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Teilchenpaarproduktion in Analoger Raumzeit Realisiert in einem
Bose-Einstein-Kondensat – Zusammenfassung Die kosmologische Teilchen-
produktion ist eine der wichtigsten Erkenntnisse der Quantenfeldtheorie (QFT) in
gekrümmten Raumzeiten. Bei diesem Prozess erzeugt die Expansion des Raums
Paare von Teilchen, sogar aus einem anfänglichen Vakuum. Dies entspricht einem
eindimensionalen quantenmechanischen Streuproblem, bei dem die Zeitabhängigkeit
des Skalenfaktors in das Streupotential einfließt. Die Reflexion an diesem Poten-
tial führt zur Produktion von Teilchen. Hier wird dieser Prozess im analogen
System eines zweidimensionalen Bose-Einstein-Kondensats aus Kalium-39 unter-
sucht. Seine fundamentalen Anregungen werden als skalares Feld behandelt und die
Schallgeschwindigkeit gibt die relevante Skala vor. Die Expansion wird durch eine
dynamische Abnahme der Schallgeschwindigkeit über eine magnetische Feshbach-
Resonanz simuliert. Wir beobachten kohärente Oszillationen der Dichtefluktua-
tionsspektren, die durch Interferenz der erzeugten Teilchenpaare hervorgerufen wer-
den. Um die Streuungsanalogie zu untersuchen, implementieren wir eine lineare Ex-
pansion des Raums, die einem Boxpotential entspricht, und finden keine Teilchen-
produktion für Impulsmoden, die mit Resonanzen der Box in Verbindung gebracht
werden können. Für periodische Raumzeiten finden wir eine große Teilchenpro-
duktion für Impulse, die den Bandlücken des unendlich ausgedehnten periodis-
chen Potentials entsprechen. In einem Fall finden wir Quetschungen unterhalb das
Niveaus von Vakuumfluktuationen, was ein Zeuge für Verschränkung zwischen den
besetzten Impulsmoden ist.





Particle Pair Production in Analog Spacetime Realized in a Bose-
Einstein Condensate – Summary Cosmological particle production is one of
the key findings of quantum field theory (QFT) in curved spacetimes. In this
process, the expansion of space produces pairs of particles, even from an initial
vacuum. This is equivalent to a one-dimensional quantum mechanical scattering
problem, in which the time-dependence of the scale factor is incorporated in a
scattering potential. Reflection on the potential gives rise to particle production.
Here, this process is investigated in the analog system of a two-dimensional Bose-
Einstein condensate of potassium-39. Its fundamental excitations are treated as a
scalar field and the speed of sound sets the relevant scale. Expansion is simulated
with a dynamical decrease of the speed of sound via a magnetic Feshbach resonance.
We observe coherent oscillations of the density fluctuation power spectra which are
a result of interference of the produced particle pairs. To probe the scattering
analogy, we implement linear expansion of space, which is equivalent to a box
potential, and find no particle production for modes that can be associated with
resonances of the box. For periodic spacetimes, we find large particle production
for momenta that correspond to the band gaps of the infinitely extended periodic
potential. In one case, we find squeezing below the level of vacuum fluctuations,
which is a witness for entanglement between the populated momentum modes.
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1
Introduction

Plenty of experimental evidence points to the expansion of the universe. The first
experimental discovery goes back to 1922, when Carl Wilhelm Wirtz discovered that
the spectral lines from galaxies are redshifted to the same lines measured on earth and
the amount of redshift is correlated to their apparent brightness. He explained the
first with a Doppler shift of the spectral lines, which means the galaxies are moving
away from earth. The second, he associated with the distances to the galaxies.
Although others had previously found red-shifted galaxies, he concluded that the
correlation to the brightness could “be described as a drifting apart of the system of
spiral nebulae relative to our point of view” (translated from the German reference
[1]). Two years later he connected it to a possible expansion of the whole universe
[2]. Towards the end of the 1920s Georges Lemaître and Edwin Hubble similarly
concluded that the whole universe is expanding and the velocity is a result of the
rate of change of the scale factor of the universe. Both extracted this rate of change
that became known as the Hubble constant [3, 4]1.

A decade after the discovery of the expansion of the universe, Erwin Schrödinger
realized that such an expansion would lead to particle creation, what he believed to
be “alarming” [6]. In an expanding system, its fundamental eigenmodes (he called
“proper vibrations”) change in time. The notion of a particle and the vacuum itself
is ambiguous as the energy eigenstates of the static universe are not eigenstates of
its expanding counterpart. Instead, the positive and negative frequency solutions
that describe the time evolution of a spatial mode in the static universe are coupled
in the process of expansion. At a later time where expansion has either seized or
becomes adiabatically slow, one finds that particle number is not conserved during
the expansion, but pairs of particles that fulfill momentum conservation have been
created. In principle, particles of all fundamental fields can be created in this process.

1Many others contributed to this highly active field at the time, which is why some attributions
are still disputed today [5].
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At todays expansion rates, there exist adiabatically well-defined eigenenergies and
their creation rates are negligible [7]. Schrödinger hoped for some other explanation
for the red-shift to luminosity correlation (while admitting that “the hypothesis of
expansion is probably easier to fit in with observations”). Today, this process at the
boundary of quantum and general relativity is regarded as one of the fundamental
achievements of quantum field theory in curved spacetimes.

In addition to the expansion we measure today, it is widely accepted that there
was a period of rapid expansion in the early universe. This inflationary period solves
a variety of theoretical problems. For example, we find an almost perfectly homoge-
neous cosmic microwave background (CMB) across the size of the observable universe
of roughly 46.5 billion years at an estimated age of the universe of 13.8 billion years
[8]. Although the discrepancy of these two numbers is an effect of the expansion since
the inflationary period, it does not explain why the CMB is almost perfectly corre-
lated over this distance. In the same way, the distribution of matter on large scales is
almost perfectly homogeneous and looks the same in all directions (isotropic). The
correlation between the causally disconnected regions across the universe can be ex-
plained by equilibration at a much smaller scale and a subsequent inflation [9]. The
inflationary period also left its imprint on todays universe and the CMB. Quantum
fluctuations in the early universe have been increased by the pair-creation mecha-
nism during inflation. The inflated quantum fluctuations were eventually converted
into matter fields through a process called reheating, with many open questions still
remaining and being actively researched [10, 11]. The resulting small overdensities
collapsed under the gravitational instability in an otherwise homogeneous universe.
Resulting sound waves traveled through the primordial plasma of interacting nucle-
ons, electrons and light (baryon acoustic oscillations [12]). Once subsequent epochs
of further expansion diluted and cooled this system enough to the point where atoms
could form, the universe became transparent to light. It decoupled from the matter,
and the final pattern of the sound waves was imprinted into the light field. This can
be measured today in the form of the strongly red-shifted microwave background.
These sound waves also left their imprint on the distribution of galaxies. Because
galaxies are more likely to form in the high density regions, they did so in the high
density regions produced by the quantum fluctuations. While those are distributed
randomly, a slight overdensity formed at the pressure peaks of the sound waves that
are at a specific distance to the original high density region. This can be seen in
correlation functions of the galaxy distribution in the universe [13].

In Einsteins theory of gravity the geometry of spacetime itself bends under the
influence of its energy content. While it is hard to find self-consistent solutions
in general, some certain energy distributions allow for a spacetime description via a
metric. For example, the homogeneous and isotropic universe can be described by the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric. In contrast, a single central
mass can be described by the Schwarzschild metric. It captures the local spacetime
around a non-rotating uncharged black hole that is characterized by a black hole
horizon beyond which no geodesics lead to the outside region. Remarkably, at the
extreme curvatures at the event horizon a similar particle creation process can occur.
While one particle is trapped inside the horizon, the other escapes in the form of
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Hawking radiation [14]. So far, the observation of this process has proved elusive.
Not only is the apparent temperature of the radiation inversely proportional to the
size of the black hole, it is also a weak effect, in general. For a black hole of the mass
of the Sun (which is too small to form by star collapse [15]), this temperature is on
the order of a microkelvin. This is much smaller than the temperature of the CMB
at 2.7K [16] that is omnipresent in the universe.

In analog gravity, the idea is to recreate this process in some effective quantum
field theory, where quasi-particles can be created by the same processes. This was
first proposed by William Unruh in 1981 who realized that the hydrodynamic equa-
tions for sound waves in a fluid could be formulated as a metric for quantized sound
waves (phonons) [17]. The phonons would be the quasi-particles of the effective
quantum field, while the metric is governed by the speed of sound in the fluid and
a background flow of the fluid. The sound speed sets the fundamental causal speed
analog to the speed of light in the universe. If the fluid itself is flowing, the speed of
the sound waves will be governed by the speed of sound and the background flow.
For a background flow at the speed of sound or higher, the sound can not travel
upstream at all. By constructing a transition point from sub- to supersonic flow
speeds, a localized horizon for sound can be created.

Although some theoretical progress was made in the meantime[18, 19], it took
over twenty years until the first realization of such an experiment in a water tank
[20] and a similar experiment with light in an optical fiber [21] had been achieved. In
these experiments a stimulated Hawking process has been reported, where an ingoing
wave is amplified. The first implementation of a sound horizon in a Bose-Einstein
condensate was achieved in 2010 [22]. Many other systems have been proposed both
in the classical regime as well as with tangible hopes to measure the underlying
quantum effects [23, 24, 25, 26]. Some have been experimentally realized [27, 28,
29]. Refinements to the BEC experiment, in particular conducting it at extremely
low temperatures of the BEC, enabled the measurement of the thermal spectrum
expected from Hawking radiation in 2019 [30]. The steps mentioned here are by no
means a comprehensive picture. An overview of the historical developments in the
field and the analog Hawking effect can be found in [31].

Similarly, the FLRW metric can be implemented in analog systems [32, 33, 34,
35, 36, 37, 38, 39]. This metric allows for the expansion of space, as well as a spatial
curvature. It describes a universe that has equal densities everywhere (homogeneous)
and looks the same in all directions (isotropic). This is a good approximation of our
universe at large scale and can be used to model the processes during inflation. Ear-
lier implementations of expansion in an FLRW-metric include experimental systems
based on trapped ions [40], light [41] and BECs [42, 43, 44, 45, 46, 47]. Although
in some experiments the system was physically expanded [44, 46], most have imple-
mented the expansion by decreasing the sound speed. This effectively increases the
travel time between two points and, as we will see, is equivalent to an expansion.
An overview of the field of analog gravity can be found in [48].

In the analog system described in this thesis, we simulate expanding spacetime
of an FLRW-metric in a two-dimensional Bose-Einstein condensate of potassium.
The low energetic fundamental excitations of this system take the form of phonons.
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These are quantized sound waves that are moving at the speed of sound. It depends
on the local atom density, as well as the interatomic interaction constant, that is dy-
namically tunable in the experiment. In previous publications ([49, 47]) we showed
that this system is indeed capable of simulating particle creation via a dynamic
adjustment of the speed of sound. Additionally, we showed that curvature can be
implemented via specific density profiles. We found a striking feature in the particle
spectra that are produced in the expansion. However, a clear physical picture of this
phenonemon was missing. In light of newly developed theory in which the particle
production can be described as reflection on a quantum mechanical potential [50],
we can now interpret this feature as a resonance of this scattering potential. Addi-
tionally, we construct periodic spacetimes that are equivalent to periodic scattering
potentials and find growth for momenta that correspond to the band gaps of the
periodic potential. We investigate the final states in terms of a readout akin to state
tomography via homodyning with the background condensate at multiple times af-
ter the expansion has seized. We find coherent oscillations of the extracted density
fluctuation power spectra. These are a result of squeezing of the momentum modes
because the particles are being created in pairs. In one case, we find squeezing below
the level of vacuum fluctuations, which is a witness for entanglement between the
pairwise populated momentum modes. This strongly suggests that the measured
density fluctuations are indeed a result of the pair-creation mechanism.

Structure of the Thesis

The thesis is structured as follows. In chapter 2 we investigate the particle pair cre-
ation mechanism for a scalar field in curved spacetime. We will see that the absence
of energy eigenmodes translates into a time dependence of the particle creation (and
annihilation) operators, that in turn leads to a particle creation from a quantum
vacuum as defined before the expansion. We present the scattering framework in
which time takes the coordinates of space and the time dependence of the scale fac-
tor turns into a scattering potential of a Schrödinger equation. Reflections at the
potential give rise to particle creation. We discuss the final state as an example for
a squeezed state that can show a variance below the level of vacuum fluctuations in
the squeezed variable.

In chapter 3 we introduce the necessary BEC theory for the dilute weakly inter-
acting Bose gas. We will find that the interaction gives rise to new quasi-particles,
that for low energies have the character of sound waves (phonons) and at higher
energies retain the character of free massive particles. We introduce the necessary
approximations and the concept of quasi two-dimensionality.

In chapter 4 the analogy is presented for the specific case in question. The
quantum fluctuations on the mean field background are decomposed in two real fields.
We will find that those are proportional to conjugate fields only in the low momentum
limit, in which the excitations are phononic and have the phase velocity of the speed
of sound (acoustic regime). For higher momenta, the dispersion must be respected.
This can be incorporated in a momentum dependent spacetime metric (rainbow
metric). Additionally, the dispersion leads to a prefactor in the extraction of the
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spectra, which is important for a quantitative comparison to theoretical predictions
and the level of vacuum fluctuations.

Chapter 5 includes all the important information of the experimental platform
including the properties of the bosonic isotope 39K and the BEC production. More
emphasis is given to the trapping potentials in the BEC stage and the tunability
of the interaction. The imaging system and an experimental extraction of its sen-
sitivity at different length scales is covered in detail. This is later used to correct
the measured spectra for the experimental sensitivity and is also important for a
quantitative interpretation of the results.

Chapter 6 shows experimental results for multiple cosmological scenarios. For
a simple linear expansion, we find particle production for all but a few momentum
modes. These are identified as the resonances of the equivalent scattering potential.
Two periodic cosmologies show very different quasiparticle spectra depending on the
form of the periodic potential. This is interpreted as the opening of band gaps. In
one case, we find squeezing below the level of vacuum fluctuations.

Finally, the last chapter includes a brief summary of our findings. Additionally, we
give an outlook on possible future directions of research on the interface of quantum
field theory and curved spacetime in analog systems.
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2
Cosmological Particle Production

According to the cosmological standard model, temperature fluctuations in the cos-
mic microwave background (CMB) provide the initial conditions for large-scale cos-
mic structure formation [12, 51]. These fluctuations themselves are a result of the cos-
mological particle production mechanism that creates particle pairs from the quan-
tum fluctuations of empty space. As we will see, this mechanism shows up when a
quantum field is subject to an expansion of space [52], which is what happened in
the inflationary period of the early universe.

Conceptually, this mechanism results from combining the core principles of quan-
tum field theory (QFT) and general relativity (GR). In that sense, gravity is treated
as a classical field, whereas matter fields are quantized. In our model system, a
scalar quantum field will be subjected to a classical metric. At first, the model will
be invariant under space and time translations as well as Lorentz boosts, provid-
ing energy and momentum conservation. Furthermore, the model is homogeneous
and isotropic, leaving us with the Friedmann–Lemaître–Robertson–Walker (FLRW)
metric.

In QFT a particle can be thought of as an excitation of an associated quantum
field. Production and annihilation of particles are often tied to the interaction with
other quantum fields, e.g. charged particles creating a (virtual) photon.

As we will see in this chapter, particles can also be created by breaking some of
these aforementioned symmetries, in this case time-translation symmetry and, there-
fore, energy conservation. This happens when the structure of space itself changes
over time. If space expands, the eigenmodes of the quantum fields change over time.
We will see that we are allowed to think of these modes as quantum harmonic oscilla-
tors and the expansion changes the frequencies of these oscillators. As a consequence,
the ground state that is the vacuum state before the expansion can differ from the
one after expansion, already suggesting that the final field configuration might not
be a vacuum state with respect to a particle notion employed at some earlier time.
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Figure 2.1: Particle production in expanding spacetimes. The vacuum state of a
static spacetime is transformed via an epoch of expansion into a state including
particle pairs in a spacetime that is again static. Particle pairs have a net momentum
of zero. Note that there is no fundamental distinction between the particles and
antiparticles of a real scalar field.

Time evolution within the expansion further complicates the matter because energy
is not conserved and therefore no well-defined eigenenergies exist. We reformulate
particle production in terms of quantum mechanical scattering on a potential which
is given by the time dependence of the scale factor. In this framework, particle pro-
duction is related to the reflection at the potential. Coherent oscillations arising from
quantum correlations between produced particles are equivalent to the interference
of incoming and reflected amplitudes. This is also discussed in terms of squeezing of
the involved momentum modes.

While this effect was first discussed with the fundamental fields in mind, it does
also happen in effective field theories whose excitations are quasi-particles. The
experiments shown in this thesis are an example of this.

In this first chapter we look at the particle production process in more detail,
following [53] chapter 4 as well as [50, 49].
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2.1 Scalar Quantum Field in Flat Space
Starting from a classical scalar field ϕ(x, t), its corresponding action has to be invari-
ant under translations and Lorentz boosts (so called Poincaré invariance) to fulfill
the aforementioned symmetries. A typical choice is the following [53]:

Γ[ϕ] =
1

2

∫︂
dt dDx

[︂
ϕ̇
2 − (∇ϕ)2 −m2ϕ2

]︂
=

1

2

∫︂
dt dDx

√
g
[︁
−gµν(∂µϕ)(∂νϕ)−m2ϕ2

]︁
,

(2.1)

where dots define the derivative with respect to time t, m is the mass, D is the number
of spatial dimensions and c = 1. The lower line shows a form with a Minkowski
metric gµν = diag(−1,1D) and √

g :=
√︁
− det(gµν) = 1. A more general approach,

including the spatially curved metrics possible within FLRW universes, can be found
in [49, 50]. From the action one finds the equation of motion for ϕ(x, t), the Klein-
Gordon equation:

ϕ̈(x, t)−∆ϕ(x, t) +m2ϕ(x, t) = 0 (2.2)
Changing to momentum space via a Fourier transform reveals that this is equivalent
to the equations of motion of harmonic oscillators

ϕ̈k(t) + (k2 +m2)ϕk(t) = 0, (2.3)

one for each momentum k, with frequencies ωk :=
√
k2 +m2.

These can now be quantized like the harmonic oscillator. We find the canonical
momentum πk(t) = ϕ̇k and promote both to operators on which we impose standard
commutation relations: [︂

ϕ̂k(t), π̂k′(t)
]︂
= iδ(k+ k′) (2.4)

where δ(k + k′) is the Dirac-delta function and the reduced Planck constant is
set to h̄ = 1. Additionally one can define creation and annihilation operators in the
Heisenberg picture

âk(t) :=

√︃
ωk

2

(︃
ϕ̂k +

iπ̂k

ωk

)︃
, â†k(t) =

√︃
ωk

2

(︃
ϕ̂−k −

iπ̂−k

ωk

)︃
, (2.5)

that fulfill
d

dt
â†k(t) = iωkâ

†
k(t),

d

dt
âk(t) = −iωkâk(t), (2.6)

and the usual Bosonic commutation relations and construct the momentum modes
from those:

ϕ̂k(t) =
1√
2ωk

(︂
e−iωktâk + eiωktâ†−k

)︂
, (2.7)

where we introduced the time-independent construction and annihilation operators
â†k and âk and an exponential ansatz for Equation (2.6). The full field operator is
obtained via integration over all momentum modes and transformation to real space:

ϕ̂(x, t) =

∫︂
dDk

(2π)D/2

1√
2ωk

(︂
e−iωkt+ikxâk + eiωkt−ikxâ†k

)︂
(2.8)
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Reordering was used to change −k to k in the second term. This will be useful later,
but is only valid whenever we consider the integral over the ϕ̂k(t). For completeness,
we can also build the Hamiltonian from ϕ̂k(t) and π̂k(t)

Ĥ =
1

2

∫︂
dDk

[︂
π̂kπ̂−k + ω2

kϕ̂kϕ̂−k

]︂
=

∫︂
dDkωk

[︃
â†kâk +

1

2
δ(0)

]︃
, (2.9)

and can construct the usual number operator n̂k = â†kâk. Eigenvalues nk = 0, 1, 2...
of this number operator are particle occupation numbers of the mode k. When a
measurement is performed in this n̂k basis, the outcome is one of these eigenvalues.
This allows the unambiguous definition of a particle as a non-zero outcome of such
a measurement.

The vacuum state

In contrast, the vacuum state |0⟩ is the lowest energy state and has to fulfill
âk |0⟩ = 0 for all modes k. For the harmonic oscillators this means that each
and every one of them is in the ground state. The ground state also has to fulfill
the commutation relations (2.4) and can, therefore, not simply be the classical
|ψk,0⟩ = 0 solution. Instead, the solutions to the quantum mechanical harmonic
oscillator are the Hermite functions |ψk,nk

⟩, which can be seen in Figure 2.2 a).
The ground state with nk = 0 has a gaussian form

|ψk,0⟩ =
√︃
ωk

π
exp

(︃
−ωk|ϕk|2

2

)︃
. (2.10)

It has a field expectation value of zero but a nonzero variance. It is this width of
the ground state that gives rise to the so-called vacuum fluctuations. The vacuum
state |0⟩ of the field ϕ̂ can be constructed via the (infinite) product state of the
ground states of all momentum modes. Occupied states can then be constructed
by applying the creation operators to the vacuum, as often as needed:

|n1, n2, ...⟩ =

⎡⎣∏︂
k

(︂
â†k

)︂nk

√
nk!

⎤⎦ |0⟩ (2.11)

The energy of the number states is En = h̄ωk(nk + 1/2) (here h̄ ̸= 1, compare
Eq. 2.9), which means that even an empty single mode contributes h̄ωk/2, the
so-called zero-point energy. Without further constraints or assumptions such as
UV cutoffs, the energy of the quantum vacuum diverges as one sums over all the
(infinitely) many momentum modes contributing to the full vacuum state |Ω⟩.
Additionally, the number of modes below a cutoff increases with the volume of
space considered. This vacuum energy of empty space might drive the accelerated
expansion of space. However, estimations of this typically lead to values of orders
of magnitude larger than the bounds to the cosmological constant derived from
observational data [54].
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Figure 2.2: a) The quantum harmonic oscillator and its solutions. The thick line
shows the harmonic potential of the form 1

2
ω2
kϕ

2
k. Solid lines show the symmetric

wavefunctions ψk,nk
of the solutions that correspond to even nk, dashed lines show

the asymmetric solutions corresponding to odd nk. The zero point for each solution is
shifted to its eigenenergy ωk(nk +1/2). b) The harmonic oscillator and its solutions
for ω̃k = 2ωk. Although the solutions show the same structure, they have higher
energies and a reduced width.

2.2 Particle Production
While it is an open question whether the quantum vacuum state is responsible for
the expansion of space, we do know how the vacuum itself transforms under such an
expansion. The derivation in Equation (2.1) was only valid within static spacetimes.
We can do the same for an expanding spacetime by making the metric tensor in
Equation (2.1) time dependent

ds2 = gµνdx
µdxν = −dt2 + a2(t)dx2, (2.12)

introducing a time dependent scale factor a(t), that describes expansion (or con-
traction) of space and was set to one so far. This is an example of a spatially flat
FLRW-metric. From now on, we restrict the analysis to two spatial dimensions and
massless modes, which is representative of our situation in the experiment. Variation
of the action again leads to the Klein-Gordon equation

a2(t)ϕ̈(x, t)−∆ϕ(x, t) + 2a(t)ȧ(t)ϕ̇(x, t) = 0 (2.13)

and we find that the expansion results in an extra damping term proportional to
ϕ̇(x, t). The static solution in Equation (2.8) does not solve this (because the equa-
tions for the time depended creation and annihilation operators change). Instead we
choose a more general ansatz

ϕ̂(x, t) =

∫︂
d2k

2π

(︂
v∗k(t)âke

ikx + vk(t)â
†
ke

−ikx
)︂

(2.14)
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with the time dependent mode functions vk(t), that can be interpreted as a repre-
sentation of time depended frequencies ωk(t), a result of the broken time-translation
invariance. Because isotropy is still preserved all |k| = k share the same mode
function. This ansatz and Equation (2.13) lead us to the mode equation

v̈k(t) + 2
ȧ(t)

a(t)
v̇k(t) +

k2

a2(t)
vk(t) = 0. (2.15)

This is a damped harmonic oscillator equation similar to the undamped one from
before (Eq. 2.3). Accordingly, the extra damping term in form of a first derivative
with respect to time is sometimes called Hubble friction in the cosmological context.
Finding solutions for vk(t) solves the time dependence for the field. If we know the
mode functions at some initial time, we can solve for all later times by integrating
the mode equation.

Bogoliubov transformations

In general, solutions are required to fulfill the bosonic commutation relations (Eq.
2.4). Here, the canonical momentum π̂ =

√
g d
dt
ϕ̂ differs by a factor a2(t) from the

one in Equation (2.1). This leads to the normalization condition

a2(t)[vkv̇
∗
k − v̇kv

∗
k] = i, (2.16)

where the term in brackets is the Wronskian Wr[vk, v
∗
k] ≡ [vkv̇

∗
k − v̇kv

∗
k]. Because

the Wronskian is nonzero, vk(t) and v∗k(t) span a space of solutions

uk(t) = αkvk(t) + βkv
∗
k(t), (2.17)

with complex coefficients αk and βk that also solve the mode equation, as well as
the normalization condition if

|αk|2 − |βk|2 = 1. (2.18)

They come with their own set of creation and annihilation operators b̂
†
k and b̂k,

that fulfill
âk = α∗

kb̂k + βkb̂
†
−k, and â†k = α∗

kb̂
†
k + βkb̂−k, (2.19)

such that the field operator in Equation (2.14) stays the same if we construct it
out of uk and b̂k instead of vk and âk. This is called a Bogoliubov transformation.

Let us start at a time of constant scale factor a(t) = aI. By comparison with
Equation (2.8) we find that the static situation is solved by rotations in the complex
plane

vIk(t) = vk(t < ti) =
e−iωI

kt

aI
√︁

2ωI
k

, (2.20)

where we again added a factor aI that was set to one before and introduced the index
I denoting the first section of constant scale factor. At time ti the scale factor starts
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to change and does so throughout section II. Here we have to solve the full mode
Equation (2.15) either analytically or by means of numerical integration methods.
Its solutions will in general go beyond the simple oscillating behavior in region I. At
a later time tf we have again a section of constant scale factor aIII. We are inclined
to represent the solutions by oscillations in the complex plane

uIIIk (t) =
e−iωIII

k t

aIII
√︁

2ωIII
k

, (2.21)

which is the basis for the static situation in which eigenenergies, number states and
the vacuum are well defined. For massless modes, the frequency change is given by
the red-shift ωIII

k /ωI
k = aI/aIII. Due to the background dynamics in region II, the

full mode solution vk(t) is not equivalent to uIIIk for t ≥ tf . However, it can still be
projected onto it by means of the inverse Bogoliubov transformation

vk(t) = α∗
kuk(t)− βku

∗
k(t), and b̂k = α∗

kâk − β∗
k â

†
−k. (2.22)

If we plug the oscillating uk into the inverse Bogoliubov transformation, we see that a
non-zero βk is an admixture of modes oscillating with opposite phase evolution, which
is why they are called negative frequency modes. We can construct the coefficients
αk and βk via the Wronskian (or equivalently by projecting the mode functions vk(tf )
and their derivatives onto the new mode functions uIIIk (tf ))

αk = −iWr[uk, v
∗
k], and βk = iWr[uk, vk]. (2.23)

If we now take our original vacuum state and apply it to the new number operator
in region III we find

Nk = ⟨0I| b̂
†
kb̂k |0I⟩ = ⟨0I| |αk|2â†kâk |0I⟩+ ⟨0I| |βk|2â−kâ

†
−k |0I⟩

− ⟨0I|αkβ
∗
kâ

†
kâ

†
−k |0I⟩ − ⟨0I|α∗

kβkâkâ−k |0I⟩
= ⟨0I| |βk|2â†−kâ−k |0I⟩+ |βk|2 ⟨0I|0I⟩ = |βk|2,

(2.24)

which means the vacuum state from region I âk |0I⟩ = 0 is not a vacuum state with
respect to b̂k if βk (the admixture of the negative frequency solution) is nonzero.
Instead, the changing scale factor produced particles. This effect can show up even
if the scale factor at the start and end are the same and there will be experimental
examples of that in chapter 6. Then the vk(t < ti) and uk(t > tf ) differ only
by a phase factor. Nevertheless, vk(tf ) can have admixtures of negative frequency
solutions i.e. βk ̸= 0.
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2.3 Excitation Power Spectrum and Coherent Os-
cillations

Besides the particle content of our outgoing state, we can also look at fluctuations
in region III (t > tf ). For this we consider the equal time connected correlation
function of the canonical momentum field

Gππ(t,x,x
′) =

1

2
⟨0I| {π̂(t,x), π̂(t,x′)} |0I⟩

=
1

2

(︁
⟨0I| π̂(t,x)π̂(t,x′) |0I⟩ − ⟨0I| π̂(t,x) |0I⟩2

)︁
,

(2.25)

where the second term can be taken to vanish due to symmetry. With Eq. 2.14 and
π̂ = a2f ψ̂

̇ we get

Gππ(t,x,x
′) =

1

2
⟨0I|

∫︂
d2k

2π

∫︂
d2k′

2π
a4f

(︂
v̇∗k(t)âke

ikx + v̇k(t)â
†
ke

−ikx
)︂

(︂
v̇∗k′(t)âk′eik

′x′
+ v̇k′(t)â

†
k′e

−ik′x′
)︂
|0I⟩ .

(2.26)

All but the mixed terms including â†kâk′δ(k − k′) and âkâ
†
k′δ(k − k′) vanish for an

incoherent or no initial occupation. Because we apply the vacuum state, only a one
from the second term contributes (commutator) and we get

Gππ(t,x− x′) =
1

2

∫︂
d2k

2π
a4f |v̇k(t)|2eik(x−x′)

=
1

2

∫︂
d2k

2π
ωka

2
f

(︁
|αk|2 + |βk|2 + 2Re

(︁
αkβke

2iωkt
)︁)︁
eik(x−x′)

=

∫︂
d2k

2π
ωka

2
fSk(t)e

ik(x−x′),

(2.27)

where we introduced the excitation power spectrum Sk(t) and we find that the cor-
relations depend only on the distance (x− x′) but not on absolute position because
of homogeneity. Moreover, there is no directionality because of isotropy. We put
this into the theory when we introduced the mode functions without dependence on
k but only k = |k|.
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The Excitation Power Spectrum

Equation (2.27) introduced a quantity that will continue to be relevant throughout
this work, the excitation power spectrum

Sk(t) =
1

2
+ |βk|2 +Re(αkβk) cos(2ωkt+ ϑk) =

1

2
+Nk +∆Nk(t). (2.28)

In the definition, the normalization condition (Eq. 2.18) was used and we intro-
duced the time-dependent coherent oscillations ∆Nk(t) and their phase
ϑk = arg (αkβk).
The coherent oscillations show up as a time dependence of the fluctuations and
the spectrum after expansion has already stopped. This does not mean that there
is a time dependence of the particle content Nk of the final state. The oscillation
can rather be identified as the anomalous contribution ⟨0I| b̂

†
kb̂

†
−k |0I⟩ = −αkβk.

This signal is only visible in the correlations and a remnant of the pair production
process resulting in interference between a particle pair. In chapter 6 we show this
in experimental data.

2.4 Scattering Analogy

The following analogy to the quantum mechanical scattering problem on a potential
barrier was already mentioned in the book by Mukhanov and Winitzki that is often
cited throughout this thesis.

“We would like to stress once more that this analogy is entirely formal and is useful
only to those who have a solid intuition for the corresponding quantum-mechanical
problem.” – V. Mukhanov and S. Winitzki [53]

We will see that there is a lot to gain from this intuition. We start by introducing
conformal time

dη =
dt

a(t)
. (2.29)

In context of our experiment, the speed of sound is incorporated in the scale factor
(a(t) = 1/cs(t)). Conformal time then has the units of space. We use it to reformulate
the spacetime interval (Eq. 2.12):

ds2 = −dt2 + a2(t)dx2 = a2(η)[−dη2 + dx2] (2.30)

Additionally, we rescale the mode functions ψk(η) =
√︁
a(η)vk(η).

This leads to the new mode equation

ψ′′
k(η) +

(︄
k2 − 1

2

a′′(η)

a(η)
+

1

4

(︃
a′(η)

a(η)

)︃2
)︄
ψk(η) = 0, (2.31)
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where the primes denote derivatives to conformal time. While this might look more
complicated than Equation (2.15), it does not have a Hubble-friction term (with a
first derivative of the mode function).

Harmonic Oscillator with Time Dependent Frequency

We can interpret everything in brackets in Equation 2.31 as time dependent frequency

ωk(η) =

√︄
k2 − 1

2

a′′(η)

a(η)
+

1

4

(︃
a′(η)

a(η)

)︃2

, (2.32)

and get the usual harmonic oscillator. (Alternatively, everything but k2 can be
interpreted as time-dependent effective mass like, for example, in [53, 50, 51]). We
can also explain the particle production process, in terms of harmonic oscillators with
time-dependent frequency. Consider a harmonic oscillator that changes its frequency
ωk(η) nonadiabatically (much faster than the timescale set by 1/ωk(η)). Then we
can neglect the time evolution and simply project the old vacuum state onto the new
states. Figure 2.2 shows such a change in eigenfrequency from ωk to ω̃k = 2ωk. The
final state will be a superposition of the symmetric states (even nk), and correspond
to particle production. This superposition is not an eigenstate of the oscillator, but
describes a breathing motion with 2ω̃k. This does not change the field expectations
values, but their variances and describes the coherent oscillations. By including the
full time dependence of the operators, this analogy can also be extended to describe
the full problem (beyond the assumption of non-adiabaticity).

The Schrödinger Equation in Conformal Time

Because we want to tap into existing knowledge about the scattering problem, we
instead rewrite Equation (2.31) the following way(︃

− d2

dη2
+ V (η)

)︃
ψk(η) = k2ψk(η), (2.33)

which is a non-relativistic stationary Schrödinger-equation in conformal time with
the potential given by

V (η) =
1

2

a′′(η)

a(η)
− 1

4

(︃
a′(η)

a(η)

)︃2

=
1

4
ȧ2(t(η)) +

1

2
ä(t(η)) a(t(η)),

(2.34)

where the lower line shows a version written in derivatives with respect to the
laboratory time coordinate t. This potential is zero for a constant scale factor.
What was an epoch of changing scale factor translates into a region of non-zero
potential.
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Figure 2.3: Scheme of the scattering analogy. The time dependence of the scale
factor a(t) translates into the scattering potential that depends on conformal time η.
The linear expansion aII(t) ∼ t in (a) corresponds to a box potential (b). The mode
function vk is replaced by the scattering state ψk. To compare to the usual scattering
problem, the causal order is reversed. An incoming state of amplitude ak is scat-
tered on the barrier such that some part bk is reflected and another ck transmitted.
The transmitted state is the original vacuum state in region I. The reflected state
corresponds to produced particles ∼ |b2k|, the interference of incoming and reflected
state is responsible for coherent oscillations ∼ |akbk|. Singular contributions in the
form of δ-peaks stem from the sudden switch of the expansion rate at the boundaries
between the regions.

We again consider the three epochs from before. Region I with η < ηi = η(ti)
and region III with η > ηf = η(tf ) have constant scale factors aI and aIII and are
connected by region II of time dependent scale factor. In region I we again find
oscillatory mode functions

ψI
k(η) = cke

−iωk(η)η = cke
−ikη, (2.35)

and in region III we allow for a superposition of those with positive and negative
frequencies ωk = ±k

ψIII
k (η) = ake

−ikη + bke
ikη. (2.36)

In region II the full Schrödinger Equation (2.33) has to be solved and wavefunctions
and derivatives have to be matched at the boundaries.

We can now interpret particle production as a standard scattering problem. An
example we will later discuss in more detail is illustrated in Figure 2.3:

1. We start with an incoming wave from the right, the region of large η or future
lab time

ψinc
k (η) = ake

−ikη, (2.37)

traveling towards the potential barrier V (η).
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2. At position ηf it starts interacting with the potential barrier, where some
portion is reflected

ψref
k (η) = bke

ikη. (2.38)

3. The rest exits the barrier at ηi

ψtrans
k (η) = cke

−ikη. (2.39)

Conservation of probability gives constraints on the prefactors ak, bk and ck

|ak|2 = |bk|2 + |ck|2. (2.40)

This is the normalization condition for the Bogoliubov coefficients αk and βk (Eq.
2.18). To get the values of the prefactors we have to match the plane wave ansatz
for the static regions and the (numerical) solution of region II at the boundaries of
the regions

ψ
I/II
k (ηi/f ) = ψ

II/III
k (ηi/f ),

d

dη
ψ

I/II
k (ηi/f ) =

d

dη
ψ

II/III
k (ηi/f ).

(2.41)

These conditions where previously ensured by the Wronskian (Eq. 2.23)) and one
could do the same here. We can identify

αk =
a∗k
c∗k

and βk = −bk
c∗k
. (2.42)

Particle production is now tied to reflection at the potential. The particle number

Nk = |βk|2 =
|bk|2

|ck|2
, (2.43)

is non-vanishing if reflection is present. We can also identify the complex reflection
and transmission amplitudes

rk =
bk
ak

and tk =
ck
ak
. (2.44)

The excitation power spectrum (compare Eq. 2.27) is simply given by the wavefunc-
tion in region III

Sk(η) =
|ψIII

k (η)|2

2|ck|2
=

|ψinc
k (η) + ψref

k (η)|2

2|ck|2
. (2.45)

Coherent oscillations are a result of the interference term of the incoming and re-
flected wavefunction

∆Nk(η) =
|akbk|
|ck|2

cos (2kη + ϑk) = ∆Nmax
k cos (2kη + ϑk), (2.46)

28



Particle Production Scattering Harmonic Oscillator

scale factor a(t) scat. potential V (η) frequency ω(η)
mode functions vk(t) scat. states ψk(η) ground state ψk,0

Bogoliubov coefficients αk, βk scat. amplitudes ak, bk, ck mode overlaps
|αk|2 − |βk|2 = 1 |ak|2 = |bk|2 + |ck|2

∑︁
n |ψk,n|2 = 1

Coherent oscillations interference of ψinc
k and ψref

k breathing motion

Table 2.1: Side by side comparison of important quantities of the cosmological pair
creation mechanism and their counterparts in the analogous processes describing
quantum mechanical scattering on a potential barrier and a quantum harmonic os-
cillator with time dependent frequency.

where we introduced the amplitude of the oscillations ∆Nmax
k . In contrast to usual

scattering events the whole problem is not normalized to some particle stream going
towards the barrier in region III, but is normalized with respect to region I instead.
This is a result of the relabeling of a constituent of ψIII

k to incoming wave, which
reverses the causal order of the problem. Comparison with the mode function in
region I (Eq. 2.20) gives ck = 1/

√
2ωk. The reinterpretation of what are incoming

and outgoing modes transformed the problem from that of symplectic Bogoliubov
transformations to unitary quantum mechanics. Table 2.1 shows the different aspects
of pair creation and their scattering counterparts side by side.

Box Potential and Singular Contributions

Figure 2.3 shows a linear expansion of the form aII(t) = amin(1 + H0t) that corre-
sponds to a box potential of height H2

0/4 in the scattering framework (Eq. 2.34).
In region I and III the scale factors are constant and the potential is zero. Whereas
the wavefunction in region I has a single positive frequency constituent which re-
sults in

⃓⃓
ψI(η)

⃓⃓2
= const., the wavefunction in region III has incoming and reflected

constituents (positive and negative frequency) and shows an interference pattern
∆Nk(η) and a mean that is enhanced by Nk.

What we ignored so far is that the expansion does not start and end in a smooth
way (and is therefore not continuously differentiable). Instead, the first derivative ȧ
is turned on (off), which we can describe by multiplication with Heaviside functions

ȧ(t) = ȧII(t)Θ(t− ti)Θ(tf − t). (2.47)

These turn into positive (negative) δ-peaks in the second derivative

ä(t) = ȧII(t)(δ(t− ti)− δ(tf − t)) + äII(t)Θ(t− ti)Θ(tf − t). (2.48)

The last term is just the regular contribution of ä(t) that is zero in this example.
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The rest turns into a singular contribution to the potential (Eq. 2.34)

Vs =
1

2
ȧII(t)aII(t)(δ(t− ti)− δ(tf − t))

=
H(η)

2
(δ(η − ηi)− δ(ηf − η)),

(2.49)

with the conformal Hubble rate H(η) = a′(η)/a(η).
The δ-peaks result in a phase kick of the wavefunction, that is a discontinuity in

its first derivative ψ′
k ([55])

d

dη
ψII
k (ηi)−

d

dη
ψI
k(ηi) =

H(η)

2
ψk(ηi), (2.50)

for the first peak and with opposite sign at ηf . We defined ψI
k(ηi) ≡ lim

ϵ→0+
ψk(ηi − ϵ)

and ψII
k (ηi) ≡ lim

ϵ→0+
ψk(ηi+ ϵ). In comparison to the matching condition found earlier

(Eq. 2.41) we retain the one for ψk but have to add the phase shift from the delta
peak, which amounts to H(η)

2
ψk(ηi), to match its derivative.

More generally, whenever there is a δ-peak in the potential, it will result in a
phase shift of the wavefunctions. More details on this and why the phase kicks can
be interpreted as the application of a squeezing or anti-squeezing operator can be
found in [50].

2.5 Squeezing and Entanglement
Although we found Nk = |βk|2, the original vacuum state is not an eigenstate of the
new number operator. If so, it would be an eigenstate of the Hamiltonian and there
would be no observable time dependence. However, we did find a time dependence
of the excitation power spectrum in form of coherent oscillations (Sect. 2.3).

Analogous to this we can calculate the quantum fluctuations in the non-commuting
observables

∆π2
k = ⟨0I| (π̂k)

2 |0I⟩ − ⟨0I| π̂k |0I⟩2 = ωka
2
f

(︃
1

2
+Nk +∆Nk(t)

)︃
= ωka

2
fSk(t),

∆ϕ2
k =

1

ωka2f

(︃
1

2
+Nk −∆Nk(t)

)︃
.

(2.51)

With Nk = |bk|2/|ck|2 and ∆Nmax
k = |akbk|/|ck|2 we find that for the vacuum without

particle production (i.e. bk = 0) we get√︂
ωka2f∆ϕk =

1√︂
ωka2f

∆πk =

√︃
1

2
. (2.52)

We can interpret the 1/2 in the spectra as the level of vacuum fluctuations that are
the result of the Heisenberg uncertainty limit.
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Figure 2.4: Phase space distribution of a squeezed state (red) and original vacuum
state (blue) overlapped. The solid lines are lines of equal (quasi-)probability density,
illustrating that the squeezing in one observable was compensated by anti-squeezing
in the non-commuting canonical observable. The axis of the squeezed state rotates in
phase space with ωk, which gives rise to coherent oscillations. This is equivalent to a
phase space description of the breathing motion of the harmonic oscillator discussed
before (see Fig. 2.2).

For bk ̸= 0, we use the fact that the reflected amplitude is always smaller than
the incoming amplitude (conservation of probability). This means ∆Nmax

k ≥ Nk,
and there are times t, where one of these variances drops below the level of vacuum
fluctuations. At the same time, the product of the uncertainties ∆ϕk∆πk ≥ 1

2
is

always greater or equal to that of the vacuum.
This effect is called Squeezing and a consequence of the fact that particles are pro-

duced in entangled pairs of opposite momenta. The b eigenstates are a superposition
of number states [53], e.g.

|0III⟩ =
∏︂
k

1
√
αk

exp

{︃
βk
2αk

â†kâ
†
−k

}︃
|0I⟩ . (2.53)

The exponential is an example of a squeezing operator. It transforms a symmetric
Gaussian state (e.g. the vacuum state) into a state with asymmetric widths (i.e.
uncertainties). An example can be seen in Figure 2.4 where the phase space dis-
tributions of a vacuum and squeezed state are compared. The coherent oscillations
then reduce to phase space rotations. This is equivalent to a phase space description
of the breathing motion of the harmonic oscillator discussed before.

A squeezing of the quantum fluctuations below the level of the vacuum state
can be connected to the non-separability of the pair state [56, 57, 58]. This makes
Sk(t) < 1/2 for any time t a witness for entanglement. [45, 59]
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3
BEC Theory

This chapter contains the necessary theory of Bose-Einstein condensates. We will see
that small excitations of a weakly interacting bosonic gas can be described in terms of
new quasi-particles that are connected to the free (non-interacting) particles through
a Bogoliubov transformation similar to the last chapter. At low kinetic energies, the
energy of these quasi-particles is dominated by the interaction. They behave like the
sound waves in a fluid and move at the speed of sound. At high kinetic energies,
the particles retain their original character of massive particles. The corresponding
scales are derived and the experimentally relevant case of the quasi-two-dimensional
BEC is discussed.

The key feature of Bose-Einstein condensation is a macroscopic occupation of the
ground state ψ0 of the system, which can only happen for bosonic (quasi-)particles.
This is achieved at high phase space densities when the thermal de-Broglie wave-
length is roughly on the order of the interparticle spacing [60]. The precise geometry
of the single particle wavefunction of the ground state ψ0 depends on external trap
parameters. A nice consequence of this macroscopic occupation is the (quasi-)long
range order in the system, stemming from the fact that the ground state particles
share a single phase. This phenomenon is often interpreted as the breaking of the
U(1) gauge symmetry, which is the freedom of choice of a global phase.

This does not mean, however, that all particles need to be in the ground state, as
this phase coherence can still be retained for a small non-condensed (e.g. thermal)
fraction. The full field operator can be written in the form:

Φ̂ = ψ0â0 +
∑︂
i>0

ψiâi (3.1)

where the âi are the creation operators of the single particle states ψi.
Because the atoms in our system are weakly interacting, we introduce a interac-

tion potential that depends on the relative position between the particles V (r′ − r)
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and get the Hamiltonian [61]

Ĥ =

∫︂ (︃
h̄2

2m
∇Φ̂

†
(r)∇Φ̂(r)

)︃
dr+

∫︂
Φ̂

†
(r)Vext(r)Φ̂(r)dr

+
1

2

∫︂
Φ̂

†
(r′)Φ̂

†
(r)V (r′ − r)Φ̂(r′)Φ̂(r)dr′dr,

(3.2)

with m the particle mass. The first integral gives the kinetic energy, the second
integral the one from an external potential Vext(r) and the last integral yields the
interaction energy.

For the low energies involved in typical atomic BECs, the scattering processes
are dominated by s-wave scattering. The precise shape of the interparticle potential
is not relevant and the potential can be replaced by a contact interaction [62]

V (r′ − r) → gδ(r′ − r), (3.3)

with the interaction constant

g =
4πh̄2

m
as. (3.4)

We introduced the scattering length as, which is a quantitative measure of the mag-
nitude of the resulting effective interaction that is agnostic to the true shape of the
original potential. More details on this in the context of the experiment and how to
tune it dynamically can be found in section 5.4.

3.1 Mean Field Approximation

In the context of low temperatures and weak interactions, the number of particles in
the ground state N0 is large. A reasonable approximation is replacing the creation
and annihilation operators of the ground state by

√
N0. Effectively this replaces the

ground state part of the field operator with a classical field defined via its mean value

ϕ̂0(r) = ψ0(r)â0 ∼
√︁
N0ψ0(r) ≡ ϕ0(r) (3.5)

Therefore, this Bogoliubov approximation is oftentimes called mean field approxi-
mation. Errors in this approximation occur whenever commutators of the original
operators appear and are of the order 1/N0. This is also the reason why the same
approximation can not be applied to the less occupied higher energy states, such
that the new field operator reads

Φ̂(r) = ϕ0(r) + δΦ̂(r) (3.6)

where δΦ̂(r) denotes the sum over all the higher states as in Equation (3.1) and can
be interpreted as the fluctuations on top of the condensed fraction, which is well
described by this classical field.
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The Gross-Pitaevski Equation

If the fluctuations can be neglected (e.g. for large particle numbers N), the field
operator reduces to a classical field ϕ(r) - often called the order parameter - and the
time evolution generated by the full Hamiltonian (Eq. 3.2) reduces to the Gross-
Pitaevskii equation (GPE)(︃

− h̄2

2m
∇2 + Vext(r) + g|ϕ(r)|2

)︃
ϕ(r) = ih̄∂tϕ(r). (3.7)

Note that |ϕ(r)|2 is just the density distribution n(r). For a vanishing external
potential and a uniform density distribution we find for the ground state

ih̄∂tϕ0(r) = gn ≡ µ, (3.8)

where we introduced the chemical potential µ.
If we keep the external potential in the GPE but discard the kinetic term, we get(︁

Vext(r) + g|ϕ(r)|2
)︁
ϕ(r) = µϕ(r). (3.9)

This is called Thomas-Fermi approximation. Its solution

n(r) =
µ− Vext(r)

g
(3.10)

is a good first approximation for the ground state density profile of a trapped BEC
[63]. The approximation breaks down if the kinetic energy from the curvature of the
density profile is of the order of the interaction energy. This happens, for example,
at the edges of a box trap where the potential changes abruptly. Instead of showing
the same jump, the density changes smoothly on the order of the healing length
(defined in the next section, Eq. 3.19). The GPE can also be used to approximate
the time evolution of the system in an excited state. The mean field approximation
including the excited states is only justified if all the excited states that generate the
dynamics have occupations much larger than one.
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3.2 Bogoliubov Quasi-Particles
We now consider the regime of a highly occupied ground state, but small occupation
of the excited states. For this, we set the external potential to a box of volume
V . The single particle states in Equation (3.1) take the form of discrete box modes
that are momentum eigenstates, such that we can sum over momenta k. We get the
Hamiltonian in momentum space [63]

Ĥ =
∑︂
k

h̄2k2

2m
â†kâk +

g

2V

∑︂
k1,k2,q

â†k1−qâ
†
k2+qâk1 âk2 , (3.11)

where the first term is now simply the particle number operator for each mode
k multiplied by its kinetic energy and the second term includes all two particle
scattering processes with conserved net momentum.

Again, we approximate â†0, â0 ∼
√
N0 and keep all terms up to quadratic order

for k ̸= 0. This is done by keeping only combinations of k1, k2 and q for which
maximally two of the four indices (k1 − q,k2 − q, k1 and k2) are non-zero. This
leaves only combinations of ±k and we get

Ĥ =
gN2

0

2V
+
∑︂
k ̸=0

h̄2k2

2m
â†kâk +

gN0

2V

∑︂
k ̸=0

(︂
4a†kâk + â†kâ

†
−k + âkâ−k

)︂
. (3.12)

This can be rewritten in a symmetric form

Ĥ =
gN2

2V
+
1

2

∑︂
k ̸=0

[︃(︃
h̄2k2

2m
+ gn0

)︃
(a†kâk + a†−kâ−k) + gn0(â

†
kâ

†
−k + âkâ−k)

]︃
, (3.13)

where the symmetry in k was used, n0 is defined as n0 = N0/V and N = ⟨N̂⟩.
For details, see reference [63] where this was adapted from. We note that the single
particle states that are the eigenstates of a†kâk, are not eigenstates of the interacting
Hamiltonian because of the off-diagonal terms in the last brackets.
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Figure 3.1: Bogoliubov dispersion relation in linear (a) and double logarithmic scale
(b). The transition scale from a linear relation at low momenta to a quadratic one
at higher momenta is given by k = ξ−1 (unity in the chosen scale). This is best
seen in subplot (b). Insets show the absolute values of the corresponding Bogoliubov
coefficients αk and βk. Even though the experiments shown in this thesis include
different ξ and a wide momentum range is analyzed, these are typically in the regime
of ξ−1 (k ∈ [0.1ξ−1, 3ξ−1]).

The Bogoliubov Dispersion

We can express the Hamiltonian in terms of its energy eigenstates if we diag-
onalize the Hamiltonian with a Bogoliubov transformation. We introduce the
quasi-particle creation (and annihilation) operators

b̂
†
k = αkâ

†
k + βkâ−k, (3.14)

for which we have the usual Bosonic commutation relations and the normaliza-
tion condition just like in the last chapter (Eq. 2.18). We find the Bogoliubov
coefficients

|αk|2 =
1

2

(︄
h̄2k2

2m
+ gn0

h̄ωk

+ 1

)︄
, |βk|2 =

1

2

(︄
h̄2k2

2m
+ gn0

h̄ωk

− 1

)︄
. (3.15)

that diagonalize the Hamiltonian

Ĥ = E0 +
∑︂
k

h̄ωkb̂
†
kb̂k, (3.16)

with the ground state energy E0. For real weakly interacting gases E0 is domi-
nated by gN2/(2V ) like one expects from Equation (3.13). Here it diverges with
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the sum over all momenta (because of a commutator [â†k, âk] leaving us with a
factor −h̄ωk|βk|2). The divergence is a consequence of the choice of the contact
interaction (for details, see reference [63]).
The eigenfunctions of this Hamiltonian are the quasi-particles that are created by
the b̂

†
k creation operators. They are non-interacting (for this quadratic order of

approximation) and have eigenenergies given by the Bogoliubov dispersion relation

h̄ωk =

√︄
h̄2k2

2m

(︃
h̄2k2

2m
+ 2gn0

)︃
. (3.17)

For low momenta, we find a linear behavior ωk = csk, with

cs =

√︃
gn0

m
, (3.18)

defining the speed of sound. For high momenta, we find the quadratic dispersion
relation of the free particles. This is depicted in Figure 3.1. We can understand this
by looking at the momentum dependence of the Bogoliubov coefficients αk and βk
that are shown as insets in Figure 3.1. At high momenta, |αk| → 1 and |βk| → 0.
The quasiparticles are simply the free particles and we get the dispersion relation of
the original atoms. At low momenta, however, both coefficients are almost equally
large and the quasiparticles are a superposition of the k and −k modes. This gives
them a phononic character and the dispersion relation of massless particles. We
will call this the acoustic regime throughout this thesis. The relevant scale to
differentiate the two is given by the balance of kinetic and interaction energy. The
healing length ξ defined as

ξ2 =
h̄2

2mgn0

, (3.19)

is the inverse of the momentum k = ξ−1 that marks this balance. Indeed, we find
the transition between the two regimes in Figure 3.1 b) at k = ξ−1. Because of
the smooth character of the transition, we will later see its influence over a broad
range of momenta.
Like in the previous chapter, the new operators also come with their own vacuum
state. It is the lowest energy state of the Hamiltonian and fulfills b̂k |0⟩ = 0. Again,
this is different from the vacuum of the free particle operators. In other words,
not all atoms are in the ground state, even though this is the lowest energy state
(T = 0). This is a result from the interaction and called quantum depletion of the
the ground state ([63]).
The condition we set on the quasi-particle operator, namely to diagonalize the
Hamiltonian, is identical to the one we had in the previous chapter where we
restricted the mode equations in region I and III to plane waves (see Eq. 2.17).
The Bogoliubov coefficients that led to the creation and annihilation operators in
region III are very different, however, because they mapped the result from the
time-dependent operators in region II to the (quasi-)particle operators.
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3.3 Quasi-Two-Dimensional Condensates
In our experiments, the BEC is strongly confined in the z-direction (aligned with
gravity). This is achieved with a repulsive light potential described in section 5.3.2.
Around the potential minima this is well approximated by a harmonic potential
Vext(z) = mω2

zz
2/2. If the energy spacing h̄ωz of the transverse confinement is larger

than the energy scales involved in the system, only the ground state is occupied (in
z-direction) and the system can be considered quasi-two-dimensional. We can then
describe it with an effective two-dimensional theory.

On the mean field level, we can replace the order parameter in z-direction with
the ground state of the harmonic oscillator

ϕ0(z) =
1

π
1
4 l

1
2
z

e
− z2

2l2z , (3.20)

with the harmonic oscillator length lz =
√︁
h̄/(mωz). The ground state in z-direction

factorizes with the new two-dimensional order parameter and density |ϕ(r⊥)|2 =
n2D(r⊥). After integrating out the z-direction, we find the same set of equations
for kinetic energy and potential energy, where all integrals (and sums) now run
over two dimensions. The exception is a ground state energy shift of h̄ωz/2 from
confinement. For the interaction, however, integrating out the z-direction yields an
effective interaction constant for two dimensions

g2D =
g

πl2z

∫︂
e
−2 z2

l2z dz = g

√︄
1

2πl2z
=

√︄
8πh̄3ωz

m
as. (3.21)

This is only a result of the density distribution in the z-direction. The character of
the interaction is still three dimensional, as in our regime as ≪ lz. This is important
for the applicability of the mean field approximation [61].

All the equations we derived in this chapter are now equally applicable to the
quasi-two-dimensional system, simply by replacing g with g2D. From now on, we will
drop the 2D index for everything except the interaction parameter g2D.
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4
Analog Cosmology

The basic idea of analog gravity and analog cosmology is to map the differential
geometry necessary to describe general relativity as well as a (quantum) field theory
to describe (quasi-) particle excitations onto a hydrodynamic theory. In other words,
given the right set of parameters, the excitations of a fluid should behave as if they
were subject to a curved spacetime. Quantized sound waves in the fluid (phonons)
play the role of the excitations of the quantum field, while the speed of sound in the
fluid sets a physical scale connecting time- and space-like dimensions, analogous to
the speed of light. While we assume the speed of light to be constant in space and
time, the speed of sound in a fluid can depend on various parameters. Spatial and
temporal changes of the speed of sound, as well as fluid flows, can then be used to
mimic a variety of spacetime structures for the phonons.

As laid out in chapter 1, analog gravity was first proposed by Bill Unruh [17],
where he brought up the idea to simulate a black holes event horizon and the creation
of Hawking radiation in a moving fluid.

Similarly in analog cosmology, one can simulate particle production in isotropic
and homogeneous cosmologies like described in chapter 2. In this case, the fluid is
stationary and the change in scale factor is implemented via a dynamic change of the
interaction strength. This section includes the details of how to connect our BEC
system with a scalar quantum field in curved spacetimes. For an even more in-depth
discussion, see reference [49] where this was developed for our system. Afterwards,
we show the connection between speed of sound (or light) and the scale factor. We
take the full Bogoliubov dispersion into account and find that the analogy can still
be applied if we consider a momentum depended scale factor (or potential). Finally,
we look at the quantities that we extract from the experiment and how to relate
them to the excitation power spectrum from before. We find that this changes in
context of the dispersion. These final two sections are based on unpublished work
by our theory collaborators [64].
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4.1 Definition of the Fluctuation Field

We start similar to the last chapter, but will describe the BEC through the action
of a complex scalar field. By choosing a certain splitting of the fluctuations into two
real fields and with a few restrictions, namely no flow of the background condensate
and momenta in the acoustic regime, we will find an effective field theory with the
action in the form of the action of the scalar field in curved spacetimes in Equation
(2.1). In later sections, we again lift the restriction on the low-momentum regime.

The complex scalar field Φ that describes a two-dimensional BEC has the action:

Γ[Φ] =

∫︂
dtd2r

[︃
ih̄Φ∗ (∂t + iA0) Φ− h̄2

2m
(∇− iA)Φ∗(∇+ iA)Φ

−g2D
2

(Φ∗Φ)2
]︃ (4.1)

with the gauge field A = (A0, A), which only includes the external potential A0 =
V/h̄. Similar to the splitting after the Bogoliubov approximation (Eq. 3.6), we can
split this field Φ into background field ϕ0 and fluctuations

Φ = ϕ0 +
1√
2
(ϕ1 + iϕ2), (4.2)

where the fluctuations itself are split into the two real fields ϕ1/2. The background
field is, again, a solution of the mean field GPE (Eq. 3.7) and can be represented by
background density n0 and phase S0

ϕ0 =
√
n0e

iS0 . (4.3)

With this definition and using the gauge freedom of Equation (4.1), ϕ1 can be inter-
preted as the in-phase component of the fluctuation field relative to the background
field and ϕ2 as the out-of-phase component (if the background phase is flat). As
a result of the gauge transformation Φ → e−iS0Φ, the gauge field A is modified to
A0 = V/h̄+ ∂tS0, Ai = ∂iS0.
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Because ϕ0 is a solution to the GPE, we can plug Equation (4.3) into the GPE
and get particle conservation

0 = ∂tn0 +∇(n0v), (4.4)

from the imaginary coefficients and energy conservation

0 = h̄∂tS0 + V + g2Dn0 +
1

2
mv2 + q, (4.5)

from the real coefficients. Here, we introduced the background velocity

v =
h̄

m
∇S0, (4.6)

and the quantum pressure

q = −
h̄2∇2√n0

2m
√
n0

. (4.7)

With this, one can expand the action around the background field solution ϕ0. When
extremizing the action, the relevant terms depend on the fluctuations ϕ1 and ϕ2

to quadratic order (including mixed terms), because linear terms vanish at the ex-
tremum. Terms that only depend on ϕ0 are already solved by the mean-field solution.
We get the quadratic contribution [64]

Γ2[ϕ1, ϕ2] =

∫︂
dtd2r

[︃
h̄ϕ2∂tϕ1 −

h̄2

4m

(︁
(∇ϕ1)

2 + (∇ϕ2)
2)︁

−1

2

(︄
V + h̄∂tS0 + h̄2

(∇S0)
2

2m

)︄(︁
ϕ2
1 + ϕ2

2

)︁
− h̄2

2m
(∇S0) (ϕ1∇ϕ2 − ϕ2∇ϕ1) −

g2Dn0

2

(︁
3ϕ2

1 + ϕ2
2

)︁ ]︃
(4.8)

where n0 = |ϕ0|2 was used. Using Equation (4.5), Γ2 can be simplified to

Γ2[ϕ1, ϕ2] =

∫︂
dtd2r

[︃
1

2
ϕ2

(︃
h̄2

2m
∇2 + q

)︃
ϕ2 +

1

2
ϕ1

(︃
−2g2dn0 +

h̄2

2m
∇2 + q

)︃
ϕ1

−ϕ1

(︃
h̄∂tϕ2 +

1

2
v∇ϕ2 +

h̄2

2m
(∇2S0)ϕ2

)︃]︃
.

(4.9)
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The Acoustic Approximation

Going further, we make multiple approximations. First, we assume that the back-
ground velocity is constant, that is, ∇2S0 = 0. Second, we neglect the quantum
pressure. This is justified if the background density is flat (or at least slowly vary-
ing in comparison to other scales in the BEC). Finally, we rule out background
flows altogether and set v = 0. This step is not necessary to find an acoustic met-
ric but will lead to the FLRW-metrics (see App. D). With these approximations,
one obtains the equations of motion from variation of Γ2 [64]:(︃

2n0g2D − h̄2

2m
∇2

)︃
ϕ1 + h̄∂tϕ2 = 0, and (4.10)

h̄2

2m
∇2ϕ2 + h̄∂tϕ1 = 0. (4.11)

Note that the field ϕ1 has an additional contribution 2n0g2D from the interac-
tion with the background. If we assume this is dominating over the kinetic term
h̄2

2m
∇2ϕ1, we can drop this and obtain

ϕ1 = − h̄

2n0g2D
∂tϕ2. (4.12)

This is referred to as the acoustic approximation, because it is the same as going to
the low-momentum limit of the Bogoliubov dispersion (3.17) where quasi-particles
are phonons. We will see that this is not always justified and discuss the conse-
quences in section 4.2.2. The real part of the fluctuations ϕ1 can be integrated
out of the action. By redefining ϕ = 1√

2m
ϕ2 we end up with the final form of the

effective action

Γ2[ϕ] =
h̄2

2

∫︂
dtd2r

[︃
1

c2s
(∂tϕ)

2 − (∇ϕ)2
]︃

(4.13)

where the speed of sound in the condensate cs =
√︁

g2Dn0

m
(Eq. 3.18) was used.

The next section shows how this is related to the definition of the acoustic metric.
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4.2 The Effective Metric and the Scale Factor

To show that the action for ϕ is the action of a free relativistic scalar field in curved
spacetime, cs is used to a define a metric

(gµν) =

(︄
−1 0

0 c−2
s δij

)︄
(4.14)

together with its inverse

(gµν) =

(︄
−1 0

0 c2sδ
ij

)︄
(4.15)

With √
g =

√︁
−det(gµν) = 1/c2s Equation (4.13) can now be rewritten in the desired

form:

Γ2[ϕ] = − h̄
2

2

∫︂
dtd2r

√
ggµν∂µϕ∂νϕ. (4.16)

This is the form of a massless scalar field in curved spacetime (compare to Eq.
2.1). At first glance, the newly found metric in Equation (4.14) looks like the flat
Minkowski metric (with signature (-,+,+)) and we get the line element ds2

ds2 = gµνdx
µdxν

= −dt2 + c−2
s

(︁
dx2 + dy2

)︁
.

(4.17)

Because cs is not a physical constant, this metric is not necessarily restricted to the
Minkowski metric. By making the speed of sound a function of space and time, it
can be used to implement spatial curvature and time dependent scale factors.

4.2.1 Expanding Spacetimes - Time-Dependent Scale Factor

In cosmology, the metric is typically defined, such that the speed of light c is multi-
plied with the time coordinate, giving the product the units of space. We define x
and y as co-moving coordinates of space. This means objects that are stationary in
space (relative to this choice of coordinates) keep their coordinates fixed. The ex-
pansion of space and an increasing distance is encoded in an increasing dimensionless
scale factor λ(t)

ds2 = −c2dt2 + λ(t)2
(︁
dx2 + dy2

)︁
. (4.18)

Photons move at the speed of light such that ds2 = 0. For two objects A and B that
are stationary in our co-moving coordinates, we can measure the proper distance
(including the scale factor) by measuring the time it takes for light to go from A to
B (and back). As illustrated in Figure 4.1, this time only depends on the ratio λ/c
but not on their actual values. This can be shown formally by setting ds2 = 0 in the
line element (4.18). In cosmology this freedom is typically used to set the current
value of λ to one and thus set the co-moving distance to today’s proper distance.
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Figure 4.1: a) Two observers A and B that are stationary relative to each other,
measure the scale of their spacetime by performing a round trip experiment. B
sends out a photon (phonon) that is traveling at the speed of light c (cs). As soon as
the signal reaches A, it is sent back. B can measure the time ∆t, between sending
and receiving the signal. Origin of the spacetime diagram shown is the spacetime-
coordinate in which A receives the signal. b) The two observers repeat the same
experiment, but measure a larger time ∆t′. They can not distinguish between an
increase of the scale factor λ→ λ′ and a decrease of the speed of light c→ c′.

Because the speed of sound is not a fundamental constant and we change it to
mimic an expanding scale factor, we employ this freedom to combine cs and λ to the
scale factor a = 1/cs

ds2 = −dt2 + a(t)2
(︁
dx2 + dy2

)︁
. (4.19)

giving our coordinates the units of time. The phononic excitations of the fluctuation
field ϕ are massless (relativistic). They also obey ds2 = 0, which means that they
are moving along the geodesics of this metric at the speed of sound. The geodesics
are the curved spacetime equivalent to straight lines in flat space and given by the
curves with tangent vectors along the curve at all points. In other words, this is a
generalization of going straight and describes the path of an object without external
forces. The shortest path between two points A and B is a subsection of a geodesic
through both points. We measure the spatial distances between two points A and B
in our condensate in units of time, that is, the time it takes for a phonon to cover the
distance between A and B. For a constant scale factor, the geodesics also define sound
cones that are analogous to light cones in cosmology. Imagine a 2+1-dimensional
version of the 1+1-dimensional spacetime diagram in Figure 4.1, in which the red
ds2 = 0 lines form a cone. In our example, the scale factor is different between (a)
and (b), but does not change on the timescale of the round-trip experiment. A scale
factor that is dynamic on these timescales would result in a curvature of the sound
cones.
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Figure 4.2: a) Two observers A and B that are stationary relative to each other
measure the scale of their spacetime by performing a round trip experiment (same
as in Fig. 4.1, but specific to the analog case). b) If the kinetic energy difference
of the quasiparticles can not be neglected, a pulse sent out by B disperses according
to the difference in phase velocities. Higher energies (blue) complete the round trip
faster then lower ones (red). This is also the case if the metric is made momentum
dependent. Now all momenta move at cs but are sent and received at different proper
distances.

The explicit time dependence of the scale factor is implemented through a time-
dependence of the speed of sound. To implement an expansion where the scale factor
increases in time, the speed of sound is dynamically decreased. In turn, the time it
takes for a phonon to go from A to B is increased. This is implemented by making the
interparticle-interaction g2D time dependent through a magnetic Feshbach resonance
and is explained in more detail in context of the experimental apparatus in section
5.4 and the experimental results in chapter 6. Because the physical size of the BEC
does not change, we can take the lab coordinates as our comoving coordinates.

Because the speed of sound depends on the density n(x), it can change through-
out the condensate. This can be used to implement spatial curvature. A detailed
description of how this is done can be found in [65]. Experimental results can be
found in [47] and [66].

With the combined capability of an adjustable scale factor and spatial curvature,
all parameters of the FLRW-metric can be adjusted. Because the curvature is on the
order of the size of the condensate, the energy shifts from the curvature are small
and have minor effects on the particle production process. For a complete treatment
including the set of eigenfunctions and eigenenergies in both positively curved spaces
and negatively curved spaces, refer to [49]. All the experiments shown in this thesis
are performed with flat density distributions that correspond to no spatial curvature.
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4.2.2 Rainbow Metric

So far, our ability to describe the fluctuations of the BEC in terms of a massless
scalar field in curved spacetime relied on the assumption that the fluctuations are
phononic. This ensures that they move at the speed of sound. Theoretically, this was
implemented by applying the acoustic approximation (2n0g2Dϕ1 ≫ h̄2

2m
∇2ϕ1) leading

from Equation (4.11) to Equation (4.12).
However, this is only justified in the low-momentum regime. If one does not

apply this approximation, one can still define a metric via the phase velocities cph(k)

(gµν) =

(︄
−1 0

0 c−2
ph (k)δij

)︄
, (4.20)

where the phase velocity set a momentum dependent inverse scale factor ak = c−1
ph (k)

and is calculated from the Bogoliubov dispersion

cph(k) =
ωBog(k)

k
= cs

√︃
1 +

1

2
k2ξ2. (4.21)

Because this introduces a dispersion in the metric, this is sometimes referred to as
the rainbow metric [37].

Figure 4.2 illustrates the effect of incorporating the dispersion in the scale factor
a→ ak. Then ak simply replaces the original one in the mode equation for region II

v̈k(t) + 2
ȧk(t)

ak(t)
v̇k(t) +

k2

a2k(t)
vk(t) = 0. (4.22)

In this form, it can be solved for every momentum mode as before.
To regain a single scale factor that is valid for all momenta, we can put the

dispersive factor in rescaled mode functions

vk(t) = a−1/2(t)
√︂

1 + 1
2
k2ξ2(t)ψk(t). (4.23)

This way, we can unambiguously define conformal time dη = 1
a(t)

dt and write the
mode function in form of the Schrödinger equation(︃

− d2

dη2
+ Vk(η)

)︃
ψk(η) = k2ψk(η), (4.24)

albeit with a potential that is momentum dependent

Vk(η) =
ξ−4(η)− 5k2ξ−2(η) + 4k4

4(ξ−2(η) + k2/2)2
ȧ2(η) +

1

2

ξ−2(η)− k2/2

ξ−2(η) + k2/2
ä(η)a(η)− 1

2
k4ξ2(η).

(4.25)
For k ≪ ξ−1 we recover the original form of the acoustic limit (Eq. 2.34). The last
term introduces the dispersion, now in the form of a momentum-dependent potential
offset. Especially, the term proportional to ä(η) is less important at high momenta.
Because ξ(η) changes as the scale factor does, this introduces an additional time
dependence. This is part of ongoing work ([64]).
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4.3 Extraction of Observables

Ultimately, we want to extract the spectrum of fluctuations Sk, which we can calcu-
late from the connected correlation function Gππ by inverse transformation of (see
Eq. 2.27, now h̄ ̸= 1)

Gππ(t,x− x′) =
1

2

∫︂
d2k

2π
a4f |v̇k(t)|2eik(x−x′) =

∫︂
d2k

2π

ωka
2
f

h̄
Sk(t)e

ik(x−x′). (4.26)

However, we can not measure the canonical momentum field π directly. Instead, we
always measure density distributions at some time t (see chapter 6). From these, we
construct the density contrast

δc(t,x) = (n(t,x)− n0(x))
n

1
2
0 (x)

n̄
3
2
0

, (4.27)

where n0 = |ϕ0|2 and

n = |Φ|2 = |ϕ0|2 + |ϕ0ϕ1|+O
(︁
ϕ2
1, ϕ

2
2

)︁
, (4.28)

for our definition of the background and fluctuation fields (see Eq. 4.2). Note
that we get an interference term between ϕ0 and ϕ1, but not for ϕ2, due to this
choice of splitting the fluctuations and their phase relative to the mean field ϕ0.
Experimentally, n(t,x) would be a single experimental realization, where we get the
density including all the fluctuations. The background density n0(x) is estimated by
averaging many realizations. Finally, n̄0 denotes the density in a reference area in
the center of the BEC. This is equal to the mean density n0 if it does not depend
on position, for example because of the implementation of curvature or experimental
deviations.

From this density contrast, we now calculate the two-point correlations

Gnn(t,x,x
′) ≡ ⟨δc(t,x)δc(t,x′)⟩ = 1

n0

⟨{ϕ1(t,x)ϕ1(t,x
′)}⟩c =

2

n0

Gϕ1ϕ1(t,x,x
′).

(4.29)
In the acoustic approximation, ϕ1 = − h̄

2n0g2D
ϕ̇2 (Eq. 4.12). From π = a2f ϕ̇ and

ϕ = 1√
2m
ϕ2 in our analog, we get

Gππ =
mn0

h̄2
Gnn =

∫︂
d2k

2π

ωka
2
f

h̄
Sk(t)e

ik(x−x′)

⇒ Sk(t) =
mn0

h̄ωka2f

∫︂
d2k

2π
Gnne

−ik(x−x′),

(4.30)

where we used g2Dn0 = mc2s and cs = a−1
f . With this, we can extract the spectrum

by performing a Fourier-transform of the density contrast correlations.
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The Bogoliubov Prefactor to the Spectrum

If we are not within the acoustic regime, we get ωk = ωBog(k) instead of ωk = csk.
More importantly, we lose the simple relation Equation (4.12) between ϕ1 and ϕ2.
In other words, ϕ1 is no longer proportional to the conjugate field of ϕ.
Instead, we have to evaluate the equations of motion (4.11), including the kinetic
energy. In momentum space, these still separate and we find

−h̄∂tϕ2,k =

(︃
2g2Dn0 +

h̄2k2

2m

)︃
ϕ1,k. (4.31)

Because of this separation, we still get a spectrum albeit with more prefactors

Gnn =

∫︂
d2k

2π

4mh̄

a2fn0

ωBog(k)(︂
2g2Dn0 +

h̄2k2

2m

)︂2Sk(t)e
ik(x−x′)

⇒ Sk(t) =
a2fmn0

h̄k
c3ph(k)

∫︂
d2k

2π
Gnne

−ik(x−x′)

=
m2c3s
h̄kg2D

(︃
1 +

1

2
k2ξ2

)︃ 3
2
∫︂

d2k

2π
Gnne

−ik(x−x′),

(4.32)

where we used the phase velocity defined in Equation (4.21). Compared to the
acoustic approximation, we get the extra prefactor

(︁
1 + 1

2
k2ξ2

)︁ 3
2 , which we will

call the Bogoliubov prefactor in the following. All factors in front of the integral,
but with the bracket to the power 1

2
instead of 3

2
can be related to the squeezing

parameter [45]
m2c3s
h̄kg2D

(︃
1 +

1

2
k2ξ2

)︃ 1
2

=
2n0

C
, (4.33)

that is given by the ratio between the kinetic energy of the free particles and the
Bogoliubov quasi-particles

C =
h̄k2

2mωBog(k)
. (4.34)

The density and consequently the correlations and its Fourier transform of the
ground state will show less noise on long length scales, because of the interaction.
This makes it like squeezed modes in the particle basis, although in the energy
eigenbasis of the quasi-particles that we are considering, they are not. Because
we are interested in Gππ ∼ Gϕ̇2ϕ̇2

, we get the additional factor
(︁
1 + 1

2
k2ξ2

)︁
from

Equation (4.31). When we discuss experimental spectra, we will always refer to
the quantity defined in Equation (4.32) that can be compared with our expec-
tation from Equation (2.28), including quasi-particle occupations Nk, coherent
oscillations ∆Nk(t) and a vacuum noise level of 1/2. More details on this topic
will be published in [64]. The experimental spectra are additionally corrected for
a length-scale dependent imaging sensitivity (see section 5.5.3).
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5
Experimental Platform

The core of the simulator used in this work is a quasi-two-dimensional Bose-Einstein
condensate of potassium-39. This bosonic isotope of the alkali metal potassium is
well-suited for simulation purposes because it has an almost freely tunable inter-
action strength. Together with an adjustable external potential, all terms of the
Hamiltonian (see, for example, 3.2) can be experimentally tuned relative to the ki-
netic term. The other constituents of the simulator, namely the BEC preparation
and readout of the density distribution, are also discussed in this chapter.

We start with the most important properties of 39K and provide a very brief de-
scription of the cooling and condensation stages in our experiment. These are based
on established mechanisms and have been well and comprehensively described in pre-
vious publications of the group, which will be referenced accordingly. More emphasis
will be put on the description of the tunable interaction strength via a magnetic Fes-
hbach resonance and the light potentials that form the final trap configuration and
with that provide an adjustable external potential. Finally, the density readout via
two-frequency absorption imaging will be covered in detail, especially its length scale
(i.e. momentum)-dependent sensitivity arising from imaging aberrations.

5.1 Important Properties of Potassium-39
39K is a bosonic isotope of potassium and the most abundant natural isotope. It
is part of the alkali metals on the very left of the periodic table and thus has only
one valence electron. Together with a nuclear spin of I = 3/2 (and electronic spin
S = 1/2) we find the ground state 2S1/2 and the excited states 2P1/2 and 2P3/2 that
split due to spin-orbit coupling in J = 1/2 and J = 3/2. Transitions between the
ground and these excited states define the D1 line at 770.1 nm and the D2 line at
766.7 nm respectively. These are shown in Figure 5.1 a). The cooling of the atoms
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Figure 5.1: a) Level structure of 39K showing the ground state 2S1/2 and the excited
states 2P1/2 and 2P3/2 as well as their hyperfine structure. b) Hyperfine splitting and
level shift as a function of external magnetic field for the ground state 2S1/2 and the
excited state 2P3/2. Marked in red is the state that is used in the experiments. This is
the only substate of the F = 1 ground state manifold with positive magnetic moment
at low magnetic fields. Colored vertical lines mark the microwave transitions used
for the calibration of the magnetic field. Values to generate the diagrams are taken
from [67].
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in the magneto-optical traps and the imaging system make use of the D2 line. Sub-
Doppler cooling with gray molasses adresses the D1 line. Both are described in the
next section.

At zero magnetic field, the ground state and the excited state 2P1/2 split into
total angular momenta F = 1 and F = 2. The excited state 2P3/2 splits into four
hyperfine manifolds. Note that the ground-state splitting is much larger than the
splitting of the excited states and not on an equal scale. Especially in the 2P3/2 state,
this splitting is small when compared to the natural linewidth of Γ = 2π × 6MHz.

Under an external magnetic field, each of these hyperfine manifolds splits into
2F + 1 Zeeman sub-levels (−F ≤ mF ≤ F ). This is shown in Figure 5.1 b) for
the ground state and the excited state 2P3/2. At low magnetic fields the energy
shift of the sub-levels are (anti-)proportional to their magnetic quantum number
mF. For high magnetic fields, the interaction with the magnetic field dominates over
the hyperfine interaction. The |F,mF⟩ basis is no longer a good basis. For very high
fields, mI and mJ, instead the magnetic quantum numbers of the total electronic
angular momentum J and the nuclear spin I form a good basis. Then, the energy
shift is dominated by and proportional to the quantum numbermJ. The four possible
mI states are almost parallel. This limit is reached at much lower fields for the 2P3/2

state (see the difference in magnetic field axis in Figure 5.1 b). All experiments
shown are performed in the energy eigenstate marked in red (subsequently called the
experimental substate), that is selected via the magnetic trap. This state corresponds
to the |F = 1,mF = −1⟩ state at low field and the |mJ = −1/2,mI = −1/2⟩ at high
fields. Our experiments will typically be performed between 540G and 560G, just
below a magnetic Feshbach resonance of our experimental substate.

5.2 Production of the BEC

Vacuum System

To cross the BEC transition, the bosons need to have a high phase space density, that
is, a combination of high density (in real space) and low temperature (high density
in momentum space). For this, it is paramount to put the the atoms in ultra-
high vacuum, minimizing collision with room-temperature background gas. Our
vacuum system is divided into two parts, connected via a differential pumping stage
(a tube of small diameter). The first part includes the potassium oven that is our
atom source and is operated at a higher pressure (10−7 mbar to 10−8mbar). The
second part includes the glass cell that makes the science chamber where the BEC
is produced (< 10−11 mbar). A detailed description of the vacuum system can be
found in [68]. Since then, the Rubidium oven and the coils in the vacuum system
have been removed.

Magneto-Optical Traps

The first cooling stage is a two-dimensional Magneto-Optical Trap (MOT). Two
pairs of counterpropagating laser beams are red detuned to the D2-line (767 nm, see
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Fig. 5.1 a). Because of the Doppler-shift in the reference frame of a moving atom,
scattering rates of the two counterpropagating beams are not equal. The rate is
higher for the beam that propagates against the direction of movement of the atom.
Because every scattering process includes a momentum transfer of h̄kphot from the
laser to the atom, the atoms slow down rapidly. This cooling technique is known
as optical molasses. The spontaneous emission in the scattering process is expected
to be isotropic. Therefore, the net momentum will average to zero, however, the
variance will be substantial. This variance equates to a velocity distribution and
temperature limit for this technique known as the Doppler-limit. With this setup,
the atoms are cooled, but not trapped. A magnetic field with a zero crossing in
the center of the trap and gradients in all directions is added by a pair of coils in
anti-Helmholtz configuration (opposite directions of current flow). This shifts the
energy of the Zeeman sub-levels of the atom (low magnetic field region in Fig. 5.1
b)) as a function of distance from the trap center. With the right set of circular
polarizations of the laser beams, this is used to produce a restoring force towards
the center of the trap. The optical molasses and this kind of magnetic field and
polarization configuration combine cooling and trapping in the MOT.

Ideally, a closed cycle is used as the cooling transition. This is the excitation from
a ground state to an excited state, that can only decay back to the original ground
state (due to the selection rules). For potassium-39, such a cycle exists between the
F = 2 hyperfine manifold of the ground state and the F = 3 hyperfine manifold of
the excited state 2P3/2. This transition is driven by the cooling laser. However, the
hyperfine splitting of the excited state is small, such that atoms can be lost into the
ground state F = 1. Consequently, this is addressed by a second laser (repumper)
that also drives the D2 transition. In practice both of these lasers are used with equal
intensities and contribute to the cooling. For the first MOT in our setup, only two
pairs of beams cool and trap the atoms in two dimensions. In the third dimension,
a single beam accelerates the atoms through the differential pumping stage into the
low-pressure science chamber.

In the science chamber, this stream of precooled atoms is trapped and cooled in
a three-dimensional MOT. A compressed MOT stage is implemented by increasing
the magnetic field and laser detunings towards the end of the MOT stage. Magnetic
fields in the science chamber are generated by a pair of top and bottom mounted
coils in anti-Helmholtz configuration that are also used for the magnetic trap and
Feshbach fields.

All the near-resonant laser light is generated on a separate optical table and
transferred to the experiment via fibers that can be shuttered to avoid resonant
stray light at later stages of the experiment. The D2 lights are generated by a
frequency-doubled fiber laser in the telecom wavelength range. This reference laser
is locked via Doppler-free absorption spectroscopy on the crossover resonance of the
D2 line via a potassium spectroscopy cell. From this, the detunings needed for the
MOT are generated via acousto-optic-modulators (AOM), that shift the frequency
for the two-dimensional MOT and the three-dimensional MOT as well as cooler and
repumper independently.

The complete MOT setup can be found in [65]. Since then, the MOT beam from
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the top had to be changed to pass through a top objective. This objective is used for
the final trap described in 5.3.2. These changes to the setup can be found in [69]. A
detailed description of the light generation can be found in [70]. The reference laser
and a tapered amplifier have been replaced by the fiber laser that can be found in
[71].

Gray-Molasses

Early experiments on optical molasses measured temperatures below the Doppler-
limit [72]. This was explained by the Zeeman sub-level structure of the states, to-
gether with a position dependent polarization. Two counterpropagating laser beams
with perpendicular polarization form a spatially varying polarization that changes
periodically along their propagation axisover half their wavelength. This results in
position-dependent light shifts (energy shifts) of the Zeeman sub-levels. The opti-
cal pumping rates between these sub-levels also depend on this local polarization.
The pumping rate can be tuned (by detuning of the laser) to achieve a locally in-
creased pumping rate from the state with a high internal energy at a given position
to a state with lower internal energy. In this case, some energy is lost to the light
field. Further movement will transform the low internal energy state into one of high
internal energy and the cycle repeats. This tendency to roll more up- than down
hill in the potential landscape gives the phenomenon the name Sisyphus cooling.
Because atoms have a considerable probability to be in an excited state, they will
sometimes spontaneously emit photons. This restricts the achievable temperatures
to the energy of a single photon (recoil energy). For potassium this is below 1 µK.

The gray molasses combines Sisyphus cooling with velocity-selective coherent
population trapping. It mitigates the photon recoil problem by storing cool (slow)
atoms in a dark state, that does not couple to the excited states at all. For a simple
model system with two non-degenerate ground states and one excited state (lambda
system), this can be achieved by driving transitions from both ground states to the
excited state. This coherently couples the two ground states and, for equal detunings
of the two transition lasers, results in destructive interference of their contributions
to the excited state amplitude. In other words, the probability for these atoms to
be in the excited states is zero, and no spontaneous emission can occur. However,
this is only true for atoms at rest. All others will experience a velocity dependent
detuning from the Doppler-shift and scatter light. Atoms end up at low momentum
either by the Sisyphus process or just by chance after a photon scattering event
and accumulate in the low momentum state because they stop participating in the
cooling cycles. An overview of the phenomena described here can be found in [73].

In our experiment, such a situation can be realized by off-resonant coupling of
the ground state 2S1/2 and the excited state 2P1/2 (blue detuned to the 770.1 nm
D1 line, see Fig. 5.1 a). Because of the more involved level structure of potassium,
this does not result in a dark state, but a state with small coupling to the excited
state. Consequently, this is called a gray state, giving the technique its name, gray-
molasses. During the gray-molasses stage the detuning of the two lasers is ramped
in parallel to larger values, to ensure a low scattering rate in the end (despite the
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non-zero scattering rate in the gray state). At the end of the stage, the laser that
adresses the F = 1 ground state is switched off first, such that the atoms are pumped
to the F = 1 manifold.

With this setup, we achieve temperatures on the order of 7 µK, extracted via time-
of-flight measurements. Special care needs to be taken to ensure equal detuning
of the two lasers during the whole stage. A detailed description of the frequency
generation and locking scheme can be found in [74]. More information regarding the
experimental setup can be found in [65]. The generation of the D1 laser light has
also been switched to a frequency doubled telecom-range fiber laser.

Magnetic Trap

For strong enough magnetic fields, the Zeeman shift of the atomic substates can be
sufficient to provide the sole trapping force without any light. To achieve this, the
magnetic coils are driven in anti-Helmholtz configuration. Just like for the MOT
stages this results in zero magnetic field in the center and large gradients. Magnetic
hyperfine states for which the energy increases with magnetic field (so called low-
field seekers) can be trapped in this configuration. From the F = 1 manifold of the
ground state of potassium this is the case only for |F = 1,mF = −1⟩ (see Fig. 5.1
b). Because the other states are lost from the trap, this results in effective substate
cleaning of the sample, and we end up with our experimental substate. The magnetic
trap is also used to compress the cloud. Additionally, its center can be shifted during
the magnetic trap stage via three pairs of offset coils. This enables efficient loading
from the gray molasses to the magnetic trap and from there to the dipole trap.

Details on the design and characteristics of the magnetic coils can be found in
[75] and [76]. Control circuits that enable the operation of the coils in Helmholtz
and anti-Helmholtz configuration with up to 400A can be found in [69].

Dipole Traps and Evaporative Cooling

The final steps towards condensation are performed in dipole traps. These are gen-
erated by far-off resonant infrared light (1064 nm). Because of the large detuning,
scattering rates and heating are much smaller than for the near-resonant light con-
sidered before. Via an induced dipole moment, the light beams can still exert forces
on the atoms. In case of the red detuned light, these are attractive. More details on
the working principle of dipole traps are described in the next section. To generate
large trapping forces, a lot of power and large intensity gradients are needed. Up
to 12W can be provided by each of the two beams that are crossed and focused (to
a beam waist of ∼ 50 µm) in the science cell to form a local intensity maximum to
trap the atoms.

This deep crossed-dipole trap can directly load the atoms from the magnetic trap.
In the crossed-dipole trap we start the evaporative cooling process. For this, the trap
depth is continuously lowered by reducing the power in the beams. Atoms in the
tail of the momentum distributions are statistically more likely to escape the trap.
Thermalization processes will redistribute the remaining energy with a tendency to-
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ward the new equilibrium distribution that corresponds to a lower temperature. To
aid in the formation of the BEC, a third smaller beam is added that produces a local
dimple in the potential (in the context of this experiment called condensor). While
the power of this beam is also ramped down, it is ramped slower than the power of
the crossed-dipole trap (reservoir). Just before the big reservoir trap is turned off, a
fourth beam is added. This has a tighter focus in gravity direction than in the other
directions. This pre-compresses the BEC (and is in the context of this experiment
called compressor) to enable an efficient loading of the final two-dimensional trapping
configuration. BEC formation occurs during a final evaporation ramp of the conden-
sor and compressor powers. During the whole evaporation process the interatomic
interaction is tuned with an external magnetic field. This is important to increase
the scattering cross section that is crucial for the thermalization. Additionally, the
interaction at zero magnetic field is of attractive nature. For this, the formation of
a large BEC would not be stable but lead to a collapse of the cloud [77]. A good
visualization of the evaporation process, the power ramps in the individual beams,
as well as the technical details of the hardware that enables their precise control can
be found in [65]. Since then, the top beam has been removed and some absolute
values changed.

The whole sequence from the MOT stages to the production of a BEC takes less
than 20 s. This sets the repetition rate of our experiment. MATLAB-written control
scripts and user interfaces enable the continuous operation of the experiment. This
includes scans through a multi-dimensional parameter space as well as gathering
statistics. Actively water-cooled parts are connected to a system of temperature
sensors and interlocks that shut off if increased temperatures or errors of the cooling
system are detected.

5.3 External Potential

5.3.1 Dipole Forces

After the magnetic trap, all relevant potentials are formed by the dipole force that far
detuned lasers exert on neutral atoms. The laser induces a small shift of the electron
distribution polarizing the atoms. The polarized atoms, in turn, feel a force from the
light field. This can be calculated in perturbation theory. To motivate the arising
forces we will first consider a classical picture. For this we imagine the atoms as a
two-level system with a single transition frequency. In the simple picture, driving
this transition with a laser is equivalent to driving a harmonic oscillator. If the laser
is far detuned from atomic resonances, the oscillator is driven far off resonance and
does not show a large response. More importantly, however, driving the oscillator
below the resonance frequency gives an in-phase response, while driving it above
gives an out-of-phase response. As a result, the polarization of the atom is in phase
with the light field for red detuned lasers (lower frequency), leading to a reduction in
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energy. For blue detuned lasers we get an increased energy instead. Consequently,
the atoms are attracted by red detuned light and can be trapped in maxima of the
light field. Conversely, they are repelled by blue detuned light and can be trapped
in minima of the light field.

The same phenomenon can be found with semiclassical perturbation theory (re-
sults taken from [78]). For this, we treat the atom as a two level system. The ground
state |g⟩ and the excited state |e⟩ are coupled via the external electric field of the
laser E and their electric dipole moment µ

∆Eg/e = ±| ⟨e|µ |g⟩ |2

h̄∆
|E|2, (5.1)

where the ground state and the excited state are shifted in opposite directions. The
detuning ∆ = ω − ω0 is given by the energy difference of the corresponding dressed
states (including the light field) and is given by the difference of the unperturbed
transition h̄ω0 and the actual photon energy h̄ω. The transition matrix element is
the same that defines the spontaneous decay rates and the natural linewidth Γ.

∆Eg/e = ±3πc2

2ω3
0

Γ

∆
I, (5.2)

where I is the intensity of the laser light. While the energy shift goes directly with
the overlap between the ground and excited states, the probability to actually scatter
one of the photons goes with this quantity squared

Γsc =
3πc2

2h̄ω2
0

(︃
Γ

∆

)︃2

I. (5.3)

For a desired trap depth, a combination of large detunings and high intensities
minimizes the heating due to scattering.

In general, potassium atoms cannot be treated as a two-level system because the
D1 line and the D2 line have similar energy. For detunings that are large compared
to the hyperfine splitting and for linearly polarized laser light we get the ground
state energy shift

∆Eg =
πc2Γ

2ω0

(︃
2

∆2

+
1

∆1

)︃
I, (5.4)

where ∆2 denotes the detuning to the D2 line and ∆1 the detuning from the D1
line. The factors one and two stem from the relative line strengths [78].

If we now want to generate large trapping forces without excessive heating, we
have to combine high intensity gradients with a large detuning. This is what was
done for the crossed dipole trap in the last section. For red detuned light, the
potential minimum is at the intensity maximum, that is naturally in the center of a
laser beam. Trapping in the third dimension along the beam path can be achieved
by focusing the laser beam, or by crossing two or more laser beams. In the crossed
dipole trap, a combination of the two is employed.

However, as the atoms reside in the region of maximal intensity, large potential
depths come with increased scattering rates. This can be mitigated by choosing
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a blue detuned, repulsive potential instead. There an intensity minimum has to
be constructed in which the atoms are trapped. This is done for our final trap
configuration in which the experiments have been performed. The working principle
and setup are described in the next section.

5.3.2 The Final Trap Configuration

Confinement in Gravity Direction

To achieve a quasi-two-dimensional condensate, we confine the BEC to a single site
of a one-dimensional lattice. This lattice is achieved with an interferometer setup
that interferes two blue detuned laser beams (at 532 nm) under a shallow angle in the
science cell. A schematic representation is shown in Figure 5.2. The resulting inter-
ference pattern forms light sheets with normal vectors in gravity direction (referred
to as pancakes) that are spaced by ∼ 5 µm. Because of the blue detuning, potential
minima (lattice sites) will be in the intensity minima of the interference pattern.
With enough precompression of the BEC with the attractive compressor beam, the
BEC can be loaded into a single lattice site. The lattice power is subsequently in-
creased, tightly confining the BEC in the direction of gravity. Differences in path
length of the interferometer arms set the phase of the lattice and with that the po-
sition of the lattice sites. Short-term stability is provided passively by a compact
interferometer setup mounted on a massive aluminum wedge. This aluminum block
is not rigidly connected to the optical table but rests under its own gravity on three
contact points. In addition, the temperature of the optic table is passively stabilized
by tightly closed curtains around the edge of the table and actively stabilized by a
temperature stabilization of the whole lab (with its reference point located on this
optic table). Long-term drifts can be compensated with a piezo-crystal driven mirror
in one of the interferometer arms. The mirror position is scanned and readjusted
multiple times a day to ensure loading of a single pancake.

For the typical lattice power used in the experiments, the trap frequency in gravity
direction is ωz = 2π × 1.5 kHz. The corresponding energy spacing in z-direction is
larger than the interaction energy set by the chemical potential at the interaction
strengths and densities used in the experiments in this work (ensuring the quasi-two-
dimensionality). This trap frequency was measured by modulating the lattice power
at different frequencies. Resonances appear in the form of substantial atom losses
from the trap.

To decrease the interaction between the lattice light and the BEC, the atoms are
additionally magnetically levitated against gravity. The atoms in the experimental
substate have a substantial magnetic moment (see red line in Fig. 5.1 b)). They
are low-field seekers at the magnetic fields in the vicinity of the Feshbach resonance
(towards the higher end of magnetic field axis). A difference in current in the top
and bottom coils that produce the Feshbach field generates a magnetic field gradient
to compensate the gravitational force on the atoms.

Details on the lattice design and the trap frequency calibration can be found in
[65].
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Figure 5.2: Experimental scheme including the final trapping lights (green) and
imaging beam path (red). Shaded regions denote the beam paths. Paths with dashed
outlines represent the imaging (projection) of a single point while those without
dashed outlines represent the beam profile. Note that the focus of the imaging light
is slightly off center in the backfocus of the objective. This results in an imaging
beam that is angled in the atom plane. The main pair of magnetic field coils is also
shown.

60



Tunable in-Plane Potentials

In addition to the confinement to the two-dimensional plane, there is an adjustable
potential in the plane. It can be used to provide a variety of boundary conditions and
trap shapes, by shaping the intensity profile of a blue detuned laser. Furthermore,
it enables dynamic adjustment of the external potential Vext(t, x, y) in the region
occupied by the BEC. The parameter space available to modern quantum gas ex-
periments has grown tremendously with the potential shaping capabilities that are
available through modern light shaping technologies. An overview can be found in
[79].

At the heart of our potential shaping setup is a Digital-Micromirror-Device
(DMD). These devices are widely used for video projectors or lithography appli-
cations. The DMD employed in this setup consists of an array of 2560 by 1600
micrometer sized mirrors (7.6 µm) which can be turned off and on individually. In
practice, the two states correspond to a small tilt of the mirrors by ±12°. Depending
on the mirror state, the light is either blocked or projected onto the atoms through
a setup of output optics. The DMD then acts as an adjustable intensity mask. The
output optics consist of two 4f setups that form a real image of the intensity mask
in the atom plane, demagnified by a factor of ∼ 90.

At this scale a single mirror would be < 90 nm, which is well below the optical
resolution limit. We use light at 532 nm and a diffraction limited objective with a
numerical aperture of NA = 0.5 as the last lens. This gives a theoretical smallest
spot size of

1.22λ

2NA
= 0.65µm (5.5)

(Rayleigh criterion). It assumes an ideal diffraction limited point spread function
(PSF) in the form of an airy disc and measures the distance from its central peak
to the first minimum. We can use the fact that multiple mirrors fall below this spot
size to implement an adjustable potential height despite the binary nature of the
mirror states. To do this, the desired potential is discretized to the size of the array
(2560 by 1600), essentially giving a gray-scale image of the desired potentials. The
square root of the image values is taken which ensures the right intensity scaling in
the atomic plane after interference of the sub-resolution spots is taken into account.
This can be interpreted as ensuring that the following binarization and subsequent
convolution with the PSF are happening at the field level and not on the intensity.
The square root image is binarized with the Floyd-Steinberg dithering algorithm.
This method sweeps through the array, rounds pixel values (mirrors) to either one
(on) or zero (off), and forwards the rounding error to neighboring pixels (that have
not been rounded yet). The image after the output optics and in the atomic plane
then closely resembles the desired potential.

Further optimization of the potentials can be performed using an active feedback
algorithm ([66, 80]). It assumes the Thomas-Fermi approximation to be valid and
infers the potential from the atomic density distribution 3.10. The differences to the
desired potential shape are then iteratively minimized. This algorithm was not used
for the homogeneous density distributions used in the scale factor measurements.
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Dynamical adjustment of the potential is implemented by switching through a
series of images that are stored in the DMDs onboard memory. The time between
two switches can be as low as 100 µs and is currently limited by the experimental
control system (but close to technical limitations of the DMD). Alternatively, the
total potential landscape can be dynamically scaled, by adjusting the intensity of the
ingoing laser. We use the dynamic switching in the loading process of the final trap
configuration. For the homogeneous density distributions in circular box boundaries,
we start with an elongated and off-center trap shape, that closely resembles the form
of the cloud in the compressor beam. Then, the trap shape is slowly transformed to
the round box of the desired size over the course of 130 different intensity masks. This
minimizes a possible sloshing motion of the cloud from the change in trap geometries.
Errors in this loading sequence have been found to reduce the prevalence of holes
in cloud (consistent with the expected size of vortizes). These capabilities can also
be used to produce initial states in density (used in [81]) as well as by imprinting a
phase (used in [82] and [83]).

Details on the DMD setup in the experiment can be found in [69]. The design
and testing stage is described in [84]. The influence of different boundary shapes
and spatial noise on the potential was studied in [85]. In addition to optimization
algorithms, reference [66] also includes detailed plans and test setups to enhance
local control by employing a second DMD.

5.4 Interaction Strength

To simulate the expansion of space, we need to have an adjustable interaction
strength. In this section we motivate the usage of the effective contact potential
for the description of the low momentum atomic interactions in our condensate.

We will see that the scattering behavior at the low energy scales boils down to a
phase shift of the atomic wave function, that is associated with the scattering length
as. This is similar to what we have seen for the delta peaks in one-dimensional
scattering theory.

Additionally, the phase shift can differ in the energetic vicinity of a molecular
bound state of a closed scattering channel. Its presence therefore alters the strength
of the interaction. If this bound state and the individual particles in the open channel
have a different magnetic moment, a magnetic field can be used to tune the bound
state in and out of resonance with the scattering process. This is called a magnetic
Feshbach resonance. By applying a magnetic field close to one of those resonances,
the interaction can be tuned.

Finally, we show some technical details on the magnetic field calibration and the
compensation of magnetic field gradients. The first is important for an accurate con-
trol of the interaction constant, while the latter is important to not exert unwanted
forces on the cloud.
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5.4.1 Scattering Length

A realistic potential between two neutral atoms consists of a Van-der-Waals attrac-
tion at short distances and a repulsion due to Pauli exclusion of the electrons at
even shorter distances. Figure 5.3 a) shows Lennard-Jones potentials, for which
the Van-der-Waals attraction is modeled proportional to 1/r6 and the repulsion is
proportional to 1/r12. The precise potential requires solving the full quantum me-
chanical many body problem, which is infeasible. Even with a model potential, we
need to solve the Schrödinger equation for the scattering states ψ(r)(︃

− h̄2

2m∗∇
2 + V (r)− E

)︃
ψ(r) = 0, (5.6)

where r is the relative position of the atoms, V (r) is the spherically symmetric
potential that depends on r = |r| and goes to zero for large distances, m∗ is the
reduced mass m/2 of the system and E is associated to some positive energy of the
state. This condition of positive energy restricts the solutions to unbound states and
is simply the kinetic energy in the limit of large distances r and vanishing potential.
In this limit, we also know the solutions for the scattering states

ψ(r) = eikx + f(k, θ)
eikr

r
, (5.7)

where the first term is the incoming wavefunction (arbitrary chosen along the x-
axis) and the second term describes the scattered wavefunction. This is similar
to what we have discussed for the one-dimensional scattering process, where the
solutions reduced to plane waves in region I and III with zero potential. Instead of
a reflection amplitude bk, we get a continuous scattering amplitude as a function of
angle θ between the incoming and reflected direction. This can be calculated for the
potential V (r) via a decomposition of the wavefunctions into spherical harmonics
and radial wavefunctions χkl [63].

At the extremely low temperatures we are working at only the solutions with zero
angular momentum χk0 contribute to the scattering amplitude (s-wave scattering)
and one finds

f(k, θ) → f(k) =
ei2δ0 − 1

2ik
. (5.8)

The influence of the potential at large distances only appears as a phase shift δ0,
even though the full solution of the wavefunction might oscillate very fast for small
distances where the potential is substantial (and |V (r)| ≫ E).

For low momenta this phase shift can be found by setting E = 0 in Eq. 5.6 and
matching the solutions to the solutions for large distance [61]. One finds, that the
phase shift is proportional to k

δ0 = −ask, (5.9)

with the scattering length as.
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Figure 5.3: Schematics of a Feshbach resonance. a) An interatomic potential (repre-
sented by a Lennard-Jones potential) with asymptotic energy at large distances Eth

describes the scattering of two particles with a given internal state (open channel).
A second potential that represents a different internal state of the particles has a
bound state in the energetic vicinity of Eth, but a much higher asymptotic energy.
In this case, the two scattering particles do not have the kinetic energy needed to
exit the collision in the other internal state (closed channel). Their scattering length
can still be influenced by the existence of the bound state. If the magnetic moment
of the internal states differs, the energy difference to the bound state can be tuned
via an external magnetic field. This is called a magnetic Feshbach resonance. b)
Scattering length as a function of the external magnetic field in the vicinity of the
Feshbach resonance for the experimental substate (|F = 1,mF = −1⟩ at low fields).
The dashed vertical line marks the position of the resonance at 561.14(2)G. Values
to generate this graph have been taken from [86].

The same phase shift can be obtained by replacing the potential with a δ-peak
like we did for Equation 3.3. For a positive scattering length, the interaction energy
increases with the density, and for a negative scattering length, it decreases. Posi-
tive scattering lengths can be associated with a repulsive character of the interaction
(positive δ-peak), and negative scattering lengths can be associated with an attrac-
tive character (negative δ-peak). However, this is only accurate for low momenta
and is useful only after the scattering length is known, either from an experiment
or calculations involving the actual potential. Note that the low momentum regime
discussed here is not the same as for the acoustic approximation and will always be
a valid assumption.
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5.4.2 Feshbach Resonances

The scattering behavior changes in the energetic vicinity of molecular bound states.
Figure 5.3 a) shows two interatomic potentials. The lower one corresponds to the
potential discussed earlier. A particle coming from positive infinity carries at least
the energy associated with the asymptotic behavior of the potential Eth, which means
it is a free particle. Just as before its scattering state has a non-zero amplitude at
infinity and it will accumulate a phase shift. This is what we call an open channel.
In contrast, the second potential represents the interatomic potential for some other
internal state of the atoms. In general, a scattering process can mix these different
channels. In the example in Figure 5.3 a), the kinetic energy of the incoming particles
is not high enough to exit the collision in the new internal state of higher energy. This
is called a closed channel. If the energy difference to a bound state of a close channel
is small, it can alter the scattering behavior nonetheless. This can be imagined
as a higher order process in which the atoms form a short lived bound state that
contributes to the energy and phase accumulation in the process.

The energy shift can be calculated via second order perturbation theory [63]
and, therefore, is proportional to 1/(Eth − Eres). Eth is the threshold energy to
get an unbound state in the lower energy open channel and Eres is the energy of the
molecular bound state. If the internal states of the scatterers in the open channel and
the molecular bound state have a different magnetic moment, the energy difference
in the denominator can be tuned via an external magnetic field. This can be the
case for different spin states in the two channels.

The scattering length can then be approximated by

as(B) = abg

(︃
1− ∆B

B −B0

)︃
, (5.10)

where B0 is the the magnetic field where Eth−Eth = 0, abg is the unperturbed scat-
tering length and ∆B characterizes the width of the resonance. The latter depends
on the difference of the magnetic moments of the states, but also on the overlap
between the unperturbed scattering state and the resonant bound state that is gen-
erated by the perturbation. This coupling of the channels, as well as the energy of
the bound states, depend on the precise shape of the potentials. Therefore, it is hard
to predict the exact positions and width of Feshbach resonances. Measurements of
Feshbach resonances can in turn give insight into the potentials.

Figure 5.3 b) shows the dependence of the scattering length on the magnetic
field in the vicinity of the Feshbach resonance used in the experiments in this work.
The open channel has both atoms in the |F = 1,mF = −1⟩ state of the ground
state manifold and a Feshbach resonance at 561.14(2)G with a width of −56.2(2)G
and a background scattering length of −29.5(4) aB. These values have been taken
from reference [86]. Multiple other Feshbach resonances are available for potassium
39K, including ones for different substates or scattering processes between different
substates.
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Figure 5.4: Measurement of the microwave transitions between different ground
state sub-levels used for the calibration of the magnetic field. Measurements where
taken for 527.62G (blue, corresponding to 20 aB), 540.27G (orange, corresponding
to 50 aB), and 557.28G (yellow, corresponding to 400 aB) set in the experiment. Ex-
pected values for the transition from theory are marked with dashed lines.

5.4.3 Calibration of the Magnetic Field

Especially because of the divergent nature of the Feshbach resonance, the tuning of
the interaction strength depends on the accuracy of the magnetic field. To ensure
this, we perform measurements of the magnetic field multiple times a day. Typically,
no drifts are detected on this timescale.

The energy shift of the Zeeman sub-levels is very sensitive to the external mag-
netic field as can be seen in Figure 5.1. We calibrate the magnetic field at a microwave
transition from the experimental substate (red), to another ground state with a dif-
ferent magnetic moment for different values of the magnetic field that correspond
to 20 aB, 50 aB, and 400 aB, (marked in colors). By scanning the frequency of the
microwave, we can identify the resonance at the frequency where the number of
atoms in the experimental substate becomes minimum. From comparison to theo-
retical values for the transition frequency we can infer the actual magnetic field and
recalibrate the experiment.

An example for such a measurement is shown in Figure 5.4. The theoretical values
for the transition are marked as dashed vertical lines. For the experiments shown in
this work, no calibration measurement was taken that is consistent with a shift larger
than 0.5MHz. The resonance frequencies in this magnetic field range change by 2.7
MHz/G, which puts the bound on the magnetic field error below 0.2 G. This gives an
upper limit to the relative error of the scattering length of 3% for the measurement
of the coherent oscillations at 200 aB, which is the experiment that is most sensitive
to an offset in the magnetic field. During such a measurement, the microwave is
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turned on for 100ms and at relatively high power. Therefore, the complete loss of
the atom signal at resonance cannot be attributed to a coherent transfer to the other
state that is not sensitive to the imaging transition (π-pulse). Instead, the signal
loss at resonance can mainly be attributed to atoms being lost from the trap. This
is because the magnetic moment of the state coupled by the microwave is opposite
to the original state. Instead of being levitated by the magnetic field gradient, it
effectively experiences twice the acceleration from gravity. While the process could
be optimized for a higher level of precision of the resonance extraction, this also puts
a limit on the short-term fluctuations of the magnetic field (within the 100ms).

5.4.4 Compensation of Magnetic Field Gradients

To compensate for magnetic field gradients generated by the main coils, two wires
close to the glass cells are used to generate a counteracting magnetic field gradient.
The compensation is optimized with respect to the center of mass of the atom distri-
bution in a large trap for different values of the magnetic field. With the calibrated
values for the offset and a slope of the gradient relative to the magnetic field value,
the center of mass does not move for changes in the magnetic field. This is important
to avoid a sloshing of the cloud when driving ramps in the magnetic field. Because
the compensating field also contributes to the overall magnetic field, a calibration
of the field of the magnetic field is required after large adjustments of the magnetic
field gradients.

5.5 Density Readout via Absorption Imaging

We extract the density distribution via absorption imaging of the cloud at the high
magnetic fields in the vicinity of the Feshbach resonance. In this section, we first
give some important details on the imaging process in this regime and the techni-
cal capabilities of the setup. Then we discuss in-depth how the capabilities of our
imaging system influence the extracted data quantitatively and how we can compen-
sate for this. We will see that imaging aberrations and other distortions result in a
length-scale-dependent imaging sensitivity. It is important to compensate for this in
extracted data to get accurate results.
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5.5.1 Working Principle

In absorption imaging, light is shone in on resonance with the D2-transition, taking
into account the energy shift from the magnetic field (see Fig 5.1). Some of the light
is scattered by the atoms and the BEC is destroyed in the process. Light that is
not scattered (or scattered in the opening angle of the objective) is imaged via a
diffraction limited objective, a slow secondary lens and a CCD camera (details of the
setup in next section). The comparison to a second image (reference picture) that
is taken shortly after (and without atoms) allows us to extract the light intensity
that is scattered by the atoms in a spatially resolved manner and from this extract
the density distribution. We assume a two-level system with the effective saturation
Intensity Ieffsat and effective light scattering cross section σeff [87]. The two-dimensional
density is then extracted from the intensity distributions of the atom image If (x)
and the reference image Ii(x) via

n(x) =
1

σeff

[︃
ln

(︃
Ii(x)

If (x)

)︃
+
Ii(x)− If (x)

Ieffsat

]︃
(5.11)

If we interpret the intensity on the reference Ii(x) as the intensity of the light before
entering the cloud and the intensity on the atom image If (x) as the intensity after
passing through the cloud, we get an interpretation of the two terms in the square
brackets. The term involving the natural logarithm is dominating in the low inten-
sity regime, where the intensity is exponentially depleting as the light passes through
the cloud according to the likelihood of classical scattering (Lambert-Beer law). The
second term captures the quantum effect of saturating the transition. At high inten-
sities the system approaches 50% likelihood to be in the excited state and one finds
a constant scattering rate Γ/2 per atom, independent of the intensity, where Γ is
the spontaneus decay rate of the excited state. This constant rate shows up as the
difference between the intensities Ii(x)− If (x). The saturation intensity the transi-
tion that sets the relevant scale between those two extremes can be calculated from
the resonant wavelength and spontaneous decay rate. However, the effective value
absorbs uncertainties from the calibration of the absolute intensity distribution in
the atom plane, imperfect polarization of the imaging light, and the more complex
picture of the real multi-level system. It was determined experimentally by mea-
suring identically prepared density distributions at various imaging intensities [87].
The proper value for Ieffsat makes the extracted densities independent of the intensity
they were measured at. Similarly, σeff normalizes the result to actual atom numbers.
This value has been inferred by matching density profiles at different interaction
strengths and trapping potential with GPE-simulations [69]. The extracted densi-
ties are consistent with measurements of the speed of sound at known interaction
strengths. Nevertheless, we replace the density by these quantities for the extraction
of the spectra (see 4.32).
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Reference Picture Optimization

The coherent nature of our imaging light allows for the formation of interference
fringes, for example from diffraction by dust particles in the imaging path. In
addition, these interference fringes can vary slightly from image to image. This
is due to small fluctuations of the imaging system caused for example by vibra-
tions, air currents, or temperature drifts. Such effects occur on various timescales,
sometimes between taking an atom image and the corresponding reference. We
use an algorithm (adapted from [88]) that optimizes the reference picture to better
represent the light distribution on the atom picture and to reduce the statistical
fluctuation (photon shot noise) of the reference images. For this optimization a
set of 200 reference images that were taken closest in time to the atom picture is
used, from which we construct a new reference image as a linear combination of
all reference images in the set

Iopti =
200∑︂
j=1

cjI
j
i , (5.12)

where Iji (x) denotes the jth reference image in the set and cj its weight in the
linear combination. These weights are chosen such that the least square difference
C between the optimized reference image and the atom image is minimized in a
region that we assume to be free of any atom signal

C =
∑︂
px

m
(︁
If − Iopti

)︁2
, (5.13)

where m(x) is a mask function that is equal to a band of 100 pixels (px) in
width around a chosen region of interest. This algorithm can reduce the total
noise in two ways. First, if there is a significant change in the light distribution
between atom image and reference image, it can identify other reference images
with a similar light distribution and assign them large weights. This way, the
optimized reference image captures the change in light distribution. Second, if
there are multiple reference images with a matching light distribution, the least
square difference is minimized by equal weights for those images. This essentially
reduces the photon shot noise of the reference image by averaging multiple images.
In practice it will be some trade-off between the two effects. Most of the time, we
find nonzero weights for a large number of images, suggesting that the averaging
effect is important.
For the measurements shown, the region of interest comprises the 300 central
pixels, which is slightly larger than the 200 by 200 pixels shown for the density
profiles in this work. Therefore, the optimization region defined by the mask m
is well outside the trapping potential of the DMD. This does not ensure that
there are no atoms in this region, but any atom signal in this area should not be
correlated to signal in the trap and can only lead to a worse performance of the
algorithm.

69



We employ an imaging transition of the D2-line that is a closed cycle in the
high magnetic field range (|mJ = −1/2,mI = −1/2⟩g → |mJ = −3/2,mI = −1/2⟩e).
In this magnetic field range, the energy eigenstates of the Zeeman sub-levels of
the ground state manifold are not perfectly eigenstates of the |mJ,mI⟩g basis, but
have small admixtures of another state. As a consequence, the excited state of the
imaging transition can spontaneously decay in the other ground state (the one with
the opposite admixture). For our system and magnetic fields, the probability for this
decay is on the order of 2%. If the transition is saturated, this corresponds to a loss
of 50% of the atoms to the other ground state within ∼ 2 µs. Therefore, we employ
a second imaging laser driving a symmetric transition to an excited state that has
spontaneous decay to the original ground state. Because the decay rates are equal,
we employ both lights at the same power. In this way, the signal can be collected for
longer imaging times. For all measurements in this work the imaging time was set
to 5 µs. The large frequency differences to the low field D2-line are generated with
two separate lasers that are locked to the D2 reference laser via an offset-locking
scheme. The two-frequency imaging scheme and the extraction of atom densities in
the intermediate intensity regime have been published in [87]. More details can be
found in [69]. The offset-locking scheme is described in [89].

5.5.2 Imaging Setup

A scheme of the imaging setup is shown in Figure 5.2. The imaging light is combined
with the DMD light for the trapping potential via a dichroic mirror, before both enter
the top objective. This objective is needed to create the precise intensity distributions
for the potential. For imaging, the light beam should be collimated. Therefore, the
objective is compensated with a setup containing two lenses that focus the beam
in the backfocal plane of the objective. This point of focus is slightly off-center
from the center of the objective. This results in a slight tilt of the imaging beam
when it passes through the atom plane. The reason for this is two-fold. It avoids
interference fringes from multiple reflections at the glass-air transitions of the glass
cell that are not anti-reflection coated. Additionally, the imaging light does not have
to be overlapped with the MOT beam that also passes through the objective. This
would be more involved, because both the imaging light and the MOT light each
consist of two frequencies with orthogonal polarizations. We will see later in this
chapter, that the tilted imaging beam negatively impacts the image quality. As a
consequence of these findings, the imaging system was recently upgraded.

After interaction with the atoms, light is collected by the lower objective. It is
identical to the top objective and is specified to be diffraction limited for 767 nm
light (imaging light) and 532 nm light (trapping light) with a numerical aperture of
NA= 0.5. At 767 nm this corresponds to a resolution of ∼ 1 µm (see Eq. 5.5).
The objective is infinity corrected, which means it produces a Fourier image in
its backfocal plane. This is subsequently refocused with a 1000mm lens onto the
camera sensor that takes images with a resolution of 1024× 1024 pixels. The overall
magnification of the system has been calibrated with a Bragg pulse. For this a
standing wave of light of a well-known wavelength λ is created via back-reflection
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off a mirror. This transfers some fraction of the atoms in the momentum modes
k = ±4π/λ. A time of flight measurement enables the calibration of absolute scales in
the image. This resulted in an equivalent pixel size in the atom plane of 0.455 µm/px.
Comparison to the actual pixel size results in a magnification factor of 35.

The calibration measurement, details on the generation of imaging lights, and
details on the general setup can be found in [69]. Measurements and numerical
simulations regarding the imaging setup and properties of the CCD camera can be
found in [90].

5.5.3 Experimental Extraction of the Imaging Sensitivity

Ideally, a diffraction limited imaging system would have a sharp cutoff in momentum
space that is set by the opening angle or numerical aperture (NA) of the objective
(which is usually the limiting component). This sharp cutoff corresponds to an airy
function in real space. This is what a sub-resolution sized point source will look like
after such an imaging system. In practice, a multitude of abberations that diminish
the quality of the imaging system also alter this shape. This point-spread function
(PSF) and its Fourier space counterpart are not only a good indicator for imaging
quality but can also be used to calibrate the imaging sensitivity at different length
scales. In this section, the quality of the imaging system is quantized by measuring
the PSF in order to enable this kind of correction of the results.

To measure the imaging sensitivity we adapted a method by Hung et al. [43, 91].
First, we drive a large BEC multiple times close to the Feshbach resonance. This
results in large atom losses and a thin cloud with densities ten or more times smaller
than the usual distributions. Then we wait for 100 ms before taking an image of
the cloud. We expect this to be reasonably thermalized at some temperature that is
above the critical temperature (for BEC formation) at these low densities. A simple
comparison of the thermal wavelength with the interparticle distance, λDB < 1/

√
n,

gives an estimate for this critical temperature of about 75 nK, above which we need
to be.

In the limit of high temperatures the atoms behave as randomly distributed inde-
pendent scatterers. For the images we expect this white noise distribution convoluted
with the point-spread function

nexp(x) = nwn(x) ∗ P (x). (5.14)

We construct a simple density contrast to the mean

∆nexp(x) = nexp(x)− ⟨nexp(x)⟩, (5.15)

where the brackets denote the mean over many realizations. For white noise, this is
expected to be flat. Because there is no interference with a background condensate,
this is sufficient. We can calculate the density noise power spectrum by taking the
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Figure 5.5: Mean density distribution over more than 200 realizations of a thin
thermal cloud (a), extracted two-dimensional spectra that hold information of the
two-dimensional imaging response (b) and the extracted imaging response M2(k)
(c). The solid black lines in b) and c) show the theoretical resolution limit. The
errors in c) show 1σ standard errors of the mean from the statistical fluctuations of
the imaging response.

absolute square of the Fourier transform of the density contrast.

Sexp
th (k) =

1

N

⟨︃(︃∫︂
d2k

2π
∆nexp(x)

)︃2⟩︃
=

1

N

⟨︃
[FT (∆nwn(x))]

2 [FT (P (x))]2
⟩︃
,

(5.16)

where N denotes the mean total atom number. This is a quantity comparable to the
spectrum from the last chapter if we take the radial average Sexp

th (k) =
∫︁
φ
Sexp
th (k).

In Fourier space, the thermal spectrum Sth(k) and the imaging abberations separate
into a multiplication of their Fourier transformations denoted by FT . We assume
that the point spread function does not change over the course of a measurement
run. Over many realizations, the white noise means to the (theoretical) thermal
spectrum

Sth(k) =
1

N

⟨︃
FT (∆nwn(x))

2

⟩︃
= 1. (5.17)

This is the noise floor of uncorrelated particles, equivalent to the noise floor 1/2 we
found for the spectra (Eq. 2.28). The difference is the result of a chosen normaliza-
tion. With this, the momentum dependence of the experimentally extracted spectra
is a measure of the imaging response function M2(k)

Sexp
th (k) =

∫︂
φ

FT (P (x))2 ≡M2(k), (5.18)

a measure of the imaging sensitivity in Fourier space.
Figure 5.5 a) shows the density distribution of a thermal cloud averaged over more

than 200 realizations. The spectrum S̃
exp

th (k) in Figure 5.5 b) corresponds to the one
in Equation 5.16 and is normalized to its value in a center region between 3px and
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10px (k ∈ [0.2 µm−1, 0.7 µm−1]). The black circle marks the theoretical resolution
limit in Fourier space. To extract M2(k), which is shown in Figure 5.5 c), we mask
the effect of imaging fringes in b) (an example of this can be found in Appendix A).
These fringes show up either as a pair of dots or in the form of stripes. Then, the
spectrum in b) is averaged radially. A region well outside the resolution limit (black
line) is used to infer a noise background (k > 6.5 µm−1). This is subtracted and the
result divided by one minus the background, which normalizes M2(k) to one in the
center (maximal sensitivity) and zero at high k (no signal).

The elongated fringes in b) are probably caused by the movement of the stripes
between individual realizations and over the course of a measurement. This is indi-
cated by the dots showing low statistical fluctuations and the stripes showing large
statistical fluctuations when compared with the atom signal. In both cases, they do
not scale with the atomic signal. The very low momentum regime also shows an
enhancement. This is probably not an indication for a temperature below Tc, but
is caused by atom number fluctuations larger than statistically expected, which is
probably a result of the preparation of the cloud. Both of these features saturate the
color scale in b) for some pixels. The errors in c) show 1σ standard errors from the
statistical fluctuations of the measured spectra.

We find something that looks like an asymmetric cutoff that does not reach
the theoretical limit towards the top-right (bottom-left). This is caused by the
tilted imaging beam. Because of this, the objective acts as an asymmetric cut-off in
momentum space. For some k, its counterpart −k is blocked. Fourier transformation
of the real-valued images symmetrizes the result. Therefore, the cut-off takes the
form of the overlap of two off-center circles the size of the theoretical cut-off. This
also explains the signal found beyond the theoretical cut-off (best visible in c)), as
the extended region where one of the momenta k propagates through the imaging
system while its counterpart is blocked. Data from high density clouds that better
illustrate this phenomenon can be found in Appendix A. We can also see some
substructure of the spectra resulting from imaging aberrations. While this shifted
cut-off gives some super-resolution properties, it comes at the cost of most of the
signal in those regions. The tilt of the imaging beam and with it the asymmetric
cutoff were minimized during the writing stage of this thesis. The MOT beam was
rebuilt to overlap the axis of the objective via a moving mirror during the MOT
stage. A similar design is used for the bottom MOT beam. The new (and old)
designs are described in [66].

For low temperatures, the spectrum of a bosonic gas is not necessarily flat, even
in the absence of a BEC. Boson bunching in real space can enhance the spectrum
at low momenta (up to a factor two for low temperatures). This decays to one as
a function of momentum on the order 1/λDB. By normalizing the spectrum to its
value at zero, we could therefore underestimate our sensitivity by up to a factor two.
A normalization of the spectrum using the extracted atom number instead of the
normalization to one in the center differs by a factor of 1.17, suggesting Sth(0) = 1.17.
This would not equate to an underestimation of 15% at high momenta (but less),
because this thermal spectrum would not drop to one within our resolution limit.
The normalization to the atom number was not used for an approximation of the
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temperature and a full thermal spectrum, because we do not have an independent
way to verify the accuracy of the atom number extraction at these low densities.
Instead, we stick to the assumption Sth(k) = 1 for all k.

In the experiment, multiple effects add to the imaging distortions that are cap-
tured in the imaging response M2(k). The pixel size of the camera can have an
effect similar to the PSF. In our case, the equivalent size of a pixel in the focal plane
of the objective is smaller than the PSF. In Figure 5.5 b) this translates into the
spectrum being well within the frame. Furthermore, the atoms move during the
illumination time of 5 µs. Accelerated by the imaging lasers, they move out of (or
through) the focal plane of the objective. In addition, their spontaneous emission
results in a random walk in velocity space and consequently movement in the plane
[90]. A detuning of the imaging lasers can also have an impact on the shape of the
imaging response. Because the imaging lasers have to be to be adjusted to the Zee-
man shift whenever the magnetic field changes, this could differ for measurements
at different scattering lengths. Therefore, we measure the imaging response function
at all interaction strengths used in the measurements. Although we did not find
a significant difference between these, we found differences for measurements taken
months apart. To minimize the effect of long term drifts, we interleave the thermal
cloud measurements with our experiments.

Correction of Extracted Spectra

Here, we show how the extracted imaging response function M2(k) can be used
to correct the experimentally extracted spectra.
In the experiment we always measure density distributions. The experimentally
measured distribution will be the real distribution convoluted with the point-
spread function of the imaging system:

nexp(x) = n(x) ∗ P (x) (5.19)

As we have seen in section 4.3, experimentally extractable density-density correla-
tions Gnn(x,x

′) are related to the Gππ(x,x
′). The measured correlations are also

influenced by the PSF

Gexp
nn (x,x′) = Gnn(x,x

′) ∗ P (x) ∗ P (x′) (5.20)

Because of homogeneity, this will not depend on absolute position but only on
∆x = x − x′. This we can transform to distance L ≡ |∆x| and angle φ. The-
oretically, the system is expected to be isotropic such that Gnn(L, φ) = Gnn(L).
However, this is not true for the experimentally extracted quantities that suffer
from the anisotropic imaging response (as seen in Fig. 5.5)

Sexp
k ∼

∫︂
φ

FT (Gexp
nn (L, φ)) =

∫︂
φ

FT (Gnn(L, φ)) [FT (P (L, φ))]2

= HT (Gnn(L))

∫︂
φ

[FT (P (L, φ))]2

= HT (Gnn(L))M
2(k),

(5.21)
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where we used the isotropy of the unperturbed correlation function and the fact
that the Fourier-transformation retains this symmetry (enabling us to split the
integral). Additionally, we introduced the Hankel-transform of zero order

HT (f(r)) = 2π

∫︂ ∞

0

f(r)J0(kr)rdr (5.22)

with J0 the zero order Bessel-function of the first kind. Finally, we used∫︂
φ

FT (f(r, φ)) = HT
(︃∫︂

φ

f(r, φ)

)︃
, (5.23)

which means Fourier transforming and then averaging over all angles in recipro-
cal space is the same as averaging over all angles in real space and then Hankel
transforming (for details see appendix A.1). This is an important identity. It
enables us to extract the experimental spectra from radially averaged density
correlations Gexp

nn (L) even though the two-dimensional experimentally measured
density correlation is not isotropic. Therefore, we can avoid calculating the full
four-dimensional density correlation function Gexp

nn (x,x′) or even the two dimen-
sional correlations Gexp

nn (L, φ) at any point and instead only calculate correlations
as a function of distance L (for details on this algorithm, see [65]). Finally, we
compensate the anisotropic imaging response from the thus obtained spectra

Sk =
Sexp
k

M2(k)
, (5.24)

where Sk is the spectrum as would be obtained from the unperturbed density
correlations Gnn(L) (compare Eq. 5.21). In practice we extract M2(k) like de-
scribed above and interpolate its values and errors to the momenta used for the
extraction of the spectra. This calibration is crucial for a quantitative analysis of
the experimentally extracted spectra. Especially, the level of vacuum fluctuations
could not be identified without this.
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6
Experimental Results

In this chapter we show the results of simulations of a spatially flat FLRW-metric
with time-dependent scale factors in the quasi-two-dimensional BEC experiment.
We investigate three different scenarios for the time dependence, starting with a
linear expansion. This is the prototypical expansion scenario that we used as an
example in chapter 2 and that corresponds to a box potential in the scattering
framework. This measurement is shown for two different expansion times ∆t = 3ms
and ∆t = 1.5ms. In addition, we compare two periodic scenarios that correspond to
periodic potentials. One is a sinusoidal variation of the scale factor, and the other
a cusped shape with a jump in the first derivative. These correspond to a potential
that is dominated by a single frequency and one that consists of sharp peaks with
large contributions of higher harmonics. For this, we measure a significant signal of
squeezing below the level of vacuum fluctuations. Some of the results shown here
have been published before in [92].

We start the experiments with a flat density distribution of N ≈ 40000 atoms in
a circular box trap produced with the DMD and at some constant scale factor a and
scattering length as (region I). To ensure a thermal initial state in the quasi-particle
occupations, the scale factor is held constant for a hundred milliseconds. Afterwards
the scale factor is changed dynamically (region II) in an almost freely programmable
manner via a magnetic Feshbach resonance that enables us to adjust the scattering
length with external magnetic fields. To prevent motion of the background conden-
sate arising at the potential walls, we adjust the DMD power proportionally to the
chemical potential Vext(t) ∝ µ(t) = mc2s(t). Finally, we again keep the scale factor
constant for a hold time th (region III) before reading out the density distribution
via absorption imaging.

We start with a quick overview of the core theoretical concepts that are laid
out in detail in the previous chapters. The change in scale factor a(t) = 1/cs(t)
is implemented by a change in the speed of sound cs (not a change of the physical
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size of the BEC). The resulting particle production is interpreted in the scattering
framework, where the time dependence of the scale factor turns into a scattering
potential in conformal time η

V (η) =
1

4
ȧ2(t(η)) +

1

2
ä(t(η)) a(t(η)), (6.1)

(or its dispersion including counterpart in Equation (4.25)). The time dependence
of the mode functions is encoded in the scattering states. The original (vacuum)
state in region I sets the boundary condition and corresponds to the transmitted
state ψtrans(I)

k = cke
−iωI

kt, where ωI
k is set by the Bogoliubov dispersion in region I.

In region III we get the incoming ψ
inc(III)
k = ake

−iωIII
k t and reflected wavefunctions

ψ
ref(III)
k = bke

−iωIII
k t. The production of particles as a result of the mixing of positive

and negative frequency solutions by the expansion turns into the reflection at the
potential. The interference between incoming and reflected wavefunctions gives the
density-fluctuation power spectrum

Sk(η) =
|ψIII

k (η)|2

2|ck|2
=

1

2
+Nk +∆Nk(t), (6.2)

with the particle number Nk = |bk|2/|ck|2 and the coherent oscillations from the
interference term

∆Nk(t) =
|akbk|
|ck|2

cos (2ωIII
k th + ϑk). (6.3)

By adjusting the hold time th in region III (before taking an image), multiple phases
of the oscillation are measured.

6.1 Extraction of the Scale Factor

The scattering length as can be tuned via the magnetic Feshbach resonance and
is expected to be accurate as long as the magnetic field calibration is ensured (see
section 5.4.3). In addition, the scale factor depends on other experimental factors
such as the density and the trapping frequency in gravity direction. Therefore,
we measure the speed of sound for every expansion scenario and interleaved with
the actual measurement. In the example shown in Figure 6.1, this is done after
performing the linear expansion (with ∆t = 3ms) to ensure comparable densities
and magnetic field conditions. The sound speed is measured by injecting a wave
packet and extracting its speed. To do this, we project a small repelling spot in the
center of the condensate in addition to the box potential, which produces a density
dip. When expansion stops at th = 0, this spot is turned off, and the dip turns
into a radially moving wave packet. This measurement is repeated for different hold
times and enough statistics to clearly distinguish the deterministic density dip from
the random fluctuations. Figure 6.1 shows the results of such a measurement. Mean
profiles over ∼ 35 realizations (per hold time) are shown (a), in which the moving dip
is clearly visible. In addition, we find a second dip moving inwards from the edges,
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Figure 6.1: Wave-packet measurement to extract the sound speed cs = 1/a(t) after
a 3ms expansion. A wave-packet is generated by loading the BEC into a potential
with a central peak. At th = 0 this peak is switched off, generating a circular wave-
packet. a) Mean density profiles over 35 shots at different times th. b) Corresponding
radially averaged density contrasts (defined in Eq. 6.4) showing the relative change
to the unperturbed profile. Positions of the minima are extracted by parabolic fits
and marked with red dots (black dots are projected to y = 1). A linear fit on these
minimima is used for the extraction of the speed of sound (red solid line). We find
cs = 1.02(3) µm/ms. Full density profiles for the shortest and longest hold times are
shown on the bottom and top.
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even though we ramp the external potential proportional to the chemical potential.
This residual motion can likely be attributed to the change in healing length (from
ξ ∼ 0.4 µm to ξ ∼ 1.1 µm) that results in less steep edges of the condensate and in
turn in an increased bulk density. Note that the largest hold time does not represent
this new equilibrium state, but the system is in a breathing motion instead (this
motion is shown in App. B).

Fig. 6.1 b) shows radial averages of a simple density contrast to the unperturbed
profile

∆n(r) = ⟨n(r, φ)− nunp(r, φ)⟩φ/nunp(0). (6.4)

We extract the dip positions by parabola fits to ∆n(r). The red dots show the
extracted minima, while the black dots show a projection on the x-axis. Only the
interval th ∈ [2ms, 8ms] is used to fit the speed of sound, to make sure that the
positions are not influenced by the inward moving dip. The red line shows the
result of this fit, where we find a sound speed of cs = 1.02(3) µm/ms. The same
measurement for a faster expansion with ∆t = 1.5ms over the same range in scale
factor results in the same speed of sound. The errors given in brackets are the 1σ
standard deviations of the fit, as will always be the case, if not stated otherwise.

6.2 Density Contrast Correlations

To extract the correlations of produced particle pairs and with that gain access
to the excitation power spectrum, we extract the equal-time connected correlation
function of the density Gnn(t,x,x

′) ≡ ⟨δc(t,x)δc(t,x′)⟩ (Eq. 4.29). The angled
brackets denote averaging over all experimental realizations, t is either a hold time
th in region III or at the end of region I to extract the inital state, δc is the density
contrast

δc(t,x) =

(︃
N̄

N
n(t,x)− n0(t,x)

)︃
n

1
2
0 (t,x)

n̄
3
2
0 (t)

. (6.5)

In comparison to the definition in Eq. 4.27 we added a normalization factor N̄/N
that scales the density of a single realization n(t,x) to the mean density over all
realizations to avoid introducing correlations on all length scales from fluctuations of
the total number of atoms. Furthermore, the mean density n0(t,x) is only evaluated
for measurements at the same hold time th, to reduce the effects of motion of the
mean profile, as found in the measurement of the sound speed. The mean density
in the center n̄0 is evaluated in a central region with radius 10 px. Measurements
in which the mean number of atoms in the central half of the cloud deviates more
than 10% from the mean in the data set are discarded, to ensure comparable speeds
of sound. We take the innermost 90% of the cloud (in terms of a fit of the radius)
to calculate the (equal-time) density-density correlations. Because of homogeneity
and isotropy these correlations will only depend on distance. Therefore, we do not
have to calculate the four-dimensional object Gnn(t,x,x

′) (for a fixed time), but
instead directly calculate Gnn(t, L). For a spatially flat spacetime, L is simply the
Euclidean distance L =

√︁
(x′ − x)2. Calculating Gnn(t, L) is the same as averaging
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the full object over space x (homogeneity) and angle (isotropy), only keeping the
distance between the points x and x′. In practice, the imaging system introduces
some anisotropy. However, we are still able to extract spectra from the averaged
correlations Gnn(t, L) and correct for the anisotropies after the fact. This is described
in detail in section 5.5.3.

6.3 Density Fluctuation Power Spectra
Experimentally, we extract the density fluctuation power spectrum from the corre-
lation functions Gnn(t, L) via the Hankel transform HT , to be

Sk(t) =
m2c3s
h̄kg2D

(︃
1 +

1

2
k2ξ2

)︃ 3
2 HT (Gnn(t, L))

M2(k)
. (6.6)

This formula includes a lot of details from the previous chapters. The momentum
dependent prefactors combine multiple effects of the interatomic interaction that
become relevant on the order of the inverse healing length k ∼ ξ−1. Details on this
can be found in section 4.3. The division by the imaging response function M2(k)
corrects for a length scale dependent sensitivity of our imaging system. The fact that
we used the Hankel transform HT (Gnn(t, L)) instead of a Fourier transform results
from the azimuthal averaging of the correlations (effectively) performed previously.
For this relation between Fourier and Hankel transformations in the context of radial
averages, see App. A.1. The imaging system and the imaging response function are
discussed in section 5.5.3.

Importantly, absolute quantities are heavily dependent on the uncertainties in
the speed of sound cs that we extracted experimentally. Even more so, because the
healing length is also calculated from this number (ξ ∝ 1/cs, see Eq. 3.19).

We take 70% of the maximal distance in the correlations to extract the spectra.
This is done because at large distances the number of pairs of points (x,x′) is rather
limited, leading to worse statistics. This is equivalent to the cosmic variance problem
in cosmology, which describes the lack of statistics for the lowest modes of the CMB
[12].

The different steps for the extraction of the density contrast, its correlations and
the resulting spectrum is shown in the next section on the example of the initial state
of the linear expansion. Data analysis is done using MatLab and code developed and
maintained by the group. The Hankel transform is taken from [93].

6.4 Initial State
To characterize the initial state in region I we take the density contrast correlation
function calculated from images of the BEC that are taken at 400aB and calculate a
spectrum from those. Figure 6.2 a) shows an exemplary density distribution and its
corresponding density contrast. The density contrast correlation function Gnn(ti, L)
is shown in b). By construction, it averages over all pairs of points with a distance
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Figure 6.2: Extraction of the density fluctuation power spectrum, shown for the
initial state. a) Exemplary density profile n(x) and density contrast δc(x) of the
BEC held at 400aB. b) Density contrast correlation function Gnn as a function
of distance L. This is averaged over all possible pairs of points with distance L
and 236 experimental realizations. Exemplary point pairs are shown in a) with
their corresponding distances in b) marked as dashed lines. Errorbars represent
1σ standard errors from the statistical fluctuations of the correlations. c) Initial
spectrum before the expansion (at 400aB) in linear and log scale (inset). The dotted
line marks the level of vacuum fluctuations (1/2). Errorbars represent 1σ standard
errors from the statistical fluctuations of the spectra, combined with 1σ errors of
M2(k) and 1σ errors on cs. The solid curve represents a thermal fit to the data points
for k ≥ 0.1 µm−1 and of the form shown in Eq. 6.7 We find an initial temperature
of 17.4(5) nK and an offset of 0.53(1).

L and is averaged over 236 experimental realizations. Note that the auto-correlation
peak at L = 0 is on the order 0.04 which is considerably larger than the limit of
the y-axis. Errorbars represent 1σ standard errors from the statistical fluctuations
of the correlations. The spectrum is shown in c). All errorbars on the spectra are
1σ standard errors from the statistical fluctuations of the spectra, combined with
1σ errors from the extraction of the imaging response function M2(k) and 1σ errors
from the fit of the speed of sound cs. For the latter, asymmetric error bounds were
calculated from the limits of the confidence interval for cs because of its non-linear
contribution in the spectrum.

The initial state is not described by vacuum in every mode, that is 1/2 for all
modes. Instead, we expect that the initial occupation N in

k can be described by a
Bose-Einstein distribution with some temperature T and ∆Nk = 0. This leaves us
with a spectrum of the form

S(k) =
1

e
h̄ω(k)
kBT − 1

+
1

2
, (6.7)

82



Im
a

g
e

 th

as~t-2 

asf

ti tf

asi

time t

sc
at

te
ri

ng
 le

ng
th

 a
s

-30

-30

30

0

0 30 0

3

2

1

4
[N/px]

0

-0.5

0.5
[1/px] [1/px]

-30

-30

30

0

0 30

th = 1ms

-30

-30

30

0

0 30 0

3

2

1

4
[N/px]

0

-0.5

0.5

-30

-30

30

0

0 30
[μm] [μm]

c)

b)

a)
�

�
�� ���

���

sc
al

e 
fa

ct
or

 a
(t

)

�t

af

ai

a~t

density contrast density contrast 

density density

Figure 6.3: a) Schematic of the linear expansion. After region I of constant scale
factor (ai), the scale factor increases linearly in region II over a timescale ∆t. In
region III the scale factor is again constant (af ). b) Corresponding time dependence
of the scattering length. After the ramp has finished, the scattering length is held
constant for an adjustable hold time th. This enables state tomography. c) Density
distributions and corresponding density contrasts (defined in Eq. 6.5) for the initial
state in region I and after the expansion in region III with th = 1ms. The images
show the result of a single experimental realization in region I and III respectively.

with ω(k) the Bogoliubov dispersion relation and kB the Boltzmann constant. The
solid gray line in Figure 6.2 c) shows a fit of this form, but with a free offset B
instead of 1/2. We find that the initial state is well described by a thermal state
with T = 17.5± 0.5nK and B = 0.53(1). The errors in the extracted quantities are
1σ standard errors from the fit of the thermal spectrum.

An incoherent initial occupation of the modes will result in stimulated particle
production[49]

Sk =
(︁
1 + 2N in

k

)︁
Svac
k , (6.8)

where Svac
k is the spectrum we would have measured for vacuum as the initial state,

which was our assumption in the previous chapters. This expression can be found
by plugging a thermal state into Eq. 2.26 where we get 2⟨N̂⟩ + 1. For the intitial
state, without a change in scale factor and particle production, Svac

k = 1/2, and we
get Equation 6.7.
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6.5 Linear Expansion Scenario
A straightforward expansion scenario is the linear expansion aII(t) = amin(1 +H0t).
In 2+1 dimensions this corresponds to a matter-dominated universe [65].

We implement this by decreasing the scattering length from an initial value in
region I as,i = 400aB to a final value as,f = 50aB in region III in a short time ∆t with
the form as ∼ t−2. This is depicted in Fig. 6.3 and corresponds to an expansion of
a factor af/ai =

√
8.

Fig. 6.3 c) shows density distributions and corresponding density contrasts δc
from single experimental runs before and after such an expansion over ∆t = 1.5ms.
Enhanced fluctuations that are connected in larger patches are clearly visible. The
change in scattering length also results in less suppression of density fluctuations by
the interaction energy (see section 4.3). For this reason, even with an adiabatically
slow change in the interaction, stronger fluctuations would have been observed, and
further analysis is required to attribute some of this to the particle production pro-
cess. Similarly to what one expects from a classical pair of particles with zero net
momentum ,i.e k1 = −k2, we expect fluctuations to be correlated over distances that
increase with time. Because the phonons considered here are massless, they move at
the speed of sound cs.

Fig. 6.4 shows density contrast correlations Gnn(th, L) at different hold times
for a fast expansion with ∆t = 1.5ms (a) and a slower expansion with ∆t = 3.0ms
(b). The plots show an equally spaced subset of the measured hold times, from 0ms
to 15ms. Longer hold times are shifted along the y-axis. Additionally, the initial
state before the ramp is shown as the lowest (unshifted) line. Errorbars represent 1σ
standard deviations from the statistical distribution of the measurement outcomes
over a set of ∼ 60 shots. The precise numbers depend on the data set. We find
that the expansion produced a feature consisting of a positive correlation peak and
a trailing anti-correlation dip that linearly moves to larger distances over time. The
red line shows, as a guide to the eye, a slope corresponding to an increase in distance
that is twice the measured speed of sound. This is the growth in distance that we
would expect from a pair of particles moving at cs in opposite directions and evidence
for the pair production of quasi-particles. The longer ramp shows a similar signal,
but with much less intensity as well as starting at larger distances. The same line
now trails the anti-correlation dip instead of the correlation peak. This is evidence
that correlations already begin to build (and move) during expansion.
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Figure 6.4: Density contrast correlations after a 1.5ms expansion (a) and a 3ms
expansion (b) by a factor af/ai =

√
8. The lowest lines show the initial correlations

before the expansion, the higher ones a subset of all measured th, that are spaced by
1ms and shifted along the y−axis. For the short expansion we find a correlation peak
closely followed by an anti-correlation dip that move linearly in time and to larger
distances. The red solid lines depict a distance increasing with twice the speed of
sound, extracted previously. This is the kind of signal we expect for a pair of massless
particles with opposite momenta. For the long expansion times, a similar signal is
observed, albeit weaker. Additionally, the same line now follows the anti-correlation
dip instead of the peak. Errorbars represent 1σ standard errors from the statistical
fluctuations of the correlations (over ∼ 60 realizations).
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Figure 6.5: Ramsauer minimum from resonant forward scattering. a) Extracted
spectra for a subset of hold times spaced by 1ms. While most momenta show a
large time-dependence some others do not. b) Coherent oscillations are visible in the
individual momentum modes and corresponding cosine fits. Note that their y−axis
is shifted for better visibility. While the hold times shown are equally spaced, the
complete set is sampled pseudo-logarithmically and the fits are performed over the
first two periods. c) Extracted amplitudes and phases from the fit on the coherent
oscillations. The minimum in oscillation amplitudes falls together with a π phase
shift in the extracted phases (solid lines are a guide to the eye). This can be under-
stood in terms of the involved scattering states shown in d). The densities

⃓⃓
ψIII
k

⃓⃓2
reveal that this specific momentum oscillates with a half-period that exactly fits into
the box potential. As a consequence it is not reflected and shows no coherent oscil-
lations. Errorbars represent 1σ standard errors of the mean (a and b) or from the fit
(c), together with the systematic errors from the modulation transfer function and
the sound speed.
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6.5.1 Coherent Oscillations and the Ramsauer Minimum

From the density contrast correlation we calculate the spectra for different hold times
th after the expansion. Figure 6.5 a) shows the spectra after the slower expansion
(∆t = 3ms). We find that the spectrum shows a time dependence, the strength of
which depends on the momentum k. These are the coherent oscillations and can
be seen when the spectrum of individual momentum modes is plotted against hold
time. Figure 6.5 b) shows this for three exemplary momenta. Note that the data is
shifted along the y-axis to make the individual modes clearly discernible. The change
in interaction strength induces a background motion that was briefly discussed and
visible in Fig. 6.1. The effect of this background motion was extracted via another
measurement that includes much longer hold times (see Appendix B) and has already
been compensated in the shown spectra.

The solid lines in Figure 6.5 b) are cosine fits to the data of the form
Ak cos(ωkt+ ϑk)+Bk, where ωk was fixed to be within 1σ of the expected Bogoliubov
frequency (see Eq. 3.17). The errors in the frequency arise from the fit errors
in the speed of sound from which we infer the chemical potential. Although an
equally spaced subset is shown in Figure 6.5 b), the hold times were sampled pseudo-
logarithmically in the experiment. This was done to ensure a good sampling rate over
a wide range of frequencies. Two periods of an oscillation are included in the fit. This
means that only the lowest momentum modes are fitted for all hold times. Higher
momentum modes are only fitted up to th = 2Tk, where Tk is the period of the mode.
The results for Ak =̂ ∆Nmax

k and ϑk from the fit of the coherent oscillations can be
seen in Figure 6.5 c). We find a minimum in the oscillation amplitude Ak around
k = 0.7 µm−1. The phases ϑk of the modes just below or above this momentum differ
by almost π. Solid lines are meant to serve as guides for the eye and show a linear
relationship between k and ϑk left and right of this minimum. This is expected in
the acoustic regime where ωk ∼ csk. The inverse healing length ξ−

1 is on the order
of the highest momenta shown in the Figure.

We can turn to the scattering picture to understand where this minimum in
coherent oscillations and the coinciding shift in phase come from. Figure 6.5 d)
shows the corresponding potential and probability densities of exemplary scattering
states below the resonant momentum, above the resonant momentum, and at the
resonant momentum, which shows the minimum in amplitude. The measurements
of the spectrum at different hold times th correspond to the measurements of these
probability densities at different conformal times η. The standing wave contribution
then shows up as coherent oscillations. The resonant momentum is the one with
a half-period that fits exactly into the box potential. Interference of incoming and
reflected components in region II make |ψk|2 periodic inside the potential. The
result is resonant forward scattering at the potential and no reflection. We can also
interpret this as destructive interference of the reflections at ηf and ηi (and multiple
scattering events). Therefore, there is no standing wave contribution in the outgoing
state ψIII

k and no coherent oscillations. This also means bk = 0 and that no particles
are produced. Momenta just below and above the resonance show an opposite sign
in bk and therefore in the complex reflection amplitude, showing up as a π difference

87



in ϑk. This phase shift is present in all modes above the resonance, making the
phase a good indicator of this phenomenon. The resonance effect shows up with or
without the singular contributions to the potential in the form of delta peaks that
also contribute to the scattering (see section 2.4). They coincide with the potential
steps of the box potential and share the same symmetry (opposite sign). The values
of ak and bk of all off-resonant momenta are affected by their existence.

The resonance phenomenon is known from particle scattering and (in the context
of electron scattering) is named after its discoverers, the Ramsauer-Townsend effect
[94, 95]. In their experiments, electrons were scattered off of noble gases. Indepen-
dently, the two found that the scattering cross section depends on the momentum of
the called and shows minima, especially for low momenta. This was unexplainable at
the time (1921), and Niels Bohr doubted the discovery in a letter to Albert Einstein:
“...Ramsauer’s almost crazy assertion (in Jena) that the path length of electrons in
argon becomes infinite with decreasing speed (the atoms are freely flown through by
slow electrons!).” (translated from German, [96]) The resonance effect was only ex-
plained after the development of quantum mechanics. He later admitted his mistake
and acknowledged that this resonance effect can indeed be explained by “de-Broglies
wave-mechanics”.

We can also interpret this in the squeezing picture. After the original squeezing
operation at ti this mode experienced exactly a π rotation in phase space before the
opposite anti-squeezing operation is applied. The result is the symmetric original
state that does not show coherent oscillations and does not include extra particles.
This heavily depends on the right amount of phase accumulation between the two
operations, which is given for the resonant momentum. Additionally, both potential
steps (at ηi and ηf ) as well as the singular contributions need to be of equal mag-
nitude. In reference [97] the authors investigate this squeezing and anti-squeezing
formalism in context of cosmological inflation and find that it produces oscillations
of the power spectrum in momentum space (Sakharov oscillations [98]) with minima
for maximal desqueezing.

If this resonance condition is valid, one should be able to find more of these
resonances for higher momenta that also fit into the box potential. For this we have
to leave the acoustic regime.

6.5.2 Beyond the Acoustic Regime

To interpret the data beyond the acoustic regime, the full Bogoliubov dispersion
relation needs to be included. In this section, we compare the experimental data
with a fully acoustic model that assumes ωk = csk for all k where the potential is
given by 2.34 and an extended model that takes into account the complete Bogoliubov
dispersion and the dispersive potential 4.25. Both models include an initial thermal
state that is extracted from a fit to the initial state. All models shown are courtesy
of our theory collaboration partners. Details on the derivation of the theory curves
can be found in [99] and [50].

Figure 6.6 a) shows the fit results for phase ϑk, amplitude Ak =̂ ∆Nmax
k , and offset

Bk =̂ Nk + 1/2, along with the predictions of acoustic theory (dashed lines) and the
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Figure 6.6: Comparison of the coherent oscillations to theory predictions. Phase,
amplitude and offset as extracted from the cosine fits after a 3.0ms expansion (a)
and a 1.5ms expansion (b). Gray dots in the offset mark the initial state. Dashed
lines show theory predictions from acoustic theory, and solid lines from an extension
to the full Bogoliubov dispersion. The vertical dashed line marks ξ−1 ∼ 0.9 µm−1.
The Nk and ∆Nk have been scaled by 1/2 to match the observations of Ak and BK .
Errorbars represent 1σ standard errors on the fit of the oscillations. For Ak and
BK this is quadratically added to systematic uncertainties from the errors on the
Modulation transfer function and the speed of sound. Theory models are courtesy
of our collaboration partners and adapted from [92].

extended model (solid lines). Vertical dashed lines mark the inverse healing length
ξ−1. This is the scale on which we expect deviations from the acoustic approximation
and is at the high end of the momentum region considered so far.

In the extracted phases, we find the higher resonances of the slow expansion at
k ∼ 1.2 µm−1 and k ∼ 1.6 µm−1, in addition to the first resonance at k ∼ 0.7 µm−1.
In b), we show the data of the faster ramp with ∆t = 1.5ms. The second resonance
of the slow ramp coincides with the first one of the fast ramp. This is expected as its
potential width is exactly half of the width of the slow expansion. In principle, there
is a small shift between the two because the potential height also differs by a factor of
four. However, the absolute heights with 1

4
ȧ2(η) = 0.01 µm−2 for the slow expansion

and 0.04 µm−2 for the fast expansion are small. They correspond to momenta k =
0.1 µm−1 and k = 0.2 µm−1, respectively. Modes with momenta lower than that,
would be tunneling through the potential and correspond to the decaying modes in
cosmology [53, 100]. Because in the scattering picture the equivalent eigenenergies
vary with k2, the difference in potential heights does not yield a significant shift at
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the resonance positions (see Eq. 2.33).
We find that the full model is much better at describing the data, especially for

the phases at high momenta. Because the healing length and thus the momentum
dependence of the potential changes during the ramp, the symmetry of the potential
is broken and reflections are not fully suppressed at resonance. Instead of zero
amplitude and a phase jump, we find a small amplitude and the phase jump being
smeared out over a small range of momenta. To match the extracted amplitudes and
offsets with the theoretical results for ∆Nk (and Nk) all models shown in this thesis
had their resulting ∆Nk and Nk multiplied by 1/2. Additionally (for this scenario),
∆t was modeled to be 10% less than the set value and cs is reduced by ∼ 10% of
the measured value, possibly reflecting imperfections in the experimental form of the
magnetic field ramp.

Finally, the experimental results for the offset Bk diverge from the model at
high momenta. This might be the result of some other noise source that appears in
the offset and is greatly exaggerated by the Bogoliubov prefactor, which gets large
for small ξ−1. This noise source is not present (to this extend) in the initial state
(gray points), where it would be even more prominent in comparison to the strongly
suppressed density fluctuations. A possible explanation could be an unintentional
transfer of atoms to another minimum of the lattice in z-direction that provides the
confinement to two dimensions.

6.6 Sinusoidally Periodic Scenario

By making the scale factor a periodic function in time, we can implement periodic
cosmologies. For those, we can expect the particle production to increase with the
number of periods, making them a prime scenario for investigating the process. As
we will see in experimental data, the periodicity in time shows up as a periodic
structure of the density fluctuations in space. We show that this is connected to
particle production being dominated by a few narrow bands of resonant momenta,
which correspond to the band gaps of the periodic potential.

For the first of these experiments we oscillate the scale factor with

a(t) =
ai + amin

2
+
ai − amin

2
cos(ωt). (6.9)

This is implemented by a corresponding oscillation of the scattering length between
200aB, setting ai, and 400aB, which sets amin. We always perform full periods, such
that ai = af . Figure 6.7 shows density contrast correlations and their time evolution
for different hold times th after two and four periods. We find a correlation feature
consisting of several correlation peaks and anti-correlation dips moving to larger
distances. The red line is meant as a guide to the eye and corresponds to movement
at twice the speed of sound. After four periods the signal is more pronounced.
Additionally, it periodically extends to even larger distances.

We can again calculate the spectra and fit the coherent oscillations. The results
are shown in Fig. 6.8. After one period (a), the offset does not differ significantly
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Figure 6.7: Density contrast correlations after two periods (a) and four periods (b)
of a periodically contracting and expanding spacetime (in the form of a cosine).
The lowest lines show the initial correlations before the expansion, the higher ones
a subset of all measured th, that are spaced by 1ms and shifted along the y−axis.
Again, we find a correlation feature moving with twice the speed of sound as indicated
by the red line. More periods make this signal more pronounced. Additionally, it
periodically extends to larger distances.

from the initial spectrum (gray dots). However, the amplitude reveals significant
coherent oscillations at low momenta. These are accompanied by a slope in the
phase. For two and more periods, the amplitude forms a peak that is also visible in
the offset. More periods lead to a growth of both Ak and BK and a steeper phase
profile across the narrowing peak. This is expected because the accumulated relative
phase of the different momenta grows during the time evolution.

The solid lines show theory predictions including the Bogoliubov dispersion. The
Nk and ∆Nk have, again, been scaled by 1/2 to match the observed values of Ak

and BK . For a low number of periods they model the data of the amplitude well.
At four periods, the model is overestimating the peak. This could be due to loss
channels in the experiment that lead to the decay of the coherent oscillations and
inhibit their growth. The offset shows a discrepancy to the model for intermediate
momenta. This missing offset is already present in the initial state, which is not
well described by a thermal spectrum in this regime. A possible explanation for this
could be a reduced thermalization time of only 50ms (compared to 100ms used for
the other experiments).
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Figure 6.8: Coherent oscillations after a period of contracting and expanding space-
time. The scale factor is modulated in a sinusoidal fashion over one period (a), two
periods (b), and four periods (c). With increasing periods offset and amplitude grow
at a specific momentum and the corresponding peak narrows. ξ−1 is indicated with
a dashed line. Theory predictions are marked with solid lines. The Nk and ∆Nk

have been scaled by 1/2 to match the observations of Ak and BK . Measurements
of the initial spectrum are depicted as gray dots. Errorbars represent 1σ standard
errors on the fit of the oscillations. For Ak and BK this is quadratically added to
systematic uncertainties from the errors on the Modulation transfer function and the
speed of sound.
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Figure 6.9: Band gap description of the phenomenon found for the sinusoidal mod-
ulation of the scale factor (see Fig. 6.8). a) The sinusoidal modulation of the scale
factor corresponds to a periodic potential. The dashed vertical lines mark ηh = 0 and
th = 0. b) Numerically calculated band-structure of the potential in (a) extended to
infinite length. The Fourier components VG of the potential (inset) are dominated by
the first Fourier component. This leads to a single band gap opening up. Free states
at energies in the gap can not propagate through the potential, but are reflected
instead, leading to the single observed peak.
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The growth of a single peak can be understood as a result of the periodic structure
of the potential. The potential is periodic in ∆η. In the limit of infinite number of
periods, its Fourier components VG are non-zero only for k = n2π/∆η =: Gn. This
can then be used to build the Schrödinger Equation (2.33) in Fourier space:

p̂2ψk + VG ∗ ψk = Ekψk, (6.10)

where ∗ denotes a convolution with VG, that couples pairs of modes with ∆k = Gn.
This is solved by Bloch-states and the eigenenergies form a band structure that is
gapped at qk = Gn/2, where qk is the quasi-momentum in the potential. Results from
numerical diagonalization of this are shown in Fig. 6.9 b). For this potential form,
the first Fourier component is dominating, and only a single (first) gap is substantial
and resolvable numerically. That said, a perfectly sinusoidal potential does have
higher band gaps that decrease in width as energy increases [101]. While the new
eigenstates inside the potential that are far off the gap are virtually unchanged, the
eigenstates directly above and below the gap are a superposition of the (free) ±k
states. To first order, a single gap translates into a single peak in the spectrum. Free
modes with energies in the band gap cannot propagate in the periodic potential, but
are reflected instead.

This is similar to Bragg-scattering on the periodic potential of a crystal [102].
Instead of probing the crystal structure with a monochromatic source where reflection
occurs at the Bragg-angle, we probe the one-dimensional periodic potential with a
wide range of momenta and reflection occurs for the resonant one.

In practice, the potential is far from infinitely extended, and the Schrödinger
equation has solutions where the infinitely extended potential has gaps. These will
show a decay from period to period as they penetrate deeper in the potential (which
does not mean that the solution is not oscillating in between, in contrast to tunneling
modes of the box potential). This leads to an exponential decay of the transmission
amplitude as the number of periods is increased and in turn an exponential growth
of the particle production. This can be interpreted the following way. To match the
energy inside region II to the ones in region I and III, where Ek = k2, the quasi-
momentum corresponding to the state in the gap must have an imaginary part. This
result comes naturally in a transfer matrix approach to the problem [103, 50].

6.7 Cusp Periodic Scenario

To get a richer band structure, we choose a potential landscape that has higher
Fourier components. For this, we produce a potential of regularly spaced peaks. We
find that this opens multiple band gaps for which particle production is measured.
Additionally, we are able to measure a significant signal of squeezing below the level
of vacuum fluctuations for some momentum modes.

One of the peaks is realized by a cusp-like modulation of the scale factor of the
form

a(t) =
ai√
2
[1− 1/2| cos(ωt)|]−1/2 . (6.11)
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Figure 6.10: a) A potential consisting of periodic δ-peaks can be implemented by
maximizing the irregular terms of the potential. This is done by including turning
points in the scale factor (of the form given in Eq. 6.11). The dashed vertical lines
mark ηh = 0 and th = 0. b) Numerically calculated band-structure of the δ peak
potential in (a) extended to infinite number of periods. The Fourier components
VG of the potential (inset) are much larger than observed previously. Multiple band
gaps open up. The first band gap is small but resolvable numerically and shown in
the inset.

A single cusp is generated by this modulation over half a period of the cosine. In
theory, the turning point generates a δ-peak contribution to the potential. In the
experiment, changes in the magnetic field are limited by inductance of the coils and
timescales of the magnetic field control. Therefore, the δ-peaks will be of some finite
height and width. To keep the external potential in sync with the real magnetic
field, we delay DMD power by 200 µs. We again take ai to be the scale factor at
200aB. The peak is then at 400aB. This time, ω/(2π) = 800Hz. However, we set
the periodicity by keeping the scale factor constant at ai between two peaks, such
that the cusps are spaced by ∆t = 2ms.

Figure 6.10 a) shows the functional form of the scale factor together with the
corresponding potential. The potential shows a functional form going to negative
values, in addition to the peaks. This is a consequence of the fact that every po-
tential must support a zero energy bound state, which makes only positive δ-peaks
impossible [50]. The Fourier components n > 1 are indeed much larger than before
and multiple band gaps open up. In turn, particles are produced at various resonant
momenta that correspond to the position of these gaps.
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Figure 6.11: Density and density contrast of the initial state and after four cusps
and a hold time th = 3.5ms.
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Figure 6.12: Density contrast correlations after one peak in the potential (a) and after
two peaks (b). The lowest lines show the initial correlations before any modulation
of the scale factor. These show larger statistical errors (1σ standard error) because
of a factor three less statistics. The other lines are shifted along the y-axis and show
hold times th, that are spaced by 1ms. Again, we find a correlation feature moving
with twice the speed of sound as indicated by the red line. More cusps make this
signal more pronounced and extend to larger distances. In addition to the moving
correlation feature, the buildup of correlations at smaller distances is also clearly
visible.
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Figure 6.11 shows the density distributions and corresponding contrasts of two
randomly chosen single realizations, one of the initial state and one after four peaks
and th = 3.5ms. Because the interaction strength in region I and region III are
identical, the increase in density fluctuations can be interpreted as a result of particle
production. Density contrast correlations of an equally spaced subset of hold times
can be found in Figure 6.12 and reveal a correlation signal moving at twice the speed
of sound. In this experiment, we also clearly see a non-moving correlation building
up at short distances for two (and more) cusps.

Figure 6.13 shows the results of fits of the coherent oscillations for one, two, four
and six cusps (a-d). After a single peak we find elevated amplitudes over a broad
range of momenta, while the offsets are comparable to the initial spectrum (gray
points). Note that the statistics for the initial state is much weaker (21 realizations
as compared to ∼ 65 for all other hold times and multiple hold times are combined
in the fit of the offset).

For two cusps the resonant momenta emerge in the form of increased amplitudes
and offsets. For more cusps these peaks grow rapidly, both in offset and amplitude.
Each peak is accompanied by a slope in the phase that, again, increases with the
number of cusps. Solid black lines show a theory model including the full Bogoliubov
dispersion relation. Again, the Nk and ∆Nk are scaled by 1/2. Additionally, a lag of
the magnetic field control of 230 µs and a slightly adjusted value for cs = 1.91 µm/ms
(compared to a measured value of cs = 1.97(3) µm/ms) was used. These additional
corrections were not necessary for the sinusoidal form. Then, the model describes the
observations very well for one and two cusps. This also shows that the initial state
is well described by an initial thermal distribution that is included in the model. For
more cusps, we find very different growth rates of the different peaks.

One contribution to this is the experimental form of the scale factor ramps. The
jump in the first derivative of the scale factor will certainly be a ramp over some finite
time and with some delay to the input signal. This is supported by the fact that
a delay had to be introduced for the theoretical predictions to match the observed
phases, which is of the same order as the delay of the external potential. A difference
in the corresponding potential can have very different effects on the growth rates of
the individual peaks. Another contribution will be the multiple loss channels that are
present in the experiment, but not in the theoretical model. For example, scattering
processes between different momenta will lead to a net loss of particles from the
resonant modes. A sign of this process could be the increase in the offset on all
scales in comparison to both the initial state and the theoretical prediction for four
and six cusps. This effect affects not only the offset, but even more so the coherences
that make up the amplitudes. More on this is discussed at the end of this chapter.

This can also be interpreted as an example of Bragg reflection and calculated
using the transfer matrix method [50, 103].

Because the peaks are localized in time, we can think of them as applications of a
squeezing operator similar to the edges of the box potential. Between two peaks, the
state evolves freely. If the phase space rotation is a multiple of π, the next squeezing
operator is applied exactly at the squeezed axis. If not for the losses, one could expect
the resonant momentum modes to show more squeezing with every additional cusp.
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Figure 6.13: Bragg scattering at the δ-peaked potential. (a) to (d) show one, two,
four and six cusps, respectively. Because all gaps are open, we find multiple (main)
peaks in the offsets and amplitudes. Theory predictions are marked with solid lines.
While they capture the experimentally extracted structure, relative growth rates of
the different peaks divert from the model. ξ−1 is indicated with a dashed line. The
Nk and ∆Nk have been scaled by 1/2 to match the observations of Ak and BK .
Errorbars represent 1σ standard errors on the fit of the oscillations. For Ak and
BK this is quadratically added to systematic uncertainties from the errors on the
Modulation transfer function and the speed of sound.

98



6.7.1 Squeezing Below the Level of Vacuum Fluctuations

Squeezing of a momentum mode below the level of vacuum fluctuations corresponds
to Sk oscillating below 1/2. Figure 6.14 a) shows the spectra after a single peak
for very short hold times (th = 200 − 1100 µs). b) shows the same after two peaks.
The errorbars now represent 3σ standard errors of the statistical fluctuation of the
spectra, combined with 3σ standard errors of the statistical fluctuation of the imaging
sensitivity and from the fit of the speed of sound. Points with black outlines mark
the shortest hold time th = 200 µs and gray points show the initial spectrum before
the ramp. Because this is meant as a comparison, its error bars only show the 3σ
standard error from statistical fluctuations. Note that its statistical fluctuations are
larger than those of the spectra after the ramp because of a factor of three less
statistics. We find that the spectra drop below 1/2 for multiple momentum modes,
both after one and two cusps. This equates to less density fluctuations than expected
with classical correlations at this length scale and in turn indicates a squeezed state.
We find these modes at the intermediate momentum range at or slightly above ξ−1,
where the influence of the initial thermal state gets small (Eq. 6.8).

Figures 6.14 c) and d) show the coherent oscillations for the wavenumbers k ∈
[1.7 µm−1, 2.05 µm−1]. Consecutive modes are shifted by 1/2 along the y-axis. Error
bars on the data points are again the 3σ standard errors described above. Solid lines
show the results from the fits with the values shown before in Fig. 6.13. Multiple data
points breach the level of vacuum fluctuations that is marked as solid horizontal lines.
We find that this signal is robust for changes in the size of the analyzed region of the
cloud and even persists for an analysis without the reference picture optimization
(see the Appendix C).

The fitted oscillations clearly show that the offset Bk =̂ Nk + 1/2 is greater than
1/2, while coherent oscillations with amplitude Ak =̂ ∆Nmax

k > Nk make the spec-
trum fall dynamically below 1/2. Figure 6.15 shows the difference of the extracted
offsets and amplitudes after one, two, four and six peaks (a-d). The errorbars rep-
resent 3σ standard errors from the fit and covariance of the two parameters, again
combined with the errors of imaging sensitivity and speed of sound. Solid black lines
show the theory model from before and horizontal lines mark 1/2. In these extracted
quantities, we also find a significant signal for squeezing below the level of vacuum
fluctuations.

For more peaks, we do not find such a signal. Not only do the errors grow larger,
but the means are also larger than 1/2 for most (4 cusps) or all momenta (6 cusps).
The errors are not unexpected as both the offset and the amplitude grow and these
large numbers are subtracted (see growing Bk and Ak in 6.13). However, the means
should indicate more and more squeezing of the resonant momentum mode with
every cusp of the potential. This is also predicted in the model. For four and more
cusps, squeezing should be detectable in the lowest resonant momentum (first peak),
even though its thermal initial occupation is large. Instead, the data diverge from the
model. The fact we do not see squeezing below the level of vacuum fluctuations for
four and more cusps indicates that effects that destroy the coherence of the particle
pairs are important at this timescale. These are not included in the theory.
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points below 1/2 (horizontal lines). Solid lines are the fits shown in Fig. 6.13.
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Figure 6.15: Testing for squeezing and entanglement in the extracted amplitudes
and offsets. Squeezing of a momentum mode below the level of vacuum fluctuations
(horizontal line) corresponds to BK − Ak < 1/2. a) to d) show this quantity for
one, two, four and six cusps. Solid lines are the theory model from Figure 6.13. The
dashed vertical line marks ξ−1. The errorbars represent 3σ standard errors of the fit
of the oscillations (including the covariance of the two parameters) as well as of the
systematic uncertainties from the errors on the modulation transfer function and the
speed of sound.

Possible Mechanisms for the Loss of Coherence

The perfect correlation of particle occupations in opposite momentum modes can
be destroyed by single loss events from one of the momentum modes. This can
happen as a result of quasi-particle interactions between the mode of interest and
the thermal contribution. Even though it redistributes momentum and energy from
the original momentum to other ones, it is an effective loss from the original mode. By
truncating the Hamiltonian at quadratic order in the derivation of the Bogoliubov
dispersion, we neglected these interactions. These interactions are referred to as
Landau damping [104]. Additionally, a phonon can decay into two lower energy
phonons (Beliaev damping [105]). In two or more dimensions, both processes have on-
shell contributions that are momentum and energy conserving. After long times the
coherent oscillations will damp out as a result of these processes and the occupations
show a thermal distribution [106]. The increased mode occupations on all momenta
after six peaks might already show the onset of the redistribution towards a thermal
spectrum.

The finite size of our system can also have similar effects because reflection at
the boundaries will destroy the correlations (but does not redistribute the absolute
momentum k). Similarly, restricting the analyzed region to something smaller than
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the cloud size results in effective losses because we essentially trace out a subsystem.
There are also loss mechanisms for the atoms from the trap. In three-body losses

two atoms form a molecule while a third ensures the conservation of momentum and
energy. Typically, both the molecule and the third atom are lost from the trap,
leading to particle loss and an increase in noise from heating [107].
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7
Conclusion

7.1 Summary

In this thesis, we further deepened the connection between superfluids with time-
dependent interaction strength and quantum field theory on curved spacetimes, by
investigating the analogy to the one-dimensional quantum mechanical scattering
problem that is described by a Schrödinger equation. We measured an analog to cos-
mological pair-production in expanding spacetimes in a BEC with a time-dependent
interaction strength. In this analog simulator, the scale factor can be increased by
a decrease in the speed of sound, which in turn increases the proper lengths in the
system. This was done for multiple expansion scenarios. An analysis of the spectra
showed an increase in (phononic) quasiparticles and coherent oscillations, which are a
result of the quasi-particles being produced in pairs. For a linear expansion scenario,
we were able to explain a previously found phenomenon [47], namely the vanishing
particle production and the jump in phase for some momenta. We identified this as
resonant forward scattering on the potential with zero reflection amplitude, which
translates to no particle production. This is equivalent to the Ramsauer-Townsend
effect, a known scattering phenomenon which was first found in the context of elec-
trons scattering on noble gases. We were able to confirm the resonance hypothesis,
by identifying multiple higher energy resonances in an energy regime beyond the
acoustic approximation. Similarly, we found scattering resonances with large quasi-
particle production for periodic spacetimes. This was identified as Bragg reflection
in the scattering analogy. Because of the shape of the potential, only the lowest band
gap opened in the corresponding band structure, and we found a single narrow peak
of resonant momenta after multiple oscillations. Finally, we designed a scattering
potential that consists of many equally spaced peaks by implementing cusped-shaped
peaks in the scale factor. This led not only to the opening of many band gaps and
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resonant momenta but also to a fast growth of their occupations. In this scenario,
we found that the spectra fall dynamically below the level of vacuum fluctuations,
equivalent to the shot noise (in this work at 1/2). This can be interpreted as a wit-
ness for entanglement. The data presented in this work showed a significant signal
of squeezing below the level of vacuum fluctuations for an intermediate momentum
regime close to ξ−1. This has, to our knowledge, not been demonstrated before (for
kξ ≫ 1 in [45]).

7.2 Outlook

The validity of the analogs as well as some of the findings in this work have im-
plications for similar experiments involving superfluids. Furthermore, some of the
phenomena found require future investigations. Other cosmologically motivated phe-
nomena could also be within reach of the current or future capabilities of the simu-
lator. This section is briefly outlines some of them.

7.2.1 Squeezed States and Entanglement

Some scenarios have been shown to produce squeezing below the level of vacuum
fluctuations. Since this means that the particles are entangled, it could be used
to study entanglement and its dynamics. For example, one could investigate the
entanglement between different regions of the condensate, possibly at distances that
are related to the hold time in the static region (III). This would be particularly
interesting for modes that are deep in the phononic regime, where information is
expected to propagate at the speed of sound. Such a study could be combined with
the implementation of curvature through specific density profiles, as has previously
been shown in our experiment [47].

To experimentally achieve squeezing deep in the phononic regime kξ ≪ 1, there
are multiple aspects to consider. Going to lower temperatures helps to narrow the
initial spectrum and therefore the offset from thermal occupations, especially in the
low momentum regime. Extending the acoustic regime can be achieved by higher
densities and interactions. However, this might have detrimental effects on the Lan-
dau and Beliaev damping rates discussed before and an increase in particle loss
combined with an increase in heating through three-body losses. This is a trade-off
that needs to be optimized. To alleviate the effects of finite size, it might help to
construct something periodic, or mimic periodicity by a highly reflective square box
that can then be analyzed with a periodic Fourier transformation.

The experimental schemes shown in this work could also be used to produce
squeezed phonon modes at specific momenta. This is, for example, of interest for
quantum metrology [108]. There, the reduced variance in one variable can be used
to enhance the precision of a measurement.

The scattering framework could help to design the optimal time dependence of
the scale factor to either specifically target momenta (periodic potential) or cover a
wide range (peaked potential). Typically considered is the sinusoidal driving of the
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scattering length to achieve large populations of a momentum mode. Here we have
found that the precise form of the excitation spectra depends on the shape of the
equivalent scattering potential. Although this is dominated by the driving frequency
in the limit of large offset scattering lengths and small driving amplitudes, this is not
true in the regime of large drives. To minimize the influence of loss of coherence, the
large driving regime might, however, be the regime in which to produce this initial
state.

Ultimately, optimizing these parameters requires a quantitative understanding of
the different mechanisms contributing to the damping. From there it might be pos-
sible to identify an ideal parameter regime. Steps in this direction from a theoretical
point of view have been taken in [59].

7.2.2 Cosmologically Motivated Questions

Reheating

The thermalization process that we regarded as unwanted damping for the generation
of the squeezed states could be interesting itself. It has been proposed to be an analog
for the reheating process in the early universe after the inflationary period [109, 110].

Beyond Density Excitations

Several hyperfine states of the atoms which are miscible in a BEC can behave as an
effective spin and can produce a spinor condensate [111]. These support additional
excitations, for example spin-waves, with their own speed of sound. This gives more
freedom for the construction of metrics, for example, including a sound horizon in
the spin from a background flow, without a supersonic flow (in terms of density speed
of sound) [112]. Similar considerations are valid to obtain an extended ergoregion
of a rotational fluid flow (vortex) [113]. In addition, these systems can benefit from
advanced readout techniques of the final state [114].

Alternatively, topological excitations of the single species condensate in the form
of vortices are expected to obey the acoustic metric. Because the vortex-vortex
interaction depends on the sign of the phase winding, they could behave analogously
to massive charged particles [115]. This is also interesting in combination with
the implementation of spatial curvature through specific density profiles because
curvature would modify the phonon mediated interactions of the vortices.

Backreaction

Throughout this thesis, we assumed a classical metric that depends only on the mean
field density. This defined the spacetime for the quantum field filling it. However,
one can ask how this changes if the fluctuations of the metric induced by quantum
fluctuations of the density are considered. There exist a variety of theoretical results
and concrete proposals for experiments testing this in analog cosmology experiments
and the context of inflationary preheating [116, 117].
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While it is not hard to imagine a quantum superposition of density distributions
in our experiment, this is closely related to the question of what the gravitational
field of a massive object in a spatial superposition is [118]. Both could be interpreted
as a superposition of metrics, which is a possible top-down approach to investigate
quantum effects in gravity [119].
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A
Appendix: Imaging Response

Here we show details on the asymmetry of the momentum cut-off of the imaging
system. Figure A.1 shows the mean density distribution of a BEC at 400 aB. In fact,
this is the initial state from the ramp measurements. An extraction of the spectra,
equivalent to the thermal clouds in section 5.5.3 shows that the asymmetric cut-off
is the result of the overlap of two circular cut-offs. As discussed in the main text,
this is the result of a tilt of the imaging beam relative to the axis of the objective.
As a result, the objective acts as an off-center cut-off in the Fourier-plane. After the
phase information is lost on the imaging sensor, the Fourier transformation of the
real-valued images produces a symmetrized version of the cut-off in the spectrum.
Below the inner cut-off we find some substructure in the spectrum. This is a result
of imaging aberrations. Beyond that cut-off, momenta k that make it through the
objective have their counterpart −k blocked. The result is a general loss of signal,
but also of the interference resulting in this substructure.

A.1 Relation of Two-Dimensional Fourier-Transformation
and Zero-Order Hankel-Transformation

We want to show that ∫︂
φ

FT (f(r, φ)) = HT (f(r)), (A.1)

with f(r) =
∫︁
φ
f(r, φ) and HT denoting the 0th order Hankel transformation as

defined in the main text and below. First, we expand f(r, φ) to multipoles

f(r, φ) =
∞∑︂

m=−∞

fm(r)e
imφ (A.2)
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Figure A.1: Mean density distributions a) and two-dimensional density fluctuation
power spectra like defined in Equation 5.16. c) Masked spectrum covering the fringes
overlayed with two circles of the size of the theoretical momentum cut-off, illustrating
the asymmetric cut-off.

and note that f(r) = 2πf0(r). The two-dimensional Fourier-transformation will
separate in the same set of symmetries

FT (f(r, φ)) = 2π
∞∑︂

m=−∞

i−meimφFm(k), (A.3)

where
Fm(k) =

∫︂
fm(r)Jm(kr)rdr (A.4)

is the mth order Hankel-transform. Again, a radial integral will eliminate all but the
0th order ∫︂

φ

FT (f(r, φ)) = 2πF0(k) = HT (f(r)). (A.5)

This identity is a result of the property of the Fourier-transformation to retain the
symmetries of the real space function.
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B
Appendix: Slow Oscillations of the Spectra

In 6.5 we found that the mean density after an interaction quench (that is equivalent
to an expansion scenario in our analog system) shows some kind of breathing motion
and a density wave moving inwards. This is attributed to the sudden change in
healing length. Effects from the imperfections of the external potential (and its
finite height) are mitigated by ramping the height of the potential (i.e. light power)
together with the interaction. Here we show that the background motion results in
oscillations of the extracted spectra that can be well characterized by a cosine fit.
This is then compensated for in the extracted spectra after all expansions.

Figure B.1 (a) shows the mean density profiles after an expansion over
∆t = 1.5ms for different hold times. The data shown in the main text is only taken
up to th = 15ms. This is a different dataset that includes much longer hold times
up to th = 60ms. We find a density wave moving inwards and an increase in mean
density in the center. In contrast, the peaked scenario in b) does not show these
features, at least not to a comparable extend.

Figure B.2 shows density fluctuation power spectra for the highest momenta that
were extracted in the analysis. Because their coherent oscillations are orders of
magnitude faster than the timescales shown, we can clearly see the slow oscillations
induced by the background motions. Red lines show a fit of the form

Sk(t) = d+ a cos(ωt). (B.1)

with the free parameters offset d, amplitude a and angular frequency ω.
Figure B.3 shows results from the fit for all extracted momenta. We find that

the angular frequency (c) is independent of momentum and a mean value of ω =
125(1) s−1 (for k > 0.5 µm−1). This is consistent with the modulation being the
result of a breathing motion. Deviations at low momenta can be attributed to
a less well defined separation between their slowly oscillating coherent oscillations
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Figure B.1: Mean density distributions for long hold times after a fast expansion over
∆t = 1.5ms (a) and after a single cusp (b). In a) we find a inward moving density
waves and a breathing motion of the density. In b) we do not find this breathing
motion. Note that while the hold times differ between the two cases, the sound speed
does as well making the shown timescales comparable. Note that data for a) is from
a different data set than whats shown in the main text.
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Figure B.2: Slow oscillations found on top the coherent oscillations of the individual
modes for k ∈ [1.95 µm−1, 2.2 µm−1] (highest extracted momenta). The extra oscilla-
tion is in contrast to the coherent oscillations not momentum dependent. Solid lines
are fits of the form d + a cos(ωt) with free fit parameters offset d, amplitude a and
frequency ω. All fit results can be found Figure B.3.

and the breathing motion. Although the offset and amplitude show a momentum
dependence, their ratios are again constant. We find a mean value of a/d = 0.48(1)

Overall, we conclude that we can compensate for this slow modulation by apply-
ing

Sk(t) =
1 + a

d

1 + a
d
cos(ωt)

S̃k(t) (B.2)

to the extracted spectra S̃k(t). This is close to one for small times. Because coherent
oscillations are only fitted over two periods, this does not influence the fit results at
high momenta. This treatment was not applied to results from the periodic scenarios.
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a) b)

c) d)

Figure B.3: Fit parameters of the cosine fits to the oscillations of the spectra. The
frequency increases slightly with k, has an oscillatory behavior for high k and large
errors for small k. The average over all values for k > 0.5 µm−1 is 125(1)/(2π)Hz and
is not far off of most fitted values. Importantly, the ratio of amplitude a and offset
d is also a constant. Besides low k it shows again an oscillatory behavior around a
mean value of 0.48(1) (for k > 0.5 µm−1).
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C
Appendix: Squeezing for Changes in the

Analysis

We tested multiple sizes for the analyzed region between 70% of the radius and
the full size and found comparable results that drop below the level of vacuum
fluctuations in all cases. Figure C.1 shows the analysis of the full cloud as an example.

In addition, we tested the importance of optimizing the reference picture. The
result is shown in Figure C.2 (for the original region size of 90%). We find that even
without the removal of the additional noise from imaging light we find some data
points significantly below the level of vacuum fluctuations. We find a slight tendency
towards larger offsets and larger errors, as expected.
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Figure C.1: Spectra (a,b) and coherent oscillations (c,d) for the cusp periodic scenario
and Gnn correlations performed on the whole cloud. This is comparable to 6.14,
where 90% in terms of the radius was used to extract the correlations.
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Figure C.2: Spectra (a,b) and coherent oscillations (c,d) for the cusp periodic scenario
without performing the optimization algorithm on the reference images. Otherwise,
the analysis is the same as in 6.14.
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D
Appendix: Background Flows

If we had allowed for background flows v ̸= 0 Eq. 4.13 would have taken the form

Γ2[ϕ] =
h̄2

2

∫︂
dtd2r

[︃
1

c2s
(∂tϕ)

2 − (∇ϕ)2 + 2

c2s
(∂tϕ)v∇ϕ+

1

c2s
(v∇ϕ)2

]︃
. (D.1)

The extra terms result in off-diagonal entries of the metric

(gµν) =
1

c2s

(︄
−c2s + v2 −vj

−vi δij

)︄
(D.2)

together with its inverse:

(gµν) =

(︄
−1 −vj

−vi c2sδ
ij − vivj

)︄
(D.3)

However, the action can still be written in the form of Eq. 2.1:

Γ2[ϕ] = − h̄
2

2

∫︂
dtd2r

√
ggµν∂µϕ∂νϕ (D.4)

For the FLRW-metric all off-diagonal terms are zero and, therefore, background
flows are ruled out (v = 0).
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