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Abstract

Interferons (IFNs) are critical regulators of the immune system, with special importance

for viral infections, autoimmune diseases, and cancer. However, there are challenges in

distinguishing the effects of different IFN types and understanding their cell-type-specific

responses. Single-cell sequencing can address these gaps but requires robust tools for cell-

type classification and precise analysis of IFN-mediated effects. To better characterize

IFN- and cell-type-specific gene expression responses, novel bioinformatics approaches

are needed.

One of the main challenges in single-cell analysis is cell-type classification. Most ap-

proaches use expression information of all expressed genes to provide cell type labels.

However, they often introduce bias into statistical procedures when testing the same genes

for differential expression that were already used for cell typing. In the first chapter of my

thesis, I addressed this issue by using only small sets of robust immune cell-type-specific

genes for cell typing within a random forest model. While most studies have generated

such gene expression signatures (GESs) from single gene expression datasets, I developed a

novel GES discovery workflow based on similarities in gene expression across seven single-

cell cancer datasets. Compared to existing algorithms and published GESs, my approach

showed superior or comparable performance, significantly improved the classification of

myeloid cells and enhanced downstream analysis of peripheral blood mononuclear cell

(PBMC) datasets. Thereby, I establish an unbiased method for classifying immune cells

and statistical investigation of expression differences between cell types.

In the second part, I dissected distinct effects of IFN-I and IFN-II across different cellu-

lar, experimental, and disease contexts. Published IFN GESs have been purely generated

from only single gene expression datasets within specific cellular contexts and primar-

ily comprise genes induced by IFN-I. I used five different bulk tissue RNA-sequencing

datasets of IFN stimulation and applied a novel meta-analysis workflow to resolve GESs

with specificity for IFN-I and IFN-II response. My IFN GESs had greater functional

relevance to IFN-type-specific response and higher coherence than most published signa-

tures. My IFN-II GES detected IFN-II response of not only myeloid cells but also B cells,

hematopoietic cells, and näıve T cells. Further, I demonstrated the relevance of IFN-I

GES in disease severity of lupus nephritis, and IFN-II GES as predictive biomarker for

immune checkpoint inhibitor response. I provide a more precise distinction between IFN-I

and IFN-II responses at the cell type level, as well as their relevance to disease progression

and therapy outcomes.

In the final part, I characterized immune cell-type-specific responses to IFNs as compre-

hensive and objective studies of these responses are still lacking. Previous studies do
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not provide cellular or temporal resolution, nor compare responses across different IFNs

within a single study. To address this gap, I applied the tool sets established in Chapter

1 and 2 on a novel temporal CITE-seq dataset of IFN-I and IFN-II stimulation of hu-

man PBMCs. I showed that all immune cell types exhibited transient responses to IFN-I

stimulation while only myeloid and B cells responded to IFN-II, with distinct dynamic

patterns. Furthermore, I identified five unique temporal gene groups specific to mono-

cyte responses to IFN-I or IFN-II. Those groups consist of genes that play key roles in

distinct immunological pathways. My findings enable a more detailed characterization of

IFN-mediated responses in distinct immune cell populations compared to those provided

by published datasets or GESs.

In this thesis, I introduce novel bioinformatics tools that address key challenges in immune

cell classification and the study of IFN responses. These methods advance the resolution of

immune profiling in single-cell data and provide more precise insights into IFN-mediated

immune cell type responses in both health and disease. My approaches overcome the

limitations of existing workflows, offering new insights into IFN biology and its relevance

to disease mechanisms, as well as potential applications in biomarker research and therapy.
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Zusammenfassung

Interferone (IFNs) sind kritische Regulatoren des Immunsystems und spielen eine zentrale

Rolle bei viralen Infektionen, Autoimmunerkrankungen und Krebs. Um diese kritischen

Regulatoren therapeutisch zugänglich zu machen, muss es möglich werden die Effekte

von verschiedenen IFN-Typen zu unterscheiden und ihre zelltypspezifischen Antworten zu

verstehen. Einzelzell-Sequenzierung bietet zwar diese Möglichkeit, aber erfordert robuste

Methoden zur Zelltypklassifizierung und eine präzise Analyse der Effekte von IFNs. Um

IFN- und zelltypspezifische Genexpressionsprofile besser zu charakterisieren, sind daher

neuartige bioinformatische Ansätze nötig.

Eine der größten Herausforderungen bei der Einzelzellanalyse ist die Zelltypklassifizie-

rung. Die meisten Methoden verwenden die Expressionsinformation aller exprimierten

Gene, um Zelltypen zu bestimmen. Dabei entsteht jedoch häufig ein Bias, wenn dieselbe

Gene sowohl für die Zelltypbestimmung als auch für die Analyse differentieller Expression

verwendet werden. Im ersten Kapitel meiner Dissertation bin ich dieses Problem angegan-

gen, indem ich eine kleine Anzahl von robusten Genen, die spezifisch für Immunzellen sind,

in einem Random-Forest-Modell eingesetzt habe. Während andere Studien solche Genex-

pressionssignaturen (GESs) auf Basis einzelner Datensätze erstellt haben, entwickelte ich

eine neuartige Methode zur Entdeckung von GESs basierend auf den Genexpressionsmus-

tern von über sieben Einzelzell-Krebsdatensätzen. Mein Ansatz übertraf die Ergebnisse

bestehender Algorithmen und bereits veröffentlichter GESs. Außerdem konnte ich mit

diesem Ansatz eine signifikante Verbesserung der Klassifizierung von myeloider Zellen er-

reichen und optimierte die Downstream-Analyse von mononukleäre Zellen des peripheren

Blutes (PBMC) wesentlich. Damit führe ich eine unvoreingenommene Methode ein, die

präzisere Zelltypklassifizierung und differentielle Genexpressionsanalyse ermöglicht.

Im zweiten Teil meiner Arbeit untersuchte ich die spezifischen Effekte von IFN-I und

IFN-II in verschiedenen zellulären, experimentellen und krankheitsspezifischen Kon-

texten. Publizierte IFN-GESs basieren in der Regel auf einzelnen Datensätzen und

bestehen oft aus IFN-I-induzierten Genen. Ich habe fünf verschiedene Bulk RNA-

Sequenzierungsdatensätze analysiert und einen neuen Metaanalyse-Workflow angewandt,

um GESs für IFN-I- und IFN-II spezifische Antworten zu ermitteln. Im Ergebnis dieser

Analyse zeigten meine GESs eine hohefunktionelle Relevanz und Kohärenz und übertrafen

damit die meisten publizierten GESs. Die IFN-II-GES erkannte nicht nur myeloide Zellant-

worten, sondern auch die Antworten von B-Zellen, hämatopoetischen Zellen und naiven

T-Zellen. Außerdem konnte ich mit dieser Vorgehensweise aufzeigen, dass die IFN-I-GES

mit der klinischen Krankheitsaktivität von Lupusnephritis korreliert, während die IFN-

II-GES als prädiktiver Biomarker für die Wirksamkeit von Immuncheckpoint-Inhibitoren
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dient. Zusammengefasst konnte ich eine präzisere Unterscheidung der IFN-Antworten auf

Zelltypenebene ermöglichen und einen klaren Bezug zu ihrer Bedeutung für Krankheits-

verläufe und Therapieerfolge herstellen.

Im dritten und letzten Teil meiner Arbeit adressierte ich dann die Tatsache, dass es bis

zu diesem Zeitpunkt keine umfangreichen und objektiven Studien zur zelltypspezifische

IFN-Antwort gibt. In den bisherigen Studien fehlen entweder die zelluläre oder zeitliche

Auflösung oder es wurde kein Vergleich der Antworten verschiedener IFNs innerhalb einer

einzelnen Studie durchgeführt. Um diese Lücke zu schließen, habe ich die in den ersten bei-

den Kapiteln entwickelten Methoden auf einen neuartigen zeitlichen CITE-seq-Datensatz

angewandt, der die IFN-I- und IFN-II-Behandlung menschlicher PBMC untersucht. So

konnte ich zeigen, dass alle Immunzellen vorübergehend auf IFN-I reagierten, während nur

myeloide Zellen und B-Zellen auf IFN-II reagierten, jedoch mit unterschiedlichen dynami-

schen Mustern. Zudem identifizierte ich fünf zeitliche Genmuster, die für die IFN-Antwort

in Monozyten entscheidend sind und zentrale immunologische Funktionen regulieren. Mei-

ne Ergebnisse liefern eine präzisere Charakterisierung der IFN-vermittelten Antworten als

bisher verfügbare Datensätze oder Signaturen.

In dieser Dissertation stelle ich neuartige bioinformatische Methoden vor, die zentrale

Herausforderungen in der Klassifizierung von Immunzellen und Untersuchung von IFN-

Antworten angehen. Diese Methoden verbessern die Auflösung der Immunprofilierung in

Einzelzelldaten und erschaffen genauere Einblicke in die IFN-vermittelten Immunreaktio-

nen, sowohl im gesunden Zustand als auch in Krankheiten. Meine Ansätze überwinden

die Einschränkungen bestehender Methoden und bieten neue Perspektiven in die IFN-

Biologie und ihre Relevanz für Krankheitsmechanismen sowie mögliche Anwendungen in

der Biomarkerforschung und -therapie.
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Ich möchte auch eine wichtige Person erwähnen, mit der ich mein Leben geteilt habe:

Lukas. Er hat mich immer gefordert, und hat immer an mich geglaubt, auch wenn ich es

selbst nicht konnte. Du wolltest immer das Beste für mich. Dafür und für die schönen

Erinnerungen werde ich immer dankbar sein.

Life is at the end a give-and-take relationship. During my doctoral thesis many people

have come into different eras of my life and allowed me look into the life from their

‘windows’. I am incredibly grateful that they opened their ‘houses’ for me to observe.
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1 Introduction

1 Introduction

1.1 Interferons: brief history

IFNs are proteins classified as cytokines, signaling molecules that regulate both the adap-

tive and innate immune systems. In the 1950s, Isaacs and Lindenmann observed acquired

immunity upon primary infection in non-infected cells through an unknown substance in

the medium (Isaacs and Lindenmann, 1957). They named this substance IFN meaning it

‘interfered’ with influenza cells. Later, the anti-viral properties of IFNs were extended to

other viruses, increasing their importance as antiviral agents (Katze et al., 2002). IFNs

were originally suggested to be anti-viral molecules. Later, their basic relevance for many

immunity-related processes, especially in autoimmune diseases, became clear. Their anti-

tumor effects have since been demonstrated in the context of cancer, not only in tumors

of viral origin but in various tumors of different origins (Taylor, 2014). Although IFNs are

broadly relevant and important for immune system regulation, IFNs are still an enigma

in the immunology field. Despite many studies, a thorough and complete characterization

of their transcriptional effects, particularly responses to different IFNs in different cellular

and disease contexts, is still lacking. Understanding those effects and related mechanisms

could provide novel strategies for targeting different aspects of disease biology: develop-

ment, progression, therapy, and prevention (Aricò et al., 2019).

1.2 Transcription of IFN genes

The IFN family is a diverse group of immune-modulatory proteins consisting of three

major types: type-I IFN (IFN-I), type-II IFN (IFN-II), and type-III IFN (IFN-III) (Pla-

tanias, 2005). IFN-I comprises seven types (α, β, ε, ω, κ, τ, and δ), as well as various

isoforms of IFN-α (IFN-alpha/alfa, IFN-a). IFN-II contains only IFN-γ (IFN-gamma,

IFN-g), while IFN-III consists solely of IFN-λ (IFN-lambda) and its isoforms. Together,

these types and isoforms regulate diverse immune responses, each contributing uniquely

to immune modulation.

Originally, IFNs were discovered by their induction upon viral infection. Further studies

demonstrated that IFNs are released upon various cellular stimuli. IFN-I production can

be triggered by microbial or viral glycolipids, viral RNA or DNA, and aberrant DNA

or RNA from dying cells (Jorgovanovic et al., 2020; Borden, 2019; Perry et al., 2005).

Pattern recognition receptors, such as Toll-like receptors (TLRs), located on the surface

or inside the cell, detect extracellular stimuli and trigger downstream signaling pathways

that lead to the expression of IFN-I types. Additionally, there are several intracellular
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sensor pathways, such as the STING-cGAS pathway, which is activated by viral or host

DNA from damaged cells. On the other hand, interleukins, tumor- or pathogen- secreted

antigens and IFN-II stimulate IFN-II production. Notably, IFN types differ in terms of

their production patterns. IFN-I is produced in the early phase of an infection, playing

a central role in innate immune system, while IFN-II is secreted later, linking innate and

adaptive immunity (Lee and Ashkar, 2018). IFN-I and IFN-III can be produced by various

cells, while mainly immune cells such as T and natural killer (NK) cells secrete IFN-II

(Jorgovanovic et al., 2020; Swiecki and Colonna, 2011). These temporal and cellular

differences in IFN production indicate the specialized and complementary roles of IFN

types in immunity.

1.3 IFN signaling and response: distinct activation pathways

for different types of IFNs

IFNs initiate their signaling processes through binding to specific receptors on target cells,

which activates downstream signaling pathways. These pathways are broadly classified

into two types: the canonical and non-canonical pathways (Lee and Ashkar, 2018). The

canonical IFN pathway is IFN type-specific with distinct receptors, kinases, transcrip-

tion factors, and response elements responsible for the response. The signaling pathway

involves three main steps: receptor binding, activation of receptor-associated kinases,

and downstream signaling in which transcription factors and response elements activate

multiple IFN stimulated genes (ISGs).

Each IFN type binds to distinct receptors: IFNAR1-IFNAR2 for IFN-I, IFNGR1-IFNGR2

for IFN-II, and IFNLR1-IL-10R2 for IFN-III (Chow and Gale, 2015; Mesev et al., 2019).

Notably, IFN-I and IFN-III share the same downstream signaling pathway: the activation

of TYK2-JAK1 kinases, formation of the STAT1-STAT2-IRF9 complex, and binding of

the complex to IFN-stimulated response elements in the nucleus. Despite the similari-

ties in signaling cascade and overlapping ISGs, IFN-I and IFN-III can lead to different

signaling outcomes (Lazear et al., 2019). In contrast, IFN-II uses different downstream

signaling elements, including JAK1-JAK2 kinases, formation of STAT1 homodimers, and

activation of gamma-activated sequences on the promoters of ISGs (Mesev et al., 2019).

Further, earlier studies (reviewed in Castro et al. (2018); McNab et al. (2015); Chow and

Gale (2015)) suggest that while almost all nucleated cells are responsive to IFN-I and

IFN-II, only non-hematopoietic cells respond to IFN-III. These distinctions illustrate the

diverse roles and responses associated with each IFN type.

Despite their distinct pathways, IFNs of different types activate the transcription of over-

lapping sets of ISGs which complicates the interpretation of their individual roles in im-
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mune responses (Cooles and Isaacs, 2022; Hall et al., 2012; Platanias, 2005; El-Sherbiny

et al., 2018). While a few ISGs are uniquely stimulated by either IFN-I or IFN-II, many

are commonly induced by both. Additionally, within IFN-I subtypes, many reports have

shown differing downstream effects, further complicating the identification of specific con-

tributions (Mesev et al., 2019; Garcin et al., 2013; James et al., 2007; Schreiber, 2017).

Yet. resolving those differences are critical for understanding IFN biology and its impli-

cations for immune responses, disease, and therapy.

1.4 Quantification of gene expression: from microarrays to

single-cell sequencing

The challenges in disentangling complex IFN biology emphasizes the importance of

genome-wide gene expression profiling, a key approach in biomedical research for ana-

lyzing gene expression differences between different conditions such as between healthy

and disease states. Different methods have been developed to quantify the level of gene

expression, creating the field of transcriptomics. Especially high throughput technologies

provide cost-effective and faster analysis of many genes at the same time (Soon et al.,

2013). During my thesis, I have utilized transcriptomic datasets produced by different

gene expression quantification technologies, chosen based on the specific research question.

In this section, I shortly introduce those relevant technologies along with their advantages

and disadvantages.

Earlier studies applied microarray-based methods which use the hybridization of labelled

nucleic acids probes derived from biological samples to arrayed nucleic acid probes of

thousands of genes for expression profiling (Stears et al., 2003; Govindarajan et al., 2012).

Even though compared to previous experimental technologies, microarrays serve as cost-

effective and quantitative method with well-established protocols and methods, there are

some disadvantages. Probe sets on the arrays or chips are fixed and only known tran-

scripts can be detected hindering discovery of novel transcripts (Kratz and Carninci,

2014). Further, binding of multiple probes (‘cross-hybridization’) might lead to false sig-

nals (Okoniewski and Miller, 2006). The detection range of hybridization technology is

limited, which affects precision at both ends of the intensity scale. Signals from lowly

expressed genes may be masked by background noise, while signals from highly expressed

genes may not be detected once they reach the maximum detection limit (Wang et al.,

2009). Although microarrays are still applicable for addressing certain biological ques-

tions, their limitations required the need for more precise technologies.

RNA sequencing (RNA-seq) emerged as a high throughput solution to address the chal-

lenges of microarray technologies, offering detection of a large range of known and un-
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known transcripts as well as highly and lowly expressed genes (Wang et al., 2009; Van den

Berge et al., 2019). This advancement significantly contributed to the field with major

advancements, particularly by allowing for more comprehensive gene expression analysis.

However, RNA-seq, while impactful, initially lacked the single-cell resolution to address

research questions regarding heterogeneous tissues. RNA-seq analysis provides an aver-

age expression for all cell types resulting in highly abundant cells to dominate the overall

expression signal and hinder the contributions of less abundant cells (Newberg et al.,

2018). Although these limitations exist, RNA-seq has remained the dominant technique

for over a decade, leading to the generation of large, valuable datasets such as The Cancer

Genome Atlas (TCGA) (Chang et al., 2013), Cancer Cell Line Encyclopedia (Barretina

et al., 2012), and Genotype-Tissue Expression project (Lonsdale et al., 2013), which led

to further discoveries and techniques.

To address the limitations of bulk tissue RNA-seq techniques, single-cell RNA sequencing

(scRNA-seq) has emerged. Since the pioneering work of Tang et al. in 2009 (Tang et al.,

2009), diverse scRNA-seq platforms have been established tailored for specific research

questions. These methodologies enable detection of each cell within a heterogeneous

cell population, allowing the examination of cell-to-cell variability and identification and

phenotypic characterization of rare and known cell types (Lim et al., 2023). Especially

in the context of disease and therapy, cell-type specific transcriptomic alterations can be

identified, enabling more precise disease characterization and enhancing drug discovery

and development. The field continues to grow producing large atlases and databases of

various tissues and diseases from large collection of organisms such as Human Cell Atlas

(Regev et al., 2017), TISCH2 initiative (Han et al., 2023), and tumor microenvironment

atlas (Nieto et al., 2021).

scRNA-seq offers several advantages over bulk tissue RNA-seq particularly in examin-

ing cellular heterogeneity but still there are technical limitations to be addressed in the

field. The main challenges are lack of ‘gold standards’ and robust methods for cell type

classification and downstream analysis of cell type-specific gene expression (Lafzi et al.,

2018; Lahnemann et al., 2020). Addressing these limitations is crucial to maximize the

potential of scRNA-seq and improve the reliability of biological data interpretation.

1.5 Exploratory analysis of transcriptomics data

Exploratory data analysis examines the structure of data and identifies dominant as well

as subtle patterns that may provide insights into the underlying processes. Depending on

the research question and the purpose of the analysis, various exploratory data analysis

workflows can be employed. Here, I briefly introduce two methods for exploratory data
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analysis—dimensionality reduction and clustering—that I used throughout all chapters

of my thesis.

1.5.1 Dimensionality reduction

Dimensionality reduction is a key technique in sequencing data analysis to visualize high

dimensional data and understand major variations and patterns in the data. There are two

types of methods: linear and non-linear. Principal component analysis (PCA) is the most

widely used linear method. It identifies orthogonal directions, or principal components,

that capture the maximum variance in the data (Pearson, 1901). While PCA is effective

for linear structures, it struggles to capture complex, non-linear relationships commonly

found in scRNA-seq data (Kiselev et al., 2019; McInnes and Healy, 2018; Choi and Kim,

2019; Linderman, 2021). Additionally, linear methods are sensitive to noise, which can

distort the data’s true structure. To overcome the limitations of linear methods, non-linear

dimensionality reduction techniques have been developed.

Commonly used non-linear dimensionality reduction methods are: t-distributed stochas-

tic neighbor embedding (t-SNE) (Kobak and Berens, 2019) and uniform manifold ap-

proximation and projection (UMAP) (McInnes and Healy, 2018). t-SNE preserves local

relationships in high-dimensional data by modeling similarities between points as prob-

abilities (Kobak and Berens, 2019; van der Maaten and Hinton, 2008). It models these

relationships as probabilities in the original high-dimensional space and seeks to represent

them similarly in a reduced-dimensional space. The method adjusts the lower-dimensional

representation to minimize the difference between the two sets of probabilities, ensuring

that nearby points remain close after dimensionality reduction. While this method effec-

tively captures local patterns, it often distorts the global structure of the data and can be

computationally demanding when applied to larger datasets (McInnes and Healy, 2018;

Becht et al., 2019). In contrast, UMAP is based on principles of topology to capture both

local and global structures. It creates a graph to represent the local relationships between

data points and then uses this graph to map the data into a lower-dimensional space.

UMAP is computationally efficient and scalable, making it more suitable for analyzing

larger datasets compared to t-SNE. Such non-linear dimensionality reduction methods

transform complex data into low-dimensional spaces, making it easier to extract biologi-

cal and dataset-specific insights and relationships in single-cell data.

One important step of dimensionality reduction analysis is the selection of relevant fea-

tures. This marks the beginning of each analysis and represents an important decision

with huge impact on the results, particularly in single-cell data analysis. These features

are often referred as highly variable genes (HVGs) (Luecken and Theis, 2019). Each al-
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gorithm has its own method for selecting HVGs. For example, Seurat, a commonly used

analysis tool in single-cell analysis (Satija, 2016), identifies HVGs based on variance-to-

mean ratio, with a default of 2,000 genes. Typically, between 1,000 and 5,000 HVGs are

used. Luecken and Theis (2019) recommends selecting more than 2,000 HVGs. Using

few HVGs might limit the distinction of fine-grained cell populations (Amezquita et al.,

2020, 2021). On the other hand, including a large number of HVGs might introduce noise

or capture irrelevant features, hindering detection of true signal. The selection of HVGs

depends on the dataset and the specific analysis objectives, but it might significantly

influence the accuracy and interpretability of subsequent analyses.

The low-dimensional representation can be further explored to check for potential batch

effects. Batch effects may arise from variations in experimental conditions, sample pro-

cessing, or other technical and biological factors. These effects should be corrected if

samples do not cluster by expected conditions or biological properties. However, the cor-

rection should not hinder the true biological signal nor impede the downstream analysis

(Sprang et al., 2022). Contrast to batch correction, when working with multiple datasets,

especially from different sources or experimental conditions, data integration (or harmo-

nization) becomes essential (Luecken et al., 2022). While batch removal corrects for batch

within a single dataset, typically from same lab or experiment, data integration addresses

nested batch effects, such as those from multiple labs or protocols. The goal of data in-

tegration is to combine datasets from different sources into a unified representation while

preserving the biological diversity across them.

These dimensionality reduction techniques can be enhanced by using selected feature

sets, such as known markers of cell types, which have the capability to stratify data in

specific ways. This approach, which is often underused, allows investigation of whether

these feature sets still fulfill their purpose on new, unseen data and effectively stratify the

data objects into separate clusters. It also enables comparison between smaller, curated

feature sets and larger, generic sets of HVGs in terms of their ability to reveal biologically

meaningful structures.

1.5.2 Clustering

Clustering is an unsupervised technique used to discover groups of data points with similar

features. The goal is to maximize the similarity between data points within clusters to the

exclusion of dissimilar data points in other clusters. Clustering serves various tasks across

different fields, capturing distinct patterns in the data. For example, in biomedical data,

clustering is commonly used to group genes with similar expression profiles, to identify

cell types in single-cell datasets, or to detect subpopulations within heterogeneous cell
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populations. Clustering methods are useful tools for extracting meaningful biological

patterns, enabling further analysis and insights.

Clustering methods can be broadly categorized into partitioning, hierarchical, density-

based, and graph-based approaches. Each method is suited to specific tasks, as no single

method fits all scenarios (Xu and Wunsch, 2005). Partitioning methods are often used

when the number of clusters is predefined (Nies et al., 2019). In contrast, other methods

do not require a predefined number of clusters. Hierarchical and partitioning methods are

typically applied to smaller, less complex datasets, while density-based and graph-based

methods are more efficient for handling larger, complex data. In my thesis, I applied

hierarchical clustering to identify temporal gene expression patterns and density-based

clustering for grouping similar gene expression profiles in immune cell types. Further, most

single-cell methods, that I benchmarked, rely on graph-based approaches for clustering

cells. Each method has unique strengths and applications, reflecting the diversity of

datasets and clustering goals.

Hierarchical clustering creates tree-like structures called dendrograms by repeatedly merg-

ing or splitting data points based on their similarity (Eisen et al., 1998). It is useful for

exploring the relationships between data points at different levels of similarity, making it

particularly suited for cases where the structure of the clusters is not immediately obvi-

ous. Each node represents a single feature, and the branch length between points indicates

their degree of similarity or dissimilarity. The tree can be cut at a specific height to de-

fine the clusters. This approach not only shows the hierarchical relationships between

features but also provides multiple ways to define clusters, making it a valuable tool for

exploratory analysis.

The DBSCAN algorithm is a density-based clustering method that groups data points

based on local point density (Ester et al., 1996). It defines clusters as regions containing

a minimum number of points (minPts) within a specified radius ε. Core points are points

with at least minPts neighbors within ε. Border points are those within of a core point

but with fewer than minPts neighbors themselves. Points that are not reachable from

any core point are classified as noise. The advantage of DBSCAN include flexibility, a

low number of parameters, effectively identifying arbitrary shapes, noise filtering, and no

need for predefined cluster numbers.

Graph-based clustering is commonly used in single-cell data to group cells with similar

transcriptional profiles into communities that reflect biological features (Zhu et al., 2020).

Cells are represented as nodes, and edges represent the similarity of their transcriptional

profiles. Similarity measurements, such as Euclidean distance or Pearson correlation, are

often used to define links or even weighted links between nodes. However, as scRNA-seq
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data dimensionality increases, these metrics struggle to capture relationships, especially

non-linear ones, which involve interactions that simple linear models cannot describe.

Graph-based clustering can capture such complex relationships by focusing on local neigh-

borhood structures. To address this limitation, primary similarities are first calculated

using traditional metrics, then refined by defining secondary similarities as edge weights

in a weighted graph. Clustering is then performed based on a graph representation of the

data by partitioning the graph into communities or sub-graphs. This approach is essential

for studying cellular heterogeneity, particularly in the context of cell type classification.

While established methods exist for clustering single-cell data, one major challenge re-

mains among the grand challenges in single-cell data analysis: the potential biases in-

troduced in cell type classification by prior clustering, which can influence downstream

analyses (Aybey et al., 2023; Gibson, 2022; Lahnemann et al., 2020; Pasquini et al., 2021;

Zhang et al., 2019a). These biases can arise when the same data points are used both

for determining cell types and identifying differentially expressed genes between these cell

types. This violates the prerequisite of statistical independence for downstream tests, as

the data used to assign class labels are not independent of the statistical tests performed.

Overcoming these challenges requires careful methodological approaches to ensure accu-

rate and biologically meaningful analyses.

1.6 Cell type concept: The identity of cells

With the development of single-cell technologies, our understanding of cellular diversity

has advanced significantly. Still, challenges remain in defining cell types and classifying

cells due to lack of standardized practices and non-comparable results across methods.

Historically, the concept of cell type emerged from grouping cells based on phenotypical,

functional, and structural similarities, simplifying the organization of cell populations

(Zeng, 2022). In scRNA-seq, questions remain about how well unsupervised clusters rep-

resent true cell types, the consistency of cell type labels across datasets, the appropriate

granularity, and the boundary between cell types and states (Trapnell, 2015). Further,

the heterogeneity within the cell types complicates the matter. In the pursuit of catego-

rizing cells, there have been alternative suggestions such as periodic table concept (Xia

and Yanai, 2019), reference cell tree (Domcke and Shendure, 2023) or hierarchical trees

(Michielsen et al., 2023). These frameworks aim to provide more standardized ways of

defining cell types, yet the field remains in its early stages. More advancements in method

development and definition of cell types are needed, alongside thorough examinations of

the limitations of current approaches. The discrepancies in cell typing across different

methods, and the influence of clustering techniques on these definitions, limit the inter-
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pretation of the biological data. The field requires more robust and consistent strategies

to define and annotate cell types.

1.7 Gene expression signatures and ‘how to discover them’

Gene expression signatures (GESs) are sets of genes that exhibit unique expression pat-

terns associated with specific biological pathways, conditions, diseases, or cellular states.

These signatures are crucial in biomedical research, particularly in diagnosis, progno-

sis, and clinical outcome (Itadani et al., 2008). In scRNA-seq, cell type-specific GESs are

utilized for classifying cell types and determining cell type abundance in bulk tissue RNA-

seq data, providing insights into cellular heterogeneity and biological processes. They are

an explicit statement about which genes are important markers for a specific biological

phenomenon.

An ideal GSE should be exclusively upregulated under a certain biological or cellular

stimulus and demonstrate high coherence within the signature, ensuring that the genes

within the signature are biologically relevant to the condition or cell type being studied

(Staub, 2012; Kreis et al., 2024). Challenges arise when identifying and applying GESs

specific to certain biological conditions or cell types. Validating these signatures across

diverse cellular contexts is essential for confirming their robustness and relevance. Using

independent datasets ensures their consistency across conditions or tissues, emphasizing

their biological significance and clinical potential. These steps ensure that the signature

accurately reflects the biological process being studied, not unrelated noise. This is critical

for translating findings across different settings, applying them effectively in immune

profiling, and understanding complex biologies.

1.8 Cell type specific IFN response

Different cell types respond distinctly to IFNs, and the biological pathways regulated by

these cytokines are highly context-dependent (McNab et al., 2015; Lee and Ashkar, 2018;

Keskinen et al., 1997; Fenton et al., 2021; Gocher et al., 2022; Sri-Ngern-Ngam et al.,

2022; Kosmidis et al., 2018). Notably, immune cell types have different sensitivities to

IFN-I and IFN-II. For instance, monocytes are particularly responsive to IFN-II (Waddell

et al., 2010). In contrast, IFN-I has broader transcriptional effects across a range of

immune cells, including myeloid cells, B cells, T cells, and NK cells (McNab et al., 2015).

Despite these insights, there is a lack of studies that comprehensively investigate IFN

responsiveness at the single-cell level, particularly with regard to temporal changes and

comparisons across different IFN types in immune cell populations. While bulk RNA-
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seq or microarray studies reveal broad patterns of IFN-induced gene expression, they do

not capture the variability within heterogeneous immune cells (Devlin et al., 2020; Reyes

et al., 2019; Waddell et al., 2010). While single-cell studies on IFN responsiveness exist,

they often fail to compare the effects of different IFN types or examine the temporal

dynamics of these responses (Kartha et al., 2022; de Cevins et al., 2023; Karagiannis

et al., 2020; Hartoularos et al., 2023; Goel et al., 2021). These gaps in research highlight

the need for more comprehensive studies that can capture the dynamic and diverse nature

of IFN signaling in immune cells. Advances in gene expression quantification technologies,

combined with the use of GESs and improved bioinformatics methodologies, can provide

deeper insights into complex IFN biology.
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1.9 Objectives

In the previous sections, I have pointed out the shortcomings of previous studies that

tried to disentangle the different types of IFN responses in immune cells, identify robust

GESs, and establish unbiased approaches for cell type classification. This led to a number

of study objectives of my thesis, building up successively on each other, that are the basis

of the results that will be shown in the following three chapters:

i. To identify robust GESs for immune cell types that outperform published ones by

leveraging multiple single-cell cancer datasets (Chapter 1).

ii. To develop a clustering-free and statistically unbiased method for cell type classifi-

cation based on robust immune cell GESs for single-cell datasets, particularly suited

for complex experimental setups as discussed in Chapters 2 and 3 (Chapter 1).

iii. To identify GESs that can specifically disentangle transcriptomic signals associated

with responses to IFN-I and IFN-II, with higher specificity than published signatures

(Chapter 2).

iv. To comprehensively evaluate IFN response GESs across various sequencing plat-

forms, experimental conditions, and disease contexts (Chapter 2).

v. To assess the strength of immune cell type responses to IFN-I and IFN-II in an

unbiased and comprehensive way using a newly generated temporal PBMC CITE-

seq dataset upon IFN-I and IFN-II stimulation (Chapter 3).

vi. To investigate temporal immune cell type responses to IFN-I and IFN-II more com-

prehensively than previous studies and GESs by utilizing the tools developed from

Chapter 1 and 2 (Chapter 3).
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2 Chapter 1: “No gene is an island”

“No man is an island,

Entire of itself.

Each is a piece of the continent,

A part of the main.”

- John Donne, “No Man is an Island”

In this chapter, I present a novel workflow for identifying robust immune cell type GESs.

I utilize gene expression similarities across seven scRNA-seq tumor microenvironment

(TME) datasets from six different cancer types. I demonstrate the utility of those GESs

in cell typing, by establishing and benchmarking a random forest (RF) classifier against

five most often used methods. I compare my GESs and other published signatures using

two PBMC scRNA-seq datasets. Finally, I evaluate the accuracy of cell type assignments

and their impact on statistical downstream analyses using an IFN stimulation scRNA-seq

dataset.

(I adapted this chapter based on my publication (Aybey et al., 2023), in which I

was the lead author and for which I have conducted all analyses.)

2.1 Introduction

2.1.1 Pitfalls in cell type classification in single-cell datasets

Cell type classification is an important step in single-cell data analysis to examine cell-

type specific alterations, which can provide insights into biological processes and disease

mechanisms. Despite its importance, there is no standardized approach for this task. Cur-

rent methods largely fall into two categories: unsupervised and supervised approaches.

Unsupervised approaches are the most often used methods for annotating cell types: After

clustering the cells based on transcriptional similarity, a cell type is assigned to each clus-

ter based on the top differentially expressed genes (DEGs) or on small sets of canonical

marker genes (Butler et al., 2018; Xie et al., 2021). While widely adopted, this process is

generally manual, laborious, and error-prone due to the variability in clustering param-

eters, reproducibility issues, and a missing consensus on cluster definitions (Lahnemann

et al., 2020; Zhao et al., 2019; Gibson, 2022).

Supervised methods offer an alternative by mapping reference datasets to the query data,

identifying similarities between them (Sun et al., 2022). These approaches utilize various

12



2.1 Introduction

techniques such as expression profile correlation, machine learning models, and signature

scoring (some most commonly used algorithms are explained in Table 2.1). They provide

a more systematic approach to cell type annotation, reducing the reliance on manual

annotation and addressing some of the reproducibility challenges of unsupervised meth-

ods. Additionally, many automated cell type annotation methods have been developed

to simplify the annotation process (Pasquini et al., 2021). Since cell type classification

is inherently a supervised classification problem, best practices for such tasks (Dupuy

and Simon, 2007) recommend avoiding class discovery and thus unsupervised methods to

ensure more accurate downstream analyses.

Cell typing significantly impacts downstream analyses. Most supervised and unsupervised

methods typically rely on prior clustering and information from multiple HVGs (> 2,000)

(Table 2.1). As they reuse most part of the data (more than 2,000 HVGs) for both

cell typing and statistical testing, these methods can introduce biases in downstream

analyses, such as differential gene expression (DGE) testing in their estimation of the

significance (Aybey et al., 2023; Gibson, 2022; Lahnemann et al., 2020; Pasquini et al.,

2021; Zhang et al., 2019a). This may inflate the significance of findings and hide true

biological signals by repeatedly relying on overlapping data features. To address this

issue, I propose supervised classifiers focused on query data and a smaller set of cell

type-specific genes, avoiding cluster-based methods.
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Table 2.1: Benchmarked scRNA-seq cell type classification methods.

Method type Method Computational approach

Supervised,

reference-based

Seurat label transfer

(Stuart et al., 2019)

– Correlation of expression profiles between cell clusters

from reference and query datasets in PCA space, based

on predefined HVGs (default: 2,000)

CHETAH

(de Kanter et al.,

2019)

– Internal gene marker selection (default: 200 genes per cell

type) based on the highest absolute fold changes between

one cell type against others in reference dataset; iterative

cell type assignment based on correlation of expression

profiles between reference and query datasets followed by

hierarchical clustering

SingleR

(Aran et al., 2019)

– Correlation of expression profiles between reference and

query datasets, based on internally selected variable genes

(top down- or upregulated genes for each cell type; de-

fault: 1,000 genes)

CellTypist

(Domı́nguez Conde

et al., 2022)

– Logistic regression classifier; top genes (default: 300) are

selected internally for each cell type from the reference

dataset

Unsupervised,

reference-free

scType

(Ianevski et al.,

2022)

– Unsupervised clustering based on HVGs (default: 2,000)

with cell type assignment for each cluster determined

using signature scoring from the internal cell marker

database

2.1.2 Importance of gene expression signatures in advancing immune cell

typing in transcriptomics

GESs are important tools for understanding complex cell types such as immune cells es-

pecially in single-cell data. With the advancements of RNA-based technologies, immune

cell type GESs have become essential for quantifying immune cell proportions in blood

and immune cell infiltration into tumor through bulk tissue RNA-seq and cell type clas-

sification in single-cell datasets (Finotello and Trajanoski, 2018; Sturm et al., 2019). The

usage of these sets of genes are especially advantageous over single marker gene strategies.

Due to the stochastic expression of genes, most cells might not express canonical markers,

but rather large sets of robust gene sets can offer more reliable and robust information

(Grabski and Irizarry, 2022; Suvà and Tirosh, 2019).

Many immune cell type GESs have been derived primarily from bulk tissue RNA-seq

or microarray datasets (Abbas et al., 2005; Angelova et al., 2015; Bindea et al., 2013;
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Charoentong et al., 2017; Rooney et al., 2015). Recently, some GESs from single-cell data

have emerged (Magen et al., 2019; Zhang et al., 2019c; Zilionis et al., 2019). However,

these gene sets have been derived from single datasets rather than leveraging multiple

discovery datasets. Such GESs may capture context-specific biases rather than universally

applicable transcriptional patterns, reducing their utility for broad applications. Further,

many studies have not validated their signatures across different experimental setups

or systematically compared published methods and signatures for tasks like cell type

classification in single-cell analysis. These issues further limit their reproducibility across

different biological contexts and technical conditions.

To address the issues in immune cell type GES discovery and cell typing in single-cell

data, I aimed to identify robust immune cell type GESs using multiple single-cell datasets

from the TME. To eliminate the bias in downstream analysis, I opted to build a marker-

based supervised cell type classifier that needs as input only the gene expression of genes

in my GESs. This classifier would be advantageous over existing methods and enable a

largely unbiased analysis of IFN responses, as demonstrated in both internal and external

temporal and/or multi-perturbation single-cell datasets throughout the chapters.

2.1.3 Random forest classification

One possible machine learning approach for supervised cell type classification is random

forest (RF), an ensemble method based on decision trees. The idea behind the RF is

bagging, which leverages many random subsamples of the training data to create decision

trees (Hastie et al., 2009). The training data consists of features and samples. For the

classification of categorical data, the features serve as predictors of the class of a sample.

The samples are randomly subsampled into bootstrap samples and random features are

selected for each tree. The best split is chosen for each tree node until the minimum node

size is reached. Once trained, each individual tree predicts the class of a new sample

and the majority voting across all the trees determines the final prediction. In general,

RF shows high prediction performance, is interpretable, requires minimal fine-tuning, and

does not rely on clustering.
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2.2 Methods

(I have taken the methods sections throughout this thesis directly from my original paper

or unpublished manuscripts and presented them in quotation marks. I wrote almost all

the texts. I took the following section from my publication (Aybey et al., 2023).)

2.2.1 Single-cell RNA-seq datasets and quality control for genes and cells

“I list all datasets used in this study for expression signature discovery, validation, classifier

training and benchmarking purposes in Table 2.2, along with quality control metrics and

dataset information. For all discovery datasets, I included only those immune cell types

from tumor microenvironments in my analyses which were present in at least three discov-

ery datasets. I obtained log-normalized expression matrices from the TISCH2 database

(Han et al., 2023) for the datasets that I used for discovery of signatures. As a validation

dataset, I used the tumor immune cell atlas (Nieto et al., 2021). I removed all samples

from datasets that I had used for discovery purposes from the Nieto cell atlas that I used

for validation.” (Aybey et al., 2023)

During the preprocessing of all datasets, I filtered out low-quality cells with fewer than

200 detected genes and removed genes expressed in fewer than three cells. I then applied

log-normalization using the LogNormalize method in Seurat (v4.3.0) (Stuart et al., 2019).

This normalization method divides each gene’s count by the total count per cell, multiplies

by a scaling factor of 10,000, and applies a natural logarithm transformation.

”I used the cell type annotations published by the original authors to annotate and val-

idate my expression signatures and to benchmark cell type classification methods. To

investigate the statistical bias when cell type classification uses the same genes that are

later subjected to statistical testing, I used the dataset of Kartha et al. (2022): I only

included IFN-II treatment and control samples for this purpose.” (Aybey et al., 2023)
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Table 2.2: List of datasets used in this study along with their quality control measures.

Dataset Source
Cell

source

Sequencing

technology
Purpose

Number

of cells,

average

number of

genes per

cell

Portion of

mitochon-

drial genes

[<% ]

Unique

gene

count

GSE176078

(Wu et al.,

2021)
BRCA 10X

Discovery

43,140

12,661

5 10,000
GSE166555

(Uhlitz et al.,

2021)
CRC 10X

13,369

12,681

GSE140228

(Zhang

et al., 2019b)
LIHC Smart-Seq2

2,351

39,531

GSE140228

(Zhang

et al., 2019b)
LIHC 10X

16,724

13,751

GSE139555

(Wu et al.,

2020)
KIRC 10X

18,120

11,861

GSE131907

(Kim et al.,

2020)
NSCLC 10X

25,915

14,051

GSE123139

(Li et al.,

2020)
SKCM MARS-Seq

4,817

8,861

TIC

Atlas

(Nieto et al.,

2021)

13 cancer

types
Various Validation

229,753

1,265
15 5,000

Hao
(Hao et al.,

2021)
PBMC CITE-seq Reference

158,783

2,207
15 6,000

Kotliarov
(Kotliarov

et al., 2020)
PBMC CITE-seq

Benchmarking

52,849

748
10 2,500

Zheng
(Zheng et al.,

2017)
PBMC 10X

18,000

562
5 1,500

Kartha
(Kartha

et al., 2022)
PBMC SureCell Biorad

Differential

gene

expression

(investigation

of bias)

23,754

943
- 200

2.2.2 Gene sets for comparison to my approach

“In addition to my own immune cell signatures, I investigated the following public immune

cell signature repertoires: Abbas (Abbas et al., 2005), Charoentong (Charoentong et al.,

2017), Angelova (Angelova et al., 2015), Becht (Becht et al., 2016), Bindea (Bindea et al.,

2013), Newman (Newman et al., 2015), Nirmal (Nirmal et al., 2018), and Nieto (Nieto

et al., 2021). For comparing my gene signature collection with other gene set collections in

a random forest approach, I focused on the following studies and cell types: a) Abbas: B

cells, dendritic cells (DCs), monocytes, NK, and T cells; b) Charoentong: B cells (general

and memory), DCs (immature DCs and plasmacytoid dendritic cells (pDCs)), monocytes,

NK, and CD4+ (regulatory, effector memory, central memory, and general) and CD8+ T

cells (effector memory, central memory, and general); c) Angelova: B cells (memory and

immature), DCs (pDCs, immature, myeloid DCs and general), monocytes, NK, and CD4+

(regulatory, effector memory, and central memory) and CD8+ T cells (effector memory

and central memory); d) Nieto: B and plasma cells, DCs (myeloid DCs, conventional DCs
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and pDCs), monocytes, NK cells, näıve T cells, CD4+ T (effector memory, transitional

memory, memory/näıve and regulatory) and CD8+ T (effector memory and cytotoxic)

cells.” (Aybey et al., 2023)

2.2.3 Dataset integration

“For the integration of multiple scRNA-seq datasets I used reciprocal principal component

analysis (RPCA)-based integration implemented in Seurat (v4.3.0) (Stuart et al., 2019).

To find anchors between discovery datasets and to integrate the datasets, I used Seu-

rat standard function (https://satijalab.org/seurat/articles/integration_rpca.

html).” (Aybey et al., 2023)

2.2.4 Dimension reduction and spatial clustering

“To cluster genes with similar expression profiles in my integrated expression matrix,

I used a density-based clustering approach. Prior to clustering, I reduced the dimen-

sionality of the Z-scaled integrated expression matrix using UMAP from uwot (v0.1.14)

(Melville et al., 2020) on the gene dimension to the first and second UMAP components.

On this spatial representation of the UMAP space -in which each point represents a

gene- I performed density-based clustering using dbscan (v1.1-11) (Hahsler et al., 2019),

thereby clustering genes into gene clusters. dbscan operated with two parameters: mini-

mum points (minPts) in a gene cluster and maximum distance between two data points

(epsilon).” (Aybey et al., 2023)

“To determine two DBSCAN clustering parameters (epsilon and minimum number of

points in a cluster minPts), I examined the optimal epsilon after plotting k-nearest neigh-

bor distances in ascending order and analyzing the ‘knee’ point where maximum curvature

was observed for a minimum of ten genes (minPts) in a gene cluster. The optimal ep-

silon was at 0.3 but since I aimed to obtain more clusters and have a higher resolution,

I considered lower epsilon values as my epsilon candidates. For the selection of the ep-

silon value which captures signatures for all immune cell types, I tried different values

ranging from 0.15 and 0.2 in 0.05 interval. To do so, I ran the gene refinement workflow

(explained in the results, Figure 2.1) including filtering out genes with negative silhouette

scores and taking only top 50 genes with the highest silhouette scores. Then, in the given

range, I examined the heatmaps showing the mean signature scores - as calculated using

the Average Z-Score method- for each cell type in each discovery dataset. An epsilon of

0.18 resulted in a better resolution capturing signatures for all cell types in the discovery

datasets.” (Aybey et al., 2023)
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2.2.5 Gene cluster refinement using silhouette scores and mean signature

scores

“The silhouette scores were used to evaluate the quality of the gene elements and refine

the gene clusters by considering the similarity of gene expression profiles within clusters

and the dissimilarity between clusters. I calculated silhouette scores for individual genes

and clusters using cluster (v2.1.1) (Maechler, 2018). As inputs I used the cluster labels

from dbscan and the gene-by-gene correlation distance matrix for genes x and y: dx,y

= 1 - r(x,y), where r(x,y) represents the Pearson correlation calculated from Z-scaled

integrated expression profiles of genes x and y. The silhouette scores range from -1 to

+1, with higher values indicating better clustering results and values closer to negative

suggest that the sample is likely to be assigned to the wrong cluster.” (Aybey et al., 2023)

“To evaluate the expression strength of each signature in each cell type, I employed the

‘Average Z-Score method’. This method allows to measure the relative expression level of

a signature in a cell by considering the expression values of all genes associated with that

signature. I averaged the Z-scaled expression values (mean-centered and standardized

across cells) for each gene within the signature in each cell to obtain mean signature score

for a cell. Subsequently, I represented average mean signature scores for each cell type

by averaging mean signature scores coming from the cells belonging to a given cell type.”

(Aybey et al., 2023)

2.2.6 Quantifying gene set similarities

“I measured the similarity of the gene sets (overlap of sets) by calculating the Jaccard

index using bayesbio (v1.0.0) (McKenzie, 2016) and the Szymkiewicz–Simpson coefficients

(Vijaymeena and Kavitha, 2016) between mine and all published signatures. The Jaccard

index calculates the ratio of the intersection of two sets (my gene set and a published gene

set) to the union of both sets. It provides a measure of the proportion of shared genes

between the sets, indicating the degree of similarity. Similarly, the Szymkiewicz–Simpson

coefficient also quantifies the similarity between two sets by dividing the intersection

of two sets by the number of elements belonging to the set with minimum number of

elements. This coefficient provides an alternative measure to assess the overlap between

gene sets considering the differences between set sizes and evaluate the similarity of the

genes identified in my study with those reported in the literature.” (Aybey et al., 2023)
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2.2.7 Cell type classification and performance benchmarking of cell type clas-

sification tools

“For my immune cell type classification approach, I applied my immune cell type gene

signatures as features in a random forest approach. For building random forest models

utilizing randomForest (v4.6-14) (Liaw and Wiener, 2002) I used a ratio of 67:33 for ran-

dom sampling of training and test data. I used only common signature genes between

reference and query datasets as features. Prior to the training, I harmonized original cell

type annotations from training datasets at medium-depth level shown in Table 2.3 and

only included medium level cell types (monocytes, DCs, B, NK, CD4+ T, and CD8+ T

cells). For the assessment of the performance of other published gene signatures, I ap-

plied an analogous procedure. Further, I used five different cell type annotation tools with

default parameters: Seurat (v4.3.0) (Stuart et al., 2019), singleR (v1.4.1) (Aran et al.,

2019), scType (Ianevski et al., 2022), CellTypist (v1.5.0) (Domı́nguez Conde et al., 2022),

and CHETAH (v1.6.0) (de Kanter et al., 2019). Prior to the cell type prediction using

Seurat, I applied the standard pipeline to the query and reference dataset including log-

normalization, finding and scaling HVGs. The anchors for cell type label transfer were

determined between reference and query datasets and cell type labels were then transferred

to the query dataset based on the PCA projection. For singleR and CHETAH, predic-

tions were obtained by providing normalized query and reference dataset along with cell

type labels from a reference dataset. For CellTypist, I utilized the same reference dataset

to train the model and used the default settings with majority voting option. As input

expression matrix, I used the raw expression values for the reference and query datasets.

In the case of scType, it differs from other algorithms as it does not rely on any reference

dataset to label cells. Instead, it utilizes information from cell clusters and specific com-

binations of cell type markers. I followed the standard workflow of normalization, scaling,

and clustering using Seurat. Additionally, I loaded gene sets from the built-in ’Immune

system’ database provided by scType. To assign cell types to clusters, I followed the steps

recommended by scType. In the case of perturbation dataset, I provided RPCA-based

integrated matrix as input to Seurat and singleR as suggested by the methods.” (Aybey

et al., 2023)

“Prior to the predictions, I harmonized original cell type annotations from benchmarking

datasets at medium-depth level shown in Table 2.3. To evaluate the performance of

the cell type prediction algorithms, I used six statistical metrics: accuracy, specificity,

sensitivity, negative predictive value (NPV), positive predictive value (PPV), and

F1-score. I reported the mean of each statistical metric for each algorithm.” (Aybey

et al., 2023)
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Table 2.3: Medium-depth level cell type harmonization

“For benchmarking and reference datasets, cell types are summarized into medium-level categories. Larger

groups are in bold and specific cell types belonging to those groups in each dataset are listed. ‘Other

cells’ category from the reference dataset are removed from the training.” (Aybey et al., 2023)

Groups Benchmarking datasets Reference dataset

B

B transitional

B switched

B unswitched

B

B memory

B naive

B intermediate

Plasma

Monocyte
CD14 monocyte

CD16 monocyte
CD16 monocyte

CD14 monocyte

CD16 monocyte

DC
DC

pDC
-

DC

pDC

NK NK NK NK

CD4+ T
T CD4 memory

T CD4 naive

T CD4 naive

T CD4 memory

T CD4 regulatory

T CD4 helper

T CD4 naive

T CD4 effector memory

T CD4 central memory

T CD4 activated

T CD4 regulatory (Treg)

T CD4 cytotoxic activity (CTL)

T CD4 proliferating

CD8+ T
T CD8 memory

T CD8 naive

T CD8 cytotoxic

T CD8 naive

T CD8 naive

T CD8 effector memory

T CD8 central memory

T CD8 activated

T unconven-

tional

Double negative T

cells

Unconventional

CD161hi/CD3+/CD8+

T cells

- Other cells: Mucosal-associated

invariant T cells (MAIT), gamma delta

T cells (gdT), double negative T cells,

HSC, innate lymphoid cells,

erythrocytes, platelets
HSC

Hematopoietic

stem cells (HSC)
-
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I calculated prediction metrics based on the concordance between predicted (p) and real

(r) cell types. True positives (TP) represent the number of cases where p correctly matches

r. False positives (FP) refer to instances where p is incorrectly predicted as r even though

they belong to other cell types. False negatives (FN) count the cases where cells belonging

to r are incorrectly predicted as another cell type. True negatives (TN) include all other

correct classifications that do not belong to type r and were not predicted as r. Subse-

quently, I utilized these four metrics to calculate six statistical metrics for benchmarking,

based on the following formulas:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

PPV =
TP

TP + FP
(4)

NPV =
TN

TN + FN
(5)

F1-score = 2× PPV × Sensitivity

PPV + Sensitivity
(6)
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2.3 Results

2.3.1 Successful integration of multiple TME scRNA-seq datasets

To leverage multiple scRNA-seq datasets for immune cell GES discovery, I developed a

workflow based on gene-by-gene expression similarities (Figure 2.1). First, I obtained

seven published TME datasets which included only treatment-näıve samples of immune

cells coming from six different cancer types: skin cutaneous melanoma (SKCM), liver

hepatocellular carcinoma (LIHC), breast cancer (BRCA), kidney renal clear cell carcinoma

(KIRC), non-small cell lung cancer (NSCLC), and colorectal cancer (CRC) (Table 2.2).

For each cell type relevant for my GES discovery, I ensured its presence in at least three

datasets, based on cell type annotations available from the results of original studies.

Each dataset contained various cell types, with differences in cell type distribution and

the extent to which each dataset contributed to specific cell populations across different

cancer types (Figure 2.2A). This variability demonstrates the context-specific nature of

cell type abundance. It also emphasizes the importance of integrating multiple datasets to

ensure comprehensive immune cell representation. This variety and additive information

coming from multiple datasets provided the basis for my GES discovery.

To harmonize the datasets, I performed data integration as explained in Section 1.5.1,

addressing batch effects that stem from differences in experimental protocols, platforms,

and processing across studies. Integration in this context is a multi-nested batch cor-

rection and refers to aligning the datasets in a shared low-dimensional space, ensuring

that biological signals—specifically immune cell type information—are preserved while

removing variations caused by dataset-specific biases.

To achieve this, I utilized the 3,000 HVGs to construct an integrated gene expression ma-

trix (3,000 genes x 123,509 cells) (see Methods). Before integration, the UMAP of unhar-

monized data showed clear separation of cells based on their dataset of origin, indicating

batch effects and technical artifacts that mask meaningful immune cell type information

(Figure 2.2B). After integration, UMAP plots based on the harmonized matrix demon-

strated that cells clustered by cell type rather than by dataset. Similar cell types from

different datasets grouped together, confirming successful alignment of the datasets (Fig-

ure 2.2C). Thus, this process identified shared features across datasets, represented them

in a common framework, and harmonized expression values to reduce technical variability

while preserving biologically meaningful differences.

This successful integration enables a unified examination of gene-by-gene similarities

across datasets, ensuring that downstream analyses can capture biological variation rather

than technical differences. The before-and-after UMAP visualizations illustrate this tran-
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sition, showing that integration effectively preserved immune cell type signals while elim-

inating dataset-specific biases. Therefore, the integrated expression matrix provide a

robust foundation for subsequent GES discovery.

2.3.2 Density-based clustering and sequential filtering yielded 14 refined

GESs

I aimed to cluster gene sets with similar expression patterns across cells to identify dis-

tinct gene modules that characterize immune cell subsets. To achieve this, I reduced the

dimensions of the Z-scaled integrated expression matrix by genes and not by cells (which

is usually done in the single-cell analysis). This means that, instead of examining how

each cell expresses various genes (cell-centric), I examined how each gene is expressed

across different cells (gene-centric). I represented each gene by its first and second UMAP

dimensions to remove the effect that more abundant cell types have more impact on the

clustering of genes than less abundant cell types (Figure 2.2D). Distinct clusters were vi-

sually detectable. Using the UMAP coordinates, I grouped genes into clusters of at least

ten genes, employing density-based clustering algorithm, DBSCAN (see Methods). This

approach yielded in 57 gene clusters that are showing closely similar expression patterns

and are used as seeds for subsequent steps of my GES discovery workflow.

To refine 57 initial gene clusters, I applied additional steps to filter and polish the gene

sets at both the gene and cluster levels (Figure 2.1B). First, I excluded low-congruent

genes with negative silhouette scores. Silhouette scores measure how similar each gene is

to its own cluster compared to other clusters. Negative scores indicate poor alignment,

suggesting that these genes did not fit well within their clusters. Next, I ensured that

each cluster was of appropriate size. I removed any clusters containing fewer than ten

genes, as small clusters may lack statistical power and may not reflect robust biological

signals. For larger clusters, I kept the top 50 genes based on their silhouette scores,

ensuring that the most representative genes were included in each cluster and excluding

less relevant ones. Further, I removed clusters with poor discriminative power as they

they lacked cell-type specificity. Such signatures were mostly related to general biological

processes, such as the cell cycle, rather than cell-type-related signals. To do so, I applied

a maximum-median filter which used mean signature scores for each cell type (using

the annotations by the authors), calculated across datasets (‘Average Z-score Method’).

I kept clusters with a minimum difference of 0.6 between the maximum and median

signature scores, measured across at least three datasets. This extensive statistical

filtering process reduced the initial 57 clusters to 14 refined GESs. The original gene-level

UMAP based on 3,000 HVGs (Figure 2.2D) and the new UMAP based on all genes of

the 14 GESs (Figure 2.2E) separated each gene cluster, confirming that the GES genes
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appropriately represent the major gene clusters in this dataset.

A

Signatures with > 0.6 
difference between maximum 

and median z-scores at least in 
3 datasets

min. points=10,
epsilon= 0.18

Highly 
variable 

3,000 genes

Integrated 
expression matrix

Reciprocal PCA 
Integration

QC
Normalization

BRCA (n=1)
CRC (n=1)
LIHC (n=2)
KIRC (n=1)

NSCLC (n=1)
SKCM (n=1)

Scale

PCA

Top 50 genes in 
a cluster based 

on gene
silhouette score

Filter out 
clusters 
with less 
than 10
genes

Mean 
signature 
score per 
cell type

Annotate
signatures

57 
clusters

30 clusters26 clusters

Gene correlation
distance matrix

UMAP DBSCAN

14 clusters

11 immune cell type 
signaturesValidation

TIC atlas

Silhouette score
per gene > 0

B

57 
clusters
2,737 
genes 

30 
clusters

634 
genes 

26 
clusters

602 
genes

14 
clusters

338 
genes 

Gene filtering

Max-median

Gene set > 10

I II III

Top 50 genes

26 
clusters

608 
genes

IV

Figure 2.1: Immune cell type gene signature discovery workflow.

(A) The workflow comprises the following steps: dataset integration, density-based clustering using

DBSCAN, refinement of gene sets using filtering approaches based on silhouette scores and mean signature

expression score and annotating and validating the signatures. (B) Funnel plot showing the refinement

process in each step. The refinement process consists of five filtering steps: gene filtering based on

silhouette scores, selection of gene sets with minimum ten genes, selection of top 50 genes based on

silhouette scores and max-median filter based on mean signature expression scores. Each step is labeled

from I to IV. The final number of clusters and genes is shown after each filtering step. (Reprinted from

Aybey et al. (2023))
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Figure 2.2: Data characteristics and results of the gene signature discovery.

(A) Contribution of discovery datasets to each immune cell type. (B-C) UMAP plots of before (B)

and after (C) integration. Each point represents a single-cell, and each cell is colored by cell type or

dataset. The cell type labels are taken from the original publications. Cell type labels are placed in

the center of the cell type clusters. Note the successful integration and harmonization of the datasets.

Abbreviations: DC, dendritic cell; NK, natural killer; pDCs, plasmacytoid dendritic cell. (D-E) UMAP

plots based on 3,000 HVGs or final genes from the gene signatures. The dimensionality of the gene space

of expression data is reduced in each step, starting from 3,000 common HVGs in the integration step to

finally 338 genes of my gene sets. Each point represents a gene. UMAP1 and UMAP2 are plotted for

each gene in x and y axis, respectively. In D and E genes in my gene signatures are annotated in different

colors. In D other genes are colored gray. Cluster numbers are placed in the center of the clusters. Genes

from each refined gene set cluster together to the exclusion of other gene sets. (F-G) Mean signature

expression scores per cell type of refined gene signatures shown in the discovery and validation datasets.

Red and blue represent high and low mean signature expression scores, respectively. Rows represent the

gene signature cluster numbers along with the manual annotations while columns represent the cell types

defined by the original authors in the datasets. The signature annotation names contain cell type which

the signature can detect. Discovery and validation datasets are shown in F and G, respectively. (Adapted

from Aybey et al. (2023))
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2.3.3 Validation of refined gene clusters identified eleven robust immune cell

type GESs

I assessed the relevance and validity of the refined 14 GESs in the discovery and validation

datasets. First, I manually annotated cell types by assigning each GES to the cell type

in which it had the highest expression score in at least three discovery datasets. The

result is shown in the heatmap in Figure 2.2F. I used a medium level of granularity with

regard to the cell types: B cells, DCs, macrophages, mast cells, monocytes, NK cells,

pDCs, plasma, CD4+ T cells, and CD8+ T cells. In addition to the distinct immune

cell type GESs, I obtained two lineage specific GESs for myeloid and lymphoid lineages.

Then, I statistically tested the cell type specificity of each manually annotated GES

within the discovery datasets. I compared the mean signature score of each GES in

its designated cell type against all other cell types. All 14 GESs showed significantly

higher scores (two-sided Wilcoxon test, raw p < 0.01) in at least three discovery datasets

(Appendix Figure A.1). Since my goal was to retrieve GESs for distinct immune cell

type populations, I excluded the lineage GESs from further analysis and ended up with

twelve immune cell type GESs. Finally, to validate these twelve GESs in independent

data, I used a single-cell TME atlas (Nieto et al., 2021) comprising 13 cancer types.

The validation included comparing mean signature scores between groups (cell types)

in a heatmap (Figure 2.2G) and performing statistical tests (two-sided Wilcoxon test,

Appendix Figure A.1). Except for S 6 (monocyte), all immune cell type GESs showed

significantly higher scores (two-sided Wilcoxon test, raw p < 0.01). These resulted in

eleven robust, refined, and validated immune cell type GESs which constitute my final

immune cell type GES repertoire (Table 2.4).
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Table 2.4: Summary of my refined immune cell type signatures.

Cluster

number

Cluster

annotation
Genes

Number

of genes

S 13 B

TCL1A, VPREB3, CD22, EBF1, FCER2, STAG3, MS4A1, PARP15,

CD79B, KHDRBS2, BANK1, FAM129C, CD79A, CXCR5,

LINC00926, BACH2, AFF3, LY9, RALGPS2, SMIM14, FCRLA,

CD37, SPIB, FCRL1, IRF8, CD19, CNR2, TNFRSF13B, ADAM28,

COL19A1, PAX5, ARHGAP24, TCF4, BLK, PKIG, RIC3, IFT57,

TNFRSF13C

38

S 14 DC
CD1E, HLA-DQB2, CD1B, PKIB, CALCRL, CD1A, FCER1A,

S100B, PLD4, CD1C, PPP1R14A, NAPSA, CD207
13

S 10 Macrophage
APOE, CTSL, GPNMB, CD9, TREM2, CTSD, APOC1,

ADAMDEC1, SPP1, MMP9, PLA2G7, LIPA, ACP5, NUPR1, FN1
15

S 5 Macrophage

CCL13, MS4A4A, SLC40A1, LYVE1, RNASE1, SIGLEC1, C1QA,

STAB1, CXCL12, ABCA1, IGF1, GPR34, PLTP, C1QB, PMP22,

A2M, LGMN, FOLR2, SLCO2B1, MRC1, DAB2, NRP1, LILRB5,

C1QC, F13A1, PLAU

26

S 1 Mast

TPSAB1, HPGDS, ADCYAP1, CPA3, PLAT, GATA2, CTSG,

HPGD, KIT, CLU, IL1RL1, KIAA1549, RSPH9, SYTL4, HDC,

VWA5A, RGS13, TPSB2, LIPC, SLC18A2

20

S 8 Monocytes

LILRA5, SLC25A37, CFP, S100A12, CD300E, TIMP1, APOBEC3A,

FCN1, TREM1, SLC11A1, VCAN, S100A9, S100A8, CDA, THBS1,

FGR

16

S 4 NK

GZMB, CD160, TXK, KIR2DL4, TMIGD2, CTSW, KRT86, KLRF1,

SH2D1B, GNLY, PRF1, KLRD1, XCL2, CLIC3, XCL1, HOPX,

MATK, PTGDR, KRT81, KLRC1

20

S 9 pDCs

SCT, RGS7, IRF4, VASH2, GPM6B, MAP1A, NME8, PTCRA,

PTGDS, AEBP1, CLEC4C, SMPD3, TTC39A, PHEX, MMP23B,

PLVAP, PLAC8, RASD1, LILRA4, PTPRS, DNASE1L3, LRRC26,

SLC35F3, TPM2, KRT5, TSPAN13

26

S 12 Plasma
IGLL5, FKBP11, ITM2C, XBP1, DPEP1, SEC11C, HSP90B1,

TNFRSF17, SDC1, CAV1, SSR4, DERL3, MZB1, JSRP1, CERCAM
15

S 11 T CD4
FAS, TNFRSF25, PBX4, FAAH2, ICOS, CD28, CCR4, TMEM173,

MAL, LTB, ARID5B, PBXIP1, TNIK, NPDC1, LEF1, FBLN7
16

S 2 T CD8

FASLG, CCL5, RAB27A, CD8B, CPNE7, CST7, OASL, GZMH,

GZMA, CHST12, SAMD3, CLEC2B, CD8A, APOBEC3G, GZMM,

SLA2, TNIP3, IFNG, TSEN54, CRTAM, C12orf75, LAG3, GZMK

23
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2.3.4 My gene set collection is novel and smaller compared to published

immune cell type GESs

Lastly, I evaluated the novelty and relevance of my immune cell type GESs by comparing

their gene content with seven published gene lists. I used two similarity metrics—the

Jaccard index and the Szymkiewicz-Simpson index—to quantify overlaps between my

GESs and previously published GESs. The results are visualized in heatmaps (Figure 2.3).

The Jaccard index, which measures the proportion of shared genes relative to the union

of two sets, ranged from 0 to 0.32. In contrast, the Szymkiewicz-Simpson index, which

considers the shared genes relative to the smaller of the two sets, ranged from 0.08 to 0.67.

The generally higher values for the Szymkiewicz-Simpson index reflect that my GESs tend

to be generally smaller and more refined compared to published ones.

None of my gene sets yielded indices of one, meaning that none of them have been com-

pletely described in the literature before, either as full sets or as subsets of other signatures.

The degree of overlap of the GESs varied across different cell types. For some cell type

populations, such as plasma cells, pDCs, monocytes, and macrophages, the maximum

Jaccard indices were relatively low (<0.1), indicating that these GESs are more distinct

and novel and share fewer genes with those from published datasets. In contrast, the high-

est Jaccard indices were observed for Bindea-mast cells (0.32) and Nirmal- or Newman-B

cells (0.31 and 0.21, respectively), suggesting moderate overlap in gene content. Similarly,

the highest Szymkiewicz-Simpson scores were found for Becht-B cells (0.67), Bindea-mast

cells (0.6), and Nirmal-B cells (0.5). These results demonstrate that while some overlap

exists with previously published GESs, particularly for certain cell types, my GESs are

novel in their overall composition and refined size compared to existing GESs.
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2.3 Results

Figure 2.3: Heatmap of Jaccard index scores (A) and Szymkiewicz–Simpson coefficients
(B) between my immune cell type signatures and seven other published immune cell type
signatures.

Jaccard index scores and Szymkiewicz–Simpson coefficients are calculated between my eleven refined gene

signatures (rows) and seven published cell signatures (columns). The number of genes in each gene set

has been indicated inside brackets. (Reprinted from Aybey et al. (2023))

2.3.5 Random forest classification using my immune cell type genes outper-

formed or matched commonly used methods

One application of immune cell GESs is cell type classification in single-cell datasets.

Currently, there is no consensus on how to best assign cell types to cells in a single-cell

data. The most common practice is manual annotation or automated clustering-based

methods using large number of HVGs (>2,000). These methods often introduce statistical

bias in the downstream analyses (Gibson, 2022; Lahnemann et al., 2020; Pasquini et al.,

2021; Zhang et al., 2019a). To address these challenges, I hypothesized that a simple,

clustering-free random forest (RF) approach, utilizing small, robust immune cell type

GESs, could achieve comparable or better classification performance.

To test my hypothesis, I trained an RF classifier using the Hao PBMC dataset (Hao

et al., 2021) and Z-scaled expression of 167 genes from my GESs as features. These GESs

represent eight different immune cell populations found in PBMC: plasma, monocytes,

DCs, pDCs, B, NK, CD4+, and CD8+ T cells. I excluded macrophage and mast cell

GESs because they are not relevant to PBMC datasets. Further, I ensured that the cell

type context from published GESs aligned with those in my signature repertoire as I later

compare the utility of my signatures with published ones. This setup provided the basis

for robust comparison of different methods and GESs in the PBMC context.

In two independent PBMC datasets, I benchmarked the RF method against commonly

used methods: Seurat, singleR, CHETAH, scType, and CellTypist (see Methods and Ta-

ble 2.1). These methods differ in their approaches to cell annotation. The RF method,

Seurat, singleR, CHETAH, and CellTypist are reference-based methods, whereas scType

relies on clustering and marker-based annotation. Seurat and scType use the top 2,000

HVGs as features, while CHETAH, singleR, and CellTypist process the entire gene expres-

sion matrix and internally select relevant genes. I trained all reference-based methods on

the Hao PBMC dataset, except for scType, which operates without a reference. To com-

pare performance, I utilized six metrics commonly used in classification tasks: accuracy,

specificity, sensitivity, negative predictive value (NPV), positive predictive value (PPV),

and F1-score. Subsequently, I averaged these metrics for each method across cell types in
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the benchmarking datasets to provide a summarized performance metric for comparison.

The first benchmarking dataset was the Kotliarov PBMC CITE-seq dataset (Kotliarov

et al., 2020), in which cell types were defined based on protein expression. This is consid-

ered one of the most informative data in the cell type classification. Among the methods

tested, scType achieved the highest scores (69–83%), followed by Seurat (68–74%), Cell-

Typist (67–74 %), and the RF approach (67–74%) (Figure 2.4A). In contrast, CHETAH

and singleR had the lowest scores, 59–72% and 64–73%, respectively. The RF approach

outperformed singleR and CHETAH in every metric except for the sensitivity of sin-

gleR. Overall, RF had medium to high prediction scores and showed similar results to

CellTypist, Seurat, and scType.

Another benchmarking dataset, the Zheng PBMC dataset (Zheng et al., 2017), was based

on the FACS-sorted cells, which is a frequently used standard data for classifying cell types

in experiments and serving as the ‘ground truth’. This dataset includes nine immune cell

populations: B cells, CD14 monocytes, näıve CD8+ T cells, cytotoxic CD8+ T cells, NK

cells, memory CD4+ T cells, näıve CD4+ T cells, regulatory CD4+ T cells, and helper

CD4+ T cells. For benchmarking, I randomly down-sampled the dataset to 2,000 cells per

cell type (18,000 cells in total). The top-performing models were the RF model (94–99%),

Seurat (95–98%), scType (92–99%), and CellTypist (95–98%) (Figure 2.4A). In contrast,

singleR (87–97%) and CHETAH (68–93%) had lower scores than the RF method in nearly

every metric, as they also yielded lower scores for the Kotliarov dataset. Overall, my RF

approach using my immune cell type GESs classified immune cells in PBMC with high

performance, equal to or better than widely used algorithms, but using information from

a small set of genes.
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Figure 2.4: Benchmarking of the random forest model against most used cell type annota-
tion algorithms.

(A) The random forest model shows higher or comparable prediction statistics compared to five commonly

used tools in benchmarking datasets. Mean statistic metrics are displayed for each method. The Hao

dataset is used as a reference dataset. The Kotliarov and Zheng datasets are used for benchmarking.

(B) Prediction metrics change with increasing number of HVGs. In an interval of 100 HVGs, I predicted

the cell type labels executing Seurat, CellTypist and scType using Hao reference data on Kotliarov or

Zheng benchmarking datasets. I report the mean scores for six statistical metrics for each HVGs set.

The prediction scores for the RF approach are shown in red points and dashed lines. (Reprinted from

Aybey et al. (2023))
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2.3.6 RF approach outperformed other methods with fewer genes

I assessed how the number of features used for cell type classification influences prediction

performance. I examined the methods that previously showed comparable or better per-

formance relative to my RF model: CellTypist, Seurat, and scType. For these methods, I

calculated the statistical metrics across a range of HVGs (100 to 2,000 HVGs in 100 inter-

vals) using the Kotliarov and Zheng benchmarking datasets (Figure 2.4B). Interestingly,

the clustering-based, reference-free, marker-based approach, scType, showed significant

performance variation depending on the number of HVGs. At lower HVG counts, its

performance was notably poor (10–30%), and even within the 1,000-1,500 HVGs range,

it deviated by about 20% from its maximum performance. This suggests that clustering-

based approaches might not be ideal for cell type classification problem. Seurat and

CellTypist demonstrated higher stability than scType. Still they were sensitive to the

number of HVGs below 500, with performance differing by approximately 10% from their

maximum performance, but achieved stable classification performance above 500 HVGs.

When less than 500 HVGs were used, Seurat, CellTypist, and scType underperformed

compared to RF, showing that these methods are more sensitive to the number of fea-

tures when the gene set is small. This analysis demonstrated that using a limited number

of gene sets (≈ 170 genes) combined with a clustering-free RF classification approach,

obtains superior classification results compared to other methods operating on the same

number of genes.

2.3.7 Other top-performing cell type classification methods except RF clas-

sifier misclassified myeloid cells

I examined the impact of using small, robust GESs instead of multiple HVGs on the

downstream analysis, which will be critical in later chapters for exploring complex IFN

biology. Commonly used methods generally operate either on unsupervised clustering

methods or on multiple HVGs, which introduce bias in statistical analyses, such as in

DGE between perturbations. In the following, I describe one example how such bias

might arise in a typical experimental setup in which stimulated and unstimulated cells are

investigated by scRNA-seq as shown schematically in Figure 2.5. The strongest response

from a specific cell population (e.g., B) to a stimulus could cause misclassification of cells

from other populations (e.g., A and C) as B, leading to higher number of cell population

B and inflated p-values in DGE testing. To minimize bias and ensure reliable downstream

analyses, the selection of genes is critical.

To demonstrate the bias caused by utilizing many HVGs—employed in both clustering

and cell typing—, I focused on IFN biology, where IFN-g strongly affects monocytes
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and DCs (Schroder et al., 2003; Waddell et al., 2010). I used a scRNA-seq dataset of

IFN-g-stimulated PBMCs from Kartha et al. (2022), with samples collected after 1 h and

6 h post-stimulation. I classified immune cell types using RF and other three top-ranking

methods from my earlier analysis: Seurat, scType, and CellTypist.

Three Cell Types A, B, C
Status: Unstimulated

A stimulus induces
a large expression
program
(e.g. IFN response
in dendritic cells)
that is affecting
many genes, 
most of them can
be called „highly
variable genes“ 
(HVGs).

Application of
UMAP & 
clustering to
determine
cell types
yields clusters
A*, B*, C*

Stimulation leads to
many genes being
regulated in most B cells, 
and some A/C cells

The grouping of cells into A*B*C* is similar, but not identical to the real
types of cells ABC. The number of B* cells is higher than for B. Differentially expressed
genes (DEG) search would yield inflated p-values for genes high in B* compared to B
as group size is larger and B* composition is unintentionally „pruned“ by
UMAP/clustering to exclude unstimulated B cells.

DEG search by
statistical testing

Figure 2.5: Explanation schema for the possible downstream analysis bias.

(Created by Dr. Eike Staub, reprinted from Aybey et al. (2023))

Based on the initial examination of the number of cells assigned to the myeloid

cells, the RF method classified about 50% fewer DCs (n = 66) compared to other

methods (Seurat: n = 126, scType: n = 105, and CellTypist: n = 115). Interestingly,

most of the differently annotated DCs in other methods were classified as monocytes in

RF (Figure 2.6A). Next, I compared the cells assigned as DCs in RF (DC RF) with those

classified as monocytes in RF but as DCs in other methods (Mono RF). I examined the

differences between those populations based on DC markers (FCER1A, CD1C, FLT3, and

CD1E) and monocyte markers (CD14, FCGR3A, CTSS, FCN1, S100A9, LYZ, VCAN,

TLR2, ITGB2, ITGAM, CTSD, CTSA, and NLRP3) (Figure 2.6B). Confirming the RF

cell type annotations, DC RF had higher expression of DC markers but not monocyte

markers compared to Mono RF. This suggested the misclassification of Mono RF cells as

DCs upon IFN-g stimulation in the other three methods. These major differences in cell

type classification numbers might have consequences in statistical testing during DGE

analysis, which I will further assess.
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Figure 2.6: Possible downstream statistical analysis bias demonstrated in interferon gamma
stimulated PBMC Kartha scRNA-seq dataset.

Cell types are labeled using the random forest (RF) model utilizing the immune cell type genes, or using

Seurat, scType and CellTypist. Mono RF cells are cells labeled as monocytes in RF but as dendritic

cells (DCs) in other methods while DC RF cells are DCs labeled as DCs in RF. (A) Sankey plot showing

different cell type assignments in RF and other methods for cells classified as DCs either by RF or other

methods. (B) Dot plots showing expression of monocyte or DC gene markers in Mono RF and DC RF

cells. The size of the dots represents the percentage of expression while Z-scaled average expressions are

shown from blue (low) to red (high). (C) P-value-to-p-value scatter plots showing over-optimistic p values

for Seurat, scType and CellTypist compared to RF. I perform differential gene expression analyses for

2,000 HVGs using the cell types defined as DCs in different cell typing methods, for each sampling time

point separately. P values generated for RF-generated DC cell groups are displayed on the x-axis while

DC groups from other cell typing methods are shown on the y-axis. In each comparison, the comparison

line falls below the trend line pointing out over-optimistic results from other methods compared to RF.

(D) IFNg Hallmark scores for DCs annotated by RF DC RF or misclassified monocytes Mono RF. For

each condition, mean signature scores for IFNg-Hallmark genes are calculated. DCs annotated by RF

are compared with those cells classified as monocytes by RF but as DCs by other approaches. I apply

Wilcoxon rank sum tests to compare IFNg-Hallmark scores between those two cell type groups at each

time point separately (ns = non-significant (p > 0.05); * = p < 0.05, ** = p < 0.01). (Adapted from

Aybey et al. (2023))

2.3.8 RF approach using fewer genes reduced bias in downstream analysis

compared to commonly used methods

To investigate the impact of misclassification on downstream analysis, I performed DGE

analysis (Wilcoxon rank sum test) between IFN-g stimulated and unstimulated cells classi-

fied as DCs by each cell type classification approach at each time point. Then, I compared

the raw p-value distributions of 2,000 HVGs from the RF method against the other three

approaches using a p-value-to-p-value scatter plot (Figure 2.6C). In all comparisons, the

p-values from the RF method were generally higher than those from the other methods,

as indicated by the curve being below the diagonal. This suggests that the RF method

yielded more conservative results. This gap was particularly more pronounced at 6 h,

when general IFN-g responses are expected to peak [Note: In Chapter 3, I will show that

general IFN-g responses, particularly in myeloid cells, are strongest at later time points.].

The observed pattern suggests that the other methods may have produced ”overly opti-

mistic p-values”, which could be due to the misclassification of cell types. This inflated

statistical significance can lead to incorrect conclusions in the DGE analysis and show-

cases again the importance of accurate cell type classification for reliable downstream

statistical analysis.

The bias might stem from the mixing of information related to treatment response and
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cell typing, as previously shown in Figure 2.5. To test this hypothesis and investigate the

biological differences between misclassified DCs (Mono RF) by other approaches and ‘true

DCs’ classified by RF (DC RF), I compared their IFN-g responsiveness using the mean

signature score of the IFNg-Hallmark signature (Liberzon et al., 2015) (Figure 2.6D).

At 6 h, Mono RF had a significantly higher score compared to DC RF (Wilcoxon rank

sum test, raw p < 0.05), while at 1 h, the IFNg score was higher but not significantly.

This analysis suggests that, at 6 h, the misclassified Mono RF cells have a stronger IFN-

g response compared to DC RF cells. This comprehensive analysis showed that, in a

complex experimental setup upon IFN-g stimulation, the other three methods misclassified

myeloid cells, not due to inherent cell type-specific differences, but because of differences

in IFN-g response levels.

2.3.9 My immune cell type GES repertoire outperformed published ones in

RF-based cell type classifier

To demonstrate the utility of my immune cell type GES compared to other published

GES repertoires, I evaluated their applicability in RF-based cell type classification using

Kotliarov and Zheng benchmarking datasets. Notably, all published GESs were derived

or utilized in the TME context, providing a similar cellular context for analysis and

interpretation. I trained RF models using the Hao PBMC reference dataset and genes

from each GES repertoire as features and calculated average statistics metrics (Figure 2.7).

As a baseline control, I included a random gene set matching the size of features used for

the RF classifier (167 and 163 genes for Kotliarov and Zheng datasets, respectively). As

expected, random genes yielded the lowest scores in every metric, showing that selecting

genes without any biological relevance or specific association with immune cell types

leads to ineffective classification. RF trained with my immune cell GESs achieved the

highest overall performance across all metrics, followed by the Charoentong gene set.

The largest differences between my GESs and those of Charoentong were observed in

sensitivity, PPV, and F1 scores for the Kotliarov (2.4%) dataset and in sensitivity for the

Zheng (8%) dataset. This indicates that my GESs were better at identifying true positive

immune cells, minimizing false positives, and achieving a better balance between precision

and PPV. The smallest differences were in NPV scores (0.6% and 2.1%, respectively),

suggesting that while my GESs still performed better, both my immune cell type GESs

and Charoentong gene set performed similarly in correctly identifying non-immune cells.

Overall, my immune cell type GESs demonstrated superior performance and robustness

in cell type classification tasks compared to widely used published GESs.
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Figure 2.7: Comparison of my immune cell type signature repertoire with other published
signatures on random forest approach in benchmarking datasets.

Mean statistic metrics are shown for random forest models trained using my immune cell gene set and

different published immune cell type repertoires (Abbas, Angelova, Charoentong, and Nieto). I also

include results from random forest models trained on random genes (with the same number of random

genes as I have used for the RF classifier). Using my gene signatures yields better prediction performance

in the benchmarking data from Kotliarov and Zheng than all other published GES repertoires. (Reprinted

from Aybey et al. (2023))

2.4 Discussion

In this part of my study, my primary goal was to address one of the grand challenges

(Lahnemann et al., 2020) in the single-cell field by developing a toolbox for classifying

immune cell types, particularly in complex single-cell datasets. I tackled this challenge

by identifying robust immune cell type GESs that help avoid usage of large number

of genes, implementing a supervised, clustering-free RF classifier and benchmarking it

against most commonly used methods. Here, I provided a method for cell typing that

has strong performance for PBMC. My RF classifier offers a framework for characterizing

complex IFN biology in my single-cell, temporal, and multi-perturbation experiment that

I will describe in Chapter 3.

Through this process, I identified eleven novel and robust immune cell type GESs from

ten distinct immune cell populations by leveraging multiple TME scRNA-seq datasets.

These gene sets especially for plasma cells, pDCs, monocytes, and macrophages exhibited

minimal overlap with other published immune cell type GES repertoires (Figure 2.3).

Such low concordance was partially expected, as observed in previous study by Nirmal

et al. (2018). This lack of overlap not only show the novelty of my GESs but can also
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be attributed to several study-intrinsic factors, such as differences in study protocols,

sequencing techniques, and signature discovery methodologies. Despite this, in cell type

classification tasks, my signature set outperformed other published GESs of the same cell

type content, demonstrating its superior performance (Figure 2.7). Such meta-analysis

and comprehensive evaluation and validation in the context of immune cell type GES

discovery has not been conducted yet in other studies. These emphasize the robustness

and applicability of the immune cell type GESs I developed, showcasing that they are a

valuable tool for cell type classification.

Immune cell typing has long been challenged by the variability in gene expression profiles

observed between different cellular environments, such as those present in tissue versus

blood (Nirmal et al., 2018; Pallotta et al., 2022; Schelker et al., 2017). These tissue-

specific factors influence gene expression patterns and lead to substantial differences in

immune cell phenotypes. These differences often limit the utility of GESs derived in one

context, such as the TME, when applied to another, such PBMC. In my study, however,

TME-derived GESs showed high performance on PBMC data (performance scores in the

range 94–99% and 65–75% in Kotliarov and Zheng datasets, respectively). These results

demonstrate the versatility of my GES repertoire and its broad applicability, as it expands

the potential for cross-context analyses while maintaining high classification accuracy.

To develop a machine learning approach for the classification of immune cell types, I

employed a decision tree-based method, the RF classifier. RF models are widely and suc-

cessfully used in bioinformatics due to their robustness, ability to handle high-dimensional

data, efficiency, high prediction accuracy, and interpretability (Qi, 2012). In my study,

the RF classifier outperformed SingleR and CHETAH on two independent PBMC bench-

marking datasets, while yielding comparable or superior results to Seurat, scType, and

CellTypist (Figure 2.4A). A key advantage of the RF classifier is its ability to classify cell

types using fewer genes, leaving more genes available for unbiased DGE analysis (≈ 170

genes versus > 2,000 HVGs in other approaches). The RF classifier excelled when other

top-performing methods operated on less than 300—500 HVGs (Figure 2.4B). Notably,

scType, an unsupervised method that relies heavily on clustering results and internal

marker gene scoring, exhibited high sensitivity to HVG selection, further affirming the

robustness of the RF classifier. These findings demonstrate the significant advantages of

using my immune cell type gene sets in combination with an RF approach for immune

cell type classification.

Many publications (Gibson, 2022; Lahnemann et al., 2020; Pasquini et al., 2021; Zhang

et al., 2019a) point out the bias in the downstream analysis when the same gene expression

data is used, for both cell typing and downstream statistical analyses of differential expres-

sion between the very same cell types. No study has demonstrated how this bias manifests
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itself in a concrete experimental context. Using a temporal IFN-g stimulation experiment

as an example, I quantitatively showed this bias (Figure 2.6). Three top-performing meth-

ods from my previous analysis, Seurat, CellTypist, and scType, misclassified monocytes

as DCs due to the upregulation of IFN-g response in these misclassified cells. Compared

to the RF model, these methods showed inflated p-values, highlighting the impact of the

misclassification and the bias in the downstream analysis. These results clearly illustrate

how cell type misclassification can impact the outcomes of downstream analyses, empha-

sizing the importance of using a robust and accurate cell typing method to avoid such

biases.

In summary, I developed robust, novel, and conservative immune cell type GESs through

a comprehensive discovery and validation process. These GESs were highly effective in

cell type classification tasks, a key scRNA-seq application. The simple RF approach using

these small gene sets outperformed most used methods, which rely on large sets of HVGs.

Beyond its performance, the RF method was robust to perturbations and batch effects,

allowing unbiased downstream analysis. Encouraged by these promising results, I applied

the RF method to further IFN-stimulation PBMC scRNA-seq datasets in the subsequent

chapters. Overall, my gene similarity-based discovery workflow can be applied to identify

cell type-specific GESs in other environments, and the marker-based RF classifier can be

adapted for cell typing in diverse cellular contexts.
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3 Chapter 2: Diverging routes of IFN-I and IFN-II

signaling: “the road less taken”

“Somewhere ages and ages hence:

Two roads diverged in a wood, and I—

I took the one less traveled by,

And that has made all the difference.”

Robert Frost, “The Road Not Taken”

In this chapter, I aim to disentangle gene expression signals specific to IFN-I and

IFN-II responses using five IFN-stimulated healthy bulk tissue RNA-seq datasets across

four different cell types. I apply a meta-analysis workflow to derive IFN-I and IFN-II

specific response GESs. I validate these GESs in three external bulk tissue RNA-seq

datasets from three distinct cellular contexts and assess cell type-specific IFN responses

in a PBMC scRNA-seq dataset. I compare my IFN GESs to published IFN GESs

throughout the discovery, validation, and assessment steps, assessing signal specificity

and coherence at both general and cell type-specific levels. I also explore the association

between IFN signatures and disease severity in three independent SLE microarray

datasets. Additionally, I evaluate the separability of my IFN-I and IFN-II GESs in

TCGA bulk tissue RNA-seq datasets from 32 different indications. Finally, I investigate

the relationship between IFN-I and IFN-II scores and immune checkpoint inhibitor

(ICI) therapy response in three RNA-seq datasets from different cancer indications with

biospecimen collected at baseline of therapy.

(I adapted this chapter based on my unpublished manuscript (Aybey et al., 2025a), in

which I was the lead author and for which I have conducted all analyses. I will submit

the manuscript to a peer-reviewed journal as soon as I submit my thesis for assessment.)

3.1 Introduction

3.1.1 Defining and assessing IFN activity: challenges and needs

Understanding IFN activity is crucial for studying disease mechanisms, monitoring thera-

peutic responses, and predicting clinical outcomes. However, measuring IFN signaling in

clinical settings is challenging due to inconsistencies in current biomarkers, which often

lack relevance to specific diseases and treatments. Direct measurement of IFN proteins in

serum is often unreliable because of poor sensitivity and variability in detection methods
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(El-Sherbiny et al., 2018; Jabs et al., 1999). As a result, IFN activity is typically deter-

mined using the mRNA expression of ISGs, which represent downstream targets of IFN

signaling. These ISGs are grouped into GESs or curated ISG lists that are upregulated

upon IFN stimulation.

Several IFN GESs have been published, with some claiming specificity for distinct IFN

types, particularly for IFN-I and IFN-II (Ayers et al., 2017; Bennett et al., 2003; Chauss-

abel et al., 2008; Dummer et al., 2020; Staub, 2012). Nevertheless, these approaches have

limitations. Most signatures represent general IFN responses and often overrepresent

IFN-I ISGs, failing to differentiate between IFN-I and IFN-II or among IFN-I subtypes

like IFN-a and IFN-β (IFN-beta, IFN-b) (Cooles and Isaacs, 2022; El-Sherbiny et al.,

2018; Hall et al., 2012). This is partially due to the overlap of ISGs activated by specific

IFNs with those of other IFNs or unrelated pathways, complicating the interpretation

of IFN-specific activity. There is a clear need for more refined GESs that can reliably

distinguish between IFN types, as well as for comprehensive evaluation of the specificity

of IFN GESs.

Another limitation of these GESs is their lack of generalizability, often due to an insuf-

ficient number of different data sets being used during discovery and validation. Many

signatures are highly specific to disease, treatment, cell type, or dataset. They are often

derived from single datasets under similar experimental conditions without rigorous exter-

nal validation. An example of the discovery and validation processes of several published

IFN-II GESs illustrates the current state of GES discovery in IFN biology (Table 3.1).

The signatures presented by Ayers et al. (2017), for instance, are based on RNA-seq data

from melanoma and confirmatory datasets, but they have not been rigorously validated

in other contexts. Similarly, the GESs presented by Azizi et al. (2018); Platanias (2005)

and Sharma et al. (2017) rely on manual curation, which may introduce bias and limit the

reproducibility. The limited validation across external datasets reduces the broader appli-

cability of these GESs. Expanding the discovery of universally applicable IFN GESs, using

multiple datasets and evaluating their performance across various cellular environments,

sequencing platforms, and disease contexts, is essential for improving their accuracy and

generalizability in clinical and experimental settings.

Assessing IFN activity in bulk tissue also poses challenges due to variations in cell pop-

ulation sizes, which can influence ISG expression levels and mask subtle differences in

IFN activity between distinct cell types. This limits the ability to interpret IFN signal-

ing dynamics accurately in complex tissues and fails to capture the resolution needed to

evaluate cell-type-specific IFN responses. To address this, single-cell analysis is critical,

but no comprehensive evaluation of IFN GESs has yet been conducted in single-cell data.

Incorporating single-cell IFN stimulation data is necessary to assess the specificity of IFN
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GESs and to better understand cell-type-specific IFN responses.

While advancements in the IFN field continue, several technical, biological, and clinical

challenges remain. Addressing these requires the development of robust and systematic

IFN GESs capable of distinguishing IFN types, along with comprehensive discovery and

validation steps. These signatures must be validated across various datasets, biological

setups, and technical platforms to ensure their broad applicability. Furthermore, these

must be evaluated at the single-cell level to accurately assess fine-grained cell-type-specific

responses. By addressing these limitations, it will be possible to increase the reliability

and generalizability of IFN GESs in diverse contexts.
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Table 3.1: Overview of the published IFN-II signatures.

IFN-II

signatures
Method Discovery datasets Validation datasets

Ayers

(Ayers et al.,

2017)

– Top genes among 680

tumor and

immune-related genes

are selected.

– Genes not associated

with survival response

in confirmatory

melanoma dataset are

removed.

– KEYNOTE-001

metastatic melanoma

RNA-seq dataset

– KEYNOTE-001

confirmatory

melanoma RNA-seq

dataset

– KEYNOTE-002

Pembrolizumab treated

patients with head and

neck squamous cell

carcinoma or gastric

cancer RNA-seq

dataset

Azizi-Platanias

(Azizi et al.,

2018;

Platanias,

2005)

Manual curation from Platanias (2005)

Sharma

(Sharma et al.,

2017)

Manual curation

Waddell

(Waddell et al.,

2010)

– DGE

– Microarray dataset

from PBMCs or

isolated immune cells

from one healthy

donor treated with

IFN-I and IFN-II

– Temporal data

-

Hallmark

(Liberzon

et al., 2015)

– Meta-analysis,

consensus clustering,

and manual assessment

– IFN-g stimulated

macrophages (three

microarray datasets)

– IFN-g stimulated

primary keratinocytes

(one microarray

dataset)

– IFN-g stimulated

STAT1 wild type

macrophages (one

microarray dataset)

Dummer

(Dummer

et al., 2020)

Manual curation
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3.1.2 Disease relevance of IFN signaling in autoimmune diseases and cancer

IFNs are key mediators in various diseases, including cancer (Pinto and Andrade, 2016)

and autoimmune diseases such as systemic lupus erythematosus (SLE) (Bengtsson and

Ronnblom, 2017). They regulate key signaling pathways involved in pathogen recognition,

disease progression, and treatment. Through their involvement in immune responses and

inflammation, IFNs can either worsen or improve symptoms, depending on the disease

context. Their role in both the initiation and progression of disease makes them important

targets for therapeutic interventions.

SLE is an autoimmune disease caused by a dysregulated immune system, leading to or-

gan damage over time (Caielli et al., 2023). The accumulation of dead cells, due to

impaired clearance of apoptotic debris and exposure of nuclear components into the extra-

cellular environment, triggers a constant immune response and excessive IFN-I signaling

(Ardoin and Pisetsky, 2008), rather than IFN-II signaling (Chasset et al., 2022; Gómez-

Bañuelos et al., 2024). The disease outcome is measured by the SLE Disease Activity

Index (SLEDAI), which reflects disease activity, organ damage, and overall health status

(Bombardier et al., 1992). Studies have shown a positive correlation between SLEDAI

and IFN-I GESs (Bengtsson et al., 2000). Additionally, some SLE-related IFN GESs have

been identified by studying the relationship between IFN-I signaling and various disease

parameters, patient populations, and immune compositions (Bennett et al., 2003; Chauss-

abel et al., 2008). These reports illustrate the critical role of IFN signaling, particularly

IFN-I, in the progression and treatment of SLE.

In oncology, IFNs exhibit complex biology due to their dualistic and context-dependent

nature (Boukhaled et al., 2021; Jorgovanovic et al., 2020). They can have antitumorigenic

effects in acute inflammation but contribute to tumor progression in chronic inflammation.

Despite initial interest, the clinical use of IFNs, especially IFN-I therapy in oncology, has

declined due to severe side effects (Borden, 2019). But clinical trials show varying results

of IFN-I therapy across different cancer types (Aricò et al., 2019; Boukhaled et al., 2021;

Jorgovanovic et al., 2020). New insights into cell-type specific IFN mechanisms in oncology

could lead to novel treatments, including improved standard care, combination therapies,

and cancer vaccines, such as ex vivo IFN-stimulated DC therapy.

IFNs are key signals in determining prognosis, disease characteristics, and treatment

response in clinical cancer samples. A recent comprehensive analysis of multiple immuno-

oncology-related GESs found that most IFN GESs clustered together in real-world cancer

samples from TCGA (Kreis et al., 2021). This indicates that IFN signaling is a common

and conserved feature across various cancer types and can be utilized to characterize

patient populations, particularly in the context of immune modulation and the TME.
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Moreover, studies have associated upregulated IFN-II signaling in baseline cancer samples

to better responses to ICI therapy (Grasso et al., 2020; Karachaliou et al., 2018; Mo

et al., 2018). Specifically, an IFN-II signature (Ayers et al., 2017) (the Ayers signature,

mentioned in Section 3.1) was identified from baseline tumor samples of pembrolizumab-

treated melanoma patients, correlating with clinical benefit. This association suggested

that IFN-II activity may prime tumors for a stronger immune response and could serve

as a predictive biomarker to evaluate IFN signaling profiles in cancer patients, aiding in

the selection of those more likely to respond to ICI therapies (Bai et al., 2020). Given the

relevance of IFN-II signaling in cancer, its associated GESs and cell-type specific IFN-

regulated mechanisms have the potential to serve as valuable tools for developing more

effective immuno-oncology treatments.

To enable more thorough and reliable analysis of IFN signaling, I aim to discover and

validate IFN-type specific response GESs that are applicable across a range of cellular

environments, sequencing technologies, and disease contexts. Given the critical role of

IFN signaling in diseases such as SLE and cancer, I explore the effects and relationships

of my IFN GESs in these disease contexts and disease parameters. This approach is

expected to demonstrate the broad applicability and generalizability of my IFN-type

specific GESs.

3.2 Methods

(I have taken the methods section of this chapter from my unpublished manuscript (Aybey

et al., 2025a).)

3.2.1 Datasets and processing

“I downloaded raw expression matrices for bulk tissue IFN stimulation RNA-seq datasets

from public repositories: 1st donor and BEAS-2B cell line from Ziegler dataset (Ziegler

et al., 2020) (via contact with the authors), Jankowski dataset (Jankowski et al., 2021)

(Gene Expression Omnibus (GEO) (Edgar et al., 2002) accession number GSE161916),

Rai dataset (Rai et al., 2017) (http://www.ilincs.org/apps/grein/?gse=GSE74863)

and Lee dataset (Lee et al., 2020) (GEO accession number GSE161664). I normalized

raw counts using DESeq2 (v1.30.1) (Love et al., 2014). I obtained processed Transcripts

Per Million (TPM) matrices for Colli dataset (Colli et al., 2020) (cmdga.org with

GEO accession code GSE148058 and GSE133218) and 2nd donor from Ziegler dataset

(Ziegler et al., 2020) (GEO accession number GSE148829). I obtained Fragments Per

Kilobase of transcript per Million mapped reads (FPKM) matrix for Fujiwara dataset
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(Fujiwara et al., 2018) (GEO accession number GSE120844). I downloaded DESeq2

normalized count matrix for Devlin dataset (Devlin et al., 2020) (GEO accession number

GSE145647). I filtered out lowly expressed genes (genes with overall expression < 10 for

raw counts and < 1 for normalized counts). I list the details of these datasets, separated

by their use for signature discovery or validation, in Table 3.2.” (Aybey et al., 2025a)

Table 3.2: Datasets used in the discovery and validation steps.

Purpose Dataset Cell Source Stimulation
Dose

[ng/ml]
Time [h]

D
is

c
o
v
e
ry

(Ziegler et al.,

2020)

Donor 1

Lung-Basal cells IFN-a, IFN-g
0.1, 0.5,

1, 2, 5, 10
12

(Jankowski

et al., 2021)
Kidney-HPPT cell line

IFN-a, IFN-b,

IFN-g
10 12

(Fujiwara

et al., 2018)
Skin-SK-MEL-624 cells IFN-g 10 24

(Colli et al.,

2020)

Pancreas-EndoC-BH1 cell

line
IFN-a 11 pg/ml 2, 8, 18

(Rai et al.,

2017)
Lung-IMR90 cell line IFN-b 10 24

V
a
li

d
a
ti

o
n

(Ziegler et al.,

2020)

Donor 2

Lung-Basal cells IFN-g, IFN-a
0, 0.1, 0.5,

1, 2, 5, 10
12

(Ziegler et al.,

2020)

Lung-Bronchial cell line

BEAS-2B
IFN-g, IFN-a

0, 0.1, 0.5,

1, 2, 5, 10
12

(Devlin et al.,

2020)
Whole Blood

IFN-b, IFN-g,

IFN-λ

2 (IFN-a),

10

(IFN-g,

IFN-λ)

4

(Lee et al.,

2020)

Lung-Small airway

epithelial cells SAEC

IFN-a, IFN-b,

IFN-g, IFN-λ
10 12

“For SLE microarray datasets, I obtained Robust Multi-Array Average (GEO accession

numbers GSE121239 and GSE121239) (Toro-Domı́nguez et al., 2018) or batch normalized

gene expression matrices (GEO accession number GSE65391) (Banchereau et al., 2016)

only from baseline samples. I included SLEDAI values from each publication for each

patient in my analysis.” (Aybey et al., 2025a)

“I used TPM-normalized values for TCGA bulk tissue RNA-seq expression data from the

Xena database (Goldman et al., 2020). For ICI trial bulk tissue RNA-seq datasets of

gastric cancer-pembrolizumab (Kim et al., 2018) and melanoma-ipilimumab (Van Allen

et al., 2015), I obtained FPKM processed datasets from Cui et al. (Cui et al., 2021). For
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IMvigor210 bladder trial with atezolizumab treatment, I used TPM normalized values

processed internally using raw gene expression data from http://research-pub.gene.

com/IMvigor210CoreBiologies (Mariathasan et al., 2018). I also included response data

(responders and non-responders according to RECIST) from the given sources in the

analysis.” (Aybey et al., 2025a)

“I assessed a scRNA-seq dataset of PBMCs stimulated with IFN-b, IFN-g, and TNF-

alpha (TNF-a) in my study. I downloaded raw counts of scRNA-seq GSE181897 dataset

(Hartoularos et al., 2023) from GEO (GEO accession number GSE181897). I analyzed

the data using Seurat (v4.3.0) (Stuart et al., 2019). I removed cells expressing less than

200 genes or more than 4,000 unique gene counts and genes expressed in less than three

cells. I filtered out cells having mitochondrial gene portion more than five percent. For

downstream analyses, I normalized the raw expression values of each single-cell dataset

using LogNormalize method from Seurat. I classified immune cell types based on my RF

from Chapter 1 utilizing my immune cell type GESs (Aybey et al., 2023). As my gene

features, I utilized 167 genes from my signatures for eight different cell type populations

(plasma, monocytes, DCs, pDCs, B, NK, CD4+, and CD8+ T cells). As a reference

PBMC dataset for the cell type classification, I used fine grained cell type annotations

from Hao PBMC reference dataset (Hao et al., 2021). For further analyses, I filtered out

cell types (plasma, innate lymphoid cells and double-negative T cells) with less than ten

cells in each condition.” (Aybey et al., 2025a)

3.2.2 Network meta-analysis workflow

“I analyzed individual discovery datasets to identify DEGs following different IFN treat-

ments. Prior to statistical analyses for DEG identification, I selected common top 5,000

HVGs across all discovery datasets by summing up their ranks based on variance and pri-

oritizing those 5,000 genes with the highest additive rankings for further analysis. Then,

I performed statistical analyses for DGE on these 5,000 HVGs for each discovery dataset,

separately. I used log2-transformed normalized expression values as input to linear models

using limma (v3.46.0) (Ritchie et al., 2015). The models were fitted to the data using

lmFit function with different dose or time points as co-variates and the analysis was

performed using the eBayes function (setting trend=T). I obtained estimated regression

coefficients (interpreted as log-fold change (logFC)) and its standard errors from each

comparison for each gene and discovery dataset for the subsequent analysis of discovering

IFN type specific GESs.” (Aybey et al., 2025a)

“Utilizing network meta-analysis (NMA), I compared multiple treatments across various

studies, extending traditional meta-analysis approaches as detailed in Rucker (2012) and
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Winter et al. (2019). Within this framework, treatments are represented as nodes within a

network, and direct effects are computed akin to traditional meta-analysis methods using

variance-weighted effect size averages. Given that not all treatments were uniformly rep-

resented across five datasets in my analysis, NMA allowed for the assessment of indirect

comparisons that might not have been possible with traditional methods. By aggregating

direct estimates along possible paths between treatments, indirect effect sizes complement

direct estimates, increasing the reliability of comparisons across studies. For comparisons

involving only one or two studies, effect estimates are supported by multiple other studies.

Conversely, comparisons supported by multiple studies tend to yield effect estimates like

those obtained through traditional meta-analysis techniques. Indirect and direct effect

sizes are summed up for the calculation of overall effect estimates of individual compar-

isons and random effect model is applied to account for heterogeneity in different studies.

For the implementation, I provided limma results as input to netmeta (v2.9-0) (Balduzzi

et al., 2023). I used logFC between control and treatments along with standard errors as

input. The output for each gene includes a 4x4 FC matrix along with p-values for each

comparison. This matrix contains estimated FC values derived from comparisons among

all conditions such as IFN-a vs. IFN-b, IFN-b vs. IFN-g, IFN-a vs. IFN-g, and the

control against all three treatments (control vs. IFN-a, control vs. IFN-b, and control vs.

IFN-g). The summary p-values accompanying the matrix address the null hypothesis that

there is no significant difference in treatment effectiveness among the compared groups.

To account for multiple correction errors and control the false discovery rate (FDR), I

applied Benjamini-Hochberg correction to the raw p-values coming from each treatment

comparison separately.” (Aybey et al., 2025a)

3.2.3 Comparisons with published signatures: focus on type I/II IFN gene

signatures

“I compared my own type I/II IFN GESs to various published signatures. To this end,

I obtained a curated list of published, coherent high quality signatures for IFN signaling

from RosettaSX platform for signature evaluation (Kreis et al., 2021): IFNa-Hallmark

(Liberzon et al., 2015), IFNg-Hallmark (Liberzon et al., 2015), IFN-Bilgic (Bilgic et al.,

2009), IFN-Feng (Feng et al., 2006), IFN-MB-Staub (Staub, 2012), IFN-Rice (Rice et al.,

2013), IFN-SLE-Bennett (Bennett et al., 2003), IFN-Walsh (Walsh et al., 2007), IFNg-

Dummer (Dummer et al., 2020), IFN-Chaussabel M1-2 (Chaussabel et al., 2008), IFN-

Chaussabel M3-4 (Chaussabel et al., 2008) and IFN-Chaussabel M5-12 (Chaussabel et al.,

2008). I also included further published IFN-II signatures in my comparative analysis:

IFNg-Ayers (Ayers et al., 2017), IFNg-Azizi-Platanias (Azizi et al., 2018; Platanias, 2005),

IFNg-Sharma (Sharma et al., 2017), and IFNg-Waddell (Waddell et al., 2010).” (Aybey
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et al., 2025a)

“To determine the relevance of the signatures in an expression dataset, I calculated Co-

herence Score (CS) (Staub, 2012). CS is based on the mean of Pearson correlation of all

gene pairs in the gene signature in a specific dataset. It varies between -1 and +1 defining

weak and strong correlation between the genes in the signature, respectively. CS > 0.2

generally identifies signatures that are coordinately regulated transcriptional modules in

a data set, and therefore point to good translatability into and relevance in a new data

set (Kreis et al., 2021).” (Aybey et al., 2025a)

“To examine the separability of my IFN type genes, I reduced the dimensionality of

GSE181897 scRNA-seq dataset of control, IFN-b, and IFN-g stimulated samples using

UMAP from uwot (v0.1.8) (Melville et al., 2020) (2 principal components) based on either

my own or published IFN signature genes.” (Aybey et al., 2025a)

3.2.4 Evaluation and comparison of my signatures and their relationship to

disease parameters

“To examine the relevance of the GESs to the SLE disease parameters, I calculated

Spearman correlation between mean signature expression scores and SLEDAI. For each

TCGA cohort, I calculated Pearson correlation between each published IFN-I or CD8+ T

cell signatures (Charoentong (Charoentong et al., 2017), Angelova (Angelova et al., 2015),

Becht (Becht et al., 2016), Bindea (Bindea et al., 2013), Nieto (Nieto et al., 2021), Newman

(Newman et al., 2015), and Aybey (Aybey et al., 2023)) with each other separately or

with my IFN GESs. I transformed correlation coefficients into Z-scores using Fisher’s

transformation, with the advantage that these are normally distributed and better suited

for statistical testing.” (Aybey et al., 2025a)

“For hypothesis testing of the differences between distributions of Z-transformed corre-

lation scores or differences between mean signature expression scores in responders and

non-responders or of my IFN signatures I used two-sided Student’s t-test.” (Aybey et al.,

2025a)
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3.3 Results

3.3.1 Network meta-analysis-based GES discovery identified IFN-I and IFN-

II specific response GESs

To distill GESs specific to IFN-a, IFN-b, and IFN-g, I utilized five RNA-seq datasets

of healthy bulk tissue stimulated with these IFNs, derived from diverse tissues and ex-

perimental setups (Table 3.2). This diversity enables the discovery of response genes

applicable across broader contexts, but also introduces challenges, such as variability

in IFN stimulation conditions, time points, concentrations, tissue types, and normaliza-

tion methods. To address these complexities and obtain gene-wise results on DGE from

pairwise comparison of each IFN type, I applied a network meta-analysis (NMA)-based

workflow adapted from Winter et al. (2019) (see Methods, Figure 3.1). NMA extends

traditional meta-analysis, which relies on direct comparisons from each study that test

the same treatments, by incorporating indirect comparisons. This means that even if two

treatments were not directly compared in the same study, NMA can still compare their

effects by linking them through other studies. This approach allowed me to compare each

IFN treatment pairwise while leveraging available data in the public domain, rather than

relying solely on the comparisons coming from individual studies.
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Classification: INTERNAL

IFNa IFNb IFNg ctrl
IFNa 0 1 3 -1
IFNb -1 0 4 1.5
IFNg -3 -4 0 -4
ctrl 1 -1.5 4 0

IFNa vs 
IFNb FC

Gene A -1
… …

FC matrices for IFN 
treatment comparisons

IFNa vs 
IFNg FC

Gene A -3
… …

IFNb vs 
IFNg FC

Gene A -4
… …

Log fold change logFC (treatment vs. control, treatment
vs treatment)+ standard error

Network meta-analysis

16 genes 26 genes 79 genes

e.g. FC matrix for gene A 
(e.g., an IFNg gene)

Discovery datasets (n=5)

Common genes [11 k]
Rank gene expression variation (common top 5 k highly variable genes) 

IFNa* = Up(IFNa vs IFNb) U  Up(IFNa vs IFNg) ∩  (IFNa vs control)
IFNb* = Up(IFNb vs IFNa) U  Up(IFNb vs IFNg) ∩  (IFNb vs control)
IFNg = Up(IFNg vs IFNa) U  Up(IFNg vs IFNb) ∩  (IFNg vs control)

*All IFNa genes are also present in IFNb à Common genes removed for IFNb

Gene lists for individual IFNs

20 genes 40 genes 6 genes

IFNa IFNb IFNg

IFNa vs 
ctrl FC

Gene A 1
… …

FC matrices for IFN and 
control comparisons

IFNb vs 
ctrl FC

Gene A -1.5
… …

IFNg vs 
ctrl FC

Gene A 4
… …

|FC|>2.5       
FDR <0.05

55 genes 111 genes 38 genes

FC>3          
FDR <0.05

Figure 3.1: Network meta-analysis workflow for obtaining IFN signatures.

For the workflow, five bulk tissue RNA-seq IFN stimulation discovery datasets are used and ≈ 11, 000

common genes are ranked based on variance in each dataset. The common top 5,000 highly variable genes

are selected for downstream analysis. Log fold changes (logFC) are calculated between stimulation and

control, and between each available treatment for each dataset, along standard errors. Network meta-

analysis is applied on these results to obtain FC values and FDR-adjusted p-values between each IFN

treatment for each gene along with comparison between each IFN treatment and control (ctrl). Three

lists of FC are compiled for IFN treatment comparisons and genes for |FC| less than 2.5 and more than

0.05 for FDR are filtered out. Additionally, three lists of FC are compiled for IFN treatment and control

comparison. Only genes with more than FC of 3 and less than FDR of 0.05 are taken into consideration.

Finally, gene list for each individual type of IFN are constructed by taking only upregulated genes in

each IFN type compared to other treatments or control.
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Initially, I aimed to systematically investigate the distinct transcriptional effects of

different IFNs in comparison to one another. For each IFN treatment, I performed DGE

analysis on top common 5,000 genes versus controls across all datasets (see Methods,

Figure 3.1). The p-value distributions indicated a high number of genes (> 500 – 1000)

with low raw p-values, showing an overabundance of significant genes compared to those

with higher p-values (Figure 3.2). This indicated a strong differential expression signal

and the suitability of these datasets for further analysis, as they provided robust evidence

for genes affected by different IFN stimulations (Breheny et al., 2018). Building on these

results, I used the DGE outputs to execute NMA, constructing treatment networks for

individual genes. This process generated a 4x4 fold-change (FC) matrix with associated

p-values for each gene (Figure 3.1), enabling systematic pairwise comparisons across

different IFN treatments.
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Figure 3.2: P-value distributions of differential gene expression tests for each treatment
comparison in discovery datasets.

The p-value distributions coming from DGE analysis of top 5,000 highly variables genes common across

datasets are shown. The shape of the distributions with peaks close to zero confirm that there is sufficient

signal to identify differentially expressed genes after IFN stimulation in each of the discovery datasets.
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To create IFN type-specific GESs, I implemented a two-step filtering process involv-

ing treatment-versus-treatment and treatment-versus-control comparisons. For the

treatment-versus-treatment analysis, I compared each IFN stimulation against the others,

generating three gene lists (Figure 3.1). I excluded genes without significant differences

between treatments (|FC| < 2.5 and FDR > 0.05). This stringent filtering identified 16

DEGs for IFN-a vs. IFN-b, 26 DEGs for IFN-a vs. IFN-g, and 79 DEGs for IFN-b

vs. IFN-g. As expected, IFN-a and IFN-b exhibited the fewest distinct DEGs, reflecting

their similar transcriptional programs, while IFN-b and IFN-g displayed the most dis-

tinct profiles. For the treatment-versus-control analysis, I created three additional gene

lists, keeping only genes with significantly higher expression in treatments compared to

controls (FC > 3, FDR < 0.05) (Figure 3.1). IFN-g affected the fewest genes (n = 38),

while IFN-b influenced the most (n = 111), suggesting that IFN-b has a more pronounced

impact on downstream gene regulation, whereas IFN-g has a more limited effect.

To finalize my IFN-type specific response GESs, I joined the results from the two-level

analyses. For each IFN type, I took the union of upregulated genes from the treatment-

versus-treatment comparisons and intersected them with genes identified in the treatment-

versus-control analysis (Figure 3.1). As expected, due to the close transcriptional simi-

larity between IFN-a and IFN-b, all IFN-a genes (n = 20) were also present in the IFN-b

gene set (n = 60), demonstrating their shared transcriptional programs (Thomas et al.,

2011; de Weerd et al., 2013). To address this overlap, I removed the 20 common genes

from the IFN-b signature, leaving 40 unique IFN-b genes to later evaluate whether they

could distinguish IFN-a and IFN-b signals. For now, the IFN-a signature can be con-

sidered as a general IFN-I or common IFN-a/IFN-b GES. Of note, all IFN-g genes have

been independently published as IFN-g ISGs across various cellular contexts and studies

in single studies across various contexts, but have never been described in their entirety

in single study (Chang et al., 2002; Kim et al., 2018; Liu et al., 2018; Morrow et al.,

2011; Pallotta et al., 2022). The final IFN response GESs consisted of 20 genes for IFN-a

(general IFN-I), 40 genes for IFN-b, and 6 genes for IFN-g (Table 3.3), referred to as

IFNa-Aybey, IFNb-Aybey, and IFNg-Aybey, respectively. I will further evaluate these

GESs in the discovery and validation datasets.
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Table 3.3: Gene lists for my IFN signatures.

IFNa/IFN-I-Aybey (n=20) IFNb-Aybey (n=40) IFNg/IFN-II-Aybey (n=6)

CMPK2 BST2 CD74

DDX58 BTC CXCL9

GMPR C3AR1 GBP2

HERC5 CD7 ICAM1

HERC6 CYP2J2 IDO1

HRASLS2 DDX60L IRF1

HSH2D DHX58

IFI27 DLL1

IFI6 GCH1

IFIT1 IFI44

IFIT3 IFI44L

ISG15 IFIH1

LAMP3 IFIT1B

MX1 IL22RA1

MX2 IL4I1

OAS1 IRF7

OAS2 ISG20

OASL LGALS9

RSAD2 LMO2

USP18 MMP13

MYD88

NOD2

OAS3

PDGFRL

PLSCR1

PNPT1

PPM1K

RTP4

SAMD9

SIDT1

SLFN12L

SSTR2

STARD5

THEMIS2

TLR3

TMEM229B

TNFSF13B

TRANK1

TSPAN33

ZBP1
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3.3.2 IFN-I and IFN-II response GESs distinguished IFN-I and IFN-II sig-

nals in discovery datasets

I first assessed how well IFN GESs could distinguish different IFN signals in the discovery

datasets. To do this, I calculated the differences in mean signature scores between each

treatment and control (dmean) (Figure 3.3A). As expected, IFN-g samples showed a greater

difference in dmean with IFNg-Aybey than with IFNa-Aybey or IFNb-Aybey, while the

opposite was true for IFN-a or IFN-b samples. This effect was consistent across various

conditions, including time points and concentrations, demonstrating the expected ability

of the signatures to distinctly classify IFN-I and IFN-II responses.

Next, I examined the differences between IFN-I GESs, IFNa-Aybey and IFNb-Aybey,

in their ability to distinguish between IFN-I and IFN-II signals. The common IFN-I

signature (IFNa-Aybey) outperformed IFNb-Aybey, with larger dmean differences between

IFNg-Aybey and IFNa-Aybey compared to those between IFNg-Aybey and IFNb-Aybey

in nearly all discovery datasets. For example, in multi-IFN perturbation datasets, the

differences ranged from 0 to 0.4 in Jankowski dataset (Jankowski et al., 2021) and 0

to 0.75 in Ziegler dataset (Ziegler et al., 2020) on the summed Z score scale. These

results confirm that IFNa-Aybey provided the better distinction between IFN-I and IFN-

II signals compared to IFNb-Aybey.

I aimed to investigate whether IFN-a and IFN-b could be distinguished from each other.

However, the dmean differences between IFNa-Aybey and IFNb-Aybey were close to 0

(two-sided Student’s t-test comparing IFNa-Aybey and IFNb-Aybey in each stimulation

generally yielded p-values > 0.05). This indicated that their signals were not significantly

separable and reaffirmed that distinguishing their signals is challenging, consistent with

previous findings from NMA.

Based on these results, I confirmed that IFNg-Aybey and the common IFN-I signature

(IFNa-Aybey) effectively separated IFN-I and IFN-II signals. For further validation, I

continued with IFNa-Aybey and IFNg-Aybey.
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Figure 3.3: Discovery and validation of my IFN signatures.

Mean signature scores for each signature are shown on the y-axis. Data points for IFNa-Aybey, IFNb-

Aybey, and IFNg-Aybey are colored differently. (A) Discovery datasets. In Ziegler dataset, on the

x-axis, IFN concentrations are shown, and each box represents different stimulations while in other

datasets different conditions are shown on the x-axis. Different boxes in Colli and Rai datasets represent

different time points. (B) Validation datasets. In two Ziegler datasets, on the x-axis, different IFN

concentrations are shown while in the other two validation datasets, different conditions are shown on

the y-axis. p-values comparing different IFN scores are shown. (* = p < 0.05, ** = p < 0.01, *** =

p < 0.001, and **** = p < 0.0001).
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3.3.3 Validation confirmed that IFN-I and IFN-II GESs differentiated IFN

signals across independent datasets

I evaluated my IFN GESs in three independent datasets not used in the discovery phase,

each serving a different validation purpose (Table 3.2, Figure 3.3B). These validation

steps tested the robustness and applicability of my IFN GESs across different cell types,

experimental conditions, and multiple IFN stimulations.

I conducted the first validation using the Ziegler dataset (Ziegler et al., 2020), which

included IFN-a and IFN-g treated lung basal cell samples from a second donor, not used

in the discovery phase, and the BEAS-2B lung cell line. In this dataset, the differences in

dmean between IFN-I and IFN-II signals increased with higher doses, ranging from 0.4 to

2 for IFN-a and 0.6 to 2.8 for IFN-g stimulations (two-sided Student’s t-tests comparing

IFN-I and IFN-II scores at each dose level yielded p-values < 0.05). These validated the

utility of my IFN GESs in lung basal cells and epithelial cells across varying doses and

experimental conditions.

The second analysis for validation used the Lee dataset (Lee et al., 2020), which encom-

passed lung small airway epithelial cells exposed to multiple IFN stimulations (IFN-a,

IFN-b, IFN-g, or IFN-lambda). The differences in dmean between IFN-I and IFN-II signals

were significantly high (2, 1.6, and 1.6 for IFN-a, IFN-b, and IFN-g stimulations, respec-

tively; two-sided Student’s t-tests comparing IFN-I and IFN-II scores for each stimulation

yielded p-values < 0.05). Furthermore, IFN-a, IFN-b, and IFN-g stimulations exhibited

higher dmean for my IFN GESs than IFN-lambda treatments, demonstrating the higher

selectivity of my IFN GESs for IFN-I/II compared to IFN-III. This validation demon-

strated the robustness of my IFN GESs in datasets with multiple IFN stimulations. It

also confirmed their applicability to another cell line similar to the Ziegler dataset, and

verified their ability to distinguish IFN-I/II from IFN-III.

The last validation dataset from Devlin et al. (2020) stem from a completely different cel-

lular environment, featuring a more heterogeneous and complex setup with whole blood

samples. The dataset included multiple IFN stimulations (IFN-b, IFN-g, or IFN-lambda).

In every stimulation, IFN-I and IFN-II signals differed highly and significantly (the dif-

ferences in dmean 0.6 and 2.3 for IFN-b and IFN-g stimulations, respectively; two-sided

Student’s t-test comparing IFN-I and IFN-II scores for each stimulation yielded p-values

< 0.05). This confirmed that the IFN GESs are effective even in complex, heterogeneous

environments.

In conclusion, the common IFN-I (IFNa-Aybey) and IFN-II (IFNg-Aybey) signatures

showed the highest separability. These signatures demonstrated their robustness, utility,
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and selectivity across various datasets, experimental conditions, biological contexts, and

stimulations. Further analyses will focus only on the 20-gene IFN-I signature and the

6-gene IFN-II signature.

3.3.4 IFN GESs were comparable with published IFN GESs and showed

similar or better coherence and signal separability

I compared my IFN GESs with ten published IFN-I and seven IFN-II GESs, evaluating

their similarity, signal separation, and coherence. I visualized the mean signature scores

using clustered heatmaps (Figure 3.4) for both discovery and validation datasets. IFN-

I-Aybey clustered with published IFN-I GESs that exhibited greater separation between

IFN-I and IFN-II signals. Other signatures, such as IFNa-Hallmark, IFN-Chaussabel-

M5-12, and IFN-Chaussabel-M3-4, did not cluster closely with IFN-I-Aybey and failed

to distinguish IFN-I and IFN-II signals, particularly in multi-IFN perturbation datasets.

Similarly, IFN-II-Aybey clustered with IFN-II GESs, such as IFNg-Ayers, IFNg-Azizi-

Platanias, and IFNg-Dummer, that showed better separation between IFN-I and IFN-II

signals. The clustering results indicated that my IFN GESs displayed similar activa-

tion patterns to published GESs but with stronger selectivity between IFN-I and IFN-II

signals.

To quantitatively assess the transferability of these IFN GESs across datasets, I used co-

herence score (CS) (Rahnenführer et al., 2004; Staub, 2012). CS measures the degree to

which gene sets are co-regulated—whether the genes in the set are up- or downregulated

coordinately across samples. This approach has been used as a surrogate for pathway

relevance or activity. IFN-I-Aybey had one of the highest CSs, particularly in valida-

tion datasets (Figure 3.4B). GESs that clustered with IFN-I-Aybey also had high CSs,

while interestingly IFNa-Hallmark, a widely used IFN-I GES, had a lower CS. Similarly,

IFN-II-Aybey had the highest CSs among IFN-II GESs. In contrast, IFNg-Hallmark, a

commonly used IFN-II GES, showed weak CS, as did IFNg-Waddell and IFNg-Sharma,

suggesting a poor association with IFN-II responses. In summary, my IFN GESs ex-

hibited similar expression patterns to most published IFN GESs, while showing stronger

distinction and higher coherence. These results suggest that my IFN GESs are highly

translatable and coherent across datasets, better distinguishing IFN-I and IFN-II biology

than most published signatures.

61



3.3 Results

Jankowski

IFNg_Waddell
IFN_II_Aybey
IFNg_Ayers
IFNg_Ayers_extended
IFNg_Dummer
IFNg_Sharma
IFNg_Azizi_Platanias
IFNg_Hallmark
IFN_SLE_Bennett
IFNa_Hallmark
IFN_Chaussabel_M5_12
IFN_Chaussabel_M3_4
IFN_Walsh
IFN_Rice
IFN_MB_Staub
IFN_Chaussabel_M1_2
IFN_I_Aybey
IFN_Feng
IFN_Bilgic

Stim

0
0.

5 1

Coherence_score

Mean signature score
−2 −1 0 1 2

Stim
Control IFNa IFNb IFNg

Fujiwara

IFN_Feng
IFNg_Azizi_Platanias
IFN_Rice
IFN_Bilgic
IFNg_Ayers
IFNg_Dummer
IFN_II_Aybey
IFNg_Ayers_extended
IFN_Chaussabel_M3_4
IFN_SLE_Bennett
IFNa_Hallmark
IFN_MB_Staub
IFN_Walsh
IFN_Chaussabel_M1_2
IFN_I_Aybey
IFN_Chaussabel_M5_12
IFNg_Hallmark
IFNg_Sharma
IFNg_Waddell

Stim

0
0.

5 1

Coherence_score

Mean signature score
−1 −0.5 0 0.5 1

Stim
Control IFNg

Rai

IFNg_Waddell
IFN_Chaussabel_M5_12
IFN_Chaussabel_M1_2
IFN_Feng
IFN_Rice
IFN_II_Aybey
IFNa_Hallmark
IFN_I_Aybey
IFN_MB_Staub
IFN_Walsh
IFN_Chaussabel_M3_4
IFN_SLE_Bennett
IFNg_Ayers_extended
IFNg_Ayers
IFNg_Dummer
IFN_Bilgic
IFNg_Sharma
IFNg_Hallmark
IFNg_Azizi_Platanias

Stim
Time

0
0.

5 1

Coherence_score

Mean signature score
−2 −1 0 1 2

Stim
Control IFNb

Time
0 6 24

A

Ziegler donor1

IFN_Chaussabel_M3_4
IFNa_Hallmark
IFN_SLE_Bennett
IFN_Chaussabel_M1_2
IFN_MB_Staub
IFN_Rice
IFN_Walsh
IFN_I_Aybey
IFN_Feng
IFN_Bilgic
IFN_II_Aybey
IFNg_Ayers
IFNg_Ayers_extended
IFNg_Dummer
IFN_Chaussabel_M5_12
IFNg_Hallmark
IFNg_Sharma
IFNg_Azizi_Platanias
IFNg_Waddell

Stim
Dose

0
0.

5 1

Coherence_score

Mean signature score
−2 −1 0 1 2

Stim
Control IFNa IFNg

Dose
0 0.1 0.5 1 2 5 10

Colli

IFNg_Waddell
IFNg_Sharma
IFN_Rice
IFN_Bilgic
IFN_MB_Staub
IFN_I_Aybey
IFN_Walsh
IFN_Feng
IFN_Chaussabel_M1_2
IFN_Chaussabel_M3_4
IFN_SLE_Bennett
IFNa_Hallmark
IFNg_Dummer
IFNg_Ayers
IFNg_Ayers_extended
IFNg_Hallmark
IFN_Chaussabel_M5_12
IFNg_Azizi_Platanias
IFN_II_Aybey

Stim
Time

0
0.

5 1

Coherence_score

Mean signature score
−2 −1 0 1 2

Stim
Control IFNa

Time
2 8 18

62



3.3 Results

Ziegler donor 2

IFNg_Waddell
IFNg_Sharma
IFNg_Azizi_Platanias
IFNg_Dummer
IFNg_Ayers_extended
IFNg_Ayers
IFN_II_Aybey
IFN_MB_Staub
IFN_Chaussabel_M1_2
IFN_SLE_Bennett
IFN_Rice
IFN_I_Aybey
IFN_Walsh
IFN_Feng
IFN_Bilgic
IFNg_Hallmark
IFN_Chaussabel_M3_4
IFNa_Hallmark
IFN_Chaussabel_M5_12

Stim
Dose

0
0.

5 1

Coherence_score

Mean signature score
−2 −1 0 1 2

Stim
Control IFNa IFNg

Dose
0 0.1 0.5 1 2 5 10

B

Ziegler BEAS−2B

IFN_Bilgic
IFN_Rice
IFN_Feng
IFN_I_Aybey
IFN_Walsh
IFN_SLE_Bennett
IFN_Chaussabel_M1_2
IFN_MB_Staub
IFNg_Azizi_Platanias
IFNg_Ayers_extended
IFNg_Dummer
IFNg_Ayers
IFN_II_Aybey
IFN_Chaussabel_M5_12
IFNg_Hallmark
IFNa_Hallmark
IFN_Chaussabel_M3_4
IFNg_Sharma
IFNg_Waddell

Stim
Dose

0
0.

5 1

Coherence_score

Mean signature score
−2 −1 0 1 2

Stim
Control IFNa IFNg

Dose
0 0.1 0.5 1 2 5 10

Devlin

IFN_Bilgic
IFN_Walsh
IFN_I_Aybey
IFN_MB_Staub
IFN_Feng
IFN_Rice
IFN_SLE_Bennett
IFN_Chaussabel_M1_2
IFN_Chaussabel_M5_12
IFNg_Hallmark
IFNa_Hallmark
IFN_Chaussabel_M3_4
IFNg_Sharma
IFNg_Ayers_extended
IFNg_Waddell
IFNg_Azizi_Platanias
IFNg_Dummer
IFN_II_Aybey
IFNg_Ayers

Stim

0
0.

5 1

Coherence_score

Mean signature score
−2 −1 0 1 2

Stim
Control IFNb IFNg IFNlambda

Lee

IFNg_Waddell
IFNg_Sharma
IFN_II_Aybey
IFNg_Azizi_Platanias
IFNg_Ayers
IFNg_Ayers_extended
IFNg_Dummer
IFN_Bilgic
IFN_Rice
IFN_Walsh
IFN_Feng
IFN_I_Aybey
IFN_Chaussabel_M1_2
IFN_MB_Staub
IFNg_Hallmark
IFN_SLE_Bennett
IFN_Chaussabel_M3_4
IFNa_Hallmark
IFN_Chaussabel_M5_12

Stim

0
0.

5 1

Coherence_score

Mean signature score
−2 −1 0 1 2

Stim
Control IFNa IFNb IFNg IFNlambda

Figure 3.4: Evaluation of my IFN GES and other published GES in (A) discovery and
validation (B) datasets.

Mean signature score and coherence scores are shown for each signature separately in the discovery and

validation datasets. My IFN signatures are colored in red and others in black. Different experimental

conditions such as time and IFN concentrations are shown on the column annotations. Hierarchical

clustering is applied column- and row-wise. Mean signature scores are shown from low (blue) to high

(red).
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3.3.5 IFN GESs were applicable to scRNA-seq data from immune cells, sep-

arating IFN-I/II signals

Previously, I demonstrated the applicability of my IFN GESs in bulk tissue RNA-seq

datasets. To assess their cell-type-specific utility in scRNA-seq datasets, I analyzed

an IFN-stimulation PBMC scRNA-seq dataset (GSE181897) (Hartoularos et al., 2023).

PBMCs from 64 healthy donors were stimulated with IFN-b, IFN-g, or left unstimulated,

and samples were taken 9 h post-stimulation. As a negative control, I included TNF-a

stimulation. This experimental setup allowed me to evaluate the performance of my IFN

GESs and other published IFN GESs in a single-cell context.

In the previous chapter, I developed a RF classifier for unbiased immune cell type classifi-

cation, particularly suited for complex datasets with varying experimental variables, such

as the one used here. Using UMAP for dimensionality reduction (Figure 3.5) with my 167

immune cell type genes, cells were separated by cell types rather than treatment groups.

This demonstrates that a relatively small number of robust, cell-type-specific genes are

sufficient to capture intrinsic cellular composition and define cell types independently of

other conditions. These findings further emphasize the robustness and versatility of my

immune cell type GESs and suggest that my RF classifier performed well in this different

experimental context.

The analysis of IFN GESs in the context of single-cell data showed distinct activation

patterns. Visually, the mean signature expression scores for my IFN GESs as overlayed

on an UMAP analysis based on my 167 immune cell type genes were elevated in the cells

treated with the corresponding IFN type (Figure 3.5). These differences were statistically

significant, based on one-sided Student’s t-tests (Bonferroni-adjusted p-values < 0.05),

comparing mean signature scores across different treatments (Figure 3.6, first row). While

IFN-I response was activated in all immune cell-type populations, the IFN-II response

was primarily restricted to myeloid cells and other cell types like B cells. These patterns

confirm the utility of my IFN GESs in characterizing cell-type-specific IFN responses in

scRNA-seq datasets.
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Figure 3.5: FeaturePlots showing mean signature expression scores of IFN Aybey signatures
on UMAP plots in IFN-b, IFN-g, and TNF-a stimulation single-cell gene expression dataset.

(Upper) UMAP based on my immune cell type specific genes showing different cell types defined by my

random forest cell type classification method and different conditions. (Lower) Mean signature score

levels are shown for IFN-I- and IFN-II-Aybey signature from low (gray) to high (red) on UMAP from

the upper figure. Each condition is shown in a separate FeaturePlot.
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Figure 3.6: My IFN-I and IFN-II signatures compared with published IFN-II signatures in
IFN-b, IFN-g, and TNF-a stimulation single-cell gene expression dataset.

For the evaluation of my IFN signatures and comparing those with published IFN-II signatures,

GSE181897 scRNA-seq IFN stimulation dataset is used. Mean signature scores (y-axis) are calculated

for each cell and shown for each signature (box) while cell type annotations defined by my random forest

cell type classification method are shown on the x-axis. The stimulations (IFN-b, IFN-g, and TNF-a) are

shown in different colors. Each IFN score is pairwise compared in its corresponding IFN treatment with

other conditions within each cell type using one-sided Student’s t-test. Bonferroni-adjusted p-values are

displayed. (* = p < 0.05, ** = p < 0.01, *** = p < 0.001, and **** = p < 0.0001).

Next, I examined whether IFN-I- and IFN-II genes yield separate expression pat-

terns in the GSE181897 scRNA-seq dataset. To this end, I applied UMAP on two gene

expression data matrices: the gene x cell matrix for all genes of my IFN-I/-II GESs,

and the analogous data matrix for all genes of public IFN-I/II GESs. I categorized the

genes from public signatures into three groups: common genes shared between IFN-I

and IFN-II GESs (‘common IFN-I/II genes’), IFN-I-specific genes, and IFN-II-specific

genes. The first UMAP dimension separated IFN-II-Aybey from IFN-I-Aybey genes

(Figure 3.7A), demonstrating that IFN-I and IFN-II genes could be differentiated in a

single-cell context. In contrast, the genes from the published signatures formed three

types of clusters (Figure 3.7B): mixed clusters containing both IFN-I, IFN-II, and

common genes; a cluster of common genes and IFN-I genes; and a cluster containing

both IFN-I and IFN-II genes. This pattern suggests significant overlap among the gene

sets. Published IFN genes showed a lack of exclusivity, demonstrating that my IFN genes

could distinguish IFN type signals in a complex single-cell context, whereas published

IFN genes do not differentiate between IFN-I and IFN-II signals.
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Figure 3.7: UMAPs based on different IFN gene set collections in IFN-b and IFN-g stim-
ulation single-cell gene expression dataset: (A) IFN-I-Aybey and IFN-II-Aybey genes or
(B) published IFN-I and IFN-II genes.

Expression data of samples from different conditions (control, IFN-b stimulation, and IFN-g stimulation)

are used to derive a UMAP based on different IFN gene sets. Each gene set is colored differently, and

gene names are shown for my IFN signatures. For published gene sets unique IFN-I or IFN-II genes as

well as common genes between those two subtypes are colored. Note that in (A) my IFN-I and IFN-II

signature genes are perfectly separated while in (B) for IFN-I/II genes from other published signatures

genes do not cluster by annotated IFN type.

3.3.6 IFN-II-Aybey detected IFN-II response more effectively than previ-

ously published GESs and in more cell types

I evaluated the ability of IFN-II-Aybey to detect cell type-specific IFN-II responses com-

pared to other published IFN GESs in the GSE181897 dataset (Figure 3.6). Expectedly,

myeloid cells were activated more strongly upon IFN-g stimulation (Waddell et al., 2010).

All IFN-II GESs except IFNg-Hallmark could detect myeloid cell specific IFN-II response

by having significantly higher scores (one-sided Student’s t-test, Bonferroni-adjusted p-

values < 0.05) upon IFN-g stimulation compared to other stimulations. Notably, IFN-II-

Aybey was the only GES which showed significantly higher scores at other IFN-g treated

cell type populations such as hematopoietic stem cells (HSC), B cell, näıve CD8+ T cell,

näıve CD4+ T cell, and memory CD4+ T cell populations (one-sided Student’s t-test,

Bonferroni-adjusted p-values < 0.05). IFNg-Hallmark again showed a weak association

with IFN-II specific response, which I have already demonstrated in my previous analysis
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(Figure 3.4). Similarly, other signatures such as IFNg-Ayers and IFNg-Azizi-Platanias

exhibited higher scores at IFN-b treatment compared to IFN-g treatment, indicating lack

of IFN-II specificity. Additionally, some signatures such as IFNg-Sharma showed cell type

specificity by having higher scores in T and NK cell populations across all conditions. In

summary, my IFN-II GES detected IFN-II specific response with higher selectivity and

in more immune cell type populations than any published IFN-II GES.

3.3.7 IFN-I-Aybey showed high coherence and was highly correlated with

disease severity in SLE

To investigate the relevance of my IFN GESs in the diseased context, I focused on SLE, an

autoimmune disease where many studies have linked IFN-I signaling with disease severity,

particularly the SLEDAI score (Bengtsson et al., 2000; Chasset et al., 2022; Chaussabel

et al., 2008; Gómez-Bañuelos et al., 2024). I used three independent SLE microarray

datasets to calculate Spearman correlation (SC) between the SLEDAI score and the IFN

signature score, as well as the CS for each individual IFN GES (Table 3.4). In general,

both SC and CS of IFN-I GESs were higher than those of IFN-II GESs, emphasizing the

predominant role of IFN-I over IFN-II in driving SLE progression. IFN-I-Aybey ranked

among the GESs with the highest SC, just after SLE-driven IFN GESs like IFN-SLE-

Bennett and IFN-Chaussabel (M3/4 and M5/12, except M1/2). It also demonstrated a

high CS (0.55 – 0.71). In contrast, most IFN-II GESs, except for IFNg-Hallmark, showed

low SC (< 0.2), indicating low or no association with SLE disease activity. However, IFNg-

Hallmark exhibited a mixture of both IFN-I and IFN-II signaling, as shown previously,

which was indicated here by its higher SC value. Overall, IFN-I-Aybey demonstrated

strong coherence across clinical SLE samples and was associated with disease severity in

SLE, while IFN-II did not show the same relevance, affirming the distinct roles for IFN-I

and IFN-II in SLE disease progression.
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Table 3.4: Relevance of IFN signatures in three SLE datasets.

Spearman correlation between mean signature scores and SLEDAI along coherence scores for each IFN
signature are shown. The number of genes for each IFN signature is shown in brackets. IFN signatures
are ordered by the ranking based on correlation coefficients in three SLE datasets.

IFN signature
Spearman correlation Coherence score

GSE121239 GSE49454 GSE65391 GSE121239 GSE49454 GSE65391

IFN SLE Bennett (26) 0.34 0.20 0.48 0.51 0.44 0.45

IFN Chaussabel M3 4 (59) 0.34 0.14 0.50 0.52 0.50 0.54

IFN Chaussabel M5 12 (58) 0.32 0.21 0.47 0.35 0.36 0.36

IFN I Aybey (20) 0.32 0.19 0.46 0.71 0.58 0.55

IFN Walsh (6) 0.32 0.16 0.45 0.93 0.94 0.91

IFN Chaussabel M1 2 (32) 0.32 0.11 0.45 0.79 0.62 0.64

IFNa Hallmark (97) 0.31 0.11 0.46 0.35 0.31 0.31

IFN Rice (4) 0.30 0.17 0.43 0.92 0.80 0.62

IFN Bilgic (3) 0.31 0.16 0.42 0.76 0.39 0.13

IFN Feng (5) 0.30 0.11 0.44 0.92 0.78 0.72

IFN MB Staub (10) 0.31 0.08 0.42 0.78 0.64 0.63

IFNg Hallmark (200) 0.25 0.05 0.43 0.13 0.14 0.15

IFNg Dummer (5) 0.09 -0.12 0.21 0.29 0.06 0.11

IFNg Waddell (10) -0.02 0.11 0.12 0.12 0.07 0.09

IFNg Azizi Platanias (11) -0.01 -0.14 0.15 0.07 0.04 0.07

IFN II Aybey (6) -0.12 -0.09 0.15 0.16 0.13 0.14

IFNg Ayers (6) 0.06 -0.19 0.09 0.22 0.17 0.15

IFNg Ayers extended (10) 0.01 -0.21 0.06 0.25 0.13 0.12

IFNg Sharma (25) -0.11 -0.27 0.03 0.17 0.18 0.18

3.3.8 IFN-I and IFN-II signals were separable in bulk tissue cancer datasets

using my IFN GESs

To assess the separation of IFN-I and IFN-II signals in the cancer context, I examined

TCGA cohorts from 32 different cancer indications. I calculated the Pearson correlation

between sample mean signature scores of IFN-I-Aybey or IFN-II-Aybey and published

IFN-I or IFN-II GESs in each cancer indication. I then transformed the correlation

coefficients using Fischer’s z-transform to represent the correlation distributions as normal

distributions for further statistical analysis (Figure 3.8).

First, I compared the similarity between my IFN GESs and published IFN GESs (Fig-

ure 3.8A). The comparison between published IFN-I GESs and IFN-I-Aybey showed a

significantly higher mean correlation Z score compared to the pairwise comparisons among

published IFN-I GESs (difference between the means dmean= 0.19, two-sided Student’s

t-test, p < 0.001). Similarly, IFN-II-Aybey showed a significantly higher mean correla-

tion Z score compared to pairwise comparisons among published IFN-II GESs (dmean=

0.07, two-sided Student’s t-test, p < 0.01). These results suggest that my IFN GESs are

strongly correlated with published GESs.

Next, I evaluated how well IFN-II-Aybey could be separated from published IFN-II

GESs, and vice versa for IFN-I-Aybey (Figure 3.8A). I first compared the correlation

between published IFN-I GESs and IFN-II-Aybey. The mean correlation Z score for
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published IFN-I GESs and IFN-II-Aybey was significantly lower than the pairwise

correlations from published IFN-I GESs (dmean= 0.59, two-sided Student’s t-test, p <

0.001). This shows that IFN-II-Aybey does not strongly correlate with IFN-I signatures.

I then compared the published IFN-II GESs with IFN-I-Aybey. Similarly, the correlation

was significantly lower than the pairwise correlations among the published IFN-II GESs

(dmean= 0.52, two-sided Student’s t-test, p < 0.001). This further supports the idea that

IFN-I-Aybey is distinct from published IFN-II GESs. These results show that my IFN

GESs exhibit minimal overlap or cross-correlation with the opposing IFN type. Across

various cancer samples and indications, my IFN GESs successfully identified distinct

signals of IFN-I and IFN-II.
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Figure 3.8: Correlation histograms between IFN-I- or IFN-II-Aybey signatures and pub-
lished IFN signatures (A) or CD8+ T cells (B) in all TCGA cohorts (n = 32).

Mean signature scores for each signature are calculated in each TCGA cohort separately. Within each

cohort, Pearson correlation coefficients are calculated between my IFN signatures and all other published

signatures for IFN-I, IFN-II, or CD8+ T cells. Correlation values are z-transformed (Fisher transfor-

mation) and shown on x-axis while y-axis represents the density of the distributions. Each color shows

different comparisons e.g., IFN-I against IFN-I or IFN-I against IFN-I-Aybey. Two-sided Student’s t-test

is used to compare the similarity between the distribution of the histograms, i.e., the means of the distri-

butions. (ns = non-significant (p > 0.05); ** = p < 0.01 and *** = p < 0.001). The differences between

the means of the histograms are denoted as d.
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3.3.9 IFN-II-Aybey was correlated with CD8+ T cell infiltration in TCGA

cancer samples

CD8+ T cells are the main producers of IFN-g, and their infiltration has been linked

to high IFN-II signaling (Burke and Young, 2019; Kambayashi et al., 2003; Yan et al.,

2021). Since I cannot directly measure IFN-g levels using my IFN-II GES, I tested the

association by evaluating the downstream effects of IFN-g signaling in the TME across

32 TCGA cohorts. I compared the mean Z score Pearson correlation between published

CD8+ T cell GESs and my IFN GESs, similar to the previous analysis (Figure 3.8B).

The correlation between published CD8+ T cell GESs and IFN-I-Aybey was lower than

that of pairwise correlations among CD8+ T cell GESs (dmean= 0.37, two-sided Student’s

t-test, p < 0.001). In contrast, the correlation between published CD8+ T cell GESs and

IFN-II-Aybey showed no significant difference (dmean= 0.02, two-sided Student’s t-test,

p > 0.05). These findings confirmed the strong correlation between IFN-II response and

CD8+ T cell infiltration, but a weaker association with IFN-I response.

To better understand the relationship between IFN-II response and CD8+ T cell infiltra-

tion, I expanded my analysis to include a wider range of GESs related to immune and

cellular functions. Specifically, I aimed to assess how the activity of CD8+ T cell GESs

aligned with my IFN GESs, compared to other immuno-oncology signatures. I used a

methodology similar to that of Kreis et al. (2021), which analyzed the coherence and as-

sociations of multiple GESs in a cancer-specific context, particularly in the TCGA-BRCA

cohort. To achieve this, I calculated the covariance between published GESs and IFN-I-

Aybey or IFN-II-Aybey, ranking the signals based on covariance. I displayed the results

in two separate heatmaps, with the top 20 signatures shown in Figure 3.9 (all signatures

are shown in Appendix Figure A.2). This approach provides a comprehensive view of how

different immune and cellular processes interact in a given dataset.

Most IFN-I GESs showed the highest covariance with IFN-I-Aybey, with the top three

being IFN-Walsh, IFN-Staub, and IFN-Rice (covariance ranging from 0.6 to 0.7) (Fig-

ure 3.9). This indicates that my IFN-I GESs are highly consistent with existing published

IFN-I GESs. Interestingly, some IFN-II GESs, including IFN-g-Dummer, IFN-g-Ayers,

and IFNg-Azizi-Platanias, showed high similarity to IFN-I-Aybey (covariance > 0.3). In

contrast, IFN-II-Aybey had the lowest covariance to IFN-I-Aybey among all IFN-II GESs

(Appendix Figure A.2), reaffirming its ability to differentiate IFN signals more effectively

than most published IFN-II GESs.

When I compared IFN-II-Aybey with other signatures, the GESs with the highest covari-

ances were published IFN-II GESs and CD8+ T cell GESs (Figure 3.9). Notably, none of

the IFN-I GESs appeared among the top-ranked signatures, showing the high specificity
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of IFN-II-Aybey. Interestingly, IFNg-Hallmark showed the least covariance with IFN-

II-Aybey compared to other IFN-II GESs, suggesting its dissimilarity to IFN-II-Aybey

and other IFN-II GESs (Appendix Figure A.2). These results further asserted the strong

association between IFN-II-Aybey and CD8+ T cell GESs and highlighted the superior

capability to distinguish IFN-I and IFN-II gene expression responses, demonstrating even

greater separation than other published IFN GESs in the TCGA BRCA cohort.
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Figure 3.9: RosettaSX analysis: top 20 related signatures to my IFN signatures in TCGA
BRCA cohort.

The signatures are compiled from Kreis et al. (2021) and additional published CD8+ T cell and IFN-

II GESs. Mean signature scores are calculated only for coherent signatures (coherence score > 0.2).

Covariance between each of my IFN signatures and coherent signatures are calculated. Only top 20

signatures with the highest covariances to IFN-I-Aybey or IFN-II-Aybey are depicted. Mean signature

scores are shown from low (blue) to high (red). Covariance values are shown from low (dark blue) to

high (orange).
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3.3.10 IFN-II-Aybey was associated with response to ICI therapy

Finally, I applied my IFN GESs to better understand the effect of cancer immunotherapy,

specifically ICI therapy. I aimed to validate the positive association between IFN-II

signaling and ICI response, as reported in several studies based on baseline samples

(Ayers et al., 2017; Grasso et al., 2020; Karachaliou et al., 2018; Mo et al., 2018). To this

end, I calculated mean signature scores for my IFN GESs across three ICI treatment bulk

tissue RNA-seq datasets from three different cancer types: bladder cancer (Mariathasan

et al., 2018), melanoma (Van Allen et al., 2015), and gastric cancer (Kim et al., 2018)

(Figure 3.10). In all datasets, IFN-II-Aybey scores were significantly higher in responders

(two-sided Student’s t-test, p < 0.01), while IFN-I-Aybey scores showed no significant

difference (two-sided Student’s t-test, p > 0.05). These results suggest that IFN-II,

rather than IFN-I, is a predictive biomarker for ICI response.
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Figure 3.10: Boxplots showing mean signature scores of IFN-I- and IFN-II-Aybey signatures
between responders and non-responders of ICB therapy in three different cancer cohorts.

Three bulk tissue RNA-seq datasets of three different cancer types are used: gastric cancer (Kim et al.,

2018), melanoma (Van Allen et al., 2015) and bladder cancer- IMvgor210 (Mariathasan et al., 2018).

Mean signature scores for each signature (y-axis) are calculated in each cohort separately. Responders

(R) and non-responders (NR) are shown on the x-axis. Two-sided Student’s t-test is used to compare

differences in the mean signature scores between R and NR. (ns = non-significant (p > 0.05); * = p <

0.05 and ** = p < 0.01).
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3.4 Discussion

To disentangle the transcriptional effects of responses to different IFN types, IFN-I and

IFN-II, I developed IFN type-specific response GESs. Until now, no GES repertoire

has been published that clearly separates IFN-I and IFN-II responses, derived and vali-

dated from multiple expression datasets. For instance, as shown in my analyses, a promi-

nent IFN-II GES, IFNg-Hallmark, has mixed characteristics, representing both IFN-I and

IFN-II signaling (Figure 3.4, Figure 3.6, Appendix Figure A.2, and Table 3.4). Further,

no study has comprehensively compared different published IFN GESs across multiple

datasets from varying experimental conditions, which is essential to assess their trans-

latability and relevance. To address these gaps, I utilized a meta-analysis-based work-

flow, leveraging five diverse healthy bulk tissue RNA-seq datasets and applied an extensive

discovery, validation, and application process involving multiple datasets from different se-

quencing platforms, cellular environments, experimental conditions, and healthy-disease

datasets. These steps ensured broad application, versatility, validation, and statistical

power of my IFN GESs.

A network meta-analysis approach was particularly useful for discovery, given the vari-

ability in IFN stimulations, cellular contexts, experimental setups, and normalization

methods across datasets. This approach has been successfully applied in GES discovery

and candidate gene detection, yielding highly comparable results to analyses of merged

independent gene expression data (Winter et al., 2019). This method allowed pairwise

comparisons between treatments, by utilizing the information from all datasets available.

The power of NMA lies in its ability to synthesize indirect evidence, providing a compre-

hensive view that might otherwise be ignored in studies with limited direct comparisons.

Using the available datasets, I successfully obtained IFN-I and IFN-II GESs; however,

disentangling IFN-a and IFN-b signals was not always possible, as it largely depended

on the cellular context. This finding also reaffirmed the proximity of IFN-a and IFN-b

signals (Chow and Gale, 2015; Thomas et al., 2011; de Weerd et al., 2013).

Throughout all steps of my study, my IFN GESs demonstrated strong coherence and

high separation of IFN-I/II signals across various conditions, including healthy, SLE, and

cancer, as well as in heterogeneous cell populations and at the single-cell level. Notably,

IFN-II-Aybey exhibited the highest coherence score among other IFN-II GESs and sepa-

rated itself from IFN-I GESs, including IFN-I-Aybey. This differentiation was crucial, as

it helped to identify distinct patterns of immune response associated with IFN-II signaling,

which were not confounded by IFN-I signals. These results provided strong evidence that

my IFN GESs were capturing biologically meaningful and context-specific information.

My analysis further reaffirmed the distinct roles of IFN-I and IFN-II in SLE and can-
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cer. Specifically, IFN-II-Aybey was strongly associated with CD8+ T cell infiltration

and response to ICI therapy, aligning with findings from previous studies (Ayers et al.,

2017). In contrast, IFN-I-Aybey, but not IFN-II-Aybey, was linked to disease severity in

SLE, as reported earlier (Bengtsson et al., 2000; Chasset et al., 2022; Gómez-Bañuelos

et al., 2024). Notably, the roles of IFN-I signaling in ICI response and IFN-II signaling

in SLE disease severity have not been explicitly compared in previous studies. These

translational findings suggest the unique and context-dependent roles of IFN-I and IFN-

II signaling, emphasizing the utility of my IFN GESs and evaluation framework in better

understanding separate impacts of IFNs on immune responses and disease progression.

The evaluation of IFN GESs in terms of cell-type-specific IFN responses based on single-

cell data has not been extensively explored. My analysis using a published scRNA-seq

PBMC dataset from a large group of healthy donors (Hartoularos et al., 2023) showed that

IFN-II-Aybey captured the IFN-II-specific response in a broader range of cell types, in-

cluding HSC, B cells, and näıve T cells, in addition to myeloid cells (Figure 3.6). This was

in contrast to most other IFN-II GESs, which were predominantly restricted to myeloid

cells. Furthermore, some IFN-II GESs, such as IFNg Sharma, exhibited specificity for

particular cell types, while others, like IFNg-Ayers, IFNg-Azizi-Platanias, and IFNg-

Hallmark, were also upregulated upon other treatments, showing treatment-unspecific

’mixed signals’. The low signal-to-noise ratio, particularly in IFNg-Hallmark, was a strik-

ing result, given its widespread use in the literature. This shows the importance of cellular

resolution and performing external validation for any GES, especially IFN GESs, to ensure

their validity and translatability for specific use cases.

In summary, I derived robust, broadly applicable, and disease-relevant IFN-I and IFN-II

response-specific GESs, addressing the limitations of existing signatures. My signatures

enhance the understanding of IFN responses across diverse experimental settings, cell

types, and disease contexts. My IFN GESs were particularly useful for dissecting cell

type-specific responses in single-cell studies and comparing the differential effects of IFN-

I and IFN-II signaling in disease progression and therapy in SLE and cancer. This study

provides new tools to investigate the downstream effects of IFN-I and IFN-II signaling,

even in complex tisssues, in the form of IFN-I and IFN-II GESs.
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4 Chapter 3: Resolving temporal interferon signaling

across immune cells

“We are all time travelers journeying together into the future.”

Stephen Hawkings, “Brief Answers to the Big Questions”

In the final chapter, I describe my investigation of temporal IFN type-specific responses

in diverse immune cell populations using the tools which I described in previous chapters.

For this, I analyze a novel dataset generated for this study: temporal CITE-seq dataset

of PBMCs stimulated with IFN-a or IFN-g. I examine the strength and dynamics of

responses in various immune cell types to IFN-I and IFN-II. Finally, I identify genes

specifically activated by distinct IFN types in individual cell types, particularly in

monocytes, which display unique temporal activation patterns.

(I adapted this chapter based on my unpublished manuscript (Aybey et al., 2025b), in

which I was the lead author and for which I have conducted all analyses. I will submit

the manuscript to a peer-reviewed journal as soon as I submit my thesis for assessment.)

4.1 Introduction

4.1.1 Limitations of previous studies characterizing immune cell type-specific

IFN response dynamics

Understanding immune cell type-specific IFN response dynamics is critical for character-

izing the complexities of immunological processes. Existing datasets often lack resolution

at the cellular, temporal, or cross-IFN type comparison levels. Many previous studies,

that investigate the gene expression response to IFNs, rely on bulk tissue populations or

purified immune cells (Devlin et al., 2020; Reyes et al., 2019; Waddell et al., 2010). These

fail to capture the heterogeneity within immune populations. For instance, Waddell et al.

(2010) identified temporal expression profiles for cell type-specific and general IFN-I and

IFN-II response genes in a temporal microarray study on purified immune cells. They

also emphasized the importance of intercellular interactions in interpreting and better

characterizing cell type-specific IFN signaling. However, no comparable temporal bulk

tissue RNA-seq or microarray dataset has since been generated.

Previously published scRNA-seq datasets of PBMCs stimulated with IFNs also have lim-

itations. Some focus on the response to a single IFN type across multiple time points

(de Cevins et al., 2023; Kartha et al., 2022), but lack cross-comparisons between IFN
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types. Others examine only a single time point upon stimulation with a single IFN type

(Karagiannis et al., 2020), ignoring both temporal dynamics and cross-treatment com-

parisons. Multi-IFN perturbation datasets (Hartoularos et al., 2023; Goel et al., 2021)

capture cross-treatment responses but fail to explore temporal changes. Until now, no

dataset has sufficiently addressed these three resolution levels, that are essential for en-

abling comprehensive understanding of the dynamic cell- and IFN-type specific responses.

To address these gaps, I designed and analyzed a new CITE-seq dataset using PBMCs

stimulated with IFN-a or IFN-g, with samples taken after four time points. This approach

would also allow me to explore the relationships between different immunological pathways

and IFN signaling, dissecting cell- and IFN-type specific temporal expression patterns.

4.2 Methods

4.2.1 Experimental design and data generation for IFN-stimulated PBMC

samples

I designed the experimental setup to investigate immune cell-type-specific temporal re-

sponses to IFN stimulation. PBMCs were isolated from three healthy female donors and

stimulated with IFN-a and IFN-g, or left untreated. Samples were collected at four time

points: 0 hours, 1 hour, 3 hours, and 9 hours post-stimulation. Single Cell Discoveries

(Utrecht, Netherlands) generated and sequenced the data. The sample for IFN-a (9 h)

from donor 10881 could not be sequenced due to sample being shipped without dimethyl

sulfoxide.

The sequencing workflow followed standard 10x Genomics and BioLegend protocols, us-

ing the TotalSeq-B TBNK panel to profile nine immune cell surface markers: CD19,

CD4, CD14, CD8, CD56, CD16, CD11c, CD45, and CD3. The resulting CITE-seq data

was processed into raw count matrices and provided for preprocessing and downstream

analysis.

4.2.2 Single-cell data analysis

To preprocess the data, I filtered out genes detected in fewer than three cells and removed

cells with fewer than 200 detected genes. Additionally, I excluded cells with more than

5,000 unique gene counts or a mitochondrial gene fraction exceeding 15%. For gene

expression normalization, I used LogNormalize method from Seurat (v.4.3.0) (Stuart et al.,

2019). For surface protein expression, I used centered log-ratio (CLR) normalization in
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Seurat. This method transforms raw protein counts by calculating the geometric mean

across all proteins for each cell and then taking the log-ratio of each protein’s count relative

to this geometric mean. After preprocessing, I obtained two data matrices: (1) a gene

expression matrix with genes (n = 28,865) as rows and cells (n = 212,761) as columns,

containing log-normalized transcript counts, and (2) a protein expression matrix with

surface protein markers (n = 9) as rows and cells (n = 212,761) as columns, containing

CLR-normalized protein expression values.

For the classification of immune cell types, I utilized my random forest classification

approach as described in Chapter 1. I used medium-grained cell type annotations from

the PBMC reference dataset, specifically the Hao dataset (Hao et al., 2021). For further

downstream analysis, I excluded immune cell type genes (n = 167) and was left with

28,698 genes.

4.2.3 Gene expression change score

To quantify absolute gene expression changes in response to different IFN stimulations

across immune cell types, I adapted the ”change score” method from Bouman et al. (2024).

This score measures how gene expression fluctuates over time within a specific cell type

and stimulation condition, such as monocytes stimulated with IFN-g (monocytes-IFNg).

For each gene, I calculated the absolutes sum of the derivative of the average expression at

each time point. This captures the magnitude of expression change between consecutive

time points:

Absolute sum of derivatiest = |Zt − Zt−1| (7)

Where Zt is the Z-scaled average gene expression value at time point t and Zt−1 is the

Z-scaled average gene expression value at the previous time point (t− 1).

Next, I computed the overall change score for each gene by summing the absolute deriva-

tives across time intervals for a given stimulation and cell type:

Change scoregene =
n∑

t=2

|Zt − Zt−1| (8)

Where t represents the time point index (from 2 to n), and n is the total number of time

points.
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4.3 Results

4.3.1 Novel temporal IFN stimulated PBMC CITE-seq dataset

To characterize immune cell- and IFN-type specific expression profiles, a CITE-seq

dataset was generated from PBMCs isolated from three different healthy female donors

with similar demographics (Table 4.1). Cells were stimulated with IFN-a or IFN-g, or left

untreated, with samples collected at four time points (0 h, 1 h, 3 h, and 9 h) to capture

temporal changes in transcriptional programs. Untreated control samples were included

in each time point to account for baseline effects. This experimental design ensures a

robust, temporal comparison of the response to IFN-a and IFN-g across immune cell

populations.

Table 4.1: Donor demographics.

Donor

Age at

collec-

tion

Gender Race Ethnicity
Tobacco

history

Alcohol

history

Body

mass

index

(calcu-

lated)

M-10881 29 Female White
Non-

Hispanic

Previous

Use

Current

Use
25.4

M-10882 30 Female White
Non-

Hispanic

Never

Used

Current

Use
27.3

M-10883 30 Female White
Non-

Hispanic

Never

Used

Current

Use -

Infrequent

24.4

To prepare the data for further analysis, I assessed various quality control metrics related

to sample differences, as well as mRNA-protein translatability (Figure 4.1). Cells were

evenly distributed across samples, with a median of 7,161 cells per sample, totaling

212,761 cells. Interestingly, unstimulated control samples contained higher numbers of

cells, suggesting a possible impact of IFN stimulation on cell viability (Figure 4.1A).

There were no significant differences (two-sided Student’s t-test, p > 0.05) in cell surface

protein expression between samples, indicating that the cell surface protein markers

were consistently expressed across the experimental conditions (Figure 4.1B). Further,

almost all cell surface markers showed strong correlation (Pearson correlation PC >

0.3) to mRNA expression, indicating overall agreement between mRNA and protein

expression (Figure 4.1C). These initial assessments demonstrated the overall homogene-

ity of cell distribution and consistent protein expression across samples, as well as a
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strong mRNA-protein translatability, confirming the data’s suitability for further analysis.
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Figure 4.1: Quality control of novel IFN CITE-seq dataset.

(A) Distribution of number of cells per sample. The bar plot shows the number of cells for each sample,

with different colors indicating the type of stimulation (IFN-a, IFN-g, or untreated) and time point

(0 h, 1 h, 3 h, 9 h) after stimulation. The y-axis represents the number of cells, and the median of

the distribution is 7,161 cells, marked by a line. The cells are evenly distributed across samples. (B)

Distribution of protein expression between donors under different conditions. Centered log ratio (CLR)

normalized protein expression values are plotted for each donor under different conditions as violin plots.

Note the homogeneous distribution of protein expression across samples. (C) Correlation of gene and

protein expression of cell surface markers. Normalized expression values of protein and mRNA expression

are used for the x and y axes, respectively. Pearson correlation coefficients for each gene and protein

expression comparison are reported for all samples. Most protein markers are strongly correlated. (D)

Distribution of cell types in each sample. Cell type percentages are shown for each sample. Different cell

types are depicted in different colors and each condition is shown separately. Overall, there are similar

distributions among the different samples.
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4.3.2 Random forest classifier effectively assigned immune cell types

In the first chapter, I described the development of a RF cell type classifier specifically

designed for unbiased downstream analyses for such complex single-cell datasets. Here, I

applied this classifier to assign immune cell type labels (see Methods). To assess whether

my selected immune cell type genes could separate cells by cell type, I performed UMAP

analysis based on my immune cell type genes (n = 167). The UMAP plots showed that

cells clustered primarily by cell type rather than by experimental variables such as time

points, stimulations, or donors (Figure 4.2A). This confirmed that my small set of immune

cell type genes used for classification effectively captured cell type-specific patterns and

was sufficient to distinguish cell types.

To further validate the cell type assignments from the RF classifier, I compared the clus-

tering results with immune cell surface marker protein expression. The cell type clusters

in the UMAP plot (Figure 4.2A) aligned visually with their expected surface marker

expression patterns, which I confirmed by boxplots displaying protein expression levels

across different immune cell type populations (Figure 4.2B). Moreover, the overall im-

mune cell type composition remained consistent across samples (Figure 4.1D), indicating

the consistency of the classifier across different experimental conditions. These findings

validated the cell type assignments from the RF and demonstrated the robustness of my

classifier in accurately identifying immune cell types, even in the presence of biological

and experimental variability.
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Figure 4.2: Cell type classification using random forest classifier based on robust immune
cell type genes and its alignment with surface marker expression.

(A) UMAP plots based on my immune cell type genes showing different experimental variables along cell

surface marker protein expression. Each point represents a single cell, and each cell is colored either by my

cell type annotation or other experimental variables such as stimulation, donor, and time point. Centered

log ratio (CLR) normalized protein expression values (right) are shown from gray to red indicating low

to high expression. Regions with high expression match with my cell type classification results. (B)

Alignment of cell surface markers with cell type annotations. CLR normalized protein expression values

are plotted for each cell type. Boxplots and violin plots depict the consistent correlation between cell

surface marker protein expression levels and their respective cell type annotations.
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4.3.3 IFN-I response was activated transiently across all immune cell types,

with strongest activation in myeloid cells

I assessed the strength of the IFN-I response across immune cell types using the mean

signature scores of IFN-I GESs. The scores were significantly higher at all time points

and across all cell types for nearly all IFN-I GESs (two-sided Student’s t-test, Bonferroni-

adjusted p-values < 0.05) (Figure 4.3). Monocytes, followed by DCs and B cells, exhibited

the highest overall IFN-I signature scores. These results demonstrated differences in IFN-I

response strength among immune cells, with myeloid cells showing the strongest responses.

Among the GESs, IFN-I-Aybey showed one of the highest differences in signature scores

between IFN-I and other treatments. This indicated its strong specificity for IFN-I over

IFN-II signal. In contrast, some GESs such as IFN-SLE-Bennet, IFNa-Hallmark, and

IFN-Chaussabel showed relatively smaller differences between IFN-I and other treatments

compared to other GESs particularly at 9 h. These suggested that the ability of each IFN-I

GESs to distinguish IFN-I from IFN-II varied.

The IFN-I response displayed transient activation, as captured by most IFN-I GESs,

particularly IFN-I-Aybey. The response increased at 1 h, plateaued at 3 h, and returned

to levels similar to those at 1 h by 9 h (Figure 4.3). This pattern was consistent across

all immune cell type populations. However, some GESs such as IFN-Bilgic and IFN-Rice

did not show this temporal effect, showing variability in how different signatures capture

IFN-I dynamics. These demonstrated the transient nature of the IFN-I response across

all immune cell types.

I further supported these results by DGE analysis. I compared the number of significant

DEGs (FC > 1.5, Wilcoxon rank sum test Bonferroni-adjusted p-values < 0.05) after

IFN-I stimulation compared to controls (Figure 4.4). The highest number of significant

DEGs occurred at 3 h, while the number of significant DEGs at 1 h and 9 h was similar or

lower across all cell types. Monocytes, followed by DCs and B cells, showed the strongest

IFN-I response as measured by the number of DEGs. The results from DEG analysis

were congruent with the IFN-I-Aybey signature analysis in both the current and previous

chapters.
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Figure 4.3: Analysis of temporal IFN-I response across immune cells.

The mean signature scores for published IFN-I signatures along with my IFN-I signature, depicted on

the y-axis, are computed for individual cells, and illustrated using violin plots. The stimulations are

distinguished by different colors, and the x-axis displays different time points. Each row corresponds to

a single IFN-I signature. All immune cells respond transiently to IFN-I. Myeloid cells show the strongest

response.
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Figure 4.4: Cell type specific IFN responses.

Differential gene expression analysis based on Wilcoxon rank sum test is applied between treatment

and control samples for each stimulation, cell type and time point separately. Number of significantly

upregulated genes (fold-change FC > 1.5, Wilcoxon rank sum test Bonferroni-adjusted p-values < 0.05)

for different conditions are shown for each stimulation along with the overlap between stimulations. The

scale color ranges from low (white) to high (red) number of genes. Monocytes, DCs, and B cells respond

the highest to the IFN-g stimulation while all cell types respond to IFN-a stimulation.
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4.3.4 IFN-II-Aybey provided better representation of cell-type specific IFN-

II responses, highlighting distinct myeloid and B cells dynamics

In Chapter 2, I showed that IFN-II-Aybey was the only IFN-II GES capable of detecting

IFN-II responses across diverse immune cell types, including B cells, whereas other IFN-II

GESs detected responses only in myeloid cells (Figure 3.6). Here, I investigated cell type-

specific IFN-II response dynamics and confirmed these findings using a similar approach

to the IFN-I GES analysis in the previous section.

In this dataset, IFN-II-Aybey showed significant and high score changes in IFN-g treated

myeloid and B cells at all time points compared to other treatments (two-sided Student’s

t-test, Bonferroni-adjusted p-values < 0.05)(Figure 4.5). Some other IFN-II GESs, in-

cluding IFNg-Ayers and IFNg-Waddell, showed elevated scores only in IFN-g stimulated

myeloid cells. In contrast, other GESs, such as IFNg-Hallmark, IFNg-Azizi-Platanias, and

IFNg-Sharma, displayed higher IFN-II scores in other conditions. These results showed

superior representation of IFN-II responses and higher specificity of my IFN-II GES com-

pared to other IFN-II GESs.

Using IFN-II-Aybey, I identified distinct temporal response patterns for B cells and

myeloid cells. Monocytes and DCs responded to IFN-II stimulation with a gradually

increasing GES signal, while B cells showed a transient activation. The strongest re-

sponse was observed in myeloid cells, followed by B cells. I further confirmed this trend

by DGE analysis (Figure 4.4). The number of significant DEGs (FC > 1.5, Wilcoxon

rank sum test Bonferroni-adjusted p-values < 0.05) was the highest in monocytes, DCs,

and B cells, while NK cells and T cells exhibited a small number of genes affected by

IFNs (around 2-15 DEGs) (Figure 4.4). This means that the primary IFN-II responsive

populations were myeloid cells and B cells, while gene expression in NK and T cells were

minimally affected by IFN-II.

Overall, IFN-II-Aybey provided better representation of the IFN-II responses across a

broader range of immune cell types and offered higher discrimination between IFN-I and

IFN-II signals compared to other IFN-II GESs. Further, it enabled the identification of

distinct temporal IFN-II response patterns for B and myeloid cells, which was not possible

using published IFN-II GESs.
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Figure 4.5: Analysis of IFN-II response.

Mean signature scores (y-axis) for published IFN-II signatures along with IFN-II-Aybey are calculated for

each cell and represented as violin plots. Different stimulations are colored separately, and different time

points are shown on the x-axis. Each cell type is demonstrated in each row separately. Each signature is

represented in a single row. IFN-II-Aybey better represents cell type-specific IFN-II responses. It captures

signals from both myeloid and B cell populations, which show distinct temporal response profiles.

4.3.5 Multi-faceted IFN response dynamics in monocytes: distinct IFN-I and

IFN-II temporal gene modules

Cell-type-specific response kinetics to different IFNs are crucial for understanding the

dynamics of immune activation and modulation. However, previous datasets have lacked

the resolution necessary to explore for each gene its cell-specific, IFN-specific and tem-

poral expression dynamics. To address this, I used this newly generated data to identify

gene modules that represent cell-type-specific IFN responses and examined their temporal

profiles, particularly in monocytes.

Initially, I started with genes that were significantly upregulated upon IFN-a or IFN-g

stimulation compared to control samples (FC > 1.5, Wilcoxon rank sum test Bonferroni-

adjusted p-values < 0.05). I performed the analysis separately for each time point and cell

type, resulting in 581 genes (as shown in Figure 4.4). To ensure that the genes selected
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were specifically responsive to stimulation and not merely defining basal differences be-

tween cell types, I applied a secondary filter. I excluded genes that showed upregulation

(FC > 1.25) in only one cell type compared to others under unstimulated conditions.

This filtering reduced the feature space to 210 genes for further analysis and ensured to

eliminate basal cell-type genes, leaving only those that were specifically responsive to IFN

stimulation.

To identify genes exclusively activated by distinct IFN types in a specific immune cell

type, I categorized genes based on the highest absolute change in their expression levels

over time. To quantify these changes, I used a scoring metric called the ’change score,’ as

suggested by Bouman et al. (2024), but adapted it for multiple stimulations in my study

(see Methods). This score reflects gene expression fluctuations within each cell type

and stimulation category (e.g., monocytes-IFNg). I assigned each gene to the category

with the highest change score, reflecting the stimulation and cell type that most strongly

activated its expression. Specifically, I only kept genes for which the difference between the

highest and second-highest change scores exceeded twice the average change score across

all categories. This filtering resulted in 54 final genes (Table 4.2). Notably, I identified

genes only for B cells, DCs, and monocytes. B-IFNa, B-IFNg, and DC-IFNa each had two

genes, while DC-IFNg had three genes. Monocytes were the most exclusively responsive

cell type population, with 12 genes for IFN-a and 33 for IFN-g stimulation. These suggest

that monocytes exhibit the most unique and dynamic gene activation profile in response

to IFN stimulations and highlight their distinct role in immune activation.

Finally, I examined those 45 monocyte genes to further investigate potential temporal

patterns. I applied hierarchical clustering on the Euclidean distance matrix calculated

using Z-scaled expression values across all monocyte populations. This resulted in five

distinct clusters (Figure 4.6A). To assess whether these clusters reflected different tem-

poral characteristics, I displayed the average Z-scaled expression values of each gene as

spaghetti plots across time points and treatments within monocyte samples (Figure 4.6B).

The clusters revealed distinct temporal patterns, which I annotated and summarized

in Table 4.2. Group 1 (Mono-IFNa-transient) was characterized by genes, including

CXCL11 and APOBEC3B, that exhibited transient activation in response to IFN-a.

These genes play key roles in the immune cell recruitment and activation. Group 2

(Mono-IFNg-transient) was transiently activated upon IFN-g and contained genes like

FCGR1A and FCGR1B, Fc receptor genes involved in immune cell activation, phagocy-

tosis, and pathogen defense. Interestingly, group 3 (Mono-IFNg-initial) included genes

such as IFNAR1, the IFN-I receptor gene, and TLR genes like TLR1 and TLR8, which

displayed an initial increase in expression followed by a decrease in response to IFN-g.

These genes are crucial for early immune responses, driving cytokine signaling, pathogen

recognition, and IFN production. Group 4 (Mono-IFNg-gradual increase) featured the
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immune checkpoint gene CD274, which showed a gradual increase in expression after

IFN-g stimulation. Lastly, Group 5 (Mono-IFNg-late increase) exhibited genes with a

gradual-late increase in expression. Further, I verified whether the genes from Table 4.2

were specifically activated only in their respective cell type and treatment group, by com-

paring their expression levels across all cell types using spaghetti plots (Figure 4.7). In

summary, these temporal patterns in monocytes activated by IFN-a or IFN-g represent

key components of distinct immune responses and IFN signaling pathways, providing

valuable insights into their mechanistic roles in immune modulation.

Table 4.2: Cell- and IFN-type specific gene lists.

B IFN-a B IFN-g DC IFN-a DC IFN-g

Group 1

Mono IFNa-

transient

Group 2

Mono IFNg-

transient

Group 3

Mono

IFNg-initial

Group 4

Mono IFNg-

gradual

increase

Group 5

Mono IFNg-

gradual late

increase

CACNA1A GBP7 HESX1 CXCL9 NEXN MIR3945HG CISH SERPING1 F3

SECISBP2L SLAMF1 CHROMR UBD AC124319.1 FCGR1B SEPHS2 CD274 HMGB3

CCL19 DEFB1 FCGR1A LIMK2 ANKRD22 TGM2

MSR1 PGS1 SNX20 APOL4 CDCP1

CXCL11 NDST2 ERLIN1 SLAMF8 CD209

DNAAF1 ACOD1 AC112496.1 SUCNR1

SAMD4A HK1 TLR8

JUP KLHL6 IFNAR1

APOBEC3B RSPO3 STEAP4

KIAA1109 KRT17 TLR1

SDS PELI1

SIGLEC1 TICAM2
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Figure 4.6: Discovery of cell- and IFN-type specific genes.

(A) Clustering dendrogram obtained for 45 monocyte- and IFN-specific genes. Using Z-scaled expression

values extracted for monocytes in all conditions, I performed hierarchical clustering. The data form five

major clusters, each showing a specific temporal expression pattern. The red line shows the cut point of

the dendrogram. (B) Average Z-scaled expression of each gene from my five monocyte IFN-specific gene

groups are shown on the y-axis along temporal scale on the x-axis. The plot shows only the expression

patterns in monocyte populations. Each row represents a single gene cluster, and each column depicts

different stimulation conditions.
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Figure 4.7: Examination of my cell- and IFN-type specific genes.

Z-scaled gene expression values of each gene from gene lists from my analysis are averaged for each

condition in spaghetti plots in my data (y-axis). Each row represents a gene list, and each column

depicts a cell type. Different conditions are colored separately.

4.4 Discussion

The last chapter of my thesis establishes a comprehensive resource for analyzing temporal,

cell- and IFN-type-specific gene expression changes, thereby addressing key gaps in earlier

studies. Prior studies examined only a single IFN type and ignored the differences between

IFN-I and IFN-II responses. They also lacked single-cell resolution or failed to capture

dynamic changes by restricting analyses to a single time point. This new dataset addresses

these limitations while enabling the application and validation of my RF classifier and

IFN signatures, confirming their robustness in a high-resolution, temporal context. It

also facilitates the discovery of distinct IFN-driven gene expression dynamics exclusive

for monocytes.

Robust immune cell type GESs and unbiased cell type classification are crucial for ana-

lyzing complex single-cell datasets, like the one I analyzed in this chapter. In Chapter

1, I demonstrated how the RF classifier eliminated bias in the downstream analysis and

misclassification, particularly between DCs and monocyte populations, in an IFN-g stim-

ulation data. This unbiased analysis was particularly critical for myeloid cells, which were

key to identifying distinct temporal patterns in this data. In this chapter, cell surface

marker expression was consistent with the output of my RF cell type classifier (Figure 4.2).

Therefore, the cell type annotation of this IFN stimulation dataset can be regarded as

accurate. This independent validation reinforced the reliability of the RF classifier as

a versatile tool for robust and unbiased cell type identification in diverse experimental

contexts.

Building on my IFN-I and IFN-II response GESs, I demonstrated for the first time immune

cell type-specific IFN response dynamics at single-cell and temporal resolution. The broad

effect of IFN-I across immune cells has been well established (McNab et al., 2015), and its

rapid, transient activation has been reported in multiple studies (Schneider et al., 2014;

De Giovanni et al., 2020; Pertsovskaya et al., 2013). However, no single study has mapped

the temporal activation patterns across multiple cell types. In my study, upon IFN-a

stimulation, all immune cell types were transiently activated (Figure 4.3), showing the

universal but short-lived activation of immune responses induced by IFN-a. In contrast,

the IFN-II response exhibited greater cell-type specificity: B cells showed a transient
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activation upon IFN-g stimulation, similar to the response observed with IFN-a, while

myeloid cells displayed a more gradual and sustained increase in activation (Figure 4.5).

Several studies (Sindhava et al., 2017; Rubtsova et al., 2017; Peng et al., 2002; Knox et al.,

2019) have shown IFN-g-induced gene expression in B cells, but none have examined its

temporal dynamics. Notably, only my IFN-II GES accurately captured the IFN-II effect

on B cells, whereas most published IFN-II GESs either exhibited mixed IFN-I/II signals

in myeloid cells or failed to detect temporal effects. Consistent trends observed in DGE

analysis further validated these findings, independently confirming the robustness of the

IFN GES analysis and supporting conclusions drawn in Chapter 2 as well.

In this study, I identified gene modules with distinct temporal patterns, particularly in

monocyte populations (Table 4.2). The IFN gene expression responses in monocytes fol-

lowed distinct activation patterns, illustrating the transition between innate and adaptive

immune responses. The transient activation of antiviral and immune cell recruitment

genes upon IFN-a stimulation aligns with its role in innate immunity and antiviral re-

sponses (Schneider et al., 2014). In contrast, between 0 h and 1 h, IFN-g triggered an

early activation of genes involved in pathogen recognition and IFN production, suggesting

a feedback loop between IFN signaling and immune response initiation. Earlier reviews

(Ivashkiv, 2018; Platanias, 2005) have discussed the crosstalk between type I and type II

IFN pathways but this coupling of IFN-II signaling and IFN-I translation has not been

widely examined. Between 0 h and 3 h, IFN-g further activated genes related to antigen

presentation, such as Fc receptors, suggesting a shift towards adaptive immunity. The role

of IFN-g in upregulating antigen presentation machinery is well known (Schroder et al.,

2003), but my temporal analysis refines this understanding by showing a clear transi-

tion from an initial innate response to a later, adaptive-oriented gene expression profile.

Between 0 h and 9 h, a group of genes, including CD274, a well known target for for

immune checkpoint blockade in cancer therapy, showed gradual expression changes upon

IFN-g stimulation. This is in agreement with studies suggesting CD274 as IFN-g induced

gene (Galbraith et al., 2020). Similarly, genes from groups 4 and 5, including HMGB3

(Luo et al., 2024), TGM2 (Chang et al., 2024), CD209 (Duval et al., 2024), APOL4 (Zhu

et al., 2022), SLAMF8 (Zou et al., 2019), and ANKRD22 (Chen et al., 2023), have been

reported as immunosuppressive and linked to therapy resistance in cancer. Likewise, my

IFN-II GES, which also served as a predictive ICI response marker (Figure 3.10), detected

such late-phase activation of monocytes upon IFN-g stimulation. Groups 4 and 5 might

suggest new potential immunotherapy targets. These findings provide valuable novel in-

sights into the dynamic roles of IFN signaling in monocytes, with possible implications

for myeloid biology and immune therapy.

In summary, this study provides a high-resolution, temporal map of IFN-driven gene

expression dynamics. It addresses key gaps in previous research and offers a level of
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granularity unavailable in existing studies. The dataset reveals distinct activation patterns

in monocytes, reinforcing the role of IFN signaling in shaping innate and adaptive immune

responses. By capturing monocyte-specific IFN responses over time, this study serves as

a valuable resource for studying myeloid and IFN biology.
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5 Conclusion and outlook

In this thesis, I utilized integrative approaches, combining multiple datasets and technolo-

gies, to investigate cell-type-specific IFN biology in both healthy and disease contexts. I

established a novel GES discovery workflow for robust immune cell type GESs, immune

cell type classifier for unbiased comparative analyses between cell types, and GESs spe-

cific to IFN-I and IFN-II response. I applied this set of tools in a temporal single-cell

gene expression study of PBMCs that are stimulated by different types of IFNs. This is

the most comprehensive study about gene expression response to date: it stands out with

regard to its time resolution and coverage of different IFNs. The cell type-specific analysis

of this data generated novel insights into several aspects of cell-type- and IFN-specific re-

sponses of various gene groups. This comprehensive analysis deepened the understanding

of distinct cell-type-specific immune responses, particularly in myeloid cells, to IFNs.

To establish a framework for an unbiased immune cell type classification, I identified

robust GESs for ten distinct immune cell types using a novel discovery workflow by

leveraging multiple TME scRNA-seq datasets. I applied the genes in these GESs as

features in a RF immune cell type classification approach. The classifier outperformed

other published methods when using a small set of genes for cell typing. My immune cell

type GESs were superior inputs to the classifier compared to previously published gene

sets. For the first time, using IFN biology as an example, I demonstrated how commonly

used cell type classification methods introduce statistical bias in downstream analyses and

how this bias can perturb the biological interpretation of myeloid biology. In contrast,

the RF classifier provided an unbiased, clustering-free, and accurate cell type annotation

approach for complex single-cell data.

I have developed the GES discovery workflow for TME data and RF classifier using those

GESs derived from TME data trained on PBMC. But these frameworks can be extended

to other environments, provided sufficient high-quality datasets are available. For future

applications and benchmarking, it is essential to include additional cellular environments,

particularly TME, to evaluate the classifier’s generalizability, robustness, and ability to

enable automatic cell type annotation across diverse tissue types. Additionally, further

biological systems and perturbation data should be used to assess the misclassification

of immune cells and the bias in downstream analyses. These steps will broaden the

applicability of my tools and findings.

To thoroughly characterize distinct IFN-I and IFN-II responses, I generated specific GESs

that offer finer discrimination than previous GESs. My IFN GESs were clinically relevant.

My IFN-I GES is a biomarker for SLE disease severity. My IFN-II GES correlates with

CD8+ T cell infiltration, and is a predictive biomarker for ICI therapy response. This
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study is the first to comprehensively assess multiple IFN GESs across various experimen-

tal setups, cell types, disease contexts, and sequencing platforms. For future signature

analyses, it shows the importance of GES evaluation before use. Further research should

expand these analyses to longitudinal data to understand the dynamics of IFN responses,

especially in ICI therapy. Ultimately, these efforts will refine IFN type-specific response

profiling and broaden its clinical application.

After establishing the necessary tools to analyze a single-cell gene expression study focus-

ing on differentiated IFN responses, I designed a PBMC CITE-seq experiment with IFN-I

and IFN-II stimulations across four time points. This dataset enables direct comparisons

between IFN-I and IFN-II responses at both temporal and cellular resolution, addressing

gaps in previous studies. My analysis shows distinct stages of IFN-g responses in mono-

cytes, showing their transition from early innate immune activation to a later adaptive-like

profile. The dataset also identifies a previously uncharacterized feedback loop between

IFN-II signaling and IFN-I production. Furthermore, it refines the understanding of IFN-

g-induced gene regulation in B cells, particularly in a temporal context. Additionally, my

study identifies late-phase IFN-g-induced gene modules, including possible immunosup-

pressive and therapy resistance-associated genes. This research provides valuable insights

into immune response dynamics, especially in monocytes, and highlights the significance

of temporal and multi-perturbation data in studying IFN-induced immune activation.

Future research could expand on the findings of this single-cell study by exploring the

roles of individual genes identified in different monocyte IFN groups, particularly those

involved in the late-stage response. These genes, associated with immunosuppression and

therapy resistance, could be investigated in diseases like cancer, autoimmune disorders,

and chronic inflammation. Studying their regulation of immune responses in monocytes

may provide translational insights into myeloid cell differentiation, especially the transi-

tion from inflammatory to tolerogenic phenotypes. This could help develop therapeutic

strategies for diseases such as cancer, where myeloid-derived suppressor cells contribute

to immune evasion.
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M. L., Neven, B., Boldina, G., Augé, F., Alain, F., Didier, M., Rieux-Laucat, F. and

Ménager, M. M. (2023). Single-cell RNA-sequencing of PBMCs from SAVI patients

reveals disease-associated monocytes with elevated integrated stress response. Cell Rep

Med 4, 101333.

De Giovanni, M., Cutillo, V., Giladi, A., Sala, E., Maganuco, C. G., Medaglia, C., Di Lu-

cia, P., Bono, E., Cristofani, C., Consolo, E., Giustini, L., Fiore, A., Eickhoff, S.,

Kastenmüller, W., Amit, I., Kuka, M. and Iannacone, M. (2020). Spatiotemporal reg-

ulation of type I interferon expression determines the antiviral polarization of CD4+ T

cells. Nat Immunol 21, 321–330.

de Kanter, J. K., Lijnzaad, P., Candelli, T., Margaritis, T. and Holstege, F. C. P. (2019).

CHETAH: a selective, hierarchical cell type identification method for single-cell RNA

sequencing. Nucleic Acids Res 47, e95.

de Weerd, N. A., Vivian, J. P., Nguyen, T. K., Mangan, N. E., Gould, J. A., Braniff,

S.-J., Zaker-Tabrizi, L., Fung, K. Y., Forster, S. C., Beddoe, T., Reid, H. H., Rossjohn,

J. and Hertzog, P. J. (2013). Structural basis of a unique interferon-β signaling axis

mediated via the receptor IFNAR1. Nat Immunol 14, 901–907.

Devlin, J. C., Zwack, E. E., Tang, M. S., Li, Z., Fenyo, D., Torres, V. J., Ruggles, K. V.

and Loke, P. (2020). Distinct features of human myeloid cell cytokine response profiles

identify neutrophil activation by cytokines as a prognostic feature during tuberculosis

and cancer. J Immunol 204, 3389–3399.

Domcke, S. and Shendure, J. (2023). A reference cell tree will serve science better than a

reference cell atlas. Cell 186, 1103–1114.

Domı́nguez Conde, C., Xu, C., Jarvis, L. B., Rainbow, D. B., Wells, S. B., Gomes,

T., Howlett, S. K., Suchanek, O., Polanski, K., King, H. W., Mamanova, L., Huang,

N., Szabo, P. A., Richardson, L., Bolt, L., Fasouli, E. S., Mahbubani, K. T., Prete,

M., Tuck, L., Richoz, N., Tuong, Z. K., Campos, L., Mousa, H. S., Needham, E. J.,

Pritchard, S., Li, T., Elmentaite, R., Park, J., Rahmani, E., Chen, D., Menon, D. K.,

Bayraktar, O. A., James, L. K., Meyer, K. B., Yosef, N., Clatworthy, M. R., Sims, P. A.,

105



6 References

Farber, D. L., Saeb-Parsy, K., Jones, J. L. and Teichmann, S. A. (2022). Cross-tissue

immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197.

Dummer, R., Brase, J. C., Garrett, J., Campbell, C. D., Gasal, E., Squires, M., Gusen-

leitner, D., Santinami, M., Atkinson, V., Mandala, M., Chiarion-Sileni, V., Flaherty,

K., Larkin, J., Robert, C., Kefford, R., Kirkwood, J. M., Hauschild, A., Schadendorf,

D. and Long, G. V. (2020). Adjuvant dabrafenib plus trametinib versus placebo in

patients with resected, BRAF(V600)-mutant, stage III melanoma (COMBI-AD): ex-

ploratory biomarker analyses from a randomised, phase 3 trial. Lancet Oncol 21,

358–372.

Dupuy, A. and Simon, R. M. (2007). Critical Review of Published Microarray Studies for

Cancer Outcome and Guidelines on Statistical Analysis and Reporting. J Natl Cancer

Inst 99, 147–157.

Duval, C., Bourreau, E., Warrick, E., Bastien, P., Nouveau, S. and Bernerd, F. (2024).

A chronic pro-inflammatory environment contributes to the physiopathology of actinic

lentigines. Sci Rep 14, 5256.

Edgar, R., Domrachev, M. and Lash, A. E. (2002). Gene Expression Omnibus: NCBI

gene expression and hybridization array data repository. Nucleic Acids Res 30, 207–10.

Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998). Cluster analysis and

display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95, 14863–8.

El-Sherbiny, Y. M., Psarras, A., Md Yusof, M. Y., Hensor, E. M. A., Tooze, R., Doody,

G., Mohamed, A. A. A., McGonagle, D., Wittmann, M., Emery, P. and Vital, E. M.

(2018). A novel two-score system for interferon status segregates autoimmune diseases

and correlates with clinical features. Sci Rep 8, 5793.

Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1996). A density-based algorithm for

discovering clusters in large spatial databases with noise. In Proceedings of the Second

International Conference on Knowledge Discovery and Data Mining KDD’96 pp. 226–

231, AAAI Press, Portland, Oregon.

Feng, X., Wu, H., Grossman, J. M., Hanvivadhanakul, P., FitzGerald, J. D., Park, G. S.,

Dong, X., Chen, W., Kim, M. H., Weng, H. H., Furst, D. E., Gorn, A., McMahon, M.,

Taylor, M., Brahn, E., Hahn, B. H. and Tsao, B. P. (2006). Association of increased

interferon-inducible gene expression with disease activity and lupus nephritis in patients

with systemic lupus erythematosus. Arthritis Rheum 54, 2951–62.

Fenton, S. E., Saleiro, D. and Platanias, L. C. (2021). Type I and II interferons in the

anti-tumor immune response. Cancers (Basel) 13.

Finotello, F. and Trajanoski, Z. (2018). Quantifying tumor-infiltrating immune cells from

transcriptomics data. Cancer Immunol Immunother 67, 1031–1040.

Fujiwara, Y., Sun, Y., Torphy, R. J., He, J., Yanaga, K., Edil, B. H., Schulick, R. D.

and Zhu, Y. (2018). Pomalidomide inhibits PD-L1 induction to promote antitumor

immunity. Cancer Res 78, 6655–6665.

106



6 References

Galbraith, N. J., Walker, S. P., Gardner, S. A., Bishop, C., Galandiuk, S. and Polk, H. C.

(2020). Interferon-gamma increases monocyte PD-L1 but does not diminish T-cell

activation. Cell Immunol 357, 104197.

Garcin, G., Bordat, Y., Chuchana, P., Monneron, D., Law, H. K., Piehler, J. and Uze, G.

(2013). Differential activity of type I interferon subtypes for dendritic cell differentia-

tion. PLoS One 8, e58465.

Gibson, G. (2022). Perspectives on rigor and reproducibility in single cell genomics. PLoS

Genet 18, e1010210.

Gocher, A. M., Workman, C. J. and Vignali, D. A. A. (2022). Interferon-γ: teammate or

opponent in the tumour microenvironment? Nat Rev Immunol 22, 158–172.

Goel, R. R., Kotenko, S. V. and Kaplan, M. J. (2021). Interferon lambda in inflammation

and autoimmune rheumatic diseases. Nat Rev Rheumatol 17, 349–362.

Goldman, M. J., Craft, B., Hastie, M., Repecka, K., McDade, F., Kamath, A., Banerjee,

A., Luo, Y., Rogers, D., Brooks, A. N., Zhu, J. and Haussler, D. (2020). Visualizing and

interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38, 675–678.
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Figure A.1: Violin plots for validating the gene signatures in the discovery and validation
datasets.

Mean signature scores are calculated for each signature and each cell in discovery and validation datasets.

High expression of a gene set in the corresponding cell type is tested using Wilcoxon rank sum tests (non-

significant (p > 0.05) - not shown; * = p < 0.05, ** = p < 0.01). (Reprinted from Aybey et al. (2023))
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Figure A.2: RosettaSX analysis showing relation of all coherent signatures to my IFN GESs
in TCGA BRCA cohort.

A similar analysis from Kreis et al. (2021) is performed using all published signatures compiled by Kreis

et al. (2021) and additional published CD8+ T cell and IFN-II signatures. Mean signature scores are

calculated only for coherent signatures (coherence score > 0.2). All coherent signatures are depicted as

opposed to top 20 signatutes with the highest covariance in Figure 3.9. Covariance between each of my

IFN signatures and coherent signatures are calculated. Mean signature scores are shown from low (blue)

to high (red). Covariance values are shown from low (dark blue) to high (orange).
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