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world dermoscopic photographs of one lesion improves melanoma classification via 
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ABBREVIATIONS 

MM   malignant melanoma 

AI    artificial intelligence 

CNN   convolutional neural network 

ISBI    Symposium on Biomedical Imaging 

cCNN   combined convolutional neural network 

ACBC   adaptive choice-based conjoint analysis 

CI   confidence intervals 

FL    federated learning 

AUROC   area under the receiver operating characteristic curve  

IV    invasive melanoma 

ECE   expected calibration error 

BS   Brier score 

NLL   negative log likelihood 

mBCE   mean balanced corruption error 

mFR   mean flip rate 

MV-Artificial  multiview-artificial 

MV-Real  multiview-real 

MCC   maximum confidence change 

KI   künstliche Intelligenz 
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1 INTRODUCTION 

1.1 Epidemiology of malignant melanoma 

 
Malignant melanoma (MM) is the leading cause of death among skin cancer patients 

worldwide [1]. In 2020, approximately 325,000 new cases of MM were diagnosed, re-

sulting in about 60,000 deaths [2]. This concerning trend is primarily attributed to the 

ever-increasing exposure to ultraviolet radiation, which is a well-known risk factor for 

the development of MM [3,4]. As a result, incidences are expected to rise dramatically 

in the future. Experts anticipate that by 2040, the number of new diagnoses of MM will 

reach approximately 510,000 cases per year, leading to an estimated 96,000 MM-re-

lated deaths annually [2].  

 

While some cases of MM display aggressive behavior from an early stage, the proba-

bility of metastasis (i.e., the spread of cancer to other parts of the body) increases 

significantly with tumor thickness [5,6]. Detecting MM in its early stages substantially 

improves the survival chances of affected patients. Consequently, a rapid and accurate 

identification of MM carries unprecedented importance. 

 

1.2 Diagnostic challenges of malignant melanoma 

 
Early diagnosis, however, remains challenging due to frequent morphological overlap 

between MM and atypical nevi [7]. Clinical naked-eye examination allows the assess-

ment of morphological features of a lesion with classification frameworks, such as the 

ABCDE rule [8], but is limited to the skin surface. To enhance diagnostic accuracy 

compared to naked-eye examination, dermatologists routinely employ dermoscopy, a 

technique that enables the visualization of deeper skin layers, revealing colors and 
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structures that are typically imperceptible to the unaided eye [9]. Despite these tech-

nical advancements, even experienced dermatologists rarely achieve sensitivity levels 

exceeding 80% [10]. In cases where a clinical suspicion of malignancy cannot be ruled 

out, a skin biopsy is routinely performed following dermoscopic examination. The sub-

sequent histopathological examination of the biopsied lesion by a (dermato-)-

pathologist currently serves as the gold standard for diagnosing skin cancer. However, 

even this histopathological verification can yield inconclusive results, particularly in bor-

derline cases or with thin MM (Breslow thickness <1mm), the latter accounting for the 

majority of cases detected during skin cancer screenings [11,12]. Notably, previous 

studies have shown a discordance between individual (dermato-)pathologists for clas-

sifying MM of up to 25% [13–15]. 

 

1.3 Consequences for patients and the healthcare system 

 
The difficulty in differentiating MM from atypical benign lesions, combined with the po-

tential discrepancy between individual physicians, can result in both overdiagnosis and 

underdiagnosis at various stages of the diagnostic process.  

 

On one hand, numerous nevi are excised based on clinical suspicion, frequently lead-

ing to clinical overdiagnosis associated with unnecessary physical and psychological 

stress for the affected screening participants and avoidable costs for the healthcare 

system. For example, a study from 2013 revealed that approximately 1.8 percent of all 

screening participants in Germany were initially suspected of having MM. However, 

subsequent biopsies confirmed this diagnosis for only 0.1 percent of all individuals 

screened [11]. Considering that around 10 million people in Germany undergo annual 
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skin cancer screenings, this equates to approximately 170,000 avoidable biopsies 

every year.   

 

Despite this common occurrence of overdiagnosis, certain cases of MM are still misdi-

agnosed as nevi or overlooked at clinical level, potentially leading to their discovery 

only at advanced stages [16]. Depending on the tumor thickness, this misdiagnosis 

can have critical consequences, markedly diminishing patients’ chances of survival, 

and – in the worst-case scenarios – becoming the difference between life and death. 

 

Addressing the issue of early MM detection while simultaneously minimizing the false 

positive rate requires the development of improved diagnostic systems. One particu-

larly promising approach involves the application of artificial intelligence (AI) for im-

proved MM detection. 

 

1.4 Artificial intelligence-based skin cancer diagnostics  

 
In this context, convolutional neural networks (CNNs), deep neural networks specifi-

cally designed for image-based classification, have shown promise for enhancing the 

diagnostic accuracy of MM detection [17]. CNNs are commonly trained via supervised 

learning, where they use labeled data, such as dermoscopic images with their corre-

sponding diagnosis (i.e., ground truth), to perform end-to-end learning. This involves 

the network learning a direct relationship between the raw input data and the labels, 

enabling it to classify previously unseen skin lesion images.  

 

In experimental settings, CNNs have already demonstrated comparable or even supe-

rior performance levels in comparison to experienced clinicians when using 
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clinical [18–22], dermoscopic [23–32] or histopathological whole-slide images [33–35] 

for various skin cancer classification tasks. These promising results indicate that AI-

based approaches can potentially enhance the detection of MM. Thereby, offering the 

dual benefit of potentially enabling earlier interventions for otherwise overlooked cases 

of MM, while simultaneously reducing overdiagnosis and overtreatment.  

 

However, the successful application of AI-assisted skin cancer diagnostics – as ob-

served in experimental settings – has hardly been transferred to clinical practice so 

far [36]. In everyday clinical care, several additional challenges emerge. These chal-

lenges include the potential lack of acceptance by both patients and clinicians [37,38], 

as well as data privacy concerns, particularly when data are transferred to external 

institutions [39]. Moreover, state-of-the-art AI algorithms face issues related to algo-

rithm robustness (i.e., the ability to consistently output the same diagnosis even if the 

target image is slightly changed, e.g., rotation) [40,41], uncertainty estimation (i.e., the 

ability to correctly estimate the uncertainty of a prediction) [42,43], as well as biological 

(e.g., various skin types) and/or technical (e.g., various acquisition systems) generali-

zation (i.e., the ability to make accurate predictions on unseen images from different 

data distributions) [28,44]. The disparity between research conditions and clinical real-

ity, renders it difficult to draw conclusions about the applicability of AI for skin cancer 

diagnostics outside the research environment. 

 

1.5 Aims of the doctoral thesis 

 
Against this background, the present doctoral thesis aims to conduct a feasibility study 

on the use of AI-systems for skin cancer diagnostics to investigate the research 
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question “How can an AI-based algorithm for image-based melanoma detection be 

successfully implemented in clinical practice?”. 

 

The doctoral thesis can be divided into the following areas of investigation:  

1. Compiling a review of state-of-the-art AI technology and comparative studies in 

the research field (see publication 1). 

2. Investigating the patients’ and clinicians’ perspective on AI-systems for skin 

cancer diagnostics to facilitate a more demand-orientated AI development (see 

publication 2). 

3. Exploring decentralized federated learning as a potentially more accessible and 

privacy-preserving alternative for the development of AI-systems for skin cancer 

diagnostics (see publication 3).  

4. Examining various technical approaches for the development of potentially 

more robust diagnostic algorithms with improved generalization capabilities 

(see supplementary publications 1 to 3). 

 



PUBLICATIONS 
 

7 

2 PUBLICATIONS 

2.1 Publication 1: Skin cancer classification via convolutional neural networks: sys-

tematic review of studies involving human experts 

Sarah Haggenmüllera,b, Roman C. Marona,b, Achim Heklera,b, Jochen S. Utikalc,d, Ca-

tarina Baratae, Raymond L. Barnhillf, Helmut Beltraminellig, Carola Berkingh, Brigid 

Betz-Stableini, Andreas Blumj, Stephan A. Braunk,l, Richard Carrm, Marc Combalian, 

Maria-Teresa Fernandez-Figueraso, Gerardo Ferrarap, Sylvie Fraitagq, Lars E. 

Frenchr,ax, Frank F. Gellrichs, Kamran Ghoreschit, Matthias Goebeleru, Pascale 

Guiterav,w, Holger A. Haensslex, Sebastian Haferkampy, Lucie Heinzerlingr, Markus V. 

Heppth, Franz J. Hilket, Sarah Hobelsbergers, Dieter Krahlz, Heinz Kutzneraa, Aimilios 

Lallasab, Konstantinos Liopyrisac, Mar Llamas-Velascoad, Josep Malvehyn, Friedegund 

Meiers, Cornelia S.L. Müllerae, Alexander A. Navariniaf, Cristián Navarrete-Dechentag, 

Antonio Perasoleah, Gabriela Pocht, Sebastian Podlipnikn, Luis Requenaai, Veronica 

M. Rotembergaj, Andrea Sagginiaa, Omar P. Sanguezaak, Carlos Santonjaal, Dirk 

Schadendorfb,am, Bastian Schillingu, Max Schlaakt, Justin G. Schlagerr, Mildred Ser-

gons, Wiebke Sondermannam, H. Peter Soyeri, Hans Starzan, Wilhelm Stolzao, Es-

meralda Valeap, Wolfgang Weyersaq, Alexander Zinkar, Eva Krieghoff-Henninga,b, 

Jakob N. Katheras, Christof von Kalleat, Daniel B. Lipkab,au, Stefan Fröhlingb,au, Axel 

Hauschildav, Harald Kittleraw, Titus J. Brinkera,b,*  

a Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research 

Center (DKFZ), Heidelberg, Germany 

b German Cancer Consortium (DKTK), Heidelberg, Germany 

c Department of Dermatology, Heidelberg University, Mannheim, Germany  



PUBLICATIONS 
 

8 

d Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany 

e Institute for Systems and Robotics (ISR/IST), Instituto Superior Técnico, University of Lisbon, Portugal 

f Departments of Pathology and Translational Research, Institut Curie, Paris, France 

g Department of Dermatology, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland  

h Department of Dermatology, University Hospital Erlangen, Erlangen, Germany  

i The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Cen-

tre, Brisbane, Australia 

j Public, Private and Teaching Practice of Dermatology, Konstanz, Germany 

k Department of Dermatology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany  

l Department of Dermatology, University Hospital Münster, Germany 

m Department of Pathology, Warwick Hospital, Warwick, UK 

n Department of Dermatology, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, Ciber de Enferme-

dades Raras ISCIII, Barcelona, Spain 

o Hospital Universitari General de Catalunya, Grupo Quironsalud, Universitat Internacional de Catalunya, Sant 

Cugat Del Vallés, Barcelona, Spain 

p Anatomic Pathology Unit, Macerata General Hospital, Macerata, Italy 

q Department of Pathology, University Paris Descartes, Necker-Enfants Malades Hospital, Assistance Publique 

Hospitals of Paris, Paris, France 

r Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany 

s Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases Dresden, Depart-

ment of Dermatology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany 

t Charité – Universitätsmedizin Berlin, Department of Dermatology, Venereology and Allergology, Berlin, Germany 

u Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany 

v Sydney Melanoma Diagnostic Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia 

w Melanoma Institute Australia, And the University of Sydney, Australia 

x Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany 

y Department of Dermatology, University Hospital Regensburg, Regensburg, Germany 

z Dres. Krahl Dermatopathology, Heidelberg, Germany 

aa Dermatopathology Friedrichshafen, Friedrichshafen, Germany 

ab First Department of Dermatology, School of Medicine, Faculty of Health Sciences, Aristotle University, 



PUBLICATIONS 
 

9 

Thessaloniki, Greece 

ac Memorial Sloan Kettering Cancer Center, New York, NY, USA 

ad Department of Dermatology, University Hospital La Princesa, Madrid, Spain 

ae Institute for Histology, Cytology and Molecular Diagnostic, Trier, Germany 

af Department of Dermatology, University Hospital of Basel, Switzerland 

ag Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile 

ah Anatomic and Cytopathology, Az. ULSS 8 Berica, Regione Veneto, Ospedale San Bortolo, Vicenza, Italy 

ai Dermatology Department, Hospital Fundación Jiménez Díaz, Madrid, Spain 

aj Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA 

ak Dermatopathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA 

al Pathology Department, Fundación Jiménez Díaz, Madrid, Spain 

am Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-

Essen, Essen, Germany 

an Dermpath München, Munich, Germany 

ao Department of Dermatology, Allergology and Environmental Medicine II, Hospital Thalkirchner Street, Munich, 

Germany  

ap Department of Dermatology and Dermatopathology, Hospital da Luz, Lisbon, Portugal 

aq Center for Dermatopathology, Freiburg, Germany 

ar Department of Dermatology and Allergy, Faculty of Medicine, Technical University of Munich, 80802, Munich, 

Germany  

as Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany 

at Department of Clinical-Translational Sciences, Charité – University Medicine and Berlin Institute of Health 

(BIH), Berlin, Germany 

au Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and 

German Cancer Research Center (DKFZ), Heidelberg, Germany 

av Department of Dermatology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany 

aw ViDIR Group, Department of Dermatology, Medical University of Vienna, Vienna, Austria 

ax Dr. Philip Frost, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Med-

icine, Miami, FL, USA  



PUBLICATIONS 
 

10 

* Corresponding author: Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), Ger-

man Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, Heidelberg, 69120, Germany. E-mail address: 

titus.brinker@dkfz.de (T.J. Brinker).  

The original publication is available at DOI: https://doi.org/10.1016/j.ejca.2021.06.049 
 

2.1.1 Abstract 

Background: Multiple studies have compared the performance of AI–based models 

for automated skin cancer classification to human experts, thus setting the cornerstone 

for a successful translation of AI-based tools into clinicopathological practice. 

Objective: The objective of the study was to systematically analyse the current state 

of research on reader studies involving melanoma and to assess their potential clinical 

relevance by evaluating three main aspects: test set characteristics (holdout/out-of-

distribution data set, composition), test setting (experimental/clinical, inclusion of 

metadata) and representativeness of participating clinicians. 

Methods: PubMed, Medline and ScienceDirect were screened for peer-reviewed 

studies published between 2017 and 2021 and dealing with AI-based skin cancer 

classification involving melanoma. The search terms skin cancer classification, deep 

learning, convolutional neural network (CNN), melanoma (detection), digital 

biomarkers, histopathology and whole slide imaging were combined. Based on the 

search results, only studies that considered direct comparison of AI results with 

clinicians and had a diagnostic classification as their main objective were included. 

Results: A total of 19 reader studies fulfilled the inclusion criteria. Of these, 11 CNN-

based approaches addressed the classification of dermoscopic images; 6 

concentrated on the classification of clinical images, whereas 2 dermatopathological 

studies utilised digitised histopathological whole-slide images. 

Conclusions: All 19 included studies demonstrated superior or at least equivalent 

performance of CNN-based classifiers compared with clinicians. However, almost all 
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studies were conducted in highly artificial settings based exclusively on single images 

of the suspicious lesions. Moreover, test sets mainly consisted of holdout images and 

did not represent the full range of patient populations and melanoma subtypes 

encountered in clinical practice. 

 

2.1.2 Introduction 

Although MM accounts for only 4% of skin cancers, it is responsible for about 75% of 

all skin cancer-associated deaths. Early detection and diagnosis are critical for survival 

chances of affected patients [45]. 

 

Early diagnosis, however, may be difficult, as MM and atypical melanocytic nevi fre-

quently present with morphological overlap. Although dermoscopy improves diagnostic 

accuracy compared with naked eye examination [9], even specialists rarely achieve 

sensitivity levels above 80% [10]. Beyond that, a significant variance depending on 

training and professional experience can be observed [30]. 

 

In case of a suspected MM, skin biopsy is routinely performed to enable histopatho-

logical examination. Although histopathological analysis is currently considered the 

gold standard for skin cancer diagnosis, it is time-consuming, labour-intensive and can 

also be inconclusive in borderline cases. Previous studies revealed a discordance be-

tween individual pathologists for MM classification of up to 25% [13,15,30]. 

 

Against this backdrop, accurate distinction between benign and malignant skin lesions 

as well as the exact classification of skin cancer types through digital biomarkers is of 

great interest to reduce the number of missed MM as well as unnecessary excisions. 

https://paperpile.com/c/LvwbJz/qwOu
https://paperpile.com/c/LvwbJz/PoFm
https://paperpile.com/c/LvwbJz/Q4UC
https://paperpile.com/c/LvwbJz/Y5Zjz
https://paperpile.com/c/LvwbJz/Y5Zjz+Q6qnK+o1AX
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Digital biomarkers are data-driven indicators that provide information about the char-

acteristics of a lesion and may predict health-related outcomes. 

 

CNNs are deep neural networks with an architecture specifically designed for image 

analysis that are commonly trained via supervised learning. This means that CNNs use 

labelled data, for example dermoscopic images with their corresponding diagno-

sis/ground truth, to learn a relationship between the input data and the labels. Based 

on that, CNNs are able to apply learned operations to unknown images and classify 

them based on the extracted features. Because diagnosis in clinical dermatology and 

dermatopathology is largely based on the recognition of visual patterns, the use of 

CNNs could help to develop additional and/or improved clinically meaningful digital 

biomarkers [29]. 

 

This systematic review presents state of the art AI-based automated skin cancer clas-

sification involving MM and comparing AI results with human experts. The included 

studies have been reviewed with particular reference to the clinical relevance of the 

reported results, thereby reflecting the actual impact and the forthcoming challenges 

expected with the implementation of AI-based classifiers into clinicopathological rou-

tine. 

 

2.1.3 Material and methods 

 
Search strategy 

In 2017, Esteva et al. [27] first reported on a deep learning CNN-based image classifier 

that outperformed 21 board-certified dermatologists in the classification of clinical and 

dermoscopic images. We therefore screened PubMed, Medline and ScienceDirect for 

https://paperpile.com/c/LvwbJz/aV46s
https://paperpile.com/c/LvwbJz/22Qs6
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peer-reviewed studies published in English between 2017 and 2021 (search terms last 

accessed on 02/17/2021). The following search terms were combined: skin cancer 

classification, deep learning, convolutional neural network(s), melanoma (detection), 

digital biomarkers, histopathology and whole slide imaging (for a detailed overview of 

the comprehensive search strategy, see Tabular Appendix 1). 

Study selection 

Search results were screened manually. Only publications that fulfilled the inclusion 

criteria listed in the following were selected (for a detailed overview of the systematic 

search procedure in accordance with PRISMA, see Supplementary Figure 1). First, 

only studies that contained direct comparisons of AI classifiers with human experts 

were included, as these approaches better demonstrate the potential value of AI-based 

classifiers in clinicopathological practice. Non-comparative approaches (e.g., [35,46–

48]) were excluded. Furthermore, only studies involving the diagnosis of MM were 

evaluated. As MM is the skin cancer subtype that is associated with the most skin 

cancer-related deaths, we discarded studies that completely excluded the diagnosis of 

MM (e.g., [49]). Finally, only studies that had a diagnostic classification as their main 

task were included. Studies concentrating on prognostic factors such as therapy re-

sponse or long-term survival were explicitly not addressed (e.g., [50,51]). Data were 

extracted from peer-reviewed articles exclusively. Data quality was assessed inde-

pendently by two reviewers. 

Study analysis 
 
The included studies were reviewed with particular reference to the potential clinical 

relevance of the reported results by assessing three main aspects: test set 

https://paperpile.com/c/LvwbJz/o43x+wsFNv+vUpAt+qGjT
https://paperpile.com/c/LvwbJz/o43x+wsFNv+vUpAt+qGjT
https://paperpile.com/c/LvwbJz/vz4E
https://paperpile.com/c/LvwbJz/fICk+en5q
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characteristics (holdout/out-of-distribution data set, composition), test setting (experi-

mental/clinical, inclusion of metadata) and representativeness of the included clini-

cians. 

Holdout data refer to data obtained from the same overall data set as the data used for 

training and validation of the algorithm. Thus, the test set follows the same probability 

distribution as the training set. Conversely, out-of-distribution data do not follow the 

training distribution and are often referred to as an external test set (e.g., from external 

clinics). 

Study performance metrics 
 
In this systematic review, we focus on the performance metrics accuracy, sensitivity 

and specificity. 

Accuracy is a meaningful metric if different classes within the test set are more or less 

evenly distributed and if the overall performance is of interest and not the performance 

for a specific class. Accuracy indicates the percentage of correctly classified skin le-

sions, that is the percent ratio between the total number of correctly classified lesions 

and the overall number of examined lesions. 

Sensitivity and specificity are not influenced by class imbalances and better reflect the 

performance for a specific class. However, both metrics require a dichotomous classi-

fication, where only one positive and one negative class are considered (e.g., MM vs. 

melanocytic nevus, benign vs. malignant or one class vs. the rest in a multiclass clas-

sification setting). Sensitivity is calculated based on the actual positive cases; it is the 

percent ratio between cases that are correctly assigned as positive in comparison with 
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the overall number of positive cases contained in the data set. By contrast, specificity 

is determined on the basis of the actual negative cases; it is the percent ratio between 

cases correctly allocated as negative and all negative cases of the data set. 

2.1.4 Results 

A total of 19 comparative studies (since Esteva et al.'s [27] seminal article) were pub-

lished that fulfilled the inclusion criteria. Most of the studies focused on dermoscopic 

images (n = 11) [25,26,28–32,52–55], followed by clinical image (n = 6) [18–22,24] and 

histopathological whole-slide image studies (n = 2) [33,34] (see Figure 1). In the fol-

lowing, the term histopathological whole-slide images refers to digitised hematoxylin-

eosin-stained tissue sections processed with specialised slide scanners. 

 

Figure 1. Categorisation of the included studies based on the type of input data. Based on the input data, the 

included studies are grouped into three categories: those based on dermoscopic images [25,26,28–32,52–55], 

those based on clinical images  [18–22,24] and those based on histopathological whole-slide images [33,34]. WSI: 

whole slide image 

 

 
Automated skin cancer classification of dermoscopic images 

Eleven studies based on the classification of dermoscopic images fulfilled the inclusion 

criteria (see Table 1). Out of these, eight publications were based on a binary classifi-

cation system. Tabular Appendix 2 contrasts the training and testing procedures of 

these approaches.

https://paperpile.com/c/LvwbJz/22Qs6
https://paperpile.com/c/LvwbJz/Skl2B+qhiQS+SFHfm+emMSU+vNuro+QT65p+FuBPG+T1mhW+NWYun+Y5Zjz+aV46s
https://paperpile.com/c/LvwbJz/u5b8+b53y+Bxf72+AsX8+uPIoC+oWASx
https://paperpile.com/c/LvwbJz/ZQlIX+PIJ1D
https://paperpile.com/c/LvwbJz/Skl2B+qhiQS+SFHfm+emMSU+vNuro+QT65p+FuBPG+T1mhW+NWYun+Y5Zjz+aV46s
https://paperpile.com/c/LvwbJz/u5b8+b53y+Bxf72+AsX8+uPIoC+oWASx
https://paperpile.com/c/LvwbJz/ZQlIX+PIJ1D
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Table 1. Overview reader studies based on dermoscopic images. 

reader 
study 

comparison with scope of the reader study test 
set 

meta- 
data y/n 

origin of the reader study test set (Hold-
out/OOD) 

setting 
c/e 

classification task  results  

Brinker et 
al. [26] 

157 dermatologists  
- 151 university hospital-based from 12  
  university hospitals in Germany: 
      - 88 junior clinicians 
      - 15 attendings 
      - 45 senior clinicians 
      - 3 chief clinicians 
- 6 dermatologists in private practice 

100 images, randomly se-
lected out of 20 735 images 
available at ISIC 

n ISIC image archive (Holdout) e binary: melanoma/ 
melanocytic nevi 

CNN outper-
formed 136 out 
of 157 dermatol-
ogists 

Brinker et 
al. [52]  

144 dermatologists from 9 university hos-
pitals in Germany 
- 92 junior clinicians 
- 52 board-certified dermatologists 

6 subsets consisting of 134 
images each, 804 images in 
total  

n ISIC image archive (Holdout) e binary: melanoma/ 
melanocytic nevi 

significant supe-
riority of the 
CNN  

Yu et al. 
[53] 

- 2 general physicians  
- 2 experienced dermatologists  

2 subsets consisting of 362 
images each, 724 images to-
tal 

n Severance Hospital in the Yonsei Univer-
sity Health System, Seoul, Korea (Hold-
out), 
Dongsan Hospital in the Keimyung Univer-
sity Health System, Daegu, Korea (Hold-
out) 

e binary: acral mela-
noma/ 
melanocytic nevi 

comparable per-
formance  

Marchetti et 
al. [54] 

8 experienced dermatologists from 4 dif-
ferent countries 

randomly selected 100 im-
ages out of 379 images 

n ISBI 2016 challenge, ISIC image archive 
(Holdout) 

e binary: malignant/ 
benign; biopsy/ 
observation or re-
assurance 

significant supe-
riority of the 
CNN-ensemble  

Marchetti et 
al. [55] 

17 dermatologists 
- 8 dermatologists from 4 countries 
- 9 dermatologists in private practice from  
  the United States  

randomly selected 150 im-
ages out of 600 images 

n ISIC image archive (Holdout) e binary: melanoma/ 
non-melanoma;  
biopsy/observation 

significant supe-
riority of the 
CNN  

Haenssle et 
al. [30] 

58 dermatologists from 17 countries, in-
cluding 30 experts with more than 5 years 
of dermoscopic experience 

selected 100 images with in-
creased difficulty out of 300 
images 
I) dermoscopy only 
II) in addition: clinical infor-
mation and close-up images 

y Department of Dermatology, University of 
Heidelberg, Germany (OOD) 

e binary: melanoma/ 
melanocytic nevi; 
excision or short-
term follow/ no ac-
tion 

significant supe-
riority of the 
CNN  

Haenssle et 
al. [31] 

96 dermatologists  
- 17 beginners 
- 29 skilled 

100 images with increased 
difficulty 
I) dermoscopy only   

y Department of Dermatology, University of 
Heidelberg, Germany (OOD) 

e binary: (pre)malig-
nant/ benign; exci-
sion or 

comparable per-
formance 

https://paperpile.com/c/C4vaOw/oi9I
https://paperpile.com/c/C4vaOw/QYbw
https://paperpile.com/c/C4vaOw/YO0u
https://paperpile.com/c/C4vaOw/9Ndu
https://paperpile.com/c/C4vaOw/rBdg
https://paperpile.com/c/C4vaOw/Mk0T
https://paperpile.com/c/C4vaOw/7EFA
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- 40 experts 
- 10 provided no information 

II) in addition: clinical infor-
mation and close-up images 

treatment/follow up 
or no action 

Haenssle et 
al. [32] 

64 dermatologists  
- 9 beginners 
- 20 skilled 
- 30 experts  
- 5 unknown  

100 images of face and scalp 
lesions in total  
I) dermoscopy only   
II) in addition: clinical infor-
mation and close-up images 

y Department of Dermatology, University of 
Heidelberg, Germany (OOD) 
Department of Dermatology Hospital Thal-
kirchner Street, Munich, Germany (OOD) 
Department of Dermatology, Medical Uni-
versity Graz, Austria (OOD) 
First Department of Dermatology, Aristotle 
University, Thessaloniki, Greece (OOD) 
Dermatology Office based clinic of Derma-
tology, Konstanz, Germany (OOD) 

e binary: malignant/ 
benign; excision or 
treatment/follow up 
or no action  

significant supe-
riority of the 
CNN 

Tschandl et 
al. [28]  

511 participants from 63 countries includ-
ing 283 board-certified dermatologists, 
118 dermatologists in private practice and 
83 general practitioners  

randomly selected 30 images 
per participant out of 1 511 
images  

n HAM10000 data set, ISBI 2018 challenge, 
ISIC image archive (Holdout), 
additional images from Turkey, New Zea-
land, Sweden and Argentina (OOD) 

e multiclass (7) significant supe-
riority of the 
CNN  

Maron et al. 
[25] 

112 dermatologists  
- 108 university hospital-based from 13  
  university hospitals in Germany: 
   - 67 junior clinicians 
  - 12 attendings  
  - 28 senior clinicians 
   - 1 chief physician 
- 4 dermatologists in private practice 

6 subsets consisting of 50 im-
ages, 300 images in total 
  

n HAM10000 data set (Holdout) e binary: malignant/ 
benign; 
multiclass (5) 

significant supe-
riority of the 
CNN  

Tschandl et 
al. [29]  

95 human raters (medical personnel), in-
cluding 62 board-certified dermatologists  

randomly selected 50 images 
per participant out of 2 072 
images  

n Primary skin cancer clinic in Queensland, 
Australia (Holdout),  
Department of Dermatology of the Medical 
University of Vienna, Austria (OOD), 
additional images from dermatologists from 
Sweden, Italy, Austria, France, Turkey, 
Germany (OOD) 

e multiclass (8) comparable per-
formance  

metadata (additional information for readers beyond image input, e.g., age, gender, localization of the suspicious lesion) 
y (yes) 
n (no)  
c (clinical setting) 
e (experimental setting) 

https://paperpile.com/c/C4vaOw/oD1e
https://paperpile.com/c/C4vaOw/ikWA
https://paperpile.com/c/C4vaOw/2EpW
https://paperpile.com/c/C4vaOw/ncuQ
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Brinker et al. [26] fine-tuned an algorithm for the binary discrimination between MM 

and melanocytic nevus. To compare the classifier performance with results obtained 

by human experts, 157 dermatologists indicated their corresponding management de-

cision (biopsy or further treatment vs. reassurance of the patient) for 100 test images. 

This is how the authors compiled the most comprehensive binary dermoscopic reader 

study to date. Overall, the CNN outperformed 136 of 157 dermatologists across differ-

ent levels of experience in terms of average specificity and sensitivity. 

 

Subsequently, Brinker et al. [52] carried out a follow-up study comparing the diagnostic 

performance of the CNN with 144 dermatologists. In that study, only images with a 

histology-proven groundtruth (i.e., images of lesions suspicious for MM) were taken 

into consideration, thus presumably increasing the overall difficulty of the test set. 

Nonetheless, for the first time, CNN-based MM classification was significantly superior 

to junior and board-certified dermatologists (82.3% vs. 68.9%/63.2% sensitivity and 

77.9% vs. 58.0%/65.2% specificity, p < 0.001). 

 

Yu et al. [53] developed an algorithm focusing on a binary classification (MM vs. mel-

anocytic nevus) of lesions of the acral skin. The authors compared their CNN with the 

results achieved by two experienced dermatologists as well as with two non-trained 

general physicians. The CNN achieved mean sensitivity, specificity and accuracy lev-

els that were comparable with those of the experienced dermatologists (92.6%, 71.8% 

and 81.9% vs. 96.6%, 67.0% and 81.4%), thus illustrating the potential of CNN-based 

automated melanoma detection for special subtypes such as acral MM on the hands 

and feet. 

 

https://paperpile.com/c/LvwbJz/Skl2B
https://paperpile.com/c/LvwbJz/qhiQS
https://paperpile.com/c/LvwbJz/emMSU


PUBLICATIONS 
 

19 

Marchetti et al. [54] published the first dermoscopic comparative study that used an 

ensemble approach to combine the classifier predictions of 25 participating teams of 

the International Symposium on Biomedical Imaging (ISBI) 2016 challenge. By inves-

tigating five different fusion approaches, the authors demonstrated that the top fusion 

approach was able to outperform eight experienced dermatologists. This was signifi-

cant for both the binary classification of malignancy (at dermatologists' sensitivity of 

82%: 76% vs. 59% specificity, p = 0.02) and for the consideration of management 

decisions (at dermatologists’ sensitivity of 89%: 64% vs. 47% specificity, p = 0.02). In 

2020, Marchetti et al. [55] proposed a similar reader study in which the best performing 

algorithm of the ISBI 2017 challenge significantly outperformed eight dermatologists 

and nine dermatology residents (p < 0.001). 

 
Haenssle et al. [30] were the first to give additional clinical information to the clinicians 

within the reader study. The authors proposed a binary classification approach for au-

tomated MM classification and compared the diagnostic accuracy of the CNN with the 

results obtained by 58 dermatologists. The study was divided into two levels. In level I, 

participants reviewed the test set online and indicated their corresponding diagnosis 

(MM vs. melanocyctic nevus) as well as management decision (excision or short-term 

follow-up vs. no action) based solely on one dermoscopic image. In level II, the same 

dermatologists diagnosed the identical test set, but with additional clinical information 

and close-up images. Although additional information improved the diagnostic accu-

racy of the dermatologists, the CNN still significantly outperformed the average of the 

participants (at dermatologists’ sensitivity of 88.9%: 82.5% vs. 75.7% specificity, 

p < 0.01). 

 

https://paperpile.com/c/LvwbJz/vNuro
https://paperpile.com/c/LvwbJz/QT65p
https://paperpile.com/c/LvwbJz/Y5Zjz
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In 2020, Haenssle et al. [31] replicated their previous reader study by comparing an 

updated version of their CNN with the results achieved by 96 dermatologists. In that 

study, they included a broader spectrum of disease classes (n = 10) which had to be 

classified into (pre)malignant and benign lesions. When fixing the specificity of the CNN 

at the dermatologists' mean specificity for their management decision in level II 

(80.4%), the sensitivity of the CNN was almost equal to that of human raters (95.0% 

vs. 94.1%). 

 

Moreover, Haenssle et al. [32] proposed a reader study that focused exclusively on 

suspicious lesions of the face and scalp. In level II of that study, the CNN significantly 

outperformed 64 human experts in terms of management decision (at dermatologists' 

specificity of 69.4%: 96.2% vs. 84.2% sensitivity, p < 0.001). This difference resulted 

in an average of 6.2 more malignant lesions missed by dermatologists compared with 

the CNN (CNN: 2/52, dermatologists’ mean: 8.2/52), thus outlining that the potential of 

CNN-based automated skin cancer classification can also be extended to special an-

atomic sites such as the face and scalp. 

 

Three dermoscopic approaches expanded on the binary perspective (e.g., MM vs. mel-

anocytic nevus, benign vs. malignant) presented by Brinker et al. [26,52], Yu et al. [53], 

Marchetti et al. [54,55] and Haenssle et al. [30–32], by carrying out multiclass classifi-

cation tasks which covered more fine-grained diagnoses (see Table 1) [25,28,29]. 

Tabular Appendix 2 outlines similarities and differences of these multiclass ap-

proaches with regard to individual training and testing procedures. 

 

In 2019, Tschandl et al. [28] compared the results obtained by 139 algorithms in the 

ISBI 2018 challenge with those obtained by 511 human readers, including 283 board-

https://paperpile.com/c/LvwbJz/SFHfm
https://paperpile.com/c/LvwbJz/NWYun
https://paperpile.com/c/LvwbJz/Skl2B+qhiQS
https://paperpile.com/c/LvwbJz/emMSU
https://paperpile.com/c/LvwbJz/QT65p+vNuro
https://paperpile.com/c/LvwbJz/Y5Zjz+SFHfm+NWYun
https://paperpile.com/c/LvwbJz/aV46s+FuBPG+T1mhW
https://paperpile.com/c/LvwbJz/FuBPG
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certified dermatologists, 118 dermatology residents and 83 general practitioners. This 

comparative approach constitutes the most comprehensive multiclass reader study to 

date. Regarding the discrimination between MM and six other skin diseases (for a more 

detailed specification of the classes, see Tabular Appendix 5), the algorithms 

achieved an average of 19.9 correct diagnoses out of 30 with participants achieving 

an average of 17.9 correct diagnoses (p < 0.0001). 

 

Maron et al. [25] proposed a similar reader study to Tschandl et al. [28] by developing 

a classifier to differentiate between MM and four other skin disease classes (see Tab-

ular Appendix 5). In that study, the CNN significantly outperformed 112 dermatolo-

gists from different levels of experience in the correct classification of images into five 

diagnostic categories (at dermatologists' sensitivity of 56.5%: 98.8% vs. 89.2% speci-

ficity, p < 0.001). 

Tschandl et al. [29] were the first to propose a reader study integrating two different 

image types. They combined a CNN trained with dermoscopic images and a CNN 

trained on clinical close-up images into a combined CNN (cCNN). Focussing on 

amelanotic skin lesions, the authors showed that the cCNN was able to differentiate 

between MM and seven other skin diseases (see Tabular Appendix 5) with compa-

rable performance with that of 95 human raters (at participants’ specificity of 51.3%: 

80.5% vs. 77.6% sensitivity). 

 

Automated skin cancer classification of clinical images 

A total of six CNN-based classification approaches using clinical images fulfilled the 

inclusion criteria of this systematic review (see Table 2). Tabular Appendix 3 outlines 

the training and testing procedure of each individual approach.

https://paperpile.com/c/LvwbJz/T1mhW
https://paperpile.com/c/LvwbJz/FuBPG
https://paperpile.com/c/LvwbJz/aV46s
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Table 2. Overview reader studies based on clinical images. 

reader 
study 

comparison with scope of the reader study test 
set 

meta-
data 
y/n 

origin of the reader study test set (Hold-
out/OOD) 

set-
ting 
c/e 

binary/ 
multiclass  

results 

Fujisawa et 
al. [18] 

22 dermatologists 
- 9 dermatologic trainees 
- 13 board-certified  

randomly selected 140 images 
per participant out of 1 142 im-
ages  

n University of Tsubuka Hospital, Japan 
(Holdout) 

e binary: malignant/benign, 
multiclass (14) 

significant superiority 
of the CNN  

Jinnai et al. 
[21] 

20 dermatologists  
- 10 dermatologic trainees 
- 10 board-certified 

randomly selected 10 test 
samples of 200 images out of 
1 114 images 

n Dermatologic Oncology in the National 
Cancer Center, Tokyo (Holdout) 

e binary:  
malignant/benign, 
multiclass (6) 

significant superiority 
of the CNN  

Han et al. 
[20] 

binary: 
47 dermatologists 
- 21 board-certified  
- 26 dermatologists in private  
  practice 
 
multiclass: 
4 dermatologists 
- 2 board-certified  
- 2 dermatology residents 

randomly selected 240 images 
out of 2 201 images 

n SNU data set (OOD) e binary: malignant/benign,  
multiclass (134) 

binary: 
on par performance  
 
multiclass: 
comparable, but 
slightly worse perfor-
mance of the CNN 

Han et al. 
[22] 

16 dermatologist board members 
- 6 clinicians (>10 years of experi-
ence) 
- 10 professors 

randomly selected 480 im-
ages  
1) 260 images of 12 disorders 
out of 1276 images 
2) 220 images of 10 disorders 
out of 1300 images  

n 1) Asan test set (Holdout)  
2) Edinburgh data set (OOD) 

e multiclass 
(12) 

on par performance 

Brinker et al. 
[24] 

145 dermatologists 
- 142 university hospital-based: 
  - 88 junior clinicians 
   - 16 attendings 
   - 35 senior clinicians 
   - 3 chief clinicians 
   - 3 dermatologists in private  
    practice 

100 images n MClass-Benchmark obtained from the 
MED-NODE database (OOD) 

e binary: 
melanoma/ melanocytic 
nevi 

on par performance 

https://paperpile.com/c/C4vaOw/0OkF
https://paperpile.com/c/C4vaOw/AzXW
https://paperpile.com/c/C4vaOw/ZcwW
https://paperpile.com/c/C4vaOw/zK0x
https://paperpile.com/c/C4vaOw/9OMX
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Han et al. 
[19] 

1) 65 attending clinicians 
2) 44 board-certified dermatolo-
gists 

1) 40 331 images from 10 426 
cases of 43 disorders* 
2) randomly selected 44 image 
batches of 30 patients out of 5 
065 images 

n Department of Dermatology, Sever-
ance Hospital in Seoul, Korea (OOD) 

1) c 
2) e 

binary: 
malignant/benign, 
multiclass (32) 

1) significant superior-
ity of the attending cli-
nicians 
2) binary:  
on par performance 
multiclass: 
significant superiority 
of the CNN 

*For multiclass classification 39 721 images from 10 315 cases of 32 disorders remained, after excluding cases belonging to too small and untrained classes. 

metadata (additional information for readers beyond image input, e.g., age, gender, localization of the suspicious lesion) 

y (yes) 

n (no)  

c (clinical setting) 

e (experimental setting) 

 

Table 3. Overview reader studies based on histopathological whole-slide images. 

reader 
study 

comparison with scope of the reader 
study test set 

meta-
data 
y/n 

origin of the reader study test set (Holdout/OOD) set-
ting 
c/e 

classification task  results  

Hekler et 
al. [33] 

11 pathologists 100 cropped digit-
ised H&E slides 

n Dermatohistopathologic Institute Dr. D. Krahl, 
Heidelberg, Germany (Holdout) 

e binary: melanoma/ 
melanocytic nevi 

significant superi-
ority of the CNN  

Brinker et 
al. [34] 

18 pathologists from 8 different countries, 
each with at least 5 years of experience  

100 digitised H&E 
slides 

n routine files of 2 expert board-certified dermato-
pathologists from Friedrichshafen, Germany 
(Holdout, 5-fold cross-testing) 

e binary: melanoma/ 
melanocytic nevi 

on par perfor-
mance 

metadata (additional information for readers beyond image input, e.g., age, gender, localization of the suspicious lesion) 

y (yes) 

n (no)  

c (clinical setting) 

e (experimental setting)  

https://paperpile.com/c/C4vaOw/TDGj
https://paperpile.com/c/C4vaOw/Vzky
https://paperpile.com/c/C4vaOw/73iH
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Fujisawa et al. [18] developed an algorithm for the binary discrimination between ma-

lignant and benign lesions, while simultaneously enabling a more fine-grained mul-

ticlass classification into MM and 13 other skin diseases (see Tabular Appendix 5). 

The authors compared the classifier results with those of 13 board-certified dermatol-

ogists as well as nine dermatology trainees. The CNN achieved accuracy levels that 

significantly outperformed both groups with regard to binary (92.4% vs. 85.3%/74.4%, 

p < 0.0001) and multiclass classification (74.5% vs. 59.7%/41.7%, p < 0.0001). 

 

Jinnai et al. [21] proposed a similar reader study than Fujisawa et al. [18]. The authors 

developed an algorithm for the distinction between malignant and benign skin lesions 

as well as for the precise classification into MM and five other disease classes (see 

Tabular Appendix 5). In comparison with 10 dermatologists and 10 dermatology train-

ees, the used CNN significantly outperformed the participants in terms of accuracy for 

the binary (91.5% vs. 86.6%/85.3%, p < 0.01) and the multiclass approach (86.2% vs. 

79.5%/75.1%, p < 0.001). 

 
Han et al. [20] also addressed the binary discrimination between malignant and benign 

lesions and multiclass classification. The developed multiclass model enabled a differ-

entiation into MM and 133 other skin diseases, therefore incorporating the broadest 

spectrum of diagnoses to date (see Tabular Appendix 5). For the binary discrimina-

tion, the classifier performance was comparable with the results obtained by 47 medi-

cal professionals. Regarding the precise classification into the 134 disease categories, 

the CNN performed slightly worse in terms of accuracy (44.8% vs. 49.9%) than two 

board-certified dermatologists and two dermatology residents. 

 

https://paperpile.com/c/LvwbJz/u5b8
https://paperpile.com/c/LvwbJz/b53y
https://paperpile.com/c/LvwbJz/u5b8
https://paperpile.com/c/LvwbJz/Bxf72
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Unlike the previous approaches, Han et al. [22] developed a model which focused ex-

clusively on the multiclass discrimination of MM and 11 other skin diseases (see Tab-

ular Appendix 5). Not only did their model output the diagnosis with the highest prob-

ability for a given image but also give a differential diagnosis once a defined threshold 

for any of the 12 considered disease classes was overcome. Based upon that, an ex-

perimental but more realistic comparison between the classifier performance and the 

diagnostic results of 16 dermatologist board members was possible. The algorithm 

achieved an accuracy of 57.3% and 55.7% on a holdout and out-of-distribution test 

set, respectively, which was comparable with the accuracy obtained by the dermatol-

ogist board members. 

 

Brinker et al. [24] were the first to investigate whether an algorithm benefits from train-

ing on high-resolution dermoscopic images even for clinical classification tasks. The 

authors trained an algorithm with dermoscopic images only and compared the classi-

fier performance with the results of 145 dermatologists in a binary classification task 

on clinical images (MM vs. atypical melanocytic nevi). At dermatologists’ sensitivity of 

68.2%, the CNN achieved a slightly higher, but comparable, specificity (68.2% vs. 

64.4%). For the first time, dermatologist-level image classification was achieved on a 

clinical image classification task without a specific training on clinical images. 

 

Han et al. [19] established a direct comparison between the performance of a CNN-

based classifier and the results obtained by dermatologists for the binary classification 

into malignant and benign lesions, as well as the automated discrimination between 

MM and 31 other skin diseases (see Tabular Appendix 5). The authors were the first 

to provide a clinical image reader study in a clinical setting by incorporating 65 attend-

ing clinicians that recorded their diagnoses during thorough examinations in clinical 

https://paperpile.com/c/LvwbJz/AsX8
https://paperpile.com/c/LvwbJz/oWASx
https://paperpile.com/c/LvwbJz/uPIoC
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practice. The CNN was significantly outperformed by the attending participants regard-

ing the binary (62.7% vs. 70.2% sensitivity and 90.0% vs. 95.6% specificity, p < 0.0001) 

and the multiclass classification task (42.6% vs. 65.4% accuracy). However, when con-

ducting the reader study with 44 board-certified dermatologists that reviewed multiple 

images of the affected lesions in an experimental setting, the CNN achieved compara-

ble results for the binary discrimination of images (66.9% vs. 65.8% sensitivity and 

87.4% vs. 85.7% specificity) and significantly superior accuracy for the multiclass clas-

sification into 32 skin disorders (49.5% vs. 37.7%). 

 

Automated skin cancer classification of histopathological whole-slide images 

Whole-slide image scanners have enabled the efficient digitisation of haematoxylin-

eosin-stained tissue sections, thereby setting the cornerstone for the development of 

AI-based digital skin cancer biomarkers for histopathology (e.g., [35,47]). Besides the 

proposed clinical and dermoscopic studies, two comparative approaches using histo-

pathological whole-slide images met the inclusion criteria of this systematic review (see 

Table 3) [33,34]. Tabular Appendix 4 summarises the training and testing procedures 

of both approaches. 

 

Hekler et al. [33] were the first to compare the performance of a CNN developed for 

the classification of cropped image sections of whole-slide images with the results ob-

tained by 11 pathologists. The CNN significantly outperformed the participants in terms 

of mean sensitivity, specificity and accuracy (76.0%, 60.0% and 68.0% vs. 51.8%, 

66.5% and 59.2%, p = 0.016). 

 

Brinker et al. [34] compared the ability of a CNN ensemble to differentiate MM from 

benign melanocytic nevi with that of 18 international expert pathologists using the 

https://paperpile.com/c/LvwbJz/wsFNv+vUpAt
https://paperpile.com/c/LvwbJz/PIJ1D+ZQlIX
https://paperpile.com/c/LvwbJz/ZQlIX
https://paperpile.com/c/LvwbJz/PIJ1D
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entire whole-slide images instead of cropped image sections. Even when the tumour 

region was not annotated before training, the CNN ensemble achieved comparable 

results with that of the participants in terms of mean sensitivity, specificity and accuracy 

(88.0%, 88.0% and 88.0% vs. 88.9%, 91.8% and 90.3%). 

2.1.5 Discussion 

 
Principal findings 

All 19 included reader studies demonstrated an at least equivalent classification per-

formance of CNNs and clinicians. This was true not only for binary classification tasks 

but also for multiclass classification tasks, which reflect better the clinically relevant 

differential diagnosis. The included studies covered three main image types (dermo-

scopic, clinical and histopathological whole-slide images). Because the study designs 

were very heterogeneous and a direct comparison among them was mostly not possi-

ble, our discussion is mainly focused on their potential clinical relevance. 

 

Test set characteristics 

While a large proportion of clinical reader studies based their comparison on out-of-

distribution test sets [19,20,22,24] (see Table 2), the vast majority of dermoscopic and 

histopathological approaches (8 out of 13, see Table 1, Table 3) grounded their reader 

study on holdout images exclusively. While this may partially be due to the limited 

amount of publicly available data sets for histopathological whole-slide images, there 

are already several public dermoscopic data sets available. This makes the omission 

of external testing for dermoscopic studies questionable. The authors of a large inter-

national challenge which included many AI models competing against hundreds of cli-

nicians [28] showed that the difference between human experts and the top three chal-

lenge algorithms was significantly lower for test images that came from a different 

https://paperpile.com/c/LvwbJz/Bxf72+AsX8+uPIoC+oWASx
https://paperpile.com/c/LvwbJz/FuBPG
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source than the training images. This highlights that generalisability to out-of-distribu-

tion data is not guaranteed. To provide comparisons that account for the variance be-

tween image records from different sources, as in clinical reality, reader studies that 

allow classifiers to be evaluated on out-of-distribution images (e.g., from external clin-

ics) should be considered the gold standard for future research [44,56]. 

 

To achieve more general statements about the performance of automated skin cancer 

classification in comparison with clinicians, it is important to use test data that are as 

representative of the world population as possible and at least include the relevant skin 

diseases that are commonly encountered in clinical practice. Navarrete-Dechent et 

al. [44], for example, showed that the sensitivity of a skin cancer algorithm was con-

siderably lower when applied to a different patient population, thus limiting its general-

isability. However, few studies have explicitly expanded their test data with skin lesions 

from different ethnicities to ensure diversity of skin types [28,29]. Regarding the 6 clin-

ical reader studies, 3 of these studies recruited images from an Asian skin-type popu-

lation exclusively. On the other hand, the images of the ISIC database (used as a test 

set for 6 out of 11 dermoscopic reader studies) mainly encompassed light-skinned skin 

lesions from patients in Europe, Australia and the United States, whereas Asian and 

dark-skinned populations were underrepresented. Yu et al. [53], Haenssle et al. [32] 

and Tschandl et al. [29] proved the potential of CNN-based classification for special 

anatomic sites such as the face and scalp [32] or acral MM on the hands and feet [53], 

as well as rare subtypes such as amelanotic MM [29]. However, other special anatomic 

sites (e.g., genital area), rare subtypes (e.g., mucosal or desmoplastic MM) and the 

simultaneous incorporation of all relevant factors for a representative test set compo-

sition (i.e., diversity of skin types, skin diseases and anatomical sites) remain poorly 

investigated. 

https://paperpile.com/c/LvwbJz/vaxT+7oqH
https://paperpile.com/c/LvwbJz/FuBPG+aV46s
https://paperpile.com/c/LvwbJz/emMSU
https://paperpile.com/c/LvwbJz/NWYun
https://paperpile.com/c/LvwbJz/aV46s
https://paperpile.com/c/LvwbJz/NWYun
https://paperpile.com/c/LvwbJz/emMSU
https://paperpile.com/c/LvwbJz/aV46s


PUBLICATIONS 
 

29 

Test setting 

One possible limitation of almost all proposed publications (18 out of 19, see Table 1, 

Table 2, Table 3) is the experimental test setting of the conducted reader studies. The 

decision-making basis of 14 of the 19 (see Table 1, Table 2, Table 3) included reader 

studies was limited to a single image of the suspicious skin lesion. Haenssle et al. [30–

32] showed that dermatologists performed somewhat better, when provided with addi-

tional close-up images and patient information such as age, sex or lesion location. The 

authors highlighted the value of clinical data in addition to visual data. Clinicians assess 

patients with all their lesions, aiming to identify the ‘ugly duckling’ throughout physical 

examination. Even tele-dermatologists are trained to leverage information from multi-

ple sources. The CNNs considered in this systematic review, however, have been 

trained to assign a label for images only, disregarding the clinical context. Therefore, 

comparative studies that are solely based on single images fall short of the clinical 

routine. Interestingly enough, in these [30–32] and other [19,29] studies in which mul-

tiple images were provided to human experts, the participants only attained at most 

equivalent results in comparison with CNN-based classification. Nevertheless, to ena-

ble a fair comparison, future reader studies should not only provide clinicians but also 

provide CNNs with additional close-up images and patient information (e.g., [57,58]). 

 

One reason why participants with additional patient information did not outperform 

CNNs might be that the setting was still artificial. In most of the analysed studies (18 

out of 19, see Table 1, Table 2, Table 3), including those with additional clinical or 

image data, the recording of the participants’ diagnoses took place through web-based 

rating applications or online questionnaires, thereby substantially differing from the de-

cision-making process occurring in daily clinical practice. Only one study had its par-

ticipants record their diagnosis during clinical examination of the patient [19]. Under 

https://paperpile.com/c/LvwbJz/NWYun+SFHfm+Y5Zjz
https://paperpile.com/c/LvwbJz/NWYun+SFHfm+Y5Zjz
https://paperpile.com/c/LvwbJz/NWYun+SFHfm+Y5Zjz
https://paperpile.com/c/LvwbJz/aV46s+uPIoC
https://paperpile.com/c/LvwbJz/81Fk+4vvK
https://paperpile.com/c/LvwbJz/uPIoC
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these conditions, the CNN was significantly outperformed by the participating derma-

tologists, regardless of the classification task. This finding highlights that no conclu-

sions about the added value of automated MM detection should be drawn solely based 

on experimental comparisons. 

 

Representativeness of the included clinicians 

A considerable number of publications already included clinicians with different levels 

of experience, ranging from dermatology trainees to board-certified dermatologists. 

However, from a statistical point of view, the number of incorporated clinicians from 

certain subgroups (e.g., level of experience) did not reach the necessary threshold of 

n = 30 to get reasonable mean averages (in accordance with the central limit theorem), 

hence raising concerns about adequate statistical representativeness. Moreover, only 

few studies included dermatologists in private practices (e.g., [24–26]). Given that der-

matologists in private practices carry out skin cancer screenings for most of the popu-

lation, we believe that they were not represented adequately in the assessed studies 

of this systematic review. Comparative studies with a larger number and variance of 

human experts would help in making the results more representative of the actual phy-

sician population that is encountered in clinical practice. 

 
Limitations and outlook 

This systematic review is limited to approaches that considered direct comparison be-

tween CNN-based skin cancer classification and clinicians. However, AI-based sys-

tems are susceptible to the influence of confounding factors (e.g., skin markings, skin 

hairs) [59,60] and small changes in image input (e.g., scaling or rotation) [61], therefore 

requiring a ‘plausibility check’ by human experts to avoid false diagnoses. Thus, one 

of the main practical uses of AI with dermoscopic, clinical and histopathological whole-

https://paperpile.com/c/LvwbJz/Skl2B+T1mhW+oWASx
https://paperpile.com/c/LvwbJz/Qwbx+MVG2
https://paperpile.com/c/LvwbJz/93Kx


PUBLICATIONS 
 

31 

slide images may be the use as an assistance system, calling for a complementary 

instead of a comparative perspective (e.g., [62,63]). 

 

We explicitly addressed studies that had a diagnostic classification task as their main 

objective. This is, however, only one of many aspects that are important for improved 

personalised patient care. To further enhance precision medicine and therapy selec-

tion in addition to mere cancer identification using AI-based assistance systems, we 

should not only consider studies comparing computer-aided diagnosis but also expand 

on studies focussing on prognostic end-points such as therapy response or long-term 

survival (e.g., [50,51]) to leverage the full potential of novel digital biomarkers. 

 

Finally, because positive studies outlining statistically significant results are more likely 

to be published than negative studies that did not reject the null hypotheses, we cannot 

exclude the risk of publication bias. 

2.1.6 Conclusions 

All 19 included reader studies – regardless of the classification task and the type of 

input data – showed superior or at least equivalent performance of CNN-based classi-

fiers in comparison with clinicians. This indicates the potential of CNN-based ap-

proaches to evolve into novel digital biomarkers. However, almost all studies were 

conducted in an experimental setting based exclusively on single images of the suspi-

cious lesions. To increase clinical relevance of the results, future comparison studies 

should be conducted under less artificial conditions, with use of external out-of-distri-

bution test sets reflecting the full range of ethnicities and melanoma subtypes occurring 

in clinical practice. Furthermore, there is a need for truly prospective studies comparing 

the clinicians’ diagnoses after real-life face-to-face patient examinations with the 

https://paperpile.com/c/LvwbJz/Oq56+X4wyG
https://paperpile.com/c/LvwbJz/fICk+en5q
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results of AI-based classification models. Ideally, such studies would also measure the 

impact of the CNN classifications on the final management decisions of clinicians. 
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2.2.1 Research letter 

AI has shown promise for improving diagnostics of skin cancer by matching or surpas-

sing experienced clinicians [27]. However, successful clinical application of AI in skin 

cancer diagnostics depends on acceptance by patients and dermatologists.  

 

In this prospective multicentric survey study, we therefore investigate the criteria re-

quired for patients and dermatologists to accept AI-systems and assess their im-

portance on patients’ and dermatologists’ decision-making when considering the use 

of such systems. To this end, we perform an adaptive choice-based conjoint analysis 

(ACBC) and analyze it using hierarchical Bayes estimation [64]. By employing an 

ACBC, we investigate multiple influencing AI-features simultaneously (see Table 4) 

https://paperpile.com/c/LvwbJz/22Qs6
https://paperpile.com/c/LvwbJz/Stz3c
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whilst accounting for possible trade-offs from the patients’ and dermatologists’ per-

spective (see Figure 2). For details on questionnaire development, survey structure, 

participant recruitment, and statistical analysis, see Supplementary Methods in the 

Supplementary Materials). 

 

Figure 2. Example choice tournament of the present ACBC study design. The survey was conducted in Ger-

man, and this example choice tournament was translated into English for this illustration. 

 

 

The data of 293 included respondents (178 patients and 115 dermatologists) showed 

a positive general attitude toward AI-systems (see Supplementary Results in the 

Supplementary Materials for participant characteristics and further details). However, 

AI-systems were considered unacceptable by 41.6% of patients (95% confidence in-

terval (CI): 34.3-49.2%) and 47.8% of dermatologists (95% CI: 38.4-57.3%) if neither 

the dermatologist nor the patient could trace the assessment, and AI-systems were 

systematically ruled out by 36.5% of patients (95% CI: 29.4-44.1%) and 35.7% of der-

matologists (95% CI: 26.9-45.1%) if they did not provide explanations on a case-by-

case basis. Diagnostic accuracy and explainability were the most important AI-features 

in patients’ and dermatologists’ decision-making with an average importance of 20.6% 
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(95% CI: 19.3-22.0%) and 26.6% (95% CI: 26.0-27.3%) for patients, and 33.2% (31.1-

35.2%) and 20.4% (19.4-21.4%) for dermatologists, respectively.  

 

Participants preferred an increased explainability with display of both decision criteria 

and relevant image regions. Patients prioritized an AI assessment that is traceable for 

patients and clinicians, and dermatologists preferred a multiclass differentiation among 

various disorders (see Supplementary Results in the Supplementary Materials for 

further details). Specifically, the differentiation between MM and nevi, which has been 

the primary focus of AI research in dermatology [17], is considered insufficient. Con-

sequently, there is a need for prospective studies to evaluate AI performance in mul-

ticlass assessments to provide a more accurate representation of clinically relevant 

differential diagnoses. 

 

Current AI research is mainly performance-oriented (e.g., ISIC challenges [55]). How-

ever, patients and dermatologists require AI-systems that explain the rationale behind 

their decision-making and are at least somewhat traceable for both patients and der-

matologists. This growing demand for explainable AI poses a key challenge for future 

research since state-of-the-art technology does not fully explain the reasoning behind 

its decisions due to the AI black box phenomenon [65].  

 

Altogether, patients and dermatologists prioritized AI-systems with increased explain-

ability (i.e., display of criteria and image regions) and traceability (i.e., understandable 

by patients and dermatologists) as well as the ability for multiclass decision-making. 

Therefore, future AI research must go beyond pure performance advancements and 

adhere to the criteria outlined above for a potentially more successful clinical adoption.  

 

https://paperpile.com/c/LvwbJz/rEefU
https://paperpile.com/c/LvwbJz/QT65p
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Table 4. Overview of the AI-features and corresponding options within the ACBC design. Five AI-features 

and corresponding options were included in the ACBC analysis based on insights from a literature review and 

semistructured interviews. The decision task feature was included only for the subgroup of dermatologists, and the 

input data feature was included only for the subgroup of patients. 

 

AI-feature Options  

Integration 
How should the AI assess-
ment be integrated into rou-
tine diagnostics? 

• The physician first decides independently and then always obtains a 
second opinion from the AI. 

• The physician first decides independently and obtains a second opin-
ion from the AI only in case of doubt. 

• The AI assessment is always obtained first, and the physician makes 
his or her decision based on it. 

Explainability  
To what extent should the AI 
be able to explain its assess-
ment? 

• AI shows the criteria (e.g., color, color distribution) and image regions 
used to make the assessment. 

• AI cannot display the image regions, but it displays which criteria 
(e.g., color, color distribution) were used to make the assessment. 

• AI cannot display any criteria, but it shows which image regions were 
used to make the assessment. 

• AI does not have to explain its assessment on a case-by-case basis. 
However, it could be shown during the clinical trial that the AI pays at-
tention to biologically relevant structures. 

• AI does not have to explain its assessment on a case-by-case basis. 
It could not be shown during the clinical trial that the AI pays attention 
to biologically relevant structures. 

Traceability  
Who should be able to trace 
the AI assessment? 

• The physician and the patient are able to trace the AI assessment. 
• The physician is able to trace the AI assessment. 
• Neither the physician nor the patient is able to trace the AI assess-

ment. 

Diagnostic accuracy 
Beyond what level of diag-
nostic accuracy should AI be 
used? 

• AI performs worse than the average dermatologist.  
• AI performs equally well as the average dermatologist. 
• AI performs better than the average dermatologist. 

Decision task  
(only asked for dermatolo-
gists) 
What should the AI be able 
to distinguish? 

• AI distinguishes between benign and malignant skin lesions but gives 
no indication of a precise diagnosis. 

• AI makes recommendations for or against biopsy but gives no indica-
tion of a precise diagnosis. 

• AI distinguishes between melanomas and nevi. 
• AI distinguishes among melanomas, nevi and one category for other 

skin lesions. 
• AI distinguishes between melanomas and non-melanomas.  
• AI distinguishes among melanomas, one category for other types of 

skin cancer and one for benign skin lesions. 

Input data  
(only asked for patients) 
What data should the AI use 
for its assessment? 

• AI makes a diagnosis based on skin images exclusively. 
• AI makes a diagnosis based on skin images and additional infor-

mation about the skin lesion (e.g., diameter). 
• AI makes a diagnosis based on skin images and additional infor-

mation about the patient (e.g., age). 
• AI makes a diagnosis based on skin images, additional information on 

the patient and the skin lesion. 
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2.2.3 Supplementary materials  

This paragraph contains the following sections: 

1. Supplementary methods where we provide a detailed description of the ques-

tionnaire development, the survey structure, the participant recruitment, and the 

statistical analysis. 

2. Supplementary results where we describe the participant characteristics, fur-

ther details on the patients’ and dermatologists’ perspective, and limitations of 

our study. 

 
Supplementary methods  

Questionnaire development 

We first conducted a literature review on existing research, followed by nine semistruc-

tured expert interviews with patients (n=3), board-certified dermatologists (n=3), and 

AI professionals in healthcare (n=3) to elicit in-depth information. Then, the question-

naire for our survey was drafted and tested by the interviewed dermatologists and AI 

professionals, as well as individuals without a professional background in AI (n=19) to 

ensure comprehensibility and consistency. 

 
Survey structure 

The first part of the survey assessed participants’ general outlook on AI in skin cancer 

diagnostics. Then, an ACBC was integrated to obtain a comprehensive understanding 

of the criteria required by patients and dermatologists to accept AI-based assistance 

systems. Finally, participants’ demographics and prior experience with AI research 

were assessed. 
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For the ACBC, five AI-features and corresponding options (see Table 4) were defined 

based on the literature review and semistructured interviews. To prevent unrealistic 

combinations, specific prohibitions were implemented (see Supplementary Table 1). 

First, in the build-your-own section, participants created their customized assistance 

system to familiarize themselves with the five AI-features and corresponding options. 

Next, in the screening section, AI-systems with specific feature combinations were pre-

sented, and participants were asked whether they would consider using these AI-sys-

tems (see Supplementary Figure 2). During this section, the software analyzed par-

ticipants’ answers and suggested must-have or unacceptable criteria (see Supple-

mentary Figure 3). Finally, in the choice tournament section, participants were shown 

a set of differently configured AI-systems based on their previous responses, from 

which they had to choose their preferred version (see Figure 2).  

 
Supplementary Table 1. Prespecified prohibited combinations within the ACBC design. To ensure that no 

unrealistic combinations were presented within the ACBC part of the survey study, certain combinations were de-

fined that were not permitted to be combined.  

Prohibited Combinations 

AI shows the criteria (e.g., color, color distribution) and image regions used to make the assessment.  
AND Neither the physician nor the patient is able to trace the AI assessment. 

AI cannot display the image regions, but it displays which criteria (e.g., color, color distribution) were used to 
make the assessment. AND Neither the physician nor the patient is able to trace the AI assessment. 

AI cannot display any criteria, but it shows which image regions were used to make the assessment.  
AND Neither the physician nor the patient is able to trace the AI assessment. 

AI does not have to explain its assessment on a case-by-case basis. However, it could be proven during the 
clinical trial that the AI pays attention to biologically relevant structures. AND The physician and the patient are 
able to trace the AI assessment. 

AI does not have to explain its assessment on a case-by-case basis. However, it could be proven during the 
clinical trial that the AI pays attention to biologically relevant structures. AND The physician is able to trace the 
AI assessment. 

AI does not have to explain its assessment on a case-by-case basis. It could not be proven during the clinical 
trial that the AI pays attention to biologically relevant structures. AND The physician and the patient are able to 
trace the AI assessment. 

AI does not have to explain its assessment on a case-by-case basis. It could not be proven during the clinical 
trial that the AI pays attention to biologically relevant structures. AND The physician is able to trace the AI as-
sessment. 
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Supplementary Figure 2. Example screening section of the present ACBC study design. The survey was 

conducted in German, and this example screening section was translated into English for this illustration. 

 

Supplementary Figure 3. Example must-have screener of the present ACBC study design. The survey was 

conducted in German, and this example must-have screener was translated into English for this illustration. 

 

 

Participant recruitment and data collection 

We conducted an anonymous online survey in German using Sawtooth SSI Web Light-

house Studio 9.14.0 between May 06, 2022, and January 24, 2023. Individuals were 

prospectively enrolled at eight German university clinics and one private dermatology 

practice. Additionally, dermatologists were invited via institutional email accounts, and 

the survey was sent to melanoma support groups. Only patients who reported 
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suspicion of skin cancer within the last decade and dermatologists who participated in 

skin cancer screening were eligible for this study. All participants agreed to the analysis 

and publication of the anonymous data. 

 
Data analysis and statistics 

To evaluate participants’ general attitudes toward AI-systems in skin cancer screening, 

descriptive analysis was conducted. Ninety-five percent CIs were calculated, and two-

sided chi-square tests were applied. A significance level of p<0.05 was set for all anal-

yses. Statistical analysis was performed using SPSS, version 29.0.0.0 (IBM Corpora-

tion). 

 
ACBC data were analyzed using hierarchical Bayes estimation and results were ex-

pressed in terms of counts, importance values, and utilities. Count analysis examined 

how often certain options were defined as unacceptable or must-have criteria. To de-

termine the relevance of individual AI-features in decision-making, average impor-

tances were calculated by converting the utility ranges of each AI-feature (i.e., the dif-

ference between the perceived utility of the options that were regarded as most useful 

and least useful) to percentages using the following equation: feature importance (%) 

= (utility range of the specific feature/sum of the utility ranges of all features) × 100. 

Part-worth estimation was conducted to identify the options that were preferred most 

for each AI-feature. ACBC analysis was performed using Sawtooth SSI Web Light-

house Studio 9.14.0.  

 

Supplementary results  

Participant characteristics 

After quality control (see Supplementary Figure 4), a validated dataset (N=293) of 

responses from 178 patients and 115 dermatologists remained (see Supplementary 
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Table 2 for baseline characteristics). The included patients and dermatologists were 

predominantly female (62.9% and 62.6%, respectively) and a substantial number of 

participants indicated prior experience with AI research (28.1% and 50.4%, respec-

tively). The majority of patients had received a histopathologically confirmed skin can-

cer diagnosis (69.1%) with MM being predominant (98/133; 79.7%). The patients’ and 

dermatologists’ median age was 53 years (range: 18-94 years) and 37 years (range: 

25-60 years), respectively, and the dermatologists' median clinical experience was 7 

years (range: 1-35 years). 

 
Supplementary Figure 4. CONSORT flow diagram of the quality control process. From the 562 survey partic-

ipants, we first disqualified participants who did not meet the inclusion criteria (n=59). Next, we excluded individuals 

who answered only part of the questionnaire (n=186) and those whose answers contained contradictions (e.g., 

inconsistencies between the physician’s age and experience; n=2). In addition, using outlier detection (two times 

the standard deviation), we excluded participants who answered in less than seven minutes (n=16) or more than 

60 minutes (n=6). Ultimately, a validated data set (N=293) consisting of responses from 178 patients and 115 

dermatologists remained for analysis. 
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Supplementary Table 2. Baseline characteristics of the included patients and dermatologists. 

 
Patients  Dermatologists 

Sociodemographic characteristics n=178 n=115 

Approximate Age (years) Values, n (%) Values, n (%) 
 

≤ 30 9 (5.1%) 24 (20.9%) 
 

31 to 40 20 (11.2%) 45 (39.1%) 
 

41 to 50 35 (19.7%) 28 (24.3%) 
 

51 to 60 62 (34.8%) 15 (13.0%) 
 

> 60 44 (24.7%) 0 (0.0%) 
 

Unknown  8 (4.5%) 3 (2.6%) 

Gender 
  

 
Female 112 (62.9%) 72 (62.6%) 

 
Male 65 (36.5%) 42 (36.5%) 

 
Unknown 1 (0.6%) 1 (0.9%) 

Residence 
  

 
Big city (>100,000 inhabitants) 68 (38.2%) 98 (85.2%) 

 
Small town (10,000-100,000 inhabitants) 55 (30.9%) 13 (11.3%) 

 
Rural area (<10,000 inhabitants) 54 (30.3%) 3 (2.6%) 

 
Unknown 1 (0.6%) 1 (0.9%) 

Participation in AI Research 
  

 
Yes 50 (28.1%) 58 (50.4%) 

 
No 103 (57.9%) 51 (44.3%) 

 
Unknown 25 (14.0%) 6 (5.2%) 

Clinical Experience (years)  
  

 
<5 years 

 
36 (31.3%) 

 
5 to 14 years 

 
42 (36.5%) 

 
15 to 24 years 

 
23 (20.0%) 

 
>24 years 

 
14 (12.2%) 

Clinical Workplace 
  

 
University hospital 

 
95 (82.6%) 

 
Private practice 

 
10 (8.7%) 
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Other 

 
9 (7.8%) 

 
Unknown 

 
1 (0.9%) 

Prevention Behavior (Skin Cancer Screening) 
  

 
More than once a year 118 (66.3%) 

 

 
Once a year 45 (25.3%) 

 

 
Less than once a year 15 (8.4%) 

 

(Previous) Diagnosis  multiple response* 
n=178, m=192 

 

 
No skin cancer 49 (27.5%) 

 

 
Skin cancer 123 (69.1%) 

 

 
Diagnosis pending 13 (7.3%) 

 

 
Unknown 7 (3.9%) 

 

Type of Skin Cancer multiple response* 
n=123, m=133 

 

 
Melanoma 98 (79.7%) 

 

 
Other types of skin cancer (BCC, SCC, ...) 31 (25.2%) 

 

 
Unknown 4 (3.2%) 

 

*Respondents were allowed to check more than one answer option for this survey question (n=total number of 

respondents, m=total number of answers). 

 
Patients’ perspectives  

Patients showed positive general attitudes toward AI-systems for skin cancer 

diagnostics  

To investigate preferences among patients, we first aimed to determine their general 

attitudes toward AI-systems for skin cancer diagnostics. In this context, patients 

showed positive general attitudes toward AI-based assistance systems (108/178 could 

definitely imagine AI usage; 60.7%; 95% CI: 53.1-67.90%), albeit with significant dif-

ferences by prevention behavior and skin cancer type (see Supplementary Figure 5). 

Among the included patients (n=178), 108 (60.7%; 95% CI: 53.1-67.90%) could defi-

nitely imagine and 58 could somewhat (32.6%; 95% CI: 25.8-40.0%) imagine AI usage 

for skin cancer diagnostics. Another 12 patients expressed hesitation (“somewhat no”, 
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6.7%; 95% CI: 3.5-11.5%). Interestingly, none of the participants explicitly ruled out AI 

usage altogether.  

 
Supplementary Figure 5. Bar chart depicting patients’ attitudes toward the use of AI-based assistance sys-

tems for skin cancer diagnostics. Participants’ general outlook on using AI-based assistance systems for skin 

cancer diagnostics was identified by asking, “Can you generally imagine the use of AI-based assistance systems 

for skin cancer diagnostics?” with response options of “definitely,” “somewhat yes,” “somewhat no,” and “definitely 

not”.  

  

Subgroup analysis revealed significant differences based on patients’ prevention be-

havior (p=.010). While 68.6% of the patients who reported undergoing skin cancer 

screening more than once a year (81/118; 95% CI: 59.5-76.9%) said they would defi-

nitely use AI-based assistance systems, only 48.9% of the patients who reported un-

dergoing skin cancer screening once a year (22/45; 95% CI: 33.7-64.2%) and 33.3% 

of the patients who reported undergoing such screening less than once a year (5/15; 

95% CI: 11.8-61.6%) said they would do so. Additionally, among the subgroup of con-

firmed cancer patients (123/178), the type of skin cancer had a significant effect on 

attitudes toward the use of AI-based assistance systems (p=.042), with patients diag-

nosed with MM being more open to the use. 
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Patients rejected non-traceable and non-explainable AI-systems 

Next, we investigated must-have and unacceptable criteria. Seventy-four patients 

(41.6%; 95% CI: 34.3-49.2%) stated that they would not rely on an AI-system if neither 

the dermatologist nor the patient could trace how the AI made its decisions. In line with 

this, the majority of patients systematically ruled out AI-systems that did not provide 

some sort of case-by-case explanations. This was true regardless of whether the clin-

ical trial could prove that the AI accounted for biologically relevant structures (40/178 

patients, 22.5%; 95% CI: 16.6-29.3%) or not (65/178 patients; 36.5%; 95% CI: 29.4-

44.1%). Consequently, patients rejected non-traceable and non-explainable AI-based 

assistance systems.  

 
Patients prioritized explainability in decision-making  

We also used hierarchical Bayes estimation to investigate the relative importance of 

different AI-features. For patients, the features explainability (i.e., the extent to which 

the AI can explain its assessment; 26.6%; 95% CI: 26.0-27.3%) and diagnostic accu-

racy (20.6%; 95% CI: 19.3-22.0%), on average, had the greatest relative importance 

(see Supplementary Table 3), closely followed by traceability (i.e., who should be 

able to trace the AI assessment; 19.8%; 95% CI: 18.9-20.6%) and AI integration (i.e., 

how the AI assessment is integrated into decision-making; 18.7%; 95% CI: 17.5-

19.9%). Only the input data (14.3%; 95% CI: 13.4-15.2%), on average, played a rela-

tively minor role (see Supplementary Table 3).  
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Supplementary Table 3. Average relative importance of individual AI-features for patients’ decision-making for or 

against the use of AI-based assistance systems according to hierarchical Bayes estimation of ACBC data.  

Patients 
n=178 

Average Importance  
(in Percent)* 

Standard Deviation 95% CIs 

Explainability  26.6 4.7 26.0-27.3 

Diagnostic accuracy 20.6 9.3 19.3-22.0 

Traceability 19.8 5.9 18.9-20.6 

Integration 18.7 8.3 17.5-19.9 

Input data 14.3 6.3 13.4-15.2 
*Relative importance is ratio-scaled; i.e., an AI-feature indicating an importance of ten percent is twice as important 

for the decision-making process as an AI-feature with an importance of five percent. 

Note: Since ACBC can reflect the importance only in terms of the relative utility of the AI-features tested within the 

ACBC design; comparison between patients’ and dermatologists’ absolute importance values is not possible. 

 
However, subgroup analysis showed that patients with prior AI research experience 

(103/178) attached significantly greater importance to the amount of input data used 

for the AI decision (prior experience 16.8%; 95% CI: 14.9-18.7; no experience 13.5%; 

95% CI: 12.3-14.7%). Furthermore, AI explainability played a significantly greater role 

for this subgroup (prior experience 29.5%; 95% CI: 27.7-31.3%; no experience 26.3%; 

95% CI: 25.5-27.1%), while the diagnostic accuracy was less important (prior experi-

ence 16.0%; 95% CI: 13.5-18.4%; no experience 21.8%; 95% CI: 20.2-23.4%).  

 

Patients’ preferred options for individual AI-features 

To determine patients’ preferred options for each AI-feature, we performed part-worth 

estimates. We found that patients favored AI-systems where the explainability feature 

indicated not only the decision criteria, such as color distribution, but also the relevant 

image regions (see Supplementary Figure 6). Moreover, patients preferred AI-sys-

tems with decision-making that was traceable to them and their physician. Regarding 
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the way and extent to which AI was integrated into clinical routine, patients strongly 

preferred the unlimited use of AI for every suspicious skin lesion (i.e., not only in case 

of doubt), while simultaneously valuing independent decision-making between physi-

cians and the assistance system. Additionally, patients favored AI-systems that incor-

porated patient- and lesion-specific metadata in their assessment. 

 
Supplementary Figure 6. Patients’ perceived utilities of the individual options for each AI-feature under 

investigation. Utilities are presented as zero-centered differences, a normalized approach where all utilities of one 

AI-feature are scaled to sum to zero. Negative utility does not imply that an option provides no or negative perceived 

utility for patients; rather, it indicates that an option is less preferred than an option indicating positive utility. There-

fore, comparison of utilities is possible within the corresponding AI-feature but not across AI-features. 

 

 

Dermatologists’ perspectives  

Dermatologists showed positive general attitudes toward AI-systems for skin 

cancer diagnostics  

To investigate preferences regarding the use of AI among dermatologists, we first 

aimed to determine their general attitudes toward AI-systems for skin cancer screen-

ing. Overall, dermatologists showed positive general attitudes toward AI-based assis-

tance systems for skin cancer diagnostics (91/115 could definitely imagine AI usages; 



PUBLICATIONS 
 

56 

79.1%; 95% CI: 70.6-86.2%), albeit with significant differences by prior experience with 

AI research (see Supplementary Figure 7). 

 

Supplementary Figure 7. Bar chart depicting dermatologists’ attitudes toward the use of AI-based assis-

tance systems for skin cancer diagnostics. Participants’ general outlook on using AI-based assistance systems 

for skin cancer diagnostics was identified by asking, “Can you generally imagine the use of AI-based assistance 

systems for skin cancer diagnostics?” with response options of “definitely,” “somewhat yes,” “somewhat no,” and 

“definitely not”. 

 

 

Among the included dermatologists (n=115), 91 participants (79.1%; 95% CI: 70.6-

86.2%) could definitely imagine the use of AI-systems for skin cancer diagnostics. An-

other 23 participants (20.0%; 95% CI: 13.1-28.5%) indicated that they could somewhat 

imagine using such AI-systems, and one participant explicitly ruled it out. 

 
In addition, subgroup analysis showed that previous participation in AI research had a 

positive significant effect on attitudes toward the use of AI-systems (p=.026).  

 
Dermatologists rejected non-traceable and non-explainable AI-systems 

In addition to examining dermatologists’ general attitudes, we investigated their must-

have and unacceptable criteria. Fifty-five dermatologists (47.8%; 95% CI: 38.4-57.3%) 

generally rejected AI-systems if neither dermatologist nor patient could understand 

how the decision was made. Additionally, a large proportion of dermatologists ruled 

out AI-systems that failed to explain their decision on a case-by-case basis regardless 
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of whether the clinical trial showed that the AI considers relevant biological aspects 

(judged unacceptable by 18/115 dermatologists, 15.7%; 95% CI: 9.6-23.6%) or not 

(41/115 dermatologists, 35.7%; 95% CI: 26.9-45.1%). Consequently, similar to pa-

tients, dermatologists rejected AI-based assistance systems that lacked traceability 

and explainability. 

 

Dermatologist prioritized diagnostic accuracy in decision-making 

We used hierarchical Bayes estimation to investigate the relative importance of differ-

ent AI-features for dermatologists. The features of diagnostic accuracy (33.2%; 95% 

CI: 19.4-21.4%) and explainability (i.e., the extent to which the AI can explain its as-

sessment; 20.4%; 95% CI: 19.4-21.4%), on average, had the greatest relative im-

portance in decision-making. AI integration (i.e., how the AI assessment is integrated 

into the decision-making; 16.7%; 95% CI: 15.2-18.2%), the decision task (i.e., what the 

AI is able to distinguish; 15.5%; 95% CI: 14.4-16.5%) and traceability (i.e., who should 

be able to trace the AI assessment; 14.3%; 95% CI: 13.2-15.4%), on average, played 

a somewhat comparable yet subordinate role (see Supplementary Table 4).  

 
Supplementary Table 4. Average relative importance of individual AI-features for dermatologists’ decision-making 

for or against the use of AI-based assistance systems according to hierarchical Bayes estimation of ACBC data.  

Dermatologists 
n=115 

Average Importance  
(in Percent)* 

Standard De-
viation 

95% CIs 

Diagnostic accuracy 33.2 11.1 31.1-35.2 

Explainability  20.4 5.5 19.4-21.4 

Integration 16.7 8.4 15.2-18.2 

Decision task  15.5 5.9 14.4-16.5 

Traceability 14.3 5.9 13.2-15.4 
*Relative importance is ratio-scaled; i.e., an AI-feature indicating an importance of ten percent is twice as important 

for the decision-making process as an AI-feature with an importance of five percent. 

Note: Since ACBC can reflect the importance only in terms of the relative utility of the AI-features tested within the 

ACBC design; comparison between patients’ and dermatologists’ absolute importance values is not possible.  
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Subgroup analysis showed that explainability had greater importance in decision-mak-

ing for women than for men (women 22.2%; 95% CI: 21.0-23.3%, men 18.4%; 95% 

CI: 16.5-20.2%). Furthermore, dermatologists with previous AI research experience 

considered the integration of AI into routine diagnostics as significantly more relevant 

than those with no prior involvement (prior experience 19.2%; 95% CI: 16.8-21.6%; no 

experience 13.7%; 95% CI: 11.7-15.6%). 

 
Dermatologists’ preferred options of individual AI-features 

To further examine the subsample of dermatologists, we performed part-worth esti-

mates to determine the perceived utilities of the corresponding options for each AI-

feature (Supplementary Figure 8). The dermatologists preferred AI-systems that not 

only showed their decision criteria, such as color distribution, but also indicated the 

relevant image regions. Furthermore, dermatologists prioritized limited integration of 

AI into their clinical routine, i.e., to obtain a second opinion only for uncertain cases. 

Moreover, dermatologists preferred support systems that discriminated among mela-

nomas, other types of skin cancer and benign skin lesions, closely followed by AI-

systems that differentiated among melanomas, nevi and other diagnoses. Additionally, 

dermatologists prioritized AI-systems that enabled only them to trace the decision pro-

cess as opposed to the option where both patient and clinician could understand it.  
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Supplementary Figure 8. Dermatologists’ perceived utilities for each AI-feature under investigation. Utilities 

are presented as zero-centered differences, a normalized approach where all utilities of one AI-feature are scaled 

to sum to zero. Negative utility does not imply that an option provides no or negative perceived utility for patients; 

rather, it indicates that the option is less preferred than an option with positive utility. Therefore, comparison of 

utilities is possible within the corresponding AI-feature but not across AI-features. 

 

 

Limitations 

Our study mainly recruited patients and dermatologists from German university hospi-

tals; in addition, a substantial number of respondents indicated prior experience with 

AI research, and most of the included patients had a personal history of melanoma. 

Therefore, our results may not be fully generalizable. To overcome this limitation, fu-

ture studies may involve multiple private dermatology practices, intensify recruitment 

of respondents with no experience with AI research, and patients with other types of 

skin cancer. Moreover, relative importances in ACBC designs are influenced by the 

range of options available for each AI-feature and the total number of AI-features being 

evaluated, which can never be exhaustive (e.g., adding a new option within an AI-

feature could alter the importance of all other features).  
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2.3.1 Abstract 

Importance: The development of AI-based melanoma classifiers typically calls for 

large centralized datasets, requiring hospitals to give away their patient data, which 

raises serious privacy concerns. To address this concern, decentralized federated 

learning (FL) has been proposed, where classifier development is distributed across 

hospitals.  

Objective: To investigate whether a more privacy-preserving FL can achieve compa-

rable diagnostic performance to a classical centralized (i.e., single-model) and ensem-

ble learning approach for AI-based melanoma diagnostics. 

Design: We developed a FL model for melanoma-nevus classification using histo-

pathological whole-slide images prospectively acquired at six German university hos-

pitals between April 2021 and February 2023, and benchmarked it using both a holdout 

and external test dataset.  

Setting: A multicentric, single-arm study was conducted. 
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Participants: The study included 1025 whole-slide images of clinically melanoma-sus-

picious skin lesions from 923 patients, consisting of 388 histopathologically-confirmed 

invasive melanomas and 637 nevi. 

Exposures: All whole-slide images were retrospectively analyzed by an AI-based clas-

sifier without influencing routine clinical care. 

Main Outcome and Measure(s): The area under the receiver operating characteristic 

curve (AUROC) served as the primary endpoint for evaluating the diagnostic perfor-

mance. Secondary endpoints included balanced accuracy, sensitivity and specificity.  

Results: The federated approach (0.8579; 95% CI: 0.7693-0.9299) performed signifi-

cantly worse than the classical centralized approach (0.9024; 95% CI: 0.8379-0.9565) 

in terms of AUROC on a holdout test dataset (pairwise Wilcoxon signed-rank, P<.001) 

but performed significantly better (0.9126; 95% CI: 0.8810-0.9412) than the classical 

centralized approach (0.9045; 95% CI: 0.8701-0.9331) on an external test dataset 

(pairwise Wilcoxon signed-rank, P<.001). Notably, the federated approach performed 

significantly worse than the ensemble approach on both the holdout (0.8867; 95% CI: 

0.8103-0.9481) and external test dataset (0.9227; 95% CI: 0.8941-0.9479). 

Conclusions and Relevance: The findings suggest that FL is a viable approach for 

the binary classification of invasive melanoma and nevi on a real-world distributed da-

taset. FL can improve privacy protection in AI-based melanoma diagnostics while sim-

ultaneously promoting collaboration across institutions and countries. Moreover, it may 

have the potential to be extended to other image classification tasks in digital cancer 

histopathology and beyond. 

 

2.3.2 Introduction 

CNNs – deep neural networks most commonly applied to image classification – have 

shown promise in improving diagnostic accuracy for various diseases [66–68], 

https://paperpile.com/c/LvwbJz/WxVhh+LV6Da+sAJVy
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including MM [17,20,27,31]. MM is the leading cause of death among skin cancer 

worldwide [1]. Early-stage detection increases the survival chances of affected patients 

significantly but is challenging due to frequent morphological overlap between MM and 

atypical nevi [13,14]. In experimental settings, CNNs have achieved performance on 

par or even superior to that of human experts for both dermatological [28,30,53,55] 

and histopathological [33,34] classification tasks. These results suggest that AI has the 

potential to revolutionize the diagnosis of melanoma in offering more accurate detec-

tion. 

 

Nonetheless, AI models are highly data dependent, meaning that their performance 

correlates with the size and diverseness of the training set. The more diverse data an 

AI model is trained on, the more likely it is to perform well [69–71]. Therefore, to de-

velop AI algorithms, patient data are typically transferred to one site for training and 

testing and stored in a centralized way (known as classical centralized learning). How-

ever, in the medical field, ensuring patient data confidentiality is of utmost importance; 

consequently, sharing patient data is heavily regulated. Thus, the transfer of patient 

data to an external facility to generate the envisaged algorithms can raise serious pri-

vacy concerns. Alternatively, institutions can use their own data and computing power 

to develop separate AI algorithms, whose decisions are subsequently merged into one 

(known as ensemble learning). However, clinical settings often face computational re-

source constraints, making it challenging to run complex ensemble models in real-time. 

These framework conditions pose difficulties for collaboration and data collection, par-

ticularly in multicenter studies or international research collaborations. 

 

To address these challenges, new approaches, such as FL [72,73], have been devel-

oped to enable the decentralized training of AI algorithms using data kept at their origin, 

https://paperpile.com/c/LvwbJz/22Qs6+rEefU+Bxf72+SFHfm
https://paperpile.com/c/LvwbJz/TDeQ
https://paperpile.com/c/LvwbJz/IUb9L+Q6qnK
https://paperpile.com/c/LvwbJz/Y5Zjz+emMSU+FuBPG+QT65p
https://paperpile.com/c/LvwbJz/ZQlIX+PIJ1D
https://paperpile.com/c/LvwbJz/wihJj+tlr1r+axdsv
https://paperpile.com/c/LvwbJz/iHNll+ntdq
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while requiring less computational power on site. FL involves each institution training 

its own model with its own data, while communication and aggregation are executed 

by a central coordinator.  

 

Previous studies have examined the use of FL in diagnosing melanoma [74,75] and 

other medical applications [76–79]. While Bdair et al. [74] and Agbley et al. [75] have 

demonstrated the promise of FL for classifying retrospective melanoma data, none has 

evaluated FL leveraging prospective collected real-world distributed melanoma data 

nor externally validated the performance of the proposed classifiers. These gaps in 

existing literature highlight the need for further research to explore the effectiveness of 

FL for melanoma diagnostics when leveraging prospective data and to assess the gen-

eralizability of the respective classifiers. 

 

Therefore, we developed a model using a decentralized FL approach for the binary 

classification of invasive melanoma (IM) and nevi based on histopathological whole-

slide images, and directly compared it retrospectively with the classical centralized and 

ensemble learning on both a holdout and external test dataset, using prospectively 

collected real-world distributed data from six German university hospitals. 

 

Our findings highlight that FL represents a reliable alternative, particularly when lever-

aging external data. By providing a more accessible and privacy-preserving alternative 

that empowers institutions to contribute to the development of AI models, even with 

relatively small datasets or strict data protection rules, FL holds the potential to reshape 

AI-based melanoma diagnostics and may extend to other classification tasks in digital 

cancer histopathology and beyond. 

https://paperpile.com/c/LvwbJz/2aOz3+DAB89
https://paperpile.com/c/LvwbJz/RfdwV+5Z5z9+gyqUH+UuXmi
https://paperpile.com/c/LvwbJz/2aOz3
https://paperpile.com/c/LvwbJz/DAB89
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2.3.3 Methods 

Ethics statement and reporting standards 

Ethics approval was obtained from the ethics committee at the technical university of 

Dresden, the Friedrich-Alexander University Erlangen-Nuremberg, the LMU Munich, 

the university of Regensburg and the university hospital Wuerzburg. Patients provided 

informed written consent. This work was performed in accordance with the Declaration 

of Helsinki. The Standards for Reporting of Diagnostic Accuracy (STARD 2015) were 

followed for the reporting of this study (see Tabular Appendix 6) [80]. 

 

Patient cohorts and slide acquisition 

Hematoxylin-eosin-stained reference slides of skin lesions were prospectively acquired 

at six German university hospitals (Berlin, Dresden, Erlangen, Munich, Regensburg, 

Wuerzburg) between April 2021 and February 2023. Study participants had to be at 

least 18 years old and were required to have clinically melanoma-suspicious skin le-

sions. Lesions were not allowed to be pre-biopsied nor located under the finger-/toe-

nails. Diagnostic labels were histopathologically-confirmed by at least one reference 

dermatopathologist at the corresponding hospital as part of routine clinical practice. In 

collision cases involving multiple tumors, the label of the larger tumor region was as-

signed. Only histopathologically-confirmed IM and nevi were eligible for this study.  

 

Whole-slide image preprocessing 

A Leica Aperio AT2 DX was used to digitize the hematoxylin-eosin-stained reference 

slides of all enrolled patients at 40x magnification, producing whole-slide images with 

a resolution of 0.25 µm/px to generate patches for training and testing. After manually 

annotating the area of the epidermis (MS), the region of interest was tessellated into 

downscaled square patches. Each patch had a uniform edge length of 224 px, 

https://paperpile.com/c/LvwbJz/LZfX8
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corresponding to 103.04 µm. Whole-slide image annotation and tessellation were per-

formed using QuPath 0.2.3 [81,82]. Additionally, blur detection was implemented with 

custom code written in Python 3.7.0. A patch was classified as blurry if it had a Lapla-

cian below a manually set threshold of 510 and subsequently discarded. 

 

Model development 

ResNet18 pretrained on ImageNet was used to train one model with FL, one with cen-

tralized learning and one with ensemble learning. A small architecture was used to limit 

training and inference time and streamline the experimental procedures. The tree-

structured Parzen estimator [83] was used to choose the hyperparameters to maximize 

the AUROC at lesion level for a validation set. For each approach, the learning rate, 

number of training epochs, amount of data used in one epoch per whole-slide image 

and, for FL specifically, the frequency of weight exchange were tuned for an equal 

number of optimization steps using the Python library Optuna [82]. During this process, 

30% of the training data served as validation set and the training followed Leslie 

Smith’s ‘one cycle policy’, which involves training the model with a gradually increasing 

learning rate for the first half of the training cycle, followed by a gradual decrease in 

the learning rate for the second half [84]. During inference, the confidence value of 

every patch of a whole-slide image was interpreted as the probability for classification 

as IM or nevus. The average of these probabilities was the final probability for each 

whole-slide image. 

 

For the FL approach, each hospital’s model was trained for a certain time interval with 

the same hyperparameters. The time interval was based on a synchronization factor 

which was tuned during training and was proportional to the size of the dataset of the 

respective hospital. After each interval, model weights were collected and merged into 

https://paperpile.com/c/LvwbJz/23gmP+HBO6j
https://paperpile.com/c/LvwbJz/dZFMn
https://paperpile.com/c/LvwbJz/HBO6j
https://paperpile.com/c/LvwbJz/Ww6Ho
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a new model using a weighted average. The assigned weights were proportional to the 

amount of data available during training. Subsequently, the new model was (re)distrib-

uted to every hospital to continue training. Since communication between the partici-

pants in this approach was not the focus, this process was only simulated on one com-

putational unit. 

For the centralized approaches, the model Hfull represents the model that was trained 

using data from hospitals 1 to 5. The remaining five models (models H1, H2, H3, H4, 

and H5) were trained by excluding the data of hospitals 1, 2, 3, 4, or 5, respectively. 

For the ensemble approach, five classifiers were trained separately using only one of 

the five training sets from hospitals 1 to 5 with individual hyperparameters. For infer-

ence, each model computed a probability for a given input. All five probabilities were 

subsequently averaged to calculate the final prediction. 

Training and inference were implemented in Python 3.7.0 using PyTorch 1.13.0 [85] 

and fastai 2.7.10 [86]. 

Statistical analysis 

Two-sided chi-square tests were employed to identify significant differences between 

the training and test datasets. The AUROC served as the primary endpoint for evalu-

ating the performance of the developed models. Secondary endpoints included bal-

anced accuracy, sensitivity and specificity. The mean values of the corresponding met-

rics were calculated using 1,000 iterations of bootstrapping to reduce the impact of 

stochastic events. 95% CIs were calculated using the nonparametric percentile method 

[87]. For statistical comparisons of the AUROCs, pairwise two-sided Wilcoxon signed-

rank tests were applied. A significance level of P<.05 was set for all analyses. 

https://paperpile.com/c/LvwbJz/TjqkL
https://paperpile.com/c/LvwbJz/vI8ab
https://paperpile.com/c/LvwbJz/iQHOp
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Significance levels were adjusted to .025 (m=2) or .01 (m=5) according to Bonferroni 

correction in case of multiple tests. Statistical analysis was performed in SPSS 

29.0.0.0. 

2.3.4 Results  

Number of eligible slides and patients  

A total of 1025 slides from 923 patients, consisting of 388 IM and 637 nevi, were in-

cluded in the analysis (see Table 5). A further 373 slides were excluded for not meeting 

the predefined inclusion criteria of this study (e.g., in-situ tumors, see Figure 3). A total 

of 548,755 patches were derived from the eligible slides (296,141/252,614 – IM/nevus) 

for training and testing purposes (see Supplementary Table 5). 

Table 5. Characteristics of the study sample. 

Hospital Slides (Patients) Invasive melanomas Nevi 

Hospital 1 71 (62) 19 52 

Hospital 2 97 (86) 56 41 

Hospital 3 107 (103) 59 48 

Hospital 4 178 (157) 37 141 

Hospital 5 236 (215) 75 161 

Hospital 6 336 (300) 142 194 

Total 1025 (923) 388 637 
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Figure 3. Flowchart of the slide inclusion process. Slides were excluded from the analysis if there was no 

histopathologically-confirmed label available (n=11) or if the lesion proved to be neither IM nor nevus (in situ tumors; 

n=127 or other diagnoses, e.g., basal cell carcinoma, squamous cell carcinoma; n=224). In addition, slides that 

exhibited <50 epidermal patches (n=7) or other technical issues (n=4) were removed. IM: invasive melanoma 

 

 

 

Patient characteristics and differences among datasets 

The eligible cases in the training set (data from hospitals 1 to 5) and the holdout test 

dataset (data from hospitals 1 to 5) exhibited significant differences in lesion subtype 

and American Joint Committee on Cancer (AJCC) stage when compared to the exter-

nal test dataset (data from hospital 6; P<.001). However, no significant differences 

were observed in lesion localization, age or Breslow thickness. The median age at 

diagnosis was 58 years (range 18 to 95) for the training set, 57 years (range 18 to 93) 

for the holdout and 61 years (range 18 to 95) for the external test dataset; the median 

Breslow thickness was 0.70 mm (range 0.10 to 34.00), 0.70 mm (range 0.20 to 14.40) 

and 0.80 mm (range 0.30 to 20.00), respectively. Thus, the training and holdout test 
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dataset were considered to be differently distributed than the external one. Patient 

characteristics of the study sample are presented in Table 6.  

Table 6. Patient characteristics of the study sample. IM: invasive melanoma 
 

Training set 
(hospitals 1 to 5) 

Holdout test dataset 
(hospitals 1 to 5) 

External test dataset 
(hospital 6) 

 
IM 
n=209 

Nevus 
n=377 

IM 
n=37 

Nevus 
n=66 

IM 
n=142 

Nevus 
n=194 

Age at diagnosis (years) 
      

 
<35  5 (2.4%)  75 (19.9%) 1 (2.7%) 16 (24.2%) 4 (2.8%) 51 (26.3%) 

 
35-54 45 (21.5%) 129 (34.2%) 8 (21.6%) 19 (28.8%) 19 (13.4%) 67 (34.5%) 

 
55-74 84 (40.2%) 124 (32.9%) 17 (45.9%) 22 (33.3%) 58 (40.8%) 48 (24.7%) 

 
>74 74 (35.4%) 49 (13.0%) 11 (29.7%) 9 (13.6%) 61 (43.0%) 28 (14.4%) 

 
Unknown 1 (0.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Lesion localization  
      

 
Palms/soles 1 (0.5%) 6 (1.6%) 1 (2.7%) 3 (4.5%) 4 (2.8%) 5 (2.6%) 

 
Face/scalp/neck 43 (20.6%) 17 (4.5%) 8 (21.6%) 4 (6.1%) 24 (16.9%) 26 (13.4%) 

 
Upper extremities 37 (17.7%) 38 (10.1%) 5 (13.5%) 9 (13.6%) 18 (12.7%) 13 (6.7%) 

 
Lower extremities 45 (21.5%) 78 (20.7%) 8 (21.6%) 13 (19.7%) 29 (20.4%) 34 (17.5%) 

 
Back 54 (25.8%) 134 (35.5%) 8 (21.6%) 18 (27.3%) 43 (30.3%) 59 (30.4%) 

 
Abdomen 13 (6.2%) 48 (12.7%) 3 (8.1%) 9 (13.6%) 9 (6.3%) 29 (14.9%) 

 
Chest 12 (5.7%) 37 (9.8%) 2 (5.4%) 8 (12.1%) 10 (7.0%) 16 (8.2%) 

 
Buttock 2 (1.0%) 10 (2.7%) 1 (2.7%) 2 (3.0%) 1 (0.7%) 5 (2.6%) 

 
Genitalia 1 (0.5%) 5 (1.3%) 1 (2.7%) 0 (0.0%) 1 (0.7%) 3 (1.5%) 

 
Unknown 1 (0.5%) 4 (1.1%) 0 (0.0%) 0 (0.0%) 3 (2.1%) 4 (2.1%) 

Lesion subtype  
      

 
Superficial spreading 
melanoma 

142 (67.9%) 
 

24 (64.9%) 
 

35 (24.6%) 
 

 
Nodular melanoma 25 (12.0%) 

 
4 (10.8%) 

 
20 (14.1%) 

 

 
Lentigo maligna mela-
noma 

29 (13.9%) 
 

5 (13.5%) 
 

9 (6.3%) 
 

 
Acral lentiginous mela-
noma 

8 (3.8%) 
 

2 (5.4%) 
 

6 (4.2%) 
 

 
Desmoplastic mela-
noma 

0 (0.0%) 
 

0 (0.0%) 
 

2 (1.4%) 
 

 
Spitzoid melanoma  1 (0.5%) 

 
1 (2.7%) 

 
0 (0.0%) 
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Other types of IM/ 
combined forms of IM/ 
subtype unknown 

4 (1.9%) 
 

1 (2.7%) 
 

70 (49.3%) 
 

 
Spitz nevus and vari-
ants 

 
6 (1.6%) 

 
0 (0.0%) 

 
4 (2.1%) 

 
Dysplastic nevus/Clark 
nevus 

 
155 (41.1%) 

 
30 (45.5%) 

 
110 
(56.7%) 

 
Acral nevus 

 
7 (1.9%) 

 
4 (6.1%) 

 
12 (6.2%) 

 
Recurrent nevus 

 
1 (0.3%) 

 
0 (0.0%) 

 
1 (0.5%) 

 
Blue nevus 

 
21 (5.6%) 

 
3  (4.5%) 

 
6 (3.1%) 

 
Other types of nevi/ 
combined forms of 
nevi/ 
subtype unknown 

 
187 (49.6%) 

 
29 (43.9%) 

 
61 (31.4%) 

AJCC stagea 
      

 
IA 87 (41.6%) 

 
13 (35.1%) 

 
70 (49.3%) 

 

 
IB 23 (11.0%) 

 
8 (21.6%) 

 
30 (21.1%) 

 

 
IIA 13 (6.2%) 

 
3 (8.1%) 

 
6 (4.2%) 

 

 
IIB 7 (3.3%) 

 
0 (0.0%) 

 
14 (9.9%) 

 

 
IIC 7 (3.3%) 

 
3 (8.1%) 

 
7 (4.9%) 

 

 
IIIA 4 (1.9%) 

 
0 (0.0%) 

 
3 (2.1%) 

 

 
IIIB 4 (1.9%) 

 
0 (0.0%) 

 
5 (3.5%) 

 

 
IIIC 12 (5.7%) 

 
1 (2.7%) 

 
6 (4.2%) 

 

 
IV 2 (1.0%) 

 
1 (2.7%) 

 
1 (0.7%) 

 

 
Unknown 50 (23.9%) 

 
8 (21.6%) 

 
0 (0.0%) 

 

Breslow thicknessb 
      

 
≤ 1.00 mm (T1) 126 (60.3%) 

 
23 (62.1%) 

 
89 (62.7%) 

 

 
1.01 to 2.00 mm (T2) 25 (12.0%) 

 
6 (16.2%) 

 
16 (11.3%) 

 

 
2.01 to 4.00 mm (T3) 27 (12.9%) 

 
1 (2.7%) 

 
19 (13.4%) 

 

 
> 4.00 m (T4) 23 (11.0%) 

 
6 (16.2%) 

 
17 (12.0%) 

 

 
Unknown 8 (3.8%) 

 
1 (2.7%) 

 
1 (0.7%) 

 

aAJCC staging constitutes the gold standard for histopathological reporting of IM. 

bBreslow thickness describes the extent of anatomic spread and serves as an important prognostic factor for IM.  
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Comparison of federated learning with other approaches 

To compare the performance of FL, a total of 586 lesions (209 IM, 377 nevi) derived 

from five hospitals were used to train three distinct models (see Supplementary Fig-

ure 9): first, the federated approach, where a model was built through decentralized 

training of individual models that were merged at regular intervals [88]; second, the 

centralized approach (Hfull), where a model was built using all available data on a cen-

tralized server [89]; and third, the ensemble approach, where a model was built for 

each participating hospital, and the results of all models were aggregated into one final 

prediction [90]. A randomly sampled holdout test dataset – from the same hospitals 

already involved in model training – consisting of 103 lesions (37 IM, 66 nevi) and an 

external test dataset – from another hospital not involved in model training – consisting 

of 336 lesions (142 IM, 194 nevi) were used to evaluate the performances of the ap-

proaches.  

Federated learning performs the worst on the holdout test dataset 

On the holdout test dataset, FL performed the worst (see Table 7), with a AUROC of 

0.8579 (95% CI: 0.7693-0.9299, see Figure 4), followed by the ensemble approach 

with a mean AUROC of 0.8867 (95% CI: 0.8103-0.9481). The centralized approach 

(model Hfull) performed best, with a mean AUROC of 0.9024 (95% CI: 0.8379-0.9565). 

The results indicate that on the holdout test dataset, the classical centralized model 

performed significantly better than the federated and ensemble approaches in terms 

of AUROC (pairwise Wilcoxon signed-rank, P<.001). For a detailed overview of the 

confusion matrices on the holdout test dataset, see Supplementary Figure 10.  

 

https://paperpile.com/c/LvwbJz/9kCr8
https://paperpile.com/c/LvwbJz/6W3aW
https://paperpile.com/c/LvwbJz/KVfo4
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Federated learning outperforms classical centralized learning on the external 

test dataset 

On the external test dataset, a different ranking was observed (see Table 7). The cen-

tralized approach (model Hfull) performed the worst, achieving a mean AUROC of 

0.9045 (95% CI: 0.8701-0.9331), while FL demonstrated a mean AUROC of 0.9126 

(95% CI: 0.8810-0.9412, see Figure 4). The ensemble approach performed best on 

the external test dataset, with a mean AUROC of 0.9227 (95% CI: 0.8941-0.9479). 

Altogether, on the external test dataset the federated approach yielded significantly 

better results than the centralized model in terms of AUROC (pairwise Wilcoxon 

signed-rank, P<.001). Notably, both the FL and centralized models performed signifi-

cantly worse than the ensemble approach (pairwise Wilcoxon signed-rank, P<.001). 

For a detailed overview of the confusion matrices on the external test dataset, see 

Supplementary Figure 11.  
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Figure 4. Mean AUROCs of the three investigated approaches. Mean AUROCs on the holdout and external test 

dataset after 1000 iterations of bootstrapping including the corresponding 95% CIs (orange- and violet-colored 

areas) are illustrated for the FL and the centralized approach (model Hfull) on the top and for the FL and the ensemble 

approach on the bottom. AUROC: area under the receiver operating characteristic curve 

 

Comparison of federated learning with a more realistic centralized approach 

Furthermore, the classical centralized approach was subjected to retraining using sev-

eral smaller datasets (models H1, H2, H3, H4 and H5), for comparison with the original 

federated approach, which was trained with all available training data. This comparison 
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was conducted to investigate whether FL would achieve at least comparable results to 

centralized approaches when it had access to more data (ranging from 71 to 236 more 

cases). Thereby, we explored the feasibility of potential future clinical FL application 

scenarios where hospitals might be more willing to participate in the development and 

refinement of a classifier when no patient data needs to be transferred to an external 

institution.  

After retraining, the centralized approach maintained its superiority on the holdout test 

dataset in terms of AUROC (see Table 7), regardless of which hospital was omitted 

for classifier training (models H1, H2, H3, H4 and H5; pairwise Wilcoxon signed-rank, 

P<.001). However, on the external test dataset, the model developed with the FL ap-

proach held its performance advantage (see Table 7) over all five centralized models 

developed using smaller datasets (pairwise Wilcoxon signed-rank, P<.001). These re-

sults suggest that a surplus of training data does not necessarily result in superior 

classification performance for FL. 

Table 7. Performance metrics of the different classification approaches on the holdout and external test 

datasets (top). Performance metrics of the original federated approach and all five retrained “leave-one-hospital-

out” approaches on the holdout and external test datasets (bottom). AUROC: area under the receiver operating 

characteristic curve 

Performance metrics of the different classification approaches 

Holdout AUROC (95% CIs) Balanced accuracy 
(95% CIs) 

Sensitivity (95% CIs) Specificity (95% CIs) 

FL model 0.8579 (0.7693-0.9299) 76.76% (67.70-84.89%) 59.54% (42.86-75.00%) 93.99% (87.84-98.55%) 

Ensemble 
model 

0.8867 (0.8103-0.9481) 81.46% (73.10-88.94%) 84.02% (70.59-94.59%) 78.89% (68.57-88.06%) 

Centralized 
model 

0.9024 (0.8379-0.9565) 85.23% (77.30-92.31%) 83.91% (70.97-94.59%) 86.55% (77.46-93.94%) 

External AUROC (95 % CIs) Balanced accuracy (95 
% CIs) 

Sensitivity (95 % CIs) Specificity (95 % CIs) 

FL model 0.9126 (0.8810-0.9412) 81.73% (77.36-85.77%) 80.92% (74.21-86.90%) 82.54% (77.07-87.92%) 
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Ensemble 
model 

0.9227 (0.8941-0.9479) 76.47% (72.69-80.48%) 95.79% (92.19-98.65%) 57.16% (50.51-63.96%) 

Centralized 
model 

0.9045 (0.8701-0.9331) 80.56% (76.71-84.38%) 93.66% (89.21-97.22%)  67.46% (60.87-74.05%) 

Performance metrics of the original federated approach and all five retrained “leave-one-hospital-out” ap-
proaches 

Holdout AUROC (95% CIs) Balanced accuracy 
(95% CIs) 

Sensitivity (95% CIs) Specificity (95% CIs) 

FL model 0.8579 (0.7693-0.9299) 76.76% (67.70-84.89%) 59.54% (42.86-75.00%) 93.99% (87.84-98.55%) 

model H1 0.9139 (0.8508-0.9648) 79.30% (70.90-87.40%) 67.59% (52.63-82.50%) 91.02% (83.33-97.06%) 

model H2 0.8874 (0.8041-0.9529) 82.76% (74.68-90.05%) 72.91% (57.89-86.67%) 92.61% (86.15-98.41%) 

model H3 0.8675 (0.7879-0.9337) 74.15% (65.63-82.90%) 54.23% (37.50-70.97%) 94.06% (87.67-98.59%) 

model H4 0.8851 (0.8099-0.9511) 81.55% (73.26-89.44%) 81.19% (68.29-93.55%) 81.91% (72.06-90.77%) 

model H5 0.8710 (0.7961-0.9401) 84.10% (75.96-91.18%) 89.24% (78.38-97.50%) 78.95% (68.75-88.06%) 

External AUROC (95% CIs) Balanced accuracy 
(95% CIs) 

Sensitivity (95% CIs) Specificity (95% CIs) 

FL model 0.9126 (0.8810-0.9412) 81.73% (77.36-85.77%) 80.92% (74.21-86.90%) 82.54% (77.07-87.92%) 

model H1 0.8868 (0.8517-0.9207) 76.90% (72.60-80.99%) 89.49% (84.09-94.24%) 64.31% (57.43-70.77%) 

model H2 0.8941 (0.8585-0.9252) 79.69% (75.59-83.84%) 89.43% (84.29-93.92%) 69.95% (63.37-76.22%) 

model H3 0.8831 (0.8465-0.9172) 78.82% (74.30-82.76%) 88.66% (82.99-93.48%) 68.99% (62.43-75.13%) 

model H4 0.8670 (0.8281-0.9020) 76.29% (71.84-80.39%) 86.61% (81.21-91.88%) 65.97% (59.28-72.77%) 

model H5 0.8296 (0.7837-0.8698) 72.39% (67.77-76.60%) 88.78% (83.45-93.63%) 55.99% (49.46-62.78%) 

 

2.3.5 Discussion 

In this study, we aimed to develop and externally validate a decentralized trained FL 

model for melanoma-nevus classification using histopathological whole-slide images. 

Additionally, we directly compared FL with classical centralized and ensemble learning 

that are commonly applied for melanoma classification tasks. In this context, FL 

achieved a mean AUROC of 0.8579 (95% CI: 0.7693-0.9299) on the holdout test da-

taset and 0.9126 (95% CI: 0.8810-0.9412) on the external test dataset, thus represent-

ing a reliable alternative.  



PUBLICATIONS 
 

77 

The utilized datasets encompassed a comprehensive representation of the IM cases 

encountered in day-to-day clinical care due to the prospective and consecutive data 

collection from multiple centers. By avoiding selection bias that may have arisen in 

previous melanoma classification studies that applied FL but collected data retrospec-

tively [74,75], we minimized the risk of over-/underestimating the performance of the 

compared classifiers. A strength of our study is the long-tailed distribution of localiza-

tions and IM subtypes (including rare subtypes such as spitzoid melanoma), and all 

possible AJCC stages and Breslow thickness categories [91]. Training the model on 

such a heterogeneous dataset that captures the complexity of real-world IM data ena-

bles the model to effectively recognize lesions of different types, severity levels, and 

depths, and allows the model to learn spatial patterns and specific characteristics as-

sociated with diverse body regions. This enhances its overall generalizability, ulti-

mately leading to robust performance.  

Overall, the classical centralized model (Hfull) significantly outperformed FL on the hold-

out test dataset (i.e., tested on data from hospitals involved in model training) in terms 

of AUROC (0.9024 versus 0.8579), while FL performed significantly better (0.9126 ver-

sus 0.9045) on the external test dataset (i.e., on data from a hospital not involved in 

model training). The findings demonstrate that FL techniques may not be as well suited 

to solve in-distribution classification problems (i.e., same distribution as the training 

data), as indicated by the inferior performance on the holdout test dataset. On the other 

hand, they show that FL may provide additional advantages in terms of out-of-distribu-

tion generalizability, as indicated by the enhanced performance on the external test 

datasets (similar observations see [72,77]). The observed superior performance on the 

external test set could be due to the FL model not fully converging during training, 

possibly introducing a slight regularization effect. This phenomenon of non-

https://paperpile.com/c/LvwbJz/2aOz3+DAB89
https://paperpile.com/c/LvwbJz/urnaR
https://paperpile.com/c/LvwbJz/5Z5z9+iHNll
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convergence is frequently encountered in FL due to the challenging task of training on 

data from different distributions [92]. 

While the observed differences between FL and the centralized approach may not be 

large in absolute terms, they are consistent over 1,000 iterations of bootstrapping (i.e., 

paired data comparisons), thereby demonstrating a sustained outperformance of the 

centralized approach. Despite the comparatively lower statistical power of the Wil-

coxon signed-rank test, this marginal yet persistent performance improvement is clini-

cally highly relevant, as any melanoma misclassifications can lead to fatal outcomes. 

Despite these positive findings, the ensemble approach continued to outperform FL 

and the classical centralized approach in terms of AUROC (0.9227 versus 0.9126 and 

0.9045, respectively). Nevertheless, an ensemble approach poses extensive chal-

lenges for the explainability of the results, since understanding multiple sets of model 

weights is more difficult than dealing with one set in the FL approach. This is particu-

larly relevant given the legislative requirement that medical devices must be explaina-

ble to a certain extent [65] as well as its substantial influence on patients’ and physi-

cians’ acceptance [93].  

Although the whole-slide images were digitized using the same slide scanner (Leica 

Aperio AT2 DX), heterogeneity was ensured by different staining and cutting protocols 

of the participating hospitals. While the labels for this study were established based on 

the gold standard of care (i.e., histopathological verification), caution should be exer-

cised in interpreting the results as previous studies observed a discordance between 

pathologists of up to 25% in classifying melanoma [13,14]. Future studies may involve 

the integration of independent pathologist panels or epigenetic analyses (e.g., methyl-

ation analyses) to further reduce interrater variability.  

https://paperpile.com/c/LvwbJz/LLMjL
https://paperpile.com/c/LvwbJz/Mnl9z
https://paperpile.com/c/LvwbJz/B11w
https://paperpile.com/c/LvwbJz/IUb9L+Q6qnK
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2.3.6 Conclusion 

The results of this study demonstrate that FL can achieve a comparable performance 

to that of classical centralized or ensemble approaches, making it a reliable alternative 

for the classification of IM and nevi. Additionally, FL empowers institutions to contribute 

to the development of AI models, even with relatively small datasets or strict data pro-

tection rules, thereby fostering collaboration across institutions and countries. Moreo-

ver, FL may have the potential to be further extended to other image classification 

tasks in digital cancer histopathology and beyond. Future research could build on this 

work by assessing its effectiveness with different types of medical images (e.g., der-

moscopic or hyperspectral images), evaluating its feasibility for diagnosing various 

types of cancer, and investigating its effectiveness using technically different (e.g., at-

tention-based methods) AI models. In our ongoing research, we are exploring the 

scalability of FL for refined diagnostic tasks by incorporating in-situ tumors as a clini-

cally highly-relevant but separate classification class. 
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2.3.8 Supplementary materials 

Supplementary Table 5. Dataset characteristics at the patch level. 

Hospital Overall (#patches) Melanoma (#patches) Nevi (#patches) 

Hospital 1 80706 30180 50526 

Hospital 2 32486 22910 9576 

Hospital 3 51919 35693 16226 

Hospital 4 85474 32226 53248 

Hospital 5 80655 33748 46907 

Hospital 6 217057 141384 75673 

Total 548297 296141 252156 
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Supplementary Figure 9. Workflow of the three implemented approaches. On the left side, the federated approach 

is depicted, where every hospital (represented by the red +) has its own data (gray database) and computing power (monitors), 

but communication and aggregation are executed by a third party (blue monitor) that serves as a central coordinator. In the middle, 

the centralized approach is represented. In this case, the hospitals transfer their data to a third party, which uses it to train a 

centralized model. On the right side, the ensemble approach is depicted, where each hospital uses their own data and computing 

power to train a separate model. The decisions over all models are averaged to obtain a final prediction for a given image. 

  

 
Supplementary Figure 10. Confusion matrices of the three approaches on the holdout test dataset. Distribu-

tion of correct and incorrect predictions on the holdout test dataset for the federated approach, the centralized approach Hful and 

the ensemble approach. The ground truth was determined by at least one reference dermatopathologist at the corresponding 

hospital as part of routine clinical practice. 
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Supplementary Figure 11. Confusion matrices of the three approaches on the external test dataset. Distribu-

tion of correct and incorrect predictions on the external test dataset for the federated approach, the centralized approach Hful and 

the ensemble approach. The ground truth was determined by at least one reference dermatopathologist at the corresponding 

hospital as part of routine clinical practice. 
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2.4.1 Abstract 

Background: A basic requirement for AI-based image analysis systems, which are to 

be integrated into clinical practice, is a high robustness. Minor changes in how those 

images are acquired, for example, during routine skin cancer screening, should not 

change the diagnosis of such assistance systems. 

Objective: To quantify to what extent minor image perturbations affect the CNN-me-

diated skin lesion classification and to evaluate three possible solutions for this prob-

lem (additional data augmentation, test-time augmentation, anti-aliasing). 

Methods: We trained three commonly used CNN architectures to differentiate be-

tween dermoscopic melanoma and nevus images. Subsequently, their performance 

and susceptibility to minor changes (‘brittleness’) was tested on two distinct test sets 

with multiple images per lesion. For the first set, image changes, such as rotations or 

zooms, were generated artificially. The second set contained natural changes that 

stemmed from multiple photographs taken of the same lesions. 

Results: All architectures exhibited brittleness on the artificial and natural test set. The 

three reviewed methods were able to decrease brittleness to varying degrees while 

still maintaining performance. The observed improvement was greater for the artificial 

than for the natural test set, where enhancements were minor. 

Conclusions: Minor image changes, relatively inconspicuous for humans, can have 

an effect on the robustness of CNNs differentiating skin lesions. By the methods tested 
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here, this effect can be reduced, but not fully eliminated. Thus, further research to sus-

tain the performance of AI classifiers is needed to facilitate the translation of such sys-

tems into the clinic. 

2.4.2 Introduction 

AI-based image classification by CNNs has the potential to assist clinicians with diag-

nostic tasks that are based on the visual inspection of potentially malignant lesions. In 

experimental settings, CNNs have achieved performances in medical image classifi-

cation tasks that were on par or even exceeded the results obtained by human experts 

[94–97]. In particular, CNNs have shown very promising results in macroscopic and 

microscopic skin lesion classification, both individually [22–28,33,35,52] and as assis-

tance systems for dermatologists [20,62,63,98]. And while such systems are as of yet, 

mostly unable to predict malignant oncologic transformations due to a lack of prospec-

tive training data [99], they are already used in practice. In fact, CNN-based systems 

have begun to enter clinical dermatological practice as skin cancer screening tools, for 

example, as a market-approved computer-aided diagnostic system [30,99], which has 

demonstrated superior performance to more conventional computer-aided diagnostic 

systems [100]. 

 

While CNN-based image analysis has advantages over human observation with re-

spect to objective and quantitative feature extraction, an obvious drawback is that in 

contrast to human experts, CNNs have difficulty distinguishing biologically significant 

features from insignificant features and artifacts. Depending on the data set that is 

used for CNN training, spurious and unwanted correlations within the training set can 

be picked up and hamper generalization [101–103]. Moreover, deceptively created in-

put images specifically designed to fool a CNN (adversarial attacks) have been shown 

https://paperpile.com/c/LvwbJz/v5Ir+0ZRa+0bFo+aA3C
https://paperpile.com/c/LvwbJz/22Qs6+AsX8+FuBPG+T1mhW+Skl2B+p8ZNx+oWASx+qhiQS+ZQlIX+vUpAt
https://paperpile.com/c/LvwbJz/X4wyG+Bxf72+Oq56+ERs95
https://paperpile.com/c/LvwbJz/4NVV
https://paperpile.com/c/LvwbJz/4NVV+Y5Zjz
https://paperpile.com/c/LvwbJz/mn78
https://paperpile.com/c/LvwbJz/nRkI+WHvWy+whHf
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to pose a real threat [104]. Both shortcomings also apply to CNNs in the field of der-

matology [59,105–107]. 

 

Another observed shortcoming is the brittleness of modern CNNs in image analysis. 

Brittleness in this context refers to the phenomenon that small changes in the input 

image, such as scaling or rotation, can have a large effect on the classification of the 

CNN. It is therefore different to adversarial attacks, as image changes are not designed 

to deceive the CNN, but reflect fluctuations in image acquisition occurring in daily clin-

ical routine. The resulting vulnerability of AI-based tools contradicts the assumption 

that CNNs are invariant to small transformations and is reported in the machine learn-

ing community [40,41,106–108]. As this lack of robustness and reliability may have a 

detrimental effect in a clinical setting, it needs to be overcome to facilitate the success-

ful translation of AI-based diagnostic tools into routine clinical care. 

 

In this study, we investigate the brittleness of three commonly used CNN architectures, 

which could serve as backends of CNN-based diagnostic systems, by testing them on 

images that have undergone transformations, which model variations that may occur 

when dermatologists photograph suspicious skin lesions. Moreover, we investigate 

three possible techniques (data augmentation, test time augmentation, anti-aliased 

networks) regarding their effectiveness in solving the problem of CNN brittleness. 

2.4.3 Materials and methods 

Study design 

We trained three commonly used CNN architectures (ResNet50, DenseNet121, 

VGG16) to distinguish between dermoscopic nevus and MM images. To establish the 

models' susceptibility to image changes, each classifier was evaluated on a test set 

containing unmodified, original images and several additional sets containing 

https://paperpile.com/c/LvwbJz/gMej
https://paperpile.com/c/LvwbJz/Qwbx+hiHwR+tFIA+VGMH
https://paperpile.com/c/LvwbJz/tFIA+k1Uo+ujQ9+VGMH+aZFX
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duplicated images that were digitally modified. Transformations were chosen to mimic 

events, which might occur in a clinical setting. Moreover, the magnitude of transfor-

mations was limited to an extent which would not render the lesion unrecognizable for 

a physician. Subsequently, a range of pre-existing methods which address AI brittle-

ness were tested to assess if they are indeed effective in reducing brittleness without 

impairing performance. 

 

As the test set transformations described above were artificial, the models and meth-

ods were additionally tested on an independent test set where at least two dermoscopic 

images with natural changes resulting from differences in real-life image acquisition 

were available for each lesion. 

 

Ethics approval was waived by the ethics committee of the University of Heidelberg, 

as images were open source and anonymous. 

 

Data sets 

Dermoscopic images were obtained from the ISIC archive [109], the HAM10000 data 

set [110], the PH2 data set [111], the SKINL2 data set [112], the BCN20000 data set 

[112,113], and PROP, a proprietary data set. The training set was made up exclusively 

of ISIC, HAM10000, and BCN20000 images. The artificial test set consisted of a hold-

out component in ISIC and an external component in PH2 and SKINL2. Similarly, the 

natural test set consisted of a holdout component in BCN20000 and an external com-

ponent in PROP. Exact details on training and test set composition are listed in the 

Supplementary Materials. 

 

https://paperpile.com/c/LvwbJz/pRPS
https://paperpile.com/c/LvwbJz/GMm0e
https://paperpile.com/c/LvwbJz/iwpXV
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The artificial test set was duplicated 11 times. Each of the 11 duplicated sets was mod-

ified according to one previously defined transformation type and magnitude. Available 

types were a change in orientation, zoom, or brightness. In addition, the artificial test 

set was duplicated six more times, but this time combinations of transformations were 

applied and the magnitude was increased (see Supplementary Materials). 

 

The additional natural test set contained at least two separately taken dermoscopic 

images per lesion. Thus, the changes between these images were not produced ret-

rospectively using a computer. As this makes it impossible to define an original test set 

against which deviations should be measured, all possible image combinations were 

compiled and evaluated. Because different photographs of the same lesion often 

looked extremely different, e.g., because of an altered zoom by more than 50%, im-

ages for each lesion were manually sorted into similarly looking groups using the four-

eyes principle. 

 

Classifier development 

All classifiers, regardless of architecture, were trained using the same training set and 

protocol. Furthermore, all architectures had the same set of fully connected layers on 

top of the individual feature extractor, which was made up of fastai's [86] default custom 

head. Online data augmentation was applied during training, where the type and mag-

nitude of augmentations were adapted from the fastai library, which has sensible pre-

set values. For exact details on the training procedure and used augmentations, see 

Supplementary Materials. 

 

https://paperpile.com/c/LvwbJz/vI8ab
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All work was carried out in Python 3.7.7 using fastai 1.0.61 in combination with torch 

1.5.1 [85] and torchvision 0.6.1. Training was carried out on a single NVIDIA GeForce 

RTX 2080 Ti. 

 
Methods to reduce brittleness 

Three methods were tested for their effectiveness against brittleness. The first ap-

proach used a more extreme form of data augmentation during the training stage, 

where the magnitudes of the applied transformations were increased. The second ap-

proach used test-time augmentation during the inference stage. Instead of the model 

just rating one version of an input image, it rates a collection of slightly modified dupli-

cates and averages the output. In our case, eight modified duplicates were rated, which 

were transformed using a flip coupled with a zoom into all four image corners. These 

transformations were set to be deterministic to allow reproducibility. The third approach 

replaced the original model architecture by an anti-aliased architecture, which reduces 

anti-aliasing effects in downsampling layers (strided convolutions, max-/average-pool-

ing) [107]. This is achieved by upgrading all downsampling layers to include a low-pass 

filter. While originally intended to address shift-invariance, a general positive effect on 

model robustness was observed [107]. 

 

Analysis 

To obtain robust performance estimates that encompass the stochastic nature of the 

training process, each training and evaluation run was repeated five times. Thus, all 

calculated metrics are averaged over five runs. 

 

Classifier performance was captured using the AUROC. As the receiver operating 

curve shows the sensitivity and specificity of a dichotomous outcome for all possible 

https://paperpile.com/c/LvwbJz/TjqkL
https://paperpile.com/c/LvwbJz/VGMH
https://paperpile.com/c/LvwbJz/VGMH
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classification thresholds, the area under this curve provides a single summary meas-

ure, which captures a classifier's overall performance. The classifiers' susceptibility to 

change was measured using P(class change) and mean absolute change, two metrics 

adapted from Azulay et al. [40]. P(class change) represents the probability that the 

classifier changes its prediction from MM to nevus or vice versa, after the input image 

is transformed. This measure is independent of small confidence fluctuations, which 

do not have an impact on the classification, e.g. when a model changes its lesion di-

agnosis from 95% nevus to 85% nevus, this change is ignored by P(class change). 

Mean absolute change measures by how much on average the model's output proba-

bility changes after the input image is transformed. This metric allows us to verify if 

class changes are mainly a result of lesions being diagnosed divergently when the 

model was unsure to begin with. For a robust classifier, both metrics should be mini-

mised. 

2.4.4 Results 

Baseline performance and brittleness 

All baseline CNNs achieved an AUROC of approximately 0.9. This was comparable 

with the AUROCs obtained across the 11 artificially transformed test sets (see Figure 

5 and Supplementary Materials). For ResNet50, the mean absolute change varied 

from 2.9% ± 0.4% to 11.2% ± 1.2% and resulted in a P(class change) ranging from 

3.5% ± 0.9% to 12.2% ± 1.6%. Variations in mean absolute change and P(class 

change) were slightly lower for DenseNet121, with VGG16 showing the lowest varia-

tion out of all three architectures (see Supplementary Materials). 

  

https://paperpile.com/c/LvwbJz/ujQ9


PUBLICATIONS 
 

93 

Figure 5. Individual performance and brittleness metrics for the baseline ResNet50 model across all artifi-

cially transformed test sets. Top row shows the absolute change distribution over each artificially transformed 

test set. The grey line within the box plot indicates the mean absolute change. Middle row and bottom row show the 

mean P(class change) and AUROC, respectively, for each individually and artificially transformed test set. In addi-

tion, the AUROC for the unmodified test set is shown as a dashed line. Results for the other architectures were 

similar (see Supplementary Materials). AUROC: area under the receiver operating characteristic curve 

 
 

Averaging performance and robustness metrics across all twelve artificial test sets shows that 

both metrics were always better on the holdout than on the external test set regardless of used 

architecture (see Supplementary Materials). Moreover, there was a clear ranking between 

architectures with VGG16 having the best overall performance and brittleness scores, followed 

by DenseNet121 and ResNet50. 

 
Effectiveness of tested methods on artificial transformations 

The three tested methods, which were additional data augmentation, test-time aug-

mentation and anti-aliasing, were able to reduce overall brittleness when applied 
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individually and especially when used in combination. This was true for all three archi-

tectures to a similar extent and did not result in performance deterioration (see Fig-

ure 6). Depending on the type of transformation that was applied to the test set, the 

used methods showed varying degrees of effectiveness. Generally, larger improve-

ments were observed for rotations and zooms than for brightness (see Supplemen-

tary Materials). 

 
Figure 6. Average performance and brittleness metrics across all artificially transformed test sets for the 

various method combinations using individual transformations. The three proposed methods, ADA, TTA and 

AAM were tested individually and in combination. Metrics were established on all individually transformed test sets 

and averaged. AUROC: area under the receiver operating characteristic curve, BM: baseline model, ADA: additional 

data augmentation, TTA: test-time augmentation, AAM: anti-aliased model. 
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When combining the artificial transformations to act on an image together, brittleness 

increased even more and performance deteriorated slightly. However, all reviewed 

methods were still effective in reducing brittleness while upholding performance (see 

Figure 7). 

 
Figure 7. Average performance and brittleness metrics across all artificially transformed test sets for the 

various method combinations using combined transformations. The three proposed methods, ADA, TTA and 

AAM were tested individually and in combination. Metrics were established and averaged over all transformed test 

sets, which were modified using a combination of individual transformations. AUROC: area under the receiver op-

erating characteristic curve, BM: baseline model, ADA: additional data augmentation, TTA: test-time augmentation, 

AAM: anti-aliased model. 
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Regardless whether the artificial transformations were used individually or in combina-

tion, additional data augmentation and test-time augmentation always showed im-

provements for brittleness and were most effective when applied in combination. Anti-

aliasing worked well for ResNet50 and DenseNet121; however, the anti-aliased 

VGG16 suffered an increase in brittleness. 

 
Effectiveness of tested methods on natural transformations 

Average performance and brittleness of all three baseline models on the natural test 

set was in-between that of the artificial test set with individual transformations and the 

artificial test set with combined transformations. However, effectiveness of the em-

ployed methods was far less pronounced on the natural test set than on either of the 

two artificial test sets (see Figure 8). Trends were less consistent and while one 

method showed improvements for a certain architecture, it did not do so for another. 

For example, ResNet50 experienced slightly worse brittleness with additional data 

augmentation while DenseNet121 did not. Regardless of architecture, test-time aug-

mentation always improved both performance and brittleness. 
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Figure 8. Performance and brittleness metrics across the natural transformed test set for the various 

method combinations. The three proposed methods, ADA, TTA and AAM, were tested individually and in combi-

nation. AUROC: area under the receiver operating characteristic curve, BM: baseline model, ADA: additional data 

augmentation, TTA: test-time augmentation, AAM: anti-aliased model. 

 
 

2.4.5 Discussion 

Practical implications 

This study demonstrated brittleness i.e., vulnerability of CNNs toward small input 

changes for three commonly used CNN architectures (ResNet50, DenseNet121, 

VGG16). Although this phenomenon has been reported throughout the machine learn-

ing community, its potential impact on AI-based assistance systems in the clinic has 
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not received proper attention [40,41,106–108]. We reviewed three different methods 

to reduce brittleness (additional data augmentation, test-time augmentation, anti-alias-

ing) and found them to be partially effective on artificial image transformations such as 

rotations, altered brightness or zooms, but less so on natural image transformations 

resulting from image acquisition differences. 

 

For our models, we chose architectures and training techniques that are commonly 

used throughout image classification tasks for skin cancer [22,62,114] and other can-

cer subtypes [95,115–118]. Thus, we believe our baseline models to be suitably rep-

resentative of existing or future models, which could serve as the backbone of a diag-

nostic system. 

 

While the change of diagnosis i.e., P(class change) is independent of monotonic con-

fidence fluctuations and intuitive to grasp, we also consider the mean absolute change. 

In a clinical setting, it is unlikely that an assistance system, which solely presents a 

plain diagnosis such as MM, will be accepted by physicians or patients. Inclusion of 

the model's confidence level may increase trust in the system as it enables the physi-

cian to judge the weight he/she should attribute to the model's classification. Low-con-

fidence decisions by the system would therefore be less likely to influence the physi-

cian's management decision to begin with. In such a setting, brittleness would be par-

tially compensated as the observed confidence changes would often only alter the 

CNN's classification if its confidence was low to begin with. If, however, high-confi-

dence classifications show these fluctuations, the range of confidences for similar im-

ages can be highly disconcerting to the physician. 

 

https://paperpile.com/c/LvwbJz/tFIA+k1Uo+ujQ9+aZFX+VGMH
https://paperpile.com/c/LvwbJz/AsX8+Oq56+6mY8
https://paperpile.com/c/LvwbJz/0ZRa+uCLA+Ug9L+0z2Y+3qIy
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The techniques we evaluated to reduce brittleness, namely additional data augmenta-

tion, test-time augmentation and anti-aliasing, substantially reduced this phenomenon 

in an artificial setting, but even when used in combination did not completely eliminate 

it. Depending on the architecture, some methods worked better than others; for exam-

ple, anti-aliasing did not reduce brittleness for VGG16. When all three methods were 

used in combination, brittleness and performance always improved in comparison with 

the baseline model. 

 

The observed improvement was much more limited on naturally transformed images. 

Even when combinations were applied, improvements were minor or non-existent. Fig-

ure 9 shows a selection of natural image pairs where our models, regardless of the 

applied method, always came to a divergent diagnosis on an image pair of the same 

lesion, even though some of the paired images appear almost identical. Thus, it may 

hardly be possible for a physician to determine how to photograph a lesion ‘correctly’, 

which they intend to diagnose with a CNN-based lesion classification system. Such 

problems limit the applicability of the technology in the clinic and therefore have to be 

solved. 
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Figure 9. Natural image pairs for selected lesions where models disagreed constantly. Each lesion was pho-

tographed twice and rated by all possible combinations of proposed methods (i.e., BM, BM + ADA, BM + TTA, AAM, 

etc.). Regardless of the applied method, none of the selected image pairs received the same diagnosis. BM: base-

line model; ADA: additional data augmentation, TTA: test-time augmentation, AAM: anti-aliased model. 

 

 

Against this background, we would like to inform physicians to not consider CNN-based 

systems as error free and be aware of such limitations. We also want to encourage 

deep learning practitioners to actively minimise brittleness on a case-by-case basis in 

the same way performance is optimised. The reported improvements could be further 

enhanced through method-specific optimisations, alternative techniques for robust-

ness [119,120] or an ensemble-approach, which showed even better improvements 

than model-specific techniques (see Supplementary Materials). Finally, future work 

should also investigate alternatives, which do not solely focus on the training/inference 

procedure or on architectural modifications but rather on other architectures such as 

Capsule Neural Networks [121] which could be better suited to handle small affine 

transformations. 

 

 

https://paperpile.com/c/LvwbJz/5SPn+3sUK
https://paperpile.com/c/LvwbJz/DirH
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Limitations 

The artificial image changes were designed in such a way as to be relatively incon-

spicuous to a human observer. The inconspicuousness was determined using the four-

eye principle and is therefore subjective. But even if images changes are not deemed 

as inconspicuous, such transformations are still likely to arise in a clinical setting and 

therefore any CNN-based system should be invariant against such changes. 

 

The natural test set contained multiple photographs per lesion, where some looked 

extremely distinct, to the point where there was no overlap between images. Thus, 

suitably similar image pairs for each lesion were manually chosen using the four-eye 

principle. As this was largely subjective, the reported results for the natural test set 

could change depending on how the images are sorted. 

2.4.6 Conclusions 

Minor image changes, relatively inconspicuous for humans, can have an effect on the 

confidence and diagnosis of CNNs differentiating skin lesions. Using the methods 

tested here, this effect was reduced but not fully eliminated. Therefore, we would like 

to remind deep learning practitioners and physicians in dermatology but also in medi-

cine in general, that brittleness needs to be explicitly targeted and overcome to facili-

tate translation from bench-to-bedside. 
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2.5.1 Abstract 

Background: Image-based cancer classifiers suffer from a variety of problems which 

negatively affect their performance. For example, variation in image brightness or dif-

ferent cameras can already suffice to diminish performance. Ensemble solutions, 

where multiple model predictions are combined into one, can improve these problems. 

However, ensembles are computationally intensive and less transparent to practition-

ers than single model solutions. Constructing model soups, by averaging the weights 

of multiple models into a single model, could circumvent these limitations while still 

improving performance. 

Objective: To investigate the performance of model soups for a dermoscopic MM-

nevus skin cancer classification task with respect to (1) generalisation to images from 

other clinics, (2) robustness against small image changes and (3) calibration such that 

the confidences correspond closely to the actual predictive uncertainties. 

Methods: We construct model soups by fine-tuning pre-trained models on seven 
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different image resolutions and subsequently averaging their weights. Performance is 

evaluated on a multi-source dataset including holdout and external components. 

Results: We find that model soups improve generalisation and calibration on the ex-

ternal component while maintaining performance on the holdout component. For ro-

bustness, we observe performance improvements for pertubated test images, while 

the performance on corrupted test images remains on par. 

Conclusions: Overall, souping for skin cancer classifiers has a positive effect on gen-

eralisation, robustness and calibration. It is easy for practitioners to implement and by 

combining multiple models into a single model, complexity is reduced. This could be 

an important factor in achieving clinical applicability, as less complexity generally 

means more transparency. 

 

2.5.2 Introduction 

While deep learning-based skin cancer classifiers have achieved numerous accolades 

in the past – such as on par or outperformance of human experts in artificial settings 

[22–25,27,28,63,122] – transition to the clinical setting proves difficult. Although pro-

spective studies have shown promising results [123,124] and human experts may ben-

efit from deep learning support [20,62,98,125], progressing research reveals various 

limitations. For example, studies have shown that a market-approved deep learning 

device has learned spurious correlations during training, leading to the association of 

skin markings [59] or scale bars [126] to MM. What is even more surprising is that small 

image changes, which occur through everyday image acquisition fluctuations or tar-

geted adversarial attacks, can already change the classification and confidence of 

deep learning algorithms [61,105]. In combination, such limitations negatively affect 

the overall performance of deep learning algorithms. 

https://paperpile.com/c/LvwbJz/22Qs6+AsX8+EFSO+FuBPG+oWASx+X4wyG+p8ZNx+T1mhW
https://paperpile.com/c/LvwbJz/d39hF+0IWu9
https://paperpile.com/c/LvwbJz/Bxf72+Oq56+ERs95+DE3o
https://paperpile.com/c/LvwbJz/Qwbx
https://paperpile.com/c/LvwbJz/Vwut
https://paperpile.com/c/LvwbJz/93Kx+hiHwR
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A commonly employed method for addressing some of these problems is ensemble 

learning, where the predictions of multiple models are combined into one. The winning 

solution of the SIIM-ISIC Melanoma Classification Challenge 2020, for example, used 

an ensemble of 90 models [127]. Such large-scale solutions impose obvious draw-

backs. For one, ensemble predictions require multiple inference passes and more 

computational power. However, with ever improving hardware, the severity of this lim-

itation will continue to decrease in the future. A tougher problem is the necessity for 

transparency [128], which is complicated through the black box nature of deep learning 

algorithms [65]. Adding more ‘black boxes’ to a classifier is unlikely to simplify this 

problem. 

Model soups, where the weights – not the outputs – from multiple models of the same 

architecture are averaged to produce a single model, present an interesting alternative 

to ensembles (see Figure 10). Wortsman et al. [129] have shown that soups, con-

structed from models fine-tuned on ImageNet, improve in- and out-of-distribution per-

formance when compared to the best individual model. 

  

https://paperpile.com/c/LvwbJz/owRt
https://paperpile.com/c/LvwbJz/rJky
https://paperpile.com/c/LvwbJz/Mnl9z
https://paperpile.com/c/LvwbJz/ARBg
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Figure 10. Differences between traditional single model solutions, ensembles and model soups. During the 

model development phase, multiple models are usually generated by deep learning practitioners. For traditional 

single model solutions (left), only the best performing model is selected for inference. For ensembles (middle), 

multiple models are selected for inference. Each model separately classifies the input, and outputs are subsequently 

combined (e.g., via averaging). For model soups (right), multiple models are also selected for inference. However, 

the models are combined into a single model by averaging their weights. Thus, only one model classifies the input.  

 

In this study, we therefore investigate how model soups fare with a real-world medical 

task in the form of skin cancer classification, as performance improvements – espe-

cially regarding generalisation – are not guaranteed to transfer across tasks [130]. To 

further expand on previous works, we focus our research exclusively on smaller CNN 

architectures pre-trained on ImageNet, instead of models pre-trained on larger, heter-

ogeneous datasets such as CLIP [131] or ALIGN [132]. In addition, we investigate 

whether the model selection process for soups introduced by Wortsman et al. [129] 

can further be improved. Our analysis will focus on three clinically relevant aspects 

which are (1) generalisation to images from other clinics, (2) robustness against small 

image changes and (3) calibration. The latter measures whether the confidence of pre-

dictions match the probability of being correct for all confidence levels. This is a crucial 

aspect for safety critical applications in medicine, where practitioners need to have 

https://paperpile.com/c/LvwbJz/Aoys
https://paperpile.com/c/LvwbJz/SlCx
https://paperpile.com/c/LvwbJz/0cIm
https://paperpile.com/c/LvwbJz/ARBg
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access to reliable predictive uncertainty to correctly estimate whether the model is right 

or wrong [133]. 

2.5.3 Methods 

Study design 

To obtain a pool of models that can be used to construct soups and ensembles, we 

separately trained seven models on different image sizes, starting at 112x122 pixels 

and moving up to 448x448 pixels in steps of 56 pixels. This pool of models is subse-

quently used to construct soups – using uniform, greedy or custom soup algorithms – 

and ensembles. We also choose a baseline model from this pool, which is simply the 

model that performs best on the validation set (see Supplementary Materials). 

We evaluate our results by defining three clinically relevant aspects which target the 

generalisation, robustness and calibration of our classifier. 

To ensure the results are representative, we include eight CNN architectures (Res-

Net34/50 [134], DenseNet121/169 [135], EfficientNetB1/B3 [136] and VGG11/16 

[135,137]. We also average over five-fold cross validation, so that our results are less 

influenced by stochastic training events and dataset differences. 

Ethics approval was waived by the ethics committee of the University of Heidelberg, 

as images were open source and anonymous. 

Datasets 

For model training, we use a multi-source dermoscopic image dataset [110,113,138], 

resulting in 14,648 melanoma and nevus images (see Supplementary Materials). 

https://paperpile.com/c/LvwbJz/bp5k
https://paperpile.com/c/LvwbJz/Ro4JH
https://paperpile.com/c/LvwbJz/rGoPT
https://paperpile.com/c/LvwbJz/PTP0
https://paperpile.com/c/LvwbJz/rGoPT+uTEaP
https://paperpile.com/c/LvwbJz/pRPS+AlQfK+PBHp
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For model evaluation, we set aside 562 images as a holdout component. Furthermore, 

we construct a multi-source external component from six datasets (MSK [109], 

DERM7PT [139], ISIC2020_SYDNEY [138], SAM [140], PH2 [111] and SKINL2 [112]), 

resulting in 5,678 images. 

In order to evaluate model robustness against image corruptions and perturbations, 

we add SAM-C and SAM-P to the test set [140]. SAM-C tests how well a classifier 

fares with low-quality images (e.g., blurry images). SAM-P tests classifier stability in 

response to subtle image changes (e.g., continuous change of brightness). See Sup-

plementary Materials for further details. 

Model training 

We train each model according to the training procedure described by Ha et al. [127], 

leaving all hyperparameters fixed except for image size (see Supplementary Materi-

als). 

 

Model souping 

As each architecture is trained across seven different image sizes, the pool of potential 

members for a soup consists of seven models. For uniform soups, all models are in-

cluded by uniformly averaging their weights. For greedy soups, models are selected 

according to the algorithm described by Wortsman et al. [129]. Models are first ranked 

in descending order based on their performance on a separate validation set. The first, 

i.e., best performing model, is always included in the soup. Subsequent models will 

only be added if they improve the performance of the soup on the separate validation 

set. The separate validation set consists of 164 MM and 398 nevi images and models 

were ranked based on the AUROC. 

https://paperpile.com/c/LvwbJz/0Cki6
https://paperpile.com/c/LvwbJz/Wey0n
https://paperpile.com/c/LvwbJz/PBHp
https://paperpile.com/c/LvwbJz/oOV0
https://paperpile.com/c/LvwbJz/GMm0e
https://paperpile.com/c/LvwbJz/iwpXV
https://paperpile.com/c/LvwbJz/oOV0
https://paperpile.com/c/LvwbJz/owRt
https://paperpile.com/c/LvwbJz/ARBg
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As construction of the greedy soup is heavily dependent on the separate validation set, 

we experiment with artificially increasing the size and variety of this set by either dupli-

cating each image ten times via random cropping or via data augmentations from Ha 

et al.  [127]. We refer to these methods as greedy cropped and greedy data augmen-

tation. Finally, we take each of the three greedy algorithms and inverse the order of 

the model rankings, i.e., sort from worst to best. We refer to these methods as greedy 

inverse, greedy cropped inverse and greedy data augmentation inverse. Uniform and 

greedy ensembles are constructed in the same way, but instead of averaging weights, 

model outputs are averaged. 

 

Model evaluation 

In order to cover the three different aspects – generalisation, robustness and calibra-

tion – we use the metrics below: 

 

To test model generalisation and calibration on the holdout and external test set, we 

use AUROC and expected calibration error (ECE), respectively. Since the ECE is very 

sensitive to the selected number of bins (n = 20), we also look at the Brier Score (BS) 

and negative log likelihood (NLL). 

 

To test model performance against corruptions (SAM-C) and perturbations (SAM-P), 

we use the mean balanced corruption error (mBCE) and the mean flip rate (mFR), 

respectively. Both metrics were introduced by Maron et al. [140] and should be mini-

mised. mBCE averages the balanced error rates – i.e., the opposite of balanced accu-

racy – across each individual corruption type in SAM-C. mFR averages the flip proba-

bilities – i.e., the likelihood that a classifier will change its classification between two 

https://paperpile.com/c/LvwbJz/owRt
https://paperpile.com/c/LvwbJz/oOV0
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slightly different images of the same lesion – across each individual perturbation type 

in SAM-P. 

2.5.4 Results 

Soups approximate ensembles 

Looking at the AUROC in Figure 11, we observe that greedy soups on average per-

form better than the baseline while maintaining performance on the holdout test set. 

Unsurprisingly, this also holds true for the uniform and greedy ensemble, both of which 

outperform the greedy soup on the holdout test set, but only perform on par on the 

external test set. A similar trend can be observed for calibration; however, this time, 

both ensemble approaches clearly outperform the greedy soup. This trend stays intact 

when looking at the BS and NLL (see Supplementary Materials). While uniform soups 

are better than the baseline on the external test set, they perform worse on the holdout 

test set, especially for AUROC. The described trends largely hold true for the individual 

architectures (see Supplementary Material). 
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Figure 11. Comparing soups and ensembles across a holdout and multi-source external test set. 

Each point depicts the average across eight different architectures, together with its corresponding 

standard deviation. The grey dashed line depicts the baseline performance, i.e., models which were not 

souped or ensembled. AUROC: area under the receiver operating characteristic curve, ECE: expected 

calibration error, SD: standard deviation. 

 

The substantial AUROC improvement of the greedy soup and ensemble on the exter-

nal test set also holds true for the majority of its individual components. Looking at 

Figure 12, one can see that except for ISIC2020_SIDNEY, greedy soups on average 

outperform the baseline and either approximate or outperform greedy ensembles. This 

is also the case for the individual architectures (see Supplementary Materials). 
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Figure 12. Comparing AUROC of greedy soups and ensembles across six external test sets. Each point 

depicts the average across eight different architectures, together with its corresponding standard deviation. Da-

tasets on the x-axis are ordered by decreasing size. AUROC: area under the receiver operating characteristic curve. 

 

Soups improve overall robustness 

Regarding model robustness towards image corruptions, we observe that greedy 

soups on average have an mBCE of 93.43 ± 9.96 compared to a baseline of 93.51 ± 

6.45. Thus, performance remains on par and does not improve. Looking at Figure 13, 

it becomes apparent that there is no consistent trend for the individual corruption types 

and that differences between the baseline and greedy soup are relatively minor. 
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Figure 13. Greedy soup performance across 14 types of corruptions. Part A: Performance is measured using 

the BCE which is adjusted by an AlexNet baseline, i.e., lower score is better. Each point depicts the average across 

eight different architectures, together with its corresponding standard deviation. Part B: Exemplary selection of the 

applied artificial image corruptions. For the performance of individual architectures, see Supplementary Materials. 

BCE: balanced corruption error.  

 

When looking at model robustness towards image perturbations, we observe a sub-

stantial average improvement in mFR from 66.9 ± 21.87 to 52.77 ± 16.09. This time, 

improvements were consistently observed across all ten perturbation types (see Fig-

ure 14).  
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Figure 14. Greedy soup performance across 10 types of perturbations. Part A: Performance is measured using 

the FR which is adjusted by an AlexNet baseline, i.e., lower score is better. Each point depicts the average across 

eight different architectures, together with its corresponding standard deviation. Part B: Exemplary extract of five 

perturbation steps for the brightness perturbation. For the performance of individual architectures, see Supplemen-

tary Materials. FR: flip rate. 

 

Modifications on the greedy soup algorithm 

From the six investigated souping algorithms (greedy, greedy cropped, greedy data 

augmentation, greedy inverse, cropped inverse, greedy data augmentation inverse), 

the three greedy soup algorithms on average add fewer models to the soup (n ∼ 2.2) 

than the three greedy inverse soup algorithms (n ∼ 6.0). Notably, the greedy inverse 

soups, on average, always perform worse on the holdout test set than the greedy 

soups (see Table 8). In contrast, they always outperform the greedy soups when look-

ing at the external, corrupted and perturbed test set performance. 
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Table 8. Performance comparison of modified greedy soup algorithms. Each number depicts the average 

across eight different architectures, together with its corresponding standard deviation. Numbers are highlighted in 

blue if they are better than the greedy approach (second column to the left), white if they are equal and orange if 

they are worse. Bold highlighting indicates the overall best value for each row. For AUROC, higher values are better, 

and for mBCE/mFR, lower values are better. For the performance of individual architectures, see Supplementary 

Materials. AUROC: area under the receiver operating characteristic curve, DA: data augmentation, INV: inverse; 

mBCE: mean balanced corruption error, mFR: mean flip rate. 

 

2.5.5 Discussion 

We constructed model soups for eight CNN architectures and evaluated their skin can-

cer classification performance with respect to (1) their generalisation to images from 

other clinics, (2) their robustness against small image changes and (3) their calibration 

such that the confidences correspond closely to the actual predictive uncertainties. On 

average, we find that greedy soups at worst perform on par but often outperform the 

baseline with respect to our predefined clinical aspects. We thereby largely confirm the 

findings by Wortsman et al. [129], but translate them into a medical setting and extend 

them by using a variety of ImageNet-1k pre-trained CNN architectures (i.e., no pre-

training on especially large and heterogeneous datasets). 

This has important implications for deep learning practitioners working in the field of 

skin cancer classification, as souping makes use of models that are generated during 

https://paperpile.com/c/LvwbJz/ARBg
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the hyperparameter-tuning stages of development. Usually, these models are dis-

carded in favour of the best performing model. 

For dermatologists, less complex solutions might be easier to interpret and integrate 

into an already time-pressed schedule. In the light of improving hardware and ongoing 

research for better interpretability methods, this aspect, however, is controversial. 

Soup performance: generalisation, robustness and calibration 

The observed, on average, better generalisation performance when looking at AUROC 

and ECE holds true for the majority of individual architectures. Simultaneously, both 

metrics do not decrease on the holdout test set. While uniform soups generalise even 

better than greedy soups, they perform worse than the baseline on the holdout test 

set. A trade-off which limits their utility. This highlights the advantages of the greedy 

soup, where inclusion of the best performing model practically guarantees at least on 

par performance on the holdout test set (with respect to the metric used to construct 

the soup). 

However, ensembles are at least as good – if not even better – than greedy soups. 

This is unsurprising, as ensemble solutions are commonly employed in deep learning-

based skin cancer classification. The top three solutions of the SIIM-ISIC Melanoma 

Classification Challenge 2020 consist of ensembles. Expecting ensemble level perfor-

mance from a single model is therefore a demanding task. However, model soups 

combine advantages from ensembles, i.e., better performance, with advantages from 

single models, i.e., less computational power and better interpretability. While there 

are studies which investigate more interpretable ensembles [141,142], the majority of 

interpretability studies focus on single models, which is already a challenging task [65]. 

https://paperpile.com/c/LvwbJz/RVVU+VlH9
https://paperpile.com/c/LvwbJz/Mnl9z
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In terms of robustness, an aspect viewed under the light of image corruptions and 

perturbations, we observe an overall improvement. This is, however, only due to 

greedy soups faring better with perturbations, as no improvements are observed for 

corruptions. For corruptions, only five out of the eight architectures showed a lower 

mBCE (i.e., better result) than the baseline. This is in contrast to perturbations, where 

seven out of eight architectures showed a lower mFR (see Supplementary Materials), 

which explains the observed overall improvement for perturbations. 

Soup construction: dependency on the validation set 

As the greedy soup algorithm uses a separate validation set to add models to a soup, 

much depends on the size and variation contained within this validation set. By artifi-

cially increasing the size and variation through various augmentations, we attempt to 

address this limitation (i.e., greedy cropped, greedy data augmentation). This is only 

somewhat successful, as when looking at the holdout, external and robustness test 

sets, performance never consistently increases across all sets or individual architec-

tures. 

Next, we tried to increase the soup diversity by including more models. Instead of rank-

ing the models from best to worst, we simply reverse the order (i.e., greedy inverse, 

greedy cropped inverse, greedy data augmentation inverse). As expected, the number 

of models included in the soup increases. This results in a slight drop in holdout per-

formance, but improves average performance on the external, corrupted and perturbed 

test set. A downside of the greedy algorithm seems to be the relatively small number 

of models that are included in the soup. Reversing the ranked order circumvents this 

problem, but at the cost, that holdout performance is not guaranteed to be equal to the 

baseline anymore. However, when looking at the performance of the individual 
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architectures (Supplementary Materials), the observed overall improvement is not 

consistent across all architectures. 

Thus, while greedy soups are dependent on a separate validation set, we only find 

negligible performance differences when artificially changing the size and variation of 

this validation set or the model ranking order. We therefore believe the standard soup-

ing algorithm to be relatively effective at soup construction and that already small hold-

out validation sets are sufficient. 

Limitations 

The model pool size consists of only seven models, which is in contrast to the pool 

sizes in Wortsman et al. [129], which range from 12 to 72. As we only vary image size 

to mimic a multi-resolution classifier similar to Ha et al. [127], we are constrained by 

the highest native resolution that is available online (600x450 pixels for HAM10000). 

However, by keeping the model pool small, we show that the advantages of souping 

even manifest themselves when the choice of models is limited. 

2.5.6 Conclusions 

Model soups are able to improve external performance for a skin cancer classification 

task, while retaining on par holdout performance. In addition, model souping has a 

positive effect on the robustness and calibration of skin cancer classifiers. While multi-

model/ensemble solutions still perform better, soups are single model solutions. This 

distinction might be highly relevant in a clinical setting, as less complexity is usually 

easier to interpret. 

https://paperpile.com/c/LvwbJz/ARBg
https://paperpile.com/c/LvwbJz/owRt
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2.6 Supplementary publication 3: Using mutiple real-world dermoscopic photographs 

of one lesion improves melanoma classification via deep learning 
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2.6.1 Research letter 

AI-based melanoma classifiers suffer from generalizability, robustness and uncertainty 

estimation issues, which severely limit their usefulness in clinical practice [40,42]. A 

common technique which addresses these limitations is to provide the classifier with 

multiple views of the same lesion, which are normally created by digitally transforming 

the original image (a technique referred to as test-time augmentation [143]). While this 

artificial process has proven to be effective [61,144], the optimal parameters may vary 

across different classifiers and domains. 

  

In this report, we therefore investigate if this artificial multi-view approach can be im-

proved when the artificial images are substituted by multiple real-world images of the 

same lesion. To this end, we evaluate the performance of a dermoscopic image clas-

sifier for a single-view scenario using one image (Single-View), a multi-view scenario 

using multiple artificially-modified images per lesion (MV-Artificial) and our proposed 

multi-view scenario with multiple real-world images per lesion (MV-Real). To ensure 

clinical relevance, our analysis focuses on diagnostic accuracy, uncertainty estimation 

and robustness, which we measure using the AUROC, expected calibration error 

(ECE) and maximum confidence change (MCC), respectively. See Supplementary 

https://paperpile.com/c/LvwbJz/ujQ9+OnGL
https://paperpile.com/c/LvwbJz/hs4u
https://paperpile.com/c/LvwbJz/93Kx+qeC7
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Methods in the Supplementary Materials for details on study design, classifier im-

plementation and statistical evaluation.  

  

We evaluated our classifier on a prospective multi-center test set of 293 MM and 363 

melanocytic nevi from 617 patients (see Table 9 for patient characteristics). Our pro-

posed approach (MV-Real) showed a significantly higher diagnostic accuracy (0.930; 

95% CI, 0.909-0.951) compared to the Single-View (0.905; 95% CI, 0.879-0.929; 

p<0.001) and MV-Artificial approach (0.929; 95% CI: 0.908-0.948; p<0.001) (see Fig-

ure 15). While the pronounced numeric difference between our MV-Real and the Sin-

gle-View approach seems clinically relevant, the relatively small improvement between 

the MV-Real and the MV-Artificial approach indicates no practical difference (see Sup-

plementary Analysis I in the Supplementary Materials). However, our approach 

(MV-Real) showed a substantially better performance in uncertainty estimation and 

robustness as indicated by significantly lower ECE and MCC scores, respectively (see 

Supplementary Results I and II in the Supplementary Materials for details). 

 

These findings indicate that using multiple real-world images of a lesion improves the 

overall performance of an AI-based melanoma classifier compared to traditional ap-

proaches. While these results were somewhat expected based on previous studies on 

test-time augmentation [144], the substantial outperformance of real-world versus arti-

ficial images with regard to robustness and uncertainty estimation is notable. It high-

lights the importance of using actual photographs for future multi-view approaches as 

this presumably results in a richer representation of the lesion (e.g., through different 

camera angles or dermoscopy modes).  

https://paperpile.com/c/LvwbJz/qeC7
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Future work should investigate how the multi-view approach with real-world images 

can be optimized to reduce the physician’s workload (for example recording a video 

sequence of the suspicious lesion). 

  

Altogether our proposed approach only requires additional photographs, is easy-to-

implement and cost-effective. We therefore recommend integrating it into future clinical 

workflows, which make use of AI-based computer vision. 
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Table 9. Patient characteristics of the study sample. Distributions of the age at diagnosis, lesion location and 

lesion diameter are reported. 

    Melanomaa Melanocytic nevus 

Patient age at diagnosis (in years) n=293 n=363b 

  <35 7 (2.4%) 82 (22.6%) 

  35-54 47 (16.0%) 124 (34.2%) 

  55-74 124 (42.3%) 105 (28.9%) 

  >74 115 (39.2%) 52 (14.3%) 

Lesion location     

  Palms/soles 7 (2.4%) 11 (3.0%) 

  Face/scalp/neck 65 (22.2%) 22 (6.1%) 

  Upper extremities 54 (18.4%) 36 (9.9%) 

  Lower extremities 52 (17.7%) 83 (22.9%) 

  Back 72 (24.6%) 120 (33.1%) 

  Abdomen 17 (5.8%) 37 (10.2%) 

  Chest 20 (6.8%) 40 (11.0%) 

  Buttocks 2 (0.7%) 9 (2.5%) 

  Genitalia 2 (0.7%) 4 (1.1%) 

  Unknown 2 (0.7%) 1 (0.3%) 

Lesion diameter (in mm)     

  ≤ 3.00 11 (3.8%) 63 (17.4%) 

  3.01 to 6.00 27 (9.2%) 137 (37.7%) 

  6.01 to 9.00 26 (8.9%) 66 (18.2%) 

  9.01 to 12.00 60 (20.5%) 52 (14.3%) 

  12.01 to 15.00 46 (15.7%) 18 (5.0%) 

  15.01 to 18.00 13 (4.4%) 4 (1.1%) 

  18.01 to 21.00 35 (11.9%) 8 (2.2%) 

  > 21 75 (25.6%) 15 (4.1%) 
a. Including in situ tumors. b. Consisting of n=163 dysplastic and n=200 non-dysplastic nevi 
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Figure 15. MV-Real outperforms both Single-View and MV-Artificial with respect to diagnostic accuracy. 

The AUROC is plotted for the three investigated methods. Each box extends from the lower to the upper quartile of 

the 1000 bootstrap iterations, with a line at the median. In addition, whiskers and fliers indicate the range and any 

outliers. AUROC: area under the receiver operating characteristic curve, MV-Artificial: multiview-artificial, MV-Real: 

multiview-real.  
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2.6.3 Supplementary materials  

This paragraph contains the following sections: 

1. Supplementary methods where we provide a detailed description of the 

study design, implementation and statistical analysis.  

2. Supplementary results where we describe in detail the results presented in 

the research letter.  

3. Supplementary analysis where we present the results of additional suba-

nalyses that did not fit within the scope of the research letter.  

 

Supplementary Methods 

Study Design  

We trained a binary MM-nevus classifier on publicly available dermoscopic images and evalu-

ated its performance on an externally collected multi-center dataset (referred to as SCP2) with 

respect to three clinically relevant endpoints: diagnostic accuracy, uncertainty estimation and 

robustness. For model prediction, we evaluated three different methods. The first method, 

called Single-View, represents the baseline scenario in which only one “original” image per 

lesion is available and the prediction is performed from that image. For the second method, 

referred to as multiview-artificial (MV-Artificial), the ‘original’ image is accompanied by artifi-

cially modified duplicates generated by applying various image processing techniques such as 

rotation, zoom and brightness to the ‘original’ image. For the final method, referred to as mul-

tiview-real (MV-Real), the ‘original’ image is accompanied by multiple real-world images (i.e., 

photographs taken in the clinic). At test-time, the model therefore provides a prediction for 

every single image, which are subsequently combined into an overall prediction (see Supple-

mentary Figure 12). 
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Supplementary Figure 12. Illustration of the multiview approach. Top) For both the MV-Artificial and MV-Real 

methods, the model makes its final classification based on one original image accompanied by additional lesion 

images. For MV-Real, the additional images are actual dermoscopic photographs taken in the clinic by the physician 

(top row). For MV-Artificial, the additional images are artificially created from the original image by applying various 

image processing techniques such as rotation, zoom and brightness. Bottom) For both approaches, the classifier 

makes a prediction for the original and each of the additional images. All predictions are subsequently averaged 

into a single prediction. MV-Artificial: multiview-artificial, MV-Real: multiview-real. 

 

 

The setup described above is feasible because the SCP2 dataset contains six real-

world images (i.e., actual photographs) per lesion. To ensure that the comparisons and 

statistical tests in this study were based on the same test data for all three methods, 

we randomly sampled one image per lesion and labeled this image as the ‘original’ 

image (referred to as downsampling step). The remaining five images were set aside. 

Thus, all three prediction methods were evaluated on the same test set, with each 

image corresponding to a unique lesion. During test-time, the Single-View method re-

ceived no further images, while MV-Artificial and MV-Real each received five additional 

images (artificially modified duplicates and real-world images, respectively).  
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Study participants 

Participants were required to be at least 18 years old and have MM-suspicious skin 

lesions that were excised following dermoscopic examination. The suspicious lesions 

should not have been previously pre-biopsied nor located near the eye or under the 

fingernails or toenails. Additionally, due to data privacy concerns, lesions with person-

identifying features (e.g., tattoos) in their immediate vicinity were excluded from the 

study. All lesions were histopathologically confirmed by at least one reference 

pathologist at the corresponding clinic as part of routine clinical practice. In the end, 

only histopathologically verified MM or melanocytic nevi, recorded until October 2022, 

were included in this study.  

 

SCP2 dataset 

Dermoscopic images and patient metadata (e.g., age, Fitzpatrick skin type, lesion lo-

calization and diameter) of clinically suspected MM were prospectively collected from 

eight university hospitals in Germany (Berlin, Dresden, Erlangen, Essen, Mannheim, 

Munich, Regensburg, Wuerzburg) between April 2021 and October 2022 during rou-

tine clinical care.  For each lesion, a dermatologist captured six dermoscopic images 

during clinical examination while randomly varying the orientation/angle, position and 

mode of the dermatoscope (i.e., polarized or non-polarized). To minimize the effect of 

confounding factors, dermatologists were instructed to avoid well known artifacts (e.g., 

skin markings). The four hardware settings across the clinics were as follows: 

● HEINE Delta30 dermatoscope with an Apple iPhone 7  

● HEINE DELTAone dermatoscope with an Apple iPhone SE  

● HEINE DELTAone dermatoscope with an Apple iPhone8  

● HEINE IC1 dermatoscope with an Apple iPhone7  
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The original images were automatically cropped to exclude large parts of the black 

image margin which originates from dermoscopy and subsequently resized to 300x300 

pixels for model training and inference (see section below). We retrospectively ex-

cluded all lesions which were histopathologically not diagnosed as MM or melanocytic 

nevus.  

 

Model training and evaluation 

We trained a CNN with a state-of-the-art ConvNeXT architecture with publicly available 

MM and nevus images from two well-established datasets, HAM10000 and 

BCN20000, containing 29,562 images (7,794 MM and 21,768 nevi). To optimize the 

hyperparameters of the training process, we employed a five-fold cross-validation pro-

cedure, using 20% of the training data for validation in each fold. The model architec-

ture, the number of training epochs, the image size as well as the learning rate were 

optimized by maximizing the AUROC using Optuna 2.10.0. After determining the opti-

mal hyperparameters, a final model was trained on all 29,562 images (i.e., inclusion of 

validation set).  

 

At test-time, the Single-View, MV-Artificial and MV-Real approaches were used on the 

trained model, using the external SCP2 dataset for evaluation. Both training and infer-

ence were implemented using PyTorch 1.10.1, CUDA 11.0 and fastai 2.7.10. 

 

Implementation of MV-Artificial 

The MV-Artificial approach requires that the original image is duplicated n times and 

digitally modified before all images are classified by the model. In our case, the digital 

modifications consisted of rotation, zoom, changes in brightness and warp. Each of 

these modifications were applied to an image with a probability of 75%. The strength 
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of each modification varied as we considered five different setups: mild, moderate, 

strong, severe and extreme. The mild setup was considered the default setup and is 

simply referred to as MV-Artificial in the main manuscript. We used fastai’s built-in test-

time augmentation function with beta set to None as we wanted an unweighted aver-

age of all image predictions. The parameters for each setup are listed in Supplemen-

tary Table 6 below. 

 

Supplementary Table 6. Overview about the parameters for each setup. 

Parameter Mild Moderate Strong Severe Extreme 

flip_vert True True True True True 

max_rotate 90 90 90 90 90 

max_zoom 1.1 1.2 1.3 1.4 1.5 

max_lightning  0.2 0.3 0.4 0.5 0.6 

max_warp 0.2 0.3 0.4 0.5 0.6 

pad_mode zeros zeros zeros zeros zeros 

 

Statistical analysis 

The performance of our classifier was assessed based on three endpoints: diagnostic 

accuracy, uncertainty estimation and robustness. Diagnostic accuracy was measured 

using the AUROC, while uncertainty estimation was quantified by the ECE. A well-

calibrated CNN ensures that the predicted probabilities accurately reflect the true like-

lihoods. For instance, if we consider all images where the model predicts a MM score 

of 0.6, we would expect 60% of them to be actual MM. The ECE is computed as the 

average difference between the predicted probabilities and the observed outcomes, 

with lower values indicating better-calibrated predictions. 

 

Robustness was evaluated by analyzing the consistency of the classifier’s predictions 

across a series of images per lesion, detecting fluctuations in the model’s diagnosis 
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(see Supplementary Figure 13). We therefore computed the mean MCC, which 

measures the difference between the model’s highest and lowest confidence scores 

for a series of images.  Larger MMC values are worse, as the model’s predictions are 

less consistent. As analyzing robustness requires a series of images per lesion across 

which to measure fluctuations, we constructed image series of either two or three im-

ages per lesion, by using the five additional images which were previously set aside 

during the downsampling step. However, this meant we also had to reduce the number 

of images used for MV-Real to three and two images respectively. To keep the com-

parison fair, MV-Artificial was adjusted accordingly.  

 

Supplementary Figure 13. Illustration of how small image changes can cause robustness issues. The CNN-

based algorithm developed in this study classifies multiple images of the same lesion, obtained from our prospective 

study, as either MM or nevus (as indicated by fluctuations in melanoma probability).  

 
 
To reduce the impact of stochastic events, mean values for each metric were calcu-

lated using 1000 bootstrap iterations on our test sets. The corresponding 95% CIs were 

determined using the non-parametric percentile method. Statistical testing was con-

ducted for all three hypotheses to identify significant differences between results with 

our proposed technique (i.e., MV-Real) and those with either the baseline (i.e., Single-

View) or the traditional multiview technique (i.e., MV-Artificial). For each endpoint, 
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pairwise Wilcoxon signed-rank tests were used to compare the respective metrics. Sig-

nificance levels of p<0.05 were adjusted to 0.025 according to the Bonferroni correction 

(m=2) which equals the expected false discovery rate. In addition, we repeated the 

downsampling step and all subsequent analysis steps five times in order to ensure that 

our findings were not based on an unfavorable sample. Statistical analysis was per-

formed using SciPy 1.7.1 

 

Supplementary Results 

Part I: Uncertainty estimation 

Our approach (MV-Real) showed a significantly lower ECE of 0.072 (95% CI: 0.052-

0.093) than the Single-view (0.131; 95% CI, 0.105-0.159; p<0.001) or MV-Artificial 

(0.086; 95% CI: 0.064-0.110; p<0.001, see Supplementary Figure 14).  

 
Supplementary Figure 14. MV-Real outperforms both Single-View and MV-Artificial with respect to the un-
certainty estimation. The ECE is plotted for the three investigated methods. Each box extends from the lower to 

the upper quartile of the 1000 bootstrap iterations, with a line at the median. In addition, whiskers and fliers indicate 

the range and any outliers. ECE: expected calibration error, MV-Artificial: multiview-artificial, MV-Real: multiview-
real.  
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Part II: Robustness  

The robustness of our classifier was analyzed across a series of either two or three 

images per lesion. For the series of three images, the robustness of our approach (i.e., 

MV-Real) improved substantially over that with single-view, as the MCC significantly 

decreased from 0.149 (95% CI, 0.125-0.171) to 0.115 (95% CI: 0.099-0.131; p<0.001), 

respectively. Similarly, robustness also improved across a series of two images, as the 

MMC significantly decreased from 0.094 (95% CI, 0.077-0.112) for single-view to 0.066 

(95% CI: 0.056-0.076; p<0.001) for MV-Real. Surprisingly, the MV-Artificial method 

resulted in no robustness improvement at all, having greater MCC values than the 

Single-view and MV-Real approaches (see Supplementary Figure 15).  

 

Supplementary Figure 15. MV-Real outperforms both Single-View and MV-Artificial with respect to robust-

ness. Robustness was measured by the maximum change in the classifier’s confidence (MCC) across a series of 

either three (left) or two (right) images.  Each box extends from the lower to the upper quartile of the 1000 bootstrap 

iterations, with a line at the median. In addition, whiskers and fliers indicate the range and any outliers. MV-Artificial: 

multiview-artificial, MV-Real: multiview-real.  
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Supplementary Analysis 

Part I: Replication of performance results for different test set samples 

As mentioned in the Statistical analysis section, we repeated the downsampling step 

and all subsequent analysis steps five times in order to ensure that our findings were 

not based on an unfavorable sample. 

 

We find that all of our reported findings were consistent across the five repeated down-

samplings (see Supplementary Tables 7a to 7e) except for the diagnostic accuracy 

between MV-Artificial and MV-Real. Here, MV-Real is sometimes better, sometimes 

on-par and sometimes worse than MV-Artificial, indicating that there is no real practical 

difference between both approaches (regarding diagnostic accuracy).  

 
Supplementary Table 7a.  

Metric Single-View MV-Artificial MV-Real 

AUROC ↑ 0.916 (95% CI: 0.892-
0.939) (p<0.001) 

0.930 (95% CI: 0.909-
0.948) (p=0.003) 

0.930 (95% CI: 0.909-
0.951) 

ECE ↓ 0.127 (95% CI: 0.102-
0.151) (p<0.001) 

0.087 (95% CI: 0.066-
0.110) (p<0.001) 

0.072 (95% CI: 0.052-
0.093)  

MCC (# images: 2) ↓ 0.145 (95% CI: 0.123-
0.168) (p<0.001) 

0.158 (95% CI: 0.137-
0.179) (p<0.001) 

0.117 (95% CI: 0.100-
0.133)  

MCC (# images: 3) ↓ 0.106 (95% CI: 0.087-
0.125) (p<0.001) 

0.104 (95% CI: 0.090-
0.120) (p<0.001) 

0.069 (95% CI: 0.058-
0.080)  

 
Supplementary Table 7b.  

Metric Single-View MV-Artificial MV-Real 

AUROC ↑ 0.909 (95% CI: 0.885-
0.931) (p<0.001) 

0.927 (95% CI: 0.906-
0.946) (p<0.001) 

0.930 (95% CI: 0.909-
0.951)  

ECE ↓ 0.132 (95% CI: 0.107-
0.158) (p<0.001) 

0.087 (95% CI: 0.066-
0.109) (p<0.001) 

0.072 (95% CI: 0.052-
0.093) 

MCC (# images: 2) ↓ 0.149 (95% CI: 0.126-
0.173) (p<0.001) 

0.160 (95% CI: 0.140-
0.180) (p<0.001) 

0.118 (95% CI: 0.102-
0.134)  

MCC (# images: 3) ↓ 0.101 (95% CI: 0.083-
0.120) (p<0.001) 

0.102 (95% CI: 0.088-
0.119) (p<0.001) 

0.069 (95% CI: 0.059-
0.081)  
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Supplementary Table 7c.  

Metric Single-View MV-Artificial MV-Real 

AUROC ↑ 0.913 (95% CI: 0.889-
0.935) (p<0.001) 

0.933 (95% CI: 0.912-
0.950) (p<0.001) 

0.930 (95% CI: 0.909-
0.951) 

ECE ↓ 0.137 (95% CI: 0.111-
0.165) (p<0.001) 

0.083 (95% CI: 0.060-
0.107) (p<0.001) 

0.072 (95% CI: 0.052-
0.093) 

MCC (# images: 2) ↓ 0.152 (95% CI: 0.129-
0.175) (p<0.001) 

0.164 (95% CI: 0.143-
0.184) (p<0.001) 

0.120 (95% CI: 0.104-
0.137) 

MCC (# images: 3) ↓ 0.104 (95% CI: 0.085-
0.124) (p<0.001) 

0.110 (95% CI: 0.095-
0.125) (p<0.001) 

0.076 (95% CI: 0.064-
0.087) 

 
 
Supplementary Table 7d.  
Metric Single-View MV-Artificial MV-Real 

AUROC ↑ 0.910 (95% CI: 0.884-
0.934) (p<0.001) 

0.931 (95% CI: 0.912-
0.949) (p=0.09) 

0.930 (95% CI: 0.909-
0.951)  

ECE ↓ 0.127 (95% CI: 0.102-
0.151) (p<0.001) 

0.086 (95% CI: 0.065-
0.108) (p<0.001) 

0.072 (95% CI: 0.052-
0.093)  

MCC (# images: 2) ↓ 0.143 (95% CI: 0.122-
0.166) (p<0.001) 

0.153 (95% CI: 0.134-
0.173) (p<0.001) 

0.119 (95% CI: 0.103-
0.135)  

MCC (# images: 3) ↓ 0.093 (95% CI: 0.076-
0.111) (p<0.001) 

0.099 (95% CI: 0.085-
0.114) (p<0.001) 

0.068 (95% CI: 0.058-
0.078) 

 
Supplementary Table 7e.  
Metric Single-View MV-Artificial MV-Real 

AUROC ↑ 0.907 (95% CI: 0.882-
0.931) (p<0.001) 

0.931 (95% CI: 0.911-
0.949) (p=0.007) 

0.930 (95% CI: 0.909-
0.951)) 

ECE ↓ 0.132 (95% CI: 0.107-
0.157) (p<0.001) 

0.085 (95% CI: 0.064-
0.108) (p<0.001) 

0.072 (95% CI: 0.052-
0.093) 

MCC (# images: 2) ↓ 0.153 (95% CI: 0.131-
0.176) (p<0.001) 

0.156 (95% CI: 0.135-
0.177) (p<0.001) 

0.116 (95% CI: 0.101-
0.133)  

MCC (# images: 3) ↓ 0.096 (95% CI: 0.079-
0.114) (p<0.001) 

0.101 (95% CI: 0.086-
0.117) (p<0.001) 

0.069 (95% CI: 0.059-
0.080)  
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Part II: Influence of the number of images on MV-Real performance 

While incorporating a single additional image into the classification already improves 

the diagnostic accuracy and uncertainty estimation of the classifier, the benefits of in-

cluding additional images are even more pronounced as indicated by the trend in 

Supplementary Figure 16.  

 
Supplementary Figure 16. Increasing the number of images used for MV-Real improves diagnostic accuracy 

and uncertainty estimation. The AUROC (diagnostic accuracy) and ECE (uncertainty estimation) are plotted for 

an increasing number of images used during MV-Real. Each box extends from the lower to the upper quartile of the 

1000 bootstrap iterations, with a line at the median. In addition, whiskers and fliers indicate the range and any 

outliers. AUROC: area under the receiver operating characteristic curve, ECE: expected calibration error, MV-Real: 

multiview-real. 
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3 OVERALL DISCUSSION 

The successful emergence of deep learning-based computer vision, combined with the 

increasing availability of publicly accessible skin cancer datasets (e.g., ISIC ar-

chive [145,146]), has led to the emergence of a plethora of comparative AI studies in 

the field of skin cancer detection. However, despite promising results, it has proven 

difficult to transfer these findings into clinical practice.  

 

Publication 1 analyzes the current state of AI research for skin cancer diagnostics, 

with a particular focus on studies comparing AI and human experts. It explores their 

actual impact and forthcoming challenges associated with the implementation of AI-

systems in clinical routine by evaluating aspects such as the test setting (e.g., experi-

mental or clinical, inclusion of metadata) or the test set characteristics (e.g., holdout or 

external testing). In summary, all 19 analyzed studies demonstrated at least equal AI 

performance compared to experienced clinicians. However, almost all studies were 

conducted in highly experimental settings, exclusively applying holdout testing (i.e., 

using unseen test data but from the same distribution, e.g., from institutions already 

involved in model training).  

 

In real-world patient examinations, clinicians assess not only the skin lesion itself but 

take additional patient data (e.g., age, lesion localization) into consideration. Moreover, 

clinicians have the opportunity to review all lesions of a patient, aiming to identify the 

‘ugly duckling’ as a reference point and rely on other senses (e.g., palpation). Remark-

ably, 18 out of the 19 analyzed comparison studies took place in highly experimental 

settings, where physicians were often only given a single image of the suspected skin 

lesion. Moreover, it is noteworthy that the vast majority of these studies recorded the 

https://paperpile.com/c/LvwbJz/Ersbv+i1cQn
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clinicians’ diagnoses via online applications, thereby substantially differing from the 

decision-making process in clinical practice. Interestingly, in the one study where the 

diagnoses were recorded during clinical examination of the patient [19], the dermatol-

ogists significantly outperformed the AI algorithm. This finding highlights that no con-

clusions about the added value of AI for skin cancer diagnostics can be drawn solely 

based on experimental comparisons. Consequently, to enable meaningful insights 

about the practical use of AI-systems, there is a need for truly prospective studies 

comparing the clinicians’ diagnoses in real-life patient examinations with the perfor-

mance of AI-based diagnostic algorithms.  

 

While several publicly available skin datasets exist (e.g., HAM10000, PH2 [110,111]), 

most comparisons between AI and human experts have not been evaluated using ex-

ternal test data (i.e., unseen test data from a different distribution, e.g., from an institu-

tion not involved in model training). This is particularly problematic, as previous studies 

have demonstrated that classifier performance usually decreases on test images from 

a different source than the training images [28]. Relying exclusively on holdout testing 

constrains the generalizability of the results, making it difficult to draw conclusions 

about the real-world added value of AI-systems in clinical practice. To provide more 

robust comparisons that account for the technical (e.g., acquisition systems, staining 

protocols) and/or biological (e.g., skin types, anatomical sites) heterogeneity present 

in clinical reality, studies employing external testing should be considered the gold 

standard for future research. 

 

Moreover, the implementation of AI-systems for skin cancer diagnostics is slowed by 

restraint among patients and dermatologists. Therefore, publication 2 is dedicated to 

investigate the criteria required for patients and dermatologists to accept AI-systems 



OVERALL DISCUSSION 
 

146 

for skin cancer diagnostics, and to assess their importance in patients’ and dermatol-

ogists’ decision-making process when considering the use of such systems.  

 

While previous AI survey studies showed a positive general attitude toward AI-systems 

in dermatology [93,147–152], these studies have not evaluated the criteria in a multi-

dimensional (i.e., considering multiple influencing criteria at a time) and indirect (i.e., 

without asking explicit and straightforward questions) manner. One-dimensional ap-

proaches may lack contextual understanding and be unable to capture complex moti-

vations, while direct questioning can lead respondents to provide socially acceptable 

answers rather than express their true preferences. By employing an adaptive choice-

based conjoint analysis, publication 2 overcomes these limitations by allowing the 

investigation of multiple influencing criteria simultaneously and accounting for possible 

trade-offs from the patients’ and dermatologists’ perspective. In this context, partici-

pants prioritized AI-systems that go beyond diagnostic performance by providing de-

tailed explanations that are understandable to both physicians and the patient, as well 

as supporting multiclass assessments instead of binary classifications (e.g., be-

nign/malignant).  

 

Publication 2 found that patients demand AI-systems that provide an explanation that 

is comprehensive for both physicians and the patient. These findings indicate that pa-

tients may have higher expectations of AI-systems than they previously had of their 

treating dermatologist. While clinicians work with standardized classification frame-

works, such as the ABCDE rule [8] or the 7-point checklist [153], the evaluation of skin 

lesions can still be subjective, particularly in borderline or atypical cases. In such in-

stances, clinicians may have limited ability to explain their decision-making. Hence, it 

may no longer suffice to compete with the standard of care. Instead, it is crucial to 

https://paperpile.com/c/LvwbJz/r8gW+c40M+jgIT+JR2g+B11w+8U77+n6cI
https://paperpile.com/c/LvwbJz/zhC6a
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develop AI-systems that are traceable by patients and dermatologists to meet the 

evolving needs of patients.  

 

Dermatology is a complex field, and in clinical reality, clinicians face the challenge of 

distinguishing between various skin diseases that share similar diagnostic features. In 

light of this complexity, the participating dermatologists called for AI-systems that sup-

port more refined multiclass assessments. Specifically, the binary differentiation be-

tween MM and atypical nevi, which has been the primary focus of AI research in der-

matology (e.g., [31,52,53,55]), is considered insufficient from the dermatologists’ per-

spective. Consequently, there is a need for prospective studies that evaluate the per-

formance of AI-systems in multiclass assessments to provide a more accurate repre-

sentation of clinically relevant differential diagnoses.  

 

Current AI research predominantly focuses on diagnostic accuracy, with ‘classical’ 

metrics such as accuracy or AUROC [154,155] remaining the gold standard for com-

parisons studies (e.g., ISIC challenges [145,146]). However, patients and dermatolo-

gists require AI-systems that are able to explain the rationale behind their assessments 

and are at least somewhat understandable. Specifically, diagnostic accuracy and ex-

plainability were found to be the top influencing criteria for both patients and dermatol-

ogists, with explainability being of particular importance to patients. This growing de-

mand for explainable AI presents a key challenge for future research, given that state-

of-the-art technology does not fully explain the reasoning behind its decisions due to 

the AI black box phenomenon [65]. Bridging this gap necessitates the development of 

AI-systems that are as transparent/explainable as possible, without sacrificing diag-

nostic performance. 

 

https://paperpile.com/c/LvwbJz/qhiQS+SFHfm+emMSU+QT65p
https://paperpile.com/c/LvwbJz/bAtIY+4JBA
https://paperpile.com/c/LvwbJz/Ersbv+i1cQn
https://paperpile.com/c/LvwbJz/Mnl9z
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Another barrier for the successful implementation of AI-systems for skin cancer diag-

nostics are potential data protection concerns. The conventional development of AI-

systems typically calls for large centralized datasets (known as centralized learning), 

requiring hospitals to transfer patient data to external institutions, often raising serious 

privacy concerns. To circumvent this problem, decentralized FL, where classifier de-

velopment is distributed across institutions, was introduced  [73,156].  

 

Publication 3 explores the potential of FL, as a potentially more accessible and pri-

vacy-preserving alternative, in comparison to centralized single model and ensemble 

(i.e., combining multiple model predictions) learning approaches. The study leverages 

prospective real-world distributed MM-suspicious lesion data for the binary classifica-

tion of MM and nevi using histopathological whole-slide images. Altogether, FL 

achieved comparable performance levels to the centralized approaches, thus present-

ing a reliable alternative that may empower institutions to contribute to the develop-

ment of AI-systems, even with limited datasets or strict data protection requirements.  

 

While the centralized single model approach exhibited significantly better performance 

on the holdout test dataset (i.e., on unseen data from the same hospitals already in-

volved in model training; AUROC of 0.9024 versus 0.8579), FL excelled with signifi-

cantly better results on the external test dataset (i.e., on unseen data from another 

hospital not involved in model training; AUROC of 0.9126 versus 0.9045). These find-

ings suggest that FL may not be as well suited for solving in-distribution classification 

problems (i.e., following the same distribution as the training data), as indicated by the 

inferior performance on the holdout test dataset. However, they highlight the potential 

benefits of FL in generalizing to out-of-distribution data, as indicated by the enhanced 

performance on the external test dataset (similar observations see [72,77]). This is 

https://paperpile.com/c/LvwbJz/dKND+ntdq
https://paperpile.com/c/LvwbJz/5Z5z9+iHNll
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particularly noteworthy for the potential clinical adoption of AI-systems for skin cancer 

diagnostics, where dealing with biological (e.g., skin types, anatomical sites) and/or 

technical (e.g., acquisition systems, staining protocols) variability is inevitable.  

 
Moreover, state-of-the-art AI algorithms for MM detection face several problems, in-

cluding issues related to generalizability [28,44], robustness [40,41], and uncertainty 

estimation [42,43], which collectively limit their usefulness for clinical practice. Instead 

of learning valid decision rules (e.g., morphological characteristics) which generalize 

to out-of-distribution data (i.e., following a different distribution than the training data), 

AI algorithms often learn spurious correlations (referred to as shortcuts [101,157]) that 

are present in the dataset (e.g., skin markings [59] or scale bars [126]). This often leads 

to the development of non-generalizable or non-robust AI algorithms. Given the poten-

tially severe consequences of lacking robustness and reliability in a clinical setting, 

supplementary publications 1 to 3 explore various approaches for the development 

of potentially more robust diagnostic algorithms with improved generalization capabili-

ties.  

 

Supplementary publication 1 investigates the brittleness (i.e., sensitivity to minor in-

put changes, such as image rotations or scaling) of three commonly used CNN archi-

tectures (ResNet50, DenseNet121, VGG16) by evaluating their performance on im-

ages that have been modified in various ways, aiming to simulate alterations in image 

acquisition that may occur in clinical settings. Additionally, supplementary publica-

tion 1 evaluates the effectiveness of three possible techniques (data augmentation, 

test-time augmentation [144], anti-aliased networks [106]) in addressing this issue. 

While all architectures exhibited brittleness on both artificial and naturally modified im-

ages, the reviewed techniques were able to reduce the brittleness to varying degrees, 

https://paperpile.com/c/LvwbJz/nRkI+S7Th
https://paperpile.com/c/LvwbJz/Qwbx
https://paperpile.com/c/LvwbJz/Vwut
https://paperpile.com/c/LvwbJz/qeC7
https://paperpile.com/c/LvwbJz/tFIA
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especially when using artificial generated test images. These improvements were, 

however, less pronounced or non-existent for naturally modified images, highlighting 

the importance of non-artificial test datasets.  

 

Another strategy to address these issues involves the use of ensemble solutions, 

where multiple model predictions are combined into one (e.g., [127). Ensembles, how-

ever, are computationally intensive, especially for handheld devices or when remote 

server options are not available, and additionally may lack transparency for practition-

ers when compared to single model solutions. In light of this, supplementary publi-

cation 2 presents an alternative approach that can achieve similar results while re-

maining straightforward to implement: the concept of constructing model soups. Here, 

the weights of multiple models are averaged into a single model, resulting in improved 

generalizability, robustness and uncertainty estimation, while still enhancing perfor-

mance on the holdout test dataset. This could be a pivotal factor in achieving clinical 

applicability, as reduced complexity generally leads to greater transparency, thereby 

boosting patients’ and clinicians’ acceptance (see publication 2).  

 

Another approach commonly applied to overcome the discussed challenges is to pro-

vide the classifier with multiple views of the same lesion that are typically generated by 

digitally transforming the original image (known as test-time augmentation [144]). Sup-

plementary publication 3 is dedicated to explore whether this approach can be fur-

ther enhanced by substituting artificial images with multiple real-world images (i.e., 

photographs taken in the clinic) of the same lesion. In summary, the utilization of mul-

tiple non-artificial images per lesion yielded superior results in terms of uncertainty es-

timation and robustness when compared to conventional methods. This once again 

highlights the critical role of real-world test images (as already outlined in 

https://paperpile.com/c/LvwbJz/owRt
https://paperpile.com/c/LvwbJz/qeC7
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supplementary publication 1). Actual photographs might offer a more comprehen-

sive representation of skin lesions by capturing real-world alterations (e.g., diverse 

camera angles or dermoscopy modes) that are somewhat complementary to each 

other. Notably, including multiple real-world images is both cost-effective and easy to 

implement, making it a promising approach for future clinical workflows.  

 

In summary, the integration of AI-systems into clinical routine faces challenges ranging 

from experimental settings that do not reflect real-world conditions to data protection 

concerns. Patients’ and dermatologists’ acceptance hinges on the demand for AI-sys-

tems to provide traceable explanations and refined multiclass assessments. FL 

emerges as a promising solution for data privacy, while addressing algorithmic chal-

lenges requires innovative strategies such as model soups and the incorporation of 

real-world test images. Consequently, the successful translation of AI-systems for skin 

cancer diagnostics requires a holistic approach, equally considering technological ad-

vancements, ethical considerations, and practical needs of patients and dermatolo-

gists.  
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4 SUMMARY  

The present doctoral thesis aims to conduct a feasibility study on the use of AI-systems 

for skin cancer diagnostics to investigate the research question “How can an AI-based 

algorithm for image-based melanoma detection be successfully implemented in clinical 

practice?”.  

 

Publication 1 systematically analyzes the current state of AI research for skin cancer 

diagnostics, examining the potential clinical relevance of studies that directly compare 

AI performance with human experts. All 19 included comparison studies demonstrated 

superior or equivalent performance of AI. However, to enhance the reliability and gen-

eralizability of these results, publication 1 calls for less artificial conditions and advo-

cates for the use of external test data in classifier evaluation. 

 

Publication 2 presents the results of a prospective multicentric survey study that uti-

lizes an adaptive choice-based conjoint analysis to investigate the criteria required for 

patients and dermatologists to accept AI-systems in skin cancer diagnostics. Overall, 

publication 2 highlights that future AI research in dermatology must move beyond 

pure performance enhancements and shift its focus towards increased levels of ex-

plainability. Additionally, AI-systems that are understandable for both patients and cli-

nicians, and are capable of differentiating among various skin disorders in a multiclass 

context are required to develop AI-systems that are tailored to patients’ and dermatol-

ogists’ needs, ultimately enhancing acceptance in clinical practice.  

 

Publication 3 develops a federated learning model for melanoma-nevus classification 

using prospectively-collected histopathological whole-slide images and compares its 
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diagnostic performance to classical centralized approaches (i.e., single model and en-

semble). Altogether, publication 3 demonstrates that federated learning presents a 

reliable alternative, attaining performance levels at least equivalent to centralized 

learning approaches while simultaneously portraying a more accessible and privacy-

preserving option. Consequently, federated learning may empower institutions to con-

tribute to the development of AI models, even with limited datasets or strict data pro-

tection rules, thereby encouraging collaboration across institutions and countries.  

 

Supplementary publications 1 to 3 explore various technical approaches for the de-

velopment of potentially more robust diagnostic algorithms with improved generaliza-

tion capabilities. In this context, particularly constructing model soups (i.e., averaging 

the weights of multiple models into a single model), as well as providing the classifier 

with multiple real-world images of the same lesion (i.e., photographs taken in the clinic), 

have proven to be efficient methods that positively impact the generalizability and ro-

bustness of AI-based MM detection while simultaneously being inexpensive and 

straightforward to implement. 

 

Overall, the successful implementation of AI-systems for skin cancer diagnostics re-

quires a holistic approach that equally takes into account technological advancements, 

ethical considerations and practical needs of patients and dermatologists.  
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5 ZUSAMMENFASSUNG 

Ziel der vorliegenden Dissertation ist die Durchführung einer Machbarkeitsstudie zum 

Einsatz von auf künstlicher Intelligenz (KI)-basierenden Systemen in der Hautkrebsdi-

agnostik, um die Forschungsfrage „Wie kann ein KI-basierter Algorithmus zur bildba-

sierten Melanomerkennung erfolgreich in der klinischen Praxis implementiert werden?” 

zu untersuchen.  

 

Publikation 1 analysiert systematisch den aktuellen Stand der KI-Forschung im Be-

reich der Hautkrebsdiagnostik und untersucht die potenzielle klinische Relevanz von 

Studien, welche die KI-Leistung direkt mit menschlichen Experten vergleichen. Alle 19 

einbezogenen Vergleichsstudien zeigten eine überlegene oder gleichwertige Leistung 

von KI. Um jedoch die Zuverlässigkeit sowie die Generalisierbarkeit dieser Ergebnisse 

zu erhöhen, fordert Publikation 1 weniger künstliche Bedingungen und plädiert für die 

Verwendung von externen Testdaten bei der Evaluierung von Klassifikatoren.  

 

Publikation 2 präsentiert die Ergebnisse einer prospektiven multizentrischen Umfra-

gestudie, die eine adaptive entscheidungsbasierte Conjoint-Analyse (adaptive-choice 

based conjoint) einsetzt, um die Kriterien zu untersuchen, die für Patient*innen und 

Dermatolog*innen erforderlich sind, um KI-Systeme in der Hautkrebsdiagnostik zu ak-

zeptieren. Insgesamt hebt Publikation 2 hervor, dass die zukünftige KI-Forschung in 

der Dermatologie über reine Leistungssteigerungen hinausgehen und sich verstärkt 

auf ein höheres Maß an Erklärbarkeit konzentrieren muss. Darüber hinaus sind KI-

Systeme erforderlich, die sowohl für Patient*innen als auch für Kliniker*innen nachvoll-

ziehbar sind und zwischen verschiedenen Hauterkrankungen in einem Mehrklassen-

Kontext unterscheiden können, um KI-Systeme zu entwickeln, die auf die Bedürfnisse 
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der Patient*innen und Dermatolog*innen zugeschnitten sind und somit letztendlich die 

Akzeptanz in der klinischen Praxis erhöhen. 

 

Publikation 3 entwickelt ein auf föderiertem Lernen (federated learning) basierendes 

Modell zur Klassifizierung von Melanomen und Nävi unter Verwendung von prospektiv 

gesammelten digitalisierten Gewebeschnitten (whole-slide images) und vergleicht 

dessen diagnostische Leistung mit klassischen Ansätzen des zentralisierten Lernens 

(d.h. Einzelmodell sowie Ensemble). Insgesamt zeigt Publikation 3, dass föderiertes 

Lernen (federated learning) eine verlässliche Alternative bietet, welche eine mindes-

tens vergleichbare Leistung zu zentralisiert trainierten Modellen erzielt und gleichzeitig 

eine leichter zugängliche und datenschutzfreundliche Option darstellt. Folglich kann 

föderiertes Lernen (federated learning) Institutionen dazu befähigen, selbst mit be-

grenzten Datensätzen oder strengen Datenschutzvorschriften zur Entwicklung von KI-

Modellen beizutragen und so die Zusammenarbeit zwischen Institutionen und Ländern 

fördern.  

 

Die ergänzenden Publikationen 1 bis 3 untersuchen verschiedene technische An-

sätze für die Entwicklung von potenziell robusteren Diagnosealgorithmen mit verbes-

serten Generalisierungsfähigkeiten. In diesem Zusammenhang haben sich insbeson-

dere model soups (d.h. die Mittelung der Gewichte mehrerer Modelle zu einem einzi-

gen Modell) sowie die Bereitstellung von mehreren realen Bildern (d.h. in der Klinik 

aufgenommene Bildaufnahmen) derselben Läsion für die Klassifizierungentscheidung 

als effiziente Methoden erwiesen, die sich positiv auf die Generalisierbarkeit und Ro-

bustheit der KI-basierten Melanomerkennung auswirken und gleichzeitig kostengüns-

tig und einfach zu implementieren sind. 

 



Zusammenfassung 
 

156 

Insgesamt erfordert die erfolgreiche Umsetzung von KI-Systemen für die Hautkrebsdi-

agnostik einen ganzheitlichen Ansatz, der technologische Fortschritte, ethische Ge-

sichtspunkte und die praktischen Bedürfnisse von Patient*innen und Dermatolog*in-

nen gleichermaßen berücksichtigt. 
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7 TABULAR APPENDIX 

Tabular Appendix 1. Detailed overview of the comprehensive search strategy. 
  Filters used  

(Combinations of) search terms Retrieval Date 2017-2021 English* Comparative Studies* 

Skin Cancer Classification AND Convolutional Neural Networks 01/18/2021 x x  
Melanoma Detection AND Convolutional Neural Networks 01/18/2021 x x  
Malignant Melanoma AND Convolutional Neural Networks 01/18/2021 x x  
Skin Cancer Classification AND Convolutional Neural Networks 02/17/2021 x x x 
Skin Cancer AND Convolutional Neural Networks 02/17/2021 x x x 
Skin Cancer Classification 02/17/2021 x x x 
Melanoma Detection AND Convolutional Neural Networks 02/17/2021 x x x 
Malignant Melanoma AND Convolutional Neural Networks 02/17/2021 x x x 
Skin Cancer Classification AND Histopathology AND Convolutional Neural Networks 02/17/2021 x x  
Melanoma AND Histopathology AND Convolutional Neural Networks 02/17/2021 x x  
Skin Cancer Classification AND Histopathology AND Deep Learning 02/17/2021 x x  
Whole slide imaging AND convolutional neural networks 02/17/2021 x x  
Whole slide imaging AND skin cancer 02/17/2021 x x  
Melanoma AND Histopathology AND Deep Learning 02/17/2021 x x  

*Only possible for PubMed and Medline. 
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Tabular Appendix 2. Training and test procedure of AI-based models for the classification of dermoscopic images. 

study architecture en-
se
mb
le 
y/n 

scope of the train-
ing data  

origin of the training 
data  

ground truth of the train-
ing data 

meta-
data 
y/n 

classification task scope of the test 
data 

origin of the test data (Holdout/OOD) ground truth of 
the test data  
(in case of 
OOD)  

Brinker et 
al. [26] 

pre-trained 
ResNet50 

n 13 637 images*, 
randomly selected 
out 20 635 images 
available at ISIC 
(after excluding 
the test set) 
 
 

ISIC image archive  melanoma: histology-
proven 
nevi: histology-proven 
(~24%), expert consen-
sus (~54%), or e.g., se-
ries of images with no 
change over time (~22%). 

n binary: melanoma/ 
melanocytic nevi 

100 images, ran-
domly selected 
out of 20 735 im-
ages available at 
ISIC 
 

ISIC image archive (Holdout) / 

Brinker et 
al. [52] 

pre-trained 
ResNet50 

n 4 204 images  
 

ISIC image archive  histology-proven n binary: melanoma/ 
melanocytic nevi 

804 images in to-
tal 
 

ISIC image archive 
(Holdout) 

/ 

Yu et al. 
[53] 

modified, 
pre-trained 
VGG-16  

n 724 images in to-
tal, 362 images 
per subset  

Severance Hospital 
in the Yonsei Univer-
sity Health System, 
Seoul, Korea, 
Dongsan Hospital in 
the Keimyung Univer-
sity Health System, 
Daegu, Korea 

histology-proven n binary: melanoma/ 
melanocytic nevi 

724 images in to-
tal, 362 images 
per subset (2-fold 
cross-testing) 

Severance Hospital in the Yonsei Uni-
versity Health System, Seoul, Korea 
(Holdout), 
Dongsan Hospital in the Keimyung 
University Health System, Daegu, Ko-
rea (Holdout) 

/ 

Marchetti 
et al. [54] 

fusion of the 
algorithms 
from the 
ISBI 2016 
challenge 

y 900 images   ISBI 2016 challenge, 
ISIC image archive 

melanoma: histology-
proven 
nevi/lentigines: majority 
histology-proven,162 nevi 
were reviewed by ≥2 der-
matologists  

n binary: malignant/ 
benign; 
biopsy/ observa-
tion or reassur-
ance 

379 images in to-
tal  

ISBI 2016 challenge, ISIC image ar-
chive (Holdout) 

/ 

Marchetti 
et al. [55] 

top chal-
lenge algo-
rithm from 
the ISBI 
2017 chal-
lenge 

n 2 150 images* ISBI 2017 challenge, 
ISIC image archive 

not specified n binary: melanoma/ 
non-melanoma;  
biopsy/ observa-
tion  

600 images  ISIC image archive (Holdout) / 

https://paperpile.com/c/C4vaOw/oi9I
https://paperpile.com/c/C4vaOw/QYbw
https://paperpile.com/c/C4vaOw/YO0u
https://paperpile.com/c/C4vaOw/9Ndu
https://paperpile.com/c/C4vaOw/rBdg
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Haenssle 
et al. [30] 

pre-trained, 
modified 
Google In-
ception v4 

n not specified cooperating derma-
tologists, ISIC image 
archive 

histology-proven; in case 
of non-excised lesions: 
diagnosed by experi-
enced dermatologists 
and/or follow-up exami-
nations 

n binary: melanoma/ 
melanocytic nevi; 
excision or short-
term follow/no ac-
tion 

300 images  Department of Dermatology, University 
of Heidelberg, Germany (OOD) 

histology-
proven or fol-
low-up exami-
nation 

Haenssle 
et al. [31] 

pre-trained, 
modified 
Google In-
ception v4 
(Moleanaly-
zer Pro, Fo-
toFinder 
Systems, 
Bad Birn-
bach, Ger-
many) 

n not specified cooperating derma-
tologists, ISIC image 
archive 

histology-proven; in case 
of non-excised lesions: 
diagnosed by experi-
enced dermatologists 
and/or follow-up exami-
nations 

n binary: (pre)malig-
nant/ benign; exci-
sion or treatment/ 
follow up or no ac-
tion 

2 711 images in 
total 
1) 100 images 
2) 1 100 images  
3) 1 511 images 

1) Department of Dermatology, Univer-
sity of Heidelberg, Germany (OOD) 
2) MSK-1 data set (OOD)  
3) ISIC-2018 challenge data set (OOD) 

1) histology-
proven or fol-
low-up exami-
nation 
2) not spe-
cified 
3) not spe-
cified  

Haenssle 
et al. [32] 

pre-trained, 
modified 
Google In-
ception v4 
(Moleanaly-
zer Pro, Fo-
toFinder 
Systems, 
Bad Birn-
bach, Ger-
many) 

n not specified 
 

cooperating derma-
tologists, ISIC image 
archive 

histology-proven; in case 
of non-excised lesions: 
diagnosed by experi-
enced dermatologists 
and/or follow-up exami-
nations 

n binary: malignant/ 
benign; excision 
or treatment/ fol-
low up or no ac-
tion 

4 932 images 
1) 100 images 
2) 240 images 
3) 1 511 images 
4) 1 100 images 
5) 1 981 images 
 
 

1) Department of Dermatology, Univer-
sity of Heidelberg, Germany (OOD) 
Department of Dermatology Hospital 
Thalkirchner Street, Munich, Germany 
(OOD) 
Department of Dermatology, Medical 
University Graz, Austria (OOD) 
First Department of Dermatology, Aris-
totle University, Thessaloniki, Greece 
(OOD) 
Dermatology Office based clinic of 
Dermatology, Konstanz, Germany 
(OOD) 
2) Primary skin cancer clinic in 
Queensland, Australia (OOD) 
3) ISIC-2018 challenge data set (OOD) 
4) MSK-1 data set (OOD) 
5) Prospective data set, acquired dur-
ing 15 years of follow-up examinations 
(OOD) 

1) histology-
proven (98%), 
unremarkable 
follow-up >2 
years (2%) 
2) histology-
proven 
3) not speci-
fied  
4) not speci-
fied 
5) histology-
proven 
(~40%, includ-
ing all malig-
nant lesions), 
expert con-
sensus plus 
an unremarka-
ble follow-up 
>2 years 
(~60%) 

https://paperpile.com/c/C4vaOw/Mk0T
https://paperpile.com/c/C4vaOw/7EFA
https://paperpile.com/c/C4vaOw/oD1e
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Tschandl 
et al. [28] 

139 chal-
lenge algo-
rithms from 
the ISBI 
2018 chal-
lenge 

n 10 015 images  
 

HAM 10000 data set, 
ISBI 2018 challenge, 
ISIC image archive 

histology-proven (>50% 
of all lesions), sequential 
dermatoscopic imaging 
without changes, expert 
consensus 

n multiclass (7) 1 511 images in 
total 
1) 1 195 images 
2) 316 images 
 

1) HAM10000 data set, ISBI 2018 
challenge, ISIC image archive (Hold-
out)  
2) images from Turkey, New Zealand, 
Sweden and Argentina (OOD) 

not specified 

Maron et 
al. [25] 

pre-trained 
ResNet50 

n 11 444 images  
 

HAM10000 data set, 
additional images 
from the ISIC image 
archive 

6 390 images histology-
proven 
 

n binary: malignant/ 
benign; 
multiclass (5) 

300 images  
 

HAM10000 data set (Holdout) / 

Tschandl 
et al. [29] 

cCNN, In-
ception V3 
and Res-
Net50 

y 8 235 dermo-
scopic images and 
6 458 close-up im-
ages* 

Primary skin cancer 
clinic in Queensland, 
Australia  

histology-proven n multiclass (8) 2 072 dermo-
scopic and clini-
cal close-up im-
ages  

Primary skin cancer clinic in Queens-
land, Australia (Holdout), 
Department of Dermatology of the 
Medical University of Vienna, Austria 
(OOD), 
additional images from dermatologists 
from Sweden, Italy, Austria, France, 
Turkey, German (OOD) 
 

histology-pro-
ven 

*Specification includes training and validation set.  

metadata (additional information beyond image input, e.g., age, gender, localization of the suspicious lesion) 

y (yes) 

n (no)  

OOD (out-of-distribution) 

  

https://paperpile.com/c/C4vaOw/ikWA
https://paperpile.com/c/C4vaOw/2EpW
https://paperpile.com/c/C4vaOw/ncuQ
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Tabular Appendix 3. Training and test procedure of AI-based models for the classification of clinical images. 

study architecture en-
sem-
ble 
y/n 

scope of the train-
ing data  

origin of the training 
data  

ground truth of the 
training data 

meta-
data 
y/n 

classification task scope of the test data origin of the test data (Hold-
out/OOD) 

ground truth of 
the test data  
(in case of 
OOD)  

Fujisaw
a et al. 
[18] 

pre-trained 
GoogleNet  

n 4 867 images of 
14 disorders from 
1 842 patients  

University of Tsu-
buka Hospital, Ja-
pan 

histology-proven, ex-
cept for cases of 
congenital melano-
cytic nevus, nevus 
spilus, and lentigo 
simplex 

n 1) binary: malig-
nant/benign 
2) multiclass (14) 

1 142 images of 14 
disorders from 454 pa-
tients  

University of Tsubuka Hospital, 
Japan (Holdout) 

/ 

Jinnai 
et al. 
[21] 

(fast region-
based) 
FRCNN with 
VGG-16 as 
backbone 

n 4 732 images of 6 
disorders from 2 
885 patients  

Dermatologic On-
cology in the Na-
tional Cancer Cen-
ter Hospital, Tokyo, 
Japan 

malignant lesions: 
histology-proven 
benign lesions: clini-
cal diagnosis with 
dermoscopy or his-
tology-proven 

n 1) binary: malig-
nant/benign 
2) multiclass (6) 

1 114 images of 6 dis-
orders from 666 pa-
tients (randomly se-
lected one images per 
patient for testing) 

Dermatologic Oncology in the 
National Cancer Center Hospital, 
Toky, Japan (Holdout) 

/ 

Han et 
al. [20] 

pre-trained 
SENet, SE-
ResNet-50, 
VGG-19 

y 220 680 images 
of 174 disorders  

ASAN, MEDNODE, 
Web, Normal data 
set 

not specified n 1) binary: malig-
nant/benign 
2) multiclass (134) 

1) 1 300 images of 10 
disorders 
2) 2 201 images of 
134 disorders 

1) Edinburgh data set (OOD) 
2) SNU data set (OOD)  

1) histology-
proven 
2) not specified 

Han et 
al. [22] 

pre-trained 
ResNet-152 

n 19 398 images 
1) 15 408 images 
of 12 disorders 
2) 170 mela-
noma/nevus 
3) 3 820 images  

1) ASAN data set 
2) MEDNODE data 
set 
3) Atlas data set 
(from several der-
matologic atlas 
sites) 

not specified n multiclass (12) 2 728 images 
1) 1 300 images of 10 
disorders 
2) 152 BCC images  
3) 1 276 images of 12 
disorders 

1) Edinburgh data set (OOD) 
2) Hallym data set (OOD) 
3) Asan data set (Holdout) 

histology-pro-
ven 

Brinker 
et al. 
[24] 

pre-trained 
ResNet50 

n 13 637 dermo-
scopic images*, 
randomly selected 
out 20 735 im-
ages available at 
ISIC  

HAM10000, ISIC 
image archive  

melanoma: histology-
proven 
nevi: histology-
proven (~24%), ex-
pert consensus 
(~54%), or e.g., se-
ries of images with 
no change over time 
(~22%). 

n binary: melanoma/ 
melanocytic nevi 

100 images MClass-Benchmark obtained 
from the MED-NODE database 
(OOD) 

melanoma: his-
tology-proven;  
nevi: expert 
consensus 

https://paperpile.com/c/C4vaOw/0OkF
https://paperpile.com/c/C4vaOw/AzXW
https://paperpile.com/c/C4vaOw/ZcwW
https://paperpile.com/c/C4vaOw/zK0x
https://paperpile.com/c/C4vaOw/9OMX
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Han et 
al. [19] 

SENet and 
SE-ResNeXt-
50 trained 
with a region-
based CNN 
(RCNN) 

y 1 106 886 clinical 
images of 178 dis-
orders 

Asan Medical 
Center, various 
websites 

histology-proven n 1) binary: 
malignant/benign 
2) multiclass (32) 

1) 1 300 images of 10 
disorders 
2)  40 331 images 
from 10 426 patients 
of 43 disorders 

1) Edinburgh data set (OOD) 
2) Department of Dermatology, 
Severance Hospital in Seoul, Ko-
rea (OOD) 

1) histology-proven 
2) not specified 

*Specification includes training and validation set.  

metadata (additional information beyond image input, e.g., age, gender, localization of the suspicious lesion) 

y (yes) 

n (no)  

OOD (out-of-distribution) 

  

https://paperpile.com/c/C4vaOw/TDGj
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Tabular Appendix 4. Training and test procedure of AI-based models for the classification of histopathological images. 

study architecture en-
se
mbl
e 
y/n 

scope of the training data  origin of the train-
ing data  

ground truth of the train-
ing data 

meta-
data 
y/n 

classification task scope of the 
test data 

origin of the test data (Hold-
out/OOD) 

ground truth of 
the test data  
(in case of 
OOD)  

Hekler 
et al. 
[33] 

pre-trained 
ResNet50 

n 595 digitised H&E slides, image 
sections of the epithelium 
(0.06% of the whole slide on 
average) with a 10-fold magnifi-
cation were randomly cropped 
(one crop per slide) 

Dermatohistopa-
thologic Institute 
Dr. D. Krahl, Hei-
delberg, Germany  

expert histopathologist 
with more than 20 years 
of experience in accord-
ance with current guide-
lines 

n binary: mela-
noma/ melanocy-
tic nevi 

100 digitised 
H&E slides 

Dermatohistopathologic Insti-
tute Dr. D. Krahl, Heidelberg, 
Germany (Holdout) 

/ 

Brinker 
et al. 
[34] 

pre-trained 
ResNeXt50  

y 100 digitised H&E slides (5 
folds, consisting of 80 images 
each) 

routine files of 2 
expert board-certi-
fied dermato-
pathologists from 
Friedrichshafen, 
Germany  

panel of 2 experienced 
dermatopathologists ac-
cording to the standard 
practice 

n binary: mela-
noma/ 
melanocytic nevi 

100 digitised 
H&E slides 
(5 folds, 
consisting of 
20 images 
each) 

1) routine files of 2 expert 
board-certified dermato-
pathologists from Frie-
drichshafen, Germany (Hold-
out, 5-fold cross-testing) 
2) Dermatohistopathologic In-
stitute Dr. D. Krahl, Heidelberg, 
Germany (OOD) 

expert histo-
pathologist with 
more than 20 
years of experi-
ence in accord-
ance with cur-
rent guidelines 

metadata (additional information beyond image input, e.g., age, gender, localization of the suspicious lesion) 

y (yes) 

n (no)  

OOD (out-of-distribution) 
  

https://paperpile.com/c/C4vaOw/Vzky
https://paperpile.com/c/C4vaOw/73iH
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Tabular Appendix 5. Detailed specification of the classes used for multiclass classification tasks. 
 

study  number of classes classes 

Tschandl et al. [28] 7 malignant melanoma 
intraepithelial carcinoma including actinic keratosis and Bowen’s disease 
basal cell carcinoma 
benign keratinocytic lesions including solar lentigo, seborrheic keratosis and lichen planus-like keratosis 
dermatofibroma 
melanocytic nevus 
vascular lesions 

Maron et al. [25]  5 malignant melanoma 
actinic keratosis, intraepithelial carcinoma, Bowen’s disease, squamous cell carcinoma 
basal cell carcinoma 
benign keratosis including seborrheic keratosis, solar lentigo and lichen planus-like keratosis 
melanocytic nevi 

Tschandl et al. [29] 8 actinic keratosis and intraepithelial carcinoma (also known as Bowen’s disease) 
basal cell carcinoma (all subtypes) 
benign keratosis like lesions (including solar lentigo, seborrheic keratosis, and lichen planus–like keratosis) 
dermatofibroma 
malignant melanoma 
invasive squamous cell carcinoma and keratoacanthoma 
benign sebaceous neoplasms 
benign hair follicle tumors 

Fujisawa et al. [18] 14 malignant melanoma 
squamous cell carcinoma 
Bowen’s disease 
actinic keratosis 
basal cell carcinoma 
nevus cell nevus 
blue nevus 
congenital melanocytic nevus 
Spitz nevus 
sebaceus nevus 
poroma 
seborrheic keratosis 
nevus spilus 
lentigo simplex 

Jinnai et al. [21] 6 malignant melanoma 
basal cell carcinoma 
nevus 
seborrheic keratosis 

https://paperpile.com/c/C4vaOw/ikWA
https://paperpile.com/c/C4vaOw/2EpW
https://paperpile.com/c/C4vaOw/ncuQ
https://paperpile.com/c/C4vaOw/0OkF
https://paperpile.com/c/C4vaOw/AzXW
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senile lentigo 
hematoma/hemangioma 

Han et al. [20] 134 A complete listing has been omitted due to space restrictions. For further information, see [26]. 

Han et al. [22] 12 malignant melanoma 
basal cell carcinoma  
squamous cell carcinoma 
intraepithelial carcinoma 
actinic keratosis 
seborrheic keratosis 
melanocytic nevus 
lentigo 
pyogenic granuloma 
hemangioma 
dermatofibroma 
wart 

Han et al. [19] 32 A complete listing has been omitted due to space restrictions. For further information, see [28]. 

  

https://paperpile.com/c/C4vaOw/ZcwW
https://paperpile.com/c/C4vaOw/ZcwW
https://paperpile.com/c/C4vaOw/zK0x
https://paperpile.com/c/C4vaOw/TDGj
https://paperpile.com/c/C4vaOw/TDGj
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Tabular Appendix 6. The STARD 2015 list. 
 

Topic No Item Section in Manuscript 

Title or abstract 

  1 Identification as a study of diagnostic accuracy 
using at least one measure of accuracy (such as 
sensitivity, specificity, predictive values, or AUC) 

Abstract 

Abstract 

  2 Structured summary of study design, methods, 
results, and conclusions  

Abstract 

Introduction 

  3 Scientific and clinical background, including the 
intended use and clinical role of the index test 

Abstract, Introduction 

  4 Study objectives and hypotheses Abstract, Introduction 

Methods 

Study Design 5 Whether data collection was planned before the 
index test and reference standard were per-
formed (prospective study) or after (retrospec-
tive study) 

Patient Cohorts and Slide Acquisition 

Participants 6 Eligibility criteria Patient Cohorts and Slide Acquisition 

  7 On what basis potentially eligible participants 
were identified (such as symptoms, results from 
previous tests, inclusion in registry) 

Patient Cohorts and Slide Acquisition 

  8 Where and when potentially eligible participants 
were identified (setting, location, and dates) 

Patient Cohorts and Slide Acquisition 

  9 Whether participants formed a consecutive, ran-
dom, or convenience series 

Patient Cohorts and Slide Acquisition 

Test methods 10a Index test, in sufficient detail to allow replication Whole Slie Image Preprocessing, Model Development, Statistical Analysis  
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  10b Reference standard, in sufficient detail to allow 
replication 

Whole Slide Image Preprocessing, Model Development, Statistical Analysis  

  11 Rationale for choosing the reference standard (if 
alternatives exist) 

Introduction 

  12a Definition of and rationale for test positivity cut-
offs or result categories of the index test, distin-
guishing pre-specified from exploratory  

not applicable 

  12b Definition of and rationale for test positivity cut-
offs or result categories of the reference stand-
ard, distinguishing pre-specified from explora-
tory  

not applicable 

  13a Whether clinical information and reference 
standard results were available to the perform-
ers or readers of the index test 

not applicable 

  13b Whether clinical information and index test re-
sults were available to the assessors of the ref-
erence standard 

not applicable 

Analysis 14 Methods for estimating or comparing measures 
of diagnostic accuracy 

Statistical Analysis  

  15 How indeterminate index test or reference stand-
ard results were handled 

not applicable 

  16 How missing data on the index test and refer-
ence standard were handled 

Patient Cohorts and Slide Acquisition, Number of Eligible Slides and Patients 

  17 Any analyses of variability in diagnostic accu-
racy, distinguishing pre-specified from explora-
tory 

Statistical Analysis  

  18 Intended sample size and how it was determined Patient Cohorts and Slide Acquisition, Number of Eligible Slides and Patients 

Results 

Participants 19 Flow of participants, using a diagram Number of Eligible Slides and Patients 
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  20 Baseline demographic and clinical characteris-
tics of participants 

Patient Characteristics and Differences among Datasets 

  21a Distribution of severity of disease in those with 
the target condition 

Patient Characteristics and Differences among Datasets 

  21b Distribution of alternative diagnoses in those 
without the target condition 

Patient Characteristics and Differences among Datasets 

  22 Time interval and any clinical interventions be-
tween index test and reference standard 

not applicable 

Test results 23 Cross tabulation of the index test results (or their 
distribution) by the results of the reference 
standard 

Comparison of Federated Learning with Other Approaches 

  24 Estimates of diagnostic accuracy and their pre-
cision (such as 95% confidence intervals) 

Comparison of Federated Learning with Other Approaches 

  25 Any adverse events from performing the index 
test or the reference standard 

not applicable 

Discussion 

  26 Study limitations, including sources of potential 
bias, statistical uncertainty, and generalisability  

Discussion  

  27 Implications for practice, including the intended 
use and clinical role of index text 

Discussion 

Other information 

  28 Registration number and name of registry not applicable 

  29 Where the full study protocol can be accessed not applicable 

  30 Sources of funding and other support; role of 
funders 

Role of Funding Source 



CURRICULUM VITAE 
 

177 

8 CURRICULUM VITAE 

PERSONALIEN 

Name, Vorname: Haggenmüller, Sarah 

Geburtsdatum: 30.11.1995 

Geburtsort:  Ulm 

 
SCHULISCHER WERDEGANG 

2006 bis 2014  Illertal-Gymnasium, Vöhringen  

27.06.2014  Erwerb der Allgemeinen Hochschulreife (1,2) 

 

UNIVERSITÄRER WERDEGANG 

2014 bis 2017  Duales Studium Fachrichtung BWL-Industrie an der Dualen  

   Hochschule Baden-Württemberg, Heidenheim  

2017   Bachelorarbeit im Bereich Change Management und Digitalisierung 

   Thema: Die Uzin Utz AG im Wandel – Entwicklung eines Change  

   Kommunikationskonzepts für den Relaunch des Webshops als  

   digitales Hilfsmittel im Außendienst der Marke UZIN (1,0) 

30.09.2017   Bachelor of Arts (1,2) 

2018 bis 2020  Master of Advanced Management an der University of Applied  

   Science, Neu-Ulm 

2020   Masterarbeit im Bereich Marktforschung und Künstliche Intelligenz  

   Thema: Artificial Intelligence for Early Skin Cancer Detection (1,0) 

22.06.2020  Master of Science (1,1) 



ACKNOWLEDGEMENT 
 

178 

9 ACKNOWLEDGEMENT 

An meine Familie, die Studienstiftung des deutschen Volkes und Kollegen, die zu Freunden 

wurden, in ewiger Dankbarkeit. 


