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Abstract

Consider the random greedy hypergraph matching process that, for a given hypergraph H,
iteratively chooses edges of a matching as follows. In every iteration, an edge is chosen
uniformly at random among all edges of H that do not intersect a previously chosen
edge. If no such edges exist, then the process terminates. We analyze the behavior of a
variation and a special case of this process.

For the variation we consider, there is an initially given collection of forbidden edge
sets that are not allowed to be subsets of the generated matching. Edges are then not
chosen among all those that do not intersect with a previously chosen edge, but only
among those that also do not form such a forbidden edge set with previously chosen edges.
We call this variation the conflict-free matching process. Through an analysis of this
process, we determine conditions on the hypergraph H and the collection of forbidden
edge sets that still allow us to guarantee that, with high probability, the process generates
a matching that covers all but a small fraction of the vertices of H. This in turn allows
us to obtain general theorems that describe settings where almost-perfect matchings with
pseudorandom properties that also avoid given edge sets as subsets exist. Exploiting
that a wide range of combinatorial problems can be phrased as hypergraph matching
problems, these theorems can be applied in several different areas. As one application, we
prove an approximate version of a generalization of a conjecture of Erdős about Steiner
systems.

Perhaps one of the most obvious ways to construct a k-uniform hypergraph on n
vertices containing no copies of a fixed k-uniform hypergraph F , but preferably many
edges, is the F-removal process. Starting with a complete k-uniform hypergraph on n
vertices, this iterative process proceeds as follows. In every iteration, all edges of a copy
of F chosen uniformly at random among all remaining copies are removed and once no
copies of F remain, the process terminates. While this process, which corresponds to
the random greedy hypergraph matching process in an auxiliary hypergraph, is easy to
formulate, proving that asymptotic runtime bounds with the correct order of magnitude
hold with high probability is challenging. So far, ignoring the cases where F has at most
one edge, such proofs were only available for one choice of F , namely when F is a triangle.
We extend this by proving such bounds whenever F comes from a large natural class of
hypergraphs. As this class in particular includes all complete uniform hypergraphs, this
confirms the major folklore conjecture in the area in a very strong form.
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Zusammenfassung

Der Random Greedy Hypergraph Matching Process ist der Zufallsprozess, der bei gegebe-
nem Hypergraphen H iterativ die Kanten eines Matchings wie folgt auswählt. In jeder
Iteration wird eine Kante gleichverteilt zufällig unter all den Kanten von H ausgewählt,
die keine der zuvor ausgewählten Kanten schneiden. Falls keine solchen Kanten existie-
ren, so terminiert der Prozess. Wir analysieren das Verhalten einer Variante und eines
Spezialfalls dieses Prozesses.

Bei der betrachteten Variante ist zu Beginn eine Familie verbotener Kantenmengen
gegeben, die keine Teilmengen des konstruierten Matchings sein dürfen. Kanten werden
dann nicht unter allen Kanten ausgewählt, die keine der zuvor ausgewählten Kanten
schneiden, sondern nur unter denen, die zusätzlich keine verbotene Kantenmenge mit zuvor
ausgewählten Kanten bilden. Wir bezeichnen diese Variante als Conflict-Free Matching
Process. Aufbauend auf einer Analyse dieses Prozesses bestimmen wir Bedingungen für
den Hypergraphen H und die Familie verbotener Kantenmengen, die es uns erlauben zu
garantieren, dass der Prozess mit hoher Wahrscheinlichkeit ein Matching generiert, das
bis auf einen kleinen Anteil alle Ecken von H überdeckt. Dies erlaubt es uns allgemeine
Sätze zu formulieren, die Situationen beschreiben, in denen fast perfekte Matchings mit
pseudozufälligen Eigenschaften existieren, die zusätzlich gegebene Kantenmengen als
Teilmengen vermeiden. Da sich viele kombinatorische Probleme als Matchingprobleme in
Hypergraphen beschreiben lassen, können diese Sätze in vielen verschiedenen Teilgebieten
angewendet werden. Als eine Anwendung zeigen wir eine approximative Version einer
Verallgemeinerung einer Vermutung von Erdős über Blockpläne.

Vielleicht eines der offensichtlichsten Verfahren für die Konstruktion k-uniformer Hy-
pergraphen auf n Ecken, die keine Kopien eines festen k-uniformen Hypergraphen F , aber
möglichst viele Kanten enthalten, ist der als F-Removal Process bezeichnete Zufallspro-
zess. Beginnend mit einem vollständigen k-uniformen Hypergraphen auf n Ecken verfährt
dieser iterative Prozess wie folgt. In jeder Iteration werden alle Kanten einer gleichverteilt
zufällig unter allen verbleibenden Kopien von F ausgewählten Kopie entfernt. Sobald
keine Kopien von F verbleiben, terminiert der Prozess. Dieser Prozess, der dem Random
Greedy Hypergraph Matching Process in einem Hilfshypergraphen entspricht, ist einfach
zu formulieren, es ist aber eine Herausforderung zu zeigen, dass asymptotische Laufzeit-
schranken der richtigen Größenordnung mit hoher Wahrscheinlichkeit gelten. Abgesehen
von den Fällen, bei denen F höchstens eine Kante hat, gab es solche Beweise bis jetzt
nur für eine Wahl von F , nämlich nur, falls F ein Dreieck ist. Als Erweiterung dessen
zeigen wir solche Schranken für alle Fälle bei denen F Teil einer großen, natürlichen
Klasse von Hypergraphen ist. Da diese Klasse insbesondere alle vollständigen uniformen
Hypergraphen umfasst, bestätigt dies eine zentrale Vermutung in diesem Forschungsgebiet
auf sehr allgemeine Weise.
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Chapter 1

Overview

1.1 Introduction

1.1.1 Hypergraph matchings

A hypergraph H consists of a finite set V together with a set E of subsets of V . The set V
is the vertex set and the set E the edge set of H. The elements of V are the vertices and
the elements of E are the edges of H. We use V (H) to denote the vertex set and E(H)
to denote the edge set of H. For k ≥ 1, the hypergraph H is k-uniform if all edges of H
are k-sets, that is have size k, and H is uniform if H is k-uniform for some k. A k-graph
is a k-uniform hypergraph and a graph is a 2-graph. A matching in H is a set M of
disjoint edges of H. The matching M covers a vertex v if there exists an edge e ∈ M
with v ∈ e and M is a perfect matching in H if M covers every vertex of H.

Suppose that given a hypergraph H and an integer m, the goal is to determine whether
there exists a matching in H that has size at least m. If inputs are considered where H is
a graph, then this is a computationally and structurally well understood problem. Indeed,
there exist several polynomial-time algorithms for this problem as well as closely related
variations, see for example [102], and several statements characterizing the structure of
matchings in H are available, see for example [87]. However, the more general variant of
this problem where the input hypergraphs are not necessarily 2-uniform appears to be
more challenging. Restricting the inputs to certain 3-graphs yields one of Karp’s 21 NP-
complete problems [67] and there are several famous open conjectures concerning related
questions, with important examples including the “Erdős Matching Conjecture” [29] and
“Ryser’s Conjecture” [100]. For recent progress and further open problems concerning
matchings, see for example [38,54,116].

One reason why hypergraph matchings have been extensively studied, see for in-
stance [70], is that many combinatorial problems can be phrased as hypergraph matching
problems in the sense that many problems correspond to asking whether there exists
a matching with certain properties in a specific hypergraph, see for example [64] for a
survey with a focus on coloring problems. Another important class of such problems
that play a central role for this thesis are packing and decomposition problems, see for
example [51], where the general situation is as follows. Suppose that we are given two
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2 CHAPTER 1. OVERVIEW

hypergraphs H and F and that the goal is to find a (large) F-packing in H, that is a
collection F of edge-disjoint copies of F in H. Here, we say that two hypergraphs A
and B are edge-disjoint if their edge sets are disjoint, we say that a hypergraph F ′ is a
copy of F if there exists a bijection β : V (F)→ V (F ′) with β(e) ∈ E(F ′) for all e ∈ E(F)
and β−1(e′) ∈ E(F) for all e′ ∈ E(F ′) and we say that a hypergraph F ′ is a hypergraph
in H if F ′ is a subgraph of H, that is if V (F ′) ⊆ V (H) and E(F ′) ⊆ E(H) hold (we use
the term subgraph here even if the hypergraphs we consider are not graphs). To see that
such packing problems indeed can be phrased as hypergraph matching problems, consider
the auxiliary hypergraph H∗ with V (H∗) = E(H) whose edges are the edge sets of copies
of F in H. Then, collections of edge-disjoint copies of F in H precisely correspond to
matchings in H∗. A collection of edge-disjoint copies of F in H that corresponds to a
perfect matching is called a decomposition of H as it partitions the edge set of H into
edge sets of copies of F .

The research in this thesis focuses on ways to obtain matchings or specifically packings,
see Chapters 2 and 3. Chapter 2 closely corresponds to [46] and Chapter 3 closely corre-
sponds to [61]. Furthermore, several parts and paragraphs in this overview (Chapter 1)
are taken from [46] or [61].

1.1.2 Constructing hypergraph matchings

When the goal is to find a large matching, or more specifically a large packing, employing
an iterative construction that randomly enlarges a collection of edges or copies often
turns out to be a successful approach, see for example [2, 9, 66, 94, 96, 98, 105, 109, 113]
or, for a more algorithmic overview, [82]. In fact, given suitable natural conditions,
such constructions often yield matchings that are almost-perfect in the sense that when
considering the hypergraph where a large matching is supposed to be constructed, the
number of vertices that are not covered by the matching is only a small fraction of the
number of all vertices. In the packing setting, collections of copies that correspond to
almost-perfect matchings are called approximate decompositions. In some cases, such
approximate constructions can be augmented to obtain non-approximate versions, that is
perfect matchings in the case of matchings, using an approach known as absorption. Such
techniques play a crucial role in several types of constructions. For examples and further
discussion, we refer the reader to the surveys [76,77,97,114,115] mentioned in [70].

The goal of this thesis is to answer open questions regarding a variation and a special
case of the perhaps most obvious way to implement such a random iterative construction
that may possibly construct an almost-perfect matching, namely the random greedy
hypergraph matching process. Given a hypergraph H, this random process iteratively
chooses edges of a matching as follows. In every iteration, an edge is chosen uniformly at
random among all edges e ∈ E(H) that do not intersect with a previously chosen edge.
If no such edges exist, then the process terminates. By construction, when the process
terminates, the set M of chosen edges is a matching in H which is maximal with respect
to inclusion in the sense that there is no matching M′ in H such that M is a proper
subset of M′. Many variants and special cases of this process have been investigated in
the past, see for example [9, 14,53,98,105,113].
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Historically, these processes were studied in great detail only after the introduction of a
slightly different such random tool, the so called Rödl nibble, which had a significant impact
on subsequent research in the area. The type of problem that led to the introduction
of this technique dates back to one of the oldest theorems in combinatorics proved by
Kirkman [74] concerning Steiner systems. For m ≥ 1 and s > t ≥ 1, a partial (m, s, t)-
Steiner system is a collection S of s-sets S ⊆ [m] := {1, . . . ,m} such that for every t-
set T ⊆ [m], there exists at most one s-set S ∈ S with T ⊆ S. In this context, the elements
of [m] are often referred to as points. Note that, trivially, |S| ≤

(
m
t

)
/
(
s
t

)
. The collection S

is an (m, s, t)-Steiner system if every t-set of points is a subset of an s-set S ∈ S.
Occasionally, we omit the parameters m, s and t and refer to a partial (m, s, t)-Steiner
system simply as a partial Steiner system and similarly for (m, s, t)-Steiner systems.

Every partial (m, s, t)-Steiner system S corresponds to a K
(t)
s -packing in K

(t)
m , where

for n ≥ 0 and k ≥ 1, we use K
(k)
n to denote a fixed complete k-graph on n vertices, that

is a k-graph where every k-set of vertices is an edge. Indeed, the family F of complete t-

graphs whose vertex sets are the s-sets in S is a K
(t)
s -packing in the complete t-graph

with vertex set [m] and thus also corresponds to a packing in K
(t)
m . Hence, asking for

(partial) (m, s, t)-Steiner systems is again a hypergraph matching problem.
A partial Steiner triple system is simply a partial (m, 3, 2)-Steiner system and similarly,

a Steiner triple system is an (m, 3, 2)-Steiner system. In 1847, Kirkman [74] proved that
for this case, that is when s = 3 and t = 2, there exists an (m, s, t)-Steiner system if and
only if m is congruent 1 or 3 modulo 6, which is an obvious necessary condition for the
existence.

For general parameters m > s > t ≥ 1, in 1963, Erdős and Hanani [31] conjectured
that approximate (m, s, t)-Steiner systems, that is partial (m, s, t)-Steiner systems S
with |S| ≥ (1 − o(1))

(
m
t

)
/
(
s
t

)
where the o(1) term is with respect to m → ∞, exist.

Introducing the aforementioned Rödl nibble method, this conjecture was proved in
a breakthrough by Rödl [96] in 1985. The key idea here is to show that a partial
Steiner system can be constructed by starting with an empty collection and iteratively
adding small collections of admissible sets obtained based on random choices. With high
probability, the random choices yield suitable collections such that the overall approach
constructs a sufficiently large partial Steiner system. It is the iterative addition of small
collections that can be thought of as “nibbles” that gives the method its name. The
impact of Rödl’s result and this proof method on combinatorics and beyond cannot be
overstated. To mention just two outstanding examples, the result of Rödl was a key
ingredient in the resolution of the “Existence conjecture” on combinatorial designs [69]
(also in [26, 50, 71]) that generalize Steiner systems and the proof method was used to
find the so-far largest gaps between primes [35].

In the years after Rödl’s success with such a nibble approach, there has been a growing
interest in the behavior and performance of the random greedy hypergraph matching
process for obtaining large matchings. Notably, Spencer [105] as well as Rödl and
Thoma [98] proved that such processes can also produce asymptotically optimal results
with high probability.
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1.1.3 Conflict-free hypergraph matchings

Concerning Steiner systems, further research was inspired by the following concept. The
girth of a partial Steiner triple system S is the smallest integer g ≥ 4 such that some g-set
of points contains at least g − 2 elements S ∈ S as subsets if such an integer exists and
infinite otherwise. Equivalently, the girth of S is the smallest integer g ≥ 4 such that
some (g−2)-set S ′ ⊆ S spans at most g points in the sense that the union of the elements
of S ′ has size at most g if such an integer exists and infinite otherwise. Since by definition
no two sets of a partial Steiner triple system can share two points, the girth of a partial
Steiner triple system is at least 6. In 1973, Erdős [30] conjectured that for all g ≥ 4 and
all m that are congruent 1 or 3 modulo 6 and sufficiently large in terms of g, there exist
not only Steiner triple systems spanning m points as proved by Kirkman [74], but even
Steiner triple systems spanning m points with girth at least g. An approximate version
of this statement where one asks for large partial Steiner triple systems with high girth
was recently proved independently by Bohman and Warnke [18] as well as Glock, Kühn,
Lo and Osthus [49] by analyzing a random greedy process. Subsequently, combining
such an approach with absorption techniques, Kwan, Sah, Sawhney and Simkin [80] fully
resolved the conjecture. Relying on the correspondence between Steiner systems and
matchings in certain hypergraphs, the random greedy hypergraph matching process can
be used to construct large Steiner systems and all three papers employ a variation of this
process to obtain an approximate Steiner system. More specifically, a random greedy
process is considered where the next matching edge is chosen uniformly at random not
among all edges that do not intersect with previously selected edges, but among only
those that also span a sufficient number of points with previously selected edges. The
key observation here is that the restriction to viable matching edges dominates compared
to the restriction to edges that avoid the creation of subfamilies that do not span a
sufficient number of points, which causes the random greedy process to essentially behave
as the ordinary random greedy hypergraph matching process. While such an approach
for building Steiner systems as desired seems natural and has been suggested for instance
in [75] (see also [28,83]), the high-girth condition entails considerable technical difficulties
in analyzing the process.

It is natural to ask for the existence of (m, s, t)-Steiner systems that satisfy an analogous
high-girth condition for other values of s and t. Indeed, the existence of such Steiner
systems was conjectured by Füredi and Ruszinkó [42], Glock, Kühn, Lo and Osthus [49]
as well as Keevash and Long [72]. It were such questions that inspired the research
presented in Chapter 2. Chapter 2 closely resembles [46] and specifically, we obtain the
following statement.

Theorem 1.1.1. For all s > t ≥ 2 and ℓ ≥ 0, there exist ε > 0 and m0 such that for
all m ≥ m0, there exists a partial (m, s, t)-Steiner system S of size (1 −m−ε)

(
m
t

)
/
(
s
t

)
such that any subset of S of size j, where 2 ≤ j ≤ ℓ, spans more than (s− t)j + t points.

We remark that the case where s = t+1 and ℓ = 3 was already proved by Sidorenko [104]
using an algebraic construction and that very recently, after the research Chapter 2 is
based on was published, Delcourt and Postle [25] resolved the conjecture for general
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high-girth (m, s, t)-Steiner systems by again combining iterative techniques for obtaining
approximate constructions with absorption. For our proof, instead of analyzing a modified
packing process specifically for Steiner systems that avoids the forbidden configurations,
we consider a general random greedy hypergraph matching process that avoids certain
edge sets as subsets of the constructed matching. This enables us to obtain general
conditions for such edge sets that still allow the process to generate an almost perfect
matching with high probability and in turn leads us to more general hypergraph matching
theorems, see Theorem 1.1.2 as well as the variations and extensions in Section 2.5.
Theorem 1.1.1 is then a consequence of one of these theorems which are however general
enough to have further applications beyond Steiner systems, see [6, 11, 47, 52, 63, 81]
and [24] which builds on a result from [47]. For a more detailed discussion of directions
for applications, see also Section 2.3.

Let us discuss our more general setting in detail. Overall, the shift from Steiner systems
to general hypergraph matchings is similar to how shortly after Rödl’s theorem [96], Frankl
and Rödl [37] and Pippenger (see [94]) greatly generalized his result. Their fundamental
observation was that Rödl’s result is “just” the tip of the iceberg of a much more general
phenomenon: every large regular hypergraph with small 2-degrees has a matching M
which covers almost all vertices. Here, a hypergraph H is d-regular if all vertices v ∈ V (H)
are contained in exactly d edges, H is regular if H is d-regular for some integer d and the
2-degree of distinct vertices u, v ∈ V (H) is the number of edges e ∈ E(H) with u, v ∈ e.
Formally, in the following discussion, consider a d-regular k-graph H, where k is fixed and
asymptotics are with respect to d→∞. If the maximum 2-degree of H is small in the
sense that for all distinct u, v ∈ V (H), there are at most o(d) edges e ∈ E(H) with u, v ∈ e,
then, the aforementioned results state that H has an almost-perfect matching, that is
a matching which covers all but o(|V (H)|) vertices. To see how this generalizes Rödl’s
theorem, consider parameters m > s > t ≥ 1 and, following the correspondences between
Steiner systems and packings as well as packings and matchings, construct a hypergraph
H as follows: the vertices of H are all t-sets T ⊆ [m], and for each s-set S ⊆ [m], we create
an edge of H which comprises all t-sets T ⊆ S. Then, matchings in H correspond exactly
to partial (m, s, t)-Steiner systems of the same size, and an almost-perfect matching in H
yields an approximate (m, s, t)-Steiner system. It is straightforward to check that H is
k-uniform and d-regular with k =

(
s
t

)
and d =

(
m−t
s−t
)
, and all 2-degrees are o(d). Hence,

the above result on matchings in hypergraphs indeed implies Rödl’s theorem.
We now explain how one can capture the high-girth condition (and many other desired

features) in the hypergraph matching setting. For simplicity in the discussion, we consider
the case of Steiner triple systems. Hence, the vertices of H are the 2-sets T ⊆ [m], and
the edges of H correspond to the 3-sets S ⊆ [m] in the sense that an edge e corresponding
to a set S consists of the three 2-sets that are subsets of S. Now, suppose that we are
given an ℓ-set C of 3-sets that spans at most ℓ+ 2 points. This means that if all 3-sets
from C were contained in a partial Steiner triple system, then this system would have
girth at most ℓ+ 2. Hence, for the system to have large girth, say at least g > ℓ+ 2, we
have to make sure that not all 3-sets from C are contained in the system. Since 3-sets
correspond to edges in H, this gives us a set of edges of H which conflict in the sense
that we want to find a matching which does not contain the set as a subset. We call such
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sets of conflicting edges conflicts. One can form a collection C consisting of all conflicts,
that is, all those sets of edges that correspond to sets of 3-sets of points that span too
few vertices. Then, the aim is to find a matching M in H such that no conflict C ∈ C is
a subset of M. It will be convenient to think of C as a hypergraph with vertex set E(H)
since elements of C are sets of edges. We do not assume C to be uniform. This reflects
the fact that the girth condition can be violated by sets of edges of different size. We
write C(j) to denote the subgraph of C which consists of all those conflicts in C that have
size j.

Generally, given a hypergraph C with V (C) = E(H), we say that an edge set E ⊆ E(H)
is C-free if no edge of C is a subset of E. One major goal of this work is to provide general
conditions on C that allow us to guarantee that our random greedy algorithm generates
a C-free almost-perfect matching in H with high probability and that are satisfied in the
Steiner system case. Note that a priori it is perhaps not even clear that this is sensible.
For instance, the conflicts arising in the Steiner system application are inherently local in
the sense that they forbid having too many 3-sets on small sets of points. However, when
transferring the problem to the hypergraph matching setting, the information about
points is lost in the sense that the point set of the Steiner system has no counterpart in
the matching description. Moreover, in the case of high-girth Steiner triple systems, the
proofs in [18, 49] extensively use the structural properties of the forbidden configurations
of 3-sets. One of the key insights of the present work is that one can indeed formulate
sensible general conditions on C which guarantee existence of an almost-perfect conflict-
free, that is C-free, matching. Not only are these conditions natural as evidenced by the
fact that they are satisfied in the many applications referenced above and discussed in
Section 2.5, but they are also necessary in the sense that Theorem 1.1.2 below would be
false in general if one condition is omitted entirely. For more details, see Section 2.4.

We now state our main theorem. We remark that, although it captures the most
important features, in Section 2.5 we state several variations which might be applicable
in situations where the following is not. These variations include a version where C only
needs to satisfy slightly weaker conditions and where dependencies of relevant parameters
are stated more explicitly (see Theorem 2.5.1). For i ≥ 0, we use

∆i(H) := max
U⊆V (H) : |U |=i

|{e ∈ E(H) : U ⊆ e}|

to denote the maximum i-degree of H and for e ∈ E(H), we define

N
(2)
C (e) := {f ∈ E(H) : {e, f} ∈ C}.

Theorem 1.1.2. For all k, ℓ ≥ 2, there exists ε0 > 0 such that for all 0 < ε < ε0, there
exists d0 such that the following holds for all d ≥ d0. Let H be a k-graph with |V (H)| ≤
exp(dε

3
) such that every vertex is contained in (1± d−ε)d edges and ∆2(H) ≤ d1−ε.

Let C be a hypergraph with V (C) = E(H) such that every C ∈ E(C) satisfies 2 ≤ |C| ≤ ℓ,
and the following conditions hold.

(i) ∆1(C(j)) ≤ ℓdj−1 for all 2 ≤ j ≤ ℓ;
(ii) ∆j′(C(j)) ≤ dj−j

′−ε for all 2 ≤ j′ < j ≤ ℓ;
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(iii) |{f ∈ N (2)
C (e) : v ∈ f}| ≤ d1−ε for all e ∈ E(H) and v ∈ V (H);

(iv) |N (2)
C (e) ∩N (2)

C (f)| ≤ d1−ε for all disjoint e, f ∈ H.
Then, there exists a C-free matching M in H which covers all but d−ε

3 |V (H)| vertices
of H.

Note that if there are no conflicts of size 2, the last two conditions are irrelevant and
we are only left with simple degree conditions for H and C. In addition, when applying
Theorem 1.1.2 with some given conflict hypergraph C one may disregard conflicts that
are not matchings and conflicts that contain at least one other conflict as a subset. In
fact, it turns our that omitting such redundant conflicts is sometimes crucial to meet the
degree conditions required in Theorem 1.1.2 (see our application to high-girth Steiner
systems in Section 2.11).

Our strategy in proving Theorem 1.1.2 is to construct the matching M with a random
greedy algorithm, which we call the conflict-free matching process. The process itself is as
simple as it could be and is again a variation of the random greedy hypergraph matching
process. Starting with an empty matching, the process iteratively adds an edge chosen
uniformly at random among all edges that are available in the sense that adding them
results in a matching which is still conflict-free. The process terminates when no such
edges remain. The final matching is conflict-free by construction, so the crucial task is to
show that it is as large as desired, which is to say that the process does not terminate
too early (with high probability).

1.1.4 The hypergraph removal process

The special case of the random greedy hypergraph matchings process where packings are
constructed by considering an appropriate auxiliary hypergraph has been of particular
interest also from a different point of view. Instead of considering the collection of edge-
disjoint copies of a hypergraph F in another hypergraph H that the process iteratively
extends, we may also consider what remains of the hypergraph H after removing these
copies in the sense that we consider the hypergraph obtained from H by removing all
edges that are edges of a copy in the collection. From this point of view, the packing
process starts with H and iteratively removes all edges of a copy of F chosen uniformly
at random among all remaining copies of F until no copies are left. For this reason, this
process may also be called the F-removal process starting at H. Usually, this process
is considered for a k-graph F and a complete k-graph H. In this case, we refer to the
process as the F-removal process on n vertices where n refers to the number of vertices
of H.

Note that, by definition of the process, there are no copies of F in the eventually
generated hypergraph (provided that F has at least one edge). Such hypergraphs, that
is hypergraphs without copies of a specific hypergraph F , are often referred to as F-free
and we also adopt this terminology for our discussion of the hypergraph removal process.
It will be clear from the context when we use the term in this sense and when we use
it in the sense of a conflict-free hypergraph as defined above for conflict-free matchings.
The fact that the F-removal process generates F-free graphs together with the random
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nature of the process makes it a possible candidate for a construction that might be
useful when investigating problems such as the following. By Ramsey’s Theorem [95], for
all s, t ≥ 1, there exists an integer R(s, t) such that for all graphs G on at least R(s, t)

vertices, either there is a copy of Ks, where for n ≥ 0 we set Kn := K
(2)
n , in G or there is

a copy of Kt in the complement of G, that is the graph with vertex set V (G) where a 2-set
of vertices is an edge if and only if it is not an edge of G. Note that a set of vertices U of
a graph G is the vertex set of a complete subgraph of the complement of G if and only
if U is an independent set in G, that is if no two vertices u, v ∈ U form an edge in the
sense that {u, v} ∈ E(G). Suppose that we wish to obtain lower bounds for R(s, t), more
specifically, suppose that s ≥ 3 is fixed and that we wish to find a function r : N→ N such
that r(t) ≤ R(s, t) for sufficiently large t. If for some strictly increasing function α : N→ N
and all sufficiently large integers n we had a construction of a Ks-free graph Gn on n
vertices such that the independence number of Gn, that is the size of a largest independent
set in Gn, is at most α(n), then setting r(t) := max{n ∈ N : α(n) ≤ t} would yield a
function as desired.

The graphs generated by the Ks-removal process on n vertices are by construction Ks-
free and it appears reasonable to expect that for large n, the independence number of the
generated graphs behaves similar to the independence number of the binomial random
graph on n vertices, that is the random graph where every 2-set of vertices is an edge
independently with some probability p. This is a well-studied random graph construction,
see for example [20, 40, 58, 107] and hence there is a natural guess for a corresponding
function α and hence a lower bound r as above. Motivated by such considerations
regarding lower bounds for R(s, t), in 1990, as mentioned in [34] and [19], Bollobás and
Erdős suggested studying the F -removal process on n vertices as well as another random
hypergraph process that generates F-free hypergraphs, the F-free process on n vertices
which, given a k-graph F , starts with a hypergraph on n vertices without edges and
iteratively proceeds as follows. Among all k-sets of vertices that were not previously
added and that do not form the edge set of a copy of F with previously added edges, a
vertex set is chosen uniformly at random and added as an edge. The process terminates
when no such vertex sets remain. Similarly to how the F-removal process is a special
case of the random greedy hypergraph matching process, the F-free process is a special
case of the random greedy independent set process. Indeed, for a k-graph F , consider an

auxiliary hypergraph H∗ with vertex set E(K
(k)
n ) where the edges are the edge sets of

copies of F in K
(k)
n . Then, the F-free process on n vertices corresponds to the random

greedy process that constructs an independent set in H∗ iteratively as follows. Starting
with an empty set, a vertex chosen uniformly at random among all vertices that do not
form an edge with previously added vertices is added until no such vertices remain.

Particularly concerning the F-free process, a careful analysis indeed turned out to
be a successful approach for obtaining lower bounds for R(s, t), see [12, 15, 16, 34, 112].
However, with growing interest in the behavior of such random processes, both have
been studied also independently of such questions related to Ramsey’s theorem, see for
example [8, 9, 14,21,32,43,53,78,90–93,98,99,105,110,111,113].

While random processes such as the F-free and F-removal process on n vertices are
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easy to formulate, in many cases a precise analysis is challenging. The central questions
often concern structural properties that typically, that is, with high probability (with
probability tending to 1 as n→∞), hold for the objects generated at termination. In
particular, concerning the F-free and F-removal process, one may ask for asymptotic
estimates for the number of edges or equivalently the number of iterations of the algorithm.
For the F -free process on n vertices, we use Fn(F) to denote the (random) final number
of edges present after termination and for the F-removal process, we use Rn(F).

For the special case of the K3-free process, that is, where F is a triangle, Fiz Pontiveros,
Griffiths and Morris [34] and independently Bohman and Keevash [16] famously proved
that typically Fn(K3) = ( 1

2
√
2
± o(1))(log n)1/2n3/2 (after Bohman determined the correct

order of magnitude [12], answering a question of Spencer [106]) and through their analysis
also obtained new lower bounds for R(3, t). For the general case, again with an underlying
analysis that for several cases yields the best known lower bounds for R(s, t), a lower
bound for Fn(F) that holds with high probability is available whenever F comes from
a large class of graphs or hypergraphs [8, 15]. At least for graphs, this lower bound is
conjectured to be tight up to constant factors [15], however in general, the best upper
bounds that are known to hold with high probability differ from this lower bound by
logarithmic factors [78]. Estimates for Fn(F) that are tight up to constant factors exist
for a few specific choices of F , see [16,34,91–93,111,112].

For the F -removal process, already getting close to the order of magnitude of Rn(K3)
turned out to be challenging. After Spencer [105] as well as Rödl and Thoma [98] proved
that Rn(K3) = o(n2) typically holds, Grable [53] improved this to Rn(K3) ≤ n11/6.
Following these attempts to determine Rn(K3), Spencer conjectured that typically
Rn(K3) = n3/2±o(1) holds and offered $200 for a resolution [53,113]. The breakthrough
here happened when Bohman, Frieze and Lubetzky proved Spencer’s conjecture [14].
Beyond the triangle, so far no results were known that give bounds that are somewhat
close to the correct order of magnitude of Rn(F) for any other non-trivial F ; in fact,
obtaining asymptotic estimates for Rn(K4) was considered a central open problem in the
area. (One reason for why this is a difficult problem may be that the technical complexity
of the approach taken by Bohman, Frieze and Lubetzky to settle the triangle case seems to
explode even for F = K4.) Following the same heuristic as for the triangle, Bennett and

Bohman [9] state the following more general “folklore” conjecture predicting Rn(K
(k)
ℓ ).

Conjecture 1.1.3 ([9, Conjecture 1.2]). Let 2 ≤ k < ℓ. Then, for all 0 < ε < 1, there
exists n0 ≥ 0 such that for all n ≥ n0, with high probability,

n
k− ℓ−k

(ℓk)−1
−ε
≤ Rn(K

(k)
ℓ ) ≤ n

k− ℓ−k
(ℓk)−1

+ε

.

Our main result of Chapter 3 confirms Conjecture 1.1.3. Chapter 3 closely resembles [61]
and in fact, we prove a significantly stronger result. For a k-graph F , using v(F) to
denote the number of vertices of F and e(F) to denote the number of edges of F ,
the k-density of F is ρF := (e(F) − 1)/(v(F) − k) if v(F) ≥ k + 1. As in [15], we say
that F is strictly k-balanced if F has at least three edges and satisfies ρG < ρF for all
proper subgraphs G of F that have at least two edges. Here we say that a subgraph G
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of F if proper if G ̸= F . Note that K
(k)
ℓ is strictly k-balanced for all 2 ≤ k < ℓ. The

following is a corollary of our main result (Theorem 1.1.5).

Theorem 1.1.4. Let k ≥ 2 and consider a strictly k-balanced k-graph F with k-density ρ.
Then, for all ε > 0, there exists n0 ≥ 0 such that for all n ≥ n0, with probability at
least 1− exp(−(log n)5/4), we have

nk−1/ρ−ε ≤ Rn(F) ≤ nk−1/ρ+ε.

Observe that complete hypergraphs exhibit a very high degree of symmetry while most
strictly k-balanced hypergraphs have locally and globally essentially no symmetries. This
complicates the analysis and requires us to dedicate substantial parts of the proof to
dealing with the extension from complete hypergraphs to general strictly k-balanced
hypergraphs.

Furthermore, our analysis allows starting at any pseudorandom hypergraph, which
may be a useful scenario for applications. For a k-graph H, we use R(H,F) to denote
the final number of edges of the F-removal process starting at H.

To formally describe the pseudorandomness we require for our theorem, we introduce
the following definitions. A k-uniform template or k-template is a pair (A, I) where A is
a k-graph and where I ⊆ V (A). The density ρA,I of (A, I) is (e(A)−e(A[I]))/(v(A)−|I|)
if V (A) ̸= I and 0 otherwise where we use A[I] to denote the subgraph of A induced by I,
that is the subgraph with vertex set I and edge set {e ∈ E(A) : e ⊆ I}. A template (B, J)
is a subtemplate of (A, I) if B ⊆ A and J = I. We write (B, J) ⊆ (A, I) to mean that (B, J)
is a subtemplate of (A, I). The template (A, I) is strictly balanced if ρB,I < ρA,I holds for
all (B, I) ⊆ (A, I) with VB ̸= I and B ̸= A. Note that for a k-graph A with v(A) ≥ k+ 1,
the k-density of A is the density of the templates (A, e) with e ∈ E(A) and that if A
has at least three edges, then A is strictly k-balanced if and only if (A, e) is strictly
balanced for all e ∈ A. For 0 < ε, δ < 1 and ρ ≥ 1/k, we say that a k-graph H
on n vertices with ϑnk/k! edges is (ε, δ, ρ)-pseudorandom if for all strictly balanced k-
templates (A, I) with v(A) ≤ 1/ε and all injections ψ : I → V (H), the number Φ of
injections φ : V (A)→ V (H) with φ|I = ψ and φ(e) ∈ E(H) for all e ∈ E(A) \ E(A[I])
satisfies the properties (P1)–(P4) below. Here, we set φ̂ := nv(A)−v(A[I])ϑe(A)−e(A[I])

and ζ := nδ/(nϑρ)1/2.

(P1) If ρA,I ≤ ρ, then Φ = (1± ζ)φ̂;

(P2) If φ̂ ≥ ζ−δ2/3 , then Φ = (1± ζδ)φ̂;

(P3) If 1 ≤ φ̂ ≤ ζ−δ2/3 , then Φ = (1± (log n)3(v(A)−v(A[I]))/2φ̂−δ1/2)φ̂.

(P4) If φ̂ ≤ 1, then Φ ≤ (log n)3(v(A)−v(A[I]))/2.

We remark that for all k ≥ 2 and 0 < ε, δ < 1 and ρ ≥ 1/k where δ is sufficiently small in
terms of 1/k and ε, the binomial random k-graph on n vertices where all vertex sets of

size k are edges independently with probability p ≥ n−1/ρ+δ1/2 is (ε, δ, ρ)-pseudorandom
with high probability. Indeed, in this setting Chernoff’s inequality (see for example
Lemma 3.12.5) guarantees ϑ ≥ n−1/ρ+3δ with high probability, and then sufficient lower
tail bounds follow from Janson’s inequality (see [57, Theorem 1]) and for the upper tails,
one may apply [59, Corollary 4.1].
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We are now ready to state our main theorem regarding the removal process.

Theorem 1.1.5. Let k ≥ 2 and consider a strictly k-balanced k-graph F with k-density ρ.
Then, for all ε > 0, there exists δ0 > 0 such that for all 0 < δ < δ0, there exists n0 ≥ 0
such that for all n ≥ n0, the following holds. If H is a (ε20, δ, ρ)-pseudorandom k-graph
on n vertices with e(H) ≥ nk−1/ρ+ε5 , then, with probability at least 1− exp(−(log n)5/4),
we have

nk−1/ρ−ε ≤ R(H,F) ≤ nk−1/ρ+ε.

We prove the upper bound in Theorem 1.1.5 in a slightly more general setting in the
sense that we only require a weaker notion of balancedness. We say that a k-graph F
is k-balanced if F has at least one edge and satisfies ρG ≤ ρH for all subgraphs G of H on
at least k + 1 vertices.

Theorem 1.1.6. Let k ≥ 2 and consider a k-balanced k-graph F with k-density ρ. Then,
for all ε > 0, there exists δ0 > 0 such that for all 0 < δ < δ0, there exists n0 ≥ 0 such
that for all n ≥ n0, the following holds. If H is a (ε20, δ, ρ)-pseudorandom k-graph on n
vertices with e(H) ≥ nk−1/ρ+ε5, then, with probability at least 1− exp(−(log n)5/4), we
have

R(H,F) ≤ nk−1/ρ+ε.

As part of our proof for Theorem 1.1.5, we obtain another theorem which describes
the behavior of the F-removal process starting at H for comparatively sparse H which
complements Theorem 1.1.5. To formally describe the slightly different setup in the
sparse setting, we introduce the following definitions. For s, c ≥ 0, we say that a k-
graph H with ϑnk/k! edges is (s, c)-bounded if for all strictly balanced templates (A, I)
with v(A) ≤ s, all injections ψ : I → V (H) and φ̂ := nv(A)−|I|ϑe(A)−e(A[I]), the number
of injections φ : V (A)→ V (H) with φ|I = ψ and φ(e) ∈ H for all e ∈ A with e ̸⊆ I is at
most c ·max{1, φ̂}. We say that H is F-populated if all edges of H are edges of at least
two copies of F in H.

Theorem 1.1.7. Let k ≥ 2 and suppose that F is a strictly k-balanced k-graph on m
vertices with k-density ρ. For all ε > 0, there exists n0 such that for all n ≥ n0 and
all (4m,nε

4
)-bounded and F-populated k-graphs H on n vertices with nk−1/ρ−ε4 ≤ e(H) ≤

nk−1/ρ+ε4, with probability at least 1− exp(−n1/4), we have

R(H,F) ≥ nk−1/ρ−ε.

Recall that by definition, F is strictly k-balanced if and only if F has at least three
edges and satisfies ρG < ρF for all proper subgraphs G of F that have at least two edges.
Hence, Theorems 1.1.5 and 1.1.7 do not cover the case where e(F) = 2, but it is possible
to also obtain a similar statement for this case. If F is a matching of size 2, that is
if E(F) is a matching of size 2 and additionally has no isolated vertices, that is no vertices
that are not contained in an edge of F , then F has k-density 1/k, so in this case the
lower bounds in these theorems is always true (if we round down) and hence we ignore
this case. For the case where F has exactly two edges and no isolated vertices but is not
a matching, we obtain the following two theorems, where for 1 ≤ k′ ≤ k, we say that H
is k′-populated if all sets U ⊆ V (H) with |U | = k′ are subsets of at least two edges of H.
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Theorem 1.1.8. Let k ≥ 2 and consider a k-graph F with k-density ρ that is not a
matching, has exactly two edges and no isolated vertices. Then, for all ε > 0, there
exists δ0 > 0 such that for all 0 < δ < δ0, there exists n0 ≥ 0 such that for all n ≥ n0,
the following holds. If H is a (ε20, δ, ρ)-pseudorandom k-graph on n vertices with e(H) ≥
nk−1/ρ+ε5, then, with probability at least 1− exp(−(log n)5/4), we have

nk−1/ρ−ε ≤ R(H,F) ≤ nk−1/ρ+ε.

Theorem 1.1.9. Let k ≥ 2 and suppose that F is a k-graph with k-density ρ that is
not a matching, has exactly two edges and no isolated vertices. Let k′ := |e ∩ f | where e
and f denote the edges of F . For all ε > 0, there exists n0 such that for all n ≥ n0
and all (4m,nε

4
)-bounded and k′-populated k-graphs H on n vertices with nk−1/ρ−ε4 ≤

e(H) ≤ nk−1/ρ+ε4, with probability at least 1− exp(−n1/4), we have

R(H,F) ≥ nk−1/ρ−ε.

1.1.5 The history of the F-free and the F-removal process

It is interesting to compare the history of the analysis of the F-free and the F-removal
processes in detail. Modern research concerning the F-free process began in 1992 when
Ruciński and Wormald [99] answered a question of Erdős regarding the F-free process
where F is a star, that is a graph G where for some vertex v ∈ V (G), the edges of G are
the 2-sets {u, v} with u ∈ V (G) \ {v}. Concerning triangles, Spencer [106] conjectured
in 1995 that with high probability, the K3-free process terminates with Θ((log n)1/2n3/2)
edges. This is the behavior one would expect when assuming that edges present in a
hypergraph generated during the F -free process are essentially distributed as if they were
included independently with an appropriate probability. We discuss this heuristic in
more detail in Section 3.18.

The K3-free process as well as the variation of this process where not only triangles but
all cycles of odd length are forbidden was investigated by Erdős, Suen and Winkler [32].
Here, a cycle is a graph C such that there exists an ordering v1, . . . , vℓ of V (C) such that
the edges of G are the 2-sets {vi, vi+1} where 1 ≤ i ≤ ℓ with indices taken modulo ℓ and
then the length of C is ℓ. Their result yields an upper and a lower bound for Fn(K3) that
holds with high probability and these bounds are tight up to a log n factor. Bollobás
and Riordan [21] obtained analogous bounds for Fn(F) if F is a complete graph or
cycle on four vertices. In 2001, Osthus and Taraz [90] generalized these results to all
strictly 2-balanced graphs thus providing estimates for this large class of graphs that are
tight up to logarithmic factors.

Guided by similar intuition as above, for the K3-removal process, Spencer conjectured
that with high probability, this process also terminates with n3/2±o(1) edges (see [53,113]).
More generally, a special case of a conjecture of Alon, Kim and Spencer [2] about
hypergraph matchings predicts nk−1/ρF±o(1) as the expected value of Rn(F) where ρF
denotes the k-density of F . Concerning estimates available around 2001 however, the
situation for the F-removal process was very different compared to the F-free process.
Only upper bounds for Rn(F) that do not match the order of magnitude of Rn(F)
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were known, namely n11/6 for Rn(K3) due to Grable [53] and, as a consequence of a
result about the random greedy hypergraph matching process due to Wormald [113],
nk−1/(9e(F)2−9e(F)+3)+o(1) for the general case (where no attempt was made to optimize
the constant in the exponent). Intuitively, perhaps one reason that complicates the
analysis of the F-removal process compared to the F-free process is the fact that to
arrive at roughly n3/2 edges, the K3-free process needs to run for roughly n3/2 iterations
while the K3-removal process requires (1− o(1))n2/6 iterations.

It is worth mentioning that to obtain the general upper bound, Wormald [113] intro-
duced a new approach to this area known as differential equation method that relies on
closely following the evolution of carefully chosen key quantities throughout the process.
This technique turned out to be a very valuable for later improvements and the core
argumentations of our proofs in Chapters 2 and 3 resemble this method.

Using such an approach Bohman [12] was able to prove estimates for Fn(K3) that
are tight up to constant factors, thereby confirming the aforementioned conjecture of
Spencer. Shortly after this, Bohman and Keevash [15], again using similar techniques,
obtained new lower bounds for Fn(F) if F is a strictly 2-balanced graph and they
conjecture that these bounds are tight up to constant factors. In the following years,
these developments led to further progress for specific choices of F due to Picollelli [91–93]
as well as Warnke [111,112]. Eventually, by considering the random greedy independent
set algorithm in hypergraphs, Bohman and Bennett [8] extended the lower bound to the
hypergraph setting. Generalizing the results of Osthus and Taraz [90], upper bounds in
the hypergraph setting were obtained by Kühn, Osthus and Taylor [78].

In contrast, concerning the F -removal process, even with these new techniques available,
there were no improvements until 2015. Only using a refined version of the differential
equation method that exploits certain self-correcting behavior of key quantities to
improve the precision of the analysis, Bohman, Frieze and Lubetzky [14] were able
to confirm Spencer’s conjecture for the K3-removal process and show that with high
probability, Rn(K3) = n3/2±o(1). This refined version is known as critical interval method,
for other examples, see [13,16,17,34,56,108]. Using such an approach often requires an
even more careful choice of key quantities to be able to rely on self-correcting behavior as
some quantities may disturb the behavior of others. Indeed, for their analysis Bohman,
Frieze and Lubetzky give explicit constructions of very specific substructures which
they count. These substructures and their explicit descriptions are tailored towards the
triangle case and it remained unclear how to generalize these structures that are already
complicated for the triangle case.

Investigating again the random greedy hypergraph matching process, but without
similarly sophisticated substructures, Bohman and Bennett [9] showed that with high
probability, Rn(F) ≤ nk−1/(2e(F)−2)+o(1). This upper bound improves on Wormald’s
previous result, and for hypergraph matchings takes the analysis to a natural barrier, but
still has not the correct order of magnitude; without the appropriate substructures, it
seems impossible to rely on self-correcting behavior to the same extent that was necessary
to determine the order of magnitude of Rn(K3).

In a landmark result Fiz Pontiveros, Griffiths and Morris [34] and independently
Bohman and Keevash [16] asymptotically determined the typically encountered final



14 CHAPTER 1. OVERVIEW

number of edges in the triangle-free process with the correct constant factor, that is, they
showed that typically, the final number of edges is ( 1

2
√
2
±o(1))(log n)1/2n3/2. Furthermore,

together with bounds for the independence number of the eventually generated graph,
for large t, this yields an improved lower bound for the Ramsey numbers R(3, t). These
results also rely on the exploitation of self-correcting behavior by considering carefully
chosen key quantities, which further highlights the power of this technique.

For our proof in Chapter 3, we also take such an approach. To overcome the seemingly
exploding complexity of the necessary substructures, even when generalizing the approach
of Bohman, Frieze and Lubetzky to the case where F = K4, instead of giving explicit
constructions, we develop an implicit way of selecting the appropriate key quantities.
This forces us to argue without explicit knowledge of the structures that we investigate
which makes the nature of our proof significantly more abstract. One may argue that this
implicit choice is the main step for the proof of Theorem 1.1.6 for complete hypergraphs.
For general strictly k-balanced hypergraphs, we introduce a symmetrization approach as
a further crucial ingredient for our proof.

1.2 Notation

In this section, we collect some basic notation that was previously introduced and explain
general as well as standard notation that we use. More specific key concepts are defined
in the section where they are first discussed.

If m and n are integers, we set [n]m := {m, . . . , n} if m ≤ n, [n]m := ∅ if m > n
and [n] := [n]1. For a set A, we say that A is a k-set if |A| = k. We write

(
A
k

)
for the set

of k-sets that are subsets of A and Ak for the set of tuples (a1, . . . , ak) ∈ Ak with ai ̸= aj
for all i ̸= j. We use 1A to denote the indicator function of A where a suitable choice for
its domain will be obvious from the context. For example, for an event E , we use 1E ,
to denote the indicator random variable of E . For sets A,B, we write φ : A ↪→ B for an
injective function φ from A to B and we write φ : A ∼−→ B for a bijection from A to B.

For integers i, j, we set i∧j := min{i, j} and i∨j := max{i, j}. We write α±ε = β±δ
to mean that [α− ε, α+ ε] ⊆ [β− δ, β+ δ]. We extend this notation to similar expressions
involving more uses of ± in the natural way. We occasionally only write α instead of ⌊α⌋
or ⌈α⌉ when the rounding is not important. Outside of proofs and numbered statements,
we occasionally use standard Bachmann-Landau notation including O( ·), o( ·) and Ω( ·).

A hypergraph H consists of a finite set V , its vertex set, together with a set E, its edge
set, of subsets of V . The elements of V are the vertices of H and the elements of E are
the edges of H. We use V (H) or VH to denote the vertex set and E(H) to denote the
edge set of H. We set v(H) := |VH| and e(H) := |H|. We say that H is a hypergraph
on n vertices if |VH| = n. We often simply write H instead of E(H), so in particular, we
often write |H| for the size of E(H). For k ≥ 1, the hypergraph H is k-uniform if all its
edges have size k and we refer to k as the uniformity of H. A k-graph is a k-uniform
hypergraph and a graph is a 2-graph. A k-graph H is complete if H =

(H
k

)
and empty

if H = ∅. A complete uniform hypergraph is also called a clique and an n-clique is a clique

on n vertices. For n ≥ 0 and k ≥ 1, we use K
(k)
n to denote a fixed k-uniform n-clique.
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An edge e of a hypergraph H is incident to a vertex v ∈ VH if v ∈ e. A matching
in a hypergraph H is a set M ⊆ H of disjoint edges, M covers a vertex v ∈ VH if
there exists an edge e ∈ M which is incident to v and M is perfect, if M covers every
vertex v ∈ VH. An independent set in H is a set U ⊆ VH such that no edge e ∈ H
is a subset of U . The independence number of H is the size of a largest independent

set in H. For v ∈ VH, we use N
(2)
H (v) to denote the set {u ∈ VH : {u, v} ∈ H}.

For a j-set U = {u1, . . . , uj} ⊆ VH, we write dH(U) or dH(u1 . . . uj) for the j-degree,
sometimes simply called degree, |{e ∈ H : U ⊆ e}| of U in H. The degree d(v) of v ∈ VH
is also called the vertex degree of v in H. We define δj(H) to be the minimum j-
degree min

{
dH(U) : U ∈

(
VH
j

)}
of H and we define ∆j(H) to be the maximum j-

degree max
{
dH(U) : U ∈

(
VH
j

)}
of H. We set δ(H) := δ1(H) and ∆(H) := ∆1(H). The

hypergraph H is d-regular if δ(H) = ∆(H) = d and regular if it is d-regular for some d.
For an integer j ≥ 2, we write H(j) for the subgraph of H with vertex set VH and edge

set {e ∈ H : |e| = j}. We use Hv to denote the link of v in H, that is, the hypergraph
with vertex set VH \ {v} and edge set {e \ {v} : e ∈ H, v ∈ e} and for an integer j ≥ 1

and v ∈ VH, we write H(j)
v as a shorthand for (Hv)(j) = (H(j+1))v. For U ⊆ VH, we

write H[U ] for the subgraph of H induced by U , that is, the subgraph with vertex set U
and edge set {e ∈ H : e ⊆ U} and we use H− U to denote the k-graph H[VH \ U ]. The
complement of a k-graph H is the k-graph with vertex set VH and edge set

(
VH
k

)
\ H. A

hypergraph H1 is a subgraph of a hypergraph H2 if VH1 ⊆ VH2 and H1 ⊆ H2 and H1 is
a proper subgraph of H2 if at least one of these inclusions is proper. We write H1 ⊆ H2

to mean that H1 is a subgraph of H2 and we write H1 ⊊ H2 to mean that H1 is a
proper subgraph of H2. Note that if every vertex of H1 is contained in an edge of H1,
then E(H1) ⊆ E(H2) holds if and only if H1 is a subgraph of H2. If this is not the
case when we write H1 ⊆ H2, it will be clear from the context whether we mean an
inclusion of edge sets or that H1 is a subgraph of H2. The hypergraph H1 is a spanning
subgraph of H2 if H1 is a subgraph of H2 with VH1 = VH2 . We write H1 + H2 for
the union of H1 and H2, that is the hypergraph with vertex set VH1 ∪ VH2 and edge
set H1 ∪H2. The hypergraphs H1 and H2 are disjoint if VH1 ∩VH2 = ∅ and edge-disjoint
if H1 ∩H2 = ∅. We say that H1 is a copy of H2 if there exists a bijection β : VH1

∼−→ VH2

with β(e1) ∈ H2 for all e1 ∈ H1 and β−1(e2) ∈ H1 for all e2 ∈ H2 and H1 is a copy of H2

in a hypergraph H if additionally H1 is a subgraph of H. An H1-packing in H2 is a
collection H of edge-disjoint copies of H1 in H2 and H is an H1-decomposition of H2 if
for every edge e ∈ H2, there exists a hypergraph H ∈H with e ∈ H.

For a statement φ that is true or false (usually depending on random choices), we
use {φ} to denote the event that φ is true. When describing our probabilistic constructions
for a given approximately d-regular hypergraph, we occasionally use the phrase “with
high probability” to refer to an event that happens with probability asymptotically
tending to 1 where the asymptotics will be clear from the context. However in all formal
statements and proofs, we provide explicit bounds for all relevant probabilities.





Chapter 2

Conflict-free Hypergraph
Matchings

2.1 Introduction

The intuition for our conflict-free matching process is that, through the fact that we
keep adding edges to our matching in a random fashion, the current matching after each
iteration essentially behaves like a uniformly random subset of edges. Concretely, we show
that certain random variables associated with this process follow with high probability
a deterministic trajectory given by the above intuition which allows us to deduce that
the process only stops when almost all vertices of H are covered. On this high level, our
proof of Theorem 1.1.2 is similar to the proofs in [18,49].

We remark that the results of Frankl and Rödl [37] and Pippenger (see [94]) mentioned
in Chapter 1 are proved using the Rödl nibble, also known as the semi-random method,
which only consists of a constant number of rounds and in each round a linear proportion
of the matching is constructed. In contrast, a random greedy algorithm only adds one
edge at a time. Both methods can be applied in similar situations, and each has its
advantages. In fact, Delcourt and Postle [23] independently obtained results similar to
those in this chapter by pursuing a nibble argument instead of analyzing a random process.
In particular, they were also motivated by and proved the existence of approximate high-
girth Steiner systems and observed that this is just a special case of a general hypergraph
matching theorem. The precise statements of the obtained matching theorems differ.
For instance, the result of Delcourt and Postle does not require an upper bound on the
number of vertices and they also obtain guarantees providing control over the uncovered
vertices in a bipartite setting. Moreover they observed that the classical theorem of Ajtai,
Komlós, Pintz, Spencer and Szemerédi [1] for finding an independent set in girth five
hypergraphs can also be deduced from the general matching theorem (in our case we
need polylogarithmic degree). Our result has the advantage that it allows tracking test
functions (which we believe is crucial for potential applications based on the absorption
method) and our analysis enables a more precise counting of matchings, see Theorem 2.5.5.

The assumptions on H we make are (qualitatively) the same as usual: we want H to
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be almost-regular and to have small 2-degrees. This would, as discussed before, imply
the existence of an almost-perfect matching in H. As far as the conditions on C in
Theorem 1.1.2 are concerned, observe first that the order of magnitude which bounds the
degrees of C is natural, as the following probabilistic deletion argument shows. Indeed,
it means that in total, there are O(ndj) conflicts of size j, where n is the number of
vertices of H. If we select every edge of H with probability p = δ/d, the expected
number of chosen edges is roughly pnd/k = δn/k. Call an edge bad if it overlaps with
another chosen edge or participates in a conflict where all edges have been chosen. The
expected number of overlapping pairs of chosen edges is O(p2nd2) = O(δ2n), and the
expected number of completely chosen conflicts of size j is O(pjndj) = O(δjn). Hence,
the expected total number of bad edges is only O(δ2n). Consequently, choosing δ small
enough, there exists an outcome of this random experiment such that after removing
all bad edges, δn/k −O(δ2n) edges still remain. In other words, we have found a C-free
matching covering a constant proportion of all vertices. One can think of the above
procedure as one “bite” of the Rödl nibble.

As observed by Frankl and Rödl, and Pippenger, the small 2-degree assumption for
H is enough to ensure that one can repeatedly take such small “bites” until almost all
vertices are covered. When dealing in addition with a conflict system in the form of a
hypergraph with vertex set H, the obstructions coming from the exclusion of conflicts
additionally influence the behavior of this procedure. For instance, roughly speaking, if
an edge of H participates in many conflicts, it is much more likely to become unavailable
at some point than an edge which participates in few conflicts. Hence, in order to
ensure that the uncovered part of H remains almost-regular throughout, we also wish
to know quite precisely in how many conflicts which may still cause unavailability a
given edge participates in each step. Controlling the regularity of the conflict hypergraph
is complicated by the fact that conflicts consist of several edges, some of which might
already be included in the matching, while others are not, or might even be unavailable
due to an overlap with an edge in the matching or another conflict.

One important point in Theorem 1.1.2 in terms of its applicability (see Section 2.3.2)
is that we only require upper bounds for the conflict hypergraph C. While this seems
natural as having fewer conflicts should only be advantageous when finding a conflict-free
matching, one has to be careful since, as described above, the degrees of the conflict
hypergraph significantly influence the evolution of the degrees of H. In our proof, we
actually show that given a conflict system with upper bounds on the degrees, one
can artificially add conflicts to “regularize” the conflict system, and then we analyze
the random process with respect to this enlarged conflict system. Our approach for
obtaining an approximately regular conflict system (see Lemmas 2.10.3, 2.10.4 and 2.10.6)
shares similarities with arguments in the independent work of Kwan, Sah, Sawhney and
Simkin [80] (see Lemma 5.2 and Section 10.1.2), which also was inspired by earlier works
that employ a “regularity boosting approach” [2, 50]. The idea of regularization has
turned out to be crucial in other places, see for example [50].

An additional point is that during the process, we also allow to track certain “test
functions.” This is not necessary to prove our main result, but we provide this additional
feature to facilitate future applications. Roughly speaking, the idea is that we also
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want to be able to claim that the obtained conflict-free matching M behaves as one
would expect by considering probabilistic heuristics. In the usual setting, without a
conflict system, such a tool was provided in [27], thereby extending [4], and has already
found a number of applications, see for example [65,73,101]. Inevitably, this additional
feature adds in technicality and length to our proof, but it is essential for some future
applications, for example, the application mentioned in Section 2.3.6 relies heavily on
these test functions. For instance, one can utilize our test functions to see that not only
can one find a high-girth partial (m, s, t)-Steiner system with o(mt) uncovered t-sets
(as stated in Theorem 1.1.1), but even one where every (t− 1)-set is contained in o(m)
uncovered t-sets.

Our analysis of the conflict-free matching process, which constitutes the core part
of the chapter, relies on identifying sequences of key random variables that govern the
evolution of the process and subsequently obtaining precise deterministic estimates for
these key random variables that hold with high probability. To achieve this, we rely on
supermartingale concentration techniques, for example a version of Freedman’s inequality
for supermartingales, see Lemma 2.9.4, in an approach that resembles the differential
equation method introduced by Wormald [113].

One obvious choice for a sequence of such key random variable that we wish to track is,
for each step, the number of edges that are still available for adding them to the conflict-
free matching constructed so far as the evolution of this number of edges determines
when the process terminates and hence the size of the eventually generated matching.
More specifically, our goal is to show that with high probability, these numbers of edges
are closely concentrated around deterministic values that describe a trajectory for the
sequence of random variables.

As we aim to employ supermartingale concentration inequalities, we require insights
concerning the expected one-step changes of the random process given by the number of
available edges. In fact it is such a reliance on expected one-step changes that gives the
differential method its name. Using quantities to express the expected one-step changes of
others leads to dependencies that can be interpreted as a system of differential equations
whose deterministic solutions constitute the trajectories that the random quantities are
typically concentrated around. We do not explicitly formulate and solve such a system
of differential equations and obtain our trajectories based on heuristic considerations.
Nevertheless, for our formal argument based on supermartingale concentration where we
aim to show that the random variables are close to the trajectories with high probability,
we need to rely on a further analysis of the expected one-step changes.

In our setting, an edge e can become unavailable and thus contribute to the change of
the number of available edges for two reasons. Firstly, because an edge intersecting e is
selected for the matching and secondly, because an edge is selected causing e to be the
only edge in a conflict C that is not already selected for the matching. Hence, motivated
by the goal to express the probability that a fixed available edge e is no longer available
in the next step of the conflict-free matching process, we are interested in the number
of available edges intersecting e and the number of conflicts C that contain e, another
available edge f and |C| − 2 edges that are already selected for the matching. This
introduces a collection of further sequences of key quantities that we wish to control
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in the sense that we show that they similarly follow deterministic trajectories, which
highlights one of the central challenges of such an approach: we need a collection of key
quantities that is closed in the sense that given a sequence of key random variables from
our collection, we can express the expected one-step changes using other key quantities
from the collection, at least up to acceptable estimation errors in the form of error terms
that we choose and that need to be carefully calibrated across the collection.

Specifically, in our setting, our choice of such a closed collection is based on the following
idea. If in every step, for every uncovered vertex, we have estimates for the number
of available edges containing v, then, since H has small 2-degrees, we can essentially
express the number of available edges that intersect a fixed available edge. Furthermore,
immediate effects of conflicts on availability can be controlled based on estimates for
the numbers of conflicts C containing a fixed available edge, another available edge
and |C| − 2 edges that are already selected for the matching as above. Finally, to express
one-step changes of such random variables, in our collection we more generally for all s
consider all numbers of conflicts C containing a fixed available edge, s other available
edges and |C| − s− 1 edges that are already selected for the matching.

2.2 Organization of the chapter

First, in Section 2.3, we collect several possible directions and examples for applications
of the main results in this chapter that highlight the flexibility and generality and that
further illustrate that our conditions are natural. We then briefly discuss the optimality
of our conditions in Section 2.4 and present variations and extensions of Theorem 1.1.2
in Section 2.5. Then we formally describe our conflict-free matching process in detail
in Section 2.6 and discuss key random variables in Section 2.7. In our supermartingale
argument, we require some contributions to expected one-step changes that arise from
more delicate local interactions to be negligible. We dedicate Section 2.8 to bounding
the effect of these contributions which subsequently allows us to deduce that these
contributions are indeed negligible compared to the carefully chosen estimation errors we
allow in our argument. The supermartingale argument itself which constitutes the main
part of this chapter can be found in Section 2.9. Finally, we prove the main theorems
stated in Section 2.10, discuss our application to Steiner systems in detail in Section 2.11
and conclude the chapter with some further remarks concerning applications and open
questions, see Section 2.12.

2.3 Applications

We now discuss some applications of Theorem 1.1.2. In addition to discussing further
details of various new applications, we also point out that some results which are already
known in the literature, proved ad-hoc and with no obvious connection to, say, Steiner
triple systems of large girth, are implied by Theorem 1.1.2. Together with the various
new results [6, 11,24,47,52,63,81] mentioned in Chapter 1, this underpins the fact that
Theorem 1.1.2 reveals a very general phenomenon.
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2.3.1 Steiner systems and Latin squares

As already discussed, Theorem 1.1.2 implies the existence of high-girth approximate
Steiner systems as stated in Theorem 1.1.1, which generalizes the results from [18,49].
We provide the details of this deduction, together with some additional extensions such
as growing girth, in Section 2.11.

We remark that similar results can be obtained in the “partite” setting. For instance,
while Steiner triple systems are equivalent to triangle decompositions of complete graphs,
Latin squares, for an introduction to the topic, see for example [68], are equivalent to
triangle decompositions of complete balanced tripartite graphs.

In particular, since every partial Latin square is also a partial Steiner triple system, the
definition of girth also applies for Latin squares. More concretely, the girth of a partial
Latin square L is the smallest g ≥ 4 such that there exists a set of rows, columns and
symbols that has size g, such that there are at least g − 2 cells whose row, column and
symbol is contained in the given set (if no such g exists, the girth is infinite). For instance,
it is easy to see that L has girth greater than 6 if and only if it contains no intercalate
(a 2× 2 sub-Latin square). The same argument used to prove Theorem 1.1.1 gives the
existence of partial m×m Latin squares which are almost complete (all but o(m2) cells
are filled) and have arbitrarily large girth. This yields an approximate solution to a
question of Linial who conjectured that m×m Latin squares of arbitrarily large girth
exist for all sufficiently large m. Linial’s conjecture was very recently confirmed in full by
Kwan, Sah, Sawhney and Simkin in [79], where they adopted the methods they used for
Steiner triple systems in [80]. Finally, we remark that analogous (approximate) results
hold for “high-dimensional permutations”, see [84–86], which are a generalization of Latin
squares (and correspond to Steiner systems with arbitrary parameters).

2.3.2 Erdős meets Nash-Williams

A famous conjecture of Nash-Williams [89] says that every graph G with minimum degree
at least 3|VG |/4 has a triangle decomposition, subject to the necessary conditions that
|G| is divisible by 3 and all the vertex degrees are even. In [51], a combination of the
conjectures of Erdős and Nash-Williams was proposed: that every sufficiently large graph
as above in fact has a triangle decomposition with arbitrarily high girth. In this context,
it was asked whether minimum degree 9|VG |/10, say, is at least enough to guarantee
an approximate triangle decomposition with arbitrarily high girth. We can answer this
question, see Theorem 2.3.2. This is a consequence of the aforementioned feature that
we only require upper bounds on the degrees of the conflict hypergraph. Recall that in
the hypergraph matching setting, the vertices of H are the edges of G and the edges of
H correspond to the triangles of G. In general, H will not be regular. However, if G
contains a suitable collection of triangles such that every edge is contained in roughly
the same number of triangles from this collection, then we can simply define H by only
keeping the triangles from the collection. The conflict hypergraph might become irregular
through this sparsification, but since we only require upper bounds, this does not cause
any problem.
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Theorem 2.3.1. For all c0 > 0, s > t ≥ 2 and ℓ ≥ 2, there exists ε0 > 0 such that for
all 0 < ε < ε0, there exists m0 such that the following holds for all m ≥ m0 and c ≥ c0.
Let G be a t-graph on m vertices and let K be a collection of s-sets which induce cliques
in G such that every edge is a subset of (1±m−ε)cms−t elements of K.

Then, there exists a partial (m, s, t)-Steiner system S ⊆ K of size (1−m−ε3)|G|/
(
s
t

)
such that any subset of S of size j, where 2 ≤ j ≤ ℓ, spans more than (s− t)j + t points.

In Section 2.11, we outline how to obtain Theorem 2.3.1 from our main theorem. Note
that by specifying G to be the complete t-graph and K the collection of all s-sets, we
recover Theorem 1.1.1. The above could also be used when G is a sufficiently dense
binomial random t-graph.

Concerning the setting where the minimum degree is sufficiently large, we may further-
more argue as follows. An approximate fractional decomposition of a t-graph G into s-
cliques is a function w : Ks → [0,∞) such that for all e ∈ G, the sum

∑
K∈Ks : e∈K w(K),

where Ks denotes the set of s-cliques in G, is sufficiently close to 1 and w is a frac-
tional decomposition of G into s-cliques if for all e ∈ G, the above sum is exactly 1. If
there exists an approximate fractional decomposition w of G into s-cliques such that
the largest weight wmax assigned by w is sufficiently small, then, to find a collection
of s-cliques that is regular enough, one may consider the random collection K ′

s where
every s-clique K ∈ Ks is included independently at random with probability w(K)/wmax.
Such an (even non-approximate) fractional decomposition exists in particular if G has
very large (t− 1)-degree, say δt−1(G) ≥ (1− (4s)−2t)m (see for example Theorem 1.5 and
its proof in [7] and [50, Lemma 6.3]).

Additional arguments concerning fractional decompositions allow us to gain further
insights. For s > t ≥ 2, let δt,s denote the fractional decomposition threshold for
the t-uniform s-clique, that is the infimum of all δ such that for all ε > 0, there
exists m0 such that all t-graphs G on m ≥ m0 vertices with δt−1(G) ≥ (δ + ε)m admit a
fractional decomposition into s-cliques. For all ε > 0 and all sufficiently large t-graphs G
with δt−1(G) ≥ (δt,s + ε)m, there exists an approximate fractional decomposition into s-
cliques where the largest assigned weight is sufficiently small (see Lemma 2.11.4). In
Section 2.11, we outline how the existence of such an approximate fractional decomposition
may be used to obtain the following statement.

Theorem 2.3.2. For all s > t ≥ 2, ε > 0 and ℓ ≥ 2, there exists m0 such that for all t-
graphs G on m ≥ m0 vertices with δt−1(G) ≥ (δt,s+ ε)m, the following holds. There exists
a partial (m, s, t)-Steiner system S with size (1− ε)|G|/

(
s
t

)
whose elements induce cliques

in H such that every subset of S of size j, where 2 ≤ j ≤ ℓ, spans more than (s− t)j + t
points.

2.3.3 Excluding grids

Another application is a Turán-type question that was already studied by Füredi and
Ruszinkó [42]. A hypergraph H is called linear if |e∩f | ≤ 1 for all distinct e, f ∈ H. An s-
grid is an s-graph on s2 vertices with 2s edges e1, . . . , es, f1, . . . , fs such that {e1, . . . , es},
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{f1, . . . , fs} are matchings and |ei ∩ fj | = 1 for all i, j ∈ [s]. An s-graph is grid-free if it
does not contain an s-grid as a subgraph.

Theorem 2.3.3 ([42, Theorem 1.2]). For all s ≥ 4, there exists ε > 0 such that there
are linear grid-free s-graphs H on m vertices with (1−m−ε)

(
m
2

)
/
(
s
2

)
edges.

Our results yield the following generalization that allows multiple forbidden subgraphs.
Here, we call a hypergraph H t-linear if |e ∩ f | ≤ t− 1 for all distinct e, f ∈ H and for
a given collection F of hypergraphs, we say that H is F -free if no subgraph of H is a
copy of an element of F .

Theorem 2.3.4. Let s ≥ 2 and t ∈ [s − 1]. Suppose F is a finite collection of t-
linear s-graphs F with |F| ≥ 2 and |VF | ≤ (s − t)|F| + t. Then, there exist ε > 0
and m0 such that for all m ≥ m0, there is an F -free t-linear s-graph H on m vertices
with (1−m−ε)

(
m
t

)
/
(
s
t

)
edges.

Note that in particular, this applies to s-grids with s ≥ 4 and (2-)linear hypergraphs,
so it implies Theorem 2.3.3. Note that for a 3-grid F , we have |VF | = 9 > 8 = |F|+ 2, so
similarly to Theorem 2.3.3, this theorem cannot be applied for grid-free 3-graphs. However,
Füredi and Ruszinkó conjectured that similar asymptotics also hold for grid-free 3-graphs.
For significant progress on this, see [44].

To see that Theorem 2.3.4 is true, note that a hypergraph with vertex set [m] is
a t-linear s-graph if and only if its edge set is a partial (m, s, t)-Steiner system S and that
the high girth condition in Theorem 1.1.1 means that any subgraph F of the s-graph
with vertex set [m] and edge set S with 2 ≤ |F| ≤ ℓ has more than (s− t)|F|+ t vertices.
Hence, for a given finite collection F as in Theorem 2.3.4, Theorem 1.1.1 implies the
existence of suitable F -free t-linear s-graphs, provided that ℓ is sufficiently large. In fact,
Theorems 1.1.1 and 2.3.4 are equivalent, so Theorem 2.3.4 is essentially just a rephrasing
of Theorem 1.1.1 using the terminology of t-linear s-graphs instead of partial Steiner
systems.

2.3.4 Well-separated packings

Another straightforward application is the existence of asymptotically optimal F -packings
which are “well-separated.” The following theorem was proved by Frankl and Füredi [36]
and has turned out to be useful for many applications, see for example [3, 41,103].

Theorem 2.3.5. Let F be a t-graph with |F| ≥ 2. There exist ε > 0 and m0 such
that for all m ≥ m0, there exists a collection F of copies of F whose vertex sets are
subsets of an m-set with |F | ≥ (1−m−ε)

(
m
t

)
/|F| such that the following holds. For all

distinct F1,F2 ∈ F , we have |VF1 ∩ VF2 | ≤ t, and if |VF1 ∩ VF2 | = t, then this t-set is
neither an edge of F1 nor of F2.

One can deduce this theorem from our Theorem 1.1.2. Since the result is already
known, we omit the details.
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2.3.5 Counting

We remark that, by analyzing our proof, one can also obtain a lower bound on the number
of conflict-free almost-perfect matchings. This is a consequence of our tight control over
the number of choices which the algorithm has in each step (with high probability).
As discussed in Section 2.1, the degrees of the conflict system C significantly influence
the trajectories of the process, hence the number of choices in each step and thus the
total number of choices depends on the given conflict system C. For a precise counting
statement, see Theorem 2.5.5.

2.3.6 Ramsey theory

Erdős and Gyárfás [33] investigated the following Ramsey problem: given s, t ∈ N, what
is the minimum number of colors f(n, s, t) such that the edges of Kn can be coloured
with f(n, s, t) colors in such a way that the edge set of every s-clique receives at least t
distinct colors? They in particular asked for the value of f(n, 4, 5). Very recently, Bennett,
Cushman, Dudek and Pra lat [10] solved the Erdős-Gyárfás question by determining
the asymptotic value of f(n, 4, 5). To this end, they considered a modification of the
triangle removal process, where each chosen triangle receives exactly two colors, where 2-
chromatic 4-cycles are forbidden, and where, among further conditions, each vertex has a
list of forbidden colors. Joos and Mubayi [63] found a way to give a very short alternative
proof for the Erdős-Gyárfás question using the results in this chapter. More specifically,
they show that the result of the random process in [10] can be equivalently phrased as a
conflict-free hypergraph matching. The important message thereby is that even intricate
random processes can be captured by the main results of this chapter and it is likely
that this may be beneficial for other applications as well. In [63] one can also find a
short proof for a similar edge coloring problem in the complete bipartite graph Kn,n

avoiding 2-chromatic 4-cycles, thereby solving the main open problem posed in [5].

2.3.7 Degenerate Turán densities

Theorem 1.1.2 turns out to be useful for solving the following problem of Brown, Erdős
and Sós [22]. Let f (r)(n, s, k) be the maximum number of edges of an r-graph on n
vertices not containing a subgraph on s vertices with k edges. Brown, Erdős and Sós
conjectured that n−2f (3)(n, k + 2, k) converges for all k ≥ 2 and confirmed it for k = 2.
In [45], the conjecture is verified for k = 3 and in [47] for k = 4. Building on a result
from [47], Delcourt and Postle [24] confirmed the conjecture for all k.

While for k ∈ {2, 3, 4}, the aforementioned work where the existence of the limit was
proved also yields its value, this is not the case for [24]. Very recently, Glock, Kim,
Lichev, Pikhurko and Sun [48] determined the limit for k ∈ {5, 6, 7}.

2.4 Optimality of the conditions

In the previous section, we provide several examples showing that the conditions on C are
general enough to have many interesting applications. Here, we additionally demonstrate
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that our conditions are necessary in the sense that Theorem 1.1.2 would be false if any
of the four conditions listed for C is omitted.

For the first condition, we consider a random construction of C for some fixed uniformity
j ≥ 3. The structure of H can be quite arbitrary, we only use that it has roughly nd/k
edges, which are the vertices of C. Let C be the binomial random j-graph where every j-set
of vertices is an edge independently with probability p = (K log d)/nj−1. Then, assuming
K is a large enough constant (depending only on j and k), the following holds with high
probability.

(i) ∆(C) ≤ 2Kdj−1 log d;

(ii) ∆j′(C) ≤ dj−j
′−ε for all 2 ≤ j′ < j;

(iii) there is no independent set in C of size larger than n/2k.

Here, the first two properties follow from standard concentration inequalities and the
third from a simple first moment argument.

In particular, the condition for the j′-degrees in C with 2 ≤ j′ ≤ j is satisfied, but the
largest C-free subset of H has size at most n/2k. This shows that the maximum degree
condition for C cannot be omitted. In fact, a stronger version of Theorem 1.1.2, namely
Theorem 2.5.1, allows for maximum degree ∆(C(j)) ≤ αdj−1 log d for some small enough
constant α (provided µ and ℓ in Theorem 2.5.1 are both constant), and (i) shows that
this is tight up to the constant factor.

Let us now check that the condition for the j′-degrees in C is also necessary. Again
mostly ignoring the structure of H, we fix some j ≥ 3 and simply choose C as a spanning j-
graph that is the disjoint union of cliques on 2jd vertices each. Then the maximum
degree condition is satisfied, but a C-free edge set can contain at most j − 1 vertices from
each clique and hence will have size at most n/2k.

The third condition is also necessary. Indeed, consider the complete bipartite graphH =
Kn,n with parts A,B, that is the graph with vertex set A∪B where A and B are disjoint n-
sets and edge set {{a, b} : a ∈ A, b ∈ B}. Take an arbitrary partition of A into 2-sets
and for each such 2-set {u, v}, add a conflict between all pairs of distinct edges where
one edge is incident to u and the other to v. This construction satisfies all but the third
condition, but any conflict-free matching can only cover half of the vertices of A.

To see that the fourth condition is necessary, consider as H a graph that is the disjoint
union of 2

√
n cliques on

√
n/2 vertices each. Let C be the disjoint union of

(√
n/2
2

)
cliques on 2

√
n vertices each, where each of these cliques in C contains precisely one

edge from each of the aforementioned cliques in H. Hence any C-free edge set has size at
most (

√
n/2)2/2 = n/8.

Note that the above example for the necessity of the third condition satisfies the
fourth condition for all disjoint e, f . However for two distinct e, f with a vertex in A
in their intersection, it fails to satisfy the fourth condition. In this spirit, we note that
we can indeed omit the third condition if we make the fourth condition stronger so

that |N (2)
C (e) ∩ N (2)

C (f)| ≤ d1−6ε holds for all distinct e, f ∈ E(H). Basically, we can
deduce from this stronger fourth condition that the number of edges e that fail to satisfy
the third condition for some v is at most d−ε|H|. We can just delete all such edges
and add a few auxiliary vertices and edges containing at least one auxiliary vertex to



26 CHAPTER 2. CONFLICT-FREE HYPERGRAPH MATCHINGS

make H almost regular. Then it is easy to see that a C-free almost perfect matching in
this hypergraph yields a C-free almost perfect matching in the original hypergraph.

2.5 Variations and extensions of the main theorem

In this section, we provide several variations of Theorem 1.1.2 that we prove in Section 2.10.
In particular Theorem 1.1.2 is an immediate consequence of Theorem 2.5.1.

For a k-graph H, we say that a (not necessarily uniform) hypergraph C with vertex
set H whose edges have size at least 2, which may be used to encode the subsets which
we wish to avoid as subsets of a matching as in Theorem 1.1.2, is a conflict system for H.
We call the edges of C conflicts of C and for e ∈ H and C ∈ Ce, where Ce denotes the link
of e in C, we say that C is a semiconflict.

To obtain a C-free matching M⊆ H, it is crucial that C satisfies suitable boundedness
conditions similarly as in Theorem 1.1.2, however slightly weaker conditions are sufficient.
To this end, for integers d ≥ 1 and ℓ ≥ 2 and reals Γ ≥ 0 and 0 < ε < 1, we say that C is
(d, ℓ,Γ, ε)-bounded if the following holds.

(C1) 2 ≤ |C| ≤ ℓ for all C ∈ C;
(C2)

∑
j∈[ℓ]

∆(C(j))
dj−1 ≤ Γ and |{j ∈ [ℓ]2 : C(j) ̸= ∅}| ≤ Γ;

(C3) ∆j′(C(j)) ≤ dj−j
′−ε for all j ∈ [ℓ]2 and j′ ∈ [j − 1]2;

(C4) |{f ∈ N (2)
C (e) : v ∈ f}| ≤ d1−ε for all e ∈ H and v ∈ V (H);

(C5) |N (2)
C (e) ∩N (2)

C (f)| ≤ d1−ε for all disjoint e, f ∈ H.

Theorem 2.5.1. For all k ≥ 2, there exists ε0 > 0 such that for all 0 < ε < ε0, there
exists d0 such that the following holds for all d ≥ d0. Suppose ℓ ≥ 2 is an integer and
suppose Γ ≥ 1 and 0 < µ ≤ 1/ℓ are reals such that 1/µΓℓ ≤ dε2. Suppose H is a k-graph
on n ≤ exp(dε

2/ℓ) vertices with (1− d−ε)d ≤ δ(H) ≤ ∆(H) ≤ d and ∆2(H) ≤ d1−ε and
suppose C is a (d, ℓ,Γ, ε)-bounded conflict system for H.

Then, there exists a C-free matchingM⊆ H of size (1− µ)n/k.

Note that the somewhat unusual condition 1/µΓℓ ≤ dε
2

allows for various tradeoffs
between the parameters. In particular, when ℓ and µ are constant, we can allow Γ to
be of order log d. Theorem 2.5.1 is an immediate consequence of a further extension,
namely Theorem 2.5.2, where we also obtain a matching M that is almost-perfect.
There, M additionally has properties which random edge sets that include the edges
of H independently with probability |M|/|H| typically exhibit. In more detail, we show
that M can be chosen such that for a given sufficiently large edge set Z ⊆ H, we
have |Z ∩M| ≈ |Z| · |M|/|H|, which is what would be expected if the edges of H were
included in M independently at random with probability |M|/|H|. Further, we show
that an analogous statement holds for suitable sets Z ⊆

(H
j

)
and we show that it can be

satisfied for multiple Z simultaneously. Again, as for the conflict systems, it is convenient
to interpret sets Z ∈

(H
j

)
where j ≥ 1 as edge sets of hypergraphs with vertex set H.

Thinking of these Z as a way to test M for properties that it satisfies, we say that a
uniform hypergraph Z with vertex set H whose edges are matchings is a test system and
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we call edges of Z tests. Note that in particular, we allow 1-uniform test systems Z,
so edge sets E ⊆ H may be treated as test systems by considering the test system Z
with edge set

(
E
1

)
. We can only allow test systems that are well behaved in the sense

that we can keep track of their properties during the evolution of our random iterative
matching construction such that in the end, we can guarantee that the matching behaves
as expected with respect to Z. To this end, for integers j, d ≥ 1, a real ε > 0 and a
conflict system C for H, we say that a j-uniform test system Z for H is (d, ε, C)-trackable
if the following holds.

(Z1) |Z| ≥ dj+ε;
(Z2) ∆j′(Z) ≤ |Z|/dj′+ε for all j′ ∈ [j − 1];

(Z3) |C(j
′)

e ∩ C(j
′)

f | ≤ dj
′−ε for all distinct e, f ∈ H with dZ(ef) ≥ 1 and all j′ ∈ [ℓ− 1];

(Z4) Z is C-free for all Z ∈ Z.

Intuitively, again thinking about M as an edge set that behaves as if it was chosen
uniformly at random among all subsets of H of the same size, (Z1) and (Z2) ensure
that |{Z ∈ Z : Z ⊆ M}| is close to its expectation and not dominated by rare events
with large effects; observe that in this respect both conditions cannot be relaxed beyond
omitting the dε factor. We require Condition (Z3) to guarantee that for all tests Z ∈ Z,
all edges e ∈ Z enter M approximately independently. Indeed, omitting the d−ε factor
in this condition would allow us to construct test systems Z where there are tests Z ∈ Z
with edges e, f ∈ Z such that whenever M cannot contain e due to conflicts it cannot
contain f either. Condition (Z4) is also natural since tests Z which are not C-free are
never contained in M. In fact, a (d, ε, C)-trackable test system has properties similar to
those of a link of an edge in C provided that C is a suitable (d, ℓ,Γ, ε)-bounded conflict
system (see Lemma 2.8.1).

Theorem 2.5.2. Assume the setup of Theorem 2.5.1 and suppose Z is a set of (d, ε, C)-
trackable test systems for H of uniformity at most ℓ with |Z | ≤ exp(dε

2/ℓ). Then,
there exists a C-free matching M ⊆ H of size (1 − µ)n/k with |{Z ∈ Z : Z ⊆ M}| =
(1± d−ε/900)(|M|/|H|)j |Z| for all j-uniform Z ∈ Z .

We also provide a version of Theorem 2.5.2 that allows tracking of test weight functions
instead of test systems. A test function for H is a function w :

(H
j

)
→ [0, 1] where j ≥ 1

such that w(E) = 0 whenever E ∈
(H
j

)
is not a matching. We refer to j as the uniformity

of w and we say that w is j-uniform. In general, for a function w : A→ R and a finite
set X ⊆ A, we define w(X) :=

∑
x∈X w(x). If w is a j-uniform test function, we also

use w to denote the extension of w to arbitrary subsets of H such that for all E ⊆ H,
we have w(E) = w(

(
E
j

)
). Note that for j-sets E ⊆ H, there is no ambiguity since

in this case, E is the only subset of E that has size j. Analogously to the definition
of (d, ε, C)-trackability for test systems, we say that a j-uniform test function w for H
is (d, ε, C)-trackable if the following holds.

(W1) w(H) ≥ dj+ε;
(W2) w({E ∈

(H
j

)
: E′ ⊆ E}) ≤ w(H)/dj

′+ε for all j′ ∈ [j − 1] and E′ ∈
(H
j′

)
;
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(W3) |C(j
′)

e ∩ C(j
′)

f | ≤ dj
′−ε for all distinct e, f ∈ H with w({E ∈

(H
j

)
: e, f ∈ E}) > 0 and

all j′ ∈ [ℓ− 1];

(W4) w(E) = 0 for all E ∈
(H
j

)
that are not C-free.

Theorem 2.5.3. Assume the setup of Theorem 2.5.1 and suppose W is a set of (d, ε, C)-
trackable test functions for H of uniformity at most ℓ with |W | ≤ exp(dε

2/ℓ). Then,
there exists a C-free matching M ⊆ H of size (1 − µ)n/k with w(M) = (1 ±
d−ε/900)(|M|/|H|)jw(H) for all j-uniform w ∈ W .

Furthermore, we deduce the following version of Theorem 2.5.3 that allows a constant
relative deviation of the degrees of H, but in turn also only yields a constant fraction of
vertices that are not covered by the matching (in general, this cannot be avoided as one
can see by considering a slightly unbalanced complete bipartite graph).

Theorem 2.5.4. For all k ≥ 2, there exists ε0 > 0 such that for all 0 < ε < ε0, there
exists d0 such that the following holds for all d ≥ d0. Suppose ℓ ≥ 2 is an integer and
suppose Γ ≥ 1 is a real such that 1/εΓℓ ≤ dε2 . Suppose H is a k-graph on n ≤ exp(dε

2/ℓ)
vertices with (1− ε)d ≤ δ(H) ≤ ∆(H) ≤ d and ∆2(H) ≤ d1−ε, suppose C is a (d, ℓ,Γ, ε)-
bounded conflict system for H and suppose W is a set of (d, ε, C)-trackable test functions
for H of uniformity at most 1/ε1/3 with |W | ≤ exp(dε

2/ℓ).
Then, there exists a C-free matchingM⊆ H of size at least (1−√ε)nk with w(M) =

(1±√ε)(|M|/|H|)jw(H) for all j-uniform w ∈ W .

We remark that further variations of our main theorem can be obtained building on
Theorem 2.9.2. For example assume the setup of Theorem 2.5.1 and consider a j-graph X
whose vertices are edges of H such that ∆j′(X ) ≤ d0/dj′ for some d0 and all j′ ∈ [j − 1]0.
Then, combining Theorem 2.9.2 with Lemma 2.8.5 shows that for all ε > 0, there exists
an almost perfect matching with at most max{d0/dj−ε, dε} edges of X as subsets of the
matching. In a sense, such a hypergraph X resembles a test system that only satisfies a
weaker trackability condition which entails that we can only guarantee a crude upper
bound on the number of edges of X that are subsets of the matching.

Finally, we also prove a counting version of Theorem 1.1.2. Before we present a
formal statement that provides a lower bound for the number of large conflict-free
matchings, let us consider some heuristic for how many almost-perfect C-free matchings
of size m = (1− µ)n/k one may expect at least in the setting of Theorem 2.5.1. Since
we are interested in almost-perfect matchings, we assume that µ is sufficiently small,
for example µ ≤ d−ε3 . Suppose that M is chosen uniformly at random among all edge
sets in

(H
m

)
. The edge set M is a matching if there is a set of km vertices of H that

are all contained in exactly one edge e ∈ M. Every edge of H is an edge of M with
probability m/|H| ≈ d−1. Hence, for a fixed vertex v ∈ V (H), the expected number
of edges containing v is approximately dH(v)/d ≈ 1, so by the Poisson paradigm, we
estimate that the probability of the event that v is contained in exactly one edge e ∈M
is approximately 1/e.

Thus, for a fixed U ∈
(V (H)
km

)
, we may expect all vertices u ∈ U to be contained in

exactly one edge e ∈M with probability exp(−km) and hence we may expectM to be a
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matching with probability roughly
(
n
km

)
exp(−km) = (1±√µ)km exp(−km) ≈ exp(−km).

Since there were
(|H|
m

)
≈ (e|H|/m)m ≈ (ed)m choices for M, this suggests that there are

roughly (ed)m · exp(−km) = (d/ exp(k − 1))m matchings of size m in H.
To estimate the number of matchings of size m that are C-free, we may again employ the

Poisson paradigm. For all j ∈ [ℓ]2, the number of conflicts C ∈ C(j) is
∑

e∈H dC(j)(e)/j ≤
|H|∆(C(j))/j. Hence, again using that every edge of H is an edge of M with probability
roughly m/|H|, the expected number of conflicts of arbitrary size that are a subset of M
is heuristically at most m

∑
j∈[ℓ]2

mj−1∆(C(j))
j|H|j−1 ≤ m

∑
j∈[ℓ]2

∆(C(j))
jdj−1 . Thus, the Poisson

paradigm suggests that M is C-free with probability at least exp
(
−m∑j∈[ℓ]2

∆(C(j))
jdj−1

)
.

Combining this with our estimation for the number of matchings of size m in H, this
yields (

d

exp
(
k − 1 +

∑
j∈[ℓ]2

∆(C(j))
jdj−1

)
)m

as an approximate lower bound for the number of C-free matchings of size m in H.

Theorem 2.5.5. For all k, ℓ ≥ 2, there exists ε0 > 0 such that for all 0 < ε < ε0,
there exists d0 such that the following holds for all d ≥ d0. Suppose H is a k-graph
on n ≤ exp(dε

3
) vertices with (1 − d−ε)d ≤ δ(H) ≤ ∆(H) ≤ d and ∆2(H) ≤ d1−ε and

suppose C is a (d, ℓ, ℓ, ε)-bounded conflict system for H.
Then, the number of C-free matchingsM⊆ H of size m := (1− d−ε3)n/k is at least(

(1− d−ε4)d

exp
(
k − 1 +

∑
j∈[ℓ]2

∆(C(j))
jdj−1

)
)m

.

It is known [88] that the number of perfect matchings of a d-regular k-graph on n
vertices with small 2-degrees is at most ((1 + o(1))d/ exp(k − 1))n/k. This can be proved
using the so-called entropy method. It would be interesting to find out whether this
method can also be used to provide an upper bound on the number of conflict-free
matchings, complementing our lower bound from Theorem 2.5.5. This seems challenging,
even in the case of Steiner triple systems with girth at least 7, see the discussions
in [18,49,80].

2.6 Constructing the matching

2.6.1 The setting

Let us now describe the setting for our main proof and the random greedy algorithm
we analyze. Here and in the subsequent sections, we work with the following setup.
Fix k ≥ 2, ε > 0 that is sufficiently small in terms of 1/k and d ≥ 1 that is sufficiently large
in terms of 1/ε and k. Suppose ℓ ≥ 2 is an integer and suppose Γ ≥ 1 and 0 < µ ≤ 1/ℓ
are reals such that

1

µΓℓ
≤ dε3/2 . (2.6.1)
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Let H denote a k-graph on n ≤ exp(dε/(400ℓ)) vertices such that (1 − d−ε)d ≤ δ(H) ≤
∆(H) ≤ d and ∆2(H) ≤ d1−ε. Let C denote a (d, ℓ,Γ, ε)-bounded1 conflict system for H
such that in addition to the (d, ℓ,Γ, ε)-boundedness, the following conditions are satisfied.

(C6) dj−1−ε/100 ≤ (1− d−ε)∆(C(j)) ≤ δ(C(j)) for all j ∈ [ℓ]2 with C(j) ̸= ∅;
(C7) |C(j)e ∩ C(j)f | ≤ dj−ε for all disjoint e, f ∈ H with {e, f} /∈ C(2) and all j ∈ [ℓ− 1];

(C8) C is a matching for all C ∈ C;
(C9) C1 ̸⊆ C2 for all distinct C1, C2 ∈ C.
Considering the links of the conflict graph, note that these are almost (d, ε, C)-trackable
test systems in the following sense. Condition (C8) enforces that all semiconflicts are
matchings, the bound dj−1−ε/100 ≤ δ(C(j)) that we impose for all j ∈ [ℓ]2 plays a similar
role as (Z1), Condition (C3) translates to a property similar to (Z2), Conditions (C5), (C7)
and (C9) together yield (Z3) and Condition (C9) corresponds to (Z4). Let Z0 denote
a set of (d, ε, C)-trackable test systems for H such that |Z0| ≤ exp(dε/(400ℓ)). Note that
besides requiring that C additionally satisfies the conditions (C6)–(C9), the conditions
that we impose here are weaker than those in Theorem 2.5.2. The weaker bound 1/µΓℓ

here and the bound on the number of nonempty uniform subgraphs C(j) in Theorem 2.5.2
however allow us to deduce this theorem from the analysis of the construction for conflict
graphs additionally satisfying (C6)–(C9) that we introduce in Section 2.6.2. The fact that
we also allow more vertices and test systems here is useful for proving Theorems 2.5.3
and 2.5.4.

With the setup for this section, which we also keep for the subsequent sections in mind,
we conclude this sections with some further remarks. The bound (2.6.1), which may be
thought of as a way to state that d is sufficiently large in terms of ℓ, Γ and 1/µ, is crucial
for many bounds that we derive throughout the chapter without explicitly referring to
it. More specifically, we frequently use it to bound terms that depend on ℓ, Γ or µ from
above using powers of d with a suitably small fraction of ε as their exponent. Besides
directly using 1/µΓℓ ≤ dε3/2 , we for example use that ℓℓ ≤ dε/1000 and exp(Γ) ≤ dε/1000.
Moreover, we often use that for all j ∈ [ℓ]2, we have ∆(C(j)) ≤ Γdj−1 as an immediate
consequence of (C2).

2.6.2 The algorithm

We construct random matchings ∅ = M(0) ⊆ M(1) ⊆ . . . in H as follows. As an
initialization during step 0, we set M(0) := ∅. Then, we proceed iteratively where in
every step i ≥ 1 we obtain M(i) by adding an edge e(i) to M(i − 1) that is chosen
uniformly at random among all edges that are available in the sense that they can be
added without generating a subset of M(i) that is a conflict or a nonempty intersection
of two distinct edges in M(i). If for some step i ≥ 0 there are no available edges, we
terminate the construction. For every step i ≥ 0, we use V (i) := V \⋃e∈M(i) e to denote
the set of vertices that are not covered by M(i). To keep track of the available edges,
we define the random k-graphs H = H(0) ⊇ H(1) ⊇ . . ., where in every step i ≥ 0, the

1In fact, when working with the setup provided here, we do not need that |{j ∈ [ℓ]2 : C(j) ̸= ∅}| ≤ Γ.
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vertex set of H(i) is V (i) and the edge set of H(i) is the set of edges that are available
for addition to the matching M(i). For all e ∈ H(i), as a special case of a more general

notation that we introduce in Section 2.7, we use C[1]e (i) to denote the random subgraph
of Ce with vertex set V (Ce) and edge set

C[1]e (i) = {C ∈ Ce : |C ∩H(i)| = 1 and |C ∩M(i)| = |C| − 1},

that is, the set of all semiconflicts C that stem from conflicts containing e where all edges
in C except one belong to M(i) and where the remaining edge is available. Overall, we
make our random choices according to Algorithm 2.6.1.

Algorithm 2.6.1: Construction of the matching

1 M(0)← ∅
2 V (0)← V (H)
3 H(0)← H
4 i← 1
5 while H(i− 1) ̸= ∅ do
6 choose e(i) ∈ H(i− 1) uniformly at random
7 M(i)←M(i− 1) ∪ {e(i)}
8 V (i)← V (i− 1) \ e(i)
9 EC(i)← {e ∈ H(i− 1) : {e} = C \M(i− 1) for some C ∈ C[1]e(i)(i− 1)}

10 HC(i)← (V (i− 1),H(i− 1) \ EC(i))
11 H(i)← HC(i)[V (i)]
12 i← i+ 1

13 end

We refer to the assignments before the first iteration of the loop as step 0, for i ≥ 1, we
refer to the i-th iteration of the loop as step i and we use F(i) to denote the i-th element
of the natural filtration associated with this random process.

Let m := (1− µ)n/k. As an immediate consequence of Theorem 2.9.2 in Section 2.9,
we obtain the following statement.

Theorem 2.6.2. With probability at least 1 − exp(−dε/(500ℓ)), the following happens.
Algorithm 2.6.1 runs for at least m steps and hence generates a matching of size at
least m and additionally, we have

|{Z ∈ Z : Z ⊆M(m)}| = (1± d−ε/75)
(
mk

dn

)j
|Z|

for all j ∈ [ℓ] and all j-uniform Z ∈ Z0.

In Section 2.10, we show that Theorems 2.5.2, 2.5.3 and 2.5.4 are consequences of
Theorem 2.6.2.
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2.7 Key random variables and trajectories

In this section, we define key random variables for the analysis of the conflict-free
matching process described in Section 2.6. Additionally, we provide some intuition
for their evolution during the process that leads to idealized trajectories that certain
quantities typically follow.

2.7.1 Key random variables

The process increases the size of the matching as long as there are available edges, that
is, as long as |H(i)| ≥ 1, so we are interested in analyzing the availability of edges. To
account for the fact that an edge becomes unavailable for the matching when an edge
containing one of its vertices is added to the matching, one set of key random variables
that we wish to investigate are the random sets of edges of H(i) that contain a given
vertex v ∈ V (H). For v ∈ V (H), we define

Dv(i) := {e ∈ H(i) : v ∈ e}.

To account for the C-free condition, for all e ∈ H, we are interested in tracking the
number of semiconflicts in Ce that have already partially entered the matching in the
sense that they contain a given number of edges in the matching. As tracking these is
a special case of keeping track of how more general uniform hypergraphs whose vertex
sets are subsets of H behave with respect to the matching, we can treat the collection of
these sets as another set of test systems. We define

C := {C(j)e : e ∈ H, j ∈ [ℓ− 1], C(j+1) ̸= ∅} and Z := Z0 ∪ C .

Observe that for all Z ∈ C , the pair (e, j) with Z = C(j)e is unique. Indeed, as dj−ε/100 ≤
δ(C(j+1)) ≤ |C(j)e |, Z is not empty, so j is uniquely determined and we have {e} = H\V (Z)
determining e. Also observe that C ∩Z0 = ∅ due to (C3) and (Z1), so there will never be
confusion whether Z ∈ Z is an element of Z0 or C . These observations are convenient for
the following considerations of test systems Z ∈ Z that at some point become irrelevant
for the process.

If an edge e ∈ H is not present in H(i) for some i ≥ 1, it is no longer relevant for the
process, so we no longer have to consider it in our analysis. Thus, for i ≥ 0, we define

C (i) := {C(j)e : e ∈ H(i), j ∈ [ℓ− 1], C(j+1) ̸= ∅}, and Z (i) := Z0 ∪ C (i).

For Z ∈ Z and e ∈ H, if Z = C(j)f for some j ∈ [ℓ − 1] and f ∈ H with e ∩ f ̸= ∅
or {e, f} ∈ C(2), then e entering the matching in some step i ≥ 1 in the sense that e(i) = e
entails Z becoming irrelevant for the process and hence not being present in Z (i), in a

sense getting evicted from Z (i− 1). In this case, that is, if Z = C(j)f for some j ∈ [ℓ− 1]

and f ∈ H with e ∩ f ̸= ∅ or {e, f} ∈ C(2), we say that e ∈ H is an immediate evictor
for Z ∈ Z . We write e↗ Z to mean that e is an immediate evictor for Z and e↗| Z
to mean that e is not an immediate evictor for Z. Note that besides this immediate
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eviction Z = C(j)f also becomes irrelevant whenever f and e(i) are the only edges in a
conflict of arbitrary size that are not in M(i− 1). Finally, as the uniformity of a test
system is crucial for its behavior, for i ≥ 0 and j ∈ [ℓ], we define

Z
(j)
0 := {Z ∈ Z0 : Z is a j-graph}, C (j) := {C(j)e ∈ C : e ∈ H}, Z (j) := Z

(j)
0 ∪ C (j)

C (j)(i) := {C(j)e ∈ C (i) : e ∈ H(i)} and Z (j)(i) := Z
(j)
0 ∪ C (j)(i).

We introduce the following notation. For a (not necessarily uniform) hypergraph X
with V (X ) ⊆ H and integer i, s ≥ 0, the partially matched subgraph X [s](i) of X with
parameter s at step i is the random hypergraph with vertex set V (X ) and

X [s](i) = {X ∈ X : |X ∩H(i)| = s and |X ∩M(i)| = |X| − s}.

Here, we use square brackets to avoid ambiguity regarding our notation X (j) for the j-
uniform subgraph of X with V (X (j)) = V (X ). Note that for all e ∈ H and Z = Ce this

definition of Z [1](i) = C[1]e (i) coincides with that given in Section 2.6.
For Z ∈ Z , we are particularly interested in the random hypergraphs Z [s](i). Indeed,

the random hypergraphs C[1]e (i) play a crucial role in Algorithm 2.6.1, for Z ∈ Z0, we are
interested in Z [0](m) and for all j ∈ [ℓ], Z ∈ Z (j), i ≥ 1 and s ∈ [j − 1]0, the tests that
enter when transitioning from Z [s](i− 1) to Z [s](i) are the result of adding an edge e ∈ H
to the matching that is an element of a test in Z [s+1](i− 1).

Occasionally, we have to account for the fact that the test systems C(j)f in C are, in
contrast to those in Z0, not (d, ε, C)-trackable as (C2) implies that they are too small to
satisfy (Z1) at least by a factor of dε/Γ.

Following the intuition that every edge of H ends up in the matching roughly indepen-
dently with probability d−1, we estimate |Z [s](m)| ≈ |Z|/dj−s for all j-uniform Z ∈ Z .
Thus, if |Z| is not significantly larger than dj−s, our analysis does not provide concentra-
tion around the expectation for |Z [s](m)| ≈ |Z|/dj−s and hence the smaller size of the

test systems C(j)f ∈ Z with e ∈ H and j ∈ [ℓ− 1] results in weaker tracking in the sense

that we can only guarantee concentration for the random variables |C(j)[s]f (i)| with s ∈ [ℓ]

and not for s = 0 (Note that whenever s ≥ j + 1, we trivially have C(j)[s]f (i) = ∅ for
all i ≥ 0). However, this is sufficient for us because adding an edge of H that is an

element of a semiconflict in C(j)[1]f to the matching makes f unavailable and hence all C(j)f
with j ∈ [ℓ− 1] irrelevant.

2.7.2 Intuition

Generally, if X (i) is a (random) hypergraph or a set, we define |X |(i) := |X (i)| such
that for a sequence X (0),X (1), . . ., we have a notation for the elements of the associated
sequence of sizes that uses a common symbol indexed with i. As before, we write
such intuitively time-related indices that represent different stages in the evolution of a
parameter or iterations in an algorithm as arguments instead of indices to distinguish
them from other indices.
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The heuristic arguments in this section start with the assumption that for all i ≥ 0,
edges of H are included in M(i) approximately independently with probability i/|H|.
With a similar intuition for V (i), we obtain

P[e ∈M(i)] ≈ |M|(i)|H|(0)
≈ ik

dn
=: p̂M (i) and P[v ∈ V (i)] ≈ |V (i)|

|V (0)| = 1− ik

n
=: p̂V (i)

for all e ∈ H and v ∈ V (H). Since we wish to show that H(i − 1) typically remains
nonempty for all i ∈ [m], we are interested in the size of H(i).

For i ≥ 0, an edge e ∈ H is an edge of H(i) if and only if none of its vertices is covered
by the matching M(i) and additionally, there is no conflict C ∈ C with e ∈ C that
forbids the addition of e toM(i) in the sense that C \M(i) = {e}. For all j ∈ [ℓ]2, there
are approximately ∆(C(j)) conflicts C ∈ C(j) with e ∈ C and for all conflicts C ∈ C, we
have C ̸⊆ M(i), so C \M(i) = {e} happens if and only if C \ {e} ⊆ M(i). Hence, the
expected number of such conflicts that forbid the addition of e during step i is

E[|{C ∈ C : e ∈ C and C \M(i) = {e}}|] ≈
∑
j∈[ℓ]2

∆(C(j)) · p̂M (i)j−1 =: Γ̂(i).

Thus, assuming approximate independence of relevant events the Poisson paradigm
suggests

P[e ∈ H(i)] ≈ p̂V (i)k · exp(−Γ̂(i)).

This yields the following idealized trajectories. For |H|(i), we estimate

E[|H|(i)] ≈ dn

k
· P[e ∈ H(i)] ≈ dn

k
· p̂V (i)k · exp(−Γ̂(i)) =: ĥ(i). (2.7.1)

Note that Γ̂(0) ≤ . . . ≤ Γ̂(n/k). Hence, as we are interested in a setting where Algo-
rithm 2.6.1 typically does not terminate too early, (2.7.1) shows the need for bound-
ing Γ̂(n/k) from above and thus illustrates the importance of (C2), which provides Γ as
an upper bound for Γ̂(n/k). Similarly as for |H|(i), for all v ∈ V (H), where we only care
about Dv(i) as long as v ∈ V (i), we estimate

E[|Dv|(i) | v ∈ V (i)] =
∑
e∈H :
v∈e

P[e ∈ H(i) | v ∈ V (i)] ≈ 1

p̂V (i)

∑
e∈H :
v∈e

P[e ∈ H(i)]

≈ d · p̂V (i)k−1 · exp(−Γ̂(i)) =: d̂(i).

Finally, for all j ∈ [ℓ], Z ∈ Z (j) and s ∈ [j]0 with s ≥ 1C (Z), where we only care
about Z [s](i) as long as Z ∈ Z (i), we estimate

E[|Z [s]|(i) | Z ∈ Z (i)] ≈
∑
Z∈Z

∑
X∈(Zs)

P
[ ⋂
f∈X
{f ∈ H(i)} ∩

⋂
f∈Z\X

{f ∈M(i)}
]

≈ |Z| ·
(
j

s

)
·
(
p̂V (i)k · exp(−Γ̂(i))

)s · p̂M (i)j−s = |Z| · ẑj,s(i),
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where

ẑj,s(i) :=

(
j

s

)
·
(
p̂V (i)k · exp(−Γ̂(i))

)s · p̂M (i)j−s.

Note that ẑj,0(i) = p̂M (i)j and hence ẑj,0(m) =
(
mk
dn

)j
, which is the term we have in

Theorem 2.6.2.
As a consequence of the construction of EC(i) in Algorithm 2.6.1, which ensures

that the matchings M(0),M(1), . . . are C-free, random hypergraphs C[1]e =
⋃
j∈[ℓ] C

(j)[1]
e

with e ∈ H directly influence the construction of the matchings M(i) and hence the

random hypergraphs C[1]e (i) are particularly important. Similarly as above, for all e ∈ H,
we obtain

E[|C[1]e |(i) | e ∈ H(i)] =
∑

j∈[ℓ−1]

E[|C(j)[1]e |(i) | e ∈ H(i)] ≈
∑

j∈[ℓ−1]

dC(j+1)(e) · ẑj,1(i)

≈
∑

j∈[ℓ−1]

∆(C(j+1)) · ẑj,1(i) =: ĉ(i).

In Section 2.9, we formally prove that |H|(i), |Dv|(i), |Z [s]|(i) and |C[1]e |(i) indeed typically
follow the idealized trajectories ĥ(i), d̂(i), |Z| · ẑj,s(i) and ĉ(i), respectively.

2.8 Bounding local interactions

In preparation for the proof of Theorem 2.9.2 (of which Theorem 2.6.2 is a consequence),
we consider certain configurations that consist of one or two conflicts or tests. As these
configurations mediate local interactions between edges of H concerning their availability,
they are relevant for analyzing the impact a particular choice of e(i) in some step i may
have. Intuitively, our conditions for the conflict system C and the test systems Z ∈ Z
guarantee that initially, these configurations are spread out. We use this section to
formally define what this means and we prove that this spreadness typically persists
during the iterative construction of the matching.

Recall that as defined in the previous section, C is a conflict system for H and Z is
the set of all test systems and all links of the uniform subgraphs C(2), . . . , C(ℓ). For Z ∈
Z , e, f ∈ H and v ∈ V (H), we consider the hypergraphs Zv, Ze, Ze,2, Z2, Ce,2 and C⋆e,f,2
with vertex set H whose edges represent different types of local interactions in the sense
that the following holds.

(i) Zv = {Z ∈ Z : Z ∩ Dv(0) ̸= ∅};
(ii) Ze = {Z \ {e} : Z ∈ Z, e ∈ Z};

(iii) Ze,2 = {Z ∪ C : Z ∈ Z, C ∈ Ce, Z ∩ C ̸= ∅};
(iv) Z2 = {Z ∪ C : Z ∈ Z, C ∈ C, |Z ∩ C| ≥ 2, g ↗| Z for all g ∈ C \ Z};
(v) Ce,2 = {C1 ∪ C2 : C1, C2 ∈ Ce, C1 ̸= C2, C1 ∩ C2 ̸= ∅};

(vi) C⋆e,f,2 = {Cf ∈ Cf : |Cf | ≥ 2, g ∈ Cf for some {g} ∈ C(1)e }.
Here, Ze is again the link of e in Z and thus coincides with our previously intro-

duced notation. Recall that on page 33 for a (not necessarily uniform) hypergraph X
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with V (X ) ⊆ H and integers i, s ≥ 0, we introduced the random hypergraph X [s](i) with
vertex set V (X ) and

X [s](i) = {X ∈ X : |X ∩H(i)| = s and |X ∩M(i)| = |X| − s}.

For Z ∈ Z , e, f ∈ H, v ∈ V (H) i ≥ 0, j ∈ [2ℓ] and s ≥ 0, this yields random hypergraphs

Z [s]
v (i), Z [s]

e (i), Z [s]
e,2(i), Z(j)[s]

e,2 (i), Z [s]
2 (i), Z(j)[s]

2 (i),

C[s]e,2(i), C(j)[s]e,2 (i), C⋆[s]e,f,2(i), C⋆(j)[s]e,f,2 (i).

For configurations that yield edges of these random hypergraphs that are particularly
important in Section 2.9, see Figure 2.1.

Z [s]
v (i) . . . . . .

Z [s]
e (i) . . . . . .

Z [s]
e,2(i)

. . . . . . . . . . . .

Z [s]
2 (i) . . . . . . . . .

C[s]e,2(i) . . . . . . . . .

C⋆[1]e,f,2(i)
. . .

Figure 2.1: For Z ∈ Z , v ∈ V (H), e ∈ H, i ≥ 0 and s ∈ [ℓ]: Possible edges of the respective random
hypergraphs are represented by a solid thick black outline. Dashed outlines represent tests in Z and solid
red outlines represent conflicts. Blue dots and discs represent vertices covered by and edges in M(i),
green dots and discs represent vertices and edges in H(i), black dots and grey discs represent vertices
and edges that are fixed by the choice of e or v. The number of green discs is s.

The goal of this section is to show that during the first m steps of our construction,
these random hypergraphs typically never have too many edges.

For j ≥ 1, d0 ≥ 0 and δ ∈ [0, 1], we say that a j-graph X is (d0, δ)-spread if ∆j′(X ) ≤
δj

′
d0 for all j′ ∈ [j − 1]0. Our notions of (d, ε, C)-trackability and (d, ℓ,Γ, ε)-boundedness

were carefully chosen to imply (d0, δ)-spreadness of the introduced hypergraphs as detailed
in the following Lemma 2.8.3. Hence, ensuring that this lemma holds is one of the key
motivations that leads to the conditions (C1)–(C5). To prove Lemma 2.8.3, let us first
observe that the hypergraphs Z ∈ Z share relevant properties that we collect in the
following lemma. In particular, the elements of Z0 and C share these properties, which
substantiates our approach to often treat them similarly.
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Lemma 2.8.1. Let j ∈ [ℓ] and Z ∈ Z (j). Then, the following holds.

(i) |Z| ≥ dj−ε/5;
(ii) ∆j′(Z) ≤ |Z|/dj′+4ε/5 for all j′ ∈ [j − 1];

(iii) if j = 1, then |{{e} ∈ Z : v ∈ e}| ≤ |Z|/d4ε/5 for all v ∈ V (H);

(iv) |Z ∩ C(j)e | ≤ |Z|/d4ε/5 for all e ∈ H with e↗| Z;
(v) Z is C-free for all Z ∈ Z.

Proof. First, suppose that Z ∈ Z0.
Then, (i) and (ii) are immediate from (Z1) and (Z2). To see (iii), note that if j = 1,

then due to (Z1) we have

|{{e} ∈ Z : v ∈ e}| ≤ d ≤ |Z|
dε
.

For (iv), we may again use (Z1) to conclude that for all e ∈ H we have

|Z ∩ C(j)e | ≤ ∆(C(j+1)) ≤ Γdj ≤ Γ|Z|/dε ≤ |Z|/d4ε/5.

Finally, observe that (v) is immediate from (Z4).
Now, suppose that Z ∈ C . Then, |Z| ≥ dj−ε/100 due to δ(C(j+1)) ≥ dj−ε/100, which

is a consequence of (C6). Hence, (i) holds and (C3) yields (ii). Furthermore, again due
to |Z| ≥ dj−ε/100, (iii) and (iv) follow from (C4) and (C7). Finally, (v) is a consequence
of (C9).

Before finally turning to Lemma 2.8.3, we prove the following statement that is helpful
in the proof of Lemma 2.8.3.

Lemma 2.8.2. Let j ∈ [ℓ], Z ∈ Z (j), j′ ∈ [2ℓ] and E ⊆ H with |E| ∈ [j′−1]0. If E = {e}
for some e ∈ H, suppose that e ↗| Z. Then, the number of pairs (Z,C) ∈ Z × C
with Z ∩ C ̸= ∅, |Z ∪ C| = j′, E ⊆ Z ∪ C and |C ∩ (Z ∪ E)| ≥ 2 is at most

dj
′−j−2ε/3

d|E| |Z|.

Proof. Fix i ∈ [j] and EZ , EC ⊆ E. We assume that there is at least one pair (Z,C) ∈
Z × C with

Z ∩ C ̸= ∅, |Z ∪ C| = j′, E ⊆ Z ∪ C, |C ∩ (Z ∪ E)| ≥ 2,

|Z ∩ C| = i, EZ = E ∩ Z and EC = E ∩ C

and show that the number p of such pairs is at most

dj
′−j−3ε/4

d|E| |Z|.

As there were at most j · 2|E| · 2|E| ≤ ℓ16ℓ ≤ dε/12 choices for the parameters i, EZ , EC ,
this suffices to obtain the desired upper bound. For I ⊆ H, and a hypergraph X
with V (X ) ⊆ H, we define

XI := {X ∈ X : I ⊆ X}.
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Note that here, in contrast to our notation for the link, the elements of XI are edges
of X as this is more convenient for this proof. For an integer j′′, even if the set XI
is interpreted as a hypergraph with vertex set V (X ), there is no ambiguity when we

write X (j′′)
I since {X ∈ X (j′′) : I ⊆ X} = {X ∈ XI : |X| = j′′}. Note that |C| = j′− j+ i.

If 1 ≤ |EZ | ≤ j − 1, then Lemma 2.8.1 (ii) with (C3) entails

p ≤
∑

Z∈ZEZ

∑
I∈(Zi )

|C(j
′−j+i)

I∪EC | ≤ ∆|EZ |(Z) · 2ℓ ·∆i+|E|−|EZ |(C(j
′−j+i))

≤ |Z|
d|EZ |+4ε/5

· 2ℓ · dj′−j−|E|+|EZ | ≤ dj
′−j−3ε/4

d|E| |Z|,

where we used that |I ∪EC | ≥ i+ |EC \Z| = i+ |E \Z| = i+ |E| − |EZ | for all Z ∈ ZEZ
and I ∈

(
Z
i

)
. If 2 ≤ |EC | ≤ j′−j+ i−1, then Lemma 2.8.1 (ii) with (C3) and additionally

Lemma 2.8.1 (i) if |E| − |EC |+ i = j entails

p ≤
∑

C∈C(j′−j+i)
EC

∑
I∈(Ci )

|ZEZ∪I | ≤ ∆|EC |(C(j
′−j+i)) · 2ℓ ·∆|E|−|EC |+i(Z)

≤ dj′−j+i−|EC |−ε · 2ℓ · |Z|
d|E|−|EC |+i−ε/5

≤ dj
′−j−3ε/4

d|E| |Z|.

It remains to consider the cases where |EZ | ∈ {0, j} and |EC | ∈ {0, 1, j′ − j + i}.
Since we assume p ≥ 1 and since for p, we only count pairs (Z,C) where Z ∩ C ̸= ∅
and |C ∩ (E ∪ Z)| ≥ 2, we may exclude the case where |EZ | = 0 and |EC | = j′ − j + i
and the case where |EZ | = j and |EC | ≤ 1. Indeed, if |EC | = j′ − j + i = |C|,
then C ⊆ E and hence |EZ | ≥ |Z ∩ C| = i ≥ 1, and if |EZ | = j = |Z|, then Z ⊆ E
and hence |EC | = |C ∩ (Z ∪ E)| ≥ 2. Furthermore, since |E| ≤ j′ − 1, we may also
exclude the case where |EZ | = j and |EC | = j′ − j + i. It remains to consider the case
where |E| = |EZ | = |EC | = 0 and the case where |EZ | = 0 and |EC | = 1.

Suppose |E| = |EZ | = |EC | = 0. Since we assume p ≥ 1 and only count pairs (Z,C)
where |C ∩ (E ∪ Z)| ≥ 2, we have i ≥ 2. Furthermore, since all Z ∈ Z are C-free by
Lemma 2.8.1 (v), we also have j′ ≥ j + 1. From (C3), we obtain

p ≤
∑

Z∈ZEZ

∑
I∈(Zi )

|C(j
′−j+i)

I∪EC | ≤ |Z| · 2ℓ ·∆i(C(j
′−j+i)) ≤ |Z| · 2ℓ · dj′−j−ε ≤ dj

′−j−3ε/4

d|E| |Z|.

Finally, suppose |EZ | = 0 and |EC | = 1. Here, we also have j′ ≥ j + 1. Note that by
assumption, the single element e of EC is not an immediate evictor for Z. If j′ = j + 1
and i = j, then for all the pairs (Z,C) that we count, we have C = Z ∪ {e} and hence
Lemma 2.8.1 (iv) entails

p ≤ |Z ∩ C(j)e | ≤
|Z|
d4ε/5

≤ dj
′−j−3ε/4

d|E| |Z|.
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If j′ = j + 1 and i ≤ j − 1, then Lemma 2.8.1 (ii) with (C2) entails

p ≤
∑

C∈C(j′−j+i)
EC

∑
I∈(Ci )

|ZEZ∪I | ≤ ∆(C(j′−j+i)) · 2ℓ ·∆i(Z)

≤ Γdj
′−j+i−1 · 2ℓ · |Z|

di+4ε/5
≤ dj

′−j−3ε/4

d|E| |Z|.

If j′ ≥ j + 2, then, due to (C3),

p ≤
∑

Z∈ZEZ

∑
I∈(Zi )

|C(j
′−j+i)

I∪EC | ≤ |Z|·2ℓ ·∆i+1(C(j
′−j+i)) ≤ |Z|·2ℓ ·dj′−j−1−ε ≤ dj

′−j−3ε/4

d|E| |Z|,

which completes the proof.

Lemma 2.8.3. Let j ∈ [ℓ], Z ∈ Z (j) and j′ ∈ [2ℓ]. Then, the following holds.

(i) Zv is (|Z|d−ε/2, d−1)-spread for all v ∈ V (H);

(ii) Ze is (|Z|d−1−ε/2, d−1)-spread for all e ∈ H;
(iii) Z(j′)

e,2 is (|Z|dj′−j−ε/2, d−1)-spread for all e ∈ H with e↗| Z2;

(iv) Z(j′)
2 is (|Z|dj′−j−ε/2, d−1)-spread;

(v) C(j
′)

e,2 is (dj
′−ε/2, d−1)-spread for all e ∈ H;

(vi) C⋆(j
′)

e,f,2 is (dj
′−ε/2, d−1)-spread for all disjoint e, f ∈ H.

Proof. We prove (i)–(vi) individually.

(i) Fix v ∈ V (H) and E ⊆ H with |E| ∈ [j − 1]0. Suppose first that |E| = 0. If j = 1,
then as a consequence of Lemma 2.8.1 (iii) and otherwise as a consequence of ∆(H) ≤ d
and Lemma 2.8.1 (ii), we obtain

dZv(E) ≤ |Z|
d4ε/5

≤ |Z|d
−ε/2

d|E| .

Suppose that |E| ≥ 1. Then Lemma 2.8.1 (ii) yields

dZv(E) ≤ dZ(E) ≤ ∆|E|(Z) ≤ |Z|
d|E|+4ε/5

≤ |Z|d
−ε/2

d|E| .

(ii) Fix e ∈ H and E ⊆ H with |E| ∈ [j − 2]0. If e ∈ E, then dZe(E) = 0. Hence, we
may assume that e /∈ E. Then, due to Lemma 2.8.1 (ii),

dZe(E) = dZ(E ∪ {e}) ≤ ∆|E|+1(Z) ≤ |Z|
d|E|+1+4ε/5

≤ |Z|d
−1−ε/2

d|E| .

2That we need the additional assumption that e is not an immediate evictor for Z will not be an issue
as we later circumvent this restriction (see Lemma 2.9.17).
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(iii) Fix e ∈ H that is not an immediate evictor for Z and E ⊆ H with |E| ∈ [j′ − 1]0.
If e /∈ E, then the number of pairs (Z,C) ∈ Z × C with Z ∩ C ̸= ∅, |Z ∪ C| ∈
{j′, j′ + 1}, E ∪ {e} ⊆ Z ∪C and |C ∩ (Z ∪E ∪ {e})| ≥ 2 is an upper bound for d

Z(j′)
e,2

(E)

and so Lemma 2.8.2 with E ∪ {e} playing the role of E yields the desired bound.
If e ∈ E, then the number of (Z,C) ∈ Z × C with Z ∩ C ̸= ∅, |Z ∪ C| = j′, E ⊆ Z ∪ C
and |C ∩ (Z ∪E)| ≥ 2 is an upper bound for d

Z(j′)
e,2

(E) and so also in this case the desired

bound follows from Lemma 2.8.2.

(iv) Fix E ⊆ H with |E| ∈ [j′− 1]0. The number of pairs (Z,C) ∈ Z ×C with Z ∩C ̸=
∅, |Z ∪C| = j′, E ⊆ Z ∪C and |C ∩ (Z ∪E)| ≥ 2 is an upper bound for d

Z(j′)
2

(E) and so

Lemma 2.8.2 yields the desired bound if E does not contain an immediate evictor for Z.
Due to (C9), no edge of Z2 contains an edge of H that is an immediate evictor for Z.
Hence, when considering a pair (Z,C) ∈ Z ×C with |Z ∩C| ≥ 2, |Z ∪C| = j′ and g ↗| Z
for all g ∈ C \Z, the union Z ∪C does not contain an immediate evictor for Z. Thus, no
edge of Z2 contains an immediate evictor for Z, so whenever E contains an immediate
evictor for Z, we have d

Z(j′)
2

(E) = 0.

(v) Fix e ∈ H and E ⊆ H with |E| ∈ [j′ − 1]0. The number of pairs (C1, C2) ∈ Ce × Ce
with C1 ̸= C2, C1 ∩ C2 ≠ ∅, |C1 ∪ C2| = j′ and E ⊆ C1 ∪ C2 is an upper bound
for d

C(j′)
e,2

(E). Note that for any such pair, the semiconflicts C1 and C2 both have size at

least 2 as otherwise, one would be a subset of the other which, for distinct C1, C2 ∈ Ce,
contradicts (C9). Fix j1, j2 ∈ [ℓ]2 and let p denote the number of such pairs (C1, C2) with
additionally |C1| = j1 and |C2| = j2. Since we have ℓ2 ≤ dε/6, it suffices to show that

p ≤ dj
′−2ε/3

d|E|

whenever p ≥ 1. Hence, assume that p ≥ 1.
If |E| = 0, then, since we only count pairs (C1, C2) with C1 ̸= C2, Condition (C9)
implies j1 ≤ j′ − 1, hence we have j1 + j2 − j′ + 1 ≤ j2, and so by (C2) and (C3), we
obtain

p ≤
∑

C1∈C
(j1)
e

∑
I∈( C1

j1+j2−j′
)

|C(j2+1)
I∪{e} | ≤ ∆(C(j1+1)) · 2ℓ ·∆j1+j2−j′+1(C(j2+1))

≤ Γdj1 · 2ℓ · dj′−j1−ε ≤ dj
′−2ε/3

d|E| .

No edge of Ce,2 contains e, so the assumption p ≥ 1 entails e /∈ E. Hence, if |E| ≥ 1,

then the number of pairs (C1, C2) ∈ C(j1)e × C(j2+1) with C1 ∩ C2 ̸= ∅, |C1 ∪ C2| =
j′ + 1, E ∪ {e} ⊆ C1 ∪ C2 and |C2 ∩ (C1 ∪ E ∪ {e})| ≥ 2 is an upper bound for p and so

Lemma 2.8.2 with C(j1)e playing the role of Z yields the desired bound.

(vi) Fix disjoint e, f ∈ H and E ⊆ H with |E| ∈ [j′ − 1]0. If |E| = 0, then, due to (C2)
and (C3),

dC⋆e,f,2(E) ≤
∑

C1∈C(1)
e

|{C2 ∈ C(j
′)

f : C1 ⊆ C2}| ≤ ∆(C(2)) ·∆2(C(j
′+1))
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≤ Γd · dj′−1−ε ≤ dj′−ε/2.

Clearly, if f ∈ E, we have dC⋆e,f,2(E) = 0. If |E| ≥ 1 and f /∈ E, then, by (C3),

dC⋆e,f,2(E) ≤ dC(j′)(E ∪ {f}) ≤ ∆|E|+1(C(j
′+1)) ≤ dj′−|E|−ε,

which completes the proof.

For an integer i ≥ 0, let A(i) denote the availability event that we still have many
edges available at the end of step i, or more precisely |H|(i) ≥ d1−ε/(48ℓ)n/k (observe that
this is rather a rough lower bound, which does not even depend on i). If A(i) occurs for
some i ≥ 0, then there were many choices for the randomly selected edges e(1), . . . , e(i+1).
The following statement is a direct consequence of this observation. For an earlier
derivation of such a statement using a similar argument see [15, Lemma 4.1].

Lemma 2.8.4. Let i ≥ 1 and E ⊆ H. Then,

P[A(i− 1) ∩ {E ⊆M(i)}] ≤
(
dε/(48ℓ)

d

)|E|
.

Proof. We employ a union bound over all choices of times at which the elements of E
may be chosen as an element of M(i).

Let j := |E|, fix an injection σ : E ↪→ [i] and consider an ordering i1 < . . . < ij of the
image of σ. For j′ ∈ [j], let ej′ := σ−1(ij′) and E(j′) := A(ij′ − 1) ∩ {e(ij′) = ej′}. We
obtain

P
[
A(i− 1) ∩

⋂
j′∈[j]

{e(ij′) = ej′}
]
≤ P

[ ⋂
j′∈[j]

E(j′)
]

=
∏
j′∈[j]

P
[
E(j′)

∣∣∣ ⋂
j′′∈[j′−1]

E(j′′)
]

≤
∏
j′∈[j]

P
[
e(ij′) = ej′

∣∣∣ A(ij′ − 1) ∩
⋂

j′′∈[j′−1]

E(j′′)
]

≤
(

k

d1−ε/(48ℓ)n

)j
.

Since ij ≤ (n/k)j , a union bound over all possible choices of σ completes the proof.

Using the moment based approach used in [18, Proof of Theorem 3.5], Lemma 2.8.4
yields the following statement.

Lemma 2.8.5. Let j ∈ [2ℓ]. Suppose X is a (d0, d
−1)-spread j-graph with V (X ) ⊆ H

and let i ∈ [m] and s ∈ [j]0. Then,

P
[
A(i− 1) ∩

{
|X [s]|(i) ≥ max{d0, dj−s}

dj−s−ε/12

}]
≤ exp(−dε/(200ℓ)).

Here, note that d0 ≥ dj−1 since X is (d0, d
−1)-spread.
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Proof. The moments of the random variable 1A(i−1)|X [s]|(i) depend on which unions of
subsets of edges of X form a subset ofM(i). Using Lemma 2.8.4 to bound the probability
that such a union is a subset of M(i) and the spreadness of X to see that there are
not too many small unions, for sufficiently large r, we obtain a suitable upper bound
for the r-th moment of 1A(i−1)|X [s]|(i). This then allows us to obtain the desired upper
bound for

P
[
A(i− 1) ∩

{
|X [s]|(i) ≥ max{d0, dj−s}

dj−s−ε/12

}]
= P

[
1A(i−1)|X [s]|(i) ≥ max{d0, dj−s}

dj−s−ε/12

]
as a consequence of Markov’s inequality.

Let us turn to the details. First, note the following. The (d0, d
−1)-spreadness of X

guarantees ∆j′(X ) ≤ d0/dj′ for all j′ ∈ [j − 1]0. Thus, for all j′ ∈ [j − s]0 we obtain

∆j′(X ) ≤ max

{
d0
dj′
, 1

}
. (2.8.1)

To handle the relevant intersections of edges of X with the matchingM(i) we introduce

Xj−s :=

{
(X,M) ∈ X ×

( H
j − s

)
: M ⊆ X

}
.

If Xr for an integer r ≥ 1 denotes a pair in Xj−s, we use Mr to denote the second
component of Xr. For all integers r ≥ 1, Lemma 2.8.4 implies

E[(1A(i−1)|X [s]|(i))r] ≤ E
[
1A(i−1)

( ∑
X1∈Xj−s

1{M1⊆M(i)}

)r]
=

∑
X1,...,Xr∈Xj−s

E
[
1A(i−1)

∏
r′∈[r]

1{Mr′⊆M(i)}

]
≤

∑
X1,...,Xr∈Xj−s

dεr(j−s)/(48ℓ)

d|
⋃
r′∈[r]Mr′ |

≤
∑

X1,...,Xr∈Xj−s

dεr/24

d|
⋃
r′∈[r]Mr′ |

.

(2.8.2)

Using (2.8.1) with j′ = 0, we obtain∑
X1∈Xj−s

1

d|M1|
≤

∆0(X ) ·
(
j
j−s
)

dj−s
≤ 4ℓ

d0
dj−s

. (2.8.3)

Furthermore, for all integers r ≥ 2, we have∑
X1,...,Xr∈Xj−s

1

d|
⋃
r′∈[r]Mr′ |

=
∑

X1,...,Xr−1∈Xj−s

1

d|
⋃
r′∈[r−1]Mr′ |

∑
Xr∈Xj−s

d|Mr∩
⋃
r′∈[r−1]Mr′ |

dj−s
.

For all X1, . . . , Xr−1 ∈ Xj−s and M :=
⋃
r′∈[r−1]Mr′ , exploiting again (2.8.1) for appro-

priate values of j′, we obtain

∑
Xr∈Xj−s

d|Mr∩M |

dj−s
≤

∑
Nr⊆M :
|Nr|≤j−s

∑
Xr∈Xj−s :
Nr⊆Mr

d|Nr|

dj−s
≤

∑
Nr⊆M :
|Nr|≤j−s

∆|Nr|(X ) ·
( j−|Nr|
j−s−|Nr|

)
· d|Nr|

dj−s
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≤
∑

Nr⊆M :
|Nr|≤j−s

4ℓ
max{d0, d|Nr|}

dj−s
≤ (4ℓr)2ℓ max

{
d0
dj−s

, 1

}
.

Thus, for all integers r ≥ 2,∑
X1,...,Xr∈Xj−s

1

d|
⋃
r′∈[r]Mr′ |

≤ (4ℓr)2ℓ max

{
d0
dj−s

, 1

} ∑
X1,...,Xr−1∈Xj−s

1

d|
⋃
r′∈[r−1]Mr′ |

. (2.8.4)

Induction over r combining (2.8.3) and (2.8.4) shows that for all integers r ≥ 1, we have∑
X1,...,Xr∈Xj−s

1

d|
⋃
r′∈[r]Mr′ |

≤ (4ℓr)2ℓr max

{
dr0

dr(j−s)
, 1

}
.

With (2.8.2), this yields

E[(1A(i−1)|X [s]|(i))r] ≤ (4ℓr)2ℓr
max{dr0, dr(j−s)}
dr(j−s−ε/24)

.

Markov’s inequality entails

P
[
1A(i−1)|X [s]|(i) ≥ max{d0, dj−s}

dj−s−ε/12

]
= P

[
(1A(i−1)|X [s]|(i))r ≥ max{dr0, dr(j−s)}

dr(j−s−ε/12)

]
≤ (4ℓr)2ℓr

dεr/24

and for r = dε/(200ℓ), we obtain

(4ℓr)2ℓr

dεr/24
=

(
(4ℓr)2ℓ

dε/24

)r
≤ exp(−r),

which completes the proof.

For i ≥ 0, we introduce a spreadness event S(i) that occurs whenever relevant configu-
rations are spread out at the end of step i. More specifically, for i ≥ 0, let denote the
event that for all j ∈ [ℓ] and Z ∈ Z (j), the following holds.

(i) |Z [s]
v |(i) ≤ ds−j−ε/3|Z| for all v ∈ V (H) and s ∈ [ℓ];

(ii) |Z [s]
e |(i) ≤ ds−j−ε/3|Z| for all e ∈ H and s ∈ [ℓ]0 with s ≥ 1C (Z);

(iii) |Z [s]
e,2|(i) ≤ ds−j−ε/3|Z| for all e ∈ H with e↗| Z and s ∈ [ℓ];

(iv) |Z [s]
2 |(i) ≤ ds−j−ε/3|Z| for all s ∈ [ℓ]2;

(v) |C[s]e,2|(i) ≤ ds−ε/3 for all e ∈ H and s ∈ [ℓ− 1];

(vi) |C⋆[1]e,f,2|(i) ≤ d1−ε/3 for all disjoint e, f ∈ H.

Combining Lemmas 2.8.3 and 2.8.5, we conclude our observations in this section with
the following statement showing that spreadness typically persists during the construction
of the matching as long as many edges remain available.
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Lemma 2.8.6. We have P[S(0)c ∪⋃i∈[m](A(i− 1) ∩ S(i)c)] ≤ exp(−dε/400ℓ).

Proof. Choose i ∈ [m], s ∈ [ℓ]0 with s ≥ 1C (Z), j ∈ [ℓ], Z ∈ Z (j), v ∈ V (H), e, f ∈ H
and X ∈ {Zv,Ze,Ze,2,Z2, Ce,2, C⋆e,f,2} such that e is not an immediate evictor for Z
if X = Ze,2. Note that there were at most

m · (ℓ+ 1) · ℓ · (|Z0|+ |H|) · n · |H|2 · 6 ≤ 12ℓ2d2n4(|Z0|+ ℓdn) ≤ exp(9dε/(400ℓ))

possible choices for these parameters. If X ∈ {Zv,Ze,Ze,2,Z2}, let a := |Z| and otherwise
let a := dj . Lemma 2.8.3 shows that for all j′ ∈ [2ℓ], the j′-graph X (j′) is (adj

′−j−ε/2, d−1)-
spread3 and thus Lemma 2.8.5 yields

P[A(i− 1) ∩ {|X [s]|(i) ≥ ads−j−ε/3}] ≤ P
[ ⋃
j′∈[2ℓ]

A(i− 1) ∩
{
|X (j′)[s]|(i) ≥ ads−j−ε/3

2ℓ

}]

≤ P
[ ⋃
j′∈[2ℓ]

A(i− 1) ∩
{
|X (j′)[s]|(i) ≥ adj

′−j−ε/2

dj′−s−ε/12

}]
≤ exp(−dε/(300ℓ)).

Hence, considering the definition of the event S(i), with a suitable union bound over the
at most exp(9dε/(400ℓ)) choices for the parameters, we obtain

P
[ ⋃
i∈[m]

A(i− 1) ∩ S(i)c
]
≤ exp(9dε/(400ℓ)) · exp(−dε/(300ℓ)) ≤ exp(−dε/400ℓ).

As Lemma 2.8.3 shows that S(0)c = ∅, this completes the proof.

2.9 Tracking key random variables

In this section, our goal is to prove Theorem 2.6.2 by formally showing that the relevant
quantities indeed typically follow the idealized trajectories given in Section 2.7.

To this end we extend the previously defined p̂V (i), p̂M (i), Γ̂(i), ĥ(i), d̂(i), ẑj,s(i)
and ĉ(i) to continuous trajectories by introducing the following functions. For j ∈ [ℓ]
and s ∈ [ℓ]0, let p̂V , p̂M , Γ̂, ĥ, d̂, ẑj,s, ĉ denote functions such that for all x ∈ [0, n/k],

p̂V (x) = 1− kx

n
, p̂M (x) =

kx

dn
, Γ̂(x) =

∑
j∈[ℓ]2

∆(C(j)) · p̂M (x)j−1,

d̂(x) = d · p̂V (x)k−1 · exp(−Γ̂(x)), ĥ(x) =
n

k
· p̂V (x) · d̂(x),

ẑj,s(x) =

(
j

s

)
·
(
p̂V (x)k · exp(−Γ̂(x))

)s · p̂M (x)j−s

3Note here that for many values of j′, the spreadness holds trivially since the respective j′-graph is
empty. For example, when considering Ze, the only relevant case is when j′ = j − 1.
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and ĉ(x) =
∑

j∈[ℓ−1]

∆(C(j+1)) · ẑj,1(x),

where we set 00 := 1 and
(
j
s

)
:= 0 whenever s /∈ [j]0. Furthermore, we introduce the

following error functions. For j ∈ [ℓ] and s ∈ [ℓ]0, let ξ, δ, η, ζj,s, γ denote functions such
that for all x ∈ [0, n/k],

ξ(x) =

(
1

p̂V (x)

)300kℓΓ

· d−ε/32, δ(x) = ξ(x) · d̂(x), η(x) = ξ(x) · ĥ(x),

ζj,s(x) = ξ(x) ·
(
ẑj,s(x) +

(
j

s

)
d̂(x)s

Γℓdj

)
and γ(x) = 2

∑
j∈[ℓ−1]

∆(C(j+1)) · ζj,1(x).

Let us gather some useful bounds for the trajectories and error functions.

Remark 2.9.1. For all j ∈ [ℓ], s ∈ [ℓ]0 and x ∈ [0,m], we have

µ ≤ p̂V (x) ≤ 1, 0 ≤ p̂M (x) ≤ 1

d
, 0 ≤ Γ̂(x) ≤ Γ,

d1−ε/400 ≤ d̂(x) ≤ d, d1−ε/400n ≤ ĥ(x) ≤ dn,
0 ≤ ẑj,s(x) ≤ ds−j+ε/400, 0 ≤ ĉ(x) ≤ d1+ε/400,

d−ε/32 ≤ ξ(x) ≤ d−ε/64, d1−ε/16 ≤ δ(x) ≤ d1−ε/64,
d1−ε/16n ≤ η(x) ≤ d1−ε/64n, ds−j−ε/16 ≤ ζj,s(x) ≤ ds−j−ε/100.

For i ≥ 0, we introduce a tracking event T (i) that occurs whenever relevant quantities
are close to the corresponding trajectories at the end of step i. More specifically, for i ≥ 0,
let T (i) denote the event that for all v ∈ V (i), e ∈ H(i), j ∈ [ℓ], Z ∈ Z (j)(i) and s ∈ [ℓ]0
satisfying s ≥ 1C (Z), we have

|H|(i) = ĥ(i)± η(i), |Dv|(i) = d̂(i)± δ(i),
|C[1]e |(i) = ĉ(i)± γ(i) and |Z [s]|(i) = (ẑj,s(i)± ζj,s(i))|Z|.

At the end of this section, we prove the following statement.

Theorem 2.9.2. We have P[T (0) ∩ . . . ∩ T (m)] ≥ 1− exp(−dε/(500ℓ)).

Note that since relevant values of the error functions are sufficiently small as detailed in
Fact 2.9.1, Theorem 2.6.2 is a direct consequence of Theorem 2.9.2. Indeed, if T (m) occurs,
then |H|(i) ≥ |H|(m) > 0 for all i ∈ [m] which entails |M|(m) = m and furthermore, for

all j ∈ [ℓ] and Z ∈ Z
(j)
0 , we have

|{Z ∈ Z : Z ⊆M(m)}| = |Z [0]|(m) = (ẑj,0(m)± ζj,0(m))|Z| = (1± d−ε/75)
(
km

dn

)j
|Z|.

We write X =E Y for two expressions X and Y and an event E , to express the statement
that X and Y represent (possibly constant) random variables that are equal whenever E
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occurs, or equivalently, to express that X · 1E = Y · 1E . Similarly, we write X ≤E Y
to mean X · 1E ≤ Y · 1E and X ≥E Y to mean X · 1E ≥ Y · 1E . Hence, whenever we
use =E , ≤E or ≥E to relate random variables, this allows us to assume that E occurred.
Usually E will be an event with E ⊆ S(i) ∪ T (i) for some i ≥ 0 which then allows us to
employ the properties used to define the events S(i) and T (i) on pages 43 and 45. Note
that whenever X =E Y , then also for all events E ′ ⊆ E , we have X =E ′ Y (and similarly
for ≤E and ≥E).

In this section we often encounter probabilities and expectations conditioned on the
elements of the filtration F(0),F(1), . . ., so for an event E , a random variable X and i ≥ 0,
we introduce the shorthands Pi[E ] := P[E | F(i)] and Ei[X] := E[X | F(i)].

To prove Theorem 2.9.2, first observe that it suffices to focus on Dv(i) and Z [s](i).

Lemma 2.9.3. Let i ≥ 0 and let T ′(i) denote the event that for all v ∈ V (i), j ∈ [ℓ], Z ∈
Z (j)(i) and s ∈ [ℓ]0 with s ≥ 1C (Z), we have

|Dv|(i) = d̂(i)± δ(i) and |Z [s]|(i) = (ẑj,s(i)± ζj,s(i))|Z|.
Then, T ′(i) = T (i).

Proof. Obviously, we have T (i) ⊆ T ′(i), so it suffices to show that T ′(i) ⊆ T (i), that is

that whenever T ′(i) occurs, we have |H|(i) = ĥ(i) ± η(i) and |C[1]e |(i) = ĉ(i) ± γ(i) for
all e ∈ H(i).

Let X := T ′(i). We have

|H|(i) =
1

k

∑
v∈V (i)

|Dv|(i) =X (d̂(i)± δ(i))n− ki
k

= (d̂(i)± δ(i))n
k
p̂V (i) = ĥ(i)± η(i).

Furthermore, for all e ∈ H(i) and j ∈ [ℓ− 1], using δ(C(j+1)) ≥ (1− d−ε)∆(C(j+1)), we
obtain

|C(j)[1]e |(i) =X (ẑj,1(i)± ζj,1(i))|C(j)e | = (ẑj,1(i)± ζj,1(i))(1± d−ε)∆(C(j+1))

=

(
ẑj,1(i)±

ξ(i)ẑj,1(i)

2
± 3ζj,1(i)

2

)
∆(C(j+1)) = (ẑj,1(i)± 2ζj,1(i))∆(C(j+1)).

Thus
|C[1]e |(i) =

∑
j∈[ℓ−1]

|C(j)[1]e |(i) =X ĉ(i)± γ(i),

which completes the proof.

To control |Dv|(i) and |Z [s]|(i), we employ the following version of Freedman’s inequality
for supermartingales.

Lemma 2.9.4 (Freedman’s inequality for supermartingales [39]). Suppose that the
sequence X(0), X(1), . . . is a supermartingale with respect to a filtration X(0),X(1), . . .
such that |X(i + 1) −X(i)| ≤ a for all i ≥ 0 and

∑
i≥0 E[|X(i + 1) −X(i)| | X(i)] ≤ b.

Then, for all t > 0,

P[X(i) ≥ X(0) + t for some i ≥ 0] ≤ exp

(
− t2

2a(t+ b)

)
.
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To this end, for i ≥ 0, v ∈ V (H), j ∈ [ℓ], Z ∈ Z (j) and s ∈ [ℓ]0 with s ≥ 1C (Z), we
define the differences

|Dv|+(i) := |Dv|(i)− (d̂(i) + δ(i)), |Dv|−(i) := (d̂(i)− δ(i))− |Dv|(i),
|Z [s]|+(i) := |Z [s]|(i)− (ẑj,s(i) + ζj,s(i))|Z|

and |Z [s]|−(i) := (ẑj,s(i)− ζj,s(i))|Z| − |Z [s]|(i)

that measure by how much the respective random variable exceeds the permitted deviation
from its idealized trajectory. Hence, we aim to show that these four quantities are negative.
We wish to analyze the process only while it is well behaved. To this end, for v ∈ V (H)
and Z ∈ Z , we define the (random) freezing times

τS := min{i ≥ 0 : S(i)c occurs}, τT := min{i ≥ 0 : T (i)c occurs},
τv := min{i ≥ 0 : v /∈ V (i+ 1)} and τZ := min{i ≥ 0 : Z /∈ Z (i+ 1)})

where we set min ∅ :=∞. Note that τS and τT are stopping times with respect to the
filtration F(0),F(1), . . ., that is, we have {τS = i}, {τT = i} ∈ F(i) for all i ≥ 0, while τv
and τe are not. As we do not use that these random variables are stopping times with
respect to our filtration, we generally avoid the term stopping time and call them freezing
times instead. Also note that τZ is essentially only meaningful for Z ∈ C . Indeed,

for Z ∈ Z0, we have τZ = ∞ and for Z = C(j)e ∈ C , we have τZ = min{i ≥ 0 : e /∈
H(i+ 1)}).

Using these freezing times, we define the following random variables forming processes
that correspond to those introduced above and that freeze whenever something undesirable
happens.

|Dv|+f (i) := |Dv|+(min(τS , τT , τv,m, i)), |Dv|−f (i) := |Dv|−(min(τS , τT , τv,m, i)),

|Z [s]|+f (i) := |Z [s]|+(min(τS , τT , τZ ,m, i))

and |Z [s]|−f (i) := |Z [s]|−(min(τS , τT , τZ ,m, i)).

Dedicating the following sections to the details, our argument that proves Theorem 2.9.2
goes as follows. Since for all i ≤ m, we have

ĥ(i)− η(i) ≥ dnµk exp(−Γ)

2k
≥ µ2kΓdn

k
≥ µΓℓ/(48ε1/2ℓ)dn

k
≥ d1−ε/(48ℓ)n

k
, (2.9.1)

the event A(i) occurs whenever T (i) occurs, so Lemma 2.8.6 shows that with high
probability, spreadness is given at the start in the sense that S(0) occurs and that for all
steps i ∈ [m− 1]0 where T (i) occurs, we have spreadness in the next step in the sense
that S(i+ 1) occurs. In other words, Lemma 2.8.6 implies that τS > min(τT ,m) happens
with high probability. Investigations of the one-step changes of the processes

|Dv|+f (0), |Dv|+f (1), . . . , |Dv|−f (0), |Dv|−f (1), . . . ,

|Z [s]|+f (0), |Z [s]|+f (1), . . . and |Z [s]|−f (0), |Z [s]|−f (1), . . .
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show that

|Dv|+f (m) ≤ 0, |Dv|−f (m) ≤ 0, |Z [s]|+f (m) ≤ 0 and |Z [s]|−f (m) ≤ 0 (2.9.2)

happen with high probability as a consequence of Freedman’s inequality for super-
martingales. Note that Lemma 2.9.3 shows that whenever τT ≤ min(τS ,m), then there
are ∗ ∈ {+,−} and v ∈ V (H) with |Dv|∗f (τT ) > 0 or ∗ ∈ {+,−}, Z ∈ Z and s ∈ [ℓ]0
with s ≥ 1C (Z) and |Z [s]|∗f (m) > 0 which, due to the freezing, propagates to step m in the
sense that (2.9.2) is violated. Hence, as this happens only with very low probability, we typ-
ically have τT > min(τS ,m). Knowing that both τS > min(τT ,m) and τT > min(τS ,m)
typically happen, we conclude that typically τT > m holds and thus T (m) typically
occurs as claimed in Theorem 2.9.2.

For our analysis in this section it is often crucial that the process is well behaved in
step i for some i ≥ 0 in the sense that S(i) and T (i) occurred. Hence, we define the
good event G(i) := S(i) ∩ T (i). Recall that configurations that yield edges of the random
hypergraphs considered in the definition of S(i) and that are particularly important for
many of the proofs in this section are visualized in Figure 2.1.

2.9.1 Derivatives and auxiliary bounds

Before we turn to the ingredients for the application of Freedman’s inequality for su-
permartingales, let us state some further properties related to the derivatives of the
trajectories and their corresponding error terms.

The main motivation for the choice of ξ in the definition of the error functions is the fact
that ξ′(x)/ξ(x) is a suitable multiple of the upper bound 2kΓ

np̂V (x) in Lemma 2.9.5 and the

factor 3kℓΓ
np̂V (x) in Lemma 2.9.6. This then yields the lower bounds for the derivatives of the

error terms given in Fact 2.9.8 which in turn are crucial for proving that for ∗ ∈ {+,−},
the processes

|Dv|∗f (0), |Dv|∗f (1), . . . and |Z [s]|∗f (0), |Z [s]|∗f (1), . . .

are supermartingales.

Lemma 2.9.5. Let x ∈ [0,m]. Then,

ĉ(x) + d̂(x)

ĥ(x)
≤ 2kΓ

np̂V (x)
.

Proof. Recall that for all j ∈ [ℓ]2, the Binomial theorem implies that(
j

1

)(
1− kx

dn

)(
kx

dn

)j−1

≤
j∑
s=0

(
j

s

)(
kx

n

)j−s(
1− kx

n

)s
=

(
kx

n
+ 1− kx

n

)j
= 1.

This yields

ĉ(x) + d̂(x)

ĥ(x)
=

k

np̂V (x)
+

k

dn

∑
j∈[ℓ−1]

∆(C(j+1)) ·
(
j

1

)
· p̂M (x)j−1
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=
k

np̂V (x)
+

k

np̂V (x)

∑
j∈[ℓ−1]

∆(C(j+1))

dj
·
(
j

1

)(
1− kx

n

)(
kx

n

)j−1

≤ k

np̂V (x)
+

kΓ

np̂V (x)
,

which completes the proof.

Lemma 2.9.6. Let j ∈ [ℓ], s ∈ [ℓ]0 and x ∈ [0,m]. Then,

(s+ 1)
ζj,s+1(x)

ĥ(x)
≤ 3kℓΓ

np̂V (x)
ζj,s(x).

Proof. We assume that s+ 1 ≤ j, as otherwise ζj,s+1(x) = 0. We show that ζj,s+1(x) ≤
3ℓΓ
s+1 d̂(x)ζj,s(x) which is equivalent to the inequality in the statement. Recall that for

all s ∈ [j]0, we have ζj,s(x) = ξ(x)ẑj,s(x) + ξ(x)
(
j
s

) d̂(x)s
Γℓdj

. We bound each of ξ(x)ẑj,s+1

and ξ(x)
(
j
s+1

) d̂(x)s+1

Γℓdj
separately, where for the first one we use a multiple of ξ(x)

(
j
s

) d̂(x)s
Γℓdj

as an upper bound whenever x is small and a multiple of ξ(x)ẑj,s(x) as an upper bound
otherwise.

First, consider ξ(x)ẑj,s+1(x). If kx/n ≤ 1/2, then

ξ(x)ẑj,s+1(x) = ξ(x) ·
(

j

s+ 1

)
· (p̂V (x)k · exp(−Γ̂(x)))s+1 ·

(
kx

dn

)j−s−1

= (j − s)
(
kx

n

)j−s−1

p̂V (x)s+1 · Γℓ

s+ 1
d̂(x) · ξ(x)

(
j

s

)
d̂(x)s

Γℓdj

≤ (j − s)
(

1

2

)j−s−1

p̂V (x)s+1 · Γℓ

s+ 1
d̂(x) · ζj,s(x) ≤ Γℓ

s+ 1
d̂(x) · ζj,s(x).

If kx/n ≥ 1/2, then

ξ(x)ẑj,s+1(x) =
j − s
s+ 1

p̂V (x)d̂(x)
n

kx
· ξ(x)ẑj,s(x) ≤ 2ℓ

s+ 1
d̂(x)ζj,s(x).

Thus, for arbitrary x,

ξ(x)ẑj,s+1(x) ≤ 2Γℓ

s+ 1
d̂(x)ζj,s(x). (2.9.3)

Next, consider ξ(x)
(
j
s+1

) d̂(x)s+1

Γℓdj
. We have

ξ(x)

(
j

s+ 1

)
d̂(x)s+1

Γℓdj
=
j − s
s+ 1

d̂(x) · ξ(x)

(
j

s

)
d̂(x)s

Γℓdj
≤ ℓ

s+ 1
d̂(x) · ζj,s(x).

Combining this with (2.9.3) yields

ζj,s+1(x) = ξ(x)ẑj,s+1(x) + ξ(x)

(
j

s+ 1

)
d̂(x)s+1

Γℓdj
≤ 3Γℓ

s+ 1
d̂(x)ζj,s(x),

which completes the proof.
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Remark 2.9.7. Let x ∈ [0,m], j ∈ [ℓ] and s ∈ [ℓ]0. Then,

Γ̂′(x) =
∑
j∈[ℓ]2

∆(C(j))
dj−1

· (j − 1) ·
(
k

n

)j−1

xj−2 =
ĉ(x)

ĥ(x)
,

ξ′(x) =
300k2ℓΓ

np̂V (x)
ξ(x),

d̂′(x) = −
(

Γ̂′(x) +
k(k − 1)

np̂V (x)

)
d̂(x) = −

(
ĉ(x) + (k − 1)d̂(x)

ĥ(x)

)
d̂(x),

ẑ′j,s(x) =
s+ 1

ĥ(x)
ẑj,s+1(x)− s

(
Γ̂′(x) +

k2

np̂V (x)

)
ẑj,s(x)

=
s+ 1

ĥ(x)
ẑj,s+1(x)− s ĉ(x) + kd̂(x)

ĥ(x)
ẑj,s(x),

δ′(x) =

(
300k2ℓΓ

np̂V (x)
− Γ̂′(x)− k(k − 1)

np̂V (x)

)
δ(x),

ζ ′j,s(x) =

(
300k2ℓΓ

np̂V (x)
− sΓ̂′(x)− k2s

np̂V (x)

)
ζj,s(x)

+(s+ 1)
ξ(x)ẑj,s+1(x)

ĥ(x)
+ s

(
j

s

)
ξ(x)d̂(x)s+1

Γℓdj ĥ(x)
.

Let us provide some intuition for d̂′ and ẑ′j,s. For i ∈ [m − 1]0, consider the choice
of e(i+1) in step i+1 of Algorithm 2.6.1 assuming that G(i) occurred. For all v ∈ V (i), all
of the approximately d̂(i) edges e ∈ Dv(i) may become unavailable due to a conflict C ∈ C
with {e, e(i+ 1)} = C \M(i) or due to a nonempty intersection e∩ e(i+ 1). Since for all
conflicts C ∈ C, all distinct edges f, f ′ ∈ C are disjoint, e becomes unavailable either due to
a conflict or a nonempty intersection, never both at once. For an edge e ∈ H(i) containing
a vertex v that will not be covered byM(i+ 1) the number of possible choices for e(i+ 1)
that make e unavailable may be estimated as follows, where for the approximations we
ignore some overcounting which is negligible due to S(i) occurring and ∆2(H) ≤ d1−ε

as we show in the subsequent sections. The number of possible choices that make e
unavailable due to conflicts is approximately the number of conflicts C ∈ C with e ∈ C
and |C \M(i)| = 2, so there are |C[1]e |(i) ≈ ĉ(i) such choices. Since we assume that v
will not be covered by M(i+ 1), the number of possible choices for e(i+ 1) that make e
unavailable due to a nonempty intersection is approximately

∑
u∈e\{v}|Du|(i) ≈ (k−1)d̂(i).

Since for all e ∈ H(i), the probability that e is chosen to be e(i+ 1) is 1/|H|(i) ≈ 1/ĥ(i),
this suggests d̂′(i) for the one-step change |Dv(i+ 1)| − |Dv(i)|.

Similarly, for all j ∈ [ℓ], Z ∈ Z (j)(i) and s ∈ [j]0, tests Z ∈ Z [s+1](i) where one of
the s + 1 available edges e ∈ Z is chosen to be e(i + 1) will be present in Z [s](i) and
tests Z ∈ Z [s](i) where one of the s available edges e ∈ Z becomes unavailable (due to
conflicts or intersections) will no longer be contained in Z [s](i+1). Again, for all e ∈ H(i),
the probability that e is chosen to be e(i+ 1) is approximately 1/ĥ(i) and similarly as
above, now without the constraint that e contains some vertex v that will not be covered
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by M(i+ 1), the probability e becomes unavailable is approximately (ĉ(i) + kd̂(i))/ĥ(i).
Hence, when transitioning from Z [s](i) to Z [s](i+1), we expect to gain approximately (s+
1)|Z [s+1]|(i)/ĥ(i) ≈ (s + 1)ẑj,s+1(i)|Z|/ĥ(i) tests and to lose approximately s(ĉ(i) +

kd̂(i))ẑj,s(i)|Z|/ĥ(i) tests. This suggests ẑ′j,s(i) · |Z| for the one-step change |Z [s]|(i +

1)− |Z [s]|(i).

Remark 2.9.8. Let x ∈ [0,m], j ∈ [ℓ] and s ∈ [ℓ]0. Then,

Γ̂′(x) ≤ kℓΓ

np̂V (x)
, δ′(x) ≥ 200k2ℓΓ

np̂V (x)
δ(x) ≥ d1−ε/2

n
,

ζ ′j,s(x) ≥ 200k2ℓΓ

np̂V (x)
ζj,s(x) ≥ 1[j]0(s)

ds−j−ε/2

n
.

We also use the following crude upper bounds concerning the derivatives.

Remark 2.9.9. Let x ∈ [0,m], j ∈ [ℓ] and s ∈ [ℓ]0. Then,

|d̂′(x)| ≤ d1+ε/32

n
,

s+ 1

ĥ(x)
ẑj,s+1(x) ≤ ds−j+ε/32

n
, s

ĉ(x) + kd̂(x)

ĥ(x)
ẑj,s(x) ≤ ds−j+ε/32

n
,

|ẑ′j,s(x)| ≤ ds−j+ε/32

n
, |δ′(x)| ≤ d

n
, |ζ ′j,s(x)| ≤ ds−j

n
.

To obtain the first order approximations of the one-step changes of the trajectories d̂
and ẑj,s as well as the error functions δ and ζj,s with j ∈ [ℓ] and s ∈ [ℓ]0 that are presented
in Fact 2.9.13, we employ Taylor’s theorem with remainder. More specifically, we use the
following special case.

Lemma 2.9.10 (Taylor’s theorem). Let a < x < x+ 1 < b and suppose f : (a, b)→ R is
twice continuously differentiable. Then,

f(x+ 1) = f(x) + f ′(x)± max
ξ∈[x,x+1]

|f ′′(ξ)|.

To obtain the approximation errors given in Fact 2.9.13 we provide expressions for the
second derivatives in Facts 2.9.11 and 2.9.12. To obtain these, note that (1/ĥ(x))′ =
(ĉ(x) + kd̂(x))/ĥ(x)2.

Remark 2.9.11. Let x ∈ [0,m], j ∈ [ℓ] and s ∈ [ℓ]0. Then,

Γ̂′′(x) =
∑
j∈[ℓ]3

∆(C(j))
dj−1

· (j − 1)(j − 2) ·
(
k

n

)j−1

xj−3,

ξ′′(x) =
300k3ℓΓ

n2p̂V (x)2
ξ(x) +

300k2ℓΓ

np̂V (x)
ξ′(x),

d̂′′(x) = −
(

Γ̂′′(x) +
k2(k − 1)

n2p̂V (x)2

)
d̂(x)−

(
Γ̂′(x)− k(k − 1)

np̂V (x)

)
d̂′(x),
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ẑ′′s (x) = (s+ 1)
ĉ(x) + kd̂(x)

ĥ(x)2
ẑj,s+1(x) +

s+ 1

ĥ(x)
ẑ′j,s+1(x)

−s
(

Γ̂′′(x) +
k3

n2p̂V (x)2

)
ẑj,s(x)− s

(
Γ̂′(x) +

k2

np̂V (x)

)
ẑ′j,s(x),

δ′′(x) =

(
300k3ℓΓ

n2p̂V (x)2
− Γ̂′′(x)− k2(k − 1)

n2p̂V (x)2

)
δ(x) +

(
300k2ℓΓ

np̂V (x)
− Γ̂′(x)− k(k − 1)

np̂V (x)

)
δ′(x),

ζ ′′j,s(x) =

(
300k3ℓΓ

n2p̂V (x)2
− sΓ̂′′(x)− k3s

n2p̂V (x)2

)
ζj,s(x)

+

(
300k2ℓΓ

np̂V (x)
− sΓ̂′(x)− k2s

np̂V (x)

)
ζ ′j,s(x)

+(s+ 1)

(
ĉ(x) + kd̂(x)

ĥ(x)2
ζj,s+1(x) +

ζ ′j,s+1(x)

ĥ(x)

)
+(2s− j)

(
j

s

)(
ĉ(x) + kd̂(x)

ĥ(x)2
ξ(x)d̂(x)s+1

Γℓdj
+

300k2ℓΓ

np̂V (x)

ξ(x)d̂(x)s+1

Γℓdj ĥ(x)

+(s+ 1)d̂′(x)
ξ(x)d̂(x)s

Γℓdj ĥ(x)

)
.

Remark 2.9.12. Let x ∈ [0,m], j ∈ [ℓ] and s ∈ [ℓ]0. Then,

|Γ̂′′(x)| ≤ ℓ2k2Γ

n2µ2
, |d̂′′(x)| ≤ d1+ε

n2
, |ẑ′′j,s(x)| ≤ ds−j+ε

n2
,

|δ′′(x)| ≤ d1+ε

n2
, |ζ ′′j,s(x)| ≤ ds−j+ε

n2
.

With these bounds for the second derivatives, using n ≥ d1/k, Taylor’s theorem with
remainder (Lemma 2.9.10) entails the following approximations.

Remark 2.9.13. Let i ∈ [m− 1]0, j ∈ [ℓ] and s ∈ [ℓ]0. Then,

d̂(i+ 1)− d̂(i) = d̂′(i)± d1−ε

n
, ẑj,s(i+ 1)− ẑj,s(i) = ẑ′j,s(i)±

ds−j−ε

n

δ(i+ 1)− δ(i) = δ′(i)± d1−ε

n
, and ζj,s(i+ 1)− ζj,s(i) = ζ ′j,s(i)±

ds−j−ε

n
.

2.9.2 Expected changes

In general, if X(0), X(1), . . . is a sequence of numbers or random variables and i ≥ 0, we
define ∆X(i) := X(i+ 1)−X(i). In this section, we show that for all v ∈ V (H), Z ∈
Z , s ∈ [ℓ]0 with s ≥ 1C (Z) and ∗ ∈ {+,−}, the processes

|Dv|∗f (0), |Dv|∗f (1) . . . and |Z [s]|∗f (0), |Z [s]|∗f (1), . . .

are supermartingales with suitably bounded expected one-step changes in the sense that
for all i ≥ 0, the conditional expectations Ei[|∆|Dv|∗f (i)|] and Ei[|∆|Z [s]|∗f (i)|] are never
too large.
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First, we present four statements where we bound probabilities related to the removal
of edges. Given an edge e ∈ H that is available in some step i and ∅ ≠ U ⊆ e, the first
result closely approximates the probability that in the next step, the following happens:
the edge e becomes unavailable due to conflicts or due to an intersection of e(i + 1)
with U .

Lemma 2.9.14. Let i ∈ [m− 1]0, e ∈ H and ∅ ≠ U ⊆ e. Then,

Pi[e /∈ HC(i+ 1) or U ∩ e(i+ 1) ̸= ∅] =G(i)∩{e∈H(i)} (1± 7ξ(i))
ĉ(i) + |U |d̂(i)

ĥ(i)
.

Proof. Let X := G(i) ∩ {e ∈ H(i)}. We are only interested in the conditional probability
if G(i) happened and in this case we have approximations for all key quantities in step i
which makes it easy to obtain

Pi[e /∈ HC(i+ 1)] · 1X ≈
ĉ(i)

ĥ(i)
· 1X

as well as

Pi[U ∩ e(i+ 1) ̸= ∅] · 1X ≈
|U |d̂(i)

ĥ(i)
· 1X .

Quantifying the approximation error takes some additional care.
Let us turn to the details. Define the events EC,e := {e /∈ HC(i + 1)} and EU :=
{U ∩ e(i+ 1) ̸= ∅}. The edges in any conflict are disjoint. Thus, we have EC,e ∩ EU = ∅
and hence

Pi[EC,e ∪ EU ] = Pi[EC,e] + Pi[EU ].

Let us first consider Pi[EC,e]. UsingXe(i) to denote the (random) number of edges f ∈ H(i)
with {f} = C \M(i) for some C ∈ Ce, we have Pi[EC,e] =X Xe(i)/|H|(i). An upper bound
for Xe(i) is given by the (random) number of semiconflicts C ∈ Ce with |C ∩H(i)| = 1
and |C ∩M(i)| = |C| − 1. Thus, taking the definition of T (i) (see page 45) into account,
we have

Xe(i) ≤ |C[1]e |(i) ≤X ĉ(i) + γ(i).

As for one edge f ∈ H(i), there may be two distinct C,C ′ ∈ Ce with C \ M(i) =

C ′ \M(i) = {f}, the random variable |C[1]e |(i) may be strictly larger than Xe(i). For
all such C, C ′, the union C ∪ C ′ is a set in Ce,2 with (C ∪ C ′) \ M(i) = {f} and for
all C2 ∈ Ce,2, there are at most 4ℓ pairs (C,C ′) ∈ C2 with C ∪C ′ = C2. Thus, taking the
definition of S(i) (see page 43) into account, we obtain

Xe(i) ≥ |C[1]e |(i)− 4ℓ|C[1]e,2|(i) ≥X ĉ(i)− γ(i)− d1−ε/4 ≥ ĉ(i)− 2γ(i).

Hence, we have
ĉ(i)− 2γ(i)

ĥ(i) + η(i)
≤X Pi[EC,e] ≤X

ĉ(i) + γ(i)

ĥ(i)− η(i)
. (2.9.4)
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Let us now consider Pi[EU ]. Using a union bound, we have

Pi[EU ] ≤
∑
u∈U

Pi[u ∈ e(i+ 1)] =
∑
u∈U

|Du|(i)
|H|(i) ≤X

|U |(d̂(i) + δ(i))

ĥ(i)− η(i)
.

Furthermore, with another union bound over the pairwise intersections of the events {u ∈
e(i+ 1)} with u ∈ U , the pair degree bound ∆2(H) ≤ d1−ε together with Fact 2.9.1 yields

Pi[EU ] ≥
∑
u∈U

Pi[u ∈ e(i+ 1)]−
∑
u,v∈U

Pi[u, v ∈ e(i+ 1)]

≥X

(∑
u∈U

|Du|(i)
|H|(i)

)
− |U |2 d1−ε

ĥ(i)− η(i)
≥X
|U |(d̂(i)− 2δ(i))

ĥ(i) + η(i)
.

Hence, we have

|U |(d̂(i)− 2δ(i))

ĥ(i) + η(i)
≤X Pi[EU ] ≤X

|U |(d̂(i) + δ(i))

ĥ(i)− η(i)
. (2.9.5)

Combining (2.9.4) and (2.9.5) and using the upper bound

γ(i) = 2ξ(i)
∑

j∈[ℓ−1]

∆(C(j+1)) ·
(
ẑj,1(i) + j

d̂(i)

Γℓdj

)

≤ 2ξ(i)ĉ(i) +
2ξ(i)d̂(i)

Γ

∑
j∈[ℓ−1]

∆(C(j+1))

dj
≤ 2ξ(i)(ĉ(i) + d̂(i)),

we obtain

Pi[EC,e ∪ EU ] ≤X
ĉ(i) + |U |d̂(i) + ξ(i)(2ĉ(i) + 2d̂(i) + |U |d̂(i))

ĥ(i)− η(i)

≤ (1 + 7ξ(i))
ĉ(i) + |U |d̂(i)

ĥ(i)

and

Pi[EC,e ∪ EU ] ≥X
ĉ(i) + |U |d̂(i)− ξ(i)(4ĉ(i) + 4d̂(i) + 2|U |d̂(i))

ĥ(i) + η(i)

≥ (1− 7ξ(i))
ĉ(i) + |U |d̂(i)

ĥ(i)
,

which completes the proof.

Whenever we are given two disjoint edges e, f ∈ H that are available at some step i,
the next result provides a rough upper bound for the very small probability that in the
next step, the following happens: the edge e becomes unavailable due to an intersection
with e(i+ 1) while f also becomes unavailable.
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Lemma 2.9.15. Let e, f ∈ H with e ∩ f = ∅ and let i ∈ [m− 1]0. Then,

Pi[e ∩ e(i+ 1) ̸= ∅ and f /∈ H(i+ 1)] ≤G(i)∩{f∈H(i)}
1

dε/4n
.

Proof. Conceptually, this proof is similar to that of Lemma 2.9.14 except that we only care
about an upper bound. Observe that there are two reasons why f might be unavailable
in step i+ 1 if it was available in step i, namely f may become unavailable due to an
intersection with e(i+ 1) or f may become unavailable due to conflicts.

Define the events X := G(i)∩{f ∈ H(i)}, Ee := {e∩e(i+1) ̸= ∅}, Ef := {f∩e(i+1) ̸= ∅}
and EC,f := {f /∈ HC(i+ 1)}. Then, we have

Pi[Ee ∩ (Ef ∪ EC,f )] ≤ Pi[Ee ∩ Ef ] + Pi[Ee ∩ EC,f ].

We bound the two summands separately.
First, note that taking the definition of T (i) (see page 45) into account, ∆2(H) ≤ d1−ε

implies

Pi[Ee ∩ Ef ] ≤
∑
u∈e

∑
v∈f

dH(uv)

|H|(i) ≤X
k2d1−ε

ĥ(i)− η(i)
≤ 2k2d1−ε

ĥ(i)
≤ 1

2dε/4n
.

Furthermore, considering the definitions of partially matched subgraphs and local
interactions (see pages 33 and 35) as well as the definition of S(i) (see page 43), for
all v ∈ V (H), the (random) number of edges g ∈ H(i) with v ∈ g and {g} = C \M(i)
for some C ∈ Cf is at most

∑
j∈[ℓ−1]

|(C(j)f )[1]v |(i) ≤X
∑

j∈[ℓ−1]

|C(j)f |d1−j−ε/3 ≤ d1−ε/3
∑

j∈[ℓ−1]

∆(C(j+1))

dj
≤ Γd1−ε/3

and thus we have

Pi[Ee ∩ EC,f ] ≤X
∑
v∈e

Γd1−ε/3

|H|(i) ≤X
kΓd1−ε/3

ĥ(i)− η(i)
≤ 2kΓd1−ε/3

ĥ(i)
≤ 1

2dε/4n
.

Whenever we are given two disjoint edges e, f ∈ H that are available at some step i
and that do not form a conflict of size 2, the next result provides a rough upper bound
for the very small probability that in the next step both edges become unavailable.

Lemma 2.9.16. Let e, f ∈ H with e ∩ f = ∅ and {e, f} /∈ C(2) and let i ∈ [m − 1]0.
Then,

Pi[e, f /∈ H(i+ 1)] ≤G(i)∩{e,f∈H(i)}
1

dε/5n
.
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Proof. This proof is an extension of the proof of Lemma 2.9.15 and conceptually similar.
Let X := G(i)∩{e, f ∈ H(i)} and for g ∈ {e, f}, define the events EC,g := {g /∈ HC(i+1)}
and Eg := {g ∩ e(i+ 1) ̸= ∅}. We obtain

Pi[e, f /∈ H(i+ 1)] ≤ Pi[Ee ∩ {f /∈ H(i+ 1)}] + Pi[Ef ∩ {e /∈ H(i+ 1)}] + Pi[EC,e ∩ EC,f ].

Since Lemma 2.9.15 shows that 1
dε/4n

is an upper bound for the first two summands, it
suffices to obtain an appropriate upper bound for Pi[EC,e ∩ EC,f ].

For j ∈ [ℓ− 1], the edge f is not an immediate evictor for C(j)e , and so, considering the
definitions of partially matched subgraphs and local interactions (see pages 33 and 35)
as well as the definition of S(i) (see page 43), the (random) number of edges g ∈ H(i)
with {g} = Ce \M(i) = Cf \M(i) for some Ce ∈ Ce and Cf ∈ Cf is at most∑

j∈[ℓ−1]

|(C(j)e )
[1]
f,2|(i) ≤X

∑
j∈[ℓ−1]

|C(j)e |d1−j−ε/3 ≤ d1−ε/3
∑

j∈[ℓ−1]

∆(C(j+1))

dj
≤ Γd1−ε/3

≤ d1−ε/4

and thus using Fact 2.9.1, we obtain

Pi[EC,e ∩ EC,f ] ≤X
d1−ε/4

|H|(i) ≤X
d1−ε/4

ĥ(i)− η(i)
≤ 2d1−ε/4

ĥ(i)
≤ 1

2dε/5n
,

which completes the proof.

For all Z ∈ Z and s ∈ [j], we use that the freezing has negligible impact on the
expected one-step changes of the process |Z [s]|+f (0), |Z [s]|+f (1), . . . in the sense that for
all i ∈ [m− 1]0, we have Ei[∆|Z [s]|+f (i)] ≈ Ei[∆|Z [s]|+(i)]. Recall that freezing happens

in particular if Z /∈ Z (i+ 1), which happens if and only if Z = C(j)e for some j ∈ [ℓ− 1]
and e ∈ H with e /∈ H(i + 1). The two expectations may differ due to events where
freezing occurs as a consequence of Z ∈ Z (i) \Z (i+ 1) while additionally, an available
edge f− that is contained in some test Z ∈ Z [s](i) becomes unavailable or an edge f+

that is contained in some Z ∈ Z [s+1](i) is chosen to be e(i+ 1). Because of such an edge
becoming unavailable or chosen to be e(i+ 1), these events may provide contributions
to Ei[∆|Z [s]|+(i)], but, due to the freezing triggered by Z /∈ Z (i+ 1), no contribution
to Ei[∆|Z [s]|+f (i)]. To see that the contribution of those events where an edge f+ that is

contained in some Z ∈ Z [s+1](i) is chosen to be e(i+ 1) is very small, we consider C[s+1]
e .

To see the contribution of those events where an available edge f− that is contained in
some test Z ∈ Z [s](i) becomes unavailable is also very small, we employ the following
lemma. If Z has uniformity at least 3, then this lemma follows from Lemma 2.9.16.
However, Lemma 2.9.16 can only be applied for edges e, f with {e, f} /∈ C(2) which
prevents us from using the same argument based on Lemma 2.9.16 if Z is 2-uniform. The
exclusion of e, f with {e, f} ∈ C(2) in Lemma 2.9.16 is a consequence of the restriction
that e in Lemma 2.8.3 (iii) cannot be an immediate evictor for Z. This can be traced
back to excluding e, f with {e, f} ∈ C(2) in Condition (C7). This exclusion is crucial for
our approach to omitting such a condition entirely in Theorem 2.5.2. To circumvent the
resulting restrictions, we need some additional arguments, in particular building on (C5).
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Lemma 2.9.17. Let j ∈ [ℓ], Z ∈ Z (j), s ∈ [j] and i ∈ [m− 1]0. Then,∑
Z∈Z [s](i)

∑
f∈Z\M(i)

Pi[Z /∈ Z (i+ 1) and f /∈ H(i+ 1)] ≤G(i)∩{Z∈Z (i)}
ds−j−ε/6

n
|Z|.

Proof. For j ≥ 2, the statement is a consequence of Lemma 2.9.16, for j = 1 we
additionally use condition (C5).

Let us now turn to the details. Note that for Z ∈ Z0, we have {Z /∈ Z (i+ 1)} = ∅,
so we assume that Z = C(j)e for some e ∈ H. Let X := G(i) ∩ {e ∈ H(i)} and for f ∈ H,
define the events Ef := {e(i+ 1) ∩ f ̸= ∅} and EC,f := {f /∈ HC(i+ 1)}.

Recall that for all Z ∈ Z [s](i), all edges f ∈ Z \M(i) are available in step i in the
sense that e ∈ H(i). Furthermore, no conflict in C is a proper subset of another conflict
by (C9) and all edges in a conflict are disjoint. So if j ≥ 2, we may combine Fact 2.9.1
and Lemma 2.9.16 such that, taking the definition of T (i) (see page 45) into account, we
obtain∑
Z∈Z [s](i)

∑
f∈Z\M(i)

Pi[e, f /∈ H(i+ 1)] ≤X (ẑj,s(i) + ζj,s(i))|Z| · s ·
1

dε/5n
≤ ds−j−ε/6

n
|Z|.

Now consider the case where j = 1. In this case, we have s = 1. Hence∑
Z∈Z [s](i)

∑
f∈Z\M(i)

Pi[e, f /∈ H(i+ 1)] =
∑

{f}∈Z [1](i)

Pi[e, f /∈ H(i+ 1)].

We have∑
{f}∈Z [1](i)

Pi[e, f /∈ H(i+ 1)] ≤
∑

{f}∈Z [1](i)

Pi[Ee ∩ {f /∈ H(i+ 1)}]

+Pi[Ef ∩ {e /∈ H(i+ 1)}] +
∑

{f}∈Z [1](i)

Pi[EC,e ∩ EC,f ].

Since combining Fact 2.9.1 and Lemma 2.9.15 and taking the definition of T (i) (see
page 45) into account yields∑
{f}∈Z [1](i)

Pi[Ee ∩ {f /∈ H(i+ 1)}] + Pi[Ef ∩ {e /∈ H(i+ 1)}]

≤X
2|Z [1]|(i)
dε/4n

≤X 2
ẑj,s(i) + ζj,s(i)

dε/4n
|Z| ≤ ds−j−ε/5

n
|Z|,

it suffices to find an appropriate upper bound for∑
{f}∈Z [1](i)

Pi[EC,e ∩ EC,f ].

For all f, g ∈ H and j′ ∈ [ℓ]2, let I
(j′)
f,g denote the indicator random variable of the

event {C \ M(i) = {f, g} for some C ∈ C(j′)}. Note that for all edges f ∈ H(i), the
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event EC,f occurs if and only if there is a conflict C ∈ C with C \M(i) = {f, e(i+ 1)}.
Hence,

EC,e ∩ EC,f = {I(j1)e,e(i+1) = I
(j2)
f,e(i+1) = 1 for some j1, j2 ∈ [ℓ]2}

and thus∑
{f}∈Z [1](i)

Pi[EC,e ∩ EC,f ] =
∑

{f}∈Z [1](i)

∑
g∈H

∑
j1,j2∈[ℓ]2

I(j1)e,g · I(j2)f,g · Pi[e(i+ 1) = g]

≤ 1

|H|(i)
∑

j1,j2∈[ℓ]2

∑
g∈H : I

(j1)
e,g =1

|{{f} ∈ C(1)[1]e (i) : I
(j2)
f,g = 1}|.

First, let us bound the size of F
(j2)
g := {{f} ∈ C(1)[1]e (i) : I

(j2)
f,g = 1} for all j1, j2 ∈ [ℓ]2

and g ∈ H with dC(j1)(eg) ≥ 1 (which is necessary for I
(j1)
e,g = 1 to be possible).

Fix j1, j2 ∈ [ℓ]2 and g ∈ H with dC(j1)(eg) ≥ 1. If j1 ≥ 3, the set {e, g} is a proper

subset of a conflict and hence not a conflict itself by (C9). If j2 = 2, then |F (j2)
g | ≤ d1−ε

as a consequence of (C5) if j1 = 2 and as a consequence of (C7) if j1 ≥ 3. If j2 ≥ 3,

for all {f} ∈ F (j2)
g , assign an arbitrary semiconflict Cf ∈ C(j2)g with Cf \M(i) = {f}

to f . Note that for distinct f, f ′, the assigned semiconflicts Cf and Cf ′ are distinct.

All assigned semiconflicts are elements of C⋆[1]e,g,2(i) (see definitions of partially matched
subgraphs and local interactions on pages 33 and 35) and so by definition of S(i) (see
page 43), we obtain

|F (j2)
g | ≤ |C⋆[1]e,g,2(i)| ≤X d1−ε/3.

Taking the definition of T (i) (see page 45) into account, we use Fact 2.9.1 and d1−ε/100 ≤
δ(C(2)) ≤ |Z| to conclude that

∑
{f}∈Z [1]

Pi[EC,e ∩ EC,f ] ≤X
d1−ε/3

|H|(i)
∑

j1,j2∈[ℓ]2

|{g ∈ H(i) : I(j1)e,g = 1}|

≤ ℓd1−ε/3

|H|(i)
∑

j1∈[ℓ−1]

|C(j1)[1]e |(i)

≤X
ℓd1−ε/3

|H|(i)
∑

j1∈[ℓ−1]

(ẑj1,1(i) + ζj1,1(i))|C(j1)e |

≤X
2ℓd1−ε/3

ĥ(i)

∑
j1∈[ℓ−1]

(ẑj1,1(i) + ζj1,1(i))∆(C(j1+1))

≤ 2ℓd1−ε/3

ĥ(i)

∑
j1∈[ℓ−1]

d1−j1+ε/12 · Γdj1 ≤ 4Γℓ2d2−ε/4

ĥ(i)

≤ d−ε/5

n
d1−ε/100 ≤ ds−j−ε/5

n
|Z|,

which completes the proof.
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Lemma 2.9.18. Let v ∈ V (H) and ∗ ∈ {+,−}. Then, the process |Dv|∗f (0), |Dv|∗f (1), . . .
is a supermartingale. Moreover, for all i ≥ 0, we have

Ei[|∆|Dv|∗f (i)|] ≤
d1+ε/16

n
.

Proof. Only considering the frozen processes allows us to essentially assume that G(i)
happened. As in the proofs of Lemmas 2.9.14 and 2.9.16, this provides approximations
for all key quantities in step i which then makes it easy to obtain Ei[∆|Dv|(i)] ≈ ∆d̂(i).
As the error function δ grows sufficiently fast, this yields the supermartingale property.
On the contrary, for the boundedness of the expected one-step changes it is crucial that δ
does not grow too fast.

Let us turn to the details. Fix i ∈ [m − 1]0. Let X := G(i) ∩ {v ∈ V (i)}. We need
to prove that Ei[∆|Dv|∗f (i)] ≤ 0 and Ei[|∆|Dv|∗f (i)|] ≤ d1+ε/16/n. Due to ∆|Dv|∗f =X c 0,
both bounds follow if Ei[∆|Dv|∗f (i)] ≤X 0 and Ei[|∆|Dv|∗f (i)|] ≤X d1+ε/16/n, so we aim
to show these two bounds with ≤X instead of ≤. Let Ev := {v ∈ V (i+ 1)} and for an
edge e ∈ H, define the events EC,e := {e /∈ HC(i+ 1)} and Ee := {(e \ {v})∩ e(i+ 1) ̸= ∅}.
Let us first argue why it suffices to obtain

Ei[1Ev∆|Dv|(i)] =X

(
d̂′(i)± 1

2
δ′(i)

)
Pi[Ev]. (2.9.6)

To this end, note that Facts 2.9.8 and 2.9.9 provide the bounds

|d̂′(x)| ≤ d1+ε/32

n
and

d1−ε/2

n
≤ δ′(x) ≤ |δ′(x)| ≤ d

n
. (2.9.7)

Note that

Ei[∆|Dv|+f (i)] = Ei[1Ev∆|Dv|+(i)] = Ei[1Ev∆|Dv|(i)]− (∆d̂(i) + ∆δ(i))Pi[Ev].

If (2.9.6) holds, then this together with Fact 2.9.13 yields(
−3

2
δ′(i)− 2d1−ε

n

)
Pi[Ev] ≤X Ei[∆|Dv|+f (i)] ≤X

(
−1

2
δ′(i) +

2d1−ε

n

)
Pi[Ev]

and consequently the bound δ′(i) ≥ d1−ε/2/n in (2.9.7) then entails Ei[∆|Dv|+f (i)] ≤X 0.
Furthermore, observe that

Ei[|∆|Dv|+f (i)|] = Ei[1Ev |∆|Dv|+(i)|] ≤ Ei[1Ev |∆|Dv|(i)|] + (|∆d̂(i)|+ |∆δ(i)|)Pi[Ev]
= −Ei[1Ev∆|Dv|(i)] + (|∆d̂(i)|+ |∆δ(i)|)Pi[Ev].

If (2.9.6) holds, then, again using Fact 2.9.13, this yields

Ei[|∆|Dv|+f (i)|] ≤X 2|d̂′(x)|+ 2|δ′(x)|+ 2d1−ε

n

and consequently the two bounds |d̂′(x)| ≤ d1+ε/32/n and |δ′(x)| ≤ d/n in (2.9.7) then
entail Ei[|∆|Dv|+f (i)|] ≤X d1+ε/16/n. Similar arguments can be made to see that (2.9.6)
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implies E[∆|Dv|−f (i)] ≤X 0 as well as Ei[|∆|Dv|−f (i)|] ≤X d1+ε/16/n. Hence, to obtain the
claimed statement, it suffices to prove (2.9.6).

Before we continue with a proof of (2.9.6), note that taking the definition of T (i) (see
page 45) into account, Fact 2.9.1 entails

Pi[Ev] =X 1− |Dv|(i)|H|(i) ≥X 1− d̂(i) + δ(i)

ĥ(i)− η(i)
≥ 1− 2k

np̂V (i)
≥ 1− d−ε ≥ 1− ξ(i). (2.9.8)

The edges in any conflict are disjoint. Thus, we have EC,e ∩ Ee = ∅ and Evc ∩ EC,e = ∅ for
all e ∈ Dv(i) and hence

Ei[1Ev∆|Dv|(i)] = −Ei
[
1Ev

∑
e∈Dv(i)

1EC,e∪Ee

]
= −

∑
e∈Dv(i)

Pi[Ev ∩ (EC,e ∪ Ee)]

= −
∑

e∈Dv(i)

(Pi[EC,e ∪ Ee]− Pi[Evc ∩ Ee]).
(2.9.9)

We employ Lemma 2.9.14 and use ∆2(H) ≤ d1−ε to obtain

Ei[1Ev∆|Dv|(i)] =X −
∑

e∈Dv(i)

(
(1± 7ξ(i))

ĉ(i) + (k − 1)d̂(i)

ĥ(i)
± kd1−ε

ĥ(i)± η(i)

)
.

Using Fact 2.9.1 and (2.9.8), this yields

Ei[1Ev∆|Dv|(i)] =X −
∑

e∈Dv(i)

(
(1± 7ξ(i))

ĉ(i) + (k − 1)d̂(i)

ĥ(i)
± ξ(i)d̂(i)

ĥ(i)

)

=X −(1± 10ξ(i)) · d̂(i) · ĉ(i) + (k − 1)d̂(i)

ĥ(i)

=X −(1± 12ξ(i)) · d̂(i) · ĉ(i) + (k − 1)d̂(i)

ĥ(i)
· Pi[Ev].

With Lemma 2.9.5 and the expression for d̂′(x) given in Fact 2.9.7 this implies

Ei[1Ev∆|Dv|(i)] =X

(
d̂′(i)± 24k2Γ

np̂V (i)
δ(i)

)
Pi[Ev]

and thus, with the first lower bound for δ′(x) given in Fact 2.9.8, we conclude that (2.9.6)
holds.

The following statement is the analog of Lemma 2.9.18 where for ∗ ∈ {+,−}, the
process |Dv|∗f (0), |Dv|∗f (1), . . . is replaced by |Z [s]|∗f (0), |Z [s]|∗f (1), . . . with suitable choices
for Z and s.

Lemma 2.9.19. Let j ∈ [ℓ], Z ∈ Z (j) s ∈ [ℓ]0 with s ≥ 1C (Z) and ∗ ∈ {+,−}. Then,
the process |Z [s]|∗f (0), |Z [s]|∗f (1), . . . is a supermartingale. Moreover, for all i ≥ 0, we have

Ei[|∆|Z [s]|∗f (i)|] ≤
ds−j+ε/16

n
|Z|.
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Proof. Conceptually, this proof is similar to that of Lemma 2.9.18, but technically more
involved.

We assume that s ∈ [j]0 as otherwise |Z [s]|+f (i) = 0 for all i ≥ 0. Fix i ∈ [m − 1]0.
Let X := G(i) ∩ {Z ∈ Z (i)} and EZ := {Z ∈ Z (i+ 1)}.

When transitioning from step i to step i+ 1, some tests in Z [s+1](i) containing e(i+ 1)
may move to Z [s](i+ 1) while some tests in Z [s](i) may no longer be present in Z [s](i+ 1)
due to the choice of e(i+ 1).

Considering the expected gain E+ and expected loss E−, where

E+ := Ei[1EZ |Z [s](i+ 1) \ Z [s](i)|] and E− := Ei[1EZ |Z [s](i) \ Z [s](i+ 1)|],

we have Ei[1EZ∆|Z [s]|(i)] = E+−E−. We bound E+ and E− separately. Reflecting this
separation, we also split the value ẑ′j,s(i) = ẑ′+j,s(i) − ẑ′−j,s(i) of the derivative ẑ′j,s into a

gain contribution ẑ′+j,s(i) and a loss contribution ẑ′−j,s(i), where

ẑ′+j,s(i) :=
s+ 1

ĥ(i)
ẑj,s+1(i) and ẑ′−j,s(i) := s

ĉ(i) + kd̂(i)

ĥ(i)
ẑj,s(i).

Recall that we already encountered this separation into gain and loss in the discussion
of the derivative ẑ′j,s after Fact 2.9.7. Formally, gain and loss contribution correspond
to E+ and E− in the sense that we will obtain

E+ =X

(
ẑ′+j,s(i)±

1

4
ζ ′j,s(i)

)
|Z|Pi[EZ ] and E− =X

(
ẑ′−j,s(i)±

1

4
ζ ′j,s(i)

)
|Z|Pi[EZ ].

(2.9.10)
Let us first argue why it suffices to show that (2.9.10) holds. To this end, note that

Facts 2.9.8 and 2.9.9 provide the bounds

|ẑ′+j,s(i)| = ẑ′+j,s(i) ≤
ds−j+ε/32

n
, |ẑ′−j,s(i)| = ẑ′−j,s(i) ≤

ds−j+ε/32

n

and
ds−j−ε/2

n
≤ ζ ′j,s(i) = |ζ ′j,s(i)| ≤

ds−j

n
.

(2.9.11)

The bounds in (2.9.10) imply

Ei[1EZ∆|Z [s]|(i)] =

(
ẑ′j,s(i)±

1

2
ζ ′j,s(i)

)
|Z|Pi[EZ ]. (2.9.12)

Note that

Ei[∆|Z [s]|+f (i)] = Ei[1EZ∆|Z [s]|(i)]− (∆ẑj,s(i) + ∆ζj,s(i))|Z|Pi[EZ ].

If (2.9.12), which follows from (2.9.10), holds, then this together with Fact 2.9.13 yields(
−3

2
ζ ′j,s(i)−

2ds−j−ε

n

)
|Z|Pi[EZ ] ≤X Ei[∆|Z [s]|+f (i)] ≤X

(
−1

2
ζ ′j,s(i)+

2ds−j−ε

n

)
|Z|Pi[EZ ]



62 CHAPTER 2. CONFLICT-FREE HYPERGRAPH MATCHINGS

and consequently the bound ζ ′j,s(i) ≥ ds−j−ε/2/n in (2.9.11) then entails that we

have Ei[∆|Z [s]|+f (i)] ≤X 0. Furthermore, observe that

Ei[|∆|Z [s]|+f (i)|] ≤ Ei[|1EZ |Z [s](i+ 1) \ Z [s](i)||] + Ei[|1EZ |Z [s](i) \ Z [s](i+ 1)||]
+(|∆ẑj,s(i)|+ |∆ζj,s(i)|)|Z|Pi[EZ ]

= E+ + E− + (|∆ẑj,s(i)|+ |∆ζj,s(i)|)|Z|Pi[EZ ].

If (2.9.10) holds, then this together with Fact 2.9.13 yields

Ei[|∆|Z [s]|+f (i)|] ≤X

(
ẑ′+j,s(i) + ẑ′−j,s(i) + |ẑ′j,s(i)|+ 2|ζ ′j,s(i)|+ 2

ds−j−ε

n

)
|Z|Pi[EZ ]

and consequently the bounds |ẑ′+j,s(i)| ≤ ds−j+ε/32/n, |ẑ′−j,s(i)| ≤ ds−j+ε/32/n and |ζ ′j,s(i)| ≤
ds−j/n in (2.9.11) then entail that we have Ei[|∆|Z [s]|+f (i)|] ≤X (ds−j+ε/16/n)|Z|. Sim-
ilar arguments can be made to see that (2.9.10) implies Ei[∆|Z [s]|−f (i)] ≤X 0 as well
as Ei[|∆|Z [s]|−f (i)|] ≤X (ds−j+ε/16/n)|Z|. Hence, to obtain the claimed statement, it
suffices to prove (2.9.10).

Before we continue with a proof for (2.9.10), note that if Z ∈ C , then Z = C(j)e for
some e ∈ H. In this case, we have EZ c = {e /∈ H(i+1)}. If Z ∈ Z0, then we have EZ c = ∅.
Hence, Lemma 2.9.14 entails that in any case

Pi[EZ ] ≥X 1− (1 + 7ξ(i))
ĉ(i) + kd̂(i)

ĥ(i)

and thus, as a consequence of Fact 2.9.1 and Lemma 2.9.5,

Pi[EZ ] ≥X 1− 2k
ĉ(i) + d̂(i)

ĥ(i)
≥ 1− 4k2Γ

np̂V (i)
≥ 1− d−ε ≥ 1− ξ(i). (2.9.13)

To prove the estimate for E+ in (2.9.10), we first obtain a lower and an upper bound
for E+ which we subsequently combine to obtain the desired bounds for E+ after some
further analysis.

First, we consider an upper bound for E+. The tests that, depending on the choice
of e(i + 1), may enter the test system when transitioning from Z [s](i) to Z [s](i + 1)
are elements of Z [s+1](i). Every such test Z ∈ Z [s+1](i) is a test in Z [s](i + 1) only
if e(i+ 1) ∈ Z ∩H(i). Hence, Pi[Z ∈ Z [s](i+ 1)] ≤ (s+ 1)/|H|(i), so we obtain

E+ ≤ Ei[|Z [s](i+ 1) \ Z [s](i)|] ≤ |Z [s+1]|(i) s+ 1

|H|(i) . (2.9.14)

For a lower bound, observe that a test Z ∈ Z [s+1](i) must enter the test system when
transitioning from Z [s](i) to Z [s](i+ 1) if e(i+ 1) ∈ Z unless there is a conflict C ∈ C
containing two distinct available edges f, g ∈ Z and |C| − 2 edges inM(i), thus enforcing
that g is unavailable in step i+ 1 if e(i+ 1) is chosen to be f . Note that every test Z for
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which such a conflict exists is a subset of a set in Z [s+1]
2 (i) (see definitions of partially

matched subgraphs and local interactions on pages 33 and 35). Every set in Z [s+1]
2 (i)

has size at most 2ℓ and hence at most 22ℓ = 4ℓ subsets. Thus, by definition of S(i) (see
page 43) and Fact 2.9.1,

4ℓ|Z [s+1]
2 |(i) ≤X 4ℓds−j+1−ε/3|Z| ≤ ζj,s+1(i)|Z|

is an upper bound for the (random) number of tests Z ∈ Z [s+1](i) for which such a conflict

exists. Furthermore, recall that as stated before, we either have EZ c = ∅ or Z = C(j)e
and hence EZ c = {e /∈ H(i + 1)} for some edge e ∈ H with {e ∈ H(i)} = {Z ∈ Z (i)}.
Similarly as above, observe the following. Considering the second case where Z = C(j)e ,
for Z ∈ Z [s+1](i) choosing e(i+ 1) to be an element of Z while simultaneously making e
unavailable in step i+ 1 is only possible if there is a conflict C ∈ C containing e, another
available edge f ∈ Z and |C| − 2 edges in M(i), thus enforcing that e is unavailable in
step i + 1 if e(i + 1) is chosen to be f . Here, note that every test Z for which such a

conflict exists is a subset of a set in C[s+1]
e,2 (i) (again, see definitions of partially matched

subgraphs and local interactions on pages 33 and 35). Every set in C[s+1]
e,2 (i) has size at

most 2ℓ and hence at most 22ℓ = 4ℓ subsets. Thus, by definition of S(i) (see page 43),
dj−ε/100 ≤ δ(C(j+1)) ≤ |Z| and Fact 2.9.1,

4ℓ|C[s+1]
e,2 |(i) ≤X 4ℓds+1−ε/3 ≤ 4ℓds−j+1−ε/4|Z| ≤ ζj,s+1(i)|Z|

is an upper bound for the (random) number of tests Z ∈ Z [s+1](i) for which such a
conflict exists. In any case, we obtain

E+ ≥X (|Z [s+1]|(i)− 2ζj,s+1(i)|Z|)
s+ 1

|H|(i) . (2.9.15)

Combining (2.9.14) and (2.9.15) and taking the definition of T (i) (see page 45) into
account, we obtain

E+ =X (|Z [s+1]|(i)± 2ζj,s+1(i)|Z|)
s+ 1

|H|(i) =X (s+ 1)
ẑj,s+1(i)± 3ζj,s+1(i)

ĥ(i)± η(i)
|Z|

= (s+ 1)(1± 2ξ(i))
ẑj,s+1(i)± 3ζj,s+1(i)

ĥ(i)
|Z|

=

(
(s+ 1)

ẑj,s+1(i)

ĥ(i)
± (s+ 1)

2ξ(i)ẑj,s+1(i) + 4ζj,s+1(i)

ĥ(i)

)
|Z|

=

(
ẑ′+j,s(i)± 6(s+ 1)

ζj,s+1(i)

ĥ(i)

)
|Z|.

Using (2.9.13), this yields

E+ =X

(
ẑ′+j,s(i)± 8(s+ 1)

ζj,s+1(i)

ĥ(i)

)
|Z|Pi[EZ ].
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With Lemma 2.9.6 and the first lower bound for ζ ′j,s(i) given in Fact 2.9.8, this entails
the bounds for E+ stated in (2.9.10).

It remains to prove the bounds for E− given in (2.9.10). We proceed similarly to the
approach we used for E+. For all e ∈ H, let Ee := {e /∈ H(i+ 1)}. A test leaves the test
system when transitioning from Z [s](i) to Z [s](i+ 1) if and only if one of its s available
elements becomes unavailable due to the choice of e(i+ 1), so we have

E− =
∑

Z∈Z [s](i)

Pi
[ ⋃
e∈Z\M(i)

EZ ∩ Ee
]
. (2.9.16)

For an upper bound, simply note that

E− ≤
∑

Z∈Z [s](i)

∑
e∈Z\M(i)

Pi[Ee]. (2.9.17)

For a lower bound, we employ Lemma 2.9.17 to obtain

E− ≥
∑

Z∈Z [s](i)

( ∑
e∈Z\M(i)

Pi[EZ ∩ Ee]−
∑

e,f∈Z\M(i) : e ̸=f

Pi[Ee ∩ Ef ]
)

=
∑

Z∈Z [s](i)

( ∑
e∈Z\M(i)

Pi[Ee]−
∑

e,f∈Z\M(i) : e̸=f

Pi[Ee ∩ Ef ]−
∑

e∈Z\M(i)

Pi[EZ c ∩ Ee]
)

≥X −
ds−j−ε/6

n
|Z|+

∑
Z∈Z [s](i)

( ∑
e∈Z\M(i)

Pi[Ee]−
∑

e,f∈Z\M(i) : e ̸=f

Pi[Ee ∩ Ef ]
)
.

Due to Lemma 2.9.16 and the fact that all tests Z ∈ Z are C-free, this yields

E− ≥X −
ds−j−ε/6

n
|Z|+

∑
Z∈Z [s](i)

(
− s2

dε/5n
+

∑
e∈Z\M(i)

Pi[Ee]
)
. (2.9.18)

Combining (2.9.17) and (2.9.18), using Lemma 2.9.14 as well as Fact 2.9.1 and taking
the definition of T (i) (see page 45) into account, we obtain

E− =X (ẑj,s(i))± ζj,s(i))
(

(1± 7ξ(i))s
ĉ(i) + kd̂(i)

ĥ(i)
± s2

dε/5n

)
± ds−j−ε/6

n
|Z|

= (ẑj,s(i))± ζj,s(i))
(

(1± 7ξ(i))s
ĉ(i) + kd̂(i)

ĥ(i)
± sξ(i)d̂(i)

ĥ(i)

)
± ζj,s(i)d̂(i)

ĥ(i)
|Z|

= (ẑj,s(i))± ζj,s(i))
(

(1± 8ξ(i))s
ĉ(i) + kd̂(i)

ĥ(i)

)
|Z| ± ζj,s(i)d̂(i)

ĥ(i)
|Z|

=

(
s
ĉ(i) + kd̂(i)

ĥ(i)
ζj,s(i)± ℓ

ĉ(i) + kd̂(i)

ĥ(i)
(8ξ(i)ẑj,s(i) + 3ζj,s(i))

)
|Z|

=

(
ẑ′−j,s(i)± 11ℓ

ĉ(i) + kd̂(i)

ĥ(i)
ζj,s(i)

)
|Z|.
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Using (2.9.13), this yields

E− =X

(
ẑ′−j,s(i)± 13ℓ

ĉ(i) + kd̂(i)

ĥ(i)
ζj,s(i)

)
|Z|Pi[EZ ].

With Lemma 2.9.5 and the first lower bound for ζ ′j,s(i) given in Fact 2.9.8, this entails
the bounds for E− stated in (2.9.10).

2.9.3 Absolute changes

In this section, we show that for all v ∈ V (H), Z ∈ Z , s ∈ [ℓ]0 with s ≥ 1C (Z), ∗ ∈
{+,−} and i ≥ 0, the absolute one-step changes

|∆|Dv|∗f (i)| and |∆|Z [s]|∗f (i)|

are never too large. In the following two lemmas, we consider both quantities separately.

Lemma 2.9.20. Let v ∈ V (H), i ≥ 0 and ∗ ∈ {+,−}. Then,

|∆|Dv|∗f (i)| ≤ d1−ε/4.

Proof. On a high level, this is a consequence of ∆2(H) ≤ d1−ε as well as the fact that we
freeze the process whenever S(i)c or v /∈ V (i+ 1) occurs.

Let X := G(i) ∩ {v ∈ V (i + 1)}. Due to ∆|Dv|∗f =X c 0, the desired bound follows
if |∆|Dv|∗f (i)| ≤X d1−ε/4, so we aim to show the bound with ≤X instead of ≤. Let us
first argue why it suffices to obtain

|∆|Dv|(i)| ≤X 2d1−7ε/24. (2.9.19)

Assuming (2.9.19), Fact 2.9.13 entails

|∆|Dv|+(i)| ≤ |∆|Dv|(i)|+ |∆d̂(i)|+ |∆δ(i)| ≤X 3d1−7ε/24 + |d̂′(i)|+ |δ′(i)|

and thus using Fact 2.9.9, we conclude that |∆|Dv|+(i)| ≤X d1−ε/4. Also starting
with (2.9.19), a similar argument using Facts 2.9.13 and 2.9.9 shows that |∆|Dv|−(i)| ≤X
d1−ε/4.

Let us now prove (2.9.19). We have

|∆|Dv|(i)| ≤ |Dv(i) ∩ EC(i+ 1)|+
∑

w∈e(i+1)

|Dv(i) ∩ Dw(i)|. (2.9.20)

We bound the two summands separately.
Whenever e is an element of Dv(i) ∩EC(i+ 1), then it is the single available element

of an edge C ∈ (C(j)e(i+1))
[1]
v (i) for some j ∈ [ℓ − 1] (see definitions of partially matched
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subgraphs and local interactions on pages 33 and 35). Thus, taking the definition of S(i)
(see page 43) into account, we have

|Dv(i) ∩ EC(i+ 1)| ≤
∑

j∈[ℓ−1]

|(C(j)e(i+1))
[1]
v |(i) ≤X d1−ε/3

∑
j∈[ℓ−1]

|C(j)e(i+1)|
dj

≤ Γd1−ε/3

≤ d1−7ε/24.

Furthermore, ∆2(H) ≤ d1−ε entails∑
w∈e(i+1)

|Dv(i) ∩ Dw(i)| ≤X k · d1−ε ≤ d1−7ε/24,

which completes the proof.

Lemma 2.9.21. Let j ∈ [ℓ], Z ∈ Z (j), s ∈ [ℓ]0 with s ≥ 1C (Z), i ≥ 0 and ∗ ∈ {+,−}.
Then,

|∆|Z [s]|∗f (i)| ≤ ds−j−ε/4|Z|.

Proof. This proof is conceptually very similar to that of Lemma 2.9.20. Let X :=
G(i) ∩ {Z ∈ Z (i+ 1)}. Let us first argue why it suffices to obtain

|∆|Z [s]|(i)| ≤X 3ds−j−7ε/24|Z|. (2.9.21)

Assuming (2.9.21), Fact 2.9.13 entails

|∆|Z [s]|+(i)| ≤ |∆|Z [s]|(i)|+ (|∆ẑj,s(i)|+ |∆ζj,s(i)|)|Z|
≤X (4ds−j−7ε/24 + |ẑ′j,s(i)|+ |ζ ′j,s(i)|)|Z|

and thus using Fact 2.9.9, we conclude that |∆|Z [s]|+(i)| ≤X ds−j−ε/4|Z|. Also starting
with (2.9.21), a similar argument using Facts 2.9.13 and 2.9.9 shows that |∆|Z [s]|−(i)| ≤X
ds−j−ε/4|Z|.

Let us now prove (2.9.21). Observe that

|∆|Z [s]|(i)| ≤ |{Z ∈ Z [s+1](i) : e(i+ 1) ∈ Z}|+ |{Z ∈ Z [s](i) : Z ∩ EC(i+ 1) ̸= ∅}|
+

∑
v∈e(i+1)

|{Z ∈ Z [s](i) : Z ∩ Dv(i) ̸= ∅}|.

We bound the three summands separately.
For every test Z ∈ Z [s+1](i) with e(i + 1) ∈ Z, the set Z ′ = Z \ {e(i + 1)} is a set

in Z [s]
e(i+1)(i) (see definitions of partially matched subgraphs and local interactions on

pages 33 and 35) and for distinct Z1, Z2 ∈ Z [s+1](i) with e(i+ 1) ∈ Z1, Z2, the sets Z ′
1

and Z ′
2 are distinct, so, taking the definition of S(i) (see page 43) into account, we have

|{Z ∈ Z [s+1](i) : e(i+ 1) ∈ Z}| ≤ |Z [s]
e(i+1)|(i) ≤X ds−j−ε/3|Z|.
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It remains to bound the other two summands.
If s = 0, the two remaining summands are zero. Hence, suppose that s ≥ 1. Whenever Z

is a test in Z [s](i) with Z ∩ EC(i + 1) ̸= ∅, then Z is a subset of a set in Z [s]
e(i+1),2(i)

(again, see definitions of partially matched subgraphs and local interactions on pages 33

and 35) and every set in Z [s]
e(i+1),2(i) has size at most 2ℓ and hence at most 22ℓ = 4ℓ

subsets. Furthermore, if Z ∈ Z (i+ 1), then e(i+ 1) is not an immediate evictor for Z,
so, again taking the definition of S(i) (see page 43) into account, we have

|{Z ∈ Z [s](i) : Z ∩ EC(i+ 1) ̸= ∅}| ≤ 4ℓ|Z [s]
e(i+1),2|(i) ≤X 4ℓds−j−ε/3|Z|.

Whenever Z is a test in Z [s](i) with Z ∩ Dv(i) ̸= ∅ for some v ∈ V (H), then Z is a set

in Z [s]
v (i) (again, see definitions of partially matched subgraphs and local interactions on

pages 33 and 35), so, again taking the definition of S(i) (see page 43) into account, we
have ∑

v∈e(i+1)

|{Z ∈ Z [s](i) : Z ∩ Dv(i) ̸= ∅}| =
∑

v∈e(i+1)

|Z [s]
v |(i) ≤X k · ds−j−ε/3|Z|.

Combining those bounds, we conclude that

|∆|Z [s]|(i)| ≤X ds−j−ε/3|Z|+ 4ℓds−j−ε/3|Z|+ kds−j−ε/3|Z|

and hence (2.9.21) holds.

2.9.4 Supermartingale argument

Using the results from the previous two sections, we immediately obtain the following
two statements from Freedman’s inequality for supermartingales.

Lemma 2.9.22. For all ∗ ∈ {+,−}, we have

P[|Dv|∗f (i) > 0 for some v ∈ V (H), i ≥ 0] ≤ exp(−dε/32).

Proof. As the results in the previous sections allow us to apply Freedman’s inequality
for supermartingales, this is a consequence of the fact that |Dv|+f (0) and |Dv|−f (0) are
sufficiently small for all v ∈ V (H).

Let ∗ ∈ {+,−} and v ∈ V (H). First, note that

|Dv|∗f (0) = ±(|Dv|(i)− d̂(0))− δ(0) = ±d1−ε − d1−ε/32 ≤ −d
1−ε/32

2
.

Lemmas 2.9.18 and 2.9.20 allow us to apply Lemma 2.9.4 with d1−ε/4, d1+ε/16, d1−ε/32/2
playing the roles of a, b, t to obtain

P[|Dv|∗f (i) > 0 for some i ≥ 0] ≤ P
[
|Dv|∗f (i) ≥ |Dv|∗f (0) +

d1−ε/32

2
for some i ≥ 0

]
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≤ exp

(
− d2(1−ε/32)

8d1−ε/4 · (d1−ε/32 + d1+ε/16)

)
≤ exp

(
−d

ε/8

16

)
.

A union bound completes the proof.

Lemma 2.9.23. For all ∗ ∈ {+,−}, we have

P[|Z [s]|∗f (i) > 0 for some Z ∈ Z , s ∈ [ℓ]0 with s ≥ 1C (Z)] ≤ exp(−dε/32).

Proof. Let ∗ ∈ {+,−}, j ∈ [ℓ], Z ∈ Z (j) and s ∈ [j]0 with s ≥ 1C (Z). First, note
that |Z [s]|(0) = ẑj,s(0)|Z|. Hence,

|Z [s]|∗f (0) = ±(|Z [s]|(0)− ẑj,s(0)|Z|)− ζj,s(0)|Z| = −ζj,s(0)|Z| ≤ −ξ(0)

(
j

s

)
d̂(0)s

Γℓdj
|Z|

≤ −ds−j−ε/16|Z|.

Lemmas 2.9.19 and 2.9.21 allow us to apply Lemma 2.9.4 with ds−j−ε/4|Z|, ds−j+ε/16|Z|,
ds−j−ε/16|Z| playing the roles of a, b, t to obtain

P[|Z [s]|∗f (i) > 0 for some i ≥ 0] ≤ P[|Z [s]|∗f (i) > |Z [s]|∗f (0) + ds−j−ε/16|Z| for some i ≥ 0]

≤ exp

(
− d2(s−j−ε/16)|Z|2

2ds−j−ε/4|Z| · (ds−j−ε/16 + ds−j+ε/16)|Z|

)
≤ exp

(
−d

ε/16

4

)
.

A union bound completes the proof.

We are now ready to prove Theorem 2.9.2 which in turn yields Theorem 2.6.2.

Proof of Theorem 2.9.2. We argue as described towards the end of the introduction to
this section. Due to (2.9.1), we have T (i) ⊆ A(i) for all i ≤ m and thus Lemma 2.8.6
entails

P[τS ≤ min(τT ,m)] ≤ exp(−dε/(400ℓ)).
Lemma 2.9.3 shows that if the event {τT ≤ min(τS ,m)} occurs, then at least one of the
events

{|Dv|+f (m) > 0 for some v ∈ V (H)}, {|Dv|−f (m) > 0 for some v ∈ V (H)},
{|Z [s]|+f (m) > 0 for some Z ∈ Z , s ∈ [ℓ]0 with s ≥ 1C (Z)},

and {|Z [s]|−f (m) > 0 for some Z ∈ Z , s ∈ [ℓ]0 with s ≥ 1C (Z)}

occurs (see the discussion after Lemma 2.9.4). Hence, Lemmas 2.9.22 and 2.9.23 entail

P[τT ≤ min(τS ,m)] ≤ 4 exp(−dε/32).
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This yields

P
[( ⋂

i∈[m]0

T (m)
)c]

= P[τT ≤ m] ≤ P[τT ≤ m and τT ≤ τS ] + P[τT ≤ m and τS ≤ τT ]

≤ P[τT ≤ min(τS ,m)] + P[τS ≤ min(τT ,m)] ≤ exp(−dε/(500ℓ)).

2.10 Proofs for the theorems in Section 2.5

In this section, we provide proofs for Theorems 2.5.2–2.5.4 by showing that they follow
from Theorem 2.6.2. Here, we do not use the setup stated in the beginning of Section 2.6.

For the probabilistic constructions in this section, we need the following concentration
inequalities.

Lemma 2.10.1 (Chernoff’s inequality). Suppose X1, . . . , Xn are independent Bernoulli
random variables and let X :=

∑
i∈[n]Xi. Then, the following holds.

(i) P[X ̸= (1± δ)E[X]] ≤ 2 exp(−δ2E[X]/3) for all 0 < δ < 1;

(ii) P[X ≥ 2t] ≤ exp(−t/3) for all positive t ≥ E[X].

Lemma 2.10.2 (McDiarmid’s inequailty). Suppose X1, . . . , Xn are independent random
variables and suppose f : Im(X1)×· · ·×Im(Xn)→ R is a function such that for all i ∈ [n],
changing the i-th coordinate of x ∈ dom(f) changes f(x) by at most ci > 0. Then, for
all t > 0,

P[f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ t] ≤ exp

(
− 2t2∑

i∈[n] c
2
i

)
.

2.10.1 Fractional degrees

In preparation for the proofs of the theorems in Section 2.5, consider the following
situation. Suppose V is a finite set and k ≥ 1 is an integer. Suppose that we are assigning
a weight w(e) ≥ 0 to every set e ∈

(
V
k

)
and suppose that for all v ∈ V , we are given a

target value d(v) ≥ 0 that we wish to realize as the total weight
∑

e∈(Vk) : v∈e
w(e) of all

sets containing v. This can be interpreted as a fractional version of the problem of finding
a k-graph H with vertex set V where dH(v) = d(v) for all v ∈ V . In Lemma 2.10.4,
which is a consequence of Lemma 2.10.3, we consider one possible assignment of weights
that achieves the stated goal approximately.

Recall that for a function f : A → R and a finite set X ⊆ A, we defined w(X) :=∑
x∈X w(x).

Lemma 2.10.3. Suppose k ≥ 1 is an integer and A is a finite set. Let fmax > 0 and
suppose f : A→ [0, fmax] is a function with f(A) > 0. Then,∑

(a1,...,ak)∈Ak

∏
i∈[k]

f(ai) =

(
1± k2fmax

f(A)

)
f(A)k.
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Proof. The upper bound follows since∑
(a1,...,ak)∈Ak

∏
i∈[k]

f(ai) ≤
∑

a1,...,ak∈A

∏
i∈[k]

f(ai) = f(A)k.

For the lower bound, observe that

f(A)k −
∑

(a1,...,ak)∈Ak

∏
i∈[k]

f(ai)

≤
∑
j∈[k]

∑
(a1,...,aj−1,aj+1,...,ak)∈Ak−1

∑
aj∈{a1,...,aj−1,aj+1,...,ak}

∏
i∈[k]

f(ai)

≤ k2fmax

∑
(a1,...,ak−1)∈Ak−1

∏
i∈[k−1]

f(ai) = k2fmaxf(A)k−1,

which completes the proof.

Lemma 2.10.4. Suppose k ≥ 1 is an integer and V is a finite set. Let dmax > 0 and
suppose d : V → [0, dmax] is a function with d(V ) ≥ 2kdmax. For e ∈

(
V
k

)
, let

w(e) :=
(k − 1)!

∏
v∈e d(v)

d(V )k−1
.

Then, for all j ∈ [k]0 and U ∈
(
V
j

)
,

∑
e∈(Vk) : U⊆e

w(e) =

(
1± 4k2dmax

d(V )

)
(k − 1)!

∏
u∈U d(u)

(k − j)!d(V )j−1
.

In particular, for all v ∈ V ,∑
e∈(Vk) : v∈e

w(e) =

(
1± 4k2dmax

d(V )

)
d(v).

Proof. Fix j ∈ [k]0 and U ∈
(
V
j

)
. Then, Lemma 2.10.3 entails

∑
e∈(Vk) : U⊆e

w(e) =
(k − 1)!

∏
u∈U d(u)

(k − j)!d(V )k−1
·

∑
(vj+1,...,vk)∈(V \U)k−j

∏
j′∈[k]j+1

d(vj′)

=

(
1± k2dmax

d(V \ U)

)
· d(V \ U)k−j

d(V )k−j
· (k − 1)!

∏
u∈U d(u)

(k − j)!d(V )j−1
.

=

(
1± 4k2dmax

d(V )

)
(k − 1)!

∏
u∈U d(u)

(k − j)!d(V )j−1
,

where we used d(V \ U) ≥ d(V )− kdmax and d(V ) ≥ 2kdmax.
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2.10.2 Proof of Theorem 2.5.2

To prove Theorem 2.5.2, we employ Lemma 2.10.6 which shows that instead of directly
working with a (d, ℓ,Γ, ε)-bounded conflict system, we may transition to a more restrictive
conflict system C that satisfies (C6)–(C9) while essentially retaining the boundedness
properties and the conflict-freeness of the tests. In the proof of Lemma 2.10.6, we use
Lemma 2.10.5 to establish (C7).

Lemma 2.10.5. For all k ≥ 2, there exists ε0 > 0 such that for all 0 < ε < ε0, there
exists d0 such that the following holds for all d ≥ d0. Suppose ℓ ≥ 2 is an integer
and suppose Γ ≥ 1 and 0 < µ ≤ 1/ℓ are reals such that 1/µΓℓ ≤ dε

2
. Suppose H is

a k-graph, suppose C is a (d, ℓ,Γ, ε)-bounded conflict system for H and suppose Z is a
set of (d, ε, C)-trackable test systems for H of uniformity at most ℓ.

Then, there exists a (d, ℓ, 2Γ, ε/3)-bounded conflict system C′ for H with C ⊆ C′ such
that the following holds.

(i) ∆(C′(2)) ≤ ∆(C(2)) + d1−ε/3 and ∆(C′(j)) = ∆(C(j)) for all j ∈ [ℓ]3;

(ii) |C′(j)e ∩C′(j)f | ≤ dj−ε/3 for all disjoint e, f ∈ H with {e, f} /∈ C′(2) and all j ∈ [ℓ− 1];

(iii) for all Z ∈ Z , all tests Z ∈ Z are C′-free.

Proof. For j ∈ [ℓ−1]2, we say that a pair (e, f) of disjoint edges e, f ∈ H with {e, f} /∈ C(2)
is j-bad if |C(j)e ∩ C(j)f | ≥ dj−ε/2, we say that it is bad if it is j-bad for some j ∈ [ℓ− 1]2
and we consider the conflict system C′ with edge set

C ∪ {{e, f} : (e, f) is bad}.

Due to (Z3), this construction preserves the conflict-freeness of all tests of test systems Z ∈
Z in the sense that (iii) holds. Property (ii) follows by construction if j ≥ 2 and if j = 1,
then the bound follows if C′ is (d, ℓ, 2Γ, ε/3)-bounded, so it remains to show that the
conflict system C′ satisfies (i) and that it is (d, ℓ, 2Γ, ε/3)-bounded.

To this end, we first bound the maximum degree of C′(2). For all edges e ∈ H and
all j ∈ [ℓ−1]2, there are at most ∆(C(j+1)) ·∆j(C(j+1)) pairs (Ce, Cf ) of conflicts Ce, Cf ∈
C(j+1) with e ∈ Ce and

Ce \ {e} = Cf \ {f} (2.10.1)

for some edge f ∈ Cf and for all such pairs, the edge f ∈ Cf with (2.10.1) is unique.
Furthermore, for all edges f ∈ H such that (e, f) is j-bad, there are at least dj−ε/2

pairs (Ce, Cf ) of conflicts Ce, Cf ∈ C(j+1) with e ∈ Ce and (2.10.1). Using that for all j ∈
[ℓ]2, we have ∆(C(j)) ≤ Γdj−1 as a consequence of (C2) and additionally employing (C3),
we conclude that for all edges e ∈ H, the number of edges f ∈ H such that (e, f) is bad
is at most

ℓ−1∑
j=2

∆(C(j+1)) ·∆j(C(j+1))

dj−ε/2
≤ ℓΓdj+1−ε

dj−ε/2
≤ d1−2ε/5.

Hence, for all e ∈ H, there are at most d1−2ε/5 conflicts C ∈ C′(2) containing e that
are not conflicts in C. Since we only added conflicts of size 2 during the construction
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of C′, this shows that (i) holds and that the (d, ℓ, 2Γ, ε/3)-boundedness of C′ follows from
the (d, ℓ,Γ, ε)-boundedness of C.

Lemma 2.10.6. For all k ≥ 2, there exists ε0 > 0 such that for all 0 < ε < ε0, there
exists d0 such that the following holds for all d ≥ d0. Suppose ℓ ≥ 2 is an integer
and suppose Γ ≥ 1 and 0 < µ ≤ 1/ℓ are reals such that 1/µΓℓ ≤ dε

2
. Suppose H is

a k-graph on n ≤ exp(dε) vertices with (1 − d−ε)d ≤ δ(H) ≤ ∆(H) ≤ d, suppose C is
a (d, ℓ,Γ, ε)-bounded conflict system for H and suppose Z is a set of (d, ε, C)-trackable
test systems for H of uniformity at most ℓ with |Z | ≤ exp(dε/(400ℓ))

Then, there exists a (d, ℓ, 3Γ, ε/4)-bounded conflict system C′ for H with the following
properties.

(i) dC′(j)(e) = (1±d−ε/4)(1+d−ε/ℓ) max(dj−1−ε/600,∆(C(j))) for all j ∈ [ℓ]2 with C′(j) ≠
∅ and all e ∈ H;

(ii) |C′(j)e ∩ C′(j)f | ≤ dj−ε/4 for all disjoint e, f ∈ H with {e, f} /∈ C′(2) and all j ∈ [ℓ− 1];

(iii) C is a matching for all C ∈ C′;
(iv) C ̸⊆ C ′ for all distinct C,C ′ ∈ C′;
(v) every C′-free subset of H is C-free;

(vi) |{Z ∈ Z : Z is not C′-free}| ≤ |Z|/dε for all Z ∈ Z .

Proof. Employing Lemma 2.10.5, we may assume that

|C(j)e ∩ C(j)f | ≤ dj−ε/3

holds for all disjoint e, f ∈ H with {e, f} /∈ C(2) and all j ∈ [ℓ− 1] at the cost of C being
not necessarily (d, ℓ,Γ, ε)-bounded, but still (d, ℓ, 2Γ, ε/3)-bounded, and then it suffices
to show that there exists a (d, ℓ, 3Γ, ε/4)-bounded conflict system C′ for H that satisfies

dC′(j)(e) = (1± d−ε/3)(1 + d−ε/ℓ) max(dj−1−ε/600,∆(C(j))) (2.10.2)

for all j ∈ [ℓ]2 with C′(j) ≠ ∅ and all e ∈ H as well as (ii)–(vi). To this end, we inductively
show the existence of conflict systems C1, C2, . . . , Cℓ for H such that Cj with j ∈ [ℓ] is in
a certain sense as desired up to and including uniformity j, which makes it an admissible
step in our construction and in which case we call it j-admissible. In particular, Cℓ is
then a conflict system with the desired properties.

Let us turn to the details. Formally, we define j-admissibility as follows. For j ∈ [ℓ],
we say that a conflict system Cj for H is j-admissible if the following holds.

(A1)
⋃
j′∈[j]2 C

(j′)
j is (d, ℓ, 3Γ, ε/4)-bounded;

(A2) C(j
′)

j = ∅ for all j′ ∈ [j] with C(j′) = ∅;
(A3) C(j

′)
j ⊆ C(j′) for all j′ ≥ j + 1;

(A4) d
C(j′)
j

(e) = (1 ± d−ε/3)(1 + d−ε/ℓ) max(dj−1−ε/600,∆(C(j′))) for all j′ ∈ [j]2 with

C(j′) ̸= ∅ and all e ∈ H;
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(A5) |(C(j
′)

j )e ∩ (C(j
′)

j )f | ≤ dj
′−ε/4 for all disjoint e, f ∈ H with {e, f} /∈ C(2)j and all j′ ∈

[j − 1];

(A6) C is a matching for all C ∈ Cj ;
(A7) C ̸⊆ C ′ for all distinct C,C ′ ∈ Cj ;
(A8) for all conflicts C ∈ C, there is a subset C ′ ⊆ C with C ′ ∈ Cj ;
(A9) |{Z ∈ Z : Z is not Cj-free}| ≤ 4j |Z|/d2ε for all Z ∈ Z .

For j ∈ [ℓ− 1], we show that if there exists a j-admissible conflict system Cj , then there
also exists a (j + 1)-admissible conflict system. Since

C1 := {C ∈ C : C is a matching with C ′ /∈ C for all C ′ ⊊ C}

is 1-admissible, this inductively proves that there is an ℓ-admissible conflict system Cℓ. As
every ℓ-admissible conflict system Cℓ is (d, ℓ, 3Γ, ε/4)-bounded as a consequence of (A1)
together with (A3), and additionally satisfies (2.10.2) and (ii)–(vi) due to (A4)–(A9),
this then finishes the proof.

We proceed with the inductive proof for the existence of an ℓ-admissible conflict system.
As in Sections 2.6–2.9 we frequently use the inequality 1/µΓℓ ≤ dε2 to bound terms that
depend on ℓ, Γ or µ from above using powers of d with a suitably small fraction of ε
as their exponent. We also use that as an immediate consequence of the (d, ℓ, 2Γ, ε/3)-
boundedness of C, we have ∆(C(j)) ≤ 2Γdj−1 for all j ∈ [ℓ]2. Additionally, to relate d
and n, we often use that d ≤ nk.

Fix j ∈ [ℓ]2 and suppose Cj−1 is a (j − 1)-admissible conflict system. We show that
a j-admissible conflict system Cj can be obtained by randomly adding conflicts of size j
to Cj−1 followed by deleting those conflicts of size at least j + 1 that contain one of the
added conflicts as a subset.

If C(j)j−1 = ∅, then Cj−1 is also j-admissible and we do not add any conflicts. Now,

assume C(j)j−1 ̸= ∅. Define the target degree

dtar := (1 + d−ε/ℓ) max(dj−1−ε/600,∆(C(j))) ≤ 4Γdj−1.

For all e ∈ H, the target degree dtar serves as a target value for dC(j)
j

(e) that we aim for

(but possibly only meet approximately). To this end, consider the function ddef : H → R,
that for all e ∈ H, maps e to the degree deficit ddef(e) := dtar − dC(j)

j−1

(e) and note that

dtar

d2ε/ℓ
= ddef(e)+dC(j)

j−1

(e)−(1−d−2ε/ℓ)dtar ≤ ddef(e)+∆(C(j)j−1)−∆(C(j)) ≤ ddef(e) ≤ dtar,
(2.10.3)

so in particular
dj−1−2ε ≤ ddef(e) ≤ 4Γdj−1. (2.10.4)

For C ∈
(H
j

)
, motivated by Lemma 2.10.4, consider the weight

wj(C) :=
(j − 1)!

∏
e∈C ddef(e)

ddef(H)j−1
≤ (j − 1)!djtar(

dtar
d2ε/ℓ

· |H|
)j−1

≤ 2ℓkℓℓℓd2εdtar
dj−1nj−1

≤ d3ε

nj−1
. (2.10.5)
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In particular, note that 0 ≤ wj(C) ≤ 1.
Let Xj denote the (random) hypergraph with vertex set H whose edge set is obtained

by including every matching C ∈
(H
j

)
satisfying C ′ ̸⊆ C for all C ′ ∈ Cj−1 independently

at random with probability wj(C). Let Cj denote the (random) hypergraph obtained
from Cj−1 + Xj by removing every edge C ′ ∈ Cj−1 satisfying C ⊆ C ′ for some C ∈ Xj .
Note that indeed, as claimed above, during this construction only edges of size j are
added and only edges of size at least j + 1 are removed.

The properties (A2), (A3) and (A6)–(A8) hold by construction, so it remains to consider
the properties (A1), (A4), (A5) and (A9). To this end, let us argue why it suffices to
show that the following holds with positive probability.

(I) dC(j)
j

(e) = (1± d−ε)dtar for all e ∈ H;

(II) ∆j′(C(j)j ) ≤ dj−j′−ε/4 for all j′ ∈ [j − 1]2;

(III) if j = 2, then |{f ∈ N (2)
Cj (e) : v ∈ f}| ≤ d1−ε/4 for all v ∈ V (H) and e ∈ H;

(IV) if j = 2, then |N (2)
Cj (e) ∩N (2)

Cj (f)| ≤ d1−ε/4 for all disjoint e, f ∈ H.

(V) |(Cj)(j−1)
e ∩ (Cj)(j−1)

f | ≤ dj−1−ε/4 for all disjoint e, f ∈ H with {e, f} /∈ C(2)j ;

(VI) |{Z ∈ Z : Z is not Cj-free}| ≤ 4j |Z|/d2ε for all Z ∈ Z .

Since we only added conflicts of size j and only removed conflicts of size at least j + 1
during the construction of Cj , Properties (A4), (A5) and (A9) follow from the (j − 1)-
admissibility of Cj−1 and (I), (V) and (VI), so let us turn to the (d, ℓ, 3Γ, ε/4)-boundedness

of
⋃
j′∈[j]2 C

(j′)
j . For (C1), note that 2 ≤ |C| ≤ ℓ holds for all C ∈ Cj by construction.

For (C2) observe that (A2) yields {j′ ∈ [ℓ]2 : C(j
′)

j ≠ ∅} ⊆ {j′ ∈ [ℓ]2 : C(j′) ̸= ∅} and that
with additionally (A4) and the (d, ℓ, 2Γ, ε/3)-boundedness of C, we obtain

∑
j′∈[j]2

∆(C(j
′)

j )

dj′−1
≤ 5

4

∑
j′∈[j]2 : C(j′)

j ̸=∅

dj
′−1−ε/600 + ∆(C(j′))

dj′−1

≤ 5

4

∑
j′∈[j]2 : C(j′) ̸=∅

d−ε/600 +
∆(C(j′))
dj′−1

≤ 3Γ.

For (C3)–(C5) note that since we only add conflicts of size j during the construction
of Cj , the desired bounds follow from the (j − 1)-admissibility of Cj−1, in particular

the (d, ℓ, 3Γ, ε/4)-boundedness of
⋃
j′∈[j−1]2

C(j
′)

j−1, and (II)–(IV).

We finish the proof by showing that (I)–(VI) hold with positive probability as a
consequence of Chernoff’s and McDiarmid’s inequality (Lemmas 2.10.1 and 2.10.2). As
every relevant random variable in (I)–(VI) is a sum or suitable function of independent
Bernoulli random variables, it suffices to show that their expected values satisfy the
desired bounds with some room for small relative errors.

For the degrees dC(j)
j

(e) of the edges e ∈ H that are relevant for (I), this essentially

follows from Lemma 2.10.4 which we apply with j, H, ddef playing the roles of k, V , d.
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For the random variables in (II)–(VI), the desired bounds simply follow from the upper
bound on the weights wj(C) that we deduced in (2.10.5).

First, for (I) and (II), we consider the degrees. For all e ∈ H, let Ye denote the set
of those j-sets of edges of H that we do not allow as candidates for randomly added
sets containing e during the construction of Cj , that is let Ye denote the set of those
sets C ∈

(H
j

)
containing e that are not matchings or that contain a conflict C ′ ∈ Cj−1 as

a proper subset.
We employ (2.10.5) to obtain

E[dC(j)
j

(e)] = dC(j)
j−1

(e) +
( ∑
C∈(Hj ) : e∈C

wj(C)
)
± |Ye|

d3ε

nj−1
.

Observe that (2.10.4) implies

4j2 maxe∈H ddef(e)

ddef(H)
≤ 4ℓ2 · 4Γdj−1

|H| · dj−1−2ε
≤ 32kℓ2Γd2ε

dn
≤ 1

d
. (2.10.6)

Hence, Lemma 2.10.4 with j, H, ddef , {e} playing the roles of k, V , d, U yields

E[dC(j)
j

(e)] = dC(j)
j−1

(e) + (1± d−1)ddef(e)± |Ye|
d3ε

nj−1
= (1± d−1)dtar ± |Ye|

d3ε

nj−1
.

We may bound |Ye| as follows. There are at most

|H|j−2 · (j − 1)k∆(H) ≤ dj−1+εnj−2 (2.10.7)

sets C ∈
(H
j

)
containing e that are not matchings. Furthermore, for all j′ ∈ [j]2, as a

consequence of the (j−1)-admissibility of Cj−1, more specifically (A4) and (A3) with Cj−1

playing the role of Cj , we have

∆(C(j
′)

j−1) ≤ 2 max(dj
′−1,∆(C(j′))) ≤ 4Γdj

′−1

and

|C(j
′)

j−1| ≤ |H| ·∆(C(j
′)

j−1) ≤
dn

k
· 4Γdj

′−1 ≤ 4Γdj
′
n.

Thus, for all e ∈ H, the number of sets C ∈
(H
j

)
with e ∈ C and a subset C ′ ⊆ C

with e ∈ C ′ and C ′ ∈ Cj−1 is at most

∑
j′∈[j]2

∆(C(j
′)

j−1) · |H|j−j
′ ≤

∑
j′∈[j]2

4Γdj
′−1

(
dn

k

)j−j′
≤ 4Γℓdj−1nj−2 ≤ dj−1+εnj−2

and the number of sets C ∈
(H
j

)
with e ∈ C and a subset C ′ ⊆ C with e /∈ C ′

and C ′ ∈ Cj−1 is at most

∑
j′∈[j−1]2

|C(j
′)

j−1| · |H|j−j
′−1 ≤

∑
j′∈[j−1]2

4Γdj
′
n

(
dn

k

)j−j′−1

≤ 4Γℓdj−1nj−2 ≤ dj−1+εnj−2.
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With (2.10.7), this yields |Ye| ≤ 3dj−1+εnj−2 and hence

E[dC(j)
j

(e)] = (1± d−2ε)dtar.

For all edge sets E ⊆ H of size j′ ∈ [j − 1]2, using (2.10.5), we obtain

E[dC(j)
j

(E)] ≤ dC(j)(E) +

(
dn

k

)j−j′
· d

3ε

nj−1
≤ dj−j′−ε/3 +

dj−j
′+3ε

n
≤ dj−j

′−ε/4

2
.

It remains to consider (III)–(VI). Before dealing with the special case j = 2 where (III)

and (IV) are relevant, we turn to (V) and (VI). Note that all e, f ∈ H with {e, f} /∈ C(2)j

satisfy {e, f} /∈ C(2)j−1 because we did not remove any conflicts of size 2 during the

construction of Cj . For all disjoint e, f ∈ H with {e, f} /∈ C(2)j and all j ∈ [ℓ]2, we
use (2.10.5) to obtain

E[|(Cj)(j−1)
e ∩ (Cj)(j−1)

f |] ≤ |(Cj−1)
(j−1)
e ∩ (Cj−1)

(j−1)
f |+ E[|(Xj)(j−1)

e ∩ (Cj−1)
(j−1)
f |]

+E[|(Cj−1)
(j−1)
e ∩ (Xj)(j−1)

f |] + E[|(Xj)(j−1)
e ∩ (Xj)(j−1)

f |]

≤ dj−1−ε/3 + 4 max(dj−1,∆(C(j))) · d
3ε

nj−1

+

(
dn

k

)j−1

·
(
d3ε

nj−1

)2

≤ dj−1−ε/3 +
8Γdj−1+3ε

n
+
dj−1+6ε

n
≤ dj−1−ε/4

2
.

For all Z ∈ Z , we also use (2.10.5) to obtain

E[|{Z ∈ Z : Z is not Cj-free}|] ≤ |{Z ∈ Z : Z is not Cj−1-free}|+
∑
Z∈Z

∑
Z′∈(Zj )

wj(Z
′)

≤ 4j−1|Z|
d2ε

+
2ℓd3ε|Z|
nj−1

≤ 4j |Z|
2d2ε

.

If j = 2, then, again using the upper bound (2.10.5), for all v ∈ V (H) and e ∈ H we
obtain

E[|{f ∈ N (2)
Cj (e) : v ∈ f}|] ≤ |{f ∈ N (2)

C (e) : v ∈ f}|+ d · d
3ε

n
≤ d1−ε/3 +

d1+3ε

n
≤ d1−ε/4

2

and for all disjoint e, f ∈ H, we obtain

E[|N (2)
Cj (e) ∩N (2)

Cj (f)|] ≤ |(Cj−1)
(1)
e ∩ (Cj−1)

(1)
f |+ E[|(Xj)(1)e ∩ (Cj)(1)f |]

+E[|(Cj)(1)e ∩ (Xj)(1)f |] + E[|(Xj)(1)e ∩ (Xj)(1)f |]

≤ d1−ε/3 + 4 max(d,∆(C(2))) · d
3ε

nj−1
+
dn

k
·
(
d3ε

n

)2
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≤ d1−ε/3 +
8Γd1+3ε

n
+
d1+6ε

n
≤ d1−ε/4

2
.

With these bounds on the expected values, using Chernoff’s inequality (Lemma 2.10.1)
and a suitable union bound we conclude that with high probability (I)–(IV) hold. To see
that (VI) also holds with high probability, we use McDiarmid’s inequality (Lemma 2.10.2).
For Z ∈ Z and C ∈

(H
j

)
, adding or removing C from Cj changes the number of tests Z ∈ Z

that are not Cj-free by at most dZ(C) and we have∑
C∈(Hj )

dZ(C)2 ≤ ∆j(Z) ·
∑

C∈(Hj )

dZ(C) ≤ |Z|
dj+ε

· 2ℓ|Z| ≤ |Z|
2

d
.

Thus, since the expected number of tests Z ∈ Z that are not Cj-free is at most 4j |Z|/(2d2ε),
McDiarmid’s inequality (Lemma 2.10.2) entails

P
[
|{Z ∈ Z : Z ist not Cj-free}| ≥ 4j |Z|

d2ε

]
≤ exp

(
− 4j |Z|2d

2d4ε|Z|2
)
≤ exp(−d1/2).

A suitable union bound completes the proof.

Proof of Theorem 2.5.2. We deduce Theorem 2.5.2 from Theorem 2.6.2. In this proof,
we actually allow more vertices in the sense that we only assume n ≤ exp(dε/(400ℓ))

instead of n ≤ exp(dε
2/ℓ), we only impose the weaker bound 1/µΓℓ ≤ dε

5/3
instead

of 1/µΓℓ ≤ dε2 , we allow more test systems by only assuming |Z | ≤ exp(dε/(400ℓ)) instead
of |Z | ≤ exp(dε

2/ℓ) and we obtain stronger bounds characterizing the properties of the
matching. This will be convenient when proving Theorems 2.5.3 and 2.5.4.

Instead of C, consider a conflict system C′ as in Lemma 2.10.6, for Z ∈ Z , let Z ′ :=
{Z ∈ Z : Z is C′-free} and define Z ′ := {Z ′ : Z ∈ Z }. Note that

1

µ3Γℓ
≤ d3ε5/3 ≤ d75(ε/5)5/3 ≤ d(ε/5)3/2 ,

that for all j ∈ [ℓ]2, we have

dj−1−ε/500 ≤ (1− d−ε/5)∆(C′(j)) ≤ δ(C′(j)).

Furthermore, for all Z ∈ Z of uniformity j, due to (Z1) we have

|Z ′| ≥ (1− d−ε)|Z| ≥ dj+ε

2
≥ dj+ε/5

and since for all e, f ∈ H with {e, f} /∈ C′(2) and all j ∈ [ℓ−1] we have |C′(j)e ∩C′(j)f | ≤ dj−ε/5
by choice of C′, the test systems Z ′ ∈ Z ′ are (d, ε/5, C′)-trackable. Thus, Theorem 2.6.2
with ε/5, 3Γ, C′, Z ′ playing the roles of ε, Γ, C, Z yields a C′-free matching M ⊆ H
with |M| = (1− µ)n/k,

|{Z ∈ Z : Z ⊆M}| ≥ (1− d−ε/375)
( |M|k

dn

)j
|Z ′| ≥ (1− d−ε/375)

(
(1− d−ε) |M||H|

)j
|Z ′|
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≥ (1− d−ε/375)(1− ℓd−ε)
( |M|
|H|

)j
|Z ′| ≥ (1− d−ε/400)

( |M|
|H|

)j
|Z|

and

|{Z ∈ Z : Z ⊆M}| ≤ (1 + d−ε/375)

( |M|k
dn

)j
|Z ′| ≤ (1 + d−ε/375)

( |M|
|H|

)j
|Z|.

Furthermore, as the matching M is C′-free, it is C-free by the choice of C′.

2.10.3 Proof of Theorem 2.5.3

To obtain Theorem 2.5.3 as a consequence of Theorem 2.5.2, we employ the following
lemma which allows us to approximate a test function w (or rather its extension to
arbitrary edge sets) using test systems obtained as a series of samples. For a hypergraphH,
a finite sequence Z = Z1, . . . ,Zz of j-uniform test systems for H and E ⊆ H, we define
the total Z -weight wZ (E) :=

∑
i∈[z]|Zi ∩

(
E
j

)
|.

Lemma 2.10.7. For all k ≥ 2, there exists ε0 > 0 such that for all 0 < ε < ε0,
there exists d0 such that the following holds for all d ≥ d0. Suppose H is a k-graph
on n ≤ exp(dε/600ℓ) vertices and suppose C is a conflict system for H. Suppose w
is a j-uniform (d, ε, C)-trackable test function for H where j ≤ log d. Then, there
exists a sequence Z = Z1, . . . ,Zz of j-uniform (d, ε/2, C)-trackable test systems for H
with z = exp(dε/500ℓ) and |Zi| = (1± d−1/2)w(H) for all i ∈ [z] as well as

w(E) = (1± d−1)
wZ (E)

z
(2.10.8)

for all E ⊆ H with wZ (E) ≥ z.
Proof. To obtain the elements of the sequence Z = Z1, . . . ,Zz, we construct exp(dε/500ℓ)
test systems Z by including every set Z ∈

(H
j

)
in Z independently at random with

probability w(Z). Then, Chernoff’s inequality (Lemma 2.10.1) shows that the desired
properties hold with positive probability.

Since w is (d, ε, C)-trackable, the following holds for all Z ∈ {Z1, . . . ,Zz}.
• E[|Z|] = w(H) ≥ dj+ε;
• E[dZ(E′)] = w({E ∈

(H
j

)
: E′ ⊆ E}) ≤ E[|Z|]/dj′+ε for all j′ ∈ [j−1] and E′ ∈

(H
j′

)
;

• P[|C(j
′)

e ∩ C(j
′)

f | ≤ dj
′−ε for all e, f ∈ H with dZ(ef) ≥ 1 and all j′ ∈ [ℓ− 1]] = 1;

• P[Z is a C-free matching for all Z ∈ Z] = 1.

Furthermore, for all E ⊆ H, we have E[wZ (E)] = w(E)|Z |. Thus, with a suitable
union bound, Chernoff’s inequality (Lemma 2.10.1) shows that with positive probability,
every (random) hypergraph Z ∈ {Z1, . . . ,Zz} is a (d, ε/2, C)-trackable test system for H
satisfying |Z| = (1± d−1/2)w(H), wZ (E) < z for all E ⊆ H with w(E) ≤ 1/2 and

wZ (E) =

(
1± d−1

2

)
w(E)z

for all E ⊆ H with w(E) ≥ 1/2 and thus (2.10.8) for all E ∈ H with wZ (E) ≥ z.
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Proof of Theorem 2.5.3. In this proof, we actually allow more vertices and more test
functions in the sense that we only assume n ≤ exp(dε/(600ℓ)) and |W | ≤ exp(dε/(600ℓ))
instead of n ≤ exp(dε

2/ℓ) and |W| ≤ exp(dε
2/ℓ). This will be convenient when proving

Theorem 2.5.4.
Lemma 2.10.7 shows that for all j-uniform w ∈ W , there exists a sequence Zw1 , . . . ,Zwz

of j-uniform (d, ε/2, C)-trackable test systems for H with z = exp(dε/(500ℓ)),

|Z| = (1± d−1/2)w(H) (2.10.9)

for all Z ∈ {Zw1 , . . . ,Zwz } and

w(E) = (1± d−1)

∑
i∈[z]|Zwi ∩

(
E
j

)
|

z
(2.10.10)

for all E ⊆ H with
∑

i∈[z]|Zwi ∩
(
E
j

)
| ≥ z. Let Z :=

⋃
w∈W {Zw1 , . . . ,Zwz }. Note that

|Z | ≤ exp(dε/(600ℓ)) · exp(dε/(500ℓ)) ≤ exp(dε/(400ℓ))

and
1

µΓℓ
≤ dε2 ≤ d4(ε/2)2 ≤ d(ε/2)5/3 .

Thus, an application of Theorem 2.5.2 with ε/2 playing the role of ε making use of the fact
that we only worked with weaker assumptions while obtaining a slightly stronger output
in the proof of Theorem 2.5.2, yields a C-free matching M⊆ H with |M| = (1− µ)n/k
and ∣∣∣∣Z ∩ (Mj

)∣∣∣∣ = |{Z ∈ Z : Z ⊆M}| = (1± d−ε/800)
( |M|
|H|

)j
|Z| (2.10.11)

for all j-uniform Z ∈ Z . Fix a j-uniform w ∈ W . In particular, (2.10.11) together
with (Z1) implies |Z ∩

(M
j

)
| ≥ dε/2/2j+1 ≥ dε/2/4ℓ ≥ 1 for all Z ∈ {Zw1 , . . . ,Zwz } and

hence
∑

i∈[z]|Zwi ∩
(M
j

)
| ≥ z. This allows us to apply (2.10.10) such that combining it

with (2.10.9) and (2.10.11), we conclude that

w(M) = (1± d−1)

∑
i∈[z]|Zwi ∩

(M
j

)
|

z
= (1± d−ε/850)

∑
i∈[z]

( |M|
|H|
)j |Z|

z

= (1± d−ε/900)
( |M|
|H|

)j
w(H),

which completes the proof.

2.10.4 Proof of Theorem 2.5.4

To prove Theorem 2.5.4, we apply Theorem 2.5.3 with a suitable more regular k-graph H′

where the given k-graph H is an induced subgraph of H′. More specifically, we use the
following lemma.



80 CHAPTER 2. CONFLICT-FREE HYPERGRAPH MATCHINGS

Lemma 2.10.8. For all k ≥ 2, there exists ε0 > 0 such that for all 0 < ε < ε0,
there exists d0 such that the following holds for all d ≥ d0. Suppose H is a k-graph
on n ≤ exp(dε) vertices with (1− ε)d ≤ δ(H) ≤ ∆(H) ≤ d and ∆2(H) ≤ d1−ε. Then, H
is an induced subgraph of a k-graph H′ on 3n vertices with (1−d−ε)d ≤ δ(H′) ≤ ∆(H′) ≤
d, ∆2(H′) ≤ d1−ε and

|{e ∈ H′ : 1 ≤ |e ∩ V (H)| ≤ k − 1}| ≤ 2εdn. (2.10.12)

Proof. After choosing an appropriate vertex set V ′ for H′, we construct the edge set
of H′ by starting with H and adding sets e ∈

(
V
k

)
with |e ∩ V | ≤ 1 independently at

random with suitable probabilities derived from Lemma 2.10.4.
In more detail, choose a set V ′ of size 3n with V := V (H) ⊆ V ′. Define the target

degree dtar := (1−d−2ε)d that for all v ∈ V ′ serves as a target value for dH′(v) that we aim
for (but possibly only meet approximately). To this end consider the function ddef : V → R,
that for all v ∈ V , maps v to the degree deficit ddef(v) := max(0, dtar − dH(v)) and for

all e ∈
(
V ′

k

)
with e ∩ V = {v}, consider the weight

w(e) :=
ddef(v)(

2n
k−1

) ≤ εd(
2n
k−1

) ≤ (1− ε)d(
n
k−1

) ≤ δ(H)(
n
k−1

) ≤ 1.

When adding edges e ∈
(
V ′

k

)
with |e ∩ V | = 1 independently at random with probabil-

ity w(e), the expected contribution to the degrees of the vertices u ∈ V + := V ′ \ V
is

d(u) :=
∑
v∈V

∑
U∈(V

+\{u}
k−2 )

w({u, v} ∪ U) ≤ n ·
(

2n− 1

k − 2

)
· εd(

2n
k−1

) =
ε(k − 1)dn

2n
≤ εkdtar.

Hence, extend the domain of ddef such that for all u ∈ V +, ddef maps u to the degree

deficit ddef(u) := dtar − d(u). For e ∈
(
V +

k

)
, motivated by Lemma 2.10.4, consider the

weight

w(e) :=
(k − 1)!

∏
u∈e ddef(u)

ddef(V +)k−1
≤ (k − 1)!dktar

((1− εk)dtar · 2n)k−1
≤ (1− ε)d

nk−1

(k−1)!

≤ δ(H)(
n
k−1

) ≤ 1.

Let H′ denote the (random) k-graph with vertex set V ′ whose edge set is obtained

from H by adding every set e ∈
(
V ′

k

)
with |e ∩ V | ≤ 1 independently at random with

probability w(e).
Let us investigate the expected degrees in H′. Lemma 2.10.4 was the motivation

for defining the weights w(e) with e ∈
(
V +

k

)
, so first, we deduce a bound for the error

term 4k2 maxu∈V + ddef(u)/ddef(V
+). We have

4k2 maxu∈V + ddef(u)

ddef(V +)
≤ 4k2dtar

(1− εk)dtar · 2n
≤ 4k2

d1/k
≤ d−2ε.
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For all v ∈ V with dH(v) ≥ dtar, we have dH′(v) = dH(v) and thus dtar ≤ dH′(v) ≤ d
with probability 1. For all v ∈ V with dH(v) ≤ dtar, we have

E[dH′(v)] = dH(v) +
∑

U∈(V
+

k−1)

w({v} ∪ U) = dH(v) + ddef(v) = dtar.

For all u ∈ V +, Lemma 2.10.4 yields

E[dH′(u)] = d(u) +
∑

e∈(V
+

k ) : u∈e

w(e) = (1± d−2ε)dtar.

Furthermore, for all v1, v2 ∈ V , we have dH′(v1v2) = dH(v1v2) ≤ d1−ε with probability 1,
for all v ∈ V and u ∈ V +, we have

E[dH′(uv)] =
∑

U∈(V
+\{u}
k−2 )

w({u, v} ∪ U) ≤
(

2n− 1

k − 2

)
· εd(

2n
k−1

) =
ε(k − 1)d

2n
≤ d

d1/k
≤ d1−2ε

and for all u1, u2 ∈ V +, Lemma 2.10.4 yields

E[dH′(u1u2)] =
∑

U∈(V
+

k−2)

w({u1, u2} ∪ U) +
∑
v∈V

∑
U∈(V

+

k−3)

w({u1, u2, v} ∪ U)

≤ (1 + d−2ε)
(k − 1)!ddef(u1)ddef(u2)

(k − 2)!ddef(V +)
+ n

(
2n

k − 3

)
ddef(v)(

2n
k−1

)
≤ kd2tar

(1− εk)dtar · 2n
+
εk2d

n
≤ 2kd

n
≤ 2kd

d1/k
≤ d1−2ε.

Finally, we obtain

E[|{e ∈ H′ : 1 ≤ |e ∩ V (H)| ≤ k − 1}|] =
∑
v∈V

∑
U∈(V

+

k−1)

w({v} ∪ U) =
∑
v∈V

ddef(v) ≤ εdn.

With these bounds on the expected degrees, using Chernoff’s inequality (Lemma 2.10.1)
and a suitable union bound, we conclude that with high probability, we have (1−d−ε)d ≤
dH′(v) ≤ d for all v ∈ V ′, dH′(v1v2) ≤ d1−ε for all v1, v2 ∈ V ′ and (2.10.12).

Proof of Theorem 2.5.4. Lemma 2.10.8 shows that H is an induced subgraph of a k-
graph H′ on 3n ≤ exp(dε/(600ℓ)) vertices with (1−d−ε)d ≤ δ(H′) ≤ ∆(H′) ≤ d, ∆2(H′) ≤
d1−ε and |W | ≤ 2εdn where

W := {e ∈ H′ : 1 ≤ |e ∩ V (H)| ≤ k − 1}.

Note that C is a (d, ℓ,Γ, ε)-bounded conflict system forH′ and that every test function w ∈
W is a (d, ε, C)-trackable test function for H′. Let W ′ ⊆ H′ with W ⊆ W ′ and εdn ≤
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|W ′| ≤ 2εdn. To see that w′ := 1W ′ is a (d, ε, C)-trackable test function for H′, note
that |W ′| ≥ εdn ≥ d1+ε.

An application of Theorem 2.5.3 with ε, H′, W ∪ {w′} playing the roles of µ, H, W
making use of the fact that we allowed more vertices and test functions in the proof of
Theorem 2.5.3 yields a C-free matching M′ ⊆ H′ with |M′| = 3(1− ε)n/k and

w(M′) = (1± d−ε/900)
( |M′|
|H′|

)j
w(H′) (2.10.13)

for all j-uniform w ∈ W and

|M′ ∩W | ≤ w′(M′) ≤ 2
|M′|
|H′| w

′(H′) ≤ 4
3n
k

3(1−d−ε)dn
k

εdn ≤ 8εn. (2.10.14)

Let V (M′) :=
⋃
e∈M′ e and M :=M′ ∩H. Then, (2.10.14) entails

|M| ≥ |M∪ (M′ ∩W )| − 8εn ≥ |V (M′) ∩ V (H)|
k

− 8εn ≥ n− |V (H′) \ V (M′)|
k

− 8εn

≥ (1− ε6/7)n
k
.

This implies

|M|
|H| =

(1± ε6/7)nk
(1±ε)dn

k

= (1± 2ε6/7)
1

d
= (1± 3ε6/7)

|M′|
|H′|

and thus, for all j ∈ [1/ε1/3] and all j-uniform w ∈ W , from (2.10.13) we obtain

w(M) = w(M′) = (1± d−ε/900)
( |M′|
|H′|

)j
w(H′) = (1±√ε)

( |M|
|H|

)j
w(H),

which completes the proof.

2.10.5 Proof of Theorem 2.5.5

In this section, we prove Theorem 2.5.5. To this end, we first employ the same conflict
regularization approach that we used in Section 2.10.2 and then we bound the number of
possible choices in every step of Algorithm 2.6.1.

Proof of Theorem 2.5.5. Let C′ denote a conflict system for H as in Lemma 2.10.6.
Consider Algorithm 2.6.1 with H and C′ playing the roles of the input parameters H
and C. For i ∈ [m− 1]0, let

p̂V (i) := 1− ik

n
, Γ̂0(i) :=

∑
j∈[ℓ]2

∆(C(j))
dj−1

(
ik

n

)j−1

and Γ̂(i) :=
∑
j∈[ℓ]2

∆(C′(j))
dj−1

(
ik

n

)j−1

.
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Let M denote the set of all C-free matchings M ⊆ H with |M| = (1 − µ)n/k. For
all M∈M , let EM := {M(m) =M} and for i ≥ 0, let T ∗(i) denote the event that for
all i′ ∈ [i− 1]0, we have

|H|(i′) ≥ (1− d−ε2) · dn
k
· p̂V (i′)k · exp(−Γ̂0(i

′)) =: ĥ+0 (i′).

Then, since T ∗(m) ⊆ {M(m) ∈M }, we have P[T ∗(m)] =
∑

M∈M P[T ∗(m) ∩ EM] and
thus

|M | ≥ P[T ∗(m)]

maxM∈M P[T ∗(m) ∩ EM]
. (2.10.15)

Hence, we aim to find a suitable lower bound for P[T ∗(m)] and for allM∈M , a suitable
upper bound for P[T ∗(m) ∩ EM]. First, we consider P[T ∗(m)].

Theorem 2.9.2 together with Fact 2.9.1 implies that with probability at least 1 −
exp(−dε2), for all i ∈ [m− 1]0, we have

|H|(i) ≥ (1− d−2ε2) · dn
k
· p̂V (i)k · exp(−Γ̂(i)) =: ĥ+(i).

By choice of C′, for all i ∈ [m− 1]0, we have

Γ̂(i) ≤ (1 + d−3ε2)
∑
j∈[ℓ]2

dj−1−ε/600 + ∆(C(j))
dj−1

(
ik

n

)j−1

≤ Γ̂0(i) + d−2ε2 ,

and hence

exp(−Γ̂(i)) ≥ exp(−d−2ε2) exp(−Γ̂0(i)) ≥ (1− d−2ε2) exp(−Γ̂0(i)).

This shows ĥ+0 (i) ≤ ĥ+(i), so we obtain

P[T ∗(m)] ≥ 1− exp(−dε2) ≥ 1− d−1. (2.10.16)

Next, we fix any M ∈ M and consider P[T ∗(m) ∩ EM]. Fix an ordering e1, . . . , em
of M. We have

P
[
T ∗(m) ∩

⋂
i∈[m]

{e(i) = ei}
]

= P
[ ⋂
i∈[m]

({e(i) = ei} ∩ T ∗(i))
]

≤
∏
i∈[m]

P
[
e(i) = ei

∣∣∣ ⋂
i′∈[i−1]

({e(i′) = ei′} ∩ T ∗(i′))
]

≤
∏
i∈[m]

k exp(Γ̂0(i− 1))

(1− d−ε2) · dn · p̂V (i− 1)k

=
km exp(

∑
i∈[m−1]0

Γ̂0(i))

(1− d−ε2)m · dmnm ·∏i∈[m−1]0
p̂V (i)k

.
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Note that∑
i∈[m−1]0

Γ̂0(i) =
∑
j∈[ℓ]2

∆(C(j))
dj−1

∑
i∈[m−1]0

(
ik

n

)j−1

≤
∑
j∈[ℓ]2

∆(C(j))
dj−1

∑
i∈[m−1]0

(
i

m

)j−1

≤
∑
j∈[ℓ]2

∆(C(j))
dj−1

∫ m

0

(
x

m

)j−1

dx = m
∑
j∈[ℓ]2

∆(C(j))
jdj−1

and ∏
i∈[m−1]0

p̂V (i) =
km

nm

∏
i∈[m−1]0

(
n

k
− i
)
≥ kmm!

nm

as well as
kmm!

nm
≥
(
km

en

)m
= (1− d−ε3)m exp(−m).

Thus, since there were at most m! choices for the ordering e1, . . . , em, we obtain

P[T ∗(m) ∩ EM] ≤ m! ·
km exp

(∑
j∈[ℓ]2

∆(C(j))
jdj−1

)m
(1− d−ε2)m · dmnm ·

(
kmm!
nm

)k
=

(
exp
(∑

j∈[ℓ]2
∆(C(j))
jdj−1

)
(1− d−ε2) · d ·

(
kmm!
nm

)(k−1)/m

)m

≤
(

exp
(
k − 1 +

∑
j∈[ℓ]2

∆(C(j))
jdj−1

)
(1− d−2ε4)d

)m
.

Using (2.10.15) to combine this with (2.10.16) completes the proof.

2.11 Sparse Steiner systems

In this section, we prove Theorem 1.1.1 and some variations. For a partial (m, s, t)-Steiner
system S, we use

⋃S :=
⋃
S∈S S to denote the set of points that S spans. In [49] it was

shown that if S is an (m, s, t)-Steiner system, that is, a partial (m, s, t)-Steiner system
where every t-set T ⊆ [m] is a subset of exactly one s-set S ∈ S, then for all j ∈ [|S|]2,
there is a collection S ′ ⊆ S of size j that spans at most

π(j) := (s− t)j + t+ 1

points. Motivated by this we proceed as in [49] and introduce the notion that for an
integer ℓ, a partial (m, s, t)-Steiner system S is ℓ-sparse if for all j ∈ [ℓ]2, every S ′ ∈

(S
j

)
spans at least π(j) points, or equivalently, if for all integers p with 2 ≤ κs,t(p) + 1 ≤ ℓ,
where

κs,t(p) :=

⌊
p− t− 1

s− t

⌋
,
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every S ′ ⊆ S that spans at most p points has size at most κs,t(p).
In Theorem 2.11.2, we allow ℓ to grow with m, hence providing a lower bound for the

maximum possible ℓ as a function of m. Lefmann, Phelps and Rödl [83] obtained the
following upper bound.

Theorem 2.11.1 ([83]). There exists c > 0 such that every Steiner triple system of
order m contains a subset of size j where 4 ≤ j ≤ c logm/ log logm that spans at
most j + 2 points.

It would be interesting to close or significantly narrow the gap between these two
bounds by determining more precisely how large ℓ may be chosen in terms of m.

Theorem 2.11.2. For all s > t ≥ 2, there exists m0 such that for all m ≥ m0 and

ℓ :=
log logm

3s log log logm
,

there exists an ℓ-sparse partial (m, s, t)-Steiner system S of size

(1− exp(−
√

logm))

(
m
t

)(
s
t

) .
Proof. Fix s > t ≥ 2, suppose that m is sufficiently large in terms of s and t and define ℓ
as in the statement. Let X := [m] and k :=

(
s
t

)
. Consider the k-graph H with vertex

set
(
X
t

)
and edge set

{(
S
t

)
: S ∈

(
X
s

)}
. With appropriately chosen parameters and conflicts

enforcing ℓ-sparseness, we can apply Theorem 2.5.1 to obtain a matching M⊆ H that
represents a partial (m, s, t)-Steiner system as desired.

First, let us introduce some further terminology and notation. As m, s and t are
fixed throughout the proof, we call partial (m, s, t)-Steiner systems simply partial Steiner
systems. We say that a partial Steiner system S is forbidden if it has size j ∈ [ℓ]2 and
spans less than π(j) points. Note that a partial Steiner system S is ℓ-sparse if and
only if there is no forbidden partial Steiner system S ′ ⊆ S. Every edge e ∈ H is the
set of all t-sets that are subsets of an s-set S ⊆ X, so given e, we may recover S by
considering the set

⋃
v∈e v of points lying in one of the vertices in e. We can reverse this

and obtain e by considering the set
(
S
t

)
of all t-sets that are subsets of S. We extend these

constructions to edge sets and collections of s-sets as follows. For an edge set E ⊆ H
and for S ⊆

(
X
s

)
, we define

S(E) :=
{⋃
v∈e

v : e ∈ E
}

and E(S) :=

{(
S

t

)
: S ∈ S

}
.

Furthermore, to provide access to the underlying subset of X, for E ⊆ H, we de-
fine X(E) :=

⋃S(E) to be the set of points lying in vertices in edges of E and for e ∈ H,
we set X(e) := X({e}). Note that mapping E ⊆ H to S(E) yields a size preserving
bijection from the set of all matchings in H to the set of all partial Steiner systems and
mapping S to E(S) yields its inverse.
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We are now ready to define appropriate parameters and conflicts. Let C denote the
conflict system for H where a set C ⊆ H is a conflict in C if and only if S(C) is a
forbidden partial Steiner system of size j ∈ [ℓ]2 such that there is no smaller forbidden
partial Steiner system S ′ ⊆ S. Let

d :=

(
m− t
s− t

)
, ε :=

1

s
, Γ := (ℓs)ℓs+1, and µ := exp(−

√
logm).

The k-graph H is d-regular and for all distinct u, v ∈ V (H), we have |u ∪ v| ≥ t+ 1 and
thus

dH(uv) ≤
(
m− t− 1

s− t− 1

)
=

s− t
m− td ≤ (s− t)d1− 1

s−t ≤ d1−ε.

Furthermore, we have Γ ≤ (logm)2/5 and hence 1/µΓℓ ≤ exp((logm)19/20) ≤ dε
2
. We

show next that C is (d, ℓ,Γ, ε)-bounded. Then, Theorem 2.5.1 yields a C-free match-
ing M⊆ H with size (1− µ)

(
m
t

)
/
(
s
t

)
and thus an ℓ-sparse partial Steiner system S(M)

of the same size.
Condition (C1) holds by construction of C, and since there is no forbidden partial

Steiner system of size 2, conditions (C4) and (C5) are also trivially satisfied. It remains
to check that (C2) and (C3) hold.

To this end, first note that removing any element of a forbidden partial Steiner system S
of size j ∈ [ℓ]3 that spans less than π(j − 1) points yields a smaller forbidden partial
Steiner system. This implies that all forbidden partial Steiner systems S of size j ∈ [ℓ]2
that do not contain a smaller forbidden partial Steiner system S ′ ⊆ S span at least π(j−1)
points and hence we have π(j − 1) ≤ |X(C)| ≤ π(j)− 1 for all j ∈ [ℓ]2 and C ∈ C(j).

First, we aim to verify (C2). For all j ∈ [ℓ]2, e ∈ H and p ∈ [π(j)− 1]π(j−1), we obtain

∑
P∈(Xp ) : X(e)⊆P

|{C ∈ C(j) : X(C) = P}| ≤
(
m− s
p− s

)(
p

s

)j
≤ 1

(s!)j
mp−spjs ≤ (ℓs)ℓs

(s!)j
mp−s

≤ (ℓs)ℓs

(s!)j
m(s−t)(j−1) ≤ (ℓs)ℓsdj−1

and thus

dC(j)(e) ≤
∑

p∈[π(j)−1]π(j−1)

∑
P∈(Xp ) : X(e)⊆P

|{C ∈ C(j) : X(C) = P}| ≤ s(ℓs)ℓsdj−1.

This yields
∑

j∈[ℓ]2
∆(C(j))
dj−1 ≤ Γ. Clearly, |{j ∈ [ℓ]2 : C(j) ̸= ∅}| ≤ ℓ ≤ Γ, so (C2) holds.

For all j ∈ [ℓ]2, j
′ ∈ [j − 1]2 and E ⊆ H with |E| = j′ and dC(j)(E) ≥ 1, the

partial Steiner system S(E) is not forbidden and thus spans at least π(j′) points. For
all p ∈ [π(j)− 1]π(j−1), this entails

∑
P∈(Xp ) : X(E)⊆P

|{C ∈ C(j) : X(C) = P}| ≤
(
m− (s− t)j′ − t− 1

p− (s− t)j′ − t− 1

)(
p

s

)j
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≤ mp−(s−t)j′−t−1pjs

≤ (ℓs)ℓsmp−(s−t)j′−t−1 ≤ (ℓs)ℓsm(s−t)(j−j′)−1

= (ℓs)ℓs
m(s−t)(j−j′−1/s)

mt/s
≤ dj−j

′−ε

s

and thus

dC(j)(E) ≤
∑

p∈[π(j)−1]π(j−1)

∑
P∈(Xp ) : X(E)⊆P

|{C ∈ C(j) : X(C) = P}| ≤ dj−j′−ε.

This shows that (C3) holds and hence finishes the proof.

Theorem 2.11.2 is a version of Theorem 1.1.1 where we allow ℓ to grow with m. Due
to the growth of ℓ, we do not obtain the polynomially decreasing leftover fraction m−ε

from Theorem 1.1.1, however, for fixed ℓ, it is straightforward to adapt the proof such
that it yields a leftover fraction as in Theorem 1.1.1.

Additionally, using test systems, the proof can easily be extended to also provide
control over the (t − 1)-degrees of the leftover, that is, for all (t − 1)-sets Y ∈

(
[m]
t−1

)
,

control over the number of t-sets T with Y ⊆ T that are not subsets of an s-set S ∈ S.
Indeed, in the proof where we consider the

(
s
t

)
-graph H with vertex set

(
[m]
t

)
and edge

set
{(

S
t

)
: S ∈

(
[m]
s

)}
, instead of Theorem 2.5.1, one may simply apply Theorem 2.5.2

using the sets {e ∈ H : Y ⊆ ⋃v∈e v} with Y ∈
(
[m]
t−1

)
as test systems.

Moreover, the same approach that we use in the proof can also be applied to prove
Theorem 2.3.1 by considering the

(
s
t

)
-graph H whose vertices are the edges of G and

whose edges are the edge sets of the cliques induced by the elements of K. In particular,
the arising conflict system is a subgraph of the conflict system C we analyzed in the proof
of Theorem 2.11.2, so all the bounds still hold.

The following Lemma 2.11.4 allows us to obtain Theorem 2.3.2 as a consequence of
Theorem 2.5.4. To prove this lemma, we use Hoeffding’s inequality for sampling without
replacement.

Lemma 2.11.3 (Hoeffding’s inequality [55]). Consider an n-set A and a function f : A→
[0, 1]. Let m ≤ n and suppose that X ∈

(
A
m

)
is chosen uniformly at random. Let f(X) :=∑

x∈X f(x). Then, for all t > 0,

P[|f(X)− E[f(X)]| ≥ t] ≤ 2 exp

(
−2t2

m

)
.

Recall that for 2 ≤ t < s, we use δt,s to denote the fractional decomposition threshold
for the t-uniform s-clique as defined in Section 2.3.2. Furthermore, for a t-graph H, we
use Ks(H) to denote the set of all s-cliques in H.

Lemma 2.11.4. For all 2 ≤ t < s and ε > 0, there exists ζ0 such that for all 0 < ζ < ζ0,
there exists n0 such that for all n ≥ n0 and all t-graphs H on n vertices with δt−1(H) ≥
(δt,s + ε)n, there exists w : Ks(H)→ [0, 1] such that the following holds.
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(i)
∑

K∈Ks(H) : e∈K w(K) = 1± ε for all e ∈ H;
(ii) max{w(K) : K ∈ Ks(H)} ≤ 1/(ζn)s−t.

Proof. Suppose that ε > 0 is sufficiently small in terms of 1/s, suppose that ζ is
sufficiently small in terms of ε and suppose that n is sufficiently large in terms of 1/ζ.
For m := 1/(2ζ), consider the collection

U :=

{
U ∈

(
V (H)

m

)
: δt−1(H[U ]) ≥ (δt,s + ε2)m

}
.

For U ∈ U consider a fractional decomposition wU : Ks(H[U ])→ [0, 1] which exists by
definition of δt,s. Then, since for all e ∈ H, the collection Ue := {U ∈ U : e ⊆ U} includes
almost all m-sets U ⊆ V (H) with e ⊆ U , the function w with

w(K) =

(
n− t
m− t

)−1 ∑
U∈U : K⊆H[U ]

wU (K)

for all K ∈ Ks(H) satisfies (i) and (ii).
Let us turn to the details. The function w satisfies (ii), since for all K ∈ Ks(H), we

have

w(K) ≤
(
n− s
m− s

)(
n− t
m− t

)−1

≤ nm−s

(m− s)! ·
2(m− t)!
nm−t ≤

(
2m

n

)s−t
.

It remains to show that w also satisfies (i).
For all e ∈ H, we have∑

K∈Ks(H) :
e∈K

w(K) =

(
n− t
m− t

)−1 ∑
U∈Ue

∑
K∈Ks(H[U ]) :

e∈K

wU (K) =

(
n− t
m− t

)−1

|Ue|.

Hence, it suffices to show that |Ue| ≥ (1− ε)
(
n−t
m−t
)

or equivalently, that for U− ∈
(
V (H)\e
m−t

)
chosen uniformly at random and U := U− ∪ e, we have P[U /∈ Ue] ≤ ε. To this end,
let d := (δt,s + ε2)m and observe that

P[U /∈ Ue]
≤
∑
t′∈[t]0

∑
{v1,...,vt′}∈(et′)

∑
{vt′+1,...,vt}∈(V (H)\e

t−t′ )

P[dH[U ](v1 . . . vt) ≤ d and vt′+1, . . . , vt ∈ U−],

(2.11.1)
so it suffices to obtain appropriate bounds for the probabilities on the right.

Fix t′ ∈ [t]0 and distinct v1, . . . , vt′ ∈ e and vt′+1, . . . , vt ∈ V (H) \ e. Lemma 2.11.3
entails

P[dH[U ](v1, . . . , vt) ≤ d and vt′+1, . . . , vt ∈ U−]

≤ 2mt−t′

nt−t′
P[dH[U ](v1, . . . , vt) ≤ d | vt′+1, . . . , vt ∈ U−]

≤ 2mt−t′

nt−t′
exp(−ε3m) ≤ ε

t · tt · nt−t′ .

Using (2.11.1), this bound yields P[U /∈ Ue] ≤ ε.
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Using this lemma, we may again use a similar approach as in the proof of Theorem 2.11.2
to obtain Theorem 2.3.2. To this end, suppose that ε > 0 is sufficiently small in
terms of 1/ℓ and 1/s, suppose that ζ is sufficiently small in terms of ε and suppose
that m is sufficiently large in terms of 1/ζ. Then, for every t-graph G on m vertices
with δt−1(G) ≥ (δt,s + ε)m, we may apply Lemma 2.11.4 with ε4 playing the role of ε
to obtain a suitable approximate fractional decomposition w. Let k :=

(
s
t

)
and consider

the k-graph H with vertex set G where the edges are the edge sets of s-cliques in G.
This k-graph plays a similar role as H in the proof of Theorem 2.11.2 and we may
define a similar conflict system C that captures the configurations that we wish to avoid
as conflicts. Let d := (ζn)s−t. Lemma 2.10.1 entails that with positive probability,
for a random subgraph H′ of H with the same vertex set where every edge set of
an s-clique K is an edge of H′ independently with probability (1− ε3)(ζn)s−tw(K), we
have (1− ε2)d ≤ δ(H′) ≤ ∆(H′) ≤ d. Suppose that H′ is such a subgraph of H.

Let Γ := (ℓs)ℓs+1. Similar arguments as in the proof of Theorem 2.11.2 show
that ∆2(H) ≤ d1−ε2 and 1/ε2Γℓ ≤ dε4 hold and that C is (d, ℓ,Γ, ε2)-bounded. Hence, we
may apply Theorem 2.5.4 with H′ and ε2 playing the roles of H and ε to obtain a C-free
matching M⊆ H with size (1− ε)|G|/

(
s
t

)
and thus a Steiner system as desired.

2.12 Further remarks

We already give a few applications of our main theorems in Section 2.3, but we believe
that there are many more. In fact, since the publication of the research this chapter is
based on, several such applications have been found, see [6, 11, 47, 52, 63, 81] and [24]
which builds on a result from [47].

We end the chapter by repeating two open questions that we briefly mention in the
chapter. Firstly, Theorem 2.5.5 yields a lower bound on the number of conflict-free
almost-perfect matchings and we wonder if the bound in Theorem 2.5.5 is essentially
tight. If there are no conflicts an upper bound can be derived with the so-called entropy
method. Potentially this method can be adapted to also yield the corresponding upper
bound in a setting with conflicts. Even in the case of Steiner triple systems with girth at
least 7 this seems challenging (see the discussions in [18,49,80]).

Secondly, Theorem 2.11.2 shows that there are approximate Steiner systems on m
points of girth Ω( log logm

log log logm) whereas Lefmann, Phelps and Rödl [83] proved that in

general the girth cannot be larger than O( logm
log logm). It remains an interesting question to

determine the largest possible girth of (approximate) Steiner systems.





Chapter 3

The Hypergraph Removal Process

3.1 Introduction

In this chapter, we consider the random greedy hypergraph packing process as a removal
process that iteratively removes edges of chosen copies as described in Chapter 1. To
determine when the F-removal process terminates, we crucially rely on closely tracking
the evolution of the numbers of occurrences of certain key substructures within the
random hypergraphs generated by the iterated removal of the randomly chosen copies
of F . We do this essentially all the way until we would expect no more remaining copies
and this tracking constitutes the heart of our proof. The main obstacle here lies in
selecting appropriate substructures that allow us to carry out such an analysis with
sufficient precision for the necessary number of steps. When we finally arrive at a step
where typically only few copies remain, the structural insights that the knowledge of these
key quantities provide allow us to apply Theorem 1.1.7 or Theorem 1.1.9 to show that
then, the F -removal process typically quickly terminates such that the overall runtime is
as expected. The proof of Theorem 1.1.7 and Theorem 1.1.9 relies on an argument that
is separate from the analysis of the algorithm up to the point where typically only few
copies remain and we present it at the end of the chapter starting in Section 3.9.

The number of copies of F still present in H is one obvious example for one of the
aforementioned key quantities that is crucial for understanding the behavior and following
the evolution of the process. Similarly as in Chapter 2, we employ supermartingale
concentration techniques to show that the random processes given by the key quantities
that we select typically closely follow deterministic trajectories that we deduce from
heuristic considerations. Again, our approach resembles the differential equation method
introduced by Wormald [113]. To maintain precise control over the key random processes
in the sense that we can still guarantee that expected one-step changes are as suggested
by intuition, we exploit a phenomenon that can be described as a self-correcting behavior
certain key quantities inherently exhibit. Furthermore, we require precise estimates also
for the quantities that determine the one-step changes of the key random processes, which
often forces us to enlarge our collection.

More specifically, let H∗ denote the |F|-graph where the edges present at some step i,

91
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that is after i iterations, form the vertex set of H∗ and where the edge sets of copies of F
present at step i are the edges of H∗. Let H∗ denote the number of edges of H∗, that
is, the number of present copies of F . Let F(0),F(1), . . . denote the natural filtration
associated with the F-removal process and consider the following example. Assuming
that for all distinct edges e and f , the number of copies of F that contain both e and f
is negligible compared to the degrees dH∗(e) and dH∗(f), in expectation, the one-step
change ∆H∗ of the number of present copies when transitioning to the next step is

E[∆H∗ | F(i)] ≈ −
∑

F ′∈H∗

∑
e∈F ′

dH∗(e)

H∗ . (3.1.1)

Note that here, the larger H∗, the larger the expected decrease (we divide by H∗, but
the remaining copies are counted by both, the number of summands in the outer sum
and the degrees). When considering the one-step changes of a process that measures
the deviation of the number of remaining copies from an appropriate deterministic
prediction, this causes a drift that, in expectation, steers the number of copies towards
the prediction. Exploiting such self-correcting behavior turns out to be crucial for a
precise analysis of the process. This leads to the critical interval method approach
briefly mentioned in Chapter 1. Other applications of such an approach can be found
in [13,14,16,17, 34,56, 108]. While in Chapter 2, we were only interested in a guarantee
that at most a vanishing fraction of vertices remains uncovered by the matching we
generate using the conflict-free matching process, in this chapter we specifically wish to
quantify this fraction. Thus, while in this chapter we analyze a comparatively simpler
special case of the ordinary random greedy hypergraph matching process without any
modifications, the main challenge now which greatly complicates the analysis is that we
wish to exploit such self-correcting behavior to enable a quantitatively much more precise
analysis.

Another important observation is that (3.1.1) introduces the degrees dH∗(e) of re-
maining edges e as further crucial quantities whose evolution we wish to follow using
supermartingale concentration. As such an edge e itself could be removed during the
next removal of a copy of F , it is more convenient to instead consider the degree d′H∗(e)
of e in the hypergraph H∗

[e] obtained from H∗ by adding e as a vertex and the edge

sets of all copies F ′ of F where all edges f ∈ F ′ \ {e} are present as edges. Note
that if e ∈ H∗, then H∗

[e] = H∗ and d′H∗(e) = dH∗(e). Since we again aim to rely on
supermartingale concentration, for a remaining edge e, we are again interested in the
one-step change ∆d′H∗(e) of d′H∗(e) when transitioning to the next step.

Similarly as above, we estimate

E[∆d′H∗(e) | F(i)] ≈ −
∑

F ′∈H∗
[e]

: e∈F ′

∑
f∈F ′\{e}

dH∗(f)

H∗ .

Since the degrees of remaining edges are included in our collection of key quantities, we
have estimates available for the degrees that we could use to approximate the expected
one-step changes of the degrees. This is a valid approach that leads to a natural barrier
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in the analysis, see [9,13]. However, due to undesirable accumulation of estimation errors,
such an approach is insufficient for an analysis up to the point where we may apply
Theorem 1.1.7 or Theorem 1.1.9.

Consider the following idea to circumvent this issue. If precise estimates for the
number Φe of substructures within H∗

[e] that consist of two copies of F that share an

edge e′ ̸= e and where one copy contains e were available, we could rely on the identity

E[∆d′H∗(e) | F(i)] = − Φe

H∗ .

However, if we now add the random variables Φe to our collection of tracked key
quantities, we essentially only shift the problem to determining the one-step changes
of these new random variables and similarly iterating the extension of the collection
by adding further key quantities that count substructures consisting of more and more
copies of F overlapping at edges quickly becomes unsustainable as the collection becomes
too large.

The very high-level approach described so far, including the separation into an analysis
of the early evolution and an analysis of the late evolution of the process, is essentially
the same as in the analysis of the case where F is a triangle [14]. Consequently, the same
obstacle mentioned above is encountered. To remedy this issue, Bohman, Frieze and
Lubetzky [14] carefully control the extension of the collection of key quantities manually
by giving explicit descriptions of the elements of a suitably chosen collection of structures
of overlapping triangles using sequences of the symbols 0, 1 and e. This collection is
chosen roughly based on the above idea and its size grows with 1/ε to allow for sufficiently
precise estimates, but at the cost of some however negligible precision, the collection is
still sufficiently small to allow an analysis of the evolution of all the relevant random
variables.

Explicitly describing the relevant substructures that facilitate such an analysis seems
practically infeasible for hypergraphs or even graphs larger than the triangle. Instead,
we implicitly choose our collection as a with respect to inclusion minimal collection of
substructures that is closed under certain carefully chosen substructure transformations,
where intuitively we still follow the above idea of considering substructures of overlapping
copies. With this definition, we need to rely on a density argument to see that this
even yields a finite collection. While the size of our collection grows with 1/ε, we show
that it is not too large and that, by choice of the transformations, it allows a precise
analysis of the evolution of all key quantities related to the substructures in the collection.
Due to the implicit nature of our collection, we have to make our arguments without
concrete knowledge of the structures we consider and all properties need to be deduced
from the fact that the collection is minimal among all collections that are closed under
the aforementioned transformations. This often makes our arguments substantially
more abstract. For example, for the analysis of the triangle case in [14], substructures
called fans in [14] which essentially correspond to graphs that for some ℓ ≥ 1 consist of
vertices u, v1, . . . , vℓ and the edges {u, vi} and {vj , vj+1} where 1 ≤ i ≤ ℓ and 1 ≤ j ≤ ℓ−1
play a key role. In our more general analysis, we instead work with maximizers of density
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based optimization problems that we consider without concrete knowledge of their
structure.

A further obstacle that we overcome in our analysis is related to a possible lack of
symmetry of F compared to a triangle. The structure of two overlapping copies of F
depends not only on the size of the overlap but also on the specific choice of the shared
part. This can cause transformations to switch between different non-interchangeable
choices within copies of F , which complicates the crucial part of the argument where
estimation errors need to be calibrated such that the self-correcting behavior of the
random processes remains mostly undisturbed by other quantities that also occur in
the expressions for the expected one-step changes. We overcome this by considering our
random processes in groups to restore symmetry in the sense that whenever we apply
transformations to all members of a group simultaneously, we remain in a situation where
all non-interchangeable choices within copies of F are represented if this was previously
the case.

Finally, as mentioned above, to complete our argumentation it remains to prove
Theorems 1.1.7 and 1.1.9. In our significantly more general setting, adapting the argument
presented in [14] to obtain a similar statement for the triangle case requires additional
insights for a sufficient understanding of the structure of the random hypergraphs typically
encountered around the time when we would typically expect the process to terminate.
While in the triangle case certain configurations formed by overlapping copies of F
are impossible as the triangle is simply too small to allow such overlaps of distinct
copies, arguments bounding the numbers of such configurations are non-trivial for larger
hypergraphs or even graphs.

3.2 Organization of the chapter

Theorem 1.1.4 is an immediate consequence of Theorem 1.1.5. Furthermore, the upper
bounds in Theorems 1.1.5 and 1.1.8 follow from Theorem 1.1.6. In the first part of
the chapter, our goal is to analyze the removal process for a sufficient number of steps
to see that with high probability, the process eventually generates a k-graph that is
sufficiently sparse to confirm Theorem 1.1.6 and that satisfies the properties necessary
for an application of Theorem 1.1.7 or Theorem 1.1.9 that then establishes the lower
bound in Theorem 1.1.5 or Theorem 1.1.8. Subsequently, in the second part, we prove
Theorems 1.1.7 and 1.1.9.

As mentioned in Section 3.1, our precise analysis of the process consists of closely
tracking the evolution of the number of occurrences of certain key substructures within
the random k-graphs generated by the process. We present this core of our proof as two
closely related instances of a supermartingale concentration argument. Section 3.6 is
dedicated to implicitly defining our carefully selected substructures and obtaining key
insights concerning singular such substructures. In Section 3.7, we adjust our point of
view and consider these structures in groups to establish symmetry, which is crucial for
the careful calibration of estimation error needed to exploit self-correcting behavior. In
Section 3.8, we show that, essentially as an immediate consequence of the insights gained
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in Sections 3.6 and 3.7, the conditions for the intended application of Theorems 1.1.7
and 1.1.9 are indeed satisfied.

As preparation for the argumentation in Sections 3.6 and 3.7, we first proceed as
follows. We introduce the setup for the first part of the chapter and formally state the
goal for this part in Section 3.3. Then, in Section 3.4, we describe the heuristics that
lead to our choices of deterministic trajectories that we expect key quantities to follow.
Furthermore, towards the end of Section 3.4, we formally describe how introducing
appropriate stopping times allows us to present the aforementioned two instances mostly
separately. As final preparations for Sections 3.6 and 3.7, in Section 3.5 we subsequently
introduce notation and terminology specific to our situation, we define key stopping times
and we gather some statements concerning key quantities defined up to this point.

For the second part of the chapter, where we prove Theorems 1.1.7 and 1.1.9, we
first describe the setup for this part in Section 3.9. Starting in Section 3.9, we focus
on the case where F has at least 3 edges since the case where F has only two edges,
that is the case that is relevant for Theorem 1.1.9, requires some specific modifications
in the argumentation that we discuss in detail in Section 3.14. In Section 3.10, we
further investigate the structure of the hypergraphs generated towards the expected end
of the process to deduce bounds that we subsequently rely on. Then, in Section 3.11,
we present an extended tracking argument for the number of remaining copies which
serves as further preparation for the arguments in Section 3.12 where we finally show that
typically, sufficiently many edges remain when the process terminates. This completes
the main part of our analysis and allows us to obtain proofs for our main theorems, see
Sections 3.13 and 3.14.

In Sections 3.15–3.17, we provide proofs for three auxiliary statements that we relied
on in the previous sections of the chapter. These proofs consist of further instances of a
critical interval argument that are mostly separate from one another and the other parts
of the chapter.

At the end of the chapter, in Section 3.18, we introduce two new conjectures concerning
the F-free and the F-removal process that we obtain from heuristic considerations.
Furthermore, we use Section 3.18 to briefly discuss possible applications of the results in
this chapter.

3.3 Removal process

From now on, until the end of Section 3.8, we focus on the first part. To this end, in this
section, we describe the removal process that we analyze in the subsequent sections. For
now, we assume a slightly more general setup similar to the one in Theorem 1.1.6. In
more detail, let k ≥ 2 and fix a k-balanced k-graph F on m vertices with |F| ≥ 2 and k-
density ρF . Suppose that 0 < ε < 1 is sufficiently small in terms of 1/m, that 0 < δ < 1
is sufficiently small in terms of ε and that n is sufficiently large in terms of 1/δ. Suppose
that H(0) is a (ε4, δ, ρF )-pseudorandom k-graph on n vertices where

ϑ :=
k! |H(0)|

nk
≥ n−1/ρF+ε
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and let H∗(0) denote the |F|-graph with vertex set H(0) whose edges are the edge sets
of copies of F that are subgraphs of H(0). Consider the following random process.

Algorithm 3.3.1: Random F-removal

1 i← 1
2 while H∗(i− 1) ̸= ∅ do
3 choose F0(i) ∈ H∗(i− 1) uniformly at random
4 H∗(i)← H∗(i− 1)−F0(i)
5 i← i+ 1

6 end

If the process fails to execute step i+ 1 and instead terminates, that is if H∗(i) = ∅,
then, for j ≥ i+ 1, let H∗(j) := H∗(i). For i ≥ 1, let H(i) denote the k-graph with vertex
set VH := VH(0) and edge set VH∗(i). Furthermore, let

H∗(i) := |H∗(i)| and H(i) = |H(i)|.

Let F(0),F(1), . . . denote the natural filtration associated with the random process above.
Finally, define the stopping time

τ∅ := min{i ≥ 0 : H∗(i) = ∅}

that indicates when Algorithm 3.3.1 terminates in the sense that τ∅ is the number of
successfully executed steps and hence the number of copies that were removed until
termination.

Since during every successful step of the process exactly |F| edges are removed, an
analysis up to step

i⋆ :=
(ϑ− n−1/ρF+ε)nk

|F|k!

is sufficient for our purpose. Specifically, in Section 3.8, we show that Theorem 3.3.2
below holds.

Theorem 3.3.2. With the setup above, the following holds. With probability at least 1−
exp(−(log n)4/3), the k-graph H(i⋆) is (4m,nε)-bounded, F-populated, k′-populated for
all 1 ≤ k′ ≤ k − 1/ρF and has nk−1/ρF+ε/k! edges.

An application of Theorem 3.3.2 with ε5 playing the role of ε immediately yields
Theorem 1.1.6 and hence the upper bounds in Theorems 1.1.5 and 1.1.8. Additionally, in
combination with Theorems 1.1.7 and 1.1.9, such an application of Theorem 3.3.2 also
yields the lower bounds in Theorems 1.1.5 and 1.1.8. Thus, for the first part, it only
remains to prove Theorem 3.3.2.
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3.4 Trajectories

In every step of Algorithm 3.3.1, exactly |F| edges are removed. Hence, if 0 ≤ i ≤ τ∅, we
have

H(i) =
ϑnk

k!
− |F|i.

The heuristic arguments in this section are based on the assumption that typically,
for all i ≥ 0, the edge set of H(i) behaves as if it was obtained by including every k-
set e ⊆ VH(0) independently at random with probability

p̂(i) := ϑ− |F|k! i

nk
.

Note that p̂(i) is chosen such that when following the probabilistic construction above,
the expected number of included edges is essentially the true number of edges in H(i).

Let Aut(F) denote the set of automorphisms of F , that is the set of bijections φ : VF ∼−→
VF with φ(e), φ−1(e) ∈ F for all e ∈ F and let aut(F) := |Aut(F)|. Based on the above
assumption about the behavior of H(i), we estimate

E[H∗(i)] ≈ nmp̂(i)|F|

aut(F)
=: ĥ∗(i).

As outlined in Section 3.1, our precise analysis of the random removal process essentially
consists of proving that the numbers of many carefully chosen additional substructures
within H∗(i) are typically concentrated around a deterministic trajectory. More specif-
ically, these substructures will be given by embeddings of templates. Recall that, as
defined in Chapter 1, a k-template is a pair (A, I) of a k-graph A and a vertex set I ⊆ VA.
For i ≥ 0, a k-template (A, I) and an injection ψ : I ↪→ VH(i), which may be thought
of as a partial localization of the template (A, I) within H(i), we are interested in the
collection Φ∼

A,ψ(i) of embeddings of A into H(i) that extend ψ. Formally, we set

Φ∼
A,ψ(i) := {φ : VA ↪→ VH(i) : φ|I = ψ and φ(e) ∈ H(i) for all e ∈ A \ A[I]}.

For a template (A, I) and ψ : I ↪→ VH(i), we anticipate

E[|Φ∼
A,ψ(i)|] ≈ n|VA|−|I|p̂(i)|A|−|A[I]| =: φ̂A,I(i).

This final estimate is only valid if (A, I) has certain desirable properties that make it
well-behaved and that we specify in Section 3.5. We ensure that all templates where we
are interested in precise estimates for the number of embeddings satisfy these properties.

Our organization of the proof that up to step i⋆, key quantities remain close to their
trajectory with high probability is as follows. In the subsequent sections, we define
stopping times τH∗ , τB, τB′ , τC, τB that measure when key quantities significantly deviate
from their trajectory. Then, to argue that

i⋆ < τH∗ ∧ τB ∧ τB′ ∧ τC ∧ τB =: τ⋆
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holds with high probability, we observe that

{τ⋆ ≤ i⋆} =
⋃

τ∈{τH∗ ,τB,τB′ ,τC,τB}

{τ ≤ τ⋆ ∧ i⋆}

and show that the probabilities for the five events on the right are small. For τ ∈
{τH∗ , τB, τB′}, a suitable bound for the probability of the corresponding event on the
right may be obtained similarly as the analogous statements for the triangle case in [14]
by employing standard critical interval arguments. New ideas that allow us to carry
out an analysis of the hypergraph removal process in great generality are required for
suitable bounds for the two remaining events, that is when τ ∈ {τC, τB}. We dedicate
Sections 3.6 and 3.7 to bounding the probabilities of these two events. Note that in fact,
each of these five events occurs if and only if the corresponding inequality holds with
equality.

3.5 Template embeddings and key stopping times

We introduce the following conventions and notations to simplify notation. In general, as
in Chapter 2, if X(0), X(1), . . . is a sequence of numbers or random variables and i ≥ 0,
we define ∆X(i) := X(i+ 1)−X(i). For an event E , a random variable X and i ≥ 0,
we define Pi[E ] := P[E | F(i)] and Ei[X] := E[X | F(i)]. We again write X =E Y for two
expressions X and Y and an event E , to express the statement that X and Y represent
(possibly constant) random variables that are equal whenever E occurs, or equivalently,
to express that X · 1E = Y · 1E . Similarly, we write X ≤E Y to mean X · 1E ≤ Y · 1E
and X ≥E Y to mean X · 1E ≥ Y · 1E . However, unlike in Chapter 2, we introduce the
following convention to improve the clarity of the presentation of the sometimes longer
and more involved expressions encountered here. To refer to a previously defined X(i),
we often only write X to mean X(i), so for example when we only write H∗, this is
meant to be replaced with H∗(i). Note that this introduces no ambiguity concerning VH
since VH(i) is the same for all i ≥ 0.

Extending the terminology concerning templates that we introduce in Section 1.1, we say
that a template (A, I) is a copy of a template (B, J) if there exists a bijection φ : VA ∼−→ VB
with φ(e) ∈ B for all e ∈ A, φ−1(e) ∈ A for all e ∈ B and φ(I) = J . We say that (A, I)
is balanced if ρB,I ≤ ρA,I for all (B, I) ⊆ (A, I). Note that a k-graph G is k-balanced if
and only if (G, e) is balanced for all e ∈ G. For a template (A, I), ψ : I ↪→ VH and i ≥ 0
let ΦA,ψ(i) := |Φ∼

A,ψ|.
The definition of the stopping times mentioned in Section 3.4 depend on what it means

to deviate significantly from a corresponding trajectory. The formal definition relies on
appropriately chosen error terms that we define for the key quantities that we wish to
track and that quantify the maximum deviation from the trajectory that we allow. Many
of these error terms are expressed in terms of δ and ζ(i), where for i ≥ 0, we set

ζ(i) :=
nε

2

n1/2p̂ρF/2
.
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For α ≥ 0 and a template (A, I) let

iαA,I := min{i ≥ 0 : φ̂A,I ≤ ζ−α},

where we set min ∅ :=∞. Note in particular, that i0A,I = min{i ≥ 0 : φ̂A,I ≤ 1}.
We consider the families of templates

F := {(F , f) : f ∈ F},
B := {(A, I) : (A, I) is a balanced k-template with |VA| ≤ 1/ε4 and iδ

1/2

A,I ≥ 1},
B′ := {(A, I) : (A, I) is a strictly balanced k-template with |VA| ≤ 1/ε4 and i0A,I ≥ 1}.

For x ≥ 0, let
αx := 2x+1 − 2

and let αA,I := α|VA|−|I|. In the following observation, we briefly state the properties
that motivate the choice of αx and that we rely on for arguments further below.

Observation 3.5.1. Let x, y ≥ 0 and z ≥ 1. Then,

2αx + 2 ≤ αx+1, αx + αy ≤ αx+y, αz ≥ 2.

We define the stopping times

τH∗ := min{i ≥ 0 : H∗ ̸= (1± ζ1+ε3)ĥ∗},
τF := min{i ≥ 0 : ΦF ,ψ ̸= (1± δ−1ζ)φ̂F ,f for some (F , f) ∈ F , ψ : f ↪→ VH},

τB := min

{
i ≥ 0 : ΦA,ψ ̸= (1± ζδ)φ̂A,I and i ≤ iδ1/2A,I

for some (A, I) ∈ B, ψ : I ↪→ VH

}
,

τB′ := min

{
i ≥ 0 : ΦA,ψ ̸= (1± (log n)αA,I φ̂−δ1/2

A,I )φ̂A,I and iδ
1/2

A,I ≤ i ≤ i0A,I
for some (A, I) ∈ B′, ψ : I ↪→ VH

}
.

Three of these stopping times are mentioned in Section 3.4. Since the precise definition
of the other two stopping times τC and τB is not always relevant, we occasionally only
work with the simpler stopping time τF that satisfies τF ≥ τC and we define

τ̃⋆ := τH∗ ∧ τB ∧ τB′ ∧ τF ≥ τ⋆. (3.5.1)

Observe that the relative error ζ1+ε
3

that we allow for H∗ is significantly smaller than
the relative error δ−1ζ that we allow for ΦF ,f where f ∈ F . Furthermore, the relative
error ζδ that we use for the number of embeddings ΦA,ψ corresponding to a balanced
extension (A, I) ∈ B and ψ : I ↪→ V (H) is significantly larger than these two previous
error terms. However, it is at most n−δ

2
, reflecting the fact that we still expect tight

concentration around the corresponding trajectory provided that we can still expect ΦA,ψ

to be sufficiently large in the sense that we are not beyond step iδ
1/2

A,I . Finally, concerning
the fourth stopping time, we are only interested in the further evolution of the number
of embeddings beyond step iδ

1/2

A,I , but still at most up to step i0A,I , if (A, I) is strictly
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balanced. For this further evolution, our relative error term is essentially potentially as
large as (log n)αA,I . Note that all error terms are sensible in the sense that at least in the
very beginning, before the removal of any copy, the corresponding random variables are
within the margin of error as implied by Lemma 3.5.4. Before we turn to this lemma and
its proof, we first state two useful Lemmas. Lemma 3.5.2 formulates a convenient fact
concerning the trajectories corresponding to the numbers of embeddings of templates that
we use below without explicitly referencing it. In Lemma 3.5.3, we consider a construction
of strictly balanced templates within k-graphs. It is convenient to have Lemma 3.5.3
available for the proof of Lemma 3.5.4 and furthermore, the simple construction plays
a crucial role in Section 3.6. Overall, the verification in Lemma 3.5.4 that the initial
conditions are suitable and the following lemmas in Sections 3.5.1–3.5.4 play mostly
an auxiliary role and the proofs rely on standard arguments and are not important for
understanding the setup and argumentation in Sections 3.6 and 3.7 where we turn to the
new ideas that allow us to analyze the F-removal process in great generality. Hence, if
the desire is to focus on these new contributions, one may skip these results and continue
reading at the beginning of Section 3.5.5 where we make some final remarks concerning
the overall setup as preparation for Sections 3.6 and 3.7.

Lemma 3.5.2. Let i ≥ 0. Suppose that (A, I) is a template and let I ⊆ U ⊆ VA.
Then, φ̂A,I = φ̂A,U · φ̂A[U ],I .

Proof. We have

φ̂A,I = n|VA|−|I|p̂|A|−|A[I]| = n|VA|−|U |p̂|A|−|A[U ]|n|U |−|I|p̂|A[U ]|−|A[I]| = φ̂A,U φ̂A[U ],I ,

which completes the proof.

Lemma 3.5.3. Suppose that A is a k-graph and let α ≥ 0 and U ⊆ VA. Suppose that
among all subsets U ⊆ I ′ ⊊ VA with ρA,I′ ≤ α, the set I has maximal size. Then, the
template (A, I) is strictly balanced.

Proof. Let (B, I) ⊆ (A, I) with I ̸= VB and B ̸= A. We show that ρB,I < ρA,I . We may
assume that B is an induced subgraph of A and then we have I ⊊ VB ⊊ VA. By choice
of I, we obtain ρA,VB > α ≥ ρA,I and hence

ρB,I =
ρA,I(|VA| − |I|)− ρA,VB(|VA| − |VB|)

|VB| − |I|
<
ρA,I(|VA| − |I|)− ρA,I(|VA| − |VB|)

|VB| − |I|
= ρA,I ,

which completes the proof.

Lemma 3.5.4. Let i := 0. Suppose that (A, I) is a k-template with |VA| ≤ 1/ε4 and
let ψ : I ↪→ VH. Then, the following holds.

(i) If ρB,I ≤ ρF for all (B, I) ⊆ (A, I), then ΦA,ψ = (1± ζ1+2ε3)φ̂A,I .

(ii) H∗ = (1± ζ1+2ε3)ĥ∗.

(iii) If (A, I) ∈ B, then ΦA,ψ = (1± ζδ+δ2)φ̂A,I .
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(iv) If (A, I) ∈ B′ and iδ
1/2

A,I = 0, then ΦA,ψ = (1± (log n)αA,I−1/2φ̂−δ1/2
A,I )φ̂A,I .

Proof. We obtain (ii) as an immediate consequence of (i) and we show that (i), (iii)
and (iv) follow from the (ε4, δ, ρF )-pseudorandomness of H. More specifically, while (iv)
is a direct consequence of the pseudorandomness, for (i) and (iii), we deconstruct (A, I)
into a series of strictly balanced templates to employ the pseudorandomness. Note that in
the definition of (ε4, δ, ρF )-pseudorandomness, the fraction ζ0 := nδ/(nϑρF )1/2 played the
role of ζ in the definition, however, here we have ζ = ζ(0) = nε

2
/(nϑρF )1/2 = nε

2
ζ0/n

δ.
Choosing a larger ζ here and in the definitions of the key stopping times gives us additional
room for errors that we exploit in the proof. In detail, we prove the four statements as
follows.

(i) Suppose that ρB,I ≤ ρF holds for all (B, I) ⊆ (A, I). We use induction on |VA|− |I|
to show that

ΦA,ψ = (1± 2(|VA| − |I|)ζ1+3ε3)φ̂A,I . (3.5.2)

Since |VA| ≤ 1/ε4, this is sufficient.
Let us proceed with the proof by induction. If |VA| − |I| = 0, then ΦA,I = 1 = φ̂A,I .

Let ℓ ≥ 1 and suppose that(3.5.2) holds if |VA| − |I| ≤ ℓ− 1. Suppose that |VA| − |I| = ℓ.
Suppose that among all subsets I ⊆ U ′ ⊊ VA with ρA,U ′ ≤ ρF , the set U has maximal
size. By Lemma 3.5.3, the extension (A, U) is strictly balanced. We have

ΦA,ψ =
∑

φ∈Φ∼
A[U ],ψ

ΦA,φ. (3.5.3)

We use the estimate for ΦA[U ],ψ provided by the induction hypothesis and for φ ∈ Φ∼
A[U ],ψ,

we estimate ΦA,φ using the pseudorandomness of H.
Let us turn to the details. The template (A, U) is strictly balanced and satisfies ρA,U ≤

ρF , so since H is (ε4, δ, ρF )-pseudorandom, for all φ ∈ Φ∼
A[U ],ψ, we have

ΦA,φ = (1± ζ0)φ̂A,U =

(
1± nδ

nε2
ζ

)
φ̂A,U = (1± ζ1+3ε3)φ̂A,U .

Since by induction hypothesis, we have ΦA[U ],ψ = (1±2(|U |−|I|)ζ1+3ε3)φ̂A[U ],I , returning
to (3.5.3), we conclude that

ΦA,ψ = (1± 2(|U | − |I|)ζ1+3ε3)φ̂A[U ],I · (1± ζ1+3ε3)φ̂A,U = (1± 2(|VA| − |I|)ζ1+3ε3)φ̂A,I ,

which completes the proof of (i).

(ii) This is a consequence of (i) and the fact that F is k-balanced. To see this, we
argue as follows. Fix f ∈ F and let ψ : ∅ → VH. Then, we have

H∗ =
ΦF ,ψ

aut(F)
=

1

aut(F)

∑
φ∈Φ∼

F[f ],ψ

ΦF ,φ = (1± ζ1+2ε3)
φ̂F ,f · ΦF [f ],ψ

aut(F)

= (1± ζ1+2ε3)
φ̂F ,f · k!H

aut(F)
= (1± ζ1+2ε3)

φ̂F ,f · ϑnk
aut(F)

= (1± ζ1+2ε3)ĥ∗,

which completes the proof of (ii).
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(iii) Suppose that (A, I) is balanced and that φ̂A,I ≥ ζ−δ
4/7(|VA|−|I|). We argue similarly

as in the proof of (i) and use induction on |VA| − |I| to show that

ΦA,ψ = (1± 2(|VA| − |I|)ζδ+2δ2)φ̂A,I . (3.5.4)

Since |VA| ≤ 1/ε4, this is sufficient.
Let us proceed with the proof by induction. If |VA| − |I| = 0, then ΦA,I = 1 = φ̂A,I .

Let ℓ ≥ 1 and suppose that (3.5.4) holds if |VA| − |I| ≤ ℓ− 1. Suppose that |VA| − |I| = ℓ.
Suppose that among all subsets I ⊆ U ′ ⊊ VA with ρA,U ′ ≤ ρA,I , the set U has maximal
size. By Lemma 3.5.3, the extension (A, U) is strictly balanced. Due to ϑ ≥ n−1/ρF+ε,
we have

φ̂A,I ≥ ζ−δ
4/7(|VA|−|I|) ≥

(
nε

2

nδ

)−δ4/7

ζ−δ
4/7

0 >

(
nερF/2

nδ

)−δ4/7/2
ζ−δ

4/7

0

≥
(
n1/2ϑρF/2

nδ

)−δ4/7/2
ζ−δ

4/7

0 = ζ
−δ4/7/2
0 ≥ ζ−δ3/50 .

(3.5.5)

Hence, if U = I, then, since (A, U) is strictly balanced and since ζδ+δ
2 ≥ ζδ0 , the desired

estimate follows from the fact that H is (ε4, δ, ρF )-pseudorandom. Thus, we may assume
that U ̸= I. We have

ρA[U ],I =
ρA,I(|VA| − |I|)− ρA,U (|VA| − |U |)

|U | − |I| ≥ ρA,I(|VA| − |I|)− ρA,I(|VA| − |U |)
|U | − |I|

= ρA,I .

Hence, since (A, I) is balanced, the template (A[U ], I) has density ρA[U ],I = ρA,I and is
also balanced. Additionally, we have

φ̂A[U ],I = φ̂
(|U |−|I|)/(|VA|−|I|)
A,I ≥ ζ−δ4/7(|U |−|I|)

and (3.5.5) entails

φ̂A,U ≥ φ̂(|VA|−|U |)/(|VA|−|I|)
A,I ≥ φ̂ε4A,I ≥ ζ−δ

2/3

0 .

We have
ΦA,ψ =

∑
φ∈Φ∼

A[U ],ψ

ΦA,φ. (3.5.6)

We use the estimate for ΦA[U ],ψ provided by the induction hypothesis and for φ ∈ Φ∼
A[U ],ψ,

we estimate ΦA,φ using the pseudorandomness of H.
Let us turn to the details. The template (A, U) is strictly balanced and we have φ̂A,U ≥

ζ−δ
2/3

0 , so since H is (ε4, δ, ρF )-pseudorandom, for all φ ∈ ΦA[U ],ψ, we obtain

ΦA,φ =

(
1±

(
nδ

nε2
ζ

)δ)
φ̂A,U = (1± ζδ+2δ2)φ̂A,U .
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Furthermore, the template (A[U ], I) is balanced and we have φ̂A[U ],I ≥ ζ−δ
4/7(|U |−|I|), so

by induction hypothesis, we obtain

ΦA,ψ = (1± 2(|U | − |I|)ζδ+2δ2)φ̂A[U ],I .

Returning to (3.5.6), we conclude that

ΦA,ψ = (1± 2(|U | − |I|)ζδ+2δ2)φ̂A[U ],I · (1± ζδ+2δ2)φ̂A,U = (1± 2(|VA| − |I|)ζδ+2δ2)φ̂A,I ,

which completes the proof of (iii).

(iv) Suppose that (A, I) ∈ B′ and iδ
1/2

A,I = 0. We may assume that I ̸= VA. If φ̂A,I ≥
ζ−δ

2/3

0 , then since H is (ε4, δ, ρF )-pseudorandom, using φ̂A,I ≤ ζ−δ
1/2

, we have

ΦA,I = (1±ζδ0)φ̂A,I = (1±ζδ)φ̂A,I = (1± φ̂−δ1/2
A,I )φ̂A,I = (1± (log n)αA,I−1/2φ̂−δ1/2

A,I )φ̂A,I .

If φ̂A,I ≤ ζ−δ
2/3

0 , then again since H is (ε4, δ, ρF )-pseudorandom, we obtain

ΦA,I = (1± (log n)3(|VA|−|I|)/2φ̂−δ1/2
A,I )φ̂A,I = (1± (log n)αA,I−1/2φ̂−δ1/2

A,I )φ̂A,I ,

which completes the proof of (iv).

3.5.1 Auxiliary results about key quantities

We gather some statements concerning the key quantities defined up to this point.
Lemmas 3.5.5– 3.5.9 provide useful bounds concerning p̂, ζ and H.

Lemma 3.5.5. Let 0 ≤ i ≤ i⋆. Then n−1/ρF+ε ≤ p̂ ≤ 1.

Proof. We obviously have p̂ ≤ ϑ ≤ 1 and furthermore p̂ ≥ p̂(i⋆) = n−1/ρF+ε.

Lemma 3.5.6. Let 0 ≤ i ≤ i⋆. Then, p̂(i+ 1) ≥ (1− n−ε2)p̂.

Proof. Lemma 3.5.5 implies

p̂(i+ 1) =

(
1− |F|k!

nkp̂

)
p̂ ≥

(
1− 2|F|k!

nε

)
p̂ ≥ (1− n−ε2)p̂,

which completes the proof.

Lemma 3.5.7. Let 0 ≤ i ≤ i⋆ and X := {i ≤ τ∅}. Then, H =X nkp̂/k!.

Proof. We have

H =X
ϑnk

k!
− |F|i =

nkp̂

k!
,

which completes the proof.

Lemma 3.5.8. Let 0 ≤ i ≤ i⋆. Then, n−1/2+ε2 ≤ ζ ≤ n−ε2.
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Proof. Indeed, using Lemma 3.5.5, we obtain

n−1/2+ε2 ≤ nε
2

n1/2p̂ρF/2
= ζ ≤ nε

2

n1/2p̂(i⋆)ρF/2
=

nε
2

n1/2n(−1+ερF )/2
=

nε
2

nερF/2
≤ n−ε2 ,

which completes the proof.

Lemma 3.5.9. Let 0 ≤ i ≤ i⋆ and X := {i ≤ τ∅}. Then, 1/H ≤X k!/(np̂ρF ) ≤ ζ2+2ε2.

Proof. Lemma 3.5.7 together with Lemma 3.5.5 entails

1

H
=X

k!

nkp̂
≤ k!

(np̂ρF )k
≤ k!

np̂ρF

.

Furthermore, using Lemma 3.5.8, we obtain

k!

np̂ρF
≤ nε

2

np̂ρF
= n−ε

2
ζ2 ≤ ζ2+2ε2 ,

which completes the proof.

3.5.2 Deterministic changes

Next, we gather bounds mostly concerning the behavior of deterministic trajectories and
their one-step changes. To this end, similarly as in Chapter 2, we use a consequence of
Taylor’s theorem (Lemma 2.9.10).

Observation 3.5.10. Extend p̂ and φ̂A,I to continuous trajectories defined on the whole
interval [0, i⋆ + 1] using the same expressions as above. Then, for x ∈ [0, i⋆ + 1],

φ̂′
A,I(x) = −(|A| − |A[I]|) |F|k! φ̂A,I(x)

nkp̂(x)
,

φ̂′′
A,I(x) = (|A| − |A[I]|)(|A| − |A[I]| − 1)

|F|2(k!)2φ̂A,I(x)

n2kp̂(x)2
.

Lemma 3.5.11. Let 0 ≤ i ≤ i⋆ and X := {i ≤ τ∅}. Suppose that (A, I) is a template.
Then,

∆φ̂A,I =X −(|A| − |A[I]|) |F|φ̂A,I
H

± ζ2+ε
2
φ̂A,I
H

.

Proof. This is a consequence of Taylor’s theorem. In detail, we argue as follows.
Together with Observation 3.5.10, Lemma 2.9.10 yields

∆φ̂A,I = −(|A| − |A[I]|) |F|k! φ̂A,I
nkp̂

± max
x∈[i,i+1]

(|A| − |A[I]|)(|A| − |A[I]| − 1)
|F|2(k!)2φ̂A,I(x)

n2kp̂(x)2
.



3.5. TEMPLATE EMBEDDINGS AND KEY STOPPING TIMES 105

We investigate the first term and the maximum separately. Using Lemma 3.5.7, we have

−(|A| − |A[I]|) |F|k! φ̂A,I
nkp̂

=X −(|A| − |A[I]|) |F|φ̂A,I
H

.

If φ̂A,I(x)/p̂(x)2 is not decreasing in x for x ∈ [i, i+ 1], then |A| − |A[I]| = 0 or |A| −
|A[I]| − 1 = 0. Hence, Lemma 3.5.7 together with Lemma 3.5.9 yields

max
x∈[i,i+1]

(|A| − |A[I]|)(|A| − |A[I]| − 1)
|F|2(k!)2φ̂A,I(x)

n2kp̂(x)2
≤ |A|

2|F|2(k!)2φ̂A,I
n2kp̂2

=X
|A|2|F|2φ̂A,I

H2

≤ ζ2+2ε2 |A|2|F|2φ̂A,I
H

≤ ζ2+ε
2
φ̂A,I
H

,

which completes the proof.

Lemma 3.5.12. Let α ≥ 0. Suppose that (A, I) is a template with |VA| ≤ 1/ε4

and iαA,I ≥ 1. Let 0 ≤ i ≤ iαA,I . Then, φ̂A,I ≥ (1− n−ε3)ζ−α.

Proof. For j ≥ 0, let ψ̂A,I(j) := ζ(j)αφ̂A,I(j). It suffices to show that ψ̂A,I ≥ (1− n−ε).
Note that ψ̂A,I(j) ≥ 1 for all 0 ≤ j ≤ iαA,I − 1. If |A| − |A[I]| − αρF/2 ≤ 0, then ψ̂A,I ≥
ψ̂A,I(0) ≥ 1. Otherwise, from Lemma 3.5.6, we obtain

ψ̂A,I ≥ ψ̂A,I(i
α
A,I) ≥ (1− n−ε2)|A|ψ̂A,I(i

α
A,I − 1) ≥ (1− n−ε2)|A| ≥ (1− n−ε3),

which completes the proof.

Lemma 3.5.13. Suppose that (A, I) is a strictly balanced template with |VA| ≤ 1/ε4.
Let i ≥ 0 and X := {i < τB ∧ τB′}. Let ψ : VA ↪→ VH. Then, ΦA,ψ ≤X (1 + log n)αA,I (1∨
φ̂A,I).

Proof. We may assume that I ̸= VA. If i0A,I = 0, then φ̂A,I(0) ≤ 1 and thus, since H
is (ε4, δ, ρF )-pseudorandom, we have

ΦA,I ≤ ΦA,I(0) ≤ (log n)3(|VA|−|I|)/2 ≤ (1 + log n)αA,I .

Hence, we may also assume that (A, I) ∈ B′. If i ≥ i0A,I , then Lemma 3.5.12 entails

ΦA,I ≤ ΦA,I(i
0
A,I) ≤X (1 + (log n)αA,I φ̂A,I(i

0
A,I)

−δ1/2)φ̂A,I(i
0
A,I) ≤ (1 + log n)αA,I ,

so we may additionally assume that i < i0A,I . If i ≥ iδ1/2A,I , then

ΦA,I ≤X (1 + (log n)αA,I φ̂−δ1/2
A,I )φ̂A,I ≤ (1 + log n)αA,I φ̂A,I .

Hence, we may also additionally assume that i < iδ
1/2

A,I and thus in particular (A, I) ∈ B.
Then,

ΦA,I ≤X (1 + ζδ)φ̂A,I ≤ (1 + log n)αA,I φ̂A,I ,

which completes the proof.
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3.5.3 Control over templates

Here, we present three statements that show that control over the numbers of balanced
templates and strictly balanced templates also provides some control over the number of
certain templates that are not necessarily balanced. Lemma 3.5.14 may be interpreted as
a generalization of [14, Corollary 3.3] and, with respect to the main part of the analysis,
plays a similar auxiliary role.

Lemma 3.5.14. Let i ≥ 0 and let X := {i < τB∧τB′}. Suppose that (A, I) is a template
with |VA| ≤ 1/ε4 and let ψ : I ↪→ VH. Then, the following holds.

(i) If φ̂B,I ≥ 1 for all (B, I) ⊆ (A, I), then ΦA,ψ ≤X (1 + log n)αA,I φ̂A,I ;

(ii) If φ̂A,J ≤ 1 for all I ⊆ J ⊆ VA, then ΦA,ψ ≤X (1 + log n)αA,I .

Proof. We use induction on |VA| − |I| to show that (i) and (ii) hold. If |VA| − |I| = 0,
then ΦA,ψ = 1 = φ̂A,I and hence (i) and (ii) are true.

Let ℓ ≥ 1 and suppose that both statements hold if |VA| − |I| ≤ ℓ − 1. Suppose
that |VA| − |I| = ℓ. First, suppose that there is an isolated vertex v /∈ I in A. If φ̂B,I ≥ 1
for all (B, I) ⊆ (A, I), using the induction hypothesis, we obtain

ΦA,ψ = (n− |VA|+ 1) · ΦA−{v},ψ ≤X (1 + log n)αA−{v},I φ̂A,I ≤ (1 + log n)αA,I φ̂A,I ,

so (i) holds. Furthermore, we have φ̂A,VA\{v} = n > 1, so (ii) is vacuously true.
Hence, now suppose that there is no isolated vertex v /∈ I in A. Let I ⊆ U ⊆ VA

such that ρA[U ],I is maximal and subject to this, that |U | is minimal. Then, (A[U ], I)
is strictly balanced. Furthermore, since there are no isolated vertices v /∈ I in A, we
have ρA[U ],I ≥ ρA,I > 0 by choice of U and hence U ̸= I. Note that

ΦA,ψ =
∑

φ∈Φ∼
A[U ],ψ

ΦA,φ. (3.5.7)

To obtain (i) and (ii), we use the strict balancedness of (A[U ], I) to bound ΦA[U ],ψ and
the induction hypothesis to bound ΦA,φ for all φ ∈ Φ∼

A[U ],ψ.

In more detail, for (i) we argue as follows. Suppose that φ̂B,I ≥ 1 for all (B, I) ⊆ (A, I).
For all (B, U) ⊆ (A, U) and B′ := B+A[U ], we have ρB′,I ≤ ρA[U ],I by choice of U . Thus,
since B′[U ] = A[U ] and B′[I] = A[I], we obtain

φ̂B,U = φ̂B′,U = n|VB′ |−|U |p̂|B
′|−|B′[I]|−(|A[U ]|−|A[I]|)

= n|VB′ |−|U |p̂ρB′,I(|VB′ |−|I|)−ρA[U ],I(|U |−|I|) ≥ n|VB′ |−|U |p̂ρB′,I(|VB′ |−|U |)

= φ̂
(|VB′ |−|U |)/(|VB′ |−|I|)
B′,I ≥ 1.

Hence, for all φ ∈ Φ∼
A[U ],ψ, by induction hypothesis,

ΦA,φ ≤X (1 + log n)αA,U φ̂A,U . (3.5.8)

The template (A[U ], I) ⊆ (A, I) is strictly balanced. Furthermore, since we suppose
that φ̂B,I ≥ 1 for all (B, I) ⊆ (A, I), we have φ̂A[U ],I ≥ 1. Thus, Lemma 3.5.13 entails

ΦA[U ],ψ ≤X (1 + log n)αA[U ],I φ̂A[U ],I . (3.5.9)
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Combining (3.5.8) and (3.5.9) with (3.5.7), we obtain

ΦA,ψ ≤X (1 + log n)αA[U ],I φ̂A[U ],I · (1 + log n)αA,U φ̂A,U .

Hence, employing Observation 3.5.1 as well as Lemma 3.5.2 yields

ΦA,ψ ≤X (1 + log n)αA,I φ̂A,I

and thus shows that (i) holds. Recall that, as mentioned above, when we use the fact
expressed in Lemma 3.5.2, we will not always explicitly reference this lemma.

Let us turn to (ii). Now, no longer suppose that necessarily φ̂B,I ≥ 1 for all (B, I) ⊆
(A, I) and instead suppose that φ̂A,J ≤ 1 for all I ⊆ J ⊆ VA. Then, in particular φ̂A,J ≤ 1
for all U ⊆ J ⊆ VA. Hence, for all φ ∈ Φ∼

A[U ],ψ, by induction hypothesis,

ΦA,φ ≤X (1 + log n)αA,U . (3.5.10)

The template (A[U ], I) ⊆ (A, I) is strictly balanced. Furthermore, since we suppose
that φ̂A,J ≤ 1 for all I ⊆ J ⊆ VA, so in particular φ̂A,I ≤ 1, and since ρA,I ≤ ρA[U ],I by
choice of U , we obtain

φ̂A[U ],I ≤ n|U |−|I|p̂ρA,I(|U |−|I|) = φ̂
(|U |−|I|)/(|VA|−|I|)
A,I ≤ 1.

Hence, Lemma 3.5.13 entails

ΦA[U ],ψ ≤X (1 + log n)αA[U ],I . (3.5.11)

Similarly as above, combining (3.5.10) and (3.5.11) with (3.5.7) and employing Observa-
tion 3.5.1 yields

ΦA,ψ ≤X (1 + log n)αA[U ],I · (1 + log n)αA,U ≤ (1 + log n)αA,I

and hence shows that (ii) holds.

Lemma 3.5.15. Let i ≥ 0 and X := {i < τB ∧ τB′}. Suppose that (A, I) is a template
with |VA| ≤ 1/ε4, let I ⊊ J ⊆ VA and from all subtemplates (B′, I) ⊆ (A, I) with J ⊆
VB′, choose (B, I) such that φ̂B,I is minimal. Let ψ : J ↪→ VH. Then, ΦA,ψ ≤X (1 +
log n)αA,J φ̂A,I/φ̂B,I .

Proof. Since |A[VB]|− |A[I]| ≥ |B|− |B[I]| entails φ̂A[VB],I ≤ φ̂B,I , we may assume that B
is an induced subgraph of A. Indeed, by choice of B, we obtain φ̂A[VB],I = φ̂B,I , so we
may replace B with A[VB] since the statement we wish to obtain only depends on φ̂B,I .
Note that

ΦA,ψ =
∑

φ∈Φ∼
B,ψ

ΦA,φ. (3.5.12)

We use Lemma 3.5.14 to bound ΦB,ψ and ΦA,φ for all φ ∈ Φ∼
B,ψ.
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In more detail, we argue as follows. Let φ ∈ Φ∼
B,ψ and consider a subtemplate (C, VB) ⊆

(A, VB). Then, for C′ := C +A[VB], we have φ̂B,I ≤ φ̂C′,I by choice of (B, I) and hence

φ̂C,VB = φ̂C′,VB =
φ̂C′,I

φ̂B,I
≥ 1.

Thus, Lemma 3.5.14 (i) entails

ΦA,φ ≤X (1 + log n)αA,VB φ̂A,VB . (3.5.13)

Next, in order so bound ΦB,ψ, suppose that J ⊆ J ′ ⊆ VB. Then, φ̂B,I ≤ φ̂B[J ′],I by choice
of (B, I) and hence

φ̂B,J ′ =
φ̂B,I
φ̂B[J ′],I

≤ 1.

Thus, Lemma 3.5.14 (ii) entails

ΦB,ψ ≤X (1 + log n)αB,J . (3.5.14)

Since B is an induced subgraph of A, combining (3.5.13) and (3.5.14) with (3.5.12)
and employing Observation 3.5.1 yields

ΦA,ψ ≤X (1 + log n)αB,J · (1 + log n)αA,VB φ̂A,VB ≤ (1 + log n)αA,J φ̂A,VB

= (1 + log n)αA,J
φ̂A,I
φ̂B,I

,

which completes the proof.

Lemma 3.5.16. Let i ≥ 0 and X := {i < τB ∧ τB′}. Suppose that (A, I) is a k-template
with |VA| ≤ 1/ε4 and let ψ : I ↪→ VH. Let e ∈ A\A[I] and from all subtemplates (B′, I) ⊆
(A, I) with e ∈ B′, choose (B, I) such that φ̂B,I is minimal. Then,

|{φ ∈ Φ∼
A,ψ : φ(e) ∈ F0(i+ 1)}| ≤X 2k!|F|(log n)αA,I∪e

φ̂A,I
φ̂B,I

.

Proof. Note that

|{φ ∈ Φ∼
A,ψ : φ(e) ∈ F0(i+ 1)}| ≤

∑
f∈F0(i+1)

|{φ ∈ Φ∼
A,ψ : φ(e) = f}|,

so it suffices to obtain

|{φ ∈ Φ∼
A,ψ : φ(e) = f}| ≤X 2k! (log n)αA,I∪e

φ̂A,I
φ̂B,I

.

for all f ∈ H(0). This is a consequence of Lemma 3.5.15
In detail, we argue as follows. Fix f ∈ H(0). We have

|{φ ∈ Φ∼
A,ψ : φ(e) = f}| ≤

∑
ψ′ : I∪e↪→ψ(I)∪f : ψ′|I=ψ

ΦA,ψ′ . (3.5.15)

For ψ′ : I ∪ e ↪→ ψ(I) ∪ f , Lemma 3.5.15 entails

ΦA,ψ′ ≤X (1 + log n)αA,I∪e
φ̂A,I
φ̂B,I

≤ 2(log n)αA,I∪e
φ̂A,I
φ̂B,I

.

Combining this upper bound with (3.5.15) completes the proof.
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3.5.4 Degrees

The numbers of embeddings of the templates (F , f) where f ∈ F play a special role since
they are closely related to the degrees in H∗.

Lemma 3.5.17. Let i ≥ 0 and e ∈ H. Then,

dH∗(e) =

∑
f∈F

∑
ψ : f ∼−→e ΦF ,ψ

aut(F)
.

Proof. Let ψ0 : ∅ → VH. We have

dH∗(e) =
|{φ ∈ Φ∼

F ,ψ0
: e ∈ φ(F)}|

aut(F)
=

∑
f∈F

∑
ψ : f ∼−→e ΦF ,ψ

aut(F)
,

which completes the proof.

Lemma 3.5.18. Let 0 ≤ i ≤ i⋆ and X := {i < τB ∧ τB′}. Consider distinct e1, e2 ∈ H
and f ∈ F . Then, dH∗(e1, e2) ≤X ζ2+ε

2
φ̂F ,f .

Proof. We have

dH∗(e1, e2) ≤
∑

f1,f2∈F

∑
ψ : f1∪f2 ∼−→e1∪e2

ΦF ,ψ.

Fix distinct f1, f2 ∈ F , J := f1 ∪ f2 and ψ : J ∼−→ e1 ∪ e2. We obtain a suitable upper
bound for ΦF ,ψ from Lemma 3.5.15 as follows.

Since (F , f1) is balanced, for all (A, f1) ⊆ (F , f1) with J ⊆ VA, we have ρA,f1 ≤ ρF
and hence using Lemma 3.5.5, we obtain

φ̂A,f1 = (np̂ρA,f1 )|VA|−k ≥ (np̂ρF )|VA|−k ≥ np̂ρF .

Thus, Lemma 3.5.15 together with Lemma 3.5.8 entails

ΦF ,ψ ≤X nε
2 φ̂F ,f1
np̂ρF

= n−ε
2
ζ2φ̂F ,f1 ≤ n−ε

2/2 ζ
2φ̂F ,f1
|F|2(2k)!

≤ ζ2+ε
2
φ̂F ,f1

|F|2(2k)!
,

which completes the proof.

3.5.5 Concentration of key quantities

Overall our proof relies on showing that key quantities that are crucial for our precise
analysis of the process are typically concentrated around a deterministic trajectory.
Establishing concentration for any of these quantities relies on the assumption that the
other key quantities behave as expected. More specifically, for certain collections of key
quantities, we show that it is unlikely that a key quantity from this collection is the
first among all key quantities to significantly deviate from its corresponding trajectory
as long as only steps 0 ≤ i ≤ i⋆ are considered. Before we turn to the core of our
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argument that allows us to analyze the removal process in our very general setting,
we end this section with Lemma 3.5.19 below that provides such statements for three
collections of key quantities that correspond to stopping times defined above. Recall that
as defined (3.5.1), the stopping time in τ̃⋆ is the minimum of the four stopping times
introduced in Section 3.5.

Lemma 3.5.19. (i) P[τH∗ ≤ τ̃⋆ ∧ i⋆] ≤ exp(−nε2).

(ii) P[τB ≤ τ̃⋆ ∧ i⋆] ≤ exp(−nδ2).

(iii) P[τB′ ≤ τ̃⋆ ∧ i⋆] ≤ exp(−(log n)3/2).

The three parts of Lemma 3.5.19 can be proved by standard applications of the critical
interval method. Essentially, the argumentation for the analogous statements in the
triangle case, see [14, Sections 2 and 3], can be adapted to the more general setting without
encountering any major obstacles. We remark that for Lemma 3.5.19 (i), similarly as
in [14], it is crucial to exploit that if for some i ≥ 0, the hypergraph H∗ is approximately
vertex-regular and has negligible 2-degrees, we may approximate

Ei[∆H∗] ≈ − 1

H∗

∑
F ′∈H∗

∑
e∈F ′

dH∗(e) = − 1

H∗

∑
e∈H∗

dH∗(e)2 ≈ − 1

H∗
(
∑

e∈H∗ dH∗(e))2

H

= −|F|
2H∗

H
.

Formally, one may rely on the following simple Lemma from [9] which we also apply
further below.

Lemma 3.5.20 ([9, Lemma 3.1]). Let a, a1, . . . , an and b, b1, . . . , bn such that |ai−a| ≤ α
and |bi − b| ≤ β for all i, j ∈ [n]. Then,∑

1≤i≤n
aibi =

1

n

( ∑
1≤i≤n

ai

)( ∑
1≤i≤n

bi

)
± 2αβn.

Proof. Note that∑
1≤i≤n

aibi−
1

n

( ∑
1≤i≤n

ai

)( ∑
1≤i≤n

bi

)
=
∑

1≤i≤n
(ai−a)(bi−b)−

1

n

( ∑
1≤i≤n

(ai−a)
)( ∑

1≤i≤n
(bi−b)

)
.

By the triangle inequality, we have∣∣∣ ∑
1≤i≤n

(ai − a)(bi − b)
∣∣∣ ≤ αβn and

∣∣∣( ∑
1≤i≤n

(ai − a)
)( ∑

1≤i≤n
(bi − b)

)∣∣∣ ≤ αβn2,
so the statement follows.

Furthermore, when adapting the arguments from the triangle case, Lemma 3.5.18
replaces the trivial upper bound on the 2-degrees in H∗ (given two edges, there is at
most one triangle containing both). For completeness, we provide proofs for the three
parts of Lemma 3.5.19 in Sections 3.15–3.17.
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3.6 Chains

Our precise analysis of the hypergraph removal process crucially relies on precise estimates
for the random variables ΦF ,ψ where ψ : f ↪→ VH for some f ∈ F that essentially
correspond to the degrees in the random |F|-graph H∗ (see Lemma 3.5.17). More
precisely, Lemma 3.5.19 provides estimates for key quantities at step i that hold with
high probability only while i < τF . To complete our argument based on stopping times
as outlined at the end of Section 3.4, we need to show that this typically holds if i ≤ i⋆
provided that the key quantities analyzed in these previous sections behaved as expected
up to this step.

The desire to control these numbers of embeddings motivates the definition of a
collection C of carefully chosen templates that includes the templates (F , f) ∈ F . Before
providing formal definitions of the concepts involved in the definitions of these templates
in Section 3.6.1, we first give some motivation and intuition where we omit some details.

We obtain the aforementioned templates from structures that we call chains and
remark that in [14], substructures playing a similar role for the special case where F is
a triangle are called ladders. Similarly as in [14], our choice of chains is based on the
following idea. For a chain template (C, I), ψ : I → VH and e ∈ C \ C[I], to estimate the
number of embeddings φ ∈ Φ∼

C,ψ lost due to φ(e) /∈ H(i+ 1), for an edge f ∈ F and a
bijection β : f ∼−→ e, we are interested in the number∑

φ∈Φ∼
C,ψ

ΦF ,φ◦β (3.6.1)

Simply obtaining an estimate for this number based on our estimates for ΦC,ψ and ΦF ,ψ′

where ψ′ : f ↪→ VH would lead to an undesirable accumulation of errors. Instead, to
achieve more precision that in the end allows us to closely follow the evolution of key
quantities for a sufficient number of steps, the initial idea might be to include a chain
in our collection C that provides a template (C+, I) where C+ is, in an intuitive sense,
an extension of C obtained from C by gluing a copy F ′ of F onto C such that for
all v ∈ f , the vertex v is identified with β(v) while no other vertices outside e and f are
identified with one another. Then, we could simply consider ΦC+,ψ. However, iterating
this unrestricted extension approach yields a growing collection of chains that quickly
becomes uncontrollable. To prevent this, we introduce another chain transformation
that we call reduction that is meant to counterbalance the extension steps by potentially
removing vertices from chains that grow due to extension such that in the end, up to
being copies of one another, we only need a finite collection of chains. In particular, we are
interested in a transformation C′′ of C+ that we call branching of C and that is obtained
by combining an extension operation with a reduction operation. Formally, we define C′′
to be a suitable induced subgraph of C+. If for the vertex set V ′′ of the branching C′′,
the embeddings of the template (C+, V ′′) can be controlled based on our estimates for
embeddings of balanced templates, then it could appear sensible to approximate the
number in (3.6.1) as ∑

φ∈Φ∼
C,ψ

ΦF ,φ◦β ≈
∑

φ∈Φ∼
C′′,ψ

ΦC+,φ. (3.6.2)
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Recall that our motivation was to analyze the one-step changes of ΦC,ψ and that our goal
is to exploit the self-correcting behavior of this number of embeddings in the following
sense: If there are more embeddings than expected, then it is more likely that embeddings
get destroyed hence providing a self-correcting drift (and similarly if there are fewer
embeddings than expected). With the expression in (3.6.2) based only on the branching,
this is hard to exploit directly since there is no explicit dependence on ΦC,ψ. To remedy
this, we define another chain, which we call support, that is obtained from the branching
through another transformation, which we call truncation. During truncation, we remove
what remains of the vertices that were added when the copy F ′ was glued onto C and we
choose the branching such that this truncation can be undone by again gluing the copy F ′

onto the support. This yields an induced subgraph C′ of C which only depends on e and
the original chain. We ensure that for the vertex set V ′ of the support, the embeddings of
the template (C, V ′) can be controlled based on our estimates for embeddings of balanced
templates. Then, Lemma 3.5.20 allows us approximate the number in (3.6.1) as∑

φ∈Φ∼
C,ψ

ΦF ,φ◦β =
∑

ψ′∈Φ∼
C′,ψ

ΦF ,ψ′◦βΦC,ψ′

≈

(∑
ψ′∈Φ∼

C′,ψ
ΦF ,ψ′◦β

)(∑
ψ′∈Φ∼

C′,ψ
ΦC,ψ′

)
ΦC′,ψ

≈ ΦC′′,ψ

ΦC′,ψ
ΦC,ψ.

(3.6.3)

The choice for our collection C of chains is motivated by the fact that for such an
argument, C needs to be closed under taking branchings and supports of chains contained
in C.

In Section 3.6.1, we formally define the terms chain, extension, truncation, reduction,
branching and support and we fix our collection C. In Section 3.6.2, we turn the motivation
outlined here into formal arguments to obtain a version of (3.6.3) with quantified errors.
Our arguments that rely on the self-correcting behavior require a careful choice of error
terms as well as a consideration of chains in groups that we call branching families
to exploit symmetry that we discuss in Section 3.7.1. While we defer the analysis of
branching families to Section 3.7, we define them in Section 3.6.3 and subsequently use
them in a supermartingale argument based on the insight from Section 3.6.2 that ensures
that the embeddings of chains are typically concentrated as desired.

3.6.1 Formal definition

Consider a sequence A = A1, . . . ,Aℓ of k-graphs where ℓ ≥ 0 and for 0 ≤ i ≤ ℓ define qi :=
1 +
∑

1≤j≤i(|Aj |− 1). We say that A is a loose path starting at a k-set I if there exists an
ordering e1, . . . , eqℓ of A1 + . . .+Aℓ such that e1 = I and such that Ai = {eqi−1 , . . . , eqi}
for all 1 ≤ i ≤ ℓ. We call A vertex-separated if VA1+...+Ai−1 ∩ VAi+...+Aℓ = eqi−1 for
all 2 ≤ i ≤ ℓ.

A triple c = (F, V, I) where F = F1, . . . ,Fℓ with ℓ ≥ 0 is a chain if F is the empty
sequence and V = I is a k-set or if F is a vertex-separated loose path of copies of F
starting at I such that I ⊆ V ⊆ VF1+...+Fℓ ⊆ VF ∪ N. The choice of N here is essentially
arbitrary and only serves to provide some infinite set of potential vertices, which is
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convenient when we want to consider the set of all chains. The chain template given by c
is the template (Cc, I) where Cc is the k-graph with vertex set I and edge set {I} if ℓ = 0
and where Cc = (F1 + . . .+ Fℓ)[V ] otherwise.

We now formally define the three basic transformations of chains mentioned in the
beginning of this section: extension, truncation and reduction.

For all β : f ∼−→ e where f ∈ F and e ∈ Cc \ Cc[I] such that e /∈ Fi for all 1 ≤ i ≤ ℓ− 1,

fix an arbitrary copy Fβc of F with vertex set V β
c ⊆ e ∪ N such that the following holds

(i) e ∈ Fβc ;

(ii) VF1+...+Fℓ ∩ V β
c = e;

(iii) there exists a bijection β′ : VF ∼−→ V β
c with β′(f ′) ∈ Fβc for all f ′ ∈ F and β′|f = β;

(iv) V β1
c ∩ V β2

c = e for all distinct β1 : f1 ∼−→ e and β2 : f2 ∼−→ e with f1, f2 ∈ F .

The β-extension of c is the chain c|β := (F ′, V ′, I) where

F ′ := F1, . . . ,Fℓ,Fβc and V ′ := V ∪ V β
c .

For 0 ≤ ℓ′ ≤ ℓ, the ℓ′-truncation of c is the chain c|ℓ′ := (F ′, V ′, I) where F ′ is the
empty sequence and V ′ = I if ℓ′ = 0 and where

F ′ := F1, . . . ,Fℓ′ and V ′ := V ∩ VF1+...+Fℓ′

otherwise. For convenience, we set c|− := c|ℓ− 1 if ℓ ≥ 1.
If ℓ = 0, let Wc := V . If ℓ ≥ 1, then, among the vertex sets W with (VF1 ∪ VFℓ) ∩ V ⊆

W ⊊ V and ρCc,W ≤ ρF + ε2, choose Wc such that |Wc| is maximal if such a vertex set
exists and choose Wc = V otherwise. The reduction of c is the chain c|r inductively
defined as follows. If Wc = V , then c|r := c. If Wc ̸= V , then c|r := (F,Wc, I)|r. It is
easy to see that this indeed provides a well-defined reduction for all chains. Crucially,
Lemma 3.5.3 guarantees that each reduction step corresponds to a strictly balanced
extension in the sense that if Wc ̸= V , then (Cc,Wc) is strictly balanced.

With these transformations, we can now formally define branching and support.
Let β : f ∼−→ e where f ∈ F and e ∈ Cc \ Cc[I] and suppose that ℓ′ ≥ 0 is minimal
such that e ∈ Cc|ℓ′ . We say that c|[β] := c|ℓ′|β|r is the β-branching of c and that the
chain c|e := c|[β]|−, which only depends on e and c, is the e-support in c.

Suppose that U ⊆ V . For ψ : U ↪→ VH and i ≥ 0, we set Φ∼
c,ψ(i) := Φ∼

Cc,ψ and Φc,ψ(i) :=
|Φ∼

c,ψ|. Furthermore, we set φ̂c,U := φ̂Cc,U .
Finally, we choose the collection of chains c = (F, V, I) where we are interested in Φc,ψ

for ψ : I ↪→ VH. We call a collection C′ of chains admissible if it satisfies the following
properties.

(i) (F , VF , f) ∈ C′ for all f ∈ F .

(ii) For all c = (F, V, I) ∈ C′ where F has length ℓ and all 1 ≤ ℓ′ ≤ ℓ, we have c|ℓ′ ∈ C′.

(iii) For all c = (F, V, I) ∈ C′ where F = F1, . . . ,Fℓ, and all β : f ↪→ e where f ∈ F
and e ∈ Cc \ Cc[I] such that e /∈ Fi for all 1 ≤ i ≤ ℓ− 1, we have c|β|r ∈ C′.

Every arbitrary intersection of admissible collections of chains is also admissible. Hence,
there exists an admissible collection of chains that is minimal with respect to inclusion.
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34
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31

42

1 2 3 4, 2 3 4 5, 3 4 5 6, 4 5 6 7, 5 6 7 8, 6 7 8 9, 7 8 9 10, 8 9 10 11, 9 10 11 12,

10 11 12 13, 10 12 13 14, 10 13 14 15, 10 14 15 16, 10 15 16 17, 10 16 17 18, 10 17 18 19, 10 18 19 20, 10 19 20 21,

10 20 21 22, 20 21 22 23, 21 22 23 24, 22 23 24 25, 23 24 25 26, 24 25 26 27, 25 26 27 28, 26 27 28 29, 27 28 29 30,

28 29 30 31, 29 30 31 32, 30 31 32 33, 30 32 33 34, 30 33 34 35, 30 34 35 36, 30 35 36 37, 30 36 37 38, 30 37 38 39,

30 37 39 40, 30 37 40 41, 30 40 41 42, 30 41 42 43, 30 42 43 44, 30 43 44 45, 30 44 45 46, 30 45 46 47, 30 46 47 48,

30 47 48 49, 30 48 49 50, 30 48 50 51, 30 48 51 52, 30 48 52 53

Figure 3.1: A 3-uniform chain template (C, I) for the special case where F = K
(3)
4 . The chain template

is given by a chain c = (F, V, I) where I = {1, 2} and where F = F1, . . . ,F50 is a sequence of 50 copies
of F whose vertices are elements of {1, . . . , 54}. The vertex sets of these copies are listed below the
visualization of the chain template and for each copy Fi with 1 ≤ i ≤ 49, the unique vertex of Fi that
is not a vertex of Fi+1 underlined. Instead of drawing the edges of C, we instead draw edges of the
links of selected colored, that is red, green blue or orange, vertices. Here, the link of a vertex u ∈ VC
is the 2-graph with vertex set VC where {v, w} is an edge if {u, v, w} ∈ C. To distinguish more clearly
between edges of C and edges of the links, here we call edges of C faces. For every face f ∈ C, there
exists a colored vertex v ∈ f such that f \ {v} is one of the edges of the link of v that is drawn in the
same color as v. Hence, for a vertex u, incident faces are represented either by incident edges of a link of
another vertex or as edges that have the same color as u. Not all edges of the link of a colored vertex are
drawn. Every face is represented by exactly one drawn edge, so in particular, the number of faces is the
number of drawn edges. Exactly two vertices of every copy in F are colored. Furthermore, the drawn
edges are selected such that every copy F ′ in F corresponds to a monochromatic triangle together with a
vertex of the same color in the following sense: the vertex together with the vertices of the triangle forms
the vertex set of F ′ and the edges of the triangle together with an edge that has the same color as the
unique colored vertex of the triangle represent the faces of F ′. Selected copies in F are highlighted using
a colored background.
Suppose that ε2 = 1/10. Then Wc = {1, . . . , 30, 48, 52, 53} and the vertices outside this set are highlighted.
Note that for the chain c′ := (F ′, V ′, I) with F ′ = F1, . . . ,F49 and V ′ = {1, . . . , 52}, the reduction
operation is trivial in the sense that c′|r = c′ due to Wc′ = V ′. Hence, an extension that transforms c′

into c transforms a chain where reduction is trivial into a chain where this is not the case.
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We choose the collection C of chains c = (F, V, I) with F = F1, . . . ,Fℓ where we are
interested in Φc,ψ for all ψ : I → VH and i ≥ 0 as this minimal admissible collection.
For our arguments, it is crucial that when considering the chains c = (F, V, I) ∈ C,
the template (C, I) is not too large and that we do not end up with too many random
processes Φc,ψ(0),Φc,ψ(1), . . . where ψ : I ↪→ VH (note that we enforce no bound for the
length of the sequence F ). Lemma 3.6.3 below provides suitable bounds for the sizes of
the vertex set V which in turn yields a suitable bound for the number of such random
processes (see Lemma 3.6.17). Lemmas 3.6.4 and 3.6.5 state simple useful properties of
chains c ∈ C that are almost immediate from the definition of C.

Lemma 3.6.1. Suppose that c = (F, V, I) is a chain and let (A, I) ⊆ (Cc, I). Then, ρA,I ≤
ρF .

Proof. We may assume that F has length ℓ ≥ 1 and that A is an induced subgraph
of Cc. Suppose that F = F1, . . . ,Fℓ. For 1 ≤ i ≤ ℓ, let Vi := V ∩ VFi . Let f1 := I and
for 2 ≤ i ≤ ℓ, let fi ∈ Fi−1 ∩ Fi. For 1 ≤ i ≤ ℓ, let Ui := (VA ∪ fi) ∩ Vi and Ai := Fi[Ui].
Note that since (Fi, fi) is balanced, we have ρAi,fi ≤ ρF . Since F is a vertex-separated
loose path, we have

VA \ I =
⋃

1≤i≤ℓ
Ui \ fi.

and (Ui\fi)∩(Uj \fj) = ∅ for all 1 ≤ i < j ≤ ℓ. This entails |VA|−|I| =
∑

1≤i≤ℓ|Ui|−|fi|.
Furthermore,

A \ A[I] =
⋃

1≤i≤ℓ
Fi[VA ∩ Vi] \ Fi[fi] ⊆

⋃
1≤i≤ℓ

Ai \ Ai[fi].

Similarly as above, since (Ai \ Ai[fi]) ∩ (Aj \ Aj [fj ]) = ∅ for all 1 ≤ i < j ≤ ℓ, this
entails |A| − |A[I]| ≤∑1≤i≤ℓ|Ai| − |Ai[fi]|. Thus, we obtain

ρA,I ≤
∑

1≤i≤ℓ|Ai| − |Ai[fi]|∑
1≤i≤ℓ|Ui| − |fi|

=

∑
1≤i≤ℓ ρAi,fi(|Ui| − |fi|)∑

1≤i≤ℓ|Ui| − |fi|
≤ ρF ,

which completes the proof.

Lemma 3.6.2. Suppose that c = (F, V, I) is a chain with |V | ≥ 1/ε3. Then, Wc ̸= V .

Proof. Suppose that F = F1, . . . ,Fℓ. We show that for W := VF1+Fℓ , as a consequence
of Lemma 3.6.1, we have ρCc,W ≤ ρF + ε2. Then, we obtain Wc ̸= V by choice of Wc.

Let us turn to the details. We have

|Cc| − |Cc[W ]| ≤ |Cc| − |Cc[I]|

and

|V | − |W | ≥ |V | − |I| − 2m =

(
1− 2m

|V | − k

)
(|V | − |I|) ≥

(
1− 2m

1
ε3
− k

)
(|V | − |I|)

≥ |V | − |I|
1 + ε2

ρF

.
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With Lemma 3.6.1, this yields

ρCc,W ≤
(

1 +
ε2

ρF

) |Cc| − |Cc[I]|
|V | − |I| ≤

(
1 +

ε2

ρF

)
ρF = ρF + ε2,

which completes the proof.

Lemma 3.6.3. Let (F, V, I) ∈ C. Then, |V | ≤ 1/ε3.

Proof. Consider the collection C′ of all chains (F, V, I) with |V | ≤ 1/ε3. As a consequence
of Lemma 3.6.2, this collection is admissible, so we have C ⊆ C′.

Lemma 3.6.4. Let c ∈ C. Then, c = c|r.

Proof. Consider the collection C′ of all chains c with c = c|r. By choice of C, if C′ is
admissible, then C ⊆ C′, so it suffices to show that C′ is admissible.

For all f ∈ F and c := (F , VF , f), we have c = c|r. Consider c = (F, V, I) ∈ C′

where F has length ℓ and let 1 ≤ ℓ′ ≤ ℓ. Suppose that c′ = (F ′, V ′, I) = c|ℓ′, let V ′′ :=
VFℓ′+1+...+Fℓ ∩ V and let C := Cc and C′ := Cc′ . Since for all (VF1 ∪ VFℓ′ ) ∩ V ⊆W ⊆ V ′,
we have ρC′,W = ρC,W∪V ′′ , from Wc = V , we obtain Wc′ = V ′. Hence, we have c′|r = c′

and thus c′ ∈ C′. Finally, since for all chains c, we have c|r = c|r|r, we conclude that C′

is admissible.

Lemma 3.6.5. Let c = (F, V, I) ∈ C where F = F1, . . . ,Fℓ. Then, |Cc \ Cc[I]| ≥ |F| − 1
and hence ℓ ≥ 1.

Proof. Consider the collection C′ of all chains (F, V, I) where F ′ = F1, . . . ,Fℓ for some ℓ ≥
1 such that VF1 ⊆ V . For all c′ = (F ′, V ′, I ′) ∈ C′, we have |Cc′ \ Cc′ [I ′]| ≥ |F| − 1.
Furthermore, C′ is admissible, so we have C ⊆ C′.

3.6.2 Branching and support

In this section, we follow the argumentation in the beginning of Section 3.6 to obtain
Lemma 3.6.15 where use the branching and support constructions to estimate the
expected number of embeddings of a chain template lost when removing the next
randomly chosen copy of F . As preparation for the proof of Lemma 3.6.15 we first
consider templates (Cc, VCc′ ) that correspond to truncation and reduction transformations
introduced above in the sense that c′ is the transformation of the chain c. For such
templates, we show that we can control the number of embeddings based on control
over balanced extensions (see Lemma 3.6.11, Lemma 3.6.12 and Lemma 3.6.14). To
this end, we first state Lemma 3.6.6 that quantifies the number of embeddings that
avoid a given small subset of VH, which will be helpful in the following situations.
Suppose that (A, I) is a template and that J ⊆ I is a subset such that for all e ∈ A
with e ∩ J ≠ ∅, we have e ∈ A[I] and suppose that ψ : I ↪→ VH. Let ψ′ := ψ|I\J .
Then, the number ΦA,ψ of embeddings of (A, I) that extend ψ is equal to the number
of embeddings φ ∈ Φ∼

A−J,ψ′ of (A− J, I \ J) that extend ψ′ and additionally avoid ψ(J)



3.6. CHAINS 117

in the sense that φ(VA−J) ∩ ψ(J) = ∅. We introduce the following notation. For a
template (A, I), ψ : I ↪→ VH and W ⊆ VH \ ψ(I), let

Φ∼,W
A,I := {φ ∈ Φ∼

A,I : φ(VA) ∩W = ∅} and ΦW
A,I := |Φ∼,W

A,I |.

Lemma 3.6.6. Let 0 ≤ i ≤ i⋆ and X := {i < τB ∧ τB′}. Suppose that (A, I) is a
template with |VA| ≤ 1/ε4 and ρB,I ≤ ρF + ε2 for all (B, I) ⊆ (A, I). Let ψ : I ↪→ VH
and W ⊆ VH \ ψ(I) with |W | ≤ 1/ε3. Then,

ΦA,ψ − ΦW
A,ψ ≤X ζ3/2φ̂A,I .

Proof. For v ∈ VA \ I and w ∈ W , let ψwv : I ∪ {v} ↪→ ψ(I) ∪ {w} with ψwv |I = ψ. We
have

ΦA,ψ − ΦW
A,ψ ≤

∑
v∈VA\I

∑
w∈W
|{φ ∈ Φ∼

A,ψ : φ(v) = w}| =
∑

v∈VA\I

∑
w∈W

ΦA,ψwv .

Hence, it suffices to show that for all v ∈ VA \ I and w ∈W , we have ΦA,ψwv ≤ ζ5/3φ̂A,I .
We show that this is a consequence of Lemma 3.5.15.

To this end, suppose that v ∈ VA \ I and w ∈W . For all subtemplates (B, I) ⊆ (A, I)
with v ∈ VB, using the fact that ζ−1 ≤ n1/2p̂ρF/2 and Lemma 3.5.5, we have

φ̂B,I = (np̂ρB,I )|VB|−|I| ≥ (np̂ρF+ε2)|VB|−|I| ≥ np̂ρF+ε2 ≥ (np̂ρF+8ε2)1/8ζ−7/4 ≥ ζ−7/4.

Thus, Lemma 3.5.15 entails

ΦA,ψwv ≤X (1 + log n)αA,I∪{v}ζ7/4φ̂A,I ≤ ζ5/3φ̂A,I ,

which completes the proof.

Lemma 3.6.7. Suppose that A1,A2 is a subsequence of a vertex-separated loose path.
Then, there exist edges e1 ∈ A1 and e2 ∈ A2 with VA1 ∩ VA2 ⊆ e1 ∩ e2.

Proof. Consider a vertex-separated loose path B = B1, . . . ,Bℓ that has A1,A2 as a
subsequence. Let 1 ≤ i < j ≤ ℓ such that Bi = A1 and Bj = A2. Let e1 denote the
unique edge in Bi ∩ Bi+1 and let e2 denote the unique edge in Bj−1 ∩ Bj . Then,

VA1 ∩ VA2 = VBi ∩ VBj ⊆ VB1+...+Bi ∩ VBi+1+...+Bℓ = e1

and similarly

VA1 ∩ VA2 = VBi ∩ VBj ⊆ VB1+...+Bj−1 ∩ VBj+...+Bℓ = e2,

which completes the proof.

Lemma 3.6.8. Suppose that F1,F2 is a subsequence of a vertex-separated loose path of
copies of F . Let I := VF1 ∩ VF2. Then, |I| = k or |I| ≤ k − 1/ρF . Hence, if I ⊆ VA for
some k-graph A that has exactly one edge and no isolated vertices, then ρA,I ≤ ρF .
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Proof. If F1 ∩ F2 ̸= ∅, then |I| = k and hence the statement follows. Thus, we may
assume that F1 ∩ F2 = ∅. Consider a vertex-separated loose path F ′ = F ′

1, . . . ,F ′
ℓ of

copies of F that has F1,F2 as a subsequence. Let 1 ≤ i < j ≤ ℓ such that F ′
i = F1

and F ′
j = F2. Since F1 ∩ F2 = ∅, we have j ≥ i+ 2. Choose f−, f+ ∈ F ′

i+1 such that f−
is the unique edge in F ′

i ∩F ′
i+1 and such that f+ is the unique edge in F ′

i+1∩F ′
i+2. Then,

VF1 ∩ VF2 = VF ′
i
∩ VF ′

j
⊆ VF ′

1+...+F ′
i
∩ VF ′

i+1+...+F ′
ℓ

= f−

and similarly

VF1 ∩ VF2 = VF ′
i
∩ VF ′

j
⊆ VF ′

1+...+F ′
i+1
∩ VF ′

i+2+...+F ′
ℓ

= f+.

Hence, VF1∩VF2 ⊆ f−∩f+. Thus, it suffices to show that |f−∩f+| ≤ k−1/ρF . This follows
from the fact that (F ′

i+1, f−) is balanced. To see this, consider the template (F ′
i+1[f− ∪

f+], f−). Then,

ρF ≥ ρF ′
i+1[f−∪f+],f− ≥

1

|f− ∪ f+| − |f−|
=

1

k − |f− ∩ f+|

and hence |f− ∩ f+| ≤ k − 1/ρF .

Lemma 3.6.9. Suppose that F1,F2 is a subsequence of a vertex-separated loose path
of copies of F . Suppose that A is a subgraph of F1 or F2. Let I := VA ∩ VF1 ∩ VF2.
Then, ρA,I ≤ ρF .

Proof. Since F2,F1 is also a subsequence of a vertex-separated loose path of copies of F ,
we may assume that A is a subgraph of F1. Furthermore, we may assume that A is an
induced subgraph of F1. By Lemma 3.6.7, we may fix an edge f1 ∈ F1 with VF1∩VF2 ⊆ f1.
If f1 ̸⊆ VA, then A[I] = ∅ and thus, using the fact that (F1, f1) is balanced, we obtain

|A| − |A[I]| = |F1[VA]| ≤ |F1[VA ∪ f1]| − |F1[f1]| = ρF1[VA∪f1],f1(|VA ∪ f1| − |f1|)
≤ ρF (|VA ∪ f1| − |f1|) = ρF |VA \ f1| ≤ ρF (|VA| − |I|).

If f1 ⊆ VA, then I = VF1∩VF2 , so using the fact that (F1, f1) is balanced and Lemma 3.6.8,
we obtain

|A| − |A[I]| = |A| − |A[f1]|+ |F1[f1]| − |F1[I]| = ρA,f1(|VA| − |f1|) + ρF1[f1],I(|f1| − |I|)
≤ ρF (|VA| − |f1|) + ρF (|f1| − |I|) = ρF (|VA| − |I|),

which completes the proof.

Lemma 3.6.10. Let 0 ≤ i ≤ i⋆ and X := {i < τB}. Suppose that F1,F2 is a subsequence
of a vertex-separated loose path of copies of F . Suppose that A is a subgraph of F1 or F2.
Let I := VA ∩ VF1 ∩ VF2. Let ψ : I ↪→ VH. Then,

ΦA,ψ =X (1± ε−1ζδ)φ̂A,I .
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Proof. We use induction on |VA| − |I| to show that

ΦA,ψ =X (1± 2(|VA| − |I|)ζδ)φ̂A,I . (3.6.4)

If |VA| − |I| = 0, then ΦA,ψ = 1 = φ̂A,I . Let ℓ ≥ 1 and suppose that (3.6.4) holds
if |VA|−|I| ≤ ℓ−1. Suppose that |VA|−|I| = ℓ. From Lemma 3.6.9, we obtain ρA,I ≤ ρF .
Suppose that among all subsets I ⊆ U ′ ⊊ VA with ρA,U ′ ≤ ρF , the set U has maximal
size. By Lemma 3.5.3, the extension (A, U) is balanced. We have

ΦA,ψ =
∑

φ∈Φ∼
A[U ],ψ

ΦA,φ. (3.6.5)

We use the estimate for ΦA[U ],ψ provided by the induction hypothesis and for φ ∈ Φ∼
A[U ],ψ,

we estimate ΦA,φ using the balancedness of (A, U) to conclude that ΦA,ψ is bounded as
desired.

Let us turn to the details. Since ζ−2 ≤ np̂ρF , for all j ≤ i, we have

φ̂A,U (j) = (np̂(j)ρA,U )|VA|−|U | ≥ (np̂ρF )|VA|−|U | ≥ ζ−2(|VA|−|U |) ≥ ζ−2 > ζ−δ
1/2
.

Hence i < iδ
1/2

A,U , and thus for all φ ∈ Φ∼
A[U ],ψ, we have ΦA,φ =X (1± ζδ)φ̂A,U . Since by

induction hypothesis, we have ΦA[U ],ψ = (1± 2(|U | − |I|)ζδ)φ̂A[U ],I , returning to (3.6.5),
we conclude that

ΦA,ψ = (1± 2(|U | − |I|)ζδ)(1± ζδ)φ̂A,U φ̂A[U ],I = (1± 2(|VA| − |I|)ζδ)φ̂A,I ,

which completes the proof.

Lemma 3.6.11. Let 0 ≤ i ≤ i⋆ and X := {i < τB ∧ τB′}. Suppose that c = (F, V, I) ∈ C
is a chain where F has length ℓ. Let 0 ≤ ℓ′ ≤ ℓ and suppose that (F ′, V ′, I) = c|ℓ′.
Let ψ : V ′ ↪→ VH. Then, Φc,ψ =X (1± ε−5kζδ)φ̂c,V ′.

Proof. For 0 ≤ ℓ0 ≤ ℓ, let

gℓ0 := |{ℓ0 ≤ ℓ1 ≤ ℓ− 1 : Cc|ℓ1 ̸= Cc|ℓ1+1}|.

We use induction on ℓ− ℓ′ to show that

Φc,ψ =X (1± 4gℓ′ε
−1ζδ)φ̂C,V ′ . (3.6.6)

By Lemma 3.6.3, we have |V | ≤ ε−3, hence |Cc| ≤ ε−3k and thus gℓ′ ≤ ε−3 + ε−3k ≤ ε−4k,
so it suffices to obtain (3.6.6).

Let us proceed with the proof by induction. If ℓ − ℓ′ = 0, then Φc,ψ = 1 = φ̂C,V ′ .
Let q ≥ 1 and suppose that (3.6.6) holds whenever ℓ− ℓ′ ≤ q− 1. Suppose that ℓ− ℓ′ = q.
Suppose that c′ = (F ′, V ′, I) = c|ℓ′ and c′′ = (F ′′, V ′′, I) = c|ℓ′+1. If Cc′′ = Cc′ , then (3.6.6)
follows by induction hypothesis, so we may assume Cc′′ ̸= Cc′ and hence gℓ′+1 = gℓ′ − 1.
We have

Φc,ψ =
∑

φ∈Φ∼
c′′,ψ

Φc,φ. (3.6.7)
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We use Lemma 3.6.10 to estimate Φc′′,ψ and for φ ∈ Φ∼
c′′,ψ, we use the estimate for Φc,φ

provided by the induction hypothesis to conclude that Φc,ψ can be estimated as desired.
Let us turn to the details. Let A := Fℓ′+1[V ∩ VFℓ′+1

] and J := VA ∩ VFℓ′ . Note
that φ̂A,J = φ̂C′′,V ′ . Lemma 3.6.9 allows us to apply Lemma 3.6.6 such that using
Lemma 3.6.10, we obtain

Φc′′,ψ = Φ
ψ(V ′\J)
A,ψ|J =X ΦA,ψ|J ± ζ3/2φ̂A,J =X (1± 2ε−1ζδ)φ̂A,J = (1± 2ε−1ζδ)φ̂C′′,V ′ .

Furthermore, by induction hypothesis, for all φ ∈ Φ∼
c′′,ψ, we have

Φc,φ =X (1± 4gℓ′+1ε
−1ζδ)φ̂C,V ′′ = (1± 4(gℓ′ − 1)ε−1ζδ)φ̂C,V ′′ .

Thus, returning to (3.6.7), we conclude that

Φc,ψ =X (1± 2ε−1ζδ)φ̂C′′,V ′ · (1± 4(gℓ′ − 1)ε−1ζδ)φ̂C,V ′′ = (1± 4gℓ′ε
−1ζδ)φ̂C,V ′ ,

which completes the proof.

Lemma 3.6.12. Let 0 ≤ i ≤ i⋆ and X := {i < τB}. Suppose that c is the β-extension
of a chain in C for some β and let (F ′, V ′, I) = c|r. Let ψ : V ′ ↪→ VH. Then, Φc,ψ =
(1± ε−4ζδ)φ̂c,V ′.

Proof. Suppose that c = (F, V, I) where F = F1, . . . ,Fℓ. By definition of c′ := (F ′, V ′, I),
there exists a sequence of chains c = (F, V0, I), . . . , (F, Vt, I) = c′ with V0 ⊇ . . . ⊇ Vt such
that for all 1 ≤ s ≤ t, the set Vs is a subset of Vs−1 of maximal size chosen from all
subsets (VF1 ∪ VFℓ) ∩ Vs−1 ⊆W ⊊ Vs−1 with ρC(F,Vs−1,I)

,W ≤ ρF + ε2.

For 0 ≤ s ≤ t, let Cs := C(F,Vs,I). Using induction on s, we show that for all 0 ≤ s ≤ t
and ψs : Vs ↪→ VH, we have

Φc,ψs =X (1± 2sζδ)φ̂c,Vs . (3.6.8)

By Lemma 3.6.3, we have |V | ≤ 2ε−3 and hence 2t ≤ ε−4, so this is sufficient.
Let us proceed with the proof by induction. If s = 0, then, for all ψs : Vs ↪→ VH, we

have Φc,ψs = 1 = φ̂c,Vs . Let q ≥ 1 and suppose that (3.6.8) holds whenever s ≤ q − 1.
Suppose that s = q and let ψs : Vs ↪→ VH. We have

Φc,ψs =
∑

φ∈Φ∼
Cs−1,ψs

Φc,φ. (3.6.9)

By Lemma 3.5.3, the extension (Cs−1, Vs) is balanced, so we may estimate ΦCs−1,ψs based
on balancedness, while for φ ∈ Φ∼

Cs−1,ψs
the induction hypothesis provides an estimate

for Φc,φ.
Let us turn to the details. Using the fact that ζ−1 ≤ n1/2p̂ρF/2 and Lemma 3.5.5, for

all j ≤ i, we obtain

φ̂Cs−1,Vs(j) = (np̂(j)ρCs−1,Vs )|Vs−1|−|Vs| ≥ (np̂ρF+ε2)|Vs−1|−|Vs| ≥ np̂ρF+ε2

≥ (np̂ρF+2ε2)1/2ζ−1 ≥ ζ−1 > ζ−δ
1/2
.
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Hence i < iδ
1/2

Cs−1,Vs
and thus ΦCs−1,ψs =X (1±ζδ)φ̂Cs−1,Vs . Furthermore, for all φ ∈ Φ∼

Cs−1,ψs
,

by induction hypothesis we have Φc,φ =X (1± 2(s− 1)ζδ)φ̂c,Vs−1 , so returning to (3.6.9),
we conclude that

Φc,ψs =X (1± ζδ)φ̂Cs−1,Vs · (1± 2(s− 1)ζδ)φ̂c,Vs−1 = (1± 2sζδ)φ̂c,Vs ,

which completes the proof.

Lemma 3.6.13. Suppose that c is the β-extension of a chain in C for some β and
let (F ′, V ′, I) = c|r. Let (A, V ′) ⊆ (Cc, V ′) Then, ρA,V ′ ≤ ρF + ε2.

Proof. Suppose that c = (F, V, I) where F = F1, . . . ,Fℓ. By definition of c′ := (F ′, V ′, I),
there exists a sequence of chains c = (F, V0, I), . . . , (F, Vt, I) = c′ with V0 ⊇ . . . ⊇ Vt such
that for all 1 ≤ s ≤ t, the set Vs is a subset of Vs−1 of maximal size chosen from all
subsets (VF1 ∪ VFℓ) ∩ Vs−1 ⊆W ⊊ Vs−1 with ρC(F,Vs−1,I)

,W ≤ ρF + ε2.

For 0 ≤ s ≤ t, let Cs := C(F,Vs,I) and As := A[Vs ∩ VA] and for 0 ≤ s ≤ t − 1,
let A′

s := As+Cs+1. For 0 ≤ s ≤ t−1, consider the extensions (As, VAs+1) and (A′
s, Vs+1).

We have

VAs \VAs+1 = (Vs∩VA)\(Vs+1∩VA) = (Vs∩VA)\Vs+1 = (VAs∪Vs+1)\Vs+1 = VA′
s
\Vs+1

and hence |VAs | − |VAs+1 | = |VA′
s
| − |Vs+1|. Furthermore, we have Cs+1 ∩As = As[VAs+1 ]

and As[VAs+1 ] ∪ Cs+1 = A′
s[Vs+1], hence

As \ As[VAs+1 ] = As \ (As[VAs+1 ] ∪ Cs+1) = A′
s \ (As[VAs+1 ] ∪ Cs+1) = A′

s \ A′
s[Vs+1]

and thus |As| − |As[VAs+1 ]| = |A′
s| − |A′

s[Vs+1]|. In particular, this yields ρAs,VAs+1
=

ρA′
s,Vs+1 . Since A ⊆ Cc implies As ⊆ Cc[Vs] = Cs, we have (A′

s, Vs+1) ⊆ (Cs, Vs+1). Using
Lemma 3.5.3, this entails

ρAs,VAs+1
= ρA′

s,Vs+1 ≤ ρCs,Vs+1 ≤ ρF + ε2.

We conclude that

|A| − |A[V ′]| =
t−1∑
s=0

|As| − |As+1| =
t−1∑
s=0

ρAs,VAs+1
(|VAs | − |VAs+1 |)

≤ (ρF + ε2)

t−1∑
s=0

|VAs | − |VAs+1 | = (ρF + ε2)(|VA| − |V ′|),

which completes the proof.

Lemma 3.6.14. Let 0 ≤ i ≤ i⋆ and X := {i < τB ∧ τB′}. Let c = (F, V, I) ∈ C
and e ∈ Cc \ Cc[I]. Suppose that c′ = (F ′, V ′, I) = c|e. Let ψ : V ′ ↪→ VH. Then, Φc,ψ =
(1± ε−6kζδ)φ̂c,V ′.
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Proof. Consider an arbitrary β : f ∼−→ e where f ∈ F . Suppose that c′′ = (F ′′, V ′′, I) =
c|[β]. Furthermore, suppose that ℓ ≥ 1 is minimal with e ∈ Cc|ℓ and suppose that

c′+ = (F ′
+, V

′
+, I) := c|ℓ, c′′+ = (F ′′

+, V
′′
+ , I) := c|ℓ|β.

We have
Φc,ψ =

∑
φ∈Φ∼

c′+,ψ

Φc,φ. (3.6.10)

We use Lemma 3.6.12 to estimate Φc′+,ψ
and for φ ∈ Φ∼

c′+,ψ
, we use Lemma 3.6.11 to

estimate Φc,φ.
Let us turn to the details. First, consider Φc′+,ψ

. Choose an arbitrary injection ψ′ : V ′′ ↪→
VH with ψ′|V ′ = ψ. With Lemma 3.6.12, since φ̂c′′+,V

′′ = φ̂c′+,V
′ , we obtain

Φc′+,ψ
= Φc′′+,ψ

′ + Φc′+,ψ
− Φ

ψ′(V ′′\V ′)
c′+,ψ

=X (1± ε−4ζδ)φ̂c′′+,V
′′ + Φc′+,ψ

− Φ
ψ′(V ′′\V ′)
c′+,ψ

= (1± ε−4ζδ)φ̂c′+,V
′ + Φc′+,ψ

− Φ
ψ′(V ′′\V ′)
c′+,ψ

.

To bound Φc′+,ψ
− Φ

ψ′(V ′′\V ′)
c′+,ψ

, we employ Lemma 3.6.6 which we may apply as a conse-

quence of Lemma 3.6.13. To this end, recall that in Section 3.6.1, to define the β-extension
of c, we fixed a copy Fβc of F . For all (A, V ′) ⊆ (Cc′+ , V

′) and A′ := A+ Fβc , the tem-

plate (A′, V ′′) is a subtemplate of (Cc′′+ , V
′′) and we have ρA,V ′ = ρA′,V ′′ , so Lemma 3.6.13

entails ρA,V ′ ≤ ρF + ε2. Hence, we may apply Lemma 3.6.6 to obtain

Φc′+,ψ
− Φ

ψ′(V ′′\V ′)
c′+,ψ

≤X ζ3/2φ̂c′+,V
′ .

Thus,
Φc′+,ψ

=X (1± ε−5ζδ)φ̂c′+,V
′ .

Next, fix φ ∈ Φ∼
c′+,ψ

and consider Φc,φ. Then, Lemma 3.6.11 entails

Φc,φ =X (1± ε−5kζδ)φ̂c,V ′
+
.

Thus, returning to (3.6.10), we conclude that

Φc,ψ =X (1± ε−5ζδ)φ̂c′+,V
′ · (1± ε−5kζδ)φ̂c,V ′

+
= (1± ε−6kζδ)φ̂c,V ′ ,

which completes the proof.

Lemma 3.6.15. Let c = (F, V, I) ∈ C and let e ∈ Cc \ Cc[I]. Let 0 ≤ i ≤ i⋆ and

X := {i < τH∗ ∧ τF ∧ τB ∧ τB′} ∩ {Φc,ψ ≤ 2φ̂c,I} ∩ {Φc|e,ψ ≤ 2φ̂c|e,I}.

Then,

Ei[|{φ ∈ Φ∼
c,ψ : φ(e) ∈ F0(i+ 1)}|] =X

(∑
f∈F

∑
β : f ∼−→e

Φc|[β],ψΦc,ψ

aut(F)H∗Φc|e,ψ

)
± ζ1+δ/2 φ̂c,I

H
.
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Proof. Lemma 3.5.17 entails

Ei[|{φ ∈ Φ∼
c,ψ : φ(e) ∈ F0(i+ 1)}|] =

∑
φ∈Φ∼

c,ψ

dH∗(φ(e))

H∗ =
∑
f∈F

∑
β : f ∼−→e

∑
φ∈Φ∼

c,ψ
ΦF ,φ◦β

aut(F)H∗ .

(3.6.11)
Suppose that c|e = (F ′, V ′, I). For f ∈ F and β : f ∼−→ e, using Lemma 3.6.14 and the
fact that ΦF ,φ◦β =X (1± δ−1ζ)φ̂F ,f holds for all φ ∈ Φ∼

c,ψ, Lemma 3.5.20 yields∑
φ∈Φ∼

c,ψ

ΦF ,φ◦β =
∑

φ∈Φ∼
c|e,ψ

ΦF ,φ◦βΦc,φ

=X
1

Φc|e,ψ

( ∑
φ∈Φ∼

c|e,ψ

ΦF ,φ◦β

)( ∑
φ∈Φ∼

c|e,ψ

Φc,φ

)
± δ−2ζ1+δφ̂F ,f φ̂c,V ′Φc|e,ψ

=
Φc,ψ

Φc|e,ψ

( ∑
φ∈Φ∼

c|e,ψ

ΦF ,φ◦β

)
± δ−2ζ1+δφ̂F ,f φ̂c,V ′Φc|e,ψ.

Since Lemma 3.6.6 entails∑
φ∈Φ∼

c|e,ψ

ΦF ,φ◦β =X
∑

φ∈Φ∼
c|e,ψ

(Φ
φ(V ′\e)
F ,φ◦β ± ζ3/2φ̂F ,f ) = Φc|[β],ψ ± ζ3/2φ̂F ,fΦc|e,ψ,

we conclude that∑
φ∈Φ∼

c,ψ

ΦF ,ψ◦β =X
Φc,ψΦc|[β],ψ

Φc|e,ψ
± δ−2ζ1+δφ̂F ,f φ̂c,V ′Φc|e,ψ ± ζ3/2φ̂F ,fΦc,ψ

=X
Φc,ψΦc|[β],ψ

Φc|e,ψ
± δ−3ζ1+δφ̂F ,f φ̂c,V ′φ̂c|e,I ± ζ4/3φ̂F ,f φ̂c,I

=
Φc,ψΦc|[β],ψ

Φc|e,ψ
± δ−4ζ1+δφ̂F ,f φ̂c,I .

Combining this with (3.6.11), we obtain

Ei[|{φ ∈ Φ∼
c,ψ : φ(e) ∈ F0(i+ 1)}|]

=X

(∑
f∈F

∑
β : f ∼−→e

Φc|[β],ψΦc,ψ

aut(F)H∗Φc|e,ψ

)
± |F|k! ζ1+δφ̂F ,f φ̂c,I

δ4 aut(F)H∗ .

Since Lemma 3.5.7 yields

|F|k! ζ1+δφ̂F ,f φ̂c,I

δ4 aut(F)H∗ ≤X
|F|k! ζ1+δφ̂F ,f φ̂c,I

δ5 aut(F)ĥ∗
=
|F|k! ζ1+δφ̂c,I

δ5nkp̂
≤X ζ1+δ/2

φ̂c,I

H
,

this completes the proof.
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3.6.3 Tracking chains

Suppose that 0 ≤ i ≤ i⋆, consider a chain c = (F, V, I) ∈ C with F = F1, . . . ,Fℓ and
let ψ : I ↪→ VH. We do not directly show that the number of embeddings Φc,ψ is typically
close to a deterministic trajectory. Instead, we define

Gc := Fℓ[V ∩ VFℓ ] and Jc :=

{
I if ℓ = 1;

VFℓ−1
∩ VGc if ℓ ≥ 2

and show that Φc,ψ is typically close to φ̂Gc,JcΦc|−,ψ which given Φc|−,ψ is the random
quantity our deterministic heuristic estimates for embeddings suggest for∑

φ∈Φ∼
c|−,ψ

ΦGc,φ|Jc ≈ Φc,ψ.

To this end, let

Φ̂c,ψ(i) := φ̂Gc,JcΦCc|−,ψ and Xc,ψ(i) := ΦCc,ψ − Φ̂c,ψ.

Our analysis of Φc,ψ crucially relies on Lemma 3.6.15. There, a sum of numbers of
embeddings of branchings of c is a key quantity which motivates the following definition.
For e ∈ Cc \ Cc[I], the e-branching family of c is

Be
c := {b : b is the β-branching of c for some β : f ∼−→ e where f ∈ F}.

We define the stopping times

τC := min{i ≥ 0 : Φc,ψ ̸= Φ̂c,ψ ± δ−1ζφ̂c,I for some c = (F, V, I) ∈ C, ψ : I ↪→ VH},

τ̃B := min

{
i ≥ 0 :

∑
b∈Bec Φb,ψ ̸=

∑
b∈Bec Φ̂b,ψ ± δ−1/2ζφ̂b,I

for some c = (F, V, I) ∈ C, e ∈ Cc \ Cc[I], ψ : I ↪→ VH

}
.

The stopping time τC is the fourth stopping time mentioned in Section 3.4. Similarly as
with the introduction of the stopping time τF ≥ τC in Section 3.5, the precise definition
of τB is not relevant in this section, so we instead work with the stopping time τ̃B that
satisfies τ̃B ≥ τB. We set

τ̃⋆C := τH∗ ∧ τB ∧ τB′ ∧ τC ∧ τ̃B ≥ τ⋆.

We remark that whenever the aforementioned numbers of embeddings are close to their
corresponding random trajectories, they are also close to a corresponding deterministic
trajectory in the following sense.

Lemma 3.6.16. Let i ≥ 0 and X := {i < τC}. Let c = (F, V, I) ∈ C and ψ : I ↪→ VH.
Then, Φc,ψ =X (1± δ5)φ̂c,I .
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Proof. Similarly as in the proof of Lemma 3.6.11, for every chain c′ = (F ′, V ′, I) where F ′

has length ℓ′, let
gc′ := |{0 ≤ ℓ′′ ≤ ℓ′ − 1 : Cc′|ℓ′′ ̸= Cc′|ℓ′′+1}|.

Suppose that F = F1, . . . ,Fℓ. We use induction on ℓ to show that

Φc,ψ =X (1± gcδ−1ζ)φ̂c,I . (3.6.12)

By Lemma 3.6.3, we have |V | ≤ ε−3, hence |Cc| ≤ ε−3k and thus gc ≤ ε−3 + ε−3k, so this
is sufficient.

Let us proceed with the proof by induction. If ℓ = 1, then gc = 1 by Lemma 3.6.5 and
we have Φc,ψ =X (1± δ−1ζ)φ̂c,I . Let q ≥ 2 and suppose that (3.6.12) holds if ℓ ≤ q − 1.
Suppose that ℓ = q. If Cc|− = Cc, then (3.6.12) follows by induction hypothesis, so we
may assume Cc|− ̸= Cc and hence gc|− = gc − 1. Then, by induction hypothesis we have

Φc|−,ψ =X (1± gc|−δ−1ζ)φ̂c|−,I = (1± (gc − 1)δ−1ζ)φ̂c|−,I .

Since φ̂Gc,Jcφ̂c|−,I = φ̂c,I , this yields

Φc,ψ =X φ̂Gc,JcΦc|−,ψ ± δ−1ζφ̂c,I =X (1± (gc − 1)δ−1ζ)φ̂c,I ± δ−1ζφ̂c,I

= (1± gcδ−1ζ)φ̂c,I ,

which completes the proof.

In this section, we show that the probability that τC ≤ τ̃⋆C ∧ i⋆ is small. The collection C
is infinite, however, Lemma 3.6.17 shows that it suffices to consider a collection of chains
of size at most 1/δ. By relying on a union bound argument, this allows us to essentially
only consider one fixed chain c = (F, V, I) ∈ C.

Lemma 3.6.17. There exists a collection C0 ⊆ C with |C0| ≤ 1/δ such that for all c =
(F, V, I) ∈ C, there exists a chain c0 = (F0, V0, I0) ∈ C0 such that (Cc0 , I0) is a copy
of (Cc, I) while (Cc0|−, I0) is a copy of (Cc|−, I).

Proof. Consider the set T of all templates (A, I) where VA ⊆ {1, . . . , 1/ε3}. By
Lemma 3.6.3, for all c = (F, V, I) ∈ C, we may choose a template Tc ∈ T that is a
copy of (Cc, I). Let T2 := {(Tc, Tc|−) : c ∈ C} ⊆ T 2 and for every pair P ∈ T2, choose a
chain cP ∈ C with P = (TcP , TcP |−). Then, {cP : P ∈ T2} is a collection as desired.

Observation 3.6.18. Suppose that C0 ⊆ C is a collection of chains as in Lemma 3.6.17.
For c = (F, V, I) ∈ C and ψ : I ↪→ VH, let

τc,ψ := min{i ≥ 0 : Φc,ψ ̸= Φ̂c,ψ ± δ−1ζφ̂c,I}.

Then,

P[τC ≤ τ̃⋆C ∧ i⋆] ≤
∑

c=(F,V,I)∈C0,ψ : I↪→VH :

P[τc,ψ ≤ τ̃⋆C ∧ i⋆].
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Hence, fix c = (F, V, I) ∈ C where F = F1, . . . ,Fℓ and furthermore fix ψ : I ↪→ VH.
Note that by Lemma 3.6.5, we have Cc \ Cc[I] ̸= ∅ and ℓ ≥ 1. For i ≥ 0, let ξ1(i) denote
the corresponding absolute error appearing in the definition of τC and consider a slightly
smaller error term ξ0(i), that is let

ξ1(i) := δ−1ζφ̂c,I and ξ0(i) := (1− δ)ξ1(i)

and define the stopping time

τ := min{i ≥ 0 : Φc,ψ ̸= Φ̂c,ψ ± ξ1}.

Our goal is now to show that Φc,ψ is typically in the interval I1(i) := [Φ̂c,ψ − ξ1, Φ̂c,ψ + ξ1]
as long as other key quantities are as predicted. More formally, our goal is to show that
the probability that τ ≤ τ̃⋆C ∧ i⋆ is sufficiently small. Define the “critical” intervals

I−(i) := [Φ̂c,ψ − ξ1, Φ̂c,ψ − ξ0], I+(i) := [Φ̂c,ψ + ξ0, Φ̂c,ψ + ξ1].

As long as Φc,ψ is not close to the boundary of I1 in the sense that Φc,ψ is in the

interval I0(i) := [Φ̂c,ψ − ξ0, Φ̂c,ψ + ξ0], within the next few steps i, there is no danger
that Φc,ψ could be outside I1 provided that we chose ξ1 to be sufficiently large compared
to ξ0. The situation only becomes “critical” when Φc,ψ is outside I0, that is when Φc,ψ

enters the critical interval I− or I+. Exploiting the fact that whenever this is the case,
the process exhibits self-correcting behavior in the sense that whenever this is the case, in
expectation Φc,ψ returns to values close to Φ̂c,ψ, we show that it is unlikely that Φc,ψ ever
fully crosses one of the critical intervals. Since, as we formally show later, Φc,ψ cannot
jump over one of the critical intervals in one step, it suffices to restrict our attention to
the behavior of Φc,ψ inside the critical intervals.

For −+ ∈ {−,+}, consider the random variable

Y −+(i) := −+Xc,ψ − ξ1
that measures by how much Φc,ψ exceeds the permitted deviation ξ1 from Φ̂c,ψ. Our goal
is to show that Y −+ is non-positive whenever i ≤ τ̃⋆C . To show that this is the case, for
all i0 ≥ 0, we consider an auxiliary random process Z−+

i0
(i0), Z

−+
i0

(i0 + 1), . . . that follows
the evolution of Y −+(i0), Y −+(i0 +1), . . . as long as the situation is relevant for our analysis,
that is until Φc,ψ has left the critical interval I−+ or until we are at step τ̃⋆C ∧ i⋆. In these
cases, that is when Z−+

i0
no longer follows Y −+, we simply define the auxiliary process to

remain constant. Note in particular, that if a deviation of Φc,ψ from Φ̂c,ψ beyond ξ1
caused the auxiliary process to no longer follows Y −+, then the value of the auxiliary
process at step i⋆ indicates this since the relevant value Y −+(τ̃⋆C ∧ i⋆) is the last value
captured. Formally, for i0 ≥ 0, we define the stopping time

τ−+i0 := min{i ≥ i0 : Φc,ψ /∈ I−+}

that measures when, starting at step i0, the random variable Φc,ψ is first outside the
critical interval I−+. Note that if Φc,ψ(i0) /∈ I−+, then τ−+i0 = i0. For i ≥ i0, let

Z−+
i0

(i) := Y −+(i0 ∨ (i ∧ τ−+i0 ∧ τ̃
⋆
C ∧ i⋆)).
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In fact, for our analysis it suffices to consider only the evolution of Z−+
σ−+(σ−+), Z−+

σ−+(σ−+ +
1), . . . where

σ−+ := min{j ≥ 0 : −+Xc,ψ ≥ ξ0 for all j ≤ i < τ̃⋆C ∧ i⋆} ≤ τ̃⋆C ∧ i⋆

is the last step at which Φc,ψ entered the critical interval I−+ before step τ̃⋆C ∧ i⋆. Indeed,
if τ ≤ τ̃⋆C ∧ i⋆, then, for some −+ ∈ {+,−}, we have Φc,ψ ∈ I−+ for all σ−+ ≤ i < τ̃⋆C ∧ i⋆,
hence τ−+

σ−+ = τ̃⋆C ∧ i⋆ and thus Z−+
σ−+(i⋆) = Y −+(τ̃⋆C ∧ i⋆) = Y −+(τ) > 0. This reasoning leads

to the following observation.

Observation 3.6.19. {τ ≤ τ̃⋆C ∧ i⋆} ⊆ {Z−
σ−(i⋆) > 0} ∪ {Z+

σ+(i⋆) > 0}.

Similarly as in Chapter 2, we use Freedman’s inequality for supermartingales to show
that the probabilities of the events on the right in Observation 3.6.19 are sufficiently
small.

We dedicate Sections 3.6.3 and 3.6.3 to proving that the auxiliary random processes sat-
isfy the conditions that are necessary for an application of Lemma 2.9.4. The application
itself is the topic of Section 3.6.3.

Trend

Here, we prove that for all −+ ∈ {−,+} and i0 ≥ 0, the expected one-step changes of the
process Z−+

i0
(i0), Z−+

i0
(i0+1), . . . are non-positive. In Lemma 3.6.21, we estimate the one-step

changes of the error term that we use in this section. Then in Lemma 3.6.23, we state a pre-
cise estimate for the expected one-step change of the random process Xc,ψ(0), Xc,ψ(1), . . .

that measures the deviations from the random trajectory given by Φ̂c,ψ(0), Φ̂c,ψ(1), . . .. To
obtain this precise estimate, which is the key argument in this section, we crucially rely on
Lemma 3.6.15 and the even more precise control over branching families that we have in
step i whenever i < τB. Assuming such control over branching families in our arguments
here serves to shift the main arguments based on the exploitation of self-correcting
behavior to a slightly different setting, namely from individual chains to families, which
turns out to be crucial for our argumentation (see Section 3.7). At the end of this section,
we combine the previously collected estimates to conclude that Z−+

i0
(i0), Z−+

i0
(i0 + 1), . . . is

indeed a supermartingale for all −+ ∈ {−,+} and i0 ≥ 0 (see Lemma 3.6.24).

Observation 3.6.20. Extend p̂ and ξ1 to continuous trajectories defined on the whole
interval [0, i⋆ + 1] using the same expression as above. Then, for x ∈ [0, i⋆ + 1],

ξ′1(x) = −
(
|Cc| − 1− ρF

2

) |F|k! ξ1(x)

nkp̂(x)
,

ξ′′1 (x) = −
(
|Cc| − 1− ρF

2

)(
|Cc| − 2− ρF

2

) |F|2(k!)2ξ1(x)

n2kp̂(x)2
.

Lemma 3.6.21. Let 0 ≤ i ≤ i⋆ and X := {i ≤ τ∅}. Then,

∆ξ1 =X −
(
|Cc| − 1− ρF

2

) |F|ξ1
H
± ζ2ξ1

H
.
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Proof. This is a consequence of Taylor’s theorem. In detail, we argue as follows.
Together with Observation 3.6.20 and Lemma 3.6.3, Lemma 2.9.10 yields

∆ξ1 = −
(
|Cc| − 1− ρF

2

) |F|k! ξ1
nkp̂

± max
x∈[i,i+1]

ξ1(x)

δn2kp̂(x)2

We investigate the first term and the maximum separately. Using Lemma 3.5.7, we have

−
(
|Cc| − 1− ρF

2

) |F|k! ξ1
nkp̂

=X −
(
|Cc| − 1− ρF

2

) |F|ξ1
H

.

Furthermore, using Lemma 3.5.6, Lemma 3.5.7 and Lemma 3.5.9 yields

max
x∈[i,i+1]

ξ1(x)

δn2kp̂(x)2
≤ ξ1
δn2kp̂(i+ 1)2

≤ ξ1
δ2n2kp̂2

≤X
ξ1

δ2H2
≤X

ζ2+2ε2ξ1
δ2H

≤ ζ2+ε
2
ξ1

H
.

Thus we obtain the desired expression for ∆ξ1.

Lemma 3.6.22. For all 0 ≤ i ≤ i⋆, we have

φ̂Gc,Jc(i+ 1) = (1± ζ2)φ̂Gc,Jc .

Proof. This follows from Lemma 3.5.11 and Lemma 3.5.9.

In the next lemma, we state the expression for the expected one-step change Ei[∆Xc,ψ]
that we subsequently use to obtain the desired supermartingale property. In the proof,
ignoring error terms, we essentially argue as follows. We have

Ei[∆Xc,ψ] = Ei[∆Φc,ψ]− Ei[∆(φ̂Gc,JcΦc|−,ψ)]

= Ei[∆Φc,ψ]− (∆φ̂Gc,Jc)Φc|−,ψ − φ̂Gc,Jc(i+ 1)Ei[∆Φc|−,ψ].
(3.6.13)

Since φ̂Gc,Jc(i+ 1) ≈ φ̂Gc,Jc , this yields

Ei[∆Xc,ψ] ≈ Ei[∆Φc,ψ]− (∆φ̂Gc,Jc)Φc|−,ψ − φ̂Gc,JcEi[∆Φc|−,ψ]. (3.6.14)

Contributions to ∆Φc,ψ come from the loss of edges φ(e) where φ ∈ Φ∼
c,ψ and e ∈ Cc \Cc[I].

Note that if e ∈ Cc|−, then for this loss of φ(e), there is a corresponding contribution
to ∆Φc|−,ψ. Otherwise, there is no corresponding contribution to ∆Φc|−,ψ, however, we
find a corresponding contribution in

(∆φ̂Gc,Jc)Φc|−,ψ ≈ −|Gc \ {Jc}|
|F|
H
φ̂Gc,JcΦc|−,ψ = −|Gc \ {Jc}|

|F|
H

Φ̂c,ψ.

With this in mind, relying on Lemma 3.6.15 and Lemma 3.5.7, for f ∈ F , we estimate

Ei[∆Φc,ψ] ≈ −
∑

e∈Cc\Cc[I]

∑
f∈F

∑
β : f ∼−→e

Φc|[β],ψΦc,ψ

aut(F)H∗Φc|e,ψ

≈ −
∑

e∈Cc|−\Cc|−[I]

∑
f∈F

∑
β : f ∼−→e

φ̂F ,fΦc,ψ

aut(F)ĥ∗
−

∑
e∈Gc\{Jc}

∑
f∈F

∑
β : f ∼−→e

Φc,ψΦc|[β],ψ

aut(F)ĥ∗Φc|e,ψ

≈ −
(|Cc|−| − 1)|F|

H
Φc,ψ −

∑
e∈Gc\{Jc}

∑
f∈F

∑
β : f ∼−→e

Φc,ψΦc|[β],ψ

k!Hφ̂F ,fΦc|e,ψ
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and similarly

Ei[∆Φc,ψ] ≈ −
∑

e∈Cc|−\Cc|−[I]

∑
f∈F

∑
β : f ∼−→e

Φc|[β],ψΦc|−,ψ

aut(F)H∗Φc|e,ψ
≈ −

(|Cc|−| − 1)|F|
H

Φc|−,ψ.

Combining the previous three estimates with (3.6.14), we obtain

Ei[∆Xc,ψ] ≈ −
(|Cc|−| − 1)|F|

H
Xc,ψ −

∑
e∈Gc\{Jc}

∑
f∈F

∑
β : f ∼−→e

(
Φc,ψΦc|[β],ψ

k!Hφ̂F ,fΦc|e,ψ
− Φ̂c,ψ

k!H

)
.

Let us investigate the innermost sum on the right. The branchings of c are two extension
transformations away from the chain c|− that appears in the corresponding contributions.
As our chain tracking only compares chains that are one extension step apart, we introduce
the chain c itself to compare the contributions in the sense that for e ∈ Gc \ {Jc}, f ∈ F
and β : f ∼−→ e, we write

Φc,ψΦc|[β],ψ

k!Hφ̂F ,fΦc|e,ψ
− Φ̂c,ψ

k!H
=

Φc,ψXc|[β],ψ

k!Hφ̂F ,fΦc|e,ψ
+

Φc,ψ

k!H
− Φ̂c,ψ

k!H

=
Φc,ψ

k!Hφ̂F ,fΦc|e,ψ
Xc|[β],ψ +

1

k!H
Xc,ψ

≈ φ̂c,I

k!Hφ̂c|[β],I
Xc|[β],ψ +

1

k!H
Xc,ψ

Overall, this leads to

Ei[∆Xc,ψ] ≈ −
(|Cc|−| − 1)|F|

H
Xc,ψ −

|Gc \ {Jc}||F|
H

Xc,ψ −
∑

e∈Gc\{Jc}

∑
b∈Bec

φ̂c,I

k!Hφ̂b,I
Xb,ψ

= −(|Cc| − 1)|F|
H

Xc,ψ −
∑

e∈Gc\{Jc}

∑
b∈Bec

φ̂c,I

k!Hφ̂b,I
Xb,ψ.

Lemma 3.6.23. Let 0 ≤ i ≤ i⋆ and X := {i < τH∗ ∧ τB ∧ τB′ ∧ τC}. Then,

Ei[∆Xc,ψ] =X −
(|Cc| − 1)|F|

H
Xc,ψ −

( ∑
e∈Gc\{Jc}

∑
b∈Bec

φ̂c,I

k!Hφ̂b,I
Xb,ψ

)
± δ2 ξ1

H
.

Proof. Similarly as in (3.6.13), we have

∆Xc,ψ = (∆Φc,ψ)− φ̂Gc,Jc(i+ 1)(∆Φc|−,ψ)− (∆φ̂Gc,Jc)Φc|−,ψ.

By Lemma 3.5.11 and Lemma 3.6.22, this entails

∆Xc,ψ = (∆Φc,ψ)− (1± ζ2)φ̂Gc,Jc(∆Φc|−,ψ) + (1± ζ2) |F||Gc \ {Jc}|
H

φ̂Gc,JcΦc|−,ψ

= (∆Φc,ψ)− φ̂Gc,Jc(∆Φc|−,ψ) +
|F||Gc \ {Jc}|

H
Φ̂c,ψ ± ζ2φ̂Gc,Jc(∆Φc|−,ψ)

±ζ3/2
φ̂Gc,JcΦc|−,ψ

H
.
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Since by Lemma 3.6.16 we have Φc|−,ψ =X (1± δ5)φ̂c|−,I , this yields

∆Xc,ψ =X (∆Φc,ψ)− φ̂Gc,Jc(∆Φc|−,ψ) +
|F||Gc \ {Jc}|

H
Φ̂c,ψ± ζ2φ̂Gc,Jc(∆Φc|−,ψ)± ζ4/3 φ̂c,I

H
.

(3.6.15)
Using Lemma 3.6.15, we obtain

Ei[∆Φc,ψ] = −
∑

e∈Cc\Cc[I]

Ei[|{φ ∈ Φ∼
c,ψ : φ(e) ∈ F0(i+ 1)}|]

=X −
( ∑
e∈Cc\Cc[I]

∑
f∈F

∑
β : f ∼−→e

Φc|[β],ψΦc,ψ

aut(F)H∗Φc|e,ψ

)
± ζ1+δ/3 φ̂c,I

H
.

(3.6.16)

Note that for e ∈ Cc|−, f ∈ F and β : f ∼−→ e, we have c|−|e = c|e and c|−|[β] = c|[β].
Hence, again using Lemma 3.6.15, we similarly obtain

Ei[∆Φc|−,ψ] = −
∑

e∈Cc|−\Cc|−[I]

Ei[|{φ ∈ Φ∼
c|−,ψ : φ(e) ∈ F0(i+ 1)}|]

=X −
( ∑
e∈Cc|−\Cc|−[I]

∑
f∈F

∑
β : f ∼−→e

Φc|[β],ψΦc|−,ψ

aut(F)H∗Φc|e,ψ

)
± ζ1+δ/3

φ̂c|−,I

H
.

(3.6.17)

Furthermore, since by Lemma 3.6.16 we have Φc|[β],ψ =X (1 ± δ5)φ̂c|[β],I , Φc|−,ψ =X
(1± δ5)φ̂c|−,I and Φc|e,ψ =X (1± δ5)φ̂c|e,I , using Lemma 3.5.7, for f ∈ F , this yields

|Ei[∆Φc|−,ψ]| ≤X
2|Cc||F|k! φ̂F ,f φ̂c|−,I

aut(F)H∗ + ζ1+δ/3
φ̂c|−,I

H
≤X

3|Cc||F|φ̂c|−,I

H
. (3.6.18)

From (3.6.15), using (3.6.16) and (3.6.17) as well as the fact that Cc \ Cc[I] = (Cc|− \
Cc|−[I]) ∪ (Gc \ {Jc}), we obtain

Ei[∆Xc,ψ] =X −
( ∑
e∈Cc|−\Cc|−[I]

∑
f∈F

∑
β : f ∼−→e

Φc|[β],ψ

aut(F)H∗Φc|e,ψ

)
(Φc,ψ − Φ̂c,ψ)

−
∑

e∈Gc\{Jc}

((∑
f∈F

∑
β : f ∼−→e

Φc,ψ

aut(F)H∗Φc|e,ψ
Φc|[β],ψ

)
− |F|

H
Φ̂c,ψ

)

±ζ2φ̂Gc,JcEi[∆Φc|−,ψ]± ζ1+δ/4 φ̂c,I

H
.

Due to (3.6.18), this yields

Ei[∆Xc,ψ] =X −
( ∑
e∈Cc|−\Cc|−[I]

∑
f∈F

∑
β : f ∼−→e

Φc|[β],ψ

aut(F)H∗Φc|e,ψ

)
(Φc,ψ − Φ̂c,ψ)

−
∑

e∈Gc\Jc

((∑
f∈F

∑
β : f ∼−→e

Φc,ψ

aut(F)H∗Φc|e,ψ
Φc|[β],ψ

)
− |F|

H
Φ̂c,ψ

)

±ζ1+δ/5 φ̂c,I

H
.

(3.6.19)
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We investigate the first two terms of the sum on the right side separately.
First, note that for all e ∈ Cc|− \ Cc|−[I], using Lemma 3.6.16 and Lemma 3.5.7, we

obtain ∑
f∈F

∑
β : f ∼−→e

Φc|[β],ψ

aut(F)H∗Φc|e,ψ
=X (1± 4δ5)

|F|k! φ̂Fβc ,e
aut(F)H∗ =X (1± 5δ5)

|F|
H
.

Thus, for the first term, using Xc,ψ ≤X ξ1 and Lemma 3.6.3, we obtain

−
( ∑
e∈Cc|−\Cc|−[I]

∑
f∈F

∑
β : f ∼−→e

Φc|[β],ψ

aut(F)H∗Φc|e,ψ

)
(Φc,ψ − Φ̂c,ψ)

=X −(1± 5δ5)
(|Cc|−| − 1)|F|

H
Xc,ψ =X −

(|Cc|−| − 1)|F|
H

Xc,ψ ± δ4
ξ1
H
.

(3.6.20)
Let us consider the second term. For all e ∈ Gc\{Jc}, using the fact that for all f, f ′ ∈ F

and β : f ∼−→ e, we have Φ̂c|[β],ψ = φ̂Fβc ,e
Φc|[β]|−,ψ = φ̂F ,f ′Φc|e,ψ, we obtain(∑

f∈F

∑
β : f ∼−→e

Φc,ψ

aut(F)H∗Φc|e,ψ
Φc|[β],ψ

)
− |F|

H
Φ̂c,ψ

=

(∑
f∈F

∑
β : f ∼−→e

Φc,ψ

aut(F)H∗Φc|e,ψ
Xc|[β],ψ

)
+

(∑
f∈F

∑
β : f ∼−→e

Φc,ψ

aut(F)H∗Φc|e,ψ
Φ̂c|[β],ψ

)

−|F|
H

Φ̂c,ψ

=

(∑
f∈F

∑
β : f ∼−→e

Φc,ψ

aut(F)H∗Φc|e,ψ
Xc|[β],ψ

)
+
|F|k! φ̂F ,f ′

aut(F)H∗ Φc,ψ −
|F|
H

Φ̂c,ψ

(3.6.21)
Note that from Lemma 3.6.16 together with Lemma 3.5.7, for all f ∈ F and β : f ∼−→ e,
we obtain

Φc,ψ

aut(F)H∗Φc|e,ψ
Xc|[β],ψ =X (1± 4δ5)

φ̂c,I

aut(F)H∗φ̂c|e,I
Xc|[β],ψ

=X (1± 5δ5)
φ̂c,I

k!Hφ̂c|[β],I
Xc|[β],ψ

(3.6.22)

and that again Lemma 3.5.7 together with Lemma 3.6.16 yields

|F|k! φ̂F ,f ′

aut(F)H∗ Φc,ψ −
|F|
H

Φ̂c,ψ =X (1± ζ1+ε4)
|F|
H

Φc,ψ −
|F|
H

Φ̂c,ψ =X
|F|
H
Xc,ψ ± ζ1+ε

5 φ̂c,I

H
.

(3.6.23)
From (3.6.21), using (3.6.22) and (3.6.23) as well as the fact that Xc|[β],ψ ≤X δ−1ζφ̂c|[β],I ,
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we obtain(∑
f∈F

∑
β : f ∼−→e

Φc,ψ

aut(F)H∗Φc|e,ψ
Φc|[β],ψ

)
− |F|

H
Φ̂c,ψ

=X (1± 5δ5)

(∑
f∈F

∑
β : f ∼−→e

φ̂c,I

k!Hφ̂c|[β],I
Xc|[β],ψ

)
+
|F|
H
Xc,ψ ± ζ1+ε

5 φ̂c,I

H

=X

(∑
b∈Bec

φ̂c,I

k!Hφ̂b,I
Xb,ψ

)
+
|F|
H
Xc,ψ ± δ4

ξ1
H
.

Thus, for the second term we have

−
∑

e∈Gc\Jc

((∑
f∈F

∑
β : f ∼−→e

Φc,ψ

aut(F)H∗Φc|e,ψ
Φc|[β],ψ

)
− |F|

H
Φ̂c,ψ

)

=X −
|Gc \ {Jc}||F|

H
Xc,ψ −

( ∑
e∈Gc\{Jc}

∑
b∈Bec

φ̂c,I

k!Hφ̂b,I
Xb,ψ

)
± δ3 ξ1

H
.

(3.6.24)
Since |Cc| = |Cc|−|+ |Gc \ {Jc}|, combining (3.6.19) with (3.6.20) and (3.6.24) completes
the proof.

Lemma 3.6.24. Let 0 ≤ i0 ≤ i and −+ ∈ {−,+}. Then, Ei[∆Z−+
i0

] ≤ 0.

Proof. Suppose that i < i⋆ and let X := {i < τ−+i0 ∧ τ̃⋆C}. We have Ei[∆Z−+
i0

] =X c 0

and Ei[∆Z−+
i0

] =X Ei[∆Y −+], so it suffices to obtain Ei[∆Y −+] ≤X 0. From Lemma 3.6.23,
we obtain

Ei[∆(−+Xc,ψ)] ≤X −
(|Cc| − 1)|F|

H
(−+Xc,ψ)−

( ∑
e∈Gc\{Jc}

∑
b∈Bec

φ̂c,I

k!Hφ̂b,I
(−+Xb,ψ)

)
+ δ2

ξ1
H

≤ −|F|
H

(
(|Cc| − 1)(−+Xc,ψ)−

( ∑
e∈Gc\{Jc}

∑
b∈Bec

φ̂c,I

|F|k! φ̂b,I
(−+Xb,ψ)

)
− δ2ξ1

)
.

Note that for all e ∈ Gc\{Jc} and b1, b2 ∈ Be
c , we have φ̂b1,I = φ̂b2,I , so we may choose φ̂ec,I

such that φ̂ec,I = φ̂b,I for all b ∈ Be
c . With Lemma 3.6.3, using that −+Xc,ψ ≥X (1− δ)ξ1

as well as ∣∣∣∑
b∈Bec

Xb,ψ

∣∣∣ ≤X
∑
b∈Bec

δ−1/2ζφ̂b,ψ,
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we obtain

Ei[∆(−+Xc,ψ)] ≤ −|F|
H

(
(|Cc| − 1)(−+Xc,ψ)− 1

|F|k!

( ∑
e∈Gc\{Jc}

φ̂c,I

φ̂ec,I

∑
b∈Bec

−+Xb,ψ

)
− δ2ξ1

)

≤X −
|F|
H

(
(|Cc| − 1)(1− δ)ξ1

− 1

|F|k!

( ∑
e∈Gc\{Jc}

φ̂c,I

φ̂ec,I

∑
b∈Bec

δ−1/2ζφ̂b,I

)
− δ2ξ1

)

≤ −|F|
H

(
(|Cc| − 1)ξ1 −

1

|F|k!

( ∑
e∈Gc\{Jc}

∑
b∈Bec

δ−1/2ζφ̂c,I

)
− εξ1

)

= −|F|
H

((|Cc| − 1)ξ1 − δ1/2|Gc \ {Jc}|ξ1 − εξ1)

≤ −|F|
H

((|Cc| − 1)ξ1 − ε1/2ξ1).

Thus, due to Lemma 3.6.21, we have

Ei[∆Y −+] ≤X −
|F|
H

(
ρF
2
ξ1 − ε1/3ξ1

)
≤ 0,

which completes the proof.

Boundedness

Here, we first obtain suitable bounds for the absolute one-step changes of the pro-
cesses Y −+(0), Y −+(1), . . . and Z−+

i0
(i0), Z−+

i0
(i0+1), . . . (see Lemmas 3.6.26 and 3.6.27) as well

as for the expected absolute one-step changes of the second process (see Lemma 3.6.29).

Lemma 3.6.25. Let 0 ≤ i0 ≤ i ≤ i⋆, −+ ∈ {−,+} and X := {i < τB ∧ τB′ ∧ τC}. Then,

|∆Xc,ψ| ≤X nε
4 φ̂c,I(i0)

np̂(i0)ρF
.

Proof. For all (A, I) ⊆ (Cc, I) with VA ̸= I, Lemma 3.6.1 together with Lemma 3.5.5
implies

φ̂A,I ≥ (np̂ρF )|A|−|A[I]| ≥ np̂ρF .
Hence, due to Lemma 3.6.3, Lemma 3.5.16 together with Lemma 3.6.5 implies

|∆Φc,ψ| ≤X |Cc| · 2k!|F|(log n)αCc,I
φ̂c,I

np̂ρF
≤ nε5 φ̂c,I

np̂ρF
≤ nε5 φ̂c,I(i0)

np̂(i0)ρF
.

Similarly, we obtain

|∆Φc|−,ψ| ≤X nε
5 φ̂c|−,I(i0)

np̂(i0)ρF
.
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With Lemma 3.5.11, Lemma 3.6.16 and Lemma 3.6.22, using Lemma 3.6.5, we conclude
that

|∆Xc,ψ| ≤ |∆Φc,ψ|+ φ̂Gc,Jc(i+ 1)|∆Φc|−,ψ|+ |∆φ̂Gc,Jc |Φc|−,ψ

≤ |∆Φc,ψ|+ 2φ̂Gc,Jc |∆Φc|−,ψ|+ 2|F|2
φ̂Gc,JcΦc|−,ψ

H

≤X nε
5 φ̂c,I(i0)

np̂(i0)ρF
+ 2nε

5 φ̂Gc,Jcφ̂c|−,I(i0)

np̂(i0)ρF
+ 4|F|2 φ̂c,I

H

≤ nε5 φ̂c,I(i0)

np̂(i0)ρF
+ 2nε

5 φ̂c,I(i0)

np̂(i0)ρF
+ 4|F|2 φ̂c,I(i0)

H(i0)
.

With Lemma 3.5.9, this completes the proof.

Lemma 3.6.26. Let 0 ≤ i0 ≤ i ≤ i⋆, −+ ∈ {−,+} and X := {i < τB ∧ τB′ ∧ τC}. Then,

|∆Y −+| ≤ nε3 φ̂c,I(i0)

np̂(i0)ρF
.

Proof. Combining Lemma 3.6.21 and Lemma 3.6.25, using Lemma 3.6.5, we obtain

|∆Y −+| ≤ |∆Xc,ψ|+ |∆ξ1| ≤ nε
4 φ̂c,I(i0)

np̂(i0)ρF
+
φ̂c,I

H
≤ nε4 φ̂c,I(i0)

np̂(i0)ρF
+
φ̂c,I(i0)

H(i0)
.

With Lemma 3.5.9, this completes the proof.

Lemma 3.6.27. Let 0 ≤ i0 ≤ i ≤ i⋆ and −+ ∈ {−,+}. Then,

|∆Z−+
i0
| ≤ nε3 φ̂c,I(i0)

np̂(i0)ρF
.

Proof. This is an immediate consequence of Lemma 3.6.26.

Lemma 3.6.28. Let 0 ≤ i ≤ i⋆, −+ ∈ {−,+} and X := {i < τH∗ ∧ τB ∧ τB′ ∧ τC}. Then,

Ei[|∆Xc,ψ|] ≤X nε
4 φ̂c,I

nkp̂
.

Proof. With Lemma 3.5.11, Lemma 3.6.16 and Lemma 3.6.22, we obtain

Ei[|∆Xc,ψ|] ≤ Ei[|∆Φc,ψ|] + φ̂Gc,Jc(i+ 1)Ei[|∆Φc|−,ψ|] + |∆φ̂Gc,Jc |Φc|−,ψ

≤ Ei[|∆Φc,ψ|] + 2φ̂Gc,JcEi[|∆Φc|−,ψ|] + 2|F|2 φ̂c,I

H

Thus, due to Lemma 3.5.7, it suffices to obtain

Ei[|∆Φc,ψ|] ≤X nε
5 φ̂c,I

nkp̂
and Ei[|∆Φc|−,ψ|] ≤X nε

5 φ̂c|−,I

nkp̂
.

To this end, for e ∈ Cc \ Cc[I], from all subtemplates (A, I) ⊆ (Cc, I) with e ∈ A,
choose (Ae, I) such that φ̂Ae,I is minimal. Furthermore, for every subtemplate (A, I) ⊆
(Cc, I), let

Φe
A,ψ := |{φ ∈ Φ∼

A,ψ : φ(e) ∈ F0(i+ 1)}|.
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Then, due to Lemma 3.6.3, Lemma 3.5.16 yields

Φe
Cc,ψ ≤X 2k!|F|(log n)αCc,I∪e

φ̂c,I

φ̂Ae,I
,

so we obtain

|∆Φc,ψ| ≤
∑

e∈Cc\Cc[I]

Φe
Cc,ψ =

∑
e∈Cc\Cc[I]

1{ΦeCc,ψ≥1}Φ
e
Cc,ψ

≤X 2k!|F|(log n)αCc,I∪eφ̂c,I

∑
e∈Cc\Cc[I]

1{ΦeCc,ψ≥1}

φ̂Ae,I
≤ nε6φ̂c,I

∑
e∈Cc\Cc[I]

1{ΦeCc,ψ≥1}

φ̂Ae,I

≤ nε6φ̂c,I

∑
e∈Cc\Cc[I]

1{ΦeAe,ψ≥1}

φ̂Ae,I
≤ nε6φ̂c,I

∑
e∈Cc\Cc[I]

∑
φ∈Φ∼

Ae,ψ

1{φ(e)∈F0(i+1)}

φ̂Ae,I
.

(3.6.25)
For all e ∈ H, f ∈ F and ψ′ : f ∼−→ e, we have ΦF ,ψ′ =X (1± δ−1ζ)φ̂F ,f . Furthermore, we

have H∗ =X (1±ζ1+ε3)ĥ∗. Thus, using Lemma 3.5.17, for all e ∈ Cc \Cc[I] and φ ∈ Φe
Ae,ψ,

we obtain

Pi[φ(e) ∈ F0(i+ 1)] =
dH∗(φ(e))

H∗ ≤X
2|F|k! φ̂F ,f

H∗ ≤X
4|F|k! φ̂F ,f

ĥ∗
≤ nε

6

nkp̂
.

Combining this with (3.6.25) yields

Ei[|∆Φc,ψ|] ≤X nε
6
φ̂c,I

∑
e∈Cc\Cc[I]

∑
φ∈Φ∼

Ae,ψ

Pi[φ(e) ∈ F0(i+ 1)]

φ̂Ae,I

≤X n2ε
6 φ̂c,I

nkp̂

∑
e∈Cc\Cc[I]

ΦAe,ψ
φ̂Ae,I

.

For all e ∈ Cc\Cc[I] and (B, I) ⊆ (Ae, I) ⊆ (Cc, I), Lemma 3.6.1 together with Lemma 3.5.5
entails

φ̂B,I = (np̂ρB,I )|VB|−|I| ≥ (np̂ρF )|VB|−|I| ≥ 1

and so Lemma 3.5.14 yields

ΦAe,I ≤X 2(log n)αAe,I φ̂Ae,I ≤ nε
6
φ̂Ae,I .

We conclude that

Ei[|∆Φc,ψ|] ≤X n3ε
6 |Cc \ Cc[I]| φ̂c,I

nkp̂
≤ n4ε6 φ̂c,I

nkp̂
.

Similarly, we obtain

Ei[|∆Φc|−,ψ|] ≤X n4ε
6 φ̂c|−,I

nkp̂
,

which completes the proof.
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Lemma 3.6.29. Let 0 ≤ i0 ≤ i⋆ and −+ ∈ {−,+}. Then,
∑

i≥i0 Ei[|∆Z
−+
i0
|] ≤ nε3φ̂c,I(i0).

Proof. Suppose that i0 ≤ i < i⋆ and let X := {i < τH∗ ∧ τB ∧ τB′ ∧ τC}. We
have Ei[|∆Z−+

i0
|] =X c 0 and with Lemma 3.6.21, Lemma 3.6.28 and Lemma 3.5.7, using

Lemma 3.6.5, we obtain

Ei[|∆Z−+
i0
|] ≤ Ei[|∆Y −+|] ≤ Ei[|∆Xc,ψ|] + |∆ξ1| ≤X nε

4 φ̂c,I

nkp̂
+
φ̂c,I

H
≤X nε

3 φ̂c,I

nkp̂

≤ nε3 φ̂c,I(i0)

nkp̂(i0)
.

Thus, ∑
i≥i0

Ei[|∆Z−+
i0
|] =

∑
i0≤i≤i⋆−1

Ei[|∆Z−+
i0
|] ≤ (i⋆ − i0)

nε
3
φ̂c,I(i0)

nkp̂(i0)
.

Since

i⋆ − i0 ≤
ϑnk

|F|k!
− i0 =

nkp̂(i0)

|F|k!
≤ nkp̂(i0),

this completes the proof.

Supermartingale argument

In this section, we obtain the final ingredient for our application of Lemma 2.9.4 and
subsequently show that the probabilities of the events on the right in Observation 3.6.19
are indeed small.

In more detail, we first prove Lemma 3.6.30 that states that for all −+ ∈ {−,+},
at time i = σ−+ where the process Φc,ψ(0),Φc,ψ(1), . . . just left the non-critical interval
between the critical intervals, it cannot have jumped over the critical interval I−+. Then, we
combine this insight with the results form the previous two sections to apply Lemma 2.9.4
in the proof of Lemma 3.6.31.

Lemma 3.6.30. Let −+ ∈ {−,+}. Then, Z−+
σ−+(σ−+) ≤ −δ2ξ1(σ−+).

Proof. Together with Lemma 3.6.1, Lemma 3.5.4 implies τ̃⋆C ≥ 1 and −+Xc,ψ(0) < ξ0(0),
so we have σ−+ ≥ 1. Thus, by definition of σ−+, for i := σ−+− 1, we have −+Xc,ψ ≤ ξ0 and
thus

Z−+
i = −+Xc,ψ − ξ1 ≤ −δξ1.

Furthermore, since σ−+ ≤ τB ∧ τB′ ∧ τC, we may apply Lemma 3.6.26 to obtain

Z−+
σ−+(σ−+) = Z−+

i + ∆Y −+ ≤ Z−+
i + δ2ξ1 ≤ −δξ1 + δ2ξ1 ≤ −δ2ξ1.

Since Lemma 3.6.5 entails ∆ξ1 ≤ 0, this completes the proof.

Lemma 3.6.31. P[τC ≤ τ̃⋆C ∧ i⋆] ≤ exp(−nε3).
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Proof. Considering Observation 3.6.18, it suffices to show that

P[τ ≤ τ̃⋆C ∧ i⋆] ≤ exp(−n2ε3).

Hence, by Observation 3.6.19, is suffices to show that for −+ ∈ {−,+}, we have

P[Z−+
σ−+(i⋆) > 0] ≤ exp(−n3ε3).

Due to Lemma 3.6.30, we have

P[Z−+
σ−+(i⋆) > 0] ≤ P[Z−+

σ−+(i⋆)− Z−+
σ−+(σ−+) > δ2ξ1(σ

−+)] ≤
∑

0≤i≤i⋆
P[Z−+

i (i⋆)− Z−+
i > δ2ξ1].

Thus, for 0 ≤ i ≤ i⋆, it suffices to obtain

P[Z−+
i (i⋆)− Z−+

i > δ2ξ1] ≤ exp(−n4ε3).

We show that this bound is a consequence of We show that this bound is a consequence
of Freedman’s inequality for supermartingales.

Let us turn to the details. Lemma 3.6.24 shows that Z−+
i (i), Z−+

i (i + 1), . . . is a su-

permartingale, while Lemma 3.6.27 provides the bound |∆Z−+
i (j)| ≤ nε3φ̂c,I/(np̂

ρF ) for

all j ≥ i and Lemma 3.6.29 provides the bound
∑

j≥i Ej [|∆Z−+
i (j)|] ≤ nε3φ̂c,I . Hence, we

may apply Lemma 2.9.4 to obtain

P[Z−+
i (i⋆)− Z−+

i > δ2ξ1] ≤ exp

(
− δ4ξ21

2nε3
φ̂c,I

np̂ρF (δ2ξ1 + nε3φ̂c,I)

)
≤ exp

(
−δ

4ξ21np̂
ρF

4n2ε3φ̂2
c,I

)

= exp

(
−δ

2n2ε
2

4n2ε3

)
≤ exp(−n4ε3),

which completes the proof.

3.7 Branching families

This section is dedicated to introducing and analyzing the special setup based on branching
families that we rely on for exploiting the self-correcting behavior of the process. Suppose
that 0 ≤ i ≤ i⋆, consider a chain c = (F, V, I) ∈ C and ψ : I ↪→ VH. As suggested by
our definition of τ̃B, we wish to show that

∑
b∈Bec ΦCb,ψ is typically close to

∑
b∈Bec Φ̂b,ψ,

however, instead of choosing δ−1/2ζφ̂Cb,I as the error term that quantifies the deviation
that we allow, we use ε−χBec ζφ̂Cb,I for a carefully chosen error parameter χBec that
crucially depends on the branching family Be

c .
Considering branching families instead of individual chains and using different error

terms for different branching families allows us to overcome the following obstacles that
we encounter when attempting to exploit self-correcting behavior. When we analyze the
expected one-step changes of Φc,ψ for a chain c = (F, V, I) ∈ C and ψ : I ↪→ VH using
Lemma 3.6.15, different chains besides c itself play an important role and their behavior
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could undermine the self-correcting drift that would naturally steer Φc,ψ closer to the
anticipated trajectory whenever it deviates. In an attempt to control this we might want
to allow only significantly smaller deviations for these other chains such that the self-
correcting drift still dominates. This approach leads to the desire to implement a hierarchy
of error terms such that the error terms of other chains that appear as transformations
of c are negligible. If F is not symmetric, on the level of individual chains, necessary
negligibility may form cyclic dependencies that make it impossible to find such a hierarchy.
However, since relevant other chains that appear as transformations always appear in
groups, analyzing these groups instead allows us to reduce the aforementioned directed
cyclic structures to loops such that on the level of branching families, such a hierarchic
approach is feasible.

In Section 3.7.1, we discuss the careful choice of error parameters. In Section 3.7.2,
we subsequently employ supermartingale concentration techniques that exploit the self-
correcting behavior to show that branching families typically behave as expected such
that our dependence on the stopping time τ̃B in Section 3.6.3 is justified.

3.7.1 Error parameter

This section is dedicated to providing and analyzing appropriate choices for the error
parameters mentioned in the beginning of Section 3.7. To this end, we introduce the
following concepts. For a sequence F = F1, . . . ,Fℓ of copies of F , we define

χF := −ε−5k(k+1)
∑

1≤i≤ℓ−1

ε5k|VFi∩VFi+1
|.

For a chain c = (F, V, I), we say that a subsequence F ′ = F1, . . . ,Fℓ of F is c-sufficient
if (F1 + . . .+Fℓ)[V ] = Cc and we say that F ′ is minimally c-sufficient if F ′ is c-sufficient
while no proper subsequence of F ′ is c-sufficient. The error parameter of c is

χc := |V |+ min
F ′ : F ′ is minimally c-sufficient

χF ′ .

We observe that for all e ∈ Cc \ Cc[I], all error parameters of branchings b ∈ Be
c are equal

(see Lemma 3.7.2), which we obtain as a consequence of the following observation.

Observation 3.7.1. Suppose that c = (F, V, I) is a chain and suppose that e ∈ Cc \ Cc[I].
Let b, b′ ∈ Be

c . Suppose that F1, . . . ,Fℓ is b-sufficient and that F ′
ℓ is the last element in

the first component of b′. Then, F1, . . . ,Fℓ−1,F ′
ℓ is b′ sufficient.

Lemma 3.7.2. Suppose that c = (F, V, I) is a chain and suppose that e ∈ Cc \ Cc[I].
Let b, b′ ∈ Be

c . Then, χb = χb′.

Proof. Suppose that F = F1, . . . ,Fℓ is minimally b-sufficient. Due to symmetry, it suffices
to show that there exists a minimally b′-sufficient sequence F ′ with χF ′ = χF . Suppose
that F ′ is the last element in the first component of b′ and let F ′ := F1, . . . ,Fℓ−1,F ′.
By Observation 3.7.1, the sequence F ′ is b′-sufficient. Furthermore, for every b′-sufficient
subsequence of F ′, replacing the last element with Fℓ yields a subsequence of F which
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again by Lemma 3.7.1 is b-sufficient. Hence, since F is minimally b-sufficient, the
sequence F ′ is minimally b′-sufficient. Furthermore, we have

VFℓ−1
∩ VFℓ = VFℓ−1

∩ e = VFℓ−1
∩ VF ′

and thus χF ′ = χF .

For a chain c = (F, V, I) and e ∈ Cc \ Cc[I], this allows us to choose the error pa-
rameter χBec of Be

c such that χBec = χb for all b ∈ Be
c . The key property of our error

parameters that we formally state in Lemma 3.7.8 is that whenever we consider the
branching b′ of a branching b of a chain c ∈ C, then χb′ ≤ χb − 1 or we are in a situation
where the branching families of c and b are essentially the same.

To formally state the close relationship between branching families that we encounter
whenever the branching of a branching has the same error parameter, we introduce the
following term. For two chains c = (F, V, I) and c′ = (F ′, V ′, I ′) and edges e ∈ Cc \ Cc[I]
and e′ ∈ Cc′ \Cc′ [I ′], we say that the branching families Be

c and Be′
c′ are template equivalent

if there exists a bijection γ : Be
c

∼−→ Be′
c′ such that for all b ∈ Be

c , the chain template (Cb, I)
is a copy of (Cγ(b), I ′) while (Cb|−, I) is a copy of (Cγ(b)|−, I ′). We encounter such a close
relationship between branching families for example when comparing the branching family
of a chain and the branching family of the corresponding support (see Lemma 3.7.3).

To show that we have template equivalence of relevant branching families, we argue
based on a refined notion of copy for templates. More specifically, for two templates (A, I)
and (B, J) and a ∈ A and b ∈ B, we say that (B, J) is a copy of (A, I) with b playing the
role of a if there exists a bijection φ : VA ∼−→ VB with φ(e) ∈ B for all e ∈ A, φ−1(e) ∈ A
for all e ∈ B, φ(I) = J and φ(a) = b. Lemma 3.7.4 states the connection between this
notion of copy and template equivalence that we rely on.

Lemmas 3.7.5–3.7.7 serve as further preparation for the proof of Lemma 3.7.8.

Lemma 3.7.3. Suppose that s is the e-support of a chain c. Then, Be
c and Be

s are
template equivalent.

Proof. Suppose that c = (F, V, I) where F has length ℓ. Let β : f ∼−→ e where f ∈ F . We
have s = c|β|r|−, so the chain template given by s|β is a copy of the chain template
given by c|β|r. Since s is the e-support of c, we have s|β|r = s|β. Thus, the chain
template given by s|β|r is a copy of the chain template given by c|β|r. Furthermore, we
additionally have c|β|r|− = s = s|β|r|− so a bijection γ : Be

c
∼−→ Be

s as in the definition
of template equivalence exists.

Lemma 3.7.4. Suppose that c = (F, V, I) is the e-support of a chain. Suppose that c′ =
(F ′, V ′, I ′) is a chain such that for some e′ ∈ Cc′ \ Cc′ [I ′], the template (Cc′ , I ′) is a copy
of (Cc, I) with e′ playing the role of e. Then, Be

c and Be′
c′ are template equivalent.

Proof. Suppose that φ : V ∼−→ V ′ is a bijection with φ(e) ∈ Cc′ for all e ∈ Cc and φ−1(e) ∈
Cc′ for all e ∈ Cc, φ(I) = I ′ and φ(e) = e′. Suppose that b ∈ Be

c where b = c|β|r for
some β : f ∼−→ e where f ∈ F . Let β′ := φ ◦ β and b′ := c′|β′|r. To see that assigning b′
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as the image of b under a map γ : Be
c → Be′

c′ yields a bijection as desired, it suffices to
show that (Cb, I) is a copy of (Cb′ , I ′) while (Cb|−, I) is a copy of (Cb′|−, I ′).

First, observe that there exists a bijection

φ+ : V ∪ VFβc
∼−→ V ′ ∪ VFβ′

c′

with φ+|V = φ such that φ+(e) ∈ Cb′ for all e ∈ Cb and φ−1
+ (e) ∈ Cb′ for all e ∈ Cb.

Hence, (Cc|β, I) is a copy of (Cc′|β′ , I ′). Since c is the e-support of a chain, we have c|β|r =
c|β and thus c′|β′|r = c′|β′; so (Cb, I) is a copy of (Cb′ , I ′). Furthermore, we obtain b|− = c
and b′|− = c′, which completes the proof.

Lemma 3.7.5. Suppose that c = (I, F, V ) is a chain with F = F1, . . . ,Fℓ. For 1 ≤ i ≤ ℓ,
let Vi := VFi. Let 1 ≤ i ≤ i′ ≤ j′ ≤ j ≤ ℓ. Then, Vi ∩ Vj ⊆ Vi′ ∩ Vj′.

Proof. Since F is a vertex-separated loose path, we have Vi ∩ Vj ⊆ Vi′ ∩ Vj and Vi ∩ Vj ⊆
Vj′ ∩ Vj . Thus,

Vi ∩ Vj ⊆ Vi′ ∩ Vj′ ∩ Vj ⊆ Vi′ ∩ Vj′ ,
which completes the proof.

Lemma 3.7.6. Suppose that c = (F, V, I) ∈ C is a chain and that F1, . . . ,Fℓ is mini-
mally c-sufficient. For 1 ≤ i ≤ ℓ, let Vi := VFi. Then, for 1 ≤ i ≤ j ≤ ℓ where i ≤ j − 2,
we have

|Vi ∩ Vj | ≤ min
i≤i′≤j−1

|Vi′ ∩ Vi′+1| − 1.

Proof. Let i+ 1 ≤ i′′ ≤ j − 1 such that

min
i≤i′≤j−1

|Vi′ ∩ Vi′+1| = min
i′′−1≤i′≤i′′

|Vi′ ∩ Vi′+1|.

Then, since Lemma 3.7.5 entails |Vi ∩ Vj | ≤ |Vi′′−1 ∩ Vi′′+1|, it suffices to show that

|Vi′′−1 ∩ Vi′′+1| ≤ min
i′′−1≤i′≤i′′

|Vi′ ∩ Vi′+1| − 1.

To prove this, we use contraposition and argue as follows. Suppose now that c =
(F0, V, I) is a chain and that F = F1, . . . ,Fℓ is minimally c-sufficient. Let C := Cc.
For 1 ≤ i ≤ ℓ, let Vi := VFi . Suppose that there exists 2 ≤ i′ ≤ ℓ− 1 with

|Vi′−1 ∩ Vi′+1| ≥ |Vi′−1 ∩ Vi′ | or |Vi′−1 ∩ Vi′+1| ≥ |Vi′ ∩ Vi′+1|.

We show that then, for

U :=
( ⋃
1≤i≤ℓ : i ̸=i′

Vi

)
∩ V, J := U ∩ Vi′ ,

we have U ̸= V and that furthermore, as a consequence of Lemma 3.6.9, we have

ρC,U = ρFi′ [Vi∩V ],J ≤ ρF .
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This implies that Wc ̸= V and hence c ≠ c|r. With Lemma 3.6.4, this yields c /∈ C and
thus completes the proof by contraposition.

Let us turn to the details. First, note that by choice of i′, Lemma 3.7.5 entails that we
have

Vi′−1 ∩ Vi′+1 = Vi′−1 ∩ Vi′ or Vi′−1 ∩ Vi′+1 = Vi′ ∩ Vi′+1.

If Vi′−1 ∩ Vi′+1 = Vi′−1 ∩ Vi′ , then

Vi′−1 ∩ Vi′ = Vi′−1 ∩ Vi′+1 ∩ Vi′ ⊆ Vi′ ∩ Vi′+1.

Similarly, if Vi′−1 ∩ Vi′+1 = Vi′ ∩ Vi′+1, then

Vi′ ∩ Vi′+1 = Vi′−1 ∩ Vi′+1 ∩ Vi′ ⊆ Vi′−1 ∩ Vi′ .
Hence, in particular we have

Vi′−1 ∩ Vi′ ⊆ Vi′ ∩ Vi′+1 or Vi′ ∩ Vi′+1 ⊆ Vi′−1 ∩ Vi′ .
Since Lemma 3.7.5 implies

J =
( ⋃
1≤i≤ℓ : i ̸=i′

Vi′ ∩ Vi
)
∩ V = ((Vi′−1 ∩ Vi′) ∪ (Vi′ ∩ Vi′+1)) ∩ V,

this yields
J = Vi′−1 ∩ Vi′ ∩ V or J = Vi′ ∩ Vi′+1 ∩ V. (3.7.1)

To see that U ̸= V , we argue as follows. Since F1, . . . ,Fℓ is minimally c-sufficient, for

S := F1 + . . .+ Fℓ and Si′ := F1 + . . .+ Fi′−1 + Fi′+1 + . . .+ Fℓ,
we obtain Si′ [U ] ̸= S[V ]. If there exists a vertex v ∈ V \ U , then U ̸= V . Thus, for
our proof that U ≠ V , we may assume that there exists an edge e ∈ S[V ] \ Si′ [U ] ⊆
Fi′ [V ∩ Vi′ ] \ Si′ [U ]. If |J | ≤ k − 1, then Fi′ [J ] = ∅ and if |J | ≥ k, then, since F is
a subsequence of a vertex-separated loose path, due to (3.7.1), we have |J | = k and
furthermore Fi′ [J ] ⊆ Fi′−1[V ∩ Vi′−1] or Fi′ [J ] ⊆ Fi′+1[V ∩ Vi′+1]. Hence, in any case,
we have Fi′ [J ] ⊆ Si′ [U ] and thus e ∈ Fi′ [V ∩ Vi′ ] \ Fi′ [J ]. This implies that there exists

v ∈ e \ J ⊆ (V ∩ Vi′) \ J = (V ∩ Vi′) \ U ⊆ V \ U,
so we have U ̸= V .

It remains to prove that ρC,U ≤ ρF . To this end, let A := Fi′ [V ∩Vi′ ] and note that for
all 1 ≤ i ≤ ℓ with i ̸= i′ and f ∈ Fi[V ∩ Vi], we have f ⊆ U and hence f ∈ C[U ]. Thus,

C \ C[U ] =
( ⋃
1≤i≤ℓ

Fi[V ∩ Vi]
)
\ C[U ] = A \ C[U ] = A \ (C[U ] ∩ A) = A \ A[J ].

Furthermore, for all 1 ≤ i ≤ ℓ with i ̸= i′ and v ∈ V ∩ Vi, we have v ∈ U , so we also have

V \ U =
( ⋃
1≤i≤ℓ

V ∩ Vi
)
\ U = (V ∩ Vi) \ U = (V ∩ Vi) \ J.

Thus, ρC,U = ρA,J . Hence, since (3.7.1) states that we have J = VA ∩ Vi′−1 ∩ Vi′
or J = VA ∩ Vi′ ∩ Vi′+1, Lemma 3.6.9 entails ρC,U ≤ ρF , which completes the proof as
explained above.
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Lemma 3.7.7. Suppose that F = F1, . . . ,Fℓ is minimally c-sufficient for some chain c ∈
C. Then, ℓ ≤ 1/ε4k.

Proof. Suppose that c = (V, F, I). By Lemma 3.6.3, we have |V | ≤ ε−3, hence |Cc| ≤ ε−3k

and thus, since F is minimally c-sufficient, ℓ ≤ ε−3 + ε−3k.

Lemma 3.7.8. Suppose that c ∈ C. Let e ∈ Cc \ Cc[I] and β : f ∼−→ e where f ∈ F .
Suppose that b is the β-branching of c. Let e′ ∈ Fβc \ {e} and β′ : f ′ ∼−→ e′ where f ′ ∈ F .
Suppose that b′ is the β′-branching of b. Then,

χb′ ≤ χb − 1 or χb′ = χb.

Furthermore, if χb′ = χb, then Be
c and Be′

b are template equivalent.

Proof. Suppose that b = (F, V, I) and b′ = (F ′, V ′, I). From all minimally b-sufficient

sequences, choose F1, . . . ,Fℓ−1 such that χF1,...,Fℓ−1
is minimal. Let Fℓ := Fβ′

b . For 1 ≤
i ≤ ℓ, let Vi := VFi . Observe that the sequence F1, . . . ,Fℓ is b′-sufficient. Consider
a minimally b′-sufficient subsequence Fi1 , . . . ,Fiℓ′ of F1, . . . ,Fℓ with i1 = 1. Note
that iℓ′ = ℓ. To shorten notation, for 1 ≤ i, j ≤ ℓ, we set

f(i, j) := ε5k|Vi∩Vj |.

For all 1 ≤ j ≤ ℓ′ − 1 with ij+1 = ij + 1, we vacuously have∑
ij≤i≤ij+1−1

f(i, i+ 1) = f(ij , ij+1)

and for all 1 ≤ j ≤ ℓ′ − 2 with ij+1 ≥ ij + 2, Lemma 3.7.6 together with Lemma 3.7.7
implies ∑

ij≤i≤ij+1−1

f(i, i+ 1) ≤ (ij+1 − ij)ε5kf(ij , ij+1) ≤ εf(ij , ij+1)

= f(ij , ij+1)− (1− ε)f(ij , ij+1) ≤ f(ij , ij+1)−
ε5k

2

2
.

For

Λ :=

{
1 if i1, . . . , iℓ′−1 ̸= 1, . . . , ℓ− 2;

0 otherwise,

using that V ′ is the disjoint union of V ′ \ V and V ∩ V ′ = V \ (V \ V ′), this yields

χb′ ≤ |V ′| − ε−5k(k+1)
( ∑
1≤j≤ℓ′−2

f(ij , ij+1)
)
− ε−5k(k+1)f(iℓ′−1, ℓ)

≤ |V ′| − ε−5k(k+1)

(
ε5k

2

2
Λ +

∑
1≤j≤ℓ′−2

∑
ij≤i≤ij+1−1

f(i, i+ 1)

)
− ε−5k(k+1)f(iℓ′−1, ℓ)
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= |V ′| − ε−5k(k+1)
( ∑
1≤i≤iℓ′−1−1

f(i, i+ 1)
)
− ε−5k

2
Λ− ε−5k(k+1)f(iℓ′−1, ℓ)

= |V |+m− k − |V \ V ′| − ε−5k(k+1)
( ∑
1≤i≤ℓ−2

f(i, i+ 1)
)

+ε−5k(k+1)
( ∑
iℓ′−1≤i≤ℓ−2

f(i, i+ 1)
)
− ε−5k

2
Λ− ε−5k(k+1)f(iℓ′−1, ℓ)

= χb +m− k − |V \ V ′|+ ε−5k(k+1)
( ∑
iℓ′−1≤i≤ℓ−2

f(i, i+ 1)
)

−ε−5k(k+1)f(iℓ′−1, ℓ)−
ε−5k

2
Λ.

Note that iℓ′−1 ≤ ℓ − 3, iℓ′−1 = ℓ − 2 or iℓ′−1 = ℓ − 1. We investigate the three cases
separately.

First, suppose that iℓ′−1 ≤ ℓ − 3. Then using Lemma 3.7.6, Lemma 3.7.7 and
Lemma 3.7.5, we obtain∑
iℓ′−1≤i≤ℓ−2

f(i, i+ 1) ≤ (ℓ− iℓ′−1 − 1)ε5kf(iℓ′−1, ℓ− 1) ≤ εf(iℓ′−1, ℓ− 1)

= f(iℓ′−1, ℓ− 1)− (1− ε)f(iℓ′−1, ℓ− 1) ≤ f(iℓ′−1, ℓ− 1)− ε5k
2

2

≤ f(iℓ′−1, ℓ)−
ε5k

2

2
.

Hence, if iℓ′−1 ≤ ℓ− 3, then

χb′ ≤ χb +m− k − |V \ V ′| − ε−5k

2
≤ χb − 1.

Next, suppose that iℓ′−1 = ℓ− 2. If

|Viℓ′−1
∩ Vℓ−1| ≥ |Viℓ′−1

∩ Vℓ|+ 1,

then ∑
iℓ′−1≤i≤ℓ−2

f(i, i+ 1) = f(iℓ′−1, ℓ− 1) ≤ ε5kf(iℓ′−1, ℓ)

= f(iℓ′−1, ℓ)− (1− ε5k)f(iℓ′−1, ℓ) ≤ f(iℓ′−1, ℓ)−
ε5k

2

2

and thus

χb′ ≤ χb +m− k − |V \ V ′| − ε−5k

2
≤ χb − 1.

If
|Viℓ′−1

∩ Vℓ−1| ≤ |Viℓ′−1
∩ Vℓ|, (3.7.2)
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then Lemma 3.7.5 entails
Viℓ′−1

∩ Vℓ−1 = Viℓ′−1
∩ Vℓ, (3.7.3)

and thus ∑
iℓ′−1≤i≤ℓ−2

f(i, i+ 1) = f(iℓ′−1, ℓ− 1) = f(iℓ′−1, ℓ).

Due to Lemma 3.7.5, a consequence of (3.7.3) is

Viℓ′−1
∩ Vℓ−1 ⊆ Vℓ−1 ∩ Vℓ.

Since we assume that iℓ′−1 = ℓ− 2, this yields

Vℓ−1 ∩ V ′ ⊆ (Viℓ′−1
∪ Vℓ) ∩ Vℓ−1 ⊆ Vℓ ∩ Vℓ−1 = e′ (3.7.4)

and so in particular |Vℓ−1 ∩ V ′| ≤ k and thus |V \ V ′| ≥ m− k. Hence, if (3.7.2) holds,
then

χb′ ≤ χb +m− k − |V \ V ′| − ε−5k

2
Λ ≤ χb −

ε−5k

2
Λ (3.7.5)

and thus χb′ ≤ χb − 1 or χb′ = χb.
Finally, suppose that iℓ′−1 = ℓ− 1. Then,

χb′ ≤ χb +m−k−|V \V ′|− ε−5k(k+1)f(iℓ′−1, ℓ) ≤ χb +m−k−|V \V ′|− ε−5k ≤ χb−1.

This finishes the analysis of the three cases and the proof that we have χb′ ≤ χb − 1
or χb′ = χb.

It remains to further investigate the case where χb′ = χb. Suppose that χb′ = χb. Note
that by Lemma 3.7.3, it suffices to obtain that Be

b|− and Be′

b′|− are template equivalent, so

due to Lemma 3.7.4, it suffices to show that (Cb′|−, I) is a copy of (Cb|−, I) with e′ playing
the role of e. Our analysis of the three cases above shows that χb′ = χb is only possible
if iℓ′−1 = ℓ− 2, (3.7.3), (3.7.4) and (3.7.5) hold. Revisiting the first inequality in (3.7.5),
we see that Λ = 0 and |V \ V ′| = m− k necessarily hold. Let S := F1 + . . .+Fℓ−2, let E
denote the k-graph with vertex set e and edge set {e} and let E ′ denote the k-graph
with vertex set e′ and edge set {e′}. Note that Cb|− = S[V ∩ VS ] + E and that as a
consequence of Λ = 0, we have Cb′|− = S[V ′ ∩ VS ] + E ′. Thus, to see that (Cb′|−, I) is a
copy of (Cb|−, I) with e′ playing the role of e, it suffices to obtain V ∩ VS = V ′ ∩ VS and
additionally e ∩ V ∩ VS = e′ ∩ V ′ ∩ VS . Since (3.7.4) entails

Vℓ−1 \ e′ ⊆ Vℓ−1 \ (Vℓ−1 ∩ V ′) = Vℓ−1 \ V ′ ⊆ V \ V ′,

from |V \ V ′| = m− k, we obtain V \ V ′ = Vℓ−1 \ e′ and thus using (3.7.3), we have

(V ∩ VS) \ (V ′ ∩ VS) = (V \ V ′) ∩ VS = (Vℓ−1 \ e′) ∩ VS = (Vℓ−1 ∩ VS) \ e′
= (Vℓ−1 ∩ Vℓ−2) \ e′ = (Vℓ ∩ Vℓ−1 ∩ Vℓ−2) \ e′ = ∅.

Since V ′ ∩ VS ⊆ V ∩ VS , this yields

V ∩ VS = V ′ ∩ VS . (3.7.6)
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Furthermore, again using (3.7.3), we obtain

e ∩ Vℓ−2 = Vℓ−1 ∩ Vℓ−2 = Vℓ ∩ Vℓ−1 ∩ Vℓ−2 = e′ ∩ Vℓ−2.

Combining this with (3.7.6) yields

e ∩ V ∩ VS = (e ∩ Vℓ−2) ∩ V ∩ VS = (e′ ∩ Vℓ−2) ∩ V ∩ VS = (e′ ∩ Vℓ−2) ∩ V ′ ∩ VS
= e′ ∩ Vℓ−1 ∩ Vℓ−2 ∩ V ′ ∩ VS .

Since Lemma 3.7.5 entails Vℓ−1 ∩ Vi ⊆ Vℓ−1 ∩ Vℓ−2 for all 1 ≤ i ≤ ℓ− 2, thus Vℓ−1 ∩ VS ⊆
Vℓ−1 ∩ Vℓ−2 and hence Vℓ−1 ∩ VS = Vℓ−1 ∩ Vℓ−2 ∩ VS , this yields

e ∩ V ∩ VS = e′ ∩ Vℓ−1 ∩ V ′ ∩ VS = e′ ∩ V ′ ∩ VS ,

which completes the proof.

3.7.2 Tracking branching families

Suppose that 0 ≤ i ≤ i⋆, consider a chain c = (F, V, I) ∈ C and let ψ : I ↪→ VH.
Let e ∈ Cc \ Cc[I]. Similarly as in Section 3.6.3, we show that

∑
b∈Bec ΦCb,ψ is typically

close to
∑

b∈Bec Φ̂b,ψ, that is that

Xe
c,ψ :=

∑
b∈Bec

ΦCb,ψ −
∑
b∈Bec

Φ̂b,ψ =
∑
b∈Bec

Xb,ψ

is typically small, where the quantification of the deviation we allow crucially relies on the
insights from Section 3.7.1. Formally, we finally define the fifth stopping time mentioned
in Section 3.4 as

τB := min

{
i ≥ 0 :

∑
b∈Bec ΦCb,ψ ̸=

∑
b∈Bec Φ̂b,ψ ± ε−χBec ζφ̂b,I

for some c = (F, V, I) ∈ C, e ∈ Cc \ Cc[I], ψ : I ↪→ VH

}
and we show that the probability that τB ≤ τ⋆ ∧ i⋆ is small. The following Lemma 3.7.9
shows that indeed τ̃B ≥ τB. Similarly as in Section 3.6.3, Lemma 3.7.11 shows that it
suffices to consider a collection of branching families that has size at most 1/δ, which
in turn allows us to restrict our attention to only one fixed branching family. To prove
Lemma 3.7.11, we observe that there are only finitely many relevant error parameters
(see Lemma 3.7.10).

Lemma 3.7.9. Let c ∈ C. Then, δ1/2 ≤ ε−χc ≤ δ−1/2.

Proof. Suppose that c = (F, V, I). From Lemma 3.6.3, we obtain χc ≤ |V | ≤ ε−3 and
from Lemma 3.7.7, we obtain χc ≥ −ε−5k(k+1) · ε−4k2 , so the statement follows.

Lemma 3.7.10. The set {χc : c ∈ C} is finite.
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Proof. As a consequence of Lemma 3.6.3, it suffices to show that

X := {χF : F is minimally c-sufficient for some c ∈ C }

is finite. By Lemma 3.7.7, every sequence that is minimally c-sufficient for some c ∈ C
has length at most ε−4k, which entails that X is indeed finite.

Lemma 3.7.11. There exists a collection C0 ⊆ C with |C0| ≤ 1/δ such that for all c =
(F, V, I) ∈ C and e ∈ Cc \ Cc[I], there exist c0 = (F0, V0, I0) ∈ C0 and e0 ∈ Cc0 \ Cc0 [I] such
that Be0

c0 and Be
c are template equivalent with χB

e0
c0
≤ χBec .

Proof. Similarly as in the proof of Lemma 3.6.17, consider the set T of all templates (A, I)
where VA ⊆ {1, . . . , 1/ε3}. By Lemma 3.6.3, for all c = (F, V, I) ∈ C, we may choose a
template Tc ∈ T that is a copy of (Cc, I). For every chain c = (F, V, I) and e ∈ Cc \ Cc[I],
we may consider the unordered (|F|k!)-tuple ((Tb, Tb|−) : b ∈ Be

c ) whose components
are the pairs (Tb, Tb|−) of templates where b ∈ Be

c . We use T2 to denote the set of such
unordered tuples, that is we set

T2 := {((Tb, Tb|−) : b ∈ Be
c ) : c = (F, V, I) ∈ C, e ∈ Cc \ Cc[I]}.

Note that |T2| ≤ |T |2|F|k!. Consider an unordered tuple P ∈ T2. As a consequence
of Lemma 3.7.10, among all pairs (c, e) where c = (F, V, I) ∈ C and e ∈ Cc \ Cc[I] such
that P = ((Tb, Tb|−) : b ∈ Be

c ), we may choose a pair (cP , eP) such that χB
eP
cP

is

minimal. Then, {cP : P ∈ T2} is a collection as desired.

Observation 3.7.12. Suppose that C0 ⊆ C is a collection of chains as in Lemma 3.7.11.
For c = (F, V, I) ∈ C, e ∈ Cc \ Cc[I] and ψ : I ↪→ VH, let

τ ec,ψ := min
{
i ≥ 0 :

∑
b∈Bec

Φb,ψ ̸=
∑
b∈Bec

Φ̂b,ψ ± ε−χBec ζφ̂b,I

}
.

Then,

P[τB ≤ τ⋆ ∧ i⋆] ≤
∑

c=(F,V,I)∈C0,
e∈Cc\Cc[I],ψ : I↪→VH

P[τ ec,ψ ≤ τ⋆ ∧ i⋆].

Hence, fix c = (F, V, I) ∈ C, e ∈ Cc \ Cc[I] and ψ : I ↪→ VH and let χ := χBec . Besides c
and ψ, we redefine several other symbols from Section 3.6, for example ξ0, ξ1 and τ .
However, we still use some symbols from previous sections that we do not redefine.
Whenever we use a symbol, its most recent definition applies. For i ≥ 0, let

ξ1(i) :=
∑
b∈Bec

ε−χζφ̂b,I , ξ0(i) := (1− δ)ξ1

and define the stopping time

τ := min
{
i ≥ 0 :

∑
b∈Bec

ΦCb,ψ ̸=
(∑
b∈Bec

Φ̂b,ψ

)
± ξ1

}
.
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Define the critical intervals

I−(i) :=
[(∑

b∈Bec

Φ̂b,ψ

)
− ξ1,

(∑
b∈Bec

Φ̂b,ψ

)
− ξ0

]
,

I+(i) :=
[(∑

b∈Bec

Φ̂b,ψ

)
+ ξ0,

(∑
b∈Bec

Φ̂b,ψ

)
+ ξ1

]
.

For −+ ∈ {−,+}, let
Y −+(i) := −+Xe

c,ψ − ξ1.
For i0 ≥ 0, define the stopping time

τ−+i0 := min
{
i ≥ i0 :

∑
b∈Bec

ΦCc,ψ /∈ I−+
}

and for i ≥ i0, let
Z−+
i0

(i) := Y −+(i0 ∨ (i ∧ τ−+i0 ∧ τ
⋆ ∧ i⋆)).

Let
σ−+ := min{j ≥ 0 : −+Xe

c,ψ ≥ ξ0 for all j ≤ i < τ⋆ ∧ i⋆} ≤ τ⋆ ∧ i⋆.
With this setup, similarly as in Section 3.6.3, it in fact suffices to consider the evolution
of Z−+

σ−+(σ−+), Z−+
σ−+(σ−+ + 1), . . ..

Observation 3.7.13. {τ ≤ τ⋆ ∧ i⋆} ⊆ {Z−
σ−(i⋆) > 0} ∪ {Z+

σ+(i⋆) > 0}.

We again use Lemma 2.9.4 to show that the probabilities of the events on the right in
Observation 3.7.13 are sufficiently small.

Trend

Here, we prove that for all −+ ∈ {−,+} and i0 ≥ 0, the expected one-step changes of the
process Z−+

i0
(i0), Z

−+
i0

(i0 + 1), . . . are non-positive. Branching families are closely related
to individual chains, so we may use statements from Section 3.6.3 as a starting point
for our arguments here. As a consequence of Lemma 3.6.21, we obtain Lemma 3.7.14
where we state estimates for the one-step changes of the error term that we use in this
section. Using these estimates, we turn to proving that the process we consider here is
indeed a supermartingale (see Lemma 3.7.18). We prove this by revisiting the expression
for individual chains stated in Lemma 3.6.28 where, since we are now in the setting
of branching families, we may now exploit that one step-changes depend on branching
families. This allows us to no longer differentiate between the different branchings as they
always appear in complete families. This ultimately enables us to identify self-correcting
behavior as desired as a consequence of our careful choice of error parameters crucially
relying on the insights from Section 3.7.1.

Note that for b, b′ ∈ Be
c , we have |Cb| = |Cb′ |. Hence, we may choose b such that b = |Cb|

for all b ∈ Be
c .
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Lemma 3.7.14. Let 0 ≤ i ≤ i⋆ and X := {i ≤ τ∅}. Then,

∆ξ1 =X −
(
b− 1− ρF

2

) |F|ξ1
H
± ζ2ξ1

H
.

Proof. For b ∈ B, we may apply Lemma 3.6.21 with b playing the role of c to obtain

∆(δ−1ζφ̂b,I) = −
(
|Cb| − 1− ρF

2

) |F|δ−1ζφ̂b,I

H
± ζ2δ−1ζφ̂b,I

H
.

This yields

∆ξ1 =
∑
b∈B

ε−χδ∆(δ−1ζφ̂b,I) =X −
(
b−1− ρF

2

) |F|∑b∈B ε
−χζφ̂b,I

H
± ζ

2
∑

b∈B ε
−χζφ̂b,I

H
,

which completes the proof.

Lemma 3.7.15. Let 0 ≤ i0 ≤ i and −+ ∈ {−,+}. Then, Ei[∆Z−+
i0

] ≤ 0.

Proof. Suppose that i < i⋆ and let X := {i < τ−+i0 ∧ τ⋆}. We have Ei[∆Z−+
i0

] =X c 0

and Ei[∆Z−+
i0

] =X Ei[∆Y −+], so it suffices to obtain Ei[∆Y −+] ≤X 0. From Lemma 3.6.23,
using Lemma 3.7.9, we obtain

Ei[∆(−+Xe
c,ψ)]

= −+
∑
b∈Bec

Ei[∆Xb,ψ]

≤X −+
∑
b∈Bec

(
−(|Cb| − 1)|F|

H
Xb,ψ −

( ∑
e′∈Gb\{Jb}

∑
b′∈Be′b

φ̂b,I

k!Hφ̂b′,I
Xb′,ψ

)
+ δ2

δ−1ζφ̂b,I

H

)

≤ −|F|
H

(
(b− 1)(−+Xe

c,ψ) +
1

|F|k!

(∑
b∈Bec

∑
e′∈Gb\{Jb}

∑
b′∈Be′b

φ̂b,I

φ̂b′,I
(−+Xb′,ψ)

)
− εξ1

)

Note that for all b ∈ Be
c , e

′ ∈ Gb \ {Jb} and b′1, b
′
2 ∈ Be′

b , we have φ̂b′1,I
= φ̂b′2,I

, so we

may choose φ̂e
′
b,I such that φ̂e

′
b,I = φ̂b′,I for all b′ ∈ Be′

b . With Lemma 3.6.3, we obtain

Ei[∆(−+Xe
c,ψ)]

≤X −
|F|
H

(
(b− 1)(−+Xe

c,ψ) +
1

|F|k!

(∑
b∈Bec

∑
e′∈Gb\{Jb}

φ̂b,I

φ̂e
′
b,I

∑
b′∈Be′b

−+Xb′,ψ

)
− εξ1

)

≤X −
|F|
H

(
(b− 1)(1− δ)ξ1 +

1

|F|k!

(∑
b∈Bec

∑
e′∈Gb\{Jb}

φ̂b,I

φ̂e
′
b,I

(−+Xe′
b,ψ)

)
− εξ1

)

≤ −|F|
H

(
(b− 1)ξ1 +

1

|F|k!

(∑
b∈Bec

∑
e′∈Gb\{Jb}

φ̂b,I

φ̂e
′
b,I

(−+Xe′
b,ψ)

)
− ε1/2ξ1

)
.
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Thus, due to Lemma 3.7.14, we have

Ei[∆Y −+] ≤X −
|F|
H

(
ρF
2
ξ1 +

1

|F|k!

(∑
b∈Bec

∑
e′∈Gb\{Jb}

φ̂b,I

φ̂e
′
b,I

(−+Xe′
b,ψ)

)
− ε1/3ξ1

)
. (3.7.7)

Note that for all b ∈ Be
c and e′ ∈ Gb \ {Jb}, if Be

c and Be′
b are template equivalent, then

−+Xe′
b,ψ = −+Xe

c,ψ ≥X ξ0 ≥ 0

and otherwise, Lemma 3.7.8 implies

|−+Xe′
b,ψ| ≤X

∑
b′∈Be′b

ε−χb′ ζφ̂b′,I ≤ ε
∑

b′∈Be′b

ε−χbζφ̂b′,I = ε|F|k! · ε−χζφ̂e′b,I .

Hence, in any case,∑
b∈Bec

∑
e′∈Gb\{Jb}

φ̂b,I

φ̂e
′
b,I

(−+Xe′
b,ψ) ≥X −ε|F|k!

∑
b∈Bec

∑
e′∈Gb\{Jb}

ε−χζφ̂b,I = −ε|F|k! |Gb \ {Jb}|ξ1

≥ −ε1/2ξ1.

Consequently, returning to (3.7.7), we obtain

Ei[∆Y −+] ≤X −
|F|
H

(
ρF
2
ξ1 − ε1/2ξ1 − ε1/3ξ1

)
≤ 0,

which completes the proof.

Boundedness

Here, we transfer the relevant results from Section 3.6.3 for individual chains, namely
Lemma 3.6.26, Lemma 3.6.27 and Lemma 3.6.29, to branching families.

Lemma 3.7.16. Let 0 ≤ i0 ≤ i ≤ i⋆, −+ ∈ {−,+} and X := {i < τB ∧ τB′ ∧ τC}. Then,

|∆Y −+| ≤ nε3
∑

b∈Bec φ̂b,I(i0)

np̂(i0)ρF
.

Proof. Combining Lemma 3.7.14 and Lemma 3.6.25, we obtain

|∆Y −+| ≤
(∑
b∈Bec

|∆Xb,ψ|
)

+ |∆ξ1| ≤X nε
4

∑
b∈Bec φ̂b,I(i0)

np̂(i0)ρF
+

∑
b∈Bec φ̂b,I

H

≤ nε4
∑

b∈Bec φ̂b,I(i0)

np̂(i0)ρF
+

∑
b∈Bec φ̂b,I(i0)

H(i0)

With Lemma 3.5.9, this completes the proof.
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Lemma 3.7.17. Let 0 ≤ i0 ≤ i ≤ i⋆ and −+ ∈ {−,+}. Then,

|∆Z−+
i0
| ≤ nε3

∑
b∈Bec φ̂b,I(i0)

np̂(i0)ρF
.

Proof. This is an immediate consequence of Lemma 3.7.16.

Lemma 3.7.18. Let 0 ≤ i0 ≤ i⋆ and −+ ∈ {−,+}. Then,∑
i≥i0

Ei[|∆Z−+
i0
|] ≤ nε3

∑
b∈Bec

φ̂b,I .

Proof. Suppose that i0 ≤ i < i⋆ and let X := {i < τH∗ ∧ τB ∧ τB′ ∧ τC}. We
have Ei[|∆Z−+

i0
|] =X c 0 and with Lemma 3.7.14, Lemma 3.6.28 and Lemma 3.5.7, we

obtain

Ei[|∆Z−+
i0
|] ≤ Ei[|∆Y −+|] ≤

(∑
b∈Bec

Ei[|∆Xb,ψ|]
)

+ |∆ξ1| ≤X nε
4

∑
b∈Bec φ̂b,I

nkp̂
+

∑
b∈Bec φ̂b,I

H

≤X nε
3

∑
b∈Bec φ̂b,I

nkp̂
≤ nε3

∑
b∈Bec φ̂b,I(i0)

nkp̂(i0)
.

Thus, ∑
i≥i0

Ei[|∆Z−+
i0
|] =

∑
i0≤i≤i⋆−1

Ei[|∆Z−+
i0
|] ≤ (i⋆ − i0)nε

3

∑
b∈Bec φ̂b,I(i0)

nkp̂(i0)
.

Since

i⋆ − i0 ≤
ϑnk

|F|k!
− i0 =

nkp̂(i0)

|F|k!
≤ nkp̂(i0),

this completes the proof.

Supermartingale argument

This section follows a similar structure as Section 3.6.3. Lemma 3.7.19 is the final
ingredient that we use for our application of Lemma 2.9.4 in the proof of Lemma 3.7.20
where we show that the probabilities of the events on the right in Observation 3.7.13 are
indeed small.

Lemma 3.7.19. Let −+ ∈ {−,+}. Then, Z−+
σ−+(σ−+) ≤ −δ2ξ1(σ−+).

Proof. Together with Lemma 3.6.1, Lemma 3.5.4 implies τ⋆ ≥ 1 and −+Xe
c,ψ(0) < ξ0(0),

so we have σ−+ ≥ 1. Thus, by definition of σ−+, for i := σ−+− 1, we have −+Xe
c,ψ ≤ ξ0 and

thus
Z−+
i = −+Xe

c,ψ − ξ1 ≤ −δξ1.
Furthermore, since σ−+ ≤ τB ∧ τB′ ∧ τC, we may apply Lemma 3.7.16 to obtain

Z−+
σ−+(σ−+) = Z−+

i + ∆Y −+ ≤ Z−+
i + δ2ξ1 ≤ −δξ1 + δ2ξ1 ≤ −δ2ξ1.

Since Lemma 3.6.5 entails ∆ξ1 ≤ 0, this completes the proof.
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Lemma 3.7.20. P[τB ≤ τ⋆ ∧ i⋆] ≤ exp(−nε3).

Proof. Considering Observation 3.7.12, it suffices to show that

P[τ ≤ τ⋆ ∧ i⋆] ≤ exp(−n2ε3).

Hence, by Observation 3.7.13, is suffices to show that for −+ ∈ {−,+}, we have

P[Z−+
σ−+(i⋆) > 0] ≤ exp(−n3ε3).

Due to Lemma 3.6.30, we have

P[Z−+
σ−+(i⋆) > 0] ≤ P[Z−+

σ−+(i⋆)− Z−+
σ−+(σ−+) > δ2ξ1(σ

−+)] ≤
∑

0≤i≤i⋆
P[Z−+

i (i⋆)− Z−+
i > δ2ξ1].

Thus, for 0 ≤ i ≤ i⋆, it suffices to obtain

P[Z−+
i (i⋆)− Z−+

i > δ2ξ1] ≤ exp(−n4ε3).

We show that this bound is a consequence of Freedman’s inequality for supermartingales.
Let us turn to the details. Lemma 3.7.15 shows that Z−+

i (i), Z−+
i (i+ 1), . . . is a super-

martingale, while Lemma 3.7.17 provides the bound |∆Z−+
i (j)| ≤ nε3(

∑
b∈Bec φ̂b,I)/(np̂

ρF )

for all j ≥ i and Lemma 3.7.18 provides the bound
∑

j≥i Ej [|∆Z−+
i (j)|] ≤ nε3∑b∈Bec φ̂b,I .

Hence, we may apply Lemma 2.9.4 such that using Lemma 3.7.9, we obtain

Pi[Z−+
i (i⋆) > 0] ≤X exp

(
− δ4ξ21

2nε3
∑

b∈Bec
φ̂b,I

np̂ρF (ξ1 + nε3
∑

b∈Bec φ̂b,I)

)

≤ exp

(
− δ4ξ21np̂

ρF

4n2ε3(
∑

b∈Bec φ̂b,I)2

)
≤ exp

(
−δ

5n2ε
2

4n2ε3

)
≤ exp(−n4ε3),

which completes the proof.

3.8 Proof of Theorem 3.3.2

In this section, we combine Lemma 3.5.19 with Lemma 3.6.31 and Lemma 3.7.20 to
conclude that typically, we have i⋆ < τ⋆, see Lemma 3.8.1, which in turn yields a proof
for Theorem 3.3.2.

Lemma 3.8.1. P[τ⋆ ≤ i⋆] ≤ exp(− log n)4/3).

Proof. Using Lemma 3.5.19, Lemma 3.6.31 and Lemma 3.7.20, we obtain

P[τ⋆ ≤ i⋆] ≤
∑

τ∈{τH∗ ,τB,τB′ ,τC,τB}

P[τ ≤ τ⋆ ∧ i⋆]

≤
( ∑
τ∈{τH∗ ,τB,τB′}

P[τ ≤ τ̃⋆ ∧ i⋆]
)

+ P[τC ≤ τ̃⋆C ∧ i⋆] + P[τB ≤ τ⋆ ∧ i⋆]

≤ 5 exp(−(log n)3/2),

which completes the proof.
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Proof of Theorem 3.3.2. Let X := {i⋆ < τ⋆}, i := i⋆ and ϑ⋆ := p̂. By Lemma 3.8.1, it
suffices to show that if X occurs, then H is (4m,nε)-bounded, F -populated, k′-populated
for all 1 ≤ k′ ≤ k − 1/ρF and has nk−1/ρF+ε/k! edges.

Due to X ⊆ {i⋆ < τB∧τB′}, for all strictly balanced k-templates (A, I) with |VA| ≤ 1/ε4

and all ψ : I ↪→ VH, Lemma 3.5.13 yields

ΦA,I ≤X (1 + log n)αA,I max{1, φ̂A,I} ≤ nε max{1, n|VA|−|I|(ϑ⋆)|A|−|A[I]|}

Thus, H is (4m,nε)-bounded if X occurs.
Furthermore, due to X ⊆ {i⋆ < τF}, for all e ∈ H, Lemma 3.5.17 entails

dH∗(e) ≥X
|F|k! φ̂F ,f
2 aut(F)

=
|F|k!nε(|F|−1)

2 aut(F)
≥ nε2 ,

which shows that H is F-populated if X occurs.
Let 1 ≤ k′ ≤ k − 1/ρF and let (A, I) denote a k-template with |VA| = k, |A| = 1

and |I| = k′. Fix a k′-set U ⊆ VH and ψ : I ↪→ U . We have ρA,I ≤ ρF , so for all j ≤ i,
Lemma 3.5.8 implies

φ̂A,I(j) ≥ nk−k
′
p̂ρF (k−k′) = nερF (k−k′) ≥ nε2 > ζ−δ

1/2

and hence i⋆ < iδ
1/2

A,I . Thus, due to X ⊆ {i⋆ < τB}, we obtain

dH(U) =
ΦA,ψ

(k − k′)! ≥X εφ̂A,I ≥ nε
2
,

which shows that H is k′-populated if X -occurs.
Finally, since X ⊆ {i⋆ < τ∅}, Lemma 3.5.7 yields H =X ϑ⋆nk/k! = nk−1/ρF+ε/k!.

3.9 The sparse setting

The first part of our argumentation is now complete and as mentioned in Section 3.1, we
now focus on the second part. We first describe the setting for this section and subsequent
sections and remark that from now on, we redefine some symbols that appeared in the first
part. Let k ≥ 2 and fix a k-graph F on m vertices with |F| ≥ 2 and k-density ρF that is
not a matching such that (F , f) is strictly balanced for all f ∈ F . Suppose that 0 < ε < 1
is sufficiently small in terms of 1/m and that n is sufficiently large in terms of 1/ε.
Suppose that H(0) is a k-graph on n vertices with nk−1/ρF−ε4 ≤ |H(0)| ≤ nk−1/ρF+ε4

that is (4m,nε
4
)-bounded1.

For the second part, that is for the proof of Theorems 1.1.7 and 1.1.9, one key idea
is the identification of substructures in H(0) whose existence enforces the existence of
edges that are no longer contained in a copy of F with a substantial probability. We

1Note that for F , besides strictly k-balanced k-graphs, this setup also allows k-graphs as in Theo-
rem 1.1.9. We choose this slightly more general setting as this makes many of the results we present
available for a proof of Theorem 1.1.9 while only requiring very minor adaptations.
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show that there is a sufficiently large subset of these substructures whose members are
far apart from each other and hence act, to a large extent, independently. We employ
a concentration inequality to verify that a substantial number of these substructures
indeed give rise to edges that are no longer contained in a copy of F and hence remain
until the termination of the process.

On a very high level, similar ideas have also been utilized by Bohman, Frieze and
Lubetzky for determining the number of remaining edges in the triangle-removal process
(starting at Kn), see [14, Section 6]. In our significantly more general setting however, we
require additional insights concerning the distribution of copies of F in H(0). Notably,
while in the special case where F is a triangle, two distinct copies of F that both
contain an edge e cannot overlap outside e, such overlaps can exist in general. However,
since (F , f) is strictly balanced for all f ∈ F , if two copies of F , both containing an edge
e, overlap outside e, then their union forms a k-graph with k-density greater than ρF . As
a crucial step in our proof, we utilize this to show that certain substructures consisting of
copies of F barely exist in the sense that we obtain a strong upper bound on the number
of such structures.

The remainder of the chapter is organized as follows. In Section 3.10, we prove several
structural results which are important for the following parts. This includes properties of
the aforementioned substructures that yield the edges that still remain at the end of the
process. In Section 3.11, we obtain an upper bound on the number of remaining copies
that holds well beyond the point where we would expect the process to terminate (this
general idea is taken from [14]). To this end, we again employ an approach that resembles
the differential equation method or more specifically the critical interval method.

Combining the structural results from Section 3.10 and the upper bound on the number
of edges at a very late time in the process obtained in Section 3.11, we finally prove
Theorem 1.1.7 in Section 3.12. As mentioned above, here the idea is to identify certain
configurations that have to appear frequently before the process terminates and that
with sufficiently large probability lead to edges that remain in the hypergraph until
termination. Compared to the (in spirit) similar argument in [14, Section 6] here the
(involved) insights from Section 3.10 replace properties that are obvious in the triangle
case.

For Theorem 1.1.9, one may argue very similarly, however, the structures that in the
end enforce the existence of edges that remain until termination are different. In more
detail, to obtain Theorem 1.1.9, parts of the argumentation in Section 3.10 and the key
structures considered in Section 3.12 need to be replaced but the results from Section 3.11
remain valid and the high level structure of the proof remains the same. For completeness,
we provide a full proof of Theorem 1.1.9 in Section 3.14.

3.10 Unions of strictly balanced hypergraphs

In this section, as preparation for the arguments in subsequent sections, we gather
some lemmas that provide further insight into the distribution of the copies of F
in H. First, we state several lemmas concerning the densities of substructures obtained
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as unions of k-balanced k-graphs (see Lemmas 3.10.2–3.10.5). In particular, we are
interested in structures that are in a sense cyclic, where formally for ℓ ≥ 2, we say that a
sequence A1, . . . ,Aℓ of distinct k-graphs forms a self-avoiding cyclic walk if there exist
distinct e1, . . . , eℓ such that ei ∈ Ai ∩ Ai+1 for all 1 ≤ i ≤ ℓ with indices taken modulo ℓ.

From the (4m,nε
4
)-boundedness of H(0), we then deduce Lemma 3.10.6 where for

all k-graphs A that satisfy a suitable density property, we bound the number ΦA of
injections φ : VA ↪→ VH with φ(e) ∈ H(0) for all e ∈ A where we set VH := VH(0).

Using ρF ≥ 1/(k − 1) (see Lemma 3.10.7), the aforementioned density observations
allow us to apply Lemma 3.10.6 to then obtain Lemma 3.10.8 as an intermediate result
and subsequently Lemma 3.10.9 which states that H(0) contains only few cyclic structures
formed by copies of F . This turns out to be a crucial observation concerning the structure
of H(0) that we require in two separate places in our argumentation (namely in the
proofs of Lemma 3.11.11 and Lemma 3.12.3).

As these objects frequently appear in our proofs, we generalize the notation ΦA
as follows. For a template (A, I) and ψ : I ↪→ VH, we use Φ∼

A,ψ to denote the set of
injections φ : VA ↪→ VH with φ|I = ψ and φ(e) ∈ H(0) for all e ∈ A \ A[I] and we
set ΦA,ψ := |Φ∼

A,ψ|. Additionally, we define Φ∼
A := Φ∼

A,ψ where ψ denotes the unique
function from ∅ to VH. Note that ΦA = |Φ∼

A|.
The bounds on |H(0)| and the numbers of embeddings of strictly balanced templates

into H(0) yield the following lemma.

Lemma 3.10.1. Suppose that (A, I) is a strictly balanced k-template with |VA| ≤ 4m
and let ψ : I ↪→ VH. Then, ΦA,ψ ≤ nε

3 ·max{1, n|VA|−|I|−(|A|−|A[I]|)/ρF}.
Proof. We have |H(0)| ≤ n−1/ρF+2ε4 · nk/k!, so since H(0) is (4m,nε

4
)-bounded, we

obtain
ΦA,ψ ≤ nε

4 ·max{1, n|VA|−|I|n(−1/ρF+2ε4)(|A|−|A[I]|)}
≤ nε3 ·max{1, n|VA|−|I|−(|A|−|A[I]|)/ρF},

which completes the proof.

Lemma 3.10.2. Let ℓ ≥ 1. Suppose that A1, . . . ,Aℓ is a sequence of k-balanced k-
graphs with k-density at least ρ. For 1 ≤ i ≤ ℓ, let Si := A1 + . . . + Ai. Suppose that
for all 2 ≤ i ≤ ℓ, we have Si−1 ∩ Ai ̸= ∅. Let S := Sℓ and J ⊊ VS with S[J ] ̸= ∅.
Then, ρS,J ≥ ρ.
Proof. By rearranging the elements of A1, . . . ,Aℓ if necessary, we may assume that we
have A1[J ] ̸= ∅. For 1 ≤ i ≤ ℓ, let

U := VS \ J, E := S \ S[J ], Wi−1 := VA1 ∪ . . . ∪ VAi−1 ,

Ji := (J ∪Wi−1) ∩ VAi , Ui := VAi \ Ji, Ei := Ai \ Ai[Ji].
Note that U =

⋃
1≤i≤ℓ Ui and Ui ∩Uj = ∅ for all 1 ≤ i < j ≤ ℓ. Hence, |U | = ∑1≤i≤ℓ|Ui|.

Similarly, we have E ⊇ ⋃1≤i≤ℓEi and Ei ∩Ej = ∅ for all 1 ≤ i < j ≤ ℓ and thus |E| ≥∑
1≤i≤ℓ|Ei|. This yields

ρS,J =
|E|
|U | ≥

∑
1≤i≤ℓ|Ei|∑
1≤i≤ℓ|Ui|

.
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Let e1 ∈ A1[J ] and for 2 ≤ i ≤ ℓ, let ei ∈ Ai∩Si−1. For all 1 ≤ i ≤ ℓ, the extension (Ai, ei)
is balanced and has density at least ρ, so due to ei ⊆ Ji, we obtain

|Ei| = ρAi,ei(|VAi | − k)− ρAi[Ji],ei(|Ji| − k) ≥ ρAi,ei(|VAi | − k)− ρAi,ei(|Ji| − k)

= ρAi,ei |Ui| ≥ ρ|Ui|.
Hence, we obtain

ρS,J ≥
∑

1≤i≤ℓ ρ|Ui|∑
1≤i≤ℓ|Ui|

= ρ,

which completes the proof.

Lemma 3.10.3. Let ℓ ≥ 1. Suppose that A1, . . . ,Aℓ is a sequence of k-balanced k-graphs
with k-density at least ρ. For 1 ≤ i ≤ ℓ, let Si := A1 + . . . + Ai. Suppose that for
all 2 ≤ i ≤ ℓ, we have Ai ∩ Si−1 ̸= ∅. Let S := Sℓ. Then, maxB⊆S ρB,∅ ≥ ρ or (S, ∅) is
strictly balanced.

Proof. Suppose that maxB⊆S ρB,∅ < ρ. We show that then (S, ∅) is strictly balanced.
To this end, consider (C, ∅) ⊆ (S, ∅) with VC ≠ ∅ and C ≠ S. It suffices to show
that ρC,∅ < ρS,∅.

First, note that we may assume that C is an induced subgraph of S with non-empty edge
set. By Lemma 3.10.2, we have ρS,VC ≥ ρ and due to maxB⊆S ρB,∅ < ρ furthermore ρC,∅ <
ρ. Hence ρS,VC > ρC,∅. Thus,

ρS,∅ =
|S| − |S[VC ]|+ |C|

|VS |
=
ρS,VC(|VS | − |VC |) + ρC,∅|VC |

|VS |
>
ρC,∅(|VS | − |VC |) + ρC,∅|VC |

|VS |
= ρC,∅,

which completes the proof.

Lemma 3.10.4. Suppose that A1, . . . ,Aℓ is a sequence of strictly k-balanced k-graphs
with k-density ρ that forms a self-avoiding cyclic walk such that no proper subsequence
forms a self-avoiding cyclic walk. Let S := A1 + . . .+Aℓ. Then, there exists e ∈ S such
that ρS,e > ρ.

Proof. First note that since no proper subsequence of A1, . . . ,Aℓ forms a self-avoiding
cyclic walk, we have Aℓ ∩ Ai = ∅ for all 2 ≤ i ≤ ℓ − 2. Furthermore if ℓ ≥ 3, then
again since no proper subsequence of A1, . . . ,Aℓ forms a self-avoiding cyclic walk, for
all 1 ≤ i ≤ ℓ, we have |Ai ∩ Ai+1| = 1 with indices taken modulo ℓ (otherwise Ai,Ai+1

forms a self-avoiding cyclic walk). Hence if ℓ ≥ 3, then |Aℓ−1 ∩ Aℓ| = |Aℓ ∩ A1| = 1.
For 1 ≤ i ≤ ℓ, let Si := A1 + . . .+Ai. If ℓ ≥ 3, then, as a consequence of the above

observations, due to |A1|, |Aℓ| ≥ 3, we have Aℓ \Sℓ−1 ̸= ∅ as well as A1 \Aℓ ̸= ∅. If ℓ = 2,
then A1 ̸⊆ A2 and A2 ̸⊆ A1 and hence Aℓ \ Sℓ−1 ̸= ∅ and A1 \ Aℓ ̸= ∅ follow from the
fact that A1 and A2 are distinct strictly k-balanced k-graphs with the same k-density.
Let e ∈ A1 \ Aℓ. As a consequence of Lemma 3.10.2, we have ρSℓ−1,e ≥ ρ. Hence,

ρS,e =
ρSℓ−1,e(|VSℓ−1

| − k) + |Aℓ \ Sℓ−1|
|VSℓ−1

| − k + |VAℓ \ VSℓ−1
| ≥ ρ(|VSℓ−1

| − k) + |Aℓ \ Sℓ−1|
|VSℓ−1

| − k + |VAℓ \ VSℓ−1
| .
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Thus, it suffices to show that |Aℓ \ Sℓ−1| > ρ|VAℓ \ VSℓ−1
|. Due to Aℓ \ Sℓ−1 ≠ ∅,

the inequality holds if |VAℓ \ VSℓ−1
| = 0, so we may assume that VAℓ \ VSℓ−1

̸= ∅.
Since A1, . . . ,Aℓ forms a self-avoiding cyclic walk, there exist distinct e1, e2 ∈ Sℓ−1 ∩ Aℓ,
so in particular, we have e1 ⊊ VSℓ−1

∩ VAℓ ⊊ VAℓ . The template (Aℓ, e1) is strictly
balanced, so we obtain

|Aℓ \ Sℓ−1| ≥ |Aℓ \ Aℓ[VSℓ−1
∩ VAℓ ]| = ρ(|VAℓ | − k)− ρAℓ[VSℓ−1

∩VAℓ ],e1
(|VSℓ−1

∩ VAℓ | − k)

> ρ(|VAℓ | − k)− ρ(|VSℓ−1
∩ VAℓ | − k) = ρ|VAℓ \ VSℓ−1

|,

which completes the proof.

Lemma 3.10.5. Suppose that A1, . . . ,Aℓ is a sequence of strictly k-balanced k-graphs
with k-density ρ that forms a self-avoiding cyclic walk. Let S := A1 + . . .+Aℓ. Then,
there exists e ∈ S such that ρS,e > ρ.

Proof. Consider a subsequence Ai1 , . . . ,Aiℓ′ of A1, . . . ,Aℓ that forms a self-avoiding
cyclic walk such that no proper subsequence forms a self-avoiding cyclic walk. Let S ′ :=
Ai1 + . . . + Aiℓ′ . By Lemma 3.10.4, there exists e ∈ S ′ such that ρS′,e > ρ and by
Lemma 3.10.2, if VS′ ⊊ VS , then ρS,VS′ ≥ ρ. This yields

ρS,e =
ρS′,e(|VS′ | − k) + |S \ S ′|

|VS | − k
≥ ρS′,e(|VS′ | − k) + ρS,VS′ (|VS | − |VS′ |)

|VS | − k

>
ρ(|VS′ | − k) + ρ(|VS | − |VS′ |)

|VS | − k
= ρ,

which completes the proof.

Lemma 3.10.6. Suppose that (A, I) is a k-template with |VA| ≤ 1/ε and ρA,J ≥ ρF for

all I ⊆ J ⊊ VA. Let ψ : I ↪→ VH. Then, ΦA,ψ ≤ nε
2
.

Proof. We use induction on |VA| − |I| to show that

ΦA,ψ ≤ nε
3(|VA|−|I|). (3.10.1)

Then, since |VA| ≤ 1/ε, the statement follows.
If |VA| − |I| = 0, then ΦA,ψ = 1 = φ̂A,I . Let ℓ ≥ 1 and suppose that (3.10.1) holds

if |VA| − |I| ≤ ℓ− 1. Suppose that |VA| − |I| = ℓ. Let I ⊆ U ⊆ VA such that ρA[U ],I is
maximal and subject to this, that |U | is minimal. Then, (A[U ], I) is strictly balanced.
Furthermore, we have ρA[U ],I ≥ ρA,I ≥ ρF > 0 and hence U ̸= I. Note that

ΦA,ψ =
∑

φ∈Φ∼
A[U ],ψ

ΦA,φ. (3.10.2)

We exploit the strict balancedness of (A[U ], I) to bound ΦA[U ],ψ and the induction
hypothesis to bound ΦA,φ for all φ ∈ Φ∼

A[U ],ψ.
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In detail, we argue as follows. Due to Lemma 3.10.1, we have

ΦA[U ],ψ ≤ nε
3 ·max{1, n(1−ρA[U ],I/ρF )(|U |−|I|)} = nε

3
.

Furthermore, for all φ ∈ Φ∼
A[U ],ψ, by induction hypothesis, we obtain

ΦA,φ ≤ nε
3(|VA|−|U |).

Combining this with (3.10.2) yields

ΦA[U ],ψ ≤ nε
3 · nε3(|VA|−|U |) ≤ nε3(|VA|−|I|),

which completes the proof.

Lemma 3.10.7. ρF ≥ 1/(k − 1).

Proof. Since F is not a matching, there exist edges e1, e2 ∈ F with e1 ∩ e2 ̸= ∅. Let A
denote the k-graph with vertex-set e1 ∪ e2 and edge-set {e1, e2}. Since (F , e1) is strictly
balanced, we have

ρF ≥ ρA,e1 ≥
1

k − 1
,

which completes the proof

Lemma 3.10.8. Let ℓ ≤ 4 and suppose that A1, . . . ,Aℓ is a sequence of k-balanced k-
graphs with k-density at least ρF and at most m vertices each that forms a self-avoiding
cyclic walk. Let S := A1 + . . .+Aℓ and suppose that there exists e ∈ S with ρS,e > ρF .

Then ΦS ≤ nk−1/ρF−ε1/7.

Proof. Based on Lemma 3.10.3, we distinguish two cases: The first case, where we
have maxB⊆S ρB,∅ ≥ ρF and the second case where (S, ∅) is strictly balanced.

First, suppose that maxB⊆S ρB,∅ ≥ ρF . From all (B′, ∅) ⊆ (S, ∅) choose (B, ∅) such
that ρB,∅ is maximal and subject to this, that |VB| is minimal. Then, (B, ∅) is strictly
balanced and we have ρB,∅ ≥ ρF . Furthermore, we have

ΦS =
∑
φ∈Φ∼

B

ΦS,φ. (3.10.3)

For all φ ∈ Φ∼
B , due to Lemma 3.10.2, we may apply Lemma 3.10.6 to obtain ΦS,φ ≤ nε

2
.

Furthermore, due to Lemma 3.10.1, we have

ΦB ≤ nε
3 ·max{1, n(1−ρB,∅/ρF )|VB|} = nε

3
.

Returning to (3.10.3), due to Lemma 3.10.7, this yields

ΦS,ψ ≤X nε
2 · nε3 ≤ nk−1/ρF−ε1/7 ,

and hence completes our analysis of the first case.



158 CHAPTER 3. THE HYPERGRAPH REMOVAL PROCESS

We proceed with the second case. Hence, assume that (S, ∅) is strictly balanced and
that ρS,∅ = maxB⊆S ρB,∅ < ρF . Then

n|VS |−|S|/ρF = n(1−ρS,∅/ρF )|VS | ≥ 1.

Thus, Lemma 3.10.1 entails

ΦS ≤ n|VS |−|S|/ρF+ε3 = nk−1/ρF+ε3 · n|VS |−k−(|S|−1)/ρF .

If there exists e ∈ S with ρS,e > ρF , then since ℓ ≤ 4 and |VAi | ≤ m for all 1 ≤ i ≤ ℓ we
have

ρF + ε1/8 < ρS,e =
|S| − 1

|VS | − k
,

so we then obtain

ΦS ≤ nk−1/ρF+ε3 · n|VS |−k−(ρF+ε1/8)(|VS |−k)/ρF < nk−1/ρF−ε1/7 ,

which completes the proof.

Lemma 3.10.9. Let ℓ ≤ 4 and suppose that F1, . . . ,Fℓ is a sequence of copies of F that
forms a self-avoiding cyclic walk. Let S := A1 + . . . + Aℓ. If |F| ≥ 3, that is if F is

strictly k-balanced, then ΦS ≤ nk−1/ρF−ε1/7.

Proof. Due to Lemma 3.10.5, this follows from Lemma 3.10.8.

3.11 Bounding the number of copies of F
We assume the setup described in Section 3.9 and, similarly as in Section 3.3, we
define H∗(0) to be the |F|-graph with vertex set H(0) whose edges are the edge sets of
copies of F that are subgraphs of H(0). We now begin to analyze the F -removal process
formally again given by Algorithm 3.3.1. Again, if the process fails to execute step i+ 1
and instead terminates, that is if H∗(i) = ∅, then, for j ≥ i+ 1, we set H∗(j) := H∗(i).
For i ≥ 1, we define H(i), H∗(i), H(i) and the filtration F(0),F(1), . . . as in Section 3.3.
We again define the stopping time

τ∅ := min{i ≥ 0 : H∗(i) = ∅}.

To prove Theorem 1.1.7, in Section 3.12, we show that the following theorem holds.

Theorem 3.11.1. If |F| ≥ 3, then P[H(τ∅) ≤ nk−1/ρ−ε] ≤ exp(−n1/4).

For our proof of Theorem 1.1.7, in addition to the structural insights about configura-
tions consisting of copies that we may encounter in H(0), we crucially rely on an upper
bound for the number of copies of F present in H(i) for i ≥ 0, which is the focus of
this section. First, note that initially, we may bound the number of copies as follows.
Let ϑ := k!H(0)/nk.
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Lemma 3.11.2. Let i ≥ 0 and e ∈ H. Then, dH∗(e) ≤ nm−k+ε7/2ϑ|F|−1 ≤ nε3.
Proof. By our assumptions on H(0), we have n−1/ρF−ε4 ≤ ϑ ≤ n−1/ρF+2ε4 . Hence,
arguing similarly as in the proof of Lemma 3.10.1, we obtain

dH∗(e) ≤ dH∗(0)(e) ≤
∑
f∈F

∑
ψ : f↪→e

ΦF ,ψ ≤ |F|k! · nε4 ·max{1, nm−kn(−1/ρF+2ε4)(|F|−1)}

= |F|k! · nε4 · nm−kn(−1/ρF−ε4)(|F|−1) · n3ε4(|F|−1) ≤ nm−k+ε7/2ϑ|F|−1.

Furthermore, again using ϑ ≤ n−1/ρF+2ε4 , we obtain

nm−k+ε7/2ϑ|F|−1 ≤ nε7/2 · n2ε4(|F|−1) ≤ nε3 ,
which completes the proof.

Lemma 3.11.3. H∗(0) ≤ nm+ε7/2ϑ|F|.

Proof. Using Lemma 3.11.2, we obtain

H∗(0) =
1

|F|
∑

e∈H(0)

dH∗(e) ≤ ϑnk

|F|k!
· nm−k+ε7/2ϑ|F|−1 ≤ nm+ε7/2ϑ|F|,

which completes the proof.

3.11.1 Heuristics

With the same justification as in Section 3.4, we again assume that typically, for all i ≥ 0,
the edge set of H behaves essentially as if it was obtained by including every k-set e ⊆ VH
independently at random with probability

p̂(i) := ϑ− |F|k! i

nk
.

We may guess deterministic upper bounds for these numbers of copies that we expect to
typically hold as follows by considering the expected one-step changes of these numbers.
Lemma 3.10.9 in particular shows that for almost all distinct edges e, f ∈ H(0), there
exists at most one copy F ′ ⊆ H(0) of F with e, f ∈ F ′. Thus, for i ≥ 0, for the one-step
change ∆H∗, we estimate

Ei[∆H∗] = −
∑

F ′∈H∗

P[F ′ /∈ H∗(i+ 1)] ≈ −
∑

F ′∈H∗

(∑
f∈F ′ dH∗(f)

)
− |F|+ 1

H∗

= −
∑

e∈H dH∗(e)2

H∗ + |F| − 1.

Using convexity and H = p̂nk/k!, this leads us to expect

Ei[∆H∗] ≤ −
(∑

e∈H dH∗(e)
)2

H ·H∗ + |F| − 1 = −|F|
2H∗

H
+ |F| − 1

= −|F|
2k!H∗

nkp̂
+ |F| − 1.



160 CHAPTER 3. THE HYPERGRAPH REMOVAL PROCESS

Motivated by this, we aim to choose our deterministic upper bounds ĥ∗(0), ĥ∗(1), . . . for
the random variables H∗(0), H∗(1), . . . such that, with some room to spare for estimation
errors, they approximately satisfy

∆ĥ∗ ≥ −|F|
2k! ĥ∗

nkp̂
+ |F| − 1.

By Lemma 3.11.3, initially, that is for i = 0, there are at most nm+ε3 p̂|F| copies of F
in H. With this initial condition, guided by the above intuition, for i ≥ 0, we set

ĥ∗(i) := nm+ε3 p̂|F|−ε3 +
(|F| − 1)nkp̂

|F|(|F| − 1− ε3)k!
.

Observe that this expression is the sum of two parts where the second part is negligible
up to step i where p̂ ≈ n−(m−k+ε3)/(|F|−1−ε3) and where then, the first part becomes
negligible. For our argumentation, we focus our attention on the evolution of the process
up to step i⋆, where

i⋆ :=
(ϑ− n−1/ρF−ε2)nk

|F|k!
.

Note that following the above heuristic, for all i ≥ 0 and e ∈ H, up to constant factors,
we would expect approximately nm−kp̂(i)|F|−1 copies of F in H that contain e, which
suggests that the process should terminate around the step i where p̂ ≈ n−1/ρF . Since i⋆

lies beyond this step, an analysis up to step i⋆ should suffice.

3.11.2 Formal setup

Formally, we argue similarly as in Sections 3.6.3 and 3.7.2 and phrase our statement
about the boundedness of H from above for 0 ≤ i ≤ i⋆ in terms of the stopping time

τ⋆ := min{i ≥ 0 : H∗ ≥ ĥ∗}.
Our goal is to show that typically, i⋆ < τ⋆. To this end, for a similar argumentation as
in the aforementioned sections, for i ≥ 0, define the critical interval

I(i) := [(1− ε4)ĥ∗, ĥ∗].
For i ≥ 0, let

Y (i) := H∗ − ĥ∗.
For i0 ≥ 0, define the stopping time

τi0 := min{i ≥ i0 : H∗ /∈ I}
and for i ≥ i0, let

Zi0(i) := Y (i0 ∨ (i ∧ τi0 ∧ i⋆)).
Let

σ := min{j ≥ 0 : H∗ ≥ (1− ε4)ĥ∗ for all j ≤ i < τ⋆ ∧ i⋆} ≤ τ⋆ ∧ i⋆.
With this setup, similarly as in Sections 3.6.3 and 3.7.2, it in fact suffices to consider the
evolution of Zσ(σ), Zσ(σ + 1), . . ..
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Observation 3.11.4. {τ⋆ ≤ i⋆} ⊆ {Zσ(i⋆) > 0}.
We use Azuma’s inequality below to show that the probability of the event on the

right in Observation 3.11.4 is sufficiently small.

Lemma 3.11.5 (Azuma’s inequality). Suppose that X(0), X(1), . . . is a supermartingale
with |X(i+ 1)−X(i)| ≤ ai for all i ≥ 0. Then, for all i ≥ 0 and t > 0,

P[X(i)−X(0) ≥ t] ≤ exp

(
− t2

2
∑

0≤j≤i−1 a
2
j

)
.

Before we turn to verifying that the conditions for an application of Azuma’s inequality
in Sections 3.11.3 and 3.11.4 and applying the inequality in Section 3.11.5, similarly as
in Section 3.5 however now for the sparse setting that we consider since Section 3.9, we
gather some useful facts concerning key quantities defined up to this point.

Lemma 3.11.6. Let 0 ≤ i ≤ i⋆. Then, n1−k−ε
2 ≤ n−1/ρF−ε2 ≤ p̂ ≤ n−1/ρF+ε3

Proof. We have n−1/ρF−ε2 = p̂(i⋆) ≤ p̂ ≤ p̂(0) = ϑ ≤ n−1/ρF+ε3 . With Lemma 3.10.7,
this completes the proof.

Lemma 3.11.7. Let 0 ≤ i ≤ i⋆. Then, p̂(i+ 1) ≥ (1− n−1/2)p̂.

Proof. Lemma 3.11.6 implies

p̂(i+ 1) =

(
1− |F|k!

nkp̂

)
p̂ ≥

(
1− |F|k!

n1−ε2

)
p̂ ≥ (1− n−1/2)p̂,

which completes the proof.

Lemma 3.11.8. Let 0 ≤ i ≤ i⋆ and X := {i ≤ τ∅}. Then, n1/2 ≤ nkp̂/k! ≤ H =X
nkp̂/k!.

Proof. Indeed, we have H ≥ ϑnk/k! − |F|i =X H and ϑnk/k! − |F|i = nkp̂/k!, so
Lemma 3.11.6 completes the proof.

3.11.3 Trend

Here, essentially following the argumentation in Section 3.11.1, we prove that for all i0 ≥ 0,
the expected one-step changes of the process Zi0(i0), Zi0(i0 + 1), . . . are non-positive. We
bound the one-step changes of ĥ∗ in Lemma 3.11.10, then we turn to the non-deterministic
one-step changes of H∗. Crucially, to see that for 0 ≤ i ≤ i⋆, the expected one-step
changes of H∗ are at most those of ĥ∗, which justifies our choice of ĥ∗, we employ
Lemma 3.10.9 in the proof of Lemma 3.11.11.

Observation 3.11.9. Extend p̂ and ĥ∗ to continuous trajectories defined on the whole
interval [0, i⋆ + 1] using the same expressions as above. Then, for x ∈ [0, i⋆ + 1],

(ĥ∗)′(x) = −|F|(|F| − ε
3)k! ĥ∗

nkp̂
+ |F| − 1,

(ĥ∗)′′(x) =
|F|2(|F| − ε3)(|F| − 1− ε3)(k!)2nm+ε3 p̂|F|−ε3

(nkp̂)2
.
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Lemma 3.11.10. Let 0 ≤ i ≤ i⋆ and X := {i ≤ τ∅}. Then,

∆ĥ∗ ≥X −
|F|(|F| − ε3)ĥ∗

H
+ |F| − 1− n−εĥ∗

H
.

Proof. This is a consequence of Taylor’s theorem.
In detail, we argue as follows. Together with Observation 3.11.9, Lemma 2.9.10 yields

∆ĥ∗ = −|F|k! (|F| − ε3)ĥ∗
nkp̂

+ |F| − 1± max
x∈[i,i+1]

|F|4(k!)2nm+ε3 p̂(x)|F|−ε3

(nkp̂(x))2
.

We investigate the first term and the maximum separately. Lemma 3.11.8 yields

|F|k! (|F| − ε3)ĥ∗
nkp̂

=X
|F|(|F| − ε3)ĥ∗

H
.

Furthermore, using Lemma 3.11.7 and Lemma 3.11.8, we obtain

max
x∈[i,i+1]

|F|4(k!)2nm+ε3 p̂(x)|F|−ε3

(nkp̂(x))2
≤ max

x∈[i,i+1]

|F|4(k!)2ĥ∗(x)

(nkp̂(x))2
≤ 2|F|4(k!)2ĥ∗

(nkp̂)2

=X
2|F|4ĥ∗
H2

≤ n−εĥ∗

H
,

which completes the proof.

Lemma 3.11.11. Let 0 ≤ i ≤ i⋆. Let X := {i < τi}. Then,

Ei[∆H∗] ≤X −
|F|2H∗

H
+ |F| − 1 +

n−εĥ∗+
H

.

Proof. Let F2 denote a collection of k-graphs G with VG ⊆ {1, . . . , 2m} such that for all
copies F1 and F2 of F with 2 ≤ |F1 ∩ F2| ≤ |F| − 1, the collection F2 contains a copy
of F1 + F2 and that only contains copies of such k-graphs. We have

Ei[∆H∗] ≤ − 1

H∗

∑
F ′∈H∗

(
1 +

∑
e∈F ′

(dH∗(e)− 1)−
∑
e,f∈F ′

e̸=f

(dH∗(ef)− 1)
)

= −
(

1

H∗

∑
e∈H

dH∗(e)2
)

+

(
1

H∗

∑
F ′∈H∗

∑
e,f∈F ′ :
e̸=f

∑
F ′′∈H∗\{F ′} :

e,f∈F ′′

1

)
+ |F| − 1

≤ −
(

1

H∗

∑
e∈H

dH∗(e)2
)

+

(
2|F|2
H∗

∑
G∈F2

ΦG

)
+ |F| − 1.

(3.11.1)
We investigate the first two terms separately.

For the first term, using convexity, we obtain

1

H∗

∑
e∈H

dH∗(e)2 ≥ 1

HH∗

(∑
e∈H

dH∗(e)
)2

=
|F|2H∗

H
. (3.11.2)
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Let us now consider the second term. If |F| = 2, then F2 = ∅ and otherwise, for
all G ∈ F2, Lemma 3.10.9 together with Lemma 3.11.6 and Lemma 3.11.8 entails

ΦG ≤ nk−1/ρF−ε1/7 ≤ nk−1/ρF−ε1/6(n1/ρF p̂)2(|F|−1)

≤ n−ε1/5 · nkp̂ · n2(m−k)p̂2(|F|−1) ≤ n−ε
1/4

(ĥ∗)2

nkp̂
≤X

n−ε
1/3

(ĥ∗)2

H
≤X

n−ε
1/2
H∗ĥ∗

H
.

Thus,
2|F|2
H∗

∑
G∈F2

ΦG ≤
n−εĥ∗

H
. (3.11.3)

Combining (3.11.2) and (3.11.3) with (3.11.1) yields the desired upper bound for Ei[∆H∗].

Lemma 3.11.12. Let 0 ≤ i0 ≤ i. Then, Ei[∆Zi0 ] ≤ 0.

Proof. Suppose that i < i⋆ and let X := {i < τi0}. We have Ei[∆Zi0 ] =X c 0
and Ei[∆Zi0 ] =X Ei[∆Y ], so it suffices to obtain Ei[∆Y ] ≤X 0. Combining Lemma 3.11.10
with Lemma 3.11.11, we have

Ei[∆Y ] ≤X −
|F|
H

(|F|H∗ − (|F| − ε3)ĥ∗) +
2n−εĥ∗

H

≤X −
|F|
H

(|F|(1− ε4)ĥ∗ − (|F| − ε3)ĥ∗) +
2n−εĥ∗

H
≤ −ε

4|F|ĥ∗
H

+
2n−εĥ∗

H
≤ 0,

which completes the proof.

3.11.4 Boundedness

For our application of Azuma’s inequality, it suffices to obtain suitable bounds for the
absolute one-step changes of the processes Y (0), Y (1), . . . and Zi0(i0), Zi0(i0 + 1), . . ..
Furthermore, crude upper bounds that we obtain as an immediate consequence of the
previously gained insights concerning the distribution of the copies of F within H(0)
suffice.

Lemma 3.11.13. Let 0 ≤ i ≤ i⋆. Then, |∆Y | ≤ nε.
Proof. From Lemma 3.11.2, Lemma 3.11.10, Lemma 3.11.6, Lemma 3.11.8 and the second
inequality in Lemma 3.11.2, we obtain

|∆Y | ≤ |∆H∗|+ |∆ĥ∗| ≤
( ∑
e∈F0(i+1)

dH∗(e)
)
−∆ĥ∗ ≤ |F|nε3 + |F|+ 2|F|2ĥ∗

H

≤ 2|F|nε3 + 2|F|2k!nε
2 · nm−kϑ|F|−1 ≤ nε.

which completes the proof.

Lemma 3.11.14. Let 0 ≤ i0 ≤ i ≤ i⋆. Then, |∆Zi0 | ≤ nε.
Proof. This is an immediate consequence of Lemma 3.11.13.
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3.11.5 Supermartingale argument

Lemma 3.11.15 is the final ingredient that we use for our application of Azuma’s inequality
in the proof of Lemma 3.11.16 where we show that the probabilities of the events on the
right in Observation 3.11.4 are indeed small.

Lemma 3.11.15. Zσ(σ) ≤ −ε5ĥ∗(σ).

Proof. Lemma 3.11.3 implies τ⋆ ≥ 1 and H∗(0) < (1− ε4)ĥ∗(0), so we have σ ≥ 1. Thus,
by definition of σ, for i := σ − 1, we have H∗ ≤ (1− ε4)ĥ∗ and thus

Zi = H∗ − ĥ∗ ≤ −ε4ĥ∗.

With Lemma 3.11.13 and Lemma 3.11.6, this then yields

Zσ(σ) ≤ Zi + ∆Y ≤ −ε4ĥ∗ + nε ≤ −ε4ĥ∗ + n−2εnkp̂ ≤ −ε4ĥ∗ + n−εĥ∗ ≤ −ε5ĥ∗.

Since ∆ĥ∗ ≤ 0, this completes the proof.

Lemma 3.11.16. P[τ⋆ ≤ i⋆] ≤ exp(−n1/3).
Proof. Considering Observation 3.11.4, it suffices to show that

P[Zσ(i⋆) > 0] ≤ exp(−n1/3).

Due to Lemma 3.11.15, we have

P[Zσ(i⋆) > 0] ≤ P[Zσ(i⋆)− Zσ(σ) > ε5ĥ∗] ≤
∑

0≤i≤i⋆
P[Zi(i

⋆)− Zi > ε5ĥ∗].

Thus it suffices to show that for 0 ≤ i ≤ i⋆, we have

P[Zi(i
⋆)− Zi > ε5ĥ∗] ≤ exp(−n1/2).

We show that this bound is a consequence of Azuma’s inequality.
Let us turn to the details. Lemma 3.11.11 shows that Zi(i), Zi(i+ 1), . . . is a super-

martingale, while Lemma 3.11.14 provides the bound |∆Zi(j)| ≤ nε for all j ≥ i. Hence,
we may apply Lemma 3.11.5 to obtain

P[Zi(i
⋆)− Zi > ε5ĥ∗] ≤ exp

(
− ε10(ĥ∗)2

2(i⋆ − i)n2ε
)
.

Since

i⋆ − i ≤ ϑnk

|F|k!
− i =

nkp̂

|F|k!
,

with Lemma 3.11.6, this yields

P[Zi(i
⋆)− Zi > ε5ĥ∗] ≤ exp

(
−ε

11(ĥ∗)2

nk+2εp̂

)
≤ exp(−ε11nk−3εp̂ · n2(m−k)p̂2(|F|−1))

≤ exp(−ε11nk−3ε−2ε2(|F|−1)p̂) ≤ exp(−n1/2),
which completes the proof.
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3.12 The isolation argument

In this section, we show that H(τ∅) ≥ nk−1/ρ−ε with high probability if F is strictly k-
balanced. For this section, in addition to the setup described in Section 3.10, assume
that F is strictly k-balanced, so in particular that |F| ≥ 3, and that H is F-populated.
Overall, our approach is inspired by [14, Proof of Theorem 6.1]; however, whenever F is
not a triangle, copies of F can form substructures that may prevent a direct translation of
the argument. For our more general setting, we rely on the insights gained in Section 3.10
to control these substructures in our analysis.

3.12.1 Overview

Instead of choosing the edge sets of copies F0(i) with i ≥ 1 uniformly at random in
Algorithm 3.3.1, we may assume that during the initialization, a linear order ≼ on H∗ is
chosen uniformly at random and that for all i ≥ 1, the edge set F0(i) is the minimum
of H∗(i− 1). Clearly, this yields the same random process.

Our argument that typically, sufficiently many edges of H(0) remain when Algo-
rithm 3.3.1 terminates may be summarized as follows. We crucially rely on identifying
edges of H(0) that for some i ≥ 0 become isolated vertices of H∗ and hence remain at
the end of the process. We say that almost-isolation occurs at a copy F ′ ∈ H∗(0) if for
some edge e ∈ F ′ at some step, the copy F ′ is the only remaining copy that contains e
and we say that isolation occurs at F ′ if additionally at a later step, a copy F ′′ ̸= F ′

with e /∈ F ′ ∩F ′′ ̸= ∅ is selected for removal hence causing e to become an isolated vertex
in H∗.

Initially, that is at step i = 0, for every edge e ∈ H, there exist at least two copies of F
that have e as one of their edges. If at step i = i⋆ we do not already have sufficiently many
edges of H that are isolated vertices of H∗, then since by Lemma 3.11.16 we may assume
that there is essentially not more than one copy of F for every |F| edges that remain, we
are in a situation where most of the remaining copies form a matching within H∗. Thus,
almost-isolation must have occurred many times.

If it is the removal of F0 during step i that causes almost-isolation at a copy F ′, then
before this removal, for all edges e ∈ F ′, there was a copy F ′′ ̸= F ′ with e ∈ F ′′ and
hence as a consequence of Lemma 3.10.9, it only rarely happens that the removal of F0

destroys all copies F ′′ ̸= F ′ that previously shared an edge with F ′. Thus, in almost all
cases where almost-isolation occurs, it is possible that isolation occurs. Furthermore, it
turns out that the probability that this happens is not too small.

We ensure that the copies at which we look for almost-isolation are spaced out as this
allows us to assume that at these copies, almost-isolation turns into isolation independently
of the development at the other copies.

3.12.2 Formal setup

Formally, our setup is as follows. For ℓ ≥ 1, a hypergraph A and e ∈ A, inductively
define N ℓ

A(e) as follows. Let N 1
A(e) := {f ∈ A : e ∩ f ̸= ∅} denote the set of edges of A
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that intersect with e and for ℓ ≥ 2, let

N ℓ
A(e) :=

⋃
f∈Nℓ−1

A (e)

N 1
A(f).

For ℓ ≥ 1, let N ℓ
A(e) := |N ℓ

A(e)|. During the random removal process, we additionally
construct random subsets ∅ =: R(0) ⊆ . . . ⊆ R(i⋆) ⊆ H∗(0) where we collect copies of F
at which almost-isolation occurs. We inductively define R(i) with 1 ≤ i ≤ i⋆ as described
by the following procedure.

Algorithm 3.12.1: Construction of R(i).

1 R(i)← R(i− 1)
2 consider an arbitrary ordering F1, . . . ,Fℓ of H∗(i)
3 for ℓ′ ← 1 to ℓ do
4 if i = min{j ≥ 0 : dH∗(j)(e) = 1 for some e ∈ Fℓ′} and

N 4
H∗(0)(Fℓ′) ∩R(i) = ∅ then

5 R(i)← R(i) ∪ {Fℓ′}
6 end

7 end

To exclude the copies at which almost-isolation occurs without the option that isolation
occurs, we define subsets R′(i) ⊆ R(i) as follows. For F ′ ∈ R(i⋆), let

iF ′ := min{i ≥ 0 : F ′ ∈ R(i)}

be the step where F ′ is added as an element for the eventually generated R(i⋆) and
for i ≥ 0, let

R′(i) := {F ′ ∈ R(i) : N 1
H∗(iF′ )(F ′) ̸= {F ′}}

be the elements F ′ ∈ R(i) where at step iF ′ , the copy F ′ shared at least one edge
with another copy of F . Finally, we define events that entail almost-isolation becoming
isolation. For F ′ ∈ R′(i), fix an arbitrary GF ′ ∈ N 1

H∗(iF′ )
(F ′) \ {F ′} and let

EF ′ := {GF ′ ≼ G for all G ∈ N 1
H∗(0)(GF ′)}.

3.12.3 Proof of Theorem 3.11.1

Since every almost-isolation that turns into isolation causes an edge of H(0) to become
an isolated vertex of H∗ for some i ≥ 0 and hence an edge that remains at the end of the
removal process, we obtain the following statement.

Observation 3.12.2. H(τ∅) ≥
∑

F ′∈R′(i⋆) 1EF′ .

We organize the formal presentation of the arguments outlined above in two lemmas.
At the end of the section, using the above observation together with these two lemmas,
we prove Theorem 3.11.1.
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Define the event

E0 := {|{e ∈ H(i⋆) : dH∗(i⋆)(e) = 0}| < εH(i⋆)}

that occurs if and only if the number of isolated vertices of H∗(i⋆) is only a small fraction
of all present vertices.

Lemma 3.12.3. Let X := {i⋆ < τ⋆} ∩ E0. Then, |R′(i⋆)| ≥X nk−1/ρ−4ε2.

Proof. Let i := i⋆ and consider the set

I∗ := {F ′ ∈ H∗ : N 1
H∗(F ′) = {F ′}}

of edge sets of copies of F in H that are isolated in the sense that they do not share an
edge with another copy of F . Since H(0) is F-populated, by construction of R, for ev-
ery F ′ ∈ I∗, either F ′ itself is an element of R or there exists some F ′′ ∈ N 4

H∗(0)(F ′)∩R
that prevented the inclusion of F ′ in R. Hence, there exists a function π : I∗ → R
that for every F ′ ∈ I∗ chooses a witness π(F ′) with π(F ′) ∈ N 4

H∗(0)(F ′) or equiva-

lently F ′ ∈ N 4
H∗(0)(π(F ′)). If F ′ ∈ R and F ′′ ∈ π−1(F ′), we have F ′′ ∈ N 4

H∗(0)(F ′) and

hence π−1(F ′) ⊆ N 4
H∗(0)(F ′). Thus, Lemma 3.11.2 entails |π−1(F ′)| ≤ N4

H∗(0)(F ′) ≤ nε2
and so we have

|I∗| ≤
∑
F ′∈R

|π−1(F ′)| ≤ |R|nε2 . (3.12.1)

First, we obtain a suitable lower bound for |I∗| which, by the above inequality, yields a
lower bound for |R|, then we show that |R| is essentially as large as |R′|.

Let us proceed with the first step. Using Lemma 3.11.8, we have

H∗ ≤X ĥ∗ ≤
( |F| − 1

|F| − 1− ε2 + nm−k+2ε3 p̂|F|−1−ε3
)
nkp̂

|F|k!

≤ (1 + ε3/2 + n2ε
3−ε2(|F|−1−ε3)+ε3/ρF )

nkp̂

|F|k!
≤ (1 + ε)

H

|F| .
(3.12.2)

From this, we obtain

H = |{e ∈ H : dH∗(e) = 0}|+
∑

F ′∈H∗

∑
e∈F ′

1

dH∗(e)
≤X εH + |F||I∗|+

(
|F| − 1

2

)
|H∗ \ I∗|

= εH +

(
|F| − 1

2

)
H∗ +

1

2
|I∗| ≤X εH +

(
|F| − 1

2

)
(1 + ε)

H

|F| +
1

2
|I∗|

= H − 1 + ε− 4ε|F|
2|F| H +

1

2
|I∗| ≤ H − 1

4|F|H +
1

2
|I∗|.

(3.12.3)
With Lemma 3.11.8, this implies

|I∗| ≥X
1

2|F|H ≥
nkp̂

2|F|k!
≥ nk−1/ρF−2ε2 . (3.12.4)
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Combining this with (3.12.1), we conclude that |R| ≥ nk−1/ρF−3ε2 , which completes the
first step.

Consider a copy F ′ of F with F ′ ∈ R\R′. Let e1 ∈ F ′. There exists a copy F1 ̸= F ′ of F
with F1 ∈ H∗(iF ′ − 1) such that e1 ∈ F1. Furthermore, there exists an edge e2 ∈ F ′ \ F1

and a copy F2 ̸= F ′ of F with F2 ∈ H∗(iF ′−1) such that e2 ∈ F2. By choice of F ′ and iF ′ ,
both copies F1 and F2 have an edge that is contained in F0(iF ′). Hence, if F1,F ′,F2

does not form a self-avoiding cyclic walk, then, using F ′′ to denote the copy of F with
edge set F0(iF ′), the sequence F1,F ′,F2,F ′′ forms a self-avoiding cyclic walk. Thus, for
every copy F ′ of F with F ′ ∈ R\R′, there exist copies of F whose edge sets are elements
of H∗(0) and that together with F ′ form a self-avoiding cyclic walk of length 3 or 4.

Let F4 denote a collection of k-graphs G with VG ⊆ {1, . . . , 4m} that for every self-
avoiding walk F1, . . . ,Fℓ of copies of F with 3 ≤ ℓ ≤ 4 contains a copy of F1 + . . .+ Fℓ
and that only contains copies of such k-graphs. Then, we have |R′| ≥ |R| −∑G∈F4

4ΦG ,

so it suffices to show that ΦG ≤ nk−1/ρF−4ε2 for all G ∈ F4. This is a consequence of
Lemma 3.10.9.

Lemma 3.12.4. Suppose that X is a binomial random variable with parame-
ters nk−1/ρF−4ε2 and n−ε

2
and let Y := (nk−1/ρF−4ε2 − |R′(i⋆)|) ∨ 0. Let

Z := Y +
∑

F ′∈R′(i⋆)

1EF′ .

Then, Z stochastically dominates X.

Proof. First, observe that by Lemma 3.11.2, whenever F ′ ∈ R′(i⋆), for i := 0, we have

N1
H∗(GF ′) ≤

∑
f∈GF′

dH∗(f) ≤ nε2 . (3.12.5)

Consider distinct F ′,F ′′ ∈ H∗(0). By construction of R(i⋆), whenever F ′,F ′′ ∈ R(i⋆),
then, for all G′ ∈ N 1

H∗(iF′ )
(F ′) and G′′ ∈ N 1

H∗(iF′′ )
(F ′′), we have

N 1
H∗(0)(G′) ∩N 1

H∗(0)(G′′) = ∅.

Thus, for all distinct F1, . . . ,Fℓ ∈ R′(i⋆+) and all z1, . . . , zℓ−1 ∈ {0, 1}, from (3.12.5), we
obtain

P[1EFℓ = 1 | 1EFℓ′ = zℓ′ for all 1 ≤ ℓ′ < ℓ] = P[EFℓ ] ≥ n−ε
2
,

which completes the proof.

We use the following version of Chernoff’s inequality which is slightly different compared
to the version in Chapter 2.

Lemma 3.12.5 (Chernoff’s inequality). Suppose X1, . . . , Xn are independent Bernoulli
random variables and let X :=

∑
1≤i≤nXi. Then, for all 0 < δ < 1,

P[X ̸= (1± δ)E[X]] ≤ 2 exp

(
−δ

2E[X]

3

)
.
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Proof of Theorem 3.11.1. Define the events

B := {H(τ∅) ≤ nk−1/ρF−ε} and X := {i⋆ < τ⋆} ∩ E0.

We need to show that P[B] is sufficiently small. Choose X, Y and Z as in Lemma 3.12.4.
Lemma 3.12.3 entails X ⊆ {Y = 0} and hence {Y ̸= 0} ⊆ X c. Thus, from Observa-
tion 3.12.2 and Lemma 3.12.4, we obtain

B =
{ ∑
F ′∈R′(i⋆)

1EF′ ≤ nk−1/ρF−ε
}
∩ B ⊆ ({Z ≤ nk−1/ρF−ε} ∪ {Y ̸= 0}) ∩ B

⊆ {Z ≤ nk−1/ρF−ε} ∪ (X c ∩ B) ⊆ {Z ≤ nk−1/ρF−ε} ∪ {τ⋆ ≤ i⋆} ∪ (Ec0 ∩ B).

By Lemma 3.11.8, we have

H(τ∅) ≥Ec
0
εH(i⋆) ≥ ε2nkp̂(i⋆) ≥ nk−1/ρF−2ε2

and hence Ec0 ∩ B = ∅. Thus, using Lemma 3.11.16, we obtain

P[B] ≤ P[Z ≤ nk−1/ρF−ε] + exp(−n1/3).

With Lemma 3.12.4 and Chernoff’s inequality (see Lemma 3.12.5), this completes the
proof.

3.13 Proofs for the main theorems

In this section, we show how to obtain Theorems 1.1.4–1.1.7 from Theorems 3.3.2
and 3.11.1. Proofs for Theorems 1.1.8 and 1.1.9 can be found in Section 3.14.

Proof of Theorem 1.1.6. This is an immediate consequence of Theorem 3.3.2.

Proof of Theorem 1.1.7. By definition of τ∅ in Section 3.11, this is an immediate conse-
quence of Theorem 3.11.1.

Proof of Theorem 1.1.5. Let m := |VF |. Suppose that 0 < ε < 1 is sufficiently small in
terms of 1/m, that 0 < δ < 1 is sufficiently small in terms of ε and that n is sufficiently
large in terms of 1/δ. Suppose that H is an (ε20, δ, ρ)-pseudorandom k-graph on n vertices
with |H| ≥ nk−1/ρ+ε5 . Let

ϑ :=
k! |H|
nk

≥ n−1/ρ+ε5 .

We consider the F-removal process starting at H where we assume the generated hy-
pergraphs to remain constant if the process normally terminated due to the absence of
copies of F . Let H′ denote the k-graph generated after i⋆ iterations, where

i⋆ :=
(ϑ− n−1/ρ+ε5)nk

|F|k!
.
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Let H′′ denote the k-graph eventually generated by the process that contains no copies
of F as subgraphs. Let X ′ denote the event that H′ is (4m,nε

4
)-bounded, F-populated

and has nk−1/ρ+ε5/k! edges. Let

X ′′ := {|H′′| ≤ nk−1/ρ+ε} and Y ′′ := {nk−1/ρ−ε ≤ |H′′|}.

We need to show that

P[X ′′ ∩ Y ′′] ≥ 1− exp(−(log n)5/4).

Since X ′ ⊆ X ′′, we have P[X ′′ ∩Y ′′] ≥ P[X ′ ∩Y ′′], so it suffices to obtain sufficiently large
lower bounds for P[X ′] and P[Y ′′]. We may apply Theorem 3.3.2 with ε5 playing the
role of ε to obtain P[X ′] ≥ 1− exp(−(log n)4/3) and Theorem 3.11.1 shows that P[Y ′′ |
X ′] ≥ 1− exp(−n1/4). Using P[Y ′′] = P[Y ′′ | X ′]P[X ′], this yields suitable lower bounds
for P[X ′] and P[Y ′′].

Proof of Theorem 1.1.4. This is an immediate consequence of Theorem 1.1.5.

3.14 Cherries

In this section, we prove Theorems 1.1.8 and 1.1.9. We argue similarly as for The-
orem 1.1.5 and 1.1.7 in the sense that we obtain Theorem 1.1.9 as a consequence of
Theorem 3.14.1 below which plays a similar role as Theorem 3.11.1 and which we then
apply together with Theorem 3.3.2 to obtain Theorem 1.1.8, see Section 3.14.4. To
state Theorem 3.14.1, we assume the setup described in Section 3.9 and again consider
the F -removal process formally given by Algorithm 3.3.1 as in Section 3.11. In particular,
we define F0(i), H(i), H(i), H∗(i) and H∗(i) for i ≥ 0 as well as τ∅ as in Section 3.11.
Furthermore, we introduce the following terminology. For a k-graph A and 1 ≤ k′ ≤ k−1,
we say that A is a k′-cherry if A has no isolated vertices and exactly two edges such that
the two edges of A share k′ vertices. We say that A is a cherry if A is a k′-cherry for
some 1 ≤ k′ ≤ k − 1.

Theorem 3.14.1. If F is a cherry, then P[H(τ∅) ≤ nk−1/ρF−ε] ≤ exp(−n1/4).

3.14.1 Unions of cherries

To prove Theorem 3.14.1, we argue similarly as for Theorem 3.11.1. However, some
of the key results in Section 3.10 only hold for hypergraphs with at least three edges
since self-avoiding cyclic walks of cherries can form stars, that is hypergraphs where
the intersection of any distinct edges is the same vertex set. This forces us to slightly
adapt the corresponding arguments for the cherry case. More specifically, we employ the
following two results that replace Lemma 3.10.5 and Lemma 3.10.9.

For ℓ ≥ 2, we say that a sequence e1, . . . , eℓ of distinct k-sets forms a k′-tight self-
avoiding cyclic walk if there exist distinct k′-sets U1, . . . , Uℓ with Ui ⊆ ei ∩ ei+1 for
all 1 ≤ i ≤ ℓ with indices taken modulo ℓ. Note that the k-graph S with no isolated
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vertices and edge set {e1, . . . , eℓ} is a union of cherries. Indeed, for 1 ≤ i ≤ ℓ, the k-
graph Ai with no isolated vertices and edge set {ei, ei+1} with indices taken modulo ℓ
is a k′′-cherry for some k′′ ≥ k′ and we have S = A1 + . . . + Aℓ. Furthermore, the k-
graphs A1, . . . ,Aℓ form a self-avoiding cyclic walk as defined in Section 3.10.

Lemma 3.14.2. Let 1 ≤ k′ ≤ k−1. Suppose that e1, . . . , eℓ forms a k′-tight self-avoiding
cyclic walk and let S denote the k-graph without isolated vertices and edge set {e1, . . . , eℓ}.
Then, there exists e ∈ S such that ρS,e > 1/(k − k′).

Proof. For 0 ≤ i ≤ ℓ, let Vi := e1 ∪ . . . ∪ ei and for 1 ≤ i ≤ ℓ, let Wi := ei \ Vi−1.
Note that VS =

⋃
1≤i≤ℓWi and that for all 1 ≤ i < j ≤ ℓ, we have Wi ∩ Wj = ∅.

Hence, |VS | =
∑

1≤i≤ℓ|Wi|. Since e1, . . . , eℓ forms a k′-tight self-avoiding cyclic walk,
there exist distinct k′-sets U1, . . . , Uℓ with Ui ⊆ ei ∩ ei+1 for all 1 ≤ i ≤ ℓ with indices
taken modulo ℓ. Hence, for all 2 ≤ i ≤ ℓ, we have |ei−1 ∩ ei| ≥ k′ and thus |Wi| ≤ k − k′.
Furthermore, we have

|(e1 ∪ eℓ−1) ∩ eℓ| ≥ |Uℓ−1 ∪ Uℓ| ≥ k′ + 1

and thus |Wℓ| ≤ k − k′ − 1. We conclude that

ρS,e1 =
ℓ− 1

(
∑

1≤i≤ℓ|Wi|)− k
≥ ℓ− 1

(ℓ− 2)(k − k′) + k − k′ − 1
>

ℓ− 1

(ℓ− 1)(k − k′) =
1

k − k′ ,

which completes the proof.

Lemma 3.14.3. Let 1 ≤ k′ ≤ k−1 and ℓ ≤ 4 and suppose that e1, . . . , eℓ forms a k′-tight
self-avoiding cyclic walk. Let S denote the k-graph without isolated vertices and edge
set {e1, . . . , eℓ}. If F is a k′-cherry, then ΦS ≤ nk−1/ρF−ε1/7.

Proof. Suppose that F is a k′-cherry. For 1 ≤ i ≤ ℓ, let Ai denote the k-graph with no
isolated vertices and edge set {ei, ei+1} with indices taken modulo ℓ. Then Ai has k-
density at least ρF and Ai is strictly k-balanced. Furthermore, A1, . . . ,Aℓ forms a
self-avoiding cyclic walk and we have S = A1 + . . .+Aℓ. Hence, due to Lemma 3.14.2,
the statement follows from Lemma 3.10.8.

3.14.2 Overview of the argument

In this section, we show that H(τ∅) ≥ nk−1/ρF−ε with high probability if F is a cherry. To
this end, from now on, for this section, in addition to the setup described in Section 3.9,
we assume that F is a k′-cherry for some 1 ≤ k′ ≤ k − 1 and that H is k′-populated.
Furthermore, we define i⋆, τ⋆ and VH as in Section 3.11. Overall, we argue similarly as
in Section 3.12 based on isolation, however, the structures we focus on here are different.

Still, instead of choosing the edge sets F0(i) of copies with i ≥ 1 uniformly at random
in Algorithm 3.3.1, we again assume that during the initialization, a linear order ⪯ on H∗

is chosen uniformly at random and that for all i ≥ 1, the edge set F0(i) is the minimum
of H∗(i− 1).
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For a k′-set U ⊆ VH and i ≥ 0, we use

DH(i)(U) := {e ∈ H : U ⊆ e}

to denote the set of edges e ∈ H that contain U as a subset and we use

D∗
H(i)(U) := {e ∈ DH(U) : |e ∩ f | = k′ for some f ∈ H \ DH(U)}

to denote the set of edges e ∈ H that contain U as a subset and that are an edge of
a k′-cherry where not both edges contain U as a subset. Note that dH(U) = |DH(U)|.
We set d∗H(U) := |D∗

H(U)|. We say that a k′-set U ⊆ VH is suitable if there exists
no sequence e1, . . . , eℓ of edges of H(0) that forms a k′-tight self-avoiding cyclic walk
with 2 ≤ ℓ ≤ 4 such that U ⊆ e1. We use U to denote the set of suitable k′-sets.
Density considerations show that U includes almost all k′-sets U ⊆ VH. We say that
almost-isolation occurs at U ∈ U if at some step i ≥ 0, we have 1 ≤ d∗H(U) ≤ 2
and dH(U) ≥ d∗H(U) + 1. We say that isolation occurs at U if additionally at a later
step j > i, we have d∗H(j)(U) = 0 while dH(j)(U) is odd hence causing at least one of the

edges e ∈ H(j) to eventually become an isolated vertex of H∗(j′) for some j′ ≥ j.
If at step i = i⋆, we do not already have sufficiently many edges of H that are isolated

vertices of H∗, then by Lemma 3.11.16, we may assume that there is essentially not more
than one copy of F for every |F| edges that remain. Hence, we are then in a situation
where most of the remaining copies form a matching within H∗. We claim that for these
copies that form a matching, almost-isolation must have occurred at the set U of vertices
that both edges of the copy share if U ∈ U . This follows from Lemma 3.14.4 below.
Indeed, the lemma guarantees that for such U , there exists 0 ≤ i ≤ i⋆ with d∗H(U) = 1 or
there exists 0 ≤ i ≤ i⋆ − 1 with d∗H(U) = 2, d∗H(i+1)(U) = 0 and dH(U)− dH(i+1)(U) ≥ 1.
Almost-isolation at U occurs in both cases.

Lemma 3.14.4. Let U ∈ U and 0 ≤ i ≤ i⋆. Then ∆d∗H(U) := d∗H(U)− d∗H(i+1)(U) ≤ 2.

Furthermore, if ∆d∗H(U) = 2, then U ⊆ f for all f ∈ F0.

Proof. We only assume that U ⊆ VH is a k′-set and show that ∆d∗H(U) ≥ 3 entails U /∈ U
and furthermore that if ∆d∗H(U) = 2 and U ̸⊆ f for some f ∈ F0, then again U /∈ U . We
distinguish three cases.

For the first case, assume that U ⊆ f for all f ∈ F0. Then, only the edges of F0 can
potentially be elements in ∆D∗ := D∗

H(i−1)(U) \ D∗
H(U), so we have |∆D∗| ≤ 2.

For the second case, assume that there is exactly one f ∈ F0 with U ⊆ f . Then
if |∆D∗| ≥ 2, there exists e ∈ ∆D∗ \ F0. For e to be in ∆D∗, it is necessary that there
exists f ∈ F0 with U ̸⊆ f and |e ∩ f | = k′. There is only one possible choice for f and
for this edge f , using f ′ to denote the other edge in F0, if e, f ′ does not form a k′-tight
self-avoiding cyclic walk, then e, f, f ′ forms a k′-tight self-avoiding cyclic walk.

For the third case, assume that U ̸⊆ f for all f ∈ F0. Then if |∆D∗| ≥ 2, there exist
distinct e1, e2 ∈ ∆D∗ \F0 such that for e ∈ {e1, e2}, there exists f ∈ F0 with |e∩ f | = k′.
If e1, e2 does not form a k′-tight self-avoiding cyclic walk and if for all f ∈ F0, the
sequence e1, e2, f does not form a k′-tight self-avoiding cyclic walk, then, using f and f ′
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to denote the edges of F0, the sequence e1, e2, f, f
′ forms a k′-tight self-avoiding cyclic

walk.
Furthermore, our above arguments show that if ∆d∗H(U) = 2 and U ̸⊆ f for some f ∈
F0, then U /∈ U .

Overall, our argument shows that, if eventually most of the remaining copies form a
matching within H∗, almost-isolation must have occurred many times. In all cases where
almost-isolation occurs, it is possible that this turns into isolation and the probability
that this happens is not too small. We ensure that the k′-sets at which we look for almost
isolation are spaced out as this allows us to assume that at these sets, almost-isolation
turns into isolation independently of the development at the other sets.

3.14.3 Formal setup

Formally, our setup is as follows. For ℓ ≥ 1, a k-graph A and a k′-set U ⊆ VA, we
inductively define Wℓ

A(U) as follows. Let

W1
A(U) :=

{
U ′ ∈

(
VA
k′

)
: dA(U ∪ U ′) ≥ 1

}
and for ℓ ≥ 2, let

Wℓ
A(U) :=

⋃
U ′∈Wℓ−1

A (U)

W1
A(U ′).

For ℓ ≥ 1, let W ℓ
A(U) := |Wℓ

A(U)|. Similarly as in Section 3.12.2, during the random
removal process, starting at step i⋆, we additionally construct random subsets ∅ =:
R(0) ⊆ . . . ⊆ R(i⋆) ⊆ U where we collect k′-sets at which almost isolation occurs. We
inductively define R(i) with 1 ≤ i ≤ i⋆ as described by the following procedure.

Algorithm 3.14.5: Construction of R(i).

1 R(i)← R(i− 1)
2 consider an arbitrary ordering U1, . . . , Uℓ of U
3 for ℓ′ ← 1 to ℓ do
4 if i = min{j ≥ 0 : 1 ≤ d∗H(j)(Uℓ′) ≤ 2 and dH(j)(Uℓ′) ≥ d∗H(j)(Uℓ′) + 1} and

W 4
H(0)(Uℓ′) ∩R(i) = ∅ then

5 R(i)← R(i) ∪ {Uℓ′}
6 end

7 end

For U ∈ R(i⋆), let iU := min{i ≥ 0 : U ∈ R(i)}. To define events that entail almost-
isolation becoming isolation, for U ∈ R(i⋆) choose possibly non-distinct copies GU ,G′U ∈
H∗(iU ) of F whose vertex sets contain U as a subset as follows.

(i) If d∗H(iU )
(U) = 1 and dH(iU )(U) is even, choose GU = G′U such that one edge of GU

is in D∗
H(iU )

(U) while the other edge of GU is not in DH(iU )(U).
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u

GU = G′U

u

GU = G′U

u
G′U

GU

u

GU = G′U

Figure 3.2: Examples for choices of the copies GU and G′
U for the special case where F is a 3-uniform 1-

cherry. Each example shows the situation of the edges containing U = {u} as a subset at step iU .

(ii) If d∗H(iU )
(U) = 1 and dH(iU )(U) is odd, choose GU = G′U such that one edge of GU

is in D∗
H(iU )

(U) while the other edge of GU is in DH(iU )(U).

(iii) If d∗H(j)(U) = 2 and dH(iU )(U) is even, choose GU ̸= G′U with GU ∩G′U = ∅ such that

one edge of GU is in D∗
H(iU )

(U) while the other edge of GU is not in DH(iU )(U) and

such that one edge of G′U is in D∗
H(iU )

(U) while the other edge of G′U is in DH(iU )(U)

(iv) If d∗H(j)(U) = 2 and dH(iU )(U) is odd, choose GU = G′U such that both edges of GU
are in D∗

H(iU )
.

Let

EU := {GU ⪯ G for all G ∈ N 1
H∗(0)(GU ) and G′U ⪯ G for all G ∈ N 1

H∗(0)(G′U )}.

3.14.4 Proof of Theorem 3.14.1

As in Section 3.12.3, since every almost-isolation that turns into isolation causes an edge
of H(0) to become an isolated vertex of H∗ at some step i ≥ 0 and hence an edge that
remains at the end of the removal process, we obtain the following statement.

Observation 3.14.6. H(τ∅) ≥
∑

U∈R(i⋆) 1EU .

We again organize the formal presentation of the arguments outlined above into suitable
lemmas. Some of these are similar to those in Section 3.12.3. Combining the lemmas
with the above observation, we then obtain Theorem 3.14.1. We define the event E0 as in
Section 3.12.3.

Lemma 3.14.7. Let X := {i⋆ < τ⋆} ∩ E0. Then, |R(i⋆)| ≥X nk−1/ρF−5ε2.

Proof. We argue similarly as in the proof of Lemma 3.12.3. Let A denote the k-graph with
no isolated vertices and exactly one edge and fix a k′-set I ⊆ VA. Consider a k′-set U ⊆ VH
and ψ : I ↪→ U . Combining the fact that H(0) is k′-populated and Lemma 3.10.1, we
have

2 ≤ dH(0)(U) ≤ ΦA,ψ ≤ nε
3
. (3.14.1)

Let i := i⋆ and consider the set

I∗ := {F ′ ∈ H∗ : N 1
H∗(F ′) = {F ′}}
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of edge sets of copies of F in H that are isolated in the sense that they do not share
an edge with another copy of F . Let ι : I∗ → 2VH denote the function such that ι(F ′)
is the intersection of the two edges of F ′ for all F ′ ∈ I∗. As a consequence of the
lower bound in (3.14.1), for all U ∈ J := ι(I∗) ∩ U almost isolation must have occurred
at U due to Lemma 3.14.4 (see discussion in the paragraph before Lemma 3.14.4).
Thus, either U itself is an element of R or there exists some U ′ ∈ W4

H∗(0)(U
′) ∩R that

prevented the inclusion of U in R. Hence, we may choose a function π : J → R that
for every U ∈ J chooses a witness π(U) with π(U) ∈ W4

H∗(0)(U) or equivalently U ∈
W4

H∗(0)(π(U)). If U ∈ R and U ′ ∈ π−1(U), we have U ′ ∈ W4
H∗(0)(U) and hence π−1(U) ⊆

W4
H∗(0)(U). The upper bound in (3.14.1) entails W 1

H∗(0)(U) ≤ nε3 · kk′ and for all ℓ ≥ 1

furthermore W ℓ+1
H∗(0)(U) ≤W ℓ

H∗(0)(U)·nε3 ·kk′ . Hence, we inductively obtain W ℓ
H∗(0)(U) ≤

kℓk
′
nℓε

3
and in particular W 4

H∗(0)(U) ≤ nε2 . Thus,

|J | ≤
∑
U∈R
|π−1(U)| ≤ |R|nε2 .

As a consequence of Lemma 3.14.3, the number of k′-sets U ⊆ VH that are not suitable
is at most 3 · nk−1/ρF−ε1/7 · (4k)k

′ ≤ nk−1/ρF−ε1/6 . Hence, |J | ≥ |ι(I∗)| − nk−1/ρF−ε1/6

and thus
|R| ≥ n−ε2(|ι(I∗)| − nk−1/ρF−ε1/6).

Furthermore, if U ⊆ VH is a k′-set and e ∈ F ′ for some F ′ ∈ ι−1(U), then for all F ′′ ∈
ι−1(U) \ {F ′} and f ∈ F ′′, we have |e ∩ f | ≥ k′ + 1 and for all distinct F ′′,F ′′′ ∈
ι−1(U)\{F ′}, f ∈ F ′′ and g ∈ F ′′′, we have f ̸= g. Thus, there exists k′+1 ≤ k′′ ≤ k and
at least (|ι−1(U)|− 1)/k distinct edges f1, . . . , fℓ ∈ H with |e∩ fℓ′ | = k′′ for all 1 ≤ ℓ′ ≤ ℓ.
Now, let A denote a k′′-cherry, let I ∈ A and fix ψ : I ↪→ e. By Lemma 3.10.1, we have

|ι−1(U)| − 1

k
≤ ℓ ≤ ΦA,ψ ≤ nε

3

and thus
|I∗| ≤

∑
U∈ι(I∗)

|ι−1(U)| ≤ |ι(I∗)|nε2 .

Overall, this yields

|R| ≥ n−ε2(n−ε
2 |I∗| − nk−1/ρF−ε1/6), (3.14.2)

so it suffices to find an appropriate lower bound for I∗. Similarly as in the proof of
Lemma 3.12.3, we may again rely on Lemma 3.11.8 to obtain H∗ ≤X (1 + ε)H/|F|
precisely as in (3.12.2) and then

H ≤X H − 1

4|F|H +
1

2
|I∗|

precisely as in (3.12.3). With Lemma 3.11.8, precisely as in (3.12.4), this implies |I∗| ≥X
nk−1/ρF−2ε2 . Combining this with (3.14.2) yields |R| ≥X nk−1/ρF−5ε2 .
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Lemma 3.14.8. Suppose that X is a binomial random variable with parame-
ters nk−1/ρF−5ε2 and n−2ε2 and let Y := (nk−1/ρF−5ε2 − |R(i⋆)|) ∨ 0. Let

Z := Y +
∑

U∈R(i⋆)

1EU .

Then, Z stochastically dominates X.

Proof. We argue similarly as in the proof of Lemma 3.12.4. First, observe that by
Lemma 3.11.2, whenever U ∈ R(i⋆), for i := 0, we have

N1
H∗(GU ) ≤

∑
f∈GU

dH∗(f) ≤ nε2

and thus
|N 1

H∗(GU ) ∪N 1
H∗(G′U )| ≤ n2ε2 . (3.14.3)

Consider distinct k′-sets U,U ′ ⊆ VH. By construction of R(i⋆), whenever U,U ′ ∈ R(i⋆),
then

(N 1
H(0)(GU ) ∪N 1

H(0)(G′U )) ∩ (N 1
H(0)(GU ′) ∪N 1

H(0)(G′U ′)) = ∅.
Thus, for all distinct U1, . . . , Uℓ ∈ R(i⋆) and all z1, . . . , zℓ−1 ∈ {0, 1}, from (3.14.3), we
obtain

P[1EUℓ = 1 | 1EUℓ′ = zℓ′ for all 1 ≤ ℓ′ ≤ ℓ] = P[EUℓ ] ≥ n−2ε2 ,

which completes the proof.

Proof of Theorem 3.14.1. The proof is almost exactly the same as for Theorem 3.11.1
with the key difference that we replace objects and references with the appropriate
analogous constructions and arguments form this section. Define the events

B := {H(τ∅) ≤ nk−1/ρF−ε} and X := {i⋆ < τ⋆} ∩ E0.

We need to show that P[B] is sufficiently small. Choose X, Y and Z as in Lemma 3.14.8.
Lemma 3.14.7 entails X ⊆ {Y = 0} and hence {Y ̸= 0} ⊆ X c. Thus, from Observa-
tion 3.14.6 and Lemma 3.14.8, we obtain

B =
{ ∑
U∈R(i⋆)

1EU ≤ nk−1/ρF−ε
}
∩ B ⊆ ({Z ≤ nk−1/ρF−ε} ∪ {Y ̸= 0}) ∩ B

⊆ {Z ≤ nk−1/ρF−ε} ∪ (X c ∩ B) ⊆ {Z ≤ nk−1/ρF−ε} ∪ {τ⋆ ≤ i⋆} ∪ (Ec0 ∩ B).

By Lemma 3.11.8, we have

H(τ∅) ≥Ec
0
εH(i⋆) ≥ ε2nkp̂(i⋆) ≥ nk−1/ρF−2ε2

and hence Ec0 ∩ B = ∅. Thus, using Lemma 3.11.16, we obtain

P[B] ≤ P[Z ≤ nk−1/ρF−ε] + exp(−n1/3).

With Lemma 3.14.8 and Chernoff’s inequality (see Lemma 3.12.5), this completes the
proof.
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3.14.5 Proofs for Theorems 1.1.8 and 1.1.9

In this section, we show how to obtain Theorems 1.1.8 and 1.1.9 from Theorems 3.3.2
and 3.14.1.

Proof of Theorem 1.1.9. By definition of τ∅ in Section 3.11, this is an immediate conse-
quence of Theorem 3.14.1.

Proof of Theorem 1.1.8. The argumentation is essentially the same as in the proof of
Theorem 1.1.5 except that we use Theorem 3.14.1 instead of Theorem 3.11.1.

We define the constants m, ε, δ, n and the k-graphs H H′ and H′′ precisely as in
the proof of Theorem 1.1.5. Let X ′ denote the event that H′ is (4m,nε

4
)-bounded, k′-

populated and has nk−1/ρ+ε5/k! edges and let X ′′ denote the event that

X ′′ := {|H′′| ≤ nk−1/ρ+ε} and Y ′′ := {nk−1/ρ−ε ≤ |H′′|}.

We need to show that

P[X ′′ ∩ Y ′′] ≥ 1− exp(−(log n)5/4).

Since X ′ ⊆ X ′′, we have P[X ′′ ∩Y ′′] ≥ P[X ′ ∩Y ′′], so it suffices to obtain sufficiently large
lower bounds for P[X ′] and P[Y ′′]. Due to k′ = k − 1/ρ, we may apply Theorem 3.3.2
with ε5 playing the role of ε to obtain P[X ′] ≥ 1− exp(−(log n)4/3) and Theorem 3.14.1
shows that P[Y ′′ | X ′] ≥ 1 − exp(−n1/4). Using P[Y ′′] = P[Y ′′ | X ′]P[X ′], this yields
suitable lower bounds for P[X ′] and P[Y ′′].

3.15 Counting copies of F
In this section, our goal is to prove Lemma 3.5.19 (i). Hence, for this section, we assume
the setup that we used in Section 3.5 to state Lemma 3.5.19. Our approach is similar as
in Sections 3.6.3 and 3.7.2.

For i ≥ 0, let
η1(i) := ζ1+ε

3
ĥ∗ and η0(i) := (1− ε)η1(i).

Define the critical intervals

I−(i) := [ĥ∗ − η1, ĥ∗ − η0] and I+(i) := [ĥ∗ + η0, ĥ
∗ + η1].

For −+ ∈ {−,+}, let
Y −+(i) := −+(H∗ − ĥ∗)− η1

For i0 ≥ 0, define the stopping time

τ−+i0 := min{i ≥ i0 : H∗ /∈ I−+}

and for i ≥ i0, let
Z−+
i0

(i) := Y −+(i0 ∨ (i ∧ τ−+i0 ∧ τ̃
⋆ ∧ i⋆)).
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Let
σ−+ := min{j ≥ 0 : −+(H∗ − ĥ∗) ≥ η0 for all j ≤ i < τ̃⋆ ∧ i⋆} ≤ τ̃⋆ ∧ i⋆

With this setup, similarly as in Sections 3.6.3 and 3.7.2, it in fact suffices to consider the
evolution of Z−+

σ−+(σ−+), Z−+
σ−+(σ−+ + 1), . . ..

Observation 3.15.1. {τH∗ ≤ τ̃⋆ ∧ i⋆} ⊆ {Z−
σ−(i⋆) > 0} ∪ {Z+

σ+(i⋆) > 0}.

We again use supermartingale concentration techniques to show that the probabilities
of the events on the right in Observation 3.15.1 are sufficiently small. However, instead
of relying on Freedman’s inequality, here, similarly as in Section 3.11, we instead use
Azuma’s inequality.

3.15.1 Trend

Here, we prove that for all −+ ∈ {−,+} and i0 ≥ 0, the expected one-step changes
of the process Z−+

i0
(i0), Z

−+
i0

(i0 + 1), . . . are non-positive. We begin with estimating the
one-step changes of the deterministic parts of this random process in Lemma 3.15.3.
Using Lemma 3.5.20, we obtain Lemma 3.15.4 where we provide a precise estimate for the
expected one-step change of the non-deterministic part that holds whenever the removal
process was well-behaved up to the step we consider. Finally, we combine our estimates
for the deterministic and non-deterministic parts to see that the above process is indeed
a supermartingale (see Lemma 3.15.5).

Observation 3.15.2. Extend p̂, ĥ∗ and η1 to continuous trajectories defined on the
whole interval [0, i⋆ + 1] using the same expressions as above. Then, for x ∈ [0, i⋆ + 1],

(ĥ∗)′(x) = −|F|
2k! ĥ∗(x)

nkp̂(x)
, (ĥ∗)′′(x) =

|F|3(|F| − 1)(k!)2ĥ∗(x)

n2kp̂(x)2
,

η′1(x) = −
(
|F| − (1+ε3)ρF

2

)
|F|k! η1(x)

nkp̂(x)
,

η′′1(x) = −
(
|F| − (1+ε3)ρF

2

)(
|F| − (1+ε3)ρF

2 − 1
)
|F|2(k!)2η1(x)

n2kp̂(x)2
.

Lemma 3.15.3. Let 0 ≤ i ≤ i⋆ and X := {i ≤ τ∅}. Then,

∆ĥ∗ =X −
|F|2ĥ∗
H

± ζ2+ε
2
ĥ∗

H
, ∆η1 =X −

(
|F| − (1 + ε3)ρF

2

) |F|η1
H
± ζ2+ε

2
η1

H
.

Proof. This is a consequence of Taylor’s theorem. In detail, we argue as follows.
Together with Observation 3.15.2, Lemma 2.9.10 yields

∆ĥ∗ = −|F|
2k! ĥ∗

nkp̂
± max
x∈[i,i+1]

ĥ∗(x)

δn2kp̂(x)2
.
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We investigate the first term and the maximum separately. Using Lemma 3.5.7, we have

−|F|
2k! ĥ∗

nkp̂
=X −

|F|2ĥ∗
H

.

Furthermore, since ĥ∗(x)/p̂(x)2 is non-decreasing in x for x ∈ [i, i + 1], Lemma 3.5.7
together with Lemma 3.5.9 yields

max
x∈[i,i+1]

ĥ∗(x)

δn2kp̂(x)2
≤ ĥ∗

δn2kp̂2
≤X

ĥ∗

δH2
≤ ζ2+2ε2 ĥ∗

δH
≤ ζ2+ε

2
ĥ∗

H
.

Thus we obtain the desired expression for ∆ĥ∗.
We argue similarly for ∆η1. Again together with Observation 3.15.2, Lemma 2.9.10

yields

∆η1 = −
(
|F| − (1 + ε3)ρF

2

) |F|k! η1
nkp̂

± max
x∈[i,i+1]

η1(x)

δn2kp̂(x)2
.

We again investigate the first term and the maximum separately. Using Lemma 3.5.7, we
have

−
(
|F| − (1 + ε3)ρF

2

) |F|k! η1
nkp̂

=X −
(
|F| − (1 + ε3)ρF

2

) |F|η1
H

.

Furthermore, using Lemma 3.5.6, Lemma 3.5.7 and Lemma 3.5.9 yields

max
x∈[i,i+1]

η1(x)

δn2kp̂(x)2
≤ η1
δn2kp̂(i+ 1)2

≤ η1
δ2n2kp̂2

≤X
η1

δ2H2
≤ ζ2+2ε3η1

δ2H
≤ ζ2+ε

3
η1

H
.

Thus we also obtain the desired expression for ∆η1.

Lemma 3.15.4. Let 0 ≤ i ≤ i⋆ and X := {i < τ̃⋆}. Then,

Ei[∆H∗] =X −
|F|2H∗

H
± ζ2ĥ∗

δ5H
.

Proof. Fix f ∈ F . Lemma 3.5.18 entails

Ei[∆H∗] =X −
1

H∗

∑
F ′∈H∗

((∑
e∈F ′

dH∗(e)
)
± |F|2ζ2+ε2φ̂F ,f

)
= − 1

H∗

(∑
e∈H

dH∗(e)2
)
± |F|2ζ2+ε2φ̂F ,f .

For all e ∈ H, from Lemma 3.5.17, we obtain

dH∗(e) =X
|F|k! φ̂F ,f

aut(F)
± 1

δ
|F|k! ζφ̂F ,f .

Thus, Lemma 3.5.20 yields

Ei[∆H∗] =X −
1

H∗
(
∑

e∈H dH∗(e))2

H
±

2|F|2(k!)2ζ2φ̂2
F ,fH

δ2H∗ ± |F|2ζ2+ε2φ̂F ,f
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= −|F|
2H∗

H
± φ̂F ,fH

H∗
ζ2φ̂F ,fH

δ3H
± ζ2+ε

2
φ̂F ,fH

δH
.

Since Lemma 3.5.7 implies φ̂F ,fH ≤ ĥ∗/ε, we obtain

Ei[∆H∗] =X −
|F|2H∗

H
± ζ2ĥ∗

δ5H
,

which completes the proof.

Lemma 3.15.5. Let 0 ≤ i0 ≤ i and −+ ∈ {−,+}. Then, Ei[∆Z−+
i0

] ≤ 0.

Proof. Suppose that i < i⋆ and let X := {i < τ−+i0 ∧ τ̃⋆}. We have Ei[∆Z−+
i0

] =X c

0 and Ei[∆Z−+
i0

] =X Ei[∆Y −+], so it suffices to obtain Ei[∆Y −+] ≤X 0. Combining
Lemma 3.15.3 with Lemma 3.15.4, we obtain

Ei[∆Y −+] = −+(Ei[∆H∗]−∆ĥ∗)−∆η1

≤X −+
(
−|F|

2

H
H∗ +

|F|2
H

ĥ∗
)

+

(
|F| − (1 + ε3)ρF

2

) |F|
H
η1

+
ζ2

δ5H
ĥ∗ +

2ζ2+ε
2

H
ĥ∗

≤ −|F|
H

(
−+|F|(H∗ − ĥ∗)−

(
|F| − ρF

2

)
η1 − ε2η1

)
≤X −

|F|
H

(
|F|(1− ε)η1 −

(
|F| − ρF

2

)
η1 − ε2η1

)
= −|F|η1

H

(
ρF
2
− ε|F| − ε2

)
≤ 0,

which completes the proof.

3.15.2 Boundedness

As we intend to apply Azuma’s inequality, it suffices to obtain suitable bounds for the
absolute one-step changes of the processes Y −+(0), Y −+(1), . . . and Z−+

i0
(i0), Z

−+
i0

(i0 + 1), . . ..

Lemma 3.15.6. Let 0 ≤ i0 ≤ i ≤ i⋆, −+ ∈ {−,+}, f ∈ F and X := {i < τF}.
Then, |∆Y −+| ≤X φ̂F ,f (i0)/δ.

Proof. From Lemma 3.5.17, we obtain

|∆H∗| ≤
∑

e∈F0(i+1)

dH∗(e) ≤
∑

e∈F0(i+1)

∑
f ′∈F

∑
ψ : f ′ ∼−→e

ΦF ,ψ ≤X 2|F|2k! φ̂F ,f .

Hence, using Lemma 3.15.3, we have

|∆Y −+| ≤ |∆H∗|+ |∆ĥ∗|+ |∆η1| ≤X 2|F|2k! φ̂F ,f +
2|F|2ĥ∗
H

+
2|F|2η1
H

.

With Lemma 3.5.7 and φ̂F ,f ≤ φ̂F ,f (i0), this completes the proof.
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Lemma 3.15.7. Let 0 ≤ i0 ≤ i, −+ ∈ {−,+} and f ∈ F . Then, |∆Z−+
i0
| ≤ φ̂F ,f (i0)/δ.

Proof. This is an immediate consequence of Lemma 3.15.6.

3.15.3 Supermartingale concentration

This section follows a similar structure as Sections 3.6.3 and 3.7.2. Lemma 3.15.8 is
the final ingredient that we use for our application of Azuma’s inequality in the proof
of Lemma 3.15.9 where we show that the probabilities of the events on the right in
Observation 3.15.1 are indeed small.

Lemma 3.15.8. Let −+ ∈ {−,+}. Then, Z−+
σ−+(σ−+) ≤ −ε2η1(σ−+).

Proof. Lemma 3.5.4 implies τ̃⋆ ≥ 1 and −+(H∗(0)− ĥ∗(0)) < η0(0), so we have σ−+ ≥ 1.
Thus, by definition of σ−+, for i := σ−+− 1, we have −+(H∗ − ĥ∗) ≤ η0 and thus

Z−+
i = −+(H∗ − ĥ∗)− η1 ≤ −εη1.

Furthermore, since σ−+ ≤ τF , we may apply Lemma 3.15.6 such that with Lemma 3.5.7
and Lemma 3.5.9, for f ∈ F , we obtain

Z−+
σ−+(σ−+) = Z−+

i + ∆Y −+ ≤ −εη1 +
φ̂F ,f
δ
≤ −εη1 +

ĥ∗

δ2H
≤ −εη1 + ζ2+ε

2
ĥ∗ ≤ −ε2η1.

Since ∆η1 ≤ 0, this completes the proof.

Lemma 3.15.9. P[τH∗ ≤ τ̃⋆ ∧ i⋆] ≤ exp(−nε2).

Proof. Fix −+ ∈ {−,+}. By Observation 3.15.1, is suffices to show that

P[Z−+
σ−+(i⋆) > 0] ≤ exp(−n2ε2).

Due to Lemma 3.15.8, we have

P[Z−+
σ−+(i⋆) > 0] ≤ P[Z−+

σ−+(i⋆)− Z−+
σ−+(σ−+) ≥ ε2η1(σ−+)] ≤

∑
0≤i≤i⋆

P[Z−+
i (i⋆)− Z−+

i ≥ ε2η1].

Thus, for 0 ≤ i ≤ i⋆, it suffices to obtain

P[Z−+
i (i⋆)− Z−+

i ≥ ε2η1] ≤ exp(−n3ε2).

We show that this bound is a consequence of Azuma’s inequality.
Fix f ∈ F . Lemma 3.15.4 shows that Z−+

i (i), Z−+
i (i+ 1), . . . is a supermartingale, while

Lemma 3.15.7 provides the bound |∆Z−+
i (j)| ≤ φ̂F ,f/δ for all j ≥ i. Hence, we may apply

Lemma 3.11.5 to obtain

P[Z−+
i (i⋆)− Z−+

i ≥ ε2η1] ≤ exp

(
− ε4δ2η21

2(i⋆ − i)φ̂2
F ,f

)
.
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Since

i⋆ − i ≤ ϑnk

|F|k!
− i =

nkp̂

|F|k!
,

this yields

P[Z−+
i (i⋆)− Z−+

i ≥ ε2η1] ≤ exp

(
− ε5δ2η21
nkp̂φ̂2

F ,f

)
= exp

(
−ε

5δ2ζ2+2ε3(ĥ∗)2

nkp̂φ̂2
F ,f

)
≤ exp(−δ3ζ2+2ε3nkp̂) ≤ exp(−δ3ζ2+2ε3(np̂ρF )k)

= exp(−δ3n2kε2ζ2+2ε3−2k) ≤ exp(−n4ε2),

which completes the proof.

3.16 Counting balanced templates

In this section, our goal is to prove Lemma 3.5.19 (ii). Hence, for this section, we
assume the setup that we used in Section 3.5 to state Lemma 3.5.19. Similarly as
in Sections 3.6.3 and 3.7.2, this requires us to consider several balanced templates,
however, it again suffices to essentially only consider a fixed balanced template (A, I),
see Observation 3.16.1 below. Moreover, we may assume that A \ A[I] ̸= ∅ as otherwise,
for all ψ : I ↪→ VH and 0 ≤ i ≤ i⋆, we have ΦA,ψ = (1 ± ζδ)φ̂A,I as a consequence of
Lemma 3.5.8. Overall, our approach is similar as in Sections 3.6.3 and 3.7.2.

Observation 3.16.1. For (A, I) ∈ B and ψ : I ↪→ VH, let

τA,ψ := min{i ≥ 0 : ΦA,ψ ̸= (1± ζδ)φ̂A,I}.

Then,

P[τB ≤ τ̃⋆ ∧ i⋆] ≤
∑

(A,I)∈B : A\A[I]̸=∅,
ψ : I↪→VH

P[τA,ψ ≤ τ̃⋆ ∧ iδ
1/2

A,I ∧ i⋆].

Fix (A, I) ∈ B with A \ A[I] ̸= ∅ and ψ : I ↪→ VH and for i ≥ 0, let

ξ1(i) := ζδφ̂A,I and ξ0(i) := (1− δ2)ξ1

and define the stopping time

τ := min{i ≥ 0 : ΦA,ψ ̸= φ̂A,I ± ξ1}.

We only expect tight concentration of ΦA,ψ around φ̂A,I as long as we expect ΦA,ψ to

be sufficiently large, that is up to step iδ
1/2

A,I . Formally, in this section it is our goal

to obtain an upper bound for the probability that τ ≤ τ̃⋆ ∧ iδ1/2A,I ∧ i⋆ and hence the

minimum iδ
1/2

A,I ∧ i⋆ often plays the role that i⋆ plays in Sections 3.6.3 and 3.7.2.
Define the critical intervals

I−(i) := [φ̂A,I − ξ1, φ̂A,I − ξ0] and I+(i) := [φ̂A,I + ξ0, φ̂A,I + ξ1].
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For −+ ∈ {−,+}, let
Y −+(i) := −+(ΦA,ψ − φ̂A,I)− ξ1.

For i0 ≥ 0 define the stopping time

τ−+i0 := min{i ≥ i0 : ΦA,ψ /∈ I−+}

and for i ≥ i0, let

Z−+
i0

(i) := Y −+(i0 ∨ (i ∧ τ−+i0 ∧ τ̃
⋆ ∧ iδ1/2A,I ∧ i⋆)).

Let

σ−+ := min{j ≥ 0 : −+(ΦA,ψ − φ̂A,I) ≥ ξ0 for all j ≤ i < τ̃⋆ ∧ iδ1/2A,I ∧ i⋆} ≤ τ̃⋆ ∧ iδ
1/2

A,I ∧ i⋆.

With this setup, similarly as in Sections 3.6.3 and 3.7.2, it in fact suffices to consider the
evolution of Z−+

σ−+(σ−+), Z−+
σ−+(σ−+ + 1), . . ..

Observation 3.16.2. {τ ≤ τ̃⋆ ∧ iδ1/2A,I ∧ i⋆} ⊆ {Z−
σ−(i⋆) > 0} ∪ {Z+

σ+(i⋆) > 0}.

We again use supermartingale concentration techniques to show that the probabilities
of the events on the right in Observation 3.16.2 are sufficiently small. More specifically,
for this section, we use Lemma 2.9.4.

3.16.1 Trend

Here, we prove that for all −+ ∈ {−,+} and i0 ≥ 0, the expected one-step changes of the
process Z−+

i0
(i0), Z

−+
i0

(i0 + 1), . . . are non-positive. Lemma 3.5.11 already yields estimates
for the one-step changes of the relevant deterministic trajectory, in Lemma 3.16.4 we
estimate the one-step changes of the error term that we use in this section. Then we
state Lemma 3.16.5 where we provide a precise estimate for the expected one-step change
of the non-deterministic part that holds whenever the removal process was well-behaved
up to the step we consider. Finally, combining these estimates shows that the above
process is indeed a supermartingale (see Lemma 3.16.6).

Observation 3.16.3. Extend p̂ and ξ1 to continuous trajectories defined on the whole
interval [0, i⋆ + 1] using the same expressions as above. Then, for x ∈ [0, i⋆ + 1],

ξ′1(x) = −(|A| − |A[I]| − δρF
2 )|F|k! ξ1(x)

nkp̂(x)
,

ξ′′1 (x) = −(|A| − |A[I]| − δρF
2 )(|A| − |A[I]| − δρF

2 − 1)|F|2(k!)2ξ1(x)

n2kp̂(x)2
.

Lemma 3.16.4. Let 0 ≤ i ≤ i⋆ and X := {i ≤ τ∅}. Then,

∆ξ1 =X −
(
|A| − |A[I]| − δρF

2

) |F|ξ1
H
± ζξ1

H
.
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Proof. This is a consequence of Taylor’s theorem. In detail, we argue as follows.
Together with Observation 3.16.3, Lemma 2.9.10 yields

∆ξ1 = −
(
|A| − |A[I]| − δρF

2

) |F|k! ξ1
nkp̂

± max
x∈[i,i+1]

ξ1(x)

δn2kp̂(x)2
.

We investigate the first term and the maximum separately. Using Lemma 3.5.7, we have

−
(
|A| − |A[I]| − δρF

2

) |F|k! ξ1
nkp̂

=X −
(
|A| − |A[I]| − δρF

2

) |F|ξ1
H

.

Furthermore, using Lemma 3.5.6, Lemma 3.5.7 and Lemma 3.5.9 yields

max
x∈[i,i+1]

ξ1(x)

δn2kp̂(x)2
≤ ξ1
δn2kp̂(i+ 1)2

≤ ξ1
δ2n2kp̂2

≤X
ξ1

δ2H2
≤ ζ2+2ε2ξ1

δ2H
≤ ζ2+ε

2
ξ1

H
.

Thus we obtain the desired expression for ∆ξ1.

Lemma 3.16.5. Let 0 ≤ i ≤ iδ1/2A,I ∧ i⋆ and X := {i < τ̃⋆}. Then,

Ei[∆ΦA,ψ] =X −(|A| − |A[I]|) |F|
H

ΦA,ψ ±
ζ1/2φ̂A,I

H
.

Proof. Fix f ∈ F . Lemma 3.5.18 entails

Ei[∆ΦA,ψ] =X −
1

H∗

∑
φ∈Φ∼

A,ψ

(( ∑
e∈A\A[I]

dH∗(φ(e))
)
± |A|2ζφ̂F ,f

)
.

From Lemma 3.5.17, for all e ∈ H, we obtain

dH∗(e) =X
|F|k! φ̂F ,f

aut(F)
± 1

δ
|F|k! ζφ̂F ,f .

Thus, due to Lemma 3.5.7, we have

Ei[∆ΦA,ψ] =X −
1

H∗ΦA,ψ

(
(|A| − |A[I]|) |F|k! φ̂F ,f

aut(F)
± 1

δ2
ζφ̂F ,f

)
= −|F|k! φ̂F ,f

aut(F)H∗

(
(|A| − |A[I]|)ΦA,ψ ±

1

δ3
ζΦA,ψ

)
=X −(1± ζ1+ε4)

|F|
H

(
(|A| − |A[I]|)ΦA,ψ ±

1

δ3
ζΦA,ψ

)
= −(|A| − |A[I]|) |F|

H
ΦA,ψ ±

ζΦA,ψ
δ4H

=X −(|A| − |A[I]|) |F|
H

ΦA,ψ ±
ζ1/2φ̂A,I

H
,

which completes the proof.

Lemma 3.16.6. Let 0 ≤ i0 ≤ i and −+ ∈ {−,+}. Then, Ei[∆Z−+
i0

] ≤ 0.
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Proof. Suppose that i ≤ iδ
1/2

A,I ∧ i⋆ and let X := {i < τ−+i0 ∧ τ̃⋆}. We have Ei[∆Z−+
i0

] =X c

0 and Ei[∆Z−+
i0

] =X Ei[∆Y −+], so it suffices to obtain Ei[∆Y −+] ≤X 0. Combining
Lemma 3.5.11, Lemma 3.16.4 and Lemma 3.16.5, we obtain

Ei[∆Y −+] = −+(Ei[∆ΦA,ψ]−∆φ̂A,I)−∆ξ1

≤X −+
(
−(|A| − |A[I]|) |F|

H
ΦA,ψ + (|A| − |A[I]|) |F|

H
φ̂A,I

)
+

(
|A| − |A[I]| − δρF

2

) |F|ξ1
H

+
ζ1/3φ̂A,I

H

≤ −|F|
H

(
−+(|A| − |A[I]|)(ΦA,ψ − φ̂A,I)−

(
|A| − |A[I]| − δρF

2

)
ζδφ̂A,I

− ζ1/3φ̂A,I

)
≤X −

|F|φ̂A,I
H

(
(|A| − |A[I]|)(1− δ2)ζδ −

(
|A| − |A[I]| − δρF

2

)
ζδ − ζ1/3

)
= −|F|φ̂A,I

H

(
−(|A| − |A[I]|)δ2ζδ +

δρF
2
ζδ − ζ1/3

)
≤ 0,

which completes the proof.

3.16.2 Boundedness

Here, similarly as in Sections 3.6.3 and 3.7.2, we obtain suitable bounds for the absolute
one-step changes of the processes Y −+(0), Y −+(1), . . . and Z−+

i0
(i0), Z

−+
i0

(i0 + 1), . . . (see
Lemmas 3.16.7 and 3.16.8) as well as for the expected absolute one-step changes of these
processes (see Lemma 3.16.9 and Lemma 3.16.10). To obtain these bounds, we argue
similarly as in Section 3.6.3.

Lemma 3.16.7. Let 0 ≤ i0 ≤ i ≤ iδ
1/2

A,I ∧ i⋆, −+ ∈ {−,+} and X := {i < τB ∧ τB′}.
Then, |∆Y −+| ≤X ζ(i0)

8δφ̂A,I(i0).

Proof. From Lemma 3.5.11 and Lemma 3.16.4, we obtain

|∆Y −+| ≤ |∆ΦA,ψ|+ |∆φ̂A,I |+ |∆ξ1| ≤ |∆ΦA,ψ|+ 2
|A||F|φ̂A,I

H
+ 2
|A||F|ξ1

H
.

Hence, since A \ A[I] ̸= ∅ implies ζ8δφ̂A,I ≤ ζ(i0)8δφ̂A,I(i0), by Lemma 3.5.9 it suffices
to show that

|∆ΦA,ψ| ≤X ζ9δφ̂A,I ,

which we obtain as a consequence of Lemma 3.5.16.
To this end, note that for all (B, I) ⊆ (A, I) with VB ̸= I, since (A, I) is balanced, we

have ρB,I ≤ ρA,I and thus using Lemma 3.5.12, we obtain

φ̂B,I = (np̂ρB,I )|VB|−|I| ≥ (np̂ρA,I )|VB|−|I| = φ̂
(|VB|−|I|)/(|VA|−|I|)
A,I ≥ φ̂10δ1/2

A,I ≥ ζ−10δ

2
.
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Hence, Lemma 3.5.16 implies

|∆ΦA,ψ| ≤
∑

e∈A\A[I]

|{φ ∈ Φ∼
A,ψ : φ(e) ∈ F0(i+ 1)}| ≤X |A| · 4k! |F|(log n)αA,I ζ10δφ̂A,I

≤ ζ9δφ̂A,I ,

which completes the proof.

Lemma 3.16.8. Let 0 ≤ i0 ≤ i and −+ ∈ {−,+}. Then, |∆Z−+
i0
| ≤ ζ(i0)

8δφ̂A,I(i0).

Proof. This is an immediate consequence of Lemma 3.16.7.

Lemma 3.16.9. Let 0 ≤ i ≤ iδ1/2A,I ∧ i⋆, −+ ∈ {−,+} and X := {i < τ̃⋆}. Then,

Ei[|∆Y −+|] ≤X
φ̂A,I
ζ5δnkp̂

.

Proof. From Lemma 3.5.11 and Lemma 3.16.4, we obtain

Ei[|∆Y −+|] ≤ Ei[|∆ΦA,I |] + |∆φ̂A,I |+ |∆ξ1| ≤ Ei[|∆ΦA,I |] + 2
|A||F|φ̂A,I

H
+ 2
|A||F|ξ1

H
.

Hence, since A \ A[I] ̸= ∅ implies

φ̂A,I
ζ5δnkp̂

≤ φ̂A,I(i0)

ζ(i0)5δnkp̂(i0)
,

by Lemma 3.5.7 implies that it suffices to show that

Ei[|∆ΦA,I |] ≤
φ̂A,I
ζ4δnkp̂

.

We obtain this as a consequence of Lemma 3.5.14 and Lemma 3.5.16.
We argue similarly as in the proof of Lemma 3.6.28. For e ∈ A \ A[I], from all

subtemplates (B, I) ⊆ (A, I) with e ∈ B choose (Be, I) such that φ̂Be,I is minimal.
Furthermore, for every subtemplate (B, I) ⊆ (A, I), let

Φe
B,ψ := |{φ ∈ Φ∼

B,ψ : φ(e) ∈ F0(i+ 1)}|.
Lemma 3.5.16 yields

Φe
A,I ≤X 2k! |F|(log n)αA,I∪e

φ̂A,I
φ̂Be,I

,

so we obtain

|∆ΦA,ψ| ≤
∑

e∈A\A[I]

Φe
A,ψ =

∑
e∈A\A[I]

1{ΦeA,ψ≥1}Φ
e
A,ψ

≤X 2k! |F|(log n)αA,I∪eφ̂A,I
∑

e∈A\A[I]

1{ΦeA,ψ≥1}

φ̂Be,I
≤ φ̂A,I

ζδ

∑
e∈A\A[I]

1{ΦeA,ψ≥1}

φ̂Be,I

≤ φ̂A,I
ζδ

∑
e∈A\A[I]

1{ΦeBe,ψ≥1}

φ̂Be,I
≤ φ̂A,I

ζδ

∑
e∈A\A[I]

∑
φ∈Φ∼

Be,ψ

1{φ(e)∈F0(i+1)}

φ̂Be,I
.

(3.16.1)
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For all e ∈ H, f ∈ F and ψ′ : f ∼−→ e, we have ΦF ,ψ′ =X (1± δ−1ζ)φ̂F ,f . Furthermore, we

have H∗ =X (1± ζ1+ε3)ĥ∗. Thus, using Lemma 3.5.17, for all e ∈ A\A[I] and φ ∈ Φ∼
Be,ψ,

we obtain

Pi[φ(e) ∈ F0(i+ 1)] =
dH∗(φ(e))

H∗ ≤X
2|F|k! φ̂F ,f

H∗ ≤X
4|F|k! φ̂F ,f

ĥ∗
≤ 1

ζδnkp̂
.

Combining this with (3.16.1) yields

Ei[|∆ΦA,I |] ≤X
φ̂A,I
ζδ

∑
e∈A\A[I]

∑
φ∈Φ∼

Be,I

Pi[φ(e) ∈ F0(i+ 1)]

φ̂Be,I
≤X

φ̂A,I
ζ2δnkp̂

∑
e∈A\A[I]

ΦBe,I
φ̂Be,I

.

This shows that it suffices to prove that ΦBe,I ≤X φ̂Be,I/ζ
δ, which we obtain as a

consequence of Lemma 3.5.14 as follows. First, note that since (A, I) is balanced, for
all e ∈ A \ A[I] and (C, I) ⊆ (Be, I) ⊆ (A, I), we have ρC,I ≤ ρA,I and thus

φ̂C,I = (np̂ρC,I )|VC |−|I| ≥ (np̂ρA,I )|VC |−|I| = φ̂
(|VC |−|I|)/(|VA|−|I|)
A,I .

As Lemma 3.5.12 implies φ̂A,I ≥ (1 − n−ε3)ζ−δ
1/2 ≥ 1, this entails φ̂C,I ≥ 1 and so

Lemma 3.5.14 indeed yields

ΦBe,I ≤X 2(log n)αBe,I φ̂Be,I ≤
1

ζδ
φ̂Be,I ,

which completes the proof.

Lemma 3.16.10. Let 0 ≤ i0 ≤ i⋆ and −+ ∈ {−,+}. Then,
∑

i≥i0 Ei[|∆Z
−+
i0
|] ≤

φ̂A,I(i0)/ζ(i0)
5δ.

Proof. Lemma 3.16.9 entails∑
i≥i0

Ei[|∆Z−+
i0
|] =

∑
i0≤i≤i⋆−1

Ei[|∆Z−+
i0
|] ≤ (i⋆ − i0)

φ̂A,I(i0)

ζ(i0)5δnkp̂(i0)
.

Since

i⋆ − i0 ≤
ϑnk

|F|k!
− i0 =

nkp̂(i0)

|F|k!
≤ nkp̂(i0),

this completes the proof.

3.16.3 Supermartingale concentration

This section follows a similar structure as Sections 3.6.3 and 3.7.2. Lemma 3.16.11
is the final ingredient that we use for our application of Lemma 2.9.4 in the proof
of Lemma 3.16.12 where we show that the probabilities of the events on the right in
Observation 3.16.2 are indeed small.

Lemma 3.16.11. Let −+ ∈ {−,+}. Then, Z−+
σ−+(σ−+) ≤ −δ3ξ1(σ−+).
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Proof. Lemma 3.5.4 implies τ̃⋆ ≥ 1 and we have iδ
1/2

A,I ≥ 1. Hence, we have τ̃⋆∧iδ1/2A,I ∧i⋆ ≥ 1

and since for i := 0, Lemma 3.5.4 also implies −+(ΦA,ψ − φ̂A,I) ≤ ξ0, we have σ−+ ≥ 1.
Thus, by definition of σ−+, for i := σ−+− 1, we have −+(ΦA,ψ − φ̂A,I) ≤ ξ0 and thus

Z−+
i = −+(ΦA,ψ − φ̂A,I)− ξ1 ≤ −δ2ξ1.

Furthermore, since σ−+ ≤ τB ∧ τB′ , we may apply Lemma 3.16.7 to obtain

Z−+
σ−+(σ−+) = Z−+

i + ∆Y −+ ≤ Z−+
i + ζ8δφ̂A,I ≤ −δ2ξ1 + ζ8δφ̂A,I ≤ −δ3ξ1.

Since ∆ξ1 ≤ 0, this completes the proof.

Lemma 3.16.12. P[τB ≤ τ̃⋆ ∧ i⋆] ≤ exp(−nδ2).

Proof. Considering Observation 3.16.1, it suffices to show that

P[τ ≤ τ̃⋆ ∧ iδ1/2A,I ∧ i⋆] ≤ exp(−n2δ2).

Hence, by Observation 3.16.2, it suffices to show that for −+ ∈ {−,+}, we have

P[Z−+
σ−+(i⋆) > 0] ≤ exp(−n3δ2).

Due to Lemma 3.16.11, we have

P[Z−+
σ−+(i⋆) > 0] ≤ P[Z−+

σ−+(i⋆)− Z−+
σ−+(σ−+) ≥ δ3ξ1(σ−+)] ≤

∑
0≤i≤i⋆

P[Z−+
i (i⋆)− Z−+

i ≥ δ3ξ1].

Thus, for 0 ≤ i ≤ i⋆, it suffices to obtain

P[Z−+
i (i⋆)− Z−+

i ≥ δ3ξ1] ≤ exp(−n4δ2).

We show that this bound is a consequence of Lemma 2.9.4.
Let us turn to the details. Lemma 3.16.6 shows that Z−+

i (i), Z−+
i (i+ 1), . . . is a super-

martingale, while Lemma 3.16.8 provides the bound |∆Z−+
i (j)| ≤ ζ8δφ̂A,I for all j ≥ i

and Lemma 3.16.10 provides the bound
∑

j≥i Ej [|∆Z−+
i (j)|] ≤ ζ−5δφ̂A,I . Hence, we may

apply Lemma 2.9.4 such that using Lemma 3.5.8, we obtain

Pi[Z−+
i (i⋆)− Z−+

i > δ3ξ1] ≤ exp

(
−

δ6ζ2δφ̂2
A,I

2ζ8δφ̂A,I(δ3ζδφ̂A,I + ζ−5δφ̂A,I)

)
≤ exp(δ7ζ−δ)

≤ exp(−n4δ2),

which completes the proof.
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3.17 Counting strictly balanced templates

Lemma 3.5.19 (ii) states that for a balanced template (A, I) ∈ B and 0 ≤ i ≤ i⋆, the
number ΦA,I behaves as expected as long as the corresponding trajectory still suggests a

significant number of embeddings in the sense that i ≤ iδ
1/2

A,I . In this section, our goal
is to extend this guarantee that the number of embeddings is typically concentrated
around the trajectory also beyond step iδ

1/2

A,I up to step i0A,I and also if iδ
1/2

A,I = 0 subject to
the following two restrictions. First, we obtain this guarantee only for strictly balanced
templates (A, I) with i0A,I ≥ 1 and second, we allow larger relative deviations from the
trajectory compared to Lemma 3.5.19 (ii). Formally, for this section, we assume the
setup that we used in Section 3.5 to state Lemma 3.5.19 and show that the probability
that τB′ ≤ τ̃⋆ ∧ i⋆ is small. Similarly as in Sections 3.6.3 and 3.7.2 we may again
restrict our attention to only one fixed strictly balanced template (A, I) with I ≠ VA
and iδ

1/2

A,I ≤ i⋆, see Observation 3.17.1. Note that I ̸= VA together with iδ
1/2

A,I ≤ i⋆ in
particular entails A \ A[I] ̸= ∅. Overall, our approach is similar as in Sections 3.6.3

and 3.7.2, however, the fact that here we are only interested in steps i ≥ iδ1/2A,I leads to
a slightly different setup where we intuitively shift the beginning of our considerations
from step 0 to step iδ

1/2

A,I . To control the initial situation at this shifted start, we rely on
Lemma 3.5.19 (ii).

Observation 3.17.1. For (A, I) ∈ B′ and ψ : I ↪→ VH, let

τA,ψ := min{i ≥ iδ1/2A,I : ΦA,ψ ̸= (1± (log n)αA,I φ̂−δ1/2
A,I )φ̂A,I}.

Then,

P[τB′ ≤ τ̃⋆ ∧ i⋆] ≤
∑

(A,I)∈B′ : I ̸=VA and iδ
1/2

A,I ≤i⋆
ψ : I↪→VH

P[τA,ψ ≤ τ̃⋆ ∧ i0A,I ∧ i⋆].

Fix (A, I) ∈ B′ with I ̸= VA and iδ
1/2

A,I ≤ i⋆ and hence A \ A[I] ̸= ∅. Let ψ : I ↪→ VH
and for i ≥ 0, let

ξ1(i) := (log n)αA,I φ̂1−δ1/2
A,I , ξ0(i) := (1− δ)ξ1

and define the stopping time

τ := min{i ≥ iδ1/2A,I : ΦA,ψ ̸= φ̂A,I ± ξ1}.

Define the critical intervals

I−(i) := [φ̂A,I − ξ1, φ̂A,I − ξ0], I+(i) := [φ̂A,I + ξ0, φ̂A,I + ξ1].

For −+ ∈ {−,+}, let
Y −+(i) := −+(ΦA,ψ − φ̂A,I)− ξ1.

For i0 ≥ iδ1/2A,I , define the stopping time

τ−+i0 := min{i ≥ i0 : ΦA,ψ /∈ I−+}
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and for i ≥ i0, let

Z−+
i0

(i) := 1
{iδ1/2A,I <τB}

Y −+(i0 ∨ (i ∧ τ−+i0 ∧ τ̃
⋆ ∧ i0A,I ∧ i⋆)).

Let

σ−+ := min{j ≥ iδ1/2A,I : −+(ΦA,ψ − φ̂A,I) ≥ ξ0 for all j ≤ i < τ̃⋆ ∧ i0A,I ∧ i⋆} ≤ τ̃⋆ ∧ i0A,I ∧ i⋆.

With this setup, similarly as in Section 3.6.3 and Section 3.7.2, it in fact again suffices to
consider the evolution of Z−+

σ−+(σ−+), Z−+
σ−+(σ−+ + 1), . . .. Indeed, we have

{τ ≤ τ̃⋆ ∧ i0A,I ∧ i⋆} ⊆ {τB ≤ iδ
1/2

A,I and τ ≤ τ̃⋆ ∧ i0A,I ∧ i⋆}
∪{Z−

σ−(i⋆) > 0} ∪ {Z+
σ+(i⋆) > 0}

⊆ {iδ1/2A,I ≤ τ ≤ τ̃⋆ ≤ τB ≤ iδ
1/2

A,I } ∪ {Z−
σ−(i⋆) > 0} ∪ {Z+

σ+(i⋆) > 0}
⊆ {τB ≤ τ̃⋆ ∧ iδ

1/2

A,I } ∪ {Z−
σ−(i⋆) > 0} ∪ {Z+

σ+(i⋆) > 0}

and due to iδ
1/2

A,I ≤ i⋆, this leads to the following observation.

Observation 3.17.2. {τ ≤ τ̃⋆∧ i0A,I ∧ i⋆} ⊆ {τB ≤ τ̃⋆∧ i⋆}∪{Z−
σ−(i⋆) > 0}∪{Z+

σ+(i⋆) >
0}.

Lemma 3.5.19 (ii) shows that the probability of the first event on the right in Ob-
servation 3.17.2 is sufficiently small and we again use supermartingale concentration
techniques to show that the probabilities of the other two events are also sufficiently
small. More specifically, for this section, we use Lemma 2.9.4.

3.17.1 Trend

Here, we prove that for all −+ ∈ {−,+} and i0 ≥ iδ1/2A,I , the expected one-step changes of the

process Z−+
i0

(i0), Z
−+
i0

(i0 + 1), . . . are non-positive. Lemma 3.5.11 already yields estimates
for the one-step changes of the relevant deterministic trajectory, in Lemma 3.17.4 we
estimate the one-step changes of the error term that we use in this section. Furthermore,
Lemma 3.16.5 provides a precise estimate for the expected one-step change of the non-
deterministic part of the random process. Combining these estimates shows that the
process indeed is a supermartingale (see Lemma 3.17.5).

Observation 3.17.3. Extend p̂ and ξ1 to continuous trajectories defined on the whole
interval [0, i⋆ + 1] using the same expressions as above. Then, for x ∈ [0, i⋆ + 1],

ξ′1(x) = −(1− δ1/2)(|A| − |A[I]|)|F|k! ξ1(x)

nkp̂(x)
,

ξ′′1 (x) = −(1− δ1/2)(|A| − |A[I]|)((1− δ1/2)(|A| − |A[I]|)− 1)|F|2(k!)2ξ1(x)

n2kp̂(x)2
,
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Lemma 3.17.4. Let 0 ≤ i ≤ i⋆ and X := {i ≤ τ∅}. Then,

∆ξ1 =X −(1− δ1/2)(|A| − |A[I]|) |F|ξ1
H
±
φ̂1−δ1/2
A,I
H

.

Proof. This is a consequence of Taylor’s theorem. In detail, we argue as follows.
Together with Observation 3.17.3, Lemma 2.9.10 yields

∆ξ1 = −(1− δ1/2)(|A| − |A[I]|)|F|k! ξ1
nkp̂

± max
x∈[i,i+1]

ξ1(x)

δn2kp̂(x)2
.

We investigate the first term and the maximum separately. Using Lemma 3.5.7, we have

−(1− δ1/2)(|A| − |A[I]|)|F|k! ξ1
nkp̂

=X −(1− δ1/2)(|A| − |A[I]|) |F|ξ1
H

.

Furthermore, precisely as at the end of the proof of Lemma 3.16.4, we obtain

max
x∈[i,i+1]

ξ1(x)

δn2kp̂(x)2
≤X

ζ2+ε
2
ξ1

H
.

With Lemma 3.5.8, this completes the proof.

Lemma 3.17.5. Let iδ
1/2

A,I ≤ i0 ≤ i and −+ ∈ {−,+}. Then, Ei[∆Z−+
i0

] ≤ 0.

Proof. Suppose that i ≤ i⋆ and let X := {i < τ−+i0 ∧ τ̃⋆}. We have Ei[∆Z−+
i0

] =X c 0

and Ei[∆Z−+
i0

] =X Ei[∆Y −+], so it suffices to obtain Ei[∆Y −+] ≤X 0. Due to Lemma 3.5.8,

we have ζ1/2 ≤ n−δ1/2|VA| ≤ φ̂−δ1/2
A,I . Hence, Lemma 3.5.11 yields (with room to spare)

∆φ̂A,I = −(|A| − |A[I]|) |F|φ̂A,I
H

±
φ̂1−δ1/2
A,I
H

.

Arguing precisely as in the proof of Lemma 3.16.5 for the first equality, we obtain

Ei[∆ΦA,ψ] =X −(|A| − |A[I]|) |F|
H

ΦA,ψ ±
ζ1/2φ̂A,I

H
= −(|A| − |A[I]|) |F|

H
ΦA,ψ ±

φ̂1−δ1/2
A,I
H

.

Combining these two estimates with Lemma 3.17.4, we obtain

Ei[∆Y −+] = −+(Ei[∆ΦA,ψ]−∆φ̂A,I)−∆ξ1

≤X −+
(
−(|A| − |A[I]|) |F|

H
ΦA,ψ + (|A| − |A[I]|) |F|

H
φ̂A,I

)
+(1− δ1/2)(|A| − |A[I]|) |F|ξ1

H
+

3φ̂1−δ1/2
A,I
H

≤ −|F|(|A| − |A[I]|)
H

(−+(ΦA,ψ − φ̂A,I)− (1− δ1/2)ξ1 − 3φ̂1−δ1/2
A,I )

≤X −
|F|(|A| − |A[I]|)ξ1

H
((1− δ)− (1− δ1/2)− δ) ≤ 0,

which completes the proof.
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3.17.2 Boundedness

Here, similarly as in Sections 3.6.3 and 3.7.2, we obtain suitable bounds for the absolute
one-step changes of the processes Y −+(0), Y −+(1), . . . and Z−+

i0
(i0), Z

−+
i0

(i0 + 1), . . . (see
Lemmas 3.17.7 and 3.17.8) as well as the expected absolute one-step changes of these
processes (see Lemma 3.17.9 and Lemma 3.17.10). The fact that we analyze the evolution
potentially even until φ̂A,I is essentially 1 often plays an important role in this section.
Furthermore, we crucially exploit that (A, I) is strictly balanced and not just balanced.

Lemma 3.17.6. Let iδ
1/2

A,I ≤ i ≤ i⋆. Fix e ∈ A \ A[I] and (B, I) ⊆ (A, I) with e ∈ B.
Then, φ̂A,I ≤ φ̂B,I .

Proof. If φ̂A,I ≤ 1, then

φ̂A,I ≤ φ̂(|VB|−|I|)/(|VA|−|I|)
A,I = (np̂ρA,I )|VB|−|I| ≤ (np̂ρB,I )|VB|−|I| = φ̂B,I .

Hence, we may assume φ̂A,I ≥ 1. Furthermore, we may assume that B ̸= A.
Since (A, I) is strictly balanced, we have ρB,I + δ1/4 ≤ ρA,I . This allows us to obtain

φ̂A,I = (np̂ρA,I )|VB|−|I|(np̂ρA,I )|VA|−|VB| = (np̂ρA,I )|VB|−|I|φ̂
(|VA|−|VB|)/(|VA|−|I|)
A,I

≤ (np̂ρB,I+δ
1/4

)|VB|−|I|φ̂A,I ≤ φ̂B,I · p̂δ
1/4
φ̂A,I .

Hence, it suffices to show that p̂δ
1/4 ≤ 1/φ̂A,I . Indeed, using Lemma 3.5.8 and the fact

that φ̂A,I ≤ ζ−δ
1/2

, we obtain

p̂δ
1/4 ≤ p̂δ1/3(|A|−|A[I]|) = n−δ

1/3(|VA|−|I|)φ̂δ
1/3

A,I ≤ n−δ
1/3
φ̂A,I ≤ ζδ

1/3
φ̂A,I

= (ζδ
1/2

)δ
−1/6

φ̂A,I ≤ φ̂1−δ−1/6

A,I ≤ φ̂−1
A,I ,

which completes the proof.

Lemma 3.17.7. Let iδ
1/2

A,I ≤ i ≤ i⋆, −+ ∈ {−,+} and X := {i < τB ∧ τB′}. Then,

|∆Y −+| ≤X
(log n)αA,I/2

δ2 log n
.

Proof. From Lemma 3.5.11 and Lemma 3.17.4, using the fact that φ̂A,I ≤ ζ−δ
1/2

, we
obtain

|∆Y −+| ≤ |∆ΦA,ψ|+ |∆φ̂A,I |+ |∆ξ1| ≤ |∆ΦA,ψ|+ 2
|A||F|φ̂A,I

H
+ 2
|A||F|ξ1

H

≤ |∆ΦA,ψ|+ 2
|A||F|ζ−δ1/2

H
+ 2
|A||F|(log n)αA,I ζ−δ

1/2(1−δ1/2)

H

≤ |∆ΦA,ψ|+ 3
|A||F|
ζδ

1/2
H
.
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Hence, Lemma 3.5.9 implies that it suffices to show that

|∆ΦA,ψ| ≤X
(log n)αA,I/2

δ log n

which we obtain as a consequence of Lemma 3.5.16 and Lemma 3.17.6. Indeed, these
two lemmas together with Observation 3.5.1 imply

|∆ΦA,ψ| ≤
∑

e∈A\A[I]

|{φ ∈ Φ∼
A,ψ : φ(e) ∈ F0(i+ 1)}| ≤X |A| · 2k! |F|(log n)αA,I∪e

≤ (log n)αA,I/2

δ log n
,

which completes the proof.

Lemma 3.17.8. Let iδ
1/2

A,I ≤ i0 ≤ i and −+ ∈ {−,+}. Then,

|∆Z−+
i0
| ≤ (log n)αA,I/2

δ2 log n
.

Proof. This is an immediate consequence of Lemma 3.17.7.

Lemma 3.17.9. Let iδ
1/2

A,I ≤ i0 ≤ i ≤ i0A,I ∧ i⋆, −+ ∈ {−,+} and X := {i < τ̃⋆}. Then,

Ei[|∆Y −+|] ≤X
(log n)3αA,I/2φ̂A,I(i0)

δ5nkp̂(i0) log n
.

Proof. From Lemma 3.5.11 and Lemma 3.17.4, we obtain

Ei[|∆Y −+|] ≤ Ei[|∆ΦA,I |] + |∆φ̂A,I |+ |∆ξ1| ≤ Ei[|∆ΦA,I |] + 2
|A||F|φ̂A,I

H
+ 2
|A||F|ξ1

H
.

SinceA\A[I] ̸= ∅ implies φ̂A,I/p̂ ≤ φ̂A,I(i0)/p̂(i0), due to Lemma 3.5.12 and Lemma 3.5.7,
it suffices to show that

Ei[|∆ΦA,I |] ≤
(log n)3αA,I/2φ̂A,I

δ4nkp̂ log n
.

Arguing similarly as in the proof of 3.6.28, we obtain this as a consequence of Lemma 3.5.16
and Lemma 3.17.6.

To this end, for e ∈ A \ A[I], let

Φe
A,I := |{φ ∈ Φ∼

A,I : φ(e) ∈ F0(i+ 1)}|.

Using Observation 3.5.1, Lemma 3.5.16 together with Lemma 3.17.6 yields

Φe
A,I ≤X 2k! |F|(log n)αA,I∪e ≤ (log n)αA,I/2

δ log n
,
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so we obtain

|∆ΦA,I | ≤
∑

e∈A\A[I]

Φe
A,I =

∑
e∈A\A[I]

1{ΦeA,I≥1}Φ
e
A,I ≤X

(log n)αA,I/2

δ log n

∑
e∈A\A[I]

1{ΦeA,I≥1}

≤ (log n)αA,I/2

δ log n

∑
e∈A\A[I]

∑
φ∈Φ∼

A,I

1{φ(e)∈F0(i+1)}.

(3.17.1)
For all e ∈ H, f ∈ F and ψ′ : f ↪→ e, we have ΦF ,ψ′ =X (1± δ−1ζ)φ̂F ,f . Furthermore, we

have H∗ =X (1± ζ1+ε3)ĥ∗. Thus, using Lemma 3.5.17, for all e ∈ A \A[I] and φ ∈ Φ∼
A,I ,

we obtain

Pi[φ(e) ∈ F0(i+ 1)] =
dH∗(φ(e))

H∗ ≤X
2|F|k! φ̂F ,f

H∗ ≤X
4|F|k! φ̂F ,f

ĥ∗
≤ 1

δnkp̂
.

Combining this with (3.17.1) and using the fact that ΦA,I =X (1± (log n)αA,I φ̂−δ1/2
A,I )φ̂A,I

as well as Lemma 3.5.12 yields

Ei[|∆ΦA,I |] ≤X
(log n)αA,I/2

δ2nkp̂ log n

∑
e∈A\A[I]

ΦA,I ≤
(log n)αA,I/2

δ3nkp̂ log n
ΦA,I

≤X
(log n)αA,I/2

δ3nkp̂ log n
(1 + (log n)αA,I φ̂−δ1/2

A,I )φ̂A,I

≤ (log n)αA,I/2

δ3nkp̂ log n
(1 + 2(log n)αA,I )φ̂A,I

≤ (log n)3αA,I/2φ̂A,I
δ4nkp̂ log n

,

which completes the proof.

Lemma 3.17.10. Let iδ
1/2

A,I ≤ i0 ≤ i⋆ and −+ ∈ {−,+}. Then,

∑
i≥i0

Ei[|∆Z−+
i0
|] ≤ (log n)3αA,I/2φ̂A,I(i0)

δ5 log n
.

Proof. Lemma 3.17.9 entails

∑
i≥i0

Ei[|∆Z−+
i0
|] =

∑
i0≤i≤i⋆−1

Ei[|∆Z−+
i0
|] ≤ (i⋆ − i0)

(log n)3αA,I/2φ̂A,I(i0)

δ5nkp̂(i0) log n
.

Since

i⋆ − i0 ≤
ϑnk

|F|k!
− i0 =

nkp̂(i0)

|F|k!
≤ nkp̂(i0),

this completes the proof.
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3.17.3 Supermartingale concentration

This section follows a similar structure as Sections 3.6.3 and 3.7.2. Lemma 3.17.11
is the final ingredient that we use for our application of Lemma 2.9.4 in the proof of
Lemma 3.17.12 where we show that the probabilities of the events on the right in Obser-
vation 3.17.2 are indeed small. One notable difference compared to the aforementioned
sections is the fact that here, our analysis does not start at step 0 but instead at step iδ

1/2

A,I .

Lemma 3.17.11. Let −+ ∈ {−,+} and X := {iδ1/2A,I < τB}. Then, Z−+
σ−+(σ−+) ≤X

−δ2ξ1(σ−+).

Proof. If i = iδ
1/2

A,I = 0, then Lemma 3.5.4 implies −+(ΦA,ψ − φ̂A,I) ≤X ξ0. If i = iδ
1/2

A,I ≥ 1,

then due to φ̂A,I ≤ ζ−δ
1/2

, we have

−+(ΦA,I − φ̂A,I) ≤X ζδφ̂A,I ≤ φ̂1−δ1/2
A,I ≤ ξ0

Hence, if σ−+ = iδ
1/2

A,I , then Z−+
σ−+ ≤X ξ0(σ−+)− ξ1(σ−+) = −δξ1(σ−+), so we may assume σ−+ ≥

iδ
1/2

A,I + 1. Then, by definition of σ−+, for i := σ−+− 1, we have −+(ΦA,ψ − φ̂A,I) ≤ ξ0 and
thus

Z−+
i = −+(ΦA,ψ − φ̂A,I)− ξ1 ≤ −δξ1.

Furthermore, since σ−+ ≤ τB ∧ τB′ ∧ i0A,I , we may apply Lemma 3.17.7 and Lemma 3.5.12
to obtain

Z−+
σ−+(σ−+) = Z−+

i + ∆Y −+ ≤ Z−+
i +

(log n)αA,I/2

δ2 log n
≤ −δξ1 +

2(log n)αA,I/2φ̂1−δ1/2
A,I

δ2 log n
≤ −δ2ξ1.

Since ∆ξ1 ≤ 0, this completes the proof.

Lemma 3.17.12. P[τB′ ≤ τ̃⋆ ∧ i⋆] ≤ exp(−(log n)3/2).

Proof. Considering Observation 3.17.1, it suffices to obtain

P[τ ≤ τ̃⋆ ∧ i0A,I ∧ i⋆] ≤ exp(−(log n)5/3).

Hence, by Observation 3.17.2 and Lemma 3.5.19 (ii), it suffices to show that for −+ ∈
{−,+}, we have

P[Z−+
σ−+(i⋆) > 0] ≤ exp(−(log n)7/4).

Using Lemma 3.17.11, we obtain

P[Z−+
σ−+(i⋆) > 0] ≤ P[Z−+

σ−+(i⋆)− Z−+
σ−+(σ−+) ≥ δ2ξ1(σ−+)] ≤

∑
iδ

1/2

A,I ≤i≤i⋆

P[Z−+
i (i⋆)− Z−+

i ≥ δ2ξ1].

Thus, for iδ
1/2

A,I ≤ i ≤ i⋆, it suffices to obtain

P[Z−+
i (i⋆)− Z−+

i ≥ δ2ξ1] ≤ exp(−(log n)9/5).
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We show that this bound is a consequence of Lemma 2.9.4.
Lemma 3.17.5 shows that Z−+

i (i), Z−+
i (i+1), . . . is a supermartingale, while Lemma 3.17.8

provides the bound

|∆Z−+
i (j)| ≤ (log n)αA,I/2

δ2 log n

for all j ≥ i and Lemma 3.17.10 provides the bound∑
j≥0

Ej [|∆Z−+
i (j)|] ≤ (log n)3αA,I/2φ̂A,I

δ5 log n
.

Observe that due to Lemma 3.5.12, we have

(log n)3αA,I/2φ̂A,I
δ5 log n

+ δ2ξ1 ≤
(log n)3αA,I/2φ̂A,I

δ5 log n
+ (log n)αA,I φ̂A,I ≤

(log n)3αA,I/2φ̂A,I
δ6 log n

.

Hence, we may apply Lemma 2.9.4 to obtain

P[Z−+
i (i⋆)− Z−+

i ≥ δ2ξ1] ≤ exp

(
−

δ4(log n)2αA,I φ̂2−2δ1/2

A,I

2δ−2(log n)αA,I/2−1 · δ−6(log n)3αA,I/2−1φ̂A,I

)
= exp(−δ13(log n)2φ̂1−2δ1/2

A,I ).

Another application of Lemma 3.5.12 shows that φ̂1−2δ1/2

A,I ≥ 1/2 and hence completes
the proof.

3.18 Further remarks

For both, the F-free process and the F-removal process, the number of edges present
at step i of the process, that is, after i iterations, is a deterministic quantity. Heuris-
tically, intuition suggests that the set of edges present at step i behaves as if it was
obtained by including every k-set of vertices independently at random with an appropriate
probability p.

For the F -free process on n vertices, we have p ≈ k! i/nk. There are approximately (1−
p)nk/k! potential edges that are not yet present. Using aut(F) to denote the number of
automorphisms of F , following the above heuristic, for every such edge e, the expected
number of copies of F that would be generated by adding e is |F|k!n|VF |−kp|F|−1/ aut(F).
Hence, the Poisson paradigm suggests that the number of potential edges that are available
for addition in a later step is approximately

(1− p) exp

(
−|F|k!n|VF |−kp|F|−1

aut(F)

)
nk

k!
.

This number becomes negligible compared to the approximate number nkp/k! of present
edges when

p =

((
aut(F)(|VF | − k)

|F|(|F| − 1)k!

) 1
|F|−1

± o(1)

)
(log n)

1
|F|−1n

− |VF|−k
|F|−1 .
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Hence, we conjecture the following.

Conjecture 3.18.1. Let k ≥ 2 and consider a strictly k-balanced k-graph F with k-
density ρ. Then, for all ε > 0, there exists n0 ≥ 0 such that for all n ≥ n0, with probability
at least 1− ε, we have

F (n,F) =

(
1

k!

(
aut(F)(|VF | − k)

|F|(|F| − 1)k!

) 1
|F|−1

± ε
)

(log n)
1

|F|−1n
k− |VF|−k

|F|−1 .

The known bounds for the case where F is a triangle, see [16,34], match this prediction
and it would be interesting to further investigate other cases. Conjecture 3.18.1 is closely
related to [15, Conjecture 13.1].

Again following the above heuristic, for the F -removal process we have p ≈ 1−|F|k! i/nk

such that again, there are approximately nkp/k! edges present. LetH∗ denote the auxiliary
hypergraph where the present edges are the vertices and where the edges sets of present
copies are the edges. Let H∗ denote the number of edges of H∗, that is the number of
remaining copies of F . We expect the 2-degrees in H∗, that is the number of edges in H∗

that contain two fixed vertices of H, to be generally negligible compared to the vertex
degrees in H∗. Hence for the probability that a fixed present copy F ′ of F is no longer
present in the next step, we estimate

(
∑

e∈F ′ dH∗(e))− |F|+ 1

H∗ .

Then, using F0,F1, . . . to denote the natural filtration associated with the process, for
the expected one-step change E[∆H∗ | Fi] of H∗, we obtain

E[∆H∗ | Fi] ≈ −
∑

F ′∈H∗

(
∑

e∈F ′ dH∗(e))− |F|+ 1

H∗ = − 1

H∗

(∑
d≥0

dH∗(e)2
)

+ |F| − 1.

We expect the degrees in H∗ to be Poisson distributed and mutually independent. Thus,
since the average vertex degree in H∗ is approximately λ := |F|k!H∗/(nkp), we expect
that for all d ≥ 0, the random variable |{e ∈ H : dH∗(e) = d}| is concentrated around

nkp

k!
· λ

d exp(−λ)

d!
.

Thus, we estimate

E[∆H∗ | Fi] ≈ −
1

H∗

(∑
d≥0

d2|{e ∈ H : dH∗(e) = d}|
)

+ |F| − 1

≈ − nkp

k!H∗

(∑
d≥0

d2 · λ
d exp(−λ)

d!

)
+ |F| − 1 = − nkp

k!H∗ (λ2 + λ) + |F| − 1

= −|F|
2k!H∗

nkp
− 1.
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We expect the number of present copies to typically closely follow a deterministic
trajectory ĥ∗0, ĥ

∗
1, . . . which by our above argument should satisfy

ĥ∗i+1 − ĥ∗i ≈ −
|F|2k!ĥ∗i
nkp

− 1.

Guided by this intuition, for i ≥ 0, we obtain an expression for ĥ∗i by solving the
corresponding differential equation. Specifically, since initially the number of copies of F
in K

(n)
n is approximately n|VF |/ aut(F), we set

ĥ∗i :=
n|VF |p|F|

aut(F)
− nkp

|F|(|F| − 1)k!
.

This quantity becomes zero when

p =

((
aut(F)

|F|(|F| − 1)k!

) 1
|F|−1

± o(1)

)
n
− |VF|−k

|F|−1 .

Hence, for the F-removal process, we conjecture the following.

Conjecture 3.18.2. Let k ≥ 2 and consider a strictly k-balanced k-graph F with k-
density ρ. Then, for all ε > 0, there exists n0 ≥ 0 such that for all n ≥ n0, with probability
at least 1− ε, we have

R(n,F) =

(
1

k!

(
aut(F)

|F|(|F| − 1)k!

) 1
|F|−1

± ε
)
n
k− |VF|−k

|F|−1 .

Theorem 1.1.4 confirms the order of magnitude in this conjecture whenever H is
strictly k-balanced. It would be interesting to obtain more precise results and to confirm
the asymptotic value of the constant factor.

The F-free process where F is a diamond, which is a graph that is not strictly 2-
balanced, typically terminates with a final number of edges that has a different exponent
for the logarithmic factor compared to Conjecture 3.18.1, see [92]. Hence, for the F -free
process as well as the F-removal process, it could be interesting to further investigate
the situation for graphs or hypergraphs that are not (strictly) balanced.

In terms of applications, the conjectures above suggest that the F -free process is more
suitable for generating dense F -free graphs, however, the F -removal process might prove
to be a useful tool for decomposition and packing problems since it carefully constructs a
maximal collection of edge-disjoint copies of F . For such applications, we believe that
the fact that we do not require the initial hypergraph to be complete might be crucial.

Additionally, as we believe that such an extension could be useful for applications, we
remark that directly using Lemma 3.8.1 instead of one of the theorems makes it possible
to easily amend our analysis as follows if the goal is to show that the random hypergraphs
generated by the process typically exhibit further properties that we did not consider in
our analysis. Similarly to how we organized our analysis by using stopping times, one
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may define a stopping time τ that measures when the desired property is first violated.
Then for τ⋆ and i⋆ as defined in Lemma 3.8.1, it suffices show that P[τ ≤ τ⋆ ∧ i⋆] is small
as this entails that P[τ ∧ τ⋆ ≤ i⋆] is small and hence that the process typically runs for
at least i⋆ steps while maintaining the desired property. For example, it is easy to see
that in fact, typically a more precise estimate for the number of copies of F in every step
holds provided that the guarantees concerning the initial hypergraph are more precise.
This might be useful for counting the number of choices available for every deletion
which can in turn be useful for counting the number of F-packings in a large complete
hypergraph. Specifically, instead of only obtaining ĥ∗(i)± ζ(i)1+ε

3
as an estimate for the

number of copies present after i deletions as in our first part of the proof, it is possible
to instead obtain ĥ∗(i)± δ−6ζ(i)2 if a slightly more precise estimate holds for i = 0. To
obtain this refinement following an approach as mentioned above, it suffices use the same
argumentation that proves Lemma 3.5.19 (i) with only minor adaptations.
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This thesis consists of the results of two out of the five projects [46,47,60–62] I worked
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conducted in collaboration with Stefan Glock, Felix Joos, Jaehoon Kim and Lyuben
Lichev. In many ways, I contributed proof ideas for achieving the goals of the project,
I chose the structure of the argumentation, prepared the details and I formulated and
wrote the core parts of the manuscript the chapter is based on.

Chapter 3 closely corresponds to the article [61] about the hypergraph removal process
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