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Abstract

The Maximum Weight Independent Set problem is a fundamental NP-hard
problem in combinatorial optimization that additionally attracts interest because of
its many real-world applications. The problem asks for a subset of vertices of heig-
hest weight in an undirected vertex-weighted graph, such that the vertices in the set
are pairwise non-adjacent. While this problem is the main focus of this thesis, we
also consider other independence problems, including the Maximum (Weight) 2-
Packing Set, and the Maximum Weight Hypergraph b-Matching problem.
An important part of solving these problems in practice is data reduction rules. This
dissertation introduces new data reduction rules as well as different approaches that
utilize these rules for computing high-quality solutions.

For the Maximum Weight Independent Set problem, we contribute several
new data reduction rules and a machine learning screening approach to speed up the
application of these rules. Moreover, we present heuristics that find near-optimal so-
lutions on static graphs and a new technique to compute high-quality independent
sets in the dynamic setting. This technique is also applicable to the unweighted pro-
blem and as a local search on static graphs. We also introduce multiple new data
reduction rules for the Maximum 2-Packing Set problem and its weighted genera-
lization. Combining the new data reduction rules with a reduction to the Maximum
(Weight) Independent Set problem, allows us to utilize existing independent
set approache resulting in several mehods to compute high-quality 2-packing sets.
Regarding the Maximum Weight b-Matching problem in hypergraphs, we pre-
sent a set of new data reduction rules, a greedy strategy and a novel local search
method to compute high-quality solutions.

All proposed approaches are discussed in detail and evaluated experimentally on a
wide range of real-world benchmark instances. The experimental results indicate that
for all of the problems discussed, using data reduction rules can significantly reduces
the size of many input instances. This initial size reduction enables faster running
times and can improve solution quality for all of our introduced approaches, but also
for all other state-of-the-art methods tested. Furthermore, our experiments show that
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iv Abstract

our new approaches outperform state-of-the-art solvers in different metrics. Overall,
this dissertation demonstrates the power of using data reduction rules in different
ways to solve independence problems in practice.



Zusammenfassung

Das Problem eine stabile Menge mit größtem Gewicht in einem gegebenem Gra-
phen zu finden ist ein grundlegendes NP-schweres Problem in der kombinatorischen
Optimierung, welchem zusäzlich aufgrund seiner zahlreichen Anwendungen großes In-
teresse entgegenkommt. Dieses Schwerste Stabile Mengen-Problem besteht dar-
in, für einen gegebenen, ungerichteten Graphen mit Knotengewichten eine Teilmenge
der Knoten zu finden, sodass diese das höchstmögliche Gewicht hat. Dabei dürfern
keine zwei Knoten in der Menge benachbart sein. Neben dem Schwerste Stabile
Mengen-Problem, das im Hauptfokus dieser Arbeit steht, befasst sich diese Disserta-
tion auch mit anderen Unabhängigkeitsproblemen, darunter das Größte 2-Packing
Menge-Problem, dessen gewichtete Veralgemeinerung das Schwerste 2-Packing
Menge-Problem sowie das Schwerste b-Matching-Problem in Hypergraphen. Ein
wichtiger Aspekt für die Lösung dieser Probleme sind Datenreduktionsregeln. Die-
se Dissertation stellt neue Datenreduktionsregeln für Unabhängigkeitsprobleme vor.
Zusätzlich werden verschiedene Methoden eingeführt und detailiert diskutiert, welche
diese Reduktionsregeln zur Berechnung qualitativ hochwertiger Lösungen verwenden.

Für das Schwerste Stabile Menge-Problem tragen wir neben neuen exakten
Datenreduktionsregeln einen Screening-Ansatz bei, der mittels maschinellem Lernen
die Reduktionsphase beschleunigen kann. Darüber hinaus präsentieren wir zwei Heu-
ristiken, die nahezu optimale Lösungen auf statischen Graphen finden. Um das Pro-
blem für dynamische Graphen zu lösen stellen wir eine neue Technik vor, mit der qua-
litativ hochwertige Lösungen berechnet werden können. Diese Technik ist ebenfalls für
das dynamische Größte Stabile Menge-Problem geeignet, sowie auf statischen
Graphen als Lokale Suche anwendbar. Wir führen auch mehrere neue Datenredukti-
onsregeln für das Größte 2-Packing Menge-Problem und seine gewichtete Ver-
allgemeinerung ein. Die Kombination dieser neuen Datenreduktionsregeln mit einer
Reduktion auf das Größte/Schwerste Stabile Menge-Problem ermöglicht es
uns, bestehende Ansätze für stabile Mengen zu nutzen. Das führt zu mehreren Me-
thoden, die qualitativ hochwertige 2-Packing Mengen berechnen können. In Bezug auf
das Schwerste b-Matching-Problem in Hypergraphen präsentieren wir eine Reihe
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vi Zusammenfassung

neuer Datenreduktionsregeln und neue Greedy Strategien, sowie eine Lokale Suche
zur Berechnung qualitativ hochwertiger Lösungen.

Alle vorgestellten Methoden werden ausführlich diskutiert und anhand einer Viel-
zahl realer Benchmark-Instanzen experimentell evaluiert. Diese experimentellen Er-
gebnisse zeigen, dass die Verwendung unserer Datenreduktionsregeln die Eingabe-
größe, von vielen Instanzen erheblich reduzieren kann, was bei allen hier eingeführten
Algorithmen aber auch anderen getestete Methoden eine schneller Laufzeit und ver-
besserte Lösungsqualität ermöglicht. Darüber hinaus demonstrieren wir, dass unsere
Ansätze die aktuell besten Methoden in verschiedenen Metriken übertreffen. Insgesamt
zeigt diese Dissertation die Wichtigkeit und den starken Einfluss von Datenredukti-
onsregeln auf das Lösen von verschiedenen Unabhängigkeitsproblemen.
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Chapter 1

Introduction

In computer science, we often create abstract models of the world around us to under-
stand our environment better and solve different problems efficiently. Graphs provide
an elegant and versatile way to represent our environment, capturing relationships and
interactions in a simple yet powerful structure. A graph consists of a set of vertices
and edges. The vertices usually model entities, while the edges connect vertices and
model the relationships between them. Scenarios that can be modeled with graphs
appear everywhere in our day-to-day lives. In social networks, for example, vertices
represent people, and their relationships are modeled as edges connecting them. We
can also find these graph structures in transportation systems, where vertices describe
cities connected via transportation infrastructure. These graphs can, however, also
be found in very specialized areas, such as biological systems, where molecular in-
teractions are analyzed. Once we can model different scenarios, we can start asking
questions about them. For example, a company might be interested in finding highly
influential people in a social network for their marketing strategy, or a country’s power
grid can be made more robust by finding weak spots in the grid. A navigation system
finds a fast way between two places, A and B, by computations on a road network.
To solve these problems on a computer, we can use graph models.

However, not all of these problems can be solved efficiently. In computer science,
the difficulty of problems is categorized by complexity classes. The complexity class P
contains all problems that can be solved in polynomial time. An example of a problem
in this complexity class is finding the shortest path from A to B. The class NP, on
the other hand, contains problems for which a solution can be verified in polynomial
time. The other two examples of finding highly influential people in a social network
and weak spots in a power grid belong to this complexity class.

It is still an open question whether P is equal to NP. However, it is widely believed
that P is not equal to NP, meaning some problems will remain hard to solve.
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Figure 1.1: Sudoku example of applying different reduction rules.

In the following, we give an intuitive introduction to the concept of data reduction
rules using the sudoku game, which is also a problem in NP [223]. Even though it is
simple to check that a given sudoku solution is correct, solving large sudoku puzzles
can be difficult. In a sudoku puzzle, we have given an n2 × n2 grid, which is again
divided into n×n boxes, illustrated with thick border lines. The goal of the game is to
place the digits 1 to n2 once in every row, column, and box. Typically, some of these
numbers are given in the beginning to guarantee a unique solution. Figure 1.1 gives
an example grid for n = 3. This is the most commonly known version, often found in
newspapers.

To solve these puzzles, most people quickly devise efficient strategies to eliminate
numerous options instead of trying all possible solutions. These strategies are the same
as what we call data reduction rules. These data reduction rules typically reduce the
problem instance efficiently. One very simple rule is the so-called cross-hatching. To
apply the cross-hatching reduction, we look at the 3 × 3 boxes of the sudoku grid.
In Figure 1.1, we highlight all possible cells where we can place the digit 1 without
directly violating a sudoku rule. We see only one free cell in the top left box for the
digit 1. Since all other free cells in that box already have a 1 in their row or column,
we have to place the 1 in the cell marked with a circle. A more complicated reduction
rule can be applied to the 7th row in combination with the bottom right box. Since
the digit 1 has to go into this box, it can no longer go into any of the other blank cells
in the 7th row of the sudoku grid outside of this box. Therefore, the digit 1 can not
be placed in the cell marked with a cross.

In general, reduction rules are often used to help solve problems in NP. These rules
are used to simplify the instance while preserving the optimal solution. This means
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we can solve the reduced instance optimally after applying the reduction rules and
then, with this solution, efficiently build an optimal solution to the original instance.

Data reduction rules are an important tool for parameterized complexity theory.
Another complexity class of fixed-parameter tractable problems (FPT) is a research
focus in this area. This complexity class contains problems that are generally difficult
to solve. However, they can be solved efficiently when a problem parameter is small.
There has been much theoretical work on fixed-parameter tractable algorithms and
data reductions for many combinatorial optimization problems. However, there is
still a big gap between the theoretical results and the practical applicability of these
algorithms. In this dissertation, we aim to bridge this gap by focusing on the practical
applicability of data reduction rules for different combinatorial optimization problems.

This dissertation focuses on data reduction rules specifically for independence prob-
lems. With this term, we group problems that ask for a subset of vertices or edges
in an instance that fulfills a certain independence constraint. The most well-known
independence constraint is that of the independent set, where no two vertices are ad-
jacent. The 2-packing set constraint is a stronger variant, where two vertices have to
have at least a distance of three in the graph. In matchings, we have independence
constraints for edges, where no two edges share a vertex. The more general b-matching
problem has a more relaxed independence constraint on the edges.

One graph problem where there has recently been much research in data reduc-
tion rules is the Maximum Independent Set and its generalization, the Maximum
Weight Independent Set problem. Both are well-studied and fall into the cat-
egory of independence problems. There, the task is to find the largest/highest-weight
independent set in a graph. These problems and other closely related problems have
several practical applications ranging from matching molecular structures to wireless
networks [35]. Furthermore, Dong et al. [60] introduced a new collection of instances
based on real-life long-haul vehicle routing problems at Amazon. For this application,
we have routs, where each route has a weight, a load, and a driver. We want to find a
subset of vehicle routes of maximum weight such that no two routes share a driver or
a load. To model this problem as a Maximum Weight Independent Set prob-
lem, we build a conflict graph where vertices correspond to routes, and vertex weights
model the route weights. Furthermore, if two routes have a conflict, i. e., they share
a driver or a load, then the corresponding two vertices are connected by an edge.



4 Main Contributions

1.1 Main Contributions

In this dissertation, we focus on the Maximum Weight Independent Set problem
and other independence problems such as the Maximum Cardinality 2-Packing
Set, Maximum Weight 2-Packing Set and the Hypergraph b-Matching
problem. For all of these problems, we present new exact data reduction rules and
algorithms using these rules to solve the different problems.

The main contribution of this work, are the presented data reduction rules for
independence problems along with efficient approaches using these rules to compute
high-quality solutions. This includes new data reduction rules for the following three
different problems: the Maximum Weight Independent Set (MWIS), the Max-
imum (Weight) 2-Packing (M2PS/MW2PS), and the Hypergraph-b-Matching
(HBM) problem. Additionally, we engineer novel algorithms using these reductions,
including exact and heuristic approaches. We evaluate our methods on various real-
world instances and show that our approaches outperform state-of-the-art solvers.
The remainder of this section gives a more details of our contributions.

1.1.1 Maximum Weight Independent Set

Our contribution for the Maximum Weight Independent Set problem consists
of multiple elements. We list them in here, along with a brief overview.

Reduction Rules. We provide a comprehensive overview of existing data reduction
rules for the Maximum Weight Independent Set problem. Additionally, we
propose new data reduction rules and discuss the different data reduction rules used
in various practical solvers. Moreover, we present the results of extensive experiments
regarding the ordering of the reductions and devise a robust reduction ordering that
performs well in practice.

The LearnAndReduce Approach. With the LearnAndReduce approach, we
developed an advanced, exact preprocessing tool that employs Graph Neural Networks
(GNNs) to decide where to apply data reduction rules. With our GNN filtering, we
can now apply reduction rules that were previously unused in other practical works
due to the computational cost required to determine their applicability [105]. With
LearnAndReduce, we also present a new dataset with labeled vertices for the
problem of early reduction rule screening. The dataset contains two collections of
graphs, one with unreduced instances and one after running a set of fast reductions.
The second is the one we use for the early reduction rule screening. It consists of
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more than one million labeled vertices. Using LearnAndReduce, we can reduce
the instances to within one percent of what is possible using the full set of reduction
rules while being four times as fast. These results are adjusted for fast reduction rules
that would always be applied.

A Memetic Algorithm. We develop a state-of-the-art memetic algorithm based
on recombination operations employing graph partitioning techniques. Our algorithm
computes large-weight independent sets by incorporating several recently developed
advanced reduction rules. In particular, our algorithm uses a wide range of frequently
used data reduction techniques [91, 107, 149].

The algorithm may be viewed as performing two functions simultaneously. First,
it uses reduction rules for the Maximum Weight Independent Set problem to
boost the performance of the memetic algorithm. Second, the memetic algorithm
opens up the reduction space to further reduce by including vertices that are likely to
be in large-weight independent sets. On a high level, this algorithm is a reduce-and-
peel approach with a high-quality peeling strategy. This technique finds near-optimal
weight independent sets much faster than existing local search algorithms. It is com-
petitive with state-of-the-art exact algorithms for smaller graphs and allows us to
compute large-weight independent sets on huge, sparse instances. Overall, our al-
gorithm configurations compute the best results among all state-of-the-art algorithms
for every instance and thus can be seen as the best tool when large weight independent
sets need to be computed in practice.

A Concurrent Iterated Local Search Algorithm. We propose a new concur-
rent iterated local search heuristic CHILS to compute large-weight independent sets
very fast. In particular, our heuristic works by alternating between the full graph
and the Difference-Core (D-Core), a subgraph constructed using multiple heur-
istic solutions. With this heuristic and LearnAndReduce, we outperform existing
heuristics across a wide variety of real-world instances. Our main results can be
summarized as follows.

For a large set of real-world test instances accumulated over several years by earlier
works, CHILS combined with LearnAndReduce finds the best solution across all
test instances. On the new vehicle routing instances [60], we compare CHILS with
two recent heuristics, METAMIS [59] and a Bregman-Sinkhorn algorithm [113], both
designed specifically for these instances. In contrast to the other two heuristics,
CHILS is not optimized for vehicle routing instances and does not use the addi-
tional clique information provided. Nevertheless, it finds the best solution on 31/37
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instances while being significantly closer to the best solutions in the cases where
CHILS does not find the best solution. Running CHILS in parallel significantly im-
proves performance to the point where CHILS computes the best solution on 35/37
instances. These results are with a one-hour time limit and a 16-core CPU. Using
another 128-core machine for scalability experiments, we show that CHILS reaches
speedups up to 104 for the same instances.

Dynamic Algorithms. The basic idea of our dynamic maximum (weight) inde-
pendent set algorithms is as follows. Let I be the independent set on the current
state of the graph before an update. Then, after this update, we compute a subset
H ⊂ V in our graph G, capturing the neighborhood around the update. These ver-
tices in H are selected such that we can swap all independent set vertices in a solution
on the subgraph G[H] and replace the previous independent set vertices in H ∩ I.
With this, we design the technique optimal neighborhood exploration that builds inde-
pendent induced subgraphs by exploring the neighborhood of a vertex locally up to a
certain distance. On these subgraphs, we solve the Maximum (Weight) Independ-
ent Set problem with the recent state-of-the-art exact branch-and-reduce algorithm
KaMIS BnR [149]. With this technique, we develop dynamic algorithms that can
handle insertions and deletions. To make the method feasible in practice, we propose
various optimizations, such as limiting the size of the subgraphs, removing high-degree
vertices from the subgraphs, or rarely performing expensive updates. In contrast to all
theory of dynamic algorithms, our update operation has exponential worst-case time
if we are interested in optimal solutions for the subgraphs. Still, our experiments show
that the algorithms perform very well in practice. This opens a much wider discussion
for dynamic algorithms with non-polynomial update time. Lastly, we provide simple
greedy, fully-dynamic algorithms that provide good solutions quickly in practice.

1.1.2 Maximum (Weight) 2-Packing Set

We present new data reduction rules for the Maximum 2-Packing Set and Max-
imum Weight 2-Packing Set problem. All methods presented for these problems
use the corresponding reductions to compute high-quality solutions for large-scale ar-
bitrary graphs. This means, our algorithm is not restricted to inputs with a specific
graph property, in contrast to most other related work [94, 78, 206]. We introduce a
novel preprocessing technique combining graph reduction with a transformation. This
transformation allows us to use algorithms for the Maximum (Weight) Independ-
ent Set problem to solve the Maximum (Weight) 2-Packing Set problem.
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For the unweighted case, we contribute a new exact algorithm red2pack b&r as
well as a heuristic red2pack heuristic. These two approaches differ in how they
compute solutions to the Maximum Independent Set problem on the transformed
graph. Our experiments indicate that our methods outperform the current state-of-
the-art approach for arbitrary graphs regarding solution quality and running time.
For instance, we can compute optimal solutions for 63 % of our graphs in under a
second, whereas the competing method for arbitrary graphs finds optimal solutions
only for 5 % of the graphs, even with a ten-hour time limit. Lastly, our method solves
many large instances that remained unsolved before.

For the weighted generalization of the problem, we also present new weighted
reduction rules. Combined with the same graph transformation, we evaluate these re-
duction rules using several state-of-the-art independent set solvers. Utilizing our data
reductions speeds up the computation of high-quality solutions by multiple orders of
magnitude. Moreover, we present a new heuristic that can keep up with the inde-
pendent set approaches regarding different metrics. In some of the largest instances
in our dataset, this heuristic even finds the best solution quality, outperforming all
independent set solvers combined with our preprocessing routine.

1.1.3 Hypergraph-b-Matching

Our contribution for the Hypergraph b-Matching problem consists of several new
exact data reductions and different algorithms to solve the problem on general hyper-
graphs using these reduction rules.

We present a greedy strategy, a local search heuristic, as well as an ILP formu-
lation for the problem. While our main focus is on the most general Weighted
Hypergraph b-Matching problem, we also compare our greedy initial solutions
on graphs with solvers that are not designed for hypergraphs. Our experiments show
that our greedy approaches obtain 10 % better initial solutions than alternative meth-
ods. Using the data reduction rules, we achieve a speedup of 6.85 for the Weighted
Hypergraph b-Matching problem. Moreover, we find quality improvements of up
to 30 % by our local search algorithm for the 1-Matching problem.

1.2 Outline

In this dissertation, we focus on the Maximum Weight Independent Set problem
and other independence problems such as the Maximum Cardinality 2-Packing
Set, Maximum Weight 2-Packing Set and the Hypergraph b-Matching
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problem. For all of these problems, we present new exact data reduction rules and
algorithms using these rules to solve the different problems.

The remainder of this dissertation is structured in the following way. After in-
troducing the definitions and notation in Chapter 2, we present the related work for
the Maximum Weight Independent Set (MWIS), the Maximum (Weight) 2-
Packing Set (M2PS/MW2PS), and the Hypergraph-b-Matching (HBM) prob-
lem in Chapter 3. After that, there are three main chapters that each focus on one of
the three problems.

The first, Chapter 4, focuses on the MWIS problem. In Section 4.1, we introduce
new data reduction rules and give an overview of existing data reduction rules. Then,
in Section 4.2, we present a new preprocessing technique that uses Graph Neural
Networks to find applicable reductions and thereby speed up the reduction process.
In Section 4.3, we introduce an advanced memetic algorithm, and in Section 4.4, a
new concurrent iterated local search approach to solve the MWIS problem. Finally,
in Section 4.5, we introduce new approaches for the dynamic setting.

The next chapter, Chapter 5, deals with the M2PS and MW2PS problem. We start
this chapter with the introduction of our general link-graph data structure and the
reduction framework in Section 5.1 and then the reduction to the M(W)IS problem
via a graph transformation in Section 5.2. In Section 5.3, we introduce new data
reduction rules and algorithms for the cardinality problem, while Section 5.4 presents
reduction rules and algorithms for the weighted case.

The third part, Chapter 6, focuses on the Hypergraph b-Matching problem.
For this problem, we introduce new data reduction rules and present an exact al-
gorithm and heuristics that use these reductions.

Lastly, Chapter 7 concludes this dissertation by providing a short summary and
discussion of future research directions.



Chapter 2

Preliminaries

In this chapter, the fundamentals required for this dissertation are presented. This
includes the notation and definitions for different graphs and the problems discussed in
the following chapters. Additionally, we give a brief overview of important algorithmic
techniques that are used in various algorithms throughout this dissertation. Lastly,
we discuss the concept of algorithm engineering, our experimental methodology, and
present reoccurring elements used in our experimental evaluations, such as plot types
and the specific hardware used.

References. This chapter introduces unified notation, definitions, and experimental
methodology used by the publications that form the basis of this dissertation. Large
parts are copied verbatim from these papers or the corresponding technical reports
[30, 31, 32, 33, 100, 101, 102, 103, 104, 105].

2.1 Definitions and Notation

This section presents an overview of the different notation and concepts used in this
dissertation. First, preliminary definitions for different graphs are introduced in Sec-
tion 2.1.1. Afterward, the combinatorial optimization problems considered in this
dissertation are defined in Section 2.1.2.

2.1.1 Graph Definitions

In this thesis, a graph G = (V, E) is an simple, undirected graph with n = |V | and
m = |E|, where V = {0, . . . , n− 1} and E ⊆

(
V
2

)
. For the set of vertices of a given

graph, we define the notation V (G) = V , and similarly, for edges, we define E(G) = E.
The neighborhood N(v) of a vertex v ∈ V is defined as N(v) = {u ∈ V | {u, v} ∈
E}. The closed neighborhood of v is defined by N [v] = N(v) ∪ {v}. Analog the

9
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neighborhood N(U) of a set of vertices U ⊆ V is defined by N(U) = ∪v∈UN(v) \ U

and N [U ] = N(U) ∪ U . The degree of a vertex deg(v) is defined as the number of its
neighbors deg(v) = |N(v)|. We define the maximum degree as ∆ = maxv∈V deg(v).
The complement graph is given by G = (V, E), where E = {{u, v} | {u, v} /∈ E} is the
set of edges not present in G. A graph G is connected if a path exists between any
two vertices. A node-weighted undirected graph G = (V, E, ω) is defined as a set of
n vertices V and a set of m edges E with vertex weights ω : V → R>0. For a set
of vertices U ⊆ V , we define the weight of U as ω(U) = ∑

v∈U ω(v). Given a subset
V ′ ⊆ V , the induced subgraph G[V ′] is defined as G[V ′] := (V ′, {e ∈ E | e ∩ V ′ = e}).
For a set of edges R ⊆ E of a graph G = (V, E, ω) we use the notation G−R instead
of (V, E \ R, ω) and G + R instead of (V, E ∪ R, ω). We use a similar notation for
vertices where for a vertex v ∈ V , G − v denotes the graph G[V \ {v}] and for a set
of vertices V ′ ⊆ V we use G− V ′ as a short notation for G[V \ V ′].

Difference Core. We introduce the concept of a Difference-Core (D-Core),
which is a subgraph of G defined using a set of solutions S = {S1, S2, . . . , Sk} for a
combinatorial problem on a graph G. The D-Core is an induced subgraph G[D] with
the property that for every vertex v ∈ D, there exist two solutions Si, Sj ∈ S such
that v ∈ Si and v /∈ Sj. Our new Concurrent Difference Core Heuristic
which is introduced in Section 4.4 is based on this concept.

Dynamic Graph. A graph-sequence G = (G0, . . . , Gt) for t ∈ N0 is an edit-sequence
of graphs if for all 0 < i ≤ t there exists exactly one update to the graph Gi−1 resulting
in the graph Gi. This update can be inserting a new edge e /∈ E(Gi−1) such that
Gi = Gi−1 + e, or deleting an existing edge e ∈ E(Gi−1) such that Gi = Gi−1 − e.
Furthermore, a new vertex v /∈ V (Gi−1) can be inserted yielding Gi = Gi−1 + v, or
an existing vertex v ∈ V (Gi−1) can be deleted, i. e., Gi = Gi−1 − v, Additionally, an
update can also change the weight of an existing vertex.

Link-Graph and Square Graph. A path p in G is defined as a sequence of ad-
jacent edges. The length of the path is equal to its number of edges. We extend
the graph definition to a link-graph G = (G,L), which is a tuple of a graph G and a
set of links L ⊆

(
V
2

)
\ E. Two vertices connected by a link are called linked ver-

tices. In the link-graph G, a path can also contain links. For each link in the
path, we add two to its length. Therefore, the shortest path between two linked
vertices in G is of length two. We define the induced link-subgraph of a set of ver-
tices V ′ ⊆ V as G[V ′] = (G[V ′],L[V ′]) with L[V ′] = {{u, v} ∈ L | u, v ∈ V ′}.
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We use the short notation G − v for G[V \ {v}] and G − V ′ for G[V \ V ′]. Sim-
ilarly, to the neighborhood, we define the link-neighborhood of a vertex v ∈ V as
L(v) = {u ∈ V | {u, v} ∈ L ∨ u ∈ N(N [v])}. In the link-graph, the closed 2-
neighborhood is defined as N2[v] = N [v] ∪̇ L(v) and the open 2-neighborhood by
N2(v) = N2[v] \ {v}. By this definition, for all vertices u ∈ L(v), the shortest path
from u to v is of length two. The link-degree of a vertex is defined by the size of
its link-neighborhood degL(v) = |L(v)|. The square graph G2 = (V, E2) of a graph
G = (V, E) is defined as a graph with the same vertex set, but an extended edge
set E2 = E ∪ Ẽ. For every pair of non-adjacent vertices u, v ∈ V that share a com-
mon neighbor in G, we have {u, v} ∈ Ẽ. The square graph of a weighted graph
G = (V, E, ω) is equivalently defined as G2 = (V, E2, ω).

We define a distance-2-clique as a set of vertices in G whose vertices are pairwise
connected by a path of length at most two. A vertex v is distance-2-simplicial if the
vertices of N2(v) form a distance-2-clique.

Hypergraph. A weighted undirected hypergraph H = (V, E, ω) is defined as a set of
n vertices V and a multi-set of m hyperedges E with edge weights ω : E → R>0. In
contrast to the previous definitions, we have edge weights instead of vertex weights.
Each edge e ∈ E is a subset of the vertex set V . For a subset S ⊂ E, we define
ω̂(S) := {ω(x) | x ∈ S} as the set of all weights of edges in S. We assume hyperedges
to be sets rather than multi-sets; a vertex can only be contained in a hyperedge once,
while multiple edges can contain the same set of vertices. Therefore, we write e for
the set of vertices of a hyperedge e and define |e| as the edge size. The maximum
edge size is denoted by ∆E := maxe∈E|e|. We refer to the edges of a vertex by
E(v) := {e ∈ E | v ∈ e} and for a (multi-)set M of edges we define M(v) := E(v)∩M .
A vertex v is incident to an edge e if v ∈ e. The degree of a vertex v is |E(v)| and
∆V := maxv∈V |E(v)| is the maximum degree. Two vertices u, v are adjacent if there is
an edge incident to u and v. Furthermore, two edges e, f ∈ E are adjacent if e∩f ̸= ∅.
Two edges e, f are linked if there are only vertices of degree two incident to e and f .
A set of edges S in H is independent if for all distinct edges f, g ∈ S the vertex sets
f and g are disjoint. We define N (e) := ⋃

v∈e E(v) as the closed neighborhood of an
edge. A hypergraph is d-partite, if the vertices of the hypergraph can be partitioned
into d sets such that no edge is adjacent to two vertices in the same set. In a d-uniform
hypergraph each edge contains exaclty d vertices. Throughout this dissertation, we
use edges in the context of hypergraphs and graphs.
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2.1.2 Problem Definitions

In the following, we introduce the combinatorial optimization problems considered
in this dissertation. We start with the Maximum (Weight) Independent Set,
followed by the Maximum (Weight) 2-Packing Set problem, and then we define
the Hypergraph b-Matching problem.

Independent Set. For a given undirected graph G = (V, E), a set I ⊆ V is called
independent set (IS) if all vertices u, v ∈ I are non-adjacent, i. e., {u, v} /∈ E. For
a given IS I, a vertex v /∈ I is called free if I ∪ {v} is still an independent set. An
IS is called maximal if no free vertices exist. The Maximum Independent Set
(MIS) problem is finding an IS with maximum cardinality. The Maximum Weight
Independent Set (MWIS) problem is finding an IS with maximum weight. The
weight of an independent set I is defined as ω(I) = ∑

v∈I ω(v). The independence
number αω(G) denotes the weight of an MWIS of G. Let I be an independent set, then
we define the tightness of a vertex v ∈ V \I as the number of independent set vertices
in its neighborhood, i. e., τ(v) = |N(v) ∩ I|. Free vertices v have tightness τ(v) = 0.

The complement of an independent set is a vertex cover, i. e., a subset C ⊆ V ,
such that every edge e ∈ E is covered by at least one vertex v ∈ C. An edge is
covered if it is incident to one vertex in the set C. The Minimum Vertex Cover
problem, defined as looking for a vertex cover with minimum cardinality, is thereby
complementary to the maximum independent set problem. That means if I is an
independent set in G, the set of vertices V \ I is a vertex cover. Another closely
related concept is cliques. A clique is a set Q ⊆ V such that all vertices are pairwise
adjacent. A clique in the complement graph G corresponds to an independent set in
the original graph G. However, for sparse graphs G, solving the Maximum Weight
Clique problem on the complement graph G is impractical as it is very dense and
therefore unlikely to fit in memory for all but the smallest instances.

2-Packing Set. For a given undirected graph G = (V, E) a 2-packing set is defined
as a subset S ⊆ V of all vertices such that for each pair of distinct vertices u ̸= v ∈ S
the shortest path between u and v has at least length three. In other words, this
means the vertices u and v are not adjacent and have no common neighbor in G. The
Maximum 2-Packing Set (M2PS) problem is finding a 2-packing set with maximum
cardinality. For a weighted graph, the problem is generalized to its weighted version,
the Maximum Weight 2-Packing Set (MW2PS) problem. The objective here is
to find a 2-packing set S of maximum weight, i. e., such that ω(S) = ∑

v∈S ω(v) is
maximum. A further generalization is the Maximum k-Packing Set problem, where
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the shortest path length is bounded by k+1 edges. For k = 1, this is equivalent to the
Maximum Independent Set problem. The Maximum (Weight) 2-Packing Set
problem is also referred to as the Maximum (Weight) Distance-d Independent
Set problem with d = k + 1.

Analogously to the independence number α(G) for the Maximum Independent
Set problem, we define α2(G) as the size of the solution to the Maximum 2-Packing
Set problem for a link-graph G. For a graph G, we define α2(G) = α2((G, ∅)). For
the weighted generalization, we define α2

w(G) as the weight of the maximum weight
2-packing set in the link-graph G and α2

w(G) = α2
w((G, ∅)).

Hypergraph b-Matching. A matching M ⊆ E in a graph or hypergraph is a set
of edges or hyperedges that are pairwise disjoint. In the following, both edges and
hyperedges are referred to as edges. The cardinality of a matching is defined by the
cardinality of the set M. A matching M is maximal if no edge can be added to
M. A maximum cardinality matching is a matching that contains the largest possible
number of edges of all matchings. A maximum weight matching M is a matching that
maximizes the weight ω(M) among all feasible matchings. A matching is called perfect
if every vertex is incident to an edge contained in the matching. The generalization of
matching to b-matching is done by introducing a capacity for each vertex. For a given
capacity function b : V → N, the b-Matching problem relaxes the edge-disjointness
constraint so that each vertex can be incident to b(v) edges. We define b(v) as the
capacity of vertex v and the maximum vertex capacity as β = maxv∈V b(v). For b ≡ 1,
the b-Matching problem is equivalent to the standard Matching problem. The set
of all vertices of an edge e ∈ E where the capacity is exhausted is defined by the set
blocked(e,M) := {v ∈ e | |M(v)| = b(v)}. Edges containing these vertices cannot be
added to the matching. Similarly, we define blockedEdges(e) := ⋃

v∈e:b(v)=1 E(v) \ {e}
as the set of edges blocked by an edge e. An edge e is called free, if blocked(e,M) = ∅.
Finally, for a finite set X ⊂ R>0 we define nmax(X, k) as the k-th largest value in X

if it exists, otherwise it is set to 0.

Algorithms and Optimality. In this dissertation, the term algorithm is not re-
stricted to solving a problem optimally but also covers heuristic approaches. With
the term solving a problem, we refer to finding a high-quality feasible solution. If we
refer to methods that solve a problem to optimality, we explicitly mention that the
algorithm is exact and the problem is solved optimally.
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2.2 Key Algorithmic Concepts

This section gives a high-level overview of the main algorithmic techniques used by the
different solvers introduced in this work and used in experimental comparisons. The
terms kernelization and reduction are defined in Section 2.2.1. The reduction tech-
nique is used in many algorithms as a preprocessing step but can also be integrated into
the main algorithm. Afterward, the concept of reducing and peeling is introduced in
Section 2.2.2, iterated local search is described in Section 2.2.3. Section 2.2.4 presents
the core concepts of evolutionary algorithms. Then, Section 2.2.5 discusses the branch-
and-reduce paradigm, and Section 2.2.6 introduces integer linear programming.

2.2.1 Reducing with Data Reduction Rules

In this section, we first introduce the notion of reducing, a key concept used in the
remainder of this dissertation. For the reduction process, multiple data reduction
rules are applied exhaustively. A data reduction rule for a problem is a procedure R
that transforms a given instance into an equivalent, generally smaller instance. This
transformation typically involves removing or contracting local graph or hypergraph
structures in polynomial running time. After applying the reduction rules, the result-
ing instance is called the reduced instance, denoted by K. The original and reduced
instances are equivalent in that the optimality of the solution is maintained during
the reduction process. That means an optimal solution for the reduced instance can
be used to easily construct an optimal solution for the original instance. Otherwise,
there are no guarantees on the reduced instance. When an instance can not be reduced
further with a given set of reduction rules, it is called irreducible for these rules.

With reduction rules, vertices can be identified as three different types. First, a
vertex can be identified as part of a solution, also referred to as including the vertex.
Second, vertices can be categorized as non-solution vertices, also called excluding the
vertices. Third, vertices can be identified as deferred. In that case, the reduction
rules combine multiple vertices into potentially new vertices. This combine procedure
is called folding. Including or excluding the folded vertices from the final solution only
depends on whether the vertices they are folded into are included or excluded in the
solution on the reduced instance. To be more precise, folding a set of vertices X ⊆ V

into a new vertex v′ generally results in a new graph G′ = G[(V \X) ∪ {v′}], where
the new vertex v′ is connected to all vertices in the neighborhood of X. If the set X

is folded into a vertex v already existing in G, then the neighborhood is extended by
the neighbors of X, i. e., N(v) = N(v) ∪N(X).
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Algorithm 1: ExactReduce(G, R): High level overview.
Data: Graph G = (V, E, ω), reduction list R

Result: Reduced instance K and offset α

i← 0
Q← {{0, 1, ..., |V | − 1} · |R|} // Initialize FIFO queues for each rule
while i < |R| do

while not Q[i] empty do
v = pop(Q[i])
if v ∈ V (G) then
K, α′ ← R[i](G, v, α) // Try reduction for vertex v

if K ̸= G then
G, α← K, α′

i← 0 // Continue with first reduction
for each changed vertex u and all q ∈ Q do

if u /∈ q then
push(q, u)

i← i + 1 // Continue with next reduction

return K, α

In the ExactReduce routine, given in Algorithm 1, the rules are applied in a
predefined order. We employ an exhaustive search to identify applicable reductions,
with added pruning for the different rules. This pruning typically limits the vertex
degree for which the reductions are tested. If a reduction is successfully applied, testing
possible reductions starts from the beginning, following the predefined order. All
reductions already tested are now only checked in the areas of the graph that changed.
Finally, we obtained the reduced graph K if no more reductions can be applied.

Reduction rules are effective in practice for computing a maximum independent
set [44, 148, 196], minimum vertex cover [4], maximum clique [43, 208], and maximum
k-plex [48, 129], as well as solving graph coloring [159, 208] and clique cover [98, 197].
Reduction rules are also used to solve the weighted generalizations of many of these
problems [91, 149, 153]. For more details on reduction rules for other problems, we
refer the reader to the survey on data reductions by Abu-Khzam et al. [2].

Data reduction rules were originally developed as a theoretical tool for paramet-
erized algorithms [50, 81]. However, as also done in this thesis, some theoretical re-
strictions are relaxed in work focusing on practical algorithms. These differences are
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discussed in the following section but are optional for understanding the remainder
of this dissertation.

Excursion: Difference Between Reducing and Kernelization

The term kernelization of an instance, defined in the following, is more restrictive than
the reduction process introduced above. Loosely speaking, kernelization additionally
provides guarantees on the size of the reduced instance, which is then called a kernel.
In many practical works, the term kernelization is used more broadly, including the
reduction process described above. The following part of this section is devoted to
showing the differences between the concepts of kernelization and reducing.

We formally introduce kernelization and fixed-parameter tractable problems closely
following Fomin et al. [81]. We use the Vertex Cover problem for examples in this
section. The Minimum Vertex Cover problem, where we want to find the smallest
vertex cover for a graph, as introduced in Section 2.1.2 is the optimization version of
this problem. To decide for a given graph G and integer k, whether there is a vertex
cover of size at most k in G is an instance of the decision version of the Vertex
Cover problem. The integer k is called the parameter. The solution size as para-
meter k is also called the natural parameter. In the remainder of this section, we will
only consider the decision version of problems.

Formally, a parameterized problem is a language L ⊆ Σ∗×N, where Σ∗ is the set of
all finite strings over a fixed and finite alphabet Σ. Such a problem L is fixed parameter
tractable if deciding whether (x, k) ∈ L is possible in running time O(f(k) · |x|c),
where, f is a computable function only depending on k, f : N → N and c is a
constant. This definition means the running time can potentially be exponential in
k but is polynomial in the instance size |x|. We also denote this running time as
O∗(f(k)). Problems with this property form the complexity class FPT.

For a parameterized problem L a kernelization algorithm is an algorithm that for
any given (x, k) ∈ Σ∗×N outputs an instance (x′, k′) ∈ Σ∗×N in time polynomial in
|(x, k)| with the property

((x, k) ∈ L⇔ (x′, k′) ∈ L) and |x′|, k′ ≤ h(k),

where h is an arbitrary computable function. The result (x′, k′) ∈ L of a kernelization
algorithm K of an instance (x, k) of L is called the kernel (under K), the function h

is the kernel size.
For the Vertex Cover problem, there is a kernelization algorithm K such that

for every instance (G, k), this algorithm outputs a kernel with O(k) vertices [80].
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Even though the optimization versions of the Minimum Vertex Cover and Max-
imum Independent Set problem are closely related, the decision version of the
Independent Set problem is most likely not fixed-parameter tractable [61].

To provide some intuition of why these problems are different in this theoretical
context of kernelization, consider an almost complete graph G. Here, the vertex cover
solution contains many vertices since all the edges need to be covered. This means
the solution size k is close to the number of vertices in the graph. The independent
set solution, however, gets smaller the denser the graph gets since more conflicts are
created. Therefore, bounding the size of G by the size of the vertex cover is simpler
than bounding the size of G with the size of the independent set.

When solving the optimization version of these problems in practice, all reduction
rules applicable for Minimum Vertex Cover can also be used to reduce an instance
of Maximum Independent Set. However, we do not get any guarantee on the size
of the reduced instance with respect to the solution size. Nevertheless, in practice,
reducing the instance size is generally helpful even if we do not have these guarantees.
Therefore, we do not want to limit the reduction routines and problems considered
to kernelization and fixed-parameter tractable problems. Thus, we use the broader
concept of reducing, as introduced at the beginning of this section. This notion
includes but is not limited to kernelization.

2.2.2 Reducing-Peeling

Reducing-peeling is a technique used by different state-of-the-art algorithms for solving
the Maximum (Weight) Independent Set problem [44, 107]. We give a high-
level overview in Algorithm 2. These algorithms mainly consist of two parts that are
repeatedly applied. The first is reducing the graph by exact data reduction rules, as
introduced in Section 2.2.1. When the graph is irreducible, peeling is applied. This
peeling process usually involves inexact reductions to decrease the size of the graph
further and make other, exact reductions applicable again. These inexact reductions
can, for example, be (temporarily) removing the highest degree vertex. When the
graph has been fully reduced, the algorithm reconstructs the solution. Afterward, the
reconstructed solution is extended to a maximal solution by checking if temporarily
inexactly removed vertices are free and can be added.

2.2.3 Local Search

Local search is a heuristic technique for tackling optimization problems by search-
ing between neighboring feasible solutions. This involves iteratively transforming an
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Algorithm 2: Reducing-Peeling: High-level overview.
Data: graph G = (V, E, ω), reduction list R

Result: solution S

K ← G

while not K empty do
K′, αe ← ExactReduce(K, R) // Reducing
K̃, αh ← heuristicReduce(K′) // Peeling
K ← K̃
α← α + αe + αh

S ←restore(K, α, ∅)
S ←makeMaximal(G, S)
return S

initial solution locally by a simple move. For the Maximum Independent Set
problem, such a move can be a (j, k)-swap, where j vertices from the solution are
removed, and k non-solution vertices are added to the solution. These moves are
performed so that the size or weight of the independent set gradually improves. The
process terminates when a local optimum is reached. Then, no improving local move
to a neighboring solution enhances the solution quality. Generally, there is no guar-
antee of the quality of the local optimum. Different techniques are used to improve
the solution and escape these local optima. For example, simulated annealing [146] or
tabu search [93] are ways to improve the plain local search idea. Tabu search uses a
set of previous solutions to guide the search by prohibiting or penalizing moves that
would result in neighboring solutions of these previous solutions. Of particular interest
for this dissertation is the iterated local search metaheuristic [161]. Algorithms based
on iterated local search start with an initial solution, which is then optimized using
local search. A high-level overview of iterated local search is given in Algorithm 3.

The iterated local search approach generates new solutions by alternating between
a series of moves and local search. The moves can be enhanced with various diver-
sification techniques, such as randomization or tabu mechanisms. A new solution is
accepted if it meets a specific criterion, such as surpassing the current best solution.
Finally, the algorithm terminates based on a predefined stopping criterion.

2.2.4 Memetic and Evolutionary Approaches

In this dissertation, we consider a subgroup of evolutionary algorithms called memetic
algorithms. Evolutionary algorithms are optimization strategies that are inspired by
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Algorithm 3: Iterated local search: High-level overview, adapted from [198]
Data: graph G = (V, E, ω)
Result: solution S

S0 ← createInitialSolution(G)
S ← localSearch(G, S0)
while not stopping criterion holds do

Spert ← perturb(G, S)
Simp ← localSearch(G, Spert)
if accept(Simp) then

S ← Simp

return S

biological evolution. In general, these algorithms mimic the evolution of a population
full of individuals using different operations such as mutation, combination, and the
survival of the fittest idea. In this context, an individual is a potentially infeasible
solution to an optimization problem, while the population is a diverse set of these
individuals. Each individual is assigned a fitness value, reflecting the quality of the
solution. During the process, the population evolves by applying mutation and com-
bine operations. In the combine operations, large parts of two or more individuals,
called parents, are exchanged or merged to create new offspring. Usually, the parents
for the combine operation are chosen based on their fitness value. This results in
high-quality solutions having a higher probability of being selected. Since the popula-
tion size is restricted, individuals are usually evicted over time or when new offspring
are generated. The mutation operation adds random variations to individuals, for
example, by perturbation as used in the iterated local search; see Section 2.2.3. This
operation ensures that the population’s diversity is not lost.

Memetic algorithms are population-based approaches that have as a central theme
the hybridization of different algorithmic approaches [137, 168]. A high-level over-
view of a memetic algorithm using local search is given in Algorithm 4. The term
’memetic’ comes from the concept ’meme’ introduced by R. Dawkins [54]. It denotes
an analog to the biological gene in cultural evolution. For evolutionary algorithms,
it is used to convey the message that, even though these approaches are inspired
by biological evolution, they should not be limited to these ideas. These algorithms
exploit problem-knowledge by incorporating preprocessing data reduction rules or
specialized recombination operators but also local search or other pre-existing heur-
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Algorithm 4: High-level overview of a memetic algorithm using local search.
Data: graph G = (V, E, ω)
Result: solution Ibest

P0 ← createInitialPopulation(G)
P ← localSearch(P0) // Improve all individuals
while not stopping criterion holds do

I1, I2 ← selectParents(P ) // Based on fitness of individuals
O1, O2 ← combine(I1, I2)
O∗

1, O∗
2 ← localSearch(O1, O2) // Improve offspring

Õ1, Õ2 ← mutate(O∗
1, O∗

2) // Applied with some
probability

P ← update(P, Õ1, Õ2) // Insert and evict individuals
return fittest individual Ibest from population P

istics, approximation, or fixed-parameter tractable algorithms as well as truncated
exact methods [168].

2.2.5 Branch and Reduce

The technique branch-and-bound, first introduced by Land and Doig in [151], is often
used for exactly solving NP-hard optimization problems. The branch-and-reduce idea
extends this technique by adding reductions. Algorithm 5 gives a high-level overview
of a general branch-and-reduce approach.

Since it is usually impossible to test all feasible solutions for a problem, the search
space of these feasible solutions must be searched systematically. In the branching
step, the current problem is split into two or more subproblems. This is done recurs-
ively for these subproblems, creating a search tree.

A problem is split into subproblems by fixing a variable. In the independent set
case, this means we create two branches where a vertex v is once included and once
excluded from the solution. This way, there is one variable less to consider in the ex-
cluding branch and |N [v]| less in the include branch. Usually, heuristic approaches are
used to select the vertices to branch on. For the Maximum Independent Set prob-
lem, this could be choosing some random vertex with the highest degree. When a leaf
of this branching tree is reached, this corresponds to a feasible solution to the problem.

This plain branching technique results in searching the whole solution space. To
avoid this, bounds are used to prune branches early. These bounds are the upper and
lower bounds on an optimal solution. For a maximization problem, we get a lower
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Algorithm 5: branch-and-reduce: High-level overview.
Data: graph G = (V, E, ω), current solution c and best solution s (both

initially zero)
Result: optimal solution s

Procedure branch-and-reduce(G, c, s):
K, α← ExactReduce(G, R) // R reduction list
c← c + α

if K empty then
return restore(K, α, s) // Fully reduced, restore solution

if s = 0 then
s← lowerBound(K) + c // Compute feasible solution

if upperBound(K) + c ≤ s then
return s // Prune branch

(K1, c1), (K2, c2)←branch(K, c, s)
s←branch-and-reduce(K1, c1, s) // Update s

s←branch-and-reduce(K2, c2, s)
return s

bound by any feasible solution. A heuristic is often run before starting the branch-
and-bound process to get a good lower bound. The lower bound is updated during
the procedure if a better solution is found. The upper bound restricts how much
we can gain from the graph given the current partial solution. For the independent
set problem, since at most one vertex per clique can be in an independent set, an
upper bound is the size of a clique cover. Note that this bound does not have to be
tight. A branch can be pruned if the upper bound on that branch is smaller than
the lower bound.

An extension to the branch-and-bound idea is branch-and-reduce. These algorithms
apply the reduction procedure described in Section 2.2.1 in a preprocessing step and
after each branching step. These branching decisions change the graph structure of
the subproblem and thereby often enable the further application of reduction rules.

2.2.6 Integer Linear Programming

The last technique discussed in this section is integer linear programming. Different
optimization problems can be mathematically described by a linear programming
(LP) formulation. This is possible if the problem can be defined as a maximization
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or minimization of an objective function to a set of constraints. Both the objective
function and the constraints have to be linear. If the variables in the objective function
have to satisfy integer constraints, we call it an integer linear program (ILP). A
standard ILP problem can be formulated as the following:

maximize cx

subject to Ax ≤ b

x ∈ Zn

Here, x is the vector of integer variables to be decided, c ∈ Rn gives the coefficients in
the objective function, A ∈ Rm×n is the matrix of coefficients in the constraints, and
b ∈ Rm gives the right-hand side values.

A special variant of ILP is the binary linear programming problem, where x ∈
{0, 1}n. This variant, where only the constraints must be satisfied, was one of Karps
21 NP-complete problems [131].

The MWIS problem can be reduced to a binary linear programming problem by
the following formulation. For a given graph G = (V, E, ω) we define the binary
variables xv for each vertex v ∈ V as

xv =





1 if v is in the independent set,

0 otherwise.

The ILP formulation for the MWIS problem is then given by:

maximize
∑

v∈V

ω(v)xv

subject to xu + xv ≤ 1 ∀ {u, v} ∈ E

xv ∈ {0, 1} ∀ v ∈ V

The objective function maximizes the weight of the vertices chosen for the independent
set, while the constraints ensure that no two adjacent vertices are selected simultan-
eously. Many combinatorial optimization problems can be reduced to an ILP, as
shown above for the MWIS problem. That makes ILP solvers a go-to for compar-
ing and evaluating algorithms for new problems. Therefore, ILP is a very important
problem that attracts a lot of research interest, and many, even commercial solvers,
are available to solve it.

ILP Solvers. Some of the most popular ILP solvers are CPLEX [126], Gurobi [109],
and SCIP [26]. Much research has been done to improve the performance of these
solvers. In this dissertation, we use the open-source solver SCIP as a black box solver.
We choose to use SCIP since it is one of the fastest open-source ILP solvers available.
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Figure 2.1: Illustration for the algorithm engineering cycle adapted from Peter
Sanders [186]. It shows the four main parts of algorithm engineering and its con-
nection to applications and other influences.

2.3 Methodology

This section presents the methodology used in this work. It is split into the method-
ology of algorithm engineering, which describes the process and environment under
which the presented algorithms and data reduction rules were designed. This approach
is introduced in Section 2.3.1. Afterward, we introduce the experimental setup in Sec-
tion 2.3.2, including the description and discussion of performance profiles, which are
the main figures used to present the experimental results as well as the machines used
to perform experiments.

2.3.1 Algorithm Engineering

The term algorithm engineering describes a cyclic method for algorithm development.
It is defined by Peter Sanders in [186]. Following this definition, we give a brief
overview of the process. An illustration of the algorithm engineering cycle is shown
in Figure 2.1.
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The starting point for the algorithm engineering cycle is a falsifiable hypothesis.
This can come from a creative idea or inductive reasoning from observations made in
previous experiments. The algorithm engineering method consists of four main parts
repeated in a cyclic process. These include the design, analysis, implementation, and
experimental evaluation of an algorithm to support the hypothesis. Importantly, the
whole approach is highly influenced by applications directly or via realistic models
and real-world instances for evaluation to obtain practical methods. The analysis
performed on the designed algorithm can be used to deduct performance guarantees,
which are interesting for practical applications. Furthermore, the implementation part
of algorithm engineering can result in the development of algorithm libraries, which
can easily transfer the obtained results to applications. Even though highly connected,
the applications themselves are not part of the algorithm engineering definition.

In algorithm engineering, as well as in algorithm theory, the goal is to develop
efficient algorithms. In addition to good worst-case performances, as in algorithm
theory, algorithm engineering focuses on the performance on real-world instances.
The described cyclic process influenced by applications is key to achieving this goal.

Many methods presented in this dissertation are metaheuristics, such as random-
ized local search or evolutionary algorithms. Theoretically, these are usually hard to
analyze. However, due to the algorithm engineering approach used to develop and
improve these methods, they are very efficient in practice.

2.3.2 Experimental Setup

For our experimental setup, we introduce performance profiles, which are the main
plots we present to visualize the experimental results, and we give details about the
different machines used for the experiments.

Performance Profiles

To compare different algorithms, we use performance profiles [57]. These plots depict
the relationship between the objective function value achieved or computational time
spent for each algorithm and the corresponding values produced or consumed by a
set of competing algorithms. Performance profiles are mostly unaffected if results
change only in a few instances. Furthermore, these plots remain largely unchanged
by minor changes across many instances [57]. Each profile of an algorithm yields
a non-decreasing, piecewise constant function. Specifically, the y-axis represents the
fraction of instances where the objective function is better than or equal to τ times the
best objective function value. This is #{objective ≥ τ ∗ best}/#G for maximization
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Figure 2.2: Performance profile to compare algorithms for a minimization problem.

and #{objective ≤ τ ∗ best}/#G for minimization problems. Here, objective refers
to the result obtained by an algorithm on an instance, and best corresponds to the
best result among all the algorithms shown in the plot. #G is the number of graphs
in the data set. The parameter τ is plotted on the x-axis. We have 0 < τ ≤ 1 for
maximization problems, while for minimization problems, τ ≥ 1. When considering
the running time, the y-axis displays the fraction of instances where the time taken by
an algorithm is less than or equal to τ times the time taken by the fastest algorithm
on that instance, i. e., #{t ≤ τ ∗ fastest}/#instances. Here, t represents the time
an algorithm takes on an instance, and fastest refers to the time taken by the fastest
algorithm on that specific instance. Since the objective is to minimize the time, we
have τ ≥ 1. Hence, if we want to determine the number of instances in which an
algorithm is the best or the fastest compared to the other algorithms in the set, we
only need to examine τ = 1.

However, these fractions are only relative to the best solution in the current com-
parison. Therefore, these profiles can not be used to rank all algorithms [97]. In
general, algorithms are considered to perform well if a high fraction of instances are
solved within a factor of τ as close to 1 as possible, indicating that many instances are
solved close to or better than the optimum solution found by all competing algorithms.

We give an example performance profile in Figure 2.2. It compares three algorithms
on 20 instances for a maximization problem. Note that performing best in the fol-
lowing is always in comparison to the other algorithms in the performance profile and
does not mean performing strictly better. If algorithms find the same, highest result,
they both perform best in this context.

In Figure 2.2, we see that at τ = 1, the values for Algorithm A go up to 0.8,
indicating that the algorithm performs best on 80 % of the instances. The Algorithm
C achieves a value of 0.2, reflecting that it computes the best score on 20 % of the
instances. Algorithm B, on the other hand, is not able to perform best on any of the
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instances. The value of τ required to cover all instances for an algorithm is a further
interesting indicator for the performance. For Algorithm A, all instances are solved
with at most τ = 0.5. Here, we can see that there is one instance in the set where
Algorithm A finds a solution that is only half as good as the best solution found for
this instance. For Algorithm B, there are seven instances where its solutions are
even worse than half compared to the best. For 50 % of the instances, Algorithm
C is not able to compute a solution within the experimental setup at all. This is
indicated by a continued, straight line that never reaches 100 % of the instances.

Machine and Compilation Details

All algorithms are implemented in C++ (11 or 17) and compiled using g++ version
11.4 or higher with full optimization turned on (-O3 flag). In the following, we list
the machines used for experiments in this thesis and their details.

Machine 1. A machine equipped with an AMD EPYC 7702P 64-core processor and
1 TB of memory, running Ubuntu 20.04.1 with Linux kernel 5.4.0-187.

Machine 2. A machine with an Intel Xeon w5-3435X 16-core processor and 132 GB
of memory, running Ubuntu 22.04.4 with Linux kernel 5.15.0-113.

Machine 3. A machine with an AMD EPYC 9754 128-Core CPU running at 2.25GHz
with 256MB L3 Cache and 768 GB of main memory. It runs Ubuntu 22.04 and Linux
kernel 5.15.0-102.

Machine 4. These machines have been provided by a cluster and are equipped with
two 20-core Intel Xeon Gold 6230 processors running at 2.10 GHz and having a cache
of 27.5 MB. Each machine was equipped with 96 or 192 GB of main memory.



Chapter 3

Related Work

This chapter gives an overview of existing work on the different problems discussed
in this dissertation. We start by discussing the closely related problems Maximum
Weight Independent Set, Minimum Weight Vertex Cover and Maximum Weight
Clique and their connections.

In the following sections we include a detailed discussion of related work. It con-
tains related work on the Maximum Independent Set problem in Section 3.1,
and for the Maximum Weight Independent Set problem in Section 3.2. Since
this is the main focus of this dissertation, we also give a detailed overview of the
current state-of-the-art algorithms in Section 3.2.3. Then, we cover work on the re-
lated problems Minimum Weight Vertex Cover in Section 3.3 and Maximum
Weight Clique in Section 3.4. Finally, we present work on the other independ-
ence problems, the Maximum (Weight) 2-Packing Set in Section 3.6, and the
Maximum Weight Hypergraph-b-Matching problems in Section 3.7. For more
details on data reduction techniques used on other problems, we refer the reader to
the recent survey [2].

References. This chapter introduces related work to the publications that form
the basis of this dissertation. It is mainly based in the survey [105], which is joined
work with Kenneth Langedal and Christian Schulz. However, large parts are also
copied verbatim from the other papers or the corresponding technical reports which
this dissertation is based on [30, 31, 32, 33, 100, 101, 102, 103, 104, 105].

The Maximum Weight Independent Set, the Minimum Weight Vertex
Cover, and Maximum Weight Clique problems, are complementary, meaning if
we find a maximum weight independent set I in a graph G, we simultaneously find
a minimum weight vertex cover C = V \ I in G and a maximum weight clique in G.
Despite MWIS and MWC being complementary problems, using an MWC algorithm

27
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to solve the MWIS problem on a sparse graph G is impractical since the complement
G can be very dense and is therefore unlikely to fit in memory for all but the smallest
instances. This can also be observed in Figure 3.1 which illustrates the rich history
and shows how new solvers are continually compared across these problems. We see
that initially, there were some solvers for the MWIS and MWVC also comparing with
MWC approaches, however as the instance sizes increased over time, there have been
less comparisons between these solvers. The figure additionally highlights the shift
towards using data reductions for all three problems. We also include our new solvers
m2wis and CHILS for the MWIS presented in Chapter 4 in this comparison.

2000

2005

2010

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

MWC
Exact Heuristic

MWVC
Exact Heuristic

MWIS
Exact Heuristic

Cliquer [173]

MWCLQ [72]

WLMC [128]

TSM-MWC [127]

MWCRedu [70]

MN/TS [216]

BLS [23]

ReTS2 [228]

LSCC+BPS [214]

FastWClq [39]

RRWL [71]

SCCWalk4L [213]

FastWClq-V2 [40]

MWCPeel [70]

SBMS [221]

BMWVC [211]

ACO [194]

ACO+SEE [130]

PBIG [34]

MS-ITS [227]

DLSWCC [157]

FastWVC [38]

NuMWVC [156]

DynWVC2 [37]

MAE-HTS [212]

PGTO [182]

GNN-VC [153]

EG-MWVC [158]

KaMIS [149]

Solve [219]

Struction [91]

C-B&R [160]

PLS WIS [181]

HILS [172]

DtTwo [224]

HtWIS [107]

METAMIS [59]

m2wis [102]

C-Search [160]

HGLV [200]

BSA [113]

CHILS [104]

Figure 3.1: This figure illustrates the history of MWC, MWVC, and MWIS solvers.
The left axis gives a rough overview of publication years. A directed edge from a
solver indicates a comparison made to another solver in the experimental evaluation.
For example, the edge from MWCRedu to TSM-MWC indicates that MWCRedu
used TSM-MWC in the experimental evaluation. The solvers that are highlighted
in yellow are using data reductions.
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3.1 Maximum Independent Set

In this section, we cover the most relevant and recent work for the Maximum Inde-
pendent Set (MIS) problem. First, we discuss exact algorithms and then heuristics.

3.1.1 Exact Methods

For the MIS problem, a large number of branch-and-reduce algorithms have been de-
veloped in the past. The currently best exact solver [122], which won the PACE chal-
lenge 2019 [122, 199], uses a portfolio of branch-and-reduce/bound solvers. For non-
portfolio solvers, Plachetta et al. [178] improved on the branch-and-reduce approach by
using SAT solvers for additional pruning. Recently, novel targeted branching strategies
have been presented by Hespe et al. [121] and later enhanced by Langedal et al. [152]
to improve both branch-and-bound and branch-and-reduce approaches further.

Figiel et al. [76] introduced a new idea added to the state-of-the-art way of ap-
plying reductions. They propose not only to perform reductions but also the possib-
ility of undoing them during the reduction process. As they showed in their paper
for the Minimum Vertex Cover problem, which is complementary to the MIS
problem, this can lead to new possibilities to apply further reductions and finally to
smaller reduced graphs.

Finally, there are exact procedures that are either based on other extensions of
the branch-and-bound paradigm, e.g. [183], or on the reformulation into other NP-
complete problems, for which a variety of solvers already exist.

3.1.2 Heuristic Methods

A widely used heuristic approach is called local search, which tries to improve a feasible
solution by simple insertion, removal, or swap operations. Although, in theory, local
search generally offers no guarantees for the quality of the solution, in practice, it
routinely finds high-quality solutions significantly faster than exact procedures.

For unweighted graphs, the iterated local search (ARW) by Andrade et al. [7]
introduced in 2012 was a very successful heuristic. It is based on so-called (1, 2)-
swaps, which remove one vertex from the solution and add two new vertices, thus
improving the current solution by one. Their algorithm uses special data structures
that find such a (1, 2)-swap in O(m) time or prove that none exists. For further details
on the ARW solver, see Section 3.2.3.

Building on the ARW framework, Dahlum et al. [52] introduced the OnlineMIS
algorithm. They extend the local search approach with simple exact reductions applied
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on the fly as well as peeling high-degree vertices. This way, they are able to reduce the
search space and improve the performance of the local search algorithm. Section 3.2.3
provides more detailed information about the solver OnlineMIS.

With EvoMIS, Lamm et al. [147] presented an evolutionary approach to tackle
the maximum independent set problem. The key feature of their heuristic was to use
graph partitioning to come up with natural combine operations, where whole blocks
of solutions can be exchanged easily. A local search algorithm was added to these
combine operations to improve the solutions further.

Combining the data reductions with the evolutionary algorithm EvoMIS, a re-
duction evolution algorithm ReduMIS was presented by Lamm et al. [148]. In their
experiments, ReduMIS outperformed the local search ARW as well as the pure
evolutionary approach EvoMIS.

3.2 Maximum Weight Independent Set

The related work for the Maximum Weight Independent Set (MWIS) problem
is covered in detail. First, the exact solvers and then the heuristics introduced to
solve this problem are discussed. Finally, we present the most important algorithms
for this problem in more detail in Section 3.2.3.

3.2.1 Exact Methods

Exact algorithms compute optimal solutions by systematically exploring the solution
space. A frequently used paradigm in exact algorithms for combinatorial optimization
problems is called branch-and-bound [151]. One of the earliest results using this tech-
nique for the problems we consider here was the MWC solver called Cliquer [173].
In the following, we cover the exact solvers developed for the MVC, MWVC, and
MWIS in that order.

For solving the MWIS problem, reduction rules have been added to branch-and-
bound methods yielding so-called branch-and-reduce algorithms [4]. These algorithms
extend upon branch-and-bound by applying reduction rules to the current graph be-
fore each branching step. KaMIS BnR [149] was the first branch-and-reduce solver
introduced for the weighted problems (MWIS, MWVC, and MWC). In Section 3.2.3,
it is described in detail. KaMIS BnR has since become a highly influential solver
with several new reduction rules. The authors first present two meta-reductions called
neighborhood removal and neighborhood folding, from which they derived a new set of
weighted reduction rules. On this foundation, a branch-and-reduce algorithm was de-
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veloped using pruning with weighted clique covers similar to the approach by Warren
and Hicks [215] for upper bounds and an adapted version of the ARW local search [7]
for lower bounds. The KaMIS BnR algorithm was then extended to Struction by
Gellner et al. [91] to utilize different struction based reduction rules that were originally
introduced by Ebenegger et al. [66] and later improved by Alexe et al. [5]. In contrast
to previous reduction rules, struction rules do not necessarily decrease the graph size
but rather transform the graph, which can lead to further reduction. Two other exact
solvers using the branch-and-reduce approach were also recently introduced, called
Solve [219] and C-B&R [160]. These solvers use more computationally expensive
reduction rules than KaMIS BnR.

In a recent theoretical result, Xiao et al. [218] presented a branch-and-bound al-
gorithm idea using reduction rules working especially well on sparse graphs. They
perform a detailed analysis of the running time bound on special graphs in their the-
oretical work. With the measure-and-conquer technique, they show that the running
time of their algorithm is O∗(1.1443(0.624x−0.872)n) where x is the average degree of the
graph. This improves previous time bounds for this problem using polynomial space
complexity for graphs of average degree up to three.

3.2.2 Heuristic Methods

For the MWIS problem, iterated local search has been frequently used. This meta-
heuristic makes random perturbations to the solution to escape local optima. Fol-
lowing the early results of PLS WIS [181], the hybrid iterated local search heuristic
HILS (often called HILS) by Nogueira et al. [172] adapted the ARW algorithm for
weighted graphs. In addition to weighted (1, 2)-swaps, it also uses (ω, 1)-swaps that
add one vertex v into the current solution and exclude its neighbors. Recently, the
heuristic METAMIS [59] further improved on HILS by incorporating alternating
augmenting-path moves.

The reduce-and-peel approach is also frequently used for the MWIS problem.
Here, this method was first used in DtTwo [224] and later improved resulting in
HtWIS [107] and HGLV [200].

The most recent heuristic for the MWIS problem is called BSA and is presented
by Haller and Savchynskyy [113]. This heuristic differed from the typical local search
and reduce-and-peel heuristics presented earlier. Instead, Haller and Savchynskyy
introduced a Bregman-Sinkhorn Algorithm (BSA) that addresses a family of clique
cover LP relaxations. From the most recent heuristics, only BSA and METAMIS
do not use reduction rules. These heuristics were evaluated on a newly published
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dataset of vehicle routing instances [60] that are exceptionally hard to reduce. These
instances present a new challenge, especially for practical data reductions.

3.2.3 State-of-the-Art Solvers in Detail

This section introduces the current state-of-the-art algorithms for solving the Max-
imum Cardinality and Weight Independent Set problem in more detail. These
algorithms are frequently used to compare within our experiments. Additionally, some
of these algorithms are the basis of the work presented in this thesis.

Branch and Reduce Solvers

Algorithm 6: KaMIS BnR by Lamm et al. [149].
Data: graph G = (V, E, ω), current solution weight c, initially zero, best

solution weight W , initially zero
Result: optimal weight W
Procedure branch-and-reduce(G, c, W):
K, α← ExactReduce(G, R) // R ordered list of reductions
c← c + α

if W = 0 then
W ← ILS(K) + c // Lower bound

if UpperBound(K) +c ≤ W then
return W

if K is empty then
return max{c,W}

if K is disconnected then
for Ki ∈ Components(K) do

c← c + branch-and-reduce(Ki, 0, 0)

return max(W , c)

(K1, c1), (K2, c2)← branch(K, c)
// Run 1st case, update currently best solution
W ← branch-and-reduce(K1, c1,W)
// Use updated W to shrink the search space
W ← branch-and-reduce(K2, c2,W)
return W
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The solver KaMIS BnR employs a branch-and-reduce framework. It maintains
both the current solution weight and the best solution weight. The algorithm applies
a wide set of reduction rules before branching on a vertex. After reducing, a local
search algorithm is run on the reduced graph to compute a lower bound on the solu-
tion weight, which helps pruning the search space by excluding unnecessary parts of
the search tree to be explored. If the graph is not connected, each connected com-
ponent is solved separately. If the graph is connected, the algorithm branches into
two cases by applying a branching rule. As for the branching rule, initially, vertices
are sorted in non-decreasing order by degree, with ties broken by weight. Through-
out the algorithm, the next vertex to be chosen is the highest vertex in the ordering.
This way, the algorithm quickly eliminates the largest neighborhoods and makes the
problem “simpler”. If the algorithm does not finish within a certain time limit, the
currently best solution is improved using a greedy algorithm. More precisely, the ver-
tices are sorted in decreasing order of their weight and added in that order if feasible.
Algorithm 6 gives an overview. Note that the pseudocode describes the algorithm
such that it outputs the weight of an MWIS in the graph. However, the algorithm is
implemented to output the set of vertices.

Building on the KaMIS BnR framework Gellner et al. [91] introduce a new al-
gorithm called Struction. The authors add increasing transformations and a cyclic
blow-up phase to the ExactReduce procedure. This way, instances can be reduced
further compared to the KaMIS BnR reduction routine. These increasing trans-
formations are based on reducing the weighted stability number αω by potentially
increasing the graph. These reductions are formally introduced in Section 4.1. The
blow-up phase is a cyclic process of increasing and reducing the graph. For this
process, the authors introduce two configurations cyclicStrong and cyclicFast.
These configurations differ in how many cycles are performed during this process and
the bound for increasing the graph.

Iterated Local Search Based Heuristics

This section introduces iterated local search heuristics to compute high-quality (weight)
independent sets. These approaches follow the scheme introduced in Section 2.2.3 and
are based on the concept of (j, k)-swaps. These swaps remove j vertices from the solu-
tion and add k new vertices. Usually, these numbers k and j are very small.

The first method we discuss is the ARW, introduced in 2012 by Andrade et al. [7]
for the Maximum Independent Set problem. It is based on (1, 2)-swaps, where
one vertex v in the current solution is replaced by two 1-tight vertices x, y ∈ N(v)
in its neighborhood, which are non-adjacent. The authors introduce a special data
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structure to represent the solution, which enables finding these swaps in O(m) time.
If there are no swaps existing, the approach can prove this in the same time. This
data structure divides the vertices into three blocks, separating solution, free, and
non-solution vertices. This heuristic can find (near-)optimal solutions for small to
medium-size instances in milliseconds but struggles on large, sparse instances with
millions of vertices.

In the heuristic OnlineMIS by Dahlum et al. [52], the authors combined ARW [7]
with both exact and inexact data reduction rules. The exact rules reduce the search
space, while maintaining the solution quality. Especially for large-scale networks, the
authors can boost the performance of their algorithm by running the local search on
the reduced instance. In their paper, they show that by applying inexact reductions,
they are accelerating the performance and are still able to compete with the best
results reported in the literature. The approach OnlineMIS applies a set of simple
reductions (for vertices of degree zero, one, and two) [4] on the fly. Only using these
reductions enables the algorithm to reduce vertices by marking these and their neigh-
bors as removed during the local search. This is done by first performing a quick single
pass when computing the initial solution for ARW. The algorithm further marks the
top 1 % of high-degree vertices as removed during this pass, which is an inexact data
reduction. During the local search, whenever a vertex is checked for insertion into the
solution, the reduction is checked for this vertex. If the reduction is applicable, the
solution is updated.

For the Maximum Weight Independent Set problem, the local search heur-
istic HILS was introduced by Nogueira et al. [172]. Additionally to the (1, 2)-swaps, as
used in ARW, the authors implement (ω, 1)-swaps. With these moves, a single vertex
v is added to the current solution I, and all its neighbors are removed, resulting in the
new solution I ′ = I \N(v) ∪ {v}. This swap is improving, if ω(v) >

∑
u∈N(v)∩I ω(u).

By keeping track of the differences ω(v)−∑
u∈N(v)∩I ω(u) for each vertex v, searching

for improving (ω, 1)-swaps can be done efficiently.

Reducing-Peeling Approach

The solver HtWIS, proposed by Gu et al. [107], is solving the Maximum Weight
Independent Set problem heuristically with a reducing-peeling approach. The
general idea of reducing-peeling is introduced in Section 2.2.2. For HtWIS, the
authors integrate low-degree and edge-based reductions1 during the reducing phase of
their reducing-peeling heuristic.

1The low degree reductions used are 4.1, 4.2, 4.3 and the edge-based reductions used are 4.21
and 4.22.
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The author’s strategy for heuristically reducing vertices in the peeling phase is a
hybrid approach considering the weight of the vertex and its neighborhood weight.
For this strategy, the authors introduce a rating for each vertex v, which is the weight
difference of v and its neighborhood ω(v)−∑

u∈N(v) ω(u). The vertices with the lowest
rating are removed. To understand the intuition behind this strategy, consider a vertex
v with a positive rating, i. e., ω(v) ≥ ∑

u∈N(v) ω(u). Since any set of vertices that can
be added from N(v) has less weight than ω(v), there is no better option than adding
v to the solution. In this case, including v is an exact reduction. Removing the vertex
with the smallest rating now shifts the focus to excluding vertices unlikely to be part
of the optimal solution. Removing these vertices makes higher-weight vertices in their
neighborhoods more likely to be added to the solution.

3.3 Minimum Weight Vertex Cover

The related work for the Minimum Weight Vertex Cover (MWVC) is introduced
in this section with a focus on the most recent exact and heuristic solvers using
data reduction rules.

3.3.1 Exact Methods

For the MWVC, only one recent exact solver, SBMS [221], did not use data reductions.
Instead, SBMS uses a series of SAT formulations that each answered if there is an
MWVC of a given size. Since SBMS, every exact algorithm presented for this problem
relies on reduction rules. For the MWVC, this is only one other solver BMWVC [211].
The authors analyzed the effectiveness of the reductions and showed that reduction
rules often reduce massive graphs to tractable sizes.

3.3.2 Heuristic Methods

For the MWVC problem, the earliest heuristics used ant colony optimization. The
first was called ACO [194], which was later improved resulting in ACO+SEE [130].
The next two heuristics used multi-start iterated tabu search [227] (MS-ITS) and
a population-based iterated greedy heuristic [34] (PBIG). Since then, a technique
based on dynamic edge-weights has been widely adopted for the MWVC problem.
This technique was first introduced in DLSWCC [157] and has since been used by
several heuristics. Subsequent iterations of this technique brought new improvements,
starting with FastWVC [39] that added a construction procedure to generate a
high-quality initial vertex cover. Then, NuMWVC [156] added reduction rules as
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a preprocessing step to reduce the graph size. Two heuristics called DynWVC and
DynWVC2 [37] introduced dynamic strategies for selecting which vertices to add
or remove during the search. MAE-HTS [212] combined an evolutionary algorithm
with reduction rules on top of the local search. The most recent heuristic to use this
edge-weight technique is a hybrid method called GNN-VC [153]. To construct the
initial solution, GNN-VC combines data reductions and Graph Neural Networks in a
reduce-and-peel approach. Two other recent heuristics deviate from this edge-weight
technique. First, a population-based game-theoretic optimizer [182] (PGTO), and
second, an evolutionary algorithm based on the snowdrift game [158] (EG-MWVC).
Neither of these last two heuristics utilized data reductions.

3.4 Maximum Weight Clique

In this section, we cover the related work on the Maximum Weight Clique (MWC)
problem, focusing on work using data reduction rules, starting with exact algorithms
followed by heuristics.

3.4.1 Exact Methods

As for the MWIS problem, branch-and-bound algorithms are often used to solve the
MWC problem. One of the earliest results using this technique for the MWC is a
solver called Cliquer [173]. After the solver Cliquer was presented, several more
branch-and-bound solvers for the MWC problem were introduced. These branch-and-
bound solvers can broadly be split in two categories. The first category uses MaxSAT
reasoning to prune the search space and includes the two branch-and-bound algorithms
called MWCLQ [72], and TSM-MWC [127]. The second category focuses on data
reductions instead. It includes the WLMC [128] and MWCRedu [70] algorithms.
The first algorithm WLMC utilizes a straightforward upper/lower bound reduction
rule, where the heaviest known clique is used as a lower bound. Then, for any vertex
u, an upper bound on the heaviest clique containing u is UB0(u) = ω(N [u]). If this
upper bound is less than or equal to the lower bound, u can be removed. In addition
to the fast UB0, they also consider a slightly more complicated upper bound that
tries to exclude the heaviest neighbor. With the most recent algorithm, MWCRedu,
Erhardt et al. introduced several new reduction rules that significantly improved the
state-of-the-art exact solvers. These include reductions based on twins, domination,
and simplicial vertices.
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3.4.2 Heuristic Methods

A central topic in local search for the MWC problem is how to escape from local
optima. For the MWC, several techniques have been added to local search to address
this, including tabu search used in MN/TS [216], adaptive perturbation in BLS [23],
configuration checking in LSCC+BPS [214], smart restarts used in RRWL [71], and
walk perturbation in SCCWalk and SCCWalk4L [213]. The two solvers ReTS1
and ReTS2 [228] also added a new push operator that can simultaneously add and
remove vertices from a solution, compared to the typical add and swap operators.
As with exact methods, using data reductions in heuristics is also becoming more
common. For the MWC problem, this was first introduced in the FastWClq [39]
and later improved under the same name [40]. We refer to the second version as
FastWClq-V2. These heuristics used the upper/lower bound reductions mentioned
earlier. The most recent heuristic for the MWC problem, MWCPeel [70], does not
use local search but a technique called reduce-and-peel [44] instead. This reduce-and-
peel is a greedy approach that uses exact reduction rules whenever possible. A heuristic
tie-breaking mechanism is needed to ensure progress when exact reductions can no
longer reduce the graph. The MWCPeel was introduced alongside MWCRedu and
used the same extensive set of reductions.

3.5 Dynamic Maximum Independent Set
In 2021, Hanauer et al. [116] published a survey about fully dynamic graph algorithms.
The Maximum Independent Set problem is covered in that survey. We follow
their description closely to cover the related work for the dynamic MIS problem: As
computing the size of an MIS is NP-hard, all dynamic algorithms for independent
sets study the Maximal Independent Set problem. In a sequence of papers [11,
10, 21, 45, 108] the expected worst-case running time per update for the Maximal
Independent Set problem was reduced to O(log4 n). All these algorithms maintain
a maximal independent set. A query can either return the size of that set in constant
time or output the whole set in time linear in its size.

While quite a large amount of engineering work has been devoted to the compu-
tation of independent sets/vertex covers in static graphs (see above), the amount of
engineering work for the dynamic setting is very limited. Zheng et al. [226] presented
a heuristic fully dynamic algorithm and proposed a lazy search algorithm to improve
the size of the maintained independent set. A year later, Zheng et al. [225] improved
the result such that the algorithm is less sensitive to the quality of the initial solution
used for the evolving MIS. In their algorithm, called DgOracleTwo, the authors
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used two well-known data reduction rules, degree one and degree two vertex reduction,
frequently used in the static case. Moreover, DgOracleTwo can handle batch up-
dates. Bhore et al. [27] focused on the special case of MIS for independent rectangles,
frequently used in map labeling applications. The authors presented a determin-
istic algorithm for maintaining an MIS of a dynamic set of uniform rectangles with
amortized sub-logarithmic update time. The authors evaluated their approach using
extensive experiments. Recently, Gao et al. [90] published the dynamic approxima-
tion algorithm DyTwoSwap for the Maximum Independent Set problem, which
relies on swapping solution and non-solution vertices. The authors show that their
algorithm maintains a (∆

2 + 1)-approximate solution over dynamic graphs where ∆ is
the maximum degree of the graph.

To the best of our knowledge, there exists no related work on the Maximum
Weight Independent Set problem in for the dynamic setting.

3.6 Maximum 2-Packing Set

Most of the contributions to the Maximum 2-Packing Set (M2PS) problem on
arbitrary graphs are in the context of distributed algorithms for the Maximal 2-
Packing Set problem [79, 87, 163, 193, 204]. Ding et al. [56] propose a self-stabilizing
algorithm on arbitrary graphs. The algorithm consists of two operations: entering
and exiting the solution candidate for each vertex in the graph. If a vertex enters
the solution, its neighbors get locked, so they can not enter the solution and cause
a conflict. The decision to enter or exit the solution depends on whether a vertex
causes a conflict. Mjelde [167] presents a self-stabilizing algorithm for the Maximum
k-Packing Set problem on tree graphs using dynamic programming.

There are further algorithms for the M2PS problem considering restricted graph
classes. Soto et al. [94] analyze the size of an M2PS for 2-token graphs of paths. Flores-
Lamas et al. [78] present an algorithm that finds an M2PS in O(n2) time for cactus
graphs of order n. Trejo-Sánchez et al. [206] present an approximation algorithm for
planar graphs using graph decompositions and LP-solvers. The approximation ratio
is related to how the algorithm decomposes the input graph into smaller subgraphs,
inspired by Baker [17].

Under the name of Maximum (Weight) Distance-3 Independent Set or
Maximum Scattered Set problem, there is further theoretical work for special
graph classes [14, 133]. For arbitrary graphs, Yamanaka et al. [222] introduced a
theoretical exact algorithm to solve the Maximum Distance-3 Independent Set
problem in O(1.4143n) time. In their work, the authors use some simple reduction
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rules. However, these rules only reduce a branch-and-reduce instance consisting of
a graph combined with a set of vertices that have to be in the solution and a set
that is not.

There are only a few contributions to sequential, practical algorithms for the Max-
imum 2-Packing Set problem on arbitrary graphs. Trejo-Sánchez et al. [202] are
the first authors to have proposed a sequential method for connected arbitrary graphs.
They developed a genetic algorithm for the M2PS problem using local improvements
in each round of their algorithm and a penalty function.

For the weighted generalization of the problem, Atsuta and Takahashi [12] in-
troduce an approach considering the decision version of the Maximum Weight
Distance-d Independent Set problem in interval graphs. In contrast to the op-
timization problem that we are focusing on, in the decision version, the goal is to
decide whether a distance-d independent set of cardinality at least k exists. To the
best of our knowledge, there are no practical algorithms for the more general Max-
imum Weight 2-Packing Set problem. However, the possibility of solving the
M2PS problem by using a graph transformation to the square graph and applying
independent set solvers was first stated by Halldórsson et al. [112]. This approach is
also applicable to the weighted case and used in this work.

3.7 Hypergraph b-Matching

There is a vast amount of literature for matchings in graphs [28, 62, 63, 64, 67, 86,
140, 162, 165, 179]. We refer the reader to the respective papers for more details.
Here, we cover related work closer to problem variations of the most general weighted
hypergraph b-matching problem considered in this dissertation.

Graph b-Matching. The b-Matching problem can be reduced to the simple match-
ing problem according to Gabow [85] by substituting vertices. However, this is im-
practical on large graphs. An overview of exact approaches can be found in Müller-
Hannemann and Schwartz [169]. Grötschel and Holland [106] use the cutting plane
technique to tackle the problem. Based on belief propagation and assuming an
unique solution exists, Huang and Jebara [125] developed an exact algorithm for
the b-matching problem. Mestre [164] proved that the greedy algorithm is a half-
approximation and generalized the PGA algorithm by Drake and Hougardy [62] to
achieve an O(βm) time half-approximation. The LD algorithm was generalized to
the b-matching case by Georgiadis and Papatriantafilou [92] in a distributed fashion.
Khan et al. [136] introduced an approximation algorithm bSuitor that can be executed
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in parallel. The approach is inspired by the results of Manne and Halappanavar [162]
for matchings. Ferdous et al. [74] consider parallel algorithms for the b-matching
with submodular objectives.

Hypergraph Matching. According to Hazan et al. [118], the maximum d-set pack-
ing problem and, therefore, the matching problem on d-partite, d-uniform hyper-
graphs can be poorly approximated, and there is no approximation within a factor
of O(d/ log d). In general, as proven by H̊astad [117], the matching problem in non-
uniform hypergraphs is NP-hard and there is no n1−ϵ factor approximation unless
P =NP. There is a polynomial (k + 1 + ϵ)/3-approximation algorithm for k-set pack-
ing. This corresponds to the matching problem in d-uniform, d-partite hypergraphs
proposed by Cygan [49] using local search. Furthermore, Fürer and Yu [84] improved
these results concerning the running time. Dufosse et al. [65] introduce several heur-
istics to reduce the complexity of the uniform problem by extending the well-known
two Karp-Sipser [132] rules to hypergraphs. Dufosse et al. [65] present the idea of
using the Sinkhorn-Knopp algorithm [195] for the normalization of incident tensors
as a third selection rule. They perform practical experiments but are limited to only
d-partite, d-uniform hypergraphs with uniform edge weights. Anneg et al. [8] give
an improved optimality bound for LP-relaxation for the non-uniform case, which ex-
tends to b-matching. For the weighted k-set packing problem Thiery and Ward [201]
show improved approximation bounds of 1.786 for k = 3. Recently, Neuwohner [171]
showed how to proof a threshold below of k

2 by Ω(k). Both approaches improve the
long-standing local search approach presented by Berman [25] for maximum weight
independent set in d-claw free graphs.

Hypergraph b-Matching. The b-matching cardinality problem in hypergraphs
also has no approximation scheme according to El Ouali and Jäger [69], even if the
degree of vertices is bounded. Similarly, El Ouali et al. [68] showed that in k-uniform
hypergraphs for the cardinality problem with 2 ≤ b ≤ k/ log k, there is no polynomial-
time approximation within any ratio smaller than Ω( k

b log k
). For weighted b-matching

on k-uniform hypergraphs Krysta [144] gave a greedy k + 1 approximation, while
Parekh and Pritchard [175] achieve a (k − 1 + 1

k
) approximation algorithm via lin-

ear programming. Koufogiannakis and Young [142] developed a k-approximation in
a distributed fashion for weighted k-uniform hypergraphs. We are not aware of any
practical implementation of those algorithms.



Chapter 4

Maximum Weight Independent Set

This chapter presents our contributions to the Maximum Weight Independent
Set problem. These include several new data reductions as well as multiple algorithms
to solve the problem in the static and dynamic setting. We start with giving an over-
view of existing data reductions for the Maximum Weight Independent Set
(MWIS) problem in Section 4.1. Here, we also present our new reduction rules.
Additionally, we present a new GNN-guided screening approach for using expensive
reduction rules efficiently in Section 4.2. Following that, we extend the set of existing
heuristics for the MWIS problem by introducing a novel memetic approach m2wis
in Section 4.3 and the Concurrent Iterated Local Search (CHILS) in Sec-
tion 4.4. For computing high-quality maximum weight and cardinality independent
sets, we introduce the new technique ONE in Section 4.5. This technique can also be
used as a local search for static graphs.

References. This chapter combines the contributions to the MWIS problem. It
is based on the publications [104, 105] which are joint work with Kenneth Langedal
and Christian Schulz, the paper [32], which is joint work with Jannick Borowitz and
Christian Schulz, as well as the papers [102, 103] which are joint work with Sebastian
Lamm, Christian Schulz and Darren Strash. Large parts are copied verbatim from the
papers or the corresponding technical reports.

4.1 Exact Data Reduction Rules

This section presents exact data reduction rules for the Maximum Weight Inde-
pendent Set (MWIS) problem. First, we give a comprehensive overview of existing
data reduction rules and present our new data reduction rules. Additionally, we dis-
cuss these rules from a practical perspective in Section 4.1.2 and present experimental
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results on the best way to order these reduction rules in Section 4.1.3. The rules
introduced in this section are used in the algorithms described in the later sections
of this chapter.

References. This section is based on two publications which are joint work with
Kenneth Langedal and Christian Schulz [104, 105]. Large parts are copied verbatim
from the papers.

4.1.1 Catalogue of Data Reduction Rules

This section documents the data reduction rules for the MWIS problem. The reduc-
tions are grouped into different categories based on common properties. Each section
starts with a brief introduction and an intuition for the presented rules. Note that
the rules are not ordered by their complexity. The reduction rules are presented using
a standardized scheme shown in Reduction 4.0.

Reduction 4.0 ([Reduction Name] by [Authors])

Description of the pattern that can be reduced.

Reduced Graph How to build the reduced graph G′

Offset Which weight can be added to the offset
Reconstruction How to construct the solution I for the original graph given

the solution I ′ on the reduced graph G′

First, we give the name of the reduction rule and cite the papers where the rule
was first introduced. Then, we define the pattern that this rule can reduce. Finally,
we give details on how to perform the actual reduction. This last information consists
of three parts. First, the information on constructing the reduced graph G′. Then,
the offset describes the difference between the weight of an MWIS on the reduced
graph αω(G′) and the weight of an MWIS on the original graph αω(G). Lastly, the
information on how the solution I ′ on the reduced instance can be lifted to a solution
I on the original graph is provided.

In addition to including or excluding vertices directly, some reduction rules com-
bine multiple vertices into potentially new vertices. This combine procedure is called
folding. Including or excluding the folded vertices from the solution I only depends
on whether the vertices they are folded into are included or excluded in the solution
I ′ on the reduced instance. To be more precise, folding a set of vertices X ⊂ V into
a new vertex v′ generally results in a new graph G′ = G[V \ X ∪ {v′}], where the
new vertex v′ is connected to all vertices in the neighborhood of X. If the set X is
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folded into a vertex v already existing in G, then the neighborhood is extended by
the neighbors of X, i. e., N(v) = N(v) ∪N(X).

Low Degree Reduction Rules

In this section, we cover data reduction rules applicable to vertices of a specific degree.
The presented rules fully cover all vertices of degree one and degree two. These are
special cases of more powerful reductions presented in later sections.

Reduction 4.1 (Degree One by Gu et al. [107] )

Let u, v ∈ V with N(v) = {u}.
• If ω(v) ≥ ω(u), include v.

Reduced Graph G′ = G−N [v]
Offset αω(G) = αω(G′) + ω(v)
Reconstruction I = I ′ ∪ {v}

• If ω(v) < ω(u), fold u and v into new vertex v′.

Reduced Graph G′ = G[(V ∪{v′})\{u, v}] with N(v′) = N(u) and ω(v′) =
ω(u)− ω(v)

Offset αω(G) = αω(G′) + ω(v)
Reconstruction If v′ ∈ I ′, then I = I ′ \ {v′} ∪ {u}, else I = I ′ ∪ {v}

Reduction 4.2 (Triangle by Gu et al. [107]. Figure 4.1)

Let v ∈ V be a degree-two vertex with two adjacent neighbors x, y ∈ V . Without loss
of generality, assume ω(x) ≤ ω(y).
• If ω(v) < ω(x), fold v into x and y.

Reduced Graph G′ = G− v and ω(x) = ω(x)− ω(v), ω(y) = ω(y)− ω(v)
Offset αω(G) = αω(G′) + ω(v)
Reconstruction If x, y /∈ I ′, then I = I ′ ∪ {v}, else I = I ′

• If ω(x) ≤ ω(v) < ω(y), exclude x and fold v into y.

Reduced Graph G′ = G− {v, x} and ω(y) = ω(y)− ω(v)
Offset αω(G) = αω(G′) + ω(v)
Reconstruction If y /∈ I ′, then I = I ′ ∪ {v}, else I = I ′
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Figure 4.1: Different cases of Reduction 4.2 with ωx ≤ ωy. A vertex after reducing is
green if included, red if excluded, and gray if folded.

• If ω(v) ≥ ω(y), include v.

Reduced Graph G′ = G−N [v]
Offset αω(G) = αω(G′) + ω(v)
Reconstruction I = I ′ ∪ {v}

Reduction 4.3 (V-Shape by Gu et al. [107] and Lamm et al. [149]. Figure 4.2)

Let v ∈ V be a degree-two vertex with two non-adjacent neighbors x, y ∈ V . Without
loss of generality, assume ω(x) ≤ ω(y).
• If ω(v) < ω(x), fold v into new vertex v′.

Reduced Graph G′ = G[(V ∪ {v′}) \ {v}] with N(v′) = N(x) ∪N(y) and
set
ω(x) = ω(x)− ω(v), ω(y) = ω(y)− ω(v)

Offset αω(G) = αω(G′) + ω(v)
Reconstruction If x ∈ I ′ory ∈ I ′, then I = I ′ \ {v}, else I = I ′
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Figure 4.2: Different folding cases of Reduction 4.3 with weights ωx ≤ ωy.

• If ω(x) ≤ ω(v) < ω(y), fold v into x and y.

Reduced Graph G′ = G− v with N(x) = N(x) ∪N(y) and ω(y) = ω(y)−
ω(v)

Offset αω(G) = αω(G′) + ω(v)
Reconstruction If x, y /∈ I ′, then I = I ′ ∪ {v}, else I = I ′

• If ω(y) ≤ ω(v) and ω(x) + ω(y) ≤ ω(v), include v.

Reduced Graph G′ = G−N [v]
Offset αω(G) = αω(G′) + ω(v)
Reconstruction I = I ′ ∪ {v}

• If ω(y) ≤ ω(v) and ω(x) + ω(y) > ω(v), fold v, x, y into a new vertex v′.

Reduced Graph G′ = G[(V ∪ {v′}) \ {v, x, y}] with N(v′) = N(x) ∪N(y)
and ω(v′) = ω(x) + ω(y)− ω(v)

Offset αω(G) = αω(G′) + ω(v)
Reconstruction If v′ ∈ I ′, then I = I ′∪{x, y}\{v′}, else I = I ′∪{v}\{v′}

The following reductions deal with special patterns containing degree two vertices,
such as paths and cycles.
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Reduction 4.4 (3-Path Reduction by Xiao et al. [218])
Let v1v2v3v4 be a 3-path such that deg(v2) = deg(v3) = 2 and ω(v1) ≥ ω(v2) ≥ ω(v3) ≥
ω(v4), then fold v2 and v3 into the path.

Reduced Graph G′ = G− {v2, v3}, add the edge {v1, v4}
and set ω(v1) = ω(v1) + ω(v3)− ω(v2)

Offset αω(G) = αω(G′) + ω(v2)
Reconstruction If v1 ∈ I ′, then I = I ′ ∪ {v3}, else I = I ′ ∪ {v2}

Reduction 4.5 (4-Path Reduction by Xiao et al. [218])
Let v1v2v3v4v5 be a 4-path such that deg(v2) = deg(v3) = deg(v4) = 2 and ω(v1) ≥
ω(v2) ≥ ω(v3) ≤ ω(v4) ≤ ω(v5), then fold v2 and v4 into the path.

Reduced Graph G′ = G− {v2, v4}, add edges {v1, v3} and {v3, v5}, and
set ω(v1) = ω(v1) + ω(v3) − ω(v2) and ω(v5) = ω(v5) +
ω(v3)− ω(v4)

Offset αω(G) = αω(G′) + ω(v2) + ω(v4)− ω(v3)
Reconstruction If v3 ∈ I ′, then I = I ′ \ {v3} ∪ {v2, v4},

else if v1 ∈ I ′ and v5 /∈ I ′, then I = I ′ ∪ {v4}
else if v1 /∈ I ′ and v5 ∈ I ′, then I = I ′ ∪ {v2}
else I = I ′ ∪ {v3}

Reduction 4.6 (4-Cycle Reduction by Xiao et al. [218])
Let v1v2v3v4 be a 4-cycle such that deg(v2) = deg(v3) = 2 and ω(v1) ≥ ω(v2) ≥ ω(v3),
then fold v2 and v3 into the cycle.

Reduced Graph G′ = G− {v2, v3} and ω(v1) = ω(v1) + ω(v3)− ω(v2)
Offset αω(G) = αω(G′) + ω(v2)
Reconstruction If v1 ∈ I ′, then I = I ′ ∪ {v3}, else I = I ′ ∪ {v2}

Reduction 4.7 (5-Cycle Reduction by Xiao et al. [218])
Let v1v2v3v4v5 be a 5-cycle such that deg(v2) = deg(v3) = deg(v5) = 2 such that
min{deg(v1), deg(v4)} ≥ 3 and ω(v1) ≥ ω(v2) ≥ ω(v3) ≤ ω(v4).
• If ω(v3) > ω(v5), then fold v5 into the cycle.

Reduced Graph G′ = G− v5 and for all i ∈ {1, 2, 3, 4} set ω(vi) = ω(vi)−
ω(v5)

Offset αω(G) = αω(G′) + 2ω(v5)
Reconstruction If v1, v4 /∈ I ′, then I = I ′ ∪ {v5}, else I = I ′



Exact Data Reduction Rules 47

• If ω(v3) ≤ ω(v5), then fold v2 and v3 into the cycle.

Reduced Graph G′ = G− {v2, v3} and set ω(v1) = ω(v1)− ω(v2), ω(v4) =
ω(v4)− ω(v3) and ω(v5) = ω(v5)− ω(v3)

Offset αω(G) = αω(G′) + ω(v2) + ω(v3)
Reconstruction If v1, v4 ∈ I ′, then I = I ′,

else if v1 ∈ I ′ and v4 /∈ I ′, then I = I ′ ∪ {v3},
else if v1 /∈ I ′ and v4 ∈ I ′, then I = I ′ ∪ {v2},
else I = I ′ ∪ {v2}

Reduction 4.8 (6-Cycle Reduction by Xiao et al. [218])

Let v1v2v3v4v5v6 be a 6-cycle such that deg(v2) = deg(v3) = deg(v5) = deg(v6) = 2,
ω(v1) ≥ max{ω(v2), ω(v6)}, ω(v4) ≥ max{ω(v3), ω(v5)} and ω(v6) ≥ ω(v5).
• If ω(v2) ≥ ω(v3), then fold v5 and v6 into the cycle.

Reduced Graph G′ = G− {v5, v6}, set ω(v2) = ω(v2) + ω(v6) and
ω(v3) = ω(v3) + ω(v5)

Offset αω(G) = αω(G′)
Reconstruction If v2 ∈ I ′, then I = I ′ ∪ {v6},

else if v3 ∈ I ′, then I = I ′ ∪ {v5},
else I = I.

• Else, fold v6 into the cycle.

Reduced Graph G′ = G− v6, add the edge {v1, v5} and set weights
ω(v2) = ω(v2) + ω(v6), ω(v3) = ω(v3) + ω(v5) and
ω(v5) = ω(v6) + ω(v3)−max{ω(v2) + ω(v6), ω(v3) + ω(v5)}

Offset αω(G) = αω(G′)
Reconstruction If v1, v3 ∈ I ′, then I = I ′ ∪ {v5},

else if v2, v4 ∈ I ′, then I = I ′ ∪ {v6},
else if v1, v4 ∈ I ′, then I = I ′,
else I = (I ′ \ {v2, v5}) ∪ {v3, v6}

The patterns reduced in reductions 4.4 to 4.8 can also be reduced by applying
reductions 4.3 and 4.2 to the degree two vertices. Since reductions 4.4 to 4.6 need
to search for a more complicated pattern in the graph, it might be more benefi-
cial to only use the more general reductions dealing with degree two vertices in
practical application. However, note that using reductions 4.4 to 4.6 can result in
different reduced instances.
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Neighborhood Based Reduction Rules

This section presents reduction rules that reduce a vertex v based on estimating or
computing the weight of the MWIS in the neighborhood N(v). These are special cases
and extensions derived from Reduction 4.9.

Reduction 4.9 (Heavy Vertex by Lamm et al. [149])

Let v ∈ V and ω(v) ≥ αω(G[N(v)]), then include v.

Reduced Graph G′ = G−N [v]
Offset αω(G) = αω(G′) + ω(v)
Reconstruction I = I ′ ∪ {v}

Reductions 4.10 and 4.11 are using an estimate for the MWIS in the neighborhood
αω(G[N(v)]) to apply the idea more efficiently.

Reduction 4.10 (Neighborhood Removal by Lamm et al. [149])

Let v ∈ V and ω(v) ≥ ω(N(v)), then include v.

Reduced Graph G′ = G−N [v]
Offset αω(G) = αω(G′) + ω(v)
Reconstruction I = I ′ ∪ {v}

While Reduction 4.10 uses a simple bound by summing the vertex weights in the
neighborhood, this bound can be tightened by using a clique cover in the neighborhood
N(v) and summing over the maximum weight vertices per clique. This sum gives an
upper bound to the optimal solution and results in Reduction 4.11.

Reduction 4.11 (Clique Neighborhood Removal by Lamm et al. [150, 149])

Let v ∈ V and C be a set of disjoint cliques in N(v). If ω(v) ≥ ∑
C max{ω(x) | x ∈ C}

include v.

Reduced Graph G′ = G−N [v]
Offset αω(G) = αω(G′) + ω(v)
Reconstruction I = I ′ ∪ {v}

In the following, reductions 4.12 and 4.13 introduce further reduction possibilities
for the case of ω(v) < αω(G[N(v)]).

Reduction 4.12 (Neighborhood Folding by Lamm et al. [149])

Let v ∈ V , and suppose that N(v) is independent. If ω(N(v)) > ω(v), but ω(N(v))−
min{ω(u) | u ∈ N(v)} < ω(v), then fold v and N(v) into a new vertex v′.
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Reduced Graph G′ = G[(V ∪ {v′}) \ N [v]] with N(v′) = N(N(v)) and
ω(v′) = ω(N(v))− ω(v)

Offset αω(G) = αω(G′) + ω(v)
Reconstruction If v′ ∈ I ′, then I = (I ′ \ {v′}) ∪N(v), else I = I ′ ∪ {v}

The more general form of reducing a vertex v and its neighborhood is described in
Reduction 4.13. For this reduction rule, potentially multiple independent set problems
have to be solved in the neighborhood, making the rule very expensive.

Reduction 4.13 (Generalized Neighborhood Folding by Lamm et al. [150, 149])
Let v ∈ V , then
• if G[N(v)] contains only one independent set Ĩ with ω(Ĩ) > ω(v), fold v and N(v)

into a new vertex v′.

Reduced Graph G′ = G[(V ∪ {v′}) \ N [v]] with N(v′) = N(N(v)) and
ω(v′) = ω(Ĩ)− ω(v)

Offset αω(G) = αω(G′) + ω(v)
Reconstruction If v′ ∈ I ′, then I = (I ′ \ {v′}) ∪ Ĩ, else I = I ′ ∪ {v}

• if for u ∈ N(v) all independent sets in G[N(v)] including u have less weight than
ω(v), exclude u.

Reduced Graph G′ = G− u

Offset αω(G) = αω(G′)
Reconstruction I = I ′

In [224], Zheng et al. introduce the 2-Vertex Neighbor Removal, an extension of
Reduction 4.10 to two non-adjacent vertices.

Reduction 4.14 (Two Vertex Neighborhood Removal by Zheng et al. [224])
Let u, v ∈ V be non-adjacent and ω(u) + ω(v) ≥ ω(N(u)∪N(v)). Further assume for
all vertices x ∈ V ω(x) < ω(N(x) (i. e., Reduction 4.10 was applied), then include u

and v.

Reduced Graph G′ = G−N [{u, v}]
Offset αω(G) = αω(G′) + ω(u) + ω(v)
Reconstruction I = I ′ ∪ {u, v}

Xiao et al. [219] have further generalized the idea of Reduction 4.14 in Reduc-
tion 4.15 where they tighten the bound for these vertices further. An independent
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set I is called a heavy set, if for any independent set C in the induced subgraph
G[N(I)] it holds ω(N(C) ∩ I) ≥ ω(C). This concept was introduced by [219]. Using
this definition, for every independent set Ĩ, an equivalent or higher weight independ-
ent set I∗ can be constructed by I∗ := Ĩ \ N(I) ∪ I. Therefore, these vertices can
always be included.

Reduction 4.15 (Heavy Set by Xiao et al. [219])

Let u and v be non-adjacent vertices having at least one common neighbor x. If for
every independent set Ĩ in the induced subgraph G[N({u, v})], ω(N(Ĩ) ∩ {u, v}) ≥
ω(Ĩ), then include u and v.

Reduced Graph G′ = G−N [{u, v}]
Offset αω(G) = αω(G′) + ω(u) + ω(v)
Reconstruction I = I ′ ∪ {u, v}

Remark 4.1. Xiao et al. [219] use the Reduction 4.15 for a heavy sets {u, v} only if
the neighborhood is small, i. e., |N({u, v})| ≤ 8.

We extend the Reduction 4.15 presented by Xiao et al. [219] to the case of a heavy
set of three vertices in Reduction 4.16.

Reduction 4.16 (Heavy Set 3)

Let u, v and w be vertices forming a heavy set, then include u, v and w.

Reduced Graph G′ = G−N [{u, v, w}]
Offset αω(G) = αω(G′) + ω(u) + ω(v) + ω(w)
Reconstruction I = I ′ ∪ {u, v, w}

Proof. The proof follows by the definition of a heavy set.

Clique Based Reduction Rules

The following reductions are based on the observation that in a clique, at most one
vertex can be part of a maximum weight independent set. A vertex v where the
neighborhood N(v) forms a clique is called simplicial. The first rule in this section
works with these vertices.

Reduction 4.17 (Simplicial Vertex by Lamm et al. [149])

Let v ∈ V be simplicial with maximum weight in its neighborhood, i. e., ω(v) ≥
max{ω(u) | u ∈ N(v)}, then include v.
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Reduced Graph G′ = G−N [v]
Offset αω(G) = αω(G′) + ω(v)
Reconstruction I = I ′ ∪ {v}

Reduction 4.18 (Simplicial Weight Transfer by Lamm et al. [149])

Let v ∈ V be simplicial, and let S(v) ⊆ N(v) be the set of all simplicial vertices.
Further, let ω(v) ≥ ω(u) for all u ∈ S(v).
• If ω(v) ≥ max{ω(u) | u ∈ N(v)}, then use Reduction 4.17.
• Else, fold v into N(v).

Reduced Graph Construct G′ by removing v and all neighbors u ∈ N(v)
with ω(u) ≤ ω(v). Additionally, set the weight of all re-
maining neighbors x ∈ N(v) to ω(x) = ω(x)− ω(v)

Offset αω(G) = αω(G′) + ω(v)
Reconstruction If I ′ ∩N(v) = ∅, then I = I ′ ∪ {v}, else I = I ′

The idea of Reduction 4.17 is that a simplicial vertex v can be included in the
solution if it is of maximum weight in its neighborhood. This rule was first introduced
by Lamm et al. [149]. In the following reduction, we extend this idea further. Here, we
consider a vertex v which is almost simplicial, meaning there is one vertex u ∈ N(v)
such that if it is removed N(v) \ {u} forms a clique. We call the pattern of the two
vertices u, v ∈ V such that u ∈ N(v) and N(v) \ {u} forms a clique for a u-v-funnel.

The main idea of this reduction is that, under certain weight constraints, if u and
v form a u-v-funnel either u or v is in an MWIS. In this situation, only the three
following solution patterns in N [v] can occur. First, the vertex v is in an MWIS.
Second, the vertex u and one other neighbor x ∈ N(v) \N [u] are in the solution. For
this case, we need to add additional edges between the vertex u and the remaining
vertices x ∈ N(v) \ N [u]. Third, only the vertex u is part of the solution. Note
that the third case can only occur when ω(u) > ω(v). These three cases lead to the
weighted version of the funnel reduction, see Reduction 4.19. The unweighted version
of this reduction was presented by Xiao et al. [220].

Reduction 4.19 (Weighted Funnel. Figure 4.3)

Assume u, v ∈ V forms a u-v-funnel and that ω(v) ≥ max{ω(x) | x ∈ N(v) \ {u}}.
Furthermore, let N ′(v) = {x ∈ N(v) \N [u] | ω(x) + ω(u) > ω(v)}.
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Figure 4.3: Illustration for the two cases of the Weighted Funnel, Reduction 4.19.

• If ω(v) ≥ ω(u), fold v and u into its neighborhood.

Reduced Graph G′ = G− (N [v] \N ′(v)) and for all x ∈ N ′(v), let N(x) =
N(x) ∪N(u) and ω(x) = ω(x) + ω(u)− ω(v)

Offset αω(G) = αω(G′) + ω(v)
Reconstruction If I ′ ∩N(v) = ∅, then I = I ′ ∪ {v}, else I = I ′ ∪ {u}

• If ω(v) < ω(u), fold v into its neighborhood.

Reduced Graph G′ = G − (N [v] \ (N ′(v) ∪ {u})) with ω(u) = ω(u) − ω(v)
and for all x ∈ N ′(v), let N(x) = N(x) ∪N(u)

Offset αω(G) = αω(G′) + ω(v)
Reconstruction If I ′ ∩N(v) = ∅, then I = I ′ ∪ {v}

Proof. Assume u, v ∈ V forms a u-v-funnel and ω(v) ≥ max{ω(x) | x ∈ N(v) \ {u}}.
Let N ′(v) be as defined in the reduction rule. As a first step, we prove that an MWIS
contains either u or v. Therefore, assuming u is not in an MWIS, we can exclude u,
resulting in v being a simplicial vertex of maximum weight. Now, we can include v

(see Reduction 4.17). In the other case, vertex u is in an MWIS. Using this, we can
exclude their common neighborhood N(v) ∩ N(u). Since N ′(v) still forms a clique,
only the following three cases for an MWIS I in G have to be considered. First, v

is in I, second only u is part of I and third, u and one of the remaining neighbors
x ∈ N ′(v) is in the solution.

We now apply Reduction 4.28 with the independent sets described. Note that
when the weight of the independent set is less than ω(v), no vertex is added in the
transformation. In our case, this means that we can remove the remaining neighbors
x ∈ N ′(v) if ω(x) + ω(u) < ω(v).
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Figure 4.4: Illustration for Basic Single Edge; see Reduction 4.21.

Furthermore, every solution containing a vertex x ∈ N ′(v) has to also contain u by
the weight assumption ω(v) ≥ ω(x). The vertices x ∈ N ′(v) now represent the solu-
tions containing x and u. Therefore, all these remaining neighbors have to be connec-
ted to the neighborhood of u. By Reduction 4.28 it holds that αω(G) = αω(G′) + ω(v).

Next, we consider the different weight relations between u and v. If ω(u) < ω(v),
there is no solution of higher weight than ω(v) that only contains u. Therefore, u is
not present in the transformed graph.

Otherwise, the vertex u remains in the reduced instance. Note that in this case,
edges connect u to all remaining neighbors of v. For each remaining neighbor x ∈
N ′(v), its weight is increased by ω(u)− ω(v). Afterward, we apply Reduction 4.23 to
all pairs of u and an x ∈ N ′(v), which removes all edges connecting u to x ∈ N ′(v).
Reduction 4.23 also reduces the weights of the vertices in N ′(v) by the current weight
of u, which was reduced by the weight of v. This results in the original weight of the
neighbors since ω(x) = ω(x) + ω(u) − ω(v) − (ω(u) − ω(v)). These steps give the
reduced graph G′ as described by Reduction 4.19.

Domination Based Reduction Rules

The following rules always compare the relation between two adjacent vertices and
their neighborhood. In reductions 4.20 and 4.21, a vertex v can be removed since it
can always be replaced with its neighbor u in an MWIS.

Reduction 4.20 (Domination by Lamm et al. [149])

Let u, v ∈ V be adjacent vertices such that N [u] ⊆ N [v]. If ω(v) ≤ ω(u), then exclude v.

Reduced Graph G′ = G− v

Offset αω(G) = αω(G′)
Reconstruction I = I ′
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Figure 4.5: Illustration for Extended Single Edge; see Reduction 4.22.

Reduction 4.21 (Basic Single-Edge by Gu et al. [107]. Figure 4.4)

Let u, v ∈ V be adjacent vertices with ω(N(u) \N(v)) ≤ ω(u), then exclude v.

Reduced Graph G′ = G− v

Offset αω(G) = αω(G′)
Reconstruction I = I ′

In contrast to the previous reductions in this section, Reduction 4.22 covers the
case where one of the two vertices u or v have to be in the solution.

Reduction 4.22 (Extended Single-Edge by Gu et al. [107]. Figure 4.5)

Let u, v ∈ V be adjacent vertices with ω(v) ≥ ω(N(v))−ω(u), then exclude N(u) ∩N(v).

Reduced Graph G′ = G− (N(u) ∩N(v))
Offset αω(G) = αω(G′)
Reconstruction I = I ′

We derive the following two reduction rules by extending Reduction 4.20 first
introduced by Lamm et al. [149]. The idea of the original domination rule is to
find two adjacent vertices u, v ∈ V where any independent set, including v, can be
transformed into an equal or higher weight independent set by replacing v with u.

In the extended domination rule, see Reduction 4.23, instead of removing vertices,
we remove edges and reduce vertex weights. With this reduction rule, we allow two
adjacent vertices u and v to be both in the solution on the reduced instance. If the
edge removal leads to a solution including both vertices, we remove the previously
dominated, lower-weight vertex from the solution in the restoring process. With this
reduction rule, we sparsify the graph and potentially make other rules applicable.
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Reduction 4.23 (Extended Domination)
Let u, v ∈ V be adjacent vertices such that N [u] ⊆ N [v]. If ω(v) > ω(u), then we
remove the edge between u and v.

Reduced Graph G′ = (V, E \ {u, v}) and ω(v) = ω(v)− ω(u)
Offset αω(G) = αω(G′)
Reconstruction If v ∈ I ′, then I = I ′ \ {u}, else I = I ′

Proof. Let u, v ∈ V be adjacent vertices such that N [u] ⊆ N [v] and ω(v) > ω(u).
Further, let G′ be the reduced graph after applying the reduction to u and v. We
use u′ and v′ to refer to u and v in G′. First, we consider the case that v′ ∈ I ′

and show that I = I ′ \ {u′} is an MWIS in G. Since N [u] ⊆ N [v] and v′ ∈ I ′ it
holds that u′ ∈ I ′, because I ′ is maximal. Now, assume there is an MWIS Ĩ in G

with ω(Ĩ) > ω(I). Then, the MWIS Ĩ is also an independent set in the reduced
instance and ω(Ĩ) > ω(I ′ \ {u′}) + ω(u) = ω(I ′ \ {u′, v′}) + ω(v) − ω(u) + ω(u) =
ω(I ′ \ {u′, v′}) + ω(v′) + ω(u′) = ω(I ′). This contradicts that I ′ is an MWIS in G′.
Furthermore, since I ′ is an independent set and we only removed u to obtain I, the
independent set property still holds, and therefore I is an MWIS in G.

We prove the second case v′ /∈ I ′ in the same way. Here, I ′ is also an independent
set in G. Since v′ /∈ I ′, it holds that the weight of I ′ is the same in G and G′.
Therefore, there can not exist an independent set of higher weight than I ′ in G since
this would also exist in the reduced instance, contradicting I ′ being an MWIS in G′.

Additionally, we add a reduction rule which reverses Reduction 4.23. This way,
we can add back edges that were previously removed and introduce new edges later
in the reduction process.

Reduction 4.24 (Extended Domination Reversed)
Let u, v ∈ V be non-adjacent vertices such that N(u) ⊆ N(v). If ω(u) + ω(v) <

ω(N(v)), then we can add an edge between u and v.

Reduced Graph G′ = (V, E ∪ {u, v}) and ω(v) = ω(v) + ω(u)
Offset αω(G) = αω(G′)
Reconstruction If v ∈ I ′, then I = I ′ ∪ {u}, else I = I ′

Proof. Let u, v ∈ V be non-adjacent vertices such that N(u) ⊆ N(v) and ω(u)+ω(v) <

ω(N(v)). Further, let G′ be the reduced graph after applying the reduction to u and
v. We use u′ and v′ to refer to u and v in G′. Note that since ω(v′) = ω(v) + ω(u)
the weight ω(I) = ω(I ′). First, we consider the case that v′ ∈ I ′. We show that
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I = I ′ ∪ {u′} is an MWIS in G. Since v′ ∈ I ′ and u′ and v′ are adjacent in G′ it
holds that u′ /∈ I ′. Now, assume there is a MWIS Ĩ in G with ω(Ĩ) > ω(I). We only
consider the case where u, v ∈ Ĩ, since otherwise, either Ĩ is not maximal, or I, I ′ and
Ĩ are all equal. With u, v ∈ Ĩ we construct an independent set Ĩ ′ = Ĩ \{u, v}∪{v′} in
G′. It holds that ω(Ĩ ′) = ω(Ĩ) since ω(v′) = ω(v) + ω(u). Since I ′ is an MWIS in G′,
it follows that ω(I ′) ≥ ω(Ĩ ′). Now, ω(I) < ω(Ĩ) = ω(Ĩ ′) ≤ ω(I ′) which contradicts
that ω(I) = ω(I ′). For the case of v /∈ I ′, it holds that the weights and sets are
directly equivalent between G and G′, and therefore I = I ′ is an MWIS in G.

Remark 4.2. Initially, adding edges as described in Reduction 4.24 may seem counter-
intuitive since the goal is to reduce the graph size. However, this approach is partic-
ularly valuable for more complex reduction rules that involve solving independent sets
within neighborhoods. By adding edges, additional vertices are incorporated into the
direct neighborhood. This expansion can potentially enable further applications of other
reduction rules, such as Reduction 4.15 or 4.16.

Struction Based Rules

The reduction rule struction is based on the stability number reduction and given in
Reduction 4.25. It was first introduced by Ebenegger et al. [66] for the unweighted
problem. All struction variants presented reduce the stability number αω(G) by the
weight of the center vertex v to which the rule is applied. Note that these rules can
increase the graph size, which is why we refer to this process as transforming. An
important concept used in those reduction rules is layering. For a given set M of
vertices vx,y with two indices x ∈ X and y ∈ Y a layer Lk = {vx,y ∈ M | x = k}
contains all elements with the first index equal to k. Note that in Reduction 4.28, the
sets X and Y can contain vertices or vertex sets.

Reduction 4.25 (Original Weighted Struction by Gellner et al. [91])

Let v ∈ V such that ω(v) = min{ω(u) | u ∈ N [v]}, then transform v.

Reduced Graph Construct the graph G′ as follows
• remove v and set ω(u) = ω(u)−ω(v) for each u ∈ N(v)
• for all x, y ∈ N(v), if {x, y} /∈ E and x < y, then add a

vertex vx,y with N(vx, y) = N({x, y}) \ {v}
and ω(vx,y) = ω(v)
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• for each q ∈ N(v) and all vq,x, vq,y ∈ Lq, if {x, y} ∈ E,
then add the edge {vq,x, vq,y}

• for all q, r ∈ N(v) with q ̸= r and all vq,x ∈ Lq and
vr,y ∈ Lr, add the edge {vq,x, vr,y}

Offset αω(G) = αω(G′) + ω(v)
Reconstruction If I ′ ∩N(v) = ∅ then I = I ′ ∪ {v}, else I = I ′ ∩ V

Gellner et al. [91] created further reductions based on Reduction 4.25. The first
reduction rule they propose is a modification of Reduction 4.25 such that the number
of vertices in the solution I ′ is the same as in the original graph. This is achieved by
assigning different weights and inserting additional edges, resulting in Reduction 4.26.

Reduction 4.26 (Modified Weighted Struction by Gellner et al. [91])

Let v ∈ V such that ω(v) = min{ω(u) | u ∈ N [v]}, then transform v.

Reduced Graph Construct the graph G′ as follows
• remove v and set ω(u) = ω(u)−ω(v) for each u ∈ N(v)
• for all x, y ∈ N(v), if {x, y} /∈ E and x < y, then add a

vertex vx,y with N(vx, y) = N({x, y}) \ {v}
and ω(vx,y) = ω(y)

• for each q ∈ N(v) and all vq,x, vq,y ∈ Lq, if {x, y} ∈ E,
then add the edge {vq,x, vq,y}

• for all q, r ∈ N(v) with q ̸= r and all vq,x ∈ Lq and
vr,y ∈ Lr, add the edge {vq,x, vr,y}

• for each k ∈ N(v) and all vx,y /∈ Lk, add the edge
{vx,y, k}

• for all x, y ∈ N(v), add the edge {x, y} to extend N(v)
to a clique

Offset αω(G) = αω(G′) + ω(v)
Reconstruction If I ′ ∩N(v) = ∅ then I = I ′ ∪ {v},

else I = (I ′ ∩ V ) ∪ {y | vx,y ∈ I ′ \ V }

The Reduction 4.26 is extended by removing the weight restriction for the vertex
v resulting in Reduction 4.27.

Reduction 4.27 (Extended Weighted Struction by Gellner et al. [91])

Let v ∈ V and C the set of all independent sets c in G[N(v)] with ω(v) < ω(c),
then transform v.
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Reduced Graph Construct the graph G′ as follows
• remove N [v]
• for each c ∈ C

– add a vertex vc with ω(vc) = ω(c)− ω(v)
– for each w ∈ N(c) \N(v) add the edge {w, vc}
– for each c′ ∈ C \ {c}, add the edge {vc, vc′}, forming

a clique

Offset αω(G) = αω(G′) + ω(v)
Reconstruction If I ′ ∩ V = {vc}, then I = (I ′ ∩ V ) ∪ c, else I = I ′ ∪ {v}

To potentially reduce the number of vertices, the authors in [91] also proposed
Reduction 4.28. This rule restricts the independent set c ∈ C used in Reduction 4.27
with an additional weight constraint. With this additional restriction, for a vertex v,
only independent sets just greater than the weight ω(v) are used to create new vertices.

Reduction 4.28 (Extended Reduced Weighted Struction by Gellner et al. [91])

Let C be the set of all independent sets in G[N(v)]. We define the set C ′ = {c ∈ C |
∄c′ ∈ C such that c′ ⊊ c and ω(c′) > ω(v)} as the set of independent set with weight
”just” greater than ω(v), then transform v.

Reduced Graph Construct the graph G′ as follows
• remove N [v]
• for each independent set c ∈ C ′

– add a vertex vc with weight ω(vc) = ω(c) − ω(v); call
the set of these added vertices VC′

– for each y ∈ N(v)\N(c), add a vertex vc,y with weight
ω(vc,y) = ω(y); call the set of these added vertices VE

– for each w ∈ N(c) \N(v) add the edge {w, vc}
– for all vc,y ∈ Lc and w ∈ (N(y) ∪N(c)) \N(v) add

the edge {w, vc,y}
• for each vc ∈ VC′ and all vc,x, vc,y ∈ Lc, if {x, y} ∈ E,

then add the edge {vc,x, vc,y}
• for each vc,y ∈ VE and all vc′ ∈ VC′ \ {vc}, add the edge
{vc′ , vc,y}
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• for all vc, vc′ ∈ VC′, add the edge {vc, vc′}, such that VC′

is forming a clique
• for all vc,y, vc′,y′ ∈ VE with c ̸= c′, add the

edge {vc,y, vc′,y′}

Offset αω(G) = αω(G′) + ω(v)
Reconstruction If I ′ ∩ VC′ = ∅, then I = I ′ ∪ {v}, else replace the one

vertex vc ∈ I ′ ∩ VC′ with the vertices in c and all vertices
vc,y ∈ I ′ ∩ VE with y resulting in
I = I ′ \ (VC′ ∪ VE) ∪ c ∪ {y | vc,y ∈ I ′ ∩ VE}

Global Reduction Rules

The following data reductions are not local but could potentially extend to the entire
graph. We further split these into three categories based on the type of reduction.
These are simultaneous sets and unconfined vertices, cut based reductions and the
critical set reduction.

Simultaneous Sets and Unconfined Vertices.

Reduction 4.29 (Simultaneous Set by Xiao et al. [219])

A set of vertices S ⊆ V such that there is an MWIS that either contains all or none
of the vertices in S is called simultaneous. Let S ⊆ V be a simultaneous set, then fold
S into a new vertex v′.

Reduced Graph G′ = G[(V ∪{v′})\S] with ω(v′) = ω(S) and N(v′) = N(S)
Offset αω(G) = αω(G′)
Reconstruction If v′ ∈ I ′, then I = I ′ ∪ S, else I = I ′

As introduced above, Reduction 4.29 is a meta-reduction not used in practice.
However, in the following, we cover rules that are special cases of this reduction. For
the next reduction, a vertex is assumed to be part of all MWIS. If this assumption
leads to a contradiction, the vertex can be excluded following the described algorithm.

Reduction 4.30 (Unconfined Vertices by Xiao et al. [219])

A vertex v can be excluded if a contradiction is obtained from the assumption that
every maximum weight independent set of G includes v. Let S be an independent set
of G. A vertex x ∈ N(S) is called a child of S if ω(x) ≥ ω(S ∩ N(x)) and a child
is called an extending child if |N(x) \ N [S]| = 1. For an extending child, the only
vertex y ∈ N(x) \N [S] is called a satellite of S. Starting with S = {v}, we can find
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a contradiction by repeatedly extending S with a satellite until one of the following
conditions hold:

1. There exists a child x such that N(x) \N [S] = ∅

2. All children x ∈ S have |N(x) \N [S]| > 1

In the second case, the set S confines v, meaning every maximum weight independent
set that contains v also contains S, and we can not reduce. In the first case, v is
called unconfined and can be excluded.

Reduced Graph G′ = G− v

Offset αω(G) = αω(G′)
Reconstruction I = I ′

Next, we extend Reduction 4.30 by Xiao et al. [218]. The intuition behind this
rule is that a vertex v can be removed if a contradiction is obtained by assuming every
MWIS of G includes v. To define the extended rule, we first introduce the following
definitions and lemma.

Let S be an independent set of G. As in the original unconfined reduction, a
vertex x ∈ N(S) is called a child of S if ω(x) ≥ ω(S ∩ N(x)). For each vertex
y ∈ N(x) \N [S], let Ĩy be the MWIS of G[(N(x) \ {y}) \N [S]]. Unlike the original
rule, here, a child is called an extending child if for some y ∈ N(x)\N [S] it holds that
ω(x) ≥ ω(S ∩ N(x)) + ω(Ĩy). Such a vertex y is called a satellite of S. Intuitively,
a satellite is a vertex that must be included in every MWIS under the assumption
that S is contained in every MWIS. If it was not, we would have the contradiction we
are looking for.

Lemma 4.3. Let S be an independent set contained in every MWIS of G. Then,
every MWIS also contains the satellites from each extending child x of S.

Proof. Let S be an independent set contained in every MWIS of G and x ∈ N(S) be an
extending child. Assume, towards a contradiction, that a satellite y exists that is not
part of every MWIS. By definition, ω(x) is now greater or equal to ω(S∩N(x))+ω(Ĩy).
Thus, for any MWIS that includes S but not y, we can replace S∩N(x) and Ĩy with x

to obtain a greater or equally large independent set, which contradicts the assumption
that S was contained in every MWIS of G.

Reduction 4.31 (Extended Unconfined Vertices)

A vertex v ∈ V can be removed if it is unconfined, proven by the following procedure.
Start with a set S = {v}. We assume S is contained in every MWIS in G. We can
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search for a contradiction by repeatedly extending S with satellites from one extending
child until one of the following conditions hold

1. There exists a child x such that ω(x) ≥ ω(S ∩N(x)) + αω(G[N(x) \N [S]]).

2. There exist no further satellites to extend S.

In the second case, the set S confines v, meaning every maximum weight independent
set that contains v also contains S, and we can not remove v. In the first case, v is
called unconfined and can be excluded.

Reduced Graph G′ = G− v

Offset αω(G) = αω(G′)
Reconstruction I = I ′

Proof. Assume that S, initially just {v}, is contained in every MWIS and that Con-
dition 1 holds. By Lemma 4.3, after every extension of S with satellites, S is still
contained in every MWIS in G. But when Condition 1 holds, any MWIS I of G

with S ⊆ I can be modified using the child x to obtain a new independent set
I ′ = {x} ∪ (I \N(x)). From Condition 1, it follows that ω(I ′) ≥ ω(I), breaking the
assumption that S is contained in every MWIS of G. Therefore, v is removable.

Remark 4.4. This extended version of unconfined was already suggested in a remark
by Xiao et al. [219], but they did not introduce it formally as is done here. It is also
important to note that this version of unconfined is not practical in its most general
form. Several MWIS problems need to be solved for each extending child, making it
too computationally intensive for practical implementations. We implement this rule
by restricting it to only search for satellites in neighborhoods that form an independent
set. This way, we can detect multiple satellites from an extending child without solving
any additional MWIS problems.

After having computed the confining sets in Reduction 4.30 or Reduction 4.31, we
can reduce the instance further by working with these sets. In [219] Xiao et al. intro-
duced the notion of a simultaneous set, which is a set of vertices {u, v} ⊆ V , where u

is in the confining set of v and v is in the confining set of u, i. e., u ∈ Sv and v ∈ Su.
In this case, both vertices are either in all MWIS or can both be excluded. Therefore,
these vertices can be folded, as described in Reduction 4.32.

Reduction 4.32 (Simultaneous Confined by Xiao et al. [219])

Let u, v ∈ V and Su, Sv be their corresponding confining sets computed by Reduc-
tion 4.30. If u ∈ Sv and v ∈ Su, then fold u and v into a new vertex v′.
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Reduced Graph G′ = G[(V ∪ {v′}) \ {u, v}] with ω(v′) = ω(u) + ω(v) and
N(v′) = N({u, v})

Offset αω(G) = αω(G′)
Reconstruction If v′ ∈ I ′, then I = (I ′ \ {v′}) ∪ {u, v}, else I = I ′

The next rule works similarly to Reduction 4.30. However, here, we assume a
vertex to be part of no MWIS. If a contradiction is found, we include the vertex.

Reduction 4.33 (Uncovered Vertices by Liu et al. [160])

A vertex v can be included if a contradiction is obtained, assuming that no maximum
weight independent set of G includes v. Let C ⊂ V be a set of vertices that are in no
MWIS of G. For a vertex x ∈ C we define a mirror as a vertex y ∈ N2(x) satisfying
ω(x) ≥ αω(G[N(x)\ (C ∪N(y))]). Starting with C = {v}, we can find a contradiction
by repeatedly extending C with mirrors until one of the following conditions hold:

1. There exists a vertex y ∈ C such that ω(y) ≥ αω(G[N(y) \ C])

2. There are no mirrors to extend the set C

In the second case, the set C covers v, meaning every maximum weight independent
set that does not contain v also does not contain C, and we can not reduce. In the
first case, v is called uncovered and can be included.

Reduced Graph G′ = G−N [v]
Offset αω(G) = αω(G′) + ω(v)
Reconstruction I = I ′ ∪ {v}

Reduction 4.34 (Simultaneous Cover by Liu et al. [160])

Let u, v ∈ V and Su, Sv be their corresponding covering sets computed by Reduc-
tion 4.33. If u ∈ Sv and v ∈ Su, then fold u and v into a new vertex v′.

Reduced Graph G′ = G[(V ∪ {v′}) \ {u, v}] with ω(v′) = ω(u) + ω(v) and
N(v′) = N({u, v})

Offset αω(G) = αω(G′)
Reconstruction If v′ ∈ I ′, then I = (I ′ \ {v′}) ∪ {u, v}, else I = I ′

Cut Based Reduction Rules. The next two reduction rules are based on small
vertex-cuts of a graph. If there is such a cut, one component of the graph can be solved
for all solution combinations in the cut and folded accordingly into new vertices.
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Reduction 4.35 (One Vertex Cut by Xiao et al. [218])

Let v be an articulation point in G and G∗ a connected component in G − v. Let I1

be the optimal solution on G∗ and I2 the optimal solution on G∗ −N(v).
• If ω(v) + ω(I2) ≤ ω(I1), then exclude v and include the vertices in I1.

Reduced Graph G′ = G− (V (G∗) ∪ {v})
Offset αω(G) = αω(G′) + ω(I1)
Reconstruction I = I ′ ∪ I1

• Else, fold v and G∗ to a new vertex v′.

Reduced Graph G′ = G[(V ∪{v′})\V (G∗)] with ω(v′) = ω(v)+ω(I2)−ω(I1)
Offset αω(G) = αω(G′) + ω(I1)
Reconstruction If v′ ∈ I ′, then I = (I ′ \ {v′}) ∪ {v} ∪ I2, else I = I ′ ∪ I1

Reduction 4.36 (Two Vertex Cut by Xiao et al. [218])

Let u, v be a vertex cut, i. e., after removing u and v, the graph G is disconnected into
two components. Let G∗ be a connected component in G − {u, v}. Let the following
sets be MWIS for the respective subgraphs, Iv for G∗ − N [v], Iu for G∗ − N [u], Iu,v

for G∗ −N [{u, v}] and I∗ for G∗. We assume w.l.o.g. that ω(Iv) ≥ ω(Iu), then fold
G∗ into new vertices xu, xv, xu,v.

Reduced Graph Construct G′ by
• removing G∗

• adding xu with ω(xu) = ω(Iu)− ω(Iu,v)
• adding xv with ω(xv) = ω(Iv)− ω(Iu,v)
• adding xu,v with ω(xu,v) = ω(I∗)− ω(Iu)
• adding edges {v, xu}, {xu, xv}, {xv, u}, {v, xu,v} and
{u, xu,v}

Offset αω(G) = αω(G′) + ω(Iu,v)
Reconstruction If u /∈ I ′ and v ∈ I ′, then I = (I ′ \ {xv}) ∪ Iv,

else if u ∈ I ′ and v /∈ I ′, then I = (I ′ \ {xu}) ∪ Iu,
else if u, v ∈ I ′, then I = I ′ ∪ Iu,v,
else I = (I ′ ∩ V ) ∪ I∗

Remark 4.5. For the Reductions 4.35 and 4.36, the authors additionally impose a
bound for the component G∗.
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Critical Weight Independent Set. The critical weight independent set is a costly
but powerful reduction rule. It covers the related crown reductions for the vertex cover
problem [46, 73]. It is also closely related to the known fact that an optimal solution
to the LP-relaxation is always half-integral [170], i. e., the optimal solution will always
have each vertex as 0, 1, or 1

2 . The vertices assigned 0 or 1 in such an optimal LP
solution can be included or excluded, respectively. The following critical set reduction
describes this scenario using the notion of a critical weight IS.

Reduction 4.37 (CWIS by Butenko and Turkhanov [36])

Let Ic ⊆ V be a critical weighted IS of G, i. e., ω(Ic) − ω(N(Ic)) = max{ω(I) −
ω(N(I)) | I is an IS of G}, then include vertices in Ic.

Reduced Graph G′ = G−N [Ic]
Offset αω(G) = αω(G′) + ω(Ic)
Reconstruction I = I ′ ∪ Ic

Despite the short definition, it is probably the most complicated rule to implement
out of all the rules presented in this survey. Ageev [3] introduced a polynomial time
algorithm for how to find a critical weight IS. In the following, we give an outline of
that algorithm. To start, consider the following ILP formulation. For this, we use
two binary vectors X and Y , where X represents the vertices in Ic and Y the vertices
N(Ic). Because X and Y are binary vectors representing these sets, in saying add u

to X, we mean to set the u-th index in X to 1.

max
∑

u∈V

ω(u)Xu − ω(u)Yu

s.t. Yu ≥ Xv ∀ {u, v} ∈ E

Xu, Yu ∈ {0, 1} ∀u ∈ V

In this formulation, for each vertex u added to X, the neighborhood N(u) must be
added to Y . The objective value for an optimal solution to this ILP is non-negative
since adding all vertices to X and Y is a feasible solution of weight zero. Note that
with this definition, an optimal solution is not guaranteed to be an independent set.
However, as Ageev points out, we can always find an independent set with the exact
same objective value by selecting all isolated vertices in the induced graph obtained
from the elements in X. This is true because any vertices in X with other neighbors in
X must also be in Y . Therefore, these vertices contribute exactly zero to the objective
value. We introduce this ILP formulation because it is an instance of a simpler problem
called the Selection problem that can be solved in polynomial time [18].
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Figure 4.6: This illustration shows how a CWIS can be found efficiently by identifying
a maximum flow in a bipartite graph constructed from the original graph. Starting
from the original graph in the top left, we construct the bipartite graph shown on the
bottom left. All the edges between the two main layers, shown in yellow, have infinite
capacity. After identifying a maximum flow in this bipartite graph, the residual graph
is shown on the bottom right. A CWIS can now be found by running a BFS or DFS
in the residual graph starting from s. All the vertices we can reach in the first layer
make up a CWIS. In the example, the vertices u1, u2, and u3 can be reached using
the path highlighted in green. Note that we must construct the bipartite graph for
the entire input graph to ensure correctness.

Balinski introduced an algorithm for the Selection problem that we can use
to identify a CWIS directly [18]. The algorithm solves a Maximum Flow problem
on a special flow graph constructed from the original graph. An illustration of this
algorithm is shown in Figure 4.6. The flow graph construction starts with a directed
bipartite graph with two sets of the original vertices V and V ′. For each edge {u, v} ∈
E in the original graph, we add a directed edge from u ∈ V to v ∈ V ′ with infinite
capacity in the bipartite graph. Then, add two more vertices s and t. For each vertex
u ∈ V , add the directed edge (s, u) with capacity ω(u), and for each vertex u ∈ V ′,
add the directed edge (u, t) with capacity ω(u). In this flow graph, we want to find
a minimum cut. By removing the edges in this minimum cut, any vertices in V that
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can still be reached from s make up our critical weight IS. As shown in Figure 4.6,
we can do this directly by running a BFS or DFS from s in the residual graph after
solving the Maximum Flow problem.

Twin Based Reduction Rules

Two vertices u and v which are not connected but have the same neighborhood
are called twins. These present a special case of Reduction 4.29 and can be re-
duced by the following reduction. With a hash function, this reduction can be
checked very efficiently.

Reduction 4.38 (Twin by Lamm et al. [149])

Let u, v ∈ V have equal, independent neighborhoods N(u) = N(v) = {p, q, r}.
• If ω({u, v}) ≥ ω({p, q, r}), then include u and v.

Reduced Graph G′ = G−N [{u, v}]
Offset αω(G) = αω(G′) + ω(u) + ω(v)
Reconstruction I = I ′ ∪ {u, v}

• If ω({u, v}) < ω({p, q, r}) but ω({u, v}) > ω({p, q, r})−min{ω(x) | x ∈ {p, q, r}},
then fold u, v, p, q, r into a new vertex v′.

Reduced Graph G′ = G[(V ∪{v′})\(N [v]∪{u})] with ω(v′) = ω({p, q, r})−
ω({u, v}) and N(v′) = N({p, q, r})

Offset αω(G) = αω(G′) + ω({u, v})
Reconstruction If v′ ∈ I ′, then I = (I ′ \ {v′}) ∪ {p, q, r},

else I = I ′ ∪ {u, v}

Reduction 4.38, which is a special case of Reduction 4.29, can also be applied if
the neighborhood is larger, as mentioned in [149]. We generalize Reduction 4.38 to
the case if the neighborhood if not an independent set. The main idea is that for
two twins vertices, any maximal solution should include either both or none of these
vertices. Therefore, we can fold the twin vertices. In special cases, we can also fold
these twin vertices with their neighborhood.

Reduction 4.39 (Extended Twin)

Let u, v ∈ V be non-adjacent and with equal neighborhoods N(u) = N(v). Let further
IN(v) be an MWIS on G[N(v)].
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• If ω(u) + ω(v) ≥ ω(IN(v)), then include u and v.

Reduced Graph G′ = G−N [{u, v}]
Offset αω(G) = αω(G′) + ω(u) + ω(v)
Reconstruction I = I ′ ∪ {u, v}

• If ω(u) + ω(v) < ω(IN(v)) but IN(v) is the only independent set in N(v) with this
property, then fold u, v, and N(v) into v′.

Reduced Graph G′ = G[(V ∪ {v′}) \N [{u, v}]] with N(v′) = N(N [{u, v}])
and ω(v′) = ω(IN(v))− ω(u)− ω(v)

Offset αω(G) = αω(G′) + ω(u) + ω(v)
Reconstruction If v′ ∈ I ′, then I = (I ′ \ {v′})∪ IN(v), else I = I ′ ∪ {u, v}

• Otherwise, fold u and v into a new vertex v′.

Reduced Graph G′ = G[(V ∪ {v′}) \ {u, v}] with N(v′) = N({u, v}) and
ω(v′) = ω(v) + ω(u)

Offset αω(G) = αω(G′)
Reconstruction If v′ ∈ I ′, then I = I ′ \ {v′} ∪ {u, v}, else I = I ′

Proof. Let u, v ∈ V be twin vertices, i. e., non-adjacent vertices such that N(u) =
N(v). Since they share the same neighborhood, no maximal solution only includes
one of these vertices. Therefore, we can fold the two vertices into a new vertex v′

with weight ω(v′) = ω(v) + ω(u) as is done in the third case. For the first case, if
ω(u) + ω(v) ≥ ω(IN(v)) and there is a solution I not including v′, then we can always
construct an equal or better solution I ′ = I \ N(v) ∪ {u, v} and therefore we can
include the vertices u and v.

In the second case, we first assume that v′ ∈ I and show that ω(IN(v)) + αω(G−
N [N [v]]) ≥ ω(v) + ω(u) + αω(G−N [v]). This implies that the set IN(v) is contained
in some MWIS of G. Since v′ ∈ I, we know that

ω(u) + ω(v) + αω(G′) = ω(u) + ω(v) + ω(v′) + αω(G′ −NG′ [v′])

= ω(u) + ω(v) + ω(IN(v))− ω(u)− ω(v) + αω(G′ −NG′ [v′])

= ω(IN(v)) + αω(G′ −NG′ [v′]).

Since I ′ is an MWIS of G′, we have ω(u)+ω(v)+αω(G′) ≥ ω(u)+ω(v)+αω(G′−v′) =
ω(u) + ω(v) + αω(G − N [v]). Now suppose that v′ /∈ I. For this case we show
ω(u) + ω(v) + αω(G − N [v]) ≥ ω(IN(v)) + αω(G − N [N [v]]), which implies that u
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and v are in some MWIS of G. Since now v /∈ I ′, we get ω(u) + ω(v) + αω(G′) =
ω(u) + ω(v) + αω(G′ − v′) = ω(u) + ω(v) + αω(G − N [v]). As I ′ is an MWIS of G′,
we also get

ω(u) + ω(v) + αω(G′) ≥ ω(u) + ω(v) + ω(v′) + αω(G′ −NG′ [v′])

= ω(u) + ω(v) + ω(IN(v))− ω(u)− ω(v) + αω(G−N [N [v]])

= ω(IN(v)) + αω(G−N [N [v]]).

Since IN(v) is the only independent set in G(N [v]) with higher weight than ω(u)+ω(v)
v is in some MWIS of G. We get αω(G) = ω(u) + ω(v) + αω(G − N [v]) = ω(u) +
ω(v) + αω(G′).

Note that the third case of Reduction 4.39 is already used in [150] but not intro-
duced in this way by Lamm et al. [149]. Now we extend the idea of Reduction 4.39.
For the following reduction rule, we no longer require the neighborhoods of the two
vertices u and v to be equal but assume that N(u) ⊆ N(v). If ω(u)+ω(v) ≥ ω(N(v))
the vertex u is always in an MWIS. The idea is that we can always replace vertices
x ∈ N(v) in a solution with u and v and thereby get an equal or better solution.

Reduction 4.40 (Almost Twin. Figure 4.7)

Let u, v ∈ V be non-adjacent vertices such that N(u) ⊆ N(v). If ω(u) + ω(v) ≥
ω(N(v)), then include u.

Reduced Graph G′ = G−N [u]
Offset αω(G) = αω(G′) + ω(u)
Reconstruction I = I ′ ∪ {u}

Proof. Let u, v ∈ V be non-adjacent vertices such that N(u) ⊆ N(v) and ω(u) +
ω(v) ≥ ω(N(v)). Assume there is an MWIS I of G not containing u. Then, there is
a vertex x ∈ N(u) such that x ∈ I, which again results in v /∈ I. We can therefore
construct a new solution I ′ = I \ N(v) ∪ {u, v} with ω(I ′) ≥ ω(I). It follows that
there always exists an MWIS that includes u.

Remark 4.6. The Reduction 4.40 can be extended as well. Instead of requiring that
ω(u) + ω(v) ≥ ω(N(v)) the same reduction can also be applied if ω(u) + ω(v) ≥
αω(G[N(v)]) since an MWIS for N(v) is a subset of N(v).

Remark 4.7. Note that applying Reduction 4.23 creates exactly the pattern needed
for Reduction 4.40. If the weight constraint is satisfied, u and v are almost twins, and
Reduction 4.40 can be applied.
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Figure 4.7: Illustration of the Almost Twin (Reduction 4.40). In the original graph
on the left, N(u) ⊆ N(v) with ω(u) + ω(v) ≥ ω(N(v)). By applying Reduction 4.40,
u is included and its neighbors excluded from I, resulting in the reduced graph
on the right.

4.1.2 Discussion of Data Reductions in Practice

This section focuses on the practical application of data reductions for the MWIS and
MWVC problems. First, we discuss the relations between the reductions and their
computational cost in practice. Then, we survey the use of these data reduction rules
in practical solvers developed for these problems.

Relations Between Data Reductions

Table 4.1: Overview of all data reduction rules grouped by their type. We give
additional information about where they are (first) introduced and on what page of
the paper. Reduction rules marked with code were not formally introduced in a paper
but were implemented in the associated source code.

Ref. Reduction Name Type Introduced By In At

4.1 Degree One Low Degree Gu et al. [107] 2021 p.4
4.2 Triangle Low Degree Gu et al. [107] 2021 p.5

4.3 V-Shape Low Degree
Lamm et al. [149] 2019 p.7
Gu et al. [107] 2021 p.5

4.4 3-Path Low Degree Xiao et al. [218] 2024 p.10
4.5 4-Path Low Degree Xiao et al. [218] 2024 p.12
4.6 4-Cycle Low Degree Xiao et al. [218] 2024 p.11
4.7 5-Cycle Low Degree Xiao et al. [218] 2024 p.13
4.8 6-Cycle Low Degree Xiao et al. [218] 2024 p.15

4.9 Heavy Vertex Neighborhood Lamm et al. [149] 2019 p.5

Continued on next page
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Table 4.1 – Continued from previous page
Ref. Reduction Name Type Introduced By In At

4.10 Neighborhood Removal Neighborhood Lamm et al. [149] 2019 p.6

4.11
Clique Neighborhood
Removal

Neighborhood
Lamm et al. [150,
149]

2019 code

4.12 Neighborhood Folding Neighborhood Lamm et al. [149] 2019 p.5

4.13
Generalized Neighborhood
Folding

Neighborhood
Lamm et al. [150,
149]

2019 code

4.14
Two Vertex Neighborhood
Removal

Neighborhood Zheng et al. [224] 2020 p.3

4.15 Heavy Set Neighborhood Xiao et al. [219] 2021 p.4
4.16 Heavy Set 3 Neighborhood New

4.17 Simplicial Vertex Clique Lamm et al. [149] 2019 p.6
4.18 Simplicial Weight Transfer Clique Lamm et al. [149] 2019 p.6
4.19 Weighted Funnel Clique New

4.20 Domination Domination Lamm et al. [149] 2019 p.7
4.21 Basic Single Edge Domination Gu et al. [107] 2021 p.6
4.22 Extended Single Edge Domination Gu et al. [107] 2021 p.6

4.23 Extended Domination Domination New

4.24
Extended Domination
Reversed

Domination New

4.25
Original Weighted
Struction

Struction Gellner et al. [91] 2021 p.4

4.26
Modified Weighted
Struction

Struction Gellner et al. [91] 2021 p.4

4.27
Extended Weighted
Struction

Struction Gellner et al. [91] 2021 p.5

4.28
Extended Reduced
Weighted Struction

Struction Gellner et al. [91] 2021 p.5

4.29 Simultaneous Set Global Xiao et al. [219] 2021 p.4
4.30 Unconfined Vertices Global Xiao et al. [219] 2021 p.4

4.31
Extended Unconfined
Vertices

Global New

Continued on next page
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Table 4.1 – Continued from previous page
Ref. Reduction Name Type Introduced By In At

4.32 Simultaneous Confined Global Xiao et al. [219] 2021 p.4
4.33 Uncovered Vertices Global Liu et al. [160] 2023 p.16
4.34 Simultaneous Cover Global Liu et al. [160] 2023 p.17
4.35 One Vertex Cut Global Xiao et al. [218] 2024 p.17
4.36 Two Vertex Cut Global Xiao et al. [218] 2024 p.19

4.37
Critical Weight
Independent Set

Global
Butenko and
Turkhanov [36]

2007 p.2

4.38 Twin Twin Lamm et al. [149] 2019 p.7
4.39 Extended Twin Twin New
4.40 Almost Twin Twin New

In the previous sections, we gave an overview of several different reduction rules
with varying complexities, summarized in Table 4.1. Some of these rules are fast,
e. g., Reduction 4.1, while others, if not bound, have exponential running time (Re-
duction 4.35). Furthermore, most of the reduction rules are special cases of other,
more general reduction rules. This section discusses the relations between different
reduction rules and gives a rough overview of their (practical) running times and com-
plexities. Figure 4.8 presents most of the introduced reductions and their relations.
The reduction rules are approximately sorted by decreasing practical running times
from top to bottom. The most general rule for simultaneous sets is ranked highest and
only added as a meta reduction since there is no efficient way of finding general simul-
taneous sets. The CWIS reduction has a polynomial running time but must be applied
to the whole graph. Compared to other reductions that can be bounded and applied
locally only for small neighborhoods, the CWIS reduction is more computationally
expensive in practice, even if some of these other reductions have exponential running
time if left unbounded (marked in yellow). Their performance heavily depends on the
size bound for the subproblem to solve. Among these yellow-marked rules, we sorted
them according to how often an independent set has to be solved on the bounded
subgraph. For example, the heavy set and generalized fold reductions have to solve
multiple MWIS and are therefore considered slower than the heavy vertex reduction.
The Degree One, V-Shape, and Triangle are the fastest reduction rules. Note that all
path and cycle rules in Section 4.1.1 are covered by Triangle and V-Shape, but not
necessarily faster and therefore omitted in this figure.

The arrows in Figure 4.8 describe the relation between different reduction rules.
These are always directed from a general to a special case. Note the use of transitivity
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Extended
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Critical Set (4.37)
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Removal (4.14)

Neighbor
Removal (4.14)

Clique
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Isolated
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Funnel (4.19)
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Almost
Twin (4.40)
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Figure 4.8: This figure gives an overview of the presented reduction rules and their
relations. Two rules, A and B, are connected with an arrow from A B if rule A
is a more generalized form and can also reduce the patterns reduced by Reduction B.
A dashed arrow indicates that the rule B is part of rule A. The rules are intuitively
sorted by complexity, starting with the more computationally expensive rules at the
top. Hence, more general rules are always above their special case rules. Note that
even though the critical set rule can be applied in polynomial time, it has to be applied
to the whole graph. That makes the rule more computationally expensive than other
rules that have to solve the MWIS on a bounded subgraph, marked in yellow. The
Simultaneous Set rule is only added as a meta reduction and is not implemented in
the most general case. The struction-based rules are omitted since they transform the
graph, so they are not easily comparable to the other reduction rules.

for this relation; therefore, some edges are omitted. For example, the Heavy Vertex
rule covers the Clique Neighborhood Removal rule, which again covers the simpler
Neighborhood Removal rule. Because of this, Neighborhood Removal is also a special
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Table 4.2: Presentation of groups of data reduction rules used by different algorithms
with implementations and experimental evaluation, sorted by year when the solver
was first published. The reductions combined in the different groups are mentioned
in the parenthesis after the group name.

Year Algorithm Deg
ree

One

Deg
ree

Two

Neig
hbor

hoo
d

Dom
inati

on

Cliq
ue

Twin
Unco

nfined

CW
IS
Stru

cti
on

Hea
vy

Set

Cut

2018 NuMWVC [156] ✓ ✓

2019 KaMIS BnR [149] ✓ ✓ ✓ ✓ ✓ ✓ ✓

2019 BMWVC [211] ✓ ✓ ✓

2020 MAE-HTS [212] ✓ ✓

2020 DtTwo [224] ✓

2021 Solve [219] ✓ ✓ ✓ ✓ ✓ ✓

2021 HtWIS [107] ✓ ✓ ✓

2021 Struction [91] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2022 GNN-VC [153] ✓ ✓ ✓ ✓ ✓ ✓ ✓

2023 m2wis [102] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2024 C-B&R/C-Search [160] ✓

2024 HGLV [200] ✓ ✓

2024 LearnAndReduce [104] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Group Reductions

Degree One 4.1
Degree Two 4.2-4.8
Neighborhood 4.10 -4.14
Domination 4.20, 4.21, 4.22
Clique 4.17, 4.18
Twin 4.38, 4.39, 4.40
Unconfined 4.30-4.34
CWIS 4.37
Struction 4.25-4.28
Heavy Set 4.15
Cut 4.35, 4.36

case of Heavy Vertex. However, this transitivity does not apply to dashed arrows.
For example, the Uncovered Vertices rule is used to compute the covering sets in
Simultaneous Cover, a special case of Simultaneous Set. However, the more general
Simultaneous Set rule can not necessarily reduce the patterns that the Uncovered
Vertices rule does. Furthermore, if a reduction rule has multiple cases, we add an
arrow if only one is covered. For example, we need the Generalized Fold and the
Neighborhood Removal rules to cover the V-Shape reduction fully. Looking at the
relations between the different rules, we see that the Heavy Set and Generalized Fold
reductions are very powerful and cover all the low degree, clique, and neighborhood-
based reduction rules. Then, there are reductions derived from the simultaneous set
meta reduction, cut reductions, and the reductions Unconfined Vertices and Uncovered
Vertices, which are not special cases of other rules.

Practical Use of Data Reductions in Different Solvers

We now examine which data reduction rules are utilized and evaluated in practical
implementations. In Table 4.2, we list all the algorithms that use data reduction rules
for solving the Maximum Weight Independent Set or Minimum Weight Ver-
tex Cover problems in practice. For each solver, we mark which rules are utilized.
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The most commonly used reduction rules are the degree bounded rules (Degree One,
V-Shape, and Triangle) and the Neighborhood Removal rule. These rules are fast to
compute and effective in practice. After these simple rules, domination-based reduc-
tions are applied most often. These reduction rules are used in 5 of the 12 algorithms
considered. The clique-based reductions and the Critical Weight Independent Set
reductions are used in four different solvers.

The reduction rules Struction, Unconfined, and Heavy Set are used only in two
algorithms. The cut-based rules, introduced in a theoretical paper [218], are not
used in any practical solver. An explanation for why only a few implementations
use these rules could be that they are more computationally expensive than the
more popular reductions.

4.1.3 Experiments on Ordering of Reduction Rules

This section presents the experimental evaluation of the effect of different orderings
in which data reductions are applied. We examine the impact of different orderings
on solution size and running time. One outcome of this evaluation is robust orderings
of reductions for exact reduction rules and a specific ordering that can improve the
solution quality at the expense of computation time.

Different orderings of applying data reductions yield different sizes of the reduced
graph. Additionally, the ordering impacts the running time of the reduction process.
For example, this effect has been described by Figiel et al. [76]. In this section, we
perform experiments to evaluate the impact different orderings may have. Therefore,
we run the ExactReduce routine (see Algorithm 1), i. e., we apply the reductions
in a given ordering exhaustively and report the results.

Methodology. We implemented our algorithm using C++11. The code is compiled
using g++ version 12.2 and full optimizations turned on (-O3). For the experiments,
we use Machine 1. We run each configuration with four different seeds and a time limit
of ten hours. We always report the geometric mean results if not stated otherwise.

Instance Set 1 (Main). This set consists of 207 graphs from different sources. It
contains large social networks from the Stanford Large Network Dataset Repository
(snap) [155]. Additionally, real-world graphs from OpenStreetMaps (osm) [1, 20, 37].
Furthermore, as in Gu et al. [107] we took the same 6 graphs from the SuiteSparse
Matrix Collection (ssmc) [53] where weights correspond to population data. Each
weight was increased by one to avoid many vertices assigned zero weight. Additionally,
we used instances from dual graphs of well-known triangle meshes (mesh) [185], as
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well as 3d meshes derived from simulations using the finite element method (fe) [210].
For unweighted graphs, we assigned each vertex a random weight uniformly distributed
in the interval [1, 200]. We list all graphs in Table A.1 in the Appendix.

Initial Ordering as a Baseline

Our starting point is an intuitive ordering, which we constructed by the simplicity
of the reductions, from simplest to most complex. Hereby, we orientate towards the
ordering by Akiba and Iwata [4]. This initial ordering is given in Reduction List 4.1.
The following experiments use it as a baseline for comparisons. Note that we did not
use the full set of reduction rules introduced in Section 4.1.

Reduction List 4.1.

R4.1 := [4.1, 4.10, 4.2, 4.3, 4.17, 4.21, 4.22, 4.38, 4.18, 4.37, 4.12, 4.15]

Orderings Based on Impact of Single Reductions

Since the space of all possible orderings of data reductions is too large to evaluate
exhaustively, we make different restrictions. First, we start our evaluation by examin-
ing the impact of disabling single reductions from Reduction List 4.1. In detail, we
run ExactReduce with Reduction List 4.1 and then build a reduction list where
exactly one data reduction of the Reduction List 4.1 is disabled. The ordering of the
remaining data reductions has not been changed. The time to apply all reductions
exhaustively using our baseline ordering is denoted as tR4.1 and the size of the reduced
instance by those reductions is denoted as ωall. Then, we create different data re-
duction orderings from the baseline in which a single data reduction is disabled. For
each of the available reductions r, we get a new time tR4.1\r and solution weight ωR4.1\r

which corresponds to running all reductions except r of the baseline (and in its order).
Based on these values, we derive three orderings: a time-based ordering, a size-based
ordering, and a combination of both.

Time-based Ordering. For the time-based ordering we rearranged the reductions
such that the mean tR4.1\r is decreasing. The intuition here is that if removing a
reduction from the baseline yields an ordering that has an excessive running time, then
this reduction is important for running time and should be applied before a reduction
that has a smaller impact. Reductions with only small effects, where the mean solution
quality ωR4.1\r is equal to the mean solution quality for ωR4.1 , are disabled to reduce
the running time further. This results in the ordering Reduction List 4.2.
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Reduction List Ri tRi/tR4.1 n(KRi)/n(KR4.1) # best

R4.1 (initial) 1.00 1.000 180/207
R4.2 (time) 1.06 1.021 161/207
R4.3 (size) 1.46 1.074 164/207
R4.4 (time&size) 1.60 0.998 191/207

Table 4.3: Comparing the geometric mean of running times and reduced graph sizes
for different orderings relative to the initial ordering, n(K) is the number of vertices in
the reduced graph. Additionally, we count how often an ordering found the smallest
reduced graph compared to the other orderings (# best).

Reduction List 4.2.

R4.2 := [4.3, 4.21, 4.38, 4.3(case3), 4.10, 4.22, 4.1, 4.17, 4.2, 4.37, 4.15]

Size-based Ordering. For the size-based ordering, the reductions are rearranged
in decreasing order according to the mean value ωR4.1\r over all graphs. The intuition
here is that if ωR4.1\r is large, then not using r has a large impact on the size of the
reduced instance and hence should be applied before a reduction that has a smaller
impact. The resulting ordering is given in Reduction List 4.3.

Reduction List 4.3.

R4.3 := [4.3, 4.21, 4.37, 4.38, 4.3(case3), 4.15, 4.17, 4.2, 4.1, 4.10, 4.22, 4.11, 4.12]

Time and Size-based Ordering. Here we use a combination with xR4.1\r = tR4.1\r+
10 · ωR4.1\r decreasingly to order reductions. We use a factor of 10 here since solution
quality is typically more important for applications than running time. This results
in the ordering Reduction List 4.4.

Reduction List 4.4.

R4.4 := [4.3, 4.21, 4.37, 4.38, 4.17, 4.3(case3), 4.15, 4.2, 4.1, 4.10, 4.22, 4.11, 4.12]

Discussion. The results for the previous orderings are presented in Table 4.3. Dif-
ferent orderings do not yield significant differences compared to the initial ordering.
We observe that the Reduction List 4.2 (time) as well as the Reduction List 4.3 (size)
are not able to improve either the size of the reduced instance or the computation
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time. The Reduction List 4.4 (time&size) can compute smaller instances at the ex-
pense of an additional 60 % of running time. With this, we are able to find 191 out of
207 smallest reduced instances. However, the geometric mean size improvement com-
pared to Reduction List 4.1 is less than 0.2 %. The experiments show that this initial
ordering already yields a good trade-off for running time and reduced instance size.

When examining the positions for the reductions, we note that some reductions
remain at approximately the same position, meaning they are either very important
for solution size and quality or the opposite. For example Reductions 4.3 and 4.21 are
applied at the beginning, whereas, for example, Reduction 4.11 is applied towards the
end or removed. On the other hand, there also are reductions that are on completely
different positions, e. g., Reduction 4.37. The findings of these first experiments are
summarized in the following observation.

Observation 4.1.1: Time and Size-Based Orderings of Reductions. Our
experiments show that the reduction order affects the size of the reduced instance
and, especially, the running time. The Reduction List 4.1 with the initial ordering
of the reductions is already robust w.r.t. the orderings considered in this section.
The Reduction List 4.4 can be beneficial on some instances, however, it is also the
most expensive regarding running time.

Orderings Based on Impact of Groups of Reductions

In the following experiments, we further want to examine the solution space more
broadly. This we do by looking at the performance of different permutations. Since the
total number of possible permutations is too high, we add some additional restrictions.

Therefore, we divide the reductions into three groups of roughly similar complexity.
We examine each of these groups individually by only permuting the order in that
group. The groups and their position relative to other groups always stay the same.

The first group contains Reduction 4.1 and Reduction 4.10, while the second group
consists of reductions for vertices of degree two, which are Reductions 4.2 and 4.3. The
third group contains all remaining reductions that are listed in Reduction List 4.1.

Permutations in the First and Second Group. We now examine all permuta-
tions in the first two groups. Since the groups always stay in a fixed order, Reduc-
tions 4.1 and 4.10 are always the first two reductions applied. Reductions of the third
group are applied as in the Reduction List 4.1. Overall, our experiments show that
the order of the reductions in the first two groups has a negligible effect on the run-
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ning time and quality of a solution. Thus, we use the initial ordering for reductions
in these groups for the remaining experiments.

Permutations in the Third Group. We now examine permutations in the third
group of reductions. Here, we furthermore restrict the number of permutations by
applying Reduction 4.12 always at the end and Reduction 4.21 always followed by
Reduction 4.22. The best-performing permutation is given in Reduction List 4.5.

Reduction List 4.5.

R4.5 := [4.1, 4.10, 4.2, 4.3, 4.3(case3), 4.17, 4.38, 4.37, 4.11, 4.21, 4.22, 4.12]

The geometric mean weight improvement found is wR4.5/wR4.1 = 1.002,3 and the
geometric mean time compared to the initial ordering is tR4.5/tR4.1 = 2.9. We sum-
marize the results of the ordering experiments in Observation 4.1.2.

Observation 4.1.2: Permutation Orderings for Reductions. Overall, some
orderings perform better than the initial ordering by complexity. These improve-
ments are only observed on a few instances and result in a significant increase in
running time. In most cases, all orderings yielded similar results. Among those, the
initial ordering remains one of the fastest.

We conclude that the Reduction List 4.1 with the initial ordering presents a very
stable reduction ordering. Nevertheless, for some graphs, it might be worth trying
multiple runs of ExactReduce using one of the other orderings we presented in this
section as well.

4.2 GNN Guided Preprocessing LearnAndReduce

In this section, we introduce an advanced, exact preprocessing tool LearnAndRe-
duce that employs Graph Neural Networks (GNNs) to decide where to apply data
reduction rules. In Section 4.2.1, we introduce the different GNN models evaluated
for this task. We then present a new dataset for supervised learning in Section 4.2.2.
Finally, we evaluate the performance of the LearnAndReduce preprocessing in
Section 4.2.4. Here, we evaluate first the GNN architectures and then the overall
performance of the LearnAndReduce preprocessing.

References. This section is based a publication which is joint work with Kenneth
Langedal and Christian Schulz [104]. Large parts are copied verbatim from the paper.
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Our Results. With our GNN filtering, we can now apply reduction rules that were
previously unused in other works due to the computational cost required to determine
their applicability, as discussed in Section 4.1.2. In particular, we present a new
dataset with labeled vertices for the problem of early reduction rule screening. The
dataset contains two collections of graphs, one with unreduced instances and one
after running a set of fast reductions. The second is the one we use for the early
reduction rule screening, and it consists of more than one million labeled vertices.
Using LearnAndReduce, we can reduce our instances to within one percent of
what is possible using the full set of reduction rules while spending less than 23 % of
the corresponding time. These results are adjusted for fast reduction rules that would
always be applied.

Some of the reductions previously introduced need to solve additional MWIS prob-
lems on subgraphs, if these rules are not bounded, preprocessing using these rules
could take exponential time. For practical use, the more costly reductions are limited
in some way, especially for large instances. This is done, for example, by limiting
the degree of the vertex to apply the reduction on, the subgraph size, or the time
spent on each vertex. In Section 4.2.1, we introduce a new GNN application in the
form of early data-reduction screening. We also provide a new and openly available
supervised-learning dataset with graphs and labeled vertices for each reduction rule.
At inference, for each expensive data reduction rule, a pre-trained GNN model decides
what vertices should be checked for the applicability of the rule.

4.2.1 Graph Neural Network Models

In this section, we introduce a new screening method based on Graph Neural Networks
(GNN). This method decides when to apply data reductions. We also provide a new
and openly available supervised-learning dataset with graphs and labeled vertices for
each reduction rule. For each expensive reduction rule used in the preprocessing, a
pre-trained GNN model will limit the set of vertices that should be checked for using
the reduction rule. GNNs are recent additions to the field of artificial intelligence
that bring successful ideas from conventional deep learning to the irregular structure
of graphs [217]. Where traditional deep learning focuses on structured input, such as
the grid of pixels in an image, GNNs accept the unstructured data of a graph.

As a first stage of this task, we evaluate the most popular GNN architectures used
in combinatorial optimization, namely Graph Convolutional Network (GCN) [139] and
Graph Sample and Aggregate (GraphSAGE) [115]. In addition to GCN and Graph-
SAGE, we also introduce a slightly altered GNN architecture, which we name the
LearnAndReduce-model (LR). At a high level, these GNN architectures combine
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conventional neural networks with message passing. In this message passing, every
vertex sends messages to its neighbors and aggregates the received messages. One iter-
ation of message passing and a neural network transformation makes up a GNN layer.
Several of these layers are stacked on top of each other to make up a GNN model.
The goal is that after these message-passing layers, the final vertex embedding can be
used to estimate how likely a reduction rule will succeed at this vertex.

An undirected graph G = (V, E, H) is given as input to the model, where H is
the initial feature representation for the vertices in the graph. Any number of vertex
features can be used. Using the vertex weight is an obvious choice, but additional
features such as vertex degrees and local clustering coefficients are common [154].
Note that computing complicated features for the vertices can add significant compu-
tational overhead to the model, which is important for our application since running
the model should not take longer than checking the reduction rules. This feature
representation will change after each layer in the model. For a vertex u ∈ V at layer l,
the feature representation is denoted by H(l)

u . The length d of the feature vector at
layer l is denoted by d(l). Stacking all the feature vectors at the l’th layer gives the
matrix H(l) ∈ R|V |×d(l) . Independent from any input graph, every layer in the GNN
model has trainable parameters W (l), bias b(l), and a non-linear activation function
σ. Every model uses the ReLU(x) := max(0, x) activation function for internal layers
and Sigmoid(x) := 1

1+e−x for the output layer. Note that these activation functions
are applied element-wise when the input is a vector. With this, we define each model
used for testing.

Graph Convolutional Network. The GCN architecture was the first successful
extension of convolutional neural networks to work directly on graphs. At each layer
in a GCN model, every node aggregates information from its immediate neighbors
and combines it with its own data. After this, the information stored in each node
is passed through the layer-specific neural network to create the node information for
the next layer. The layer-wise propagation rule can be seen in Algorithm 7. Not that
the GCN model assumes that there are self-edges added to the input graph. If not, a
vertex will not include its own feature representation in the neighborhood aggregation.

Algorithm 7: GCN propagation rule. Self-edges are added to the input
graph, and Tu is a temporary variable holding the aggregated feature vectors
of the neighbors of u.

for u ∈ V do
Tu ←

∑
v∈N(u) H(l)

v /
√
|N(v)|

H(l+1)
u ← σ(W (l) · Tu + b(l))
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Graph Sample and Aggregate. GraphSAGE expands on GCN in two notable
ways. First, it can use any differentiable aggregation function, such as aggregating
the neighborhood based on mean, max, sum, or even more complicated functions,
such as a long short-term memory (LSTM) machine-learning model. Second, Graph-
SAGE concatenates the feature vector of a vertex with the aggregated information
from its neighborhood. This is in contrast to the self-edges of the GCN and allows in-
formation to skip from one layer to the next without going through the neighborhood
aggregation. The general layer-wise propagation rule can be seen in Algorithm 8.

Algorithm 8: GraphSAGE propagation rule. Tu is a temporary variable
holding the aggregated feature vectors of the neighbors of u.

for u ∈ V do
Tu ← AGGREGATE({H(l)

v | v ∈ N(u)})
H(l+1)

u ← σ(W (l) · CONCAT(H(l)
u , Tu) + b(l))

Learn and Reduce. The proposed LearnAndReduce (LR) architecture dif-
fers slightly from the GCN and GraphSAGE architectures. Instead of applying the
weighted transformation after the aggregation, it is applied during the neighborhood
aggregation. Algorithm 9 gives the exact layer-wise propagation rule. To give an intu-
ition for why this approach could learn reduction rules better than GCN and Graph-
SAGE, consider the case of the extended single-edge reduction. For this reduction rule,
we are looking for two adjacent vertices u, v ∈ V such that ω(v) ≥ ω(N(v)) − ω(u).
For more information on this reduction rule, see Table 4.4 or Gu et al. [107]. As-
suming the node weights and neighborhood weights are given as input features, the
LR architecture could conceivably detect this pattern during the first layer of the
model since the concatenated feature representation of u and v would contain all
the necessary information to decide if the rule can be applied. In contrast, GCN
and GraphSAGE would aggregate the entire neighborhood before the first weighted
transformation, potentially obscuring the necessary information required to make the
correct prediction. This is not a novel GNN architecture and could arguably fit into
the GraphSAGE framework.

Algorithm 9: LearnAndReduce propagation rule. The main difference
with this architecture compared to GCN and GraphSAGE is the use of
weighted transformation during neighborhood aggregation.

for u ∈ V do
H(l+1)

u ← MEAN({σ(W (l) · CONCAT(H(l)
u , H(l)

v ) + b(l)) | v ∈ N(u)})
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4.2.2 Training Data Generation

The supervised-learning dataset contains each instance twice, first the original in-
stances without any reductions applied, and second the same instance after applying
a set of fast reductions. These fast reductions are not considered relevant for early
screening because they are so computationally cheap that we would always check them
exhaustively. Table 4.4 gives a summary of these reductions. We refer to these two
versions of the same instance as original and reduced. The truth labels for each
reduction rule are generated by testing the rule on each vertex without performing
the reduction in the successful case. This way, each label is created using a clearly
defined procedure without ambiguity. For the most costly reduction rules that rely on
solving MWIS instances in subgraphs, a third class is used for a timeout event. This
gives the following labeling for each combination of a vertex and reduction rule.

LABEL(v) =





0 : Unsuccessful reduction

1 : Successful reduction

2 : Timeout

It is not always clear what vertex should be labeled as successful, especially for
reductions where the rule starts from one vertex but ends up reducing another. It
would be easiest if the starting vertex always received the successful label, given that
the purpose of the trained model is to perform early screening. However, this would
make the task of learning the rules unnecessarily hard for some reduction rules. The
complete list of reduction rules used and how the labels are generated can be seen in
Table 4.4. Note that the labeled vertices are always chosen to make the training as
simple as possible. For example, the heavy set reduction starts from a source vertex
and looks for two vertices in the neighborhood that can be included. If the successful
labels were placed on the source vertices, the model would need to detect vertices
adjacent to two vertices likely to be part of a solution. In contrast, if the labels are
placed on the heavy vertices themselves, the pattern is simply to detect vertices that
are likely part of a solution. We can still use the trained model for screening, but
instead of deciding what vertices to start the reduction from, we only use suggested
vertices from the neighborhood of the source vertex.

4.2.3 The LearnAndReduce Approach

In the following, we describe our LearnAndReduce approach in more detail. In
addition to the new reduction rules introduced in this dissertation, we also use several
other data reduction rules that where introduced in Section 4.1. The complete list
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and a short description of each rule used is also given in Table 4.4. The most costly
reduction rules are in the second part of this table, below the thick line. These
reductions undergo early GNN screening before applying them. Each reduction rule
has its own pre-trained GNN model for early screening. Since we use the Sigmoid
activation function, the output from the GNN is a real number in the range from zero
to one. If the GNN prediction for a vertex is greater than 0.5, that vertex is checked
using the reduction rule for which the model was trained.

The LearnAndReduce reduction procedure maintains a queue of vertices to
check for each reduction rule. The reduction rules are ordered based on complexity,
and each rule is only checked when all the queues of easier reductions are empty. The
ordering is the same as shown in Table 4.4, except for Reduction 4.24, which is applied
before Reduction 4.13. Even if it is computationally more expensive, it yielded better
results in our tests to place Reduction 4.37 before applying the struction approach
introduced by Gellner et al. [91]. An outline of how the LearnAndReduce reduction
procedure works is shown in Algorithm 10. Each queue is initialized with all the
vertices from the graph. Whenever a successful reduction occurs, the adjacent vertices
that saw a change in their neighborhood are queued up again for every reduction.
This way, the reduction procedure always returns to the easier reductions as soon as
possible. The vertices are not ordered within the queues beyond the first-in, first-out
principle. Reduced vertices may still reside in other queues but are ignored when they
are popped from the queue.

There are multiple ways to incorporate the GNN screening. Since the graph con-
tinuously changes during the reduction process, the initial predictions might not be
relevant later. Therefore, we propose three GNN screening configurations.

Always. In this configuration, the queue for each expensive reduction is only checked
to see if it is non-empty. If that is the case, the queue is always replaced by new
suggestions from the GNN model. This means the GNN model could be evaluated
multiple times during the reduction process.

Initial. Instead of always evaluating the GNN model, the Initial configuration only
evaluates the GNN model the first time the rule is used. Recall that each queue
is initialized with all the vertices in the graph, meaning that the first time the rule
is used is also when the potential screening effect is the highest. After this initial
screening, the reduction rule goes back to working as without GNN screening, meaning
if further reductions occur and vertices are added back to the queue, then these
are checked fully.
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Algorithm 10: The LearnAndReduce reduction procedure.
Data: Graph G = (V, E, ω), set of reductions R, and set of GNN models M

Result: Reduced instance G

i← 0
Q← {{0, 1, . . . , |V | − 1} · |R|} // Initialize FIFO queues for each rule
while i < |R| do

if Q[i] = ∅ then
i← i + 1
// With the Initial/Initial-Tight configurations, the next If statement
is changed accordingly

if i < |R| and Q[i] ̸= ∅ and M [i] exists then
Q[i]← ∅
P ←M [i](G)
for v ∈ V such that P [v] > 0.5 do

push(Q[i], v)

else
v = pop(Q[i])
if v is not reduced then

G′ ← R[i](G, v) // Try reduction on v

if G′ ̸= G then
G← G′ // Successful reduction
i← 0
for each changed vertex u ∈ V and q ∈ Q do

if u /∈ q then
push(q, u)
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Initial Tight. Again, the GNN model is only evaluated the first time the reduction
rule is used. However, instead of returning to the normal queue-based application
afterward, the queue cannot accept any additional vertices. This means that the
initial suggestions from the GNN model are the only vertices that will be checked
using that reduction rule. Intuitively, this configuration is the most aggressive form
of early screening and will take the least amount of time.

For two reductions, namely CWIS by Butenko and Turkhanov [36] and One Vertex
Cut by Xiao et al. [218], the queue-based approach does not fit so well. The Critical
Set reduction needs to construct a new bipartite graph and compute the maximum
flow, and the Cut Vertex reduction needs to find all articulation points. Therefore, it is
natural to apply these reductions globally. Regarding the reduction queues, these two
reductions still have the same queues as the other reductions. However, as long as the
queue is non-empty, the reduction is applied globally, and the entire queue is cleared
afterward. This also extends to the GNN screening, but we only apply the reduction
globally if the GNN suggests applying the rule on more than 1 % of the graph.

4.2.4 Experimental Evaluation

This section presents the experimental evaluation of LearnAndReduce. First, we
present training results and then how LearnAndReduce performs combined with
an MWIS solver to compare different configurations.

Methodology. The code is implemented using C++11 and compiled using g++
version 12.2 and full optimizations turned on (-O3). To ensure fairness between the
algorithms, the instances start in the same order for each code, and only one program
is evaluated at a time. We evaluate each program once for each instance. The exper-
iments for the LearnAndReduce preprocessing are performed on Machine 2 using
the Instance Set 2.

Instance Set 2 (Main - hard to reduce). This set is a subset of Instance Set 1 and
consists of 83 graphs. In this set, we remove all instances, which were fully reducible
by simple and fast reduction rules1. This data set is presented in detail in Table A.2.

1We excluded instances which were fully reduced by running the following reductions in the
given order: Reduction 4.10, Reduction 4.1, Reduction 4.2, Reduction 4.3, Reduction 4.17, Reduc-
tion 4.20, Reduction 4.21, Reduction 4.22, 4.38, Reduction 4.39, Reduction 4.19, Reduction 4.11,
Reduction 4.23, Reduction 4.28 (without blow-up)
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Training Results

We evaluate three GNN architectures on our new supervised learning task: GCN,
GraphSAGE, and LR. Each architecture is configured to have a similar number of
layers, parameters, and running time. We use two message-passing layers, followed
by two layers of only weighted transformation. The input to the final two layers is a
concatenation of all intermediate feature vectors, including the input features. The
size of each intermediate feature vector is 16, and the size of the input vector is 8.
The activation function ReLU is used for internal layers, and Sigmoid is used for the
output layer. After each message passing layer, we perform random dropout with
a probability of 0.2 during training. We use weighted binary cross entropy loss for
loss function to adjust for the rarity of vertices labeled as successful. The weight is
set exactly to the ratio between successful and unsuccessful labels in the training set.
Finally, the Adam optimizer [138] is used with its default hyperparameters and 0.001
learning rate. The input features for one vertex are as follows.

1. Vertex weight

2. Neighborhood weight

3. Minimum neighborhood weight

4. Maximum neighborhood weight

5. Vertex degree

6. Average neighborhood degree

7. Minimum neighborhood degree

8. Maximum neighborhood degree

It is important to note that these reduction rules can mostly be checked in poly-
nomial time already. Therefore, it would defeat the purpose of early screening if the
screening took more time than the ensuing reduction. For this reason, the models are
kept as small as possible. The choice of 16 internal features is made based on the
fact that BLAS kernels typically need at least 16 times 4 elements at single precision
to utilize the CPU fully. In other words, going any lower than 16 would reduce the
efficiency at which we can perform the necessary computations. For more information,
we refer the reader to [95].

For the task of early reduction screening, we are only interested in the reduced
graphs, i.e. the graph after applying the inexpensive reductions. There are 71 re-
duced graphs in total, with over 1 million labeled vertices combined. Each graph
in the dataset is divided into three parts: (1) a training set containing 60 % of the
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Metric Description Better

Accuracy The probability that a suggested vertex can be reduced. higher
Coverage The fraction of reducible vertices suggested by the model. higher
Screening The fraction of the total vertices in the graph suggested. lower

Table 4.5: Metrics used to evaluate the performance of the GNN models.

vertices, (2) a validation set containing 20 %, and (3) a test set containing the last
20 %. Vertices labeled as 2 (timeout) are not used during training or validation. Each
model is trained for 300 iterations, where one iteration uses the entire dataset.

The training data can be considered a single large graph since we split the data in
terms of vertices, not individual graphs. While this graph is derived from the same
instances we use to evaluate LearnAndReduce later in the experiments, we argue
that this is not an issue for the evaluation. First, the reduced graphs are snapshot
images of how the instances looked after running a specific set of reductions. At
inference, reductions are applied continuously as reducible vertices are found. This
already means the inputs the GNN models will see at inference could be completely
different from those seen during training. Furthermore, the reductions that lead to
the reduced graphs are also not the same ones used in LearnAndReduce, and
all the training results are given for the test set, which is a completely different set of
vertices not seen during training.

In addition to the loss value, we also provide three additional metrics in Table 4.5
from the training procedure that indicate how well the trained model will perform at
early reduction screening.

The detailed results for the Reductions Extended Unconfined Vertices, One Vertex
Cut by Xiao et al. [218], and Heavy Set by Xiao et al. [219] can be seen in Figure 4.9a.
The proposed LR architecture clearly outperforms the GCN and GraphSAGE for
the unconfined rule, but the difference is less noticeable for the critical and heavy
sets. Figure 4.9b provides accuracy, coverage, and the fraction of vertices removed by
the screening for the heavy set reduction. Despite the similar-looking loss values for
this reduction rule, it is clear from the other metrics that the models are discovering
different things. GCN suggests the least amount of vertices. It also has the highest
probability that a suggested vertex can actually be reduced. However, this is at the
cost of catching less of the total reducible vertices. GraphSAGE and LR both suggest
a larger fraction of the reducible vertices but at the cost of reduced suggestion accuracy
and overall screening effect. Note that the models do not have any notion of accuracy
or coverage during training, so reducing the loss of training data is the only thing
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Figure 4.9: Comparisons for all architectures on the test dataset. Note that the scaling
of the y-axes differs.

being optimized for during training. To summarize the plots in Figure 4.9b for LR,
it suggests approximately 5 % of the graph for the heavy set rule, and among the
suggested vertices are approximately 50 % of the vertices that actually can be reduced
using the heavy set rule.

The final results for all the expensive reduction rules on the test set are given in
Table 4.6. Training all the models took approximately 24 hours on our test machine
using PyTorch Geometric [75]. While PyTorch is a powerful framework for quickly
developing and training models, several optimizations that could speed up the screen-
ing phase in our final program are not utilized. This includes combining the message
passing and weighted transformation to reduce the number of times the data needs to
pass through the cache hierarchy, loading feature vectors directly into AVX registers,
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GCN GraphSAGE LR

Reduction Red. Scr. Cov. Acc. Loss Scr. Cov. Acc. Loss Scr. Cov. Acc. Loss

Critical 6.19 7.03 44.06 38.81 0.45 4.72 31.73 41.63 0.44 6.52 43.99 42.23 0.43
Cut 0.53 0.03 2.89 55.91 0.11 0.00 0.16 24.25 0.10 0.06 8.07 77.80 0.09
Gen. fold 2.45 0.14 2.34 42.17 0.32 0.83 12.68 38.28 0.26 0.98 14.33 36.73 0.25
Heavy set 3.64 2.25 31.39 50.65 0.26 3.77 44.84 43.39 0.26 5.02 51.03 37.13 0.26
Heavy set 3 2.68 0.47 7.88 45.45 0.29 0.51 5.74 30.60 0.34 0.90 9.35 28.00 0.33
Unconfined 7.94 10.15 25.95 25.37 1.45 5.65 17.20 27.07 1.13 30.97 53.36 14.10 0.80

Table 4.6: Detailed results in percentage on the test data for all reduction rules used
in the LearnAndReduce and GNN architectures. Red. refers to the fraction of
vertices in the data that can be reduced using the reduction rule. The best numbers
are shown in bold, where Scr., Cov., Acc., and Loss are compared individually.

and hard-coding the inner kernels for precisely the dimensions used by the models.
To be clear, if the number of features had been higher, PyTorch would undoubtedly
perform at a level close to the theoretical limit of the CPU. The optimizations listed
above are useful because the number of features is low, and the main bottleneck is the
memory bandwidth and latency. For this reason, we only continue with further ex-
periments using one GNN architecture, and we do so using a manual implementation
written in C.

Observation 4.2.1: Training Results for GNN Architectures. Even though
the differences are small, LR archives the best training loss and coverage on
5/6 instances compared to GCN and GraphSAGE. Therefore, we proceeded with
the LR architecture.

Experiments

For the cyclic struction in LearnAndReduce we have the two configurations Fast
and Strong as introduced by Gellner et al. [91]. We run the five different screening
approaches introduced in Section 4.2.3 for both of these configurations. In Table 4.7,
we present the average results for all configurations. With the no gnn red screening, we
can see that these configurations are the fastest but are computing the largest reduced
instances. When we use the expensive rule without screening in never, we can see the
potential gain in reduction size. In the Fast configuration, we can further reduce the
instances by 13.22 % on average when using expensive reduction rules. However, this
comes at the cost of more than doubling the preprocessing time on average. All of
our Fast screening methods can reduce the preprocessing time compared to never.
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Config GNN nK/nK̃ nK/nG mK/mG Offset Time Time exp. #nK = 0

Fast no gnn red 100.00% 5.50% 51.13% 13 179 456 36.55 0.00 49 / 83
Fast never 86.78% 4.77% 50.85% 13 270 743 74.74 38.19 52 / 83
Fast always 87.11% 4.79% 50.90% 13 269 029 65.51 28.96 52 / 83
Fast initial 87.13% 4.79% 50.88% 13 268 824 58.59 22.04 52 / 83
Fast initial tight 87.41% 4.81% 50.91% 13 267 958 45.12 8.57 51 / 83

Strong no gnn red 98.74% 5.43% 50.81% 13 188 267 68.86 0.00 50 / 83
Strong never 85.06% 4.68% 50.51% 13 280 038 101.56 32.70 53 / 83
Strong always 85.56% 4.71% 50.55% 13 278 028 107.17 38.31 53 / 83
Strong initial 85.66% 4.71% 50.56% 13 277 789 88.24 19.38 54 / 83
Strong initial tight 85.65% 4.71% 50.58% 13 277 974 85.20 16.34 53 / 83

Table 4.7: Arithmetic mean reduction results for different configurations. Here, K

is always the corresponding reduced instance, K̃ the reduced instances computed by
Fast - no gnn red (for reference), and G the original graph. We refer to the number
of nodes n and edges m of the corresponding graph in the index. Furthermore, we
give the offset and reduction time. The configuration no gnn red does not use any of
the computationally expensive reductions. In the column Time exp., we give the time
used only for expensive reductions and reduction screening.

The fastest initial tight is on average a factor of 1.7 times faster and manages to
reduce the instances by an additional 12.59 % compared to no gnn red. For the Strong
configurations without screening, we can reduce the instances by 14.94 % on average
when using the expensive reduction rules. However, the configuration without any
expensive rules already takes more time than all the Fast configurations using our
screening approach. Therefore, we only focused on the different Fast configurations
in the following.

In Figure 4.10, we present two performance profiles comparing the different screen-
ing approaches for the Fast configuration with additionally running CHILS on the
reduced instances afterward. On the left, we have the solution quality achieved using
one hour per instance for preprocessing and CHILS. On the right, we see the per-
formance profile for the time needed to find the best solution within this time limit.
We can see that for all but five instances, all approaches achieve the same solution
quality, and for the instances where the quality differs, the differences are minor.
However, when considering the running times, we can see concrete differences. On
more than 50 % of the instances, not using the expensive reduction rules and having
more time for the local search is the best strategy. However, this approach can be
multiple orders of magnitude slower on other instances. Not using the screening for
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Figure 4.10: Performance profiles for different (Fast) LearnAndReduce configur-
ations. After reducing the instance, we run the CHILS heuristic to evaluate the
practical impact of the reduction configurations. We present solution quality, includ-
ing reduction offset (left) and running time including reduction time (right). The
vertical line in each plot marks the change from one scale to another.

expensive rules, i. e., never is often more than twice as slow as other configurations.
Overall, initial tight performed best on most instances regarding running time and is
also very close to not using the screening regarding solution quality. There are only
four instances where this approach took more than 1.6 times as long as the fastest
solver on the respective instance. For all other configurations, this is true for more
than 12 instances.

Observation 4.2.2: LearnAndReduce Configurations. The Strong configur-
ation without any expensive rules already takes more time than all the Fast con-
figurations using our screening approach. Therefore, we only focus on the different
Fast configurations. The initial tight performs best overall, especially for more dif-
ficult instances. Regarding solution quality, the initial tight approach is very close
to not using the screening. Therefore, we use the Fast - initial tight configuration
for our LearnAndReduce routine.

4.3 Memetic Algorithm m2wis

Memetic algorithms, as discussed in Section 2.2.4 combine evolutionary algorithms
with other heuristics, such as local search to effectively explore (via global search)
and exploit (via local search) the solution space. The general idea behind these
algorithms is to use mechanisms inspired by biological evolution, such as selection,
mutation, recombination, and survival of the fittest.
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In this section, we develop an advanced memetic algorithm m2wis to tackle the
MWIS problem. We incorporate exact and heuristic reduction techniques to compute
near-optimal weight-independent sets in huge, sparse graphs. More precisely, in addi-
tion to using exact data reductions, we use a memetic approach to heuristically choose
vertices to include in the solution and further reduce the instances. This strategy is
likely to open up the reduction space and remarkably speed up the computation of
large-weight independent sets. Our experiments show that this approach is able to
compete and outperform state-of-the-art algorithms. Our two configurations compute
the best results among all competing algorithms for all instances tested. Therefore,
this approach is a useful tool when large-weight independent sets in practice.

References. This section is based on joined work with Sebastian Lamm, Christian
Schulz and Darren Strash [102], and the extended journal paper, which is also joined
work with Sebastian Lamm, Christian Schulz, and Darren Strash [103]. Large parts
of this section are copied verbatim from these papers.

Our Results. Our contribution is two-fold: First, we develop a state-of-the-art
memetic algorithm based on recombination operations employing graph partitioning
techniques. Our algorithm computes large-weight independent sets by incorporating
a wide range of recently developed advanced reduction rules.

The algorithm may be viewed as performing two functions simultaneously: (1)
reduction rules for the Maximum Weight Independent Set problem are used
to boost the performance of the memetic algorithm and (2) the memetic approach
opens up the opportunity for further reductions by selecting vertices that are likely to
be in large-weight independent sets. In short, our method applies reduction rules to
form a reduced instance, then computes vertices to insert into the final solution and
removes these vertices and their neighbors from the graph. Then, further reductions
can be applied. This process is repeated recursively until the graph is empty. This
technique finds near-optimal weight independent sets much faster than existing local
search algorithms. It is competitive with state-of-the-art exact algorithms for smaller
graphs and allows us to compute large-weight independent sets on huge, sparse graphs.
Overall, our algorithm configurations compute the best results among all competing
algorithms for every instance and thus can be seen as the dominating tool when large
weight independent sets need to be computed in practice.
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4.3.1 The Algorithm Description

We now present our memetic algorithm for the MWIS problem, which we call memetic
maximum weight independent set (m2wis). This algorithm is inspired by Re-
duMIS [148] and is executed in rounds. Each round is split up into three parts. The
exact data reductions are applied at the beginning of each round (ExactReduce).
Here, the graph is reduced as much as possible using a wide range of data reduction
rules. On the resulting reduced graph, we apply the memetic part of the algorithm as
the second step. We represent a solution, also called an individual, using bitvectors.
The independent set I is represented as an array s ∈ {0, 1}n. For each array entry, it
holds s[v] = 1 if and only if v ∈ I. The memetic component itself is also round-based.
Starting with an initial population P , consisting of a set of individuals, this popula-
tion evolves over several rounds until a stopping criterion is fulfilled. In the third part
of each round, we select a subset of vertices to be included in the independent set
by considering the resulting population. Here, we implement different strategies to
select vertices for inclusion. Including these vertices in the independent set enables us
to remove them and their neighbors from the instance. This opens up the reduction
space, i. e., further reductions might be applicable after the removal process. The
steps of exact reduction, memetic search, and heuristic reduction are repeated until
the remaining graph is empty or another stopping criterion is fulfilled.

In Algorithm 11, we first apply the ExactReduce routine described in Sec-
tion 2.2.1. For the exact reductions, we use Reduction List 4.1. This is the initial
reduction list, which performed overall the best in the ordering experiments presented
in Section 4.1.3.

In the following, we describe the memetic routine Evolve, followed by the different
vertex selection strategies used to heuristically open up the reduction space.

If, at some point, the resulting reduced instance is small enough, i. e., its number
of vertices is less than a threshold nK , we try to solve the instance exactly using
Struction by Gellner et al. [91] with the configuration CyclicFast and a time
limit texact. If the instance is not solved optimally within this time, the computed
solution is added to the population, and we continue.

The Memetic Components

After ExactReduce, we apply the Evolve routine, which is described in Al-
gorithm 12 on the reduced graph K. It starts by generating the initial population
of size |P|, which is then evolved over several generational cycles (rounds). For the
evolution of the population, two individuals from the population are selected and com-
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Algorithm 11: m2wis(G): High level overview.
Data: graph G = (V, E), reduction list R

Result: Best found Independent Set W
Procedure m2wis(G):
W = ∅ // Best solution
while not time limit exceeded do
K, α← ExactReduce(G, R)
if K is empty then
W ← Restore(K, α, W)
return W

if V (G) ≤ nK then
W∗ ← TryToSolveExact(K, texact)
if W∗ optimal then

return Restore(K, α, W∗)

P ← CreateInitialPopulation(K) // Adding W∗ if
computed
P ← Evolve(G, P)
K̃, W ← HeuristicReduce(K, P , W)
G← K̃

return W

bined to create an offspring. We also apply a mutation operation to this new solution
by forcing new vertices into the solution and removing neighboring solution vertices.
We look for good replacements to keep the population size constant and still add new
offspring to the solution. In this process, we search for individuals in the population
which have smaller weights than the new offspring. Among those, we look for the most
similar solution by computing the intersection size of the new and existing individu-
als. We also add the possibility of forcing individuals into the population if it has not
changed over a certain number of iterations and rejecting the offspring if the solution
with the smallest weight is still better than the new offspring. Note that the size of the
population |P| does not change during this process. Additionally, at any time, each
individual in our population is an independent set. In the last step of the memetic
algorithm, we improve the solution by the HILS algorithm [172]. The stopping cri-
terion for the memetic procedure is either a specified number of unsuccessful combine
operations or a time limit. In the following, we discuss each of these steps in detail.
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Algorithm 12: Evolve(G,P): High level overview.
Data: graph G = (V, E), current population P
Result: evolved population P
Procedure evolve(G, P):

while not stopping criterion holds do
randomly chose combine operation Combine
IS ← ∅ // Parent individuals
OS ← ∅ // Set of offspring
IS ← tournamentSelect(P)
OS ← Combine(IS)
if mutate with probability 10 % then
OS ← mutate(OS)

if suitable replacement then
P ← Replace(P ,OS)

return P

We start by introducing the computation of the initial solution and then explain the
combined operations for the evolutionary process as well as the mutation operation.

Initial Solutions. At the start of our memetic algorithm, we create an initial popu-
lation of size |P|. To diversify as much as possible, this population contains solutions
computed in six different ways, which we choose uniformly at random. Before apply-
ing the strategies, we permute the order of the vertices such that different solutions
are obtained for the same strategy by different tie-breaking.

RandomMWIS. The first approach works by starting with an empty solution
and adding free vertices uniformly at random until the solution is maximal.

GreedyWeightMWIS. For the GreedyDegreeMWIS strategie, we start with
an empty solution. This is extended to a maximal independent set by adding free ver-
tices ordered by their weight. Starting with the largest weight, we include this vertex
and exclude all its neighbors until all vertices are labeled either included or excluded.

GreedyDegreeMWIS. Via this greedy approach, we create initial solutions by
successively choosing the next free vertex with the smallest residual degree. Each time
a vertex is included, we label the neighboring vertices to be excluded.
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GreedyWeightVC. In contrast to the previous approaches, the vertex cover
problem is solved here. Therefore, an empty solution is extended by vertices of the
smallest weight until a vertex cover is computed. As soon as the approach terminates,
we compute the complement and have an initial solution to the MWIS problem.

GreedyDegreeVC. As in GreedyWeightVC, the complementary vertex cover
problem is solved. However, for this approach, we choose those vertices to include in
the solution, which cover the maximum number of currently uncovered edges.

Struction. We also add the possibility to compute an initial solution via the
Struction algorithm by Gellner et al. [91]. We set a time limit of 60 seconds and
use the configuration CyclicFast. If we also use Struction to compute initial
solutions, we call the algorithm configuration m2wis+s. Note that if the algorithm
does not solve the instance within the time limit, it returns a non-optimal solution.

Combine Operations. The common idea of our combine operations, which are
inspired by the work of Lamm et al. [148], is to combine whole blocks of independent
set vertices. We use the graph partitioning framework KaHIP [187] to construct
those blocks. To explain the combine operations, we first introduce the concepts of
partitioning and edge separators used in the following.

The subdivision of the set of vertices V into disjoint blocks V1, ..., Vk such that
V1 ∪ ... ∪ Vk = V is called a k-way partition [192, 41]. To ensure the blocks are
roughly of the same size, the balancing constraint |Vi| ≤ Lmax := (1 + ε)

⌈
|V |
k

⌉
with the

imbalance parameter ε > 0 is introduced. While satisfying this balance constraint,
the edge separator problem asks for minimizing the total cut, ∑

i<j ω(Eij), where Eij

is defined by Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. The edge separator is the set of all
edges in the cut. For the k-vertex separator problem, on the other hand, we look for a
division of V into k + 1 blocks. In addition to the blocks V1, ..., Vk a separator S exists.
This separator has to be chosen such that no edges between the blocks V1, ..., Vk exist,
but there is no balancing constraint on the separator S. However, as for the edge
separator problem, the balancing constraint on the blocks |Vi| ≤ Lmax := (1 + ε)

⌈
|V |
k

⌉

has to hold. To solve the problem, the size of the separator |S| has to be minimized.
Removing the separator S from the graph results in at least k connected components
since the different blocks Vi are not necessarily connected. Using KaHIP, we partition
the graph into k blocks V1 ∪ ... ∪ Vk = V . For j = 1, ..., k the solution blocks Ij are
defined by Ij = I ∩ Vj. We created different offspring using the following combined
operations on those solution blocks.
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The parents for the first two combine operations are chosen by two runs of the tour-
nament selection [166], where the fittest individual i. e., the solution with the highest
weight gets selected out of two random individuals from the population. Then we
perform one of the combine operations outlined below, and finally, after the combine
operation, we use HILS [172] to improve the computed offspring.

Figure 4.11: The vertex separator combine operation to create an offspring O out of
two individuals I1 and I2.

Vertex Separator Combination. The first operator works with a vertex sep-
arator V = V1 ∪ V2 ∪ S. We use a vertex separator to exchange whole blocks of
solutions without violating the independent set property. This can be done because
no vertices belonging to different blocks are adjacent. Neighboring vertices would
either be part of the same block, or one of them has to belong to the separator S. By
this property, the combination of those blocks will always result in a valid solution
to the independent set problem. The two individuals selected by the tournament I1

and I2 are split up according to these partitions and are then combined to generate
two offspring O1 = (V1 ∩ I1) ∪ (V2 ∩ I2) and O2 = (V1 ∩ I2) ∪ (V2 ∩ I1). After that,
we add as many free vertices greedily by weight until the solution is maximal. We
get a local optimum via one iteration of the weighted local search. See Figure 4.11
for an illustration.

Multi-way Vertex Separator Combination. We extended the previously de-
scribed operator to the multi-way vertex separator, where multiple solutions can be
used and combined. Therefore, we compute a k-vertex separator V = V1 ∪ ...∪Vk ∪S

and select k individuals. Then, a score is computed for every pair of partition Vi and
individual Ij for i, j ∈ {1, ..., k}. This score is defined by ∑

v∈Vi∩Ij
ω(v). We start with

the pair resulting in the highest score pair and then select pairs decreasingly. Once
an individual or partition block is selected, we do not use it again. In contrast to the
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previous operator, this combination only results in one offspring. We then maximize
this offspring and compute a local maximum.

Edge Separator Combination. For this operator, we exploit the duality to the
weighted vertex cover problem. Starting with a partition V = V1 ∪ V2, the operator
computes temporary offspring for the weighted vertex cover problem. Let I1 and I2

be the individuals selected by the tournament rule. Let Ci = V \ Ii be the solution
to the weighted vertex cover problem for i ∈ {1, 2}. The new offspring are O1 =
(V1 ∩ C1) ∪ (V2 ∩ C2) and O2 = (V1 ∩ C2) ∪ (V2 ∩ C1). However, these offspring can
contain some non-covered edges, which are a subset of the cut edges between the
two partitions. The graph induced by the non-covered cut edges is bipartite. In this
graph, we compute a minimum-weight vertex cover using maximum flows.

Multi-way Edge Separator Combination. Similar to the vertex separator,
the edge separator can also be extended to use multiple solutions. Therefore, a k-
way-partition V = V1 ∪ ... ∪ Vk is computed. Equivalent to the multi-way vertex
separator, we also select k individuals and compute a score for each pair Vj and Ii.
For the scoring function, the complement of an independent set inside the given block
is used to sum up the weights of the vertices of the vertex cover in this block. For
the offspring computation, each block is combined with the individual with the lowest
score. As in the basic edge separator combine operator, there can be edges in the cut
that are not covered. Since the induced graph here is not bipartite, we handle this
problem using a simple greedy strategy. Afterward, the solution is transformed to get
the offspring for the independent set individuals.

Mutation Operation. After each combine operation, a mutation operator can per-
turb the created offspring. This is done by forcing new vertices into the solution and
removing the adjacent vertices to satisfy the independent set property. Those vertices
are selected at random among all non-solution nodes in the graph. Afterward, we
improve the solution using the HILS algorithm.

Heuristic Reductions and Recursion

After the memetic algorithm stops, we use a heuristic data reduction to open up
the reduction space (and afterward, the next round of exact data reductions begins).
We implemented different strategies to select vertices that we put into the solution.
In each strategy, vertices are ordered by a rating function. The algorithm inserts
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a fraction (from only one vertex to 100 %) of the vertices selected by the different
strategies. We now explain the different selection strategies.

Vertex Selection by Weight. The first rating function is based on the weight
ω(v) of a vertex v (higher is better). The intuition here is that by adding a vertex, we
want to increase the weight of our solution as much as possible. More precisely, the
fittest individual from the population evolved by the memetic algorithm is selected.
The fitness of an individual is defined as the solution weight. From this individual,
we select the x vertices from the independent set that have the highest weight and
add them to our solution. Since we only consider vertices from one individual, x

can be freely chosen without violating the independent set property of our solution.
For example, we can only add the highest-weight vertex or select a fraction of those
solution vertices to add.

Vertex Selection by Degree. Similar to the previous vertex selection strategy, we
choose the fittest individual from which we add vertices to our solution. Here, the
vertices are rated by their degree deg(v) (smaller is better). The intuition here is that
adding vertices with a small degree to our solution will not remove too many other
vertices from the graph that could be considered later.

Vertex Selection by Weight/Degree. For this selection strategy, we rate the
vertices v of the fittest individual by the fraction ω(v)

deg(v) (higher is better). This way,
we combine both of the two previous ratings.

Hybrid Vertex Selection. In the hybrid case, the solution vertices v ∈ V are
rated by the weight difference between a vertex and its neighbors ω(v)−∑

u∈N(v) ω(u)
(higher is better). This value describes the minimum gain in solution weight we can
achieve by adding the vertex v to the solution. Note that Gu et al. [107] proposed
this rule for their algorithm. The key difference here is that Gu et al. [107] use this
function on all vertices, while our algorithm only considers solution vertices of the
fittest solution of the memetic algorithm.

Vertex Selection by Solution Participation. In contrast to the previous meth-
ods, this strategy considers the whole population. Moreover, here, we consider each
vertex in the graph. We check the population and assign each vertex a value according
to the number of times it is part of a solution. Therefore, the maximum number a
vertex can achieve is bounded by the population size |P|. We can include all vertices
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that are in every individual, i. e., vertices with a score equal to |P|, as well as ex-
clude all vertices that are in no solution at all, i. e., vertices with a zero score. Note
that the total number of vertices selected with this strategy differs from the previous
strategies, where we consider all the vertices from the best solution in the population.
The vertices selected by solution participation are only a subset of these. This process
is similar to the Merge Search introduced by Kenny et al. [135].

4.3.2 Experimental Evaluation

This section presents experiments analyzing different parameter values that highly
influence the performance of our algorithm. Then, we present a detailed state-of-the-
art comparison on a large set of instances.

Methodology. We implemented our algorithm using C++11. The code is compiled
using g++ version 12.2 and full optimizations turned on (-O3). For the experiments,
we use Machine 1. We run each configuration with four different seeds and a time limit
of ten hours. We always report the geometric mean results if not stated otherwise. For
all algorithms, we always report when the best solution is found within this time limit.
The algorithms that might not use the whole ten-hour time are the exact algorithm
KaMIS BnR, which terminates when found and proven an optimal solution, and the
heuristic HtWIS. Note that this heuristic does not use any randomness, which would
enable us to run it multiple times with different seeds for using the whole 10 hours,
nor does the algorithm have any other parameters that would increase the solution
quality by spending more time. If a solver exceeds a memory threshold of 100 GB
during the time limit of ten hours for an instance, we mark this with a dash. In
general, our algorithm does not test the time limit in the ExactReduce routine of
m2wis or during the calculation of the separator and partition pool. Hence, the time
limit can be exceeded if the ten-hour mark is reached during these steps.

Parameter Configuration. We used the fast configuration of the KaHIP graph
partitioning package [188, 189] for the computation of the graph partitions and vertex
separators. In the ExactReduce we use the Reduction List 4.1 which is one of the
best-performing orderings of these reductions, as shown in Section 4.1.3. Similar to
Lamm et al. [148], we set the population size |P| to 250, the size of the partition and
separator pool to 10 and the mutation rate to 10 %. Local search is limited to 15,000
iterations. Finally, for the multi-way combine operations, we bound the number of
blocks used by 64. For the state-of-the-art experiments, we set the parameters as
discussed in the following.
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Data Sets. For the main experiments in this section, we use the Instance Set 1,
also used in Section 4.1.3. It contains 207 instances from the Stanford Large Network
Dataset Repository (snap) [155], OpenStreetMaps (osm) [1, 20, 37], the SuiteSparse
Matrix Collection (ssmc) [53] as well as dual graphs of well-known triangle meshes
(mesh) [185], and 3d meshes derived from simulations using the finite element method
(fe) [210]. To compare with METAMIS, we use the Instance Set 3.

Instance Set 3 (Reduced OSM). This set consists of 17 OpenStreetMap [1, 20, 37]
instances initially reduced using KaMIS BnR, as used by Dong et al. [59]. This set
is called osmRed, and detailed graph properties are given in Table A.4 in the Appendix.

We do not compare this approach on the Instance Set 4 of vehicle routing instances
since data reductions do not work well on those instances [60] and the reduced graphs
are still too large to explore sufficiently by our memetic algorithm.

Heuristic Data Reduction Rules

For the heuristic reduction, we perform multiple parameter tuning experiments on a
subset of our dataset containing 15 graphs, marked in Table A.1 in the Appendix.
For this, we took three large graphs from each class to evaluate the influence of our
parameters on the performance. For each instance, we used four different seeds and a
time limit of one hour.

We start by comparing the different vertex selection strategies presented in Sec-
tion 4.3.1. Each strategy is evaluated for different fractions. Table 4.8 summarizes
our results. For each configuration, we show the geometric mean quality and the
geometric mean running time over the subset of 15 graphs. Note that the number of
selectable vertices is different between solution participation and the other strategies.
For solution participation, where vertices are only considered if they are in each or
none solution within the whole population, the set of vertices selected is only a subset
of the vertices selectable by the other strategies. Adding 100 % of the vertices does
result in the same solution for these strategies since they are all based on the best
solution, which is then always included completely. Furthermore, this explains the
larger speedup for these other strategies compared to solution participation when the
fraction is increased.

For all strategies, we can reduce the mean time by increasing the fraction of vertices
added. The smallest speedup is observed for solution participation. This is due to
the fact that, the total number of vertices that can be added (100 %) is less than
for all the other strategies. With these other strategies, we can achieve a speedup of
up to 10 by increasing the fraction parameter. However, the quality using solution
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t ω t ω t ω t ω t ω

f degree hybrid solution participation weight weight/degree

1 781.48 4 052 070 753.95 4 052 039 654.53 4 054 053 785.94 4 052 026 610.46 4 052 120
5% 405.97 4 052 805 549.90 4 053 186 798.08 4 052 516 362.88 4 051 708 345.88 4 052 895

25% 208.75 4 052 056 252.43 4 052 409 685.24 4 053 765 135.34 4 051 263 199.10 4 051 819
75% 69.95 4 050 596 100.64 4 050 646 558.72 4 054 196 68.99 4 050 476 69.75 4 050 397

100% 59.60 4 050 453 60.17 4 050 453 515.11 4 054 303 59.82 4 050 453 60.41 4 050 453

Table 4.8: m2wis geometric mean solution weight ω and time t (in seconds) required
to compute ω for different vertex selection strategies and fractions f . Setting f = 1
is adding one vertex, while otherwise, f refers to the percentage of vertices that are
added from all possible vertices for the corresponding strategy. The best result among
all configurations is marked bold.

participation is increasing with increasing fractions until f = 100 %, while the other
strategies perform best with f = 5 %. When further increasing the amount of vertices
added in these strategies, the solution quality gets worse. The difference between the
best and the worst mean result is around 0.1 %.

The overall best mean solution quality is achieved by using the solution participa-
tion with adding 100 % of the vertices possible. We fix this configuration for the next
set of our experiments.

Observation 4.3.1: Heuristic Data Reduction. The strategy based on solu-
tion participation and fraction of 100 % performed best regarding solution quality.
The fastest variants are all other strategies with a fraction of 100, %, which all only
perform one round of the algorithm and then return the currently best individual.

Solving Small Reduced Graphs Exactly

With this experiment, we examine whether it is beneficial at some point to solve the
reduced instance exactly. Therefore, we introduced two new parameters. First, we
add a threshold nK to determine when to start solving the reduced instance optimally.
When the number of vertices in the reduced graph K is smaller than nK , we apply
Struction. The second parameter is a time limit texact, which restricts this exact
solver. If the instance is not solved within this time limit, we continue with m2wis.

We present the summary of the results using different nK from 0 to 15 000 and
texact from 10 seconds to no time limit for m2wis in Table 4.9 and for m2wis+s in
Table 4.10. We report the time when the best solution was found. Often, the exact
solver finds a good solution very fast but is then not able to improve the solution.
This is why, when increasing nK , we sometimes see a decrease in the reported time.
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In both tables, the solution quality is similar between the different configurations.
These differences are all less than 0.01 %. However, we see in Table 4.9 that for
m2wis nK = 15 000, the mean time is reduced up to a factor of 15 for all time lim-
its texact tested. The threshold nK = 10 000 yields the best result with a time limit
of texact = 100. For m2wis+s in Table 4.10 we see that the best parameter configura-
tion is nK = 100 and texact =1 000 seconds. With this configuration, we also achieved
the overall best result compared to m2wis.

Observation 4.3.2: Solving Small Reduced Instances. For the state-of-the-
art comparison, we mainly focus on solution quality. For m2wis, we use the config-
uration of parameters nK = 15 000 and texact = 100 seconds, since compared to the
parameters yielding the best solution quality this configuration is only 0.000 02 %
worse regarding solution quality, however, it is 2.5 times faster. For m2wis+s
we choose the configuration yielding the best solution quality is nK = 100 and
texact = 1 000 seconds.

Limiting the Time for Evolve

Additionally to limiting the number of rounds of the evolution cycles, we also restrict
the time used within the Evolve procedure. This is especially important for very
complex instances where Evolve can take up all the time. We test different lim-
its for evotime starting with 450 seconds up to 4 hours. We present the geometric
mean over the results for both m2wis and m2wis+s in Table 4.11. Generally, we
see that this parameter has a higher impact on the solution quality compared to the
previous parameters tested.

t ω t ω t ω t ω

nK texact = 10 texact = 100 texact = 1 000 no limit
0 515.11 4 054 303 515.11 4 054 303 515.11 4 054 303 515.11 4 054 303

100 519.69 4 054 164 513.77 4 054 313 535.64 4 054 080 533.28 4 054 208
500 509.72 4 054 191 525.53 4 054 337 517.47 4 054 132 532.67 4 054 066

1 000 480.82 4 054 037 501.77 4 054 305 522.39 4 054 213 505.01 4 054 234
5 000 188.45 4 054 285 196.32 4 054 114 205.92 4 053 974 204.50 4 054 138

10 000 79.43 4 054 144 85.13 4 054 367 99.65 4 054 057 114.17 4 054 068
15 000 34.22 4 054 249 37.33 4 054 180 45.45 4 054 229 48.74 4 054 052

Table 4.9: m2wis geometric mean solution weight ω and time t (in seconds) required to
compute ω for different thresholds nK and time limits texact to solve reduced instances
exactly. The best result among all configurations are marked bold.



Memetic Algorithm m2wis 107

t ω t ω t ω t ω

nK texact = 10 texact = 100 texact = 1 000 no limit
0 15.58 4 054 480 15.58 4 054 480 15.58 4 054 480 15.58 4 054 480

100 15.37 4 054 599 15.70 4 054 336 15.55 4 054 666 15.90 4 054 579
500 15.31 4 054 530 15.90 4 054 537 15.52 4 054 546 15.60 4 054 439

1 000 15.52 4 054 467 15.52 4 054 520 15.48 4 054 386 15.34 4 054 445
5 000 13.21 4 054 461 12.92 4 054 571 14.18 4 054 628 15.69 4 054 481

10 000 13.23 4 054 538 14.39 4 054 409 18.25 4 054 463 20.90 4 054 377
15 000 13.04 4 054 569 14.04 4 054 492 17.85 4 054 543 20.58 4 054 520

Table 4.10: m2wis+s geometric mean solution weight ω and time t (in seconds)
required to compute ω for different thresholds nK and time limits texact to solve reduced
instances exactly. The best result among all configurations is marked bold.

t ω t ω

evotime m2wis+s m2wis
450 15.36 4 055 174 37.55 4 055 028
900 15.85 4 055 342 46.90 4 055 206

1 800 17.59 4 055 150 59.16 4 055 253
3 600 18.11 4 054 872 66.08 4 055 179
7 200 18.22 4 054 202 75.86 4 054 664

14 400 18.70 4 053 447 81.22 4 053 511

Table 4.11: Geometric mean solution weight ω and time t (in seconds) required to
compute ω for different time limits evotime (in seconds) for the Evolve procedure,
see Algorithm 12. The best result among all configurations is marked bold.

Observation 4.3.3: Evolve Time Limit. For m2wis+s setting evotime = 900
performed best regarding the geometric mean solution quality on our test set, while
a higher parameter value of evotime = 1 800 worked best for m2wis. We choose
these configurations for the state-of-the-art experiments.

Comparison against the State of the Art

We now compare our algorithm m2wis against a range of state-of-the-art algorithms.
This includes all algorithms introduced in Section 3.2.3. These are the reduce-and-
peel approach HtWIS by Gu et al. [107], both Struction configurations by Gell-
ner et al. [91] where we always report the better of the two results in the column
named struction, the branch-and-reduce solver KaMIS BnR by Lamm et al. [149],
and HILS by Nogueira et al. [172]. Additionally, we test against the vertex cover
algorithms NuMWVC by Li et al. [156] and GNN-VC by Langedal et al. [153]. We
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used the provided GNN-VC model, which was trained on instances from the SuiteS-
parse Matrix Collection [53]. We also include the variant of our algorithm, called
m2wis+s, using Struction from Gellner et al. [91] with a time limit of 60 seconds
to compute individuals for the initial population. We present a representative sample
of our full experiments in Table 4.12. In the last part, we give a summary over all
instances. This consists of the number of instances solved best, the geometric mean
time and solution quality, respectively. Detailed per-instance results are presented in
Table B.2 in the Appendix.

Overall, we see that m2wis+s has the largest number of best solutions on Instance
Set 1 containing 207 graphs. In particular, m2wis+s is able to compute the best solu-
tion for all but three instances, i. e., kentucky-3, hawaii-3 (osm) and soc-p.rel. (snap). In
these three cases m2wis+s was outperformed by our other variant m2wis. Addition-
ally, m2wis+s computes the best solutions for all graphs in the graph classes finite
elemente, mesh and ssmc. Finally, for all but 18 of these 207 instances, m2wis+s finds
the best solution in less than 100 seconds. Our algorithm m2wis is still able to com-
pute the best solution for 198 instances, including hawaii-3, kentucky-3 and soc-p.rel.

When looking at the running times, we see that HtWIS achieves the smallest
geometric mean running time. However, the quality is less or equal to the results of
m2wis and m2wis+s on all the tested instances, with multiple instances having a
significant difference in weight–larger than 10 000. If running time is crucial, the com-
petitor HtWIS is noteworthy. However, our algorithm also computes high-quality
initial solutions which are then enhanced over time. m2wis+s for example needs a
geometric mean time of 0.004 6 seconds to compute initial solutions which are on av-
erage 0.3 % better than the solutions computed by HtWIS which needs a geometric
mean time of 0.039 seconds. The best improvement already after the initial compu-
tations is found for greenland-AM3, where we need 3 times as long as HtWIS while
getting an improvement of more than 12 % over the result of HtWIS. The running
time achieved by Struction is also to be noted. It is, for example, the second fast-
est on ssmc instances, see tables B.2 and B.1. Struction solves 47 instances faster
than all competitors. However, it only finds 188 best solutions overall. The solver
KaMIS BnR is able to compute 175 best solutions within the limitations of the ex-
periment. It works especially well on snap and mesh instances, while it is not able to
solve any of the ssmc instances optimally. When looking at the performance of the
four competing heuristic algorithms, we see that HILS computes overall the highest
number of best solutions, followed by GNN-VC. When comparing HILS and GNN-
VC directly, the comparison is highly dependent on the graph class. On the mesh
and snap instances for example, GNN-VC beats HILS on every instance regard-
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ing solution quality. But since we have 148 osm instances, where GNN-VC was not
trained on, overall HILS has the larger number of best-solved instances. Regarding
running time, HILS needs almost 6 times as long as GNN-VC. The overall fastest
competitor HtWIS computed on 97 instances the best solution, while NuMWVC
never computed a best solution within our experimental setup.

In terms of memory requirement, when the Struction is able to solve the in-
stances very fast, memory usage is usually below 1 GB and also a bit smaller than
the memory required by our algorithm. For more difficult instances, as for example
body (finite elemente) where m2wis+s and m2wis have a memory usage of less
than 1 GB, Struction requires more than 100 GB. This high memory consumption
compared to our solver can be explained since, particularly for challenging instances,
Struction reaches a memory-intensive branching phase.

Comparison against the State of the Art on Reduced Instances

We now compare the same algorithms on the reduced instances computed with the set
of reduction rules presented in Section 4.1. In this experiment, we show the impact
of our algorithm apart from the reduction rules, which can be used as a preprocessing
step in general. Table B.3 shows the detailed per-instance results. In Table 4.13,
we show the same sample of these results. Especially for the branch and reduce
algorithm by Lamm et al. [149] we see improvements over the results in Table 4.12.
With additionally using the reductions, we are able to solve more of the ssmc instances
optimally, as well as reduce memory consumption. For example, massachusetts-3 can
now be solved without reaching the memory threshold. The other algorithms also
benefit from using the reductions, which can be seen in higher solution qualities and
less running time. Still, our two algorithm variants also perform best on the set of
reduced instances. There is only one reduced snap instance (soc-pokec-relationships),
see Table B.3, where our algorithms yield a smaller solution. On this instance, they
are outperformed by HILS, but computed the second and third-best solution.
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METAMIS m2wis+s m2wis
Instance t ω t ω t ω

alabama-3 5.41 45 449 23.35 45 449 23.30 45 449
district-of-columbia-2 58.38 100 302 128.11 100 302 105.50 100 302
district-of-columbia-3 1 347.00 142 910 4 133.86 143 056 1 674.92 143 056
florida-3 3.08 46 132 7.09 46 132 7.04 46 132
greenland-3 28.02 11 960 2 556.12 11 960 363.89 11 960
hawaii-3 1 207.00 58 819 5 415.14 58 869 4 595.13 58 870
idaho-3 21.23 9 224 1 560.69 9 224 271.12 9 224
kansas-3 3.38 5 694 62.60 5 694 102.45 5 694
kentucky-3 1 387.00 30 789 9 125.55 31 107 6 457.95 31 107
massachusetts-3 2.22 17 224 63.29 17 224 103.09 17 224
north-carolina-3 0.38 13 062 61.20 13 062 116.08 13 062
oregon-3 11.56 34 471 150.93 34 471 230.12 34 471
rhode-island-2 0.27 43 722 0.68 43 722 0.64 43 722
rhode-island-3 449.70 81 013 3 175.87 81 013 1 660.12 81 013
vermont-3 9.33 28 349 1 238.25 28 349 135.12 28 349
virginia-3 9.08 97 873 144.95 97 873 146.12 97 873

re
dO

sm

washington-3 62.35 118 196 1 357.56 118 196 257.62 118 196

overall METAMIS m2wis+s m2wis
# best 14/17 16/17 17/17
gmean ω 36 153 36 179 36 179
gmean t 20.89 357.31 145.07

Table 4.14: Comparison with METAMIS [59] on Instance Set 3. We give the solution
weight ω and time t (in seconds) required to compute ω. Bold numbers indicate the
best solution among the algorithms. As done by Dong et al. [59] we reduced the osm
instances in advance using KaMIS BnR [149]. For METAMIS, the best result out
of five runs are reported; we report the best solution out of four runs, each with a
ten-hour time limit.

Comparison to METAMIS

Recently, Dong et al. [59] presented a novel heuristic for MWIS called METAMIS.
Since their code is not publicly available, we compare the solution quality of our
algorithm against the results presented in their work. Detailed per-instance results can
be found in Table 4.14. We use the same pre-reduced osm instances as Dong et al. [59].
In their experiments, the time limit for METAMIS is 1 500 seconds. However, as our
algorithm unfolds its full potential over a long period, and our algorithm focused on
higher-quality solutions and not fast running times, we stayed with a ten-hour time
limit. Moreover, note that the results have been computed on different machines.
In summary, our m2wis configurations compute the same or better solutions on all
graphs compared to METAMIS. In total, we were able to improve three solutions
compared to the METAMIS results with our configurations. Especially for large
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instances, our approaches outperform the results stated in [59]. However, it is not
clear whether METAMIS would compute equally good solutions for the instances
where m2wis performed better with a longer running time.

4.4 Concurrent Iterated Local Search CHILS

In this section, we present a new concurrent iterated local search heuristic CHILS for
the MWIS problem. It uses a baseline local search which extends up on the HILS
algorithm, see Section 3.2.3 and a special subgraph, called D-Core. This subgraph
is constructed using multiple heuristic solutions and is used to focus the search on
difficult parts of an instance. The algorithm is described in detail in Section 4.4.1.
Our approach CHILS outperforms existing heuristics across a wide variety of real-
world instances. We also show that CHILS can be used to solve the vehicle routing
instances from [60] and that it outperforms the two other heuristics, METAMIS and
BSA, specifically designed for these instances, as shown in Section 4.4.2.

References. This section is based on a publication which is joint work with Kenneth
Langedal and Christian Schulz [104].

Our Results. We propose a new concurrent iterated local search heuristic CHILS to
compute large-weight independent sets very fast. In particular, our heuristic works
by alternating between the full graph and the Difference-Core (D-Core), a sub-
graph constructed using multiple heuristic solutions. With this method and the GNN
preprocessing LearnAndReduce, introduced in Section 4.2, we are able to out-
perform existing heuristics across a wide variety of real-world instances, including
Instance Set 4 of vehicle routing instances.

4.4.1 The Algorithm Description

The proposed heuristic consists of two parts: (1) a simple iterated local search pro-
cedure we refer to as BASELINE, and (2) a new, concurrent heuristic called CHILS
(Concurrent Hybrid Iterated Local Search). In the following section, we first give a
high-level overview of the proposed approach and then provide a detailed description
of each component of our heuristic.

High-Level Idea

An uncomplicated heuristic implemented very efficiently is often better in practice
than a complicated one that runs slowly, especially when the heuristic makes heavy use
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of random decisions. This can be seen from the results of programming competitions
such as PACE (Parameterized Algorithms and Computational Experiments), where
fast randomized local search has become the default heuristic strategy among the
winning solvers [19, 99, 134]. Note that the PACE competition setting restricts the
time to solve the problem. We also used this approach for our baseline local search.
First, randomly alter a local area in the current solution. Then, greedy improvements
can be applied in random order until a local optimum is found. Finally, if the new local
optimum is worse than the previous, backtrack the changes and repeat. Compared
to more complicated heuristics, the main benefit of our BASELINE heuristic is that
it is inherently local. Regardless of the graph size, one iteration of the search will
typically only touch vertices a few edges away from where the random alteration
started. Backtracking to the best solution is also local, as long as queues are used to
track changes. Using queues also differentiates our BASELINE from other heuristics,
such as HILS [172], that make a copy of the entire solution instead.

The high-level idea of CHILS is a new metaheuristic we call Concurrent
Difference-Core Heuristic. Instead of only trying to improve one solution,
we maintain several and update each concurrently. At fixed intervals, the solutions
are used to create a Difference-Core (D-Core) instance based on where the
solutions differ. In other words, if a vertex is part of all or none of the solutions,
it will not be part of the D-Core. The intuition is that the intersection of the
solutions is likely to be part of an optimal solution, and where they differ indicates
areas where further improvements could be made. Since there is no guarantee that
the intersection of the solutions is part of an optimal solution, the Concurrent
Difference-Core Heuristic alternates between looking for improvements on the
original instance and the D-Core, where the D-Core is always constructed accord-
ing to the current solutions. While the general Concurrent Difference-Core
Heuristic can work using any heuristic method, our CHILS heuristic uses our iter-
ated local search BASELINE.

Baseline Local Search

The outline of the baseline local search is shown in Algorithm 13. Each search iteration
starts by picking a random vertex u from the graph. If the vertex is already in the
solution u ∈ S, or the tightness of u is one, i. e., |N(u) ∩ S| = 1, then an alternating
augmenting path (AAP) is used to perturb the current solution. If u is not currently
in the solution, it is added along with a random number of further changes in its
close proximity. The vertices that see a change in their neighborhood are considered
in “close proximity” to u. These vertices are continuously queued up in Q to find
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greedy improvements more efficiently later. We also use the size of Q to control the
amount of random changes. We stop perturbing the solution once |Q| exceeds mq,
where mq is a hyperparameter for the BASELINE heuristic. The benefit of using Q

and mq is that it stabilizes the computational cost for one iteration across different
graph densities. For instance, the number of changes needed to fill Q in a dense area
will be higher than in a sparse area.

Algorithm 13: Baseline Local Search
Data: Graph G = (V, E, w), independent set S, max queue size mq, and

time limit t

Result: Improved independent set S

Q← ∅ // Always filled with vertices that observe changes to S

while time spent < t do
cost← ω(S)
u← uniform random from [0, |V | − 1]
if u ∈ S or |N(u) ∩ S| = 1 then

AAW-moves(G, S, u)
else

S = {u} ∩ S \N(u)
while |Q| < mq do

v ← random element from Q

if v ∈ S then
S = S \ {v}

else
S = {v} ∩ S \N(v)

greedy(G, S, Q)
if w(S) < cost then

undo changes to S

return S

After perturbing the current solution, greedy improvements are made to find a new
local optimum. Having stored the candidate vertices in Q speeds up the search for
this new local optimum in sparse graphs. We incorporate three greedy improvement
operators for greedy in BASELINE described in the following.

Neighborhood Swap. For a vertex u /∈ S, if ω(u) > ω(N(u) ∩ S), then the inde-
pendent set obtained by inserting the vertex u and removing all neighbors of u that
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are currently in the solution, i.e. S = {u} ∪ (S \ N(u)), leads to an independent
set of higher weight. The total sum of the weights of each neighbor currently in the
solution Σv∈N(u)∩S w(v) is maintained at all times. This additional information allows
the neighborhood swap to be checked in O(1) time.

One-Two Swap. For a vertex in the current solution u ∈ S, consider the set T =
{v ∈ N(u) | N(v)∩S = {u}} with one-tight vertices in the neighborhood of u. If there
exists a pair of vertices {x, y} ⊆ T such that {x, y} /∈ E and where w(u) < w(x)+w(y),
then swapping u for x and y leads to a better solution. Examining all one-two swaps
can be done in O(m) time [7].

Alternating Augmenting Walk. We use a slightly modified version of the al-
ternating augmenting path (AAP) introduced by Dong et al. [59]. An alternating
augmenting walk (AAW) is a sequence of vertices that alternate between being in and
out of the solution S. AAW moves are used both for perturbation and finding greedy
improvements. When used for perturbation, the AAW is always extended in a random
direction. After no more vertices can be added to the walk, the entire AAW is applied
to the solution unless a strictly improving prefix of the walk exists. When searching
for greedy improvements, the walk always starts from a one-tight vertex and extends
in the best direction possible.

Let U be the set of vertices on the AAW in S, and U be the vertices on the AAW not
in S. A valid AAW has the property that the set S ′ obtained by applying the AAW, i.e.
S ′ = (S\U)∪U is also an independent set. This means U must also be an independent
set where N(U)∩S = U . The main purpose of AAWs is to find improving walks where
ω(U) > ω(U) and swap the vertices in U for those in U to obtain a heavier independent
set. As a secondary use case, they can also perturb the current solution. The benefit of
using AAWs instead of random perturbation is that the cardinality of the new solution
can only be one less than the original. Constructing an AAW starts with a single vertex
u ∈ S or a pair of vertices v /∈ S, u ∈ S, such that N(v) ∩ S = {u}. The AAW is
then extended from the last vertex u on the walk two vertices x ∈ N(u), y ∈ N(x) at
a time, such that the following three conditions are met.

1. x is not adjacent to any vertices in U

2. x is not currently in U

3. x is adjacent to precisely two vertices in the solution N(x) ∩ S = {u, y}

The main difference to the definition of an AAP given for METAMIS [59] is that y

is allowed to already be on the path. This results in a walk rather than a path. With
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solution 1 solution 2 solution 3 D-Core

Figure 4.12: Illustration for the D-Core. Vertices that are part of all or none of the
solutions are not part of the D-Core.

the path constraint as in METAMIS, an x, y pair that loops back to an earlier vertex
on the path is not a valid extension of the AAP. After applying this AAP (without
x, y), x would be a free vertex. In our relaxed definition, we can pick up these free
vertices directly. A downside with our definition is that the walks could remain more
local than a straight path away from the source vertex.

The CHILS Algorithm

We give an overview of our concurrent heuristic CHILS in Algorithm 14. First, we
run BASELINE on P different solutions for the full graph with a time limit of tG

seconds. Each solution is assigned a different random seed and slightly modified max
queue size (mq) to increase their difference. We also assign each solution an ID and
always keep track of the best solution found so far. Note that the ID of the best
solution can change during the algorithm execution. After improving the solutions on
the full graph, i. e., after P × tG seconds, we construct the D-Core instance. This is
done by removing vertices that are part of all or none of the P independent sets, see
Figure 4.12 for an example.

On the D-Core, we again start our BASELINE local search P times with a time
limit of tC to generate new solutions. We extend an independent set on the D-Core
to the full graph by adding the vertices in the intersection of all P solutions. This
independent set can replace the previous solution with the same ID. However, for
solutions with an even ID, as well as for the best solution found so far, replacements
are only made if the new solution is of higher weight. Letting half of the solutions
always accept the D-Core solution helps diversify the search.

Using the D-Core helps concentrate the local search on the more difficult regions
of the graph, where our P solutions differ. However, since the areas where they agree
are not necessarily part of an optimal solution, CHILS alternates between using the
BASELINE on the original instance and the recomputed D-Core based on the
current P solutions.
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Algorithm 14: The CHILS Algorithm
Data: Graph G = (V, E, ω), number of solutions P , max queue size mq, time

limit for the full graph tG, time limit for the D-Core tC , and overall
time limit t

Result: Independent set S

C = {S1, S2, . . . , SP} // Using greedy(G, ∅, V ) with different seeds
while time spent < t do

parallel for Si ∈ C do
Si = BASELINE(G, Si, mq + 4i, tG)

G′ ← compute D-Core using C

parallel for Si ∈ C do
S ′ = BASELINE(G′, ∅, mq + 4i, tC)
if ω(S ′) + offset ≥ ω(Si) or (i is odd and Si is not best) then

apply S ′ to Si

if |V ′| < 500 then
parallel perturbe(C)

return S ∈ C with largest weight

If the number of vertices in the D-Core falls below some small constant value, it
indicates that the P solutions are all quite similar. Since this reduces the benefit of
our approach, we perturb all solutions with an odd id, except for the best solution,
and without backtracking in the case where the new local optimum is worse. In
Algorithm 14, this is shown as parallel perturb on Line 14, where perturbing
one solution is done as described in lines 9-16 of Algorithm 13. As with accepting
replacement solutions from the D-Core, perturbing only half the solutions here helps
to diversify the search and escape local optima.

Parallel CHILS. Our CHILS approach is easily parallelizable, with a natural
choice for the number of solutions being exactly the number of cores available on the
machine, allowing each solution to be improved simultaneously. In this configuration,
the worst-case scenario is similar to running the underlying BASELINE local search
sequentially, at least when technical details such as memory bandwidth and dynamic
clock speeds are ignored. For larger numbers of solutions, the parameter P should be
divisible by the number of threads running to ensure that no threads are idle.
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4.4.2 Experimental Evaluation

The following section introduces the experimental setup and establishes the data-
set used for evaluating the proposed approaches. Then, we present state-of-the-art
comparison for BASELINE and CHILS. Finally, we present results for the parallel
scalability of CHILS.

Methodology. All the experiments were run on Machine 2. Both CHILS and
BASELINE were implemented in C and compiled with GCC version 11.4.0 using
the -O3 flag. OpenMP is used for the parallel implementations. We evaluate eight
instances in parallel for the sequential experiments. To ensure fairness between the
algorithms, the instances start in the same order for each code, and only one program
is evaluated at a time. We evaluate each program once for each instance.

We compare our algorithms BASELINE and CHILS to the state-of-the-art heur-
istic algorithms HtWIS presented in [107] by Gu et al., the hybrid iterated local
search HILS by Nogueira et al. [172], the memetic algorithm m2wis+s by Groß-
mann et al. [103], the new metaheuristic METAMIS by Dong et al. [59], and the
Bregman-Sinkhorn algorithm BSA by Haller and Savchynskyy [113]. The first three,
HtWIS, HILS, and HILS, were all used in their default configurations. The source
code for METAMIS is not publicly available, and therefore, we had to use the num-
bers reported in [59]. They used the Amazon Web Service r3.4xlarge compute node
running Intel Xeon Ivy Bridge Processors and wrote the implementation of their heur-
istic in Java. They also run their algorithm five times with different seeds and report
the best solution found. For the Bregman-Sinkhorn algorithm BSA, we use the vari-
ation that produces integer solutions only after reaching 0.1 % relative duality gap for
the LP relaxation by recommendation from the authors [114]2.

Datasets. For the experiments, we use the Instance Set 2, which is a subset of
Instance Set 1 where easy-to-reduce instances have been removed. This set is also used
in Section 4.2 to evaluate the LearnAndReduce preprocessing. It contains instances
from the Stanford Large Network Dataset Repository (snap) [155], OpenStreetMaps
(osm) [1, 20, 37], the SuiteSparse Matrix Collection (ssmc) [53] as well as dual graphs
of well-known triangle meshes (mesh) [185], and 3d meshes derived from simulations
using the finite element method (fe) [210]. Additionally, we perform experiments on
Instance Set 4 of vehicle routing instances introduced recently by Dong et al. [60].

2The exact command we used was mwis json −l temp cont −B 50 −−initial−temperature 0.01
−g 50 −b 100000000 −t [seconds] [instance]
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Instance Set 4 (Vehicle Routing). This instance set contains all 37 vehicle routing
instances (vr) introduced by Dong et al. [60]. Detailed graph properties are given in
Table A.3 in the Appendix.

Initial warm-start solutions derived from the application and clique information
for the graphs are also provided for these instances. The clique information is a clique
cover of the graph, i. e., a collection of potentially overlapping cliques that cover the en-
tire graph. The approaches METAMIS [59] and BSA [113] use this clique information.

Parameter Tuning

In this section, we perform experiments to find good choices for the number of con-
current solutions P and the time t spent improving them in the sequential version of
CHILS. We choose a subset of our two sets of instances for parameter tuning. We
took six graphs from each set. From each graph class in Instance Set 2, we select two
graphs randomly, such that the reduced instance has more than 500 vertices. From
the Instance Set 4, we took three graphs with more than 500 000 vertices and three
with less than 500 000 vertices. Note that we did not include any mesh or ssmc graphs
since these are all reduced to less than 500 vertices. The instances chosen for these
experiments are marked with a ⋆ in Tables A.2 and A.3 in the Appendix.

We begin our experiments with the parameter defining the number of concurrent
solutions, P ∈ {8, 16, 32, 48, 64}. The second parameter, highly correlating with P , is
the time spent per local search run. For this experiment we set t = tG = tC and test all
t ∈ {0.1, 1, 2.5, 5, 10, 20, 30} seconds. Recall that tG is the time spent on the original
graph and kC is the time spent on the D-Core. We present the geometric mean
solution weight after one hour for the different configurations of these two parameters
in Table 4.15.

We can see that the best choice for t gets lower as the number of solutions P

increases. Comparing the configurations with the most solutions, i. e., P = 64, the
solution quality is worse than using fewer concurrent local search runs for all t values
tested. The best configuration we found is P = 16 and t = 10 seconds, resulting in
a geometric mean weight of 14 132 120. Note that these optimal choices are only for
running CHILS sequentially.

Observation 4.4.1: Best Performing CHILS Configuration. The best para-
meter configuration we found experimentally was P = 16 and t = 10 for running
CHILS sequentially with a time limit of one hour per instance.
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P = 8 P = 16 P = 32 P = 64

t = 0.1 14 119 825 14 119 386 14 119 516 14 100 937
t = 1 14 124 084 14 126 354 14 127 388 14 117 719
t = 2.5 14 127 282 14 128 074 14 130 823 14 118 203
t = 5 14 127 913 14 129 545 14 129 347 14 117 284
t = 10 14 127 684 14 132 120 14 124 680 14 116 758
t = 20 14 130 214 14 125 181 14 119 467 14 110 491
t = 30 14 126 896 14 118 547 14 115 472 14 112 364

Table 4.15: Geometric mean weight computed by the sequential CHILS after one
hour for different configurations for the number of solutions P and time limits for the
local search t = tG = tC . Note that the time t is spent per solution in P and is not
divided between them.

State-of-the-Art Comparison

The state-of-the-art comparison in this section is divided into two parts. We start
by discussing results for the Instance Set 2, a subset of our main set Instance Set 1,
where we removed graphs that are simple to reduce. Here we compare our approaches
BASELINE and CHILS to state-of-the-art heuristics HtWIS presented in [107]
by Gu et al., the hybrid iterated local search HILS by Nogueira et al. [172] as well
as the memetic algorithm m2wis+s introduced in Section 4.3. The second part of
this section is dedicated to the other algorithms and results for the vehicle routing
instances, Instance Set 4. For these instances, we compare our heuristics with the
results of METAMIS [59]3. Additionally, we compare against the new Bregman-
Sinkhorn algorithm BSA by Haller et al. [113]. We do not evaluate BSA on Instance
Set 2 as BSA requires clique information that is only available for the vehicle routing
instances. Similarly, the vehicle routing instances differ significantly from previously
established testing instances. The older state-of-the-art heuristics are not designed
or implemented for these instances and perform significantly worse. In splitting the
state-of-the-art comparison as described, we evaluate each heuristic in spirit with
what they were designed for while demonstrating that BASELINE and CHILS are
competitive in both categories.

Table 4.16 presents results for a subset of graphs from Instance Set 2. We chose
the largest four graphs from each graph class for this subset. The results on the full
set can be found in Table B.4 in the Appendix. We can see that both our algorithms

3The code is not publicly available, therefore, we could not rerun the experiments.
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BASELINE and CHILS outperform HtWIS and HILS in terms of solution quality
on every instance. For large instances, such as the osm instances, we find these
best solutions even faster than any competitor finding their best solution within the
time limit. When comparing against m2wis+s, we observe that especially for the
mesh and snap instances, our approaches find slightly worse solutions and need more
time. However, m2wis+s already uses many of the reductions we incorporated in
the LearnAndReduce preprocessing, which we did not use for BASELINE or
CHILS. Comparing Table 4.16 to Table 4.17 clearly shows the importance of our
preprocessing routine. In Table 4.17, we present the results on the same instances,
which have already been reduced with LearnAndReduce. From this, it is clear that
all evaluated methods benefit from the preprocessing. On these instances, CHILS
finds the best solutions on all reduced instances.

In Figure 4.13, we show performance profiles comparing the different algorithms’
solution quality and running time on the full set of original and reduced instances.
Note that most of the solutions on these instances found by m2wis+s are optimal [103].
On approximately 60 % of the original instances HtWIS finds the solution fastest, see
Figures 4.13b. However, the fast running times come with a decrease in solution qual-
ity of up to 10 %, as seen in Figure 4.13a. On more than 90 % of the instances CHILS
finds the best solution while having comparable running times as the other schemes
except for HtWIS. The m2wis+s algorithm performs very similarly to CHILS on
the original instances. However, on the reduced instances, m2wis+s has the longest
running times; see Figure 4.13d. Note that the initial reductions used in m2wis+s
are also included in the LearnAndReduce framework. All other algorithms have
similar running times on the reduced instances. From Figure 4.13c, it follows that all
algorithms except for HtWIS find the same solution on almost 80 % of the reduced
instances. On the other 20 % CHILS finds the best solutions which are up to 0.7 %
better than the HILS solutions and more than 7 % better than m2wis+s. On more
than 85 % HtWIS computes solutions more than 1 % worse than the best solutions
found, and for approximately 30 % of the instances these solutions are even more
than 10 % worse.
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Figure 4.13: Performance profiles for solution quality and running time for original
and reduced instances, not including the vehicle routing instances. The reduction
offset and reduction time are not added for the reduced instances, and fully reduced
instances are not included. The vertical line in the plots on the left indicates a change
from one scale to another.

Observation 4.4.2: Effect of LearnAndReduce. All algorithms tested benefit
from running the LearnAndReduce preprocessing. CHILS finds the best solution
on all reduced instances, while performing similar to HILS regarding running time.
It is slightly slower than HtWIS, which computes the worst solution quality on
these instances. Without preprocessing, the improvement of CHILS over HtWIS
and HILS regarding solution quality increases. Here, only m2wis+s, which already
uses reductions, can find better results than CHILS on some graphs.
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Next, we investigate the results for the Instance Set 4. Note that the vertex weights
for these instances are very large, which leads to only small percentage improvements
despite significant differences between the solutions. Here, we only compare against
the competitors METAMIS and BSA. In contrast to these competitors, CHILS
and BASELINE are running on the full graph without exploiting the clique in-
formation also provided. On these instances, most of the solutions found are not
optimal, evident by the significantly larger solutions we later find using our parallel
CHILS. We add a warm-start configuration for CHILS where we start with the
provided initial solution. The METAMIS numbers for cold and warm-starts are
taken from [59]. In Figure 4.14, we present performance profiles to compare the solu-
tion quality achieved by the algorithms with different time limits. The first two show
the state-of-the-art comparison of solution quality achieved with a 6 and 30 minutes
time limit. As expected, the configurations with the warm start perform best with
the shortest time limit, see Figure 4.14a. However, if no initial solution is known,
our two variants, BASELINE and CHILS, significantly outperform all competitor
configurations. Note that BASELINE is performing better than CHILS on around
80 % of the instances here, since the configuration for CHILS is optimized for run-
ning with a one-hour time limit, see Section 4.4.2. Compared to the second profile on
the right, we can see that with more time, the CHILS solutions improve most, even
surpassing the METAMIS-Warm results in some instances. Within this time limit
CHILS-Warm finds the best solutions on almost 60 % of the instances. Furthermore,
both CHILS configurations compute solutions that are at most 0.3 % worse than the
best-found solution. On the other hand, on more than 38 % of the instances, BSA
and METAMIS-Cold find solutions which are more than 1 % worse than the best
solutions found on the respective instances.

In Figure 4.14c, we present the state-of-the-art comparison where all algorithms
have an hour time limit and run on the original instances. Here, we can see that
CHILS with and without the initial solution performs generally the best. The results
shown here are very similar to those computed within the shorter time limit of 30
minutes, see Figure 4.14b.

However, this changes for the profile in Figure 4.14d. Here, we added a config-
uration called CHILS-Parallel, which utilizes the warm start solution and runs in
parallel with the configuration of P = 64 and t = 5 seconds, using 16 parallel threads,
i. e., without simultaneous multithreading. Additionally, we used LearnAndRe-
duce and run CHILS on the reduced instances. With this configuration, CHILS-
Reduced, we can not compete with the other configurations on most instances since,
for these large instances, the reduction rules do not work well; see also Table A.3 in the
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parallel and reduced

Figure 4.14: Performance profiles for state-of-the-art comparison of solution quality on
the vehicle routing instances with different time limits. In Figure 4.14d, results com-
puted with parallel CHILS and CHILS on instances reduced with LearnAndRe-
duce are added.

Appendix. Testing even the fast reduction rules on these graphs takes considerable
time. However, on MR-W-FN or MW-D-01, for example, using reduction rules helps to
find better solutions; see Table 4.18. Considering all of our variants, we outperform all
other schemes in all but two instances; see Figure 4.14 and Table 4.18. Furthermore,
in contrast to METAMIS, our approach does not depend on having good initial
solutions. Nevertheless, using a warm start solution can improve the performance.
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Observation 4.4.3: Performance on Vehicle Routing Instances. On the
vehicle routing instances without initial solutions, even our BASELINE approach
outperforms the competitors. The BASELINE approach is especially good with
a low time limit. Overall, CHILS outperforms all the other heuristics regarding
solution quality after 6 minutes, 30 minutes, and 1 hour.

Parallel Scalability

For the parallel results shown in Figure 4.14d, we used the same machine as the other
heuristics to ensure fairness between each program with regard to solution quality.
To gain more detailed insight into the parallel scalability of our approach, we util-
ize a larger machine with an AMD EPYC 9754 128-core processor for our scalability
experiments. Furthermore, CHILS as defined in Section 4.4.1 relies on wall time
to alternate between local search on the full graph and the D-Core. This intro-
duces variance between runs and makes it difficult to conduct scalability experiments.
Therefore, we change the implementation for this section to perform a fixed number
of local search iterations instead, where one iteration refers to the while loop starting
on Line 2 in Algorithm 13. We also set a fixed number of CHILS iterations, referring
to the while loop starting on Line 2 in Algorithm 14. By removing the wall-clock
measures and using the same random seed, we ensure that the parallel and sequential
versions perform the exact same computations and reach the same solution in the end.

The configuration we use for these experiments consists of 1,000 local search iter-
ations, 10 CHILS iterations, and P = 128. Depending on the instance, this ratio of
local search on the full graph and D-Core is reasonably close to the wall-clock version
with tG = tC = 10. Each run was repeated five times, and the best measurement is
used. We use the best measurement because, in this configuration, there is no random-
ness between runs. Any difference we observe in execution time is solely due to factors
outside our control, such as fluctuations in clock speed and other programs running
on the machine. As such, the best measure is the closest to the true execution time.

The speedup numbers for each instance are shown in Figure 4.15. The best scaling
instance reaches a speedup of 104, while the worst is still 28 times faster than the
sequential program. Figure 4.15 also shows the amount of memory allocated for
each instance. This includes the graph, which we store using the compressed sparse
row format, and additional data structures required by the heuristic. All memory
allocations are done upfront before starting the heuristic, and the appropriate thread
initializes any thread-local data. The CPU we use has a combined L3 cache of 256
MiB. There is a clear drop in speedup around the point when the data no longer fits
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Figure 4.15: Bar chart showing the speedup on each instance using 128 threads com-
pared to the sequential CHILS. The colors indicate the amount of allocated memory
for each instance. The total amount of L3 cache for this machine is 256 MiB, and
smaller instances fit entirely in the cache.

in the cache. This indicates that the memory bandwidth is the main bottleneck for
larger instances. In terms of load balancing, there could be variations in how much
work it takes to perform 1,000 local search iterations for each solution. This is because
each solution has a different random seed and mq parameter. Note that this is not
an issue for the version presented in Section 4.4.1, since that version uses wall time
instead of local search iterations. Table A.7 in the Appendix gives detailed execution
time, speedup, and the amount of memory used for each instance.

Observation 4.4.4: Scalability Results. The parallel version of CHILS scales
well with the number of threads. We achieve a speedup of up to 104 on the best
instances, while the worst instances still show a speedup of 28. The experiments
indicate, that the memory bandwidth is the main bottleneck for larger instances, as
the speedup drops when the data no longer fits in the cache.
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4.5 Dynamic Algorithms Based on Optimal Neigh-
borhood Exploration

In this chapter, we introduce a novel local search technique called optimal neighbor-
hood exploration to solve the M(W)IS problem in a dynamic setting. This technique,
introduced in detail in Section 4.5.1, creates independent subproblems that are solved
optimally, leading to improved overall solutions. In Section 4.5.3, we present an ex-
tensive experimental evaluation, where we assess the effectiveness of our approach
and compare it with other state-of-the-art dynamic solvers. Our algorithm uses the
subproblem size parameter that balances running time and solution quality.

References. This section is based on joint work with Jannick Borowitz and Christian
Schulz [32, 30]. Large parts are copied verbatim from the paper or the technical report.

Complex graphs are useful in a wide range of applications, from technological
networks to biological systems like the human brain. These graphs can contain billions
of vertices and edges. In practice, the underlying graphs often change over time, i. e.,
vertices or edges are inserted or deleted as time passes. For example, users sign up or
leave a social network, and relations between them may be created or removed over
time, or in road networks, new roads are built. Terminology-wise, a problem is said
to be fully dynamic if the update operations include both insertions and deletions of
edges and partially dynamic if only one type of update operation is allowed. In this
context, a problem is called incremental if only edge insertions occur, but no deletions,
and decremental vice versa.

A (fully) dynamic graph algorithm is a data structure that supports edge insertions
and edge deletions. It also answers certain queries that are specific to the problem
under consideration. A graph-sequence G = (G0, . . . , Gt) for t ∈ N0 is an edit-sequence
of graphs if for all 0 < i ≤ t there exists exactly one update to the graph Gi−1 resulting
in the graph Gi. This update can be inserting a new edge e /∈ E(Gi−1) such that
Gi = Gi−1 + e, or deleting an existing edge e ∈ E(Gi−1) such that Gi = Gi−1 − e.
Furthermore, a new vertex v /∈ V (Gi−1) can be inserted yielding Gi = Gi−1 + v, or
an existing vertex v ∈ V (Gi−1) can be deleted, i. e., Gi = Gi−1 − v, Additionally, an
update can also change the weight of an existing vertex.

The most studied dynamic problems are graph problems such as connectivity,
reachability, shortest paths, or matching (see [116]). However, while there is a large
body of theoretical work on efficient dynamic graph algorithms, only recently has
experimental work in the area been gaining momentum. For some classical dynamic
algorithms, experimental studies have been performed, such as early works on (all
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Figure 4.16: Starting from a vertex u, the algorithms find a locally independent
subgraph G[H] by exploring the neighborhood up to a certain depth. Then, adjacent
vertices from the current solution are added to the subgraph. This subgraph G[H] is
solved by a solver of our choice.

pairs) shortest paths [82, 55] or transitive closure [143] and later contributions for
fully dynamic graph clustering [58], fully dynamic approximation of betweenness cent-
rality [24] as well as fully dynamic (weighted) matching [9, 119], fully dynamic delta
orientations [29] and fully dynamic minimum cuts [120]. However, for other funda-
mental dynamic graph problems, the theoretical, algorithmic ideas have received very
little attention from the practical perspective.

In this section, we tackle the Maximum (Weight) Independent Set problem
in a fully dynamic setting. While quite a large amount of engineering work has been
devoted to the computation of independent sets/vertex covers in static graphs, the
amount of engineering work for the dynamic independent set problem is very limited
with only three results by Zheng et al. [225, 226] with their algorithm DgOracleTwo
as well as Gao et al. [90] with DyTwoSwap and one result by Bhore et al. [27] that is
specialized to independent rectangles. In this dissertation, we extend the set of solvers
for the Maximum (Weight) Independent Set problem in the dynamic model by
introducing a technique that we call optimal neighborhood exploration.

4.5.1 Optimal Neighborhood Exploration

In this section, we explain the core concept of optimal neighborhood exploration. The
term refers to optimally exploring a vertex’s neighborhood in a graph to find the
best possible solution locally. We use this key idea to improve a given (weighted)
independent set (or handle updates in a dynamic graph). We first build an induced
subgraph G[H] with the following property. For a given independent set I, we build
the set of vertices H, such that all vertices v ∈ H are non-adjacent to independent
set vertices outside of H, i. e., (NG(H)\H) ∩ I = ∅.

This property enables us to exchange the independent set vertices I ∩H in G by
any independent set of the induced subgraph G[H]. Hence, to improve a solution,
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we solve the maximum weight/cardinality independent set problem in the induced
subgraph G[H]. The running time of the algorithm depends crucially on the size of the
induced subgraph. Therefore, we limit the subgraph size for our dynamic approach.

Building the Induced Subgraph

We now explain how we find the induced subgraphs for the optimal neighborhood
exploration. We start with the following basic idea. Assume a maximal (weight)
independent set I of G is given. We build the subgraph G[H] around a seed vertex u ∈
V . To construct the subgraph, we perform a breadth-first search (BFS) of depth d

for a given parameter d ≥ 0. All vertices reached by the BFS are added to a set H.
Afterward, we add all vertices adjacent to vertices in H and the given independent
set I. More precisely, we set H ← H ∪ (NG(H) ∩ I). This construction ensures that
(NG(H)\H) ∩ I = ∅ and therefore we can exchange the independent set vertices of
I in H by any independent set of the induced subgraph G[H].

If we only solve one local problem in an induced subgraph around u, swapping the
solution vertices can result in a non-maximal solution. This can happen even if the
solution in G[H] has been optimal. Figure 4.17 gives an example of this situation. To
deal with this, we add vertices in NG(H)\H for which all adjacent independent set
vertices are in H, i. e., we add the H tight vertices from NG(H)\H to our subproblem.

Limiting the Subgraph Size

The basic strategy described above can yield large subgraphs G[H] if the expansion
of the graph is high. Consequently, we do not only limit the depth d of the BFS but
also introduce a second parameter, νmax > 0, to bound the total number of vertices
in H. In order to limit the size of the induced subgraph, we perform a modified
breadth-first search. We start the BFS at a seed vertex u and add it into the BFS
queue Q. Whenever the BFS reaches a vertex v, we know the current size of H and
its extended set via bookkeeping. If adding v to H would imply that the final problem
size is larger than νmax (when adding respective independent set vertices and H tight
vertices of N(H)\H), we do not add this vertex to H and also do not continue the
BFS at that vertex, i. e., v is not added to the BFS queue Q. The BFS continues until
all vertices have been processed, the depth d is reached, or the queue Q is empty.

Pruning Large Degree Vertices (Pinching)

Large-degree vertices in sparse graphs are often not part of optimum solutions. For
the weighted case, vertices, where ω(N(v))/ω(v) is high, are often not part of optimum
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Algorithm 15: DegGreedy Algorithm
Procedure insertion(u, v):

Adj[u] := Adj[u] ∪{v}
Adj[v] := Adj[v] ∪{u}
if u ∈ IS and v ∈ IS then

ϕu ← w(u)/w(N(u))
ϕv ← w(v)/w(N(v))
R ← u // R stores vertex to be removed
if ϕu > ϕv then
R ← v

else if ϕu = ϕv then
R ← Random(u or v)

I := I \{R}
for w ∈ N(R) do

if free(w) then
I := I ∪ {w}

Procedure deletion(u, v):
Adj[u] := Adj[u] \{v}
Adj[v] := Adj[v] \{u}
if u /∈ I then

if free(u) then
I := I ∪ {u}

if v /∈ I then
if free(v) then
I := I ∪ {v}

Procedure free(u):
return N(u) ∩ I = ∅

solutions. To address this, we implement a pruning strategy that selectively removes
these vertices from the subproblem G[H] before solving it. By excluding these ver-
tices, we reduce the complexity of the subproblem, allowing the solver to concentrate
on more promising candidate vertices with lower degrees or lower ω(N(v))/ω(v) for
the weighted case. This approach not only speeds up the solution process but also
helps maintain a more manageable subproblem size, ensuring the solver can operate
within practical time limits. This technique is frequently employed in static (heur-
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3
u

1
3

2
v

2

H

Figure 4.17: Induced subgraph with BFS of depth 1 starting at vertex u. The cur-
rent solution vertices are orange. The set H = N [u] ∪ {v}. The new optimal solu-
tion on the subgraph is green. When changing to this solution, the independent set
is not maximal.

istic) algorithms using reduce-and-peel strategies, as m2wis introduced in Section 4.3.
For our approach here, we check the current subgraph G[H] and find the independent
set vertex in G[H] with the largest degree. Let the degree of that vertex be denoted
by ∆I,H . Then, before solving G[H], we remove vertices from H \ I, having a degree
larger than δ · ∆I,H where δ > 1 is a tuning parameter. The smaller δ, the more
this process reduces the subproblem we want to solve. We use δ = 1.25, however, the
algorithm is not too sensitive about the precise choice of the parameter.

Solving Local Induced Subgraphs

To solve the local MWIS problem optimally or heuristically, any (exact) solver can be
used. We choose the exact solver KaMIS BnR introduced by Lamm et al. [149] since
it is state-of-the-art among the exact algorithms and it can solve the MWIS as well as
the MIS problem. The KaMIS BnR solver is introduced in detail in Section 3.2.3.
In general, the algorithm exhaustively applies a wide range of data reductions to the
input instance and runs a sophisticated branch-and-reduce algorithm afterward. It can
solve many (large) static instances optimally while outperforming other approaches.
Even compared to iterated local-search approaches like HILS, KaMIS BnR can often
compete in running time, e. g., for osm instances (street networks), as the experiments
by Lamm et al. [149] show. We run KaMIS BnR with a time limit tBnR. If the
algorithm can not find an optimal solution within the time limit, it returns the best
weighted independent set IH for G[H] that it has found. Since every independent
set for G[H] yields a modified and feasible independent set in G, we update the old
solution I in G if IH improves solution quality, i. e., if ω(IH) > ω(I ∩ H) or in the
cardinality case, |IH | > |I ∩H|.
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Algorithm 16: DynamicONE Algorithm
Procedure insertion(u, v):

Adj[u] := Adj[u] ∪{v}
Adj[v] := Adj[v] ∪{u}
DegGreedy::insertion(u, v)
if DegGreedy cannot add a vertex to I then

H ← BFS-SEARCH(u, v, d, νmax)
PruneLargeDegreeVertices(H)
H ← H ∪ (NG(H) ∩ I)
if SolveIS(G[H], I ∩H) then

UpdateSolution()

Procedure deletion(u, v):
Adj[u] := Adj[u] \{v}
Adj[v] := Adj[v] \{u}
DegGreedy::deletion(u, v)
if DegGreedy cannot add a vertex to I then

H ← BFS-SEARCH(u, v, d, νmax)
PruneLargeDegreeVertices(H)
H ← H ∪ (NG(H) ∩ I)
if SolveIS(G[H]) then

UpdateSolution()

Procedure PruneLargeDegreeVertices(H):
for each v ∈ H do

if d(v) > δ ·∆I,H and v ̸∈ I then
Remove v from H

Procedure SolveIS(GH , IH):
Solve (weighted) independent set problem in GH

return true if solution improved, false otherwise

Procedure UpdateSolution():
Update I in G with solution of G[H]
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4.5.2 Dynamic Methods

We now leverage the core concept of optimal neighborhood exploration described
above to define a fully dynamic algorithm for the MWIS and the MIS problem. Next,
we explain our approach to handling various update operations. Before we describe
how we use the dynamic optimum neighborhood exploration, we give simple dynamic
and fast algorithms. Later, we combine these fast algorithms with our (more expens-
ive) dynamic optimum neighborhood exploration technique to obtain a fast, high-
quality, fully dynamic algorithm.

Fast and Simple Greedy Updates

When a new edge {u, v} is inserted, we first check if the newly created edge induces
a conflict with our current solution. Specifically, we verify whether both u and v

are currently part of the independent set. If they are, the current solution is no
longer independent. To resolve this conflict, we remove the vertex which minimizes
w(v)/w(N(v)). In case of a tie, we remove a random vertex from the solution. Note
that in the cardinality case, this reduces to removing the vertex with the larger degree
from the current solution. The intuition here is that we want to remove the vertex
that blocks most of the other vertices/weights in the graph. Let the vertex that we
removed from the solution be u. Since u is no longer an independent set vertex, we
check if its neighbors can be added to the solution. Checking each neighbor takes
O(∆) time. Thus, the overall update takes time O(∆2). Note that by using proper
data structures, i. e., storing and updating for each vertex the number of adjacent
independent set vertices, one can reduce the update time to O(∆). If an edge {u, v}
is deleted from the graph, we check in O(∆) time if u and v can be added to the
solution (if u or v are not already part of the solution). We call this fast and simple
algorithm DegGreedy and give pseudocode for it in Algorithm 15.

Dynamic Optimum Neighborhood Exploration

We now explain our approach to performing dynamic optimum neighborhood explora-
tion. We integrate this with fast and simple greedy updates to optimize running time.
We call this technique pruning updates. Initially, we execute the aforementioned fast
and simple greedy algorithm. No further action is taken if this algorithm can add a
vertex to the solution after updating the graph data structure. However, if it cannot,
we can use the more resource-intensive dynamic optimum neighborhood exploration
to attempt to improve the solution. Pruning the expensive updates using the fast
and simple update algorithm significantly improves the running time of the overall



Dynamic Algorithms Based on Optimal Neighborhood Exploration 139

algorithm. We refer to this algorithm as DynamicONE. The pseudocode for the
algorithm is given in Algorithm 16.

Edge Insertion. We construct the subgraph H by performing a breadth-first search
using the two parameters d and νmax. We initialize the BFS with both vertices u and v.
We then prune the large-degree vertices of the subgraph (see Section 4.5.1). Afterward,
we solve the (weighted) independent set problem in the induced subgraph and
update the solution accordingly if we find an improvement.

Edge Deletion. Deleting an edge can not lead to any conflict between independent
set vertices. Hence, the current independent set does not need any fixing. After unsuc-
cessfully running the fast and greedy algorithm, we construct the subgraph H based on
the two parameters d and νmax to obtain the subgraph H. As in the insertion case, we
initialize the breadth-first search with both vertices u and v. As before, we prune the
large-degree vertices of the subgraph. We then solve the (weighted) independent
set problem in the induced subgraph and update the solution accordingly.

Miscellaneous. To save running time, we limit the time of the local solver to 10 s
and define rare updates. Rare updates only perform expensive updates (solving sub-
graphs) every x = 3 update. In the other two cases, only greedy updates are per-
formed. The parameter x controls a trade-off between running time and solution
quality. A smaller value of x will lead to better solution quality but also a higher
running time. Other update operations, such as vertex insertion (or weight update)
and deletion of a vertex u, can be done by mapping those operations to edge insertion
and deletions. However, this can yield many subproblems that need to be solved,
for example, if the degree of the inserted vertex is large. One can improve vertex
insertion (or weight update) by solving just one subgraph H starting from the seed
vertex u with its edges already inserted in the graph. When deleting a vertex u, we
initialize the dynamic BFS with the former neighbors N(u) to obtain a subgraph and
hence a subproblem.

4.5.3 Experimental Evaluation

In this section, we present the experimental evaluation of our approaches. First, we
present experiments on the unweighted instances for the different parameters in our
algorithms. Then, we compare our methods with the state-of-the-art. Finally, we
evaluate our approaches on weighted instances.
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Methodology. We implemented our algorithm using C++17. The code is com-
piled using g++ version 11.4.0, and full optimizations are turned on (-O3). In the
unweighted dynamic case, we compare against the dynamic implementations of Zheng
et al. [225] (DgOracleTwo) as well as Gao et al. [90] (DyTwoSwap). These al-
gorithms are also implemented in C++ and compiled with the same compiler and
optimization settings as our algorithm. In general, we compare the results of the
algorithms after all updates have been performed. We generally run each algorith-
m/configuration with ten different seeds on Machine 3. We compare our proposed
approaches on the Instance Set 5 of dynamic graphs. These consist of 33 instances
from various sources.

Instance Set 5 (Dynamic). This set consists of 33 instances from various sources [15,
53, 83, 116, 123, 145, 155, 177, 180]. Table A.5 in the Appendix summarizes the
main properties of this dynamic benchmark set. This set includes several graphs from
numeric simulations, road networks, and complex networks/social networks. Our set
includes static graphs as well as real dynamic graphs. In the case of instances that
have originally been static, we create dynamic instances by starting with an empty
graph and inserting all edges in order of their appearance of the static graph. As our
algorithms only handle undirected simple graphs, we ignore possible edge directions in
the input graphs and remove self-loops and parallel edges. For the cardinality case, we
treat all graphs as unweighted graphs.

Fully Dynamic Maximum Cardinality Independent Set Algorithms

We now present an evaluation of our methods for the maximum cardinality independ-
ent set problem. Due to space constraints, our focus is on assessing the impact of the
BFS depth and the effectiveness of various algorithmic components in accelerating
performance. Finally, we compare our algorithm against the state-of-the-art.

Depth d of BFS. We start with the depth of the BFS, which is denoted by d.
Note that this parameter is such that increasing the parameter increases the size of
the local problems and thus will (likely) increase the running time of the algorithm
but also improve the quality of the solutions. Hence, we look at the performance of the
parameter on all instances. The same parameter is used by the respective algorithm
on all instances, and there is no instance-specific tuning of the parameter.

In this experiment, we set νmax = 2 500 and use d ∈ {0, 1, 2, 3, 4, 6, 8, 10}. Fig-
ure 4.18 provides a performance profile for solution quality and a running time box
plot for the different algorithms as a function of depth d. The algorithms behave as
expected, with the quality of the solution improving as the depth of the BFS search
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Figure 4.18: Performance profile for solution quality (left) and running times in total
for all updates (right) for various depths d with νmax = 2 500.

increases. However, this improvement comes with a significant increase in running
time. For example, increasing the depth from d = 0 to 10 results in an average solu-
tion improvement of 6 %, with the largest observed improvement being 22 % on the
wing instance. However, this depth also makes the algorithm 181 times slower. The
plots further show that initial improvements in quality are more substantial, such as
when increasing depth from d = 0 to 4. At d = 4, our algorithm yields 5 % better solu-
tions than the algorithm using d = 0 on average, which is 25 times slower. Thus, in
applications, this parameter can effectively control the quality of solutions. However,
further techniques (as will follow) are required to speed up the algorithm.

Pruning Updates. Pruned updates help avoid the expensive solving steps of the
induced subgraph by performing a simpler and faster local search augmentation step if
successful. To evaluate the impact of the pruning updates on the algorithm’s perform-
ance, we tested all values for d used previously with pruned updates enabled. Overall,
pruning updates significantly improve the algorithm’s running time. The speed-up
does not heavily depend on d, as the pruning step filters out unnecessary updates
across all algorithm configurations. On average, pruning reduces the algorithm’s run-
ning time by 21 %. Additionally, pruning slightly improves solution quality (by a very
small margin), which may be attributed to minor variations in the solutions found by
the algorithm throughout the various update steps. Hence, we conclude that pruning
updates are a crucial component of our algorithm, as they significantly reduce the
running time without compromising solution quality.
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Rare Updates. With rare updates, we introduce another technique to reduce the
number of computationally expensive updates that need to be performed. We tested
the impact of rare updates on the algorithm’s performance for different depth values
d. For this, we run the same configurations as above (without pruning), as well as
the configurations from above with rare updates enabled. The results show that rare
updates can significantly reduce the algorithm’s running time. Here, the impact varies
for different values of d. For small values of d, the running time without and with
pruning are closer, but as d increases, the benefit of using rare updates becomes more
pronounced. For instance, when d = 1, the running time improved by 35 % with rare
updates (but the size of solutions also decreased by 17 %). As d increases to 10, the
running time is improved by a factor of 3.05 while solutions are worse by 0.6 % on
average. The small decrease in solution quality is because ignored updates likely take
part in a later update as the local subgraphs can be quite large for large values of
d. In summary, rare updates prove to be an effective technique for reducing running
time, especially for larger values of d, with a small impact on the solution quality.
Still, this option may not be useful if solution quality is paramount. Note that, in
principle, different values of x yield different trade-offs.

Pinching. Pinching removes vertices from the local subgraph that are unlikely to be
in an independent set, reducing the size of the local subgraph. In addition to reducing
the size, removing these vertices also makes data reductions more effective. We tested
the impact of pinching on the algorithm’s performance by varying this parameter,
running the same configurations as above (without pruning and rare updates), and
enabling pinching on the configurations from above. The results show that pinching
can significantly reduce the running time. As expected, for small values of d, pinching
does not have a high impact on solution quality or running time. However, for larger
values of d ≥ 3 solution quality is not impacted (< 0.001 % on average) while running
time is reduced by 12 %, 15 % 18 %, 22 % and 16 % for d = 3, 4, 6, 8, 10 respectively.
Hence, we conclude that pinching is a useful technique for reducing the running time
of the algorithm without compromising solution quality for values of d ≥ 3.

We define a strong and fast configuration of our algorithm based on these obser-
vations. In both configurations, we set the depth of the BFS to d = 10. We use the
variant with pinching and pruning, but without rare updates, as our strong configur-
ation DynamicOneStrong, since this resulted in the best solution quality. In our
faster configuration, DynamicOneFast, we use pinching, pruning, and rare updates.
Futhermore, we decreasing the limit on the local subproblem size to νmax = 200, which
further speeds up this configuration.
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Figure 4.19: State-of-the-art comparison on unweighted instances. Performance profile
for solution quality (left) and box plot for total update time (right).

Comparison with the State-of-the-Art

We now compare our algorithms against two state-of-the-art algorithms, DyTwoSwap
and DgOracleTwo, as well as two greedy strategies. The Greedy strategy is sim-
ilar to the DegGreedy algorithm described in Section 4.5.2, with a key difference in
how it handles the initial removal of conflicted vertices. Instead of basing this removal
on w(v)/w(N(v)), it just uses the weights of the vertices ω(v). Specifically, if an edge
is inserted between two independent set vertices, the lighter one is removed from the
independent set. In the cardinality case, where all weights are one, this translates to
removing a random vertex from the two newly adjacent vertices, followed by a simple
augmentation step. This tries to add adjacent vertices of the vertex that we just
removed from the independent set vertex. Figure 4.19 gives a performance profile and
a running time box plot for the various algorithms under consideration. Detailed per
instance results are given in Table B.6. As DgOracleTwo computes worse results
than DyTwoSwap and is slower, we only discuss results compared to DyTwoSwap.

First, we see that our strong method DynamicOneStrong outperforms all other
algorithms in terms of solution quality. On 31 out of 33 instances, our algorithm com-
putes the best (or equal to the best) result. Improvements vary largely on the type
of instances that we consider. Our method performs particularly well on mesh-type
networks, which are generally known to be hard instances for the independent set
problem. The largest observed improvement is 3.6 % on the whitaker3 instance. The
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good performance is due to the fact that the local subgraphs/problems align closely
with the algorithm’s intuition, specifically forming a ball around the recently inserted
or deleted edge, and the fact that this is a powerful local search operation for the
value of d we are using. Similarly, our algorithm performs well on road networks.
Our algorithm computes a strictly better result than all of the competitors. The
largest observed improvement of DynamicOneStrong over DyTwoSwap is 2.4 %
on the uk instance. On social networks, DyTwoSwap and our strong algorithm Dy-
namicOneStrong mostly compute the same results. Initially, this looks surprising,
however, the authors already show in their paper that on this type of (easy) instances,
their algorithm computes solutions very close to optimal or even optimal solutions.
We also compare algorithms under consideration to the optimum result, see Table B.6
in the Appendix. We obtained the optimum result after all updates have been per-
formed using the optimum KaMIS BnR; see Section 3.2.3. On the instances that
the static branch-and-reduce algorithm could solve within a two-day time limit, our
DynamicOneStrong algorithm is at most 0.4 % worse.

Based on the performance profile, the performance of the DynamicOneFast al-
gorithm in terms of solution quality is comparable to, albeit slightly worse than, the
DyTwoSwap algorithm. In terms of running time, it is important to note, however,
that DynamicOneFast is slower because it employs a more generic approach for
updating the independent sets. Moreover, our DynamicOneStrong algorithm, al-
though significantly slower than DyTwoSwap, remains orders of magnitude faster
than computing independent sets from scratch. To illustrate this, we relate the run-
ning time per update of DynamicOneStrong with the time required by the iter-
ated local search algorithm in the KaMIS framework. This comparison is made on
the static counterpart of the final instance after all updates. On average (geomet-
ric mean), the time per update for DynamicOneStrong is 1 776 times lower than
computing the independent set from scratch using weighted iterated local search on
the final instance. Note, however, that this is only a rough estimate as the instances
throughout the update sequence increase in size. We sum up our experimental results
in the following observations.

Observation 4.5.1: Solution Quality Focus. If solution quality is paramount
and the structure of the networks is similar to road networks or mesh-type networks,
DynamicOneStrong is the best choice. If even better quality is required in the
respective applications, larger values of d and νmax may be feasible. Since our al-
gorithm computes the same results as DyTwoSwap on social networks but is much
slower, DyTwoSwap is still the way to go for this type of instances.
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The simple greedy strategies Greedy and DegGreedy are the fastest algorithms,
but they are also worse in terms of solution quality. The DegGreedy algorithm
performs significantly better than the simpler Greedy algorithm while having a
similar running time. On average, the DegGreedy algorithm computes solutions
that are 4.2 % smaller (worse) than DyTwoSwap. However, it is also a factor of
11.7 faster. Surprisingly, the simple DegGreedy strategy already outperforms the
DgOracleTwo algorithm significantly. It computes 70.6 % larger independent sets
on average while also being a factor of 21 faster. The large improvement mostly
stems from the mesh type networks, where the DgOracleTwo algorithm performs
particularly badly. In their original paper, the authors did not consider mesh-type
networks. Overall, the DegGreedy algorithm is a good choice if the running time is
paramount and solution quality is less important.

Observation 4.5.2: Running Time Focus. The simple greedy strategies
Greedy and DegGreedy are the fastest methods. These can compute solutions up
to 11.7 times faster than the current state-of-the-art heuristics. The DynamicOne
approaches are slower because they employ a more generic approach for updating
the independent sets. Moreover, our DynamicOneStrong algorithm, although
significantly slower than DyTwoSwap, remains orders of magnitude faster than
computing independent sets from scratch.

Fully Dynamic Maximum Weight Independent Set Algorithms

Another advantage of our algorithm is that it also works with weighted graphs. We
are not aware of any other algorithm that can handle general weighted graphs in the
fully dynamic setting (DyTwoSwap and DgOracleTwo can not handle weights).
Hence, we compare DynamicOne against the simple greedy strategies incorporating
weights as well as optimum results. For this experiment, we run all algorithms on
all instances, assigning each vertex a random weight uniformly distributed within
the interval [1, 100].

Figure 4.20 gives a performance profile as well as a running time box plot for the
various algorithms under consideration. Detailed per instance results can be found in
Appendix Table B.7. Overall, the results are in line with the cardinality case. Our
DynamicOne algorithms compute much better solutions than the greedy strategies
but are also slower. Both of our algorithms outperform Greedy and DegGreedy
across all instances. On average, DynamicOneFast and DynamicOneStrong
compute solutions that are 8.2 % and 9 % better than DegGreedy, respectively. In
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Figure 4.20: Performance profile for solution quality (left) and total update time
comparison (right) against greedy algorithms on weighted instances.

contrast to the cardinality case, Greedy and DegGreedy compute mostly similar
results. The difference in solution quality is less than 0.1 % on average.

As in the cardinality case, we relate the running time per update of DynamicOne
with the time required by the iterated local search algorithm in the KaMIS frame-
work. This comparison is made on the static counterpart of the final instance after
all updates. On average (geometric mean), the time per update for DynamicOneS-
trong and DynamicOneFast is 655 and 6 070 times lower (better), respectively,
than computing the independent set from scratch using iterated local search on the
final instance. Similar to the cardinality case, we compare algorithms under consid-
eration to the optimum result in Table B.8 in the Appendix.

Observation 4.5.3: Comparison to Optimal Solutions. On the instances
that the exact algorithm KaMIS BnR could solve to optimality within a
two-day time limit, DynamicOneStrong computes solutions that are at
most 0.06 % worse.

4.6 Conclusion

We draw an intermediate conclusion for the chapter on the Maximum Weight Inde-
pendent Set problem. We start with the conclusion on the reduction rules, followed
by the LearnAndReduce method, the m2wis algorithm, the CHILS approach, and
end with the conclusion to the optimal neighborhood exploration technique.
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Data Reduction Rules

In addition to providing a comprehensive overview of all known data reduction rules
for the Maximum Weight Independent Set problem, we introduce new ones and
show their use in different solvers. Additionally, we experimentally analyze different
reduction orderings. We find that the order of the rules impacts the reduction time
and quality, and intuitively ordering the reductions from simple to more complex rules
is a good strategy, resulting in stable performance over a wide range of instances.

GNN Guided Preprocessing

We present LearnAndReduce, a preprocessing algorithm for the MWIS prob-
lem that combines Graph Neural Networks (GNNs) with a large collection of re-
duction rules to reduce further and faster than previously possible. The GNNs are
trained to predict where we can apply costly reduction rules to speed up the reduc-
tion process. Combined, this strikes a good balance between speed and quality at
the preprocessing stage.

We introduce a supervised learning dataset for MWIS reductions. The models we
use in LearnAndReduce are trained on this dataset. In this work, we only con-
sidered the most common GNN architectures and only the application of reduction
rule screening. Besides trying more complicated architectures, there are other direc-
tions for further work starting from this dataset. One promising direction is to use
GNN models to reduce the graph directly. Even though this would no longer be exact
preprocessing, it could lead to a powerful heuristic.

Memetic Maximum Weight Independent Set

In this section, we introduced a novel memetic algorithm for the MWIS problem. It
repeatedly reduces the graph until a high-quality solution to the MWIS problem is
found. After applying exact reductions, we use the best solution computed by the
evolutionary procedure on the reduced graph to identify vertices likely to be in an
MWIS. These are removed from the graph, which further opens the reduction space
and creates the possibility of applying this process repeatedly.

Overall, our two algorithm configurations compute the same or better results than
the state-of-the-art. For most instances, these results are probably close to the op-
timum, and even small improvements in solution quality can yield substantial cost
reduction for some applications [60].

For future work, we are interested in an island-based approach to obtain a paral-
lelization of our evolutionary approach. The ExactReduce, and the heuristicRe-
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duce routine can result in a disconnected reduced graph. We are interested in solving
the problem on each of the resulting connected components separately, which also en-
ables new parallelization possibilities. The code of this work is publicly available
under https://github.com/KarlsruheMIS.

Concurrent Local Search CHILS

We introduce a new heuristic called CHILS (Concurrent Hybrid Iterated Local Search)
that expands on the HILS heuristic. This new heuristic outperforms all known heur-
istics across a wide range of test instances in a sequential environment. As an added
benefit, CHILS can also leverage the power offered by multicore processors. Let-
ting CHILS use all 16 cores available on our test machine significantly improves the
solution quality on the hardest instances in our dataset.

The vehicle routing instances by Dong et al. [60] offer a significant challenge for
practical MWIS algorithms. Our result marks the third iteration of improvements
to this dataset after METAMIS [59] and BSA [113], and yet, we are still far away
from optimal solutions on these instances. This is evident by the significant uplift in
solution quality by running CHILS in parallel.

There are several directions for future research, including finding efficient data
reductions that work on these hard instances or using the clique information in the
CHILS heuristic. If the use of clique information leads to improvements, then a
natural continuation would be to compute clique covers for other hard instances.

CHILS is based on the proposed metaheuristic Concurrent Difference-
Core Heuristic. This metaheuristic could lead to improvements in heuristics for
other problems as well. As a metaheuristic, it only requires that solutions can be com-
pared to find the Difference-Core; otherwise, any heuristic method can be used
internally. Examples of problems to try include Vertex Cover, Dominating set,
Graph Coloring, and Connectivity Augmentation. As an added benefit, the
Concurrent Difference-Core Heuristic is trivially parallelizable, which could
enable improvements in the parallel setting too.

Dynamic Algorithms

With optimal neighborhood exploration, we present a novel approach for solving
the dynamic Maximum Cardinality and Maximum Weight Independent Set
problem. Our method efficiently handles large-scale dynamic graphs typical in real-
world applications. We developed a local search technique that forms and solves inde-
pendent subproblems optimally, significantly improving solution quality. Experiments
show that our algorithm, featuring a tunable subproblem size parameter, outperforms

https://github.com/KarlsruheMIS
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existing state-of-the-art solvers. Adjusting this parameter allows balancing between
running time and solution quality, with increased values leading to better solutions.
In summary, our dynamic optimal neighborhood exploration technique advances the
state-of-the-art for computing independent sets in a dynamic setting, providing a
practical and scalable solution for large, dynamic graphs. Future work will focus on
further optimization, exploring additional applications in other dynamic graph prob-
lems, as well as using the technique as a general (parallelizable) local search technique
in the static case.





Chapter 5

Maximum (Weight) 2-Packing Set

A 2-packing set for an undirected graph G = (V, E) is defined as a subset S ⊆ V such
that for each pair of vertices v1 ̸= v2 ∈ S, the shortest path between v1 and v2 has
at least length three. Finding a 2-packing set of maximum cardinality or maximum
weight is an NP-hard problem. We develop new approaches to solve these problems
on arbitrary graphs, i. e., without restriction to a special graph class. We do this using
new data reductions for the Maximum (Weight) 2-Packing Set (M2PS/MW2PS)
problem combined with a reduction to the Maximum (Weight) Independent Set
(MIS/MWIS) problem.

We start this chapter with the introduction of our general link-graph framework
for the data reduction process in Section 5.1 and then the reduction to the Maximum
(Weight) Independent Set problem via a graph transformation in Section 5.2.
This reduction to the independent set problem is slightly different for a graph and
our link-graph data structure. Afterward, we introduce the problem-specific compon-
ents of our algorithms for the cardinality variant in Section 5.3 and for the weighted
generalization in Section 5.4. In Section 5.5, we conclude this chapter.

References. This chapter is based on joined work with Jannick Borowitz, Christian
Schulz, and Dominik Schweisgut [33], and another joined work with Jannick Borowitz
and Christian Schulz [31]. Both papers are currently in submission and large parts
are copied verbatim from these papers.

Our Results. For both the cardinality and the weighted version of the problem, we
introduce in total 24 new exact data reduction rules, as well as approaches that use
these rules and a reduction to independent set to solve the Maximum (Weight) 2-
Packing Set problem. For the cardinality case, we contribute a new exact algorithm
red2pack b&r as well as a heuristic red2pack heuristic. Our experiments indic-
ate that our algorithms outperform current state-of-the-art algorithms for arbitrary
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graphs regarding solution quality and running time. For instance, we can compute
optimal solutions for 63 % of our graphs in under a second, whereas the competing
method for arbitrary graphs achieves this only for 5 % of the graphs, even with a ten-
hour time limit. Furthermore, we outperform a specialized algorithm for planar graphs
with respect to solution quality. Lastly, our method solves many large instances that
remained unsolved before.

For the weighted case, we evaluate our reduction approach using several exact
and heuristic independent set methods. Our experiments show that our new data
reduction rules are highly effective and can speed up the process of finding high-
quality solutions by multiple orders of magnitude, showing that our algorithms are
competitive with state-of-the-art solvers. Moreover, we propose a new method based
on the metaheuristic Concurrent Difference Core Heuristic introduced in
Section 4.4. Our heuristic excels especially for large graphs, where the transformation
uses much memory. Our experiments indicate that our approach can keep up with
the state-of-the-art independent set solvers. Additionally, it can find the best solution
quality on the biggest instances in our data set, outperforming all other approaches.

Applications. An important application for the Maximum 2-Packing Set prob-
lem is in distributed algorithms. In contrast to the Maximum Independent Set
problem, which, given a solution vertex, only conflicts with the direct neighborhood,
the 2-packing set provides information about a larger area around the vertex. This
is important for self-stabilizing algorithms [87, 88, 163, 193, 203, 205, 207]. In par-
ticular, computing large 2-packing sets can be used as a subroutine to ensure mutual
exclusion of vertices with overlapping neighborhoods. An example is finding a min-
imal {k}-dominating function [87] which has various applications itself as presented
by Gairing et al. [89]. Bacciu et al. [13] use large k-packing sets to develop a down-
sampling approach for graph data. This is particularly useful for deep neural networks.
Furthermore, Soto et al. [94] show that the knowledge of the size of a maximum 2-
packing set in special graphs can be used for error correcting codes, and Hale et al.
[111] indicate that large 2-packing sets can be used to model interference issues for
frequency assignment. This can be done by looking at the frequency-constrained co-
channel assignment problem. In this application, the vertex set consists of locations
of radio transmitters, and two vertices share an edge if the frequencies are mutually
perceptible. We want to assign a channel to as many radio transmitters as possible
to conserve spectrum and avoid interference. Therefore, vertices assigned to the same
channel must have a certain distance. A weighted extension to this application is
to assign different importance to the locations modeled by the vertex weights. The
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MW2PS is a set of most important locations for radio transmitters, with a distance
of three, to avoid interference. The M2PS problem is also of theoretical interest since
it is used to compute neighborhood-restricted [≤ 2]-achromatic colorings [42] and the
roman domination function [47].

5.1 The Link-Graph

We define the link-graph G as a tuple G = (G,L), where G = (V, E) is a graph, and
L is the link set with L ⊆

(
V
2

)
\ E. The link set L can link vertices in V that are

non-adjacent. Every link in G adds two to the length of a path containing it. We
define the induced link-subgraph of a set of vertices V ′ ⊆ V as G[V ′] = (G[V ′],L[V ′])
with L[V ′] = {{u, v} ∈ L | u, v ∈ V ′}. The link-neighborhood of a vertex v ∈ V is
defined as L(v) = {u ∈ V | {u, v} ∈ L ∨ u ∈ N(N [v])}. In the link-graph, the closed
2-neighborhood is defined as N2[v] = N [v] ∪̇ L(v) and the open 2-neighborhood by
N2(v) = N2[v] \ {v}. By this definition, for all vertices u ∈ L(v), the shortest path
from u to v is of length two. The link-degree of a vertex is defined by the size of its
link-neighborhood degL(v) = |L(v)|. For a vertex v ∈ V , we define the induced link set
link(v) := {{x, y} ∈

(
N(v)

2

)
\E}. This set contains all links between two non-adjacent

vertices with v as a common neighbor. This notation is extended to a set of vertices
V ′ ⊆ V by link(V ′) := {{x, y} ∈

(
N(V ′)

2

)
\ E | (N(x) ∩ N(y)) ∩ V ′ ̸= ∅}, such that

link(V ′) only contains links connecting vertices in N(V ′) that have a common neighbor
in V ′. An important part of the correctness of our data reduction rules introduced in
the following sections is extending the set L by these links for removed vertices.

In this section, we motivate the importance of links and give a first overview of
the structure of the reductions. We use the M2PS problem here, but all results are
directly transferable to the weighted case. The reduction rules introduced in this
chapter follow a similar scheme to those in Chapter 4. We describe this scheme using
the example Reduction 5.0.

Reduction 5.0 (Example)

Description of the pattern that can be reduced.

Link Set How to extend the link set L
Reduced Graph How to build the reduced link-graph G ′ from G containing

the extended link set
Offset Which size can be added to the offset
Reconstruction How to reconstruct the solution S for the original link-graph

given the solution S ′ on the reduced link-graph G ′
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First, we define the pattern that the reduction rule can reduce, followed by details
on how to perform the reduction. This information consists of four parts. We start
with information on how to extend the link set L. Then, we describe the construction
of the reduced link-graph G ′ using G with the already extended link set. Then, the
offset describes the difference between the size of an M2PS on the reduced graph
α2(G ′) and the size of an M2PS on the original graph α2(G). Lastly, the information
on how the solution S ′ on the reduced instance can be lifted to a solution S on the
original link-graph is provided. Note that the reduction process with input G starts
with the link-graph G = (G, ∅).

In general, our reductions allow us to identify vertices as (1) part of a solution
(included) and (2) non-solution vertices (excluded). Before presenting the reductions,
we give a lemma that generally describes how to reduce the link-graph to include or
exclude a vertex.

Lemma 5.1. Let G = (G, E) be a graph, G = (G,L) be a link-graph and v ∈ V .

1. If there is an M2PS not containing v, then we can exclude v and reduce by

Link Set L = L ∪ link(v)
Reduced Graph G ′ = G − v

Offset α2(G) = α2(G ′)
Reconstruction S = S ′

2. If there is an M2PS containing v, then we can include v and reduce by

Link Set L = L ∪ link(N2[v])
Reduced Graph G ′ = G −N2[v]
Offset α2(G) = α2(G ′) + 1
Reconstruction S = S ′ ∪ {v}

Proof. Let v ∈ V be a vertex in a link-graph G = (G,L), with G = (V, E). First,
assume there is an M2PS not containing v, described in 1. Then, we can safely remove
the vertex v from the instance. To maintain the correctness, we have to reduce the
graph in the following way. By extending the set L with links between vertices in the
neighborhood of v, i. e., L = L∪ link(v), we maintain the 2-neighborhood information
for these vertices with L. Adding these links to the link-graph G does not change the
2-packing set properties of G. The reduced graph G ′ is then obtained by removing the
vertex v along with all to v incident edges and links. This can be done, since the links
link(v) are in G. An M2PS S ′ in G ′ can then at most contain one vertex from the
previous neighbors of v and therefore is also an M2PS in G and we get α2(G) = α2(G ′).
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reduce solvev u w
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(a) Including v without extending the link set L, thereby loosing the 2-neighborhood in-
formation yielding an invalid solution.

reduce solvev u w
n1
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v u w
n1
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(b) Including v with extending L by linking all vertices in L resulting in a valid M2PS.

Figure 5.1: We demonstrate the vital role of the induced links of excluded vertices.
With adding these links, we maintain necessary information for the non-reduced neigh-
bors of excluded vertices. Reduced vertices and edges are light gray shaded. Green
vertices are included, and red vertices are excluded from the solution.

For the second case, assume there is an M2PS S containing v, as described in 2.
In this case it is safe to include the vertex v in the solution resulting in all vertices
in N2(v) being excluded. To maintain the correctness, we have to apply the same
link-graph reduction as in the first case to all vertices in N2[v]. First, note that we do
not need to consider vertices in N(v) since all their neighbors are excluded. Applying
the excluding reduction to all vertices in L(v) can be combined to extend the link
set by {{x, y} ∈

(
N(N2[v])

2

)
| N(x) ∩ N(y) ∩ N2[v] ̸= ∅} and removing all vertices in

N2[v] along with their incident edges and links from G. This, results in the described
approach to compute the reduced link-graph G ′. An M2PS S ′ in G ′ can be extended
by v to an M2PS in G, i. e., S = S ′ ∪ {v}, and we get α2(G) = α2(G ′) + 1.

With the reduction, we potentially add links between two vertices that still have
a common neighbor in G ′, not affected by the reduction. We do not filter out
these cases since the correctness is not affected by adding these links and we can
save additional computations.

In Figure 5.1a, we perform a reduction that includes the vertex v without extending
the link set L. Here, we do not get a valid solution since the information that n1, n2,
and n3 belong to the same 2-neighborhood is lost. When we apply the reduction
with the additional links in L for the excluded vertex w, we obtain a valid solution,
illustrated in Figure 5.1b.
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Figure 5.2: The graph G = ((V, E),L) on the left with links L marked as dashed lines.
This link-graph is transformed to the MIS instance on the right by building the square
graph for (V, E) and then adding edges between all linked vertices. The green vertices
present an M2PS on the left link-graph and an MIS on the right graph.

5.2 Reduction to Independent Set
In this section, we again use the M2PS problem, however, everything discussed also
applies to the weighted case. The maximum 2-packing set in a graph is equivalent to
the maximum independent set in the square graph. This equivalence is stated in the
following theorem and used in our framework.

Theorem 5.1. Let G = (V, E) be a given graph and G2 = (V, E2) the square graph.
Then, an optimal solution to the MIS problem on G2 is an optimal solution for the
M2PS problem on the original graph G [112].

This simple graph transformation allows us to solve the M2PS problem with well-
studied maximum independent set solvers. The basic transformation starts with a
given graph G = (V, E) and builds the square graph G2 = (V, E2) by connecting
all non-adjacent vertices in V with a common neighbor. Starting from a link graph
G = (G,L), we first transform G to the square graph G2. In the next step, we
add edges between two non-adjacent vertices in G2 that are linked in G. Figure 5.2
illustrates this transformation.

We apply well-studied independent set solvers to find (optimal) solutions on this
transformed graph. During the transformation, we increase the number of edges in
the graph. Since building the square graph results in more dense instances, the direct
transformation becomes quite slow and requires substantial memory.

The reduce&transform Framework

Before transforming the input graph to the square graph, we add a preprocessing
routine reduce&transform. With this routine, we can reduce the input and then
transform the reduced instance, resulting in less dense graphs. This can lead to shorter
running times and reduced memory consumption. In reduce&transform, we ex-
haustively apply our new data reductions to the instance before the transformation
to obtain a reduced instance K. We then apply the transformation on K, resulting in
a significantly smaller transformed graph. On this graph, an MIS solver is applied to
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Algorithm 17: red2pack: The reduce&transform framework com-
bined with independent set solvers.

Data: graph G = (V, E, ω)
Result: M2PS solution
Procedure red2pack(G):

// R ordered list of reduction rules, K reduced link-graph
K, α←ExactReduce(G, R)
K2 ←Transform(K)
S ← MISSolve(K2)
return restore(K, α, S)

obtain an (optimum) solution. In the end, the solution is transformed into an (op-
timum) solution to the input instance. Combining reduce&transform with MIS
solvers results in the algorithm red2pack presented in Algorithm 17.

5.3 Maximum 2-Packing Set
As intruduced in the previous section, the Maximum 2-Packing Set (M2PS) prob-
lem can be reduced to the Maximum Independent Set (MIS) problem by a graph
transformation to the square graph. Using our new data reductions and the reduction
to MIS, we can utilize well-studied independent set sovlers. We introduce these new
data reduction rules for the M2PS problem in Section 5.3.1. In Section 5.3.2, we cover
the MIS solvers we use, and Section 5.3.3 presents the evaluation of the reductions
and the state-of-the-art comparison.

5.3.1 Exact Data Reduction Rules

To reduce the problem size, especially for large instances exact data reductions are
very useful tools. Following the scheme introduced in the previous section, we present
the data reduction rules for the M2PS problem.

Main Reduction Rules

We first introduce our two main reductions. Afterward, we present more efficient
special cases of these rules. An example for the Domination Reduction is illustrated
in Figure 5.3a.
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Reduction 5.1 (Domination)

Let u, v ∈ V be vertices such that N2[v] ⊆ N2[u], then exclude u.

Link Set L = L ∪ link(u)
Reduced Graph G ′ = G − {u}
Offset α2(G) = α2(G ′)
Reconstruction S = S ′

Proof. Let v, u ∈ V and N2[v] ⊆ N2[u], yielding v and u are adjacent. Further as-
sume S is an M2PS in G containing u. Since N2[v] ⊆ N2[u], it holds for all vertices
x ∈ N2[v] \ {u} that x /∈ S. We define S ′ = (S \ {u}) ∪ {v} and it follows that
|S| = |S ′|. Moreover, S ′ is still a valid 2-packing set since there is no vertex in
N2[v] \ {v} that is also an element of S ′. By construction S ′ has the same size and,
therefore, is an equivalent solution to M2PS not containing u. Using Lemma 5.1, we
get the desired reduction.

We define a distance-2-clique as a set of vertices in G whose vertices are pairwise
connected by a path of length at most 2. A vertex v is distance-2-simplicial if the
vertices of N2(v) form a distance-2-clique.

Reduction 5.2 (Distance-2-Clique)

Let v ∈ V be distance-2-isolated in G, then include v.

Link Set L = L ∪ link(N2[v])
Reduced Graph G ′ = G −N2[v]
Offset α2(G) = α2(G ′) + 1
Reconstruction S = S ′ ∪ {v}

Proof. Let v ∈ V be distance-2-isolated and S ⊆ V be an M2PS in G. Then, at least
one vertex w ∈ N2[v] is contained in S, otherwise S is not maximal. It holds u /∈ S
for all u ∈ N2[v] \ {w}. Additionally, since v is distance-2-isolated N2[v] ⊆ N2[w].
Therefore, a new solution S ′ = (S \ {w}) ∪ {v} of the same size containing v can
be constructed. This way, there is always an equivalent or better solution when
including v, and therefore, the vertex v is in some M2PS of G. Reducing the graph
by including v results in α2(G) = 1 + α2(G[V \ N2[v]]). Using Lemma 5.1, we get
the desired reduction.

These two introduced reductions require knowledge about the 2-neighborhood as a
prerequisite. The 2-neighborhood of a vertex v can become quite large, and verifying
these conditions is computationally expensive. Hence, we have sought out different
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special cases where it suffices to consider only the direct neighborhood and constraints
on the link-degree, which we maintain.

Efficient Special Case Reduction Rules

The following lemma helps us to show that these special cases are instances of the
more general case.

Lemma 5.1. Let u, v ∈ V be neighbors in G with N [v] ⊆ N [u] such that degL(v) +
deg(v) ≤ deg(u). Then, all link-neighbors of the vertex v, are also neighbors of the
vertex u, i. e., L(v) = N [u] \N [v].

Proof. Let u, v ∈ V be neighbors with N [v] ⊆ N [u] such that degL(v) + deg(v) ≤
deg(u). By definition of the link-neighborhood and since u and v are neighbors, we
know that N [u] \ N [v] ⊆ L(v). Therefore, it holds that deg(u) + 1 − (deg(v) + 1) ≤
degL(v) which is equivalent to deg(u) ≤ degL(v) + deg(v). Due to the assumption
that degL(v) + deg(v) ≤ deg(u) it follows equality, i. e., degL(v) + deg(v) = deg(u).
Because of N [u] ⊆ N [v]∪L(v) the two sets N [u]\N [v] and L(v) must be equal. Using
Lemma 5.1, we get the desired reduction.

Note that, during the reduction process, all direct neighbors of a vertex v can be
removed, resulting in deg(v) = 0. However, there can still be links to the vertex v

remaining, yielding degL(v) > 0. This case is considered in the following reduction.

Reduction 5.3 (Degree Zero Reduction)
Let v ∈ V be a degree zero vertex with degL(v) ≤ 1, then include v.

Link Set L = L ∪ link(N2[v])
Reduced Graph G ′ = G −N2[v]
Offset α2(G) = α2(G ′) + 1
Reconstruction S = S ′ ∪ {v}

Proof. Let v ∈ V be a vertex with deg(v) = 0 and degL(v) ≤ 1. For the case of
degL(v) = 0, there is no vertex in the 2-neighborhood of v. Therefore, v can be
included in the solution. In the case of degL(v) = 1, let the link-neighbor of v be
u ∈ L(v). If u is not in the solution, the vertex v can be safely included. In the case
of u being part of an M2PS S on the original instance, we show there always exists
another M2PS S̃ containing v. We can create S̃ by swapping the vertex u for v, i. e.,
S̃ = S \ {u} ∪ {v}. It follows that S̃ ∪N2[v] = {v}, since u is the only 2-neighbor of
v in G. Furthermore, the solution is the same size and is, therefore, also an M2PS.
We showed that an M2PS containing v always exists, and therefore, the vertex can
be included in the solution. We get the described reduction using Lemma 5.1.
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Figure 5.3: Original link-graphs on the left are reduced to the link-graphs on the right.
Gray edges, and green (included) or red (excluded) vertices are removed from G. The
added links are marked with dashed lines.

(a) Reduction 5.1 (Domination): N2[u] is
marked orange and N2[v] blue. The vertex
u dominates v and can be excluded.

v u v u

G −N2[{u, v}]G −N2[{u, v}]

(b) Reduction 5.10 (Twin): The neighbors
u, w ∈ V of v are twins. We can include v

into the solution and exclude N2(v).

v wu v wu

G −N3[v]G −N3[v]

Reduction 5.4 (Degree Zero Triangle)

Let v ∈ V be a degree zero vertex. Furthermore, let degL(v) = 2 with link-neighbors
L(v) = {u, w} that are also adjacent or linked, that is u ∈ N2[w], then include v.

Link Set L = L ∪ link(N2[v])
Reduced Graph G ′ = G −N2[v]
Offset α2(G) = α2(G ′) + 1
Reconstruction S = S ′ ∪ {v}

Proof. Let v ∈ V be a vertex of deg(v) = 0 and {u, w} = L(v) its link-neighbors
adjacent or linked, i. e., u ∈ N2[w]. Vertices u and w dominate vertex v and can
therefore be excluded by Reduction 5.1. Now, Reduction 5.3 is applicable, and
vertex v can be included in the solution. With Lemma 5.1, we get the graph and
link set described.

Reduction 5.5 (Degree One)

Let v ∈ V be a degree one vertex with N(v) = {u}. Furthermore, let degL(v) ≤
deg(u)− 1, then include v.

Link Set L = L ∪ link(N2[v])
Reduced Graph G ′ = G −N2[v]
Offset α2(G) = α2(G ′) + 1
Reconstruction S = S ′ ∪ {v}.

Proof. Let u, v ∈ V be vertices such that deg(v) = 1 and N(v) = {u} and additionally
degL(v) ≤ deg(u)− 1. Here, we can apply Lemma 5.1, and it holds that N2[v] = N [u].
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Therefore, this represents a special case of the distance-2-clique, and Reduction 5.2
can be applied.

Reduction 5.6 (Degree Two V-Shape)

Let v ∈ V be a vertex of deg(v) = 2 with N(v) = {u, w} and degL(v) = 0, then include v.

Link Set L = L ∪ link(N2[v])
Reduced Graph G ′ = G −N2[v]
Offset α2(G) = α2(G ′) + 1
Reconstruction S = S ′ ∪ {v}

Proof. Let the above-stated assumptions hold. The closed 2-neighborhood N2[v] only
contains the vertices v, and its neighbors u and w. Furthermore, since N(v) = {u, w}
we know u ∈ N2[w] and w ∈ N2[u]. Therefore, N2[v] ⊆ N2[u] and N2[v] ⊆ N2[w] the
vertices w and u can be excluded by Reduction 5.1. Since |L(v)| = 0, vertex v can
safely be included.

Reduction 5.7 (Degree Two Triangle)

Let v ∈ V be a vertex of deg(v) = 2 with N(v) = {u, w} and deg(u) = deg(w) = 2.
Furthermore, let degL(v) = 0, then include v.

Link Set L = L ∪ link(N2[v])
Reduced Graph G ′ = G −N2[v]
Offset α2(G) = α2(G ′) + 1
Reconstruction S = S ′ ∪ {v}

Proof. Let the vertices v, u, w ∈ V all have degree two and N(v) = {u, w} and
degL(v) = 0. In this case, the vertices u, v, and w form a triangle. Since N2[v] ⊆ N2[u]
and N2[v] ⊆ N2[w] the vertices w and u can be excluded by Reduction 5.1. Since
|L(v)| = 0, vertex v can safely be included.

Reduction 5.8 (Degree Two 4-Cycle)

Let u, v, w, x ∈ V be vertices with deg(v) = deg(u) = deg(w) = 2, N(v) = {u, w} and
L(v) = {x}. Furthermore, let x ∈ N(u) and x ∈ N(w). Then, the vertices build a
4-cycle, and v can be included.

Link Set L = L ∪ link(N2[v])
Reduced Graph G ′ = G −N2[v]
Offset α2(G) = α2(G ′) + 1
Reconstruction S = S ′ ∪ {v}
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Proof. Assuming the above-stated assumptions such that the vertices u, v, w and the
one link-neighbor x ∈ L(v) form a 4-cycle. It holds that N2[v] = {u, v, w, x} ⊆ N2[u],
therefore, we can exclude the vertex u by Reduction 5.1. Similarly, we can exclude
vertex w. Assume x is part of an M2PS S. Then, we can create a new solution
S ′ = S \ {x} ∪ {v} of same size. This way, we always find an M2PS including v. By
applying Lemma 5.1, we get the desired reduction.

Reduction 5.9 (Fast Domination)

Let u, v ∈ V be vertices such that N [v] ⊆ N [u] and degL(v) + deg(v) ≤ deg(u),
then exclude u.

Link Set L = L ∪ link(u)
Reduced Graph G ′ = G − u

Offset α2(G) = α2(G ′)
Reconstruction S = S ′

Proof. Let u, v ∈ V and N [v] ⊆ N [u] with degL(v) + deg(v) ≤ deg(u). Since N [v] ⊆
N [u], u and v are adjacent and we can use Lemma 5.1. Therefore, it holds L(v) =
N [u] \N [v] and N2[v] ⊆ N2[u] resulting in Reduction 5.1 being applicable.

Figure 5.3 gives an example for the Twin Reduction.

Reduction 5.10 (Twin)

Let v ∈ V be a vertex with deg(v) = 2 and u, w ∈ V be its neighbors with N(u) =
N(w). Furthermore, let degL(v) ≤ deg(u) − 1. Then, u and w are twins, and
v is included.

Link Set L = L ∪ link(N2[v])
Reduced Graph G ′ = G −N2[v]
Offset α2(G) = α2(G ′) + 1
Reconstruction S = S ′ ∪ {v}

Proof. Let v ∈ V be a vertex with deg(v) = 2 and u, w ∈ V be its neighbors with
N(u) = N(w). Since u /∈ N(u) = N(w), the vertices u and w are non-adjacent.
We now show that all link-neighbors of v are adjacent to the vertex u and w. By
definition of the link-neighborhood and since w /∈ N(u), we know N(u) \ {v} ⊆ L(v).
This yields deg(u)− 1 = |N(u) \ {v}| ≤ |L(v)| = degL(v). The additional assumption
degL(v) ≤ deg(u) − 1 ensures that the sets are equal and therefore G[N2[v]] forms a
distance-2-clique. Consequently, this reduction is a special case of Reduction 5.2.
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5.3.2 Independent Set Solvers for the 2-Packing Set

To solve the Maximum Independent Set problem on the transformed graph, we use
the state-of-the-art solver KaMIS BnR by Lamm et al. [149], introduced in detail in
Section 3.2.3. However, it is also possible to integrate any other exact solver. Note that
we did not choose the branch and reduce solver for the unweighted problem [148] since,
with it, we are restricted to smaller graphs. While our focus is on an optimal solution,
we also combine our reduce&transform approach with OnlineMIS [52], resulting
in our heuristic red2pack heuristic. For a brief description of the main components
of the solver OnlineMIS by Dahlum et al. [52] we refer the reader to Section 3.2.3.

5.3.3 Experimental Evaluation

We now present the experimental evaluation of our algorithms for the Maximum 2-
Packing Set problem. We first investigate the impact of our data reduction rules.
Then, we compare our algorithms against the state-of-the-art.

Methodology. We implemented our algorithm using C++17. The code is compiled
using g++ version 12.2 and full optimizations turned on (-O3). Every experiment
is run on Machine 1 repeated four times with different random seeds. We report
geometric mean values unless mentioned otherwise. The time limit for all algorithms
is set to ten hours. If a solver exceeds a memory threshold of 100 GB during execution,
we stop the solver and mark this with m.o. If the algorithm terminated due to the
time limit, we mark it with t.o. in the results. In both cases, we report the best
solution found until this point.

We always report the best solution found until the time limit is reached and
the time it takes to find this solution. If the time limit is reached, this can res-
ult in reported solutions from exact solvers not being optimal and smaller than
reported heuristic solutions.

Overview/Competing Algorithms. We perform a wide range of experiments.
First, we perform experiments to investigate the influence of the data reduction rules
in Section 5.3.3. Therefore, we define three reduction list configurations for our reduc-
tions. The first is called 2pack and does not include any of our proposed reductions.
Then, in main, we only use Reduction List 5.1 containing the clique and domination
reduction. In preliminary experiments, this order of reductions worked best.

Reduction List 5.1 (main). R5.1 := [5.2, 5.1]
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For the last variant fast, we apply the full set of all special case reductions as well
as the Domination and Clique Reduction. The order of reductions for this variant is
given in Reduction List 5.2.

Reduction List 5.2 (fast). R5.2 := [5.3, 5.4, 5.5, 5.7, 5.8, 5.6, 5.10, 5.9, 5.1, 5.2]

For this ordering, we put our special case reductions before the Domination and
Clique Reduction in fast to test efficient reductions first. They may reduce a sig-
nificant number of vertices before we apply more computationally costly reductions.
Note that we did not experiment with different orderings for the reductions as done
in Section 4.1.3 for the MWIS problem. Since an intuitive ordering worked best in
this experiment and small changes did not significantly affect the solution quality and
running time, we also chose a similar approach for ordering Reduction List 5.2.

We now compare our methods against the state-of-the-art for the problem in Sec-
tion 5.3.3. In particular, we compare against the genetic algorithm gen2pack by
Trejo-Sánchez et al. [202] as well as the Apx-2P+Imp2P algorithm by Trejo-Sánchez
et al. [206] which only works for planar graphs. We use two configurations of Apx-
2P+Imp2P. The configurations differ in the parameter h, which specifies the number
of vertices in the subgraphs. With increasing h, the solution quality improves, but
the slower the algorithm performs. We chose the default configuration with h = 50
and h = 100 to improve the solution and give a fairer comparison with our ten-hour
time limit. We could not perform experiments with Maximum-2-Pack-Cactus [78]
since the code is not available [77] and the data in the paper itself is presented such
that a direct comparison is not possible.

Data Sets. We use Instance Set 6, consisting of small and large social networks
(small/large social), which have not been solvable for this problem before, cactus
(cactur) and Erdős–Rényi (erdos) graphs to compare against gen2pack, and planar
graphs (planar) used for the comparison with Apx-2P+Imp2P.

Instance Set 6 (2-Packing). This set contains a wide range of 60 instances from
different sources. First, we use a set of social networks in our benchmark, which
are also part of Instance Set 1. More precisely, we use forty social networks from [16]
and [184]. We divided this class into two subsets, each containing twenty graphs, based
on the number of vertices: graphs with fewer than 50,000 vertices (small social) and
those with more (large social). We only added instances to the benchmark where
the number of edges did not exceed the 32-bit limit when constructing the square graph.
Note that this only happened for large graphs and not for any instances used in previous
experiments for the maximum 2-packing set problem. The set furthermore includes
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2pack main fast

ñ m̃ ñ m̃ ñ m̃

planar 100 212.11 99.91 211.67 99.91 211.67
social (s) 100 3 154.00 14.48 70.25 14.48 70.25
social (l) 100 4 327.38 17.12 274.56 17.12 274.58

overall 100 2 564.50 43.84 185.49 43.84 185.50

Table 5.1: Effect of graph transformation: Arithmetic mean of percentage of number
of vertices ñ = 100 · n(K2)/n(G2) and edges m̃ = 100 · m(K2)/m(G2), where K is
the reduced and transformed link-graph computed with the different configurations.
Since 2pack does not apply reductions, this column shows the mean values for the
square graphs G2. Detailed results are presented in Table B.9 in the Appendix.

20 cactus graphs (cactus) from [78] with at least 37 vertices, as well as a random
selection of 20 of the 1,050 Erdős–Rényi graphs (erdos) from [202]. Additionally,
this set includes planar graphs (planar) from [206]. For an overview of the graph
properties, see Table A.6 in the Appendix.

Impact of Data Reductions

We first investigate the effectiveness of the data reductions. To do so, we use the
three reduction configurations for the exact algorithm red2pack b&r. To evaluate
the effectiveness, we do not investigate the influence on erdos and cactus graphs,
as they are already very small. We compare the impact on the size of the reduced
transformed graphs as well as solution quality and running time. Details are presented
in Tables B.9 and B.10. We summarize these results in Table 5.1 and Figure 5.4.

First, we look at the effectiveness of our reductions on the size of the reduced
transformed graph K2. When applying the graph transformation on the original input,
i.e. without applying any reduction (2pack), the resulting instance has the same
amount of vertices and on average 25.65 m(G) edges, whereas main and fast both
yield on average 0.44 n(G) vertices and 1.86 m(G) edges. Thus, our data reductions
help to decrease the size of the transformed graph by more than a factor of ten
on average. As expected, the approaches main and fast compute overall the same
reduced link-graph sizes. However, on five large social instances, fast reduces further,
but only with a very small difference. Similar to the independent set problem, also
here, our reduction rules are not working well on planar graphs since they have a
mesh-like structure. The number of vertices in the reduced instances is only reduced
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Figure 5.4: Solution quality (left) and running time (right) for our exact algorithm
red2pack b&r evaluated on planar and social graphs comparing our different
reduction variants. Since cactus and erdos graphs are too small to show differences,
we omitted these classes.

by 0.1% compared to the original graph. Altogether, we are able to fully reduce 15
out of 60 instances and thereby solve them optimally solely by our data reductions.
Hence, we conclude that the reductions are highly effective in reducing the graph size
and especially reduce the size for social networks.

Our variant fast performs slightly better than the other variants regarding solu-
tion quality. However, especially on the small social and planar, a difference can
hardly be seen. When considering large social graphs, however, we can find no
instance on which 2pack outperforms main or fast. Overall, we achieve an im-
provement through fast on this graph class of 0.05 % compared to 2pack and main.
The instance with the largest difference in solution quality is road usa. Here, fast
achieves an improvement of 0.93 % over the other two strategies. On the instance
amazon-2008 fast performs worse compared to main. On this, the solution quality
of main is improved by 0.10 % compared to the solution of fast. For all of the 6
instances, on which fast was outperformed by 2pack the improvement over fast is
always smaller than 0.01 %.

Figure 5.4 also shows that using our different data reduction rules as a prepro-
cessing step (main and fast) especially improves the running time compared to
2pack. Here, we see that, in general, our reductions are improving the performance,
and our approach fast works best. In the detailed results in Table B.10 in the Ap-
pendix, we see that especially for large social graphs fast yields a speedup of 2.7
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compared to 2pack. On planar graphs, where our reductions are not very effective
in reducing the initial input size, the performance is very similar for all our variants.

Observation 5.3.1: Reduction Configurations. The solution quality does not
change much between the three different configurations. However, the time spent
during this process differs. With our variant fast we find the best performence,
showing that it is important to apply fast, special case reductions before the more
general ones. The naive transformation approach 2pack is up to 16 times slower
compared to using our reductions.

Due to the good performance, we choose the fast reduction variant in the following
state-of-the-art comparisons for both red2pack b&r and red2pack heuristic.

Comparison with State-of-the-Art

We compare our algorithms red2pack b&r and red2pack heuristic using the
best reduction variant fast. The comparison includes the state-of-the-art algorithms
gen2pack by Trejo-Sánchez et al. [202] as well as two configurations of Apx-
2P+Imp2P by Trejo-Sánchez et al. [206].

gen2pack: For the comparison with gen2pack, we use cactus graphs and
Erdös–Rényi (erdos) networks, i. e., the instances used in their paper, as gen2pack
is not able to solve any of the other, larger graphs within the given time limit. This
can be explained by the initial computations containing matrix multiplication used
in gen2pack. This does not finish within the ten-hour limit, so the algorithm could
not compute any solution. Detailed per instance results for this comparison can be
found in Table B.12 in the Appendix.

In Figure 5.5, we give performance profiles for running time and solution quality.
In Table 5.2, we present the geometric mean running times and solution qualities
for these results. Our algorithm red2pack b&r as well as red2pack heuristic
find overall the optimal solution in the classes cactus and erdos within a few mil-
liseconds. Our algorithms dominate gen2pack in terms of both solution quality
as well as running time. Especially the differences in running time are very large.
On all graphs, our two algorithms are multiple orders of magnitude faster than
gen2pack. It can only find optimal solutions for 6 out of these 40 graphs, see
Table B.12. On these two graph classes both of our algorithms always compute the
optimum solution, which results in an average solution quality improvement of more
than 20% and a speedup of more than 105. Among all instances under considera-
tion, on Erdos37-2 gen2pack needed the least time to compute an optimum solu-
tion. For this instance, we achieve with red2pack b&r a speedup of more than
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Figure 5.5: State-of-the-art comparison on solution quality (left) and running time
(right) for different graph classes. For planar graphs (bottom), gen2pack is not
able to solve the instances. Apx-2P+Imp2P with h = 50 and h = 100 is restricted
to planar graphs.
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Apx-2P+Imp2P red2pack red2pack
gen2pack (h = 50) b&r heuristic

Class |S| t |S| t |S| t |S| t

cactus 104 1 384 007.11 - 137 4.26 137 7.30
erdos 8 21 679.67 - 9 0.31 9 0.53
planar - 110 009 255.04 92 135 10.41 110 095 31 706.65
social (s) - - 159 11.32 159 13.53
social (l) - - 30 066 6 442.49 30 756 26 377.56

Table 5.2: Summary comparison of state-of-the-art results. Geometric mean over
different graph classes of solution size |S| and time t (in seconds) to find it. Best
results are emphasized in bold. Apx-2P+Imp2P with h = 100 cannot solve all planar
instances within the experimental setup. Detailed results are presented in Tables B.11
to B.13 in the Appendix.

300 000 and more than 350 000 with red2pack heuristic. The instance on which
gen2pack needs the most time is cac1000. On this instance, red2pack b&r and
red2pack heuristic again have similar speedups in the range of 105 over gen2pack
and an improvement in solution quality of roughly 32%. Considering the overall
data set, our approach red2pack b&r can solve 63 out of 100 graphs to optimal-
ity within less than one second and 71 within the ten hour time limit and 100 GB
restriction. For instances that we could not solve to optimality due to experimental
restrictions, we give the solution found until this point, see Tables B.11 to B.13 in
the Appendix. In Table B.11, we present results to compare red2pack b&r and
red2pack heuristic on social graphs, which are not solvable with the other ap-
proaches. On these instances, we can achieve an average improvement in solution
quality of around 1 % with red2pack heuristic compared to red2pack b&r. The
heuristic can find better solutions, especially for large graphs, where the exact solver
meets the memory limit.

Apx-2P+Imp2P: Detailed results for these experiments are given in Table B.13
and Figure 5.5 (bottom). The method gen2pack for general graphs cannot solve
any of these instances, so we omitted it in the corresponding tables and performance
profiles. Since our reductions do not perform well on planar graphs, we cannot solve
them optimally with red2pack b&r and exceed the memory threshold quite fast.
This results in the fast running times and bad solution quality reported. Overall, the
solution quality we achieve with red2pack b&r for the planar graphs is 84 % of the
solution quality that Apx-2P+Imp2P (h = 50) computes, but we only use 4 % of its
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time needed. With red2pack heuristic, on the other hand, we outperform Apx-
2P+Imp2P (h = 50) on all but one instance regarding solution quality, see Table B.13.
We achieve an average solution quality that is on par in terms of solution quality.
Note that the authors experimentally show in [206] that the 2-packing set computed
by Apx-2P+Imp2P are already at least 99 % of the optimum solution. However,
on those instances, red2pack heuristic needs roughly two orders of magnitude
more running time than Apx-2P+Imp2P (h = 50). Apx-2P+Imp2P with h = 100
compared to h = 50 can improve all but one solution. However, the running time
increase is up to multiple orders of magnitude, and some instances were not solved
within the ten-hour time limit. red2pack heuristic can find better solutions than
Apx-2P+Imp2P (h = 100) on 9 out of 20 instances, while the differences in solution
quality are very small. We summarize our main findings in Observation 5.3.2.

Observation 5.3.2: State-of-the-Art Comparison. On all instances, we are
able to outperform gen2pack, the state-of-the-art method for arbitrary graphs in
both solution quality and running time by multiple orders of magnitude. Moreover,
we can solve a wide range of instances to optimality that previously have been unsolv-
able. When comparing with an algorithm specialized on planar graphs, we presented
two options: one that is by more than a factor of 24 times faster with lower solution
quality and one that is on par in terms of solution quality, but slower, compared to
both configurations of the state-of-the-art specialized solver for planar graphs.

5.4 Maximum Weight 2-Packing Set

This section focuses on the weighted generalization of the 2-packing set. Instead
of the maximum cardinality, we are now looking for a 2-packing set of maximum
weight. For this generalization, we introduce new data reduction rules in Section 5.4.1.
These rules also utilize the concept of links introduced in Section 5.1 and can be
combined with the reduce&transform routine described in Section 5.2. In Sec-
tion 5.4.2, we present our new reduce and peel approach based on the metaheur-
istic Concurrent Difference Core Heuristic introduced in Section 4.4. Sec-
tion 5.4.3 evaluates the preprocessing using several state-of-the-art independent set
solvers equipped with reduce&transform. Furthermore, we compare their per-
formance with our new method.
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5.4.1 Exact Data Reduction Rules

After introducing basic concepts, we present the 13 new data reduction rules for the
MW2PS problem. Then, we present more details on the implementation and very
efficient data reduction rules, which especially exploit the structure of a 2-packing
set. The reduction rules presented here are derived from data reduction rules for the
Maximum Weight Independent Set problem [107, 149], discussed in Section 4.1.

The presented reduction rules are applied exhaustively in a predefined order in
our preprocessing. Whenever a reduction rule is applied successfully, we check the
previous rules again on the parts of the graph that changed. After applying a rule,
we refer to the resulting instance as the reduced instance. After this step, no more
reduction rules are applicable to the instance and we pass it to the next step of the
algorithm. We refer to this instance as K.

All rules are introduced following the scheme as used in [105]. We first define
the pattern in the graph that the corresponding rule can reduce. Then, we present
the details of the construction of the reduced instance G ′. The reduced link-graph
is constructed in two steps. First, we extend the link set L of the link-graph G. In
this step, for a given set of vertices X ⊂ V that is removed from the link-graph in
the corresponding reduction, we add links between two vertices u, v ∈ V \ X, if the
shortest path between u and v is of length two in G however, it is longer in G−X, i. e.,
all shortest paths between u and v included vertices in X. We have to add these links
to maintain this necessary 2-neighborhood information linking the vertices u and v in
the reduced link-graph.

Then, G ′ is defined by removing vertices from G. The offset describes the dif-
ference between the weight of an MW2PS on the reduced instance α2

w(G ′) and the
weight of an MW2PS on the original graph α2

w(G). In the reconstruction, we present
how the solution on the reduced instance S ′ is used to construct a solution S for
the original graph.

Basic Concepts

We first introduce a meta reduction Heavy Vertex, illustrated in Figure 5.6. This
reduction is very similar to Reduction 4.15 for the MWIS problem. It helps to under-
stand the intuition behind the different reduction rules introduced later. Moreover,
this example also shows the importance of our additional link set L. Without the link
added between the vertices x and y in the reduced instance, both of these vertices
could be part of an MW2PS in the reduced instance. This would create a conflict, as
x and y have a common neighbor in the original graph. The link set L ensures that
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Figure 5.6: Illustration of Heavy Vertex. The left graph is the original link-graph G
and dashed lines are links in L. Red numbers indicate the vertex weights. On the
reduced link-graph G ′ (right), light colored edges and vertices are reduced (green
included and red excluded). Note that after the reduction, deg(y) < degL(y).
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the vertices x and y are not both part of an MW2PS in the reduced instance, which
is crucial for the correctness of our reduction rules. In the reduction rule formulations
we use the short notation ωmax(U) = max{ω(u) | u ∈ U} for a set U ⊆ V .

Reduction 5.11 (Heavy Vertex)

Let v ∈ V such that the weight of the MW2PS in N2(v) is smaller than the weight of
the vertex, i. e., α2

w(G[N2(v)]) ≤ ω(v), then include v.

Link Set L = L ∪ link(v)
Reduced Graph G ′ = G −N2[v]
Offset α2

w(G) = α2
w(G ′) + ω(v)

Reconstruction S = S ′ ∪ {v}

Proof. Let v ∈ V such that α2
w(G[N2(v)]) ≤ ω(v) and S be the MW2PS. If v /∈ S,

then we construct S ′ = S ′ \ {S ∩ N2(v)} ∪ {v}. The set S ′ is also a valid MW2PS
and since α2

w(G[N2(v)]) ≤ ω(v), it holds ω(S) ≤ ω(S ′). Therefore, we can always
construct a solution including v.

Considering the computational expense of calculating α2
w(G[N2(v)]), especially for

large sets, we impose a bound on it instead. The most intuitive, also used in the
independent set approaches, is summing up the weights in the set. It clearly holds
that α2

w(G[N2(v)]) ≤ ω(N2(v)). Given the nature of a 2-packing set, we can tighten
this bound by the following observation. Since each neighbor has a common neighbor
in N(v), namely v, the direct neighborhood N(v) forms a distance-2-clique, which
is a set of vertices in G whose vertices are pairwise connected by a path of length
at most 2. Therefore, there can only be one of the direct neighbors contributing to
α2

w(G[N2(v)]). We bound its weight by ωmax(N(v)), yielding the following lemma.
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Lemma 5.1. Let v ∈ V and deg(v) ≥ 1, then N(v) forms a distance-2-clique
and it holds

α2
w(G[N2(v)]) ≤ ω(L(v)) + ωmax(N(v)).

Proof. Let v ∈ V . The statement is clear if deg(v) = 1. Let therefore deg(v) > 1.
Each neighbor in N(v) is adjacent to v, and therefore, each link-neighbor shares a
common neighbor, which yields N(v) as a distance-2-clique. It is clear that ω(N2(v)) =
ω(N(v)) + ω(L(v)) ≥ ωmax(N(v)) + ω(L(v)). We now show that this is still a bound
for α2

w(G[N2(v)]). The set N(v) forms a distance-2-clique. Therefore, only one of its
vertices can be part of an MW2PS. We can bound this by the maximum weight in the
direct neighborhood. Therefore, it holds ωmax(N(v)) + ω(L(v)) ≥ α2

w(G[N2(v)]).

In the example illustrated in Figure 5.6, we have α2
w(G[N2(v)]) = 7 and Heavy

Vertex is applicable. However, using the naive bound by summing up the weights
ω(N2(v)) = 13 ≰ 10 = ω(v), we can not reduce it. Using Lemma 5.1 on the other
hand, we get ωmax(N(v)) + ω(L(v)) = 9 ≤ 10 = ω(v) and v is reducible.

Figure 5.6 also highlights the importance of our link set. The orange vertices with
common neighbors in the original graph are linked in the reduced link-graph. This
example shows that in a reduced instance, there can be vertices x, y ∈ V such that
deg(y) < degL(y). Without the additional link set, it is not possible to maintain the
correct 2-neighborhood information of the vertices during the reduction process.

Main Data Reduction Rules

Now, we introduce additional data reduction rules. The first reduction searches for
neighbors u ∈ N2(v) of a vertex v, which can be removed since they can always be
swapped for the vertex v in a solution containing u. We can use different bounds
depending on whether u is a direct or a link neighbor.

Reduction 5.12 (Neighbor Removal)

Let u, v ∈ V with

1. u ∈ N(v) and α2
w(G[L(v) \N2[u]]) + ω(u) ≤ ω(v), or

2. u ∈ L(v) and α2
w(G[N2[v] \N2[u]]) + ω(u) ≤ ω(v),

then, exclude u.

Link Set L = L ∪ link(u)
Reduced Graph G ′ = G − u

Offset α2
w(G) = α2

w(G ′)
Reconstruction S = S ′
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Proof. Let v ∈ V and u ∈ N2[v] with α2
w(G[N2[v]\N2[u]])+ω(u) ≤ ω(v). In the case of

u ∈ N(v), it holds N [v] ⊆ N2[u] which results in L(v)\N2[u] = N2[v]\N2[u]. Further,
let S be an MW2PS of G. If u is not part of S, then it is safe to remove u. Otherwise,
it holds u ∈ S. Then v ∈ N2[u] is not in S and ω(S ∩ N2[v]) = ω(S ∩ (N2[v] \
N2[u])∪{u}) = α2

w(G[N2[v] \N2[u]]) + ω(u) = ω(v); otherwise u and S ∩N2[v] \N2[u]
can be swapped with v in S for obtaining a 2-packing set of larger weight. Thus,
S ′ = S \N2[v] ∪ {v} is an MW2PS of G excluding u and α2

w(G) = α2
w(G′).

The next reduction is illustrated in Figure 5.6 and combines the idea of Heavy
Vertex and uses the inequality from Lemma 5.1 as a bound.

Reduction 5.13 (Neighborhood Removal)

Let v ∈ V . If ω(v) ≥ ω(N2[v]) + ωmax(N(v)), then, include v.

Link Set L = L ∪ link(v)
Reduced Graph G ′ = G −N2[v]
Offset α2

w(G) = α2
w(G ′) + ω(v)

Reconstruction S = S ′ ∪ {v}

Proof. Let v ∈ V and ω(v) ≥ ω(L(v)) + ωmax(N(v)). We want to apply Neighbor
Removal. Therefore, we distinguish two cases. First, let u ∈ N(v) and assume it is
in some MW2PS. Then, α2

w(G[N2[v] \ N2[u]]) + ω(u) = α2
w(G[L(v) \ N2[u]]) + ω(u)

and we can bound this by α2
w(G[L(v) \N2[u]]) + ω(u) ≤ α2

w(G[L(v)]) + ωmax(N(v)) ≤
ω(L(v)) + ωmax(N(v)) ≤ ω(v), using Lemma 5.1. This way, we can always swap v for
u and remove all vertices in the direct neighborhood of v. Second, let u ∈ L(v) be in
some MW2PS. Since we already removed the complete direct neighborhood, it holds
α2

w(G[N2[v] \ N2[u]]) + ω(u) = α2
w(G[L(v) \ N2[u]]) + ω(u) ≤ ω(L(v) \ N2[u]) + ω(u).

Similar to the first case, we show that u can always be replaced by v with the following
estimation w(L(v) \ N2[u]) + ω(u) ≤ ω(L(v)) ≤ ω(v). This argument allows us to
reduce the complete 2-neighborhood, and v is the only vertex left in its component.
Hence, v must be in an MW2PS and can be removed from G.

In Split Neighbor Removal, we tighten the bound used in Neighbor Removal even
further, depending on different special cases.

Reduction 5.14 (Split Neighbor Removal)

Let u, v ∈ V such that u ∈ N2(v). If one of the following cases applies, we have
an upper-bound U for α2

w(G[N2[v] \ N2[u]]) and obtain a special case of the Neighbor
Removal Reduction: U + ω(u) ≤ ω(v).

1. If u ∈ N(v), then, U = ω(L(v) \N2[u]).
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2. If u ∈ L(v), then, U = min{ω(N2[v] \N2[u]), ωmax(N(v)) + ω(L(v) \N2[u])}.

In these cases, we can exclude u.

Link Set L = L ∪ link(u)
Reduced Graph G ′ = G − u

Offset α2
w(G) = α2

w(G ′)
Reconstruction S = S ′

Proof. Let u, v ∈ V such that u ∈ N2[v]. We generally start with the upper-bound
U = ω(G[N2[v] \ N2[u]]) from the Neighbor Removal Reduction. We can further
tighten the bound and simplify its computation in the following cases.

1. Follows from Neighbor Removal (case 1).

2. Let u ∈ L(v). Using Lemma 5.1, we estimate α2
w(N2[v]\(N2[u]∪{v})) ≤ ωmax(N(v))+

ω(L(v)\N2[u]). Note that we can get a tighter bound when we stay with the original
ω(G[N2[v] \N2[u]]). We take the minimum of these two bounds.

Remark 5.2 (Efficient Split Neighbor Removal). Before we compute ω(L(v) \N2[u])
in Split Neighbor Removal, we check whether ω(N(u)) ≥ ω(L(v)) + ω(N(v)) and if
true, exclude u. We can do this, since ω(N(u)) ≥ ω(L(v))+ω(N(v)) = ω(N2[v])−ω(v)
is equivalent to ω(N2[v])−ω(N(u)) ≤ ω(v). We get ω(L(v)\N2[u])+ω(u) ≤ ω(N2[v]\
N(u)) = ω(N2[v])−ω(N(u)) ≤ ω(v) and can apply case 1 of Split Neighbor Removal.
This yields a tighter bound U = ω(L(v)\N2[u]) if ω(N(v)\N [u]) < ω(L(v)∩N(u)) =
ω(N(u) \N [v]).

The idea behind the next reduction, called Intersection Removal, is similar to
Neighbor Removal; however, we now consider two adjacent vertices: u and v. If the
reduction is applicable, one of these will be in the MW2PS; therefore, we can exclude
their common neighbors.

Reduction 5.15 (Intersection Removal)

Let u, v ∈ V such that u ∈ N2(v). If ω(v) ≥ ω(N2(v) \ {u}), then, exclude K =
(N2[u] ∩N2[v]) \ {u, v}.

Link Set L = L ∪ link(K)
Reduced Graph G ′ = G −K

Offset α2
w(G) = α2

w(G ′)
Reconstruction S = S ′
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Figure 5.7: Application of Split Intersection Removal. The original link-graph on the
left is reduced to the link-graph on the right. Red numbers indicate vertex weights,
dashed lines links in L. Light-colored vertices and edges are reduced. Note that
Intersection Removal is not applicable in this case.

Proof. Let u, v ∈ V such that u ∈ N2(v) and ω(v) ≥ ω(N2(v) \ {u}). We assume
a set of vertices S ⊂ N2(v) \ {u} is part of an MW2PS. We know that ω(v) ≥
ω(N2(v)\{u}) ≥ ω(S). Therefore, we can always create a new solution S ′ = S\S∪{v}
of larger or equal size. This shows that either v or u are in an MW2PS, so the
intersection of their neighborhoods can be removed.

Split Intersection Removal, illustrated in Figure 5.7, tightens the bounds used by
the Intersection Removal by further using Lemma 5.1.

Reduction 5.16 (Split Intersection Removal)

Let u, v ∈ V and K = (N2(u) ∩N2(v)) \ {u, v}. If

1. u ∈ N(v), ω(v) ≥ ω(L(v)) + ωmax(N(v) \ {u})

2. u ∈ L(v) and ω(v) ≥ ω(L(v) \ {u}) + ωmax(N(v)),

then, exclude K.

Link Set L = L ∪ link(K)
Reduced Graph G ′ = G −K

Offset α2
w(G) = α2

w(G ′)
Reconstruction S = S ′

Proof. This reduction follows using Lemma 5.1 and Intersection Removal.

The following reduction uses a special relation between two adjacent vertices u

and v. It is applicable if N [u] = N2[v]. In this case, N2[v] forms a distance-2-clique,
and v can be included if it has the highest weight in N2[v], see Weighted Clique. If
not, we exclude as many neighbors as possible.
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Reduction 5.17 (Domination)

Let v ∈ V and u ∈ N(v) with N [u] = N2[v]. If

1. ω(v) ≥ ωmax(N [u]), then, include v.

Link Set L = L ∪ link(L(v))
Reduced Graph G ′ = G −N [v]
Offset α2

w(G) = α2
w(G ′) + ω(v)

Reconstruction S = S ′ ∪ {v}

2. ω(v) ≥ ω(N(u) \ {v}), then, exclude K = N(u) \ {v}.

Link Set L = L ∪ link(K)
Reduced Graph G ′ = G −K

Offset α2
w(G) = α2

w(G ′)
Reconstruction S = S ′

3. ω(v) ≥ ω(u), then, exclude u.

Link Set L = L ∪ link(u)
Reduced Graph G ′ = G − u

Offset α2
w(G) = α2

w(G ′)
Reconstruction S = S ′

Proof. The first case holds since every neighbor of v is a direct neighbor of u. Since
u spans a distance-2-clique over its direct neighborhood, v is distance-2-simplicial.
Therefore, if ω(v) ≥ ωmax(N [u]), we can include it in the solution. In the second case,
if ω(v) ≥ ω(N(u) \ {v}) we get ω(N(u) \ {v}) = ω(N [u] \ {u, v}) ≥ ω(N2[v] \ {v, u})
and we can apply Intersection Removal to get the stated result. In the third case, if
ω(v) ≥ ω(u), we can apply Split Neighbor Removal Case 1.

Remark 5.3 ((Memory) Efficient Domination). Instead of testing N [u] = N2[v], we
test if degL(v) + deg(v) = deg(u), which is equivalent, since for u ∈ N(v), each
neighbor of u is a link-neighbor of v, i. e., N [u] ⊆ N2[v]. The degree equality yields
that |N [u]| = 1+deg(u) = 1+degL(v)+deg(v) = |N2[v]|. Therefore, the sets have to be
equal, and we get N [u] = N2[v]. To check this degree-equality, we need to initialize the
link-neighborhood of each vertex. To avoid this for some cases when Domination is not
applicable and the link-degree not computed yet, we first check whether N [v] ⊆ N [u]
and only compute the link-neighborhoods for these vertices.
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Figure 5.8: Application of D2-Simplicial Weight Transfer. The original link-graph
on the left is reduced to the link-graph on the right. Red numbers indicate vertex
weights. Light red vertices are excluded, gray vertices are folded, and light gray
edges are removed.

The following reduction rule, Weighted Clique includes vertices v if these are
distance-2-simplicial,i. e., their neighborhood N2[v] forms a distance-2-clique. If the
weight of v is the highest in N2[v], we can include v in the solution.

Reduction 5.18 (Weighted Clique)

Let v ∈ V be distance-2-simplicial in G such that ω(v) = ωmax(N2[v]), then include v.

Link Set L = L ∪ link(N2[v])
Reduced Graph G ′ = G −N2[v]
Offset α2

w(G) = α2
w(G ′) + ω(v)

Reconstruction S = S ′ ∪ {v}

Proof. Let v ∈ V be distance-2-simplicial in G such that ω(v) = ωmax(N2[v]). Since
the vertex v is distance-2-simplicial, i. e., the neighborhood N2[v] forms a distance-2-
clique, there can only be one of these vertices in the MW2PS. Since for all vertices
u ∈ N2[v] it holds that α2

w(G[N2[v]∪N2[u]]) ≤ α2
w(G[N2[v]]) = ωmax(N2[v]) = ω(v), we

can remove u by applying the Neighborhood Removal Reduction resulting in v being
left to include in the solution.

If Weighted Clique is not applicable, we can still reduce some part of the neighbor-
hood of distance-2-simplicial vertices. The cases where this is possible are described
in D2-Simplicial Weight Transfer, illustrated in Figure 5.8.

Reduction 5.19 (D2-Simplicial Weight Transfer)

Let v ∈ V be distance-2-simplicial, and suppose that the set of distance-2-simplicial
vertices S2(v) ⊂ N2(v) is such that for all u ∈ S2(v) holds ω(v) ≥ ω(u), then fold v

into its neighborhood.
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Link Set L = L ∪ link(K)
Reduced Graph Construct the link-graph G ′ as follows

• remove all u ∈ K := {u ∈ N2(v) | ω(u) ≤ ω(v)}, and let
the remaining neighbors be denoted by N ′(v)

• remove v and for each u ∈ N ′(v) set ω(u) = ω(u)−ω(v)

Offset α2
w(G) = α2

w(G ′) + ω(v)
Reconstruction If S ′ ∪N ′(v) = ∅, then S = S ′ ∪ {v}, else S = S ′.

Proof. The first step of D2-Simplicial Weight Transfer is applying the Neighbor Re-
moval Reduction to all vertices u ∈ N2(v) with ω(u) ≤ ω(v). Let x ∈ N ′(v) and S ′

be the solution on G ′. In the second step, we need to distinguish two cases.
Case 1: S ′ ∩N ′(v) = ∅. We show that ω(v) + α2

w(G[V \N2[v]]) ≥ α2
w(G[V \ {v}]).

Since x /∈ S, we have α2
w(G ′) ≥ ω′(x) + α2

w(G ′[V ′ \N2[x]]) = ω(x)− ω(v) + α2
w(G ′[V ′ \

N2[x]]). Therefore, the heaviest 2PS containing v has at least the weight of the heaviest
2PS containing any link-neighbor of v. Since additionally, ω(v) + α2

w(G[V \N2[v]]) ≥
α2

w(G[V \ {v}]), we know that S = S ′ ∪ {v} is an MW2PS of G.
Case 2: S ′ ∩ N ′(v) ̸= ∅. We show that S ′ = S is an MW2PS of G. Since v is

distance-2-simplicial, it holds |S ′ ∩N ′(v)| = 1. Define G ′′ as the link-graph resulting
from increasing the weights of N ′(v) again by ω(v), i. e., the original weights. The set
S ′ is also an MW2PS for the link-graph G ′′, since otherwise, it would not have been
optimal on G ′. Therefore, we have ω′(S ′)+ω(v) = ω(S ′), since exactly one vertex from
N ′(v) is part of S ′. In the next step, we add the vertex v to the link-graph G ′′, resulting
in the link-graph G ′′′, i. e., this is the link-graph after step 1 of the reduction. We now
assume, that there is an MW2PS S∗ for G ′′′ with ω(S∗) > ω(S ′). Then, v ∈ S∗, since
this is the only vertex added to G ′′′. This implies that no neighbor of v is in S∗. We
now have ω(S∗ \{v}) = ω(S∗)−ω(v) > ω(S ′)−ω(v) = ω′(S ′)+ω(v)−ω(v) = ω′(S ′).
Since S∗ \ {v} does not contain any vertex from N2[v], it is an MW2PS of G ′ that is
of larger weight than S ′. This contradicts the assumption, and we have S ′ = S.

The following reduction describes a folding. Here, we postpone the decision about
the solution status of a vertex to a later point. Depending on the solution status of
the new vertex, we decide the solution status of the folded vertices.

Our Neighborhood Folding is applicable to a vertex v with a 2-packing neighbor-
hood, i. e., N2(v) is a 2-packing set in G. In this situation, we cannot include the
vertex v directly, but we know that in the end, either v or its complete neighborhood
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Figure 5.9: Application of Neighborhood Folding. The original link-graph on the left
is reduced to the instance on the right. Red numbers indicate vertex weights and
dashed lines links in L.

is in the solution. Therefore, we can fold these vertices. Neighborhood Folding is
illustrated in Figure 5.9.

Reduction 5.20 (Neighborhood Folding)

Let v ∈ V and N2(v) be a 2-packing set in G. If ω(N2(v)) > ω(v), but ω(N2(v)) −
ωmin(N2(v)) ≤ ω(v), then, fold N2[v] into a new vertex v′.

Link Set L = L ∪ link(N2[v])
Reduced Graph G ′ = G[(V \ N2[v]) ∪ {v′}], set weight ω(v′) = ω(N2(v)) −

ω(v) and 22316v′ = ∅.
Offset α2

w(G) = α2
w(G ′) + ω(v)

Reconstruction If v′ ∈ S ′ then S = (S ′ \{v′})∪(N2(v)), else, S = S ′∪{v}.

Proof. Let v ∈ V and N2(v) be a 2-packing set of G. First, note that after folding,
the following graphs are identical: G ′[V ′ \N2G′ [v′]] = G[V \N4[v]] and G ′[V ′ \ {v′}] =
G[V \N2[v]]. Let S ′ be an MW2PS of G ′. Now, we distinguish two cases.

Case 1: v′ ∈ S ′. We show that ω(N2(v)) + α2
w(G[V \ N4[v]]) ≥ ω(v) + α2

w(G[V \
N2[v]]) resulting in all neighbors of v are together in an MW2PS of G. Since v′ ∈ S ′,

α2
w(G ′) = ω(v′) + α2

w(G ′[V ′ \N2G′ [v′]])

= ω(N2(v))− ω(v) + α2
w(G ′[V ′ \N2G′ [v′]])

= ω(N2(v))− ω(v) + α2
w(G[V \N4[v]])

Since v′ ∈ S ′, we have α2
w(G ′) ≥ α2

w(G ′[V ′\{v′}]) = α2
w(G[V \N2[v]]). Thus, ω(N2(v))+

α2
w(G[V \N4[v]]) ≥ ω(v) + α2

w(G[V \N2[v]]) and the vertices of the link-neighborhood
are together in some MW2PS of G and α2

w(G) = ω(N2(v)) + α2
w(G[V \ N4[v]]) =

α2
w(G ′) + ω(v).

Case 2: v′ /∈ S ′. We show that v is in some MW2PS, by proving that ω(v) +
α2

w(G[V \ L(v)]) ≥ ω(N2(v)) + α2
w(G[V \ N4[v]]). Since v′ /∈ S ′, we have α2

w(G ′) =
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α2
w(G ′[V ′\{v′}]) = α2

w(G[V \N2[v]]). Since S ′ is an MW2PS of G ′, we obtain α2
w(G[V \

N2[v]]) = α2
w(G ′) ≥ ω(N2(v)) − ω(v) + α2

w(G[V \ N4[v]]). Therefore, we have ω(v) +
α2

w(G[V \L(v)]) ≥ ω(N2(v))+α2
w(G[V \N4[v]]) and v is in some MW2PS of G. Lastly,

α2
w(G) = ω(v) + α2

w(G[V \N2[v]]) = ω(v) + α2
w(G ′).

Remark 5.4. In Neighborhood Folding, we can efficiently prune the search space
by checking if deg(v) ≤ 1. Otherwise, N2(v) would contain a distance-2-clique, see
Lemma 5.1 and therefore not be a 2-packing set.

Data Structure

Here, we describe the data structure and some implementation details for the data
reduction rules. These are improtant to understand the more efficient data reduction
rules presented in the second part of this section.

Maintain Neighborhood Information. We maintain important neighborhood
information of a vertex to speed up the reduction process. For this, we maintain
the size of the link-neighborhood degL(v) and the weight of the maximum weight
vertex. Additionally, we maintain the sum of the weights in the direct neighborhood
for a vertex.

On-Demand-Neighborhood. Our reductions operate on a dynamic link-graph
data structure based on adjacency arrays representing undirected edges and links
by two directed ones. Internally, we separate edges and links with two adjacency
arrays. In addition to the necessary links for the reductions, we compute and store
the full link-neighborhood of a vertex whenever we compute it. We do this even if the
reduction was not successful to avoid recomputation. Generally, we only compute the
link-neighborhood of a vertex on demand. Here, we make special use of reductions
that do not need to know the link-neighborhood to exclude a vertex. These reductions
are applied initially, reducing the link-graph without building the full square graph.
This approach additionally reduces the amount of work needed to reduce the instance.
When a vertex u is removed from the link-graph, we delete every edge and all links
pointing to it. Removing all incoming edges can take time O(∆4) where ∆ is the
highest degree in the graph. With the on-demand technique, the link-neighborhood
of a vertex v is not computed in advance, and therefore, potentially fewer edges
must be deleted.

Bulk Hide Operation. Hiding the incoming edges and links can be computation-
ally expensive for high-degree vertices. For example, for large distance-2-cliques, it
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can be expensive to exclude multiple clique members, i. e., applying Weighted Clique
or D2-Simplicial Weight Transfer. Hiding one member of this distance-2-clique takes
O(∆4) time because we have to search through the edge and link adjacency array for
each clique member to remove the connections. Then, hiding k ∈ O(∆2) distance-2-
clique members this takes O(k∆4) time. To avoid this, we put all the hide operations
of the respective distance-2-clique members together by using a bulk hide operation.
This operation hides all edges and links to clique members in a single pass. This
reduces the running time from O(k∆4) to O(∆4) and possibly decreases cache faults.

Efficient Data Reduction Rules

So far, we presented data reduction rules based on the link-neighborhood informa-
tion. However, using the link-neighborhood, e. g., determining or iterating over the
2-neighborhood, can be expensive regarding running time and memory consumption.
In our implementation of the reduction rules, we postpone determining a link neigh-
borhood as long as possible. Especially if a reduction is not applicable, determining
the link-neighborhood early results in more work throughout the whole reduction
process as this link-neighborhood has to be maintained.

In this section, we present efficient data reduction rules which circumvent these
issues. Whereas arbitrary link neighborhoods are of size O(∆2), the following data
reduction rules fully circumvent considering link neighborhoods of size ω(∆) or ensure
that applying a data reduction rule for all vertices does overall take at most O(n+m)
running time. Moreover, we implement them such that no link neighborhoods are ini-
tialized and maintained by the link-graph data structure during the applicability tests.

Instead, the main idea behind these rules is to exploit the properties of the vertices
VG in the original input graph G to reduce G further. Intuitively, we reduce vertices
in the link-graph G by looking up neighborhoods of (already reduced) vertices in G.
Note that G refers to the original, unreduced input graph (without the link set L).
With VG, we refer to vertices in the original graph G, while NG(v) denotes the original
neighborhood of the vertex v in G. We refer to neighborhoods in the currently reduced
link-graph G if a refernce is omitted in the notation.

The first data reduction rule, Fast Degree-1, fully reduces vertices of degree one
in the input graph G. When applying this reduction rule and building the link neigh-
borhood in G, a degree one vertex always forms a distance-2-clique. Figure 5.10 gives
an example and points out the difference to the more general D2-Simplicial Weight
Transfer Reduction, which also reduces this pattern. Fast Degree-1 can be applied to
degree one and zero vertices that arise during the reduction progress in G. Figure 5.10b
illustrates Fast Degree-1.
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(a) Illustration of D2-Simplicial Weight Transfer. In an intermediate step, links are initial-
ized (OD2N) to check if N2[v] forms a distance-2-clique. These are illustrated as dotted
gray lines. When applying D2-Simplicial Weight Transfer, we have to hide all of these links,
which is computationally expensive even when using the bulk hide operation.
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(b) Illustration of Fast Degree-1. By first checking the original input graph G, we know v

forms a distance-2-clique and we can fold v with its twins T (v) without initializing links.

Figure 5.10: We illustrate the benefits of using the fast reductions. The vertices in L(v)
are brown. Fast Degree-1 and the D2-Simplicial Weight Transfer are equally effective
on this example but in contrast to D2-Simplicial Weight Transfer (Figure 5.10a), Fast
Degree-1 fully circumvents to maintain links (Figure 5.10b).

Reduction 5.21 (Fast Degree-1)

Let u ∈ VG with v ∈ V ∩ NG(u) so that deg(v) ≤ 1 and L(v) ⊂ NG(u). Further, let
T (v) = {x ∈ V ∩NG(u) : deg(x) ≤ 1 ∧ L(x) ⊂ NG(u)} \ {v} be denoted as the twins
of v in G with ω(v) ≥ maxx∈T (v)w(x) and at most degree 1. Then, fold v and its twins.

Link Set L = L
Reduced Graph Construct the link-graph G ′ as follows

• remove all x ∈ (V ∩NG[u]) \ {v} with ω(x) ≤ ω(v), and
let the remaining link-neighborhood of v be denoted by
L′(v)

• remove v and for each x ∈ L′(v) set ω(x) = ω(x)−ω(v)

Offset α2
w(G) = α2

w(G ′) + ω(v)
Reconstruction If S ′ ∪ L′(v) = ∅, then S = S ′ ∪ {v}, else S = S ′.
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Proof. T (v) is a subset of distance-2-simplicial vertices S2(v) of the considered distance-
2-clique. We can now apply D2-Simplicial Weight Transfer by observing that we can
relax its maximality constraint for w(v). Although v might not have maximal weight
among all distance-2-simplicial vertices in this distance-2-clique, we can still apply
a weight shift by w(v). To see this, we assume that simplicial vertices of larger
weight than w(v) remain in G ′. One can apply D2-Simplicial Weight Transfer to
the remaining distance-2-clique L′(v) with a simplicial vertex x ∈ L′(v) that satis-
fies the maximality constraint in (G ′, w′), and check that this gives the same reduced
instance and weight function as applying the D2-Simplicial Weight Transfer directly
to N2[x] in (G, w). Note that x also satisfies the maximality constraint in G since
w(x) = w′(x)+w(v) ≥ w′(y)+w(v) = w(y) for all distance-2-simplicial y ∈ S(v)\T (v),
and w(x) ≥ w(v) ≥ w(y) for y ∈ T (v).

Remark 5.5 (Implementing the Fast Degree-1). The implementation works in rounds
where each round considers only degree one vertices. Initially, we consider all degree
one vertices of G, as they remain distance-2-simplicial as long as they are not yet
reduced. In the upcoming rounds, we reduce new degree one and zero vertices. Note
that the subset condition for the link set is not trivially fulfilled for these vertices.
Therefore, we maintain a list of vertices that do not fulfill that condition.

The following data reduction reduces degree-two vertices in VG almost analogously
to Fast Degree-1. The key difference is that they do not necessarily point to distance-
2-cliques. However, we can still reduce twins and possibly include a degree-2 vertex
using Lemma 5.1.

Reduction 5.22 (Fast Degree-2)

Let u, y ∈ VG with v ∈ V ∩ NG(u) ∩ NG(y) so that deg(v) ≤ 2 and L(v) ⊂ NG(u) ∪
NG(y). Further, let T (v) = {x ∈ V ∩NG(u) ∩NG(y) | deg(x) ≤ 2 ∧ L(x) ⊂ NG(u) ∪
NG(y)} \ {v} be denoted as the twins of v in G of at most degree two. If ω(v) ≥
maxx∈T (v)w(x), then fold v with its twins.

Link Set If v is included, L = L ∪ link(N2[v]), else L = L
Reduced Graph Construct the link-graph G ′ as follows

• remove all x ∈ T (v)
• include v if u ∈ NG(y) and ω(v) ≥

max{w(u), w(y), cu + cy}, or u ̸∈ NG(y) and
ω(v) ≥ max{w(u) + cy, w(y) + cu, cu + cy} where
cy = maxx∈N(y)\{u,v}ω(x) and cu = maxx∈N(u)\{y,v}ω(x).
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Offset α2
w(G) = α2

w(G ′) + ω(v) if v was included; otherwise
α2

w(G) = α2
w(G ′)

Reconstruction If S ∪ L′(v) = ∅, then S = S ′ ∪ {v}, else S = S ′ .

Proof. Consider u, y ∈ VG with v ∈ V ∩NG(u)∩NG(y) as given above. Then, it holds
N(v) = {u, y} ∩ V = N(x) for every x ∈ T (v). Since all links incident to v or x are
given via their (former) direct neigbors u and y, it holds L(x) \ {v} = L(v) \ {x}.
Therefore, we know N2[v] = N2[u]. If now ω(v) ≥ maxx∈T (v)w(x), then it holds
ω(v) ≥ ω(x) = ω(x) + ω(N2[v] \N2[x]) for every twin x ∈ T (v). Thus, we can apply
the second case of Split Neighbor Removal to remove all twins safely.

If v has sufficiently large weight, we can include v by utalizing an upper bound U

for α2
w(G[N2(v)]). It allows us to apply Heavy Vertex and further to include v. The

key observation is that the remaining vertices of NG(u) ∩ V \ {y} form a distance-2-
clique in G. Analogously, NG[y] ∩ V \ {u} forms a distance-2-clique in G. Note that,
at most one vertex of a distance-2-clique can participate in an MW2PS.

Now, consider that u and y are neighbors in G and ω(v) ≥ max{w(u), w(y), cu + cy}.
Now, if u and y are direct neighbors, either u, y, or neighbors of u or y can be part of an
MW2PS. Thus, max{w(u), w(y), cu + cy} is an upper bound for the 2-neighborhood of v.

If u and y are not adjacent, they are linked, and we can include v if w(v) ≥
max{ω(u)+ cy, ω(y)+ cu, cu + cy} with a similar argument. If u is part of an MW2PS,
only vertices of NG(y)∩V regarding the 2-neighborhood of v can be part of an MW2PS.
Analogously, if y is part of an MW2PS, only vertices of NG(u) ∩ L(v) but none of
L(v) \NG(u) can be in an MW2PS. This gives us the upper bound for α2

w(G[N2(v)]),
which allows us to include v with Heavy Vertex.

Remark 5.6 (Implementing Fast Degree-2). Fast Degree-2 can be implemented sim-
ilarly to Fast Degree-1. However, we do not trace new vertices of degree two or one
and test this reduction only once for each vertex of VG.

The following data reduction is based on Neighborhood Removal and uses an upper
bound on the summed weight in the link neighborhood. The upper bound is computed
for G. Before any reductions are applied, we compute the upper bound for all vertices
in time O(|EG|) with two scans over all neighborhoods in G.
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Reduction 5.23 (Fast Neighborhood Removal)

Let v ∈ V with w(v) ≥ ωmax(v) + ∑
u∈NG(u) w(NG(u))− w(v), then include v.

Link Set L = L ∪ link(v)
Reduced Graph G ′ = G −N2[v]
Offset α2

w(G) = α2
w(G ′) + ω(v)

Reconstruction S = S ′ ∪ {v}

Proof. Let v ∈ V with w(v) ≥ ωmax(v) + ∑
u∈NG(u) w(NG(u))−w(v). It holds L(v) ⊆

NG(NG(v)) = ⋃
u∈NG(v) NG(u) \ {v}. Thus, we obtain ω(L(v)) ≤ ∑

u∈NG(v) ω(NG(u)−
ω(v)) and can apply Neighborhood Removal.

5.4.2 Algorithm Description

In this section, we introduce methods to solve the MW2PS problem using the data
reduction rules presented in Section 5.4.1. Next to the reduce&transform ap-
proach combined with MWIS solvers, as presented in Section 5.2, we contribute our
new heuristic redW2pack which applies exact and heuristic data reductions to solve
the problem without transforming the graph. Finally, we present the reduce and peel
approach DRP, which combines redW2pack with the metaheuristic Concurrent
Difference Core Heuristic introduced in Section 4.4.

Baseline Reduce-and-Peel Solver redW2pack

The pseudocode for our baseline approach redW2pack is shown in Algorithm 18.
This approach alternates between exhaustively applying exact data reductions and a
heuristic peeling step.

The algorithm redW2pack peels a vertex which is selected by a (randomized)
heuristic strategy, i. e., it either includes or excludes a vertex with respect to a heur-
istic rating, whenever our exact reduction style core was exhaustively applied. This
iterative process continues until the graph is empty, and consequently, a heuristic
solution for the reduced instance K is obtained. The peeling step possibly opens up
the reduction space so that the exact core reductions can reduce further vertices.

With reduce-and-peel solvers, a heuristically excluded vertex can lead to a non-
maximal solution when the reductions are undone. If possible, we fix this by simply
including them when unrolling the stack of applied reductions. Other reductions face
the same issue as well. To ensure that the solution for K is maximal, we maximize
the solution greedily by adding free vertices of the largest weight.
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Algorithm 18: Pseudocode for redW2pack.
Data: Graph G = (V, E, ω), heuristic config C

Result: 2-Packing set S

Procedure redW2pack(G, C):
G ← (V, E, ω, ∅)
while G not empty do
G ←exact reduce(G)
G ←heuristic reduce(G,C)

return restore(G)

Other reduce-and-peel solvers for the MWIS, such as HtWIS, restrict reductions
to reduce only vertices of a small degree. They keep track of the vertex degrees
to efficiently apply reductions when new small-degree vertices arise from the peeling
phase. On the contrary, our approach uses the full set of core reductions and employs
the built-in dependency-checking to test reductions only for vertices in regions where
the neighborhood has changed.

Heuristics. We utilize three heuristic ratings, well-known for the MWIS [103, 107].
We call these ratings weight diff (w(v) − w(L(v)) − w(N(v))), weight (w(v)), and
degree (− deg v − degLv). The ratings are updated throughout the modifications to
the instance using priority queues. We maintain the best k candidates in an array
and choose uniformly at random one of them in the peeling step. Since randomness
is very crucial for different D-Core instances, we also use a non-adaptive approach
that pre-computes the rating and does a perturbation with a probability of p ∈ [0.5, 1]
of the remaining ranking before each peeling step. The intuition behind excluding a
vertex with a small weight diff rating is that a subset of its neighbors is likely to be
part of an optimal solution; a small weight rating suggests that the vertex is unlikely
to be part of it; and removing a vertex with a small degree rating possibly entails
many new reduction applications. Further, one can include a vertex with the highest
rating for weight diff and weight. Our preliminary experiments indicate that if solution
quality is highly important, it is wiser to exclude a vertex heuristically rather than
including it. A possible reason is that including a vertex has a wider impact since
its neighbors are consequently excluded, while the proposed heuristics only capture
very local information.
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Difference-Core Reduce and Peel

We now give the high-level idea of our heuristic Difference-Core Reduce and
Peel (DRP), followed by an overview of the main components. A major drawback
of basic reduce-and-peel approaches, as redW2pack, is that wrong decisions during
the heuristic steps cannot be undone. With the new algorithm DRP, we aim to
overcome this issue using a the new meta-heuristic. We present pseudocode for DRP
in Algorithm 19.

High-level Description. We propose a new solver called DRP, which uses the
baseline reducing-peeling approach redW2pack combined with the meta-heuristic
Concurrent Difference Core Heuristic introduced by Großmann et al. [104].

The Difference Core (D-Core) is a subgraph of the input instance. It is
constructed by first computing multiple solutions for an instance and then removing all
vertices that are always included or excluded in all solutions generated. This way, the
D-Core contains only the vertices where the heuristic is unsure about the decision,
making it more likely to find improvements. We run the redW2pack algorithm
multiple times with different heuristic strategies to generate different solutions.

By running redW2pack multiple times with different heuristic strategies, we can
increase the randomization of our approach. Throughout this process, the best solu-
tion found is maintained. Furthermore, this approach enables us to return to the ori-
ginal instance without being stuck with a potentially wrong decision while still utilizing
the information about the solutions computed to improve the overall performance.

The Exact Reduced Instance. We use our new data reduction rules with ex-
act reduce to obtain the reduced instance K.

Building the Difference Core. The D-Core, presented in Section 4.4 is con-
structed by using a set of solutions S = {S1, . . . , Sk} to a given problem. With this
set of solutions, the D-Core is defined as the induced link-subgraph of a set of ver-
tices D ⊆ V where the solution status of the vertices in D is different in at least one
of the solutions in S. Formally, the set D is defined by D = {v ∈ V | ∃Si, Sj ∈ S : v ∈
Si ∧ v ̸∈ Sj}, additionally we defined the set of similar vertices as U = V \D. Intuit-
ively, the D-Core G[D] contains more difficult parts of the instance. In our approach,
the D-Core is an MWIS subproblem yielded by applying our reduce&transform
routine to the link-graph G[D]. When we find a better solution on the D-Core than
the best-found solution so far, we embed the solution into the current best solution
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for K. In the following, we explain how we construct this set of solutions S. This
approach differs from the original approach by Großmann et al. [104].

Generally, when a new best solution is found, we restart with an empty set S = ∅.
Then, we compute different solutions using variations of the redW2pack heuristic
until certain conditions for the D-Core are met. Note that the larger the set S, the
more likely it is that the D-Core contains more vertices. The D-Core instances
are expected to be small for a small number of solutions. Therefore, we employ
a threshold ϕ to restrict the size of the D-Core. We solve the D-Core if the
number of similar vertices relative to the vertices in K falls below ϕ. If the solution
for the D-Core is already optimal, we slightly decrease ϕ to ϕ− times the current
measured similarity to observe more redW2pack solutions. On the other hand, if
an improvement was made or the solver could not find an improving solution due to
a time limit exceeded, we increase ϕ by a factor of ϕ+ as smaller D-Core instances
might be easier to solve. In the latter case, we restart computing the set of solutions
S using our redW2pack approach.

Diversification. To diversify the solutions computed by redW2pack, we iterate
through the heuristic ratings in the order they are introduced above and pick one
configuration given the i-the step in next config. In order to solve diverse D-Core
instances, we also alternate between the adaptive and the non-adaptive rating (in
this order) and even refine these two strategies by alternating between exclude and
include in the case of weight diff and weight. Whenever an adaptive rating strategy
is used, we slightly modify it by incrementing k by 1; if a non-adaptive strategy is
re-used, we choose a new p ∈ [0.5, 1] uniformly at random. The exact reduction phase
is diversified by shuffling the order of candidates before a reduction is tested.

Solving the Difference Core. To solve the problem on the D-Core, we use our
reduce&transform routine, which can be combined with any MWIS solver. In
this work, we propose two configurations. The first, DRP-BChils uses the baseline
local search used in the CHILS heuristic [104], and the other, DRP-KaMIS uses the
exact branch and reduce solver KaMIS BnR [149]. We also add a configuration not
using the D-Core strategy for comparison.

5.4.3 Experimental Evaluation

This section presents the experimental evaluation of our work introduced for the
MW2PS problem. First, we examine the impact of our reduction approaches on re-
ducing the input instances and solving these using our routine reduce&transform
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Algorithm 19: Pseudocode for DRP.
Data: Graph G = (V, E, ω), similarity threshold ϕ, scaling factors ϕ+ and ϕ−

Result: 2-Packing set S

Procedure DRP(G, ϕ, ϕ+, ϕ−):
S ← ∅
K, α←ExactReduce(G)
if K is empty then

S ←restore(K, α, S)
return S

S ←redW2pack(K, C) // C initial heuristic configuration
U ← VK // Similar vertices
while not time limit exceeded do

while |U |/n(K) > ϕ do
C ←next config(C)
S ′ ←redW2pack(K, C)
if ω(S ′) > ω(S) then

S ← S ′

U ← VK // Reset similar vertices
else

U ← U ∩ (VK \ (S∆S ′)) // Update similar vertices

SH ←reduce&transform(K − U)
if w(SH) > w(S \ U) then

S ← S \ U ∪ SH // Extend solution from D-Core
if ϕ+ · ϕ < 1 then

ϕ← ϕ+ · ϕ // Consider smaller D-Core

else if SH is optimal then
ϕ← ϕ− · |U |/n(K) // Consider larger D-Core

else
U ← VK // Exact solver timed out
if ϕ+ · ϕ < 1 then

ϕ← ϕ+ · ϕ // Consider larger D-Core

return S

combined with several state-of-the-art independent set solvers. Afterward, we ana-
lyze different versions of our DRP algorithm and, finally, compare the best variants of
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our DRP approach with the best configurations of the state-of-the-art MWIS solvers
combined with reduce&transform.

Methodology. We implemented our algorithm using C++17. The code is compiled
using g++ version 12.2 and full optimizations turned on (-O3). To investigate the
allocated memory, we use the malloc count library1. For the experiments in this
chapter, we used Machien 1. We ran all our experiments with four different random
seeds and report geometric mean values unless mentioned otherwise. We set the time
limit for all algorithms to 4h and a memory limit of 200 GB. In case of a timeout or
memory limit is reached, we report the best solution found until this point.

Overview/Competing Algorithms. In our experiments, we first investigate the
influence of the data reduction rules in Section 5.4.3. Therefore, we compare several
MWIS solvers combined with different configurations of our reduce&transform
routine. In particular, we examine the performance of HILS by Nogueira et al. [172],
HtWIS by Gu et al. [107] as well as KaMIS BnR by Lamm et al. [149] and the
two new heuristics m2wis+s, introduced in Section 4.3 and CHILS, presented in
Section 4.4. In the second part of our experiments, we examine the performance of
the heuristic DRP using the two MWIS algorithms KaMIS BnR and CHILS for
solving the D-Core instances. Finally, these two configurations are compared to the
best configurations for each MWIS solver combined with reduce&transform in
Section 5.4.3. Our experiments in this section were conducted using Instance Set 7.

Instance Set 7 (Weighted 2-Packing). Our experiments were conducted on 205
graphs, with at least 1,000 vertices. It contains 40 snap [155], six ssmc [53], five
fe [210], 14 mesh [185], and 34 Open Street Map (osm) graphs [20, 1]. These in-
stances are a subset of Instance Set 1. Further, we added 18 large graphs from In-
stance Set 6. We assign weights for these 18 graphs using five different weight dis-
tributions (uniform, geometric, hybrid, degree, and unit weights), which results in an
additional 90 weighted instances. We extended the osm instances from Instance Set 1
with eight large-scale osm graphs from the 10th DiMACS challenge [190], assigning
weights sampling from a uniform distribution and using hybrid weights. For a detailed
overview of all graphs and weight distribution, see Table A.7 in the Appendix.

Impact of Data Reductions on Instances

In this section, we analyze the efficiency of our reductions for preprocessing. First, we
compare different configurations of our reduce&transform routine. Then, we show

1The malloc count library can be found at https://github.com/bingmann/malloc_count.

https://github.com/bingmann/malloc_count
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Configuration Reduction Order Transformation

fast main

full
[

5.21 5.22 5.23 5.12 5.17 5.19 5.16 5.14 5.20
]

reduced link-graph
fast

[
5.21 5.22 5.23

]
reduced link-graph

strong
[

5.21 5.22 5.23 5.12 5.19 5.16 5.14 5.20
]

reduced link-graph
main

[
5.12 5.17 5.19 5.16 5.14 5.20

]
reduced link-graph

transform [ ] full graph

Table 5.3: Overview of all reduce&transform configurations evaluated in our
experiments. Column Reduction Order presents, which reduction rules are used
and their order.

how different solvers can benefit from our preprocessing routine. Table 5.4 presents the
performance of reduce&transform with different configurations. Each reduction
configuration is defined via the reductions used and their order given in the corres-
ponding reduction lists. In the full configuration, we first apply our fast reductions
once, followed by our main reductions as presented in Table 5.3.

The intuition behind the chosen order for the main part is that we want to apply
reductions that include vertices first since they reduce bigger parts of the graph. The
Domination is placed before the D2-Simplicial Weight Transfer and Split Intersection
Removal because it is a special case of the latter. If none of the latter reductions are
applicable anymore, we try to exclude vertices and fold neighborhoods. To evaluate
the impact of our fast data reductions, we split full into a fast and a main con-
figuration, where fast only uses the fast data reductions, and main uses only those

median [%] geo. mean

Configuration n(K)/n(G2) m(K)/m(G2) t [s] mem. [MB] o(K) #opt [%]

full 0.1 0.000 2 0.37 65.3 312 963 44
fast 50.0 26.372 5 0.18 61.9 126 430 -

strong 0.1 0.000 2 0.34 61.8 312 962 44
main 0.1 0.000 2 1.38 89.8 312 958 44

transform 100.0 100.000 0 0.30 101.7 - -

Table 5.4: Performance of reduce&transform with different configurations. The
set is restricted so that all configurations can create the transformed graph. The
geometric mean offset o(K) was computed only for instances where all variants found
an offset larger than zero.
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Figure 5.11: Performance profiles comparing different configurations of re-
duce&transform, defined in Table 5.3. The left figure shows the running time
to compute the (reduced) transformed graph, and the right figure presents the
memory peak. The y-axis shows the corresponding fraction of instances (foi)
solved faster or with less memory than τ times the best-performing algorithm on
the respective instance.

from the main part except for the special case of neighborhood folding. Finally, we
propose an equally effective but lighter configuration than full, called strong, that
does not use Domination. Table 5.3 gives an overview of all configurations compared.

In Table 5.4, we report the sizes of the transformed graphs and the time and
memory needed to compute them. Furthermore, we give the number of fully reduced
graphs, i. e., the number of instances solved to optimality by our reductions, as well
as the geometric mean reduction weight offset. To emphasize the efficiency of our pro-
posed reduce&transform configurations, we compare them with the configuration
transform that determines the square graph by building every 2-neighborhood. For
an overview of all configurations compared, see Table 5.4.

Figure 5.11 shows that using fast is always better than directly transforming the
graph in all aspects regarding running time, graph sizes, and memory consumption.
With this fast configuration, we reduce the instances on average to less than 50 %
of the original number of vertices while saving up to 39 % of memory and using less
time. The results for the main configuration clearly show the importance of our fast
reductions. Compared to the full configuration, we can improve the running time
by approximately a factor of 4 while reducing the memory consumption by 27 %.
The strong configuration is the best performing regarding the size of the reduced
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Figure 5.12: Comparison of reduced instances K computed by different reduction con-
figurations defined in Table 5.3. On the right, we present the remaining number of ver-
tices, and on the left, the remaining number of edges in % relative to the square graph.

transformed graph as well as memory consumption. Furthermore, on average, it uses
only a factor of 1.88 more time than our fastest variant.

Figure 5.12 gives a more detailed insight into the reduction impact for our config-
urations regarding the reduced instance size: with our main reductions, we find for
almost all instances a reduced instance with at most 25 % vertices and edges relative
to the square graph. However, there are outliers left where our reductions are hardly
applicable. Regarding the configuration fast, we observe that its effectiveness varies
highly. The first quantile is approximately at 24 % (5 %) remaining vertices (edges),
the median at 50 % (27 %), and the third quantile at 90 % (95 %).

The configurations utilizing our main reductions can solve at least 43 % of the
instances to optimality. Although fast is not capable of reducing any instance fully,
we still want to point out that when using fast and main reductions in conjunction
(strong or full), there are instances where we can reduce running times from almost
3 hours down to less than 10 seconds as observed for snap wiki-Talk-uniform. This
graph has almost 74 % degree-one vertices, which are efficiently reduced with our Fast
Degree-One Reduction, whereas main and transform are unable to find a (reduced)
and transformed instance.

The performance profiles regarding the running time and memory peak in Fig-
ure 5.11 provide revealing results. In terms of running time, strong, full, and
transform perform very similarly. Almost 50 % of the runs are at most a factor
of 2 slower than the fastest running times among all configurations on the respective
instances. For 20 % of the runs, on the other hand, Figure 5.11 indicates that these are
at least a factor of 10 up to 100 slower than the respective fastest running times. In the
case of fast, we notice that it is at most a factor of 10 slower on all runs while having
the best running times on 20 % of the instances. The configuration main performs
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worst regarding running time. It is up to a factor of 104 slower than the fastest con-
figuration. However, main fully reduces 43 % of the instances while transform only
determines the square graph. In this sense, it is much to our surprise that strong
and full can keep up with the performance of transform while they are at least
as good in solution quality as main. The performance profiles regarding the memory
peak clearly indicate that using our reductions is better than directly transforming the
graph. Without reductions, transform needs up to a factor of 102 more memory
than the smallest achieved peaks, while our reduce&transform configurations
with(out) fast reductions are at most a factor 5 (20) apart from the smallest peaks.

Our experimental results underline the efficiency in terms of running time and
memory consumption for fast, strong, and full gained by using our fast re-
ductions. Combining this preprocessing phase with our main reductions results in
an effective reducing scheme that yields for 44 % of the instances optimal solutions,
with median reduced instance sizes of 0.1 % vertices and 0.0002 % edges relative to
the square graph. Moreover, transform requires multiple orders of magnitude
more memory and takes a similar amount of running time, making it inapplicable
on some instances under reasonable resource limitations. Regarding the full con-
figuration, it appears that the rule Domination has only a small positive impact
compared to strong.

Observation 5.4.1: Reduction Impact on Instances. Considering the impact
of reductions on the (reduced) transformed instance, our fast configuration is al-
ways preferable to transform. It is faster while requiring less memory than
transform. The configuration strong needs, on average, only 0.002 seconds
more than transform, but uses the least amount of memory and already solves
44 % of our instances optimally.

Impact of Data Reductions for Solving

In the following, we investigate the practical effect of the configurations fast, strong,
and transform when solving the transformed graph with a wide range of MWIS
solvers. All running times and memory presented in this section always include the
time and memory used for reduce&transform and the solving process combined.
For the solution qualities, we always give the reduction offset and the solution quality
found on the reduced and transformed instances found by the different solvers. Be-
sides the exact solver KaMIS BnR, we add four heuristics in this comparison. We
include the evolution-based solver m2wis+s and a reduce and peel solver HtWIS.
Additionally, we have the local search algorithm HILS and the concurrent local search
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Figure 5.13: Performance profiles for reduction configuration comparison using
different MWIS solvers (rows). Note that the y-axes—showing the fraction of
instances (foi)—start at 0.5 for the solution quality. We present profiles for
solution quality (left), running time to find the best solution (center), and the
memory consumption (right).
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MWIS solver Configuration ω(S) t mem. opt. reached opt. # add. sol.

HILS





strong 211 321 0.943 33.6 43.9 98.6 31
fast 211 222 20.291 39.2 0.0 74.6 15
transform 211 101 171.181 75.8 0.0 62.0 8

CHILS





strong 211 445 0.722 38.6 43.9 99.3 30
fast 211 438 23.638 61.0 0.0 67.6 30
transform 211 436 73.687 147.9 0.0 72.1 24

HtWIS





strong 210 582 0.168 33.5 43.9 76.8 32
fast 210 437 0.171 37.9 32.2 65.5 32
transform 210 418 1.107 70.0 29.3 61.3 26

m2wis





strong 211 296 0.889 45.3 59.5 100.0 26
fast 211 304 1.069 69.4 15.6 100.0 30
transform 211 299 5.310 205.3 15.1 98.6 22

KaMIS BnR





strong 209 822 0.369 50.4 69.3 100.0 30
fast 209 744 0.318 77.9 68.8 99.5 30
transform 209 742 0.767 225.4 67.8 97.9 26

Table 5.5: Performance of our reduction configurations in combination with vari-
ous MWIS solvers. The columns ω(S), t and mem. show the geometric
mean solution quality (including reduction offset), time found (in seconds, in-
cluding reduce&transform time), and memory peak (in MB, including re-
duce&transform memory). These are evaluated on the set of instances where
all solvers found a 2-packing set. The ‘opt.’ column shows the percentage of solutions
proven optimal by the respective solver. The column ‘reached opt.’ shows the per-
centage of instances solved optimally among the instances where at least one solver
proved optimality. The last column shows the number of additional feasible solutions
computed by the respective solver compared to the common set of solutions. The
best results are highlighted in bold.

CHILS. In Table 5.5, we compare the different reduction configurations and solvers.
We present the geometric mean running time and solution quality. Moreover, we also
report the number of additional instances solvable through our preprocessing, mainly
due to memory issues with the original square graph. In Figure 5.13, we compare the
different reduction configurations for each solver in more detail.

Table 5.5 shows that all algorithms benefit from using our preprocessing instead
of the plain graph transformation. When comparing transform and fast, we see
speedups of more than a factor of 8 (HILS) while still improving on solution qual-
ity. Additionally, the amount of memory needed is reduced by almost a factor of
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two. These factors are further increased when comparing transform to the strong
variant. Here, we see speedups up to a factor of 180 (HILS) using even less memory
than fast and further improving on solution quality. The algorithm m2wis+s is the
only one not benefiting from the strong variant improvements in solution quality.
However, the fast variant can improve running time, solution quality, and memory
used. In this heuristic, additional independent set reductions are included, which is
why it can increase the percentage of instances proven to be optimal from 43.9 %,
which are the instances fully reduced by our strong reductions, to 59.5 %. The fast-
est and most memory-efficient configuration is strong combined with HtWIS. This
configuration has the most additional feasible solutions. However, this comes with a
loss in solution quality compared to the other heuristics, which we see by the small
percentage of only 76.8 % of instances where it reached a (proven) optimal solution.
In contrast to HtWIS, all other strong configurations reach 98.6 % or higher.

Regarding KaMIS BnR, we note that it often times out. In case of a timeout,
the branch and reduce solver greedily builds a maximal solution for the remaining
non-solved connected components.

In Figure 5.13, we see that for all solvers, the basic transform is worse con-
cerning solution quality, running time, and memory peak compared to both reduc-
tion configurations fast and strong. With strong, the memory peak compared
to transform for all solvers tested on around 20 % of the instances is reduced by
more than one order of magnitude. Especially for the local search algorithms, HILS
and CHILS, we see an additional huge improvement in the running time when com-
paring strong with fast. This speedup is up to multiple orders of magnitude,
while the strong configurations also further improve solution quality and reduce the
memory peak observed.

Observation 5.4.2: Reduction Impact on Solving. When considering the
performance of different solvers on the (reduced) transformed instances while al-
ways adding the transformation time to the solve time, we see that the time needed
for the strong configuration is well spent, and overall, these configurations find
better solutions multiple magnitudes faster with less memory needed. Especially
local search heuristics benefit from using the strong configuration.

The Algorithm redW2pack

In this set of experiments, we investigate the different configurations of our solver
redW2pack. We present the parameters for the different configurations in Table 5.6.
The parameters chosen worked best in preliminary experiments. Configurations with
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Configuration Details Results

Configuration D-Core solver tH ϕ ϕ+ ϕ− ω(S) t mem.

DRP-BChils CHILS Baseline 80 0.6 1.00 1.00 446 750 4.3 72.0
DRP-KaMIS KaMIS BnR 80 0.8 1.05 0.95 446 687 2.8 78.9
DRP-no-core - - - - - 445 710 3.8 71.6

Table 5.6: Geometric mean results of solution weight ω(S), time found t (in seconds),
and memory peak mem. (in MB) for the different configurations of our algorithm
DRP. The last configuration failed to finish solving for one instance within the set
time limit. All configurations are evaluated on instances where all algorithms found
a solution in time.
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Figure 5.14: Performance profiles comparing the different configurations of DRP re-
garding solution quality (left), time for the best solution to be found (center), and the
memory peak (right).

values for ϕ− and ϕ+ work well if they change ϕ only slightly. The intuition behind
that is that if ϕ− decreases ϕ too strong, it might need many new solutions to compute
a large D-Core, which in the end might be hard to solve optimally. A good choice
for the initial ϕ tends to yield D-Core instances of manageable size that the MWIS
solver can solve in a reasonable time. Additionally to the parameters, we present
the geometric mean results for different configurations of solution quality and time
found in Table 5.6.

We compare solving the D-Core with the exact solver KaMIS BnR resulting
in the configuration DRP-KaMIS and the heuristic baseline local search used in the
CHILS algorithm, yielding DRP-BChils. Additionally, we present results without
using the D-Core strategy with the variant DRP-no-core. Table 5.6 shows the con-
figurations with the parameter values and the geometric mean solution quality, time
found, and memory peak achieved by the configurations.
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In Figure 5.14, we present performance profiles comparing the solution quality,
time found, and memory peak for the different DRP configurations in more detail.
Note that 44 % of the instances are fully reduced by the strong preprocessing and
thereby solved optimally for all the configurations compared here. The two variants
using the D-Core perform better regarding solution quality. The configuration DRP-
no-core computes on more than 30 % of the instances a worse solution than the other
configurations. The configuration DRP-BChils performes best in terms of solution
quality, while the configuration DRP-KaMIS has the fastest times to find the best
solutions overall. It is counterintuitive that the configuration DRP-BChils is the best
regarding solution quality, as the exact solver KaMIS BnR should be able to find
better or equal solutions. However, the exact solver KaMIS BnR cannot solve all D-
Core instances to optimality within the time limit of 80 seconds. Since the baseline
local search in CHILS is a very powerful algorithm, it computes near-optimal solutions
fast. This explains why the configuration DRP-BChils is better regarding solution
quality. Nevertheless, the local search approach always utilizes the full time limit to
solve the D-Core, resulting in worse performance regarding running time. On the
other hand, the variant using KaMIS BnR can save time when computing the D-
Core solutions, as it continues as soon as the solution found is proven optimal. The
configuration DRP-BChils is almost as memory efficient as the configuration DRP-no-
core, while the approach using the exact solver DRP-KaMIS needs up to four times
as much memory.

Observation 5.4.3: DRP Configurations. Our experiments for the different
DRP configurations clearly show that using the D-Core strategy can improve the
solution quality and running time. When using DRP-KaMIS, the algorithm can find
the best solutions on average a factor of 1.4 faster than DRP-no-core. On the other
hand, the configuration DRP-BChils yields the best solution quality on average while
being almost as memory efficient as DRP-no-core.

State-of-the-Art Comparison

Figure 5.15 shows performance profiles comparing the best-performing configurations
for all solvers on all instances. We present comparisons of solution quality, running
time, and memory peak. Table 5.7 summarizes these results for the different solvers.

We can observe that the configuration strong-CHILS performs overall the best
regarding solution quality, while the DRP configurations are very close to this per-
formance. The configuration strong-HtWIS is the fastest configuration with the
overall lowest memory peak, but it performs worst regarding solution quality. The
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Figure 5.15: Performance profiles for the state-of-the-art comparison. Configurations
of best performing reduce&transform configurations and DRP configurations in
terms of solution quality.

highest memory peak is observed for the configuration fast-m2wis. However, this is
the only configuration that uses the fast reduction routine, which means initially a
bigger transformed reduced graph compared to the other approaches.

A detailed comparison of the different approaches on interesting instances is presen-
ted in Table 5.8. Here, we present per instance results for the 40 largest instances
where the performance of the algorithms differed most regarding either solution qual-
ity or running time. Looking at different graph classes, we see that fast-m2wis
performs particularly well for different osm instances. This observation can be ex-
plained by the fact that m2wis has several reductions for the MWIS implemented,
which work well on these osm instances. For instances where these reductions do not
work well, e. g., snap or mesh, the strong-CHILS approach excels. Furthermore, the
different weight distributions for the instances do not significantly affect the difference
in performance between the algorithms. For example, for every weight distribution,
the instance road usa— the second largest instance in our data set—is always solved
best by DRP-BChils.

Observation 5.4.4: State-of-the-Art Comparison. In the comparison
between the different DRP configurations and reduce&transform combined
with different state-of-the-art MWIS solvers, we can see that both DRP con-
figurations can keep up with the state-of-the-art MWIS solvers combined with
reduce&transform. Additionally, on some of the biggest instances (europe
and road usa), DRP-BChils and DRP-KaMIS can find the best solution quality,
outperforming all MWIS approaches.
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Solver ω(S) t mem. opt. reached opt. # add. sol.

strong-HILS 441 458 2.88 68 44 100 3
strong-CHILS 441 885 2.09 78 44 99 2
strong-HtWIS 440 202 0.34 67 44 85 4
fast-m2wis+s 441 454 2.89 140 16 100 2
DRP-BChils 441 864 4.36 72 44 100 4
DRP-KaMIS 441 801 2.82 79 44 100 4

Table 5.7: Performance of our reduction configurations in combination with various
MWIS solvers. The columns ω(S), t and mem. show the geometric mean solution
quality, time found (in seconds), and memory peak (in MB). These are evaluated on
the set of instances where all solvers found a 2-packing set. Note that the solvers here
are evaluated on a larger set than those considered in Table 5.5. The ‘opt.’ column
shows the percentage of solutions proven optimal by the respective solver. The column
‘reached opt.’ shows the percentage of instances solved optimally among the instances
where at least one solver proved optimality. The last column shows the number of
additional feasible solutions found by the respective solver compared to the common
set of solutions. The best results are highlighted in bold.
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5.5 Conclusion

This chapter introduces novel data reduction rules for the Maximum 2-Packing
Set and the Maximum Weight 2-Packing Set problem. For both problems, we
can use the reduction to the Maximum (Weight) Independent Set problem.
We compute high-quality and optimal solutions by using our preprocessing routine
reduce&transform combined with the corresponding data reduction rules and
maximum (weight) independent set solvers.

In detail, these approaches work in three phases. First, the new data reduction
rules are applied to the input graph, resulting in a reduced link-graph. Following the
reduction phase, this reduced link-graph is transformed, such that a solution on the
transformed graph for the Maximum Independent Set problem corresponds to a
solution of the Maximum 2-Packing Set problem for the original graph. The third
phase of the method consists of solving the Maximum (Weight) Independent
Set problem on the transformed graph.

In the cardinality case, we evaluate our new exact algorithm red2pack b&r that
uses these reductions to exactly solve the Maximum 2-Packing Set problem on
large-scale arbitrary graphs and our new heuristic red2pack heuristic. Our exper-
iments show that these methods outperform the previous best algorithm for arbitrary
graphs regarding solution quality and running time on all instances. For instance, we
can compute optimal solutions for 63% of the data set in under a second. In contrast,
the competing method for arbitrary graphs achieves this solution quality only for 5%
of the instances, even with a ten-hour time frame. Furthermore, our method success-
fully solves many large instances that remained unsolved before. Lastly, our algorithm
can compete with a specialized solver on planar instances regarding solution size and
computes near-optimum solutions.

For the weighted problem, we evaluate reduce&transform using several state-
of-the-art independent set solvers. Our experiments show that our reductions can fully
reduce and thereby optimally solve 44 % of the instances in our data set. Further-
more, reduce&transform improves solution quality, running time, and memory
consumption compared to a transformation for every independent set solver tested.
With reduce&transform, we achieve speedups compared to the naive reduction
to independent set up to multiple orders of magnitude. Moreover, we propose a new
heuristic DRP, a reduce and peel approach based on the metaheuristic Concurrent
Difference Core Heuristic introduced in Section 4.4. Especially for large graphs
DRP excels. Our experiments indicate that this heuristic is able to keep up with the
state-of-the-art independent set solvers equipped with our preprocessing routine re-
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duce&transform. Additionally, DRP can find the best solution on the biggest
instances in our data set, outperforming all independent set approaches.

For future work, we want to extend the set of reductions for the M2PS and the
MW2PS further. Additionally, since the iterated local search approaches for the
Maximum Weight Independent Set problem work very good, we are interested
in engineering a new local search heuristic for the 2-packing set problems to fully
circumvent any graph transformation, thereby saving even more running time and
memory. We are also interested in the k-packing set problem for larger values of k

and find independent motifs in graphs via hypergraph matching algorithms. Our code
is publicly available under https://github.com/KarlsruheMIS/red2pack.

https://github.com/KarlsruheMIS/red2pack


Chapter 6

Hypergraph-b-Matching

Recently, the matching problem has been extended to the more general problem of
finding b-matchings in hypergraphs, broadening the scope of potential applications and
challenges. The concept of b-matchings, where b is a function that assigns positive
integers to the vertices of the graph, is a natural extension of matchings in graphs,
where each vertex v is allowed to be matched to up to b(v) edges. The weighted
b-matching problem seeks to select a subset of hyperedges that fulfills the constraint
and maximizes the weight. In this chapter, we engineer novel algorithms for this
generalized problem. More precisely, in Section 6.1, we introduce new exact data
reductions for the problem, followed by different approaches to compute high-quality
hypergraph b-matchings in Section 6.2. The experimental evaluation in Section 6.3,
on a wide range of real-world hypergraphs, shows that our new data reductions are
highly practical, and our initial solutions are competitive on graphs and hypergraphs.

References. This chapter is based on joined work with Felix Joos, Henrik Re-
instädtler and Christian Schulz [100]. This paper is currently in submission. Large
parts of this chapter are copied verbatim from this paper.

One of the most well-known problems in graph theory is the matching problem.
A matching in a graph is a set of pairwise vertex-disjoint edges. Computing (these)
matchings in a graph is a ubiquitous combinatorial problem with many applications
in various fields [110]. By now, maximum weight/cardinality matchings in graphs in
the internal-memory model have been extensively studied, leading to various break-
throughs. However, finding maximum (weight) matchings in graphs in the internal-
memory model is only the tip of the iceberg. Recently, researchers have extended the
concept of matchings to the more general problem of finding b-matchings in hyper-
graphs, broadening the scope of potential applications and challenges. A hypergraph
is a natural graph extension in which edges can have more than two endpoints and

207
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thus model more complex relationships. For example, online hypergraph matching can
be used to model auctions of advertisement campaigns [141]. Moreover, the concept of
b-matchings (with b : V → N) is a natural extension of matchings, where each vertex
v is allowed to be matched to up to b(v) edges, rather than just one. The weighted
b-matching problem then seeks to select a subset of the hyperedges that fulfill the
constraint and maximize the weight.

Applications. Many applications require the computation of a matching M with
certain properties, like being maximal (no edge can be added without violating the
matching property), having maximum cardinality, or having maximum total weight
∑

e∈M ω(e). For example, in multi-level (hyper)graph partitioning, the problem of
coarsening a (hyper)graph without losing the characteristics of the original (hyper)graph
in multi-level decomposition algorithms can be solved by computing a hypergraph
matching problem [191]. Similarly, hypergraph b-matching plays a critical role in ag-
glomerative hypergraph clustering [174], where hyperedges are evaluated based on the
likelihood of merging adjacent clusters. In this context, the function b assigned to the
vertices can serve as a mechanism to regulate the pace of agglomeration. Other im-
portant example applications include allocating resources to machines or auctioning
goods [51], ride-sharing [176] and load balancing [124]. Currently, however, research-
ers have only developed approximation algorithms [171] for the weighted case, and
practical implementations of heuristics to tackle the hypergraph matching problem
are limited to special classes of hypergraphs without weight [65].

Our Results. In this chapter, we devise and engineer new exact data reduction
rules as well as new greedy and local search algorithms for the weighted hypergraph b-
matching problem in general hypergraphs. While our main focus is on the most general
weighted hypergraph b-matching problem, we also compare our greedy algorithms on
graphs against solvers that do not work on hypergraphs. Our experiments show that
we are able to obtain better initial solutions by greedy heuristics of up to 10 %, a
speedup of 6.85 for exactly solving the hypergraph b-matching problem, and quality
improvements of up to 30 % by our local search algorithm for the 1-matching case.

6.1 Exact Data Reduction Rules

Only a few exact data reduction rules are known that can be used for the hypergraph
matching problem [65]. These data reductions are based on Karp-Sipser rules and
are 1) not applicable to the weighted problem and 2) do not apply to the more
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general b-Matching problem in hypergraphs. However, applying exact data re-
ductions is a very important technique to decrease the problem size, especially for
large instances. In the following, we introduce a large set of new reductions for the
weighted b-matching problem on hypergraphs. In contrast to the reductions presen-
ted for the MWIS and MW2PS problems, this chapter presents reductions focused on
both vertices and weighted edges. The reduction rules determine whether a vertex or
hyperedge can be safely removed or if a hyperedge is guaranteed to be in an optimum
b-matching and thus can be added to our solution. As in the previous chapters, some
reductions use the concept of folding. However, in the hypergraph context, we com-
bine edges to reduce the hypergraph size. The decision for these edges only depends
on whether the edge they are folded into is part of the solution or not. In the fol-
lowing, we denote a hypergraph by H and the reduced hypergraph by H ′. The sets
M and M′ are the solutions on the original and reduced instance, respectively. The
reduction rules are introduced following the scheme used for the MWIS reductions
described in Section 4.1.

The first reduction is the removal of abundant vertices. A vertex v ∈ V is con-
sidered abundant if its capacity b(v) equals or exceeds its degree. Whenever the degree
of a vertex is smaller or equal to its capacity, the vertex can be removed.

Reduction 6.1 (Abundant Vertices and Empty Edges)

Let v ∈ V be an abundant vertex, then exclude v.

Reduced Graph H ′ = H − v

Offset αM(H) = αM(H ′)
Reconstruction M =M′

Let e ∈ E be an empty edge, then include e.

Reduced Graph H ′ = H − e

Offset αM(H) = αM(H ′) + ω(e)
Reconstruction M =M′ ∪ {e}

Proof. An abundant vertex v can be removed from the hypergraph as v does not
restrict the selection problem since all incident edges of v could be contained in an
optimum matching as the capacity is larger than the number of adjacent edges. Thus,
we can remove v from the hypergraph. If there is an empty edge e ∈ E, it is part of
an optimal solution since it cannot be blocked at any other vertex.

The next data reduction rule is inspired by Reduction 4.10 for the independent
set problem. It adds edges to the solution that satisfy a local upper bound for the
solution in its neighborhood.
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Algorithm 20: Neighborhood Removal
Data: hypergraph H = (V, E, ω), capacity function b

Result: reduced hypergraph and offset
Reduction NeighborhoodRemoval(H, b):

for v ∈ V do
checked← 0
for e ∈ E(v) ordered by weight desc do

checked← checked + 1
if checked > b(v) then

break

ωd ← 0
for u ∈ e do

ωd ← ωd + nmax(ω̂ (E(u) \ {e}) , b(u))
if ωd > ω(e) then

break

if ωd ≤ ω(e) then
// Include e and reduce capacity of vertices in e

for u ∈ e do
b(u)← b(u)− 1

H, αM ← H − e ∪ blockedEdges(e), αM + ω(e)

return H, b, 0

Reduction 6.2 (Neighborhood Removal. Figure 6.1)
Let e ∈ E be an edge with ω(e) ≥ ∑

v∈e nmax(ω̂(E(v) \ {e}), b(v)), i. e., the edge has
a higher weight than the total sum of weights of the b(v)-th heaviest edge (excluding
e) in each of its vertices v. Then, we include e.

Reduced Graph H ′ = H − e ∪ blockedEdges(e) and
set b(v) = b(v)− 1 ∀ v ∈ e

Offset αM(H) = αM(H ′) + ω(e)
Reconstruction M =M′ ∪ {e}

Proof. LetM be an optimal solution and e ∈ E with the above property. Assume e /∈
M, then we show that we always find an equal or better solution that includes the edge
e, which proves the correctness of the reduction. For each v ∈ e with b(v) = |M(v)|
(conflicting vertices), we remove the lightest incident edge that is in the solution. Let
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G− {u, v}
2 2 2 2

2 1

u v

4

21
3

G− {u, v}
2 2 2 2

1 0

u v

21
3

Figure 6.1: Illustration for Neighborhood Removal, see Reduction 6.2. We present
the edge weights as red and vertex capacities as white numbers. The green edge is
included and removed from the hypergraph. Note that now the capacity of v is zero,
and therefore, the edge containing it can be removed as well.

this matching be M′. It follows for all vertices v ∈ e : |M′(v)| < b(v). This implies
that M′′ := M′ ∪ {e} is also a valid matching. We now show ω(M′′) ≥ ω(M). Let
e′

v be a lightest edge removed from M at v. Its weight ω(e′
v) contributing to M is

smaller or equal to the b(v) heaviest edge incident to v since b(v) edges have been in
M. Thus, ω(e′

v) ≤ nmax(ω̂(E(v) \ {e}), b(v)). The weight of all edges removed from
M is smaller or equal to ω(e) if the equation holds. This yields ω(M′′) ≥ ω(M).

In Algorithm 20 we present pseudocode for Reduction 6.2. We iterate over each
vertex and check up to b(v) incident edges. For each edge e, we calculate the sum
of weights it needs to dominate and break early if the condition cannot be satisfied
anymore. If we find a candidate, we can include it as part of an optimal matching
and update the hypergraph and capacity accordingly. The time complexity for this
algorithm is O(min(nβ, m)∆E +n∆V log ∆V ). At each vertex, we have to check up to
β = maxv∈V b(v) edges, and using a map for skipping already checked edges, we have
in total up to O(min(nβ, m)) candidates. Since we keep the edge vector in each vertex
sorted, the nmax operation runs in O(1). This initial sorting requires O(n∆V log ∆V )
steps. Note that we can find multiple reductions in the same pass.

Inspired by the concept of isolated vertices and Reduction 4.17 for the MWIS
problem, we introduce the following reduction rule based on the concept of isolated
edges. An edge is isolated if it has the highest weight in its neighborhood, i. e., ω(e) ≥
maxf∈N (e)ω(f), and all neighbors have a common vertex with capacity 1. In this case,
there is an optimal solution including this edge, as shown in the following reduction.
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G− {u, v}
2 1 1 2

2 1

u v

4

33 3

G− {u, v}
2 1 1 2

1 0

u v

33 3

Figure 6.2: Illustration of Weighted Isolated Edge Removal, see Reduction 6.3. We
present the edge weights as red and vertex capacities as white numbers. The green
edge is included and removed from the hypergraph. Here, Reduction 6.2 is not ap-
plicable but with Reduction 6.3 the edge containing u and v can be removed and the
vertex capacities decreased.

Reduction 6.3 (Weighted Isolated Edge Removal. Figure 6.2)

Let e ∈ E be an isolated edge, then include e.

Reduced Graph H ′ = H − ({e} ∪ blockedEdges(e)) and
b(v) = b(v)− 1 ∀ v ∈ e

Offset αM(H) = αM(H ′) + ω(e)
Reconstruction M =M′ ∪ {e}

Proof. Because e and all its adjacent edges contain at least one vertex with capacity
1, we can select at most one edge in N (e) while excluding all other edges in this neigh-
borhood. An optimal solutionM must contain at least one edge of N (e). Otherwise,
the edge e is free and can directly be added, yielding a heavier matching, which is a
contradiction to the optimality. Let therefore f be the neighbor contained inM, then
M\{f} ∪ {e} is also optimal since ω(e) ≥ maxf∈N (e)ω(f). This shows that there al-
ways is an optimal solution that includes e, and therefore, the reduction is correct.

In Algorithm 21, we give a procedure to detect isolated edges and apply the re-
duction efficiently in detail. We scan the heaviest edge at each vertex if it has not
been scanned before. We simultaneously check whether it has maximum weight at
each other vertex and collect its neighbors. After checking if the weight condition is
satisfied, we mark each edge incident to the currently scanned edge also as scanned.
We can do this because all neighbors that weigh less than the currently scanned edge
cannot be candidates themselves for this reduction at other vertices later. For neigh-
bors with capacity 1 vertices, we save the position we scanned this edge in a binary
encoding. We add neighboring edges with higher capacity vertices in a vector Nl.
Afterward, we check if all neighbors are incident to a vertex with capacity 1 (property
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G− {u, v}

1 1

u v

4

23

G− {u, v}

1 1

1

Figure 6.3: Illustration of Weighted Edge Folding, see Reduction 6.4. We present
the edge weights as red and vertex capacities as white numbers. The edge containing
u and v has exactly two non-adjacent neighbors that it dominates one by one but
not in total.

S) and whether all pairs have a (blocking) common vertex of capacity 1. With the
binary encoding, we can reduce the number of checks required. This is accomplished
by a bitwise and of the encodings in Nb. If the result is non-zero, we have to do a
detailed check. The overall complexity of this reduction is O(min(m, n)∆E

2) because
in the worst case, we collect ∆E distinct neighbors at a vertex with b(v) = 1 that we
have to check for a common vertex.

The previous data reductions work by removing vertices (respectively, edges) from
the graph. The following reduction modifies the structure of the hypergraph and
postpones decisions to a later point.

Similar to Reduction 4.13 for the MWIS, where vertices get folded with their
neighborhood, we introduce a reduction that folds edges with their adjacent edges.

Reduction 6.4 (Weighted Edge Folding. Figure 6.3)

Let e ∈ E be an edge and N = N (e) \ {e} be the edges adjacent to e. Suppose the
following holds:

1. Each edge in N is linked to e via a vertex v with capacity b(v) = 1,

2. N is independent, i. e., the vertices in all distinct edges f, g ∈ N are disjoint,

3. ω(N) > ω(e), but it holds ω(e) > ω(N)−minf∈N ω(f).

Then, fold the edge e and its adjacent edges N into a new edge e′.

Reduced Graph H ′ = H[(E ∪ {e′}) \ (N ∪ {e})], set ω(e′) := ω(N) − ω(e)
and e′ = ⋃

f∈N f .
Offset αM(H) = αM(H ′) + ω(e)
Reconstruction If e′ ∈M′, then, M =M′ ∪N , else M =M′ ∪ {e}.
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Algorithm 21: Weighted Isolated Edge Removal
Data: hypergraph H = (V, E, ω), capacity function b

Result: reduced hypergraph and offset
Reduction WeightedIsolatedEdgeRemoval(H, b):

for v ∈ V with b(v) = 1 and not scanned before do
e← argmaxe∈E(v)ω(e)
Nb, Nl, count, reducable ← {}, ∅, 0, T rue

for u ∈ e do
if ω(e) < maxf ∈ E(u)ω(f) then

reducable← False

break

mark edges E(u) as scanned
if b(u) = 1 then

for f ∈ E(u) do
Nb[f ] = Nb[f ] + 2count

count← count + 1
else

Nl ← Nl ∪ E(u)

S ← Nl ⊆ Nb // By checking ∀f ∈ Nl : Nb[f ] > 0
for f, g ∈ Nb do

if Nb[g]&Nb[f ] = 0 then
if ̸ ∃u ∈ e ∩ f : b(u) = 1 then

reducable← False

break

if S and reducable then
for u ∈ e do

b(u)← b(u)− 1

// Include e and remove blockedEdges(e)
H, αM ← H −Nb, αM + ω(e)

return H, b, αM

Proof. We first show that either the edge e or all edges in the set N are contained
in a maximum b-matching M. Assumption 2 guarantees that adding the whole set
of edges N does not violate the matching constraints. Assumption 1 permits either e
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or any edge from N to be included in a matching. Let F = N ∩M be a part of an
optimal solution, we show that F = N or e ∈M. Therefore, we first assume that F is
nonempty and a strict subset of N , that is F ⊊ N . Due to Assumption 1 this implies
e ̸∈ M. Since F is a strict subset of N and we have ω(e) > ω(N)−minf∈N{ω(f)} ≥
ω(F ) (Assumption 3), we can swap F for e in M and gain a better result. This
contradicts M being optimal and F ⊊ N being a strict subset. If none of the edges
in N are part of M, then the edge e is free and can be included.

The vertices of the newly added edge e′ in H ′ correspond to those of N in H. The
vertices of e in H are only contained in e′ in H ′ without further neighbors. Therefore,
if e′ is not inM′, the edge e must be in an optimal solution for H, and otherwise, N

is included in an optimal solution for H.
The formula for the weight is correct by the following case distinction. When e′

is not contained inM′, then e is free in the corresponding matchingM and must be
included in the optimal matching for H. Otherwise the weight of M′ contains ω(e′)
and thus the optimal solution in H has weight ω(M ′) + ω(e) = ω(M′ \ {e′}) + ω(e′) +
ω(e) = ω(M′ \ {e′}) + ω(N)− ω(e) + ω(e) = ω(M′ \ {e′}) + ω(N).

Algorithm 22 finds edges with two adjacent edges to fold to reduce the problem
size. For complexity reasons, only edges of size two are considered. The complexity of
this algorithm is O(min(m, n)∆E), because we have to check for O(min(m, n)) can-
didates if the two neighbors are independent which requires O(∆E) checks. Without
constraining the edge size, it would be O(min(m, n)∆V ∆E) since we would collect
more neighbors. We collect the neighbors on the two vertices with capacity 1 and
check if they are independent. If so, we merge the independent neighboring edges and
replace the neighbors and the edge e by this merged en with a new weight. Figure 6.3
shows a (sub-)hypergraph where this reduction is applicable.

The following data reduction is inspired by the twin reduction for the maximum
weight independent set, see Reduction 4.38. It groups non-adjacent edges with the
same independent neighborhood together. Afterwards, we directly check if Reduc-
tion 6.2 or Reduction 6.4 is applicable.

Reduction 6.5 (Weighted Twin. Figure 6.4)

Let e1, e2 ∈ E be non-adjacent edges and further Li = N (ei) \ {ei} be the set of
neighboring edges. These are linked with ei via a vertex with a capacity of 1. Assume
each set Li is independent, L1 = L2 and ω(e1) + ω(e2) > ω(L1)−minf∈L1 ω(f) holds.
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Algorithm 22: Weighted Edge Folding
Data: hypergraph H = (V, E, ω), capacity function b

Result: reduced hypergraph and offset
Reduction WeightedEdgeFolding(H, b):

for v ∈ V with b(v) = 1 and |E(v)| = 2 do
for e ∈ E(v) with |e| = 2 and not scanned before do

c, N ← True, ∅
for w ∈ e do

if |E(w)| > 2 ∨ b(w) > 1 then
c← False

else
N ← N ∪ E(w) \ {e}

if c ∧N independent then
if ω(N) > ω(e) ∧maxe′∈Nω(en) ≤ ω(e) then

e′ ← ⋃
e∈N e

ω(e′)← ω(N)− ω(e)
αM ← αM + ω(e)
E ← E \ (N ∪ {e}) ∪ {e′}

return H, b, 0

• If ω(e1) + ω(e2) > ω(L1), then include e1 and e2.

Reduced Graph H ′ = H−({e1, e2}∪blockedEdges(e1)∪blockedEdges(e2))
Offset αM(H) = αM(H ′) + ω(e1) + ω(e2)
Reconstruction M =M′ ∪ {e1, e2}

• Else, fold e1, e2 and L1 into a new edge e′.

Reduced Graph H ′ = H[E \ ({e1, e2} ∪ L1) ∪ {e′}] with ω(e′) = ω(L1) −
ω(e1)− ω(e2) and e′ = ∪f∈L1f .

Offset αM(H) = αM(H ′) + ω(e1) + ω(e2)
Reconstruction If e′ ∈M′, then, M =M′ ∪ L1, else M =M′ ∪ {e1, e2}.

Proof. First, we observe that either e1 and e2 are both in an optimal solution M,
or some subset of the edges of L1 is. Which means, we can fold the edges e1 and e2

into a new edge e′ with weight ω(e′) = ω(e1) + ω(e2). Since L1 = L2 and all edges
in L2 are linked via a capacity 1 vertex, we do not need to include the vertices in e2.
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G− {u, v, x, y}

u v

x y
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G− {u, v, x, y}
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Figure 6.4: Illustration of Weighted Twin, see Reduction 6.5. Edge weights are red,
and the capacities of the vertices u, v, x, and y are all equal to one. In this situation,
the twin edges are folded with their neighboring edges.

Because any capacity constraint for an edge in L2 at a vertex in e2 is also present
at a vertex in e1. If ω(e′) > ω(L1), the new edge e′ is of higher weight than all of
its neighbors combined, satisfying the condition of Reduction 6.2. Therefore, we can
include the edge e′, yielding e1 and e2 being in some optimal solution. Otherwise,
ω(e′) > ω(L1)−minn∈L1 ω(n) still holds. Indeed, the neighbors L1 and e1 are linked,
L1 is independent and the weight inequality for Assumption 3 holds. With this, all
the properties for Reduction 6.4 are satisfied, which gives the claimed result.

Algorithm 23 lists a procedure for detecting twins. The algorithm first identifies
all possible candidates that have only degree two vertices. Afterward, we identify
twins and either apply Reduction 6.2 and add them directly to the matching or apply
Reduction 6.4. In this case, they only dominate their neighborhood except for one
edge, and we can merge the edges and assign a new weight to the new combined edge.
In order to quickly find identical neighborhoods, we have to sort the candidates by
neighborhood size. Each independence check requires O(∆E∆V ) comparisons. The
overall complexity of this algorithm is O(m∆E∆V + m log m). The Reductions 6.4
and 6.5 share common steps and can be combined.

We extend the idea of the domination for maximum weight independent sets
presented in Reduction 4.20 to edges in a weighted hypergraph.

Reduction 6.6 (Weighted Domination. Figure 6.5)

Let e, f ∈ E be two edges with ω(e) ≥ ω(f) such that e is a subset of f . If, fur-
thermore, there is a vertex v ∈ e ⊆ f with capacity b(v) = 1 then, the edge f can be
excluded.

Reduced Graph H ′ = H − f

Offset αM(H) = αM(H ′)
Reconstruction M =M′
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Algorithm 23: Weighted Twin
Data: hypergraph H = (V, E, ω), capacity function b

Result: reduced hypergraph and offset
Reduction TwinReduction(H, b):

for v ∈ V with b(v) = 1 and |E(v)| = 2 do
X ← ∅
for e ∈ E(v) and not scanned before do

candidate, neighbors← True, ∅
for u ∈ e do

if |u| > 2 ∨ b(u) > 1 then
candidate← False

neighbors← neighbors ∪ E(u) \ {e}

if candidate then
X ← X ∪ {(e, neighbors)}

for ∃N, e1 ̸= e2 : (e1, N), (e2, N) ∈ X do
if N independent then

e′ ← ⋃
e∈N e

ω(e′)← ω(N)− ω({e1, e2})
E ← (E \ {e1, e2}) ∪ {e′}
if ω′(e′) ≥ ω(N) then

H, αM ← NeighborhoodRemoval(H, b) // H = (V, E, ω)
else if ω(e′) > ω(N)−mine∈N ω(e) then

H, αM ← EdgeFolding(H, b)

return H, b, 0

Proof. Let e and f be two edges with ω(e) ≥ ω(f) and e ⊆ f . Furthermore, let
v ∈ e ⊆ f be a vertex with capacity b(v) = 1. Let M be an optimal solution
containing f . First note that since b(v) = 1 and v ∈ e∩ f the edges e /∈M. However,
since e is a subset of f and it holds ω(e) ≥ ω(f), we can construct a new optimal
solution by replacing f with e, i. e., M̃ :=M\{f}∪{e}. Since ω(M) ≤ ω(M̃), there
is an optimal solution that does not contain f , and it can be removed safely.

In Algorithm 24, we show pseudocode for finding a weighted domination. We
iterate over each vertex and its incident edges in descending weight. We check if the
following edges satisfy the natural size constraint and check for the subset criterion
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G− {u, v}

u v4

2

G− {u, v}

u v4

Figure 6.5: Illustration of Weighted Domination; see Reduction 6.6. Edge weights are
red, and the capacities of u and v are equal to one. The edge containing only u and
v is dominated.

Algorithm 24: Weighted Domination
Data: hypergraph H = (V, E, ω), capacity function b

Result: reduced hypergraph and offset
Reduction WeightedDomination(H, b):

for v ∈ V with b(v) = 1 do
for e ∈ E(v) ordered by weight desc. and not scanned before do

D ← ∅
for f ∈ E(v) with ω(e) ≥ ω(f) do

if |f | ≤ |e| ∧ hash(f, e) then
D ← D ∪ {f}
break

for u ∈ e do
D ← {c ∈ D | u ∈ c}

E ← E \D

return H, b, 0

using a simple hash function. After collecting all candidates, we check which of these
candidates are super sets and remove them from the graph. The complexity with
the shown subset check is O(m(∆E∆V log ∆V )) if we do not have a hashing function.
For each edge, we can collect at most ∆V − 1 candidates. For each candidate, we
have to check up to ∆E vertices of e that they are indeed incident requiring log ∆V

comparisons if the list is sorted. By multiplying the id of vertices contained in an
edge, storing these results in a wide integer, and using the modulo operator to check
for division without remainder, we can reduce the time complexity to O(m(∆E +∆V ))
in the ideal case. This requires a growable wide integer resulting in larger memory
cost, so using a hash function, like multiplying only the k least significant bits of the
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Algorithm 25: b-Matching Algorithm
Data: hypergraph H = (V, E, ω)
Result: hypergraph-b-matching M
Procedure BMatching(H):
K, αM ← ExactReduce(H, R) // R ordered list of reductions
M′ ← Greedy(K) or ILP(K)
M← restore(H, αM, M′)
return M

ids, seems reasonable. If B is the width of the wide integer and we want to use the k

least significant bits, we can hash all edges if ∆E < (B
k

log(2)− 1) holds.

6.2 Hypergraph b-Matching Algorithms

We now give an overview of our algorithms to solve the general weighted hypergraph
b-matching problem.

Our approach shown in Algorithm 25 starts by using exact data reductions devised
in Section 6.1 to reduce the instance size. The reduced instances can then be used as
input to our heuristic or the exact solver (based on the ILP). Our heuristic, introduced
in Section 6.2.1, computes a good initial b-matching using a greedy strategy. In
Section 6.2.2, we present a local search that improves the solution quality further.
Afterward, in Section 6.2.3, we give the exact integer linear program for this problem.
Once a solution is computed on the reduced instance, we reconstruct it into a solution
for the original instance.

6.2.1 Greedy Approaches

We now present our greedy approaches to compute initial solutions. Roughly speaking,
we use greedy algorithms that sort the edges by a priority function and add free edges
in this order. Note that the most intuitive order of adding heavy edges first may yield
poor results. This is because any edge may block a wide range of other edges from
being added, for example, if the current edge has many vertices. Thus, other priority
functions are necessary. The core idea of our algorithm is to assign each edge a positive
priority value and then add edges greedily in descending order of their priority (edges
with the highest priority are added first). To overcome the problems of the weight
priority function explained above, we scale the weight function with the number of
their incident vertices and with the capacity at each vertex of the edge. This ensures
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Scale by Definition

cap Capacity hcap(e) := ω(e) ∏
v∈e b(v)

pin Inverse edge size hpin(e) := ω(e)|e|−1

pin,cap Capacity and inverse edge size hpin,cap(e) := ω(e)|e|−1 ∏
v∈e b(v)

scaled Capacity and inverse vertex degree hscaled(e) := ω(e) ∏
v∈e b(v)|E(v)|−1

Table 6.1: Overview of different objective functions used in the general framework.

that we select edges first that a) have a high weight, b) do not block a lot of other
edges, and c) have vertices with a lot of remaining capacity. Table 6.1 defines the
different objective functions that result in the four algorithms cap, pin, pin, cap
and scaled, defined by the general framework and the respective objective function.

6.2.2 Local Search

We now give a brief overview of our local search algorithm based on swapping. A
pseudocode for the approach is given in Algorithm 26. A swap removes one edge
e such that two edges e1, e2 become unblocked. A swap is feasible if the combined
weight of e1 and e2 is greater than that of the removed edge e.

Swapping. In our swapping method, we are searching for a matched edge and two
non-matched adjacent edges that are only blocked by the matched edge and can be
admitted to the matching simultaneously without conflict.

(1, 2)-Swaps. For each edge in the matching e, we first collect all neighboring edges
that satisfy the condition of being only blocked by e. In the second step, we identify a
pair of edges that can be added without conflict when e is removed from the matching,
resulting in an improvement. If we find such an edge pair, we include them in the
matching and remove the edge e from it. After a successful swap, we add all free edges
to the solution.

Perturbation. The swapping algorithm ends up in a local optimum if executed
repeatedly. Therefore, we perturb the solution (forcing hyperedges into the solution)
similarly to Andrade et al. [7], who do this for the independent set problem, see
Section 3.2.3. The geometric distribution and the number of unmatched edges forced
in the solution are directly adopted from Andrade et al. [7].
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Algorithm 26: Local Search
Data: hypergraph H = (V, E, ω), solution M to be improved
Result: improved solution
Procedure OneTwoSwap(H, M):

for c ∈M do
l← ∅
for p ∈ c do

for e ∈ E(p) \M do
if blocked(e, M) ⊆ blocked(c, M) then

l← l ∪ {e}

if |l| > 1 then
Φ(x) := blocked(x, M\ {c} ∪ {x})

if ∃x, y ∈ l : Φ(y) ∩ Φ(x) = ∅
and ω(x) + ω(y) > ω(c) then
M←M\ {c} ∪ {x, y}
M ← maximize(M)

return M

Procedure ExhaustiveOneTwoSwap(H, M):
while improvement do
M←OneTwoSwap(H, M)

return M

Procedure ILS(H, M):
Mbest ←M
while not stopping criterion holds do
M∗ ← Perturb(H, M)
M∗ ←ExhaustiveOneTwoSwap(H, M∗)
P ← ((ω(Mbest)− ω(M∗))(ω(M)− ω(M∗)))−1

if ω(M∗) > ω(M) then
M←M∗

else if x ∈ U(0, 1) < P then
M←M∗

if ω(M) > ω(Mbest) then
Mbest ←M

return Mbest
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Iterated Local Search. The iterated local search drives the whole process. While
the stopping criterion, a fixed number of unsuccessful searches, is not met, the current
solution M gets perturbed and then exhaustively improved by (1, 2)-swaps. We call
the obtained solutionM∗. A better solution automatically becomes the new starting
point for the next iteration. Similarly to Andrade et al. [7], we allow a slightly worse
solution to be accepted as the starting point of our next local search. However,
accepting worse solutions is rather unlikely and only done with a low probability
determined by ((ω(Mbest)− ω(M∗))(ω(M)− ω(M∗)))−1.

6.2.3 Integer Linear Programming Formulation

To solve the b-matching problem to optimality, either on the original or exactly reduced
hypergraph, we use the following integer linear program:

max
∑

e∈E

xeω(e)

s.t.
∑

e∈E(v)
xe ≤ b(v) ∀v ∈ V

xe ∈ {0, 1} ∀e ∈ E

For every edge e ∈ E, the integer linear program has a variable xe, which is set to
xe = 1 if and only if the edge e is part of the matching and set to zero otherwise.
The maximization term is the sum of the weights of the selected edges. The main
constraint restricts the number of selected edges to obey the capacity at each vertex
in the original hypergraph.

6.3 Experimental Evaluation

We conclude this chapter with the experimental evaluation of our reductions and
proposed algorithm. We first analyze the priority functions and compare these with
bSuitor by Khan et al. [136]. We then evaluate the effectiveness of our exact data re-
ductions, and finally, we benchmark our local search and compare against the method
by Dufosse et al. [65].

Methodology. We implemented our algorithms and data structures in C++17.
We compiled our program and all compared implementations using g++-12.1 with
full optimization turned on (-O3 flag). In our experiments, we used Machine 4. We
run the experiments 10 times and take the arithmetic mean per instance. For solving
the ILP, we use SCIP [26], one of the fastest open-source ILP solvers. Deterministic
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experiments were only executed once if the results (size, weight) and not the time
was measured. The experiments were scheduled in parallel up to the number of
physical cores of the machine, and the number of cores used by SCIP concurrently
was limited to one. Each experiment run has a memory budget of 60 GB per instance
and 140 GB in total.

Data Sets. We use Instance Set 8, which contains a wide range of hypergraph
instances collected from various sources to evaluate our algorithms and to compare
against state-of-the-art approaches.

Instance Set 8 (Hypergraphs). This set contains 488 hypergraph instances, provided
by Gottesbüren et al. [96]. These instances come from four different use cases of hyper-
graphs, including 18 from circuit design (ISPD98) [6], 10 routability-driven placement
(DAC2012) [209], 184 instances derived from general matrices from the Suite Sparse
Collection (SPM) [53] and 276 instances derived from SAT-solving problems (SAT14) [22].

When comparing against state-of-the-art b-matching algorithms on graphs, we use
the 10 graphs from the Florida Sparse Matrix Collection by Davis and Hu [53], as also
done by Khan et al. [136] who also present the algorithm that we compare against.
We perform experiments with uniform capacities of 1, 3, 5, and random capacity. If
we use random capacity, we sample the capacity uniformly at random for each vertex
between one and its vertex degree. For general experiments, we assigned weights
uniformly at random to the edges between 1 and 100.

This section is organized as follows. First, we compare our greedy priority functions
introduced in Section 6.2.1 on hypergraphs. Furthermore, we compare our results with
those of the b-matching graph algorithm bSuitor by Khan et al. [136]. Then, we study
the effectiveness of our exact data reductions using SCIP [26], which is a state-of-
the-art open-source ILP solver. Finally, we benchmark our local search and compare
against the method by Dufosse et al. [65] on 6-partite, 6-uniform hypergraphs.

Priority Functions and Initial Solutions

The priority functions for this experiment are defined in Section 6.2.1. We evaluate
them on the general hypergraph data set. Figure 6.6 shows the results for instances
with random capacity comparing the priority functions. For reference, we include the
simple greedy weight function without any scaling as a baseline. For the uniform
capacity of 1, the pin,cap and pin compute the same best result since their objective
function for this capacity is the same. Our other two proposals are nearly identical
to the simple greedy weight approach. For a higher uniform capacity of 3, 5, and
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Figure 6.6: Performance profile for solution quality comparing the priority functions
on the general hypergraph data set with b(v) = rnd and random edge weights.
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Figure 6.7: Performance profile comparing solution quality for different priority func-
tions with bsuitor. Here, we are using b(v) = rnd and random edge weights on graph
instances selected by Khan et al. [136].

random capacities, the quality of all of our proposals except for the pin is worse than
the weight function. The pin function finds the best solution in around 70 to 80 %
of the cases and requires a maximum τ = 0.9 across all capacities. Since we only
need to precompute the values of pin once, the running time of pin only slightly
exceeds the running time of the simple weight algorithm, on average by 0.4 % of the
weight function, which we consider neglectable. We conclude that pin is a natural
good choice to compute initial solutions on general hypergraphs. The other proposals
are not viable since they yield worse results than the greedy weight algorithm.
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Reduction Constraint Default
6.2 edge size 10
6.3 edge size 8
6.3 clique size 80
6.6 subedge size 6
6.6 candidate 6
6.5 edge size 4
All iterations 10

Table 6.2: Parameter constraints of the reductions.

Special Case: Graph b-Matching

In order to show the versatility of our approaches, we also tested them on normal
graphs and compared our results to those by Khan et al. [136]. The results of this first
experiment are shown in Figure 6.7. The method bsuitor by Khan et al. [136] is run
in comparison to our approaches introduced in Section 6.2.1. We have a fixed edge size
of two (graphs) for this experiment, and the capacity is static in all but one experiment.
This results in, all but one function from Section 6.2.1 reporting the same results. Only
the scaled approach differs by considering the number of incident edges, which yields
a better solution than the other approaches. We can report an improvement of up to
2 % over bsuitor on random capacity and up to 7 % on capacity 1. The running time
of bsuitor on a single core in sequential can not be matched by our algorithms on
graphs. On these instances, our approaches are, on average, 3.19 times slower. This
is, however, expected since our data structure supports hypergraphs, which introduces
an additional overhead when only considering graphs.

Reductions and Speedup

In this experiment, we investigate how well our reductions can speed up solving b-
matching problems with SCIP [26]. As some data reductions can be expensive, we re-
strict different parameters in the search. The parameters we use are given in Table 6.2.
We empirically chose the parameters to balance between the reduction time and suc-
cess rate. The most sensitive tuning parameters are the ones used in the Algorithm 24,
since allowing bigger edges causes more checks to be needed. We apply our search
algorithms for the reductions up to ten times and pass the resulting core problem to
SCIP. We then compare its total running time to the time it takes to solve the whole
(hyper-)graphs without applying reductions. When applying reductions, the time to
find and apply them is included in the overall running time. We set a time limit for
the SCIP computations of 1 800 seconds and test it on uniform capacities of 1, 3, and
5, as well as on random capacity. We ran this experiment once to determine which
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Figure 6.8: Performance profile for comparing the impact of using reductions with the
optimum ILP solver SCIP. We run the solver with and without reductions on a subset
of 395 hypergraphs, which are solvable within the given time limit using b(v) = rnd
and random edge weights.

instances are solvable in the given time with any of these capacities and repeated the
experiment on the solvable subset of 395 hypergraphs ten times.

Only instances on which SCIP returns the optimum within the time limit are
considered in the time performance profile for random capacity shown in Figure 6.8.
Similar results were obtained for the static capacities. The performance profiles show
that some instances are strongly affected by the reductions. Some instances are so
small that the time to search for reductions is longer than when solving directly.
Overall, 80 % of instances benefit from running the reductions search, and 40 % have
a speedup of at least factor 2.

In Table 6.3, we report the average and geometric speedup sorted by hypergraph
class. Our reductions achieve the best average speed up on the DAC2012 instances of
nearly 7 for random capacity. Our reductions halve the average edge count of these in-
stances. The least speed up is observed on the ISPD98 instances for uniform capacities.

A plot of the removal effectiveness is shown in Figure 6.9. On the y-axis, we
display the relative edge count of the hypergraphs after applying our reductions.
Similarly, on the x-axis, we plot the relative vertex count. Different shapes signify
different capacities, and colors are used for the different classes of hypergraphs. Most
instances are located above the diagonal, meaning the vertices are more reduced than
the edges. There are two major clusters, one for not reducible instances and one for
nearly completely reduced instances. Figure 6.10 shows the relative running time of
the reductions and effect on all 488 instances. The relative effect is computed on how
many edges are included, excluded, or deferred by the respective reductions. For all
capacities, the Abundant Vertices, Neighborhood Removal, and Weighted Domination
are the most significant reductions and take up the most time. The impact of the other
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Instances Reduction Speedup
Set b(v) # E % V % Avg. Geom.

ISPD98 1 15 96 84 1.48 1.43
3 12 64 42 1.10 1.02
5 16 33 20 1.71 1.65

rnd 18 66 33 2.50 2.48

SPM 1 76 93 46 2.60 1.74
3 85 84 45 1.64 1.21
5 95 51 18 2.86 1.57

rnd 149 86 58 1.52 1.29

DAC2012 3 9 39 30 3.14 2.96
5 10 6 3 7.12 6.66

rnd 10 50 15 6.98 6.85

SAT14 1 88 99 92 2.61 1.50
3 154 55 8 3.71 2.18
5 164 44 3 5.77 3.00

rnd 155 75 25 2.38 2.05

overall 1 179 97 78 2.51 1.59
3 260 57 11 2.89 1.75
5 285 41 4 4.62 2.40

rnd 332 74 31 2.14 1.74

Table 6.3: Reduction effectiveness and speed up per class of hypergraphs. We report
the average percentage reduction of edges (E %) and vertices (V %), as well as the
speedup for each class. Only exactly solvable instances are considered.

reductions (Weighted Edge Folding, Weighted Isolated Edge Removal, and Weighted
Twin) is limited, but also the share of running time is small. The Neighborhood
Removal reduction has the biggest impact for randomly assigned capacities, halving
over 50 % of the affected edges while taking only a small fraction of running time. The
Weighted Domination contributes the most affected edges for a uniform capacity of
1 but also takes the most of the running time. The Weighted Isolated Edge Removal
finds many candidates at a capacity of 1 and uses around one-quarter of the running
time, finding only a few affected edges. For higher or random capacities, the Abundant
Vertices reduction requires most of the running time but also contributes more than
half of the affected edges in the static capacity case.

Local Search

The iterated local search (ILS) is the main focus of the following experiment. The
ILS has only one threshold parameter k, determining after how many fruitless per-
turbations and local searches the search is terminated. Then, the best result found
so far is returned. In our experiment, we start with the best solution obtained using
our priority function pin and improve it using ILS. We chose k = 15, as it showed
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Figure 6.9: Percentage of size of reduced graphs for instances with random edge
weights. Some instances are completely reduced, while others are not reduced at all.
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Figure 6.10: Relative running time and contribution to the reduced size of each re-
duction rule evaluated on instances with random and equal capacities of 1, 3, and 5.

a good balance between running time and improvement on this collection of hyper-
graphs. For reference, we include k = 50 in the performance profile, which has an
average running time tenfold in comparison to k = 15. We report an improvement
of up to 8 % at max overall capacities tested. Running time is, on average, ten times
longer than computing the initial solution. However, this is unsurprising as the initial
method only sorts by the priority function and adds edges greedily. The performance
plot for this experiment is shown in Figure 6.11. Some instances are only improved
by a negligible amount, while the best instances are improved by 8 %. The average
improvement is around 3 %. Increasing k = 50 can improve the solution quality, but
it comes with up to 100 times slower running times.
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Figure 6.11: Performance profile comparing solution quality improving Reduc-
tions+S,pin with different ILS configurations setting k = 15 and k = 50.

0.70.80.91.0
0

0.2

0.4

0.6

0.8

1

τ

F
ra
ct
io
n
of

in
st
an

ce
s

Reductions+ILS
ksmd
ksmd+ILS
kss
kss+ILS

Figure 6.12: Performance profile for solution quality comparison of Reduc-
tions+ILS with ksmd, kss by Dufosse et al. [65]. Additionally, we give the solution
quality when improving the competitor solutions with ILS. Here, we present results
on instances with uniform edge weights and capacities set to 1. The local search
threshold is set to k = 1 500.

1-Matching on d-partite, d-uniform Hypergraphs

This experiment compares and combines our algorithm with those developed by
Dufosse et al. [65] on a special class of hypergraphs with uniform edge weight and
structure. They implemented kss and ksmd, which employ two configurations of the
Karp-Sipser approach. We are using kss with 20 scaling repetitions as proposed by
the authors. We built and linked both algorithms into our benchmark program to
ensure equal compile flags and settings.

Because of the uniform structure of these instances, we need more time in the per-
turbation phase to find an improvement. We can only report minimal improvements
for a low threshold of k = 50 while running time stays close to the base approaches.
This is why we set k = 1 500, which is significantly higher than for the non-uniform
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instances. Figure 6.12 shows compares the solution quality of this ILS configuration,
when combining ILS with kss and ksmd or our approaches as initial solution.

Our Reductions+ILS, which combines the reductions, a greedy initial matching
by pin, and iterated local search with k = 1 500 approach, has a better solution quality
than the kss and ksmd approaches. Therefore, we want to combine both approaches.

Our data reductions can not be combined with kss and ksmd since these al-
gorithms require uniform edge size, and our data reductions do not ensure this. How-
ever, we considerably improve the quality of kss and ksmd by using our ILS as a
postprocessing step. In the case of ksmd, we report a quality improvement of more
than 30 % on around 8 % of the instances, even surpassing the results of the Reduc-
tions+ILS approach. Setting k = 1 500 unsuccessful tries can result in a hundredfold
running time on a few instances while consistently yielding better quality. The im-
provement for kss is more pronounced than for ksmd, which has a specific reduction
rule for this kind of hypergraph. Improved quality comes at the expense of running
time. The ksmd is the fastest approach and ten times faster than the kss approach.
On average, we need tenfold the time to compute the solution than kss. Both ksmd
and kss are deterministic and thus can not be repeated multiple times for a more fair
comparison. In conclusion, the choice of k is sensitive for determining quality and
running time and is dependent on the structure of the problem. Computing solutions
on uniform weight instances require more tries than their non-uniform counterparts.

6.4 Conclusion
Using novel data reductions, we developed a scalable algorithm for the general Max-
imum Weight b-Matching problem in hypergraphs. Our reductions can identify
and incorporate optimum edges into a preliminary solution, reduce the instance size by
combining the decision for multiple edges, and eliminate non-optimal edges from the
input. We engineer new greedy heuristics and a local search approach to improve solu-
tions. Experiments show that our data reductions scale well to large instances and can
accelerate state-of-the-art black-box solvers. The new greedy solutions are up to 10 %
better than the state-of-the-art on general hypergraphs. On graphs, these approaches
also yield good results. The local search is able to improve solutions up to 30 % over
recent results by Dufosse et al. [65] on some instances. Given the good results, we will
release our software as an open-source project. Future work includes parallelization of
our algorithms, research in nonlinear optimization objectives, improving local search
techniques, and applying our methods to related NP-hard problems.
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Discussion

In this chapter, we summarize the contributions of this dissertation and discuss
directions of future work. We give a more detailed conclusions for the Maximum
Weight Independent Set problem in Section 4.6, the Maximum (Weight) 2-
Packing Set problem in Section 5.5, and the Hypergraph b-Matching problem
in Section 6.4.

7.1 Conclusion

This dissertation contributes and evaluates various data reduction rules for independ-
ence problems. Additionally, we present novel algorithms using these reductions,
including exact and heuristic approaches. The methods are evaluated on large, real-
world data sets. This evaluation shows the importance of data reduction rules for
these problems and that our approaches outperform state-of-the-art solvers.

For the Maximum Weight Independent Set problem, we contribute several
new reduction rules combined with a comprehensive overview of the existing ones.
We analyze the impact of the reductions and their order. Addintionally, we show,
what rules are used in different solvers. We present LearnAndReduce, a pre-
processing algorithm for the MWIS problem that combines Graph Neural Networks
(GNNs) with a large collection of reduction rules to reduce further and faster than
previously possible. Then, we contribute two heuristics for the MWIS problem. The
first heuristic, m2wis, is an evolutionary approach that uses exact and heuristic re-
duction rules. The second heuristic, CHILS, combines a local search approach with
our new Difference-Core strategy. Both heuristics are evaluated on large, real-
world data sets and compute high-quality solutions, outperforming the state-of-the-
art. Moreover, we present the new optimal neighborhood exploration technique for the

233



234 Future Work

dynamic setting, which can compute high-quality solutions to the dynamic M(W)IS
problem with a powerful update operation.

For the Maximum (Weight) 2-Packing Set problem, we present 23 new reduc-
tion rules. Using these rules, we present several new methods to compute high-quality
solutions faster than state-of-the-art techniques by multiple orders of magnitude. The
Maximum (Weight) 2-Packing Set problem can be reduced to the Maximum
(Weight) Independent Set problem using the square graph. Utilizing our new
data reduction rules combined with this reduction, we present a preprocessing tech-
nique that can speed up solving the problem for state-of-the-art independent set solv-
ers. In our experiments, we see speed-ups up to multiple orders of magnitude faster.
Furthermore, we present a new heuristic that uses the Concurrent Difference-
Core Heuristic to compute high-quality solutions to the Maximum (Weight)
2-Packing Set problem, outperforming the independent set approaches on the trans-
formed graph, especially on large instances.

We propose novel data reduction rules for the b-Matching problem in hyper-
graphs and a scalable algorithm utilizing these data reductions. We also engineer
new greedy approaches and a local search framework to improve solutions further.
Our experiments show that the new data reductions scale well to large instances and
accelerate state-of-the-art black-box solvers.

Overall, we evaluate the effectiveness of our new data reductions and show that
our algorithms compute high-quality solutions to independence problems in graphs,
dynamic graphs, and hypergraphs. Our approaches improve solution quality, running
time, and memory consumption compared to state-of-the-art methods. These results
make the proposed techniques very promising for practical applications.

7.2 Future Work

There are several directions for future research, starting from the contributions of this
dissertation. Here, we want to discuss high-level ideas to show how the presented work
can be applied to other problems. The conclusion of each chapter presents a detailed
discussion about directions for future work, starting from specific contributions to
improve the current methods presented.

The technique of data reduction rules is very general and can be applied to many
combinatorial optimization problems. The presented work introduces a comprehens-
ive overview of several reduction rules for the independent set problem and presents
examples of how to translate these rules to other independence problems. In future
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work, we want to use the ideas behind these rules to find new reduction rules for other
combinatorial optimization problems.

Furthermore, it is interesting to investigate the LearnAndReduce technique
for other combinatorial optimization problems. Moreover, it could be interesting to
use GNNs to reduce the graph directly, i. e., without checking if a reduction rule
applies. Even though this is no longer exact, it could be a powerful heuristic for many
combinatorial optimization problems.

Additionally, we are interested in investigating our new D-Core approach for
other combinatorial optimization problems. Since the main ideas are very flexible,
they can be used for a variety of problems. As a metaheuristic, the introduced Con-
current Difference Core Heuristic only requires that solutions can be com-
pared to find the Difference-Core; otherwise, any heuristic method can be used
internally. Examples of problems to try include Vertex Cover, Dominating set,
Graph Coloring, and Connectivity Augmentation. As an added benefit, the
Concurrent Difference-Core Heuristic is trivially parallelizable, which could
enable improvements in the parallel setting too.
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Lübbecke, Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin Müller,
Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe
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[212] Yang Wang, Zhipeng Lü, and Abraham P. Punnen. A fast and robust heuristic
algorithm for the minimum weight vertex cover problem. IEEE access : practical
innovations, open solutions, 9:31932–31945, 2021.



Bibliography 257

[213] Yiyuan Wang, Shaowei Cai, Jiejiang Chen, and Minghao Yin. SCCWalk: An
efficient local search algorithm and its improvements for maximum weight clique
problem. Artificial Intelligence, 280:103230, 2020.

[214] Yiyuan Wang, Shaowei Cai, and Minghao Yin. Two efficient local search al-
gorithms for maximum weight clique problem. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 30, 2016.

[215] Jeffrey S Warren and Illya V Hicks. Combinatorial branch-and-bound for the
maximum weight independent set problem. Relatório Técnico, Texas A&M
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A Instance Details

Table A.1: Detailed properties for Instance Set 1. Instances marked with a ⋆ are used
for parameter tuning experiments.

finEl n m

body⋆ 45 087 327 468
ocean 143 437 819 186
pwt 36 519 289 588
rotor⋆ 99 617 1 324 862
sphere⋆ 16 386 98 304

mesh n m

blob 16 068 48 204
buddha⋆ 1 087 716 3 263 148
bunny 68 790 206 034
cow 5 036 14 732
dragon⋆ 150 000 450 000
dragonsub 600 000 1 800 000
ecat⋆ 684 496 2 053 488
face 22 871 68 108
fandisk 8 634 25 636
feline 41 262 123 786
gameguy 42 623 127 700
gargoyle 20 000 60 000
turtle 267 534 802 356
venus 5 672 17 016

ssmc n m

ca2010⋆ 710 145 3 489 366
fl2010⋆ 484 481 2 346 294
ga2010⋆ 291 086 1 418 056
il2010 451 554 2 164 464
nh2010 48 837 234 550
ri2010 25 181 125 750

osm n m

alabama-1 320 1 162
alabama-2 1 164 38 772
alabama-3 3 504 619 328
alaska-1 31 62
alaska-2 54 312
alaska-3 86 950
arkansas-1 26 38
arkansas-2 55 466
arkansas-3 103 2 752
california-1 77 260
california-2 231 6 148
california-3 587 55 072
canada-1 189 480
canada-2 449 5 894
canada-3 943 40 482
colorado-1 128 464

snap n m

as-skitter 1 696 415 22 190 596
ca-AstroPh 18 772 396 100
ca-CondMat 23 133 186 878
ca-GrQc 5 242 28 968
ca-HepPh 12 008 236 978
ca-HepTh 9 877 51 946
com-amazon 334 863 1 851 738
com-youtube 1 134 890 5 975 248
email-Enron 36 692 367 662
email-EuAll 265 214 728 962
loc-gowalla 196 591 1 900 654
p2p-G.04 10 876 79 988
p2p-G.05 8 846 63 678
p2p-G.06 8 717 63 050
p2p-G.08 6 301 41 554
p2p-G.09 8 114 52 026
p2p-G.24 26 518 130 738
p2p-G.25 22 687 109 410
p2p-G.30 36 682 176 656
p2p-G.31 62 586 295 784
roadNet-CA 1 965 206 5 533 214
RoadNet-PA⋆ 1 088 092 3 083 796
roadNet-TX 1 379 917 3 843 320
soc-Ep.1 75 879 811 480
soc-LiveJ.1 4 847 571 85 702 474
soc-p.-rel. 1 632 803 44 603 928
soc-Sl.0811 77 360 938 360
soc-Sl.0902 82 168 1 008 460
Web-BS.⋆ 685 230 13 298 940
web-Google 875 713 8 644 102
Web-ND.⋆ 325 729 2 180 216
web-Stanford 281 903 3 985 272
wiki-Talk 2 394 385 9 319 130
wiki-Vote 7 115 201 524

osm n m

colorado-2 283 4 052
colorado-3 538 16 730
connec.-1 87 192
connec.-2 211 1 950
connec.-3 367 7 538
delaware-1 2 2
delaware-2 3 6
delaware-3 5 18
d.o.c.-1 2 500 49 302
d.o.c.-2 13 597 3 219 590
d.o.c.-3⋆ 46 221 55 458 274
florida-1 475 2 554
florida-2 1 254 33 872
florida-3 2 985 308 086
georgia-1 294 868
georgia-2 746 15 506
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Table A.1 – Continued from previous page

osm n m

georgia-3 1 680 148 252
greenland-1 77 682
greenland-2 686 100 436
greenland-3⋆ 4 986 7 304 722
hawaii-1 411 2 846
hawaii-2 2 875 530 316
hawaii-3 28 006 98 889 842
idaho-1 136 416
idaho-2 552 70 442
idaho-3 4 064 7 848 160
illinois-1 113 404
illinois-2 261 4 276
indiana-1 2 2
indiana-2 2 2
indiana-3 4 12
iowa-1 90 328
iowa-2 155 1 908
kansas-1 190 800
kansas-2 602 32 948
kansas-3 2 732 1 613 824
kentucky-1 381 4 804
kentucky-2 2 453 1 286 856
kentucky-3 19 095 119 067 260
louisiana-1 157 362
louisiana-2 436 6 222
louisiana-3 1 162 74 154
maine-1 38 58
maine-2 81 486
maine-3 143 1 700
maryland-1 104 432
maryland-2 316 9 430
maryland-3 1 018 190 830
massach.-1 413 2 178
massach.-2 1 339 70 898
massach.-3 3 703 1 102 982
mexico-1 175 716
mexico-2 516 18 822
mexico-3 1 096 94 262
michigan-1 133 224
michigan-2 241 1 500
michigan-3 376 4 918
minnesota-1 86 272
minnesota-2 253 5 160
minnesota-3 683 68 376
mississippi-1 74 120
mississippi-2 151 732
mississippi-3 242 2 232
missouri-1 10 12
missouri-2 13 24
missouri-3 17 48
montana-1 109 388
montana-2 307 10 308
montana-3 837 138 586
nebraska-1 40 92
nebraska-2 93 1 468
nebraska-3 145 4 336
nevada-1 89 186
nevada-2 242 3 062

osm n m

nevada-3 569 30 032
new-hamp.-1 195 604
new-hamp.-2 514 6 738
new-hamp.-3 1 107 36 042
new-jersey-1 4 12
new-jersey-2 4 12
new-jersey-3 4 12
new-mex.-1 3 6
new-mex.-2 3 6
new-mex.-3 3 6
new-york-1 42 236
new-york-2 224 12 798
new-york-3 837 177 456
north-car.-1 93 300
north-car.-2 398 20 232
north-car.-3 1 557 473 478
ohio-1 78 192
ohio-2 211 3 630
ohio-3 482 22 752
oregon-1 381 1 992
oregon-2 1 325 115 034
oregon-3 5 588 5 825 402
penns.-1 193 552
penns.-2 521 7 624
penns.-3 1 148 52 928
puerto-rico-1 60 126
puerto-rico-2 165 2 570
puerto-rico-3 494 53 852
rhode-is.-1 455 3 946
rhode-is.-2⋆ 2 866 590 976
rhode-is.-3 15 124 25 244 438
south-car.-1 75 138
south-car.-2 165 1 426
south-car.-3 317 9 016
tennessee-1 49 78
tennessee-2 100 836
tennessee-3 212 6 430
utah-1 230 618
utah-2 589 9 384
utah-3 1 339 85 744
vermont-1 128 836
vermont-2 766 75 214
vermont-3 3 436 2 272 328
virginia-1 570 2 960
virginia-2 2 279 120 080
virginia-3 6 185 1 331 806
washington-1 713 4 632
washington-2 3 025 304 898
washington-3 10 022 4 692 426
w-virg.-1 65 300
w-virg.-2 317 16 656
w-virg.-3 1 185 251 240
wisconsin-1 54 102
wisconsin-2 89 438
wisconsin-3 136 1 176
wyoming-1 7 22
wyoming-2 8 32
wyoming-3 12 84
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Table A.2: Detailed graph properties for the Instance Set 2. Graphs marked with
a ⋆ are part of the parameter tuning set for experiments on these instances. We
also present the number of vertices nK and edges mK of the instances reduced by
LearnAndReduce with the configuration Fast - initial tight as well as the computed
offset and running time tred in seconds.

fe n m nK mK offset tred

body 45 087 163 734 395 3 551 1 672 469 0.60
ocean 143 437 409 593 0 0 7 248 581 3.56
pwt⋆ 36 519 144 794 15 239 106 943 813 076 2.17
rotor⋆ 99 617 662 431 89 294 690 242 435 335 5.05
sphere 16 386 49 152 0 0 617 816 0.52

mesh n m nK mK offset tred

blob 16 068 24 102 0 0 855 547 0.03
buddha 1 087 716 1 631 574 0 0 57 555 880 2.55
bunny 68 790 103 017 0 0 3 686 960 0.13
dragonsub 600 000 900 000 0 0 32 213 898 1.38
dragon 150 000 225 000 0 0 7 956 530 0.20
ecat 684 496 1 026 744 0 0 36 650 298 2.12
fandisk 8 634 12 818 0 0 463 288 0.02
feline 41 262 61 893 0 0 2 207 219 0.10
gameguy 42 623 63 850 0 0 2 325 878 0.07
gargoyle 20 000 30 000 0 0 1 059 559 0.04
turtle 267 534 401 178 0 0 14 263 005 0.42

osm n m nK mK offset tred

alabama-2 1 164 19 386 0 0 174 309 0.01
alabama-3 3 504 309 664 815 61 637 173 907 1.45
california-2 231 3 074 0 0 47 153 0.02
california-3 587 27 536 359 19 705 35 724 0.21
canada-3 943 20 241 0 0 86 018 0.23
colorado-3 538 8 365 0 0 54 741 0.01
d.-of-c.-1 2 500 24 651 0 0 196 475 0.22
d.-of-c.-2 13 597 1 609 795 2 361 274 529 178 323 5.76
d.-of-c.-3 46 221 27 729 137 26 728 13 406 329 133 708 290.37
florida-3 2 985 154 043 658 41 043 226 379 0.52
georgia-3 1 680 74 126 481 31 388 207 992 0.38
greenland-2 686 50 218 0 0 10 718 0.08
greenland-3 4 986 3 652 361 3 402 2 141 096 7 572 27.39
hawaii-2 2 875 265 158 0 0 125 284 0.15
hawaii-3⋆ 28 006 49 444 921 22 849 38 081 016 96 234 935.96
idaho-3 4 064 3 924 080 2 920 2 413 139 70 960 40.03
kansas-3 2 732 806 912 1 209 292 997 84 662 3.79
kentucky-2 2 453 643 428 0 0 97 397 0.27
kentucky-3 19 095 59 533 630 15 943 53 739 580 91 864 1 510.41
louisiana-3 1 162 37 077 0 0 60 024 0.08
maine-3 143 850 0 0 26 734 0.00
maryland-3 1 018 95 415 0 0 45 496 0.10
massachusetts-2 1 339 35 449 0 0 140 095 0.03
massachusetts-3 3 703 551 491 1 626 340 652 136 331 2.98
mexico-2 516 9 411 0 0 94 834 0.01
mexico-3 1 096 47 131 447 20 443 86 467 0.29
minnesota-3 683 34 188 0 0 32 787 0.07

Continued on next page
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Table A.2 – Continued from previous page
osm n m nK mK offset tred

montana-3 837 69 293 382 39 859 55 531 0.25
nevada-3 569 15 016 0 0 52 036 0.02
new-hampshire-3 1 107 18 021 0 0 116 060 0.12
new-york-2 224 6 399 0 0 14 330 0.01
new-york-3 837 88 728 526 50 572 11 447 0.42
north-carolina-3 1 557 236 739 997 133 106 39 783 0.87
ohio-3 482 11 376 0 0 52 634 0.05
oregon-3 5 588 2 912 701 3 159 1 817 045 162 009 23.75
pennsylvania-3 1 148 26 464 0 0 143 870 0.12
puerto-rico-3 494 26 926 0 0 33 590 0.10
rhode-i.-2 2 866 295 488 498 46 183 174 013 0.52
rhode-i.-3 15 124 12 622 219 12 189 11 225 470 144 106 153.06
tennessee-3 212 3 215 0 0 32 276 0.01
utah-2 589 4 692 0 0 95 087 0.00
utah-3 1 339 42 872 0 0 98 847 0.28
vermont-2 766 37 607 0 0 59 310 0.11
vermont-3⋆ 3 436 1 136 164 1 946 526 463 52 788 5.50
virginia-2 2 279 60 040 0 0 295 867 0.06
virginia-3 6 185 665 903 2 385 293 068 272 730 2.51
washington-2 3 025 152 449 0 0 305 619 0.10
washington-3 10 022 2 346 213 6 671 1 955 568 264 406 14.55
west-virginia-3 1 185 125 620 864 98 399 37 678 0.52

snap n m nK mK offset tred

as-skitter⋆ 1 696 415 11 095 298 1 951 27 277 124 100 687 3.43
com-amazon 334 863 925 869 0 0 19 271 031 0.32
loc-gowalla-edges 196 591 950 327 304 2 938 12 268 682 0.33
roadNet-CA 1 965 206 2 766 607 0 0 111 360 828 2.33
roadNet-PA 1 088 092 1 541 898 0 0 61 731 589 1.19
roadNet-TX 1 379 917 1 921 660 0 0 78 599 946 1.46
soc-LiveJ.⋆ 4 847 571 42 851 237 1 715 28 390 283 975 051 23.47
soc-p.-rel 1 632 803 22 301 964 782 676 14 234 808 53 362 233 644.00
web-BerkStan 685 230 6 649 470 0 0 43 907 482 3.87
web-Google 875 713 4 322 051 0 0 56 326 504 2.03
web-NotreDame 325 729 1 090 108 97 1 357 26 013 618 0.62
web-Stanford 281 903 1 992 636 0 0 17 792 930 1.39

ssmc n m nK mK offset tred

ca2010 710 145 1 744 683 0 0 16 869 550 7.34
fl2010 484 481 1 173 147 2 045 8 459 8 707 619 3.62
ga2010 291 086 709 028 0 0 4 644 417 0.89
il2010 451 554 1 082 232 0 0 5 998 539 5.63
nh2010 48 837 117 275 0 0 588 996 0.16
ri2010 25 181 62 875 0 0 459 275 0.19
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Table A.3: Graph properties for the vehicle routing instances in Instance Set 4. Ad-
ditionally to the number of vertices n and edges m of the original graph, we also
present the number of vertices nK and edges mK of these reduced instances computed
by LearnAndReduce with the configuration Fast - initial tight as well as the com-
puted offset and reduction time tred in seconds. Instances marked with a ⋆ are used
for parameter tuning.

large vr n m nK mK offset red.time
CR-S-L-1⋆ 863 368 331 203 970 855 833 328 396 194 26 070 3 671.65
CR-S-L-2 880 974 342 158 741 873 941 339 503 913 20 282 5 234.35
CR-S-L-4 881 910 344 057 350 874 668 341 151 292 19 400 5 315.89
CR-S-L-6 578 244 219 717 582 572 888 217 572 336 25 208 3 056.68
CR-S-L-7 270 067 94 109 215 266 591 92 817 339 26 955 858.97
CR-T-C-1 602 472 194 753 152 594 883 192 451 235 59 577 2 668.29
CR-T-C-2 652 497 215 694 927 645 058 213 228 808 32 598 2 870.86
CR-T-D-4 651 861 220 480 534 644 845 218 142 885 22 898 2 342.34
CR-T-D-6 381 380 115 082 762 376 351 113 599 041 31 498 1 393.38
CR-T-D-7 163 809 43 028 583 160 630 42 184 292 29 046 341.15
CW-S-L-1 411 950 283 860 106 409 559 282 656 866 11 718 4 465.88
CW-S-L-2 443 404 315 569 883 441 093 314 281 707 8 310 5 816.47
CW-S-L-4⋆ 430 379 303 042 962 427 984 301 676 399 6 009 5 262.94
CW-S-L-6 267 698 171 132 761 265 820 170 150 154 9 603 2 512.19
CW-S-L-7 127 871 78 459 291 126 866 77 941 263 4 283 859.79
CW-T-C-1 266 403 144 634 578 264 389 143 674 135 10 530 2 064.78
CW-T-C-2⋆ 194 413 111 098 006 192 871 110 337 336 10 128 1 387.53
CW-T-D-4 83 091 37 881 529 82 110 37 453 654 3 108 356.97
CW-T-D-6 83 758 38 781 839 82 723 38 299 758 5 338 400.99
small vr n m nK mK offset tred

MR-D-03 21 499 130 508 17 390 131 591 832 349 816 1.06
MR-D-05 27 621 236 044 24 250 236 758 676 962 870 1.86
MR-D-FN⋆ 30 467 296 369 27 301 297 905 639 582 861 2.46
MR-W-FN 15 639 126 800 14 657 128 925 691 250 460 0.75
MT-D-01 979 3 125 0 0 238 166 485 0.02
MT-D-200 10 880 505 359 10 676 493 364 6 914 835 2.19
MT-D-FN 10 880 604 041 10 682 595 799 45 784 382 2.33
MT-W-01 1 006 2 411 0 0 312 121 568 < 0.01
MT-W-200 12 320 515 871 11 472 474 079 85 332 696 2.33
MT-W-FN 12 320 553 895 11 456 503 617 128 611 366 2.43
MW-D-01 3 988 13 556 2 539 13 853 307 196 278 0.18
MW-D-20 20 054 606 318 19 473 600 915 104 526 987 3.15
MW-D-40⋆ 33 563 1 879 303 33 062 1 870 537 74 805 076 8.33
MW-D-FN 47 504 4 017 196 47 070 4 005 378 60 228 177 18.80
MW-W-01 3 079 22 664 2 844 22 765 169 735 181 0.16
MW-W-05⋆ 10 790 485 261 10 667 481 661 25 259 548 1.68
MW-W-10 18 023 1 451 813 17 921 1 445 959 16 146 685 4.81
MW-W-FN 22 316 2 275 623 22 215 2 269 047 15 670 946 9.86
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Table A.4: Instance properties for Instance Set 3. The class redOsm are the osm
instances reduced using KaMIS BnR [149] for the METAMIS comparison.

redOsm n m

alabama-3 1 614 117 426
d.o.c.-2 6 360 592 457
d.o.c.-3 33 367 17 459 296
florida-3 1 069 62 088
greenland-3 3 942 2 348 539
hawaii-3 24 436 40 724 109
idaho-3 3 208 2 864 466
kansas-3 1 605 408 108
kentucky-3 16 871 54 160 431

redOsm n m

massach.-3 2 008 373 537
north-car.-3 1 178 189 362
oregon-3 3 670 1 958 180
rhode-is.-2 1 103 81 688
rhode-is.-3 13 031 11 855 557
vermont-3 2 630 811 482
virginia-3 3 867 485 330
washington-3 8 030 2 120 696

Table A.5: Instance properties of benchmark set of static and real dynamic graphs
from Instance Set 5. We report the original number of update operations O, after
removing obsolete updates (such as parallel edges, self-loops etc.). Note that most of
these instances only feature insertions.

mesh n O
3elt 4 720 13 722
4elt 15 606 45 878
add20 2 395 7 462
add32 4 960 9 462
citeulike-ui 731 770 842 421
crack 10 240 30 380
cs4 22 499 43 858
cti 16 840 48 232
data 2 851 15 093
fe-4elt2 11 143 32 818
fe-body 45 087 163 734
fe-ocean 143 437 409 593
fe-pwt 36 519 144 794
fe-sphere 16 386 49 152
t60k 60 005 89 440
whitaker3 9 800 28 989
wing 62 032 121 544

osm n O
asia 11 950 757 12 711 603
belgium 1 441 295 1 549 970
germany 11 548 845 12 369 181
great-britain 7 733 822 8 156 517
italy 6 686 493 7 013 978
luxembourg 114 599 119 666
netherlands 2 216 688 2 441 238
uk 4 824 6 837
social n O
amazon-ratings 2 146 058 477 676
dnc-temporalGraph 2 030 4 384
facebook-wosn-wall 46 953 183 412
haggle 275 2 124
lastfm-band 174 078 894 388
lkml-reply 63 400 159 996
sociopatterns-infections 411 2 765
topology 34 762 107 720
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Table A.6: Detailed properties of Instance Set 6. We report the number of vertices n

and edges m for each graph, grouped by graph class.

cactus n m erdos n m

cac50 50 52 Erdos37-2 37 73
cac100 100 105 Erdos37-16 37 66
cac150 150 154 Erdos37-23 37 68
cac200 200 208 Erdos37-44 37 76
cac250 250 255 Erdos37-45 37 58
cac300 300 305 Erdos38-2 38 68
cac350 350 350 Erdos38-14 38 81
cac400 400 401 Erdos38-18 38 83
cac450 450 459 Erdos38-46 38 67
cac500 500 510 Erdos38-48 38 68
cac550 550 565 Erdos39-14 39 72
cac600 600 603 Erdos39-22 39 61
cac650 650 658 Erdos39-25 39 80
cac700 700 708 Erdos39-29 39 75
cac750 750 753 Erdos39-44 39 80
cac800 800 811 Erdos40-0 40 71
cac850 850 859 Erdos40-4 40 74
cac900 900 906 Erdos40-8 40 87
cac950 950 960 Erdos40-10 40 72
cac1000 1 000 1 008 Erdos40-43 40 75
adjnoun 112 425 amazon-2008 735 323 3 523 472
as-22july06 22 963 48 436 astro-ph 16 706 121 251
celegans metabolic 453 2 025 caidaRouterLevel 192 244 609 066
celegansneural 297 2 148 citationCiteseer 268 495 1 156 647
small social n m large social n m

chesapeake 39 170 cnr-2000 325 557 2 738 969
cond-mat 16 726 47 594 coAuthorsCiteseer 227 320 814 134
dolphins 62 159 coAuthorsDBLP 299 067 977 676
email 1 133 5 451 cond-mat-2003 31 163 120 029
email-EuAll 16 805 60 260 cond-mat-2005 40 421 175 691
football 115 613 coPapersCiteseer 434 102 16 036 720
hep-th 8 361 15 751 coPapersDBLP 540 486 15 245 729
jazz 198 2 742 enron 69 244 254 449
lesmis 77 254 G n pin pout 100 000 501 198
netscience 1 589 2 742 loc-brightkite edges 56 739 212 945
p2p-Gnutella04 6 405 29 215 loc-gowalla edges 196 591 950 327
PGPgiantcompo 10 680 24 316 preferentialAttachment 100 000 499 985
polbooks 105 441 road central 14 081 816 16 933 413
power 4 941 6 594 smallworld 100 000 499 998
soc-Slashdot0902 28 550 379 445 web-Google 356 648 2 093 324
wordassociation-2011 10 617 63 788 road usa 23 947 347 28 854 312
planar n m planar n m

outP500 1 62 320 65 138 outP500 2 73 959 76 976
outP1000 1 148 564 154 609 outP1000 2 151 091 157 100
outP1500 1 227 107 236 077 outP1500 2 226 090 235 100
outP2000 1 301 431 313 433 outP2000 2 301 692 313 729
outP2500 1 375 728 390 874 outP2500 2 373 931 389 003
outP3000 1 448 689 466 782 outP3000 2 451 224 469 413
outP3500 1 523 959 545 122 outP3500 2 529 022 550 144
outP4000 1 600 173 624 188 outP4000 2 600 288 624 264
outP4500 1 675 339 702 423 outP4500 2 677 075 704 222
outP5000 1 748 383 778 411 outP5000 2 750 308 780 191
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Table A.7: Detailed graph properties of Instance Set 7. We present the number of
vertices |V | and edges |E| of the instances as well as the average degree. The column
weights shows the different weight assignements unit (u), uniform (uf), degree (d),
geometric (g), hybrid (h) and from file (f).

red2pack n m weights avg. deg
as-22july06 22 963 48 436 u, uf, d, g, h 4.2
astro-ph 16 706 121 251 u, uf, d, g, h 14.5
cactus1000 1 000 1 008 u, uf, d, g, h 2.0
caidaRouterLevel 192 244 609 066 u, uf, d, g, h 6.3
citationCiteseer 268 495 1 156 647 u, uf, d, g, h 8.6
coAuthorsCiteseer 227 320 814 134 u, uf, d, g, h 7.2
coAuthorsDBLP 299 067 977 676 u, uf, d, g, h 6.5
cond-mat-2003 31 163 120 029 u, uf, d, g, h 7.7
cond-mat-2005 40 421 175 691 u, uf, d, g, h 8.7
coPapersCiteseer 434 102 16 036 720 u, uf, d, g, h 73.9
coPapersDBLP 540 486 15 245 729 u, uf, d, g, h 56.4
hep-th 8 361 15 751 u, uf, d, g, h 3.8
loc-brightkite edges 56 739 212 945 u, uf, d, g, h 7.5
loc-gowalla edges 196 591 950 327 u, uf, d, g, h 9.7
netscience 1 589 2 742 u, uf, d, g, h 3.5
power 4 941 6 594 u, uf, d, g, h 2.7
road central 14 081 816 16 933 413 u, uf, d, g, h 2.4
road usa 23 947 347 28 854 312 u, uf, d, g, h 2.4
asia 11 950 757 12 711 603 uf, h 2.1
belgium 1 441 295 1 549 970 uf, h 2.2
europe 50 912 018 54 054 660 uf, h 2.1
germany 11 548 845 12 369 181 uf, h 2.1
great-britain 7 733 822 8 156 517 uf, h 2.1
italy 6 686 493 7 013 978 uf, h 2.1
luxembourg 114 599 119 666 uf, h 2.1
netherlands 2 216 688 2 441 238 uf, h 2.2
fe n m weights avg. deg
body 45 087 163 734 uf 7.3
ocean 143 437 409 593 uf 5.7
pwt 36 519 144 794 uf 7.9
rotor 99 617 662 431 uf 13.3
sphere 16 386 49 152 uf 6.0
mesh n m weights avg. deg
blob 16 068 24 102 uf 3.0
buddha 1 087 716 1 631 574 uf 3.0
bunny 68 790 103 017 uf 3.0
cow 5 036 7 366 uf 2.9
dragonsub 600 000 900 000 uf 3.0
dragon 150 000 225 000 uf 3.0
ecat 684 496 1 026 744 uf 3.0
face 22 871 34 054 uf 3.0
fandisk 8 634 12 818 uf 3.0
feline 41 262 61 893 uf 3.0
gameguy 42 623 63 850 uf 3.0
gargoyle 20 000 30 000 uf 3.0
turtle 267 534 401 178 uf 3.0
venus 5 672 8 508 uf 3.0

Continued on next page
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Table A.7 – Continued from previous page
osm n m weights avg. deg
alabama-AM2 1 164 19 386 f 33.3
alabama-AM3 3 504 309 664 f 176.7
district-of-columbia-AM1 2 500 24 651 f 19.7
district-of-columbia-AM2 13 597 1 609 795 f 236.8
district-of-columbia-AM3 46 221 27 729 137 f 1 199.9
florida-AM2 1 254 16 936 f 27.0
florida-AM3 2 985 154 043 f 103.2
georgia-AM3 1 680 74 126 f 88.2
greenland-AM3 4 986 3 652 361 f 1 465.0
hawaii-AM2 2 875 265 158 f 184.5
hawaii-AM3 28 006 49 444 921 f 3 531.0
idaho-AM3 4 064 3 924 080 f 1 931.1
kansas-AM3 2 732 806 912 f 590.7
kentucky-AM2 2 453 643 428 f 524.6
kentucky-AM3 19 095 59 533 630 f 6 235.5
louisiana-AM3 1 162 37 077 f 63.8
maryland-AM3 1 018 95 415 f 187.5
massachusetts-AM2 1 339 35 449 f 52.9
massachusetts-AM3 3 703 551 491 f 297.9
mexico-AM3 1 096 47 131 f 86.0
new-hampshire-AM3 1 107 18 021 f 32.6
north-carolina-AM3 1 557 236 739 f 304.1
oregon-AM2 1 325 57 517 f 86.8
oregon-AM3 5 588 2 912 701 f 1 042.5
pennsylvania-AM3 1 148 26 464 f 46.1
rhode-island-AM2 2 866 295 488 f 206.2
rhode-island-AM3 15 124 12 622 219 f 1 669.2
utah-AM3 1 339 42 872 f 64.0
vermont-AM3 3 436 1 136 164 f 661.3
virginia-AM2 2 279 60 040 f 52.7
virginia-AM3 6 185 665 903 f 215.3
washington-AM2 3 025 152 449 f 100.8
washington-AM3 10 022 2 346 213 f 468.2
west-virginia-AM3 1 185 125 620 f 212.0
snap n m weights avg. deg
as-skitter 1 696 415 11 095 298 uf 13.1
ca-AstroPh 18 772 198 050 uf 21.1
ca-CondMat 23 133 93 439 uf,f 8.1
ca-GrQc 5 241 14 484 uf,f 5.5
ca-HepPh 12 008 118 489 uf 19.7
ca-HepTh 9 877 25 973 uf 5.3
com-amazon 334 863 925 869 f 5.5
com-youtube 1 134 890 2 987 624 f 5.3
email-Enron 36 692 183 831 uf,f 10.0
email-EuAll 265 214 364 481 uf 2.7
loc-gowalla edges 196 591 950 327 f 9.7
p2p-Gnutella04 10 876 39 994 uf 7.4
p2p-Gnutella05 8 846 31 839 uf 7.2
p2p-Gnutella06 8 717 31 525 uf 7.2
p2p-Gnutella08 6 301 20 777 uf 6.6
p2p-Gnutella09 8 114 26 013 uf 6.4
p2p-Gnutella24 26 518 65 369 uf 4.9
p2p-Gnutella25 22 687 54 705 uf 4.8
p2p-Gnutella30 36 682 88 328 uf 4.8

Continued on next page
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Table A.7 – Continued from previous page

snap n m weights avg. deg
p2p-Gnutella31 62 586 147 892 uf 4.7
roadNet-CA 1 965 206 2 766 607 uf 2.8
roadNet-PA 1 088 092 1 541 898 uf,f 2.8
roadNet-TX 1 379 917 1 921 660 uf 2.8
soc-Epinions1 75 879 405 740 uf 10.7
soc-LiveJournal1 4 847 571 42 851 237 uf 17.7
soc-pokec-relationships 1 632 803 22 301 964 uf 27.3
soc-Slashdot0811 77 360 469 180 uf 12.1
soc-Slashdot0902 82 168 504 230 uf 12.3
web-BerkStan 685 230 6 649 470 uf,f 19.4
web-Google 875 713 4 322 051 uf 9.9
web-NotreDame 325 729 1 090 108 uf,f 6.7
web-Stanford 281 903 1 992 636 uf 14.1
wiki-Talk 2 394 385 4 659 565 uf 3.9
wiki-Vote 7 115 100 762 uf 28.3
ssmc n m weights avg. deg
ca2010 710 145 1 744 683 f 4.9
fl2010 484 481 1 173 147 f 4.8
ga2010 291 086 709 028 f 4.9
il2010 451 554 1 082 232 f 4.8
nh2010 48 837 117 275 f 4.8
ri2010 25 181 62 875 f 5.0
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B.3 State-of-the-Art Results Comparing dynamicOne

Table B.7: Detailed per instance results (higher is better) on weighted instances. Each
entry corresponds to the average result for each algorithm after all updates have been
performed. The best result is highlighted in bold font.

Instance Greedy DegGreedy DynOneFast DynOneStrong

M
es

h
N

et
wo

rk
s

3elt 80 427 75 635 90 112 90 169
4elt 263 809 245 426 296 244 296 484
add20 66 379 67 344 69 128 69 357
add32 133 653 138 037 140 735 141 074
crack 201 774 235 131 240 666 241 510
cs4 505 079 493 489 545 842 549 020
cti 339 123 350 491 414 558 416 153
data 34 847 35 189 41 696 43 954
fe_4elt2 191 496 179 536 211 390 214 539
fe_body 734 141 703 940 834 557 838 087
fe_ocean 2 910 036 3 054 326 3 584 670 3 610 588
fe_pwt 515 032 472 184 584 843 620 905
fe_sphere 272 751 257 150 308 532 308 627
t60k 1 498 465 1 514 036 1 623 871 1 626 909
whitaker3 164 853 152 057 185 313 185 694
wing 1 388 751 1 360 853 1 499 895 1 512 689

R
oa

d
N

et
wo

rk
s

asia.osm 337 151 643 337 879 210 350 337 476 353 127 303
belgium.osm 40 625 661 40 687 449 42 226 435 42 590 971
germany.osm 327 151 986 327 763 791 339 946 811 342 976 042
great-britain.osm 220 872 346 221 522 336 229 334 872 231 482 437
italy.osm 188 795 346 189 286 893 196 001 471 197 612 299
luxembourg.osm 3 241 919 3 248 700 3 359 823 3 393 258
netherlands.osm 62 461 275 62 507 042 64 922 456 65 544 509
uk 122 900 122 093 130 282 130 875

So
ci

al
N

et
wo

rk
s

amazon-ratings 101 520 569 102 066 076 102 124 693 102 237 718
citeulike_ui 35 600 375 35 951 479 35 970 737 35 979 609
dnc-temporalGraph 89 498 91 019 91 369 91 428
facebook-wosn-wall 1 290 379 1 333 313 1 381 791 1 389 705
haggle 10 980 11 800 11 800 11 839
lastfm_band 8 714 534 8 730 188 8 731 008 8 731 010
lkml-reply 2 758 583 2 776 325 2 796 716 2 799 473
sociopatterns-infections 6 018 6 277 7 015 7 032
topology 1 473 077 1 516 556 1 523 308 1 525 097
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B.4 Detailed Results on 2-Packing Set

Table B.9: Percentage of remaining vertices (ñ = 100 · n(K2/n)) and edges (m̃ =
100 · m(K2/m)) for different reduction variants after transformation. Bolt numbers
indicate the best results, gray background marks empty kernels.

transform main fast

Instances ñ m̃ ñ m̃ ñ m̃

PGPgiantcompo 100.00 873.91 0.00 0.00 0.00 0.00
adjnoun 100.00 725.18 0.00 0.00 0.00 0.00
as-22july06 100.00 22 941.92 0.00 0.00 0.00 0.00
celegans metabolic 100.00 2 239.56 0.00 0.00 0.00 0.00
celegansneural 100.00 1 123.00 30.64 98.46 30.64 98.46
chesapeake 100.00 407.65 0.00 0.00 0.00 0.00
cond-mat 100.00 678.06 0.00 0.00 0.00 0.00
dolphins 100.00 381.76 0.00 0.00 0.00 0.00
email 100.00 1 114.57 0.00 0.00 0.00 0.00
email-EuAll 100.00 16 882.03 0.14 0.07 0.14 0.07
football 100.00 476.18 100.00 476.18 100.00 476.18
hep-th 100.00 535.64 0.00 0.00 0.00 0.00
jazz 100.00 488.48 6.57 1.79 6.57 1.79
lesmis 100.00 491.73 0.00 0.00 0.00 0.00
netscience 100.00 245.15 0.00 0.00 0.00 0.00
p2p-Gnutella04 100.00 1 227.55 74.85 638.90 74.85 638.90
polbooks 100.00 453.97 50.48 105.67 50.48 105.67
power 100.00 343.18 2.83 4.88 2.83 4.88
soc-Slashdot0902 100.00 8 678.73 24.12 79.04 24.12 79.07

so
ci

al
sm

al
l

wordassociation-2011 100.00 2 771.82 0.00 0.00 0.00 0.00

G n pin pout 100.00 1 088.81 99.35 1 075.38 99.35 1 075.38
amazon-2008 100.00 901.89 11.27 35.64 11.27 35.66
astro-ph 100.00 1 469.69 0.02 0.00 0.02 0.00
caidaRouterLevel 100.00 1 843.47 0.67 0.67 0.67 0.67
citationCiteseer 100.00 2 980.56 0.08 0.03 0.08 0.03
cnr-2000 100.00 20 072.23 4.32 378.64 4.34 378.94
coAuthorsCiteseer 100.00 1 005.95 0.00 0.00 0.00 0.00
coAuthorsDBLP 100.00 1 262.80 0.01 0.01 0.01 0.01
coPapersCiteseer 100.00 823.64 0.01 0.00 0.01 0.00
coPapersDBLP 100.00 1 572.96 0.01 0.00 0.01 0.00
cond-mat-2003 100.00 1 149.60 0.03 0.02 0.03 0.02
cond-mat-2005 100.00 1 467.49 0.00 0.00 0.00 0.00
enron 100.00 9 684.16 0.00 0.00 0.00 0.00
loc-brightkite edges 100.00 4 026.75 0.00 0.00 0.00 0.00
loc-gowalla edges 100.00 25 177.85 0.03 0.01 0.03 0.01
preferentialAttachment 100.00 3 386.36 100.00 3 386.36 100.00 3 386.36
road central 100.00 261.10 13.55 35.31 13.55 35.31
road usa 100.00 261.17 13.46 35.13 13.46 35.13
smallworld 100.00 550.88 99.20 543.05 99.20 543.05

so
ci

al
la

rg
e

web-Google 100.00 7 560.20 0.41 0.87 0.42 0.94
Continued on next page
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Table B.9 – Continued from previous page

transform main fast

Instances ñ m̃ ñ m̃ ñ m̃

outP500 1 100.00 213.51 99.94 213.20 99.94 213.20
outP500 2 100.00 212.22 99.93 211.87 99.93 211.87
outP1000 1 100.00 212.19 99.85 211.53 99.85 211.53
outP1000 2 100.00 211.92 99.87 211.29 99.87 211.29
outP1500 1 100.00 211.86 99.95 211.60 99.95 211.60
outP1500 2 100.00 211.97 99.94 211.68 99.94 211.68
outP2000 1 100.00 211.93 99.93 211.58 99.93 211.58
outP2000 2 100.00 211.97 99.91 211.53 99.91 211.53
outP2500 1 100.00 212.10 99.86 211.45 99.86 211.45
outP2500 2 100.00 212.14 99.91 211.72 99.91 211.72
outP3000 1 100.00 212.12 99.89 211.62 99.89 211.62
outP3000 2 100.00 212.11 99.88 211.56 99.88 211.56
outP3500 1 100.00 212.13 99.88 211.55 99.88 211.55
outP3500 2 100.00 212.00 99.91 211.58 99.91 211.58
outP4000 1 100.00 212.01 99.90 211.55 99.90 211.55
outP4000 2 100.00 211.99 99.92 211.61 99.92 211.61
outP4500 1 100.00 212.04 99.88 211.50 99.88 211.50
outP4500 2 100.00 212.05 99.92 211.69 99.92 211.69
outP5000 1 100.00 212.06 99.91 211.64 99.91 211.64

pl
an

ar

outP5000 2 100.00 211.96 99.92 211.56 99.92 211.56

overall 100.00 2 564.50 43.84 185.49 43.84 185.50
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Table B.10: Solution size |S| and time t (in seconds) needed to find it using the exact
independent set solver. The time tp is the time needed to prove the optimality. Bolt
numbers indicate best results, gray background optimally solved instances.

transform main fast

Instance |S| t tp |S| t tp |S| t tp

PGPgiantcompo 2 708 0.02 0.02 2 708 0.01 0.01 2 708 0.01 0.01
adjnoun 18 <0.01 <0.01 18 <0.01 <0.01 18 <0.01 <0.01
as-22july06 2 026 4.26 4.26 2 026 0.95 0.96 2 026 1.74 1.74
celegans metabolic 29 0.01 0.01 29 <0.01 <0.01 29 <0.01 <0.01
celegansneural 14 0.06 0.06 14 0.05 0.06 14 0.06 0.06
chesapeake 3 <0.01 <0.01 3 <0.01 <0.01 3 <0.01 <0.01
cond-mat 3 391 0.03 0.03 3 391 0.02 0.02 3 391 0.02 0.02
dolphins 13 <0.01 <0.01 13 <0.01 <0.01 13 <0.01 <0.01
email 209 0.01 0.01 209 0.01 0.01 209 <0.01 <0.01
email-EuAll 696 2.74 2.74 696 1.83 1.83 696 1.56 1.56
football 7 1.36 1.39 7 1.36 1.39 7 1.35 1.39
hep-th 2 611 0.01 0.01 2 611 0.01 0.01 2 611 <0.01 0.01
jazz 13 <0.01 <0.01 13 <0.01 <0.01 13 <0.01 <0.01
lesmis 10 <0.01 <0.01 10 <0.01 <0.01 10 <0.01 <0.01
netscience 477 <0.01 <0.01 477 <0.01 <0.01 477 <0.01 <0.01
p2p-Gnutella04 825 0.35 m.o. 825 0.35 m.o. 825 0.33 m.o.
polbooks 12 <0.01 <0.01 12 <0.01 <0.01 12 <0.01 <0.01
power 1 465 <0.01 <0.01 1 465 <0.01 <0.01 1 465 <0.01 <0.01
soc-Slashdot0902 3 280 27.43 m.o. 3 282 19.77 m.o. 3 282 3.53 m.o.

so
ci

al
sm

al
l

wordassociation-2011 2 473 0.28 0.28 2 473 0.04 0.04 2 473 0.02 0.02
overall 159 0.02 - 159 0.01 - 159 0.01 -
G n pin pout 7 116 8.18 m.o. 7 116 8.46 m.o. 7 116 8.64 m.o.
amazon-2008 106 533 71.17 m.o. 106 558 68.58 m.o. 106 556 70.55 m.o.
astro-ph 2 926 0.28 0.28 2 926 0.09 0.09 2 926 0.05 0.05
caidaRouterLevel 40 138 3.11 3.21 40 138 1.49 1.51 40 138 0.73 0.74
citationCiteseer 43 238 10.39 10.39 43 238 2.51 2.51 43 238 1.72 1.72
cnr-2000 21 897 1 031.59 m.o. 21 896 986.12 m.o. 21 897 1 030.06 m.o.
coAuthorsCiteseer 33 167 1.22 1.22 33 167 0.56 0.56 33 167 0.40 0.40
coAuthorsDBLP 43 960 2.37 2.37 43 960 0.73 0.73 43 960 0.67 0.67
coPapersCiteseer 26 001 47.88 47.88 26 001 33.65 33.65 26 001 14.70 14.70
coPapersDBLP 35 529 121.92 121.92 35 529 90.89 90.89 35 529 18.21 18.21
cond-mat-2003 5 374 0.17 0.17 5 374 0.08 0.08 5 374 0.06 0.06
cond-mat-2005 6 505 0.39 0.39 6 505 0.16 0.16 6 505 0.10 0.10
enron 4 090 11.21 11.21 4 090 1.42 1.43 4 090 1.25 1.26
loc-brightkite edges 12 940 2.18 2.18 12 940 0.40 0.41 12 940 0.18 0.19
loc-gowalla edges 41 590 350.55 351.65 41 590 76.80 76.82 41 590 70.81 70.83
preferentialAttachment 6 397 15.35 m.o. 6 397 15.54 m.o. 6 397 15.95 m.o.
road central 4 289 510 2 566.67 m.o. 4 289 578 2 299.59 m.o. 4 289 639 2 441.79 m.o.
road usa 7 296 706 3 697.55 m.o. 7 296 913 3 043.52 m.o. 7 297 028 3 733.19 m.o.
smallworld 6 872 5.19 m.o. 6 872 5.36 m.o. 6 872 5.38 m.o.

so
ci

al
la

rg
e

web-Google 30 296 62.47 63.40 30 296 34.77 34.83 30 296 68.16 68.22
overall 30 065 16.58 - 30 066 8.38 - 30 066 6.44 -
outP500 1 19 140 1.64 m.o. 19 140 1.75 m.o. 19 140 1.77 m.o.
outP500 2 21 894 2.16 m.o. 21 894 2.27 m.o. 21 894 2.25 m.o.
outP1000 1 43 855 4.28 m.o. 43 855 4.73 m.o. 43 855 4.76 m.o.
outP1000 2 45 418 4.10 m.o. 45 418 4.53 m.o. 45 418 4.65 m.o.
outP1500 1 69 368 6.33 m.o. 69 368 6.59 m.o. 69 368 6.71 m.o.
outP1500 2 68 571 6.45 m.o. 68 571 6.69 m.o. 68 571 6.84 m.o.
outP2000 1 90 550 8.26 m.o. 90 550 8.60 m.o. 90 550 8.76 m.o.
outP2000 2 90 507 8.44 m.o. 90 505 9.08 m.o. 90 505 9.18 m.o.
outP2500 1 113 643 10.83 m.o. 113 635 11.72 m.o. 113 635 11.99 m.o.
outP2500 2 113 073 10.73 m.o. 113 066 11.30 m.o. 113 066 11.55 m.o.
outP3000 1 135 658 13.22 m.o. 135 659 14.57 m.o. 135 659 14.95 m.o.
outP3000 2 136 101 13.45 m.o. 136 101 15.11 m.o. 136 101 15.67 m.o.
outP3500 1 161 706 13.85 m.o. 161 709 15.14 m.o. 161 709 15.42 m.o.
outP3500 2 162 533 14.23 m.o. 162 528 15.73 m.o. 162 528 16.17 m.o.
outP4000 1 178 655 17.55 m.o. 178 671 18.77 m.o. 178 671 19.36 m.o.
outP4000 2 178 862 17.64 m.o. 178 858 19.12 m.o. 178 858 19.69 m.o.
outP4500 1 198 172 21.96 m.o. 198 176 23.59 m.o. 198 176 24.17 m.o.
outP4500 2 198 440 21.81 m.o. 198 440 22.78 m.o. 198 440 23.26 m.o.
outP5000 1 226 396 21.77 m.o. 226 395 24.31 m.o. 226 395 25.15 m.o.

pl
an

ar

outP5000 2 33 663 13.39 m.o. 33 663 15.23 m.o. 33 663 15.84 m.o.
overall 92 135 9.43 - 92 135 10.19 - 92 135 10.41 -

social and planar 7 604 1.50 - 7 604 1.04 - 7 604 0.91 -
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Table B.11: Solution size |S| and time t (in milliseconds) needed to find it for social
graphs. The time tp is the time needed to prove the optimality. Bolt numbers indicate
best results in comparison. Gray background marks optimally solved instances. No
competitor is able to solve these instances.

red2pack b&r red2pack heuristic

Instance |S| t tp |S| t

PGPgiantcompo 2 708 8.34 8.74 2 708 8.31
adjnoun 18 0.43 0.48 18 0.43
as-22july06 2 026 1 737.58 1 739.08 2 026 1 774.51
celegans metabolic 29 4.77 4.84 29 4.81
celegansneural 14 55.94 58.29 14 57.74
chesapeake 3 0.13 0.18 3 0.13
cond-mat 3 391 16.42 17.09 3 391 16.92
dolphins 13 0.12 0.16 13 0.11
email 209 3.44 3.58 209 3.49
email-EuAll 696 1 561.44 1 561.44 696 1 463.69
football 7 1 351.83 1 388.30 7 223.50
hep-th 2 611 4.77 5.07 2 611 4.85
jazz 13 2.18 2.18 13 7.12
lesmis 10 0.16 0.20 10 0.16
netscience 477 1.24 1.38 477 1.31
p2p-Gnutella04 825 332.37 m.o. 837 1 695.12
polbooks 12 1.97 2.62 12 5.57
power 1 465 3.67 3.92 1 465 17.06
soc-Slashdot0902 3 282 3 532.80 m.o. 3 288 3 314.43

so
ci

al
sm

al
l

wordassociation-2011 2 473 22.04 22.50 2 473 22.43
overall 159 11.32 - 159 13.53

G n pin pout 7 116 8 640.57 m.o. 7 970 1 706 124.41
amazon-2008 106 556 70 549.59 m.o. 107 165 15 503 659.26
astro-ph 2 926 51.34 51.34 2 926 50.86
caidaRouterLevel 40 138 732.05 742.47 40 138 799.62
citationCiteseer 43 238 1 719.69 1 719.69 43 238 1 658.55
cnr-2000 21 897 1 030 063.00 m.o. 21 898 931 990.73
coAuthorsCiteseer 33 167 402.64 402.64 33 167 370.94
coAuthorsDBLP 43 960 672.32 672.32 43 960 630.44
coPapersCiteseer 26 001 14 702.18 14 702.18 26 001 14 979.70
coPapersDBLP 35 529 18 210.66 18 210.66 35 529 17 866.85
cond-mat-2003 5 374 59.71 59.71 5 374 61.45
cond-mat-2005 6 505 99.69 101.85 6 505 100.22
enron 4 090 1 254.90 1 258.90 4 090 1 233.50
loc-brightkite edges 12 940 182.96 185.44 12 940 182.93
loc-gowalla edges 41 590 70 812.67 70 825.69 41 590 71 102.93
preferentialAttachment 6 397 15 947.59 m.o. 7 034 2 608 316.99
road central 4 289 639 2 441 793.42 m.o. 4 499 839 35 841 231.91
road usa 7 297 028 3 733 186.22 m.o. 7 647 882 35 970 721.50
smallworld 6 872 5 379.45 m.o. 7 946 11 329 895.89

so
ci

al
la

rg
e

web-Google 30 296 68 160.24 68 222.93 30 296 67 864.36
overall 30 066 6 442.49 - 30 756 26 377.56

overall social 2 184 270.05 - 2 210 597.37
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Table B.12: Solution size |S| and time t (in milliseconds) needed to find it for erdos
and cactus graphs. The time tp is the time needed to prove the optimality. Bolt
numbers indicate best results in comparison. Gray background marks optimally
solved instances.

gen2pack red2pack b&r red2pack heuristic

Instance |S| t |S| t tp |S| t

cac50 15 25 291.12 17 0.05 0.09 17 0.05
cac100 28 85 674.26 31 0.09 0.14 31 0.09
cac150 42 181 973.07 49 0.31 0.31 49 13.49
cac200 55 313 878.10 65 10.27 10.70 65 14.47
cac250 68 484 267.30 82 0.69 0.79 82 0.25
cac300 80 712 988.40 100 0.83 0.83 100 13.07
cac350 92 963 595.66 116 12.89 13.35 116 13.66
cac400 103 1 230 210.54 133 14.58 15.26 133 30.00
cac450 114 1 574 182.46 148 12.22 12.66 148 13.70
cac500 126 1 987 312.28 166 23.73 25.24 166 17.65
cac550 136 2 389 870.11 179 15.61 15.98 179 18.59
cac600 146 2 779 427.76 199 0.24 0.30 199 0.23
cac650 158 3 328 099.16 214 28.90 29.19 214 58.65
cac700 165 3 859 839.95 232 7.68 7.72 232 8.82
cac750 172 4 477 170.66 250 11.58 11.58 250 19.19
cac800 184 5 088 716.64 264 18.26 18.87 264 19.84
cac850 196 5 648 560.45 282 26.46 27.04 282 26.27
cac900 205 6 490 942.35 300 10.92 11.35 300 29.14
cac950 214 7 281 058.31 315 10.18 10.18 315 17.17

ca
ct

us

cac1000 223 8 084 805.96 332 17.02 17.46 332 58.03
overall 104 1 384 007.11 137 4.26 4.66 137 7.30
Erdos37-2 9 21 118.31 9 0.07 0.11 9 0.06
Erdos37-16 8 21 119.42 9 1.13 1.25 9 2.31
Erdos37-23 9 21 104.45 10 0.09 0.13 10 0.09
Erdos37-44 7 21 318.79 7 0.99 1.19 7 0.14
Erdos37-45 10 21 328.35 11 0.09 0.13 11 0.08
Erdos38-2 9 21 706.27 9 0.07 0.11 9 0.07
Erdos38-14 8 21 915.50 9 0.59 0.68 9 2.50
Erdos38-18 6 21 969.36 7 1.25 1.35 7 4.59
Erdos38-46 8 21 927.82 9 1.05 1.19 9 14.31
Erdos38-48 8 21 643.77 9 0.96 1.17 9 1.30
Erdos39-14 9 22 997.65 9 0.16 0.16 9 0.08
Erdos39-22 10 22 626.53 11 0.06 0.10 11 0.06
Erdos39-25 8 23 005.90 8 1.30 1.69 8 0.48
Erdos39-29 9 22 800.22 10 0.07 0.12 10 0.07
Erdos39-44 8 22 758.11 9 0.11 0.15 9 0.10
Erdos40-0 9 23 138.60 10 0.18 0.18 10 1.79
Erdos40-4 8 19 244.44 9 0.26 0.26 9 1.21
Erdos40-8 7 19 161.29 8 1.87 2.02 8 12.74
Erdos40-10 10 23 474.02 10 0.22 0.22 10 1.04

er
do

s

Erdos40-43 8 19 918.83 9 1.07 1.18 9 3.51
overall 8 21 679.67 9 0.31 0.38 9 0.53
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Table B.13: Solution size |S| and time t (in seconds) needed to find it for planar
graphs. The time tp is the time needed to prove the optimality. Bolt numbers indicate
best results in comparison. Gray background marks optimally solved instances.

Apx-2P+Imp2P Apx-2P+Imp2P red2pack red2pack
(h = 100) (h = 50) b&r heuristic

Instance |S| t |S| t |S| t |S| t

outP500 1 20 333 97.51 20 327 22.99 19 140 1.77 20 332 26 166.03
outP500 2 24 187 1 978.02 24 144 58.42 21 894 2.25 24 181 12 631.72
outP1000 1 48 575 1 066.37 48 472 145.79 43 855 4.76 48 567 29 215.74
outP1000 2 49 429 692.06 49 430 111.35 45 418 4.65 49 416 28 336.12
outP1500 1 74 232 794.47 74 170 166.89 69 368 6.71 74 292 31 577.14
outP1500 2 73 901 2 638.12 73 813 161.62 68 571 6.84 73 922 31 015.92
outP2000 1 - t.o. 98 519 333.63 90 550 8.76 98 555 32 735.67
outP2000 2 98 643 2 062.41 98 558 251.90 90 505 9.18 98 669 33 103.01
outP2500 1 122 826 1 092.08 122 761 233.20 113 635 11.99 122 831 34 384.01
outP2500 2 122 322 4 897.24 122 275 319.30 113 066 11.55 122 282 34 018.53
outP3000 1 146 748 1 739.13 146 622 258.05 135 659 14.95 146 696 35 371.22
outP3000 2 147 544 1 633.60 147 360 341.67 136 101 15.67 147 522 35 483.06
outP3500 1 171 303 14 025.36 171 127 490.08 161 709 15.42 171 264 34 414.78
outP3500 2 - t.o. 172 720 351.27 162 528 16.17 172 956 35 585.91
outP4000 1 - t.o. 196 172 490.55 178 671 19.36 196 189 35 262.82
outP4000 2 196 218 19 284.45 196 076 540.26 178 858 19.69 196 243 35 367.19
outP4500 1 220 799 4 932.77 220 677 505.56 198 176 24.17 220 737 35 650.42
outP4500 2 221 406 11 015.21 221 283 503.34 198 440 23.26 221 345 35 643.68
outP5000 1 244 641 12 413.34 244 350 595.94 226 395 25.15 244 548 35 605.20

pl
an

ar

outP5000 2 245 031 6 309.16 245 038 603.84 33 663 15.84 245 223 35 789.86
overall - - 110 009 255.04 92 135 10.41 110 095 31 706.65
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