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Abstract

Far from equilibrium, quantum many-body systems can exhibit emergent structures and
universal behaviour that require effective descriptions capturing their macroscopic dynam-
ics. Such descriptions must identify the relevant degrees of freedom, emergent symmetries,
and collective excitations that govern the long-time evolution of these systems. This thesis
investigates how these features manifest in strongly correlated quantum field theories by ex-
tracting nonequilibrium symmetries and developing methods to characterise their universal
scaling behaviour.

First, the restoration of symmetries in isolated quantum systems is examined. By deriv-
ing Ward identities for correlation functions, a method for extracting symmetries from ex-
perimental and numerical data is established. Applying this framework to ultracold atomic
gases, it is demonstrated that explicitly broken symmetries are effectively restored long be-
fore thermalisation. The approach is also used to define spontaneous symmetry breaking in
a nonequilibrium system.

Subsequently, the role of emergent quasiparticles and defect-driven dynamics is inves-
tigated in a single-component scalar field theory with a focus on their connection to non-
thermal fixed points, which arise as attractor solutions with universal scaling behaviour.
Through real-time lattice simulations, unequal-time correlation functions are extracted to
identify the dominant infrared excitations, which are connected to Kelvin waves propagat-
ing along vortex lines. Beyond correlation functions, a geometric approach is introduced
to study topological structures directly. Using tools from topological data analysis, robust,
nonlocal observables are defined that capture the coarsening dynamics of topological de-
fects. These observables exhibit a distinct scaling behaviour compared to traditional corre-
lation functions, highlighting the multiscaling nature of universal dynamics near nonthermal
fixed points.

Furthermore, the thesis explores the emergence of universal scaling behaviour in rel-
ativistic scalar field theories using an approach that goes beyond scaling analyses. By ex-
plicitly solving a self-consistent equation derived from the two-particle irreducible effective
action, nonthermal scaling solutions are extracted. The results indicate a stationary transport
regime characterised by a universal quadratic scaling.
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Zusammenfassung

Außerhalb des Gleichgewichts können Quanten-Vielteilchensysteme emergente Strukturen
und universelles Verhalten aufweisen, die eine effektive Beschreibung ihrer makroskopis-
chen Dynamik erfordern. Eine solche Beschreibung muss die relevanten Freiheitsgrade,
emergente Symmetrien und kollektive Anregungen identifizieren, die die langfristige En-
twicklung dieser Systeme bestimmen. Diese Dissertation untersucht, wie sich diese Merk-
male in stark korrelierten Quantenfeldtheorien manifestieren. Dazu extrahieren wir Sym-
metrien außerhalb des Gleichgewichts und entwickelnMethoden zur Charakterisierung uni-
versellen Skalierungsverhaltens.

Zunächst konzentrieren wir uns auf die Wiederherstellung von Symmetrien in isolierten
Quantensystemen. Wir leitenWard-Identitäten für Korrelationsfunktionen her und entwick-
eln daraus eine Methode, um Symmetrien aus experimentellen und numerischen Daten
zu extrahieren. Die Anwendung dieses Ansatzes auf ultrakalte Atomgase zeigt, dass ex-
plizit gebrochene Symmetrien lange vor der vollständigen Thermalisierung des Systems
effektiv wiederhergestellt werden. Zudem wird der Ansatz genutzt, um spontane Symme-
triebrechung in einem Nichtgleichgewichtssystem zu definieren.

Anschließend untersuchenwir die Rolle emergenter Quasiteilchen und defektgetriebener
Dynamik in einer skalaren Feldtheorie mit einer Komponente. Besonderes Augenmerk liegt
auf der Verbindung zu nichtthermischen Fixpunkten, die als Attraktor-Lösungen mit uni-
versellem Skalierungsverhalten auftreten. Mittels Echtzeit-Gittersimulationen extrahieren
wir Korrelationsfunktionen für verschiedene Zeitargumente, um die dominanten Infrarotan-
regungen zu identifizieren, diewiederummit Kelvin-Wellen entlang vonVortexlinien zusam-
menhängen. Über die Untersuchung von Korrelationsfunktionen hinaus führen wir einen
geometrischen Ansatz ein, um topologische Strukturen direkt zu analysieren. Mithilfe der
topologischen Datenanalyse definieren wir robuste, nichtlokale Observablen, welche die
Vergröberungsdynamik topologischer Defekte erfassen. Diese Observablen zeigen ein deut-
lich anderes Skalierungsverhalten als herkömmliche Korrelationsfunktionen und stellen die
Multiskalennatur der universellen Dynamik in der Nähe nichtthermischer Fixpunkte deut-
lich heraus.

Abschließend untersucht dieseDissertation dasAuftreten von universellemSkalierungsver-
haltens in relativistischen skalaren Feldtheorienmit einemAnsatz, der über einfache Skalenge-
setze hinausgeht. Durch die explizite Lösung einer selbstkonsistenten Gleichung, die aus
der zweiteilchen-irreduziblen effektiven Wirkung abgeleitet wird, bestimmen wir nichtther-
mische Skalierungslösungen. Die Ergebnisse deuten auf ein stationäres Transportregime
hin, das durch eine universelle quadratische Skalierung charakterisiert ist.
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Chapter 1

Introduction and outline of thesis

The study of isolated nonequilibrium quantum many-body systems lies at the forefront of
theoretical and experimental physics. Far from equilibrium, these systems can reveal ex-
traordinary dynamics shaped by emergent symmetries, conservation laws, and universal
scaling behaviour. A central challenge in the study of these systems lies in understanding
how they evolve over time and approach equilibrium. In this context, one of the most press-
ing directions in quantummany-body physics is the search for effective theories that describe
the emergent, macroscopic nonequilibrium dynamics at large scales and provide insight into
how this behaviour arises from underlying microscopic laws. For isolated quantum systems
evolving under unitary dynamics, equilibrium in the conventional sense cannot be reached
globally, as the evolution preserves all information about the initial state. However, in gen-
eral systems can exhibit an effective loss of detailed memory, with observables becoming
indistinguishable from their corresponding equilibrium values over time [7–10]. There are
intriguing scenarios in this setting that may occur on the way to thermalisation, such as
quasi-stationary prethermalised states [11, 12], many-body oscillations [13] and revivals
[14], and notably, in some cases thermalisation may be avoided altogether [15–18].

One of the important phenomena that can happen during the approach towards ther-
mal equilibrium is given by nonthermal fixed points. These are nonequilibrium attractors
characterised by universal self-similar scaling behaviour in time and space [19–22]. The
approach to a nonthermal fixed point happens in far-from-equilibrium systems for a wide
range of initial conditions on the way to thermal equilibrium, as illustrated in Fig. 1.1. Uni-
versality refers to the concept that seemingly distinct physical systems can display the same
large-scale or macroscopic behaviour under certain conditions, despite having very differ-
ent microscopic details. It allows connections to be drawn between phenomena that appear
vastly different and span a wide range of energy scales. In the case of nonthermal fixed
points, this includes experiments with ultracold atoms where they have been observed [21–
27], heavy-ion collisions [28, 29], and early-universe cosmology [30, 31]. These systems
offer a rich playground to explore fundamental questions about quantum dynamics, as ex-
plained in the following paragraphs, and far-from-equilibrium universality can provide a
powerful tool to understand the otherwise complex relaxation dynamics of isolated quan-
tum many-body systems.

Tabletop experiments using ultracold atomic gases can largely be isolated from the en-
vironment, making them suitable for the study of the dynamics of closed quantum systems.

1
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Figure 1.1. Illustration of various pathways towards thermal equilibrium: a system starting
from a wide range of far-from-equilibrium initial conditions can approach a nonthermal
fixed point on its path to equilibrium. In practice, this often involves extreme overoccupation
initially. Near a nonthermal fixed point, the dynamics exhibits universal behaviour. When
the initial conditions are near equilibrium, the system may directly evolve into the thermal
state.

These platforms can realise a wide range of Hamiltonians with different symmetries, vari-
able interactions, and degrees of freedom via atomic, molecular, and optical physics engi-
neering [32, 33]. As a prominent example, ultracold Bose gases have been instrumental
in researching fundamental phenomena such as thermalisation [34], spontaneous symme-
try breaking [35, 36], and quantum phase transitions [37]. A well-studied case involves
a strong cooling quench applied to a dilute Bose gas, where the system is rapidly cooled
to temperatures near or below the Bose-Einstein condensation threshold [38]. This abrupt
temperature drop brings the gas far from equilibrium, leading to highly populated states at
low momenta as the particles condense into the lowest energy modes. Such an initial con-
dition has allowed for the experimental study of the aforementioned universal scaling laws
and the approach to nonthermal fixed points [21, 22], thus providing a versatile platform for
exploring far-from-equilibrium dynamics and testing theoretical predictions in controlled
experimental settings.

Within the realm of high-energy physics, ultrarelativistic heavy-ion collision experi-
ments conducted at the Large Hadron Collider at CERN and the Relativistic Heavy Ion
Collider at Brookhaven provide a crucial platform for probing the strong interaction, de-
scribed by Quantum Chromodynamics, under extreme conditions reminiscent of the early
universe. At sufficiently high temperatures, quarks and gluons, typically confined within
hadrons like protons and neutrons, become deconfined to form the quark–gluon plasma
(QGP). In the early stages of a collision, large gluon fields dominate the system. These
fields are unstable and give rise to rapid plasma instabilities, leading to the amplification
of fluctuations and the generation of highly occupied low-momentum modes [29]. This
initially far-from-equilibrium state rapidly expands and undergoes a (cross-over) transition
back to the hadronic phase before it can be directly detected, with strong experimental ev-
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idence supporting the existence of the QGP [39–41]. Understanding the nonequilibrium
evolution leading to QGP formation is crucial for interpreting its observable signatures. In
this context, nonthermal fixed points have been demonstrated in longitudinally expanding
non-Abelian plasmas [42], offering valuable insights into the universal dynamics during the
initial stages of high-energy collisions.

There is a similar scenario in inflationary cosmology, which describes the exponential
expansion of space in the very early universe [43, 44]. Inflation provides explanations for
several key cosmological observations, such as the isotropy of the universe, the uniform
distribution of the cosmic microwave background, and the flatness of space [45]. The expo-
nentially fast expansion is often modelled by a slowly rolling scalar field called the inflaton.
Following inflation, the universe continued expanding at a slower rate, with its entire energy
density stored in a macroscopic inflaton field, representing a highly nonequilibrium state. In
this subsequent phase, known as reheating, the inflaton field decayed into elementary par-
ticles, eventually creating the matter and radiation that form the universe we observe today
[46]. In manymodels of reheating, an intermediate stage called preheating occurs, where the
inflaton decays into scalar fluctuations and other particles through nonlinear processes [47].
During this stage, instabilities amplify long-wavelength modes, leading to an exponential
growth of fluctuations, resulting in an overoccupied scalar system. Notably, nonthermal
fixed points have also been identified in such overoccupied scalar fields [20, 48], reveal-
ing universal scaling behaviour and self-similar dynamics during the far-from-equilibrium
evolution of the system.

The primary aim of this thesis is to advance the development of effective theories that de-
scribe the emergentmacroscopic dynamics of isolated quantummany-body systems far from
equilibrium. This is done by investigating nonequilibrium symmetries and their connection
to thermalisation, exploring universality in systems far from equilibrium in the context of
nonthermal fixed points, as well as nontrivial field configurations associated with topo-
logical defects. Nonequilibrium symmetries are studied in a spinor Bose gas using lattice
simulations, in addition to experimental data with measurements from an analogue quantum
simulator with ultracold atomic gases. The rest of the thesis investigates relativistic scalar
fields, which are directly relevant for early universe cosmology in three spatial dimensions.
Moreover, relativistic and nonrelativistic scalar fields have been shown to share a univer-
sality class [48], therefore, the results are also important for nonrelativistic scalar fields, for
instance, in the description of Bose gases.

1.1 Symmetries of nonequilibriumquantummany-body sys-
tems

Symmetry principles play a central role in laying the foundation for the fundamental theories
of modern physics. Its aspects are already present in the dynamical laws known from classi-
cal physics, in the form of Galilean invariance in Newton’s laws of mechanics and Lorentz
and gauge invariance in Maxwell’s equations. Appreciating that symmetry principles are
the fundamental features that constrain the allowable dynamics, Einstein formulated special
relativity and later general relativity, where the principle of equivalence played a central
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role. Building upon the significance of such principles, Noether discovered the important
relation between the symmetries of a physical system and conservation laws: for every con-
tinuous symmetry, there exists a conserved charge [49]. If such a symmetry is preserved at
the quantum level, it implies relationships between correlation functions, known as Ward–
Takahashi identities [50, 51], often discussed in the context of quantum electrodynamics.
The equivalent identities for non-Abelian theories are known as Slavnov–Taylor identities
[52, 53].

Such symmetry constraints play an important role in understanding quantum field the-
ories, where the framework of effective field theories has long been a powerful tool for
describing the macroscopic behaviour of equilibrium many-body systems. In such systems,
the symmetries of the underlying Hamiltonian or action, combined with the identification
of the relevant order-parameter field, allow for the construction of consistent effective de-
scriptions [54, 55]. However, in nonequilibrium scenarios, it becomes essential to distin-
guish between the symmetries of a state and those of the Hamiltonian. For instance, even
simple nonequilibrium states with an order-parameter field not in their free-energy ground
state can explicitly break a symmetry of the Hamiltonian. This distinction raises significant
questions about the effective or emergent symmetries of nonequilibrium systems, including
when and how explicitly broken symmetries may be dynamically restored. Addressing such
questions requires quantifying the symmetry properties of nonequilibrium states, which is
also a necessary step for deriving effective field theories. Recent investigations have ex-
plored dynamical symmetry restoration using methods based on entanglement asymmetry
[56, 57] and single-body density matrices [58].

In this thesis, a general approach is outlined for determining the effective symmetries of
nonequilibrium quantum many-body systems using correlation functions. These relations
can be interpreted as nonequilibrium counterparts of Ward identities, which are particularly
suitable for the analysis of measured or simulated data at different snapshots in time. Using a
spinor Bose gas as an example, it is demonstrated that for an initial state that explicitly breaks
the symmetry of the Hamiltonian governing the dynamics, effective symmetry restoration
can occur long before thermalisation in an isolated system. While the full restoration of a
symmetry explicitly broken by the initial state cannot fundamentally occur in closed quan-
tum systems, it is shown that effective restoration can be observed at the level of lower-order
correlation functions, akin to how local observables in thermalisation mimic equilibrium be-
haviour despite the underlying unitary evolution. These elements are essential for effective
descriptions of nonequilibrium dynamics, often constructed using lower-order correlation
functions, such as the Boltzmann equation for single-particle distribution functions derived
from two-point correlations.

1.2 Nonthermal fixed points and universality far from equi-
librium

The notion of universality refers to the fact that certain properties, like scaling exponents or
amplitude ratios, remain the same across a broad range of systems, regardless of their spe-
cific dynamical details. We can group these systems into universality classes based on their
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Figure 1.2. Distribution function f(t, p) near a nonthermal fixed point, shown at two sub-
sequent times (dashed later than solid). The scaling exponents α, β, and κ characterise
the self-similar scaling, where particle number is transported towards the infrared, leading
to a Bose-Einstein condensate, while energy is transported towards the ultraviolet. Figure
adapted from [59].

behaviour near fixed points of renormalisation group flows. Near such a fixed point, scale
invariance and the divergence of correlation length are observed, and while these systems
can behave vastly different at finite scales, their behaviour will become increasingly similar
as this fixed point is approached. The development of these ideas owes much to the pioneer-
ing work of researchers such as Widom, who formulated scaling laws that connect critical
exponents [60], and Kadanoff, who introduced the concept of block spin transformations to
explain scale invariance [61]. Wilson’s renormalisation group theory provided a unifying
framework for understanding universality, demonstrating how the microscopic details of a
system become irrelevant near a critical point [62, 63]. These concepts have been instru-
mental in describing systems near a second-order phase transition, as summarised by the
theory of dynamical critical phenomena [64]. Crucially, such universality classes describe
systems close to thermal equilibrium and require fine-tuning of parameters to reach the fixed
point.

Out of equilibrium, while a comprehensive framework for universality is yet to be es-
tablished, universal scaling phenomena have been identified in a variety of contexts, in-
cluding turbulence [65, 66], coarsening dynamics [67], ageing phenomena [68, 69], and
driven-dissipative systems [70]. Universality classes have also been observed in far-from-
equilibrium isolated systems in the context of nonthermal fixed points [20], which form
nonequilibrium attractor solutions characterised by emergent universal self-similar scaling
and the transport of conserved quantities. The approach to a nonthermal fixed point hap-
pens for a wide range of initial conditions on the way to thermal equilibrium, such that no
fine-tuning is needed to reach it, as opposed to criticality in equilibrium systems.

Typically, to observe self-similar scaling behaviour, an initial state with extreme ove-
roccupation is prepared up to some characteristic momentum scale, as depicted in Fig. 1.2,
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along with the subsequent time evolution. For such an initial condition, the system quickly
redistributes modes at early times, which is followed by the slowing down of the dynamics
and the self-similar scaling regime. The latter is characterised by the emergence of a uni-
versal scaling function for the occupation number distribution function f(t, p) = tαfS

(
tβp
)

with universal scaling exponents α and β that can be related to different conservation laws.
Nonthermal fixed points are characterised by a dual cascade, where particle number is trans-
ported towards the infrared leading to a Bose-Einstein condensate, while energy is trans-
ported towards the ultraviolet. The universal properties are different for different inertial
ranges: in the infrared, the exponents α, β and the scaling function fS that characterise the
particle transport do not agree with the exponents and scaling function in the energy cascade
towards highermomenta. Much of this thesis focuses on the dynamics in the infrared regime,
where large occupancies at low momenta result in strongly nonlinear dynamics despite a
weak coupling, making standard perturbative approaches invalid. In such highly occupied
systems, the quantum dynamics can be accurately mapped onto a classical-statistical theory
[71], which can be solved using real-time lattice simulation techniques, providing a power-
ful nonperturbative approach. This method successfully described the particle transport in
the strongly correlated regime at low momenta and the energy transport at higher momenta;
however, at even higher momenta, where occupations are on the order of the quantum half,
this approximation no longer works.

Another standard approach to studying the underlying dynamics is based on kinetic the-
ory. In this context, a related phenomenon is wave turbulence, which shares features with
the dynamics near nonthermal fixed points. Both phenomena involve the transport of con-
served quantities across scales and can be analysed using kinetic equations. Wave turbulence
can be understood in terms of transport processes across different scales by the presence of
a source driving, for instance, energy into a system and a sink dissipating it [65, 66]. The
scaling laws and exponents in stationary turbulence have been successfully described by
approaches based on kinetic theory and Boltzmann-type equations. However, sources and
sinks are absent in an isolated system. Instead of the occupation number f(t, p) describing
stationary transport, it evolves self-similarly in time, conserving particle number and en-
ergy across different momentum ranges [19, 48]. Notably, one of the standard approaches
to studying scaling at nonthermal fixed points involves deriving evolution equations for
the dynamics of correlation functions within a given model and analysing their scaling be-
haviour. On this basis, kinetic theory provides a framework for tracking the evolution of the
distribution function f(t, p) by accounting for different collision events [72]. This approach
results in a Boltzmann-type equation, which has been particularly successful in explaining
the observed scaling behaviour and exponents in both the perturbative regime characterised
by weak wave turbulence and the nonperturbative regime associated with strong wave tur-
bulence [48, 72–74].

More specifically, N -component scalar fields with quartic interactions provide a use-
ful paradigm for the study of universality classes far from equilibrium. For such models,
techniques like the large-N expansion can be used to yield large-N kinetic theory. The
analytic derivation of scaling exponents related to nonthermal fixed points gives β = 0.5

and α = dβ, up to a potential anomalous dimension η [48, 73]. The exponents β ≈ 0.55

and α ≈ dβ have been successfully found in numerical simulations with a remarkable in-
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sensitivity to the number of field components, including even at low N [48]. In fact, the
corresponding universality classes appear to be surprisingly large; for instance, relativistic
and nonrelativistic scalar fields for any number of field components N form a universality
class [48], and gauge and scalar fields have been found to form another one [75, 76].

However, the scaling analysis based on large-N kinetic theory leads to integer or rational
scaling exponents when assuming an anomalous dimension of η = 0. Without this assump-
tion, the approach does not predict a specific value for η, which, if nonzero, is expected to
be small, as numerical results remain close to β = 0.5. This raises the question of whether
such approaches fully capture the range of possible scaling behaviours at nonthermal fixed
points. Numerical simulations, including real-time classical-statistical simulations, provide
an alternative means of investigating these systems by tracking their evolution from an ini-
tially highly occupied state towards a nonthermal fixed point, where self-similar scaling
emerges dynamically. However, these methods also have limitations in extracting scaling
properties, as the results can depend on numerical implementation details, show sensitivity
to initial conditions, and are affected by uncertainties in self-similar fitting procedures. The
existingmethods also focus on attractor solutions, where the system dynamically approaches
a self-similar scaling regime, further raising the question of whether the full range of pos-
sible scaling behaviours is captured. Therefore, there is a need for alternative approaches
that not only refine the precision of scaling exponent extraction but also extend the study of
nonthermal scaling beyond conventional attractor solutions.

This thesis presents an approach conceptually similar to large-N kinetic theory for rel-
ativistic scalar fields with O(N) symmetry in three dimensions, but extending significantly
beyond previous scaling analyses. Explicit calculations are carried out to obtain scaling
solutions to self-consistent equations derived from effective actions. The method is first
validated against known analytic solutions at the critical point for scalar fields undergoing
a second-order phase transition, and subsequently, it is used to extract scaling solutions in
nonequilibrium dynamics. The results indicate a stationary transport regime characterised
by a universal quadratic scaling, offering valuable insights into strong-wave turbulence.

1.2.1 Nontrivial field configurations

Another related phenomenon to nonthermal fixed points is coarsening and phase-ordering
kinetics [67], which describes the growth of order through coarsening dynamics when a sys-
tem is quenched across a phase transition. In this process, the evolution of the order param-
eter is governed by the dynamics of domains and topological defects, which grow, merge,
or decay over time. The associated scaling exponents and functions depend on the structure
of the order parameter and the nature of the topological defects. The formation of a Bose-
Einstein condensate via the inverse particle cascade near a nonthermal fixed point bears
a strong resemblance to this kind of physics, where topological defects might be created
following the initial quench. Throughout this process, particles are gradually transferred
to low-momentum modes, ultimately building a condensate at zero momentum. However,
causality imposes a limit on the rate at which information and correlations can propagate,
preventing the instantaneous formation of a uniform condensate. Therefore, the condensate
initially lacks long-range order, which it will gradually develop through ordering dynam-
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ics. In fact, topological defects have been shown, in certain cases, to provide an effective
framework for understanding the dynamics close to a nonthermal fixed point [77–79].

For relativistic O(N) theories, a number of different, N -dependent topological defects
are expected to contribute to the dynamics in the infrared, including vortices forN = 1, 2, 3,
domain walls for N = 2 and monopoles for N = 4 [80]. As highlighted in the previous
section, however, it was found that the scaling dynamics and the scaling exponents, even for
low N , are consistent with the large-N limit predicted from large-N kinetic theory, which
assumes elastic collisions of quasiparticles with free dispersion, a result further corrobo-
rated by numerical simulations. While the large-N description works remarkably well, it
remains unclear why its predictions should hold for the scaling behaviour and exponents at
low N , especially given the N -dependent topological defects. However, the study of far-
from-equilibrium universality in isolated systems has mostly been focused on properties of
the distribution function f(t, p) of particles with momentum p at time t, which might not
be particularly sensitive to topological features. Hence, there is a need for topologically
sensitive and computationally accessible observables in order to investigate the connection
between nonthermal fixed points and coarsening dynamics more thoroughly.

In this work, two distinct approaches are employed to address this. First, unequal time
correlation functions are investigated to study the different excitations in relativistic scalar
fields at low N . The previously studied equal-time distribution function, defined based on
f(t, p) =

〈
a†p(t)ap(t)

〉
where a†p(t) and ap(t) are the usual creation and annihilation oper-

ators,1 can provide valuable insights into the underlying dynamics of scattering processes
between quasiparticles. However, this particle picture is only well understood in the large-N
limit. Previous works have shown that forN = 1, the dominant quasiparticle in the infrared
regime differs significantly from the one assumed in large-N theories [81, 82]. This raises
the question of what the relevant degrees of freedom are for O(1) and U(1) scalar fields.
Identifying these is a crucial step towards constructing a low-energy effective theory that
captures their macroscopic dynamics and would complement existing large-N descriptions.
While f(t, p) reflects the momentum dependence of excitations, unequal-time correlations
provide additional information by resolving their frequency dependence, making it possible
to distinguish between different excitations in the system. This thesis demonstrates that the
dominant quasiparticle can be understood as excitations arising from vortex interactions for
N = 1.

Subsequently, topologically sensitive observables are defined using persistent homol-
ogy, the main toolbox from topological data analysis (TDA) [83, 84]. These can provide
complementary information to correlation functions by giving access to the topology of the
data on the lattice obtained from numerical simulations. Observables based on TDA offer a
versatile and nonlocal approach for probing mechanisms and signatures of collective quan-
tum field-theoretic phenomena, with robust mathematical properties such as stability under
data perturbations [85] and ergodicity [86]. This approach allows for a deeper understanding
of the emergent structures in nonequilibrium dynamics and offers a novel perspective on the

1In a nonequilibrium interacting theory, the interpretation of the same object is more subtle in terms of the
total number of (quasi)particles, however, even in the nonperturbative highly occupied regime, the distribution
function can be well-defined in terms of simple correlation functions, which has been successfully used to
characterise the system [81].
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role of topology in far-from-equilibrium quantum systems. The observables defined based
on persistent homology reveal universal scaling exponents and dynamics that are driven by
vortex defects with the exponent βL ≈ 0.2 forN = 1, 2 and βL ≈ 0.4 forN = 3 in relativis-
tic scalar fields. These are distinct from the usual β = 0.5, which characterises the scaling
of the distribution function f(t, p). This indicates the presence of multiscaling phenom-
ena, where distinct observables constructed from the same data set are sensitive to different
underlying physical processes. These results emphasise the importance of topologically
sensitive observables for uncovering subdominant defect dynamics in universal regimes far
from equilibrium, particularly in three-dimensional systems where such dynamics may be
suppressed in overoccupied scenarios.

1.3 Outline of thesis

This thesis is divided into seven chapters. Here, a brief outline is given for each chapter.
Chapter 2 introduces the foundational tools of nonequilibrium quantum field theory that

are employed in the study of the dynamics of quantum systems later in this work. This
includes the classical-statistical approximation and functional field-theoretic methods, along
with further approximations it can be combined with.

Chapter 3 explores the role of effective symmetries in nonequilibrium quantum many-
body systems. The symmetry restoration of explicitly broken symmetries is investigated and
compared with thermalisation time scales. It is found that effectively, symmetries are re-
stored long before equilibration in an isolated system on the level of lower-order correlation
functions, with higher-order ones retaining memory of the initial condition. The approach
is also used to identify spontaneous symmetry breaking far from equilibrium, which is of
great relevance for applications to nonequilibrium phase transitions.

Chapter 4 examines the different degrees of freedom that could play a role in the relevant
low-energy effective theory of the universal dynamics in far-from-equilibrium O(1) scalar
theories. The primary quasiparticle excitations are associated with vortex defects and their
dynamics. These excitations are identified as Kelvin waves, or kelvons, in three dimen-
sions, which are quantised helical perturbations propagating along vortex strings. In two
dimensions, similar vortex-boundary excitations are conjectured alongside phonons gener-
ated through vortex-antivortex annihilation.

Chapter 5 studies the influence of topological defects on universal scaling far from equi-
librium, with a focus on the dynamics of defect-driven coarsening. This is done by defining
observables based on persistent homology, which provide complementary information to
well-known correlation functions. These observables reveal a different scaling behaviour
from that of correlation functions, confirming the existence of multiple scaling phenomena
coexisting in the vicinity of nonthermal fixed points.

Chapter 6 explores universal scaling behaviour in relativistic O(N) scalar field theo-
ries, going beyond the standard scaling analyses typically employed in kinetic theory. The
approach relies on explicitly solving a self-consistent equation and evaluating self-energy
integrals. The numerical approach presented is benchmarked using existing analytic solu-
tions for equilibrium critical behaviour, after which it is used to extract scaling solutions for
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nonthermal phenomena. The results provide valuable insights into stationary nonequilib-
rium dynamics, particularly in the context of strong-wave turbulence.

Chapter 7 provides a conclusion where the results are discussed, and an outlook is given
for possible future directions.



Chapter 2

Functional methods in nonequilibrium
quantum field theory

In this chapter, the main tools and techniques used in the study of nonequilibrium quantum
fields are discussed that will be used in the subsequent chapters. The description is largely
based on the lecture notes [87], titled Nonequilibrium Quantum Fields: From Cold Atoms
to Cosmology, where more details can be found. First, the functional integral representation
of nonequilibrium quantum fields is introduced, followed by the classical-statistical approx-
imation, which is a useful method to study the dynamics of quantum fields in the regime
of large occupations. Afterwards, effective actions are considered, with an emphasis on
the two-particle irreducible (2PI) effective action. In the context of the 2PI formalism, the
large-N expansion is also discussed as a powerful nonperturbative approximation scheme.
The focus will be on scalar field theories with quartic self-interactions, which are used as a
paradigm for understanding far-from-equilibrium dynamics in most chapters of this thesis.

2.1 Nonequilibrium quantum fields

Nonequilibrium quantum systems can be described by specifying an initial condition at
some time t0, typically represented via a density operator ρ̂ (t0) ≡ ρ̂0, whose time evolution
is given by the operator U(t, t0). Equivalently, the initial state can be specified by provid-
ing all initial correlation functions; e.g., the one-point function Tr {ρ̂0ϕ̂ (t0, x)}, the two-
point function Tr {ρ̂0ϕ̂ (t0, x) ϕ̂ (t0, y)}, and all higher n-point functions, where ϕ̂ (t0, x)
represents a real, bosonic scalar field operator at a spacetime point (t0, x). Lower-order
correlation functions are often sufficient to approximate the initial state, and higher-order
correlators tend to build up during the system’s subsequent evolution t > t0. This approx-
imation is equivalent to assuming the density operator ρ̂0 is Gaussian when the description
is restricted to only the one- and two-point functions. Once the initial state is specified, the
time-evolution of an isolated quantum system is unitary and fully determined by its Hamil-
tonian. This evolution can then be reformulated on a closed time contour in the path integral
formalism, as detailed in the following.

11
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Figure 2.1. The Schwinger-Keldysh contour on a closed time path.

2.1.1 Functional integral representation of quantum fields

Computing observables is a crucial step for any theory since they provide measurable quan-
tities that connect theoretical predictions with experimental results. Considering the above
densitymatrix ρ̂0 at the initial time t0with the time evolution operatorU(t, t0), in the Heisen-
berg picture, the expectation value of an observable is given by

〈Ô(t)〉 = Tr
{
ρ̂0U (t0, t) ÔU (t, t0)

}
, (2.1)

where Ô(t) is some local operator corresponding to an observable quantity and is time-
dependent, while the density matrix in this picture is time-independent. We can see that the
initial density matrix is evolved forward in time byU(t, t0) and then back in time byU(t0, t),
acted upon by the observable Ô and finally traced over. Thus, the dynamical evolution of the
system generally involves the evolution of the density matrix in both forward and backward
time directions. This can be naturally described by the Schwinger-Keldysh contour [88, 89],
as illustrated in Fig. 2.1 by the symbol C, which is a closed contour in the complex time plane.
It consists of two branches, C+ and C−, corresponding to the forward and backward time
evolution, respectively. This description is particularly useful for nonequilibrium systems,
as it is not restricted to computations of scattering matrix elements of asymptotic states, and
at the same time, it also allows for the study of vacuum as well as thermal field theory.

Any quantum system can be completely described by the knowledge of all correlation
functions, which are represented as the trace over time-dependent Heisenberg field opera-
tors for a given density matrix ρ̂0. Since observables are often computed from correlation
functions, accurately determining these is an important step. The generating functional of
correlation functions contains all information about the quantum system and is given by

Z [J ; ρ̂0] = Tr
{
ρ̂0TC exp

(
i
∫
x,C
J(x)ϕ̂(x)

)}
, (2.2)

which is the generalisation of the partition function for nonequilibrium systems in the pres-
ence of the source term J(x), with the normalisation Tr {ρ̂0} = 1. Here, TC is the time-
ordering operator, which arranges field operators according to their time arguments (from
right to left in increasing time), along the C+ branch, and reversed ordering along the C−

part. This can be rewritten as a path integral using the eigenstates of the Heisenberg oper-
ator ϕ̂(x), i.e. ϕ̂(x)|ϕ〉 = ϕ(x)|ϕ〉. The standard procedure divides the time interval into
infinitesimally small chunks and a complete set of coherent states are inserted between the
slices. In this case, it is useful to write ϕ(x) = ϕ±(x) if x0 ∈ C±, as one needs to indicate if
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the coherent state belongs to a forward or backward branch on the Schwinger-Keldysh con-
tour. Therefore, at the reference time t0, the eigenstates of the field operator can be defined
as

ϕ̂± (t0, x)
∣∣ϕ±〉 = ϕ±

0 (x)
∣∣ϕ±〉 . (2.3)

The generating functional can then be equivalently written as

Z [J ; ρ̂0] =

∫ [
dϕ+

0

] 〈
ϕ+
∣∣ ρ̂0TC exp

[
i
∫
x,C
J(x)ϕ̂(x)

] ∣∣ϕ+
〉
, (2.4)

with the integration measure [
dϕ±

0

]
≡
∏
x

dϕ±
0 (x). (2.5)

Using the insertion ∫ [
dϕ−

0

] ∣∣ϕ−〉 〈ϕ−∣∣ = 1, (2.6)

one obtains

Z [J ; ρ̂0] =

∫ [
dϕ+

0

] [
dϕ−

0

] 〈
ϕ+
∣∣ ρ̂0 ∣∣ϕ−〉 (ϕ−, t0 | ϕ+, t0

)
J
. (2.7)

The quantity given by

(
ϕ−, t0 | ϕ+, t0

)
J
=
〈
ϕ−∣∣ TC exp

[
i
∫
x,C
J(x)ϕ̂(x)

] ∣∣ϕ+
〉

(2.8)

is the transition amplitude in the presence of the source J . Similarly to the standard vacuum
quantum field theory, this can be also written as a functional integral over classical fields
ϕ(x) with the classical action S[ϕ] as

(
ϕ−, t0 | ϕ+, t0

)
J
=

∫ φ−
0

φ+
0

D′ϕ exp
[
iS[ϕ] + i

∫
x,C
J(x)ϕ(x)

]
. (2.9)

The classical action is given by integrating over the respective Lagrangian densityL(x), i.e.
S =

∫
C dx

0
∫
ddxL(x). The path integral goes over the field configurationsϕ(x) depending

on space and times x0 > t0 that satisfy the boundary conditions ϕ± (x0 = t0, x) = ϕ±
0 (x)

for x0 on C±. The prime on D′ϕ indicates that the integration over the fields at x0 = t0 is
excluded. Bringing everything together, the path integral representation of the generating
functional can be written as

Z [J ; ρ̂0] =

∫ [
dϕ+

0

] [
dϕ−

0

] 〈
ϕ+
∣∣ ρ̂0 ∣∣ϕ−〉

︸ ︷︷ ︸
initial conditions

∫ φ−
0

φ+
0

D′ϕei{S[φ]+
∫
x,C J(x)φ(x)}

︸ ︷︷ ︸
quantum dynamics

.
(2.10)

The above expression highlights two key components of nonequilibrium quantum field the-
ory: quantum fluctuations, represented by the functional integral over the action S[ϕ], and
statistical fluctuations, captured through the averaging process involving the matrix ele-
ments of the initial density operator ρ̂0.
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Regarding initial conditions, in general, a density matrix is given by〈
ϕ+
∣∣ ρ̂0 ∣∣ϕ−〉 = N eihc[φ], (2.11)

with normalisation N and hC[ϕ] expanded in terms of the fields

hC[ϕ] =α0 +

∫
x,C
α1(x)ϕ(x) +

1

2

∫
xy,C

α2(x, y)ϕ(x)ϕ(y)

+
1

3!

∫
xyz,C

α3(x, y, z)ϕ(x)ϕ(y)ϕ(z)

+
1

4!

∫
xyzw,C

α4(x, y, z, w)ϕ(x)ϕ(y)ϕ(z)ϕ(w) + . . .

(2.12)

and coefficients αn. The integrals are evaluated along the forward branch C+ and the back-
ward branch C− of the closed time path with ϕ+ (t0, x) = ϕ+

0 (x) and ϕ− (t0, x) = ϕ−
0 (x).

Since the density matrix is specified at the initial time t0 only, the time integrals only con-
tribute at the endpoints of the contour, and therefore the coefficientsα1(x), α2(x, y), α3(x, y, z)

vanish for t 6= t0, such that∫
x,C
α1(x)ϕ(x) ≡

∫
ddx

{
α+
1 (x)ϕ+

0 (x) + α−
1 (x)ϕ−

0 (x)
}
, (2.13)

∫
xy,C

α2(x, y)ϕ(x)ϕ(y) ≡
∫

ddx ddy{α++
2 (x, y)ϕ+

0 (x)ϕ+
0 (y) + α+−

2 (x, y)ϕ+
0 (x)ϕ−

0 (y)

+ α−+
2 (x, y)ϕ−

0 (x)ϕ+
0 (y) +α−−

2 (x, y)ϕ−
0 (x)ϕ−

0 (y)
}
,

(2.14)
and similarly for αn. For a physical density matrix ρ0 = ρ†0, the coefficients have to satisfy
iα+

1 =
(
iα−

1

)∗
, iα++

2 =
(
iα−−

2

)∗, iα+−
2 =

(
iα−+

2

)∗, and so forth. There can be further
constraints on the coefficients arising from spacetime symmetries. For the most general
initial density matrix, the generating functional can be written as

Z [J ; ρ̂0] =

∫
Dϕei{S[φ]+

∫
x,C J(x)φ(x)+ 1

2

∫
xy,C R(x,y)φ(x)φ(y)+ 1

3!

∫
xyz,C α3(x,y,z)φ(x)φ(y)φ(z)+...},

(2.15)
where we shifted the source terms J(x)+α1(x) → J(x),R(x, y)+α2(x, y) → R(x, y) and
neglected the irrelevant normalisation constant. This shows that the sources J andR can be
used to absorb the linear and quadratic contributions from the initial density matrix, and as a
result, the initial generating functional may be fully determined by the initial-time sources.
In general, one could specify an arbitrarily complex initial density matrix. However, in
practice, particularly in experimental settings, initial conditions are often characterised by
only a few lower-order correlation functions. For many practical applications, the initial
density matrix can be effectively approximated by a Gaussian form, which corresponds to
states fully determined by one- and two-point correlation functions. In this case, one has
αn (x1, . . . , xn) ≡ 0, n ≥ 3, and the generating functional simplifies to

Z(Gauss )[J,R] =

∫
Dϕei{S[φ]+

∫
x,C J(x)φ(x)+ 1

2

∫
xy,C φ(x)R(x,y)φ(y)}. (2.16)
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2.1.2 Correlation functions

We obtain the correlation functions by taking the functional derivative of Z [J ; ρ̂0] with re-
spect to the source term J(x). For instance, the one-point function is obtained for a vanishing
source J(x) as

δZ [J ; ρ̂0]

iδJ(x)

∣∣∣∣
J=0

= Tr {ρ̂0ϕ̂(x)} ≡ 〈ϕ̂(x)〉 ≡ φ(x), (2.17)

and the time-ordered two-point correlator is
δ2Z [J ; ρ̂0]

iδJ(x)iδJ(y)

∣∣∣∣
J=0

= Tr {ρ̂0TCϕ̂(x)ϕ̂(y)} ≡ 〈TCϕ̂(x)ϕ̂(y)〉 . (2.18)

Higher-order correlation functions 〈TCϕ̂ (x1) . . . ϕ̂ (xn)〉 can be obtained by taking further
derivatives. One can introduce the connected two-point function by

G(x, y) ≡ 〈TCϕ̂(x)ϕ̂(y)〉 − φ(x)φ(y), (2.19)

which removes the contribution that is reducible to disconnected terms, thereby isolating the
genuine, connected two-point correlations. Since the function G(x, y) is defined along the
contour C, the time-ordering of the fields TCϕ̂(x)ϕ̂(y) depends on the relative arrangement
of their time arguments on this contour. Using the Heaviside step function θ(x0 − y0), this
relationship can be expressed explicitly as

TCϕ̂(x)ϕ̂(y) =


ϕ̂(x)ϕ̂(y)θ (x0 − y0) + ϕ̂(y)ϕ̂(x)θ (y0 − x0) , for x0, y0 on C+,

ϕ̂(x)ϕ̂(y)θ (y0 − x0) + ϕ̂(y)ϕ̂(x)θ (x0 − y0) , for x0, y0 on C−,

ϕ̂(y)ϕ̂(x), for x0 on C+, y0 on C−,

ϕ̂(x)ϕ̂(y), for x0 on C−, y0 on C+,

≡ ϕ̂(x)ϕ̂(y)θC
(
x0 − y0

)
+ ϕ̂(y)ϕ̂(x)θC

(
y0 − x0

)
,

(2.20)
in terms of the contour step function θC (x0 − y0). Making use of the ± indices introduced
above, nonequilibrium correlation functions can be computed by taking functional deriva-
tives with respect to J+(x) and J−(x). In this case, the one-point correlation function

δZ [J ; ρ̂0]

iδJ±(x)

∣∣∣∣
J=0

= Tr {ρ̂0ϕ̂(x)} ≡ φ(x) (2.21)

is the same whether it is obtained from J+ or J− in the absence of any sources since time-
ordering plays no role. On the other hand, there are four possible options for a two-point
function, namely

δ2Z [J ; ρ̂0]

iδJ+(x)iδJ+(y)

∣∣∣∣
J=0

= 〈ϕ̂(x)ϕ̂(y)〉θ
(
x0 − y0

)
+ 〈ϕ̂(y)ϕ̂(x)〉θ

(
y0 − x0

)
≡ G++(x, y) + φ(x)φ(y),

δ2Z [J ; ρ̂0]

iδJ−(x)iδJ−(y)

∣∣∣∣
J=0

= 〈ϕ̂(x)ϕ̂(y)〉θ
(
y0 − x0

)
+ 〈ϕ̂(y)ϕ̂(x)〉θ

(
x0 − y0

)
≡ G−−(x, y) + φ(x)φ(y),

δ2Z [J ; ρ̂0]

iδJ+(x)iδJ−(y)

∣∣∣∣
J=0

= 〈ϕ̂(y)ϕ̂(x)〉 ≡ G+−(x, y) + φ(x)φ(y),

δ2Z [J ; ρ̂0]

iδJ−(x)iδJ+(y)

∣∣∣∣
J=0

= 〈ϕ̂(x)ϕ̂(y)〉 ≡ G−+(x, y) + φ(x)φ(y).

(2.22)
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While any nonequilibrium two-point correlator can be written in terms of these, not all the
components are independent. Using the property θ (x0 − y0) + θ (y0 − x0) = 1 of the
Heaviside step function, one arrives at the identity

G++(x, y) +G−−(x, y) = G+−(x, y) +G−+(x, y). (2.23)

Furthermore, it can also be observed that G+−(x, y) = G−+(y, x). Therefore, in general, a
nonequilibrium two-point function can be parameterised by two independent functions.

Spectral and statistical functions

In the context of nonequilibrium field theory, it is often useful to define the commutator and
anticommutator of fields

F (x, y) =
1

2
〈{ϕ̂(x), ϕ̂(y)}〉c ,

ρ(x, y) = i 〈[ϕ̂(x), ϕ̂(y)]〉 ,
(2.24)

where F (x, y) is called the statistical two-point function and ρ(x, y) is the spectral function.
Loosely speaking, the former contains information about the average occupancy of available
modes, while the latter contains information about the availability of modes. These two
functions can be related to the time-ordered propagator G(x, y) via

G(x, y) = F (x, y)− i

2
ρ(x, y) sgnC (x0 − y0) , (2.25)

where sgnC (x0 − y0) is +1 if x0 > y0 and −1 if x0 < y0.
For the case of thermal equilibrium, there is an important relationship between these two

quantities in the form of the fluctuation-dissipation theorem [90] which relates the statistical
and spectral functions via

F (eq)(ω, p) = −i
(
1

2
+ fBE(ω)

)
ρ(eq)(ω, p), (2.26)

where fBE(ω) =
(
eβω − 1

)−1 is the Bose–Einstein distribution function and β = 1/T is
the inverse temperature. In the case of nonequilibrium systems, the fluctuation-dissipation
relation is generally not valid and the statistical and spectral functions are independent quan-
tities.

2.2 Classical-statistical approximation
Classical-statistical field theory is expected to be an adequate description of the quantum dy-
namics when the number of bosonic field quanta per mode is sufficiently large, as quantum
fluctuations become suppressed compared to statistical ones. In this regime, the quantum
system can be effectively described by an ensemble of classical field configurations. In
the corresponding classical-statistical simulations, one samples over initial conditions, and
each realisation is evolved according to the classical equation of motion. The advantage of
this is that solving such equations can be straightforwardly implemented numerically on a
discretised lattice, after which expectation values of observables are obtained by averaging
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over their evaluations for the classical trajectories. This approximation provides a substan-
tial simplification in complexity compared to the full quantum many-body problem and has
wide-ranging applications in the context of cosmology [91], high-energy physics [29], and
ultracold quantum gases [8].

In the following, the classical-statistical approximation and its range of validity are dis-
cussed, starting with the generating functional introduced in the previous section. We con-
sider the paradigmatic example of an O(N) symmetric scalar field theory in d = 3 + 1

dimensions with fields ϕa(x) ≡ ϕa (x0, x) and quartic self-interaction. The action is given
by

S[ϕ] =

∫
x,C

[
1

2
∂µϕa(x)∂µϕa(x)−

m2

2
ϕa(x)ϕa(x)−

λ

4!N
(ϕa(x)ϕa(x))

2

]
, (2.27)

where
∫
x,C ≡

∫∞
−∞ ddx

∫
C dx0 denotes a closed time path contour. The fields ϕa(x) are real

and the index a runs from 1 to N .

2.2.1 Keldysh rotation

The classical action (2.27) for theN -component scalar field theorymay be rewritten in terms
of the fields taken on the positive and negative branches of the closed contour C+ and C−,
respectively, as

S
[
ϕ+, ϕ−]

=

∫
x,t0

{
1

2
∂µϕ+

a (x)∂µϕ
+
a (x)−

m2

2
ϕ+
a (x)ϕ

+
a (x)−

λ

4!N

(
ϕ+
a (x)ϕ

+
a (x)

)2
−1

2
∂µϕ−

a (x)∂µϕ
−
a (x) +

m2

2
ϕ−
a (x)ϕ

−
a (x) +

λ

4!N

(
ϕ−
a (x)ϕ

−
a (x)

)2}
.

(2.28)

It is insightful to introduce the linear transformation(
ϕ

ϕ̃

)
≡
(

1/2 1/2

1 −1

)
︸ ︷︷ ︸

≡A

(
ϕ+

ϕ−

)
(2.29)

and the transformed scalar fields

ϕ =
ϕ+ + ϕ−

2
, ϕ̃ = ϕ+ − ϕ−, (2.30)

as we will shortly see, this makes the comparison with classical-statistical field theory sim-
pler. We arrive at the generating functional in terms of the rotated variables as

Z
[
J, J̃ ; ρ̂0

]
=

∫
Dϕ0Dϕ̃0

〈
ϕ0 +

ϕ̃0

2
|ρ̂0|ϕ0 −

ϕ̃0

2

〉
×
∫
φ0,φ̄0

D′ϕD′ϕ̃ exp
{
iS[ϕ, ϕ̃] + i

∫
x

(
ϕa(x)J̃a(x) + ϕ̃a(x)Ja(x)

)}
,

(2.31)

where the source terms have been analogously transformed according to(
J

J̃

)
≡ A

(
J+

J−

)
. (2.32)
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φ φ̃

φ φ
classical

φ̃ φ

φ̃ φ̃
quantum

Figure 2.2. The classical and quantum vertices, corresponding to the different kinds of
interaction terms ∼ ϕ̃ϕ3 and ∼ ϕ̃3ϕ, respectively.

The different connected two-point correlation functions in the rotated variables, obtained
via the Schwinger functionalW [J,R] = −i lnZ[J,R] are given by

Fab(x, y) =
δ2W [J,R]

iδJ̃a(x)δJ̃b(y)

∣∣∣∣
J=J̃=0

, −iGR
ab(x, y) =

δ2iW [J,R]

iδJ̃a(x)δJb(y)

∣∣∣∣
J=J̃=0

,

−iGA
ab(x, y) =

δ2W [J,R]

iδJa(x)δJ̃b(y)

∣∣∣∣
J=J̃=0

, F̃ab(x, y) =
δ2W [J,R]

iδJa(x)δJb(y)

∣∣∣∣
J=J̃=0

,

(2.33)
where the retarded and advanced propagators are GR

ab(x, y) ≡ θ (x0 − y0) ρab(x, y) and
GA

ab(x, y) ≡ −θ (y0 − x0) ρab(x, y), the spectral function is their difference ρab(x, y) =

GR
ab(x, y)−GA

ab(x, y) and F̃ab is zero for vanishing sources. In the ± basis, the propagators
are given by (

F −iGR

−iGA F̃

)
= A

(
G++ G+−

G−+ G−−

)
AT . (2.34)

2.2.2 Relation to classical-statistical field theory

The action appearing in Eq. (2.31) above can then be split into

S[ϕ, ϕ̃] = S0[ϕ, ϕ̃] + Sint,cl[ϕ, ϕ̃] + Sint,q[ϕ, ϕ̃], (2.35)

where the different terms are given by

S0[ϕ, ϕ̃] =

∫
x,t0

∂µϕ̃a(x)∂µϕa(x)−m2ϕ̃a(x)ϕa(x),

Sint,cl [ϕ, ϕ̃] = − λ

6N

∫
x,t0

ϕ̃a(x)ϕa(x)ϕb(x)ϕb(x),

Sint, q[ϕ, ϕ̃] = − λ

24N

∫
x,t0

ϕ̃a(x)ϕ̃a(x)ϕ̃b(x)ϕb(x).

(2.36)

There are two types of interaction vertices, namely, a “classical” one and a “quantum”
one, as shown in Fig. 2.2. To illustrate the reason behind the naming of these terms, it is
worth noting that the generating functional of the corresponding nonequilibrium classical-
statistical field theory is rather similar to the quantum case, except that crucially, there is an
additional quantum vertex corresponding to the interaction term∼ ϕ̃3ϕ that does not appear
in the classical theory. The classical-statistical approximation is obtained by neglecting the
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quantum interaction term Sint, q[ϕ, ϕ̃] in the action. The generating functional is then given
by

Zcl

[
J, J̃ ; ρ0

]
=

∫
Dϕ0Dπ0W [ϕ0, π0]

∫
φ0,π0

D′ϕDϕ̃eiScl[φ,φ̄]+i
∫
x(φa(x)J̄a(x)+φ̄a(x)Ja(x)),

(2.37)
where Scl is the action containing S0 and Sint,cl, and W [ϕ0, π0] is the Wigner distribution
functional of fields at t0 defined via〈

ϕ0 +
ϕ̃0

2
|ρ̂0|ϕ0 −

ϕ̃0

2

〉
=

∫
Dπ0W [ϕ0, π0] e

i
∫
ddxπ0,a(x)φ̄0,a(x). (2.38)

Since the classical action Scl[ϕ, ϕ̃] is linear in ϕ̃, it can be written as

Scl[ϕ, ϕ̃] =

∫
x

ϕ̃a(x)
δScl[ϕ, ϕ̃]

δϕ̃a(x)
, (2.39)

and analytically integrated over to yield∫
Dϕ̃eiScl[φ,φ̄] = δ

[
Scl[ϕ, ϕ̃]

δϕ̃a(x)

]
= δ

[
ϕ− ϕcl]J −1[ϕ]︸ ︷︷ ︸

=1

, (2.40)

where the Jacobi determinant is equal to 1 due to the normalisation of Z. Here, ϕcl is the
solution to the classical field equation of motion, which can be obtained by minimising the
action (2.27) as δS/δϕ = 0 to give(

∂µ∂µ +m2 +
λ

6N
ϕc(x)ϕc(x)

)
ϕa(x) = 0. (2.41)

The classical-statistical average of an observable O[ϕ] is given by the phase-space average
over field trajectories that are solutions to the classical field equation

〈O[ϕ, π]〉cl =
∫

Dϕ0Dπ0W [ϕ0, π0]O
[
ϕcl (ϕ0, π0) , π

cl (ϕ0, π0)
]
, (2.42)

with initial conditions given by ϕ0, π0.
The classical-statistical approximation discussed here is closely related to the Truncated

Wigner Approximation (TWA) [71], which serves as a practical tool for studying quantum
dynamics in the phase-space formalism. Both approaches involve initialising the system
through theWigner distribution, which captures quantum fluctuations at the initial time, and
then evolving the system using classical equations of motion. In practice, this yields equiva-
lent results for computed observables. However, TWA is formally derived from the Wigner
representation of quantum mechanics and is obtained by neglecting higher-order quantum
corrections in the evolution equations, whereas the classical-statistical approximation omits
specific quantum terms in the action.

2.2.3 Classicality condition

In order to make the range of validity of this approximation more concrete, we first return
to the different two-point functions in the rotated variables,

Fab(x, y) = 〈ϕa(x)ϕb(y)〉 ,
−iGR

ab(x, y) = 〈ϕa(x)ϕ̃b(y)〉 ,
−iGA

ab(x, y) = 〈ϕ̃a(x)ϕb(y)〉 ,
(2.43)
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given explicitly in terms of the rotated fields ϕ̃, ϕ. As discussed above, the interaction
term in the action (2.35) contains two kinds of contributions, corresponding to a classical
vertex ∼ ϕ̃ϕ3 and a quantum vertex ∼ ϕ̃3ϕ, as illustrated in Fig. 2.2. These vertices can
generate additional sub-diagrams with loop corrections. However, in the classical-statistical
approximation, quantum vertices are neglected, meaning that terms involving multiple ϕ̃
fields do not contribute. In contrast, including quantum vertices, which feature more dashed
ϕ̃ legs, would introduce sub-diagrams with fewer F propagators and a higher proportion of
ρ functions, as seen from Eq. (2.43). This naturally leads to the classicality condition

Fab(x, y) � ρab(x, y). (2.44)

However, this requirement is difficult to fulfill for all space-time arguments, and can typi-
cally only be met for a limited amount of time and momenta. Equivalently, the condition
can be restated in terms of the distribution function as

f(t, p) � 1

2
(2.45)

for the relevant time and momentum range. Therefore, the classical-statistical description
accurately captures the quantum dynamics if the dominant momentum modes have occu-
pancies much higher than the so-called quantum half.

Furthermore, we note that by rescaling the fields in the action (2.36) according to

ϕa(x) → ϕ′
a(x) =

√
λϕa(x), ϕ̃a(x) → ϕ̃′

a(x) =
1√
λ
ϕ̃a(x) (2.46)

the rescaled interaction terms are given by

Sint [ϕ
′, ϕ̃′] = − 1

6N

∫
x

ϕ̃′
a(x)ϕ

′
a(x)ϕ

′
b(x)ϕ

′
b(x)−

λ2

24N

∫
x

ϕ̃′
a(x)ϕ̃

′
a(x)ϕ̃

′
b(x)ϕ

′
b(x), (2.47)

and the λ dependence is fully encoded in the quantum interaction term. As a result, in the
classical-statistical approximation, the generating functional and the evolution equations
governing the dynamics become independent of λ, with λ entering only through the ini-
tial conditions. This implies an additional constraint on the validity of the approximation:
while the dynamics itself remains unaffected by λ, the approximation is expected to hold
reliably only when interactions do not significantly alter the high-occupancy modes, which
is typically the case at weak coupling λ� 1.

2.2.4 Scalar fields on a lattice

In practice, the classical field equations can be solved numerically on a discrete lattice by
first sampling initial conditions from the Wigner distribution, evolving the fields according
to the classical equations of motion and then averaging O over the different realisations

〈O[ϕ, π]〉cl ≈
1

Nsamp

∑
(φ0,π0)

O
[
ϕcl (ϕ0, π0) , π

cl (ϕ0, π0)
]
, (2.48)
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where Nsamp is the number of different runs. More concretely, first, the fields ϕa(t0, x) and
conjugate momenta πa (t0, x) = ϕ̇a (t0, x) are randomly initialised according to

ϕa (t0, x) = φ0 +

∫
ddp
(2π)d

√
fp (t0) + 1/2

ωp (t0)
ca,pe

ipx, (2.49)

πa (t0, x) = φ̇0 +

∫
ddp
(2π)d

√
(fp (t0) + 1/2)ωp (t0)c̃a,pe

ipx, (2.50)

where φ (t0) = φ0 is a macroscopic field and its derivative is φ̇ (t0) = φ̇0, fp (t0) is the
distribution function, and the dispersion relation is ωp (t0) =

√
p2 +M2. For Gaussian

initial conditions, the coefficients ca,p have to satisfy〈
ca,pc

∗
b,p′
〉
cl = (2π)dδabδ (p− p′) , 〈ca,pcb,p′〉cl =

〈
c∗a,pc

∗
b,p′
〉
cl = 0, (2.51)

and similarly for the coefficients c̃a,p. Moreover, since ca,p and c̃a,p are independent random
numbers, we also have 〈ca,pc̃b,p′〉cl = 0. This can be realised in practice by the formulation
ca,p = A(p)ei2πα(p), where A(p) is an amplitude drawn from a Gaussian distribution, and
α(p) is a uniformly distributed phase between 0 and 1. The random numbers also have to
satisfy c∗a,−p = ca,p so that the fields are real-valued.

Subsequently, the classical fields ϕa(x) and πa(x) are evolved according to the discre-
tised version of the classical equations of motion

∂tϕa(t, x) = πa(t, x),

∂tπa(t, x) = ∂i∂
iϕa(t, x)−m2ϕa(t, x)−

λ

6
ϕa(t, x)3,

(2.52)

on a spatial lattice with spacing as and volume V = (Nsas)
d with a standard leapfrog

algorithm. Moreover, in practice, the coupling λ is scaled out as discussed above.
Ensemble averages of classical fields can then be obtained by repeating the procedure

of randomly initialising the classical fields and evolving them. The number of runs needed
to accurately compute correlation functions depends on the lattice size and dimensionality
of the investigated systems. For instance, even single-run simulations on a large lattice can
give accurate results since systems have self-averaging properties. This is especially evident
in three (and higher) dimensions, while in lower dimensions, larger ensembles of runs may
be required to reduce statistical fluctuations and achieve accurate results due to reduced
self-averaging effects.

2.3 Effective actions
Studying the dynamics of strongly correlated many-body systems is a notoriously diffi-
cult problem [92, 93], especially in a nonequilibrium time evolution. Usual perturbative
approaches that rely on the expansion of the action in terms of the coupling constant are
inefficient due to the large number of Feynman diagrams that need to be computed, and
standard perturbative time evolution can also be affected by so-called secular terms, which
grow with time and render the perturbative expansion invalid. The two-particle irreducible
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effective action is a powerful tool that has been successfully used to study the dynamics of
quantum fields in nonequilibrium systems in the strongly correlated regime. It provides a
self-consistent treatment of initial value problems and is particularly useful in the context
of large-N expansions, which we will discuss in this section.

2.3.1 One-particle irreducible effective action

As mentioned earlier, the generating functional Z is the nonequilibrium quantum field gen-
eralisation of the partition function. In thermodynamics, the logarithm of the partition func-
tion and its Legendre transforms provide alternative formulations of the physics of the sys-
tem. Motivated by this, and taking the Legendre transform of the generating functional for
connected correlation functions defined viaW = −i lnZ, we arrive at the quantum effective
action

Γ [φ] = W [J ]−
∫
x,C
Ja(x)φa(x), (2.53)

where J(x) is the source for which the scalar field has the expectation value φ(x). More-
over, the expectation value φ(x) = 〈ϕ̂(x)〉J , often referred to as the classical field can be
identified as

δW [J ]

δJa(x)
= φa(x). (2.54)

This quantity can be thought of as the weighted average over quantum fluctuations in the
presence of J(x). Taking the functional derivative of (2.53), one has

δΓ [φ]

δφa(x)

∣∣∣∣
ϕ=ϕJ

= −Ja(x), (2.55)

which shows that the vacuum expectation value of the fields minimises the quantum effec-
tive action, rather than the classical action. This reflects the principle of least action applied
to the full quantum framework.

The functional in Eq. (2.53) is called one-particle irreducible quantum effective action,
which can be understood by considering its functional derivatives with respect to the fields

Γ(n)
a1...an

(x1, . . . , xn) ≡
δnΓ[φ]

δφa1 (x1) . . . δφan (xn)
. (2.56)

This is the generator of one-particle irreducible (1PI) vertices, which correspond to dia-
grams that cannot be separated into two disconnected ones by cutting a line. Therefore, 1PI
vertices are a more compact form of storing information, since the connected correlation
functions generated byW [J ] still contain redundant information in the form of one-particle
reducible diagrams.

There is an important relation, which can be seen by considering the following quantity
in terms of the 1PI two-point function Γ(2), and the propagator δW [J ]/δJ(y)δJ(x2),∫

y

δ2Γ[φ]

δφa (x1) δφc(y)

δ2W [J ]

δJc(y)δJb (x2)
=

∫
y

δ

δφa (x1)

(
δΓ[φ]

δφc(y)

)
δ

δJc(y)

(
δW [J ]

δJb (x2)

)
= −

∫
y

δJc(y)

δφa (x1)

δφb (x2)

δJc(y)
= −δabδ (x1 − x2) .

(2.57)

From this, we observe that the 1PI two-point function is in fact the inverse of the propagator.
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2.3.2 Two-particle irreducible effective action

The above procedure can be repeated to obtain a functional, which is a generator of two-
particle irreducible (2PI) diagrams. First we consider the generating functional to contain
a bilinear source term R(x, y) as well,

Z[J,R] ≡ exp(iW [J,R])

=

∫
Dϕ exp

{
i

[
S[ϕ] +

∫
x,C
Ja(x)ϕa(x) +

1

2

∫
xy,C

ϕa(x)Rab(x, y)ϕb(y)

]}
,
(2.58)

with the functional derivatives ofW [J,R] being

δW [J,R]

δJa(x)
≡ φa(x),

δW [J,R]

δRab(x, y)
≡ 1

2
(φa(x)φb(y) +Gab(x, y)) .

(2.59)

The 2PI effective action Γ[Φ,∆] is defined as the double Legendre transform of W [J,R]

with respect to the source terms,

Γ[φ,G] = Γ[φ]− 1

2

∫
xy,C

[φa(x)φb(y) +Gab(x, y)]Rab(x, y)

= W [J,R]−
∫
x,C
φa(x)Ja(x)−

1

2

∫
xy,C

[φa(x)φb(y) +Gab(x, y)]Rab(x, y).

(2.60)
The 2PI equations of motion are given by the stationary conditions of the 2PI effective action
with respect to the fields φ and G, expressed as

δΓ[φ,G]

δφa(x)
= −Ja(x),

δΓ[φ,G]

δGab(x, y)
= −1

2
Rab(x, y). (2.61)

The 2PI effective action can be recast into a very convenient form, written as

Γ[φ,G] = S[φ] +
i

2
TrC lnG−1 +

i

2
TrC G−1

0 (φ)G+ Γ2[φ,G] + const, (2.62)

where G−1
0 (φ) is the classical inverse propagator. This has the form of a one-loop type

expression, plus an additional term Γ2[φ,G] which contains all 2PI contributions. Diagram-
matically, this corresponds to all 2PI graphs, which are diagrams that do not become dis-
connected by cutting two lines open. Varying Γ2[φ,G] with respect to G yields

G−1
ab (x, y) = G−1

0,ab(x, y)− Σab(x, y)− iRab(x, y), (2.63)

where the self-energy is defined as

Σab(x, y;φ,G) ≡ 2i
δΓ2[φ,G]

δGba(y, x)
. (2.64)

The self-energy can be separated into a local and nonlocal part

Σab(x, y) = −iΣ(0)
ab (x)δ(x− y) + Σ̄ab(x, y), (2.65)
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where the local contribution shifts the effective mass for which one can introduce the nota-
tion

M2
ab(x)

(ϕ=0)
= m2δab + Σ

(0)
ab (x). (2.66)

The nonlocal contribution, similarly to the propagator (2.25), can be decomposed into spec-
tral and statistical parts

Σab(x, y) = ΣF
ab(x, y)−

i

2
Σρ

ab(x, y) sgnC (x0 − y0) . (2.67)

On the Keldysh contour, (2.63) can be formulated as(
0 i

(
GA
)−1

i (GR)
−1

(GR)
−1 · F ·

(
GA
)−1

)
=

(
0 G−1

0

G−1
0 0

)
−
(

0 −iΣA

−iΣR ΣF

)
, (2.68)

where the retarded, advanced, and statistical self-energies are obtained as(
0 −iΣA

−iΣR ΣF

)
=
(
A−1

)T ( Σ++ −Σ+−

−Σ−+ Σ−−

)
A−1 (2.69)

from the self-energies in the ± basis. Similarly to the 1PI two-point function and inverse
propagator, the inverse of the 2PI propagators can also be equated with the corresponding
two-point functions. This yields four equations for the two-point functionsΓF

ab,Γ
F̃
ab,Γ

R
ab,Γ

A
ab,

out of which only two are independent, as discussed in Sec. 2.1.2. Therefore, the number
of degrees of freedom has doubled in going to the Keldysh description; however, this is
essential in order to obtain a real equation of motion that has a causal structure, which is
crucial for a real-time description.

2.3.3 Large-N expansion

Depending on the problem at hand, the 2PI effective action can be further combined with
different approximation schemes to make it more tractable. One such approach is a pertur-
bative coupling expansion, which can be applied to weakly coupled systems where power
counting in the interaction coupling λ is appropriate. However, it is not always applicable.
For instance, in the infrared regime of nonthermal fixed points where the occupation number
grows very large, the system becomes strongly correlated despite the weak coupling, which
invalidates perturbative approaches. The large-N expansion uses the number of field com-
ponents N as an expansion parameter instead of a small coupling. Therefore, we consider
the nonperturbative, systematic expansion of the 2PI effective action Γ2[φ;G], in powers of
1/N

Γ2[φ;G] = ΓLO
2 [G] + ΓNLO

2 [φ;G] + ΓNNLO
2 [φ;G] + . . . , (2.70)

where ΓLO
2 [G] is the leading order (LO) contribution and scales as N1, ΓNLO

2 [φ;G] is the
next-to-leading order (NLO) contribution and scales as N0, and each successive term is
down by an additional factor of 1/N . In this work, we consider the expansion to NLO for
the case of a vanishing field expectation value φ = 0, where the relevant terms have been
computed in [87].
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a
a

b
b

Figure 2.3. The double-bubble diagram that contributes at the leading order in the 1/N

expansion of Γ2.

a

b
b
a

+ + + + . . .

Figure 2.4. Diagrams summed by the NLO order in the 1/N expansion of Γ2.

Diagrammatically, each vertex contributes a factor of 1/N , while each trace over field
indices, e.g., Tr(φφ) or Tr(Gn) is proportional to N . The leading order contribution is

ΓLO
2 [G] = − λ

4!N

∫
x

Gaa(x, x)Gbb(x, x), (2.71)

given by the diagram in Fig. 2.3. At next to leading order, we have

ΓNLO
2 [φ,G] =

1

2
Tr ln[B(G)], (2.72)

where we have defined

B(x, y;G) = δd(x− y) +
λ

6N
Gab(x, y)Gab(x, y). (2.73)

Eq. (2.72), together with (2.73) sums the infinite series of diagrams shown in Fig. 2.4, which
can be observed by expanding (2.72). Regarding the self-energies, the local part is given by
the space-time-dependent mass shift (2.66), while the nonlocal part can be decomposed into

ΣF (x, y) = − λ

3N

(
F (x, y)IF (x, y)− 1

4
ρ(x, y)Iρ(x, y)

)
, (2.74)

Σρ(x, y) = − λ

3N

(
F (x, y)Iρ(x, y) + ρ(x, y)IF (x, y)

)
, (2.75)

at NLO in the 1/N expansion. Here, the so-called summation function I(x, y) can also be
decomposed into spectral and statistical parts

IF (x, y) = ΠF (x, y)−
∫ x0

t0

dzIρ(x, z)ΠF (z, y) +

∫ y0

t0

dzIF (x, z)Πρ(z, y), (2.76)

Iρ(x, y) = Πρ(x, y)−
∫ x0

y0
dzIρ(x, z)Πρ(z, y)

= Πρ(x, y)−
∫ x0

t0

dzIρ(x, z)Πρ(z, y) +

∫ y0

t0

dzIρ(x, z)Πρ(z, y),

(2.77)

with
∫ t2
t1

dz ≡
∫ t2
t1

dz0
∫∞
−∞ ddz and where

ΠF (x, y) =
λ

6N

(
Fab(x, y)Fba(x, y)−

1

4
ρab(x, y)ρba(x, y)

)
, (2.78)

Πρ(x, y) =
λ

3N
Fab(x, y)ρba(x, y). (2.79)
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2.3.4 Gradient expansion and Wigner space quantities

The nonequilibrium evolution of a quantum system starting from a given initial state can
involve rapid changes initially, followed by a more uniform evolution over time. As the
dynamics slows down at intermediate and later times, low-order expansions in spatial and
time derivatives can be applied to approximate the behaviour of observables through effec-
tive dynamic equations. This is the basis for effective kinetic descriptions, which have been
successfully applied even in strongly correlated regimes and accurately predicted scaling
exponents in the infrared region of nonthermal fixed points.

In the following, relevant quantities will be considered in Fourier space, which is often
more convenient to work with for homogeneous systems. Due to homogeneity, one has
translational invariance, and a two-point function G (x, y) only depends on the difference
of its arguments x− y, therefore, its Fourier transform would then only depend on a single
momentum p. However, in general, time-translation invariance does not hold in a nonequi-
librium system; e.g., a two-point function would depend on both the difference t− t′ and the
sum t+ t′ of its temporal arguments. Accordingly, we can then define the Wigner transform
as the Fourier transform with respect to the relative coordinates s = x− y only

f(u0, ω, p) =
∫ 2u0

−2u0

ds0eiωs0
∫ ∞

−∞
ddse−ipsf

(
u+

s

2
, u− s

2

)
, (2.80)

and with u = 1
2
(x + y) being centre coordinates. In Wigner space, the loop quantities in

(2.78) and (2.79) are obtained as

ΠF (p) =
λ

6N
[(Fab ∗ Fba)(p)], (2.81)

Πρ(p) =
λ

3N
[(Fab ∗ ρba)(p)], (2.82)

where the ∗ symbol denotes a convolution integral, and the spectral term in ΠF (p) has been
dropped due to the classical-statistical limit. With a leading-order gradient expansion in
time t = (x0 + y0) /2, the summation functions take a simple form

IF (p) = veff(p)Π
F (p), (2.83)

Iρ(p) = veff(p)Π
ρ(p), (2.84)

with the four-vector p ≡ (ω, p). The effective vertex veff sums the infinite chain of diagrams
appearing at NLO in the 1/N expansion and is given by

veff(p) =
1

|1 + ΠR(p)|2
. (2.85)

The self-energies can also be obtained as

ΣF
ab(p) = − λ

3N

[
Fab ∗

(
ΠF · veff

)]
(p), (2.86)

Σρ
ab(p) = − λ

3N

[
Fab ∗ (Πρ · veff ) + ρab ∗

(
ΠF · veff

)]
(p), (2.87)

where similarly to (2.81), the spectral contribution has been dropped in ΣF
ab(p). These ex-

pressions will be used as the starting point towards the extraction of nonthermal scaling
solutions in Chapter 6.



Chapter 3

Extracting the symmetries of
nonequilibrium quantum many-body
systems

This chapter is based on “Extracting the symmetries of nonequilibrium quantum many-body
systems” by A. N. Mikheev, V. Noel, I. Siovitz, H. Strobel, M. K. Oberthaler, and J. Berges,
arXiv:2407.17913, SciPost Phys. 18, 044 (2025).

Symmetries play a pivotal role in our understanding of the properties of quantum many-
body systems. While there are theorems and a well-established toolbox for systems in ther-
mal equilibrium, much less is known about the role of symmetries and their connection to
dynamics out of equilibrium. This arises due to the direct link between a system’s ther-
mal state and its Hamiltonian, which is generally not the case for nonequilibrium dynamics.
Here we present a pathway to identify the effective symmetries and to extract them from data
in nonequilibrium quantum many-body systems. Our approach is based on exact relations
between correlation functions involving different numbers of spatial points, which can be
viewed as nonequilibrium versions of (equal-time)Ward identities encoding the symmetries
of the system. We derive symmetry witnesses, which are particularly suitable for the analy-
sis of measured or simulated data at different snapshots in time. To demonstrate the potential
of the approach, we apply our method to numerical and experimental data for a spinor Bose
gas. We investigate the important question of a dynamical restoration of an explicitly bro-
ken symmetry of the Hamiltonian by the initial state. Remarkably, it is found that effective
symmetry restoration can occur long before the system equilibrates. We also use the ap-
proach to define and identify spontaneous symmetry breaking far from equilibrium, which
is of great relevance for applications to nonequilibrium phase transitions. Our work opens
new avenues for the classification and analysis of quantum as well as classical many-body
dynamics in a large variety of systems, ranging from ultracold quantum gases to cosmology.

This chapter begins with an introduction in Sec. 3.1 and a general discussion on symme-
tries in many-body systems in Sec. 3.2, emphasising the differences between equilibrium
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and nonequilibrium cases. Afterwards, our system of study, the spinor Bose gas is pre-
sented with a brief review of its mean-field approximation in Sec. 3.3. This is followed
by the discussion of symmetry identities in Sec. 3.4 with different n-point correlation func-
tions, which lead to our specific investigations, namely the restoration of explicitly broken
symmetries throughout the dynamics in an isolated system in Sec. 3.5, and the exploration
of spontaneous symmetry breaking under far-from-equilibrium conditions with cold atom
experimental data in Sec. 3.6. We conclude with a discussion of our findings and an outlook
in Sec. 3.7.

3.1 Introduction and overview

Important progress in our understanding of the complexity of macrophysics in quantum
many-body systems has been achieved with classical computers for ground state or equi-
librium properties. However, ab initio understanding of general dynamical or nonequilib-
rium behaviour is particularly scarce in situations that are not simple extensions of near-
equilibrium properties, such as the emergence of instabilities or turbulent flows. The search
for emergent theories that effectively describe nonequilibrium macroscopic behaviour, their
classification, and justification from first principles is one of the most pressing research di-
rections in quantum many-body physics [10, 29, 94].

The notion of effective field theories for macroscopic behaviour is a well-established
powerful tool for equilibrium many-body systems, where the symmetries of the underly-
ing Hamiltonian or action together with the knowledge of the order-parameter field allows
one to construct the relevant description consistent with the symmetries [54, 55]. However,
out of equilibrium it is especially important to distinguish the symmetries of a state from
the symmetries of a Hamiltonian. In fact, even the simplest nonequilibrium states with an
order-parameter field that is initially not in its free-energy ground state can explicitly break
a symmetry of the Hamiltonian in general. This raises the important question about the
effective or emergent symmetries of nonequilibrium systems and whether/when explicitly
broken symmetries get dynamically restored. To address this question, one needs to be able
to quantify the symmetry content of a nonequilibrium state. This is also a crucial prereq-
uisite for extracting the effective field theory actions [95, 96] or Hamiltonians [97] from
experimental or simulation data of quantum many-body systems. The question of dynami-
cal symmetry restoration has been recently investigated based on entanglement asymmetry
[56, 98] and single-body density matrix [58].

In this work, we describe a general pathway for extracting the effective symmetries of
nonequilibrium quantum many-body systems using equal-time correlation functions. The
approach takes into account that the density operator ρ̂t describing a nonequilibrium state at
any time t may not be directly related to the Hamiltonian Ĥ , unlike in thermal equilibrium,
where ρ̂eq ∼ exp

(
−βĤ

)
for the example of a canonical ensemble. Instead, we exploit

that the symmetries can be classified on the level of observables, i.e., expectation values
Tr
[
ρ̂t Ô(x1, . . . ,xn)

]
of n-point operators Ô(x1, . . . ,xn). We derive exact relations be-

tween expectation values of operators involving different numbers n of spatial points, which
encode the symmetry properties of the system. Our equations can be viewed as nonequi-
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librium versions of (equal-time) Ward identities [50]. For the example of a spin-one Bose
gas, we show that extracting the n-point functions from spatially resolved data allows one
to efficiently uncover the presence or absence of a given symmetry. For this, we define
symmetry witnesses and apply our approach to analyse the dynamical effective restoration
of explicit symmetry breaking. Remarkably, we observe that effective symmetry restoration
can occur long before the system equilibrates, which is a crucial ingredient for the construc-
tion of effective theories for nonequilibrium evolutions. Importantly, we also demonstrate
how the method can be used to define and identify spontaneous symmetry breaking even far
from equilibrium, opening up numerous applications for nonequilibrium phase transitions.

While the approach can be used for any analytical or classical simulation technique of
quantum many-body systems, we emphasise that it is particularly well suited for large-scale
(analogue) quantum simulations based on setups with ultracold quantum gases [32, 33].
These systems can realise a wide range of Hamiltonians with different symmetries, vari-
able interactions, and degrees of freedom based on atomic, molecular, and optical physics
engineering. They offer high control in the preparation and read-out of the quantum dynam-
ics, with the ability to explore new regimes even far from equilibrium [21, 22, 24] that are
otherwise difficult to access directly.

3.2 Symmetries and dynamics

For the following, it will be important to distinguish symmetries of a state or density op-
erator from symmetries of the Hamiltonian that governs the equations of motion [99]. A
Hamiltonian Ĥ is symmetric under the group of transformations G if [U, Ĥ] = 0 for every
U ∈ G. This group can be either discrete or continuous, with U forming an (anti-)unitary
representation of G on the Hilbert space of the system [100, 101]. In this work, we focus
on the case of continuous unitary symmetries. In addition, we assume that the considered
continuous symmetries have the structure of a Lie group, whose elements can be written as

U = exp(iαkQk) , [Qi, Qj] = ifijkQk , (3.1)

where fijk are the structure constants that characterise the underlying Lie algebra, and the
operators Qk are the generators of the group. For brevity, we have restricted ourselves
to elements of G that are simply connected to the unity element. Since U is unitary, the
operatorsQk are Hermitian and taken to correspond to physical observables. From Eq. (3.1)
it immediately follows that [Qk, Ĥ] = 0, implying that the generators of G are conserved
quantities.

On the other hand, the state at time t described by the density operator ρ̂t is symmetric
underG if [U, ρ̂t] = 0 for everyU ∈ G. From this, one also concludes the following rigorous
property for the unitary time evolution of quantum systems described by the von Neumann
equation: if the density operator ρ̂t0 explicitly breaks a symmetry of the Hamiltonian Ĥ at
some given time t0, then it cannot be restored on a fundamental level at any other time.
Conversely, starting with a symmetric state and following a unitary evolution respecting the
same symmetry, it will never be explicitly broken.
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However, these strict statements are not in conflict with the assertion that typical ob-
servables may show emergent phenomena that involve the effective restoration of an ini-
tially broken symmetry or vice versa. In this work, we will consider expectation values
Tr
[
ρ̂t Ô(x1, . . . ,xn)

]
of n-point operators Ô(x1, . . . ,xn) as observables. An effective

symmetry still remains a set of transformations that leave observable properties of the system
unchanged, though the set of observables becomes restricted in practice, which in our case
will be related to finite numbers for n. For instance, the notion of effective or relevant sym-
metries for observable properties is at the heart of macroscopic theories for nonequilibrium
evolutions, such as effective kinetic theories or hydrodynamics describing the long-time
and long-distance behaviour of an underlying microscopic many-body system in terms of
few-point functions only [29]. In this respect, the discussion also closely resembles the one
concerning thermalisation in closed quantum systems with unitary time evolution [10].

So far we have distinguished the symmetries of the state from those of the Hamiltonian
with the possibility of explicit symmetry breaking. However, for many-body systems, it
is also important to distinguish an explicit breaking of a symmetry from the phenomenon
of spontaneous symmetry breaking. The latter is crucial, e.g., for our understanding of
typical phase transitions where an order parameter can be defined to vanish on one side
of the transition while taking on a nonzero value otherwise. Though this is of course well
established in equilibrium, the definition and detection of spontaneously broken symmetries
out of equilibrium is much less explored.

Spontaneous symmetry breaking implies that the symmetry of the system’s state is re-
duced to a residual symmetry subgroup ofGwithout explicit symmetry violation. Generally,
the system will be in a superposition of degenerate states such that the symmetry breaking
is not manifest. To efficiently characterise spontaneous symmetry breaking in terms of an
order parameter, one needs to lift the degeneracy and favour one of the infinitely many
symmetry-breaking configurations. This is typically achieved by adding a small symmetry-
breaking perturbation to the Hamiltonian, such as Ĥ → Ĥ +

∫
J Ô for a given order-

parameter operator Ô. To remove the explicit symmetry breaking in the end, such a bias is
introduced as a limiting procedure. Spontaneous symmetry breaking is then identified by a
nonvanishing expectation value

lim
J→0+

Tr
[
ρ̂t Ô(x)

]
= vt(x) . (3.2)

Crucially, in the case of spontaneous symmetry breaking, one finds a nonzero order param-
eter vt(x) 6= 0 even in the limit of a vanishing perturbation, J → 0+. On the other hand,
vt(x) is zero in the symmetric state. The choice of an order parameter operator is not unique,
although often suggested by the physics of the spontaneous symmetry breaking. Here, we
have restricted ourselves to cases that can be characterised by a local order parameter. For
translationally invariant systems in space and/or time, the function vt(x) naturally reduces
to a respective constant.

For nonequilibrium systems, there are interesting further options to introduce a symmetry-
breaking bias, e.g., through the choice of an explicit symmetry-breaking state at a given
initial time t0 with

[U, ρ̂t0 ] 6= 0 , [V, ρ̂t] = 0 , (3.3)
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while the symmetry of the Hamiltonian remains unaffected with [U, Ĥ] = 0. In this case,
the initial explicit symmetry breaking is not restricted to small perturbations. In situations
where the explicitly broken symmetry gets effectively restored dynamically during the time
evolution, spontaneous symmetry breaking is still signalled by the emergence of a nonzero
order parameter (3.2). Typically, this requires an evolution of the system to sufficiently late
times such that the initial explicit symmetry breaking is effectively reduced to a small per-
turbation. In the following sections, we will discuss how symmetry can be broken through
the initial condition in systems out of equilibrium. Specifically, we will introduce relation-
ships between different n-point functions to identify symmetries and to distinguish between
explicit and spontaneous symmetry breaking.

3.3 Spinor Bose gas
Both experimentally and in our numerical simulations, we consider a homogeneous one-
dimensional spin-1 Bose gas described by the Hamiltonian

Ĥ =

∫
dx
[
ψ̂†
(
− 1

2M

∂2

∂x2
+ qf 2

z

)
ψ̂ +

c0
2

: n̂2 : +
c1
2
: F̂ 2 :

]
, (3.4)

where ψ̂ = (ψ̂1, ψ̂0, ψ̂−1)
T is the three-component bosonic field representing the magnetic

sub-levels mF = 0,±1 of the F = 1 hyperfine manifold, M denotes the atom mass, and
n̂ = ψ̂†

mψ̂m. The spin-changing collisions are described in terms of the spin operators
F̂i = ψ̂†

m(fi)mm′ψ̂m′ , with f = (fx, fy, fz)
T being the generators of the so(3) Lie algebra

in the three-dimensional fundamental representation. The bosonic field operators obey the
standard commutation relations [ψ̂m(x), ψ̂

†
m′(x′)] = δmm′δ(x − x′), [ψ̂m(x), ψ̂m′(x′)] = 0.

Together with [fi, fj] = iεijkfk, this readily implies [F̂i(x), F̂j(x
′)] = iεijkF̂k(x) δ(x− x′).

Here and in the following, Einstein’s summation convention is implied and we use units
where h = kB = 1.

3.3.1 Mean-field phase diagram

In the mean-field approximation, the quantum field operator can be decomposed in terms of
the mean value of the field and the fluctuations around it, ψ̂m(x) = ψm(x)+δψ̂m(x), where
ψm(x) =

〈
ψ̂m(x)

〉
is the expectation value of the field. For the case of large densities

and weak interactions, classical-statistical fluctuations become much larger than quantum
fluctuations, and the ultracold quantum many-body system can be described by a classical
field theory, where one drops the quantum fluctuations and the field operator is replaced
by its expectation value ψ̂m(x) → ψm(x). Apart from requiring a large number of atoms
and weak interactions, the system also needs to be at a low temperature such that thermal
fluctuations can also be neglected. In the mean-field approximation, the complex-valued
field ψm(x) obeys the Gross-Pitaevskii equation (GPE) for the spinor condensate, which is
given by

i∂tψ(x, t) =
[
− 1

2M

∂2

∂x2
+ qf 2

z + c0n(x, t) + c1F (x, t) · f
]
ψ(x, t). (3.5)
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Figure 3.1. Mean-field phase diagram of a spin-1 Bose–Einstein condensate in the q − c1
plane.

By determining the stationary solutions and the different regimes for which the solutions
minimise energy, one can find the different ground states of the system for different values
of the parameters. These different ground states can then be represented on a phase diagram,
as depicted in Fig. 3.1. We also note that for stable Bose–Einstein condensates, density-
density interactions are repulsive (c0 > 0). The quadratic Zeeman shift q and the terms
proportional to c1 in the Hamiltonian give rise to competing energy scales that can lead to
different phases in the system in the q − c1 plane. For our case, the regime of interest is the
ferromagnetic one with c1 < 0, which favours spins to align when q = 0. The line q = 2nc1
separates the polar and easy-plane phases. The polar phase shows no magnetisation and it
is found in the parameter regime q > 2nc1, while for 0 < q < 2nc1, the system is in the
easy-plane phase, where there is a magnetisation transverse to the Fz axis, with a complex
order parameter F⊥ = Fx + iFy and with magnetisation |F⊥| = [1− q2/(2q)2]

1/2.

3.3.2 Experimental setup

We apply our analysis to measurements from a spinor Bose gas of 87Rb, which features ro-
tationally invariant ferromagnetic (c1 < 0) spin-spin as well as repulsive (c0 > 0) density-
density interactions, with |c0/c1| ≈ 200. As illustrated in Fig. 3.2(a), the condensate is
confined in a quasi one-dimensional box trap. The quadratic Zeeman shift q is induced by
an external magnetic field which shifts the energy of the mF = ±1 levels relative to the
mF = 0 component, and is adjusted by using off-resonant microwave dressing, as depicted
in Fig. 3.2(b). We will consider data where the system is initialised with zero average lon-
gitudinal (z-axis) spin such that only the mF = 0 sublevel is populated. The microwave
dressing initiates the spin-exchange dynamics by quenching from the polar to the easy-plane
ferromagnetic phase, and excitations build up in the Fx − Fy plane, with the spin acquiring
a mean length with a random orientation in the Fx − Fy plane. This transversal spin de-
gree of freedom is examined by the spatially resolved detection of the complex valued field
F⊥(x) = Fx(x) + iFy(x).
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Fy

Fx

(c)

(b)

q

t

(a)

Figure 3.2. (a) Quasi one-dimensional Bose–Einstein condensate in a box-like potential
formed by an elongated dipole trap (blue) with repulsive walls (light grey). The overall
density (green) is approximately uniform throughout the cloud. (b) The effective quadratic
Zeeman energy difference q between themF = 0 andmF = ±1 levels is adjusted using off-
resonantmicrowave dressing (grey). This enables the tuning of spin-changing collisions into
resonance, which can redistribute population among the hyperfine levels. (c) Schematics of
many individual realisations averaged over in green, with a single realisation highlighted in
red in a “sombrero” potential associated with spontaneous symmetry breaking. The vertical
t arrow indicates the evolution in time.

Experimentally, we simultaneously extract the spatial spin profiles Fx(x) and Fy(x) via
spin rotations from the Fx−Fy plane to the Fz direction and subsequent absorption imaging
[21, 102]. For more details on the experimental setup and specific parameters, see App. A.1
and Ref. [25].

The Hamiltonian (3.4) is symmetric under SO(2) × U(1) transformations for q 6= 0,
where SO(2) denotes the group of rotations about the Fz axis on the F = 1 hyperfine
manifold. The spin operator F̂ can play the role of the order parameter for the symmetry
breaking of the SO(2) group. In the case of spontaneous symmetry breaking, according to
the definition (3.2), there is a nonzero expectation value 〈F̂i〉. This situation is illustrated
in Fig. 3.2(c). Due to the underlying SO(2) symmetry, we can always align the expectation
value along one of the axes, e.g., 〈F̂x〉 = 0, 〈F̂y〉 = vt.

Establishing long-range coherence across the entire system requires some time. This
is especially true for lower-dimensional systems with continuous symmetries, where fluc-
tuations preventing the build-up of long-range order are very strong, as highlighted by the
Mermin–Wagner theorem [103]. To ensure an adequate level of coherence across the system
during the time of observation, we reduce our analysis to a finite central region of our data as
specified in App. A.1. For this subsystem, the condensate builds up a constant phase across
the sample, and the order parameter can be assumed to be approximately homogeneous for
the considered evolution times.
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3.4 Symmetry identities between equal-time correlation func-
tions

We are probing the symmetry content of our system via equal-time correlation functions.
Since such correlators can be extracted from measurements at different snapshots in time,
they are particularly convenient for studying cold atom systems and matching theory to
experiment. In spinor Bose gases, a convenient choice of experimentally accessible observ-
ables are spin operators F̂i. On a theoretical level, the corresponding equal-time correlation
functions can then be conveniently extracted from the generating functional

Zt[J ] = Tr
{
ρ̂t exp

[∫
dxJ(x) · F̂ (x)

]}
, (3.6)

where ρ̂t is the density matrix of the system in the Schrödinger picture at time t, not neces-
sarily normalised to unity. Symmetrically ordered equal-time spin correlation functions are
obtained by taking derivatives with respect to Ji(x) and setting the latter to zero:

Z
(n)
t,i1...in

[0] (x1, . . . , xn)

Zt[0]
=

1

n!

∑
σ∈Sn

〈
F̂iσ1

(xσ1) . . . F̂iσn (xσn)
〉
. (3.7)

Here, the prefactor 1/Zt[0] takes care of the density matrix normalisation, Sn denotes the set
of all permutations of {1, . . . , n}, 〈. . .〉 ≡ Tr{ρ̂t . . .}, and we have introduced the notation

Z
(n)
t,i1...in

[J ] (x1, . . . , xn) ≡
δnZt[J ]

δJi1(x1) . . . δJin(xn)
. (3.8)

The correlation functions (3.7) contain disconnected, lower-order parts. To remove
this redundant information and generate connected correlation functions, one can invoke
an equal-time equivalent of the Schwinger functional,

Et [J ] = logZt [J ] . (3.9)

As an example, a two-point connected symmetric spin correlation function generated by the
functional Et is given by

E
(2)
t,xy [0] (x1, x2) =

1

2

〈
F̂x(x1) F̂y(x2) + F̂y(x2) F̂x(x1)

〉
−
〈
F̂x(x1)

〉〈
F̂y(x2)

〉
,

and correspondingly for higher-order correlation functions.
Since the spin operators F̂i transform trivially under U(1), we will focus on the SO(2)

part and derive associated symmetry identities between different correlation functions. Fol-
lowing the discussion in the previous sections, we will assume that the initial state ρ̂t0 is
also SO(2)-invariant, ensuring that the symmetry is fully respected on the dynamical level.
In this case, the density matrix ρ̂t remains formally symmetric at any time t ≥ t0, even in
the case of spontaneous symmetry breaking. As pointed out above, to address the latter sce-
nario, one has to introduce a symmetry-breaking bias to the system. In this work, the role
of such a bias will be played by the sources Ji coupled to the spin operators in the definition
(3.6) of the generating functional, which will be addressed in more detail in the following.
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From (3.6) we conclude, together with ρ̂t = U ρ̂t U
−1 and with U ∈ SO(2), that

Zt[J ] = Tr
{
ρ̂t exp

[∫
dxJ(x) ·

(
U−1 F̂ (x)U

)]}
, (3.10)

where we have used the cyclic property of trace and U−1 exp (A)U = exp (U−1AU).
The spin operators F̂i live in the fundamental representation of the rotation group and

thus transform as

F̂i → Rij(ε) F̂j = F̂i + iεTijF̂j +O
(
ε2
)
, T =

 0 i 0

−i 0 0

0 0 0

 , (3.11)

where R(ε) denotes the rotation matrix by an angle ε about the Fz axis with its single gen-
erator T .

Together, Eqs. (3.6) – (3.11) implyZt[J ] = Zt[R
−1J ], and likewiseEt[J ] = Et[R

−1J ],
where we have used the fact that J ·

(
RF̂

)
= (R−1J) ·F̂ . TakingR to be infinitesimal, this

yields Et[Jx − εJy, Jy + εJx]− Et[Jx, Jy] = 0. Expanding it to linear order in the rotation
angle ε, we finally derive the master symmetry identity:∫

dx′
[
Jx(x

′)E
(1)
t,y [J ](x

′)− Jy(x
′)E

(1)
t,x [J ](x

′)
]
= 0 . (3.12)

By taking further J-derivatives one can generate an infinite hierarchy of symmetry identities
encoding the SO(2) symmetry of the system.

Here and in the following, we assume that the mean field does not break spatial homo-
geneity. To emphasise the distinction between the fields F̂x and F̂y, we then introduce the
notation (Fx, Fy) → (π, σ), (Jx, Jy) → (Jπ, Jσ), and accordingly 〈π̂〉 = 0 and 〈σ̂〉 = vt. To
allow for a spontaneous symmetry-breaking scenario, we first explicitly break the symmetry
via a linear source term

∫
dx J σ̂(x), cf. the discussion in Sec. 3.2:

〈σ̂〉 = lim
J→0+

E
(1)
t,σ [Jπ = 0, Jσ = J ] = vt . (3.13)

The symmetry-breaking case corresponds to vt 6= 0, whereas vt = 0 in the symmetric phase.
For spin systems, this symmetry-breaking term allows for a simple physical interpretation
as a deformation of the initial density matrix, which is discussed in more detail in App. A.2.

Differentiating the master symmetry identity (3.12) once with respect to Jπ we get∫
dx′
[
δ(x′ − x′′)E

(1)
t,σ [J ](x

′) + Jπ(x
′)E

(2)
t,σπ[J ](x

′, x′′) − Jσ(x
′)E

(2)
t,ππ(x

′, x′′)
]
= 0 .

Setting the sources to (0, J) and going to Fourier space, we obtain

E
(1)
t,σ [0, J ]− J Ẽ

(2)
t,ππ[0, J ](p = 0,−p = 0) = 0 , (3.14)

where we have introduced the notation

E
(n)
t,i1...in

(p1, . . . , pn) ≡ 2πδ

(
n∑

i=1

pn

)
Ẽ

(n)
t,i1...in

(p1, . . . , pn) . (3.15)



36 Symmetry identities between equal-time correlation functions

Similarly, differentiating the master symmetry identity (3.12) once with respect to both Jπ
and Jσ and then setting the sources to (0, J) yields

J lim
q→0

Ẽ
(3)
t,ππσ[0, J ] (q, p,−p− q) = Ẽ

(2)
t,σσ[0, J ] (p,−p)− Ẽ

(2)
t,ππ[0, J ] (−p, p) .

Taking the J → 0+ limit and using (3.13) and (3.14) we then find

vt lim
q→0

Ẽ
(3)
t,ππσ(q, p,−p− q)

Ẽ
(2)
t,ππ (q,−q)

= Ẽ
(2)
t,σσ(p,−p)− Ẽ

(2)
t,ππ(−p, p) , (3.16)

with Ẽ(n)
t ≡ Ẽ

(n)
t [Jπ = 0, Jσ = 0] . Here, we have taken into account that only the

quotient of Ẽ(3)
t,ππσ (q, p,−p− q) and Ẽ(2)

t,ππ (q,−q) may have a finite q → 0 limit. While
Eq. (3.16) connects two- and three-point functions, additional symmetry identities relating
higher-order correlation functions can be obtained by taking further derivatives:

vt lim
k→0

Ẽ
(4)
t,ππσσ (k, p, q,−k − p− q)

Ẽ
(2)
t,ππ (k)

= Ẽ
(3)
t,σσσ (p, q,−p− q)

− Ẽ
(3)
t,ππσ (q, p,−p− q)− Ẽ

(3)
t,ππσ (p,−p− q, q) , (3.17a)

vt lim
k→0

Ẽ
(4)
t,ππππ (k, p, q,−k − p− q)

Ẽ
(2)
t,ππ (k)

= Ẽ
(3)
t,ππσ (p, q,−p− q)

+ Ẽ
(3)
t,ππσ (p,−p− q, q) + Ẽ

(3)
t,ππσ (q,−p− q, p) , (3.17b)

and so forth.
Symmetry identities, akin to those derived in the present section, then serve as a man-

ifestation of the system’s symmetry properties on the level of correlation functions. Since
n-point correlation functions can be readily extracted from numerically simulated data or
experimental measurements, the symmetry identities can be explicitly checked. This makes
them a powerful tool for analysing the symmetry content of quantum many-body systems,
allowing to determine whether the symmetry is broken explicitly, spontaneously, or not
broken at all.

Based on the above symmetry identities one can introduce symmetry witnesses, which
provide efficient measures of the symmetry content of a given system. In particular, higher-
order correlation functions are often difficult to visualise and the introduction of a norm as
a measure can be very convenient. Defining the left- and right-hand sides of (3.16) as

f
(3)
t,ππσ(p) = vt lim

q→0

Ẽ
(3)
t,ππσ(q, p,−p− q)

Ẽ
(2)
t,ππ(q,−q)

,

f
(2)
t,ππσ(p) = Ẽ

(2)
t,σσ(p,−p)− Ẽ

(2)
t,ππ(−p, p) , (3.18)

wemay encode the symmetry content bymeasuring a distance between the two functions us-
ing the standard L1-norm, ‖f‖ = Ln

∫
dp1 . . . dpn |f(p1, . . . , pn)|, with L being the system

size setting the smallest unit of momentum 1/L. To avoid biasing the infrared momentum
region, where the correlation functions are typically larger, we normalise the difference by
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dividing it by double the average value of |f (3)| and |f (2)|, which yields

Q(3)
ππσ(t) = lim

ε→0+

∥∥∥∥∥∥ f
(3)
t,ππσ − f

(2)
t,ππσ∣∣∣f (3)

t,ππσ

∣∣∣+ ∣∣∣f (2)
t,ππσ

∣∣∣+ ε

∥∥∥∥∥∥ . (3.19)

Here, ε is a regularisation parameter ensuring that Q(3)
ππσ = 0 when f (3)

t,ππσ = f
(2)
t,ππσ = 0, i.e.,

in the absence of both explicit as well as spontaneous symmetry breaking. In practice, the
choice of ε is motivated by the value of statistical error, inevitable in any experimental or
numerical setup. Note that the normalisation choice implies 0 ≤ Q

(3)
ππσ ≤ 1, with the upper

bound following from the Cauchy–Schwarz inequality.
At each point in time, the quantity Q(3)

ππσ, which we call a symmetry witness, connects
one-, two-, and three-point correlation functions and quantifies the degree of violation of
the symmetry identity (3.16). Analogously, one can introduce higher-order witnessesQ(4)

ππσσ

andQ(4)
ππππ using the identities (3.17a) and (3.17b), respectively, characterising the symmetry

content with respect to the higher-order correlation functions. Geometrically, the connected
correlation functions characterise the shape and the inner structure of the histograms, like the
ones depicted in Fig. 3.3. Such histograms consist of “sub-histograms”, one for each spatial
point xi, or momentum mode pi, in the system. The one-point functions correspond to their
positions, the two-point functions are related to their widths and heights, while higher-order
n-point functions reflect cross-correlations between the sub-histograms. Symmetry then
puts constraints on their allowed shapes and cross-correlations, and symmetry witnesses
represent how well these constraints are satisfied. The spatial correlation functions can be
extracted from numerical simulations or experimentally by sampling readouts of the trans-
verse spin F⊥(x) = Fx(x) + iFy(x) [102]. As a result, probing the symmetry properties
of the system via exact relations between observable correlation functions proves to be an
effective approach, as demonstrated in the following sections.

3.5 Nonequilibrium symmetry restoration

In the following, we investigate the dynamics of a spinor Bose gas (3.4) prepared in an
explicitly symmetry-broken state. Whether the initially explicitly broken symmetry gets
effectively restored during the dynamics will be analysed using the symmetry witnesses
introduced above. We employ the truncatedWigner approximation (TWA), which describes
the dynamics for highly occupied systems at not too late times and weak couplings [71]. The
numerical integration of the system is done via a pseudo-spectral split-step method and gives
the time evolution of the full spinor state ψ = (ψ1, ψ0, ψ−1)

T comprised of the complex
scalar Bose fields describing the three magnetic components of the spin-1 manifold.

We start from an initial state with nonvanishing n-point spin correlations that violate
the SO(2) rotational symmetry in the Fx − Fy plane. For this, we consider the spinor con-
densate in the mean-field ground state of the easy-plane phase, which is characterised by
a well-defined spin length and orientation. In addition, we imprint a Gamma distribution
function in momentum space in the fundamental fields and add noise in the Bogoliubov
modes of the initial state to achieve a sizeable explicit symmetry breaking. We then quench
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Figure 3.3. Histograms of the spin orientations in the Fx−Fy plane normalised by the atom
number for qf = 0.6n|c1| and averaged over 103 runs. The dash-dotted line represents the
average spin length 〈|F⊥|〉 =

√
1− (q/2n|c1|)2 ∼ 0.95.

the quadratic Zeeman shift from qi = 0.9n|c1| to qf = 0.6n|c1|, where we verified that
no significant excitations of topological defects are excited in the system. We propagate
this state according to the classical field equations of motion (3.5) with periodic boundary
conditions.

The physical parameters of the simulations aim to resemble a cloud of 87Rb atoms in a
one-dimensional geometry as performed in the experiments [25, 96, 104], the main differ-
ences being an increased homogeneous density n compared to the experiment and a purely
one-dimensional setting with no trapping potential. We simulate a cloud of 3 · 106 parti-
cles on a numerical grid containing N = 4096 points corresponding to a physical length
of 220µm. The spin healing length is given by ξs = 8 lattice units, and spin-changing col-
lisions occur on a timescale of ts = 696 in numerical time units. We give spatial length
in terms of the spin healing length ξs = (2Mn|c1|)−1/2 and time in units of the charac-
teristic spin-changing collision time ts = 2π/(n|c1|). Furthermore, the field operators are
normalised with respects to the total density ψ̃m = ψm/

√
n, which results in a normali-

sation of the spin vector as well F̃ = F /n. In the following, the tilde is omitted and all
values are to be understood as normalised values unless explicitly stated otherwise. Upon
extracting the spin degrees of freedom Fx and Fy, we compute the relevant two-, three-,
and four-point correlation functions appearing in the identities (3.16), (3.17a), and (3.17b).
Further technical details of these computations are given in App. A.3.

It is instructive to first examine the probability distribution of local spins in real space
by averaging over many realisations. In Fig. 3.3, we depict an Fz = 0 cut of the proba-
bility density in spin configuration space. From the left graph, one observes that the initial
state is characterised by a sizeable spin length with a rather well-defined orientation. As
a consequence, one may separate two types of excitations for the transversal spin F⊥: a
radial “Higgs”-like mode associated with perturbations of the spin length |F⊥|, and a trans-
verse “Goldstone”-like mode associated with perturbations of the angle ϕL, respectively.
Since the state is initialised away from the minimum of the sombrero-shaped effective po-
tential illustrated in Fig. 3.2, one observes dynamics in the radial direction, such that the
spin length |F⊥| acquires a range of values that are also significantly smaller than the initial
one. As seen in the histograms, this occurs predominantly during the first few characteristic
spin-changing collision times ts. During this time, the nonequilibrium “Higgs”-like mode
explores the inner part of the effective potential, whose nonconvex shape is expected to
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Figure 3.4. Evolution of the symmetry witnessesQ(n) for a system prepared in a state which
explicitly breaks the SO(2) symmetry of the Hamiltonian with a subsequent quench from
qi = 0.9n|c1| to qf = 0.6n|c1|, where 0 ≤ Q(n) ≤ 1. The value of Q(n) = 0 corresponds to
the absence of explicit symmetry violation. Here, Q(3)

ππσ is the identity connecting two- and
three-point functions appearing in Eq. (3.16), while Q(4)

ππσσ and Q(4)
ππππ connect three- and

four-point functions.

lead to a fast instability growth of the mode occupancy in a characteristic momentum range.
However, after about ∼ 5 ts, perturbations in |F⊥| are seen to become more and more sup-
pressed. Instead, significantly slower dynamics for the transverse mode starts dominating,
by which the spin distribution settles into a banana-like shape as it spreads out around the
ring set by the minimum of the effective potential.

While the histograms indicate the different dominant excitations and timescales of the
system, one needs further information to quantify the initial explicit symmetry breaking and
its effective restoration. For instance, both the left graph of Fig. 3.3 at 0 ts and the right one
at 100 ts indicate configurations with comparable spin length and rather small spread in the
radial direction. However, their transverse extensions along the ring, which represent the
“Goldstone”-like fluctuations, are significantly different. As described in Sec. 3.4, in the
absence of explicit symmetry breaking there exists a well-defined relation between the spin
length and the fluctuations, which we will use in the following to quantify the symmetry
content of the data.

Fig. 3.4 shows the corresponding time evolution of the symmetry witnessesQ(n) defined
in Eq. (3.19), where 0 ≤ Q(n) ≤ 1, withQ(n) = 0 in the absence of explicit symmetry viola-
tion. The index n denotes the maximum number of spatial points involved in the correlation
functions probing the symmetries. We showQ

(3)
ππσ based on an identity connecting two- and

three-point functions involving the “Goldstone”-like (π) and “Higgs”-like (σ) excitations
appearing in Eq. (3.16), while Q(4)

ππσσ and Q(4)
ππππ connect three- and four-point functions

based on Eqs. (3.17a) and (3.17b), respectively.
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Figure 3.5. Evolution of the symmetry witnessQ(3)
ππσ for three different systems prepared in

a symmetry-broken state. The dark blue curve represents the symmetry witness for a system
that is not quenched initially, while the medium and light blue curves correspond to initial
quenches, with the light blue one being a stronger quench. The middle curve forQ(3) shows
the same data as in Fig. 3.4, but only up to 50 ts.

As seen in Fig. 3.4, the system starts out in a state that explicitly breaks the SO(2) sym-
metry of the underlying Hamiltonian very strongly, with the different Q(n) rather close to
unity. While the unitary time evolution of the quantum system can never restore the sym-
metry exactly, one observes that important observable properties can nevertheless exhibit
an effective symmetry restoration. The different witnesses based on n-point correlation
functions probe more and more details as n increases. Correspondingly, we find that the
lowest-order witness shown, Q(3)

ππσ, approaches zero fastest (blue curve). In fact, after an
initial rapid decrease until times of a few ts, the restoration dynamics slows down, and the
timescales are in close analogy to those observed from the histograms in Fig. 3.3.

The higher-order witnessesQ(4)
ππσσ (green curve) and especiallyQ(4)

ππππ (red curve) exhibit
a comparably slower effective restoration of the initially broken symmetry. While Q(4)

ππσσ

involving both σ and π excitations still shows a characteristic two-stage decay, which is rel-
atively fast at early times and then slowing down at late times, this is much less pronounced
in Q(4)

ππππ, which involves predominantly the slow “Goldstone”-like modes. Nevertheless,
all witnesses clearly exhibit the approach towards an effective restoration of the explic-
itly broken symmetry by the initial state. We emphasise that this is much shorter than the
timescale on which the approach to thermal equilibrium is observed, as the power spectrum
〈|F⊥|2〉 starts to develop a thermal tail at higher momenta around∼ 1400 ts. This separation
of time scales between the effective restoration of an explicitly broken symmetry and ther-
malisation may, in principle, be further diminished for sufficiently high-order correlation
functions. However, thermalisation time is defined with respect to characteristic thermody-
namic observables that typically do not involve arbitrarily high-order details since the time-
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vt lim
q→0

Ẽ
(3)
t,ππσ(q, p,−p− q)

Ẽ
(2)
t,ππ(q)

Ẽ
(2)
t,σσ(p,−p)− Ẽ

(2)
t,ππ(−p, p)
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Figure 3.6. Data for the symmetry identity (3.16) with the correlation functions as a function
of momentum at four different times during the dynamical evolution.

translation invariant thermal state can never be reached on a fundamental level in systems
with unitary dynamics. In practice, emergent theories that effectively describe dynamical
behaviour, such as effective kinetic theories, are based on a reduced set of low-order corre-
lation functions. In this context, our results demonstrate that effective symmetry restoration
can occur long before the system equilibrates. The situation is reminiscent of thermali-
sation in isolated quantum systems, where local observables of the system, prepared in a
nonequilibrium quantum state, eventually behave as if sampled from a thermal distribution.
In contrast, sufficiently global observables retain memory of the original nonequilibirum
state and thus behave nonthermally even at very late times. Similarly, while low-order
symmetry witnesses show effective restoration, some higher-order witnesses, which encode
finer statistical details of the system, will show symmetry violations even at late times. This
is in accordance with the general statement regarding how the symmetry can never be fully
restored by means of a unitary time evolution governed by a symmetric Hamiltonian, cf.
Sec. 3.2.

It remains to investigate to what extent the results depend on the details of the initial
state. Here we consider variations in the initial quench of the quadratic Zeeman shift with
different strengths or with no quench at all. As depicted in Fig. 3.5, we find that the stronger
the quench, the longer it takes to restore the SO(2) symmetry, and not quenching at all
restores it the fastest. The witness based on the correlation functions from Eq. (3.16), as
seen in Fig. 3.4, corresponds to the middle curve, with an initial quench from qi = 0.9n|c1|
to qf = 0.6n|c1|. Quenching stronger than this, to qf = 0.3n|c1|, takes longer to restore the
symmetry (light blue curve), and not doing a quench takes the shortest (dark blue curve).
Irrespective of the strength of or the presence of the quench, the correlation functions and
the restoration process look qualitatively very similar as shown in Fig. 3.5.

The symmetry witnesses provide an efficient means to quantify the symmetry content of
the data. However, further details can be investigated by looking directly at the underlying
momentum-resolved correlation functions in the identity (3.16). In Fig. 3.6, we plot both
the left-hand side (red curve) and right-hand side (blue curve) of Eq. (3.16) for four differ-
ent time steps. Initially, we observe that the symmetry is strongly broken signalled by the
unequal different n-point correlation functions. Within the span of a few ts, these different
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Figure 3.7. Momentum-conserving surfaces in the symmetry identities (3.17a) and (3.17b),
respectively.
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correlation functions quickly approach each other and by∼ 50 ts, they are nearly equal and
the conclusions are as for the symmetry witnesses discussed before. In addition, one ob-
serves from the momentum-resolved correlation functions that, apart from the initial strong
fluctuations at low momenta, an additional peak in the correlation functions develops at a
higher momentum scale. The peak height settles quickly within a few ts, during which the
“Higgs”-like mode explores the inner part of the effective potential leading to a fast growth
of fluctuations as discussed above.

The momenta of the correlation functions entering the identity (3.16) underlying Q(3)

correspond to the momentum-conserving diagonals of the full momentummatrix. Likewise,
the identities forQ(4) involve momentum-conserving surfaces. As an example, we show the
surfaces of our numerical data corresponding to the symmetry identities (3.17a) in Fig. 3.7(a)
and (3.17b) in Fig. 3.7(b). In both cases, we see strong initial symmetry violation signalled
by the different unequal n-point correlator surfaces. The cross-like shape is the dominant
feature of these surfaces and is already present initially, although much stronger in the four-
point surfaces. The appearance of the surfaces becomes gradually more equal with time
in both Fig. 3.7(a) and (b), however, we can visually confirm that it is not as quick as for
the momentum-conserving diagonals above. Additionally, restoration is visibly slower for
the identity (3.17b) since at 50 ts in Fig. 3.7(b) the dominant cross-like features are still at
an increased amplitude in the four-point surface compared to the three-point one. This is
consistent with what we have observed from the corresponding witnesses in Fig. 3.4.

3.6 Nonequilibrium spontaneous symmetry breaking

In the previous section, we discussed the explicit breaking of a symmetry of the Hamil-
tonian by the initial state, and its effective restoration long before the system equilibrates.
However, even if explicit symmetry breaking is absent or dynamically restored, the sym-
metry may still be spontaneously broken. The notion of spontaneous symmetry breaking,
in thermal equilibrium or dynamically even far from equilibrium, is a central ingredient
for our understanding of phase transitions as explained in Sec. 3.2. Spontaneous symmetry
breaking is signalled by a nonzero order parameter (3.2) using a bias that does not break the
symmetry explicitly in the end.

To analyse spontaneous symmetry breaking out of equilibrium in more detail, in the fol-
lowing we consider experimental data from measurements of a spinor Bose–Einstein con-
densate of 87Rb atoms as described in Sec. 3.3. The system is initialised in the |F,mF〉 =
|1, 0〉 state, the so-called polar state. Subsequently, the parameter q, which corresponds to
the relevant energy difference between the mF = 0 and mF = ±1 levels, is quenched to a
value within the easy-plane phase thereby initiating the dynamics. In contrast to the initial
state investigated in Sec. 3.5 in the context of explicit symmetry breaking, in the present
case there is initially no well-defined spin length, with fluctuations solely in the Fx − Fy

plane such that the initial state respects the SO(2) symmetry of the system. The initial con-
ditions restrict the average longitudinal (z-axis) spin to be zero, and excitations build up in
the Fx − Fy plane. This transversal spin degree of freedom is examined by the spatially
resolved detection of the complex-valued field F⊥(x) = Fx(x) + iFy(x) [25].
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Figure 3.8. Histograms of the experimentally measured spin in the Fx − Fy plane taken
from a quasi one-dimensional 87Rb experiment [25], normalised by the atom number, for
different evolution times. The dash-dotted line represents |F⊥| = 0.85.
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interval. The spin-changing collision time is ts = 2π/(n |c1|) ∼ 0.4 s for the experimental
parameters used in this work.

Fig. 3.8 shows histograms of the measured spin orientations in the Fx − Fy plane nor-
malised by the atom number at different times. While initially the measured values scatter,
such that the average spin length is practically zero, this changes at later times. The average
spin length settles around |F⊥| = 0.85 represented by the dash-dotted line in the figure. In
this case, the nonzero average spin plays the role of the order parameter, signalling the spon-
taneous symmetry breaking of the SO(2)-symmetric system. Due to the underlying SO(2)
symmetry, one can always align the expectation value along one of the axes, e.g., 〈F̂x〉 = 0,
〈F̂y〉 = vt, which was done for Fig. 3.8.

The alignment procedure of the spin expectation value for the experimental data is illus-
trated in Fig. 3.9. In the left graph, data from four experimental realisations is shown at late
time (t = 35s). To understand the underlying dynamics leading to these configurations, it
is helpful to consider them as corresponding to the top view of the pictorial representation
of the sombrero effective potential sketched in Fig. 3.2(c). While in each realisation the
spin distribution is expected to acquire a “blob” shape, as marked by red in the green ring
of that figure, and settle in one of the many symmetry-breaking minima, many such blobs
will form a symmetric ring. Hence, while there is a preferred direction in each experimental
realisation individually, once we average over multiple realisations, the transverse spin is
symmetrically distributed across the ring in the Fx − Fy plane. Correspondingly, one ob-
serves the different experimental realisations distributed along the ring as seen in the left
graph of Fig. 3.9. However, by rotating each individual realisation by the global phase as
shown in the middle of Fig. 3.9, there is a nonzero expectation value 〈F̂y〉 6= 0 and 〈F̂x〉 = 0

when averaged over all the realisations. This is shown in the right graph of Fig. 3.9, which
gives the average over many realisations. We emphasise that the global-phase rotation an-
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Figure 3.12. Data for the symmetry identity connecting two-, three-, and four-point cor-
relation functions calculated from experimental measurements. The top four surface plots
correspond to the right-hand side of the identity (3.17a), while the bottom ones correspond
to the left-hand side of the equation. One observes the resemblance of these momentum-
conserving surfaces, which involve different n-point correlation functions.
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gle maintains translational invariance since this angle does not introduce any spatial bias,
whereas, e.g., rotating by the phase of any specific point would do so.

While the histograms of Fig. 3.8 and 3.9 illustrate the dynamical buildup of a macro-
scopic spin length, a quantitative analysis of spontaneous symmetry breaking requires taking
its fluctuations into account as well. In particular, the fluctuations can be used to distinguish
data with underlying spontaneous symmetry breaking from situations where a macroscopic
spin length arises due to explicit symmetry breaking, as exemplified on the left of Fig. 3.3.
The fluctuations are encoded in the n-point correlation functions, which fulfil the symmetry
identities for spontaneous symmetry breaking as derived in Sec. 3.4.

We examine the witnesses Q(3)
ππσ and Q(4)

ππσσ according to Eq. (3.19) in Fig. 3.10. The
minimum value of these quantities, and any of the higher-order witnesses is zero, which
corresponds to a perfectly symmetric scenario, including that of a spontaneously broken
symmetric state, while the upper value is unity, corresponding to a maximally and explicitly
broken state. One observes that the value of the symmetry witnesses is clearly much smaller
than unity, and near zero within errors. This indicates the absence of explicit symmetry
breaking, which in principle can be improved with increasing statistics. We also give the
average spin length 〈Fy〉 as an inset on top of the symmetry witness. The witness is seen
to be near zero within errors independent of the magnitude of 〈Fy〉. One observes that the
magnitude of 〈Fy〉 settles at later times, representing an order parameter for spontaneous
symmetry breaking.

In order to test the momentum resolved symmetry identity (3.16), we consider the two-
and three-point correlation functions by averaging over many realisations of single-shot
measurements of the rotated F⊥(x). For more details on the data analysis procedure, see
App. A.3. We plot four different time steps in Fig. 3.11 and observe that the left- and the
right-hand sides of the identities are close within experimental errors at all times. Simi-
larly, Fig. 3.12 shows momentum resolved surface plots for the symmetry identity (3.17a)
connecting two-, three-, and four-point correlation functions calculated from experimental
measurements. We emphasise once again that a priori there is no reason why these dif-
ferent n-point correlation functions should obey such equalities, representing a quantitative
manifestation of the emergence of spontaneous symmetry breaking.

3.7 Discussion and outlook

While symmetries of a Hamiltonian that are explicitly broken by the initial state cannot be
restored on a fundamental level in closed quantum systems, we have shown that their effec-
tive restoration can be quantified in terms of symmetry identities for correlation functions.
In particular, our results demonstrate that properties involving lower n-point correlation
functions exhibit dynamical symmetry restoration earlier than those involving higher-order
correlations. Moreover, our findings for a spinor Bose gas show that an initial explicit sym-
metry breaking gets restored on timescales much before the system thermalises. These are
important ingredients for effective descriptions of nonequilibrium evolutions, which are typ-
ically based on lower-order correlation functions, where kinetic theory or Boltzmann equa-
tions for single-particle distribution functions extracted from two-point correlation functions
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represent a paradigmatic example [105].
Though the correlation functions appearing in the symmetry identities (3.16), (3.17a),

and (3.17b) involve only a few spatial points, in general they also test extremely nonlocal
properties, such as the ones encoded in their low-momentum behaviour in Fourier space.
This is crucial for the identification of spontaneous symmetry breaking in the presence of
a nonvanishing expectation value for the zero mode and condensation phenomena, which
we have analysed for the example of the spinor Bose gas. In particular, our approach is
not based on a spatial separation into subsystems, which can be difficult to define in fun-
damental descriptions, such as relativistic theories, and gauge theories implementing local
symmetries. Though we have not described the approach for local symmetries explicitly in
this work, the formulation of nonequilibrium (equal-time) versions of Ward identities for
gauge theories [50–53] follows along the same lines as we described.

Our approach provides a general pathway to extract the symmetry content of nonequi-
librium quantum as well as classical many-body systems based on a hierarchy of n-point
correlation functions. This complements alternative approaches to the question of dynami-
cal symmetry restoration, such as the entanglement asymmetry between spatial subsystems
introduced as a measure of symmetry breaking in quantum systems [56, 57, 98, 106–111],
which has also been experimentally applied [112–114]. It would be interesting to establish
a direct link between our symmetry witnesses based on correlations and the entanglement
measure of symmetry breaking for quantum systems. While our work primarily focused on
ultracold atoms, the approach could also give important further insights into applications and
experimental data across various systems, ranging from the detection of new nonequilibrium
phases in condensed matter systems to preheating dynamics in inflationary early-universe
cosmology [10, 29, 94].



Chapter 4

Kelvin waves in nonequilibrium
universal dynamics of relativistic scalar
field theories

This chapter is based on “Kelvin waves in nonequilibrium universal dynamics of relativistic
scalar field theories” by V. Noel, T. Gasenzer, and K. Boguslavski, arXiv:2503.01771.

Understanding the relevant degrees of freedom in nonequilibrium quantum many-body sys-
tems is crucial for describing their long-time dynamics and emergent universal behaviour.
In this chapter, we examine the scaling properties of a relativistic O(1) scalar field theory
far from equilibrium, focusing on the nature of infrared excitations and their role in self-
similar scaling. In such a strongly correlated many-body system, identifying the respective
roles of nonlinear wave excitations and defect dynamics is a prerequisite for understanding
the universal character of time evolution far from equilibrium and thus the different possible
universality classes related to nonthermal fixed points. Using unequal-time correlation func-
tions, we identify the dominant modes contributing to the observed dynamics and explore
their connections to topological defects. Our study provides a detailed characterisation of
these excitations in both two and three spatial dimensions, revealing distinct scaling prop-
erties and excitation spectra that contrast with predictions from large-N field theories. In
three dimensions, the primary excitations are identified as kelvon quasiparticles, which are
quantised Kelvin waves propagating along vortex lines, while in two dimensions, the in-
frared dynamics is dominated by bound-state like excitations similar to Kelvin waves. Our
results underline the role of topological defects and their influence on the universal dynam-
ics of strongly correlated systems near nonthermal fixed points, complementing the analysis
of large-N models in O(N) systems.

This chapter is organised as follows: after an introduction in Sec. 4.1, Sec. 4.2 describes
the lattice simulations and the different types of two-point correlation functions investigated.
Sec. 4.3 provides an overview of the relevant degrees of freedom based on applicable low-
energy effective theories of relativistic scalar fields. It discusses the expectedN -dependence
from both the quasiparticle picture and the possible topological defects. In Sec. 4.4, the main
findings from real-time lattice simulations are presented. First, the self-similar scaling from
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the (equal-time) distribution function is compared to that of vortex-antivortex annihilation-
driven coarsening dynamics and then parallels are drawn to the excitations found in unequal-
time correlation functions. The dispersion relation of these excitations is analysed to clearly
pinpoint their nature. The conclusions are presented in Sec. 4.5.

4.1 Introduction

The concept of universality is a powerful framework for understanding complex many-body
systems. Near equilibrium, it provides a way to associate phase transitions with universality
classes based on a small set of system parameters, highlighting how vastly different systems
can exhibit similar dynamical critical behaviour [64]. Beyond this, universal dynamics can
also emerge far from equilibrium in isolated systems, in particular, nonthermal fixed points
[19, 20, 48, 73, 77, 115, 116] give rise to nonequilibrium attractor solutions characterised
by spatio-temporal self-similar scaling. Such far-from-equilibrium universality has been
experimentally observed in ultracold atomic gases in different dimensions and trapping ge-
ometries [21–27, 96, 117, 118]. Many of the properties of this universal scaling dynamics
have been theoretically predicted and studied in very different systems, ranging from ultra-
cold gases over heavy-ion collisions to the early universe [48, 72–74, 77–79, 105, 115, 116,
119–131]. The broad range of systems in which this phenomenon has been proposed raises
the question of what the relevant physics behind the apparent universality is.

The study of far-from-equilibrium universality in isolated systems has primarily focused
on the properties of the equal-timemomentum distribution function, f(t, p), which describes
the occupancy of momentum modes over time. These functions reveal self-similar scaling
behaviour near nonthermal fixed points, characterised by universal scaling exponents that
are largely independent of the systems’ parameters or initial conditions [48]. Scalar field
theories with O(N) symmetry, for example, exhibit universal dynamics at low momenta
according to f(t, p) = tαfs(t

βp), with the exponents α = dβ and β = 1/2. The scaling
function fs is consistent across different values ofN , whether in relativistic or nonrelativistic
models, and the underlying physics is connected to the self-similar transport of particle num-
bers towards lower momenta and the growth of a quasi condensate in the long-wavelength
modes below a characteristic scale pIR(t) ∼ t−β . Large-N kinetic theories provide a suc-
cessful description of this scaling dynamics and the exponents [19, 20, 48, 72–74, 105, 115,
122–124], which can be traced to the elastic collisions of quasiparticles with free dispersion
[72]. For small values of N , however, the precise description of the universality remains
unsatisfactory, and alternative mechanisms, such as coarsening dynamics of topological de-
fects is anticipated to play a significant role [25, 26, 77–79, 116, 117, 119–121, 125, 127,
128, 132, 133]. Recent studies indicate that for systems with a small number of field compo-
nents, distinct initial conditions may lead to different scaling exponents, [25, 79, 131, 134],
where another scaling exponent, β ≈ 1/5, has been associated with specific defect-driven
dynamics for vortices in two spatial dimensions [1, 79, 117, 135].

For the O(N) vector models in both two and three spatial dimensions, a number of
different, N -dependent topological defects are expected to contribute to the dynamics in
the infrared [1, 80, 125], which includes vortex defects in O(1). However, for O(N) the-
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ories in three (spatial) dimensions, including the case of N = 1, the self-similar scaling
dynamics has been consistent with that of large-N descriptions and in agreement with non-
relativistic U(N) vector models [48, 73, 74, 80–82, 105, 115]. This has been corroborated
by observing the scaling behaviour of f(t, p) based on classical-statistical real-time lattice
simulations. Nonetheless, unequal-time correlation functions, which also give information
about the nonequilibrium excitation spectrum, have revealed markedly different dominant
excitation peaks for N = 1, 2 compared to N ≥ 3, where the large-N excitation indeed
dominates [82].

Here we study the underlying mechanisms of the self-similar infrared transport for the
relativistic single-component O(1) theory in two and three spatial dimensions using unequal-
time two-point correlation functions. By providing information on both occupancies and
dispersion relations, the latter observables allow us to distinguish the different excitations
contributing to the scaling and also to ascertain which excitation is dominant. Based on nu-
merical simulations in three spatial dimensions, the dominant excitation in such correlators
at large N has been identified as the one with the quasiparticle dispersion [82, 136] that
agrees with the kinetic theory picture. An excitation similar to the large-N excitation has
also been found for the relativistic N = 2 case at low momenta [82], whereas it is absent
for N = 1. On the other hand, a very specific, so-called “transport peak” has been identi-
fied for both nonrelativistic U(1) and in the nonrelativistic limit of relativistic O(1) models
[81, 82], with the same momentum and time dependence of the dispersion relation, as well
as damping rate, while being distinct from the large-N excitation. This peak appears to be
present for the cases of O(2) and O(3) as well, however, it distinctly dominates only the
N = 1 theory [82]. The origin of this transport peak has not been understood yet and is
not predicted by any current kinetic or low-energy effective description of nonthermal fixed
points.

In anticipation of its potential connection to topological defects, in this work, we also
extract and analyse the vortex dynamics for the O(1) theory in both two and three dimen-
sions using topological defect data extracted from lattice configurations. In the context of
nonthermal fixed points, two-dimensional relativistic theories have not been extensively
studied yet [119, 120, 125]. However, they do provide an interesting toy model since, intu-
itively speaking, topological effects are more important in lower dimensions and for lower
N . By carefully investigating the transport peak, we find a direct connection between the
self-similar infrared transport near nonthermal fixed points and vortex line defects in three
dimensions in terms of Kelvin waves [137–140], which arise as quantised excitations on
vortices present in scalar theories, and which are well-investigated in the context of vor-
tex dynamics and quantum turbulence [141–149]. In two dimensions, we observe a similar
transport peak, where the underlying physics is connected to the two-dimensional analogues
of Kelvin waves, which arise as vortex-displacement excitations [150–152]. While the gen-
eral picture of nonlinear wave propagation in the strongly correlated regime near a nonther-
mal fixed point still applies for both small and large values of N , with the present study,
we distinctly identify the relevant degrees of freedom in these theories, highlighting the
importance of topological defects for a single-component scalar field theory.
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4.2 Model and observables
We consider a single-component relativistic scalar field theory with field variable φ(t, x), in
d = 2 and d = 3 spatial dimensions with classical action

S[φ] =

∫
t,x

[
1

2
∂µφ∂µφ− m2

2
φ2 − λ

4!
φ4

]
, (4.1)

where
∫
t,x ≡

∫
dt
∫
ddx, summation over repeated indices is implied, m is the bare mass

and λ is the coupling constant. In the weak-coupling regime λ � 1 considered in this
work, the quantum dynamics can be accurately mapped onto classical-statistical field theory
(Truncated-Wigner approximation) for highly occupied systems at not too late times [71].
In classical-statistical simulations, one samples the fields over initial conditions,

φ(0, p) =
√
f(0, p)/p c(p) ,

π(0, p) =
√
pf(0, p) c̃(p) ,

(4.2)

where p = |p|, with independent random numbers drawn from a Gaussian distribution that
satisfy 〈c(p) (c(q))∗〉cl = V δp,q, and similarly for c̃. Our initial condition sets high occupa-
tions for the infrared modes,

f(t = 0, p) =
n0

λ
Θ(Q− p) , (4.3)

up to a characteristic momentum scale Q, which is the physical scale governing the dy-
namics. Subsequently, each realisation is evolved according to the classical equations of
motion,

∂tφ(t, x) = π(t, x) ,

∂tπ(t, x) = ∂i∂iφ(t, x)−m2φ(t, x)− λ

6
φ(t, x)3.

(4.4)

In the numerical approach, we discretise φ(t, x) and π(t, x) on a spatial lattice with spacing
as, volume V = (Nsas)

d and time step at = 0.05 as. In d = 2 dimensions, we use Ns =

2048, as = 0.1Q−1, m/Q = 2, n0 = 80. In d = 3 dimensions, we use Ns = 256,
as = 0.8Q−1, m/Q = 0.25, n0 = 100, unless stated otherwise. Any dependence on the
coupling constant drops out after the classical equations of motion and the initial conditions
are rescaled according to φ→ λ1/2φ, π → λ1/2π. This property stems from the underlying
classical limit h → 0 or, equivalently, the weak coupling limit λ → 0. The figures shown
in the following sections all assume quantities in units of Q.

To study the excitation spectrum, we will compute two different unequal-time two-point
correlation functions: the spectral function ρ(t′, t, p) and the statistical correlation function
F (t′, t, p). The latter can be defined as the expectation value of an anticommutator of fields,
which can be calculated in the classical-statistical framework as the classical expectation
value of the corresponding product of fields,

F (t′, t, p) =
1

V
〈φ (t′, p) φ∗(t, p)〉cl . (4.5)

Based on this, we can also define the distribution function as

f(t, p) =
√
F (t′, t, p) ∂′t∂tF (t′, t, p)

∣∣∣
t′=t

(4.6)
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at equal times t′ = t.
For the computation of the spectral function, the linear-response approach of [82] similar

to [81, 153] is employed. This involves perturbing the system, at time t, as φ → φ + δφ

with a source term j(t, x) = j0(x)δ (t− t′), drawn from a random Gaussian distribution
that satisfies

〈
j0(p) (j0(q))∗

〉
j
= V δp,q. The perturbation δφ is time evolved according to

the linearised equations of motion ∂′tδφ = δπ and

∂′tδπ = ∂i∂iδφ−
(
m2 +

λ

6
φ2

)
δφ− j0 δ (t− t′) . (4.7)

The retarded component of the spectral function follows from linear response theory as

θ (t′ − t) ρ (t′, t, p) =
1

V

〈
〈δφ (t′, p)〉cl

(
j0(p)

)∗〉
j
. (4.8)

Apart from the occupancy of excitations in the system, the correlators F and ρ also con-
tain information about the frequency dependence of excitations, including the dispersion
relations and damping rates of all of the relevant excitation species in the system. We con-
sider these unequal-time correlation functions in momentum space and perform the Fourier
transforms with respect to relative time ∆t = t′ − t′′ as

F (t, ω, p) ≡
∫

d∆t eiω∆tF (t′, t′′, p) , (4.9)

ρ(t, ω, p) ≡ −i
∫

d∆t eiω∆tρ (t′, t′′, p) , (4.10)

where t ≡ (t′ + t′′) /2 is the (central) time. In practice, we evaluate the correlations at
t′′ = t. This approximation can be justified provided the correlations do not change signif-
icantly over times of the order of their oscillation periods along the relative time∆t, which
is fulfilled during the self-similar scaling dynamics [81]. Therefore, in our simulations, we
compute the Fourier transforms while holding t fixed, as

F (t, ω, p) ≈ 2

∫ ∆tmax

0

d∆t cos(ω∆t)h(∆t)F (t+∆t, t, p) , (4.11)

ρ(t, ω, p) ≈ 2

∫ ∆tmax

0

d∆t sin(ω∆t)h(∆t) ρ (t+∆t, t, p) , (4.12)

typically using ∆tmax ≈ 300 for spectral functions and ∆tmax ≈ 500 for the statistical
function. We have checked that the results are not sensitive to the exact value of∆tmax. We
also employ a Hann window function,

h(∆t) =
1

2

(
1 + cos

π∆t

∆tmax

)
, (4.13)

and zero padding to smoothen the resulting curves, and have checked that these do not alter
the form of the displayed peaks. Expectation values of observables are obtained by aver-
aging over the field trajectories that are solutions to the classical equations of motion. The
results shown in the following use correlation functions averaged over 100 realisations in
two and 40 realisations in three dimensions. Real-time classical-statistical simulations have
been extensively used to study the dynamics of isolated systems in corresponding regimes of
applicability for similar initial conditions [1, 2, 19, 48, 78, 79, 82, 116, 119, 125, 127–129,
131–133, 154–163].
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4.3 Excitations and defects in O(1) theory
In this section, we discuss the different quasiparticle and topological defect contributions
that we expect to be relevant for O(1) scalar field theory.

4.3.1 Low-energy effective theories of scalar fields

Relativistic O(N) scalar field theories are known to display nonrelativistic effects at low
momenta in the presence of a mass gap. For the initial conditions considered here, such a
mass gap |p| ≲M with effective massM emerges even when the underlying theory is orig-
inally massless [48], giving rise to nonrelativistic dynamics in the infrared. Hence, a single
component field theory O(1) can be described by an emergent U(1) theory. This mapping
can bemademore rigorous by introducing nonrelativistic degrees of freedom emerging from
the underlying relativistic ones

ψ = eiMt [
√
ωx φ+ i/

√
ωx π] /

√
2 , (4.14)

with ωx =
√
M2 −∇2 [125, 164]. The emergent dynamics is governed by the Gross-

Pitaevskii equation,

i∂tψ(t, x) = − ∇2

2M
ψ(t, x) + g|ψ(t, x)|2ψ(t, x) , (4.15)

thus describing the real-time dynamics of a single-component Bose gas. While it is a well-
known mapping, Ref. [125] considered it for the case of overoccupied isolated systems cor-
roborated by numerical simulations in two dimensions, with initial conditions very similar
to what is being considered here.

In contrast, for a nonrelativistic N -component Bose gas, a low-energy effective theory
was considered in Ref. [105], describing interacting Goldstone modes of the total and rel-
ative phase excitations. There are N equations of motion for the U(N) theory, which give
rise toN−1Goldstone modes1 with quadratic dispersion ωG(p) (relative phase excitations),
and a Bogoliubov mode (total phase) with dispersion ωB(p),

ωG(p) =
p2

2m
, c = 1, . . . , N − 1 ,

ωB(p) =

√
p2

2m

(
p2

2m
+ 2gρ0

)
,

(4.16)

where ρ0 is the condensate density in the zero-mode. In Ref. [82], these dispersions were
generalised to the relativistic case of O(N ) models by computing the dispersions of possible
excitations using classical field equations of motion. This gives rise to the gapless modes

ωG,rel(p) =
√
p2 +M2 −M (4.17)

ωB,rel(p) =

√
p2 + 2M

(
M + gρ0 −

√
p2 + (M + gρ0)

2

)
, (4.18)

1Based on the underlying U(N) theory, there are 2N − 1 broken generators, and 2N − 2 of them combine
into the N − 1 quadratic modes [105].
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where gρ0 imprints the magnitude of the (local) condensate and is related to the effective
massM . These dispersion relations are provided as relative excitations on top of the local
condensate that is the solution of the classical equation of motion. Therefore, they can be
directly compared to the dispersions (4.16) of the nonrelativistic theories. However, we em-
phasise that in the relativistic case, one computes correlations of the scalar field φ instead of
ψ and, before comparing to the stated dispersions, one has to remove the rotation frequency
±M in the frequency spectrum [82] that also emerges in the exponent of Eq. (4.14). We
will take this into account in all the figures below by plotting ω −M .

We note that in the large-N limit, the Bogoliubov mode is suppressed in the infrared.
In this limit, large-N kinetic theories [48, 73, 74] that dominantly describe the scattering of
quasiparticles with a quadratic dispersion agree with the low-energy effective theory (EFT)
considered in Ref. [105]. For the single-component scalar field theory, the EFT considers
only Bogoliubov modes and no quadratic excitations. However, the extraction of the excita-
tion spectrum in U(1) and O(1) theories in Refs. [81, 82] reveals the existence of a dominant
“transport peak” or “non-Lorentzian peak” at low momenta, in addition to the Bogoliubov
modes, that drives the dynamics. This raises the question of what kind of quasiparticles
are present in a single-component scalar field theory and, in particular, what the dominant
degree of freedom is that none of the existing EFTs or kinetic theories are able to capture.

4.3.2 Topological defects in O(1) scalar field theory

Figure 4.1. Left: Phase angle of the complex quantity θ = φ+iπ defined from the relativistic
degrees of freedom. Vortices/antivortices occur at a phase change±2π, as magnified by the
middle insets. Right: Vortex defects also show up as distinct minima in the local energy
density on the lattice. We show coarse-grained plots to minimise the influence of lattice
artefacts. Lengths are shown in units of Q−1, cf. (4.3). The healing length ξh = p−1

ξh
=

[2gρ0M ]−1/2, which gives the scale of the diameter of the vortex cores is ξh ≈ 0.83Q−1.

Approaching from a different perspective, an important consideration is the potential
existence of topological defects in our systems. This could be especially significant for the
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Figure 4.2. Tangles of vortex lines on a three-dimensional lattice shown at three different
times and extracted from the low-energy depressions of the energy density fluctuations. Due
to reconnections of vortex rings, leading to both larger and smaller rings and subsequent
shrinking and dissolution of the smallest rings on the noisy background, the overall vortex
line length decreases, corresponding to a coarsening process in the energy density.

N = 1 case, since the lowerN is, the more constrained the topology of the underlying vac-
uum manifold becomes, making it more likely to support nontrivial topological structures.2

Due to the effective conservation of particle number in the infrared regime, which also
occurs in the presence of a mass gap in the relativistic theories considered here, an inverse
self-similar particle transport develops. This gradually transfers particles to low-momentum
modes, ultimately building a condensate at zero momentum. However, causality imposes
a limit on the rate at which information and correlations can propagate, preventing the in-
stantaneous formation of a uniform condensate. Therefore, the condensate initially lacks
long-range order, which it will gradually develop through ordering dynamics [67]. This
dynamics may include topological defects depending on the number of field components
N [80], and for a single component, N = 1, there are stable vortex defects. In this par-
ticular case, the formation of vortices and antivortices, and their annihilation process is of
importance, since this allows for the growth of larger structures.

One way to identify these defects in our simulations would be performing the canonical
transformation (4.14) on the relativistic degrees of freedom φ and π to obtain the complex
ψ(t, x). Then positions on the real-space lattice where depressions in the density of |ψ(t, x)|2
occur along with a phase change of approximately±2π in arg[ψ(t, x)] would correspond to
vortices and antivortices, respectively [125]. However, we find that it is also possible to
obtain topological defects directly from the relativistic degrees of freedom φ and π without
transforming into ψ, and also without applying any cooling effects in the simulations. For
a relativistic theory with a sufficiently large mass gap, defects also show up as minima in
energy density fluctuations [1], which coincide with a±2π winding in the relativistic phase
angle defined by

θ(t, x) = arg [φ(t, x) + iπ(t, x)] , (4.19)

2For a mathematically more rigorous consideration of what plays the role of a vacuum manifold in the
nonequilibrium dynamical theory considered here, see Refs. [1, 80].
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Figure 4.3. Initial spatial configurations of the fields φ(t0, r) and π(t0, r) in d = 2 dimen-
sions, r = (x, y), normalised to have values between −1 and 1. The “scrambled” pattern,
containing many small domains, allows for numerous phase singularities in arg[φ + iπ],
which we identify as (anti)vortex defects. These domains then become larger, as through-
out the coarsening process vortices annihilate with antivortices resulting in the growth of
structures.

as shown in Fig. 4.1 for the two-dimensional case. We have cross-checked that the number
and positions of (anti)vortices coincide in these two observables, the relativistic θ(t, x), and
the nonrelativistic arg[ψ(t, x)]. Such phase singularities in the nonrelativistic arg[ψ(t, x)]
have been specifically matched with depressions in the complex field ψ in Refs. [79, 125]
and their time evolution has been tracked in the context of vortex-antivortex annihilation
events and the resulting coarsening of the domains. In this work, we will obtain results
from purely relativistic quantities, namely the fields φ(t, x) and π(t, x) entering θ(t, x).

Technically, one could first identify the minima in the energy density and check for a
corresponding phase winding in θ(t, x). In practice, however, nearly all the ±2π phase
windings coincide with a minimum in the energy density, such that simply checking only
one of these observables gives an accurate picture of the total vortex density. Similarly,
for the three-dimensional case, vortex lines are revealed by looking for depressions in the
energy density fluctuations, as seen in Fig. 4.2 for different times.

Since vortex configurations are solutions to the classical equation of motion, they can
arise during the dynamics. However, it is worth mentioning that even though these vortices
are not explicitly part of the initial conditions under consideration, our box initial condition
(4.3) provides the right environment for vortices to emerge. This can be seen in Fig. 4.3,
where the initial field configurationsφ(t = 0, x) and π(t = 0, x) are shown in position space.
The “scrambled” look results from small domains that are characterised by sharp boundaries
between low and high values of φ and π due to the step function in the distribution at the
characteristic momentum Q. As already illustrated in Fig. 4.1, such sharp boundaries are
ideal for phase singularities in θ(t = 0, x), which is a feature of vortices.

It is also important to note that using a smoother cutoff for the initial momentum space
distribution instead of a step function, like a hyperbolic tangent function or a Gaussian func-
tion, did not reduce the number of vortex defects initially formed in the system, which we
explicitly checked. As long as one has a relatively steep increase in occupation number in
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momentum space near some characteristic momentum, this initially scrambled picture will
emerge in position space, and vortices will always form very quickly in the dynamics. In
this sense, it is not possible not to have, or to remove these defect configurations. For the
case of N = 1 (and also N = 2, 3 but not higher N ), they are stable configurations on
topological grounds [1, 80].

4.3.3 Excitations on vortices

Another type of contribution yet to be considered is that the vortex defects themselves
can support excitations, which appear as quasiparticles during the dynamics. For instance,
phonons can be produced from vortex-antivortex annihilation processes [165], which are
expected to yield a linear dispersion relation at low momenta. Beyond this, individual vor-
tex lines in three dimensions, and vortex cores in two dimensions can be excited in a way
that can be characterised as quasiparticles, which are distinct from the phonons arising from
vortex annihilation. In anticipation of our findings, we briefly summarise the properties of
such kelvon quasiparticles.

In three dimensional systems, vortex defects are extended objects and may be viewed as
vortex lines, along which helical excitations can propagate as waves. These are known as
Kelvin waves [137], and were originally described in the context of classical hydrodynam-
ics. In the realm of quantum fluids, Kelvin waves arise as helical perturbations of quantised
vortex lines, with the circulation being discretised as a direct consequence of the quantum
mechanical phase winding around the vortex core [138, 140, 166, 167]. These excitations
play a crucial role in the dynamics of quantum turbulence, mediating energy transfer from
larger to smaller scales [141–144, 146, 148, 149], as Kelvin waves at a similar scale interact,
exciting smaller scale Kelvin waves, ultimately dissipated by phonon emission. At larger
scales, vortex reconnection is thought to dominate energy transfer [168], and such recon-
nection events excite Kelvin waves at scales close to the inter-vortex distance. Lord Kelvin
obtained, for the small-amplitude wave excitations of a thin columnar vortex with a hollow
core, with wave number p along the vortex line and azimuthal quantum number n = 1, the
dispersions [137]

ω±
K (p) =

Γ

2πr2c

(
1±

√
1 + rcp

K0(rcp)

K1(rcp)

)
, (4.20)

where rc is the vortex core radius, Γ =
∮
C v · dr the vortex circulation, with fluid velocity v

and C some closed path around the core, and Kj are modified Bessel functions of order j.
The low-momentum approximation of the dispersion ω− has the form

ω−
K (p) ' −Γp2

4π

[
ln
(

2

prc

)
− γ

]
, (prc � 1) , (4.21)

where γ ≈ 0.577216 . . . is the Euler-Mascheroni constant. The Kelvin-wave dispersion
(4.21) also applies to vortices in a superfluid [140] with integer winding number w ∈ Z and
circulation Γ = wh/m quantised in integer multiples of the Planck constant h over particle
mass. The much larger ω+(p → 0) ' Γ/(πr2c ) is related to the Magnus force and the mass
inside the core [169].
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The dynamics of quantised vortices and their Kelvin-wave excitations with dispersion
(4.20) is well captured by the Gross–Pitaevskii equation (GPE) (4.15) [151, 170–173]. As
it is explicitly visible in the approximate expression (4.21), the p-dependence of the disper-
sion (4.20) is nearly quadratic at low momenta. Around prc = 1 it is close to linear in p,
while at higher momenta, it bends to a lower power than linear. Such a momentum depen-
dence serves as a unique signature of Kelvin waves that is unlikely to be attributed to any
other excitation with only linear or quadratic dispersions. Previous GPE studies of Kelvin
waves mostly focused on weak wave turbulence, and a direct connection has not been made
with nonthermal fixed points to date, where strong wave turbulence dominates the infrared
region.

At first sight, Kelvin waves cannot occur in two dimensions, where vortices lack a linear
extension along the core and are localised objects with circular symmetry. Similar quasi-
particles, however, emerge even in two dimensions [152, 174], especially if the vortices are
not point-like, but have a finite core size, which is precisely our case, as seen in the right
panel of Fig. 4.1 depicting the energy density. As a result, the boundary of the vortex sup-
ports bound-state-like oscillations, which, in the azimuthal direction, are quantised in the
same way as kelvons in three dimensions, looked at in a single fixed plane perpendicular to
the vortex core. The lowest such azimuthal excitation corresponds to a circularly varying
displacement of the centre of the vortex. As a result, also the density is modified in its radial
dependence relative to the rotating position of the vortex, and in the large-volume limit, a
continuum of kelvon states emerges, which can be distinguished again by a wave number p
parametrising the radial dependence as well as the dispersion of the kelvon. Therefore, an
analogy can be drawn between a Kelvin wave extended along a vortex line in three dimen-
sions and a “Kelvin wave” representing, at lowest order, a circularly rotating displacement of
the vortex position. We will also refer to these quasiparticles in two dimensions as kelvons,
for which a dispersion with the same scaling (4.21) as in three dimensions has been found
[152, 174]. Wave-like motion along vortex boundaries has also been discussed in the con-
text of Kelvin waves in finite-size, quasi two-dimensional systems as realised in a trapping
potential strongly confined in the third dimension [151, 152].

4.4 Universal scaling dynamics

4.4.1 Self-similar evolution of the momentum spectrum

The O(1) theory (4.1) in d = 2 spatial dimensions provides a particularly intriguing and
valuable framework for the study of relevant degrees of freedom for our initial conditions.
Comparable simulations in d = 3 for the massive O(1) theory [80, 82] have revealed the
momentum distribution function (4.6) which evolves self-similarly according to

f(t, p) = tαfs
(
tβp
)
, (4.22)

with universal scaling exponents α and β and scaling function fs(p). The distribution func-
tion takes the approximate form

f(t, p) ≈
(

N (t)

p2IR(t) + p2

)κ/2

, (4.23)
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Figure 4.4. Distribution function f(t, p), cf. (4.6), for a single-component scalar field the-
ory in (a) two and (b) three dimensions, shown at five different evolution times t. The inset
shows the functions rescaled according to (4.22), with β = 0.25 and α = 0.5 in two dimen-
sions, and β = 0.5 and α = 1.5 in three dimensions. In (a), simulations were run on a 20482

lattice, while in (b) the lattice size was 5123.

where the characteristic momentum scale pIR marks the transition between a plateau in the
infrared and power law fall-off p−κ. For p→ 0, the function develops a plateau or increases
with a power law much smaller than κ.

According to (4.22), the characteristic scale decreases in time as pIR(t) ∼ t−β , while the
overall normalisation scales as N (t) ∼ t2(α/κ−β). If particle number and thus the integral∫
ddpf(t, p) is conserved in time, in d dimensions, the relationα = dβ must hold. Classical-

statistical simulations gave the universal scaling exponents β ≈ 0.5 and α ≈ 1.5 ≈ d β, and
κ ≈ 4.5 in d = 3 dimensions [48, 80].

This self-similar scaling is confirmed by our results in Fig. 4.4b, where we show the
evolution of f(t, p) in d = 3 dimensions for different times as a function of momentum. One
finds that the characteristic self-similar dynamics in Eq. (4.22) that builds up a condensate,
i.e., a macroscopic occupation of the low-p modes, requires the stated values for α and β
to obtain a time-insensitive scaling function fs as visible in the inset. This form consists
of a nearly constant part at the lowest momenta p ≲ pIR and the power law decrease p−κ

at higher momenta p ≳ pIR within the infrared momentum range below the inverse healing
length p ≲ pξh =

√
2gρ0M .

4.4.2 Coarsening dynamics

Based on the spectral and statistical functions, the above excitation dynamics for single-
component scalar fields was found to be markedly different from what is observed and ex-
pected in the large-N limit [82], where we have an analytic understanding of these exponents
[48, 72–74]. On the other hand, the exponent β ≈ 0.5 is known to apply in qualitatively
very different situations. As an alternative to the self-similar transport of free Goldstone
quasiparticle excitations to lower momenta, which dominates the large-N limit [73, 105], it
could also result from diffusion-type coarsening dynamics of the spatial field configuration,
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Figure 4.5. Vortex (line) density shown as a function of time, in d = 2 and d = 3 dimensions
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e.g., as induced by mutual annihilation of vortices and antivortices excited in the system
[79].

Yet, in two-dimensional O(1) simulations, the equal-time distribution function has only
been found to scale with β ≈ 0.25, α ≈ 0.5, and κ ≈ 4 [125]. This is confirmed by our
results in Fig. 4.4a, where we show the evolution of f(t, p) for a two-dimensional system in
the main panel and its self-similar scaling in the inset using the stated exponents. Despite
scanning through a wide range of initial conditions, these results remained unchanged. In
particular, we were unable to find a stable β ≈ 0.5 scaling regime in d = 2. In contrast, for
N > 1, we have easily recovered the expected scaling with β ≈ 0.5 and α = dβ ≈ 1.0.

A closely related scaling exponent to the d = 2 case of O(1) theory, β ≈ 0.2 has been
found in simulations of a nonrelativistic Bose gas in two dimensions upon imprinting vor-
tices into the initial field configuration [79], also confirmed experimentally [117]. This scal-
ing behaviour is phenomenologically understood as due to three-body collisions of bound
vortex-antivortex pairs with nearby vortices or antivortices. Any such collision allows for
an exchange of vortices after which the newly formed vortex-antivortex pair can be more
strongly bound and thus potentially undergo fast subsequent vortex-antivortex annihilation
[79]. Hence, pair annihilation is dominated by the three-body collision rate, which gives
rise to the exponent β ≈ 0.2 � 0.5. This stands in contrast to isolated vortex-antivortex
annihilation due to background fluctuations, which is governed by a diffusion-type scaling
with β ≈ 0.5 [79, 117, 175, 176]. The relevance of three-body collisions was likewise
identified in Ref. [125] for the O(1) model in two dimensions without imprinting vortices.

In both Refs. [79, 125] the average vortex density was found to decay as a power law,
nv ∼ t−ξ with ξ ≈ 0.41 ≈ 2β, which reflects that the decreasing infrared scale pIR(t) ∼ t−β

corresponds to a growing characteristic length scale, which can be associated with the mean
inter-defect distance `v ∼ p−1

IR ∼ tβ . Hence, it is useful to define the exponent

ξ = 2 βL , (4.24)
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which thus characterises the growth of the average free volume between vortex defects in
d = 2 dimensions. Assuming that the self-similar scaling of the distribution function, (4.22),
is related to the coarsening of topological defects, one has that βL = β.

An interesting question therefore is to what extent the spatiotemporal scaling of f(t, p)
and the momentum power law fall-off is, in general, driven by coarsening, or whether the
two scaling phenomena are independent. After all, the value of the exponent κ and thus
the steepness of the distribution determines whether and how particles can be transported
towards the infrared and eventually allow condensation in the p = 0 mode. The buildup of
such a transport process necessarily involves some underlying coarsening due to causality,
as explained in Sec. 4.2.

Hence, before moving on to investigating the excitation spectrum from unequal-time
correlation functions, we examine the dynamics of vortices in two dimensions and vortex
lines in three dimensions explicitly and extract the respective βL exponents from the spatial
field configurations. As mentioned in Sec. 4.3, (anti)vortex defects are identified by a ±2π

phase winding in θ(t, x), which coincide with a depression in the energy density on the
lattice. Based on this, we have extracted the total vortex (line) density in two and three
dimensions, which we show as functions of time in Fig. 4.5. For additional details on the
data analysis and the extraction of these quantities, see App. B.1.

This vortex density reveals a power law ∼ t−ξ with ξ ≈ 0.45 or βL ≈ 0.23 for the O(1)
model in two dimensions, which is consistent with the β ≈ 0.25 self-similar scaling of the
equal-time distribution function f . 3 In three dimensions, we find ξ ≈ 0.91. It represents the
decrease of the total vortex line length per unit volume, which corresponds to a dilution of
the vortex rings and tangles as∼ `−2

v ∼ t−2β [177, 178], where `v is the scale measuring the
mean distance between vortex lines. Hence, also in d = 3, one has ξ = 2β, and the decrease
of the vortex line density implies βL ≈ 0.46 ≈ β. While these numbers look convincing, a
clearer link to the relevant quasiparticle excitations in f would be desirable. To make such a
connection, in the next subsection we discuss the extraction of the frequency andmomentum
dependence of the correlation functions that are closely related to the distribution function
(4.6) but additionally encode the systems’ excitation spectra.

4.4.3 Unequal-time correlation functions

A slow self-similar scaling dynamics of the equal-time distribution function f(t, p)with β ≈
0.25 for the O(1) theory has only been found in two dimensions. Therefore, this provides
an interesting study case to investigate the unequal-time correlation functions in both two
and three dimensions, focusing on understanding the differences in scaling exponents and
also on the potential connections to the dynamics arising from topological defects.

For both the two- and three-dimensional theories, the statistical function F is dominated
by a single peak at low momenta in the infrared, which is accurately captured by the (non-

3Note however that, in two dimensions, vortex coarsening could also be characterised by βL ≈ β ≈ 0.5,
as seen for a nonrelativistic Bose gas in [79] and discussed above.
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Figure 4.6. Fourier transform, (4.9), of the (a) unequal-time statistical function, F (t, ω, p),
and the (b) spectral function ρ(t, ω, p) at different central times t and momenta p in d = 2 di-
mensions. They show the dominant transport peak in the vicinity ofω−M ≈ 0 inF (t, ω, p),
with both branches of the Bogoliubov quasiparticle peak emerging to the left and right as
larger momenta are considered. The spectral function is dominated by the Bogoliubov peak
at all momenta. The curves are shown as functions of ω −M , with zero-momentum mass
gapM .

Lorentzian) hyperbolic secant function,4

FK(t, ω, p) '
π

2

AK(t, p)

γK(p)
sech

[
π

2

ω − ωK(t, p)

γK(p)

]
. (4.25)

Here,AK is the peak amplitude, γK is the decaywidth of the peak andωK is the corresponding
dispersion relation, which can be extracted by employing (4.25) as a fit function.

Example data extracted from numerical simulations forF (t, ω, p) and ρ(t, ω, p) is shown
in Fig. 4.6 for two dimensions, as functions of frequency ω −M relative to the ‘mass’ gap
of the dispersion, ω(p = 0) = M , for different times t and different momenta p. To obtain
a clearer picture, it is useful to depict the statistical function F (t, ω, p) in the frequency-
momentum plane, as shown in Fig. 4.7, in both two (left) and three (right) dimensions,
evaluated at time t = 1000. As already denoted on these figures and explained in the fol-
lowing section, the FK peak is identified with Kelvin waves and their quantised excitations,
kelvons, in three dimensions, as well as the analogous kelvon quasiparticles in two dimen-
sions. From both representations, we can also see that at higher momenta, a second peak
appears, which has been identified before as a Bogoliubov peak [82]. This Bogoliubov peak
is more easily accessible from the spectral function ρ(t, ω, p), which is what we have used

4Regarding the notation: this peak corresponds to the “transport peak” in [81] and the “non-Lorentzian
peak” (nL) in [82].
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at p = 0 to determine the effective mass gap M . The peak can be fitted by approximate
Lorentzians of the form

ρ(t, ω, p) ' 2A+(p)γ+(t, p)

[ω − ω(p)]2 + γ+(t, p)2
− 2A−(p)γ−(t, p)

[ω + ω(p)]2 + γ−(t, p)2
, (4.26)

that capture the positive and negative branches of the Bogoliubov excitation. Moreover,
its dispersion can be accurately fitted by using the relativistic generalisation (4.18) of the
Bogoliubov dispersion [82], which is shown in Fig. 4.8.

The two-dimensional FK looks qualitatively very similar to the three-dimensional one,
although our curves are noisier as statistical convergence needs considerably more simula-
tion runs to average over in lower dimensions. Nevertheless, we are still able to accurately
extract the peak properties in two dimensions from the available data.

We note that in general, each of the excitations in F should have a counterpart in ρ.
For the Bogoliubov peak, we confirm this for the two-dimensional theory in Fig. 4.6 and
refer to Ref. [82] for a confirmation in d = 3. In contrast, the identification of the FK peak
given by (4.25) in ρ is challenging due to the peak’s relative suppression in comparison to
the Bogoliubov excitations. For d = 3, the existence of such a peak in ρ was demonstrated
in Ref. [82] by carefully analysing high-statistics data. For d = 2, our level of statistics is
insufficient to give a clear statement about its existence in ρ.

4.4.4 Kelvon dispersion relations

One of the most important aspects of distinguishing different kinds of quasiparticles and de-
grees of freedom is understanding their dispersion relation(s). To this end, we have extracted
the positions of the different peaks at multiple times. As for the fit forms in the statistical
function, up to p < 0.17, we have used (4.25), after which a two-peak fit is performed with
one additional peak from Eq. (4.26) that takes the Bogoliubov excitation into account in or-
der to improve the accuracy of the fits. Figure 4.9 shows the momentum-dependent position
ωK(p) for the dominant infrared peak in (a) two and (b) three dimensions.
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Figure 4.8. The dispersion relation extracted from the Bogoliubov peak in the two-
dimensional spectral function. The fit corresponds to the relativistic generalisation of the
Bogoliubov dispersion (4.18) and follows a linear, then quadratic, and finally again linear
evolution. The healing-length momentum scale is pξh ≈ 1.2Q.

In three dimensions, the dispersion relation of this peak has been extracted before and
was considered to be approximately linear [81, 82]. However, upon closer inspection, one
can see that it is, in fact, quadratic at low momenta and linear at higher momenta, which
is characteristic for kelvons [173]. Re-analysing the dispersion relation from Ref. [82], we
find an excellent fit with the Kelvin wave dispersions as shown in Fig. 4.9b. We fitted
the long-wavelength limit of (4.20), with the additional zero-momentum shift proposed in
Ref. [171],

ω (p0 + p) = ω0 +
Γp2

4π
ln
(

1

|rcp|

)
, |rcp| � 1 , (4.27)

where ω0 is the frequency of the kelvon with the smallest momentum p0 → 0 relative to
the mass gapM extracted from Bogoliubov excitations, Γ is the (here positive) vortex cir-
culation and rc is the vortex core radius. These quantities show a time dependence, which
represents characteristics of the scaling dynamics not extracted previously. We find an in-
creasing vortex core radius rc, which reflects that in the course of the infrared transport,
the number of coherent excitations at momenta on the order of the inverse healing length,5

pξ = ξ−1
h ≈ 1.2Q in d = 2 and pξ ≈ 0.6Q in d = 3, decreases in time. This increase in the

core radius as rc(t) ∼ tβ is corroborated by the findings of [178], where the total volume
enclosed by the vortex cores in decaying Vinen turbulence in a superfluid in d = 3 dimen-
sions was found to settle to a constant at large times, while the vortex line density decays as
t−1. The gap ω0, in d = 3, is found to be negative and its modulus decreases, as observed
in Fig. 4.9(b). Altogether, the dispersions are found to obey the self-similar scaling relation

ωK(t, p)−M = t−βzω̃S

(
tβp
)
, (4.28)

with exponent β ≈ 0.5 and z ≈ 2 [82], as also visible in the inset. Here, z ≈ 2 reflects the
dynamical scaling dimension of the Kelvin-wave dispersion relation.

5The healing length was extracted from the linear part of the Bogoliubov dispersion, where the speed of
sound cs and the healing length pξ are related via cs = pξ/

√
2M .
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Figure 4.9. Time-dependent dispersion relations ωK(p) of the FK peak for a single compo-
nent scalar field theory: (a) In two dimensions, ωK(p) approximately follow straight lines.
(b) In three dimensions, the curves are accurately fitted by the Kelvin wave dispersion rela-
tion (4.27). Here we show only 3 curves to make it visually clear how the data is captured
by the fit. The insets show the rescaled dispersions. In two dimensions, we used β = 0.25,
z = 2, while in three dimensions β = 0.5, z = 2.

At later times, we fit the dispersion (4.27) across a progressively smaller momentum
range, as shown by the dashed lines in Fig. 4.9(b). This is necessary because the disper-
sion gradually starts to flatten at higher momenta, as clearly visible at t = 4000, deviating
from the expected form and making the fit increasingly unreliable. As a result, the extracted
parameters become less meaningful in this regime. A more detailed discussion of this be-
haviour can be found in App. B.2.

For two dimensions, we show the dispersion relation at different times in Fig. 4.9a. We
find that it can be equally well fitted by both the kelvon and linear Bogoliubov dispersions,
which we discuss more quantitatively in App. B.3 by investigating the residuals for both
d = 2, 3 and both fits. The dispersion obeys the same self-similar scaling form (4.28) as in
d = 3, but with exponents β ≈ 0.25 and again z ≈ 2, as shown in the inset of Fig. 4.9a.

As already discussed earlier in Sec. 4.3, Kelvin waves along the vortex core are not
possible in two dimensions. However, as long as one has a finite vortex core, kelvon-like
quasiparticles can emerge and be parametrised, besides an azimuthal quantum number, by
wave number p. While the dispersion relation in Fig. 4.9(a) can be fitted equally well by
both a linear curve and the kelvon dispersion (4.27), indicating the presence of phonons
and/or kelvons, it looks qualitatively very similar to the dispersion in Fig. 4.9(b) which is
more accurately described by the kelvon fit in d = 3 dimensions. With this in mind, we
suggest that the dominant infrared peak in two dimensions also originates from kelvons.
Apart from this, we also observe Bogoliubov phonons, which are excitations on top of the
condensate and have larger dispersion values (4.18). Therefore, the dominant Bogoliubov
peak can be generally found to the right of the kelvon peak in Fig. 4.6.

One of the prominent differences between two and three dimensions is that the peaks
are considerably broader in two dimensions, as observed from the frequency-momentum
resolved statistical function F (t, ω, p) in Fig. 4.7. A similar effect occurs in non-Abelian
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gauge plasmas where the excitation spectrum in two dimensions exhibits a broad non-
Lorentzian peak that remains broad even at late times [179] while the quasiparticle peak
in three-dimensional plasmas becomes narrower with time [153]. In general, fluctuations
are more significant in lower dimensions because of the reduced spatial volume available
to average them out. This leads to more prominent noise and dissipation effects, which can
then further broaden the peaks.

Additionally, the broadening in two dimensions might also reflect the stronger coupling
between the different modes – kelvons and phonons from vortex interactions – due to the
reduced dimensionality, where interactions and energy exchange between excitations are
more pronounced. This interplay could obscure the distinction between different quasipar-
ticle contributions, making it more challenging to isolate specific dispersion features as com-
pared with the three-dimensional case. While in three dimensions, a distinct quadratic bend-
ing at the lowest momenta can be observed in Fig. 4.7b, extracting F (t, ωmax, p) as shown
in Fig. 4.9b clarifies that, indeed, the dispersion is accurately described by a Kelvin-wave
dispersion. Moreover, this three-dimensional representation also shows a striking similarity
to the “space-time resolved mass spectrum” in Ref. [173], which used GPE simulations to
study Kelvin and (Bogoliubov) sound waves.

Curiously, kelvons seem to dominate the dynamics of the infrared peak in F (t, ω, p),
and we do not find any significant contribution from phonons arising, e.g., from vortex-ring
annihilation. In two dimensions, this is likely the case as well, but the broader peaks make it
more difficult to distinguish their contributions with certainty, leaving open the possibility
that phonons may still play a role. How phonon generation occurs in vortex decay in two-
dimensional superfluids is still a matter of active research, with different n-body processes
put forward for the mechanisms [79, 175, 180–182]. We note that in our case, the process in
two dimensions seems to be dominated by three-body collisions, where a vortex-antivortex
pair and a lone vortex/antivortex are needed, as described in Sec. 4.4.2 and Refs. [79, 125].

We conclude that, while the topological defects themselves do not directly show up in
the excitation spectra of F and ρ, excitations that arise on top of these defects do. Kelvons,
quantised excitations of Kelvin waves, seem to be the dominant degree of freedom in the
infrared regime of a three-dimensional single-component scalar field theory, while in two di-
mensions, kelvons, and potentially phonons that arise from the relaxation process of vortex-
antivortex annihilation processes play a similar role.

4.4.5 Self-similar scaling and decay width

In Ref. [82] it was shown that the transport/kelvon peak in both F (t, ω, p) and ρ(t, ω, p)
exhibits self-similar scaling in the three-dimensional O(1) theory. Similarly, in Ref. [81],
self-similar scaling was demonstrated for the three-dimensional U(1) theory for the same
peak in F (t, ω, p) with the exponents β ≈ 1/2 and z ≈ 2, and for the Bogoliubov peak in
ρ(t, ω, p), with the same β and z ≈ 1.

A natural question is whether we find scaling in F and ρ for both peaks in the two-
dimensional O(1) system. Let us start with the Bogoliubov peak. It is more easily accessed
from the spectral function, as the kelvon peak in ρ seems to be weak. The spectral function
is shown in Fig. 4.10 for d = 2 as a function of frequency at different times and momenta
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Figure 4.11. Time-dependent decay width of the kelvon peak for a single component scalar
field theory in two (left) and three (right) dimensions.

whose combination tβp is kept fixed. The right panel demonstrates that it follows the self-
similar scaling ansatz

ρ(t, ω, p) = tβ(2−η)ρs
(
tβz(ω −M), t βp

)
, (4.29)

with η ≈ 0. While z ≈ 1, as expected for phonons, we find β ≈ 0.25, just like for the
kelvon peak, while β ≈ 0.5 in constant slices of tβp failed to reproduce self-similarity.
These findings suggest that there might be an intrinsic connection between the Bogoliubov
phonons and the kelvon peak.

In contrast to the Bogoliubov peak, we have found no evidence of a consistent self-
similar scaling solution for the FK peak of the two-dimensional O(1) theory. This is un-
expected because the left panel of Fig. 4.9 displays self-similar scaling for the dispersion
relation ωK(p). The problem lies rather in the decay width that scales appropriately in three
dimensions but fails to scale in two dimensions.

The decaywidth of the kelvon peak as extracted fromF using the fit form (4.25) is shown
in Fig. 4.11 for two (left panel) and three (right) dimensions as a function of momentum at
different times. In three dimensions, the decay width was found to be time-independent for
low momenta and to have a quadratic form ∼ p2 [82], as we confirm in the right panel. In
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contrast, as shown in the left panel, it depends on time in a nontrivial way in two dimen-
sions. One finds a relatively large plateau, i.e., an approximately constant decay channel,
in addition to a momentum-dependent decay width that decreases with time. This evolution
spoils a simple scaling ansatz in F (t, ω, p).

We finally note that in both d = 2 and d = 3 dimensions there is a finite decaywidth even
at zero momentum. However, it is worth noting that in d = 2, this offset seems to dominate
γK(p) over a vast momentum region, while in d = 3, the decay width is dominated by a
quadratic form ∼ p2 already at low momenta, facilitating the self-similar scaling solution
found in [81, 82].

4.5 Discussion and outlook

We have investigated the universal nonequilibrium dynamics of single-component relativis-
tic scalar field theories in d = 2, 3 dimensions. Our results reveal a direct connection be-
tween the dominant excitations in the infrared regime of nonthermal fixed points and topo-
logical defects through Kelvin waves in three dimensions, and the analogous kelvon quasi-
particles in two dimensions. In three dimensions, the dominant excitation has a dispersion
relation with an excellent fit by the Kelvin wave dispersion from Eq. (4.20), while a similar
dominant excitation in two dimensions has a dispersion, which can be similarly well fitted
by either a linear, or a kelvon momentum dependence. Both dispersion relations are time-
dependent, which can indirectly result from the underlying vortex-antivortex annihilation
processes.

A striking difference between two and three dimensions lies in the decay width of these
excitations. In three dimensions, the kelvon peak exhibits a well-defined, time-independent
width at low momenta, while in two dimensions, the peak is significantly broader, and the
decay width does not scale in a simple manner in time. This suggests that the interactions
between kelvons, phonons, and vortices in two dimensions are more intricate, potentially
due to stronger mode coupling and increased dissipation. The inability to cleanly separate
phononic contributions from kelvon-like excitations in the spectral function in two dimen-
sions raises further questions about the interplay between different degrees of freedom in
driving the infrared transport.

Regarding the role of vortex coarsening in the observed scaling behaviour, the decay
of the vortex (line) density follows a power-law scaling in both two and three dimensions,
with exponents consistent with those of the scaling evolution of the momentum-dependent
distribution function. At the same time, the strong-wave-turbulence picture of the infrared
dynamics of nonthermal fixed points is consistent with our results. However, the underlying
degrees of freedom for the N = 1 component scalar field theory are notably distinct from
what is included in large-N theories, which are free quasiparticles with quadratic dispersion.

Overall, our results complement existing large-N approaches and shed light on the ori-
gins of universal scaling behaviour and the importance of vortex and coarsening dynamics
in single-component scalar field systems in the context of nonthermal fixed points. By com-
bining a detailed analysis of the topological defects with the underlying excitation spectrum
and its dynamical properties, our work paves the way towards a more comprehensive under-
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standing of universal scaling behaviour in O(N) scalar models. In particular, this approach
can also be applied to other low-N component systems to obtain a consistent picture of the
contributing quasiparticle excitations relevant for nonthermal universal scaling phenomena.
The results obtained here also mark an essential step in constructing a low-energy effective
theory for the N = 1 system, which needs to be built upon the relevant degrees of freedom
identified in this work.



Chapter 5

Topological defects and universal scaling
far from equilibrium

This chapter is based on “Detecting defect dynamics in relativistic field theories far from
equilibrium using topological data analysis” by V. Noel and D. Spitz, arXiv:2312.04959,
Phys. Rev. D 109, 056011 (2024).

Nonthermal fixed points provide a powerful classification scheme for universality classes
far from equilibrium, where relativistic scalar fields with global O(N) symmetry serve as an
important paradigm. The corresponding universality classes are surprisingly large, where
each N in both d = 2 and d = 3 dimensions, whether relativistic or nonrelativistic, appears
to belong to the same universality class up to a possible anomalous dimension. As discussed
in the previous chapter, a notable exception to this pattern is the two-dimensional N = 1

case. For both the two- and three-dimensionalN = 1 theories, topological excitations were
found to play a crucial role in the dynamics, which serves as a significant stepping stone in
constructing an effective description to understand the universal scaling behaviour. How-
ever, this analysis has so far focused only on excitations supported by vortex and string
defects that appear in the frequency-dependent unequal time correlation functions. In these
strongly correlated nonequilibrium systems, the role of different phenomena such as non-
linear wave propagation and defect dynamics remains to be further clarified. For this, it
is instructive to construct geometric observables that show more sensitivity to topological
objects, as opposed to the two-point correlation functions, which are often used to study
universal scaling behaviour in these theories. To this end, we employ persistent homology
to infer topological features of our nonequilibrium many-body system for different num-
bers of field components N . Specifically, we show that the persistent homology of local
energy density fluctuations can give rise to signatures of self-similar scaling associated with
topological defects, distinct from the scaling behaviour of nonlinear wave modes.

In this chapter, after an introduction in Sec. 5.1, Sec. 5.2 describes the lattice simulations
used, along with a discussion of topological defects in O(N) theories and their presence in
local energy densities. Sec. 5.3 introduces persistent homology and details the signals of
topological defects in Betti number distributions, for which appropriate definitions and a
detailed explanation is presented in the same section. We then interpret the observations
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in the context of coarsening dynamics of topological defects and energy transport, high-
lighting how the evolving topological features correspond to the emergence of large-scale
structures over timewith a distinct universal scaling exponent, which differs from the scaling
behaviour typically observed in standard correlation functions. Finally, Sec. 5.4 provides a
conclusion.

5.1 Introduction

Understanding the dynamics of nonequilibrium many-body systems is a fundamental chal-
lenge in theoretical physics. While these systems often evolve in a highly complex manner,
certain collective phenomena can give rise to effective large-scale descriptions. Systems
that are far from equilibrium can exhibit emergent universal scaling behaviour, where non-
thermal fixed points provide a useful framework for grouping theories into different uni-
versality classes. These phenomena arise across a wide range of physical systems, from
early-universe cosmology [10] to ultracold quantum gases [8], highlighting deep connec-
tions between seemingly unrelated areas of physics, where relativistic scalar fields with
global O(N) symmetry serve as key models for exploring and understanding such far-from-
equilibrium dynamics.

Recent experimental and theoretical studies of diverse systems indicate that for a small
number of field components N , different initial conditions can lead to distinct nonthermal
fixed points. They can be related to separate physical mechanisms: self-similar dynamics
consistent with descriptions in the limit of many field components [21, 96], and topologi-
cal defects undergoing coarsening dynamics for few field components [25, 26, 77–79, 116,
119, 121, 125, 127, 128, 132, 133, 183]. Also for the O(N) vector model in three spa-
tial dimensions, a number of different, N -dependent topological defects are expected to
contribute to the dynamics in the infrared [80]. Remarkably, for this model and typical ove-
roccupied initial conditions, many types of equal-time correlation functions merely reveal
scaling dynamics consistent with the large-N descriptions, even for low N , and in agree-
ment with nonrelativistic complex U(N) vector models [48, 73, 74, 80–82, 105, 115]. This
includes the momentum-resolved distribution function, which is computed from equal-time
two-point correlation functions and forms the basis for many studies of far-from-equilibrium
universality. The investigation of unequal-time two-point correlation functions has revealed
differences among the excitation spectra for N = 1 as opposed to the large-N case [82],
which is now directly connected to kelvon quasiparticles arising from vortex interactions,
as described in Chapter 4. However, this may not necessarily contain clear links to the scal-
ing behaviour related to the coarsening dynamics of the topological defects themselves. A
thorough understanding of their role for nonthermal fixed point dynamics can be a prerequi-
site for the comprehensive classification of universal behaviour far from equilibrium, based
on the experimentally and numerically found scaling dynamics. Hence, there is a need for
topologically sensitive and computationally accessible observables.

Topological data analysis (TDA) [83, 84] can provide complementary information to
correlation functions. Persistent homology, which is the primary tool from the TDA tool-
box, gives access to the topology of a nested hierarchy of complexes constructed from the
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field data. It has been successfully applied to describe nonthermal fixed points for two-
dimensional nonrelativistic scalar and three-dimensional gluon fields [184, 185], accompa-
nied by a corresponding mathematical analysis [86]. In the related context of phase tran-
sitions, persistent homology allowed for insights into critical phenomena and phase struc-
tures [186–197].

In this work, we examine the persistent homology of local energy density fluctuations
in O(N) vector models in the classical-statistical regime, starting from overoccupied initial
conditions without imprinting defects. Local energy densities can show clear signatures of
dynamically built-up defects as we demonstrate. In particular, we show that the related Betti
number distributions give rise toN -dependent topological structures reminiscent of the clas-
sification of defects in condensates of relativistic O(N) scalar fields, indicating topological
dynamics consistent with phase-ordering kinetics [67].

5.2 O(N) vector model and topological defects

We consider a relativistic O(N)-symmetric scalar field theory with field variables φa(t, x),
a = 1, ..., N , in d = 3 spatial dimensions with classical action

S[φ] =

∫
t,x

[
1

2
∂µφa∂µφa −

m2

2
φaφa −

λ

4!N
(φaφa)

2

]
, (5.1)

where
∫
t,x ≡

∫
dt
∫
d3x, summation over repeated indices is implied, m is the bare mass

and λ is the coupling constant. The action (5.1) is invariant under global O(N) rotations
acting on the internal field components indexed by a: φa 7→ Rabφb for R ∈ O(N).

5.2.1 Lattice simulations

Similarly to the previous chapter, we consider classical-statistical simulations on a lattice,
which provide an adequate description of the quantum dynamics for large occupations, small
coupling, and at not too late times [71]. We set overoccupied box initial conditions in mo-
mentum space for the scalar fields, where field configurations φa(t = 0, x) are sampled with
large Gaussian fluctuations up to a characteristic momentum scale Q, described by

f(t = 0, p) =
Nn0

λ
Θ(Q− p), (5.2)

with zero macroscopic fields |φ(t = 0, x)| = 0. The initial field configurations are time-
evolved according to the equation of motion following from the action (5.1). For more
details on this procedure we refer to Chapters 2 and 4.

We consider lattice simulations for N3
s = 5123 spatial lattice sites and use a leapfrog

solver withQas = 0.8, where as is the spatial lattice constant, with temporal lattice spacing
dt = 0.1 as, initial amplitude n0 = 125 and renormalised mass squared M2 = 4Q2. The
comparably large mass suppresses fluctuations on smaller length scales, which will allow us
to reveal the presence of topological features associatedwith defects. In persistent homology
as introduced below, the topological features appear less pronounced for smaller values of
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the mass, see App. C.1. For later use we denote the spatial lattice byΛs := {0, as, . . . , (Ns−
1)as}3.

In this work, we focus on the structures visible in local energy density fluctuations
around the mean energy density. The local energy density corresponding to the action (5.1)
is

T 00(t, x) =
1

2
π2
a +

1

2
(∇φa)

2 +
m2

2
φaφa +

λ

4!N
(φaφa)

2, (5.3)

where πa = ∂tφa and space-time arguments have been suppressed on the right-hand side.
We consider a single classical-statistical realisation in this work, based on the self-

averaging property often encountered for observables in classical-statistical simulations.
The latter also holds approximately for the later introduced Betti numbers due to the large
number of contributing features.1 In fact, the Betti numbers are expected to scale propor-
tionally to the system volume for sufficiently large lattices [86, 198]. Specifically, we
have verified the insensitivity of Betti numbers after division by the lattice volume for
Ns = 128, 256, 512. We have also numerically verified their insensitivity to variations
of the lattice spacing upon comparison with simulations for Qas = 0.6 and Qas = 1.2.

5.2.2 Topological defects in relativistic O(N) theories

Topological defects in condensates

The chosen initial condition sets high occupation numbers up to the momentum scaleQ. As
discussed in previous works [48, 199], the particle number redistributes towards the infrared
via an inverse particle number cascade, which is a consequence of transient approximate
particle number conservation. In this dynamical process, a condensate forms in the zero
mode, which is initially absent and results from increasing occupancies in the deep infrared.
Simultaneously, long-range order gradually builds up [80].2

Considering the ordering dynamics of the condensate, the phase space of spatial zero
modes of the (Fourier transformed) field variables φ̃a(t, p) =

∫
x φa(t, x) exp(−ipx), formed

by (φ̃a, ∂tφ̃a)a=1,...,N with φ̃a ≡ φ̃a(t, p = 0), is of relevance. Approximate particle number
conservation and energy minimisation provide two constraints for the realised condensate
configurations [80]. Taking these into account, we denote the physically accessible conden-
sate phase space by CN , which depends nontrivially on the number of field components N .
In particular, the topology of CN can be nontrivial, so that topologically nontrivial con-
figurations (defects) can occur. These have been classified in [80], which we review in
detail in App. C.2. Specifically, the condensate can feature string defects (vortex lines)
for N = 1, 2, 3, domain walls for N = 2 and monopoles for N = 4. For three spatial
dimensions, no other defects are expected, and condensates are defect-free for N ≥ 5.

Note that, as discussed in Chapter 4, defects unavoidably arise during the evolution of
the (classical) equation of motion, and are not explicitly part of the initial conditions under

1For mathematical details on self-averaging related to persistent homology (ergodicity in persistence) we
refer to [86].

2As mentioned in the previous chapter, by causality, the formation of a condensate at finite evolution times
requires a finite system volume. For infinite system volumes, modes in the deep infrared can mimic the
dynamics of a condensate, but lack the related system-scale long-range order [80].
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consideration. As described later in this work, defects typically annihilate each other with
time via related coarsening dynamics [67], such that their number decreases. On longer
time scales than considered here, the condensate itself is expected to decay again due to
number-changing processes in the relativistic theory [199], suppressing topological defects
as well.
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Figure 5.1. Two-dimensional slices of local energy density fluctuations around their mean
value, given by ∆T 00 = (T 00 − T̄ 00)/T̄ 00. (a) Snapshots for N = 1 at different times, and
(b) snapshots for different N at time Qt = 5000, showing signatures of string defects for
N = 1, 2, 3 and of domain walls for N = 2.

Observation of defects in energy density fluctuations

We probe topological defects via their signatures in local energy density fluctuations around
their mean values, given by

∆T 00(t, x) :=
T 00(t, x)− T̄ 00

T̄ 00
, (5.4)

where T̄ 00 := (1/N3
s )
∑

x∈Λs
T 00(t, x) is time-independent due to energy conservation. In

Fig. 5.1(a), we display two-dimensional slices of the time-evolving energy density fluctu-
ations for N = 1. As time elapses, the initial fluctuations in local energy densities be-
come gradually more homogeneous, with string-like structures distinctively emerging at
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early times and minimal energy densities. We associate these with string defects, whose
number appears to decline with time.

Comparing the two-dimensional snapshots of energy density fluctuations at a fixed time
(Qt = 5000) for N = 1, 2, 3, 4, as displayed in Fig. 5.1(b), we observe similar string-like
structures for N = 2 and N = 3. Moreover, for N = 2 we can also see indications of
emerging domains separated by domain walls.3 These appear at locally low energy densi-
ties as closed loops in the snapshots and are clearly distinguishable from the open elongated
minima attributed to string-like structures. For N = 4 and higher N (not shown), the lo-
cal energy densities become gradually more homogeneous without any distinct string- or
domain-like structures forming, even when running the simulations for comparably long
times up to Qt = 50000. Such defect structures agree with the classification outlined in
Sec. 5.2.2, albeit with monopoles not seen for N = 4. Monopoles form point-like local
minima in energy densities, similar to the many other fluctuations present in the system.
The lattice configurations can therefore still contain monopoles, but might be indistinguish-
able from configurations without monopoles based on our methods.

The emergence of defect structures at minima in local energy density fluctuations can be
heuristically understood based on energetic considerations. Defects locally minimise poten-
tial energy densities due to necessary zero-crossings in field amplitudes between oppositely-
signed domains, at a string or within a monopole core, which manifest as zero local poten-
tial energy densities. Kinetic energy densities require more careful considerations. Defects
move slowly in comparison to typical time scales associated with the inverse particle cas-
cade, resulting in small contributions by

∑
a π

2
a to T 00 in (5.3). Moreover, spatial gradients

in directions tangent to the curves formed by local energy density minima due to string de-
fects or tangent to the corresponding surfaces for domainwalls are naturally small, as in these
directions local energy densities do not change much (see Fig. 5.1). In normal directions,
defects come with related characteristic (healing) length scales. These can be comparably
large, leading to a suppression of normal gradients as well, such that kinetic energy densities
of defects are locally suppressed along with potential energy densities. We have observed
this in our simulations for both kinetic and potential energy densities (not shown).

5.3 Persistent homology of energy density fluctuations

Persistent homology provides a method to calculate scale-dependent topological structures
from data along with measures of their persistence. In Sec. 5.3.1, we present the concept of
persistent homology for the investigated local energy density fluctuations. In Sec. 5.3.2, the
persistent homology results are discussed in light of the previous discussion of topological
defects in condensates. Sec. 5.3.3 considers the time dependence of Betti number distri-
butions in relation to coarsening dynamics, while Sec. 5.3.4 provides an examination of its
connection to energy transport towards the ultraviolet.

3These have been observed before in other observables, see e.g. [119, 124].
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Figure 5.2. Pixelisation of lattice sublevel sets leads to a filtration of cubical complexes. (a):
64×64 pixels excerpt from the top-left corner of theN = 1 energy density fluctuation slice
shown in Fig. 5.1(b). (b): Three nested cubical subcomplexes corresponding to the indicated
sublevel sets of the image of (a), for filtration parameters ν ≡ ∆T 00 ≤ −0.5,−0.2, 0.0 from
left to right.

5.3.1 Persistent homology of energy density fluctuation sublevel sets

Cubical complexes

In this work, persistent homology is computed for cubical complexes [200], which is ide-
ally suited for data in pixel format. Here, we focus on a short, intuitive introduction, while
App. C.3 provides mathematically more rigorous constructions. For more elaborate mathe-
matical introductions to TDA we refer to [83, 84].

A cubical complex is a collection of cubes of different dimensions, closed under taking
boundaries. For instance, the boundary of a 3-cube is the union of all its six faces, i.e.,
boundary squares, the boundary of a 2-cube (square) is the union of its four boundary edges,
the boundary of a 1-cube (edge) consists of its two endpoints, and the boundary of a 0-cube
(point) is empty. The full cubical complex for the spatial lattice under consideration consists
of a 3-cube for each lattice site, with a lattice site located at each cube’s center. For each
3-cube, all boundary cubes of lower dimensions are included in the full cubical complex.

Subcomplexes of the full cubical complex can be used to describe sublevel sets of func-
tions on the spatial lattice. Intuitively, for a given function these are constructed by including
a 3-cube in the subcomplex whenever the corresponding function value is below a chosen
filtration parameter. While this fixes the filtration parameters when 3-cubes enter subcom-
plexes, the filtration parameters for lower-dimensional cubes are set inductively (the lower
star filtration, see App. C.3). This way the subcomplex becomes indeed a cubical complex
for every filtration parameter, which can be seen as a pixelisation of the corresponding lat-
tice function sublevel set. In particular, a nested sequence of cubical complexes is formed
upon increasing the filtration parameter. This procedure is illustrated in Fig. 5.2 for the
example of an excerpt of the two-dimensional slice of the local energy density fluctuations
shown in Fig. 5.1(b) (N = 1). While the two-dimensional slice is for illustrative purposes
only, the analysis is carried out in all three spatial dimensions. For a given function on the
lattice such as the image excerpt given in Fig. 5.2(a), the cubical complexes corresponding
to the sequence of sublevel sets can resemble the structure of minima, see Fig. 5.2(b). In par-
ticular, note the persistence of the horseshoe-like accumulation of squares across filtration
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Figure 5.3. (a): Dimension-0, -1 and -2 homology classes from left to right, built with
cubical complexes. Dimension-2 homology classes are enclosed volumes, indicated in red.
(b): Dimension-0 and -1 holes in cubical complexes for different sublevel sets, giving rise
to persistent homology classes.

parameters.
More formally, the evaluation of local energy density fluctuations for a given classical-

statistical realisationφ(t, x) at time t provides a real-valued function∆T 00(t, ·) on the spatial
lattice Λs. Its sublevel sets are defined as

M∆T 00(t, ν) := (∆T 00(t, ·))−1(−∞, ν] = {x ∈ Λs |∆T 00(t, x) ≤ ν}. (5.5)

The described pixelisation procedure leads to the cubical complexes C∆T 00(t, ν), which are
the cubical complexes of interest in this work. They form a filtration of the full cubical
complex, i.e., a nested sequence of subcomplexes of the full cubical complex with

C∆T 00(t, ν) ⊆ C∆T 00(t, µ) (5.6)

for all ν ≤ µ. For ν smaller than the minimum value of ∆T 00(t, ·), the cubical complex
C∆T 00(t, ν) is empty, while for ν larger or equal to the corresponding maximum value, the
full cubical complex is recovered.

Persistent homology: holes in complexes

The full cubical complex of the three-dimensional lattice contains a 3-cube for each spa-
tial lattice point. However, as energy density fluctuation values are swept through from the
lowest to the highest, in general, the cubical complexes C∆T 00(t, ν) do not contain a cube for
every spatial lattice point. Holes of different dimensions can appear, which are described
by homology groups. For cubical complexes, such holes are illustrated in Fig. 5.3(a). Con-
nected components are described by dimension-0 homology classes, dimension-1 homology
classes describe planar-like holes (which in three dimensions can also be viewed as tunnels),
and dimension-2 homology classes describe enclosed volumes.
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Within the filtration, holes are born at a birth parameter b and die again with death pa-
rameter d, possibly deforming as the (energy density fluctuation) filtration is swept through,
i.e., being present in the filtration for the filtration parameter interval [b, d). The persistence
p = d − b is a measure of the dominance of a feature in the filtration. This is illustrated in
Fig. 5.3(b), where two landscapes of example functions with distinct minima are displayed.
The left function contains two distinct dips. As the sublevel set filtration is swept through,
the cubical complex is empty as long as the filtration parameter ν is less than the minimum
value of the function. As ν is increased, a dimension-0 homology class is born with birth
parameter b = ν when the minimum value of the function is reached (green plane). Further
increasing ν (blue plane), the single 2-cube turns into a set of 2-cubes, leaving this homol-
ogy class unchanged. When the value of ν reaches the pink plane, a second dimension-0
homology class is born (on the right) corresponding to the second dip in the function. The
two dimension-0 homology classes merge into one at the red plane, at which point the first
homology class dies with death parameter d = ν, and only the second one survives.

Turning to the right function in Fig. 5.3(b), a few dimension-0 homology classes are
born (green plane), merging to form a dimension-1 homology class when ν is increased to
the level of the blue plane, represented by the circular structure in the complex surrounding a
hole. Further increasing ν, the homology is unchanged at the pink plane and the dimension-
1 hole only disappears somewhere between the pink and red planes when it is fully filled by
2-cubes.

From the cubical complexes C∆T 00(t, ν), the different dimension-` homology groups
Hℓ(C∆T 00(t, ν)) can be computed. For three spatial dimensions, the homology groups are
generally nontrivial for ` = 0, 1, 2, while the dimension-3 homology group only captures
the toroidal lattice topology itself; all higher homology groups are trivial. Their dimen-
sions, called Betti numbers, specify the number of independent dimension-` holes (homol-
ogy classes):

βℓ(t, ν) := dimHℓ(C∆T 00(t, ν)). (5.7)

We focus on Betti numbers as an informative persistent homology descriptor in this work.
Persistent homology has a number of useful features. Notably, it is stable against small

perturbations of the input [83, 84] (local energy density values in this case) and well-defined
large-volume asymptotics exist for suitable persistent homology descriptors such as Betti
numbers, including notions of ergodicity [86, 198]. We compute the persistent homology
of cubical complexes with Z2 coefficients and periodic boundary conditions using the open
source TDA library GUDHI [201].

To summarise, the persistent homology of sublevel sets can be particularly sensitive
to the extended structures formed by local minima and saddle points. We utilise this to
investigate the structure ofminima in energy density fluctuations, for which nontrivial defect
dynamics is expected, based on the discussion in Sec. 5.2.2.

Blockwise averaging lattice functions

By construction, the persistent homology of cubical complexes does not contain spatial met-
ric information. However, this also means that persistent homology computed from func-
tions on the lattice does not differentiate between different length scales and therefore lat-
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Figure 5.4. Dimension-0 Betti numbers for∆T 00 sublevel sets with local energy densities
averaged over nearby blocks of every c3 = 13, 43, 83 and 163 lattice sites (from left to right).
Betti numbers have been normalised to 643 lattice size in accordance with their volume-
scaling. Betti numbers at initial time Qt = 0 are shown in grey.

tice artefacts can enter the analysis. By blockwise averaging (coarsening) the local energy
densities on the lattice over blocks of c3 points for c > 1, both these artefacts and, partly, ul-
traviolet fluctuations are removed. This can pronounce contributions related to the infrared
dynamics including topological defects, depending on the parameter c. We emphasise that
the blockwise averaging procedure does not affect the dynamical evolution, since it is only
applied a posteriori to the lattice configurations as part of the persistent homology read-out.

This is demonstrated in Fig. 5.4 for the case of N = 1 with dimension-0 Betti numbers.
The number of persistent homology classes typically decreases as we average blockwise,
since the number of lattice sites decreases accordingly. Betti numbers are expected to scale
proportionally to system volume for sufficiently large lattices [86, 198], so that we can ac-
count for this by volume-normalising to a certain number of lattice sites, here chosen to
be 643.4 Without blockwise averaging, we see that the number of connected components
specified by dimension-0 Betti numbers increases at earlier times. Averaging local energy
densities over every 43 lattice blocks, we notice a twofold peak structure emerging: con-
nected components accounting for the left peak decrease in numbers, while the right peak
grows with time. Increasing to averaging over every 83 blocks, the left peak appears more
pronounced, while the right peak decreases in height. This behaviour persists when coars-
ening by a factor of 16 in total in each direction.

Concerning the physical interpretation, we notice that the initially large occupations give
rise to dynamics towards the infrared and growing wavelengths of correspondingly domi-
nating modes as can be seen in the occupation number distributions, which are comparable
to [48] (not shown here). The height of the left peak in dimension-0 Betti numbers de-
creases over time for energy densities averaged over blocks of 43, 83 or 163 nearby lattice
sites, which implies an increase in the average distance between the related connected com-
ponents. This indicates that dimension-0 Betti numbers can probe the infrared dynamics
for blockwise averaged configurations. In particular, the coarsening dynamics of topolog-

4We later focus on blockwise averaging by a factor of 8, so the effective lattice size for the persistent
homology analysis is (512/8)3 = 643.
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Figure 5.5. (a) Dimension-0 and (b) dimension-1 Betti numbers for ∆T 00 sublevel sets
and N = 1 to N = 4 field components (from left to right), with averaging over blocks of
83 lattice sites. Betti number distributions at initial time Qt = 0 are shown in grey. For
Betti number distributions with twofold peak structures we label the peak associated with
topological defects by “topo. ”, and the peak corresponding to energy transport by “energy”.

ical defects merging is typically also accompanied by a growth of respective characteristic
length scales [67]. In the following, we show results for local energy densities blockwise
averaged over cubes of 83 neighbouring lattice points. When quantitatively discussing the
time dependence of Betti numbers below, it is investigated if the observed phenomena are
stable with respect to further blockwise averaging.

5.3.2 Topological defects in Betti numbers

As shown in Fig. 5.5(a), upon investigating the time-evolving dimension-0 Betti numbers
of local energy density fluctuations from N = 1 to N = 4 with averaging over blocks of
83 lattice sites, we observe two distinct peaks appearing for N = 1, 2, 3, while for N = 4

and higher N (not shown) there is only a single peak. Starting from the initial conditions
(displayed in grey), for all N , the single peak in dimension-0 Betti numbers first moves to
larger filtration parameters at early times, i.e., local minima shift to larger energy density
values. For times larger than Qt = 500, the peak position stays approximately constant for
N = 1, 2, 3, while the overall number of dimension-0 structures decreases with time. For
N = 1, 2, 3, the single peak splits up into two distinct peaks, the left one decreasing, the
right one increasing in height. ForN = 4, no split-up happens, and the peak first decreases,
then increases in height, and continuously shifts to larger filtration parameters.
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Since dimension-0 Betti numbers count independent connected components, a decline
in peak height implies that average length scales associated with the component configura-
tions increase, which correspond to local energy density minima in the field configurations.
Heuristically, we may thus associate the left peak and its decrease as a signature of dynamics
towards larger length scales. Notably, for N = 1, 2, 3, the connected components making
up the left peak appear for those ∆T 00-values where we have observed defects in the two-
dimensional snapshots of ∆T 00 in Fig. 5.1(b). This indicates that in terms of specific field
configurations, it is the defects which dominate the declining left peaks in Betti numbers.
Accordingly, the decrease in peak height can signal their coarsening dynamics, which we
discuss in more detail later, see Sec. 5.3.3. Vice versa, Betti numbers increasing with time
as for the right peak for N = 1, 2, 3, and for N = 4 for later times Qt ≳ 4000 implies re-
finement dynamics of the connected components, i.e., an increasing number of local minima
appears. Corresponding length scales shrink in time. The peak shifting towards ∆T 00 = 0

indicates an ongoing homogenisation process of energy densities and can be suggestive of
the transport of energy towards smaller length scales (larger momenta), which we analyse
in more detail in Sec. 5.3.4.

Likewise, the analysis of dimension-1 Betti numbers shows qualitatively similar results
for allN , but with only a single peak structure that decreases in amplitude, except forN = 2,
for which two peaks appear. This is displayed in Fig. 5.5(b). More precisely, we notice a
height decline of the peak for N = 1, 3, 4, which turns into an increase at later times. For
N = 2, the behaviour is different: the height of the initial peak only decreases, and the
single peak splits up into two peaks, where the right one forms at larger energy density
values corresponding to ∆T 00 ' 0 and increases in height with time. The dimension-2
Betti numbers agree qualitatively for all N and do not come with twofold peak structures
(not shown).

Still, a decline in dimension-1 Betti numbers indicates that length scales associated with
the configurations of holes increase in time as for the dynamics towards the infrared. In
particular, this applies to the left peak for N = 2, which constantly decreases in height
and appears at energy densities, for which we have inferred the presence of defects from
Fig. 5.1(b). Similarly to the previous discussion of dimension-0 Betti numbers, at later times,
the increase in height for most peaks in dimension-1 Betti numbers together with their shift
towards ∆T 00 = 0 can be indicative of refinement dynamics leading to a homogenisation
of local energy densities.

To summarise, we observe potentially defect-related peaks in the dimension-0 Betti
numbers shown in Fig. 5.5(a) for N = 1, 2, 3 but not for N = 4, and only for N = 2

in the dimension-1 Betti numbers displayed in Fig. 5.5(b). This is in line with the classifi-
cation of topological defects for condensates outlined in Sec. 5.2.2 and reviewed in detail in
App. C.2, provided that the left peak in dimension-0 Betti numbers is primarily due to strings
and the left peak in dimension-1 Betti numbers is mostly due to domain walls. Indeed, this
appears well-motivated from the structure of the defects along with fluctuations on top as
inferred from the local energy density snapshots displayed in Fig. 5.1. For instance, closed
strings manifest as loop-like minima in local energy densities and would thus naively appear
as distinct dimension-1 persistent homology classes in the sublevel sets for correspondingly
low filtration parameters (cf. also the discussion at the end of Sec. 5.2.2). Yet, smaller-scale
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fluctuations on top result in a landscape of local minima and maxima, which adds to this
and may interrupt the clean loop-like minima in energy densities. Accordingly, a closed
string would not appear as a distinct dimension-1 homological feature anymore, but as a
multitude of dimension-0 structures, which in addition cannot be distinguished from open
strings. Similarly, domain walls would naively show up as empty volumes in energy den-
sity sublevel sets for correspondingly small filtration parameters, which would give rise
to distinct dimension-2 persistent homology classes. The addition of smaller-scale fluctu-
ations can yield local energy density maxima, which then pierce the enclosed volumes in
the sublevel sets, yielding only scaffold-like networks which surround the empty volumes.
These do not give rise to distinct dimension-2 persistent homology classes anymore, but
to an abundance of dimension-1 features. The same reasoning applies to more exotic con-
figurations of topological defects such as strings pinned to domain walls [132], which our
persistent homology analysis cannot distinguish from the domain walls themselves.

5.3.3 Signatures of coarsening dynamics

On the time scales under consideration, the overoccupied initial conditions lead to nonther-
mal fixed point dynamics as characterised by dynamical self-similar scaling. The temporal
dependence of the distribution function is restricted to spatial rescalings by time-dependent
power lawswhile maintaining its shape in time [87]. Near a nonthermal fixed point, the Betti
number distributions of energy density sublevel sets can also reveal self-similarity [185]. In
this work, the shape of the Betti number distributions shown in Fig. 5.5 is not globally pre-
served in time, in particular for dimension 0 atN = 1, 2, 3, and dimension 1 atN = 2. Yet,
for these, the shape of the peaks at lower ∆T 00-values remains approximately constant in
time. We discuss this in detail in App. C.4 considering potential self-similar scaling.

For clarity, here we focus on the time-dependence of the corresponding dimension-0
Betti number peak values, βtopo0,max(t) = max{β0(t, ν) | ν ∈ left peak}. This counts the maxi-
mum number of connected components formed by the pixelised sublevel sets as the filtration
parameters corresponding to the peak are swept through, correlating with the number of de-
fects. If a power law in time with exponent −ϑN can be identified from βtopo0,max(t), i.e.,

βtopo0,max(t) ∼ t−ϑN , (5.8)

then in three-dimensional space, average length scales associatedwith the connected compo-
nent configurations at the respective value of ν ≡ ∆T 00 grow as a power law with exponent
ϑN/3:

LN(t) =

(
N3

s a
3
s

βtopo0,max(t)

)1/3

∼ tϑN/3. (5.9)

Such a power law growth of length scales can be indicative of the self-similar scaling of
corresponding Betti number distributions. Since for N = 1, 2, 3, the lower-∆T 00 peak
is defect-related as noted in Sec. 5.3.2, this length scale can be sensitive to the dynamics
of defects. In particular, the number of strings correlating with the number of connected
components of the ∆T 00 sublevel sets (cf. Sec 5.2.2), LN(t) can serve as a proxy for the
time-dependence of average length scales associated with string configurations.
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Figure 5.6. Temporal scaling of the left dimension-0 Betti number distribution peak values
for (a) N = 1, (b) N = 2 and (c) N = 3, with averaging over blocks of 83 lattice sites. The
bottom insets show the Betti number distributions, where the red circles indicate the peak
positions. The top insets show peak values for averaging over every 163 blocks. The power
law fits are based on the data in the red shaded Qt ranges.
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In Fig. 5.6, we display the time-dependence of βtopo0,max(t) for (a) N = 1, (b) N = 2 and
(c) N = 3. The main figures give results for averaging over every 83 blocks, while the
upper insets show results for 163 blocks. All βtopo0,max(t) decrease in time, which indicates
that average length scales associated with the connected component configurations grow, as
discussed previously (cf. Sec. 5.3.2). The decrease of βtopo0,max(t) is of a power law form for
long time ranges. Fitting a power law to these curves for the indicated times5 via standard χ2

fits yields ϑ1 = 0.69±0.02 (N = 1), ϑ2 = 0.64±0.02 (N = 2) and ϑ3 = 1.19±0.01 (N =

3) when averaging over every 83 blocks. We obtain ϑ1 = 0.67 ± 0.04, ϑ2 = 0.61 ± 0.05

and ϑ3 = 1.23± 0.03 when averaging over 163 blocks. Thus, within errors these exponents
are insensitive to blockwise averaging in the considered regime. They describe dynamics
predominantly related to string defects, which appears well-separated from the dynamics
on much smaller length scales based on the described insensitivity to blockwise averaging.
This is in contrast to the analogous analysis for the potentially defect-related peak atN = 2

in dimension-1 Betti number distributions, for which the power law scaling behaviour is
different when averaging over blocks of 83 versus 163 lattice points. For this reason, a more
detailed analysis of the defect-related peak inN = 2 dimension-1 Betti number distributions
is only described in App. C.5.

The fitted exponents ϑN correspond to the following power laws describing the time
dependence of the length scales LN(t) (for averaging over every 83 blocks):

L1(t) ∼ t0.2, L2(t) ∼ t0.2, L3(t) ∼ t0.4. (5.10)

It is instructive to compare this with the known dynamics of topological defects as cap-
tured by phase-ordering kinetics [67], which describes the growth of order through coarsen-
ing dynamics when a system is quenched across a phase transition. Notably, phase-ordering
kinetics captures the mutual annihilation of vortices and antivortices (strings) as well as the
shrinking of domain walls with time. These processes can give rise to self-similar scal-
ing which is characteristic of a nonthermal fixed point, with defect-related length scales
displaying a power law in time. For instance, numerical studies of universal dynamics in
one-dimensional Bose gases have revealed power law exponents of order 0.25 to 0.35 [127,
133, 202]. Recent experiments with ultracold atoms in a quasi-one-dimensional elongated
optical trap have pointed towards a growth of length scales related to vector solitons as a
power law in time with exponent 0.28 ± 0.05 [25]. In two spatial dimensions, it is known
that inter-vortex distances can grow proportional to t0.2 for nonrelativistic systems [79, 183,
184, 203], and similarly for a nonrelativistic projection of relativistic scalar theory [125].
For three spatial dimensions, signatures of defects in scalar field theories have been detected
previously, albeit without analysing their self-similar scaling dynamics [77, 116, 119, 124].
Yet, even in this case, phase-ordering kinetics predicts scaling exponents for defect-related
length scales in the range of 0.2 to 0.3, if conserved order parameters are considered [67].
Our results for L1(t) and L2(t) as deduced with persistent homology are well within this
range. The scaling exponent of L3(t) is closer to 0.5, which is considered to be the relevant

5Note the different time intervals for 83 versus 163 blocks. This is due to initially slower dynamics in Betti
number distributions for averaging over 163 blocks compared to 83 blocks, since part of the faster ultraviolet
modes do not contribute to the former (cf. Fig. 5.4).
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Figure 5.7. Temporal scaling of the right dimension-1 Betti number distribution peak values
forN = 2. Averaging over blocks of 83 lattice sites has been employed. The top inset shows
the actual Betti number distributions, where the red circles indicate the peak values. The
bottom inset shows peak values for averaging over every 163 blocks. The power law fit is
based on the data in the Qt range for which it is displayed. Note the smaller time interval
shown here in comparison to Fig. 5.6.

exponent for length scale dynamics associated with the particle cascade in large-N expan-
sions (up to anomalous dimensions) [48, 81, 82], where topological defects are absent. Still,
topological defects can also give rise to such dynamics [67, 105].

Note that the association of persistent homology classes with defects is not a one-to-one
correspondence, and not all persistent homology classes need to behave uniformly according
to (5.10). Therefore, for our method we expect systematic errors on the deduced scaling
dynamics of topological defects, which we do not consider here and are to be discussed in
a future work.

5.3.4 Signatures of energy transport

In addition to the coarsening dynamics, there is an ongoing homogenisation process of lo-
cal energy densities. This is apparent from the peaks with increasing amplitudes close to
∆T 00 = 0 in the Betti number distributions, which shifts towards the mean local energy den-
sity. Again, we study their maxima, in this case for dimension-1 Betti number distributions,
denoted by βenergy1,max (t) = max{β1(t, ν) | ν ∈ right peak}.

In Fig. 5.7, we show βenergy1,max (t) forN = 2when averaging over every 83 blocks (main fig-
ure) and 163 blocks (bottom inset). Comparable outcomes can be obtained for other dimen-
sions andN . We find that the number of features as counted by βenergy1,max (t) in Fig. 5.7 grows in
time, such that corresponding dimension-1 holes (tunnels) steadily decrease in size. Though
slightly bent, the data can be approximately described by a power law, βenergy1,max (t) ∼ t−ϑenergy .
Standard χ2 fits yield ϑenergy = −0.54 ± 0.02 for averaging over every 83 blocks and
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ϑenergy = −0.53 ± 0.03 for 163 blocks, such that ϑenergy appears stable for this regime of
blockwise averaging.

As before, we can estimate the time dependence of average length scales associated with
the dimension-1 holes from the time dependence of βenergy1,max (t):

Lenergy(t) =

(
N3

s a
3
s

βenergy1,max (t)

)1/3

∼ tϑenergy/3, (5.11)

which leads to Lenergy(t) ∼ t−0.18 for averaging over every 83 blocks. It is well known that
turbulent energy transport towards the ultraviolet is accompanied by self-similar scaling
behaviour characteristic of a nonthermal fixed point, for which related length scales dynam-
ically shrink as ∼ t−1/7 [30, 31]. The power law behaviour Lenergy(t) is close to this, which
suggests that the corresponding structures in Betti number distributions are due to excita-
tions in local energy densities transported towards smaller length scales. Deviations can be
caused by the blockwise averaging procedure and the tentative interpretation of features in
the Betti number distributions with different physical phenomena, which are in general not
perfectly separated. Moreover, while the maxima of the Betti number distributions can pro-
vide estimates for the overall number of structures associated with the corresponding peaks,
this number partly remains ambiguous in light of non-uniform persistences of features in
the filtration.

5.4 Conclusions
In this work, we have investigated the real-time dynamics of relativistic O(N) scalar fields in
overoccupied scenarios. We have applied TDA to lattice configurations, which can provide
complementary information to the traditionally investigated distribution functions computed
from equal-time two-point correlations. More specifically, we have considered Betti num-
bers computed for sublevel sets of local energy density fluctuations. These have revealed
clear signals of dynamically generated topological defects. The identification of defects
in the Betti numbers is based on the comparison with defect structures visible in local en-
ergy density landscapes. Crucially, theN -dependent topological features visible in the Betti
numbers have been consistent with the classification of defects for condensates in relativistic
O(N) scalar fields [80].

The number of connected components associated with the topological defects has de-
creased in time as a power law, which is indicative of self-similar scaling dynamics. This
behaviour corresponds to power law growth of length scales associated with their dilution,
with scaling exponents ∼ 0.2 for N = 1 and N = 2, and ∼ 0.4 for N = 3. While the
values for N = 1, 2 agree well with the findings for topological dynamics in a variety of
simulations, the value for N = 3 is closer to the scaling behaviour of the model at large N .
Yet, topological dynamics can also lead to the latter scaling dynamics [67, 105]. A thorough
quantitative analysis of the relation to phase-ordering kinetics and a more careful study of
possible dynamical contributions to the structures associated with defects in Betti numbers
is beyond the scope of this paper.

In addition, we have observed signatures of energy transport and the related universal
scaling behaviour in the Betti numbers. While for overoccupied scenarios the distribution
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function reveals a dual cascade with particle and energy transport, the Betti numbers com-
puted for local energy density fluctuations may therefore be able to distinguish topological
dynamics from energy transport.

Our work hints at the importance of topologically sensitive observables in order to un-
cover defect dynamics in universal regimes far from equilibrium. In particular for three-
dimensional systems, defect-driven temporal scaling dynamics can be hard to access with
distribution functions and appears to be suppressed in overoccupied scenarios. Based on
the present work, TDA-based observables are particularly promising to investigate along
with distribution functions, since they can be sensitive to extended field configurations of
arbitrary size.

This method is applicable without major modifications to the analysis of ultracold atom
experiments. Local atom densities can play a similar role to the local energy densities con-
sidered in this work, with topological configurations also showing up as distinct minima.
These features can be detected using standard absorption imaging techniques. In this spirit,
a recent work has exploited TDA to detect dark solitons in condensate density images [204].
It is particularly beneficial that this method does not rely on more sophisticated experi-
mental techniques such as response measurements to probe correlation functions at unequal
times [81, 82, 136, 153, 205, 206].

Our work reinforces the potential of TDA to provide relevant information on the dy-
namics of strongly correlated many-body systems. The choice of cubical complexes has
especially been advantageous to reveal the presence of nonlocal structures. TDA can fa-
cilitate the systematic study of the role of topological defects for nonequilibrium quantum
many-body dynamics, with diverse regimes of applicability ranging from cold atoms to the
collisions of heavy nuclei.



Chapter 6

Nonthermal scaling phenomena with the
two-particle irreducible effective action

This chapter is based on “Nonthermal scaling phenomena with the two-particle irreducible
effective action” by V. Noel, A. N. Mikheev, C. Huang, and J. Berges (in preparation).

Systems far from equilibrium can exhibit self-similar scaling behaviour in time and space
near nonthermal fixed points. One of the primary approaches to studying this scaling is to
derive evolution equations for correlation functions within a given model and analyse their
scaling properties. However, this analytical approach is based on scaling analyses, where
the resulting scaling exponents are either integers or simple rational fractions, under the as-
sumption that the anomalous dimension η is zero. Without this assumption, the approach
does not predict a specific value for η, which, if nonzero, is expected to be small, as nu-
merical results remain close to the analytically obtained ones. This raises the question of
whether such scaling analyses capture all possible nonthermal scaling solutions.

Nonthermal fixed points have also been investigated through numerical simulations,
specifically using real-time classical statistical simulations and the Two-Particle Irreducible
(2PI) formalism. In these approaches, usually, a highly overoccupied initial condition is
prepared, after which the system dynamically evolves towards a nonthermal fixed point.
This method relies on the system approaching an attractor solution far from equilibrium,
where self-similar scaling behaviour emerges during its evolution. While this provides valu-
able insights into nonequilibrium dynamics, existing methods have limitations in accurately
extracting scaling properties because scaling exponents can be influenced by the specific
simulation code used, exhibit slight sensitivity to initial conditions, and are subject to errors
arising from self-similar fitting procedures. It is also restricted to the case when the attrac-
tor solution is approached during the time evolution. Therefore, new methods are needed to
describe scaling behaviour, not only to potentially improve the precision of scaling expo-
nent extraction but also to extend the study of nonthermal scaling beyond attractor solutions
typically associated with nonthermal fixed points.

In this chapter, we investigate scaling phenomena in strongly correlated systems, begin-
ning with the well-establishedWilson–Fisher fixed point in equilibrium, followed by an ex-
ploration of nonthermal scaling behaviour in nonequilibrium dynamics. We discuss how the

89
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large-N expansion within the 2PI formalism provides a robust, nonperturbative framework
for studying both cases. This chapter begins with an introduction in Sec. 6.1, highlighting
the motivations behind the 2PI effective action approach. The framework for extracting
scaling solutions is benchmarked for the thermal critical behaviour in Sec. 6.2, after which
it is applied to nonthermal scaling phenomena in Sec. 6.3. By solving the self-consistent 2PI
equation, a nonthermal scaling solution is extracted through the explicit computation of the
self-energy integrals. Finally, a conclusion is presented in Sec. 6.4 with a possible outlook
on future directions.

6.1 Introduction

Far-from-equilibrium systems can exhibit scaling behaviour and large fluctuations near non-
thermal fixed points, similar to the features observed at second-order phase transitions in
thermal equilibrium. In (near-)equilibrium systems, Wilson–Fisher fixed points have pro-
vided an important paradigm for continuous phase transitions, with a notable example being
the three-dimensional O(N)-symmetric scalar field theory. The systems of interest can be
vastly different in terms of energy scales; for instance, the O(4) model is expected to de-
scribe the high-temperatureQCDphase transition for the case of twomassless quark flavours
[207], and the O(2) model characterises the relevant universality class for Bose-Einstein
condensates [208], capturing the behaviour in certain ultracold quantum gases. Beyond
these examples, for ferromagnetic phase transitions, the Ising model, characterised by O(1)
symmetry, the XY model with O(2) symmetry, and the Heisenberg model with O(3) sym-
metry are of importance [209]. Additionally, the N → 0 limit is relevant for describing the
critical swelling of long polymer chains near the collapse transition [210], where the system
undergoes a transition between a swollen and collapsed state, further illustrating the wide
applicability of these universality classes.

In this context, the 2PI approach offers a powerful framework for understanding both
equilibrium and nonequilibrium dynamics when applied to scaling phenomena. When com-
bined with a large-N expansion in terms of the number of field components, this method
offers a nonperturbative approach that does not rely on a small coupling parameter, enabling
a controlled and systematic study of critical phenomena in both equilibrium and nonequi-
librium settings. The 2PI 1/N expansion has been successfully applied before [211] to
compute the universal properties directly at the critical temperature of a second-order phase
transition in three dimensional O(N)-symmetric scalar fields. Specifically, it has recovered
the N -dependent anomalous dimension η(N), with values comparable to those obtained
fromMonte Carlo simulations and renormalisation group approaches. Beyond equilibrium,
evolving the 2PI equations of motion has also enabled the study of nonthermal scaling phe-
nomena by computing correlation functions and analysing their self-similar evolution in
time. However, this has so far always relied on approaching an attractor solution, limiting
the scope of scaling analysis. Therefore, a key challenge remains in characterising scaling
behaviour out of equilibrium.

In the following, we present a numerical procedure to extract the scaling properties for
relativistic scalar fields in a strongly correlated, nonthermal scaling regime. To validate
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G
=

G0
+ Σ

Σ = +

= + + . . .

Figure 6.1. Diagrammatic representation of the self-consistent 2PI equation for the full
propagator G at NLO order in a 1/N expansion. The top diagrams describe Eq. (6.3),
expressing the resummed propagator G in terms of the classical one G0 and the self-energy
Σ. The middle diagrams show the self-energy expressed in terms of the LO contribution
(tadpole) and the NLO contribution (blue chain sum) in the large-N expansion, while the
chain sum is expressed at the bottom in terms of G.

our approach, we first benchmark it against existing analytical results from the 2PI large-
N expansion for the Wilson–Fisher fixed point in three dimensions. We then extend the
method to formulate the corresponding problem on the Keldysh contour for nonequilibrium
dynamics.

6.2 Equilibrium criticality
We first consider a Euclidean field theory for a real, N -component scalar field ϕa with
classical action

S[ϕ] =

∫
ddx

(
1

2
∂µϕa(x)∂µϕa(x) +

m2

2
ϕa(x)ϕa(x) +

λ

4!N
(ϕa(x)ϕa(x))

2

)
, (6.1)

where a = 1, . . . , N , and summation over repeated indices is implied. We will focus on
the case of d = 3, where O(N) models are known to undergo a second-order phase transi-
tion at a critical mass m2 = m2

C(N, λ) for all N . Our analysis is conducted at this critical
mass, where the correlation length diverges, rendering standard perturbative approaches in-
valid. As discussed in Chapter 2, the 2PI effective action provides a powerful framework
for analysing this system, which is especially effective when combined with a large-N ex-
pansion [9, 212, 213]. Instead of relying on a small coupling parameter λ, the large-N
expansion treats the number of field components N as the expansion parameter. A key
advantage of this is that at next-to-leading order (NLO), it enables the resummation of an
infinite number of diagrams to all orders in perturbation theory, as discussed in Sec. 2.3.3.
This resummation significantly improves the accuracy of theoretical predictions in strongly
correlated systems.

At the critical point, the universal behaviour of the system is characterised by the anoma-
lous dimension η, which governs the power-law scaling of the propagator. In the limit
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p2/Λ2 → 0+, the propagator takes the form:

G(p) =
1

p2

(
p2

Λ2

)η/2

, (6.2)

where Λ is an ultraviolet cutoff. In the following expressions, we ignore Λ as it does not
affect the universal scaling properties, which we have numerically verified. As introduced
in Sec. 2.3.3, for the resummed propagator

G−1(p) = p2 +m2 + Σ(p), (6.3)

the expression for the 2PI large-N self-energy at NLO is given by

Σ(p) = λ
N + 2

6N

∫
q
G(q)− λ

3N

∫
q
G(p− q)I(q), (6.4)

with the chain sum

I(q) = 1−
(
1 +

λ

6

∫
r
G(q− r)G(r)

)−1

. (6.5)

This describes a closed set of self-consistent equations, which is shown in diagrammatic
form in Fig. 6.1. At the critical point, G−1(p = 0) = 0, therefore by taking the difference
G−1(p) − G−1(p = 0), the local (divergent) part of the self-energy is subtracted, and with
the evaluation of the chain sum, the fixed point equation becomes

G−1(p) = p2 +
λ

3N

∫
q
[G(p− q)−G(q)]

[
1 +

λ

6

∫
r
G(q− r)G(r)

]−1

. (6.6)

At the critical point, the convolution integral over r becomes� 1, such that λ drops out of
the equation in (6.6), which demonstrates the underlying universal behaviour, giving

G−1(p) = p2 +
2

N

∫
q
[G(p− q)−G(q)]

[∫
r
G(q− r)G(r)

]−1

. (6.7)

The convolution
∫
rG(q− r)G(r) may be solved using Feynman parametrisation to yield∫

r
G(q− r)G(r) =

1

8π3/2

Γ
(
1
2
− η
) (

Γ
(
1+η
2

))2(
Γ
(
1− η

2

))2
Γ(1 + η)

(
q2
)η−1/2

, (6.8)

which provides an immense analytic simplification. Subsequently, the entire self-energy
expression can be further simplified analytically in a p → 0 expansion [211] with the help
of hypergeometric functions into a series

Σ(p) = β(η)p2−η + α(η)p2 + . . . , (6.9)

which then reduces the self-consistent equation (6.3) into simple power laws only. Thus, we
have

p2−η = p2 + β(η)p2−η + α(η)p2 + . . . , (6.10)

where the prefactors β(η) and α(η) have been computed as

β(η) =
4η(1− 2η) cos(ηπ)

(3− η)(2− η) sin2(ηπ/2)
1

N
, (6.11)
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and

α(η) = −(1− η)(2− η)

6π2ηA(η)

1

N
. (6.12)

Since the (critical) p → 0 behaviour is dominated by the p2−η term, one can simply compare
coefficients on the left- and right-hand side of (6.10) to obtain the condition

β(η)
!
= 1. (6.13)

Previously, this approach was used to compute an analytic solution for η(N) [211]. How-
ever, beyond computing a value for η, it offers additional insights by identifying scaling
behaviour. By assuming a simple scaling ansatz for the propagator (6.2), this method en-
ables the extraction of scaling properties of the self-energy and therefore the identification
of scaling solutions. This could prove invaluable for nonthermal scaling phenomena, since
the equation that follows from (6.13) goes beyond the results of simple scaling analyses,
and is a genuine self-consistent equation for the scaling solution(s).

Concerning analytic solutions in the p → 0 limit for the self-energies on the Keldysh
contour, things are much more challenging, and it is simpler to take a fully numeric route.
To this end, first we will use the exact analytic expression from (6.11) to benchmark a fully
numerical approach to extract the scaling behaviour of the self-energy (6.4). Subsequently,
this numeric approach will be used to extract scaling solutions from the nonequilibrium
self-energies.

6.2.1 Numerical approach

The numerical approach to extract scaling solutions relies on first defining a discrete η grid

η ∈ {ηmin, ..., ηmax} (6.14)

with uniform spacing δη. This gives a set of distinct inputs for the propagator (6.2) that
all have a slightly different scaling behaviour due to the different anomalous dimension
assumed. Crucially, we perform our integrations with these propagators, where the η value
is a variable input. Afterwards, we then compute the value of β(η) by fitting a p2−η power
law to our numerical results obtained by computing the self-energy (6.4). In this case, β(η) is
merely an η-dependent prefactor to the self-energy, as seen in (6.9). However, this prefactor
can also be essentially equated with the number of field components N as seen in (6.13),
thereby givingN(η). This can be inverted to obtain η(N), which is a valid approach as long
as it is a well-defined function and has an inverse.

Instead of directly solving (6.6) numerically, we first deal with the “inner” loop integral
(6.8), where the momentum runs over the r variable. This convolution integral is solved
numerically on some q grid for each η. The integrals are all evaluated in spherical polar
coordinates, where the angular integrals are also suitably taken care of. For propagators
involving the difference of vector quantities, we use

G(q− r) =
(
(q− r)2

)η/2−1 ≡
(
q2 + r2 − 2|q||r|cos(θ)

)η/2−1
. (6.15)
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Figure 6.2. The self-energy shows a power law behaviour p2−η, with the precise scaling
depending on the specific value of η used in the propagator (6.2) as an input.

Upon numerical integration, it can be observed that the power law behaviour of the convo-
lution is ∫

k
G(q− r)G(r) = C(η)(q2)η−1/2, (6.16)

which matches the analytic results obtained from Feynman parametrisation for such a loop
integral. The C(η) is an η dependent prefactor and is precisely equal to (6.8), however, now
we only have the numerical prefactor which we obtain by fitting the η-dependent power law
(q2)η−1/2 on the data obtained from numerical integration over a q grid. This power law fit
with the correct prefactor can be used as an input function into the self-energy integral. This
reduces the original equation from (6.6) to

G−1(p) = p2 +
2

N

∫
q
[G(p− q)−G(q)]

[
C(η)(q2)η−1/2

]−1
. (6.17)

While in an ideal case the self-energy integral should be solved numerically “at once”, taking
this intermediate step is an immense simplification numerically, and we have checked that
this does not compromise the results, as long as the performed fit to the convolution integral
is very accurate. Subsequently, the self-energy integral over the q variable is evaluated on
a grid at discrete p values, which we show for several η values in Fig. 6.2.

This highlights the essence of our approach to extract scaling: for a series of input prop-
agators with different η, we have shown that the self-energy follows a power law, which we
can fit as a p2−η. In this fit, we minimise a loss function that compares the predicted and
observed (numerically computed) data. The loss function is defined as

Loss(a, b, η, data) =

√√√√∑i

(
yi−predicted(pi)
predicted(pi)

)2
n− nvars

, (6.18)

where
predicted(pi) = ap2i + bp2−η

i , (6.19)
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Figure 6.3. The value of η(N) extracted from a fully numeric solution of the self-consistent
equation (6.3). Our numeric approach recovers the analytic results very accurately.

n is the number of data points, and nvars is the number of fit parameters. The global minimum
of the loss function is found using simulated annealing, which provides the error on our fit.
Since in this case we can simply equate the extracted prefactor β(η) for each η with the
value of N , we show η(N) in Fig. 6.3. The analytic result from (6.11) and more accurate
numerical results fromMonte Carlo simulations [214] are also included for added clarity. As
we can see, our fully numeric solution accurately recovers the analytic solution from [211].
We also note that in the limit of large-N , these results agree with Monte Carlo simulations.
The errors to the fits are minimal and are below 0.1% of the values obtained.

In the next section, we will take a similar approach to the one presented above to extract
nonthermal scaling solutions.

6.3 Nonthermal scaling
As detailed in Chapter 2, the Keldysh formalism provides a comprehensive method for de-
scribing real-time nonequilibrium phenomena. This approach effectively doubles the de-
grees of freedom, thereby doubling the number of propagators and self-energies, leading to
a set of coupled equations. As discussed in Sec. 2.3.2, the equations corresponding to (6.3)
within this framework are given by (2.68), more specifically for the two-point vertices as

ΓR
ab(p) = ΓR

ab,0(p) + ΣR
ab(p), (6.20)

for the retarded self-energy with the bare vertex ΓR
ab,0(p) = p2 +m2, where p ≡ (ω, p) and

ΓF
ab(p) = ΣF

ab(p) (6.21)

for the statistical components. The retarded and advanced self-energies are directly related
to the spectral one via

Σρ
ab(x, y) = ΣR

ab(x, y)− ΣA
ab(x, y). (6.22)
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In the following, we will mostly consider ΣR
ab for practical calculations out of convenience

instead of Σρ
ab directly.

For the self-energies, we use the 2PI large-N expressions to NLO [87], which in Wigner
space in a classical-statistical approximation (c.f. Sec. 2.3.4) are given by

ΣF
ab(p) = − λ

3N

[
Fab ∗

(
ΠF · veff

)]
(p), (6.23)

ΣR
ab(p) = Σloc

ab −
λ

3N

[
Fab ∗

(
ΠR · veff

)
+GR

ab ∗
(
ΠF · veff

)]
(p), (6.24)

where the symbol ∗ refers to a convolution product, and the local part of the self-energy is
given by

Σloc
ab = λ

N + 2

6N

∫
ν,q
Fab(ν, q). (6.25)

Similarly to the thermal case above, eventually we consider ΣR
ab(p)−ΣR

ab(0), such that this
local part gets subtracted. The different Π quantities are

ΠF (p) =
λ

6N
[(Fab ∗ Fba)(p)−

1

4
(ρab ∗ ρba)(p)], (6.26)

ΠR(p) =
λ

3N
[(Fab ∗GR

ba)(p)], (6.27)

and the effective coupling is
veff(p) =

1

|1 + ΠR(p)|2
. (6.28)

In deriving this effective coupling, a leading-order gradient expansion in time is assumed,
as explained in Sec. 2.3.4. At this order, the spectral function remains time-independent,
and therefore so does the retarded propagator. Assuming that a two-point function is the
inverse of the propagator, we have GR(ω, p) = i

[
ΓR(ω, p)

]−1.
At the critical point, the retarded propagator is expected to have the power law behaviour

GR(ω, p) ∼

{
GR(ω → 0, p) ∼ pη−2 + . . .

GR(ω, p → 0) ∼ ω
η−2
z + . . .

, (6.29)

where we have introduced the dynamical critical exponent z. Therefore, the equation for
ΓR
ab(p) is anticipated to become rather similar to the equilibrium case in the limit of ω =

0, p → 0, assuming that the retarded self-energy scales as

lim
p→0

ΣR(ω = 0, p) = β(η)p2−η + α(η)p2 + . . . (6.30)

which we expect by self-consistency. Hence, equation (6.20) is expected to reduce to

p2−η = p2 + β(η)p2−η + α(η)p2 + . . . (6.31)

in such a limit. This equation serves as a starting point for extracting the scaling behaviour
of the retarded self-energy in nonthermal scaling phenomena. In the following, we focus
on computing the nonthermal scaling behaviour from (6.31) by performing the first explicit
semi-analytic computation of the self-energies on the Keldysh contour in this context. The
equation for ΓF

ab(p) will be addressed separately in a future work.
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6.3.1 Quasiparticle approximation

Unlike in the equilibrium case where integrals were only momentum-dependent, the inte-
grals in the nonequilibrium case involve both frequency and momentum dependence. We
simplify the computations of the frequency integrals by assuming a quasiparticle picture, as
detailed in this section.

The self-energies to be computed are given in terms of F andGR, where the latter is re-
lated to the spectral function ρ. In the following, by virtue of O(N) rotations, the quantities
ρab(x, y) = ρ(x, y)δab, and similarly for Fab(x, y) = F (x, y)δab are taken to be diagonal. In
equilibrium, these two functions are connected via the fluctuation-dissipation theorem

F (eq)(ω, p) = −i
(
f(ω) +

1

2

)
ρ(eq)(ω, p), (6.32)

where f(ω) is the Bose-Einstein distribution function. Out of equilibrium, such a relation
does not hold in general; nevertheless, one is free to use the parametrisation

F (t, ω, p) = −i
(
f(t, ω, p) +

1

2

)
ρ(t, ω, p), (6.33)

where t refers to the centre-coordinate (t1 + t2)/2, also used in the gradient expansion. To
further exploit the usefulness of such a parametrisation, it is instructive to first consider a
free theory. In this case, the equation that governs the evolution of the spectral function is
given by (

∂2 +m2
)
ρ0(x, y) = 0. (6.34)

The solution to this is

ρ0 (x0, y0, p) =
1

ωp,0
sin [ωp,0 (x0 − y0)] , (6.35)

where ωp,0 =
√
p2 +m2 is the free particle dispersion relation. The Wigner transform of

(6.35) is given by

−iρ0(t, ω, p) =
sin [(ω − ωp,0) 2t]

ωp,0 (ω − ωp,0)
− sin [(ω + ωp) 2t]

ωp,0 (ω + ωp,0)
, (6.36)

which, at finite central time t has a rapidly oscillating behaviour, while at late times t→ ∞
approaches a δ peak in the form of

ρ0(t, ω, p) = 2πiδ
(
ω2 − (ωp,0)

2) . (6.37)

Therefore, using this for the spectral function, the parametrisation (6.33) puts the distribu-
tion function f(t, ω, p) on the mass-shell. While the spectral function in general has a more
involved form in an interacting theory, it often retains a peaked structure with a modified dis-
persion relation ωp. Specifically for the systems and dynamics considered here, it has been
found to have a peaked structure with a finite decay width γ(p) that approaches a δ-function
in time [82, 136]. This reflects the presence of well-defined quasiparticles, and therefore
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we assume the dynamics is dominated by quasiparticle excitations. Accordingly, we modify
the dispersion relation to include a possible nonequilibrium anomalous dimension η as well,

ωp =
√
p2−η +m2. (6.38)

For the spectral function, we keep the δ-like structure and use

ρ(ω, p) = 2πiδ
(
ω2 − ω2

p
)

(6.39)

as an ansatz, with the dispersion (6.38).
The retarded and advanced propagators are also directly related to the spectral function

by

GR(x, y) = Θ
(
x0 − y0

)
ρ(x, y), GA(x, y) = −Θ

(
y0 − x0

)
ρ(x, y), (6.40)

where Θ is the Heaviside step function. Moving to Wigner space, the retarded propagator
can be computed as

GR(ω, p) = lim
ϵ→0

∫
dω′

2πi
ρ (ω′, p)

ω − ω′ + iε
, (6.41)

where the integral representation of the Heaviside function was used, given by

Θ(x) = lim
ϵ→0

∫
dω′

2πi
e−iω′x

ω′ + iε
. (6.42)

With the spectral function (6.39), this recovers the retarded propagator

GR (ω, p) =
1

2ωp

(
1

ω − ωp + iε
− 1

ω + ωp + iε

)
. (6.43)

In order to compute the retarded self-energy (6.24), first the ΠR and ΠF quantities need
to be obtained. In the on-shell approximation, using (6.39) and (6.43), the ΠR loop is

ΠR(ν, q) = lim
ϵ→0

λ

12

∫
r

f(t, q− r)
ωrωq−r

×
[

1

ωr + ωq−r − ν − iε
+

1

ωr − ωq−r − ν − iε

+
1

ωr − ωq−r + ν + iε
+

1

ωr + ωq−r + ν + iε

]
,

(6.44)

where we have excluded the time-dependence t in ΠR(ν, q), even though it appears in the
distribution function f(t, p). As we will see in the next section, t can be scaled out of the
expressions considered here.

While the ΠF loop does not inherently have a causal structure in terms of retarded or
advanced quantities and so does not include iε terms, as detailed in App. D.1, within the
quasiparticle approximation, we can interpret this object as

ΠF (ν, q) = lim
ϵ→0

λ

24

∫
r

f(t, q− r)f(t, r)
ωrωq−r

×
[

1

ωr + ωq−r − ν − iε
+

1

ωr − ωq−r − ν − iε

+
1

ωr − ωq−r + ν + iε
+

1

ωr + ωq−r + ν + iε

]
,

(6.45)

which is what will be used later in the self-energy computations.
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6.3.2 Nonequilibrium computations

The above description shares a number of similarities with the standard kinetic theory ap-
proach to nonthermal fixed points, which is based on obtaining an evolution equation for
the occupation number f(t, p) due to the elastic scatterings of quasiparticles with free dis-
persion. However, rather than directly solving for the full evolution, kinetic theory typically
seeks self-similar solutions, which describe the universal late-time behaviour of the system.
More specifically, the occupation number f(t, p) exhibits self-similar evolution, where its
functional form obeys

f(t, p) = sα/βf
(
s−1/βt, sp

)
, (6.46)

in terms of the universal scaling exponents α and β. Similar scaling relations hold for the
statistical function,

F (t, ω, p) = sα/β+2zF
(
s−1/βt, szω, sp

)
, (6.47)

as well as the spectral function

ρ (ω, p) = s2−ηρ (szω, sp) , (6.48)

and the dispersion relation
ω(p) = s−zω(sp). (6.49)

If the total particle number is conserved, which is the case for the infrared transport process
near nonthermal fixed points, this imposes an additional constraint on the scaling exponents.
Specifically, the particle number

n =

∫
ddp

(2π)d
f(t, p) = tα−βd

∫
ddq

(2π)d
fS(q), (6.50)

must remain constant, which leads to the relation α = dβ. The full scaling analysis reveals
[48] that

β =
1

2− η
, α = dβ. (6.51)

The exponents β ≈ 0.5 and α ≈ dβ have been corroborated by numerical simulations as
well [48, 136]. While the self-similar scaling ansätze above provide a robust framework for
identifying universal properties, they rely on extracting exponents based on known scaling
hypotheses rather than directly solving for scaling solutions. In this work, we take a different
approach by directly computing the scaling solutions for the self-energies within the 2PI
large-N formalism.1 This allows us to identify scaling behaviour in a fully controlled, self-
consistent manner and by an explicit calculation.

As seen in Eqs. (6.44) and (6.45), the ΠR and ΠF functions only depend on the occupa-
tion number f(t, p) and the dispersion relation ωp. For the latter, we use (6.38). As for the
distribution function, without loss of generality, we can choose s−1/βt = 1 for the scaling
parameter s in (6.46) to obtain

f(t, p) = tαfS
(
tβ|p|

)
, (6.52)

1Note also that substituting the above scaling forms into (6.20) with s−1/βt = 1 yields the same exponents
on the left and right-hand sides of the equation. Therefore, a simple scaling analysis in this case only provides
a self-consistency check, and no constraints on the value of the exponents.
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in terms of the universal scaling function fS . Phenomenologically, this has been accurately
fitted [48, 74] by the form

fS(t
β|p|) ' A (κ> − κ<)

(κ> − 2) (tβ|p|/B)κ< + (2− κ<) (tβ|p|/B)κ>
. (6.53)

System-dependent aspects are contained in the nonuniversal amplitudes, A and B. Numer-
ically, κ< ≈ 0.0− 0.5 and κ> ≈ 4.0− 4.5 have been observed in different simulations [48,
74, 80]. Here, we simply use κ< = 0, in which case, for all practical computations, we may
use the distribution function

f(p) =
p
κ−α/β
Λ

pκΛ + pκ
, (6.54)

which satisfies (6.46), with κ> ≡ κ from above and where the momentum has been rescaled
according to tβ|p| → p. The term pΛ signifies the plateau which scales as pΛ(t) ∼ t−β and
also acts as an infrared cutoff.

The dispersion relation depends on the exponent η, and since α/β = d for conserved
particle number, the distribution function is characterised by the exponent κ and we use
d = 3. Therefore, our computations are governed by the exponents η and κ rather than
by α and β. In this sense, the calculation presented below resembles stationary transport.
This setup is time-translation invariant and can be realised in the presence of appropriate
sources and sinks. In contrast, the isolated nonequilibrium systems we consider exhibit
self-similar evolution and thus lack time-translation invariance. Stationary transport in the
nonperturbative regime has been previously studied in the context of strong-wave turbulence
[19, 20, 115], where scaling solutions to kinetic equations were analysed. In this work, we
go beyond those studies by explicitly computing the self-energy expression for the first time.

Most of the results shown in the following have used the valuem = 0.6 for the mass in
(6.38), which is in line with the effective mass extracted for a relativistic scalar field theory
in Ref. [48] from numerical simulations, relative to a plateau at pΛ ≈ 1.0 in the distribution
function. However, we have explicitly verified that setting m = 0 does not qualitatively
alter the scaling laws we obtained. Nevertheless, using a finite mass was numerically more
convenient for our computations. Additionally, we confirmed that within the range 0.0 ≤
m ≤ 2.0, and for varying the plateau between 0.001 ≤ pΛ ≤ 1.0, the scaling laws remain
qualitatively unchanged.

Lastly, we emphasise that while we adopt this specific functional form for the distri-
bution function in our computation, our approach is not limited to this choice, and scaling
solutions can be explored using any suitable function. This makes our method more broadly
applicable, and opens pathways beyond the standard form (6.53) found in the vicinity of
nonthermal fixed points.

Effective vertex

In the strongly correlated infrared regime, a time- and momentum-dependent effective cou-
pling appears,

λ2 → λ2eff [f ](t, p), (6.55)
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Figure 6.4. The effective vertex, shown for different values of η andκ = 4.0. The power law
behaviour is ∼ q2−η, such that the power law is η-dependent, while the prefactor depends
on both η and κ.

reflecting the influence of nonperturbative effects. Its definition is given by

λeff =
λ

|1 + ΠR(p)|2
, (6.56)

such that the effective vertex in Eq. (6.28) takes the form λeff = λveff. This effective in-
teraction coupling is particularly relevant in far-from-equilibrium systems with large occu-
pation numbers, where strong correlations and nonperturbative effects modify the scaling
behaviour. While at high momenta ΠR is small and λeff remains close to the bare cou-
pling λ, in the infrared regime, strong correlations lead to significant modifications where
ΠR grows nonperturbatively large. In such cases, the effective interaction strength is de-
termined self-consistently through a resummation of scattering processes, as illustrated in
Fig. 6.1. This leads to a modified scaling behaviour that differs from naive perturbative
expectations, which has been extensively studied before [48, 72–74]. In the following, we
outline the computation of the effective vertex veff within our framework and will not inves-
tigate any λ-dependence, as we are only interested in how veff influences the emergence of
scaling solutions. In the limit ΠR � 1, the coupling λ drops out of the expression for the
retarded self-energy (6.24) in any case. Since this self-energy is the quantity we ultimately
aim to compute, λ is irrelevant for our analysis.

The effective coupling has been found to obey a universal scaling form before [73, 74].
Motivated by this, we similarly assume that the ΠR loop is given by a power law, such
that a scaling exponent and a prefactor to this can be extracted, which we compute on-shell
ΠR(ν = ωq, q). This gives us an expression for the effective vertex, which simplifies to
veff(ωq, q) ≈

[
|ΠR(ωq, q)|

]−1 in the infrared limit where ΠR � 1. The previous studies in
Refs. [73, 74] have computed the effective coupling under the assumption of a zero anoma-
lous dimension, which significantly simplified the computation. In contrast, we allow for a
nonzero η by using the modified dispersion relation (6.38), at the cost of dealing with more
involved integrals.
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Figure 6.5. The effective vertex, shown for η = 0.5 and different κ exponents, verifying
that its scaling behaviour is independent of κ. We have similarly checked for different values
of η, and found no evidence for a κ dependence in the form of the power law.
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Figure 6.6. The effective vertex at different values of ε, showing that decreasing the ε term
does not influence the numerical value of veff(q). In this case, we specifically show results
for η = 0.4 and κ = 4.0.

Explicitly evaluating (6.44) with ν = ωq for a range of η appearing in the dispersion,
we find an η-dependent effective vertex, which scales like

veff(q) = C(η, κ)q2−η, (6.57)

as shown in Fig. 6.4. The prefactor to this power law depends on both η and κ. However,
as we have also found, the scaling form of the effective vertex remains independent of the κ
exponent, as shown in Fig. 6.5, which is consistent with previous findings [73, 74]. More-
over, we have verified the stability of our results as ε → 0 in the iε contributions of (6.44)
by systematically decreasing ε in the integration, as shown in Fig. 6.6.
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In summary, we have demonstrated that the effective vertex follows a universal scaling
form, with its dependence on η and κ explicitly examined. We confirmed that the scaling
exponent remains independent of κ and verified the stability of our results as ε → 0. Fur-
thermore, our findings are consistent with the presence of a nonzero anomalous dimension
in its scaling form. Moving forward, we will use the power law and the prefactor obtained
here as input functions for the computation of the retarded self-energy.

Universal scaling of ΠF (q)
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Figure 6.7. Universal scaling of
[
|ΠF (q)|

]−1 for different η at κ = 4, demonstrating the
numerically obtained behaviour ∼ q1+κ−0.5η with a prefactor that depends on both η and κ.
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Figure 6.8. Universal scaling of
[
|ΠF (q)|

]−1 for different κ at η = 0.5, also showing the
∼ q1+κ−0.5η behaviour.

Before we can proceed with the computation ofΣR, another loop quantity,ΠF also needs
to be calculated. By explicitly solving (6.45) on-shell with ν = ωq, we find that, as expected,
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Figure 6.9. The universal scaling of the retarded self-energy shows only quadratic scaling
p2, and no η or κ dependence in the scaling exponent. This specific plot has used κ = 4.

the solution reveals a power law behaviour. More specifically, we find a scaling form that
depends on both η and κ and is given by[

|ΠF (q)|
]−1

= D(η, κ)q1+κ−0.5η. (6.58)

In Fig. 6.7 we show the explicit η-dependence on the scaling for κ = 4, while in Fig. 6.8 we
show the κ-dependence, holding η constant. To our knowledge, the power law behaviour of
ΠF has not been studied extensively yet, and (6.58) provides a new insight into its scaling be-
haviour. This can be used as a quantitative foundation for further theoretical developments,
especially analytical ones.

Self-energy

After the appropriate evaluations of the frequency integrals with the delta functions, the
exact expressions we consider for the self-energy are given by

ΣR(ω = 0, p)− ΣR(0, 0) ≡ ΣR′(p), (6.59)

where more explicitly we have

ΣR′(p) =− λ

3N

[∫
q

f(p− q)
ωp−q

ΠR (ωp−q, q) veff (ωp−q, q)−
∫
q

f(q)
ωq

ΠR (ωq, q) veff (ωq, q)

−

(∫
q

ΠF (ωp−q, q)
ωp−q

veff (ωp−q, q)−
∫
q

ΠF (ωq, q)
ωq

veff (ωq, q)

)]
. (6.60)

The derivation of this form is shown in more detail in App. D.1. Having computed power
laws for both ΠR and ΠF , we can use the obtained expressions towards the computation of
ΣR′. As previously discussed in the context of the effective vertex, each ΠR and ΠF comes
with a factor of λ, such that in the end for ΠR � 1, λ completely drops out of (6.60).
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Explicitly evaluating this expression with the ΠR whose scaling depends on η, and ΠF ,
which depends on both η and κ, we find quadratic scaling behaviour in ΣR′(p) ∼ p2 with
no η or κ dependence, as illustrated in Fig. 6.9. This is in stark contrast to what was found
in Sec. 6.2 for the Wilson–Fisher fixed point, where the self-energy showed p2−η scaling
behaviour, and where we could identify the prefactor of this power law with the number of
field components N to yield a function η(N). In this case, our prefactors are always very
small numbers on the order of 10−3, as shown in Fig. 6.10. Although, we have identified a
trend that for larger η, the prefactor extracted does decrease, just like for the equilibrium case.
As a key result, we have also identified a critical region, where an infrared divergence occurs

0.0 0.5 1.0 1.5 2.0 2.5 3.0

β(η, κ = 4)

0.0

0.2

0.4

η

×10−3

Figure 6.10. Prefactors to the p2 power law of the retarded self-energy from Fig. 6.9 for
different η and κ = 4.0, shown along the x-axis. The numbers are comparably small for
κ = 3.0 and κ = 5.0. The results shown here used m = 0.6 and pΛ = 1.0, however,
varying the mass 0.0 ≤ m ≤ 2.0 and the plateau 0.001 ≤ pΛ ≤ 1.0, we have always found
comparably small prefactors to the quadratic scaling.

in ΣR′, specifically in the terms involving ΠF , and which depends on the input parameters
η and κ. Within this region, we can extract a finite, quadratic scaling of the self-energy.
Outside this critical region, however, we encounter the infrared divergences, which remain
under active investigation. For the case m = 0 in the dispersion (6.38), we numerically
found that the critical region is

4− κ ≤ η ≤ 5− κ, (6.61)

which we have verified for 0 ≤ η ≤ 1. Together, these two conditions constrain 3 ≤
κ ≤ 5. We have also determined that having a finite mass shifts the critical region, thereby
altering the range of η and κ values for which a finite scaling function can be extracted. This
dependence will be studied more thoroughly in the future.

6.4 Conclusion and outlook
In this chapter, we investigated the emergence of nonthermal critical behaviour in relativis-
tic scalar fields using the 2PI effective action framework. Our findings demonstrate that the
self-consistent 2PI approach provides a robust method for extracting scaling exponents in
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the strongly correlated, nonperturbative regime. Specifically, we employed a leading-order
gradient expansion in time, and a quasiparticle approximation, treating the spectral function
as a delta function to simplify the analysis. To ensure the reliability of our numerical ap-
proach, which explicitly computes self-energy integrals, we first applied it to thermal critical
behaviour, benchmarking the results against established equilibrium scaling solutions.

We then examined the nonequilibrium effective vertex, identifying a nontrivial scaling
behaviour where the scaling exponent depends on the anomalous dimension. However, fur-
ther analysis of the self-energy revealed a self-similar quadratic scaling, ultimately showing
no dependence on an anomalous dimension, even when its presence was initially assumed.
We found that across a wide range of input parameters, the retarded self-energy consistently
exhibits quadratic scaling behaviour. Our findings also highlight a critical region where the
emergence of this quadratic scaling solution is closely linked to the initially assumed expo-
nents and input parameters. In the future, further investigation is needed to better understand
the critical region and its dependence on an effective mass.

Additionally, the quasiparticle approximation may impose significant limitations, mak-
ing it essential to incorporate a finite width for the spectral function and explicitly evaluate
the frequency integrals. This refinement could enable a more precise determination of the
nonequilibrium anomalous dimension η, which, in our current computation appears to be
consistent with zero.

A major open question remains whether a unified renormalisation group framework can
be established for nonthermal fixed points, similar to equilibrium critical phenomena. While
successful renormalisation group approaches exist for stationary nonequilibrium systems
[20, 215, 216], and some studies have extended these ideas beyond the stationary case [217–
219], a comprehensive framework within the renormalisation group remains under develop-
ment [220]. The approach presented here complements existing methods based on scaling
analyses of kinetic equations and numerical simulations, offering an alternative perspective
on nonthermal scaling phenomena, and in principle, it can also be combined with functional
renormalisation group methods.



Chapter 7

Discussion and outlook

In this chapter, the main findings of the thesis are summarised and discussed in the context
of the broader research landscape in nonequilibrium quantum many-body dynamics. Along
with reviewing the main results, which include the novel insights into symmetry restora-
tion and the role of topological defects for universal scaling in the vicinity of nonthermal
fixed points, as well as the search for new nonthermal scaling phenomena, potential future
research directions are also briefly explored.

One of the primary objectives of this thesis was to advance the development of effective the-
ories to describe the emergent macroscopic dynamics of isolated quantum many-body sys-
tems far from equilibrium. The projects presented examined various phenomena, including
nonthermal fixed points, where universal self-similar scaling emerges, as well as the dynam-
ics of spontaneous symmetry breaking and symmetry restoration in nonequilibrium systems.
Chapter 3 explored the extraction of effective symmetries in a spinor Bose gas, with a focus
on symmetry properties and their evolution in nonequilibrium conditions. Chapters 4 and
5 addressed challenges related to universal scaling behaviour far from equilibrium, with
particular attention to the role of topological defects and the interplay between nonlinear
wave propagation and defect dynamics. Finally, Chapter 6 investigated nonthermal scaling
phenomena by applying the 2PI formalism to extract scaling solutions, extending beyond
traditional scaling analyses of the self-consistent equations. This approach provided new
insights into the robustness of scaling exponents beyond conventional attractor solutions.

One of the main findings was the observation of effective symmetry restoration long be-
fore equilibration in spinor Bose gases, demonstrating how symmetry properties can evolve
in nonequilibrium conditions and manifest at the level of correlation functions. The findings
emphasise that symmetry dynamics in isolated nonequilibrium systems can be complex,
with lower-order correlation functions capturing effective restoration even when higher-
order correlations retain memory of the initial symmetry breaking in an isolated system.
This distinction between different orders of correlation functions underlines the importance
of identifying the appropriate observables when constructing low-energy effective theories
to describe emergent, macroscopic nonequilibrium phenomena, which are typically based
on lower-order correlation functions. Additionally, spontaneous symmetry breaking was
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detected from experimental data in the same spinor Bose gas system and defined also at the
level of correlation functions. This highlights the importance of correlation functions as a
tool for understanding both the preservation and emergence of symmetries in nonequilibrium
dynamics, as well as the central role of symmetries in shaping the macroscopic behaviour
of far-from-equilibrium quantum many-body systems.

The methods developed offer a framework for probing critical behaviour and nonequi-
librium phase transitions in isolated quantum systems, which has relevance ranging from
early-universe cosmology to ultracold atomic systems. Regarding universality classes far
from equilibrium, these methods could also provide a classification scheme, drawing par-
allels to the established connection between symmetries and universality classes in equilib-
rium systems. Another major direction for future research is the experimental demonstration
of explicit symmetry breaking and the subsequent symmetry restoration at the level of cor-
relation functions, which remains an ongoing project under development.

Another key aspect explored in this thesis was the dynamics near nonthermal fixed
points, which act as universal attractor solutions. They are characterised by self-similar
scaling behaviour, governed by universal scaling exponents and functions that are largely
independent of the system’s microscopic details. This work focused on analysing the scal-
ing properties in relativistic N -component scalar field theories, investigating the role of
different degrees of freedom and their contribution to the scaling dynamics. The analysis
extended the understanding of nonthermal fixed points by examining both quasiparticle ex-
citations and topological defects, contributing new perspectives on how various physical
processes shape the universal dynamics near these points. It was found that in two dimen-
sions, a single-component scalar field theory shows markedly different scaling exponents
compared to higherN -component theories, with these differences traced back to excitations
originating from defect dynamics. In three dimensions, the relevant excitations in a single-
component scalar field theory were also linked to defect-driven dynamics. However, at the
macroscopic level, the system likely displays a similar effective description to that of large-
N theories, since the dynamics is characterised by the same universal scaling exponents and
scaling functions.

This serves as a major stepping stone towards a low-energy effective description of
single-component scalar field theories, which need to be built upon the relevant degrees of
freedom. It is also a significant contribution towards a more comprehensive understanding
of far-from-equilibrium universality classes inN -component scalar fields, which now sepa-
rates a single-component scalar field theory from the large-N limit for overoccupied initial
conditions, in terms of different fixed points in two dimensions, and the same fixed point,
but different microscopic descriptions in three dimensions. In the future, this could be used
to gain a deeper understanding of the scaling behaviour obtained by imprinting topological
defects on top of overoccupied initial conditions. The results also revealed yet unexplored
connections between nonthermal fixed points and superfluid turbulence in terms of Kelvin
waves, which could be further investigated in systems beyond scalar fields.

Similarly, in the context of nonthermal fixed points, geometric observables were con-
structed that showed more sensitivity to defect-driven dynamics than standard correlation
functions. These observables captured details of the system’s topological structure and re-



109

vealed scaling behaviour with exponents distinct from those obtained through conventional
correlation functions, indicating that multiple scaling phenomena can coexist near a non-
thermal fixed point. This underscores the complex nature of nonequilibrium many-body
dynamics, where different processes, such as nonlinear wave propagation and coarsening
dynamics can dominate or play a subdominant role depending on the observable being in-
vestigated. Understanding how these various phenomena contribute to scaling behaviour
could offer new insights into the investigation of universality classes and effective descrip-
tions of far-from-equilibrium systems. Furthermore, these findings point to the potential
utility of geometric observables in future studies of turbulence and defect interactions in
nonequilibrium quantum systems. They may also provide a means to probe emergent struc-
tures that are otherwise hidden in traditional correlation-based analyses.

Another important aspect investigated here was the refinement of methods for extract-
ing scaling properties in nonequilibrium systems. While traditional methods, such as scaling
analyses and numerical simulations have provided valuable insights, they often rely on spe-
cific assumptions. A new approach explored in this work applies the 2PI formalism with a
large-N expansion to extend the study of nonthermal scaling behaviour. This approach has
the potential to improve the precision of scaling exponent extraction and broaden the classi-
fication of nonthermal fixed points, and, in particular, it could offer a more systematic way
to probe scaling solutions. By numerically solving the self-consistent 2PI equations, this
work identified a stationary transport regime exhibiting universal quadratic scaling. These
advancements will contribute to a more comprehensive framework for characterising uni-
versal scaling behaviour, with implications for both equilibrium and nonequilibrium scaling
phenomena across a range of strongly correlated physical systems.

In summary, this thesis has contributed to a deeper understanding of far-from-equilibrium
dynamics in quantum many-body systems by investigating phenomena such as symmetry
restoration and the universal scaling behaviour near nonthermal fixed points. The findings
highlight the rich and complex interplay between topological defects, quasiparticle excita-
tions, and nonlinear wave dynamics in shaping macroscopic scaling behaviour. Through the
development of new methods and observables, this work has laid the foundation for future
research aimed at uncovering universal properties and effective descriptions of nonequilib-
rium systems. These insights are not only relevant to theoretical studies but also have the
potential to inform experimental investigations across fields ranging from ultracold atomic
gases to early-universe cosmology.
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Appendix to Chapter 3

A.1 Experimental details and analysis

For our analysis, we use data obtained with a 87Rb spinor BEC of ∼ 105 atoms in the
F = 1 hyperfine manifold with initial state |F,mF 〉 = |1, 0〉. The atom cloud is contained
in a quasi one-dimensional trapping geometry, which consists of a dipole trap formed by
a 1030 nm laser beam with trapping frequencies

(
ω∥, ω⊥

)
= 2π × (1.6, 160)Hz, and with

two end caps formed by beams at 760 nm, confining the atoms within the central part of the
harmonic potential. The longitudinal harmonic potential is constant to a good approximation
over the employed sizes, leading to a 1D box-like confinement, with size ∼ 100µm in
the measurements used. The atom cloud is subjected to a uniform magnetic field of B =

0.894G throughout the experiment which leads to a quadratic Zeeman splitting of qB ∼ h×
58 Hz. The spin dynamics is controlled via off-resonant microwave dressing q = qB + qMW

with q < 2n|c1|. The initial quench is implemented by the instantaneous switching on of
the microwave power.

The transverse spin field F⊥ = Fx + iFy readout is obtained via spin rotations and
microwave coupling to the initially empty F = 2 hyperfine manifold prior to a Stern–
Gerlach pulse and spatially resolved absorption imaging. For a more detailed account on
the experimental setup and on how the measurements were obtained, see the supplementary
material of Ref. [25]. While the spatial degree of freedom is continuous, it gets discretised
in the analysis procedure by the finite pixel size of the camera and imaging resolution (≈
1.2µm per three pixels). Our analysis focuses on the central ∼ 100 pixels of the data since,
as discussed in the main text in Sec. 3.3, establishing long-range coherence across the entire
system requires some time.

The total number of experimental realisations at each time can be seen in Table A.1.

A.2 Physical interpretation of the symmetry breaking per-
turbation

Since the spin operators F̂i are the generators of the rotational symmetry, they commute
with a symmetric Hamiltonian and consequently with the evolution operator as well. This
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Evolution Time (s)
1 10 12 14 17 20 24 29 35 42 50

Number of Realisations
68 237 236 237 236 239 238 269 296 298 296

Table A.1. Number of experimental realisations for each evolution time.

allows us to rewrite the generating functional as

Zt[J ] = Tr
{
U (t, t0) e

∫
dxJ(x)·F̂ (x)/2 ρ̂t0 e

∫
dxJ(x)·F̂ (x)/2U † (t, t0)

}
= Tr

{
U (t, t0) ρ̂

′
t0
(J)U † (t, t0)

}
, (A.1)

where we have introduced the deformed initial density matrix

ρ̂′t0(J) ≡ e
∫
dxJ(x)·F̂ (x)/2 ρ̂t0 e

∫
dxJ(x)·F̂ (x)/2 . (A.2)

Note that, provided the sources Ji are real, the deformed operator ρ̂′t0(J) is Hermitian. Fur-
thermore, under the same condition, it is also positive semidefinite. Indeed,

〈ψ| ρ̂′t0(J) |ψ〉 = 〈ψJ | ρ̂t0 |ψJ〉 ≥ 0 , (A.3)

with |ψJ〉 ≡ e
∫
dxJ(x)·F̂ (x)/2 |ψ〉, and ρ̂t0 is positive semidefinite being a density matrix by

assumption. Thus, aside from normalization, ρ̂′t satisfies all the conditions of a physical
density matrix. This suggests a simple interpretation of the equal-time generating func-
tional Zt[J ] in the absence of explicit symmetry violations: it represents the evolution of
the symmetric density matrix ρ̂t0 that has been deformed by means of linear sources coupled
to the spin operators F̂i at the initial time t0, thus breaking the symmetry.

Let us remark that the above simple physical picture is, to a certain extent, unique for spin
systems. The reason is that the linear-source term that enters the definition of the generating
functional Zt[J ] and serves as a symmetry-breaking perturbation commutes, in this case,
with the symmetric evolution operator U as the spin operators F̂i are also generators of the
symmetry group.

Nevertheless, provided the linear source J in the definition of Zt[J ] is coupled to opera-
tors that transform nontrivially under the symmetry group in question, the formalism devel-
oped in this work can still be applied to define spontaneous symmetry breaking in nonequi-
librium systems, albeit lacking the appealing interpretation of the symmetry-breaking per-
turbation as a deformation of the initial state.

A.3 Calculation of correlation functions
Both experimentally and in TWA simulations, we have Ns samples (measurements) of the
spin observable Fi in datasets

{
F

(s)
i | s = 1, . . . , Ns

}
, from which we infer n-th order cor-

relation functions as

〈Fi1 · · ·Fin〉 ≈
1

Ns

Ns∑
s=1

F
(s)
i1

· · ·F (s)
in
. (A.4)
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The information in all of the n-point correlation functions is equivalently stored in the gener-
ating functional Z[J ] as described in the context of Eq. (3.7). The TWA simulations involve
periodic boundary conditions, and while the experimental setup considered is a finite system
without periodic boundary conditions, we find approximate translational invariance, which
simplifies the calculation of connected correlators in momentum space. We first perform a
discrete Fourier transform (DFT) for the spin observables Fi to momentum space

F
(s)
i (p) = DFTx→p

[
F

(s)
i (x)

]
≡

N∑
j=1

e−ipjF (s)
i (j) , (A.5)

where p ∈ [pL, 2pL, . . . , NpL], pL = 2π/L, andL is the system size. Subsequently, we com-
pute connected correlation functions in momentum space using the Julia language package
Cumulants.jl [221].

We have verified that this procedure gives equivalent results to first computing con-
nected correlators in position space, and then performing the DFT. The former approach,
however, is muchmore memory-efficient. Indeed, computing higher-order correlation func-
tions requires a considerable amount of computer memory: for instance, a four-point cumu-
lant is anN ×N ×N ×N array, so the amount of required memory scales quartically with
the system size. At the same time, as evident from Eqs. (3.17a) and (3.17b), the four-point
functions entering the symmetry identities have one of the momenta set to zero, while the
three remaining ones have to add up to zero due to momentum conservation. Therefore, one
only needs a two-dimensional momentum-conserving surface, which can be encoded in an
N ×N matrix. By computing correlators directly in momentum space we avoid the need to
store the full N × N × N × N array, and we can directly extract the relevant information
by computing the two-dimensional momentum-conserving surface. For our numerical data,
we consider correlation functions up to the inverse healing length, where the TWA descrip-
tion is expected to be reliable. For the plots, we have binned every 5 data points, while the
correlators themselves were calculated on uncoarsened lattices.

Note that since perfect homogeneity and isotropy cannot be experimentally achieved, nu-
merical artefacts always enter analyses. More specifically, in Eq. (3.16), while E(2)

ππ (−p, p)
and E(2)

σσ (p,−p) are manifestly real, the three-point function E(3)
ππσ(0, p,−p) has in general

a nonzero imaginary part. However, for the experimental data, the imaginary part is orders
of magnitude below the real part, therefore, the magnitude of the correlator is dominated
by the contribution from the real part. We similarly observe this with numerical data, apart
from the very early initial times of a few ts, where the imaginary part is more pronounced.
In this case, and in all other cases, the magnitude of complex quantities is plotted.
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Appendix to Chapter 4

B.1 Vortex (line) density detection algorithm

Vortex defects are characterised by phase singularities in arg(φ+iπ)where a sharpminimum
in the energy density also occurs on the lattice. In two dimensions, we compute the vortex
density by counting the total number of (anti)vortices in the phase arg(φ+iπ), and divide this
by the (constant) area of the system. First, the input fields φ and π are blockwise averaged
over every set of 8 × 8 lattice points to reduce lattice artefacts. In two dimensions, this
process reduces the original 20482 lattice to a coarser 2562 grid. For each point in the phase
angle lattice, the algorithm then computes the phase differences around a closed loop. This
loop consists of eight neighbouring points (excluding the edges of the lattice) arranged in a
clockwise sequence, forming a square path centred around the point of interest. The phase
differences between consecutive points in the loop are calculated by subtracting the phase
angle at one point from the phase angle at the next point along the loop. Eventually, these
differences are summed up and if the total phase change around the loop is approximately
2π, the point is identified as a vortex, and similarly, an antivortex is detected for a phase
change of around −2π. This procedure is designed to avoid mistakenly identifying points
as defects where the phase fluctuates between ±π, as such fluctuations do not result in a
uniform phase winding around the point, and therefore do not indicate the presence of a
vortex core. Moreover, to avoid duplicate detections, which may still arise due to artefacts,
the code enforces a minimum distance between detected vortices and antivortices. After a
parameter scan, this minimum distance was chosen as 5 lattice points. This procedure is
then repeated for each point on the 20482 lattice.

However, phase singularities in a three-dimensional lattice are more challenging to com-
pute, and doing the computation in the two-dimensional planes, plane by plane, could be
misleading. Therefore, we extract the vortex line density [177] from the energy density
profiles, e.g. the ones shown in Fig. 4.2. We first blockwise average over every 6 × 6 × 6

lattice points to reduce the original 3683 lattice to a coarser grid. At this point, the energy
density becomes quite uniform, and the vortex tangles in Fig. 4.2 are revealed by taking the
points that are at 60 . . . 70% of the mean energy value on the lattice. We then compute the
number of points that belong to vortex lines, and divide it by the total number of points on
the lattice, giving us the density of vortex lines.
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Figure B.1. The Kelvin wave dispersion from Fig. 4.9(b), with the shaded area showing the
width of the peaks in FK(t, ω, p).

B.2 Flattening of the kelvon dispersion curves
As mentioned in the main text, the Kelvin wave dispersion (4.27) is fitted to the extracted
dispersion relations over a progressively smaller momentum range at later times in three
dimensions, since the fit becomes less reliable due to the flattening of the dispersion curves
at higher momenta. This flattening is not part of the kelvon dispersion, therefore to reliably
extract the fit parameters, we have to exclude this from the fit region. While the exact origin
of this effect remains unclear, it is likely influenced by limitations in our data extraction
procedure. In the statistical function F (t, ω, p), at later times, and for higher momenta, the
kelvon peak becomes weaker as the Bogoliubov peak starts to dominate. This makes the
extraction of the position of the maximum of the peak challenging, which is the quantity that
yields ωK. Even though we start using a two-peak fit form after p ≥ 0.17, that includes both
the kelvon (4.25) and the Bogoliubov peaks (4.26) in the fit function, the peak position of
(4.25) becomes less certain. We also illustrate this by including the width γK from Fig. 4.11
as a shaded region around ωK in Fig. B.1. While, naturally, the peak amplitude diminishes
away from ωK, as also visible in Fig. 4.7, the increasing breadth of the peak indicates the
growing uncertainty in the maximum position with increasing momentum.

B.3 Analysing the fits to dispersion relation data
The comparison of linear and kelvon fits for the dispersion relation in d = 2 and d = 3

dimensions reveals specific differences, as shown in Fig. B.2. In d = 3, the kelvon fit
clearly captures both the expected p2 behaviour at low p and the bending of the data at
higher p. This is reflected in the residuals, which are evenly distributed around zero for the
kelvon fit, indicating that it accurately describes the data across the entire range. In contrast,
the linear fit exhibits systematic deviations, as it fails to account for the p2 scaling at low p

and the curvature at higher p, leading to structured residuals. In d = 2, however, the data
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Figure B.2. Comparison of linear and kelvon fits for the dispersion relation of the dominant
infrared excitation in (a) d = 2 and (b) d = 3 dimensions, including the corresponding
residuals. In d = 2, it is challenging to determine which model provides a better fit, but the
residuals strongly indicate that the kelvon fit captures the data more accurately in d = 3.

is significantly more scattered, making it difficult to determine a clear preference between
the two models. Both fits result in residuals that appear evenly distributed around zero,
suggesting that the noise in the data obscures any systematic deviations. Consequently,
while the kelvon fit is strongly favoured in d = 3, the ambiguity in d = 2 prevents a
definitive conclusion about which model captures the underlying dispersion relation better.
However, since Fig. 4.7 shows that in d = 2, 3 dimensions, the behaviour is qualitatively the
same, it is strongly suspected that kelvon-like excitations also exist in d = 2 dimensions.
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Appendix to Chapter 5

C.1 Dependence of Betti numbers on the renormalisedmass
value

The simulations reported about in the main text have used a comparably large renormalised
mass withM = 2Q. In this appendix, we discuss the dependence of the persistent homology
results provided in Sec. 5.3.2 on this choice.

Fig. C.1 provides the dimension-0 Betti numbers for simulations withN = 2 field com-
ponents and renormalised massM = Q/2. Comparison with Fig. 5.5, which has given the
corresponding results forM = 2Q, reveals that the right peak close to ν ≡ ∆T 00 = 0 in-
creases in height for the smaller mass value, while the height of the left peak appears roughly
insensitive to the choice of mass. In particular, the scaling behaviour of βtopo0,max(t) remains
the same compared to the larger mass (not shown).

We can heuristically understand this behaviour as follows. For the results displayed in
Fig. 5.5 and Fig. C.1, we have employed averaging over blocks of 83 lattice sites. Removing
ultraviolet fluctuations, this emphasises structures in the infrared, where the model is well-
described by a nonrelativistic complex scalar field theory [48, 125]. The Hamiltonian of
such a theory comes with a kinetic term ∼ k2/2M , where k denotes the spatial momentum
of a Fourier mode of the complex-valued field. A larger value forM therefore suppresses the
contributions of spatial gradients of local fluctuations to energy densities, which pronounces
structures with small spatial gradients, for instance topological defects.

Moreover, we have argued in favour of the association of the right peak in the dimension-
0 Betti numbers with energy transport towards the ultraviolet, see Sec. 5.3.4. In the ∆T 00

snapshots presented in Fig. 5.1, this corresponds to the local fluctuations on small length
scales. A larger mass therefore suppresses these, such that the topological defects appear
pronounced relative to the small-scale fluctuations, even though their number might remain
roughly invariant under the choice of mass. This explains the behaviour of the dimension-0
Betti numbers shown in Fig. C.1.

For completeness, we note that the occupation number distributions computed for both
mass values agree (not shown) and are similar to the results of [48].
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Figure C.1. Dimension-0 Betti numbers for ∆T 00 sublevel sets for N = 2 field compo-
nents, with averaging over blocks of 83 lattice sites. The renormalised mass used to generate
these results isM2 = Q2/4.

C.2 The classification of topological defects in condensates
of the O(N) vector model

In this appendix, we derive the classification of topological defects in condensates of the
O(N) vector model in detail. The arguments are drawn from [80] and expanded here.

Intuitively, topological defects form when growing occupancies in the infrared organise
into condensates alongwith the inverse particle cascade. To this end, the behaviour of spatial
zero modes of the field variables is of relevance for the classification of topological defects.
In particular, it is the topology of the phase space of zero modes of the field variables,
(φ̃a, ∂tφ̃a)a=1,...,N , where φ̃a ≡ φ̃a(t) ≡ φ̃a(t, p = 0), along with dynamical constraints
which determines the latter. Denoting this space for the O(N) vector model by CN , we first
motivate its general construction from first principles based on the condensate dynamics.
We subsequently describe the specific structure of the CN and their topological properties,
ultimately leading to the classification of defects in three spatial dimensions.

C.2.1 Dynamically realised condensate phase space

In our simulations, the modes in the infrared are highly occupied at early times for the
considered initial conditions and are thus well-described classically. Here, we derive an
approximate equation of motion for the condensate. First, the classical inverse propagator
follows from the action (5.1) as

− i
δ2S[φ]

δφa(x)δφb(y)
= iδ(x− y)

[
δab(□+m2) +

λ

6N

(
2φa(x)φb(x) + δab

∑
c

φc(x)
2

)]
(C.1)
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with □ ≡ ∂µ∂
µ and where we explicitly denoted the summation over the field components.

This leads to the classical self-energy matrix

Σcl
ab(x) =

λ

6N

(
2φa(x)φb(x) + δab

N∑
c=1

φc(x)
2

)
. (C.2)

Its spatial Fourier-transform is Σ̃cl
ab(t, p) =

∫
xΣ

cl
ab(t, x) exp(−ipx). The action (5.1) yields

an inhomogeneous Klein-Gordon equation as the classical equation of motion for spatial
zero modes of the fields:

N∑
b=1

[
δab(∂

2
t +m2)φ̃b(t) +

∫
p
Σ̃cl

ab(t,−p)φ̃b(t, p)
]
= 0, (C.3)

where
∫
p ≡

∫
d3p/(2π)3 and the dependence on the classical self-energy matrix Σ̃cl

ab(t,−p)
has been explicitly denoted. We assume a large fraction of the particles occupies the zero
mode, so that the momentum integral in (C.3) is dominated by momentum zero. This finally
yields the equation

N∑
b=1

[δab(∂
2
t +m2) + Σ̃cl

ab(t, p = 0)]φ̃b(t) = 0, (C.4)

which governs the time evolution of the condensate.
For a single field component (N = 1) φ̃ ≡ φ̃a=1 and the effective mass squared is

M2 = m2 + Σ̃cl
11. (C.3) leads to the decomposition φ̃ = φ̃0 cos(Mt+ δ), where φ̃0 is a

real-valued peak amplitude of the field, δ a phase and M determines the oscillation fre-
quency of the field. The amplitude |φ̃0| is fixed by transient particle number conservation.1
From a topological viewpoint, the N = 1 condensate phase space C1 is thus described by a
circle, C1 ' S1.

For N ≥ 2 field components the solutions φ̃ ≡ (φ̃)a=1,...,N to (C.4) generally have the
form of oscillations sweeping out ellipses in the internal space of field components. These
can interpolate between the extreme possibilities of φ̃ and ∂tφ̃ parallel, so that oscillations
happen along a line in this space, or φ̃ and ∂tφ̃ orthogonal, so that oscillations happen along
a circular orbit. It can be shown, that the energy-minimising condensate configurations are
not straight lines and, therefore, have the topology of circular orbits. Indeed, repeating the
argument provided in [80], we can understand this by comparing the energy cost of a circular
orbit to that of a straight line in O(N) field space. The energy density ε of the zero mode of
a single-component scalar field oscillating back and forth in a quartic potential is

ε =
λ

8
φ̃4
0 =

1

2
(∂tφ̃)

2 +
λ

8
φ̃4, (C.5)

where we have neglected the mass term. This equation can be rearranged for ∂tφ̃ to obtain
a periodic solution, which has oscillation frequency

ω2 =
πΓ(3/4)2

Γ(1/4)2
λφ̃2

0. (C.6)

1This is similar to nonrelativistic scalar fields for which particle number conservation is exact.
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The particle number stored in the condensate is n(ε) =
∫ ε

0
dε′/ω = 4ε/(3ω), and using

(C.5), we obtain

ε = (8π2)1/3
[
3Γ(3/4)

4Γ(1/4)

]4/3
λ1/3n4/3. (C.7)

On the other hand, for a scalar field with two or more components with a circular orbital
motion in the same potential, the energy density is

ε =
1

2
(∂tφ̃0)

2 +
λ

8
φ̃4
0 =

3

4
(∂tφ̃0)

2 =
3ω2

4
φ̃2
0 =

3λ

8
φ̃4
0, (C.8)

where we have used the Virial theorem (∂tφ̃)
2/2 = λφ̃4

0/4 and φ̃0 = φ̃(t0) denotes the
condensate configuration at some initial time t0. Hence,

ω2 =
λ

2
φ̃2
0 =

21/2

31/2
λ1/2ε1/2. (C.9)

Using the same arguments as before for n(ε), we get that

ε =
3

27/3
λ1/3n4/3. (C.10)

Therefore, comparing the numerical prefactors, at fixed particle number the energy cost of
a circular orbit is lower than that of a straight line. We can conclude that energy-minimising
orbits φ̃(t) are not straight lines and thus homotopy-equivalent to circles in the zero mode
phase space. We expect that the addition of a non-zero mass term does not alter the topol-
ogy of energy-minimising orbits. This is a posteriori reinforced by the consistency of our
work with the defect classification outlined here, which relies on orbits being homotopy-
equivalent to circles.

We thus proceed with the consideration of circular orbits in the zero mode phase space.
For these the constancy of |φ̃| due to effective particle number conservation is complemented
by |∂tφ̃| being constant due to the circular orbit geometry, along with the orthogonality
constraint φ̃ ⊥ ∂tφ̃ in the internal field space. In general, a fixed-length φ̃ is an element
of the (N − 1)-sphere SN−1 ⊂ RN . Any tangent vector to SN−1 at a point φ̃ ∈ SN−1 is
orthogonal to the vector φ̃ itself within RN . The vectors ∂tφ̃ orthogonal to φ̃ actually form
the tangent manifold Tϕ̃SN−1. The constancy constraint for |∂tφ̃| singles out tangent vectors
of constant length. Since topology does not discriminate between the length of such tangent
vectors, the constancy constraint for |∂tφ̃| can be taken care of upon restricting to normalised
tangent vectors ∂tφ̃ with |∂tφ̃| = 1.2 Finally, for N ≥ 2, the condensate phase space CN is
(homotopy-equivalent to) the unit tangent bundle of SN−1, CN ' T 1SN−1, which as a set
reads

T 1SN−1 =
⋃

ϕ̃∈SN−1

{(φ̃, ∂tφ̃) | ∂tφ̃ ∈ Tϕ̃S
N−1, |∂tφ̃| = 1}. (C.11)

C.2.2 Homotopy groups of CN
The topology of CN can be nontrivial as quantified by the low-order homotopy groups, which
is the mathematical origin of topological defects. Specifically, a nontrivial zeroth homotopy

2For the same reason we here ignored the mass dimension of |∂tϕ̃|.
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group π0(CN) indicates that CN comprises different connected components, i.e., the conden-
sate is separated into different domains bounded by domain walls. If the fundamental group
π1(CN) is nontrivial, CN is not simply connected, and string defects can occur, i.e., vortex
lines. If the second homotopy group π2(CN) is nontrivial, then monopole defects can oc-
cur. A nontrivial third homotopy group π3(CN) would indicate the possibility of textures.
However, these have no defect core and are unstable [222], such that we exclude them from
our analysis. Apart from textures, strings, domain walls and monopoles are all types of de-
fects which can occur in three spatial dimensions. Investigating the presence of topological
defects thus requires the computation of the homotopy groups πℓ(CN) for ` = 0, 1, 2 and
different N .

• N = 1

For N = 1, the condensate phase space is C1 ' S1, for which π1(S1) ∼= Z and all
other homotopy groups vanish, such that only string defects can occur.

• N = 2

For N = 2, we have to consider C2 ' T 1S1. The unit tangent line at any point in
S1 consists of exactly two points, such that C2 ' S1 × Z2. The homotopy groups
of such products factorise [223], such that πℓ(C2) ∼= πℓ(S

1) × πℓ(Z2) for all ` ∈ N.
We find the nontrivial homotopy groups π0(C2) ∼= π0(S

1) × π0(Z2) ∼= 0 × Z2
∼= Z2

and π1(C2) ∼= π1(S
1)× π1(Z2) ∼= Z× 0 ∼= Z and all other homotopy groups vanish.

Hence, both domain walls and string defects can occur.

• N = 3

ForN = 3, we have to consider C3 ' T 1S2. This space can be identified with SO(3),
since φ̃ describes a direction inR3 and ∂tφ̃ is orthogonal to it. Together with their cross
product, they single out an orthonormal coordinate frame. The fundamental group is
nontrivial: π1(C3) ∼= π1(SO(3)) ∼= Z2 and all other homotopy groups vanish. There
are thus string defects.

• N = 4

For N = 4, we have to consider C4 ' T 1S3. The 3-sphere is parallelisable, i.e.,
TS3 ∼= S3 × R3 is a trivial bundle above S3. The unit tangent vector constraint
then singles out C4 ' S3 × S2. Again, the homotopy groups of such products fac-
torise [223], such that πℓ(C4) ∼= πℓ(S

3)× πℓ(S
2) for all `. With the homotopy groups

of the spheres we find that π2(C4) ∼= Z, π3(C4) ∼= Z2 and all other homotopy groups
vanish. While the former (π2) indicates that there are monopole defects, the latter (π3)
is irrelevant for defects in three spatial dimensions as considered here.
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• N ≥ 5

For generalN ≥ 5 one needs to consider CN ' T 1(SN−1) ∼= Spin(N)/Spin(N − 2).
The identification with the spin group quotient comes about since the elements of
the unit tangent bundle of SN−1 single out orthonormal 2-frames in RN , which form
the second Stiefel manifold V2(RN). Specifically, for N ≥ 3 we have that V2(RN)

is diffeomorphic to SO(N)/SO(N − 2) [223]. This in turn is diffeomorphic to the
quotient Spin(N)/Spin(N−2) for allN ≥ 3, as can be seen with standard results for
homogeneous spaces together with the consideration of relevant stabiliser subgroups
of SO(N) and Spin(N).

The computation of the homotopy groups of this space requires more advanced methods
from algebraic topology [223], which we only briefly outline here. Homotopy groups of the
quotients Spin(N)/Spin(N − 2) can be computed with the long exact sequence of relative
homotopy groups, which reduces their computation to the homotopy groups of the spin
groups themselves. The spin groups are the universal covers of the special orthogonal groups
for N ≥ 3, as indicated by the related short exact sequence of groups:

1 → Z2 → Spin(N) → SO(N) → 1. (C.12)

The spin groups are thus simply connected, so that π0(Spin(N)) ∼= π1(Spin(N)) ∼= 0 for
all N ≥ 3. Moreover, the short exact sequence (C.12) induces a long exact sequence of
homotopy groups. Using π2(SO(N)) ∼= 0 for all N ≥ 2 (in the stable range), we then
find π2(Spin(N)) ∼= 0 for all N ≥ 2. Together with the previously mentioned long exact
sequence of relative homotopy groups this yields π0(CN) ∼= 0, π1(CN) ∼= 0 and π2(CN) ∼= 0

for all N ≥ 5, while higher homotopy groups can be nontrivial. Yet, it is these homotopy
groups which determine the topological defects for three spatial dimensions. Topological
defects are thus absent in the considered three-dimensional O(N) vector model for allN ≥
5.

C.3 Details on the lower star filtration of cubical complexes
and persistent homology

This appendix provides mathematical details on the construction of the lower star filtration
of cubical complexes, homology groups and persistent homology. It closely follows similar
expositions in [185].

C.3.1 Lower star filtration

We introduce the lower star filtration for a real-valued lattice function f : Λs → R such as
∆T 00(t, ·), intuitively corresponding to a pixelisation of its lattice sublevel sets. To begin
with, let C denote the full cubical complex of the lattice Λs, consisting of one 3-cube x +
[−as/2, as/2]3 for each spatial lattice point x ∈ Λs. C also includes all faces, edges and
vertices of every 3-cube, such that it is closed under taking boundaries. C is equipped with
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the information contained in the function f by means of inductively constructing a map
F : C → R. By construction, any 3-cube C ∈ C has a unique lattice point x ∈ Λs at its
center, so that we can set F (C) := f(x). For all 2-cubes D ∈ C we set

F (D) := min{F (C) |D ⊂ ∂C, C ∈ C 3-cube}. (C.13)

(C.13) is then applied inductively to construct F for lower-dimensional cubes from higher-
dimensional ones, until F is defined on all C. This construction is called the lower star
filtration. We define cubical complexes corresponding to lattice sublevel sets of f as

Cf (ν) := F−1(−∞, ν]. (C.14)

Indeed, these are closed under taking boundaries. As stated in the main text, they form a
filtration: whenever ν ≤ µ, we have the inclusion Cf (ν) ⊆ Cf (µ).

C.3.2 Homology groups

Let C be a cubical complex, although the construction of homology groups is the same as for
simplicial complexes. More details can be found e.g., in [83] and references cited therein.
In this work, we focus on chain complexes and homology groups with Z2-coefficients, such
that the k-th chain complex Ck(C) of C consists of formal sums of chains of k-cubes with
Z2-coefficients. The boundary operator ∂k : Ck(C) → Ck−1(C) is defined to map a chain of
k-cubes to its boundary, which is a (k−1)-chain. Since boundaries of such chain boundaries
are empty, ∂k−1 ◦∂k = 0. We define the cycle group as Zk(C) := ker(∂k), which consists of
all closed k-chains, i.e., k-chains without boundary. The boundary group can be defined as
Bk(C) := im(∂k+1), consisting of all those k-chains, which are boundaries of (k+1)-chains.
As subgroups, Bk(C) ⊆ Zk(C), such that their quotient groups are well-defined:

Hk(C) := Zk(C)/Bk(C). (C.15)

These are called homology groups.
The topology of C can be studied via the homology groupsHk(C). They capture similar

topological information compared to homotopy groups of C, but are often not the same.
Elements of Hk(C) are called homology classes and form equivalence classes of k-cycles,
definedmodulo higher-dimensional boundary contributions. Intuitively, they can be thought
of as independent holes. Their number is given by the Z2-dimension of Hk(C):

βk(C) := dimZ2(Hk(C)), (C.16)

which is called the k-th Betti number.

C.3.3 Persistent homology groups

Let {Cν}ν∈R be a filtration of complexes, such as Cν = Cf (ν) for the energy density sublevel
set filtration considered in this work. Suppose we compute all their individual homology
groups {Hk(Cν)}ν . In addition, the filtration contains for all ν ≤ µ the inclusion maps
Cν ↪→ Cµ, which induce maps on the homology groups:

ιν,µk : Hk(Cν) → Hk(Cµ). (C.17)
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The ιν,µk map a homology class inHk(Cν) either to one inHk(Cµ), if it is still present for Cµ,
or to zero, if corresponding (potentially deformed) cycles appear as boundaries in Hk(Cµ).
Moreover, nontrivial cokernels can appear for ιν,µk : new homology classes can appear in Cµ,
which are not in Cν . The parameter µ can be chosen, so that for sufficiently small ε > 0:

Hk(Cµ−ϵ) ⊊ Hk(Cµ). (C.18)

The collection {(Hk(Cν), ιν,µk )}ν≤µ forms a so-called persistence module, which is tame, if
(C.18) holds only for finitely many distinct values of µ.

By the structure theorem of persistent homology (see e.g. [83] and references therein),
any tame persistence module is isomorphic to its persistence diagram, i.e., the collection of
all the birth-death pairs (b, d), b < d ∈ R ∪ {∞}. Persistence diagrams are multisets, so the
same birth-death pair may appear multiple times.

C.4 Self-similar scaling in persistent homology
In this appendix, we discuss the self-similarity of Betti number distributions as introduced
in [184] and similarly employed in [185]. For this, we need to introduce the so-called per-
sistence pair distribution. The persistent homology of the energy density filtration is fully
described by the persistence diagram, which consists of all birth-death pairs (b, d). We de-
note it for dimension-` features as Dgmℓ,i(t), computed for a classical statistical realisation
φi(t, x). The dimension-` persistence pair distribution is then given by [184]

Pℓ,i(t, b, d) =
∑

(b′,d′)∈Dgmℓ,i(t)

δ(b− b′)δ(d− d′). (C.19)

Its expectation value can exist and is in general no longer a sum ofDirac δ-functions anymore
[86]. In particular, it scales self-similarly in time [184] if

〈Pℓ〉(t, b, d) = (t/t′)−η2〈Pℓ〉(t′, (t/t′)−η1b, (t/t′)−η1d),

where t, t′ is any pair of times in the temporal regime of self-similar scaling and η1, η2 are
suitable scaling exponents.

From 〈Pℓ〉(t, b, d), the Betti number distribution can be computed as

〈βℓ〉(t, ν) =
∫ ν

−∞
db
∫ ∞

ν

dd 〈Pl〉(t, b, d). (C.20)

If 〈Pℓ〉(t, b, d) scales self-similarly in time, the Betti number distributions 〈βℓ〉(t, ν) fulfil

〈βℓ〉(t, ν) = (t/t′)2η1−η2〈βℓ〉(t′, (t/t′)−η1ν). (C.21)

In Fig. C.2, we show dimension-0 Betti number distributions for (a) N = 1, (b) N = 2 and
(c) N = 3, rescaled in time according to (C.21) (averaging over every 83 blocks). The fits
take all times in the interval from Qt = 2500 to Qt = 12500 into account. They are done
for those filtration parameter ranges which correspond to the defect-related peaks in Betti
number distributions: for N = 1 from ν = −0.45 to −0.29, for N = 2 from ν = −0.31 to



Maxima of dim-1 Betti number distributions at N = 2 127

−0.15, and forN = 3 from ν = −0.20 to−0.09. This way, the optimised scaling exponents
for N = 1 are

η1 = 0.02± 0.03, η2 = 0.72± 0.01, (C.22)

for N = 2

η1 = 0.01± 0.02, η2 = 0.69± 0.03, (C.23)

and for N = 3

η1 = 0.01± 0.02, η2 = 1.20± 0.01. (C.24)

Indeed, rescaling the Betti number distributions with these scaling exponents consistently
leads at least to approximate constancy in time, see Fig. C.2, in particular for N = 1 and
N = 3. Yet, smaller systematic deviations remain, since the shape of the peaks is not fully
independent of time. According to the Betti number scaling (C.21), the peak Betti number
scales ∼ t2η1−η2 . The numbers provided by the self-similarity fits, (C.22), (C.23), (C.24),
match the analysis results provided in Sec. 5.3.3. There, we also discuss the value of the
exponent 2η1 − η2 in light of phase-ordering kinetics.

The value of η1 is consistent with zero within errors. If connected components at these
∆T 00 values are primarily due to defects, this can indicate that defects appear locally at
particular constant energy density values. We note that a zero result for η1 is not in line
with the packing relation [86], which yields η2 = 3η1 for energy conservation, providing a
one-dimensional constraint on the filtration. This is not in contradiction with [86], since the
packing relation has been proven for self-similar scaling that applies to the entire filtration
range. This is not the case here, where the ongoing homogenisation of small-scale structures
in energy densities provides features in Betti number distributions which cannot be rescaled
with the exponents of (C.22) to (C.24) (cf. the right peaks in Fig. C.2).

C.5 Maxima of dim-1 Betti number distributions atN = 2

This appendix discusses the defect-related left peak in the dimension-1 Betti number distri-
butions for N = 2 (cf. 5.5). In Fig. C.3 we show maximum values of the peak depending
on time. The main figure has been computed for averaging over every 83 blocks, the top
inset for averaging over 163 blocks. As it is clearly visible, the numbers of dimension-1 fea-
tures decline with time, such that the average distances associated with the structures grow.
Qualitatively, the discussion of Sec. 5.3.3 applies here in an analogous way, so that we can
associate this to the coarsening dynamics, potentially for domain walls. Again, for an inter-
mediate time range a power law can be fitted. For averaging over every 83 blocks, the peak
values decrease as a power lawwith exponent−0.85±0.01, and with exponent−0.62±0.03

for averaging over 163 blocks. While the corresponding length scales of dimension-1 fea-
tures thus grow as power lawswith exponents well within the regime expected for coarsening
dynamics (see the discussion in Sec. 5.3.3), the numbers do not agree within uncertainties.
This indicates that in dimension-1 Betti numbers the dynamics in the infrared is not well-
separated from ultraviolet dynamics for averaging over every 83 or 163 blocks. Additional
potential sources of uncertainties have been discussed at the end of Sec. 5.3.4.
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Figure C.2. Rescaled dimension-0 Betti number distributions for (a) N = 1, η1 = 0.02,
η2 = 0.73, (b) N = 2, η1 = 0.02, η2 = 0.65, (c) N = 3, η1 = 0.01, η2 = 1.20. Blocks of 83

lattice points have been averaged. The insets show the non-rescaled distributions.
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Figure C.3. Temporal scaling of the left dimension-1 Betti number distribution peak values
for N = 3. Averaging over blocks of 83 lattice sites has been employed. The bottom inset
shows the actual Betti number distributions, where the red circles indicate the peak values.
The top inset shows peak values for averaging over every 163 blocks. The power law fits
are based on the data in the red shaded Qt ranges.





Appendix D

Appendix to Chapter 6

D.1 Derivation of self-energy expressions

As already mentioned in the main sections, at next-to-leading order in 1/N , the nonlocal
part of the spectral self-energy on the Keldysh contour is given by

Σρ(x, y) = − λ

3N

(
F (x, y)Iρ(x, y) + ρ(x, y)IF (x, y)

)
. (D.1)

Using a leading-order gradient expansion in time, the summation functions IF and Iρ can
be majorly simplified in momentum space, as discussed in the main text. For the spectral
self-energy in Wigner space, this leads to the expression

Σρ(ω, p) = − λ

3N

∫
ν,q

[
F (ω − ν, p− q)Πρ(ν, q)− ρ(ω − ν, p− q)ΠF (ν, q)

]
veff(ν, q).

(D.2)
We also note that ∫

ν,q
≡
∫

dν
2π

d3q
(2π)3

. (D.3)

The next step is to evaluate the frequency integrals, which is done by the quasiparticle ap-
proximation. Assuming delta-functions for the spectral function,

ρ(ω, p) =
2πi
2ωp

(δ (ω − ωp)− δ (ω + ωp)) , (D.4)

and a generalised fluctuation-dissipation relation for the statistical and spectral functions,

F (t, p) = −i
(
f(t, p) +

1

2

)
ρ(p), (D.5)
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first, the Πρ loop can be simplified to

Πρ(ν, q) =
λ

3N

∫
µ,r
F (ν − µ, q− r)ρ(µ, r)

=
λ

3N

∫
µ,r
f(ν − µ, q− r)

2π

2ωq−r
[δ (ν − µ− ωq−r)− δ (ν − µ+ ωq−r)]

× 2πi
2ωr

[δ (µ− ωr)− δ (µ+ ωr)]

=
λ

3N

∫
r

2πif(q− r)
4ωq−rωr

[
δ (ν − ωr + ωq−r) + δ (ν − ωr − ωq−r)

− δ (ν + ωr + ωq−r)− δ (ν + ωr − ωq−r)
]
.

(D.6)

In a similar manner, the ΠF loop can also be computed as

ΠF (ν, q) =
λ

6N

∫
µ,r
F (ν − µ, q− r)F (µ, r)

=
λ

6N

∫
µ,r
f(ν − µ, q− r)

2π

2ωq−r
[δ (ν − µ− ωq−r)− δ (ν − µ+ ωq−r)]

× f(µ, r)
2π

2ωr
[δ (µ− ωr)− δ (µ+ ωr)]

=
λ

6N

∫
r

2πf(q− r)f(r)
4ωq−rωr

[
δ (ν − ωr + ωq−r) + δ (ν − ωr − ωq−r)

− δ (ν + ωr − ωq−r)− δ (ν + ωr + ωq−r)
]
.

(D.7)

Then, when explicitly writing the self-energy out from (D.2), for the first term, we get∫
ν,q
F (ω − ν, p− q)Πρ(ν, q)veff(ν, q) =

−λ
3N

∫
ν,q

2πf(ω − ν, p− q)
2ωp−q

Πρ(ν, q)veff(ν, q)

×
[
δ (ω − ν − ωp−q)− δ (ω − ν + ωp−q)

]
=

−λ
3N

∫
q

f(p− q)
ωp−q

Πρ (ωp−q, q) veff (ωp−q, q) ,

(D.8)
and for the second term, it is∫

ν,q
ρ(w − ν · p− q)ΠF (ν, q)veff(ν, q) =

−λ
3N

∫
ν,q

2πi
2ωp−q

ΠF (ν, q)veff(ν, q)

× [δ(ω − ν − ωp−q)− δ(ω − ν + ωp−q)]

=
−λ
3N

∫
q

i
ωp−q

ΠF (ωp−q, q)veff(ωp−q, q).

(D.9)

To consider the relationship between the retarded and spectral self-energies, we recall

ΣR(ω, p) = lim
ϵ→0

∫
dω′

2πi
Σρ (ω′, p)
ω − ω′ + iε

. (D.10)

This overall turns the expression (D.6) into (6.44) and (D.7) into (6.45), as found in the main
text.
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