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Summary
The study of stars through their global oscillations, i.e., asteroseismology, has provided un-
precedented insight into stellar interiors. One of the most powerful techniques of asteroseis-
mology is that of structure inversions. This technique can localize and quantify differences
in sound speed between a star and its best-fit model. These differences, then, are a direct test
of the accuracy of our stellar models.

The first part of this thesis outlines the specifics of the inversion procedure and then
applies it to 55 main-sequence stars observed by the Kepler mission with masses between
1 and 1.6M⊙. This discussion is split into stars with radiative and convective cores. Overall,
the inversions reveal that our best-fit models match the sound speed profile in around half of
the stars studied. In the remaining half of the sample, there is an even split between cases
where the model sound speed is too high and cases where it is too low.

The second part of this thesis explores whether current inversion techniques are suitable
for subgiant stars. These stars exhibit mixed modes that are sensitive to deeper regions of
stellar cores. As the sensitivity of these mixed modes changes on a very short timescale,
obtaining reliable inversion results will require modifications to current techniques.

Zusammenfassung
Die Erforschung von Sternen anhand ihrer globalen Schwingungen, auch bekannt als Aster-
oseismologie, hat einen noch nie dagewesenen Einblick in das Innere von Sternen ermöglicht.
Eine der leistungsfähigsten Techniken der Asteroseismologie sind sogenannte Strukturinver-
sionen. Mit dieser Technik lassen sich Unterschiede in der Schallgeschwindigkeit zwischen
einem Stern und einem bestmöglich angepassten Referenzmodell lokalisieren und quan-
tifizieren. Diese Unterschiede sind ein direkter Test für die Genauigkeit unserer Sternmod-
elle.

Der erste Teil dieser Arbeit beschreibt die Einzelheiten des Inversionsverfahrens und
wendet dieses dann auf 55 von der Kepler-Mission beobachtete Hauptreihensterne mit Massen
zwischen 1 und 1,6 M⊙ an. Die Diskussion wird in Sterne mit radiativen und konvek-
tiven Kernen unterteilt. Insgesamt zeigen die Inversionen, dass unsere Referenzmodelle bei
etwa der Hälfte der untersuchten Sterne mit dem beobachteten Schallgeschwindigkeitspro-
fil übereinstimmen. In der verbleibenden Hälfte der Stichprobe gibt es eine gleichmäßige
Verteilung zwischen Fällen, in denen die Schallgeschwindigkeit des Referenzmodells zu
hoch ist, und Fällen, in denen sie zu niedrig ist.

Im zweiten Teil dieser Arbeit wird untersucht, ob die derzeit verwendeten Inversion-
stechniken für Unterriesensterne geeignet sind. Diese Sterne weisen gemischte Schwingungs-
moden auf, die auch die Untersuchung von tieferen Regionen im Kern des Sterns ermöglichen.
Da sich die Empfindlichkeit dieser gemischten Moden auf einer sehr kurzen Zeitskala en-
twickelt, müssen die derzeit verwendeten Techniken modifiziert werden, um zuverlässige
Inversionsergebnisse zu erhalten.
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List of physical constants

Symbol Name Value in cgs units

G Gravitational constant 6.6743 × 10−8 g−1· cm3· s−2

cl Speed of light in a vacuum 2.99792458 × 1010 cm · s−1

a Radiation density constant 7.565733 × 10−15 erg · cm−3· K−4

M⊙ Solar mass 1.9884099 × 1033 g

R⊙ Solar radius 6.957 × 1010 cm

L⊙ Solar luminosity 3.828 × 1033 erg · s−1

Teff,⊙ Solar effective temperature 5777 K

νac,⊙ Solar acoustic cutoff frequency 5000 µHz
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1
Context and theoretical background

1.1. Introduction and Motivation
As the source of much of the light we observe, stars play an important role in our under-
standing of the universe. By better understanding stars, we are able to increase our under-
standing of other astrophysical systems. Exoplanet properties such as mass, radius, and age
are inferred from the properties of the host star. Better age determinations of the various
stellar populations in the Milky Way help to reconstruct the history of our galaxy. On even
larger scales, variable stars and supernovas form important rungs on the distance ladder
used to measure cosmological distances. Fully understanding stellar interiors and evolution
requires proper descriptions for a wide range of physical phenomena. This is particularly
challenging as the physics happening in stars spans a wide range of scales, both in space and
time.

Stars are a diverse group of objects, differing in their mass, age, composition, rotation,
and interaction history with other stars and/or planets. Regardless of the kind of star, we are
limited to observing only the light emitted from the stellar surface1. Fortunately, the light of
stars provides a wealth of information that can be extracted by astronomers, including:

• Brightness: The intrinsic brightness of a star is an important indication of the mass
and/or evolutionary stage of the star. However, we are only able to observe the appar-
ent brightness. In order to determine the intrinsic brightness, the distance to the star
must be known. For the nearby stars, such as those considered in this thesis, this is of-
ten found using their parallaxes as measured by the Gaia satellite (Gaia Collaboration
et al., 2016, 2018; Creevey et al., 2023).

• Spectrum: The pattern of absorption and emission lines in the stellar spectrum pro-
vides information about the temperature and atomic elements present at the stellar
surface. High-resolution spectroscopy can be used to determine the effective tempera-
ture of a star as well as its composition. Typically, the surface composition is given in
terms of an overall metallicity [M/H] or parametrized by the iron abundance [Fe/H],

1Gravitational waves provide another avenue, however, at present gravitational waves are detected from
merges of black holes or neutron stars.
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1 Context and theoretical background

although detailed spectroscopic analysis can provide the abundances of many differ-
ent individual atomic elements. The spectroscopic data for the stars discussed here
are taken from several ground-based surveys (Furlan et al., 2018; Mathur et al., 2017;
Morel et al., 2021).

• Polarization: The light emitted by stars can be polarized by a magnetic field at the
stellar surface. This polarization combined with detailed spectroscopic analysis of
the Zeeman splittings of atomic lines can be used to measure the strength of surface
magnetic fields.

• Variation: Stellar brightness and spectra are not constant over time. These changes can
be single-time events, such as a supernova at the end of a massive star’s life. Other
changes, however, are recurring, such as those caused by orbital companions or stellar
pulsations.

All of these observations are important to our understanding of stellar evolution theory.
This thesis focuses on the variation due to intrinsic global oscillation modes. The power of
these observations stems from the fact that unlike the luminosity, effective temperature, and
surface composition, the oscillation modes are directly sensitive to the interior structure of
a star. This makes these oscillation modes the best way, at present, to test and improve our
understanding of stellar interiors.

Many stars oscillate due to a variety of different mechanisms, as can be seen in Fig-
ure 1.1. These oscillations can be classified by the restoring force of the mode and also by
the mechanism which excites the oscillation. This work concentrates on solar-like oscilla-
tors. As the name suggests, the archetypal example of this class of oscillators is our Sun,
which exhibits oscillation modes with periods of around 5 minutes. These modes are ex-
cited by turbulence in the outer convection zone (Leighton et al., 1962; Evans and Michard,
1962; Claverie et al., 1979). Any star with a convective envelope is expected to exhibit these
solar-like oscillations, even if the overall structure differs from that of the Sun. These stars
can exist across a range of masses and evolutionary stages including2:

• Main-sequence stars: Stars with masses roughly between 0.8 and 1.5M⊙ have an
outer convection zone during the main sequence and thus exhibit solar-like oscilla-
tions. This category includes stars with both radiative and convective cores, with the
crossover occurring at roughly 1.2M⊙, depending on composition.

• Subgiant stars: As stars with M ≲ 1.1M⊙ exhaust the hydrogen in their cores, the
core begins to contract as the envelope expands and the star enters a short-lived evo-
lutionary stage known as the subgiant branch. This is the low-mass equivalent to the
Hertzsprung gap stage in more massive stars. In contrast to the Hertzsprung gap, stars
spend enough of their lives in the subgiant branch that we expect to, and in fact, do,
observe a significant number of stars in this stage.

• Red giant branch stars: Whether a star transitions from the end of the main sequence
to the red giant branch star as a subgiant or by crossing the Hertzsprung gap, the
structure of stars with M ≲ 10M⊙ are similar. These stars are fueled by a layer of
hydrogen shell burning in the interior and have deep convective envelopes in the outer
layers.

2For a more detailed description of the evolution of these stars see Hekker and Christensen-Dalsgaard
(2017).

2



1.1 Introduction and Motivation

• Red clump/ Secondary clump: When the core temperature of the star is high enough,
it will begin to burn helium. For lower-mass stars (M ≲ 2M⊙) helium burning begins
suddenly due to the degenerate core. The star then enters the red clump. In more
massive stars, helium burning begins more gradually, and the stars enter what is called
the secondary clump. Both red clump and secondary clump stars have convective
envelopes and hence they exhibit solar-like oscillations.

While red giants (including red-giant branch, red clump, and secondary clump stars)
make up the vast majority of stars with observed solar-like oscillations, I focus on the two
previous stages of evolution: the main sequence and subgiant branch. In addition to a gen-
eral increased understanding of stellar evolution, studying these stars and improving our
models of them is interesting for several reasons. First, as the oscillations are similar to
those observed in the Sun, a number of techniques developed for helioseismology can be
(relatively) easily applied to other solar-like oscillators.

Second, the current search for habitable exoplanets is focused on Earth-like planets or-
biting Sun-like stars. The properties of exoplanets, including mass, radius, and age, are
inferred relative to their host stars. Thus, increased precision and accuracy of our estimates
of stellar mass, radius, and age is essential to know which planets are potentially habitable.
Of these three stellar parameters, the most difficult to determine is the stellar age. As no
observations directly probe the age, it must always be inferred from stellar models, where
even small changes to the modeling physics result in significant age differences (e.g., Farnir
et al., 2020).

Finally, although this work does not discuss red giant stars in detail, these stars must first
evolve through the main sequence. Stellar processes on the main sequence, such as core
boundary mixing, can carry forward onto the red giant branch and even all the way to the
asymptotic giant branch (Bertelli et al., 1986). In this way, a better understanding of the
main-sequence lives of these stars can improve age estimates of red giants used for galactic
archaeology (e.g., Anders et al., 2023; Pinsonneault et al., 2025) and nucleosynthetic yields
from asymptotic giant branch stars (Busso et al., 1999).

Asteroseismic observations of solar-like oscillators can be used to infer estimates of the
stellar mass and radius directly through scaling relations (Brown et al., 1991; Kjeldsen and
Bedding, 1995). For detailed analysis of stellar interiors, however, these observations must
be compared to stellar models. At present, even the best models are unable to fully reproduce
the observed oscillation frequencies. These discrepancies suggest that our stellar models are
not fully reproducing the interior of observed stars. The technique of structure inversions
provides a way to use the differences in frequencies to infer the underlying structure differ-
ences. Before discussing the process of a structure inversion in detail, I begin by reviewing
the equations of stellar structure and the process of obtaining stellar models. I then review
the principles of asteroseismology and various approaches to finding best-fit asteroseismic
models.

3



1 Context and theoretical background

Figure 1.1: Hertzsprung-Russel Diagram showing the different classes of pulsating stars. For refer-
ence, the solid red line shows the zero-age main sequence. Evolutionary tracks for several masses up
to the first red giant stage are shown by the red dotted lines. The Cepheid instability strip is bounded
by the black dashed lines. The excitation mechanism and mode type of the oscillations are indicated
by the hashing where (\\) indicates opacity-driven p-modes, (//) indicates opacity-driven g-modes,
(≡) indicates stochastic oscillations, and (|||) indicates strange modes. The names of different classes
of pulsators are taken from Aerts et al. (2010, their Chapter 2). Used with permission of Annual
Review, from Kurtz (2022).

4



1.2 Stellar Modeling

1.2. Stellar Modeling
In order to construct a stellar model, we first need to describe the physics of stars in a set of
equations called the stellar structure equations. Here, I briefly review these equations in the
form presented in Kippenhahn et al. (2013). For all the stellar models used in this work, I
assume the star to be spherically symmetric.

1.2.1. Equations of Stellar Structure

1.2.1.1 Mass Continuity

The first equation of stellar structure describes how mass is distributed in the star. The way
the structure variables change throughout the star can be described in terms of the mass
coordinate, m, or the radial coordinate, r. These two coordinates are related through the
density, ρ by the equation of mass continuity,

∂r
∂m
=

1
4πr2ρ

. (1.1)

1.2.1.2 Hydrostatic Equilibrium

In general, stars are assumed to be in hydrostatic equilibrium, meaning that the force of
gravity is balanced by the pressure, P. This is expressed in the equation of hydrostatic
equilibrium,

∂P
∂m
= −

Gm
4πr2 , (1.2)

where G is the gravitational constant.

1.2.1.3 Energy Flux

In order for stars to continue emitting light, there must be an internal source of energy and
this energy must be conserved throughout the star. The energy flux, l, is given by

∂l
∂m
= ϵn − ϵν − ϵg. (1.3)

This equation accounts for several processes that can change l including nuclear reactions
ϵn, neutrinos ϵν, and gravitational potential changes due to expansion or contraction ϵg. This
last term is

ϵg = −T
∂s
∂t
, (1.4)

where s is the specific entropy. The calculation of the partial derivative in Equation 1.4 re-
quires knowledge of the equation of state of stellar material. While it is tempting to treat the
stellar material as an ideal gas, there are a number of interaction forces that are not described
by the ideal gas law including pressure ionization, van der Waals forces, crystallization, and
other quantum interactions.

5



1 Context and theoretical background

1.2.1.4 Energy Transport

Most of the energy of a star is generated from nuclear reactions in the interior of the star.
This energy is then transported through the rest of the star either by convection or radiation,
leading to the equation of energy transport:

∂T
∂m
= −

GmT
4πr4P

∇T . (1.5)

Here T is the temperature and ∇T = d ln T/d ln P is the temperature gradient. The exact
form that ∇T takes is dependent on the dominant type of energy transport. In stellar regions
where radiation dominates

∇T = ∇rad =
3

16πaclG
κlP
mT 4 , (1.6)

where a is the radiation density constant, cl is the speed of light, and κ is the mean opacity
of the material (including both radiative and conductive opacity).

When energy is carried by convection, ∇T is obtained from a full description of con-
vection (or a simplified implementation). In convective regions that are deep in the stellar
interior

∇T = ∇ad =

(
P
T

dT
dP

)
s
, (1.7)

where the derivative dT/dP is taken with respect to constant specific entropy, s.
Whether a given region in a star is convective is determined using the temperature gra-

dients introduced above and the chemical composition gradient,

∇µ =
d ln µ
d ln P

, (1.8)

where µ is the mean molecular weight. Under the Ledoux criterion, a region is stable against
convection if

∇rad < ∇ad + ∇µ. (1.9)

If this relation does not hold, then the region of the star is convective.

1.2.1.5 Composition Changes

The nuclear reactions responsible for generating the energy of a star also change the com-
position. The change in mass fraction Xi of the ith element due to nuclear reactions is given
by

∂Xi

∂t
=

mi

ρ

∑
j

r ji −
∑

k

rik

 , i = 1, . . . , I (1.10)

In this equation, r ji is the reaction rate or the number of reactions per unit volume per time
that turn the jth element into the ith element and I is the total number of elements being
tracked. The sum accounts for the fact that one element can be involved in several different
reactions.

There are additional processes that can change the composition of a given part of the star
by transporting material from another part of the star, either by convection or by diffusive
processes such as gravitational settling or radiative acceleration.

6



1.2 Stellar Modeling

1.2.1.6 Boundary Conditions

To solve the equations of stellar structure, it is necessary to specify a set of boundary con-
ditions. One factor that complicates the process of obtaining a solution is that the boundary
conditions are split between those applied to the center of the star (m = 0) and those applied
at the surface (m = M). The central boundary conditions are quite clear, as we wish for
regular behavior in the center of the star:

r(m = 0) = 0 l(m = 0) = 0. (1.11)

The outer boundary conditions are more complicated. The simplest approach is to as-
sume that the temperature and pressure vanish at the stellar surface.

T (m = M) = 0 P(m = M) = 0. (1.12)

However, this is not strictly true, as the interstellar material has non-zero temperature and
pressure. This also makes it difficult to define the stellar surface, where r = R. A common
approach is to define the surface as the layer that emits most of the stellar radiation into
space. This region is known as the photosphere and is defined as the location where the op-
tical depth τ equals 2/3. The values of temperature and pressure at the photosphere can then
be given by a T (τ) relation, such as the Eddington gray atmosphere (T 4(τ) = 3/4T 4

eff(τ+2/3),
or from precomputed tables obtained from models of stellar atmospheres (e.g., Hauschildt
et al., 1999a,b; Castelli and Kurucz, 2003).

1.2.2. Constructing a Stellar Model
Under some simplifying assumptions, the system of differential equations given by Equa-
tions 1.2-1.10 can be solved analytically. However, these assumptions are not realistic for
real stars. Instead, the equations of stellar structure must be solved numerically using a
stellar modeling code. Thus, when creating any given stellar model, there are a number of
choices that must be made by the modeler. These include:

• Initial Conditions: The first step is to decide what type of star will be modeled. At a
minimum, this involves specifying the initial mass and composition of the star. Typi-
cally, the composition is described by the initial hydrogen (X), helium (Y), and metal
(Z) mass fractions (or rather two out of the three as X + Y + Z = 1). Since only
the metal abundance is given it is standard to assume that the relative abundances of
individual metals scale according to the solar abundances (e.g., Grevesse and Sauval,
1998; Asplund et al., 2009; Magg et al., 2022).

• Additional Physical Data: For computational efficiency, some of the parameters in
the stellar structure equations are computed outside of stellar modeling codes and
stored in tables which can be interpolated during a stellar structure calculation. These
data typically include: nuclear reaction rates, radiative opacity values, equation of
state data, and diffusion coefficients. Usually, there are a variety of sources of data
for any given parameters. For example, radiative opacity tables can be obtained from
OPAL (Iglesias and Rogers, 1993, 1996), OP (Seaton, 2005), or OPLIB (Colgan et al.,
2016). The situation is similar for low-temperature radiative opacity (Alexander and
Ferguson, 1994; Ferguson et al., 2005; Marigo and Aringer, 2009), nuclear reaction
rates (Angulo et al., 1999; Cyburt et al., 2010), and equation of state data (Irwin, 2004;
Saumon et al., 1995; Rogers and Nayfonov, 2002; Jermyn et al., 2021).

7



1 Context and theoretical background

• Free Parameters: Some physical processes that are important for stellar evolution are
impossible to fully describe in only one dimension, i.e., convection, or do not yet
have descriptions from first principles and must be described empirically, i.e., mass
loss. These processes are often included in stellar modeling codes with simplified
prescriptions involving a free parameter that must be somehow calibrated, either to
observations or 3D simulations. For example, mixing length theory (for a review see,
Joyce and Tayar, 2023), requires a choice of a mixing length parameter to describe
convection.

• Boundary conditions: As discussed above, one must choose how to obtain the tem-
perature and pressure at the surface of the star.

• Numerical Parameters: These describe the resolution of the desired stellar solution,
both in terms of time (how large are the time steps between models) and space (how
large are the mass steps used to discretize the equations). In addition, there are con-
vergence parameters that describe how well a given numerical solution must satisfy
equations 1.1, 1.2, 1.3, 1.5, and 1.10. These parameters must be chosen to balance
the need for a well-resolved solution with computational efficiency. For asteroseismic
modeling, proper choices of these parameters are particularly important (Li and Joyce,
2025).

An important assumption that is made in stellar evolution codes is that the derivatives
with respect to time can be separated from the spatial derivatives. With this assumption,
the process of calculating evolution over time is to alternate between solving the structure
equations 1.1, 1.2, 1.3, 1.5 and then applying the time-dependent changes in equations 1.4
and 1.10. This process results in a series of static solutions at a given time. For clarity, I use
‘model’ to refer to the solution at a given time step and ‘track’ to refer to the evolutionary
sequence. I refer to a collection of tracks with varying initial and free parameters as a ‘grid’.

1.3. Asteroseismology
I provide here an overview of the equations used to describe stellar oscillations, the different
modes of oscillations, and the process of obtaining an asteroseismic best-fit model.

1.3.1. Oscillation Equations
The oscillations are treated as a time-dependent perturbation to the equilibrium structure
(represented by the subscript such as ρ0). In the following discussion, a bar over a variable,
such as ρ̄, indicates that it is time-dependent and a bold quantity is a 3D vector. The dis-
placement due to this perturbation is ξ̄(r, θ, ϕ, t). In general, the perturbation is a function of
the coordinates r, θ, ϕ, and time t. These perturbations also change the stellar structure vari-
ables P, ρ, and Φ (the gravitational potential). These perturbations can be described either
as Eulerian perturbations (perturbations at a given point, represented with primed variables),

P̄ = P0 + P̄′, ρ̄ = ρ0 + ρ̄
′, Φ̄ = Φ0 + Φ̄

′ (1.13)

8



1.3 Asteroseismology

or as Lagrangian perturbations (perturbation in the reference frame following the motion,
denoted3 with D),

P̄ = P0 + DP, ρ̄ = ρ0 + DP, Φ̄ = Φ0 + DΦ. (1.14)

One type of perturbation can be converted to the other using

Dq = q̄′ + ξ̄ · ∇q0, (1.15)

for any variable q. Unlike the equilibrium stellar structure described above, the oscillations
are not spherically symmetric, and so their derivation requires the use of hydrodynamic
equations in three dimensions.

1.3.1.1 Perturbed Equations of Stellar Structure

I start with the time-dependent equation of mass conservation,

∂ρ̄

∂t
+ ∇(ρ̄v̄) = 0, (1.16)

where v̄ is the velocity of the stellar material. For an equilibrium model v̄ = 0. Substituting
in the Eulerian perturbations from Equation 1.13,

∂ρ0 + ρ̄
′

∂t
+ ∇

(
(ρ0 + ρ̄

′)v̄′
)
= 0. (1.17)

Here, v̄′ = dξ̄/dt is the velocity due to the perturbation. Keeping only the terms that are
linear in the perturbation results in

∂ρ̄′

∂t
+ ∇(ρ0v̄′) = 0. (1.18)

This can be integrated with respect to time to yield the perturbed equation of continuity

ρ̄′ + ∇(ρ0ξ̄) = 0. (1.19)

The next hydrodynamical equation is the equation of motion,

ρ̄
dv̄
dt
= −ρ̄∇Φ̄ − ∇P̄, (1.20)

where the gravitational potential Φ is given by Poisson’s equation

∇2Φ̄ = 4πGρ̄. (1.21)

3Here I adopt the notation used in Kippenhahn et al. (2013). It is also common to use δ to denote a
Lagrangian perturbation. However, I reserve δ to denote the perturbations used to derive the mode kernels,
detailed in the following section.
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1 Context and theoretical background

Following the same procedure as for the equation of continuity the perturbed form of
Equation 1.20 is

ρ0
d2ξ̄

dt2 = −ρ0∇Φ̄
′ − ρ̄′∇Φ0 − ∇P̄′, (1.22)

where Φ̄′ can be calculated through the perturbed Poisson equation,

∇2Φ̄′ = 4πGρ̄′. (1.23)

An additional constraint can be added by assuming the oscillations to be adiabatic. The
condition for adiabaticity of a Lagrangian perturbation is

DP
P0
= Γ1

Dρ
ρ0
, (1.24)

where Γ1 = ∂P/∂ρ at constant specific entropy is the first adiabatic exponent. Converting
this to the Eulerian perturbations gives

P̄′ + ξ̄ · ∇P0 = c2
0

(
ρ̄′ + ξ̄ · ∇ρ0

)
, (1.25)

where c2 = Γ1/Pρ is the sound speed.
Equations 1.19, 1.22, 1.23, and 1.25 form a complete set of equations that can be solved

given a choice of boundary conditions. However, further simplifications can be made using
the expected form of the solutions. As we are looking for oscillatory solutions, it is natural
to express the time-dependent displacement vector as

ξ̄(r, θ, ϕ, t) = ξ(r, θ, ϕ)e−iωt. (1.26)

Here ξ is the time-independent displacement vector and ω is the angular frequency of the
oscillation. In a spherically symmetric star, it is natural to express this in terms of the
spherical harmonics

ξ = ξ(r)Yℓmr̂ + η(r)
(
∂Yℓm
∂θ

θ̂ +
1

sin θ
∂Yℓm
∂ϕ

ϕ̂

)
, (1.27)

where ξ is the radial component of the displacement, η is the horizontal component, Yℓm is
the spherical harmonic function for a given spherical degree (ℓ) and azimuthal order (m), and
r̂, θ̂, ϕ̂ are the unit vectors. The only term that depends explicitly on time in our oscillation
equations is

d2ξ̄

dt2 = −ω
2ξe−iωt. (1.28)

The perturbed quantities carry the same dependence on time as the displacement function,
and thus the time dependence of all terms in Equations 1.19, 1.22, 1.23, and 1.25 cancels
out. Going forward, I will consider only the time-independent perturbations. As a further
simplification to the notation, I also drop the subscript on the equilibrium solution. Using
Equation 1.27, Equation 1.19 reduces to

ρ′ = −ρ

[
2
r
ξ +

dξ
dr
−
ℓ(ℓ + 1)

r
η

]
− ξ

dρ
dr
. (1.29)
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1.3 Asteroseismology

Equation 1.22 yields an equation for the radial component

−ρω2ξ = −ρ
dΦ′

dr
− ρ′

dΦ
dr
−

dP′

dr
(1.30)

and an equation for the horizontal component

−ρω2η =
1
r

(
1
ρ

P′ − Φ′
)
. (1.31)

Finally Equation 1.23 reduces to

1
r2

d
dr

(
r2 dΦ′

dr

)
−
ℓ(ℓ + 1)

r2 Φ′ = 4πGρ′. (1.32)

Equations 1.29, 1.30, 1.31, and 1.32 form the system of equations that are solved numeri-
cally to obtain the eigenfunctions and eigenfrequencies of a stellar model.

1.3.2. Types of Modes
To discuss the general properties of different types of oscillation modes, it is useful to make
several simplifying assumptions to the oscillation equations presented above. First, is what
is known as the Cowling approximation, which neglects the perturbation to the gravitational
potential (Φ′ = 0). The second is to assume that the eigenfunctions vary rapidly compared to
the underlying equilibrium quantities. This approximation is typically valid only for modes
with high radial order. With these two assumptions, the oscillation equations can be reduced
to one second-order equation (Deubner and Gough, 1984)

d2ξ

dr2 =
ω2

c2

(
1 −

N2

ω2

) (
S 2
ℓ

ω2 − 1
)
ξ. (1.33)

Here I have introduced two characteristic frequencies: the Brunt-Väisälä, or buoyancy, fre-
quency

N2 = g

(
1
Γ1

d ln P
dr
−

d ln ρ
dr

)
, (1.34)

and the Lamb, or acoustic, frequency

S 2
ℓ =

ℓ(ℓ + 1)c2

r2 . (1.35)

For an oscillatory solution to exist, the right-hand side of Equation 1.33 must be positive.
This is true under two conditions:

1) |ω| > N and |ω| > S ℓ (1.36)

or
2) |ω| < N and |ω| < S ℓ. (1.37)

In the first case, the mode is called a pressure mode or p-mode, and in the second case, the
mode is a gravity mode or g-mode. As N and S ℓ vary with the radial coordinate, whether
conditions 1 or 2 are met varies throughout the star. The regions where modes can propagate,
called oscillation cavities, differ between stars of different structures. These oscillation cav-
ities can be visualized using a propagation diagram that shows the characteristic frequencies
as a function of the radius, as shown for several stars in Figure 1.2.
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Figure 1.2: Propagation diagrams for modes of the Sun (top), a slowly pulsating B star (middle), and
a subgiant star (bottom). The solid black lines show the buoyancy frequency defined in Equation 1.34.
The dashed black lines show the acoustic frequency defined in Equation 1.35, for dipole (ℓ = 1)
modes. The p-mode cavities are shaded pink and the g-mode cavities blue. The hatched region
indicates the range of observable frequencies for each type of star. The x-axis is fractional radius,
r/R.
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1.3 Asteroseismology

1.3.2.1 p-modes in Main-sequence Solar-like Oscillators

The excitation mechanism in solar-like oscillations excites modes around a characteristic
frequency, νmax, which is related to the surface gravity of the star. Looking at the propaga-
tion diagram for a main-sequence solar-like oscillator, shown in Figure 1.2, reveals that the
frequencies around νmax (indicated with hatching) satisfy the criteria in Equation 1.36 and
thus are p-modes.

Further analysis of the asymptotic properties of p-modes shows that the modes of suc-
cessive radial orders are evenly spaced in frequency. In the asymptotic limit, the mode
frequencies are given by (Tassoul, 1980)

νn,ℓ =
ωn,ℓ

2π
≃

(
n +

ℓ

2
+

1
4
+ αp

)
∆ν. (1.38)

Here ν is the linear frequency for a mode of a given radial order n and spherical degree ℓ, αp

is a function of frequency sensitive to the near-surface regions (Christensen-Dalsgaard and
Berthomieu, 1991; Christensen-Dalsgaard and Perez Hernandez, 1992), and ∆ν is the large
frequency separation, which is related to the sound crossing time of the star

∆ν =

[
2
∫ R

0

dr
c

]−1

∝

√
M
R3 . (1.39)

1.3.2.2 g-modes in Main-sequence Slowly Pulsating B Stars

Although not the focus of this work, I include in Figure 1.2 an example of the propagation
diagram of a g-mode pulsator, in this case a slowly pulsating B (SPB) star. As seen from
Figure 1.1, this class of pulsators is also on the main sequence. However, they have higher
masses (2-7M⊙) than main-sequence solar-like oscillators. In these stars, oscillations have
periods ranging roughly from 0.8 to 3 days. From the propagation diagram, it is clear that
these oscillations satisfy the criteria in Equation 1.37 and thus are g-modes. It is typical
to talk about g-modes in terms of period rather than frequency as, in contrast to p-modes,
g-modes are evenly spaced in frequency. From asymptotic analysis, the period of a mode Π
is given by (Tassoul, 1980)

Π =
Π0

L
(n + αℓ,g), (1.40)

where L =
√
ℓ(ℓ + 1), αℓ,g is a phase term that depends on the boundaries of the mode

cavities, and Π0 is the asymptotic period spacing

Π0 = 2π2
(∫ r2

r1

N
dr
r

)−1

. (1.41)

Here r1, r2 are the boundaries of the g-mode cavity. The period spacing for a given degree
of modes is ∆Πℓ = Π0/L.

1.3.2.3 Mixed Modes in Evolved Solar-like Oscillators

In certain cases, modes can be excited which oscillate in two cavities: one which is acoustic
(satisfies criteria of Equation 1.36) and one which is buoyant4 (satisfies criteria of Equa-
tion 1.37). If the region between these two cavities is small enough, non-radial modes can

4It is also possible for stars to have multiple oscillation cavities of other configurations, for example after a
stellar merger (Henneco et al., 2024).
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1 Context and theoretical background

propagate in both. These modes exhibit mixed character, behaving like p-modes in the outer
layers and g-modes in the inner layers, and so are called mixed modes. Mixed modes were
first predicted in massive stars (Osaki, 1975; Aizenman et al., 1977). More relevant for
this work, however, is that mixed modes also occur in more evolved solar-like oscillators
(e.g., Deheuvels and Michel, 2011). The propagation diagram shown in Figure 1.2 is for a
subgiant star. As with the main-sequence solar-like oscillator, the relevant frequency range
around νmax is indicated with hatching. This frequency range satisfies both criteria in Equa-
tions 1.36 and 1.37 in different parts of the star, and the zone between the two cavities is
small enough that the non-radial modes exhibit a mixed nature.

These modes are neither equally spaced in frequency nor in period. However, they can
be described as the coupling of a fictitious pure p-mode and a fictitious pure g-mode. The
mode frequency is then given by (Shibahashi, 1979; Unno et al., 1989; Mosser et al., 2012)

ν = νnp,ℓ +
∆ν

π
arctan

[
q tan π

(
L

ν∆Πℓ
− αℓ,g

)]
, (1.42)

where νnp,ℓ is the frequency of the pure p-mode, and αℓ,g is a phase term.

1.3.3. Asteroseismic modeling
In order to find an asteroseismic best-fit model, one requires frequencies of an observed star,
a grid of stellar models, and some method of defining ‘best-fit’. Below, I discuss each of
these steps in turn.

1.3.3.1 Observed Frequencies

Here, I provide a brief overview of the process of obtaining frequencies from observations.
For more details, I refer the reader to Davies et al. (2016); Lund et al. (2017); Basu and
Chaplin (2017). Asteroseismic observations require repeated observations over a long time,
as the frequency resolution is given by the inverse of the total span of the data. It is also
easier to extract genuine oscillation frequencies when the observations are uninterrupted.
For this reason, long-term space missions like Kepler (Borucki et al., 2010; Koch et al.,
2010) are the preferred sources of asteroseismic data. Although for a limited number of
stars, data are also available from the ground-based SONG network (Grundahl et al., 2007).
As we are looking for the oscillation frequencies, it is best to work in the frequency domain.
Thus, after the light curve has been corrected for instrumental effects the first step is a
Fourier transform. There are other sources of variability beyond the oscillations. These
include additional instrumental effects and intrinsic variability due to granulation, rotation,
and stellar spots. Removing these effects allows the oscillation signal to be isolated. In a
power density spectrum, the signal of solar-like oscillations is a Gaussian-shaped excess of
power. The central frequency of this power excess is the νmax value discussed above. An
example a power destiny spectrum for the solar analog 16 Cyg A is shown in Figure 1.3.

Given high enough resolution, it is possible to identify not only the presence of solar-like
oscillations but also to identify the frequencies of individual modes through a process known
as peak bagging. The repeating pattern of p-modes can be used to identify the spherical
degree of the fitted modes. When fully resolved in frequency space, solar-like oscillation
modes are expected to exhibit a Lorentzian profile (Batchelor, 1953; Kumar et al., 1988).
This profile can be fit, for example using Markov Chain Monte Carlo methods, to obtain the
oscillation mode frequencies and their uncertainties.
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1.3 Asteroseismology

Figure 1.3: Power density spectrum of the solar analog 16 Cyg A. The Gaussian envelope of power
is indicated with a blue dashed line. The central frequency of this envelope is the frequency of
maximum power νmax. The inset zooms into to show the large frequency separation ∆ν, and the
small frequency separation δν02 = νn,ℓ − νn−1,ℓ+2. While ∆ν is related to the mean density of the star,
δν02 is related to the sound speed gradient in the core of the star. Figure taken from Garcı́a and Ballot
(2019) under the Creative Commons Attribution 4.0 License.
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1 Context and theoretical background

1.3.3.2 Model Frequencies

The oscillation equations can be solved numerically for a given stellar model using an oscil-
lation code. Equations 1.29 through 1.32 form a fourth-order system of equations and thus
require four boundary conditions. Two can be provided by enforcing regularity at r = 0:

ρ′(r = 0) = 0 and P′(r = 0) = 0. (1.43)

As with the equations of stellar structure, the outer boundary conditions can be more com-
plex. There are several different formulations used (e.g., Dziembowski, 1971; Unno et al.,
1989). Most relevant for this work are the boundary conditions necessary to satisfy the vari-
ational principle (Chandrasekhar, 1964) used to derive the mode kernel, discussed in the
following section,

ρ(r = R) = 0 and P′(r = R) = 0. (1.44)

As the oscillation equations are solved numerically, there are numerical parameters that
must be chosen. The most important of these controls set the spatial resolution of the mesh
and the time resolution of the frequency grid used to calculate the oscillation.

The goal of asteroseismic modeling is to obtain a stellar model that matches the observed
mode frequencies and surface properties (such as luminosity, effective temperature, and
surface composition) as closely as possible. Directly comparing modeled frequencies to
observed frequencies, however, is complicated by our poor modeling of the outer layers of
a star.

1.3.3.3 Surface Term

The outer layers of stars remain difficult to model properly. For asteroseismic analysis,
we also run into difficulties due to the assumption of adiabatic oscillations and the lack of
a clear description of the interaction between oscillations and convective motions. All of
these factors result in a frequency-dependent shift between observed frequencies and the
frequencies of stellar models. It is common to lump these difficulties together into a so-
called ‘surface term’.

In asteroseismic modeling, there are two main approaches to dealing with the surface
term. The first is to use an empirical relation to correct the mode frequencies. The most
common of these was proposed by Ball and Gizon (2014). This semi-empirical approach
begins by noting the expected form of several possible perturbations to the near-surface
layers (Gough, 1990; Goldreich et al., 1991). These perturbations take the form ν−1/E and
ν3/E where E is the normalized mode inertia given by

E =
4π

∫ R

0

[
ξ2 + ℓ(ℓ + 1)η2

]
ρr2 dr

M
[
ξ2(R) + ℓ(ℓ + 1)η2(R)

] . (1.45)

The expected shift due to these perturbations δνS is

δνS =
1
E

a−1

(
ν

νac

)−1

+ a3

(
ν

νac

)3 . (1.46)

Here νac is the acoustic cutoff frequency, which can be found by a scaling relation from the
solar value, νac,⊙ = 5000 µHz,

νac =
M
M⊙

(
R
R⊙

)−2 (
Teff

Teff,⊙

)−1/2

· νac,⊙. (1.47)
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Figure 1.4: Frequency differences between the low-degree oscillation modes of the Sun (Broomhall
et al., 2009) and a standard solar model (Model S, Christensen-Dalsgaard et al., 1996). The left
(right) panel shows the frequency differences before (after) the surface term correction has been
applied. Note that the y-axis scale differs significantly between the two panels. In both panels, the
1σ uncertainty of the observed frequencies is shown, although in most cases it is smaller than the
size of the points.

The coefficients a−1, a3 are found through a least-squares fit to the frequency differences
between observation and model. With these coefficients, a correction can be applied to
the model frequencies νmod, cor = νmod + δνS . In Figure 1.4, I show the frequency differences
between the Sun (Broomhall et al., 2009) and a standard solar model (Model S, Christensen-
Dalsgaard et al., 1996) before and after applying the surface term correction.

The other approach to dealing with the surface term is to construct combinations of
frequencies such that the combinations are less sensitive to the surface (Roxburgh and
Vorontsov, 2003). These frequency separation ratios are defined as

r01(n) =
1
8
νn−1,0 − 4νn−1,1 + 6νn,0 − 4νn,1 + νn+1,0

νn,1 − νn−1,1
, r02(n) =

νn,0 − νn−1,2

νn,1 − νn−1,1
. (1.48)

Taking the frequency separation ratios removes information about the mean density of the
star and so often ratios are used in combination with a value of ∆ν, which must be corrected
for surface effects.

For more evolved stars, the surface term problem becomes more complicated due to the
emergence of mixed modes whose sensitivity to surface effects is different (Kjeldsen et al.,
2008). Recent work has suggested a way forward by decomposing the mixed mode into
the underlying pure acoustic and gravity modes (Ong and Basu, 2020). The surface term
correction can then be applied only to the pure acoustic mode. The corrected acoustic mode
can then be recoupled with the pure gravity mode into a surface term corrected mixed mode
(Ong et al., 2021b,a; Lindsay et al., 2024).
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1.3.4. Best-fit Asteroseismic Models
Without asteroseismic observations, stellar modeling is limited only to surface properties
of a star such as luminosity, effective temperature, and surface composition. With these
parameters alone, there are many degeneracies that make it difficult to infer precise stel-
lar parameters. By providing direct constraints on the interiors of stars, asteroseismology
provides a wealth of information that can be used to model stars and better constrain their
global parameters and internal structures. For the solar-like oscillators which are the focus
of this work, the additional observations provided by asteroseismology are the oscillation
mode frequencies5.

There are many different ways to obtain a best-fit model. A representative sample is
provided by the various pipelines used in Silva Aguirre et al. (2015) and Silva Aguirre
et al. (2017). These pipelines differ in the asteroseismic observations fit (frequencies and/or
frequency separation ratios), and the optimization procedure used. All pipelines begin by
constructing an initial grid of models with various initial conditions. The best-fit model
within each grid can be found using Bayesian χ2 minimization, Monte Carlo, or Markov
Chain Monte Carlo methods depending on the pipeline. In some cases, the initial grid serves
only to provide the initial guess of an optimization procedure, such as downhill simplex
(Nelder and Mead, 1965) or Levenberg-Marquardt (Levenberg, 1944).

The best-fit asteroseismic models are used to infer the properties of the star such as its
mass, radius, or age (e.g., Silva Aguirre et al., 2015; Bellinger et al., 2016; Silva Aguirre
et al., 2017). Of course, these inferences are only as accurate as the stellar model used. Thus,
another important use of asteroseismic modeling is to test the quality of stellar modeling
physics. This can be done in a variety of ways. A common method is to construct several
grids of models with differing physics and obtain best-fit models for a large number of stars
from each grid. Then, some inferences can be made by looking for the choices in modeling
that returned the better fit to observations across the entire sample (e.g, Bétrisey et al., 2023;
Wang and Zhang, 2023).

However, even in the best case, differences remain between models and observations.
While these differences are small (the frequencies of main-sequence models typically match
observations within 0.5% after correcting for surface effects), the high precision of astero-
seismic observations means that these differences are still statistically significant. This leads
to another approach to test the quality of stellar models: that of structure inversions.

1.4. Structure Inversions
The goal of a structure inversion is to use the inherent sensitivity of the oscillation modes
to infer information about structure differences between a star and its model (typically a
best-fit model, as discussed above). These inferred differences are then used to assess how
well the internal structure of a star is reproduced by a given stellar model, as well as to ex-
plore potential improvements to stellar modeling. The roots of this approach lie in the field
of geology, which uses oscillations excited by earthquakes to infer the interior structure of
the Earth (Backus and Gilbert, 1968, 1970). The techniques were then adapted by helio-
seismologists to study the internal structure of the Sun (e.g., Gough and Thompson, 1991;
Christensen-Dalsgaard, 2002; Basu, 2016).

5Other properties of the oscillation modes, such as the lifetime, can be obtained, however without a com-
plete theoretical description of the excitation mechanism these are difficult to compare to models.
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In anticipation of high-quality asteroseismic data, helioseismologists began testing what
changes would be necessary to apply structure inversions to stars other than the Sun (Gough
and Kosovichev, 1993; Basu et al., 2002; Basu, 2003). Much of this work focused on
adapting existing helioseismic techniques to the higher uncertainties and reduced number
of modes that can be observed in other stars. Initial observations of solar-like oscillations in
other stars from ground-based campaigns (Brown et al., 1991; Kjeldsen et al., 1995; Bedding
et al., 2001; Bedding and Kjeldsen, 2007) and early space-based missions such as CoRoT
(Auvergne et al., 2009; Baglin et al., 2009) did not provide enough identified modes to per-
form structure inversions. The first asteroseismic structure inversions were performed on
the solar analogs 16 Cyg A and B (Bellinger et al., 2017), using data from Kepler.

In this work, I focus specifically on inversions to infer stellar structure at specific target
radii (e.g., Bellinger et al., 2017, 2019a; Kosovichev and Kitiashvili, 2020; Bellinger et al.,
2021; Buldgen et al., 2022b; Buchele et al., 2024b,a). However, similar inverse techniques
are used to infer a broader range of internal properties of an observed star. These internal
properties can include global indicators (e.g., Reese et al., 2012; Buldgen et al., 2015b,a,
2018), rotational profiles (e.g., Kurtz et al., 2014; Deheuvels et al., 2014; Benomar et al.,
2015; Triana et al., 2017; Ahlborn et al., 2020, 2022, 2025), and more recently, the strength
of internal magnetic fields (Li et al., 2022, 2023).

1.4.1. Mode Kernels
Structure inversions exploit the inherent sensitivity of oscillation mode frequencies to the
underlying structure of the star. This sensitivity can be expressed in functions calculated
from the structure variables of a stellar model called mode kernels. Mathematically, this is
expressed as (Dziembowski et al., 1990)

δνi

νi
=

∫
K( f1, f2)

i
δ f1

f1
dr +

∫
K( f2, f1)

i
δ f2

f2
dr, (1.49)

where the subscript i indicates a mode with a specific combination of radial order and spher-
ical degree, νi is the corresponding mode frequency, Ki are the mode kernels, and f1, f2

indicate the stellar structure variables being considered. We define the relative difference
of a given quantity y, which can represent either a mode frequency or structure variable, as
δy/y ≡ (yobs − ymod)/ymod. Where the subscripts ‘obs’ and ‘mod’ refer to quantities of the
observed star and the reference model, respectively.

The mode kernels, K( f1, f2)
i ,K( f2, f1)

i are derived through a linear perturbation of the varia-
tional formulation of the adiabatic eigenvalue problem (e.g., Ledoux and Walraven, 1958).
Derivations of these kernels typically begin by deriving Ki in terms of the squared sound
speed ( f1 = c2) and density ( f2 = ρ) (e.g., Gough and Thompson, 1991; Kosovichev, 1999).
Using the c2, ρ kernels as a starting point, kernels of other variable pairs may be derived in-
cluding: density and the first adiabatic exponent (e.g., Gough and Thompson, 1991; Gough
and Kosovichev, 1993), squared isothermal sound speed (u = c2/Γ1) and helium mass frac-
tion (Y) (e.g., Basu and Christensen-Dalsgaard, 1997; Kosovichev, 1999; Buldgen et al.,
2015a, 2017), and the convective stability parameter (A) and Γ1 (e.g., Elliott, 1996; Koso-
vichev, 1999; Buldgen et al., 2017). In Appendix A, I provide a detailed derivation of kernels
for several different variable pairs. In Figure 1.5, I show the c2, ρ and u,Y kernels of several
modes of a solar model.
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Figure 1.5: Mode kernels of a solar model (Model S, Christensen-Dalsgaard et al., 1996) for two
variable pairs. The first row plots the c2, ρ pair, and the second row the u,Y pair. Each kernel is offset
for visibility and the color of the line corresponds to the spherical degree of the mode, as indicated.
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1.4 Structure Inversions

In asteroseismic inversions, the most common variable pair used is u,Y . This is because
the oscillations are insensitive to Y outside the helium ionization zone. This low sensitivity
to Y makes it easier to localize sensitivity to changes in u. In the solar case, the use of u,Y
kernels is disfavored as it requires the assumption of an equation of state. This assumption
can introduce significant errors when compared to the extreme precision of the solar data
(Basu and Christensen-Dalsgaard, 1997), however, it is expected that these errors will be
smaller than the observational uncertainties of other stars (Basu, 2003).

There is another complication that arises when studying stars other than the Sun: the
lack of precise values of the stellar age, mass, and radius. As the oscillation frequencies
scale with the mean density of the star, a mismatch in mean density can introduce error
into inversion results (Basu, 2003). To avoid this, it is common to perform asteroseismic
inversions with respect to dimensionless variables, for example, û = uR/M. This requires
the use of dimensionless frequencies

ν̂ =

√
R3

GM
ν. (1.50)

This scaling also means that the structure differences are inferred at constant fractional radii
x = r/R rather than at constant physical radius. For an observed star, where M and R are
uncertain, the dimensionless frequency differences, δν̂/ν̂, cannot be determined exactly, as
the model is not guaranteed to have exactly the same value of

√
R3/GM as the star.

There are several different approaches to resolve this potential source of error, at various
steps in the inversion process. Errors due to mean density differences can be handled by
including an additional term in the inversion cost function (discussed below), as was done
by Kosovichev and Kitiashvili (2020). Alternatively, this issue can be addressed at the
stage of determining a best-fit model as was the case in Buldgen et al. (2022b), who used
mean density inversions to ensure that the mean density of the model matched the star close
enough to assume that δν/ν ≈ δν̂/ν̂. There are also two existing approaches to approximate
the dimensionless frequency differences, which can then be used directly in the inversion
procedure. Roxburgh et al. (1998); Basu (2003) proposed that δν̂/ν̂ can be calculated by
subtracting a weighted mean of the radial mode frequency differences. This approach was
used by Bellinger et al. (2021). In Chapter 2, I propose another approach that utilizes the
dependence of the ∆ν on the mean density to scale the frequency differences. This approach
is also used in Chapter 3.

In addition to potential mean differences, the inversion procedure also needs to account
for differences due to the surface effects discussed in Section 1.3.3.3. Here again, there are
several possible approaches. The most common is to include an additional Fsurf term in
Equation 1.49. This term is then accounted for during the inversion procedure, as described
below. The other option is to correct the frequency differences used outside of the inversion
procedure, for example when calculating δν̂/ν̂. I take the last approach in this thesis.

1.4.2. OLA Inversions
Equation 1.49 describes the sensitivity of a single mode, however, it is insufficient to infer
anything about the differences in structure because each oscillation mode is sensitive to
many points within the star. Therefore, to infer localized differences we must take a linear
combination of modes constructed such that the resulting ”averaging” kernel has sensitivity
only around a chosen target radius, x0. This is the method of optimally localized averages
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1 Context and theoretical background

(OLA) (Backus and Gilbert, 1968, 1970). Taking a linear combination of different modes
turns Equation 1.49 into:

N∑
i=0

ci
δν̂i

ν̂i
=

∫
K(x0, x)

δû
û

dx +
∫
C(x0, x)δY dx. (1.51)

In this equation, N is the total number of observed modes, ci are the coefficients of the linear
combination for a given target radius, called inversion coefficients, K(x0, x) =

∑N
i=0 ciK

(û,Y)
i

is the averaging kernel for a given target radius, C(x0, x) =
∑N

i=0 ciK
(Y,û)
i is the cross-term

kernel. K(x0, x) is called an averaging kernel because if it is normalized to 1 and C(x0, x) is
small, then Equation 1.51 becomes

N∑
i=0

ci
δν̂i

ν̂i
=

∫
K(x0, x)

δû
û

dx ≈
〈
δû
û

〉
x0

, (1.52)

and the linear combination of frequency differences can be interpreted as the average of the
structure differences at the target radius, where Kx0 is the weighting function.

There are two common approaches to determine the coefficients which construct the
localized averaging kernel: multiplicative optimally localized averages (MOLA) (Backus
and Gilbert, 1968, 1970) and subtractive optimally localized averages (SOLA) (Pijpers and
Thompson, 1992, 1994). Regardless of whether MOLA or SOLA is used, the problem is
cast as a matrix equation

Ac = b (1.53)

where the vector c contains the desired inversion coefficients ci. The elements of the matrix
A and the vector b depend on the OLA method chosen as described below.

1.4.2.1 MOLA

MOLA constructs an averaging kernel by using a penalty function, typically J(x0, x) =
(x − x0)2, to suppress amplitude away from the target radius. This is done by minimizing

∫  N∑
i=0

ciK
(û,Y)
i

2

J(x0, x) dx + β
∫  N∑

i=0

ciK
(Y,û)
i

2

dx + µ
N∑
i, j

cic jEi j, (1.54)

where β is the cross-term suppression parameter, µ is the error suppression parameter, and
Ei j are the elements of the error covariance matrix. The two trade-off parameters β and µ
are chosen to balance the localization of the averaging kernel, amplitude of the cross-term
kernel, and amplification of the uncertainties.

In addition to minimizing Equation 1.54, the inversion must also ensure that
∫
K(x0, x)dx =

1 and potentially correct the frequencies for surface terms, such as by using the prescription
of Ball and Gizon (2014). The elements of A and b are given by6

6If the surface term correction has been applied outside of the inversion procedure then the matrix A
contains only the i, j,≤ N + 1 terms and the b vector contains only the i ≤ N + 1 elements.
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1.4 Structure Inversions

Ai j =



∫
(x − x0)2K(û,Y)

i K(û,Y)
j dx + β

∫
K(Y,û)

i K(Y,û)
j dx + µEi j, (i, j ≤ N)∫

K(û,Y)
i dx, (i ≤ N, j = N + 1)∫

K(û,Y)
j dx, (i = N + 1, j ≤ N)(

νi

νac

)−2 1
Ei
, (i = N + 2, j ≤ N)

(i ≤ N, j = N + 2)(
ν j

νac

)2 1
E j
, (i = N + 3, j ≤ N)

(i ≤ N, j = N + 3)
0, otherwise,

(1.55)

bi =

1, (i = N + 1)
0, otherwise.

(1.56)

1.4.2.2 SOLA

The other common way of constructing an averaging kernel, SOLA, begins by defining a
target kernel T and constructs an averaging kernel that resembles the target kernel. In this
case, the function to be minimized is∫  N∑

i=0

ciK
(û,Y)
i − T

2

dx + β
∫  N∑

i=0

ciK
(Y,û)
i

2

dx + µ
N∑
i, j

cic jEi j. (1.57)

A common form of the target kernel is a modified Gaussian, such as

T (x0, r) = A exp
− [

x − x0

D(x0,∆)
+

D(x0,∆)
2x0

]2 , (1.58)

where A is a normalization factor chosen to ensure
∫
T dx = 1, and the width of the target

kernel is set by the function

D(x0,∆) = ∆
c(x0)
c(x f )

. (1.59)

In this function ∆ is an additional free parameter, which as with β and µ must be chosen to
balance the trade-off between resolution and precision, c without any subscript is the sound
speed, and x f is an arbitrary reference point. The function D is used to change the width of
the target kernel according to variations in c since it is the sound speed that ultimately sets
the resolution. Using Equation 1.57, and including the same additional normalization and
surface terms as for MOLA, the elements of A and b are given by7

7As with MOLA, if the surface term correction has been applied outside of the inversion procedure then
the matrix A contains only the i, j,≤ N + 1 terms and the b vector contains only the i ≤ N + 1 elements.
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1 Context and theoretical background

Ai j =



∫
K(û,Y)

i K(û,Y)
j dx + βK(Y,û)

i K(Y,û)
j dx + µEi j, (i, j ≤ N)∫

K(û,Y)
i dx, (i ≤ N, j = N + 1)∫

K(û,Y)
j dx, (i = N + 1, j ≤ N)∫

K(û,Y)
j dx, (i = N + 1, j ≤ N)(

νi

νac

)−2 1
Ei
, (i = N + 2, j ≤ N)

(i ≤ N, j = N + 2)(
ν j

νac

)2 1
E j
, (i = N + 3, j ≤ N)

(i ≤ N, j = N + 3)
0, otherwise,

(1.60)

bi =


∫

K(û,Y)
i T dr i ≤ N

1, (i = N + 1)
0, otherwise.

(1.61)

1.4.2.3 Inversion Procedure

In both SOLA and MOLA, the free parameters must be chosen to balance forming a well-
localized averaging kernel, suppressing the amplitude of the cross-term kernel, and mod-
erating the uncertainty of the final result. I show several possible parameter choices in
Figure 1.6. Once the elements of A and b have been calculated using the chosen method,
the inversion coefficients are given by

A−1b = c, (1.62)

where A−1 is the inverse of the matrix A. In summary, the steps to performing a structure
inversion include: finding a suitable reference model (typically a best-fit model), using this
model to calculate a set of mode kernels, combining these mode kernels into a suitable
averaging kernel using either SOLA or MOLA, and using the inversion coefficients to obtain
the final inversion result.

Typically, the uncertainty of each observed frequency is assumed to be independent. In
this case, the uncertainty of the final inversion result is given by

σ2
inv =

N∑
i=0

c2
iσ

2
i , (1.63)

where σi is the relative uncertainty of the ith mode. When the frequency differences used
are corrected for mean density differences or surface effects outside of the inversion, this can
introduce error correlation, as these corrections depend on all the frequencies. In this case,
more care is required when calculating the uncertainty of an inversion result as is discussed
in Section 2.3.3.
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Figure 1.6: Averaging kernels and cross-term kernels constructed using MOLA, with varying values
of µ and β = 0. These kernels have been constructed using the mode set and best-fit model of
16 Cyg A from Chapter 2. The top row shows a ‘suitable’ averaging kernel that is well localized,
keeps the amplitude of the cross-term kernel low, and mitigates the uncertainty of the final results
σinv. The bottom two rows show averaging kernels that do not meet these criteria, either due to poor
localization (middle) or high amplitude of cross-term kernel and large uncertainties (bottom).
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1 Context and theoretical background

1.5. Summary of Thesis
Before the work presented in this thesis, structure inversions had been used to study six stars
other than the Sun. The first targets were the solar analogs 16 Cyg A and B, which were first
studied by Bellinger et al. (2017) and then later examined by Buldgen et al. (2022b). Both
works find that the structures of their respective reference models agree with the structure of
the observed stars in the regions where inversions are sensitive. The case is quite different
for the star studied in Bellinger et al. (2019a). This star is slightly more massive and so is
expected to exhibit a small convective core. The structure inversions performed in Bellinger
et al. (2019a) reveal significant structure differences across the entire region probed with
inversions.

Two different works have used structure inversions to study stars exhibiting mixed modes.
Kosovichev and Kitiashvili (2020) present results for two stars in which they identify mixed
modes, although this identification has been challenged (Buchele et al., 2024a). In both stars
studied by Kosovichev and Kitiashvili (2020), the inversions reveal significant differences
between their models and the stars. Bellinger et al. (2021) perform inversions to investi-
gate the core, hydrogen-burning shell, and envelope of the subgiant HR 7322. They find
good agreement between their reference models and the star at all three target radii. There
is some suggestion that the core temperature may be too low in the models, however, this
disagreement is resolved when an outlier mode is removed from the analysis.

These inversion results show that our ability to accurately model the interior structure
of solar-like oscillators is mixed. Drawing broader conclusions is hindered by the small
sample size and the challenge of comparing inversion results across different works. This is
because inversions infer structure differences relative to a reference model and as weighted
by an averaging kernel. Thus, to draw broader conclusions about the overall quality of stellar
models, it is important to increase the sample of stars probed with structure inversions.
To facilitate easier comparisons, the modeling and inversion procedures should be kept as
consistent as possible across different stellar targets. In expanding the sample of stars that
can be studied with inversions, it becomes necessary to expand the type of star that can be
studied. However, doing so brings into question the validity of the underlying assumptions
of a structure inversion, particularly in the case of mixed modes.

With this context in mind, the goals of this thesis are as follows:

1. Broaden the sample of main-sequence stars studied with inversions using a consistent
modeling and inversion procedure.

2. Use the inversion results to look for trends that may suggest how these models can be
improved.

3. Test the reliability of structure inversions beyond the Main Sequence.

The first two goals are addressed in Chapters 2 and 3. Chapter 2 details my approach to
structure inversions and uses it to study the structure of 12 main-sequence solar-like oscilla-
tors with radiative cores. Chapter 3 extends this analysis to an additional 43 main-sequence
stars with convective cores. The third goal is addressed in Chapter 4 which examines the
validity of the key assumptions of structure inversions using models of main-sequence and
subgiant stars. Chapter 5 summarizes the previous chapters and suggests several next steps
to improve our understanding of the internal structure of solar-like oscillators.
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Asteroseismic Inversions for Internal
Sound Speed Profiles of Main-sequence
Stars with Radiative Cores

Authors Lynn Buchele, Earl P. Bellinger, Saskia Hekker, Sarbani Basu, Warrick Ball, and
Jørgen Christensen-Dalsgaard

Chapter info This chapter is a reproduction of Buchele et al. (2024b), ApJ, vol. 961, 198B. It
details my inversion procedure and applies this procedure to 12 main-sequence stars with radiative
cores observed by Kepler. As the main author of this work, I computed the model grids, found the
best-fit models, and performed the inversions. Throughout this process, I was advised and mentored
by Earl P. Bellinger, Saskia Hekker, Sarbani Basu, and Jørgen Christensen-Dalsgaard. Warrick Ball
contributed by writing code to calculate the equation of state derivatives necessary to calculate the
u,Y kernels within MESA. The text was written by myself with guidance from my supervisor Saskia
Hekker and comments from all co-authors.

Abstract The theoretical oscillation frequencies of even the best asteroseismic models of solar-
like oscillators show significant differences from observed oscillation frequencies. Structure inver-
sions seek to use these frequency differences to infer the underlying differences in stellar structure.
While used extensively to study the Sun, structure inversion results for other stars have so far been
limited. Applying sound speed inversions to more stars allows us to probe stellar theory over a larger
range of conditions, as well as look for overall patterns that may hint at deficits in our current un-
derstanding. To that end, we present structure inversion results for 12 main-sequence solar-type stars
with masses between 1 M⊙ and 1.15 M⊙. Our inversions are able to infer differences in the isother-
mal sound speed in the innermost 30% by radius of our target stars. In half of our target stars, the
structure of our best-fit model fully agrees with the observations. In the remainder, the inversions re-
veal significant differences between the sound speed profile of the star and that of the model. We find
five stars where the sound speed in the core of our stellar models is too low and one star showing the
opposite behavior. For the two stars in which our inversions reveal the most significant differences,
we examine whether changing the microphysics of our models improves them and find that changes
to nuclear reaction rates or core opacities can reduce, but do not fully resolve, the differences.
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2 Inversions of Main-sequence Stars with Radiative Cores

2.1. Introduction
The combination of high-precision photometric time series data from Kepler (Borucki et al.,
2010), astrometric parallax data from Gaia (Gaia Collaboration et al., 2016), and high-
resolution spectroscopic measurements of effective temperatures and metallicities (for ex-
ample from the Kepler Follow-up Program, Furlan et al., 2018) provides an opportunity to
test stellar evolution theory at unprecedented precision.

In particular, asteroseismology, which uses oscillation frequencies obtained from analy-
sis of stellar light curves, provides a direct way to test the physics of stellar interiors (Aerts
et al., 2010; Basu and Chaplin, 2017). This is possible because the star’s oscillation frequen-
cies are sensitive to the internal structure of the star. By constructing stellar evolution models
that seek to reproduce a star’s observed oscillation frequencies and surface properties (for
example, luminosity, effective temperature, and metallicity), asteroseismology can be used
to study a broad range of physics, including atomic diffusion, rotation, magnetic fields, and
convection (for an overview, see, e.g., Chaplin and Miglio, 2013; Garcı́a and Ballot, 2019).
These asteroseismic models can be found using a variety of techniques, including Bayesian
inference (e.g., Silva Aguirre et al. 2015, 2017; Aguirre Børsen-Koch et al. 2022), MCMC
(e.g., Bazot et al. 2008; Gruberbauer et al. 2012, 2013; Rendle et al. 2019; Bellinger and
Christensen-Dalsgaard 2019; Jiang and Gizon 2021), machine learning (e.g., Bellinger et al.
2016, 2019b, 2020b; Angelou et al. 2020; Hon et al. 2020; Guo and Jiang 2023), genetic al-
gorithms (e.g., Metcalfe and Charbonneau 2003; Charpinet et al. 2005; Metcalfe et al. 2009,
2014, 2023), and Levenberg-Marquardt algorithms (e.g., Frandsen et al. 2002; Teixeira et al.
2003; Miglio and Montalbán 2005).

However, for stars with the highest quality asteroseismic data, there are still discrep-
ancies between models and observations. This tension between theoretical and observed
frequencies suggests that our models need to be improved, although it does not directly
suggest what those improvements should be.

We aim to gain insight into the potential underlying structural differences between stellar
models and observations using the technique of asteroseismic structure inversions. This
technique uses the differences between the frequencies of an observed star and its model to
infer localized information about the structure differences (see e.g., Gough and Thompson
1991; Gough 1993; Pijpers 2006; Bellinger et al. 2020a; Buldgen et al. 2022a).

In the case of the Sun, structure inversions have been used to study the equation of state,
diffusion of heavier elements, and nuclear reaction rates in connection to the solar neutrino
problem, (for a review see, for example, Basu, 2016; Christensen-Dalsgaard, 2021). The
high precision and large number of modes observed for the Sun allow structure inversions
to probe a large extent of the solar interior, from 0.06 R⊙ to 0.96 R⊙. This, however, is not
the case for other stars. Current asteroseismic observations are typically limited to modes
of spherical degree ℓ = 0, 1, 2, with a few ℓ = 3 modes being observed in the best target
stars. This limits the range that can be probed with local structure inversions to the near-core
region, fractional radii between ∼ 0.05 and 0.35 (Bellinger et al., 2020a).

Nevertheless, there are several examples of structure inversions performed on stars other
than the Sun, including the solar analogs 16 Cyg A and 16 Cyg B (Bellinger et al., 2017;
Buldgen et al., 2022b), a main-sequence star with a convective core (Bellinger et al., 2019a),
and a few subgiants with mixed modes (Kosovichev and Kitiashvili, 2020; Bellinger et al.,
2021). Inversion techniques are also being developed for more massive stars (Vanlaer et al.,
2023) and more evolved stars (Giammichele et al., 2018). By looking at a larger number
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2.2 Forward Modeling

Table 2.1: Grid Parameters

Parameter Minimum Value Maximum Value
M[M⊙] 0.7 1.2
Yinitial 0.24 0.29
Zinitial 0.0005 0.07
αmlt 1.3 2.4

of stars, we can test the theory of stellar structure and evolution under a broader range of
conditions, such as different masses, metallicities, ages, and evolutionary stages. Examining
several stars at once also provides the opportunity to look for overall trends that may hint at
deficits in our current understanding of stars. In this work, we focus on studying the most
solar-like stars—main-sequence stars with radiative cores—using structure inversions.

2.2. Forward Modeling
The goal of a structure inversion is to infer the differences between the actual stellar structure
and that of a reference model. As the structure inversion equation is based on a linear
perturbation approach, the reference model must be suitably close to the actual star. Hence,
we typically use the best-fit model obtained with some modeling procedure called forward
modeling. Here, we describe the forward modeling procedure used to obtain our reference
model for each target star. We created a grid of 16384 tracks using the r22.05.01 version of
the stellar evolution code MESA (Paxton et al., 2011a, 2013a, 2015a, 2018, 2019a; Jermyn
et al., 2022). We vary the initial mass, initial helium mass fraction, metallicity, and mixing-
length parameter using a Sobol sequence (see Appendix B of Bellinger et al., 2016; Sobol’,
1967). Table 2.1 gives the range that was covered in each parameter.

All models in this grid use metal abundances scaled to the GS98 solar composition
(Grevesse and Sauval, 1998), and the corresponding opacity tables from OPAL (Iglesias
and Rogers, 1993, 1996) in the high-temperature range, and Ferguson et al. (2005) in the
low-temperature range. The equation of state data are calculated with the MESA default
blend of OPAL (Rogers and Nayfonov, 2002), SCVH (Saumon et al., 1995), FreeEOS (Ir-
win, 2004), and Skye (Jermyn et al., 2021). For details of how this blending is handled,
see Jermyn et al. (2022). We use the pp_cno_extras_o18_ne22.net reaction network
and take our reaction rates from JINA REACLIB (Cyburt et al., 2010) and NACRE (Angulo
et al., 1999), with additional tabulated weak reaction rates (Fuller et al., 1985; Oda et al.,
1994; Langanke and Martı́nez-Pinedo, 2000). Electron screening is included via the pre-
scription of Chugunov et al. (2007). Thermal neutrino loss rates are from Itoh et al. (1996).
Convection in the models is described using the time-dependent local convection formalism
of Kuhfuss (1986), which in the limit of long time steps reduces to standard mixing length
theory as described in Cox and Giuli (1968). The implementation details are given in Jermyn
et al. (2022). We account for atomic diffusion through gravitational settling, as described
in Paxton et al. (2011a). We use an Eddington-gray atmosphere and include the structure
of the atmosphere out to an optical depth of τ = 10−3 when calculating both our oscillation
frequencies and structure kernels. The adiabatic frequencies of the models were computed
using GYRE (Townsend and Teitler, 2013; Townsend et al., 2018).
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2 Inversions of Main-sequence Stars with Radiative Cores

For each target star, we find reference models by fitting the observed frequencies, effec-
tive temperature, and metallicity of each star. We take our frequency data from the Kepler
LEGACY sample (Lund et al., 2017) and the Kepler ages (KAGES) sample (Davies et al.,
2016). In the case of 16 Cyg A and 16 Cyg B, we use the frequencies given in Roxburgh
(2017) labeled as Roxburgh(Davies). Spectroscopic measurements of the effective tempera-
ture and metallicity are from the combined stellar parameters reported by the Kepler Follow-
Up program (Furlan et al., 2018, their Table 9). These values are computed by combining
the results of four different spectroscopic analysis pipelines. We also adopt their suggested
uncertainties of 100 K, 0.1 dex for Teff and [Fe/H] respectively. The observational parame-
ters we consider for each star are listed in Appendix B.1. For each target star, we search our
grid to find the model that minimizes

χ2
fit = χ

2
ν + χ

2
Teff
+ χ2

[Fe/H] (2.1)

where

χ2
ν =

1
N

N∑
i

(νi,obs − νi,mod)2

σ2
ν,i

, (2.2)

χ2
Teff
=

(Teff,obs − Teff,mod)2

σ2
Teff

, (2.3)

and

χ2
[Fe/H] =

([Fe/H]obs − [Fe/H]mod)2

σ2
[Fe/H]

. (2.4)

Here N is the number of frequencies and the subscripts ‘obs’ and ‘mod’ refer to the ob-
servations and the model respectively. The model frequencies used to calculate χ2

ν are first
corrected for surface effects using the two-term correction from Ball and Gizon (2014).

We scan our grid to find the parameters (M,Yinitial,Zinitial, αmlt, Xc) that minimize χ2
fit. In

the process, we interpolate in central hydrogen abundance along each track, but we do not
interpolate between the tracks. In order to reduce the computational time necessary to find
a best-fit model, we consider for subsequent analysis only models that are within 6σ of the
effective temperature and metallicity values, as well as within 10σ of the FLAME luminosity
value from Gaia DR3 (Gaia Collaboration et al., 2016, 2022; Creevey et al., 2023). We then
use these parameters, given in Appendix B.1, to compute the reference model that will be
used for structure inversions of each star. We have made the FGONG structure files of our
reference models as well as the inlists used to generate them publicly available.1

2.3. Inversions
With a suitable reference model, we aim to use the differences between the frequencies of
an observed star and the frequencies of the reference model to infer the underlying struc-
ture differences. We do this through the use of stellar structure kernels, which express the
sensitivity of an oscillation mode frequency to a small perturbation to the structure. Mathe-
matically, this is expressed in the kernel equation (Dziembowski et al., 1990):

δνi

νi
=

∫
K( f1, f2)

i (r)
δ f1

f1
dr +

∫
K( f2, f1)

i (r)
δ f2

f2
dr + O(δ2) (2.5)

1https://zenodo.org/records/10391300
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2.3 Inversions

Here i is the index of the mode which corresponds to a specific pair of radial order (n) and
spherical degree (ℓ), δνi/νi = (νi,obs − νi,mod)/νi,mod is the relative difference in frequency be-
tween the observed mode (νi,obs) and the corresponding mode of the reference model (νi,mod),
f1 and f2 are the stellar structure variables being considered, and Ki are the kernel functions
of each mode.

The mode kernel functions (Ki) are obtained through a linear perturbation of the os-
cillation equation (for more details, see Gough and Thompson 1991, Kosovichev 1999, or
Thompson and Christensen-Dalsgaard 2002). Initially, mode kernels were derived in terms
of the squared sound speed c2 and density ρ (Dziembowski et al., 1990). From this expres-
sion, mode kernels for other pairs of variables have been derived, including for density and
the first adiabatic exponent Γ1 (e.g., Gough and Thompson 1991; Gough 1993), isothermal
sound speed u = c2/Γ1 and helium mass fraction Y (e.g., Basu and Christensen-Dalsgaard
1997; Kosovichev 1999; Buldgen et al. 2015a, 2017), and convective stability parameter
A and Γ1 (e.g., Elliott 1996; Kosovichev 1999; Buldgen et al. 2017). For more details on
changing the structure variable pair, see Kosovichev (2011); Buldgen et al. (2017). Equation
2.5 can also include a term that corrects for the surface effect; however, we instead correct
for this in the calculation of the frequency differences. For the remainder of this paper,
when we discuss model frequencies, we refer to the frequencies that have been corrected for
surface effects.

Each oscillation mode is sensitive to many points within the star, so to obtain localized
information we implement the method of optimally localized averages (OLA, Backus and
Gilbert 1968, 1970) which uses a linear combination of the frequency differences. Neglect-
ing second-order effects, Equation 2.5 becomes∑

i=1,N

ci
δνi

νi
=

∫
K(r)

δ f1

f1
dr +

∫
C(r)

δ f2

f2
dr. (2.6)

Here K is the averaging kernel and C is the cross-term kernel. These are constructed using
a set of inversion coefficients ci:

K =
∑
i=1,N

ciK
( f1, f2)
i and C =

∑
i=1,N

ciK
( f2, f1)
i . (2.7)

If K is normalized to 1 and C is small, then Equation 2.8 reduces to∑
i=1,N

ci
δνi

νi
≈

∫
K(r)

δ f1

f1
dr ≈

〈
δ f1

f1

〉
, (2.8)

and K can be interpreted as the weight function of a mean over the structure difference
δ f1/ f1. This is why K is called the averaging kernel. In other words, if the coefficients ci

are chosen such that K has most of its amplitude around a single target radius, r0, then the
same linear combination of frequency differences provides a localized average difference of
the structure variable f1 at that target radius.

2.3.1. Localized averaging kernels
To construct a localized averaging kernel, we use the method of multiplicative optimally
localized averages (MOLA). For a MOLA inversion, we define a weight function, J =
(r − r0)2, that penalizes any amplitude of the averaging kernel away from the target radius.
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In addition to the target radius, there are two trade-off parameters that must be chosen: the
error suppression parameter, µ, and the cross-term suppression parameter, β. The inversion
coefficients are found by minimizing

∫ ∑
i=1,N

ciK
( f1, f2)
i


2

J(r0, r)dr + β
∫ ∑

i=1,N

ciK
( f2, f1)
i


2

dr + µ
∑
i=1,N

cic jEi j, (2.9)

where Ei j are the elements of the error-covariance matrix. Strictly speaking, there is another
trade-off parameter in this formulation, the normalization of J, which we have set to 1, while
other implementations often use 12. However, this only changes the relative weight of the
first term in Equation 2.9 and can be counteracted by changing µ or β. Thus, while the
optimal values of µ and β vary with the normalization of J, the inversion results do not.

The other standard method of constructing an averaging kernel is a variant of MOLA
known as the method of subtractive optimally localized averages (SOLA, Pijpers and Thomp-
son 1992, 1994). Previous works studying 16 Cyg A and 16 Cyg B have used SOLA
(Bellinger et al., 2017; Buldgen et al., 2022b). We choose to use MOLA because it requires
setting only two free parameters, as opposed to the three required for a SOLA inversion.
Additionally, we find that MOLA is better able to suppress the amplitude of the averaging
kernel at the surface. For details on the differences between MOLA and SOLA see Basu
and Chaplin (2017, Chapter 10).

The next important consideration for a structure inversion is which pair of structure vari-
ables to use. We use the u,Y pair because the Y kernels have low amplitude everywhere
except in helium ionization zones (Basu, 2003), which naturally suppresses the cross-term
kernel at the radii we are targeting. The trade-off to this approach is that using Y as a struc-
ture variable requires the assumption of an equation of state. In the solar case, the error
introduced by this assumption is significant in comparison to the other sources of uncer-
tainty (Basu and Christensen-Dalsgaard, 1997); however, due to the larger uncertainties on
asteroseismic frequencies this is not the case for stars other than the Sun. Using Y as a struc-
ture variable requires calculating several partial derivatives of Γ1. To be consistent with the
blend of equation of state tables used in MESA, we obtained these directly from MESA’s
equation of state module.

2.3.2. Trade-off parameters
As Equation 2.9 shows, there are two trade-off parameters that must be chosen in the course
of a structure inversion. The parameter µ controls the balance between a well-localized
averaging kernel and the amplification of uncertainties. To choose an appropriate value of
µ for each inversion, we utilize a set of calibration proxy models. These models are found
using the process described in Section 2.2; however, they have slightly higher χ2

fit values
than the reference model. Since the structure of these models is known exactly, they can be
used to determine how well the inversion recovers the underlying differences. We provide
the details of this process in Appendix B.2.1. Before accepting our inversion results, we
visually inspect the averaging and cross-term kernels of all target radii for each star to ensure
that the averaging kernels are well localized and the overall amplitudes of the cross-term
kernels are low.
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2.3.3. Stellar mass & radius
Another complication for inversions of stars other than the Sun is the lack of precise mea-
surements of the stellar mass and radius. Since the frequencies of a star scale with its mean
density, a mismatch in the mean density will lead to an offset in the inversion results (Basu,
2003). To minimize this, we invert for the relative difference in û = uR/M, where R and M
are the star’s radius and mass, respectively. This is done by using mode kernels computed
in a dimensionless form and using the dimensionless frequency differences. Previously,
Bellinger et al. (2021) used dimensionless frequency differences calculated by subtracting
off the weighted mean of the frequency differences (for details, see Basu 2003).

We have found that this method results in correct dimensionless frequencies only when
the frequency differences caused by an incorrect mean density are larger than the differences
introduced by the structural variation. Whether this is true cannot be determined purely by
comparing the observed and modeled frequencies. Instead, we use a new method of calcu-
lating the dimensionless frequency differences using the dependence of the large frequency
separation (∆ν) on the mean density. The large frequency separation is the mean frequency
difference between successive radial modes and is a proxy for the root mean density of the
star (Vandakurov, 1967). The details of this method can be found in Appendix B.2.2.

We calculate our value of ∆ν by taking the slope of a linear fit to the relationship between
the l = 0 modes and their respective radial orders and use this to calculate the dimension-
less frequency differences. These corrections mean that the uncertainties of our frequency
differences are no longer independent, and hence, the error covariance matrix E, used in
Equation 2.9 is not diagonal. We calculate it using a Monte Carlo simulation where each
frequency is perturbed 10 000 times with Gaussian noise according to their measured uncer-
tainties. These perturbations are applied before the frequencies are corrected for the surface
effect, and so this procedure also accounts for the error correlation introduced by the surface
term correction. This same set of perturbed frequencies is then used to calculate the final
inversion results. We take the average of this distribution as our final inversion result and
report the standard deviation as the uncertainty.

This method of uncertainty estimation occurs after both the reference model and inver-
sion parameters have been selected, and only propagates uncertainties due to the underlying
frequencies. It is the same as the traditional definition of inversion uncertainties (e.g., Equa-
tion 4 of Bellinger et al. 2019a) except that it accounts for any correlation introduced during
the pre-processing of our frequency differences.

To validate both our method of finding reference models and our inversion results, we
also obtain a reference model and inversion results using solar data that have been de-
graded to the level that was expected of results from Kepler. These results are given in
Appendix B.2.3.

2.3.4. Overall inversion significance
For each star, we attempt structure inversions at six target radii,

r0/R = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30,

although in some cases we are only able to find suitable averaging kernels at five target radii.
To quantify the disagreement between each target star and its model, across all target radii,
we calculate a χ2

inv as follows. For each star, there is a set of inversion results and their
associated uncertainties v j ± u j. Since all the target radii use the same underlying data, their
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errors are correlated. The correlation between two target radii, r j, rk, is (Basu and Chaplin,
2017)

Er j,rk =

∑
i ci(r j) · ci(rk)σ2

i[∑
i c2

i (r j)σ2
i

]1/2 [∑
i c2

i (rk)σ2
i

]1/2 , (2.10)

where ci(r j) is the inversion coefficient of the i-th mode for the j-th target radius and σi is
the relative uncertainty of the ith mode frequency. The error correlation matrix, E, is the
matrix with components Er j,rk between all different target radii. The covariance matrix then
is

C = UTEU, (2.11)

where U is a diagonal matrix with the uncertainty of the inversion result for each target
radius. Then

χ2
inv = VTC−1V, (2.12)

where V is the vector of inversion results at each target radius. This χ2
inv summarizes the

overall significance of the inversion results for each star across all target radii, with larger
values indicating larger disagreement.

In summary, after finding a reference model, we calculate the surface-term-corrected
dimensionless frequency differences between the target star and the model. We then use our
set of calibration models to choose µ at each target radius and obtain our set of averaging
kernels. With this, we use the inversion coefficients and the frequency differences to obtain
our inferred localized differences in û between the observed star and our reference model.

2.4. Results and Discussion
Together, the Kepler LEGACY and KAGES samples provide oscillation data for 95 stars.
Since we are specifically searching for close matches to stars with radiative cores, we apply
two criteria to our reference models: that they have a radiative core throughout their main-
sequence evolution and that they have a χ2

fit < 20. We obtain suitable reference models
for 34 stars. Of these, 12 have enough frequencies observed (approximately 35) to form
well-localized averaging kernels.

Figure 2.1 shows the inversion results for each of these 12 stars as a function of the target
radius. We define our relative differences such that a positive inversion result indicates a
sound speed that is higher in the star than in the model. We provide more information about
the reference model and averaging kernels of each star in Appendix B.3.

The inversion results of the twelve stars in our sample can be broken down into three
groups: (a) those where the û of the best-fit model is in agreement with the observations, (b)
those where the û of the model is too high (resulting in an inversion result below zero), and
(c) those where the û is too low (resulting in an inversion result above zero). Taking into
account the uncertainties of the inversion results, we identify six stars in group a, one star
in group b, and six stars in group c. Thus, half of our sample show significant differences,
which suggests that there are limitations in the physics of our reference models and that
these limitations most often result in internal values of û that are too low.

Now we seek to understand why some of our stellar models show good agreement in
û while others show significant disagreement. We search for correlations between χ2

inv and
properties of the reference model, as well as the surface rotation rate (Prot) and magnetic
activity indicator (S ph) values for each star, as given by Santos et al. (2018). We calculate
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Figure 2.1: Comparisons of the internal structure of stars as revealed by asteroseismology and the
structures of best-fitting stellar evolution models. Relative differences are given in terms of the
dimensionless squared isothermal sound speed û and span the near-core region of 0.05-0.3 away
from the stellar center point. The points indicate the inferred value of δû/û between the star and the
reference model at the target radius. The vertical error bars indicate the uncertainty of each inversion
result from the propagation of the uncertainty of the observed frequencies. The horizontal error
bars represent the full width at half maximum of the averaging kernel. The dashed horizontal line
indicates complete agreement between the model and observations; points above this line imply that
û of the star is larger than that of the model. The color bar indicates the statistical significance of
the inferred difference, with lighter colors showing more significant results. The letter after the star’s
identifier indicates which group the star is in, as described in the text. The values given in the lower
left of each plot indicate the mass (M[M⊙]), initial helium mass fraction (Yinit), initial metallicity
(Zinit), and central hydrogen mass fraction (Xc) of each reference model. We also report the overall
significance of the inversion results, χ2

inv.
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Figure 2.2: Spearman rank correlation between the maximum significance inversion result of each
star and various properties of the reference model. The color correlates with the absolute value of
the correlation coefficient, which is a measure of the strength of the correlation. The value of each
correlation coefficient is provided on the right side of the figure. We estimate the uncertainty of each
correlation coefficient using bootstrapping.

Spearman’s rank correlation coefficient, ρs, which describes the strength of the monotonic,
but not necessarily linear, correlation between two variables. These results are shown in
Figure 2.2. We use bootstrapping to obtain estimates of the uncertainty of these coefficients.

The strongest correlation is with χ2
ratios (ρs = 0.81). This χ2 is a measure of how well our

reference model matches the observed frequency separation ratios (r10, r02) of the observed
star. These ratios are known to be insensitive to the surface effect, (Roxburgh and Vorontsov,
2003) and thus χ2

ratios serves as a different metric for how well the internal structure of a star
is reproduced in the model. The strong correlation between χ2

ratios and χ2
inv reaffirms that

the differences found from structure inversions are internal structure differences rather than
problems with the near-surface layers.

We find significant positive correlations of the discrepancies between the star and stellar
model with the central abundance of 12C (ρs = 0.72) and 14N (ρs = 0.66) of the model, as
well as the amount of energy generated by the CNO cycle (ρs = 0.61). A similar-strength
correlation in the opposite direction is found with the central hydrogen abundance (ρs =

−0.62). That all of these properties have a similar strength of correlation is unsurprising, as
they are mutually correlated. When the central hydrogen value is lower, reactions other than
the pp-chain can happen more easily. Primarily, this is an increase in energy generated by
the CNO cycle. At the same time, a very small amount of energy is generated by the triple-
alpha process. This is not significant compared to the total energy generation of the star,
but it does increase the equilibrium abundance of 12C. Additionally, the CNO-II pathway
converts 16O into 14N which increases the equilibrium abundance of 14N. In general, we see
a moderate correlation between the significance of the û differences inferred by inversions
and more evolved main sequence stars.
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Figure 2.3: Modeling results for 16 Cyg A (top) and 16 Cyg B (bottom). In each case, the left
plot shows the Frequency Échelle diagram comparing the frequencies of the reference model to the
observations before applying any correction to account for surface effects. The center panel compares
the reference model frequencies after applying the two-term surface correction from Ball and Gizon
(2014). The color and shape indicate the spherical degree ℓ: 0 (blue squares), 1 (black triangles),
2 (orange diamonds), and 3 (red circles). The right plot shows the frequency separation ratios r10
(pink) and r02 (light blue). In all plots, the open points represent the values from the reference model
and the filled points represent the observed values.
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Figure 2.4: Inversion results for 16 Cyg A (left) and 16 Cyg B (right). The blue points show the
inversion results from this work. The orange points are the results from Bellinger et al. (2017). Since
they report u we use their reported values of M and R to calculate û.
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2.4.1. Individual Stars
We now discuss the results of both our forward modeling and inversion procedures for a few
individual stars.

2.4.1.1 16 Cyg A and 16 Cyg B

First, we focus on the solar analogs 16 Cyg A and 16 Cyg B. In Figure 2.3 we compare the
frequencies (before and after surface-term corrections) and frequency separation ratios of
our reference models with the observations. As these are two of the most well-studied main
sequence stars in the Kepler field, they have already been studied using structure inversions
by Bellinger et al. (2017); Buldgen et al. (2022b). In our results, as well as the two previous
studies, there is excellent agreement between the models and the observations. In the case
of 16 Cyg B, the models used in all three works are within 1σ agreement with observations.
For the case of 16 Cyg A, our inversions show differences that are less than 1.5σ, which is
similar to the values obtained by Bellinger et al. (2017) and Buldgen et al. (2022b). Bellinger
et al. (2017) report their inferred u values, as well as their inferred values of the stellar mass
and radius, which allows us to compare û values directly, as shown in Figure 2.4. All the
points for 16 Cyg B are in good agreement. For 16 Cyg A, there is slight disagreement
at a target radius of 0.25, but it is not significant. Despite the use of different reference
models, a different implementation of OLA, and different inversion parameters, we agree on
the internal sound speed profiles of both 16 CygA and 16 Cyg B.

2.4.1.2 KIC 6116048 and KIC 6603624

We now turn to the two stars in our sample that show the largest differences with respect to
our models: KIC 6603624 and KIC 6116048. We show the frequencies and frequency sepa-
ration ratios in Figure 2.5. Both of these stars have points where our inversions infer internal
sound speed differences greater than 10 percent, and in contrast to other stars in the sample,
these large differences are significant compared to their uncertainties, so first we verify that
our inversions are able to recover differences of this magnitude. The δû/û between our refer-
ence model for KIC 6116048 and our reference model for KIC 6603624 reach ∼15% in the
region probed by structure inversions, and so we test our averaging kernels by attempting to
recover the difference between the two models. We do this twice, once with KIC 6603624
as the reference model and then again using KIC 6116048 as the reference model. The re-
sults of these inversions are shown in Figure 2.6. Both sets of averaging kernels infer the
correct shape of the true δû/û curve. The averaging kernels of KIC 6603624 infer the cor-
rect value of δû/û within the uncertainties at every target radius. This is not the case for the
averaging kernels for KIC 6116048, where two points differ from the correct value by ∼ 2σ.
Nevertheless, we conclude that our inversion procedure is able to recover differences around
15%.

2.4.2. Exploring the effects of microphysics
We now explore several changes to the microphysics in our models in an attempt to reduce
the sound speed differences inferred by our inversions. A full investigation of the micro-
physics across all twelve of the stars studied here is beyond the scope of this work, and hence
we focus on KIC 6603624 and KIC 6116048, the two stars discussed in Section 2.4.1.2. For

38



2.4 Results and Discussion

20 40 60 80
ν mod ∆ν  [µ Hz]

1500

1750

2000

2250

2500

2750

3000
ν 

[µ
 H

z]
KIC 6603624
Before Surface Correction

20 40 60 80
ν mod ∆ν  [µ Hz]

1500

1750

2000

2250

2500

2750

3000

ν 
[µ

 H
z]

After Surface Correction

2000 2500 3000
Frequency [µ Hz]

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ra
tio

Frequency Separation Ratios

40 60 80 100
ν mod ∆ν  [µ Hz]

1250

1500

1750

2000

2250

2500

2750

3000

ν 
[µ

 H
z]

KIC 6116048
Before Surface Correction

40 60 80 100
ν mod ∆ν  [µ Hz]

1250

1500

1750

2000

2250

2500

2750

3000
ν 

[µ
 H

z]
After Surface Correction

1500 2000 2500
Frequency [µ Hz]

0.02

0.04

0.06

0.08

Ra
tio

Frequency Separation Ratios

Figure 2.5: Modeling results for KIC 6603624 (top) and KIC 6116048 (bottom). All symbols have
the same meaning as in Figure 2.3.
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Figure 2.6: Model-model inversions to recover the û difference between the model for KIC 6603624
and KIC 6116048. The left figure shows the result of using KIC 6603624 as the reference model,
and the right figure shows the result of using KIC 6116048 as the reference model. In both plots, the
black line represents the true value of δû/û and the colored points show the result of the inversion.
Different target radii are shown in different colors and correspond to the color of the averaging and
cross-term kernels shown in Figures B.4 and B.5.
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Figure 2.7: Results of modifying the physics used to evolve each model. The û profile of each
model is shown in the left plot, with light gray dashed vertical lines to indicate the target radii of the
inversions. The center plot shows the result of structure inversions using each model as the reference
model. The right plot shows the frequency differences between each model and the observed modes
of KIC 6603624. The shape of the marker denotes the spherical degree of the mode, with l = 0, 1, 2, 3
denoted by squares, triangles, diamonds, and circles respectively. In each plot, gray lines and points
represent the values of the original reference model of KIC 6603624.
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û

1e 8

3He+ 4He→ 7Be Rate Factor = 0.25

0.0 0.1 0.2 0.3
Fractional Radius

0.0

0.1

0.2

δû
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/û

1500 1750 2000 2250 2500 2750
Model Frequency [µHz]

0.002

0.001

0.000

0.001

0.002

δν
/ν

Figure 2.8: Results of modifying the physics used to evolve each model of KIC 6116048. All colors
and symbols have the same meaning as in Figure 2.7.
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each star, we create three new models using the same mass, initial composition, and mixing-
length parameter as our original reference model, although we allow these new models to
have a different central hydrogen abundance. For the first model, motivated by the correla-
tion to CNO energy production, we multiply the rate of the 14N + p → 15O + γ reaction by
a factor of 0.1. For the second model, we multiply the ppII/ppIII rate 3He + 4He→ 7Be + γ
by a factor of 0.25. For the last model, we modify the opacity by a factor of 0.85 in the parts
of the model with log T > 6.7. For each of these three new tracks, we select a new reference
model using the fitting procedure discussed in Section 2.2.

Figures 2.7 and 2.8 show the results of these changes for KIC 6603624 and KIC 6116048,
respectively. For each change in the microphysics, we show the û profiles of each new refer-
ence model as well as the result of structure inversions. The changes to the core opacity and
the 14N + p→ 15O + γ reaction rate both increase û from the original reference model, with
the opacity change resulting in a larger difference both to the central û and the frequency
differences computed with respect to the observations. The change caused by modifying the
3He + 4He→ 7Be + γ reaction rate results in a smaller change to the û that is only apparent
inside r/R < 0.07. As expected, when we apply changes that increase the internal û, the
û difference inferred by the structure inversion decreases. We find better agreement in the
û profile even when the fit of the model is worse than our original reference model. These
changes improve our models at the deepest target radii but have little effect at the larger radii
probed by inversions.

2.5. Conclusions
Here, we have used asteroseismology to infer the detailed core structure of the best solar-
type stars observed by the Kepler mission. We focused on main-sequence stars with radiative
cores and expanded the number of such stars studied with structure inversions from 2 to 12.
After obtaining our reference models from a grid created using MESA, we use a set of cal-
ibration models to obtain our inversion parameters. We then use these inversion parameters
to infer the relative difference in dimensionless squared isothermal sound speed between our
reference model and the target star. In our sample, we identify three groups: those where
the û of our reference model agrees with the observed star (group a, 6 stars), those where the
û of our model is higher than that of the star (group b, 1 star), and those where the û of our
model is lower than that of the star (group c, 5 stars). We also find significant correlations in
our results, suggesting that our models of older main-sequence stars with more energy being
generated by the CNO cycle have larger differences between the model and the star. To
explore how changing the microphysics affects our inversion results, we tested the effects of
changing nuclear reaction rates and core opacities, for the two stars with the most significant
differences. These changes to the microphysics reduced the discrepancy between the model
and the star at the innermost target radii.

In future work, we aim to extend our analysis to an even broader set of stars, including
main-sequence stars with convective cores and more evolved stars with mixed-mode oscil-
lations. Main-sequence stars with convective cores are particularly interesting since their
dominant source of energy is the CNO cycle. Thus, they are a natural next step to explore
the correlations found in this work between the inferred sound speed differences and CNO
energy production.
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Chapter info This chapter is a reproduction of a paper that has been submitted1 to the Astro-
physical Journal and is currently under review. It extends the analysis introduced in Chapter 2 to
43 main-sequence stars with convective cores. I am the first author. All of the modeling, inversion
analysis, and writing was done by me with supervision, advice, and input from all co-authors.

Abstract Asteroseismic inferences of main-sequence solar-like oscillators often rely on best-fit
models. However, these models cannot fully reproduce the observed mode frequencies, suggesting
that the internal structure of the model does not fully match that of the star. Asteroseismic structure
inversions provide a way to test the interior of our stellar models. Recently, structure inversion
techniques were used to study 12 stars with radiative cores. In this work, we extend that analysis
to 43 main-sequence stars with convective cores observed by Kepler to look for differences in the
sound speed profiles in the inner 30% of the star by radius. For around half of our stars, the structure
inversions show that our models reproduce the internal structure of the star, where the inversions are
sensitive, within the observational uncertainties. For the stars where our inversions reveal significant
differences, we find cases where our model sound speed is too high and cases where our model sound
speed is too low. We use the star with the most significant differences to explore several changes to
the physics of our model in an attempt to resolve the inferred differences. These changes include
using a different overshoot prescription and including the effects of diffusion, gravitational settling,
and radiative levitation. We find that the resulting changes to the model structure are too small to
resolve the differences shown in our inversions.

1A previous draft has already been posted as an e-print at https://arxiv.org/abs/2412.05094
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3 Inversions of Main-sequence Stars with Convective Cores

3.1. Introduction
Among the stars observed by Kepler, high-precision oscillation mode frequencies have been
determined for around 100 main-sequence solar-like oscillators (Davies et al., 2016; Lund
et al., 2017). This sample has been used to study a variety of physical processes includ-
ing chemical transport (Nsamba et al., 2018; Deal et al., 2018; Verma and Silva Aguirre,
2019; Moedas et al., 2022, 2024), convection in stellar cores (Angelou et al., 2020; Zhang,
2020; Noll and Deheuvels, 2023), rotation (Bétrisey et al., 2023), and magnetic fields (San-
tos et al., 2018; Salabert et al., 2018; Kiefer and Broomhall, 2020). This work often involves
finding a best-fit model for each star using a stellar evolution code. Best-fit models are gen-
erally found by matching the observed frequencies of a star or by fitting parameters derived
from those frequencies, such as the frequency separation ratios (Roxburgh and Vorontsov,
2003) or glitch signatures due to helium ionization (Verma et al., 2017), while matching the
position of the star on the HR diagram. In general, however, these models are unable to
fully reproduce the observed parameters, suggesting that there are still some deficits in our
understanding of stellar interiors.

Fortunately, the large number of precise oscillation modes observed in these stars makes
it possible to take the analysis further using structure inversions. This technique, devel-
oped for geology (Backus and Gilbert, 1968) and used extensively in helioseismology (for a
review see, for example, Basu, 2016; Christensen-Dalsgaard, 2021), uses the inherent sen-
sitivity of each oscillation mode to infer differences between the interior structure of a star
and a given best-fit model (see e.g., Gough and Thompson 1991; Gough 1993; Pijpers 2006;
Bellinger et al. 2020a; Buldgen et al. 2022a). These inferred differences can be used to
test how well the interior structure of our models matches that of observed stars, as well as
provide information on what changes may be necessary to improve our models.

In Figure 3.1, we show the existing sample of main-sequence solar-like oscillators stud-
ied using asteroseismic structure inversions. Buchele et al. (2024b), reproduced as Chapter 2
in this thesis, and henceforth B24, presented results for 12 stars with radiative cores, includ-
ing the solar analogs 16 Cyg A and B which were also studied by Bellinger et al. (2017) and
Buldgen et al. (2022b). Structure inversions have also been used to study a main-sequence
star with a small convective core (Bellinger et al., 2019a) and two stars evolved enough to
exhibit mixed modes (Kosovichev and Kitiashvili, 2020). All three of these stars are in the
sample presented here, where we extend the work of B24 to cover main-sequence solar-like
oscillators with convective cores observed by Kepler.

3.2. Forward Modeling
As structure inversions infer differences between a star and a model, the first step is to find
a suitably close reference model, typically the best-fit model from a grid-based modeling or
optimization procedure. The process of finding such a model is called forward modeling.
To find our reference models, we used a grid-based method similar to that used by B24. We
constructed a grid of 24,530 tracks using the stellar evolution code MESA (Paxton et al.,
2011a, 2013a, 2015a, 2018, 2019a; Jermyn et al., 2023a). The details of the grid that are
unchanged between this work and B24 are provided in Appendix C.1.1. There are two
important changes which we discuss here.

It is well known that including diffusion and gravitational settling of elements without
also including the effects of radiative levitation produces models with unrealistic surface
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ûmod too low all points
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Figure 3.1: Hertzsprung–Russell diagram for main-sequence solar-like oscillators with inversion
results available. Stars have been categorized based on their inversion results in this work and in
B24, represented by the color of the symbol. Stars with other inversion results available are indicated
with larger open symbols. The uncertainties of the luminosity values are smaller than the points.
Stellar evolutionary tracks of several masses are shown for reference.
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abundances in this mass range (e.g., Michaud et al., 2015; Deal et al., 2018). However,
including radiative levitation significantly increases the computation time of models, such
that it would be difficult to compute the number of models necessary to cover the parameter
space of the observations. We chose to compromise and evolve our tracks without including
diffusion, settling, or radiative levitation. Additionally, since we are dealing with stars with
convective cores, we use the exponential overshooting (Freytag et al., 1996; Herwig, 2000)
scheme implemented in MESA where the overshoot region is treated as fully mixed without
changing the thermal gradient. This is described in detail in Paxton et al. (2011a). The
parameters varied in this grid are mass, initial helium abundance, initial metallicity, mixing
length parameter, and overshooting parameter. To cover the parameter space efficiently,
we varied each parameter using a Sobol sequence (see Appendix B of Bellinger et al., 2016;
Sobol’, 1967) within the ranges listed in Table 3.1. For each model in the grid, we calculated
the adiabatic frequencies using GYRE (Townsend and Teitler, 2013).

We then scanned the grid to find the model parameters that best fit the frequencies,
effective temperature, and metallicity by minimizing:

χ2
fit =

(
Teff,obs − Teff,mod

)2

σ2
Teff

(3.1)

+
([Fe/H]obs − [Fe/H]mod)2

σ2
[Fe/H]

(3.2)

+
1
N

N∑
i

(
νi,obs − νi,mod

)2

σ2
ν,i

, (3.3)

where N is the number of observed frequencies, νi is the frequency that corresponds to the i-
th pair of radial order (n) and spherical degree (ℓ) where the model’s frequencies have been
corrected for surface effects using the two-term correction from Ball and Gizon (2014),
σ denotes the uncertainty of the observed parameter, and the subscripts ‘obs’ and ‘mod’
denote the observations and the model, respectively. Our definition of χ2

fit treats all the
frequencies as a single observation with the same weight as each spectroscopic observation.
This choice is common in asteroseismic modeling pipelines (see, for example, the ASTFIT
pipeline described in Silva Aguirre et al. 2015). Each mode can be treated as an independent
observation by removing the factor of 1/N. In synthetic tests, Cunha et al. (2021) find that
this weighting recovers the correct stellar parameters only when the physics of the grid
matches the physics of the synthetic star exactly. As we perform structure inversions in
order to determine if the physics in our models accurately represents what we observe, we,
therefore, opt to treat all frequencies as a single observation.

While scanning the grid, we interpolated along each track, but not between tracks. This
is the same method as that of B24 with one change — in this work, we interpolated in age
instead of central hydrogen abundance, as the central hydrogen abundance does not decrease
monotonically in stars where a convective core emerges after the zero-age main sequence.
From this procedure, we obtain the best-fit parameters, which are then used to calculate the
reference model of the structure inversions. Our values of Teff and [Fe/H] come from Furlan
et al. (2018); Mathur et al. (2017); Morel et al. (2021), with the specific source for each star
given in Appendix C.1.2. We also provide, in Appendix C.1.2, the parameters of our best-fit
model as well as a comparison to the parameters reported in Silva Aguirre et al. (2017).
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Table 3.1: Grid Parameters

Parameter Minimum Value Maximum Value
M/M⊙ 1.1 1.7
Yinitial 0.24 0.4
Zinitial 0.0005 0.07
αmlt 1.3 2.4
fov 0 0.08

3.3. Structure Inversions
With a suitable reference model for each star in our sample, we now turn to the process
of an asteroseismic structure inversion. Structure inversions use the frequency differences
between a star and its best-fit model to infer the underlying structure differences. We chose
to express the structure differences in terms of the dimensionless squared isothermal sound
speed (û) and helium mass fraction (Y). In terms of the more common structure variables of
pressure (P) and density (ρ),

û =
P
ρ

R
M

(3.4)

where R and M are the stellar radius and mass, respectively. This choice of variables is well
suited for asteroseismic targets (Basu, 2003; Bellinger et al., 2020a), as the oscillations are
mostly insensitive to Y . This makes it easier to isolate the differences due to a change in û.

Mathematically, the sensitivity of each mode frequency to a small change in the structure
is expressed as:

δν̂i

ν̂i
=

∫
K(û,Y)

i
δû
û

dr +
∫

K(Y,û)
i δY dr + higher order terms. (3.5)

Such an equation can be written for each mode i, where the index i of the mode again cor-
responds to a specific pair of n, ℓ. The relative frequency difference (δν̂i/ν̂i) is related to the
structure differences between the model and the observed star through the mode kernel func-
tions Ki. These mode kernels are known functions of the reference model, found through
a linear perturbation of the oscillation equations (for more details, see Gough and Thomp-
son 1991, Kosovichev 1999, or Thompson and Christensen-Dalsgaard 2002). As we are
inverting for dimensionless structure variables we need to use the difference in dimension-
less frequency (ν̂). These differences are calculated by scaling the dimensional frequency
differences by the large frequency separation, ∆ν:

δν̂i

ν̂i
≈
∆νmod

∆νobs

νi,obs

νi,mod
− 1. (3.6)

This works because ∆ν carries the same dependence on the stellar mass and radius as the
frequencies. The full derivation of Equation 3.6 can be found in Appendix B2 of B24. We
note that the model frequencies νi,mod in this expression have been corrected for surface
effects using the two-term formulation of Ball and Gizon (2014). We also calculate ∆νmod

after applying the surface term correction.
We choose to correct for dimensional differences and surface effects when calculating

the frequency differences. These effects, however, can be handled in different ways. Alter-
native approaches to handling dimensional differences include using a different correction
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method (e.g., Roxburgh et al., 1998; Basu, 2003; Bellinger et al., 2021), including the mean
density in the fitting procedure (e.g., Buldgen et al., 2022b), or adding a term to Equation
3.5 (e.g., Kosovichev and Kitiashvili, 2020). Following the arguments outlined in Appendix
B2 of B24, we expect that the inversion procedure will suppress the effects of differences in
mean density regardless of the correction method used. Bellinger et al. (2019a) shows this
explicitly as inversions using models of different masses and radii return the same results.
The surface term can also be accounted for during the inversion by adding a term to Equa-
tion 3.5 (e.g., Rabello-Soares et al., 1998; Bellinger et al., 2016; Buldgen et al., 2022b). We
have tested this approach and found no difference in the final inversion results.

If the structure differences are known, then the right-hand side of Equation 3.5 can be
used to calculate the corresponding frequency differences. When comparing an observed
star to its best-fit model, however, we know the frequency differences and seek to infer the
underlying structure differences. We accomplish this through the method of optimally lo-
calized averages (Backus and Gilbert, 1968, 1970). This constructs a linear combination of
mode kernels that localizes the overall sensitivity around a single target radius, r0. Neglect-
ing higher-order effects, Equation 3.5 becomes:

N∑
i

ci
δν̂i

ν̂i
=

∫
Kr0

δû
û

dr +
∫
Cr0 δY dr. (3.7)

Here N is the total number of modes, ci are known as the inversion coefficients, K =∑N
i ciK

(û,Y)
i is called the averaging kernel, and C =

∑N
i ciK

(Y,û)
i is the cross-term kernel. When

the inversion coefficients are chosen such that K is localized around r0 and normalized to 1,
and the amplitude of C is small everywhere, then Equation 3.7 reduces to

N∑
i

ci
δν̂i

ν̂i
≈

∫
Kr0

δû
û

dr ≈
〈
δû
û

〉
r0

. (3.8)

Thus once the inversion coefficients are known, the sum on the left-hand side provides a
localized average of the difference in û around r0.

To find the inversion coefficients, we used the method of multiplicative optimally local-
ized averages (MOLA), which constructs the averaging kernel by penalizing any amplitude
away from the target radius. For details on the implementation of MOLA, see Basu and
Chaplin (2017, Chapter 10). In this process, we must choose two trade-off parameters: β,
the cross-term suppression parameter, and µ, the error suppression parameter. We chose
our parameter values using the same method as B24. Briefly, this method sets β = 0 as
the choice of Y as the second variable naturally suppresses the amplitude of the cross-term
kernel. We then chose a value of µ that correctly recovers the known values of δû/û between
our reference model and a small set of calibration models. These models came from our
grid and have slightly larger values of χ2

fit than our reference model.
For each target star, we attempted to construct an averaging kernel for six target radii:

r0/R = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3. In general, the presence of a convective core made it
more difficult to localize sensitivity at target radii close to the boundary of the core, and so
in most cases, the innermost target radius we report is r0/R = 0.15. It is possible that fre-
quencies derived from radial velocity measurements instead of photometric measurements
could expand this range by providing more modes overall, which would help to suppress the
sensitivity to the boundary of the convective core, and by providing more l = 3 modes which
make it easier to localize averaging kernels at larger target radii. The uncertainties of our
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3.4 Results

inversion results are calculated using a Monty Carlo simulation to account for possible error
correlations introduced by our corrections for the mean density and surface effect (for the
specific details, see B24). We also report the FWHM of each averaging kernel as a measure
of the resolution of each inversion.

For 11 stars, our models showed that the lowest-order quadrupole modes were mixed
acoustic-buoyancy modes. We have found that current linear inversion techniques are not
suitable for mixed modes (Buchele et al., in preparation) and hence, while we accounted for
these mixed modes when fitting our models, we removed these modes from the mode set
used for the structure inversions. Table 3.2 shows the stars with mixed modes present and
how many quadrupole modes were excluded from our inversions.

3.4. Results
We divide our 43 stars into five categories based on their inversion results: (A) stars with
no significant disagreement in the region probed by inversions, (H) stars for which all sig-
nificant differences show that the model û is too high, (L) stars for which all significant
differences show the model û is too low, (LH) stars where the model û is too low in the
center and too high in the outer points probed by the inversions, and (HL) stars where the
model û is too high in the center and too low in the outer points probed by the inversions. In
Figure 3.2, we show an example of inversion results from one star in each category.

Around half (24) of the stars fall into category A. These models still show significant
differences in the oscillation frequencies, even after correcting for the surface term, which
suggests that the structure differences are either smaller than the observational uncertainties
at the resolution given by the structure inversions or that the structure differences are at a
location unable to be probed by the inversions. Of the stars showing significant disagree-
ment, 11 are in category H, 6 are in category L, and 1 each is in category LH and HL. Using
the χ2

inv parameter defined in B24, we search for correlations with a variety of model param-
eters and observations. In contrast to the earlier work, we find no significant correlations.
One problem with the χ2

inv metric is that it only measures the significance of the inversion
results, not whether the differences inferred are positive or negative. To account for this, we
also look for correlations between the model parameters and aχ2

inv where a = −1(+1) for
stars where the most significant inferred difference is negative (positive). We also find no
significant correlations in this case.

For 13 stars, we find models with both convective and radiative cores in our calibration
set. In general, the models of the stars that do have convective cores have small ones,
implying the structure differences between the calibration models are relatively small. The
distribution of the inversion results within this subsample is similar to that of the whole
sample, suggesting that the differences we infer are not due to the ambiguity of whether the
core is convective or radiative.

We discuss here only a few of our 43 stars, focusing on the stars that other works have
also analyzed with structure inversions. The full inversion results of each star will be pro-
vided as supplementary material in the version published in the Astrophysical Journal.

3.4.1. KIC 6225718
The first star we discuss in detail is KIC 6225718. Our inversion results for this star are
shown in Figure 3.2. We show in Figure 3.3 the frequency échelle diagram and frequency
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Table 3.2: Stars with Mixed Modes Removed

KIC Number Number of l = 2 modes removed
8228742 3
7940546 3
10068307 4
12317678 1
3632418 1
10162436 1
9353712 1
9414417 1
3456181 1
12069127 2
6679371 2
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outer ûmod too high

0.0 0.1 0.2 0.3
Fractional Radius

KIC 6225718

M
Yinit
Zinit
Xc
Mcc

: 1.155 
: 0.262 
: 0.015 
: 0.449 
: 0.043
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Figure 3.2: Inversion results for one star in each category. Each shows the relative differences in û be-
tween observation and best-fit model inferred by the inversions, in the sense of (Star −Model)/Model.
The vertical error bars indicate the uncertainty of each inversion result from the propagation of the
uncertainty of the observed frequencies. The horizontal error bars represent the FWHM of the av-
eraging kernel. The dashed horizontal line indicates complete agreement between the model and
observations; points above this line imply that û of the star is larger than that of the model. The color
bar indicates the statistical significance of the inferred difference, with lighter colors showing more
significant results. We also provide the mass (M, in M⊙), initial helium mass fraction (Yinit), initial
metallicity (Zinit), central hydrogen mass fraction (Xc), and mass of the convective core (Mcc, in M⊙)
of each model.
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Figure 3.3: Information about the best-fit model of KIC 6225718. The top left plot shows the
frequency échelle diagram comparing the frequencies of the reference model to the observations
after correcting for surface effects. The top right plot shows the frequency separation ratios of the
reference model and observations. The bottom left plot shows the averaging kernels and the bottom
right the cross-term kernels. Note that the y-axis scale differs by an order of magnitude between the
two plots on the bottom row.

51



3 Inversions of Main-sequence Stars with Convective Cores

separation ratios of our best-fit model, as well as, our averaging and cross-term kernels.
This star has already been studied using structure inversions by Bellinger et al. (2019a)
which allows us to compare our results. Structure inversions infer differences relative to
a given reference model using a given set of averaging kernels. As such, any comparison
of different inversion results must be considered in the context of the reference model and
averaging kernels used. The averaging kernels we use are very similar to those used in
Bellinger et al. (2019a). In comparing the structure of our reference model to the original
model used by Bellinger et al. (2019a), we find that ours has a slightly larger convective
core (with our convective boundary located at r/R ≈ 0.08 instead of r/R ≈ 0.04). We
attribute this difference to our inclusion of core overshoot. Bellinger et al. (2019a) also
constructed a model with core overshoot resulting in a convective core boundary closer to
that of our reference model. However, they do not show the inversion results of this model
explicitly, and instead note that the inversion results using the two different reference models
are similar. Due to this, we will proceed to compare our inversion results to those reported
in Bellinger et al. (2019a) for the model constructed without core overshooting.

Both works find that the model û is too low in the outermost regions probed by inver-
sions and too high in the innermost regions, with the crossover occurring around r/R ≈ 0.25.
Bellinger et al. (2019a) find a maximum difference at r/R ≈ 0.1, while our maximum dif-
ference is found around r/R ≈ 0.05. However, the higher uncertainties at these target radii
mean that this difference in inversion results is not significant. Thus, despite slight dif-
ferences in the fitting and inversion procedures, we find the same disagreement in internal
structure.

3.4.2. KIC 10162436 and KIC 5773345
Kosovichev and Kitiashvili (2020) present inversion results for two stars that are also in our
sample: KIC 10162436 and KIC 5773345. Our results for these stars are shown in Figure
3.4. Directly comparing our inversion results to theirs is slightly more difficult than with
Bellinger et al. (2019a). For both stars, they find mixed modes with l = 1 and l = 2. Our
model of KIC 10162436 has one mixed l = 2 mode, which we exclude from our inversions,
and no l = 1 mixed mode. In the case of KIC 5773345, our model shows no mixed modes
at all. In addition, the frequency differences, even of pure acoustic modes, between their
models and the observations are significantly larger than ours. We attribute these differences
to differences in the modeling procedure.

Kosovichev and Kitiashvili (2020) use the parameters from the YMCM modeling pipeline
presented in Silva Aguirre et al. (2017), including the mixing length parameter and stellar
age, to compute a model using MESA. However, the YMCM models were computed using
YREC, a different stellar evolution code, and care must be taken when using best fit param-
eters, especially mixing length parameter and stellar age, across different codes to ensure
that the implemented physics matches as closely as possible. In particular, the nuclear re-
action rates and formulation of mixing length theory differ between YREC and the defaults
used in MESA. It is unclear whether the authors of Kosovichev and Kitiashvili (2020) made
the necessary changes to MESA to match the original YREC configuration. These differ-
ences likely explain the large frequency differences that Kosovichev and Kitiashvili (2020)
find between the observed and modeled frequencies, despite the model parameters being the
same. Taken together, these differences suggest that the structure of the reference models
used in Kosovichev and Kitiashvili (2020) and this work are different. Additionally, while
Kosovichev and Kitiashvili (2020) do not show their averaging kernels, the spread indicated
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by their horizontal error bars is much wider than ours. Thus we cannot directly compare our
inversion results to those given in Kosovichev and Kitiashvili (2020). Nevertheless, we note
that we infer differences in û of similar magnitude for both KIC 10162436 and KIC 5773345.

3.4.3. KIC 11807274
We now turn to the star with the most significant differences inferred by our inversions,
KIC 11807274. We show in Figure 3.5 the frequency differences and frequency separation
ratios for this star. Our reference model is in full agreement with the observed values of
Teff and [Fe/H]. The largest frequency differences are seen in the lower-order quadrupole
frequencies, which exhibit a glitch structure not reproduced in any model. To understand
how sensitive our results are to these discrepant frequencies, we repeat both our modeling
and inversion procedure excluding the lowest three quadrupole modes. Our fitting procedure
results in the same model as we found using the entire mode set. We show the averaging
kernels and inversion results of the reduced mode set compared with the full mode set in
Figure 3.5. Removing these modes results in slightly different averaging kernels, most no-
tably for the highest target radius, where the point with maximum kernel amplitude is shifted
towards the center of the star. The differences inferred with these new averaging kernels are
smaller than with the full mode set, however significant differences remain.

3.4.4. Changes in Input Physics
The fact that we find significant differences in many stars suggests that the physics com-
monly used in stellar modeling codes may need to be modified. A full study seeking to
prove the accuracy of one set of physical choices over another will require extensive mod-
eling of all stars for which structure inversions can be used. This modeling effort should
test as many changes as possible to the modeling physics and explore the effect of fitting
to different observables, such as the frequency separation ratios. While we think that such
work is important to continue improving stellar models, it is beyond the scope of this work.
Instead, here we present a few simple tests as examples of the changes to modeling physics
that could be studied with inversions. For this, we use the star where our inversions infer the
most significant differences, KIC 11807274.

In Figure 3.6, we show the changes to the û profile that result from three different changes
to the physics. The first change we present is a change to core boundary mixing. Instead
of calculating the overshoot using exponential overmixing, where only the composition of
the overshooting region is changed, this model uses a step convective penetration (Zahn,
1991) scheme described in Appendix C.1.1, where both the composition and the temperature
gradient are changed in the overshoot region. For this change, we find new model parameters
from a new grid created with the changed overshooting scheme. This change results in a
slightly larger convective core, which causes the spike in the relative difference around r/R ≈
0.05. Otherwise, the main difference in the û profile is within the convective core, below
the radius where our inversions probe. In the region where our inversions are sensitive, the
change to û is in the correct direction according to our inversion results, but it is far too
small to resolve the differences. In fact, the change is smaller than the uncertainties of our
inversions.
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Figure 3.4: Frequency differences, frequency separation ratios, and inversion results for our models
of the two stars shown in Kosovichev and Kitiashvili (2020). The top row shows the results for
KIC 10162436. The figure on the left shows the relative frequency differences, after correcting for
surface effects. The center panel shows the frequency separation ratios of the observed star and our
reference model. The right panel shows the inversion results, where all symbols and colors have the
same meaning as in Figure 3.2. The lower row shows the same information for KIC 5773345.
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Figure 3.5: Results of the modeling and mode set testing of KIC 11807274. The first panel shows
the relative frequency differences, after correcting for surface effects. The second panel shows the
frequency separation ratios of the observed star and our reference model. The third panel shows the
original averaging kernels and those constructed when excluding the three lowest frequencies l = 2
modes. The fourth panel shows the results of inversions using each mode set.
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Several works (Lebreton and Goupil, 2012; Deal et al., 2023) have suggested that a
large amount of convective penetration at the base of the outer convection zone may explain
glitches observed in the frequency separation ratios of F-type stars. We have tested this
prescription as well and found a change to the û at the base of the convective envelope
r/R ∼ 0.8, but at the radius where our inversions are sensitive the structure is very similar
to the model without this additional mixing. Hence, this change is unable to resolve the
differences inferred by our inversions.

The other changes we examined deal with the transport of chemical elements. We tested
the effects of including element diffusion and gravitational setting only as well as accounting
for diffusion, settling, and radiative levitation. In contrast to our test of convective penetra-
tion, for both of these models we kept the same overshoot implementation and initial param-
eters (mass, composition, overshoot, and mixing length parameters) as our original reference
model. The age of our new model is allowed to differ from the age of the original model. We
choose the age along our new track which best fits the observations. In the model including
only diffusion and settling we used the inlist parameters of the diffusion_smoothness
test suite case in MESA. In the model including diffusion, settling, and radiative levitation
we adopt the MESA settings of the A0 model in Campilho et al. (2022).

In both of the new models, we find the largest differences around the base of the con-
vection zone where the transport processes have made the convection zone deeper. In the
regions probed by our inversions, however, the changes are small enough to be within the
uncertainties of our inversion results. Our choice to keep the initial parameters of the models
constant between the different chemical mixing prescriptions represents the simplest possi-
ble test. In a full work seeking to fully resolve the inferred differences, these parameters
should be inferred from a full grid as this change of physics is known to change the inferred
mass, radius, and age of the star (e.g., Deal et al., 2020; Moedas et al., 2022, 2024), although
how these changes affect the internal structure is not discussed in these works. For our pur-
poses here, we seek only to provide some examples of the types of physical changes that
can potentially be tested with structure inversions.

3.5. Conclusions
In this work, we have extended the analysis from Buchele et al. (2024b) (B24) to stars with
convective cores. We found best-fit models from a grid of tracks computed with MESA
by fitting the observed frequencies, effective temperatures, and metallicities. Using each of
these best-fit models, we performed structure inversions to compare the internal structure of
the model to that of the star. These results, combined with the results of B24, show that our
models reproduce the internal structure of around half of the stars examined. In cases where
we find significant differences, we see an even split between models with dimensionless
squared isothermal sound speed that is higher than the star and cases where it is too low. In
contrast to the results of the stars with radiative cores, we did not find any significant corre-
lations with the properties of our reference models. We presented three models constructed
with varying model physics as an example of the kinds of changes that could be tested in
detail in future work using structure inversions. However, in our simple tests, we found that
the resulting changes to the model structure are much smaller than necessary to reproduce
the structure inferred by our inversions.
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3.5 Conclusions

In both B24 and this work, the structure differences inferred by inversions remain unex-
plained. Particularly in light of the upcoming PLATO mission (Rauer et al., 2014, 2024),
it is important to continue improving our stellar models of these types of stars. We believe
that structure inversions are a key part of ensuring that future models reproduce not only the
global properties of the stars but also their internal structure. To that end, in future work we
plan to test potential modifications to the physical ingredients in our stellar modeling using
structure inversions. With these changes, we aim to consistently improve our models of the
stars with significant differences without introducing discrepancies for the stars we currently
model well.
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Chapter info This chapter is based on a paper that will be submitted in the near future. The
submitted version of this paper will also include some of the introductory text of Sections 1.4. It
focuses on the question of whether current structure inversion techniques can be reliably applied to
stars on the subgiant branch exhibiting mixed modes. As the first author of this work, I generated
the model grids and carried out the analysis myself. I was also responsible for writing the text
of the paper. All co-authors provided guidance during the work and contributed comments to the
manuscript.

Abstract Seismic structure inversions have been used to study the solar interior for decades. With
the high-precision frequencies obtained using data from the Kepler mission, it has now become pos-
sible to study other solar-like oscillators using structure inversions, including both main-sequence
and subgiant stars. Subgiant stars are particularly interesting because they exhibit modes of mixed
acoustic-buoyancy nature, which provide the opportunity to probe the deeper region of stellar cores.
This work examines whether the structure inversion techniques developed for the pure acoustic
modes of the Sun and other main-sequence stars are still valid for mixed modes observed in sub-
giant stars. We construct two grids of models: one of main-sequence stars and one of early subgiant
stars. Using these grids, we examine two different parts of the inversion procedure. First, we examine
what we call the “kernel errors”, which measure how well the mode sensitivity functions can recover
known frequency differences between two models. Second, we test how these kernel errors affect
the ability of an inversion to infer known structure differences. On the main sequence, we find that
reliable structure inversion results can be obtained across the entire parameter space we consider. On
the subgiant branch, however, the rapid evolution of mixed modes leads to large kernel errors and
hence difficulty recovering known structure differences. Our tests show that using mixed modes to
infer the structure of subgiant stars reliably will require improvements to current fitting approaches
and modifications to the structure inversion techniques.
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4 Linearity of Structure Kernels

4.1. Introduction
The field of asteroseismology, i.e., the study of stars through their global oscillations, has
provided unprecedented insight into stellar interiors (e.g., Aerts, 2021; Bowman and Bugnet,
2024). One of the most powerful techniques in asteroseismology is that of structure inver-
sions. Seismic structure inversions have been used to study the solar interior for decades.
Using data from Kepler, initial targets of asteroseismic inversions included the solar analogs
16 Cyg A and B (Bellinger et al., 2017; Buldgen et al., 2022b), a star with a small convective
core (Bellinger et al., 2019a), and several more evolved stars exhibiting mixed modes (Koso-
vichev and Kitiashvili, 2020; Bellinger et al., 2021). The work presented in Chapters 2 and
3 increased the number of main-sequence stars (other than the Sun) studied with inversions
to 55.

While this is a large improvement over the previous sample of 1 star, the Sun, this small
sample size makes it difficult to draw conclusions on potential improvements to stellar mod-
eling. Unfortunately, the requirement for the highest quality observations means that the
number of stars that can be studied with these techniques will remain low until the next gen-
eration of asteroseismic missions, such as the PLATO mission (Rauer et al., 2014, 2024).
Another limitation of the existing set of stars that have been studied with structure inversions
is that they are restricted to a narrow range of masses and are still primarily on the main se-
quence. Thus, in order to truly probe stellar evolution theory, it is important to expand the
types of stars that can be studied in this manner. However, care must be taken to ensure
that the assumptions made in the process of such inversions hold true for stars with different
structure and oscillation properties.

Here we are specifically interested in the reliability of structure inversions for subgiant
branch stars. As stars run out of hydrogen and leave the main sequence, they enter a short-
lived evolutionary stage known as the subgiant branch. During this phase of evolution, the
core of the star contracts. This raises the buoyancy frequency in the core. At the same time,
the envelope of the star expands, decreasing the frequencies of modes excited by solar-like
oscillations. These two effects result in the excitation of modes with two oscillation cavities:
an outer cavity where modes propagate as pressure modes (p-modes) and an inner cavity
where modes propagate as buoyancy modes (g-modes). In subgiant and red giant branch
stars, the region between these two cavities is small and therefore non-radial modes are able
to propagate in both cavities. These modes have a mixed acoustic-buoyancy character and
hence are known as mixed modes (Osaki, 1975; Deheuvels and Michel, 2011).

The degree to which any given mixed mode is predominantly acoustic or buoyant in na-
ture changes as the star evolves. Mixed modes undergo a series of avoided crossings where
the mode character is exchanged with a neighboring mode (Aizenman et al., 1977). Thus,
over the course of the subgiant branch, any given mode will be alternatively p-dominated
(mostly acoustic mode character) and g-dominated (mostly buoyant mode character). All
mixed modes are sensitive to the structure of the core in a way that differs from the pure
acoustic modes observed in main-sequence solar-like oscillators. This sensitivity makes
subgiant stars an appealing target for structure inversions as mixed modes mean that struc-
ture inversions can probe deep in the core.

This increased sensitivity has been used in a few works that apply structure inversions to
stars that exhibit mixed modes in their oscillation spectra. First, Kosovichev and Kitiashvili
(2020) presented results for two stars which they claimed exhibited mixed modes, although
this mode identification has been questioned by Buchele et al. (2024a). Then, Bellinger
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et al. (2021) presented structure inversion results for HR 7322, one of the best-characterized
subgiant stars observed by the Kepler mission (Stokholm et al., 2019; Hon et al., 2020).
However, neither of these works examined in detail the reliability of structure inversions for
stars exhibiting mixed modes. Due to the rapid evolution of mixed modes both in frequency
and in character, it is reasonable to question the validity of the assumptions made in structure
inversions in the subgiant regime. This work seeks to explore these questions by comparing
the reliability of structure inversions of main-sequence solar-like oscillators with solar-like
oscillators on the subgiant branch. We begin in Section 4.2 with a more detailed review of
the process and assumptions of a structure inversion. Then in Section 4.3 we review the
reliability of inversions while on the main sequence, before stars begin to exhibit mixed
modes. Section 4.4 extends this analysis to the subgiant branch, with a particular focus
on mixed dipole modes. Finally, we summarize the work and present our conclusions in
Section 4.5.

4.2. Kernels and Inversions
As described in Section 1.4, the sensitivity of an oscillation mode to a linear perturbation of
the structure is described by the kernel equation

δν̂i

ν̂i
=

∫
K(û,Y)

i
δû
û

dx +
∫

K(û,Y)
i δY ds. (4.1)

As the tests in this work are done by comparing two models, we calculate δν̂/ν̂ using the
known values of M and R, rather than any of the other approaches discussed in Section 1.4.

In order to extract localized information about the structure of a star, it is necessary to
combine the information from all observed modes, using an optimally localized averages
(OLA) method (Backus and Gilbert, 1968, 1970; Pijpers and Thompson, 1992, 1994).

A key assumption of a structure inversion is that the mode kernels, calculated using
a reference model, accurately represent the sensitivity of the observed modes. This work
focuses on the errors introduced by this assumption. Although we call these errors “kernel
errors”, it should be noted that these are not errors in the calculation of the mode kernels,
rather they are errors that result from using a mode kernel that does not accurately represent
the sensitivity of an observed mode to the underlying structure. Using Equation 4.1, we
define the kernel error of a mode as

Kernel Errori ≡
δν̂i

ν̂i
−

[∫
K(û,Y)

i
δû
û

dx +
∫

K(Y,û)
i δY dx

]
. (4.2)

Clearly, such a quantity cannot be computed for differences between an observed star
and a model, and so our tests rely on comparisons between different stellar models. In each
evolutionary stage we examine, we keep one model the same for all tests. We refer to this
model as the reference model and denote any properties of it with the subscript ‘ref’. The
second model we use we refer to as a test model, denoted with the subscript ‘test’. When
computing kernel errors using Equation 4.2 written in terms of our chosen variables û,Y ,
the mode kernels are those calculated using the reference model and the relative differences
are defined as

δν̂

ν̂
=
ν̂test − ν̂ref

ν̂ref
and

δû
û
=

ûtest − ûref

ûref
and δY = Ytest − Yref. (4.3)
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In addition to examining how the kernel errors of different modes change across a grid
of stellar models, we also explore how these kernel errors propagate through a full structure
inversion. For this, we treat the test model as an observed star and use the reference model
to perform structure inversions at several target radii. The result of these inversions can then
be compared to the known structure differences between the two models. In this process, it
can be helpful to also compare the inversion results to the true localized average difference,

Localized Average Difference ≡
∫
K)

δû
û

dx, (4.4)

where K is the averaging kernel for a given target radius. This allows us to separate errors
due to a poor averaging kernel or a large cross-term from those due to the underlying kernel
errors. As structure inversions depend on the set of modes observed and their uncertain-
ties, for each reference model we adopt a set of modes from an observed star with similar
properties.

4.3. Main-Sequence Stars
Before examining the behavior of structure kernels on the subgiant branch, we first explore
the kernel behavior for a star on the main sequence. For this, we constructed a grid of models
using the stellar evolution code MESA (Paxton et al., 2011b, 2013b, 2015b, 2019b; Jermyn
et al., 2023b). We varied only the mass and age of the models, keeping everything else
(composition, mixing length, other input physics) constant. The masses we consider range
from 1.05 to 1.15 M⊙. For each evolutionary track, we saved models every 5 × 105 yr while
the frequency of maximum power (νmax, calculated using scaling relations) was between
2520 and 2250 µHz. We then used the GYRE oscillation code (Townsend and Teitler, 2013)
to calculate the adiabatic eigenfrequencies and eigenfunctions. These were in turn then used
to calculate the û,Y structure kernels.

4.3.1. Kernel Errors
In order to understand how the kernel errors vary across our grid, we take the model at the
center of our grid (M = 1.1 M⊙, νmax = 2205 µHz) as our reference model. For the 13 radial
orders with frequencies closest to νmax, we calculate the kernel error between our reference
model and every model in the grid using Equation 4.2. Figure 4.1 shows our results for
the central radial order as a function of the large frequency separation ∆ν, which is a proxy
for the stellar age. In this figure, the color shows the kernel error divided by σ = 10−4,
which corresponds to the typical uncertainty of the relative frequency differences (Davies
et al., 2016; Lund et al., 2017). Here we see that a large part of the parameter space has
kernel errors that are below the observational uncertainties. The largest differences occur
with models that are lower in mass and lower in ∆ν (and therefore older) than our reference
model. While Figure 4.1 shows only one radial order, we obtain similar results for all 13
radial orders we explored. This is due to the pure acoustic nature of all the modes and the
fact that the eigenfunctions of acoustic modes remain fairly constant across evolution and
different masses.
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Figure 4.1: Contour plots of the kernel errors, scaled by a representative uncertainty (σ = 10−4), of
a main sequence star for the modes with frequencies nearest νmax. The x-axis, which shows ∆ν as
a proxy for stellar age, is reversed so that a model of a given mass evolves horizontally from left to
right through the plot. The point in the center of the plot shows the location of the reference model
used and the error bars represent the typical uncertainties in mass and ∆ν, taken from Lund et al.
(2017). The uncertainty of ∆ν is smaller than the point size.

4.3.2. OLA Inversions
Individual mode kernels are necessary for structure inversions, however, the final result is
obtained through a linear combination of frequency differences. Thus, it is important to
understand how these kernel errors propagate through an inversion. For this, we perform a
set of model-model inversions using four different test models. Two test models are taken
from the grid used to calculate the kernel errors, the model with the largest average kernel
error (5.4σ) and one with a small average kernel error (1.3σ). For the third test model, we
keep the same mass and ∆ν but vary the initial composition such that the surface value of
[Fe/H] is 0.1 dex higher, which is the typical uncertainty of spectroscopic [Fe/H] determina-
tions of this type of star (e.g., Mathur et al., 2017; Furlan et al., 2018). The final test model
was constructed with the same metallicity as the reference model but with the individual
metal fractions scaled to the Asplund et al. (2009) abundance measurements instead of the
Grevesse and Sauval (1998) scaling used in the reference model. This model also uses high-
temperature opacity tables from OP (Seaton, 2005) instead of OPAL (Iglesias and Rogers,
1993, 1996). The properties of all models used in our test inversions are given in Table 4.1.

For our inversions, we adopt the observed mode set and uncertainties of 16 Cyg A from
Roxburgh (2017). We use this mode set because 16 Cyg A has a similar mass and νmax as
our reference model. This mode set also represents a best-case scenario due to the large
number of modes observed, including ℓ = 3 modes, and the low uncertainties of the mea-
sured frequencies. In Figure 4.2 we show the results of these test inversions as well as the
frequency differences and kernel errors between our reference and test models.

In all cases, we find that our inversions perform well, with the inversion results closely
matching both the true structure differences and the localized average difference. This is in
line with previous work on solar inversions (Basu et al., 2000). Somewhat surprisingly, even
the inversions using a test model with very high average kernel errors recover the correct
differences. We attribute this to the fact that the kernel errors are roughly constant across
different modes, and thus the linear combination formed during the inversion procedure acts
to suppress the total error. We discuss this in more detail in Appendix D.1.

From these tests, we conclude that the range of linearity for structure inversions on the
main sequence is quite broad. This is due to two factors. First, the stability of p-mode
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Table 4.1: Properties of models used for main-sequence test inversions

Model M/M⊙ ∆ν/µHz [Fe/H] Xc Change
Reference Model 1.1 104.42 0.1 0.107 · · ·

High Kernel Error 1.05 103.5 0.1 0.015 Different M and ∆ν
Low Kernel Error 1.093 103.23 0.1 0.065 Different M and ∆ν
Different Z 1.1 105.02 0.2 0.041 Composition
A09 Composition 1.1 104.36 0.1 0.079 Metallicity fraction and opacity table source
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Figure 4.2: Results of several model-model test inversions. In all cases, the same reference model
and inversion parameters were used, and only the test model was varied. The properties of each test
model are given in Table 4.1. The first row shows the inversion results, the colored line represents
the true difference in û and the black points are the inversion results. The vertical error bars show
the uncertainty calculated using Equation 1.63. The horizontal error bars represent the FWHM of
the averaging kernel. The insets zoom into the region where inversions are sensitive. The insets also
show the localized average difference as defined in Equation 4.4 as gray points. The second row
shows the relative dimensionless frequency differences between the two models. The last row shows
the kernel error of each mode. In the bottom two rows, the symbol used indicates the spherical degree
of the mode with squares (triangles, diamonds, circles) representing ℓ = 0 (1,2,3). In all cases, the
inversions yield accurate inferences of the internal stellar structure, even in the case of high kernel
error.
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Figure 4.3: Contour plots of kernel errors for several radial modes of our subgiant grid. The reference
model is indicated with a black point and the error bars correspond to the uncertainty of mass and ∆ν
of µHer given in Grundahl et al. (2017). We also show, in the bottom row, the mode kernels of our
reference model and several other models, indicated in the top row with colored points and numbers.
The red vertical shading indicates the strength of nuclear burning in the hydrogen-burning shell of
the reference model.

kernels across varying masses, ages, and compositions means that there is a large range of
the parameter space with intrinsically low kernel errors. Secondly, the kernel errors across
different modes behave similarly, meaning that the overall effect of these errors is suppressed
by the structure inversion procedure.

4.4. Subgiant Stars
Having established the reliability of structure inversions of main-sequence solar-like oscil-
lators, we now turn to stars on the subgiant branch. For this we keep the same mass values
as our main-sequence grid, however now we examine more evolved models with νmax in
the range 1282 and 1150 µHz. Again we use the model at the center of our grid (1.1 M⊙,
νmax = 1216 µHz) as our reference model.

4.4.1. Kernel Errors
We repeat the same procedure to calculate the kernel errors of ℓ = 0, 1, 2, 3 modes for 14
radial orders, centered around νmax,ref. In Figure 4.3, we show the results of several radial
modes across different radial orders. For these modes, the regime where the kernel errors are
less than our uncertainty is smaller than in the case of the main-sequence models. However,
it is still large enough that fitting the mass and ∆ν within 1σ returns a model with low kernel
errors. This is unsurprising, as the radial modes are purely acoustic and so benefit from
the same stability in the eigenfunctions as was seen in our main-sequence models. We do
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however find slightly larger differences at the edges of our grid, particularly in the lower
order modes. To better understand where these errors arise from, we also plot the mode
kernels of several different models from our grid in the lower panels of Figure 4.3.

Kernel errors arise when the mode kernel of the reference model no longer approximates
the mode kernel of the test model. Thus we would expect, and indeed find, that the test
models with the highest kernel errors (models 5 and 6) show the greatest difference between
the mode kernels of the test and reference models. There is some variation in the kernel
error contours across different radial orders. Most notably, the lower-order mode shows
negative kernel errors on the outer portions of the grid in contrast to the two higher-order
modes. This is explained by looking at the mode kernels. The mode kernel of the lower
order mode is positive below the hydrogen-burning shell and negative above it. The higher-
order modes show the opposite behavior. Across all radial orders, models that are within the
observational uncertainties of mass and ∆ν show small kernel errors for the radial modes.

The situation changes dramatically for the dipole modes, shown in Figure 4.4. When
discussing the behavior of mixed modes, it is useful to know the mode character, or how
p- or g-dominated the mixed mode is. To visualize this, Figure 4.4 also shows the acoustic
mode inertia. This quantity is defined as

Ep

E
=

∫
p-cavity

[
ξ2 + ℓ(ℓ + 1)η2

]
ρr2dr∫ R

0

[
ξ2 + ℓ(ℓ + 1)η2] ρr2 dr

, (4.5)

where ξ and η are the radial and horizontal components of the eigenfunction, respectively,
and the integral in the numerator is evaluated only over the acoustic cavity1. A value of
Ep/E close to 1 corresponds to a mixed mode that is strongly p-dominated and, conversely,
a value of Ep/E close to 0 corresponds to a mode that is strongly g-dominated. We also
show, in Figure 4.4, the mode kernels of several models within the grid.

For these dipole modes, we see several different ways that the kernel errors change over
the parameter space. The easiest of these to explain are the highest-order modes, which
behave in a manner that is similar to the radial modes. This is expected as these modes have
not yet experienced an avoided crossing at any point in the parameter space and so fully
retain their acoustic character.

For the mixed dipole modes, the most important feature of the kernels is the amplitude
of the two peaks in the near-core region. As a mode evolves through an avoided crossing
the amplitudes of these two peaks increase as the mode becomes more g-dominated, and
hence more sensitive to the core. This is why the regions of linearity lie along lines of con-
stant acoustic inertia. At the beginning and end of the avoided crossing the mode character
changes slower than in the middle, which results in narrower regions of linearity for modes
that are strongly g-dominated in the reference model, i.e., n = 10. The sign of the kernel
error depends on both the kernel amplitude and the structure differences. The kernel errors
of higher degree modes (ℓ = 2, 3) show similar behavior to the dipole modes, we discuss
them in more detail in Appendix D.2. We also discuss in this appendix the singularity in the
equations used to obtain the u,Y kernels noted in Bellinger et al. (2021, Appendix A).
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Figure 4.4: Left column: same as the top row of Figure 4.1 but for several dipole modes of the
subgiant star. We indicate the radial order of each mode. This is the value reported in GYRE as
n pg and is defined using the Eckart-Scuflaire-Osaki-Takata scheme (Takata, 2006). Center column:
Mode inertia of the p-mode cavity, which indicates the mode character of the mixed mode. Right
column: mode kernels of our reference model and several other models indicated in the left column
with colored points and numbers. The red vertical shading indicates the strength of nuclear burning
in the hydrogen-burning shell of the reference model.
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Table 4.2: Properties of models used for subgiant test inversions

Model M/M⊙ ∆ν/µHz [Fe/H] ρc/g· cm−3 Change
Reference Model 1.1 66.45 0.1 1467 · · ·

Match Less Mixed Modes 1.091 66.47 0.1 1580 Different M and ∆ν
Match g-dominated Dipole Modes 1.101 66.55 0.1 1446 Different ∆ν
Different Z 1.1 66.37 0.12 1571 Composition
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Figure 4.5: Results of several model-model test inversions for the subgiant case. In all cases, the
same reference model and inversion parameters were used, and only the test model was varied. The
properties of each test model are given in Table 4.2. The first row shows the inversion results, the
colored line represents the true difference in û and the black points are the inversion results. The insets
zoom into the region where inversions are sensitive and also show the localized average difference as
gray diamonds. The second row shows the relative dimensionless frequency differences between the
two models. The last row shows the kernel error of each mode. The symbols indicate the spherical
degree of the mode in the last two rows as in Figure 4.2. In the fourth column, we also show the
frequency échelle diagram of all models. The reference model is plotted in open black points and the
test models are shown with filled symbols according to the color used in the other columns.
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4.4.2. OLA Inversions
Clearly, the magnitude and morphology of kernel errors on the subgiant branch differ sig-
nificantly from that of the main-sequence cases. We now seek to explore how these errors
propagate through a set of inversions. Again, we select a set of test models, whose param-
eters are given in Table 4.2. We show the frequency échelle diagram of all models and the
results of our test inversions in Figure 4.5.

For these test models, we searched for cases where the agreement in the frequencies
between our test and reference models are qualitatively similar to other best-fit subgiant
models found in the literature (Noll et al., 2021; Bellinger et al., 2021; Lindsay et al., 2024).
Note that the models selected as test models are not those used to show the variation of mode
kernels in Figures 4.3 and 4.4.

We take two of our three test models from the grid used to calculate kernel errors. The
first was chosen to resemble the quality of the fit shown in Noll et al. (2021) and Lindsay
et al. (2024). This test model closely matches the radial mode frequencies, as well as many
of the quadrupole and octopole modes, but has quite large differences in the mixed dipole
modes. The second test model was chosen to resemble the quality of fit shown in Bellinger
et al. (2021), where the frequencies of the most mixed dipole modes are matched much better
than the less mixed dipole modes. The third test model was constructed with the same mass
as the reference model but with a different composition. No other physics was changed and
the ∆ν value is similar to the reference model. In all cases, our test models are very close in
mass (±0.01M⊙), well within the typical uncertainties of subgiant mass determinations.

For these inversions, we adopt the observed mode set and uncertainties of µHer obtained
using a recent release of SONG data (Kjelsen et al., in prep). The long observation baseline
of the SONG project (Grundahl et al., 2007) results in a very large number of modes iden-
tified with very small uncertainties. Thus, as with the mode set used in our main-sequence
tests, this represents the best-case scenario for structure inversions given current observa-
tions.

In one case (Match g-dominated Dipole Modes), we are able to recover the known dif-
ferences within the uncertainties of the inversion. However, this represents an extremely
optimistic quality of fit between the reference model and the test model. In the remaining
two cases, our test inversions are unable to recover the true differences between models.
This is not due to the quality of the averaging kernels as our localized averaged differences
are in agreement with the known differences. In contrast to the main-sequence cases, the
high kernel errors are not suppressed by the inversion. This is because the kernel errors can
vary significantly between different modes, see Appendix D.1 for more details.

4.5. Conclusions
In this work, we have explored the reliability of linear structure inversions for solar-like
oscillators on the main sequence and subgiant branch. Using a grid of stellar models for
each evolutionary stage, we calculated the kernel errors between a reference model and each
model within our grid. To understand how these kernel errors propagate through an inversion
we also performed inversions between our reference model and several test models. For
our main sequence models, we found that the kernel errors were low across much of the

1This is the region of the star where S 2
ℓ > ω

2. Where S ℓ = ℓ(ℓ+1)c2/r2 is the Lamb frequency and ω = 2πν
is the angular frequency.
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parameter space. Our main sequence test inversions showed that even in cases with larger
kernel errors, the inversions return reliable results.

On the subgiant branch, where non-radial modes can exhibit a mixed acoustic-buoyancy
nature, the picture is quite different. Here we found that the part of the parameter space
where kernel errors are lower than observational uncertainties is much smaller, particularly
for g-dominated mixed modes. This causes our test inversions to return erroneous values,
even in cases where the global parameters (mass, ∆ν, [Fe/H]) of the test model are well
within the observational uncertainties of the reference model.
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4.5 Conclusions

As the errors in the subgiant structure inversions are primarily due to large kernel errors
in a few modes (see Appendix D.1), it may be possible to perform inversions with these
modes removed from the mode set and recover the correct result. However, it remains
unclear how to determine the modes that should be removed based only on observations.
One could consider removing modes based on the frequency difference between the model
and observations, but this approach has several problems. First, the correlation between the
frequency difference and the kernel error is, at best, only moderate. As an example, the
Spearman correlation coefficient between the non-radial frequency differences and kernel
errors of the models used in our inversion tests ranges from 0.03 to 0.5, which corresponds
to a negligible to moderate correlation. The second problem is that removing modes from
the mode set also removes information from the inversion, and thereby reduces the quality
of the averaging kernel which can be constructed.

Future work on probing the interior structure of subgiant stars will likely require im-
provements to the forward modeling procedure and modifications to existing inversion tech-
niques. On the modeling side, future model efforts should focus on developing fitting meth-
ods that prioritize matching the most g-dominated modes, as this test model provided the
most reliable inversion results. Additionally, focusing on these modes specifically should
lead to a better understanding of the conditions around the hydrogen-burning shell, regard-
less of whether these models are used for structure inversions.

At the same time, it is clearly necessary to expand asteroseismic inversion techniques
beyond those originally developed to study the Sun. This need has already been noted
by Vanlaer et al. (2023) who explored the application of structure inversions to stars that
oscillate in pure g-modes. Several works (Giammichele et al., 2018; Farrell et al., 2024)
have proposed non-linear inversions, which iteratively perturb a static model and solve the
full oscillation equations, thereby including non-linear effects not accounted for in the linear
variational approach explored in this work. Alternatively, the variational approach could be
expanded to account for higher-order terms.
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5
Conclusions and Outlook

In this section, I discuss what I have achieved with the work presented in this thesis and
the next steps, particularly in the context of the upcoming PLATO mission (Rauer et al.,
2014). This mission is expected to launch at the end of 2026 and will obtain light curves
for more than 100,000 dwarf and subgiant stars (Rauer et al., 2024). Even if only 1% of
these stars have data quality high enough to be studied with structure inversions, this is still
a substantial increase of inversion targets.

5.1. Main-sequence Solar-like Oscillators
In Chapters 2 and 3, I presented structure inversion results for 55 main-sequence solar-like
oscillators. These inversions represent an 11-fold increase in the number of main-sequence
stars studied with structure inversions. Together, the results of these two works reveal that
around half of the stars where inversions were possible showed significant structure differ-
ences between the observed star and its best-fit model. In terms of potential improvements
to stellar modeling, the work presented here should be considered to be a proof-of-concept,
rather than proposing any definitive conclusions. The stars studied in Chapter 2 showed
a correlation between the significance of the inferred structure differences and the amount
of energy generated by the CNO cycle. However, the larger sample explored in Chapter 3
showed no strong correlations between the significance of inversion results and various stel-
lar properties. Both chapters explored several changes to the physics of the models. Unfor-
tunately, no change that I tested resulted in structure differences that were larger than the
uncertainty of the inversion results.

Drawing clearer conclusions on improving stellar models will require increasing the
number of stars studied and the breadth of physical changes explored. Potential changes to
the physics used in stellar modeling that could be studied with inversions include but are not
limited to, improved nuclear reaction rates, updated radiative opacity values, using actual
metal abundances rather than scaling the solar values, better treatment of star formation,
improved descriptions of convection and convective boundaries, and including additional
mixing processes such as radiative levitation or rotational mixing. Even with tests of more
sophisticated physical changes, it will be difficult to draw firm conclusions based only on
the 55 stars studied here. While it may be possible to increase the sample of inversion
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candidates slightly using Kepler targets not included in Davies et al. (2016) and Lund et al.
(2017), a significant increase in the number of target stars for structure inversions will need
to wait for data from PLATO.

In the meantime, it is important to develop pipelines to automate the modeling and in-
version procedures. For the modeling procedure, this process is already underway (Cunha
et al., 2021; Gent et al., 2022). A challenge around automating structure inversions is choos-
ing suitable inversion parameters. The parameters that form suitable averaging kernels will
vary as each star has a different set of observed modes with different uncertainties, which
has a significant impact on the quality of an averaging kernel given a fixed value of inversion
parameters.

The method I developed to obtain inversion parameters, described in Chapter 2, is a step
towards automating this procedure. However, this process still requires manual inspection
of the resulting averaging kernels. This was not a problem for the approximately 100 stars
I examined. As the number increases into the thousands, however, manual inspection be-
comes more of a problem. For inversions of global properties, there is already some work
on developing automated tests of inversion quality (Bétrisey et al., 2024). This work should
be extended to the localized structure inversions, like those presented in this thesis.

In addition to automating the process of obtaining a stellar model and performing a
structure inversion. It is also important to develop the tools necessary to interpret inversion
results across a larger set of stars. Chapters 2 and 3 show a variety of shapes in the structure
differences inferred by inversions. It seems inevitable that changes to the modeling physics
will improve the inversion results of some stars while worsening the inversion results of
other stars. Thus, care should be taken to ensure that any proposed changes consistently
improve the entire sample. Additionally, when possible, these changes should be tested with
other methods and for other types of stars. Due to the large number of models that must be
calculated for such work, as well as the computational cost of finding a best-fit model across
such a large grid, this may be a good application for machine learning techniques.

5.2. Evolved Solar-like Oscillators
The presence of mixed modes in the oscillation spectra of more evolved subgiant and red
giant stars makes them an appealing target for structure inversions. Data from Kepler has
yielded dozens of subgiant stars (Li et al., 2020) where individual mode frequencies can be
identified. These mixed modes have the potential to probe deeper into the stellar core than
is possible for main-sequence stars. However, it is important to verify that the assumptions
made by the process of a structure inversion are still valid in this new regime. The work
presented in Chapter 4 represents the first step in this process. I found that the sensitivity
of the mixed modes evolves so quickly that it is difficult to trust that the mode kernels of a
given model accurately represent the sensitivity of the observed modes.

Efforts should be made to develop fitting techniques that ensure that reference models
match the character of the observed modes, similar to the approach presented in Ahlborn
et al. (2025). At the same time, it is important to develop new inversion techniques that
do not require such a close match between the star and the model. In this, there is poten-
tial synergy with ongoing work attempting to find inversion techniques suitable for g-mode
pulsators, as the challenges in this field (see Vanlaer et al., 2023) resemble the challenges
presented in Chapter 4.
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Figure 5.1: Comparison of mode kernels across different evolutionary stages. Each mode kernel
is plotted along a horizontal line with the color indicating the kernel amplitude normalized by its
maximum value. The colored vertical lines on the right of each panel indicate modes of spherical
degree with blue (black, orange, red) indicating ℓ = 0 (1, 2, 3), respectively. Note that the right panel
is plotted with the fractional radius on a logarithmic scale to better visualize the kernel structure
in the deep core. The dashed lines in the subgiant and early red giant panels indicate the point of
maximum energy generation in the hydrogen-burning shell.

On the red giant branch, additional complications arise due to the many mixed modes
that are expected per acoustic radial order. This increases the difficulty as one needs to
ensure that the observed modes are being properly matched to the model modes and that
the surface effect is being treated properly. These challenges are already present at the
forward modeling stage. For structure inversions of red giants, it may also be difficult to
construct well-localized averaging kernels due to the sensitivity of the observed modes.
Figure 5.1 summarizes the sensitivity of expected mode sets for three different evolutionary
stages. The modes from the main-sequence and subgiant models are sensitive to a variety of
locations within the star. In contrast, the non-radial modes of the early red giant model are
all strongly sensitive to the same fractional radius. While the radial modes are sensitive to
different locations, this sensitivity is likely to be completely overwhelmed by the non-radial
modes. Thus, structure inversions of red giant branch stars may require not only non-linear
techniques but also a different approach to the localization of inversions.

Overall, asteroseismic structure inversions, for stars where current methods are valid,
remain one of the most powerful methods of testing stellar evolution theory. This is due
to the ability of structure inversions to localize and quantify disagreements between the
internal structure of stars and models. Currently, the applicability of these techniques is
limited to main-sequence solar-like oscillators where many individual modes were identified
by the Kepler mission, although this sample will expand due to upcoming missions like
PLATO. In terms of more evolved solar-like oscillators, the mixed modes present in their
oscillation spectra present the opportunity to probe the deep core. However, fully utilizing
the information from these more evolved stars will require inversion techniques that evolve
beyond those used to study the Sun.
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A
Appendix for Chapter 1: Context and
Background

A.1. Derivation of Kernels

Here I provide a detailed derivation of structure kernels for three variable pairs: (c2, ρ),
(Γ1, ρ), and (u,Y). Using the time dependence of the oscillations, the perturbed equation of
motion, Equation 1.22 is

ω2ρξ = ∇P′ + ρ∇Φ′ + ρ′∇Φ. (A.1)

This equation can be written in a Hilbert space as

ω2 |ξ⟩ = L |ξ⟩ , (A.2)

with L defined as

L =
1
ρ

(
∇P′ + ρ∇Φ′ + ρ′∇Φ

)
. (A.3)

The inner product of this Hilbert space is defined as

⟨η|ξ⟩ =

∫
V
ρ η∗ · ξ d3r. (A.4)

If the boundary conditions at the surface are P(R) = ρ(R) = 0, thenL is a Hermitian operator
(Chandrasekhar, 1964) and therefore, the frequency is

ω2 ⟨ξ|ξ⟩ = ⟨ξ| L |ξ⟩ . (A.5)

This is the oscillation equation that will be perturbed to derive the structure kernels. The
structure kernels describe the response of a mode frequency to a linear perturbation in the
structure, represented with δ. The perturbed form of Equation A.5 is

(ω + δω)2( ⟨ξ|ξ⟩ + δ ⟨ξ|ξ⟩ ) = ⟨ξ| L |ξ⟩ + ⟨ξ| δL |ξ⟩ , (A.6)

where the δ ⟨ξ|ξ⟩ refers to the value that results from substituting in perturbations of the form
ρ → ρ + δρ to all relevant structure variables: ρ, c2, g, P,Φ′.The term ⟨ξ| δL |ξ⟩ is found in
the same way.
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Expanding Equation A.6 and keeping only terms that are linear in the perturbation yields

ω2δ ⟨ξ|ξ⟩ = 2ωδωS = ⟨ξ| δL |ξ⟩ , (A.7)

where

S = ⟨ξ|ξ⟩ =

∫ R

0

[
ξ2 + ℓ(ℓ + 1)η2

]
ρr2dr. (A.8)

The end goal of this derivation is to write Equation A.6 in the following form

δω

ω
=

∫
K( f1, f2) δ f1

f1
dr +

∫
K( f2, f1) δ f2

f2
dr, (A.9)

where f1 and f2 are two variables of stellar structure and K are the kernel functions. I begin
by deriving the c2, ρ kernels.

c2, ρ Kernels

Left-hand side

Starting with the left-hand side of Equation A.7, the first term to calculate is δ ⟨ξ|ξ⟩. Using
Equation A.4 and substituting in the structure perturbations yields

δ ⟨ξ|ξ⟩ =

∫
V

(ρ + δρ)ξ∗ · ξd3r =
∫

V
(ρ + δρ)

[
|ξ|2Y∗ℓmYℓm + |η|2∇⊥Y∗ℓm∇⊥Yℓm

]
d3r. (A.10)

Green’s first identity can be used to simplify the terms involving the angular part of the
gradient, ∇⊥. Noting that the surface term is 0, the second term becomes∫ R

0
(ρ+δρ)|η|2r2 dr

∫
S
∇⊥Y∗ℓm∇⊥YℓmdΩ =

∫ R

0
(ρ+δρ)|η|2r2 dr

[
−

∫
S

Y∗ℓm∇
2YℓmdΩ

]
. (A.11)

Since the spherical harmonics are eigenfunctions of the spherical Laplace operator this re-
duces to ∫ R

0
(ρ + δρ)|η|2r2dr

∫
Ω

ℓ(ℓ + 1)|Yℓm|2dΩ. (A.12)

All of the angular integration contained in the perturbed oscillation equation will reduce
to

∫
Ω
|Yℓm|2dΩ. This reduces to the normalization constant which depends on the spherical

harmonics convention being used. Here, I use the following convention
∫
Ω
|Yℓm|2dΩ = 1 so

that Equation A.10 becomes

δ ⟨ξ|ξ⟩ =

∫ R

0
ρ(|ξ|2 + ℓ(ℓ + 1)|η|2)r2dr +

∫ R

0
δρ|ξ|2 + ℓ(ℓ + 1)|η|2)r2dr (A.13)

With this, the left-hand side of Equation A.7 is

2ωδωS + ω2
∫ R

0
δρ|ξ|2 + ℓ(ℓ + 1)|η|2)r2dr︸                               ︷︷                               ︸

2

. (A.14)

To better track how each of these terms carries forward to the final equation for the K(ρ,c2)

kernel, I have numbered them based on the order they appear in the final equation.
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Right-hand side

Before perturbing ⟨ξ| L |ξ⟩ it is useful to write it in a slightly different form. Beginning first
with the form derived above:

⟨ξ| L |ξ⟩ =

∫
V
ξ∗ ·

(
∇P′ + ρ∇Φ′ + ρ′∇Φ

)
dV. (A.15)

Using integration by parts on the first term and dropping the surface term under the assump-
tion that ρ(R) = 0 gives ∫

V

[
−P′∇ · ξ∗ + ξ∗ · ρ∇Φ′ + ξ∗ · ρ′∇Φ

]
dV. (A.16)

Substituting in −P′ = c2ρ∇ · ξ + ξ · ∇P and using the equilibrium equation of motion,
∇Φ = −∇P/ρ, leads to∫

V

[
c2ρ|∇ · ξ|2 + (ξ · ∇P)(∇ · ξ∗) − ξ∗ ·

ρ′

ρ
∇P + ξ∗ · ρ∇Φ′

]
dV. (A.17)

The next substitution is to use −ρ′ = ∇ · (ρξ) = ρ∇ · ξ + ξ · ∇ρ which gives∫
V

[
c2ρ|∇ · ξ|2 + (ξ · ∇P)(∇ · ξ∗) + (∇ · ξ)(ξ∗ · ∇P) +

1
ρ

(ξ · ∇ρ)(ξ∗ · ∇P) + ξ∗ · ρ∇Φ′
]

dV.

(A.18)
The second and third terms are complex conjugates of each other and so this expression
reduces to

∫
V

[ I︷     ︸︸     ︷
c2ρ|∇ · ξ|2 +

II︷                    ︸︸                    ︷
2Re((ξ∗ · ∇P)(∇ · ξ))+

III︷                   ︸︸                   ︷
ρ−1(ξ · ∇ρ)(ξ∗ · ∇P)+

IV︷     ︸︸     ︷
ξ∗ · ρ∇Φ′

]
dV. (A.19)

To find the perturbed form of this expression, I will discuss the perturbations of the individ-
ual terms marked by the Roman numerals separately.

Term 0 Before proceeding it is useful to evaluate one quantity that will come up repeat-
edly in the following discussion, the divergence ∇ · ξ. Taking the divergence in spherical
coordinates results in

∇ · ξ =
1
r2

∂

∂r
(r2ξYℓm) +

1
r sin θ

∂

∂θ

(
sin θη

∂

∂θ
Yℓm

)
+

1
r sin θ

∂

∂ϕ

(
η

sin θ
∂

∂ϕ
Yℓm

)
. (A.20)

The angular terms in the above expression can be reduced to the Laplacian of the spherical
harmonics, resulting in

∇ · ξ = Yℓm

[
2
r
ξ +

∂ξ

∂r
−
ℓ(ℓ + 1)η

r

]
= χYℓm, (A.21)

where
χ =

2
r
ξ +

∂ξ

∂r
−
ℓ(ℓ + 1)η

r
. (A.22)
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Term I Term I in Equation A.19 is the most straightforward to perturb,∫
V

c2ρ|∇ · ξ|2dV →
∫

V
(ρ + δρ)(c2 + δc2)|∇ · ξ|2dV. (A.23)

Keeping only the terms that are linear in the perturbed quantities, and integrating over the
angular components yields ∫ R

0

[
δρc2χ2r2︸    ︷︷    ︸

1

+ ρδc2χ2r2︸    ︷︷    ︸
Kc2 ,ρ

]
dr. (A.24)

The second term in this expression is the only term that will depend on δc2 and so is the only
term in the Kc2,ρ kernel.

Term II Turning to term II in Equation A.19,∫
V

2Re((ξ∗ · ∇P)(χYℓm))dV. (A.25)

Evaluating the dot product, integrating over the angular components, perturbing, and keep-
ing only linear perturbation terms results in

2
∫ R

0
ξχ
∂δP
∂r

r2dr. (A.26)

The partial derivative in this equation can be evaluated using the by perturbing the equilib-
rium equation of motion:

∂P
∂r
= −ρg→

∂δP
∂r
= −gδρ − ρδg. (A.27)

Similarly, the definition of g can be used to determine δg:

g =
4πG
r2

∫ r

0
ρ(s)s2ds→ δg =

4πG
r2

∫ r

0
δρ(s)s2ds. (A.28)

Using both of these substitutions gives

−2
∫ R

0
ξχgδρr2 dr − 8πG

∫ r=R

r=0

[
ξ(r)χ(r)ρ(r)

∫ s=r

s=0
δρ(s)s2 ds

]
dr, (A.29)

where the variable that each value is integrated as a function of, either r or s, is written out
explicitly. To match the form of Equation A.9, the perturbation (δρ) needs to be integrated
over the whole star. To get this form first, the limits and order of the two integrals must be
swapped. Originally they are 0 < s < r and 0 < r < R but this range is the same as 0 < s < R
and s < r < R and so the term can be rewritten as∫ R

s=0

∫ R

r=s
ξ(r)χ(r)ρ(r)s2δρ(s) dr ds. (A.30)

To match the notation of the other terms in the kernel the variables of integration can be
swapped so that r is the variable integrated over the whole star. This term then becomes

−8πG
∫ R

0
r2δρ(r)

∫ R

r
ξ(s)ρ(s)χ(s) ds dr, (A.31)

which matches the desired form of the kernel. Term II is then∫ R

0
−2ξχgδρr2dr︸          ︷︷          ︸

3

− 2(4πG)
∫ R

0

[
r2δρ(r)

∫ R

r
ξ(s)ρ(s)χ(s) ds

]
dr︸                                                   ︷︷                                                   ︸

4a

. (A.32)
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Term III Using the spherical symmetry of the problem, term III of Equation A.19 be-
comes ∫

V
ρ−1(ξ · ∇ρ)(ξ∗ · ∇P)dV =

∫
V
ρ−1

(
ξY∗ℓm

∂P
∂r

) (
ξYℓm

∂ρ

∂r

)
dV. (A.33)

Evaluating the angular integral leaves∫ R

0
ρ−1ξ2∂P

∂r
∂ρ

∂r
r2dr. (A.34)

To find the perturbed form of this equation note that

1
ρ + δρ

≈
1
ρ
−
δρ

ρ2 . (A.35)

Using this, the perturbed form of this equation is∫ R

0
ξ2r2

(
1
ρ

∂δP
∂r

∂ρ

∂r
+

1
ρ

∂P
∂r

∂δρ

∂r
−
δρ

ρ2

∂P
∂r

∂ρ

∂r

)
dr. (A.36)

The second and third terms, together, are equivalent to ∂P
∂r

∂
∂r

(
δρ

ρ

)
. Substituting in ∂P

∂r and ∂δP
∂r

from Equation A.27 results in∫ R

0
ξ2r2

(
−
∂ρ

∂r

(
g
δρ

ρ
+ δg

)
− gρ

∂

∂r

(
δρ

ρ

))
dr. (A.37)

The δg term can be treated as in Equations A.28–A.31. The two remaining terms of Equa-
tion A.37 are ∫ R

0

[
−ξ2r2g

δρ

ρ

∂ρ

∂r
− ξ2gρr2 ∂

∂r

(
δρ

ρ

)]
dr. (A.38)

Using integration by parts (and again dropping the surface term) on the first term of Equa-
tion A.38 results in∫ R

0

[
ρ

(
2ξgr2 δρ

ρ

∂ξ

∂r
+ 2ξ2rg

δρ

ρ
+ ξ2r2 δρ

ρ

∂g

∂r
+ ξ2r2g

∂

∂r

(
δρ

ρ

))
− ξ2r2gρ

∂

∂r

(
δρ

ρ

)]
dr. (A.39)

The final two terms cancel out, leaving∫ R

0

[
2ξgδρr2∂ξ

∂r
+ ξ2δρ

(
2rg + r2∂g

∂r

)]
dr. (A.40)

Using the definition of gravitational potential, the term in parenthesis in Equation A.40 is

∂

∂r
(r2g) =

∂

∂r

(
r2 ∂

∂r
Φ

)
= r2∇2Φ = 4πr2Gρ. (A.41)

Putting everything together, term III of Equation A.19 is∫ R

0
2ξgδρr2∂ξ

∂r︸             ︷︷             ︸
5

dr +
∫ R

0
ξ2δρ4πGρr2︸        ︷︷        ︸

6

dr − 4πG
∫ R

0

[
δρr2

∫ R

r

∂ρ

∂s
ξ2 ds

]
dr︸                                  ︷︷                                  ︸

4b

. (A.42)
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Term IV Beginning with term IV of Equation A.19 and integrating by parts yields,∫
V
ρξ∗ · ∇Φ′dV = −

∫
V
Φ′∇ · (ρξ∗), (A.43)

where again the surface term is zero. The structure perturbation must be applied to both ρ
and Φ′. Keeping only the linear terms results in

−

∫
V

[
δΦ′∇ · (ρξ∗) + Φ′∇ · (δρξ∗)

]
dV. (A.44)

Focusing initially on the first term of Equation A.44 and substituting in δΦ′ found from
Poisson’s equation gives

G
∫

V

∫
V

∇′ · (δρξ)∇ · (ρξ∗)
|r − x′|

dV ′ dV, (A.45)

where the primed divergence and variable of integration refers to the integral necessary to
find Φ′. The primed and unprimed coordinates can be swapped to give

G
∫

V

∫
V

∇ · (δρξ)∇′ · (ρξ∗)
|r′ − x|

dV dV ′ (A.46)

Now the integral over the primed coordinates equals Φ∗
′

and so the whole of Equation A.44
can be written as

−

∫
V

[
Φ∗

′

∇ · (δρξ) + Φ′∇ · (δρξ∗)
]

dV. (A.47)

Because the two terms are complex conjugates of each other this term can be rewritten as

−2Re
[∫

V
Φ′∇ · (δρξ∗)dV

]
. (A.48)

Using the spherical symmetry of the problem Φ′ = ψ′Yℓm where ψ′ can be found using
Green’s functions. This term then becomes

−2Re
[∫

V
ψ′Yℓm

(
δρχY∗ℓm + ξY

∗
ℓm
∂δρ

∂r

)
dV

]
. (A.49)

Integrating over the angular coordinates results in

−2
∫ R

0
ψ′

(
δρχ + ξ

∂δρ

∂r

)
r2dr. (A.50)

Integrating by parts over the second term and inserting the definition of χ yields

2
∫ R

0
δρ

[
ℓ(ℓ + 1)η

r
+
∂ψ′

∂r
ξ

]
r2dr︸                                     ︷︷                                     ︸

7

. (A.51)
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Complete kernel expressions

With all of the terms expressed in the correct form, Equation A.7 becomes

2ωδωS+ω2
∫ R

0
δρ|ξ|2 + ℓ(ℓ + 1)|η|2)r2dr︸                               ︷︷                               ︸

2

=

∫ R

0
δρc2χ2r2︸    ︷︷    ︸

1

+ ρδc2χ2r2︸    ︷︷    ︸
Kc2 ,ρ

dr

+

∫ R

0
−2ξχgδρr2dr︸          ︷︷          ︸

3

− 8πG
∫ R

0

[
r2δρ(r)

∫ R

r
ξ(s)ρ(s)χ(s) ds

]
dr︸                                                ︷︷                                                ︸

4a

+

∫ R

0

2ξgδρr2∂ξ

∂r︸       ︷︷       ︸
5

+ ξ2δρ4πGρ︸      ︷︷      ︸
6

 dr

− 4πG
∫ R

0

[
δρr2

∫ R

r

∂ρ

∂s
ξ2 ds

]
dr︸                                   ︷︷                                   ︸

4b

+ 2
∫ R

0
δρ

[
ℓ(ℓ + 1)η

r
+
∂ψ′

∂r
ξ

]
r2dr︸                                     ︷︷                                     ︸

7

.

(A.52)

Combining everything into the desired form results in

δω

ω
=

∫ R

0
Kc2,ρ δc

2

c2 + Kρ,c2 δρ

ρ
dr, (A.53)

where
K(c2,ρ) =

1
2ω2S

(
ρc2χ2r2

)
, (A.54)

and

Kρ,c2
=

1
2ω2S

{
ρc2χ2r2 − ω2ρ

(
|ξ|2 + ℓ(ℓ + 1)|η|2)r2

)
− 2ξχgρr2 − 4πGr2ρ

∫ R

r

(
2ξρχ +

∂ρ

∂s
ξ2

)
ds

+ 2ξgρr2∂ξ

∂r
+ ξ24πGρ2 + 2ρr2

[
ℓ(ℓ + 1)ηψ′

r
+
∂ψ′

∂r
ξ

] }
.

(A.55)
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A.1.1. Γ1, ρ Kernels
The structure kernels of one pair of variables can be used to find kernels for other struc-
ture variable pairs. Since the frequency differences are the same regardless of the structure
kernels used to find them,

δω

ω
=

∫
K( f1, f2) δ f1

f1
+ K( f2, f1) δ f2

f2
dr =

∫
K( f3, f4) δ f3

f3
+ K( f4, f3) δ f4

f4
dr. (A.56)

As an example, the c2, ρ kernels derived in the previous section can be used to find the
kernels for the Γ1, ρ variable pair. Expressing c2 in terms of the other variables

c2 =
Γ1P
ρ
→ c2 + δc2 =

(Γ1 + δΓ1)(P + δP)
ρ + δρ

. (A.57)

Using Equation A.35 and keeping only terms linear in the perturbation results in

δc2

c2 =
δΓ1

Γ1
+
δP
P
−
δρ

ρ
. (A.58)

This expression can be used to find the Γ1, ρ kennels in terms of the c2, ρ kernels. Equa-
tion A.56 then becomes∫

K(Γ1,ρ) δΓ1

Γ1
+ K(ρ,Γ1) δρ

ρ
dr =

∫
K(c2,ρ) δc

2

c2 + K(ρ,c2) δρ

ρ
dr. (A.59)

Using the expression found above for δc2

c2 this becomes∫
K(c2,ρ)

[
δΓ1

Γ1
+
δP
P
−
δρ

ρ

]
+ K(ρ,c2) δρ

ρ
dr =

∫
K(Γ1,ρ) δΓ1

Γ1
+ K(ρ,Γ1) δρ

ρ
dr. (A.60)

A relationship between δP
P and δρ

ρ
can be found by integrating the equation of hydrostatic

support. The perturbed form of this results in

δP
P
=

1
P

∫ R

r
gδρ + ρδg ds =

∫ R

s=r

1
P

[
gδρ +

4πGρ
s2

∫ s

t=0
δρt2dt

]
ds, (A.61)

where the δg term is expressed in terms of δρ as in Equations A.28–A.31. Using this and
swapping the order of integration as before, Equation A.60 becomes∫

K(Γ1,ρ) δΓ1

Γ1
+ K(ρ,Γ1) δρ

ρ
dr =∫ R

r=0

K(ρ,c2) δρ

ρ
− K(c2,ρ) δρ

ρ
+ gδρ

∫ R

s=r

K(c2,ρ)

P
ds + r2δρ

∫ R

s=r

4πGρ
s2

∫ s

t=0

K(c2,ρ)

P
dt

 ds
 dr.

(A.62)

The new kernels are then
K(Γ1,ρ) = K(c2,ρ) (A.63)

and

K(ρ,Γ1) = K(ρ,c2) − K(c2,ρ) + gρ

∫ R

s=r

K(c2,ρ)

P
ds + r2ρ

∫ R

s=r

4πGρ
s2

∫ s

t=0

K(c2,ρ)

P
dt

 ds. (A.64)
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A.1 Derivation of Kernels

A.1.2. u,Y Kernels
The u,Y kernels, used throughout this thesis are derived in this section. The derivation of
the u,Y kernels from the Γ1, ρ kernels begins by noting that∫

K(Γ1,ρ) δΓ1

Γ1
+ K(ρ,Γ1) δρ

ρ
dr =

∫
K(u,Y) δu

u
+ K(Y,u)δYdr. (A.65)

The helium abundance Y is related to the other structure variables through the equation of
state. As Γ1 can be expressed as a function of P, ρ,Y through the equation of state, a small
change in Γ1 can be expressed as

δΓ1

Γ1
= Γ1,ρ

δρ

ρ
+ Γ1,P

δP
P
+ Γ1,YδY, (A.66)

where

Γ1,ρ =

(
∂ lnΓ1

∂ ln ρ

)
P,Y
, Γ1,P =

(
∂ lnΓ1

∂ ln P

)
ρ,Y
, Γ1,Y =

(
∂ lnΓ1

∂Y

)
ρ,P
. (A.67)

Substituting this into Equation A.65 results in∫
K(Γ1,ρ)

(
Γ1,ρ

δρ

ρ
+ Γ1,P

δP
P
+ Γ1,YδY

)
+ K(ρ,Γ1) δρ

ρ
dr =

∫
K(u,Y) δu

u
+ K(Y,u)δYdr. (A.68)

As only two terms in this equation depend on δY it is clear that

K(Y,u) = Γ1,Y K(Γ1,ρ). (A.69)

The definition of u can be used to find an expression for δP/P,

u =
P
ρ
→

δu
u
=
δP
P
−
δρ

ρ
→

δP
P
=
δu
u
+
δρ

ρ
. (A.70)

From this the (and neglecting the δY term), the left hand side of Equation A.68 is∫
δρ

ρ

(
Γ1,ρK(Γ1,ρ) + Γ1,PK(Γ1,ρ) + K(ρ,Γ1)

)
+ Γ1,PK(Γ1,ρ) δu

u
dr. (A.71)

Following the discussion in the appendix of Thompson and Christensen-Dalsgaard (2002),

K(u,Y) = Γ1,PK(Γ1,ρ) − P
d
dr

(
φ

P

)
, (A.72)

where φ is a solution of the differential equations

ρ

r2P
φ =

1
4πG

d
dr

(
F

r2ρ
−

1
r2ρ

dφ
dr

)
, (A.73)

F =
(
Γ1,ρ + Γ1,P

)
K(Γ1,ρ) + K(ρ,Γ1), (A.74)

with boundary conditions
φ(r = 0) = φ(r = R) = 0. (A.75)
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B
Appendices for Chapter 2:
Asteroseismic Inversions for Internal
Sound Speed Profiles of Main-sequence
Stars with Radiative Cores

B.1. Reference Model Parameters
Table B.1 provides the non-seismic constraints that were used to find the reference models
of the 12 main sequence stars with radiative cores discussed in Chapter 2.Table B.2 provides
the model parameters for each reference model.

B.2. Inversion Details
Here we provide details on how we chose our inversion parameters and how we calculate
the non-dimensional frequency differences used in our inversions. Additionally, we present
the results of applying our modeling and inversion methods to degraded solar data.

B.2.1. Inversion Parameter Selection
For each target radius we find the value of µ that minimizes:

M =

〈[(
δû
û

)
inv
−

(
δû
û

)
True

]
+ σinv

〉
set

(B.1)

where the angle brackets denote a mean across the set of calibration models, (δû/û)inv is the
sound speed difference inferred by the inversion, (δû/û)True is the true sound speed differ-
ence, and the uncertainty of the inversion result is σ2

inv =
∑

i c2
iσ

2
i , where σi is the relative

uncertainty of the ith mode. This is not the uncertainty reported in our final results, as it does
not account for the uncertainty correlation introduced by our surface term and mean density
corrections (see Section 2.3.3). In general, the term in the square brackets dominates, as
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Table B.1: Non-seismic observations

Star Teff [K] [Fe/H] Luminosity [L⊙]
KIC 6603624 5602±100 0.29±0.1 1.241±0.018
KIC 6116048 6012±100 -0.26±0.1 1.862±0.006
KIC 4914923 5823±100 0.12±0.1 2.135±0.035
KIC 6106415 5975±100 -0.09±0.1 1.882±0.006
KIC 3656476 5664±100 0.28±0.1 1.719±0.028
16CygA 5777±100 0.01±0.1 1.563±0.005
KIC 9098294 5869±100 -0.18±0.1 1.413±0.007
KIC 8006161 5422±100 0.32±0.1 0.646±0.005
KIC 11295426 5784±100 0.04±0.1 1.62±0.01
KIC 8394589 6051±100 -0.4±0.1 1.853±0.007
16CygB 5734±100 -0.01±0.1 1.221±0.005
KIC 10963065 6100±100 -0.22±0.1 1.934±0.007

Table B.2: Reference Model Parameters

Star M[M⊙] Yinitial Zinitial αmlt Xc χ2
fit

KIC 6603624 1.116 0.249 0.037 2.111 0.039 4.751
KIC 6116048 1.068 0.253 0.015 2.227 0.047 4.238
KIC 4914923 1.098 0.276 0.021 1.849 0.001 5.441
KIC 6106415 1.145 0.248 0.019 2.341 0.134 3.113
KIC 3656476 1.071 0.255 0.027 1.755 0.001 14.846

16CygA 1.104 0.246 0.023 2.145 0.028 4.661
KIC 9098294 1.003 0.252 0.016 2.173 0.059 4.012

KIC 11295426 1.123 0.253 0.027 1.967 0.034 3.387
KIC 8006161 1.037 0.256 0.034 2.265 0.445 2.623
KIC 8394589 1.075 0.250 0.011 2.266 0.269 3.541

16CygB 1.048 0.246 0.021 2.281 0.135 3.410
10963065 1.100 0.257 0.014 2.278 0.154 1.851
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Figure B.1: Results of varying β for the innermost target radius of KIC 6603624. The left (center)
panel shows the averaging kernels (cross-term kernels) that result from the indicated value of β. The
right panel shows the result of a representative model-model inversion for each value of β. The true
value of δû/û is indicated by the vertical line. The error bars show the uncertainty of the inversion
result.
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with increasing values of µ the quality of the averaging kernel degrades faster than the un-
certainty of the final result is reduced. We minimizeM separately for each target radius, and
so the value of µ can vary between different target radii of the same star. This optimization
is more stable when only one variable is minimized, and so we set the cross-term trade-off
parameter β = 0.

As the effect of this choice is similar for all target radii across all stars in our sample,
we use the innermost target radius of KIC 6603624 as an example. Figure B.1 shows the
averaging kernels, cross-term kernels, and model-model inversion results for several values
of β using the same value of µ. Increasing β has the expected effect of damping the cross-
term kernel, however, it also reduces the quality of the averaging kernel, making it less
localized. This is particularly noticeable when β = 10 000. As the model-model inversions
show, the results are much more sensitive to the quality of the averaging kernel than to the
amplitude of the cross-term kernel, and so we conclude that setting β = 0 is justified.

B.2.2. Mean Density Scaling
To mitigate the effect of a difference in mean density between a star and its model, we
calculate the dimensionless frequency differences before applying our structure inversions.
One method of obtaining this difference was proposed in Basu (2003) and used by Bellinger
et al. (2021). This approach notes that the proportional scaling with mean density shows up
as a constant offset in the frequency differences. This constant offset can be approximated by
taking a weighted mean of the frequency differences. This term can then be subtracted from
the raw frequency differences to remove any differences due to mean density. We have found
that this approximation is valid only when the frequency differences due to different mean
densities are larger than the differences resulting from structure differences. Thus, in this
work, we take a different approach and use the large frequency separation of the star and
its reference model to calculate a dimensionless frequency difference. The dimensionless
frequency is

ν̂ =

√
R3

GM
ν (B.2)

where R is the stellar radius, M is the stellar mass, and G is the gravitational constant.
For two stars with stellar radii R1,R2 and stellar masses M1,M2 the dimensionless relative
frequency difference of any given mode is

δν̂

ν̂
=

√
R3

1
GM1

ν1 −

√
R3

2
GM2

ν2√
R3

2
GM2

ν2

=

√
R3

1

M1

M2

R3
2

ν1

ν2
− 1 (B.3)

Since ∆ν ∝
√

M/R3,

∆ν2

∆ν1
≈

√
M2

R3
2

R3
1

M1
, (B.4)

with this Equation B.3 reduces to

δν̂

ν̂
≈
∆ν2

∆ν1

ν1

ν2
− 1. (B.5)

While this method results in different values for the dimensionless frequency differences,
the effect on the inversion result is small compared to the uncertainty of the inversion result,
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as seen for KIC 6116048 in Figure B.2. This small difference can be understood by carrying
forward the effect of a small difference in mean density through the inversion procedure.

A difference in mean density shows up as a constant offset when calculating the dimen-
sionless frequency differences. Mathematically, this is expressed as

δν̂i

ν̂i
=
δνi

νi
+
δq
q
, (B.6)

where δq/q is the offset introduced by a difference in mean density. As δq/q is independent
of the frequencies, its contribution to the final inversion result will be(∑

ci

) δq
q
. (B.7)

Thus, the error introduced by a mismatch in mean density is proportional to the sum of the
inversion coefficients for each target radius. We do not explicitly try to minimize this sum;
however, the uncertainty of each result, which we do attempt to minimize, depends on the
magnitude of the inversion coefficients. Thus, in the process of a standard inversion, we
reduce the effect of a difference in mean density.

Equation B.7 also suggests a check to determine if a difference in mean density is the
dominant difference present in our inversion results. While the sum of the coefficients will be
different for each target radius, δq/q will be the same. Thus, if the mean density differences
dominate the inversion results, a plot of the inversion results at each target radius divided by
the sum of the coefficients for that target radius should be a straight line. We checked this
for all the stars in our sample and did not find such a constant, so we conclude that the error
introduced by a difference in the mean density is not the dominant source of difference in
our inversion results.

B.2.3. Sun as a star
In addition to the twelve target stars, we also obtain a reference model and structure inversion
results using solar data that have been degraded to the level that was expected of results from
Kepler (for details, see Lund et al., 2017). Table B.3 lists the parameters of the reference
model obtained with these data. The parameters of our model are comparable to those found
across all the pipelines used in Lund et al. (2017). To assess the quality of the fit in û, we
compare the û profile of our reference model to that of the calibrated standard solar model
S of Christensen-Dalsgaard et al. (1996), shown in Figure B.3. Although we are not able to
reproduce the full structure of a model calibrated with all the solar data, our reference model
is a close match in the area probed by structure inversions using only low-degree modes.
These differences are of the same order of magnitude as the differences inferred between
model S and the Sun (Basu et al., 2009). Thus, despite the limitations of the degraded data,
we find a reference model sufficiently close for structure inversions.

Using this reference model, we obtain suitable averaging kernels at four target radii and
infer the difference in û using the degraded solar frequencies as shown by Figure B.3. At
all four target radii, our structure inversions show agreement within 1σ in û. Helioseismic
inversions that use non-degraded solar data do show differences between the structure of
the Sun and the structure of calibrated solar models (e.g., Basu, 2016); however, this results
from using many more modes, with higher precision and at higher angular degrees, than are
available for stars observed by Kepler.
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Figure B.2: Inversion results for KIC 6116048 found using two different methods of calculating
the dimensionless frequency differences. The blue points show the results when frequencies are
scaled using the large frequency separations, described in Section 2.3, and the orange points use the
differences calculated from a weighted mean, described in Basu (2003).

Table B.3: Reference Model using Degraded Solar Data

Parameter Unit Value
M [M⊙] 1.001

Yinitial . . . 0.282
Zinitial . . . 0.021

L [L⊙] 1.057
Teff [K] 5849
R [R⊙] 1.001

[Fe/H] . . . 0.051
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Figure B.3: Left: Relative difference in û between our reference model, calculated from degraded
solar data, and the calibrated solar model S Christensen-Dalsgaard et al. (1996). The shaded region
shows the area that can be probed by structure inversions using only the reduced mode set of the
degraded frequency data. Right: Inversion results of the degraded solar data. All symbols and colors
have the same meaning as in Figure 2.1.
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B.3. Full Inversion Results
For each target star, we attempt a structure inversion at target radii of

r0/R = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30.

The target radius, however, is not necessarily the fractional radius where the averaging kernel
is at its maximum value. We report the location of the maximum and FWHM of each
averaging kernel and the û values inferred at each target radius of each star in Table B.4.
Figures B.4 and B.5 show the averaging and cross-term kernels for these stars, respectively.
We show in Figure B.6 the results of model-model inversions between our reference model
and one of the calibration models, as a test of the averaging kernel’s ability to recover a
known difference.

Table B.4: Location of the averaging kernel maximum (in fractional radius) and the corresponding
FWHM and the inferred dimensionless squared isothermal sound speed û, for each target radii
r0/R = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30

Star rmax(0.05) û(0.05)/10−8 rmax(0.10) û(0.10)/10−8 rmax(0.15) û(0.15)/10−8

KIC 6603624 0.062+0.033
−0.030 6.311 ± 0.199 0.102+0.040

−0.040 6.167 ± 0.138 0.142+0.033
−0.037 5.503 ± 0.126

KIC 6116048 0.064+0.040
−0.031 7.660 ± 0.399 0.103+0.039

−0.040 7.151 ± 0.368 0.148+0.032
−0.036 6.270 ± 0.190

KIC 4914923 · · · · · · 0.122+0.039
−0.040 6.922 ± 0.381 0.151+0.038

−0.041 6.042 ± 0.226
KIC 6106415 0.060+0.035

−0.030 6.805 ± 0.423 0.104+0.036
−0.038 6.590 ± 0.338 0.144+0.035

−0.035 5.612 ± 0.194
KIC 3656476 0.058+0.102

−0.035 5.755 ± 0.404 0.116+0.038
−0.045 5.721 ± 0.389 0.147+0.036

−0.040 5.395 ± 0.195
16CygA 0.059+0.040

−0.032 6.205 ± 0.147 0.107+0.035
−0.039 6.180 ± 0.115 0.146+0.038

−0.037 5.583 ± 0.058
KIC 9098294 0.068+0.027

−0.025 5.242 ± 1.084 0.079+0.045
−0.027 5.513 ± 0.810 0.154+0.030

−0.035 5.172 ± 0.509
KIC 8006161 0.052+0.027

−0.026 5.354 ± 0.436 0.093+0.030
−0.033 5.223 ± 0.393 0.133+0.028

−0.031 5.025 ± 0.275
KIC 11295426 · · · · · · 0.082+0.051

−0.033 6.085 ± 0.559 0.150+0.032
−0.039 5.391 ± 0.308

KIC 8394589 · · · · · · 0.134+0.041
−0.053 5.063 ± 0.858 0.158+0.039

−0.032 4.984 ± 0.502
16CygB 0.059+0.037

−0.031 5.660 ± 0.125 0.109+0.034
−0.036 5.711 ± 0.089 0.144+0.038

−0.036 5.347 ± 0.053
KIC 10963065 0.063+0.029

−0.028 6.220 ± 1.094 0.099+0.061
−0.044 6.184 ± 0.698 0.151+0.030

−0.034 5.570 ± 0.417

Star rmax(0.20) û(0.20)/10−8 rmax(0.25) û(0.25)/10−8 rmax(0.30) û(0.30)/10−8

KIC 6603624 0.187+0.033
−0.042 4.772 ± 0.088 0.237+0.032

−0.038 4.127 ± 0.055 0.259+0.032
−0.042 3.893 ± 0.077

KIC 6116048 0.194+0.031
−0.036 4.857 ± 0.094 0.237+0.031

−0.033 4.316 ± 0.052 0.276+0.031
−0.044 3.913 ± 0.164

KIC 4914923 0.198+0.035
−0.040 4.930 ± 0.119 0.236+0.034

−0.035 4.273 ± 0.049 0.269+0.034
−0.053 3.870 ± 0.130

KIC 6106415 0.194+0.032
−0.036 4.759 ± 0.087 0.235+0.030

−0.033 4.185 ± 0.057 0.259+0.029
−0.043 3.890 ± 0.063

KIC 3656476 0.194+0.040
−0.054 4.696 ± 0.132 0.235+0.032

−0.035 4.055 ± 0.080 0.249+0.042
−0.040 3.846 ± 0.093

16CygA 0.193+0.031
−0.037 4.761 ± 0.035 0.238+0.034

−0.036 4.082 ± 0.028 0.267+0.029
−0.040 3.700 ± 0.032

KIC 9098294 0.189+0.078
−0.046 4.569 ± 0.265 0.233+0.032

−0.042 3.658 ± 0.232 · · · · · ·

KIC 8006161 0.180+0.026
−0.031 4.399 ± 0.141 0.232+0.037

−0.042 3.791 ± 0.160 0.258+0.031
−0.043 3.496 ± 0.174

KIC 11295426 0.215+0.053
−0.065 4.435 ± 0.147 0.235+0.031

−0.036 4.217 ± 0.107 0.246+0.033
−0.040 4.066 ± 0.109

KIC 8394589 0.213+0.039
−0.039 4.308 ± 0.127 0.238+0.031

−0.035 4.003 ± 0.070 0.262+0.029
−0.040 3.669 ± 0.063

16CygB 0.193+0.030
−0.038 4.633 ± 0.031 0.234+0.031

−0.035 4.028 ± 0.022 0.258+0.029
−0.040 3.732 ± 0.023

KIC 10963065 0.211+0.043
−0.048 4.437 ± 0.138 0.236+0.031

−0.035 4.112 ± 0.079 0.258+0.028
−0.042 3.718 ± 0.110
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Figure B.4: Averaging kernels K for each of the target stars in our sample. For readability, the
averaging kernels are offset, with a horizontal dotted line indicating the zero line for each kernel.
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Figure B.5: Cross-term kernels C for each of the target stars in our sample. As with Figure B.4, the
kernels are offset for readability. Note that the y-axis scales differs from Figure B.4.
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Figure B.6: Results of using the averaging and cross term kernels shown in Figures B.4 and B.5 to
recover the difference between the reference model and one of the additional models used to calibrate
our inversion parameters. The black line indicates the true δû/û between the two models. The color
of each point matches its corresponding averaging and cross-term kernels in Figures B.4 and B.5.
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C
Appendices for Chapter 3:
Asteroseismic Structure Inversions of
Main-Sequence Solar-like Oscillators
with Convective Cores

C.1. Appendix Modeling Details

C.1.1. Model Grids
Here, we provide more details about the grid used to find our reference models for Chap-
ter 3. We use metal abundances scaled to the GS98 solar composition (Grevesse and Sauval,
1998), and the corresponding high-temperature opacity tables from OPAL (Iglesias and
Rogers, 1993, 1996), and low-temperature opacity tables from Ferguson et al. (2005). We
blend the equation of state data from OPAL (Rogers and Nayfonov, 2002), SCVH (Saumon
et al., 1995), FreeEOS (Irwin, 2004), and Skye (Jermyn et al., 2021) with the default settings.
This blending is described in more detail in Jermyn et al. (2022). Our nuclear reaction net-
work is pp_cno_extras_o18_ne22.net and we use reaction rates from JINA REACLIB
(Cyburt et al., 2010) and NACRE (Angulo et al., 1999), with additional tabulated weak re-
action rates (Fuller et al., 1985; Oda et al., 1994; Langanke and Martı́nez-Pinedo, 2000).
Electron screening is included via the prescription of Chugunov et al. (2007). Thermal neu-
trino loss rates are from Itoh et al. (1996). We use the time-dependent local convection
formalism of Kuhfuss (1986), which, as described in Jermyn et al. (2022), refuses in the
limit of long time steps to standard mixing length theory as described in Cox and Giuli
(1968). We use an Eddington-gray atmosphere and include the structure of the atmosphere
out to an optical depth of τ = 10−3 when calculating both our oscillation frequencies and
structure kernels.

C.1.1.1 Convective Penetration

As MESA does not implement convective penetration by default, we make use of the
other_after_set_mixing_info hook in run_star_extras. This allows us to use MESA’s
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procedure for calculating the extent of step overshooting region and simply change the tem-
perature gradient after these regions have been identified. It also simplifies the process of
including overshoot from the convective core and at the base of the outer convection zone.

C.1.2. Modeling Information
In Table C.1, we provide the non-seismic constraints used in our modeling procedure. For
all but three stars, we take our spectroscopic measurements from Furlan et al. (2018, , Table
9) and adopt their suggested uncertainties of 100K and 0.1 dex for Teff and [Fe/H], respec-
tively. Two of our stars, KIC 434952 and KIC 5773345, are not analyzed by Furlan et al.
(2018). In these cases, we use the values from Mathur et al. (2017). The values in Furlan
et al. (2018) for KIC 9965715 were found to be discrepant from other literature values, so
instead we use the measurements from Morel et al. (2021). To reduce the computation time
when finding a best-fit model, we calculate χ2

fit only for models within 6σ of the observed
effective temperature and metallicity and 10σ of the observed luminosity. We primarily
use the FLAME luminosity value from Gaia DR3 (Gaia Collaboration et al., 2016; Creevey
et al., 2023), although some stars are only available in Gaia DR2 (Gaia Collaboration et al.,
2018), or not at all.

Table C.2 provides the parameters of our reference model for each star and the star’s cat-
egory based on our inversion results as defined in Section 3.4. To compare the quality of our
fits, we obtain the surface-term corrected frequencies of the best fitting models found using
the YMCM pipeline of Silva Aguirre et al. (2015, 2017). We obtained results for a set of
models constructed both with and without diffusion. In Figure C.1, we plot the distributions
of χ2

fit values for the YMCM models with and without diffusion and the reference models
used for our inversions. We find that our overall distribution is similar, with fewer outliers
resulting from our modeling procedure.

0 5 10 15 ≥ 20
0

10N

YMCM Diffusion

0 5 10 15 ≥ 20
0

10N

YMCM No Diffusion 

0 5 10 15 ≥ 20

χ2
freq

0

10N

This work

Figure C.1: Distribution of χ2
f it

, as defined in Equation 3.3 for models fit using the YMCM pipeline
of Silva Aguirre et al. (2015, 2017) and constructed with and without diffusion, as well as, the χ2

fit
distribution of the models used in this work. Models with χ2

fit ≥ 20 have been collapsed into the final
bin.
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Additionally, we compare our stellar parameters to those reported from all the piplines
in Silva Aguirre et al. (2017) in Figure C.2. In general, our values of mass and radius fall
within the spread of values in Silva Aguirre et al. (2017) without any clear biases. This
is in contrast to the composition of our models which show a clear bias in favor of higher
initial hydrogen mass fraction and lower initial helium mass fraction. We attribute this to our
choice not to include diffusion in our models. Despite this bias, our values are still within
the range of values predicted by the various pipelines used in Silva Aguirre et al. (2017).
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Figure C.2: Comparison of our model parameters to several pipelines used in Silva Aguirre et al.
(2017). The results of each pipeline are indicated with a dot and the uncertainties of that result a
shaded region of the same color.
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Table C.1: Non-seismic observations

Star Teff [K] [Fe/H] L [L⊙]
KIC 1435467 6325.0±100.0a 0.04±0.1a 4.051±0.073d

KIC 2837475 6488.0±100.0a -0.07±0.1a 4.7±0.019d

KIC 3456181 6214.0±100.0a -0.26±0.1a 6.72±0.04d

KIC 3632418 6112.0±100.0a -0.16±0.1a 4.973±0.073d

KIC 4349452 6267.0±81.0b -0.06±0.15b 2.379±0.015d

KIC 5184732 5874.0±100.0a 0.41±0.1a 1.995±0.008d

KIC 5773345 6127.0±82.0b 0.21±0.1b 5.429±0.03d

KIC 5866724 6138.0±100.0a 0.14±0.1a 2.667±0.017d

KIC 6225718 6203.0±100.0a -0.12±0.1a 2.208±0.007d

KIC 6508366 6249.0±100.0a -0.06±0.1a 6.959±0.031d

KIC 6679371 6387.0±100.0a -0.04±0.1a 7.865±0.036d

KIC 7103006 6362.0±100.0a 0.05±0.1a 5.747±0.019d

KIC 7206837 6325.0±100.0a 0.12±0.1a 3.664±0.022d

KIC 7510397 6109.0±100.0a -0.25±0.1a · · ·

KIC 7670943 6302.0±100.0a 0.01±0.1a 2.98±0.041d

KIC 7771282 6138.0±100.0a -0.07±0.1a 3.654±0.029d

KIC 7940546 6126.0±100.0a -0.27±0.1a 5.443±0.059d

KIC 8179536 6281.0±100.0a -0.04±0.1a 2.666±0.015d

KIC 8228742 6046.0±100.0a -0.09±0.1a 4.273±0.042d

KIC 8292840 6212.0±100.0a -0.21±0.1a 2.608±0.054d

KIC 8379927 6022.0±77.0b -0.24±0.35b · · ·

KIC 8866102 6273.0±100.0a -0.09±0.1a 2.814±0.013d

KIC 9139151 6040.0±100.0a 0.04±0.1a 1.669±0.007d

KIC 9139163 6350.0±100.0a 0.09±0.1a 3.755±0.028d

KIC 9206432 6490.0±100.0a 0.17±0.1a 3.934±0.029d

KIC 9353712 6140.0±100.0a -0.09±0.1a 6.346±0.057d

KIC 9414417 6283.0±100.0a -0.09±0.1a 5.502±0.024d

KIC 9592705 6148.0±100.0a 0.27±0.1a 5.987±0.098d

KIC 9812850 6314.0±100.0a -0.18±0.1a 4.621±0.021d

KIC 9965715 6335.0±40.0c 0.29±0.04c 2.716±0.042d

KIC 10068307 6050.0±100.0a -0.21±0.1a 5.391±0.021d

KIC 10162436 6134.0±100.0a -0.14±0.1a 5.374±0.019d

KIC 10454113 6136.0±100.0a -0.07±0.1a 2.784±0.046d

KIC 10644253 6020.0±100.0a 0.09±0.1a 1.515±0.006d

KIC 10666592 6264.0±100.0a 0.01±0.1a 6.183±0.081e

KIC 10730618 6423.0±168.0b -0.16±0.3b 4.545±0.04d

KIC 11081729 6416.0±100.0a -0.13±0.1a 3.386±0.054d

KIC 11253226 6474.0±100.0a -0.19±0.1a 4.605±0.032d

KIC 11807274 6150.0±100.0a -0.12±0.1a 3.34±0.027d

KIC 12009504 6129.0±100.0a -0.08±0.1a 2.659±0.009d

KIC 12069127 6186.0±100.0a 0.03±0.1a 7.677±0.082d

KIC 12258514 5948.0±100.0a 0.01±0.1a 3.016±0.009d

KIC 12317678 6395.0±100.0a -0.42±0.1a 5.653±0.091e

(a) Furlan et al. (2018), (b) Mathur et al. (2017), (c) Morel et al.
(2021), (d) Creevey et al. (2023), (e) Gaia Collaboration et al.
(2018)
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Table C.2: Reference Model Parameters

Star M[M⊙] Yinitial Zinitial αmlt fov Xc χ2
fit Category

KIC 1435467 1.3540 0.2794 0.0209 2.2396 0.0231 0.2689 2.32 H
KIC 2837475 1.3297 0.2584 0.0123 2.1497 0.0243 0.4000 7.2 A
KIC 3456181 1.3165 0.2736 0.0104 2.2254 0.0504 0.2191 6.1 H
KIC 3632418 1.2773 0.2496 0.0116 1.9093 0.0219 0.1037 2.29 A
KIC 4349452 1.1394 0.2867 0.0166 2.0684 0.0344 0.3853 1.13 H
KIC 5184732 1.1683 0.3309 0.0399 2.2366 0.0124 0.1589 27.77 A
KIC 5773345 1.4914 0.2443 0.0254 2.0132 0.0464 0.2997 3.8 A
KIC 5866724 1.2668 0.2619 0.0235 2.1377 0.0250 0.3511 1.82 L
KIC 6225718 1.1553 0.2617 0.0147 2.3102 0.0392 0.4493 7.73 HL
KIC 6508366 1.4378 0.2824 0.0175 2.1715 0.0394 0.2403 5.88 L
KIC 6679371 1.5490 0.2421 0.0140 2.1485 0.0110 0.1463 4.38 A
KIC 7103006 1.4718 0.2541 0.0192 2.1252 0.0294 0.3029 1.49 H
KIC 7206837 1.2928 0.2711 0.0191 1.9863 0.0355 0.4079 2.27 A
KIC 7510397 1.3352 0.2438 0.0134 2.1562 0.0168 0.0838 5.46 A
KIC 7670943 1.2531 0.2456 0.0169 2.3065 0.0165 0.2911 1.62 A
KIC 7771282 1.2384 0.2417 0.0137 2.0294 0.0401 0.2714 1.85 L
KIC 7940546 1.3297 0.2584 0.0123 2.1497 0.0243 0.1338 7.97 H
KIC 8179536 1.2186 0.2677 0.0174 2.1525 0.0329 0.4253 3.1 H
KIC 8228742 1.2124 0.2791 0.0128 2.1034 0.0261 0.0278 3.35 A
KIC 8292840 1.1336 0.2461 0.0099 1.9458 0.0127 0.1372 2.28 H
KIC 8379927 1.2308 0.2483 0.0259 2.1166 0.0085 0.5646 6.51 L
KIC 8866102 1.2175 0.2505 0.0139 2.1005 0.0026 0.2313 2.06 A
KIC 9139151 1.1872 0.2655 0.0240 2.3548 0.0143 0.4026 4.92 L
KIC 9139163 1.3016 0.2601 0.0167 2.0525 0.0370 0.4446 5.65 LH
KIC 9206432 1.3915 0.2849 0.0245 2.0034 0.0062 0.5158 4.49 A
KIC 9353712 1.4165 0.2483 0.0149 2.0718 0.0390 0.2046 1.94 A
KIC 9414417 1.3359 0.2789 0.0135 2.3704 0.0200 0.1195 2.79 A
KIC 9592705 1.4472 0.3096 0.0262 2.0641 0.0135 0.0848 3.29 H
KIC 9812850 1.2289 0.2637 0.0106 2.1612 0.0590 0.2986 1.27 H
KIC 9965715 1.2133 0.3272 0.0273 1.9746 0.0147 0.4504 20.35 A

KIC 10068307 1.3505 0.2640 0.0151 2.2139 0.0354 0.0988 7.49 A
KIC 10162436 1.3365 0.2766 0.0149 2.1053 0.0276 0.1281 3.87 A
KIC 10454113 1.2531 0.2456 0.0169 2.3065 0.0165 0.4990 9.16 A
KIC 10644253 1.2308 0.2483 0.0259 2.1166 0.0085 0.6138 2.5 H
KIC 10666592 1.5095 0.2403 0.0193 2.0247 0.0130 0.2321 1.86 A
KIC 10730618 1.2735 0.2600 0.0110 2.2181 0.0435 0.2946 3.46 A
KIC 11081729 1.1776 0.2775 0.0126 1.9915 0.0186 0.3516 4.65 L
KIC 11253226 1.3502 0.2450 0.0129 2.0507 0.0410 0.4803 7.3 A
KIC 11807274 1.2015 0.2445 0.0120 2.1044 0.0203 0.1399 3.65 H
KIC 12009504 1.1244 0.2856 0.0140 2.1580 0.0232 0.2365 4.7 A
KIC 12069127 1.5569 0.2474 0.0173 2.0223 0.0103 0.0847 1.8 A
KIC 12258514 1.1489 0.2656 0.0127 2.1986 0.0307 0.0890 10.74 A
KIC 12317678 1.2723 0.2517 0.0077 1.9616 0.0089 0.0771 4.0 A
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D
Appendices for Chapter 4: Linearity
of Structure Kernels in Main-sequence
and Subgiant Solar-like Oscillators

D.1. Propagation of Kernel Errors
To understand why the high kernel errors cancel out in the test inversions of our main-
sequence model but not our subgiant model, it is useful to see how each kernel error of each
mode contributes to the overall result. To visualize this we define the quantity ε:

ε( j) =
j∑

i=0

ci KEi. (D.1)

Here, the index variables i, j to correspond to a specific combination of n and ℓ, KEi is the
kernel error of the i-th mode (calculated using Equation 4.2), and ci is the corresponding
inversion coefficient. ε( j) represents the cumulative kernel error after j modes have been
added to the sum. Thus ε(N), where N is the total number of modes, represents the total
kernel error term in the inversion. In Figure D.1, we plot ε( j) for one set of test inversions
in each evolutionary stage. For the main-sequence star, the test model is the ‘High Kernel
Error’ model and for the subgiant star, we use the ‘Match Less Mixed Modes’ model.

For the main-sequence test inversions across all target radii, the value of ε( j) oscillates
around zero and the final point, ε(N), is smaller than the uncertainties of the inversion result.
In the subgiant case however, there are a few modes that contribute much more to ε than
others resulting in values of ε(N) that are greater than the uncertainties propagated from
observations.

D.2. Subgiant Higher Degree Modes and Singularity

D.2.1. Higher degree modes
Here we show the kernel errors of our subgiant grid for modes of spherical degree ℓ = 2, Fig-
ure D.2, and ℓ = 3, Figure D.3. These modes fall into two categories based on the character
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Figure D.1: Cumulative values of the kernel error, (ε( j), defined in Equation D.1 for our test in-
versions on the main sequence (left) and subgiant branch (right). The rightmost point in each panel
represents ε(N), the total error in the inversion due to the underlying kernel errors. The gray-shaded
region represents the uncertainty of the inversion result propagated from the uncertainty of the ob-
served modes. The mode index values are discrete, however we connect the points to guide the eye.

of the mode in the reference model. For modes that are p-dominated in the reference model
(high Ep/E) the kernel errors are low for test models that are in the same ridge of high Ep/E
and high for all other models. Modes that are g-dominated in the reference model show
similar behavior to the g-dominated dipole modes discussed in Section 4.4.1, although the
region of linearity is smaller. This is due to the fact that higher-order modes evolve more
quickly through avoided crossings.

D.2.2. Singularity
Bellinger et al. (2021) found a singularity in the equation used to obtain the u,Y kernels.
They note that this singularity occurs when λ = 1 where λ is the eigenvalue of the homoge-
neous eigenvalue analogous to the differential equation used to obtain the u,Y kernels. As
a model evolves through this singularity the peaks of the mode kernels on either side of the
hydrogen-burning shell increase rapidly in amplitude and then change signs at the singular-
ity, see Figure 4 of Bellinger et al. (2021). This singularity affects all of the mode kernels
of the model. However, it does not appear to affect the kernel errors as long as the reference
model used is not passing through the singularity.

We also calculate the kernel errors using a reference model that is passing through this
singularity λ = 1.0001. As seen in Figure D.4, the region of linearity for this new reference
model is extremely small even for the radial modes. This is in agreement with the conclusion
in Bellinger et al. (2021) that models with |λ − 1| ⪅ 0.005 should not be used for structure
inversions.
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Figure D.2: Kernel errors for the quadrupole modes of the subgiant stars. All colors and symbols
have the same meaning as in Figure 4.4.
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Figure D.3: Kernel errors for the octopole modes of the subgiant stars. All colors and symbols have
the same meaning as in Figure 4.4.
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Figure D.4: Kernel errors for several modes when the reference model used is passing through the
singularity discussed in Bellinger et al. (2021). The symbols have the same meaning as in Figure 4.3.
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