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Abstract
Text summarization is a vital tool to make large bodies of texts easily digestible
for human readers. To develop powerful automatic summarization systems, re-
searchers rely on evaluation protocols to assess the progress made by newly pro-
posed summarizers. However, as we will show in this thesis, current protocols
are not always sufficient to provide reliable feedback on summarizer performance
across a wide range of quality dimensions. In this work, we will thus aim to de-
velop a framework for holistic evaluation of text summarization that covers a broad
range of quality dimensions and evaluation settings. In addition to this holistic
coverage of quality dimensions and settings, two criteria will guide our investi-
gations: Reliability, which ensures evaluations lead to comparable results across
different settings, and cost-efficiency, which is critical to ensure evaluations can be
run frequently and exhaustively.

We will begin our investigation at the “gold standard” of summarization evalu-
ation, the human evaluation study. Here, we will show weaknesses in current prac-
tices that jeopardize their reliability. Our work will formulate concrete proposals
to improve current practices to create both more reliable and cost-efficient human
studies. Since even cost-efficient human evaluation is still prohibitive for many use
cases, we will then turn our attention to automatic evaluation, starting with an
assessment of common meta-evaluation practices. We find that current practices
are at risk of leading to unreliable conclusions on evaluation metric performance.
We will use these insights to conduct an in-depth meta-evaluation of automatic
summary coherence measures. In the final two parts of this thesis, we will then
focus on automatic evaluation for two important quality dimensions, which have
only recently started to receive attention in text summarization: Faithfulness and
Bias. For faithfulness, which is the degree to which a summary correctly repro-
duces facts from the input, we find that currently proposed metrics are usually
computationally expensive. This motivates us to search for a cost-efficient auto-
matic faithfulness metric. Finally, we find that social bias, which is a frequently
studied phenomenon in other NLP tasks, has not yet been systematically investi-
gated for text summarization. We will thus provide both abstract definitions as
well as practical automatic metrics to assess the presence of bias in summarization
systems.

As a whole, our work will provide researchers and users who are interested in
the performance of summarization systems a toolbox to cost-efficiently and reliably
assess summarizers across key quality dimensions.
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Chapter 1

Introduction and Research
Questions

1.1 Summarization Evaluation

Automatic text summarization is the automatic generation of concise, informative
summaries from a given document or set of documents. As such, it plays an im-
portant role in helping users process and sort through the ever-growing amount of
information available to them. As with any natural language generation (NLG)
task, progress in text summarization is driven by a continuous assessment of the
capabilities of newly proposed summarization systems using both human and auto-
matic evaluation metrics. The quality of this evaluation in turn is what allows the
research community to accurately quantify the progress made in the field and to
identify promising directions for improvement. This is especially critical in a field
that has seen, alongside many other areas in natural language processing (NLP),
an exponential improvement in capabilities (Lewis et al., 2020; Zhang et al., 2020a;
Goyal et al., 2022).

In summarization evaluation, much attention has been paid to the evaluation
of summary relevance or informativeness, i.e. whether the summary reflects the
important information in the input document(s). This is commonly measured by
comparing a generated summary to one or more human-written reference sum-
maries. This process is either done automatically, often using overlap metrics,
such as ROUGE (Lin, 2004b), or in a systematic manual fashion, as in the PYRA-
MID (Nenkova and Passonneau, 2004) evaluation framework. However, as are
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most NLG tasks, summarization evaluation is a multidimensional problem. For
example, a summary that contains all relevant information in the input can still
be poorly written and incoherent to the point it does not provide a benefit over
the input documents. Traditionally, additional quality dimensions cover linguis-
tic quality concerns, including grammaticality, readability, and coherence (Dang
and Owczarzak, 2009a). With the rapid development of improved summarization
systems, however, new quality dimensions have started to receive attention. Of
particular concern is the faithfulness (Maynez et al., 2020) of summaries, which
refers to the extent to which content in the summary is supported by the input.

The breadth of relevant quality dimensions and the rapid development of sum-
marization systems lead us to ask whether current evaluation practices give an
adequate picture of summarizer performance. In this thesis, we thus aim to take
stock of the toolbox currently available for summarization evaluation and ask what
is missing to give researchers and users a holistic view of summarizer performance.
By the end of the thesis, we aim to have established a set of evaluation best
practices and automatic methods that, in conjunction with prior work, allow us
to assess the quality of summarization models across a wide array of quality di-
mensions. Two criteria will guide our exploration of this space: reliability and
cost-efficiency.

By reliability, we mean that evaluation should be consistent across different
settings and not affected by non-material changes to the evaluation setup. For ex-
ample, resampling the documents used as input for a summarizer (from the same
distribution) should not alter our conclusion about its performance characteristics.
This is a common definition of reliability in NLP (see Riezler and Hagmann, 2024).
Reliability is critical to ensure evaluation gives useful feedback on model capabili-
ties. Cost-efficiency, on the other hand, is a more practical concern. Researchers
typically only have a limited budget available to evaluate new summarizers. For
an evaluation procedure to provide useful feedback, it must thus be cheap enough
to run frequently. For automatic evaluation, that means it should need as few
computational resources as possible. For manual evaluation, it means minimizing
the amount of human effort required.

We will begin our investigation at what is often regarded as the gold standard
(Gehrmann et al., 2023) of evaluation: Human judgements. As we will show,
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human evaluation is poorly standardized in summarization. Current practices are
usually neither cost-efficient nor are the conclusions drawn from them reliable due
to inappropriate statistical tools being used in the analysis of raw results. We
will establish a set of best practices for the selection of annotation methods, study
design, and analysis for human evaluation studies.

While our approach will allow for cost-efficient human evaluation, the need for
human labor still makes it expensive and time-consuming. We will thus then turn
our attention to automatic evaluation. For automatic metrics to be a useful signal,
they must themselves be evaluated for their correspondence to human judgements.
As a first step, we are thus going to investigate current practices in this meta-
evaluation. We will identify threats to the reliability of meta-evaluation in the
form of confounding system properties and propose methods to remedy them.

With the fundamental framework in place, we will then identify three quality
dimensions which have a strong need for improved automatic evaluation proce-
dures: Coherence, faithfulness, and bias.

For coherence, we find that while a large number of coherence measures have
been proposed, a lack of standardized meta-evaluation makes it difficult to select
promising coherence measures which work well as evaluation metrics. We will
use our meta-evaluation methodology to assess the state of summary coherence
modelling and to identify promising directions for further improvements.

For faithfulness, we will show that, while there is a large number of metrics
available, the best-performing ones are computationally very costly. This leads us
to investigate whether we can close the gap to more expensive metrics by finding
a cheap, yet powerful, faithfulness evaluation metric.

Finally, we identify the lack of summarizer social bias analysis as an important
gap in current evaluation practices. While it has long been established that harmful
social biases are present in the (pre-)training corpora for large language models
(LLMs) (Barocas et al., 2017), which also underlie contemporary summarizers, it is
unclear to which extent bias is propagated to automatic summaries. This motivates
us to develop definitions for biased behavior in summarization and practical metrics
to identify it.

Taken together, the work in this thesis both helps close critical gaps in au-
tomatic summarization evaluation and supports future evaluation with a set of
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reliable best practices for both human evaluation studies and meta-evaluation.

1.2 Research Questions

We seek to answer the following research questions in this thesis:
Research Question I: How can we conduct cost-efficient and reliable hu-

man evaluation? Human annotation plays an important role as a gold standard
evaluation for summarization systems. However, there are few standards for de-
signing these studies in a way that leads to cost-efficient and reliable results. We
investigate how different annotation methods for eliciting human linguistic quality
judgements differ in reliability and efficiency. We also consider the question of how
to analyze study results in a way that minimizes the risk of drawing erroneous con-
clusions about summarizer performance. Finally, we establish a set of guidelines
to help researchers design their human evaluation studies.

Research Question II: How can we ensure reliable meta-evaluation of sum-
marization metrics? Automatic metrics complement human evaluation by provid-
ing cheaper and faster feedback on summarizer performance. However, for them
to be reliable stand-ins for human judgements, they themselves must be prop-
erly evaluated. We design methods for analyzing meta-evaluation results with a
focus on reducing the impact of confounding factors that limit their generalizabil-
ity. We will then use these methods to identify promising coherence measures for
automatic summary coherence evaluation.

Research Question III: How can we conduct efficient automatic faithfulness
evaluation? Recent summarization models suffer from a phenomenon called hallu-
cination, where summaries introduce new facts that are unfaithful to the source.
This reduces their reliability and trustworthiness in real-world use and calls for
automatic metrics to identify unfaithful summaries. Recent faithfulness evalua-
tion methods use complex, computationally expensive setups. We instead ask how
small NLI-based models can perform competitively, without introducing costly in-
ference time mechanisms, and conduct a meta-evaluation of our newly proposed
metric.



1.3. Contributions 5

Research Question IV: How can we identify social biases in summarization
systems? As large language models become increasingly important for summa-
rization, there is a risk of summarization systems exhibiting and amplifying social
biases acquired during pretraining. We first ask what it means for a summarizer
to be biased and develop a set of definitions for biased behavior in summarization
systems. We then consider the question of how to operationalize them to quan-
tify the presence of bias in summaries and how to ensure measurements are not
confounded by biases already present in the input documents.

1.3 Contributions

The core contributions of this thesis are:

• A comparison of different methodologies for human evaluation in text sum-
marization, as well as a set of best practices for their design and analysis

• A set of tools for the meta-evaluation of automatic summarization metrics

• A thorough meta-evaluation and an in-depth analysis of summary coherence
measures, establishing their shortcomings and identifying pathways for their
improvement

• The development of a lightweight method for summary faithfulness evalua-
tion

• The development of definitions for biased behavior in summarization systems
and the development of automatic metrics and approaches that allow us to
identify instances of summarizer bias.

In summary, this thesis provides a comprehensive set of tools, as well as guide-
lines, to holistically assess the quality of summarization systems along multiple
quality dimensions. Our contributions will help guide the development of sum-
marization systems by providing reliable feedback on summarizer performance at
comparatively low cost.
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1.4 Thesis Overview

In the following Chapter 2, we will go into more detail on both the task of text sum-
marization and its evaluation. We will then turn to the core contributions of this
thesis, starting with an investigation of how to conduct cost-efficient and reliable
human evaluation studies in Chapter 3. Starting from Chapter 4, we will consider
the topic of automatic metrics. Here, we will first establish general methodology
for meta-evaluation, i.e. the evaluation of automatic metrics themselves. We will
then use these principles to investigate the performance of automatic metrics for
summary coherence. In Chapter 5, we will develop a cost-efficient automatic metric
for summary faithfulness based on augmenting a pretrained NLI model. Finally,
we will investigate the question of bias in text summarization in Chapter 6. We
will develop definitions for biases in text summarization, as well as practical tools
to measure them. Finally, we will conclude the thesis in Chapter 7 with an outlook
on summarization evaluation in the face of improving model capabilities.

1.5 Published Work

This thesis is largely based on works that have been previously published. Our
work on human evaluation in Chapter 3 has been described in Steen and Markert
(2021). Our meta-evaluation techniques and meta-evaluation of summary coher-
ence measures in Chapter 4 have been published in Steen and Markert (2022).
Chapter 5 is based on Steen et al. (2023), with extensions mostly focused on a
more thorough meta-evaluation and analysis of our proposed metric. Finally, the
work on bias in summarization in Chapter 6 has been published as Steen and
Markert (2024).

1.6 Published Code

All code underlying the work in this thesis is available online. Table 1.1 gives an
overview of the code repositories corresponding to the chapters of this thesis.
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Chapter Link
Chapter 3 https://github.com/julmaxi/summary_lq_analysis
Chapter 4 https://github.com/julmaxi/summary_coherence_evaluation
Chapter 5 https://github.com/julmaxi/with_a_little_push
Chapter 6 https://github.com/julmaxi/summary_bias

Table 1.1: Links to repositories containing the code underlying
the work in this thesis.

https://github.com/julmaxi/summary_lq_analysis
https://github.com/julmaxi/summary_coherence_evaluation
https://github.com/julmaxi/with_a_little_push
https://github.com/julmaxi/summary_bias
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Chapter 2

An Overview of Evaluation in Text
Summarization

In this chapter, we will give a brief overview of the field of text summarization and
its evaluation. The intent of this chapter is not to give a full history of the devel-
opment of the field but rather to introduce the task and to help contextualize our
work on evaluation. We will discuss the various variants of the text summarization
task and the methods that have been proposed to tackle it. Since our focus is on
evaluation, we will then pay particular attention to the quality dimensions and
automatic metrics used in their evaluation.

2.1 Text Summarization: Tasks and Datasets

Jones (1999) defines text summarization as “a reductive transformation of source
text to summary text through content reduction by selection and/or generalisation
on what is important in the source” (Jones, 1999). This definition covers a large
number of different notions of “transformation” and “importance”, all of which
might be grouped under the umbrella of text summarization. Attempts have been
made at a more formal definition: Peyrard and Eckle-Kohler (2017) propose that
a good summary maximizes the information gain a user derives from it over the
knowledge they had before reading it. However, we argue that, in practice, the
easiest way to understand the task is by surveying the numerous datasets that
have been created for developing and evaluating summarization systems over the
years. In general, summarization corpora consist of individual instances, which



10 Chapter 2. An Overview of Evaluation in Text Summarization

have either a single document or a cluster of multiple documents as inputs and
one or more reference summaries as output.

Within this general design space, Jones (1999) identifies three sets of what she
calls “context factors” which define a summarization task: input factors, purpose
factors, and output factors. Input factors include the structure, the genre, and
language of the input. Purpose factors describe the use of a summary. This
includes the intended audience and the context of its use, i.e. what information
the summary is intended to transport. Finally, output factors describe the format
of the output, the output language, its style, and how much content it covers from
the input.

Since the full set of factors considered by Jones is too detailed for a structured
overview, we select a subset of categories to represent these factors:

For input factors, we report the length of the input and whether a corpus
contains single-document summaries or multi-document summaries. This distinc-
tion is important, since multi-document summarization usually requires reasoning
and aggregating information across multiple documents, whereas single-document
summarization is, in some settings, solved well by relatively simple heuristics. For
example, in single-document news summarization, a well-performing (extractive)
summarizer can often be constructed by simply taking the first three sentences of
the input (Over et al., 2007). However, we note that just because a dataset is a
multi-document dataset, it does not necessarily require information aggregation.
Wolhandler et al. (2022) note, for example, that in some multi-document summa-
rization datasets almost all information is contained in a single document. Finally,
we also list the genre of the inputs.

Purpose factors are much more difficult to categorize. A traditional distinction
is that between generic and focused summarization, where the former implies a
“general” summary and the latter implies a response to some stated information
need. This includes summaries in response to a question (Kulkarni et al., 2020;
Zhong et al., 2021) or a topic statement (Dang, 2005; Dang, 2006; NIST, 2007).
It is important to note that a generic summary is not necessarily one without a
specific purpose. Jones (1999) argues that even superficially generic summaries
make implicit assumptions about their requirements. She gives the example of
a paper abstract, which assumes that the reader is familiar with the field of the
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paper. A similar argument can be made for many crawled datasets, like CNN/DM
(Hermann et al., 2015). CNN/DM contains a list of “highlights” for each input
article. While researchers are not privy to how these highlights are selected, it is
reasonable to assume that there is a hidden query or communicative goal highlight
authors had in mind when the summary was created.

Finally, with regard to the output factors, we consider the length of the gener-
ated summary. Here it is important to differentiate between a fixed-length budget
and an empirical summary length. In a fixed budget setting, reference summaries
are created with a known limit on the number of tokens, characters, or sentences
in the summary. During evaluation, this allows the length of the automatic sum-
marizer output to be limited as well, which avoids issues inherent in comparing
summaries of different lengths, which we will discuss in Section 2.4. Where the
process of summary generation is unknown, we can only observe the length of
summaries empirically, which implies no strict length limitation.

The earliest datasets we will list here are those from the influential Document
Understanding Conferences (DUC), which were held yearly from 2001 to 2007 and
were run by the U.S. National Institute of Standards and Technology (NIST). DUC
created several shared tasks for summarization that included new summarization
datasets, which were later widely used. DUC also conducted human evaluation
studies on the participating summarization systems. We list the datasets created
for the three most recent conferences to allow for comparison to later developments.

Several trends become apparent from the resulting overview in Table 2.1:

1. Summarization research is overwhelmingly conducted on single-document
generic news summarization, although novel datasets have introduced alter-
native genres beyond news.

2. There has been a shift away from small-scale, carefully curated datasets to
large-scale, web-crawled datasets.

The latter has a particularly large effect on evaluation, as will also become
apparent in this work. For example, the XSum (Narayan et al., 2018a) reference
summaries, which are just the first sentence of news articles, are known to contain
information not present in the rest of the document (Maynez et al., 2020). This in
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Table 2.1: Dataset statistics and task descriptions for various sum-
marization datasets. Lengths in tokens are rounded to the nearest
integer. (f) indicates fixed length-constraints, all other values are
empirical. Multiple values in the size column refer to the number
of instances in the train/test or train/dev/test splits, respectively.

References for the datasets can be found in Appendix A.
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turn leads to models trained on XSum hallucinating (i.e. introducing facts unsup-
ported by the input) much more than models trained on, for example, CNN/DM
(Hermann et al., 2015). We will discuss the topic of hallucinations in more de-
tail in Chapter 5. The unreliability of reference summaries and the fact that all
crawled corpora have only a single reference is also a challenge for traditional auto-
matic metrics like ROUGE (Lin, 2004b), which were designed for multi-reference
settings.

There are a number of other tasks that fall under the general umbrella of
summarization, but which we do not consider in this thesis. We give a brief
overview for completeness:

In Update Summarization, pioneered during DUC 2007 (NIST, 2007) and
continued in TAC 2008 (Dang and Owczarzak, 2009a), systems must generate a
summary from an initial set of documents and then generate an incremental update
from a second set of provided documents published after the initial documents.

In Timeline Summarization (Chieu and Lee, 2004; Binh Tran et al., 2013;
Tran et al., 2015; Martschat and Markert, 2018; Gholipour Ghalandari and Ifrim,
2020) systems are expected to identify important events in a large corpus of in-
put documents and generate a structured list of date/summary pairs for each
event. This necessitates specialized evaluation criteria that are temporally sensi-
tive (Martschat and Markert, 2017).

Opinion Summarization concerns itself with summarizing user opinions ex-
pressed, for example, in reviews (Ganesan et al., 2010; Chu and Liu, 2019; Bražin-
skas et al., 2020), online discussions (Fabbri et al., 2021a), or tweets (Inouye
and Kalita, 2011). We consider this task to be subtly different from the type of
document summarization we primarily study in this thesis, since the objective of
opinion summarization is generally not to identify the most important information
in the input, but rather to give a good overview of the distribution of opinions in
the text. This has, as we will discuss later in this thesis, an impact on what we
expect for a summary to be unbiased.

Efforts have also been made to create Multimodal Summarization systems
(Zhu et al., 2018; Verma et al., 2023), which consider image data along with the
input text and may select images to accompany summaries.
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Finally, Cross-Lingual Summarization (Ladhak et al., 2020; Takeshita et
al., 2022; Fatima and Strube, 2023) is a special case where input and summary are
not written in the same language. This requires systems to either use translation
as a preprocessing step or to natively deal with multiple languages.

2.2 Text Summarization Systems

Text summarization systems can be coarsely classified into extractive and abstrac-
tive systems. Extractive summarizers build a summary by selecting sentences
from the source documents, whereas abstractive summarizers attempt to generate
a summary from scratch. Due to the difficulty of language generation before the
advent of neural networks for language modelling, most early work followed an
extractive paradigm.

2.2.1 Extractive Summarization

In very early work, Luhn (1958) proposes an algorithm for summarizing technical
documents based on identifying sentences with words that are frequent in the
source document. Edmundson (1969) uses a feature-based approach, combining
several surface-based features to assess sentence importance. Before the advent of
neural summarization systems, Nenkova and McKeown (2012) propose that these,
and subsequent, works are broadly characterized by three distinct phases: content
representation, sentence scoring, and sentence selection. However, in this overview,
we will discuss the first two jointly, since for many – especially neural – systems,
representation is an implicit step.

Many approaches to sentence scoring are based on the observation that sum-
mary-worthy information is often repeated frequently across the input document(s).
Radev et al. (2000) propose the MEAD summarization system, which works by
clustering sentences and using cluster centroids as candidates for inclusion in the
summary. Mihalcea and Tarau (2004) propose TextRank, which constructs a sen-
tence graph where individual sentences share edges weighted by their similarity.
They then use a modified variant of the PageRank algorithm (Page et al., 1999)
to identify sentences with high centrality in the graph. Erkan and Radev (2004)
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combine a similar centrality feature with additional indicative features and a re-
dundancy heuristic. Zheng and Lapata (2019) later revisit the idea of graph-based
sentence scoring by augmenting it with contextualized word embeddings. Alterna-
tively, importance can also be learned directly from reference summaries. The most
successful approaches here are based on directly exploiting the strong representa-
tion capabilities of neural language models (Cheng and Lapata, 2016; Nallapati
et al., 2016a; Narayan et al., 2018b; Liu and Lapata, 2019). A core challenge
for these models is to derive an extractive training signal from abstractive refer-
ences. Proposed solutions range from heuristically deriving sentence labels using
their similarity to the reference (Cheng and Lapata, 2016; Nallapati et al., 2016a)
to using reinforcement learning to directly optimize summary/reference similarity
(Narayan et al., 2018b).

While some, especially neural, summarizers directly select the highest-scoring
sentences for the output (Cheng and Lapata, 2016; Nallapati et al., 2016a), creating
a summary from individual sentence scores typically requires summarizers to deal
with a relevance-redundancy trade-off. That is, sentences should not only be
individually relevant but also not be redundant among each other. The maximum
marginal relevance criterion (MMR) (Goldstein and Carbonell, 1998) provides a
greedy approach for this. For each candidate sentence, it computes both the
relevance of the sentence as well as its similarity to previously selected sentences. A
linear combination of both is used to score each candidate sentence and the highest
scoring sentence is selected for summary inclusion up to some length maximum.
Liu and Lapata (2019) propose a simplified variant of this, where sentences with
trigram overlap with previously selected sentences are discarded during inference.
While this greedy approach has the advantage of efficiency, it is easy to construct
counter examples where it does not yield an optimal selection. McDonald (2007)
studies global optimization for summarization. He proposes to formulate the task
as an integer linear program (ILP). ILPs allow summarization to be formulated as
a constrained optimization problem, for which efficient solvers exist.1 McDonald
(2007) uses an MMR-inspired objective as the optimization target. ILP is also
flexible enough to integrate additional terms into the objective. For example,

1While solving an ILP is an NP-complete problem, in practice solvers exists which solve most
problems in acceptable time (McDonald, 2007).
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Parveen et al. (2015) add a coherence score to the objective function.
Alternatively, one can formulate the summarization objective in a way that

allows it to be solved with a greedy algorithm with a theoretically grounded guar-
antee on the gap between the optimization results and the global optimum. Lin
and Bilmes (2011) propose to express the summarization objective as a submodular
function that allows them to give an upper bound on the optimality gap.

Finally, Zhong et al. (2020) propose to learn a neural scoring function over
entire summaries, instead of individual sentences. The summarization system can
then directly select the highest-scoring subset of sentences from the input as the
summary. However, this must be combined with an approximate search procedure
to avoid a combinatorial explosion over the possible subsets of sentences.

2.2.2 Abstractive Summarization

Early work on neural abstractive summarization initially focused on sentence sum-
marization (Rush et al., 2015), due to the much smaller computational require-
ments and availability of sufficiently large training datasets. With the adoption
of the CNN/DM dataset (Hermann et al., 2015; Nallapati et al., 2016b) for sum-
marization, early neural single-document summarization systems became prac-
tical. Nallapati et al. (2016b) and See et al. (2017) both propose to enhance
encoder/decoder recurrent neural networks (Bahdanau et al., 2015) with pointer
mechanisms to allow models to explicitly copy parts of the input into the sum-
mary. This would often lead to highly extractive summaries, even though the
models themselves were capable of fully abstractive generation (See et al., 2017).

Just as with many other tasks in NLP, the advent of large – in comparison
to their predecessors – pretrained transformer language models has had a signif-
icant impact on the summarization landscape. Liu and Lapata (2019) fine-tune
the encoder-only BERT (Devlin et al., 2019) for both extractive and abstrac-
tive summarization. Lewis et al. (2020) and Zhang et al. (2020a) both propose
encoder-decoder transformer architectures for summarization. They use unsuper-
vised pretraining tasks like gap infilling to create strong base models, which they
then fine-tune on summarization datasets.
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Finally, instruction-tuned large language models have shown remarkable zero-
shot2 summarization capabilities. Goyal et al. (2022) show that with simple
prompting, GPT 3.5 can generate summaries that human raters prefer over sum-
maries generated by purpose-built models. Adams et al. (2023) show that this can
be further improved with specialized prompting methods that create summaries
at different levels of detail.

2.3 Human Evaluation of Text Summarization

We now turn to the core concern of this thesis: The evaluation of summarization
systems. The first important distinction we need to make in this regard is that
between extrinsic and intrinsic evaluation.

2.3.1 Extrinsic Evaluation

Extrinsic evaluation focuses on summarization as an auxiliary step that should
improve outcomes in some downstream task of interest. The TIPSTER SUMMAC
evaluation (Mani et al., 1999), for example, considered two tasks which were, at
the time of the study, routinely conducted by U.S. information analysts: A cat-
egorization task, where annotators were asked to assess the relevance of a given
document for a topic, and a question answering task, where the document would
serve as the source for writing a report on a given topic. To extrinsically evaluate a
summarization system under this and similar settings, a study can compare accu-
racy and speed of annotators working with original documents with the accuracy
and speed of annotators working with their summaries. A good summarization
system should produce summaries that maintain task performance, while reducing
human task completion times.

While extrinsic evaluation is attractive due to its ability to directly assess the
utility of a system, there are complications that make it less suitable as a general
evaluation framework. Firstly, extrinsic evaluation requires human workers trained

2In the sense that they are not explicitly trained on the task and do not require in-context
examples. For non-open-source models it is unclear whether summarization demonstrations are
a part of fine-tuning.
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at some task of interest to devote time to conducting the evaluation study, which
is expensive and often not feasible. Secondly, it requires a clear definition of a
relevant task, which is not always natural. For example, with many summarization
datasets such as XSum and CNN/DM, gold summaries are not designed to help
users fulfill a well-defined task. Finally, a given set of tasks might not cover the
full breadth of potential use cases.

This has led to only limited work on extrinsic evaluation. For the current
generation of summarization systems, we are only aware of one extrinsic evaluation
effort, that of Pu et al. (2024). They conduct a study on question answering,
similarity judgement, and categorization on a set of recent summarization systems.

2.3.2 Intrinsic Evaluation

In intrinsic evaluation, summary quality is measured directly along some prede-
fined quality dimensions. This requires researchers to carefully select appropriate
evaluation dimensions, which are likely to predict the actual utility of the summary.
Traditionally, these can be divided into two categories:

Content Dimensions consider how effectively the summary communicates rele-
vant content to the reader.

Linguistic Quality Dimensions consider how well-formed the generated sum-
maries are, independently of their content.

Content

Summary content can be measured either by overlap with a human reference
summary (reference-based evaluation), or directly scored by human annotators
(reference-free3 evaluation). Reference-free evaluation exists in a number of dif-
ferent variants: In query-based summarization, responsiveness measures how well
the summary responds to the given question (Over and Yen, 2003; Over and Yen,

3The term reference-free is slightly misleading, since even reference-free evaluation can some-
times contain human-written references as an anchor or as a point of comparison. We consider an
evaluation reference-free if it does not involve directly determining the similarity to a reference.
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2004). In a similar vein, usefulness measures the utility of a summary for a hypo-
thetical downstream task (Over and Yen, 2003). For generic summarization, this
overall score is often referred to as informativeness or relevance (Grusky et al.,
2018; Fabbri et al., 2021b).4 Clark et al. (2023) use a binary judgement they call
“main points” that asks annotators whether they think the summary contains the
most important information from the input. The most extreme variant here is to
simply ask for user preference between a set of given summaries, without specifying
any comparison dimension as done by Goyal et al. (2022).

For reference-based evaluation, the goal is usually to evaluate coverage of the
information in the reference summary/summaries by the content in the system
summary. Here, design decisions for human annotation usually focus on how to
decompose summaries into individual content units to facilitate easy comparison
and how to judge coverage of these units. An early effort here is the Summarization
Evaluation Environment (SEE) (Lin, 2001). SEE splits both the reference and
the system summary into elementary discourse units (EDUs) as a basic unit of
comparison. Annotators then mark all system summary units that have some
degree of overlap with the reference and finally give a percentage estimate of the
overall overlap between system and reference summary. During application for the
DUC 2001-2004 shared tasks, this approach proved to be difficult for annotators,
leading to unstable system rankings (Lin and Hovy, 2002). As Over et al. (2007)
note, comparison would also be limited to a single reference/summary pair, which
is not ideal given the wide range of permissible summaries for any given topic. To
make coverage annotation more reliable, Halteren and Teufel (2003) propose to
use factoids as a finer-grained content representation than EDUs. Unlike EDUs,
which are derived automatically for each summary in isolation, manual factoid
annotation considers a set of summaries of the same input and identifies atomic
factoids. A factoid is atomic if it only consists of information that always appears
together in the given summaries. Overlap can then be computed by counting the
number of factoids that are in both the reference and system summary. Nenkova
and Passonneau (2004) propose a very similar system called Pyramid, which works

4These terms are, however, not always used synonymously. For example, Grusky et al. (2018)
use both informativeness and relevance, where the former is meant to evaluate coverage of key
points in the input and the latter consistency of details between source and summary.
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with Summary Content Units (SCUs). SCUs are created in a process that is very
similar to the factoid annotation. The namesake idea of Pyramid is that SCUs
can be assigned importance scores by giving higher weight to SCUs that appear in
multiple references. This can be conceptualized as SCUs forming a pyramid, where
SCUs that appear across all reference summaries form the peak and less frequent
and thus less relevant SCUs are at the bottom. A summary attains a high Pyramid
score by covering as much of the upper part of the pyramid as possible. Later work
in manual coverage annotation has largely followed the same ideas but focused on
two areas:

1. Reducing annotator workload

2. Making the task suitable for non-expert annotators recruited via crowd-
sourcing platforms

Shapira et al. (2019) propose a light-weight variant of Pyramid called LitePyra-
mid that removes the need for exhaustively collecting SCUs across multiple sum-
maries. Instead, they ask annotators to write a fixed number of SCU-like state-
ments per reference summary and then have a second set of annotators judge
whether a random sample of these SCUs appears in a given system summary.
Zhang and Bansal (2021) propose to further reduce workload by automatically
identifying the presence of SCUs in a summary using a natural language infer-
ence (NLI) model. They also propose to automatically generate a subset of “easy”
SCUs, leaving human annotators to create SCUs for more challenging parts of the
summaries.

Liu et al. (2023b) propose a similar setup to LitePyramid, although their atomic
content units (ACUs) are closer to factoids. Their annotation relies on a hybrid
approach, where ACUs are created by experts and crowd workers conduct the
matching procedure.

As we will show in a survey in Chapter 3, human reference-based evaluation has
lost popularity in recent years compared to reference-free evaluation. We identify
a number of contributing factors for this:

1. Reference-based evaluation is often expensive. Most annotation procedures
require some kind of expert annotation and the process is often lengthy. For
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example, Halteren and Teufel (2003) note that they require about 30 minutes
per summary.

2. The number of reference summaries is limited to one in most benchmark
datasets, as discussed in Section 2.1. This limits the utility of approaches
like Pyramid, which rely on multiple reference summaries.

3. With the advent of large language models, the ad-hoc reference summaries
in popular corpora like XSum and CNN/DM have been shown to be inferior
to machine output (Goyal et al., 2022). This makes reference similarity
unsuitable as an evaluation metric.

Another recent development in the evaluation of summary content is the ad-
vent of faithfulness as an important evaluation criterion (Maynez et al., 2020).
A summary is faithful if all of its content is grounded in the input document(s).
Unfaithful summaries introduce additional information into the summary, which
may or may not be factual in relation to the real world. This has become partic-
ularly problematic with the advent of abstractive summarization systems. While
extractive systems can introduce factual errors into a summary, for example due
to referential errors (Zhang et al., 2023b), this is much more likely with abstrac-
tive generations. We defer a more thorough discussion of this phenomenon and
related work to Chapter 5, where we will develop an automatic evaluation metric
for faithfulness.

Linguistic Quality

Linguistic quality encompasses a wide range of potential quality dimensions. This
is nicely exemplified by the progression of the DUC conferences and their evalua-
tion of linguistic quality. The initial DUC conference in 2001 (Over, 2001) asked
annotators to rate summaries from grammaticality, summary organization, and
summary cohesion on a five point scale. In the DUC 2002 (Over and Liggett, 2002)
and DUC 2003 (Over and Yen, 2003) iterations, this changed to a specific set of
twelve error types: capitalization errors, word order, subject-verb agreement, miss-
ing subjects/verbs/objects, unrelated fragments, missing articles, incorrect use of
pronouns, referential clarity for nouns, improper use of nouns instead of pronouns,
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dangling conjunctions, unnecessary repetition, and lack of cohesion and coherence.
For DUC 2004, this was again changed to coherence, conciseness, repetition, in-
formation status, and improper use of nouns instead of pronouns. Finally, for the
remaining three DUC conference 2005, 2006, and 2007, evaluation included five
dimensions: grammaticality, non-redundancy, referential clarity, focus and struc-
ture, and coherence; all rated on a 1-5 Likert scale (Dang, 2005; Dang, 2006; NIST,
2007).

With the shift to development of summarization systems outside of shared
tasks, we observe less standardization in quality dimensions. Notable examples of
larger-scale evaluation campaigns that include linguistic quality are Grusky et al.
(2018) and Fabbri et al. (2021b), who use fluency and coherence for their respective
studies. Clark et al. (2023) ask annotators to label a summary as comprehensible,
repetition-free, grammatical, and concise. Zhang et al. (2024) exclusively use
coherence as the only linguistic quality dimension in their comparison of human
and LLM written summaries, reflecting the consistently high grammatical quality
of LLM outputs. Following this, we are going to focus on coherence evaluation in
Chapters 3 and 4.

2.4 Automatic Evaluation Metrics

The evaluation procedures we have discussed thus far have in common that they
are dependent on human labor.5 The resulting large cost and time requirements
raise a need for automatic evaluation metrics. Analogously to human evaluation,
these can again be differentiated into reference-based and reference-free evaluation
metrics.

2.4.1 Reference-based Metrics

Reference-based metrics compute the overlap between one or more human-written
reference summaries and a system summary. The most well-known of these met-
rics is ROUGE (Lin, 2004b). ROUGE is a token-overlap-based evaluation metric,

5We note that for some of the automatic metrics here, human labor is still required, for
example to create references. However, unlike human evaluation, this effort does not need to be
repeated for every new set of summaries.
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similar to BLEU (Papineni et al., 2002), which is commonly used in machine trans-
lation. Unlike its close relative, which measures precision and includes a brevity
penalty to punish overly long sequences, ROUGE is a recall-oriented metric.

ROUGE exists in several variants, the most commonly used being ROUGE-N,
which computes n-gram overlap between the references and the candidate sum-
mary. Let cnt(w, T ) be the number of occurrences of an n-gram w in a text T and
let ngrams(n, T ) be the set of distinct n-grams of length n in T . Given a set of
reference summaries R and a generated summary S, ROUGE-N recall is defined
as follows:

ROUGE-n-rec(R, S) =
∑

R∈R
∑

w∈ngrams(n,R) min (cnt(w,R), cnt(w, S))∑
R∈R

∑
w∈ngrams(n,R) cnt(w,R)

. (2.1)

Recall is an obvious choice for settings with strict length constraints but is
problematic when the length is unconstrained during generation. Research on
corpora without length constraints thus uses F1 score instead (Nallapati et al.,
2016b; See et al., 2017):

ROUGE-n-prec(R, S) =
∑

R∈R
∑

w∈ngrams(n,R) min (cnt(w,R), cnt(w, S))
|R|
∑

w∈ngrams(n,S) cnt(w, S)
, (2.2)

ROUGE-n-F1(R, S) =2
ROUGE-n-prec(R, S) · ROUGE-n-rec(R, S)
ROUGE-n-prec(R, S) + ROUGE-n-rec(R, S)

. (2.3)

This allows the comparison of summaries with different lengths, although Sun
et al. (2019a) note that the resulting metric is sensitive to length variation in
generated summaries.

Other, less frequently used variants of ROUGE include ROUGE-L, which
computes the length of the longest common subsequence between each reference
and the summary,6 ROUGE-W, which is a weighted variant of ROUGE-L, and
ROUGE-S/ROUGE-SU, which are based on skip-gram statistics.

While ROUGE is by far the most popular evaluation method in text sum-
marization, a number of attempts have been made to improve upon its formula
with more sophisticated methods for computing overlap: Ng and Abrecht (2015)

6More precisely, the longest common subsequences are computed between pairs of sentences
and merged.



24 Chapter 2. An Overview of Evaluation in Text Summarization

use word-embeddings to allow for more flexible matching between n-grams; Zhang
et al. (2020b) and Zhao et al. (2019) use the similarity of contextualized embed-
dings to compute a matching between reference and generated tokens; Clark et al.
(2019) use both word and sentence embedding similarity to measure overlap. The
common theme of these approaches is to allow for a more flexible matching be-
tween reference and generated summary by exploiting embedding-based similarity
measures. This leads to measures that can more easily deal with paraphrasing and
synonymy.

A number of non-matching-based approaches have also been proposed over
time:

Yuan et al. (2021) propose to compute the probability of the generated sum-
mary under a conditional language model using the reference as input.

Chen and Eger (2023) propose to use natural language inference models, which
predict whether a given hypothesis is entailed by, contradicted by, or logically
neutral to a given premise. For reference-based evaluation, either the generation
or the reference can be chosen as the hypothesis, with the other text forming the
premise. A score can be derived by considering the entailment probability, possibly
combined with the contradiction probability.

Gao et al. (2019) propose an automated variant of the Pyramid method dis-
cussed in Section 2.3.2 by automatically decomposing sentences into content units
before clustering and then matching them. The semi-automated Pyramid method
of Zhang and Bansal (2021), described in Section 2.3.2, can also be run in a fully
automatic setting following a similar paradigm. Nawrath et al. (2024) systemat-
ically investigate how to best generate SCUs automatically for this purpose and
find both generating them using LLMs and from abstract meaning representation
(Banarescu et al., 2013) to be competitive.

Deutsch et al. (2021a) propose to use a question generation model to generate
questions from a reference and then use an automatic question answering model
to derive answers from the generated summary. A summary that is similar to
the reference should generate the same answers for the questions. Conceptually,
question generation takes the role of deriving content units and generating answers
replaces the matching step.
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2.4.2 Reference-free Metrics

Reference-free evaluation metrics compute summary quality directly from the sum-
mary and, possibly, the input. This avoids the need for reference summaries, which
may be costly to create or of poor quality. We can broadly categorize approaches
here into unsupervised and supervised approaches.7 We refer to any method that
explicitly uses human evaluation data for training as supervised, whereas we con-
sider all other methods unsupervised, even if they are trained on labeled data from
other sources.

Unsupervised approaches encompass heuristics and methods learned on exter-
nal tasks. Zhu and Bhat (2020) propose a set of heuristics to measure the DUC
05-07 linguistic quality dimensions (except referential-clarity). For content evalua-
tion, Vasilyev et al. (2020) propose to predict the source document using a language
model, providing the summary as an auxiliary input. The intuition here is that a
good summary should lead to a large drop in perplexity when modelling the input.
Gao et al. (2020) propose to construct pseudo-references which they then compare
using Sentence-BERT (Reimers and Gurevych, 2019) embedding similarity. Dar-
rin et al. (2024) propose to measure the mutual information between summary and
source. They justify this by showing that this is highly predictive of downstream
task performance when replacing the full input with the summary.

More recently, LLM-as-a-judge approaches have become popular, both for sum-
marization specifically and NLG in general (Chiang and Lee, 2023; Liu et al.,
2023a; Shen et al., 2023). Here, a LLM is prompted to output a score for a qual-
ity dimension, often together with a short explanation of the reasoning for the
score. While this shows promising results, the black-box nature of these scores
makes them susceptible to hard-to-detect biases, such as a preference for gener-
ations made by the same LLM that is used as a judge (Panickssery et al., 2024;
Koo et al., 2023), or confounding quality dimensions with text length (Koo et al.,
2024).

7In contrast to reference-based metrics, which are all unsupervised. It is also possible to design
supervised reference-based metrics. Such supervised reference-based metrics exist in machine
translation (Yan et al., 2023). However, we are not aware of such approaches in summarization
evaluation.
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Additionally, there is a large body of work on measuring text coherence, which
can be directly applied to evaluating summary coherence in linguistic quality eval-
uation. We defer an in-depth discussion of this to Chapter 4, where we will conduct
a meta-evaluation of their capabilities.

Supervised metrics rely on human annotations to learn to score summary qual-
ity dimensions. While this is common in machine translation, where large datasets
of human annotations are available (Rei et al., 2020), for text summarization, such
data is scarce (Clark et al., 2023). Pitler et al. (2010) train a feature-based lin-
guistic quality model on DUC 2006 and DUC 2007 annotations. In a similar
vein, Xenouleas et al. (2019) use data from the DUC 05-07 conferences to train
a BERT-based regressor capable of predicting human evaluation scores. How-
ever, their training data only contains pre-neural summarization systems, which
can limit generalizability. For coherence, this will become apparent in our meta-
evaluation in Chapter 4. Clark et al. (2023) gather a large-scale dataset of human
annotations for summaries in multiple languages and use it to train a mT5-based
(Xue et al., 2021) model for several quality dimensions.

Finally, we have purposefully left out the extensive work on faithfulness metrics
in this discussion. We will discuss them in depth in Chapter 5 instead, where we
will directly relate them to our work in this area.

2.5 Discussion

In this chapter, we have given an overview of the task of text summarization
and its evaluation. We have constrained this introduction to be broad, leaving
more specific background to the individual parts where we tackle these aspects
of summarization evaluation. Two aspects of this overview will be particularly
relevant for the remainder of this thesis:

• Just like most areas of NLP, text summarization has undergone large changes
in recent years. Recent datasets are typically large and not specifically de-
signed with the evaluation of automatic text summarization in mind. Recent
summarization systems are learned and abstractive, as opposed to their ex-
tractive, often heuristic progenitors.
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• The design space of evaluation for text summarization is huge, with a large
number of quality dimensions and approaches to consider.

Both of these points highlight the need for a new, holistic perspective on sum-
marization evaluation. This is what we seek to provide in this thesis.





29

Chapter 3

Human Evaluation of
Summarization Systems

3.1 Motivation

As discussed in Chapter 2, the utility of a summarizer is ultimately determined
by how well it supports a user’s information need. However, such extrinsic eval-
uations are difficult to conduct and can only ever cover a narrow set of potential
applications. Generically evaluating summarizers thus typically requires intrinsic
human evaluation. To design such studies, researchers need to answer a number
of difficult questions:

1. What kind of rating should annotators be asked to provide (numerical, rank-
ing, etc.)?

2. How can results be interpreted to avoid erroneous conclusions?

3. How should annotators be distributed across samples to maximize study
power?

Howcroft et al. (2020) note that for natural language generation (NLG) evalu-
ation in general, there is very little agreement on how to design human evaluation
studies and details are typically underreported. Lee et al. (2019) mirror a similar
sentiment. This problem extends, as we will show in this chapter, also to the
evaluation of summarization systems.
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While, as noted in Chapter 2, there was an early standardization in the form
of shared tasks during the Document Understanding Conferences (DUC) (Dang,
2005), this standardization has not survived into current practice. A likely cause
for this is the shift from extractive to abstractive summarization, along with a
change in available resources: Whereas the NIST-organized DUC shared tasks
could rely on a set of expert “assessors”, the smaller scale of most current evalua-
tion campaigns requires researchers to either rely on locally recruited annotators,
or on crowd-working platforms like Amazon Mechanical Turk1 or Prolific.2 Prac-
tices designed to have a set of expert annotators evaluate primarily extractive
summaries do not necessarily translate to crowd-sourced evaluation of abstractive
summaries. This lack of standardization not only leads to little comparability
between individual studies but also carries the risk of less than optimal decisions
leading to cost-inefficient designs, and, in the worst case, erroneous conclusions
about summarizer performance.

In this chapter, we thus tackle the problem of designing intrinsic evaluation
studies that are both reliable and cost-efficient. We will first survey the (at the
time of this work) current practices in human evaluation for text summarization.
We will then conduct a set of human evaluation studies with the goal of establishing
best practices for human evaluation of summarization systems. In particular, we
are going to focus on the three questions posed in the beginning of this section:

1. To identify the best choice of annotation method, we are going to compare
the efficiency of the two most popular methods in current literature: Likert-
and ranking-style evaluation.

2. With regard to statistical analysis, we are going to discuss how to properly
analyze the resulting data. We will show how the presence of grouping factors
in typical human evaluation data can lead to erroneous conclusions when
analyzed with inappropriate statistical tools. In summarization evaluation,
grouping factors arise whenever one annotator rates multiple summaries and
when multiple summaries are generated for the same document.

1www.mturk.com
2prolific.com

www.mturk.com
prolific.com
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3. Finally, we will give recommendations for study design, particularly regard-
ing the overall number of annotators and their distribution across samples.

In summary, this chapter contains the following contributions:

1. We conduct a comprehensive survey on the current practices in manual sum-
mary evaluation in Section 3.3. Often, important study parameters, such as
the total number of annotators, are not reported. In addition, statistical sig-
nificance is either not assessed at all or with tests (t-test or one-way ANOVA)
that lead to inflated Type I3 error in the presence of grouping factors (Barr
et al., 2013).

2. We carry out annotation experiments for coherence and repetition. We elicit
both Likert- and ranking-style annotations on the output of four recent sum-
marizers and on reference summaries. We show that ranking-style evalu-
ations are more reliable and cost-efficient for coherence, supporting prior
findings by Novikova et al. (2018) and Sakaguchi and Van Durme (2018).
However, for evaluation of repetition, where many documents do not exhibit
any problems, Likert outperforms ranking.

3. Based on our annotation data, we perform Monte-Carlo simulations to show
the risk posed by ignoring grouping factors in statistical analysis and find up
to eight-fold increases in Type I error rate when using standard significance
tests. As an alternative, we propose to either use mixed-effects models (Barr
et al., 2013) for analysis, or to design studies in such a manner that results
can be aggregated into independent samples, amenable to simpler tools.

4. Finally, we show that the common practice of eliciting repeated judgements
for the same summary leads to less reliable and powerful studies for system-
level comparison when compared to studies with the same budget but only
one judgement per summary.

The work presented in this chapter has previously been published as
3I.e. the probability of incorrectly rejecting the null hypothesis. We will discuss this concept

more formally in Section 3.2.4.
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Julius Steen and Katja Markert (2021). “How to Evaluate a Sum-
marizer: Study Design and Statistical Analysis for Manual Linguistic
Quality Evaluation”. In: Proceedings of the 16th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics: Main
Volume. Ed. by Paola Merlo et al. Online: Association for Computa-
tional Linguistics, pp. 1861–1875. doi: 10.18653/v1/2021.eacl-

main.160. url: https://aclanthology.org/2021.eacl-main.160.

3.2 Background and Related Work

Human evaluation in NLG in general and summarization in particular has a long
history. We have already touched on the history of reference-based human eval-
uation in Chapter 2. Here, we are going to focus specifically on the design of
reference-free evaluation studies. We split this discussion into four parts. First,
we are going to discuss what it means for a human study to be reliable. We are
then going to discuss how the use of crowd work, which is common in human eval-
uation studies, influences study design. We will then turn to which methods are
typically used to elicit human judgements. Finally, we will give a brief introduc-
tion to null hypothesis significance testing, which is the most common framework
for analyzing human evaluation results.

3.2.1 Reliability as a Proxy for Validity

When we conduct a human evaluation study, what we are ultimately interested
in is that the judgements accurately reflect the true underlying quality of summa-
rizer generations. This is also called the validity of the study. Validity, however,
is difficult to establish in human evaluation since the unknown performance char-
acteristics of a summarizer are what we seek to identify with our study. We can
usually only qualitatively assess whether the questions, methods, and design in a
study “make sense” for the quantity of interest. This is analogous to the concept
of “face validity” in psychological research (Price et al., 2015).

In NLP, it is common practice to instead measure the reliability of a measure.
A measure is reliable if it produces the same conclusions under different settings.

https://doi.org/10.18653/v1/2021.eacl-main.160
https://doi.org/10.18653/v1/2021.eacl-main.160
https://aclanthology.org/2021.eacl-main.160
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For example, in the context of human evaluation studies, exchanging annotators
or documents with samples from the same population should not alter conclusions
about system performance. While reliability does not imply validity, a lack of
reliability is an indicator for an invalid measurement.

Agreement

Reliability of human annotations for human evaluation is often assessed using
agreement measures, as is common practice in annotation experiments in com-
putational linguistics (Carletta, 1996; Artstein and Poesio, 2008). Agreement
measures measure the inter-rater reliability, i.e. the extent to which different an-
notators agree on the assessment of a single instance during evaluation.

The most straightforward measure of inter-rater reliability for two annotators
is the observed agreement. Let C be the set of possible rating categories and n

be the number of items in the study (i.e. summaries in our specific case). Let R̂
be the observation matrix where R̂i,j is the score assigned by annotator j to item
i. The observed agreement, i.e. the empirical probability that the two annotators
agree computed on the given ratings, is

Po =
1

n

n∑
i=1

1

(
R̂i,1 = R̂i,2

)
, (3.1)

where 1 is the indicator function.
However, observed agreement has an important flaw in that agreement can also

arise due to chance. This observation gives rise to so-called chance-adjusted agree-
ment measures. Chance-adjusted agreement measures can generally be formulated
as

Po − Pe

1− Pe

, (3.2)

where Pe is the expected agreement given that annotators randomly assign ratings.
For two annotator scenarios, Cohen’s κ (Cohen, 1960) is a popular agreement

measure. It computes Pe from the marginal probabilities over C of the annotators:

Pe =
1

n2

∑
c∈C

cnt(c, R̂•,1) · cnt(c, R̂•,2) , (3.3)
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where cnt(c, R̂•,j) is the number of times category c is observed in the annotations
of annotator j.

Scott’s π is a similar agreement measure but instead computes the chance
agreement from the joint probabilities of the two annotators:

pc =
cnt(c, R̂•,1) + cnt(c, R̂•,2)

2n
∀c ∈ C , (3.4)

Pe =
∑
c∈C

p2c . (3.5)

For a set of multiple annotators, Fleiss’ K is commonly used as a generalization
of Scott’s π. Here Po and Pe are computed as follows:

Po =
1

na(a− 1)

[(
n∑

i=1

∑
c∈C

cnt(c, R̂i,•)
2

)
− na

]
, (3.6)

Pe =
∑
c∈C

(
1

na

n∑
i=1

cnt(c, R̂i,•)

)2

, (3.7)

where cnt(c, R̂i,•) is the number of times category c is observed in the annotations
of item i and a is the number of annotators.

Krippendorff’s α (Krippendorff, 1970) can similarly be used for assessing agree-
ment and has the additional advantage that it can be parameterized by a function
δ that specifies the dissimilarity of two categories. This is particularly attractive
for ratings, since they are typically on an ordinal scale, where a disagreement of 1
vs. 2 is intuitively much less severe than a disagreement of 1 vs. 5. Unlike Fleiss’
K and Cohen’s κ, it is expressed in terms of disagreement, although the core idea
of comparing expected and observed disagreement remains the same:

α = 1− Do

De

. (3.8)

Unlike the previously discussed coefficients, Krippendorff’s α accounts for in-
complete rating matrices, where some annotators only annotate a subset of the
items. We thus introduce R̃i as the multi-set of ratings for item i, i.e. the set
of non-empty ratings in R̂i,•. Krippendorff’s α for a given R̃ and δ can then be
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computed with

De =
1

(M − 1)M

∑
c1∈C

∑
c2∈C

δ(c1, c2)

cnt(c1, R̂)(cnt(c1, R̂)− 1) if c1 = c2

cnt(c1, R̂) · cnt(c2, R̂) else
, (3.9)

Do =
1

M

∑
c1∈C

∑
c2∈C

δ(c1, c2)
n∑

i=1

|R̃i|
cnt(c1, c2, R̃i)

(|R̃i| − 1)|R̃i|
, (3.10)

M =
n∑

i=1

|R̃i| , (3.11)

where cnt(c1, c2, R̃i) is the number of pairs of ratings with values c1, c2 in R̃i.
cnt(c, R̂) is the number of times category c appears in all ratings. An intuitive
conceptualization of Krippendorff’s alpha is to consider Do as the average disagree-
ment within each multi-set R̃i weighted by the number of annotations in R̃i and
De as the disagreement within the multi-set of all ratings across all items (Honour,
2016).

For ordinal rating data, such as the responses on a Likert-scale, an appropriate
δ is (Krippendorff, 2011)

δ(c1, c2) =

c2∑
c=c1

(
cnt(c, R̂)− cnt(c1, R̂)− cnt(c2, R̂)

2

)2

. (3.12)

Problems with Agreement

Agreement measures have two important flaws when applied to evaluation data.
Firstly, their interpretation is generally difficult. While standardized scales exist
(Landis and Koch, 1977), they may give conflicting advice. Especially in NLG eval-
uation, many studies have Krippendorff’s α that is below the cutoff recommended
by Krippendorff (1970) of 0.8 below which data should be considered unreliable
(Amidei et al., 2018).

This leads to the second issue: Agreement is not necessarily expected in human
ratings. Amidei et al. (2018) study the example of a question generation task where
annotators were asked to rate the grammaticality and idiomaticity of a generation,
as well as the appropriateness of the generated question for the input. In their
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experiments, Amidei et al. find that – in spite of repeated refinement of annotation
guidelines – agreement ultimately remains low. In a qualitative analysis, they find
that this can often be explained by personal preferences and prior knowledge.
In these cases, low agreement does not indicate a fault in the evaluation setup,
but rather the diversity of human perception of question quality. Amidei et al.
(2018) ultimately propose to improve reporting standards around agreement with
confidence intervals and to designate boundaries within which annotator agreement
should fall: Too low and data is insufficiently reliable, too high and the task might
be insufficiently interesting.

In this chapter, we will propose another approach. While we will report Krip-
pendorff’s α to allow for comparisons with other studies, we propose that measur-
ing consistency is much more informative for human evaluation studies.

Consistency

The problems with agreement outlined above suggest that inter-rater reliability
might not always be an informative quantity in evaluation studies. Another vari-
ant of reliability is to test for consistency. Internal consistency is a concept that
originates from test theory and refers to the extent to which the different questions
in a survey measure the same underlying latent concept in a subject (Tavakol and
Dennick, 2011). Internal consistency can be measured with Split-Half Reliabil-
ity (SHR). SHR splits a survey into two parts and computes the correlation of
the resulting measures between both halves. In NLP, SHR has been previously
used by Kiritchenko and Mohammad (2017) to compare the reliability of different
annotation methods in sentiment intensity annotation.

For an evaluation study, the “subjects” are the systems, the latent concept we
want to measure is the performance in human judgements, and the equivalent to
“questions” in a survey is the evaluation on different documents and by different
annotators. Care needs to be taken, however, to ensure the halves are independent.
We will discuss the particularities of computing SHR for evaluation studies in
Section 3.5.1.
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3.2.2 Human Evaluation with Crowd Workers

The most critical ingredient for any human evaluation are, naturally, the human
annotators themselves. Since we are going to recruit annotators from crowd-
working platforms in this chapter, we will now discuss the particularities and
trade-offs of choosing crowd workers over alternatives like locally recruited partic-
ipants.

Crowd-working platforms like Amazon Mechanical Turk (MTurk) or Prolific
allow researchers to create so-called “human intelligence tasks” (HITs).4 HITs
consist of a task that should be completed by one or more human workers, as well
as a compensation to be paid upon completion. Researchers can require additional
qualifications like a location and a history of successfully completed HITs.

The simplicity of acquiring crowd workers has made this method of recruit-
ment popular in human evaluation (Gehrmann et al., 2023), with some authors
particularly highlighting the cost efficiency of the method (Callison-Burch, 2009).
Additionally, if the demographic diversity of the annotator pool is relevant, which
might be the case for subjective judgements, the pool of crowd workers is slightly
more demographically diverse than typical alternatives, like working with college
students (Buhrmester et al., 2011).

A concern when using non-expert annotators in general and crowd workers in
particular is data quality. While Callison-Burch (2009) and Graham et al. (2017)
report that crowd workers can be a replacement for experts in the evaluation of
machine translation systems, most studies in text summarization find that agree-
ment between crowd workers is too poor to lead to reliable summary-level ratings.
Gillick and Liu (2010) compare crowd-sourced annotations to expert annotations
from the Text Analysis Conference (TAC) 2009 shared summarization task (Dang
and Owczarzak, 2009b). They find that crowd workers have a higher variance and
are unreliable on the summary level, although their judgements are reliable on the
system level. Fabbri et al. (2021b) elicit both expert and crowd worker judgements
and find that they do not correlate at all on the summary level. Iskender et al.
(2021) also conduct a comparison of expert and crowd worker judgements and

4The term is specific to MTurk, although the concept is the same in other platforms.
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find that the typical number of three crowd workers per summary cannot provide
reliable summary-level scores.

One source of variance in the annotation results is the presence of low-effort
annotators in the worker pool, who essentially judge summaries at random. MTurk
allows researchers to limit participation to workers with a certain number of HITs
that have been accepted as completed by other HIT requesters, as well as an overall
acceptance rate. Similar methods are typically available on other platforms. This
can be used to limit the participation of potentially low-performing workers. For
example, Fabbri et al. (2021b) use a limit of 10,000 HITs with a 97% approval rate
for their experiments. To further mitigate risks to data quality, researchers often
insert attention checks into their HITs. One common type of attention check, called
instructional manipulation check (Oppenheimer et al., 2009), is to test whether
annotators actually read instructions before submitting an answer to a HIT. For
example, in a summary evaluation task, the summary might be replaced with an
instruction to the annotator to assign a certain score. There are other variants
of attention checks, such as requiring correct answers to predetermined distractor
questions. If workers fail too many attention checks, their HITs will be discarded
in further analysis and another response is elicited. While some platforms, like
MTurk, allow study authors to withhold payment for HITs in these cases, other
platforms are more restrictive due to the labour fairness implications of unpaid
work. For example, the platform used in this chapter, Prolific, only allows rejection
for at least two failed instructional manipulation checks.5 In these cases, rejections
for other reasons lead to an increase in study cost.

An alternative approach is to recruit a set of annotators that have proven
reliable in prior studies. Zhang et al. (2023a) propose a framework for identifying
annotators using a series of qualifying tests. This allows them to build up a set of
competent annotators which reduces noise in their data. However, this is mostly
suitable for large or repeated evaluation studies due to the overhead in recruiting
costs.

Another risk to data quality comes in the form of sequence bias (Mathur et al.,
5See https://web.archive.org/web/20240107094551/https://researcher-

help.Prolific.com/hc/en-gb/articles/360009223553-Prolific-s-Attention-and-
Comprehension-Check-Policy, accessed 14.05.2024, 19:57.

https://web.archive.org/web/20240107094551/https://researcher-help.Prolific.com/hc/en-gb/articles/360009223553-Prolific-s-Attention-and-Comprehension-Check-Policy
https://web.archive.org/web/20240107094551/https://researcher-help.Prolific.com/hc/en-gb/articles/360009223553-Prolific-s-Attention-and-Comprehension-Check-Policy
https://web.archive.org/web/20240107094551/https://researcher-help.Prolific.com/hc/en-gb/articles/360009223553-Prolific-s-Attention-and-Comprehension-Check-Policy
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2017). Sequence bias arises when the distribution of annotator judgements differs
depending on previously annotated instances. Mathur et al. conduct an analysis
of multiple crowd-sourced tasks, including an analysis of adequacy judgements in
machine translation. They find that annotators tend to assign higher scores to
instances that follow other instances they had assigned a good score. The effect is
particularly pronounced in the beginning of the annotation task. To avoid these
biases effecting system scores, Mathur et al. recommend shuffling the order in
which instances are presented.

Similar to the order of questions, Schoch et al. (2020) note that other subtle
variations in the evaluation setup can have unexpected influence on the results.
They particularly highlight framing effects that can exist in the question. They give
the example of a pairwise comparison where annotators are asked how much better
generation A is than generation B, which positively frames generation A. They
advocate for a thorough reporting, as well as standardization of design parameters
in human studies.

More recently (although not at the time when the study in this chapter was con-
ducted), the availability of LLMs has begun to impact crowd-working platforms.
Veselovsky et al. (2023) observe that in text production tasks, there is strong evi-
dence that a large subset of workers use LLMs to produce their results. While it
is unclear whether this translates to rating tasks, it remains a possible concern for
future evaluation tasks, in particular with improvements in the integration of tool
usage with LLMs.

Finally, the choice of crowd-working platform also influences data quality. Dou-
glas et al. (2023) compare several platforms, including Amazon Mechanical Turk
and Prolific, which we use in our study. They find workers on Prolific are generally
more likely to pass attention checks and follow instructions, leading to less noisy
data.

3.2.3 Methods for Judgement Elicitation

We now turn to surveying how judgements are elicited from human annotators.
While the question may seem straightforward at first glance, a number of different
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methods have been suggested in NLG evaluation. We differentiate them into three
categories: error counting, direct assessment, and relative assessment.

In error counting approaches, annotators are asked to either specifically mark
issues in the generation, or to give a count of the total number of such errors they
identified. This was, for example, the method of choice during DUC 2002 (Over
and Liggett, 2002).

In direct assessment, annotators are asked to rate the generation along a
given rating scale. As we will show in Section 3.3, the most common choice in
direct assessment in summarization evaluation is the five-point rating scale, often
referred to as a Likert scale. However, alternative techniques have been proposed
for NLG evaluation. Siddharthan and Katsos (2012) use magnitude estimation
(Bard et al., 1996) for acceptability judgements, which allows annotators to assign
an unbounded number of distinct positive ratings. To anchor the rater, a reference
is provided together with a standard rating and annotators are asked to express
the difference in quality as a ratio relative to the standard. For example, if the
reference has a rating of 100 and the instance is twice as good as the input, it
should receive a value of 200. Belz and Kow (2011) propose the use of visual-
analogue scales, which allows the annotator to select the rating on a continuous
scale.

Finally, relative assessment is based on comparison of individual genera-
tions. This can be achieved with either full (Callison-Burch et al., 2007) or partial
ranking of results, where the extreme is a pairwise comparison between generations
from all systems. For multiple systems, there is a trade-off in the number of an-
notations that need be elicited. To rate n systems on m outputs, ranking requires
m full rankings, whereas pairwise comparison requires mn2 pairwise annotations.
A compromise between both is achieved by so-called best-worst scaling (BWS)
(Louviere et al., 2015). In BWS, annotators are asked to select the best and worst
sample out of a set of s items with s < n. By repeating the process with different
permutations, a full ranking can be recovered. BWS has seen limited application
in summarization evaluation (see our survey in Section 3.3), but has been shown
to be more reliable than rating scales in word sentiment annotation (Kiritchenko
and Mohammad, 2017), where the large number of items make a full ranking infea-
sible. For pairwise evaluation, the number of required annotations can be reduced
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by selecting only a subset of comparisons for annotation: Sakaguchi et al. (2014)
propose to use the TrueSkill (Herbrich et al., 2006) matchmaking-algorithm to
prioritize comparing systems that have similar performance.

Novikova et al. (2018) introduce a hybrid approach, that combines magnitude
estimation with ranking they dub RankMe. Here, annotators are presented with
both a reference, as well as n sets of generations, for which they need to give
magnitude estimates. Sakaguchi and Van Durme (2018) propose a similar hybrid
approach where annotators give continuous direct assessments, but instances are
presented in direct comparison and a variant of TrueSkill is used to decide which
pairs are presented to annotators.

Finally, the process of annotation can be improved by combining human judge-
ments with automatic metrics. Chaganty et al. (2018) propose the use of control
variates, which allow to use an automatic metric to reduce the variance of human
annotations and thus the number of annotations required.

3.2.4 Null Hypothesis Significance Testing

After eliciting judgements, researchers must interpret the results of a human an-
notation study. When evaluating a newly proposed summarization system, we are
typically interested in establishing whether any improvements over other summa-
rization systems are due to the randomness inherent in the annotations, or caused
by actual improvements in the quality dimension.

In most experiments in NLP, this is evaluated using null hypothesis significance
testing (NHST) (Dror et al., 2018; Sadeqi Azer et al., 2020). The goal of NHST
is to establish whether a given observation provides sufficient evidence to support
a given hypothesis. In the context of (human) evaluation for summarization, our
empirical evidence is a set of acquired ratings R̂ for a set of summarizers S and we
usually seek to answer the question of whether a summarizer s1 ∈ S has a higher
expected human score than another candidate s2 ∈ S.

To conduct a null hypothesis significance test, we first formulate the namesake
null hypothesis. In our evaluation scenario, the null hypothesis states that s1 and
s2 perform equally well in human evaluation. We then define a sample statistic δ,
which maps our empirical observations (i.e. the elicited ratings) to a scalar value.
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We can now compute a p-value as the probability of the test statistic being at least
as extreme the statistic observed in our sample under the null hypothesis H0:

pH0(δ(R) ≥ δ(R̂)) , (3.13)

where R is a random variable over possible observation sets.
Researchers must then define a significance level α at which the null hypothesis

is rejected. A typical choice is α < 0.05.
There are two error types that can occur in the application of this procedure:

Type I and Type II errors. A Type I error occurs if we reject the null hypothesis
when it actually holds. In evaluation experiments, this is typically the more con-
cerning error, since it leads us to erroneously assume that a summarizer performs
better than another when it does not. A Type II error describes the opposite situa-
tion: We accept the null hypothesis when it does not hold. In terms of summarizer
comparison, this would lead to us not finding sufficient evidence to establish the
superiority of one summarizer over another.

If an appropriate test is selected, whose assumptions are satisfied by our sam-
ple, the Type I error is exactly the significance level α. The inverse of the Type II
error rate is also referred to as the power of a test.

One of the most well-known tests in NLP research is the paired student’s t-test.
It is a parametric test, i.e. it assumes samples are drawn from a given distribution,
so the distribution of δ is known. The t-test assumes both samples are drawn from
a normal distribution. A paired test is used to account for the dependence of
samples derived on the same document.

An alternative test, that also finds wide application in NLP, is the approximate
randomization test (ART) (Noreen, 1989). The approximate randomization test
is non-parametric. Instead, it uses resampling to approximate the distribution of
the test statistic under the null hypothesis. Given our set of ratings R̂, the test
creates a random sample R̄ from the paired samples in R̂ by randomly swapping
the elements of each pair.

The significance level is then computed by repeatedly resampling R̄ and com-
puting the probability that the statistic δ on R̄ is at least as extreme as that on
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R̂:

p(δ(R̄) ≥ δ(R̂)) =
1 +

∑
R̄∈R 1

(
δ(R̄) ≥ δ(R̂)

)
|R|+ 1

, (3.14)

where R is a set of k permutations drawn from R̂. The higher the number of
iterations k, the more accurate our estimate of the p-value.

An important assumption that is shared by both this test and the t-test is that
the pairs of samples in R̂ are independent.6 As we will discuss in the remainder
in this chapter, this is usually not true for human annotation data. This results
in inflated Type I error rates for these tests.

Study Power

A common way to determine test power is via simulation: If we know the un-
derlying data distribution, we can sample artificial data with a known effect size
– in our case, the difference in expected score between two systems – from the
distribution. We can then repeatedly draw new samples and compute the number
of times the test detects a significant difference on the samples.

Card et al. (2020) conduct such Monte-Carlo simulations and find that in NLP,
many studies are under-powered for typical effect sizes, i.e. they have an insufficient
probability to reject the null hypothesis, even if it is true. They note that this
problematic since if a low-powered test does detect a significant difference between
systems, it is likely to either exaggerate the effect or even invert it compared to
the true effect.

Bayesian Methods

While NHST is the most popular analysis method in NLP and it is also what we
use in this chapter, it is not the only option. Sadeqi Azer et al. (2020) note that p-
values are often subject to subtle misinterpretations by researchers. They propose
to replace the frequentist paradigm of NHST with a Bayesian approach. The
equivalent to NHST in their approach is the Bayes factor, which instead quantifies
how much the evidence provided by human annotations alters the credibility of

6More precisely, ART requires samples to only be exchangeable. However, for the purposes of
this chapter, this distinction is not important.
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two given hypotheses. While operating in a Bayesian framework would alter the
methods used in the statistical analysis, the points we are going to make regarding
the proper modelling of the underlying statistical dependencies remain valid under
either perspective.

3.3 Literature Survey of Evaluation Practices

To establish which evaluation practices are common in summarization evaluation,
we survey all summarization papers in ACL, EACL, NAACL, ConLL, EMNLP,
TACL, and the Computational Linguistics journal in the years 2017-2019. We
chose this timeframe as we were interested in current practices in summarization
evaluation at the time of the original publication of this work: 2017 marks the
publication of the pointer generator network (See et al., 2017), which has been
highly influential for neural summarization. We focus our analysis on papers that
present a novel system for single- or multi-document summarization and take a
single or multiple full texts as input and also output text (SDS/MDS).7

Out of the resulting 105 SDS/MDS system papers, we identify all papers that
conduct at least one new comparative system evaluation with human annotators
for further analysis, leading to 58 papers in the survey. The fact that this is only
about half of all papers is troubling given that it has been demonstrated that
current automatic evaluation measures such as ROUGE (Lin, 2004b) are not good
at predicting summary scores for modern systems (Schluter, 2017; Kryscinski et
al., 2019; Peyrard, 2019).

We assess both what studies ask annotators to judge, as well as how they elicit
and analyse judgements. Survey results are given in Table 3.1. Further details
about the choices made in the survey, including category groupings/definitions
and what is included under Other, can be found in Appendix B. As many papers
conduct more than one human evaluation (for example on different corpora), we
also list individual annotation studies (a total of 95).

7Excluded from the analysis are sentence summarization or headline generation papers, al-
though most of the points we make hold for their evaluation campaigns as well. Summarization
evaluation papers that do not present a new system but concentrate on sometimes large-scale
system comparisons are also excluded.
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Category Pa. St.

Evaluation
Questions

Overall 17 23
Content 45 65
Fluency 29 34
Coherence 10 11
Repetition 14 17
Faithfulness 6 8
Ref. Clarity 2 2
Other 8 9

Evaluation
Method

Likert 32 43
Pairwise 10 14
Rank 9 9
BWS 6 9
QA 9 14
Binary 4 4
Other 2 2

Number of
Documents
in
Evaluation

< 20 6 10
20-34 22 41
35-49 3 4
50-99 14 21
100 11 14
> 100 4 4
not given 1 1

Number of
Systems
considered

< 3 13 20
3 17 23
4 16 23
5 6 10
> 5 12 19
w/ Reference 16 25
w/o Reference 45 70

Category Pa. St.

Number of
Annota-
tions per
Summary

1 2 5
2-3 20 30
4-5 12 27
6-10 3 5
not given 23 28

Overall
Number of
Annotators

1-5 19 25
6-10 3 3
> 10 5 9
not given 32 58

Annotator
Recruitment

Crowd 25 49
Other 35 46

Statistical
Evaluation

t-test 9 16
ANOVA 9 18
CI 4 6
Other/unspec. 7 8
None 32 47

Table 3.1: Our survey of 58 system papers with 95 manual eval-
uation studies (2017-2019). We show numbers both for individual
studies and per paper. As a paper may contain several studies with
different parameters, counts in the paper column do not always add

up to 58.
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Of the systems that do have human evaluation, many focus on content, in-
cluding informativeness, coverage, focus, and relevance. Where linguistic quality
is evaluated, most focus on general questions about fluency/readability, with a
smaller number of papers evaluating coherence and repetition.

In the remainder of this section, we focus on the three aspects of evaluation we
cover in this chapter: How to elicit judgements, how these judgements are analysed
statistically, and how studies are designed.

3.3.1 Methods

The majority of evaluations is conducted using Likert-style judgements, with the
second most frequent method being ranking-based annotations, including pairwise
comparison and best-worst scaling. In QA evaluation (Narayan et al., 2018b),
annotators must answer questions about the document from the given summary.
This is naturally limited to evaluating content. This motivates us to compare both
Likert and ranking annotations in Section 3.5.1.

3.3.2 Statistical Analysis

If a significance test is conducted, most papers analyse their data either using
ANOVA or a sequence of paired t-tests. As already mentioned in Section 3.2.4,
both tests are based on the assumption that judgements (or pairs of judgements,
in case of the paired t-test) are sampled independently from each other. However,
in almost all studies, annotators give judgements on more than one summary
from the same system. Thus the resulting judgements are only independent if we
assume that all annotators behave identically. Given that prior work (Gillick and
Liu, 2010; Amidei et al., 2018), as well as our own reliability analysis in Section
3.5.1, show that especially crowd-workers tend to disagree about judgements, this
assumption does not seem warranted. As a consequence, traditional significance
tests are at high risk of inflated Type I error rates. This is well known in the
broader field of linguistics (Barr et al., 2013), but is disregarded in summarization
evaluation. We show in Section 3.6 that this is a substantial problem for current
summarization evaluations and suggest alternative analysis methods.
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3.3.3 Design

Most papers only report the number of documents in the evaluation and the num-
ber of judgements per summary. This, however, is not sufficient to describe the
design of a study, lacking any indication about the overall number of annotators
that made these judgements. A study with 100 summaries and 3 annotations per
summary can mean 3 annotators did all judgements in one extreme, or a study
with 300 distinct annotators in the other. Only 26 of the 95 studies describe their
annotation design in full, almost all of which use designs in which a small number
of annotators judge all summaries. Only 6 of 49 crowdsourced studies report the
full design.

We show in Section 3.6 that a low total number of annotators aggravates Type I
error rates with improper statistical analysis. In Section 3.7, we further show
that, with proper analysis, a low total number of annotators leads to less powerful
experiments. Almost all analysed papers choose designs with multiple judgements
per summary. However, we show in Section 3.7.2 that this — for the purpose of
system ranking — leads to loss of power when compared to a study with the same
budget and only one annotation per summary.

3.4 Coherence and Repetition Annotation

To elicit summary judgements for analysis, we conduct studies on two linguistic
quality dimensions. In the first, we ask annotators to judge the Coherence of the
summaries, while in the second, we ask for the Repetitiveness of the summary.
We select these two dimensions over the more frequent Fluency dimension as we
found in preliminary investigations that many recent summarization systems al-
ready produce highly fluent text, making them hard to differentiate. We do not
evaluate Overall and Content as both require access to the input document, which
differentiates them from the linguistic quality dimensions.

For both quality dimensions, we conduct one study using a seven-point Likert-
scale (Likert) and another using a ranking-based annotation method (Rank),
where annotators rank summaries for the same document from best to worst.
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(a) Likert - Coherence (b) Rank - Coherence

(c) Likert - Repetition (d) Rank - Repetition

Figure 3.1: Screenshots of the annotator instructions.

We show screenshots of the instructions for both annotation methods and quality
dimensions in Figure 3.1 and interfaces in Figure 3.2.

Corpus and Systems

Mirroring a common setup (see Section 3.3), we select four abstractive summariza-
tion systems and the reference summaries (ref) for analysis: The pointer gen-
erator model, the abstractive sentence rewriter model, Seneca, and BART.

The pointer generator model (PG) (See et al., 2017) enhances a standard
encoder-decoder architecture (Bahdanau et al., 2015) with a pointer-mechanism.
The pointer-mechanism allows the model to dynamically combine the usual pre-
diction over the vocabulary Pvocab with the attention distribution A over the input
tokens. This allows the model to “copy” any token in the input directly to the
output, even if it is not part of the vocabulary.8 The combination is governed
by a copy gate pcopy, which is computed from the hidden state. The final token
distribution P is then

P = (1− pcopy)Pvocab + pcopyA . (3.15)

We opt to include PG since it was, at the time of the study, a frequently used
baseline model for abstractive summarization.

8Unlike the current state of the art for language modelling, PG uses a non-subword vocabulary.
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Summary 1/25

Overall, how coherent do you find the summary?

Comments

Next

Show Instructions

Please read the following summary

dr. michael davidson was shot dead by stephen pasceri at brigham and women 's hospital in boston in january 
pasceri 's sister said he blamed the doctor for his mother 's recent death 
married pasceri took his own life after shooting davidson at heart center 
davidson 's wife , plastic surgeon dr terri halperin , was seven months pregnant at the time with their fourth child 
halperin delivered daughter mikaela jane davidson april 4 , less than three months after husband 's slaying

Very incoherent Perfectly coherent

1 2 3 4 5 6 7

1: Completely incoherent. Content is unorganized and it is very hard to make sense of the
summary.
4: The summary is understandable, but there are some issues in the organisation of the
content
7: Completely coherent

(a) Likert - Coherence

Summary 1/5

Comments

Next

Show Instructions

Please read the following summaries and sort them in descending
order of coherence in the list to the right.

fa announced this week that england are pulling out of the event
with immediate effect in order to achieve a more varied fixture list ,
including more foreign opposition . england have pulled out of the
home nations international under 16 tournament . sky say their
recommendations , including shortening the time between games ,
would have raised the profile of an historic competition that first took
place in 1925 .

sky sports ' drastic cost-cutting across the board after paying #
11million a match to retain premier league rights is being blamed for
the demise of the victory shield. england have pulled out of the
home nations international under 16 tournament. bt sport are to
broadcast the inaugural european games in baku in june, having
finally agreed terms.

sky allegedly withdrew their title sponsorship of under 16
tournament bt sport are to broadcast inaugural european games in
baku in june brazilian legend pele is due in london on thursday for an
art exhibition

sky sports ' drastic cost-cutting across the board after paying £
11million a match to retain premier league rights is being blamed for
the demise of the victory shield , the home nations under 16
tournament . england are pulling out of the event with immediate
effect in order to achieve a more varied fixture list . england have
pulled out of a home nations international under 16 ' . the , and .

sky sports ' drastic cost-cutting across the board after paying #
11million a match . england are pulling out of the event with
immediate effect in order . sky 's price hikes involving all their
programming since almost breaking the bank by committing # 4.2
bn . england have pulled out of home nations under 16 .

Most coherent

Least Coherent

(b) Rank - Coherence
Summary 1/25

How well does the summary avoid unnecessary repetition?

Comments

Next

Show Instructions

Please read the following summary

amanda beringer asked her brother brad fraser to make a toast at her wedding at eagle bay , south of perth. far from a conventional toast, mr fraser 
performed a song which poked fun at the burdens of marriage. the crowd erupted into a standing ovation at the end of the performance. the song 
included jokes about the new husband needing to take the bins out and taking the dog for a run.

Very badly Very well

1 2 3 4 5 6 7

1: The text repeats the same facts over and over, often using the same words.
4: There is some repetition in the text, including rephrased statements, but it is not too
bothersome.
7: There are no unnecessary repetitions in the text at all.

(c) Likert - Repetition

Summary 1/5

Comments

Next

Show Instructions

Please rank the following summaries into the list to the right so that
the summary with the least amount of unnecessary repetition is first
and the one with the most unnecessary repetition is last.

bundchen was the highest-paid model in 2014 , according to forbes
magazine , with a total $ 47 million in contracts . she is the face of
chanel and carolina herrera has her own line of lingerie . the , and .

tom brady to gisele bundchen : `` you inspire me every day ''
bundchen had last runway show wednesday she 'll be focusing more
on family , `` special projects ''

tom brady 's love for his wife will never go out of fashion . bundchen
was the highest-paid model in 2014 . bundchen announced her
retirement from the catwalk last weekend . bundchen walked the
runway for the last time wednesday and the new england patriots
quarterback was n't there to support her in person .

gisele bundchen, 34, announced her retirement from the catwalk
last weekend. she was the highest-paid model in 2014, according to
forbes magazine. she is the face of chanel and carolina herrera and
has her own line of lingerie.

tom brady 's love for his wife , model gisele bundchen , will never go
out of fashion . bundchen , 34 , announced her retirement from the
catwalk last weekend . she is the face of chanel and carolina herrera
and has her own line of lingerie .

Least unnecessary repetition

Most unnecessary repetition

(d) Rank - Repetition

Figure 3.2: Screenshots of the annotation interfaces.
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The abstractive sentence rewriter (ASR) (Chen and Bansal, 2018) is a combined
extractive and abstractive system that can be trained end2end using reinforcement
learning. The extractor is a pointer network (Vinyals et al., 2015) that selects a
set of input sentences from the input. The sentences are then rewritten using an
abstractor network, which is itself implemented as a pointer-generator network.
We select it for our study since it is a strong model that does not rely on external
pretraining data.

Seneca (Sharma et al., 2019a) is a summarization model that is specifically
designed to improve summary coherence. It extends the classical encoder-decoder
architecture with a special entity encoder that encodes mention clusters for each
entity in the document. Additionally, it is trained with a coherence reward us-
ing reinforcement learning, where the reward is provided by an external coherence
measure. We include this model since it specifically aims to improve summary
coherence, which makes it an interesting candidate model in our coherence exper-
iments.

Finally, BART (Lewis et al., 2020), is a transformer (Vaswani et al., 2017)
encoder-decoder network. Unlike the previous models, it is pretrained on a large
corpus of unstructured text on a set of denoising tasks and then fine-tuned on a
summarization dataset.

For all models, we use their variants trained on the CNN/DM corpus (Hermann
et al., 2015). We randomly sample 100 documents from the CNN/DM test set and
obtain the corresponding summaries from all summarizers to form the item set for
all our studies.

Study design

To ensure a sufficient total number of annotators, we use a block design. We
separated our corpus into 20 blocks of 5 documents and included all 5 summaries
for each document in the same block. This results in 5 × 5 = 25 summaries per
block.

All items in a block were judged by the same set of three annotators. No
annotator was allowed to judge more than one block. This results in a total of 3 ×
20 = 60 annotators and 1500 judgements per study. Figure 3.3 shows a schematic
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Figure 3.3: Schematic representation of our study design. Rows
represent annotators, columns documents. Each blue square cor-
responds to a judgement of the summaries of all five systems for
a document. Every rectangular group of blue squares forms one

block.

overview of our design, which balances the need for a large enough annotator pool
with a sufficient task size to be worthwhile to annotators.

We recruited native English speakers from the crowdsourcing platform Prolific9

and carefully adjusted the reward to be no lower than £7.50 per hour based on
pilot studies. Summaries (or sets of summaries for Rank) within a block were
presented in random order.

3.5 Ranking vs. Likert

Table 3.2 shows the average Likert scores and the average rank for all systems,
quality dimensions, and annotation methods. We use mixed-effects ordinal re-
gression to identify significant score differences. We describe the method and our
reasoning for selecting it in detail in Section 3.6. Both annotation methods pro-
vide compatible system rankings for the two quality dimensions, in the sense that
there are no statistically significant differences in opposite directions. However, we
find that for repetition both methods struggle to differentiate between systems. If
we were interested in the true ranking, we could conduct a power analysis given

9prolific.com

prolific.com
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System Likert (Coh) Rank (Coh) Likert (Rep) Rank (Rep)
BART 5.25(1) 1.73(1) 5.85(2/3) 2.88(2/3/4)

ref 4.33(3/4) 3.31(3/4) 6.14(1/2) 2.41(1/2)

ASR 4.17(3/4) 3.17(3/4) 4.88(4/5) 3.51(4/5)

PG 4.81(2) 2.68(2) 5.63(3) 2.92(3/4)

seneca 3.52(5) 4.11(5) 5.16(4/5) 3.27(3/4/5)

Table 3.2: Results of our annotation experiment. Numbers in
brackets indicate the rank of a system for a given annotation
method. Multiple ranks in the brackets indicate systems at these
ranks are not statistically significantly different (p ≥ 0.05, mixed-

effects ordinal regression).

System α SHR
Coh: Likert 0.22 0.96
Coh: Rank 0.43 0.98
Rep: Likert 0.27 0.95
Rep: Rank 0.18 0.91

Table 3.3: Krippendorff’s α with ordinal level of measurement
and Split-Half Reliability for both annotation methods on the two

quality dimensions.

some effect size of interest and elicit additional judgements to improve the rank-
ing. However, as we are concerned with the process of system evaluation and not
with the system ranking itself, we do not conduct any further analysis. In the
remainder of this section, we thus focus on the reliability of the two methods as
well as their cost efficiency.

3.5.1 Reliability

As discussed in Section 3.2.1, while reliability is often computed by chance-adjusted
agreement on individual instances, it is not necessarily a useful metric for subjec-
tive evaluation tasks, especially when we are not interested in individual summary
scores, but in whether independent runs of the same study would result in con-
sistent system scores. In Table 3.3 we thus report Split-Half Reliability (SHR) in
addition to Krippendorff’s α. To compute SHR, we randomly divide judgements
into two groups that share neither annotators nor documents, i.e. two independent
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Figure 3.4: Score distribution of Likert for both quality dimen-
sions. Each data point shows the number of times a particular score

was assigned to each system.

runs of the study. We then compute the Pearson correlation10 between the system
scores in both halves:

ρ(H1, H2) =
Cov(H1, H2)√

Var(H1)
√

Var(H2)
, (3.16)

where Cov(H1, H2) is the covariance of the human ratings in randomly sampled
halves H1, H2 and Var(H1),Var(H2) are their respective variances.

The final score is the average correlation after 1000 trials.
Though agreement on individual summaries is relatively low for all annotation

methods, our studies still arrive at consistent system scores when we average over
many annotators, as demonstrated by the SHR. This reflects similar observations
made by Gillick and Liu (2010), who also find that non-expert annotators are
unreliable on the summary level but produce similar overall rankings for linguistic
quality judgements.

We find that on coherence, Rank is more reliable than Likert, though not on
10We use the Pearson correlation implementation of scipy (Virtanen et al., 2020).
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Figure 3.5: Time spent on annotation (in minutes) vs. correlation
with the full-sized score. We gather annotation times in buckets
with a width of ten minutes and show the 95% confidence interval

for each bucket.

repetition. An investigation of the Likert score distributions for both quality di-
mensions in Figure 3.4 shows that coherence scores are relatively well differentiated
whereas a majority of repetition judgements give the highest score of 7, indicating
no repetition at all in most summaries. We speculate overall agreement suffers
because ranking summaries with similarly low level of repetition (and not allowing
ties) is potentially arbitrary.11

3.5.2 Cost Efficiency

Computing SHR as above compares reliability for studies with an equal number
of instances. However, the cost of a study is ultimately determined not by the
number of instances but by the total time annotators need to spend on the task
for a given reliability level. To enable this evaluation, we gather timing information
during the completion of the annotations.

11This is supported by feedback we received from annotators that the summaries were difficult
to rank as they mostly avoided repetition well.
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To fairly compare Rank and Likert annotations for time- and thus cost-effi-
ciency, we randomly sample between 2 and 19 blocks from our annotations and
compute the total time annotators spent to complete each set of annotations. We
then compute the Pearson correlation of the system scores in each sample with
the scores on the full annotation set. We relate time spent to similarity between
sample and full score in Figure 3.5.

For coherence, Rank approaches near-perfect correlation faster than Likert in
terms of overall time spent. On repetition, the lower SHR of both methods is
also reflected in lower efficiency. In particular for Rank the lower overall SHR is
reflected in much weaker correlation for small number of annotations and thus
time spent. However, with additional annotation effort, reliability becomes on par
with Likert. This is a consequence of the overall faster completion time for Rank.

3.6 Statistical Analysis and Type I Errors

Regardless of which of the two methods we choose for annotation, we are typically
interested in establishing whether any differences we observe in system ratings are
statistically significant. The two most common significance tests in summarization
studies, ANOVA and t-test (see Table 3.1), both assume judgements (or pairs of
judgements, in the case of t-test) are independently sampled. This is, however,
not true for most study setups as a single annotator typically judges multiple
summaries and multiple summaries are generated from the same input document.
Both documents and annotators are thus grouping factors in a study that must be
taken into account by the statistical analysis.

Generalized mixed-effects models (Barr et al., 2013) offer a solution but have,
to the best of our knowledge, not been used in summarization evaluation at all.
We choose a mixed-effects ordered logit model to analyse our data for both quality
dimensions and annotation methods. We will show that traditional analysis meth-
ods have a substantially elevated risk of Type I errors, i.e. differences between
systems might be overstated.
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3.6.1 Mixed-Effects Models

To better understand mixed-effects models, we first repeat the definition of a linear
regression model:

y = Xβ + ϵ , (3.17)

where y ∈ Rn is the target vector, X ∈ Rn×k and β ∈ Rk are the feature matrix for
a dataset of size n and the unknown parameter vector for k features respectively.
ϵ ∈ Rn, ϵi ∼ N(0, σ2) are the residuals, which are drawn from a normal distribution
with mean 0 and variance σ2. As is apparent from the above definition, this
assumes that errors are independently, identically distributed across samples in
the dataset. However, as discussed in the previous section, this assumption does
not hold for many real-world datasets.

Linear mixed-effects models tackle this problem by introducing an additional
structured error term into the equation:

y = Xβ + Zu+ ϵ . (3.18)

Z ∈ Rn×m is again a design matrix, similar to X, relating m “features” in
u to samples in the dataset. However, unlike β, u ∼ N(0, ψ) is not a vector of
observations but instead itself a random variable drawn from a multivariate normal
distribution with zero mean and covariance matrix ψ. This allows us to express
dependencies between the error terms of individual instances in the dataset by
specifying a corresponding design matrix Z.

To better illustrate the purpose of the random effects, consider the uncondi-
tional distribution of y:

y ∼ N(Xβ,ZψZT + Iϵ) , (3.19)

where I is the n× n identity matrix.
Here, the role of the random effects becomes easily apparent: They allow us to

model the complex covariance structures that arise from non-independent samples
(Riezler and Hagmann, 2024).



3.6. Statistical Analysis and Type I Errors 57

3.6.2 Ordinal Regression

While the above formulation assumes a linear relationship between features and
the response variable, this is not an appropriate assumption when working with
Likert-style or ranking data,12 such as in our experiments. We thus turn to ordinal
regression.

Ordinal regression can be realized using a generalized linear model (McCullagh
and Nelder, 2019). In generalized linear models, the output of the linear model is
linked to the response variable using a link function g, so that the expected value
of the response y given the features X is the result of applying the inverse function
of g, g−1 to the output of the linear model:

E[y|X] = g−1(Xβ) , (3.20)

where g−1 is applied element-wise.
This can naturally be combined with the mixed-effects model formulation

above, which gives us the following formulation for a generalized mixed model:

E[y|X, u] = g−1(Xβ + Zu) . (3.21)

We can now formulate ordinal regression within this framework. Given a set of
K levels, ordinal regression divides the real number line into K different segments
using K − 1 threshold values µ1, . . . µK−1. The probability of a response y being
smaller than or equal to the i-th level of our response scale is then given by

P (y ≤ i) = g−1(µi − (Xβ + Zu)) , (3.22)

where the choice of inverse link function g−1 determines which variant of ordinal
regression we use. We chose g−1 as the logistic function σ(x) = (1+ e−x)−1, which
gives us the commonly used ordered logit model.

12Strictly speaking, the ordinal model is also not fully appropriate for ranking data, since
it does not model the exclusivity in ranks within judgements for a single document. However,
accounting for this would introduce additional complexity to the model and we found empirically
that the model fits are of similar quality for Rank and Likert data.
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3.6.3 Hypothesis Testing using Generalized Mixed Models

To compute the significance of score differences between instances from k different
categories (e.g. systems), we first choose one category as the reference category
and introduce k − 1 binary indicator variables, one for each remaining category.
We then compute a maximum likelihood estimate of the model, yielding estimates
β̂1 . . . β̂k−1 for the difference between the reference and each remaining category on
the latent scale, as well as their (k − 1)× (k − 1) covariance matrix CV .

To test for significance between the reference category and any category i,
we read out the variance V ar(β̂i) of the estimate from the diagonal of CV and
compute a z-score z0,i:

z0,i =
β̂i√

V ar
(
β̂i

) . (3.23)

To compare two non-reference categories i, j, we instead compute the z-score
of the pairwise contrast:

zi,j =
β̂i − β̂j√

V ar
(
β̂i

)
+ V ar

(
β̂j

)
− 2Cov

(
β̂i, β̂j

) , (3.24)

where we can again read out Cov(β̂i, β̂j) from the corresponding cell in CV .
Since our experiments all involve multiple comparisons, one for each pair of sys-

tems, we compute p-values from the z-scores on the studentized range distribution
with k groups and infinite degrees of freedom to adjust for multiplicity.13

3.6.4 Modelling our Annotations

We can now describe the model we use for analyzing our data. We choose the
human-written reference summaries as the reference level and introduce one fixed
effect per summarizer.

To specify the random effects structure, we follow common advice (Barr et al.,
2013) in specifying a maximal random effects structure, that is to account for
all potential grouping factors in the model. In our case, we specify both slopes

13This corresponds to the tukey-adjustment option in emmeans.
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and intercepts for documents and annotators. In practical terms, this means that
we allow for documents to be both easier or harder in general (i.e. summaries
receive more or less favorable ratings overall) and to be easier or harder for each
individual summarizer. Similarly, annotators can both be more or less generous in
their scores overall and have individual annotator preferences.

The linear part of the model (i.e. before the inverse link function) is

Xβ + Zaua + Zdud . (3.25)

X is a n× s− 1 matrix, where s is the number of summarizers (including the
reference summaries) in our study and n is the number of judgements. Xij = 1 if
the i-th judgements was given to a summary generated by the j-th summarizer,
where all reference summaries have a zero row vector.

Za and Zd specify our random effects structure. Za is a n × as matrix that
specifies the random effects for the a annotators. For each annotator, the matrix
contains s parameters: s − 1 slopes for each non-reference summarizer and one
intercept. The matrix is highly sparse: Each row contains a value of 1 in the
intercept column corresponding to the annotator who made the judgement. Ad-
ditionally, for every summarizer except the reference summaries, the row contains
one additional entry with value 1 for the corresponding summarizer slope column.
All other entries are zero. Zd is a n× ds matrix that specifies the random effects
for the d documents. It is structured similarly to Za, except its non-zero entries
correspond to the document for which the summary was generated.

ua ∼ N(0, ψa), ud ∼ N(0, ψd) are the random effect vectors. They are drawn
from a normal distribution with zero mean and covariance matrices ψa for the
annotator random effects and ψd for the document random effects. ψa and ψd are
estimated together with β during model fitting.

We fit all models using the ordinal R-package (Christensen, 2019) and com-
pute pairwise contrasts between the parameters estimated for each system using
the emmeans-package (Lenth et al., 2018).
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3.6.5 Demonstrating the Dangers of Ignoring Grouping Fac-

tors

Our analysis method introduces a large degree of additional complexity when com-
pared to applying a simple t-test. To demonstrate the necessity of modelling the
grouping factors, we can conduct a simulation experiment where we drop all fixed
effects from the model. We can then sample from the model and analyse it with
inappropriate tests. Since in a model without fixed effects all summaries have the
same expected score, regardless of summarizer, we would expect a well-calibrated
test to reject the null hypothesis that any pair of summarizers has scores drawn
from different distributions at a rate of exactly the significance level α. This Monte-
Carlo simulation is similar to the more general analysis of Barr et al. (2013).

We thus set β to 0⃗ leaving only the following (linear) part of our model:

Zaua + Zdud . (3.26)

Since ua, ud both have zero mean, it is easy to see that the resulting latent values
(and thus overall scores) must have the same expected value.

We then repeatedly apply both the t-test and the approximate randomization
test (ART) (Noreen, 1989) to samples drawn from the model and determine the
Type I error rate at p < 0.05. We set the number of documents to 100 and demand
3 judgements per summary to mirror a common setup in manual evaluation. We
then vary the total number of annotators between 3 and 300 by changing how
many summaries a single annotator judges.

Results

We report results given the model estimated for Likert in Figure 3.6.14 Ignoring
the dependencies between samples leads to inflated Type I error rates, whether
we use the t-test or the ART. This is especially severe when only few annotators
judge the whole corpus. In the extreme case with only three annotators in total,
the null hypothesis is rejected in about 40% of trials at a significance level of 0.05

14We do not include Rank data in this and the following simulation experiments, as the ordinal
regression model does not generate ranks.
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Figure 3.6: Relation of Type I error rates at p < 0.05 to the total
number of annotators for different designs, all with 100 documents
and 3 judgements per summary. We conduct the experiment with
both the t-test and approximate randomization test (ART). We
show results both with averaging results per document and without
any aggregation. We run 2000 trials per design. The red line marks

the nominal error rate of 0.05.

in both quality dimensions. Even our original design with 60 annotators still sees
an increase of the Type I error rate by about 3 percentage points. Only if every
annotator judges a single document and annotations are averaged per document,
samples are independent and thus the real error is at the nominal 0.05 level.
This design, however, is unrealistic given that annotators must be recruited and
instructed.

We suggest two solutions to this problem:

1. Use mixed-effects models and fully specify the random effects structure to
capture all dependencies in the data.

2. Aggregate the judgements so samples become independent.

The latter approach allows the assumptions of simpler tools such as ART to
be met. In our study, we could average judgements in every block to receive
independent samples. This is only possible, however, if the design of the study
considers this problem in advance: a crowd-sourcing study that allows annotators
to judge as many samples as they like is unlikely to result in a design with a
sufficient number of independent samples.
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3.7 Study Design and Study Power

When conducting studies for system comparison, we are interested in maximiz-
ing their power to detect differences between systems. For traditional analysis,
the power is ultimately determined by the number of documents (or judgements,
when no aggregation takes place) in the study. However, when analysis takes into
account individual annotators, power becomes additionally dependent on the total
number of annotators and how evenly they participated in the study. This gives
additional importance to the design of evaluation studies. In this section, we thus
focus on how to optimize studies for power and reliability.

We first show that for well-powered experiments, we need to ensure that a
sufficient total number of annotators participates in a study. In the second part
of this section, we will then demonstrate studies can improve their power by not
eliciting multiple judgements per summary.

3.7.1 Overall Number of Annotators

To demonstrate the difference in power caused by varying the total number of
annotators in a study, we determine the power for a design with the same total
number of documents and judgements per summary but different total numbers
of annotators.

We run the experiment both with regression and ART with proper aggregation
of dependent samples as described in Section 3.6. We refer to the latter as ARTagg
to differentiate it from normal ART.

For each design, we repeatedly sample artificial data from the Likert model
and apply both tests to the data. The process is the same as in Section 3.6 except
we do not set β to zero and count acceptances of the null hypothesis.15

We again set the number of documents to 100 and the number of repeat judge-
ments to 3 and vary the total number of annotators between 3 and 75 by varying
the number of blocks between 1 and 25. We test for power at a significance level
of 0.05.

15As this is an observed (or post-hoc) power analysis, it probably overestimates the power of
our analysis for the true effect. The analysis is thus only useful to compare designs under our
best estimate of actual effect sizes.
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Figure 3.7: Power for 100 documents and 3 judgements per sum-
mary with different number of total annotators.

Figure 3.7 shows how power drops sharply when only few annotators take part
in the study. This is in line with the theoretical analysis of Judd et al. (2017)
that shows that the number of participants is crucial for power when analysing
studies with mixed-effects models. ARTagg is especially sensitive to the number of
annotators as fewer annotators mean fewer independent blocks and thus a lack of
data points for the analysis. In the extreme case with three annotators judging
the entire dataset, we only have a single data point, making analysis impossible.
The mixed-effects model approach, on the other hand, performs better with a
smaller number of annotators, at the expense of additional modelling complexity
and compute intensity.

3.7.2 Annotator Distribution

Most studies elicit multiple judgements per summary, following best practices in
NLP for corpus design (Carletta, 1996). While this leads to better judgements per
summary, the goal of many summarization evaluations is a per system judgement.
This mirrors our argument regarding SHR and agreement for reliability in Sec-
tion 3.5.1: Our discussion in this chapter assumes we are interested in the global
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Figure 3.8: Reliabilities of nested vs. crossed designs for Rank and
Likert for both quality dimensions.
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performance characteristics of the model, not an accurate estimate of the quality
of each individual summary.

For this kind of study, Judd et al. (2017) show that for mixed models that
include both annotator and target (in our case, input document) effects, a design
where targets are nested within annotators, i.e. every annotator has its own set
of documents, is always more powerful than one where they are (partially) crossed
with annotators, i.e. a study with multiple annotations per summary, given the
same total number of judgements. In fact, power could be maximized by having
each annotator judge the summaries for only a single, unique document. However,
this is usually not realistic due to the fixed costs of annotator recruitment and
instruction. To help conceptualize why this is the case, consider that forgoing
multiple annotations per documents allows the study to obtain judgements across
a wider variety of input documents. This in turn allows the study to better capture
the variance of system performance across more diverse input documents, leading
to a better estimate of model performance on the dataset.

We can demonstrate on our dataset how both reliability and power are affected
by nested vs. crossed design.

To compare reliability, we randomly sample both nested and crossed designs
from our full study and then compute the Pearson correlation of the system scores
given by this smaller annotation set with the system scores given by the full study.
As shown in Figure 3.8, nested samples are always at least as good and usually
better at approximating the results of the full annotation compared to a crossed
sample with the same annotation effort.

Alternatively, we can also simulate the effect of the design on study power.
We conduct a power analysis for regression and ARTagg comparing nested and
crossed designs. We again turn to Monte-Carlo simulation on the Likert models
and sample nested and crossed designs with the same total number of judgements
(i.e. the same cost). We keep the block size constant at 5 and vary the number
of annotators between 3 and 60. For nested designs, we drop the document-level
random effects from the ordinal regression, as the input document is no longer a
grouping factor in nested designs.

Figure 3.9 shows that nested designs always have a power advantage over
crossed designs, especially when few judgements are elicited. We also find that
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Figure 3.9: Power for p < 0.05 of nested and crossed designs for
ARTagg and regression. X-axis shows the number of judgements

elicited, Y-axis the power level.

ART can be used to analyse data without loss of power when there are enough
independent blocks. This might be attractive as ART is less computationally
expensive than ordinal regression.

3.8 Five Years Later: Have Practices Changed?

The survey in Section 3.3 was conducted for the original publication of the work
underlying this chapter. Have practices improved in the intervening five years?

To answer this question, we repeat a smaller-scale version of our survey. We
select two recent *ACL conferences at the time of this writing: NACL 2024 and
EACL 2024. We also include papers from the Findings of the conferences. Findings
is an additional acceptance category that has been introduced to *ACL conferences
starting from 2020.16 We use the same criteria as in our original survey. Details
on the new survey can be found in Appendix B.3.

16See https://web.archive.org/web/20240404125546/https://2020.emnlp.org/blog/
2020-04-19-findings-of-emnlp.

https://web.archive.org/web/20240404125546/https://2020.emnlp.org/blog/2020-04-19-findings-of-emnlp
https://web.archive.org/web/20240404125546/https://2020.emnlp.org/blog/2020-04-19-findings-of-emnlp
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Category Pa. St.

Evaluation
Questions

Overall 1 2
Content 6 9
Fluency 4 5
Coherence 4 6
Repetition 2 2
Faithfulness 3 3
Other 1 1

Evaluation
Method

Likert 3 4
Pairwise 3 4
Rank 1 1
BWS 1 1
Other 1 1

Number of
Documents
in
Evaluation

< 20 1 2
50-99 2 2
100 4 5
> 100 1 1
not given 1 1

Number of
Systems
considered

< 3 2 2
3 1 1
4 4 7
> 5 1 1
w/ Reference 4 5
w/o Reference 4 6

Category Pa. St.
Num. of
Ann. per
Sum.

2-3 3 4
4-5 1 1
not given 4 6

Overall
Number of
Annotators

1-5 6 8
> 10 1 1
not given 2 2

Annotator
Recruitment

Crowd 3 3
Other 6 8

Statistical
Evaluation

Other/unspec. 1 1
None 7 10

Table 3.4: Results of our new survey of 8 papers with 11 studies
from EACL 2024 and NACL 2024. For better comparability, we
reproduce the structure from Table 3.1. We remove categories which

do not apply to any of the covered studies.
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We find a total of 23 papers, 8 (i.e. 34%) of which contain human evaluation.
This is an unfortunate decrease from the 55% in our original survey. While the
exact causes are difficult to establish, we find some contributing factors during our
survey:

• The advent of larger contexts in models has allowed for the summarization
longer documents, which increases the difficulty of human evaluation. For
example, Saxena and Keller (2024) point this out as a justification for not
conducting human evaluation.

• Some of the surveyed papers optimize specific aspects of the summaries, such
as their faithfulness (Elhady et al., 2024; Shi et al., 2024) and exclusively
rely on automatic metrics to assess improvements in this dimensions.

However, we argue that in both cases, forgoing human judgements is risky, since
automatic evaluation often remains unreliable, in spite of recent improvements
(Chen et al., 2024; Koo et al., 2024; Panickssery et al., 2024).

For the 8 papers with human evaluation studies, we conduct the same detailed
survey as before and report results in Table 3.4. We find that study sizes have
remained largely similar. Regarding criteria, we find that in addition to content,
which is the dominant category, coherence remains an important quality dimension
even with newer models. We find the definition for repetition has shifted, with a
focus on conciseness instead of verbatim repetition of sentences. Likert remains
a popular choice of annotation method, although ranking-based approaches have
become relatively more frequent in our sample.

Discouragingly, the under-reporting of experimental details is still frequent in
the surveyed papers. Only three studies give sufficient information to reproduce the
full design because all annotators annotate all instances. The number of annotators
– where reported – is also low. As our results show, if the task is subjective, this
is unlikely to represent the true population preferences.

A more worrisome development can be observed in the use of statistical tests:
Only a single paper conducts a statistical test at all, but does not account for
grouping factors. The absence of good tools for properly interpreting numeric
results increases the risk of misleading conclusions.
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While our sample is small due to the low number of human studies overall,
this survey suggests that most of the problems reported in this chapter remain
unfortunately unaddressed in spite of our suggestions.

3.9 Discussion

In this chapter, we have presented both a survey of the state of manual summary
evaluation, as well as our investigation of methods, statistical analysis, and design
of such studies. We can distill our findings to a set of recommendations for manual
summary quality evaluation:

Method. Both ranking and Likert-style annotations are valid choices for quality
judgements. However, we present preliminary evidence that the optimal choice of
method is dependent on task characteristics: If many summaries are similar for a
given quality dimension, Likert may be the better option.

Analysis. Analysis of elicited data should take into account variance in anno-
tator preferences to avoid inflating Type I error rates. We suggest the use of
mixed-effects models for analysis that can explicitly take into account grouping
factors in studies. Alternatively, traditional tests can be used with proper study
design and aggregation.

Study Design. Study designers should control the number of annotators and
how many summaries each individual annotator judges to ensure sufficient study
power. Additionally, to ensure reliability of results, studies should report the design
and the total number of annotators in addition to the number of documents and
repeat judgements. Studies with repeat judgements on the same summary do not
provide any advantage for system comparison and are less powerful than nested
studies of the same size.

These recommendations are designed to ensure researchers can conduct reliable
annotation studies that are also cost-efficient. However, our survey shows that
they are not widely followed in current evaluation practices. This is unfortunate as
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particularly the improper analysis of elicited data can lead to incorrect conclusions
about system performance.

An important caveat in these recommendations is that they are made under
the assumption that the study in question is designed to derive a system ranking.
Thus, all our evaluations focus primarily on the reliability of the resulting system
scores. This is particularly relevant for our recommendations with regard to study
design: Forgoing repeat judgements naturally leads to unreliable results on the
level of individual summaries. For certain studies, e.g. those that are designed
for metric meta-evaluation, a topic we will cover in the following chapter, this is
highly undesirable.

With these recommendations, we have completed the first component of our
holistic evaluation framework. While we have conducted our experiments on co-
herence and repetition, our findings with regard to study design and analysis are
applicable to any reference-free quality dimension, including both linguistic qual-
ity and content dimensions. Finally, our findings suggest that different quality
dimensions might require individual evaluations to find the optimal annotation
method.
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Chapter 4

Meta-Evaluation: A Case Study in
Summary Coherence

4.1 Motivation

While the insights into human evaluation from the previous chapter allow us to
design cost-efficient studies, this cost-efficiency is relative only to other manual
evaluation studies. Even well-designed human studies are still cost-prohibitive
where frequent evaluations are needed. Such evaluations are, however, critical to
provide feedback for model development. We will thus now turn to automatic eval-
uation metrics, beginning with a discussion of meta-evaluation, i.e. the evaluation
of evaluation metrics. Whereas in human evaluation we are limited to proxy mea-
sures of validity, we can validate automatic metrics by comparing them to human
preferences. This is critical to ensure that automatic metrics are useful proxies for
manual evaluation and is usually achieved by computing correlation between hu-
man and predicted scores on a set of system outputs (Lin, 2004b; Papineni et al.,
2002; Zhao et al., 2019; Zhang et al., 2020b, among others).

While this procedure is intuitive, a fundamental shortcoming is that the es-
timates of correlation with human judgements must, in practice, always be com-
puted using the outputs of a limited set of summarizers which have been rated by
human annotators. This causes similar issues of dependence between individual
samples as those discussed in Chapter 3 (see Deutsch et al., 2021b, for a dis-
cussion). Additionally, however, the generalizability of meta-evaluation poses a
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particular challenge. Since one primary purpose of evaluation metrics is to eval-
uate the performance of future summarizers, the distribution of summarizers in
the meta-evaluation dataset does not necessarily reflect the distribution of sum-
marizers the metric is expected to work on. Correlation with scores on typical
summaries at the time of evaluation is not necessarily predictive of future utility.

To some degree, this issue is unavoidable since solving it would require us to
make predictions about future developments. However, in this chapter, we argue
that we can increase the chance of a meta-evaluation yielding generalizable results
by designing it to avoid what we will refer to as system-level confounders. We
define system-level confounders to be any features of summarizer outputs that are
not related to the modelled quality dimension but instead happen to identify good
summarization systems in a particular dataset. To illustrate, consider a dataset
for summary relevance which only contains summaries generated from strong sum-
marizers, that are both relevant and grammatical, and weak summarizers, that are
neither. A metric that only measures grammaticality could easily achieve strong
correlation with relevance judgements on this dataset but would not generalize to
a scenario with multiple summarizers that are all grammatical. Accounting for
system-level confounders increases the chance that any observed correlation is due
to a metric genuinely capturing some aspects of the relevant quality dimension.
It can, however, naturally not guarantee that these aspects are also where future
systems will differ.

In this chapter, we will thus introduce a new meta-evaluation metric and a
new analysis method that can be used for reliable meta-evaluation. To avoid
confusion, we are going to refer to meta-evaluation metrics as evaluation metrics
(EMs) in the remainder of this chapter. To contrast, we are going to call the
automatic metrics we seek to evaluate measures. Supported by our insights on
meta-evaluation, we are then going to conduct a case study on the meta-evaluation
of coherence measures (CMs).

We choose coherence as the quality dimension in our study, since there is
very little agreement on which coherence measures are most suitable for practical
application. While many CMs have been suggested for automatically assigning a
coherence score to a summary, there is, to the best of our knowledge, little in the
way of systematic comparison. Proposed methods include learning from human
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judgements (Barzilay and Lapata, 2008; Tien Nguyen and Joty, 2017; Xenouleas
et al., 2019; Mesgar et al., 2021), learning from the shuffle task (Mohiuddin et al.,
2021; Jwalapuram et al., 2022), where models are trained to discriminate original
documents from documents with randomized sentence order (Barzilay and Lapata,
2008), and using next sentence prediction as a proxy task (Koto et al., 2022).
Finally, unsupervised measures that exploit heuristics (Pitler et al., 2010; Zhu and
Bhat, 2020) or large-scale LMs (Yuan et al., 2021) have also been suggested.

However, evaluation is often conducted on disparate datasets, which makes
scores incomparable. Meta-evaluation also often uses system outputs from DUC
conferences (Barzilay and Lapata, 2008; Tien Nguyen and Joty, 2017; Xenouleas
et al., 2019; Mesgar et al., 2021), which do not represent recent advances in text
summarization. In addition, there is no agreement on how the CM scores should
be compared to human scores. System-level correlation (Xenouleas et al., 2019;
Fabbri et al., 2021b), pairwise ranking accuracy (Barzilay and Lapata, 2008; Tien
Nguyen and Joty, 2017; Mesgar et al., 2021), and summary-level correlation (Yuan
et al., 2021) have all been suggested as EMs. This makes it hard to ascertain the
state of summary coherence modelling and to identify promising directions for
future research.

We will make the following contributions with regard to meta-evaluation in
this chapter:

1. We show that current EMs provide an incomplete picture of measure perfor-
mance as they focus on comparing summaries generated by different summa-
rizers. In case of popular summary coherence datasets, this often includes
many easy decisions due to the large performance gaps between them. EMs
are also vulnerable to CMs exploiting confounding system properties to cor-
rectly rank systems without modelling coherence.

2. We introduce a new EM, intra-system correlation, that measures performance
within the summaries generated by a single summarizer and is both more
challenging and more resilient against system-level confounders.

3. We introduce bias matrices as a novel analysis tool that allow to easily detect
when measures are biased towards specific summarizers.
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Using these insights, we conduct a large-scale comparison of CMs on the SummEval
dataset (Fabbri et al., 2021b). We show that:

1. All investigated CMs exhibit significant weaknesses under evaluation regimes
other than system-level correlation.

2. Even relatively strong CMs are biased towards outputs of certain summariz-
ers, which raises concern about their generalizability.

3. SummEval is not conducive to entity-based modelling, which has been suc-
cessful on many other coherence tasks (Barzilay and Lapata, 2008; Elsner
and Charniak, 2011; Tien Nguyen and Joty, 2017; Mesgar et al., 2021).

4. While most of the shuffle-based models transfer poorly to summaries, which
is in line with prior results by Mohiuddin et al. (2021), the most promising
performance is achieved by fine-tuning a masked language model (MLM)
on the shuffle task as a classifier. We present evidence that this allows the
model to adapt more easily to comparing summaries of different content and
lengths, highlighting a possible avenue for future work.

The work presented in this chapter has previously been published as

Julius Steen and Katja Markert (2022). “How to Find Strong Sum-
mary Coherence Measures? A Toolbox and a Comparative Study for
Summary Coherence Measure Evaluation”. In: Proceedings of the 29th
International Conference on Computational Linguistics. Ed. by Nico-
letta Calzolari et al. Gyeongju, Republic of Korea: International Com-
mittee on Computational Linguistics, pp. 6035–6049. url: https:

//aclanthology.org/2022.coling-1.527.

4.2 Background

4.2.1 Meta-Evaluation

Most meta-evaluation for summarization starts by gathering human judgements
H = {H(d,s)|d ∈ D, s ∈ S}, where D is the set of input documents used to elicit

https://aclanthology.org/2022.coling-1.527
https://aclanthology.org/2022.coling-1.527
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summaries from the summarizers and S is the set of summarizers in the meta-
evaluation dataset. Human judgements are typically the result of an average over
the judgements of multiple annotators to increase reliability of the summary-level
scores. We can then compute the automatic scores of the measure in question on
the same set of documents P = {P(d,s)|d ∈ D, s ∈ S}.

We can directly define a meta-evaluation metric by computing some correlation
function f(H,P ) between human ratings H and predicted scores P . This is also
referred to as summary-level correlation.

If we additionally aggregate over scores for each summarizer, we arrive at the
also commonly used system-level correlation:

H(sys)
sj

=
1

|D|
∑
di∈D

H(di,sj) , (4.1)

P (sys)
sj

=
1

|D|
∑
di∈D

P(di,sj) . (4.2)

The meta-evaluation score for the predicted scores P is then f(H(sys), P (sys)).
The correlation function f is typically instantiated as one of three commonly

accepted correlation coefficients: Pearson’s ρ, Spearman’s ρ, or Kendall’s τ . We
will briefly introduce each of these. For clarity of exposition, we will assume we
are working with summary-level aggregations H,P .

Pearson’s correlation coefficient tests the strength of the linear correlation
between H and P . We have already introduced this correlation more generally in
Section 3.5.1 but restate it here for the specific case of meta-evaluation. Pearson’s
correlation takes a value of 1 if P andH are perfectly linearly correlated and a value
of 0 if there is no linear correlation between P and H. A value of −1 would indicate
perfect inverse correlation between predicted and human scores, although this is
naturally rare in meta-evaluation. Pearson’s correlation coefficient is computed as
sample co-variance, normalized by the product of the standard deviations of P
and H:

ρPear(H,P ) =

∑
d∈D

∑
s∈S
(
P(d,s) − P̄

) (
H(d,s) − H̄

)√∑
d∈D

∑
s∈S
(
P(d,s) − P̄

)2√∑
d∈D

∑
s∈S
(
H(d,s) − H̄

)2 , (4.3)
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where P̄ , H̄ are the mean predicted and human scores, respectively. For system-
level correlation, we simply useH(sys), P (sys) and drop the sums over the documents.
The focus on measuring the linear relationship with human scores means that a
metric can have low Pearson correlation even if it ranks individual summaries
perfectly. A second issue is that Pearson’s ρ is well known to be highly vulnerable
to outliers. In the context of meta-evaluation for machine-translation metrics,
Mathur et al. (2020) show that this can confound meta-evaluation results.

Ranking-based coefficients instead discard the numerical information in P and
H and only focus on the correctness of the ranking of the individual instances.
Both Spearman’s ρ and Kendall’s τ are ranking-based coefficients.

Spearman’s ρ is computed as the Pearson’s correlation over the ranks of
instances in P and H. While it has found some use in metric meta-evaluation
(Lin, 2004a), a problem with Spearman’s ρ is that it does not work well in the
presence of ties in the input data. If human data is derived using Likert scores,
which is a common choice (see Chapter 3), ties are bound to be frequent. As a
consequence, the more commonly used metric in meta-evaluation is Kendall’s τ .

Kendall’s τ is based on computing the number of pairs of instances that are
ranked the same in H and P . Pairs that are ranked the same in H and P are called
concordant pairs, whereas pairs that are ranked incorrectly are called discordant.
In its simplest form, it can be computed as

τ(H,P ) =
nc(H,P )− nd(H,P )

pairs(n)
, (4.4)

pairs(n) =
n(n− 1)

2
, (4.5)

where nc(H,P ), nd(H,P ) are the number of concordant and discordant pairs re-
spectively and n = |S||D| is the total number of samples. For system-level correla-
tion, the computation proceeds in the same way, except for the number of samples,
which becomes n = |S|.

The above formulation still does not account for tied data points. The τb

variant deals with this problem by adjusting the denominator to account for the
presence of ties:
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τb(H,P ) =
nc(H,P )− nd(H,P )√

(pairs(n)− ties(H))(pairs(n)− ties(P ))
, (4.6)

where ties(X) computes the number of tied scores in a set of ratings X. In the
remainder of this work, we will use τb exclusively.

The use of τb for tie handling is not entirely uncontroversial. Deutsch et al.
(2023) argue that many τ variants, including τb, are prone to exploitation by
measures producing many ties. They propose to instead use pairwise accuracy,
where a measure is rewarded for correctly predicting the ranking between two
instances, including ties. This is naturally problematic for measures that assign
continuous scores, since they struggle to exactly tie instances. For these cases,
Deutsch et al. propose a tuning procedure, that determines some threshold ϵ so
that the pairwise accuracy is maximized if instances with a score difference less
than ϵ are treated as tied. We opt not to include this procedure in our analysis,
since we investigate CMs that output continuous scores and are thus unlikely to
exploit tie behaviour, whereas the proposed procedure would introduce additional
complexity. Furthermore, Perrella et al. (2024) show that the calibration procedure
can overestimate the performance of continuous metrics, since it leaks information
about the number of ties in the input dataset.

Besides the pairwise score of Deutsch et al. (2023), two more variants of meta-
evaluation metrics are worth mentioning in the context of this chapter.

First, we can consider the ranking of pairs, either of summaries generated
on the same document or of average system performance, as a classification task
and use pairwise accuracy. In some work (Dang and Owczarzak, 2009a; Dang
and Owczarzak, 2009b; Owczarzak and Dang, 2010; Owczarzak and Dang, 2011;
Owczarzak et al., 2012), pairwise accuracy is additionally limited to pairs that
exhibit statistically significant differences according to some statistical test. This
is usually conducted on system-level scores but could, with a sufficient number of
per-summary annotations, also be done for summary-level scores.

Finally, if the target quality can be expressed as a per-instance binary classi-
fication task, classification metrics such as balanced accuracy or area under the
receiver operating characteristic curve (ROC AUC) can be used as EMs. This is
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particularly relevant for faithfulness (Honovich et al., 2022). Since the measures
we consider in this chapter do not fall in this category, we defer a discussion of
this to Chapter 5, where we use it to evaluate our own faithfulness measure.

Regardless of which EM we select, we usually want to provide a confidence
interval (CI) around the point estimate for the EM score to account for uncertainty
due to the limited size of our meta-evaluation dataset. A pitfall here are the
dependencies between scores for summaries that have been generated from the
same input document or by the same summarizer. Similar to the inflated Type
I error rates for significance tests discussed for human evaluation in Chapter 3,
this can lead us to underestimate the width of the CIs when not accounted for.
To remedy this, Deutsch et al. (2021b) propose to compute CIs using a modified
bootstrap resampling algorithm:

1. Sample with replacement a multi-set of documents D̃ with size |D|.

2. Sample with replacement a multi-set of summarizers S̃ with size |S|.

3. Construct H̃, P̃ by selecting values corresponding to each possible pair of
summarizers and documents d ∈ D̃, s ∈ S̃.

4. Compute the EM f(H̃, P̃ ).

5. Repeat steps 1-4 n times for some sufficiently large n to accumulate scores
M .

6. Compute the confidence interval from the corresponding percentiles of M .

We employ their method in this chapter.

4.2.2 Measuring Coherence

While we have already used coherence operationally in the form of annotator
instructions in Chapter 3, we will now take a closer look at how coherence can
be modelled computationally. In the interest of brevity, we will focus on giving a
broad overview of the field, leaving a more in-depth technical description of the
CMs we actually evaluate to Section 4.6.
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Coherence is the mechanism by which individual sentences form a unified text,
as opposed to an unconnected assembly of sentences (Halliday and Hasan, 2013).

Coherence can be divided into global coherence (Mann and Thompson, 1988),
which is the way individual segments in a text form the overall discourse, and local
coherence (sometimes also called cohesion), which focuses on coherence within a
single discourse segment (Poesio et al., 2004). For summarization, local coherence
is of greater interest due to the short length and simple structure of most au-
tomatically generated summaries. Halliday and Hasan (2013) propose that local
coherence arises from the presence of ties between individual sentences in a text.
Ties arise when we need information from one sentence to interpret another sen-
tence. Halliday and Hasan identify two categories of cohesion: grammatical and
lexical. They further subdivide grammatical cohesion into four subcategories. We
give a brief overview of each one:

Reference Reference arises when a sentence directly refers to a thing or entity.
A common cohesive element, that is also highly relevant in computational
coherence modelling, are anaphoric references, such as he in the following
example:

• Peter is busy. He is writing his thesis.

References can, however, also be cataphoric (i.e. to the following text).
Halliday and Hasan also discuss exophoric references, which are references
to context in which the text is produced.

Substitution Substitution is the replacement of one element in the text by an-
other. This is best illustrated with an example:

• I have not started working on this chapter. I am still finishing the
previous one.

Here, one is substituted for chapter in the second sentence. Halliday and
Hasan differentiate nominal, verbal, and clausal substitution.

Ellipsis Ellipsis is the substitution of an element by nothing.

• I wrote two pages today. Tomorrow I will write two more.
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Here, two more omits pages, which must be inferred from the first sentence.

Conjunction Conjunctions can also have a cohesive effect in a text, as in the
following example:

• The discussion is not complete. However, the introduction is finished.

This is an example of an adversarial conjunction.

Lexical cohesion, on the other hand, arises from the repetition of words across
sentences. This includes verbatim or (near-)synonymous repetition, as well repe-
tition in the form of hypernyms or what Halliday and Hasan call general nouns.
We illustrate this in the following text:

• I am writing my thesis. Soon the dissertation is complete. I can then submit
the thing.

Here, dissertation is a synonymous repetition, followed by a reference via the
general noun thing.

Another influential theory of local coherence, which has had great impact on
computational coherence models, is centering theory (Grosz et al., 1995). Cen-
tering theory identifies the repeated mention of entities across sentences as a key
contributor to local coherence. It posits that at any given utterance ut, there is a
set of so-called forward-looking centers, i.e. the entities mentioned in the utterance
ut, each of which can become the focus of discourse in the following utterance ut+1.
Forward-looking centers are ranked according their salience in the discourse. The
most salient center is referred to as the preferred center. The most highly ranked
forward-looking center that is realized in a subsequent utterance ut+1 is referred
to as the backward-looking center of ut+1(Poesio et al., 2004). The changes in
preferred and backward-looking centers form a set of transitions: Continuations,
where both the preferred and backward-looking centers remain the same across ad-
jacent utterances; Retains, where the preferred center changes; and Shifts, where
the backward-looking center changes. One key claim of centering theory is that se-
quences of continuations are preferred over sequences of retains, which are in turn
preferred over shifts (Grosz et al., 1995). The frequency of the different transition
types can be used to predict the coherence of a given text.



4.2. Background 81

Having established some fundamental theory of coherence, we will now turn to
how it can be modelled computationally. Summary coherence modelling is studied
in two contexts. In the development of general coherence models, it is used as a
downstream evaluation task (Barzilay and Lapata, 2008; Tien Nguyen and Joty,
2017; Mesgar et al., 2021), similar to other coherence-related tasks such as essay
scoring (Jeon and Strube, 2020, among others) and readability assessment (Mesgar
and Strube, 2015, among others). In this context, evaluation is often conducted on
a DUC 2003-based dataset originally created by Barzilay and Lapata (2008). In
linguistic quality modelling, coherence is modelled alongside other linguistic quality
dimensions with the goal of creating practical evaluation measures. This leads to
a divergence in evaluation between the two strands of research, which motivates
our meta-evaluation. We will now give an overview of the work in both areas.

General Coherence Models

In general coherence modelling, an influential line of research derives from the
so-called Entity Grid (Barzilay and Lapata, 2008). Motivated by the concepts
of continuations, shifts, and retains from centering theory, the entity grid tracks
local transitions in the mentions and grammatical roles of entities. These occur-
rence patterns can be derived from a text by first building a matrix where rows
correspond to sentences and columns to entities (the namesake grid). The grid
cells indicate for each entity in which sentences it appears and, optionally, in which
grammatical role. Patterns are derived by choosing a window size and then count-
ing the frequency of the different possible “n-grams” in the columns. The resulting
feature vector, along with labelled examples of coherent and incoherent texts, can
be used as input to a machine learning algorithm to derive a coherence model.
Barzilay and Lapata use a pairwise learning setup to learn to rank coherent and
incoherent texts.

The entity-focused approach of Barzilay and Lapata has been refined in a
number of ways. Elsner and Charniak (2011) extend the features derived from
the entity grid with entity-specific features, such as if it is a proper noun and
its named entity type. Feng and Hirst (2012) focus on improving the learning
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scheme by extending the original pairwise learning approach of Barzilay and La-
pata. Instead of using coherent and incoherent samples only, they propose to use
the similarity of an incoherent sample to a coherent sample to rank incoherent
samples among each other. For summary evaluation specifically, they propose to
exploit the similarity to a human reference summary as a ranking signal. With
the advent of neural methods, Tien Nguyen and Joty (2017) replace the feature-
extraction-based approach of prior work with a convolutional neural network over
the entity grid.

Beginning with Guinaudeau and Strube (2013), another branch of research
casts the entity grid as an entity graph. This follows the observation that the
entity grid can be considered as the incidence matrix of a bipartite graph, which
can subsequently be projected into a graph of sentences, where individual sen-
tences are connected if they share an entity. Guinaudeau and Strube use this to
derive an unsupervised coherence score based on graph connectivity. Mesgar and
Strube (2015) introduce the idea of modelling frequent subgraphs into this frame-
work, which they dub coherence patterns. The number of occurrences of different
coherence patterns can be used as a feature for learning approaches, similar to
entity transitions.

Coherence measures can also operate entirely on the lexical level. Mesgar and
Strube (2016) propose a lexicalized variant of the entity graph, where sentences
are connected based on their maximum embedding similarity. Mesgar and Strube
(2018) extend this similarity-based approach to contextualized embeddings. Joty
et al. (2018) lexicalize the neural entity grid by enhancing entity roles with embed-
dings for each mention. Moon et al. (2019) propose a fully lexicalized coherence
model combining sentence-level and global embeddings. Mesgar et al. (2021) com-
bine the entity graph with lexical representations in a graph neural network.

With the exception of the entity graph and the entity grid variant of Elsner
and Charniak (2011), which uses a generative model learned only from coherent
documents, all models require examples of coherent and incoherent documents as
training data. Where sufficient data is available, this can be done in a super-
vised fashion. The DUC 2003 coherence dataset of Barzilay and Lapata (2008),
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for example, contains a training set of about 144 summaries with pairwise pref-
erence information.1 However, this is often insufficient for recent neural models.
Alternatively, CMs can be trained in a weakly supervised fashion on the so-called
shuffle task (Barzilay and Lapata, 2008). In the shuffle task, an input document
is divided into individual sentences, which are then randomly reordered to form a
less coherent document. These pairs of original and shuffled documents can then
be used as a training signal, as well as for evaluation (Barzilay and Lapata, 2008;
Tien Nguyen and Joty, 2017; Mesgar et al., 2021; Moon et al., 2019). Laban et al.
(2020) argue that the shuffle task is a bad proxy for evaluation, since it can be
solved near-perfectly by a RoBERTa-based (Liu et al., 2019b) classifier trained on
the shuffle task. They suggest to exclusively use the task in a zero-shot setting, as
well as to shuffle blocks of sentences, instead of individual sentences, to increase
task difficulty. We will test their hypothesis that the shuffle task leads to poor
coherence models in this chapter.

Automatic Linguistic Quality Estimation

Pitler et al. (2010) note that the DUC 2003 derived data used in evaluation of
general coherence models is potentially misleading for evaluation of summary co-
herence due to the mix of weak automatic and human summaries in the evaluation
data. They develop a set of measures for the five linguistic quality dimensions in
the DUC 05-07 shared tasks, previously discussed in Chapter 2. They investi-
gate the use of several features as input to a machine learning setup trained on
DUC 2006 data. For coherence, they propose counting the frequency of cohe-
sive devices, as well as coreference, and word similarity features. Xenouleas et al.
(2019) also train a supervised model on DUC data, although they replace feature
engineering with BERT-based (Devlin et al., 2019) representations.

There are also entirely unsupervised approaches to coherence evaluation. Zhu
and Bhat (2020) propose a weighted sum of heuristic measures to derive an overall
summary score. Yuan et al. (2021) use the probability assigned to the output by
a conditional language model conditioned on the input document for evaluation.

1The original annotation process uses a seven point Likert scale to get individual scores for
each summary, but this is converted into pairwise preferences.
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Finally, summary coherence is sometimes modelled using measures that make
use of human-written reference summaries. Fabbri et al. (2021b) benchmark sev-
eral reference-based evaluation measures, including ROUGE, on coherence anno-
tations in their SummEval dataset and find moderate system-level correlation for
the top performers. Zhao et al. (2023) propose DiscoScore to integrate coherence
into reference-based evaluation. DiscoScore is based on tracking discourse focus,
i.e. the entities that hold the reader’s attention at any given point in the text.
DiscoScore rewards a summary that has similar discourse focus to the reference.
We do not include reference-based measures in our study, since their dependence
on high-quality reference summaries makes them fundamentally less flexible than
reference-free measures.

4.3 Related Work

With regard to meta-evaluation of coherence measures, we are only aware of a
single comparable effort by Mohiuddin et al. (2021), who conduct a comparative
study of five CMs. They study 10 summaries each from 4 recent summarizers as
well as instances from the DUC 2003 dataset of Barzilay and Lapata (2008). Since
– unlike our work – they reuse the outdated summaries in the DUC 2003 dataset,
their evaluation does not necessarily generalize to recent summarization systems.

In concurrent work on meta-evaluation methods, Deutsch et al. (2022) propose
to improve system-level correlation. They show that the variance in system-level
scores can be reduced by computing average predicted scores P not only on doc-
uments with human rated instances D but instead on the entire corpus D∗ ⊇ D.
Since, after averaging, this leads to a more accurate estimate of the predicted score
Ps for each summarizer s ∈ S, the resulting correlation has lower variance. Ad-
ditionally, Deutsch et al. (2022) propose to only compute system-level correlation
on pairs of summarizers s1, s2 where the difference between their respective human
scores |Hs1−Hs2| is below some threshold. This ensures measures are not rewarded
for getting “easy” comparisons right. Their approaches are complementary to our
analysis in that they look at informativeness instead of coherence and do not ad-
dress the shortcomings of system-level correlation in the presence of system-level
confounders.
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Also concurrently, Pagnoni et al. (2021) propose partial correlation for meta-
evaluation. For human and predicted scores H,P , partial correlation is computed
by first determining residuals ϵ(H), ϵ(P ) as follows:

ϵ
(H)
(d,s) =H(d,s) − H̄s , (4.7)

ϵ
(P )
(d,s) =P(d,s) − P̄s , (4.8)

where H̄s, P̄s are the mean human and predicted scores for system s.2 The partial
correlation is then determined by computing the correlation of the residuals ϵH
and ϵP .

This tackles the problem of system-level confounders, similar to our intra-
system correlation. Unlike our approach, however, it does not have an intuitive
correspondence to a particular set of comparisons between instances and does not
allow for detailed inspection of correlations for individual systems.

Also concurrently, Durmus et al. (2022) identify spurious correlates in faithful-
ness datasets. They find contemporary measures for faithfulness are outperformed
by measures for the extractiveness of summaries, as well as a combination of length
and the perplexity of a strong language model on the input. This suggests that
our methods will be useful beyond coherence evaluation.

4.4 Selecting a Meta-Evaluation Dataset

As discussed in Section 4.1, data that is suitable for meta-evaluation is challenging
to find. We identify three properties that a dataset requires to be a viable choice
for our meta-evaluation study:

1. Reliable judgements at the summary level

2. A sufficient number of different summarization systems

3. Output from recent summarization systems
2More generally, the residuals ϵ(H)(ϵ(P )) are derived from a linear regression of H (P ) and

the confounding variable(s). We state the specific case of meta-evaluation for clarity.
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In addition, for our specific use case of summary coherence evaluation, datasets
must of course also cover our desired quality dimension.

To illustrate these challenges, consider that the dataset we have gathered in
Chapter 3 fulfills neither the first nor the second desideratum: It contains only five
summarization systems and is annotated by untrained crowd workers, who are un-
reliable on the summary level. As discussed previously, this is a deliberate choice,
since it mirrors common setups of studies conducted for cost-efficient evaluation.
Consequently, most human evaluation data is difficult to use for meta-evaluation.
Datasets for meta-evaluation are thus usually derived either from shared tasks,
where a large number of summarizers is evaluated using the same evaluation pro-
tocol, or alternatively from large-scale meta-evaluation studies.

For early summarization systems, the shared tasks of DUC-2005 to DUC-2007
(Dang, 2005; Dang, 2006; NIST, 2007) conferences are one source of such data,
since they cover a large number of summarizers rated by trained assessors. They
include both scores for content, as well as linguistic quality, including coherence.
The successor Text Analysis Conferences (TAC) included a shared meta-evaluation
task called Automatically Evaluating Summaries of Peers (AESOP) (Dang and
Owczarzak, 2009b; Owczarzak and Dang, 2010; Owczarzak and Dang, 2011) from
2009 to 2011, also using professional summary ratings, although only for content
and later for content and readability. The coherence evaluation dataset of Barzilay
and Lapata (2008) uses outputs from five summarizers, plus reference summaries,
from 16 input documents from DUC 2003 (Over and Yen, 2003) with human
pairwise coherence judgements.

However, all of these datasets naturally cover only extractive summarization
systems that were proposed before the advent of abstractive neural models. Given
the shift in the methods employed in the field, performance on these datasets does
not necessarily permit conclusions about the utility of a measure on summaries of
future systems. For content measures, this problem is demonstrated by Peyrard
(2019), who show using simulation methods that while commonly used (reference-
based) evaluation measures, such as ROUGE (Lin, 2004b), agree with each other
on weak summaries, they start disagreeing with each other on high-scoring ones.
This suggests that studies conducted on weak summarizers, such as those present
in the previously mentioned datasets, do not provide much information about
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the ability to judge strong summarizers. In an empirical evaluation, Bhandari
et al. (2020) compare meta-evaluation results on TAC data from 2008 and 2009
with results on a newly introduced dataset they dub RealSumm. RealSumm uses
LitePyramid (Shapira et al., 2019), which we previously discussed in Chapter 2,
on summaries generated by 25 summarizers on CNN/DM (Hermann et al., 2015).
They find both datasets lead to different conclusions. While both studies focus
exclusively on reference-based content evaluation, they demonstrate the risk of
transferring meta-evaluation results from datasets using outdated summarizers.
This motivates the third desideratum we give above.

In addition to the mentioned RealSumm, we are aware of two other datasets
that are suitable for meta-evaluation in summarization: SEAHORSE (Clark et al.,
2023) and SummEval (Fabbri et al., 2021b). SEAHORSE contains output from a
total of eight summarizers, plus references, across 32,366 input documents. Un-
like the other datasets mentioned here, SEAHORSE input documents are sampled
from multiple datasets across different languages. However, while it is annotated
by trained workers and contains linguistic quality dimensions, it does not include
coherence judgements. In this work, we thus use the SummEval dataset. Sum-
mEval is based on 100 CNN/DM input documents, with summaries sampled from
17 summarizers.3 SummEval contains human annotations for four dimensions
along a five-point Likert scale: Coherence, Consistency, Fluency, and Relevance.
This makes it uniquely suitable for our investigation. SummEval contains both
expert and non-expert judgements. For our work, we only use expert judgements
to ensure reliability at the summary level.

For completeness, we note that Koto et al. (2022) also create a (crowd-sourced)
dataset for, among other dimensions, summary coherence evaluation. However,
their dataset only encompasses output from two models, which makes it less suit-
able for our purposes. Similarly, the work of Grusky et al. (2018) contains crowd-
sourced annotations for 60 input documents summarized by seven summarizers for
four categories, including coherence, again yielding data too small to be suitable
for our meta-evaluation.

3There is a variant of SummEval with 16 summarizers, in which judgements from Pegasus
(dynamic mix) are not included.
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Figure 4.1: Distribution of human coherence scores for the 17
systems in the SummEval dataset. The red dots indicate the mean

score of each system.

Figure 4.1 highlights two important properties of SummEval for our further
analysis: Firstly, there is a large gap in average performance between different
summarizers, and secondly, most summarizers exhibit considerable variance in
scores.

4.5 A new Meta-Evaluation Metric

As discussed in Section 4.2.1, meta-evaluation is typically conducted on a set of
summaries generated on document set D by a set of summarizers S using the
correlation of predicted scores P = {P(d,s)|d ∈ D, s ∈ S} with human judgements
H = {H(d,s)|d ∈ D, s ∈ S}. There are three common variants:

System-level Correlation τsys assesses measure performance by correlating
the mean human and mean measure scores of the individual summarizers.

Pairwise Accuracy Accpair assesses measure performance by comparing
scores on outputs of two different systems on the same document.

Summary-level Correlation τsum compares scores on all generated sum-
maries.
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The correlation function used is usually Kendall’s τb, while the pairwise metric
is usually reported as accuracy. It is easy to see from its definition that if there
are no tied values and the set of pairwise comparisons is complete, Kendall’s τ and
accuracy are equivalent with the only difference being the range shift from [0, 1] to
[−1, 1]. This allows us to also measure the pairwise accuracy metrics as Kendall’s
τ for consistency.

We can now specify all three EMs in terms of the set of pairwise comparisons C
they consider, where Csys ⊂ 2S×S considers comparisons between averaged system
scores and Cpair, Csum ⊂ 2(D×S)×(D×S) consider comparisons between individual
summary scores:

Csys = {(si, sj)|si ̸= sj} , (4.9)

Cpair = {((d, si), (d, sj))|si ̸= sj} , (4.10)

Csum = {((dk, si), (dl, sj))|(dk, si) ̸= (dl, sj)} . (4.11)

The EMs pose different demands to measures: system-level correlation requires
a correct ranking of systems according to their average score. Pairwise accuracy
requires correct ranking of summaries from different systems but only between
summaries produced on the same document. Finally, summary-level correlation
requires the correct ranking of any pair of summaries.

4.5.1 A new Evaluation Metric: Intra-System Correlation

All three EMs focus on comparisons between summaries generated by different
summarizers. For system-level and pairwise evaluation this arises by construction,
whereas for summary-level correlation it is contingent on the dataset structure: On
SummEval, less than 6% of comparisons for τsum are between summaries of the
same summarizer. We argue that this gives an incomplete view of CM performance
for the following reasons:

1. SummEval covers summarizers with widely different performance levels (see
Figure 4.1), leading current EMs to include many easy decisions. This is
unlikely to reflect real-world evaluation of competitive summarizers.
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2. While system-level evaluation is often the primary use case, measures can
also be used in a reranking or ensembling context to select the highest qual-
ity summary from a set of candidates. In these situations, summaries are
likely to be generated either by the same summarizer or a set of similarly
(high) performing summarization systems. In these cases, system-level EMs
offer only limited insight into likely measure performance, since they pri-
marily measure the ability to discriminate between different systems with
potentially large performance gaps.

3. EMs might not correlate with the target quality per se but instead with
system-level confounders that are unlikely to generalize to new systems and
settings. We elaborate on this in Section 4.5.2.

We thus suggest adding a new EM, Intra-system Correlation τintra, which
we define on comparisons between summaries generated by the same system. This
corresponds to considering the following pairs Cintra ⊂ 2(D×S)×(D×S):

Cintra = {((dk, s), (dl, s))|dk ̸= dl} . (4.12)

It neatly complements pairwise accuracy, as it is essentially the same computation
but keeps the summarizer constant instead of the document. Intuitively, this
measure both contains far fewer ”easy” decisions and is much more resilient to
any system-level confounders in the data. We use the average of the intra-system
correlation of all systems as the EM.

4.5.2 System-level Confounders

We assess how EMs behave in the presence of system-level confounders on our
coherence data. To this end, we investigate two summary features that are unlikely
to be generalizable CMs but lead to surprisingly strong correlations on SummEval:
capitalization and summarizer architecture.

For capitalization, we count the number of uppercase letters in each summary.
This is a purely system-level heuristic, since only three of the 17 summarizers in
SummEval produce capital letters.4 For architecture, we assign a score of 1 to each

4BART, GPT-2 (zero shot), and Pegasus (dynamic mix)
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Cap. Cap. (r) Arch. Arch. (r) UB UB (r)
τsys 0.42 0.23 0.58 0.37 1.00 1.00
τsum 0.19 0.11 0.31 0.20 0.39 0.39
τpair 0.21 0.14 0.33 0.22 0.44 0.44
Accpair 0.23 0.57 0.34 0.62 0.73 0.73
τintra - −0.03 - 0.01 - 0.00

Table 4.1: Results for the confounders and upper bound. τintra for
the non-random variants is undefined, as scores within each system
are constant. Scores for the random variants (r) are averaged over

100 runs.

summary from one of the five summarizers that are derived from pretrained trans-
formers in some fashion5 and 0 to all others. Neither of the two confounders can,
by construction, be a reasonable and generalizable CM. Additionally, we compute
an “upper bound” (UB) that assigns to each summary the mean human score of
the system that produced the summary. It simulates perfect system ranking but
no ability to correctly rank summaries within each system. Since these procedures
result in many ties, we also compute a second variant of each confounder where
we add small noise to each score. This prevents τb from profiting from these ties
while preventing accuracy from unfairly suffering.

Table 4.1 shows the resulting correlations. We find all confounders achieve
noticeable correlation with human scores under some EMs. In particular, system-
level correlation comes close to or exceeds the best CM reported originally for
SummEval (CHRF (Popović, 2017), 0.40). In contrast, using intra-system cor-
relation, the problems of these pseudo-measures become easily apparent. These
results show that, at least in the SummEval dataset, substantial correlation on
both the system and summary level can be achieved by modelling proxies that are
unlikely to actually correspond to coherence. In practical scenarios, system-level
correlation might be a mix of modelling coherence and reliance on confounders.
Intra-system evaluation is an important tool in this context as it is robust to
system-level confounders, which increases the chance of it modelling generalizable
information about the quality dimension in question.

5BART, Pegasus, Pegasus dynamic Mix, T5, and GPT-2
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EEG EGR NEG UNF GRA CCL SQE GRU BAS
Unsupervised ✓(a) ✓ ✓ ✓

Shuffle ✓ ✓ ✓ ✓ (b)

Supervised (DUC 03) ✓ ✓
Supervised (DUC 05-07) ✓

Table 4.2: Training settings for the CMs under investigation. (a)
The extended entity grid estimates the multinomial distribution
of an entity’s role given its prior occurrences. While this needs
a dataset to estimate the distribution, it cannot be trained as a
classifier. (b) The pretraining of BART includes a task where doc-
uments are corrupted by shuffling the sentence order and must be

reconstructed correctly.

4.6 Coherence Measures

With the meta-evaluation metrics in place, we now turn to selecting coherence
measures for our evaluation study.

In Section 4.2.2, we have discussed how, in prior work, there is a divide in
research on general coherence modelling and linguistic quality modelling. Thus, to
structure our selection of CMs and to allow for better comparison between both
strands of research, we start by categorizing CMs based on their training settings.
For both strands, we can divide models into supervised CMs, that are trained on
human coherence ratings of summaries, and unsupervised CMs, which do not
require human ratings. For general coherence models, supervision data is typically
the pairwise DUC 2003 data of Barzilay and Lapata (2008), while for linguistic
quality modelling, the typical setting is regression on DUC 05-07 ratings (Dang,
2005; Dang, 2006; NIST, 2007). Additionally, many general coherence models can
be trained on the shuffle task. We refer to CMs trained in this manner as self-
supervised CMs. To cover a wide range of diverse CMs, we include models from
both strands of research across all applicable training settings. Table 4.2 gives a
full overview of all CMs and their training settings.

For general coherence models, we select both entity-based models, that are de-
rived from the entity grid representation, as well as lexical models, that directly
take the summary as input. As representatives of entity-based general CMs, we
select the Extended Entity Grid (EEG) (Elsner and Charniak, 2011) and the Entity
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Graph (EGR) (Guinaudeau and Strube, 2013) as unsupervised, theoretically moti-
vated measures. We also include the neural entity grid (NEG) (Tien Nguyen and
Joty, 2017) as a more recent formulation of the entity grid. NEG can be trained both
in the supervised setting on the pairwise DUC 2003 data and in the self-supervised
setting using a ranking loss.

As lexical general CMs, we select the unified coherence model (UNF) (Moon
et al., 2019) and the graph-based model neural coherence model of Mesgar et al.
(2021) (GRA) as state-of-the-art (at the time of the original publication of this
work) CMs. Both can be trained in the self-supervised setting with a ranking loss.
Additionally, GRA permits training of a supervised model on DUC 2003 data.

Finally, we include a self-supervised RoBERTa (Liu et al., 2019b) model, that
is fine-tuned on the shuffle task as a classifier (CCL). This follows the observation of
Laban et al. (2021) that this can outperform more sophisticated coherence models
at the shuffle task.

We train all self-supervised models on the WSJ corpus of newswire articles,
which is frequently used in coherence modelling (Elsner and Charniak, 2011; Guin-
audeau and Strube, 2013; Moon et al., 2019; Mohiuddin et al., 2021). We also train
models using the same technique on reference summaries from the train portion of
CNN/DM. For EEG, which uses a generative model, we also estimate parameters
on both datasets. For WSJ, we follow the original implementations regarding the
number of shuffled samples. For CNN/DM, we only use a single shuffled instance
per summary, as it is larger by two orders of magnitude (WSJ: 1,400; CNN/DM:
287,113 documents before shuffling).

For the linguistic quality modelling strand of research, we select SumQE (SQE)
(Xenouleas et al., 2019) as a supervised regression-based model, which is trained on
regression data from the DUC 05-07 conferences. Finally, we include BARTScore
(BAS) (Yuan et al., 2021) and GRUEN (GRN) (Zhu and Bhat, 2020) as the state-
of-the-art unsupervised summary quality measures.

To anchor our scores, we include an upper and lower bound: RND assigns each
summary a uniformly chosen score between 0 and 1, which establishes a lower
bound for the CMs. To establish a realistic upper bound, we simulate what scores
the human annotators would receive (HUM). We use the SummEval human annota-
tions and select the annotator with the worst overall correlation to the remaining
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annotators and use their scores as predictions.6

We will now give a technical description of the CMs. Detailed accounts of our
experimental settings for each CM can be found in Appendix C.

4.6.1 Entity Grid and Extensions

To construct an entity grid of a given document consisting of sentences S =

[s1, s2, . . . , sn], we first identify all entities E = {e1, e2, . . . , em} in the document
via coreference resolution. In practice, all entity-based models we consider in this
chapter use the entity grid implementation of Elsner and Charniak (2011) (also
known as the Brown Coherence Toolkit) to construct their grids. Here, coreference
resolution is approximated with lexical overlap between noun phrases. The entity
grid is then a matrix M = |S| × |E|, where Mti indicates the role of entity ei in
sentence st. The role is determined by the grammatical role of ei in st: subject
(S), object (O), other (X), or no occurrence (∅).

Multiple approaches have been suggested to derive a coherence score from M .
Barzilay and Lapata (2008) extract 3-grams from the columns of M to estimate
role transition probabilities in the document. These can be used as features for
a support vector machine (Cortes and Vapnik, 1995), optionally along with the
salience of the entity as determined by its frequency in the document.

Extended Entity Grid (EEG)

In this work, we use a more recent formulation of Elsner and Charniak (2011), the
extended entity grid, which instead uses a generative model. They compute the
probability of an entity taking role r in the sentence at position t given its two
preceding roles on a training corpus: p(Mti = r|M(t−1)i,M(t−2)i). As an extension
over the entity grid, they also include a number of entity-specific features: Whether
the identified chain contains a proper noun mention, the named entity label of the
entity, the number of modifiers in the chain, whether the chain contains a singular
mention, and a number of features designed to correct coreference resolution errors.
The coherence score of a summary is then the (log) probability of its entity grid

6We note that, unlike automatic measures, humans may only differentiate among five classes.
We might thus underestimate actual human performance.
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M , normalized by the grid size:

score(M) =
1

|S||E|
∑
t

∑
i

log p(Mti|M(t−1)i,M(t−2)i, Fti) , (4.13)

where Fti indicate the entity-specific features and entity salience for cell ti. In
practice, this model can be learned using multinomial logistic regression on co-
herent texts. To keep the model comparable with those that are trained on the
shuffle task, we use the coherent examples from WSJ and CNN/DM for training,
respectively.

Entity Graph (EGR)

To build the entity graph (EGR) of Guinaudeau and Strube (2013), we treat M
as the incidence matrix of a bipartite graph G between entities and the sentences
they occur in, i.e. G = (S ∪ E, {(st, ei)|Mti ̸= ∅}). Instead of relying on a learned
distribution of transitions, EGR first projects the bipartite graph G into a directed,
weighted graph G∗ = (S,A∗, w) with arcs A∗ connecting sentences S with weights
given by a weight function w. The coherence score is derived by computing the
average sentence centrality in the resulting graph, following the intuition that a
more coherent document is one that is more tightly connected.

Guinaudeau and Strube propose three one-mode projections from G to G∗,
which differ in the edge weight function w. All of them construct edges between all
sentences that share at least one entity, with the edge direction following sentence
order in the text. Let NG(st) be the set of entities linked to st in G (i.e. its
neighbours), then

A∗ = {(st, su) | |NG(st) ∩NG(su)| > 0, u > t} . (4.14)

The choice of weight function w allows us to influence the strength of association
between linked sentences. wU equally weights all edges in A∗:

wU(st, su) = 1 . (4.15)
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This ignores the amount of entity overlap between st and su, which motivates
the introduction of wW , which computes the edge weight based on the number of
entities shared between st and su:

wW (st, su) = |NG(st) ∩NG(su)| . (4.16)

Finally, Guinaudeau and Strube find that integrating syntactic role informa-
tion, as in the entity grid, leads to increased performance on a number of coherence
modelling tasks. They thus introduce wAcc, which additionally uses role informa-
tion to increase the weight of edges involving subject or object roles:

wAcc(st, su) =
∑

ei∈NG(st)∩NG(su)

wr(Mti) · wr(Mui) , (4.17)

where wr is an auxiliary weight function for entity roles. We follow Guinaudeau
and Strube by setting the weight of subjects to 3, of objects to 2 and all other
roles to 1.

As described so far, the entity graph is permutation invariant. That is, any
set of sentences with a given entity overlap would receive the same score. This
is clearly not desirable for a coherence measure. Guinaudeau and Strube thus
introduce a discounting factor that divides the weight of an arc between sentences
st, su by the distance of their sentences in the text u− t.

The final weight function, which we also use in our implementation of EGR is
then:

wAcc+Adj(st, su) =
1

u− t

∑
ei∈NG(st)∩NG(su)

wr(Mti) · wr(Mui) . (4.18)

Given G∗, the final score is then the average outdegree of each sentence in the
graph:

score(S,A∗, w) =
1

|S|
∑
st∈S

∑
su|(st,su)∈A∗

w(st, su) . (4.19)

Neural Entity Grid (NEG)

The final variant of the entity grid we consider is the Neural Entity Grid (NEG)
(Tien Nguyen and Joty, 2017). NEG feeds the entity grid matrix M directly into
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a convolutional neural network, replacing manual feature extraction with learned
filters.

The architecture associates each possible role in M with an embedding vector
emb(Mti) to construct an embedded entity grid M (emb) ∈ |S| × |E| × d, where d is
the embedding dimension.

NEG then computes the convolution of each column in M (emb) with filter weights
W ∈ Rnf×w×d, where nf is the number of filters and w is the window size. This
results in a hidden representation hti ∈ Rnf for each cell t, i in M (emb):7

htij(M
(emb)) = a

(
w∑

k=1

〈
Wjk,M

(emb)
(t+k)i

〉
+ bj

)
, (4.20)

where bj ∈ R is a trainable bias term for filter j and a is an activation function,
which is set to the rectified linear unit (ReLU).

In the reference implementation, which we use in this chapter, this is imple-
mented by concatenating all rows in M (emb) with w− 1 all-zero padding vectors to
separate the embeddings for each row and then padding the resulting sequence to
a predefined maximum length lmax with more zero vectors.

The features are then max-pooled across time steps in windows of size p, to
receive features h̃ ∈ R⌊lmax/p⌋×d. Finally, the features are concatenated to a single
d · ⌊lmax/p⌋-dimensional representation and fed into a scoring head:

score(M) = w(score)T [h̃1, h̃2, . . . , h̃⌊lmax/p⌋] + b(score) , (4.21)

where w(score) ∈ Rd⌊lmax/p⌋ and b(score) ∈ R are trainable parameters.
The model is trained using a pairwise ranking loss on instances of coherent and

incoherent documents with corresponding matrices M+,M−:

L(M+,M−) = max(0, γ − score(M+) + score(M−)) , (4.22)

where γ is a hyper-parameter for the margin between positive and negative exam-
ples.

7The original paper has b be a position-dependent parameter, which is not consistent with the
implementation. We give the formula corresponding to the actual implementation here instead.
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4.6.2 Lexical Coherence Models

All previous models have in common that they model coherence exclusively through
entity occurrence patterns. This limits them in two important ways:

• They are reliant on external coreference resolution tools to function.

• They are unable to identify any other coherence devices, like lexical overlap.

The rise of efficient neural representations of text has opened the doors to solving
this problem by instead directly modelling coherence from raw texts.

Unified Coherence Model (UNF)

The Unified Coherence Model (UNF) (Moon et al., 2019) implements this idea
by combining both local and global neural representations of document sentences.
Given a document with sentences S = [s1, s2, . . . , sn], they first compute a neural
representation ht ∈ Rd1 for each sentence st via a bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) network, where d1 is the representation dimension. They
then combine each pair of adjacent sentence representations into a local represen-
tation h(loc)

t with

h
(loc)
t = hTt W

(loc)ht+1 + b(loc) , (4.23)

where W (loc) ∈ Rd1×d2×d1 , b(loc) ∈ Rd2 are trainable parameters. d2 is the dimension
of the pairwise representation. This intuitively models the local coherence patterns
in the document but is unable to model global document information.

To model the latter, Moon et al. apply a stack of nl light-weight convolution
layers (Wu et al., 2019) to the sentence representations h. At layer j, the contex-
tualized sentence representation ĥ(j)t ∈ Rd1 for sentence t is computed as

ĥ
(j)
tc = DepthWise

(
softmax(W (j)

c ), ĥ(j−1), t, c
)
, (4.24)

DepthWise(w, h, t, c) = ⟨w, ht:t+w−1,c⟩ , (4.25)

ĥ0t = ht , (4.26)
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where ha:b,c is the concatenation of the c-th entry of the representations for sen-
tences at positions a to b. W (j) ∈ Rd1×w are the convolution weights of the j-th
layer with kernel width w. Weights are shared across rows in groups of a predefined
size to reduce the number of parameters.

To derive the global document representation, the contextualized sentence rep-
resentations are average pooled over time: h(g)c = 1

|S|
∑|S|

t=1 ĥ
(nl)
tc .

Finally, the global document representation and the pairwise local represen-
tations are combined into representations h̃t for each window of three adjacent
sentences:

h̃t = [h(g), h
(loc)
t , h

(loc)
t+1 ] . (4.27)

Naively, h̃|S|−1 and h̃|S| cannot be computed, since the window representations
h|S| and h|S|+1 are undefined. The reference implementation lets h|S|+1 = h|S| to
compute h(loc)

|S| and sets h(loc)
|S|+1 = h

(loc)
|S| .

Finally, UNF computes a local coherence score for each window starting at
sentence t:

score(S, t) =
〈
w(score), h̃t

〉
+ b(score) , (4.28)

where w(score) ∈ R2d2+d1 is a trainable weight vector and b(score) ∈ R is a trainable
bias.

Similarly to NEG, UNF uses a ranking loss between coherent and incoherent doc-
uments. However, to allow for direct feedback to the local window representations,
their loss is specifically formulated for the shuffle task. Given original sentences
S+ and shuffled sentences S− = shuffle(S+), the loss at window t is

L(t) = max(0, ϕ(t)− score(S+, t) + score(S−, t) ), (4.29)

ϕ(t) =

0 S+
t...t+2 = S−t...t+2

γ else
, (4.30)

where ϕ(t) deactivates the margin γ of the ranking loss for windows where both
documents are the same.

Since UNF does not directly produce a global coherence score, we compute the
average of the window scores as the final coherence measure.



100 Chapter 4. Meta-Evaluation: A Case Study in Summary Coherence

Graph-based Neural Coherence Model (GRA)

The Graph-based Neural Coherence Model (GRA) (Mesgar et al., 2021) com-
bines entity-based representation with lexical information in a graph neural net-
work. It uses the same per-sentence representation approach as UNF to build a
sentence representation ht for each sentence st. GRA then uses a graph-based rep-
resentation inspired by EGR, along with a self-attention network (Vaswani et al.,
2017) to build a global document representation.

Their graph representation extends the unweighted G∗ from EGR with adja-
cency arcs and introduces edge labels that differentiate arcs into adjacency and
entity arcs. A relational graph convolutional network (RGCN) (Schlichtkrull et al.,
2018) then computes contextualized representations for each sentence based on its
neighbors in G∗. The graph-contextualized representation h

(graph)
t for sentence st

is

h
(graph)
t =

∑
r∈R

1

|NG∗(st, r)|

 ∑
j∈NG∗ (st,r)

W (graph)
r hj

 , (4.31)

where NG∗(st, r) are the neighbours of st in G∗ that are connected to st with an
arc with label r. W (graph)

r ∈ Rd×d are trainable parameters for each relation type
r ∈ R (either adjacency or entity). d determines the representation dimensionality.

The graph-based representations are globally contextualized using a self atten-
tion network:

h
(attn)
t =

∑
u

αtuh
(graph)
u , (4.32)

αtu =
ewtu∑
u′ ewtu′

, (4.33)

wtu =
〈
W (query)h

(graph)
t ,W (key)h(graph)

u

〉
, (4.34)

where W (query) ∈ Rd×d,W (key) ∈ Rd×d are trainable parameters.
Finally, the representations h(attn) for each sentences are averaged and projected

into a scalar score for the entire document:

score(S) =

〈
w(out),

1

|S|
∑
t

h
(attn)
t

〉
+ b(out) , (4.35)
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where w(out) ∈ Rd, b(out) ∈ R are again trainable parameters. GRA employs a global
pairwise ranking loss like NEG:

L(S+, S−) = max(0, γ − score(S+) + score(S−)) , (4.36)

where γ is again a hyper-parameter for the margin between positive and negative
examples.

Coherence Classifier (CCL)

The learned models discussed so far raise two questions:

1. Is the ubiquitous ranking loss actually necessary?

2. Do specialized architectures improve CM performance?

Laban et al. (2021) show that a RoBERTa-based (Liu et al., 2019b) classifier
can easily achieve near-perfect results on the shuffle task on WSJ. They conclude
that this demonstrates that the task is not a good evaluation task for CMs. How-
ever, they did not test whether their model can predict coherence on non-artificial
tasks. We thus include a RoBERTa model that is trained to classify shuffled vs.
unshuffled summaries, naming it Coherence Classifier (CCL).8 It differs from
the remaining shuffle-task-trained models in two important aspects:

1. It does not use a specialized architecture to derive contextualized sentence
representations but instead directly uses the representation of the CLS token
of RoBERTa as the input to a linear classifier.

2. It is trained using a classification objective, instead of a ranking objective.

Formally, let h(CLS) be the document-level embedding for a given document,
then the coherence score is

score(h(CLS)) =
e⟨w+,h(CLS)⟩+b+

e⟨w+,h(CLS)⟩+b+ + e⟨w−,h(CLS)⟩+b−
, (4.37)

8We found that the original WSJ model does not perform well on SummEval. Thus, we
fine-tuned our own model from the same RoBERTA checkpoint.
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where w+, w− ∈ Rd, b+, b− ∈ R are trainable parameters computing logits for the
coherent and incoherent class.

4.6.3 Supervised Linguistic Quality Model: SumQE

SumQE (SQE) (Xenouleas et al., 2019) models coherence as part of a broader
effort on linguistic quality evaluation. Their setup is based on learning how to score
summaries from regression on human scores. Their core innovation in this context
is to learn multiple quality dimensions Q in concert. Specifically, given a document
embedding h(CLS) derived from BERT (Devlin et al., 2019), they compute the
quality score of a quality dimension q ∈ Q as

scoreq(h(CLS)) =
〈
wq, h

(CLS)〉+ bq , (4.38)

where wq ∈ Rd, bq ∈ R are trainable parameters and d is the embedding dimen-
sion.9

The model is trained on human scores with mean squared error. Let q∗ ∈ R|Q|

be human scores across all quality dimensions for the same summary, then the loss
for this instance is

L(h(CLS), q∗) =

|Q|∑
i=1

(
q∗i − scorei(h(CLS))

)2
. (4.39)

The model we use in our experiments is trained on data from the DUC 2005,
2006, and 2007 conferences on the five quality dimensions already discussed in
2.3.2: Fluency, Non-redundancy, Referential Clarity, Focus, and Structure and
Coherence.10 Since we are interested in the coherence modelling abilities of SQE,
we use the Structure and Coherence head, as the definition of this quality dimension
most closely matches the definition of coherence in our evaluation corpus.

9In practice, the authors differentiate between all wq being treated as independent layers with
a scalar output vs. a single layer with |Q| different outputs. This is mathematically equivalent,
with the only difference being a very small change in the range of the weight initialization for
wq. We use the model with independent wq in our experiments.

10The model is available at https://archive.org/download/sum-qe/BERT_DUC_all_Q5_
Multi%20Task-5.h5.

https://archive.org/download/sum-qe/BERT_DUC_all_Q5_Multi%20Task-5.h5
https://archive.org/download/sum-qe/BERT_DUC_all_Q5_Multi%20Task-5.h5
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4.6.4 Unsupervised Linguistic Quality Models

While human-annotated data contains rich quality information, it is also a scarce
resource. The entirety of the training set of SumQE contains 4,790 different sum-
maries from a total of only 112 systems. This makes methods which can produce
quality scores in an unsupervised manner, without being trained on human refer-
ences, very attractive.

In this work, we study GRUEN (GRN) (Zhu and Bhat, 2020) and BARTScore
(BAS) (Yuan et al., 2021) as representatives of these methods.

GRUEN (GRN)

GRUEN combines five heuristics designed to jointly cover the grammaticality, non-
redundancy, focus, and structure and coherence quality dimensions. We briefly
discuss each heuristic.

Word Probabilities is a proxy for grammaticality and computed as the aver-
age log-probability of each sentence in the document under a bidirectional masked
language model (BERT (Devlin et al., 2019) in their implementation). The aver-
age log-probability of a sentence is determined by masking out each token in the
sentence in turn and computing the probability the model assigns to the correct
token at the masked location. Let S be the set of sentences in the document, and
let w(s)

1 , . . . , w
(s)
ns be the tokens in a sentence s ∈ S, then

scorelm(S) =
1

|S|
∑
s∈S

1

ns

ns∑
t=1

log p(w
(s)
t |w(s)

1 , . . . , w
(s)
t−1, w

(s)
t+1, . . . , w

(s)
ns
) . (4.40)

This is also known as the average pseudo-log-likelihood of the tokens (Wang and
Cho, 2019).

Linguistic Acceptability is also used as a proxy for grammaticality. GRUEN

uses a classification model that is trained on the Corpus of Linguistic Acceptability
(CoLA) (Warstadt et al., 2019) which contains human acceptability ratings. The
score is computed for each sentence and derived from the average logits for the
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positive class of each individual sentence e(accept|s):

scoregram =
1

|S|
∑
s∈S

e(accept|s) . (4.41)

Non-redundancy is measured using a set of four overlap-based measures that
are computed between all pairs of sentences st, su ∈ S × S; t ̸= u:

• The longest common subsequence (LCS) length in characters

• The length of the LCS in tokens

• The bag of words overlap

• The edit distance

Let mtu indicate the number of these measures that are above a predefined thresh-
old for the sentence pair st, su, then the total overlap score is

scoreoverlap = −0.1
∑

t,u|t̸=u

mtu . (4.42)

Focus measures the degree to which subsequent sentences cover the same gen-
eral topic. In their original description of GRUEN, Zhu and Bhat (2020) propose
to approximate this by computing the word mover’s distance (Kusner et al., 2015)
between adjacent sentences. Word-mover’s distance is an approach for computing
the dis-similarity of two documents or sentences s1, s2 from pairwise token simi-
larities. Let Ctu indicate the similarity of the t-th token in s1 and the u-th token
in s2. The standard choice here is to use the L2 distance between the embeddings
of the tokens. The dissimilarity of s1, s2 is computed by solving the following
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optimization problem:

wmd(s1, s2) = min

|s1|∑
t=1

|s2|∑
u=1

TtuCtu , (4.43)

given (4.44)
|s1|∑
t=1

Ttu = 1,∀1 ≤ u ≤ |s2| , (4.45)

|s2|∑
u=1

Ttu = 1,∀1 ≤ t ≤ |s1| . (4.46)

(4.47)

Zhu and Bhat propose to convert this into a focus score by taking the reciprocal
of the dis-similarity between adjacent sentences and averaging the result:

scorefocus =
1

|S|

|S|∑
t=1

1

wmd(st, st+1)
. (4.48)

However, the reference implementation of GRUEN, which we use in this chap-
ter, does not employ WMD as the dissimilarity metric as described in the paper
but uses a simple centroid distance (i.e. the distance between the averaged word
embeddings of st and su) instead.

Structure and Coherence is measured using a model that is trained using
a modified variant of the shuffle task used in other CMs. To create a negative
sample, a document is split into two segments along a sentence boundary and the
second segment is moved to the beginning. The prediction of the classifier trained
on this task is the coherence score, scorecoh.

To compute the final score, the individual quality scores are summed up.
However, the official reference implementation we use does not include the coher-
ence score.11 The score we derive from GRUEN for our experiments is thus:

score = scorelm + scoregram + scoreoverlap + scorefocus . (4.49)
11We have confirmed that this is intentional in personal communication with the authors.
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BARTScore (BAS)

BARTScore (BAS) (Yuan et al., 2021) provides an alternative unsupervised CM
that leverages the probability of a summary under a pretrained BART model as a
score. This follows the intuition that a good summary should have high probability
under the a strong summarization model and is similar to the LM score (scorelm)
used in GRUEN, but in a conditional setting. BARTScore is defined for three
different settings. Let r1, . . . , rn be the reference summary tokens, let g1, . . . , gm
be the generated summary tokens, and let d1, . . . , dl be the input document tokens,
then the three score variants are defined as

scoreR→G =
1

m

m∑
i=1

log p(gi|g1, . . . , gi−1, r1, . . . , rn) , (4.50)

scoreG→R =
1

n

n∑
i=1

log p(ri|r1, . . . , ri−1, g1, . . . , gm) , (4.51)

scoreD→G =
1

m

m∑
i=1

log p(gi|g1, . . . , gi−1, d1, . . . , dl) . (4.52)

Here, scoreR→G is designed to measure recall of information from the reference,
scoreG→R is designed to measure precision, and scoreD→G measures faithfulness to
the input.

Since the latter is recommended for coherence by the authors and we work in a
reference-free setting, we only use scoreD→G in our experiments. We use a variant
of BART that is fine-tuned on CNN/DM summaries since this performed best in
the original evaluation.

4.7 Results

We present the correlation of all CMs with human coherence ratings in Table 4.3.
We report (average) Kendalls τ for all EMs introduced in Section 4.5. For Cpair

we additionally report accuracy.
Focusing on τsys first, we find that CCL, BAS, GRN, and, to a lesser extent, SQE

achieve relatively high scores while the remaining CMs fail to outperform even
the random baseline. However, inspection of τsum, τpair/Accpair, and τintra reveals



4.7. Results 107

Metric τintra τpair τsum τsys Acc.pair
HUM +0.75 (+0.70 +0.79) +0.81 (+0.76 +0.85) +0.81 (+0.77 +0.84) +0.91 (+0.71 +1.00) +0.77 (+0.71 +0.81)

RND −0.00 (−0.06 +0.05) −0.00 (−0.07 +0.06) +0.00 (−0.05 +0.05) +0.09 (−0.41 +0.53) +0.50 (+0.46 +0.54)

EGR −0.04 (−0.12 +0.04) −0.11 (−0.19, −0.02) −0.09 (−0.16 −0.01) −0.25 (−0.59 +0.10) +0.40 (+0.36 +0.44)

EEG C/D +0.02 (−0.07 +0.10) +0.04 (−0.10 +0.18) +0.06 (−0.06 +0.17) −0.19 (−0.68 +0.26) +0.52 (+0.45 +0.59)

EEG WSJ +0.02 (−0.06 +0.10) +0.00 (−0.09 +0.11) +0.03 (−0.06 +0.11) −0.19 (−0.60 +0.26) +0.50 (+0.44 +0.55)

NEG C/D −0.07 (−0.14 −0.00) −0.05 (−0.14 +0.07) −0.06 (−0.15 +0.03) −0.15 (−0.61 +0.32) +0.47 (+0.42 +0.53)

NEG DUC −0.08 (−0.16 +0.01) −0.06 (−0.18 +0.06) −0.07 (−0.17 +0.04) −0.06 (−0.49 +0.31) +0.47 (+0.40 +0.53)

NEG WSJ −0.02 (−0.08 +0.05) −0.08 (−0.17 +0.00) −0.07 (−0.15 +0.02) −0.43 (−0.69 −0.05) +0.45 (+0.41 +0.50)

UNF C/D +0.04 (−0.03 +0.11) +0.05 (−0.05 +0.14) +0.06 (−0.01 +0.13) +0.13 (−0.33 +0.59) +0.53 (+0.48 +0.57)

UNF WSJ +0.02 (−0.05 +0.09) −0.11 (−0.26 +0.03) −0.04 (−0.15 +0.05) −0.09 (−0.51 +0.39) +0.44 (+0.36 +0.52)

GRA DUC −0.04 (−0.12 +0.03) −0.05 (−0.16 +0.03) −0.06 (−0.13 +0.01) −0.19 (−0.65 +0.25) +0.47 (+0.43 +0.52)

GRA C/D +0.08 (+0.02 +0.15) +0.09 (−0.02 +0.19) +0.11 (+0.01 +0.18) +0.37 (−0.07 +0.69) +0.55 (+0.49 +0.60)

GRA WSJ +0.08 (+0.01 +0.15) −0.01 (−0.11 +0.10) +0.02 (−0.06 +0.12) −0.09 (−0.47 +0.37) +0.49 (+0.44 +0.55)

CCL C/D +0.26 (+0.19 +0.33) +0.40 (+0.31 +0.49) +0.39 (+0.31 +0.44) +0.62 (+0.30 +0.86) +0.71 (+0.66 +0.76)

CCL WSJ +0.20 (+0.12 +0.26) +0.35 (+0.25 +0.46) +0.33 (+0.24 +0.41) +0.74 (+0.40 +0.92) +0.69 (+0.63 +0.74)

BAS +0.17 (+0.08 +0.26) +0.37 (+0.23 +0.51) +0.32 (+0.20 +0.42) +0.72 (+0.42 +0.89) +0.69 (+0.62 +0.77)

GRN +0.18 (+0.12 +0.25) +0.26 (+0.17 +0.35) +0.27 (+0.19 +0.34) +0.72 (+0.38 +0.89) +0.63 (+0.58 +0.69)

SQE +0.19 (+0.13 +0.26) +0.26 (+0.15 +0.36) +0.24 (+0.15 +0.32) +0.51 (+0.05 +0.80) +0.64 (+0.58 +0.69)

Table 4.3: Results on SummEval for all CMs. Correlation is ex-
pressed in Kendall’s τ . Numbers in brackets indicated 95% CIs
computed using bootstrap resampling as described in Section 4.2.1

with 1000 samples. Highest are bold.

that even these apparently strong CMs struggle to reliably assess coherence of
individual summaries, with τintra being the most challenging regime. Comparing
CMs, CCL C/D is most promising across all EMs except τsys, where scores are near
indistinguishable due to high uncertainty. Interestingly, we find that its advantage
is greatest on τintra, where its competitors exhibit particular weakness compared
to other EMs. These sharp score drops might suggest other EMs reflect some
system-level confounders. In combination with the observation that confounder
scores as reported in Table 4.1 fall within the 95% CI of most CMs on all EMs
except τintra, this prompts us to investigate CMs for potential biases in Section 4.8.

4.7.1 Detailed Intra-System Correlation Results

Intra-system correlation allows us to study performance of the CMs on the sum-
maries of each individual summarizer. Figure 4.2 shows the individual intra-system
correlations for all summarizers in SummEval for the best CMs and the human
upper bound. We find that CMs struggle across the whole range of summarizers,
including summarizers with high variance in coherence scores, where we would
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Figure 4.2: Intra-system correlations of the best CMs as well as
the human upper bound on the SummEval dataset. Bars indicate
95% confidence intervals determined by bootstrap resampling with

1000 samples.

expect the task to be easier. Furthermore, we find none of the available CMs can
consistently outperform all others. For example, BAS outperforms other CMs on
Bottom-Up and Improve-Abs but performs significantly worse on the top systems,
including BART itself.

4.8 Bias Matrices

We have shown in Section 4.5.2 that CMs can appear to correlate with human
coherence judgements by exploiting system-level confounders. However, it is un-
clear to which extent this just holds for our artificial confounders or is also an
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issue in realistic CM evaluation. We therefore introduce bias matrices, a tool that
allows us to easily inspect the decisions of any measure by separately analyzing
consistent and inverted pairs of summaries from different summarizers. Based on
human scores, we call a summary pair consistent if the higher-scoring summary
is produced by the summarizer with the higher average score, whereas we call a
pair inverted if the overall worse summarizer produces a stronger summary. We
are specifically interested in finding instances where a CM ranks consistent pairs
for a strong summarizer correctly but fails to correctly rank its inverted pairs.
This is indicative of a measure having a bias towards outputs of this particular
summarizer, instead of measuring coherence. Since, for strong systems, most pairs
are consistent, this can still result in many correct comparisons.

Given predicted and human scores P,H as in Section 4.5 and systems s1, s2 ∈ S

from the set of systems S with s1 having a higher average human score than s2, we
define two new metrics. τ+ indicates the ability of a measure to rank consistent
pairs, whereas τ− indicates the same for inconsistent pairs. For τ+ we define

H+ := {(di, dj)|H(di,s1) > H(dj ,s2)} , (4.53)

P+ := {(di, dj)|P(di,s1) > P(dj ,s2)} , (4.54)

τ+ :=
2|H+ ∩ P+| − |H+|

|H+|
. (4.55)

For τ− we invert the comparisons.12 Both τ+ and τ− are bounded between -1
and 1. If the ranking is -1, this indicates the ranking is always incorrect; if it is
1, it is always correct. To derive the |S| × |S| bias matrix T, we order systems
s1, . . . , s|S| in descending order of their average human score. We then have

Tij :=


τ+(si,sj) i < j

τ−(sj ,si) i > j

0 i = j

. (4.56)

12If s1 is better than s2 on every document, τ− is undefined. In this case, biased and unbiased
CMs are indistinguishable.
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Figure 4.3: Bias matrices for the best CMs. We also show the bias
matrix for the architecture confounder for reference. See Figure 4.4

for a brief tutorial to bias matrix analysis.

We visualize T for the most promising CMs in Figure 4.3. To aid interpretation,
we provide an annotated version for scores generated by BAS in Figure 4.4. We
find that GRN and BAS show a very strong preference for summaries generated
by BART, ranking them almost universally higher even when this disagrees with
human judgements. In case of BAS, this is unsurprising, since BART and BAS use
the same underlying model. For GRN the reason is less clear, though analysis in
Section 4.9.2 suggests that it might rely on the higher grammaticality of BART
output. For the other CMs, biases are less evident, though CCL C/D shows a slight
preference for BART and Pegasus and CCL WSJ has a slight bias towards LEAD
and GPT-2.
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on inverted pairs
between both BART
and Pegasus
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However, BAS
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inverted pairs, system-
level scores are still
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Figure 4.4: Bias matrix for BAS with specific analysis for BART
and Pegasus. The upper triangular matrix indicates τ+ for the
given summarizer pair, the lower τ−. The area of each circle is
proportional to the number of pairs in H+/H− for the cell. To read
off the behaviour of the CM on a specific summarizer, we follow
both the corresponding row and column. A high score in the row,
combined with a low score in the corresponding cell in the column
implies the CM is biased towards generations by this particular

summarizer.
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4.9 Coherence Measure Analysis

4.9.1 Correlation with Shuffle-Performance

Mohiuddin et al. (2021) have shown that the performance of CMs on the shuffle
task is not predictive for performance on summary coherence evaluation. How-
ever, at the same time, the shuffling-based CCL shows comparatively strong per-
formance in our experiments. To better understand the relation between shuffling
and summary coherence, we test the ability of all CMs to discriminate shuffled and
non-shuffled reference summaries from the test split of CNN/DM. Results are in
Table 4.4.

Of the CMs that perform best on coherence evaluation (see Table 4.3), most
also perform well on the shuffle task (CCL, BAS, SQE). Only GRN fails on this task,
showing random accuracy. This is troubling as we would expect any CM that is
able to identify coherent summaries on SummEval to be able to identify at least
some shuffled reference summaries. This suggests that GRN models coherence only
indirectly via proxy variables, which we elaborate on in Section 4.9.2.

For the entity-based measures, EGR, EEG, and NEG, their difficulties on the Sum-
mEval dataset are also reflected in the shuffle task. This suggests that these CMs
struggle generally on CNN/DM-style summaries. In Section 4.9.3 we demonstrate
that this is due to the overall lack of entity overlap in this dataset. Finally, UNF C/D
and GRA are outliers in that they show shuffle performance on CNN/DM that is
similar or better than SQE but still perform near random on SummEval coherence
modelling. We investigate this in Section 4.9.4.

4.9.2 GRUEN

GRN works well for system-level correlation yet is incapable of solving the shuffle
task. This prompts us to investigate its individual components as described in
Section 4.6.4.

Table 4.5 shows the system-level correlation of both the individual scores and
all pairwise combinations of GRN component scores. The grammaticality score
scoregram plus the redundancy scoreoverlap alone account for almost the full system-
level correlation of 0.72. Since neither score is dependent on sentence order, they
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C/D WSJ (orig.)
EGR 0.426 0.889

EEG 0.523(c)
0.498(w)

0.840

NEG
0.524(c)
0.603(w)

0.522(d)

0.855

GRA
0.838(c)
0.623(w)

0.439(d)

0.924

UNF 0.803(c)
0.589(w)

0.93

CCL 0.929(c)
0.862(w)

0.97

BAS 0.896 -
GRN 0.504 -
SQE 0.707 -

Table 4.4: Shuffle accuracies on CNN/DM for 1000 randomly sam-
pled reference summaries. (c) means that the model was trained on
CNN/DM (w) on WSJ and (d) on DUC 03. Baseline accuracy is
50%. For reference, we also list originally reported shuffle results

on full WSJ articles where applicable.

scoregram scoreoverlap scorelm scorefocus

Cola 0.57 0.71 0.59 0.63
Redun. 0.51 0.57 0.51
LM 0.15 0.35
Focus 0.49

Table 4.5: Performance of GRN constituent measures. Cells indi-
cate system-level correlation of the combination of the respective
measures. Individual measure performance is indicated on the di-

agonal.
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Corpus Docs Sents
CNN/DM Ref. 0.287 0.458
SummEval 0.178 0.301
DUC 03 0.014 0.121

Table 4.6: Proportion of documents without any entity overlap, as
well as average ratio of sentences without entity links per document

for various datasets.

can by design not fully account for summary coherence. The results raise consid-
erable doubt about the generalizability of GRNs performance on this task.

4.9.3 Entity Driven Measures

To explain why EEG, EGR, and NEG perform poorly even on the shuffle task, we
investigate the role of entity (re-)occurrences in CNN/DM summaries. Table 4.6
shows that both reference summaries and SummEval data have very little lexical
entity overlap between sentences.13 A considerable number of summaries in both
SummEval and CNN/DM show no entity overlap between any of their sentences.
Therefore, entity-based models are inherently limited, at least when using lexical
overlap to determine entity re-occurrence. We leave a thorough investigation of
solutions like better coreference resolution or using embedding-based methods as
in Mesgar and Strube (2016) to future work.

4.9.4 Global Training vs. Pairwise Ranking

While CMs that fail the in-domain shuffle task are likely to be unsuitable for
CNN/DM summaries, it is less clear why CMs with reasonable shuffle performance
fail on SummEval like UNF C/D and GRA C/D. We theorize that one reason is that
both UNF and GRA are trained on a margin-based ranking loss between shuffled
and non-shuffled variants of the same document, which implies that both have
the same tokens and number of sentences. The training loss thus does not impose
constraints on the behaviour of the function between inputs of different lengths

13As determined by the Brown Coherence Toolkit. See Appendix C.
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Figure 4.6: Ranking accuracy between shuffled and original sum-
maries of different lengths (in characters). We sample 10,000 pairs
and group them in buckets of 20 characters and clamp differences

between -200 and 200.

and tokens. In contrast, the classification objective of CCL enforces a globally
correct ranking of shuffled vs. unshuffled documents.

Since SummEval, unlike e.g. DUC, has no agreed-upon length constraint,
the assumption of equal document length is problematic. We can easily see this
by considering the length distribution of summarizer outputs on SummEval in
Figure 4.5. There is considerable variance both between summaries of different
summarizers and within summaries of the same summarizer.

Verifying our hypothesis on SummEval directly is difficult since summary length
is deeply confounded with the generating summarizer. However, we can investigate
the ability of CMs to correctly rank documents of different lengths and content
by modifying the shuffle task to compare reference summaries to shuffled variants
of different reference summaries. Figure 4.6 shows the relation between the dif-
ference in length between the shuffled and unshuffled summaries and the ranking
accuracy of the CMs. UNF performs very poorly on the task, especially if the orig-
inal summary is long. GRA, on the other hand, prefers longer documents, even if
they are shuffled. In contrast, CCL is consistently able to correctly rank summaries
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regardless of length difference. Thus, for both UNF and GRA comparing documents
of different lengths and content is a major obstacle. The stability of CCL suggests
that replacing pairwise ranking with a classification objective is a direct fix to this
issue. These results are also consistent with parallel work by Jwalapuram et al.
(2022) who extend the pairwise shuffle task to consider multiple negative exam-
ples. They find that including negative samples from different documents in the
negative set during training improves model performance on downstream tasks.

4.10 Discussion

In this chapter, we have introduced two techniques for improving meta-evaluation:
intra-system correlation and bias matrices. We have employed them to investigate
the performance of a wide array of CMs for summary evaluation that have not
been previously systematically compared.

Our investigations show that CMs must be carefully evaluated in order to avoid
rewarding the modelling of shallow, system-level confounders, that are unlikely to
generalize. Our newly suggested intra-system correlation can be used alongside
other EMs to guard against this. Where correlation unexpectedly drops when going
from system-level to intra-system correlation, our bias matrices provide a visual
inspection tool to identify where high system-level EM scores can be explained
with models being overly biased towards the output of strong summarizers. While
our empirical findings focus on summary coherence modelling as a particularly
interesting quality dimension, the fundamental principles underlying our EMs are
applicable to any meta-evaluation.

Regarding the investigated CMs, our results point towards two lessons for fu-
ture work:

1. CNN/DM summaries are not amenable to entity-based analysis without con-
siderable additional work to improve entity detection.

2. Self-supervised training via the shuffle task shows the greatest promise for
future improvements.
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However, we note that conversely, good shuffle performance does not naturally
transfer to a strong summary coherence measure. We find evidence that the fre-
quent modelling choice of selecting documents with the same length and content
in a pairwise ranking scheme during training prevents models from generalizing
to realistic summary coherence evaluation settings. Training in a classification
setup instead of the more common pairwise setup provides an effective fix for this.
The resulting coherence classifier outperforms all competing models, with the dif-
ference being most notable in our newly introduced intra-system correlation EM.
However, the overall low scores in intra-system correlation show that there re-
mains a considerable need for improvement of the investigated models before they
become practical.
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Chapter 5

Faithfulness Evaluation with NLI
Models

5.1 Motivation

In addition to being well-written and coherent, a good summary must naturally
also correctly reflect the content of the input. As we have alluded to in numerous
places in this thesis, however, language models suffer from a tendency to hallucinate
information (Maynez et al., 2020), resulting in generations that are not faithful to
their input documents. This limits the trustworthiness of such models and raises a
need for automatic faithfulness metrics. In this context, models trained on natural
language inference (NLI) (Bowman et al., 2015) are attractive. In NLI, a classifier
must determine whether a hypothesis is logically entailed by, contradicts with, or
has a neutral relation to a given premise. Intuitively, a generation being faithful
implies it must be entailed by the source (Falke et al., 2019).

However, pure NLI models have seen mixed success in faithfulness evaluation
(Falke et al., 2019; Kryscinski et al., 2020; Wang et al., 2020; Maynez et al.,
2020). While in an evaluation on the TRUE benchmark (Honovich et al., 2022),
which contains datasets from knowledge-grounded dialogue and paraphrasing, in
addition to summarization, NLI-derived metrics perform best overall, they require
impractically large models or costly additional machinery such as question genera-
tion and answering models at inference time, while still showing robustness issues.
This leads us to identify faithfulness as an area that is in need of more cost-efficient
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automatic evaluation. We ask: What is still needed for pure NLI models to per-
form robustly across faithfulness datasets – while remaining cheap enough to serve
as a lean and practical evaluation tool? Since faithfulness is a concern not only in
summarization, we are also going to consider two additional tasks in this chapter:
paraphrasing and knowledge-grounded dialogue.

We enhance a relatively small NLI model to make it work robustly across tasks
in three ways:

Task-Adaptive Data Augmentation. In NLI, a hypothesis must be fully
entailed by its supporting premise, meaning that we cannot accept a hypothesis
as being true if it is only supported by parts of the premise. However, in faithful-
ness, not all parts of the generation always need to be grounded. We identify an
instance of this phenomenon in dialogue where parts of a turn can fulfill commu-
nicative functions such as hedging or establishing emotional connection and are
often disregarded in faithfulness annotation. Hence, when applying NLI models to
complete dialogue turns that may include statements irrelevant for grounding, we
run a risk of producing incorrect unfaithfulness predictions.

To alleviate this issue, we propose a simple data augmentation method to
adapt NLI models to genres where they need to be aware of statements that must
be exempt from NLI-based faithfulness evaluation. Our approach is computation-
ally attractive, as it avoids an increase of cost at inference time.

Integration of NLI Contradiction Scores. Existing NLI faithfulness met-
rics typically use the entailment score for their predictions (Honovich et al., 2022;
Falke et al., 2019; Kryscinski et al., 2020). However, Chen and Eger (2023) show
that subtracting the contradiction score from the entailment score (referred to as
e-c) can improve NLI performance in certain evaluation tasks. We show that there
also is a strong positive effect of e-c for faithfulness prediction and demonstrate
that this is due to a high contradiction probability being a more reliable predictor
of unfaithfulness than low entailment probability.

Monte-Carlo Dropout Inference. Applying NLI models to faithfulness pre-
diction involves a domain shift from largely human-written data to automatically
generated text. To make NLI model scores more robust under this shift, we pro-
pose to use Monte-Carlo dropout during inference (Srivastava et al., 2014). This
essentially creates a cheap ensemble and has been shown to deal better with noisy
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labels (Goel and Chen, 2021). This approach leads to consistent score improve-
ments in our experiments.

The combination of all modifications not only strongly improves over a baseline
NLI model, but also outperforms all other metrics on TRUE, on average, while
being cheaper and smaller.

In sum, we make the following contributions in this chapter:

1. We identify a divergence in the definitions of entailment in NLI and faithful-
ness in some tasks that leads to poor performance of NLI models and propose
a straightforward augmentation method to overcome this issue.

2. We thoroughly investigate the effect of integrating the NLI contradiction
score into a NLI-based faithfulness metric.

3. We propose the use of Monte-Carlo dropout during inference to create an
ad-hoc ensemble for better faithfulness detection.

The work presented in this chapter has previously been published as

Julius Steen et al. (2023). “With a Little Push, NLI Models can Ro-
bustly and Efficiently Predict Faithfulness”. In: Proceedings of the
61st Annual Meeting of the Association for Computational Linguis-
tics (Volume 2: Short Papers). Ed. by Anna Rogers et al. Toronto,
Canada: Association for Computational Linguistics, pp. 914–924. doi:
10.18653/v1/2023.acl-short.79. url: https://aclanthology.

org/2023.acl-short.79.

5.2 Background and Related Work

5.2.1 Faithfulness and Factuality

A summary of a text should generally reproduce the relevant facts of the input
and not add any additional information to the document. Such added facts are
typically called hallucinations and a summary that contains such facts is called
unfaithful (Maynez et al., 2020). It is important to differentiate this from the

https://doi.org/10.18653/v1/2023.acl-short.79
https://aclanthology.org/2023.acl-short.79
https://aclanthology.org/2023.acl-short.79
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truthfulness or factuality of a summary. A hallucination can be factually true, but
if the stated facts are not present in the input, the summary is still considered
unfaithful. It is also conceivable that a summary is faithful but not factual if it
was generated from non-factual input. However, this differentiation is not typically
made in the literature and input documents are assumed to be factual.

A second important distinction is that of intrinsic and extrinsic hallucinations
(Maynez et al., 2020). Intrinsic hallucinations are based on facts in the input doc-
ument but present them in a way that is misleading or incorrect. To illustrate, the
following hypothetical summary of this chapter contains an intrinsic hallucination:

This chapter discusses using paraphrasing to improve NLI models.

All concepts in the summary are present in the introduction section of this
chapter, yet the resulting summary is clearly not accurate.

An extrinsic hallucination, on the other hand, might look like this:

This chapter improves the faithfulness of BART.

Here, BART does not appear at all in this chapter.1 It is an extrinsic halluci-
nation.

Faithfulness as a property of a generation is also applicable beyond summa-
rization. In paraphrasing (Zhang et al., 2019), a paraphrase should not add
any additional information to the paraphrase that is not in the input sentence.
In knowledge-grounded dialogue (Honovich et al., 2021; Dziri et al., 2022),
a system must respond to user queries based on grounding provided to the sys-
tem, e.g. a Wikipedia article. Here, faithfulness is defined with regard to the
grounding document, although as we will show in this section, care must be taken
to identify which parts of a given generation are expected to be grounded in the
input and which are clearly identifiable as conversational fillers. Faithfulness also
plays a role in fact-checking in dialogue (Gupta et al., 2022), where the grounding
is unknown and must be retrieved before verification. Since we do not consider
the task of retrieving grounding in this chapter, we group this task together with
knowledge-grounded dialogue.

1Except, of course, in this example.
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Finally, we note for completeness that the faithfulness problem has also been
studied in the context of machine translation (Weng et al., 2020; Guerreiro et
al., 2023; Xu et al., 2023). However, since input and generation are in different
languages in these settings, this is typically treated as an independent problem.
We thus do not discuss it in more depth here.

5.2.2 Metrics

It has been shown that faithfulness is poorly captured by traditional summarization
metrics, such as ROUGE (Lin, 2004b), which motivates the need for alternative
approaches (Maynez et al., 2020). One attractive approach is to directly learn a
metric that takes a document D and a summary2 S and outputs a corresponding
faithfulness score. However, just as for coherence, where we have discussed this
problem in Chapter 4, training data typically requires extensive human annota-
tion, which makes this naive approach challenging. Analogously to the shuffle task
for coherence, automatic generation of unfaithful outputs has been proposed as a
remedy. Kryscinski et al. (2020) use a set of noising transformations to corrupt
reference summaries. They then train a classifier that discriminates noised and
gold summaries. They call this approach FactCC. A shortcoming of FactCC is
that the noising transformations are limited in the kinds of errors they can intro-
duce and must be manually chosen to be representative of real-world faithfulness
issues. Goyal and Durrett (2020) instead use the bottom beam-search beams of
a paraphrasing model as generations likely to introduce factual errors. By com-
paring these generations to the gold paraphrases, they derive fine-grained error
annotations. They use this to build a fine-grained faithfulness model called depen-
dency arc entailment (DAE), which can determine the faithfulness of individual
dependency arcs, instead of just text snippets.

However, the use of the bottom beam in DAE gives very little control over
the kind of error introduced. To allow for finer control over the negative sam-
ples, some authors have suggested the use of meaning representations, which can

2Most of the metrics discussed here were initially proposed for summarization, so we will use
summary as a general term for the generation we seek to evaluate in this section. All metrics
discussed here naturally generalize to any generation that should be faithful to some grounding.
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be transformed into natural language using a generator. By removing or alter-
ing input representations, one can produce a variety of unfaithful generations for
training. Utama et al. (2022) train a model to generate summaries from OpenIE
predicate-argument tuples. By dropping predicates and arguments during infer-
ence, the model can be forced to hallucinate the missing information. Qiu et al.
(2024) propose an even more fine-grained approach modifying summaries repre-
sented by abstract meaning representation (AMR) (Banarescu et al., 2013) graphs.
By applying rule-based perturbations to the graph and then using an AMR-to-text
model they can generate summaries with known faithfulness issues.

Learning from model-based generations, however, is relatively resource inten-
sive, both for generation and for the subsequently required training. An alternative
is to instead use models and data from data-rich tasks that are semantically close
to faithfulness. A natural candidate here are natural language inference (NLI)
models. NLI (Bowman et al., 2015) is the task of determining whether a hypoth-
esis can be inferred from or is contradicted by a given premise. This is typically
framed as a three-way classification task with the input being premise and hy-
pothesis and the output being either entailment, contradiction, or neutral in case
neither relation holds. Intuitively, for a summary to be faithful to a document, it
must be entailed by the latter, although we will show later that this is not true in
all settings.

While NLI models can be straightforwardly adapted to faithfulness evaluation
by using the entailment probability p(entail|D,S) between a document D and a
summary S as the score, naive application of NLI models has been shown to be
a bad predictor of faithfulness (Falke et al., 2019). Laban et al. (2022) propose
that this is at least partially caused by applying models to the entirety of D and
S. Common NLI training datasets have single-sentence premises and hypotheses.
Even if the premise is longer, as, for example, in the ANLI dataset (Nie et al.,
2020), the hypothesis is still typically a single sentence. This is in contrast to
summarization, where documents and summaries are often multiple sentences long.
Laban et al. propose to instead first decompose D and S into smaller pieces, like
sentences or paragraphs, and then compute pairwise NLI entailment probabilities
Eij between each element di of the document and sj of the summary: Eij =
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p(entail|di, sj). To derive a instance-level score, E can then be reduced in a zero-
shot fashion by a max-mean operation:

SummaCZS =
1

|S|

|S|∑
j=1

max
i
Eij . (5.1)

Given sufficient training data, the mapping of E to a score can also be learned.
Laban et al. propose to first convert E into a histogram H based on a set of m
non-overlapping bins B covering the value range of E:

Hjk =

|D|∑
i=1

1(Eij ∈ Bk) , (5.2)

where 1 is the indicator function. Each row of the histogramHj is then transformed
into a scalar sj by multiplying Hj with a learnable weight matrix Wconv ∈ R1×m:

sj = WconvHj . (5.3)

The learned score, called SummaCconv, is then computed by computing the mean
over all sj.

We can conceptualize SummaC as introducing a decomposition to the input
text and the summary to make it easier to verify the facts in the summary with
those of the input. In SummaC, this decomposition is based on sentence or para-
graph splitting, but there are alternative approaches. Question answering-based
metrics decompose the summary into a set of question/answer pairs. Faithfulness
is determined by comparing the answers an automatic question answering (QA)
model gives based on the summary and based on the input. QAGS (Wang et al.,
2020) and FEQA (Durmus et al., 2020) both implement this approach with mi-
nor variations to the employed model. In both cases, a question generation (QG)
model is run on the summary, with questions focusing on named entities and noun
phrases. Questions are then answered on the input. Since questions have simple
phrases as answers, the answers can be verified using token overlap between input
and summary answers as the final faithfulness score.

Since QG/QA is just a different decomposition of the summary, it can also be
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combined with NLI-based metrics. Q2 (Honovich et al., 2021) does exactly this
by using an NLI model entailment score as the final faithfulness metrics, to allow
for better handling of lexical variation in the answers.

5.2.3 Datasets and Meta Evaluation

Datasets

As discussed in the previous chapter, meta-evaluation is dependent on the avail-
ability of human judgements. The simplest way to elicit faithfulness judgements
is by asking crowd workers if a given text is supported by the input or not (Falke
et al., 2019; Kryscinski et al., 2020; Wang et al., 2020). However, other annotation
procedures have been proposed as well: SummEval (Fabbri et al., 2021b) contains
Likert-scale ratings for summarization faithfulness. Tang et al. (2022) conduct a
comparison of BWS and Likert following our approach in Chapter 3 and find that
both methods are reliable.

However, most recent large-scale faithfulness annotations retain the binary an-
notation method and focus instead on more comprehensive error typologies to aid
annotation and support metric analysis: Notably, Pagnoni et al. (2021) propose a
fine-grained analysis framework that differentiates errors into a total of seven error
types. They group these errors into three overall categories:

Frame-based errors include incorrect predicates, incorrect primary arguments,
and incorrect attributes specifying the circumstance of the described act.

Discourse errors include erroneous or unclear coreference relations and errors
in discourse links.

Verifiability Errors cover cases where the correctness of a sentence cannot be
confirmed either due grammatical errors rendering it unreadable or due to
extrinsic hallucinations.

In work outside of summarization relevant to our task, annotations in dialogue
largely follow the binary paradigm established in summarization (Dziri et al., 2022;
Honovich et al., 2021). For fact verification, Gupta et al. (2022) split the non-
faithful category into two parts: Not enough information and refuted. This is
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owed to the fact that unlike generation tasks, where we know which input was
passed to the generation system, for fact verification, the grounding is a retrieved
set of documents, which may not contain the source of the statement to be verified.

The differences in annotation granularity and annotated domains has led to
efforts to reconcile individual annotation efforts into larger benchmarks. For sum-
marization, AggreFact (Tang et al., 2023) combines a total of nine datasets into
a common format. In this work, we use TRUE (Honovich et al., 2022), which is
a similar effort to standardize annotation into a common format of binary judge-
ments, but across multiple tasks. It contains summarization (Pagnoni et al., 2021;
Maynez et al., 2020; Wang et al., 2020; Fabbri et al., 2021b), knowledge-grounded
dialogue (Honovich et al., 2021; Gupta et al., 2022; Dziri et al., 2022),3 and para-
phrasing (Zhang et al., 2019) datasets.4

Evaluation Metrics

While it is possible to use correlation for faithfulness meta-evaluation, just as
we did for coherence in Chapter 4, the binary nature of most coherence datasets
allows meta-evaluation to also be conducted using standard metrics for binary
classification. A challenge here is the unbalanced nature of the datasets. Laban
et al. (2022) propose the use of balanced accuracy (Brodersen et al., 2010), which
is defined as the average accuracy on the positive and negative classes:

AccB =
1

2

(
TP

TP + FN
+

TN
TN + FP

)
, (5.4)

where TP,TN,FP,FN are true negatives and positives, and false negatives and
positives respectively. Computing true and false negatives and positives requires
a binary output from the metrics under investigation, which most metrics do not
provide out of the box. Laban et al. propose to determine the threshold using
search on the validation set to find the optimal threshold per dataset and measure.

3TRUE uses an earlier variant of the BEGIN dataset of Dziri et al. (2022). The used dataset
is described in https://arxiv.org/pdf/2105.00071v1.pdf.

4TRUE also has a fact-checking part, which was not included in average metric performance.
We also exclude it in this chapter, as our base NLI model was trained on parts of it.

https://arxiv.org/pdf/2105.00071v1.pdf
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As an alternative approach, also common in the evaluation of classifiers, La-
ban et al. propose Area Under the Receiver Operator Characteristic Curve (ROC
AUC), which is also used in the TRUE benchmark. ROC AUC bypasses the need
for threshold tuning by instead summarizing performance across different thresh-
olds in a single value.

ROC AUC (Bradley, 1997) is computed by first determining the namesake
Receiver Operator Characteristic Curve by plotting the true positive rate against
the false positive rate for different choices of the classification threshold and then
computing the integral. The true and false positive rate are defined as

TPR =
TP

TP + FN
, (5.5)

FPR =
FP

TN + FP
. (5.6)

While ROC AUC is appealing for a benchmark dataset, Opitz (2024) argue
that it does not necessarily reflect downstream performance in settings where a
binary decision must ultimately be made. They show that faithfulness metrics can
receive very different rankings under ROC AUC compared to a thresholding-based
evaluation. This requires careful interpretation of the results. In this chapter,
we nevertheless use ROC AUC since we are interested in generally benchmarking
metrics and not in any particular downstream setting.

5.3 Method Details

5.3.1 Task-adaptive Data Augmentation

We now describe our NLI-based faithfulness metric, starting with our task-adaptive
data augmentation. As a motivating example that illustrates that task require-
ments can be incompatible between faithfulness and NLI, consider the following
instance from the Q2 dialogue corpus (Honovich et al., 2021) that is labelled as
faithful:

Grounding: American pancakes are similar to Scotch pancakes or
drop scones.
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Introductory Statements
Here is what I know:

yep. Also
Sure! Here is what I know:

Hedging
I am not sure, but

I am not sure but I do know that
I do not have information on this but

I think
I believe

Sentiment
I love that!
I like that!

Table 5.1: Manually curated list of dialogue phrases.

Generation: yes , i love american pancakes , they are like scotch
pancakes

From an NLI perspective, the generation is clearly not entailed, since the statement
“I love american pancakes” is not supported by the input.

To better prepare an NLI system for such genre- or task-specific cases, we
manually augment NLI data to be invariant to these statements. We hypothesize
that an NLI model that is fine-tuned on such augmented data will learn to ignore
these phrases and to instead evaluate the faithfulness of the factual part of the
statement.

To this end, we curate a small list of statements that should not influence the
faithfulness prediction based on a small manual error analysis. The full list of
our manually curated phrases can be found in Table 5.1. We broadly divide the
phrases into three categories: introductory statements, hedging, and sentiment
statements, to make clear what kind of phenomena we cover. The model is not
provided with the categorization.

We then use our phrases to augment NLI data from the ANLI corpus (Nie
et al., 2020) by adding a randomly chosen phrase from this set to each instance,
while preserving the label. We choose this corpus since it is a challenging NLI
dataset that has multi-sentence premises. The latter is likely to be helpful for
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settings with long grounding, such as the dialogue tasks in TRUE. We then train
an already fine-tuned NLI model on a concatenation of these augmented samples
and original ANLI data. For each instance in ANLI, one random phrase from the
list is prepended to the hypothesis. We use all three rounds of ANLI annotations.
This results in 162,865 augmented instances which, together with the original
ANLI instances, leads to a total of 325,730 training instances. We then train an
already fine-tuned NLI model on a concatenation of these augmented samples and
original ANLI data. We give a full overview of the hyper-parameters and training
setup in Appendix D.

5.3.2 Monte-Carlo Dropout

Dropout (Srivastava et al., 2014) is a method typically applied during the training
of neural networks to avoid overfitting. For a given d-dimensional representation
h ∈ Rd somewhere in a neural network, e.g. the output of a linear layer, dropout
masks, i.e. sets to zero, each dimension of h with a preset probability pd. Usually,
dropout layers are disabled during inference, and h is instead scaled by a factor of

1
1−pd

to ensure the magnitude of h is consistent during training and inference.
In Monte-Carlo dropout, dropout remains enabled during inference and multiple

samples are drawn with different dropout masks. A well-known application of
Monte-Carlo dropout is estimating the uncertainty of neural network predictions
(Gal and Ghahramani, 2016). More interesting for our application, however, is
that we can also average the predictions of the network under different dropout
masks to derive a new prediction. Intuitively, this creates an ad-hoc ensemble by
eliciting predictions from networks with subtly different weights. This increases
robustness to domain shifts (Goel and Chen, 2021), like the one from NLI to
faithfulness data.

To compute scores under Monte-Carlo dropout, we randomly sample k dropout
masks and compute the average of the model predictions. We set k = 15, since
preliminary experiments showed that performance did not profit from additional
samples.
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Corpus Faith. Non. Faith Total
Frank 223 (33.2%) 448 (66.8%) 671
MNBM 255 (10.2%) 2245 (89.8%) 2500
SummEval 1306 (81.6%) 294 (18.4%) 1600
QAGS-X 116 (48.5%) 123 (51.5%) 239
QAGS-C 113 (48.1%) 122 (51.9%) 235
BEGIN 282 (33.7%) 554 (66.3%) 836
DialFact 3341 (38.5%) 5348 (61.5%) 8689
Q2 628 (57.7%) 460 (42.3%) 1088
PAWS 3539 (44.2%) 4461 (55.8%) 8000

Table 5.2: Dataset statistics for all constituent corpora in TRUE.

5.4 Experimental Setup

As discussed in Section 5.2, we run all experiments on the TRUE benchmark.
Following recommendations in TRUE, we evaluate using Area under the ROC
Curve (AUC). We report the number of instances, as well as the class distribution
of TRUE in Table 5.2. As our Base model, we use the DeBERTa-large (He et al.,
2020) model of Laurer et al. (2022), trained on MultiNLI (Williams et al., 2018),
Fever-NLI (Thorne et al., 2018), ANLI (Nie et al., 2020), LingNLI (Parrish et al.,
2021), and WANLI (Liu et al., 2022). The metric All uses all three of our proposed
modifications to Base. We also investigate a variant without MC dropout inference
(-MC) as a more cost-efficient alternative.

We compare to the strongest models reported in the original TRUE benchmark:

• T5 ANLI (Honovich et al., 2022) is a T5-11B (Raffel et al., 2020) model
trained on ANLI.5

• SummacZS (Laban et al., 2022) is the zero-shot variant of Summac discussed
in Section 5.2.

• Q2 (Honovich et al., 2021) combines a question generation/answering pipeline
with an NLI score. We have also discussed Q2 in Section 5.2.

5The base T5 model is also pretrained on GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019), which contains additional NLI data.
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Method Q2 SummacZS T5 ANLI Base -MC All Eorig Eour
Summarization
Frank 85.487.890.0 86.789.191.1 87.389.491.2 83.185.688.0 84.286.6†88.9 85.587.7†89.8 89.491.293.0 89.791.593.2
MNBM 65.668.771.7 68.671.374.1 75.577.980.2 71.774.677.4 70.173.576.6 71.374.577.4 74.076.679.4 73.676.479.2

SummEval 75.978.881.4 79.481.783.9 78.080.583.0 69.672.875.8 72.375.2†78.1 73.276.1†78.8 80.482.985.4 80.383.085.3
QAGS-X 65.570.976.2 73.178.182.9 79.583.888.2 76.981.686.5 77.782.286.8 76.381.185.4 80.484.888.9 79.483.888.0

QAGS-C 79.183.587.9 76.380.985.2 77.582.186.7 68.774.179.3 73.078.4†82.9 73.278.0†82.9 83.587.791.3 83.186.790.3
Dialogue
BEGIN 77.279.782.2 79.282.084.6 80.382.685.1 77.580.482.9 75.778.581.4 76.479.382.3 84.186.288.2 82.184.787.1

DialFact 85.486.186.8 83.384.184.8 76.877.778.6 81.081.8∗82.5 91.391.8∗†x92.3 92.092.5∗†x93.0 89.990.491.0 94.194.5x94.9
Q2 78.880.983.0 74.977.479.7 70.372.775.2 77.579.8∗82.0 87.288.8∗†x90.3 87.889.4∗†x90.9 80.882.884.9 86.888.5x90.1
Paraphrasing
PAWS 89.189.790.3 87.588.288.7 85.786.487.1 87.287.8∗88.4 88.489.0∗†89.6 89.490.0∗†90.5 90.791.291.7 91.892.3x92.8

Avg 79.780.781.7 80.481.482.3 80.681.582.4 78.879.880.8 81.782.7†83.6 82.283.2∗†84.1 85.186.086.8 86.086.8x87.7

Table 5.3: AUC scores for all models on TRUE. Small numbers
indicate 95% CIs computed via bootstrap. ∗ indicates statistically
significant improvement over T5; †: statistically significant improve-
ment over Base; x: statistically significant improvement over Eorig
(p < 0.05, approximate randomization test). Best non-ensemble

models in bold.

Finally, Honovich et al. (2022) introduce a strong ensemble of these 3 methods
(Eorig). To further verify our approach, we construct a new ensemble (Eour) by
replacing T5 with All.

5.5 Results

Table 5.3 shows the AUC scores for each metric. Our model All not only sig-
nificantly improves over Base on six out of nine corpora, but also significantly
outperforms all other competitors on average while being more computationally
efficient.

As expected, we find the biggest gains in dialogue, where the All model even
outperforms Eorig on 2 out of 3 corpora. We do not improve on BEGIN, which is
likely due to bias in the dataset construction, which we elaborate on in Section 5.6.
On the summarization part, All improves significantly over Base on 3 out of 5
corpora, while not significantly harming performance on any corpus. However, it
still falls short of the best models in TRUE. The strong showing of T5 on these
corpora suggests that this might be alleviated with a stronger base model, although
at additional cost.
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Corpus +e-c +MC +Aug.
Frank −0.0+0.3+0.5 +0.1+0.9+1.8 +0.3+1.0+1.7
MNBM −2.1−0.8+0.5 +1.4+2.1+2.9 −0.4+0.0+0.6
SummEval +0.7+1.0+1.3 +0.1+1.2+2.3 +0.6+1.6+2.6
QAGS−X −0.4+0.3+0.9 −1.5−0.2+1.1 −0.3+0.9+2.1
QAGS−C +0.5+1.2+2.0 −1.6−0.1+1.5 +2.2+3.5+5.0
BEGIN −3.0−1.1+0.6 +0.0+0.6+1.3 −1.6−1.0−0.5
DialFact +8.3+9.1+9.9 +1.1+1.3+1.5 +3.1+3.3+3.5
Q2 +5.1+6.5+7.9 −0.4−0.0+0.4 +3.5+4.2+5.0
PAWS +0.3+0.4+0.5 +1.1+1.3+1.4 +0.8+0.9+1.0

Avg +1.6+1.9+2.2 +0.5+0.8+1.1 +1.4+1.6+1.9

Table 5.4: AUC differences for individual modifications of Base.
Small numbers: 95% CIs (bootstrap resampling).

Overall, a very similar behaviour is exhibited by -MC, presenting an attractive
option when the added overhead of multiple samples is undesirable.

Eour is on par with Eorig despite massively reduced costs; it even significantly
outperforms it on two dialogue and the paraphrasing corpora.

We also investigate the performance of each individual modification to our
model Table 5.4. We find all improve average scores, while only leading to a notable
decrease on BEGIN for both e-c and dialogue augmentations and on MNBM for
e-c.

Outside of dialogue, we find that our augmentation method has a positive
impact on PAWS as well as on all summarization corpora that are at least partially
based on summaries for the CNN/DM dataset (Hermann et al., 2015) (Frank,
QAGS-C, and SummEval). We explore potential explanations for this phenomenon
in Section 5.8.

5.6 Effect of Dialogue Adaptation

To better understand the effect of our augmentations, we investigate whether the
improvements via our augmentation approach are indeed due to augmentations
improving the handling of personal statements, as we hypothesized in the begin-
ning.
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Method (BEGIN) Q2 DialFact
T5 (−0.27) −0.40 −0.13
Base (−0.28) −0.32 −0.10
All (−0.19) −0.19 +0.04
Gold Label (−0.35) −0.03 +0.05

Table 5.5: Kendall’s τ correlations of gold labels/system scores
with first-person pronoun occurrence. BEGIN shows a strong neg-
ative correlation which we attribute to model-induced dataset bias.

We use the occurrences of the pronoun I in a generation as a proxy measure6

and compute its correlation with human labels and metrics (see Table 5.5). On
all three datasets, our proxy measure, while uncorrelated with human labels, has
a negative correlation with the scores of both Base and T5. This indicates these
metrics indeed tend to reject generations with personal statements. All on the
other hand reduces this dependency.

Our results also help explain why All fails to improve on BEGIN, since BEGIN
gold labels are negatively correlated with first-person pronouns. Since there is
nothing in the annotation guidelines that would explain this correlation, we instead
hypothesize that this is the consequence of a model-induced bias in the data.
Specifically, we hypothesize that one of the two models in BEGIN is (1) more likely
to generate personal statements and (2) less likely to generate faithful responses.

To avoid confusion in the remainder of this section, we highlight that there are
two variants of BEGIN:

BEGIN-v1 is the variant used in TRUE. It contains labeled generations by a fine-
tuned GPT-2 base (Radford et al., 2019) and a fine-tuned T5 base model
(Raffel et al., 2020) on the Wizard of Wikipedia dataset (Dinan et al., 2019).7

BEGIN-v2 is a more recent variant of BEGIN that is not part of TRUE. In
addition to new instances generated by T5 and GPT-2, it contains outputs
from two additional models. It also has a revised annotation procedure.

6We use spacy (spacy.io) for POS tagging to identify pronouns.
7The relevant data can be found at https://raw.githubusercontent.com/google/BEGIN-

dataset/5fa0cb0dde0e653d2016724a52a5ca27fe8b6a3f/dev_05_24_21.tsv.

spacy.io
https://raw.githubusercontent.com/google/BEGIN-dataset/5fa0cb0dde0e653d2016724a52a5ca27fe8b6a3f/dev_05_24_21.tsv
https://raw.githubusercontent.com/google/BEGIN-dataset/5fa0cb0dde0e653d2016724a52a5ca27fe8b6a3f/dev_05_24_21.tsv
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When we refer to BEGIN-v2, we exclusively mean the Wizard of Wikipedia
subset.

Unfortunately, BEGIN-v1 does not allow us to retrieve which model generated
which instance. This makes it impossible to investigate for model bias directly.
However, BEGIN-v2 includes outputs by the same two models, fine-tuned on the
same data. Since we only need corpus-level statistics to check our hypotheses, we
conduct our analysis on the GPT-2 and T5 instances in BEGIN-v2, which are the
two models included in v1.

To verify (1), we compute the correlation between a binary variable indicating
which model generated each instance (T5: 0, GPT-2: 1) and first-person pronoun
occurrence. We find a positive correlation (Kendall’s τ wrt. to I -pronoun occur-
rence: 0.18, p < 0.001), indicating that GPT-2 generates outputs including more
first-person pronouns.

To investigate whether GPT-2 is also more likely to be unfaithful, i.e. to verify
(2), we compute the correlation between the binary model indicator variable and a
faithfulness variable that is 1 when the output is labelled as Fully attributable and 0
otherwise. We find a negative correlation (Kendall’s τ wrt. to Faithfulness: −0.25,
p < 0.001), supporting our hypothesis that GPT-2 is also overall less faithful. To
ensure that this is not an effect of additional personal statements leading to more
unfaithful generations, we conduct the same analysis only on instances where we
identify no first-person pronouns. We find a similarly strong negative correlation
of −0.29 (p < 0.001).

Our analysis shows that GPT-2 produces both overall less faithful outputs
and more first-person pronouns than T5. Since BEGIN-v1 contains only outputs
from T5 and GPT-2 this suggests that the root cause for the negative correlation
between faithfulness label and first-person pronoun occurrence in BEGIN-v1 is
model bias confounding faithfulness and first-person pronoun occurrence.

In conducting our experiments, we observe that BEGIN-v2 has a similar bias,
which might impact future evaluations. Since this is not directly relevant to our
results, we defer a discussion of this to Appendix E.
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w/ Five Augmentations No Aug.
Dataset Avg. Std. Min Max Avg.
Frank 86.7−1.0 0.4 85.8 87.6 86.2
MBNM 74.4−0.1 0.4 73.7 74.9 75.1
SummEval 75.2−0.9 0.5 74.5 76.0 74.3
QAGS−X 81.6+0.5 0.5 80.8 82.4 80.7
QAGS−C 76.4−1.6 0.8 74.7 77.9 75.2
DialFact 92.1−0.4 0.2 91.5 92.3 91.2
BEGIN 79.6+0.3 0.5 79.0 80.6 80.9
Q2 88.8−0.6 0.3 88.1 89.2 86.3
PAWS 89.7−0.3 0.1 89.5 90.0 89.3
Avg. 82.7−0.5 0.2 82.3 82.9 82.1

Table 5.6: Results of our phrase selection robustness analysis.
For each run, we sample five phrases, recreate our dataset, and
retrain our model. We repeat this process ten times and report the
average, as well as the standard deviation, minimum, and maximum
scores of the runs. Small numbers indicate difference to the original
scores. All results were computed using e-c and MC dropout. For
better comparison, we also report the scores of a model without
any augmentation (i.e. without any additional training) with e-c

and MC dropout.

5.7 Phrase Selection Robustness

To ensure that our augmentation is robust and not overly reliant on any particular
choice of phrases, we repeat our dataset augmentation process multiple times with
five randomly chosen augmentation phrases out of the original ten. We sample
ten such datasets and retrain our model for each. Table 5.6 shows the average
score, minimum, and maximum score, as well as the standard deviation of the
scores. We also report results of a model with both MC dropout and e-c but
without any additional training and augmentations to directly quantify whether
the augmentations are still helpful in their reduced form. This corresponds to
applying MC dropout and e-c to Base.

As expected, we find that reducing the variety of available phrases leads to
a drop in performance across almost all datasets compared to All. The only
exception is BEGIN, where we instead see a slight improvement. This is likely to
be related to the construction of BEGIN (see the discussion in Section 5.6).

When comparing our limited augmentation models to the non-augmented model,
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Statements Original
The woman is hungry. Here is what I know:

Canada is in North America. yep. Also
The crocodile eats a man. Sure! Here is what I know:

You should apply sunscreen before going out. I am not sure, but
Baldness means not having any hair. I am not sure but I do know that

The boy swims in the lake. I do not have information on this but
The skyscraper has many windows. I think

The cellar is below the house. I believe
The cost of living has been rising. I love that!

Neural networks are useful for NLP. I like that!

Table 5.7: Statement augmentation phrases. For comparison, we
also repeat the original phrases from Table 5.1.

we find that they still outperform the non-augmented model in almost all cases.
In particular for Q2 and DialFact, for which we expect the strongest impact of
our augmentations, we find that even the worst run still outperforms the non-
augmented model. This suggests that our augmentations can robustly adapt the
model to the dialogue tasks.

Finally, we observe a relatively large drop in scores for all datasets that are (at
least partially) derived from CNN/DM (Frank, SummEval, and QAGS-C). This
mirrors our earlier observation in Section 5.5 that these datasets profit from our
augmentation procedure.

5.8 Phrase Ablation Experiments

To better understand why our augmentations also lead to improvements on some
non-dialogue datasets, we conduct several ablation experiments:

1. We replace our original dialogue augmentation phrases (Orig.) with random
statements that have no relation to the original phrases at all (Stmt.). We
list these alternative augmentation phrases in Table 5.7. We deliberately
choose to hand-craft augmentations so the process is similar to the creation
of our original augmentations.
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2. We vary the position of our phrases by appending them to the end of the
hypothesis, instead of prepending them to the beginning.

3. We test the effect of training only on ANLI, without any further augmenta-
tions. While the underlying model was already trained on ANLI as part of
a mixture of different datasets, this tests whether the improvements are due
to continued training particularly on ANLI.

To reduce the noise in augmentation effects introduced by different training
seeds, we start 15 independent training runs for Stmt. and ANLI. We set the
number of training steps to 2,500 to lower the computational demand of our ex-
periments but otherwise reuse hyper-parameter settings from the full run. We also
train 15 new Orig. models under these settings for better comparability.

Results

We show the average AUC of the runs in Table 5.8.
Starting with the dialogue corpora, we find that our original augmentations

outperform all other settings on Q2 and DialFact, but not on BEGIN. This is
consistent with our observation in Section 5.6 that evaluation on BEGIN suffers
from confounding factors. ANLI does not to lead to any improvement over Base,
demonstrating that improvements are not just a consequence of continued training
on instances from this corpus.

In the append setting, both augmentations suffer from reduced performance.
However, Orig. still achieves the highest scores. This suggests that both the content
and the position of the augmentations contribute to the model adapting to the
dialogue corpora. This also helps explain why Stmt. performs much better than
ANLI/Base in the prepend setting. Finally, Stmt. under the append setting also
shows some degree of improvement over Base/ANLI. We attribute this to the
models learning to more generally ignore unfaithful content in the generations at
any position.

On the five summarization corpora, we find that Stmt. always performs best.
However, for both MNBM and QAGS-X the improvement over either training on
ANLI without augmentations or Base is relatively minor in the face of the large
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Corpus Orig. Stmt. ANLI Base
Frank 83.386.088.7 83.886.789.4 82.685.688.3 85.6
MNBM 71.374.778.3 71.074.877.9 70.574.277.4 74.6
SummEval 70.273.877.3 71.474.878.0 69.473.076.6 72.9
QAGS-X 76.681.987.3 76.682.287.3 76.282.087.0 81.6
QAGS-C 70.476.982.6 70.977.083.2 68.874.880.9 74.1
BEGIN 75.979.382.4 77.080.283.7 77.380.483.4 80.4
DialFact 85.185.986.6 83.784.585.3 81.081.982.8 81.8
Q2 82.084.586.5 79.782.484.7 77.179.782.2 79.8
PAWS 88.088.789.4 87.788.489.1 87.287.988.7 87.8
Avg. 80.181.382.6 79.981.282.4 78.879.981.2 79.8

(a) Results for preprended augmentations, ANLI without augmentations, and the Base scores
for reference.

Corpus Orig. App. Stmt. App.
Frank 82.685.688.3 82.385.488.2

MNBM 71.074.677.8 71.174.778.1

SummEval 69.372.876.3 68.872.275.4

QAGS-X 76.381.887.0 75.481.186.0

QAGS-C 68.674.980.8 67.073.779.6

BEGIN 75.879.282.5 76.479.883.1

DialFact 84.485.386.1 82.783.684.4

Q2 80.883.185.6 78.180.683.1

PAWS 87.688.389.1 87.388.188.8

Avg. 79.480.681.8 78.779.981.1

(b) Results for all augmentations in the append setting.

Table 5.8: Average AUC over 15 different runs of ablation ex-
periments with different original and alternative augmentations for
the append and prepend setting. We report e scores for all cor-
pora without MC. We compare our original (Orig.) and statement
(Stmt.) augmentations. For both augmentation sets, we also test
a variant where we append the phrases to the end of the hypoth-
esis (App.), instead of prepending them as in our original training
runs. Additionally, we test the same training setup on ANLI with-
out any augmentation (ANLI). For reference, we also list the results
of Base. CIs are determined using bootstrap resampling over runs
and instances, except for Base where we do not give CIs since it is

the result of a single run.
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uncertainty of our score estimates (no more than 0.2 points). This matches with
our observation that our original augmentations do not consistently help on these
corpora under resampling of Orig. phrases (see Section 5.7). We thus focus our
discussion on Frank, SummEval, and QAGS-C, where improvements are larger.
We speculate that the better performance of Stmt. on these corpora is caused by
the longer augmentations in this set, making the training data more similar to the
multi-sentence CNN/DM summaries.

Finally, we observe a consistent improvement for all augmentation settings on
PAWS.

Analysis

While the behavior on the dialogue corpora is in line with our expectations, the
behavior on Frank, SummEval, QAGS-C, and PAWS is more difficult to interpret.
We thus further investigate the effect of our augmentations by computing the av-
erage shift in entailment scores between the models fine-tuned on ANLI without
augmentations and with our four augmentation strategies in Table 5.9. We find
two distinct patterns: For dialogue corpora, scores increase for both faithful and
unfaithful instances. The improvement in performance is a result of scores for
faithful instances growing more than those of unfaithful ones. This is again con-
sistent with the intended effect of our augmentations: Model predictions become
less restrictive since otherwise non-entailed instances are now correctly classified as
faithful. However, for the remaining corpora, the models usually become more re-
strictive in their entailment predictions, both for positive and negative instances.
The only exception here is MNBM, where we see a consistent positive shift in
scores for faithful instances.

For PAWS, which is a dataset where input and generation deliberately have a
high lexical overlap, we speculate that this increased strictness is caused by mod-
els better identifying high-overlap unfaithful instances. It is well known that NLI
models often assign higher entailment scores to instances with high lexical overlap
between hypothesis and premise (Naik et al., 2018; McCoy et al., 2019). Training
with artificially decreased overlap between premise and hypothesis might help re-
duce this bias. Unfortunately, we cannot directly test this hypothesis on PAWS,
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Corpus Orig. Orig. App. Stmt. Stmt. App.

Frank − −0.026 −0.015 −0.015 −0.026
+ +0.003 −0.000 +0.011 −0.010

MNBM − −0.002 −0.011 +0.025 −0.001
+ +0.017 +0.001 +0.043 +0.012

SummEval − −0.049 −0.022 −0.038 −0.041
+ −0.007 −0.006 −0.001 −0.021

QAGS-X − −0.014 −0.013 +0.000 −0.009
+ −0.010 −0.004 −0.005 −0.007

QAGS-C − −0.049 −0.023 −0.028 −0.038
+ −0.006 −0.008 +0.023 −0.033

BEGIN − +0.044 +0.028 +0.019 +0.006
+ +0.041 +0.031 +0.015 −0.003

DialFact − +0.004 +0.003 +0.004 +0.002
+ +0.094 +0.063 +0.069 +0.022

Q2 − +0.054 +0.037 +0.025 +0.008
+ +0.155 +0.111 +0.082 +0.030

PAWS − −0.021 −0.014 −0.009 −0.023
+ −0.005 −0.004 −0.005 −0.013

Table 5.9: Average changes in entailment-only score (e) of mod-
els trained with different augmentations relative to the ANLI-only
models. We show changes for the original (Orig.) and statement
(Stmt.) augmentations. We also give changes under the append
(App.) setting. We report changes on faithful (+) and unfaithful
(−) instances separately. Results show two distinct patterns: For
dialogue corpora, augmentations increase the entailment score for
faithful instances. On most of the remaining corpora, scores for
both faithful and unfaithful instances are lower, but the decrease is

larger for non-faithful instances.
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Corpus Orig. Orig. App. Stmt. Stmt. App. ANLI Label
Frank − 0.479∗ 0.498∗ 0.476∗ 0.478∗ 0.519 0.484Frank + 0.372 0.377 0.345 0.335∗ 0.372
SummEval − 0.352∗ 0.353∗ 0.341∗ 0.315∗ 0.407 0.329SummEval + 0.138 0.115∗ 0.138 0.097∗ 0.134
QAGS-C − 0.092 0.116 0.088 0.108 0.125 0.232QAGS-C + 0.097 0.117 0.101 0.068 0.106

Table 5.10: Correlations of token overlap between generation and
grounding with model predictions for Orig. Stmt. and ANLI on
CNN/DM derived corpora. We separately compute correlations for
faithful (+) and unfaithful (−) instances to ensure results are not
confounded by the correlation of label and overlap. For reference,
we also report the correlation between the gold faithfulness label
(where 0 means unfaithful) and the overlap. ∗ indicates significantly

lower correlation than ANLI (p < 0.05, Williams test).

since the dataset is carefully constructed so all instances have high overlap. As a
proxy, we instead compute the correlation of predicted scores and overlap on the
three CNN/DM datasets, where the variance in overlap is larger. We compute
overlap as the percentage of tokens in the generation that are also found in the
input. We test for significant difference of the correlations for ANLI and the aug-
mentation settings using the Williams test for dependent correlations (Williams,
1959).

The Williams test allows us to test whether the correlation r12 between some
observations X1 and X2 is greater than the correlation r13 between observations
X1 and X3. For correlations on a dataset with n instances, the Williams test
computes a t-value for a t-distribution with n− 3 degrees of freedom:

t =
(r12 − r13)

√
(n− 1)(1 + r23)√

2K n−1
n−3 +

(r13+r12)2

4
(1− r23)3

, (5.7)

K = 1− r212 − r213 − r223 + 2r12r13r23 , (5.8)

where r23 is the correlation between X2 and X3.
In our case, X1 are the overlaps and X2, X3 are the scores for ANLI and the

augmented model in question, respectively.
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Table 5.10 shows that overlap and score are highly correlated for ANLI, espe-
cially for unfaithful instances. All augmentation settings reduce this correlation.
This supports our hypothesis that the models learn to be more robust to high over-
lap in unfaithful instances, which plausibly explains the improvement of scores on
PAWS. This is also congruent with findings of Liu et al. (2019a) on the influence
of word overlap on NLI models. They investigate the behavior of NLI models on
challenge sets designed to detect weaknesses in NLI models (Naik et al., 2018). In
one of these challenge sets, the phrase “true is true” is appended to the hypothesis
during inference. This reduces the overlap of hypothesis and premise and often
leads to a decrease in model performance. Liu et al. (2019a) show that this effect
can be eliminated by training on NLI data that has undergone the same transfor-
mation. This is similar to the effect we attribute to our augmentations. However,
unlike the setting of Liu et al., where training and test data are transformed in the
exact same way, our results suggest that the effect generalizes beyond the original
phrases.

While we find the above explanation satisfactory for PAWS, robustness to word
overlap does not adequately explain the performance on Frank, SummEval, and
QAGS-C themselves for two reasons:

1. Overlap is confounded with faithfulness on these corpora (see Table 5.10),
so removing the overlap heuristic from models should not necessarily lead to
better performance.

2. Both the append and the prepend setting lead to similar reductions of overlap
bias, yet only the prepend setting leads to an increase in scores.

For these corpora, we thus propose a second hypothesis: The prepended aug-
mentations help the models perform better when faithfulness errors occur at later
positions in the summary and not in the beginning. As discussed in Section 5.2.2,
NLI models are typically trained on short hypotheses. However, summaries on
CNN/DM data are typically multiple sentences long, which might make it diffi-
cult for NLI models to detect errors late in the generation. We speculate that
our prepended augmentations counteract this by requiring the model to pay more
attention to later positions of the input during training.
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Corpus Orig. Orig. App. Stmt. Stmt. App. ANLI
Frank 0.394∗ 0.415∗ 0.392∗ 0.406∗ 0.429
QAGS-C 0.157 0.166 0.157 0.179 0.183

Table 5.11: Correlations of the position of the first error and
model scores on negative instances for all augmentation settings
and ANLI. ∗ indicates significantly lower correlation than ANLI

(p < 0.05, Williams test).

To test this, we make use of the fact that both FRANK and QAGS-C have
faithfulness annotations at the sentence level. For each unfaithful summary, we
identify the first sentence that is labelled as unfaithful. We then compute the
correlation between predicted scores and the position (in characters) of the first
unfaithful sentence.

Results in Table 5.11 show that, for ANLI-only training, instances that have
an error later in the generation tend to receive a higher score. All augmentations
reduce this dependence, but for prepended augmentations, the effect is larger in
both cases. This suggests that models become better at identifying errors late in
the summaries due to the augmentations.

In sum, our results suggest that our augmentations help reduce biases in the
NLI model that make it harder for it to generalize to faithfulness tasks with long
generations and high overlap between grounding and generation.

5.9 Effect of Integrating Contradiction Scores

To isolate the effect of e-c, we compare score distributions of Base and Base+e-c
in Figure 5.1. The left-hand side of the figure shows that in Base ∼2700 faithful
instances are predicted as non-entailed (i.e., e-score near 0), which implies they are
labelled as contradictory or neutral. e-c, on the other hand, further differentiates
these instances into instances with high contradiction (negative e-c score) and
high neutral probability (e-c score near 0). We observe that almost all low-scoring
faithful generations are classified as neutral, whereas nearly all instances that
are classified as contradictory are indeed unfaithful. Where Base has no way to
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Figure 5.1: Histogram of the score distributions with and without
e-c for faithful and non-faithful instances.

make use of this information, e-c allows to reliably label contradictory instances
as unfaithful.

5.10 Bias Analysis

Following our discussion about system-level confounders in Chapter 4, an obvi-
ous question is whether these are also a concern in the TRUE benchmark. The
aggregate nature of the dataset reduces the danger of a small number of easy sys-
tem comparisons confounding overall results, but there is a risk of any individual
dataset being biased in this way.

While we have developed our meta-evaluation metrics in the correlation setting,
they are easily transferable to a binary evaluation under ROC AUC. Instead of
system-level correlation, we can simply compute system-level ROC AUC following
the same general procedure. The applicability of our bias matrices to ROC AUC-
based evaluation is much less apparent. However, it is well-known that the ROC
AUC score corresponds to the probability that the metric assigns a higher score to
a positive instance than to a negative instance (Fawcett, 2006). This corresponds
exactly to what our bias matrices visualize.
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MNBM Frank Q2 SummEval
Model Or. Int. Or. Int. Or. Int. Or. Int.
Q2 0.69 0.68 0.88 0.72 0.81 0.80 0.79 0.70
SummacZS 0.71 0.72 0.89 0.74 0.77 0.76 0.82 0.71
T5 ANLI 0.78 0.77 0.89 0.76 0.73 0.73 0.80 0.69
All (Ours) 0.75 0.74 0.88 0.75 0.89 0.89 0.76 0.61

Table 5.12: Original (i.e. instance-level, Or.) and intra-system
Int. ROC AUC scores for the four datasets where model infor-
mation is available. We find that for Frank and SummEval scores
drop considerably between the two settings. MNBM and Q2, where

model performance is more even, are less affected.

Unfortunately, only four of the datasets in TRUE contain information about
which model generated which output: Frank, MNBM, SummEval, and Q2. We
can thus only conduct this analysis for these four datasets. We report intra-system
ROC AUC score in Table 5.12 and construct matrices in Figure 5.2. For BEGIN,
we have established the presence of a system-level confounder in Section 5.6 using
corpus-level statistics, but without model information at the instance level, we
cannot include it in this more fine-grained analysis.

Our bias matrices in Figure 5.2 show little evidence of system-level confounders
leading to inflated scores. The only exception is a minor bias towards gold sum-
maries in all metrics except SummacZS, indicating these metrics struggle to iden-
tify non-faithful gold instances. However, the plots show a weakness of both Frank
and SummEval: In almost all cases the datasets are dominated by the more faithful
models with almost all pairwise rankings being consistent. This makes potential
system-level confounders difficult to detect. ROC AUC scores on these datasets
might not actually measure performance at detecting hallucinations in stronger
models.

This is also reflected in intra-system AUC scores in Table 5.12. Where Q2 and
MNBM both have very similar intra-system AUC and instance-level AUC, scores
on Frank and SummEval drop dramatically under the intra-system paradigm. This
suggests scores on these datasets are inflated by the high prevalence of easy-to-
rank instances. Encouragingly, the ranking between the individual metrics stays
consistent between the two settings. This suggests that none of the available



5.10. Bias Analysis 147
Go

ld

BE
RT

S2
S

Pt
Ge

n

Tr
an

S2
S

TC
on

vS
2S

TConvS2S

TranS2S

PtGen

BERTS2S

Gold

Q2

MNBM

PG
N 

C

BA
RT

 C

BE
RT

 C

BU
S 

C

S2
S 

C

BE
RT

S2
S 

X

TC
on

vS
2S

 X

PG
N 

X

Tr
an

S2
S 

X

TranS2S X

PGN X

TConvS2S X

BERTS2S X

S2S C

BUS C

BERT C

BART C

PGN C

Frank

do
de

ca

m
em

ne
t

memnet

dodeca

Q2

M
5

M
2

M
0

M
22

M
12 M

1
M

15
M

17
M

23
M

13
M

14 M
8

M
9

M
10

M
20

M
11

M11
M20
M10

M9
M8

M14
M13
M23
M17
M15

M1
M12
M22

M0
M2
M5

SummEval

Go
ld

BE
RT

S2
S

Pt
Ge

n

Tr
an

S2
S

TC
on

vS
2S

TConvS2S

TranS2S

PtGen

BERTS2S

Gold

Su
m

m
ac

ZS

PG
N 

C

BA
RT

 C

BE
RT

 C

BU
S 

C

S2
S 

C

BE
RT

S2
S 

X

TC
on

vS
2S

 X

PG
N 

X

Tr
an

S2
S 

X

TranS2S X

PGN X

TConvS2S X

BERTS2S X

S2S C

BUS C

BERT C

BART C

PGN C

do
de

ca

m
em

ne
t

memnet

dodeca

M
5

M
2

M
0

M
22

M
12 M

1
M

15
M

17
M

23
M

13
M

14 M
8

M
9

M
10

M
20

M
11

M11
M20
M10

M9
M8

M14
M13
M23
M17
M15

M1
M12
M22

M0
M2
M5

Go
ld

BE
RT

S2
S

Pt
Ge

n

Tr
an

S2
S

TC
on

vS
2S

TConvS2S

TranS2S

PtGen

BERTS2S

Gold

T5
 A

NL
I

PG
N 

C

BA
RT

 C

BE
RT

 C

BU
S 

C

S2
S 

C

BE
RT

S2
S 

X

TC
on

vS
2S

 X

PG
N 

X

Tr
an

S2
S 

X

TranS2S X

PGN X

TConvS2S X

BERTS2S X

S2S C

BUS C

BERT C

BART C

PGN C

do
de

ca

m
em

ne
t

memnet

dodeca

M
5

M
2

M
0

M
22

M
12 M

1
M

15
M

17
M

23
M

13
M

14 M
8

M
9

M
10

M
20

M
11

M11
M20
M10

M9
M8

M14
M13
M23
M17
M15

M1
M12
M22

M0
M2
M5

Go
ld

BE
RT

S2
S

Pt
Ge

n

Tr
an

S2
S

TC
on

vS
2S

TConvS2S

TranS2S

PtGen

BERTS2S

Gold

Al
l (

Ou
rs

)

PG
N 

C

BA
RT

 C

BE
RT

 C

BU
S 

C

S2
S 

C

BE
RT

S2
S 

X

TC
on

vS
2S

 X

PG
N 

X

Tr
an

S2
S 

X

TranS2S X

PGN X

TConvS2S X

BERTS2S X

S2S C

BUS C

BERT C

BART C

PGN C

do
de

ca

m
em

ne
t

memnet

dodeca

M
5

M
2

M
0

M
22

M
12 M

1
M

15
M

17
M

23
M

13
M

14 M
8

M
9

M
10

M
20

M
11

M11
M20
M10

M9
M8

M14
M13
M23
M17
M15

M1
M12
M22

M0
M2
M5

Figure 5.2: Bias matrices for our best-performing model (All) and
three top competitors on TRUE. We can only create bias matrices
for four out of the nine datasets we study, since other datasets either
have all generations created by the same model/process or do not

provide information about the generating model.
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Method AUC↑ Param·106↓ Model calls↓
SummacZS 80.7 355 #snt×#snt
T5 ANLI 81.5 11,000 1
Q2 81.4 220 + 355 + 355 #Q × (Ql + 2)
-MC 82.7 350 1
All 83.2 350 15

Table 5.13: Performance vs. cost analysis.

metrics disproportionally exploits system-level confounders.

5.11 Cost Comparison to Other Approaches

A particular concern of this thesis is the cost-efficiency of our approaches. We
have discussed this at length for human evaluation in Chapter 3. However, cost-
efficiency naturally also applies to automatic evaluation. In addition to researchers
requiring fast turnaround for evaluation results, there is also an increasing aware-
ness of the resource-hungriness of deep learning (Strubell et al., 2019). Especially
for faithfulness, cheap and reliable metrics are critical given rising demands for
natural language generation in research and industry. Table 5.13 shows that our
metric requires fewer parameters than any other metric, including a more than
30x reduction compared to T5. During inference, our metric always requires a
constant number of calls which can be reduced to a single call when ablating MC
dropout. On the other hand, the number of calls in SummacZS scales with the
number of input and output sentences. Q2 needs to generate questions by calling
an auto-regressive QG model n times, where n factors in the amount and length
of questions (#Q×Ql), answer #Q questions with the QA model and finally check
#Q answers with an NLI model (#Q × 2).

In sum, our metric compares favourably with other approaches, while also
allowing for a performance/cost tradeoff by forgoing MC dropout.

5.12 Discussion

We have demonstrated that with a small number of focused adaptations, even a
relatively small NLI model can robustly predict faithfulness in a diverse set of
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domains.
On the model side, we find, consistent with prior work, that e-c scoring leads

to a strong overall improvement in faithfulness classification with almost zero ad-
ditional cost. Our analysis reveals that this can largely be attributed to the very
high accuracy of the contradiction class for predicting unfaithfulness. Addition-
ally, we find that using Monte-Carlo dropout during inference further provides a
consistent improvement on the TRUE benchmark. This is especially interesting,
since it provides a dynamic trade-off between a more cost-efficient and a more
accurate evaluation, depending on available resources.

On the data side, we find a subtle divergence in the definition of faithfulness in
the dialogue domain and NLI in the form of phrases which primarily fulfill commu-
nicative functions other than transmitting facts, such as greetings or statements
of opinion. Since these are naturally not entailed by the input, vanilla NLI models
cannot correctly label such instances. Our experiments show that we can robustly
adapt a model to be invariant to such phrases using a small set of augmentation
phrases and limited finetuning.

We can interpret these findings from two perspectives: From a modelling per-
spective, our results show that such differences can be remedied using our task
adaptive data augmentation method. This suggests that cases of divergence be-
tween original training data and downstream tasks can be remedied using a cost-
efficient training procedure.

Looking at this phenomenon from an evaluation perspective, however, we might
also consider the presence of these phrases, and thus the success of our adaptation
procedure, as the result of the presence of confounders in TRUE. As a benchmark,
TRUE is designed to test the ability of models as generic faithfulness evaluators.
The presence of domain-specific differences in the definition of faithfulness across
the constituent corpora is not apparent without inspection of the data. While our
model makes it transparent that improvements in overall score due to our augmen-
tations are a result of the presence of these “confounding” phrases, other models
might unintentionally similarly better handle these cases without being necessarily
better at determining the faithfulness of the factual part of the response. Conclu-
sions drawn from TRUE in these domains or from the overall average score might
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thus not generalize to tasks where these phrases are not present or might be con-
sidered unfaithful generations. This mirrors a repeat theme in this thesis: Careful
inspection of evaluation data to detect the presence of confounding variables is an
indispensable part of thorough evaluation.

Finally, we also find that our augmentations are helpful on summarization and
paraphrasing corpora. Our analysis shows that this is an effect of them improving
robustness to high overlap and to errors late in the generation. While the gains
from these improvements are lower than those that we can attribute to the task
adaption, they show that our augmented model can be used as a cost-efficient
faithfulness metric on summarization and paraphrasing data as well.
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Chapter 6

Social Bias Evaluation

6.1 Motivation

So far we have focused on developing and improving methods for studying well-
established quality dimensions in text summarization. However, just like faithful-
ness has arisen as a new quality dimension during the shift from mostly extractive
to abstractive summarization systems, it stands to reason that with further im-
provement of summarizer capabilities, other new quality dimensions gain impor-
tance. In the final contribution of this thesis, we will introduce social biases1 in
summarizers as one such new important quality dimension.

Biases have long been observed in natural language processing tools. In one of
the earliest works in this area, Bolukbasi et al. (2016) discover that (uncontextu-
alized) word embeddings reproduce social stereotypes. They construct analogies
within the word embedding space by computing the differences between word
embeddings. They find that in word2vec embeddings (Mikolov et al., 2013) the
difference vector of the representations for man and doctor, for example, is very
similar to the difference vector of woman and nurse. In a distinction that is analo-
gous to that of intrinsic and extrinsic evaluation, this observation is fundamentally
intrinsic in that it measures a property of the embeddings, not a downstream effect
on an application. In other words, it is unclear which harms are actually caused
by the application of these models.

Subsequent work has thus put a focus on measuring the extrinsic effect of
these biases in downstream applications, like coreference resolution (Rudinger et

1When we refer to bias in the remainder of this chapter, we always mean social biases.
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Roger Levin was named vice president and chief
economist of this commodity futures and options
exchange. He had been associate professor in the
department of finance at Seton Hall University.

Melissa Levin was named vice president and chief
economist of this commodity futures and options
exchange. She had been associate professor in
the department of finance at Seton Hall University

The Chicago Mercantile
Exchange (CME) has
appointed a new chief
economist.

The Chicago Mercantile
Exchange (CME) has
appointed its first
female executive.

1. Swap apparent gender of entities

Original Document

Summarizer Input Summaries

2. Summarize 3. Observe differences

Jeffrey E. Levin was named vice president and chief
economist of this commodity futures and options

exchange. He had been associate professor in the
department of finance at Seton Hall University.

Figure 6.1: Schematic overview of our approach for summary gen-
der bias evaluation with an example generated by BART XSum
(Lewis et al., 2020). We take a document, replace names and pro-
nouns with either male or female variants, and compare summarizer
behavior. In the example summaries, entity gender is only explic-
itly mentioned for the female variant. The summarizer hallucinates

that Melissa Levin is the first female executive of the company.

al., 2018), dialogue (Dinan et al., 2020), text completion (Sheng et al., 2019),
question answering (Parrish et al., 2022), or the generation of personas (Cheng et
al., 2023). However, often these biases are studied in settings where model inputs
are specifically crafted to reveal social biases (Rudinger et al., 2018; Sheng et al.,
2019; Parrish et al., 2022; Cheng et al., 2023). Biases are also often observed in
relatively unconstrained settings, where models have a large output space to select
from (Sheng et al., 2019; Cheng et al., 2023).

Summarization, on the other hand, is a constrained task in that a summarizer
is expected to reproduce parts of the input. This limits the facts a summarizer can
work with and might thus reduce the impact of biases acquired during training. As
we will discuss in Section 6.2, however, bias in (news) summarization specifically
has thus far received only very limited attention. It is unclear to which extent this
task is affected by biases in the models underlying recent summarizers. Integrat-
ing a bias metric in text summarization evaluation is thus interesting from two
perspectives:

1. In the context of our holistic approach to text summarization evaluation,
developing tools for automatically assessing bias in summaries provides im-
portant insights into of the behavior of a summarization system. A sum-
marizer might well score highly on both human and automatic evaluation
in all other dimensions but still exhibit biases that make its productive use
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unconscionable. In light of the variety of biases that have been detected
in language models thus far, automatic checks provide an important line of
defense against accidentally introducing harmful summarization systems.

2. From the perspective of bias and fairness research, summarization pro-
vides an interesting case study of a relatively constrained task, which allows
us to study the downstream propagation of biases.

In this chapter, we will thus seek to answer two questions: How can we study
bias in text summarization? and To which extent do current summariztion systems
exhibit biases?

We focus our work on gender bias in English since it is a well-known issue in
LLMs (Zhao et al., 2018; Dinan et al., 2020; Saunders and Byrne, 2020; Bartl et
al., 2020; Honnavalli et al., 2022, among others) and has grammatical indicators,
making it a useful phenomenon to develop fundamental methodology for studying
bias in text summarization. In keeping with the rest of this thesis, we run our
experiments in a single-document news summarization setting.

While an ideal evaluation would be conducted on naturally occurring data, we
find that it is difficult to disentangle biases that are present in the summaries from
biases that are already in the input documents. We thus propose a procedure that
exploits high-quality linguistic annotations to generate mutations of real-world
news documents with controlled distribution of demographic groups.

We make the following contributions:

1. We propose and motivate a number of definitions for bias in text summa-
rization and include novel metrics to assess them.

2. We highlight the importance of disentangling input-driven and summarizer -
driven biases.

3. We conduct practical gender bias evaluation of both purpose-built summa-
rizers and general-purpose chat models for English.

4. We demonstrate that our metrics can be used to study other biases by also
evaluating race bias in these summarization systems, including intersectional
scenarios with gender.
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We find that all summarization systems score very low on bias in their content
selection functions. That is, we find no evidence that the gender of an entity influ-
ences the salience of that entity within the summarizers’ content models. Where
gender bias occurs, it is often linked to hallucinations. For race bias, we find largely
comparable results. Figure 6.1 shows a schematic overview of our approach, along
with an example of a gender-biased hallucination.

The work in this chapter has been published as

Julius Steen and Katja Markert (2024). “Bias in News Summariza-
tion: Measures, Pitfalls and Corpora”. In: Findings of the Association
for Computational Linguistics ACL 2024. Ed. by Lun-Wei Ku et al.
Bangkok, Thailand and virtual meeting: Association for Computa-
tional Linguistics, pp. 5962–5983. url: https://aclanthology.org/
2024.findings-acl.356.

6.2 Background

Bias has received an enormous amount of attention in NLP, to the point that
exhaustively discussing the different variants of bias evaluation and mitigation
would go much beyond the scope of this thesis. We instead refer the interested
reader to the surveys of Blodgett et al. (2020), Stanczak and Augenstein (2021),
and Gallegos et al. (2024) for a comprehensive overview of the field. In this section,
we are instead going to focus on a general introduction to bias in NLP as relevant
to this chapter.

Bias is an often poorly defined concept in NLP contexts. Blodgett et al. (2020)
argue that researchers often conflate the observation of differences in behavior
of a model with actual downstream harms that arise from these differences. An
important pair of concepts in this context is that of representational and allocative
harms (Barocas et al., 2017).

Allocative harms arise when models directly lead to a difference in access to
opportunities and resources. A common example is that of automatic credit scores,
which can directly impact the opportunities available to affected individuals.

https://aclanthology.org/2024.findings-acl.356
https://aclanthology.org/2024.findings-acl.356
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Representational harms, on the other hand, relate to the way in which mod-
els impact the way different groups are represented in outputs. Blodgett (2021)
categorize these harms into the following categories: alienation, public participa-
tion, stereotyping, denigration, stigmatization, erasure, and quality of service.

In the context of allocative harms, the concept of fairness plays an important
role, which has received much attention in machine learning research (Hardt et al.,
2016). Fairness is defined in the domain of classification tasks, where we have a
set of input features X and a set of gold labels Y . We are typically interested in
measuring the fairness of model predictions Ŷ with respect to a set of protected
attributes A.2 For simplicity of exposition, we focus only on binary classification
tasks, where 1 is the favorable outcome, as well as binary protected attributes.

Fairness research tries to detect when an algorithm leads to unfair harms or
advantages for individuals based on their protected attributes. What constitutes
a fair algorithm is subject to conflicting definitions. A common approach is to
demand equality of outcome, also often referred to as demographic parity, which
requires independence of model predictions from protected attributes:

P (Ŷ = 1|A = 0) = P (Ŷ = 0|A = 1) . (6.1)

Hardt et al. (2016) note that this definition does not necessarily lead to fair
decisions if the ground truth Y (e.g. whether a given individual will default on a
loan) is not distributed independently of the protected attributes. They instead
propose to measure equality of opportunity, which allows P (Ŷ = 1) to vary be-
tween different assignments of the protected attribute, as long as the true positive
rate of each group is the same:

P (Ŷ = 1|A = 0, Y = 1) = P (Ŷ = 1|A = 1, Y = 1) . (6.2)

Finally, Kusner et al. (2017) propose to define fairness via counterfactual analy-
sis. Given a causal model (Pearl, 2009) of the world, a classifier is counterfactually
fair if its predictions are the same both in the real world and a counterfactual

2This definition is wider than what we use in this chapter, since we exclusively focus on
individual demographic groups, which is a subset of what can be expressed using demographic
attributes.
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world where the assignment of the protected attribute is different. We can for-
mally express this as

p(ŶA←a(U) = y|X,A) = p(ŶA←a′(U) = y|X,A) (6.3)

for a′ ∈ {0, 1}, y ∈ {0, 1}. Here, U is a set of root latent variables in the underlying
causal model and ŶA←a(U) denotes the value of Ŷ under the causal intervention
of setting the value of the protected attribute to a.

While this exact definition is very dependent on concepts from the field of
causal modelling, which we will not elaborate on in this thesis, the general concept
of using counterfactuals for analyzing bias and fairness is highly relevant to bias
in NLP. This is commonly done in the form of templates which are used to form
contrastive pairs. Model responses are then compared between minimally distant
pairs that differ only in the assignment of a protected attribute or demographic
group (Kiritchenko and Mohammad, 2018; Rudinger et al., 2018; Zhao et al., 2018;
Nangia et al., 2020, among many others).

These templating approaches to bias measurement are not without problems.
Blodgett et al. (2021) note that many of these template pairs are not necessar-
ily related to harmful stereotypes and also often lead to unnatural and artificial
sentences, which limits the conclusions that can be drawn from observed biases.
Additionally, such templates have also been observed to be very brittle with minor
modifications sometimes invalidating results (Seshadri et al., 2022). In this work,
we thus take care to construct inputs that are as natural as possible.

6.3 Related Work

While our work in this chapter stands in the line of a large body of recent work
on analysing bias in LLMs (Sun et al., 2019b; Dhamala et al., 2021; Cheng et al.,
2023; Srivastava et al., 2023), we find bias in summarization is underexplored. To
the best of our knowledge, there is, at the time of the writing of this thesis, only
a small number of works that address bias in summarization.

Most close to our work is the summarization task in the HELM benchmark
(Liang et al., 2023), which represents a large-scale effort in the evaluation of large
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Female Male
she daughters he sons
daughter mothers son fathers
hers women his men
her girls him boys
mother femen father males
woman sisters man brothers
girl aunt boy uncle
herself aunts himself uncles
female niece male nephew
sister nieces brother nephews

Table 6.1: Male and female word lists reproduced from HELM
(Liang et al., 2023). “femen” is likely a mistake in the original word

lists. We reproduce it here for better comparability.

language models, with summarization as one subtask. They measure both stereo-
types and bias, with the latter being computed using a word-list-based approach.
We reproduce the word lists used by Liang et al. in Table 6.1. For the remainder
of this chapter, we will refer to the word list entries for each group as identifiers
for that group.

For a given set of groups G differing in some demographic attribute, Liang
et al. first compute the empirical frequency of the identifiers of each demographic
group g, Wg, to derive an observed group-related word distribution:

pobs(g) =
cnt(Wg, S)∑

g′∈G cnt(Wg′ , S)
, (6.4)

where S is a set of summaries we seek to score for bias. They then compute the
total variation distance (TVD) between pobs and the uniform distribution:

Bias-Score(S) = TVD(pobs, punif)

= sup
g∈G

∣∣∣∣pobs(g)−
1

|G|

∣∣∣∣ . (6.5)

However, we find their approach incomplete in that they focus only on one
possible manifestation of bias, which we will later call inclusion bias, and do not
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take into account the underlying biases in the input distribution. We will discuss
this in detail in Section 6.4.

Brown and Shokri (2023) study gender bias of summarizers on artificial GPT-
2-generated documents (Radford et al., 2019) using word-embedding and find an
over-representation of men in summaries. The use of GPT-2-generated inputs,
which may themselves be biased, poses a risk of these results being at least partially
skewed by biases in the input. The use of word embeddings poses a similar risk
of inadvertently biasing the measurement. In comparison, our template-based
approach allows us to avoid input biases. We also make a purposeful effort to
reduce the number of black box components, such as word embeddings, in our
metrics, again with the aim of reducing the number of potentially confounding
factors in our setup.

Besides these general studies, there are also more domain-specific investiga-
tions, which have found evidence of biases in summarization: Zhou and Tan (2023)
find summarizers treat articles differently when replacing Biden with Trump and
vice versa. While their replacement approach is similar to ours, both their subject
of study and metrics are highly specific to political bias. Ladhak et al. (2023)
investigate the summarization of Wikipedia biographies, where they introduce
counterfactual variations to the inputs. They find that summarizers tend to hal-
lucinate entity nationality in the resulting summaries. This is in line with our
findings that hallucinations are a major source of bias.

Finally, we note that there is a related body of work on bias in the domain
of tweet and opinion summarization, where summarizers must summarize a large
set of inputs generated by a diverse set of users (Shandilya et al., 2018; Dash
et al., 2019; Keswani and Celis, 2021; Olabisi et al., 2022; Huang et al., 2023).
Unlike news summarization, where the goal of a summarizer is to extract the
most relevant inputs, here a summary should provide an accurate representation
of the distribution of input opinions. This results in a definition of bias that is
concerned with equal representation of opinions and authorship in the output for
each individual set of inputs, rather than equal treatment across different inputs.
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6.4 Defining Bias in Text Summarization

For our study of automatic coherence and faithfulness metrics in Chapters 4 and
5, we have used human judgements to evaluate their performance. In both cases,
it is reasonably straightforward to construct a definition of the quality dimension
in question for annotators. Bias is, in comparison, a much more poorly defined
concept that is fundamentally a subjective judgement of value. Bias also usually
arises from systematic issues, as opposed to issues in a singular summary. This
makes the traditional way of developing and evaluating metrics by comparison
with human annotations unsuitable for bias metrics. Instead, we are going to first
introduce abstract definitions of what it means for a summarizer to be biased.
We will then directly develop automatic metrics that correspond to these abstract
definitions.

As we have discussed in Section 6.2, prior work on bias in summarization by
Liang et al. (2023) requires that all demographic groups receive equal represen-
tation in the generated summaries. This corresponds to an equality of outcome
paradigm. While a valid perspective, it requires summarizers to actively counter-
act biases that might be present in the input documents. This is at odds with
faithfully representing their content and would thus likely reduce summarizer util-
ity. We instead expect summarizers to be faithful to the inputs but to not amplify
their bias. We define three forms of bias under this setting and discuss their harms:
inclusion bias, hallucination bias, and representation bias.

Inclusion bias captures the idea that the (apparent) membership of an entity
in some demographic group should not influence how likely that entity is to be
mentioned in a summary. If we frame content inclusion in terms of a classification
problem over the content units in a document, this corresponds to demanding
equality of opportunity, as opposed to equality of outcome. For example, if both a
male- and a female-coded entity are mentioned with otherwise similar salience in a
document, the resulting summary should not be more likely to mention the male-
coded entity than the female-coded entity, or vice versa. Inclusion bias is thus a
property of the summarizer’s content selection mechanism. Inclusion bias poses a
form of allocative harm since it reduces visibility of members of certain groups if,
for example, news is consumed through the filter of automatic summarization.
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As we have discussed in Chapter 5, summarization systems suffer from hallu-
cinations (Kryscinski et al., 2020; Cao et al., 2022), i.e. summary content that
is unsupported by the input. If one demographic group is more likely to feature
in them, this would lead to an overrepresentation of this group and entail harms
similar to inclusion bias. We call this hallucination bias.

The above-mentioned definitions cannot capture all kinds of possible bias. As
an additional canary, we thus also introduce the concept of representation bias,
which intuitively includes any kind of systematic deviation in the summaries based
on which groups are mentioned in the input. A summarizer exhibits representation
bias if it produces different summaries for similar content that relates to different
groups. This includes content only included for some groups, entities having dif-
ferent salience in the summary, and differences in summary quality. By definition,
the presence of any other biases, except hallucination bias, requires the presence of
representation bias, but it does not necessarily entail any harms itself. In English
texts, for example, we would expect some level of gender representation bias for
grammatical reasons.

We want to emphasise that we do not claim that our definitions are universal.
They specifically assume that we want a summarizer that faithfully reflects the
input, regardless of any potential biases therein.

6.5 Bias Metrics

We operationalize our bias metrics for a set of demographic groups G. Note that,
while in our experiments we only instantiate G as a pair of two groups, all metrics
generalize to multiple groups.

6.5.1 Inclusion: Word Lists

Starting from the prior work of Liang et al. (2023), we propose to adapt their word-
list-based score to correspond to our notion of inclusion bias. We use the same word
lists (see Table 6.1) and use equation 6.4 to compute the empirical distribution of
group identifiers pobs. Instead of computing the TVD to the uniform distribution,
we compute the empirical distribution of identifiers in the input pref and compute
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the bias score as
TVD(pobs, pref) . (6.6)

6.5.2 Inclusion: Entity Inclusion Bias

While word lists are a convenient tool for measuring bias when we know little
about the target domain, the lists must be curated manually, which limits the
phenomena they can capture. In summarization, we expect that the inclusion and
exclusion of entities3 may often be a useful proxy for determining bias. As stated
in Section 6.4, the content selection function of a system without inclusion bias
should not be influenced by the group membership of entities in the input. More
formally:

∀gi, gj ∈ G : p(e ∈ S|g(e) = gi, e ∈ D)

= p(e ∈ S|g(e) = gj, e ∈ D) ,
(6.7)

where e ∈ D, e ∈ S indicates that an entity e is mentioned in the source document
and summary respectively and g(e) = gi indicates that entity e is marked as a
member of a demographic group gi.

We quantify this as the maximum odds ratio between the inclusion probability
of two demographic groups. This allows us to compare summarizers with different
overall entity densities in their summaries. Let pgi = p(e ∈ S|g(e) = gi, e ∈ D).
The inclusion bias score then is

max
gi,gj∈G

pgi
1−pgi
pgj

1−pgj

− 1 , (6.8)

where an unbiased system receives a score of 0.
Comparing equation 6.7 to the formal definition of equality of opportunity

shown in equation 6.2 in Section 6.2, we find that both are very similar. In both
cases, we require the equal distribution of some favorable outcome (in our case,
inclusion in the summary), conditioned on some underlying variable that allows for
reasonable variation from an equal distribution. There is an important difference,

3We use entity exclusively with reference to persons.
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however, in that we do not measure a relation to a ground truth here but instead
condition on the appearance in the input document. Thus, instead of measuring
the equality of opportunity of receiving a true positive prediction, we measure the
equality of opportunity of being included in a summary when present in the in-
put. If we additionally combine this metric with an approach that uses artificially
created documents as inputs, where the same document is modified so it mentions
different demographic groups than originally, this metric becomes philosophically
closer to counterfactual fairness, as introduced in Section 6.2. However, we empha-
sise again that, as mentioned in Section 6.2, this similarity is purely conceptual.
We do not construct a causal model. In this chapter, we will exclusively use this
metric under the “counterfactual” setting, a choice we will justify in Section 6.6.

For completeness, we note that it would also be feasible to define entity inclu-
sion bias in a way that is equivalent to equality of opportunity by conditioning on
inclusion in a reference summary that provides a “ground truth” for entity rele-
vance. However, we do not explore this avenue in this work for two reasons. The
first is practical, in that by conditioning on the input we are not dependent on
the availability of reference summaries. However, more importantly, reference sum-
maries themselves might be subject to biases depending on how they were sourced.
Thus, avoiding reliance on reference summaries leads to both more cost-efficient
and reliable bias metrics.

6.5.3 Hallucination: Entity Hallucination Bias

We operationalize hallucination bias by demanding that the probability of a hal-
lucinated entity belonging to a particular demographic group is the same for all
groups:

∀gi, gj ∈ G : p(g(e) = gi|e ̸∈ D, e ∈ S)

= p(g(e) = gj|e ̸∈ D, e ∈ S) .
(6.9)

We measure the total variation distance between p(g(e)|e ̸∈ D, e ∈ S) and the uni-
form distribution. We chose the uniform distribution, since unlike inclusion bias,
where inequality in group distribution can be necessary to properly represent the
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input, an imbalance in the hallucinations implies additional unfairness introduced
by the summarizer.

6.5.4 Representation: Distinguishability

Representation bias demands indistinguishability of summaries generated for sim-
ilar inputs that discuss different demographic groups. We operationalize it by
creating a classifier to identify which group is discussed in the input from the
summary.

Let S be a set of summaries generated from inputs where each input primarily
discusses one of the demographic groups of interest and where content is indepen-
dent of the group mentioned in the input. Let

ui =
1∣∣Sg(si)

∣∣− 1

∑
sj∈Sg(si)

\{si}

sim(si, sj) (6.10)

be the average similarity between a summary si and all summaries Sg(si) that have
been generated for inputs with the same demographic group that is predominant
in si. Similarly, let ūi be the same for the set of summaries generated for different
demographic groups. We say si is distinguishable if ui > ūi and compute the
distinguishability score as the zero-centered accuracy score of this classifier:

2

|S|

|S|∑
i

1(ui > ūi)− 1 . (6.11)

The metric is parameterized by a similarity function. We use cosine similar-
ity with two representations: A bag-of-words-based representation and a dense
representation derived from Sentence BERT4 (Reimers and Gurevych, 2019). To
avoid distinguishability via simple grammatical cues and names, we replace all pro-
nouns with a gender neutral variant (they/them etc.) and names with the markers
FIRST_NAME/ LAST_NAME.

4We use the all-MiniLM-L6-v2 model.
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6.6 Input Documents are Already Biased

All proposed metrics, except hallucination bias, require us to isolate the effect of
a particular demographic group in the input. However, with real-world data, it is
difficult to disentangle input-driven biases from biases introduced by the summa-
rizer. This becomes apparent when we compute the frequency of gender identifiers
from our inclusion score word lists Wg on inputs from the popular CNN/DM (Her-
mann et al., 2015) and XSum (Narayan et al., 2018a) datasets. We find that 62%
of identifiers in CNN/DM and 74% of identifiers in XSum are male, i.e. men are
mentioned at a much higher rate.

While this simple frequency issue can be mitigated by our formulation of inclu-
sion bias that takes the input distribution into account (see Section 6.5.1), we find
that the underlying issue goes beyond just mention frequency. To demonstrate
this, we split the articles in each corpus into two sets: A set Cf that contains
articles where the frequency of female identifiers is higher than that of male iden-
tifiers, and a second set Cm, where the frequency of male identifiers is higher. We
then apply the Fightin’ words method (Monroe et al., 2017) with an uninforma-
tive Dirichlet prior (α = 0.01) to identify words that have a significantly different
frequency between male and female articles.

For this, we first compute the smoothed log-odds ratio of the word frequencies
in male and female articles Cm, Cf for each token w:

δw = log

(
cnt(w,Cm) + α

|Cm|+ (|Cm| − 1)α− cnt(w,Cm)

)
− log

(
cnt(w,Cf ) + α

|Cf |+ (|Cf | − 1)α− cnt(w,Cf )

)
,

(6.12)

where cnt(w,C) is the number of times word w occurs in document set C and |C|
is the number of word in the document set C. α is a hyper-parameter, that serves
as a smoothing factor.5

5In the full model, α is the parameter vector of a Dirichlet distribution, with one entry for
each word. If we have a prior over the distribution of words, i.e. from a background corpus,
this can be expressed in α. For simplicity, we only show the case where α is constant across all
words, i.e. the special case of an uninformative prior.
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Corpus Male z Female z

CNN/DM

league 33.75 ms 51.61
the 33.75 men/women 39.81
season 33.64 father/mother 38.52
club 29.62 ’ 34.36
united 29.14 i 33.16
against 29.07 he/she 32.96
mr 27.96 baby 32.27
game 27.76 miss 32.02
win 27.01 clinton 31.36
team 25.87 husband 30.49

XSum

mr 28.20 ms 45.49
( 22.41 men/women 38.63
) 22.40 mrs 24.40
shot 16.66 male/female 21.30
league 16.20 children 19.22
season 16.12 boys/girls 16.81
half 16.09 health 15.69
box 15.70 husband 15.50
club 15.58 father/mother 14.98
united 15.18 parents 14.88

Table 6.2: Ten most male/female associated words in CNN/DM
and XSum, with z-scores. Words with a slash indicate normalized
words. For example, mother/father is much more frequent in female

majority documents.

We can then compute a z-score from the odds ratio of each word w. Monroe
et al. propose the following approximation:

zw =
δw√

1
cnt(w,Cm)+α

+ 1
cnt(w,Cf )+α

. (6.13)

Since all identifiers have paired male/female variants, we replace these pairs
with special markers. This allows us to compare the frequency of the male/female
variants (e.g. “mother” being more frequent in documents tagged female than
“father” in documents tagged male).6 We show results in Table 6.2.

6We ignore the pronouns him/her/his/hers in this context due to the POS ambiguity of “her”.
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Ignoring the titles (Mr./Mrs./Ms.), we see that a number of words have highly
significant z-scores (z ≫ 1.96). Specifically, in both corpora the articles in Cm are
much more likely to mention sports-related words,7 while articles in Cf have much
higher frequency of words related to family like husband, children, etc.

We now demonstrate the consequences of biased input by examining word in-
clusion bias of clearly biased and unbiased summarizers. We consider two content-
agnostic baselines that can, by definition, not introduce additional biases into the
summaries: Random selects three random sentences. Lead selects the first three.
We also study two content-aware summarizers, one unbiased and one biased. For
this, we first heuristically classify every article as either mentioning more family-
or more sport-related keywords or neither (unknown). The exact implementation
of this classification is not relevant to our argument, since we are merely interested
in showing that there exists a (deterministic) summarizer that leads to undesirable
outcomes in bias measurement. For completeness, the interested reader can find
the algorithm we use in Appendix F.

Given this classifier, Topic randomly samples one, three, or six sentences when
the article is classified as family, unknown, or sport, respectively. While its predic-
tions are content-dependent, it does not directly introduce any gender bias. Any
bias in Topic is a correlation of topics with gender in the input and not caused by
the algorithm. Finally, Sexist selects three sentences to maximize the frequency
of male identifiers for sport and of female identifiers for family articles, acting
randomly otherwise. This results in a clearly biased summarizer.

We evaluate with word list inclusion bias since we neither have reliable entity
annotation for the CNN/DM or XSum corpora, nor, as our analysis shows, an
independent distribution of content and gender as required for distinguishability.
Results in Table 6.3 highlight that: a) Without correction for the input distribu-
tion, Random, Lead, and Topic appear highly biased, while Sexist appears the
least biased. The latter is a consequence of it barely decreasing female represen-
tation in sport-related articles, where representation is already low in the input,
but boosting it in summaries for family-related articles. b) Even with our pro-
posed correction, Topic scores higher on bias than Sexist, which clearly does not
represent the bias of the underlying algorithms.

7This includes the parentheses, which are frequently used in sport reporting, e.g. for results.
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CNN/DM XSum
# Docs %F # Docs %F

Total Docs 11,490 34% 11,334 26%
# Sport 4,222 14% 3,712 14%
# Family 4,317 49% 2,330 36%
Alg. Unf. Adj. Unf. Adj.
Random 0.15 0.02 0.24 0.00
Lead 0.12 0.00 0.23 0.00
Topic 0.26 0.14 0.29 0.05
Sexist 0.02 0.10 0.20 0.04

Table 6.3: First half: Number of documents and % of female
identifiers per topic. Second half: word list inclusion scores of our
simulation experiment. Unf. and Adj. indicate uniform and ad-

justed reference distribution.

6.7 Gender Bias Experiments

6.7.1 Dataset

To prevent input biases as those shown in Section 6.6 from confounding our results,
we propose to create inputs where we can carefully control the distribution of
demographic groups in the inputs. We identify three options for this:

1. Subsampling of existing datasets

2. Generation of artificial datasets using an LLM, as in Brown and Shokri (2023)

3. Rule-based transformations

We reject subsampling, since it requires us to know beforehand which biases
exist. Similarly, we avoid LLM data, since it is well known that it is subject to
biases itself (Liang et al., 2023). We thus decide on a rule-based approach using
high-quality linguistic annotations of named entities and coreference chains. In the
following, an entity refers to any coreference chain (including singletons), where
at least one mention is also a PERSON named entity, or at least one mention
contains a gendered pronoun or a gendered title.

Given a corpus C with named entity and coreference information, we create
input documents by replacing first names, pronouns, and titles of gendered entities
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to make them read as male or female. For race bias, we follow a modified procedure
outlined in Section 6.13. Following Parrish et al. (2022), we use popular first names
in the 1990 US census (United States Census Bureau, 1990). We leave last names
the same to minimize modifications.8 This allows us to create realistic inputs with
controlled gender distribution (see example in Figure 6.1). We refer to documents
from C as original and to the modified documents as inputs.

We create two variants of inputs from C: For Cloc, we locally balance gender
within each input by assigning half of all entities as male and the other half as
female. We use it for inclusion and hallucination bias since it allows competition
between genders for inclusion/hallucination. To reduce variance, we create pairs
of inputs which have exactly inverted gender assignments and reuse the same
names for both categories. For Cglob, we assign each entity in an input the same
gender and instead balance the number of purely male vs. female inputs. We use
it for representation bias since it makes it easy to identify which content is caused
by which entity gender assignments. We compute distinguishability within the
summaries generated from inputs derived from the same original.

We use the newswire portion of OntoNotes9 (Weischedel, Ralph et al., 2013)
as C so we can avoid the use of coreference resolution that might itself be biased
(Rudinger et al., 2018). For both Cloc and Cglob, we generate 20 inputs (i.e. ten
pairs in case of Cloc) for each of the 683 documents in OntoNotes with at least one
gendered entity. This results in 13,660 inputs for each variant.

6.7.2 Template Construction Algorithm

We now detail the exact algorithm we use for creating templates from OntoNotes
annotations. The OntoNotes newswire portion consists of documents from the Wall
Street Journal and the Xinhua news agency. We initially consider all documents
in the newswire portion for which coreference and named entity (NE) annotations
are available. From each document, we derive a template which we can then fill
with reassigned names and genders in three steps:

8We investigate the effect of this choice later in Section 6.12.2.
9OntoNotes can be requested from https://catalog.ldc.upenn.edu/LDC2013T19.

https://catalog.ldc.upenn.edu/LDC2013T19
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1. Identify all coreference chains which have at least one mention containing a
PERSON NE.

2. Determine the first and last name of the entity.

3. Identify which mentions of the entity require modifications.

In the first step, we consider all coreference chains in the document. If a chain
has any mention that contains a PERSON NE as a substring, we consider this
chain as a candidate for replacement. If multiple mentions overlap the same NE,
we link the NE to the deepest mention that is tagged as IDENT.

Given a chain with at least one linked PERSON NE, we try to determine the
first and last name of the entity. Since there are no explicit annotations for first
and last names, we take advantage of two heuristics:

1. Titles like Mr./Mrs. are usually followed by a last name.

2. Mentions with multiple tokens usually contain the first name, followed by
the last name.

If a token is preceded by Mr., Mrs., or Ms. and there is only one other token
in the NE span, we immediately consider this token as the last name.

Otherwise, we count every token that is the last token in an NE span as a
possible last name candidate and every token before the last as a possible first
name candidate. Finally, we select the most frequent candidates as first and last
name.

In the final step, we consider all mentions of the entity and categorize it into
one of the following classes:

Full Name Any mention that contains both first and last name as determined in
the previous step.

First Name Any mention that contains only the first name.

Last Name Any mention that contains only the last name.

Pronoun Any mention that is tagged as a PRP or PRP$.
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Title Any mention that contains a title. We consider Mr., Mrs., Ms., Sir, and
Lady.

One shortcoming of OntoNotes for our application is that it does not contain
singleton annotations. However, singletons are important, since they still require
gender adaptation to avoid biasing the input. We solve this by treating every
PERSON NE that is not assigned to a chain in the first step as a singleton.

We only consider documents for generation where we find at least one entity
with either a first name, gendered personal pronoun, or title mention. During the
generation of input documents, each entity is assigned a gender and a name. We
then fill each mention according to its category by inserting the corresponding
pronoun, title, or name.

6.8 Metric Implementation Details

6.8.1 Entity Alignment

Entity inclusion and hallucination bias require rudimentary cross-document coref-
erence resolution between each summary s and input d. OntoNotes gives us access
to gold entities and coreference chains Ed in the input d, but we lack the same
in the summary s. As a first step, we thus identify all named entities Es in the
summary with an NER tool.10 This leaves us with the problem of aligning input
entities Ed and summary entities Es. While cross-document coreference is difficult
in the general case (Singh et al., 2011), we rely on two assumptions to build a
transparent heuristic instead:

1. Most entities are going to be referred to similarly in the input and the sum-
mary.

2. If an entity is hallucinated, there is a high chance that it does not have any
overlap with the input.

Following these assumptions, we align a summary entity es to an input entity
ed if es contains the last name of ed, as assigned during dataset construction. We

10We use spacy.io (Montani et al., 2023).

spacy.io
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Male Female
he she

him her
his hers

himself herself

Table 6.4: Pronouns used for gender classification in Wikipedia
articles.

additionally require that any other token in es is the first name assigned to ed

during dataset construction or a title. Note that to avoid incorrectly identifying
hallucinations, we additionally require that at least one of the tokens in the entity
does not appear in the source to count as hallucinated. Manual verification in
Section 6.11.1 finds this procedure performs well.

6.8.2 Identifying Gender of Hallucinated Entities

We also require a way of determining the gender of hallucinated summary entities
so we can compute hallucination bias. While we can identify the gender of entities
that appear in the input from dataset construction, this is not true for hallucinated
entities. We thus need to design a classification scheme. We rely on two separate
lookup-based approaches:

1. Matching against English Wikipedia pages

2. Matching against the 1990 census first names

For the Wikipedia-based approach, we try to find an English Wikipedia page
with a title that exactly matches the named entity detected in the summary (in-
cluding redirects). To limit false hits, we only consider pages that are in a category
that contains the words “births”, “deaths”, or “people”. The latter allows matching
categories such as “people from X”, while the first two allow matching categories
like “Y deaths”, where Y is a date. We ignore pages with only a single word in the
title due to the high likelihood of misidentification.

To determine entity gender from the Wikipedia article text, we use the number
of occurrences of the pronouns shown in Table 6.4 and select the gender whose
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pronouns appear more frequently. If we have a tie in the number of pronouns or if
we get conflicting gender predictions due to multiple people with different genders
(according to pronoun count) sharing the same name, we classify the gender as
unknown. There is a risk that the better coverage of male entities in Wikipedia
(Wagner et al., 2015) might influence our bias metric. We thus manually inspect
the failure cases of this step and find no evidence that the failure rate is higher for
female names.

If we do not find a matching entity in Wikipedia, we turn to the list of first
names from the 1990 US census we also used in the construction of our dataset. The
census contains gender frequencies for each included name. We resolve duplicates
to the most frequent gender if it is at least twice as frequent as the less frequent
one, and eliminate them as ambiguous otherwise. We classify an entity as male
if any token is present in the list of male first names, and as female if any token
is present in the female list. We do not classify an entity as either gender if it
contains names from both lists.

6.9 Summarizers

6.9.1 Models

We study both purpose-built summarizers and chat models. For purpose-
built summarizers we use BART (Lewis et al., 2020) and Pegasus (Zhang et al.,
2020a), both transformer models fine-tuned for summarization. We use the XSum
and CNN/DM11 models. For chat models we choose Llama-2 chat (Touvron
et al., 2023) 7b, 13b, and 70b models with the standard system prompt.

For the chat models, we randomly select one prompt per summary from a list
of ten prompts designed to elicit summarizing behavior. We list them in Table 6.5.



6.10. Gender Bias Results 173

Please summarize the following old text
Please summarize the following old article
Summarize the following old text
Summarize the following old article
Give a summary of the following old text
Give a summary of the following old article
Give me a summary of the following old article
Give me a summary of the following old text
I need a summary of the following old article
I need a summary of the following old text

Table 6.5: Prompts used for the Llama-2 models. We specify that
the articles/documents are “old” since we found in preliminary ex-
periments that this reduces instances where Llama-2 chat 7b would
refuse to summarize documents that contained dates or can be im-

plicitly dated.

6.9.2 Gender Bias Summary Statistics

Table 6.6 gives the average number of tokens and entities per summary for the
gender bias experiments, as well as the percentage of entities tagged as halluci-
nated for the summarizers. For comparison, we also report the number of tokens
and entities in summaries generated on original documents. All summaries are
generated using default model settings in the transformers12 library. We find that
different summarizers produce summaries of varying lengths, with summaries from
summarizers trained on XSum being by far the shortest and Llama-2 summaries
being the longest. Hallucinations are most frequent for XSum-based summariz-
ers, which, as discussed in Section 2.1, is an expected consequence of the dataset
construction.

6.10 Gender Bias Results

Table 6.7 shows that all summarizers score low on both inclusion bias metrics,
indicating that the content selection of all studied summarizers does not carry
any significant gender bias in this particular setting. Remarkably, we find that all

11Taken from https://huggingface.co
12https://huggingface.co/docs/transformers/en/index

https://huggingface.co
https://huggingface.co/docs/transformers/en/index
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Cloc Cglob

Corpus Avg. Tok. Avg. Ent. % Hal. Avg. Tok. Avg. Ent. % Hal.

BART CNN/DM 60.76
σ: 8.83

0.97
σ: 1.34

4.65 60.88
σ: 8.78

0.99
σ: 1.39

4.01

BART XSum 23.55
σ: 6.71

0.27
σ: 0.59

51.28 23.59
σ: 6.72

0.28
σ: 0.58

47.67

Pegasus CNN/DM 56.23
σ: 16.74

0.87
σ: 1.25

3.29 56.19
σ: 16.90

0.86
σ: 1.22

3.32

Pegasus XSum 24.69
σ: 15.99

0.22
σ: 0.54

33.69 24.74
σ: 16.24

0.22
σ: 0.57

32.09

LLama2 7b 164.40
σ: 42.73

0.97
σ: 1.66

2.97 165.38
σ: 42.55

0.99
σ: 1.69

3.18

LLama2 13b 163.80
σ: 39.04

1.55
σ: 2.10

2.95 163.87
σ: 39.14

1.56
σ: 2.10

2.89

LLama2 70b 147.87
σ: 41.88

1.79
σ: 2.25

1.24 148.11
σ: 41.82

1.79
σ: 2.26

1.39

(a) Average number of tokens and entities, and percentage of all entities tagged as hallucinated
for summaries generated on gender bias data. σ indicates standard deviation.

Corpus Avg. Ent. Avg. Tok

BART CNN/DM 60.60
σ: 9.55

1.00
σ: 1.31

BART XSum 22.81
σ: 6.48

0.25
σ: 0.52

Pegasus CNN/DM 55.29
σ: 17.51

0.79
σ: 1.18

Pegasus XSum 22.90
σ: 10.44

0.19
σ: 0.47

LLama2 7b 175.52
σ: 34.63

1.22
σ: 1.96

LLama2 13b 166.86
σ: 39.43

1.63
σ: 2.17

LLama2 70b 151.15
σ: 41.63

1.89
σ: 2.34

(b) Average number of tokens and entities of summaries generated on original documents. σ
indicates standard deviation.

Table 6.6: Summary statistics for summaries generated on Cloc
and Cglob for gender bias, and on original documents.
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BART Pegasus Llama-2 chat
CNN XSum CNN XSum 7b 13b 70b

Word List Inclusion
0.00

s: 0.00,0.01
d: 0.00,0.03

0.03
s: 0.02,0.05
d: 0.00,0.11

0.02
s: 0.02,0.03
d: 0.00,0.06

0.04
s: 0.01,0.06
d: 0.00,0.11

0.04
s: 0.02,0.05
d: 0.01,0.07

0.07
s: 0.06,0.07
d: 0.04,0.09

0.04
s: 0.04,0.05
d: 0.02,0.06

Entity Inclusion
0.02

s: 0.01,0.04
d: 0.00,0.04

0.02
s: 0.00,0.06
d: 0.00,0.11

0.03
s: 0.01,0.04
d: 0.01,0.05

0.01
s: 0.00,0.05
d: 0.00,0.08

0.00
s: 0.00,0.03
d: 0.00,0.03

0.04
s: 0.03,0.06
d: 0.02,0.06

0.02
s: 0.00,0.03
d: 0.00,0.03

Entity Hallucination
0.39

s: 0.36,0.42
d: 0.28,0.47

0.37
s: 0.37,0.38
d: 0.31,0.43

0.38
s: 0.35,0.40
d: 0.14,0.50

0.31
s: 0.30,0.33
d: 0.22,0.39

0.38
s: 0.34,0.41
d: 0.30,0.45

0.44
s: 0.42,0.46
d: 0.40,0.48

0.41
s: 0.39,0.43
d: 0.29,0.48

Distinguishability (Cnt.) 0.21
d: 0.19,0.24

0.24
d: 0.20,0.26

0.15
d: 0.13,0.18

0.13
d: 0.11,0.16

0.05
d: 0.03,0.07

0.09
d: 0.06,0.11

0.07
d: 0.04,0.09

Distinguishability (Den.) 0.22
d: 0.19,0.24

0.24
d: 0.21,0.27

0.15
d: 0.13,0.18

0.14
d: 0.12,0.17

0.04
d: 0.02,0.06

0.06
d: 0.04,0.09

0.05
d: 0.03,0.07

Table 6.7: Results of our bias metrics. In all cases, a zero score
indicates no evidence of bias. We indicate the 95% bootstrap confi-
dence intervals when resampling original documents (d) and when
resampling among the different entity assignments sampled during
dataset construction (s). We do not compute (s) for distinguisha-
bility, since we cannot independently resample scores for input doc-

uments generated from the same original document here.

summarizers carry a bias towards male entities in their hallucinations. We study
this in more detail in Section 6.12.1.

All summarizers show some degree of distinguishablity, with BART summaries
showing the most pronounced differences between summaries for male- and female-
coded documents. As noted in Section 6.4, this is not in itself sufficient to establish
whether this leads to harm to any particular group. We thus analyse this further
in Section 6.12.3.

6.11 Validating our Metrics

While we have carefully derived and implemented our bias measurements, we have
no “gold” standard to test whether our measurements are valid. This is especially
true in cases where we have not found any bias in Section 6.10, i.e. for inclusion
bias. While we can further investigate results that indicate bias to find the un-
derlying causes, validating negative results is more challenging. This motivates us
to conduct a number of tests to rule out potential problem sources and increase
confidence in the reliability of our metrics:

1. We manually verify our alignment algorithm works as intended.
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2. We check whether our modified input documents lead to degraded summary
quality, which might indicate that our modified input documents are insuf-
ficiently natural.

3. We test whether making content words conform to changed entity gender
impacts results.

4. We test whether our method is capable of detecting inclusion bias in clearly
biased summarizers.

We note that even with this additional validation, it is impossible to guarantee
the validity of our metrics. However, we believe that in conjunction with our
careful avoidance of potential confounding factors when constructing our metrics,
these validations make our results sufficiently trustworthy.

6.11.1 Validation of our Alignment Algorithm

To validate that the algorithm aligning input and summary entities outlined in
Section 6.8.1 works as intended, we conduct a manual annotation study on the
gender bias data. We annotate ten samples each for all systems on both Cloc and
Cglob. This results in a total of 140 input-summary pairs. Since we are interested
in validating the alignment, as opposed to the named entity recognizer, we only
sample from among all instances where the summary has at least one named entity.

We then manually check the automatic alignment. For each instance, we an-
notate the following:

1. The number of entities in the source that are incorrectly aligned with an
entity in the summary.

2. The number of entities in the summary that are erroneously tagged as hal-
lucinated when they are supported by the input. Since hallucinated entities
only affect the hallucination bias score when our gender name classification
algorithm assigns an apparent gender to the entity, we report how many
of these incorrectly tagged entities receive a gender classification and thus
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# Input entities 688
# Summary entities 315
# Input entities with alignment in summary 208
# Incorrect entity alignments 2
# Summary entities tagged as hallucinated 40

. . . of these with gender classification 18
# Erroneously tagged hallucinations 13

. . . of these with gender classification 2

Table 6.8: Results of our manual annotation of entity alignments.
Note that, since we do not have coreference information in the sum-
mary, a single input entity can be aligned with multiple summary
entities. This may happen in case the name is repeated more than

once.

might affect the hallucination score. We conduct this annotation on hallu-
cinations before our additional safeguard requiring at least one token in the
entity to not be present in the source.

Results in Table 6.8 show that our alignment procedure generally works very
well. The low number of incorrect alignments can be attributed to the strict match-
ing criteria between summary and source entities as described in Section 6.8.1.
While a third of hallucinations are incorrect, we find that this has little impact
on bias scores, since all except two of these hallucinations do not receive a gender
classification and thus do not affect the hallucination bias score.

A qualitative analysis reveals that these incorrectly tagged hallucinations are
often caused by more complicated coreference settings. For example, five of the
incorrectly identified hallucinations are a result of a document discussing a family
“The Beebes”, which does not get correctly identified as an entity in the input by
our approach, since we focus on mentions of individuals. We also find a failure
case where the replacement in the input is incomplete since names are part of
nested entities that are not of PERSON type. For example, “Bush” in “The Bush
administration” does not receive a PERSON tag and thus the entity “Bush” cannot
be aligned to the input. Since, in our case, these entities are a) not gendered
and b) appear in the source document and are thus not taken into account for
hallucination bias, this shortcoming of the alignment heuristic does also not affect
bias scores.
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6.11.2 Summary Quality

Degradation in summary quality between original documents and inputs might
be indicative of our inputs being insufficiently natural. This would cast doubt on
the generalizability of our observations. We thus conduct an automatic quality
evaluation to ensure this is not the case. We evaluate relevance since we are
primarily interested in content selection effects that might bias our measurements.

Since we do not have access to gold summaries, we use an unsupervised eval-
uation method. Following the recent success of using large language models in
reference-free evaluation for text generation (Liu et al., 2023a; Chiang and Lee,
2023; Shen et al., 2023), we use GPT 3.5 to elicit ratings for the generated sum-
maries. We prompt the model using the reason-then-score prompt of Shen et al.
(2023):13

“Score the following Summary given the corresponding Article with
respect to relevance from one to five, where one indicates “irrelevance”,
and five indicates “perfect relevance”. Note that relevance metrics the
Summary’s selection of important content from the Article, whether
the Summary grasps the main message of the Article without being
overwhelmed by unnecessary or less significant details.

Article: {article}

Summary: {summary}

Provide your reason in one sentence, then give a final score:”

For each system, we evaluate all 683 summaries generated from the original
documents which are used as templates for Cloc and Cglob. For Cloc and Cglob

themselves, we only evaluate summaries generated for two randomly selected in-
puts per original document to conserve resources. For Cloc, we ensure these two
inputs form a pair with inverted gender assignment. For Cglob, we select one male-
and one female-only input. This results in 1366 ratings per system.

13We use the gpt-3.5-turbo-1106 model. This model is more recent than the one used in
the evaluation of Shen et al. but allows us to fit the entirety of the documents and summaries
into the available tokens.
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System Cloc σ Cglob σ Original σ

Pegasus XSum 4.23 1.45 4.24 1.45 4.28 1.42
Pegasus CNN/DM 4.57 1.03 4.59 1.01 4.70 0.89
BART XSum 4.32 1.38 4.34 1.37 4.30 1.40
BART CNN/DM 4.81 0.66 4.84 0.60 4.86 0.60
Llama-2 7B 3.50 1.83 3.50 1.82 3.85 1.68
Llama-2 13B 4.99 0.18 4.98 0.22 4.99 0.15
Llama-2 70B 5.00 0.05 4.99 0.08 4.99 0.14

Table 6.9: GPT-3.5 RTS scores for summaries generated on Cloc,
Cglob and on original documents. For Cloc, Cglob we evaluate sum-
maries for two inputs each from each original document (n = 1366).
For the original documents, we evaluate all summaries (n = 683).
We find only minor differences in quality between summaries on
Cloc/Cglob and original documents, indicating that our procedure
does not result in systematic degradation of summary quality. σ

indicates standard deviation.

Table 6.9 shows that, while there is a small reduction in score for 4 out of 7
systems, performance is very similar between original and modified documents,
with the latter score falling within less than one standard deviation of the original
score. This indicates that our modification of the input documents does not lead
to meaningful degradation in summary quality.

6.11.3 Content Words

Our automatic template generation procedure only changes names and pronomi-
nal mentions, leaving content words unchanged. This can lead to unnatural occur-
rences, such as Chairman Diane Sasser, when Chairwoman Diane Sasser would be
more appropriate. To check whether this is an issue in our experiments, we man-
ually extend the automatically derived templates to also modify content words.
We manually annotate 100 documents with how content words should be altered
depending on entity gender and rerun our experiments on this subset.
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Female Male
daughter niece son nephew
mother nieces father nephews
woman wife man husband
girl wives boy husbands
female actress male actor
sister actresses brother actors
daughters chairwoman sons chairman
mothers chairwomen fathers chairmen
women mum men dad
girls mums boys dads
females waitress males waiter
sisters waitresses brothers waiters
aunt mistress uncle lover
aunts uncles

Table 6.10: Extended word list used to identify candidate docu-
ments for annotation.

Annotation Procedure

Since we found in preliminary experiments that many documents do not require
any manual intervention, we first run an automatic filter over our dataset to iden-
tify candidate documents for annotation. We use an extended variant of the word
lists of Liang et al. (2023) reproduced in Table 6.10. We then randomly sample
from these documents until we find 100 instances where at least one text span
requires manual intervention to adapt to entity gender.

During annotation, we first identify text spans which should change in accor-
dance with the gender of an entity in the document. We then annotate which
words should be used depending on the gender of the entities in the document
(e.g. generating chairman or chairwoman depending on the gender of the entity
occupying that position). We also consider the case where multiple entities might
influence the realization of a particular word, like brothers. In these cases, we also
specify a neutral variant (e.g. siblings) to be used in case the referenced entities
have different genders. All annotations were conducted by the author of this thesis.
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Table 6.11: Results on our manually extended variants of Cloc
and Cglob for gender bias with content words altered to conform to
entity gender. Since our annotations cover only a relatively small
subset of the whole corpus, we also report the scores of summaries
generated for the same inputs without content word modification
for comparison (Or.). We find that almost all scores fall within

their respective confidence intervals.
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Metric Llama-2 chat 13b

Word List
0.42

s: 0.41,0.42
d: 0.40,0.44

Entity Inclusion
0.71

s: 0.68,0.74
d: 0.63,0.80

Table 6.12: Inclusion bias scores on Llama-2 13b prompted to
induce an inclusion bias towards female entities.

Results

We report results on gender bias with our modified inputs in Table 6.11. We find
scores for modified inputs are very close to original scores when taking into account
confidence intervals and exhibit the same trends. This suggests that our choice
not to alter content words in the input does not meaningfully influence results.
However, we note that the small number of inputs makes confidence intervals
relatively wide.

6.11.4 Induced Bias Detection

Since we find no inclusion bias in the studied summarization systems, we test
whether our method is capable of detecting inclusion bias in clearly biased sum-
marizers. To simulate a biased summarizer, we rerun Llama-2 13b on Cloc but
append “Please put a particular focus on the women mentioned in the text” to the
prompt. We manually verify that Llama-2 does not refuse this instruction.

Inclusion bias scores shown in Table 6.12 show that we can clearly detect the
induced inclusion bias.

6.12 Gender Bias Analysis

6.12.1 Investigating Hallucination Bias

We now turn to a closer investigation of the biases we detect, starting with hal-
lucination bias. Our results in Section 6.10 show that there is a consistent bias
towards male entities in the hallucinations of all summarizers we investigate. To
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B

A
R
T

CNN/DM # XSum #

P
eg

as
us

CNN/DM # XSum #
greeneu 91 farai sevenzom 352 frumu 76 boris yeltsinm 60
bob greenem 69 george w. bushm 315 david frumm 75 obamau 48
david frumm 53 mikhail gorbachevm 104 zelizeru 40 farai sevenzom 44
frumu 47 james bakerm 66 greeneu 28 francois mitterrandm 40
peter bergenm 41 boris yeltsinm 60 bob greenem 25 richard cohenm 32
bergenu 41 daniel ortegam 56 julian zelizerm 20 sharmila tagoref 31
saatchesiu 25 obamau 49 frida ghitisf 19 helmut kohlm 30
bynoesu 20 helmut kohlm 40 ghitisu 19 alain juppem 30
frida ghitisf 15 francois mitterrandm 40 david weinbergerm 8 george w. bushm 25
hainisu 12 george h. w. bushm 25 bergenu 8 k.u 20
♯ male 238 ♯ male 1465 ♯ male 170 ♯ male 662
♯ female 29 ♯ female 212 ♯ female 24 ♯ female 153

Ll
am

a-
2

ch
at

7b # 13b # 70b #
mikhail gorbachevm 36 erich honeckerm 74 mikhail gorbachevm 27
richard nixonm 29 mikhail gorbachevm 53 erich honeckerm 22
boris yeltsinm 23 richard nixonm 32 richard nixonm 21
erich honeckerm 20 manuel noriegam 32 walter sisulum 20
mclarenu 20 george h.w. bushm 29 alan greenspanm 20
daniel ortegam 17 daniel ortegam 29 naguib mahfouzm 16
james bakerm 14 walter sisulum 20 yasser arafatm 12
helmut kohlm 14 mahatma gandhim 18 edbergu 12
eduard shevardnadzem 12 nelson mandelam 17 nelson mandelam 11
pat nixonf 12 james bakerm 17 george h.w. bushm 9
♯ male 290 ♯ male 545 ♯ male 259
♯ female 32 ♯ female 35 ♯ female 26

Table 6.13: Ten most frequent PERSON named entities with-
out alignment in the generated summaries. m/f /u indicate entities
tagged as male/female/unknown by our name gender classifier (see

Section 6.8.2).

better understand the nature and causes of this bias, we investigate the ten most
frequent hallucinations of each model in Table 6.13.

We identify two types of frequent hallucinations: For the first type, summa-
rizers often insert entities that are related to the time of the original documents,
sometimes by “hallucinating” the original name for an entity in spite of the input,
or by inserting the first name for entities that are mentioned without first name in
the input. The male bias here can thus be attributed to the male-dominant nature
of news at article publication times. A possible cause for this is that we do not
alter last names in the inputs. We will investigate – and reject – this hypothesis
in Section 6.12.2. Our observations also link with recent research on knowledge
conflicts (Wang et al., 2023; Xie et al., 2024), where language models may fail to
properly reflect answer uncertainty introduced by conflicting evidence in prompt
and parametric knowledge. For the Llama-2 models, we manually verify that most
hallucinations can be explained in this way.
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However, for the purpose-built summarizers, we find a second type of halluci-
nations that refer to contributors from CNN (for CNN/DM trained summarizers)
or the BBC (for XSum). These usually appear when the summary attributes the
text to an author. This is more problematic than the hallucination of historic
entities since the hallucinated entities always incorrectly attribute authorship to
already potentially well-known, mostly male figures. We find many of these follow
repeated patterns. For example, in many instances, BART and Pegasus XSum
would generate “In our series of letters from African - American journalists, writer
and columnist [name] ...”, followed by a short summary.

6.12.2 Investigating the Effect of Replacing Last Names

To test whether our choice of minimizing modifications to the original documents
by leaving last names intact during corpus construction influences our results for
hallucination bias, we repeat our original experiments but additionally replace last
names. We use the last names from the 2010 US census,14 again following Parrish et
al. (2022). Since any effect of this experiment is likely to be limited to hallucination
bias, we only conduct this experiment on Cloc to preserve computational resources.
We compute entity hallucination scores, along with the two inclusion scores, since
they are computed on Cloc as well. Results shown in Table 6.14 are comparable
with the setting that leaves last name intact, with the exception of Llama-2 chat
13b, which shows a notable decrease in hallucination score. However, even in the
latter case, it remains significantly non-zero. This suggests hallucination scores
are not a side effect of our corpus construction.

6.12.3 Investigating Distinguishability

Finally, we investigate the causes of the observed distinguishability scores. Ta-
ble 6.7 indicate some systematic difference between summaries generated for male-
and female-coded inputs, even when accounting for expected grammatical differ-
ences (see Section 6.5.4). A possible explanation for this is a difference in summary

14https://www.census.gov/topics/population/genealogy/data/2010_surnames.html

https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
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BART Pegasus Llama-2 chat
CNN XSum CNN XSum 7b 13b 70b

Word List Inclusion
0.01

s: 0.00,0.02
d: 0.00,0.04

0.01
s: 0.00,0.03
d: 0.00,0.08

0.03
s: 0.03,0.04
d: 0.00,0.07

0.03
s: 0.01,0.05
d: 0.00,0.09

0.06
s: 0.04,0.08
d: 0.03,0.09

0.07
s: 0.06,0.08
d: 0.05,0.09

0.06
s: 0.05,0.07
d: 0.04,0.08

Entity Inclusion
0.01

s: 0.00,0.02
d: 0.00,0.03

0.05
s: 0.01,0.09
d: 0.00,0.12

0.01
s: 0.00,0.03
d: 0.00,0.03

0.04
s: 0.00,0.08
d: 0.00,0.10

0.03
s: 0.00,0.05
d: 0.00,0.06

0.02
s: 0.00,0.03
d: 0.00,0.04

0.02
s: 0.01,0.04
d: 0.00,0.04

Entity Hallucination
0.44

s: 0.41,0.47
d: 0.38,0.49

0.29
s: 0.27,0.31
d: 0.24,0.34

0.41
s: 0.39,0.44
d: 0.24,0.50

0.27
s: 0.25,0.29
d: 0.21,0.33

0.37
s: 0.32,0.43
d: 0.28,0.43

0.32
s: 0.26,0.38
d: 0.18,0.42

0.43
s: 0.38,0.47
d: 0.33,0.48

Table 6.14: Results for entity metrics computed on Cloc for gender
bias with last names altered. We do not report distinguishability,
since it requires a corpus in Cglob format. We find results are com-
parable with results without last name alteration. Only Llama-2
13b shows a notable decrease in hallucination score, although it

still exhibits strong hallucination bias.

System M. F. |Diff|
BART XSum 4.30 4.37 0.07 d: 0.01,0.14
BART CNN/DM 4.84 4.84 0.01 d: 0.00,0.05
Pegasus XSum 4.24 4.24 0.00 d: 0.00,0.09
Pegasus CNN/DM 4.59 4.59 0.00 d: 0.00,0.07
Llama-2 7B 3.50 3.50 0.00 d: 0.00,0.20
Llama-2 13B 4.98 4.99 0.01 d: 0.00,0.03
Llama-2 70B 5.00 4.99 0.01 d: 0.00,0.02

Table 6.15: GPT 3.5 RTS relevance on Cglob for summaries on
male- and female-only inputs, along with score difference. We com-
pute confidence intervals for the score difference as in Table 6.7.

quality between genders. We test this using the same reference-free automatic eval-
uation metric as in Section 6.11.2. We report average scores comparing male and
female summaries in Cglob in Table 6.15, finding no quality differences.

Automatic evaluation can itself be biased and differences in summary quality
are only one aspect of representation bias. We thus conduct a manual qualitative
analysis. We first group all inputs that were generated for the same original
document in Cglob. We then sort these groups by their distinguishability score and
investigate the instances with the highest distinguishability.

For BART XSum, which has the highest overall distinguishability, we find
there is a pattern where summaries highlight the gender of women in the context
of receiving an appointment to a position of power, but do not do the same for men.
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Cloc Cglob

Corpus Avg. Tok. Avg. Ent. % Hal. Avg. Tok. Avg. Ent. % Hal.

BART CNN/DM 60.99
σ: 8.59

0.92
σ: 1.32

4.71 60.97
σ: 8.63

0.88
σ: 1.30

4.15

BART XSum 23.50
σ: 6.50

0.25
σ: 0.52

46.05 23.40
σ: 6.51

0.24
σ: 0.52

46.09

Pegasus CNN/DM 56.62
σ: 16.76

0.83
σ: 1.21

4.41 56.62
σ: 16.94

0.80
σ: 1.20

4.07

Pegasus XSum 24.66
σ: 13.78

0.21
σ: 0.50

38.31 24.66
σ: 12.67

0.19
σ: 0.49

41.31

LLama2 7b 172.59
σ: 37.64

0.88
σ: 1.55

2.12 172.48
σ: 37.70

0.89
σ: 1.58

1.86

LLama2 13b 162.54
σ: 39.04

1.45
σ: 1.98

1.28 162.25
σ: 39.37

1.34
σ: 1.86

1.50

LLama2 70b 148.14
σ: 41.63

1.71
σ: 2.18

0.46 147.70
σ: 41.98

1.61
σ: 2.05

0.44

Table 6.16: Average number of tokens and entities, and percent-
age of all entities tagged as hallucinated for summaries generated
on race bias data with randomly assigned genders. σ indicates
standard deviation. Note that while we could theoretically identify
hallucinated instances for race bias using the same algorithm we use
for the gender bias experiments, we cannot use these to compute
hallucination bias since we do not attempt to identify entity race

from names.

See Figure 6.1 for an example. We find a total of 12 instances of “first woman” and
an additional 11 instances of “first female” in the summaries generated by BART
XSum, but no instances of “first male” and only a single instance of “first man”.
This not only hallucinates information but also forms an instance of markedness
(Waugh, 1982; Cheng et al., 2023) by highlighting the appointment of women to
positions of power as abnormal. We find no similarly problematic patterns for the
remaining systems. Instead, most changes are minor variations in content selection
between male and female inputs.

6.13 Extension to Race Bias

6.13.1 A Dataset for Race Bias in Summarization

While we have thus far focused only on gender bias as a well-known bias category,
our methods are applicable to any group-based bias where group membership can
be indicated using names. We demonstrate this by investigating race bias for
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stereotypically black and white names. We use the name dictionary of Parrish
et al. (2022). We change first and last names since both are relevant in commu-
nicating race. We investigate a total of five different settings with regard to the
intersection of race and gender: one random setting, where gender and race are
assigned independently, and four intersectional ones, where gender and race are
assigned in tandem. Since the name inventory is smaller than for gender, we can-
not generate instances for all documents. We thus only consider originals where
we can generate a full set of 20 inputs under all settings, leaving us with 12,240
instances per dataset.

We give statistics for the summaries generated for the race bias experiments
with random gender assignment in Table 6.16. The remaining, highly similar,
tables can be found in Appendix G for completeness. We find that behavior is
similar to that on the gender bias dataset for all summarizers (compare Table 6.6).

6.13.2 Results

Since word lists for race bias typically rely on last names, we only compute entity
inclusion bias. We also opt not to compute hallucination bias, since we want
to avoid constructing a classifier that attempts to identify entity race. Table 6.17
shows that most summarizers exhibit no entity inclusion bias, with the exception of
BART XSum, which prefers to include black-associated names in the summary. We
find that behavior is very similar between the random and intersectional settings.
Interestingly, we find that for all summarizers that have significantly non-zero
distinguishability, it is highest when black- and white-coded entities are assigned
opposite genders. Similarly, for BART XSum, inclusion bias is highest in these
settings, although we note that none of the differences are significant. Overall we
find no strong evidence of intersectional effects in our bias metrics.

6.13.3 Investigating Distinguishability

Analogously to our analysis for gender bias in Section 6.12.3, we check quality
differences as a source of distinguishability in Table 6.18. We find that scores are
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Table 6.17: Bias scores for race bias with black/white associated
names with different gender assignments. Random assigns gender

uniformly at random, independently of race.
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System Black White |Diff|
BART XSum 4.22 4.33 0.11 d:0.02, 0.20
BART CNN/DM 4.85 4.83 0.02 d: 0.00, 0.07
Pegasus XSum 4.26 4.27 0.00 d: 0.00, 0.10
Pegasus CNN/DM 4.65 4.64 0.01 d: 0.00, 0.09
Llama 7B 3.47 3.56 0.09 d: 0.01, 0.27
Llama 13B 4.98 4.98 0.00 d: 0.00, 0.02
Llama 70B 4.98 4.99 0.01 d: 0.00, 0.02

Table 6.18: Quality difference scores for race bias with random
gender assignment. Confidence intervals are computed using boot-

strap resampling of documents.

largely similar, with no summarization system showing significant quality differ-
ences. This mirrors our observations on gender bias. We also repeat the same
qualitative analysis as outlined in Section 6.12.3 but find no problematic patterns.

6.14 Discussion

In this chapter, we have introduced bias as a crucial quality dimension for sum-
marization evaluation. We have introduced definitions that allow us to clearly
formulate expectations for what constitutes bias in summarization, along with
metrics that allow us to detect these biases. We have shown that any metric of
summarizer bias must account for confounding biases in the input and proposed
a rule-based method that allows us to create realistic data with controlled entity
distribution for studying summarizer bias. This provides both tools for researchers
interested in detecting biases in their summarization systems as well as guidelines
that help create new metrics for bias in summarization.

Our study of seven summarizers indicates that content selection is not strongly
affected by either gender or race bias for black/white-coded names. We find signif-
icant gender bias in hallucinations revealing a connection between unfaithfulness
and bias. This suggests increasing faithfulness as a bias mitigation strategy.

The results in this chapter might be taken to indicate that evaluating bias
in content selection is not necessary. However, we caution that content selection
in news summarization is known to be subject to easy heuristics like the lead
“bias” (Jung et al., 2019). Summaries might be more susceptible to biases in more
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complicated settings. We thus argue that bias evaluation should be an element of
any holistic evaluation setup.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have set out to provide a toolbox for holistic text summarization
evaluation. Taken together, the elements of this thesis provide:

• A set of best practices for cost-efficient and reliable human evaluation that
lets researchers avoid common pitfalls in their analysis

• A robust approach to meta-evaluation that allows researchers to quickly
identify instances of system-level confounders that threaten the generaliz-
ability of meta-evaluation results

• A comprehensive study of summary coherence measures, where we have
identified shortcomings and promising directions for coherence modelling

• A cost-efficient faithfulness metric based on NLI

• Abstract definitions and concrete metrics to detect the presence of bias in
summaries

When combined with traditional evaluation for relevance, our tools allow a user
or researcher to get a holistic picture of the performance of summarization systems.
We have made a particular effort to ensure this holistic evaluation remains cost-
efficient. For human evaluation, we have discussed in Chapter 3 how we can reduce
the cost of annotation by choosing appropriate annotation methods and using
nested, as opposed to the more common partially crossed designs. For automatic
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evaluation, cost is dependent on the computational effort required to run metrics,
which is why in Chapter 5 we have made an effort to find a faithfulness measure
that is based on a relatively small model and does not require costly inference
procedures. This ensures evaluations can be run both frequently and thoroughly.

Beyond the pure practical utility of this thesis, a particularly important insight
in this thesis is how easily the reliability of summarization evaluation can come
under threat. We have, at numerous points, identified reliability shortcomings in
current practices and made proposals to alleviate them:

• In our human evaluation in Chapter 3, we have identified the effect of vari-
ance in annotator preferences and input document difficulty as potential
sources of Type I errors in statistical evaluation when not accounted for.

• Our meta-evaluation of coherence measures in Chapter 4 has shown that
rankings of coherence measures are heavily influenced by the presence of
system-level confounders, i.e. strong differences in summarizer coherence
scores that happen to coincide with summarizer ranking within a coherence
measure. This may lead to poor generalization of meta-evaluation results to
future summarization systems.

• Our improvements to NLI models for faithfulness in TRUE in Chapter 5
are, in part, due to a better modelling of differences in task formulation in
different domains. Not taking these into account may have confounded past
evaluations.

• In our investigation of gender and race bias in summarization in Chapter 6,
we have highlighted the importance of accounting for the input distribution,
so it does not become a confounding factor in evaluation scores.

While the approaches for dealing with confounding factors must be individually
tailored to the specific problems at hand, this highlights the importance of carefully
designing evaluation studies to account for potential threats to reliability.

In addition to providing a usable, reliable, and cost-efficient toolbox for sum-
marization evaluation, this thesis thus also provides a number of case studies in
how to identify and address threats to reliability.
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7.2 Outlook

While we believe that this thesis has tackled contemporary issues in evaluation,
we expect that the shifting landscape of model capabilities will require future
adjustment to evaluation practices. This thesis itself, in a way, already reflects
this process. The degeneracies that have led to increased repetition, one of the
quality dimensions we investigated in Chapter 3, have been effectively solved by
larger models (Lewis et al., 2020; Zhang et al., 2020a) and improved sampling
procedures (Holtzman et al., 2020). Similarly, coherence of large models is typically
high, even in longer-form summaries (Subbiah et al., 2024). On the other hand,
faithfulness and bias have arisen as (potential) new concerns. It thus becomes
clear that as long as model development does not slow down, evaluation practices
must continue to evolve and adapt as well. In this final part of the thesis, we will
reflect on what this evolution might look like.

The most obvious likely change is a shift in evaluation dimensions, exemplified
by the additions of faithfulness and bias as dimensions of interest. It is reasonable
to assume future evaluations might further shift which quality dimensions are
important. However, we believe our core insights regarding human and meta-
evaluation will remain relevant for any quality dimension.

The increase in quality of summaries raises the question of whether crowd-
sourced evaluation studies, such as the ones we conducted in Chapter 3, will con-
tinue to provide useful signals for model evaluation. For example, Clark et al.
(2021) find that untrained human annotators are unable to differentiate between
human-written and GPT-3-generated stories. Further enlightening the gap of ex-
pert and crowd-sourced evaluation in the context of improving text summarization
systems would provide useful guidance for future evaluation studies. Our guidelines
regarding cost-efficient study design in Chapter 3 might help enable researchers to
conduct expert studies, which have a much higher base cost.

More fundamentally, all evaluations we have conducted in this paper have been
intrinsic. However, as summarization systems become stronger and differences
become more subtle, intrinsically evaluating the quality of a summary, especially
without reference to a specific downstream task, is bound to become increasingly
difficult even for experts. While intrinsic evaluation will remain important to
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pinpoint specific shortcomings, such as a lack of faithfulness or coherence, we argue
future efforts should focus more on extrinsic evaluation, in spite of the associated
challenges. A similar sentiment is also mirrored by Goyal et al. (2022). While
there is some recent work in this area (Pu et al., 2024), there are a number of
underexplored questions:

• Which downstream tasks should extrinsic evaluation focus on? As we have
discussed in Section 2.1, many recent summarization datasets have been cre-
ated by crawling naturally occurring summaries from the web. However,
with these summaries, it is often unclear which purpose they serve. Design-
ing effective extrinsic evaluations will require a more careful consideration
of what a summary is expected to accomplish. Ideally, summaries can be
integrated into an already existing process. The extrinsic evaluation in Mani
et al. (1999) was, for example, inspired by the needs of U.S. information
analysts.

• What are realistic settings for this kind of evaluation? In the classic summa-
rization setting, the summarizer is provided with the input and (optionally)
a query and generates a single summary. However, in a realistic extrinsic
evaluation, a summarizer is likely to be part of a larger system. Annotators
might, for example, have access to additional resources in addition to the
summary, or even work in an interactive summarization setting (Shapira et
al., 2022). Designing an evaluation where summarizers are part of a realistic
working environment will be crucial to identify their actual utility to the
downstream task.

• What are appropriate measures to quantify the extrinsic utility of a sum-
mary? Both Pu et al. (2024) and Mani et al. (1999) measure downstream
task performance and time required for task completion in their extrinsic
evaluations. In both cases, evaluation is focused mostly on classification-
based tasks, where human performance can be easily graded using classifi-
cation metrics. However, this is not appropriate for all downstream tasks.
As an example, consider an opinion summarization setting, where utility
of a summary is defined as how well it informs a shopper’s choice of prod-
uct. In this case, an appropriate measure might be how the shopper rates
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the product chosen based on the summaries. For more critical use cases,
assigning severity to mistakes in downstream tasks will also likely play an
increasing role. Consider a scholarly multi-document summarization system
that summarizes the contributions of a large set of papers. Such a system
could, for example, be extrinsically evaluated by having researchers identify
relevant related work from the summary. We might imagine a summarizer
that generates very brief summaries that cover only the most well-known
papers in the input. Such a system would save a lot of time and likely even
result in decent downstream performance as measured by the number of pa-
pers correctly identified, but would encourage shallow related work sections
that systematically ignore less well-known work. Such subtleties are unlikely
to be well captured by one-dimensional task performance metrics and will
require careful design of performance measurements.

Finally, we have treated the problems of human evaluation and automatic eval-
uation entirely separately in this thesis. However, with human evaluation being
reliable but costly (especially when conducted with experts) and the less reliable
automatic evaluation having a cost advantage, combining both might yield an
evaluation framework that provides the advantages of both. This combination has
naturally been explored with earlier automatic metrics. Chaganty et al. (2018)
provide a statistical framework for debiasing an arbitrary metric using human
judgements. However, they find little practical advantage with this combination
due to the weaknesses of contemporary summarization evaluation metrics. With
the advent of stronger automatic evaluation, it is reasonable to expect future
improvements from more direct collaboration between human and automatic eval-
uation. A promising direction in this regard is to use metrics to automatically
select instances where human annotation would lead to a large gain in knowledge
of overall system ranking. While some forays have been made in this direction
(Mohankumar and Khapra, 2022; Ruan et al., 2024), the design space of such
active learning approaches for evaluation is far from completely mapped.

In sum, while we believe our work to be holistic with regard to the current state
of text summarization, the nature of evaluation means it must constantly co-evolve
along constantly improving summarization systems. However, the fundamental
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goals of reliability and cost-efficiency will remain relevant for any future evaluation
endeavors. Our work provides practical guidance for achieving this, both for human
and automatic evaluation.
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Appendix A

Summarization Dataset References

Table A.1 relates the dataset names in Table 2.1 to the corresponding references.

Corpus Reference
Arxiv Cohan et al. (2018)
BigPatent Sharma et al. (2019b)
BillSum Kornilova and Eidelman (2019)
BookSum Full Kryscinski et al. (2022)
BookSum Chapter Kryscinski et al. (2022)
BookSum Paragraph Kryscinski et al. (2022)
CNN/DM Hermann et al. (2015); Nallapati et al.

(2016b); See et al. (2017)
DUC 2005 Dang (2005)
DUC 2006 Dang (2006)
DUC 2007 NIST (2007)
Gigaword Graff and Cieri (2003); Rush et al. (2015)
GovReport Huang et al. (2021)
Multinews Afli et al. (2017)
Newsroom Grusky et al. (2018)
NYT Sandhaus (2008)
PubMed Cohan et al. (2018)
SamSUM Gliwa et al. (2019)
XSum Narayan et al. (2018a)

Table A.1: References for datasets mentioned in Table 2.1.
Where multiple references are given, the first introduces the corpus,
whereas the second pioneers its use as a summarization dataset.
For CNN/DM, Nallapati et al. (2016b) introduce the dataset but
use an anonymized version, where named entities are replaced with
placeholders. See et al. (2017) are the first to use a non-anonymized

version.
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Survey

B.1 Categories

While most categories are self-explanatory, we elaborate on some of the decisions
we made during the survey in Chapter 3 in this section.

Evaluation Questions. We allow a single study to include multiple evaluation
questions, as long as all questions are answered by the same annotators and use
the same method. We make no distinction between informativeness, coverage,
focus, and relevance and summarize them under Content. Similarly, we summarize
fluency, grammaticality, and readability under Fluency. Other includes:

• One study with a specialized set of evaluation questions evaluating the use-
fulness of a generated related work summary

• One study of polarity in a sentiment summarization context

• One study where annotators were asked to identify the aspect a summary
covers in the context of review summarization

• Two studies evaluating formality and meaning similarity of reference and
system summary

• One study evaluating diversity

• One study conducting a Turing test
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• One study asking paper authors whether they would consider a sentence part
of a summary of their own paper.

• One study evaluating structure and topic diversity.

Evaluation Method. Binary includes any task with a yes/no style decision,
while pairwise includes any method in which two systems are ranked against each
other. Other includes

• The aspect identification task mentioned above

• One study in which participants selected a single best summary out of a set
of summaries.

Annotator Recruitment. Other includes any recruitment strategy that does
not rely on crowdsourcing. This includes cases in which the recruitment was not
specified, students, experts, the authors themselves, and various kinds of volun-
teers.

Statistical Evaluation. Other/unspecified includes

• Four studies which reported statistical significance without reporting the test
used

• Two studies using the approximate randomization test

• One study using the chi-square test

• One study using a Tukey test without prior ANOVA.

B.2 Survey Files

All papers we considered for the survey are listed in the supplementary material
in the file all_papers.yaml by their id in the ACL anthology bib-file. The file
can be found in the repository for Chapter 3 (see Section 1.6). The 58 SDS/MDS
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system papers that contain new human evaluation studies and are thus included
in the survey are listed in the category with_human_eval.

For the sake of completeness, we further list summarization papers we did not
include in our survey. We separate them into the following categories:

no_human_eval 47 SDS/MDS system papers without human evaluation

sentsum 27 Sentence summarization and headline generation papers

non_system 34 summarization papers that do not introduce new systems, like
surveys, opinion pieces and evaluation studies

other 10 Papers that conduct summarization with either non-textual input or
non-textual output

We give a full list of the survey results for all papers with human evaluation
studies in the file survey_details.csv. The file has the following columns:

paper Id of the paper in the ACL anthology

eval_id Id of the evaluation study to differentiate them in papers with multiple
studies

task Summarization task of the paper: SDS vs. MDS

genre Genre of the summarized documents

#docs Number of documents in the evaluation

#systems Number of systems in the evaluation

includes_reference Whether the reference summary is included in the human
evaluation

#ann_total Total number of annotators in the study

#ann_item Number of annotators per summary

content, fluency, repetition, coherence, referential_clarity, other, overall
Binary columns indicating evaluation questions in the paper
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measure Annotation method used in the study

anntype Annotator recruitment strategy

stattest Statistical test used

design_specified Indicates whether it is possible to determine the full design
from the information given about the study in the paper

comments Comments column. This column describes the use of other where
present.

B.3 Files for the Repeat of the Survey

Since our second survey in Section 3.8 is smaller in scope, we slightly simplify our
reporting. all_papers_new.yaml lists all papers we considered as system papers.
Unlike in all_papers.yaml, we do not list sentence summarization or non-system
papers.

survey_papers_new.csv contains the detailed evaluation for each paper with
at least one human evaluation study.

The one instance of Other in evaluation questions is one instance of annotators
being asked to rate the fairness of opinion summaries.
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Coherence Measures:
Implementation Details

C.1 Extended Entity Grid (EEG)

We use the original implementation that is part of the Brown Coherence Toolkit.1

For preprocessing, we use the Stanford parser.2 We identify entities using OpenNLP
as suggested in the README.

For WSJ, we used the pretrained f-wsj model provided in the toolkit. For
CNN/DM, we trained our own model. We found that the implementation ran
out of memory on the 287,011 instances in CNN/DM on our machine with 32GB
of RAM. We thus limited the instances considered for CNN/DM to 10% of the
original dataset (28,701).

C.2 Entity Graph (EGR)

Since there is no reference implementation of the Entity Graph, we implement
our own version based on the grid created by the Brown Coherence Toolkit. We
use the PAcc measure with distance penalty which performed best in the original
paper.

1https://web.archive.org/web/20200505174052/https://bitbucket.org/melsner/
browncoherence

2https://nlp.stanford.edu/software/lex-parser.shtml

https://web.archive.org/web/20200505174052/https://bitbucket.org/melsner/browncoherence
https://web.archive.org/web/20200505174052/https://bitbucket.org/melsner/browncoherence
https://nlp.stanford.edu/software/lex-parser.shtml
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Embedding Size 100
Batch Size 64
Pool Length 6
Window Size 6
Number of Filters 150
Hidden Size 250

Table C.1: Best hyper-parameters for the neural entity grid on
DUC 03.

C.3 Neural Entity Grid (NEG)

Since no models are publicly available, we train new models for all settings using
the reference implementation.3

For DUC 03 and WSJ, we use the entity grids and training pairs provided by
the authors in the repository. These were also created using the Brown Coherence
Toolkit. For CNN/DM, we create our own samples following the original settings.
We found that the original implementation of the shuffling procedure leaves arti-
facts in the data, since the row order is unchanged between shuffled and unshuffled
documents. However, for unshuffled documents, the order of rows in the entity grid
roughly corresponds to the order of entities in the sentences, whereas for shuffled
documents this is not the case. Since this can be picked up by the convolutional
network for short documents, we modify the input data to randomly shuffle the
row order for each instance.

For the shuffling tasks on WSJ, we use the hyper-parameters reported in the
original paper. We also use these hyper-parameters for CNN/DM. For DUC, no
hyper-parameters were reported, so we use the built-in hyper-parameter search.
We achieve the best results using the parameters reported in Table C.1.

C.4 Graph-based Model (GRA)

We use the original implementation.4 For WSJ, we use the provided pretrained
model. For DUC and CNN/DM, we train the model using default settings, which

3https://github.com/datienguyen/cnn_coherence
4https://github.com/UKPLab/emnlp2021-neural-graph-based-coherence-model

https://github.com/datienguyen/cnn_coherence
https://github.com/UKPLab/emnlp2021-neural-graph-based-coherence-model
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includes an ELMo (Peters et al., 2018) embedding layer. The graph representation
is created from an entity grid representation as provided by the Brown Coherence
Toolkit.

C.5 Unified Coherence Model (UNF)

We use the original implementation.5 We train new models for CNN/DM and WSJ
using default settings. In the original implementation, scores are computed using
a sum over coherence scores for windows of three sentences each, since in their
pairwise evaluation, samples always have the same length. In our experiments, we
use the mean over the windows instead to normalize for length. For completeness,
we also conducted experiments using the original setting, i.e. the sum instead of
the mean, which did not lead to any improvement.

C.6 Coherence Classifier (CCL)

We originally experimented with the pretrained WSJ model provided by the au-
thors of Laban et al. (2021).6 However, we found that the model achieved near-
random scores when evaluated on SummEval for reasons that are difficult to ascer-
tain as the original training code is unavailable. We thus train our own coherence
classifier models for both CNN/DM and WSJ. We use the roberta-large model
as implemented in the huggingface library (Wolf et al., 2020) in a sequence clas-
sification setup. We use a learning rate of 2e− 6 and train for a maximum of six
epochs. We select the best model using F1-score on the validation set.

C.7 BARTScore (BAS)

We reimplement the fine-tuned BARTScore variant using the bart-large-cnn

checkpoint from the huggingface library. Since the original model is evaluated
using Spearman’s ρ, we separately verified that it exactly reproduces the reported
results.

5https://github.com/taasnim/unified-coherence-model
6https://github.com/tingofurro/shuffle_test

https://github.com/taasnim/unified-coherence-model
https://github.com/tingofurro/shuffle_test
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C.8 GRUEN (GRN)

We use the scores provided by the official reference implementation.7

C.9 SumQE (SQE)

We use the scores provided by the official reference implementation.8 We use the
Q5 head of the model jointly trained on all three DUC datasets.9

7https://github.com/WanzhengZhu/GRUEN
8https://github.com/nlpaueb/SumQE
9https://archive.org/download/sum-qe/BERT_DUC_all_Q5_Multi%20Task-5.h5

https://github.com/WanzhengZhu/GRUEN
https://github.com/nlpaueb/SumQE
https://archive.org/download/sum-qe/BERT_DUC_all_Q5_Multi%20Task-5.h5
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Appendix D

NLI Model Augmentation Training
Details

D.1 Hyper-Parameters

Table D.1 lists the hyper-parameter settings for our model. We use the same
optimizer hyper-parameters as Laurer et al. (2022) except for an increased batch
size and the learning rate. For the latter, we tested three learning rates (5e − 6,
5e − 2, 5e − 1) and select the one that provided the best loss on the augmented
ANLI validation set. We initially ran models for 10,000 steps with a checkpoint
every 1,000 steps and selected the checkpoint with the lowest loss on the augmented
ANLI validation set. Later, we reduced the number of training steps to 2,000 since
we found we would usually select an early checkpoint as validation loss increased
later in training, likely related to overfitting on the augmented data.

Parameter Val.
Warmup Ratio 0.06
Weight Decay 0.01
Effective Batch Size 64

Table D.1: Hyper-parameters for training models with augmen-
tations.
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D.2 Training

We use the DeBERTa implementation in the huggingface transformers library
(Wolf et al., 2020) and trained our model on a single node using two RX6800
GPUs, with one training run taking about three hours. Later experiments with
fewer steps cut that time by 80%.
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Appendix E

Dataset Bias in BEGIN-v2

While BEGIN-v2 contains a different selection of models and employs a different
annotation methodology, we find that it contains a similar form of bias as BEGIN-
v1.

BEGIN-v2 uses data from four dialogue systems, but a majority of faithful
generations is produced by a single system called ctrl-Dialog (Rashkin et al.,
2021). ctrl-Dialog is specifically trained to generate less subjective text, which
we hypothesize might result in fewer first-person pronouns. Since ctrl-Dialog

also produces more faithful texts, this would lead to a negative correlation between
faithfulness and first-person pronouns, similar to what we observe on BEGIN-v1.

We verify this assumption by computing the correlation of a binary variable
indicating an instance has been generated by ctrl-Dialog with a) the faithful-
ness labels on BEGIN-v2 and b) first-person pronoun occurrence. We find that an
instance being generated by ctrl-Dialog is positively correlated with it having a
faithful label (Kendall τ w.r.t. faithfulness: 0.48, p< 0.001) while being negatively
correlated with the number of pronouns (Kendall τ w.r.t. I -pronoun occurrence:
-0.34, p< 0.001). This suggests future evaluations on the BEGIN-v2 might run
into similar bias issues.
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Appendix F

Bias Experiment Topic Assignment
Heuristic

For our demonstration of the effect of input bias in Section 6.6, we require a
transparent way to assign a topic to an input document. Following the observations
on gender/topic association in Table 6.2, we manually select a small number of
tokens that we identify as sport- or family-related. A text is classified by counting
the number of occurrences for each word list and selecting the majority class. A
tie is classified as unknown. We list tokens for both categories in Table F.1. This
allows us to create a deterministic, easy-to-verify topic assignment. Note that
this assignment is purposefully artificial and non-general. It is not intended as
a realistic topic classifier but as a tool to demonstrate how summarizers might
behave and how this influences bias scores.

Sport Family
league family
season husband
club wife
game father
win mother
team children
shot boys

girls
baby

Table F.1: Words used for topic identification.
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Appendix G

Dataset Statistics for Intersectional
Biases

We report dataset statistics for the intersectional biases in Tables G.1 to G.4. We
find no significant differences between settings.
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Cloc Cglob

Corpus Avg. Tok. Avg. Ent. % Hal. Avg. Tok. Avg. Ent. % Hal.

BART CNN/DM 60.92
σ: 8.67

0.86
σ: 1.26

3.94 60.93
σ: 8.69

0.90
σ: 1.30

4.77

BART XSum 23.19
σ: 6.43

0.22
σ: 0.49

42.77 23.49
σ: 6.57

0.25
σ: 0.53

44.99

Pegasus CNN/DM 56.41
σ: 16.99

0.77
σ: 1.17

3.21 56.51
σ: 16.72

0.81
σ: 1.22

4.97

Pegasus XSum 24.83
σ: 12.81

0.18
σ: 0.46

39.48 24.85
σ: 14.07

0.20
σ: 0.49

39.67

LLama2 7b 172.83
σ: 37.48

0.87
σ: 1.52

2.02 171.82
σ: 38.26

0.85
σ: 1.53

1.90

LLama2 13b 161.37
σ: 39.93

1.28
σ: 1.75

1.28 162.12
σ: 39.17

1.39
σ: 1.89

1.40

LLama2 70b 147.01
σ: 42.44

1.51
σ: 1.91

0.52 148.22
σ: 41.95

1.66
σ: 2.10

0.47

Table G.1: Average number of tokens and entities, and percentage
of all entities tagged as hallucinated for summaries generated on
racial bias data (black male, white female). σ indicates standard

deviation.

Cloc Cglob

Corpus Avg. Tok. Avg. Ent. % Hal. Avg. Tok. Avg. Ent. % Hal.

BART CNN/DM 61.04
σ: 8.64

0.86
σ: 1.26

3.76 61.00
σ: 8.64

0.90
σ: 1.32

4.67

BART XSum 23.24
σ: 6.47

0.22
σ: 0.49

41.76 23.49
σ: 6.61

0.24
σ: 0.53

44.77

Pegasus CNN/DM 56.55
σ: 17.06

0.78
σ: 1.17

3.16 56.58
σ: 16.82

0.81
σ: 1.22

4.69

Pegasus XSum 24.93
σ: 12.91

0.19
σ: 0.47

37.05 24.71
σ: 13.20

0.20
σ: 0.51

38.60

LLama2 7b 172.61
σ: 37.72

0.85
σ: 1.51

1.57 173.18
σ: 37.46

0.87
σ: 1.57

2.04

LLama2 13b 161.44
σ: 39.82

1.29
σ: 1.78

1.39 162.53
σ: 39.09

1.40
σ: 1.92

1.70

LLama2 70b 147.39
σ: 42.71

1.52
σ: 1.91

0.47 148.15
σ: 41.75

1.66
σ: 2.11

0.53

Table G.2: Average number of tokens and entities, and percentage
of all entities tagged as hallucinated for summaries generated on
racial bias data (black male, white male). σ indicates standard

deviation.
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Cloc Cglob

Corpus Avg. Tok. Avg. Ent. % Hal. Avg. Tok. Avg. Ent. % Hal.

BART CNN/DM 60.92
σ: 8.63

0.85
σ: 1.27

3.21 60.86
σ: 8.57

0.90
σ: 1.32

4.28

BART XSum 23.19
σ: 6.41

0.22
σ: 0.49

42.68 23.46
σ: 6.51

0.24
σ: 0.52

46.81

Pegasus CNN/DM 56.42
σ: 16.90

0.78
σ: 1.16

3.49 56.77
σ: 16.92

0.82
σ: 1.21

4.87

Pegasus XSum 24.87
σ: 12.77

0.19
σ: 0.49

38.46 24.78
σ: 14.01

0.21
σ: 0.50

39.10

LLama2 7b 172.98
σ: 37.46

0.88
σ: 1.54

1.80 173.24
σ: 37.24

0.89
σ: 1.58

1.57

LLama2 13b 161.62
σ: 39.56

1.29
σ: 1.76

1.60 162.44
σ: 39.14

1.40
σ: 1.91

1.23

LLama2 70b 147.21
σ: 42.73

1.53
σ: 1.92

0.37 147.96
σ: 41.93

1.65
σ: 2.09

0.43

Table G.3: Average number of tokens and entities, and percentage
of all entities tagged as hallucinated for summaries generated on
racial bias data (black female, white female). σ indicates standard

deviation.

Cloc Cglob

Corpus Avg. Tok. Avg. Ent. % Hal. Avg. Tok. Avg. Ent. % Hal.

BART CNN/DM 60.96
σ: 8.60

0.85
σ: 1.26

3.30 61.07
σ: 8.63

0.90
σ: 1.31

4.24

BART XSum 23.22
σ: 6.45

0.22
σ: 0.50

41.99 23.44
σ: 6.50

0.24
σ: 0.52

44.22

Pegasus CNN/DM 56.32
σ: 16.99

0.78
σ: 1.17

3.11 56.71
σ: 16.81

0.82
σ: 1.20

4.43

Pegasus XSum 24.86
σ: 12.65

0.19
σ: 0.48

36.29 24.65
σ: 13.82

0.21
σ: 0.51

38.73

LLama2 7b 173.26
σ: 37.28

0.87
σ: 1.50

1.79 172.71
σ: 37.73

0.86
σ: 1.55

1.82

LLama2 13b 161.31
σ: 39.48

1.29
σ: 1.78

1.34 162.80
σ: 38.97

1.40
σ: 1.93

1.52

LLama2 70b 146.97
σ: 42.49

1.54
σ: 1.94

0.35 148.16
σ: 41.92

1.66
σ: 2.09

0.41

Table G.4: Average number of tokens and entities, and percentage
of all entities tagged as hallucinated for summaries generated on
racial bias data (black female, white male). σ indicates standard

deviation.
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