.9) into
the Vlasov equation (1.4) simplifies it to

Np∑
i=1

{∇⃗x · [(⃗v( p⃗) − ˙⃗xi(t)) S (x⃗ − x⃗i(t)) δ( p⃗ − p⃗i(t))]+

+ ∇⃗p · [(F⃗L − ⃗̇pi(t)) S (x⃗ − x⃗i(t)) δ( p⃗ − p⃗i(t))]} = 0. (1.10)

By integrating over p⃗ or x⃗, and considering that boundary terms vanish8, one
recovers the Newton-Lorentz equations:

˙⃗xi(t) = v⃗(p⃗i), (1.11)

˙⃗pi(t) = F⃗L = qi
(
E⃗(x⃗i, t) +

v⃗( p⃗i)
c
× B⃗(x⃗i, t)

)
. (1.12)

This confirms that macro-particles follow the expected trajectories dictated
by classical electrodynamics.

2. Charge and current deposition: The charge and current densities are com-
puted based on the macro-particle distribution and assigned to the grid nodes
using interpolation techniques [47].

3. Field evolution: Maxwell’s equations (1.8) are solved using a finite-difference
scheme [48] to evolve the electric and magnetic fields by a timestep ∆t.

4. Field interpolation: The updated electromagnetic fields are interpolated back
to the positions of the macro-particles, providing the force F⃗L required for
step 1.

In essence, this method transforms the problem of solving a coupled system of
partial differential equations into a fully self-consistent simulation, where numeri-
cal particles and fields evolve together. The spatial resolution of the simulation is
dictated by the grid cell size ∆x, which must be sufficiently small to capture essen-
tial plasma dynamics. In particular, ∆x must be smaller than both the skin depth
(1.2) and the Debye length (1.3) to resolve the collective effects characteristic of
plasmas. Similarly, the timestep ∆t is chosen based on the physical phenomena
of interest, often corresponding to a fraction of the laser period in laser-plasma
simulations or another characteristic timescale of the system.

Beyond the core algorithm, PIC codes can incorporate additional physical pro-
cesses, such as Coulomb collisions, ionization, and radiation emission. In particu-
lar, several research groups worldwide have developed stochastic SFQED modules
capable of simulating NIC and NBW via Monte Carlo methods, although later
studies revealed that some of these implementations exhibit numerical issues [42].
From the next chapter onward, this thesis focuses on the numerical implementation

8This follows from the properties of δ(p⃗ − p⃗i(t)) = 0 and S (x⃗), which decay at large distances.
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of such SFQED effects, identifying limitations in existing approaches and introduc-
ing a novel technique based on Chebyshev polynomial expansions in chapter 2. As
will become clear, these expansions form the foundation of SFQEDtoolkit, the
library developed as part of this PhD project.



12 CHAPTER 1. INTRODUCTION



Chapter 2

Chebyshev Polynomials and ChAppX

The continuous advancement of PIC codes, along with the growing need to in-
corporate SFQED effects, has driven us to develop and release the open-source
suite of modules SFQEDtoolkit, presented in chapter 3, that integrate NIC and
NBW high-accuracy computations into plasma simulations. This chapter intro-
duces the multi-variable Chebyshev expansion method and ChAppX, a stand-alone
software we developed for computing Chebyshev coefficients of generic functions.
Designed for flexibility and ease of use, ChAppX serves as both a precursor to and a
complement of SFQEDtoolkit. We begin with a brief introduction to Chebyshev
polynomials and the properties that make them an ideal basis for approximating
smooth functions.

2.1 Chebyshev polynomials

Chebyshev polynomials form an infinite-dimensional basis of piecewise continu-
ous functions on the interval −1 ≤ x ≤ 1, where they are defined via the recurrence
relation

Tn+1(x) = 2xTn(x) − Tn−1(x), with T0(x) = 1, T1(x) = x (2.1)

and are orthogonal with respect to the weight 1/
√

1 − x2∫ +1

−1

Ti(x)T j(x)
√

1 − x2
= πδ i j

2 0, (2.2)

δ i j
2 0 being the altered Kronecker delta symbol1

δ i j
2 0 =


0, i , j
1
2 , i = j , 0
1, i = j = 0

. (2.4)

1A more compact and useful expression for δ i j
2 0, which will be used throughout the following

chapter, is

δ i j
2 0 = δi j(

1
2
+

1
2
δ j0), (2.3)

δi j being the standard Kronecker delta. Summations involving the altered Kronecker delta should
always be made explicit.

13
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The recurrence relation (2.1) has the following solution:

Tn(x) = cos
(
n arccos(x)

)
(2.5)

which highlights the relationship between the expansion in Chebyshev polynomials
and the discrete Fourier transform. A continuous function f (x) can therefore be
approximated as

f (x) ≈
N∑

i=0

ciTi(x), (2.6)

where ci are the coefficients and N represents the order (i.e., the highest polynomial
degree) of the expansion. The Chebyshev polynomials satisfy a set of discrete
orthogonality relations, making the evaluation of the coefficients ci in Eq. (2.6)
numerically efficient, which is a key advantage of approximation theory:

• the N zeros of the N−th Chebyshev polynomial TN(x) are given by

x̄k = cos
(π(2k − 1)

2N

)
, k = 1, ...,N. (2.7)

For these zeros, the orthogonality relation is

N∑
k=1

Ti(x̄k)T j(x̄k) = Nδ i j
2 0, (2.8)

where i, j < N;

• the N + 1 extrema of the N−th Chebyshev polynomial TN(x) are given by

x̂k = cos
(kπ

N

)
, k = 0, ...,N. (2.9)

For these extrema, the orthogonality relation is:

N∑
k=0

′′Ti(x̂k)T j(x̂k) = Nδ i j
2 0, (2.10)

in which i, j < N. The altered sum
∑
′′ indicates that the first and last terms

in the summation are halved.

Assume we now evaluate equation (2.6) at the generic k-th extreme x̂k of TN+1(x):

f (x̂k) =
N∑

i=0

ciTi(x̂k), (2.11)
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where the approximation “≈” symbol has been replaced by equality “=” for con-
venience. Multiplying equation (2.11) by Tr(x̂k) and carrying out an altered sum
over all the extrema of TN+1, we obtain:

N+1∑
k=0

′′ f (x̂k)Tr(x̂k) =
N∑

i=0

ci

N+1∑
k=0

′′Ti(x̂k)Tr(x̂k)
(2.10)
=

N∑
i=0

ci(N + 1)δ ir
2 0

(2.3)
= (N + 1)cr(

1
2
+

1
2
δr0).

(2.12)

This formula can be easily inverted to give the coefficients [49]:

ci =
2

(N + 1)(1 + δi0)

N+1∑
k=0

′′ f (x̂k)Ti(x̂k). (2.13)

The same argument holds for the zeros of TN+1 as well (in which case relation
(2.8) would have been used), leading to an alternative expression for the Chebyshev
coefficients

ci =
2

(N + 1)(1 + δi0)

N+1∑
k=1

f (x̄k)Ti(x̄k). (2.14)

Alternatively, one can resort to the inner product (2.2) and find the i-th coefficient
ci through the projection of f onto the i-th Chebyshev basis element Ti(x):

ci =
2

π(1 + δi0)

∫ +1

−1

f (x)Ti(x)
√

1 − x2
dx. (2.15)

While equation (2.15) gives the coefficients exactly, the coefficients obtained from
equations (2.13) and (2.14) are exact only if f has a finite Chebyshev expansion.
For example, this holds for N-th degree polynomials, where ci = 0 for i > N.
Consider the simple quadratic function g(x) = x2 + 2x + 1 . Assuming a second-
order Chebyshev expansion

g(x) =
2∑

i=0

ciTi(x), (2.16)

the coefficients can be found exactly using any method, resulting in:

c0 = 1.5, c1 = 2, c2 = 0.5. (2.17)

In contrast, if we assume an approximation with any order (N , 2), methods (2.13)
and (2.14) will fail, yielding nonzero (but small) coefficients c j , 0 for j > 2.

Once we get hold of the set of coefficients, a mechanism to evaluate the sum (2.6)
at any point xP is necessary: the Clenshaw recurrence algorithm (see next section)
is designed to address this objective.
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2.2 Clenshaw’s recurrence formula

Whenever the Chebyshev expansion coefficients ci are known, one can compute
the function

f (x) =
N∑

i=0

ciTi(x) = c0T0(x) + c1T1(x) + ... + cNTN(x), (2.18)

by directly evaluating the Chebyshev polynomials (for instance, via their defining
recurrence relation in Eq. (2.1)) and summing the contributions. However, because
of delicate cancellations among terms, proceeding in this way may lead to sig-
nificant round-off errors. In contrast, Clenshaw’s recurrence offers a numerically
stable and efficient alternative for evaluating (2.18). Starting from the Chebyshev
coefficients ci, Clenshaw’s recurrence exploits the recurrence relation

Tn(x) − 2xTn+1(x) + Tn+2(x) = 0, (2.19)

to define a new set of auxiliary coefficients bi via

bn − 2xbn+1 + bn+2 = cn, bN+1 = bN+2 = 0. (2.20)

(Note that the bi generally depend on x; i.e., bi ≡ bi(x).) Substituting Eq.(2.20)
into Eq.(2.18) yields

f (x) = (b0 − 2xb1 + b2)T0(x)+

+ (b1−2xb2 + b3)T1(x)+

+ (b2−2xb3 + b4)T2(x)+

+ ...+

+ (bN−3−2xbN−2 + bN−1)TN−3(x)+

+ (bN−2−2xbN−1 + bN)TN−2(x)+

+ (bN−1−2xbN)TN−1(x)+

+ bNTN(x). (2.21)

In this sum, the “diagonal” (same colored) terms cancel as a consequence of Eq. (2.19):
if one collects the terms corresponding to T0(x) and T1(x) and recalls that T0(x) = 1
and T1(x) = x, one finds

f (x) =
N∑

i=0

ciTi(x) =

= b0T0(x) − 2xb1T0(x) + b1T1(x) =

= b0 − 2xb1 + b1x =

= b0 − xb1. (2.22)

Thus, there is no need to compute the Chebyshev polynomials Ti(x) explicitly. Ele-
gant, computationally efficient, and stable against round-off errors, Clenshaw’s re-
currence is a robust method for evaluating Chebyshev series, as stated in Ref. [50]:
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You need to be aware that recurrence relations are not necessarily sta-
ble against roundoff error in the direction that you propose to go (ei-
ther increasing n or decreasing n). [...] Clenshaw’s recurrence is al-
ways stable, independent of whether the recurrence for the functions
Fk [the functions appearing in the series] is stable in the upward or
downward direction.

2.3 Generalization to multivariable functions

As long as a function is piecewise continuous in all its arguments, it is eligible for
expansion in terms of Chebyshev polynomials. For functions of two (2V) and three
(3V) variables, the expansions take the forms

f (x, y) =
∞∑

i=0

∞∑
j=0

ci jTi(x)T j(y) (2.23)

and

f (x, y, z) =
∞∑

i=0

∞∑
j=0

∞∑
k=0

ci jkTi(x)T j(y)Tk(z) (2.24)

respectively. Moreover, the coefficients in Eqs. (2.23) and (2.24) can be derived
following procedures analogous to those described in Section 2.1.

• 2V: consider a [(N − 1) × (M − 1)]-th order expansion for f (x, y)

f (x, y) =
N−1∑
i=0

M−1∑
j=0

ci jTi(x)T j(y), (2.25)

and, without loss of generality, evaluate f at the points (x̂k, ŷl):

f (x̂k, ŷl) =
N−1∑
i=0

M−1∑
j=0

ci jTi(x̂k)T j(ŷl), (2.26)

where x̂k (ŷl) is the k-th (l-th) extremum of the N-th (M-th) order Cheby-
shev polynomial TN(x) (TM(y)). Multiplying both sides of Eq. (2.26) by
Tr(x̂k)Tq(ŷl) and performing the altered sum over the indices k and l, we
obtain

N∑
k=0

′′

M∑
l=0

′′ f (x̂k, ŷl)Tr(x̂k)Tq(ŷl) =
N−1∑
i=0

M−1∑
j=0

ci j

N∑
k=0

′′Ti(x̂k)Tr(x̂k)
M∑

l=0

′′T j(ŷl)Tq(ŷl) =

(2.10)
=

N−1∑
i=0

M−1∑
j=0

ci jNδ ir
2 0Mδ jq

2 0 =

(2.3)
= NMcrq(

1
2
+

1
2
δr0)(

1
2
+

1
2
δq0).

(2.27)
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From this, the coefficients are given by

ci j =
4

NM(1 + δi0)(1 + δ j0)

N∑
k=0

′′

M∑
l=0

′′ f (x̂k, ŷl)Ti(x̂k)T j(ŷl). (2.28)

Similarly, if we evaluate Eq. (2.26) at the zeros x̄a and ȳb of TN(x) and TM(y),
we obtain

ci j = Ai j(N,M)
N∑

k=1

M∑
l=1

f (x̄k, ȳl)Ti(x̄k)T j(ȳl), (2.29)

with
Ai j(N,M) =

4
NM(1 + δi0)(1 + δ j0)

. (2.30)

For reasons that will be disclosed later in this manuscript, the more general
integral projection method will not be discussed here.

• 3V: in an analogous manner, approximating Eq. (2.24) with

f (x, y, z) =
N−1∑
i=0

M−1∑
j=0

L−1∑
k=0

ci jkTi(x)T j(y)Tk(z), (2.31)

and using the discrete orthogonality relations from Eq. (2.10), one finds

N∑
a=0

′′

M∑
b=0

′′

L∑
c=0

′′ f (x̂a, ŷb, ẑc)Ti(x̂a)T j(ŷb)Tk(ẑc) = NMLci jk(
1
2
+

1
2
δi0)(

1
2
+

1
2
δ j0)(

1
2
+

1
2
δk0),

(2.32)
where x̂a, ŷb and ẑc are the extrema of TN(x), TM(y) and TL(z). Hence

ci jk = Ai jk(N,M, L)
N∑

a=0

′′

M∑
b=0

′′

L∑
c=0

′′ f (x̂a, ŷb, ẑc)Ti(x̂a)T j(ŷb)Tk(ẑc), (2.33)

with
Ai jk(N,M, L) =

8
NML(1 + δi0)(1 + δ j0)(1 + δk0)

. (2.34)

An analogous expression can be derived using the zeros x̄a, ȳb and z̄c of
TN(x), TM(y) and TL(z):

ci jk = Ai jk(N,M, L)
N∑

a=1

M∑
b=1

L∑
c=1

f (x̄a, ȳb, z̄c)Ti(x̄a)T j(ȳb)Tk(z̄c). (2.35)

In summary, Chebyshev expansions are not limited to univariate (1V) functions;
Clenshaw’s recurrence can be generalized and applied to multivariate functions as
well. For instance, if

f (x, y) =
N∑

i=0

[ M∑
j=0

ci jT j(y)
]
Ti(x) (2.36)
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is the Chebyshev approximation of a two-variable function, one can first apply
Clenshaw’s recurrence to the expression within the square brackets to compute a
new set of coefficients bi,(m) from the ci j (with i held fixed):

∀i, bi,(m) − 2ybi,(m+1) + bi,(m+2) = cim, bi,(M+1) = bi,(M+2) = 0. (2.37)

This yields N + 1 coefficients gi(y) = bi,(0) − ybi,(1), and Eq. (2.36) becomes

f (x, y) =
N∑

i=0

[
bi,(0) − ybi,(1)

]
Ti(x) ≡

N∑
i=0

gi(y)Ti(x). (2.38)

Finally, applying Clenshaw’s recurrence to the coefficients gi(y) gives f (x, y) eval-
uated at the desired x, y. From a numerical standpoint, if f (x, y) must be evaluated
multiple times at fixed values of y, the N + 1 coefficients gi(y) remain constant,
thereby significantly reducing the computational cost. This iterative procedure can
be naturally extended to functions of an arbitrary number of variables.

2.4 ChAppX: a code for Chebyshev approximations

Chebyshev polynomials are a powerful and flexible tool for approximating even
complex and computationally demanding functions. Their advantages can be sum-
marized as follows:

1. The coefficients ci can be easily computed by exploiting the orthogonality
relations of Chebyshev polynomials (see Sec. 2.1 or [49]).

2. A Chebyshev approximation closely resembles the minimax polynomial,
that is, the polynomial with the smallest maximum deviation from the true
function f (x) among all polynomials of the same degree. However, unlike
the exact minimax polynomial, its coefficients are readily computed.

3. The approximation error is distributed almost uniformly over the entire in-
terval.

4. The magnitude of the first neglected Chebyshev coefficient provides a good
estimate of the error. This follows from the property Tn(x) = cos(n arccos x) ≤
1.

5. For smooth functions, the Chebyshev expansion converges rapidly. This
rapid convergence allows most of the function’s information to be com-
pressed in relatively few coefficients that can easily fit within a modern CPU
cache. Indeed, as stated in Ref. [50]:

Any function that is bounded on the interval [of the Chebyshev
polynomials] will have a convergent Chebyshev approximation as
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[the order] N → ∞, even if there are nearby poles in the complex
plane. For functions that are not infinitely smooth, the actual rate
of convergence depends on the smoothness of the function: the
more derivatives that are bounded, the greater the convergence
rate. For the special case of a C∞ function, the convergence is
exponential.

6. Thanks to the recurrence relation in Eq.(2.1), a Chebyshev expansion can be
efficiently evaluated using Clenshaw’s recurrence formula [51]. This method
computes the expanded function using only the coefficients ci, without ex-
plicitly evaluating the Chebyshev polynomials Ti(x). Moreover, Clenshaw’s
recurrence guarantees both computational efficiency and numerical stability
against roundoff errors (see Sec.2.2).

7. A generic multivariable function f (x, y) can be expanded as

f (x, y) ≈
N∑

i=0

M∑
j=0

ci jTi(x)T j(y). (2.39)

If f (x, y) is to be evaluated repeatedly, for example, at several different x
values while y remains fixed, the computational cost can be significantly
reduced. In fact, Eq. (2.39) can be rewritten as

f (x, y) ≈
N∑

i=0

 M∑
j=0

ci jT j(y)

 Ti(x) =
N∑

i=0

di(y)Ti(x). (2.40)

Here, Clenshaw’s recurrence is first used to compute the N + 1 coefficients
di(y). Then it is applied again to evaluate the function in x using these coeffi-
cients. After this initial computation, evaluating the function for any x with
the same y is reduced to that of a single-variable function with N + 1 coeffi-
cients (instead of a two-variable function with (N+1)× (M+1) coefficients).
This is especially beneficial when using root-finding routines.

All these features form the foundation of the independent software ChAppX, which
is described in detail in the remainder of this chapter. Instrumental to the real-
ization of SFQEDtoolkit, ChAppX not only identifies the Chebyshev coefficients
for generic functions of one, two, or three variables, but it is also equipped with a
heuristic “stopping” algorithm that guarantees the resulting approximation meets
a user-specified accuracy. This section is divided into three parts, each outlining a
different set of coefficient-finding routines based on the number of arguments re-
quired to evaluate the function. The discussion on “stopping strategies” is deferred
until the end of the chapter. As mentioned earlier, ChAppX is limited to functions
with up to three variables, since generalizations of Clenshaw’s recurrence formula
for functions with more than three variables tend to be highly inefficient. Moreover,
a large number of coefficients is required to approximate multivariate functions.
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2.4.1 One-variable function approximation

In ChAppX, the extraction of the ci coefficients in Eq. (2.6) is implemented in two
distinct modes: direct and iterated.

Direct mode

In direct mode, the user must specify an integer N, representing the approxima-
tion order plus one. This tells the software to compute all corresponding co-
efficients from c0 to cN−1. Direct mode supports three routines for calculating
the ci sequence, mirroring the methods discussed in Section 2.1: the extrema ap-
proach (Eq.(2.13)), the zeroes approach (Eq.(2.14)), and the projections approach
(Eq. (2.15)).

• In the extrema method, the coefficients ci are obtained using a slightly mod-
ified version of formula (2.13). Here, expression (2.9) is employed within
(2.5) to accelerate the computation and then substituted into (2.13), yielding

ci =
2

N(1 + δi0)

N∑
k=0

′′ f
(
cos

(kπ
N

))
cos

( ikπ
N

)
. (2.41)

This formula can be easily translated into code, enabling efficient computa-
tion of the coefficients.

• The same technique is applied to Eq. (2.14) for the zeroes case, which then
becomes

ci =
2

N(1 + δi0)

N∑
k=1

f
(
cos

(π(2k − 1)
2N

))
cos

( iπ(2k − 1)
2N

)
. (2.42)

• Similarly, by substituting the integration variable with x = cos(θ) in Eq. (2.15),
the coefficients for the projections method are given by

ci =
2

π(1 + δi0)

∫ π

0
f
(
cos(θ)

)
cos(iθ)dθ. (2.43)

Numerically, Eqs.(2.41) and (2.42) compute the coefficients using a finite number
of function evaluations, specifically at the extrema or zeroes, whereas Eq.(2.43)
(the projection method) depends heavily on the chosen quadrature scheme for eval-
uating the integrals. It is worth noting that when the coefficients corresponding to
a specific approximation order are computed as sums of products, as in Eqs. (2.41)
and (2.42), the attainable accuracy2 is limited by the machine epsilon, given by

2In our computational context, "accuracy" refers to the relative difference between the numerical
and the exact value of a quantity.
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ε = 2n−52, where 2n is the binary order of magnitude of the largest term in the
sum, and 52 is the number of bits in the mantissa for double-precision numbers.
This results in very small uncertainties3. In contrast, to ensure the convergence of
the integral in the projection method (2.43)−which, by its nature, always yields the
"exact" coefficients−the absolute and relative error tolerances must be set several
orders of magnitude above the machine epsilon. These considerations led us to
favor the extrema and zeroes methods over the projection method.

Iterated mode

The iterated version operates using two integers, N and max_iterations, along
with a double-precision floating-point number, threshold. In this mode, ChAppX
begins by sequentially invoking the direct method described earlier, first with 2N

and then with 2N+1 as its argument. This yields the coefficients corresponding to
the (2N − 1)-th and (2N+1 − 1)-th order approximations, respectively. These two
sets of coefficients are then compared according to the stopping strategy (see Sec.
2.4.3), producing the quantity difference. If difference < threshold, the
process terminates. Otherwise, it continues: the coefficients for the (2N+2 − 1)-th
order are computed and new difference is obtained by comparing the (2N+1−1)-
th and (2N+2−1)-th order coefficients. This loop repeats for up to max_iterations
times4.

The procedure used to compute the coefficients in each new iteration depends on
whether the extrema, zeroes, or projection approach is employed.

• The 1V iterated mode proves to be exceptionally intriguing when employed
alongside the extrema method, where eq. (2.13)

ci,(n−1) =
2

n(1 + δi0)

n∑
k=0

′′ f (x̂k,n)Ti(x̂k,n) (2.44)

determines the (n−1)−th order coefficients. For clarity of notation, a second
subscript index has been introduced to indicate the approximation order of
the coefficient set. Similarly, x̂k,n will denote one of the n+ 1 extrema, given
by

x̂k,n = cos
(kπ

n

)
, k = 0, ..., n, (2.45)

of the n-th Chebyshev polynomial Tn(x).

Let us consider the extrema corresponding to the 2s-th

x̂l,2s = cos
( lπ
2s

)
, l = 0, ..., 2s (2.46)

3Here, we refer to the uncertainties associated with calculating a function’s Chebyshev coeffi-
cients for a finite-order polynomial expansion, rather than those inherent to the “exact” order expan-
sion.

4The default value is 2, and it cannot be set lower.
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and 2s+1-th Chebyshev polynomial

x̂k,2s+1 = cos
( kπ
2s+1

)
, k = 0, ..., 2s+1. (2.47)

By splitting the latter into two subgroups: one for the even values of the
index k

x̂2l,2s+1 = cos
( 2lπ
2s+1

)
= cos

( lπ
2s

)
≡ x̂l,2s , (2.48)

where we set k = 2l (with l = 0, ..., 2s), and one for the odd values of k

x̂2l+1,2s+1 = cos
( (2l + 1)π

2s+1

)
, (2.49)

this time with k = 2l + 1 (l = 0, ..., 2s − 1), we notice that the even subset in
Eq. (2.48) matches the entire set of extrema in Eq. (2.46). This in turn means
that the 2s+1 extrema used in the computation of the Chebyshev coefficients,
corresponding to the (2s − 1)-th order approximation, can be entirely reused
for calculating the coefficients of the (2s+1−1)-th. By writing the expressions
for the coefficients ci,2s−1

ci,2s−1 =
2

2s(1 + δi0)

2s∑
k=0

′′ f (x̂k,2s)Ti(x̂k,2s), i = 0, ..., 2s − 1 (2.50)

and c j,2s+1−1

c j,2s+1−1 =
2

2s+1(1 + δi0)

2s+1∑
k=0

′′ f (x̂k,2s+1)T j(x̂k,2s+1), j = 0, ..., 2s+1 − 1,

(2.51)
we could split the altered summation in (2.51) into its even/odd parts5, as we
did before, yielding

c j,2s+1−1 =
2

2s+1(1 + δ j0)

2s+1∑
k=0

′′ f (x̂k,2s+1)T j(x̂k,2s+1) =

=
2

2s+1(1 + δ j0)

[ 2s∑
l=0

′′ f (x̂2l,2s+1)T j(x̂2l,2s+1) +
2s−1∑
l=0

f (x̂2l+1,2s+1)T j(x̂2l+1,2s+1)
]
=

(2.48)
=

2
2s+1(1 + δ j0)

[ 2s∑
l=0

′′ f (x̂l,2s)T j(x̂l,2s) +
2s−1∑
l=0

f (x̂2l+1,2s+1)T j(x̂2l+1,2s+1)
]
=

(2.50)
=

1
2

c j,2s−1 +
2

2s+1(1 + δ j0)

2s−1∑
l=0

f (x̂2l+1,2s+1)T j(x̂2l+1,2s+1) (2.52)

5Since the altered sum requires only the first (k = 0) and last (k = 2s+1) index terms to be halved,
the alteration will exclusively be inherited by the even part after the splitting.
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for j = 0, ..., 2s − 1. This means that all the coefficients belonging to the
(2s − 1)-th order Chebyshev approximation can be reused to compute the
first 2s coefficients associated to the new (2s+1−1)-th order, thus substantially
affecting the time complexity of our algorithm.

• Unfortunately, a similar trick does not work for the zeros and projection
approaches. In these methods, every iteration forces the direct routine to
be called with an increasingly larger argument. Moreover, as noted earlier,
the projection method consistently returns the exact coefficients (aside from
minor numerical deviations): the i-th iteration does not add any new infor-
mation to the coefficients computed in the (i−1)-th, and hence no corrections
are needed. Each new step simply computes the missing coefficients, leav-
ing those computed before unaltered. The projection method will not be
discussed any further.

The identity derived in Eq. (2.52) is not unexpected: when transitioning from one
approximation order (2N) to the next (2N+1), some extrema remain unchanged. As
a result, a subset of the new coefficients can be directly obtained from the previous
ones, requiring only minor corrections. This property, which we will refer to as
the extrema trick, extends naturally to two-, three-, and even multi-variable cases,
proving useful in section 2.4.2.

Finally, the precise method for computing the variable difference mentioned
earlier remains to be defined, a discussion we defer to section 2.4.4.

2.4.2 Two- and three-variables function approximation

The coefficient-finding routines in ChAppX for 2V and 3V functions closely mir-
ror their 1V counterparts. Not only are they implemented in the same direct and
iterated modes described in Sec. 2.4.1, but they also operate in an almost identical
manner, with the only distinction arising from the increased “dimensionality” of
the problem. In these cases, the array of Chebyshev coefficients ci extends to a
two- or three-dimensional matrix, ci j for 2V functions and ci jk for 3V functions.
Accordingly, the code replaces the 1V formulas (2.41) and (2.42) with their higher-
dimensional counterparts:

ci j = Ai j(N,M)
N∑

k=0

′′

M∑
l=0

′′ f
(
cos

(kπ
N

)
, cos

( lπ
M

))
cos

( ikπ
N

)
cos

( jlπ
M

)
(2.53)

and

ci j = Ai j(N,M)
N∑

k=1

M∑
l=1

f
(
cos

(π(2k − 1)
2N

)
, cos

(π(2l − 1)
2M

))
cos

( iπ(2k − 1)
2N

)
cos

( jπ(2l − 1)
2M

)
(2.54)
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for 2V functions, while uses

ci jk = Ai jk(N,M, L)
N∑

n=0

′′

M∑
m=0

′′

L∑
l=0

′′ f
(
cos

(nπ
N

)
, cos

(nπ
M

)
, cos

( lπ
L

))
cos

( inπ
N

)
cos

( jmπ
M

)
cos

(klπ
L

)
(2.55)

and

ci jk = Ai jk(N,M, L)
N∑

n=1

M∑
m=1

L∑
l=1

f
(
cos

(π(2n − 1)
2N

)
, cos

(π(2m − 1)
2M

)
, cos

(π(2l − 1)
2L

))
×

× cos
( iπ(2n − 1)

2N

)
cos

( jπ(2m − 1)
2M

)
cos

(kπ(2l − 1)
2L

)
(2.56)

when dealing with 3V functions. As mentioned at the end of Sec. 2.4.1, an ana-
logue of Eq. (2.43) is not available here. In addition to the reasons stated earlier,
the projection method becomes computationally impractical when multiple numer-
ical integrations are required. As a result, it has not been implemented in either the
2V or 3V Chebyshev approximators.

The 2V and 3V coefficient-finding algorithms incorporate the extrema trick as well,
just as in the 1V case, allowing the 2V and 3V code to run in iterated mode. The
extension of this trick to functions of two and three variables is discussed in the
following sections.

The extrema trick for 2V functions

We begin by rewriting Eq. (2.28) as

ci j,(N−1,M−1) = Ai j(N,M)
N∑

k=0

′′

M∑
l=0

′′ f (x̂k,N , ŷl,M)Ti(x̂k,N)T j(ŷl,M), (2.57)

explicitly showing the dependence on the two approximation orders, (N − 1) and
(M − 1), in both the coefficients (ci j,(N−1,M−1)) and the extrema (x̂k,N , ŷl,M). This
effectively reinstates the same notation introduced in Sec. 2.4.1. As in the 1V case,
we assume N = 2s and M = 2t to be powers of two. By leveraging the properties
of the extrema given in Eqs. (2.48) and (2.49), we can express ci j,(2s+1−1,2t+1−1) in
terms of ci j,(2s−1,2t−1). However, unlike the 1V case, increasing the approximation
order in 2V can be done in three distinct ways, each of which must be considered
separately.

• N = 2s → N′ = 2s+1 but same M:

ci j,(2s+1−1,M−1) =
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= Ai j(2s+1,M)
2s+1∑
k=0

′′

M∑
l=0

′′ f (x̂k,2s+1 , ŷl,M)Ti(x̂k,2s+1)T j(ŷl,M) =

split
= Ai j(2s+1,M)

[ 2s∑
k′=0

′′

M∑
l=0

′′ f (x̂2k′,2s+1 , ŷl,M)Ti(x̂2k′,2s+1)T j(ŷl,M)+

+

2s−1∑
k′=0

M∑
l=0

′′ f (x̂2k′+1,2s+1 , ŷl,M)Ti(x̂2k′+1,2s+1)T j(ŷl,M)
]
=

(2.48)
=

1
2

ci j,2s−1,M−1+

+ Ai j(2s+1,M)
2s−1∑
k′=0

M∑
l=0

′′ f (x̂2k′+1,2s+1 , ŷl,M)Ti(x̂2k′+1,2s+1)T j(ŷl,M)

(2.58)

• same N but M = 2t → M′ = 2t+1: the derivation is symmetric to the one
right above, so that we end up with

ci j,(N−1,2t+1−1) =

=
1
2

ci j,(N−1,2t−1)+

+ Ai j(N, 2t+1)
N∑

k=0

′′

2t−1∑
l′=0

f (x̂k,N , ŷ2l′+1,2s+1)Ti(x̂k,N)T j(ŷ2l′+1,2t+1).

(2.59)

• N = 2s → N′ = 2s+1 and M = 2t → M′ = 2t+1:

ci j,(2s+1−1,2t+1−1) =

= Ai j(2s+1, 2t+1)
2s+1∑
k=0

′′

2t+1∑
l=0

′′ f (x̂k,2s+1 , ŷl,2t+1)Ti(x̂k,2s+1)T j(ŷl,2t+1) =

split(k)
= Ai j(2s+1, 2t+1)

[ 2s∑
k′=0

′′

2t+1∑
l=0

′′ f (x̂2k′,2s+1 , ŷl,2t+1)Ti(x̂2k′,2s+1)]T j(ŷl,2t+1)+

+

2s−1∑
k′=0

2t+1∑
l=0

′′ f [x̂2k′+1,2s+1 , ŷl,2t+1)Ti(x̂2k′+1,2s+1)T j(ŷl,2t+1)
]
=

split(l)
= Ai j(2s+1, 2t+1)

[ 2s∑
k′=0

′′

2t∑
l′=0

′′ f [x̂2k′,2s+1 , ŷ2l′,2t+1)Ti(x̂2k′,2s+1)T j(ŷ2l′,2t+1)+

+

2s∑
k′=0

′′

2t−1∑
l′=0

f (x̂2k′,2s+1 , ŷ2l′+1,2t+1)Ti(x̂2k′,2s+1)T j(ŷ2l′+1,2t+1)+
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+

2s−1∑
k′=0

2t∑
l′=0

′′ f (x̂2k′+1,2s+1 , ŷ2l′,2t+1)Ti(x̂2k′+1,2s+1)T j(ŷ2l′,2t+1)+

+

2s−1∑
k′=0

2t−1∑
l′=0

f (x̂2k′+1,2s+1 , ŷ2l′+1,2t+1)Ti(x̂2k′+1,2s+1)T j(ŷ2l′+1,2t+1)
]
=

(2.48)
=

1
4

ci j,(2s−1,2t−1) + Ai j(2s+1, 2t+1)×

×

[ 2s∑
k′=0

′′

2t−1∑
l′=0

f (x̂k′,2s , ŷ2l′+1,2t+1)Ti(x̂k′,2s)T j(ŷ2l′+1,2t+1)+

+

2s−1∑
k′=0

2t∑
l′=0

′′ f (x̂2k′+1,2s+1 , ŷl′,2t )Ti(x̂2k′+1,2s+1)T j(ŷl′,2t )+

+

2s−1∑
k′=0

2t−1∑
l′=0

f (x̂2k′+1,2s+1 , ŷ2l′+1,2t+1)Ti(x̂2k′+1,2s+1)T j(ŷ2l′+1,2t+1)
]
.

(2.60)

Eq.s (2.58), (2.59) and (2.60) could be condensed into the more general form

ci j,(N′−1,M′−1) =
1

(2 − δN′N)(2 − δM′M)
ci j,(N−1,M−1) + Ai j(N′,M′)×

×

[
(1 − δM′M)

N∑
k′=0

′′

M−1∑
l′=0

f (x̂k′,N , ŷ2l′+1,M′)Ti(x̂k′,N)T j(ŷ2l′+1,M′)+

+ (1 − δN′N)
N−1∑
k′=0

M∑
l′=0

′′ f (x̂2k′+1,N′ , ŷl′,M)Ti(x̂2k′+1,N′)T j(ŷl′,M)+

+ (1 − δN′N)(1 − δM′M)
N−1∑
k′=0

M−1∑
l′=0

f (x̂2k′+1,N′ , ŷ2l′+1,M′)Ti(x̂2k′+1,N′)T j(ŷ2l′+1,M′)
]
.

(2.61)

Here, N and N′ are powers of 2 such that either N′ = N or N′ = 2N; the same
relationship holds for M and M′. As in the 1V case, the trick only applies to the
indices i = 0, ..., 2s − 1 and j = 0, ..., 2t − 1, meaning that i and j must lie within the
range of the previous order.

The extrema trick for 3V functions

In the 3V iterated mode implemented in ChAppX, the extrema trick is used to ex-
press the 3V Chebyshev coefficients ci jk,(N′−1,M′−1,L′−1) in terms of ci jk,(N−1,M−1,L−1).
This trick is based on arguments similar to those leading to Eq. (2.61), also the no-
tation employed here is the natural extension of that used to write Eq. (2.61),
and holds when the primed and unprimed orders are related by (N′,M′, L′) =
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(2aN, 2bM, 2cL), with a, b, c ∈ (0, 1). Without delving into the (excessively cum-
bersome) details, the final algorithm is as follows:

ci jk ,(N′−1,M′−1,L′−1) =
1

(2 − δN′N)(2 − δM′M)(2 − δL′L)
ci jk,(N−1,M−1,L−1)+

+ Ai jk(N′,M′, L′)×

×

[
HM′M

N∑
a′=0

′′

M−1∑
b′=0

L∑
c′=0

′′ f (x̂a′,N , ŷ2b′+1,M′ , ẑc′,L)Ti(x̂a′,N)T j(ŷ2b′+1,M′)Tk(ẑc′,L)+

+ HN′N

N−1∑
a′=0

M∑
b′=0

′′

L∑
c′=0

′′ f (x̂2a′+1,N′ , ŷb′,M, ẑc′,L)Ti(x̂2a′+1,N′)T j(ŷb′,M)Tk(ẑc′,L)+

+ HL′L

N∑
a′=0

′′

M∑
b′=0

′′

L−1∑
c′=0

f (x̂a′,N , ŷb′,M, ẑ2c′+1,L′)Ti(x̂a′,N)T j(ŷb′,M)Tk(ẑ2c′+1,L′)+

+ HN′N HM′M

N−1∑
a′=0

M−1∑
b′=0

L∑
c′=0

′′ f (x̂2a′+1,N′ , ŷ2b′+1,M′ , ẑc′,L)Ti(x̂2a′+1,N′)T j(ŷ2b′+1,M′)Tk(ẑc′,L)+

+ HN′N HL′L

N−1∑
a′=0

M∑
b′=0

′′

L−1∑
c′=0

f (x̂2a′+1,N′ , ŷb′,M, ẑ2c′+1,L′)Ti(x̂2a′+1,N′)T j(ŷb′,M)Tk(ẑ2c′+1,L′)+

+ HM′MHL′L

N∑
a′=0

′′

M−1∑
b′=0

L−1∑
c′=0

f (x̂a′,N , ŷ2b′+1,M′ , ẑ2c′+1,L′)Ti(x̂a′,N)T j(ŷ2b′+1,M′)Tk(ẑ2c′+1,L′)+

+ HN′N HM′MHL′L

N−1∑
a′=0

M−1∑
b′=0

L−1∑
c′=0

f (x̂2a′+1,N′ , ŷ2b′+1,M′ , ẑ2c′+1,L′)Ti(x̂2a′+1,N′)T j(ŷ2b′+1,M′)Tk(ẑ2c′+1,L′)
]
,

(2.62)

where
Hi j = (1 − δi j). (2.63)

2.4.3 Stopping strategy: how to stop the iterated version?

The following sections are devoted to describing the stopping strategy (StSt) cur-
rently implemented in the code. As an auxiliary component of ChAppX, the StSt
adaptively compares two consecutive sets of coefficients generated by the iter-
ated modes (see Secs. 2.4.1 and 2.4.2) to determine when to halt the calculation.
This approach guarantees that the code achieves high accuracies, with errors rang-
ing between 10−3% and 10−13%. While various algorithms could be devised for
this comparison, we focus on schemes that yield a parameter, already denoted as
difference in sec. 2.4.1, which quantifies the improvement in accuracy obtained
by increasing the approximation order.

Below, we present three preliminary considerations that will be useful before out-
lining the actual StSt implemented in the code. In the following discussion, the
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iteration I that a given set of coefficients corresponds to will be indicated in square
brackets. For example, for one-variable functions we denote the coefficients as
ci[I] and ci[I + 1]; for two-variable functions, we use ci j[I] and ci j[I + 1]6. De-
signing an effective stopping strategy is not as straightforward as it might seem;
ultimately, selecting the optimal approach involves both mathematical considera-
tions and numerical performance issues.

1st consideration

Suppose we have computed the approximation order Ō = 2N̄ − 1, and obtained all
its corresponding coefficients. If we set N̄ to be the largest representable integer,
our approximation cannot be improved further, litterally: our coefficients would be
determined with the maximum precision allowed by the machine. At this point,
by predicting the behavior of the target function, we could disregard all Chebyshev
coefficients beyond the point where they become “sufficiently small”. For example,
consider the Taylor expansion of the sine function,

sin(x) =
∞∑

i=0

(−1)i

(2i + 1)!
x2i+1. (2.64)

Notice that the coefficients drop below the (n = 0)-th order machine epsilon (i.e.,
20−52) after only 9 terms (since 1

(2·9+1)! < 2−52), meaning that the contribution of
terms beyond the ninth becomes negligible. Therefore, instead of iteratively com-
puting successive approximation orders until the desired accuracy is reached, we
could, in principle, compute the optimal approximation in one step, using for exam-
ple the projection method (despite all its drawbacks), and store only the necessary
coefficients. This approach would reduce both time and space complexity.

2nd consideration

In Section 2.4.1 we introduced the parameter difference and its underlying con-
cept. But what if we prescribe an entire array of such values? Denoting this array
by differencei, a naive definition for its i-th component is

differencei = ci[I + 1] − ci[I], (2.65)

which represents the difference between the i-th coefficients of two successive ap-
proximations. However, Eq. (2.65) is sensitive to the machine epsilon discussed

6For simplicity, we have abandoned the notation previously used, which explicitly specified the
approximation orders in the coefficients, in favor of a more compact representation that emphasizes
the iteration steps. Nonetheless, note that in iterated mode, the approximation orders for successive
iterations are related by: iteration : I → order : 2N − 1 and iteration : I + 1→ order : 2N+1 − 1.
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earlier, as it strongly depends on the magnitude of the coefficients. To mitigate this
sensitivity, one might instead use a normalized difference:

differencei =
ci[I + 1] − ci[I]

ci[I + 1]
. (2.66)

Yet, if a coefficient (say, the n-th) is expected to be zero, then (due to numerical
precision) it might end up being on the same order of the machine epsilon (e.g.
cn[I] ≈ 2−52). In such cases, Eq. (2.66) could yield an artificially large value (e.g.
differencen ≈ 1), and if cn[I + 1] = 0, it would result in a division by zero.

For the time being, let us set aside these complications. Regardless of the specific
method used to compute differencei, we can compare each element of this ar-
ray to a predefined threshold, denoted by threshold (also mentioned in Section
2.4.1), and decide to stop the iterated algorithm when

differencei < threshold ∀ i. (2.67)

At that point, one might retain only those coefficients ci[I + 1] that satisfy

ci[I + 1] > threshold, (2.68)

discarding all coefficients beyond the first index ī (in ascending order) for which
cī[I + 1] < threshold. If condition (2.67) is not met, the algorithm computes the
next iteration I + 2 and the process repeats.

3rd consideration

Suppose our 2V iterated mode is approximating a function f (x, y), so that at each
iteration I we obtain a two-dimensional matrix of coefficients ci j[I]. It is natural
to generalize the 1V definitions of differencei (Eqs. (2.65) and (2.66)) to two
dimensions:

differencei j =


ci j[I + 1] − ci j[I]

ci j[I+1]−ci j[I]
ci j[I+1]

. (2.69)

One might then evaluate the condition differencei j < threshold for all i and j.
However, it is not immediately clear how to determine which coefficients to retain.
In the 1V case, we processed the coefficients by ascending index order, but this
time we have both a row- and column-order (or equivalently an i- or j-direction).
One option is to apply the 1V procedure separately to each of the N rows and M
columns. We could then form a row-ensemble and a column-ensemble from the
resulting subsets, and finally construct a submatrix cī j̄[I + 1] (where ī < N and
j̄ < M) by selecting the coefficients that belong to both ensembles.
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Alternatively, we could view the matrix in Eq. (2.69) as a discrete surface and
use methods from multivariate calculus to assess its flatness. If the surface ex-
hibits a particularly steep slope along one direction (either i or j), we would then
increase the corresponding approximation order in the next iteration. Recall that
2V coefficient-finding routines require two approximation orders, N and M, one for
each variable. These orders correspond directly to the number of rows and columns
in the coefficient matrix ci j. In any case, this idea can be reduced to the 1V case,
where Eqs. (2.65) or (2.66) describe a curve whose behavior can be analyzed by
computing discrete derivatives. Specifically, we can outline the following StSt: af-
ter computing differencei using either Eq. (2.65) or Eq. (2.66), we calculate the
discrete derivative

di =
differencei+1 − differencei

(i + 1) − i
, (2.70)

and use threshold as an upper bound on the slope of this curve. Proceeding
in ascending order, if there exists an index i = ī such that dī > threshold and
cī[I + 1] < threshold, then the process stops and only the first ī coefficients are
retained; otherwise, the iteration continues.

However, one can readily imagine a scenario where this approach fails. For in-
stance, if all the ci change by the same amount between iterations, the differencei

curve would appear perfectly flat, even though every coefficients have changed
significantly: if the coefficients change too much in a single iteration, it clearly
indicates that there is still room for improvement and that the algorithm must con-
tinue. This suggests that further examination of the coefficients and their relative
differences is needed.

2.4.4 Implemented stopping strategy

In light of the previous discussion, we now present the definitive version of the
StSts implemented in ChAppX. What follows is a list of variables that the 1V and
2V algorithms either expect as input arguments or define internally.

• thr_num and thr_qual are both double-precision numbers representing
two distinct thresholds. The first, thr_num, defines the value below which
computed Chebyshev coefficients are considered negligible. The second,
thr_qual, determines whether the relative change in a coefficient from one
iteration to the next is small enough to halt the algorithm. Both thresholds
must be positive; otherwise, an error is raised.7

• istart, ī, and i⋆ are local integer variables initialized as istart = 0, ī = −1,
and i⋆ = −1. These serve as checkpoints or temporary buffers, marking key
indices where constraints begin to be checked.

7For added flexibility, if thr_num < 0, the algorithm automatically sets thr_num = thr_qual.
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• N, frequently encountered throughout, is an integer defining the approxima-
tion order O = 2N . Initially, it is set to N = 3.

• EPS0 represents the standard zero-order machine_epsilon, given by EPS0 =

2−52 ≈ 10−16.

• To clarify which iteration a given coefficient set belongs to, we adopt the
notation ci[last] for the most recently computed set and ci[prev] for the one
immediately before it.

• If the iterated mode fails to converge, the keyword FAIL is used: this triggers
N to increase by 1 (N = N + 1) and the process to restart from step 1.

• Lastly, ChAppX requires the user to specify the domain over which a 1V or
2V function should be approximated.

The flowcharts for the complete 1V and 2V iterated modes, including their StSts,
are provided below. As the reader might soon notice, no StSt is available for the
3V iterated mode, which will never be used. As it will become clear in Chapter 3,
handling 3V approximations is not only impractical but also severely impacts the
performances.

1V version

0. As a preliminary step, the function is first approximated to order O = 2N

f (x) =
2N−1∑
a=0

caTa(x).

For the sake of clarity, note that the polynomial order of the approximation
is actually 2N − 1 = O − 1. Once this initial approximation is obtained, N is
incremented by 1 (N = N + 1), and the iterated mode loop begins.

1. The 2N-order approximation is computed (again, its polynomial order is 2N−

1).

2. The first four coefficients from the latest iteration are combined into the vari-
able

f_order =
|c0[last]| + |c1[last]| + |c2[last]| + |c3[last]|

2
. (2.71)

This “staggered average” provides a reasonable estimate of the function’s
order of magnitude. The division by 2 (rather than 4) accounts for the ex-
pected oscillatory behavior of the coefficients when approximating periodic
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functions, where a division by 4 would likely underestimate (2.71). Expres-
sion (2.71) is then used to compute the inner threshold:

thr_inn = f_order · 250 · EPS0, (2.72)

which will later help determine whether a coefficient is small enough to be
considered negligible. The factor 250 is chosen ad hoc to accelerate the
algorithm’s convergence.

3. The coefficients ci[last], with indices in the range istart ≤ i < 2N

2 , form what
we define as ARRAY (ARRAYi = ci[last], ∀ i : istart ≤ i < 2N

2 )8. Next, the
following quantitative condition is evaluated for all elements in ARRAY

|ci[last]| < thr_num : (2.73)

the index of the last ARRAY component violating (2.73) is stored in ī. To
ensure proper convergence, we require ī ≤ 2N

2 − 2; otherwise, the process
FAILs. If no such ī is found, we distinguish between two cases: either every
element in ARRAY satisfies (2.73), in which case we set ī = 2N

2 − 1 and
proceed to the next step, or the process FAILs.

4. The qualitative conditions
|ci[last]| < thr_inn
|ci[last] − ci[prev]| < thr_inn
|
ci[last]−ci[prev]

ci[last] | < thr_qual

(2.74)

are evaluated for i : istart ≤ i ≤ ī. We define i⋆ as the smallest index
among the coefficients that fail to meet any of the three conditions specified
in (2.74). If no such i⋆ is found, then every coefficient is deemed valid, and
the algorithm is considered a SUCCESS: it terminates, retaining the first ī
coefficients for the approximation. Otherwise, if i⋆ exists, we set istart = i⋆

and the process FAILs.

The current StSt operates under two key assumptions: the Chebyshev coefficients i)
are monotonically decreasing, and ii) they reflect the approximated function’s order
of magnitude (as discussed above eq. (2.71)). Consequently, the absolute error ϵ f

of a Chebyshev approximation should correspond precisely to the magnitude of
the first coefficient omitted from the expansion (2.6). Based on these assumptions,
a user seeking an approximation for a function f (x) should run ChAppX’s iterated
mechanism with thr_qual = ϵ% and thr_num = ϵ f ≡ thr_qual · ORD, where
ORD represents the average order of magnitude of f (x) and ϵ% is the user-specified
percentage error between f (x) and its approximation.

8This ensures that ARRAY contains only those coefficients ci[last] that have a corresponding
index in the previous iteration’s set ci[prev].
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2V version

Similarly to the 1V version, the 2V iterated mode introduces additional variables
for the column direction. Specifically,

• a new set of variables, jstart, j̄, j⋆ and M, serve in the column direction the
same roles that istart, ī, i⋆ and N play in the row direction. Their functions
will be clarified in point 3 of the flowchart below;

• in addition, two Boolean flags, increase_N and increase_M, are intro-
duced and are initially set to true (increase_N = true, increase_M =
true).

The 2V algorithm proceeds through the following steps:

0. The function of interest is initially approximated to the order O = ON×OM =

2N × 2M with ON = 2N in x and OM = 2M in y. Note that these values don’t
refer to the actual polynomial orders in x and y, which instead are 2N −1 and
2M − 1 , respectively.

1. New approximation orders are computed as follows:9

ON = ON × (1 + increase_N)

OM = OM × (1 + increase_M). (2.75)

After these new orders are determined, the ON × OM-th order approxima-
tion is extracted using the approach described in Section 2.4.2. Finally, both
increase_N and increase_M are reset to false (increase_N = f alse, increase_M =
f alse).

2. The thr_inn and f_order variables are extracted according to

f_order_1 =
|c00[last]| + |c01[last]| + |c02[last]| + |c03[last]|

4

f_order_2 =
|c00[last]| + |c10[last]| + |c20[last]| + |c30[last]|

4

thr_inn =
f_order_1 + f_order_2

2
· 250 · EPS0

f_order = min[f_order_1,f_order_2]. (2.76)

3. Points 3 and 4 of the 1V procedure are applied independently to the first row
c0 j[last] (from jstart ≤ j < 2M

2 ) and the first column ci0[last] (from istart ≤

i < 2N

2 ) of the latest iteration’s coefficient matrix. At this stage, if processing

9In Eq. (2.75), the Boolean values true and false are cast to the integers 1 and 0, respectively.
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either the row or the column results in a failure, a correspondingFAIL_M
and/or a FAIL_N is triggered. Any FAIL_N sets increase_N=true (and
similarly, a FAIL_M sets increase_M=true), causing the 2V algorithm to
restart from point 1. Note that istart and jstart are updated in point 3, as
specified in Section 2.4.4. Conversely, if everything proceeds correctly, both
a ī and a j̄ are determined.

4. The set of conditions
|ci j[last]| < thr_inn
|ci j[last] − ci j[prev]| < thr_inn

|
ci j[last]−ci j[prev]

ci j[last] | < thr_qual

(2.77)

is evaluated for those coefficients whose pair of indices i j ranges within the
interval 1 ≤ i ≤ ī, 1 ≤ j ≤ j̄. If even a single ci j fails to satisfy all the
conditions in (2.77), we FAIL: both increase_N and increase_M are reset
to true, and the algorithm restarts from point 1. Otherwise, the algorithm
terminates, and the submatrix ci j[last] (with 0 ≤ i ≤ ī, 0 ≤ j ≤ j̄) is retained
for use in the 2D Clenshaw evaluation algorithm.

2.5 Important notes

We conclude our discussion of the Chebyshev approximator algorithms available
in ChAppX. In the preceding sections, we detailed the mathematical framework for
iteratively computing Chebyshev coefficients for successive approximation orders,
and outlined the corresponding stopping strategies. Before closing this chapter, we
wish to highlight several key points regarding the Chebyshev expansion of a func-
tion f (x), which will be denoted henceforth as C[ f (x)]. First, note that the conver-
gence rate of C[ f (x)] depends critically on the smoothness of f (x). Therefore, be-
fore computing the expansion, it is advisable to analyze f (x) and consider whether
its smoothness can be improved, for example, by applying a suitable change of
variables. Moreover, partitioning the domain of definition for one- or two-variable
functions into smaller intervals can substantially reduce the number of coefficients
needed to achieve a desired accuracy. At runtime, the microprocessor selects the
appropriate subinterval based on the actual values of the variables10.

In some cases, it is both simpler and more computationally efficient to employ
asymptotic expansions in regions where f (x) or its derivatives increase rapidly, or
when the domain is unbounded. Asymptotic expansions are also preferable when

10This process, known as branching, can create bottlenecks in modern pipelined microprocessors,
which execute multiple instructions per cycle. To mitigate this, processors are equipped with branch
predictors that select the most likely subinterval; accurate predictions can significantly enhance per-
formance. By carefully choosing the subintervals for approximation, one can ensure that a single
subinterval is used most frequently, further improving efficiency.
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f (x) is exponentially small or decays much faster than any polynomial; under these
conditions, f (x) and C[ f (x)] may approach zero at different rates, reducing the ac-
curacy of the approximation. Alternatively, it may be advantageous to compute
the Chebyshev expansion of a function derived from f (x). In this approach, one
first expands a transformed or derived function and then recovers f (x) from that
expansion. For instance, if f (x) or its derivatives diverge, expanding 1/ f (x) or
f (x)/g(x), where g(x) is an easily computable asymptotic function that renders
f (x)/g(x) smooth, may yield a more rapidly convergent Chebyshev series than ex-
panding f (x) directly. The original function can then be recovered as (C[1/ f (x)])−1

or g(x)C[ f (x)/g(x)], respectively.

2.6 Conclusions

This concludes our overview of ChAppX, the code used to systematically generate
Chebyshev approximations within SFQEDtoolkit. Designed to be both flexible
and intuitive, ChAppX is optimized for parallel execution across multiple CPUs
and can compute Chebyshev approximations for any function with arbitrarily high
accuracy. At present, the code is not publicly available, but access can be granted
upon request11. In the next chapter, we will introduce SFQEDtoolkit, a library
that integrates Chebyshev, asymptotic, and exponential expansions to achieve the
most efficient approximations of NIC and NBW distributions.

11For more details, please contact samuele.montefiori@mpi-hd.mpg.de.



Chapter 3

SFQEDtoolkit

SFQEDtoolkit [52] is an open-source library designed to integrate NIC photon
emission and NBW pair production processes into existing codes. It works by
computing and returning the probability rates and energies of particles generated
by these phenomena. Leveraging the Chebyshev approximator ChAppX and the
methods outlined in Chapter 2, the toolkit is optimized for both accuracy and ef-
ficiency. Its accuracy target is set above 99.9%, ensuring a relative error below
0.1%.

This chapter focuses on describing the implementation of SFQEDtoolkit, along
with its advantages and limitations. We begin with a brief introduction to the the-
oretical framework underlying NIC and NBW distributions, deferring a detailed
derivation of their expressions to Chapter 5.

3.1 Strong-Field QED

The dynamics of spin- 1
2 particles (e− and e+) in an electromagnetic background

field are governed by Quantum Electrodynamics (QED), described by the La-
grangian

LQED = −
1
4

FµνFµν + ψ̄(iγµ∂µ − m)ψ − eψ̄γµAµψ, (3.1)

where ψ and Aµ denote the fermion and photon fields, respectively, and Fµν =

∂µAν − ∂νAµ is the electromagnetic field-strength tensor. The adjoint spinor is
given by ψ̄ = ψ†γ0. Varying (3.1) with respect to Aµ yields the Maxwell equations
in the presence of a source:

∂µFµν = eψ̄γνψ. (3.2)

Similarly, variation with respect to ψ̄ and ψ produces the equations of motion for
the fermion field:

iγµ(∂µ + ieAµ)ψ = mψ (3.3)

−i(∂µ − ieAµ)ψ̄γµ = mψ̄. (3.4)

To enforce a specific gauge condition, such as the Lorenz gauge (∂µAµ = 0), a
gauge-fixing term −ρ2 (∂µAµ)2 can be added to (3.1), where ρ is the gauge-fixing
parameter.

37
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In modern experiments, the electromagnetic tensor field Fµν is often realized through
intense laser pulses [53], whose strength is typically characterized by the classical
nonlinearity parameter (already introduced in chapter 1)

ξ ≡ a0 =
|e|E

meω̄c
, (3.5)

which is Lorentz- and gauge-invariant. This parameter depends on the laser field
amplitude E and its angular frequency ω̄, and represents the work (in units of
mec2) done by the laser on an electron over a single optical cycle. When ξ ∼ 1, the
electron becomes relativistic (εe ∼ mec2) within one laser cycle, and the fermion-
photon interaction can no longer be treated perturbatively. This interaction, rep-
resented by the last term in the Lagrangian (3.1), typically scales with the fine-
structure constant α = e2/ℏc ≈ 1/137.036. However, in the presence of strong
electromagnetic fields, it reaches ∼ 1 , indicating a breakdown of standard pertur-
bation theory [54].

3.1.1 The Furry picture

The need to account for the fermion-field interaction exactly when computing
quantum amplitudes does not preclude analytical solutions. In fact, by adopting
the so-called Furry picture [55], we can decompose the photon field as

Aµ = Arad
µ + ABG

µ . (3.6)

Here, Arad
µ represents radiation field components, describing virtual, incoming, and

outgoing photons, while ABG
µ models the background laser field. In essence, the

first term in (3.6) accounts for quantum fluctuations around the classical back-
ground (second term). Given the high intensity of the laser field when ξ ∼ 1,
it is customary to assume that ABG

µ remains largely unaffected by the interaction
between fermions and the quantum radiation field Arad

µ . Consequently, the back-
ground field satisfies the free-field equation of motion, ∂µFBG

µν = 0, and its vacuum
expectation value coincides with that of the total field Aµ. The Furry picture enables
us to treat the background potential classically while incorporating its interaction
with the fermion field at the quantization level. As a result, the Dirac equation
takes the form

iγµ(∂µ + ieABG
µ )ψ = mψ, (3.7)

and, when the background is a plane-wave laser field, its solutions are known as
Volkov states (see section 3.1.2).

3.1.2 Volkov states

In 1935, Volkov [56] derived the first analytic solution of Eq. (3.7) in a plane-
wave background, thereby revealing the exact dynamics of electrons and positrons
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in such an electromagnetic field. Denoting the plane wave’s four-momentum as
k ≡ kµ = (ω, k⃗), and the particle’s space-time position as x ≡ xµ = (t, x⃗), Volkov
assumed the wave to be switched off in both the remote past and far future. This
ensures that the solutions to Eq. (3.7) reduce to free fermion states as t → ±∞

ψe−
p,s(x) −−−−−→

t→±∞

us(p)
√

2εV
exp

(
−ixµpµ

)
ψe+

p,s(x) −−−−−→
t→±∞

vs(p)
√

2εV
exp

(
ixµpµ

)
, (3.8)

where p ≡ pµ = (ε, p⃗) is the particle’s four-momentum, s represents its spin, and V
the quantization volume. The spinors us(p) and vs(p) satisfy the free positive- and
negative-frequencies Dirac equations

(γµpµ − m)us(p) = 0 (3.9)

(γµpµ + m)vs(p) = 0, (3.10)

with the normalization conditions

ūs(p)us′(p) = 2δss′ = −v̄s(p)vs′(p)

ūs(p)γµus′(p) = 2pµδss′ = v̄s(p)γµvs′(p). (3.11)

Without delving into the details of Volkov’s derivation, the exact solutions to Eq.
(3.7) for incoming and outgoing electron and positron states are [57]

ψe−
p,s(x) =

us(p)
√

2εV

(
1 + eγµγν

nµAν
2nρpρ

)
exp

(
−ixµpµ − i

∫ xµnµ

0
dϕ′

[
e

pµAµ(ϕ′)
nνpν

−
e2

2
Aν(ϕ′)Aν(ϕ′)

nνpν
])

ψe+
p,s(x) =

vs(p)
√

2εV

(
1 − eγµγν

nµAν
2nρpρ

)
exp

(
+ixµpµ − i

∫ xµnµ

0
dϕ′

[
e

pµAµ(ϕ′)
nνpν

+
e2

2
Aν(ϕ′)Aν(ϕ′)

nνpν
])
,

(3.12)

where nµ = (1, n⃗) = kµ
k0 , with n⃗ indicating the wave’s propagation direction, and

the four-potential Aµ(x′) is expressed in terms of the phase ϕ′ = x′µnµ = t′ − x⃗′.
To ensure consistency with the free states in Eq. (3.8), the incoming and outgoing
Volkov states (3.12) must be multiplied by the additional phase factors:

φe−
in = exp

(
−i

∫ 0

−∞

dϕ′
[
e

pµAµ(ϕ′)
nνpν

−
e2

2
Aν(ϕ′)Aν(ϕ′)

nνpν
])

φe−
out = exp

(
i
∫ ∞

0
dϕ′

[
e

pµAµ(ϕ′)
nνpν

−
e2

2
Aν(ϕ′)Aν(ϕ′)

nνpν
])

(3.13)

for electrons, or

φe+
in = exp

(
−i

∫ 0

−∞

dϕ′
[
e

pµAµ(ϕ′)
nνpν

+
e2

2
Aν(ϕ′)Aν(ϕ′)

nνpν
])
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Figure 3.1: Fermion line in the Furry picture. Largely employed in SFQED Feynman
diagrams, it denotes the dressed electron/positron propagator with respect to the external
background field ABG

µ .

φe+
out = exp

(
i
∫ ∞

0
dϕ′

[
e

pµAµ(ϕ′)
nνpν

+
e2

2
Aν(ϕ′)Aν(ϕ′)

nνpν
])

(3.14)

for positrons.

Volkov states (3.12) are used in Feynman diagrams to represent incoming and out-
going fermions quantized in the presence of a strong plane wave background. Sim-
ilarly, virtual off-shell fermions propagating in the same field are described by the
Volkov propagator [58]:

I(x, y) = lim
a→0

∫
d4 p

(2π)4

[
R(p, x)

γµpµ + m
pνpν − m2 + ia

R̄(p, y)
]
, (3.15)

where we introduce, for convenience, the operator

R(p, x) =
(
1+eγµγν

nµAν
2nρpρ

)
exp

(
−ixµpµ−i

∫ xµnµ

0
dϕ′

[
e

pµAµ(ϕ′)
nνpν

−
e2

2
Aν(ϕ′)Aν(ϕ′)

nνpν
])
.

(3.16)
Expression (3.15) corresponds to the Green’s function of the Dirac equation (3.7),
satisfying

[iγµ(∂µ + ieABG
µ ) − m]I(x, y) = δ4(x − y). (3.17)

Both Volkov in/out-states and the Volkov propagator are represented by double
fermion lines in Feynman diagrams (see Fig. 3.1), to denote all the possible inter-
actions between the fermion state and the background EM field. As we will see
in Chapter 5, they play a fundamental role in the computation of all distributions
employed in SFQEDtoolkit.

3.1.3 Locally-Constant-Field Approximation

The calculation of differential probabilities that SFQEDtoolkit can reproduce is
carried out within the S -matrix formalism of SFQED, specifically using the quasi-
classical operator method developed by Baier and Katkov (see Chapter 5 and [59]).
This method involves complex time integrals over the entire time range, from −∞
to +∞, and in principle one must consider the asymptotic states in both the past
and the future. However, when the temporal scale of the process is much smaller
than the variation scale of the electromagnetic fields, it becomes possible to use
rates that depend only on the instantaneous values of the particle parameters (see
Refs. [54, 59] for further details). This assumption forms the basis of the widely
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used locally-constant-field approximation (LCFA), which consists in treating the
background fields as locally constant crossed fields (CCF).

In the case of photon emission by an electron or positron interacting with a laser
pulse, the LCFA requires that:

ξ ≫ 1 and ξ3 ≫ χe, (3.18)

where χe is the quantum nonlinearity parameter1. Physically, the conditions in
(3.18) imply that:

• SFQED probabilities are dominated by a small region of the particle’s tra-
jectory, which is much smaller than the scale of variation of the background
electromagnetic fields (referred to as the formation length of the physical
process);

• The majority of the radiated photon spectrum is well approximated by the
LCFA photon spectrum [61, 62], i.e., the spectrum produced by applying the
LCFA at each photon emission from the electron.

3.2 Methodology of SFQEDtoolkit’s implementation

As stated at the beginning of this chapter, SFQEDtoolkit is designed to compute
rates and probability distributions for NIC and NBW processes with better than
0.1% accuracy, while achieving performance that is comparable to or exceeds that
of current state-of-the-art SFQED codes. Conventionally, these distributions are
computed using coarse lookup tables, where the relevant functions are sampled at
a finite number of points. In what follows, we use the precomputed tables from the
open-source PIC code Smilei as a benchmark [63]. Specifically we will consider

1This dimensionless, Lorentz- and gauge-invariant quantity is defined as

χe =
eℏ

m3
ec4

√
−(Fµνpν)2 and χγ =

eℏ
m3

ec4

√
−(Fµνkν)2 (3.19)

for electrons (or equivalently positrons) and photons, respectively. It characterizes the strength of
the interaction between the field and a relativistic electron. For massive particles like electrons and
positrons, it is more conveniently expressed as:

χe± = E∗/Ecr, (3.20)

where E∗ is the electromagnetic field amplitude in the fermion’s instantaneous rest frame [54, 59, 60].
In addition to the covariant expression (3.19), χ can be explicitly written as:

χe/γ =
εe/γ

mec2Fcr

√(
E⃗ +

p⃗e/γc
εe/γ

× B⃗
)2

−

(
p⃗e/γc
εe/γ

· E⃗
)2

, (3.21)

which applies to electrons, positrons, and photons with momentum p⃗e/γ and energy εe/γ in a back-
ground electric field E⃗ and magnetic field B⃗.
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two default resolutions: 256 and 1024 points in 1D (or 256× 256 and 1024× 1024
in 2D).

The methodology employed to implement SFQED processes in SFQEDtoolkit
chiefly resorts to a combination of: (i) function approximation with Chebyshev
polynomials; (ii) asymptotic expansions; (iii) variable and function transforma-
tion. Although the LCFA dramatically simplifies the calculation of probabilities,
the NIC photon spectrum computed within the LCFA framework differs both quan-
titatively and qualitatively from the exact spectrum at relatively low photon ener-
gies, i.e., when εγ ≲ (χe/ξ

3)εe, where εγ and εe denote the photon and electron
energies, respectively [61].

To properly model this low-energy region one has to resort to more advanced tech-
niques [62, 64–67]: while some of these accurately reproduce the interference fea-
tures of the emitted photon spectrum predicted by SFQED, most of them are only
suitable for specific cases (such as the interaction of particles with a plane-wave
pulse or with a crystal). In SFQEDtoolkit the technique described in Ref. [62]
is implemented (section 3.4), effectively allowing the library to reach beyond the
LCFA (BLCFA). Albeit this approach cannot exactly reproduce the SFQED spec-
trum for all photon energies, it provides a several orders of magnitude better ap-
proximation than the LCFA in the low energy part of the photon spectrum, while
retaining the advantages of the LCFA (the high energy part of the photon spectrum
corresponds to the SFQED one, it depends only on the local instantaneous value
of a particle’s parameters, and it’s suitable for background electromagnetic fields
with arbitrary spacetime structure such as those occurring in PIC simulations).

SFQEDtoolkit can be used as a black box, in which case the user can directly
refer to sec A, which summarizes the currently available routines and the essential
steps for a straightforward implementation of SFQEDtoolkit in a code. More
detailed instructions, updates and neat examples of its usage are provided in C++
and Fortran in the “example_cpp” and “example_fortran” folders in the GitHub
repository at https://github.com/QuantumPlasma/SFQEDtoolkit.

3.3 Photon emission and pair creation in the LCFA

Throughout the rest of the coming sections we will formally discuss the integration
into SFQEDtoolkit of the NIC and NBW distributions. As discussed above, a
detailed derivation of these complex functions is beyond the scope of this chapter
and will be presented in Chapter 5.

We begin this section by introducing two key differential probabilities from SFQED.
First, the differential probability per unit time t and per unit photon energy εγ for

https://github.com/QuantumPlasma/SFQEDtoolkit
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photon emission by an electron (or positron) with energy εe [44] is given by

d2Wpe

dtdεγ
(εγ, εe, χe) =

αm2
ec4

√
3πℏε2

e

1
(1 + u)

[[
1+(1+u)2]K 2

3

( 2u
3χe

)
−(1+u)

∫ ∞

2u
3χe

K 1
3

(
y
)
dy

]
,

(3.22)
where u = εγ/(εe − εγ) and Kν(x) denotes the modified Bessel functions of the
second kind. Next, the differential probability per unit time and per unit electron
energy for electron-positron pair creation by a photon of energy εγ is given by [44]:

d2Wpp

dtdεe
(εe, εγ, χγ) =

αm2
ec4

√
3πℏε2

γ

[
ε2

e + ε
2
p

εeεp
K 2

3

(
η
)
+

∫ ∞

η
K 1

3

(
y
)
dy

]
. (3.23)

where η = 2ε2
γ/(3εeεpχγ), and εp = εγ − εe is the energy of the produced positron.

These expressions serve as the foundation for the differential probability distribu-
tions implemented in SFQEDtoolkit.

Equations (3.22)-(3.23) are valid provided that the two field invariants, |E⃗2−B⃗2|/F2
cr

and |E⃗ ·B⃗|/F2
cr are much smaller than min(1, χ2

e/γ), , and that both the initial and final
electrons (or positrons) are ultrarelativistic, i.e., εe/p/(mec2) ≫ 1 (see Ref. [44]).
In this limit, the discrete nature of energy levels and the contributions from spin
degrees of freedom can be neglected, permitting a quasiclassical treatment. Fur-
thermore, if the background fields remain nearly constant and uniform over the
process’s formation length, these equations can also be applied to time- and space-
dependent electromagnetic fields [44, 54, 61, 62].

It is important to note that all current SFQED calculations assume that perturba-
tion theory in the Furry picture is applicable2. Moreover, the ultrarelativistic as-
sumption justifies the use of the collinear approximation, whereby the momenta of
the initial and produced particles are assumed to be aligned immediately after the
NIC or NBW event. In Eqs. (3.22)–(3.23), the initial (final) spin and polarization
degrees of freedom are averaged (summed). The implementation of the angular
distribution of the generated particles beyond the collinear approximation, as well
as the inclusion of spin-dependent SFQED effects, will be presented in Chapter 5.

3.3.1 Photon emission rate

As briefly discussed, each computational cycle involving SFQED processes first
consists in determining whether an event occurs according to its rate. From Eq. (3.22),

2However, according to the Ritus-Narozny conjecture, this assumption breaks down in the
regime αχ2/3 ≳ 1 (i.e., for χ ≳ 1600), where higher-order loop corrections become significant
and the theory enters a non-perturbative phase (see, e.g., Ref. [68] and references therein). Recent
studies have indicated that this breakdown is not universal; its onset depends on both the structure of
the electromagnetic fields and the energy of the incoming particles [69, 70].
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SFQED_INV_COMPTON_rate

χe Method
0 ≤ χe < 2 C (12)
2 ≤ χe < 20 C (11)
20 ≤ χe < 80 C (8)
80 ≤ χe < 600 C (10)
600 ≤ χe ≤ 2000 C (7)

SFQED_LCFA_INV_COMPTON_PHOTON_energy

r ≤ rmin rmin < r < rinv rinv ≤ r < rmax r ≥ rmax

A. (3.39) C (17 × 35) C (17 × 84) E. (3.41)
A. (3.39) C (12 × 37) C (10 × 84) E. (3.41)
A. (3.39) C (8 × 40) C (7 × 49) E. (3.41)
A. (3.39) C (12 × 42) C (9 × 53) E. (3.41)
A. (3.39) C (8 × 45) C (7 × 60) E. (3.41)

Table 3.1: Summary of the methods employed by the functions SFQED_INV_COMPTON_-
rate and SFQED_LCFA_INV_COMPTON_PHOTON_energy in each region of their do-
main. “C” denotes Clenshaw’s recurrence applied to a Chebyshev expansion, with the
number inside the round brackets reporting the available number of Chebyshev coeffi-
cients. The value of the Chebyshev coefficients is available in the “coefficients” folder
of SFQEDtoolkit, see, e.g., https://github.com/QuantumPlasma/SFQEDtoolkit.
“A.” denotes the asymptotic approximation in Eq. (3.39), while “E.” denotes the exponen-
tial approximation in Eq. (3.41).

the rate of photon emission is [44]

Rpe(εe, χe) =
∫ εe

0

d2Wpe

dtdεγ
(εγ, εe, χe)dεγ =

αm2
ec4

3
√

3πℏεe

∫ ∞

0

5u2 + 7u + 5
(1 + u)3 K 2

3

( 2u
3χe

)
du.

(3.24)
For its implementation in SFQEDtoolkit, it is convenient to change the dummy
variable of integration from u to v = 2u/3χe and express all quantities in normal-
ized units. Namely, we use an angular frequency ωr as a reference3, and conse-
quently obtain a reference time Tr = 1/ωr, a reference length λr = c/ωr and a
reference field Er = mecωr/|e|, while electron and photon energies are normal-
ized as γe/γ = εe/γ/mec2. Alternatively, one could express all the above reference
quantities in units of the laser wavelength λ, defining λr = λ/2π (from which
ωr = c/λr). The use of normalized quantities exhibits the scale invariance of the
Lorentz equation, and avoids to incur in possible numerical issues related to the
use of numbers that are too big or too small for floating-point arithmetic. After the
above transformations, Eq. (3.24) becomes

Wrad(γe, χe) =
Rpe(γe, χe)

ωr
=

α
√

3π

λr

λC

χe

γe
W̃rad(χe), (3.25)

where λC = ℏ/mec is the reduced Compton length and4

W̃rad(χe) =
∫ ∞

0

45(vχe)2 + 42vχe + 20
(2 + 3vχe)3 K 2

3

(
v
)
dv. (3.26)

In order to implement Eq. (3.25), we only need to compute C[W̃rad(χe)] to the de-
sired accuracy ∆pe =

∣∣∣∣{W̃rad(χe) − C[W̃rad(χe)
}
/W̃rad(χe)

∣∣∣∣, notice that the notation

3Notice that in practice, for instance in PIC simulations, ωr should correspond to an important
frequency that we want to resolve, like that associated to the process being simulated.

4In practice, the upper bound of integration is 700 as the integrand becomes so small that the
whole integral from 700 to infinity is ≲ 10−305, leading to underflow even with double precision
accuracy.

https://github.com/QuantumPlasma/SFQEDtoolkit
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Figure 3.2: Relative accuracy ∆pe(χe) =
∣∣∣∣{W̃rad(χe) − C[W̃rad(χe)

}
/W̃rad(χe)

∣∣∣∣ between the
analytical and the numerical SFQEDtoolkit photon emission rate (see function SFQED_-
INV_COMPTON_rate in A). Here ∆pe(χe) is evaluated at 104 evenly spaced points in the
interval 0 ≤ χe ≤ 2000.

introduced at the end of chapter 2 to designate the Chebyshev expansion C[ f (x)]
of a function f (x) has been employed. Figure 3.2 displays ∆pe over the consid-
ered interval 0 ≤ χe ≤ 2000 clearly showing SFQEDtoolkit’s better than 0.1%
accuracy throughout its domain. In SFQEDtoolkit, the Chebyshev coefficients of
C[W̃rad(χe)] are precomputed and stored into five separate text files according to
the following ranges: 0 ≤ χe < 2, 2 ≤ χe < 20, 20 ≤ χe < 80, 80 ≤ χe < 600, and
600 ≤ χe ≤ 2000 (see the summary in Tab. 3.1). At runtime, coefficients are loaded
once when the simulation is initialized. When the rate is calculated by calling the
function SFQED_INV_COMPTON_rate, the relevant interval is selected depending
on χe, and Clenshaw’s recurrence formula is applied to the corresponding coeffi-
cients (see 2.2). Approximately, ten coefficients per interval are needed to compute
C[W̃rad(χe)] with the desired accuracy (see Tab. 3.1). Such a small number of co-
efficients can fit in a modern CPU L1 cache greatly speeding up the simulation.
Given the smoothness of C[W̃rad(χe)], no asymptotic expansion is used.

We stress that the fast and accurate calculation of SFQED rates has major implica-
tions on the simulation results. On the one hand, insufficient accuracy may result
into a significant error in the predicted number of events, which systematically
accumulates during the simulation. On the other hand, low performances may no-
ticeably slow down the simulation given that SFQED rates are evaluated at each
timestep and for each particle. For example, we implemented SFQEDtoolkit in
Smilei and simulated the evolution of an ultralow-density bunch of Ne = 1010 elec-
trons with 10 GeV energy in a constant and uniform magnetic field. Parameters
were chosen such that χe = 1, initially, and the duration of the simulation was
Tsim = 1.3 fs, i.e., approximately half of the mean time required for an electron to
emit once. By comparing the number of photons produced in the Smilei simulation
with SFQEDtoolkit Ntk = 4.834×109, as well as in the Smilei simulation with its
default 256 points table NS = 5.111 × 109, with the expected number of photons
Na = NeTsimRpe(εe, χe = 1) ≈ 4.835 × 109, we observe that even after such a
short amount of time Smilei’s 256 points table value NS differs by 5.70% from the
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analytical prediction, while SFQEDtoolkit’s value Ntk differs by 0.04%.

3.3.2 Pair creation rate

The treatment of the pair creation rate follows similar steps as those of the photon
emission rate. By using the symmetry with respect to the εγ/2-axis of the integrand
in Eq. (3.23) and changing the variable of integration to v with 0 < v < 1 and
εe = εγ(1+v)/2, the rate of photon conversion into an electron positron pair is [44]

Rpp(εγ, χγ) =
∫ εγ

0

d2Wpp

dtdεe
(εe, εγ, χγ)dεe =

αm2
ec4

3
√

3πℏϵγ

∫ 1

0
dv

9 − v2

1 − v2 K 2
3

( 8
3χγ(1 − v2)

)
.

(3.27)
Notice that in Eq. (3.27) the ultrarelativistic assumption εγ ≫ mec2 and εe ≫ mec2

allowed us to approximate the upper and lower limits of integration to εγ and zero,
respectively. By converting to normalized units, we get

Wpair(γγ, χγ) =
Rpp(εγ, χγ)

ωr
=

α
√

3π

λr

λC

1
γγ

W̃pair(χγ), (3.28)

where

W̃pair(χγ) =
∫ 1

0
dv

9 − v2

3(1 − v2)
K 2

3

( 8
3χγ(1 − v2)

)
. (3.29)

Thus, we only need to approximate W̃pair(χγ) to the desired accuracy ∆pp defined,
as in the photon case, as the relative error between the exact and the approximate
function. This time the considered quantum nonlinearity range 0.01 ≤ χγ ≤ 2000
was divided into seven intervals: 0.01 ≤ χγ < 0.24, 0.24 ≤ χγ < 0.4, 0.4 ≤ χγ < 2,
2 ≤ χγ < 20, 20 ≤ χγ < 80, 80 ≤ χγ < 600 and 600 ≤ χγ ≤ 2000. While for each
interval in 0.24 ≤ χγ ≤ 2000 the coefficients of C[W̃pair(χγ)] were computed, for
χγ < 0.24 the pair creation rate is exponentially small and a Chebyshev expansion
is no longer suited to accurately calculate W̃pair(χγ). In this range SFQEDtoolkit
uses the asymptotic expansion [44]

Wpair(γγ, χγ) ≈
3
√

3α

16
√

2

λr

λC

χγ

γγ
e−

8
3χγ

(
1 −

11
64
χγ +

7585
73728

χ2
γ

)
for χγ < 0.24. (3.30)

Note that the pair creation rate becomes negligibly small Wpair ≲ 3.5×10−119αλr/λCγγ
for χγ < 0.01. Hence, the contribution of the regions where χγ < 0.01 is neglected
in SFQEDtoolkit.

It is worth noticing that, when using simulations to model realistic scenarios, the
value of χγ is necessarily affected by an experimental or observational uncertainty
∆χγ, e.g., because of the limited knowledge of physical parameters such as the
electromagnetic field or the particle’s energy, and the simulation itself is affected
by numerical and round-off effects. This uncertainty ∆χγ propagates to Wpair as
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SFQED_BREIT_WHEELER_rate

χγ Method
0.01 ≤ χγ < 0.24 A. (3.30)
0.24 ≤ χγ < 0.4 C (7)
0.4 ≤ χγ < 2 C (11)
2 ≤ χγ < 20 C (12)
20 ≤ χγ < 80 C (7)
80 ≤ χγ < 600 C (10)
600 ≤ χγ ≤ 2000 C (7)

SFQED_BREIT_WHEELER_ELECTRON_energy

χγ 0 ≤ |r′| < 0.9 0.9 ≤ |r′| ≤ 0.9999 |r′| > 0.9999
0.01 ≤ χγ ≤ 0.3 C (15 × 12) C (15 × 63) E. (3.49)
0.3 ≤ χγ ≤ 2 C (9 × 11) C (9 × 54) E. (3.49)
2 ≤ χγ ≤ 20 C (11 × 9) C (12 × 37) E. (3.49)
20 ≤ χγ ≤ 80 C (7 × 8) C (7 × 23) E. (3.49)
80 ≤ χγ ≤ 600 C (9 × 9) C (8 × 14) E. (3.49)
600 ≤ χγ ≤ 2000 C (5 × 9) C (5 × 8) E. (3.49)

Table 3.2: Summary of the methods employed by the functions SFQED_BREIT_WHEELER_-
rate and SFQED_BREIT_WHEELER_ELECTRON_energy in each region of the computa-
tional domain. “C” denotes Clenshaw’s recurrence applied to a Chebyshev expansion, with
the number inside the round brackets reporting the available number of Chebyshev coef-
ficients. The value of the Chebyshev coefficients is available in the “coefficients” folder
of SFQEDtoolkit, see, e.g., https://github.com/QuantumPlasma/SFQEDtoolkit.
“A.” denotes the asymptotic approximation in Eq. (3.30), while “E.” denotes the exponen-
tial approximation in Eq. (3.49).
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χγ

Figure 3.3: Relative accuracy ∆pp(χγ) =
∣∣∣∣{W̃pair(χγ) − C[W̃pair(χγ)

}
/W̃pair(χγ)

∣∣∣∣ between the
analytical and the numerical SFQEDtoolkit photon-to-electron-positron pair conversion
rate (see function SFQED_BREIT_WHEELER_rate in A). Here ∆pp(χγ) is evaluated at 104

evenly spaced points in the interval 0.01 ≤ χe ≤ 2000.

∆Wpair ≈ (dWpair/dχγ)∆χγ. Since the relative error d ln
(
Wpair

)
/dχγ rapidly di-

verges for χγ → 0, not only Wpair is tiny for small χγ, but also its relative error
necessarily becomes large. For this reason it is often of limited significance to
consider SFQED pair production in regions where χγ ≪ 1, and in addition to
the function SFQED_BREIT_WHEELER_rate which returns Wpair(γγ, χγ) for 0.01 ≤
χγ ≤ 2000, SFQEDtoolkit also provides a function SFQED_BREIT_WHEELER_-
rate_fast which returns zero for χγ < 0.3. Since Wpair ≲ 9.1×10−6αλr/λCγγ for
χγ < 0.3, the computationally cheaper SFQED_BREIT_WHEELER_rate_fast is ex-
pected to provide essentially the same results as SFQED_BREIT_WHEELER_rate in
many relevant cases while possibly improving the performance of the simulation.

Figure 3.3 displays ∆pp over the considered domain 0.01 ≤ χγ ≤ 2000. Simi-
larly to the photon emission rate, approximately ten coefficients per interval are
needed to compute C[W̃pair(χγ)] with the desired accuracy. Table 3.2 summarizes
the strategies of the pair creation routines reported in sections 3.3.2-3.3.4.

https://github.com/QuantumPlasma/SFQEDtoolkit
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3.3.3 Photon emission spectrum

Once an event is deemed to occur, the particles of the final state need to be gener-
ated according to the probability distribution of the process. By averaging (sum-
ming) over the initial (final) spin and polarization degrees of freedom, and by as-
suming that the momentum of the generated particles is aligned to the momentum
of the incoming particle, only the energy of the outgoing particles needs to be com-
puted in order to determine their state after the event. Now, let us assume that we
want to sample a particle with energy ε̄ in the range 0 < ε̄ < εtot according to an
arbitrary distribution f (x, ε). In this case one can resort to the inverse transform
sampling (ITS) method. Namely, given an f (x, ε), one needs to solve the equation∫ ε̄

0
f (x, ε)dε − r

∫ εtot

0
f (x, ε)dε = 0 (3.31)

in the unknown ε̄. Here x represents generic constant parameters and 0 < r < 1 is
a uniformly distributed random number. For photon emission by an electron, this
implies that one needs to solve∫ ε̄

0

d2Wpe

dtdεγ
(εγ, εe, χe)dεγ−r

∫ εe

0

d2Wpe

dtdεγ
(εγ, εe, χe)dεγ = Ipe(ε̄, εe, χe)−rRpe(εe, χe) = 0,

(3.32)
where the cumulative distribution function Ipe(ε̄, εe, χe) is obtained by integrating
Eq. (3.22) up to an arbitrary energy value ε̄

Ipe(ε̄, εe, χe) =
∫ ε̄

0

d2Wpe

dtdεγ
(εe, εγ, χe)dεγ. (3.33)

Equation (3.32) defines an implicit function ε̄ = Gpe(r, εe, χe), which can be cal-
culated up to arbitrary accuracy by numerically solving Eq. (3.32) with a suitable
root-finding algorithm, such as the Brent-Dekker method [71, 72]. However, direct
application of the above recipe at runtime in a PIC code would be prohibitively
expensive5.

In SFQEDtoolkit, the function SFQED_LCFA_INV_COMPTON_PHOTON_energy pro-
vides users with a fast and accurate approximation of Gpe(r, εe, χe). The accuracy
of the approximation ∆r is given by ∆r = |ε̄ITS − ε̄tk| /ε̄ITS , where ε̄ITS is the
value obtained via the ITS method computed with more than ten significant dig-
its accuracy, and ε̄tk is the value returned by SFQEDtoolkit. It is worth noting
that although the functions Ipe and Rpe in Eqs. (3.32)-(3.33) depend on two- and
three-variables, respectively, the total energy of the parent particle εe can be easily
factored out, and one is required to approximate functions of only one and two
variables, in practice.

5The application of a root-finding routine to (3.32) requires several computational cycles to
obtain ε̄, in which modified Bessel functions of the second kind (e.g. K2/3(x)) and their integrals
(
∫ ∞
η

dyK1/3(y)) are calculated multiple times.
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χe rmin rinv rmax

0 ≤ χe < 2 0.028 0.986 0.99999
2 ≤ χe < 20 0.041 0.987 0.99999
20 ≤ χe < 80 0.045 0.987 0.99996
80 ≤ χe < 600 0.040 0.987 0.99997
600 ≤ χe ≤ 2000 0.050 0.987 0.99998

Table 3.3: The numerical values of rmin, rinv and rmax for each of the five intervals of χe.

r

χe

Figure 3.4: Relative difference ∆r(χe, r) between the exact and the SFQEDtoolkit com-
puted photon emission energies (see SFQED_LCFA_INV_COMPTON_PHOTON_energy in A).
The contour plot is obtained by evenly evaluating ∆r(χe, r) at 104(χe)× 103(r) points in the
domain 0 ≤ χe ≤ 2000, 0 ≤ r ≤ 1. The colorbar ranges from the lowest to the highest
recorded ∆r.

Similarly to the photon emission rate, the domain of χe and r was divided into
smaller intervals either to reduce the required number of Chebyshev coefficients
or to use a different approximation method. The same intervals as for the photon
emission rate were used for χe, while r was divided into four intervals: 0 < r ≤
rmin, rmin < r ≤ rinv, rinv < r ≤ rmax, and rmax < r < 1. The value of rmin,
rinv and rmax depends on χe, and is reported in Tab. 3.3. Table 3.1 summarizes
the decomposition of the domain, the method used in each interval and, when the
function is approximated with Chebyshev polynomials, the number of employed
Chebyshev coefficients. Figure 3.4 plots the value of ∆r for the whole range of
0 ≤ χe ≤ 2000 and 0 < r < 1, which shows that ∆r < 10−4 throughout the whole
considered domain.

For its implementation in SFQEDtoolkit, the function Ipe in eq. (3.33) was con-
verted to normalized units, and the dummy variable of integration was changed
from εγ to

w = 3

√
2εγ

3(εe − εγ)χe
; εγ =

3εeχew3

2 + 3χew3 , (3.34)

which gives

Ipe(w̄, εe, χe) =
α
√

3π

λr

λC

χe

γe
ωr Ĩpe(w̄, χe), (3.35)
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where

Ĩpe(w̄, χe) =
∫ w̄

0

9w2dw
2(1 + s)3

{[
1 + (1 + s)2

]
K 2

3
(w3) − (1 + s)

∫ ∞

w3
K 1

3
(y)dy

}
, (3.36)

and s = 3χew3/2. By comparing eq.s (3.25) and (3.35), one finds that the ITS
equation (3.32) simplifies to

Ĩpe(w̄, χe) − rW̃rad(χe) = 0. (3.37)

From w̄, the photon energy εγ is easily obtained via Eq. (3.34). The change of
variable defined in Eq. (3.34) improves the smoothness of Ipe by removing the ε−2/3

γ

singularity of the integrand for εγ → 0, thereby reducing the required number of
Chebyshev coefficients.

We begin describing how SFQEDtoolkit implements the two-variable function
w̄ = G̃pe(r, χe), implicitly defined by eq. (3.37) in the interval rmin < r < rmax. A
natural choice is to approximate G̃pe(r, χe) with Chebyshev polynomials. In prac-
tice, despite this approach performs extremely well almost everywhere, G̃pe(r, χe)
and its derivatives rapidly grow for r → rmax such that the number of Cheby-
shev coefficients needed to accurately approximate the region around rmax becomes
large. To reduce the number of required coefficients while retaining high accuracy,
in the interval rmin < r < rinv and rinv < r < rmax the Chebyshev expansion of
G̃pe(r, χe) and of 1/G̃pe(r, χe) is respectively employed. In the latter case, G̃pe(r, χe)
is then readily obtained from [1/G̃pe(r, χe)]−1.

By contrast, SFQEDtoolkit solves eq. (3.37) in the limit r → 0 and r → 1, i.e.,
when the lower and the higher energy tail of the photon spectrum are approached,
by resorting to asymptotic expansions and exponential approximations. For r → 0,
one can expand eq. (3.36) as

Ĩpe(w̄, χe)
w̄→0
−−−−→

9
21/3Γ

(2
3

)
w̄, (3.38)

which is a better than 0.1% approximation of Ĩpe(w̄, χe) for r ≤ rmin. Then by
substituting eq. (3.38) in eq. (3.37), one immediately obtains

w̄ = rW̃rad(χe)
[ 9
21/3Γ

(2
3

)]−1
. (3.39)

Regarding r → 1, i.e., w̄ → ∞, we leverage on the fact that for w̄ above a certain
threshold w0, the function Ĩpe(w̄, χe) saturates to W̃rad(χe) = Ĩpe(∞, χe) and the
following exponential approximation holds

Ĩpe(w̄, χe) ≈ W̃rad(χe)(1 − e−(w̄3−w3
0)) + Ĩpe(w0, χe)e−(w̄3−w3

0). (3.40)

By substituting eq. (3.40) in eq. (3.37) one obtains

w̄ = 3

√
w3

0 − log
[

C[W̃rad(χe)](1 − r)
C[W̃rad(χe)] − C[Ĩpe(w0, χe)]

]
. (3.41)
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Note that: (i) there is no need to calculate the cubic root in eq. (3.41) since εγ de-
pends on w̄3; (ii) in eq. (3.41) we have explicitly indicated that in SFQEDtoolkit
the Chebyshev expansions of W̃rad(χe) and Ĩpe(w0, χe) have been used; (iii) this ap-
proximation is used for r ≥ rmax, and the corresponding χe-dependent threshold w0
is obtained from w0 = C[G̃pe(rmax, χe)], where C[G̃pe(rmax, χe)] is the Chebyshev
approximation of the function obtained by setting r = rmax in eq. (3.37).

We implemented SFQEDtoolkit in the open source PIC code Smilei [63, 73]
version 4.7 and simulated the evolution of an ensemble of 1010 electrons. The
charge density was kept very low to suppress self-fields−i.e., the fields generated
by the ensemble of charges and their motion−and particles were placed in a con-
stant and uniform external magnetic field with 10 GeV energy. Simulation pa-
rameters were chosen such that χe = 1, initially. The total simulation time was
set to one tenth of the time expected for an electron to emit once. We then re-
peated the same simulation using the original version of Smilei, which makes use
of 256-points pre-computed lookup tables and compared the results with those ob-
tained with SFQEDtoolkit. Figure 3.5(a) displays the photon spectrum obtained
from the original version of Smilei (red line), with SFQEDtoolkit (blue line),
and the analytical prediction (dashed green line). While Smilei with its default
256-points tables shows a marked stairlike pattern at high photon energies and a
significant deviation from the analytic spectrum also for photon energies around
0.2 εe, SFQEDtoolkit nearly perfectly matches the analytic spectrum throughout
the whole domain. Note that such discrepancies of Smilei with its 256-points tables
with respect to the analytic spectrum originate from the coarse tabulation. By em-
ploying Smilei with 1024-points tables the agreement with the analytic spectrum
significantly improves with respect to the 256-points tables, particularly in the re-
gion εγ/εe ∼ 0.2, while the stairlike pattern is much milder but remains visible
also with 1024-points tables. Regarding performance, a direct comparison of the
execution time of the default version of Smilei and of the SFQEDtoolkit imple-
mentation does not directly reflect the improvement, because the total simulation
time is strongly determined by the other operations of the PIC loop. Nevertheless,
in our tests the implementation with SFQEDtoolkit outperformed the 256 points
default Smilei by up to 12%.

3.3.4 Pair creation spectrum

The same methodology employed to sample the energy of emitted photons applies
in the case of photon conversion into an electron-positron pair. One needs to solve
the equation

∫ ε̄

0

d2Wpp

dtdεe
(εe, εγ, χγ)dεe−r

∫ εγ

0

d2Wpp

dtdεe
(εe, εγ, χγ)dεe = Ipp(ε̄, εγ, χγ)−rRpp(εγ, χγ) = 0,

(3.42)
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Figure 3.5: Synchrotron emission spectrum (main panel) and the low-energy region of the
differential distribution (inset) obtained from the evolution of 1010 electrons with 10 GeV
energy located in a constant and uniform magnetic field (such that χe = 1). The results of
the simulation performed using the default 256×256 points table of Smilei (red solid line),
the results of the same simulation with the SFQEDtoolkit implementation (blue solid
line) and the analytical spectrum (green dashed line) are showcased. The solid blue line in
panels (a) and (b) displays the results obtained from the SFQEDtoolkit implementation
where the provided 17 × 35 Chebyshev coefficient’s matrix and the reduced 15 × 25 sub-
matrix are used, respectively. See Sec. 3.3.5 for details.

where Ipp(ε̄, εγ, χγ) is obtained by integrating Eq. (3.23) up to ε̄

Ipp(ε̄, εγ, χγ) =
∫ ε̄

0

d2Wpp

dtdεe
(εe, εγ, χγ)dεe. (3.43)

In SFQEDtoolkit, we exploited the symmetry of Eq. (3.43) with respect to εγ/2 to
halve the domain of integration to εγ/2 < εe < εγ, converted to normalized units,
and changed the dummy variable of integration to

v =
2εe − εγ

εγ
; εe =

εγ(1 + v)
2

. (3.44)

Thus, the equation that needs to be solved simplifies to

Ĩpp(v̄, χγ) − |r′|W̃pair(χγ) = 0 (3.45)

where

Ĩpp(v̄, χγ) =
∫ v̄

0

[2(1 + v2)
1 − v2 K 2

3
(ηv) +

∫ ∞

ηv

K 1
3

(y) dy
]
dv, (3.46)

ηv = 8/[3χγ(1 − v2)], and r′ = 2r − 1 is a random number uniformly distributed
in −1 < r′ < 1 obtained from a random number r defined in 0 < r < 1. Equa-
tion (3.45) defines an implicit function v̄ = G̃pp(|r′|, χγ). Once v̄ has been deter-
mined, the relation

εe =
εγ[1 + sgn(r′)v]

2
(3.47)



3.3. PHOTON EMISSION AND PAIR CREATION IN THE LCFA 53

allows us to obtain the electron εe and positron εp = εγ − εe energy in their full
(0, εγ) domain. For χγ the domain of the function G̃pp(|r′|, χγ) is divided into six
intervals (see Tab. 3.2), while for |r′| it is divided into three intervals: 0 ≤ |r′| < 0.9,
0.9 ≤ |r′| ≤ 0.9999, and |r′| > 0.9999. In 0 ≤ |r′| ≤ 0.9999, Chebyshev polynomi-
als are used to approximate G̃pp(|r′|, χγ) to the desired accuracy. The division into
two intervals, i.e., in two distinct set of Chebyshev coefficients, is made only to re-
duce the number of required coefficients in the more probable region 0 ≤ |r′| < 0.9.
In fact, when |r′| → 1 the number of coefficients necessary to accurately approxi-
mate G̃pp(|r′|, χγ) increases dramatically, and to preserve the computational speed
granted by working with a restricted set of coefficients, we have chosen to sepa-
rate the smaller interval requiring a larger number of coefficients |r′| > 0.9 from
the more probable range 0 ≤ |r′| < 0.9. Finally, for |r′| > 0.9999 an exponential
approximation similar to eq. (3.40) is used to approximate the cumulative function

Ĩpp(v̄, χγ) ≈ W̃pair(χγ)

1 − e
−

(
8

3χγ(1−v2)
− 8

3χγ(1−v2
0)

) + Ĩpp(v̄0, χγ)e
−

(
8

3χγ(1−v2)
− 8

3χγ(1−v2
0)

)
.

(3.48)
By substituting eq. (3.48) in eq. (3.45) one obtains

v̄ =

√
1 −

( 1
1 − v2

0

−
3χγ
8

log
[ C[W̃pair(χγ)](1 − r)

C[W̃pair(χγ)] − C[Ĩpp(v̄0, χγ)]

])−1
, (3.49)

where we have indicated that in SFQEDtoolkit a Chebyshev expansion is used to
compute W̃pair(χγ) as well as Ĩpp(v̄0, χγ), and v0 = C[G̃pp(0.9999, χγ)].

The function SFQED_BREIT_WHEELER_ELECTRON_energy returns the energy of
the created electron once the normalized photon energy γγ, quantum parameter χγ
and a random number r uniformly distributed in (0, 1) are provided as input param-
eters. Figure 3.6 displays the accuracy of the approximation ∆r = |ε̄ITS − ε̄tk| /ε̄ITS

in the domain 0.3 < χγ < 2000 and 0 < r < 1. Symbols have the same meaning as
in the photon emission case.

3.3.5 Changing the number of coefficients used in a simulation

SFQEDtoolkit allows users to reduce the number of Chebyshev coefficients to
be employed at runtime, therefore reducing the accuracy but possibly enhancing
the performance of the library. For instance, the Chebyshev coefficients ci of a
one-variable function f (x) are stored in text files where the first row is an integer
reporting the total number n of coefficients stored in the file, the second and third
row contain floating point numbers that report the minimum and the maximum
of the interval where the function is approximated with Chebyshev polynomials,
respectively, while from the fourth row on the coefficients ci are written row by
row. By adding a colon followed by an integer k < n, i.e., by replacing n with n : k,
only the leading k coefficients out of the n total are employed at runtime.
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r

χγ

Figure 3.6: Relative difference ∆r(χγ, r) between the exact and the SFQEDtoolkit com-
puted lepton energy in the nonlinear Breit-Wheeler conversion of an energetic photon in an
electron-positron pair (see SFQED_BREIT_WHEELER_ELECTRON_energy in A). The con-
tour plot is obtained by evenly evaluating ∆r(χγ, r) at 104(χγ)×103(r) points in the domain
0.3 ≤ χe ≤ 2000, 0.5 ≤ r ≤ 1. The colorbar ranges from the lowest to the highest recorded
∆r.

Similarly, the Chebyshev coefficients ci j of a two-variable function f (x, y) are
stored in text files where the first and fourth row report the number of columns
n and of rows m of ci j, respectively. The second and third (fifth and sixth) row
of the file report the minimum and the maximum of first x (second y) variable of
f (x, y), respectively. Finally, starting from the seventh row of the file the coeffi-
cients ci j are written row by row following a row-major order. Also in this case,
one can reduce the number of used coefficients by editing the first (fourth) row of
the file, i.e, replacing n (m) with n : k (m : l) where k (l) is an integer smaller than n
(m). Unless otherwise specified, SFQEDtoolkit uses all the coefficients available
in a file.

For example, by repeating the simulation reported in Fig. 3.5(a) with a set of 15×25
coefficients (instead of the 17 × 35 provided with SFQEDtoolkit), the relative
error rises up to 0.7% while the time to execute the specific task of calculating the
photon spectrum reduces by approximately 30%. Figure 3.5(b) displays the photon
spectrum obtained with the above-mentioned reduced set of coefficients. Even
with the reduced set of coefficients, SFQEDtoolkit provides a photon spectrum
in manifestly much better agreement with the analytical prediction than Smilei’s
default algorithm and 256 × 256 points table [see Fig. 3.5(b)].

3.4 Photon emission beyond the locally-constant-field ap-
proximation

In the following we detail how the method of photon emission beyond LCFA de-
veloped in Ref. [62] is implemented in SFQEDtoolkit. In order to retain flexi-
bility and allow users to better adapt and customize functionality to their codes,
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SFQEDtoolkit provides a set of independent functions, each carrying out a spe-
cific task of the algorithm.

We begin by briefly reviewing the rationale of the algorithm. As detailed in Ref. [62],
the differential probability of photon emission d2Wpe/dtdγγ becomes almost flat
for a broad range of photon energies below a threshold γγ,LCFA, here normalized
to mec2, while it nearly coincides with the LCFA distribution above this threshold.
Before proceeding, it must be mentioned that from this point onward the just de-
scribed differential probability, and the photon emission rate related to it, will be
referred to as the improved (or BLCFA) differential probability, and the improved
rate. This implies that the use of the standard LCFA rate systematically results in an
orders of magnitude overestimated number of emitted photons for εγ ≲ (χe/ξ

3)εe.
Notice that γγ,LCFA depends on a characteristic local time of variation τ of the
transverse Lorentz force F⃗L,⊥ experienced by the emitting particle. This character-
istic time τ is obtained from the first ˙⃗FL,⊥ and second ¨⃗FL,⊥ time derivative of F⃗L,⊥

calculated along the emitting particle’s trajectory [62].

We stress that the calculation of the improved rate of photon emission for each par-
ticle and at each timestep now becomes relatively complex and computationally
expensive. A simpler and more efficient option is to use the LCFA usual rate of
photon emission to determine whether a photon emission event occurs. Only if the
event is deemed to occur according to the LCFA model, then the expected photon
energy is sampled from the LCFA differential probability of photon emission. If the
sampled photon energy γ̄γ exceeds the threshold γγ,LCFA, a photon with energy γ̄γ
is generated and the emitting particle recoils. Otherwise, the photon emission event
is either accepted or rejected by comparing an independent uniformly distributed
random number in (0, 1) with the ratio between the LCFA and the improved dif-
ferential probability of photon emission calculated at γ̄γ (see below). This greatly
improves the performance of the code, given that most of the above-mentioned
extra computational steps are performed rarely and only when needed.

SFQEDtoolkit provides a C++ object named BLCFA_Object which contains (i)
a three-element double precision array to store the transverse Lorentz force at the
penultimate timestep, (ii) a three-element double precision array to store the differ-
ence between the Lorentz force at the penultimate and the antipenultimate timestep,
and (iii) a boolean signaling whether the particle was created at the penultimate
timestep. This boolean is needed because for a new particle the transverse Lorentz
force at the penultimate and antipenultimate timestep is not available, and it thus
serves to establish whether the algorithm we are going to illustrate is eligible to
be employed or not (see Ref. [62] and below). These quantities, together with
the simulation timestep ∆t, the emitting particle energy γe and quantum parameter
χe, are used by the routine SFQED_BLCFA_INV_COMPTON_PHOTON_threshold to
calculate the threshold γγ,LCFA (see below and A)6.

6In addition, the class BLCFA_Object has been conceived to derive, through inheritance, an
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For clarity and completeness, we summarize below the steps needed to calculate
γ(n)
γ,LCFA at the (n)-th timestep, as well as the acceptance-rejection method. Follow-

ing Ref. [62], by starting from x⃗(n) and p⃗(n−1/2) advance the momentum to p⃗(n+1/2)
L

with the Lorentz force integrator existing in the code7. If the particle was created at
the penultimate timestep, which is signaled by the boolean of the BLCFA_Object,
set F(n−2)

L,⊥ = F(n−1)
L,⊥ = F(n)

L,⊥, then update the boolean describing its status, and
continue to the next particle. Otherwise, calculate

F(n)
L =

p(n+1/2)
L − p(n−1/2)

∆t
, (3.50)

p(n)
L =

p(n+1/2)
L + p(n−1/2)

2
, (3.51)

γ(n)
e =

√
1 + [p(n)

L ]2, (3.52)

F(n)
L,⊥ = F(n)

L −
F(n)

L · p(n)
L

[γ(n)]2 p(n)
L , (3.53)

χ(n)
e = τCγ

(n)

√[
F(n)

L,⊥

]2
, (3.54)

where τC is the Compton time and normalized units are employed. Note that the
ultrarelativistic approximation p(n)

L /|p(n)
L | ≈ p(n)

L /γ(n) is used in Eq. (3.53). Compute

Ḟ(n)
L,⊥ =

F(n)
L,⊥ − F(n−1)

L,⊥

∆t
, (3.55)

F̈(n)
L,⊥ =

(F(n)
L,⊥ − F(n−1)

L,⊥ ) − (F(n−1)
L,⊥ − F(n−2)

L,⊥ )

(∆t)2 , (3.56)

δ(n) =τ2
C

[
(Ḟ(n)

L,⊥)2 + |F(n)
L,⊥ · F̈

(n)
L,⊥|

]
. (3.57)

If (γ(n))2δ(n)/ζ2 > (χ(n))2(F(n)
L,⊥)2 and χ(n) > ζ, where ζ is a nearly negligible num-

ber relative to unity8, then calculate τ(n)/τC = 2π
√

[F(n)
L,⊥]2/δ(n). Otherwise the

background fields are either basically constant, and the LCFA applies throughout
the photon spectrum, or the quantum parameter χ(n) is negligibly small. This condi-
tion is introduced to avoid numerical issues for constant background fields, where

extended C++ object, which can be used to include all needed information on the state of a com-
putational particle. In the given PIC or Monte Carlo code where the user wants to implement
SFQEDtoolkit, a linked list, or possibly better for memory locality, an array or a C++ vector class of
particle objects derived from BLCFA_Object can be used to describe the state of an arbitrary number
of computational particles. Each BLCFA_Object is created by calling the routine SFQED_CREATE_-
BLCFA_OBJECT, and its content is updated at each timestep and for each particle via the routine
SFQED_BLCFA_OBJECT_update (see A for details).

7Here we consider a leapfrog integrator, i.e., position and momentum are shifted by half step.
There is however no conceptual difference in the method if position and momentum are given at the
same timestep, such as in a Runge-Kutta method.

8Assuming double precision arithmetic ζ ≈ 2.22 × 10−16.
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the LCFA holds and τ(n)/τC diverges. Finally, following Ref. [62]

γ(n)
γ,LCFA =

0.7γ(n)
e

1 + 4
3πχ(n)

e
sinh

[
3 sinh−1

(
χ(n)

e

8γ(n)
e

τ(n)

τC

)] , (3.58)

and the condition γ(n)
γ,LCFA < 0.75γ(n)

e is evaluated. If this latter condition is violated,
most of the spectrum is not approximated by the LCFA model, and the formation
of the emission probability becomes an intrinsically nonlocal process. In this case
we assume that no emission is deemed for the considered particle at this timestep.

Once γ(n)
γ,LCFA is known, the routine SFQED_BLCFA_INV_COMPTON_PHOTON_energy

samples the photon energy according the beyond (improved) LCFA differential
probability of photon emission. Its input arguments are γ(n)

e , χ(n)
e , γ(n)

γ,LCFA as well as
two independent uniformly distributed random numbers 0 < r1 < 1 and 0 < r2 < 1.
This routine first calls SFQED_LCFA_INV_COMPTON_PHOTON_energy, by giving
r1 as input parameter, to sample the LCFA-predicted emitted photon energy γ̄γ.
If γ̄γ > γ(n)

γ,LCFA, the routine simply returns γ̄γ. Otherwise, SFQED_BLCFA_INV_-
COMPTON_PHOTON_energy uses the second random number r2 to evaluate the con-
dition

r2

d2Wpe

dtdγγ
(γ̄γ, γe, χe)

 ≤ d2Wpe

dtdγγ
(γ(n)
γ,LCFA, γe, χe). (3.59)

If eq. (3.59) is fulfilled, then the routine returns γ̄γ. Otherwise, it returns zero,
which implies that no photon emission occurs. Note that in eq. (3.59) γe has been
written for clarity but is a global constant factor which multiplies both sides there-
fore canceling out. Hence, it is not used for evaluating eq. (3.59) in the code. In
addition, for its implementation the change of variable γγ = (3γeχew3)/(2+3χew3)
was performed, which gives

d2Wpe

dtdγγ
=

d2Wpe

dtdw

(
dγγ
dw

)−1

=
d2Wpe

dtdw
(2 + 3w3χe)2

18γew2χe
. (3.60)

The above change of variable is motivated by the fact that the function d2Wpe/dtdw
is efficiently approximated with Chebyshev polynomials in SFQEDtoolkit. By
contrast, d2Wpe/dtdγγ exhibits a γ−2/3

γ divergence when γγ tends to zero, which
makes it unsuitable for being expanded with Chebyshev polynomials, directly (see
discussion in sec. 2.6).

Figure 3.7 displays the results obtained after implementing SFQEDtoolkit rou-
tines into a fourth-order Runge-Kutta pusher, and by repeating the electron beam-
laser pulse simulations with the same choice of electron and laser parameters as in
Ref. [62]. By comparing the results in Fig. 3.7 with the corresponding results in
Ref. [62], it is apparent that the improved beyond LCFA spectrum is recovered.
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Figure 3.7: The LCFA vs the beyond LCFA (see Ref. [62]) differential photon emission
probability for an electron colliding head-on with a plane-wave pulse for the following
parameters: (a) 5 GeV electron initial energy, 5 fs (FWHM of the intensity) pulse duration,
and a0 = 8 normalized field amplitude; (b) 10 GeV electron initial energy, 5 fs pulse
duration, and a0 = 10 normalized field amplitude; (c) 10 GeV electron initial energy, 10 fs
pulse duration, and a0 = 3 normalized field amplitude.

3.5 Conclusions

In this chapter we have presented a novel approach that allows an efficient im-
plementation of the complex and computationally expensive functions needed to
model strong-field QED processes into codes. This approach leverages on a com-
bination of advanced function approximation techniques, and its key concepts can
be naturally used in other areas of research. The method resorts to a combination
of: (i) function approximation with Chebyshev polynomials; (ii) asymptotic ex-
pansions; (iii) variable and function transformation (see the end of sec. 2.6). We
have applied this method to create an open source library named SFQEDtoolkit,
which is designed to allow users for a straightforward implementation of SFQED
processes, namely nonlinear Compton emission and nonlinear Breit-Wheeler pair
creation, in existing particle-in-cell and Monte Carlo codes.

SFQEDtoolkit provides users with an efficient and better than 0.1% accuracy
implementation of SFQED processes throughout the whole particles’ spectrum.
Benchmarks performed with the PIC code Smilei version 4.7 have shown that
SFQEDtoolkit outperforms the default 256-points tables and achieves an accu-
racy better than that of 1024-points lookup-tables. Currently, photon emission and
pair creation with χe/γ ≤ 2000 are implemented by assuming the locally-constant-
field approximation and collinear emission of the generated particles. For photon
emission, the more advanced method beyond the locally-constant-field approxima-
tion presented in Ref. [62] (and section 3.4) is also included. The implementa-
tion of the angular distribution of generated particles, as well as of the spin and
polarization-dependent SFQED processes will be presented in chapter 5.



Chapter 4

The “thick-target” simulation: production of solid-
density e+-e− jets in beam-plasma collision

Electron-positron (e±) pairs are believed to be essential components of the plasma
in the vicinity of pulsars and magnetars, within the accretion disks surrounding
black holes, and in the jet plasma of quasars [74–78]. In these extreme environ-
ments, e± pairs are often immersed in intense electromagnetic fields and exposed
to a bath of radiation containing photons spanning a wide range of energies [75].
While our knowledge of e± plasmas is still speculative, the mass symmetry of
positrons and electrons is believed to result in unique behaviors that differ quali-
tatively from those of conventional ion-electron plasmas [79–81]. Open questions
include the study of the spatiotemporal dynamics of e± beams, as well as the tran-
sition between the linear and nonlinear stage of ultrarelativistic pair-plasma insta-
bilities, of which little is currently known [82]. However, due to the formidable
technical challenges in producing and maintaining a large number of e+, the cre-
ation of quasi-neutral e± plasmas, particularly under highly magnetized conditions,
remains a critical step toward probing the microphysics governing extreme astro-
physical environments in the laboratory [83, 84].

Methods for generating e± beams include pair production from high-energy pro-
tons [85], electrons [86], or photon beams. In the latter method, high-energy pho-
tons are typically produced via bremsstrahlung when energetic particles collide
with the nuclei of a target. These photons subsequently interact with the target
nuclei, converting into e± pairs via the Breit-Wheeler process [17, 87]. Despite
recent experimental advancements using these methods, the resulting pair plasmas
have not yet exhibited collective features [17, 85]. High-energy electron beam col-
lisions with intense laser pulses have also been proposed as a high-yield source
of particle-antiparticle pairs, potentially suitable for probing collective pair plasma
effects [88]. In this scheme, e± pair generation occurs through strong-field quan-
tum electrodynamics (QED) cascades. Initially, high-energy photons are produced
through the interaction of an intense optical laser pulse with an electron beam via
NIC. Subsequently, e± pairs are generated from photon decay in the intense laser
field, a process known as NBW pair production [44, 54, 89]. However, probing the
interplay between SFQED and plasma dynamics via electron beam-laser pulse col-
lisions requires the simultaneous availability of tens-of-GeV electron beams and
multipetawatt laser pulses, a combination that is not currently present at any facil-

59
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ity worldwide. Furthermore, this approach is hampered by significant shot-to-shot
fluctuations as well as the stringent alignment and synchronization requirements
between the electron beam and the laser pulse, which have thus far hindered sub-
stantial experimental progress.

In this work we present a laserless, single-electron-beam approach for producing
low-emittance, collimated gamma-ray and e± pair jets with densities up to three
orders of magnitude higher than that of a solid.

4.1 The simulation set-up

We have conducted fully three-dimensional (3D) particle-in-cell (PIC) simulations
to study the interaction of an electron beam with a stack of thin aluminum foil [90],
followed by its interaction with a thick target conductor (see Fig. 4.1). The initial
electron beam has a charge of 2 nC and features Gaussian spatial and momentum
distributions with a spherical shape and a full width at half maximum (FWHM) of
1.3 µm. It has a mean energy of 10 GeV, an energy spread of 212 MeV FWHM,
and a normalized emittance of 3 mm-mrad. The beam collides with six consecutive
aluminum foils, each with a thickness of 0.5 µm, an interfoil distance of 10 µm,
and an initial electron density of 1.8× 1029 m−3. After interacting with the six thin
foils, the mean beam energy is approximately 8.9 GeV. Notably, the simulation up
to this stage was previously performed by our group in [90].

The electron beam generated from this “multifoil interaction” is then extracted,
while high-energy photons and e± pairs produced in the process are neglected. The
electron beam is subsequently used as input for three separate simulations, which
are the focus of this chapter. In the first and second simulations, the 8.9 GeV elec-
tron beam collides with thick targets made of lithium and gold, respectively. The
third simulation closely follows the second, but instead uses an 89 GeV electron
beam, which is initialized by scaling up the momenta of all particles in the 8.9 GeV
beam by a factor of ten.

4.1.1 Simulation specifics

At the start of the simulations, the center of the electron beam is approximately 5
µm from the surface of the foil, and particles’ momentum is not updated for the
first 3.42 µm to allow for the beam’s self-field creation before the beam interacts
with the target. Simulations were independently conducted using CALDER [43]
and the open-source PIC code Smilei [63], showing very good agreement. The ini-
tial self-consistent beam fields, the effects of field [91] and collisional [92] ioniza-
tion, and binary Coulomb collisions were included [92]. Bremsstrahlung emission
and Bethe-Heitler pair production were implemented using state-of-the-art Monte-
Carlo methods [93]. Nonlinear inverse Compton scattering (NIC) and nonlinear
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Figure 4.1: A dense, high-energy electron beam is directed at a stack of thin Al foils, where
it is focused by the strong coherent transition radiation generated at the surface of each foil.
The focused beam then collides with a thick target conductor (Li and Au are considered
here), generating a plasma channel with ultra-strong electromagnetic fields, which field-
ionize the conductor atoms. The interaction of the beam with the self-generated plasma
channel fields results in copious gamma-ray emission and photon decay into e± pairs via
the NIC and NBW processes, respectively.

Breit-Wheeler pair production (NBW) were implemented using the open-source
strong-field QED library SFQEDtoolkit [52]. The computational box size is 5
µm × 2.7 µm × 2.7 µm, with grid points distributed as 800 × 864 × 864 in the x,
y, and z directions, respectively. The simulations use a timestep of 4 × 10−18 s.
To track the beam evolution, the moving window technique was employed. The
target plasma consists of either gold or lithium, with electron number densities of
nAu ≈ 5.90 × 1028 m−3 and nLi ≈ 4.64 × 1028 m−3, respectively. At initialization, 2
particles per cell (ppc) are used for both electrons and ions in the target.

4.2 Discussion and results

A schematic of the setup is shown in Fig. 4.1. A dense, high-energy electron beam
collides with a series of thin aluminum foils. During each beam-foil collision,
the electron beam interacts with the strong coherent transition radiation (CTR)
generated at the surface of the foils. This process has recently been demonstrated
to both induce intense photon emission and focus the electron beam to densities
approaching those of a solid [90]. The CTR-focused electron beam then collides
with a thick gold target, with lithium also considered to highlight the critical role
of the target material.

Within the target, the unipolar space-charge field of the beam transversely displaces
plasma electrons, creating a plasma channel where the beam’s electric field can be
partially neutralized by the plasma. This leaves the magnetic self-pinching force
of the beam partially uncompensated, resulting in a further increase of the beam
density. This blowout mechanism is similar to that observed in plasma wakefield
accelerators operating in gaseous media [94, 95]. Since the electromagnetic field of
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Figure 4.2: Densities (Log scale) of the plasma electrons (panels ii, iv and vi) and electron
beam (panels i, iii and v), in units of 1027 m−3, after the latter has propagated 10 µm inside
the target. Panels i-ii correspond to the collision between the 8.9 GeV beam and the Li
target, panels iii-iv to that between the 8.9 GeV beam and the Au target, and panels v-vi
correspond to the interaction between the 89 GeV beam and Au target. Note the different
scales on the x and y axis.

the beam exceeds the field ionization threshold [96], the target undergoes ionization
within a narrow region surrounding the beam. The level of ionization depends on
the atomic number Z of the target and the strength of the beam field. Ionization
provides free electrons to the plasma, thus enhancing the screening of the beam
electric field and increasing the pinching force of the magnetic field.

This mechanism is illustrated in Figs. 4.2 and 4.3, where the electron beam density
(left column, panels i, iii, and v) and plasma electron density (right column, panels
ii, iv, and vi) are shown for the three simulations. The figures compare results
obtained with (Fig. 4.2) and without (Fig. 4.3) the activation of field ionization
and pair production (check figures’ captions for additional details), after the beam
has propagated 10 µm into the target. The more electrons available to the plasma,
either due to activated field ionization or the material’s high atomic number (Z),
the more easily it can shield the field induced by the beam and reduce the size of
the plasma channel (see panels ii, iv, and vi in Figs. 4.2-4.3). At the same time,
this process tightly focuses the electron beam to densities three orders of magnitude
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Figure 4.3: Identical to Fig. 4.2, except that the simulation for panels i–ii was performed
without field ionization, while those for panels iii–vi exclude any e± pair creation modules.

higher than those of electrons in solids (panels i, iii, and v in Figs. 4.2-4.3), thereby
amplifying the beam field amplitude and enhancing its capacity to further ionize
the target atoms in a self-reinforcing cycle. The cycle continues until either the
target becomes fully ionized or the beam field falls below the ionization threshold
of the inner-shell electrons of the target material.

As shown in Fig. 4.4, the beam’s self-generated magnetic field (panels ii, iv, and
vi) reaches an intensity of approximately 107 T, while the corresponding electric
field (panels i, iii, and v) exhibits a comparable magnitude. This field strength lies
within the 107 − 109 T range typical of canonical radio pulsars, and is orders of
magnitude higher than the 104 − 105 T characteristic of millisecond pulsars [97].
Achieving a field of similar strength would require a laser system capable of deliv-
ering an intensity of 1024 W/cm2, which is an order of magnitude higher than the
current world record [4]. Additionally, the beam parameters required for probing
this regime are within reach of the Facility for Advanced Accelerator Experimental
Tests (FACET-II) at the SLAC National Accelerator Laboratory once its advanced
beam compression capabilities are fully realized [98].

For the high-energy electron beam considered here, and given the strong self-
generated field within the target, the beam particles achieve a quantum parameter
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Figure 4.4: Absolute value (Log scale) of the y-component of the electric field |Ey|, in unit
of c · 105 T (panels i, iii and v), and z-component of the magnetic field |Bz|, in unit of 105

T (panels ii, iv and vi), after approximately 10 µm of beam propagation through the target.
As in fig. 4.2, panels i-ii correspond to the collision between the 8.9 GeV beam and the Li
target, panels iii-iv to that between the 8.9 GeV beam and the Au target, and panels v-vi
correspond to the interaction between the 89 GeV beam and Au target. Note the different
scales on the x and y axis.

χ = E∗/Ecr that significantly exceeds unity, thus entering the supercritical regime
of strong-field QED [44, 54, 89]. Here, E∗ ∼ γ|E⃗⊥ + v⃗ ∧ B⃗| is the electric field
experienced by a e− in its instantaneous rest frame, and Ecr ≈ 1.3 × 1018 V / m
(Bcr ≈ 4.4 × 109 T) is the critical, or Schwinger, electric (magnetic) field of QED.
The electric field component perpendicular to the particle velocity v⃗ is denoted by
E⃗⊥, and B⃗ represents the magnetic field. γ =

(
1 − v2

c2

) 1
2 is the relativistic Lorentz

factor. As shown in Fig. 4.5, the beam’s quantum nonlinearity parameter, χ, begins
to increase immediately after it crosses the thick target interface at x ≈ 5µm. Once
inside the target, χ rapidly rises into the supercritical regime and then saturates at
its maximum value between 8 and 10 µm of propagation. Moreover, a higher beam
energy or a larger atomic number Z of the target enhances this effect: in panel iii
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Figure 4.5: Evolution of the maximum
quantum nonlinearity parameter (χ) of the
electron beam during its collision with a
thick solid metal target. The beam en-
ergies are 8.9 GeV (panels i–ii) and 89
GeV (panel iii), and the target materials are
Lithium (panel i) and Gold (panels ii–iii).

Figure 4.6: Evolution of the number of
produced particles as the beam propagates
through the target. The green line repre-
sents NIC photons, the blue line denotes
NBW e± pairs, and the orange line shows
Bethe–Heitler e± pairs. In panels i and ii,
the beam energy is 8.9 GeV, while panel
iii features a beam energy of 89 GeV. The
target material is Lithium in panel i and
Gold in panels ii and iii.
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of Fig. 4.5, χ reaches values up to1 400!

At values of χ ≫ 1, electrons and positrons are highly likely to emit individ-
ual photons via NIC, with each photon carrying away a significant fraction of the
emitter’s kinetic energy. These energetic photons can subsequently convert into e±

pairs through the NBW process [44, 54, 89]. As these newly created pairs can also
emit photons, an exponentially growing strong-field QED cascade rapidly enriches
the plasma surrounding the beam with additional pairs—often within just a few
tens of femtoseconds. Figure 4.6 summarizes this exponential particle production
process. In the figure, NIC photons (green line) are abundantly produced as the
primary electrons of the beam interact with the self-induced electromagnetic field
inside the target. These photons can then decay into electron–positron pairs ei-
ther by colliding with the Coulomb field of the target nuclei via the Bethe–Heitler
mechanism (yellow line) or by interacting with the strong electromagnetic fields
inside the solid via the NBW process (blue line), with the latter channel being
preferred.

As shown in fig. 4.7, the generated e− (panels i, iii and v) are focused by the mag-
netic field around the beam axis, reaching densities up to four orders of magnitude
higher than those typically found in solids. In contrast, e+ (panels ii, iv and vi) are
defocused, resulting in a substantial local increase in the electron current density,
the associated magnetic field, and the χ experienced by the beam’s particles. This,
in turn, increases the probability of high-energy photon emission and their conver-
sion into pairs, creating a positive feedback cycle. This cycle is ultimately limited
by energy losses, as the generation of new e± pairs is strongly suppressed when χ
drops below unity due to the rapid decrease in γ.

Finally, Figs. 4.7, 4.8, and 4.9 reveal something intriguing: the formation of "short
jet" structures, consisting of highly collimated and ultrarelativistic NBW e± pairs,
with average divergence and energy of ⟨θ⟩ ≈ 0.1 rad and ⟨ε⟩ ≈ 1 GeV. These
findings support the setup shown in Fig. 4.1 as a promising mechanism for pair
plasma production.

4.3 Conclusions

Here we demonstrated that above-solid-density electron-positron jets, embedded
in self-generated magnetic fields reaching up to ten megatesla, can be produced by
colliding a dense, high-energy electron beam with a high-Z conductor such as gold.
Remarkably, this occurs in a new regime in which the plasma response, atomic field
ionization, high-energy photon emission, and photon decay into electron-positron
pairs mutually reinforce one another through positive feedback cycles. Our results

1Simulating SFQED processes for particles in the supercritical regime is challenging without the
SFQEDtoolkit, as state-of-the-art methods lose accuracy at such high χ values.
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Figure 4.7: Densities (Log scale) of the electrons (panels i, iii and v) and positrons (panels
ii, iv and vi), in units of 1027 m−3, generated via NBW after the primary electron beam
has propagated 10 µm inside the target. Panels i-ii correspond to the collision between the
8.9 GeV beam and the Li target, panels iii-iv to that between the 8.9 GeV beam and the
Au target, and panels v-vi correspond to the interaction between the 89 GeV beam and Au
target. Note the different scales on the x and y axis.

are an important step towards probing the microphysics governing extreme astro-
physical environments and open up research in conditions under which atomic,
plasma, and strong-field QED physics interweave.
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Figure 4.8: Energy distributions (Log scale) of the electrons (panels i, iii and v) and
positrons (panels ii, iv and vi) generated via NBW after the primary electron beam has
propagated 10 µm inside the target. Panels i-ii correspond to the collision between the 8.9
GeV beam and the Li target, panels iii-iv to that between the 8.9 GeV beam and the Au
target, and panels v-vi correspond to the interaction between the 89 GeV beam and Au tar-
get. The red vertical line corresponds to the average energy value associated to the given
distribution.
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Figure 4.9: Divergence distributions (Log scale) for NBW electrons (panels i, iii, and v)
and positrons (panels ii, iv, and vi) are shown after approximately 10 µm of beam propaga-
tion through the target. Panels i-ii correspond to the collision between the 8.9 GeV beam
and the Li target, panels iii-iv to that between the 8.9 GeV beam and the Au target, and
panels v-vi correspond to the interaction between the 89 GeV beam and Au target. In each
case, the vertical red line indicates the average value.
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Chapter 5

Fully resolved NIC and NBW processes

The modeling of Strong-Field (SF) QED particles (positrons, electrons, and pho-
tons) and their interactions within particle-in-cell (PIC) and Monte-Carlo (MC)
codes is the primary tool available for studying extreme plasma conditions and as-
trophysical compact objects. Reference [44] provides a comprehensive summary
of our current understanding of SFQED processes, to the extent that state-of-the-
art codes often rely on directly implementing the results reported there. However,
a major limitation of this approach is that photon polarizations and lepton spins,
as well as particles’ angular distribution, are neglected. Various groups [99–105]
have proposed methods to address these issues, but the scientific community still
lacks an SFQED library that comprehensively tackles all these limitations.

In the following sections, we begin with a brief introduction to Baier and Katkov’s
quasiclassical operator method (QOM), then apply this technique to compute the
squared transition amplitudes assocated to the NIC and NBW processes. Specifi-
cally, we consider two scenarios: one where we integrate these squared amplitudes
over the entire solid angle dΩ, and one where we do not. In contrast to the ap-
proach taken in [44], we will neither average over the initial states nor sum over
the final spin/polarization states. By tracking the complete set of particle param-
eters, we derive NIC and NBW differential distributions that are fully resolved in
terms of the spins and polarizations of the involved particles, while their momenta
are characterized in full detail, including both energy and angular properties. We
will refer to these distributions as FNIC and FNBW1. We will also demonstrate
that by summing the FNIC and FNBW distributions over the inner (spin and po-
larization) and angular degrees of freedom, we can recover the results presented in
Chapter 3, and originally in [44]. Finally, we will show that the FNIC and FNBW
distributions are improper, potentially negative, and lack their usual probabilistic
interpretation. The only way to restore a stochastic meaning is by considering their
contributions from the entire formation length λ f (or time τ f ) of the quasiclassical
trajectory followed by the particle undergoing the NIC or NBW process.

Throughout this chapter, we introduce a series of SFQED analytical distributions
capable of characterizing physical particles in every respect. We also present a suite
of algorithms designed to generate numerical particles with spin/polarization reso-
lution and detailed angular distributions. For clarity, we adopt naming conventions

1The "F" stands for Fully resolved.
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consistent with those used in Chapter 3 and Appendix A for the SFQEDtoolkit
routines. In fact, the techniques described here are intended to be part of SFQEDtool-
kit’s advanced computational module. Although we will showcase some exam-
ples of its application, this module has not yet been released. Consequently, unlike
in Chapter A, we will not provide an explicit list of the routines’ arguments.

5.1 The Quasiclassical operator method

Developed by Baier and Katkov in the late 60s, the quasiclassical operator method
is a theoretical framework used to describe the interaction of relativistic particles
(typically electrons or positrons) with strong EM fields. Considering the case of an
electron with energy ε moving within a purely magnetic field of intensity H, the
foundations of the QOM lie in the awareness that two quantum effects contribute
to the emission of high-energy photons:

• related to the quantization of the electron’s motion inside the field, the first
effect concerns the noncommutability of the dynamic variables associated to
the particle. As a matter of fact, the commutator of any two operators Â and
B̂ describing its motion has the order ℏω0

ε , i.e.,

[Â, B̂] ∼
ℏω0

ε
, (5.1)

where c = 1 has been used, and ω0 =
eH
ε is the particle’s Larmor fre-

quency. This result generalizes to any EM field and suggests that the motion
of the particle becomes more and more classical as its energy ε increases
([Â, B̂] −−−−→

ε→∞
0);

• the second effect is connected to the fermion’s recoil after radiation. Indicat-
ing with ω the emitted photon’s frequency, the order of the recoil is easily
seen to be ℏωε .

Due to the fact that the second kind of effect dominates over the first, as ω ≫ ω0,
we are allowed to treat the electron’s physics semiclassically, determining its tra-
jectory using classical mechanics while addressing its interactions with the external
field through quantum transition amplitudes. According to the Feynman rules, at
first order in perturbation theory the matrix element corresponding to NIC, i.e. the
photon emission process by an electron in SF, is

U f i =
ie

2π
√
ℏω

∫
dt

∫
dr⃗F†f ,ζ′ (⃗r) exp

( iε f t
ℏ

)
e∗µJµ exp

(
iωt − i⃗k · r⃗

)
exp

(−iεit
ℏ

)
Fi,ζ (⃗r),

(5.2)
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where eµ and kµ(ω, k⃗) are the photon polarization and four-momentum, Fi,ζ (⃗r) is
the solution to the wave equation in the backgorund SF (with energy εi and spin
state ζ), while Jµ is the generalized density current four-vector2.

Replacing the classical variables p⃗ and ε with the corresponding operators3

pµ → p̂µ = iℏ∂µ − eAµ and ε→ Ĥ =

√
ˆ⃗p 2 + m2, (5.3)

it is then possible to switch eq. (5.2) to its operator form. In this way the initial and
final fermion states become

exp
(−iεit
ℏ

)
Fi,ζ (⃗r) = Ψζ( ˆ⃗p) exp

(−iĤ t
ℏ

)
|i⟩

F f ,ζ′ (⃗r) exp
( iε f t
ℏ

)
= ⟨ f | exp

( iĤ t
ℏ

)
Ψζ′( ˆ⃗p ′), (5.4)

where Ψζ( ˆ⃗p) is the operatorial form of the wave functions Fi,ζ (⃗r); when applied
to |i⟩, the initial particle state4, the operator Ψζ( ˆ⃗p) describes a particle in a state
with defined momentum and spin, p⃗ and ζ in this case; the exact same argument
translates quite naturally to Ψζ′( ˆ⃗p ′) and the final state ⟨ f |. Finally, the exponential

terms ± exp
(

iĤ t
ℏ

)
enforce the time dependence of the given state and, after substi-

tuting (5.4) into (5.2), their presence makes it natural to shift all the operators to
the Heisenberg picture: U f i becomes

U f i =
ie

2π
√
ℏω
⟨ f |

∫
dt exp(iωt)M(t) |i⟩ , (5.5)

with

M(t) = Ψ†ζ′(
ˆ⃗p ′){e∗µ Ĵµ, exp

(
−i⃗k · ˆ⃗r

)
}Ψζ( ˆ⃗p). (5.6)

The particle’s momentum ˆ⃗p(t), density current Ĵµ(t) and position ˆ⃗r(t) quantum op-
erators in eq. (5.6) are all expressed in the time dependent Heisenberg picture; fur-
thermore, we introduced the symmetrized product of operators through the brack-
ets {•, •}, corresponding to half of the anticommutator. Not affecting the matrix
element in (5.2), this choice is motivated by the fact that Eqs. (5.5)-(5.6) are now
suitable for the description of any interaction between the field and particles with
spin ζ, especially in those case where ζ does not equal 1

2 . As a matter of fact,

2Note that in this context, Jµ does not represent the proper density current. For example, in QED
for spin- 1

2 states, the density current is given by Ψ̄γµΨ; here, however, the Jµ is simply identified with
the Dirac γ matrices, i.e., Jµ = γµ.

3Actually this approximation is valid only for particles dwelling in large orbital momenta states,
where the spin-field interaction term eℏ

2 σ
µνFµν can be neglected.

4Notice that, in the coordinate representation, |i⟩ and | f ⟩ are solutions of the Klein-Gordon equa-
tion in an external field. Also, we point out that |i⟩ and | f ⟩ do not describe the spin part of the
particle’s state, which is instead taken care of by the operators Ψζ( ˆ⃗p) and Ψζ′ ( ˆ⃗p ′).
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symmetrized products of this kind naturally arise in lagrangian density interaction
terms of (ζ , 1

2 )-QFTs5, thus justifying their appearence in eq. (5.6).

The probability for the NIC emission of a photon with momentum k⃗ can easily

be found as the squared matrix element
dw f i

NIC
d3k = U†f iU f i. Moreover, as we are

not concerned with resolving the final Klein-Gordon states | f ⟩ in their entirety,
but only their spin and polarization parts, we exploit the completeness relation∑

f | f ⟩ ⟨ f | = 1 to rerender
dw f i

NIC
d3k as

dwNIC

d3k
=

∑
f

U†f iU f i =

=
e2

(2π)2ℏω
⟨i|

∫
dt1

∫
dt2 exp{iω(t1 − t2)}M†(t2)M(t1) |i⟩ . (5.7)

Despite M(t1) and M(t2) taken at different times don’t commute in general, a series
of algebraic operations known as “disentanglement”6 can prove their commutativ-
ity with 1

γ2 -order accuracy

[M(t1),M(t2)] = O
( 1
γ2

)
, (5.8)

together with the commutativity (with the same accuracy) of all the operators in-
volved in (5.6), γ = ε

m being the initial electron’s Lorentz gamma factor. This
means all the dynamic operators in eq. (5.7) commute with a max( 1

γ2 ,
ℏω0
ε )-order

accuracy7, and their operatorial form may now be replaced by the corresponding
classical values; M can thus be rewritten as

M(t) = R(t) exp
{
i
ε

ε′
kµxµ(t)

}
(5.9)

and eq. (5.7) becomes

dwNIC = d3k
e2

(2π)2ℏω

∫
dt1

∫
dt2R∗(t2)R(t1) exp

{
−i
ε

ε′
kµ[xµ(t2) − xµ(t1)]

}
.

(5.10)

While ε′ = ε − ℏω denotes the electron’s energy after the NIC photon emission,
R(t) is a time dependent function containing all the spin characteristics; upon com-
pleting the necessary mathematical steps, it is demonstred to coincide with the

5An obvious example is given by scalar QED, where ζ = 0 and Ĵµ = Dµ ≡ ∂µ + ieAµ cor-
responds to the covariant derivative. This time the Lagrangian interaction term is proportional to
Lint ∝ ϕ

∗
←→
D µϕ, with ϕ being the complex scalar field and ϕ∗

←→
D µϕ ≡ ϕ∗(Dµϕ) − (D∗µϕ∗)ϕ. Lint then

takes part to the S-matrix, defined as S = T exp{− i
ℏ

∫
d4 xLint(x)} (T is the time ordering operator),

which after the due algebra makes a symmetrized {•, •}-like term appear in (5.6).
6See section 2.2 of [44] for further details.
7Let us not forget that the entire QOM framework is based on the neglect of ℏω0

ε
-order quantum

effects.
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transition matrix element for the spin vectors of free particles. As such its general
form will be

R(t) =
1
2
ψ†ζ′(p′(t))[e∗µJµ(p′(t)) + e∗µJµ(p(t))]ψζ(p(t)), (5.11)

where ψζ(p(t)) ≡ ψζ(ε(t), p⃗(t)) defines a generic four-component Dirac spinor.

Equations (5.10)-(5.11) represent the crowning achievement of the QOM, pro-
viding us with a general expression for evaluating transition probabilities of any
SFQED process (up to a few minor tweaks which we will see in sec. 5.2.2). In a
nutshell, the QOM is a mathematical and physical tool that can be used to study
synchrotron radiation, bremsstrahlung and pair production processes in external
SF. Essential in high-strength fields scenarios, this approach defines particle’s mo-
tion through classical trajectory equations, while resorting to quantum operators to
assess transition probabilities.

In the following sections we will apply this method to the two paradigmatic cases
of NIC and NBW.

5.2 The full-resolution NIC and NBW distributions

5.2.1 The fully-resolved NIC differential distribution

At the end of previous section we saw that, according to the QOM, the NIC’s
transition probability has the form reported in eq. (5.10)-(5.11). We proceed with
the introduction of the generic Dirac spinor ψζ(p) = 1√

2ε
uζ(p), where

uζ(p) = uζ(ε, p⃗) =
√
ε + m

(
φζ

p⃗·σ⃗
ε+m φζ

)
=

( √
ε + m φζ√

ε − m (n⃗p · σ⃗) φζ

)
(5.12)

is a solution of the Dirac eq. (3.9) normalized to ūζ′(p)uζ(p) = 2mδζ′ζ , n⃗p =
p⃗
| p⃗|

and φζ is the two-component spinor (φ†ζφζ = 1) describing the polarization state
of the fermion; ζ (ζ′) describes the spin of the electron before (after) the emission.
By replacing Jµ = γµ and eq. (5.12) into (5.11), it is quite straightforward to see
that R(t) reduces to8

R(t) = φ†ζ′(p′(t))[A(t) + iσ⃗ · B⃗(t)]φζ(p(t)), (5.13)

with the coefficients A and B⃗ directly depending on the emitted photon’s polariza-
tion eµ

A(t) =
e⃗⋆ · p⃗(t)

2
√
εε′

[(ε′ + m
ε + m

) 1
2
+

( ε + m
ε′ + m

) 1
2
]

(5.14)

8Keep in mind that any 2 × 2 matrix m can be decomposed as the sum of the unit and Pauli
matrices m = aI2×2 + iσ⃗ · b⃗
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B⃗(t) =
e⃗⋆

2
√
εε′
∧

[(ε′ + m
ε + m

) 1
2 p⃗(t) −

( ε + m
ε′ + m

) 1
2 ( p⃗(t) − k⃗)

]
, (5.15)

p⃗ and v⃗ being respectively the momentum and velocity of the starting electron. We
now exploit the definition of the spin density matrix ρζ = φζφ

†

ζ =
1
2 (1 + ζ⃗ · σ⃗) to

recast the combination R∗(t2)R(t1) as

R∗(t2)R(t1) =
1
4

tr
[(

1 + ζ⃗ · σ⃗
)(

A⋆(t2) − iσ⃗ · B⃗⋆(t2)
)(

1 + ζ⃗′ · σ⃗
)(

A(t1) + iσ⃗ · B⃗(t1)
)]
=

=
1
2
{
A(t1)A∗(t2)

(
1 + ζ⃗ · ζ⃗′

)
+ B⃗(t1) · B⃗∗(t2)

(
1 − ζ⃗ · ζ⃗′

)
+ i

(
ζ⃗′ − ζ⃗

)
·
[
B⃗(t1) ∧ B⃗∗(t2)

]
+

+ i
(
ζ⃗′ + ζ⃗

)
·
[
B⃗(t1)A∗(t2) − A(t1)B⃗∗(t2)

]
+

(
ζ⃗′ ∧ ζ⃗

)
·
[
B⃗(t1)A∗(t2) + A(t1)B⃗∗(t2)

]
+

+
[
ζ⃗ · B⃗∗(t2)

][
ζ⃗′ · B⃗(t1)

]
+

[
ζ⃗′ · B⃗∗(t2)

][
ζ⃗ · B⃗(t1)

]}
. (5.16)

Next we take the ultrarelativistic limit (ε ≫ m) of Eqs. (5.14) and (5.15), that is

A(t)→
ε + ε′

2ε′
(⃗
e⋆ · v⃗(t)

)
(5.17)

B⃗(t)→
ω

2ε′
[⃗
e⋆ ∧

(
n⃗ − v⃗(t) +

n⃗
γ

)]
, (5.18)

with n⃗ = k⃗
|⃗k|

the photon’s direction of propagation, and substitute in (5.16); switch-
ing the time integration variables from (t1, t2) to

t̃ =
t1 + t2

2
(5.19)

τ = t2 − t1, (5.20)

we can expand any instance of x⃗(t) and v⃗(t), the electron’s position and velocity
that feature in Eqs. (5.17)-(5.18), according to

x⃗(t̃ ±
τ

2
) = x⃗(t̃) ± v⃗(t̃)

τ

2
+ w⃗(t̃)

τ2

8
(5.21)

v⃗(t̃ ±
τ

2
) = v⃗(t̃) ± w⃗(t̃)

τ

2
+ ˙⃗w(t̃)

τ2

8
, (5.22)

so that eq. (5.10) is rewritten as

dwNIC =
α

(2π)2

d3k
ω

∫
dt̃

∫
dτ

[
R0(t̃)+RI(t̃)τ+RII(t̃)τ2] exp

{
−i
ε

ε′
ω
[
λ(t̃)τ+

τ3

24
|w⃗(t̃)|2

]}
.

(5.23)
Here w⃗(t) represents the electron acceleration and λ(t̃) =

(
1 − n⃗ · v⃗(t̃)

)
is a variable

characterizing the disrtibution’s angular behavior.

At this stage, a selection of a proper system of axes upon which one can project all
vector quantities is the only thing we miss: fortunately v̂ (the direction of the initial
electron’s velocity), s⃗ (the transverse normalized initial electron’s acceleration) and
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Figure 5.1: Two angular coordinate systems are used to describe the orientation of the
emitted radiation n⃗ relative to the electron’s direction v̂. On the left, β is the angle between
n⃗ and the plane P(v̂−s⃗), and φ is the angle between the projection of n⃗ onto P(v̂−s⃗) and v̂. On
the right, θ is the angle between n⃗ and v̂, and φ is the angle between the projection of n⃗
onto the plane P(b⃗−s⃗) and s⃗.

b⃗ = v̂ ∧ s⃗ constitute a particularly convenient choice to do so. In particular, the
position of any vector V⃗ with respect to the triplet (v̂, s⃗, b⃗) will be expressed in
terms of the angles (ψ, β). As it is depicted in fig. 5.1, β is the angle between V⃗ and
the plane P(v̂−s⃗) shared by v̂ and s⃗, while V⃗’s projection on P(v̂−s⃗) forms with v̂ the
angle ψ. Hence, the photon’s direction n⃗ is outlined as

n⃗ = (cos β cosψ, cos β sinψ, sin β) (5.24)

and the differential on the photon momentum d3k reads

d3k = ω2dωdΩ(ψ,β), (5.25)

with dΩ(ψ,β) = dψdβ the angular part of the integral measure. Consequently, eq.
(5.23) can be rearranged into

dwNIC

dt̃dωdΩ(ψ,β)
≡

dWNIC

dωdΩ(ψ,β)
=

αω

(2π)2

∫
dτ

[
R0(t̃)+RI(t̃)τ+RII(t̃)τ2] exp

{
−i
ε

ε′
ω
[
λ(t̃)τ+

τ3

24
|w⃗(t̃)|2

]}
,

(5.26)
in which the integral over τ can be finally performed through the identities [99]∫ ∞

−∞

dτ exp
{
−i
ε

ε′
ω
[
λ(t̃)τ +

τ3

24
|w⃗(t̃)|2

]}
=

4
√

2
√

3

1
|w⃗(t̃)|

λ
1
2 (t̃)K 1

3
(ξe)∫ ∞

−∞

dττ exp
{
−i
ε

ε′
ω
[
λ(t̃)τ +

τ3

24
|w⃗(t̃)|2

]}
= −i

16
√

3

1
|w⃗(t̃)|2

λ(t̃)K 2
3
(ξe)∫ ∞

−∞

dττ2 exp
{
−i
ε

ε′
ω
[
λ(t̃)τ +

τ3

24
|w⃗(t̃)|2

]}
= −

32
√

2
√

3

1
|w⃗(t̃)|3

λ
3
2 (t̃)K 1

3
(ξe), (5.27)

where ξe =
4
√

2
3

ωγ3

ε′χe
λ

3
2 and we made use of the fact that9 |w⃗| = χeε

γ3 . Since the

electron is foreseen to radiate in a cone with opening angle η ∼ 1
γ , ψ and β are

9This relation between the acceleration modulus |w⃗| and the quantum nonlinearity parameter χe

can be straightforwardly derived from eq. (3.21)
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expected to be very small (the same order as η, i.e. ψ, β ∼ 1
γ ). Therefore, through an

expansion at leading order in ψ and β, we obtain the total angular/polarization/spin
resolved NIC differential probability

dW (ζζ′ξ)
NIC

dωdΩ(ψ,β)
= CNIC(dW0 + ξ1dW1 + ξ2dW2 + ξ3dW3), (5.28)

in which CNIC =
αω
4π2

√
2
3λ

1
2
γ3

χeε′
, the ξi are the Stokes parameters associated to the

photon polarization (see Sec. 5.3) and

dW0 = K 1
3
(ξe)

{
2λ

[ε2 + ε′2

εε′
+ 2(ζ⃗ · ζ⃗′)

]
−

1
γ2

[ε2 + ε′2

2εε′
(ζ⃗ · ζ⃗′) + 1

]
+
ε2 − ε′2

2εε′
1
γ

[
βs⃗ − ψb⃗

]
· (ζ⃗ ∧ ζ⃗′)+

+
(
4λ −

1
γ2

) ω2

2εε′
(ζ⃗ · v̂)(ζ⃗′ · v̂) −

ω2

2εε′
β

γ

[
(ζ⃗ · v̂)(ζ⃗′ · b⃗) + (ζ⃗ · b⃗)(ζ⃗′ · v̂)

]
+

−
ω2

2εε′
ψ

γ

[
(ζ⃗ · v̂)(ζ⃗′ · s⃗) + (ζ⃗ · s⃗)(ζ⃗′ · v̂)

]
+

ω2

2εε′γ2

[
(ζ⃗ · b⃗)(ζ⃗′ · b⃗) + (ζ⃗ · s⃗)(ζ⃗′ · s⃗)

]}
+

+K 2
3
(ξe)
√

2λ
{
β
ε2 − ε′2

εε′
[
ζ⃗ + ζ⃗′

]
· v̂ −

b⃗
γ
·
[ω
ε
ζ⃗ +

ω

ε′
ζ⃗′

]}
; (5.29)

dW1 = K 1
3
(ξe)

{
2βψ

[ε2 + ε′2

2εε′
(ζ⃗ · ζ⃗′) + 1

]
+
ε2 − ε′2

2εε′
(ζ⃗ ∧ ζ⃗′) ·

[
(β2 − ψ2 − 2λ)v̂ +

ψ

γ
s⃗ −

β

γ
b⃗
]
+

− βψ
ω2

εε′
(ζ⃗ · v̂)(ζ⃗′ · v̂) +

ω2

2εε′
β

γ

[
(ζ⃗ · v̂)(ζ⃗′ · s⃗) + (ζ⃗ · s⃗)(ζ⃗′ · v̂)

]
+

+
ω2

2εε′
ψ

γ

[
(ζ⃗ · v̂)(ζ⃗′ · b⃗) + (ζ⃗ · b⃗)(ζ⃗′ · v̂)

]
−

ω2

2εε′γ2

[
(ζ⃗ · s⃗)(ζ⃗′ · b⃗) + (ζ⃗ · b⃗)(ζ⃗′ · s⃗)

]}
+

+K 2
3
(ξe)
√

2λ
ω

γ

{[ ζ⃗′
ε
+
ζ⃗

ε′

]
· s⃗

}
; (5.30)

dW2 = K 1
3
(ξe)

{[(
2λ
ε2 − ε′2

εε′
−

ω

γ2ε

)
v̂ −

β

γ

ω

ε
b⃗ −

ψ

γ

ω

ε
s⃗
]
· ζ⃗+

+
[(

2λ
ε2 − ε′2

εε′
−

ω

γ2ε′

)
v̂ −

β

γ

ω

ε′
b⃗ −

ψ

γ

ω

ε′
s⃗
]
· ζ⃗′

}
+

+K 2
3
(ξe)
√

2λ
{
β
[ε2 + ε′2

εε′
+ 2(ζ⃗ · ζ⃗′)

]
+
ε2 − ε′2

2εε′
1
γ

(ζ⃗ ∧ ζ⃗′) · s⃗ + β
ω2

εε′
(ζ⃗ · v̂)(ζ⃗′ · v̂)+

−
ω2

2εε′γ
[
(ζ⃗ · v̂)(ζ⃗′ · b⃗) + (ζ⃗ · b⃗)(ζ⃗′ · v̂)

]}
; (5.31)

dW3 = K 1
3
(ξe)

{[ε2 + ε′2

2εε′
(ζ⃗ · ζ⃗′) + 1

]
(ψ2 − β2 + 2λ) +

ε2 − ε′2

2εε′
(ζ⃗ ∧ ζ⃗′) ·

[
2βψv̂ −

β

γ
s⃗ −

ψ

γ
b⃗
]
+
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−
ω2

2εε′
(ψ2 − β2 + 2λ)(ζ⃗ · v̂)(ζ⃗′ · v̂) +

ω2

2εε′
ψ

γ

[
(ζ⃗ · v̂)(ζ⃗′ · s⃗) + (ζ⃗ · s⃗)(ζ⃗′ · v̂)

]
+

−
ω2

2εε′
β

γ

[
(ζ⃗ · v̂)(ζ⃗′ · b⃗) + (ζ⃗ · b⃗)(ζ⃗′ · v̂)

]
−

ω2

2εε′γ2

[
(ζ⃗ · s⃗)(ζ⃗′ · s⃗) − (ζ⃗ · b⃗)(ζ⃗′ · b⃗)

]}
+

−K 2
3
(ξe)
√

2λ
ω

γ

{[ ζ⃗′
ε
+
ζ⃗

ε′

]
· b⃗

}
; (5.32)

notice that in eq. (5.28) the brackets in the superscript of dWNIC make explicit all
the inner spin and polarization states the distribution depends on. Potentially, with
the implementation of (5.28)-(5.32), SFQEDtoolkit (the library we introduced
in chapter 3) not only will be capable of producing a photon whose momentum
is distributed according to the proper angular and energy distributions, but it will
also track and describe the polarization or spin of all the particles involved in the
process.

However, before being able to do so, Eqs. (5.28)-(5.32) must be put into a more
suitable form, achieved by switching from the small angles (ψ, β)-system to the
more natural polar and azimuthal (θ, φ) spherical angles. The conversion between
the two may be performed by comparing the expression of n⃗ in both angles systems,
that is eq. (5.24) and n⃗(θ,φ) = (cos θ, sin θ cos ϕ, sin θ sin ϕ). This leads us to the
following component by component equalities

cos β cosψ = cos θ, (5.33)

cos β sinψ = sin θ cosφ, (5.34)

sin β = sin θ sinφ, (5.35)

and, in the limit ψ, β, θ ∼ 1
γ with 1

γ → 0, (5.34) and (5.35) reduce to

ψ ∼ θ cosφ, (5.36)

β ∼ θ sinφ, (5.37)

so that

β2 + ψ2 ∼ θ2,

λ =
ψ2

2
+
β2

2
+

1
2γ2 ∼

θ2

2
+

1
2γ2 (5.38)

and (5.28)-(5.32) become

dW (ζζ′ξ)
NIC

dωdΩ
= CNIC(dW′0 + ξ1dW′1 + ξ2dW′2 + ξ3dW′3), (5.39)

with

dW′0 = K 1
3
(ξe)

{
2λ
ε2 + ε′2

εε′
+

(
4λ −

1
γ2

)
(ζ⃗ · ζ⃗′) −

1
γ2 +

ε2 − ε′2

2εε′
θ

γ

[
sinφs⃗ − cosφb⃗

]
· (ζ⃗ ∧ ζ⃗′)+
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+ θ2 ω
2

εε′
(ζ⃗ · v̂)(ζ⃗′ · v̂) −

ω2

2εε′
θ sinφ
γ

[
(ζ⃗ · v̂)(ζ⃗′ · b⃗) + (ζ⃗ · b⃗)(ζ⃗′ · v̂)

]
+

−
ω2

2εε′
θ cosφ
γ

[
(ζ⃗ · v̂)(ζ⃗′ · s⃗) + (ζ⃗ · s⃗)(ζ⃗′ · v̂)

]}
+

+K 2
3
(ξe)
√

2λ
{
θ sinφ

ε2 − ε′2

εε′
[
ζ⃗ + ζ⃗′

]
· v̂ −

b⃗
γ
·
[ω
ε
ζ⃗ +

ω

ε′
ζ⃗′

]}
; (5.40)

dW′1 = K 1
3
(ξe)

{
θ2 sin 2φ

[ε2 + ε′2

2εε′
(ζ⃗ · ζ⃗′) + 1

]
+

+
ε2 − ε′2

2εε′
(ζ⃗ ∧ ζ⃗′) ·

[
(−θ2 cos 2φ − 2λ)v̂ +

θ cosφ
γ

s⃗ −
θ sinφ
γ

b⃗
]
+

− θ2 sin 2φ
ω2

2εε′
(ζ⃗ · v̂)(ζ⃗′ · v̂) +

ω2

2εε′
θ sinφ
γ

[
(ζ⃗ · v̂)(ζ⃗′ · s⃗) + (ζ⃗ · s⃗)(ζ⃗′ · v̂)

]
+

+
ω2

2εε′
θ cosφ
γ

[
(ζ⃗ · v̂)(ζ⃗′ · b⃗) + (ζ⃗ · b⃗)(ζ⃗′ · v̂)

]
−

ω2

2εε′γ2

[
(ζ⃗ · s⃗)(ζ⃗′ · b⃗) + (ζ⃗ · b⃗)(ζ⃗′ · s⃗)

]}
+

+K 2
3
(ξe)
√

2λ
ω

γ

{[ ζ⃗′
ε
+
ζ⃗

ε′

]
· s⃗

}
; (5.41)

dW′2 = K 1
3
(ξe)

{[(
2λ
ε2 − ε′2

εε′
−

ω

γ2ε

)
v̂ −

θ sinφ
γ

ω

ε
b⃗ −

θ cosφ
γ

ω

ε
s⃗
]
· ζ⃗+

+
[(

2λ
ε2 − ε′2

εε′
−

ω

γ2ε′

)
v̂ −

θ sinφ
γ

ω

ε′
b⃗ −

θ cosφ
γ

ω

ε′
s⃗
]
· ζ⃗′

}
+

+K 2
3
(ξe)
√

2λ
{
θ sinφ

[ε2 + ε′2

εε′
+ 2(ζ⃗ · ζ⃗′)

]
+
ε2 − ε′2

2εε′
1
γ

(ζ⃗ ∧ ζ⃗′) · s⃗ + θ sinφ
ω2

εε′
(ζ⃗ · v̂)(ζ⃗′ · v̂)+

−
ω2

2εε′γ
[
(ζ⃗ · v̂)(ζ⃗′ · b⃗) + (ζ⃗ · b⃗)(ζ⃗′ · v̂)

]}
; (5.42)

dW′3 = K 1
3
(ξe)

{[ε2 + ε′2

2εε′
(ζ⃗ · ζ⃗′) + 1

]
(θ2 cos 2φ + 2λ)+

+
ε2 − ε′2

2εε′
(ζ⃗ ∧ ζ⃗′) ·

[
θ2 sin 2φv̂ −

θ sinφ
γ

s⃗ −
θ cosφ
γ

b⃗
]
+

−
ω2

2εε′
(θ2 cos 2φ + 2λ)(ζ⃗ · v̂)(ζ⃗′ · v̂) +

ω2

2εε′
θ cosφ
γ

[
(ζ⃗ · v̂)(ζ⃗′ · s⃗) + (ζ⃗ · s⃗)(ζ⃗′ · v̂)

]
+

−
ω2

2εε′
θ sinφ
γ

[
(ζ⃗ · v̂)(ζ⃗′ · b⃗) + (ζ⃗ · b⃗)(ζ⃗′ · v̂)

]
−

ω2

2εε′γ2

[
(ζ⃗ · s⃗)(ζ⃗′ · s⃗) − (ζ⃗ · b⃗)(ζ⃗′ · b⃗)

]}
+

−K 2
3
(ξe)
√

2λ
ω

γ

{[ ζ⃗′
ε
+
ζ⃗

ε′

]
· b⃗

}
; (5.43)

dΩ(ψ,β) = dΩ(θ,φ) = sin θdθdφ ≡ dΩ is the usual angular spherical coordinates,
integral measure.
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Figure 5.2: By simply reversing the flow of time, the Feynman diagram for the NIC photon
emission process transforms into one representing NBW pair production (this time-reversal
procedure naturally entails a modification of the momentum conservation law). This prop-
erty is known as crossing symmetry.

The ensemble of (5.39)-(5.43), denoted from now on as FNIC, matches perfectly
the differential distribution reported in [100]: these Eqs. pave the way for different
numerical applications, which will be presented in the sections to come. Simul-
taneously with the development of the fully-resolved NIC distribution, we will
establish the NBW counterpart as well. This will help us highlight the differences
and similarities between the two SFQED processes.

5.2.2 The fully-resolved NBW differential distribution

As we already stated before, with a few adjustments Eqs. (5.10)-(5.11) can be
adapted to describe the NBW transition probabilities of a photon decaying into an
electron-positron pair after interacting with a SF. The SFQED vertex associated to
the NIC can be mapped onto that representing the NBW process just by changing
the time direction (see fig. 5.2), or equivalently by taking advantage of the crossing
symmetry. It is thus easy to translate eq. (5.10) into

dwNBW = d3 p
α

(2π)2ω

∫
dt1

∫
dt2R∗(t1)R(t2) exp

{
i
ε−
ε+

kµ[xµ(t2) − xµ(t1)]
}
, (5.44)

with the vertex function R(t) now redefined as

R(t) =
1
2
ψ†ζ−(p−(t))[eµJµ(p−(t)) + eµJµ(−p+(t))]ψζ̄+(−p+(t)). (5.45)
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Here ψζ̄+(−p+) = 1√
2ε+

uζ̄+(−p+) describes the outgoing antiparticle wave function,
with

uζ̄+(−p+) =
(√

ε+ − m (n⃗p+ · σ⃗) φζ+√
ε+ + m φζ+

)
. (5.46)

Plugging Jµ = γµ and (5.46) into eq. (5.45) recasts the latter into

R(t) = iφ†ζ−(p−(t))[A(t) − iσ⃗ · B⃗(t)]φζ+(p+(t)), (5.47)

where the coefficients A and B⃗ now read

A(t) =
e⃗ · (⃗k ∧ p⃗−(t))

2
√
ε−ε+(ε− + m)(ε+ + m)

(5.48)

B⃗(t) =
e⃗[(ε− + m)(ε+ + m) − p⃗+(t) · p⃗−(t)] + [ p⃗+(t) − p⃗−(t)]⃗e · p⃗−(t)

2
√
ε−ε+(ε− + m)(ε+ + m)

. (5.49)

Exactly as in section 5.2.1, kµ = (ω, k⃗ = ωn⃗) and eµ identify the four-wave vector
and polarization of the photon, while p⃗± = γ±mv⃗±, ε± and ζ⃗± correspond to the
momenta, energies and spins of the outcoming electron (−) and positron (+).

As in the NIC case, we now proceed by taking the ultrarelativistic limit (ε± ≫ m)
of the coefficients (5.48)-(5.49), obtaining

A→
ω

2ε+

[⃗
e ·

(
n⃗ ∧ v⃗−

) ]
(5.50)

B⃗→
ω

2ε+

[ e⃗
γ−
+

(⃗
e · v⃗−

) (
n⃗ −

2ε−
ω

v⃗−
)]
. (5.51)

Similarly to (5.21) and (5.22), we then expand all dynamical quantities appearing
in Eqs. (5.44) and (5.50)-(5.51) in terms of the time variables t and τ defined
in (5.19)-(5.20). As a result equation (5.44) can be manipulated into the fully-
resolved (in the decay angles, polarization and spin) differential probability for
NBW pair production

dW (ξζ−ζ+)
NBW

dε−dΩ(ψ,β)
= CBW( ¯dW0 + ξ1 ¯dW1 + ξ2 ¯dW2 + ξ3 ¯dW3), (5.52)

with the constant CBW =
α

4π2

√
2
3λ

1
2
−

γ3
−

χγ
and

¯dW0 = K 1
3
(ξγ)

1
2ε2
+

{ω2

γ2
−

(
1 + (ζ⃗− · ζ⃗+)

)
+

(
4λ− −

1
γ2
−

)[
ε2
+ + ε

2
− − 2ε+ε−(ζ⃗− · ζ⃗+)

]
+

+
ω2

γ−

[
βs⃗ − ψb⃗

]
· (ζ⃗− ∧ ζ⃗+) +

(
ε2
+ − ε

2
−

) β
γ−

[
(ζ⃗− · v̂)(ζ⃗+ · b⃗) + (ζ⃗− · b⃗)(ζ⃗+ · v̂)

]
+

+
(
ε2
+ − ε

2
−

) ψ
γ−

[
(ζ⃗− · v̂)(ζ⃗+ · s⃗) + (ζ⃗− · s⃗)(ζ⃗+ · v̂)

]
+
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−
(
4λ− −

1
γ2
−

)
(ε+ − ε−)2(ζ⃗− · v̂)(ζ⃗+ · v̂) −

ω2

γ2
−

[
(ζ⃗− · b⃗)(ζ⃗+ · b⃗) + (ζ⃗− · s⃗)(ζ⃗+ · s⃗)

]}
+

−K 2
3
(ξγ)
√

2λ−
ε2
+

ω
{[ε+
γ−
ζ⃗− −

ε−
γ−
ζ⃗+

]
· b⃗ − β(ε+ − ε−)

[
(ζ⃗− · v̂) − (ζ⃗+ · v̂)

]}
; (5.53)

¯dW1 = K 1
3
(ξγ)

1
2ε2
+

{
2βψ

[
(ε2
+ + ε

2
−)(ζ⃗− · ζ⃗+) − 2ε+ε−

]
+ (ε2

+ − ε
2
−)

[
ψ2 − β2 + 2λ−

]
(ζ⃗− ∧ ζ⃗+) · v̂+

+
ω2

γ−

[
βb⃗ − ψs⃗

]
· (ζ⃗− ∧ ζ⃗+) +

(
ε2
+ − ε

2
−

) β
γ−

[
(ζ⃗− · v̂)(ζ⃗+ · s⃗) + (ζ⃗− · s⃗)(ζ⃗+ · v̂)

]
+

+
(
ε2
+ − ε

2
−

) ψ
γ−

[
(ζ⃗− · v̂)(ζ⃗+ · b⃗) + (ζ⃗− · b⃗)(ζ⃗+ · v̂)

]
− 2βψ(ε+ − ε−)2(ζ⃗− · v̂)(ζ⃗+ · v̂)+

−
ω2

γ2
−

[
(ζ⃗− · s⃗)(ζ⃗+ · b⃗) + (ζ⃗− · b⃗)(ζ⃗+ · s⃗)

]}
+

+K 2
3
(ξγ)
√

2λ−
ε2
+

ω

γ−

{[
ζ⃗+ε+ − ζ⃗−ε−

]
· s⃗

}
; (5.54)

¯dW2 = K 1
3
(ξγ)

1
2ε2
+

{2βω
γ−

[
(ζ⃗− · b⃗)ε+ − (ζ⃗+ · b⃗)ε−

]
+

2ψω
γ−

[
(ζ⃗− · s⃗)ε+ − (ζ⃗+ · s⃗)ε−

]
+

+
2ω
γ2
−

[
(ζ⃗− · v̂)ε+ + (ζ⃗+ · v̂)ε−

]
− 4λ−

(
ε2
+ − ε

2
−

)[
(ζ⃗− · v̂) − (ζ⃗+ · v̂)

]}
+

−K 2
3
(ξγ)
√

2λ−
ε2
+

{
β
[
ε2
+ + ε

2
− − 2ε+ε−(ζ⃗− · ζ⃗+)

]
+
ω2

2γ−
(ζ⃗− ∧ ζ⃗+) · s⃗ − β(ε+ − ε−)2(ζ⃗− · v̂)(ζ⃗+ · v̂)+

+

(
ε2
+ − ε

2
−

)
2γ−

[
(ζ⃗− · v̂)(ζ⃗+ · b⃗) + (ζ⃗− · b⃗)(ζ⃗+ · v̂)

]}
; (5.55)

¯dW3 = K 1
3
(ξγ)

1
2ε2
+

{[
(ε2
+ + ε

2
−)(ζ⃗− · ζ⃗+) − 2ε+ε−

](
ψ2 − β2 + 2λ−

)
− 2βψ

(
ε2
+ − ε

2
−

)
(ζ⃗− ∧ ζ⃗+) · v̂+

+
ω2

γ−

[
βs⃗ + ψb⃗

]
· (ζ⃗− ∧ ζ⃗+) −

(
ε2
+ − ε

2
−

) β
γ−

[
(ζ⃗− · v̂)(ζ⃗+ · b⃗) + (ζ⃗− · b⃗)(ζ⃗+ · v̂)

]
+

+
(
ε2
+ − ε

2
−

) ψ
γ−

[
(ζ⃗− · v̂)(ζ⃗+ · s⃗) + (ζ⃗− · s⃗)(ζ⃗+ · v̂)

]
+

−
ω2

γ2
−

[
(ζ⃗− · s⃗)(ζ⃗+ · s⃗) − (ζ⃗− · b⃗)(ζ⃗+ · b⃗)

]
−

(
ψ2 − β2 + 2λ−

)
(ε+ − ε−)2(ζ⃗− · v̂)(ζ⃗+ · v̂)

}
+

−K 2
3
(ξγ)
√

2λ−
ε2
+

ω

γ−

{[
ζ⃗+ε+ − ζ⃗−ε−

]
· b⃗

}
. (5.56)

The parameter λ− =
(
1 − n⃗ · v⃗−

)
encodes in itself the angular details of the process,

ξγ =
4
√

2
3

ω2γ3
−

ε−ε+χγ
λ

3
2
− is the argument of the modified Bessel functions of the second

kind and ω = ε− + ε+. In writing down Eq. (5.52), we choose the following as the
reference axis system for projecting all vectors, including spins and polarization:
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• the direction of the outgoing electron’s velocity, v⃗−
|⃗v− |
≡ v̂,

• the transverse normalized acceleration experienced by the just produced elec-
tron, s⃗,

• the vector b⃗ = v̂ ∧ s⃗.

The momentum differential10 d3 p− has been expressed in spherical coordinates
through d3 p− = ε2

−dε−dΩ(ψ,β), where the angular measure dΩ(ψ,β) has been ex-
pressed in the (ψ, β)-system of small angles already introduced in section 5.2.1
(fig. 5.1). As in the NIC case, A key aspect of Eqs. (5.52)-(5.56) is that they are
differential in the final electron energy ε−, effectively restricting its use to charac-
terizing electron properties. Consequently, when dealing with positrons, one must
retrieve the positron counterpart of Eqs. (5.52)-(5.56). As we shall see, the sym-
metry of the process allows for a straightforward transition between the two by
applying the simple +↔ − prescription (see Section 5.5.2).

Following the same logic as in sec. 5.2.1 we switch to the usual (θ, φ) polar angles
by replacing Eqs. (5.36)-(5.37) into (5.52)-(5.56), so that Eq.

dW(ξζ−ζ+)
NBW

dε−dΩ
= CBW( ¯dW′0 + ξ1 ¯dW′1 + ξ2 ¯dW′2 + ξ3 ¯dW′3) (5.57)

is obtanied, with

¯dW′0 = K 1
3
(ξγ)

{ ω2

2ε2
+γ

2
−

+
(
4λ− −

1
γ2
−

)[ε2
+ + ε

2
−

2ε2
+

−
ε−
ε+

(ζ⃗− · ζ⃗+)
]
+

+
ω2

2ε2
+γ−

θ
[
sinφs⃗ − cosφb⃗

]
· (ζ⃗− ∧ ζ⃗+)+

+

(
ε2
+ − ε

2
−

)
2ε2
+

θ

γ−

[
cosφ

[
(ζ⃗− · v̂)(ζ⃗+ · s⃗) + (ζ⃗− · s⃗)(ζ⃗+ · v̂)

]
+

+ sinφ
[
(ζ⃗− · v̂)(ζ⃗+ · b⃗) + (ζ⃗− · b⃗)(ζ⃗+ · v̂)

]]
+

+
[ ω2

2ε2
+γ

2
−

−
(
4λ− −

1
γ2
−

) (ε+ − ε−)2

2ε2
+

]
(ζ⃗− · v̂)(ζ⃗+ · v̂)

}
+

−K 2
3
(ξγ)

√
2λ−

{ ω

ε+γ−

[(
ζ⃗− · b⃗

)
−
ε−
ε+

(
ζ⃗+ · b⃗

)]
− θ sinφ

(ε2
+ − ε

2
−)

ε2
+

[
(ζ⃗− · v̂) − (ζ⃗+ · v̂)

]}
;

(5.58)

¯dW′1 = K 1
3
(ξγ)

{
θ2 sin 2φ

[ (ε2
+ + ε

2
−)

2ε2
+

(ζ⃗− · ζ⃗+) −
ε−
ε+
−

(ε+ − ε−)2

2ε2
+

(ζ⃗− · v̂)(ζ⃗+ · v̂)
]
+

+
[ (ε2
+ − ε

2
−)

2ε2
+

(
θ2 cos 2φ + 2λ−

)
v̂ +

ω2

2ε2
+γ−

θ
(
sinφb⃗ − cosφs⃗

)]
· (ζ⃗− ∧ ζ⃗+)+

10The approximation ε− =
√

p2
− + m2

e ∼ p− has been used.
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+

(
ε2
+ − ε

2
−

)
2ε2
+

θ

γ−

[
sinφ

[
(ζ⃗− · v̂)(ζ⃗+ · s⃗) + (ζ⃗− · s⃗)(ζ⃗+ · v̂)

]
+

+ cosφ
[
(ζ⃗− · v̂)(ζ⃗+ · b⃗) + (ζ⃗− · b⃗)(ζ⃗+ · v̂)

]]
+

−
ω2

2ε2
+γ

2
−

[
(ζ⃗− · s⃗)(ζ⃗+ · b⃗) + (ζ⃗− · b⃗)(ζ⃗+ · s⃗)

]}
+

+K 2
3
(ξγ)

√
2λ−

ω

ε+γ−

{[(
ζ⃗+ · s⃗

)
−

(
ζ⃗− · s⃗

)ε−
ε+

]}
; (5.59)

¯dW′2 = K 1
3
(ξγ)

{[( ω

ε+γ
2
−

− 2λ−
ε2
+ − ε

2
−

ε2
+

)
v̂ +

θ

ε+

ω

γ−

(
sinφb⃗ + cosφs⃗

)]
· ζ⃗−+

−
[
−
( ωε−
ε2
+γ

2
−

+ 2λ−
ε2
+ − ε

2
−

ε2
+

)
v̂ +

θε−

ε2
+

ω

γ−

(
sinφb⃗ + cosφs⃗

)]
· ζ⃗+

}
+

−K 2
3
(ξγ)

√
2λ−

{
θ sinφ

[ε2
+ + ε

2
−

ε2
+

−
2ε−
ε+

(ζ⃗− · ζ⃗+) −
(ε+ − ε−)2

ε2
+

(ζ⃗− · v̂)(ζ⃗+ · v̂)
]
+

+
1

2γ−

[ω2

ε2
+

(ζ⃗− ∧ ζ⃗+) · s⃗ +
(
ε2
+ − ε

2
−

)
ε2
+

[
(ζ⃗− · v̂)(ζ⃗+ · b⃗) + (ζ⃗− · b⃗)(ζ⃗+ · v̂)

]]}
;

(5.60)

¯dW′3 = K 1
3
(ξγ)

{[ (ε2
+ + ε

2
−)

2ε2
+

(ζ⃗− · ζ⃗+) −
ε−
ε+
−

(ε+ − ε−)2

2ε2
+

(ζ⃗− · v̂)(ζ⃗+ · v̂)
](
θ2 cos 2φ + 2λ−

)
+

+
[ θω2

2ε2
+γ−

(
sinφs⃗ + cosφb⃗

)
− θ2 sin 2φ

(ε2
+ − ε

2
−)

2ε2
+

v̂
]
· (ζ⃗− ∧ ζ⃗+)+

+
(ε2
+ − ε

2
−)

2ε2
+

θ

γ−

[
cosφ

[
(ζ⃗− · v̂)(ζ⃗+ · s⃗) + (ζ⃗− · s⃗)(ζ⃗+ · v̂)

]
+

− sinφ
[
(ζ⃗− · v̂)(ζ⃗+ · b⃗) + (ζ⃗− · b⃗)(ζ⃗+ · v̂)

]]
−

ω2

2ε2
+γ

2
−

[
(ζ⃗− · s⃗)(ζ⃗+ · s⃗) − (ζ⃗− · b⃗)(ζ⃗+ · b⃗)

]}
+

−K 2
3
(ξγ)

√
2λ−

ω

ε+γ−

{[(
ζ⃗+ · b⃗

)
−

(
ζ⃗− · b⃗

)ε−
ε+

]}
. (5.61)

Just as Eqs. (5.39)-(5.43) were essential for the NIC, Eqs. (5.57)-(5.61) are cru-
cial for modeling a fully-resolved NBW photon decay into pairs, and will thus be
referred to as the FNBW distribution.

In the upcoming sections, we will systematically outline the steps necessary to
develop an approach capable of characterizing both the NIC and NBW processes
in their entirety. Starting with the two sets of equations, (5.39)-(5.43) and (5.57)-
(5.61), we will perform subsequent integrations and/or summations to reduce the
number of degrees of freedom, deriving a new differential probability distribution
at each stage that can be used to extract information about the final particles. By
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simultaneously addressing the NIC and NBW processes from both physical and
numerical perspectives, we will first determine the probability per unit time for
these processes to occur. We will then assess the energies and directions of the final
particles, culminating in the determination of their spin and polarization states. By
the end of this chapter, we will recognize that the FNIC and FNBW distributions,
as presented in sections 5.2.1-5.2.2, are, in fact, improper, as they can potentially
take on negative values. In Section 5.6, we will propose a method to resolve this
issue, demonstrating that by integrating the FNIC distribution over the process’s
formation region, we successfully obtain a new, physically meaningful differential
probability. This can then be used to accurately determine the final internal states
of the outgoing particles

5.3 The pure and mixed spin-states approach

Throughout the following sections, we describe electron spin and photon polar-
ization states. Before delving into this topic—following the example set by [57,
106]—we briefly introduce the physical and mathematical model that, on average,
captures the behavior of spin and polarization states.

As is customary, we begin our discussion with the 2×2 polarization density matrix
for electrons (or positrons)

ρi j = ⟨φiφ
†

j⟩, (5.62)

where φ denotes the particle’s two-component spinor (see Sec. 5.2.1) and ⟨•⟩ rep-
resents the average over a particle ensemble. Since ρ is Hermitian, it admits the
following expansion

ρ =
1
2

(1 + ζ⃗ · σ⃗) (5.63)

where ζ⃗ is the polarization (or spin) three-vector and σ⃗ are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (5.64)

When Eq. (5.63) describes a single electron, φ can be expressed as a superposition
of spin-up (+) and spin-down (-) states with respect to a chosen quantization axis

φ = c1φ+ + c2φ− with |c1|
2 + |c2|

2 = 1, (5.65)

and thus the magnitude of ζ⃗ is unity (|ζ⃗ | = 1). In this case, the electron is said to
be in a pure state. However, an ensemble of particles may be in an undefined, or
mixed, spin state, for which |ζ⃗ | ≤ 1. This scenario typically occurs with numerical
macro-particles, where each entity represents multiple real-world particles sharing
identical energy-momentum and space-time coordinates.

A similar argument applies to photon polarization. Since a generic photon polar-
ization three-vector e⃗ can be expressed in terms of its components along the two
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unit vectors e⃗1 and e⃗2, which are orthogonal11 to the photon momentum k⃗, the
corresponding Hermitian polarization density matrix is given by

ρi j = ⟨(⃗e · ei)(⃗e ∗ · e j)⟩. (5.66)

As in the electron case, the standard expansion in Pauli matrices allows Eq. (5.66)
to be rewritten as

ρ =
1
2

(1 + ξ⃗ · σ), (5.67)

where ξ⃗ is the polarization three-vector, whose components correspond to the Stokes
parameters12. As before, a single photon is always in a completely polarized pure
state, characterized by |ξ| = 1. Conversely, a collection of photons, such as those
in a photon beam, may exhibit a mixed polarization state, for which |ξ| ≤ 1.

In what follows, we will examine the particles from both pure and mixed perspec-
tives.

5.4 Spin-resolved NIC and polarization-resolved NBW prob-
ability and final energies

Any state-of-the-art SFQED-oriented MC code begins by assessing whether a pro-
cess occurs; if it does, the next step is to determine the energies of all the particles
involved in the event. This section will focus on deriving the NIC and NBW proba-
bilities, as well as discussing the mechanisms that enable the extraction of the final
particle energies. In contrast to Chapter 3, this time we will explore the potential
dependence on both the initial electron’s spin and the photon’s polarization. These
considerations will give rise to new coupling terms, which will have significant
implications even in cases where the processes do not occur.

In the first part of the section, we will begin by discussing the NIC, before moving
on to the NBW in the second.

11e⃗1, e⃗2 and n⃗ = k⃗
|⃗k|

form a three-dimensional orthonormal basis.
12The Stokes vector components depend on the choice of the unit polarization vectors e⃗1 and e⃗2

and are interpreted as follows:

• ξ1 describes linear polarization along the direction 1
2 (⃗e1 + e⃗2) (ξ1 > 0) or 1

2 (⃗e1 − e⃗2) (ξ1 < 0);

• ξ2 describes circular polarization;

• ξ3 describes linear polarization along the direction e⃗1 (ξ3 > 0) or e⃗2 (ξ3 < 0).

Unlike the electron case, the polarization of a photon with a given momentum k⃗ cannot be fully
described by ξ⃗ alone; one must also specify a polarization axis, either e⃗1 or e⃗2.
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5.4.1 The initial spin-resolved NIC photon emission rate and energy
distribution

The total NIC photon emission probability per unit time R(ζ)
NIC can depend on nei-

ther the inner states of the final particles, nor their momenta, as at the stage where
this quantity is used, no process has yet taken place. R(ζ)

NIC is obtained by first sum-
ming the FNIC differential functions (5.39)-(5.43) over the final polarization ξ and
spin ζ′ configurations, then integrating over all the possible photon energies ω and
all the possible angles of emission13 Ω

R(ζ)
NIC =

∫ ε

0
dω

∫
Ω

dΩ
∑
ζ′,ξ

dW (ζζ′ξ)
NIC

dωdΩ
=

=
αm
√

3πγ

(c2

ℏ

) ∫ ∞

0

[
K 2

3
(zq)

2 + 2u + u2

(1 + u)3 −
1

(1 + u)2

∫ ∞

zq

dxK 1
3
(x)+

− K 1
3
(zq)

u
(1 + u)3

(
ζ⃗ · b⃗

)]
du =

= RNIC + g
(
ζ⃗ · b⃗

)
, (5.71)

with zq =
2u
3χe

and u = ω
ε−ω ; the vector b⃗ = v̂ ∧ s⃗ is computed using the direc-

tion of the emitting electron (v̂) and its transverse acceleration (s⃗) at the instant of
emission. In (5.71) we isolated the usual spin-unresolved LCFA photon emission
probability RNIC (see below)

RNIC =
αm
√

3πγ

(c2

ℏ

) ∫ ∞

0

[
K 2

3
(zq)

2 + 2u + u2

(1 + u)3 −
1

(1 + u)2

∫ ∞

zq

dxK 1
3
(x)

]
du (5.72)

from the spin dependent term g
(
ζ⃗ · b⃗

)
, where

g = −
αm
√

3πγ

(c2

ℏ

) ∫ ∞

0
K 1

3
(zq)

u
(1 + u)3 du. (5.73)

We equipped SFQEDtoolkit’s advanced module with a routine, function_phtn_-
emission_rate_initial_spin, capable of returning the Chebyshev approxima-

13The integration of Eqs. (5.39)-(5.43) over the whole solid angle can be performed through the
integral identities ∫

dΩλ
1
2 K 1

3
(ξe) =

π
√

2

ε′χe

ωγ3

∫ ∞

zq

dxK 1
3
(x); (5.68)∫

dΩλK 2
3
(ξe) =

π

2
ε′χe

ωγ4 K 1
3
(zq); (5.69)∫

dΩλ
3
2 K 1

3
(ξe) =

π

2
√

2

ε′χe

ωγ5 K 2
3
(zq) (5.70)

valid for the modified Bessel functions of the second kind. These relations will come in handy in
section 5.6.1.
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tion of the function14

WNIC(γe, χe, ζ⃗, b⃗) =
R(ζ)

NIC

ωr
=

α
√

3π

λr

λC

χe

γe
W̃TOT (χe, ζ⃗, b⃗)

=
α
√

3π

λr

λC

χe

γe

(
W̃LCFA(χe) + g̃(χe, ζ⃗, b⃗)

)
, (5.74)

where

W̃LCFA(χe) =
1
χe

∫ ∞

0

[
K 2

3
(zq)

2 + 2u + u2

(1 + u)3 −
1

(1 + u)2

∫ ∞

zq

dxK 1
3
(x)

]
du =

=

∫ ∞

0

45(vχ)2 + 42vχ + 20
(2 + 3vχ)3 K 2

3

(
v
)
dv (5.75)

corresponds to the usual LCFA differential probability already disclosed in eq.
(3.26), while

g̃(χe, ζ⃗, b⃗) = −
(
ζ⃗ · b⃗

)
χe

∫ ∞

0
K 1

3
(zq)

u
(1 + u)3 du = −

27
4
χe

(
ζ⃗ · b⃗

) ∫ ∞

0

w5(
1 + 3

2χew3
)3 K 1

3
(w3)dw

(5.76)

represents the rearranged spin dependent term (5.73). The variable changes u =
3
2χev and u = 3

2χew3 were applied within the integrals in Eqs. (5.75) and (5.76) to
smooth the function being approximated and simplify the Chebyshev polynomials
required for its representation. Figure 5.3 illustrates the relative error between the
numerical evaluation of Eq. (5.74) and its corresponding Chebyshev approxima-
tion as implemented in SFQEDtoolkit.

Once the occurrence of the emission has been established according to the meth-
ods of chapter 3, the photon’s energy can be finally determined. We incorporated in
SFQEDtoolkit the numerical roiutine function_phtn_emission_nrg_initial_-
spin which returns the energy ω of a photon emitted through NIC. Defining the
spin-resolved cumulative distribution as

ĨNIC(w̄, χe, ζ⃗, b⃗) =
∫ w̄

0

9dw

2
(
1 + 3χew3

2
)3

[[
1 +

(
1 +

3χew3

2

)2]
w2K 2

3

(
w3)+

− w2
(
1 +

3χew3

2

) ∫ ∞

w3
K 1

3

(
y
)
dy

]
+

−
27
4
χe

(
ζ⃗ · b⃗

) ∫ w̄

0

w5(
1 + 3

2χew3
)3 K 1

3
(w3)dw, (5.77)

14In writing Eq. (5.74), we utilized the concepts of the reference wavelength λr and frequency
ωr, which were introduced in Chapter 3. These quantities are entirely arbitrary, subject only to the
constraint λrωr = c, and in computational physics they define the scale of a given simulation.
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Figure 5.3: Relative error between the analytical and numerical SFQEDtoolkit implemen-
tation of the spin-dependent photon emission rate in Eq. (5.74), for two different initial spin
orientations: fully aligned (up) or anti-aligned (down) with respect to b⃗. Not only is the
difference between the two cases negligible, but they are also indistinguishable from Fig.
3.2. The error function has been computed at 104 evenly spaced points over the range
0 ≤ χe ≤ 2000.

function_phtn_emission_nrg_initial_spin proceeds as in section 3.3.3 by
solving the integral equation

ĨNIC(w̄, χe, ζ⃗, b⃗) = rĨNIC(∞, χe, ζ⃗, b⃗)

= r
(
W̃LCFA(χe) + g̃(χe, ζ⃗, b⃗)

)
= rW̃TOT (χe, ζ⃗, b⃗) (5.78)

for w̄, where r is a random number uniformly distributed between 0 < r < 1.
Depending on the value of r, the above routine will behave differently:

• for r < rlow, eq. (5.78) can be simplified using the corresponding asymptotic
expansions and, at lowest order in w, is analitically inverted to give

w̄ = rW̃TOT (χe, ζ⃗, b⃗)
[ 9
21/3Γ

(2
3

)]−1
; (5.79)

• for rlow ≤ r ≤ rhigh SFQEDtoolkit actually solves (5.78) numerically by
applying the Van Wijngaarden Dekker-Brent method [50];
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r

r

(ζ⃗ · b⃗) = −1

(ζ⃗ · b⃗) = +1

χe

Figure 5.4: Analogous to Fig. 3.4, this plot shows the relative difference between the exact
and SFQEDtoolkit-computed spin-dependent photon emission energies. The contour plot
was generated by evaluating the error function at 104 points in χe and 103 points in r over
the domain 0 ≤ χe ≤ 2000 and 0 ≤ r ≤ 1. Similarly to Fig. 5.3, two initial spin orientations
relative to b⃗ were considered: fully aligned (up) and anti-aligned (down).

• for r > rhigh, in a way completely analogous to eq. (3.40), the exponential
tail

ĨNIC(w̄, χe, ζ⃗, b⃗) ≈ W̃TOT (χe, ζ⃗, b⃗)(1 − e−(w̄3−w3
0)) + ĨNIC(w0, χe, ζ⃗, b⃗)e−(w̄3−w3

0)

(5.80)
is employed to represent (5.77) in the highest portion of the spectrum. Re-
placing (5.80) into (5.78) gives

w̄ = 3

√√
w3

0 − log
[ W̃TOT (χe, ζ⃗, b⃗)(1 − r)

W̃TOT (χe, ζ⃗, b⃗) − ĨNIC(w0, χe, ζ⃗, b⃗)

]
. (5.81)

Now, the variables rlow, rhigh and w0 are χe-dependent quantities whose values
were decided ad hoc and summarized in table 5.1. Whichever the r-interval, or the
method followed to achieve w̄, function_phtn_emission_nrg_initial_spin
replaces any function appearing in (5.77)-(5.81) with the corresponding Chebyshev
approximations. Once w̄3 is known, the emitted photon’s energy ω = 3χew̄3

2+3χew̄3 ε is
returned. The colormap in fig. 5.4 shows how the accuracy of this method is well
below the predefined 0.1% accuracy threshold.
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χe rlow rhigh w0

0 ≤ χe < 2 0.1 0.999993 1.45
2 ≤ χe < 20 0.1 0.999986 1.55
20 ≤ χe < 80 0.1 0.999986 1.6
80 ≤ χe < 600 0.08 0.999994 1.9
600 ≤ χe ≤ 2000 0.05 0.999992 2.1

Table 5.1: The numerical values of rlow, rhigh and w0 for each of the five intervals of χe.

No emission spin flip

The introduction of new spin coupling terms, such as that shown in (5.73), within
the emission probability of eq. (5.71) establishes a genuine selection rule which
may flip the electron’s spin even in the absence of photon emission. As pointed out
in [103], these terms might also be seen to emerge from the interference of the one
loop self-energy diagram with the forward scattered one. In any case, the process
is governed by the probability

P(ζ),NE
NIC = 1 − R(ζ)

NICdt = 1 − RNICdt − g
(
ζ⃗ · b⃗

)
dt (5.82)

that an electron with a certain spin ζ does not emit a photon, i.e., the comple-
mentary probability of Eq. (5.71). Here, dt represents a generic time interval15,
ensuring that R(ζ)

NIC has the correct dimensionality for a probability. As shown in
the literature [103], we could now introduce the average nonradiating electron spin
vector ζ⃗NE and recast eq. (5.82) as16

P(ζζNE),NE
NIC =

1
2

[
P(ζ),NE

NIC +
(
ζ⃗NE · S⃗ NE)]

, (5.83)

where
S⃗ NE = ζ⃗(1 − RNICdt) − gb⃗dt. (5.84)

Before proceeding any further, a few remarks are in order. To begin with, ζ⃗NE

represents the spin of the electron as it gets selected by a generic detector after no
photon emission occurs. Moreover, the probability in eq. (5.83) is a relativistically
invariant quantity that must take the same form in any reference frame, particularly
in the rest frame of the electron. Hence, we introduce two density matrices:

ρ′ =
1
2

(1 + σ⃗ · ζ⃗NE) (5.85)

15In PIC codes ωrdt = ∆t will represent the time step of the simulations.
16We stress out that by summing (5.83) over all the possible spin configurations

P(ζζNE ),NE
NIC |ζ⃗NE=↑ + P(ζζNE ),NE

NIC |ζ⃗NE=↓ = P(ζ),NE
NIC

one can successfully retrieve eq. (5.82) (↑ and ↓ denote the orientation of ζ⃗NE with respect to some
spin quantization axis).
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ρ(r) =
1
2

(1 + σ⃗ · ζ⃗(r)) (5.86)

describing the spin states of both the detector and the electron in the rest frame of
the latter. In this frame, Eq. (5.83) takes the form

P(ζζNE),NE
NIC ≡ P ∼ tr(ρ′ρ(r)) ∼ 1 + ζ⃗NE · ζ⃗(r). (5.87)

Comparing (5.83) with (5.87), it is clear that the proper final electron spin state, as
we mean it in its rest frame, is given by [57]

ζ⃗(r) =
S⃗ NE

P(ζ),NE
NIC

, (5.88)

which we will refer to as the spin quantization axis (SQA). Due to the arbitrariness
of the detector, we will choose its orientation to coincide with that of the SQA
(5.227), and thus

ζ⃗NE = ζ⃗(r); (5.89)

when referring to the final electron’s spin we will use ζ⃗NE and ζ⃗(r) interchangeably.
Equivalently, one could notice that the combination (see [106])

P(ζζNE),NE
NIC |ζ⃗NE=↑

− P(ζζNE),NE
NIC |ζ⃗NE=↓

P(ζζNE),NE
NIC |ζ⃗NE=↑

+ P(ζζNE),NE
NIC |ζ⃗NE=↓

= ζ⃗NE ·
S⃗ NE

P(ζ),NE
NIC

(5.90)

gives precisely the projection of the SQA onto the detector’s spin state ζ⃗NE , and
can thus be used to infer ζ⃗(r). Eq. (5.89) is a perfectly valid mixed spin state, with
|ζ⃗NE | ≤ 1.

If one were interested in pure states only (|ζ⃗NE | = 1), the following condition is
used to assess the system

P(ζζNE),NE
NIC |ζ⃗NE=↑

P(ζζNE),NE
NIC |ζ⃗NE=↑

+ P(ζζNE),NE
NIC |ζ⃗NE=↓

=
P(ζ),NE

NIC + |S⃗ NE |

2P(ζ),NE
NIC

> rNE , (5.91)

where rNE a random number such that 0 ≤ rNE ≤ 1; if the inequality (5.91)
holds than ζ⃗NE = S⃗ NE

|S⃗ NE |
, otherwise ζ⃗NE = − S⃗ NE

|S⃗ NE |
. The functions function_no_-

emission_spin_flip_mix and function_no_emission_spin_flip_pure im-
plemented in SFQEDtoolkit reenact the mechanisms we just described.

In the next section we tackle these same arguments but from the perspective of
the NBW process, while the electron spin-flip after the photon emission is delayed
until section 5.6.
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5.4.2 The polarization-resolved NBW pair production rate and en-
ergy distribution

The NBW probability per unit time R(ξ)
NBW regulates the occurrence of pair pro-

duction within strong electromagnetic fields. Likewise to the NIC case described
in 5.4.1, R(ξ)

NBW can depend only on the photon’s polarization ξ at the moment of
decay, besides its quantum parameter χγ and energy ω of course: all the other
variables appearing in Eqs. (5.57)-(5.61) are unnecessary. Retracing the steps of
sec. 5.4.1, we thus derive an expression for R(ξ)

NBW by summing the FNBW dis-
tributions over the electron and poitron spin states (ζ±) and integrating over the
final electron’s (ε−) or poistron’s (ε+ = ω − ε−) energy and angles of emission17

(θ and φ). This procedure extinguishes the superfluous degrees of freedom and the
polarization-resolved probability per unit time emerges as

R(ξ)
NBW =

αm2
√

3πω2

(c4

ℏ

) ∫ ω

0
dε−

[
K 2

3
(zp)

ε2
+ + ε

2
−

ε+ε−
+

∫ ∞

zp

dxK 1
3
(x) − ξ3K 2

3
(zp)

]
,

(5.95)

with zp =
2

3χγ
ω2

ε−ε+
. Through algebraic manipulations we can rewrite eq. (5.95) into

the more convenient

WNBW(ω, χγ, ξ⃗) =
R(ξ)

NBW

ωr
= WLCFA

NBW (ω, χγ) + ξ3Wξ
NBW(ω, χγ) (5.96)

in which we isolated the usual NBW probability rate in eq. (3.28)

WLCFA
NBW (ω, χγ) =

1
ωr

αm2
√

3πω2

(c4

ℏ

) ∫ ω

0
dε−

[
K 2

3
(zp)

ε2
+ + ε

2
−

ε+ε−
+

∫ ∞

zp

dxK 1
3
(x)

]
=

=
α
√

3π

λr

λC

1
γγ

∫ 1

0
dv

9 − v2

3(1 − v2)
K 2

3

( 8
3χγ(1 − v2)

)
(5.97)

from the polarization dependent term

Wξ
NBW(ω, χγ) = −

αm2
√

3πω2

(c4

ℏ

) ∫ ω

0
dε−K 2

3
(zp) =

17Similarly to the set of Eqs. (5.68)-(5.70), the integral identities∫
dΩλ

1
2 K 1

3
(ξγ) =

π
√

2

ε−ε+χγ

ω2γ3

∫ ∞

zp

dxK 1
3
(x) (5.92)

∫
dΩλK 2

3
(ξγ) =

π

2
ε−ε+χγ

ω2γ4 K 1
3
(zp) (5.93)∫

dΩλ
3
2 K 1

3
(ξγ) =

π

2
√

2

ε−ε+χγ

ω2γ5 K 2
3
(zp) (5.94)

are fundamental for the integration of (5.57)-(5.61) over the solid angle. Eqs. (5.92)-(5.94) will be
useful in section 5.6.1.
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= −
1
ωr

α
√

3π

λr

λC

1
γγ

∫ 1

0
dvK 2

3

( 8
3χγ(1 − v2)

)
. (5.98)

Here, in addition to the standard relations involving modified Bessel functions of
the second kind, we applied the change of variable ε− =

ω
2 (1 + v) to regular-

ize the integrals. As in the previous section, we equipped our new component
of SFQEDtoolkit with the routine function_rate_spin_bw, which returns the
Chebyshev approximation of the polarization-resolved probability defined in Eq.
(5.96). Following the methods outlined in Section 3.3.2, function_rate_spin_-
bw is then used to infer the occurrence of NBW events in PIC and MC codes. Its
accuracy as a function of χγ matches that shown in Fig. 3.3, indicating that the
approximation for the new polarization-dependent term is more accurate than the
approximation of the original term in Eq. (5.97).

Once the photon decays via the NBW channel, the final energies of the result-
ing electron and positron must be sampled from the appropriate distribution. To
achieve this, we equipped SFQEDtoolkitwith a function function_nrg_spin_-
bw, which applies the inverse transform sampling algorithm (ITS) to the cumulative
distribution derived from eq. (5.95)

ĨNBW(ε̄−, χe, ξ⃗) =
1
ω

∫ ε̄−

0
dε−

[
K 2

3
(zp)

ε2
+ + ε

2
−

ε+ε−
+

∫ ∞

zp

dxK 1
3
(x) − ξ3K 2

3
(zp)

]
.

(5.99)

By redefining (5.99) using the energy relation ε̄− = ω
2 (1 + v̄) we obtain

ĨNBW(v̄, χe, ξ⃗) =
∫ v̄

0
dv

[(2(1 + v2)
1 − v2 − ξ3

)
K 2

3

( 8
3χγ(1 − v2)

)
+

∫ ∞

8
3χγ(1−v2)

dxK 1
3
(x)

]
.

(5.100)

The function function_nrg_spin_bw solves the integral equation

ĨNBW(v̄, χe, ξ⃗) = rĨNBW(1, χe, ξ⃗)

= rW̃TOT
NBW(χγ, ξ⃗) (5.101)

W̃TOT
NBW(χγ, ξ⃗) =

∫ 1

0
dv

9 − v2

3(1 − v2)
K 2

3

( 8
3χγ(1 − v2)

)
−

∫ 1

0
dvK 2

3

( 8
3χγ(1 − v2)

)
,

(5.102)

r being the usual random number uniformly distributed between 0 < r < 1. As in
sec. (5.4.1), SFQEDtoolkit adapts its approach based on the value of r:

• for r < rBW
low (i.e., at low energies v → 0), the integrand of eq. (5.100) is

replaced by its asymptotic expansion, and eq. (5.101) is inverted analytically,
yielding

v̄ =
rW̃TOT

NBW(χγ, ξ⃗)(
2 − ξ3

)
K 2

3

( 8
3χγ

)
+

∫ ∞
8

3χγ
dxK 1

3
(x)

; (5.103)
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χγ rBW
low v0

0.24 ≤ χγ < 0.4 0.0105 0.9996
0.4 ≤ χγ < 2 0.0109 0.9993
2 ≤ χγ < 20 0.013 0.996
20 ≤ χγ < 80 0.023 0.987
80 ≤ χγ < 600 0.0295 0.908
600 ≤ χγ ≤ 2000 0.029 0.908

Table 5.2: The numerical values of rBW
low and v0 for each of the five intervals of χγ.

• for rBW
low ≤ r ≤ rBW

high eq. (5.101) is solved numerically using the standard
Wijngaarden Dekker-Brent algorithm [50];

• for r > rBW
high (i.e., at the highmost energy values v→ 1), the integrand in Eq.

(5.100) is assumed to follow an exponential tail:

ĨNBW(v, χe, ξ⃗) ≈ W̃TOT
NBW(χγ, ξ⃗)

[
1 − e

−
(

8
3χγ(1−v2)

− 8
3χγ(1−v2

0)

)]
+

+ ĨNBW(v0, χe, ξ⃗)e
−
(

8
3χγ(1−v2)

− 8
3χγ(1−v2

0)

)
. (5.104)

By substituting Eq. (5.104) into Eq. (5.101), we can solve analytically for v̄:

v̄ =

√√√
1 −

( 1
1 − v2

0

−
3χγ
8

log
[ W̃TOT

BW (χγ, ξ⃗)(1 − r)

W̃TOT
BW (χγ, ξ⃗) − ĨBW(v0, χe, ξ⃗)

])−1
. (5.105)

Once v̄ is determined, the corresponding energies are obtained via ε̄− = ω
2 (1 + v̄).

The values for rBW
low and v0 were identified by comparing the relative error between

the proposed solutions (Eqs. (5.103) and (5.104)) and the numerical solution.
These values strongly depend on the quantum parameter χγ and are summarized in
Table 5.2. Conversely, rBW

high is recopmuted at each iteration

rBW
high =

ĨNBW(v0, χe, ξ⃗)

W̃TOT
NBW(χγ, ξ⃗)

. (5.106)

Regardless of which of the three methods SFQEDtoolkit employs, all the dis-
tributions in the formulas from Eqs. (5.99) to (5.106) are evaluated using their
Chebyshev approximations. Fig. 5.5 summarizes the accuracy of function_-
nrg_spin_bw all over its domain of validity.

No decay polarization flip

Repeating the same reasoning as in sec. 5.4.1, the dependence of (5.95) on the
photon polarization ξ⃗ serves as a selection rule that may flip the photon polarization
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r

r

ξ3 = −1

ξ3 = +1

χγ

Figure 5.5: Analogous to Fig. 3.6, this figure displays the relative difference between
the exact polarization-dependent energy of one of the leptons produced during the NBW
process and the energy computed with SFQEDtoolkit. The contour plot was generated
by evaluating the error function at 104 points in χγ and 103 points in r over the domain
0.3 ≤ χγ ≤ 2000 and 0.5 ≤ r ≤ 1 (by symmetry, the range 0 ≤ r < 0.5 corresponds to
the antilepton’s energy). Two limiting cases for the Stokes parameter ξ3 are considered:
ξ3 = +1 (up) and ξ3 = −1 (down).

vector if the NBW process does not occur. This kind of scheme is ruled by the
probability P(ξ),ND

NBW that a photon with a certain polarization ξ does not decay

P(ξ),ND
NBW = 1 − R(ξ)

NBWdt, (5.107)

where the time interval dt is required to render Eq. (5.95) a proper probability.
Following arguments analogous to those already used in section 5.4.1, equation
(5.107) is reworked into

P(ξξND),ND
NBW =

1
2

[
P(ξ),ND

NBW +
(
ξ⃗ND · S⃗ ND)]

, (5.108)

in which the detector polarization vector ξ⃗ND after the rejected NBW decay is
introduced, and its coupling to the polarization quantization axis (PQA) S⃗ ND

S⃗ ND = ξ⃗(1 − RLCFA
BW dt) − RξBWdt(0, 0, 1) (5.109)

is made explicit. In eq. (5.109) the terms

RLCFA
BW =

α
√

3π

λr

λC

ωr

γγ

∫ 1

0
dv

9 − v2

3(1 − v2)
K 2

3

( 8
3χγ(1 − v2)

)
(5.110)
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and

RξBW = −
α
√

3π

λr

λC

ωr

γγ

∫ 1

0
dvK 2

3

( 8
3χγ(1 − v2)

)
(5.111)

are such that R(ξ)
NBW = RLCFA

NBW + ξ3RξNBW . To emphasize the consistency of (5.108)
with (5.107), we point out that

P(ξξND),ND
NBW |ξ⃗ND=↑

+ P(ξξND),ND
NBW |ξ⃗ND=↓

= P(ξ),ND
NBW .

Similarly to the procedure outlined in sec. 5.4.118, the ratio

P(ξξND),ND
NBW |ξ⃗ND=↑

− P(ξξND),ND
NBW |ξ⃗ND=↓

P(ξξND),ND
NBW |ξ⃗ND=↑

+ P(ξξND),ND
NBW |ξ⃗ND=↓

= ξ⃗ND ·
S⃗ ND

P(ξ),ND
NBW

(5.112)

suggests to align the detector polarization vector ξ⃗ND along the PQA = S⃗ ND

P(ξ),ND
NBW

, thus

identifying the photon polarization mixed state as

ξ⃗ND =
S⃗ ND

P(ξ),ND
NBW

. (5.113)

For pure states, a random number r is drawn from the interval 0 ≤ r ≤ 1 and the
following condition is evaluated:

P(ξξND),ND
NBW |ξ⃗ND=↑

P(ξξND),ND
NBW |ξ⃗ND=↑

+ P(ξξND),ND
NBW |ξ⃗ND=↓

=
P(ξ),ND

NBW + |S⃗ ND|

2P(ξ),ND
NBW

> r. (5.114)

If (5.114) holds true than ξ⃗ND = S⃗ ND

|S⃗ ND |
, otherwise ξ⃗ND = − S⃗ ND

|S⃗ ND |
. SFQEDtoolkit

can carry out either algorithm via the routine function_no_decay_pola_flip_-
mix or function_no_decay_pola_flip_pure.

5.5 Angular distribution algorithms

The mechanisms developed thus far for the NIC and NBW processes allow us to
determine whether a photon emission or pair creation event occurs, along with

18We can use the same strategy as described in Sec. 5.4.1 to detect any potential polarization flip
in the absence of NBW decay. This is because, even for photons, the transition probability between
different polarization states can be expressed as

|M f i|
2 ∼ a + b⃗ · ξ⃗ND.
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the energies of the resulting particles. However, we still lack a method for sam-
pling the momenta of the newly created particles in a way that ensures they follow
the correct angular distribution. This section is dedicated to the theoretical and
numerical description of the unreleased SFQEDtoolkit functions that, by address-
ing this challenge, significantly enhance the trajectory characterization of particles
involved in SFQED processes. Having Monte Carlo and PIC codes capable of pro-
ducing spin- or polarization-resolved particles within the theoretical 1

γ -cone (and
thus no longer relying on the collinear approximation) provides a significant ad-
vantage. This capability facilitates precision studies in SFQED and may deepen
our understanding of already known phenomena.

5.5.1 NIC: Photons’ angular distribution from spin resolved electrons

After a NIC event is deemed to occur and the energies of the outgoing particles
are determined, the available information can be further enriched by computing
the photon emission angles, which also influence the recoil of the emitting particle.
This requires deriving a differential probability with an angular dependence that
can be implemented in numerical computations. However, as we will see in Sec.
5.7.1, the FNIC ensemble described by Eqs. (5.39)-(5.43) is not a viable candidate,
as it leads to an ill-defined and potentially negative distribution. To reformulate
Eqs. (5.39)-(5.43) into a form suitable for practical calculations, we assert the
following:

• Resolving the final spin and polarization states is unnecessary for determin-
ing the particles’ momenta after a NIC or NBW event.

• Conversely, resolving the final momenta is crucial for determining the orien-
tation of their corresponding spin and polarization states.

In other words, the spin and polarization of outgoing particles cannot influence the
direction of their momenta, whereas the latter can certainly influence the former.
One might argue, based on the physical logic underlying SFQED processes, that
nature could operate in the opposite manner—meaning that while (i) spin and po-
larization quantization axes are entirely independent of the final momenta, (ii) the
final momenta of particles could strongly depend on their internal states. We con-
sider this notion conceptually flawed: spin inherently carries a sense of orientation
that is inseparable from the direction of momentum. From this perspective, parti-
cles emitted in specific directions are more likely to have their spin or polarization
aligned in particular ways.

In light of the above considerations, the differential probability we seek must be
obtained by summing (5.39)-(5.43) over all final particles’ internal states ζ⃗′ and ξ⃗,
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yielding
dW(ζ)

NIC

dωdφdθ
≡

∑
ζ′,ξ

dW (ζζ′ξ)
NIC

dωdφdθ
=
αω

π2

√
2
3
λ

1
2 sin θ

γ3

χeε′
a, (5.115)

where

a = K 1
3
(ξe)

[
2λ
ε2 + ε′2

εε′
−

1
γ2

]
+ K 2

3
(ξe)
√

2λ
[
θ sinφ

ε2 − ε′2

εε′
v̂ −

ω

γε
b⃗
]
· ζ⃗. (5.116)

To facilitate numerical computations, equations (5.115)-(5.116) can be reformu-
lated as follows:

• change of variable for the polar angle θ by defining

z = 2
√

2γ3λ
3
2 =

[
2γ2(1 − n⃗ · v⃗)

] 3
2 (5.117)

dz =
3
2

z
1
3 2γ2β sin θdθ =

3
2
[
2γ2(1 − n⃗ · v⃗)

] 1
2 2γ2β sin θdθ = 3

√
2γ3λ

1
2 β sin θdθ.

(5.118)

Since19 n⃗ · v⃗ = |β⃗| cos θ and

β⃗ =
v⃗
c
∼ v̂ (5.119)

the variable z naturally encodes the dependence on θ, which determines the
angular separation between the emitted photon and the emitting electron.
Given 0 ≤ θ ≤ π, the range of z is( 2

1 + β

) 3
2
≤ z ≤

( 2
1 − β

) 3
2 . (5.120)

In the ultrarelativistic limit (to lowest order in β = |β⃗|), this simplifies to
1 ≤ z ≤ ∞.

• change of variable for photon energy ω introducing

u =
ω

ε − ω
(5.121)

and the corresponding differential

dω =
εdu

(1 + u)2 . (5.122)

• integration over the azimuthal angle φ∫ 2π

0

dW(ζ)
NIC

dωdφdθ
dφ (5.123)

19In this and the following section, the vector β⃗ represents the electron’s velocity v⃗ normalized by
the speed of light c, rather than the angle β introduced in Sec. 5.2.1.
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(all the terms depending on trigonometric functions of φ vanish upon integra-
tion). Since the photon’s momentum is confined within the 1

γ -cone around
the emitting electron, it is expected to be uniformly distributed in the az-
imuthal angle φ. This justifies the integration.

Enforcing (5.117)-(5.123), on equation (5.115), it becomes (at the lowest order in
β ∼ 1 − 1

2γ2 )

∫ 2π

0

dW(ζ)
NIC

dωdφdθ
dφ =

dW (ζ)
NIC

dudz

=
α

π

2

3
√

3

1
χeε′

ε2 u
(1 + u)2

1
γ2 a′. (5.124)

Here a = a′
γ2 and

a′ = K 1
3
(ξe)

[
z

2
3

2 + 2u + u2

(1 + u)
− 1

]
− K 2

3
(ξe)z

1
3
[ u
(1 + u)

ζ⃗ · b⃗
]
, (5.125)

where the argument of the Bessel functions is recasted as ξe =
4
√

2
3

ωγ3

ε′χe
λ

3
2 = 2u

3χe
z.

At this stage, the ITS algorithm (already used in Chap. 3) ensures that by solving
the equation ∫ ∞

z̄

dW(ζ)
NIC

dudz
dz − r

∫ ∞

1

dW(ζ)
NIC

dudz
dz = 0 (5.126)

for z̄ (where r is a random number between 0 and 1), the resulting values will be
distributed according to (5.124). For simplicity, we change the integration variable
in eq. (5.126) from z to

σ =
2u
3χe

z, (5.127)

with the corresponding differentials related by dz = 3χe
2u dσ. This transforms (5.126)

into ∫ ∞

σ̄

dW(ζ)
NIC

dudσ
dσ − r

∫ ∞

2u
3χe

dW (ζ)
NIC

dudσ
dσ = 0 (5.128)

where

dW (ζ)
NIC

dudσ
=
α

π

1
√

3

1
ε′
ε2 1

(1 + u)2

1
γ2 aσ (5.129)

aσ = K 1
3
(σ)

[(3χe

2u

) 2
3σ

2
3

2 + 2u + u2

(1 + u)
− 1

]
− K 2

3
(σ)

(3χe

2u

) 1
3σ

1
3
[ u
(1 + u)

ζ⃗ · b⃗
]
.

(5.130)
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To prevent numerical underflow during the application of the inverse transform
sampling (ITS), we cap the upper integration bound at σ = 30 instead of∞. Using
the differential relation

d
dx

[
xνKν(x)

]
= −xνKν−1(x), (5.131)

which holds for modified Bessel functions of the second kind, we derive the inte-
gral identities∫ b

a
x

2
3 K 1

3
(x)dx = −

∫ b

a

d
dx

[
x

2
3 K 2

3
(x)

]
dx = −b

2
3 K 2

3
(b) + a

2
3 K 2

3
(a) (5.132)∫ b

a
x

1
3 K 2

3
(x)dx = −

∫ b

a

d
dx

[
x

1
3 K 1

3
(x)

]
dx = −b

1
3 K 1

3
(b) + a

1
3 K 1

3
(a). (5.133)

This allows us to rewrite Eq. (5.128)

ar(σ̄) − rar
( 2u
3χe

)
= 0, (5.134)

where the function ar(x) is defined as

ar(x) =
(3χe

2u

) 2
3 [
−K 2

3
(30)30

2
3 + K 2

3
(x)x

2
3
][2 + 2u + u2

(1 + u)

]
−

∫ 30

x
K 1

3
(σ)dσ

[
1
]
+

−
(3χe

2u

) 1
3 [
−K 1

3
(30)30

1
3 + K 1

3
(x)x

1
3
][ u

(1 + u)
ζ⃗ · b⃗

]
. (5.135)

Explicitly writing out all terms in Eqs. (5.134)-(5.135), the final integral equation
takes the form{(3χe

2u

) 2
3 [
−K 2

3
(30)30

2
3 (1 − r) + K 2

3
(σ̄)σ̄

2
3
]
− rK 2

3

( 2u
3χe

)}
Ar+

−
{∫ 30

σ̄
K 1

3
(σ)dσ − r

∫ 30

2u
3χe

K 1
3
(σ)dσ

}
Br+

−
{(3χe

2u

) 1
3 [
−K 1

3
(30)30

1
3 (1 − r) + K 1

3
(σ̄)σ̄

1
3
]
− rK 1

3

( 2u
3χe

)}
Cr = 0, (5.136)

with the constants Ar, Br and Cr are given by

Ar =
2 + 2u + u2

(1 + u)
, (5.137)

Br =1, (5.138)

Cr =
u

(1 + u)
(ζ⃗ · b⃗). (5.139)

The SFQEDtoolkit provides the function function_initial_spin_phtn_emission_-
polar_angle, which numerically solves Eq. (5.136) for σ̄ using the Van Wijngaarden-
Dekker-Brent method20. Once σ̄ is obtained, the corresponding cosine of the polar

20When solving Eq. (5.136), the random number r, the transformed photon energy u, and the
initial electron spin ζ are fixed parameters.
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angle θ is computed as

cos θ =
[
1 − (

3χ
2u
σ̄)

2
3

1
2γ2

]1
β
. (5.140)

If the initial electron’s spin is unresolved, as is the case in most modern simulation
codes, Eq. (5.124) is averaged over all possible spin configurations:

dWNIC

dudz
≡

1
2

∑
ζ

dW (ζ)
NIC

dudz

=
α

π

2

3
√

3

1
χeε′

ε2 u
(1 + u)3

1
γ2 K 1

3
(ξe)

[
z

2
3 (2 + 2u + u2) − (1 + u)

]
. (5.141)

Under this assumption, Eq. (5.136) simplifies to{(3χe

2u

) 2
3 [
−K 2

3
(30)30

2
3 (1 − r) + K 2

3
(σ̄)σ̄

2
3
]
− rK 2

3

( 2u
3χe

)}
Ar+

−
{∫ 30

σ̄
K 1

3
(σ)dσ − r

∫ 30

2u
3χe

K 1
3
(σ)dσ

}
Br = 0. (5.142)

The new module of SFQEDtoolkit implements the routine function_phtn_-
emission_polar_angle, specifically designed to solve Eq. (5.142). In Fig. 5.6,
we present the angular distribution of photons emitted via NIC during the collision
of a 500 MeV electron beam with a linearly polarized laser wave with intensity I =
5 × 1021 W/cm2. The figure compares the photon distributions obtained using the
collinear approximation with those generated by SFQEDtoolkit’s function_-
phtn_emission_polar_angle. The results are consistent with those reported in
[104].

5.5.2 NBW: Angular distribution from polarization resolved photons

By extending the arguments presented in Sec. 5.5.1 to the FNBW distribution
described by Eqs. (5.57)-(5.61), we derive a differential probability with angular
dependence that enables us to identify nontrivial emission directions for the pairs
produced via NBW. The derivation follows closely that of the previous section.
First, we sum over the final electron and positron spin states ζ±, integrate over the

azimuthal angle φ, and then replace the polar coordinate θ with z = 2
√

2γ3
−λ

3
2
−,

which, from this point onward, carries all the information regarding the angular
separation between the initial photon’s trajectory and that of the electron. As a
result, Eqs. (5.57)-(5.61) become

dW (ξ)
BW

dzdε−
=

∫ 2π

0

∑
ζ+ζ−

dW (ξζ−ζ+)
BW

dε−dΩ
dφ
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Figure 5.6: The figure illustrates the θx-θy distribution of NIC photons produced during
a MC simulation of a collision between a 500 MeV electron beam and a linearly po-
larized laser pulse (I = 5 × 1021 W/cm2). Two simulation approaches are compared:
the collinear approximation (left panel) and the angle-resolved module of SFQEDtoolkit
(right panel). The results, expressed in normalized simulation weights, agree with those
reported in [104].

=
2α
π

1

3
√

3

1
χγ

1
γ2
−

( ¯dW′′0 + ξ3 ¯dW′′3 ), (5.143)

where

¯dW′′0 =K 1
3
(ξγ)

{ ω2

2ε2
+

+
(
2z

2
3 − 1

)ε2
+ + ε

2
−

2ε2
+

}
, (5.144)

¯dW′′3 = − K 1
3
(ξγ)

ε−
ε+

z
2
3 . (5.145)

The argument of the modified Bessel functions is rewritten as ξγ = 2ω2

3ε−ε+χγ
z. Al-

though the change to the variable z helps us identify potential similarities between
the NIC and NBW distributions, this transformation is only temporary. For numer-
ical convenience, we define instead

η =
2ω2

3ε−ε+χγ
z, (5.146)

and apply the ITS algorithm to the distribution

dW (ξ)
BW

dηdε−
=
α

π

1
√

3

ε−ε+

ω2

1
γ2
−

( ¯dWη
0 + ξ3 ¯dWη

3), (5.147)

with

¯dWη
0 =K 1

3
(η)

{ ω2

2ε2
+

+
[
2
(3ε−ε+χγ

2ω2

) 2
3 η

2
3 − 1

]ε2
+ + ε

2
−

2ε2
+

}
(5.148)



5.5. ANGULAR DISTRIBUTION ALGORITHMS 105

¯dWη
3 = − K 1

3
(η)

ε−
ε+

(3ε−ε+χγ
2ω2

) 2
3 η

2
3 . (5.149)

In SFQEDtoolkit, the routine function_initial_pola_pair_production_-
polar_angle solves the integral equation∫ ∞

η̄

dW(ξ)
BW

dηdε−
dη − r

∫ ∞

2ω2
3ε−ε+χγ

dW (ξ)
BW

dηdε−
dη = 0 (5.150)

which generates η values distributed according to eq. (5.147) over the interval
2ω2

3ε−ε+χγ
≤ η ≤ ∞. Using the identities in Eqs. (5.132)-(5.133) and capping the

upper integration bound to η = 30 (instead of η = ∞), Eq. (5.150) can be recast as

¯dWr
0(η̄) + ξ3 ¯dWr

3(η̄) = r
[

¯dWr
0

( 2ω2

3ε−ε+χγ

)
+ ξ3 ¯dWr

3

( 2ω2

3ε−ε+χγ

)]
, (5.151)

with the functions ¯dWr
0(x) and ¯dWr

3(x) defined as

¯dWr
0(x) =

[
−K 2

3
(30)30

2
3 + K 2

3
(x)x

2
3
](3ε−ε+χγ

2ω2

) 2
3 ε

2
+ + ε

2
−

ε2
+

+

∫ 30

x
K 1

3
(x)dx

{ε−
ε+

}
(5.152)

¯dWr
3(x) =

[
−K 2

3
(30)30

2
3 + K 2

3
(x)x

2
3
](3ε−ε+χγ

2ω2

) 2
3
[
−
ε−
ε+

]
. (5.153)

Simple algebraic manipulations put equation (5.151) into the more manageable
form{(3ε−ε+χγ

2ω2

) 2
3 [
−K 2

3
(30)30

2
3 (1 − r) + K 2

3
(η̄)η̄

2
3
]
− rK 2

3

( 2ω2

3ε−ε+χγ

)}
Ār+

+
{∫ 30

η̄
K 1

3
(η)dη − r

∫ 30

2ω2
3ε−ε+χγ

K 1
3
(η)dη

}
B̄r = 0,

(5.154)

where the constants Ār and B̄r are

Ār =
ε2
+ + ε

2
−

ε2
+

−
ε−
ε+
ξ3 (5.155)

B̄r =
ε−
ε+
. (5.156)

The function function_initial_pola_pair_production_polar_angle solves
(5.154) numerically for η̄ and then returns the cosine of the unknown polar angle θ
as

cos θ =
[
1 − (

3ε−ε+χγ
2ω2 η̄)

2
3

1
2γ2
−

] 1
β−
. (5.157)
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If the initial photon’s polarization ξ⃗ is either unresolved or irrelevant, the distri-
bution in Eq. (5.143) is averaged over all polarization configurations, so that Eq.
(5.154) reduces to{(3ε−ε+χγ

2ω2

) 2
3 [
−K 2

3
(30)30

2
3 (1 − r) + K 2

3
(η̄)η̄

2
3
]
− rK 2

3

( 2ω2

3ε−ε+χγ

)} ¯̄Ar+

+
{∫ 30

η̄
K 1

3
(η)dη − r

∫ 30

2ω2
3ε−ε+χγ

K 1
3
(η)dη

}
B̄r = 0,

(5.158)

with ¯̄Ar =
ε2
++ε

2
−

ε2
+

. SFQEDtoolkit’s advanced function function_pair_production_-
polar_angle is purposedly designed to solve (5.158) for η̄ and return the corre-
sponding cos θ in accordance with eq. (5.157).

5.6 Determination of the final inner states

Up to this point in the thesis, we have provided the reader with the theoretical and
numerical tools necessary to determine the occurrence of SFQED events, the ener-
gies of the resulting particles, and their subsequent directions. The stage is now set
to explore the evolution of the spin and polarization states of these particles. How-
ever, this topic is somewhat delicate, so we will proceed gradually. In Sec. 5.5, we
briefly mentioned the possibility of inferring spins and polarizations independently
from the angular characterization of momenta, specifically when particles are gen-
erated under the collinear approximation. While we have identified this approach
as conceptually flawed, and given that many modern codes in the literature still
rely on it, the first part of this section will discuss its implementation for both the
NIC and NBW channels.

This will be instrumental to the second part, where we will use the FNIC and
FNBW distributions, Eqs. (5.39)-(5.43) and (5.57)-(5.61), to resolve the inter-
nal states of particles that have a complete angular characterization, following the
methods outlined in Sec. 5.5.

In the third part, we will demonstrate that, under certain conditions, those FNIC
and FNBW distributions may result in negative probabilities. We will thoroughly
examine the corresponding differentials and propose a novel approach to treat them
in a way that restores their probabilistic interpretation.

5.6.1 Internal states for particles without angular resolution

Particles produced under the collinear approximation have their spin or polarization
states extracted from a differential probability in which all angular information has
been integrated out.
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Final electron spin and photon polarization after the collinear NIC photon
emission

For the NIC process, this distribution is obtained by integrating eqs. (5.39)-(5.43)
over the possible emission angles. By applying the identities in eqs. (5.68)-(5.70),
the FNIC collapses into

dW (ζζ′ξ)
NIC

dω
=

∫
Ω

dW (ζζ′ξ)
NIC

dωdΩ
dΩ

=
α

4
√

3πγ2
(dW⋆

0 + ξ1dW⋆
1 + ξ2dW⋆

2 + ξ3dW⋆
3 ), (5.159)

where

dW⋆
0 =

[
K 2

3
(zq)

ε2 + ε′2

εε′
−

∫ ∞

zq

dxK 1
3
(x)

]
+

[
2K 2

3
(zq) −

∫ ∞

zq

dxK 1
3
(x)

]
(ζ⃗ · ζ⃗′)+

+
[
K 2

3
(zq) −

∫ ∞

zq

dxK 1
3
(x)

]ω2

εε′
(ζ⃗ · v̂)(ζ⃗′ · v̂) − K 1

3
(zq)

[ω
ε

(
ζ⃗ · b⃗

)
+
ω

ε′
(
ζ⃗′ · b⃗

)]
,

(5.160)

dW⋆
1 = − K 2

3
(zq)

ε2 − ε′2

2εε′
(ζ⃗ ∧ ζ⃗′) · v̂ −

ω2

2εε′

∫ ∞

zq

dxK 1
3
(x)

[
(ζ⃗ · s⃗)(ζ⃗′ · b⃗) + (ζ⃗ · b⃗)(ζ⃗′ · s⃗)

]
+

+ K 1
3
(zq)

[ω
ε

(
ζ⃗′ · s⃗

)
+
ω

ε′
(
ζ⃗ · s⃗

)]
, (5.161)

dW⋆
2 =

[
K 2

3
(zq)

ε2 − ε′2

εε′
−
ω

ε

∫ ∞

zq

dxK 1
3
(x)

](
v̂ · ζ⃗

)
+

[
K 2

3
(zq)

ε2 − ε′2

εε′
−
ω

ε′

∫ ∞

zq

dxK 1
3
(x)

](
v̂ · ζ⃗′

)
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{ε2 − ε′2
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ω2

2εε′
[
(ζ⃗ · v̂)(ζ⃗′ · b⃗) + (ζ⃗ · b⃗)(ζ⃗′ · v̂)

]}
, (5.162)

dW⋆
3 =K 2

3
(zq)

[ε2 + ε′2

2εε′
(ζ⃗ · ζ⃗′) + 1 −

ω2

2εε′
(ζ⃗ · v̂)(ζ⃗′ · v̂)

]
+

−
ω2

2εε′

∫ ∞

zq

dxK 1
3
(x)

[
(ζ⃗ · s⃗)(ζ⃗′ · s⃗) − (ζ⃗ · b⃗)(ζ⃗′ · b⃗)

]}
+

− K 1
3
(zq)

[ω
ε

(
ζ⃗′ · b⃗

)
+
ω

ε′
(
ζ⃗ · b⃗

)]
. (5.163)

Eqs. (5.159)-(5.163), which retain a dependence on the initial and final spin- and
polarization-states only, is perfectly consistent with the differential in [99]. For the
sake of future convenience we switch from the variable ω to u (5.121), getting

dW (ζζ′ξ)
NIC

du
=

α

4
√

3πγ2

ε

(1 + u)2 (dW⋆
0 + ξ1dW⋆

1 + ξ2dW⋆
2 + ξ3dW⋆

3 ), (5.164)
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and

dW⋆
0 =

[
K 2

3
(zq)

2 + 2u + u2

(1 + u)
−

∫ ∞

zq

dxK 1
3
(x)

]
+
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3
(zq) −

∫ ∞

zq

dxK 1
3
(x)

]
(ζ⃗ · ζ⃗′)+

+
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K 2

3
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∫ ∞
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3
(x)
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1 + u
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3
(zq)

[ u
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(
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(
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(5.165)
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1 = − K 2

3
(zq)

2u + u2

2(1 + u)
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∫ ∞
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+
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(
ζ⃗′ · s⃗

)
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(
ζ⃗ · s⃗
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; (5.166)
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∫ ∞
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)
+
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∫ ∞
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dxK 1
3
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](
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)
+

+K 1
3
(zq)

{ 2u + u2

2(1 + u)
(ζ⃗ ∧ ζ⃗′) · s⃗ −
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2(1 + u)
[
(ζ⃗ · v̂)(ζ⃗′ · b⃗) + (ζ⃗ · b⃗)(ζ⃗′ · v̂)
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;

(5.167)
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3 =K 2
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(ζ⃗ · ζ⃗′) + 1 −
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2(1 + u)
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+

−
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2(1 + u)

∫ ∞
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dxK 1
3
(x)
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+

− K 1
3
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1 + u

(
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)
+ u

(
ζ⃗ · b⃗

)]
. (5.168)

We can now outline an algorithm to determine the electron’s spin and the photon’s
polarization after the NIC event. By summing eq. (5.164) over the final photon
polarizations ξ⃗, we obtain the differential probability

dW (ζζ′)
NIC

du
=

∑
ξ

dW (ζζ′ξ)
NIC

du
=

α

2
√

3πγ2

ε

(1 + u)2 dW⋆
0 (5.169)

which depends only on the electron’s spin ζ⃗′ (at this stage, we neglect the depen-
dence on u and ζ⃗, assuming them to be fixed). The term dW⋆

0 is given by

dW⋆
0 =a⋆ + ζ⃗′ · S⃗ ⋆, (5.170)

a⋆ =
[
K 2

3
(zq)

2 + 2u + u2

(1 + u)
−

∫ ∞

zq

dxK 1
3
(x)

]
− K 1

3
(zq)

u
1 + u

(
ζ⃗ · b⃗

)
(5.171)
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S⃗ ⋆ =
[
2K 2

3
(zq) −

∫ ∞

zq

dxK 1
3
(x)

]
ζ⃗ +

[
K 2

3
(zq) −

∫ ∞

zq

dxK 1
3
(x)

] u2

1 + u
(ζ⃗ · v̂)v̂ − K 1

3
(zq)ub⃗.

(5.172)

From the discussion in sec. 5.4.1, we know that, up to a constant factor, dW∗0
corresponds to the NIC cross-section summed over the final photon’s polarization
and emission angles ∫

Ω

∑
ξ

|M f i|
2 ∼ dW∗0 = a∗ + ζ⃗′ · S⃗ ∗, (5.173)

where ζ⃗′ represents the final electron spin as selected by an arbitrary detector. Since
the quantity in eq. (5.173) is a Lorentz invariant which takes the form21∫

Ω

∑
ξ

|M f i|
2 ∼ 1 + ζ⃗′ · ζ⃗(r) (5.174)

in the final electron’s rest frame, it is natural to recognize the final electron spin
state ζ⃗(r) in its rest frame22 as [57]

ζ⃗(r) =
S⃗ ∗

a∗
. (5.175)

The quantity in eq. (5.175) is the proper SQA of the final electron: given the
arbitrariness in choosing ζ⃗′, we will henceforth make no distinction between the
detector’s spin axis and the SQA:

ζ⃗′ = ζ⃗(r) =
S⃗ ∗

a∗
(5.176)

(this is a common abuse of notation that simplifies the forthcoming expressions).
Alternatively, one could define the SQA as the direction onto which the detector’s
spin axis ζ⃗′ projects when considering the ratio

dW(ζζ′)
NIC

du

∣∣∣∣
ζ⃗′=↑
−

dW(ζζ′)
NIC

du

∣∣∣∣
ζ⃗′=↓

dW(ζζ′)
NIC

du

∣∣∣∣
ζ⃗′=↑
+

dW(ζζ′)
NIC

du

∣∣∣∣
ζ⃗′=↓

= ζ⃗′ ·
S⃗ ⋆

a⋆
, (5.177)

which again leads to eq. (5.176).

The same reasoning applies directly to the photon polarization: depending on
whether the quantum system is in a mixed spin/polarization state or a pure one,
two possible approaches arise:

21See argument above eq. (5.87) in sec 5.4.1.
22Notice that in Eqs. (5.28), (5.39) and (5.174) the vectors ζ⃗ and ζ⃗′ are already expressed in the

frames at rest with the incoming and outgoing electrons, respectively.
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• For mixed states, we begin by identifying the spin quantization axis (SQA)
as given in Eq. (5.176). The next step involves evaluating the ratio:

dW(ζζ′ξ)
NIC
du

∣∣∣∣
ξ⃗=↑
−

dW(ζζ′ξ)
NIC
du

∣∣∣∣
ξ⃗=↓

dW(ζζ′ξ)
NIC
du

∣∣∣∣
ξ⃗=↑
+

dW(ζζ′ξ)
NIC
du

∣∣∣∣
ξ⃗=↓

= ξ⃗ ·
P⃗⋆

a⋆ + ζ⃗′ · S⃗ ⋆
, (5.178)

which leads to the PQA

ξ⃗ =
P⃗⋆

a⋆ + ζ⃗′ · S⃗ ⋆
. (5.179)

Here, the electron spin from Eq. (5.177) is used within the polarization-
resolved distribution (5.164), now rewritten as:

dW(ζζ′ξ)
NIC

du
=

α

4
√

3πγ2

ε

(1 + u)2 (a⋆ + ζ⃗′ · S⃗ ⋆ + ξ⃗ · P⃗⋆) (5.180)

P⃗⋆ = (dW⋆
1 , dW⋆

2 , dW⋆
3 ). (5.181)

• For pure states, the spin and polarization are determined sequentially by eval-
uating the conditions:

dW(ζζ′)
NIC

du

∣∣∣∣
ζ⃗′=↑

dW(ζζ′)
NIC

du

∣∣∣∣
ζ⃗′=↑
+

dW(ζζ′)
NIC

du

∣∣∣∣
ζ⃗′=↓

=
a⋆ + |S⃗ ⋆|

2a⋆
> rζ′ (5.182)

and

dW(ζζ′ξ)
NIC
du

∣∣∣∣
ξ⃗=↑

dW(ζζ′ξ)
NIC
du

∣∣∣∣
ξ⃗=↑
+

dW(ζζ′ξ)
NIC
du

∣∣∣∣
ξ⃗=↓

=
a⋆ + ζ⃗′ · S⃗ ⋆ + |P⃗⋆|

2(a⋆ + ζ⃗′ · S⃗ ⋆)
> rξ, (5.183)

where rζ′ and rξ random numbers uniformly distributed between 0 and 1. If
Eq. (5.182) [Eq. (5.183)] holds, then the spin (polarization) state is assigned
as ζ⃗′ = S⃗ ⋆

|S ⋆ |
(ξ⃗ = P⃗⋆

|P⋆ | ), otherwise they take the opposite values ζ⃗′ = − S⃗ ⋆

|S ⋆ |

(ξ⃗ = − P⃗⋆
|P⋆ | ).

SFQEDtoolkit’s advanced module implements two functions:

• function_spin_and_pola_no_angles_mixed_states, that tracks the evo-
lution of mixed spin- and polarization-states for particles created in the collinear
approximation, reproducing the mechanisms corresponding to Eqs. (5.176)
and (5.179);
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Figure 5.7: Mixed-state curves for spin (ζ′z , left) and photon polarization (ξz, right) were
obtained by simulating a 1 GeV electron moving in a magnetic field, B⃗ = (0, 0, Bz). Both ζ′z
and ξz are plotted as functions of the photon-to-electron energy ratio, ω

ε
, for various initial

spin component values, ζz (specified in the inset and indicated by different colors). The
anomalous behavior observed in the polarization curve arises from its dependence on the
spin value (see eq. (5.178)).

Figure 5.8: As in fig. 5.7, but this time pure states have been employed for spin and
polarization. Each data point on the curves represents the average outcome of 103 NIC
photon emissions with the identical parameters (initial electron spin ζ, energy ε, quantum
parameter χe and photon-to-electron energy ratio ω

ε
).

• function_spin_and_pola_no_angles_pure_stateswhich performs the
same task but for pure states, therefore evaluating (5.182) and (5.183).

Figures 5.7 and 5.8 were generated using the advanced version of the SFQEDtoolkit
and illustrate the spin- (left) and polarization–photon energy (right) curves obtained
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from simulating a ε = 1 GeV electron moving in a magnetic field, B⃗ = (0, 0, Bz),
with quantum parameter χe = 2,. In Figure 5.7, the spin component ζ′z and the
polarization component ξz (both measured along the magnetic field) are obtained
via the routine function_spin_and_pola_no_angles_mixed_states. In con-
trast, Figure 5.8 shows the averages of these quantities over multiple emissions,
computed using function_spin_and_pola_no_angles_pure_states. In both
cases, ζ′z and ξz are plotted as functions of the photon-to-electron energy ratio, ω

ε ,
for various initial spin component values, ζz (indicated by the different colors of the
curves). An interesting observation emerges: while the results in Figure 5.8 and
the final-spin (left panel) of Figure 5.7 are perfectly consistent with those reported
in [107], the photon polarization mixed state exhibits an anomalous behavior. This
discrepancy arises from our approach: the fact that the PQA depends on the SQA
computed in Eq. (5.175) undermines the physical logic of the problem. In effect,
it is ambiguous whether nature first fixes the final electron’s spin and then the pho-
ton’s polarization, or vice versa. One could indeed return to Eq. (5.39), sum over
the ζ′ states, and first determine the PQA via

ξ⃗ =
P⃗′⋆

a⋆
, (5.184)

where P⃗′⋆ = (dW′⋆1 , dW′⋆2 , dW′⋆3 ) and

dW′⋆0 =K 2
3
(zq)

ε2 + ε′2

εε′
−

∫ ∞

zq

dxK 1
3
(x) − K 1

3
(zq)

ω

ε

(
ζ⃗ · b⃗

)
, (5.185)

dW′⋆1 =K 1
3
(zq)

ω

ε′
(
ζ⃗ · s⃗

)
, (5.186)

dW′⋆2 =
[
K 2

3
(zq)

ε2 − ε′2

εε′
−
ω

ε

∫ ∞

zq

dxK 1
3
(x)

](
v̂ · ζ⃗

)
, (5.187)

dW′⋆3 = − K 1
3
(zq)

ω

ε′
(
ζ⃗ · b⃗

)
. (5.188)

Only then one proceeds with the calculation of the SQA. Although the two meth-
ods differ, they are expected to yield equivalent results on average; however, no
averaging process is applied here. It is important to note that the results presented
in Figure 5.8 are derived from a stochastic procedure involving pure spin and polar-
ization states, while the mixed state method used in Figure 5.7 is entirely determin-
istic: given a set of simulation parameters, the final mixed state is always computed
in the same way. The simplest solution to the issue, from now on referred to as the
“dependence problem”, is to compute the mixed states ζ′z and ξz independently,
using Eqs. (5.176) and (5.184). The routine function_spin_and_pola_no_-
angles_mixed_states_independent implements this approach, and its results
are shown in Figure 5.9, thereby restoring consistency. In contrast, pure states do
not require such a modification because their intrinsic probabilistic nature inher-
ently addresses this issue.
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Figure 5.9: As in fig. 5.7. This time the SQA and PQA are computed independently from
one another, and the results are consistent with those found in the literature.

Final electron and positron spins after the collinear NBW pair production

Defining the spin states of pair particles produced under the NBW collinear ap-
proximation follows the same procedure as that proposed in the previous sec-
tion for the NIC. The process begins by integrating the FNBW distribution (Eqs.
(5.57)–(5.61)) over the solid angle. This integration, performed using the identities
in Eqs. (5.92)–(5.94), eliminates the redundant angular dependence, yielding

dW (ξζ−ζ+)
NBW

dε−
=

∫
Ω

dW (ξζ−ζ+)
NBW

dε−dΩ
dΩ

=
αm2

4
√

3πω2
( ¯dW⋆

0 + ξ1 ¯dW⋆
1 + ξ2 ¯dW⋆

2 + ξ3 ¯dW⋆
3 ), (5.189)

in which

¯dW⋆
0 =

[
K 2

3
(zp)

ε2
+ + ε

2
−

ε+ε−
+

∫ ∞

zp

dxK 1
3
(x)

]
−

[
2K 2

3
(zp) −

∫ ∞

zp

dxK 1
3
(x)

]
(ζ⃗− · ζ⃗+)+

+
[ε2
+ + ε

2
−

ε+ε−

∫ ∞

zp

dxK 1
3
(x) − K 2

3
(zp)

(ε+ − ε−)2

ε+ε−

]
(ζ⃗− · v̂)(ζ⃗+ · v̂)+

− K 1
3
(zp)

{[ ω
ε−

(
ζ⃗− · b⃗

)
−
ω

ε+

(
ζ⃗+ · b⃗

)]}
; (5.190)

¯dW⋆
1 =

[ (ε2
+ − ε

2
−)

2ε+ε−
K 2

3
(zp)

]
v̂ · (ζ⃗− ∧ ζ⃗+)+

−
ω2

2ε+ε−

∫ ∞

zp

dxK 1
3
(x)

[
(ζ⃗− · s⃗)(ζ⃗+ · b⃗) + (ζ⃗− · b⃗)(ζ⃗+ · s⃗)

]
+
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+ K 1
3
(zp)

{[ ω
ε−

(
ζ⃗+ · s⃗

)
−
ω

ε+

(
ζ⃗− · s⃗

)]}
; (5.191)

¯dW⋆
2 =

[ ω
ε−

∫ ∞

zp

dxK 1
3
(x) − K 2

3
(zp)

ε2
+ − ε

2
−

ε+ε−

](
v̂ · ζ⃗−

)
+

+
[ ω
ε+

∫ ∞

zp

dxK 1
3
(x) + K 2

3
(zp)

ε2
+ − ε

2
−

ε+ε−

](
v̂ · ζ⃗+

)
+

− K 1
3
(zp)

{[ ω2

2ε+ε−
(ζ⃗− ∧ ζ⃗+) · s⃗ +

(
ε2
+ − ε

2
−

)
2ε+ε−

[
(ζ⃗− · v̂)(ζ⃗+ · b⃗) + (ζ⃗− · b⃗)(ζ⃗+ · v̂)

]]}
;

(5.192)

¯dW⋆
3 =

[ (ε2
+ + ε

2
−)

2ε+ε−
(ζ⃗− · ζ⃗+) − 1 −

(ε+ − ε−)2

2ε+ε−
(ζ⃗− · v̂)(ζ⃗+ · v̂)

]
K 2

3
(zp)+

−
ω2

2ε+ε−

∫ ∞

zp

dxK 1
3
(x)

[
(ζ⃗− · s⃗)(ζ⃗+ · s⃗) − (ζ⃗− · b⃗)(ζ⃗+ · b⃗)

]}
+

− K 1
3
(zp)

[ ω
ε−

(
ζ⃗+ · b⃗

)
−

(
ζ⃗− · b⃗

) ω
ε+

]
. (5.193)

One then continues by summing (5.189)-(5.193) over the positron’s spin (ζ⃗ +)

dW (ξζ−)
NBW

dε−
=

αm2

2
√

3πω2
( ¯dW◦0 + ξ1 ¯dW◦1 + ξ2 ¯dW◦2 + ξ3 ¯dW◦3), (5.194)

where

¯dW◦0 =
[
K 2

3
(zp)

ε2
+ + ε

2
−

ε+ε−
+

∫ ∞

zp

dxK 1
3
(x)

]
− K 1

3
(zp)

ω

ε−

(
ζ⃗− · b⃗

)
(5.195)

¯dW◦1 = −K 1
3
(zp)

ω

ε+

(
ζ⃗− · s⃗

)
(5.196)

¯dW◦2 =
[ ω
ε−

∫ ∞

zp

dxK 1
3
(x) − K 2

3
(zp)

ε2
+ − ε

2
−

ε+ε−

](
v̂ · ζ⃗−

)
(5.197)

¯dW◦3 = − K 2
3
(zp) + K 1

3
(zp)

(
ζ⃗− · b⃗

) ω
ε+
. (5.198)

At this stage, a few key remarks are in order. Physical and numerical reasoning
suggests that once the spin of one particle is determined, this information should
then be used to establish the polarization of the other. However, it is essential to re-
member that the electron and positron are created simultaneously. Since there is no
fundamental reason to begin with the electron, we arbitrarily choose to determine
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the positron’s spin first23. With this choice in mind, also keeping into account the
underlying symmetry of the problem, the differential distribution in the positron

energy
dW(ξζ+)

NBW
dε+

, analogous to (5.194)-(5.198), can be obtained by swapping every
occurrence of the + and − subscripts in the relevant variables. Applying this pre-
scription yields:

dW (ξζ+)
BW

dε+
=

αm2

2
√

3πω2
( ¯dW+0 + ξ1 ¯dW+1 + ξ2 ¯dW+2 + ξ3 ¯dW+3 ), (5.199)

in which

¯dW+0 =
[
K 2

3
(zp)

ε2
+ + ε

2
−

ε+ε−
+

∫ ∞

zp

dxK 1
3
(x)

]
− K 1

3
(zp)

ω

ε+

(
ζ⃗+ · b⃗

)
(5.200)

¯dW+1 = −K 1
3
(zp)

ω

ε−

(
ζ⃗+ · s⃗

)
(5.201)

¯dW+2 =
[ ω
ε+

∫ ∞

zp

dxK 1
3
(x) + K 2

3
(zp)

ε2
+ − ε

2
−

ε+ε−

](
v̂ · ζ⃗+

)
(5.202)

¯dW+3 = − K 2
3
(zp) + K 1

3
(zp)

(
ζ⃗+ · b⃗

) ω
ε−
. (5.203)

As usual, we recast Eqs. (5.199)-(5.203) in the form

dW(ξζ+)
NBW

dε+
=

αm2

2
√

3πω2
(a⋆+ + ζ⃗+ · S⃗

⋆
+), (5.204)

where we have separated the spin-independent term

a⋆+ =
[
K 2

3
(zp)

ε2
+ + ε

2
−

ε+ε−
+

∫ ∞

zp

dxK 1
3
(x)

]
− K 2

3
(zp)ξ3 (5.205)

from the term that couples to the spin

S⃗ ⋆
+ =

[ ω
ε+

∫ ∞

zp

dxK 1
3
(x) + K 2

3
(zp)

ε2
+ − ε

2
−

ε+ε−

]
ξ2v̂ + K 1

3
(zp)

[ ω
ε−

(ξ3b⃗ − ξ1 s⃗) −
ω

ε+
b⃗
]
.

(5.206)

In this way, we exploit the relationship between
dW(ξζ+)

NBW
dε+

and the squared transition
matrix element associated with the positron spin, namely

dW (ξζ+)
NBW

dε+
∼ |M

ζ+
f i |

2.

23On average, the results remain unchanged whether one computes ζ⃗+ before ζ⃗− or vice versa.
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By the same logic of previous section, through the ratio

dW(ξζ+)
NBW

dε+

∣∣∣∣
ζ⃗+=↑
−

dW(ξζ+)
NBW

dε+

∣∣∣∣
ζ⃗+=↓

dW(ξζ+)
NBW

dε+

∣∣∣∣
ζ⃗+=↑
+

dW(ξζ+)
NBW

dε+

∣∣∣∣
ζ⃗+=↓

= ζ⃗+ ·
S⃗ ⋆
+

a⋆+
(5.207)

we can identify the positron’s mixed state as

ζ⃗+ =
S⃗ ⋆
+

a⋆+
. (5.208)

Conversely, to determine the pure state corresponding to (5.208), one evaluates

dW(ξζ+)
NBW

dε+

∣∣∣∣
ζ⃗+=↑

dW(ξζ+)
NBW

dε+

∣∣∣∣
ζ⃗+=↑
+

dW(ξζ+)
NBW

dε+

∣∣∣∣
ζ⃗+=↓

=
a⋆+ + |S⃗

⋆
+ |

2a⋆+
> r⋆+ , (5.209)

r⋆+ being a random number such that 0 ≤ r⋆+ ≤ 1; if the inequality in (5.209) holds

then ζ⃗+ =
S⃗ ⋆
+

|S⃗ ⋆
+ |

, if it does not ζ⃗+ = −
S⃗ ⋆
+

|S⃗ ⋆
+ |

.

Regardless of whether ζ⃗+ is mixed or pure, we insert its value back into Eqs.
(5.190)-(5.193), which by rearranging the terms become

¯dW⋆
0 =

[
K 2

3
(zp)

ε2
+ + ε

2
−

ε+ε−
+

∫ ∞

zp

dxK 1
3
(x)

]
+ K 1

3
(zp)

ω

ε+

(
ζ⃗+ · b⃗

)
+

ζ⃗− ·
{[ε2
+ + ε

2
−

ε+ε−

∫ ∞

zp

dxK 1
3
(x) − K 2

3
(zp)

(ε+ − ε−)2

ε+ε−

]
(ζ⃗+ · v̂)v̂+

−
[
2K 2

3
(zp) −

∫ ∞

zp

dxK 1
3
(x)

]
ζ⃗+ − K 1

3
(zp)

ω

ε−
b⃗
}

(5.210)

¯dW⋆
1 =K 1

3
(zp)

ω

ε−

(
ζ⃗+ · s⃗

)
+

+ ζ⃗− ·
{ (ε2
+ − ε

2
−)

2ε+ε−
K 2

3
(zp)(ζ⃗+ ∧ v̂) − K 1

3
(zp)

ω

ε+
s⃗+

−
ω2

2ε+ε−

∫ ∞

zp

dxK 1
3
(x)

[
(ζ⃗+ · b⃗)s⃗ + (ζ⃗+ · s⃗)b⃗

]}
(5.211)

¯dW⋆
2 =

[ ω
ε+

∫ ∞

zp

dxK 1
3
(x) + K 2

3
(zp)

ε2
+ − ε

2
−

ε+ε−

](
v̂ · ζ⃗+

)
+

+ ζ⃗− ·
{[ ω
ε−

∫ ∞

zp

dxK 1
3
(x) − K 2

3
(zp)

ε2
+ − ε

2
−

ε+ε−

]
v̂+
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− K 1
3
(zp)

( ω2

2ε+ε−
(ζ⃗+ ∧ s⃗) +

(
ε2
+ − ε

2
−

)
2ε+ε−

[
(ζ⃗+ · b⃗)v̂ + (ζ⃗+ · v̂)b⃗

])}
(5.212)

¯dW⋆
3 = − K 2

3
(zp) − K 1

3
(zp)

ω

ε−

(
ζ⃗+ · b⃗

)
+

+ ζ⃗− ·
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3
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2
−)
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ζ⃗+ −

(ε+ − ε−)2

2ε+ε−
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+

−
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2ε+ε−

∫ ∞
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dxK 1
3
(x)
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(ζ⃗+ · s⃗)s⃗ − (ζ⃗+ · b⃗)b⃗

]
+ K 1

3
(zp)

ω

ε+
b⃗
}
. (5.213)

As we did with eq. (5.204), we rewrite (5.189)-(5.193) in the conventional transi-
tion matrix form

dW (ξζ−ζ+)
NBW

dε−
=

αm2

4
√

3πω2
(a⋆− + ζ⃗− · S⃗

⋆
−), (5.214)

with

a⋆0 =
[
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−

ε+ε−
+
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dxK 1
3
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]
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3
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ω
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(
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)
+
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ω
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(
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)
− ξ3

[
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3
(zp) + K 1

3
(zp)

ω

ε−

(
ζ⃗+ · b⃗

)]
, (5.215)

and S⃗ ⋆
− given by

S⃗ ⋆
− = S⃗ ⋆

0 + ξ1S⃗ ⋆
1 + ξ2S⃗ ⋆

2 + ξ3S⃗ ⋆
3 , (5.216)

S⃗ ⋆
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b⃗ (5.217)
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−
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]
(5.218)
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(5.219)

S⃗ ⋆
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]
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b⃗. (5.220)
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Finally, from
dW(ξζ−ζ+)

NBW
dε−

∣∣∣∣
ζ⃗−=↑
−

dW(ξζ−ζ+)
NBW
dε−

∣∣∣∣
ζ⃗−=↓

dW(ξζ−ζ+)
NBW
dε−

∣∣∣∣
ζ⃗−=↑
+

dW(ξζ−ζ+)
NBW
dε−

∣∣∣∣
ζ⃗−=↓

= ζ⃗− ·
S⃗ ⋆
−

a⋆−
(5.221)

we can infer that the final electron’s mixed spin state is given by

ζ⃗− =
S⃗ ⋆
−

a⋆−
. (5.222)

Conversely, to ascertain its pure state counterpart, we must evaluate

dW(ξζ−ζ+)
NBW
dε−

∣∣∣∣
ζ⃗−=↑

dW(ξζ−ζ+)
NBW
dε−

∣∣∣∣
ζ⃗−=↑
+

dW(ξζ−ζ+)
NBW
dε−

∣∣∣∣
ζ⃗−=↓

=
a⋆− + |S

⋆
− |

2a⋆−
> r⋆− , (5.223)

with r⋆− another random value drawn from the interval (0, 1). If this condition holds,

then ζ⃗− =
S⃗ ⋆
−

|S ⋆
− |

; otherwise ζ⃗− = −
S⃗ ⋆
−

|S ⋆
− |

.

In the new unreleased computational module of SFQEDtoolkit, we implemented
two functions:

• function_pola_and_spin_BW_no_angles_mixed_states,

• function_pola_and_spin_BW_no_angles_pure_states.

These functions numerically reproduce the algorithms described above for the
mixed and pure spin states, respectively. An example of their application is shown
in Figures 5.10 and 5.11, which depict the electron (left) and positron (right) spin
curves obtained from the simulation of the NBW decay of a ω = 1 GeV pho-
ton in a magnetic field, B⃗ = (0, 0, Bz), with quantum parameter χγ = 2. In Fig-
ure 5.10, the mixed spin state components of the electron and positron, ζ+z and
ζ−z, along B⃗ are computed using function_pola_and_spin_BW_no_angles_-
mixed_states. Similarly, Figure 5.11 presents the averages of these quantities
over multiple pair production processes, obtained in the pure state approach using
function_pola_and_spin_BW_no_angles_pure_states. In both cases, ζ+z

and ζ−z are plotted as functions of the electron-to-photon energy ratio, ε−ω , for differ-
ent initial polarization component values, ξz (indicated by the various curve colors).
As in the NIC case, the positron mixed-state curves in Figure 5.10 (right panel) do
not align with those in Figure 5.11 [107]. This is another instance of the “depen-
dence problem” we encountered in the previous section. By computing the two
leptons’ spins independently, i.e., using Eq. (5.208) along with its counterpart ob-
tained via the +↔ − prescription, we can restore the correctness of the results. The
SFQEDtoolkit addresses this through the advanced routine function_pola_-
and_spin_BW_no_angles_mixed_states_independent, whose results are pre-
sented in Figure 5.12. These curves are fully consistent with those in Figure 5.11.
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Figure 5.10: Mixed-state spin curves for the electron (ζ−z, left) and positron (ζ+z, right)
obtained from the simulation of a 1 GeV photon propagating in a magnetic field, B⃗ =
(0, 0, Bz). Both ζ−z and ζ+z are plotted as functions of the electron-to-photon energy ratio,
ε−
ω

, for various initial polarization component values, ξz (specified in the inset and indi-
cated by different colors). The anomalous behavior observed in the positron spin curves
arises from its dependence on the electron spin. Important: although in the text we de-
scribe a procedure where the positron spin is computed first, followed by the electron’s,
the routine function_pola_and_spin_BW_no_angles_mixed_states performs these
calculations in the opposite order. Due to the symmetry of the pair production process,
switching between these two approaches is straightforward.

Figure 5.11: As in fig. 5.10, but this time pure states have been employed for characterizing
the two leptons’ spins. Each data point on the curves represents the average outcome of
103 NBW photon emissions with the identical parameters (initial photon polarization ξ,
energy ω, quantum parameter χγ and electron-to-photon energy ratio ε−

ω
).
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Figure 5.12: As in fig. 5.10. This time the electron and positron SQAs are computed
independently from one another. The results are consistent with those in fig. 5.11 and
[107].

5.6.2 Internal states for particles with angular resolution

Allowing spin-resolved electrons and positrons, along with polarization-resolved
photons, to evolve within PIC and Monte Carlo codes may open up unexplored
aspects of plasma physics. The inclusion of new internal degrees of freedom could
provide new informations on the dynamics of interactions between matter and elec-
tromagnetic fields at high densities and energies. In this section, we address the de-
termination of the internal states of particles whose directional properties have been
rigorously characterized according to the methods detailed in Sec. 5.5. The proce-
dures outlined here closely mirror those presented in Secs. 5.6.1 and 5.6.1; how-
ever, we now employ the FNIC and FNBW distributions (i.e., Eqs. (5.39)–(5.43)
and (5.57)–(5.61)). Henceforth, we assume that the final particles’ energies and
directions are fully determined and can be treated as constants (see Secs. 5.4 and
5.5 for further details).

Final electron spin and photon polarization after the angular NIC photon
emission

As mentioned earlier, the algorithm for determining the final inner states in the NIC
process is based on Eqs. (5.39)–(5.43). By summing these equations over the final
photon polarization vector ξ⃗, we obtain the differential probability

dW(ζζ′)
NIC

dωdφdθ
=
αω

2π2

√
2
3
λ

1
2
γ3

χeε′
sin θdW′0, (5.224)
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which we will use to ascertain the final electron’s spin. The quantity dW′0, defined
in eq. (5.40), can be reformulated to isolate its dependence on the final spin vector
ζ⃗′

dW′0 = K 1
3
(ξe)

[
2λ
ε2 + ε′2

εε′
−

1
γ2

]
+ K 2

3
(ξe)
√

2λ
[
θ sinφ

ε2 − ε′2

εε′
v̂ −

ω

γε
b⃗
]
· ζ⃗+

+ ζ⃗′ ·
{
K 1

3
(ξe)

[(
4λ −

1
γ2

)
ζ⃗ +

ε2 − ε′2

2εε′
θ

γ

(
sinφ(s⃗ ∧ ζ⃗) − cosφ(b⃗ ∧ ζ⃗)

)
+

+ θ2 ω
2

εε′
(ζ⃗ · v̂)v̂ −

ω2

2εε′
θ sinφ
γ

(
(ζ⃗ · v̂)b⃗ + (ζ⃗ · b⃗)v̂

)
+

−
ω2

2εε′
θ cosφ
γ

(
(ζ⃗ · v̂)s⃗ + (ζ⃗ · s⃗)v̂

)]
+

+ K 2
3
(ξe)
√

2λ
[
θ sinφ

ε2 − ε′2

εε′
v̂ −

ω

γε′
b⃗
]}
=

= a + ζ⃗′ · S⃗ , (5.225)

where the spin-independent part a was defined in eq. (5.116), and

S⃗ = K 1
3
(ξe)

[(
4λ −

1
γ2

)
ζ⃗ +

ε2 − ε′2

2εε′
θ

γ

(
sinφ(s⃗ ∧ ζ⃗) − cosφ(b⃗ ∧ ζ⃗)

)]
+

+ K 1
3
(ξe)

ω2

εε′

[
θ2(ζ⃗ · v̂) −

θ

2γ

(
sinφ(ζ⃗ · b⃗) + cosφ(ζ⃗ · s⃗)

)]
v̂ + K 2

3
(ξe)
√

2λθ sinφ
ε2 − ε′2

εε′
v̂+

− K 1
3
(ξe)

ω2

2εε′
θ cosφ
γ

(ζ⃗ · v̂)s⃗ − K 1
3
(ξe)

ω2

2εε′
θ sinφ
γ

(ζ⃗ · v̂)b⃗ − K 2
3
(ξe)
√

2λ
ω

γε′
b⃗.

(5.226)

As in sec. 5.6.1 one can proceed in two ways:

• for mixed spin and polarization states, satisfying |ζ⃗′| ≤ 1 and |ξ⃗| ≤ 1, we start
by evaluating the ratio

dW(ζζ′)
NIC

dωdφdθ

∣∣∣∣
ζ⃗′=↑
−

dW(ζζ′)
NIC

dωdφdθ

∣∣∣∣
ζ⃗′=↓

dW(ζζ′)
NIC

dωdφdθ

∣∣∣∣
ζ⃗′=↑
+

dW(ζζ′)
NIC

dωdφdθ

∣∣∣∣
ζ⃗′=↓

=

dW′0
∣∣∣∣
ζ⃗′=↑
− dW′0

∣∣∣∣
ζ⃗′=↓

dW′0
∣∣∣∣
ζ⃗′=↑
+ dW′0

∣∣∣∣
ζ⃗′=↓

= ζ⃗′ ·
S⃗
a
, (5.227)

which ultimately allows us to identify the Spin Quantization Axis (SQA) as

ζ⃗′ =
S⃗
a
. (5.228)

Subsequently, we substitute Eq. (5.228) back into the system of Eqs. (5.39)–(5.43),
which can then be rewritten as

dW(ζζ′ξ)
NIC

dωdΩ
= CNIC(a + ζ⃗′ · S⃗ + ξ⃗ · P⃗), (5.229)
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in which we set
P⃗ = (dW′1, dW′2, dW′3). (5.230)

Following the same approach as for the SQA, we then assess the ratio

dW(ζζ′ξ)
NIC

dωdΩ

∣∣∣∣
ξ⃗=↑
−

dW(ζζ′ξ)
NIC

dωdΩ

∣∣∣∣
ξ⃗=↓

dW(ζζ′ξ)
NIC

dωdΩ

∣∣∣∣
ξ⃗=↑
+

dW(ζζ′ξ)
NIC

dωdΩ

∣∣∣∣
ξ⃗=↓

= ξ⃗ ·
P⃗

a + ζ⃗′ · S⃗
(5.231)

which leads to the following PQA

ξ⃗ =
P⃗

a + ζ⃗′ · S⃗
. (5.232)

However, in light of the “dependence problem” already introduced in sec.
5.6.1, we also provide an expression for the PQA which is independent of
the final electron spin. Starting from Eq. (5.39) and summing over the ζ′

states, we obtain

dW (ζξ)
NIC

dωdφdθ
=
αω

2π2

√
2
3
λ

1
2
γ3

χeε′
sin θ(a + ξ⃗ · h⃗), (5.233)

with

h1 = K 1
3
(ξe)θ2 sin 2φ + K 2

3
(ξe)
√

2λ
ω

γε′
(ζ⃗ · s⃗) (5.234)

h2 = K 1
3
(ξe)

[(
2λ
ε2 − ε′2

εε′
−

ω

γ2ε

)
v̂ −

θω

γε
(sinφb⃗ + cosφs⃗)

]
· ζ⃗ + K 2

3
(ξe)
√

2λθ sinφ
ε2 + ε′2

εε′

(5.235)

h3 = K 1
3
(ξe)(θ2 cos 2φ + 2λ) − K 2

3
(ξe)
√

2λ
ω

γε′
(ζ⃗ · b⃗). (5.236)

Following reasoning similar to that leading to Eq. (5.228), we can then de-
fine an alternative PQA as

ξ⃗ =
h⃗
a
. (5.237)

• for pure states, on the other side, we first draw two random numbers (0 ≤
rζ′ , rξ ≤ 1) and then evaluate the conditions

dW(ζζ′)
NIC

dωdφdθ

∣∣∣∣
ζ⃗′=↑

dW(ζζ′)
NIC

dωdφdθ

∣∣∣∣
ζ⃗′=↑
+

dW(ζζ′)
NIC

dωdφdθ

∣∣∣∣
ζ⃗′=↓

=
a + |S |

2a
> rζ′ (5.238)
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Figure 5.13: Mixed-state curves for electron spin (ζ′z , left) and photon polarization
(ξz, right) were generated by simulating a 1 GeV electron moving in a magnetic field,
B⃗ = (0, 0, Bz). Each NIC emission is repeated 104 times, with each repetition emitting
a photon in a different direction (as described in Sec. 5.5.1) while maintaining the same
photon-to-electron energy ratio, ω

ε
. The resulting values of ζ′z and ξz are averaged over

these emissions and plotted as functions of ω
ε

for various initial spin component values, ζ′

(specified in the inset and indicated by different colors). The anomalous behavior observed
in the polarization curve arises from both its dependence on the spin value and the fact the
states are not physical.

and
dW(ζζ′ξ)

NIC
dωdΩ

∣∣∣∣
ξ⃗=↑

dW(ζζ′ξ)
NIC

dωdΩ

∣∣∣∣
ξ⃗=↑
+

dW(ζζ′ξ)
NIC

dωdΩ

∣∣∣∣
ξ⃗=↓

=
a + ζ⃗′ · S⃗ + |P|

2(a + ζ⃗′ · S⃗ )
> rξ, (5.239)

one after the other (notice that eq. (5.239) depends on the value of ζ⃗′ ex-
plicitely). If they hold, then ζ⃗′ = S⃗

|S | and ξ⃗ = P⃗
|P| , otherwise ζ⃗′ = − S⃗

|S | and

ξ⃗ = − P⃗
|P| .

In SFQEDtoolkit we have made available three routines:

• function_spin_and_pola_angles_mixed_states

• function_spin_and_pola_angles_mixed_states_independent

• function_spin_and_pola_angles_pure_states

which replicate the algorithms for mixed and pure states discussed above. We
combined them with the functions introduced at the end of Sec. 5.5.1 to generate
the photon emission angles. To test the implementation, we set up a simulation in
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Figure 5.14: Similar to Figure 5.13, but in this case pure-states were used: each emission
along a given direction is repeated 103 times (with the same parameters), and the outcomes
are averaged accordingly.

Figure 5.15: As in Fig. 5.13, but with the SQA and PQA computed independently. The re-
sults appear consistent with those in Sec. 5.6.1, which correspond to the angle-unresolved
NIC emission process. However, most of the spin and polarization states are, in fact, non-
physical.

which an electron, moving in a magnetic field B⃗ = (0, 0, Bz) with energy ε = 1
GeV and quantum parameter χe = 2, is forced to emit photons via NIC.

Specifically, the electron is made to emit a photon 104 times, each emission oc-
curring in a different direction but with the same photon-to-electron energy ratio
ω
ε . The final spin (ζ′z) and polarization (ξz) components along the magnetic field
are then averaged over these emissions. By repeating this process for all possible
ω
ε ratios and several values of the initial spin projection ζz, we obtained the spin-
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Figure 5.16: As in fig. 5.15, but rejecting all the non-physical states.

and polarization-photon energy curves shown in Figs. 5.13–5.15. Surprisingly,
only the independent mixed-state results from Fig. 5.15 appear to agree with the
angle-unresolved curves in Fig. 5.9 [107]. In addition to the usual “dependence
problem” observed in the right panel of Fig. 5.13, this time even the pure-state
curves in Fig. 5.14 appear slightly shifted from those in fig. 5.8. As a matter of
fact, a more detailed analysis reveals that the magnitudes of some of the computed
spin and polarization states (determined via Eqs. (5.228), (5.232) and (5.237)) can
exceed unity:

|ζ⃗′| > 1 and |ξ⃗| > 1. (5.240)

Unfortunately, rejecting the states that satisfy (5.240) is not a valid solution, as the
corresponding curves would transform into those portrayed in Figs. 5.16. This dis-
crepancy points to an underlying ill-defined negative differential probability, which
will be discussed in Section 5.7.

Final electron and positron spin after the angular NBW pair production

If the NBW process generates positrons and electrons in accordance with the angu-
lar distribution described in Section 5.5.2, then the following method is appropriate
for determining their spins. The algorithm starts by summing the FNBW distribu-
tion described in (5.57)-(5.61) over the final positron’s spin states ζ+, yielding

dW (ξζ−)
NBW

dθdφdε−
=

α

2π2

√
2
3
λ

1
2
−

γ3
−

χγ
sinθ( ¯dW−0 + ξ1 ¯dW−1 + ξ2 ¯dW−2 + ξ3 ¯dW−3 ) (5.241)

with

¯dW−0 =K 1
3
(ξγ)

{ ω2

2ε2
+γ

2
−

+
(
4λ− −

1
γ2
−

)ε2
+ + ε

2
−

2ε2
+

}
+
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− K 2
3
(ξγ)

√
2λ−ζ⃗− ·

{ ω

ε+γ−
b⃗ − θ sinφ

ε2
+ − ε

2
−

ε2
+

v̂
}
, (5.242)

¯dW−1 = − K 1
3
(ξγ)θ2 sin 2φ

ε−
ε+
− K 2

3
(ξγ)

√
2λ−

ωε−

ε2
+γ−

(
ζ⃗− · s⃗

)
, (5.243)

¯dW−2 =K 1
3
(ξγ)

[( ω

ε+γ
2
−

− 2λ−
ε2
+ − ε

2
−

ε2
+

)
v̂ +

ω

ε+γ−
θ
(
sinφb⃗ + cosφs⃗

)]
· ζ⃗−+

− K 2
3
(ξγ)

√
2λ−θ sinφ

ε2
+ + ε

2
−

ε2
+

, (5.244)

¯dW−3 = − K 1
3
(ξγ)

ε−
ε+

(
θ2 cos 2φ + 2λ−

)
+ K 2

3
(ξγ)

√
2λ−

ωε−

ε2
+γ−

(
ζ⃗− · b⃗

)
; (5.245)

we immediately recast this quantity in the usual transition probability form

dW(ξζ−)
NBW

dθdφdε−
=

α

2π2

√
2
3
λ

1
2
−

γ3
−

χγ
sinθ(a− + ζ⃗− · S⃗ −), (5.246)

where we defined

a− =K 1
3
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{ ω2

2ε2
+γ

2
−
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1
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−
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−
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(5.247)

S⃗ − =K 1
3
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(5.248)

Then we apply the “+↔ −” prescription to retrieve the positron differential distri-
bution equivalent to Eqs. (5.246)-(5.248), i.e.,

dW(ξζ+)
NBW

dθdφdε+
=
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2π2

√
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3
λ

1
2
+

γ3
+
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sinθ(a+ + ζ⃗+ · S⃗ +), (5.249)

where

a+ =K 1
3
(ξγ)

{ ω2

2ε2
−γ

2
+

+
(
4λ+ −

1
γ2
+

)ε2
+ + ε

2
−

2ε2
−

−
ε+
ε−

[
ξ1θ

2 sin 2φ + ξ3
(
θ2 cos 2φ + 2λ+

)]}
+

− K 2
3
(ξγ)

√
2λ+ξ2θ sinφ

ε2
+ + ε

2
−

ε2
−

. (5.250)
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S⃗ + =K 1
3
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(5.251)

As done multiple times before, the positron’s mixed spin state is defined as

ζ⃗+ =
S⃗ +
a+

; (5.252)

whereas, to determine its pure spin state, we must verify whether the inequality

dW(ξζ+)
NBW

dθdφdε+

∣∣∣∣
ζ⃗+=↑

dW(ξζ+)
NBW

dθdφdε+

∣∣∣∣
ζ⃗+=↑
+

dW(ξζ+)
NBW

dθdφdε+

∣∣∣∣
ζ⃗+=↓

=
a+ + |S +|

2a+
> r+ (5.253)

is satisfied (r+ is a random number uniformly distributed in 0 ≤ r+ ≤ 1). If the
condition holds, the positron’s spin is assigned as ζ⃗+ = S⃗ +

|S + |
; otherwise, it is set

to ζ⃗+ = −
S⃗ +
|S + |

. It is important to note that the values of θ, φ, v̂, s⃗ and b⃗, which
appear in (5.246)-(5.248) and (5.249)-(5.251), are species-specific. Although not
explicitly stated, they are inherently updated according to the prescription above.
However, once assigned, these values remain unchanged throughout the application
of (5.252) and (5.253).

With the purpose of extracting the final electron spin ζ⃗−, we rewrite (5.58)-(5.61)
in such a way that their coupling to ζ⃗− is made manifest
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(5.254)
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ωε−

ε2
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s⃗
}

(5.255)
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−
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−
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−
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(5.256)

¯dW′3 = −K 1
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+
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b⃗
}
, (5.257)

so that eq. (5.57) can be recasted into its transition probability form

dW (ξζ−ζ+)
NBW

dε−dΩ
= CBW( ¯dW′0 + ξ1 ¯dW′1 + ξ2 ¯dW′2 + ξ3 ¯dW′3) =



5.6. DETERMINATION OF THE FINAL INNER STATES 129

= CBW(a′− + ζ⃗− · S⃗
′
−), (5.258)

where
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−
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−
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−
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−
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(5.259)

and

S⃗ ′− = S⃗ 0 + ξ1S⃗ 1 + ξ2S⃗ 2 + ξ3S⃗ 3, (5.260)

S⃗ 0 =K 1
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−

ε2
+

v̂
]

(5.261)

S⃗ 1 =K 1
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+
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−
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(5.263)

S⃗ 3 =K 1
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+
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By substituting throughout Eqs. (5.258)–(5.264) the mixed (or pure) state value
for ζ⃗+ obtained via Eq. (5.252) (or Eq. (5.253)), we obtain the final electron’s spin
quantization axis (SQA) as

ζ⃗− =
S⃗ ′−
a′−
. (5.265)

For the mixed state, this expression directly represents the final electron spin. In

contrast, for the pure state, the electron spin is assigned as ζ⃗− =
S⃗ ′−
|S ′− |

(or ζ⃗− = −
S⃗ ′−
|S ′− |

),
depending on whether the inequality

dW(ξζ−ζ+)
NBW

dε−dΩ

∣∣∣∣
ζ⃗−=↑

dW(ξζ−ζ+)
NBW

dε−dΩ

∣∣∣∣
ζ⃗−=↑
+

dW(ξζ−ζ+)
NBW

dε−dΩ

∣∣∣∣
ζ⃗−=↓

=
a′− + |S⃗

′
−|

2a′−
> r− (5.266)

holds (or does not). Here r− is a random number uniformly distributed in 0 ≤ r− ≤
1. Alternatively, one can compute the final electron mixed state ζ⃗− by applying the
“+ ↔ −” prescription to eq. (5.252). In this way, the two ζ⃗+ and ζ⃗− states would
be independent.

We have enhanced SFQEDtoolkit by adding three additional routines:

• function_pola_and_spin_BW_angles_mixed_states;

• function_pola_and_spin_BW_angles_mixed_states_independent;

• function_pola_and_spin_BW_angles_pure_states.

These routines generate the spins of the leptons produced in the NBW pair process
according to the mixed and pure state mechanisms described above. To validate
the NBW numerical framework we have developed, we conducted a simulation
analogous to the one performed at the end of Sec. 5.6.2. A photon, propagating
in a magnetic field B⃗ = (0, 0, Bz) with energy ω = 1 GeV and quantum parameter
χγ = 2, is forced to decay into an electron-positron pair via NBW. Every pho-
ton decay is reiterated 104 times: using the SFQEDtoolkit’s functions introduced
in Sec. 5.5.2, a different emission direction is chosen for the created electron,
while the electron-to-photon energy ratio ε−

ω remains fixed throughout. The final
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Figure 5.17: Mixed-state curves for the electron (ζ−z, left) and positron (ζ+z, right) spin
generated by simulating the NBW decay of a 1 GeV photon moving in a magnetic field, B⃗ =
(0, 0, Bz). Each NBW decay is repeated 104 times, each time selecting a different direction
for the electron (as described in Sec. 5.5.2) while maintaining the same electron-to-photon
energy ratio, ε−

ω
. The resulting values of ζ−z and ζ+z are averaged over these emissions

and plotted as functions of ε−
ω

for various initial spin component values, ξz (specified in
the inset and indicated by different colors). Important: although in the text we describe a
procedure where the positron spin is computed first, followed by the electron’s, the routine
function_pola_and_spin_BW_angles_mixed_states performs these calculations in
the opposite order. Due to the symmetry of the pair production process, switching between
these two approaches is straightforward. This time, the anomalous behavior observed in
the right panel is due not only to the “dependence problem” but also to the fact that most
states are non-physical.

spin components (ζ−z and ζ+z) along the magnetic field are then averaged over all
these decays. By repeating this process for all possible values of ε−

ω and initial
polarization projections ξz, we obtained the electron-spin and positron-spin versus
electron-energy curves shown in Figs. 5.17–5.19. In this case, the pure-state curves
in Fig. 5.18 differ significantly from the angle-unresolved results presented in Sec.
5.6.1. Only the independent mixed-states approach shown in Fig. 5.19 appears to
agree with those results (see Figs. 5.11–5.12). Nonetheless, similarly to the NIC
counterpart, not all spin states computed via Eqs. (5.265)-(5.266) are physically
valid, as some exceed unity in magnitude:

|ζ⃗−| > 1 and |ζ⃗+| > 1. (5.267)

Again, discarding these unphysical states modifies the curves into those shown in
Fig. 5.20, highlighting the same underlying issue affecting the FNIC distribution.
A potential resolution to this issue is explored in the next section, within the context
of the NIC process.
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Figure 5.18: Similar to Fig. 5.13, but pure states are used here to track the inner particles’
states. Each NBW event, in which an electron is produced along a specific direction, is
repeated 103 times with all parameters held constant. Every data point in the plot represents
the average outcome of these repetitions.

Figure 5.19: As in Fig. 5.17, but with the leptons’ SQAs computed independently of
each other. Although the results appear consistent with those in Sec. 5.6.1, most of the
computed spin states exhibit a modulus greater than unity, rendering them non-physical.

5.7 An ill-defined differential probability

The issue introduced at the end of the previous section might arise because of the
use of the QOM approximation. To rule out this possibility, we recomputed the
differential probability in Eq. (5.7), following the rigorous first order SFQED S -
matrix element approach [108]. Using the Volkov states in Eq. (3.12), we applied
the SFQED Feynman rules to derive the invariant S -matrix element M f i for the
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Figure 5.20: As in fig. 5.17, but rejecting all the non-physical electron and positron spin
states.

NIC process occurring in a plane wave propagating along dµ = (1, d⃗)

M f i = −e
√

π

2V3εε′ω

∫
dϕ

[
ūp′,ζ′

(
1 −

/d /A(ϕ)
2p′−

)
/e∗

(
1 +

/d /A(ϕ)
2p−

)
up,ζ

]
exp

{{
i f (ϕ)

}}
.

(5.268)

Here, the exponential term

f (ϕ) = (p′+ + k+ − p+)ϕ +
∫ ϕ

0
dϕ′

[ p′µA
µ(ϕ′)

p′−
−

pµAµ(ϕ′)
p−

−
A2(ϕ′)

2

( 1
p′−
−

1
p−

)]
,

(5.269)
depends on the phase ϕ = dµxµ instead of the space-time position xµ. Additionally,
we used the notation

V− ≡ dµVµ = V0 − V⃗ · d⃗

V+ ≡ d̃µVµ =
1
2

(V0 + V⃗ · d⃗)

/V ≡ γµVµ (5.270)

to represent various contractions24 of a generic four-vector Vµ. The external field
four-potential Aµ, scaled by the electron charge25 e < 0, is denoted byAµ = eAµ.

24The use of the + and − subscripts in this notation should not be confused with those employed
in sections 5.2.2, 5.4.2, 5.5.2, 5.6.1, and 5.6.2, where these subscripts distinguish species-specific
variables. In the current context, however, which pertains to the NIC process, the only lepton species
under consideration is the electron. Therefore, any variable will be associated with the electron
species.

25Note that the four-vector eµ represents the polarization of the emitted photon.
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Exploiting the commutation properties of the Clifford algebra the integrand can be
rewritten as(

1 −
/d /A(ϕ)
2p′−

)
/e∗

(
1+

/d /A(ϕ)
2p−

)
= /e∗ +

1
2
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p′−
+
/e∗/d /A(ϕ)

p−

)
−
A2(ϕ)/de∗−

2p′−p−
,

(5.271)

allowing us to evaluate the square of Eq. (5.268)

|M f i|
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∫
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×
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×
[
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1
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p′−

+
/e/d /A(ϕ′)
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−
A2(ϕ′)/de−

2p′−p−
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}
.

(5.272)

Here

up,ζ ūp,ζ =
1
2

(/p + m)(1 + γ5/ζ)

up′,ζ′ ūp′,ζ′ =
1
2

(/p′ + m)(1 + γ5/ζ′) (5.273)

are the density matrices of the initial and final partially polarized electrons, respec-
tively.

Without compromising too much the generality of the problem, we decide to sim-
plify the calculations through a series of assumptions:

• the quantization volume is normalized to unity V = 1;

• introducing the two four-vectors

aµi = (0, a⃗i) with i = 1, 2 and such that aµ ia
µ
j = −δi j, (5.274)

the external plane wave is lineraly polarized along a⃗1 and gauge-fixed to
Aµ(ϕ) = (0, A0ψ(ϕ)a⃗1). While ψ(ϕ) is the pulse shape function, A0 is linked
to the electric field amplitude through

E(ϕ) = |E⃗(ϕ)| = −A⃗′(ϕ) = −A0ψ
′(ϕ), (5.275)

and hence we have A0 < 0. The wave counter-propagates with respect to the
starting electron d⃗ = − p⃗

|p⃗| ≡ −v̂;

• The two possible polarization states of the outgoing photon are selected as

eµi =
(dµaνi − dνaµi )kν

k−
with i = 1, 2 (5.276)
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while

ζµ = −
(dµaν2 − dνaµ2)pν

p−
(5.277)

ζ′µ = −
(dµaν2 − dνaµ2)p′ν

p′−
(5.278)

are chosen as the electron’s SQA before and after the emission. In the fol-
lowing we will use the scalar s = ±1 (s′ = ±1) to denote the alignment of
the initial (final) spin along the corresponding axis.

Switching the integration variables in eq. (5.272) to (ϕ+, ϕ−), that are related to the
original pair (ϕ, ϕ′) through

ϕ = ϕ+ +
ϕ−
2

ϕ′ = ϕ+ −
ϕ−
2
, (5.279)

we replace in |M f i|
2 all the assumptions (5.274)-(5.278), also expanding26

A(ϕ) = A(ϕ+ +
ϕ−
2

) = A(ϕ+) +A′(ϕ+)
ϕ−
2

A(ϕ′) = A(ϕ+ −
ϕ−
2

) = A(ϕ+) −A′(ϕ+)
ϕ−
2
. (5.280)

Reintroducing the proper S -matrix element

S f i = (2π)3δ(2)( p⃗ ′⊥ + k⃗⊥ − p⃗⊥)δ(p′− + k− − p−)iM f i, (5.281)

where the notation V⃗⊥ identifies the component perpendicular to the wave’s direc-
tion d⃗ of any vector V⃗ , we retrieve (check [108] for details) an expression for the
average probability dP(e−→e−γ)

j,s,s′ that a photon is emitted with momentum between k
and k+dk in the j-th polarization state (5.276), by an electron whose spin alignment
goes from being s along (5.277) to s′ with respect to (5.278):

dP(e−→e−γ)
j,s,s′ =

d3k
(2π)3

∫
d3 p′

(2π)3 |S f i|
2 =

= d3k
α
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∫ ∞

−∞

dϕ+

∫ ∞

−∞

dϕ−e
i m2k−
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(
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⊥(ϕ+)]ϕ−+
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−

m212

)
T j,s,s′

(5.282)

where

π⃗⊥(ϕ+) =
1
m

( p⃗⊥ − A⃗⊥(ϕ+)) −
p−

k−m
q⃗⊥. (5.283)

26The Taylor expansions in eq. (5.280) are valid in LCFA’s conditions.
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The two T j,s,s′ , one for each polarization state in (5.276), are inferred27 by per-
forming the trace in eq.(5.272), and read

T1,s,s′ = −2(1 + ss′)m2 −
(
2 + 2ss′ + ss′

k−
p−

k−
p− − k−

)(
p2 −
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+
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2
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(
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k−
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)
+
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(
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)
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−

4
(5.284)

T2,s,s′ =
(
2 + 2ss′ + ss′
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p−
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)(
p2 −
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k−

k2
)2
+

+ i(s − s′)
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+

− (1 − ss′)
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E2(ϕ+)
ϕ2
−

4
, (5.285)

with E(ϕ+) = −eA0ψ
′(ϕ+) = eE(ϕ+) < 0 representing the product between electron

charge and electric field intensity.

Finally defining

ϕ− = 2ϕ̃
( p−p′−
k−E2(ϕ+)

) 1
3 (5.286)

z(ϕ+) = m2
( k−

p−p′−E(ϕ+)

) 2
3 [1 + π⃗2

⊥(ϕ+)], (5.287)

and making use of the Airy functions definitions28

Ai(z) =
∫ ∞

−∞

dϕ
2π

eizϕ+i ϕ
3
3

27In Eqs. (5.284)-(5.285) the sign of the terms proportional to E(ϕ+) is opposite to that of refer-
ence [108]. The misalignment is due to a mistake made (and admitted) by the authors.

28In the current footnote the integral form of the squared Airy functions
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and their relations with the modified Bessel funtions of the second kind
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3 z

3
2

K 1
3
(a)da (5.289)

are also provided.
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Ai′(z) = i
∫ ∞

−∞

dϕ
2π
ϕeizϕ+i ϕ

3
3

Ai′′(z) = i2
∫ ∞

−∞

dϕ
2π
ϕ2eizϕ+i ϕ

3
3 = z Ai(z), (5.290)

we can solve the integral in dϕ− and rewrite eq. (5.282) as

dP(e−→e−γ)
j,s,s′ = d3k

α

4πp−p′−ω

∫ ∞

−∞

dϕ+T̄ j,s,s′ , (5.291)

where this time

T̄1,s,s′(ϕ+) = −
[
2(1 + ss′)m2 +

(
2 + 2ss′ + ss′

k−
p−

k−
p− − k−

)(
p2 −

p−
k−

k2
)2]( p−p′−

k−E2(ϕ+)

) 1
3 Ai(z)+

− (s + s′)mE(ϕ+)
k−
p−

(
2 +

k−
p− − k−

)( p−p′−
k−E2(ϕ+)

) 2
3 Ai′(z)+

+ (1 + ss′)
(
4 +

k−
p−

k−
p− − k−

)( p−p′−
k−

)
z Ai(z) (5.292)

and

T̄2,s,s′(ϕ+) =
(
2 + 2ss′ + ss′

k−
p−

k−
p− − k−

)(
p2 −

p−
k−

k2
)2( p−p′−

k−E2(ϕ+)

) 1
3 Ai(z)+

+ (s − s′)mE(ϕ+)
k−
p−

k−
p− − k−

( p−p′−
k−E2(ϕ+)

) 2
3 Ai′(z)+

+ (1 − ss′)
k−
p−

k−
p− − k−

( p−p′−
k−

)
z Ai(z). (5.293)

For the sake of simplicity, from this point onward we will focus on the unpolarized
photon emission probability

dP(e−→e−γ)
s,s′

dωdφdθ
=

αω

4πp−p′−
sin θ

∫ ∞

−∞

dϕ+T̄s,s′(ϕ+) (5.294)

obtained by summing (5.291) over the possible photon polarizations, and thus

T̄s,s′(ϕ+) = T̄1,s,s′(ϕ+) + T̄2,s,s′(ϕ+) = −2(1 + ss′)m2
( p−p′−
k−E2(ϕ+)

) 1
3 Ai(z)+

− 2mE(ϕ+)
k−
p−

(
s +

p−
p− − k−

s′
)( p−p′−

k−E2(ϕ+)

) 2
3 Ai′(z)+

+
[
4(1 + ss′) + 2

k2
−

p−(p− − k−)

]( p−p′−
k−

)
z Ai(z).

(5.295)

From (5.294) we can build the differential probability

dP(e−→e−γ)
s,s′

dϕ+dωdφdθ
=

αω

4πp−p′−
sin θT̄s,s′(ϕ+) (5.296)
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which is completely equivalent to eq. (5.224)-(5.225) under the assumptions out-
lined at the beginning of the section.

In the next section we will analytically show that (5.296) becomes negative over a
certain range of phase values, and that properly speaking cannot be considered a
differential probability.

5.7.1 Analytical study

We start our analysis by determining which values of the phase ϕ+ render eq.
(5.295) positive

T̄s,s′(ϕ+) ≥ 0. (5.297)

We will limit ourselves to the perfectly valid scenario in which the spin alignment
flips after the emission (s = −s′). In this case only the last 2 terms of eq. (5.293)
contribute (the others vanish either because of s = −s′ or because of the summation
over the final photon polarization), and the inequality (5.297) is then recasted as

(s − s′)mE(ϕ+)
k−
p−

k−
p− − k−

( p−p′−
k−E2(ϕ+)

) 2
3 Ai′(z) + (1 − ss′)

k−
p−

k−
p− − k−

( p−p′−
k−

)
z Ai(z) ≥ 0.

(5.298)

Since the quantity z defined in eq. (5.287) is always positive

Ai(z) > 0 and Ai′(z) < 0 ∀z ∈ R+,

eq. (5.298) can be manipulated into

z
Ai(z)
Ai′(z)

≤ −
s − s′

1 − ss′
( k−m3

p−p′−E(ϕ+)

) 1
3 . (5.299)

Now, one of the basic assumptions of the LCFA consists in considering the external
EM fields as varying on timescales much greater then those needed by the NIC
photon to form. In such circumstances any plane wave, and actually any field29, can
be considered as an instantaneous constant crossed field (CCF) in which |E⃗| = |B⃗|
and E⃗

|E⃗|
∧ B⃗
|B⃗|
= d⃗: under these conditions the pulse shape of the plane wave reduces

to
ψ(ϕ) = ϕ (5.300)

and the RHS of (5.299) can be treated as a constant

−
s − s′

1 − ss′
( k−m3

p−p′−E

) 1
3
≡ −

s − s′

1 − ss′
C3. (5.301)

29In this statement lies the key to retrieve Eqs. (5.225) and (5.296)’s probabilistic interpretation.
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At the lowest order in 1
γ (and θ ∼ 1

γ ) the quantum nonlinearity parameter of a
relativistic electron30 inside a CCF undergoing a NIC event is

χ =
γ

Ecr

√(
E⃗ +

v⃗
γ
∧ B⃗

)2
−

( v⃗
γ
· E⃗

)2
∼ 2

γE
Ecr
= 2γE|e| = −2γE, (5.302)

while p− ∼ 2γm and k− ∼ 2ω; at the same order, the constant introduced in eq.
(5.301)

C3 ≡
( k−m3

p−p′−E

) 1
3
∼ −

[ m2 ω
γ

(m − ω
γ )χ

] 1
3 (5.303)

depends only on the photon-electron energy ratio ω
γ and the quantum nonlinearity

paramter χ. Graphically, the LHS and RHS of eq. (5.299) are displayed in figure
5.21, while the evolution of the “constant” C3(ωγ , χ) is shown for fixed31 χ in fig.

Figure 5.21: The two sides of (5.299): the blue curve descrbes the evolution of z Ai(z)
Ai′(z) ,

while the orange represents one possible value of the constant at the RHS.

5.22.

Solving (5.299) requires some numerical methods: despite z Ai(z)
Ai′(z) admits rather

simple asymptotic expansions for z→ 0

z
[
−
Γ( 1

3 )

3
1
3Γ( 2

3 )
+ z −

Γ2( 1
3 )

2 × 3
2
3Γ2( 2

3 )
z2 +

2Γ( 1
3 )

3
4
3Γ( 2

3 )
z3 −

(1
4
+
Γ3( 1

3 )

12Γ3( 2
3 )

)
z4 +

7Γ2( 1
3 )

15 × 3
2
3Γ2( 2

3 )
z5 + O(z6)

]
(5.304)

and z→ ∞

z
[
−

1
√

z
+

1
4z2 −

7

32z
7
2

+
21

64z5 −
1463

2048z
13
2

+ O
( 1

z
15
2

)]
(5.305)

which can lead to straightforward solutions, its modeling in the intermediate region
is not traceable to any known function. In any case, a solution to (5.299) will

30For positrons eq. (5.302) would be χ ∼ 2γE.
31Notice that changing the value of the parameter χ doesn’t alter the shape depicted in fig. 5.22,

which instead gets simply rescaled.
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Figure 5.22: Dependence of the parameter (5.303) from the ratio ω
γ

.

inevitably have the form
z(ϕ+) ≥ z̄, (5.306)

with z̄ corresponding to the point in fig. 5.21 where the two curves intersect each
other. Replacing the definitions (5.287), (5.283) and (5.300) for z(ϕ+), π⃗⊥(ϕ+) and
the CCF’s wave pulse ψ(ϕ+), eq. (5.306) narrows down to a degree 2 polynomial
inequality in ϕ+, whose solutions are found in the usual form

ϕ+ ≤
−b̄ −

√
b̄2 − 4ād̄

2ā
∨ ϕ+ ≥

−b̄ +
√

b̄2 − 4ād̄
2ā

. (5.307)

The parameters ā, b̄ and d̄ depend on the mutual orientation between the starting
electron’s and CCF wave’s direction: when they are initially counterpropagating,
we have

ā =
(
−

eE
m

)2
; (5.308)

b̄ = 2
(
−

eE
m

)(
2γ

sin θ
1 + cos θ

)
cosφ; (5.309)

c̄ =
(
2γ

sin θ
1 + cos θ

)2
; (5.310)

d̄ = c̄ + 1 −
z̄

C2
3

. (5.311)

Naturally, due to the prefactor − s−s′
1−ss′ in eq. (5.301), eq. (5.299) does also admit

trivial solutions depending on the alignment s and s′ of the spin before and after
the process. As a matter of fact, only the differential probability T̄−1,+1(ϕ+) associ-
ated to electrons (particles with negative charge) has (5.307)-like solutions, while
T̄+1,−1(ϕ+) is always positive (the opposite is true for positrons). This is confirmed
by fig. 5.23, where T̄−1,+1(ϕ+)’s behavior in the phase ϕ+ is showed, any other pa-
rameter (like χ = 2, ωγ = 0.1 and the emitted photon’s direction n⃗) remaining fixed.

Analogous arguments hold for the case s = s′ too, despite this time the equation to
solve features the presence of further terms

(1 + ss′)
[
−2m2

( p−p′−
k−E2(ϕ+)

) 1
3
+

(
4 +

k−
p−

k−
p− − k−

)( p−p′−
k−

)
z
]

Ai(z)+
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Figure 5.23: Behavior of the function T̄−1,+1(ϕ+). Supposedly, this function represents a
differential transition probability but is negative over an extended range of phases ϕ+.

− (s + s′)mE(ϕ+)
k−
p−

(
2 +

k−
p− − k−

)( p−p′−
k−E2(ϕ+)

) 2
3 Ai′(z) ≥ 0. (5.312)

Through some manipulations, eq. (5.312) becomes[
−2C2

3C4 + (4C4 + 1)z
] Ai(z)

Ai′(z)
≤

( s + s′

1 + ss′
)
C3

(
2C5 + 1

)
, (5.313)

where the parameters

C4 ≡
p−p′−

k2
−

−−−→
γ≫1

m(m − ω
γ )(ω

γ

)2 , (5.314)

C5 ≡
p′−
k−
−−−→
γ≫1

(m − ω
γ )

ω
γ

(5.315)

in the ultrarelativistic limit depend only on the photon-electron energy ratio ω
γ .

Unfortunately, a straightforward visual representation like that given in fig. 5.21
for eq. (5.299) is precluded, nonethelss inspecting the limits ω

γ → 0, 1 will result
to be quite pedagogical:

• for ω
γ → 0 and γ ≫ 1 the term in C4 will dominate eq. (5.313), being the

one with the highest order in
(ω
γ

)−1, since

C2
3C4 →

m
7
3 (m − ω

γ )
1
3(ω

γ

) 4
3χ

2
3

(5.316)

C3C5 → −
[m2(m − ω

γ )2(ω
γ

)2χ

] 1
3 . (5.317)

The corresponding inequality reduces to the more trivial

4C4z
Ai(z)
Ai′(z)

≤ 0, (5.318)

which is satisfied by every value of z, and thus every phase ϕ+;
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• for ω
γ → 1, on the other hand, almost all the terms vanish and eq. (5.313) is

traced back to the more familiar

z
Ai(z)
Ai′(z)

≤
( s + s′

1 + ss′
)
C3, (5.319)

whose solution won’t be any different from the (5.307) found for (5.299).
Indeed, figure 5.24 shows that already at ω

γ = 0.8 the differential probability
T̄+1,+1(ϕ+) behaves exactly like T̄−1,+1(ϕ+), plotted in fig. 5.23 for ω

γ = 0.1.

Figure 5.24: As in fig. 5.23: this time the transition probability plotted is T̄+1,+1(ϕ+).

This rather coarse analysis seems to suggest that when s = s′, as the energy ratio
ω
γ increases, the corresponding angle- and spin-resolved differential probability
transitions from being positive over the whole phases ϕ+ domain, to have regions
in which it is ill-defined and negative. This same behavior occurs for s = −s′ as
well, but due to the presence of much less terms (and thus less contributions), the
transition takes place already at lower values of the energy ratio (ωγ ∼ 0.1).

5.7.2 Recovering the probabilistic meaning behind the fully-resolved
distribution

From the conclusion of Sec. 5.7.1, it is evident that Eqs. (5.39) and (5.282) can-
not be regarded as proper differential probabilities. Undeniably, these expressions
exhibit negative values over extended parameter ranges, rendering them unsuitable
for describing any SFQED process. However, this improper behavior disappears
once the distribution is integrated over the solid angle. Specifically, integrating Eq.
(5.39) over the entire solid angle dΩ (see Sec. 5.6) seems to restore its differen-
tial probabilistic interpretation32. A similar outcome is achieved by summing Eq.
(5.39) over the internal states of the final particles. The literature indeed contains
numerous examples where distributions that are either ’angle-unresolved but spin-
and-polarization-resolved’ or ’spin-and-polarization-unresolved but angle-resolved’
operate as proper differential probabilities [99, 104].

32The corresponding angle-unresolved distribution computed in Sec. 5.6 can be shown to remain
non-negative.
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In this section, we propose a novel approach to address this issue— a method to
predict the spins and polarizations after the NIC process using the fully resolved
distributions we have developed so far. What we have designed is a comprehensive
algorithm, conceived as the most straightforward generalization of the procedure
outlined in Chapter 3, which currently represents the state-of-the-art in modern
PIC and MC simulations. As such, it offers the potential for seamless integration
into SFQED-oriented libraries, such as SFQEDtoolkit. The cornerstone of our
approach lies in the recognition that, by its very construction, only Eq. (5.272) (or
equivalently Eq. (5.294)) can be regarded as a proper probability, while there is
no guarantee that the integrand function is always positive. Before presenting our
solution, we first summarize the strategy commonly employed by existing codes to
enforce SFQED processes:

1. the event is deemed to occur through the corresponding emission probability
per unit time;

2. the energies of the final particles are determined according to the energy
differential distributions associated to the processes.

In the collinear approximation 1.) and 2.) are perfectly enough to describe the
event, otherwise one can continue with

3. the determination of the final momentum’s direction (through the angles θ
and φ), see sec. 5.5;

4. the determination of the final spin and polarization states (ζ⃗′ and ξ⃗), see sec.s
5.6.1 and 5.6.2.

Advanced SFQED codes typically perform step 3.) without step 4.), or vice versa.
To the best of our knowledge, no codes or algorithms exist in the literature that
successfully implement all four steps (1. to 4.). Additionally, each step is expected
to be executed locally: by inserting the fields’ values experienced by particles at
a given time and position into the corresponding differential distributions, one can
extract the required informations about the process. However, this approach does
not work with step 4.), where fully-resolved probabilities may become locally neg-
ative. Although the concept of formation time and/or length has been known since
the inception of the theory, it is often neglected in numerical routines that calcu-
late the details of SFQED processes (such as final energies, directions, spins, and
polarizations). These fundamental physical quantities, which are inherently con-
sidered by nature whenever a process develops, are not typically accounted for
in the locally constant field approximation. However, full-resolution differential
probabilities appear to acquire physical significance only after considering their
contribution over the entire formation length of the process. It is precisely this in-
tegration procedure, over the formation length or formation time, that will convert
any ill-defined differential object back into a well-defined local probability.



144 CHAPTER 5. FULLY RESOLVED NIC AND NBW PROCESSES

The SFQED technique we developed to address these issues provides an ideal al-
ternative to the four-step process outlined above. Referring to that same list of
steps, our algorithm proceeds unchanged from steps 1.) to 3.), determining the
occurrence of the event, the final particle energies, and their angular distribution.
However, instead of locally applying equation (5.39) to determine the final inner
states as described in section 5.6.2, we replace the generic electromagnetic fields
acting on the particle with a fictitious CCF. This CCF is defined such that:

• Its field intensity, given by
E =

χ

2γ|e|
(5.320)

produces the same quantum nonlinearity parameter χ on the emitting particle
as it experiences within the original fields (where γ is the particle’s Lorentz
factor).

• Its polarization is aligned with the transverse acceleration vector s⃗ induced
on the particle by the original fields:

E⃗ = ±s⃗ (5.321)

(the orientation depends on the sign of the charge: + for positrons and − for
electrons).

In fact, the invariant χ alone dictates the occurrence of the SFQED event and de-
termines the energies of the outgoing particles. At the same time, the fields’ po-
larization plays a crucial role in shaping the final spin and polarization. It should
now be clear that the plane-wave and CCF considerations presented in sections 5.7
and 5.7.1 are fully consistent with the underlying nature of the problem we are
currently addressing.

While transitioning to such a CCF does not alter the fundamental nature of the
quantum process, it significantly simplifies the protocol that resolves the ill-defined
nature of the negative differentials. Indeed, the complexity is reduced to such an
extent that, instead of performing the integral over only the formation region, we
could even extend it over the entire quasiclassical trajectory33! While this would
certainly guarantee the positivity of the resulting distributions, we know that the
total NIC probability receives no contribution from portions of the trajectory out-
side the formation region. Therefore, we update the set of assumptions made in
Section 5.7 by further imposing:

• that the plane wave colliding head-on with the electron becomes a CCF34

Aµ(ϕ) = aµϕ (5.322)

33It is worth to mention that, within the scope of our method, the trajectory which we refer to is
supposed to be the one followed by the charged particle as it moves inside the fictitious CCF.

34A CCF is essentially a constant plane wave, or equivalently, a plane wave with zero frequency.
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(and thus E⃗ = −A⃗′(ϕ+) = −a⃗). For convenience, the plane wave direction is
still denoted by d⃗ = E⃗

|E⃗|
∧ B⃗
|B⃗|

. Although this may initially seem like a cum-
bersome constraint, it will soon become apparent that it is a natural choice;

• the following gauge fixing conditions on the emitted photon polarization

kµeµ = 0 (5.323)

dµeµ ≡ e− = 0, (5.324)

with the associated completeness relation given by∑
i=1,2

e∗i,µei,ν = −gµν +
kµdν + dµkν

k−
(5.325)

(the polarization indices i are explicitly indicated).

To further generalize our result, we relax the assumptions (5.276)–(5.278) regard-
ing the specific forms proposed for the outgoing inner states ζ′ and ξ. Under this
new set of assumptions, the matrix element (5.268) can be refined accordingly. In
particular, the phase integration in the exponential function (5.269) can be explic-
itly evaluated, yielding:

f (ϕ) = αϕ + βϕ2 + κϕ3, (5.326)

with the variables

α = p′+ + k+ − p+,

β =
e
2

( p′µ
p′−
−

pµ
p−

)
aµ,

κ = −
e2

6
a2

( 1
p′−
−

1
p−

)
(5.327)

introduced for simplicity. Thereafter, the shift

ϕ→
( 1
3κ

) 1
3φ − ϕ0 with ϕ0 =

β

3κ
(5.328)

is carried out in eq. (5.268)

M f i = −e
√

π

2V3εε′ω

( 1
3κ

) 1
3 exp{iα̃}×

×

∫
dφūp′,ζ′

{
/e∗ −

e
2

( /a/d/e∗
p′−
+
/e∗/d/a
p−

)
ϕ0 −

e2a2/de∗−
2p′−p−

ϕ2
0+

+
[ e
2

( /a/d/e∗
p′−
+
/e∗/d/a
p−

)
+

e2a2/de∗−
p′−p−

ϕ0
] φ

(3κ)
1
3
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−
e2a2/de∗−
2p′−p−

φ2

(3κ)
2
3

}
up,ζ × exp

{
i
(
zφ +

φ3

3

)}
,

(5.329)

where α̃ = 2β3

27κ2−
αβ
3κ and z =

(
α−

β2

3κ
)( 1

3κ
) 1

3 ; most of the terms vanish out by enforcing
the second gauge condition (5.324), while the integral in dφ can be solved using
the Airy function defintions in (5.290)

M f i = −e
√

π

2V3εε′ω

( 1
3κ

) 1
3 exp{iα̃}×

× ūp′,ζ′
{[
/e∗ −

e
2

( /a/d/e∗
p′−
+
/e∗/d/a
p−

)
ϕ0

]
Ai(z) −

ie
2

( /a/d/e∗
p′−
+
/e∗/d/a
p−

) Ai′(z)

(3κ)
1
3

}
up,ζ .

(5.330)

Omitting the initial constant, which is irrelevant to our purpose, the squared matrix
element of the NIC in a CCF takes the form

|M f i|
2 ∼

1
4

Tr⟨
{
/e∗Ai(z) −

e
2

( /a/d/e∗
p′−
+
/e∗/d/a
p−

)[
ϕ0 Ai(z) + i

Ai′(z)

(3κ)
1
3

]}
(/p + m)(1 + γ5/ζ)×

×
{
/e Ai(z) −

e
2

(/e/d/a
p′−
+
/a/d/e
p−

)[
ϕ0 Ai(z) − i

Ai′(z)

(3κ)
1
3

]}
(/p′ + m)(1 + γ5/ζ′)⟩.

(5.331)

Equation (5.331) serves as the cornerstone of our approach. By applying the pro-
cedures outlined below eq. (5.173), it can be reliably used to extract well-defined
SQA and PQA for the final particles. Specifically, using (5.325) to sum over photon
polarizations recasts the squared matrix element into:∑

ξ

|M f i|
2 ∼ I + ζ′ · l, (5.332)

where we adopted the notation V ·W = VµWµ to identify the Minkowskian product
between two four-vectors. Here

lµ = Aζµ+Baµ+Ckµ+Ddµ+Epµ+Fϵµνρσaνkρdσ+Gϵµνρσaνdρpσ+Hϵµνρσaνdρp′σ
(5.333)

represents the intricate SQA four-vector arising from the expansion of the trace
in (5.331)35. The set of constants (I, A, B,C,D, E, F,G,H) appearing in (5.332)-
(5.333) is provided below

A = 2k−(a · a)e2
[ Ai′(z)2

(3κ)
2
3

+ ϕ2
0 Ai(z)2

]
+

+ 2eϕ0 Ai(z)2(−p−(a · k) − p′−(a · k) + k−(a · p′)
)
+

35The details of the trace computation are left to the reader.
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+ 2 Ai(z)2(k−(p · p′) − p′−(k · p) − p−(k · p′)
)

(5.334)

B = 2eϕ0 Ai(z)2
(
− p−(ζ · k) + p′−(ζ · k) − k−(ζ · p′) + ζ−(k · p)+

+
ζ−k−
p−

(p · p′) −
ζ−k−
p′−

m2 −
ζ−p′−

p−
(k · p)

)
(5.335)

C = 2eϕ0(ζ · a) Ai(z)2(p− − p′−
)
+

+ 2 Ai(z)2(−ζ−(p · p′) + ζ−m2 + p−(ζ · p′)
)

(5.336)

D = −2(ζ · a)k−eϕ0 Ai(z)2
(m2
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−
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− 1

)(
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− ζ−k−(a · a)e2m2
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2
3
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−
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1

p′2−

)
+ 2
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(a · a)(p · p′)e2
[ Ai′(z)2

(3κ)
2
3

+ ϕ2
0 Ai(z)2
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F = −2em Ai(z)
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)
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Now, using the Pauli-Lubanski spin relations [57]

ζ′ 0 =
|p⃗ ′|
m
η∥

ζ⃗ ′⊥ = η⃗⊥

ζ′
∥
=
ε′

m
η∥ (5.343)

the detector’s spin four-vector components in the lab frame ζ′µ = (ζ′ 0, ζ⃗ ′) can be
rewritten in terms of its components expressed in the final electron’s rest frame
ηµ = (0, η⃗), so that eq. (5.332) becomes∑
ξ

|M f i|
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≡ I + η⃗ · δ⃗ = I
(
1 + η⃗ ·

δ⃗

I

)
, (5.344)

where we defined

δ⃗ ≡
( |p⃗ ′|

m
l0 −

ε′

m
l∥
)
v̂′ − l⃗⊥. (5.345)

By comparing eq. (5.344) and eq. (5.174), we can directly recognize the SQA to
be

ζ⃗(r) =
δ⃗

I
. (5.346)

This vector describes a completely legitimate spin state

|ζ⃗(r)| ≤ 1,

that can be used in any PIC or MC simulation. We used this new method to per-
form the same tests as those described at the end of sec. 5.6.2, thus replacing the
algorithms described there. This time, not only the agreement between the new
spin-photon energy curves in fig. 5.25 and those in fig. 5.9 is perfect, but all the
states are physical.

The same argument applies to photon polarizations. By summing (5.331) over the
final spins, we obtain ∑

ζ′

|M f i|
2 ∼ I + ξ · y, (5.347)

which can be used to extract the corresponding polarization states. We are still in
the process of deriving a closed-form expression for the Stokes parameters ξ and
the four-vector y, and we plan to present these results in a forthcoming work.

5.8 Conclusions

In this chapter, we have thoroughly derived the fully resolved differential proba-
bilities for the NIC and NBW processes, detailed in energies, spins/polarizations,
and angles, using the quasiclassical operator method by Baier and Katkov [44].
We also introduced an advanced version of the SFQEDtoolkit, a new computa-
tional module capable of comprehensively characterizing numerical particles, and
demonstrated various applications of this toolkit. In the final section, we noted
that the most general expressions for the NIC, Eqs. (5.39)-(5.43), and NBW, Eqs.
(5.57)-(5.61), differentials are not genuine probabilities, as they may assume neg-
ative values. Specifically, these “improper” probabilities resolve so many parame-
ters that they cease to be local: this precludes the application typically employed in
simulation codes, where SFQED event characteristics are determined by the field
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Figure 5.25: As in Fig. 5.16, all states are now physical, contributing to the expected
behavior of the spin curves (averaged over the whole solid angle) shown in fig. 5.9.

values at the moment of emission, as they would result in either negative probabil-
ities or unphysical spin and polarization states (with magnitudes exceeding one).

To restore their physical interpretation and overcome this issue, we proposed an
LCFA-consistent procedure that reinterprets these otherwise ill-defined probabil-
ity distributions. At the moment of emission, we construct a Constant Crossed
Field (CCF) that ensures the emitting particle experiences the same quantum non-
linearity parameter χ and acceleration as in the original field. By integrating the
contributions from the ill-defined emission probabilities along the quasiclassical
particle’s trajectory (within the new CCF), we obtain a nonlocal, fully resolved
probability that can be used to determine a valid SQA and PQA. Although this
approach is currently implemented only for the NIC process, the differential ex-
pressions (5.57)–(5.61) associated with the NBW process exhibit the same issues
and will require a similar treatment. We plan to address this in future work.



Chapter 6

Conclusions and Outlook

In this final chapter, we summarize the key results of our work and outline promis-
ing directions for future research. In Chapter 2, we introduced Chebyshev polyno-
mials and explored their properties, laying the groundwork for ChAppX, a flexible,
parallel-optimized software designed to generate Chebyshev approximations for
functions of one, two, or three variables with arbitrarily high accuracy. The Cheby-
shev approximations produced by ChAppX have been extensively incorporated into
the strong-field (SF) QED-oriented library SFQEDtoolkit, presented in Chapter
3.

Completely open-source and available on GitHub1, SFQEDtoolkit combines Cheby-
shev, asymptotic, and exponential expansions to efficiently approximate nonlinear
Compton emission (NIC) and nonlinear Breit-Wheeler (NBW) pair creation distri-
butions. Designed for seamless integration into existing particle-in-cell (PIC) and
Monte Carlo (MC) codes, it provides an efficient implementation of SFQED pro-
cesses with accuracy better than 0.1% across the entire particle spectrum. Bench-
marks performed with the PIC code Smilei (v4.7) demonstrated that SFQEDtoolkit
outperforms the default 256-point lookup tables and even surpasses the accuracy of
1024-point tables. Currently, NIC and NBW processes are implemented under the
locally-constant-field approximation (LCFA), assuming collinear emission of gen-
erated particles. For photon emission, we also included the beyond-LCFA method
from Ref. [62] (discussed in Section 3.4).

To test SFQEDtoolkit under realistic conditions, we integrated it into the PIC
code CALDER [43] and, as detailed in Chapter 4, simulated the collision of 9 and
90 GeV electron bunches with thick solid targets composed of lithium (Li) or gold
(Au). These simulations demonstrated that "short" electron-positron jets, whose
densities exceed those of solid matter, can form within the 10 MT self-generated
magnetic fields developing inside the high-Z Au target. In this regime, atomic field
ionization, NIC photon emission, and NBW pair production reinforce one another:
the processes initially generate a strong magnetic field, which in turn drives the
creation of an exceptionally large number of particles.

The simulations described above operate in a completely new regime where SFQED,
atomic and plasma physics are strongly intertwined. Yet, this is only one example

1https://github.com/QuantumPlasma/SFQEDtoolkit
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of a pioneering experiment meant to explore uncharted territory in QED. Con-
sider, for instance, the recently proposed precision studies of radiation reaction2 in
the collisions between a high-intensity laser and an ultrarelativistic electron beam
[109–111], or the LUXE [112] and E-320 [113] experiments, which should probe
non-perturbative QED in electron- and photon-laser collisions. All these scenar-
ios demand accurate and efficient numerical methods capable of supporting the
ever-growing need to explore SFQED by resolving every degree of freedom of the
particles involved.

Motivated by this challenge, in Chapter 5 we developed analytical expressions for
the NIC and NBW differential distributions, detailing the particles’ energy, emis-
sion angles, spins and polarizations. We then implemented these functions into a
new computational module of SFQEDtoolkit, designed to overcome the limita-
tions of state-of-the-art codes by sampling the momenta (in modulus and direc-
tions) of numerical particles, together with their spin/polarization-states. During
the testing of this module, we discovered that the general expressions for the NIC
and NBW differential distributions do not always yield genuine probabilities, as
they can become negative, leading to spin and polarization distributions that lack
direct physical interpretation. However, by defining a tailored Constant Crossed
Field (CCF) around the emitting particle at the moment of emission, and integrat-
ing the contributions of these ill-defined quantities along its quasiclassical trajec-
tory, we obtained predictions that are consistent with a stochastic interpretation.
Applying this approach to the NIC process allowed us to derive a physically con-
sistent expression for the final spin state. This, combined with the information we
can extract about the energy and angular distributions (see Secs. 5.4 and 5.5) en-
ables the determination of the complete final electron state following the event. An
equivalent expression for the photon polarization-state is under development. Ad-
ditionally, the differential expressions (5.57)-(5.61) for the NBW process exhibit
similar inconsistencies and will require a comparable treatment, which we plan to
address in future work.

6.1 Outlook

The results obtained from the “thick-target” simulation in Chapter 4 could pave the
way for research in a new regime, where atomic and plasma physics are strongly
interlaced to SFQED. Further refinements to the simulation setup (Fig. 4.1), along
with a deeper investigation into the pair production mechanism, could lead to an
efficient method for generating neutral pair-plasma. In turn, this would enable us
to probe the microphysics governing extreme astrophysical environments, such as
those found in pulsars and magnetars.

Regarding the fully resolved NIC and NBW distributions discussed in Chapter 5,

2i.e., the self-interaction of a charged lepton with its own electromagnetic field
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several open questions remain. Most importantly, the CCF-based technique we
developed for extracting physical spin states must be extended to account for the
polarization of NIC photons and the spins of NBW pairs. Once this extension is
fully implemented in SFQEDtoolkit’s advanced module, we can conduct a simu-
lation similar to the thick-target study in Chapter 4, but with a key improvement:
each computational particle will be fully characterized in terms of energy, angular
distribution, and polarization. We envisage that NIC emissions and NBW decays
occurring in different directions could significantly influence the spin and polar-
ization states of the particles. This, in turn, may provide novel observables for the
ultrafast diagnostic and characterization of plasma dynamics.
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Appendix A

User guide

SFQEDtoolkit is an open source library written in C++. A wrapper for Fortran-
based programs which leverages the standardized interoperability of modern Fortran
with C is also provided with the current version. SFQEDtoolkit can be used as a
black box by following the instructions below and the examples showing its usage
provided on GitHub at:
https://github.com/QuantumPlasma/SFQEDtoolkit.

This appendix describes the key steps needed for implementing SFQEDtoolkit,
and the main functions currently available. SFQEDtoolkit exposes all functions1

to the user through the module SFQEDtoolki_Interface.hpp and SFQEDtoolk
it_Interface.f90 to C++ and Fortran codes, respectively. We recommend
users to read this appendix before implementing the library.

SFQEDtoolkit must be initialized and finalized once at the beginning and at the
end of the simulation, respectively. The functions assigned to carry out these two
purposes are the only ones that must be necessarily implemented in a code employ-
ing SFQEDtoolkit: all other available SFQEDtoolkit functions are independent
of each other and can be ignored if not required, i.e., only the functions that are
desired have to be implemented in a code. Thus, for example, none of the func-
tions of the beyond LCFA method of Sec. 3.4 needs to be implemented if not used.
Analogously, for example, if one is interested in photon emission according to the
LCFA method but not in pair creation, then the implementation of the function
that compute the LCFA photon emission rate and of the function that calculate
the LCFA emitted photon energy may suffice. In fact, e.g., for testing purposes,
one can even implement only the SFQEDtoolkit function for the LCFA photon
emission rate, and use a custom version for calculating the LCFA emitted photon
energy, or vice versa. This enables high flexibility and allows users to customize
SFQEDtoolkit to their code and to their specific objective without implementing
unnecessary functions.

Figure A.1 displays the flowchart of a PIC code embedding SFQEDtoolkit. At
initialization all the precomputed Chebyshev coefficients stored in the txt files
included with the library are loaded into memory2. At this stage the user needs

1Possible other minor functions, typically variation of the main functions, are included to address
specific requests of some users.

2The tables with the Chebyshev coefficients are available in the “coefficients” folder of
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Figure A.1: Workflow of a PIC code implementing the routines provided by
SFQEDtoolkit.

to specify either the reference length or the reference frequency of the simulation.
This is required because in SFQEDtoolkit all quantities are given in normalized
units, and an angular frequency ωr is used as a reference. Consequently, the ref-
erence time Tr = 1/ωr, length λr = c/ωr, and field Er = mecωr/|e| are obtained,
while energy is normalized to mec2. In particular, notice that in a problem where
lengths are given in units of the laser wavelength λ, then λr = λ/2π such that
ωr = 2πc/λ.

The initialization is carried out through either the first or the second of the two
following functions

1: bool SFQED_INIT_ALL_ref_len(double ref_len, double
ts): initializes the environment by loading into memory all coeffi-
cients needed for modeling SFQED processes. In addition, it stores
the reference length ref_len= λr and the timestep of the simulation
ts= ∆t. The reference length must be given in meters, while the sim-
ulation timestep must be given in normalized units, i.e., in units of
Tr = 1/ωr. The simulation timestep is used only by the routines that
implement the beyond LCFA photon emission method described in
Sec. 3.4. At runtime, SFQEDtoolkit reads the required information
from files located in the subdirectory “coefficients” from the parent di-
rectory where the program is executed. If initialization is successful,

SFQEDtoolkit at https://github.com/QuantumPlasma/SFQEDtoolkit. The “coefficients”
folder includes a “README.md” file detailing how to interpret the content of each file, and how
the Chebyshev coefficients stored in the files are connected to the function that they approximate,
including the specific interval of approximation.

https://github.com/QuantumPlasma/SFQEDtoolkit
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the function returns a boolean that is true.

2: bool SFQED_INIT_ALL_ref_freq(double ref_freq, double
ts): equivalent and alternative to function 1. The only difference is
that the scale of the simulation is set by providing the reference angu-
lar frequency ref_freq= ωr in SI units.

If the photon emission method beyond LCFA of Sec. 3.4 is employed, SFQEDtoolkit
provides users with a C++ object named BLCFA_Object that is designed to allo-
cate the additional information that is required to keep track of the force acting on
the particle. Namely, a boolean signaling whether the particle was created at the
penultimate timestep, and two arrays each with three double precision elements.
One array stores the transverse Lorentz force at the penultimate timestep, the other
array stores the difference of the Lorentz force between the penultimate and the
antipenultimate timestep. This object is created by calling the function

3: BLCFA_Object* SFQED_CREATE_BLCFA_OBJECT(): creates an
object designed to store the information required to apply the beyond
LCFA method to a particle. The boolean is set to true, while the
two arrays are initialized to zero. The function returns a pointer to the
created BLCFA_Object.

If this function is implemented, each computational particle should have one BLCFA
_Object associated. It is up to the user to organize objects in a suitable data struc-
ture (array, linked list, etc.) and, if the code in which SFQEDtoolkit is imple-
mented uses message passing interface (MPI), to manage the communication of
the object data among MPI domains. A recommended choice is to use inheritance
to derive from BLCFA_Object an object Particle, where information such as
particle position and momentum is stored, and to create either an array or a C++
vector to store the data of all particles in the simulation. Another option is to in-
clude a pointer to a BLCFA_Object in the class or data type used by the existing
code to store information about a particle’s status. In a parallel code using MPI,
the communication of the additional particle data stored in BLCFA_Object should
follow the same methodology used by the code to communicate other particle in-
formation such as particle’s position and momentum. In fact, one should simply
communicate the elementary datatypes stored in a BLCFA_Object instead of the
BLCFA_Object itself.

Next, the standard steps of a PIC loop are performed: currents are deposited on
the grid, Maxwell equations are solved, the resulting fields on the grid are interpo-
lated at the particle’s position, and particles are advanced in time according to the
Lorentz force with a suitable particle ‘pusher’ (see, e.g., Ref. [35]). If a leapfrog
integrator is used, a convenient choice is to adapt the implementation to its stag-
gered method by first advancing the particle momentum, then call the routines for
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modeling SFQED processes, and only afterward advance the particle position and
store the new data into memory.

Again, only when using the beyond LCFA method for photon emission of Sec. 3.4,
a user employing the BLCFA_Object and its features can resort to the function

4: bool SFQED_BLCFA_OBJECT_update(BLCFA_Object* obj,
double* p_push, double* p, double delta, double gamma,
double chi): if the boolean of the BLCFA_Object pointed by obj
is true, calculates F(n)

L,⊥ from Eqs. (3.50)-(3.53) by using the particle
momentum before p and after p_push one timestep, and changes the
boolean of BLCFA_Object to false. In addition, it sets both arrays of
the BLCFA_Object equal to the computed F(n)

L,⊥, while the boolean re-
turned by the function is false to signal no emission at this timestep.
By contrast, if the boolean of the BLCFA_Object pointed by obj is
false, uses the particle momentum before p and after p_push one
timestep to perform all calculations in Eqs. (3.50)-(3.57). Then, it re-
turns delta as defined in Eq. (3.57), the normalized particle energy
gamma [Eq. (3.52)], and its quantum parameter chi [Eq. (3.54)]. Fi-
nally, the two arrays of the BLCFA_Object pointed by obj are updated
by storing F(n)

L,⊥ and F(n)
L,⊥ − F(n−1)

L,⊥ , while the boolean returned by the
function is true only if the necessary conditions for applying the local
emission model hold [see the conditions below Eq. (3.57)].

While functions 3 and 4 are optional and relevant only for the photon emission
model beyond LCFA of Sec. 3.4, SFQED probability rates must be computed for
each particle and at each timestep in the considered LCFA and beyond LCFA mod-
els. SFQEDtoolkit allows users to efficiently compute the SFQED rates by means
of

5: double SFQED_INV_COMPTON_rate(double gamma, double chi):
uses the normalized electron or positron energy gamma, as well as its
quantum parameter chi, to return the LCFA photon emission proba-
bility rate.

6: double SFQED_BREIT_WHEELER_rate(double gamma, double
chi): uses the normalized photon energy gamma as well as its quan-
tum parameter chi to return the LCFA probability rate of photon con-
version in an electron-positron pair.

7: double SFQED_BREIT_WHEELER_rate_fast(double gamma, double
chi): same as function 6 but it returns zero if chi< 0.3 (see Sec. 3.3.2).
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From a purely technical point of view, since the beyond LCFA photon emission
method of Sec. 3.4 is based on an acceptance-rejection technique, the optical depth
method cannot be used to determine whether a SFQED event is deemed to occur.

In case a SFQED event is deemed to occur according to the LCFA probability rate,
the energy of generated particles is computed by calling

8: double SFQED_LCFA_INV_COMPTON_PHOTON_energy(double gamma,
double chi, double rnd): returns the normalized photon energy
by sampling from the LCFA energy distribution. Its input parame-
ters are the normalized electron or positron energy gamma, the quan-
tum parameter chi of the emitting particle, and a random number rnd
sampled from a uniform distribution in (0, 1).

9: double SFQED_BREIT_WHEELER_ELECTRON_energy(double gamma,
double chi, double rnd): returns the normalized energy of the
generated electron (positron) by sampling from the LCFA energy dis-
tribution for photon conversion into an electron-positron pair. The
energy of the positron (electron) is then readily obtained from the dif-
ference between the photon and the electron (positron) energy. The
normalized photon energy gamma and its quantum parameter chi, as
well as a uniformly distributed random number rnd in (0, 1), must be
passed as input parameters.

10: double SFQED_BREIT_WHEELER_ELECTRON_energy_fast(double
gamma, double chi, double rnd): same as function 9, but chi
< 0.3 is not managed. This function must be used only in combination
with function 7.

When the beyond LCFA model of Sec. 3.4 is used, if function 4 returns true and
a SFQED event is deemed to occur according to the LCFA probability rate (see
function 5), the calculation of the local LCFA energy threshold γγ,LCFA, as defined
in Eq. (3.58), is required to determine the improved photon energy distribution. If
BLCFA_Objects are created and updated through functions 3 and 4, respectively,
then γγ,LCFA can be computed by calling

11: double SFQED_BLCFA_INV_COMPTON_PHOTON_threshold(BLCFA_Object*
obj, double delta, double gamma, double chi): returns the
normalized photon energy threshold below which the LCFA breaks,
i.e., the γγ,LCFA defined in Eq. (3.58). The arguments of this routine
are those passed to and updated by function 4.

After calling function 11 all required quantities for the beyond LCFA method are
available, and the photon energy is obtained from
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12: double SFQED_BLCFA_INV_COMPTON_PHOTON_energy(double limit,
double gamma, double chi,double rnd, double rnd2): re-
turns the normalized photon energy according to the beyond LCFA
model of Sec. 3.4. This function requires as input the same parameters
of function 8, plus two additional arguments: (i) the limit=γγ,LCFA
defined in Eq. (3.58), which users can obtain by calling function 11,
and (ii) rnd2, which is a uniformly distributed random number in
(0, 1) independent of rnd. If γγ,LCFA > 0.75γe the function returns
zero. Otherwise, it applies the acceptance-rejection technique of Sec. 3.4
and returns zero if the event is rejected.

After the above steps, the computational cycle is complete and is repeated until the
end of the simulation is reached. At this point, if the BLCFA_Object was used,
memory should be deallocated by calling the function

13: void SFQED_FINALIZE_BLCFA_OBJECT(BLCFA_Object* obj):
deallocates the memory space reserved for the BLCFA_Object pointed
by obj.

and SFQEDtoolkit should be ‘finalized’ (meaning that the memory reserved by
SFQEDtoolkit for storing the tables of coefficients should be deallocated, by call-
ing the function

14: void SFQED_FINALIZE_ALL(): frees all the memory allocated
at initialization.

Finally, SFQEDtoolkit provides users with two functions for the computation of
the particle quantum nonlinearity parameter χ according to Eq. (3.21), and one
function implementing the collinear emission model for the generated particle.

15: double compute_chi_with_vectors(double gamma, double p[3],
double EE[3], double BB[3]): returns the quantum nonlinearity
parameter χγ/e of a particle with energy gamma and momentum p in
an electric EE and magnetic BB field. All quantities must be provided
in normalized units.

16: double compute_chi_with_components(double gamma, double px,
double py, double pz, double EEx, double EEy, double EEz,
double BBx, double BBy, double BBz): same as 15 but the elec-
tric and magnetic field are passed component-by-component.

17: void SFQED_build_collinear_momentum(double gamma_out,
double p_in[3], double p_out[3]): returns the momentum of
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the generated particle p_out aligned with the momentum of the par-
ent particle p_in and sets it magnitude according to the energy of the
generated particle gamma_out. All parameters are in normalized units.

The above functions can be used in combination with functions 5–10.
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Appendix B

The Sokolov-Ternov effect

To benchmark the fully resolved NIC numerical module implemented in SFQEDtool-
kit, see Chap. 5, we simulated a 1 GeV electron beam comprising 106 particles
circulating in a transverse magnetic field B, corresponding to a nonlinear quantum
parameter of χe = 10−3. Under these conditions, the differing transition rates for
electron spin alignment relative to the magnetic field cause the initially unpolarized
beam to develop a net spin polarization opposite to the field direction. However,
this polarization does not reach full saturation; its limiting value is explicitly given
by [114]

ζ(t) = A
(
1 − exp

{
−

t
τ

})
τ = A

1
mαγ2

e

(Bcr

B

)3

A =
8
√

3
15

, (B.1)

where Bcr is the critical Schwinger (magnetic) field. This phenomenon is known as
the Sokolov-Ternov effect. Figure B.1 compares the evolution of the bunch’s aver-
age spin component along the magnetic field (blue line) with the theoretical predic-
tion from Eq. (B.1) (orange dashed line). The agreement between SFQEDtoolkit
and theory is excellent. Moreover, due to the low value of χe, photon emission is
minimal, and the change in electron polarization is entirely attributable to the "no
emission spin flip" mechanism described in Sec. 5.4.1. Without this effect, the
beam’s polarization would remain almost unchanged.
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Figure B.1: Sokolov-Ternov Effect: Owing to the selection rule imposed by the spin-
dependent terms in the NIC photon emission rate (see Eq. (5.71)), an electron beam mov-
ing through a weak magnetic field tends to polarize with its spin aligning antiparallel to
the field. This polarization is incomplete and saturates at approximately A ≈ 92.4% (green
line). The figure compares the theoretical prediction (orange dashed line) with the numer-
ical results obtained using SFQEDtoolkit (blue line).



Appendix C

Bessel functions approximations

Throughout chapter 5, we extensively employed the modified Bessel functions
of the second kind, K 1

3
(x) and K 2

3
(x), along with the integrals

∫ 30
x K 1

3
(y)dy and∫ ∞

x K 1
3
(y)dy. Since computing these functions can be resource-intensive1, SFQEDto-

olkit uses their Chebyshev approximations. To manage this efficiently, we par-
titioned the domain of x into distinct subdomains, each addressed by a tailored
Chebyshev approximation or an asymptotic expansion.

K 1
3
(x) is implemented in SFQEDtoolkit using the following strategy:

• 0 < x ≤ 0.1: Use the asymptotic expansion

K 1
3
(x)

x→0
−−−→

Γ( 1
3 )

2
2
3 x

1
3

+
Γ(− 1

3 )x
1
3

2
4
3

+
3Γ( 1

3 )x
5
3

2
11
3

. (C.1)

• for 0.1 < x ≤ 1 : Evaluate the Chebyshev approximation C
[
K 1

3
(x)x

1
3

]
x−

1
3 .

Here, we apporximate K 1
3
(x)x

1
3 (as indicated by Eq. (C.1)) to reduce the

number of Chebyshev coefficients required. This technique is also applied
in the high-x region.

• for 1 < x ≤ 7: Use the Clenshaw recurrence formula to evaluate the Cheby-

shev approximation C
[
K 1

3
(x)

]
.

• for 7 < x ≤ 30: Compute the approximation C
[
K 1

3
(x)exx

1
2

]
e−xx−

1
2 . This

transformation removes the dominant behavior of K 1
3
(x) for large x, where it

asymptotically expands as

K 1
3
(x)

x→∞
−−−−→ e−x

√
π

2

(
x−

1
2 −

5
72

x−
3
2

)
. (C.2)

• for x ≥ 30: Use the asymptotic expression from Eq. (C.2) directly.

This multi-branched approach ensures efficient and accurate computation of K 1
3
(x)

over its entire domain.
1In terms of the computational time and memory required to compute these functions.
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For K 2
3
(x), we adopt a similar strategy to that described above for K 1

3
(x):

• for 0 < x ≤ 0.1: We use the asymptotic expansion

K 2
3
(x)

x→0
−−−→

Γ( 2
3 )

2
1
3 x

2
3

+
Γ(− 2

3 )x
2
3

2
5
3

+
3Γ( 1

3 )x
4
3

2
7
3

. (C.3)

• for 0.1 < x ≤ 1: The function is approximated by C
[
K 2

3
(x)x

2
3

]
x−

2
3 .

• for 1 < x ≤ 7: We approximate K 2
3
(x) using C

[
K 2

3
(x)

]
.

• for 7 < x ≤ 30: We employ the approximation C
[
K 2

3
(x)exx

1
2

]
e−xx−

1
2 .

• for x ≥ 30: The asymptotic expression

K 2
3
(x)

x→∞
−−−−→ e−x

√
π

2

(
x−

1
2 +

7
72

x−
3
2

)
(C.4)

is used directly.

This multi-tiered approach ensures efficient and accurate computation of K 2
3
(x)

across its entire domain.

The integral
∫ 30

x K 1
3
(y)dy, primarily used for the computations in Section 5.5, is

approximated as follows:

• for 0 < x ≤ 0.1: We use the identity∫ 30

x
K 1

3
(y)dy =

∫ 30

0
K 1

3
(y)dy −

∫ x

0
K 1

3
(y)dy.

The first term,
∫ 30

0 K 1
3
(y)dy ≡ a, is a constant, while for the second term

we substitute (into the integral) the asymptotic expansion from Eq. (C.1).
Keeping only the leading terms after integration, we obtain∫ 30

x
K 1

3
(y)dy

x→0
−−−→ a −

3Γ( 1
3 )

2
5
3

x
2
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3Γ(−1
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10
3

x
4
3

 . (C.5)

• for 0.1 < x ≤ 2.5: SFQEDtoolkit uses the approximation C
[∫ ∞

x K 1
3
(y)dy

]
−∫ ∞

30 K 1
3
(y)dy. This formulation is preferred because the Chebyshev coeffi-

cients forC
[∫ ∞

x K 1
3
(y)dy

]
are slightly fewer than those needed forC

[∫ 30
x K 1

3
(y)dy

]
,

and

b =
∫ ∞

30
K 1

3
(y)dy

is a constant.
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• for 2.5 < x ≤ 29.95 and 29.95 < x < 30: The same Chebyshev approxima-
tion is applied in both ranges

C

[
ex

∫ 30

x
K 1

3
(y)dy

]
e−x,

with different sets of Chebyshev coefficients computed over the respective
intervals. The exponential factor is introduced because, as shown in Eq.
(C.2), K 1

3
decays as e−x. Without this factor, the function to be approximated

would be nearly zero, necessitating an impractically large number of coeffi-
cients. Since the integral of an exponential remains exponential, multiplying
by ex solves the issue.

• for x = 30: the function is forced to be zero.

For the integral
∫ ∞

x K 1
3
(y)dy, a similar procedure is followed with slight modifica-

tions:

• In the first range, the constant becomes
∫ ∞

0 K 1
3
(y)dy ≡ a′, instead of a.

• In the second range, we no longer subtract the constant b =
∫ ∞

30 K 1
3
(y)dy;

instead, b is added to the approximations in the subsequent intervals (i.e.,
2.5 < x ≤ 29.95 and iv) 29.95 < x < 30).

• for x = 30: The function evaluates to b.

• for x > 30: We integrate the asymptotic expansion from Eq. (C.2):∫ ∞

x
e−y

√
π

2

(
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1
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5
72
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2

)
dy = −
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36
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2
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41
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π
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2
er f c(

√
y),

(C.6)

where er f c(y) = 1 − er f (y) = 2√
π

∫ ∞
y e−t2dt is the complementary error

function. Taking the asymptotic expansion of this result (with assistance
from Wolfram Mathematica) yields the expression used by the toolkit:∫ ∞

x
K 1

3
(y)dy

x→∞
−−−−→ e−y

√
π

2

(
y−

1
2 −

41
72

y−
3
2

)
. (C.7)

Finally, it is important to note that each of these approximations has been rigor-
ously tested against the corresponding functions as implemented in the GSL. Our
evaluation of both accuracy and performance shows that the percentage error never
exceeds 0.1% (see Fig. C.1), and our implementations significantly outperform the
Gnu Scientific Libreries (GSL) [115] in terms of speed.
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Figure C.1: Relative error between the GSL and SFQEDtoolkit implementations of the
modified Bessel functions K 1

3
(x), K 2

3
(x), and the integral

∫ ∞
x K 1

3
(y)dy.
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