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Abstract
This thesis reports on the exploration of collective behavior in a system of few fermionic atoms.
Access to both real- and momentum space observables in combination with a high degree of
control over both particle number and interaction strength allows us to explore the emergence
of collective behavior from the bottom up - atom by atom.

Inspired by observations in high-energy physics, where hydrodynamic behavior is present in
absence of a separation of scales, we explore interaction-driven elliptic flow which is commonly
considered a smoking-gun of hydrodynamic behavior. Our measurements reveal elliptic flow in
systems of only six constituents.

Motivated by the formation of pairs of fermionic particles in system with broken translational
symmetry (such as atomic nuclei or ’dirty’ superconductors), where BCS theory does not apply,
we investigate how a spatially varying potential affects pair formation. By altering interaction
strength and particle number, we observe a transition from a regime in which pair formation
is determined by the discrete level structure of the potential to a regime in which the potential
only influences pairing by altering the local density.





Zusammenfassung
Diese Arbeit behandelt die Erforschung von kollektivem Verhalten in einem System aus wenigen,
fermionischen Atomen. Der Zugriff auf Messgrößen im Orts und Impulsraum in Kombination
mit einem hohen Maß an Kontrolle über Teilchenzahl und Wechselwirkungsstärke ermöglicht
es die Entstehung von kollektivem Verhalten zu erforschen.

Inspiriert von Beobachtungen in der Hochenergiephysik, wo hydrodynamisches Verhalten bei
fehlender Skalentrennung beobachtet wird, erforschen wir den wechselwirkungsgetriebenen el-
liptischen Fluss, der gemeinhin als Indikator für hydrodynamisches Verhalten gilt. Unsere Mes-
sungen zeigen elliptischen Fluss in Systemen die aus lediglich sechs Atomen bestehen.

Motiviert von Paarbildung zwischen Fermionen in Systemen mit gebrochener Translationssym-
metrie (wie Atomkernen oder ’schmutzigen’ Supraleitern), in denen BCS Theorie ihre Gültigkeit
verliert, untersuchen wir wie ein räumlich variierendes Potenzial die Paarbildung beeinflusst.
Durch Veränderung von Wechselwirkungsstärke und Teilchenzahl beobachten wir einen Über-
gang von einem Regime, in dem die Paarbildung durch die diskrete Level-Struktur des Poten-
zials bestimmt wird, zu einem Regime, in dem das Potenzial die Paarbildung nur durch die
Veränderung der lokale Dichte beeinflusst.
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1| Introduction

In the first place it is fair to state that we are
not experimenting with single particles, any
more than we can raise Ichthyosauria in the zoo.

Erwin Schrödinger
J. Phil. Sci 3, 233–247 (1952).

At the dawn of the computer age, William Phillips, an engineer-turned-sociology-student, no-
ticed a perplexing similarity between the differential equations describing the flow of water
and those used in macroeconomic theories. Following this insight, he rushed to his landlady’s
garage to assemble an extraordinary device. This device – dubbed the Monetary National In-
come Analogue Computer (MONIAC) – simulates the complex interplay of different economical
parameters using tanks, pipes and pumps. After calibrating it to the day’s knowledge of the
British economy, William Phillips found that the MONIAC had a precision of 2 % – primarily
limited by the finite water tightness of the contraption. In a time when computers were still
(mainly female) human beings, the MONIAC represented a remarkable breakthrough. It could
not only be used to visualize the economic system, but could also simulate the impact of dif-
ferent economic policies – a feat that was beyond the reach of human computers. Moreover, it
also included the out of equilibrium dynamics occurring when the economy transitions from one
steady state to the other – such turbulent dynamics were not describable by economic theories.
Following the prototype, roughly a dozen of these devices were built and used even by the Bank
of Guatemala and the Ford Motor Company1. [1, 2]

The MONIAC is a paradigmatic example of an analogue computer, showcasing the power of
using an analogue system in a clean and controllable environment to explore complex prob-
lems. This idea is not only pertinent to the classical world, but can also be used to explore the
quantum world. As Richard Feynman famously conjectured in 1982 [3], simulations of quan-
tum mechanical phenomena are best implemented on quantum mechanical systems. Following
the discussion of Hangleiter et al. [4], analogue quantum simulators can be divided into two
different categories: analogue quantum computers and analogue quantum emulators. Analogue
quantum computers are used to explore the formal properties of the target system. This is of-
ten achieved by implementing the target Hamiltonian on an analogue system offering a higher
degree of control than the target system. An example of an analogue quantum computer is
simulating solid state systems – described by the Hubbard Hamiltonian [5] – with ultracold
atoms in optical lattice potentials [6, 7]. Analogue quantum emulators focus on reproducing
only specific physical properties of the target system. Often, this allows to gain a deeper quali-
tative understanding of the essential mechanism underlying the physical properties. Examples
for analogue quantum emulation include simulating the dynamics in curved spacetime using

1Fortunately, none of them ever exhibited the direct feedback to the real world economy discussed in Terry
Pratchett’s fantasy novel ’Making money’.
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a two-dimensional (2D) Bose-Einstein condensate (BEC) [8] or modelling quantum effects in
photosynthesis with coupled waveguides [9, 10]. Note that in this distinction, the MONIAC
is a classical analogue computer, as it harnesses the equivalency of the differential equations
describing macroeconomics and those describing the flow of water.

In this thesis, we use few fermionic 6Li atoms to perform analogue quantum emulation of
collective behavior in various strongly interacting quantum systems. Collective behavior is
ubiquitous in nature, both in the classical and quantum world. Sardines move in synchrony
to create so-called bait balls that confuse their predators, electrons in superconductors form
coherent Cooper pairs. But what mechanisms drive this collective behavior? How does it
emerge from the few-body limit? Utilizing the high degree of control and observables accessible
in our experiment, we explore collective phenomena in systems with an intermediate number
of constituents. Here, quantum emulation is especially useful, as these systems lie beyond the
reach of both exact theoretical calculations available for few-body systems and many-body
models.

Inspired by observations in high-energy proton-proton collisions, which reveal elliptic flow – a
signature of hydrodynamic behavior – despite the absence of a separation of scales, we study
the emergence of elliptic flow in a system of few fermions. While our experiments naturally
do not capture all physical properties of proton-proton collision, the controlled environment
and the access to observables that remain elusive in high-energy nuclear collisions, allow us to
distinguish single particle and collective dynamics to study the emergence of interaction-driven
elliptic flow, atom by atom.

In the nucleus, the formation of pairs between the fermionic nucleons is strongly influenced
by the nuclear mean-field potential, which breaks translational symmetry. To gain a deeper
understanding of the influence of broken translational symmetry on pair formation, we disregard
much of the complexity inherent in the full nuclear system, such as the effects of multi-nucleon
interactions and nuclear excitations. We perform analogue quantum emulation by exploring
pairing between fermionic 6Li atoms in a harmonic oscillator potential. Our control over both
particle number and interaction strength allows us to explore how the formation of pairs is
influenced by this confining potential - from the regime where pairing is governed by the discrete
level structure to the regime where the potential only sets the local density.
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Chapter 1. Introduction

1.1 Thesis outline
Chapters 2 and 3 introduce the basic theoretical and experimental concepts used throughout
the scope of this thesis. They aim to provide an introduction aimed at readers not well-versed
in the theory of ultracold atoms or the experimental details of our cold atom experiment. A
discussion of the theoretical concepts pertinent to the individual chapters is provided in the
respective chapters.

Chapter 4 introduces the concept of matterwave manipulation used to gain access to real and
momentum space with single atom resolution. We discuss the design parameters used to opti-
mize an optical potential for accurate magnification of the initial matterwave and benchmark
its performance using systems with a known wave function. The chapter is aimed to provide
instructions for the experimental implementation of a matterwave magnification scheme.

In Chapter 5, we present our measurements on interaction-driven elliptic flow in a system of
few fermions. We observe the interacting expansion of ten fermions and compare the evolution
to different models. Additionally, we explore the emergence of interaction-driven elliptic flow
as a function of the number of constituents and interaction strength.

Chapter 6 focuses on the influence of a spatially varying potential on the formation of pairs
between two distinguishable fermions. By measuring the pair density in real and momentum
space, we can distinguish a regime at low interaction strengths, where pairs form between time-
reversed states of the potential to a regime at higher interaction strength, where the potential
only determines the local density.
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1.2. List of publications

1.2 List of publications
Most of the results presented in this thesis can be found in the following references:

• Magnifying the Wave Function of Interacting Fermionic Atoms
Sandra Brandstetter*, Carl Heintze*, Keerthan Subramanian*, Paul Hill, Philipp M. Preiss,
Maciej Gałka, Selim Jochim
arXiv: 2409.18954 (2024)

• Emergent interaction-driven elliptic flow of few fermionic atoms
Sandra Brandstetter*, Philipp Lunt*, Carl Heintze, Giuliano Giacalone, Lars H. Heyen, Maciej
Gałka, Keerthan Subramanian, Marvin Holten, Philipp M. Preiss, Stefan Floerchinger, Selim
Jochim
doi: Nature Physics 21, 52–56 (2025) arXiv: 2308.09699 (2023)

• Observation of Cooper Pairs in a Mesoscopic 2D Fermi Gas
Marvin Holten, Luca Bayha, Keerthan Subramanian, Sandra Brandstetter, Carl Heintze,
Philipp Lunt, Philipp M. Preiss, Selim Jochim
doi: Nature 606, 287-291 (2022), arXiv: 2109.11511 (2022)

Additionally, Chapter 6 is based on a paper in preparation:

• Cooper Pairing: from the surface to the bulk
Sandra Brandstetter, Carl Heintze, Fabian Brauneis, Stephanie M. Reimann, Georg M. Bruun,
Maciej Gałka, Selim Jochim
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2|Theory of ultracold quantum gases

If atoms would behave like billiard balls, you
and me would both be out of jobs.

Philipp M. Preiss
to the author, 2021

Ultracold systems are among the most used experimental platforms for simulating quantum
many-body physics in an isolated and controlled environment. Since the first realization of
a BEC in a vapor of rubidium atoms [11], a wide variety of atomic and molecular species
have been brought to quantum degeneracy. These range from the comparatively simple alkali
atoms to the significantly more complex lanthanides, such as erbium [12] and dysprosium [13],
as well as ultracold molecules [14, 15]. The choice of atomic or molecular species not only
defines the system’s quantum statistics (see Sec. 2.1) but also determines key properties such
as the nature of interactions (see Sec. 2.3). As a result, ultracold atom experiments provide
an exceptionally versatile platform for simulating a broad range of quantum phenomena. Even
within a single atomic species, diverse experimental settings allow for the exploration of vastly
different physical phenomena. For instance, fermionic 6Li atoms – used here to explore the
emergence of collective behavior – have also been employed to study the Fermi-Hubbard model
in optical lattices [16, 17] or, when coupled to a high-finesse optical cavity, to investigate light-
induced density waves [18].

This chapter provides a concise overview of the properties of fermionic 6Li atoms and the
theoretical concepts underlying this thesis, mainly aimed at readers not well versed in the theory
of ultracold atoms. Those already familiar with ultracold fermions can comfortably move on
to subsequent chapters. A more detailed discussion of specialized topics relevant to individual
chapters is presented in the respective chapters.
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2.1. Bosons and Fermions

2.1 Bosons and Fermions

Bosons

nF

Fermions

Figure 2.1: Occupation of a 1D harmonic oscillator potential at zero temperature. The
fundamental properties of indistinguishable particles are determined by their exchange symmetry.
For bosons, the total wave function is symmetric under particle exchange. Non-interacting bosons
at zero temperature will accumulate in the lowest energy state. In contrast, fermions obey
antisymmetric exchange statistics. Hence, they are subject to the Pauli exclusion principle,
limiting the maximum occupation of each single-particle quantum state to one. As a result,
non-interacting fermions at zero temperature fill all available energy levels up to the Fermi level
𝑛F.

A fundamental distinction in quantum mechanics is the classification of particles into fermions
and bosons. This distinction becomes relevant when the wave-packets of the individual particles
start to overlap, i.e. when the de-Broglie wavelength 𝜆DB = ℎ/𝑝 (where 𝑝 is the momentum)
approaches the mean interparticle spacing. The classification of (composite) particles into
fermions and bosons depends on their total spin: Particles with half-integer total spin (in units
of ℏ) follow fermionic-, those with integer spin obey bosonic-commutation relations.

When the two particles are fermions, their total wave function is antisymmetric under particle
exchange:

𝜓(𝜉1, 𝜉2) = −𝜓(𝜉2, 𝜉1). (2.1)

This anti-symmetrization of the wave function directly leads to Pauli’s exclusion principle, as
the total wave function of two indistinguishable particles in the same quantum state can not
be anti-symmetrized. Thus, non-interacting trapped fermions at zero temperature will fill the
energy levels of the trap up to the Fermi level 𝑛F, which sets the Fermi energy 𝐸F. This is
sketched in Fig. 2.1.

For two indistinguishable bosons (with coordinates 𝜉1 and 𝜉2), the total wave function is sym-
metric under particle exchange, i.e.

𝜓(𝜉1, 𝜉2) = 𝜓(𝜉2, 𝜉1). (2.2)

Consequently, multiple bosons can occupy the same quantum state, as sketched in Fig. 2.1.
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Chapter 2. Theory of ultracold quantum gases

2.2 Internal structure of 6Li

Here, we briefly introduce the features of 6Li relevant to this thesis, based on [19]. There one
can also find a detailed discussion of the properties of 6Li.
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Fine structure Hyperfine structurea) b)

Figure 2.2: Schematic illustration of the fine and hyperfine structure of 6Li. a) Energy level
scheme of 6Li - not to scale. The ground state (2𝑆) exhibits a single fine structure manifold
(2𝑆 1

2
). The first excited state (2𝑃) is split into two states by the spin orbit coupling (2𝑃 1

2
and

2𝑃 3
2
). They are coupled to the ground state by the 𝐷1 and 𝐷2 line respectively. The ground

state has two hyperfine manifolds at zero field. Their magnetic field dependence is shown in b)
. At low magnetic fields, the energy of the states is set by 𝑚F. At higher magnetic offset fields,
we enter the Paschen-Back regime and the energy is set by 𝑚J. We label these states as |1⟩ to
|6⟩ in ascending order of energies. The three states (|1⟩ , |3⟩ , |4⟩) mainly used in the scope of this
thesis are highlighted. Figure based on [19].

Lithium is the first (and lightest) element in the Alkali group. As all alkali atoms, it has a
single valence electron and a hydrogen-like level structure. The ground state (2𝑆) exhibits a
single fine structure manifold (2𝑆1

2
). The first excited state (2𝑃) is split into two states (2𝑃1

2

and 2𝑃3
2
) by spin-orbit coupling. They are coupled to the ground state by the 𝐷1 and 𝐷2 line,

respectively. The 𝐷1 and 𝐷2 both have a wavelength of 𝜆 ≈ 671 nm and are separated by only
10GHz

Within the scope of this thesis, we use the isotope 6Li. It has a nuclear spin of 𝐼 = 1, which,
in combination with the spin 𝑆 = 1/2 of the valence electron, leads to a half-integer total spin
- 6Li is fermionic. The nuclear spin gives rise to a hyperfine splitting of both the ground and
excited states. While the hyperfine splitting of the ground state is ≈ 228MHz, the two excited
states 2𝑃1

2
and 2𝑃3

2
feature a hyperfine splitting of only ≈ 26MHz and ≈ 4.4MHz, respectively.

The fine and hyperfine structure of 6Li is sketched in Fig. 2.2a) .

Figure 2.2b) shows the magnetic field dependence, i.e. the Zeeman splitting of the 2𝑆1
2
state.

At low magnetic fields, the energy of the states is set by 𝑚F. At higher magnetic offset fields
(𝐵 ≳ 100G), we enter the Paschen-Back regime and the energy is set by 𝑚J. We label the
states at high magnetic fields as |1⟩ to |6⟩ in ascending order of energies. The three high field
seeking states |1⟩, |2⟩ and |3⟩ are separated by ≈ 80MHz. Consequently, transitions between
them can be driven with radio frequency (RF)-fields. All the possible two-component mixture
of these three hyperfine states are collisionally stable. Within the scope of this thesis, we use
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2.3. Interactions in ultracold quantum gases

the |1⟩ − |3⟩ mixture. For simplicity, we refer to atoms in |1⟩ as spin-up and to those in |3⟩ as
spin-down atoms.

2.3 Interactions in ultracold quantum gases
The following discussion is based on lecture notes and reviews [20–22].

Tuneable interactions are a vital ingredient of ultracold quantum gases. On the one hand,
they enable the exploration of complex many-body quantum phenomena. On the other hand,
collisions ensure the thermalization of the system, and are thus an essential ingredient for
reaching quantum degeneracy via evaporative cooling (see Sec. 3.2). The dominant interactions
between 6Li atoms are the van der Waals (VdW) interactions. The dipole-dipole interaction
caused by the magnetic dipole moment of the atom is negligible.

Let us consider two distinguishable particles (1 and 2) of equal mass (𝑚𝑎) in a three-dimensional
(3D) geometry, interacting via a (radially symmetric) interaction potential 𝑉 (𝑟) with finite
range 𝑟0 – as is the case for the VdW potential. The Schrödinger equation describing the
relative motion of these two particles is given by

( �̂�2

2𝑀
+ 𝑉 ( ̂𝒓)) 𝜓𝒌(𝒓) = 𝐸𝒌𝜓𝒌(𝒓), (2.3)

where 𝑀 = 𝑚𝑎/2 is the reduced mass, and we use the position and momentum operators for
the relative coordinates: ̂𝒓 = ̂𝒓1 − ̂𝒓2 and �̂� = (�̂�1 − ̂𝒑2)/2, respectively. When the relative
distance is larger than 𝑟0, the characteristic length of the potential, 𝑉 ( ̂𝒓) → 0 and the solution
reduces to that of a free particle with energy

𝐸𝒌 = ℏ2𝑘2

2𝑀
. (2.4)

As the collision is elastic, the total energy and wave number 𝑘 is conserved – the collision can
only cause a phase shift. The total wave function is

𝜓𝒌(𝒓)
𝑟→∞
→ 𝑒𝑖𝒌𝒓

⏟
𝜓in(𝒓)

+ 𝑓(𝑘, 𝜃)𝑒𝑖𝑘𝑟

𝑟⏟⏟⏟⏟⏟
𝜓out(𝒓)

, (2.5)

the superposition of the incoming plane wave 𝜓in(𝒓) and the outgoing scattered wave 𝜓out(𝒓).
The scattering amplitude 𝑓(𝑘, 𝜃), depends on the scattering energy (through 𝑘) and the angle
𝜃 between the ingoing wave and the direction along which the outgoing wave is observed. It
contains the phase shift and amplitude of the scattered wave. The differential scattering cross-
section for scattering in direction (𝜃, 𝜙) is then given by

𝑑𝜎(𝑘, 𝜃, 𝜙)
𝑑Ω

= |𝑓(𝑘, 𝜃)|2. (2.6)
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Chapter 2. Theory of ultracold quantum gases

The total scattering cross-section 𝜎 is obtained by integrating over all scattering angles

𝜎(𝑘) = ∫
2𝜋

0
∫

𝜋

0
|𝑓(𝑘, 𝜃)|2 sin 𝜃𝑑𝜃𝑑𝜙⏟⏟⏟⏟⏟

𝑑Ω

. (2.7)

As the spherically symmetric scattering potential conserves angular momenta, the scattering
problem can be simplified by expressing the plane wave as a sum of the angular momentum
eigenstates 𝑙, i.e. by performing the partial wave expansion. The relative wave function is then
given as

𝜓𝒌(𝒓) =
∞

∑
𝑙=0

𝑃𝑙(cos 𝜃)
𝑢𝑘,𝑙(𝑟)

𝑟
, (2.8)

where 𝑃𝑙(cos 𝜃) are the Legendre polynomials. The spherical symmetry of 𝑉 ( ̂𝒓) ensures that
states with different 𝑙 do not couple, hence we can write the scattering equation independently
for each partial wave. The Schrödinger equation for the 𝑙−th partial wave is then given by

⎛⎜⎜⎜⎜
⎝

�̂�2

2𝑀
+ (𝑉 ( ̂𝒓) + ℏ2𝑙(𝑙 + 1)

2𝑀 ̂𝒓2 )
⏟⏟⏟⏟⏟⏟⏟⏟⏟

̃𝑉 (�̂�)

⎞⎟⎟⎟⎟
⎠

𝑢𝑘,𝑙(𝑟)
𝑟

= 𝐸𝒌
𝑢𝑘,𝑙(𝑟)

𝑟
. (2.9)

Following [21], the total scattering amplitude is

𝑓(𝑘, 𝜃) = 1
𝑘

∞
∑
𝑙=0

(2𝑙 + 1)(𝑒𝑖𝛿𝑙 sin 𝛿𝑙)𝑃𝑙(cos 𝜃), (2.10)

where 𝛿𝑙 gives the phase shift of the partial wave 𝑙. Based on Eq. (2.7), the total scattering
cross-section is given by

𝜎(𝑘) = 4𝜋
𝑘2

∞
∑
𝑙=0

(2𝑙 + 1) sin2 𝛿𝑙⏟⏟⏟⏟⏟⏟⏟
𝜎𝑙(𝑘)

. (2.11)

From Eq. (2.9) we can see that the partial waves with 𝑙 > 0 experience an effective potential
̃𝑉 (𝑟) that includes a (repulsive) centrifugal barrier ℏ2𝑙(𝑙+1)

2𝑀𝑟2 . Consequently, the 𝑙 = 0 (s-) wave
is dominant over all partial waves (in the absence of resonance phenomena for 𝑙 > 0). Here it
is convenient to rewrite the scattering amplitude as

𝑓(𝑘, 𝜃) ≈ 𝑓0 = 1
𝑘

(𝑒𝑖𝛿0 sin 𝛿0) = 1
𝑘 cot 𝛿0 − 𝑖𝑘

. (2.12)

For 𝑘 ≪ 𝑟−1
0 we can expand 𝑘 cot 𝛿0 to order 𝑘2:

𝑘 cot 𝛿0 ≈ −1
𝑎

+ 𝑟eff
𝑘2

2
+ 𝒪(𝑘4), (2.13)

defining the scattering length 𝑎 and effective range 𝑟eff. Thus, the s-wave phase shift is, to first
order, independent of 𝑘 and is solely determined by the scattering length 𝑎. This approximation
breaks down when the next order in the expansion – characterized by the effective range –
becomes relevant (i.e. for 𝑟eff ≃ 1/𝑘). For 6Li, the effective range is 𝑟eff = 87 a0, where 𝑎0 is
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2.3. Interactions in ultracold quantum gases

the Bohr radius [23]. Throughout the scope of this thesis, the momentum dependence of 𝛿0 can
be omitted. The s-wave scattering cross-section is then given by

𝜎𝑠 = 4𝜋𝑎2

1 + 𝑘2𝑎2 . (2.14)

As a consequence, even for |𝑎| → ∞, the scattering cross-section is capped at 𝜎𝑠 = 4𝜋𝑘−2

- the so called unitarity limit. This can also be seen from Eq. (2.11), as sin2 𝛿𝑙 ≤ 1. For
𝑘|𝑎| ≪ 1, the scattering cross-section is independent of 𝑘 and given by 𝜎𝑠 = 4𝜋𝑎2. For positive
scattering lengths (𝑎 > 0), the interaction potential supports a two-body bound state with
binding energy [24]

𝐸B = ℏ2

𝑚𝑎2 . (2.15)

The binding energy 𝐸B is defined relative to the energy of two non-interacting particles 𝐸free
as 𝐸B = 𝐸free − 𝐸2, where 𝐸2 is the total energy of two particles.

2.3.1 Indistinguishable particles
The discussion above holds for scattering of two distinguishable particles. For two indistinguish-
able particle their quantum statistics have to be taken into account, as discussed in Sec. 2.1.
Specifically, when the particles are bosons, their relative wave function has to be symmetric,
when they are fermions it has to be antisymmetric, that is

𝜓𝒌(𝒓) = 𝜖𝜓𝒌(−𝒓) with{
𝜖 = +1, for bosons
𝜖 = −1, for fermions.

(2.16)

Taking this into account, we rewrite the scattering wave function as [21]

𝜓𝒌(𝒓) = 𝑒𝑖𝒌𝒓 + 𝜖𝑒−𝑖𝒌𝒓
√

2
+ 𝑓(𝑘, 𝜃) + 𝜖𝑓(𝑘, 𝜃 − 𝜋)√

2
𝑒𝑖𝒌𝒓

𝑟
. (2.17)

The scattering cross-section for two indistinguishable particles is then given by [21]

𝜎(𝑘) = 2𝜋 ∫
𝜋

0
|𝑓(𝑘, 𝜃) + 𝜖𝑓(𝑘, 𝜃 − 𝜋)|2 sin 𝜃𝑑𝜃. (2.18)

Considering the (−1)𝑙 parity of the Legendre polynomials (i.e. 𝑃𝑙(𝜃 − 𝜋) = (−1)𝑙𝑃𝑙(𝜃)), we
can see that only the partial waves with even 𝑙 contribute to the scattering of indistinguishable
bosons. For fermions, only odd partial waves contribute. In both cases, the contribution of the
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contributing partial waves is doubled, resulting in

𝜎(𝑘) = 8𝜋
𝑘2 ∑

𝑙 even
𝜎𝑙(𝑘) 𝑙=0= 8𝜋𝑎2

1 + 𝑘2𝑎2 (bosons) (2.19)

𝜎(𝑘) = 8𝜋
𝑘2 ∑

𝑙 odd
𝜎𝑙(𝑘) 𝑙=0= 0 (fermions) (2.20)

𝜎(𝑘) = 4𝜋
𝑘2 ∑

𝑙
𝜎𝑙(𝑘) 𝑙=0= 4𝜋𝑎2

1 + 𝑘2𝑎2 (distinguishable particles). (2.21)

Consequently, in the case of a spherically symmetric interaction potential and in the absence
of higher partial wave resonance, indistinguishable fermions are non-interacting. In our ex-
periment we use fermions in two different hyperfine states (see Section 2.2) - these are then
distinguishable particles that interact via s-wave interactions.

2.3.2 Effective potential
The VdW interactions are characterized by the (rotationally symmetric) interaction potential

𝑉 (𝒓) = −𝐶6
𝑟6 , (2.22)

where 𝑟 is the inter-particle distance and 𝐶6 is the VdW coefficient. The characteristic length
scale 𝑟0 of the VdW potential is given by

𝑟0 = (2𝑀𝐶6
ℏ2 )

1/4
. (2.23)

As seen in the introduction of the scattering problem, as long the mean interparticle spacing far
exceeds 𝑟0, the exact details of the interaction potential are insignificant. It is then convenient
to replace the complicated VdW interaction potential with an effective zero range potential

𝑉eff(𝑟) = 4𝜋ℏ2𝑎
𝑀⏟
𝑔3𝐷

𝛿(3)(𝑟) (2.24)

where 𝛿(3)(𝑟) is the normalized Dirac Delta function. This effective potential accurately repro-
duces the asymptotic scattering behavior. For two colliding 6Li atoms, 𝑟0 ≈ 6×102 a0 = 30 nm
[25]. The typical interparticle spacing in our experiment is on the order of 𝑟 ≈ 1 × 104 a0 =
500 nm. Therefore, we can replace the VdW with the effective zero range potential.

2.3.3 Scattering in (quasi-)2D
The measurements carried out in the scope of this thesis were all performed in a quasi-2D
geometry. While the concepts discussed above also hold for a 2D geometry, there are some key
differences between the 2D and 3D case, which we will discuss in this section. The discussion
is based on [26, 27].

As in 3D (see Eq. (2.5)), the total wave function in 2D is given by the superposition of an
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2.3. Interactions in ultracold quantum gases

incoming plane wave and an outgoing circular wave

𝜓𝒌(𝒓)
𝑟→∞
→ 𝑒𝑖𝒌𝒓 + 𝑓(𝑘, 𝜃)𝑒𝑖𝑘𝑟

√
𝑟

. (2.25)

The partial wave expansion of 𝑓(𝑘, 𝜃) in 2D is

𝑓(𝒌) = √ 2𝑖
𝑘𝜋

∞
∑
𝑙=0

(2 − 𝛿𝑙0) cos(𝑙𝜃)𝑒𝑖𝛿𝑙 sin 𝛿𝑙, (2.26)

with the Kronecker delta 𝛿𝑙0.

In absence of higher order partial wave resonances, we can again assume that 𝑓(𝒌) ≈ 𝑓0(𝑘),
i.e. we take only the 𝑙 = 0 partial wave into account. Analogously to Eq. (2.7) the scattering
cross-section is obtained by integrating |𝑓0(𝑘)|2 over all scattering angles. This results in

𝜎(𝑘) = 4
𝑘
sin2 𝛿0(𝑘). (2.27)

Note that the scattering cross-section in 2D has the dimension of a length, whereas it has the
dimension length squared in 3D. The maximum s-wave scattering cross-section for a given 𝑘
in 2D is max(𝜎(𝑘)) = 4/𝑘.

To obtain the low energy behavior of the phase shift, we rewrite

𝑓0(𝑘) = √ 2𝑖
𝑘𝜋

𝑒𝑖𝛿𝑙 sin 𝛿𝑙 = √ 2
𝑘𝜋

1
cot 𝛿0 − 𝑖

(2.28)

and expand it as
cot 𝛿0 = 2

𝜋
ln(𝑘𝑎2D) + 𝒪(𝑘2) (2.29)

where we define 𝑎2D as the 2D scattering length. In contrast to the 3D system, the scattering
phase shift and the scattering amplitude tend to zero as 𝑘 → 0 in 2D. The scattering cross-
section is given by

𝜎(𝑘) = 4
𝑘

(1 + 4
𝜋2 ln2(𝑘𝑎2D))

−1
. (2.30)

The maximum scattering cross-section (for a given 𝑘) is obtained for ln(𝑘𝑎2D) = 0, i.e. for
𝑎2D = 𝑘−1.

In 2D an interaction potential 𝑉 (𝑟) < 0 of any depth supports a bound state [22, 24]. The
energy of this bound state is given by

𝐸B = ℏ2

𝑚𝑎2
2D

. (2.31)

As a bound state exists for all values of 𝑎2D – unlike in the 3D system, where it only exists for
𝑎 > 0 – we can use 𝐸B in lieu of 𝑎2D, when convenient.

As the scattering properties are always logarithmically dependent on both 𝑘 and 𝑎2D, we use
ln(𝑘𝑎2D) as the interaction parameter to describe scattering in 2D. Analogously to the 3D
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system, we can introduce an effective interaction potential with

𝑉eff = −2𝜋ℏ2

𝑀 ln(𝑘𝑎2D)⏟⏟⏟⏟⏟
𝑔2D

𝛿(2)(𝑟). (2.32)

The experiments carried out within the scope of this thesis are performed in a quasi-2D geom-
etry. The contribution of the third direction is essentially frozen out, as the atoms are tightly
confined along one spatial dimension. In a harmonic potential with angular frequency 𝜔𝑧 in the
strongly confined direction, this is achieved when ℏ𝜔𝑧 is larger than all other energy scales of
the system. Then the dynamics take place only in a 2D plane, perpendicular to the direction
of tight confinement and the low energy (low k) physics is essentially 2D. However, the van der
Waals interaction range 𝑟0 ≈ 30 nm is always significantly below the length scale associated
to 𝜔𝑧 (𝑙HO,z ≈ 400 nm). Hence, locally scattering is always 3D. The asymptotic scattering
behavior in quasi-2D can be described by a 2D model, where the effective 2D scattering length
is set by the confinement in the tightly confined direction (via 𝑙HO,z) and the 3D scattering
length 𝑎. The 2D scattering length is then given by [26, 28]

𝑎2D = 𝑙HO,z√
𝜋
𝐴
exp(−√𝜋

2
𝑙HO,z

𝑎
) , (2.33)

with 𝐴 = 0.905.

2.3.4 Feshbach resonances
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Figure 2.3: Feshbach resonances of 6Li. 6Li exhibits a broad Feshbach resonance for each
combination of the three lowest hyperfine states, allowing free and accurate tunability of the 3D
scattering length. Plotted data from [23].

One of the distinguishing features of many cold atom experiments is that the interaction pa-
rameter is freely tuneable via (magnetic) Feshbach resonances. A Feshbach resonance occurs
when the energy of a bound molecular state approaches the energy of the scattering state. Here,
even weak coupling between the scattering states and the bound state can lead to a significant
phase shift of the scattered wave function. The following discussion is based on [20, 22, 29].
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The interaction potential of two atoms depends on the relative orientation of their electronic
spin - i.e. whether they are in a singlet or triplet state. Let us consider two atoms initially
in a triplet state. If there is no coupling to the singlet state, the scattering process will result
in a fixed phase shift 𝛿0. However, the phase shift can be altered by coupling to a bound
state in the molecular potential of the spin singlet state. This state is commonly referred to as
’closed channel’ as its energy at large particle separations exceeds the energy of the atoms in
the triplet state (’open channel’). Due to energy conservation, the atoms have to remain in the
open channel after scattering. Nonetheless, when the spin singlet exhibits a bound state close
to the energy of the incoming atoms, virtual coupling to this bound state can significantly alter
the scattering phase shift.

A magnetic Feshbach resonance occurs when the two channels have different magnetic moments.
Then, the energy of the bound state relative to the energy of the incoming atoms can be tuned
by the magnetic offset field. The scattering length as a function of the magnetic field 𝐵 around
a magnetic Feshbach resonance (located at 𝐵 = 𝐵0) is given by [30]

𝑎(𝐵) = 𝑎bg (1 − Δ
𝐵 − 𝐵0

) , (2.34)

where 𝑎bg is the background scattering length and Δ is the distance from 𝐵0 to the magnetic
field at which 𝑎(𝐵) crosses zero.

Here, 6Li is a particularly good choice of atomic species as it features a broad magnetic Feshbach
resonance, allowing free and accurate tunability of the s-wave scattering properties of the lower
three hyperfine states (see Section 2.2). The Feshbach resonances were measured by Zuern et
al. in [23] and are shown in Fig. 2.3. For all measurements performed in this thesis, we utilize
a |1⟩ |3⟩ mixture. This Feshbach resonance is located at a field of 𝐵0 = 689.7G, with a width
of Δ = −166.6G. The background scattering length is 𝑎bg = −1770 a0.

2.4 Optical Dipole Traps
This section aims to give a short introduction on optical dipole traps, based on [31]. We refer
the reader to this reference for a comprehensive discussion of optical dipole traps.

Optical dipole traps make use of light far detuned from any transition of the atom to trap atoms
while limiting residual photon scattering. Consider an atom placed in a laser field: Here, the
electric field (𝑬) of the laser induces a dipole moment 𝒑 in the atom. The interaction potential
of the induced dipole in the driving field is given by

𝑈dip = −1
2

⟨𝒑𝑬⟩ , (2.35)

where ⟨...⟩ denotes the time average over the rapidly oscillating terms. The amplitude of 𝒑
is directly proportional to the amplitude of 𝑬 with a complex proportionality factor 𝛼. The
potential can then be expressed as

𝑈dip = − 1
2𝜖0𝑐

Re(𝛼)𝐼, (2.36)
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where 𝐼 = 2𝜖0𝑐|𝑬|2 is the field intensity. The scattering rate (i.e. the rate at which the atom
absorbs and reemits photons from the laser beam) is given by

Γsc = 1
ℏ𝜖0𝑐

Im(𝛼)𝐼. (2.37)

The proportionality factor 𝛼 (commonly referred to as the complex polarizability) can be cal-
culated within the (classical) Lorentz model, modelling the motion of the electron bound to the
nucleus as a driven, damped harmonic oscillator with eigenfrequency 𝜔0, driving frequency 𝜔
and damping rate Γ - the natural linewidth of the transition. The polarizability is then given
by

𝛼 = 𝑒2

𝑚𝑒

1
𝜔2

0 − 𝜔2 − 𝑖𝜔Γ
. (2.38)

When the atom can be described as an ideal two-level system and the detuning Δ ≡ 𝜔 −
𝜔0 fulfills |Δ| ≪ 𝜔0 (permitting the rotating wave approximation), the dipole potential and
scattering rate are given by

𝑈dip = 3𝜋𝑐2

2ℏ𝜔3
0

Γ
Δ⏟

�̃�

𝐼(𝒓) (2.39)

and
Γsc = 3𝜋𝑐2

2𝜔3
0

( Γ
Δ

)
2

𝐼(𝒓), (2.40)

respectively.

Here, we can see two essential features of optical dipole traps. Firstly, the prefactor of the
potential depends on the sign of the detuning. When the frequency 𝜔 is below the atomic
resonance (’red-detuned’), the dipole potential is negative and the potential minima are found
at the intensity maxima (’the atoms are attracted by high intensities’). When 𝜔 > 𝜔0 (’blue
detuned’), the potential minima are found at the intensity minima (’the atoms are repelled by
high intensities’). Secondly, we can see that the scattering rate Γsc ∝ 𝐼Δ−2, while the potential
depth 𝑈dip ∝ 𝐼Δ−1. Hence, we can minimize the scattering rate at a given trap depth by
choosing a higher detuning and higher intensity over a smaller detuning and lower intensity.
Within the scope of this thesis, we utilize only optical dipole traps at a wavelength of 𝜆 =
2𝜋𝑐/𝜔 = 1064 nm, red-detuned from both the D1 and D2 line of 6Li (𝜆0 ≈ 2𝜋𝑐/𝜔0 = 671 nm)
(see Sec. 2.2).
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3|Experimental setup and techniques

Yes, of course duct tape works in a
near-vacuum. Duct tape works anywhere. Duct
tape is magic and should be worshiped.

Andy Weir
The Martian, 2001

This chapter introduces the experimental methods used to cool 6Li to quantum degeneracy
and the techniques used to obtain few fermionic atoms in the ground state of a quasi-two-
dimensional harmonic oscillator potential – the starting point for all experiments discussed in
the scope of this thesis. Beyond that, we discuss the single-atom and spin-resolved imaging
technique employed to investigate the system.

More information on the experimental setup can be found in previous PhD thesis [32–34]. A
detailed discussion of the imaging scheme can be found in [35–37]. An in-depth treatment of
the newly implemented matterwave magnification setup can be found in Chapter 4.

3.1 Reaching quantum degeneracy

Oven Zeeman 
Slower

MOT CODT 2D-OTOT

0s 1s 1.5s 2s 2.5s
Preparation time 

T = 650K
dN/dt = 1016/s

T = 1K
dN/dt = 1010/s

T = 400μK
N = 108

T ~ 400nK
N = 106 N = 30 - 1000 N = 2 - 42

Figure 3.1: Schematic sketch of the experimental sequence. The experimental cycle starts in
the oven, where a collimated beam of 6Li atoms is produced. The atomic beam is decelerated in a
Zeeman slower, allowing us to capture the atoms in the MOT. We load the MOT in this manner
for around 1 s. Subsequently, the atoms are transferred to the CODT where we evaporatively
cool them for 500ms, followed by a fast evaporation (≈ 20ms) to quantum degeneracy in the
OT. We then perform a transfer to a quasi-2D geometry. The entire experimental cycle takes
2.5 s. Figure adapted from [33].

The experimental cycle used to obtain few fermionic 6Li in the ground state of a quasi-2D
harmonic oscillator potential is illustrated in Figure 3.1. The experimental sequence starts
in the oven, where isotope enriched 6Li is heated to a temperature of 𝑇 ≈ 650K. The mean
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velocity of the atoms – 𝑣rms = √8𝑘𝐵𝑇 /𝜋𝑚 = 1600ms−1 – at this stage is comparable to the top
speed of hypersonic, rocket-powered aircraft. The oven produces a collimated beam of atoms
with a flux of 𝑑𝑁/𝑑𝑇 ≈ 1016 s−1. This atomic beam is decelerated by a counter-propagating
laser beam, resonant to the 𝐷2-line (see Sec. 2.2). When an atom absorbs a photon, its velocity
in direction of the atomic beam is reduced by 𝑣 ≈ 0.1ms−1. Due to the Doppler shift, this
decrease in velocity shifts the atomic transition out of resonance. We compensate this effect
by applying a magnetic field gradient, decreasing along the beam direction. In this way, the
Zeeman shift compensates the Doppler shift, ensuring that the atomic transition stays on
resonance with the laser beam - hence the name Zeeman slower [38–41]. The thermal velocity
at the final stage of the Zeeman slower is 𝑣rms = 50ms−1 (comparable to a fast regional train).

With this final velocity, the atoms are slow enough to be captured in the magneto-optical
trap (MOT). The MOT is made up of three pairs of retro-reflected laser beams – red-detuned
to the 𝐷2-line – and a spatially dependent magnetic field.

Let us first consider the force acting upon an atom in the presence of two red-detuned counter-
propagating beams in a one-dimensional (1D) geometry [42]. When the atom is at rest, the
forces exerted by the two laser beams exactly cancel each other. However, if the atom is moving
in direction of one of the two red-detuned laser beams, the counter-propagating beam becomes
closer to resonance due to the Doppler shift, while the co-propagating beam is detuned even
further. Hence, the force acting upon the atom is velocity dependent, equivalently to a friction
force. This setup is commonly referred to as an optical molasses [43].

The counter propagating laser beams alone do not form a trap. To obtain a trap, the force
additionally needs to be spatially dependent. This is achieved by introducing a spatially
dependent magnetic field which gives rise to a spatially dependent Zeeman shift. By an
appropriate choice of beam polarizations, one can achieve a restorative, dissipative force,
that confines and cools the atoms [44]. The minimum temperature that can be achieved
in the MOT is set by the Doppler temperature 𝑇D = ℏΓ/2𝑘B ≈ 140 µK1. Here Γ/2𝜋 =
5.872MHz is the natural linewidth of the optical transition [19]. At low offset fields the natural
linewidth exceeds the hyperfine splitting (4.4MHz) of the 2𝑃3

2
state. Thus, light resonant to

the |2𝑆1/2, 𝐹 = 3/2⟩ → |2𝑃3/2, 𝐹 = 5/2⟩ transition is also resonant to the |2𝑆1/2, 𝐹 = 3/2⟩ →
|2𝑃3/2, 𝐹 = 3/2⟩ transition. Atoms in |2𝑃3/2, 𝐹 = 3/2⟩ can also decay to |2𝑆1/2, 𝐹 = 1/2⟩.
Consequently, light resonant to both the |2𝑆1/2, 𝐹 = 3/2⟩ → |2𝑃3/2, 𝐹 = 5/2⟩ (cooler) tran-
sition and the |2𝑆1/2, 𝐹 = 1/2⟩ → |2𝑃3/2, 𝐹 = 3/2⟩ (repumper) transition is needed to close
the optical transition. This is the case for both the MOT and the Zeeman slower. A detailed
discussion of the MOT and Zeeman slower setup in our experiment can be found in [45].

To further cool the sample, we transfer the atoms from the MOT to a crossed-beam optical
dipole trap (CODT). The CODT is formed in the intersection of two laser beams with a
wavelength of 𝜆 = 1064 nm and a power of 𝑃 = 200W. To optimize this transfer, we first
spatially compress the MOT by reducing the detuning to the optical transition. Thereafter, we
reduce the power in the repumper beam before reducing that of the cooler beam to ensure that
the atoms accumulate in the lower hyperfine manifold. At non-zero magnetic field, the atoms
then populate states |1⟩ and |2⟩. We jump the magnetic offset field (produced by the so-called
Feshbach coils) from 𝐵 = 0G to 𝐵 = 795G, and apply a 50ms (exceeding the decoherence

1At this temperature the thermal velocity is 𝑣rms = 2.75 kmh−1 – I can finally easily outwalk the atoms!
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time) long RF pulse to balance the population in states |1⟩ and |2⟩. Subsequently, we ramp
the magnetic offset field to 𝐵 = 580G (ensuring minimal interactions between states |1⟩, |2⟩
and |3⟩), where we transfer atoms from hyperfine state |2⟩ → |3⟩ via a Landau-Zener passage.

We evaporatively cool the balanced mixture by slowly lowering the depth of the CODT, allowing
the hottest atom to escape from the trap. Elastic collisions between the remaining atoms
reestablish thermal equilibrium at a lower temperature. We ensure fast thermalization, i.e.
high elastic collision rates, by setting the magnetic offset field to 𝐵 = 795G, slightly above
the Feshbach resonance of the |1⟩ − |3⟩ mixture. After an evaporation time of 𝑡 ≈ 500ms, the
sample is cold enough so that we can transfer around 1000 atoms into a tightly focused optical
tweezer (OT).

The OT is created by a Gaussian beam with a wavelength of 𝜆 = 1064 nm, focused onto the
atomic plane with a high-resolution microscope objective with a numerical aperture (NA) of 0.6
and a focal length 𝑓 = 20.3mm. For more information on the objective see [46]. The Gaussian
beam is shaped by a liquid crystal spatial light modulator (SLM) – placed in the Fourier plane
– allowing us to tailor the optical potential. More information on the SLM setup can be found
in [32, 33].

The waist of the tightly focused optical tweezer is close to the diffraction limit of the objective
(𝑤 ≈ 1 µm). The axial trap frequency is on the order of 𝜔𝑧/2𝜋 = 100 kHz, the ratio of the trap
frequencies in the three spatial directions is 𝜔x ∶ 𝜔y ∶ 𝜔z = 7 ∶ 7 ∶ 1. The geometry of the tightly
focused optical tweezer is consequently quasi-1D. The high densities in the OT increases the
thermalization rate significantly. We can evaporatively cool the atoms to quantum degeneracy
(𝑇 /𝑇F ≈ 0.05) in 𝑡 ≈ 10ms. At the end of this evaporation sequence around 300 atoms remain
in the OT.

3.2 Deterministic state preparation
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Figure 3.2: Conceptual illustration of the spilling protocol. a) We prepare a degenerate, spin-
balanced Fermi gas in a 1D harmonic oscillator potential. b) We apply a magnetic field gradient
and lower the trap depth. We can control the number of bound states remaining in the potential
by altering the barrier height (set by the magnetic field gradient and the trap depth). c) The
remaining atoms occupy the ground state of the optical potential - a discrete quantum state.
Figure adapted from [47].
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All experiments conducted in the scope of this thesis are based on deterministic preparation
of few fermions in the ground state of a quasi-2D harmonic oscillator potential. This potential
is created by two optical traps: the (weaker) radial (𝑟− direction) confinement is provided
by the optical tweezer, the (strong) axial (𝑧− direction) confinement is provided by a single
layer of a standing wave optical dipole trap (SWT). The SWT is created by the interference
of two elliptical Gaussian beams under an angle of 14°. The resulting potential is a stack of
quasi-two dimensional potentials, where the central layer has a radial and axial trap frequency
of (𝜔SWT,r, 𝜔SWT,z)/2𝜋 = (16.9(1), 7432(3))Hz, respectively. The waist in radial direction is
on the order of 600 µm, the separation between the layers is 4.4 µm. More information on the
SWT can be found in [34].

To transfer the atoms from the 1D geometry of the tightly focused optical tweezer to a quasi-2D
geometry, we first reduce the number of atoms in the tightly focused OT. This is done to
ensure that we only load a single layer of the SWT. Here, we perform the spilling procedure
first discussed by Serwane et al. in [47]: Starting out with a degenerate Fermi gas of around
300 atoms in the tightly focused OT we apply a magnetic field gradient of 𝛿𝐵/𝛿𝑧 = 23Gcm−1

along the 𝑧-direction and lower the power of the OT to 𝑃spill. We can tune the number of bound
states remaining in the potential by altering 𝑃spill. The power is kept at 𝑃spill for 𝑡 = 40ms
before we increase it to its original value and adiabatically turn off the magnetic field gradient.
This sequence is sketched in Figure 3.2. We set 𝑃spill such that we end up with around 30 − 50
atoms in the OT.

Subsequently, we adiabatically ramp the SWT on and simultaneously increase the waist of the
OT from 1 µm to 5 µm. This done by changing the aperture phase pattern on the SLM in a
single frame update. The slow response time of the liquid crystals (≈ 80ms) ensures a smooth
aperture ramp. To further reduce the extent of the cloud, we increase the interaction strength
(specifically, we set the magnetic offset field to 705G). The strong interactions also ensure that
the atoms remain in the ground state during the transfer [33].

The combined potential of SWT and OT is referred to as 2D optical tweezer (2D-OT). As the
axial confinement of the OT is far weaker than that of the SWT, the axial trap frequency is set
by the SWT and vice versa for the radial confinement. The radial trap frequency is tuneable
in the range 𝜔r/2𝜋 = 100 − 3000Hz by using different aperture phase patterns on the SLM.
Typically, we use a radial trap frequency of 𝜔r/2𝜋 ≈ 1000Hz. With the axial trap frequency of
𝜔z/2𝜋 ≈ 7432(3)Hz, the resulting potential is quasi-2D with an aspect ratio of 𝜔r ∶ 𝜔z = 1 ∶ 7.

To deterministically prepare ground state configurations in this quasi-2D geometry, we employ
a similar technique as in 1D: We apply a magnetic field gradient of 𝛿𝐵/𝛿𝑧 = 70Gcm−1 and
lower the optical power of the OT. The power of the SWT remains constant. The number of
bound states remaining is once again set by the power of the OT. Fig. 3.3a) shows the measured
atom number as a function of the optical power of the OT. The stable plateaus correspond to
closed shell configurations of the 2D harmonic oscillator potential sketched in Fig. 3.3b. The
𝑛th level of the 2D harmonic oscillator exhibits an 𝑛 + 1-fold degeneracy. This results in closed
shell (i.e. all states up to and including 𝑛 are occupied) configurations of 1, 3, 6, 10, 15, 21, ..
atoms per spin state. We achieve a preparation fidelity of 80 % for a system of 6 atoms each in
states |1⟩ and |3⟩ (denoted as 6+6).

We can also prepare higher atom numbers of up to [42] atoms (21 atoms per spin state),
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Figure 3.3: Preparing closed shell configurations in an isotropic 2D harmonic oscillator poten-
tial. We prepare the system the ground state of a rotationally symmetric, 2D harmonic oscillator
potential. The harmonic oscillator levels, labelled by their principal quantum number 𝑛 and the
angular momentum quantum number 𝑚 are sketched in b) . Here we also marked the closed
shell configuration of 10 + 10 atoms. a) shows the number of atoms remaining in the trap as
a function of the optical trap depth. We can see stable plateaus corresponding to closed shell
configurations of the harmonic oscillator potential.

corresponding to six filled shells of the harmonic oscillator potential. To prepare these in a
quasi-2D-geometry, we start with around 70 atoms before the 2D-transfer. During the 2D-
transfer, we reduce the radial trap frequency of the OT to around 𝜔r/2𝜋 = 350Hz, allowing us
to remain in a quasi-2D geometry. The resulting atom number as a function of the optical trap
depth is shown in Fig. 3.4. We observe plateaus corresponding to the closed shell configurations.
However, the preparation fidelity is greatly reduced as holes in the Fermi distribution due to
non-zero temperature become more likely. In addition, it becomes more difficult to discern
different atom numbers.
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Figure 3.4: Preparing higher atom numbers. Atom number remaining in the 2D-OT as a func-
tion of the optical trap depth. The black line marks the mean atom number. We observe plateaus
at the atom numbers corresponding to filled shells of the 2D harmonic oscillator potential.
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Figure 3.5: Single atom resolved fluorescence imaging. a) We illuminate the atoms with two
counter-propagating laser beams, subsequently turned on for 200ns. We collect the spontaneously
emitted photons with the high resolution objective and image them onto an EM-CCD camera. In
this process, around 8 % of the emitted photons are measured by the camera. b) We identify the
atoms by performing a low pass filter of the resulting image. The histogram shows the amplitudes
of the local maxima in 2000 filtered images, each containing ≈ 6 atoms. The randomly distributed
noise leads to peaks with low amplitude in the low passed atoms. The photons emitted by atoms
form a cluster, leading to high amplitudes. The two peaks are clearly separable. a) adapted
from [35].

3.3 Single atom resolved imaging
We utilize a fluorescence imaging technique to image the atom positions with single atom and
spin resolution in free space [48, 49]. Our imaging scheme is sketched in Fig. 3.5a) . To
image the atoms, they are illuminated with two counter-propagating laser beams, resonant to
the 𝐷2 line, driving a 𝜎− transition from 𝑚𝑗 = −1/2 to 𝑚𝑗 = −3/2. An atom absorbing a
photon from one of the two laser beams and then reemitting a photon experiences a momentum
transfer of ℏ𝑘 by the absorption of the photon and an additional ℏ𝑘 due to the emission. The
momentum transferred by stimulated absorption or emission is directional, with a direction set
by the incident laser beam. Using two counter-propagating beams thus minimizes the effective
momentum imparted by stimulated absorption or emission. The two beams are alternately
pulsed on for a time of 200 ns, to avoid a rapid diffusion of the atoms at slight power imbalance
(we refer the reader to [50] for an in-depth treatment of this effect). The direction of the
momentum imparted by the spontaneous emission is random, with a distribution set by the
dipole radiation pattern [36]. In our case, the quantization axis is oriented along the axial (𝑧−)
direction. This results on the one hand in an increased scattering probability in z-direction,
i.e. in direction of the microscope objective. On the other hand, the dipole radiation pattern
is radially symmetric in the atom plane. The momentum transfer by the spontaneous emission
can not be balanced and causes a random walk of the atoms.

To minimize the diffusion of the atom due to this random walk, we minimize the time required
to collect enough photons to identify the atom with high fidelity. This entails on the one hand
maximizing the number of photons scattered by the atoms. On the other hand, we need to
maximize the number of photons detected by our camera.
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Chapter 3. Experimental setup and techniques

The photon scattering rate
Γsc = Γ

2
𝑠

1 + 𝑠 + (2𝛿/Γ)2 (3.1)

is set by the natural linewidth Γ, the detuning from the transition 𝛿 and the intensity, given
in units of the saturation intensity 𝑠 = 𝐼/𝐼sat. Hence, the photon scattering rate is capped at
half the natural linewidth, Γ/2 = 18.4 photons/µs. We typically work at intensities of 𝑠 ≈ 8,
resulting in Γsc ≈ 16 photons/µs.

To optimize the number of photons detected by our camera, we utilize the high NA objective
– used also to project the OT onto the atoms – to collect the scattered photons. Considering
all photons that remain undetected due to the NA, the dipole radiation pattern and imperfect
optics, approximately 10 % of the scattered photons reach our camera. We utilize an electron
multiplying CCD camera (EM-CCD) (Nüvü HNü 512) with a high quantum efficiency (𝑞 = 95 %
at 𝜆 = 671 nm) and choose a 5𝜎 detection threshold, setting the photo-electron detection fidelity
to 82 %. This results in an effective scattering rate of 1.24 photons/µs. For more details see [36].

To discern the atom signal from unwanted photo-electrons – created either by clock induced
charges (CICs), or remaining background light – we apply a low-pass filter with a width of
𝜎 = 5 px to each image. While the CICs are randomly distributed, the photons emitted from
an atom form a cluster – the low pass filter thus allows us to discern the ’real’ signal from
the unwanted background. A histogram of the peak amplitudes of 2000 filtered images, each
containing ≈ 6 atoms is shown in Fig. 3.5b) . Here we used an imaging time of 15 µs, resulting
in ≈ 19 photons/atom detected by the camera. We observe a bimodal distribution, where
the signal at low amplitudes stems from the randomly distributed noise, while the signal at
high amplitudes stems from photon clusters. The separation of the two peaks determines the
ability to distinguish noise from a true atom signal. We fit the low amplitude signal with an
exponential function and the high amplitude signal with a Gaussian function. The detection
threshold – defined as the amplitude at which a peak is identified as an atom – is set at the
intersection of these two curves. Here, the peaks are well separated, enabling correct atom
identification with a probability of 99.23 %. The probability of falsely identifying noise as an
atom is 0.78 %, determined by the area of the exponential curve above the threshold.

Due to the random walk of the atoms during the imaging time, the effective imaging resolution
is worse than that of the microscope objective. We determine the point spread function (PSF)
of a single atom by repeated measurements of the atom position. The resulting distribution is
shown in Fig. 3.6. The root-mean-square (RMS) width of the PSF in 𝑥−direction, i.e. along
the direction of the imaging beams is broader than the RMS width in 𝑦−direction. We believe
this effect originates from events where a photon is absorbed from one beam and subsequently
undergoes stimulated emission into the counter-propagating beam, resulting in a momentum
transfer of 2ℏ𝑘 in the direction of the first beam. Because the two counter-propagating beams
create a symmetric configuration, this process is equally probable in both directions. However,
this symmetry is ultimately broken by the end of the imaging process. The mean RMS width of
the PSF is 𝛿psf = 4.9(3) µm in the atom plane. Consequently, the imaging resolution is on the
same order as the system size, necessitating the implementation of a matterwave magnification
scheme to be able to resolve the length scales of interest. It is discussed in-depth in Chapter 4.

To image atoms in both spin states, we take two images with a delay of 162 µs. In the scope
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Figure 3.6: Effective point spread function. We show the position of a single atom, averaged
over ≈ 2400 experimental implementations. a) shows a 2D histogram of the atom positions, the
arrows mark the direction of the imaging beams. b) shows the normalized signal, integrated over
one spatial direction. The RMS width is larger in direction of the imaging beams.

of this thesis, we solely image atoms in |3⟩. When imaging atoms in |1⟩ or |2⟩, there is a finite
possibility that they decay to |5⟩ or |4⟩ during the imaging process, because the transition is not
closed [19, 35]. As this limits the imaging fidelity, we instead transfer them to state |3⟩ – which
exhibits a closed imaging transition – prior to imaging. Specifically to image a |1⟩-|3⟩ mixture,
we first transfer atoms in state |3⟩ → |4⟩ (see also Sec. 4.2.1) and subsequently use two RF
transitions to transfer atoms from state |1⟩ to |3⟩ via |2⟩. We then take the first image of state
|3⟩ (i.e. of the atoms originally in state |1⟩) and subsequently transfer the atoms ’parked’ in |4⟩
back to |3⟩ using a microwave (MW) transfer. After 162 µs we again image state |3⟩ (this time
imaging the atoms originally in |3⟩). This sequence provides two significant benefits: First, the
imaging fidelity is greatly increased as the number of scattered photons is not limited by the
non-zero decay probability into another state. Second, we guard the atoms parked in |4⟩ from
off-resonant scattering, as state |4⟩ is separated from state |3⟩ by ≈ 2GHz. The lower three
hyperfine states are only separated by 80MHz - the probability for atoms in state |1⟩ or |2⟩ to
scatter a photon from the imaging laser is non-zero. Due to the temporal separation of the two
images, the momentum transferred by the off-resonantly scattered photon causes a broadening
of the PSF in the second image. More information on the two spin state imaging scheme can
be found in [48, SB1].
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4|Matterwave manipulation

“It has long been an axiom of mine that the
little things are infinitely the most important.”

Arthur Conan Doyle
The Adventures of Sherlock Holmes

Single-particle resolved imaging techniques have revolutionized our ability to probe microscopic
observables, providing access to higher-order correlation functions that are essential for under-
standing many-body quantum systems. However, when the spatial resolution of the imaging
system approaches the mean interparticle spacing, direct imaging becomes impossible. In this
regime, various techniques have been developed to magnify the system before imaging [51, 52].
Crucially, any magnification method must preserve the correlations of the initial state to ensure
accurate reconstruction of the system’s properties.

In our experiment, we utilize a fluorescence imaging technique, allowing us to image the atoms
in real space with single particle and spin resolution. However, the resolution of this imaging
technique is on the same order as our initial system size. To overcome this limitation, we
implement a magnification scheme based on phase-space rotations in potentials tailored for
accurate magnification of all relevant length scales. By combining two such rotations in po-
tentials with different trap frequencies, we magnify the matterwave in real space by a factor
of approximately 50. Alternatively, by performing a single phase-space rotation, we map the
initial momentum space wave function onto real-space, granting direct access to the momen-
tum distribution. These matterwave optics techniques enable us to explore correlations and
microscopic observables in both real and momentum space in a continuous system.

The experimental results on the matterwave magnifier presented in this chapter are adapted
from the publication

”Magnifying the Wave Function of Interacting Fermionic Atoms”
Sandra Brandstetter*, Carl Heintze*, Keerthan Subramanian*,

Paul Hill, Philipp M. Preiss, Maciej Gałka, Selim Jochim
arXiv: 2409.18954 (2024) [SB2]

and are presented with modifications and additions.
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4.1. Rotating in phase space

4.1 Rotating in phase space
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Figure 4.1: A single phase space rotation. The phase space trajectory for 2 particles a and b
with the same mass and initial momentum, but different initial positions. The red (blue) curves
show the phase space trajectory for particle a (b). The dashed line marks the entire phase space
evolution, the full curve shows the phase space trajectory completed up to 𝑡 = 𝑇 /4, mapping the
initial momenta onto positions and vice-versa.

To understand the principles of matterwave magnification, it is instructive to first consider
the motion of a single, classical, particle of mass 𝑚𝑎, with initial (𝑡 = 0) position 𝑥(0) and
momentum 𝑝(0) in a one-dimensional harmonic oscillator potential, 𝑈(𝑥) = 1

2𝑚𝑎𝜔2𝑥2, with
harmonic oscillator frequency 𝜔. In classical mechanics, the Hamiltonian describing this system
is given by

𝐻 = 𝑝2

2𝑚𝑎
+ 𝑚𝑎𝜔2𝑥2

2
. (4.1)

We obtain the phase space trajectory by solving Hamilton’s equations ̇𝑥 = 𝑝/𝑚𝑎 and
̇𝑝 = −𝑚𝑎𝜔2𝑥, resulting in

𝑝2 1
2𝑚𝑎

+ 𝑥2 𝑚𝑎𝜔2

2
= 𝑝(0)2

2𝑚𝑎
+ 𝑚𝑎𝜔2𝑥(0)2

2⏟⏟⏟⏟⏟⏟⏟⏟⏟
const.

, (4.2)

spanning an ellipse in the 𝑥 − 𝑝 plane. Parametrizing this equation1 gives

𝑥(𝑡) = 𝑥(0) cos(𝜔𝑡) + 𝑝(0) 1
𝑚𝑎𝜔

sin(𝜔𝑡) (4.3)

𝑝(𝑡) = 𝑝(0) cos(𝜔𝑡) − 𝑥(0)𝑚𝑎𝜔 sin(𝜔𝑡). (4.4)

Thus, the position of the particle at 𝑡 = 𝑇 /4 = 1
4

2𝜋
𝜔 is directly proportional to its initial

momenta and vice versa with a scaling factor given by the mass and the harmonic oscillator
frequency. This framework can easily be extended to higher dimensions, as the equations of
motion are separable for a single particle in a harmonic oscillator potential.

The phase space trajectories of two particles (a and b) of equal mass with the same initial mo-
menta 𝑝𝑎(0) = 𝑝𝑏(0) = 𝑝(0) but different initial positions 𝑥𝑎(0) ≠ 𝑥𝑏(0) in the same harmonic

1or simply solving the problem using Newtonian mechanics
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Figure 4.2: Combining two phase space rotations. Phase space trajectories for particles a (red)
and b (blue). The particles first propagate through a harmonic oscillator with frequency 𝜔1 -
marked by the dashed line. At time 𝑡 = 𝑇1/4, the phase space trajectory is set by a harmonic
oscillator with frequency 𝜔2 < 𝜔1, shown by the dashed-dotted line. The solid line marks the
combined phase space trajectories, i.e. two subsequent evolutions for a quarter time period,
magnifying the initial position 𝑥(𝑇1/4 + 𝑇2/4) = −𝜔2/𝜔1𝑥(0)

oscillator potential are illustrated in Fig. 4.1. Owing to the different starting conditions, they
follow different trajectories. At 𝑡 = 𝑇 /4, the particles have completed a scaled 𝜋/2 Rotation
in phase space, i.e. the final position is set by their initial momentum. Extending our consid-
erations to an ensemble of particles with an initial momentum distribution 𝜙(𝑝, 𝑡 = 0) and real
space distribution 𝑓(𝑥, 𝑡 = 0), we obtain a scaled Fourier transform of these distributions at
𝑡 = 𝑇 /4. This however only holds when there are no interactions between the particles during
the evolution in the harmonic potential.

We can achieve a magnification of the initial position by combining two subsequent 𝑇 /4 evo-
lutions in harmonic potentials with different frequencies 𝜔1 > 𝜔2, where the index denotes
the temporal sequence of potentials. The phase space coordinates after two subsequent 𝑇 /4
evolutions are

[𝑥(𝑇1/4 + 𝑇2/4)
𝑝(𝑇1/4 + 𝑇2/4)] = [−𝜔1/𝜔2 0

0 −𝜔2/𝜔1
] [𝑥(0)

𝑝(0)] , (4.5)

The magnification factor 𝑀 is determined by the magnification of the initial position

𝑥(𝑇1/4 + 𝑇2/4) = −𝑥(0) 𝜔1
𝜔2⏟
𝑀

. (4.6)

The phase space trajectories are illustrated in Fig. 4.2 for two identical particles (denoted as
a and b) with the same initial position 𝑥𝑎(0) = 𝑥𝑏(0) = 𝑥(0), but different initial momenta
𝑝𝑎(0) ≠ 𝑝𝑏(0). Each particle first follows the phase space trajectory set by the first harmonic
potential. After a quarter time period the initial momenta are mapped onto positions and vice
versa - a 𝜋/2 rotation in phase space. Thereafter, the phase space trajectory is set by the second
harmonic oscillator potential. Even though the two particles follow completely different phase
space trajectories, they arrive at the same position 𝑥(𝑇1/4 + 𝑇2/4) = −𝑀 ⋅ 𝑥(0) after evolving
for a quarter time period in the second harmonic potential. Again extending our considerations
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to an ensemble of particles, we can see that a magnification of the initial position distribution
is achieved by combining two Fourier transforms with different scaling factors.

4.1.1 Analogy to optics
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Figure 4.3: Beam expander. a) Conceptual sketch of a beam expander in 4f-configuration
comprised of two thin lenses with focal lengths 𝑓1 and 𝑓2, placed in a distance 𝑓1 + 𝑓2. b)
Comparing the phase space trajectories of the 4f setup (red) with that in a harmonic oscillator
potential (black).

The magnification of the initial position distribution by two scaled Fourier transforms is strongly
reminiscent of an optical beam expander in the 4f imaging setup. This setup consists of two
lenses with focal lengths 𝑓1 and 𝑓2, placed in a distance 𝑑 = 𝑓1 + 𝑓2, as sketched in Fig. 4.3a).
The object plane is placed in a distance 𝑓1 of the first lens. The first lens performs a Fourier
transform of the input field, with the spatial frequency coordinates scaled by the focal length
𝑓1. The second lens performs another Fourier transform, mapping the Fourier components back
to the spatial domain. In the image plane, placed in a distance 𝑓2 of the second lens, the final
image is magnified by a factor 𝑀 = −𝑓2/𝑓1.

However, the differences between the two systems can be seen by employing phase-space optics.
Here each optical ray is equivalent to a single point in optical phase space, with coordinates
corresponding to the distance 𝑥 from the optical axis and the angle to the optical axis, referred to
as the optical momentum 𝑝. Within the paraxial approximation, the transfer matrix formalism
can be used to compute the phase space trajectories [53]. The propagation in free space is
equivalent to a shearing along 𝑥−direction (transforming angle to position). A thin lens causes
a shearing along 𝑝, as it changes the angle in dependence on the distance from the optical
axis. The comparison of the phase space trajectories of a single optical ray in an optical
beam expander and the phase space trajectory in a harmonic oscillator potential is sketched
in Fig. 4.3b). While both systems map the initial point to the same final point in phase space
the paths taken differ significantly. A propagation in a harmonic oscillator potential results in
a smooth rotation through phase space. In the optical beam expander, the scaled rotations in
phase space are each decomposed into three shearing operations.2 Smooth rotations through
optical phase space can be realized by utilizing gradient-index lenses.

2The decomposition of an arbitrary rotation into three shears was commonly used as a fast method to rotate
bitmaps in the early days of computer graphics [54].
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Chapter 4. Matterwave manipulation

4.1.2 Quantum mechanical picture
Following a similar derivation as in the classical case for the quantum mechanical system, we
can write the time evolution of the single particle operators in a one-dimensional harmonic
oscillator potential as

[ ̂𝑥(𝑡)
̂𝑝(𝑡)] = [

cos𝜔𝑡 1
𝑚𝑎𝜔 sin𝜔𝑡

−𝑚𝑎𝜔 sin𝜔𝑡 cos𝜔𝑡
] [ ̂𝑥(0)

̂𝑝(0)] . (4.7)

in the Heisenberg picture. Due to the separability of the equations of motions along the
different directions, the extension to a higher dimensional harmonic oscillator potential is trivial.
Analogously to the classical case, letting the wave function evolve for a quarter time period is
equivalent to a scaled Fourier transform. This allows us to map momentum onto real space by
a single 𝑇 /4 evolution in a harmonic potential. Additionally, we can also magnify the initial
wave function by combining two subsequent phase space rotations in two harmonic potentials.
It is important to note that this mapping only holds for multiple particles when they are
non-interacting during the expansion. A more detailed derivation of the quantum mechanical
picture can be found in [55].

It is interesting to consider the momentum and position uncertainty after two 𝑇 /4 evolutions.
For a system with an initial momentum (position) uncertainty 𝛿p(0) = √⟨ ̂𝑝(0)2⟩ (𝛿x(0) =
√⟨ ̂𝑥(0)2⟩), the uncertainty after two 𝑇 /4 evolutions is given by

𝛿x(𝑇1/4 + 𝑇2/4) = 𝛿x(0)𝜔1
𝜔2

𝛿p(𝑇1/4 + 𝑇2/4) = 𝛿p(0)𝜔2
𝜔1

.
(4.8)

It is evident (also following Liouville’s theorem) that 𝛿x(𝑇1/4 + 𝑇2/4)𝛿p(𝑇1/4 + 𝑇2/4) =
𝛿x(0)𝛿p(0). Assuming that uncertainty in real and momentum space is initially equivalent
in natural units of the harmonic oscillator with frequency 𝜔2, i.e. 𝛿x(0)/𝑙HO = 𝛿p(0)/𝑝HO, al-
lows us to verify that 𝛿x(𝑇1/4 + 𝑇2/4)/𝑙HO > 𝛿p(𝑇1/4 + 𝑇2/4)/𝑝HO. Consequently, the system
is in a squeezed state after matterwave magnification.

4.2 Experimental implementation
We can now use these concepts to implement two different matterwave manipulation protocols in
our experiment. A single phase space rotation allows us to access momentum space observables.
Combining two phase space rotations in potentials with different trap frequencies results in a
magnification of the initial wave function in real space.

The phase space rotations discussed in Section 4.1 are however only valid for harmonic poten-
tials. In reality, no potential is ever truly harmonic at all length scales. Experimentally, we can
create potentials that can be approximated by a harmonic potential in a limited region around
the trap center. This can be achieved utilizing either magnetic traps (as demonstrated in [51])
or optical dipole traps. When the particles probe the anharmonic region during the phase
space evolution, the final (measured) position is dependent on both the initial momentum and
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position. As a consequence, the clean mapping breaks down, giving rise to Matterwave aber-
rations. In the following I will discuss the experimental implementation, design considerations
and limitations for achieving both momentum and real space resolution.

4.2.1 Interaction switch-off
The ability to switch off the interactions between the atoms on a timescale faster than any
other timescale of the system is essential for all matterwave manipulation techniques. This is
due to the fact that the mapping in Eq. (4.7) only holds for multiple atoms if they are non-
interacting [55]. Such an interaction switch off can be performed by ramping the magnetic
offset field to the zero crossing of the Feshbach resonance. However, due to the broad Feshbach
resonance of 6Li, the zero-crossing (located at 568G for the |1⟩ − |3⟩ mixture) is separated by
Δ ≈ 200G from the offset fields typically used in the experiment (see also Sec. 2.3.4). The
maximum ramp speed of our Feshbach coils is 𝑑𝐵/𝑑𝑡 ≲ 1Gµs−1. Switching off the interactions
in this manner would take around 200 µs. This timescale is comparable to the timescale set by
the radial trap frequency of the 2D-OT.

Instead, we switch off the interactions by performing a spin flip from hyperfine state |3⟩ to |4⟩.
There is no Feshbach resonance for the resulting |1⟩−|4⟩ mixture. Consequently, the scattering
length is set by the singlet scattering length 𝑎s/𝑎0 = 47(3) [56]. We realize this spin flip by
a two-photon Raman transition, experimentally implemented using two co-propagating laser
beams. The first laser is locked between the 𝐷1 and 𝐷2 line, the second laser is phase-locked
to the first laser, with a frequency offset equivalent to the energy difference between states |3⟩
and |4⟩ at a given magnetic field (typically 𝜔/2𝜋 ≈ 2GHz). We measure a Rabi frequency of
Ω/2𝜋 = 1.613MHz, allowing us to transfer |3⟩ to |4⟩ in 𝜏 = 310 ns, a timescale much faster
than any other timescale of the system. Hence, the transfer can be considered as instantaneous.
More information on the Raman setup can be found in [57].

4.2.2 Momentum space

t 0 t2

Φ
(k

,t)
 [μ

m
]

k [μm-1]

0

1.0

0.5

-5 0 5

Φ
(k

,0
)

-50 0 50

-50

0

50

x [μm]

y 
[μ

m
]

-50 0 50

Ψ
(x

,t)
 [μ

m
-1

]

Ψ(k/ħmω2,0)

x [μm]

0

1.0

0.5

Figure 4.4: Conceptual illustration of Matterwave mapping of momentum space onto real
space. The initial momentum space wave function is mapped onto real space by a long, non-
interacting expansion time 𝑡2 in the weak radial potential of the standing wave optical dipole
trap. We image the atom positions after this long expansion time, allowing us to infer the initial
momentum. The sequence of traps is illustrated below the timeline.

There are two experimental approaches for mapping momentum space onto real space. In
free space, a long, ballistic (i.e. non-interacting), time of flight (TOF) maps momenta onto
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positions. This is only fully independent of the initial position spread for an infinite expansion
time. However, for large enough time of flights, the influence of the initial position on the
final position becomes negligible, and momentum resolution can be obtained. An alternative
approach is performing an (again non-interacting) evolution for a quarter time period in a
harmonic potential [55, 58, 59], as discussed above. This allows for a clean mapping between
real and momentum space. In our experiment, we use a combination of the two techniques.

The matterwave mapping from momentum to real space is illustrated in Fig. 4.4. We realize
the potential for the phase space rotation by a combination of a magnetic trap (set by the
curvature of the magnetic offset field) (𝜔r,B/2𝜋 = ±10.9(3)Hz) and the radial curvature of the
standing wave optical dipole trap (𝜔r,SWT/2𝜋 = 16.9(1)Hz). The combined trap frequency is
given by 𝜔2 = √𝜔2

r,SWT ± 𝜔2
r,B, where the sign of 𝜔r,B depends on the hyperfine state that the

atoms evolve in (negative for low field seekers, positive for high field seekers). While our system
is initially prepared in the high field seeking hyperfine states of 6Li (|1⟩ and |3⟩ to be specific),
the interaction switch off prior to the phase space evolution is realized by a spin flip from |3⟩
to the low field seeking state |4⟩ (see Sec. 2.2 and Sec. 4.2.1). Therefore, the effective trap
frequency is different for the two spin states (𝜔2/2𝜋 = 20.1Hz(12.9Hz) for the high(low)-field
seeking states), leading to different phase space trajectories and different 𝑇 /4 times. When the
spatial extent 𝛿x(𝑡) = √⟨ ̂𝑥(𝑡)2⟩ after a finite expansion time 𝑡 is significantly larger than the
initial spatial extent 𝛿x(0), we can neglect the influence of 𝛿x(0) on 𝛿x(𝑡). This allows for a
mapping from momentum onto real space also for 𝑡 ≠ 𝑇 /4.

The assumption 𝛿x(𝑡 = 0) = 0, leads to an error when mapping the measured position back
to an initial momentum. In our system, the initial extent of the wave function is on the order
of the harmonic oscillator length of the 2D-OT, 𝑙HO,r = √ℏ/𝑚𝑎𝜔r. For the propagation in a
harmonic oscillator potential, this error is given by

Δ𝑝0/𝑝HO ≈ 𝜔2
𝜔r

cot(𝜔2𝑡2) (4.9)

where 𝑝HO = √ℏ𝑚𝑎𝜔r is the harmonic oscillator momentum. For a typical expansion time,
𝑡2 = 12ms, Δ𝑝0 ≈ 1 × 10−3𝑝HO for the high field seekers and Δ𝑝0 ≈ 8 × 10−3𝑝HO for the
low field seekers. This error is significantly smaller than that caused by our finite imaging
resolution. The RMS width of a single atom, imaged using our free space fluorescence scheme
is 𝛿psf = 4.9(3) µm (for more details see Sec. 3.3). This causes an uncertainty on the initial
momentum given by

Δ𝑝psf = 𝛿psf
𝑚𝑎𝜔2

sin(𝜔2𝑡2)
. (4.10)

For 𝑡2 = 12ms the uncertainty on the initial momentum due to the imaging resolution is
Δ𝑝psf ≈ 6 × 10−2𝑝HO.

In the limit where the initial position spread can be neglected, we can find a direct mapping from
̂𝑝(0) to ̂𝑥(𝑡), even for potentials exhibiting slight deviations from perfect harmonicity. To achieve

this, we create a look-up table mapping the measured final position onto the corresponding
initial momentum, by numerically solving the trajectory in the combined potential of magnetic

31



4.2. Experimental implementation

trap (Harmonic) and the SWT (Gaussian). The combined potential is given by

𝑈tof =
𝑚𝑎 (𝑤r𝜔SWT,r)

2

4
(1 − exp(−2𝑥2

𝑤2
r

))

± (1
2

(𝑥𝜔B,r)
2 𝑚𝑎) .

(4.11)

Here 𝑚𝑎 is the mass of the atom, 𝑤r = 600 µm is the waist of the SWT, 𝜔SWT,r and 𝜔B,r are the
trap frequencies of the SWT and the magnetic trap, respectively. The sign of the second term
is determined by whether the atoms are in a high (+) or low (−) field-seeking state. Using

𝐹 = −𝜕𝑈
𝜕𝑥

= 𝑚𝑎 ̈𝑥 (4.12)

and substituting ̃𝑥 = 𝑥/𝑤r and ̃𝑡 = 𝑡 ⋅ 2𝜋/𝑇opt where 𝑇opt = 2𝜋/𝜔SWT,r, we can simplify the
differential equation to

̈ ̃𝑥 = − ̃𝑥 ( ̃𝑡) exp (−2 ̃𝑥2 ( ̃𝑡)) ± (𝜔B,r/𝜔SWT,r)
2 . (4.13)

We create a separate look up tables for the high and low field seeking states by solving the
differential equation for different initial momenta.

4.2.3 Real space
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Figure 4.5: Conceptual illustration of the matterwave magnification protocol. The initial,
micron-sized wave function is released from the 2D-OT and magnified by two subsequent evolu-
tions in harmonic potentials. The first 𝑇 /4 evolution – performed in the magnifier trap (MT)
– is equivalent to a scaled Fourier transform of the initial wave function. A second, expansion
time 𝑡2 in the weak radial potential of the SWT is equivalent to a second Fourier transform of
the wave function. The initial real space wave function is magnified by a factor 𝑀, given by the
ratio of the two trap frequencies. This magnification allows us to obtain a snapshot of the wave
function with single particle and spin resolution. The sequence of traps is illustrated below the
timeline. The initial wave function (dashed curve) is shown as a reference in each time step.
Figure adapted from [SB2].

To achieve a magnification of the initial matterwave we perform two subsequent evolutions:
a T/4 evolution in a potential with large trap frequency and a second evolution in a weak
potential. For the first evolution, we implemented a new potential (magnifier trap (MT))
– tailored for accurate magnification of the initial wave function. The second evolution is
performed in the weak radial potential created by the SWT and the magnetic trap, that is also
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utilized to map the initial momenta onto real space, as described in Sec. 4.2.2. The evolution
of the wave function and the sequence of traps is illustrated in Fig. 4.5. The following section
aims to serve as an instruction for the experimental implementation of a matterwave magnifier.

Design considerations for the first potential

Accurate magnification of the initial matterwave requires on the one hand a magnification
large enough that the smallest structure sizes of interest are resolvable by our imaging scheme
after magnification. On the other hand, the potential used for the first 𝑇 /4 evolution has to
be tailored such that the matterwave remains in the harmonic region of the trap during the
entire evolution. These two considerations allow us to obtain an estimate of the required trap
parameters.

The smallest structure size of interest in the 2D limit is – for a fermionic system – set by
the harmonic oscillator length in 𝑧 direction, 𝑙HO,z = √ℏ/𝑚𝑎𝜔z. In our system, 𝜔z/2𝜋 =
7432(3)Hz, setting 𝑙HO,z = 480 nm (see also Chapter 3). Thus, to be able to resolve the length
scales of interest, we need to magnify the initial matterwave such that

𝑀 ⋅ 𝑙HO,z ≫ 𝛿psf. (4.14)

Here 𝛿psf = 4.9(3) µm is the RMS width of a single atom, imaged using our free space flu-
orescence scheme (for more details see Sec. 3.3). Consequently, we require a magnification
factor 𝑀 = 𝜔1/𝜔2 ≫ 9. The second phase space rotation is again performed in the potential
detailed in Sec. 4.2.2, with a trap frequency of 𝜔2/2𝜋 = 20.2(3)Hz for the low-field seeking
states. Because the radial trap frequency is lower for the high field states – leading to a larger
magnification – we consider the low-field seekers for the following design considerations. For
the first rotation, we require a trap frequency 𝜔1/2𝜋 ≫ 180Hz. As the maximum achievable
magnetic trap frequency in our system is only 𝜔B/2𝜋 ≈ 20Hz, we realize the first phase space
rotation in an optical potential created by a focused laser beam.

The potential created by a focused Gaussian laser beam with frequency 𝜔 is given by

𝑈G(𝑟) = ̃𝛼𝐼(𝑟) = ̃𝛼 2𝑃
𝜋𝑤2 exp(−2𝑟2

𝑤2 ), (4.15)

where 𝑃 is the power of the laser beam, and 𝑤 is the beam waist in the atom plane. The factor
̃𝛼 is given by

̃𝛼 = 3𝜋𝑐2

2ℏ𝜔3
0

Γ
𝜔 − 𝜔0

, (4.16)

where 𝜔0 is the frequency of the optical transition, 𝜔 is the optical frequency of the laser beam
and Γ is the natural linewidth (see also Sec. 2.4). Considering the series expansion of the
Gaussian potential

𝑈G(𝑟) = 2𝑃 ̃𝛼
𝜋𝑤2 (1 − 2 𝑟2

𝑤2 + 2 𝑟4

𝑤4 − 4
3

𝑟6

𝑤6 + 𝒪 (𝑟8)) (4.17)
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it can be approximated as a harmonic potential

𝑈harm(𝑟) = −1
2

𝜔2
1𝑚𝑎𝑟2, (4.18)

for 𝑟 ≪ 𝑤. Consequently, to ensure accurate magnification, we have to ensure that the spatial
extent of the wave function 𝛿x(𝑡) = √⟨ ̂𝑥(𝑡)2⟩ remains much smaller than the waist of the
first potential. The waist directly sets the field-of-view (FOV) of the matterwave magnifier, as
𝛿x(0) ≪ 𝑤. The angular trap frequency is

𝜔1 = √ 8𝑃 ̃𝛼
𝜋𝑤4𝑚𝑎

. (4.19)

The maximum extent of the wave function during the evolution is given by

max(𝛿𝑥(𝑡)) = √𝛿x(0)2 + ( 1
𝑚𝑎𝜔1

𝛿p(0))
2

, (4.20)

assuming a Gaussian initial state with ⟨ ̂𝑥 ̂𝑝⟩ = ⟨ ̂𝑝 ̂𝑥⟩ = 0. Here, 𝛿p(𝑡) = √⟨ ̂𝑝(𝑡)2⟩ is the extent
of the wave function in momentum space. Therefore, accurate magnification is ensured when
both the initial spatial extent 𝛿x(0) and the extent at 𝑡 = 𝑇 /4,

𝛿x(𝑇 /4) = 1/𝑚𝑎𝜔𝛿p(0), (4.21)

are much smaller than the waist.

A lower limit for the initial momentum distribution is – following Heisenberg’s uncertainty
relation – set by the smallest structure sizes in the initial system 𝜎x, which results in 𝛿p(0) ≥
ℏ/2𝜎x. The diffraction limit is then given by

𝜎x ≫
√

𝜋ℏ𝑤
4√2| ̃𝛼|𝑃𝑚𝑎

. (4.22)

Following these considerations, we can formulate a list of requirements for a matterwave
magnifier optimized for our system. According to Eq. (4.14), we need a trap frequency of
𝜔1/2𝜋 ≫ 180Hz, ensuring that the smallest structure sizes are resolvable by our fluorescence
imaging scheme after magnification. The required FOV – set by the beam waist – is dictated
by the largest system we want to explore. The system size can be approximated by the Thomas
Fermi radius 𝑟F = √2𝐸F/𝑚𝑎𝜔2

r , where 𝐸F is the Fermi energy and 𝜔r is the frequency of the
2D-OT in radial direction. The largest system explored in the scope of this thesis is a system
with 𝐸F = 6ℏ𝜔r (i.e. 21 atoms per spin state) at a radial trap frequency of 𝜔r/2𝜋 = 655(2)Hz,
resulting in 𝑟F ≈ 5.5 µm. Consequently, we require a waist radius 𝑤 ≫ 5.5 µm to ensure that
the system is initially in the FOV. This excludes the possibility of using the 2D-OT for the
magnification, as its radial waist is only ≈ 5 µm.
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a)

b)

Figure 4.6: Simulation of the matterwave magnifier for different waists and frequencies. We
simulate the matterwave magnification protocol by propagating the starting conditions set by the
width of the real space distribution 𝛿𝑟prep and Heisenberg’s uncertainty principle and plot the
final RMS width 𝛿𝑟meas. We simulate the expansion for different waists (𝑤MT) a) and frequencies
(𝜔MT) b) of the MT. Note that we divide the final width by the magnification factor in b) , to
compare the performance at different magnifications. The largest system size implemented in our
experiment 𝑟max

F and smallest structure sizes 𝜎x, set the requirement for the field-of-view and the
resolution, respectively. The black diagonal line shows the expectation for an ideal matterwave
magnifier.

Simulating the matterwave magnification

We perform a simulation of the matterwave magnification protocol, to gain more accurate
estimate of the required beam parameters. We approximate the magnifier trap with a Gaussian
potential

𝑈MT = 𝑚𝑎 (𝑤MT𝜔1)2

4
(1 − exp(−2𝑥2

𝑤2
MT

)) , (4.23)

here 𝑚𝑎 is the mass of the atom, 𝑤MT and 𝜔1 are the waist and trap frequency of the MT,
respectively.

Using
𝐹 = −𝜕𝑈

𝜕𝑥
= 𝑚𝑎 ̈𝑥 (4.24)

and substituting 𝑥 = 𝑥/𝑤MT and 𝑡 = 𝑡⋅2𝜋/𝑇1 where 𝑇1 = 2𝜋/𝜔1, gives the differential equation

�̈� = −𝑥 (𝑡) exp (−2𝑥2 (𝑡)) (4.25)

describing the expansion in the MT. We can simulate the evolution in the MT by numerically
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solving Eq. (4.25) for different initial conditions. We then use the numerically calculated values
for 𝑥(𝑇 /4) and 𝑝(𝑇 /4) as input parameters for Eq. (4.13), describing the evolution in the
second potential.

To obtain the FOV and the resolution from the simulation, we employ a semi-classical approach.
The initial position distribution is set by a Gaussian distribution with RMS width 𝛿𝑟prep. The
corresponding momentum width is obtained by assuming a Heisenberg limited system. To
obtain the magnified widths 𝛿𝑟meas in dependence of the initial width of the system, 𝛿𝑟prep we
sample the real and momentum space distributions 1000 times for each 𝛿𝑟prep. We propagate
the initial parameters through both differential equations and calculate the RMS of the final
positions to obtain 𝛿𝑟meas. The results of this simulation for different parameters of the MT
are shown in Fig. 4.6. In an aberration free system, i.e. for a harmonic potential, the measured
widths follow the linear relation

𝛿𝑟meas = 𝑀 ⋅ 𝛿𝑟prep, ∀𝛿𝑟prep. (4.26)

However, when the matterwave probes the anharmonic regions of the MT, we observe a devia-
tion from this relation. This occurs for very small initial widths, i.e. high initial momenta, and
for very large initial widths. The FOV is set by the deviation from the linear relation at large
𝛿𝑟prep, the resolution by the deviation at small 𝛿𝑟prep.

While changing the waist of the magnification trap (Fig. 4.6a) ) changes both the FOV and the
resolution, changing the trap frequency at constant waist only significantly alters the resolution
(Fig. 4.6b) ). However, as long as the FOV is large enough, choosing a larger trap frequency
𝜔 ∝

√
𝑃𝑤−2 over a larger waist reduces the required laser power. From the simulations we can

see that a magnifier trap with frequency 𝜔MT/2𝜋 = 1000Hz and waist 𝑤MT = 25 µm provides
accurate magnification from the smallest structures 𝜎x up to the largest system sizes 𝑟max

F .

Implementing the Matterwave magnifier

The experimental setup used to create the magnifier trap is sketched in Fig. 4.7. The potential
for the first step in the magnification is created by a focused laser beam with a wavelength of
𝜆 = 1064 nm. We focus the beam onto the atoms using a lens with a focal length 𝑓 = 80mm,
placed below the vacuum chamber. Note that great care has to be taken to align the lower
lens on the optical axis of the microscope objective, such that the magnifier trap and the
optical tweezer can be overlapped. Additionally, the alignment of the laser beam on the lens is
crucial to ensure that the MT is radially symmetric, otherwise the matterwave magnification
will suffer from an astigmatism. The waist in the atom plane is expected to be on the order
of 𝑤MT = 22 µm. With a laser power stabilized to 𝑃 = 4W, we can achieve a trap frequency
of 𝜔1/2𝜋 = 1130(10)Hz. The second stage of the matterwave magnification is realized in
the weak radial potential (described in Sec. 4.2.2), created by the weak optical trap provided
by the SWT and the magnetic trap, with a trap frequency of 𝜔2/2𝜋 = 20.1Hz(12.9Hz) for
the high(low)-field seeking states. Hence, we can achieve a maximum magnification factor of
𝑀 = 56(1) for the high field seeking hyperfine states and 𝑀 = 87(1) for the low-field seeking
states.

We test the performance of the matterwave magnifier using a single atom in the ground state of
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Figure 4.7: Experimental setup for the implementation magnification trap. A sketch of the
optical setup used to create the magnifier trap. The collimated beam is focused onto the atomic
plane with 𝑓 = 80mm lens (CVI Laser Optics, LAI-80.0-25.0). After the optical chamber, the
beam is reflected onto a beam dump by a polarizing beam splitter cube. This is done to protect
the spatial light modulator.
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Figure 4.8: Resolution of the Matterwave magnifier. Measured 𝛿𝑟meas versus prepared width
𝛿𝑟prep for a system of a single 6Li atom in the ground state of the 2D-OT. We vary the prepared
width by varying the radial trap frequency of the 2D-OT. The black line marks the ideal,
aberration free matterwave magnifier. We deviate from this ideal case for 𝛿𝑟prep < 300 nm.
The gray band marks the result of the simulated propagation. All error bars represent the 95 %
confidence interval and were obtained using a bootstrapping technique. Figure taken from [SB2].
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the 2D optical tweezer as a test target. Here, the momentum spread at a given position spread is
Heisenberg limited, allowing us to compare our experimental results to the simulation discussed
above. By varying the radial trap frequency of the 2D-OT, we vary the prepared width 𝛿𝑟prep of
the system and determine the RMS width after magnification 𝛿𝑟meas from many experimental
implementations of the same quantum state – see Fig. 4.8. For large 𝛿𝑟prep, the measured widths
follow the expectation for an ideal matterwave magnification (𝛿𝑟meas = 𝑀 ⋅ 𝛿𝑟prep). We define
the resolution of the matterwave magnifier as the point where 𝛿𝑟meas >

√
2𝑀𝛿𝑟prep, resulting

in a resolution of 𝛿𝑟res = 300 nm. The measured resolution is larger than that expected in the
simulation. This discrepancy can be explained by the uncertainty on the exact shape of the
MT in the atom plane.
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Figure 4.9: Ground state densities. Real space density (integrated along one spatial direction)
of 1 a) , 3 b) and 6 c) 6Li atoms in the ground state of a harmonic oscillator potential. The
red dots show the experimental measurement, the black line represents the calculated density.
The blue dots show the residuals, i.e. the difference of the experimental and theoretical result.
The inset shows the occupation of the harmonic oscillator levels. The error bars represent the
standard errors of the mean.

The matterwave magnifier can also be used to magnify the wave function of multiple atoms.
We verify this using 𝑁 spin-down atoms, prepared in the ground state of the 2D-OT (with
radial trap frequency 𝜔r/2𝜋 = 1420(2)Hz) as a test target. Due to Pauli’s exclusion principle,
the atoms occupy the harmonic oscillator shells as sketched in the insets of Fig. 4.9. Given
the radial trap frequency, the ground state density can be calculated analytically from the 2D
harmonic oscillator wave functions. Experimentally, we determine the density by 1000 repeated
measurements of the atom positions after magnification. The comparison of the measured and
calculated density – both integrated over one spatial direction – are shown in Fig. 4.9, for 𝑁 =
1, 3 and 6 atoms (a), b), c), respectively). The residuals show no significant deviation of the
experimental results from the analytic calculations.

Additionally, we benchmark our ability to accurately magnify the wave function of interacting
atoms. We prepare one spin up and one spin down atom in the ground state of the 2D-OT. The
magnetic Feshbach resonance allows us to tune the interactions between atoms in different spin
states and thus the two-body binding energy 𝐸B (for more details see Sec. 2.3.4). At a given
radial and axial trap frequency, relative wave function of two interacting atoms in the ground
state of a radially symmetric harmonic oscillator can be calculated analytically, following the
derivation of Idziaszek et al. [60].
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Figure 4.10: Squared relative wave functions of two interacting atoms. Normalized occurrence
of distances Δ𝑟, measured in a system of two 6Li atoms with binding energy 𝐸B in the ground
state of a quasi 2D harmonic oscillator potential. We compare the experimental results (red
data-points) to the analytically calculated squared relative wave function (black line). The error
bars represent the standard errors of the mean.

The comparison of analytically calculated and measured squared relative wave function
|𝜓(Δ𝑟)|2 for different 𝐸B are shown in Fig. 4.10. For 𝐸B/ℎ ≲ 1400Hz, we find good agreement
between the measurements and the analytically calculated wave function. However, at larger
binding energies we start to observe a deviation from the analytical calculation, that is not
restricted to small relative distances Δ𝑟. Owing to matterwave aberrations, the magnified
distance of two atoms with very small initial distances, i.e. very large relative momenta, is
larger than the magnified distance expected for perfect matterwave magnifier. Hence, small
initial separations are observed as larger separations.

Like in optical systems, this effect could be reduced by implementing a finite aperture, removing
the parts of the wave function probing the anharmonic regions of the trap. This could be realized
by a magnifier trap that is a confining potential for 𝑥 < 𝑤 and anti-confining for 𝑥 > 𝑤. While
such a potential is experimentally achievable using a beam shaping device such as a digital
micro-mirror device or a Laguerre Gauss beam, it would come at the cost of loosing atoms
during the matterwave magnification.

4.3 Conclusion
In conclusion, we have demonstrated two techniques for matterwave manipulation based on
evolutions in optical potentials. First, a single scaled Fourier transform of the initial matterwave
maps momentum onto position space. Combined with our single atom and spin resolved imaging
technique, this unlocks access to the initial momentum distribution. Second, a magnification
of the initial wave function by a factor of ≈ 56 was achieved by two subsequent evolutions in
optical potentials. We tailored the optical potentials for accurate magnification of all relevant
length scales. This was verified by experimental measurements using quantum systems with
known wave functions as test-targets. The magnification of the initial wave function unlocks
access to observables in real space, which were initially obfuscated by the imaging resolution.
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Simple fluids are easier to drink than to
understand.

A. C. Newell and V. E. Zakharov
Optical Turbulence, 1995

Hydrodynamics is one of the most prominent frameworks in physics, describing phenomena
spanning several orders of magnitudes in both length and energy scales. The remarkable ver-
satility of hydrodynamics is evident in its ability to describe systems as diverse as galaxies [61],
atomic nuclei [62] or the movement of planktonic microorganisms in the ocean [63]. One of
the fundamental assumptions of hydrodynamics is that the exact microscopic properties can be
disregarded [64]. Instead, the dynamics of the system are described by effective macroscopic
quantities, such as velocity and pressure. Hydrodynamics then treats the system in terms of
macroscopic fluid cells that are both much smaller than the system size and much larger than
the interparticle spacing and the mean free path.

A hydrodynamic framework has also been successfully employed to model the expansion of
the exotic state of matter created in high energy heavy-ion collisions: the quark-gluon plasma
(QGP) [65–67]. Surprisingly, elliptic flow, a key signature of hydrodynamic behavior observed
in the expansion of the QGP, has also been observed in the expansion of the medium produced
in high energy proton-proton collisions with only few tens of final state hardrons [68]. Here,
the separation of scales required for a hydrodynamic description is not present.

Motivated by these experimental observations, we explore the emergence of interaction-driven
elliptic flow on the other end of the temperature scale. Compared to high-energy particle
collisions, ultracold atom experiments offer a significantly higher degree of control over particle
number, interaction strength and initial geometry. This enables us to explore the emergence
of collectivity from the bottom up, in a controlled setting. In addition, we have access to
observables that remain elusive in high energy physics, as we can observe the expansion of the
system in real and momentum space, with time and single particle resolution.

The experimental and theoretical results in this chapter are adapted from the publication

“Emergent interaction-driven elliptic flow of few fermionic atoms”
S. Brandstetter∗, P. Lunt∗, C. Heintze, G. Giacalone, L. H. Heyen, M. Gałka,
K. Subramanian, M. Holten, P. M. Preiss, S. Floerchinger, and S. Jochim,

Nature Physics, 10.1038/s41567-024-02705-8 (2025) [SB3]

and are presented with modifications and additions.

41



5.1. Hydrodynamics in high energy physics

5.1 Hydrodynamics in high energy physics
This section aims to provide a concise overview on the small system size puzzle in the context
of high energy physics, based on review articles [69, 70]. There, one can also find a more
comprehensive overview on the subject.

At the temperatures and densities found in today’s universe quarks and gluons are bound into
hadrons (e.g. protons and neutrons). However, in its early stages – from roughly 10 ps to 10 µs
after the big bang – the universe is thought to have taken the form of a quark-gluon plasma, an
exotic state of matter, in which quarks and gluons are deconfined [65]. In more recent history,
the QGP is created in high energy collisions of heavy ions. The temperatures of ≈ 400MeV
(equivalent to 5TK) reached in these collisions are high enough to deconfine the quarks and
gluons [71–74]. In the initial time after the collision, the system is strongly out of equilibrium.
After a highly complex, yet to be understood evolution phase, commonly referred to as pre-
hydrodynamization phase, the QGP expands, following the laws of relativistic hydrodynamics.
It is interesting to note that the idea that the expansion follows the laws of hydrodynamics
was already conjectured by Landau in 1956 [66]. During the expansion process the quark-
gluon plasma cools, eventually crossing the transition temperature of 170MeV (equivalent to
2TK) [75]. Here, hadrons form out of the quarks and gluons. The resulting hadrons continue
to expand. First, they scatter both inelastically and elastically, until the so-called chemical
freeze out. Thereafter, they scatter elastically until their mean free path far exceeds the system
size – the kinetic freeze out. Here, the redistribution of momenta seizes. These final momenta
of the hadrons are then measured on the particle detectors.

Experimentally, hydrodynamic behavior is inferred from the angular distribution of the mea-
sured hadron momenta [67]. Typically, the collision region of two nuclei is not rotationally
symmetric but elliptic or almond-shaped, as the collision is peripheral. The exact geometry
is set by the impact parameter, which can be determined from the number of participating
nucleons [67]. The anisotropic shape gives rise to anisotropic pressure gradient forces, resulting
in an anisotropic distribution of final momenta. This behavior, commonly known as elliptic
flow, is considered as a smoking gun of hydrodynamics.

Relativistic hydrodynamics has proven to accurately describe the expansion of matter created
in the collisions of two heavy ions such as gold [72] or lead [76]. Surprisingly, the signatures
of elliptic flow observed in these systems are also present in much smaller systems, produced
for example in the collision of two protons [68]. These systems are expected to be too small to
produce a quark-gluon plasma or to justify a hydrodynamic approach. Nonetheless, a hydrody-
namic description has proven to successfully model the expansion of these small systems with
only a few tens of final state particles. In addition, experiments with different initial system
geometries (created in the collision of gold with either a proton, deuterium or 3 He) have shown
that the final distribution of particles can be successfully linked to the initial geometry by rela-
tivistic hydrodynamics [77–80]. These observations have sparked interest in finding the number
of final state particles for which this collective description breaks down. These attempts [81,
82] have however remained inconclusive, as other sources of correlations mask the weak signal
attributed to collective flow.
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Chapter 5. Emergence of elliptic flow

5.2 Elliptic flow in a mesoscopic Fermi gas
Here, we study the emergence of interaction driven elliptic flow on the other end of the temper-
ature scale. Elliptic flow has previously been observed in the expansion of interacting, ultracold
quantum gases with large number of constituents [83–86]. In these systems, the characteristic
inversion of the aspect ratio was observed by imaging the expanding cloud at different time
steps during the expansion. We employ a similar approach to explore interaction driven elliptic
flow in a system of few, fermionic 6Li atoms. Imaging the system in real and momentum space
allows us to distinguish collective and single particle dynamics. In addition, our control over
both interaction strength and atom number allows us to study the emergence of collectivity in
a controlled setting.

5.2.1 Preparing an elliptic cloud
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Figure 5.1: Preparing closed shell configurations in an anisotropic potential. We prepare the
system the ground state of an anisotropic two-dimensional harmonic oscillator potential. The
harmonic oscillator levels, labelled by their quantum numbers 𝑛𝑥 and 𝑛𝑦 are sketched in a).
Here we mark the closed shell configuration of 5 + 5 atoms. Here 𝑛F b) shows the number of
atoms remaining in the trap as a function of the optical trap depth. We can see stable plateaus
corresponding to closed shell configurations of the harmonic oscillator potential. Figure adapted
from [SB3].

Experimentally, we prepare a spin balanced system in closed shell configurations of a 2D,
anisotropic harmonic oscillator potential. The anisotropic potential is created by utilizing an
anisotropic aperture phase pattern on the SLM, transforming the initially isotropic beam into
an elliptic beam. The ratio of the trap frequencies along the two major axis of the ellipse is
indirectly proportional to the ratio of the waists along the two directions. We have chosen the
anisotropy such that the trap frequencies are (𝜔x, 𝜔y)/2𝜋 = (1280(1), 3384(7))Hz.

The anisotropy of the harmonic oscillator potential leads to different closed shell configura-
tions compared to the isotropic case. In the anisotropic case, the harmonic oscillator states
are best described by separating the two spatial directions. The Hamiltonian describing the
two-dimensional system is separable into the Hamiltonians describing the two independent di-
rections. We choose the spatial directions such that they are aligned with the axis of the ellipse.
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5.2. Elliptic flow in a mesoscopic Fermi gas

The eigenstates are then given by the quantum numbers 𝑛𝑥 and 𝑛𝑦, with eigenenergies

𝐸𝑥(𝑦) = (𝑛𝑥(𝑦) + 0.5)𝜔𝑥(𝑦). (5.1)

As 𝜔𝑥 ≠ 𝜔𝑦, the degeneracy of levels with 𝑛𝑥 = 𝑛𝑦 is lifted. The level structure is sketched in
Fig. 5.1b). As in the isotropic system (see Sec 3.2), we can prepare closed shell ground state
configurations with very high fidelity by lowering the trap depth of the optical tweezer and
’spilling’ out atoms. In the anisotropic potential, stable plateaus appear at 1 + 1, 2 + 2, 3 + 3,
5 + 5, 7 + 7,... atoms, as shown in Fig. 5.1a).

5.2.2 Observing elliptic flow
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Figure 5.2: Observation of elliptic flow. We explore the interacting expansion of a system of
5+5 atoms released from an anisotropic 2D harmonic oscillator potential. The initial interaction
parameter is ln(𝑘0

F𝑎2D) = 1.22. We measured their positions (a-c) and momenta (e-g) after dif-
ferent interacting expansion times. The 2D histograms show the measured density distributions,
obtained from many experimental realizations of the same quantum states. The densities are
overlaid with a single, randomly chosen snapshot of the wave function (white and black dots).
The black dashed circles in (e-g) mark the Fermi momentum 𝑘F, obtained from the real-space
peak density. The RMS values of the positions(momenta) along x- and y- direction are shown
in d(h). The black data points in h) show a comparison to the Fermi momentum, rescaled to
match the initial RMS momentum. All error bars represent the 95 % confidence interval and
were obtained using a bootstrapping technique. The connecting line serves as a guide to the eye.
Figure adapted from [SB3].

We prepare a system of 5+5 atoms in the ground state of the elliptical tweezer, with an initial
interaction parameter ln(𝑘0

F𝑎2D) = 1.22 (for more details on the interactions in (quasi)-2D
see Sec. 2.3). Here, we approximate the typical momentum with the Fermi wave-vector 𝑘0

F =
√2𝑚𝐸0

F/ℏ, where 𝐸F = (𝑛𝑥
F +1.5)ℏ𝜔x is the energy of the non-interacting system, determined

by the last filled shell 𝑛𝑥
F = 3.
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Chapter 5. Emergence of elliptic flow

To explore the expansion dynamics, we instantaneously quench the radial potential – provided
by the OT – off, while keeping the axial confinement – provided by the SWT – on. We
image the system in real and momentum space after different expansion times 𝑡int, utilizing
the previously discussed matterwave manipulation techniques (see Chap. 4). At the longest
expansion time, 𝑡int = 9000 µs, the system has expanded enough to be resolvable without
matterwave magnification. We obtain the real and momentum space densities from ≈ 1000
repeated measurements. The measured densities in real (a-c) and momentum (e-g) space are
shown in Fig. 5.2. The density profiles are superimposed with a single, randomly chosen,
snapshot of the wave function, shown as black and white points. We quantify the widths of
the real and momentum space distribution by their RMS widths, 𝛿𝑟 and 𝛿𝑘, respectively. The
measured RMS widths are shown in Fig. 5.2d) , real space, and Fig. 5.2h) , momentum space.

Initially (𝑡int = 0 µs), the real space density is anisotropic (Fig. 5.2a) ), the momentum space
distribution however is isotropic (Fig. 5.2e) ). In contrast to bosonic systems and the one-body
case – where the momentum distribution is sensitive to the anisotropy of the potential [87] –
an isotropic momentum space distribution is expected for a degenerate Fermi gas in the many-
body limit. If the expansion was purely ballistic, we would observe an isotropic real space
distribution after a long expansion time, as the initial momentum distribution is mapped onto
real space (see Section. 4.2.2). However, we observe faster expansion along the initially tighter
confined 𝑦− direction, which leads to an inversion of the initial aspect ratio after 𝑡int = 150 µs.
Thus, we observe interaction-driven elliptic flow in a system of 5 + 5 particles.

We can calculate the Fermi momentum 𝑘F(𝑡int) = √4𝜋𝜌(𝑡int) from the real space density peak
density 𝜌(𝑡int) = 𝑁/(2𝜋𝛿𝑟𝑥(𝑡int)𝛿𝑟𝑦(𝑡int)).1 The momentum space width is set by the Fermi-
momentum, for times 𝑡int < 75 µs, as shown in Fig. 5.2h. The decrease in 𝛿𝑘 occurs concurrently
with the decrease of 𝜌(𝑡int). During this initial time, the system remains isotropic in momentum
space. The built-up of momentum space anisotropy begins when the Fermi momentum drops
significantly below the measured RMS widths (at 𝑡int ≈ 75 µs) and subsides at 𝑡int ≈ 120 µs.

Our experimental observations demonstrate interaction-driven elliptic flow in a system of only
5+5 constituents. Elliptic flow is usually considered as a smoking gun of hydrodynamic be-
havior. The separation of scales separation of scales commonly associated with a collisional
hydrodynamic framework is characterized by the Knudsen number

Kn𝑖 =
ℓmfp

𝛿𝑟𝑖
, (5.2)

giving the ratio of mean-free path ℓmfp and system-size 𝛿𝑟𝑖. Equivalently, the Knudsen number
can also be expressed as the ratio of expansion and scattering rate [86]. A collisional hydrody-
namic description is justified when Kn ≪ 1, i.e. when mean free path is much smaller than the
system size [58].

In our system of 5+5 atoms, the initial system size is (𝛿𝑟𝑥, 𝛿𝑟𝑦) = (1.37(6), 0.79(9)) µm. The
mean free path is given by ℓmfp = 𝜎/𝜌0, where 𝜎 is the scattering cross-section (see also
Eq. (2.30)). At an interaction strength of ln(𝑘0

F𝑎2D) = 1.22, the scattering cross-section is
1Note that 𝑘F(0) = 3µm is slightly above the Fermi momentum estimated from the non-interacting den-

sity 𝑘0
F = 2.3µm. This is due to the fact that the real space density increases with increasing (attractive)

interactions.
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5.2. Elliptic flow in a mesoscopic Fermi gas

𝜎 = 1.08 µm, slightly below the maximum scattering cross-section of 𝜎max = 1.73 µm. The
measured peak density is 𝜌0 = 0.73 µm−2 - resulting in a mean free path of ℓmfp = 1.5 µm. This
results in a Knudsen number of Kn𝑥 = 1.1 and Kn𝑦 = 1.89 along the two spatial directions.
Consequently, a collisional hydrodynamic description is not expected to be applicable to our
system.

5.2.3 Modelling elliptic flow
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Figure 5.3: Modelling elliptic flow. We compare the measured (red data points) real space
RMS widths a) and their aspect ratio b) to the results of different simulations. The result of
a ballistic expansion of the initial wave function is represented by the black dotted curve. The
dashed-dotted curve shows the results of a simulation approximating the scattering process as
that of point particles. The full curve shows the results of an ideal hydrodynamic expansion.
We observe a quantitative agreement between the observed evolution of the aspect ratio and the
prediction of a hydrodynamic evolution. Figure partially adapted from [SB3].

It is instructive to compare the experimental data to different simulations: a ballistic (i.e.
non-interacting) expansion of the initial wave function, a simplified scattering model and a
hydrodynamic evolution. We compare the results of these different simulations to the measured
RMS width in 𝑥 and 𝑦 direction, 𝛿𝑟𝑥 and 𝛿𝑟𝑦, respectively and to the aspect ratio 𝛿𝑟𝑥/𝛿𝑟𝑦.
The comparison is shown in Fig. 5.3.

We compute the ballistic, i.e. non-interacting expansion, from the time evolution of the position
operator ̂𝑥(𝑡), see also Equation (4.7). The time evolution of the position operator is given by

̂𝑥(𝑡) = ̂𝑥(0) cos(𝜔2𝑡) + ̂𝑝(0) 1
𝑚𝑎𝜔2

sin(𝜔2𝑡), (5.3)

where 𝜔2/2𝜋 = 20.2(3)Hz is the trap frequency of the combined radial potential set by the
SWT and the magnetic field curvature (for more details see Chap. 4). The RMS width at time
𝑡 is given by 𝛿𝑟𝑥(𝑡) = √⟨ ̂𝑥(𝑡)2⟩. We use the measured RMS widths in real and momentum
space as starting conditions and assume a Gaussian initial state with ⟨ ̂𝑥 ̂𝑝⟩ = ⟨ ̂𝑝 ̂𝑥⟩ = 0. We
compute the expansion along the two spatial directions independently, as they separate in
the non-interacting limit. The comparison to the experimental measurements shows that the
ballistic expansion is significantly faster than the observed expansion. This could stem from the
fact that the ballistic expansion is not slowed by the redistribution of momenta among the two
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Chapter 5. Emergence of elliptic flow

axis. The ballistic expansion shows a round aspect ratio after a long expansion time, reflecting
the initial momentum space distribution.

For a simplified scattering model, we model the scattering between atoms as elastic scattering
of Newtonian, point-like particles. The simulation models the time evolution of six particles
in a 2D plane, reflecting that every atom has five potential scattering partners of opposite
spin. The initial momenta and positions are randomly drawn out of distributions set by the
measured real and momentum space distributions. The particle positions are updated at each
time step. When two particles come within a distance given by the 2D scattering cross-section
𝜎 = 1.08 µm, an elastic collision occurs and the velocities of the collision partners are updated
accordingly. We obtain the RMS of the distribution at different time steps by running the
simulation 3000 times. This allows us to compare the results of this classical scattering model
to our measurements - see Fig. 5.3. We find good agreement between the widths predicted by
the simplified scattering model and the measured RMS widths for times up to 𝑡int = 150 µs,
corresponding to the time at which the redistribution of momenta seizes. The inversion of
the aspect ratio at later times is not predicted by the simplified scattering model. Hence, the
observed interaction-driven elliptic flow can not be explained by this collisional model. This is
expected as the Knudsen number 𝐾𝑛𝑖 > 1.

For the hydrodynamic simulation, we assume the properties of the corresponding many-body
system, with an initial density matched to the measured initial density. The expansion is
modelled by solving the Euler

𝜕𝒗
𝜕𝑡

+ (𝒗∇)𝒗 = −1
𝜌

∇𝑃 (5.4)

and continuity equation
𝜕𝜌
𝜕𝑡

+ ∇(𝜌𝒗) = 0, (5.5)

where 𝜌 is the density, 𝑃 is the pressure and 𝒗 = (𝑣𝑥, 𝑣𝑦) is the fluid velocity vector. The
solutions of these equations were obtained using the pyro simulation toolbox [88]. Additionally,
the equation of state (EOS) is required, giving the pressure as a function of density. Here,
we utilize the EOS of the corresponding many-body system [89]. As the many-body system
is a superfluid, we do not add any viscous correction terms. It is important to note that the
hydrodynamic equations can be derived from elastic scattering of particles in the limit of infinite
particle number and collision rate (i.e. 𝑁 → ∞ and 𝐾𝑛 → 0). The mathematical connection
between the macroscopic and microscopic description is a famous example of Hilbert’s sixth
problem (formulated in 1902) [90] and has only recently been proven mathematically [91, 92].

Looking at the comparison to the experimental results, the hydrodynamic simulation does not
capture the RMS width after a time of 𝑡int = 100 µs. However, the measured aspect ratio is
accurately reproduced by the hydrodynamic simulation at all times, including the final inversion
of the aspect ratio. This is truly remarkable, considering that both interparticle spacing and
mean-free path are comparable to the system size, or, alternatively, that 𝑁 = 5 and 𝐾𝑛 > 1.
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Figure 5.4: Emergence of elliptic flow. Aspect ratio of the real space density after an expansion
time of 9000µs for different atom numbers 𝑁 + 𝑁. The system is prepared in different closed
shell configurations of the anisotropic 2D harmonic oscillator potential. We compare the final
aspect ratio of a strongly interacting system (red) to that of a non-interacting system (blue
dots experimental measurement, blue squares analytical calculation). We observe an interaction-
driven inversion of the initial aspect ratio starting from 3 + 3 atoms. All error bars represent
the 95 % confidence interval and were obtained using a bootstrapping technique. The connecting
lines serve as a guide to the eye. Figure adapted from [SB3].

5.3 Emergence of interaction-driven elliptic flow
Our deterministic control over the atom number allows us to identify the atom number at
which collective behavior seizes. Naturally, this number is not expected to be universal, but
depends on the specific system parameters such as geometry and interaction strength. Fig. 5.4
shows the measured aspect ratio 𝛿𝑟𝑥/𝛿𝑟𝑦 after a long expansion time 𝑡int = 9000 µs for different
atom numbers 𝑁 + 𝑁. These correspond to closed shell configurations of the anisotropic
harmonic oscillator (see Sec. 5.2.1). To verify the emergence of interaction-driven elliptic flow,
we compare the measured final aspect ratio of the strongly interacting system to measurements
in the non-interacting limit.

In the non-interacting limit, the long expansion time is equivalent to a mapping of momentum
space on real space. Consequently, our measurements show the built-up of an isotropic mo-
mentum space distribution with increasing atom number. For a single atom, the aspect ratio
is (within the error) equal to √𝜔𝑥/𝜔𝑦, as is expected considering that the harmonic oscillator
momentum is proportional to √𝜔𝑖. As more particles are added to the system, the distribution
becomes isotropic. As the system is non-interacting, the initial momentum space density is
given by the ground-state density of an anisotropic harmonic oscillator which can be analyt-
ically calculated. We find excellent agreement between the calculated and measured aspect
ratios.

In the interacting system, we observe an inversion of the initial aspect ratio for all atom numbers.
However, for 1 + 1 and 2 + 2 atoms, there is no significant deviation between the final aspect
ratio measured in the interacting and non-interacting system. Starting from 3 + 3 atoms, the
aspect ratio after the interacting expansion differs significantly from that observed after the
non-interacting expansion. Here, the inversion of the aspect ratio is driven by interactions and
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is not just due to the initial momentum space distribution.

5.4 Interaction dependence
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Figure 5.5: Interaction dependence. Measured initial momentum space RMS widths a) and
real space widths after an interacting expansion time 𝑡int = 9000 µs b) for a system of 5+5 atoms
with different initial interaction parameters. We observe an interaction driven inversion of the
initial aspect ratio for ln(𝑘0

F𝑎2D) < 2. All error bars represent the 95 % confidence interval and
were obtained using a bootstrapping technique. The connecting lines serve as a guide to the eye.
Figure adapted from [SB3].

The tunability of the interaction strength allows us to investigate the expansion of a system
of 5+5 atoms at different interaction strengths. The initial momentum space widths 𝛿𝑘 are
shown in Fig. 5.5a) , the measured widths after a long, interacting expansion time are shown
in Fig. 5.5b. The initial momentum space widths increase with increasing interaction strength
(i.e. decreasing ln(𝑘0

F𝑎2D)). This reflects the decrease of the real space width with increas-
ing attractive interactions. The initial momentum space width is isotropic at all interaction
strengths. As a consequence, any anisotropy of the final real space distribution is necessarily
due to interactions.

In the strongly interacting system with ln(𝑘0
F𝑎2D) < 2, we observe elliptic flow. Here, the real

space density is anisotropic with 𝛿𝑟𝑥 < 𝛿𝑟𝑦 after a long interacting expansion time. While the
width along the initially strongly confined 𝑦− direction stays almost constant as a function of
interaction strength, the width in 𝑥− direction decreases with increasing interaction strength.
Thus, the final aspect ratio 𝛿𝑟𝑥/𝛿𝑟𝑦 decreases with increasing interaction strength. At an
interaction strength of ln(𝑘0

F𝑎2D) = 2, the density is isotropic with 𝛿𝑟𝑥 = 𝛿𝑟𝑦.

In the non-interacting limit (ln(𝑘0
F𝑎2D) → ∞), the final aspect ratio is isotropic (𝛿𝑟𝑥 = 𝛿𝑟𝑦),

reflecting the initial aspect ratio in momentum space. However, at intermediate interaction
strengths ln(𝑘0

F𝑎2D) > 2, we observe a peculiar behavior. Here, 𝛿𝑟𝑥 > 𝛿𝑟𝑦, reflecting the
anisotropy of the initial real space distribution. Similar behavior has been predicted for a
weakly-interacting, macroscopic, three-dimensional Fermi gas in the normal phase [93]. There,
the system is assumed to be collisonless and the expansion is modelled using the Vlasov equa-
tions [94], in which the interactions are incorporated as a mean-field term [93, 95]. For attractive
interactions, this mean field term causes a slower expansion along the initially tightly confined
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direction. As a consequence the density after a long interacting expansion exhibits a weak
anisotropy, reflecting the initial anisotropy of the system. In our 2D system, the mean-field
interactions are attractive, for ln(𝑘0

F𝑎2D) > 0, potentially resulting in a similar expansion be-
havior.

5.5 Conclusion and Outlook
In conclusion, we have observed interaction-driven elliptic flow in a system of few fermionic
atoms, where the separation of scales required for a hydrodynamic description is absent, drawing
a connection to the collective behavior observed in proton-proton collisions. We compare our
experimental measurements to different theoretical models and find that the evolution of the
aspect ratio is captured remarkably well by a hydrodynamic model, but not by a collisional
model.

By tuning the particle number, we investigate the emergence of collective behavior from the
bottom up and observe interaction-driven elliptic flow starting from a system of 3+3 atoms.
Tuning the interaction strength reveals two different interaction regimes: A regime of strong
interactions, where the initial aspect ratio is inverted after a long interacting expansion time and
a regime of weak interactions, where the aspect ratio is not inverted but rather preserved. In
a collisionless many-body system, such an effect is the consequence of an attractive mean-field
interaction.

5.5.1 On the question of superfluidity
A tempting explanation for the observed behavior is that our system can be described by
superfluid hydrodynamics in the strongly interacting regime. While the hydrodynamic behavior
in a normal fluid stems from collisions among the particles, in a superfluid, it is the result of
the occurrence of an order parameter [87, 96].

Let us take a quick detour to a bosonic system to understand the significance of the order
parameter, based on considerations in [87, 96]. The single particle density matrix 𝜌(𝒓, 𝒓′, 𝑡) is
defined as

𝜌(𝒓, 𝒓′, 𝑡) ≡ ⟨Ψ̂†(𝒓, 𝑡)Ψ̂(𝒓′, 𝑡)⟩ (5.6)

where Ψ̂(𝒓, 𝑡) is the bosonic field operators creating a particle in point 𝒓. This single particle
density matrix is Hermitian and can thus be written as

𝜌(𝒓, 𝒓′) = ∑
𝑖

𝑛𝑖𝜉∗
𝑖 (𝒓)𝜉𝑖(𝒓′) (5.7)

where 𝑛𝑖 are the real eigenvalues of 𝜌(𝒓, 𝒓′) and 𝜉𝑖 are the corresponding, normalized, eigen-
vectors, forming a complete orthogonal set. When one eigenvalue is of the same order as the
particle number 𝑁, the system exhibits Bose-Einstein condensation [97]. This is equivalent to
the existence of off-diagonal long-range order in the system [98]. The order parameter is then
defined as

𝜓(𝒓, 𝑡) ≡ √𝑁0𝜉0(𝒓, 𝑡) (5.8)
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where 𝑁0 and 𝜉0 are the eigenvalue and eigenvector of the state with eigenvalue on the order
of 𝑁.

The dynamics of the order parameter are described by a time-dependent Schrödinger-like equa-
tion, which can be rewritten in the form of the classical Euler and continuity equation (see
Eq. (5.4) and (5.5)) for an inviscous, irrotational fluid using the Madelung transformation [99,
100]. The (superfluid) velocity 𝒗𝑠(𝒓, 𝑡) is connected to the phase 𝜑(𝑟, 𝑡) of the order parameter
with

𝒗𝑠(𝒓, 𝑡) ≡ ℏ
𝑚𝑎

∇𝜑(𝒓, 𝑡). (5.9)

In a fermionic system, none of the eigenvalues of 𝜌(𝒓, 𝒓′) can be higher than unity. This is set
by Pauli’s exclusion principle. However, a macroscopic occupation (on order 𝑁) of eigenstates
of the two particle density matrix 𝜌2(𝒓1, 𝒓2, 𝒓′

1, 𝒓′
2, 𝑡) is possible [98]. We can then write the

order parameter as [96]
𝐹(𝒓, 𝒓′) ≡ √𝑁0𝜉0(𝒓, 𝒓′, 𝑡) (5.10)

similarly as in the bosonic system. The superfluid velocity can also be defined as above,
replacing the mass of a single atom with that of a pair.

From these considerations we can see that the formation of pairs is a necessary (but not suffi-
cient) criterion for superfluidity in fermionic systems. The formation of pairs in a mesoscopic
Fermi gas is discussed in depth in Chapter 6. We can also see that the expansion of the
superfluid system is described by the same equations as the expansion of a collisional fluid.
Therefore, the previously discussed measurements fundamentally do not allow us to distinguish
between a superfluid and a collisional fluid. To make this distinction we would have to test the
rotational properties of the system [101] or verify that it fulfills the Landau criterion [102].

Experimentally, superfluidity has been observed in the rotational behavior of a system com-
prising only 60 4He atoms immersed in a 3He droplet [103]. Monte-Carlo simulations predict
superfluid like behavior in even smaller clusters of 13 𝑝 − 𝐻2 molecules [104]. Considering
these observations it would be interesting to explore the emergence of superfluid behavior in a
mesoscopic Fermi gas.
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’And then there’s quantum of course’ the monk
sighed ’there’s always bloody quantum’

Sir Terry Pratchett
Night Watch, 2002

The (closely related) phenomena of superconductivity and superfluidity result from the macro-
scopic occupation of a quantum state. In bosonic systems, this occurs when the constituents
condense in a single-particle state. However, in a system of fermions, Pauli’s exclusion principle
permits, at maximum, unity occupation of each single-particle state. This fundamental limi-
tation means that individual fermions cannot form a coherent, macroscopically occupied state.
However, the macroscopic occupation of a two-particle state is not excluded by Pauli’s princi-
ple [98]. Consequently, the fundamental ingredient for superconductivity and superfluidity in
fermionic systems is the formation of pairs.

When the attractive interactions between fermions are sufficiently strong, pairs of fermions may
form tightly bound molecules, and the system can behave like a collection of composite bosons.
At weaker interactions, fermions of opposite momentum close to the Fermi surface form Cooper
pairs. In continuous systems, this mechanism was established by Cooper [105], leading to the
well-known Bardeen, Cooper, and Schrieffer (BCS) theory [106].

Anderson [107] generalized pairing between states of opposite momentum to pairing between
time-reversed states. This extended framework allows for a description of so-called ’dirty’
superconductors, where translation invariance is broken by physical or chemical impurities.
Beyond that, it also applies to nuclear systems, where translational symmetry is broken by the
nuclear mean-field potential, allowing for a description of pairing between nucleons [108, 109].

In this chapter, we report on the observation of distinct pairing regimes in a 2D harmonic
oscillator potential. By tuning the system parameters, we transition from a regime where
pairing is best described by time-reversed harmonic oscillator states to a regime where the
discrete level structure becomes negligible, and the potential primarily determines the local
density. We here bridge the gap between the Cooper picture and the more generalized Anderson
framework, shedding light on how confinement influences pairing correlations.

This chapter is based on a paper in preparation. The experimental work and data analysis
were conducted by the author, Carl Heintze, Maciej Gałka and Selim Jochim, the calculations
in the potential-dominated regime were done by Georg Bruun. Fabian Brauneis and Stephanie
Reimann performed the numerical exact diagonalization. The measurements in momentum
space are partially based on [SB1].
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6.1 Translation invariant systems
The discussion in this section is based on books [87, 96, 110, 111] and review articles [22] on
BCS theory. We refer the reader to these references for a more in-depth discussion.

A system of 2𝑁 fermions of mass 𝑚a, in two spin states (with 𝑁 atoms per spin-state), inter-
acting via contact interactions (with coupling constant 𝑔), is described by the Hamiltonian

�̂� =
2𝑁
∑
𝑖=1

( �̂�2
𝑖

2𝑚a
) + 𝑔(𝐷) ∑

𝑘,𝑙
𝛿(𝐷)( ̂𝒓𝑘 − ̂𝒓𝑙), (6.1)

in 𝐷 dimensions and in absence of a confining potential. The indices 𝑘 and 𝑙 denote the two
different spin states, �̂� and ̂𝒓 are the momentum and position operators, respectively. The first
term of the Hamiltonian represents the kinetic energy, the second term the interactions between
two particles of different spin.

Let us first consider the simplified scenario of two weakly interacting fermions on top of a non-
interacting Fermi sea - the famous Cooper problem [105]. While in a 2D system the interaction
potential always supports a two-body bound state (see Sec. 2.3), this is not necessarily the
case in a 𝐷-dimensional system (as for example in 3D). However, as shown by Cooper [105],
the presence of a Fermi sea modifies the density of scattering states. The density of states is
constant at the Fermi surface, giving rise to a bound state at arbitrarily weak interactions also
in 3D. As the number of available scattering states is largest for pairs with zero center-of-mass
momentum, Cooper pairs form between atoms of opposite momentum on the Fermi surface [22,
110].

The considerations of Cooper only account for the interactions of the two atoms on top of a
non-interacting Fermi sea. Based on the insight of Cooper that pairing occurs between atoms of
opposite momenta, Bardeen, Cooper, and Schrieffer formulated a model Hamiltonian describing
the many-body system in second quantization [106]

�̂�BCS = ∑
𝑝𝜎

𝜖𝑝 ̂𝑎†
𝑝,𝜎 ̂𝑎𝑝,𝜎 +

𝑔(D)

𝑉
∑
𝑝,𝑝′

Γ𝑝,𝑝′( ̂𝑎†
𝑝,↑ ̂𝑎†

−𝑝,↓ ̂𝑎−𝑝′,↓ ̂𝑎𝑝′,↑), (6.2)

limiting the interaction term of 6.1 to pairs of opposite momenta. Here, 𝑉 is the volume and
the operator ̂𝑎†

𝑝,𝜎 ( ̂𝑎𝑝,𝜎) creates (annihilates) a fermion with spin 𝜎 and momentum 𝑝. The
energy 𝜖𝑝 = 𝑝2

2𝑚 − 𝜇 denotes the energy of the state with momentum 𝑝, relative to the chemical
potential 𝜇. At weak interactions, the matrix element Γ𝑝,𝑝′ is non-zero only in a small region
around the Fermi surface. In this regime of weak interactions, the chemical potential can be
approximated by the Fermi energy.

We can obtain an approximate solution to this problem by employing a mean-field ap-
proach [110, 111]. Here, the pair operator

̂𝑃 =
𝑔(D)

𝑉
̂𝑎𝑝,↑ ̂𝑎−𝑝,↓ (6.3)
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is replaced with its mean-field expectation value ∑𝑝 ⟨ ̂𝑃 ⟩ = Δ, resulting in

�̂�BCS = ∑
𝑝𝜎

𝜖𝑝 ̂𝑎†
𝑝,𝜎 ̂𝑎𝑝,𝜎 + ∑

𝑝
(Δ ̂𝑎†

𝑝,↑ ̂𝑎†
−𝑝,↓ + Δ ̂𝑎𝑝,↑ ̂𝑎−𝑝,↓) + 𝑉 |Δ|2

𝑔(D)
. (6.4)

The parameter Δ sets the size of the superfluid gap [110, 111]. It is vital to note that the
mean-field Hamiltonian does not conserve particle number, as is evident due to the ̂𝑎†

𝑝,↑ ̂𝑎†
−𝑝,↓

term.

The mean-field Hamiltonian can be diagonalized with the Bogoliubov de Gennes transforma-
tion [112], i.e. by introducing quasi particle operators

̂𝛾𝑝,↑ = 𝑢𝑝 ̂𝑎𝑝,↑ − 𝑣𝑝 ̂𝑎†
−𝑝,↓

̂𝛾†
𝑝,↑ = 𝑢𝑝 ̂𝑎†

𝑝,↑ + 𝑣𝑝 ̂𝑎−𝑝,↓,
(6.5)

where 𝑢𝑝 and 𝑣𝑝 are solutions of

𝐸𝑝 [𝑢𝑝
𝑣𝑝

] = [𝜖𝑝 Δ
Δ −𝜖𝑝

] [𝑢𝑝
𝑣𝑝

] . (6.6)

This leads to 𝑣2
𝑝 = 1

2 (1 − 𝜖𝑝
𝐸𝑝

) and 𝑢2
𝑝 = 1

2 (1 + 𝜖𝑝
𝐸𝑝

), with 𝐸𝑝 = √𝜖2
𝑝 + |Δ|2. The BCS ground

state wave function is then given by [106]

|𝜓BCS⟩ = 𝒩 ∏
𝑝

̂𝛾−𝑝↓
̂𝛾𝑝↑

|0⟩ = ∏
𝑝

(𝑢𝑝 + 𝑣𝑝 ̂𝑎†
𝑝,↑ ̂𝑎†

−𝑝,↓) |0⟩ (6.7)

where |0⟩ is the vacuum state of the particle operators ̂𝑎𝑝,𝜎 |0⟩ = 01. The BCS ground state is
free of excitations, consequently ̂𝛾𝑝,𝜎 |𝜓BCS⟩ = 0.

The occupation probability 𝑛𝑝 of the state with momentum 𝑝 is

𝑛𝑝 = ⟨𝜓BCS| ̂𝑎†
𝑝,↑ ̂𝑎𝑝,↑|𝜓BCS⟩ = ⟨𝜓BCS| ̂𝑎†

𝑝,↓ ̂𝑎𝑝,↓|𝜓BCS⟩

= 𝑣2
𝑝 = 1 − 𝑢2

𝑝.
(6.8)

The coefficients 𝑣2
𝑝 and 𝑢2

𝑝 thus give the particle and hole occupation probabilities, respectively.
For Δ = 0, 𝑛𝑝 takes the form of the characteristic step function, where all states below the
chemical potential (which here coincides with the Fermi energy) are fully occupied, and all
states above are unoccupied. For small Δ the occupation of a few states around the Fermi
energy is altered. As the interaction strength increases, the change in occupation extends to
progressively more states.

The pair wave function can be expressed as [22]

⟨𝜓BCS| ̂𝑎†
𝑝,↑ ̂𝑎†

−𝑝,↓|𝜓BCS⟩ = 𝑢𝑝𝑣𝑝. (6.9)

Hence, pair formation occurs in states with both a non-zero particle and non-zero hole occu-
pation probability. Considering the change in 𝑛𝑝 discussed above, we can see that for weak

1Note that we use a compact notation throughout this thesis, writing �̂�𝑝,𝜎 |0⟩ = 0 instead of �̂�𝑝,𝜎 |0⟩ = 0 |0⟩.
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interactions, pairing is constrained to few states around the Fermi surface – the Cooper pair
regime. As we increase the interactions, pairing is no longer constrained to the Fermi surface.
When the occupation of each state becomes far smaller than unity, the fermionic nature of the
constituents of the pair can be disregarded [22]. The system can then be effectively described as
a gas of tightly bound bosonic molecules. These two regimes define the limits of the BEC-BCS
crossover.

6.2 Broken translational symmetry
The general introduction on pairing in systems with broken translational symmetry is based on
the original publication by Anderson [107], books [113] and lecture notes [114]

Motivated by the observation that superconductivity persists in dirty superconductors, i.e.
superconductors that exhibit a high degree of (non-magnetic) impurities, Anderson introduced
the notion of pairing between time-reversed eigenstates of the single-particle Hamiltonian [107].
This notion extends the BCS framework to systems with broken translational symmetry (e.g.
due to impurities in the dirty superconductor), for which momentum is not a good quantum
number. Time-reversed states are connected by the time reversal operator

̂𝑇 ∶ 𝑡 → −𝑡, 𝑖 → −𝑖. (6.10)

While ̂𝑇 does not change the position operator, it reverses the sign of e.g. the momentum
̂𝑝 = −𝑖ℏ 𝜕

𝜕𝑥 and angular momentum operator [115]. As the states 𝑝 ↑ and −𝑝 ↓ are a time-
reversed pair, Anderson’s theory is a generalization of the original BCS theory [106].

The approach of Anderson is to first find the eigenstates of the single-particle Hamiltonian and
then solve the BCS problem in terms of these states and their time-reversed partners. The most
general single-particle Hamiltonian describing a system with broken translational symmetry is
given by

�̂�SP = �̂�2

2𝑚𝑎
+ 𝑉 ( ̂𝒓), (6.11)

where 𝑚𝑎 is the mass of the particle, �̂� is the momentum operator and 𝑉 ( ̂𝒓) is some position
dependent potential. Given that the Hamiltonian �̂�SP is time reversal symmetric, i.e.

[�̂�SP, ̂𝑇 ] = 0 (6.12)

every eigenstate 𝜓𝑛,𝜎 of �̂� has a time-reversed partner, ̂𝑇 𝜓𝑛,𝜎, that is degenerate in energy.
Pairing takes place between these time-reversed states. This description in terms of single-
particle states is valid as long as the superfluid gap is smaller than the single-particle gap of
the spatially varying potential 𝑉 ( ̂𝒓) [107].

This approach is also utilized to understand properties of the nucleus [108]. The nucleus is a
self-bound system in which the average interactions between all nucleons gives rise to a position
dependent potential 𝑉 ( ̂𝒓) - the nuclear mean-field. The individual nucleons then occupy the
single-particle states of this mean-field potential. This description of the nucleus is referred
to as the shell model [116, 117]. In addition to the mean-field potential, the short range part
of the nuclear force gives rise to pairing - as is evident from the observation that nuclei with
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an even number of protons or neutrons are more strongly bound than nuclei with odd proton
or neutron numbers. As the pairing force is weak compared to the single particle gap of the
nuclear mean field, pairing can be modelled as pairing between time-reversed single-particle
states around the Fermi surface [107, 113, 118, 119].

6.2.1 Broken time-reversal symmetry
To understand the consequence of broken time reversal symmetry, it is interesting to consider
a rotation of the confining potential in a reference frame with rotational frequency Ωrot. Here
the single-particle Hamiltonian is given by

�̂�rot = �̂�SP − Ωrot�̂�𝑧, (6.13)

where �̂�𝑧 is the projection of the angular momentum operator �̂� = ̂𝒓 × �̂�. It is evident that
this Hamiltonian is not symmetric under time reversal, which causes a sign change of the last
part describing the rotation. The time reversed states of �̂�SP are then separated by a gap, set
by the rotational frequency. At a fixed interaction strength, there is thus a critical rotation
frequency above which pairing is suppressed.

In nuclear physics a closely related effect – known as the Mottelson-Valatin effect [120] – pre-
dicts the break-down of pairing (and thus superfluidity) in nuclei with large angular momenta.
This breaking of pairs can give rise to a back-bending of the Yrast2 line, giving the minimum
energy as a function of the angular momentum of the nucleus [113, 122]. Due to the anal-
ogy between rotation and magnetic field, these considerations also connect to the breakdown
of superconductivity at a critical magnetic field strength, observed in type-I superconductors.
Hence, the Mottelson-Valatin effect is commonly referred to as a “nuclear Meissner effect”.

6.3 Pairing in a harmonic oscillator potential
We explore pairing in a stationary, rotationally symmetric, 2D harmonic oscillator potential
(sketched in Fig. 6.1). The Hamiltonian describing 2𝑁 fermions in 2 spin states in a rotationally
symmetric 2D harmonic oscillator potential is given by

�̂� =
2𝑁
∑
𝑖=1

⎛⎜⎜⎜
⎝

�̂�2
𝑖

2𝑚𝑎
+ 1

2
𝑚𝑎𝜔r ̂𝒓2

𝑖 𝑡
⏟⏟⏟⏟⏟

𝑉 (�̂�)

⎞⎟⎟⎟
⎠

+ 𝑔2D ∑
𝑖,𝑗

𝛿(2)( ̂𝒓𝑖 − ̂𝒓𝑗), (6.14)

where 𝜔r is the angular frequency of the harmonic oscillator. The three terms of the Hamil-
tonian can be related to three different energy scales: the kinetic energy term is related to
the interparticle spacing and thus the Fermi energy 𝐸F. The harmonic confinement exhibits
a shell structure with a single particle gap ℏ𝜔r. The interactions can be characterized by the
two-particle binding energy 𝐸B, defined as the binding energy per pair. Here it is important to
note that the quasi-2D harmonic oscillator potential alters the binding energy compared to the

2Sometimes ’Yrast’ - the superlative of the Swedish word ’Yr’ is translated as whirlingest (superlative of
whirly). However, a dictionary will show you that the literal – and maybe more fitting – translational is
dizziest [121].
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Figure 6.1: Single-particle spectrum of a 2D harmonic oscillator. The single-particle states of
a rotationally symmetric 2D harmonic oscillator are labelled by the principal quantum number
𝑛 and the angular momentum quantum number 𝑚. The 𝑛-th energy level exhibits an 𝑛 + 1-fold
degeneracy.

uniform 2D case discussed in Sec. 2.3.3. We obtain the two-body binding energy in the trap
following calculations in [60]. More details on the deviation can also be found in [32, 33, 123].

In the regime of weak interactions, we can use Anderson’s approach to understand pairing in
this system. The single-particle eigenstates in real space coordinates are given by

⟨𝑥|𝑛, 𝑚⟩ = 𝜓𝑛,𝑚(𝑟, 𝜃) = √ 𝑘!
𝜋(𝑘 + |𝑚|)!

𝑟|𝑚|exp(−𝑟2

2
)𝐿|𝑚|

𝑘 (𝑟2)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑅𝑛,𝑚(𝑟)

𝑒𝑖𝑚𝜃, (6.15)

where 𝑛 is the principal/shell quantum number, 𝑚 = −𝑛, −𝑛+2, ..+𝑛 is the angular momentum
quantum number, 𝑘 = 0.5(𝑛 − |𝑚|), 𝑟 is given in units of the harmonic oscillator length
𝑙HO = √ℏ/𝑚𝑎𝜔r and 𝐿|𝑚|

𝑘 is the generalized Laguerre polynomial of degree 𝑘. The single-
particle eigenenergies are given by

𝐸0
𝑛 = (𝑛 + 1)ℏ𝜔r. (6.16)

As the time reversal operator changes the sign of the angular momentum 𝑚, the time-reversed
partner of each eigenstate |𝑛, 𝑚⟩ is |𝑛, −𝑚⟩. It is apparent that these time-reversed states are
degenerate in energy.

A BCS-like Hamiltonian can now be written in terms of the time-reversed states |𝑛, −𝑚⟩ and
|𝑛, 𝑚⟩ [107, 124]

�̂� = ∑
𝑛,𝑚,𝜎

𝜖𝑛 ̂𝑎†
𝑛,𝑚,𝜎 ̂𝑎𝑛,𝑚,𝜎 + ∑

𝑛,𝑛′,𝑚,𝑚′

𝑉𝑛,𝑚,𝑛′,𝑚′( ̂𝑎†
𝑛,𝑚,↑ ̂𝑎†

𝑛,−𝑚,↓ ̂𝑎𝑛′,−𝑚′,↓ ̂𝑎𝑛′,𝑚′,↑) (6.17)

where 𝜖𝑛 = (𝑛 + 1)ℏ𝜔r − 𝐸F denotes the energy of state 𝑛 relative to the Fermi energy and
̂𝑎†
𝑛,𝑚,𝜎 ( ̂𝑎𝑛,𝑚,𝜎) creates (annihilates) a particle with spin 𝜎 in state |𝑛, 𝑚⟩. Following the same
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mean-field argument as in Sec. 6.1, the Hamiltonian can be rewritten as

�̂� = ∑
𝑛,𝑚,𝜎

𝜖𝑛 ̂𝑎†
𝑛,𝑚,𝜎 ̂𝑎𝑛,𝑚,𝜎 + ∑

𝑛,𝑚
Δ( ̂𝑎†

𝑛,𝑚,↑ ̂𝑎†
𝑛,−𝑚,↓ + h.c.), (6.18)

where Δ is the pairing gap.
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Figure 6.2: Pair and Hole Occupation probabilities. The pair and hole occupation probabilities
as a function of the principal quantum number for a system with 𝐸B > 𝐸c

B. b) shows a sketch of
the occupied levels.

Analogously to the standard BCS Hamiltonian, this Hamiltonian can be diagonalized using the
Bogoliubov de Gennes transformation [112], i.e. by introducing quasi particle operators

̂𝛾𝑛,𝑚,↑ = 𝑢𝑛,𝑚 ̂𝑎𝑛,𝑚,↑ − 𝑣∗
𝑛,−𝑚 ̂𝑎†

𝑛,−𝑚,↓

̂𝛾†
𝑛,𝑚,↓ = 𝑢∗

𝑛,−𝑚 ̂𝑎𝑛,−𝑚,↓ + 𝑣𝑛,𝑚 ̂𝑎†
𝑛,𝑚,↑,

(6.19)

with 𝑢2
𝑛,𝑚 = 1/2(1 + 𝜖𝑛/𝐸𝑛) = 1 − 𝑣2

𝑛,𝑚 and 𝐸𝑛 = √𝜖2
𝑛 + Δ2. Here 𝜖𝑛 = 𝐸0

𝑛 − 𝐸F gives the
energy of the 𝑛th state relative to the Fermi energy.

As in the uniform case (see Eq. (6.8)), 𝑣2
𝑛,𝑚 gives the particle occupation probability of the state

|𝑛, 𝑚⟩ and 𝑢2
𝑛,𝑚 gives the hole occupation probability. The occupation probabilities for particles

and holes for a system with 𝐸F/ℏ𝜔r = 4.5(𝑛F = 3) and Δ/ℏ𝜔r = 0.6 are shown in Figure 6.2.
The weak interactions only alter the occupation of few states around the Fermi surface, i.e.
around 𝑛F. Pairs form in states with non-zero particle and hole occupation probabilities. As a
consequence, pairing is, in this weakly interacting limit, restricted to a few shells around 𝑛F.

The pairing gap Δ depends on the occupation of the last filled harmonic oscillator shell 𝑛F
[124, 125]. When there are unoccupied states in the last shell, the Fermi energy is equal to
the energy of the last filled shell 𝐸F = (𝑛F + 1)ℏ𝜔r. Here, pairing will occur at arbitrarily
weak interactions – similarly to the continuous system discussed in Sec. 6.1 – within the last
filled shell 𝑛F. However, when all states up to and including 𝑛F are completely filled, the Fermi
energy lies between the last filled and the first empty shell 𝐸F = (𝑛F + 3/2)ℏ𝜔r. The gap
in the single-particle spectrum (set by ℏ𝜔r) gives rise to a critical interaction strength, in the
many-body limit. At this interaction strength, the system will transition from an unpaired
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6.3. Pairing in a harmonic oscillator potential

to a paired state, as pairing is only possible when it is energetically favorable to excite a pair
from the Fermi surface to the first unfilled shell. The emergence of this phase transition was
predicted in [124, 126] and observed in [127].

The critical binding energy 𝐸c
B in the filled shell configuration, is given by [124]

𝐸c
B/ℏ𝜔r = 𝐵(𝑛F)

𝜁(2)
(√1 + 4 𝜁(2)

𝐵(𝑛F)2 − 1) , (6.20)

where 𝐵(𝑛F) = 0.577 + 4 ln 2 + ln𝑛F and 𝜁 is the Riemann zeta function. Below this critical
binding energy, pairing is energetically unfavorable. For binding energies 𝐸B larger than the
critical binding energy, the pairing gap is given by [124]

Δ/ℏ𝜔r = 1
√7𝜁(3)

√2ℏ𝜔r
𝐸c

B
− 2ℏ𝜔r

𝐸B
+ 𝜁(2) ( 𝐸B

2ℏ𝜔r
−

𝐸c
B

2ℏ𝜔r
). (6.21)

Δ is spatially constant and dependent only on the highest filled level 𝑛F and the binding
energy [124]. Note that these results were derived in the mean-field limit. In the few-body
limit the phase transition is softened to a crossover, and pairing can also occur below the
critical interaction strength [126, 127].

The description of pairing in terms of the time reversed states |𝑛, 𝑚⟩ and |𝑛, −𝑚⟩ is applicable as
long as coupling between states with different principal quantum number 𝑛 and 𝑛′ is negligible.
The pairing strength between states |𝑛, 𝑚⟩ and |𝑛′, −𝑚⟩ is given by the matrix element [125]

⟨𝑛, 𝑚|Δ|𝑛′, −𝑚⟩ = ∫
∞

0
𝑑𝑟𝑟Δ𝑅𝑛,𝑚(𝑟)𝑅𝑛′,−𝑚(𝑟), (6.22)

where Δ is the pairing gap and 𝑅𝑛,𝑚(𝑟) is the radial part of the harmonic oscillator wave
function (see Eq. (6.15)). While Δ is - in our case - strictly positive, the sign of 𝑅𝑛,𝑚(𝑟)
fluctuates as a function of 𝑟. Hence, the coupling between states in different levels (𝑛 ≠ 𝑛′) is
suppressed compared to pairing between states in the same level (𝑛 = 𝑛′).

For interaction strengths Δ > 2ℏ𝜔r pairing between different levels becomes relevant. At this
interaction strength, the size of the Cooper pair [128]

𝜉 ≡ 2ℏ𝑝F
𝑚𝑎Δ

, (6.23)

(with 𝑝F = √2𝑚𝑎𝐸F) is smaller than the system size

𝑟F = √ 2𝐸F
𝑚𝑎𝜔2

r
. (6.24)

As 𝜉 sets the smallest length scale over which the pairing field can vary [125], the system can
then be treated as locally homogeneous. In other words, for Δ > 2ℏ𝜔r, the harmonic oscillator
potential only sets the local density and the level structure can be disregarded [119, 125, 129].
In this regime, pairing is governed by the competition of 𝐸F and Δ, or, equivalently, by the
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competition of the mean interparticle spacing

1/√𝜌 = √ 4𝜋ℏ2

2𝑚𝑎𝐸F
(6.25)

and the coherence length 𝜉. The crossover from the Cooper pairing to the molecular regime
occurs when Δ > 2𝐸F [130]3. Here, the coherence length becomes smaller than the mean
interparticle spacing, i.e. the system forms tightly bound molecules. For 2𝐸F > Δ > 2ℏ𝜔r, the
coherence length is smaller than the system size, but larger than the interparticle spacing. The
system is in the Cooper pairing regime.

The different regimes can be accessed by tuning the Fermi and binding energy, as sketched in
Fig. 6.3. We approximate the strength of the pairing gap by that of the uniform 2D Fermi
gas Δ = √2𝐸0

F𝐸B [130], where 𝐸0
F = (𝑛F + 1.5)ℏ𝜔r and 𝐸B is the two-body binding energy.

This overestimates the amplitude of the pairing gap in the potential-dominated regime, given
by (6.21). The competition of the different energy scales is encoded in the RGB color code of
the diagram, with (𝑅, 𝐺, 𝐵) = (2ℏ𝜔r

Δ , 1, Δ
2𝐸0

F
). The values are normalized to the maximum of

the RGB triple. A system in the red regions of the plot is in the potential-dominated regime
(Δ < 2ℏ𝜔r). In the blue region Δ > 2𝐸0

F and the system is in the molecular regime. In the
green region, the system is in the Cooper pair regime.

6.3.1 Observing pairing regimes
The essential task is to find an observable that allows us to distinguish between different pairing
regimes. A natural observable for pairing is the two particle density-density correlator

𝒞(2)(𝝌↑, 𝝌↓) = ⟨ ̂𝜌↑(𝝌↑) ̂𝜌↓(𝝌↓)⟩ − ⟨ ̂𝜌↑(𝝌↑)⟩ ⟨ ̂𝜌↓(𝝌↓)⟩ , (6.26)

where 𝝌𝜎 denotes a point in space, ̂𝜌𝜎 is the density operator and ⟨...⟩ denotes the ground-state
expectation value. The correlator gives the conditional probability of finding a spin-down atom
at 𝝌↓, given that there is a spin-up atom at 𝝌↑. We subtract the disconnected part of the
correlator, which is determined by the lower-order correlation function (i.e. the single-particle
density).

Potential-dominated regime

In the potential-dominated regime – where pairing occurs between the time-reversed states
|𝑛, 𝑚⟩ and |𝑛, −𝑚⟩ – the most obvious correlation function to look at is

𝒞(2)(𝑚, −𝑚) = ∑
𝑛

⟨ ̂𝑎†
𝑛,𝑚,↑ ̂𝑎𝑛,𝑚,↑ ̂𝑎†

𝑛,−𝑚,↓ ̂𝑎𝑛,−𝑚,↓⟩ − ⟨ ̂𝑎†
𝑛,𝑚↑ ̂𝑎𝑛,𝑚↑⟩ ⟨ ̂𝑎†

𝑛,−𝑚,↓ ̂𝑎𝑛,−𝑚,↓⟩ . (6.27)

However, this correlator is experimentally inaccessible, as we – as of now – lack the ability to
measure angular momenta.

3Note that this transition occurs when the interaction parameter ln(𝑘F𝑎2D) = ln(√2𝐸F/𝐸B) = 0
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Figure 6.3: Pairing regimes in a harmonic oscillator potential. The competition of binding
energy 𝐸B, Fermi energy 𝐸F and single-particle gap ℏ𝜔r give rise to three pairing regimes for
fermions confined in a two-dimensional harmonic oscillator potential. When the single-particle
gap exceeds the pairing gap Δ = √2𝐸B𝐸0

F, pairing is dominated by the level structure of the
harmonic oscillator potential. For Δ > 2ℏ𝜔r, the level structure can be disregarded, and the
system is in the Cooper pairing regime for 2𝐸F > Δ and in the molecular regime for Δ > 2𝐸F.
The three energy scales are encoded in the RGB color code (𝑅, 𝐺, 𝐵) = (2ℏ𝜔r

Δ , 1, Δ
2𝐸F

), normalized
to the maximum value of the RGB triple.

Instead, we consider the correlation function in both real and momentum space. To calculate
the correlator in real space, we rewrite 𝑣𝑛,𝑚 and 𝑢𝑛,𝑚 in a spatially dependent manner,

𝑢𝑛,𝑚(𝑟, 𝜃) = 𝑢𝑛,𝑚 ⟨𝑥|𝑛, 𝑚⟩
𝑣𝑛,𝑚(𝑟, 𝜃) = 𝑣𝑛,𝑚 ⟨𝑥|𝑛, 𝑚⟩

(6.28)

where ⟨𝑥|𝑛, 𝑚⟩ = 𝜓𝑛,𝑚(𝑟, 𝜃), see Eq. (6.15). In real space, the density-density correlator
(Eq. (6.26)) then becomes

𝒞(2)(𝒓↑, 𝒓↓) = (∑
𝑛,𝑚

𝑣𝑛,𝑚(𝑟↑, 𝜃↑)𝑢𝑛,𝑚(𝑟↓, 𝜃↓)))
2

= (∑
𝑛,𝑚

𝑣𝑛,𝑚𝑢𝑛,𝑚𝑅𝑛,𝑚(𝑟↑)𝑅𝑛,𝑚(𝑟↓) cos(𝑚(𝜃↑ − 𝜃↓)))
2

.

(6.29)

As pairing is local in real space, it is reasonable to simplify the four dimensional correlator
𝒞(2)(𝒓, 𝒓), by considering only atoms that sit at the same radial and angular position (𝑟 and
𝜃, respectively). Due to the radial symmetry of the trap, the correlator only depends on 𝑟,
consequently 𝒞(2)(𝑟, 𝜃, 𝑟, 𝜃) ≡ 𝒞(2)(𝑟, 𝑟) - henceforth called the real space pair density.

We obtain the momentum space correlator from 𝑣𝑛,𝑚(𝑝, 𝜙) = 𝑣𝑛,𝑚 ⟨𝑝|𝑛, 𝑚⟩ (analogously for
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𝑢𝑛,𝑚(𝑝, 𝜙)) resulting in

𝒞(2)(𝒑↑, 𝒑↓) = (∑
𝑛,𝑚

𝑣𝑛,𝑚𝑢𝑛,𝑚𝑅𝑛,𝑚(𝑝↑)𝑅𝑛,𝑚(𝑝↓) cos(𝑚(𝜙↑ − 𝜙↓ + 𝜋)))
2

. (6.30)

In momentum space, pairing occurs between pairs of atoms of opposite momentum - as dictated
by the time reversal symmetry of the paired states. Hence, we define the momentum space pair
density as 𝒞(2)(𝑝, 𝜙, 𝑝, 𝜙 − 𝜋) – denoted as 𝒞(2)(𝑝, −𝑝), for clarity. Following equations (6.29)
and (6.30), 𝒞(2)(𝑟, 𝑟) and 𝒞(2)(𝑝, −𝑝) follow the same functional form in the potential-dominated
regime.

Local density approximation

In the limit where the level structure can be disregarded, and the system can be treated as
locally homogeneous, the introduction of a local Fermi energy is justified, replacing the global
Fermi energy in the potential-dominated regime. The Fermi energy is set by the particle density
𝜌(𝑟),

𝐸F(𝑟) = ℏ2

2𝑚𝑎
𝑘F(𝑟)2 = 4𝜋ℏ2

2𝑚𝑎
𝜌(𝑟). (6.31)

This allows us to define a local pairing gap Δ(𝑟) = √2𝐸F(𝑟)𝐸B. This approximation is
commonly known as the local density approximation (LDA).

For a homogeneous system, the pair density in momentum space is given by

𝒞(2)(𝑝, −𝑝) = ⟨ ̂𝑎†
𝑝↑ ̂𝑎𝑝↑ ̂𝑎†

−𝑝↓ ̂𝑎−𝑝↓⟩⏟⏟⏟⏟⏟⏟⏟
⟨ ̂𝜌(𝑝) ̂𝜌(−𝑝)⟩

− ⟨ ̂𝑎†
𝑝↑ ̂𝑎𝑝↑⟩ ⟨ ̂𝑎†

−𝑝↓ ̂𝑎−𝑝↓⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟
⟨ ̂𝜌(𝑝)⟩⟨ ̂𝜌(−𝑝)⟩

= (𝑣𝑝𝑢𝑝)2 = Δ2

4(𝜖2
𝑝 + Δ2)

, (6.32)

where ⟨...⟩ ≡ ⟨ΨBCS|...|ΨBCS⟩ is the ground state expectation value. The momentum space
correlator is connected to the real space correlator via a Fourier transform [22]

𝒞(2)(𝑟↑, 𝑟↓) = (∑
𝑝

𝑢𝑝𝑣𝑝𝑒𝑖𝑝(𝑟↑−𝑟↓))
2

(6.33)

𝑟↓=𝑟↑= (∑
𝑝

𝑢𝑝𝑣𝑝)
2

. (6.34)

The pair density in real space is spatially constant, as expected for a translationally invariant
system.

When the pairing gap varies locally, the real space pair density (see Eq. (6.29)) becomes spatially
dependent with

𝒞(2)(𝑟, 𝑟) =
⎛⎜⎜⎜⎜
⎝

∫
𝑝max

𝑝=0
𝑑𝒑 Δ(𝑟)

2√( 𝑝2

2𝑚𝑎
− 𝜇(𝑟))

2
+ Δ(𝑟)2

⎞⎟⎟⎟⎟
⎠

2

. (6.35)
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To obtain the pair density in momentum space, we have to consider that the momentum space
measurement averages over all positions. Consequently, the momentum space correlator is

𝒞(2)(𝑝, −𝑝) = 𝒩 ∫
∞

𝑟=0
𝑑𝒓 𝜌(𝑟)2Δ(𝑟)2

4 ( 𝑝2

2𝑚𝑎
− 𝜇(𝑟))

2
+ Δ(𝑟)2

, (6.36)

with

𝒩 =
(∫∞

𝑟=0
𝑑𝒓𝜌(𝑟))

2

∫∞
𝑟=0

𝑑𝒓𝜌(𝑟)2 , (6.37)

where the contribution of each point is weighted by the local density. In the BCS limit, we
can approximate the chemical potential with the Fermi energy as 𝜇 ≊ 𝐸F. Contrary to the
potential-dominated regime, 𝒞(2)(𝑝, −𝑝) and 𝒞(2)(𝑟, 𝑟) do not follow the same functional form.
Consequently, the pair density in real and momentum space is a good observable to distinguish
between the regime where pairing is best described by time-reversed harmonic oscillator states
and the regime where the discrete level structure becomes negligible, and the potential primarily
sets the local density.

Particle number conservation
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Figure 6.4: Particle number expectation value and standard error. Expectation value 𝑁 (solid
line) and standard deviation Δ𝑁 (shaded region) of the particle number operator in BCS theory
as a function of the pairing gap Δ. To compare the relative uncertainty for two different Fermi
energies – 𝐸F/ℏ𝜔r = 3.5, a) and 𝐸F/ℏ𝜔r = 81.5, b) – the expectation value and standard
deviation are normalized to the particle number in the non-interacting limit 𝑁0.

The theoretically calculated correlators give us a valuable intuition for the correlations expected
in the different pairing regimes. However, one essential discrepancy between the theoretical
calculations and the experimental result is that a mean-field approximation was used in the
theoretical description. Therefore, the calculated wave functions are not an eigenstate of the
particle number operator, i.e. particle number is not a conserved quantity. To understand the
implications of this fact, it is instructive to consider both the expectation value of the particle
number operator

⟨ ̂𝑁⟩ = ∑
𝑛,𝑚

⟨ ̂𝑎†
𝑛,𝑚 ̂𝑎𝑛,𝑚⟩ = ∑

𝑛,𝑚
𝑣2

𝑛,𝑚 ≡ 𝑁, (6.38)
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and the particle number variance [113, 131]

(Δ𝑁)2 ≡ ∑
𝑛,𝑚

⟨ ̂𝑎†
𝑛,𝑚,↑ ̂𝑎𝑛,𝑚,↑ ̂𝑎†

𝑛,𝑚,↓ ̂𝑎𝑛,𝑚,↓⟩ − 𝑁2 = ∑
𝑛,𝑚

𝑢2
𝑛,𝑚𝑣2

𝑛,𝑚. (6.39)

Figure 6.4 shows the particle number expectation value and the variance as a function of the
pairing gap for two different Fermi energies. In general, both the particle number expecta-
tion value and its uncertainty increase with increasing pairing gap. Note that the equivalent
discussion also holds for the LDA regime.

The particle number uncertainty influences the correlators. When particle number is conserved,
the integrals

𝑁𝑟 = ∫ 𝑑𝒓↓ ∫ 𝑑𝒓↑𝒞(2)(𝒓↑, 𝒓↓) = 0 (6.40)

𝑁𝑝 = ∫ 𝑑𝒑↓ ∫ 𝑑𝒑↑𝒞(2)(𝒑↑, 𝒑↓) = 0, (6.41)

as
∫ 𝑑𝒓↓ ∫ 𝑑𝒓↑ ⟨ ̂𝜌(𝒓↓) ̂𝜌(𝒓↑)⟩ = ∫ 𝑑𝒓↓ ∫ 𝑑𝒓↑ ⟨ ̂𝜌(𝒓↑)⟩ ⟨ ̂𝜌(𝒓↓)⟩ = 𝑁2, (6.42)

(analogously in momentum space). In contrast, the correlators obtained utilizing a mean-field
approximation (both in the LDA and the potential dominated regime) are strictly positive.
Consequently, 𝑁𝑟 > 0 and 𝑁𝑝 > 0. While this deviation is negligible at large 𝑁, the vari-
ance of the particle number operator is significant in the limit of few atoms. The mean-field
approximation is only a good approximation in the limit of large 𝑁.

6.4 Experimental observation

6.4.1 Preparation
To experimentally realize the different pairing regimes, we prepare a system of 𝑁 spin-up and 𝑁
spin-down atoms (denoted as 𝑁 +𝑁) in a closed shell ground state configuration of the 2D-OT.
Altering the number of prepared atoms 𝑁, allows us to tune the Fermi energy 𝐸F. The 2D
scattering length – and thus the binding energy 𝐸B – is controlled via the magnetic offset field,
utilizing the magnetic Feshbach resonance of 6Li [23]. Using these two tuning knobs, we can
experimentally access all three pairing regimes. To ensure that the system remains 2D, both
𝐸F and 𝐸B need to be smaller than ℏ𝜔z, where 𝜔𝑧/2𝜋 = 7423(3)Hz is the axial trap frequency
of the 2D-OT. This is achieved by choosing a lower radial trap frequency in the regime of large
𝐸B or large 𝐸F. More details on the preparation can be found in Ch. 3.

We experimentally obtain the density-density correlator 𝒞(2) in real and momentum space
from approximately 1000 repeated measurements of the atom positions or momenta - (see also
Ch. 4). We acquire the real space pair density 𝒞(2)(𝑟, 𝑟) by taking into account those pairs
of spin up and spin down atoms that sit, within our resolution (𝛿𝑟res = 300 nm), at the same
position. For the momentum space pair density 𝒞(2)(𝑝, −𝑝), we consider those atoms that sit at
opposite momenta – within our resolution 𝛿𝑝res = 0.06 pHO. Momenta and positions are given in
units of the harmonic oscillator momentum (𝑝HO = √ℏ𝑚𝑎𝜔r) and length (𝑙HO = √ℏ/𝑚𝑎𝜔r),
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respectively.

6.4.2 Results
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Figure 6.5: Pair density in real and momentum space at different binding energies. Pair
densities in real (a-d) and momentum (e-h) space of 6 + 6 atoms prepared in the ground state
of a 2D harmonic oscillator potential. The color of the data points encodes the relative strength
of Δ, 𝐸F and ℏ𝜔r via (𝑅, 𝐺, 𝐵) = (2ℏ𝜔r

Δ , 1, Δ
2𝐸0

F
), normalized to the maximum value of the

RGB triple. The measured data points are compared to the pair density calculated in the LDA
(dotted) and potential-dominated regime (dashed-dotted). The vertical dashed lines represent
the momentum and length scale associated to the Fermi energy. Note the different scales in d
and h. The error bars represent the standard errors of the mean.

In Fig. 6.5 we show the measured real (a-d) and momentum space (e-h) pair densities in a system
of 6+6 atoms for different interaction strengths. The Fermi energy in the non-interacting system
is 𝐸0

F/ℏ𝜔r = (𝑛F + 1.5) = 3.5. For a system of 6 + 6 non-interacting atoms, the system size is
𝑟F = 2.65 lHO and the mean interparticle spacing 1/√𝜌 = 1.34 lHO. Note that both quantities
where calculated for the non-interacting system and consequently only represent an estimate
for the interacting system, used to illustrate the competition of length scales. In the weakly
interacting regime (𝐸B/ℏ𝜔r = 0.47), the estimated coherence length 𝜉 = 2.9 lHO, exceeds the
system size, i.e. 𝜉 > 𝑟F > 1/√𝜌. By increasing the binding energy 𝐸B, we decrease the
coherence length of the Cooper pair 𝜉, while keeping the system size 𝑟F and mean interparticle
spacing 1/√𝜌 constant. We cross the diagram of Fig. 6.3 along the horizontal line.

The non-interacting system is uncorrelated in both real and momentum space. In the weakly
interacting regime (𝐸B/ℏ𝜔r = 0.47), pairs of opposite momentum start forming at the Fermi
surface - indicated by the peak at ̃𝑝F = √𝑚𝑎𝐸0

F - the momentum associated to the Fermi
energy 𝐸0

F, assuming equipartition between kinetic and potential energy. In real space, we also
observe a peak in the pair density at the surface of the trap. It lies around ̃𝑟F = √𝐸0

F/𝑚𝑎𝜔2
r –

the length scale associated to the Fermi energy. Such an enhancement of pairs near the surface
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has also been predicted for finite nuclei [132–134]. Qualitatively, the pair densities in real and
momentum space follow the same functional form, reflecting the symmetry of the projection of
the harmonic oscillator states on real and momentum space.

In the intermediate interaction strength (𝐸B/ℏ𝜔r = 2, 𝜉 = 1.4 lHO so 𝑟F > 𝜉 ≳ 1/√𝜌), the real
and momentum space pair densities no longer follow the same functional form. In momentum
space, the formation of pairs is limited to the Fermi surface - as expected in the Cooper pairing
regime. The area below the correlation peak increases compared to the weaker binding energy,
as more pairs form. In real space, pairing is no longer limited to a region around ̃𝑟F, instead
pairs form all over the system. The pair density peaks around the trap center, where the density
is highest.

At a binding energy 𝐸B/ℏ𝜔r = 30 (𝜉 = 0.37 lHO, so 𝑟F > 1/√𝜌 > 𝜉), far surpassing the
Fermi energy, the momentum space pair density peaks in the center of the trap, with a width
exceeding the width at lower binding energies. Here, pairing is no longer constrained to the
Fermi surface and occurs all over the system in momentum space. The fermionic nature of the
constituents of the pair can be disregarded, as the occupation of each state is far smaller than
unity. This allows for the formation of tightly bound pairs in real space - the system is in the
molecular regime. The real space pair density peaks at the trap center - molecules form all over
the system.

At low interaction strengths, the pair densities in real and momentum space qualitatively follow
the same functional form, as anticipated in the potential-dominated regime due to the sym-
metry of the projection of the state |𝑛, 𝑚⟩ onto real and momentum space. However, there is
a quantitative discrepancy between the observed pair densities in real and momentum space.
The pair density in real space surpasses the pair density in momentum space by roughly one
order of magnitude. The quantitative difference between real and momentum space can be
understood considering that the real space pair density probes the short distance parts of the
relative wave function. At very small relative distances 𝛿𝑟 between particles, the physics is
governed by the two-body contact, and the correlation function diverges as ln(𝛿𝑟) with 𝛿𝑟 → 0
in two dimensions [135]. This short distance behavior is not reproduced within BCS theory.
Experimentally, the finite resolution of the matterwave magnifier introduces an effective cutoff,
as atoms with very small relative position, i.e. high relative momenta are not accurately mag-
nified. We therefore expect that the amplitude of the real space pair density is quantitatively
altered by this experimental cutoff.

The pair density calculated assuming pairing between states |𝑛, 𝑚⟩ and |𝑛, −𝑚⟩ does not exhibit
a distinct peak at the Fermi surface, but is roughly constant for positions smaller ̃𝑟F. The
absence of a distinct peak in theory could likely stem from the fact that particle number
is conserved in the experiment, but not in the theoretical calculations where Δ𝑁 = 1.09
(see Eq. (6.39)). When particle number is conserved, pair creation in higher shells has to be
accompanied by hole creation in lower shells, which the theory does not account for. While
a rigorous treatment is needed to quantify this effect, it provides an intuitive explanation for
the expected discrepancy between experiment and theory in the occupation of low-𝑛 states.
This in turn leads to a discrepancy at small position or momenta, for which the contribution
of these lower lying states is dominant. A more accurate description of our system could be
achieved with the Hartree-Fock-Bogoliubov (HFB) theory [113], which also takes particle-hole
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correlations into account. In nuclear physics, an enhanced pair density near the surface of the
nucleus has been predicted by HFB theory [132–134].

Additionally, we compare the measured pair densities with the pair densities calculated within
the LDA. To obtain the LDA curves with as few approximations as possible, we use the
experimental measurement of the density 𝜌(𝑟) as an input. In momentum space, LDA predicts
a peak at finite momentum, that moves closer to the trap center with increasing interaction
strength. In real space the calculated pair density peaks in the trap center, where the density
and thus the gap is highest. Here we have regulated the divergence at small relative distances
by setting 𝑝max in the integral of Eq. (6.35) to the momentum corresponding to the resolution of
the matterwave magnifier. With this cutoff, we observe a good agreement between the measured
and predicted real space pair density at a binding energy 𝐸B/ℏ𝜔r = 2. In momentum space,
the LDA curve peaks at higher momenta than the measured pair density for 𝐸B/ℏ𝜔r = 2.

This discrepancy could stem from the fact that the local density approximation is only fully
applicable when both the coherence length 𝜉 and the mean interparticle spacing are much
smaller than the system size 𝑟F. At a binding energy of 𝐸B/ℏ𝜔r = 2, the coherence length
is 𝜉 = 1.4 lHO. While the system size (𝑟F = 2.65 lHO) is the leading length scale, the scales
do not fully separate. Additionally, particle number is not conserved within this theory. At a
binding energy 𝐸B/ℏ𝜔r = 30, the ground state consists of tightly bound molecules. Here, the
approximation 𝜇 ≈ 𝐸F, used to simplify Equations (6.35) and (6.36) is no longer valid.

6.4.3 Few to many
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Figure 6.6: Few to many. Pair densities in real (a-d) and momentum space (e-h) measured in
systems of different atom numbers at a constant binding energy 𝐸B/ℏ𝜔r = 1. The measurements
are compared to the pair density obtained from exact diagonalization of the many body Hamil-
tonian (solid curve) and LDA (dotted curve). The vertical dashed lines represent the momentum
and length scale associated to the Fermi energy. Note the different scale in d) and h). The error
bars represent the standard errors of the mean.

Figure 6.6 shows the measured pair density in real (a-d) and momentum (e-h) space for a system
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with a binding energy of 𝐸B/ℏ𝜔r = 1, 𝜉 = 2 lHO and different particle numbers, i.e. we cross
the pairing diagram of Fig. 6.3 along the vertical line. While the estimated coherence length
is constant, the system size increases with increasing Fermi energy. The mean interparticle
spacing decreases with increasing Fermi energy.

Due to the small number of constituents, mean-field theories are not expected to describe our
system fully. However, for systems of up to 3 + 3 weakly interacting fermions, it is possible to
solve the 𝑁-particle Hamiltonian (6.14) by exact diagonalization [126, 136, 137]. We compare
the measurements for a system of 1 + 1 (a, e) and 3 + 3 (b, f) particles – 𝐸F/ℏ𝜔r = 1.5 and
𝐸F/ℏ𝜔r = 2.5, respectively – to the results obtained from exact diagonalization - without any
free fit parameters. The measured and calculated pair densities agree quantitatively in both
real and momentum space.

For 6 + 6 atoms (𝐸F/ℏ𝜔r = 3.5,𝑟F = 2.65 lHO,1/√𝜌 = 1.34 lHO) - Fig. 6.6(c, g) the system
is expected to be in the crossover between the potential-dominated and the Cooper-pairing
regime (𝑟F ≳ 𝜉 > 1/√𝜌). The pair density exhibits a distinct peak in both momentum and
real space, at ̃𝑝F and ̃𝑟F, respectively. Once again, pairs form predominantly at the surface of
the trap.

For 21 + 21 atoms (𝐸F/ℏ𝜔r = 6.5,𝑟F = 3.6 lHO,1/√𝜌 = 1 lHO), the system size exceeds the
coherence length of the Cooper pair (𝑟F > 𝜉 > 1/√𝜌). In real space, pairs form all over the
system, while in momentum space, the formation of pairs is limited to the Fermi surface. The
pair density in real space is qualitatively reproduced by the LDA. In momentum space, the pair
density is significantly smaller than that predicted by LDA. It is however unclear whether this
difference stems from technical issues, as the momentum space density is significantly higher
than for measurements with smaller atom numbers. This increases the probability of two atoms
in close proximity, which are undetected by our current atom identification regime. A viable
option that is currently explored is to utilize machine learning techniques [138], allowing to
accurately reconstruct the atomic positions in dense samples.

6.5 Conclusion and Outlook
In conclusion, we have observed the influence of the confining potential on pairing correlations.
When the coherence length of the pair is smaller than the system size, i.e. in the regime of
weak interactions and intermediate particle number, we observe a real space pair density that is
peaked not at the trap center – where the density is highest – but near the surface of the system.
Such a surface enhancement of pair correlations has also been predicted for finite nuclei [132–
134]. As the coherence length becomes smaller than the system size, i.e. as the interactions
or the particle number are increased, the real space pair density is peaked in the center of the
trap. In momentum space, the pair density is peaked at finite momenta, as is expected for
Cooper pairs. At very large interaction strengths (when the coherence length becomes smaller
than the mean interparticle spacing) the momentum space pair density peaks in the center of
the trap, showcasing the formation of tightly bound molecules.

By accessing both real and momentum space correlations, we can distinguish between the
regime of weak interactions – where pairing is best described by time-reversed single-particle
states – and stronger interactions, where the discrete level structure can be disregarded and
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the potential only sets the local density. While comparisons to many-body theory provide a
qualitative understanding of the observed behavior, they fail to fully capture our experimental
results due to the small number of constituents. However, exact diagonalization methods reveal
excellent agreement with our experimental observations.

For atom numbers larger than three atoms per spin state, our system enters a regime that
lies beyond the reach of both many-body theories and exact solutions. The high degree of
experimental control, combined with the accurate correspondence to exact solutions at lower
atom numbers, showcases the possibility of using our system as a quantum emulator for other
finite quantum systems that are not well described by both few and many body theories. These
include nuclei, small superconducting grains, nanotubes, and quantum dots.

In nuclear physics, a vast number of approaches to the pairing problem exist. These include
different particle number projection techniques [139], iterative approaches and artificial neural
networks [140]. While our system by no means represents an accurate model of the nucleus, it
can potentially be used as a simplified toy model with known shell structure. Ideally, one can
benchmark theories employing e.g. different particle number projection techniques with our
experimental observations to see whether they accurately capture the properties of our system
before expanding them to a more complicated regime where also the nuclear mean-field has to
be taken into account. To achieve this, both the experimental effort and the clear interpretation
of the results would be highly facilitated by a measurement scheme allowing us to measure in
an angular momentum basis.
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So long, and thanks for all the fish.

Douglas Adams
The Hitchhiker’s Guide to the Galaxy, 1979

In this thesis, we discuss quantum emulation of two different types of collective behavior with
a system of few fermionic 6Li atoms. Motivated by high energy nuclear collisions, we explored
the emergence of interaction-driven elliptic flow. Inspired by nuclear physics, we investigated
the influence of broken translational symmetry on the formation of pairs. Our system provides
a high degree of control in combination with single particle resolved observables that remain
elusive in both high-energy and nuclear physics, allowing us to explore the essential mechanism
giving rise to these collective phenomena.

To explore collectivity in our system, we implemented a new experimental tool – the matterwave
magnifier. Magnifying the initial wave function by a factor of 56 allows us to access real space
observables – originally obfuscated by the resolution of the detection technique – with single-
atom and spin resolution. We benchmark the performance of the matterwave magnifier by
imaging systems with known wave functions.

Motivated by observations of collective behavior in proton-proton collisions, we investigate the
emergence of elliptic flow in a mesoscopic Fermi gas. Our measurements in real and momentum
space reveal interaction-driven elliptic flow with as few as three particles per spin-state. By
comparing the interacting expansion of 5+5 atoms with both a hydrodynamic and a collisional
point-particle model, we can see that the observed inversion of the aspect ratio is best cap-
tured by a hydrodynamic theory – despite the fact that the separation of scales required for
a collisional hydrodynamic behavior is not present in our system. These observations warrant
an exploration of the connection between the observed collective flow and the emergence of
superfluidity.

Inspired by the formation of pairs in systems with broken translational symmetry, such as
nuclei or ’dirty’ superconductors, we explore the influence of a spatially varying potential on
the formation of pairs. The formation of pairs in systems with broken translational symmetry
is not captured by standard BCS theory. It requires an extended framework – introduced
by Anderson [107] – where pairs form between time-reversed states. Altering the interaction
strength or particle number we observe how the system transitions from a regime where pairing
is dominated by the discrete shell structure of the confining potential to a regime where the
potential only sets the local density, bridging the gap between the Cooper picture and the more
generalized Anderson framework. We can distinguish different pairing regimes by the pair
density in real and momentum space. In the regime of weak interactions, we observe that the
formation of pairs is limited to the outer regions of the system. This behavior is not captured
by mean-field theories, but has been predicted for finite nuclei. This showcases how quantum
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emulation in the mesoscopic regime can shed light on finite quantum systems that are not well
described by many-body theories and inaccessible to exact methods.

Based on the measurements described in this thesis, we discuss three exemplary follow-up
questions and how they could be tackled experimentally:

Is pairing a necessary criterion for elliptic flow in our system?

As discussed in Sec. 5.5.1, a tempting explanation for the observed elliptic flow is that our
system behaves as a superfluid. Even though the interacting expansion does not allow the
distinction between a collisional and a superfluid hydrodynamic description, it is fascinating
to explore whether the formation of pairs – a necessary criterion for superfluidity in fermionic
systems – is also a necessary criterion for elliptic flow in our system. To test this, we could
study the expansion of a spin-imbalanced system, i.e. a system with an unequal number of
spin-up and spin-down atoms. Preparing the system in a regime where we expect interaction-
driven elliptic flow for the spin state with smaller atom number (the minority) would allow us
to explore the role of pairing by studying the behavior of the majority. If pair creation is not
a necessary condition for elliptic flow, the majority should invert its aspect ratio after a long
interacting expansion time. However, if pair creation is a necessary condition, we expect that
the inversion of the aspect ratio exhibited by the paired atoms is masked by ballistic expansion
of the unpaired atoms (leading to an isotropic distribution). Ideally, the final density then
shows a bimodal distribution consisting of an elliptic density profile of the paired atoms in the
center and an isotropic density profile of the unpaired atoms.

What is the influence of broken time reversal symmetry on the formation of pairs?

An interesting future endeavor is to study the break-down of pairing in a system where time
reversal symmetry is broken. Following the discussion in Sec. 6.2.1, time reversal symmetry
can be broken by a rotation of the confining potential. This rotation lifts the degeneracy of the
time reversed states in the non-rotating system - thus, at a given interaction strength, pairing is
suppressed above a critical rotation frequency. Experimentally, this can be explored by studying
pair correlations of atoms in a rotating harmonic oscillator potential - a system that has already
been realized in our group [123, 141, 142]. In such a system one could then also characterize
a Yrast spectrum for a rotating, mesoscopic Fermi gas, closely following suggestions in [121].
Here, we could also investigate the back-bending of the Yrast line due to pair breaking.

Are the observed pairs phase coherent?

Long-range phase coherence is a defining characteristic of Bose-Einstein condensates and a
necessary condition for superfluidity. To explore whether phase coherence is established as
soon as pairs form is therefore a highly intriguing question, both in the few- and many-body
limit [143, 144]. Naively one would expect that when the coherence length of the Cooper pair is
larger than the system, phase fluctuations are negligible, and phase coherence is established as
soon as pairs form. To test this hypothesis experimentally, we could utilize phase microscopy
techniques [145–147] to explore phase coherence. These phase microscopy techniques map phase
fluctuations on density fluctuations. Analogously to optical phase contrast imaging [148, 149],
such a mapping can be achieved by imprinting a known phase shift on the zero momentum
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component of the wave function. When measuring the real space density, the zero momentum
component interferes with the non-zero momentum components, mapping phase fluctuations
onto density fluctuations. To achieve this phase-shift, Brueggenjuergen et al. [146] cleverly
use the naturally occurring aberrations of the matterwave magnifier, an approach that could
potentially also be easily implemented in our experimental setup.
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MW microwave
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SLM spatial light modulator
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TOF time of flight
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