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I
Introduction

Lung cancer is one of the most prevalent types of cancer worldwide, accounting for a
significant portion of cancer diagnoses and mortality. In 2022, lung cancer was the most
frequently diagnosed cancer globally, with approximately 2.5million new cases, representing
12.4% of all cancer cases. It remains the leading cause of cancer-related deaths, with a
mortality rate of 16.81 (Ferlay et al. 2024). As a result, addressing lung cancer remains one of
the greatest challenges in modern healthcare.
The most common type of lung cancer is Non-Small Cell Lung Cancer (NSCLC). Current
treatment options include a combination of chemotherapy, surgery, and radiotherapy. It
is estimated, that 50% to 60% of all patients require radiotherapy (Atun et al. 2015). Ra-
diotherapy can be administered using X-rays, electrons, or heavier ions such as protons or
carbon ions, a method known as particle therapy. Particle therapy is gaining increasing
interest worldwide due to its unique advantages in treating cancers, particularly in terms
of dose distribution and minimizing damage to surrounding healthy tissue. Interest in
particle radiotherapy has grown significantly since the first treatments were conducted at
the Lawrence Berkeley Laboratory in 1954. Since then, the number of patients treated each
year is increasing rapidly. In the past 5 to 6 years2, this number has doubled with 36 700
proton and 6600 carbon ion patients in 2023 (PTCOG 2024b). Today, there are 120 clinical
proton therapy facilities and 15 carbon ion therapy facilities in operation worldwide, with
more than 30 additional centers currently under construction (PTCOG 2024a).
Ion therapy offers several physical advantages over traditional X-ray radiotherapy due to the
characteristic dose distribution of the beam. The finite range and low entrance dose of ion
beams allow for the creation of a Spread Out Bragg Peak (SOBP), which can be modulated to
conform to the shape of the tumor (Schulz-Ertner and Tsujii 2007). This results in higher doses
delivered to the tumor while minimizing exposure to surrounding normal tissues, thereby
improving tumor control with reduced toxicity in adjacent organs. Intensity Modulated

1per 100 000, Age-Standardized Rate (World)
2Data from December 2023
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Chapter I Introduction

Particle Therapy (IMPT) using protons and carbon ions is emerging as a promising treatment
approach due to these benefits (Grutters et al. 2010).
However, treating lung tumors with ion therapy presents several challenges. Significant
intrafractional respiratory motion or interplay effects with the relative movement between
the beam complicate accurate dose delivery (Knopf et al. 2011; Langen and Jones 2001;
Lomax 2008). Additionally, the heterogeneity of lung tissue limits the accuracy of treatment
planning algorithms (Grassberger et al. 2014).
The heterogeneity effects are caused by Multiple Coulomb Scattering (MCS) as ion beams
traverse complex density distributions within the lung. This can lead to a degradation of
the Integrated Depth Dose (IDD), potentially resulting in under-dosage of the tumor and
unwanted dose distal to the target. Analytic algorithms were found to dramatically and
consistently overestimate the delivered dose by up to 46% in the target (Taylor et al. 2017).
While Monte Carlo (MC) simulations offer improved modeling compared to analytical Pencil
Beam (PB) algorithms, treatment planning systems are not able to predict these effects due
to insufficient information about sub-Computed Tomography (CT)-resolution structures.
Despite these advancements, analytical algorithms remain essential for their speed and
utility, for instance in providing an overview of dose distribution.
It is therefore necessary to describe and model the degradation mathematically. Previous
investigations have already proposed models based on the assumption of a Gaussian range
degradation (Titt et al. 2015). This has been further expanded by using a density modulation
of lung tissue voxels for MC codes (Baumann et al. 2017). Additionally, an analytical convo-
lution method for the proton absorbed dose was implemented in the open source treatment
planning toolkit matRad (Winter et al. 2020).
The objective of this work is to develop a dose calculation module for the evaluation of
treatment plans for lung tumors. This involves the implementation of degradation models
for both absorbed and biologically effective dose calculations for analytical PB and MC
methods. For analytical PBs, this is achieved by building on the previous implementation of
analytical convolution and refining it for Relative Biological Effectiveness (RBE)-weighted
dose and carbon ions. For MC, the density sampling technique is applied using a developed
simple binomial distribution. Given these considerations, the development and integration of
a comprehensive MC interface and framework for proton and carbon ion therapy within the
matRad toolkit. The goal is to gain a better understanding of treatment planning under the
influence of lung degradation and to investigate the impact on the absorbed and biologically
effective dose distributions for protons and carbon ions. This project was funded by the
German Cancer Aid Foundation (Deutsche Krebshilfe).
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II
Background

The aim of this chapter is to provide a comprehensive summary of the scientific and technical
background relevant to the research presented in this thesis. It covers the fundamental
concepts of radiotherapy, including photon and particle radiotherapy, and important phys-
ical quantities, such as absorbed dose and Linear Energy Transfer (LET). It discusses the
topic of radiobiology, including the Linear Quadratic Model (LQM) and Relative Biological
Effectiveness (RBE) models for protons and heavier ions. Finally, the treatment planning
workflow is described including patient imaging, dose calculation and plan evaluation.

II.1 Radiotherapy

II.1.1 Ionizing Radiation andDose

This section introduces basic physical concepts of radiotherapy, such as the interactions and
subsequent energy loss of photons and heavier particles while traveling through a medium.

II.1.1.1 Photon Interactions

When traveling through media, the intensity of a photon beam is attenuated by various
processes, predominating in different energy ranges. For photons, these processes include:

1. Rayleigh scattering: An elastic interaction between the photon and the atom and
subsequent scattering of the photon.

2. The photoelectric effect: The absorption of a photon and subsequent ejection of orbital
electron (photoelectron)

3. Compton scattering: An inelastic interaction between photon and atomic electron
which leads to an ejected electron and a scattered photon.

3



Chapter II Background

4. Pair production: The generation of an electron-positron pair from a photonwith energy
above 1.02MeV in the presence of the nucleus as collision partner.

The attenuation of a photon beam traversing a material can be described using Lambert-Beer’s
law (Johns and Cunningham 1983) with the linear attenuation coefficient 𝜇 ([𝜇] = cm−1):

𝑁(𝑧) = 𝑁0𝑒−𝜇𝑧 . (II.1)

The mass attenuation coefficient 𝜇/𝜌 per mass density 𝜌 of the absorber is shown for water
in Fig. II.1. In the lower (𝐸𝛾 < 0.1MeV) and higher (𝐸𝛾 > 1MeV) energy region, the
photoelectric effect and pair production are dominating, respectively. For energies used in
radiotherapy (1MeV to 15MeV), Compton scattering is the predominant type of interaction.
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Figure II.1: Total photonmass attenuation coefficient𝜇/𝜌 for water as a function of photon energy. It is the sum

of three fundamental processes: Photoelectric absorption ( ), Compton scattering ( ) and pair production

( ) which dominate at different energy ranges. Data taken fromBerger et al. (2005).

II.1.1.2 Particle Interactions

In comparison to photons, particles loose their energy continuously until they come to
a complete stop and have deposited all of their kinetic energy. These consist of several
fundamental interaction processes (Newhauser and Zhang 2015):

1. Coulomb interactions with atomic electrons: Mostly inelastic collisions with the shell
electrons of the absorber material resulting in ionization of the target atom and is the
main source of energy loss for clinical beams (electronic stopping 𝑆el).

2. Coulomb interactions with atomic nuclei: Mostly elastic interactionwith an atomic nu-
cleus (𝑆nuc) which does not lead to significant energy loss, but heavy scattering (Schlegel
et al. 2018). For ions, inelastic interactions are rare and generate Bremsstrahlung (𝑆rad).
For heavy charged particles, both processes are regarded as negligible for energy loss.
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II.1 Radiotherapy

3. Inelastic nuclear reaction: For high energy ions, the primary particle may break
through the Coulomb barrier of the target nucleus and directly collide. This results in
the emission of secondary particles, nuclear fragments or prompt gamma rays.

Stopping Power / Energy Loss. The quantity that governs the shape of the depth dose is
the stopping power. The mass stopping power ([𝑆

𝜌] = MeVcm2/g) can be written as a sum
of the individual processes, electronic, nuclear and radiative stopping power (ICRU 2011):

𝑆
𝜌 =

𝑆el
𝜌 +

𝑆rad
𝜌 +

𝑆nuc
𝜌 . (II.2)

For protons and heavy ions, the energy loss d𝐸/d𝑥 is mainly dependent only on the (mass)
electronic stopping power 𝑆el, which can be described using the Bethe-Bloch formula (Bethe
1930; Bloch 1933; Johns and Cunningham 1983; Schlegel et al. 2018)

1
𝜌
d𝐸
d𝑥 =

𝑆el
𝜌 = 𝑘 ⋅

𝑍𝑇
𝐴 ⋅

𝑍2
𝑃

𝛽2 ⋅ ln(
2𝑚𝑒𝑐2 ⋅ 𝛽2

𝐼2 ⋅ (1 − 𝛽2)
) − 𝛽2 −

𝛿
2 + 𝐶 , (II.3)

with the particle and target charge 𝑍𝑃 and 𝑍𝑇, relativistic velocity 𝛽 = 𝑣/𝑐 and the excitation
potential of the target atom 𝐼. Several correction terms have been added over the years,
including the density correction 𝛿

2 and the shell correction 𝐶. Fig. II.2 shows the stopping
power in dependence of the residual range inwater. Just before the particles are fully stopped,
the stoppoing power increases and shows a peak (the Bragg peak). This increase in stopping
power causes an increase and peak in the absorbed dose as well.
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Figure II.2: Stopping power ( ) and energy ( ) of carbon ions in dependence of the residual range in water. The

stopping power increases with decreasing particle energy (and therefore range) and shows a peak (the Bragg

peak) just before the particles are fully stopped. Data fromBerger et al. (2005).
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Multiple Coulomb Scattering. Single elastic coulomb interactions lead to scattering of the
incident ion (Rutherford scattering) with a scattering angle dependent on sin−4 𝜃. However,
most materials in clinical radiotherapy are of substantial thickness, enough to cause many
small-angle scattering events. These Multiple Coulomb Scattering (MCS) processes not only
contribute to the energy loss but also scattering of the beam particles. In the most common
approximation of their cumulative effect (Molière’s theory), a normal distribution of the
individual scattering angles 𝜃𝑟 is assumed, where the change per unit path length can be
described by the scattering power d⟨𝜃2

𝑟 ⟩/d𝑥. MCS is one of the main reasons of the different
lateral bream profiles of different ions (Fig. II.3).
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Figure II.3: Lateral penumbra of 95MeV protons ( ) and 200MeV/u carbon ions ( ) in water, compared for

equal beamwidths. Adapted fromByun et al. (2021).

Straggling. The energy loss and deflections of individual particles are stochastic processes.
The difference of the experienced energy loss of individual particles results, with depth, in
an increasingly wide energy spectrum, which follows an approximately Gaussian profile 𝜎𝐸.
The energy straggling translates to a range straggling with Gaussian profile 𝜎𝑅 = 𝜎𝐸/(𝑑𝐸

𝑑𝑥 )
(Schlegel et al. 2018). This process is called energy straggling which, among other things,
determines the width of the Bragg peak and peak to plateau ratio. The range straggling can
be incorporated into the depth dose using a convolution with the aforementioned Gaussian
profile (Bortfeld 1997),

𝐷(𝑧) =
1

√2𝜋𝜎
∫

𝑅0

0
�̂�( ̄𝑧)𝑒−(𝑧− ̄𝑧)2/2𝜎2d ̄𝑧 . (II.4)

Range. The particle range in a certain medium is defined by their energy loss and scattering.
The relationship of the particle range with its energy approximately follows a power law,
with individual parameters 𝛼 and 𝑝 for different materials (Bortfeld 1997; Schlegel et al. 2018):

𝑅(𝐸0) = 𝛼𝐸𝑝
0 . (II.5)
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II.1 Radiotherapy

Based on a fit to available data, this can be used as a simple way to calculate the energies for
given ranges and vice versa (Section III.1.4.1).
While the projected range gives the distance without deviations, the mean range of a particle
or particle beam can be calculated using the Continuous Slowing Down Approach (CSDA),
where a continuous energy loss along the particle track is assumed. It is a good approximation
for the mean range of a particle or beam and can be calculated by integrating the inverse of
the stopping power over the particle deceleration to 𝐸 = 0:

𝑅CSDA(𝐸) = ∫
0

𝐸

1
𝑆(𝐸′)d𝐸′ . (II.6)

Patient Body

Incident
Particle

Projected
Range

Lateral
Range

CSDA
Range

Figure II.4: Illustration of projected vs CSDA range. Adapted from Schlegel et al. (2018).

II.1.1.3 AbsorbedDose

The absorbed dose 𝐷 ([𝐷] = 1Gy = 1 J/kg) is defined as

𝐷 =
d�̄�ab
d𝑚 , (II.7)

where d�̄� describes the mean energy absorbed in the unit mass d𝑚 of a certain medium
(Schlegel et al. 2018). Since the absorbed energy differs between materials, it has to be
specified as reference. However, the absorbed dose only considers the purely physical effects
of the radiation and disregards potential biological effects in vivo.
Depth dose profiles for photons, protons and carbon ions are shown in Fig. II.5. For photons,
the dose builds up upon entering the medium due to secondary electrons induced by the
primary radiation, which are the dominating source of energy deposition and have a finite
range depending on the photon energy (Schlegel et al. 2018). For protons and carbon ions,
the dose profile shows the characteristic Bragg peak, caused by an increase in stopping power
as the particles slow down (see Fig. II.2, velocity dependence 𝛽−2 in Eq. II.3). Additionally,
the Bragg peak becomes increasingly sharp with increasing particle mass due to higher
stopping power (𝑍2

𝑃-dependency in Eq. II.3) and less scattering. During the collision process,
heavy ions break up into fragments which causes a fragmentation tail after the peak.
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Figure II.5: Normalized depth dose profiles of 6MeV photons ( ), 129.46MeV protons ( ) and 244.92MeV/u

carbon ions ( ) in water, calculated usingmatRad. For photons, the dose builds up at the entrance because of

secondary electrons. For protons and carbon ions, the dose profile shows the characteristic Bragg peak, which

is sharper for carbon ions. Proton and carbon ion energies were chosen to achieve similar peak depth.

II.1.1.4 Linear Energy Transfer (LET)

The Linear Energy Transfer (LET) ([LET] = keV/µm) is a measure for the energy transferred
to a medium through energy loss to electronic interactions of an ionizing particle per unit
length. It is given as the stopping power until a cut-off energy, i.e., the maximum energy of
secondary electrons Δ (ICRU 2011), within a radius of the track defined by the cut-off energy:

LETΔ =
d𝐸Δ
d𝑥 =

Δ→∞
𝑆el . (II.8)

If Δ = ∞, the unrestricted LET equals the stopping power 𝑆el.
The LET in dependence of depth for protons is shown in Fig. II.6. Since the LET is related to
the stopping power, it increases with lower particle energy (as seen towards the Bragg peak).
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Figure II.6: Proton absorbed depth dose ( ) and corresponding dose averaged LET ( ) in dependence of depth

for a mean energy of 𝐸p = 118.21MeV/u. The LET rises as the particle slows down. The LET for a helium

beamwith similar range and energy (𝐸He = 117.18MeV/u) is much larger ( ).
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The LET is used to differentiate densely ionizing radiation (high-LET radiation), such as
heavy ions, carbon or slow protons, and thinly ionizing radiation (low-LET radiation), such
as high energy particles and photons (Schlegel et al. 2018). For photons, the mean LET
of secondary particle spectrum is referenced. In radiotherapy, high-LET radiation may be
desired, as the dose is deposited closely to the track and their damage is less likely to be
repaired (Joiner and Kogel 2009, see. Section II.2.2). Furthermore, the LET can be used for
biological optimization and the calculation of RBE. There, a dose averaged LET (LET𝐷) is
mostly used which is calculated by weighting with the deposited local dose.

II.1.2 Irradiation Techniques

The main goal of radiotherapy is the delivery of a homogeneous dose to the target (the
tumor), while minimizing dose to healthy tissue and Organs At Risk (OARs). This can be
achieved using several techniques that are briefly discussed in this section. In addition to the
beam delivery problem, there are multiple external factors that make this process difficult,
such as range uncertainties, inhomogeneous tissue geometries or organ motion.

II.1.2.1 Photon Radiotherapy

Beam generation. Traditionally, simple Röntgen tubes (X-ray tubes) with energies in the
high kV range were used for radiotherapy. A hot cathode produces an electron beam, that
can either be directly used for therapy or used to generate Bremsstrahlung with a continuous
energy spectrum and limited energy range. A commonly used method still today, due to
its simplicity and cost-effectiveness, is irradiation with a synthetic Cobalt-60 (60Co) source.
Decaying 60Co emits the 2 characteristic photon energies 1.17MeV and 1.33MeV, which
produce a favorable depth dose compared to simple Röntgen tubes. However, the treatment
field has to be intricately collimated (Schlegel et al. 2018).
Today, a clinical photon beam is typically generated using an electron LINear ACcelerator
(LINAC), which produces a highly focused electron beam. In a similar way as traditional
Röntgen tubes, the generated electrons can either be directly used for therapy (after the
generation of an expanded electron field) or steered onto a tungsten target which generates
ultra hard Bremsstrahlung. The produced electron energies typically range between 6MeV
to 18MeV (Schlegel et al. 2018).

Technique. One of the current state of the art techniques for photon radiotherapy treatment
is Intensity Modulated RadioTherapy (IMRT). A Multi Leaf Collimator (MLC) is used in
combination with multiple modulated beams from different directions. The MLC consists
of individually movable tungsten leaves oriented to match the shape of the tumor. The
beams themselves are modulated to increase the target dose and decrease the dose to OARs
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(Fig. II.7), which results in very homogeneous dose distributions. The irradiation fields can
either be static or rotated continuously around the patient while modulating the rotational
speed, dose rate and the position of the MLC leaves. This technique is called Volumetric-
Modulated Arc Therapy (VMAT) and produces the best target dose conformity compared to
other IMRT techniques (Schlegel et al. 2018).

Tumor

OAR

Beam
1

Beam 2

Be
am

3
Figure II.7: IMRT setup for an example kidney shaped tumorwith anOAR. It consists of 3 treatment beamswhose

intensities aremodulated individually. They aremodulated such that the parts of the beam striking theOAR

have lower intensities compared to those targeting the tumor. Adapted from Schlegel et al. (2018).

II.1.2.2 Particle Radiotherapy

Beam generation. The generation of particle beams is much more challenging compared
to photon beams. It requires expensive – and in case of synchrotrons, building-sized –
accelerators. As a result, only a few facilities exist worldwide. In order to reach sufficient
treatment depths, particles have to be accelerated to significantly higher energies compared
to the photon or electron energies. Energies of ~30MeV to 200MeV are needed for protons
or even ~100MeV/u to 400MeV/u for carbon ions (Schlegel et al. 2018).
These energies are realized using ring accelerators such as cyclotrons and synchrotrons that
produce almost mono-energetic beams (Schlegel et al. 2018). For protons, mostly cyclotrons
are used, where the proton is continuously accelerated and kept on a circular path by a
magnetic field (Fig. II.8a). The path radius increases with particle energy until they are
ejected into a continuous beam. In a synchrotron, particles are pre-accelerated and injected
into a circular path and accelerated at each revolution, producing a pulsed beam current
when spilled (Fig. II.8b). The advantages of a cyclotron are their relatively compact size and
their continuous beam. However, synchrotrons allow for precise and on-demand energy
selection and enable the acceleration of various different ion types, such as protons, helium,
carbon or oxygen ions (also in the same machine).
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Injection
Acceleration
Ejection

(a) Schematic drawing of a cyclotron.

Pre-Accelerator

Accelerator

Bending Magnets
Ejection Magnet
Injection Magnet

(b) Schematic drawing of a synchrotron.

Figure II.8: Schematic drawings of a cyclotron (a) and synchrotron (b). A cyclotron uses an oscillating electromag-

netic field to accelerate charged particles. In a synchrotron, particles are injected in an accelerator ring, where

they are accelerated at each revolution. Adapted from Schlegel et al. (2018).

Technique. The pencil beam scanning technique exploits the characteristics of particle dose
deposition using individual dose points (Fig. II.9). In combination with Intensity Modulated
Particle Therapy (IMPT), scanning magnets control the beam position. The penetration
depth is controlled by selecting different beam energies in the accelerator or by insertion
of range shifter plates. The beam intensity is controlled by the control and monitoring
system. This way, nearly every tumor shape can be individually modeled to deliver a highly
homogeneous dose (Hall 2004; Lomax et al. 2001). 3D IMPT is the current state of the art
treatment technique for most tumors that are treated using ions.

x
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z

y’

z’

Range
Shifter

Scanning
Magnet

Treatment
Volume

Ion
Beam

Figure II.9: IMPT active scanning setupwhere the individually modulated beam spots ( ) are spatially targeted

using scanningmagnets and different energy layers from the accelerator or by using a range shifter. This way,

the target volume ( ) within the discretized patient geometry is covered.
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II.2 Radiobiology

A living organism or a a cell will react differently to ionizing radiation compared to a water
phantom. While the interactions can be spread out over the whole volume of a cell, the
localized damage to the nucleus and the DNA is the major cause of potentially irreparable
damage to the cell. The energy deposition and therefore (desired) biological effect happens
in 3 phases (Joiner and Kogel 2009; Schlegel et al. 2018):

1. Physical processes in the range of 10−18 s to 10−14 s are the direct interaction between
the radiation and the cells causing ionization cascades through secondary electrons
and atomic excitations.

2. Within 10−3 s to several minutes, in subsequent chemical reactions, atomic bonds break
and free radicals are produced.

3. Early biological reactions (after hours to months) can include skin or organ damage
through the killing of stem cells, while late reactions (after months to years) can include
fibrosis, nerve damage or even secondary radiation-induced tumors.

Cells have a number of repair mechanisms to counteract the induced damage, which may
differ between healthy and tumor cells and depend on the complexity of the damage:

1. Single Strand Breaks (SSBs) are breakages in only one DNA strand and can therefore
be easily restored from the complementary strand.

2. Double Strand Breaks (DSBs) are complete breakages of both strands, that need more
sophisticated repair mechanisms.

3. Accumulation of SSBs and DSBs (cluster damages) are more prevalent in high-LET
radiation due to their localized energy deposition and are hard to repair.

Often, supplying blood vessels do not grow as fast as the tumor, causing an hypoxic
and acidic micro environment, which further influences the balance between damage
and repair (Joiner and Kogel 2009). In order to quantify the radiation response in cells
after irradiation with a certain dose, in vitro cell cultures were irradiated with varying
doses and their ability to divide after the irradiation measured, so-called clonogenic assays.
On this basis, the LQM was developed (Section II.2.1). The LQM allows to derive dose pre-
scriptions for different irradiation schedules, like the total dose and the number of irradiation
sessions or fractions (fx) it is applied in (Schlegel et al. 2018).
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II.2.1 Linear QuadraticModel (LQM)

Based on these clonogenic assays, the resulting cell SF after 𝑛 irradiations with the single
dose 𝑑 and the total dose 𝐷 = 𝑛𝑑 can be calculated using

SF(𝐷) = 𝑒𝑥𝑝 (−𝑛(𝛼𝑑 + 𝛽𝑑2)) . (II.9)

α (1/Gy) and β (1/Gy2) are model fitting parameters describing the radiosensitivity of the
cell towards the radiation type (Schlegel et al. 2018). Usually, the ratio of these parameters
is given and ranges from 8Gy to 15Gy for early reacting tissues and 1Gy to 4Gy for late
reacting tissues. For tumors, α/β ratios are often higher in a range of 5Gy to 15Gy. The LQM
is well supported by data for a dose range of roughly 1Gy/fx to 5Gy/fx and extrapolation
may compromise the validity (Joiner and Kogel 2009). Furthermore, it is assumed that
enough time has passed for the repair of non-lethal damages without going through mitosis.
Example cell survival curves for α/β ratios of 2Gy and 10Gy as well as fraction doses of
2Gy/fx and 5Gy/fx are shown in Fig. II.10. Cells with small α/β ratios (early responding)
show a large fractionation effect compared to large α/β (late responding). A lower fraction
dose increases the fractionation effect compared to a higher dose per fraction, so the number
of fractions has to be increased for the same effect. The concept of Equivalent Dose (EQD)
can be used to convert between these isoeffective fractionation schemes (Withers et al. 1983):

EQD2 = 𝐷1 ⋅
𝑑1 + α/β
𝑑2 + α/β . (II.10)
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Figure II.10: Cell survival curves calculated using the LQM for different fractionation schemes (a) and different

α/β ratios (b). Lower doses per fraction and small α/β ratios increase the fractionation effect compared to

higher doses per fraction and large α/β ratios.
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Application. The biological effect 𝜖 (Jones et al. 2001) is defined as:

𝜖 = − ln(SF) = 𝑛(𝛼𝑑 + 𝛽𝑑2) . (II.11)

For very low dose rates (for 𝑑 → 0 and 𝑛 → ∞), the maximum isoeffective dose is called
extrapolated total dose (Joiner and Kogel 2009) or Biologically Effective Dose (BED) and is
defined as:

BED =
𝜖
𝛼 = 𝐷 (1 +

𝑑
𝛼/𝛽) . (II.12)

For the purpose in dose calculation algorithms (see Section II.3.2.2), an important property
of the biological effect ϵ (and therefore the BED) is its additivity, especially when combining
multiple fractions of a treatment (Jones et al. 2001).
Even though the LQM was developed on the basis of in vitro cell cultures, it can still be
applied to patients, if the boundary conditions are met and α/β is known with acceptable
accuracy. Then, it serves as a simple and effective model to describe the effect of fractionated
irradiation. Additionally, the parameters can be adjusted to better reflect the in vivo behavior
through empirical, retrospective analysis of large patient cohorts (Kirkpatrick et al. 2008).

Extensions. While the initial LQM is only valid for 1Gy to 5Gy, it can be extended to larger
doses, which is important for e.g. the Local Effect Model (LEM), where very high local doses
are assumed (Section II.2.2.1). For this, an empirical parameter is added with the transition
dose 𝑑𝑡:

SF(𝑑) =
⎧{
⎨{⎩

exp(−𝛼𝑑 − 𝛽𝑑2) 𝑑 < 𝑑𝑡

exp(−𝛼𝑑 − 𝛽𝑑2 − 𝑠max(𝑑 − 𝑑𝑡)) 𝑑 ≥ 𝑑𝑡
. (II.13)

There are several additional factors that may counteract the cell damage induced by radiation
(Schlegel et al. 2018). In addition to cell repair, cells can undergo mitosis and repopulate
between treatments, therefore potentially increasing the surviving fraction. Furthermore,
cells are more susceptible to radiation in certain cell cycle phases, which can lead to a
decreased effectiveness during the treatment or consecutive treatment. Furthermore, the
oxygen content in the cells has an impact on the radiation resistance, where hypoxic cells
(mostly tumors due to their fast-growing nature) are more resistant. However, during the
treatment, reoxygenation of these regions can occur and enhance the effect of the radiation.
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II.2.2 Relative Biological Effectiveness (RBE)

Irradiating tumors with high-LET radiation (densely ionizing radiation such as low-energy
protons, helium or carbon ions) leads to a higher biological effect for the same dose compared
to low-LET radiation (loosely ionizing radiation such as photons or electrons). High-LET
particles deposit their dose and therefore their damage much more confined compared to
photons which leads to more unrepairable damages to the cells (Schlegel et al. 2018). In
order to quantify the higher effect, the Relative Biological Effectiveness (RBE) is defined as

RBE =
𝐷reference

𝐷ion
∣
isoeffective

, (II.14)

where 𝐷reference and 𝐷ion are the isoeffective doses that lead to the same cell survival and in
turn the same biological effect. The RBE strongly depends on the type of radiation used for
irradiation and as the reference. Most commonly used as reference dose are 250 kVp X-rays
or 60𝐶𝑜 γ-rays (Joiner and Kogel 2009). Additionally, the RBE depends on the biological
properties of the cell (α/β), the beam quality, the dose and whether or not a fractionation
scheme is being used (Joiner and Kogel 2009; Karger and Peschke 2017; Schlegel et al. 2018).
RBE values reported in literature vary greatly for the aforementioned parameters but range
from 0.7 to 1.6 for protons (in vivo) (Karger and Peschke 2017; Paganetti et al. 2002) and 1.26
to 5.04 for carbon ions (Karger and Peschke 2017). In clinical practice, a constant RBE of 1.1 is
most commonly used (Paganetti et al. 2019; Schlegel et al. 2018, see Section II.2.2.1).
Multiplying the particle dose 𝐷ion with the respective RBE leads to an isoeffective, RBE-
weighted photon dose

𝐷𝛾 = RBE ⋅ 𝐷ion, (II.15)

with units given in Gy. RBE-weighted dose is one of the most important quantities in this
thesis and in clinical use, since it allows to compare particle dose distributions to photon
dose distributions and among each other. Additionally, photon doses vary a lot less and are
commonly better described and known (Schlegel et al. 2018).
The RBE-weighted particle dose can be analytically calculated from photon radiosensitivity
parameters α/β and the effect 𝜖 (Wilkens and Oelfke 2004):

RBE × 𝐷ion =
√𝛼2

𝛾 + 4𝛽𝛾 ⋅ 𝜖ion − 𝛼𝛾

2𝛽𝛾
. (II.16)

Dependence on LET. Even though radiation with higher LET is more effective in damaging
the cell compared to photons and their specific RBE depends on more parameters; generally
speaking, higher LET radiation leads to higher RBE. The energy is deposited very locally,
thus causing more DSBs and hence more damage to the cell. The RBE dependence of LET is
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shown in Fig. II.11 for three different SFs. As depicted, the RBE also increases with higher
SF and therefore towards lower doses. For small doses, the RBE reaches its maximum,
which can be calculated from αion/α𝛾 (Schlegel et al. 2018). This behavior was observed in
experimental data (Paganetti 2014). For very high LETs larger than 100 keV/µm, the RBE
decreases again. Even though more energy is deposited in the cell, it does not led to more
damage. This effect is therefore called ”Overkill”-effect (Joiner and Kogel 2009).
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Figure II.11: RBE for CHO-K1 cells as a function of LET for different SFs as well as the case for small doses. With

increasing LET, the RBE first increases and decreases again for high LETs (”Overkill”-effect). For a given LET,

the RBE increases with larger SF or towards smaller doses. Qualitative representation. Figure adapted from

Schlegel et al. (2018).

II.2.2.1 RBEModels

As previously discussed, the RBE depends on multiple factors such as LET, dose, ion type or
biological factors. Since the biological effects are currently still poorly understood (McMahon
2021), the RBE can be estimated using simplified RBE models. Past research showed that
LET correlated with RBE. As a result, variable RBEmodels are mostly based on LET (Mairani
et al. 2016; McNamara et al. 2015; Wedenberg et al. 2013). More sophisticated biological
models debate LET as a suitable predictor for RBE and search for different correlations of the
RBE, such as the Repair-Misrepair-Fixation (RMF) model (Carlson et al. 2008) which links
DSBs to cell death and therefore biological effect. Generally, an inconsistent LETd calculation
can potentially impact the corresponding RBE and using a different surrogate such as the
beam quality 𝑄 was found to significantly improve RBE prediction (Kalholm et al. 2023).
The following section gives a short overview over the limited list of (mostly LET based) RBE
models used in this thesis for protons and carbon ions.

Protons. Usually, when considering the higher biological effectiveness of protons in a
clinical setting, a constant RBE of 1.1 is recommended and used (ICRU 2007). This means,
that over all energies, protons are assumed to be 10% more efficient compared to photons.
This can be considered a sensible approximation, since the LET only increases for very
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low energies and therefore only at the distal edge of the Bragg peak (Schlegel et al. 2018).
However, since the dose falls of around the distal edge of the target, the increasing LET
causes an increase in RBE and could mitigate the advantageous sharp dose falloff to some
degree (McNamara et al. 2015; Paganetti 2014; Paganetti et al. 2019). As a result, it can be
worthwhile to include a variable RBE for protons in those regions, since the RBE depends
on many more factors (see above), and there have been several publications addressing and
developing variable RBEmodels. Amore detailed comparison of various proton RBEmodels
can be found in McNamara et al. (2020a).
Multiple phenomenological models were developed based on a parameterization of the LQM
(Eq. II.17) fitted to experimental data. The equation provides a relationship of RBE on dose,
dose averaged LET𝑑 and α/β, without the need of particle specific biological parameters
(Carabe-Fernandez et al. 2007; Karger and Peschke 2017):

RBE =
1

2𝐷ion

⎛⎜⎜⎜
⎝

√
√√
⎷

(
𝛼
𝛽)

2

𝑝ℎ
+ 4𝐷ion (

𝛼
𝛽)

ph
RBEmax + 4𝐷2

ionRBEmin − (
𝛼
𝛽)

ph

⎞⎟⎟⎟
⎠

. (II.17)

RBEmax corresponds to the maximum RBE at dose → 0, depending on (α/β)−1 and LET𝑑,
while RBEmin describes the asymptotic RBE towards high doses. Specific parameterizations
of the implemented models can be found in Section III.1.1.2. Reported typical RBE values
for both models range from less than 1 to more than 2 (McMahon 2021), which would not be
a negligible effect.

Heavy Ions. RBE estimation for heavy ions, such as helium or carbon ions, is more complex
and particularly difficult due to their high LET. Compared to protons, ions deposit their
energy highly localized around their traveled path, therefore create more localized damage
and are usually more effective in destroying cells. There are several models available across
the world like the LEM. The LEM is a generalized model for all clinically relevant ions
developed at the Gesellschaft für SchwerIonenforschung mbH (GSI) (Scholz and Kraft 1996;
Scholz et al. 1997). For protons, similar to the already described proton models, it leads to
an RBE higher than 1.1 at the distal edge of the Bragg peak (Schlegel et al. 2018).
The model is used for scanning beams to calculate the local RBE at each point in the radiation
field and links cell survival SFcell to the deposited energy (Schlegel et al. 2018). It assumes
that, on a microscopic scale within the cell nucleus, the biological effect is independent
of the radiation type and is only determined by the microscopic doses deposited by the
incident particles. It considers the density of double strand breaks caused by the localized
energy depositions which is averaged over the volume of the nucleus. In other words, the
probability that a hit with a certain LET causes a cell kill event (Karger and Peschke 2017).
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The survival fraction of a hit cell can be defined as the integral over the relevant volume

ln(SFcell) = ∫
𝑉
ln(SF𝛾(𝑑))

𝑑𝑉
𝑉 , (II.18)

where 𝑑 is the sum of the local dose contributions and 𝑆𝐹𝛾 is the photon-survival curve. It is
assumed that the relevant volume is the size of the nucleus (approximated with a cylinder
with 𝑟 = 5µm), since the damage is done to the DNA (Schlegel et al. 2018). From this, the
average survival fraction between multiple cells can be calculating by modeling the ion track
distribution for a certain dose including potential fragments with MC simulations (Schlegel
et al. 2018). Comparing this dose with the photon dose with the same cell survival, the
RBE can be calculated (Eq. II.14). Furthermore, an 1/𝑟2 dependency for the microscopic ion
energy deposition is assumed with a constant energy loss below 𝑟min = 10nm and is cut off
after maximum range 𝑟max of the secondary electrons. Since the local dose deposition can
include very large doses above 100Gy, the high dose extension of the LQM (Section II.2.1)
has to be used (Schlegel et al. 2018).

Further Development of the LEM II-IV. Inaccuracies between calculated and measured in
vitro RBE data led to further development as LEM II until LEM IV. LEM II improves how
the density of the DSBs are estimated and also considers indirect effects from free radicals
(Elsässer and Scholz 2007) and LEM III made improvements on the track structure (Elsässer
et al. 2008). LEM IV, the latest iteration, uses Monte Carlo (MC) simulations to estimate the
distribution of DNA damage, which is assumed to be directly linked to the biological effect.
It is based on the idea that similar patterns of DSBs will lead to similar biological effects,
which is a deviation from the earlier LEM versions. However, only LEM I has been primarily
used clinically (Schlegel et al. 2018).
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II.3 Treatment Planning

Treatment planning is a crucial step in radiation therapy and describes the workflow from
tumor imaging to a final dose distribution ready to be delivered. This workflow is summa-
rized in Fig. II.12. Based on the imaged tumor and target volume definition, specific plan
parameters are set and the dose is calculated in terms of a Dose influence matrix (Dij). The
plan parameters are subsequently optimized to best cover the target volume and minimize
the dose to OARs. To ensure that the generated dose distribution satisfies the pre-set condi-
tions, a plan analysis is performed that can make reoptimizations necessary. Reoptimizations
continue until the treatment plan is validated and ready for patient delivery. In this section,
the individual steps of the treatment planning workflow are described in more detail.

Preparation Inverse Planning

Imaging
and Tumor
Delineation

Definition
of Plan

Parameters

Dose
Influence

Matrix

Opti-
mization

Plan Analysis

Treatment
Delivery

Reoptimize

Figure II.12: General clinical treatment planning workflow. The target is identified and delineated using one or

multiple imaging techniques. Based on a set of defined plan parameters the dose is calculated and optimized

to best cover the target volume andminimize the dose to OARs. A plan analysis can make reoptimizations

necessary until the treatment plan is validated and can be delivered to the patient.

II.3.1 Imaging and VolumeDefinition

II.3.1.1 Computed Tomography (CT)

In a modern Computed Tomography (CT) machine, photons are generated in one or two
rotating X-ray tubes. Electrons are released in a heating element (cathode) and accelerated
with an applied voltage towards the anode, where photons are generated. The energy
spectrum of the X-ray photons is dependent on the tube voltage with which the electrons
are accelerated. Typical peak tube voltages range of 80 kVp to 140 kVp. The generated X-
ray photons travel through the patient and are measured in the detectors on the opposite
side. The measured transmission intensities are then mathematically reconstructed using an
algorithm such as filtered back projection. The resulting Hounsfield Units (HUs) represent
the attenuation of the X-ray radiation in a specific voxel (Table II.1) on a scale of −1000HU
to ~2000HU, while the grayscale 12-bit image stores these values in the range of −1024HU
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to 3071HU (Greenway et al. 2015; Schlegel et al. 2018). The HU is linked through linear
transformation to the linear attenuation coefficient of the material relative to that of water:

HU = (
𝜇material − 𝜇water

𝜇water
) × 1000 . (II.19)

It mainly determines the energy loss experienced by the treatment radiation and is therefore
an essential quantity for treatment planning and dose calculation. Since CT is a quantitative
imaging modality, the measured HUs in a CT image provide information about the relative
Stopping Power (rSP), which is needed to calculate the range of particles for a certain energy.
The HUs can be converted to rSP by using experiment-based Hounsfield LookUp Tables
(HLUTs) which store the respective rSP for each HU. The HU to rSP conversion will be
described in detail in Section III.1.1.1.

Table II.1: CT numbers for common tissues and compounds at 120 kVp, measured in HU. (Schlegel et al. 2018)

Organ/tissue Hounsfield Units

Air −1000HU / −1024HU

Lung −900HU to −500HU

Fat −100HU to −70HU

Water 0HU

Soft tissue 20HU to 70HU

Cortical bone 350HU to 2000HU

Titanium higher HU

4DComputed Tomography (4D-CT). 4D-CT is a method of creating time resolved 3D CT
images of the patient. Multiple CT images acquired for different times result in a 3D image
for several point in time within e.g. a breathing cycle. It serves as an imaging technique
that allows for visualization of tumor or organ movement within a breathing cycle, that
stabilization and immobilization of the patient cannot account for (Kwong et al. 2015).

II.3.1.2 VolumeDefinition

Current clinical treatment planning is always based on a CT image of the patient. Alone
or in combination with other imaging modalities like Magnetic Resonance Imaging (MRI)
and Positron Emission Tomography (PET), the tumor and important nearby organs are
delineated into the following segmentations (Burnet et al. 2004). These segmentations are
also graphically schematized in Fig. II.13.
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1. The Gross Tumour Volume (GTV) is the delineated volume of the tumor that is visible
in the used imaging modality.

2. The Clinical Target Volume (CTV) encompasses the GTV and a margin for tumor
infiltration that cannot be accurately defined and therefore has to be based on clinical
experience.

3. The Interal Target Volume (ITV) considers internal patient movement and uncertain-
ties in the tumor position, which may move due to e.g. breathing or organ filling.

4. The Planning Target Volume (PTV) is the largest target volume and further encom-
passes an additional safety margin for patient positioning and the setup. Usually,
an underdosing or squared deviation dose constraint is applied to ideally apply the
prescribed dose to the whole PTV.

5. Organs At Risk (OARs) such as lung and heart are delineated and usually applied
with an overdosing dose constraint to minimize the dose delivered to these organs.

Volumes of OARs and the PTV can overlap and negatively affect dose calculations. For
instance, a highly penalized OAR objective can result in an underdosage of the PTV, while a
good dose coverage in the PTV might cause an OAR overdosage.

OAR

GTV CTV ITV PTV

Figure II.13: Volume concepts used in radiotherapy planning. TheGTV, CTV, ITV, andPTV, aswell as theOARs are

denoted. Overlapping volumes ( ) can have an impact on the dose calculation, andmight lead to insufficient

PTV coverage or undesired dose levels for theOAR.
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II.3.2 Dose Calculation

In order to plan the radiation treatment of a patient, the dose distributions delivered by
an incident beam to the patient need to be accurately calculated. The first step in any dose
calculation workflow is the definition of beam parameters, such as position, angle, or energy,
according to the degrees of freedom of the available irradiation modality and machine.
A grid of treatment spots is defined within the voxelized patient geometry (CT image) based
on the available tumor segmentations (Fig. II.9). In a subsequent step, dose calculation
algorithms are employed which are based on deterministic methods or MC simulations
(Section II.3.2.2). This process is performed for each unique beam orientation when irradiat-
ing from various angles.

II.3.2.1 Water Equivalent Path Length (WEPL)

The range of a beam is dependent on the experienced attenuation on the path through the
patient. It is dependent on the specific density of each traversed voxel and the length of the
path within that voxel (Fig. II.14a). This length is often represented in terms of the equivalent
length of a voxel purely filled with water. The resulting water-equivalent depth or radiological
depth, often also called Water Equivalent Path Length (WEPL) or Water Equivalent Thickness
(WET), is a fundamental quantity used in dose calculation. It can be calculated using

𝑧rad =
𝑁

∑
𝑖=1

𝑙𝑖𝜌𝑖 , (II.20)

as the sum over the individual density contributions (Fig. II.14b) with voxel density 𝜌𝑖 and
the path through the voxel 𝑙𝑖 (Schlegel et al. 2018).

(a) Visualization of the beam path through a

voxelized geometry using ray tracing.

Density 𝜌 < 𝜌𝑤 𝜌𝑤 𝜌 > 𝜌𝑤 𝜌𝑤

WEPL 𝜌𝑤 𝜌𝑤 𝜌𝑤 𝜌𝑤

(b) Visualization of theWEPL depending on low density and

higher density voxels.

Figure II.14: Visualization of ray tracing (a) and WEPL (b), which are crucial components of dose calculation.

Ray tracing follows the direct path of the beam through the patient geometry, where each traversed voxel

contributes to the overall experienced attenuation. The sum of these individual densities is called theWEPL.

It represents the thickness of an idealized water column that would cause the same amount of energy loss as

the traversedmedium.
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II.3.2.2 Dose Calculation Algorithms

Deterministic dose calculation work by analytically calculating the delivered dose based on
approximated beam and material properties. Although they are fast and convenient, they
may be less accurate in regions with steep dose gradients or heterogeneous materials.
Since only the density of the center is included in the dose calculation and the depth dose
is properly scaled, the lateral component does not take density differences into account.
While accurate in homogeneous media, a limitations of the pencil beam model includes
heterogeneous media, especially compared to MC simulations (Taylor et al. 2017).

Deterministic Pencil BeamCalculation. Pencil beam based dose calculation is a fast method
and models the dose deposition of a thin pencil beam originating from a point source based
on precalculated dose models.
The dose is calculated based on a convolution of the primary energy fluence Ψ and a pencil
beam or point spread kernel 𝐾 that models the energy transfer from secondary particles.
𝐾 represents the lateral profile, that is independent of the position of the pencil beam. The
dose at a point (𝑥𝑝, 𝑦𝑝, 𝑧rad) is defined as

𝐷(𝑥𝑝, 𝑦𝑝, 𝑧rad) = ∬
∞

−∞
Ψ(𝑥, 𝑦)𝐹(𝑥, 𝑦) ∗ 𝐾(𝑥 − 𝑥𝑝, 𝑦 − 𝑦𝑝, 𝑧rad)d𝑥d𝑦 . (II.21)

The transmission factor 𝐹 ∈ (0, 1) describes the influence on the intensity of the primary
fluence field that may be caused by a collimator or the intensity modulation in case of
intensity modulated particles. Usually, the pencil beam kernel 𝐾 is radially symmetric, so
that only the radial distance from the center of the pencil beam 𝑟 = √𝑥2

𝑝 + 𝑦2
𝑝 is considered.

𝐾 is also polyenergetic and depends on the radiological depth. To avoid calculating the
integral for each energy step, the convolution kernel can be separated into a depth-dependent
and depth-independent component using singular value decomposition (Bortfeld et al. 1993).
For particles, 𝐾 can be analytically calculated from a laterally Gaussian shaped dose compo-
nent 𝐿 and the Integrated Depth Dose (IDD) in beam direction 𝑍:

𝐾(𝑥, 𝑦, 𝑧rad) = 𝐿(𝑥, 𝑦, 𝑧rad) ⋅ 𝑍(𝑧rad) =
1

√2𝜋𝜎2
𝑥

e− (𝑥−𝜇𝑥)2

2𝜎2 ⋅
1

√2𝜋𝜎2
𝑦

e−
(𝑦−𝜇𝑦)2

2𝜎2 ⋅ 𝑍(𝑧rad) . (II.22)

Usually, depth-dependent measurements of the beam width 𝜎M(𝑧rad) and the depth dose
𝑍(𝑧rad) are used (Schlegel et al. 2018). The depth dose is scaled to the correct depth based on
the measured radiological depth. The beam width is calculated from the initial beam width
before the patient and the depth-dependent component: 𝜎2(𝑧rad) = 𝜎2

init + 𝜎2
M(𝑧rad).
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Similar to the calculation of the absorbed dose, the calculation of the RBE-weighted dose
resorts to depth-dependent 𝛼 and 𝛽 curves stored for different α/β ratios. Fig. II.15 shows the
absorbed dose as well as corresponding 𝛼 and 𝛽 for 𝐸 = 210.79MeV/u of the carbon_generic
machine data set.
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Figure II.15: Carbon 𝛼 and𝛽with depths for𝐸 = 210.79MeV/u of the carbon_genericmachine data set. Shown

are 𝛼 and𝛽 curves for a α/β ratio of 2Gy.

Monte Carlo dose calculation. MC methods simulate the path of individual particles
through the medium that is determined by the physics of particle transport as a series of
interactions The interactions of the individual primary particles and subsequently generated
particles such as secondary electrons or fragments are calculated based on stochastic distri-
butions (Schlegel et al. 2018). The computational accuracy depends on both the considered
physical processes and the individual cross sections. MC codes are considered the most
accurate method for physical dose calculation and is thus considered the ”gold standard”
compared to other dose calculation approaches. However, MC methods require a large
number of samples and repetitions due to their stochastic nature, resulting in longer com-
putation times compared to other approximate and deterministic algorithms. In order to
exploit their respective strengths, they are often used in synergy. For instance, an initial dose
calculation and optimization could be performed quickly with deterministic methods while
a recalculation with MC methods could accurately verify the dose distribution.

II.3.3 Plan Evaluation

Treatment plans are evaluated by numerous means, including visual inspection of dose
distribution andDoseVolumeHistograms (DVHs) aswell as several forms of volume statistics
or outcome models based on Normal Tissue Complication Probability (NTCP).
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Fig. II.16a shows an axial slice of an example proton prostate treatment plan at the isocenter
plane. The associated DVH is shown in Fig. II.16b which directly visualizes the volumetric
dose distribution over the whole volume to objectively analyze and rate an optimized treat-
ment plan. Shown are the quality indicators 𝐷95 and 𝐷50 and the deviation from an optimal
dose coverage with a steep (ideally vertical) dose gradient. In general, 𝐷𝑥 describes the dose
that 𝑥% of the target volume receives (Schlegel et al. 2018). 𝐷2 for instance serves as a good
representation of the maximum dose delivered to the target volume, eliminating localized
spikes in the dose. Analogously, 𝑉𝑥 is the volume, that receives a higher dose than 𝑥 (Gy) or
a percentage of the prescribed dose. Additional useful metrics include the Homogeneity
Index (HI) (ICRU 2010)

HI = (𝐷2 − 𝐷98)/𝐷50 . (II.23)

Although there are multiple common definitions for the HI, this is the most common one in
literature (Kataria et al. 2012). A treatment plan is considered increasingly homogeneous
with values of HI → 0. The Conformity Index (CI) describes how well the dose conforms to
the target volume with minimal irradiation to the OAR:

CI =
𝑉target,95%

𝑉target𝑉95%
. (II.24)

𝑉target,95% is the target volume receiving 95% of the prescribed dose, 𝑉95% is the total volume
receiving that dose and 𝑉target is the volume of the target. Optimal values are CI → 1.
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treatment plan, calculated usingmatRad.
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Figure II.16: Prostate treatment plan using protons (a), calculated usingmatRad and optimized for constant RBE.

Overlaid are isodose lines at 0.1, 0.5 and 1Gy, the segmented target volumes PTV68Gy and PTV56Gy, andOARs

bladder and rectum. (b) shows the associated DVH for thementioned segmented volumes. Prescribed doses

for both PTVs and example quality indicator D50 for bothOARs have been annotated.
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II.3.3.1 (N)TCPModels

Normal Tissue Complication Probability (NTCP) and Tumor Control Probability (TCP)
models like the Lyman-Kutcher-Burman-Model (LKBM) (Burman et al. 1991; Kutcher et al.
1991; Kutcher and Burman 1989; Lyman 2021) or Niemierko-model (Niemierko 1999) describe
the complication or control probability depending on the dose in the irradiated volume. The
NTCP is defined for a specific clinical endpoint, e.g. type of symptom, complication or tumor
control and takes the difference of serial organs and parallel organs into account. Serial
organs are very susceptible to damage done to a single functional subunit of a serial organ
that can cause irreversible damage to the entire organ. On the other hand, a damaged subunit
of a parallel organ can be compensated for by the remaining subunits (Schlegel et al. 2018).
Therefore, the protection of serial organs like the spinal cord is generally viewed as more
crucial than protecting parallel organs like the liver. The different NTCPs can then be viewed
in DVHs and taken into account by treatment planning software through optimization.

II.3.4 Inverse Planning andDoseOptimization

While forward dose calculation describes the (re-) calculation of a dose distribution according
to an available treatment plan, inverse treatment planning requires the calculation of the beam
properties based on the desired dose in the target.
This problem is tackled by defining a Dij, where each matrix entry contains the individual
raw dose contributions of beam 𝑗 to a certain voxel 𝑖. Each entry has a distinct contribution
towards the overall dose and is weighted accordingly with a factor 𝑤𝑗. The dose 𝑑 in a voxel
𝑖 can therefore be calculated as the sum of the individual contributions:

𝑑𝑖 = ∑
𝑗

𝐷ij𝑤𝑗 . (II.25)

For a constant Dij, the individual spot weights are determined by an optimization algorithm.
The calculation and optimization for constant RBE uses the same formalism for absorbed
dose. RBE-weighted dose calculation and optimization for variable RBE is done on the basis
of the biological effect (Eq. II.11) and depend on the radiosensitivity parameters 𝛼𝑖 and 𝛽𝑖 in
the individual voxels (Wilkens and Oelfke 2005). The biological effect is given as

𝜖𝑖 = 𝛼𝑖 ∑
𝑗

𝐷ij𝑤𝑗 + 𝛽𝑖
⎛⎜⎜
⎝

∑
𝑗

𝐷ij𝑤𝑗
⎞⎟⎟
⎠

2

= ∑
𝑗

𝐴ij𝑤𝑗 + ⎛⎜⎜
⎝

∑
𝑗

𝐵ij𝑤𝑗
⎞⎟⎟
⎠

2

, (II.26)

where 𝐴ij = 𝛼ij𝐷ij and 𝐵ij = 𝐷ij√𝛽ij are the 𝛼𝐷 and √𝛽𝐷 matrices. Similarly to Eq. II.25, 𝐴ij

and 𝐵ij are calculated once per beam setup and the individual spotweights can be determined
using an optimization algorithm.
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II.3.4.1 PlanOptimization

The plan optimization is performed to maximize the therapeutic outcome while simultane-
ously minimizing dose to OARs and potential adverse effects. With treatment planning for
IMRT, the optimization or inverse planning step in the workflow is a highly complex problem.
The prescribed dose has to be homogeneously distributed over the target volume. The aim of
the optimization is to find the optimal dose distribution by minimizing an objective function
ℱ. The objective function is the sum of the individual objectives 𝑓𝑚(𝑑) which are weighted
using a penalty factor 𝑝𝑚.

ℱ(𝑑) = ∑
𝑚

𝑝𝑚𝑓𝑚(𝑑) (II.27)

The objective function can contain multiple dose objectives or constraints set for different
organs (Table II.2a). The objectives 𝑓 typically include squared overdosing constraints for OARs
that limit the maximum allowed dose to those organs. Parallel organs like the liver can have
more flexible and less stringent dose constraints, while the constraints for serial organs such
as the spinal cord must be handled more strictly. A squared deviation constraint set for target
volumes penalizes both under- and overdosage.
The optimization for the biological effect is defined in the same way as Eq. II.27

ℱ(𝜖) = ∑
𝑚

𝑝𝑚𝑓𝑚(𝜖) . (II.28)

Additionally, effect objectives can be set for the individual organs (Table II.2b).

Table II.2: Common dose objectives used in radiotherapy. The dose objectives are expressed as a function of

the number of voxels𝑁 and the Heaviside functionΘ, which restricts constraints on under- and overdosing

(Bennan 2021;Wieser et al. 2017b).

(a) Dose objectives for the optimization of the absorbed dose as a function of the dose within

each voxel 𝑑𝑖 relative to a reference dose 𝑑𝑟𝑒𝑓 of the referenced segmented volume.

Squared overdosing 𝑓sq.overdoseage = 1
𝑁 ∑𝑁

𝑖 Θ(𝑑𝑖 − 𝑑𝑟𝑒𝑓)(𝑑𝑟𝑒𝑓 − 𝑑𝑖)2

Squared underdosing 𝑓squnderdoseage = 1
𝑁 ∑𝑁

𝑖 Θ(𝑑𝑟𝑒𝑓 − 𝑑𝑖)(𝑑𝑟𝑒𝑓 − 𝑑𝑖)2

Squared deviation 𝑓sqdeviation = 1
𝑁 ∑𝑁

𝑖 (𝑑𝑟𝑒𝑓 − 𝑑𝑖)2

Mean dose 𝑓mean = 1
𝑁 ∑𝑁

𝑖 𝑑𝑖

(b) Dose objectives for the optimization of the biological effect as a function of the effect within

each voxel 𝜖𝑖 relative to a reference effect 𝜖𝑟𝑒𝑓 of the referenced segmented volume.

Squared overdosing 𝑓sqoverdoseage = 1
𝑁 ∑𝑁

𝑖 Θ(𝜖𝑖 − 𝜖𝑟𝑒𝑓)(𝜖𝑟𝑒𝑓 − 𝜖𝑖)2

Squared underdosing 𝑓squnderdoseage = 1
𝑁 ∑𝑁

𝑖 Θ(𝜖𝑟𝑒𝑓 − 𝜖𝑖)(𝜖𝑟𝑒𝑓 − 𝜖𝑖)2

Squared deviation 𝑓sqdeviation = 1
𝑁 ∑𝑁

𝑖 (𝜖𝑟𝑒𝑓 − 𝜖𝑖)2

Mean dose 𝑓mean = 1
𝑁 ∑𝑁

𝑖 𝜖𝑖
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Minimizing ℱ in Eq. II.27 or Eq. II.28 leads to an optimal set of weights 𝑤∗ in combination
with the Dij (Eq. II.25) so that the resulting dose or effect satisfies the preset conditions:

𝑤∗ = argmin
𝑤≥0

ℱ(𝑤) . (II.29)

Optimization Example. As an example of dose optimization, a Spread Out Bragg Peak
(SOBP) is constructed using 10 overlapping and weighted individual Bragg peaks. The
weights were optimized using the fmincon optimizer for a squared deviation dose objective
comparing the resulting enveloping dose profile and an ideally rectangle shaped profile.
An illustration is shown in Fig. II.17.

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

Depth (mm)

A
bs

or
be

d
D

os
e

(n
or

m
al

iz
ed

) Ground Truth
Individual Bragg Peaks
SOBP

Peak Weight
1 0.0390
2 0.0158
3 0.0387
4 0.0345
5 0.0463
6 0.0598
7 0.0595
8 0.1308
9 0.0122
10 0.5634

Figure II.17: Example illustration of a typical analytical SOBP for protons ( ) consisting of 10weighted individual

peaks with initial energies between 118.21MeV to 134.81MeV ( ). Weights were optimizedmanually for a

simple squared deviation from an ideal sharp SOBP ( ) using the fmincon optimizer (Table III.5). Normalized

weights are shown on the right.

II.3.5 Uncertainties in Treatment Planning of Lung Tumors

The treatment planning workflow introduces various sources of uncertainty that restrict
the accuracy of dose delivery and subsequently impact treatment outcome (van Herk 2004).
These include setup and range uncertainties, internal organ motion, dose calculation or
the beam degradation caused by inhomogeneous tissues. It is the combination of these
uncertainties that make the treatment planning for lung tumors especially challenging.
Therefore, it is essential to explore and potentially address these uncertainties.

1. Setup and range uncertainties: Setup uncertainties refer to discrepancies between the
internal anatomy and the external patient position, resulting in day-to-day variations
in tumor position. These variations can lead to an additional underdosing of the tumor
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and overdosing of organs at risk (Cho et al. 2002). Additional error sources include
inaccurate conversions from HUs from CT images to rSP or element composition,
as well as uncertainties in tumor delineation. As a consequence, an adequate safety
margin like an increased PTV is required to increase the probability of a homogeneous
dose to the CTV (van Herk 2004).

2. Internal motion: Shifts or motion of internal organs and therefore the tumor, cause
the treatment beam to miss the target and deteriorate the dose distribution (Langen
and Jones 2001). This includes both intra-fractional motion (within a treatment) due to
heartbeat or breathing motion as well as inter-fractional motion (between treatments)
due to tumor shrinkage or organ filling (Lomax 2008). Organ motion in combination
with active pencil beam scanning can lead to interplay effects since the beam delivery
and the target position are not synchronized. This can lead to a severe deterioration of
the dose homogeneity in the target. Available techniques developed to compensate
for organ motion to some extent include image guidance, gating or 4D-CT planning
implemented in dose calculation tools (Cole et al. 2014).

3. Dose calculation: As a result, the choice of the dose calculation tool and algorithm
can severely impact the treatment planning workflow and consequently the delivered
dose distribution. Different dose calculation methods have been employed over the
years, becoming more and more sophisticated with increasing available processing
power. For instance, fast analytical dose calculation can rapidly calculate and optimize
a dose distribution, while slower MC simulations can accurately simulate the physical
processes, leading to a more realistic dose distribution.

4. Degradation of the depth dose: Lastly, porous or inhomogeneous materials cause
straggling within the beam and therefore underdosage of the target and additional
dose outside of the target. This effect has been described in more detail in Section III.2.1
and has been investigated in recent years (Baumann et al. 2019; Ringbæk et al. 2020; Titt
et al. 2015; Winter et al. 2020), but has so far not been acknowledged or compensated
for in clinical treatment planning and has not been investigated for multiple ion species.
Phantom studies on the impact of dose degradation in comparison to the intra- and
interfractional motion showed that for some cases, this could be negligible (Baumann
et al. 2019; Flatten et al. 2019). However, larger dose differences were reported as
well, that should not be neglected. Also, since other uncertainties are investigated
and mitigated using techniques such as robust treatment planning or beam delivery
methods like tracking, the dose degradation might rise in significance.
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In order to model and analyze the depth-dose degradation effects, arising from microscopic
lung tissue inhomogeneities, across multiple dose-calculation algorithms, a consistent dose
calculation and Treatment Planning System (TPS) is needed. This system must be capable
of handling deterministic pencil-beam dose calculation as well as Monte Carlo algorithms.
This chapter starts with a description of the dose calculation framework within matRad
that has been built in this work, followed by a theoretical description of the developed and
applied lung degradation model, leading to the patient cases and treatment modalities
studied in this work.

III.1 Implementation of aMonte Carlo Interface

Interfacing MC simulations through matRad serves multiple purposes, including the cal-
culation of dose influence matrices and subsequent optimization, allowing for the flexible
recalculation of dose distributions in any order and with any modality. This integration
also streamlines processes such as automatic export of the parameter files controlling the
simulations and import of calculated dose cubes. The parameter files are built on the fly from
existing building blocks and parameters specified within matRad. This section highlights
the technical development and implementation of two different MC engines.

III.1.1 Introduction tomatRad

The open source software matRad (Ackermann et al. 2020; Wieser et al. 2017b) is used in
this thesis for calculating deterministic pencil beams. It serves as a generalized planning
platform for intensity-modulated photon, proton and heavy ion therapy and in this thesis,
for implementing a dose degradation correction as well as an interface for Monte Carlo
algorithms. matRad is written in MATLAB (The MathWorks Inc. 2022) and developed for
research and education purposes.

31



Chapter III Materials andMethods

III.1.1.1 Geometry and Coordinate System

Coordinate Systems. matRad uses the Left-Posterior-Superior (LPS) coordinate system, a
right-handed coordinate system (Fig. III.1). The voxel coordinates are defined through the
x, y and z axes that point towards the left, posterior and superior direction of the patient,
respectively. However, due to MATLAB’s display conventions, the x and y coordinates
are permuted in the representations of CT and dose cubes (stored with [𝑌, 𝑋, 𝑍] and are
permuted to [𝑋, 𝑌, 𝑍]). This has to be accounted for when reading or writing data in the
MC simulations. The rotation of the gantry around the patient are defined using the gantry
angle 𝜙 as a clockwise rotation around the z-axis and the couch angle 𝜃 as a counterclockwise
rotation around the y-axis (Fig. III.1). In addition to the above described world coordinate
system, during dose calculation, the Beam’s Eye View (BEV) coordinate system is used. It is
defined only in respect to the direction of the current ray.

𝜃

𝜙

x

z

y

Figure III.1: Schematic drawing of the patient box ( ), positioned in the world with axis ( ), couch- and beam

angles ( , ). Also shown is the irradiation direction and nozzle ( ).

Voxel, Rays and Bixel. For active scanning beam delivery, each target plane (energy layer)
is divided into a grid of spots or bixel (Fig. II.9). Each spot is generated by a ray within the
treatment beam. Each of these rays is responsible for one spot on multiple energy layers and
therefore contains positional information for the ray tracing algorithm as well as energy and
focus information.
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Density Correction andMaterial Conversion. The HU values by the CT image have to be
converted to rSP values usable for dose calculation. To realize this, Hounsfield LookUp
Tables (HLUTs) are used. In matRad, a default HLUT is used for most cases, if no other
HLUT is requested. This default HLUT is shown in Fig. III.2. Besides its application in
stopping power calculations, the HLUT can also be used for the derivation of density values.
For this, rSP values can be treated as density values by scaling them with the density of
water. Therefore, all materials are regarded as water-equivalent, when using the HLUT.
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Figure III.2: Default matRad HLUT used in analytical and MC dose calculations. The values are both shown

tabulated (left) as well as graphically (right). ∗For backwards conversion to HUs, theminimum rSPwould need

to be slightly adjusted to 9.999·10−4 g/cm3 so that the HLUT becomes bijective.

Beam Sources. The suitable source definition depends on the used dose calculation al-
gorithm. For analytical algorithms, beam information is directly stored in the machine
data depending on depth. In the data, focus information for multiple energies, geometrical
information and, for each energy, kernel information (see Section II.3.2.2) is stored.

III.1.1.2 Variable RBEModels

The RBE-weighted dose can be calculated from basic parameters of the LQM and the effect
(Eq. II.16), where the effect can be calculated from the 𝛼𝐷 and √𝛽𝐷 Eq. II.26. There are mul-
tiple variable proton RBE models available, two of which are currently fully implemented in
matRad. The McNamara variable RBE model (MCN) andWedenberg variable RBE model
(WED) (McNamara et al. 2015; Wedenberg et al. 2013) are both phenomenological, mathemat-
ical models based on a parameterization of the LQM (Section II.2.2.1). This parameterization
relates the RBE to RBEmax/RBEmin Eq. II.17, that are directly dependent on LET:

𝑅𝐵𝐸max = 𝑝0 + 𝑝1 ⋅ 𝐿𝐸𝑇𝑑 ⋅
1

α/β (III.1)

𝑅𝐵𝐸min = 𝑝2 + 𝑝3 ⋅ 𝐿𝐸𝑇𝑑 ⋅ √α/β . (III.2)
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These parameters differ between the models (McNamara et al. 2015; Wedenberg et al. 2013)
and are defined as

𝑝𝑀𝐶𝑁
0 = 0.999064

𝑝𝑀𝐶𝑁
1 = 0.35605

𝑝𝑀𝐶𝑁
2 = 1.1012

𝑝𝑀𝐶𝑁
3 = −0.0038703

𝑝𝑊𝐸𝐷
0 = 1

𝑝𝑊𝐸𝐷
1 = 0.434

𝑝𝑊𝐸𝐷
2 = 1

𝑝𝑊𝐸𝐷
3 = 0 .

Ion 𝛼ion and 𝛽ion can then be calculated using

𝛼ion = 𝑅𝐵𝐸max ⋅ 𝛼𝛾 (III.3)

𝛽ion = 𝑅𝐵𝐸2
min ⋅ 𝛽𝛾 . (III.4)

The photon radiosensitivity parameters α𝛾 and β𝛾 depend on the tissue type (see Sec-
tion II.2.1). However, since a dynamic α/β is not implemented in the used version of matRad,
they were set to a constant α𝛾 = 1/Gy and β𝛾 = 0.05/Gy2 (α/β = 2Gy).

Figure Fig. III.3 shows a comparison of the absorbed depth dose, dose for a constant RBE
of 1.1 and the RBE-weighted depth doses calculated using both the MCN and WED RBE
models. For the variable RBE models, a slightly higher than 1.1 RBE in the plateau region
becomes apparent as well as a significantly higher RBE in the Bragg peak region.

For carbon ions, the RBE calculation is based on the LEM model, where precalculated and
depth-dependent kernels for 𝛼 and 𝛽 are stored in the machine data set.
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Figure III.3: Comparison of RBE-weighted depth doses analytically calculated from data stored in the

protons_generic machine data set for a mean energy of 134.68MeV. Profiles were normalized to the maxi-

mum of the absorbed depth dose. Shown are the absorbed dose and doses for a constant RBE of 1.1 and the

two variable RBEmodelsMCN andWED.
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III.1.2 IntegratedMonte Carlo Codes

There are several MC simulation frameworks available. They classify as either slow but
broad and universal implementations for photons, protons and heavy ions such as TOPAS,
or faster specialized programs for a single purpose/particle such as MCsquare for protons.
The interface controls these MC engines through overarching functions, which directs the
workflow into the MC engine specified in the plan structure. The engines are then managed
through separate dose calculation functions and engine-specific classes. Most importantly, a
consistent function and variable structure is maintained, which allows calculated parameters
and dose cubes to be seamlessly used by other native matRad functions. This comprehensive
and modular approach not only facilitates investigations into degradation in the scope of
this thesis, but also provides a robust interface for researchers to test their code using MC as
well as develop new features easily and efficiently.
Both described engines can be run locally through the interface automatically within a
defined workflow. Since calculation can take a long time, local execution can be skipped,
which allows an external calculation on a server or cluster. The simulated dose cubes can
subsequently be seamlessly read-in using a built-in import functionality. In case of a cluster,
this boosts the computation time immensely and makes even larger patient treatment plans
or Dij calculations viable, that usually take from multiple hours to even days to finish.

III.1.2.1 Many-CoreMonte Carlo (MCsquare)

The open source MC dose calculation tool-kit Many-Core Monte Carlo (MCsquare) is a MC
engine that has been massively parallelized and optimized for computational efficiency
(Souris et al. 2016; Souris et al. 2019). It was originally developed for the Intel Xeon Phi
coprocessor, that allowed a high level of parallelization while still possessing the advantages
of a Central Processing Unit (CPU). However, it is not dependent on a dedicated multi-core
CPU but offers significant performance improvements on regular CPUs. It uses a class-II
condensed history algorithm, that is designed to improve the efficiency of MC simulations by
combining several particle interactions below a specified threshold into a single event. As a
result, MCsquare offers fast physical dose calculation for proton beams.

Coordinate Systems. MCsquare uses a left-handed coordinate system, which means cube
coordinates need to be flipped along the 𝑥 dimension. Within the MCsquare parameter files,
an offset to the isocenter is applied to center the coordinates on the individual voxels.
Due to how the angle is counted, only the gantry angle 𝜙 has to be recalculated using

𝜙MCsquare = (180° − 𝜙matRad) (mod 360°) , (III.5)

while the couch angle 𝜃 remains invariant.
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Voxel, Rays and Bixel. In case the dose grid differs from the grid of the CT image - which
is often the case - the CT image is resampled to the dose grid using matRad. Since the
resampling is done before the MCsquare functionality is executed, no separate scoring grid
or voxel transformations have to be implemented.
The major beam-specific quantities like particle type and irradiation angle are defined once
for each beam. In MCsquare, energy layers are defined for each beam with individual bixels
for each layer. There, a lookup table for energy-specific information like energy spread
and focus information is used. This proves highly efficient, especially if only one focus
information is provided for each unique energy.

Density Correction andMaterial Conversion. The definition of a specific material consists
of the assignment of a material to a HU range and the conversion of that HU to usable
densities. In MCsquare, the HLUT can directly be loaded using the HU_Density_Conversion
config file (Souris et al. 2021).
The material conversion is controlled by a separate predefined HU_Material_Conversion
config file, that is loaded through the interface (see Lst. A.1). It defined a respective material
for a specified range of HUs through the usage of a material identifier (e.g. material 17 for
water), that serves as a link to separately stored stopping powers and material properties
such as atomic components (Table III.1).

Beam Sources. Each particle source is defined by the mean energy of the beam (as a
description of the particles’ mean range) together with the energy spread as a percentage of
the mean energy. The energy spread by default is defined as a percentage of the nominal
energy defined in the treatment plan, that might differ from the mean energy (Perl et al.
2012; Souris et al. 2021).
Defined by the distribution of particle velocities, the particles in a beam occupy a certain
elliptic region in the phase space called the beam emittance 𝜖. The emittance at the nozzle is
used as a parametric description of the phase space and is defined by the optical parameters
spot size (in mm), divergence (unitless, but equal to rad), and the correlation between the two
(unitless, −0.99 to 0.99). A more detailed description as well as a translation of the needed
parameters from matRad machine data is described in detail in Section III.1.4.

Scoring. As an optimized engine for absorbed dose, the choice of scorer is limited to
absorbed dose, LET and respective Dij. Through the interface, the scored LET can be used to
calculate 𝛼, 𝛽 and RBE using variable LET-based RBE models (Section II.2.2.1) outside of the
actual MCsquare simulation (Section III.1.6).
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III.1.2.2 TOol for PArticle Simulation (TOPAS)

TOol for PArticle Simulation (TOPAS) is a powerful multipurpose MC interface code written
in C++, which builds on the physics simulation toolkit Geant4 (Agostinelli et al. 2003; Allison
et al. 2006; Allison et al. 2016). It models the transport and interactions of particles in matter
for applications such as high energy, accelerator physics or medical applications. As a
result, TOPAS is a powerful tool that provides a robust framework and offers a high level
of complexity for the dose calculation of a variety of particles such as photon, protons and
heavy ions (Faddegon et al. 2020; Perl et al. 2012). The implemented parameter control
system allows mix and matching of implemented simulation modules such as particles
sources, geometries or dose scorers. The latter expands to variable RBE scorers for protons
and carbon ions with an available extension (Polster et al. 2015).
Implemented in this thesis is TOPAS version 3.8.1 with the physics list containing the
Geant4modules 'g4em-standard_opt4', 'g4h-phy_QGSP_BIC_HP', 'g4decay','g4h-elastic_HP',
'g4stopping', 'g4ion-QMD', and 'g4radioactivedecay'.

Coordinate Systems. Similar to matRad, TOPAS uses a right-handed coordinate system.
However, the beam direction is defined in positive 𝑧 instead of 𝑦. As a result, a series of
rotations and translations has to be performed. TOPAS uses a default clockwise rotation, so
the imported angles from matRad have to be multiplied by −1. After applying the (inverse)
gantry and couch angles, the isocenter is defined and rotated by 90° around the 𝑥 and 𝑦
direction, respectively. Based on the previous rotations, the nozzle is defined shifted to its
position. Finally, the image cube is placed into the geometry and shifted to the isocenter:

𝑇𝑥,𝑦,𝑧 = DicomOrigin𝑥,𝑦,𝑧 − IsoCenter𝑥,𝑦,𝑧

= 0.5 ⋅ resolution𝑥,𝑦,𝑧 ⋅ (cubeDim𝑥,𝑦,𝑧 + 1) − isoCenter𝑥,𝑦,𝑧 . (III.6)

Applying the rotations to the overall coordinate system ensures that important quantities
such as the gantry, couch and nozzle angles remain invariant. This allows for a simple visual
comparison between the plans and generated files, and the phantom or patient cubes can be
placed and the dose can be read back in without the need of further rotation.

Voxel, Rays and Bixel. Similar to MCsquare, in case of differing dose and CT grid, the CT
image is resampled to the dose grid using matRad so that no separate scoring grid or voxel
transformations had to be implemented. The major beam-specific quantities are defined once
for each beam. For the ray-specific quantities, the developed interface uses ”Time Features”,
where the spots are split in time by 10ms increments (Perl, Joseph et al. 2023). Each time
feature represents a single bixel with a unique combination of energy, locational information
and fluence defined by the optimized Dij weights.
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Density Correction andMaterial Conversion. Analogously to MCsquare, materials are
assigned to different HU ranges and converted to usable densities (see Lst. A.2).
In TOPAS, the density correction for different HU sections was defined using a Schneider
converter (Schneider et al. 1996; Schneider et al. 2000). The density correction follows the
equation (Perl, Joseph et al. 2023)

Density = (Offset + (Factor ⋅ [FactorOffset + HU])) ⋅ DensityCorrection . (III.7)

For the simplest form of density correction – offset = 1 and factor = 0 – the density read by
TOPAS equals the density set as the DensityCorrection vector. It can then directly be set by
interpolating the HLUT over integer HUs. Importantly, the default minimum imaging value
of −1000HU was adjusted to −1024HU.
Similar to MCsquare, the material conversion is defined for different ranges of HUs that
are specified as the vector variable SchneiderHUToMaterialSections. For each set section
of HUs, a material is created that is described using the molecular composition (weighted
molecular components) of each material and the mean excitation energy. Table III.1 shows
the implemented data for the three material sections used in this thesis. Tominimizematerial
overhead, the data was constrained to the main elements hydrogen, carbon, nitrogen, and
oxygen and was subsequently normalized.

Table III.1: Mean excitation energies 𝐼0,mean (in eV) and element compositions used forMCmaterial converters.

Data was taken from the NISTmaterial database (Berger et al. 2005). Tominimize material overhead, the data

is constrained to hydrogen, carbon, nitrogen, and oxygen and subsequently normalized.

Material Density 𝐼0,mean Hydrogen Carbon Nitrogen Oxygen

(g/cm3) (eV) (%) (%) (%) (%)

Air 1.20·103 85.7 0.00 0.01 76.51 23.48

Water 1.00 78.0 11.19 88.81 0.00 0.00

Lung 1.05 75.3 10.24 10.34 2.90 76.53

BeamSources. For the simplest beammodel implemented in TOPAS (called Type = "Beam"
in TOPAS), the beam shape can be described by a set of parameters that control the position
distribution of the particles at the nozzle.
A phase space particle source (called Type = "PhaseSpace" in TOPAS) is the representation of
the particle beam by its parameters in the phase space. These parameters are the distribution
of the positions and the directional velocities of the particles that cross a given surface
(Wiedemann 2015). It serves as a snapshot of the particle movement at this surface and can
be loaded directly in TOPAS as a particle source. Such recorded phase space data is available
for multiple scanner models, but can also be directly recorded in TOPAS.
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In order to use the same parameters for both MC engines, the emittance beam model (called
Type = "emittance") was used in TOPAS and implemented in the interface. It uses the same
values for optical parameters as MCsquare that are therefore generated using a joint fitting
pipeline (Section III.1.4). There are other beam source types available such as volumetric or
environment sources. However, they are not highlighted here as they are not used for the
implemented interfaces.

Scoring. Since TOPAS is a more comprehensive MC engine, the choice of scorer is more
complicated compared to MCsquare. The interface was built to facilitate the choice of
appropriate scorer and includes a modular system that automatically includes the needed
scorers for absorbed dose as well as RBE calculations or adds manually requested scorers.
Additionally, despite requiring a considerable investment of time, a Dij can be scored. Within
the proton RBE extension, scored LET is directly used to calculate 𝛼, 𝛽 and RBE using variable
LET-based RBE models (Section II.2.2.1).
For heavy ions, no extension is available for phenomenological models. Instead, the LEM
model is used, that has been introduced theoretically in Section II.2.2.1. In TOPAS, the
LEMmodel was implemented based on precalculated and tabulated values of 𝛼 and 𝛽 for
multiple different fragments of the original particle depending on the kinetic energy per
nucleon. A table for LEM I was generated using the open source simulation toolkit ’Survival’
(Manganaro et al. 2018). The table is generated based on set photon radiosensitivities and by
specifying the parameters for the nuclear radius 𝑟nuc and the dose limit for the LQM 𝐷𝑡, after
which it is assumed to be linear. The table was generated using the parameters 𝑟nuc = 5µm,
𝐷𝑡 = 29Gy, 𝛼𝛾 = 0.1Gy, and 𝛽𝛾 = 0.05Gy. Fig. III.4 shows an overview of the 𝛼 and 𝛽 data
generated using the survival code for different particles in relation to their energy.
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Figure III.4: Comparison of energy-dependent 𝛼 (left) and 𝛽 (right) data generated using the ’Survival’ code

(Manganaro et al. 2018). The table was generated using the parameters 𝑟nuc = 5µm,𝐷𝑡 = 29Gy, 𝛼𝛾 = 0.1Gy,
and𝛽𝛾 = 0.05Gy.
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III.1.3 Development of SuitableMachine Data Sets

To assess the compatibility and validity of the MC interface and evaluate the impact of inho-
mogeneities and subsequent degradation correction on dose distributions, a foundational
machine data set is required. This machine data set should yield consistent results across all
modalities, particularly within a simple water phantom.
To maximize the accuracy and compatibility between analytical pencil beams and MC
simulations in the scope of this thesis, emittance and energy spectrum were fixed to the
values used in the simulations and are used for subsequent treatment plan calculations.
However, both the emittance and energy spectrum can generally be derived from an existing
machine data set on the fly from basic parameters (Section III.1.4).

III.1.3.1 Protons

The protons_generic machine data set contains data for 81 energy entries from 46.23MeV to
199.18MeV which corresponds to mean ranges of 20mm to 260mm with an equidistant
spacing of 3.0mm. Based on the ranges, the energies were calculated using Eq. III.10 with
the fitted values from Table III.3a.
MC simulations were conducted on a cylindrical water phantom in vacuum using TOPAS.
A new phantom was constructed for each energy step, which consisted of a 0.1mm depth
grid from 0 to 1.2 times the expected peak position. Additionally, to estimate the lateral
dose component, it was devided into 25 cylindrical sections with a radial spacing of 1mm.
The simulations were based on a fixed Gaussian energy spectrum with 𝜎𝐸 = 1 % and
𝐸mean = 𝐸nom.. A double Gaussian emittance was chosen, using the initial focus 3.44mm
as spot sizes 𝜎𝑥,𝑦. Furthermore, fixed values were set for the nozzle to isocenter distance
(500mm) and the Source to Axis Distance (SAD) (104mm).

AbsorbedDose and LET. The resulting absorbed dose was subsequently evaluated with
respect to depth and averaged radially, with weighting based on the area of the radial
segments. The IDD was converted to units of MeV · cm2/(g · primary). Similarly, the LET
distributions were evaluated with depth and weighted with dose, since low-dose areas have
a higher uncertainty in its value.

Lateral Dose. The lateral dose profiles were weighted using the area of the radial segments
and subsequently fitted using a radial double Gaussian lateral beam model:

𝐷lat(𝑥, 𝜎1, 𝜎2, 𝑤) =
1 − 𝑤

2𝜋(𝜎2
1 + 𝜎2

ini)
𝑒
− 𝑥2

2(𝜎2
1+𝜎2

ini) +
𝑤

2𝜋(𝜎2
2 + 𝜎2

ini)
𝑒
− 𝑥2

2(𝜎2
2+𝜎2

ini) . (III.8)

40



III.1 Implementation of aMonte Carlo Interface

The fit was performed using a non-linear least squares regression with the parameters
maxFunEval = 106, maxIter = 104, tolFun = 10−10 and tolX = 10−8. The constraints and
starting values set for the invidiual parameters are summarized in Table III.2. Fig. III.5 shows
an example lateral fit for 99.61MeV of the protons_generic machine data set.

Table III.2: Fit parameters for fitting of the lateral absorbed dose profiles. For each subsequent depth 𝑛, the
starting values and constraints were set based on the previously fitted entry. For carbon ions, the weight

constraints at subsequent depths were also set to be dependent on the previous entry.

parameter constraints starting value

weight 0.01 to 1 0.1

𝜎1(1) 0 to (𝜎ini + 500) 𝜎ini

𝜎2(1) 0 to (𝜎ini + 500) 𝜎ini + 10

𝜎1,2(𝑛) 0 to 0.9 ⋅ 𝜎1,2(𝑛 − 1) 𝜎1,2(𝑛 − 1) + 1
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Figure III.5: Lateral profile for 99.61MeV of the protons_genericmachine data set at phantom entry, including the

fitted double Gaussian profile ( ) with 95% prediction bounds.

Air Correction. Since the original simulations were performed in vacuum, an air widening
correction for emittance was applied for analytical calculations to account for widening in
air in front of the patient. The focus information for an originally parallel beam was adjusted
using an air-widening lookup table that was simulated using TOPAS.
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III.1.3.2 Carbon Ions

The carbon_generic machine data was generated analogously to the protons_generic machine
data set. It also contains data for 81 energy entries from 82.78MeV/u to 385.61MeV/u, which
corresponds to the same mean ranges of 20mm to 260mm with an equidistant spacing of
3.0mm. Based on the proton ranges, the carbon energies were calculated using Eq. III.10
with the fitted values from Table III.3a.
MC simulations were conducted for these energies on a cylindrical water phantom in vacuum
using TOPAS. A new phantom was constructed for each energy step, which consisted of
a 0.1mm depth grid from 0 to 1.8 times the expected peak position. A longer phantom
compared to protons is needed to capture the tail after the peak. To estimate the lateral
dose component, it was devided into seven cylindrical sections with a radial spacing of
2mm. The simulations were based on a fixed Gaussian energy spectrum with 𝜎𝐸 = 1 % and
𝐸mean = 𝐸nom., as well as a double Gaussian emittance. Instead of using a fixed value for all
energies, the values for the spot width were interpolated from the carbon_HIT data set and
rounded to 2 places. The data set was provided to the department by the Heidelberg Ion-
Beam Therapy Center (HIT) facility and was used to validate matRad against the SyngoRT1

TPS used at HIT (Wieser et al. 2017b). Furthermore, fixed values were set for the nozzle to
isocenter distance (1000mm) and the SAD (6500mm).
Data was extracted and fitted using the same workflow and parameters as described in
Section III.1.3.1. Similarly to the LET for protons, the simulated 𝛼 and 𝛽 distributions were
evaluated with depth and weighted with dose for statistical reasons. For carbon ions, no
data for the air correction was available.

III.1.3.3 Characterization of the SimulatedMachine Data Sets

Example calculations were performed for nine equidistant energy indices from 10 to 50
(70.70 ) to 154.80 ) on the long 350mm box phantom (Section III.1.7.1). Single pencil beams
with uniform weights were calculated using matRad, MCsquare and TOPAS for both ab-
sorbed and RBE-weighted dose. For protons, RBE-weighted dose distributions were calcu-
lated using the variable RBE model MCN, RBE-weighted dose distributions for carbon ions
were calculated using the LEM model. MC dose distributions were calculated using 107

histories. Resulting dose distributions were evaluated laterally and with depth by averaging
over the 5 × 5 most central voxels through the Bragg peak. Additionally, the global 𝛾 index
was calculated using the [1mm/1%] criterion with 1 interpolation point.

1Siemens Healthineers, Erlangen, Germany
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III.1.4 Analytical Beam Parameters forMC Simulations

In order to enable downwards compatibility with existing kernel data sets and to facilitate
the usage of the MC interface for new users based on measured depth dose and lateral
scattering curves, necessary beam parameters can derived solely based on the analytical
machine data available in matRad. These include the mean energy of the particles with
energy spread and emittance parameters.

The mean energy can directly be calculated from the respective mean range using a range-
energy relationship, that is unique for different particles. The energy spread is defined as
the standard deviation of the beam energy at the nozzle and can be approximated using an
analytical beam representation (Bortfeld 1997). The analytical description of the depth dose
of the used particles is essential and depends on the knowledge about their range-energy
and energy-range relationship (Bortfeld 1997).

Themethods and implementations described in Sections III.1.4.2 and III.1.4.3 were developed
in cooperation with Meder (2020).

III.1.4.1 Range-Energy Relationship

Fig. III.6 shows particle range in relationship to their energy per nucleon (Data was taken
from Berger et al. (2005)). The relationship follows a power law (Eq. II.5), which can be
inverted for the energy-range relationship:

𝑅(𝐸) = 𝛼 ⋅ 𝐸𝑝 (III.9)

𝐸(𝑅) = 𝑎 ⋅ 𝑅𝑏 =
1

𝛼1/𝑝 ⋅ 𝑅1/𝑝 . (III.10)

A fit to Eq. III.9 was performed separately for protons, helium and carbon ions.
The NonlinearLeastSquares method in MATLAB was used with default settings.
In order to avoid uncertainties from energies below or above the energies given in ma-
chine data sets and to get an optimal fit for the most used energies, the fitted range was
constricted to 10mm to 350mm.

Based on the resulting fit parameters for Eq. III.9, the parameters of Eq. III.10 were calculated.
Both sets of parameters are documented in Table III.3. Generally, the fits for protons and
helium ions were very good, represented by an 𝑅2 of 1.0000. Carbon fits were slightly inferior
with 𝑅2 = 0.9998. It is worth noting that the relationship between range and energy per
nucleon is the same for protons and helium, which is due to the quadratic scaling of the
Bethe-Bloch equation Eq. II.3 with the particle’s charge. Specifically for these two particles,
the charge squared is equivalent to the number of nucleons.
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Figure III.6: Fitted range-energy relationship for protons, helium and carbon ions. The rangewas constrained to

10mm to 300mm, which correlates to the approximate range of themachine data sets available inmatRad.

The remaining data points were fitted according to the power law (Eq. III.9). The fit was performed using the

NonlinearLeastSquaresmethod inMATLABwith default settings. Data taken fromBerger et al. (2005).

Table III.3: (a) Parameters of the range-energy relationship fitted to available data. Fits are shown in Fig. III.6 and

were performed based on data from Berger et al. (2005). (b) Subsequently, the parameters for the inverse

energy-range relationship (Eq. III.10) were calculated.

(a) Fitted parameters of the range-energy relationship described in Eq. III.9.

parameter unit Proton Helium Carbon

𝛼 (MeV/u)/mm1/𝑝 0.02383 0.02461 0.01270

𝑝 unitless exponent 1.756 1.751 1.667

𝑅2 unitless 1.000 1.000 0.9998

(b) Calculated parameters for the energy-range relationship described in Eq. III.10.

parameter unit Proton Helium Carbon

𝑎 mm/(MeV/u)1/𝑏 8.397 8.295 13.72

𝑏 unitless exponent 0.5694 0.5711 0.5999

44



III.1 Implementation of aMonte Carlo Interface

III.1.4.2 Approximation of the Energy Spectrum

Mean Energy. The particle energy specified in the machine data is not used due to the
uncertainty regarding the type of stored beam energy, for instance accelerator or source
energy without beam modifiers. As already mentioned, the mean energy can directly be
calculated from the respective mean range using the range-energy relationships specified in
Table III.3a. However, the stored range usually describes the position of the Bragg peak, the
maximum of the IDD.

A good and practical approximation for the mean range of the particles or CSDA range
𝑅CSDA (see Eq. II.6), the 𝑟80 can be used (Berger 1993). The 𝑟80 describes the range where
the dose has fallen to 80% after the Bragg peak. To increase the accuracy and agreement
of the MC simulations, the 𝑟80 value can be adjusted to account for potential range offsets
as defined in the machine data. Additionally, an air offset correction is applied, taking into
account the air distance from the nozzle to the phantom surface. For the machine data sets
used in this thesis, the air offset correction is 0.

Energy Spread. For protons, based on the analytical dose model done by Bortfeld (1997),
the energy spread can be obtained using the initial range of the particles 𝑅0 and the Full
Width Half Maximum (FWHM) of the Bragg peak in the depth dose, that is stored in the
machine data. It is assumed that the total energy spread of a beam, denoted as 𝜎tot, arises
from the squared sum of two components (Bortfeld (1997), Eq. (19)):

𝜎2
tot = 𝜎2

mono + 𝜎2
𝐸,0 (

𝑑𝑅0
𝑑𝐸0

)
2

. (III.11)

The first term originates solely from the depth-dependent range straggling of an initially
mono-energetic beam 𝜎mono(𝑅0), assuming no initial energy spread. The second term corre-
sponds to the standard deviation of an initial Gaussian energy spectrum 𝜎𝐸,0, that has been
transformed into a Gaussian range spectrum (see Section II.1.1.2). To calculate the energy
spread, Eq. III.11 can be rearranged, so that

𝜎𝐸,0 =
√
√√
⎷

𝜎2
tot − 𝜎2

mono

𝛼2𝑝2𝐸2𝑝−2
0

, (III.12)

where the parameters 𝛼 and 𝑝 originate from the energy-range relationship (Eq. III.10 and Ta-
ble III.3b). For this, 𝜎mono(𝑅0) can be calculated using

𝜎2
mono(𝑅0) ≈ 𝛼′ 𝑝

3𝛼2/𝑝

3𝑝 − 2𝑅3−2/𝑝
0 , (III.13)
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where 𝛼′ is a quantity dependent on the stopping material (Bortfeld 1997, Eq. (17)). 𝜎tot can
be calculated from the depth dose, that is stored in the machine data. The FWHM can be
directly measured and can then be translated into the straggling width using

𝜎tot = (
FWHM

𝑤𝜉
)

2
. (III.14)

The term𝑤𝜉 can be determined through an approximation of the original depth dose function
(Bortfeld 1997, Eq. (15)) by neglecting constant factors and focussing on 𝑧-dependent factors
only:

�̃�(𝜉) = 𝑒−𝜉2/4𝒟−1/𝑝(−𝜉) , (III.15)

where 𝜉 = 𝑅0−𝑧
𝜎 , 𝒟 is the parabolic cylinder function and 𝑝 is the exponent of the range-

energy relationship (Eq. III.10 and Table III.3b). The FWHM of Eq. III.15 directly equals to 𝑤𝜉
in Eq. III.14 and can be used to convert general FWHMmeasurements of the depth dose into
the straggling width 𝜎 and vice versa. Eq. III.15 was numerically evaluated for the FWHM
using Wolfram|Alpha2 for the different particles. This resulted in values of

𝑤𝜉,p = 6.289

𝑤𝜉,He = 6.337

𝑤𝜉,C = 7.335 .

While the calculation of 𝑤𝜉,He and 𝑤𝜉,C originates from the individually fitted range-energy
relationship, the subsequent calculation of the energy spread in Eq. III.13 requires the
material parameter 𝛼′, which was approximated to 𝛼′ = 0.0087MeV2/mm by Bortfeld (1997).

III.1.4.3 Approximation of BeamOptic Parameters

In addition to the particles’ energy and energy spread, that have been calculated above, a
full description of an emittance particle source requires the optical parameters at the beam
source, i.e., the nozzle exit (see Section III.1.2.1). Dependent on the particle energy, the
Courant-Snyder formula links the optical parameters spot size 𝜎𝑥,𝑦(𝑧) at position 𝑧 along the
beam axis to the optical parameters at the isocenter (𝑧 = 0):

𝜎2
𝑥 (𝑧) = 𝜎2

𝑥 (0) − 2 ⋅ 𝜌𝑥𝜃(0) ⋅ 𝜎𝑥(0) ⋅ 𝜎𝜃(0) ⋅ 𝑧 + 𝜎2
𝜃 (0) ⋅ 𝑧2

𝜎2
𝑦 (𝑧) = 𝜎2

𝑦 (0) − 2 ⋅ 𝜌𝑦𝜙(0) ⋅ 𝜎𝑦(0) ⋅ 𝜎𝜙(0) ⋅ 𝑧 + 𝜎2
𝜙(0) ⋅ 𝑧2 , (III.16)

2https://www.wolframalpha.com/input?i=roots+of+exp%28-xi%5E2%2F4%29*ParabolicCylinderD%
5B-1%2F1.756%2C-xi%5D+-+0.5*1.53486
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where 𝜌𝑥𝜃 and 𝜌𝑦𝜙 are the correlation coefficients and 𝜎𝜃 and 𝜎𝜙 are the beam divergences
in 𝑥 and 𝑦 direction (Huang et al. 2018; Souris et al. 2021). For a divergent beam, as most
clinical beams are, both divergence and correlation are positive. 𝑥 and 𝑦 components are
weighted against each other to form the elliptic phase space.
The matRad machine data file provides the focussing information including a table that
contains the spot size of the beam dependent on the distance from the nozzle traveled in air
(𝜎𝑥(𝑧)). The emittance parameters can then be extracted by fitting this data to the Courant-
Snyder formula (Eq. III.16). Note that the formula is defined so that the patient is positioned
at the isocenter 𝑧 = 0 in negative 𝑧 direction from the nozzle, so the table has to be adjusted
accordingly (Souris et al. 2021). Firstly, a correction for the different sigmas is performed
that accounts for additional scattering in air, which is not considered by the Courant-Snyder
equation. Subsequently, a least-squares polynomial fit is performed, fitting the correlation
coefficient 𝜌𝑥𝜃 and the divergence 𝜎𝜃 to the Courant-Snyder equation (Eq. III.16) using the
following fit parameters:

parameter constraints starting value

correlation −0.99 to 0.99 0.9

divergence −Inf to Inf 0.1

After the fit, the spot size at the nozzle can be directly calculated using Eq. III.16 and the
nozzle location (nozzle-to-isocenter distance). The correlation coefficient and the divergence
can be calculated using the following equations deducted from Eq. III.16 (Huang et al. 2018):

𝜎𝜃(𝑧) = 𝜎𝜃(0) (III.17)

𝜌𝑥𝜃(𝑧) =
𝜌𝑥𝜃(0)𝜎𝑥(0) − 𝜎𝜃(0)𝑧

𝜎𝑥(𝑧) . (III.18)

Even though the particle source could be asymmetrical in 𝑥 and 𝑦 direction, our implemen-
tation assumes a uniform spot geometry. Theoretically, using a 2D fit with second set of
parameters for 𝜎𝑥, 𝜌𝜃 and 𝜎𝜃 in both 𝑥 and 𝑦 direction, defining a double Gaussian, could re-
sult in a more accurate description. However, in this implementation, only a single Gaussian
model is used, so all secondary parameters are set to 0. In case emittance data is already
available in the machine data, the approximation pipeline is skipped.
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III.1.5 Postprocessing of the Particle Spot List

ForMonte Carlo dose calculation, the number of bixel or spots, computation time and particle
statistics are related in the following way:

1. Forward calculation: The selected number of histories is divided across the individual
spots. For very large treatment plans with a high number of spots, the histories have
to be increased in order to gain enough current for each spot for beam delivery, which
in turn increases the computation time.

2. Reverse optimization: Each bixel is calculated with an equal number of particles in
order to obtain aDij for later optimization. Here, the number of spots directly influences
the computation time.

In both cases, it is expected to be advantageous to reduce the number of spots in a treatment
plan while simultaneously keeping a similar accuracy or increasing the accuracy with similar
computation time. Therefore, it was worthwhile to investigate possible code optimization
and potential time savings by reducing the individual spots.

III.1.5.1 Spot Removal Technique

Aspot removal techniquewas investigatedwhich, after analytical plan optimization, removed
spots below a certain weight threshold. There are are multiple options of defining the weight
threshold based on the total number of weights, the mean weight, or the maximum weight.
Fig. III.7 shows the percentage of total removed spots depending on the weight threshold for
the 3 different spot removal definitions. For this thesis a weight threshold 𝜏 relative to the
mean weight was chosen such that the weight 𝑤𝑖 is given by

𝑤𝑖 =
⎧{
⎨{⎩

0, if 𝑤𝑖 ≤ 𝜏 ⋅ mean(𝑤)

𝑤𝑖, if 𝑤𝑖 > 𝜏 ⋅ mean(𝑤) .
(III.19)

It was expected that these spots, that were optimized to have very small weights, would
contribute less to the overall dose distribution and could potentially be removed. After
removing the small weights, the plan was reoptimized in order to adapt the plan to the
reduced number of weights and attribute the removed fluence to the remaining weights. In
order to avoid creating additional spots below the selected threshold, the new minimum
weight was set as the minimum weight threshold for the optimization.
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Figure III.7: Removed spots in relation to the setweight threshold as a percentage of themean,maximumand total

weight. Themean threshold was chosen for the remainder of the thesis for its ability to filter out extremely

lowweights without removing a high percentage of spots.

III.1.5.2 Evaluation of Treatment Plans with Removed Spots

The accuracy of the treatment plans with reduced weights was investigated using an example
liver treatment plan (Section III.1.7.1). A base-line full treatment plan for protons_generic
using the constRBEmodel was first calculated analytically within matRad using a bixel width
of 3mm for a total of 8050 initial bixels. Spot removal was performed for increasing weight
thresholds of 1% to 100% and each plan subsequently reoptimized. For 3, 10 and 50%,
additional MC simulations were performed in TOPAS using 107 histories.
To quantify the accuracy of the plans with removed spots, the plans were evaluated regarding
dose differences, quality indicators, as well as the 𝛾 pass rates compared to the full plan.
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III.1.6 LETDistribution-Based RBE-Weighted Dose Calculation

In matRad and other Pencil Beam (PB) algorithms, depth-dependent LET is stored as an
average particle property in water and is accumulated as a dose-weighted average over
all beamlet contributions. The LET in turn is used to calculate the effect and the RBE-
weighted dose distribution Eqs. II.16, II.26 and III.3. Using a dose-weighted LET and dose-
weighted 𝛼 and 𝛽 accumulation, there is nomathematical difference computing the biological
components on the fly per beamlet or from resulting 𝛼, 𝛽, and LET distributions.
For MC algorithms, the LET needs to be estimated from the individual events, which means
that a particle property needs to be averaged. TOPAS scores the deposited energy in the
respective medium weighted by the material density. Consequently, TOPAS reports a form
of density-normalized LET ([LETD,TOPAS] = MeV/mm/(g/cm3)), which is conceptually
similar to a dose-weighted average since both dose-weighting and density-normalization
treat LET as a particle property independent of density (Granville and Sawakuchi 2015). On
the other hand, MCsquare reports the LET as a material property that is weighted with the
rSP to output in [LETD,MCsquare] = keV/µm (Deng et al. 2020). While these units are often
used interchangeably (Smith et al. 2021), the result more relates to LET as a material-property
depending on the materials density.
Since there was no native implementation of RBE calculation in the used MCsquare ver-
sion, RBE considerations rely only on recalculation of the RBE based on the scored LET
distributions.

RBE-weighted dose distributions. A PB proton treatment plan was calculated for a simple
water phantom with a voxel size of 3mm, bixel width of 3mm and equal dose grid. Three
separate beams with 𝜙 = 0, 120 and 240° were chosen. The plan was optimized on a
constant RBE of 1.1 and subsequently recalculated using the MCN model with PBs and
TOPAS. Separately, the RBE-weighted dose distributions were calculated only based on the
calculated sLET distributions.
In addition to the homogeneous water phantom, RBE-weighted dose distributions were
calculated on the homogeneous lung phantom using PBs, MCsquare and TOPAS using the
same parameters as above, but for single vertical beam. RBE-weighted dose distributions
were calculated based on: 1. The LET calculated for PBs and MCsquare, 2. The unmodified
TOPAS LET distribution, normalized with density, 3. The TOPAS LET converted to rSP-
weighted LET by multiplying the LET with the local voxel rSP.
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III.1.7 Patient Study

III.1.7.1 Patient and PhantomOverview

Long Box Phantom. For the evaluation of single Bragg peaks with a fixed energy, a cuboid
water phantom (𝐻𝑈 = 0) was used in the simulation studies. The phantom dimensions
were 350 × 30 × 30mm with a CT resolution of 1mm3. A target volume was positioned at
the distal end of the phantom to avoid error messages in matRad. This setup allows for a
precise analysis of the dose distributions and penetration depth of single Bragg peaks in a
homogeneous medium.

SimpleBoxPhantom. Similarly, the simplePhantom_3mmwas constructed as a pure cuboid
water phantom. Phantom dimensions were set to 165 × 90 × 90mm with a more clinically
realistic CT resolution of 3mm3. A 15mm air section (𝐻𝑈 = −1024) was placed at the
entrance. Note that the matRad convention on dimension ordering is [𝑦, 𝑥, 𝑧]. The dose
objectives were set to 60Gy in the target with a squared deviation dose constraint with a
penalty of 200. A squared overdosing constraint was set for the contour with 40Gy and a
penalty of 200. Treatment plans were calculated with 30 fractions and on a 3mm3 dose grid.

Prostate Phantom. The prostate phantom is a phantom shipped with the matRad release.
It contains data for a male pelvis with dimensions of 549 × 549 × 270mm and a resolution
of 3mm3. Fig. III.8 shows CT slices in 3 orientations through the isocenter. The isocenter
is located at [𝑥, 𝑦, 𝑧] = [263.3, 265.9, 124.0]mm, which corresponds to a slice position of
[88, 89, 41]. The dose constraints used for the calculation and optimization of treatment
plans are summarized in Table III.4. Treatment plans were calculated on a 3mm3 dose grid
for 30 fractions.

Table III.4: Used dose constraints for the prostate and liver phantom.

Segmentation Dose Constraint Penalty

Pr
os
ta
te

Rectum / Bladder 50 Squared Overdosing 300
PTV56Gy 56 Squared Deviation 1000
PTV68Gy 68 Squared Deviation 1000
Body 30 Squared Overdosing 100

Li
ve
r PTV 45 Squared Deviation 1000
skin 25 Squared Deviation 300
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Figure III.8: Coronal (left), axial (center) and sagittal slice (right) in the isocenter of the prostate phantom. Drawn

are segmentations of PTV68Gy ( ), PTV56Gy ( ), bladder ( ), rectum ( ), and body ( ). The isocenter

wasmarkedwith a red cross.

Liver phantom. The liver phantom is a phantom shipped with the matRad release. It
contains data for the torso with dimensions of 651 × 651 × 420mm and a voxel size of
3 × 3 × 2.5mm. Fig. III.9 shows CT slices in 3 orientations through the isocenter. The isocen-
ter is located at [𝑥, 𝑦, 𝑧] = [265.8, 296.7, 316.4]mm, which corresponds to a slice position of
[89, 99, 127]. The dose constraints used for the calculation and optimization of treatment
plans are summarized in Table III.4. Treatment plans were calculated on a 3 × 3 × 2.5mm
dose grid for 30 fractions.
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Figure III.9: Coronal (left), axial (center) and sagittal slice (right) in the isocenter of the liver phantom. Drawn are

segmentations of PTV ( ), heart ( ), liver ( ), and body ( ). The isocenter wasmarkedwith a red cross.
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III.1.7.2 Spread-Out Bragg Peaks for Protons and Carbon Ions

A simple SOBP was calculated using matRad and the protons_generic machine data set on the
simplePhantom_3mm phantom (Section III.1.7.1). A vertical beam entry with a gantry angle
𝜙 = 0°, couch angle 𝜃 = 0°, and a 3mm bixel width were chosen. The plan was optimized
with respect to constant RBE with a prescribed dose of 2Gy in the target. The plan was
subsequently recalculated using the variable RBE model MCN. In addition to the analytical
pencil beams, the plan was also recalculated using MCsquare and TOPAS with 108 histories,
respectively. Since MCsquare does not intrinsically score RBE, the RBE-weighted dose was
calculated numerically based on the scored LET (Section III.1.6). The resulting treatment
plans were then evaluated in terms of visual dose distributions and absolute difference
between the MC engines and matRad. Longitudinal central profiles were calculated for
the 7 × 7 most central voxel columns and averaged. A gamma analysis, comparing the MC
engines to matRad, was performed with a [3mm/3%] criterion and 0 interpolation points.
For carbon ions using the carbon_generic machine data set, the same workflow was used.
The plan was optimized with respect to RBE-weighted dose using the LEM model. The
optimized plan was subsequently recalculated using TOPAS with 108 histories.

III.1.7.3 Prostate PhantomConstant RBE

A treatment plan for the prostate phantom (Section III.1.7.1) was calculated on a 3mm3 dose
grid using matRad using the protons_generic machine data set. Two opposing beams with
gantry angles 𝜙 = 90° and 270°, couch angles 𝜃 = 0° and 0°, and a 3mm bixel width were
chosen. The plan was optimized with respect to constant RBE-weighted dose. The particle
spots were processed and 3% of spots below the mean weight were removed. This resulted
in 24.7% of spots removed. The treatment plan was then recalculated using MCsquare and
TOPAS using 108 histories.
The calculated treatment plan was evaluated visually in terms of axial dose slices through
the isocenter, DVH and the 𝛾 index, which was calculated with the [3mm/3%] criterion and
1 interpolation point. Emphasis was placed on both target volumes PTV68Gy and PTV56Gy,
as well as the 2 most affected OARs rectum and bladder.

III.1.7.4 Liver PhantomVariable RBE and Carbon Ions

A treatment plan for the liver phantom (Section III.1.7.1) was calculated on a 3 × 3 × 2.5mm
dose grid using matRad using the protons_generic machine data set. One single beam with
gantry angle 𝜙 = 315°, couch angle 𝜃 = 0°, and a 3mm bixel width were chosen. The plan
was optimized with respect to constant RBE-weighted dose. The particle spots were then
processed and 3% of spots below the mean weight were removed. This resulted in 24.4% of
spots removed. The treatment plan was then recalculated for variable RBE using the MCN
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and WED model using matRad as well as MCsquare and TOPAS with 108 histories. For
matRad and MCsquare, the WED model was recalculated based on LET.
The calculated treatment plans were evaluated visually in terms of axial dose slices through
the isocenter, DVH and the 𝛾 index, which was calculated with the [3mm/3%] criterion and
1 interpolation point. Emphasis was placed on the target volume, liver and heart.

Similarly, the treatment plan was calculated for carbon ions. Here, the plan was calculated
for the carbon_generic machine data set in matRad and directly optimized on RBE-weighted
dose using the LEM model. The spot list was optimized for a 3% weight threshold with
6.6% of spots removed. The plan was then recalculated with TOPAS using 107 histories.
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III.2 Dose Degradation Correction

Lung tissue, or any porous or inhomogeneous material (foam, spongy materials, lung tissue,
lung substitute materials), present an additional challenge for the dose calculation for lung
tumors due to its erratic material density and fine structure. This causes the originally sharp
Bragg peak to become broadened or ”smeared out” (Sawakuchi et al. 2008; Urie et al. 1986),
which has also been observed in phantom measurements for 3D-printed and other porous
lung substitutes (Dal Bello 2017; Flatten et al. 2019; Ringbæk et al. 2017; Sell et al. 2012).
The total effect of the degradation of individual beams has the potential to negatively impact
the desired dose distribution, causing low dose regions in the target and a large portion
of healthy tissue receiving unwanted dose (España and Paganetti 2011; Goitein 1977; Urie
et al. 1986). However, clinical TPS normally assume a non-broadened Bragg peak, since no
information about microscopic tissue characteristics can be obtained with a conventional CT
scanner, that only provides an averaged representation of the lung (for reasons of reducing
cost and the radiation exposure to the patient). Consequently, an unrealistically sharp distal
dose falloff for each beam and an incorrect dose distribution are predicted.
This, in turn, poses an additional challenge for accurate treatment planning (España and Pa-
ganetti 2011). It becomes essential to better understand and address this effect by employing
mathematical models that account for the degradation.

III.2.1 LungMicrostructure and Effect on Dose

Lung tissue, or any porous or inhomogeneous material (foam, spongy materials, lung tissue,
lung substitute materials), present an additional challenge for the dose calculation for lung
tumors due to its erratic material density and fine structure.
This is particularly pronounced in tissues like lung parenchyma, that contain inhomogeneities
on a sub-millimeter scale with high local density variations (Section III.2.1.1). In addition
to the regular range straggling effect, this adds statistical fluctuations to the proton range
which are known as degradation (Section III.2.1.2). It causes a lowered peak-to-entrance dose
ratios and significantly degraded distal falloffs.

III.2.1.1 Lung Structure

The human lung is made up of several different structures, varying greatly in size (See
Fig. III.10). The large bronchi and blood vessels range in size up to a few cm and the smaller
bronchioles with sizes in range of ~0.5mm to 2mm. The small alveoli with sizes around
~250-300 µm are located surrounding those larger air ducts and take up the largest fraction
of the total lung volume (Nahar et al. 2013; Weibel and Gomez 1962). All those structures
consist of water or soft tissue with similar densities in the range of 1 g/cm3 to 1.05 g/cm3
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and are filled with air with a density of approximately 10−3 g/cm3. This provides a very fine
and inhomogeneous structure, that only becomes apparent when imaged using a Micro-CT
(μCT) (Robinson et al. 2005). However, in treatment planning, the small structure sizes in the
lung cannot be sufficiently resolved with clinical CT scans that only have voxel sizes typically
ranging from 1mm to 3mm and are therefore only represented in their mean densities.

Trachea
~1.7 cm

Bronchi
~2-8mm

Bronchioles
~0.5-2mm

Alveoli
~250-300 µm

Figure III.10: Structures of the human lung. Out of scale diagram of the human lung with relevant structures, the

larger air ducts (bronchi and bronchioles) as well as the surrounding small alveoli. Figure adapted from (Vikan

2024). Corresponding typical structure sizes (diameter) have been annotated (Nahar et al. 2013).

III.2.1.2 Resulting Degradation

In lung tissue, large density differences on a microscopic scale result in locally different
WEPL. Side by side beams could therefore experience a significantly different attenuation on
their paths. This is found to be mainly attributed to the occurrence of MCSwithin the density
inhomogeneities (Goitein and Sisterson 1978; Sawakuchi et al. 2008). Particles might pass
throughmore lung tissue with a high density and others throughmore air cavities with a low
density, essentially being slowed down unevenly, resulting in different ranges. This leads to
additional range straggling (Section II.1.1.2) of the particles, much stronger than what would

56



III.2 Dose Degradation Correction

be anticipated for homogeneous tissue with the same WEPL and molecular composition
(Sawakuchi et al. 2008). A slight shift in depth of the Bragg peak is observed, and for multiple
particles, a widening effect that can be mathematically described as a Gaussian convolution
with the pristine peak (Titt et al. 2015).

TheModulation Power. In order to describe the Gaussian degradation kernel based on
intrinsic parameters, the modulation power 𝑃mod is introduced. As a material quantity, it
describes the amount of degradation that is introduced by a specific material. It links the
Gaussian convolution 𝜎 with the WET of the traversed lung tissue (Baumann et al. 2017; Witt
2014):

𝑃mod ≡
𝜎2

WET ≈ 𝑑 ⋅ (1 − 𝑝𝑙) ⋅
𝜌mat
𝜌H2O

. (III.20)

For a single voxel, this can be expressed through the density 𝑝𝑙, the size of the substructures
𝑑 and the density of the solid lung tissue 𝜌mat (Ringbæk et al. 2017). A higher modulation
power causes a more severe the introduced degradation is. Typical values of the modulation
power are in the range of 100 µm to 800 µm (Baumann et al. 2017; Burg et al. 2021; Witt 2014).

Pristine peak Degraded peak Overdosage Underdosage

135 140 145 150 155 160
0

1

2

3

⋅10−3

Depth (mm)

A
bs

or
be

d
D

os
e

(G
y)

(a) Pristine and degraded proton pencil beamswith
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Figure III.11:Singleproton (a) andcarbon ion (b)homogeneousanddegradeddosecurves, analytically calculated in

matRad using the available protons_generic and carbon_genericmachine data sets (see Section III.1.3). Degraded

depth doses were analytically calculated using a Gaussian convolution of 10 (protons) and 13 (carbon ions)

with a degradation sigma𝜎2
deg

= 4.58mm2 calculated from𝑃mod = 800µm and a lung depth of 28mm. The

difference between the pristine and degraded curves has been shaded as overdosage and underdosage.

Degraded Depth Dose. A comparison between example pristine and degraded proton and
carbon ion depth dose distributions is shown in Fig. III.11. The depth doses have been directly
analytically calculated from the available machine data without regarding any phantom
or patient geometry. Using a worst-case modulation power 𝑃mod = 800µm as well as a
representative maximum of WEPL measured in patient data sets (see Section III.2.4.1), a
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severe degradation can be observed that is particularly pronounced for carbon ions The
degradation effect leads to a similar overdosage in front of the peak as well as to a wider distal
fall-off. While this serves as a simplified illustration of the dose over- and underestimation
due to the degradation in a homogeneous phantom, a similar scenario is expected formultiple
pencil beams in more complex phantoms or patients treatment plans.

III.2.2 MacroscopicModeling ofMicroscopic Lung Tissue

Calculating the dose distribution on a μCTwould incorporate the described degradation and
lead to a degraded depth-dose (España and Paganetti 2011). However, this process is neither
clinically feasible nor desired due to the increased X-ray exposure to the patient to generate
a μCT. In order to take the degradation originating from microscopic inhomogeneities in
the lung tissue into account, it is therefore essential to develop correction algorithms based
on mathematical models of the degradation.

III.2.2.1 The Binary VoxelModel

Based on measurements, a simple statistical model for describing the degradation has been
proposed (Titt et al. 2015). They postulated, that the degradation introduced by microscopic
lung inhomogeneities can be described using a simple model of range degradation. While
undergoing regular range straggling (Section II.1.1.2), the individual particles on their
different paths through the microscopic sub-voxels interact with different sub-structures
of drastically different material densities. For lung tissue, particles interacting with these
sub-structures would encounter a different series of air and lung voxels. With this binary
voxel model, the content of a single voxel would then be statistically independent and could
be described with a Bernoulli process. Consequently, the radiological depth then becomes
binomially distributed.

Approximation using a Normal Distribution. As an approximation, the broadening of the
depth dose for a large number of traversed voxels can be incorporated using a convolution
of the reference depth dose with a Gaussian or normal distribution (Titt et al. 2015; Witt et al.
2015; Witt 2014). The distribution depends on the size of sub-structures 𝑑, the density 𝜌𝑚𝑒𝑎𝑛
and the thickness of the porous material 𝐷 (Ringbæk et al. 2017). These parameters can
be effectively summarized by the modulation power 𝑃mod, a material quantity describing
the intrinsic uncertainty (Eq. III.20). Not only is it a direct measure of the strength of the
degradation, it also provides a link between the WEPL and the width of the Gaussian
employed in the convolution process.
Additional measurements and simulations were performed for porous materials with uni-
formly distributed sub-structures. The binary voxel model and its approximation through a
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convolution with a normal distribution was able to replicate these measurements (Dal Bello
2017; Ringbæk et al. 2017). However, for more complex beam paths through macroscopic
structures in the lung, this approximation does not hold true. In those homogeneous regions,
the energy loss straggling from homogeneous materials or sections also causes a similar
degradation effect, even though not as strong.

Approximation Using a PoissonDistribution. A successful implementation of the binary
voxel model into an MC engine was carried out by Baumann et al. (2017). They introduced
and tested a mathematical degradation model capable of replicating the depth dose degra-
dation on low resolution structures, such as CT voxels with dimensions in the millimeter
range. In their approach, a series of dose calculations was performed. For each simulation,
instead of the range, the individual CT voxel densities within the lung were sampled from a
precalculated normal distribution with width 𝜎. Averaging these dose calculations resulted
in a degraded depth dose distribution. Since the normal distribution could contain non-
physical negative values when looking at individual voxels, it was further approximated
using a shifted Poisson distribution. It is obtained by fitting the Poisson distribution in
such a way that, after undergoing 20 successive convolutions (representing the traversal of
multiple voxels), would result in the normal distribution for the entire target. The Poisson
distribution was then generalized for non-integer WEPLs by replacing the factorial function
by the Gamma function. In order to maintain the mean density, a single high weight at
WEPL = 0mmwas added, making this distribution somewhat artificial. Additionally, it has
to be individually and numerically determined for each 𝑃mod, lung voxel density and voxel
size, which requires extensive precalculation.

III.2.2.2 Binomial Voxel-Sampling DegradationModel

The density sampling approach is based on the repeated calculation of different samples with
varying lung densities in each sample. The resulting dose distributions are then accumulated
and averaged. Based on the original proposition that the radiological depth is binomially
distributed (Titt et al. 2015), Baumann et al. (2017) used a normal distribution to approximate
and sample the lung voxel densities (Section III.2.2). However, the densities of each individual
voxel could be directly sampled based on a simple binomial distribution. This simple and
easily obtainable distribution would allow each individual voxel to be sampled from a
different distribution with individual parameters according to its individual density and
potentially different modulation power.

Development of the Binomial Distribution. The base assumption is that a particle on its
path through the lung encounters a set number of microscopic substructures 𝑛 in each voxel,
which are attributed to either lung tissue or air. The probability of a substructure being lung
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tissue directly corresponds to the density of the voxel 𝑝𝑙. Consequently, the probability of
a substructure being air is (1 − 𝑝𝑙). To obtain probability values from the CT image, the
measured density values have to be scaled based on the density of the solid lung 𝜌mat:

𝑝𝑙 =
𝜌CT
𝜌mat

. (III.21)

The probability can therefore be described using a binomial distribution, where a sample
drawn from that distribution has the density 𝑥:

𝐹(𝑥) = (
𝑛
𝑥) ⋅ 𝑝𝑥

𝑙 ⋅ (1 − 𝑝𝑙)𝑛−𝑥, 𝑛 ∈ ℕ, 𝑝 ∈ [0, 1] . (III.22)

The number of substructures 𝑛 depend on the edge length 𝐷 of the voxel in beam direction
and the size of the substructures 𝑑,

𝑛 =
𝐷
𝑑 , (III.23)

where 𝑑 can be derived directly from a givenmodulation power 𝑃𝑚𝑜𝑑 (Eq. III.20). By sampling
from a binomial distribution (Eq. III.22) and dividing by 𝑛, a set of 𝑛 + 1 equidistant values
(normalized densities) between 0 and 1 is obtained with mean 𝑝𝑙, which represents the
probability of the voxel being lung tissue. Consequently, the mean 𝜇 and variance 𝜈 of the
samples need to be divided by 𝑛 and 𝑛2 respectively, yielding the expressions

𝜇bino[𝑥]
𝑛 =

𝑛𝑝
𝑛 = 𝑝 (III.24)

𝜈bino[𝑥]
𝑛2 =

𝑛𝑝(1 − 𝑝)
𝑛2 =

𝑝(1 − 𝑝)
𝑛 . (III.25)

To obtain lung density samples, the sampled probability values are multiplied by the density
of the solid lung tissue 𝜌mat (Eq. III.21). In this work, 𝜌mat was set to 1.05 g/cm3 (Table III.1,
Material database from Berger et al. (2005)).
The binomial distribution is only defined for integer 𝑛 (Eq. III.22). However, the number of
substructures calculated in Eq. III.23 can be any positive real number and would therefore
have to be rounded. Since most lung voxels have similar densities, rounding to the nearest
integer would result in very few distinct values for 𝑛. Consequently, it is worthwhile to find
a suitable continuous approximation of the binomial distribution.

Approximation with a Beta Distribution. In Bayesian inference, the beta distribution is a
conjugate prior to the binomial distribution, therefore preserves themathematical structure of
the binomial distribution. As a result, a beta distribution was implemented as a continuous
approximation of the binomial distribution. Using mean and variance of the binomial
distribution (Eqs. III.24 and III.25) and the method of moments, the parameters of the beta
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distribution 𝐵(𝛼, 𝛽) can be estimated:

𝛼 = 𝜇 ⋅ (
𝜇(1 − 𝜇)

𝜈 − 1) = 𝑝(1 − 𝑝) (III.26)

𝛽 = (1 − 𝜇) ⋅ (
𝜇(1 − 𝜇)

𝜈 − 1) = (1 − 𝑝)(𝑛 − 1) . (III.27)

Since the parameters 𝛼 and 𝛽 must be non-negative, it follows from Eq. III.26, that 𝑛 > 1 and
𝑝 < 1. Physically, this is not an issue, since a number of substructures smaller than 1 and
a density larger than 1 (solid lung tissue) have no importance in this case. A normalized
histogram of 106 samples of the beta approximation is shown in Fig. III.12. Furthermore, the
benefit of the beta approximation is that the mean 𝜇 and variance 𝜈 are conserved:

𝜇beta[𝑥] =
𝛼

𝛼 + 𝛽 = 𝑝 (III.28)

𝜈beta[𝑥] =
𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 𝛼)
=

𝑝(1 − 𝑝)
𝑛 . (III.29)

Example Distributions. A histogram of the beta approximation for different input parame-
ters is shown in Fig. III.12 together with a comparison of samples drawn from the discrete
binomial distribution as well as the derived continuous beta distribution.
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Figure III.12: (a) Histogram of 108 samples drawn from 3 different beta distributions with different number of

substructures 𝑛𝑖 and lung densities 𝑝𝑙,𝑖. (b) Histogram of 108 density samples drawn from a continuous beta

distribution (left axis) and a discrete binomial distribution (right axis) using 𝑛 = 22 and 𝑝𝑙 = 0.3.

III.2.2.3 Sampling Technique Evaluation

This section covers the testing and evaluation of the density sampling technique. Notably, this
includes the equivalence with the convolution method and the inclusion of non-rectangular
angles in the sampling.
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Equivalencewith Convolution. The analytical dose degradation calculation is performed
only on the depth dose without consideration of the lateral part. In contrast, the sampling
is performed over a number of individual complete dose calculations, that consist of both
lateral and depth part that cannot be separated. To estimate eventual differences between
the two methods, a study was done directly on the machine data (Fig. IV.25). Sampling was
performed separately on both the depth dose (𝑍) and the already calculated absorbed dose
(𝐿∗𝑍). The lateral dose componentwas calculated analogously to the regular dose calculation
algorithm. It uses a squared Gaussian probability density function with (𝑥 − 𝜇) = 0:

Lat = 𝐶 ⋅
1

2𝜋
⎛⎜
⎝

1 − 𝑤
𝜎2

1 + 𝜎2
ini

+
𝑤

𝜎2
2 + 𝜎2

ini

⎞⎟
⎠

, (III.30)

which disregards the radial distance that is usually applied during regular dose calculation.
For a single Gaussian model, only 𝜎1 is available with 𝑤 = 0. It includes a correction factor
𝐶, that converts the units of the IDD to Gy.
For the degradation correction, 28mm of lung tissue with a density of 0.211 g/cm3 was
assumed together with a modulation power of 800 µm. For this, lung tissue was attributed
to a section of the depth vector that impacts both the position of the Bragg peak and could
subsequently be replaced with the calculated lung densities of the beta distribution in case
of density sampling. The sampling was performed for a virtual 1mm CT resolution with
105 samples.

Oblique Angles. Due to the sampling distribution being dependent on the voxel size,
performing sampling for oblique angles may induce a difference in dose. Instead of the voxel
size, the mean path length through that voxel could be used, which depends on the incident
angle and only equals the voxel size for orthogonal hits. Assuming a planar couch angle
𝜃 = 0, the voxel size 𝑑 is adjusted by a multiplication factor that only depends on the gantry
angle 𝜙:

𝑑𝜙 = 𝑑 ⋅ ((1 − √2/2) ⋅ |cos(2𝜙)| + √2/2) . (III.31)

This results in a smaller effective voxel size and therefore smaller number of substructures 𝑛
(Eq. III.23). For the ”worst case” of 45°, this means a reduction by √2/2.
In order to evaluate this, treatment plans were calculated for Patient 3, a patient case with
planar treatment angles. A patient treatment plan was calculated using protons and constant
RBE. The plan was calculated without any degradation correction and was then recalculated
using the Analytical Probabilistic Modelling (APM) algorithm as well as using analytical
density sampling with and without the angle correction. The plans were subsequently
evaluated in terms of quality indicators in the PTV.
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III.2.3 Dose Calculation in Lung

This section highlights the different implementations of dose degradation correction in
different dose calculation modalities. It describes the machine data sets for use in analytical
degradation correction and the implementation of the binomial voxel sampling model.
Furthermore, the calculation of RBE-weighted dose distributions is introduced.

III.2.3.1 Analytical Dose Calculation

Since the degradation effects are treated as a simple Gaussian convolution (Titt et al. 2015),
they can be implemented by convolving the depth dose with a Gaussian, whose width 𝜎𝑑𝑒𝑔
represents the strength of the degradation and is directly calculated from the modulation
power and the depth of the peak (Eq. III.20):

𝐷deg(𝑧) = 𝐺(𝜎deg) ∗ 𝐷(𝑧, 𝜇𝑐, 𝜎𝑐, 𝑤𝑐) . (III.32)

This convolution can be carried out either numerically on the basis of the depth dose, or
analytically by using an analytical representation of the depth dose.
TheAPM framework provides such an analytic representation of the beam profile by weighted
superposition of a series of sub-Gaussian components (Bangert et al. 2013). The IDD can be
calculated as theweighted sumof individual fitted sub-Gaussian components 𝑐, characterized
by mean 𝜇𝑐, width 𝜎𝑐 and weight 𝑤𝑐 (Fig. III.13):

𝐷(𝑧, 𝜇𝑐, 𝜎𝑐, 𝑤𝑐) = ∑
𝑐

𝑤𝑐 ⋅
1

√2𝜋𝜎2
𝑐

⋅ exp(−
(𝑧 − 𝜇𝑐)2

2𝜎2
𝑐

) . (III.33)

The degradation effects were included in the depth dose by an analytical convolution using
a Gaussian degradation kernel. The analytical convolution is simplified by adding the
degradation width to the original homogeneous width (𝜎𝑐 + 𝜎𝑑𝑒𝑔).
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Figure III.13: Illustration of the substitution of a single Bragg peak with 10 individual Gaussian sub-profiles using

the APM framework for a proton energy of𝐸 = 129.46MeV/u.
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Generation of APM Compatible Machine Data Sets. In order to use the analytical con-
volution degradation correction, a Gaussian sub-division of the depth dose needs to be
implemented into the machine data set for each energy.

For the protons_generic machine data, the depth dose was divided into 10 sub-Gaussian
components and subsequently optimized utilizing the APM fit routine (Bangert et al. 2013;
Wieser et al. 2017a) using the fmincon optimizer3 with the parameters listed in Table III.5.
Using the same fit parameters, the depth dose of the carbon_generic machine data set was
divided in 13 sub-Gaussians. Initial values for the mean, 𝜎, and weights were derived from
the nearest energy index in the data fitted by Wieser et al. (2017a). Because of resulting large
differences for the first three energies, these were reoptimized using lower bounds of 0 with
a constraint toleerance of 10−12.

Table III.5: Fit parameters for the fmincon optimizer used to optimize the sub-Gaussians of the APM routine. The

lower bounds at 0.5 are crucial to avoid artifacts when convolving the Gaussians. However, for the first 3

energies, all lower bounds were set to 0, since larger differences were observed between fitted and original

depth dose.

bounds weight 0.5 to 104

bounds 𝜎 0.5 to 104

bounds mean 0 to 104

maxFunctionEvaluations 1e6

MaxIterations 1e5

StepTolerance 1e-12

ConstraintTolerance 1e-8

algorithm interior-point

The fits lead to differences between the original depth dose and the newdepth dose calculated
from the fitted sub-Gaussians, increasing with particle energy. The mean and maximum
relative differences in dependence of the energy identifier are shown in Fig. III.14. For the 𝑍
component, the maximum values observed for the mean and maximum relative difference
were 0.07% and 0.48% for protons, respectively. For carbon ions, the measuredmean relative
differences were similar compared to protons with oveerall larger maximum differences.
Maximum values observed for the mean and maximum relative difference were 0.10% and
1.11%, respectively. The fitted 𝛼𝐷 and √𝛽𝐷 fits (only for carbon ions) lead to respective
maximum mean relative differences of 0.16% and 0.10%.

3https://de.mathworks.com/help/optim/ug/fmincon.html
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(a) Mean andmaximum relative differences of the depth dose.
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(b) Mean relative differences of the 𝛼𝐷 (left) and√𝛽𝐷 (right) for the carbonmachine data set.

Figure III.14: Relative differences observed between the original depth dose and the new depth dose calcu-

lated from the fitted sub-Gaussians for each individual energy identifier in terms of peak position, for the

protons_generic and carbon_genericmachine data sets. The original depth dose is still stored in the data set and

is used for all calculations not associated with heterogeneity correction.

Implementation inmatRad. For the absorbed dose of protons, Winter et al. (2020) included
the analytical convolution of the depth dose with a Gaussian degradation kernel into matRad
using the APM framework. Multiple methods for were implemented for the convolution.
However, the ”voxelwise” convolution was found to be the most consistent concerning
heterogeneity boundaries and the ray tracing employed in the pencil-beam algorithm (Winter
2018). The dose contributions of each voxel within the dose calculation cube are calculated
with an individual convolution determined from the lung WEPLs at the corresponding
voxels (using Eq. III.33). This method is used for all analytical degradation calculations
in this thesis. Provided a fitted machine data set, this implementation of the analytical
convolution for protons can be straightforwardly used for any ion type.
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Density Sampling inmatRad. To compare the developed density sampling method (Sec-
tion III.2.2.2) betweenmodalities, it was not only implemented inMC but also in matRad. For
each lung voxel, the density was sampled from the individually derived beta distribution and
subsequently converted to HU using the default HLUT (Fig. III.2). This process is described
in more detail in Section III.2.3.2. The analytical dose is then calculated normally for a set
number of samples 𝑁𝑠 based on an individually adjusted CT for each sample.

III.2.3.2 Monte Carlo Dose Calculation

The convolution approach described above is fast and yields promising results. However, it
can not be straightforwardly transferred to MC.
The calculation of the degraded dose has been implemented into MC using density sampling
(Section III.2.2.2). For each lung voxel, the density was sampled from the individually derived
beta distribution and subsequently converted to HU using the default HLUT (Fig. III.2). To
avoid interpolation errors resulting in an altered sampling distribution, the density sampling
is performed on the (resampled) dose grid. Note that the lung voxels inside of the PTV
(including the irradiation margins) are not considered for the calculation of the WEPL.
Since the MC simulation relies on a density and material conversion, it is necessary to
modify the existing density conversion to accurately transcribe the sampled densities into
the MC code. In oder to not accidentally override existing density conversions, the HUs
chosen for the sampling was appended after the highest HU found in the HLUT. This then
essentially serves as a very detailed lookup table for the density conversion. The respective
material converters were adjusted in turn and a new material section was appended which
assigns a material to the sampled densities (see Lsts. A.5 and A.6). The sampled densities
can either be regarded as a water-equivalent material with a lower density, or as lung tissue.
In the scope of this thesis, the MC material conversion for the sampled densities was set
to be lung tissue. In the same way, to represent all lung voxels with lung material even for
homogeneous calculations, an additional lung section was inserted for all homogeneous
calculations involving lung tissue (see Lsts. A.3 and A.4).
The dose is then scored for a set number of samples 𝑁𝑠 based on an individually adjusted
CT and material conversion for each sample.

III.2.3.3 Biological Dose Calculation

Analytical Convolution. The analytical convolution was originally implemented only for
absorbed dose. However, for a comprehensive degradation correction pipeline, it is essential
to take the RBE of the used ions into account. The analytical RBE-weighted dose is calculated
through the biological effect and therefore 𝛼𝐷 and √𝛽𝐷 (Eq. II.26). For the calculation of
RBE-weighted dose, the convolution is performed directly on precalculated 𝛼𝐷 and √𝛽𝐷
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profiles. These can be either fitted APM profiles or can be calculated on the fly from the
LET using a variable RBE model. In this thesis, for the carbon_generic machine data set, 𝛼𝐷
and √𝛽𝐷 were fitted using APM. For the protons_generic machine data set, 𝛼𝐷 and √𝛽𝐷 were
calculated numerically. The RBE-weighted dose is calculated from the already convolved
𝛼𝐷 and √𝛽𝐷 with subsequently applied lateral contribution.

Monte Carlo. The degraded absorbed dose is implemented by using density sampling
(Section III.2.3.2). The RBE-weighted dose for MC is then simulated by simply using an
additional 𝛼 and 𝛽 scorer for the same density cube.

III.2.3.4 Comparison of Analytical and Numerical Convolution

To demonstrate the feasibility of calculating RBE-weighted depth dose profiles including
degradation correction and the equivalence of numerical and analytical convolution in this
scope, a proof of concept analysis was conducted using the carbon_generic machine data set
for 𝐸 = 231.34MeV/u. Similar to the lung phantom (Section III.2.4.2), the degradation was
modeled for 28mm of traversed lung with a density of 0.2108 g/cm3 (=̂WET = 5.90mm).
A chosen modulation power of 𝑃mod = 250µm and 800µm results in heterogeneity sigmas
of 𝜎2

hetero = 1.48mm2 and 4.72mm2, respectively (Eq. III.20). Two different methods were
compared. First, each Gaussian sub-component of the fitted 𝛼𝐷 and √𝛽𝐷 profiles was
convolved analytically with the Gaussian degradation kernel using APM (Eq. III.33). Secondly,
the unperturbed (not fitted) 𝛼𝐷 and √𝛽𝐷 profiles were also convolved numerically with the
same degradation kernel.
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III.2.4 Lung Patient and PhantomOverview

This section provides a summary of the patient cases and phantoms utilized in this thesis for
the evaluation of the degradation effects and the subsequent degradation correctionmethods.
This encompasses four pre-selected patient data sets for full treatment plans, which covered
a wide range of tumor sizes and depths. Additionally, three lung phantoms were designed
for testing and proof of concept purposes.

III.2.4.1 Lung Patient Data Sets

The patient data sets were evaluated and compared based on tumor size, couch and gantry
angles as well as the statistics of the WEPL of the lung tissue that a treatment beam expe-
riences. For this reason, virtual treatment plans were calculated for each data set using
the protons_generic machine data set. For all beams, a manual ray tracing was performed,
calculating the rays’ respective total WEPLtot from patient surface to the respective first voxel
of the PTV. As a result, the lung voxels inside of the PTV (including the irradiation margins)
are not considered for the calculation of the WEPL. Note that they are also not considered in
the implemented density sampling method (Section III.2.3.2). To isolate the influence of the
lung tissue on the total WEPL, the specific lung WEPLlung was separately calculated only for
the lung voxels specified in the lung segmentation. BothWEPLs were subsequently averaged
for each beam. For that, only rays that interacted with lung tissue were selected to estimate
the WEPL contributing to the degradation. This evaluation is shown in Figs. III.15 to III.18.
For this patient, 100% of the rays of all three beams come in contact with lung tissue before
reaching the PTV. A mean WEPLlung over all rays of 6.65mm, 5.66mm and 7.75mm for the
three beams was calculated compared to a WEPLtot of 57.68mm, 59.57mm and 104.27mm,
respectively (Table III.6). A list of all evaluated parameters can be found in Table III.6.
Based on this overview, it can be concluded, that Patient 2 and Patient 3 would most likely
best suitable for an analysis of heterogeneity correction. The tumors in these cases are located
fully within the lung, resulting in all beams and sub-beams interacting with lung tissue to
capture degradation effects. At the same time, both have drastically different tumor sizes
as well as different WEPL which changes the amount of degradation for a constant 𝑃mod
(Eq. III.20). Lastly, Patient 1 could be interesting to compare against, since it combines the
large tumor volume of Patient 2 with the lower WEPL of Patient 3.
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Figure III.15: Overview of theWEPL evaluation of Patient 1. Shown are isocenter CT slices with highlighted lung

segmentations. Drawn in is the central beam axis ( ) impinging on the PTV ( ). The lung voxels inside of

the PTV (including the irradiationmargins) are not considered for calculation of theWEPL and are therefore

greyed out. A custom color mapwas chosen to highlight the density differences within the lung sections. Also

shown are histograms of calculated totalWEPLtot and lungWEPLlung.
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Figure III.16: Overview of theWEPL evaluation of Patient 2. Shown are isocenter CT slices with highlighted lung

segmentations. Drawn in is the central beam axis ( ) of the virtual treatment beams impinging on the PTV

( ). The lung voxels inside of the PTV (including the irradiationmargins) are not considered for calculation

of theWEPL and are therefore greyed out. In that particular patient case, all incident rays interact with lung

tissue on their path to the tumor. A custom color mapwas chosen to highlight the density differences within

the lung sections. Also shown are histograms of calculated totalWEPLtot and lungWEPLlung.
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Figure III.17: Overview of theWEPL evaluation of Patient 3. Shown are isocenter CT slices with highlighted lung

segmentations. Drawn in is the central beam axis ( ) impinging on the PTV ( ). The lung voxels inside of

the PTV (including the irradiationmargins) are not considered for calculation of theWEPL and are therefore

greyed out. A custom color mapwas chosen to highlight the density differences within the lung sections. Also

shown are histograms of calculated totalWEPLtot and lungWEPLlung.
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Figure III.18: Overview of theWEPL evaluation of Patient 4. Shown are isocenter CT slices with highlighted lung

segmentations. Drawn in is the central beam axis ( ) impinging on the PTV ( ). The lung voxels inside of

the PTV (including the irradiationmargins) are not considered for calculation of theWEPL and are therefore

greyed out. A custom color mapwas chosen to highlight the density differences within the lung sections. Also

shown are histograms of calculated totalWEPLtot and lungWEPLlung.

72



III.2 Dose Degradation Correction

Table III.6: Evaluation summary of four selected lung patients. Patients were evaluated in terms of tumor volume

that has been translated to a cube of equivalent volume, beam angles, aswell as totalWEPL andWEPL through

lung tissue, for each beam, respectively.

Name Patient 1 Patient 2 Patient 3 Patient 4

Tumor Location right left right left

Tumor Volume (cc) 108.3 75.3 15.7 94.4

Equiv. Cube Edge (mm) 47.7 42.2 25.0 45.5

Couch Angles (deg) 350, 10, 0 0, 0, 0 0, 0, 0 0, 0

Gantry Angles (deg) 10, 310, 250 10, 65, 110 40, 340, 300 35, 350

Used Proton Energies (MeV/u) 46 to 129 78 to 143 46 to 93 64 to 143

Used Carbon Energies (MeV/u) 90 to 248 149 to 276 83 to 181 116 to 276

Prescribed Dose 8.75Gy / 8 fx 11.07Gy / 6 fx 2Gy / 30 fx 2Gy / 30 fx

Organs At Risk (OARs) EsophagusN

Central Airways*
HeartN

Central Airways*

Central Region*

Central Airways
Aorta*,N

HeartN

Esophagus*,N

Beam 1 WEPLtot (mm) 27.6 57.7 31.6 55.9

WEPLlung (mm) 4.0 6.7 4.5 5.0

Hit Lung Tissue (%) 88 100 100 39

Beam 2 WEPLtot (mm) 31.0 59.6 22.4 40.5

WEPLlung (mm) 2.9 5.7 3.1 5.9

Hit Lung Tissue (%) 82% 100% 100% 83%

Beam 3 WEPLtot (mm) 68.7 104.3 22.4 -

WEPLlung (mm) 4.5 7.8 4.0 -

Hit Lung Tissue (%) 92% 100% 100% -

* main OAR within or near the tumor or treatment beam.
N NTCP parameters are available.
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III.2.4.2 Development of Digital Lung Phantoms

To facilitate the testing of new code implementations and the validation of concepts, a water
phantomwith a simple andwell known geometry was needed. This phantom should include
a slab of lung tissue for heterogeneity correction and accurately resemble the average WEPL
found in treatment plans for lung cancer patients. Based on conducted measurements
(Section III.2.4.1), Patient 2 was identified as an ideal case for analysis, as it featured a suitably
sized tumor and a beam trajectory that passed through lung tissue.
Consequently, three cuboidal lung phantoms were created with differently implemented
lung slabs while maintaining consistent target depths and mean total WEPLs. Additionally,
the mean WEPL introduced by the lung slab was kept constant across all three phantoms.
The following values were set for the phantom lung:

WEPLtot = 60mm (measured: WEPLtot,pat = (73.9±15.2)mm) (III.34)

WEPLlung = 6mm (measured: WEPLlung,pat = (6.67±0.58)mm) (III.35)

A voxel size of 3mm3 was selected for the phantom to resemble the voxel size of the patient.
An air gap of 15mm (5 vox ) was left in front of the phantom to simulate the presence of
air that would typically be encountered before the actual patient. Furthermore, it serves as
a clear distinction between the external environment and the phantom. Additionally, the
tumor volume extracted from patients was converted into a cube with equivalent volume
with an edge length of 45mm, serving as the phantom target volume. Both values are also
listed in Table III.6.
The phantoms were evaluated based on density values and implemented in HUs. The
therefore required conversions between density values and HU were performed using the
default HLUT listed in Fig. III.2.

Real Lung Phantom ”RealLung”. A slab of lung (30 × 30 × 9 vox =̂ 90 × 90 × 27mm) was
copied from the right lobe of the sample Patient 2 within the healthy side of the lung without
any segmented tumor tissue (Fig. III.19). The lung slab was selected and placed into a water
phantom close to the target volume, so that the WEPL at the target entry fit the previously
set values (Eq. III.34). An evaluation of the copied lung voxels revealed a percentage of
solid lung tissue of 0%, indicating that no voxel contained a voxel density greater than
1.05 g/cm3. This threshold value serves as a cutoff point for binomial degradation correction
(Section III.2.2.2), implying that all copied voxels will be considered.
Additionally, in the phantom, a small 3mm (1 vox ) gap was left between the lung and the
target to better differentiate the effect in the lung slab and in the target volume.
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Figure III.19: Axial, sagittal and coronal CT slices of Patient 2 at depths of 𝑍 = 223.5mm, 𝑋 = 154.5mm and

𝑌 = 208.5mm, respectively. The selected lung slab (30 × 30 × 9 vox =̂ 90 × 90 × 27mm)was highlighted.

Heterogeneous Lung Phantom. A second phantom was constructed where the copied lung
slab was replaced by a slab of equal WEPL, in which the real lung voxel positions were
randomized to keep the realistic density distribution andmean density while simultaneously
eliminating potential local density clusters.

Homogeneous Lung Phantom. Lastly, a third phantom was constructed where the slung
slab was overwritten by a constant value of −798HU, resembling the mean HU of the real
lung experienced by the incident rays.

Summary. A summary of the 3 constructed lung phantoms is shown in Fig. III.20a and a
comparison of evaluated parameters is shown in Table III.7. Additionally, the recorded lung
WEPLs of the individual rays in the virtual treatment plan are summarized in a histogram
in Fig. III.20b.

Table III.7: Physical depth,WEPLtot, WEPLlung andmeanHU of the 3 constructed lung phantoms.

quantity hom het real

physical depth 96mm 96mm 96mm

WEPLtot 59.71mm 59.56mm 59.71mm

WEPLlung 5.69mm 5.54mm 5.69mm

mean HU −798.0HU −803.3HU −798.0HU
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(a) Overview of the constructed real lung phantom based on a patient lung as well as subsequently derived

heterogeneous and homogeneous lung phantoms.
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(b) Histograms of lungWEPLs of the constructed phantoms ray-traced based on a virtual treatment plan.

Figure III.20: (a) Overview of the three constructed lung phantoms. Left: A real lung phantom consisting of a

lung slab copied from a patient lung. Center: A heterogeneous lung phantomwith lung voxels randomized

from the patient lung. Right: A homogeneous lung phantomwith constant HU derived from the patient lung.

They share physical geometry, target ( ), as well as similar values forWEPL (Table III.7). A custom color map

was chosen to highlight the density differences within the lung sections. (b) Histograms of theWEPLs for the

individual rays in a virtual treatment plan calculated using the protons_genericmachine data set with a bixel

width of 1mm.
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III.2.5 Phantom Study

As a first step, the developed methods for degradation correction were employed and
tested using the developed lung phantoms (Section III.2.4.2). After, degraded SOBPs were
calculated for all three different lung phantoms using protons. Additionally, a proof of
concept simulation was performed on the ”RealLung” phantom using carbon ions.

III.2.5.1 Simulated Pencil BeamDegradation

To validate the implementation and functionality of the degradation algorithms for different
modalities, single pencil beams were tested on the homogeneous lung phantom. The RBE-
weighted dose distributions from individual pencil beams were calculated for a proton
energy of 120.14MeV, utilizing a vertical beam entry (𝜙, 𝜃 = 0). The dose calculations were
performed on the original 3mm voxel grid, as well as on voxel grids resampled to 1mm
and 2mm. While homogeneous dose calculations are not expected to be affected by the
resampling, a different resolution significantly alters the underlying sampling distribution
(Eqs. III.22 and III.23). To illustrate the impact of degradation, the modulation power was set
to 𝑃mod = 250µm and 800µm. Additionally, the data for the original 3mm voxel grid was
evaluated in terms of central dose profiles and IDDs in order to illustrate their difference.
Here, emphasis was laid on the dose in the lung section and the Bragg peak.

III.2.5.2 Influence ofWEPL andModulation Power

Since the strength of the degradation is directly proportional to the WEPL (see Eq. III.20),
it is worth investigating if this proportionality is replicated in analytical convolution and
density sampling. For this, the homogeneous lung phantom (Section III.2.4.2) was altered
with HUs in the lung of in 100HU equidistant steps between −1000HU and −600HU. For
each, a proton treatment plan with a bixel width of 3mm, fraction dose of 2Gy/fx, 3mm
dose grid, and a vertical beam entry (𝜙, 𝜃 = 0) was calculated using PBs, optimized with
respect to constant RBE and subsequently processed for spot removal. The plans were then
recalculated with MCsquare. Degradation correction was included by using analytical PB
convolution, as well as density sampling for PBs and MCsquare. A constant modulation
power of 𝑃mod = 800µm was set. The same experiment was repeated with the original
constant lung HU of −798HU (5.96mm) while varying the modulation power in 200 µm
steps between 100µm and 900µm.
The degraded dose distributions were compared to their homogeneous counterpart in terms
of the relative difference in the mean dose to the target. Since the strength of the degradation
primarily depends on the WEPL, it is expected to follow a linear relationship for invariant
lung properties. Based on this premise, a linear fit was performed with fixed boundaries at
the origin (𝑎 ⋅ 𝑥).
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III.2.5.3 Degradation for Spread-Out Bragg Peaks

For protons, treatment plans were calculated on the homogeneous, heterogeneous and
”RealLung” phantom using the protons_generic machine data set. The dose of was delivered
over 30 fractions with a fraction dose of 2Gy/fx. A bixel width of 3mm, a dose grid equal
to the CT grid, and a vertical beam entry (𝜙, 𝜃 = 0) were set. The plan was optimized for
constant RBE, subsequently processed for spot removal with a 3% mean weight threshold
and reoptimized. The plan was then recalculated with PBs and both MC engines for variable
RBE using the MCN model. For the MC simulations, the number of histories was set to
1·108. The degradation correction was incorporated through analytical convolution (APM
algorithm) for PBs, as well as density sampling for all modalities with 100 samples each.
The resulting treatment plans were evaluated in terms of dose slices through the isocenter,
averaged central beam profiles and quality indicators (see Fig. III.21). 𝛾 pass rates between
homogeneous and degraded dose distributions were calculated using a [3mm/3%] criterion
with 0 interpolation points. Additionally, the HI and CI (Eqs. II.23 and II.24) were calculated
and plotted in a bar plot.
For carbon ions, the same parameters were used as for protons. The absorbed dose dis-
tributions were calculated for the real lung phantom for PB and TOPAS. The plan was
optimized for absorbed dose, subsequently processed for spot removal with a 3% mean
weight threshold and reoptimized. Subsequently, the plans were recalculated including
degradation correction.
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Figure III.21: Schematic drawing of a custom ”box plot” used to demonstrate the changes the dose quality in-

dicators mean dose with standard deviation, D5 and D95. They are used in the evaluation of the simulated

degraded treatment plans.
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III.2.5.4 Interdependence ofMCHistories andNumber of Samples

To gauge the dependence of the degradation on the number of MC histories and den-
sity samples, dose distributions were recalculated using 500 density samples with 108 and
109 histories (2·105 and 2·106 histories per sample). Based on the methods described in
Section III.2.5.3 for the homogeneous lung phantom, the degraded, sampled constant RBE-
weighted proton dose distributions were recalculated using PBs, MCsquare and TOPAS with
the adjusted histories per sample. Mean relative difference to the prescribed dose of 2Gy in
the entrance channel within the lung and half the target (depth of 12 cm), as well as 𝛾 pass
rates using the [3mm/3%] criterion with 0 interpolation points, were calculated.

III.2.6 Patient Study

As a last step, the previously discussed concepts and developed methods were applied on
the selected patient data sets.

III.2.6.1 Patient Treatment Plans

For protons, the dose was calculated on the CT grid and subsequently optimized in regards
to constant RBE. The protons_generic machine data set was used with a bixel width of 3mm.
All other patient-specific parameters are listed in Section III.2.4.1. The plans were processed
using spot removal with a 3% mean weight threshold and reoptimized thereafter. After
optimization, the treatment plans were recalculated for variable RBE using the MCN model.
The plans were then recalculated in MCsquare and TOPAS, including the RBE scorer. The
number of computed histories was set to 108 histories, respectively. For carbon ions, using
the carbon_generic machine data set, treatment plans were calculated and optimized on RBE-
weighted dose for the LEMmodel. Spot removal was performed with a 3% mean weight
threshold and the plans were reoptimized. Carbon plans were subsequently recalculated
using TOPAS including the discussed tabulated RBE scorer with 108 histories. The degrada-
tion correction was incorporated by analytical convolution, as well as density sampling for
PBs, MCsquare (protons only) and TOPAS, using 100 samples.
The calculated patient treatment plans were compared in terms of axial dose slices through
the isocenter, DVHs and selected quality indicators. For the dose quality indicators mean
dose, D5 and D95, their respective relative differences between degraded and homogenous
dose distributions were calculated. This was done separately for the target volume, the
lung and the selected OARs. Similarly, 𝛾 pass rate distributions between homogeneous
and degraded treatment plans were calculated, employing a [3mm/3%] criterion with 0
interpolation points, which equals the CT and dose grid. Additionally, the treatment plans
were evaluated in terms of NTCP of the lung and applicable OARs (Section III.2.6.2).
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III.2.6.2 NTCPModel Considerations

In this thesis, the Niemierko-model was used for the calculation of NTCP (see Section II.3.3.1):

NTCP =
1

1 + (TD50
EUD)

4𝛾50
. (III.36)

𝛾50 is a unit-less, organ specific model parameter and TD50 is the tolerance dose for a 50%
complication rate after a specific time (Niemierko 1999). The Equivalent UniformDose (EUD)
is defined as

EUD = ⎛⎜
⎝

∑
𝑖=1

𝑉𝑖𝐷𝑎
𝑖
⎞⎟
⎠

1/𝑎
, (III.37)

with the tissue specific, unit-lessmodel parameter 𝑎 and the partial volume𝑉𝑖, which receives
the 𝐷𝑖 (Gy). Table III.8 lists available parameters for the normal tissues prevalent in the used
lung cancer patients.

Table III.8: Parameters used in the calculation of NTCP, that appear in the selected lung patients. The defined

parameters for the heart were also used to calculate the NTCP of the aorta. Parameters were taken from:

1. Gay and Niemierko (2007), 2. Emami et al. (1991), 3. Brenner (1993), 4. Since there was no available TCD50
for lung tumors, the lung TD50 was used, 5. for α/β, standard parameters were assumed (Section II.2.1).

Variable Endpoint a(1) 𝛾50
(1) TD50/TCD50

(2) α/β

Lung Pneumonitis 1 2 24.5 2

Esophagus Perforation 19 4 68 2

Heart / Aorta Pericarditis 3 3 50 2

Tumor Local control -10(3) 2 24.5(4) 10

DVHs as well as EUDs were recalculated using the Niemierko-model, if parameters for
that tissue type were available. Both DVH and EUD were calculated in a custom MATLAB
function adapted from (Gay and Niemierko 2007) using Eqs. III.36 and III.37. The α/β ratio
is needed to calculate the EQD (Eq. II.10) and was assumed to be 2Gy for normal tissue. For
the aorta, parameters for heart tissue were used. For the tumor, since no specific data was
available, generic values were assumed.
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IV
Results

IV.1 Validation of theMonte Carlo Interface

This section presents the results of the validation of the Monte Carlo Interface in terms
of accuracy and comparability through example calculations for several phantoms. These
example calculations range from a characterization of the developed machine data sets for
protons and carbon ions with simple single Bragg peaks, SOBPs to calculations for patient
cases. Two patient cases (prostate and liver patient), deployed with the matRad release, were
chosen because of their relatively simple structure with two opposing beams for the prostate
patient and one beam for the liver patient Section III.1.7.1. The first patient is evaluated for
protons in terms of constant RBE. The second patient case is investigated using the MCN
and WED variable RBE models for protons and the LEM model for carbon ions.

IV.1.1 Machine Data Set Characterization

This section covers the characterization of the new machine data sets for protons and carbon
ions developed in Section III.1.3. This was done by calculating the dose distributions of nine
single pencil beams using matRad, MCsquare and TOPAS, with equidistant steps in the
mean range. The characterization of the machine data sets simultaneously serves as a first
step to validate the interface on the basis of single beams with a single particle spot.

IV.1.1.1 Characterization of the ProtonMachine

Resulting longitudinal and lateral absorbed dose profiles are shown in Fig. IV.2, profiles
calculated using the variable RBE MCNmodel are shown in Fig. IV.3.
The visual analysis of the calculated profiles revealed very good agreement in longitudinal
profiles for all three modalities concerning both absorbed and RBE-weighted doses. There
was also strong lateral agreement between TOPAS and matRad. However, lateral differences
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emerged with MCsquare, which were already apparent for absorbed dose and were particu-
larly significant in the RBE-weighted profiles when compared to matRad and TOPAS. The
inconsistencies with MCsquare did not correlate with energy.

A 𝛾 analysis (Fig. IV.1a), performed with a criterion of [1mm/1%] with 1 interpolation
point, confirmed the very good agreement for TOPAS for absorbed dose distributions. For
RBE-weighted dose, this is also the case up to an energy of ~120Gy. At higher energies, the
analysis showed a lower 𝛾 pass rate for TOPAS. While MCsquare exhibited a lower 𝛾 pass
rate than TOPAS at higher energies for absorbed dose, it surpassed the pass rate for TOPAS
with RBE-weighted dose. Comparing the two MC engines, differences as low as 92.6% for
RBE-weighted dose distributions were recorded.

IV.1.1.2 Characterization of the CarbonMachine

Similar to protons, the visual analysis of the calculated carbon profiles showed very good
agreement in longitudinal profiles for both absorbed and RBE-weighted dose distributions
(Fig. IV.1b). Unlike protons, the maximum dose for carbon ions did not decrease with energy.
However, visual differences in the longitudinal profiles became apparent at higher energies.
The 𝛾 analysis revealed pass rates over 99% below 226.38MeV/u with a steep decrease to
92.9% for absorbed dose and 97.2% for RBE-weighted dose. In contrast to protons, the 𝛾
pass rates for RBE-weighted dose were consistently larger compared to the pass rates for
absorbed dose.
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150 200 250 300
92

94

96

98

100

Energy (MeV/u)

G
am

m
a

Pa
ss

Ra
te

(%
)

(b) Carbon pencil beam 𝛾 pass rates.

Figure IV.1:𝛾pass rates comparing thedifferentmodalitiesmatRad,MCsquareandTOPASwithenergy, calculated

using protons (a) and carbon ions (b). 𝛾 pass rates were calculated using the [1mm/1%] criterion with 1

interpolation point.
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and averaged over the 5 × 5most central voxels.
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Figure IV.3: Comparison of 9 RBE-weighted proton depth dose profiles using theMCNmodel for energy indices
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Profiles were evaluated and averaged over the 5 × 5most central voxels.
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IV.1.1.3 Kernel Resolution

A constant 0.1mm depth grid as well as a late cutoff behind the Bragg peak might store the
machine data most accurately, but results in a large number of unnecessary data points being
stored. For data simulated using TOPAS, the fine grid also leads to statistical uncertainties
before and after the Bragg peak. When large data sets are loaded continuously, this could
also negatively influence computation times. Therefore, the data resolution was adjusted in
depth using a dynamic grid spacing. An initial grid spacing of 1mmwas chosen with a finer
depth grid of 0.1mm in a −8% to 6% region around the Bragg peak. To gradually transition
between the two grid spacings, the depth vector was subsequently smoothed using a 20
point moving average and rounded to five digits. The data was interpolated on the new grid
using a spline interpolation in MATLAB.

An example of this downsampling for 𝐸 = 80.53MeV of the protons_generic machine data
set is shown in Fig. IV.6. It was possible to reduce the number of data points stored by
~80%. The absolute error shows no difference for the peak area with an irregular pattern
in the plateau region and distal to the peak, likely due to the smoothing introduced by the
downsampling.
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Figure IV.6: Example of the kernel resolution for𝐸 = 80.53MeV of the protons_genericmachine data set. Shown

is the new depth dose stored in themachine data (top, ). Overlaid are histograms of the number of sample

points per 2mmdepth, that were heavily reducedwithout major impact on accuracy (top, ). The absolute

error between the depth dose with original and adjusted kernel resolution is shown below (bottom, ).
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IV.1.2 Spread-Out Bragg Peaks on a Box PhantomGeometry

Simple uniform SOBPswere calculated for protons and carbon ions usingmatRad, MCsquare
(only protons) and TOPAS. The used workflow is described in Section III.1.7.2. The resulting
dose distributions were analyzed in terms of absolute difference, 𝛾 pass rates and DVH.
Additionally, longitudinal central profiles are shown.

Protons. A comparison of RBE-weighted dose distributions for constant RBE including
their respective absolute differences are shown for all three modalities in Fig. IV.7. The shown
differences showed similar values with maximum relative differences below 0.063Gy and
0.054Gy, respecively. However, TOPAS showed larger lateral difference towards matRad
compared to MCsquare. Longitudinally, larger differences were observed using MCsquare,
especially in the entrance channel and after the SOBP.
Calculated 𝛾 pass rates showed 100.00% for the constant RBE dose distributions in both
MCsquare and TOPAS over the whole CT. For RBE-weighted dose distributions using vari-
able RBE, the agreement overall decreased slightly with 99.57% and 99.63% for MCsquare
and TOPAS, respectively. The 𝛾 pass rates between the two MC modalities MCsquare and
TOPAS was 99.99% for constant RBE and 98.34% for variable RBE-weighted dose over the
whole CT. In the target, calculated 𝛾 pass rates were 98.84% for MCsquare and 100.0% for
TOPAS. Additionally, the longitudinal central profiles as well as the DVHs are shown for
constant and variable RBE-weighted dose in Fig. IV.8. For the constant RBE-weighted depth
dose profiles, all 3 modalities show very good agreement with each other. In the plateau
region, however, larger differences between the different modalities become apparent. There,
MCsquare shows a larger dose while TOPAS shows a smaller dose compared to matRad.
These observations are also largely reflected in the DVH. Here, notable, MCsquare seems to
show less differences at the proximal end of the RBE-weighted SOBP, while TOPAS shows
less differences at the distal end.
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Figure IV.7: Comparison of constant RBE-weighted dose distributions using the protons_genericmachine data

set and the simplePhantom_3mm. The prescribed dose to the PTVwas annotated. Also shown are absolute

differences betweenMC engines andmatRad (bottom), as well as their 𝛾 pass rates over the whole CT.
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Figure IV.8: Comparison of SOBP treatment plans for the protons_genericmachine data set.
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Carbon Ions. A comparison of RBE-weighted dose distributions between matRad and
TOPAS, including their respective absolute differences and 𝛾 index, are shown in Fig. IV.9.
The calculated differences were below 0.12Gy (6.1% of the prescribed dose). Here, differ-
ences can be observed mainly at the distal edge of the SOBP as well as the fragmentation tail
with only small lateral differences.

The calculated 𝛾 pass rates for RBE-weighed dose showed 94.91% over the whole CT and
97.87% in the target. Additionally, the longitudinal central profiles as well as the DVHs
are shown for RBE-weighted dose in Fig. IV.8. matRad and TOPAS show near perfect
agreement with each other, especially in the plateau and proximal edge of the SOBP. At the
distal edge of the SOBP and the fragmentation tail, larger differences were observed. These
differences at the distal edge can also be seen in the DVH of the target, where TOPAS slightly
under-estimates the optimized dose distribution in matRad.
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Figure IV.9: Comparison of absorbed dose distributions using the carbon_generic machine data set and the

simplePhantom_3mmphantom. The prescribed dose to the PTVwas annotated in the colorbar. Also shown

are the 𝛾 index between TOPAS andmatRad (bottom left), as well as their absolute difference (bottom right).
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Figure IV.10: Comparison of SOBP treatment plans for the carbon_genericmachine data set.

IV.1.3 Validation on Patient Phantoms

In this section, more clinical treatment cases were investigated to assess the differences of
analytical and MC treatment plans on patient geometries.

IV.1.3.1 Prostate Phantom – Protons Constant RBE

A proton treatment plan was calculated for the prostate phantom using the workflow de-
scribed in Section III.1.7.3. Generally, both MC engines generated very consistent results that
differed from the analytically calculated plan (Fig. IV.11). There were clearly visible higher
doses in the entrance channels for both beams for both MC engines. Additionally, for both
MC engines, there were larger uncertainties and fluctuations at objective borders and within
the target areas together with a cold spot in the bladder. Mean absolute dose differences,
consistent between the twoMC engines, were observed with 0.05Gy in the PTV68Gy, 0.04Gy
in the PTV56Gy, 0.03Gy in the bladder, and 0.04Gy in the rectum. However, absolute dose
differences in the 10% range of the prescribed dose were observed with differences as large
as over 0.33Gy in the bladder for MCsquare.
These observations are reflected in both 𝛾 index and DVH (Fig. IV.12). The lowest reported 𝛾
pass rates were 95.5% and 94.9% for PTV68Gy for MCsquare and TOPAS, respectively. Pass
rates for PTV56Gy, bladder and rectum were above 98.3% while the pass rates for TOPAS
were slightly lower compared to MCsquare. However, pass rates between the two MC
engines were consistently 100.0% for all segmented volumes. Especially in the DVH, there
were only minimal differences between the two with a general under-estimation of the dose
in matRad compared to MC.
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Figure IV.11: Comparison of RBE-weighted dose distributions using constant RBE, the protons_genericmachine

data set and the prostate phantom. Also shown are the absolute differences betweenMCsquare andmatRad

(bottom center), TOPAS andmatRad (bottom right) as well as their respective𝛾 pass rates over the whole CT.

Prescribed doses for PTV56Gy and PTV68Gy have been annotated.
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Figure IV.12: DVH of the calculated RBE-weighted treatment plan for matRad, MCsquare and TOPAS using

constant RBE. Prescribed doses for PTV56Gy and PTV68Gy have been annotated.
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IV.1.3.2 Liver Phantom – Protons Variable RBE

A treatment plan using the protons_generic machine data set was calculated for the liver
phantom using the workflow described in Section III.1.7.4.
Fig. IV.13 shows the axial slice through the isocenter with dose distributions for matRad,
MCsquare and TOPAS, as well as their respective absolute differences. Especially at the
distal part of the dose distribution, the distal edge of the PTV, large differences in the region
of ~50% of the prescribed dose were observed. Also differences, altough smaller, between
MCsquare and TOPAS can be seen. In the entrance channel, higher doses were present for
both MC engines, that are overshadowed by the larger differences at the distal end. In the
target, mean absolute dose differences of 0.06Gy and 0.03Gy were found for MCsquare and
TOPAS, respectively.
These results are consistent with measurements of the 𝛾 pass rate (Table IV.1). For constant
RBE, albeit different from matRad, 𝛾 pass rates still match between MCsquare and TOPAS
with pass rates of 100.0% between the two modalities. This behaviour is reflected in the
DVH shown in Fig. IV.14.
For TOPAS, the calculated variable RBE-weighted dose distribution pass rates are not signifi-
cantly different compared to constant RBE. However, MCsquare shows lower values with,
for example, 86.39% (91.66% for TOPAS) over the whole CT. This difference is also evident
in the DVH, where there were differences between the two MC engines, independent of the
RBE model. This consequently results in a lower agreement between the two MC engines.
Absolute differences between the calculated RBE-weighted dose distibutions using the MCN
andWEDmodel are shown in Fig. IV.15. Clear differences are visible in the entrance channel,
where the MCNmodel produced higher doses (coinciding with a higher RBE), as well as the
lateral profile and the area distal to the target, where the WEDmodel procuded higher doses.
Notably, the difference pattern for MCsquare is different compared to both matRad and
TOPAS. Here, smaller overall differences were recorded with a spot of virtually no difference
in the distal part behind the target. Additionally, large negative differences can be found at
the phase difference with lung tissue in the entrance channel.
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Figure IV.13: Comparison of RBE-weighted dose distributions for the liver phantom using variable RBEwith the

MCNmodel, theprotons_genericmachinedata set. Also shownare the absolute differences betweenMCsquare

andmatRad (bottom center), TOPAS andmatRad (bottom right) as well as their respective𝛾 pass rates over

the whole CT. The prescribed dose to the PTVwas annotated.

Table IV.1:𝛾 pass rates (in %), calculated between the three dose distributions for matRad,MCsquare and TOPAS.

Absorbed dose and the variable RBEmodelsMCN andWEDwere evaluated, respectively.

Whole CT PTV Liver-CTV Heart

co
ns
t.
RB

E MCsquare - matRad 92.24 78.40 94.35 98.40

TOPAS - matRad 92.79 80.95 93.69 99.05

MCsquare - TOPAS 100.00 100.00 100.00 100.00

M
C
N

MCsquare - matRad 88.09 75.01 91.80 96.41

TOPAS - matRad 91.95 81.01 94.21 99.20

MCsquare - TOPAS 91.84 99.91 93.75 95.20

W
ED

MCsquare - matRad 86.39 74.53 91.48 95.73

TOPAS - matRad 91.66 80.91 94.79 99.17

MCsquare - TOPAS 87.37 99.87 92.40 91.68
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Figure IV.14: DVH of the calculated RBE-weighted treatment plan for matRad, MCsquare and TOPAS. The

prescribed dose to the PTVwas annotated.
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Figure IV.15: Comparison of RBE-weighted dose distributions calculated using theMCNmodel and theWED

model. Shown are the absolute differences,WED−MCN, separately for eachmodality.

IV.1.3.3 Liver Phantom –Carbon LEM

A carbon treatment plan for the liver phantom was calculated using the carbon_generic
machine data set (Section III.1.7.4).
Dose slices through the isocenter, 𝛾 index and absolute difference are shown in Fig. IV.16.
Minor differences can be observed in the entrance channel, where TOPAS shows a larger
dose compared to matRad, which is increasing towards the PTV. Similarly, after the PTV in
the heart and center of the thorax, the dose calculated with TOPAS is higher. In the liver and
lung distal to the target, matRad exhibits a much larger dose compared to TOPAS, resulting
in large differences of ~30%, which increase to over ~50% in the whole CT. The 𝛾 index
especially shows fluctuations in the entrance channel and target area, that indicate larger
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local dose differences. It also clearly reflects the larger differences after the target, especially
in the fragmentation tail.

Measured 𝛾 pass rates were 92.58% for absorbed dose over the whole CT, and 99.57% in
the target. For RBE-weighted dose, the 𝛾 pass rate decreased to 83.90% over the whole CT,
with still 98.77% in the target. The lowest 𝛾 pass rates of all selected segmentation were
recorded in the heart with 84.61% and 75.19% for absorbed and RBE-weighted dose. This is
also reflected in the DVH (Fig. IV.17), that clearly demonstrates the differences in the heart
and the target.
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Figure IV.16: Comparison of RBE-weighted dose distributions using the LEMmodel, the carbon_genericmachine

data set and the liver phantom. Also shown are the 𝛾 index and absolute differences between TOPAS and

matRad. The prescribed dose for the PTV has been annotated.
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Figure IV.17: DVH of the calculated RBE-weighted treatment plan for matRad, MCsquare and TOPAS. The

prescribed dose for the PTV has been annotated.

IV.1.4 LETDistribution-Based RBE-Weighted Dose Calculation

This section summarizes the results of recalculating RBE-weighted dose distributions based
on LET using variable RBEmodels. The workflow is detailed in Section III.1.6. A comparison
of the dose distributions calculated for PBs and TOPAS with the respective difference to the
recalculated dose is shown in Fig. IV.18. Generally, RBE recalculations for PBs resulted in
identical (within numerical accuracy) dose distributions. For TOPAS, a systematic difference
over the whole beam path, almost constant in the target, was observed. The observed abso-
lute relative differences were 0.73% over the whole phantom, but below 0.1% in the target.
LET-Dose profiles for PBs, MCsquare and TOPAS at the central 𝑦 axis and perpendicular
through the center of the SOBP are shown in Fig. IV.19. With overall good agreement, differ-
ences in scored LET can be seen between all modalities with larger relative differences of
approximately 10% in regions of high LET.

LET and calculated RBE-weighted depth dose profiles for the homogeneous lung phantom
are shown in Fig. IV.20. In the lung phantom, the rSP-weighted LET converted from TOPAS
shows good agreement (8% to 9% absolute relative difference in lung) with the MCsquare
LET in lung tissue, while the density normalized TOPAS LET agrees with PBs (0.4% to 1.7%
absolute relative difference in lung). This is also reflected in the calculated RBE-weighted
depth dose profiles with relative differences of 1.1% to 1.2% between MCsquare and TOPAS
and 0.9% to 2.6% between PBs and TOPAS. RBE-weighted doses in TOPAS were calculated
based on the density normalized and rSP-weighted LET, respectively.
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Figure IV.18: RBE-weighted dose distributions for PBs (left) and TOPAS (right) as well as the absolute difference

between directly calculated RBE-weighted dose and RBE-weighted dose recalculated from the unmodified

LET. The prescribed dose to the PTVwas annotated (optimized on constant RBE).
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Figure IV.19: LET-Dose along the central axis in𝑌 direction (left) and𝑋 direction through the center of the SOBP

at𝑌 = 120mm (right). Profiles were averaged over the 9most central voxels for each direction, respectively.
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Figure IV.20: Central LET (left) and RBE-weighted dose (right) profiles for PBs, MCsquare and TOPAS, calculated

in the homogeneous lung phantom. The RBE-weighted TOPAS dosewas recalculated based on density normal-

ized, unmodified LET and based on rSP-weighted LET. Profiles were averaged over the 7 × 7 central voxels.
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IV.1.5 Postprocessing of the Particle Spot List

Analytical matRad dose distribution slices for mean weight thresholds of 3%, 10% and 50%
at the isocenter as well as their absolute difference from the full plan are shown in Fig. IV.21.
For those plans, histograms of the weight distributions are shown in Fig. IV.22. Visually,
the treatment plans did not degrade for any simulated weight threshold. Additionally,
throughout all measured quality indicators, the plans hold up their accuracy. The maximum
relative difference of the mean dose to the target increased with an increasing threshold
and amounted to less than 3·10−3% for 𝑤 = 50 %. For the OARs, the relative difference
to the heart was largest with ~2%. For 𝑤 = 3 %, the measured relative differences were
smaller by more than an order of magnitude. Calculated 𝛾 pass rates for [3mm/3%] and 0
interpolation points degraded to 99.97% and 99.68% for weight thresholds of 3% and 50%.

In MCsquare, there was no significant change in computation time for different weight
thresholds. However, a TOPAS simulation for a mean weight threshold of 3% and 50%
revealed a reduction in computation time of ~7% and 34%, respectively.
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Figure IV.21: Treatment plans calculated usingmatRad. Spot removal was performed after optimization of the

full plan using ameanweight threshold of 0, 3, 10 and 50%. Plans were subsequently reoptimized.
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Figure IV.22: Histogram of the optimized weights for the full plan, as well as for performed spot removal with 3%

and 50% of themeanweight, ensuring that the sum of the weights remains invariant.
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IV.2 Degradation Correction

In this section, the results involving density correction are summarized. Firstly, the results
of the technical implementation of the degradation correction are presented including a
comparison of the used algorithms. Then, a first treatment planning study is presented
using SOBPs on a water phantom including a lung section. Lastly, all discussed methods of
degradation correction are applied and evaluated on clinical lung patient plans.

IV.2.1 Implementation of Degradation Correction

This section highlights the technical implementation and difference of analytical and numer-
ical convolution algorithm, as well as the density sampling method.

IV.2.1.1 Comparison of Analytical and Numerical Convolution

An overview of the carbon absorbed and RBE-weighted dose profiles convolved using the
different methods and intermediary 𝛼𝐷, √𝛽𝐷 and RBE profiles are shown in Fig. IV.23. The
relative differences are shown in Fig. IV.24. The workflow is described in Section III.2.3.4.
The usage of a manual numerical convolution does not lead to significant differences in the
calculated absorbed and RBE-weighted dose profiles compared to an analytical convolution
in the APM case. For the absorbed dose profiles, relative differences in the range of 0.09%
to 0.42% were observed for 𝑃mod = 250µm and 800µm in the area to the peak with higher
relative differences after the peak in the range of 0.41% to 2.7%. For the RBE-weighted dose
profiles, larger relative differences between 0.08% to 0.48% before and between 0.52% to
3.2% after the peak were observed. Especially the absolute difference for RBE and 𝑃mod =
800µm was calculated much larger than the other combinations. This behavior, however,
cannot be observed for relative differences or is visible for the RBE-weighted dose profiles.
The maximum absolute error is in the range of ~0.6% of the maximum depth dose.
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homogeneous 𝑃mod = 250 µm, Gaussian 𝑃mod = 800 µm, Gaussian
𝑃mod = 250 µm, numeric 𝑃mod = 800 µm, numeric

135 140 145 150 155 160
0

0.05

0.1

0.15

Depth (mm)

A
bs

or
be

d
D

os
e

(G
y)

135 140 145 150 155 160
0

0.2
0.4
0.6
0.8

1

Depth (mm)

RB
E

×
D

os
e

(G
y)

(a) Absorbed and RBE-weighted dose profiles.

140 150 160
0

0.5

1

1.5 ⋅10−1

Depths (mm)

𝛼𝐷
(u

ni
tle

ss
)

(b) 𝛼 dose profiles

140 150 160
0

1

2

⋅10−2

Depths (mm)

√
𝛽𝐷

(u
ni

tle
ss

)

(c)√𝛽𝐷 profiles

140 150 160
4

6

8

10

Depths (mm)
RB

E
(u

ni
tle

ss
)

(d) RBE profiles

Figure IV.23: Comparison of the homogeneous profiles and heterogeneity correction in combination with RBE

using both analytical and numerical convolutionmethods for𝑃mod = 250µm and 800µm.
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Figure IV.24: Absolute and relative differences between analytical and numerical convolution for𝑃mod = 250µm

and 800µm for absorbed and RBE-weighted dose. The position of the Bragg peak is annotated.
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IV.2.1.2 Sampling Technique Evaluation

This section covers the results of the evaluation of the density sampling technique and
comparison with analytical convolution. The workflows are detailed in Section III.2.2.3.

Equivalence with Convolution. Fig. IV.25 presents a comparison between the analytical
convolution method and the two density sampling methods, i.e., sampling only on the depth
dose and sampling on both depth and lateral components. However, the profiles obtained
from the two sampling methods show very little deviation with relative differences of 0.45%
and 0.60% before the peak for (𝐿 ⋅ sampling(𝑍)) and Sampling(𝐿 ∗ 𝑍), respectively. These
differences are increasing to 1.6% and 2.2% at the point where the dose has reached 10% of
the maximum dose.
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Figure IV.25: Absorbed depth dose profiles calculated directly from the protons_genericmachine data set (top).

Relative difference between both sampling methods and analytical convolution (bottom). For the degradation

correction, 28mmof lung tissuewith a density of 0.211 g/cm3was assumed, togetherwith amodulation power

of 800µm. Sampling was performed separately on the depth dose (𝑍) and the full absorbed dose (𝐿 ∗ 𝑍).

Oblique Angle Testing. Treatment plans were calculated and evaluated for Patient 3 (Sec-
tion III.2.2.3). Selected calculated quality indicators are shown in Fig. IV.26.
Overall, the oblique angle correction for this particular patient leads to quality indicators
closer to the analytical degradation model. The mean target dose decreased from the ho-
mogeneous case of 2.00Gy to 1.93Gy when using the analytical degradation model. The
sampling, however, showed mean doses of 1.95Gy without and 1.94Gy with oblique angle
correction. The mean dose therefore decreased by −3.4, −2.3 and −3.0% compared to the
homogeneous plan, respectively.
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Figure IV.26: Selected dose quality indicators in the PTV for Patient 3 and constant RBE using density sampling

with andwithout oblique angle correction. For an explanation of the graph, see Fig. III.21.

IV.2.2 Phantom Study

In this section, the developed lung phantoms (Section III.2.4.2) are employed to gauge
first dose distributions and treatment plans. Additionally, differences of the degradation
correction depending on different implementations of lung tissues are evaluated.

IV.2.2.1 Influence ofWEPL andModulation Power

In order to verify the basic concepts of degradation correction and test the consistency of the
results, a series of tests was conducted to gauge the influence of varying WEPL and 𝑃mod
on the mean dose delivered to the target. The workflow and evaluation were described in
Section III.2.5.2.
Fig. IV.27 shows the measured relative difference between the dose delivered to the target
between respective degraded and homogeneous dose distributions. Generally, an approx-
imately linear relationship between the strength of the degradation and the WEPL and
𝑃mod was observed. However, measured data exhibited larger fluctuations around the linear
fit. It is worth noting that the difference between APM and PB sampling is very low. The
values and fit measured for MCsquare differ from the ones calculated for the PB degradation
methods with an increasing difference with increasing degradation.
Values for the relative mean target dose were measured up to −1.5% in the rough respective
range of realistic WEPL values occurring in the patient data (Section III.2.4.1). The range of
modulation powers spans across the values reported in literature (Baumann et al. 2017; Burg
et al. 2021; Witt 2014) and caused relative target mean dose differences of less than −1%.
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Figure IV.27: Relative differences of the mean dose in the target between degraded and homogeneous dose

distributions as a function of theWEPL (a) and𝑃mod (b). Shown are the degradation corrections implemented

for PBs andMCsquare.

IV.2.2.2 Sampled Dose in Lung Tissue

A comparison of the absorbed depth dose profiles through lung tissue for CT resolutions
of 1, 2 and 3mm and modulation powers of 250 µm and 800µm is shown in Figs. IV.28a
to IV.28c. Tthere is little to no difference observed between degraded and homogeneous
absorbed depth dose profiles within the lung area for each modality, individually. However,
for TOPAS for a resolution of 1mm and a modulation power of 800 µm, the sampled dose in
lung was lower by −7.35% compared to the homogeneous depth dose. However, for TOPAS
for a resolution of 1mm and a modulation power of 800 µm, the sampled dose in lung was
−5.2·10−5Gy (−7.3%) lower compared to the homogeneous depth dose.

Figs. IV.28g to IV.28i show the binomial sampling distributions (using the beta approximation)
for the respective CT resolutions. Especially for the mentioned combination of 𝑃mod =
800µm and 1mm resolution, a significant binary separation in distinct values of 0 g/cm3

and 1.05 g/cm3 is visible. This stems from the voxel sampling parameter 𝑛 = 1.049 used in
the sampling distribution Eq. III.23. This separation is not apparent for higher 𝑛.

Figs. IV.28d to IV.28f shows RBE-weighted depth dose profiles in the lung area of the phantom.
Here, differences can be observed between sampling and homogeneous dose calculation
using TOPAS as well. However, a large drop in lung dose can be seen for MCsquare inde-
pendent of the grid resolution.

105



Chapter IV Results

Pencil Beam MCsquare TOPAS
sampling 𝑃mod = 800 µm sampling 𝑃mod = 800 µm sampling 𝑃mod = 800 µm
sampling 𝑃mod = 250 µm sampling 𝑃mod = 250 µm sampling 𝑃mod = 250 µm

60 80 100

6

7

8
⋅10−4

Depth (mm)

RB
E

×
D

os
e

(G
y)

(a) Constant RBE profiles for 1mm.

60 80 100

5

6

7
⋅10−4

Depth (mm)

(b) Constant RBE profiles for 2mm.

60 80 100
4

5

6

7 ⋅10−4

Depth (mm)

(c) Constant RBE profiles for 3mm.

60 80 100

0.6

0.8

1
⋅10−3

Depth (mm)

RB
E

×
D

os
e

(G
y)

(d) RBE-weighted profiles for 1mm.

60 80 100

0.6

0.8

1 ⋅10−3

Depth (mm)

(e) RBE-weighted profiles for 2mm.

60 80 100
4

6

8

⋅10−4

Depth (mm)

(f) RBE-weighted profiles for 3mm.

𝑃mod = 800 µm 𝑃mod = 250 µm

0 0.5 1
0
2
4
6
8

Sampled Lung Density (g/cm3)

co
un

ts
⋅1

05

(g) Sampled beta dist. for 1mm.

0 0.5 1
0
2
4
6
8

Samp. Lung Dens. (g/cm3)

(h) Sampled beta dist. for 2mm.

0 0.5 1
0
2
4
6
8

Samp. Lung Dens. (g/cm3)

(i) Sampled beta dist. for 3mm.

Figure IV.28: Comparison of the depth dose profiles through lung for CT resolutions of 1mm, 2mm and 3mm for

modulation powers of 250µm and 800µm (a-c). Area of lung tissue has been annotated ( ). (d-f) show the

RBE-weighted depth dose profiles. (g-i) show the binomial sampling distributions for CT resolutions of 1, 2 and

3mm. The central profiles were averaged over 13 × 13, 7 × 7 and 5 × 5most central voxels with decreasing

resolution to keep the physical distance of themeasured profiles constant.

Difference Between Central Profiles and IDD. Fig. IV.29 shows the comparison of the
averaged central profiles with the respective IDDs for constant and variable RBE. Notably, the
dose measured in central profiles of both MC engines decreases consistently while traversing
lung tissue, which cannot be observed for the analytical PB. However, for the IDDs, the
measured dose in lung increases in lung tissue similarly for all modalities. Additionally,
very good agreement between the modalities not only in lung, but also in the Bragg peak
region can be seen for the shown IDDs with near perfect alignment for constant RBE and
larger differences for variable RBE.
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(c) Variable RBE (MCN) averaged central profiles for 3mm.
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Figure IV.29: Comparison of averaged central profiles and IDDs for 𝑃mod = 800µm for constant and variable

RBE.Within each plot, the areas of lung tissue (left) and the Bragg peak (right) are highlighted.

IV.2.2.3 Spread-Out Bragg Peaks

This section presents the results of calculated SOBPs on a set of lung phantoms includ-
ing degradation correction. The workflow for protons and carbon ions is detailed in Sec-
tion III.2.5.3.

Protons. Fig. IV.30 shows a broad overview over the calculated dose distributions, display-
ing constant RBE-weighted dose slices through the isocenter together with their respective
absolute difference between the degraded dose and the respective homogeneous plan. In the
shown difference slices, the characteristic degradation behavior can be seen. It leads to the
typical underdosage at the distal end of the target and overdosage behind the SOBP for all
modalities. Larger fluctuating differences can be observed for density sampling in TOPAS
throughout the body of the phantom and the target volume. Additionally, this results in a
less cleanly modeled degradation.
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Figure IV.30: Overview of the proton dose distributions including degradation correction, calculated using con-

stant RBE for matRad, MCsquare and TOPAS. Shown are respective absolute dose differences, compared to

the homogeneous plan. For matRad, both analytical and sampled degradation correction are shown.

From the dose distributions, central depth dose profiles (Fig. IV.31a) were extracted. Good
agreement between the multiple modalities and degradation correction algorithms is ob-
served. The distal edge of the SOBP shows the typical degradation behavior. Notably, the
variable RBE-weighted dose profiles in lung tissue for TOPAS exhibit a smaller deviation be-
tween degraded and homogeneous dose. In lung tissue, the RBE-weighted dose inMCsquare
shows a large drop in dose, which has already been observed in Section IV.2.2.2.
This behavior is also visualized in the calculated DVHs (Fig. IV.31b) with large differences
between the three modalities. While for constant RBE, the DVH differences are mostly
confined to the upper edge of the dose volume curves, the variable RBE profiles display
drops in dose towards higher doses consistent with the calculated depth dose profiles.
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Figure IV.31: Central depth dose profiles for proton SOBPs using constant and variable RBE using theMCNmodel

(a). Profiles were calculated and averaging over the 7 × 7 central rays. The DVH is shown for the target (b).

Fig. IV.32 shows the relevant quality indicators for all calculated dose distributions within the
target. It demonstrates the change in mean, minimum and maximum dose with degradation
correction. While there are differences already present between the homogeneous dose
distributions, the behavior for the inclusion of degradation is consistent for each modality.
The mean dose to the target decreases together with the minimum dose and an increased
standard deviation. Relative differences between the degraded and the homogeneous target
doses were −0.82% and −0.84% for APM and PB sampling, respectively. Density sampling
in MCsquare and TOPAS resulted in relative differences of −0.73% and −0.75%. However,
the maximum dose did only substantially change for TOPAS.
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Figure IV.32: Calculated quality indicators within the target of the RBE-weighted proton dose distributions on

the homogeneous lung phantom using constant RBE. For a plot explanation, see Fig. III.21.
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Next to the dose quality indicators, the CI and HI were calculated. The CIs for constant and
variable RBE are presented in Figs. IV.33a and IV.33b. For constant RBE, the CI decreases
consistently when considering degradation for all modalities. Also, the CI for PB sampling
is equivalent to analytical convolution. However, the differences in the homogeneous plans
between the three modalities are in the same range of the differences due to degradation.
The CI for variable RBE increases slightly when considering degradation, indicating better
target conformity.
The calculated HIs for constant and variable RBE are presented in Figs. IV.33c and IV.33d
and displays the same behavior. The HI increases for constant RBE degradation, meaning
a less homogeneous dose distribution. Additionally, a lower HI (more homogeneous) was
recorded when considering degradation for variable RBE.
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Figure IV.33: Conformity Index (CI) andHomogeneity Index (HI) in the target for the calculated dose distributions

using PB,MCsquare and TOPAS. Degradation correction was included using density sampling in all modalities

as well as APM for PBs. Note that the y axis does not start at 0.

𝛾 pass rates were calculated for each method of degradation correction, comparing it to the
respective homogeneous dose. A comparison of the 𝛾 pass rate for the 3 evaluated phantoms
is shown in Table IV.2. Assuming a reference pass rate of 100% for the homogeneous plan,
the degradation exhibits a systematic decrease in the pass rate of ~3% to 5%. Generally,
smaller 𝛾 pass rates were recorded for variable RBE compared to constant RBE over the
whole CT. However, this is different for the target, which shows small to no changes in pass
rate. The pass rate even increases slightly for the heterogeneous and real lung phantom. In
the target, TOPAS shows the smallest 𝛾 pass rates of 89.7% to 91.2% for constant RBE.
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Table IV.2:𝛾pass ratesbetweenhomogeneousanddegradeddosedistributions for all 3 lungphantoms. MCsquare

and TOPAS always use the samplingmethod. 𝛾 pass rates were calculated using [3mm/3%] criterion with 0

interpolation points. Shown are the pass rates over the whole patient volume (a) and the target volume (b).

(a) 𝛾 pass rates over the whole CT.

Phantom PB APM PB sampling MCsquare TOPAS

A
bs
.D

./
co
ns
tR

BE

Hom 96.31 96.21 96.62 95.37
Het 95.57 95.84 96.08 94.94
Real 96.65 96.57 97.35 96.11
Carbon Real 96.79 96.59 93.45

va
rR

BE Hom 95.38 95.29 95.34 94.77
Het 94.63 95.51 95.51 93.28
Real 95.32 96.25 96.53 94.30

(b) 𝛾 pass rates in the target.

Phantom PB APM PB sampling MCsquare TOPAS

A
bs
.D

./
co
ns
tR

BE

Hom 93.33 93.30 93.33 89.72
Het 94.16 94.22 93.78 91.20
Real 93.69 93.90 93.69 90.25
Carbon Real 93.16 93.16 81.42

va
rR

BE Hom 93.33 93.33 93.33 92.09
Het 95.29 95.20 94.10 93.48
Real 94.61 94.40 93.81 92.36

Variable RBE-weighted SOBPs were calculated on the ”RealLung” phantom. Dose slices
through the isocenter are shown in Fig. IV.34 with their respective absolute difference
distributions. In contrast to the homogeneous phantom, there is a larger dose deposited
irregularly behind the target. This in turn leads to an irregular degradation pattern, which
is consistent between the different modalities and follows the shape of the dose pattern.
However, it still displays the typical under- and overdosage behavior, yet locally.

Fig. IV.35 shows dose quality indicators for the target of the real lung phantom. The character-
istic decrease in target mean dose can be seen for each modality and degradation algorithm.
Here, a consistent decrease in minimum dose was reported for constant RBE. For variable
RBE, the minimum dose remained constant with a significantly decreased maximum dose.
Again, differences between the quality indicators calculated for the homogeneous dose
distributions using the different modalities can be seen. They are in the same range or larger
than the differences originating from degradation.
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Figure IV.34:Overviewof theprotondosedistributions includingdegradationcorrection, calculatedusingvariable

RBE formatRad,MCsquare and TOPAS. Shown are respective absolute dose differences, compared to the

homogeneous plan. For matRad, both analytical and sampled degradation correction are shown.
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Figure IV.35: Quality indicators in the target of the RBE-weighted proton dose distributions on the ”RealLung”

phantom using constant RBE. Note the different y axis limits. For an explanation of the graph, see Fig. III.21.
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IV.2 Degradation Correction

Carbon Ions. For carbon ions, absorbed dose slices through the isocenter are shown in
Fig. IV.36 for the real lung phantom. The degradation calculations using PBs lead to a similar
degradation pattern already observed for protons, while exhibiting less additional dose
outside of the target area. The density sampling in TOPAS, however, lead to large dose
fluctuations, especially within the target and the lung tissue in the order of the differences
originating from the degradation.
Calculated 𝛾 pass rates can also be found in Table IV.2. There, similar pass rates were calcu-
lated compared to protons, albeit a much lower value of ~80% for the target in TOPAS. CIs
were 0.94 and 0.92 for PB and TOPAS, respectively. They decreased to 0.88 when considering
degradation. In a similar way, the HI increased from 5.56 to ~6.9 for PB and from 8.85 to
even 14.8 for TOPAS.
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Figure IV.36: Overview of the carbon absorbed dose distributions including degradation correction, calculated

usingmatRad and TOPAS. Shown are respective absolute dose differences, compared to the homogeneous

plan. For matRad, both analytical and sampled degradation correction are shown.

Fig. IV.37 shows central depth dose profiles and the DVH. Significant differences in the scored
dose within the lung tissue can be observed for TOPAS, together with a higher homogeneous
dose. Additionally, differences at the distal peak area are seen between PB and TOPAS that
are in the order of the differences introduced by degradation. These differences are reflected
in the DVH. Large differences are visible between the degraded and homogeneous dose
distributions, but also between homogeneous distributions calculated with PB and TOPAS.

113



Chapter IV Results

Pencil Beam APM sampling
TOPAS sampling

20 40 60 80 100 120 140 160
1.2

1.4

1.6

1.8

2

2.2

Depth (mm)

A
bs

or
be

d
D

os
e

(G
y)

(a) Central averaged depth dose profiles.

1.6 1.7 1.8 1.9 2 2.1 2.2
0

50

100

𝐷𝑝𝑟𝑒𝑠 = 2 Gy

Absorbed Dose (Gy)
Vo

lu
m

e
(%

)
(b) DVH

Figure IV.37: Central depth dose profiles for carbon SOBP absorbed dose distributions (a). The profiles were

calculated and averaging over the 7 × 7 central rays. Additionally, the DVH is shown for the target (b).

Finally, Fig. IV.38 shows the dose quality indicators. In contrast to the data already shown
for protons, the maximum dose of the PB degraded dose distributions falls within the
standard deviation of the mean dose. Regarding TOPAS, the maximum dose increases and
the minimum dose decreases drastically. However, the mean dose to the target is in good
agreement for the homogeneous dose distributions calculated using PBs and TOPAS while
also displaying the characteristic drop when considering degradation. Here, the decrease in
mean dose to the target amounted to −0.64% for PBs and −0.59% for TOPAS.
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Figure IV.38: Calculated quality indicators within the target of the absorbed carbon dose distributions on the

”RealLung” phantom. For a plot explanation, see Fig. III.21.
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IV.2 Degradation Correction

IV.2.2.4 Interdependence ofMCHistories andNumber of Samples

The used methods are detailed in Section III.2.5.4.
Fig. IV.39 shows a comparison of the dose difference between between homogeneous and
degraded dose distributions for PBs, MCsquare and TOPAS. Calculated differences relative
to the prescribed dose and 𝛾 pass rates are listed in Table IV.3.
For PBs and MCsquare, there was no visible difference between 100 and 500 samples for 108

samples with approximately the same 𝛾 pass rates and mean relative differences. However,
the switch to 109 samples for MCsquare then lead to smaller mean differences of 0.08%.
For TOPAS, 100/108 showed a lower 𝛾 pass rate compared to pencil beams by 1.3% with
mean local fluctuations in the plateau region and the target of 0.41%. The fluctuations
increased to 0.90% for 500/108 with a 𝛾 pass rate of 78.6%. For 500/109, the differences
decreased to 0.31% with a pass rate of 96.6%, approximately the same value measured for
PBs and MCsquare.

Table IV.3: 𝛾 pass rates between degraded and homogeneous, constant RBE-weighted dose distributions cal-

culated using PBs, MCsquare and TOPAS for combinations of 100 and 500 samples as well as 108 and

109 histories. Also shown are themean differences relative to a prescribed dose of 2Gy.

Modality 100 Samp. / 108 Hist. 500 Samp. / 108 Hist. 500 Samp. / 109 Hist.

𝛾 (%) Diff. (%) 𝛾 (%) Diff. (%) 𝛾 (%) Diff. (%)

Pencil Beams 96.5 0.03 96.6 0.03 - -

MCsquare 96.6 0.17 96.6 0.17 96.6 0.08

TOPAS 95.4 0.41 78.6 0.90 96.6 0.31
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Figure IV.39: Comparison of the density sampling depending on number of samples and total histories in MC

simulations. Shown is the absolute difference between degraded and homogeneous dose. ForMC, the homo-

geneous dose was calculated using 108 samples. For reference, the difference is also shown for PBs, that only

depends on the number of samples.
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IV.2 Degradation Correction

IV.2.3 Patient Treatment Plans

In this section, treatment plans are evaluated that were calculated on the four selected patient
data sets. Treatment plans for all patients were calculated using protons, a treatment plan
for Patient 2 was calculated using carbon ions. A description about the workflow is detailed
in Section III.2.6.

IV.2.3.1 Protons

Calculated proton dose distributions for all forms of degradation correction are shown in
Figs. IV.40 to IV.43 together with 𝛾 index distributions for constant and variable RBE. Shown
are distributions for analytical convolution (APM) and density sampling for PB, MCsquare
and TOPAS. 𝛾 pass rate distributions were calculated for all patients and are also shown.
Visually, there is good agreement between the dose slices of all 4 different degradation
correction methods. The 𝛾 pass rate distributions are most consistent between both PB
methods with larger pass rates – meaning smaller degradation influences – for both MC
engines, especially MCsquare. Also, the recalculation using variable RBE lead to only small
changes compared to constant RBE, both visually and in 𝛾 pass rates.
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Figure IV.40: Comparison of patient dose distributions for Patient 1. Shown are degraded constant RBE-weighted

dose distributions through the isocenter for APM, density sampling and 𝛾 pass rate.
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Figure IV.41: Comparison of patient dose distributions for Patient 2. Shown are degraded constant RBE-weighted

dose distributions through the isocenter for APM, density sampling and 𝛾 pass rate.
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Figure IV.42: Comparison of patient dose distributions for Patient 3. Shown are degraded constant RBE-weighted

dose distributions through the isocenter for APM, density sampling and 𝛾 pass rate.
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Figure IV.43: Comparison of patient dose distributions for Patient 4. Shown are degraded constant RBE-weighted

dose distributions through the isocenter for APM, density sampling and 𝛾 pass rate.
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𝛾 Pass Rates. The calculated 𝛾 pass rates for the whole CT and the PTV for all patients
are summarized in Fig. IV.44. In comparison with the pass rates calculated for the 3 lung
phantom cases the median pass rates were approximately the same, with lower mean pass
rates and a much larger variance. Especially in the target, smaller pass rates with a larger
variance were measured for the patient cases with pass rates in the PTV from approximately
45% to 95%. The lowest pass rates were measured for Patient 3, located consistently below
the lower quartile. Lowest measured values for the phantoms, however, were only as low as
90%. In the target, Patient 4 shows values consistently larger than the median.
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Figure IV.44:Measured 𝛾 pass rates between degraded and homogeneous treatment plans for the 4 different

patient data sets (a). Due to the limited data size, data points were overlaid using a scatter plot with jitter. To

compare, the𝛾 pass rates for the 3 lung phantoms are shown in (b). Note that (b) has narrower y axis bounds.

Pass rates were calculated using a [3mm/3%] criterionwith 0 interpolation points. Results for carbon ions are

shown for reference, but are not included in the box plot.
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LET Distributions. For Patient 3, larger differences for variable RBE-weighted distribu-
tions were observed especially for the homogeneous dose distribution calculated with MC-
square. To visualize these differences, variable RBE-weighted dose distributions are shown
in Figs. IV.45 to IV.48 together with their respective LET distributions. Additionally a TOPAS
distribution is shown that was directly recalculated based on the scored LET.
While larger differences between PBs andMC are apparent, the directly scored RBE-weighted
TOPAS dose in the target visually matches the dose calculated with the PB algorithm. For
MCsquare, a lower target dose compared to the other modalities was measured. At the same
time, however, the LET scored by bothMC engines is consistent and differs significantly from
the analytically calculated LET. This results in a recalculated TOPAS dose much closer to the
MCsquare dose distribution that differs significantly from the directly scored distribution.

18

24

30

36

Y
(c

m
)

PB MCsquare TOPAS TOPAS recalc.

0

2

4

6

8.75

RB
E

×
D

os
e

(G
y)

12 18 24 30

18

24

30

36

X (cm)

Y
(c

m
)

12 18 24 30
X (cm)

12 18 24 30
X (cm)

0

5

10

15

LE
T

(k
eV

/µ
m

)

Figure IV.45: Comparison of patient LET distributions for Patient 1. Shown are homogeneous RBE-weighted dose

distributions for PB,MCsquare and TOPAS, as well as corresponding LET distributions. Also displayed is the

TOPAS dose distribution recalculated from LET.

121



Chapter IV Results

12

18

24

30

Y
(c

m
)

PB MCsquare TOPAS TOPAS recalc.

0
2
4
6
8

11.07

RB
E

×
D

os
e

(G
y)

24 30 36 42

12

18

24

30

X (cm)

Y
(c

m
)

24 30 36 42
X (cm)

24 30 36 42
X (cm)

0

5

10

15

LE
T

(k
eV

/µ
m

)

Figure IV.46: Comparison of patient LET distributions for Patient 2. Shown are homogeneous RBE-weighted dose

distributions for PB,MCsquare and TOPAS, as well as corresponding LET distributions. Also displayed is the

TOPAS dose distribution recalculated from LET.
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Figure IV.47: Comparison of patient LET distributions for Patient 3. Shown are homogeneous RBE-weighted dose

distributions for PB,MCsquare and TOPAS, as well as corresponding LET distributions. Also displayed is the

TOPAS dose distribution recalculated from LET.

122



IV.2 Degradation Correction

12

18

24

30

Y
(c

m
)

PB MCsquare TOPAS TOPAS recalc.

0

0.5

1

1.5

2

RB
E

×
D

os
e

(G
y)

12 18 24 30

12

18

24

30

X (cm)

Y
(c

m
)

12 18 24 30
X (cm)

12 18 24 30
X (cm)

0

5

10

15

LE
T

(k
eV

/µ
m

)

Figure IV.48: Comparison of patient LET distributions for Patient 4. Shown are homogeneous RBE-weighted dose

distributions for PB,MCsquare and TOPAS, as well as corresponding LET distributions. Also displayed is the

TOPAS dose distribution recalculated from LET.
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DoseQuality Indicators. The dose quality indicatorsmean dose, D5 andD95 were evaluated
for all 4 patients and compared between homogeneous and degraded dose distributions.
The resulting relative differences are presented in Fig. IV.49.
For the patient mean target dose difference, larger values were observed compared to the
previous SOBP degradation experiments (Fig. IV.27). However, the values were within a
similar range and consistently negative. It was found, that the degradation reduced the mean
dose to the lung by approximately −1% in the median with larger differences observed for
TOPAS and RBE. In the target, the median dose difference amounted to 1.9%. Here, Patient
3 displayed the most pronounced differences, while the smallest differences were observed
for Patient 2. The OAR mean dose increased considerably in almost all cases. Substantial
differences up to 80% were calculated for Patient 1 with even larger values up to 170%
(outside of the plotted range) for Patient 3. Albeit the extensive range of values, the median
values for the OAR were 7.5% and 6% for constant and variable RBE, respectively.
Relative differences of the D5 were mostly negative in the low percent range, spanning over
a large range of values without a pattern for any single patient. The target maximum dose
was reduced by −1.1% in the median by the degradation, with the reduction doubling for
variable RBE. In lung, the maximum dose was reduced by −2.7% and −3.0% in the median.
The outliers visible especially for the measured lung D5 differences were attributed to Patient
3, displaying an increase in maximum dose with degradation. Extreme relative differences
were observed for the OARs with outliers for Patient 4 with medians of 14.8% and 17.3% for
constant and variable RBE, respectively.
The minimum dose D95 in the target decreased when including degradation with differences
of −3.9% for constant RBE and −2.6% for variable RBE. Larger differences with significant
variations in the −20% to −80% were measured in lung and OAR.
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(a) Box plots and underlying data for the relativemean dose differences.
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(b) Box plots and underlying data for the relative D5 differences.
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(c) Box plots and underlying data for the relative D95 differences.

Figure IV.49: Selected quality indicators mean dose (a), D5 (b) and D95 (c). Relative dose differences were calcu-
lated between degraded and homogeneous treatment plans for the 4 different patient data sets. Due to the

limited data size, data points were overlaid using a scatter plot with jitter. Data for the 4 different patients

were individually color coded. Values outside of the plotted range were displayed as empty circles at the edge.

Results for carbon ions are shown for reference, but are not included in the box plot.
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Conformity andHomogeneity Index. Similar to the SOBP investigations, CI and HI were
calculated and are displayed in Fig. IV.50. Largely, the behavior when including degradation
is consistent with the previous investigations. CI differences with significant variations of
−47.5% to 0.9% with a median of −8.1% were measured. For RBE, the median CI difference
was again positive with 2.9%. However the variation of values is considerable with values
ranging from −34.8% to 20.5%.
The HI increased significantly for constant RBE by 27.6% in the median but did not decrease
in the same way for variable RBE compared to SOBPs. Instead, it shows a positive median
relative difference of 15.4%.
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Figure IV.50:Measured conformity index and homogeneity index differences between degraded and homoge-

neous treatment plans for the 4 different patient data sets (Patient 1 to Patient 4). Due to the limited data size,

data points were overlaid using a scatter plot with jitter. Data for the 4 different patients were individually

color coded. Results for carbon ions are shown for reference, but are not included in the box plot.
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IV.2.3.2 Carbon Ions

In addition to the proton plans, a treatment plan using carbon ions was generated for Patient
3. Fig. IV.51 shows the homogeneous absorbed and RBE-weighted dose distributions for PBs
and TOPAS. Also shown are absolute dose differences and 𝛾 pass rate distributions over the
whole CT. Differences can be observed especially in lung with minor overdosing proximal
to the tumor for beams 2 and 3 and severe underdosing proximal and distal to the tumor for
beam 1. Calculated pass rates were 74.9% and 65.3% for absorbed and RBE-weighted dose,
respectively.
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(b) Carbon RBE-weighted dose distributions.

Figure IV.51: Comparison of homogeneous patient carbon dose distributions for Patient 3 calculated using pencil

beams and TOPAS. Shown are both the absorbed dose (a) and RBE-weighted dose (b).

Degraded dose distribution slices through the isocenter are shown in Fig. IV.52. Visually, the
dose distributions display good agreement with each other with larger deviations for the
dose in TOPAS. This behavior is reflected in the 𝛾 pass rate distributions. Calculated pass
rates over the whole CT showed similar values compared to Patient 3 calculated with protons
albeit slightly but consistently lower, for both absorbed and RBE-weighted dose distributions.
In the same way, pass rates decreased further when transitioning to RBE-weighted dose.
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Figure IV.52: Comparison of patient carbon degraded dose distributions for Patient 3. Shown are degraded

RBE-weighted dose distributions through the isocenter for APM aswell as density sampling for PB,MCsquare

and TOPAS. Additionally, 𝛾 pass rate distributions are shown for absorbed and RBE-weighted dose with

documented pass rates over the whole CT.

128



IV.2 Degradation Correction

IV.2.3.3 (N)TCPModel Considerations

Fig. IV.54 shows DVHs for Patient 1 to Patient 4, including EUD volume histograms calculated
analytically calculated using APM using the Niemierko NTCP model.

For all patients, calculated TCP values were approximately 100% with slightly lower TCP
of 99.8% and 99.9% for Patient 3 and Patient 4, respectively. For Patient 1, Patient 2 and
Patient 4, calculated NTCP values in most OARs were below 10−6% and therefore neglected.
Only lung in Patient 1, Patient 2 and Patient 4, as well as the esophagus in Patient 4 showed
non-negligible NTCP values. The exact values are listed in Table IV.4.

Patient 4 showed NTCP values in the esophagus of 1.9%, 2.7% and 2.3% for analytical PBs,
MCsquare and TOPAS, respectively, with the highest EUDs in all patients of 53Gy to 54Gy.
In lung, the NTCP was largest for PBs with up to 5.0% in Patient 1 and 3.7%in Patient 2 with
much lower vaules for both MC engines in the range of approximately 1% to 2%.

Even for the very lowneglected values, the lung tissue toxicity decreased consistently formost
patients and modalities by approximately −22% in the median (Fig. IV.53), only increasing
for the analytical degradation for carbon ions using APM. This is reflected in the calculated
EUDs that showed a consistent degradation of −3% in the median. For OARs, values of
the EUD and NTCP consistently increased for Patient 1 and decreased for Patient 3. Overall,
however, this behavior is inconsistent with a median difference of 0.0%.

Median 25 % − 75 %
Mean 9 % − 91 %

Patient 1 Patient 2
Patient 3 Patient 3 Carbon
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Figure IV.53: Box plot of relative differences in the EUD andNTCP between degraded and homogeneous dose

distributions for lung andOARs. For protons and carbon ions, constant RBE and LEMwere used, respectively.

Due to the limited data size, data points were overlaid using a scatter plot with jitter. Results for carbon ions

are shown for reference, but are not included in the box plot.
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(c) DVH for Patient 3.
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(d) CarbonDVH for Patient 3.
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(e) DVH for Patient 4.

Figure IV.54: DVHs for all patients, calculated from constant RBE-weighted dose distributions. If data was

available, OARs curves were recalculated using the Niemierko NTCPmodel.

130



IV.2 Degradation Correction

Table IV.4: TCP andNTCP data (in %) calculated for the OARs and PTV for each patient andmodality. For missing

values, no NTCPmodel data or modality was available.

ID OAR PB PB APM PB Spl. MC2 MC2 Spl. TOPAS TOP. Spl.

Pa
tie

nt
1

Lung 5.03 3.39 3.86 2.17 1.77 1.89 1.52

Esophagus 1.7·10−18 5.4·10−18 2.2·10−18 3·10−26 6·10−25 1·10−25 3·10−25

CAW1 - - - - - - -

Heart 9·10−38 9·10−38 9·10−38 9·10−38 9·10−38 9·10−38 9·10−38

PTV 100 100 100 100 100 100 100

Pa
tie

nt
2

Lung 3.66 2.57 2.69 2.07 1.58 1.83 1.32

Heart 9·10−40 9·10−40 9·10−40 9·10−40 9·10−40 9·10−40 9·10−40

CAW1 - - - - - - -

CR2 - - - - - - -

PTV 100 100 100 100 100 100 100

Pa
tie

nt
3

Lung 3.1·10−8 2·10−8 2.2·10−8 1.7·10−8 1.3·10−8 1.5·10−8 1.2·10−8

CAW1 - - - - - - -

Aorta 4.7·10−7 1.8·10−7 2.1·10−7 7.3·10−8 6.4·10−8 4.4·10−8 4.1·10−8

Heart 5·10−39 5·10−39 5·10−39 5·10−39 5·10−39 5·10−39 5·10−39

Esophagus 1·10−54 1·10−54 1·10−54 1·10−54 1·10−54 1·10−54 1·10−54

PTV 99.91 99.86 99.87 99.87 99.77 99.84 99.77

Pa
tie

nt
4 Lung 1.1·10−2 9.6·10−3 9.9·10−3 1.1·10−2 9.7·10−3 1.0·10−2 8.9·10−3

Heart 1·10−22 1·10−22 1·10−22 1·10−22 1·10−22 2·10−22 2·10−22

Esophagus 1.87 1.87 1.87 2.68 2.70 2.30 2.59

PTV 99.92 99.91 99.91 99.92 99.91 99.92 99.91

Pa
tie

nt
3
ca
rb
on

Lung 9.7·10−8 1.1·10−7 7.9·10−8 - - 2.9·10−8 1.6·10−8

CAW1 - - - - - - -

Aorta 9.4·10−8 5.2·10−8 5.4·10−8 - - 3.2·10−8 3.1·10−8

Heart 8·10−40 8·10−40 8·10−40 - - 9·10−40 1·10−39

Esophagus 1·10−55 1·10−55 1·10−55 - - 1·10−55 1·10−55

PTV 99.90 99.90 99.87 99.79 99.75 99.79 99.75

1 CAW – Central AirWays.
2 CR – Central Region.
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Ions such as protons and carbon ions possess unique properties that make them highly
effective for cancer treatment. They exhibit sharp depth dose profiles with a pronounced
Bragg peak as well as increased radiobiological effectiveness (Allen et al. 2011; Byun et al.
2021; Durante et al. 2021). This peak allows for a confined, high dose to be delivered to the
tumor with minimal collateral damage to healthy tissue and improved clinical outcome (Kim
and Wu 2021; Kiseleva et al. 2022; Malouff et al. 2020; Qi et al. 2015). This precision, however,
also means that even microscopically small range shifts can accumulate to significantly
impact the conformity of the delivered dose (Byun et al. 2021).
Due to the complex nature of lung tissue with its highly localized density variations, accurate
dose calculation is challenging (Pasciuti et al. 2011). Analytical PB algorithms are commonly
used in treatment planning due to their computational efficiency, providing a useful first
approximation of the dose distribution and enabling rapid adjustments during the initial
stages of planning (Oelfke and Scholz 2006). However, PB algorithms struggle to accurately
model the lateral and local density variations in lung tissue, often leading to inaccurate
modeling of scattering effects, where MC algorithms result in improved treatment quality
(Elcim et al. 2018; Grassberger et al. 2014; Yepes et al. 2018). This is particularly problematic
in lung tumors, where these algorithms have been found to consistently overestimate the
delivered dose by up to 46% (Taylor et al. 2017). These inaccuracies occur even without
considering the degradation effects caused by sub-CT-resolution structures.
Dose degradation can diminish some of the key benefits of particle therapy. Microscopic
tissue inhomogeneities cause local changes in the WET, leading to a broadening of the Bragg
peak. This broadening effect can result in a loss of dose conformity, causing under-dosage of
the tumor and unwanted dose distal to the target (Sawakuchi et al. 2008; Urie et al. 1986).
While MC simulations offer improved modeling of these effects compared to analytical PB
algorithms, current treatment planning systems lack sufficient information about sub-CT-
resolution structures to accurately predict these degradation effects. Additionally, despite
the advancements and evolving use of MC in dose calculation (Jahnke et al. 2012; Lysakovski
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et al. 2024; Perl et al. 2012; Schiavi et al. 2017; Souris et al. 2016), analytical algorithms remain
essential in clinical practice due to their speed and utility in providing an overview of the
dose distribution (Chen et al. 2014).
This thesis investigated the impact of particle dose degradation due to tissue inhomogeneities
in lung cancer patients: theoretically, on simple geometries, and through analysis of patient
treatment plans. This was done in two main parts: the validation of the MC interface and the
subsequent implementation of degradation correction algorithms. Therefore, the findings
will also be discussed based on these two major parts.

V.1 Validation of theMonte Carlo Interface

To assess the impact of dose degradation depending on ion type and to explore potential
differences between analytical and MC-based algorithms, a comprehensive MC framework
was needed. Since commercial systems can rarely be modified, the first step in this work
was the implementation of this MC interface for the matRad treatment planning system
and its validation against analytical PBs using both simple geometries and patient data.
The interface integrates two MC engines, MCsquare and TOPAS, enabling the calculation
of proton, helium, and carbon ion absorbed and RBE-weighted dose distributions within
the matRad environment. In this section, the development process of the MC interface
is discussed, with example calculations starting from single Bragg peaks to evaluate the
accuracy of newly developed machine data sets, over SOBPs and extending to full lung
patient plans Section IV.1.

V.1.1 Development and Characterization ofMachine Data Sets

To ensure the best possible agreement between MC simulations and analytical PBs in homo-
geneous dose distributions, new generic machine data sets suitable for research purposes
were required. This involved developing machine data sets for both protons and carbon ions
based on fitted TOPAS simulations. These data sets were tested using single Bragg peaks
simulated through the interface, resulting in very good agreement, despite using a stringent
𝛾 criterion. This is consistent with other publications comparing and commissioning MC
codes, finding good agreement especially for simple geometries (Carrier et al. 2004; Deng
et al. 2020; Huang et al. 2018; Newpower et al. 2019; Perl et al. 2012).

Lateral andDepth Dose Profiles. Overall, while generating longitudinal results consistent
with TOPAS, MCsquare was found to show the largest difference in the lateral profile.
This is likely due to MCsquare being optimized for a high computational speed, sacrificing
detail in the interaction models compared to slower general purpose MC engines like TOPAS,
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which was used to generate the dataset. Additionally, using the dataset, it is unsurprising
that longitudinal and lateral profiles in water showed good agreement between matRad and
TOPAS.
For carbon ions, however, small differences were observed in the peak dose for both absorbed
and RBE-weighted dose for increasing particle energy. Generally, the lateral beam modeling
for ion beams is highly complex and efforts have been made to improve upon the simple
Gaussian modeling using a double Gaussian parameterization, which is also used in this
work (Parodi et al. 2013). The lower dose calculated using PBs could therefore be attributed
to a slightly incorrect lateral dose fit or an incorrect air/vacuum scattering before entering
the phantom, since MC would typically experience larger scattering. For both proton and
carbon ion data, the fitting and implementation of the lateral profiles were identified as the
main source of error during the generation of the data.

Applied Kernel Resolution. The resolution of the stored machine data was reduced from a
constant 0.1mm simulation grid to a dynamic grid based on the position of the Bragg peak.
This adjustment not only drastically reduced the data points, resulting in faster calculation
times, but also smoothed variations in the low-dose regions without compromising the
accuracy. This lead to a simpler, less error-prone APM fit and corresponding matRad
calculations.

V.1.2 Comparison of Treatment Plans

This section discusses the calculated treatment plans for validation of the MC interface.
This includes simple SOBPs on box phantom geometries (Section IV.1.2) and more complex
patient cases (Section IV.1.3).

Spread-Out Bragg Peaks. The minimal variations observed for single Bragg peaks extend
to SOBPs, with consistently high 𝛾 pass rates often close to or reaching 100% for both protons
and carbon ions. In the case of carbon ions, statistical dose variations within the target area
were noted for the TOPAS dose, suggesting an insufficient number of simulated particles.
Usually, however, the used 108 histories are deemed adequate for this geometry, especially
considering the long computation times for carbon ions (Perl et al. 2012; Souris et al. 2016;
Uyar and Günekbay 2023). For both ions, but especially for carbon ions, the SOBPs showed
systematic underdosing of the target and overdosing distal to the target, with a less steep dose
falloff. This could originate from the more realistic scattering employed for MC, consistent
with the lateral uncertainties observed in the shown dose slices.
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Prostate Phantom. For the prostate phantom, a notable underestimation of the proton dose
by matRad’s PB algorithm was observed when compared to MC dose distributions. There
was, however, very good agreement between the two used MC engines. The differences
predominantly occurred at the interfaces between regions of high and low dose, which
could potentially lead to over- or underdosing depending on the specific location of the
OARs. These findings were consistent with the results observed for SOBPs. For the non-lung
patients, the larger local lateral differences, resulting slightly worse 𝛾 pass rates, may be
caused by a different scattering in non-homogeneous tissues and interfaces. These interfaces
are especially difficult tomodelwith regular PB algorithms and aremore accurately described
using MC (Meder 2020; Schaffner et al. 1999).

Transition to RBE-weightedDose Calculation. When examining variable RBE-weighted
dose distributions, larger differences were found between the MC simulations and the an-
alytical PB model, particularly beyond the tumor region and for MCsquare. This effect
is particularly pronounced in lung tissue, where increased scattering could result in a re-
duced deposited dose or, more likely, substantial local LET differences. These would be
consistent with the evaluations discussed in Section V.1.3. When comparing the different
RBE models MCN and WED, both result in similar deviations compared to constant RBE.
However, the differences between the models were small compared to the differences ob-
served between the used modalities. This is consistent with other comparisons, where
the different RBE models show consistent deviations (Giovannini et al. 2016; McNamara
et al. 2020a). Generally, the prediction of parameters for the mentioned RBE models suffers
from large uncertainties in the underlying data, as well as questionable relevance of in vitro
experiments to real patients (McNamara et al. 2020a; McNamara et al. 2015; Paganetti 2014;
Wedenberg et al. 2013). Therefore, it is challenging to derive valid general predictions for
tumor control and toxicities.

Carbon Ions. In the liver case with carbon ions, the same general differences were observed
compared to the proton plans, suggesting a systematic difference between MC and PB in
those regions. Local dose differences within the target were particularly noticeable in the
distal region, leading to substantial differences in the DVH. The lateral statistical variations
are clearly visible in the 𝛾-index distribution, particularly in the entrance channel, and could
be attributed to insufficiently accurate modeling of the lateral beam profile. This is supported
by independent absorbed dose calculations on the liver phantom using matRad and MC
(Zhang et al. 2022). This could be improved by using a triple Gaussian or double Gaussian-
logistic model (Inaniwa et al. 2014; Zhang et al. 2022). The lower 𝛾 pass rate for RBE-weighted
dose distributions compared to absorbed dose suggest that the local differences are enhanced
by a locally different RBE calculation.
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V.1.3 LET-Based RBE Recalculation

In water, the RBE-weighted dose distributions calculated for PBs and in TOPAS were com-
pared with separate RBE-weighted dose calculations based on the calculated LET dis-
tributions. For PBs in matRad, as expected based on the nature of the analytical algo-
rithm, the differences were within numerical accuracy. Surprisingly, the two RBE-weighted
dose distributions for TOPAS showed almost constant differences especially in the target.
Because the RBE model is implemented in the same way using the same parameters, the
differences could instead arise from a potentially different implementation of the RBE cal-
culation from the LET, where TOPAS intrinsically uses Eq. II.17 while the recalculation in
matRad is based on Eq. II.16.
The calculated LET depth profiles agreed well, especially considering the different methods
of calculating LET. In this thesis, similar to other work (Tilly et al. 2005), the analytical PB
dose calculation in matRad used interpolated LET data scored by TOPAS in a water phantom.
Currently, there are multiple definitions for the LET but no clinical concensus (Hahn et al.
2022; Kalholm et al. 2021). TOPAS reports density normalized, dose averaged LET (Granville
and Sawakuchi 2015), while MCsquare reports rSP-weighted LET (Deng et al. 2020). It was
found that different methods lead to substantially different reported LETs, that could impact
the calculation of RBE-weighted dose (Smith et al. 2021). However, various validations of
the proton LET using TOPAS and MCsquare against other TPSs and measurements were
done in water with overall good agreement (Deng et al. 2020; Polster et al. 2015; Wagenaar
et al. 2020). The results in this thesis are consistent with these findings. However, MCsquare
still reported an overall lower LET for high-LET regions compared to TOPAS and a higher
LET for low-LET regions.
A recalculation test performed on a homogeneous lung phantom showed that the TOPAS
LET could be adjusted to generate vastly different LET and therefore RBE-weighted dose
within lung tissue. There, the direct scoring using density normalized LET showed RBE-
weighted doses in lung similar to PBs, while a manual weighting with the rSP resulted in
LET and RBE distributions similar to MCsquare. This could lead to a significant under- or
overestimattion of the RBE-weighted dose in lung with the used variable RBEmodels. This is
especially problematic if the planning target volume for lung tumors includes a large amount
of healthy lung tissue (see Patient 3, Fig. IV.47), potentially leading to serious differences in
the RBE-weighted dose.

Overall, the differences between the calculated LET distributions, as well as the correspond-
ing LET values, are negligible in water. Potential benefits of calculating the RBE-weighted
dose directly on the reported LET outside of the MC engine could include features such
as the consideration of individual α/β per voxel without separate implementation in the
respective MC engine. However, accurate LET and therefore RBE-weighted dose calculation
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might be impacted in lung tissue and potentially other tissues where the LET calculation is
complex. As a result, any recalculation of RBE based on LET, e.g. to utilize different RBE
models, should be regarded as inconsistent in lung tissue, where LET scoring is most likely
compromised by local density variations and increased scattering.

V.1.4 Postprocessing of the Particle Spot List

Originally, the removal of spots in treatment plans was investigated and implemented due to
constraints in TOPAS. In some cases, distributing particle current to the spots based on the
individual weights could lead to some spots with low weights to be automatically removed,
without reoptimization. This lead to a substantial degradation of the plan quality, which is
consistent with literature (Zhu et al. 2010). It is therefore imperative to reoptimize the plan
after the postprocessing or include the removal of the spots in the optimization process.

The postprocessing applied in this work was chosen to use a conservative 3% mean spot
weight threshold, that removed spots below the weight limit between two optimizations of
the complete plan. This approach was implemented as a first step, but there is potential for
further development and implementations of this technique. The impact of the removal on
beam spots on time consumption may vary depending on the specific MC engine used, as
well as the extent of code optimizations. However, this technique also offers advantages in a
clinical setting. As a result, similar systems are already implemented in current TPSs such
as RayStation1 (Janson et al. 2024).

V.2 Degradation Correction

This section discusses the development, implementation, and impact of degradation correc-
tion as covered in Section IV.2. As the secondmain focus of this thesis, degradation correction
algorithms were implemented in the developedMC interface and subsequently explored and
evaluated. This involved an analytical algorithm, which applied an analytical convolution
to the depth dose profile subdivided with fitted Gaussian profiles (Winter et al. 2020), as
well as a more general density sampling method for both PBs and MC based on Titt et al.
(2015) and Baumann et al. (2017). Following a theoretical examination of the implementation,
various degradation correction algorithms were tested on simple box phantom geometries,
incorporating different complexities of lung tissue, as well as on a set of four representative
lung cancer patients.

1RaySearch Laboratories, Stockholm, Sweden
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V.2.1 Implementation of Degradation Correction

Implementation of Analytical and Numerical Convolution. The implementation of the ana-
lytical convolution model, while being certainly more precise than a numerical convolution,
relies on pre-fitted APM depth dose kernels, which is fast during dose calculation, but intro-
duces an additional error source, that increases with the particle energy (see Section III.2.3.1).
The uncertainty introduced by fitting multiple Gaussians then propagates through to the
degraded Bragg peak. Wieser et al. (2017a) reported 0.25% mean difference for 𝛼𝐷 and
0.06% for √𝛽𝐷 of the fit relative to the reference data. The differences measured in this
thesis are in good agreement with these values, the fits could even be improved for 𝛼𝐷.
However, it has to be noted that pre-fitted data was used for inital fit parameters, so a ”new”
fit could lead to larger relative differences. It should be noted, however, that pre-fitted data
was used for the initial fit parameters, which means an independent fit may lead to larger
relative differences.
Depending on the used modulation power, the differences of analytical and numerical
convolution relative to the homogeneous dose were in a similar range compared to the
differences introduced by the APM fit routine. This suggests that it may not always be
necessary to invest in the preparation of APM compatible data sets. In contrast, degradation
correction based on numerical convolution does not require prefitted data and was tested
with similar, if not faster, runtimes, making it a practical choice in many scenarios. However,
these considerations are only for degradation, since the APM framework may already be in
use for other implementations of uncertainties and robust optimization (Bangert et al. 2013).

Binomial Voxel Sampling Technique. The direct binomial sampling is a simple model that
can utilize different local voxel densities and modulation powers on the fly. Multiple ap-
proaches have been developed based on the assumption of a binomially distributed radiolog-
ical depth made by Titt et al. (2015) (Baumann et al. 2017; Winter et al. 2020). However the
binomial sampling directly represents this proposition. The discrete binomial distribution
was approximated using a continuous beta distribution that preserves the intrinsic properties
of the binomial distribution.
This results in a generalized, simple and easy to implement voxel sampling model that can
be employed for dose calculation using both PBs and MC. In contrast, the rather artificial
Poisson distribution used in Baumann et al. (2017) requires separate optimization for each
specific combination of modulation power and average lung voxel density.
The equivalence of the developed beta sampling method with the convolution-based ap-
proach was demonstrated on manual calculations using the machine data. A comparison
with the convolution method showed small differences in the range of 1% to 2% behind
the initial drop of the Bragg peak. It was found that the sampling being done solely on the
depth dose (𝐿 ∗Sampling(𝑍)) compared to sampling of the total dose (Sampling(𝐿 ∗ 𝑍)) lead

139



Chapter V Discussion

to visually indistinguishable results. Additionally, the sampling on the total dose leads to
a systematic pattern in the resulting relative differences compared to the depth sampling.
However, these differences likely originated from uncertainties in the scored depth dose
profiles for the generation of the machine data set and fitting of the lateral profiles.

Oblique Angle Correction. Interestingly, implementing the oblique angle correction re-
sulted in much better agreement with the analytical APM calculation. The average distance
traveled through a voxel depends on the incident angle. This is implemented in the convolu-
tion by means of ray tracing to measure the WET for each affected beam. In the sampling
method, the image cube itself is modulated, independent of the incident beam. However,
this correction was not applied in this thesis due to the complexity of the integration in MC
engines, where individual image cubes would have to be used for each beam in addition to
the different sampling cubes. The lack of oblique angle correction likely leads to an underes-
timation of the degradation effects using the sampling method. Consequently, if sampling
techniques continue to be used, it will be important to include the mentioned correction for
oblique angles, particularly for patients with multiple beams.

Validity of theUsedModulation Power. The degradation effects observed in phantoms and
patients used in this thesis are likely overestimated due to the use of a modulation power of
800 µm, which is considered a worst-case scenario in the literature (Baumann et al. 2017; Burg
et al. 2021; Flatten et al. 2019). Even with this extreme value, the observed degradation was
minimal. Newer measurements revealed that modulation power values are typically in the
range of 100 µm to 250 µm (Burg et al. 2021). The large uncertainty of this value, combined
with its importance in current degradation correction algorithms, suggests that the impact
of degradation calculated in this thesis may overestimate the actual effect in clinical reality,
where the impact is expected to be much smaller.

Number of Histories per Sample. The evaluation of 100 samples and 500 samples for 108

and 109 total histories revealed substantial differences in the 𝛾 pass rate for TOPAS. Increasing
the number of density samples without adjusting the MC histories did not result in better 𝛾
pass rates. However, increasing the histories to 109 resulted in overall smaller mean dose
differences in both MC engines, closer to the ones calculated for PBs, as well as significantly
better 𝛾 pass rate for TOPAS. It can be concluded that the accuracy of the resulting dose
distributions is mainly dependent on the histories per density sample. For more samples,
the histories have to be increased accordingly to avoid loosing beam spots due to the lower
particle count per sample.
Especially for TOPAS, performing the simulations using more histories per sample would
be beneficial to the accuracy of the sampled dose distributions. However, mainly due to
hardware constraints, 100 samples with 108 total histories were chosen for patients and

140



V.2 Degradation Correction

also SOBP for consistency. These hardware constraints include the computation time in
TOPAS, posing an even bigger challenge for carbon ions, as well as simple hard drive space
management. Since each sample contains a separate image cube and outputs multiple result
matrices, the server disk space needed for a calculated patient with 100 samples was already
approximately 50GB to 60GB (MCsquare and TOPAS combined). For an increased number
of samples, options for direct postprocessing, reducing the output data or incremental
compression could be investiated.

V.2.2 Degradation on Box PhantomGeometries

Influence ofWEPL andModulation Power. To gauge and quantify the expected impact of
degradation on simple geometries, calculations were conducted on a homogeneous lung
phantom for varying modulation power and WEPL within realistic ranges. The calculations
included analytical convolution and density sampling for PBs, MCsquare and TOPAS.
The degradation showed the expected behavior, linearly dependent on 𝑃mod and lung WEPL
and resulted in relative target mean dose differences of approximately −1% to −1.5%. This
is largely consistent with the degradation effects reported in literature with dose differences
of −2% for SOBPs (Flatten et al. 2019) and −0.1% to −1.6% for patients (Winter et al. 2020).
Baumann et al. (2019) also reported a linear relationship with 𝑃mod and depth of the tumor
in lung with the largest values of −2.1% mean target dose difference for 𝑃mod = 800µm and
WEPLlung = 6.2 cm. However, Flatten et al. (2019) also reported SOBP target dose differences
as large as −14% for small tumor sizes, that could not observed here.

Sampled Dose in Lung Tissue. The evaluation of pencil beams at different modulation
powers and CT resolutions revealed distinct differences in TOPAS, particularly within lung
tissue and only for specific combinations of modulation power and voxel size. Surprisingly,
this was not observed in the other modalities. In cases where the parameter 𝑛 – the number
of substructures – in the binomial model approached 1, the binomial distribution used
for density sampling showed a strong binarization, with many voxels being classified as
”air”. The dose differences in lung tissue for TOPAS were dependent on the extent of this
binarization, potentially due to how TOPAS handles dose scoring in very-low-density regions.
For certain extreme cases – specific combinations of voxel size and 𝑃mod – the binomial model
was found to break down as 𝑛 becomes smaller than 1. This, however, only occurs for very
large modulation powers or small voxel sizes of 1mm, both of which are likely not realistic
scenarios. It is also important to note that using very small voxel sizes approaching the
resolution limit of the microstructures, defeating the purpose of the voxel sampling method.
Additionally, the lung dose inMCsquare showed the already observed large underestimation,
likely due to incorrectly scored LET. Within lung, the averaged dose profiles showed a
decreasing dose with depth, whereas matRad displayed an increasing dose. For scenarios
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with 𝑃mod = 800µm and 3mm voxel size, central profiles and IDD were replotted and
compared. The IDD showed the expected increasing dose, suggesting that scattering within
lung tissue is significantly increased for both MC engines, resulting in a lower dose with
depth. These differences in scattering also contributed to variations in the Bragg peaks
between the three modalities, which were not apparent in the IDD.

Spread-Out Bragg Peaks. For simulated degraded SOBPs, the shape and size of the degra-
dation was consistent with the previously performed simulations and showed the expected,
distinct under- and overdosage observed at the distal edge. TOPAS sampling revealed varia-
tions in the dose distribution across the entire SOBP, which, as already discussed above, is
likely due to sampling differences in TOPAS compared to other modalities. However, the
comparison of quality indicators showed that the decrease in mean dose to the target due to
degradation was consistent across all modalities.
The variable RBE-weighted dose profiles showed a sharp increase in RBE towards the
end of the Bragg peak, corresponding with increasing LET. Since the degradation effects
are the strongest in the same area, the sharp dose increase was smoothed and flattened.
This was consistent with calculations of conformity and homogeneity indices, both of
which indicated a more confined and homogeneous dose distribution for RBE-weighted,
degradation-corrected treatment plans. This trend was also evident in the calculated quality
indicators, where the RBE-weighted maximum dose D5 decreased significantly for degraded
doses in all modalities.
In the lung phantom with real lung, TOPAS sampling again showed distinct variations
across the whole phantom with more pronounced differences within the lung. This aligns
with the earlier findings of similar variations in the lung TOPAS dose. For carbon ions, the
differences due to degradation correction were visually smaller. The DVH indicated that the
homogeneous TOPAS dose in some regions was close to the degraded dose distributions
using PBs, with degradation correction adding to this effect.
Similarly to protons, TOPAS exhibited substantial variations in dose across the entire phan-
tom. This confirms that the density sampling in TOPAS would likely benefit from using
a larger number of samples, that would come at the expense of a significant increase in
memory, computation time, or beamlets being lost due to the reduced number of particles
per sample (see Section V.2.1).
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V.2.3 Degradation for Patient Treatment Plans

Four lung cancer patients were evaluated, each selected to represent a range of tumor sizes
and lung WEPLs. The 𝛾 pass rates for degradation correction were consistent across all
modalities, with TOPAS again showing larger lateral variations parallel to the beam direction.
For Patient 3, that had the smallest tumor size and the lowest range of used energies, the
largest differences were observed, resulting in the lowest pass rates among all patients. The
large target margins well within the lung added significant uncertainty around the tumor,
leading to significant differences and poor pass rates for the PTV. The results for carbon
ions were consistent with those for protons in Patient 3, with similarly small pass rates,
that further decreased for the RBE-weighted dose. However, lower pass rates were already
observed between homogeneous PB and TOPAS for both absorbed and RBE-weighted doses.
Additionally, these differences could have stemmed from the exclusion of the PTV in the
sampling process, especially apparent for Patient 3.
In contrast, the highest pass rates were found within the target for Patient 4. Overall, the
differences were more pronounced for patients than compared to the SOBPs, where no
consistent trend was observed across the different phantom models. However, the lowest
pass rates were consistently for TOPAS sampling.
The mean dose difference across patients showed consistent results with the largest differ-
ences observed in Patient 3 and the smallest for Patient 4. Interestingly, the mean dose to the
OARs did not follow the same trend, with Patient 1 showing a higher mean dose difference
on average. For D5 and D95, no consistent patient-dependent trends were observed, except
for a significant increase in the minimum dose delivered to the lung in Patient 3, coinciding
with a reduced mean dose to the target.

Conformity andHomogeneity Index. For SOBPs, degradation correction consistently im-
proved the target dose conformity and homogeneity. However, even though this trend is also
visible for patients, this improvement was only observed in about half of the calculated dose
distributions and could not be attributed to specific patient cases. MCsquare and TOPAS
sampling showed the largest decrease in conformity with degradation, a trend that persisted
for RBE-weighted doses. In contrast, the less severe differences in conformity could be
attributed to analytical PBs, both with convolution and sampling, with a consistent increase
in target conformity when switching to RBE-weighted doses. Despite the development of
multiple RBE models, uncertainty also remains regarding the exact extent of the RBE, which
could lead to a different outcome.
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Comparisonwith Literature. For the calculated patient plans, the effects of the degrada-
tion were as expected and followed the general relationship – increasing with depth and
decreasing with tumor size – already reported by Baumann et al. (2019). The findings for
SOBPs are consistent with reported results in other conducted experiments with a visible
degradation of the DVH, decreased dose coverage D95 or D98 and increased dose to OARs
(Baumann et al. 2019; Flatten et al. 2019; Ringbæk et al. 2020).
Flatten et al. (2019) found an underestimation of the mean dose of up to −14% for the
worst-case modulation power 𝑃mod = 800µm, but more realistic setups resulted in an
underestimation of only −2%. However, even using the same worst-case modulation power
throughout this thesis, the large observed dose differences could not be replicated.
Generally, the results for patients are consistent with previously conducted experiments
using the same patient data sets (Winter et al. 2020). They used a modulation power of
𝑃mod = 256µm, which resulted in much lower mean relative differences mostly below 1%.
The dose differences in the range of approximately −1% to −4% in the PTV together with
mean 𝛾 pass rates of about 90%. Additionally, a consistent increase in HI and decrease
in dose coverage was observed with degradation, in agreement with findings from the
literature (Ringbæk et al. 2020). The reported increased degradation effect for carbon ions
(Ringbæk et al. 2020) could be confirmed, however based on limited carbon data in this
thesis. With emerging new MC codes for carbon ions (Lysakovski et al. 2024; Schiavi et al.
2017), this could become increasingly relevant. Next to the drawbacks, dose degradation
might improve dose conformity and NTCP.
However, the mentioned differences are within the range of previously discussed error
sources of the APM routine as well as differences between homogeneous dose distributions
solely based on modality. Even the homogeneous dose distributions in MCsquare and
TOPAS already exhibited a typical degradation behavior even without modeled degradation
effects (Sections IV.2.2.3 and IV.2.3). Other authors concluded, that the degradation effects
could even be negligible (Baumann et al. 2019; Flatten et al. 2019; Ringbæk et al. 2020;
Winter et al. 2020), especially compared to other uncertainties such as organ and respiratory
motion (De Ruysscher et al. 2015; Engelsman et al. 2013). However, with increasing efforts in
evaluating and compensating for motion effects on dose (Grassberger et al. 2015; van Herk
2004; Steinsberger et al. 2021), it could be beneficial for some patients (Patient 3 in this case)
to consider the degradation effects in a clinical setting.
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NTCPModels. Most calculated NTCP values in the OARs were below 10−6%with only a
limited fraction within the low percentage range (2% to 11%). With degradation, the NTCP
and EUD showed consistently negative changes within lung tissue, indicating reduced
toxicity. These findings contradict the assumption that an underdosage of the target dose
would mean overdosing OARs, particularly the surrounding lung.
It also remains questionable if this is a significant trend considering the very limited data
of non-negligible values and the large uncertainty associated with the generation of these
values: Since the NTCP parameters are only valid for lung patients with fraction dose of
2Gy, the necessary calculation of EQD largely favors high NTCP values for large fraction
doses, which is reflected in the larger values observed for Patient 1 and Patient 2 with fraction
doses of 8.75Gy/fx and 11.07Gy/fx. The large values observed for the esophagus NTCP of
Patient 4 can be explained by the almost full enclosure with the PTV. However, this raises
the question of why the NTCP is not larger, especially for a serial organ with a reported
total threshold dose of 19.5Gy/5fx, that is substantially exceeded (Benedict et al. 2010).
McNamara et al. (2020b) used different NTCP models and reported values up to 60% for
esophagus toxicity and also, with up to 45% for grade 2 radiation pneumonitis, much larger
lung values as observed here. Another source of error is the assumption of a constant healthy
tissue α/β of 2Gy, the assumption of heart parameters for the aorta and the assumption of a
tumor TCD50 equal to the lung TD50. A more realistic lung α/β of 1.3Gy (Scheenstra et al.
2014) would increase the NTCP, albeit not by a large margin. Additionally, even though an
α/β of 10Gy was assumed for the TCP model, the dose calculation is still performed with a
constant 2Gy over the whole CT cube. As a result, the large amount of uncertainties likely
prevents a confident evaluation of TCP and NTCP.

V.3 Outlook

The developed MC framework provides a robust foundation for exploring new method-
ologies and facilitating a variety of future research projects. This has already been proven
invaluable as the framework has seen extensive use within the department and is being
further built upon.
This section discussed the methodology and results of degradation correction, highlighting
its potential and, though limited, benefit for future patients. While the immediate impact of
degradation correction may remain questionable at this point, its importance could grow in
future applications. For instance, since it is suspected that degradation may have a lesser
impact compared to motion effects, a comprehensive comparison between the two effects
should be a key area for future research. As dose calculation methods become faster and
more accurate, it will be increasingly important to investigate and potentially incorporate
additional corrections such as degradation into standard practice.
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V.4 Conclusion

This thesis reported on the development of an Monte Carlo (MC) interface within the treat-
ment planning system matRad, open for the research community. It allows the simulation of
MC dose distributions in conjunction with already implemented research tools and projects,
as well as for future research. The developed generic machine data sets for protons and
carbon ions are optimized for an optimal agreement in simple water geometries and permit
to focus on changes arising from differences in geometry, the currently studied effect, or the
chosen algorithms.
The implementation within the scope of this thesis specializes on lung dose calculation
by introducing and evaluating a microstructure correction for lung tissue. A generalized
approach was used, that allows for the calculation of degraded dose distributions indepen-
dent of the used dose calculation algorithm, usable in both Pencil Beams (PBs) and MC
methods. A simple system was implemented using density sampling based on a beta distri-
bution, demonstrated to lead to effects compatible with analytical degradation correction
and literature. It was shown that these effects were consistently present across different
dose calculation modalities, adding to the typical differences in dose calculation quality and
accuracy between PBs and MC.
The dosimetric impact of the degradation on patient treatment plans was consistent but
limited, increasing with the use of carbon ions. It is questionable, if the effort of researching
and implementing this effect is necessary in an uncertain anatomy, especially considering
that the current accuracy of MC simulations might already be sufficient for most clinical
scenarios, where problems such as motion mitigation, beam delivery and target margins
might overshadow the effects of degradation. It can be concluded that, considering the
current uncertainties, error sources and standard clinical ressources, the degradation effects
can most likely not implemented in a meaningful way. However, since the results for carbon
ions indicate a more severe degradation, future studies should be conducted using the newly
emerging, fast MC engines for carbon ions. Additionally, more studies could be carriess
out regarding the microstructure, quantifying the modulation power and dependencies of
the degradation in more detail, as well as integrate a degradation correction in a treatment
planning workflow.
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VI
Summary

Lung cancer remains one of the leading causes of cancer-related mortality worldwide. De-
spite significant advancements in treatment options, lung cancer continues to present unique
challenges, particularly in the context of particle therapy, including proton and carbon ion
therapy. In addition to factors such as respiratory motion and the resulting dose calcu-
lation inaccuracies, tissue inhomogeneities can cause degradation of the treatment beam,
potentially diminishing some of the advantages that particle therapy has over traditional
X-rays. This thesis aims to quantify the impact of beam degradation on dose distributions for
both analytical Pencil Beams (PBs) and Monte Carlo (MC) simulations, exploring how this
degradation influences dose accuracy, conformity, and overall relevance compared to other
error sources and uncertainties. The central question to be answered is whether this degra-
dation is significant and whether it has the same impact on analytical PBs compared to MC
simulations, particularly in the context of Relative Biological Effectiveness (RBE)-weighted
dose calculation. To address these questions, this thesis developed a dose calculation module
for the inclusion of dose degradation in both analytical and MC treatment plans within the
open-source toolkit matRad with a specific focus on proton and carbon ion therapy for lung
cancer treatment.
A MC interface was developed for the matRad toolkit as part of this thesis, originally
designed to test and assess the impact of degradation effects on more realistic and accurate
MC simulations. Dose distributions calculated through the interface were first validated on
homogeneous water geometries with newly developed generic machine data sets based on
MC simulations, that showed near-perfect agreement between MC engines and analytical
PBs. This allows to focus on changes arising from differences in geometry, the currently
studied effect, or the chosen algorithms. Due to its versatility and modular setup, it can not
only be used for investigations in degradation correction, but it allows for applications in
various research projects and has already seen extensive use within the department.
For analytical PBs, the existing dose degradation implementation was refined for RBE-
weighted dose calculations for protons and carbon ions. A universal implementation of
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degradation correction, independent of the dose calculation algorithm, was realized through
a density sampling model utilizing a simple beta distribution. The integration of these degra-
dation models was explored and tested on increasingly complex geometries, starting from
simple lung box phantoms and progressing to patient treatment plans. The degradation ef-
fectswere consistent between carbon ions andprotons, and in somepatient cases, degradation
effects for variable RBE-weighted proton doses were even able to improve dose conformity
and homogeneity. The observed degradation effects on dose accuracy increased formore com-
plex scenarios, but were overall minimal, even considering the worst-case modulation power.
Potentially significant increases in the dose to Organs At Risk (OARs) was noted, that did not
lead to a substantial increase inNormal Tissue Complication Probability (NTCP). However, in
certain cases, the impact of dose degradation can be significant, particularly when added on
top of the already degradedMC simulations. It was found that other error sources, such as or-
ganmotion and comparison with more accurateMC simulations, most likely overshadow the
impact of degradation effects. Evaluation of this aspect should certainly be part of futurework.
Additionally, the variability in results was found to depend strongly on patient-specific fac-
tors such as tumor size and location within the lung. While for larger tumors or tumors with
minimal lung tisse in the beam path, degradation effects may indeed be negligible, for small
tumors located deep within lung tissue, the impact can be significant, particularly in cases
involving carbon ions.
In conclusion, this thesis presents a comprehensive framework for dose calculation in
intensity-modulated lung cancer particle therapy through the integration of a MC interface
for matRad. This enables the calculation of degraded absorbed and RBE-weighted dose
distributions for both protons and carbon ions, providing a valuable tool for advancing the
accuracy and effectiveness of lung cancer treatment.
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VII
Zusammenfassung

Lungenkrebs ist eine der Hauptursachen für krebsbedingte Sterblichkeit weltweit. Trotz
bedeutender Fortschritte in den Behandlungsmöglichkeiten, stellt Lungenkrebs weiterhin
schwierige Herausforderungen besonders an die Partikeltherapie. Neben Faktoren wie
Atembewegungen und den daraus resultierenden Ungenauigkeiten in der Dosisberechnung
können Gewebeinhomogenitäten zu einer Degradation (”Verwaschung”) des Behandlungs-
strahls führen, was möglicherweise einigen der eigentlichen Vorteile der Partikeltherapie
gegenüber traditionellen Röntgenstrahlen entgegenwirkt. Diese Arbeit zielt darauf ab, den
Einfluss der Strahldegradation auf die Dosisverteilung sowohl für analytische Nadelstrahlen
als auch für Monte Carlo (MC)-Simulationen zu quantifizieren. Dabei wird untersucht, wie
die Degradation die Genauigkeit der Dosisverteilung, die Konformität und die allgemei-
ne Relevanz im Vergleich zu anderen Fehlerquellen und Unsicherheiten beeinflusst. Die
zentrale Fragestellung war, ob die Degradation einen signifikanten Einfluss hat und ob
der Einfluss auf analytische Nadelstrahlen wie auf MC-Simulationen gleich ist, insbeson-
dere im Kontext der Relative Biologische Wirksamkeit (RBW)-gewichteten Dosis. Dafür
wurde im Rahmen dieser Arbeit ein Dosisberechnungsmodul zur Berücksichtigung der
Dosisdegradation sowohl in analytischen als auch in MC-Bestrahlungsplänen innerhalb des
Open-Source-Toolkits matRad entwickelt, mit einem speziellen Fokus auf die Protonen- und
Kohlenstoffionentherapie für die Behandlung von Lungenkrebs.
Die durch das Interface berechnetenDosisverteilungenwurden zunächst an homogenenWas-
serphantomen mit neu entwickelten generischen Maschinen-Datensätzen validiert.Dieses
Proof-of-Concept für sehr einfache Geometrien zeigte eine nahezu perfekte Übereinstim-
mung zwischen denMC-Simulationen und analytischenNadelstrahlen. Damit ist es möglich,
die Effekte durch unterschiedliche Geometrie, den zu beobachtenden Effekt, oder den aus-
gewählten Algorithmus, einzugrenzen. Aufgrund seiner Vielseitigkeit und modularen
Struktur kann das Interface nicht nur für Untersuchungen zur Degradationskorrektur ein-
gesetzt werden, sondern ermöglicht Anwendungen in verschiedenen Forschungsprojekten
und hat bereits umfangreiche Nutzung innerhalb der Abteilung erfahren.
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Für analytischeNadelstrahlenwurde die bestehende Implementierung der Dosisdegradation
weiterentwickelt und auf RBW-gewichtete Dosis für Protonen und Kohlenstoffionen übertra-
gen. Eine universelle Implementierung der Degradation für sowohl Nadelstrahlen als auch
MC-Simulationen wurde durch ein Dichtesampling-Modell, basierend auf einer Beta Vertei-
lung, realisiert. Die Integration dieser Degradationsmodelle wurde auf zunehmend komple-
xeren Geometrien untersucht und getestet, angefangen bei einfachen Lungen-Phantomen bis
hin zu Patientenbestrahlungsplänen. Ähnliche Effekte für Kohlenstoffionen und Protonen
wurden gemesssen, und in einigen Patientenfällen konnten Degradationseffekte für variable
RBW-gewichtete Protonendosen sogar die Dosis-Konformität und Homogenität verbessern.
Die untersuchten Degradationseffekte wurden größer für zunehmend komplexere Geome-
trien, aber haben in den meisten Fällen begrenzten Einfluss auf die Dosisverteilungen, selbst
für die verwendete worst-case Modulationsstärke (engl. ”modulation power”). Darüber
hinaus wurden potenziell signifikante Dosissteigerungen in den Organs At Risk (OARs)
festgestellt, die aber nicht zu einem erheblichen Anstieg der Normal Tissue Complication
Probability (NTCP) führten. Dennoch kann der Einfluss der Dosisdegradation in bestimm-
ten Fällen erheblich sein, insbesondere wenn er zu den ohnehin schon stärker gestreuten
MC-Dosisverteilungen hinzukommt. Obwohl festgestellt wurde, dass die Degradation einen
messbaren Einfluss hat, ist dieser im Vergleich zu anderen Fehlerquellen wie Organbewegun-
gen und im Vergleich von Nadelstrahlen mit den genauerenMC-Simulationen, relativ gering.
Dieser Aspekt sollte jedoch definitiv in zukünftigen Arbeiten weiter untersucht werden,
um seine Auswirkungen vollständig zu verstehen. Zusätzlich wurde festgestellt, dass die
Variabilität der Ergebnisse stark von patientenspezifischen Faktoren wie der Tumorgröße
und dem Ort des Tumors innerhalb der Lunge abhängt. Während bei größeren Tumoren,
oder Tumoren mit minimalem Lungengewebe im Strahlengang, die Degradationseffekte
möglicherweise vernachlässigbar sind, kann der Einfluss bei kleinen Tumoren, die tief in
der Lunge liegen, erheblich sein, insbesondere für die Bestrahlung mit Kohlenstoffionen.
Zusammenfassend präsentiert diese Arbeit ein umfassendes System zur Dosisberechnung
in der intensitätsmodulierten Partikeltherapie bei Lungenkrebs. Dies ermöglicht die Berech-
nung von Degradationseeffekten auf Verteilungen der absorbierten und RBW-gewichteten
Dosis für Protonen und Kohlenstoffionen, und bietet so ein wertvolles Werkzeug zur Verbes-
serung der Genauigkeit und Wirksamkeit der Behandlung.
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A
Code Listings

A.1 Density andMaterial Conversion forMC

Listing A.1: MCsquare default material converter.

1 # ===================
2 # HU densi ty g/cm3
3 # ===================
4

5 −1024 0 .001
6 −999 0 .001
7 −90 0 .950
8 −45 0 .990
9 0 1
10 100 1 .095
11 350 1 .199
12 3000 2 .505

1 # ===================
2 # HU Mater ia l l a b e l
3 # ===================
4

5 −1050 13 # Air
6 −999 17 # Water

Listing A.2: TOPAS default material converter.

1 # −− Density co r r e c t i on
2 dv : Ge/Patient/Densi tyCorrect ion = 4025 0 .001 0 .001 0 .001 0 .001 [ . . . ] 2 .50401 2 .50451 2 .505 g/cm3
3 iv : Ge/Patient/SchneiderHounsf ie ldUnitSect ions = 2 −1024 3001
4 uv : Ge/Patient/SchneiderDensi tyOffse t = 1 1
5 uv : Ge/Patient/SchneiderDensi tyFactor = 1 0 . 0
6 uv : Ge/Patient/Schne iderDens i tyFac torOf fse t = 1 1024 .0
7 iv : Ge/Patient/SchneiderHUToMaterialSections = 2 −1024 −999 3001
8 i : Ge/Patient/MinImagingValue = −1024
9

10 # −− Define Mater ia l s used for HU
11 sv : Ge/Patient/SchneiderElements = 4 ”Hydrogen” ”Oxygen” ”Nitrogen” ”Carbon”
12 uv : Ge/Patient/SchneiderMaterialsWeight1 = 4 0 . 0 0 .23479269 0 .76508170 0 .00012561
13 uv : Ge/Patient/SchneiderMaterialsWeight2 = 4 0 .111894 0 .888106 0 . 0 0 . 0
14 dv : Ge/Patient/SchneiderMaterialMeanExcitat ionEnergy = 2 85 .7 78 .0 eV
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Appendix A Code Listings

Listing A.3: MCsquare default material converter for homogeneous calculations concerning lung. Lines with

changes compared to the default scorer were highlighted. Note the added section with lungmaterial (right),

but using the same density conversion (left).

1 # ===================
2 # HU densi ty g/cm3
3 # ===================
4

5 −1024 0 .001
6 −999 0 .001
7 −90 0 .950
8 −45 0 .990
9 0 1
10 100 1 .095
11 350 1 .199
12 3000 2 .505

1 # ===================
2 # HU Mater ia l l a b e l
3 # ===================
4

5 −1050 13 # Air
6 −999 17 # Water
7 −800 14 # Lung
8 −750 17 # Water

Listing A.4: TOPAS default material converter for homogeneous calculations concerning lung. Lines with

changes compared to the default scorer were highlighted.

1 # −− Density co r r e c t i on
2 dv : Ge/Patient/Densi tyCorrect ion = 4025 0 .001 0 .001 0 .001 0 .001 [ . . . ] 2 .50401 2 .50451 2 .505 g/cm3
3 iv : Ge/Patient/SchneiderHounsf ie ldUnitSect ions = 2 −1024 3001
4 uv : Ge/Patient/SchneiderDensi tyOffse t = 1 1
5 uv : Ge/Patient/SchneiderDensi tyFactor = 1 0 . 0
6 uv : Ge/Patient/Schne iderDens i tyFac torOf fse t = 1 1024 .0
7 iv : Ge/Patient/SchneiderHUToMaterialSections = 5 −1024 −999 −800 −750 3001
8 i : Ge/Patient/MinImagingValue = −1024
9

10 sv : Ge/Patient/SchneiderElements = 4 ”Hydrogen” ”Oxygen” ”Nitrogen” ”Carbon”
11 uv : Ge/Patient/SchneiderMaterialsWeight1 = 4 0 . 0 0 .23479269 0 .76508170 0 .00012561
12 uv : Ge/Patient/SchneiderMaterialsWeight2 = 4 0 .111894 0 .888106 0 . 0 0 . 0
13 uv : Ge/Patient/SchneiderMaterialsWeight3 = 4 0 .1023724 0 .7652525 0 .0289596 0 .1034155
14 uv : Ge/Patient/SchneiderMaterialsWeight4 = 4 0 .111894 0 .888106 0 . 0 0 . 0
15 dv : Ge/Patient/SchneiderMaterialMeanExcitat ionEnergy = 4 85 .7 78 75 .3 78 eV
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A.1 Density andMaterial Conversion forMC

Listing A.5: MCsquarematerial converter for degradation calculations concerning lung using density sampling.

Lines with changes compared to the default scorer were highlighted. Note the added section with lung

material (right) and the added densities (left).

1 # ===================
2 # HU densi ty g/cm3
3 # ===================
4

5 −1024 0 .001
6 −999 0 .001
7 −90 0 .950
8 −45 0 .990
9 0 1
10 100 1 .095
11 350 1 .199
12 3000 2 .505

13 6000 0 .001

14 6001 0 .002

15 6002 0 .003

16 [ . . . ]

17 7043 1 .048

18 7044 1 .049

19 7045 1 .050

1 # ===================
2 # HU Mater ia l l a b e l
3 # ===================
4

5 −1050 13 # Air
6 −999 17 # Water
7 −800 14 # Lung
8 −750 17 # Water

9 6000 14 # Lung

Listing A.6: TOPASmaterial converter for degradation calculations concerning lung using density sampling. Lines

with changes compared to the default scorer were highlighted.

1 # −− Density co r r e c t i on

2 dv : Ge/Patient/Densi tyCorrect ion = 5075 0 .001 0 .001 0 .001 [ . . . ] 2 .50401 2 .50451 2 .505 0 .001225 ↩
↪ 0 .002 0 .003 [ . . . ] 1 . 048 1 .049 1 .05 g/cm3

3 iv : Ge/Patient/SchneiderHounsf ie ldUnitSect ions = 3 −1024 3001 4051
4 uv : Ge/Patient/SchneiderDensi tyOffse t = 2 1 1
5 uv : Ge/Patient/SchneiderDensi tyFactor = 2 0 . 0 0 . 0
6 uv : Ge/Patient/Schne iderDens i tyFac torOf fse t = 2 1024 .0 0 . 0

7 iv : Ge/Patient/SchneiderHUToMaterialSections = 6 −1024 −999 −800 −750 3001 4051
8 i : Ge/Patient/MinImagingValue = −1024
9

10 # −− Define Mater ia l s used for HU
11 sv : Ge/Patient/SchneiderElements = 4 ”Hydrogen” ”Oxygen” ”Nitrogen” ”Carbon”
12 uv : Ge/Patient/SchneiderMaterialsWeight1 = 4 0 . 0 0 .23479269 0 .76508170 0 .00012561
13 uv : Ge/Patient/SchneiderMaterialsWeight2 = 4 0 .111894 0 .888106 0 . 0 0 . 0
14 uv : Ge/Patient/SchneiderMaterialsWeight3 = 4 0 .1023724 0 .7652525 0 .0289596 0 .1034155
15 uv : Ge/Patient/SchneiderMaterialsWeight4 = 4 0 .111894 0 .888106 0 . 0 0 . 0

16 # This s e c t i on con t ro l s the mater ia l composition of the sampled lung ( use lung−equiva lent )

17 uv : Ge/Patient/SchneiderMaterialsWeight5 = 4 0 .1023724 0 .7652525 0 .0289596 0 .1034155

18 dv : Ge/Patient/SchneiderMaterialMeanExcitat ionEnergy = 5 85 .7 78 75 .3 78 75 .3 eV
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