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Enhancing Participatory Mapping through AI: Detecting
Hand-drawn Markings Using Siamese YOLOv9e

Clemens Langer
Celina Thomé

ABSTRACT
Participatory Mapping empowers communities to contribute local-
ized spatial knowledge vital for urban planning, disaster prepared-
ness, and environmental risk assessment. These valuable inputs are
often captured in analogue formats—such as SketchMaps—to bridge
the digital gap and include local population. However, these ana-
logue maps pose significant challenges for digital interpretation due
to visual variability, scanning artefacts, and complex backgrounds.
The Sketch Map Tool (SMT) addresses this through a multi-stage
deep learning pipeline that extracts annotations from scanned maps.
We enhance the SMT by replacing its object detection module with
a Siamese YOLOv9e architecture. Our dual-input approach pro-
cesses both clean and annotated versions of the same map, using
feature-level fusion to isolate user-added content. Trained on a
large-scale dataset of synthetic and real-world Sketch Maps, our
approach improves recall, precision, and mean average precision.
Experiments across OpenStreetMap and satellite imagery basemaps
demonstrate improved robustness and generalization. This focused
upgrade makes the SMT pipeline more scalable for automated Par-
ticipatory Mapping, while keeping it easy to understand and prac-
tical to use in real-world field settings. This ensures communities
can meaningfully contribute to spatial planning through inclusive,
data-driven insights.

KEYWORDS
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1 INTRODUCTION
Participatory Mapping (PM) enables local communities to con-
tribute spatial insights rooted in everyday local knowledge—insights
that are often overlooked by top-down data collection methods [17].
In contexts ranging from urban development to climate adaptation
and disaster risk reduction, these inputs are invaluable for identi-
fying hazards, infrastructure needs, and social vulnerabilities. A
common approach involves community members drawing directly
on printed basemaps—creating so-called Sketch Maps (SMs), to high-
light relevant features. Although rich in qualitative data, annotated
maps remain a technical challenge to digitize as geographical data
due to visual variability and lack of standardization [3]. Hand anno-
tations vary widely in style, color, and scale. Maps are scanned or
photographed under inconsistent conditions. Existing methods for
digitization often involve manual tracing, thresholding, or basic im-
age differencing, which are labor-intensive and brittle. As Elwood
and Cope emphasize, the shift toward digital PM raises questions of
legibility and power—whose knowledge gets formalized and how
faithfully it is represented [26].

The Sketch Map Tool (SMT) is an open-source platform that
automates the extraction of community-drawn annotations from

Figure 1: Community sketch mapping in Colombia for disas-
ter and flood risk assessment during the Red Cross’s EVCA
project using SMT [8].

scanned or photographedmaps using a deep learning-based pipeline.
This system integrates object detection, segmentation, and color
classification to identify and digitize user-added content. However,
existing implementations analyze only the annotated image in iso-
lation, limiting their ability to distinguish markings from static
map features—particularly in visually complex or low-contrast ar-
eas. To address this, we propose a key enhancement: a Siamese
YOLOv9e architecture that simultaneously processes both the clean
(unmarked) and annotated versions of each map. By performing
feature-level comparison across the two inputs, the model can more
accurately detect new annotations while suppressing background
content. These detections are then refined through instance seg-
mentation and semantic color classification, enabling more precise
and reliable digitization.

Our contributions are threefold: (1) the introduction of a Siamese
detection architecture specifically adapted for participatory SMs,
(2) a scalable and modular deep learning pipeline suited to diverse
basemap and annotation styles, and (3) a synthetic data generation
strategy that enables robust training with high variability. Collec-
tively, these contributions aim to enhance detection performance,
particularly in complex scenes with irregular or ambiguous anno-
tations, by improving recall, precision, and overall robustness.

By integrating advanced change detection into a fully automated
participatory mapping system, this work bridges the gap between
analogue, community-driven knowledge, and structured digital
geospatial data. The approach enables more inclusive, responsive
spatial planning, particularly in humanitarian and low-resource
contexts.



Clemens Langer and Celina Thomé

2 BACKGROUND AND RELATEDWORK
2.1 Participatory Mapping and Applications
Participatory Mapping complements traditional data production by
addressing varying spatial coverage and occasional misalignment
with local realities in official datasets [17, 28]. Grass roots commu-
nities are enabled and empowered to co-create spatial knowledge,
enhancing local planning, disaster risk reduction, and environmen-
tal management, including their perspectives and reflecting lived
experiences which are often not captured in official datasets [5, 15].
In particular in its analogue form, PM empowers communities
without technical expertise to highlight their issues, making their
realities visible, and thus fostering inclusive, sustainable decision
making grounded in local knowledge [14, 17]. Hand-drawn SMs
remain one of the most accessible and widely used formats for cap-
turing such knowledge. However, their analogue nature, variability,
and informal representation make them difficult to process with
standard GIS tools. The transformation of the mapping results into
digital, appealing visualizations is necessary to fully realize the
potential of PM. Not only does this support advocacy of commu-
nity’s needs among broader audiences and decision-makers, but
it is also a powerful way to return the results to the community
itself—fostering awareness, dialogue, and empowerment [7]. As
Cochrane and Corbett note, PM serves both to visualize the con-
nection between people and place and to support broader social
change, while also carrying assumptions and limitations that must
be critically evaluated [6].

With the advancement of geospatial artificial intelligence (GeoAI),
new opportunities have emerged to automate, scale, and enrich
PM practices. GeoAI integrates spatial data with machine learn-
ing and computer vision techniques to extract insights from maps,
satellite imagery, and other location-based inputs. In participatory
contexts, GeoAI methods have been applied to identify patterns in
hand-drawn annotations, quantify community-defined hazards, and
integrate crowd-sourced spatial narratives into digital platforms.
This computational enhancement allows PM to contribute not only
localized perspectives but also analytically robust, spatially explicit
datasets to inform policy and planning.

Recent practical implementations reflect this trend. The Smart-
LandMaps project [19] demonstrates the potential of automated
sketch interpretation, using computer vision and vectorization to
extract parcel boundaries from hand-drawn land tenure maps. Pa-
per2GIS [11] automatically extracts and georeferences hand-drawn
annotations from scanned paper maps, converting them into GIS-
compatible vector data. Such tools illustrate how GeoAI can op-
erationalize participatory mapping outcomes, supporting spatial
analysis and data-driven decision-making.

2.2 Sketch Map Tool and AI pipeline
The SMT is an open-source web application developed by the Hei-
delberg Institute for Geoinformation Technology (HeiGIT) to sup-
port PM in humanitarian, environmental, and civic planning con-
texts [14]. It bridges analogue practices—such as hand-drawn com-
munity maps—with modern geospatial analysis by enabling users
to annotate printed base maps derived from OpenStreetMap (OSM)
or ESRI World Imagery (EWI) using pens or markers. These maps
are then scanned or photographed and uploaded to the platform,

which attempts to extract and georeference hand-drawn markings
as GIS-compatible vector data (Figure 2).

SMT offers two basemap choices: OSM and EWI. While OSM is
widely used, its coverage varies significantly, especially in rural or
underserved regions [1, 13]. In such cases, EWI provides a more con-
sistent high-resolution alternative. This flexibility supports a wide
range of deployment environments—from post-disaster planning
in Timor-Leste to flood risk assessments in Germany [15, 23].

Early versions of SMT relied on image differencing and threshold-
ing to detect user annotations. This approach computed pixel-wise
differences between the uploaded and originalmap images, followed
by binarization to isolate changes.While conceptually simple, it was
highly sensitive to scanning artifacts, lighting conditions, and small
misalignments—leading to frequent false positives and negatives.
In response, version 2.0 introduced a multi-stage deep learning
pipeline (Figure 2) integrating object detection and segmentation
components to enhance robustness, accuracy, and generalizability
across diverse mapping contexts. The current pipeline comprises
the following components:

(1) Object Detection (YOLOv8): Custom-trained models for
OSM and EWI basemaps detect bounding boxes of anno-
tated regions using a 4-channel input (RGB + difference).

(2) Instance Segmentation (SAM2): Detected regions are
passed to the Segment Anything Model (SAM2) in zero-
shot mode to create precise masks.

(3) Color Classification (YOLOv8): Cropped segments are
classified into semantic categories based on marker color
using a lightweight CNN.

(4) Postprocessing and Vectorization: Morphological op-
erations are applied to clean the masks, which are then
exported as GIS-compatible vector formats such as GeoJ-
SON.

The training dataset for SMTv2 includes approximately 500 anno-
tated maps per basemap type. These were printed, drawn upon,
scanned, and labeled. SMTv2 uses a 4-channel input (RGB + greyscale
pixel-wise difference map) to improve change localization; however,
the model still treats this composite as a single image. It does not
perform feature-level comparisons between the clean and anno-
tated maps, limiting its ability to differentiate subtle or ambiguous
markings, while increasing the number of trainable parameters.
This motivates the enhanced Siamese architecture introduced in
this paper, which explicitly compares the two images in parallel
and learns changes through deep feature-level subtraction.

2.3 Object Detection with Siamese Networks
and YOLO

Object detection is the task of identifying and localizing objects
within images, typically using bounding boxes and class labels.
Traditional two-stage approaches such as Faster R-CNN [25] sep-
arate region proposal from classification and offer high accuracy
but slower inference. In contrast, single-stage detectors like YOLO
(You Only Look Once) [24] predict object locations and classes in a
single forward pass, offering a strong trade-off between speed and
accuracy. The YOLO family has progressively improved through
deeper backbones, cross-stage partial connections, and multi-scale
heads, making them suitable for real-time applications.
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Figure 2: Overview of the AI pipeline in Sketch Map Tool v2 for object detection and segmentation.

In PM, where annotations are often faint and irregular, single-
image YOLO detection struggles with subtle visual cues. We address
this by shifting to a change detection approach using a Siamese
network that compares annotated and unmarked map versions,
enhancing sensitivity to participant-drawn changes. A Siamese
Network is a neural network architecture consisting of two iden-
tical subnetworks whose weights are shared. These subnetworks
operate in parallel, each receiving separate input, and their outputs
are compared or combined to determine the similarity or difference
between inputs [16]. Siamese networks are particularly effective
in learning discriminative feature embeddings, making them suit-
able for tasks involving pairwise comparisons, such as verification,
recognition, or change detection. They have found widespread
application across various domains, including facial recognition,
object tracking, signature verification, andmedical imaging analysis
[2, 4]. In remote sensing and geospatial analysis, Siamese networks
have proven particularly beneficial for change detection due to
their ability to directly learn from bi-temporal imagery [10]. Their
structure allows them to effectively capture subtle differences while
minimizing interference from irrelevant variations such as lighting,
viewpoint, and seasonal changes.

While Siamese structures have been extensively studied, their
integration with YOLO is relatively novel. Recent research has
explored Siamese YOLO or Siamese-attention integrated YOLO ar-
chitectures for tracking and detecting changes in scenes or specific
objects efficiently in real-time [30, 31]. These models use shared
YOLO backbones to extract features from two input images, im-
proving change detection while keeping parameter counts similar
to non-Siamese models. Recent work has enhanced feature fusion
through a Structure Coefficient Block and attention mechanisms
[30, 31]. Building on these advances, we adapt a Siamese YOLOv9e
model for participatory mapping, using bi-temporal inputs to detect

annotations with greater sensitivity and robustness across diverse
basemap styles.

3 METHODOLODY AND DATASET
3.1 Proposed Siamese Detection Pipeline
Sketch Map Tool 2.1 introduces a novel architectural approach by
reframing the task of SM interpretation as a bi-temporal change
detection problem. Rather than analyzing annotated maps in isola-
tion, the model concurrently processes both the original (clean) and
the annotated versions of a map to isolate user-added content. To
achieve this, we develop a custom Siamese YOLOv9e pipeline [18]
that performs parallel feature extraction on both images (Figure 3).
This Siamese configuration enables the network to reason over
differences between the two images. Intermediate feature maps
are fused using element-wise subtraction or alternative attention
mechanisms to emphasize the annotations while suppressing static
background content. This enhances the model’s ability to localize
complex, irregular, or faint markings while maintaining precision
on small, well-defined features. Our Siamese model extends the
Ultralytics YOLOv9 implementation by introducing two identical
backbones with shared weights. To stabilize training, one branch
is temporarily frozen to encode the background (clean map), while
the second remains fully trainable. Synchronization is maintained
by updating the frozen branch every 10 batches with the current
weights from the trainable branch. To integrate the clean and an-
notated streams, we compute element-wise differences between
their backbone feature maps at three FPN levels—P3, P4, and P5,
corresponding to strides of 8, 16, and 32. These difference-based
feature maps effectively suppress static basemap content and em-
phasize user-drawn markings. Finally, the fused output is fed into
the neck’s and supply the small, medium, and large detection heads
with change-focused representations. While we experimented with
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Figure 3: Simplified structure of the proposed Siamese
YOLOv9e Model. Highlighting the Dual Backbone structure
in comparison to the single backbone in figure 2.

attention-based alternatives such as CBAM and cross-attention,
we prioritized the use of simple difference operations due to their
lower computational cost and reliable performance.

To ensure consistency between the two input streams during
training, we apply synchronized augmentations using the Albumen-
tations library. These include geometric transformations (e.g., flips,
scaling, perspective changes) and photometric adjustments (e.g.,
HSV shifts, brightness/contrast scaling, additive noise), preserving
alignment while enhancing visual diversity.

By integrating a bi-temporal design into the YOLOv9e archi-
tecture, SMT version 2.1 achieves robust detection of diverse and
subtle annotations. This improves generalizability across different
basemaps, drawing styles, and real-world mapping scenarios.

3.2 Data
3.2.1 Synthetic Dataset. To pre-train on hand-drawn data and en-
able controlled experimentation, we generated a synthetic dataset
of 18,400 SMs, equally distributed between EWI satellite and OSM
basemaps. Sampling followed a country-based train-test split using
sampeling around Natural Earth settlement data [21], focusing on
locations near human settlements. This geographic split—stratified
by country into 80% train, 10% validation, and 5% test—aims to eval-
uate generalization to unseen regions. OSM’s uniform render style
likely induces less variability than the more heterogeneous satellite
imagery from EWI. Minor deviations from the intended proportions
resulted from processing errors and geographic imbalances.

We prioritized settlement-based sampling due to expected appli-
cation in inhabited areas, but ensured a wide sampling radius to
include surrounding natural zones.

Each synthetic SM featured simulated annotations from two base
types: manually drawn geometric shapes and algorithmically gen-
erated blobs. Masks were created using the hand-drawn-shapes
dataset [22] and the blob-masks Python package. Morphological
operations, gradient variations, and noise filters were applied to
mimic the appearance of marker strokes. Masks were then compos-
ited and blended into the map backgrounds, with bounding boxes
stored for training. To simulate photographic distortions found
in real SMs, we applied Albumentations-based augmentations in-
cluding lens distortion, perspective warping, motion blur, additive
noise, brightness/color shifts, and shadow overlays. This augmen-
tation strategy helped reduce the domain gap between synthetic
and real-world inputs, improving model robustness.

Figure 4: Synthetic dataset samples: EWI (top) andOSM-based
(bottom) showing blob-type (left two columns) and altered
hand-drawn markings (right two columns).

3.2.2 Hand-drawn Dataset. To create a diverse training dataset,
1,100 randomly generated SMs per background were printed (ISO
A4, color and B/W) and distributed to eight coworkers and stu-
dent assistants for annotation. A variety of markers with differing
colors and thicknesses were provided to simulate the heterogene-
ity of real-world user annotations. The SMs were sampled in a
similar manner as the synthetically generated maps around the
settlements, but without applying the geographic criteria. Based on
user requirements and feedback, e.g. that very large or unusually
shaped polygons are often not detected, we deliberately incorpo-
rated these challenging edge cases into our training set by giving
instructions to the annotators to include exactly these. By assessing
and addressing the specific scenarios users found problematic, we
tried to ensure that our model generalizes robustly to complex,
real-world sketch-map annotations.

The completed SMs were subsequently digitized by scanning or
photographing them. This deliberate diversity in participants and
drawing materials was essential to ensure that the dataset captured
a broad range of annotation styles and visual characteristics, thereby
improving the generalizability and robustness of the trained model.

All digitized images were manually labeled using the Computer
Vision Annotation Tool (CVAT) [9], following a consistent set of
annotation guidelines across the annotators to ensure labeling uni-
formity and produce high-quality ground truth data for training
and evaluation. In a total of 3 annotators (the two authors and one
student assistant) labeled the images in CVAT. After that a fourth
person reviewed each set of labels before approving it.

From the previous version, we had additional training data that
we merged into the training data we already have. This leads to our
datasets having the following counts for each split (Table 1).

3.3 Training Setup and Evaluation
In a first step we trained a model on the synthetic dataset. The
resulting model we have used as an initial checkpoint to train two
separate models, one for EWI sattelite imagery, one for OSM im-
agery SMs. As we expect major domain shifts for the real world data
between EWI and OSM, we have decided to separatly train two in-
dividual models, for each background type. To benchmark improve-
ments, we compare the Siamese model against a standard YOLOv9e
baseline trained only on annotated images, in a similar manner as
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Figure 5: Realworld dataset samples: EWI satellite imagery
(top) and OSM imagery (bottom).

Table 1: Counts of unique Sketch Maps and instances by
dataset and split.

Dataset Split Sketch Maps Instances

Synthetic
Train 15,795 104,548
Val 1,666 10,869
Test 932 6,564

OpenStreetMap
Train 1,135 6,138
Val 132 773
Test 138 668

ESRI World Imagery
Train 1,201 6,431
Val 210 1,139
Test 140 662

described above. This single-stream setup allows us to isolate the
impact of bi-temporal reasoning on detection performance. For the
baseline model, we additionally decided to train two models, which
have not been pretrained on synthetic data prior, rather relying
on the default checkpoint provided by Ultralytics. For the Siamese
YOLOv9e this was no option, as no such checkpoint is available.
During the training we continuously evaluated each epoch utilizing
our validation dataset to prevent overfitting. The final evaluation is
based on the test split of each dataset. We evaluated performance
using four standard metrics: Precision (TP/(TP+ FP)) measures the
fraction of predicted positives that are correct; Recall (TP/(TP+FN))
measures the fraction of actual positives detected; mAP50 is the
mean average precision at an IoU threshold of 0.5; andmAP95–50 is
the mean average precision averaged over IoU thresholds from 0.5
to 0.95 in 0.05 increments. We adopted a near-default Ultralytics
YOLOv9 training configuration with only minimal modifications.
We increased the input resolution from the default 640 px to 1024 ×
1024 px to preserve detail in fine annotations and selected a batch
size of seven, fully leveraging available VRAM for balanced gradient
stability and speed. Training closely followed YOLOv9 defaults: 200
epochs total, initial learning rate (lr0) of 0.01 decreasing to a final
factor (lrf) of 0.01, momentum at 0.937, weight decay at 0.0005, and
a 3-epoch warm-up. Early stopping was adjusted to trigger after 20
epochs without improvement, ensuring robust and stable conver-
gence across synthetic and real-world datasets. Data augmentation

utilized the Albumentations library, applying synchronized geo-
metric (random resized cropping, flips, 90° rotations, perspective
shifts) and photometric transformations (HSV adjustments, bright-
ness/contrast scaling, CLAHE) to both timestamps. Environmental
augmentations (lens distortion, rain, sun flare, shadows, grayscale,
Gaussian noise) were applied exclusively to the marked timestamp
to simulate realistic variability. Each model underwent a two-phase
training: first 100 epochs with augmented data, followed by 100
epochs on original, non-augmented images.

4 RESULTS
In the synthetic test split, both the baseline YOLOv9e (pre-trained
on synthetic data) and the Siamese variant deliver comparable
detection quality. The Siamese design yields consistent, modest
gains in recall and localization metrics, indicating that dual-stream
comparison refines marking detection under controlled annotation
variability.

Figure 6 shows the training history on the synthetic dataset. Loss
components decrease smoothly on a log scale, the learning rate
schedule follows the expected warm-up and decay, and validation
metrics steadily increase without overfitting.

On OSM backgrounds, synthetic pretraining produces a clear
lift over the direct-training baseline. The Siamese YOLOv9e fur-
ther enhances boundary tightness and reduces missed annotations,
demonstrating that even against relatively uniform backgrounds,
dual-stream feature fusion can sharpen detection performance.

For satellite scenes, the baseline trained directly on EWI outper-
forms its synthetic-pretrained counterpart, suggesting that synthetic-
to-satellite transfer is imperfect. Incorporating the Siamese architec-
ture recovers this gap and exceeds both baselines, highlighting that
explicit change focusing against the unmarked basemap improves
robustness to textured, variable backgrounds.

In comparison of the training progress of the models trained
in our real world dataset in Figure 6 to the development of the
synthetic data, we can observe that it takes more epochs to con-
verge. In addition„ we can see that the metricscoverer spectrum in
comparison, with a trend to lower mAP95–50.

To visualize how the Siamese fusion block emphasizes markings,
we extracted class activation maps (CAMs) from layers 30 and
60 (P3) and from the fused output at layer 61, and plotted these
for sample images in Figure 7. The fused CAM clearly exhibits a
wider dynamic range—incorporating negative activations (shown in
blue) that suppress static background features—while positive peaks
correspond precisely to hand-drawn markings. This demonstrates
that the fusion block effectively isolates user-added annotations
from the underlying map content.

Figure 8 illustrates our most common real-world failure modes.
Both networks rarely confuse prominent map features with hand-
drawn markings, for example, on OSM tiles they detect a stadium
footprint (b) and map icons (a) as annotations, and on EWI satellite
imagery they even pick up a larger coastal area in a very prominent
blue (e). Interior polygons within layered markings are occasionally
missed or markings (d), touching each other can be merged on OSM
backgrounds (c, g). We also observe that the model sometimes omits
clearly marked sketches (h).
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Table 2: Precision (𝑝), Recall (𝑟 ), mAP50 and mAP95–50 for models trained and evaluated on synthetic, EWI, and OSM datasets.

Model Synthetic ESRI World Imagery OpenStreetMap
𝑝 𝑟 mAP50 mAP95–50 𝑝 𝑟 mAP50 mAP95–50 𝑝 𝑟 mAP50 mAP95–50

baseline YOLOv9e without training on sythnetical data - - - - 94.6 87.8 90.6 73.0 95.5 95.5 93.2 80.4
baseline YOLOv9e 99.1 95.7 97.2 95.7 91.2 86.5 91.5 76.2 98.0 96.2 97.3 81.7
Siamese YOLOv9e 99.1 96.8 98.6 96.7 96.9 89.6 97.4 77.2 98.9 97.0 98.1 84.5

Figure 6: Training history of the Siamese YOLOv9e model on
synthetic, OSM, and EWI datasets. From left to right, the plots
show the evolution of loss functions, learning rate schedule,
and validation metrics on the hand-drawn validation split.

5 DISCUSSION
5.1 Model performance and Limitations
Across all test splits — synthetic, EWI, and OSM — the Siamese
YOLOv9e model consistently outperformed the single-stream base-
line, yielding modest but reliable increases in precison, recall and
localisation (see Table-2, without adding any trainable parame-
ters or altering backbone capacity, as was the case for the SMT
v2.0. These gains stem solely from our arithmetic-difference fu-
sion blocks at P3–P5, which highlight user-added annotations by
subtracting feature maps from the clean and marked inputs. This
comparative focus sharpens change detection on both small and
large markings, as well as irregular shapes, while preserving high
precision on finer details.We deliberately included challenging edge
cases—branched, highly irregular and oversized shapes —to stress-
test robustness. Although detection quality drops when contours
overlap extensively, the Siamese model still improves performance

on clear, high-contrast markings. Informal user feedback, further re-
vealed that even sticker based annotations, which the model never
saw during training, are being detected.

The strong performance of the model on a geographically sepa-
rated synthetic test set indicates an effective generalization across
unseen regions. Hand-drawn markers exhibit largely invariant vi-
sual patterns—e.g., a red polygon remains red regardless of back-
ground—while the Siamese architecture explicitly suppresses static
map content. Moreover, OSM’s uniform rendering further simplifies
detection compared to the textured variability of satellite imagery.
Nonetheless, these results are only indicative: future work must
employ continent- or land-cover-based splits to rigorously validate
cross-domain robustness, and real-world annotations should be
spatially stratified to uncover any hidden biases.

Despite these successes, our pipeline has limitations. The train-
ing data derived from a small group of annotators using a limited
set of markers and scanning devices, which may not capture the
full diversity of user-generated sketches worldwide. Consequently,
performance on truly novel inputs might diverge from our reported
metrics. Additionally, detection performance on EWI lags behind
OSM by several percentage points: complex textures, lighting vari-
ations, and vegetation in high-resolution satellite scenes introduce
background noise that even humans struggle to distinguish from
markings. Pre-training the baseline YOLOv9e on our synthetic EWI
dataset actually degraded performance versus the Ultralytics de-
fault checkpoint, highlighting a domain shift. Addressing this will
require task specific synthetic datasets for each basemap type or
leveraging related remote-sensing change, detection corpora to
better align synthetic and real imagery.

Our qualitative analysis of false positives and false negatives
shows that the model still struggles with complex, layered annota-
tions. To mitigate this, we developed a set of annotation best prac-
tices covering marker materials (e.g., thick, high-visibility markers),
clear polygon delineation, and appropriate basemap selection (e.g.,
considering texture and colour contrast for EWI). These guidelines
are taught to practitioners during training to improve annotation
consistency and ensure reliable model performance.

5.2 Potential Improvements and Future Works
We implemented consent-based data collection on the web plat-
form to aggregate a broader variety of user sketches. Annotating
and integrating these community-generated maps will inject new
marker colours, pen types, chosen print formats, and scanning con-
ditions, reducing dataset bias and enhancing generalization. More
importantly, it will provide the SMT with the markings the users
actually want to use, further tailoring it to our very specific user
requirements. Future iterations of our model will include those
real world use case. We also plan to include larger print formats in
training, previously excluded for cost reasons. To handle associated
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Figure 7: Class Activations Maps for the fusion of the P5-level features in layer 30 (marked), 60 (clean) and 61 (Fused).

Figure 8: Explanatory common Errors by the proposed object detection for OSM (a-d) and EWI (e-h). Showing examples for
False Positive (FP) and False Negative (FN) predictions.

distortions, we are testing sliced inference [29], which is currently
showing promising improvements in recall and precision.

Our current arithmetic-difference fusion at three feature scales
works well in practice, but findings of previously published work
on Siamese YOLO suggests, that the models could benefit from a
more complex feature fusion block, leveraging Attention mecha-
nisms [31]. The current model setup already supports a variety of
these, but for sake of simplicity and avoiding unnecessary energy
consumption, we have focused for now on the arithmetic difference.

By freezing one of the backbones and synchronizing it periodi-
cally, we keep its feature output for the clean map fixed for a period.
The trainable branch then only needs to learn what differs in the
hand-annotated map. This “teacher–student” setup stabilizes train-
ing and focuses the model on real changes, similar to the Mean
Teacher approach [27]. This configuration limits gradient computa-
tion to a backward pass through the student backbone, avoiding
dual back propagation through a cloned backbone.

Incase of unfreeze both backbones, the network could potentially
learn background and change features together more easily, but
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training may become noisier or less stable and we lose the clear
reference provided by a fixed teacher. A compromise could be to
update the teacher backbone with an exponential moving average
of the student’s weights, blending stability with adaptability as in
the original Mean Teacher approach [27].

Systematic hyperparameter searches, potentially via genetic al-
gorithms implemented in the ultralytics package, can fine-tune
learning rates, anchor sizes, and augmentation policies. So far we
have mostly relied on tested default parameters provided by the
Ultralytics packages. However, now that the architecture is imple-
mented, finetuning the hyperparameters could yield marginal per-
formance gains. Additionally, in a next step we also want to evaluate
the base model selection and whether smaller YOLO models could
provide similar performance with less computational requirements,
as you could treat the selection of model depth as a hyperparameter
itself. This would result in a more sustainable solution, consuming
less energies and computational resources to maintain and run the
model. Evaluating other modern detectors (e.g. DETR, Faster R-
CNN) within a Siamese change-detection framework could identify
complementary strengths. Although YOLOv9e excels in real-time
settings, non-real-time applications may benefit from different ar-
chitectures offering higher accuracy at the cost of speed. User feed-
back indicates that our model currently struggles to generate well-
delineated masks for larger or less prominent markings—especially
when a marking’s shape yields a low intersection-over-union (IoU)
with its bounding box, as is common for non-horizontal/-vertical
linear features or complex shapes. Although our two-level pipeline
(YOLO + SAM2) benefits from requiring only object-detection an-
notations rather than full instance-segmentation labels, zero-shot
SAM2 exhibits clear limitations on these more intricate markings.
Future research could involve the integration of a single-stage in-
stance segmentation backend, such as Mask R-CNN, with the aim
of enhancing the localization of overlapping or nested annotations.
Alternatively, research could explore the application of a Siamese
segmentation network, which combines our change-focused de-
sign with per-pixel delineation, with the objective of achieving
improved recall and precision [12, 20]. Furthermore, the creation
of a dedicated segmentation benchmark, as opposed to reliance
on object detection metrics alone, would facilitate a more compre-
hensive evaluation of end-to-end performance. To reduce manual
labeling effort, we plan to develop a human-in-the-loop pipeline
that combines SAM2-based zero-shot mask proposals with selec-
tive manual correction. By iteratively refining pseudo-labels and
retraining lightweight models, we aim to bootstrap a high-quality
instance segmentation dataset with minimal resources.

6 CONCLUSION
In conclusion, the development of the Siamese YOLOv9e for multi-
temporal SM annotation change detection advances efforts in bridg-
ing human-centric mapping practices with automated analysis.
The approach proved that it can improve detection accuracy with-
out added complexity, generalize to different use cases, and even
handle inputs it was not specifically trained on. While challenges
remain—such as expanding data breadth and addressing cross-
platform map inconsistencies—the progress made here lays a solid

foundation for future improvements. This work has broader rele-
vance beyond just our test cases: it exemplifies how participatory
mapping can be augmented by intelligent systems to achieve faster
and more reliable updates. By empowering users with an AI tool
that respects the simplicity of their sketch annotations and still
delivers precise results, we move towards more responsive and
inclusive mapping efforts. Ultimately, we believe that this research
contributes to the toolbox for participatory mapping and change
detection tasks, helping communities and organizations to lever-
age the possibilities of participatory mapping. However, potential
distortions introduced during automatic digitization, especially con-
sidering a potential bias toward our own training data, underscore
the need for validation on data from the mapping community itself.

Looking ahead, there are several promising directions to extend
this work. A top priority is to collect and incorporate more diverse
data from real mapping activities. This could involve collaborat-
ing with participatory mapping communities or incorporating the
uploaded Sketch Maps into our Training loop. Such diversity will
improve the model’s robustness and make it truly deployment-
ready for global applications, tailored to the needs of our users.
Beyond these technical improvements, future iterations could also
move past purely color-based annotations—for example, by rec-
ognizing handwritten text to enrich Sketch Maps with additional
meaning and context.
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Benchmarking Deep Learning Models for Road Surface
Classification on StreetSurfaceVis

Runan Duan
Daniel Abanto

ABSTRACT
Accurate road surface classification is essential for enhancing travel
time estimation in routing engines and supporting autonomous
navigation systems. Recent advances in deep learning have enabled
significant progress in visual surface recognition, yet compara-
tive assessments of state-of-the-art architectures on standardized
datasets remain limited. In this study, we conduct a systematic
evaluation of three high-performing convolutional neural network
architectures - ResNet-50, ConvNeXt-Small, and EfficientNet-B4
- on the StreetSurfaceVis benchmark dataset, which comprises di-
verse road surface types under varying lighting and environmental
conditions. Despite overall high classification accuracy across mod-
els, performance disparities are observed across surface categories.
ConvNeXt-Small achieves the highest class-wise performance, with
an F1-score of 0.97 for paving stones, whereas concrete surfaces are
consistently misclassified, yielding a maximum F1-score of 0.87. All
models exhibit substantial confusion between asphalt and concrete,
indicating limitations in discriminating visually similar textures
using RGB data alone. These findings suggest that fine-grained
material classification may benefit from model architectures incor-
porating attention mechanisms, texture-aware encoding, or multi-
modal input such as multi-spectral images. While architectural
differences have minimal impact on average performance, our re-
sults emphasize the importance of addressing class-level ambiguity
through targeted model design and data-driven strategies. This
study provides a rigorous baseline for future research in road sur-
face understanding and contributes to the development of more
robust vision-based infrastructure analysis systems.

KEYWORDS
Computer vision, Road surface classification, street-view imagery,
ResNet-50, ConvNeXt-Small, EfficientNet-B4, StreetSurfaceVis

1 INTRODUCTION
Accurate classification of road surface types is becoming increas-
ingly important in applications ranging from intelligent transporta-
tion systems to autonomous vehicles and open-source routing plat-
forms [2]. The condition andmaterial of road surfaces directly affect
travel time estimation, vehicle dynamics, and route planning effi-
ciency. Recent advancements in computer vision and deep learning
have enabled automated visual recognition of surface types from
images, offering scalable solutions for infrastructure monitoring
and mobility optimization [15].

With the growing availability of annotated road surface clas-
sification datasets such as Road Traversing Knowledge [16] and
StreetSurfaceVis [10], and the rapid development of novel convo-
lutional neural network (CNN) architectures, the question arises:
which models are best suited for robust road surface classification?

Despite the technological progress, there remains a lack of com-
prehensive, up-to-date comparison studies that evaluate modern
deep learning models on standardized benchmarks in this specific
domain.

In this study, we present a systematic evaluation of three well-
established CNN architectures - ResNet-50, ConvNeXt-Small, and
EfficientNet-B4 - using the StreetSurfaceVis dataset [10], which
contains a diverse set of road surfaces captured under real-world
conditions. We analyze model performance both in terms of overall
accuracy and class-specific F1-scores, with particular attention to
the frequent confusion between visually similar classes such as
asphalt and concrete. We further discuss model limitations and
suggest potential improvements, including the use of attention
mechanisms, texture-aware modules, and multi-modal inputs. Our
findings provide a rigorous performance baseline and highlight
key challenges that must be addressed to advance road surface
understanding in real-world applications.

2 MATERIALS AND METHODS
Our experimental pipeline begins with the retrieval of the Street-
SurfaceVis dataset, followed by the development of a custom data
loader to facilitate standardized data splitting and preprocessing.
The dataset is partitioned into training, validation, and test sets,
and all images undergo consistent transformations, including re-
sizing and normalization, to ensure compatibility across model
inputs. We evaluate three state-of-the-art convolutional neural net-
work architectures—ConvNeXt-Small, ResNet-50, and EfficientNet-
B4—using pre-trained weights from the torchvision library[5].
Each model is fine-tuned by replacing the final classification layer
to match the number of road surface classes in the dataset. All other
network weights remain initialized from ImageNet-pretraining to
leverage learned visual representations while minimizing training
time and overfitting. Model performance is tracked across training
epochs using standard metrics, including training, validation, and
test accuracy. To assess class-specific performance, we compute F1-
scores, generate confusion matrices, and analyze class-wise error
rates. These evaluations allow us to identify persistent ambigui-
ties, particularly among visually similar surface types. To further
interpret model behavior, we apply Gradient-weighted Class Acti-
vation Mapping (Grad-CAM), enabling the visualization of salient
regions contributing to class decisions. Misclassified samples are
qualitatively examined to understand model limitations and inform
potential improvements, such as enhanced feature extraction or
data augmentation strategies. All code necessary to reproduce this
study is available in the supplementary GitHub repository [4].

2.1 Data Retrieval
2.1.1 StreetSurfaceVis Dataset. StreetSurfaceVis dataset [10], pub-
lished in 2024, is a publicly available resource that can enable fine-
grained classification of road surface types based on street-level
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Figure 1: Overview of the experimental workflow. The
workflow consists of data acquisition and preprocessing,
model adaptation using three pre-trained CNN architectures
(ConvNeXt-Small, ResNet-50, and EfficientNet-B4), training
and validation on the StreetSurfaceVis dataset, and perfor-
mance evaluation using class-wise metrics, confusion matri-
ces, and Grad-CAM visualizations. Misclassified samples are
analyzed to inform future model improvement strategies.

imagery. The dataset consists of 9,122 georeferenced images sourced
from the Mapillary platform [12], with each image uniquely identi-
fied by a Mapillary image ID, user ID, and associated geographic co-
ordinates. StreetSurfaceVis captures a broad spectrum of real-world
scenarios, including roadways, cycleways, and pedestrian path-
ways, under varying environmental conditions such as different
lighting, weather, and visibility levels. The dataset exhibits a high
degree of visual heterogeneity, including variations in brightness,
sharpness, and motion-induced blur, making it particularly suitable
for developing and evaluating models that must generalize across
diverse input conditions. Each image is annotated with surface type
labels—asphalt, concrete, paving stones, sett, and unpaved—and
surface quality labels—excellent, good, intermediate, bad, and very
bad. These annotations are primarily derived from OpenStreetMap
(OSM) metadata, specifically the surface and smoothness tags, and
correspond to the road segment located at the bottom center of each
image. Images are provided at four resolution levels: 256 px, 1024
px, 2048 px, and full original resolution, allowing for resolution-
dependent performance analyses. In addition to the annotated im-
age corpus, the dataset includes a comprehensive labeling guideline
and documentation, and is freely accessible via Zenodo [9, 10].

Figure 2: StreetSurfaceVis includes annotations for five road
surface types (asphalt, concrete, paving stones, sett, and un-
paved) and five levels of road quality (excellent, good, inter-
mediate, bad, and very bad). ’None’ indicates missing cate-
gories from the original dataset, which are excluded from
training, validation and testing.

For this study, we utilize StreetSurfaceVis images at a resolution
of 1024 px to strike a balance between preserving fine-grained sur-
face texture details and maintaining computational efficiency dur-
ing model training. Customized datasets are constructed by extract-
ing image identifiers and corresponding surface type annotations
from the providedmetadata, enabling accurate label-imagemapping
via unique image IDs. The dataset is stratified into training (60%),
validation (20%), and test (20%) subsets. Following the dataset’s
labeling protocol, each image is cropped to its bottom-center re-
gion, which corresponds to the focal road surface annotated in the
metadata. This region is most representative of the labeled sur-
face class and minimizes the influence of irrelevant background
content. To augment the training set and improve generalization,
we apply a series of transformations: images are resized to 384 px,
followed by random horizontal flipping (probability 𝑝 = 0.5), slight
color jittering (brightness = 0.2, contrast = 0.2), and pixel value nor-
malization. Validation and test images undergo only resizing and
normalization to ensure consistent evaluation without introducing
artificial variation. Class distribution statistics are summarized in
Table 1, which shows a dominance of asphalt samples and a relative
scarcity of concrete and unpaved surfaces. To mitigate this class
imbalance, we apply inverse-frequency weighting within the loss
function (CrossEntropyLoss), thereby assigning higher penalties
to errors on underrepresented classes.

2.2 Modeling
To provide a balanced evaluation across architectures, we select
three CNNs that reflect a range of design paradigms: a widely
adopted baseline, a modern architecture with transformer-inspired
design, and an efficient model optimized for parameter and compu-
tational efficiency.

• ResNet-50 serves as the baseline due to its proven robust-
ness in image classification and feature extraction across
vision tasks [6].
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Table 1: Frequency of road surface types across training, val-
idation, and test sets. ICW = Inverse Class Weight, computed
as the inverse frequency of each class normalized to asphalt.

Surface Type Train Validation Test Total ICW

Asphalt 2390 597 747 3734 1.00
Concrete 622 156 194 972 3.84
Paving Stones 1303 326 408 2037 1.83
Sett 872 218 273 1363 2.74
Unpaved 650 163 203 1016 3.68

• ConvNeXt-Small integrates convolutional efficiency with
architectural innovations inspired by vision transformers,
achieving strong performance with relatively low complex-
ity [11].

• EfficientNet-B4 employs compound scaling of depth, width,
and resolution to achieve state-of-the-art accuracy with
fewer parameters [18].

All models are initialized with ImageNet pre-trained weights
from the torchvision library[5]. Only the final classification layer
is replaced to match the five surface type classes; all other parame-
ters remain unchanged at initialization. A major challenge is the
class imbalance present in the dataset, particularly the underrepre-
sentation of concrete and unpaved surfaces (see Table 1). To address
this, we employ an inverse frequency-based weighting scheme in
combination with the standard cross-entropy loss, a method shown
to be effective for classification and detection tasks under class
imbalance [3, 14, 20]. Given a dataset with 𝐶 classes and class fre-
quencies 𝑛𝑖 , the raw weight for each class is computed as:

𝑤
(raw)
𝑖

=
1
𝑛𝑖
, 𝑖 = 1, 2, . . . ,𝐶 (1)

To ensure numerical stability and interpretability, these weights
are normalized by dividing by the smallest weight:

𝑤𝑖 =
𝑤
(raw)
𝑖

min(𝑤 (raw)
1 , . . . ,𝑤

(raw)
𝐶

)
=

max(n)
𝑛𝑖

(2)

As a result, the most frequent class asphalt is assigned a weight
of 1.00, while the rare classes concrete and unpaved receive weights
of 3.84 and 3.68, respectively. These normalized weights are applied
during training to penalize misclassifications of underrepresented
classes without altering the dataset distribution.

All models are trained under consistent experimental settings
to enable a fair comparison of architectural performance. We em-
ploy the Adam optimizer with a weight decay of 0.05 to promote
generalization. The initial learning rate is uniformly set to 0.0001
across all models and scheduled using a cosine annealing strategy
(CosineAnnealingLR) to gradually reduce the learning rate over
time and facilitate convergence. Due to hardware constraints and
varying model sizes, batch sizes are adjusted per architecture: 32
for ResNet-50, 16 for EfficientNet-B4, and 8 for ConvNeXt-Small.
To ensure model convergency, both ResNet-50 and EfficientNet-B4
are trained for 150 epochs while ConvNeXt-Small is trained for

200 epochs on the same training/validation split using the class-
weighted cross-entropy loss function described in Equation 1.

3 RESULTS
Figure 3 illustrates the training accuracy progression for all three
models, showing convergence around 30 epochs, suggesting that the
models have sufficiently learned the road surface patterns. However,
the validation accuracy demonstrates distinct behaviors across the
models:

• ResNet-50 (Figure 3a) reaches a plateau at approximately
93% validation accuracy after 30 epochs, indicating stable
performance.

• EfficientNet-B4 (Figure 3b) exhibits a rapid initial improve-
ment, stabilizing around 94% during the final epochs.

• ConvNeXt-Small (Figure 3c) shows significant fluctua-
tions in the early epochs, but the model steadily improves
steadily after 125 epochs.

Figure 4 presents the validation accuracy for each class across
the applied models. All models struggle with the classification of
the concrete class, which likely results from the inherent varia-
tions in color, texture, and surface patterns (ResNet-50: 81.96%,
EfficientNet-B4: 82.47%, ConvNeXt-Small: 81.44%). In contrast, the
models perform exceptionally well on the sett class, achieving high
validation accuracies (ResNet-50: 93.41%, EfficientNet-B4: 96.34%,
ConvNeXt-Small: 95.97%).

Table 2 present the precision, recall, F1-score, and Figure 5 con-
fusion matrices for the three models evaluated on the test set. All
models exhibit strong overall performance, with test accuracies
ranging from 0.94 to 0.95. However, notable differences emerge in
the models’ ability to handle specific classes. All architectures excel
at classifying Paving Stones (F1-scores ≥ 0.96) and Sett (F1-scores
≥ 0.95), while performance on Concrete classification is relatively
weaker, particularly for EfficientNet-B4 (F1-scores = 0.84).

• ConvNeXt-Small achieves the highest accuracy (95.18%),
with very few misclassifications across all classes. It excels
at distinguishing Asphalt and Paving Stones, with mini-
mal confusion. However, there is slight misclassification
between Asphalt and Concrete, as well as a few Asphalt
samples misclassified as Unpaved.

• EfficientNet-B4 achieves 94.58% accuracy. It demonstrates
strong performance but experiences slightly more confu-
sion compared to ConvNeXt Small, particularly between
Asphalt and Concrete. Notably, 38 samples of Asphalt are
misclassified as Concrete, and minor confusion is observed
between Unpaved and other classes.

• ResNet-50 achieves 94.19% accuracy. Although its overall
performance is competitive, there is moderate confusion
between Asphalt and Concrete, along with some misclassifi-
cations between Paving Stones and Sett. Misclassifications
are more evenly distributed across the classes compared to
the other models.

The minimal discrepancy between macro-averaged (0.92–0.95)
and weighted averages (0.94–0.95) indicates a balanced class dis-
tribution in the test set. Across all models, Concrete proves to be
the most challenging class to classify correctly, as evidenced by
the relatively higher misclassification rates. In contrast, Paving
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(a) ResNet-50 (b) EfficientNet-B4 (c) ConvNeXt Small

Figure 3: Training and validation accuracy for different models.

(a) ResNet-50 (b) EfficientNet-B4 (c) ConvNeXt Small

Figure 4: Validation accuracy per class.

Stones and Sett are consistently recognized with high precision and
recall. These results suggest that while all models perform well,
ConvNeXt-Small’s consistent outperformance in precision, recall,
and F1-score positions it as the optimal choice among the evaluated
architectures, assuming computational resources are available for
its deployment.

4 DISCUSSION
This study highlights key challenges in road surface classification,
particularly in distinguishing visually similar surfaces such as as-
phalt and concrete. Despite the application of advanced deep learn-
ing architectures (ResNet-50, ConvNeXt-Small, and EfficientNet-
B4), thesemodels exhibit persistent confusion between these classes,
indicating that RGB images alonemay not capture sufficient discrim-
inative features for fine-grained material classification. To address
this, future models should integrate advanced architectural designs,
particularly those leveraging multi-modal inputs.

4.1 Dataset
Dataset Size. The size of the dataset is a critical factor in do-

main transferability, especially for deep learning models pretrained
on large-scale datasets like ImageNet. Models such as ConvNeXt,
EfficientNet, and ResNet generally benefit from fine-tuning on ex-
tensive datasets to achieve robust adaptation. However, our road
surface dataset contains fewer than 1,000 samples, which may
limit optimal generalization. To address this, we utilize compact
model variants like ConvNeXt Small[11], which are less suscepti-
ble to overfitting on limited data. For tasks constrained by small
datasets, approaches such as few-shot learning[13] and knowledge
distillation[21] can also be beneficial. Future research could fur-
ther explore model performance by benchmarking on additional
datasets, such as the one published by [22] published in 2022, which
exceeds the size of StreetSurfaceVis.

Input Modalities. Incorporating multi-spectral or hyperspectral
imaging presents a promising solution, as these modalities capture
surface properties invisible to RGB imaging, such as thermal signa-
tures and material-specific reflectivity. This could improve perfor-
mance, particularly for distinguishing between surface types with
similar visual characteristics. Furthermore, incorporating attention
mechanisms, such as self-attention or transformers, could help mod-
els focus on key image regions, facilitating the detection of subtle
textures, cracks, or wear patterns that differentiate surface types.
Additionally, multi-scale feature extraction and texture-aware en-
coding may enhance texture discrimination, addressing challenges
in classifying surfaces with fine-grained textural differences.
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Table 2: Comparison of model performance on test dataset

Class ResNet-50 EfficientNet-B4 ConvNeXt-Small

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Asphalt 0.94 0.97 0.95 0.95 0.96 0.95 0.95 0.97 0.96
Concrete 0.88 0.82 0.85 0.86 0.82 0.84 0.92 0.81 0.87
Paving Stones 0.97 0.95 0.96 0.97 0.97 0.97 0.97 0.97 0.97
Sett 0.97 0.93 0.95 0.96 0.96 0.96 0.96 0.97 0.97
Unpaved 0.92 0.95 0.94 0.95 0.94 0.94 0.95 0.96 0.95

Accuracy - 0.94 - - 0.95 - - 0.95 -
Macro Avg 0.94 0.92 0.93 0.94 0.93 0.93 0.95 0.93 0.94
Weighted Avg 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95

(a) ResNet-50 (b) EfficientNet-B4 (c) ConvNeXt-Small

Figure 5: Confusion matrix on test dataset for different models.

Category of Classes. Expanding the current five-class dataset is
another critical consideration. To improve the model’s ability to
distinguish subtle differences, fine-grained subclasses, such as dif-
ferentiating between wet and dry asphalt, should be introduced.
Moreover, testing the models across diverse geographical distribu-
tions—beyond the StreetSurfaceVis dataset, which primarily repre-
sents road surfaces from Germany—would assess model robustness
and performance in varying regional contexts [7]. The reliance of
current models on color cues contributes to confusion between
asphalt and concrete; multispectral data integration could address
this issue by emphasizing textural features over color.

4.2 Model Selection
Pre-trained Model on Domain-specific Datasets. Leveraging pre-

trained models is another avenue for improvement. Pre-training
on domain-specific datasets, such as Mapillary Vistas, could enable

models to learn latent road topology features, enhancing classifi-
cation performance. Additionally, semi-supervised learning tech-
niques applied to large-scale, unlabeled road imagery could help
the models generalize across diverse surface types. Integrating at-
tention mechanisms from Vision Transformer (ViT)-based road
segmentation models could further refine the model’s focus on
relevant surface features, enhancing its discriminative power.

Computation Costs. Training costs and parameters for inference
should be carefully considered. ConvNeXt-Small, which achieved
the highest accuracy (95.18%), required more epochs to converge
compared to ResNet-50. While it offers superior accuracy, its longer
training time and large parameter count (49,458,533) may limit its
suitability for real-time systems with resource constraints, espe-
cially in the absence of model compression techniques. On the other
hand, EfficientNet-B4, with a smaller parameter count (17,557,581)
and faster inference times, achieved slightly lower accuracy (94.58%)
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Figure 6: Gradient-weighted class activation mapping on asphalt, concrete, paving stones, sett and unpaved.

but may be more appropriate for resource-constrained environ-
ments. Task-specific model selection, balancing accuracy and effi-
ciency, is thus crucial for practical deployment.

4.3 Training Strategies
Hyper-parameter optimization. Hyperparameter optimization

plays a critical role in model performance. We adopted a uniform
initial learning rate (0.0001) and cosine annealing scheduling for
consistency across experiments, this approach may not be optimal
for all models. A systematic exploration such as random search[1]
could identify better training configurations.

Data augmentation. Data augmentation strategies also offer sig-
nificant potential to improve model robustness [17]. The analysis
of misclassified samples reveals that introducing variability in road
surface appearance through techniques like color jittering [19]

(to simulate lighting variations) and synthetic defect generation
[8] (e.g., potholes, cracks) could help models generalize better to
real-world conditions. Texture-preserving augmentations, which
modify surface appearance without distorting underlying structural
features, may particularly benefit the classification of challenging
categories like concrete.

In summary, while deep learning models show considerable
promise for road surface classification, addressing the challenges
identified here will be essential for improving performance. Fu-
ture advancements should focus on multi-modal data integration,
refining architectural features with attention and texture-aware
mechanisms, and expanding the dataset to include more diverse and
fine-grained surface categories. These improvements, along with
leveraging pre-trained models, will increase model robustness and
generalization, making road surface classification systems more
applicable to a wide range of real-world scenarios.
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CONCLUSION
This study provides a comprehensive benchmarking of state-of-
the-art deep learning models for road surface classification using
the StreetSurfaceVis dataset. While all evaluated models achieved
high overall accuracy, class-specific challenges—particularly the
confusion between asphalt and concrete—highlight limitations of
RGB-based classification for visually similar materials. Our find-
ings demonstrate that improving road surface classification requires
more than architectural advances alone; it also calls for richer input
modalities, refined feature extraction strategies, and robust augmen-
tation techniques. Future research should prioritize multi-modal
imaging, attention-based architectures, and broader geographic
and categorical coverage to enhance generalization and practical
applicability. The presented results establish a strong performance
baseline and offer key insights to guide the development of next-
generation vision-based road infrastructure analysis tools.

ACKNOWLEDGMENTS
We thank Heidelberg University’s Computing Centre for Accesses
to the SDS@hd hot-data storage. Support by the state of Baden-
Württemberg through bwHPC (Helix Cluster) and the German
Research Foundation (DFG) through grant INST 35/1597-1 FUGG
is greatfully acknowledged.

REFERENCES
[1] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter

optimization. J. Mach. Learn. Res. 13, null (Feb. 2012), 281–305.
[2] Adrian Paul Botezatu, Adrian Burlacu, and Ciprian Orhei. 2024. A Review of Deep

Learning Advancements in Road Analysis for Autonomous Driving. Applied
Sciences (Switzerland) 14, 11 (2024). https://doi.org/10.3390/app14114705

[3] W. Dang, Z. Yang, W. Dong, X. Li, and G. Shi. 2024. Inverse Weight-Balancing for
Deep Long-Tailed Learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 38. 11713–11721. https://doi.org/10.1609/aaai.v38i10.29055

[4] Abanto D. Zipf. A. Knoblauch S Duan, R. 2025. GitHub repository for this manu-
script called BenchmarkingDeep LearningModels for Road Surface Classification
on StreetSurfaceVis. https://doi.org/10.5281/zenodo.15497076

[5] Daniel Falbel. 2025. torchvision: Models, Datasets and Transformations for
Images. https://github.com/mlverse/torchvision R package version 0.6.0.9000.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep
into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
arXiv:1502.01852 [cs.CV] https://arxiv.org/abs/1502.01852

[7] Yuanyuan Hu, Ning Chen, Yue Hou, Xingshi Lin, Baohong Jing, and Pengfei Liu.
2025. Lightweight deep learning for real-time road distress detection on mobile
devices. Nature Communications 16, 1 (may 2025), 4212. https://doi.org/10.1038/
s41467-025-59516-5

[8] I A Kanaeva and Ju A Ivanova. 2021. Road pavement crack detection using
deep learning with synthetic data. IOP Conference Series: Materials Science and
Engineering 1019, 1 (jan 2021), 012036. https://doi.org/10.1088/1757-899X/1019/
1/012036

[9] Alexandra Kapp, Edith Hoffmann, Esther Weigmann, and Helena Mihaljević.
2024. StreetSurfaceVis: a dataset of crowdsourced street-level imagery annotated
by road surface type and quality. https://zenodo.org/records/11449977. https:
//doi.org/10.5281/zenodo.11449977

[10] Alexandra Kapp, Edith Hoffmann, Esther Weigmann, and Helena Mihaljević.
2025. StreetSurfaceVis: a dataset of crowdsourced street-level imagery annotated
by road surface type and quality. Scientific Data 12, 1 (Jan. 2025). https://doi.
org/10.1038/s41597-024-04295-9

[11] Zhuang Liu, Hanzi Mao, Chao-YuanWu, Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie. 2022. A ConvNet for the 2020s. arXiv:2201.03545 [cs.CV]
https://arxiv.org/abs/2201.03545

[12] Mapillary. [n. d.]. Mapillary. https://www.mapillary.com/.
[13] Archit Parnami andMinwoo Lee. 2022. Learning from Few Examples: A Summary

of Approaches to Few-Shot Learning. arXiv:2203.04291 [cs.LG] https://arxiv.
org/abs/2203.04291

[14] Trong Huy Phan and Kazuma Yamamoto. 2020. Resolving Class Imbalance in
Object Detection with Weighted Cross Entropy Losses. arXiv:2006.01413 [cs.CV]
https://arxiv.org/abs/2006.01413

[15] Sukanya Randhawa, Eren Aygün, Guntaj Randhawa, Benjamin Herfort, Sven
Lautenbach, and Alexander Zipf. 2025. Paved or unpaved? A deep learning
derived road surface global dataset from mapillary street-view imagery. ISPRS
Journal of Photogrammetry and Remote Sensing 223 (2025), 362–374. https:
//doi.org/10.1016/j.isprsjprs.2025.02.020

[16] Thiago Rateke, Karla Aparecida Justen, and Aldo von Wangenheim. 2019. Road
Surface Classification with Images Captured From Low-cost Cameras – Road
Traversing Knowledge (RTK) Dataset. Revista de Informática Teórica e Aplicada
(RITA) (2019). https://doi.org/10.22456/2175-2745.91522

[17] Alberto Signoroni, Mattia Savardi, Annalisa Baronio, and Sergio Benini. 2019.
Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review.
Journal of Imaging 5, 5 (may 2019), 52. https://doi.org/10.3390/jimaging5050052

[18] Mingxing Tan and Quoc V. Le. 2020. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. arXiv:1905.11946 [cs.LG] https://arxiv.org/
abs/1905.11946

[19] Luke Taylor and Geoff Nitschke. 2018. Improving Deep Learning with Generic
Data Augmentation. In 2018 IEEE Symposium Series on Computational Intelligence
(SSCI). IEEE, 1542–1547. https://doi.org/10.1109/SSCI.2018.8628742

[20] Junjiao Tian, Niluthpol Mithun, Zach Seymour, Han-Pang Chiu, and Zsolt
Kira. 2022. Striking the Right Balance: Recall Loss for Semantic Segmentation.
arXiv:2106.14917 [cs.CV] https://arxiv.org/abs/2106.14917

[21] Wenxuan Yang, Qingqu Wei, Chenxi Ma, Weimin Tan, and Bo Yan. 2025. Scaling
Laws for Data-Efficient Visual Transfer Learning. arXiv:2504.13219 [cs.LG]
https://arxiv.org/abs/2504.13219

[22] Tong Zhao and Yintao Wei. 2022. A road surface image dataset with detailed
annotations for driving assistance applications. Data in Brief 43 (2022), 108483.
https://doi.org/10.1016/j.dib.2022.108483

https://doi.org/10.3390/app14114705
https://doi.org/10.1609/aaai.v38i10.29055
https://doi.org/10.5281/zenodo.15497076
https://github.com/mlverse/torchvision
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://doi.org/10.1038/s41467-025-59516-5
https://doi.org/10.1038/s41467-025-59516-5
https://doi.org/10.1088/1757-899X/1019/1/012036
https://doi.org/10.1088/1757-899X/1019/1/012036
https://zenodo.org/records/11449977
https://doi.org/10.5281/zenodo.11449977
https://doi.org/10.5281/zenodo.11449977
https://doi.org/10.1038/s41597-024-04295-9
https://doi.org/10.1038/s41597-024-04295-9
https://arxiv.org/abs/2201.03545
https://arxiv.org/abs/2201.03545
https://www.mapillary.com/
https://arxiv.org/abs/2203.04291
https://arxiv.org/abs/2203.04291
https://arxiv.org/abs/2203.04291
https://arxiv.org/abs/2006.01413
https://arxiv.org/abs/2006.01413
https://doi.org/10.1016/j.isprsjprs.2025.02.020
https://doi.org/10.1016/j.isprsjprs.2025.02.020
https://doi.org/10.22456/2175-2745.91522
https://doi.org/10.3390/jimaging5050052
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://doi.org/10.1109/SSCI.2018.8628742
https://arxiv.org/abs/2106.14917
https://arxiv.org/abs/2106.14917
https://arxiv.org/abs/2504.13219
https://arxiv.org/abs/2504.13219
https://doi.org/10.1016/j.dib.2022.108483


PV Panel Detection from High-Resolution Aerial Imagery in
Heidelberg using Deep Learning

Maren Strydhorst
Maximiliane Kitzinger

Figure 1: Roboflow Annotations of Heidelberg Orthophotos.

Abstract
The rapid expansion of photovoltaic (PV) systems plays a crucial
role in the transition to renewable energy. However, many PV in-
stallations remain unregistered, making it difficult for stakeholders
to accurately forecast solar energy generation. This study presents a
methodology for the automated detection of PV installations using
high-resolution orthophotos and deep learning. The research fo-
cuses on Heidelberg, Germany, leveraging publicly available aerial
imagery (DOP20) to train a YOLOv11-based model. A dataset of
manually annotated PV installations was created using Roboflow.
The dataset was split into training (80%), validation (10%), and test-
ing (10%) sets, and the model was trained for 50 epochs to prevent
overfitting. Evaluation metrics, including precision, recall, and F1
score, indicate a promising detection accuracy of 74%, though chal-
lenges such as false positives, false negatives, and dataset limitations
persist. The study highlights the importance of diverse training data
and proposes improvements for generalizability across different
geographic regions. The findings demonstrate the potential of AI-
driven remote sensing for urban energy planning and monitoring
PV adoption at scale. For more information see the corresponding
GitHub repository.

Keywords
Aerial Imagery, Photovoltaic, Object Detection, Deep Learning,
YOLOv11

1 Introduction
In the contemporary era, characterised by climate change and the
necessity for sustainable energy generation, solar energy has be-
come increasingly important across residential, commercial, and
industrial sectors [13]. The demand for up-to-date, accurate, and
large-scale mapping of installed PV systems for stakeholders within
the energy sector, including market operators and network oper-
ators is increasing [4]. These stakeholders need to forecast the
generation of rooftop solar PV energy at the level of entire regions
[4]. The data is not only essential for economic forecasting [3] but
also for energy policy planning, grid management and maintaining
[1], and monitoring progress towards climate goals. Nevertheless,
a significant number of photovoltaic systems have not been accu-
rately registered, and central records are not up to date [4]. It has
been demonstrated that conventional data collection techniques,
such as surveys and utility interconnection filings, are constrained
by limitations pertaining to completeness and spatial resolution [9].

The application of aerial photography and satellite imagery fa-
cilitates analysis of both natural and constructed environments [2].
Consequently, PV systems that are visible from above can be as-
sessed using remote sensing data and machine learning algorithms
[2, 4, 9]. In circumstances where existing data is unavailable, the
application of aerial imagery in conjunction with automated detec-
tion algorithms has been demonstrated to enhance the efficiency
and accuracy of the data collection process [5].

In the present study, the focus is on the development of a method-
ology for the automatic detection of photovoltaic systems using

https://github.com/KexsMaren/GeoAI_DL_group_3
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orthophotos. The methodology involves the training of a model
based on the 80/10/10 principle, with subsequent validation using a
separate dataset. The primary research question guiding this study
is to determine how accurate deep learning models can detect PV
systems in high-resolution aerial imagery.

2 Materials and Methods
This chapter provides a detailed overview of the entire workflow,
covering all key steps involved in the study. It begins with a de-
scription of the the study area and dataset, outlining the sources,
characteristics, and relevance of the data used. Subsequently, a step-
by-step explanation of the workflow is presented, including data
preprocessing, annotation, model training, and evaluation method.
This structured approach ensures transparency and reproducibility
of the methodology.

2.1 Study Area
Heidelberg is located in southern Germany and has a population
of 163.000 inhabitants [10]. As a part of the federal state of Baden-
Württemberg, Heidelberg is obligated to comply with the state-
mandated policy of integrating photovoltaic technology into newly
constructed buildings and conducting comprehensive roof renova-
tions [6]. Heidelberg has been implementing simplified approval
processes, which have contributed to an accelerated expansion in
recent years. The city has also been promoting the expansion of so-
lar installations as part of its transformation to renewable energies
[6]. The city itself has been installing 63 solar power systems not
only on new buildings, but also on all municipal buildings where
the load-bearing capacity and state of maintenance allow [6]. As of
August 2024, the PV systems that had been installed were capable
of meeting the electricity needs of 18,000 households [6].

2.2 Data
The dataset utilized in this study was obtained from the Open
GeoData Portal of the State Office for Geoinformation and Land De-
velopment (LGL) of Baden-Württemberg. Specifically, we accessed
Digital Orthophotos (DOP20), which are high-resolution aerial im-
ages that have been georeferenced and orthorectified to eliminate
distortions. These images provide a spatial resolution of 20cm per
pixel, meaning that each pixel represents a real-world area of 20cm
× 20cm [11].

The DOP20 imagery is derived from annual aerial surveys con-
ducted by the LGL, covering approximately half of the state of
Baden-Württemberg each year. The photographs are captured using
digital aerial cameras, and the resulting orthophotos are available
in both natural color (RGB) and infrared-enhanced (RGBI) formats.
The data is referenced in the ETRS89/UTM coordinate system and is
delivered as distortion-free, true-to-scale raster images. Notably, the
TrueDOP format ensures that the images are free from perspective
distortions or occluded areas [11].

For this study, the DOP20 dataset was downloaded in TIFF format,
with each image tile covering an area of 2km × 2km. The dataset
is updated annually to ensure temporal accuracy. The following
eight RGB image tiles were selected: 475-5474, 477-5474, 475-5472,
477-5472, 475-5470, 477-5470, 475-5468, 477-5468.

These orthophotos provide a valuable high-resolution represen-
tation of Heidelberg, covering most of the city’s urban neighbor-
hoods. The study area extends from Handschuhsheim in the north
to Kirchheim and Emmertsgrund in the south (Fig. 2). This area
was selected due to its high building density and the presence of
numerous rooftops with potential photovoltaic installations.

Figure 2: Study Area in Heidelberg. Black lines indicate dis-
trict boundaries, grey areas represent buildings, and the yel-
low area marks the selected region of interest for model
training and evaluation.

2.3 Methods
The overall workflow of the project is summarized in Figure 3, il-
lustrating the steps from data collection to model evaluation. The
process begins with the download and preprocessing of the data.
Relevant datasets are acquired, and the orthophotos are converted
into suitable formats for annotation. Following the preprocessing,
the photovoltaic installations within the orthophotos are manually
annotated using Roboflow. These annotations serve as labeled data
crucial for training the YOLOv11 model. Once the dataset has been
annotated, it is divided into training, validation and testing sets.
The model is then trained using the training data, while the valida-
tion set is employed to monitor the model’s performance. Finally,
the model is tested using the separate test dataset to evaluate its
performance.

First, the dataset was downloaded as described in the previous
section. The raw data consisted of individual image tiles. In the
preprocessing stage, these tiles were merged into a single large
image using QGIS. The merged image was then retiled into smaller
tiles, each sized 640×640 pixels. This process resulted in a folder
containing 2,016 .tif files.
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Figure 3: Overview of the proposed workflow for automated PV detection.

Next, an R script was written and run to convert the .tif files
into .jpg format, as Roboflow does not accept .tif files. These con-
verted images were then uploaded to the Roboflow platform for
annotation.

Roboflow was selected for this study because of its user-friendly
interface and collaborative features, which allow multiple users to
work on the project simultaneously [7]. For the annotation pro-
cess, all photovoltaic (PV) installations were manually labeled as
polygons with the class ’PV’. Images that did not contain any PV
installations or were partially cut off during the tiling process were
labeled as ’N_PV’ and later removed from the dataset.

After the annotation was completed, 585 images containing 2.558
annotated PV installations remained. To ensure that the images
were the correct size for training, they were resized to 640×640
pixels, based on Ultralytics’ requirements, using a stretch method
[12]. Subsequently, the dataset was randomly divided into three
categories: 470 images for training (80%), 57 images for validation
(10%), and 58 images for testing (10%). Finally, the dataset was down-
loaded to a local computer for further use.

For training and evaluation of the model, Python was utilized
in combination with the YOLO module from the Ultralytics li-
brary. The nano model (yolov11n.pt) was downloaded from the
Github repository [12] and used for the training process. Ultralytics
YOLO11 is a widely recognized, high-performance implementation
of the YOLO (You Only Look Once) object detection algorithm,
known for its speed and accuracy [12]. It was chosen due to its
ease of use and availability of various model sizes, ranging from
nano to extra large. The nano variant, specifically, demonstrates
notable advancements in both speed and efficiency when compared
to earlier versions [8]. For training, the nano model was selected
due to hardware limitations - specifically, the lack of a dedicated
graphics card. The training was performed using the ’train’ method
provided by the YOLO module, over a total of 100 epochs. Since the
training results (Fig. 4) show an increasing gap between training

and validation loss, indicating that overfitting is starting to occur
[14], the training process was modified to run for only 50 epochs.

Figure 4: Training and validation loss curves of the YOLOv11
model over 100 epochs. The plot illustrates the model’s learn-
ing behavior, with overfitting becoming apparent after ap-
proximately 50 epochs, as indicated by the increasing gap
between training and validation loss.

Subsequently, the model was evaluated using the test dataset
and the ’val’ method provided by the YOLO module, which allowed
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for performance assessment based on unseen data. The results of
this evaluation, including metrics such as precision and recall, are
discussed in detail in the Results chapter.

3 Results
After training, the model’s performance on the test dataset was eval-
uated, and the findings were visualized through statistical charts.

One of the primary tools used to assess the model’s performance
is the confusion matrix, which provides a summary of the classifi-
cation results (Fig. 5). In this case, the confusion matrix displayed
two classes: PV and background. The matrix showed 226 true posi-
tive (PV correctly identified as PV) predictions, 183 false positive
(background misclassified as PV), and 80 false negative (PV misclas-
sified as background). 74% of the true positive PV were correctly
recognized, while 26% were falsely identified as background.

Figure 5: Confusionmatrix showing true positives (226), false
positives (183), false negatives (80), and true negatives. Darker
blue indicates higher counts. The visualization reflects the
model’s ability to distinguish between PV and background.

Figure 6 presents the Precision-Confidence Curve, which illus-
trates the relationship between precision and confidence levels.
Precision is defined as the proportion of true positives out of the
sum of true positives and false positives [14]. The curve begins
at a confidence of 0 and a precision of 0.1, then increases sharply,
reaching a precision of 0.5 at a confidence level of 0.2. It continues
to rise gradually. From a confidence threshold of 0.95 onwards, the
precision reaches 1.

Next, the Recall-Confidence curve was calculated and is pre-
sented in Figure 7. Recall represents the proportion of actual pos-
itive instances that were correctly identified by the model [14].
The curve starts at a confidence level of 0.0 with a recall of 0.9
and steadily decreases as the confidence level increases, reaching a
value of 0.0 at a confidence level just above 0.95.

Figure 6: Precision–Confidence curve for the YOLOv11model.
Both the light and bold blue lines represent the PV class, with
the bold curve showing a smoothed version of the precision
trend across confidence thresholds.

The Precision-Recall curve, shown in Figure 8, provides a graph-
ical representation of the trade-off between precision and recall.
The curve starts at a precision level of 1. As the recall increases,
precision decreases in a zigzag pattern. For all classes, the model
achieved a mean Average Precision (mAP) of 0.679 at a threshold of
0.5. At a recall of approximately 0.9, precision drops to 0.05, and the
curve continues downward in a straight line until precision reaches
0 and recall reaches 1.

Finally, the F1 score was calculated as the mean of precision and
recall (Fig. 9). The curve starts at a confidence value of 0 with an F1
score of 0.1. As the confidence increases, the F1 score rises steadily,
peaking at 0.65 at a confidence level of 0.33. After this point, the F1
score starts dropping, ultimately reaching 0 at a confidence level
above 0.95.
The model’s performance in identifying PV installations from high
resolution aerial imagery is shown in figure 10. The image demon-
strates how the trained model detects PV systems with the corre-
sponding confidence level. The model’s ability to recognize and
classify these PV sites is evident in the results, as it successfully
identifies the majority of the PV installations within the given
satellite imagery.

4 Discussion
The results of this study demonstrate that deep learning-based
object detection, specifically using the YOLOv11 model, is an ef-
fective method for identifying photovoltaic (PV) installations from
high-resolution aerial imagery. The model successfully identified
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Figure 7: Recall–Confidence curve for the YOLOv11 model.
Both the light and bold blue lines represent the PV class,
with the bold curve showing a smoothed version of the recall
trend across confidence thresholds.

a majority of PV installations in the test dataset, yet certain lim-
itations remain, particularly regarding False Positives and False
Negatives.

One key challenge is the relatively small dataset size, which may
have limited the model’s ability to generalize effectively. Addition-
ally, potential mislabeling in the training data could have affected
performance. Since annotations were manually created without
cross-referencing with other datasets, their accuracy depends on
human perception. Differentiating PV panels from visually similar
structures, such as winter gardens, skylights or solar thermal sys-
tems, is inherently challenging and may have led to inaccuracies in
the labeled data. These difficulties are also reported in the literature,
where studies highlight the challenge of distinguishing between
PV installations and other structures [4, 5, 14]. Due to the visual
similarities and the limitations of aerial imagery, solar thermal sys-
tems were classified in the same category as PV installations in this
study, as they could not be reliably distinguished by a human la-
beler. Addressing these issues by expanding the dataset, improving
annotation quality, and integrating additional verification methods
could significantly enhance the models performance.

A key limitation of this study is that the training data consisted
exclusively of images captured in good lighting conditions and
favorable weather. As a result, the model’s performance in adverse
conditions such as fog, snow, or low-light environments remains un-
certain. The presence of snow or fog could obscure PV installations,
leading to decreased detection accuracy. Similarly, nighttime im-
agery would likely pose a challenge, as the model was not trained to
recognize PV panels in the absence of visible light. Future research

Figure 8: Precision–Confidence curve for the YOLOv11model.
The curve shows precision at varying confidence thresholds
for the PV class, with the bold line representing a smoothed
version of the trend.

should incorporate a more diverse dataset, including images taken
under various environmental conditions, to improve the model’s
robustness.

Another important limitation is the applicability of the trained
model to other geographic regions. Since the dataset used for train-
ing consisted exclusively of aerial imagery from Heidelberg, it is
unclear how well the model would perform in different locations,
particularly in regions with significantly different architectural
styles and urban layouts. The model may struggle to detect PV
installations in areas where rooftops and building materials differ
substantially from those in Heidelberg. To improve generalizabil-
ity, future studies should incorporate training data from diverse
geographic regions.

The findings of this study have practical implications for urban
planning and renewable energy policy. Automated detection of PV
installations can support municipal authorities in monitoring solar
adoption rates and assessing compliance with local regulations. In
Heidelberg, where PV expansion is a key component of the city’s
sustainability strategy [6], this method can aid in tracking progress
and optimizing resource allocation.

5 Conclusion
Overall, this study demonstrates the feasibility of using deep learn-
ing for automated PV panel detection in aerial imagery. While the
YOLOv11 model has proven to be a strong starting point, it also
highlights areas for improvement. The methodology developed
here provides a solid foundation for further advancements in this



Maren Strydhorst and Maximiliane Kitzinger

Figure 9: F1–Confidence curve for the YOLOv11 model. The
curve shows the F1-Score at different confidence thresholds
for the PV class, with the bold line representing a smoothed
version of the trend.

field. Enhancing dataset size and quality, optimizing the model, and
refining annotation techniques will be key to improving accuracy
and applicability. By building on these foundations, more efficient
and scalable solutions can be developed, contributing to the grow-
ing role of deep learning and remote sensing in the global transition
to renewable energy.
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Figure 10: Example results from test run. Data source: LGL, www.lgl-bw.de. Coordinates (from top to bottom), left column:
49°25’05.9"N 8°40’44.3"E; 49°23’22.4"N 8°40’58.2"E; 49°22’44.6"N 8°39’55.6"E; right column: 49°24’32.8"N 8°39’21.9"E; 49°23’14.2"N
8°40’58.2"E; 49°22’44.9"N 8°42’01.6"E.
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Abstract
Newways tomap andmeasure human settlements through building
detection address a wide range of questions related to urbanization
and sustainability. Especially in developing countries where rural
settlements still thrive andmanual record keeping poses a challenge.
We use open and freely available Sentinel-2 satellite imagery on
part of South India to test the effectiveness of deep learning to
detect buildings and settlements. In this paper, we tested with both
manually labeled models and an external label model with different
parameters. Our results indicate that the manually labeled model
performs better compared to the model that uses external labels.
However, manual labeling is time and resource constrained, which
limits the area of coverage.

Keywords
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1 Introduction
Building detection through remote sensing hasmany practical appli-
cations in geography, economics, and social sciences. These include
mapping land use, managing environmental resources, building
damage related to natural disasters, and urban planning [4]. The
advancement in satellite remote sensing technology has revolu-
tionized the approaches to monitoring the Earth’s Surface and the
information we can gather. In this paper, we use satellite imagery
and Open Building data labels to test the effectiveness of deep
learning to detect buildings in Southern India.

While an increasing number of people are moving into cities, in
developing countries such as India, some communities still live in
remote places. There are many reasons why these small commu-
nities have survived despite rapid urbanization. However, many
remote communities are becoming smaller compared to before. As
such, it is important to monitor their size and the services avail-
able to these communities. Knowing where people live becomes
increasingly important when we consider natural disasters [6] [8]
and health-related emergencies.

Building detection from remote sensing data has a number of
unique challenges, mainly related to the availability of high-quality
data, especially for developing countries. Since 2014, remote sens-
ing research has shifted towards deep learning to address these
challenges. Now, deep learning is used in a variety of applications
such as object detection, change detection, image fusion, and image
classification [2].

Traditionally, building detection tasks uses high resolution satel-
lite images [1]. Using low resolution requires applying different
augmentation techniques to improve the accuracy. For instance,
Sirko and coauthors [7] use 50cm high-resolution imagery as a
teacher model and train a student model of 10m low-resolution

Sentinel-2 images to reconstruct the labels from the corresponding
places. They find the student model retains most of the accuracy of
the high-resolution teacher model. Sentinel-2 images based building
segmentation has a 79.0 percent mIoU, compared to 85.5 percent
mIoU from the high-resolution model. A similar approach was used
by Zhang et al. 2021[10].

Additionally, Corbane et al. (2020) [2] presents an overview of
using Convolutional Neural Networks (CNNs) for global settlement
detection with Sentinel-2 imagery. The study details their method-
ology for generating a global built-up area map, represented as a
probability grid. One of the primary challenges in working with a
global dataset is the substantial volume of training data needed to
optimize network parameters. To address this, the authors leverage
multiple datasets, including the Global Human Settlement Layer,
the European Settlement Map, Facebook’s high-resolution settle-
ment data, and Microsoft’s building footprints. The paper provides
an overview of all of the footprint data available in different regions
and limitations, which was helpful in extending our model.

2 Materials and Methods1

2.1 Study Area
India has a vast territory with a wide range of urban and remote
settlements. In this study, we selected a region in South India that
includes large cities like Chennai, a few medium-sized cities and
many remote villages in between. To cover this diversity, we se-
lected two regions that cover vast parts of Tamil Nadu: The first
area covers a bounding box from 79 lon to 89.35 lon and 12 lat
to 13.35 lat and includes Chennai and the surrounding area. The
second one includes Salem and Tiruchirappalli and stretches from
78 lon to 79.35 lon and 10.65 lat to 12.0 lat. In our first model, we
only used the first area since we had to label them manually, but
for the second model, we cover both regions. Together they cover
about 44,080.86 square kilometers.

Figure 1: Satellite imagery of the study area: Polygon 1: 79.0,
12.0, 80.35, 13.35, Polygon 2: 78.0, 10.65, 79.35, 12.0.
Image © 2025 Google Earth Engine

1Scripts and code available at: https://github.com/WikiPol/GeoAI_and_DL_Seminar_
Uni_HD_4/tree/main

https://github.com/WikiPol/GeoAI_and_DL_Seminar_Uni_HD_4/tree/main
https://github.com/WikiPol/GeoAI_and_DL_Seminar_Uni_HD_4/tree/main
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2.2 Materials
2.2.1 Satellite Imagery. We used Sentinel-2 data from the Coper-
nicus mission downloaded through Google Earth Engine for this
project. The Sentinel-2 mission consists of two satellites, Sentinel-
2A and Sentinel-2B, with a 180° phase difference, each of which has
a total of 13 bands, with a resolution of 10m, 20m, or 60m. A single
satellite can complete the revisit within 10 days, so it has a wide
range of applications in many fields such as land observation and
change detection.

For our project, we use the RGB band (B4, B3, B2) with a res-
olution of 10m as shown in Figure 2. In order to download them
in bulk and in the specified region, we used a Python script. In
this Python script, we set a region and downloaded the TIF data
within. Because YOLOv8 needs images with a maximum size of
640x640, we cut the region into tiles of this format. The download
was executed using Google Earth Engine. This approach allowed
us to download the images autonomously and seamlessly upload
them to our Google Drive, where we could continue working with
them. Figure 2 shows examples of the 10m resolution images we
used for this project.

We chose Google Colab to process the data further. We split the
TIF data into even smaller tiles (around 256x256) because, firstly,
the 640x640 tiles we downloaded were not 640x640 when we trans-
formed them to jpg. Secondly, because we had more labels, the
images would have had way too many labels on each image, and
with the smaller size, it was feasible.

After splitting, we converted the TIF data to jpg. In our first
model, we did the labeling by hand to see if this would give good
results as well, even though it is difficult to see separate buildings
on the satellite data.

Figure 2: Examples of Sentinel-2 imagery of the study area.
Image © 2025 Google Earth Engine

2.2.2 Mask Data. We used Google Open Data Collab Notebook to
download the Open Data building footprints for the two previously
specified areas. We used a Google Colab of our own to automate the
labeling for our images. We uploaded the Google Open Data and
referenced it to our own TIF data to get the labels for each of our
tiles. We created our own labelmap since we only need one class.
The labels are detailed to the point that it even hurts the training of
the model, which we could not fix, but more about that is discussed
in the designated chapter.

Given that our automatically labeled dataset consists of approxi-
mately 10,000 images, we employed a script to upload the images
via the Roboflow API to efficiently manage the large volume of data.
We selected Roboflow for its comprehensive analytics capabilities,
which provided valuable insights into our dataset. Furthermore,
Roboflow enables the creation of custom datasets with a range
of preprocessing and augmentation options. For our first training
attempt on the dataset, we resized all images to 256×256 pixels.
For the second training attempt, we resized the images to 512×512
pixels. To preserve image quality despite the rescaling, we down-
loaded higher resolution input data in the form of 1024×1024 TIFF
files. We additionally implemented a script to condense the labels
by merging small bounding boxes with their immediate neighbors
when they were close together. This adjustment aimed to improve
detection performance, as YOLO struggles to detect small objects,
especially when image resolution is limited. As part of our prepro-
cessing pipeline, we applied brightness augmentation to enhance
the model’s fine-tuning process to both attempts.

2.3 Methods
After the labeling process, both models are trained in the same way
using the same 70 percent for training, 20 percent for validation
and 10 percent for testing split. Given the computational capabili-
ties, we used pretrained Ultralytics YOLOv8 [5] with Google Collab
framework. YOLO is popular for object detection and it is generally
considered fast and accurate as it is a one stage detector compared
to two-stage detectors. YOLO takes an input image and first divides
it into a grid. After that, it calculates bounding boxes and class prob-
abilities for each cell. YOLO outputs detected objects (eg: people,
animals, cars etc) in a single forward pass through the CNN. Since
its introduction in 2016, there have been many different versions
of YOLO. We used the YOLOv8 since it performed better compared
to the YOLOv7 from the previous year. As shown in Figure 3, our
models diverge in the labeling process, but after that, follow the
same path for all variations.

Figure 3: Workflow chart

During the training phase for the automatic labels data, we ob-
served that the external labels were often too small and densely
clustered, which significantly obstructed the model’s ability to learn
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meaningful patterns. As a result, the models trained on this data
performed poorly, achieving a maximum precision of only around
1 percent. To address this issue, we developed a script to refine
the labels by merging those that were close together into larger
bounding boxes. This adjustment aimed to provide clearer object
representations for the model. The refined labeling process was
applied to a preprocessed version of the dataset from Roboflow,
which then served as the basis for subsequent training experiments.

3 Results
In this section, we will report the results of our experiment. Three
common metrics are used in object detection to evaluate the perfor-
mance of a model. They are Recall, Precision, and we additionally
show mean average precision (mAP). These metrics are based on
True Positive, False Positive, False Negative, and True Negative.

3.1 Manual label model
The base model with manual labels contains 646 images from the
1st polygon since manually labeling two polygons was not feasible.
We trained the data using different benchmarks. First, with 25
epochs and learning rate of 0.01. As shown in Figure 4a model can
detect the groups of buildings, although with less confidence. To
improve the accuracy of the bounding boxes, we increased epochs
to 30 and decreased the learning rate to 0.001. This led to a slight
improvement in our results. As we can see in Figure 4b, bounding
boxes are more accuarte compared to Figure 4a. Table 1 provides
the key metrics.

Table 1: Performance Metrics of Manual label models at Dif-
ferent Epochs and Learning Rates (percent)

Configuration mAP Precision Recall
Epochs 25, learning rate 0.01 19.3 27.2 29.2
Epochs 30, learning rate 0.001 26.7 34.8 33.0

3.2 External label model
External labels from Open Building data enabled us to cover a
wider area compared to the manual label method. In this model, we
tested with two different versions of the Building labels. One model
was trained with a fine-label dataset with very granular labels that
cover the two polygons with 10,000 images. We also trained another
model using condensed labels by merging labels that were close
together into larger bounding boxes to test how results would vary
between the manually labeled model and the fine-labeled model.
We used 25 Epochs for the finely labeled model, but increased the
Epochs to 100 for the condensed label model to improve our results.
Figure 5a shows an example of the results we obtained using fine
labels. We can observe a significant reduction in the performance of
the model compared to the manually labeled model in Figure 4a or
Figure 4b. As reported in Table 2, our results are considerably lower
compared to the manual label model. Using condensed labels did
improve the results a little, but not significantly, example output is
shown in Figure 5b.

(a)

(b)

Figure 4: Exemplary output for manual label model: 4a
Epochs 25, learning rate 0.01, 4b Epochs 30, learning rate
0.001. Coordinates: ((79.9249, 13.1419), (79.9479, 13.1649))

Table 2: Performance Metrics for External Label Models (per-
cent)

Configuration mAP Precision Recall
Fine labels 1.3 1.8 0.1
Condense labels 7.9 12.6 6.2
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(a)

(b)

Figure 5: Exemplary output for external label model: 5a Fine
labels, 5b Condensed labels. Coordinates: ((79.9249, 13.1419),
(79.9479, 13.1649))

4 Discussion
Both the manual label model and the external label model improve
when we change the epochs and the learning rates. In the case
of the manual label model, when the epochs are set to 30 and

the learning rate to 0.001, Precision improved by 7.6 percent and
Recall by 3.8 percent. Moreover, from Figure 4a and 4b, we can
observe a noticeable improvement in the bounding boxes. They are
more accurate around the settlements when epochs are increased
and the learning rate is decreased. We tried other variations of
epochs, but the results were similar. We believe that more extensive
pre-processing of the images could improve the results, similar to
findings from other studies [9]. Additionally, our sample for the
manual labeled model only contains 646 images, which is divided
into 70:20:10 ratio for training, validation, and testing. The results
could be improved with a larger sample.

In order to overcome the challenges posed by manual labeling,
we used the Open Building dataset with a larger area. We expected
our metrics to improve with the increase in the number of images
and the accurate labels. However, we observed a decline in key
metrics. Both the fine label model (Figure 5a) and the condensed
label model (Figure 5b) performed worse compared to the manually
labeled model (Figure 4a and 4b). One explanation for the decline in
metrics may be that the very fine-grained labels were not compati-
ble with our low-resolution data. Footprints are georeferenced, but
the satellite imagery might be misaligned, leading the bounding
boxes to not match visible features. Furthermore, labels may be
outdated with regard to new buildings, or demolished buildings
might not have been updated. Similar results have been reported
in other studies that uses other label datasets, such as OSM data
labels [3].

The models we used for this project have some limitations. One
obvious limitation is the dataset size we used in both models. For
the first model, manually labeling images was very time-consuming.
This resulted in a small dataset of 646 images. Manual labeling also
leaves a lot of room for human error compared to using a dataset
that has been established and tested through different sources. Es-
pecially considering the low resolution. Additionally, many studies
that use Sentinel-2 data go through an extended image augmenta-
tion to resolve the problem of low resolution, which was difficult
given the time and resource constraints. As mentioned previously,
using building footprint data did help us cover more area, but it did
come with its challenges; we found it to be less reliable than the
manual label dataset. Using other label data could lead to different
results.

5 Conclusion
This project aims to realize efficient methods for building detection
in remote regions where high-resolution data is difficult and costly
to obtain.We used Sentinel-2 data with 10m resolution for the object
detection task with both manual and external labels. Our results
show that manual labels outperform the external label models.
Our study also highlights the importance of pre-processing the
low-resolution images. Due to time and resource constraints, we
performed basic augmentation, but the literature includes many
novel methods to improve the quality of the data. If the data is
improved in such a way, the external labels could outperform the
manual labels, but this will require further testing of the models.
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