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Abstract: The worst performance rule (WPR) describes the phenomenon that individuals’ slowest

responses in a task are often more predictive of their intelligence than their fastest or average

responses. To explain this phenomenon, it was previously suggested that occasional lapses of

attention during task completion might be associated with particularly slow reaction times. Because

less intelligent individuals should experience lapses of attention more frequently, reaction time

distribution should be more heavily skewed for them than for more intelligent people. Consequently,

the correlation between intelligence and reaction times should increase from the lowest to the highest

quantile of the response time distribution. This attentional lapses account has some intuitive appeal,

but has not yet been tested empirically. Using a hierarchical modeling approach, we investigated

whether the WPR pattern would disappear when including different behavioral, self-report, and

neural measurements of attentional lapses as predictors. In a sample of N = 85, we found that

attentional lapses accounted for the WPR, but effect sizes of single covariates were mostly small to

very small. We replicated these results in a reanalysis of a much larger previously published data set.

Our findings render empirical support to the attentional lapses account of the WPR.

Keywords: worst performance rule; attentional lapses; attentional lapses account; intelligence;

multilevel analysis; task-unrelated thoughts

1. Introduction

Reaction times (RTs) in elementary cognitive tasks typically correlate moderately with
general intelligence (Doebler and Scheffler 2016; Sheppard and Vernon 2008). Moreover,
if intra-individual RT distributions are divided into bins from the fastest to the slowest
RTs, the negative relations between mean RT within each bin and intelligence increase
from the fastest to the slowest parts of the distribution (Baumeister and Kellas 1968; Coyle
2003; Larson and Alderton 1990; Schubert 2019). Larson and Alderton (1990) named this
phenomenon the worst performance rule (WPR). The WPR suggests that inter-individual
differences in slower RTs explain more of the variance in individuals’ cognitive abilities
than faster RTs (see Figure 1 for an illustration of the typical WPR pattern). As pointed out
by Larson and Alderton (1990), a better understanding of this phenomenon is desirable as
it may be informative of the cognitive mechanisms underlying inter-individual differences
in intelligence.

The WPR has been observed in several studies (Diascro and Brody 1993; Fernandez
et al. 2014; Frischkorn et al. 2016; Kranzler 1992; Leite 2009; McVay and Kane 2012; Ramm-
sayer and Troche 2016; Schmiedek et al. 2007; Schmitz et al. 2018; Schmitz and Wilhelm 2016;
Unsworth et al. 2010), although there are a few studies that did not find evidence for a WPR
(Dutilh et al. 2017; Ratcliff et al. 2010; Salthouse 1993, 1998; Saville et al. 2016). A recent
meta-analysis addressed the question of the strength, consistency, and generalizability
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of WPR across 23 datasets (from 19 different studies and 3767 participants) and found
evidence in favor of the WPR (Schubert 2019).
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Identifying the underlying mechanisms of the WPR may help to identify the elemen-
tary processes producing inter-individual differences in intelligence, because whichever
process is measured particularly with the slowest RTs may also contribute to differences in
mental abilities. Different candidate accounts for explaining the occurrence of the WPR
have been proposed. Several authors suggested an attentional lapses account of the WPR
which states that the WPR occurs due to lapses of attention to which less intelligent people
are particularly prone (Jensen 1992; Larson and Alderton 1990; Unsworth et al. 2010). On
a neural level, this could be reflected by less intelligent individuals showing a higher fre-
quency of neural transmission errors (Coyle 2001; Miller 1994) or spending more processing
time on neural subthreshold and refractory periods, resulting in errors or delays during
information processing (Jensen 1992). As the attentional lapses account is currently the
most prominent account for explaining the WPR, we put this account at critical test in the
present study.

1.1. The Attentional Lapses Account of the WPR and Its Examination

According to the executive attention theory of working memory (Kane et al. 2008),
individual differences in executive attention predict differences in working memory capac-
ity (WMC) and higher cognitive abilities such as fluid intelligence. While performing any
type of (demanding) cognitive tasks, external distractors (such as a loud noise) and internal
distractors (such as thoughts about the last or next vacation) may interfere with task com-
pletion by impairing task processing and goal maintenance. Accordingly, individuals who
are able to shield their current thoughts against such task-irrelevant external or internal
distractors should show better task performance. Kane et al. (2008) suggested that certain
people are better at blocking out task-irrelevant information and maintaining current task
goals than others, in particular those people with high executive attention (see also Kane
et al. 2004). Individuals with lower executive attentional control, however, should perform
worse in cognitive ability tests, because they are not able to keep their attention adequately
focused on a task.

The consequence of such executive attention failures is that people who are not able to
focus their attention on the task at hand experience attentional lapses while performing
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a task. Empirically, this will result in slower correct responses or in fast response failures
(Unsworth et al. 2010). From an individual differences perspective, one would therefore
expect that individuals with a higher propensity for attentional lapses occasionally show
very slow but correct responses or a higher error rate. In fact, previous research has
shown that self-reported attentional lapses were moderately associated with individual
differences in the right tail of the RT distribution, that is, individuals who reported higher
rates of attentional lapses showed more positively skewed RT distributions and hence more
frequent slow responses (McVay and Kane 2012). In addition, self-reported attentional
lapses predicted error rates in simple experimental tasks such as the sustained attention to
response task (McVay and Kane 2009; Smallwood and Schooler 2006).

If individual differences in attentional lapses are related to differences in cognitive
abilities such as fluid intelligence and if attentional lapses lead to slow responses, it is in
consequence not surprising that slower responses are more strongly related to intelligence
than fast responses (i.e., the phenomenon of the WPR). In contrast to faster responses, slower
RTs reflect attentional lapses as an additional process, which results in the typical pattern of
the WPR. Additional analyses by McVay and Kane (2012), in which they demonstrated that
individual differences in self-reported attentional lapses partly mediated the association
between slowest RTs and WMC, provided first evidence supporting this hypothesis.

1.2. Multiverse Manifestation and Measurement of Attentional Lapses

Attentional lapses are a multi-faceted construct (Robison et al. 2020) and that is the
reason why the measurement of attentional lapses is not straightforward. There are differ-
ent possibilities to operationalize participants’ attentional states (McVay and Kane 2012;
Unsworth et al. 2010). Most of the measurements—which we used in this study—were
adapted from mind wandering research and possess face validity to the construct of at-
tentional lapses. Possible manifestations of attentional lapses can be found in participants’
self-reported attentional states, their response behavior, or psychophysiological measures.

Many studies measured attentional lapses as participants’ self-reported mental states
(Smallwood and Schooler 2015). During an ongoing task, participants are typically asked
whether their thoughts are on- or off-task. In consequence, if their thoughts are not on
the ongoing task, they are experiencing task-unrelated-thoughts (TUTs; Smallwood and
Schooler 2006), which are considered as attentional drifts or attentional lapses (McVay and
Kane 2010; Watkins 2008). Individuals tend to show a larger variability in those RTs in
which they report TUTs, but they do not consistently show shifts of mean RTs (Leszczynski
et al. 2017; McVay and Kane 2009, 2012; Seli et al. 2013, 2014; Thomson et al. 2014). These
results suggest that attentional lapses may lead to an increase in the variability of RTs due
to occasional failures in an experimental task.

Another method to measure the subjective frequency of attentional lapses are ques-
tionnaires that measure participants’ attentional states during everyday life experiences
and their personal tendencies for attentional lapses in everyday situations. Individuals who
reported a higher tendency for attentional lapses also tended to report a higher frequency
of TUTs during experimental tasks (Mrazek et al. 2013; Schubert et al. 2020). This suggests
that both measurements assess—at least to some degree—the same underlying construct.

As a more objective alternative, it has been proposed to assess attentional states with
behavioral measures such as the metronome response task (MRT; Seli et al. 2013). This task
measures attentional lapses based on intraindividual variability in participants’ tapping
response to a continuous metronome beat. It has been suggested that individuals’ tapping
variance may reflect their attentional states (Seli et al. 2013). Seli et al. (2013, 2014) showed
that self-reported attentional lapses are related to increases in tapping variability on the
metronome beat in this task.

Beyond behavioral and self-report measures, former research identified several elec-
trophysiological correlates of attentional lapses. The P3 is a component of the event-related
potential (ERP) that occurs about 300 ms after stimulus onset at parietal electrodes and is
associated with a wide range of higher-order cognitive processes such as stimulus evalua-
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tion and memory updating (Polich 2007; Verleger 2020). It has been repeatedly associated
with self-reported attentional lapses: Several studies found reduced P3 amplitudes during
trials in which participants reported not having been focused on the task (Kam and Handy
2013; Smallwood et al. 2008). The same pattern of results was reported by Barron et al.
(2011), who found a reduced P3 amplitude in participants who experienced more atten-
tional lapses in comparison to more focused participants. In addition, attentional lapses
have been shown to affect sensory processing, as smaller visual P1 amplitudes have been
observed for trials in which participants reported attentional lapses (Baird et al. 2014; Kam
et al. 2011; see also Kam and Handy 2013). The P1 is a component of the event-related po-
tential that occurs about 100 ms after stimulus onset at occipital electrodes. These findings
suggest that attentional lapses affect the neurocognitive processing of information and that
they are accompanied by a reduction of amplitudes of ERP components associated with
stimulus perception and evaluation.

Furthermore, several studies reported that attentional lapses were associated with
changes in the time-frequency domain, in particular with increases in inter-stimulus alpha
power and increases in stimulus-locked theta power. Alpha activity is known to reflect an
internally oriented mental state (Hanslmayr et al. 2011) and has, for example, been shown
to increase during episodes of mental imaging (Cooper et al. 2003) and to be suppressed
during sensory stimulation (Berger 1929; Thut et al. 2006). Episodes during which attention
is not fully oriented towards the actual task have therefore been associated with greater
alpha power (Baldwin et al. 2017; Compton et al. 2019; O’Connell et al. 2009). Arnau et al.
(2020) further disentangled the time-course of this association and found alpha power
to increase overall, but particularly at lateral parietal and occipital electrodes during the
inter-trial-interval before participants reported TUTs. This internal focus of attention was
redirected to the primary experimental task once an imperative stimulus (e.g., the fixation
cross) was presented.

Theta power, especially event-related frontal-midline theta power, is associated with
executive control and regulation processes (Cavanagh et al. 2012; Cavanagh and Frank
2014). Previous research has suggested that theta power may decrease when attentional
lapses occur and may be subsequently upregulated as a compensatory mechanism once
attentional drifts are noticed (Arnau et al. 2020; Atchley et al. 2017; Braboszcz and Delorme
2011). This redirection of attention towards the primary task may be initiated by either
meta-awareness regarding one’s attentional state (Braboszcz and Delorme 2011; Smallwood
et al. 2007) or by external cues such as the presentation of the fixation cross or the next
experimental trial (Arnau et al. 2020).

To achieve a most comprehensive analysis in the present study, we combined these
heterogeneous approaches and applied a multiverse strategy for capturing participants’
attentional states with different operationalizations in a multimethod approach. There-
fore, we combined the listed self-report measurements with the listed behavioral and
psychophysiological measures.

1.3. Identifying Occurrences of the WPR

In the present study, we analyzed the WPR before and after controlling for individual
differences in attentional lapses by applying a recently proposed multilevel approach to the
WPR (Frischkorn et al. 2016). Most WPR studies reported only the correlations of the mean
or median RTs in the performance bands with intelligence, which is merely a description of
the WPR rather than an inferential statistical examination of the phenomenon. If studies
tested increasing correlations over RT bands for significance, they used rank-correlations
(e.g., Kranzler 1992; Larson and Alderton 1990) or comparisons of correlation coefficients
from dependent samples with Fisher’s Z-values (e.g., Rammsayer and Troche 2016). Both
statistical methods have certain weaknesses.

One weakness of rank-correlations is that they only quantify the extent of monotonicity
in the increase of negative covariances or correlations between RTs and intelligence over
the different bins. If this increase is quite monotonic, a rank-correlation close to one will
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be found no matter how large the increase is. By using the rank-correlation as a method
to test the WPR, it is not possible to quantify the slope of the increase of correlations over
bins of the RT distribution, which is needed to quantify the size of the WPR. The second
weakness of rank-correlations is that they ignore the estimation uncertainty of correlations
if these correlations are first estimated and then subsequently entered as observed variables
into rank-correlations. This sequential approach results in a possible overestimation of the
significance of the WPR (Skrondal and Laake 2001). Moreover, tests assessing the difference
between dependent correlations suffer from low statistical power, possibly underestimating
the WPR. For these reasons, we used the recently proposed multilevel account to test the
WPR more adequately, i.e., in a single estimation step and with higher statistical power
(Frischkorn et al. 2016).

There are two possible ways to measure the worst performance pattern by using either
unstandardized (covariances) or standardized (correlations) coefficients in the multi-level
models. On the one hand, covariances reflect the unstandardized relation between two
variables, which means that an increase in magnitude of covariances can have two reasons:
They can either reflect an actual increase of the relation between both variables or they can
reflect increases in inter-individual variances in at least one of the two variables. On the
other hand, increasing correlations represent increases in the relationships between two
variables, because correlations are controlled for inter-individual variances. To understand
attentional lapses’ influences on the RT variances and their effects on the relation between
RT and intelligence, we used both unstandardized and standardized coefficients in the
present analyses. In order to obtain a higher resolution of the course of the WPR and the
influence of attentional lapses on the WPR, we analyzed the RT distribution on trial-by-trial
basis with multilevel models and did not apply a binning procedure as, e.g., Frischkorn
et al. (2016) did.

The aim of the present study was to assess if individual differences in the frequency
of attentional lapses could account for the WPR. Due to the multiverse nature of atten-
tional lapses, we used behavioral, self-report, and electrophysiological methods to assess
individual differences in the frequency of attentional lapses. In addition, we used the
previously proposed multilevel account of the WPR (Frischkorn et al. 2016) to quantify and
test any moderating effect of attentional lapses on the strength of the worst performance
effect. Based on the attentional lapses account, we assumed that individual differences
in attentional lapses explain—at least partially—the emergence of the WPR. Hence, we
expected the slope of the WPR to be significantly reduced if we controlled RTs for individual
differences in attentional lapses.

2. Study 1

2.1. Materials and Methods

The study was approved by the ethics committee of the faculty of behavioral and
cultural studies of Heidelberg University. At the beginning of an experimental session,
participants signed an informed consent.

2.1.1. Participants

We recruited a sample of N = 100 general population participants via the local news-
paper, via our own university homepage, via a pool of potentially interested participants
in psychological studies, and by distributing flyers in Heidelberg. All volunteers were
admitted if they were between 18 and 60 years old and had no history of mental illnesses.
Two participants were removed because they did not complete the experiment. In conse-
quence of the outlier analysis (see below), 13 more participants were removed from further
analyses. The remaining sample (N = 85) consists of 29 males and 56 females. Participants’
mean age was 30.21 years (SD = 12.33). All participants either stated that German was their
mother tongue or that they spoke German on a level comparable to native speakers. The
educational degrees were distributed in the following way: As highest educational level,
49 participants had a high school diploma (German Abitur), 30 had a university degree,
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and six had an educational degree lower than a high school diploma. All participants
had normal or corrected to normal vision. They received 30 € and personal feedback as
compensation for their participation.

2.1.2. Materials
Berlin Intelligence Structure Test (BIS)

To measure participants’ intelligence, we used the short version of the Berlin Intelli-
gence Structure Test (BIS-4, booklet 2: Jäger et al. 1997). The short version of the BIS is a
particularly suitable instrument for measuring cognitive abilities in a relatively short time
(about 50–60 min). Moreover, the short version of the BIS is a heterogeneous test battery for
different abilities and includes 15 different tasks. Based on the theory by Jäger (1984), the
test consists of four operation-related (processing speed, memory, creativity, processing
capacity) and three context-related (verbal, numerical, figural) components of intelligence.
Furthermore, the test allows the calculation of a general intelligence (g) score. We used the
sum scores across all subtests as an independent variable.

Five participants had already completed the same test within the last year at our
department. Because there may be a training effect between the two measurement occa-
sions within one year (Scharfen et al. 2018), we used their BIS-scores from the previous
study for all further analyses. The mean test score of the whole sample (N = 85) was
1498.29 (SD = 80.02) which corresponds to a converted mean IQ score of 94.58 (SD = 16.12).
Cronbach’s α showed a good internal consistency for the test scores (α = .79).

Choice RT Task: Switching Task

We measured RTs in a switching task, which was based on a task used by Sudevan
and Taylor (1987). An unpublished reanalysis of a previous study in which we used this
task (Frischkorn et al. 2019) suggested that it yields a significant worst performance effect.

While participants were working on this task, they had to decide whether a presented
digit was smaller or larger than five or whether it was an odd or an even number. This
task is constructed based on a 2 × 2 design and consists of four different experimental
conditions. Which rule currently applied depended on the color in which the stimuli were
presented (red = less/more condition, green = odd/even condition). The digit of a single
trial could be either presented in the color of the former trial (=repeat condition) or in the
other color (=shifting condition). The stimulus set included the digits between one and
nine, excluding five.

The task was programmed in MATLAB (The MathWorks Inc., Natick, MA, USA) with
the open source software package Psychtoolbox version 3.0.13 (Kleiner et al. 2007). We
implemented restrictions that the same digits could never appear twice in a row as well
as the same color could never appear more than three times in a row. Participants were
instructed to answer as correctly and as fast as possible. On the keyboard, they had to press
“L” to indicate that a digit was either larger than five or even and they had to press “D” to
indicate that a digit was either smaller than five or odd.

All stimuli were presented in the middle of the screen on a black background (Figure 2).
At the beginning of each trial, a gray fixation cross was shown for 512–768 ms. Following
the fixation cross, a blank screen was presented as inter stimulus interval for 1024–1278 ms.
Subsequently the digit followed and disappeared 1024–1278 ms after the participants
responded. The stimulus disappeared after three seconds if the participants did not
respond. At the end of each trial a blank screen was presented again as an inter-trial
interval of 1000–1500 ms.

Participants completed 40 practice trials (ten trials task pure less/more, ten trials task
pure odd/even, and 20 trials including task shifting) during which they received feedback.
After that, they worked on the experimental trials, which consisted of ten blocks with
64 trials each. Participants took self-paced breaks between the blocks.
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Figure 2. Representation of the sequence of one trial.

Online Thought-Probing Procedure

We administered an online thought-probing procedure by monitoring TUTs with a binary
either/or question (see Weinstein 2018). This method is a subjective self-report in which the
participants are intermittently asked what their current state of mind is (on task/off task)
while they are working on a task. This report is one of the most frequently used methods for
capturing online mind wandering at the moment of occurrence (Weinstein 2018).

Participants were randomly asked about TUTs between every fifth and tenth trial. The
question was: “Where have you been with your thoughts right now?” Participants could
either answer “on task” or “not on task” by pressing the right or left arrow key on the
keyboard. On average, participants were probed 91.62 times (SD = 2.16) for TUTs while
they worked completed 640 trials of the experimental task. On-task-reports were coded as
0 and off task reports were coded as 1 in our data.

Questionnaire of Spontaneous Mind Wandering (Q-SMW)

We used a nine-items measure of spontaneous mind wandering to assess trait mind
wandering. For this we combined five items of the Mind Wandering Questionnaire (MWQ;
Mrazek et al. 2013) and four items of a scale measuring spontaneous mind wandering
(Carriere et al. 2013) into one questionnaire. Participants could answer these questions on a
seven-point Likert scale from “almost never” (coded as 1) to “almost always” (coded as 7).
Cronbach’s α showed a good internal consistency (α = .81). Because the original items were
in English, they were translated into German by two people and translated back into English
by another person. We present two items as examples to show their original wording and
their context: “I have difficulty maintaining focus on simple or repetitive work” (Mrazek
et al. 2013); “I find my thoughts wandering spontaneously” (Carriere et al. 2013).

Metronome Response Task (MRT)

We used the MRT as a more objective behavioral assessment of attentional lapses. This
task was developed by Seli et al. (2013) as a new method measuring mind wandering that
does not rely on self-reports. In the MRT, participants had to answer to the rhythmic beat
of a metronome. A larger variability in responses (measured as the standard deviation of
discrepancy) is supposed to indicate a higher frequency of attentional lapses, as lapses in
executive control are thought to increase behavioral variability.

Participants heard a rhythmic metronome beat every 1600 ms for 400 times while they
were looking at a black screen. They were instructed to press the spacebar on the keyboard
simultaneously to the sound/rhythmic beat. We calculated the standard deviation of
participants’ response discrepancy from the metronome beat after discarding the first five
trials as a measure of attentional lapses.
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Electrophysiological Correlates of Attentional Lapses

The EEG was recorded during the switching task. Based on previous findings, we
chose mean amplitudes of lateral occipital P1 (time window: 100–140 ms after stimulus on-
set), central parietal P3 (time window: 300–630 ms after stimulus onset), pre-fixation cross
parieto-occipital alpha power (from 1000 to 200 ms before the onset of the imperative fixa-
tion cross) from central and dorsolateral electrodes, and post fixation cross fronto-central
theta power (from 0 to 500 ms after the onset of the imperative fixation) as electrophysio-
logical covariates representing attentional lapses.

2.1.3. Procedure

After participants signed an informed consent, they completed the intelligence test
under the supervision of the experimenter. This took between 50 and 60 min. After
that, electrodes were administered to the scalp and participants were seated in a sound-
attenuated, dimly lit cabin. Subsequently, participants worked on the switching task,
working memory tasks (not included in the present manuscript), and the MRT in the
same order. At the end of the session, participants completed the Q-SMW as well as a
questionnaire for the assessment of demographic data. The whole procedure lasted about
3.5 h.

2.1.4. EEG Recording

While participants worked on the switching task the EEG was recorded with 32 equidis-
tant Ag/AgCl electrodes (32Ch-EasyCap, EASYCAP, Herrsching, Germany) and amplified
by a BrainAmp DC amplifier (Brain Products, Gilching, Germany). For more information
on electrode positions, see Figure S1 in the Supplementary Materials. We used the aFz
electrode as the ground electrode. All electrodes were initially referenced to Cz and offline
re-referenced to an average reference. For the whole time we kept impedances of all elec-
trodes below 5 kΩ. The EEG signal was recorded continuously with a sampling rate of
1024 Hz (high-pass 0.1 Hz).

2.1.5. Data Analyses

For data preparation and analyses we used the statistics software R—version 4.0.0
(R Core Team 2021). The following packages were used in R: For data processing and easier
data management the package “tidyverse”(Wickham et al. 2019), for estimating Cronbach’s
α the package “psych” (Revelle 2020), for estimating multilevel models the package “lme4”
(Bates et al. 2015) and the “optimx” algorithm (Nash and Varadhan 2011), for estimating
the degrees of freedom in the multilevel models the package “lmerTest” (Kuznetsova et al.
2017), and for estimating the effect-sizes the package “effectsize” (Ben-Shachar et al. 2020).
For preprocessing and quantification of EEG measures, we used EEGLAB (Delorme and
Makeig 2004) and ERPLAB (Lopez-Calderon and Luck 2014) open source toolboxes on
MATLAB 2018a (The MathWorks Inc., Natick, MA, USA).

Analysis of Behavioral and Self-Report Data

Responses faster than 150 ms and incorrect responses were discarded. Furthermore,
the two trials following an online thought probe were excluded from the dataset, because
thought probes may interrupt the ongoing task (Steindorf and Rummel 2020). Next, we
conducted an intraindividual outlier analysis of the remaining trials and discarded all trials
with RTs that deviated more than 3 SDs from the mean of the intraindividual logarithmic
RT distribution. We conducted a careful outlier analysis, because outlier trials should not
have any influence on the occurrence of the WPR (Coyle 2003).

In addition, participants with extremely low (sum score ≤ 1316) or high (sum score ≥ 1747)
BIS performance were removed from further analyses. These cut-off values correspond to
z-values <−3 and >3, which would be considered as clear outliers. This led to the exclusion
of five datasets from further analyses. Moreover, we removed one additional participant
because they had a mean RT that deviated more than 3 SDs from the sample mean.
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To get the full information of the whole RT distribution, we decided not to summarize
individual RTs in several bins, but to use information of every trial within each participant.
Therefore, after the outlier analyses, we sorted all remaining trials in ascending order
according to their RTs. All participants with at least 400 correct responses were included to
ensure a sufficient and comparable number of trials across participants on the one hand
and to minimize the number of participants with fewer trials who had to be excluded
from the analyses on the other hand. This led to a final sample of 85 participants. We
used the middle 400 trials of each participant’s RT distribution and removed the remaining
trials symmetrically from both ends of each intraindividual RT distribution. Single trial
RTs served as the dependent variable in the following analyses. However, in the slowest
15 percent of the trials, the increases in the magnitude of the covariances accelerated
whereas the negative relations became smaller (see Figure 3 and also General Discussion).
As this course does not correspond to the definition of the WPR, which assumes a monotonic
increase of correlations, we analyzed only the fastest 85 percent of the trials (340 trials).
Further, we centered the data to the middle trial of each participant’s RT distribution and
rescaled the trial numbers in the range from −2 to 2. The central trial with the rescaled
value 0 is equivalent to the trial with the number 170 and the trials with the values −2
and 2 correspond to the fastest trial 1 and the slowest trial 340. This is important for the
interpretation of the b-weights in the multilevel models, both for the main effects and the
interaction terms.
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Preprocessing of Electrophysiological Data for Event-Related Potentials (ERPs)

Only correct trials were included. EEG data were filtered with an offline band-pass
filter of 0.1–30 Hz. Bad channels were identified based on probability, kurtosis, and
spectrum of the channel data. Data were down sampled to 512 Hz. Then, the stream of
EEG data was divided into epochs of 1200 ms including the baseline window of 200 ms
before stimulus onset. We conducted an independent component analysis (ICA) to identify
and remove ocular artifacts and generic discontinuities based on visual inspection and the
ADJUST algorithm (Mognon et al. 2011).

To ensure that experimental conditions of the switching task were evenly distributed
within each participant, we identified each participant’s experimental condition with the
lowest number of trials and randomly drew the same number of trials from each of the other
three experimental conditions. For example, when a participant had only 60 experimental
trials in the odd/even-repeat condition, 60 trials each from the other three experimental
conditions were randomly drawn to balance task demands. Subsequently, we calculated
the ERP for each participant by averaging across trials and experimental conditions.

One participant’s EEG data set was lost for technical reasons, resulting in a final
sample of 84 persons for electrophysiological analyses.

Preprocessing and Time-Frequency Decomposition of Electrophysiological Data

For the time frequency analyses, most of the preprocessing steps were equal to the ERP
preparation. However, data were segmented into longer epochs of 4000 ms, starting 2000 ms
before the onset of the fixation cross. Also, identical to the sample composition for ERP
analyses, for time-frequency analyses the total sample size consisted of N = 84 participants.

Time frequency decomposition was performed with complex Morlet wavelets with
frequencies ranging from 1 to 20 Hz in 20 linearly spaced steps. To specify the width of
the Gaussian distribution, the number of n cycles was set to 4. This was chosen to provide
a good trade-off between temporal and frequency resolution. Decibel-normalized alpha
power was calculated for each participant in the time window from 1000 to 200 ms before
the onset of the fixation cross as the mean power of the frequency bands between 8 to 12 Hz
recorded at parieto-occipital electrode sites. This time window was chosen to examine
variations in alpha power in an attentionally undemanding phase (within the inter-trial
interval) before an imperative stimulus appears, which catches participants’ attentional
focus back to the task at hand. To measure an internally directed attentional focus before
the fixation cross was presented, the baseline window for inter-trial alpha power was
set between 700 ms and 1000 ms after fixation cross onset. This allowed us to contrast
alpha power of an attentionally undemanding phase to an attentionally focused phase.
Decibel-normalized theta power was calculated for each participant in the time window
from 0 to 500 ms after fixation cross onset as the mean power of the frequency bands
between 4 to 7 Hz at fronto-central electrodes sites to examine differences in theta power
after an imperative stimulus appeared and attentional resources had to be allocated. Theta
power was averaged across frequencies and fronto-central electrode sites. The baseline
window for task-evoked theta power was set between 1000 ms and 200 ms before the
fixation cross was presented to assess attention-allocation following the presentation of
the imperative stimulus. We selected the time-windows for both time-frequency domains
based on findings of Arnau et al. (2020) who analyzed data from a subsample of Study 1.

Analyses of the Worst Performance Rule

In this study the WPR was examined with multilevel models based on the recommen-
dations by Frischkorn et al. (2016). We were interested to test differences in covariances
and correlations. Therefore, we followed the recommendations by Frischkorn et al. (2016)
and used unstandardized as well as standardized coefficients for multilevel analyses to
examine the increase of the magnitude in covariances and correlations between RT and
intelligence across the RT distribution.
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To get the full information of the whole RT distribution, we applied trial-by-trial
analyses. To evaluate differences in the relations of intelligence and RT between faster and
slower responses, we used the ascending number of the sorted trials to predict increases in
RTs from the fastest to slowest trials. We included individual differences in intelligence as a
between-subject predictor. A significant interaction in the multilevel model between trial
number and intelligence would indicate that the relationship between RTs and intelligence
changed across the RT distribution. In particular, the WPR implies a stronger negative
relationship between RTs and intelligence in slower compared to faster trials. This was our
baseline model.

To evaluate the effects of attentional lapses on response behavior in an ongoing task
and their moderating implications on the WPR, we controlled for different combinations of
attentional lapses indicators (behavioral, self-report, and electrophysiological measures).
Therefore, we regressed the RTs for each corresponding sorted trial on these indicators.
Afterwards we used the residuals of this regression as a new dependent variable. We
then employed a stepwise procedure to test if controlling for attentional lapses reduced or
removed the WPR. First, we tested if we still found a significant WPR after controlling for
individual differences in attentional lapses. For this purpose, we again applied our baseline
model, but instead of raw RTs, we used the residualized RTs as the new dependent variable.
A non-significant WPR interaction between trial number and intelligence indicated a
possible reduction of the slope of the WPR by attentional lapses. Because the difference
between a significant and a non-significant result is not necessarily significant (Gelman and
Stern 2006), we conducted further multilevel analyses to confirm this decrease statistically.
For this purpose, we modified the multilevel models and included a dummy-coded within-
subjects level-2 factor “control”. This factor indicated whether participants’ RTs were
controlled for individual differences in attentional lapses (control = 1) or not (control =
0). If the interaction of trial number and intelligence changed as a function of this control
factor—that is, if the three-way interaction between intelligence, trial number, and the
control factor was significant—this would indicate that the size of the WPR changed after
controlling for attentional lapses. We then used model comparisons based on the Akaike
information criterion (AIC; Akaike 1998) to formally check if the introduction of this three-
way-interaction (between the level-1 factor trial number, the level-2 factor control, and the
between-subjects factor intelligence) improved substantially the model fit. Differences > 10
in AIC would indicate substantial differences in model fits (Burnham and Anderson 2002).
For all analyses, we report degrees of freedom rounded to the nearest integer in case of
non-integer numbers.

2.2. Results

The preprocessed data supporting the findings of Study 1 and the code for the sta-
tistical analysis used in this manuscript are available via the Open Science Framework
(https://osf.io/5pafg/, accessed on 23 December 2021). Access to raw data of Study 1 will
be granted upon request.

2.2.1. Descriptive Results

For descriptive statistics of all variables see Table 1. All variables showed acceptable
to very good reliabilities, estimated with Spearman-Brown corrected odd-even correla-
tions or Cronbach’s alpha. Sample sizes differed slightly between the behavioral and the
electrophysiological covariates, because EEG data from one participant were lost due to a
technical error. For the correlations between all variables see Table 2. The closer the trial
numbers were to each other, the higher their RTs were related.
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Table 1. Descriptive statistics of all variables.

Mean SD Reliability N

ACC 96 2 — 85
RT 836.69 154.06 .99 85

Intelligence 1498.29 80.02 .79 85
IQ 94.58 16.12 .79 85

TUT 26.07 19.24 .96 85
Q-SMW over all 37.64 8.88 .81 85
Q-SMW/item 5.38 1.29 — 85

MRT 73.49 29.45 .99 85

P1 amplitude 0.94 1.34 .96 84
P3 amplitude 3.91 2.97 .99 84
Alpha power 1.20 0.94 .92 84
Theta power 0.00 0.84 .72 84

Note: ACC = percent of correct responded trials, RT = reaction time in ms (340 trials of each subject were
included), Intelligence = sum score of all scales of the Berliner Intelligence Structure Test, IQ = the intelligence
sum score transformed to an IQ score, TUTs = percentage of task-unrelated-thoughts, Q-SMW = mean score in
the questionnaire measuring spontaneous mind wandering, MRT = response variability in ms in the metronome
response task, P1 = mean amplitude of the occipital P1 in microvolts, P3 = mean amplitude of the centro-parietal P3
in microvolts, Alpha = mean parieto-occipital alpha power in decibel before an imperative stimulus was presented,
Theta = mean fronto-central theta power in decibel after an imperative stimulus was presented, reliability: either
estimated with the Spearman-Brown corrected correlation coefficients based on an odd-even split (RT, TUTs, MRT,
P1 amplitude, P3 amplitude) or with Cronbach’s α (Intelligence test score, Q-SMW, Alpha power). Theta power
reliability was estimated by the correlation between the two corresponding electrodes.

Table 2. Correlations between all variables.

1 2 3 4 5 6 7 8 9

1. Mean RT
2. SD RT .86 ***
3. Intelligence −.29 ** −.30 **
4. TUT −.12 −.27 * .15
5. Q-SMW −.11 −.04 .09 .30 **
6. MRT .31 ** .32 ** −.27 * −.03 −.11
7. P1 amplitude −.11 −.06 .03 −.02 .06 −.22 *
8. P3 amplitude .03 .03 −.05 .01 −.07 −.02 .27 *
9. Alpha power −.18 −.16 .03 −.11 −.13 .06 .06 .02
10. Theta power −.18 −.19 .18 .09 .09 .03 −.09 −.16 −.05

Note: Mean RT = mean reaction times (340 trials of each subject were included), SD RT = standard deviation of
reaction times (340 trials of each subject were included), TUT = mean rate of task-unrelated thoughts, Q-SMW =
mean score in the questionnaire for spontaneous mind wandering, MRT = response variability in the metronome
response task, P1 amplitude = mean amplitude of occipital P1, P3 amplitude = mean amplitude of centro-parietal
P3, Alpha power = mean pre-fixation cross alpha power, Theta power = mean post fixations cross theta power,
* p < .05, ** p < .01, *** p < .001.

2.2.2. Descriptive Analyses of Covariance and Correlation Patterns over the RT Distribution

On a descriptive level, we found increases of the magnitude in covariation from the
fastest, cov trial.1 = −10.93, to the slowest trials, cov trial.340 = −83.01, as well as increases
in the magnitude of negative correlations, r trial.1 = −.14, and r trial.340 = −.31. The
magnitude in covariances from the fastest to the slowest trial increased monotonically
(see Figure 3A), whereas the correlations peaked in their magnitude after approximately
85 percent of the trials (maximum correlation: r trial.346 = −.31). Afterwards, the magnitude
of correlations decreased again (see Figure 3B). This right tail of the RT distribution is
particularly interesting, because it reveals a simultaneous increase in covariations and a
decrease in correlations in the slowest 15 percent of RT distribution. Together, this pattern
of results indicates that the inter-individual variance in RTs increased substantially in the
right tail of the RT distribution, for unknown reasons, without an accompanying increase
in the relationship between RTs and intelligence. Because this pattern of results was highly
surprising and violates the core prediction of the WPR to observe a monotonic increase
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in both covariances and correlations across the whole RT distribution, we excluded the
slowest 15 percent of the trials from all further analyses. However, we will discuss this
unexpected finding and its implications in the General Discussion.

2.2.3. The Worst Performance Rule with Unstandardized Coefficients (Covariances)

We analyzed the data with multilevel analyses to test if covariances between RT
and intelligence revealed a significant worst performance pattern from faster to slower
trials (Table 3). This analysis revealed a significant main effect of intelligence, b = −44.18,
t(85) = −2.77, p = .007, which indicated that more intelligent participants showed faster RTs
than less intelligent ones. Moreover, we found a significant worst performance interaction
between intelligence and trial number, b = −14.93, t(85) = −2.85, p = .005, which confirms
the presence of a statistically robust increase of the magnitude in covariances between RTs
and intelligence over the RT distribution in our data. The worst performance interaction
showed a medium effect size of η2part = 0.09. This result can be interpreted as follows:
In the central trial with the sorting number of 170 (it corresponds to trial number 0 after
rescaling between −2 and 2), a participant with an intelligence test score one SD above
the mean was about 44 ms faster in their responses than an average intelligent participant.
However, in a slow trial (trial number 255, which corresponds to the rescaled trial number
1), the same participant was even 59 ms faster than an average intelligent participant,
whereas their RT difference was relatively negligible in a fast trial (trial number 85, which
corresponds to the rescaled trial number −1), with only a difference of about 29 ms. Taken
together, our baseline model indicated a significant WPR on the level of covariances. In the
next steps we examined the influences of several behavioral and self-reported measures of
attentional lapses on the unstandardized WPR.

Table 3. Baseline multilevel model of the WPR on an unstandardized level.

RT On b-Weight (Standard Error) df t-Value
Random
Effect SD

p

Intercept 835.82 (15.86) 85 52.62 146.45 <.001
intelligence −44.18 (15.98) 85 −2.77 .007
trial number 146.99 (5.20) 85 28.26 47.95 <.001

trial number ×
intelligence = WPR

−14.93 (5.23) 85 −2.85 .005

Note: N = 85. 340 trials of each participant were included for analysis. Data were centered to the trial with the
sorted number of 170 and afterwards rescaled between −2 and 2. A significant interaction between trial number
and intelligence represents a significant increase of the magnitude in covariation according to the WPR.

2.2.4. Do Individual Differences in Behavioral and Self-Reported Measures of Attentional
Lapses Account for the WPR with Unstandardized Coefficients (Covariances)

In the next step, we analyzed if the increase of the magnitude in covariation disap-
peared after controlling for behavioral and self-report measurements of attentional lapses
(TUT rates, Q-SMW scores, RT variability in the MRT). Therefore, we controlled participants’
RTs for individual differences in attentional lapses. Afterwards, we tested in multilevel
analyses if the covariances between RT and intelligence still revealed a significant worst
performance pattern. Figure 4A shows the descriptive course of covariances between RT
and intelligence over the sorted trials before and after controlling for behavioral and self-
reported attentional lapses. The two-way interaction between trial number and intelligence
was no longer significant after controlling for individual differences in behavioral and
self-report measures of attentional lapses, b = −8.88, t(85) = −1.82, p = .073 (Table S1 in the
Supplementary Materials).
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Figure 4. Course of the covariances over the RT distribution before and after controlling for the
influence of the attentional lapses covariates. The figure describes the worst performance pattern in
covariances before (red lines) and after (other lines) the different covariates or their combinations
were partialized out of the RT variable (labeled in the boxes on the side of the dashes in the figure
legend). (A) shows the results of the behavioral and self-reported covariates in the full sample of
N = 85. (B) shows the results of the electrophysiological covariates in the subsample of N = 84.

To test if the changes in the WPR after controlling for individual differences in atten-
tional lapses were significant, we merged both data sets (not controlled and controlled for
attentional lapses) together and introduced a dummy-coded level-2 factor named “control”
for moderation analyses in our multilevel model (Table 4). Hence, the RT variable in this
multilevel model either reflected raw RTs or the residuals of those RTs after controlling for
the influence of the covariates. A significant interaction between intelligence, trial number,
and the control factor indicated that the increase of the magnitude in covariation between
intelligence and RTs from faster to slower trials changed significantly after controlling for
attentional lapses. This three-way interaction between intelligence, trial number, and the
control factor was indeed significant, b = 6.05, t(57630) = 25.70, p < .001. The effect size of
the three-way interaction revealed a small effect, η2part = 0.01.

To additionally determine whether including the three-way interaction significantly
improved the model fit, we compared our model to a more parsimonious model without
this three-way interaction. Model comparison revealed a significantly better fit for the
model with the three-way interaction as indicated by smaller AIC values, ∆AIC = 655.
Taken together, these results indicate that the behavioral and self-reported attentional
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lapses covariates together explained substantial parts of the worst performance pattern in
covariances. To assess more specifically which behavioral and self-reported indicator of
attentional lapses was most relevant, we examined the specific influence of each behavioral
and self-report covariate on the WPR using the same procedure.

Table 4. Full multilevel model, which tests the effect of attentional lapses covariates (TUTs + Q-SMW
+ MRT) on the WPR on an unstandardized level.

RT On b-Weight (Standard Error) df t-Value Random Effect SD p

intercept 835.82 (15.40) 85 54.29 96.56 <.001
intelligence −44.18 (15.49) 85 −2.85 .005
trial number 146.99 (4.91) 85 29.91 47.38 <.001

control −835.82 (0.27) 57630 −3091.39 <.001
trial number × intelligence = WPR −14.93 (4.94) 85 −3.02 .003

intelligence × control 15.10 (0.27) 57630 55.53 <.001
trial number × control −146.99 (0.23) 57630 −627.78 <.001

trial number × intelligence × control 6.05 (0.24) 57630 25.70 <.001

Note: N = 85. For each participant, 340 trials were included in the analysis. Data were centered to the trial with
the sorted number of 170 and rescaled between −2 and 2. Control is a dummy coded factor, which represents raw
RTs or RTs residualized by the corresponding attentional lapses covariates. A significant three-way interaction
between trial number, intelligence and control represents a moderating influence of the covariates on the covariance.

Task-Unrelated Thoughts (TUTs)

If we controlled for TUTs, we still observed a significant worst performance interaction
in the baseline model, b = −12.98, t(85) = −2.55, p = .013 (Table S2 in the Supplementary
Materials). Nevertheless, the significant three-way interaction between intelligence, trial
number, and the control factor in the full model indicated that TUTs had an effect on the
worst performance pattern, b = 1.95, t(57630) = 12.24, p < .001 (Table S3 in the Supplementary
Materials). Model comparison revealed a better fit for the full model with the three-way
interaction, ∆AIC = 147. The effect size was very small, η2part = 0.00. Taken together, these
results indicate that self-reported TUTs accounted for small parts of the WPR in covariances.

Questionnaire of Spontaneous Mind Wandering (Q-SMW)

If we controlled for Q-SMW scores, we still observed a significant worst performance
interaction in the baseline model, b = −14.73, t(85) = −2.81, p = .006 (Table S4 in the Supple-
mentary Materials). The three-way interaction between intelligence, trial number, and the
control factor in the full model was not significant, indicating that the worst performance
pattern did not change after controlling for Q-SMW scores, b = 0.20, t(57630) = 1.34, p = .179,
η

2part = 0.00 (Table S5 in the Supplementary Materials). Consequently, model comparison
did not indicate a better fit for the full model with the three-way interaction, ∆AIC = 0.
Taken together, these results indicate that Q-SMW scores did not contribute to the WPR
in covariances.

Metronome Response Task (MRT)

After controlling for the RT variability in the MRT, we still observed a significant worst
performance interaction in the baseline model, b = −10.57, t(85) = −2.09, p = .039 (Table S6 in
the Supplementary Materials). The significant three-way interaction between intelligence,
trial number, and the control factor in the full model indicated a smaller worst performance
pattern after controlling for RT variability in the MRT, b = 4.36, t(57630) = 19.60, p < .001
(Table S7 in the Supplementary Materials). Also, model comparison revealed a better fit for
the full model with the three-way interaction, ∆AIC = 380. Effect size estimation revealed a
small effect, η2part = 0.01. Taken together, these results indicate that RT variability in the
MRT accounted for some parts of the WPR in covariances.
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2.2.5. Do Individual Differences in Electrophysiological Measures of Attentional Lapses
Account for the WPR with Unstandardized Coefficients (Covariances)

Figure 4B shows the descriptive course of covariances between RT and intelligence
over the sorted trials before and after controlling for the electrophysiological covariates
representing attentional lapses. The baseline multilevel model indicated a significant
interaction between trial number and intelligence in this subset, b = −15.21, t(84) = −2.88,
p = .005, η2part = 0.09 (Table S8 in the Supplementary Materials).

ERP Analyses

If we controlled for individual differences in mean occipital P1 and mean centro-
parietal P3 amplitudes, the two-way interaction between trial number and intelligence
remained significant in the baseline model, b = −14.99, t(84) = −2.84, p = .006 (Table S9 in the
Supplementary Materials). We observed no significant three-way interaction between intel-
ligence, trial number, and the control factor in the full model, indicating that the size of the
WPR did not change after controlling for the ERP mean amplitudes, b = 0.22, t(56952) = 1.42
p = .156, η2part = 0.00 (Table S10 in the Supplementary Materials). Consequently, model
comparison did not reveal a better fit for the full model with the three-way interaction,
∆AIC = 1. Taken together, these results indicate that the mean occipital P1 amplitude and
the mean parietal P3 amplitude did not account for the WPR in covariances.

Time-Frequency Analyses

If we controlled for individual differences in alpha and theta power, the two-way
interaction between trial number and intelligence remained significant in the baseline
model, b = −13.14, t(84) = −2.55, p = .013 (Table S11 in the Supplementary Materials).
Still, the significant three-way interaction between intelligence, trial number, and the
control factor in the full model indicated a decrease in the worst performance pattern after
controlling for alpha and theta power, b = 2.06, t(56952) = 9.98 p < .001 (Table S12 in the
Supplementary Materials). Model comparison revealed a better fit for the full model with
the three-way interaction, ∆AIC = 98. However, this effect was very small, η2part = 0.00.
Taken together, these results indicate that the time-frequency covariates accounted for small
parts of the WPR in covariances. To detect the unique influence of the two different time-
frequency covariates on the WPR, we estimated the models for both covariates separately.

Alpha-Power

After controlling for individual differences in alpha power, the two-way interaction be-
tween trial number and intelligence remained significant in the baseline model, b = −14.96,
t(84) = −2.87, p = .005 (Table S13 in the Supplementary Materials). More importantly, there
was no significant three-way interaction between intelligence, trial number, and the control
factor in the full model, indicating that the size of the WPR did not change after controlling
for alpha power, b = 0.24, t(56952) = 1.41 p = .159, η2part = 0.00 (Table S14 in the Supple-
mentary Materials). Model comparison did not reveal a better fit for the full model with
the three-way interaction, ∆AIC = 0. Taken together, these results indicate that individual
differences in inter-trial alpha power did not account for the WPR in covariances.

Theta-Power

After controlling for individual differences in theta power, the two-way interaction be-
tween trial number and intelligence remained significant in the baseline model, b = −13.48,
t(84) = −2.57, p = .012 (Table S15 in the Supplementary Materials). The significant three-
way interaction between intelligence, trial number, and the control factor in the full model
indicated a significant change of the worst performance pattern after controlling for theta
power, b = 1.72, t(56952) = 9.73, p = .001 (Table S16 in the Supplementary Materials). Model
comparison also showed a better fit for the model with the three-way interaction, ∆AIC = 96,
but the effect size of the three-way interaction was very small, η2part = 0.00. Taken together,
these results indicate that theta power accounted for small parts of the WPR in covariances.
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The Combined Effect on the Unstandardized Worst Performance Pattern of All Predictors
with a Substantial Contribution (TUTs, MRT, Theta-Power)

After controlling for individual differences in covariates with a unique contribution
to the explanation of the WPR, we examined their combined influence. The two-way
interaction between trial number and intelligence was no longer significant in the baseline
model, b = −7.76, t(84) = −1.59, p = .116 (Table S17 in the Supplementary Materials). The
significant three-way interaction between intelligence, trial number, and the control factor
in the full model indicated a substantial change of the worst performance pattern after
controlling for all three predictors, b = 7.45, t(56952) = 28.68 p < .001 (Table S18 in the
Supplementary Materials). Model comparison revealed a significantly better fit for the full
model with the three-way interaction, ∆AIC = 815. The estimation of the effect size indicated
a small effect, η2part = 0.01. All in all, these results indicate that TUT rates, variability
in the MRT, and theta power together fully explained the worst performance pattern in
covariances.

2.2.6. The Worst Performance Rule with Standardized Coefficients (Correlations)

On the level of correlations, we did not find a significant worst performance pattern
in the baseline multilevel model, b = −0.02, t(85) = −1.10, p = .276 (Table S19 in the
Supplementary Materials). We also did not find a significant worst performance interaction,
b = −0.02, t(84) = −0.91, p = .359, in the subset with psychophysiological covariates (Table
S28 in the Supplementary Materials). The worst performance interaction revealed a small
effect size of η2part = 0.01. We observed a small descriptive increase in the magnitude of
negative correlations from the first to the last trial of ∆r = .08 (Figure 3B).

2.2.7. Do Individual Differences in Behavioral and Self-Reported Measures of Attentional
Lapses Account for the WPR with Standardized Coefficients (Correlations)

Because there was no significant worst performance interaction in the baseline mul-
tilevel model with standardized coefficients and we found no suppressor effect of the
covariates on this interaction, we will not report the baseline models without the effect of
any covariates (they can be found in Tables S20, S22, S24, S26, S29 and S31 in the Supplemen-
tary Materials). The significant three-way interaction between intelligence, trial number,
and the control factor in the full model indicated a change in the worst performance pattern
after controlling for the behavioral and self-reported covariates, b = 0.01, t(57630) = 8.70,
p < .001 (Table S21 in the Supplementary Materials). Model comparison revealed a better
fit for the full model with the three-way interaction, ∆AIC = 73. However, the effect size of
η

2part = 0.00 suggested that this effect was very small. Taken together, the behavioral and
self-reported attentional lapses covariates together explained very small parts of the (not
significant) worst performance pattern in correlations. To assess more specifically which
behavioral and self-reported indicator of attentional lapses was most relevant for this effect,
we additionally examined the individual influence of each of these covariates on the WPR
in correlations by using the already known procedure (Figure 5A).

Task-Unrelated Thoughts (TUTs)

The significant three-way interaction between intelligence, trial number, and the con-
trol factor in the full model indicated a smaller worst performance pattern after controlling
for TUTs, b = 0.01, t(57630) = 9.49, p < .001 (Table S23 in the Supplementary Materials).
Model comparison revealed a better fit for the full model with the three-way interaction,
∆AIC = 88. The effect size of η2part = 0.00 indicated a very small effect of TUTs on the WPR.
Taken together, these results indicate that self-reported TUTs accounted for a very small
part of the WPR in correlations.
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Figure 5. Course of the correlations over the RT distribution before and after controlling for the
influence of the attentional lapses covariates. The figure describes the worst performance pattern in
correlations before (red lines) and after (other lines) the different covariates or their combinations
were partialized out of the RT variable (labeled in the boxes on the side of the dashes in the figure
legend). (A) shows the results of the behavioral and self-reported covariates in the full sample of
N = 85. (B) shows the results of the electrophysiological covariates in the subsample of N = 84.

Questionnaire of Spontaneous Mind Wandering (Q-SMW)

The three-way interaction between intelligence, trial number, and the control factor in
the full model was not significant, indicating that the worst performance pattern did not
change after controlling for Q-SMW scores, b = 0.00, t(57630) = 1.39, p = .165, η2part = 0.00
(Table S25 in the Supplementary Materials). Consequently, model comparison did not
indicate a better fit for the full model with the three-way interaction, ∆AIC = 0. Taken
together, these results indicate that Q-SMW scores did not contribute to the WPR in
correlations.

Metronome Response Task (MRT)

The significant three-way interaction between intelligence, trial number, and the con-
trol factor in the full model indicated a smaller worst performance pattern after controlling
for RT variability in the MRT, b = 0.00, t(57630) = 3.47, p < .001 (Table S27 in the Supple-
mentary Materials). Model comparison revealed a better fit for the full model with the
three-way interaction, ∆AIC = 10. We found only a very small effect of the MRT on the
WPR, η2part = 0.00. Taken together, these results indicate that RT variability in the MRT
accounted only for a very small part of the WPR.

2.2.8. Do Individual Differences in Electrophysiological Measures of Attentional Lapses
Account for the WPR with Standardized Coefficients (Correlations)
ERP Analyses

There was no significant three-way interaction between intelligence, trial number, and
the control factor in the full model, indicating that the size of the WPR did not change if
we controlled for the ERP amplitudes, b = 0.00, t(56952) = −0.32 p = .749, η2part = 0.00
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(Table S30 in the Supplementary Materials). Consequently, model comparison did not show
a better fit for the full model with the three-way interaction, ∆AIC = 2. Taken together, these
results indicate that mean occipital P1 and centro-parietal P3 amplitudes could not account
for the WPR in correlations (see Figure 5B).

Time-Frequency Analyses

The three-way interaction between intelligence, trial number, and the control factor
in the full model indicated that there was no difference in the worst performance pattern
after controlling for the combined influence of mean alpha and theta power, b = 0.00,
t(56952) = 1.17 p = .243, η2part = 0.00 (Table S32 in the Supplementary Materials). Model
comparison also did not show a better fit for the full model with the three-way interaction,
∆AIC = 1. Taken together, these results suggest that the time-frequency covariates could not
account for the WPR in correlations.

2.3. Discussion

Our findings provided some evidence for the attentional lapses account of the worst
performance rule. We found a significant increase in the magnitude of covariances between
intelligence and RTs from the fastest to the slowest RTs (i.e., a WPR). This increase was less
strong when we controlled for inter-individual differences in several of the self-reported
attentional lapses measures. Notably, after combining different attentional lapses measures
and controlling for these, the WPR disappeared. Thus, inter-individual differences in the
propensity of attentional lapses did fully explain the WPR in the present data set on the level
of covariances. Nevertheless, it has to be stressed that the combined effect of attentional
lapses on the WPR was very small (η2part = 0.01). It is possible that we were only able to
detect this small effect of attentional lapses on the WPR due to the high statistical power of
the multi-level account and the trial-by-trial analyses.

However, there was no significant WPR on the level of correlations. Nevertheless,
descriptively, there was still an increase in the negative correlations with a magnitude
of about r = −.08, which is consistent with former research investigating the WPR on a
descriptive level (e.g., Fernandez et al. 2014). Again, the increase in the magnitude was
reduced after controlling for self-reported attentional lapses but the present data do not
address the question of the extent to which attentional lapses can account for the WPR on
the level of correlations, as we did not find a significant WPR on that level. Apparently, the
statistical power was rather low for a detection of an effect with the magnitude of the WPR
on the correlational level. Thus, one reason for why we did not observe a significant WPR
on the correlational level probably was our somewhat low sample size. We tackled this
problem with our second study.

2.3.1. Influence of Covariates on the WPR in Covariances

Different covariates of attentional lapses showed a significant influence on the WPR
and controlling for them reduced the increasing magnitude in covariances. In particular,
controlling for self-reported attentional lapses led to a reduction of the worst performance
pattern and provided evidence for the attentional lapses account. However, we found
some unexpected relations between self-reported attentional lapses and participants’ mean
RTs/RT variability as well as between TUTs and intelligence. These correlations between
the measures were not in line with former findings and contrary to theoretical predictions.
In detail, individuals who reported more attentional lapses, measured by TUTs, showed
faster RTs and less RT variability as well as higher intelligence test scores in our data.
The attentional lapses account, in contrast, states that individuals with lower cognitive
abilities should experience more attentional lapses and should be slower in their responses.
Also, individuals with lower cognitive abilities should show more variability of their
responses within a certain task. Previous studies showed typically the opposite direction
of correlations compared to our findings (e.g., Kane et al. 2016; McVay and Kane 2009,
2012; Randall et al. 2014; Robison et al. 2020; Welhaf et al. 2020). Possible reasons for
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these surprising correlations may be the size or composition of our sample and will be
discussed below.

Besides self-reported attentional lapses, one of the objective measures (i.e., the RT
variability in the MRT) also contributed to the explanation of the WPR. The MRT is typically
used as an alternative, more objective measure of attentional lapses (Anderson et al. 2021;
Seli et al. 2013). However, Figures 4 and 5 show that the MRT explained not only the
slope of the WPR but also large parts of the covariances and correlations over the whole
RT distribution. It is plausible that the MRT and the assigned decision making task for
assessing the WPR possess some overlaps. Performances in both tasks were measured
via RTs, which are determined by different processes, such as the encoding of stimuli
and the preparation of the motor response. Thus, controlling for MRT variability in our
reaction time task means that we also have controlled for some variance resulting from
these processes. This could be the reason for the similar reduction of the covariances and
correlations over the whole RT distribution after controlling for the MRT.

It must be noted that several of our covariates did not contribute to the WPR. This
was especially surprising in case of the Q-SMW, as the underlying construct (i.e., mind
wandering tendencies) are supposed to be strong predictors of attentional lapses. In
the present sample, questionnaire scores were moderately correlated with self-reported
attentional lapses during the task. This is consistent with earlier studies showing that mind
wandering trait questionnaires predict the frequency with which attentional lapses are
experienced while participants work on an experimental task (Mrazek et al. 2013; Schubert
et al. 2020). Mind wandering is, however, a broad construct covering a range of attentional
phenomena. This may explain why the thought-probing measure of attentional lapses but
not the global mind wandering questionnaire explained parts of the WPR.

On the electrophysiological level, the mean amplitudes of the lateral-occipital P1 and
the centro-parietal P3 as well as mean parieto-occipital inter-trial alpha power showed no
effects on the WPR. Only mean stimulus-evoked fronto-central theta power changed the
course of covariances over the RT distribution. It is surprising that the electrophysiological
covariates did not change the worst performance pattern, because former studies found
relations of the centro-parietal P3 to TUTs (Kam and Handy 2013; Smallwood et al. 2008),
to sustained attention (O’Connell et al. 2009), and to the allocation of cognitive resources
(Allison and Polich 2008; Kok 2001). Likewise, former studies demonstrated that attentional
lapses and neural processing of stimuli via the occipital visual P1 are related (Baird et al.
2014; Kam et al. 2011). Also, inter-trial alpha power, which reflects internally directed men-
tal states and which was shown to be strongly predictive for the experience of attentional
lapses (Arnau et al. 2020), could not explain the WPR. Altogether, it seems that the chosen
electrophysiological covariates did not account for the WPR, except for the very small effect
of mean theta power.

2.3.2. Influence of Covariates on the WPR in Correlations

Self-reported attentional lapses and intra-individual RT variability of the MRT ac-
counted for the WPR on the level of correlations. Descriptively it seemed that the MRT
explained large parts of the correlations, but the effect of the MRT on the WPR in the
multilevel models was slightly smaller compared to the effect of self-reported attentional
lapses. This underlines the just discussed proposition that the MRT accounts for RT proper-
ties unrelated to the slope of the WPR. In contrast to the analyses of the covariances, on
the level of correlations mean fronto-central theta power could not account for the worst
performance pattern. Again, all other covariates revealed no effect on WPR.

2.3.3. Low Correlation and Unpredicted Correlations with Attentional Lapses Measures

There were hardly any correlations between different attentional lapses measures
or their psychophysiological correlates. It is well known that individual occurrences of
attentional lapses depend on personal and context-related variables, which means that the
construct of attentional lapses shows a multiverse structure (Robison et al. 2020).
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Nevertheless, beyond the multiverse structure of the attentional lapses construct, the
low correlations should also be considered as challenging for attentional lapses research.
The absence of relations between different attentional lapses measures raises the question
of construct validity. If we try to capture a certain ability or a state of attention with a
multimethod approach, these measures should all reflect a common latent construct. This
assumption should be empirically reflected in—at least—small correlations between those
measures. A problem of attentional lapses research is the vague definition of attentional
lapses, which leads to more degrees of freedom in its operationalization. Future research
should further examine the construct validity of attentional lapses.

In contrast to former findings (e.g., Kane et al. 2016; McVay and Kane 2009, 2012;
Randall et al. 2014; Robison et al. 2020; Welhaf et al. 2020) and to predicted relations, we
found that TUTs and cognitive abilities as well as RT and RT variability measures were not
related or that their correlations pointed in the unpredicted direction.

2.3.4. Interim Conclusion

Generally, each attentional lapses indicator explained unique parts of the worst perfor-
mance pattern. When we examined the common influence of different attentional lapses
covariates on the WPR, the WPR disappeared fully on the level of covariances (Figure 4). On
a descriptive level, we also observed a clear change in the pattern of correlations from the
fastest to the slowest RTs (Figure 5). Our findings are in line with the idea that attentional
lapses have different facets, which should be captured by different indicators (Robison
et al. 2020). Due to the multiverse structure, measures of attentional lapses do not need to
converge (e.g., Mrazek et al. 2013; Schubert et al. 2020; Seli et al. 2013). We found the same
pattern in our results with weak or absent correlations between the different measures of
the attentional states (Table 2). This underscores the necessity of the multimethod approach,
which we chose in the present study by assessing attentional lapses with self-reports, objec-
tive indicators, and psychophysiological measures to capture individual differences in this
construct as comprehensively as possible, which is as a major advantage of our study.

Nevertheless, despite the clear descriptive worst performance pattern in correlations
in our study and despite the recent meta-analysis by Schubert (2019), who reported robust
evidence for the presence of the WPR, we did not find a significant WPR on the level of
correlations. There are several possible explanations for this. First, the sample size in this
study was small and consequently the statistical power was too low to detect a significant
WPR in our multilevel models given the small effect size. Additionally, the multilevel
approach, proposed by Frischkorn et al. (2016), considers the uncertainty in correlation
estimates. In a small sample, the confidence intervals of the estimators are quite large, and
therefore the differences in correlations may not have become significant in our analyses.
A larger sample size would minimize the uncertainty in the estimators (Schönbrodt and
Perugini 2013).

Second, the absence of the WPR may also be attributed to the heterogeneity of our
sample. It is known that student samples differ in many psychological variables compared
to general population or even representative samples (Hanel and Vione 2016). In addition,
age may have affected participants’ response behavior in self-reported attentional lapses
and RTs. For example, previous studies found fewer instances of attentional lapses in
older people as compared to younger people (e.g., Arnicane et al. 2021; Frank et al. 2015;
Krawietz et al. 2012; Maillet et al. 2018, 2020; Maillet and Schacter 2016). Furthermore, it is
well established that older participants respond slower compared to younger participants
(e.g., Verhaeghen and Salthouse 1997). As we have recruited an age-heterogeneous sample,
age differences may have obscured our covariance structure. We found no evidence for an
age-related decline in the frequency of reported attentional lapses in our sample (r = −.14,
p = .201), but older participants showed slower responses (r = .26, p = .016).

Third, the measurement took place in a highly controlled laboratory situation. In order
to achieve a clear measure of brain activity with the EEG, participants were individually
seated in a shielded cabin so that any kind of noise was reduced to a minimum. Conse-
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quently, participants of our study probably experienced fewer distractions than in standard
behavioral laboratory studies. It is possible that the special laboratory situation of our
study influenced the occurrence and experience of attentional lapses and in consequence
the magnitude of the WPR.

Because of the mentioned shortcomings of our first study (low power resulting from
the small sample size, heterogeneity of the sample, and unexpected correlations between
intelligence, RTs or RT variability and self-reported attentional lapses), we reanalyzed an
already published data set with our approach to test whether the results and descriptive
patterns would replicate in an independent larger and more homogenous student sample.
In Study 2, we were particularly interested if we would find a significant WPR (and a
reduction thereof when controlling for inter-individual differences in attentional lapses) on
the correlational level when the statistical power was increased.

3. Study 2

3.1. Materials and Methods

To replicate our results in an independent sample, we reanalyzed the data set from
two previously published studies by Kane et al. (2016) and Welhaf et al. (2020). From
these previous studies it is already known that the correlations between TUTs, RTs, and
intelligence are in accordance with expectations, which we consider an advantage of
this data set. The data for Study 2 are available via the Open Science Framework. Use
https://osf.io/9qcmx/ (accessed on 5 February 2021) to access the raw data and use
https://osf.io/5pafg (accessed on 23 December 2021) to get access to additional data,
which are not provided via the previous link.

3.1.1. Participants

At three measurement occasions, Kane et al. (2016) recruited a total sample of 545 un-
dergraduates, aged between 17 and 35 years, from the University of North Carolina at
Greensboro and Minority-Serving state university. For the present analyses, the number
of available data-sets differed between the tasks (arrow-flanker N = 481, letter-flanker
N = 426, number-stroop N = 481, sustained attention to response task [SART] N = 486). In
consequence of outlier analyses, different numbers of participants remained for each task
(see Data Preparation below for specific information). We analyzed the data with the same
analysis strategy as used in Study 1. The mean age of the analyzed subsample was 18.92
(SD = 1.91), 66.94 percent of the sample were female. Five participants did not disclose
their gender.

3.1.2. Materials
Sustained Attention Task (SART)

Participants had to press the space bar in go-trials (89% of 675 trials) and to withhold their
response in no-go-trials (11% of 675 trials). Go-trials were indicated by words of the category
“animals” and no-go trials were indicated by words of the category “vegetables”. We used RTs
of go-trials as dependent variable, consistent with the analyses by Welhaf et al. (2020).

Letter-Flanker

Participants had to decide whether the presented target letter “F” appeared normally
or backwards. The letter was presented amid six distractors on the horizontal line. In total,
participants had to respond in 144 trials, which consisted of 24 neutral trials (the target
letter was presented amid dots), 48 congruent trials (the target and the distractors were
the same letters and pointed in the same direction), 24 trials of an incongruent condition
(the target and the distractors were the same letters, but only five out of the six distractors
pointed in the same direction as the target), 24 stimulus-response incongruent trials (the
target and the distractors were the same letters but pointed in the opposite directions),
and 24 stimulus-stimulus incongruent trials (the distractors consists of the letters “E” and
“T”, which were additionally tilted by 90 and 270 degrees). We used the RTs of correctly
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solved congruent and neutral trials as dependent variable, consistent with the analyses by
Welhaf et al. (2020).

Arrow-Flanker

Participants had to decide whether a centrally presented arrow pointed to the right or
to the left. The arrow was presented amid four distractors on the horizontal line. In total
participants had to respond in 192 trials, which consisted of 48 neutral trials (the target was
presented amid dots), 48 congruent trials (the target and the distractors pointed in the same
direction), 48 stimulus-response incongruent trials (the target and the distractors pointed in
the opposite directions), and 48 stimulus-stimulus incongruent trials (the distractor arrows
pointed upwards). We used the RTs of correctly solved congruent and neutral trials as
dependent variable, consistent with the analyses by Welhaf et al. (2020).

Number-Stroop

In each trial, two to four digits were presented in a row. Participants had to count
the quantity of presented digits, while they had to ignore their meaning. They responded
by pressing one of three labeled keys. The condition could be congruent, if the quantity
of presented digits was equal to their meaning (e.g., 4444 or 333), or incongruent, if the
quantity of presented digits differed from their meaning (e.g., 2222 or 44). Twenty percent
of the 300 trials were incongruent trials. We used the RTs of correctly solved congruent
trials as dependent variable, consistent with the analyses by Welhaf et al. (2020).

Working Memory Capacity

In Study 2 we used WMC as an independent variable to measure cognitive abilities.
This is unproblematic, because the WPR was also observed in the relations between RTs
an WMC (McVay and Kane 2012; Schmiedek et al. 2007; Unsworth et al. 2010; Welhaf et al.
2020). Furthermore, WMC is highly related to intelligence (Conway et al. 2002; Kane et al.
2005; Kyllonen and Christal 1990; Oberauer et al. 2005) and therefore a suitable alternative
measure of cognitive abilities beside intelligence. Moreover, individual differences in
attentional lapses should account for individual differences in both WMC as well as
intelligence (Kane et al. 2008; Shipstead et al. 2016). WMC was measured with six different
tasks. Four of these tasks required maintaining serially presented memory items while
participants had to repeatedly engage in an unrelated secondary task (Operation-Span,
Sentence-Span, Symmetry-Span, and Rotation-Span). Participants’ responses were coded as
correct if they recognized memory items in their correct serial position. The two remaining
tasks measuring WMC required participants’ ability for updating previously memorized
items (Running-Span-Task and Updating-Counters). Participants’ responses were coded
as correct if they recognized the updated memory items. For more detailed information
on the tasks, see Kane et al. (2016). We used the latent WMC scores calculates by Welhaf
et al. (2020). These were estimated with confirmatory factor analyses and full information
maximum likelihood was used to account for missing data when the factor scores were
computed.

Online Thought-Probing Procedure

At each online thought probe, participants were asked: “What are you thinking
about?” and had to answer by pressing one of eight keys which most closely matched their
thought content. They could choose between: (1) The task—on-task thoughts; (2) Task
experience/performance—thoughts about one’s own task performance; (3) Everyday
things—thoughts about routine things; (4) Current state of being—thoughts about one’s
own current physical or emotional state; (5) Personal worries—thoughts about one’s wor-
ries and concerns; (6) Daydreaming—fantastic thoughts, which are decoupled from reality;
(7) External environment—thoughts about the immediate external environment; (8) Other—
thoughts which do not fit in one of the other seven categories. Kane et al. (2016) as well as
Welhaf et al. (2020) coded all answers of the categories 1 and 2 as on-task and all answers
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of the categories 3 to 8 as off-task thoughts (TUTs). We used the rate of these TUTs as a
measure of attentional lapses. The attentional lapses covariate contained 45 thought probes
from the SART, 20 from the Number-Stroop task, 20 from the Arrow-Flanker task, and
12 from the Letter-Flanker task, as well as 12 from an otherwise-not further reported and
analyzed 2-back task.

3.1.3. Data Preparation and Analyses

Within each task, we removed participants with fewer than 50 percent of correctly
answered trials. In the next step, the two trials following thought probes, responses faster
than 150 ms and slower as 3000 ms, incorrect responses, and trials of the non-analyzed
conditions were discarded within each task. Afterwards, we removed all participants who
showed higher logarithmical accuracy z-scores than 3 SDs from the sample mean within
each task. After that, we conducted an intra-individual outlier analysis and discarded
all trials with RTs that deviated more than 3 SDs from the mean of the intra-individual
logarithmized RT distribution within each task. Finally, within each task, we removed the
participants with higher mean RT z-scores than 3 SDs from the sample mean.

We sorted all of the remaining trials within each participant in each task in the ascend-
ing order according to their RTs. All participants with at least 60 remaining trials in the
arrow-flanker task, 50 remaining trials in the letter-flanker task, 170 remaining trials in the
number-stroop task, as well as at least 200 remaining trials in the SART were included to
ensure a sufficient and comparable number of trials on the one hand and to minimize the
number of participants with fewer trials who had to be excluded from the analyses on the
other hand. In consequence of this minimal amount of trials criterion, we removed different
numbers of participants within each task from further analyses. This led to a final sample
of 463 participants in the arrow-flanker task (28 participants were removed as outliers),
416 participants in the letter-flanker task (10 participants were removed as outliers), 460 par-
ticipants in the stroop task (21 participants were removed as outliers), and 441 participants
in the SART (45 participants were removed as outliers). We used the middle trials of each
participant’s RT distribution in each task and removed the remaining trials symmetrically
from both ends of the intraindividual distribution. Multilevel analyses were conducted
in the same way as in Study 1. We included all of the four tasks in one model and added
the task as an additional effect-coded level-3 factor. The factor levels of the task-factor
were contrasted to the SART. All multilevel models were estimated using the “nlminb”
optimizer, except for the two full models in which the WPR was controlled for TUT rates,
because those two models only converged with the “L-BFGS-B” optimizer algorithm.

3.2. Results

3.2.1. Descriptive Analyses

Descriptive statistics are shown in Table 5 and the correlations between all relevant
variables are shown in Table 6. Mean RTs as well as RT variability of the four different
tasks were highly correlated. In contrast to Study 1, the correlations between TUTs and RTs,
TUTs and RT variability, as well as between TUTs and cognitive abilities (in this case WMC)
pointed in the hypothesized directions. For WMC, reliability estimation across the working
memory tasks revealed an acceptable internal consistency with Cronbach’s α= .78.

Table 5. Descriptive statistics of all RT variables in Study 2.

Mean SD Reliability N

RT AF 461.03 49.65 .99 463
RT LF 532.35 85.93 .99 416

RT Stroop 508.34 49.86 .99 460
RT SART 510.62 81.94 .99 441

Note: RT AF = reaction time in the arrow-flanker task, RT LF = reaction time in the letter-flanker task, RT
Stroop = reaction time in the number-stroop task, RT SART = reaction time in the SART, reliabilities were estimated
with Spearman-Brown corrected odd-even split correlations.

Measuring Cognitive Control through Neurocognitive Process Parameters                                   A1 - 25



J. Intell. 2022, 10, 2 25 of 36

Over the RT distributions, we found the same pattern of correlations in most of the
four tasks as we did in Study 1. After about 85 percent of the selected range of the RT distri-
butions, the negative increases in the magnitude of the covariances accelerated, whereas
the magnitude of the negative correlations decreased at this point (Figure 6). These de-
scriptive findings were consistent over the different tasks and replicated our unexpected
results from Study 1. For the comparability to the results of Study 1, we only analyzed the
fastest 85 percent of each participant’s trials. Every participant contributed 51 trials from the
arrow-flanker task, 43 trials from the letter-flanker task, 145 trials from the number-stroop
task, and 170 trials from the SART to the multilevel models. Again, in each task, we centered
the data to participants’ central trials and rescaled the trial numbers between −2 and 2.
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Figure 6. The increasing magnitude of negative correlations and covariances over RT distributions.
The courses of the covariances in the four different tasks are shown on the left side (A,C,E,G). The
courses of the correlations in the four different tasks are shown on the right side (B,D,F,H). The
dashed lines represent the 85 percent thresholds. Only the left parts of the dashed lines were analyzed
in the following multi-level analyses.
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Table 6. Correlations between all variables.

1 2 3 4 5 6 7 8 9

1. Mean RT AF
2. SD RT AF .65 ***
3. Mean RT LF .53 *** .42 ***
4. SD RT LF .34 *** .40 *** .73 ***
5. Mean RT Stroop .63 *** .40 *** .49 *** .33 ***
6. SD RT Stroop .31 *** .48 *** .30 *** .32 *** .52 ***
7. Mean RT SART .11 * −.04 .12 * .05 .24 *** .02
8. SD RT SART .13 ** .18 *** .14 ** .16 ** .23 *** .28 *** .21 ***
9. WMC −.20 *** −.22 *** −.19 *** −.20 *** −.23 *** −.25 *** −.01 −.23 ***
10. TUT .12 * .20 *** .19 *** .26 *** .16 ** .22 *** −.02 .21 *** −.23 ***

Note: Mean RT AF = mean reaction times in the arrow-flanker task, SD RT AF = standard deviation of reaction
times in the arrow-flanker task, Mean RT LF = mean reaction times in the letter-flanker task, SD RT LF = standard
deviation of reaction times in the letter-flanker task, Mean RT Stroop = mean reaction times in the number-stroop
task, SD RT Stroop = standard deviation of reaction times in the number-stroop task, Mean RT SART = mean
reaction times in the SART, SD RT SART = standard deviation of reaction times in the SART, TUT = task unrelated
thoughts, WMC = working memory capacity, * p < .05; ** p < .01, *** p < .001.

3.2.2. The Worst Performance Rule with Unstandardized Coefficients (Covariances)

On the level of unstandardized coefficients, the baseline multilevel model indicated a
significant interaction between trial number and WMC, b = −4.46, t(496) = −6.53, p < .001
(Table S33 in the Supplementary Materials). The worst performance interaction revealed
a medium effect size of η2part = 0.08. There were significant interactions between the
factor task and the worst performance effect (interaction with arrow-flanker task: b = 1.31
t(182674) = 5.14, p < .001; no interaction with letter-flanker task: b = 0.17, t(182657) = 0.61,
p =.543; interaction with number-stroop task: b = 1.18, t(182711) = 6.28, p < .001), suggesting
that the strength of the WPR varied between tasks. Separate follow-up analyses for each of
the four tasks revealed that a significant worst performance interaction was present in each
of the four tasks (all ps < .001).

After controlling for individual differences in attentional lapses, we still observed a
significant two-way interaction between trial number and WMC in the baseline model,
b = −3.44, t(496) = −5.20, p < .001 (Figure 7 left side, Table S34 in the Supplementary
Materials). The significant three-way interaction between WMC, trial number, and the
control factor in the full model indicated a small but significant change of the worst
performance pattern after controlling for attentional lapses, b = 0.94, t(365374) = 5.07, p < .001
(Table S35 in the Supplementary Materials). Also, model comparison revealed a significantly
better fit for the full model with the three-way interaction in comparison to a model without
the three-way interaction, ∆AIC = 38. Effect size estimation found a very small effect,
η

2part = 0.00. We found no effects of the task on the three-way interaction, which indicates
that the influence of TUTs on the worst performance pattern was comparable for all tasks
(all four-way interactions were not significant, all ps > .192). Taken together, these results
indicate that TUTs accounted for a small part of the worst performance pattern in multilevel
models with unstandardized coefficients.
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Figure 7. Course of the covariances and correlations over the RT distributions before and after
controlling for the influence of the attentional lapses covariates. The courses of the covariances in the
four different tasks are shown on the left side (A,C,E,G). The courses of the correlations in the four
different tasks are shown on the right side (B,D,F,H). The figure describes the worst performance
pattern before (green and blue lines) and after (red lines) the TUTs covariate were partialized out of
the covariance.

3.2.3. The Worst Performance Rule with Standardized Coefficients (Correlations)

On the level of standardized coefficients, the baseline multilevel model indicated a
significant interaction between trial number and WMC, b = −0.04, t(499) = −5.13, p < .001
(Table S36 in the Supplementary Materials). The worst performance interaction revealed
a small effect size of η2part = 0.05. Again, we observed interactions between the task
factor and the WPR (interaction with arrow-flanker task: b = 0.01, t(182643) = 3.28, p =.001;
interaction with letter-flanker task: b = 0.02, t(182.633) = 5.41, p < .001; no interaction with
number-stroop task: b = 0.00, t(182687) = 1.79, p =.074) but baseline models for all tasks
showed significant worst performance interactions (all ps < .017).

After controlling for individual differences in attentional lapses, we still observed a
significant two-way interaction between trial number and WMC in the baseline model,
b = −0.03, t(499) = −4.05, p < .001 (Figure 7 right side, Table S37 in the Supplementary
Materials). The significant three-way interaction between WMC, trial number, and the
control factor in the full model indicated a small but significant change of the worst
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performance pattern after controlling for attentional lapses, b = 0.01, t(365373) = 3.42,
p = .001 (Table S38 in the Supplementary Materials). Also, model comparison revealed a
significantly better fit for the full model with the three-way interaction in comparison to
a model without the three-way interaction, ∆AIC = 19. Effect size estimation revealed an
effect close to zero, η2part = 0.00. We found no effects of the task factor on the tree-way
interaction, which indicates that the influence of TUTs on the worst performance pattern
was comparable for all tasks (all four-way interactions were non-significant, all ps >.538).
Taken together, these results indicate that TUTs accounted for very small parts of the worst
performance pattern in the multilevel models with standardized coefficients (i.e., the WPR
on the correlational level).

3.3. Discussion

The results of Study 2 substantiated the main results of Study 1 that attentional lapses
can explain the increasing magnitude of covariation of the WPR to a significant degree. The
large sample size and the greater homogeneity of the sample (students; mean age = 18.92,
SD = 1.91) are the main characteristics different from the Study 1 sample. In Study 2, we
found a significant WPR in our multilevel models, both on the level of covariances as well
as on the level of correlations. We found a larger effect of attentional lapses on the WPR
on the level of covariances than on the level of correlational analyses. This confirms the
choice of our strategy to examine the WPR on both levels and suggests that attentional
lapses contribute not only to the relation between RTs and cognitive abilities, but also to
the variance in RTs, which is independent of cognitive abilities. As in Study 1, the single
measure of self-reported attentional lapses explained only a small part of the WPR. The
WPR remained significant after controlling for TUTs, independent of whether we analyzed
covariances or correlations. We therefore conclude that TUTs as the sole measurement of
attentional lapses explain a small part of the worst performance pattern and substantial
parts of the WPR remain unexplained.

Taken together, we found significant worst performance patterns in the data and
replicated our multilevel model findings of Study 1 in a large and age-homogenous sample.
As already known from former findings by Kane et al. (2016) and Welhaf et al. (2020), the
relations between all variables (TUTs, WMC, RTs) were consistent with previous research
and our predictions. Self-reported attentional lapses, measured as TUTs, explained some
significant—albeit very small—part of the WPR.

4. General Discussion

We analyzed two independent data sets and found support for Larson and Alderton’s
(1990) idea that attentional lapses can explain parts of the worst performance pattern (Lar-
son and Alderton 1990). According to our results, the contribution of attentional lapses to
the WPR varied for each of the covariates and the effects of the single covariates appeared
to be very small, which in turn led to a small but significant reduction of the WPR. Consid-
ering the multiverse structure of attentional lapses, we combined different covariates and
examined their common influence on the WPR. The influence of self-reported attentional
lapses and an objective attentional lapses indicator together led to a full explanation of the
phenomenon. In Study 1, we found a significant reduction of the worst performance pattern
in covariances and a significant decrease of the worst performance slope in correlations.
To address statistical power issues and to replicate our findings, we applied the same
analysis strategy in a larger independent student sample in Study 2. The results of this
replication study were in line with our former findings and also statistically significant on
both levels. Taken together, we found evidence for the attentional lapses account, which
claims that the origin of the WPR is based on inter-individual differences in the experience
of attentional lapses.

Across both studies, we found that controlling for attentional lapses affected the WPR
more strongly on the level of covariances than on the level of correlations. This result has
important theoretical implications, because it indicates that the occurrence of attentional
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lapses affects the inter-individual variance in the right tail of the RT distribution. In other
words, inter-individual differences in attentional lapses affected the amount of between-
subject variability in the right tail of the RT distribution and could thus account for a large
part of the WPR on the level of covariances. On the level of correlations, however, they
only accounted for a small part of the WPR, because here the WPR was calculated based
on standardized measures (i.e., controlled for between-subject variability in RTs). The
idea that between-subject variability may differ across RT bands is not new (see Coyle
2003; Larson and Alderton 1990). The present study demonstrates that these differences
in between-subject variability across RT bands are not merely a statistical artifact, but
substantially related to individual differences in elementary attentional processes.

However, there is an alternative and simpler mathematical explanation that could
account for the different results on the level of covariances and correlations. We found that
RTs in faster and in slower trials are highly correlated. In consequence, it is plausible that
fast responses are nearly proportional to slow responses. Furthermore, the nature of slower
RTs is that their variance is larger in comparison to faster responses. Consequentially,
we would assume that individual differences in RTs would fan out and the variance of
individual differences become larger in slower RTs. Given that the intelligence score of
each individual remains the same while the RT variance increases over the RT distribution,
the covariance between intelligence and RTs grows monotonically larger towards slower
RTs. In contrast, correlations would not necessarily increase in the same pattern, because
they are standardized. Considering this pure mathematical explanation of the different
results in covariances and correlations, one could either conclude that covariances are more
sensitive than correlations or that correlations are more reliable than covariances.1

Our results are in line with Coyle’s (2003) claim that the WPR is not driven by outlier
or extreme values. Depending on the task, we extracted a certain number of trials out
of the middle of participants’ RT distributions. Additionally, we applied a careful intra-
and inter-individual outlier analysis. In both studies, we found a robust increase of the
magnitude in covariances that is consistent with the WPR. Moreover, we found a significant
WPR effect on the standardized/correlational level in Study 2. In contrast, we did not
find this significant worst performance pattern in the correlations in Study 1. Possible
reasons for this may be the already discussed low statistical power and small sample size.
However, we clearly observed a similar course of correlations over the RT distribution in
both studies (see Figures 3 and 6). Notably, several previous studies used a descriptive
approach for specifying the WPR. Although a test of significance is certainly warranted to
test the existence of the WPR against chance (see Frischkorn et al. 2016), it is not uncommon
to rely on descriptive evidence for the investigation of the WPR.

Effect sizes of the moderating role of the attentional lapses covariates on the WPR
were small. Some of these estimates were η

2part < 0.01, especially in the analyses with
standardized coefficients, which should be interpreted as very small effects. The reason
why those small effects were significant is that those interaction terms were tested with
a very large number of degrees of freedom, due to the trial-by-trial analyses and the
repeated-measures design. As a consequence, the standard errors became very small and
small b-weights reached the significance level more quickly. This may be considered as
curse and blessing at the same time. On the one hand, we had enough power to detect
small influences of attentional lapses on the WPR; on the other hand, statistical tests may
have been overpowered, leading to the adoption of irrelevant effects as an explanation
for the WPR. That is, the multilevel approach to the WPR is a powerful instrument that
bears the risk of overpowering. An alternative approach could be to use Fisher’s Z-test
(e.g., Edwards 1976) as a more conservative method, which has less statistical power but
requires a problematic two-stage estimation processes to assess the statistical significance
of the WPR.

However, especially in study 2 some significant parts of the worst performance pattern
remained unexplained after controlling for attentional lapses. It is important to conclude
that some parts of the increasing magnitude in covariances and correlations between RTs
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and intelligence could not be explained by attentional lapses. There could be additional
reasons for the origin of the WPR.

4.1. Alternative Accounts of the Worst Performance Rule

Beyond the attentional lapses account, there are two prominent alternative explana-
tions of the WPR. They cannot be rule out as alternative explanations by our findings. To
some degree these accounts are additional explanations for the remaining unexplained
parts of the worst performance patterns and to some other degree they complement each
other and can even be transferred into each other.

The drift diffusion model account claims that inter-individual differences in the evidence
accumulation process could explain the WPR (Ratcliff et al. 2008). The drift diffusion
model is a mathematical model that describes binary decision making as a random walk
process through which evidence is accumulated until one of two decision thresholds is
reached (Ratcliff 1978). The basic diffusion model consists of four parameters, namely
the drift rate, which describes the strength and direction of the evidence accumulation
process, the boundary separation, which describes how much information needs to be
accumulated before a decision is being made, the starting point, which describes biases in
decision making, and the non-decision time, which encompasses the time needed for all
non-decisional processes such as encoding and response execution. The drift rate parameter
in particular has been repeatedly shown to be associated with individual differences in
mental abilities, working memory capacity, and intelligence (Ratcliff et al. 2010, 2011;
Schmiedek et al. 2007; Schubert et al. 2015). More intelligent individuals show higher
drift rates across several tasks (Schmiedek et al. 2007; Schubert et al. 2015, 2016). In their
simulation study, Ratcliff et al. (2008) showed that the drift rate parameter of the diffusion
model is more negatively related to slower quantiles compared to faster quantiles of the RT
distribution, which means that the drift rate parameter and its underlying processes were
better described by slower compared to faster RTs. The drift rate parameter is typically
considered as a measure of the speed of information uptake. Hence, it is possible that the
speed of information uptake is more validly measured in slower responses, which in turn
would lead to higher negative correlations between RT and intelligence in slower than
in faster responses. The higher validity of slower responses for the speed of information
uptake could be an alternative explanation of the WPR. In other words, one could say that
individual differences in the speed of evidence accumulation (measured by drift rates)
may also account for the pattern of the WPR, as they give rise to individual differences
in slowest RTs and are also strongly related to individual differences in cognitive abilities.
However, drift rates are likely affected by a number of lower-level cognitive processes that
may also include attentional processes. The drift diffusion model account of the WPR is
not necessarily irreconcilable with the attentional lapses account. In this sense, it is also
possible that attentional lapses are related to differences in the evidence accumulation
process (see also Boehm et al. 2021).

Another explanation of the WPR focuses on its statistical characteristics (Sorjonen et al.
2020, 2021). With simulated data, Sorjonen et al. showed that the WPR is a special case
of the correlation of sorted scores rule (Sorjonen et al. 2020, 2021). This rule states that the
correlation between a sorted measure of performance (e.g., binned mean RTs or trial-wise
sorted RTs) and intelligence will depend on the direction of the correlation between the
variability in performance (e.g., intra-individual standard deviation in RTs) and intelligence.
Because of the negative correlation between intra-individual standard deviation in RTs
and intelligence, the rule predicts the emergence of the WPR. If there were a positive
correlation between intra-individual variability in the respective performance measure and
intelligence, the rule would instead predict a best performance rule. It is well-established
that more intelligent individuals show a smaller standard deviation in RTs (Doebler and
Scheffler 2016), which was also the case in our sample. We found negative correlations
between the variance in RTs and cognitive abilities, r = −.30, p = .003, in Study 1, and from
r = −.20 to r = −.25, all ps < .001, in Study 2. Hence, the WPR could also be (statistically)
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accounted for by the correlation of sorted scores rule. In turn, the correlation of sorted
scores rule does not rule out the attentional lapses account of the WPR, because it is possible
that the larger intra-individual RT variability in individuals with lower cognitive abilities
results as the consequence of their more frequent experience of attentional lapses.

4.2. The Curious Course in Very Slow RTs

A novel and surprising finding in this study was the observed decrease in the mag-
nitude of negative correlations and the simultaneous accelerated increase in the mag-
nitude of negative covariances, respectively, in the slowest 15 percent of the responses
(Figures 3 and 6). Apparently, some unknown process unrelated to intelligence increased
the variance in RTs in the right tail of the RT distribution, which puts the WPR in a different
light. Our observations are consistent with the meta-analysis of Schubert (2019), who
described a logarithmic trend of the increases in the magnitude of negative correlations.
This meta-analysis found that the increases in the magnitude of negative correlations is
largest from the fastest to the mean performances and flattens from the mean to the slowest
performances. Because of this observation, it was suggested to rename the WPR as the
not-best performance rule, which is arguably a more appropriate name for this phenomenon.
Welhaf et al. (2020)2 replicated the not-best performance rule. With our trial-by-trial anal-
yses, it was possible to draw a more detailed picture of this phenomenon and we found
Schubert’s (2019) observed logarithmic trend of correlations over the RT bins. There was
an unexpected decline in the negative correlations in the slowest trials. Surprisingly, the
increase in covariances accelerated at the same time. Based on these observations, we
can conclude that some unknown process unrelated to cognitive abilities gave rise to RT
variance in the slowest responses. The observed decline in correlations is also consistent
with many previous studies that revealed a decrease or stagnation in the magnitude of
the negative correlations in the slowest RT bins (Fernandez et al. 2014; Ratcliff et al. 2010;
Salthouse 1998; Saville et al. 2016; Schmitz et al. 2018). Taken together, it seems that our
observation is not an isolated case but a replicable phenomenon. Further studies may
address the reasons for this conundrum.

5. Conclusions

Taken together, our results support the attentional lapses account of the WPR. Using
multilevel models, we demonstrated that different single measures of attentional lapses
accounted for some parts of the increasing magnitude in covariances and correlations
between intelligence and RTs from the fastest to the slowest responses. The combined influ-
ence of several self-reported and objective attentional lapses measures accounted fully for
this phenomenon, which in turn underlines the multiverse nature of the attentional lapses
construct. Our results suggested that the WPR is caused by inter-individual differences in
attentional lapses. Thus, it seems that individual differences in attentional control processes
are an important factor contributing to individual differences in cognitive abilities.
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Abstract

There is an ongoing debate about the unity and diversity of executive functions and their relationship with other cognitive 

abilities such as processing speed, working memory capacity, and intelligence. Specifically, the initially proposed unity and 

diversity of executive functions is challenged by discussions about (1) the factorial structure of executive functions and (2) 

unfavorable psychometric properties of measures of executive functions. The present study addressed two methodological 

limitations of previous work that may explain conflicting results: The inconsistent use of (a) accuracy-based vs. reaction 

time-based indicators and (b) average performance vs. difference scores. In a sample of 148 participants who completed 

a battery of executive function tasks, we tried to replicate the three-factor model of the three commonly distinguished 

executive functions shifting, updating, and inhibition by adopting data-analytical choices of previous work. After addressing 

the identified methodological limitations using drift–diffusion modeling, we only found one common factor of executive 

functions that was fully accounted for by individual differences in the speed of information uptake. No variance specific to 

executive functions remained. Our results suggest that individual differences common to all executive function tasks measure 

nothing more than individual differences in the speed of information uptake. We therefore suggest refraining from using 

typical executive function tasks to study substantial research questions, as these tasks are not valid for measuring individual 

differences in executive functions.

The common factor of executive function 
tasks measures nothing else but speed 
of information uptake

The umbrella term “executive functions” summarizes many 

top-down regulated abilities known under several synonyms, 

such as executive control, cognitive control, attentional con-

trol, and executive attention (Rey-Mermet et al., 2019). The 

most popular model of executive functions proposed by 

Miyake et al. (2000) includes three of these abilities: Shift-

ing describes one’s ability to shift attention between different 

tasks or different mental sets; updating describes one’s abil-

ity to monitor memory contents and store new contents to 

the memory; inhibition describes one’s ability to block irrel-

evant information or interferences from the attentional focus 

(Friedman & Miyake, 2017; Friedman et al., 2008; Miyake 

& Friedman, 2012; Miyake et al., 2000; Rey-Mermet et al., 

2018). This three-factor model has become the predominant 

model for describing and separating executive functions. 

Although the selection of abilities classified as executive 

functions by Miyake et al. (2000) was not exhaustive, it was 

based on practical and neuroanatomical considerations, as 

each of the three executive functions is associated with spe-

cific areas of the neocortex.

Several theoretical accounts of processes underlying indi-

vidual differences in cognitive abilities claim that differences 

in executive functions determine differences in higher order 

cognitive abilities (Kane et al., 2008; Kovacs & Conway, 

2016). Moreover, there is a large body of empirical findings 

reporting correlations between higher order cognitive pro-

cesses (intelligence and working memory capacity [WMC]) 

and executive functions (e.g., Friedman et al., 2006, 2008, 

2011).

To measure executive functions, researchers usually con-

trast two experimental conditions, i.e., one condition with 
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lower processing demands and one condition with greater 

processing demands. For example, in an Arrow Flanker 

task (Eriksen & Eriksen, 1974), participants see an arrow 

in the center of a screen pointing to the left or right side. 

Participants have to indicate in which direction this arrow 

points. The arrow is shown amid further flanking stimuli. 

In the condition with lower processing demands (neutral 

condition), the central target arrow is surrounded by dashes 

not containing any directional or spatial information, which 

therefore have lower distracting effects on participants’ per-

formance. In the condition with greater processing demands, 

the flanking stimuli consist of arrows pointing in the oppo-

site direction of the target arrow (incongruent condition). 

Participants’ task is to ignore the irrelevant information of 

the flanker stimuli, which is more distracting in the condi-

tion with greater processing demands than in the neutral 

condition. This makes the decision in the condition with 

greater processing demands more difficult and leads to 

slower responses and higher error rates compared to the 

condition with lower processing demands. This decrease in 

performance between the two conditions, which are identi-

cal except for added demands on inhibition, indicates the 

specific strain on executive function demands (inhibitory 

processes). This strain occurs when participants have to 

ignore irrelevant flankers. In addition, performance in both 

conditions is also affected by task-specific processes as well 

as task-general processes. Following the logic of selective 

additivity, the performance decrement from the condition 

with less to the conditions with greater processing demands 

(e.g., the difference between reaction times [RTs] or accu-

racy rates) can be used to measure inhibitory demands, and 

individual differences in the performance decrement reflect 

individual differences in inhibition. Typical updating and 

shifting tasks are created following the same logic of selec-

tive additivity, allowing to analyze individual differences in 

the performance decrement. Because researchers have the 

choice between using RTs or accuracy rates as performance 

measures, there is much heterogeneity how individual dif-

ferences in executive functions are assessed (von Bastian 

et al., 2020), even within single studies (Friedman et al., 

2006, 2008; Himi et al., 2019, 2021; Ito et al., 2015; Krumm 

et al., 2009; Miyake et al., 2000; Schnitzspahn et al., 2013; 

Vaughan & Giovanello, 2010; Wongupparaj et al., 2015).

Empirical findings on the three-factor model 
of executive functions

The three executive functions introduced by Miyake et al. 

(2000) represent distinct but interrelated factors (Friedman 

et al., 2006, 2008; Himi et al., 2019, 2021; Ito et al., 2015; 

Miyake et al., 2000; Schnitzspahn et al., 2013; Vaughan & 

Giovanello, 2010). Substantial correlations between the 

three latent factors raised the question of a higher-order 

factor of executive functions, often labeled as common 

executive functions. Hence, Friedman et al., (2008, 2011) 

further developed the model of three distinct factors into 

a model with two distinct factors of shifting and updating 

and an additional common factor of executive functions (see 

also Himi et al., 2019). This common factor supposedly 

represents the “ability to maintain task goals and goal-

related information” (Miyake & Friedman, 2012, p. 3), 

which is considered as a general ability required in all 

cognitive tasks.

Despite the seemingly robust findings on the three 

executive functions model, recent research questions 

this factor structure and casts doubt on the existence of 

meaningful individual differences in specific executive 

functions, in particular inhibition (Frischkorn et al., 2019; 

Hedge et al., 2018; Hull et al., 2008; Karr et al., 2018; 

Klauer et  al., 2010; Krumm et  al., 2009; Rey-Mermet 

et al., 2018, 2019; Rouder & Haaf, 2019; Stahl et al., 2014; 

von Bastian et al., 2020). A recently published review by 

Karr et al. (2018) reported that previous studies showed 

evidence for both unidimensional and multidimensional 

factor structures of executive functions in adults. Karr 

et al. (2018) reanalyzed data from nine adult samples with 

different types of model composition to evaluate which 

type of model best describes executive functions data. They 

compared unidimensional models, nested-factor models (a 

special kind of bi-factor models), two-factor models, and 

three-factor models. Karr et al. (2018) found that none of the 

different model compositions was clearly superior and could 

be selected as the best model describing executive functions, 

although the authors observed slightly more evidence for 

nested-factor models than for the other model types. They 

attributed these inconsistencies in the dimensionality of 

models to a publication bias for well-fitting but possibly 

non-replicating models with underpowered sample sizes 

(Karr et al., 2018). This review clearly demonstrated that 

the factorial structure of executive functions is still an open 

research question.

Previous research did not only focus on the factor 

structure across, but also within specific executive functions. 

In particular, there is a lot of research on the factor structure 

of inhibition, with many papers demonstrating that 

inhibition tasks do not form a coherent latent factor (e.g., 

Krumm et al., 2009; Rey-Mermet et al., 2018, 2019; Rouder 

& Haaf, 2019; Stahl et al., 2014). For example, Rey-Mermet 

et al. (2018) used a battery of 11 inhibition tasks to analyze 

correlations between RT-based performance decrements, but 

could not find a coherent pattern of correlations between the 

performances in the different inhibition tasks. Instead, they 

found that inhibition abilities formed two correlated factors, 

one that reflected inhibition of prepotent responses and 

another that reflected inhibition of distractor interferences. 

Also, in a follow-up study using accuracy-based scores 
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to measure inhibition, Rey-Mermet et  al. (2019) could 

not observe a coherent factor structure among inhibition 

tasks. Likewise, Krumm et al. (2009) tried to replicate the 

three-factor model of executive functions using tasks from 

Miyake et al. (2000) with RT- and accuracy-based dependent 

variables, but they did not find a latent factor of inhibition. 

These results are exemplary for further studies that failed 

to find a coherent factor of inhibition even after accounting 

for trial-to-trial measurement noise (Rouder & Haaf, 2019; 

Stahl et al., 2014).

Further research suggested that the shared variance of 

executive function tasks is mainly driven by task-general 

process demands and not by demands specific to executive 

functions. For example, Frischkorn et al. (2019) separated 

the variance of experimental manipulations in executive 

function tasks from the shared variance of task-general 

processes, which are required in nearly every task and not 

specific to the experimental manipulation. The authors 

used adapted versions of a shifting task (Sudevan & Taylor, 

1987), of an N-Back task (Scharinger et al., 2015), and of an 

Attentional Network task (Fan et al., 2002), and found that 

manipulation-specific variance (reflecting added executive 

demands) barely contributed to performance in executive 

function tasks. Instead, task-general processing abilities 

captured the majority of variance in task performance. 

Hence, performance in executive function tasks reflected 

task-general cognitive processes instead of specific executive 

functions (Frischkorn et  al., 2019). In sum, executive 

function tasks, especially inhibition tasks, hardly measure 

a coherent construct or individual differences specific 

to executive functions. Instead, individual differences in 

general processing abilities explain most of the variance in 

performance in executive function tasks.

These inconsistent findings pose a problem for individual 

difference research and theoretical frameworks of executive 

functions: If it is impossible to find coherent factors of 

executive functions, it is impossible to assess covariations 

between these factors and other psychological constructs. A 

current literature review on attentional control and executive 

functions suggested that these inconstancies regarding the 

factor structure of executive functions may result from the 

psychometric properties of performance measures generated 

from executive function tasks (see von Bastian et al., 2020).

The inconsistent use of dependent variables

There is much heterogeneity in how performance is assessed 

in executive function tasks (von Bastian et  al., 2020). 

Usually, researchers use RT-based scores as measures 

in inhibition and shifting tasks, whereas they commonly 

use accuracy-based scores as measures in updating tasks 

(e.g., Friedman et al., 2006, 2008; Himi et al., 2019, 2021; 

Krumm et al., 2009; Miyake et al., 2000; Wongupparaj 

et  al., 2015). We refer to such studies using different 

types of performance scores within their study designs as 

studies with heterogeneous measurement scores. In a recent 

review of 76 studies, von Bastian et al. (2020) showed that 

RT-based and accuracy-based scores were used more or 

less interchangeably to measure inhibition and shifting, 

whereas updating was typically assessed using accuracy-

based scores. This inconsistent use of different types of 

performance scores can generate unexpected side effects 

because accuracy- and RT-based measures are often only 

weakly correlated, even in the same task (Hedge et al., 

2018).

Furthermore, several studies measured individual 

differences in specific executive functions as difference 

scores, as the performance in the condition with higher task 

demands (e.g., RTs of the the incongruent condition in the 

Stroop task, Wongupparaj et al., 2015), or as the average 

performance over all conditions (e.g., averaged proportion 

correct across trials with different updating demands as 

updating scores; Miyake et al., 2000; for an overview, see 

also von Bastian et al., 2020). The issue with using either 

of the latter two measures is that other processes contribute 

to individual differences in performance in addition to 

the specific executive function demands. In particular, 

task-specific and task-general process parameters such as 

perceptual processing speed, the speed of decision-making, 

the speed of response preparation, and the speed of response 

execution contribute to individual differences in both 

condition-specific and task-general average performances. 

Consequently, using condition-specific or task-general 

average scores lowers the validity of the resulting measures 

if those are intended to only reflect specific executive 

functions. In consequence, correlations between these 

variables and other constructs do not necessarily reflect 

correlations between specific executive processes and other 

constructs but also of these other constructs with general 

performance parameters reflected in the measurement 

scores.

Difference scores: high validity or further 
psychometric concerns?

Despite the seemingly greater face validity of difference 

scores in comparison to condition-specific or task-average 

scores, voices have been cautioning against the blind 

use of difference scores for two reasons. First, the use 

of difference scores relies on the assumption that each 

individual cognitive process added to an experimental task 

is independent of other processes and that each process has 

an additive effect on the performance measure (i.e., RTs and 

accuracy rates). In the Arrow Flanker task, for example, 

subtracting the RTs of the condition with lower processing 

demands (neutral condition) from the condition with greater 
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processing demands (incongruent condition) should isolate 

specific inhibitory demands from more general processing 

demands affecting performance in both conditions (Donders, 

1869). However, the assumption of additive processes has 

been challenged. For example, Miller and Ulrich (2013) 

introduced a model demonstrating that different processes 

contributing to RTs do not act independently from each 

other, but interact with each other, which is contrary to the 

assumption of their additivity. In a certain task, the specific 

executive function processes may, for example, interact with 

general processing demands. Following their reasoning, the 

subtraction of RTs from two conditions does not purely 

isolate executive function processes, because the influence 

of the interaction between general processing demands and 

executive function demands also remains in the difference 

score (Miller & Ulrich, 2013).

Second, some researchers caution against using difference 

scores because they tend to show low reliabilities (Ackerman 

& Hambrick, 2020; Draheim et  al., 2019, 2023; Hedge 

et al., 2018; Miller & Ulrich, 2013; von Bastian et al., 2020; 

Weigard et al., 2021). Von Bastian et al. (2020) summarized 

the reliabilities of 406 measures of executive functions and 

found that the difference scores of inhibition tasks showed 

particularly low reliabilities with a mean reliability of 0.63 

and a range from close to zero to close to one, whereas 

the reliability for shifting difference scores and updating 

scores were markedly higher (with mean reliabilities of 

0.78). Low reliabilities are problematic for individual 

differences research, because they limit the strength of 

correlations with other measures (Cronbach & Furby, 1970; 

Spearman, 1904). Taken together, these issues of validity 

and reliability suggest that difference scores may not yield 

psychometrically sound measures of executive functions.

Overcoming these problems

We summarized two problems of previous research 

measuring individual differences in executive functions, 

namely: (1) The inconsistent use of accuracy- and RT-based 

scoring methods, and (2) the psychometric problems of 

difference scores. Here we propose another analytical 

strategy to overcome these problems by combining 

cognitive modeling approaches with structural equation 

modeling. To address the first issue, we will use the drift 

rate parameter (v) of the diffusion model (Ratcliff, 1978), 

which is a mathematical model parameter that represents 

the speed of the evidence accumulation. For parameter 

estimation, the drift–diffusion model takes the distributions 

of correct as well as incorrect response times into account 

and thus integrates information about accuracies and RTs. 

To address the second issue, we will not control for general 

processing efficiency by controlling for performance in 

the condition with lower processing demands (by, e.g., 

calculating difference scores). Instead, we will control for 

general processing efficiency by using elementary cognitive 

tasks. The battery of three elementary cognitive tasks used 

in this study consists of three tasks with minimal executive 

demands often used in individual differences research 

(Frischkorn et al., 2019; Neubauer & Knorr, 1998; Schubert 

et al., 2015, 2017). We aim to use these tasks to measure 

individual differences in basic abilities of information 

processing largely free of executive demands, allowing us 

to control individual differences in performance in executive 

function tasks for individual differences in basic processing 

abilities (Frischkorn et al., 2019; Neubauer & Knorr, 1998; 

Schubert et al., 2015). This way, we overcome reliability 

problems of performance measures stemming from 

contrasting two conditions of the same task. These analytical 

choices will increase the likelihood of obtaining reliable and 

valid individual differences in executive functions.

Cognitive modeling to generate integrated measures 

of accuracies and RTs

To address the first problem—the inconsistent use of accu-

racies vs. RTs as indicator variables —, we used the drift 

parameter (v) of the drift–diffusion model to quantify par-

ticipants’ task performances. The drift–diffusion model 

(Ratcliff, 1978) describes individuals’ cognitive processes 

in binary decision-making tasks, and distinguishes between 

decisional and non-decisional processes. By taking the 

whole intra-individual RT-distribution of correct and incor-

rect responses into account, we can estimate different param-

eters (for an illustration of the drift–diffusion model see 

Fig. 1). This means that the drift–diffusion model accounts 

for participants’ RTs and accuracy equally.

The model describes the decision-making process over 

time as a random walk during which information is taken 

up and evidence for a decision gets accumulated. In the 

drift–diffusion model, v describes the speed of information 

uptake and the strength and direction of the evidence 

accumulation process, that is, the average increase of 

evidence supporting one of the two choices per time unit. 

The decision process starts at the starting point (z), which 

can be used to model biases in decision making. During 

information uptake, the decision process approaches one 

of two decision thresholds. One threshold describes the 

correct and the other the alternative response. The boundary 

separation parameter (a) represents the distance between the 

two thresholds. In the course of time, v reaches one of two 

thresholds. Once it crosses a threshold, the decision process 

is terminated, and the response gets executed. The non-

decision time parameter (t0) describes the speed of all non-

decisional processes, such as the speed of motor-response 

execution and the speed of perceptional processes (see also 

Ratcliff et al., 2008; Voss et al., 2013).
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Generally, participants’ drift rates in the standard 

drift–diffusion model are considered as measures of the 

speed of information uptake over time (Schmiedek et al., 

2007; Voss et al., 2013) and are thus ability parameters that 

differ between individuals. Previous research on the psycho-

metric properties of the drift rate parameter has shown that 

drift rates reflect both task-general and condition-specific 

processes (Lerche et al., 2020; Schubert et al., 2016). These 

specific components can be considered as specific abilities 

independent of the task-general speed of information uptake. 

In a previous study, Lerche et al. (2020) used a battery of dif-

ferent tasks measuring several domains of abilities (numeri-

cal, verbal, and figural) and separated the domain-specific 

processes (numerical, verbal, and figural abilities) from the 

domain-general processes (i.e., speed of information uptake) 

reflected in drift rates using bi-factor models. Following this 

logic, we aim to isolate variance specific to executive func-

tions in drift rates after controlling for task-general processes 

(i.e., the speed of information uptake) on a latent level.

In contrast to the standard drift–diffusion model, recent 

research developed specific mathematical models to 

describe and measure the processes specific to executive 

functions more accurately: the shrinking spotlight diffusion 

model (White et  al., 2011), the dual-stage two-phase 

model (Hübner et al., 2010), and the diffusion model for 

conflict task (Ulrich et al., 2015). However, in contrast to 

the standard drift–diffusion model, these newly developed 

models are specific to certain tasks (e.g., Arrow Flanker task 

or inhibition tasks) and not generalizable for all executive 

function tasks (e.g., updating and shifting tasks). In this 

study, our goal was to use one homogenous measurement 

score for all executive function tasks, which is why we 

chose the standard drift–diffusion model, fully aware 

that v represents only an approximation of the underlying 

processes.

First results of studies using drift rates to measure 

individual differences in executive functions are promising. 

For example, a recently published study showed that drift 

rates estimated from performances in seven different 

cognitive control tasks formed a common task-general factor 

of cognitive efficiency, which was related to self-reported 

cognitive control1 (Weigard et  al., 2021). However, it 

remains unclear to what degree this factor reflected variance 

specific to executive processes and to what degree it reflected 

participants’ general speed of information uptake. Therefore, 

to capture individual differences in executive functions by 

drift rates, it is necessary to control for participants’ task-

general speed of information uptake.

Structural equation modeling approach to avoid difference 

scores

To address the second problem of executive function 

research—the use of potentially problematical manifest 

difference scores—we proposed a structural equation 

modeling approach. In detail, we used the drift rates from the 

condition with greater processing demands of the different 

executive function tasks as homogenous measurement scores 

and controlled on the latent level for the influence of task-

general processes, because the drift rates of the conditions 

with greater processing demands reflected not only processes 

specific to executive functions. We chose this structural 

equation modeling account because this method allows 

separating different kinds of variances and in particular 

distinguishing the variance in drift rates unique to executive 

function demands from the variance reflecting task-general 

processing demands. In our study, we therefore controlled 

the latent executive function factors for the influence of task-

general speed of information uptake.

The present study

The aim of the present study was to examine the factor 

structure of executive functions, whereby we attempted 

to address the two identified problems of executive 

function measures: (1) The inconsistent use of accuracy- 

and RT-based scoring methods and (2) the use of 

psychometrically unsatisfying difference scores. By applying 

a cognitive mathematical modeling approach and using v 

from the drift–diffusion model, we used a homogeneous 

Fig. 1  Graphical illustration of the drift–diffusion mode. Note.  The 

decision process begins at the starting point z. Over the time more 

and more information will be accumulated until one of both thresh-

olds is reached. The drift parameter v represents the strength and 

direction of the evidence accumulation process (represented by the 

black arrow). The parameter a describes the distance between both 

thresholds. The figure does not display the non-decision time t0. Fig-

ure with permission from Frischkorn and Schubert (2018), licensed 

under CC BY

1 We consider cognitive control as a construct that is closely related 

to executive functions.
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scoring method for all executive function tasks. Additionally, 

we used structural equation models to separate the variance 

of task-general process demands from the variance of 

specific executive function demands.

Using data from 148 participants who completed a 

battery of different cognitive and experimental tasks, we 

first tried to replicate the factor structure of the seminal 

paper by Miyake et al. (2000) using accuracy rates and 

RT-based scores as performance measures (heterogenous 

measurement scores). Second, we estimated individuals’ task 

performances of all tasks with the drift rate parameter from 

the drift–diffusion model to integrate both RTs and accuracy 

rates simultaneously into one performance score. Third, 

we examined the factor structure of inhibition, updating, 

and shifting based on these parameter estimates. Fourth, 

we tested whether executive functions showed divergent 

validity to task-general speed of information uptake. Fifth, 

we evaluated the predictive validity of executive functions 

by relating them to individual differences in WMC and 

cognitive abilities. Taken together, our goal was to assess 

the factor structure of executive functions using error-free 

and valid measures of individual differences in inhibition, 

updating, and shifting.

Materials and methods

Openness and transparency

We provide access to the preprocessed data and the 

statistical analysis code used for this paper via the Open 

Science Framework (https:// osf. io/ 6c4pu/). In addition, we 

provide access to the raw data and to the materials via the 

Open Science Framework (https:// osf. io/ 4pvz3/; except for 

the materials of the BIS, which are commercially licensed).

Statements and declarations

We declare no conflicts of interest. The study was approved 

by the ethics committee of the faculty of behavioral and 

cultural studies of Heidelberg University (reference number: 

Löf 2019/1–3). At the beginning of the first study session, 

participants signed an informed consent. All procedures 

were conducted in accordance with the Declaration of 

Helsinki (World Medical Association, 2013). This study 

was not preregistered.

Participants

We recruited 151 participants from the general population 

via advertisements in different local newspapers, distribution 

of flyers, and acquisition by the participant pool of the 

department. Three participants declared their withdrawal 

from participation, which leads to a total sample of N = 148 

participants (♀ 96, ♂ 51, one person declared no affiliation 

to either gender). We included participants between 18 and 

60 years (Mage = 31.52, SDage = 13.91) to generate a sample 

with heterogeneous cognitive abilities. Four participants 

stated having a different native language, but they were 

fluent in German. Thirty-nine percent of the sample had a 

university degree.

A minimum sample size of N = 95 would be needed 

to the hypothesis of close fit (H0: ε ≤ 0.05, H1: ε ≥ 0.08) 

as suggested by Browne and Cudeck (1992) for the most 

extensive structural equation model in this paper, displayed 

in Fig.  5 B (df = 166, alpha error: α = 0.05, power [1- 

β] = 0.80). The actual sample size of 148 participants 

yielded a power > 96% to test the hypothesis of close fit.2 

Participants received 75 € and personal feedback about their 

performances in intelligence and working memory tests as 

compensation for participation.

Materials

Table S1 in the supplementary materials shows the stimuli 

presentation times of the following 12 RT tasks. All 

computer-based tasks were programmed in MATLAB 

(The MathWorks Inc., Natick, Massachusetts) with the 

open source software package Psychtoolbox version 

3.0.13 (Kleiner et al., 2007). We presented all the stimuli 

in the RT tasks in the center of the screen on a black 

background. In each task, we instructed the participants 

to respond as quickly and as accurately as possible. Before 

the experimental part of each task, participants worked on 

practice trials with feedback.

Inhibition

Stroop task In each trial, participants saw one of four 

color words presented in one of four colors. The meaning 

of the word could be the same as the color in which the 

word was presented (congruent condition, 50% of the trials) 

or not (incongruent/inhibition condition, 50% of the trials). 

By pressing one of four keys on the keyboard, participants 

had to state the color of the word while they had to ignore 

its meaning (Stroop, 1935). Colored stickers on certain keys 

2 We followed the recommendations by MacCallum et  al. (1996) 

and conducted the power analysis by comparing the null hypoth-

esis RMSEA (RMSEA = .05) with an alternative hypothesis RMSEA 

(RMSEA = .08). Using both RMSEA values, the given sample size of 

N = 148, and the degrees of freedom of the model (e.g., df = 166), we 

calculated the non-centrality parameters for both hypotheses. With 

these parameters, an α = .05, and the given dfs, we calculated the crit-

ical χ2 value and subsequently the observed power using the cumula-

tive distribution function of the χ2 distribution.
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of the keyboard indicated the key mapping. We randomized 

the trials, with none of the conditions occurring more than 

three times in a row and none of the colors or words occur-

ring twice in a row. Participants worked on 20 practice trials 

and 192 experimental trials.

Arrow flanker task In each trial, one target arrow appeared 

in the center of the screen, pointing to the left or to the right 

direction. This target stimulus appeared in the middle of 

four flanker stimuli, two on each of both horizontal sides. 

The distractors could either point in the same direction as 

the target (congruent condition) or in the opposite direc-

tion (incongruent/inhibition condition; Eriksen & Eriksen, 

1974). Participants had to indicate the side to which the tar-

get stimulus pointed while ignoring the distractors by press-

ing one of two keys on the keyboard. We randomized the 

trials, with none of the conditions or target directions occur-

ring more than three times in a row. Participants worked first 

on 20 practice trials followed by 200 experimental trials.

Negative priming task In each trial, two horizontal lines 

appeared on both sides next to the center of the screen. Sub-

sequently, an X and an O appeared simultaneously on two of 

these lines. Participants had to indicate the position where 

the O appeared by pressing one of four keys while ignoring 

the X. In 50% of the trials, the O appeared at the position 

where the X appeared one trial before. To respond to an O 

shown at such a negatively primed position, participants had 

to redirect their attention to the positions previously associ-

ated with the distractor and overcome the transient residual 

inhibition (Tipper & Cranston, 1985). We randomized the 

trials, with none of the conditions (negatively primed vs. 

not negatively primed) occurring more than three times in a 

row and none of the stimuli appearing more than three times 

in a row on the same position. Participants worked on 20 

practice trials and 192 experimental trials.

Updating

Keep track task We adopted this task from the study by 

Miyake et  al. (2000). Participants completed two blocks 

with different updating steps. The stimulus material con-

sisted of four categories (letters, numbers, colors, geometric 

figures) and six stimuli within each category. Before each 

trial started, participants received an instruction about which 

of the four categories they had to keep track of. Depend-

ing on the block, they had to keep track of one or on three 

target-categories (updating steps: one or three). After that, 

participants saw a sequence of seven stimuli. This sequence 

contained stimuli from each of the four categories. Subse-

quently, a probe stimulus from one of the target categories 

followed. Participants had to indicate whether the probe 

stimulus was the last presented stimulus of the target cat-

egory/categories (50% of the trials, matching condition) or 

not by pressing one of two keys on the keyboard. In 50% of 

the trials the target category was updated (updating condi-

tion). Within each block, participants worked on 10 practice 

trials and 96 experimental trials. We randomized the trials, 

with none of the conditions (matching and updating) and 

none of the target categories occurred more than three times 

in a row.

Running span task We adopted this task from the study by 

Broadway and Engle (2010). In each trial, the stimuli of 

the memory and the stimuli of the updating set appeared 

sequentially in the center of the screen. Afterwards, partici-

pants saw a probe stimulus and had to decide whether this 

probe was part of the last three or last five stimuli, depend-

ing on the set size of the block. Participants completed two 

blocks with different set sizes. In both blocks the updating 

steps ranged from zero to three. Within the first block, the 

memory set consisted of three memory-letters followed by 

zero to three updating-letters. Within the second block, the 

memory set consisted of five memory-letters followed by 

zero to three updating-letters. Participants responded by 

pressing one of two keys on the keyboard. Half of the trials 

had zero updating steps. The other half of the trials included 

all one to three updating steps with equal frequency. In each 

block, participants worked on 10 practice trials and 120 

experimental trials. We randomized the trials, with none of 

the updating steps and none of the probe stimuli occurring 

more than three times in a row.

N-back task We adopted this task from the verbal working 

memory conditions of the task by Gevins et al. (1996). Par-

ticipants completed three blocks, which included a differ-

ent number of updating steps. In the first block, participants 

completed a 0-back task. Before the first block started, a 

target letter appeared, followed by 96 trials. In these trials 

either the target or a different letter was presented in the 

center of the screen. Specific target and non-target letters 

varied between participants. Participants had to decide 

whether the presented letter was the target or not by press-

ing one of two keys on the keyboard. Before the experimen-

tal part of the first block started, participants had to work 

on 20 practice trials. Data of the 0-back condition were not 

included in our analyses. In the second block, participants 

completed a 1-back task. In each trial, participants saw one 

of four letters in the center of the screen and had to decide 

whether or not this letter was equal to the stimulus that had 

appeared one trial before by pressing one of two keys on the 

keyboard. In total, participants completed 96 trials. In the 

third block, participants completed a 2-back task. In each 

trial, participants saw one of four letters in the center of 

the screen and had to decide whether or not this letter was 

equal to the stimulus that had appeared two trials before by 
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pressing one of two keys on the keyboard. Again, we used 

96 trials. Before the experimental part of the second and 

third block started, participants worked on 30 practice tri-

als. Within each block the probe stimulus matched with the 

target stimulus in 50% of the trials (the stimulus one or two 

trials before = match condition). We randomized the trials, 

with none of the stimuli and none of the matching condi-

tions occurring more than three times in a row.

Shifting

In each of the three shifting tasks, the color of the fixation 

cross at the beginning of each trial was the same as the color 

of the following probe stimulus.

Switching task In each trial, a number between one and nine 

(except five) appeared either in red or in green in the center 

of the screen. Depending on the color of the presented stim-

ulus, participants had to perform different tasks (Sudevan & 

Taylor, 1987). They had either to decide whether the num-

ber was less or more than five (red) or the number was odd 

or even (green) by pressing one of two keys on the keyboard. 

Both tasks appeared with equal frequency. In 50% of the tri-

als, the task was the same as one trial before (repeat condi-

tion); in the other 50% of the trials, the color was different to 

the last trial (shifting condition). We randomized the trials, 

with none of the tasks and none of the conditions occurring 

more than three times in a row and none of the numbers 

appearing twice in a row. Participants worked on 10 task-

pure practice trials for each of the two tasks, followed by 20 

practice trials with both tasks intermixed. After the practice 

block, participants worked on 384 experimental trials.

Number letter task In each trial, one number between one 

and nine (except five) together with one letter out of a set of 

eight letters appeared either in red or in green in the center 

of the screen. The letter set consisted of the letters A, E, I, 

U, G, K, M, and R. Depending on the color of the presented 

stimuli, participants had to perform different tasks. They had 

either to decide whether the number was less or more than 

five (red) or the letter was a consonant or a vocal (green) by 

pressing one of two keys on the keyboard (Rogers & Mon-

sell, 1995). Both tasks appeared with equal frequency. Addi-

tionally, in 50% of the trials the task was the same as one 

trial before (repeat condition); in the other 50% of the trials, 

the color was different to the last trial (shifting condition). 

We randomized the trials, with none of the tasks and none of 

the conditions occurring more than three times in a row and 

none of the numbers and letters appearing twice in a row. 

Participants worked on 10 task-pure practice trials for each 

of the two tasks, followed by 20 practice trials with both 

tasks included. After the practice block, participants worked 

on 256 experimental trials.

Global local task We adopted this task from the study by 

Miyake et  al. (2000). In each trial, one of four geometri-

cal shapes (circle, triangle, square, cross) appeared either in 

red or in green in the center of the screen. This figure was 

composed of small geometric shapes from the same set of 

shapes, better known as Navon-figures (Navon, 1977). The 

larger figure (global) and the smaller figure (local) could 

never have the same geometrical shape. Depending on the 

color, participants had to perform different tasks. They had 

either to identify the shape of the large figure (red) or the 

shape of the small figures (green) by pressing one of four 

keys on the keyboard. Both tasks appeared with equal fre-

quency. In 50% of the trials the condition was the same as 

one trial before (repeat condition) in the other 50% of the 

trials the color was different to the last trial (shifting condi-

tion). We randomized the trials, with none of the tasks and 

none of the conditions occurring more than three times in 

a row and none of the large figures appearing twice in a 

row. Participants worked on 10 task-pure practice trials for 

each of the two tasks, followed by 20 practice trials with 

both tasks intermixed. After the practice block, participants 

worked on 384 experimental trials.

Processing speed

Two choice reaction time task In each trial, participants had 

to focus on a centrally presented fixation cross, which was 

amid two quadratic frames. A plus sign appeared either in 

the left or in the right frame (e.g., Chen et al., 2012). Par-

ticipants had to indicate whether the plus appeared in the 

left or in the right frame by pressing one of two response 

keys on the keyboard. The plus appeared on both sides with 

equal frequency. We randomized the trials, with none of the 

stimulus presentation sides repeating more than three times 

in a row. Participants worked on 20 practice trials, followed 

by 100 experimental trials.

Sternberg task In each trial, five numbers between zero and 

nine appeared sequentially in the center of the screen. Fol-

lowing this sequence, a probe stimulus appeared and par-

ticipants had to decide whether this probe was part of the 

formerly presented set or not (Sternberg, 1969) by pressing 

one of two response keys on the keyboard. In 50% of the 

trials the probe stimulus was part of the set (match condi-

tion). All numbers occurred with equal frequency as probe 

stimulus. We randomized the trials, with none of the condi-

tions (match vs. no match) occurring more than three times 

in a row and none of the probe stimuli occurring twice in a 

row. Participants worked on 20 practice trials, followed by 

100 experimental trials.

Posner task In each trial, two letters appeared in the center 

of the screen. The stimulus set included the letters A, B, F, 
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H, Q, a, b, f, h, q. Participants had to decide whether the 

meaning of the two letters was identical or not (e.g., Aa or 

AA = identical, AB or Ab = not identical; Posner & Mitchell, 

1967). In 50% of the trials the letters had identical names. 

We randomized the trials, with none of the conditions (iden-

tical vs. not identical) and none of the letters occurring more 

than three times in a row. Participants worked on 20 practice 

trials, followed by 120 experimental trials.

Working memory capacity (WMC)

We used the memory updating task, the operation span 

task, the sentence span task, and the spatial short-term 

memory task from the working memory test battery by 

Lewandowsky et al. (2010) to assess participants’ WMC. 

In addition, we used the location-letter binding task by 

Wilhelm et al. (2013). All participants except five completed 

this letter binding task. For each of the different set sizes 

in the working memory tasks, we calculated participants’ 

mean proportion of correctly solved items as the dependent 

variable. Due to a programming error, we could not use the 

data of the spatial short-term memory task in our analyses.

Fluid intelligence

We used the short version of the Berlin Intelligence 

Structure Test (BIS, Jäger et al., 1997) as an assessment for 

fluid intelligence, which is a particularly suitable instrument 

for measuring higher-order cognitive abilities in a relatively 

short amount of time (about 50–60 min). The short version 

consists of a heterogeneous test battery including 15 different 

tasks. Four operation-related (processing capacity [PC], 

processing speed [PS], memory [M], creativity [C]) and 

three content-related (verbal, numerical, figural) components 

of intelligence can be assessed with the short version of the 

BIS. For our analyses, we calculated participants’ operation-

related component scores by aggregating the normalized 

z-scores of all subtests measuring the respective component. 

Participants had a mean IQ of 96 (SD = 15.86).

Procedure

Participants completed three measurement occasions within 

one year. At the beginning of the first session, participants 

signed an informed consent and completed the Ishihara-

Test (Ishihara, 2000) to rule out that they were colorblind. 

Following that, we prepared participants’ EEG and seated 

them in a dimly lit cabin during the first and second 

measurement occasions. The EEG data are not reported in 

the current paper (see Sadus et al., 2023; Schubert et al., 

2022a, 2022b). Subsequently, participants worked on the 

12 tasks in the following order. Measurement occasion one: 

Sternberg task, Arrow Flanker task, Global Local task, 

N-Back task, Switching task, and Stroop task. Measurement 

occasion two: Running Span task, Two Choice Reaction 

Time task, Number Letter task, Negative Priming task, 

Keep Track task, and Posner task. In addition, participants 

completed a questionnaire about their demographical 

data at the end of the first occasion. Each occasion lasted 

approximately 3.5  h. To avoid between-subjects error 

variance by balancing the task order, we decided to 

present all tasks for all participants in the same order, well 

knowing that this procedure might result in fatigue, reduced 

motivation, or sequence effects systematically affecting 

performance measures (Goodhew & Edwards, 2019). During 

the third measurement occasion, participants first completed 

the intelligence test followed by the working memory test 

battery and the letter binding task. In addition, participants 

also completed two short tests measuring their higher-order 

cognitive abilities, a mind-wandering questionnaire, and a 

pretzel task (these data are not reported here).

Data analysis

We used the statistics software R—version 4.1.0 (R. Core 

Team, 2022) for data preprocessing and analyses and 

used the following packages: For preparation and data 

management the package “tidyverse” (Wickham et  al., 

2019), for descriptive statistics the package “psych” 

(Revelle, 2020), for correlations the package “Hmisc” 

(Harrell, 2019), for structural equation model analyses the 

package “lavaan” (Rosseel, 2012), for confidence interval 

estimations the package “MBESS” (Kelley, 2007), and 

for the preparation of the correlation matrices the package 

“patchwork” (Pedersen, 2020).

Outlier analysis and data processing

Before we conducted the main analyses, we performed 

univariate intra- and inter-individual outlier analyses. The 

procedure was identical for each participant and variable. 

The detected outliers (trials or participants) were excluded 

only from the corresponding conditions of the respective 

task.

For the intra-individual outlier analysis, we applied the 

following steps to each condition in each executive function 

and processing speed task. Initially, responses faster than 

150 ms were discarded. Subsequently, we logarithmized 

and z-transformed the RT variables for each participant and 

removed the trials with z-values greater than 3 or smaller 

than -3. On average, 0.69% of the trials were removed within 

each condition of the 12 reaction time tasks (range: 0.33% 

to 1.06%).

Next, we conducted inter-individual outlier analyses 

based on both RT and accuracy scores for each condition 

in the twelve tasks. Participants with accuracy scores below 
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the guessing probability threshold were discarded. This 

threshold was determined based on the number of trials and 

response options of the corresponding condition, assuming 

a binomial distribution. In addition, we identified mean RTs 

or logit-transformed accuracy values that deviated from the 

average by more than 3 standard deviations as inter-indi-

vidual outliers. These participants were removed from the 

corresponding task.

Following the outlier analyses, we modified the data 

for subsequent analyses according to our requirements. 

This involved estimating participants’ drift–diffusion 

model parameters for all conditions of all tasks separately 

(details below). In addition, to replicate the model of three 

interrelated executive functions by Miyake et al. (2000), 

we removed all incorrect trials and calculated participants’ 

RT-difference scores for the shifting and inhibition tasks, 

their mean RTs for the inhibition tasks, and their arcsine-

transformed probability scores for the updating tasks. Before 

we inserted the variables in the structural equation models, 

we discarded the values deviating from the average by more 

than three standard deviations. Accumulated over all these 

steps of the inter-individual outlier detection, we removed, 

on average, 3.63% of the participants within each of the 

variables (range: 0.70% to 7.09%).

Drift–diffusion modeling

We fitted the diffusion model parameters with fast-dm-30 

(Voss et al., 2015) using the Kolmogorov–Smirnov criterion 

for optimization. For each participant, we estimated (v), the 

boundary separation (a), the non-decision time (t0), and the 

inter-trial-variability of the non-decision time (st0) in the 

conditions with greater processing demands of the executive 

function tasks. Further, we followed the recommendations 

of Lerche and Voss (2016) and fixed all other parameters to 

zero except the starting point z, which we centered between 

the two decision thresholds (z = 0.5).

Subsequently, we assessed if the drift–diffusion models 

provided a good account to the observed data by evaluating 

the models using simulated RT and accuracy data based on 

model parameters. The correlations between the observed 

and predicted scores were between r = 0.94 and r = 0.99 

for the RTs in the 25th, 50th and 75th percentile of the RT 

distributions and between r = 0.47 and r = 0.87 for the overall 

accuracy scores (except for the accuracies in the Two Choice 

Reaction Time task, r = 0.05; see for further discussion the 

limitations section), which indicated that there was overall 

no evidence for a systematically biased model prediction. 

For a visual inspection of the model fits see Fig. S1 to Fig. 

S4 in the supplementary materials.

In three decision tasks, participants had to respond by 

pressing four instead of two keys, which is not a binary 

choice in the classical way (Stroop task, Negative Priming 

task, Global Local task). However, Voss et al. (2015) argued 

that diffusion modeling of tasks with more than two response 

keys is possible under some assumptions: The responses 

have to be re-coded as either correct or incorrect, drift rates 

should not differ between stimulus types, there should be 

no bias in response behavior, and these tasks should have 

a sufficient number of errors (Voss et al., 2015). The three 

tasks with more than two response options in our study 

met these assumptions. In addition, the parameter recovery 

indicated no systematically lower predictions of these scores 

compared with the classical binary choice tasks.

Structural equation modeling

First, we wanted to replicate the original model of three 

interrelated executive function factors by Miyake et  al. 

(2000). For this, we used similar scores for the manifest 

variables as in the original study. Second, we estimated 

the three-factor model of executive functions, with drift 

parameters difference scores. Therefore, the drift rate 

parameters were estimated separately for the two conditions 

of each task, while the other parameters of the drift–diffusion 

model were kept constant. Afterwards, we contrasted the 

drift parameters to get the drift differences scores for each 

of the nine executive function tasks and inserted these 

difference scores as indicators in the three-factor model of 

executive functions. Third, we estimated the drift parameters 

only for the conditions with greater processing demands, 

which were used as indicators for the following analyses 

and models. Again, we specified the three-factor model of 

executive functions based on these drift rate parameters. 

Fourth, we estimated a model with a second-order factor as 

well as a model with a first-order factor of common executive 

functions and examined in the following step the relations of 

this common factor to higher-order cognitive abilities. Fifth, 

to control for task-general speed of information uptake, we 

regressed the common factor of executive functions on a 

task-general speed factor estimated from three elementary 

cognitive tasks and examined again the relations of the latent 

variables to intelligence and WMC.

To account for missing data, we used full information 

maximum likelihood (FIML). We fixed one of the loadings 

of each factor to one and estimated the variances of the latent 

factors. The goodness-of-fit was evaluated by the compara-

tive fit index (CFI; Bentler, 1990) and the root mean square 

error of approximation (RMSEA; Browne & Cudeck, 1992). 

Following the recommendations by Browne and Cudeck, 

(1992) as well as Hu and Bentler (1999), we considered CFI 

values > 0.90 and RMSEA values ≤ 0.08 as an acceptable 

model fit and CFI values > 0.95 and RMSEA values ≤ 0.06 

as good model fit. In direct model comparisons, AIC dif-

ferences ≥ 10 indicated substantial advantages (Burnham & 
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Anderson, 2002). We assessed the statistical significance 

of model parameters with the two-sided critical ratio test.

Results

First, we tried to replicate the model of three distinct but 

interrelated factors of executive functions by Miyake 

et  al. (2000) with heterogeneous measurement scores. 

Afterwards, we examined the factor structure of execu-

tive functions and its relation to higher-order cognitive 

abilities using the drift parameters of the drift–diffusion 

model as homogenous measurement scores. The descrip-

tive statistics of the heterogeneous measurement scores are 

displayed in Table 1. We found large variations of reliabil-

ity estimates for the heterogeneous measurement scores 

(see Table 1). The reliability estimates were excellent for 

the inhibition tasks if performance was measured by mean 

RTs and poor to acceptable if performance was measured 

by RT-differences scores. Reliabilities varied from mod-

erate to good in the updating tasks, where performance 

was measured by arcsine-transformed proportion cor-

rect scores. Reliabilities were poor in the shifting tasks, 

where performance was measured by RT-difference scores. 

The correlations between the heterogeneous measure-

ment scores are shown in Table S2 in the supplementary 

materials. 

We specified the model of three distinct but interrelated 

factors of executive functions to replicate the model by 

Miyake et al. (2000) and compared how the factor struc-

ture of drift rates differed from the factor structure of het-

erogeneous measurement scores. In the original model 

by Miyake et al. (2000), they used RT-based difference 

scores between incongruent and congruent conditions to 

Table 1  Descriptive statistics of 

the heterogeneous measurement 

scores

Note.  Heterogeneous measurement scores; a. t. = arcsine-transformed; BIS-PC = processing capacity 

scale of the Berlin Intelligence Structure Test; BIS-PS = processing speed scale of the Berlin Intelligence 

Structure Test; BIS-M = memory scale of the Berlin Intelligence Structure Test; BIS-C = creativity scale of 

the Berlin Intelligence Structure Test
a Reliability estimates are based on Spearman–Brown corrected odd–even split correlations
b Reliability estimates are based on Cronbach’s α; RT-values are displayed in seconds; proportion 

correct = arcsine-transformed proportion correct scores

Task name Measurement score Mean SD Reliability

Negative priming task RT difference 0.02 0.02 0.28a

Flanker task RT difference 0.03 0.02 0.66a

Stroop task RT difference 0.11 0.06 0.77a

Negative priming task, priming cond RT 0.61 0.11 0.99a

Flanker task, incong. cond RT 0.50 0.08 0.99a

Stroop task, incong. cond RT 0.82 0.14 0.98a

Keep track task, updating cond a. t. proportion correct

(percent correct)

1.29

(91.40)

0.11

(6.38)

0.57a

Running span task, updating cond a. t. proportion correct

(percent correct)

1.28

(90.99)

0.08

(4.85)

0.64a

N-back task a. t. proportion correct

(percent correct)

1.21

(86.29)

0.13

(8.64)

0.85a

Number letter task RT difference 0.06 0.07 0.68a

Switching task RT difference 0.05 0.06 0.45a

Global local task RT difference 0.09 0.07 0.41a

Two choice RT task RT 0.38 0.04 0.99a

Sternberg task RT 0.91 0.22 0.98a

Posner task RT 0.71 0.13 0.99a

Memory updating Percent correct 63 20 0.88b

Binding Percent correct 86 11 0.82b

Operation span Percent correct 78 13 0.89b

Sentence span Percent correct 84 11 0.87b

BIS-PC Scales-scores 101.61 7.12 0.75b

BIS-PS Scales-scores 101.14 7.15 0.49b

BIS-M Scales-scores 98.59 7.16 0.58b

BIS-C Scales-scores 98.15 6.97 0.45b
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measure participants’ abilities in inhibition, RT-based dif-

ference scores between shifting and repeat conditions to 

measure participants’ shifting abilities, and arcsine-trans-

formed proportion correct scores to measure participants’ 

updating performance. When we used these measurement 

procedures in our own data, the model provided a good 

account of the data, χ2(26) = 28.56, p = 0.331, CFI = 0.98, 

RMSEA = 0.03, 95% CI [0.00, 0.08]; see Fig. 2A). How-

ever, we could not find significant variance in the latent 

inhibition factor with RT difference scores, σ2 = 0.09, 

p = 0.431, 95% CI [− 0.13, 0.30]. Therefore, we decided 

to use the mean RT-scores of the conditions with greater 

processing demands, the inhibition conditions, to exam-

ine individual differences in inhibition. The correspond-

ing model provided an excellent account of the data, 

χ2(24) = 23.15, p = 0.511, CFI = 1.00, RMSEA = 0.00, 

95% CI [0.00, 0.07]; see Fig. 2B). The three latent execu-

tive function factors were moderately correlated. Partici-

pants who were less distracted by irrelevant information 

(shorter RTs in inhibition tasks) showed better updating 

abilities, r = − 0.48, p < 0.001, 95% CI [− 0.66, − 0.30], 

and lower shifting costs, r = 0.33, p = 0.004, 95% CI [0.13, 

0.53]. Moreover, participants with better updating abilities 

showed lower shifting costs, r = − 0.36; p = 0.010, 95% CI 

[− 0.59, − 0.13].

We were (mostly) able to replicate the original model of 

three distinct but interrelated factors of executive functions. 

In the next step, we wanted to examine the factor structure 

of executive functions by using drift rates instead of RT-/

accuracy-based performance scores.

Conducting the analyses based on the drift rate 

parameters, we first used drift rate difference scores to 

examine the reliability and factor structure of executive 

functions. However, the covariance matrix of the latent 

variables was not positive definite and the model did not 

converge. Furthermore, the Spearman–Brown corrected 

odd–even correlations indicated insufficient reliabilities 

or even inadmissible estimates for the drift rate difference 

scores (ranging from -0.12 to 0.66). In consequence, we 

can conclude that even for drift rates, the difference scores 

tended to be unreliable and did not prove to be useful 

indicators measuring individual differences in executive 

functions. This highlights the limited utility of difference 

scores in executive function research and underscores 

our strategy to examine drift rates of the conditions with 

greater processing demands and to disentangle the sources 

of variance at the latent level. Table 2 shows the descriptive 

statistics for drift rates from the conditions with greater 

processing demands of the nine executive function tasks and 

of the three processing speed tasks and (see Table S3 in the 

supplementary materials for the descriptive statistics of the 

other estimated drift–diffusion model parameters).

Overall, the reliabilities of drift rates were on average 

slightly smaller but comparable to RT- and accuracy-based 

performance measures. They showed a broad range from 

poor to good reliabilities. The small difference between the 

reliabilities of heterogeneous and homogeneous measure-

ment scores are mainly driven by the RT average scores of 

the inhibition- and elementary cognitive tasks, which usually 

show very high reliabilities. In comparison to the reliabilities 

reported in Table 1, reliabilities were higher for updating 

and shifting tasks, but lower for inhibition tasks. The cor-

relations between the drift rate parameters of each task are 

shown in Table S4 in the supplementary materials.

Fig. 2  Three-factor models of executive functions with heterogeneous measurement scores. Note. The standardized path weights, the unstandard-

ized residual variances, and the correlation coefficients are shown next to the paths; non-significant estimators are grayed out
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Subsequently, we specified the model of three distinct, 

but interrelated factors based on drift rates instead of the 

heterogeneous measurement scores (see Fig. 3A). The model 

provided a good fit of the data, χ2(24) = 38.26, p = 0.033, 

CFI = 0.95, RMSEA = 0.06, 95% CI [0.00, 0.11]. The three 

latent executive function factors were highly correlated. Par-

ticipants with higher drift rates in inhibition tasks showed 

higher drift rates in updating tasks (r = 0.82, p < 0.001, 95% 

CI [0.59, 1.06]) as well as higher drift rates in shifting tasks, 

r = 0.89, p < 0.001, 95% CI [0.70, 0.1.08]. Furthermore, par-

ticipants with higher drift rates in updating tasks showed 

higher drift rates in shifting tasks, r = 0.75, p < 0.001, 95% 

CI [0.60, 0.90]. Taken together, we were also able to find the 

three latent factors of executive functions by using drift rates 

instead of heterogenous measurement scores. The positive 

manifold in the correlations between the three latent factors 

suggests a hierarchical factor structure with a higher-order 

factor of executive functions or a one-factor solution with 

a common factor of executive functions on the first level.

In consequence, we introduced a higher-order factor of 

executive functions (common executive functions) in our 

model with drift rates as manifest variables (see Fig. 3 B). 

The model fit was equivalent to the model just described, in 

which the latent first-order factors were correlated. However, 

Table 2  Descriptive statistics of 

drift rates

Note. Drift rates v as measurement scores; reliability estimates are based on Spearman–Brown corrected 

odd–even split correlations

Measurement score Mean SD Reliability

Negative priming task, priming cond Drift parameter v 3.62 0.94 0.47

Flanker task, incong. cond Drift parameter v 5.05 1.32 0.57

Stroop task, incong. cond Drift parameter v 2.60 0.74 0.48

Keep track, updating cond Drift parameter v 1.69 0.62 0.81

Running span, updating cond Drift parameter v 1.78 0.58 0.67

N-back task Drift parameter v 1.74 0.46 0.83

Number letter task, shifting cond Drift parameter v 2.29 0.92 0.89

Switching task, shifting cond Drift parameter v 2.16 0.85 0.90

Global local task, shifting cond Drift parameter v 1.65 0.51 0.79

Two choice RT task Drift parameter v 6.25 1.58 0.70

Sternberg task Drift parameter v 2.35 0.71 0.45

Posner task Drift parameter v 3.27 0.74 0.53

Fig. 3  Three-factor models of executive functions with drift rates as homogenous measurement scores. Note. The standardized path weights, the 

unstandardized residual variances, and the correlation coefficients are shown next to the paths; non-significant estimators are grayed out
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after introducing this second-order factor of executive func-

tions, there was no remaining significant residual variance 

specific to each of the three executive functions (inhibition: 

residual variance σ2 = 0.01, p = 0.942, 95% CI [− 0.14, 

0.15]; updating: residual variance σ2 = 0.17, p = 0.061, 95% 

CI [− 0.01, 0.34]; shifting: residual variance σ2 = 0.13, 

p = 0.133, 95% CI [− 0.04, 0.30]). If we fixed the residual 

variances to zero, the model fit deteriorated only slightly, but 

not above the critical AIC difference proposed by (Burnham 

& Anderson, 2002), ∆ AIC = 7.60, χ2(27) = 51.86, p = 0.003, 

CFI = 0.91, RMSEA = 0.08, 95% CI [0.04, 0.12]. Inhibi-

tion, updating, and shifting, as measured with v, were fully 

explained by the higher-order factor.

The non-significant residual variances of the three latent 

factors of executive functions on the first level suggested a 

one-factor structure of executive functions. Therefore, we 

specified a model with only one latent common executive 

functions factor (see Fig. 4A). The model fit was equivalent 

to the model just described, in which the residual variances 

of the first-order factors were set to zero. Our findings sug-

gest that the drift parameters of the different executive func-

tion tasks represented individual differences in one common 

executive ability.

In the next step, we examined the correlations between 

the common factor of executive functions and higher-order 

cognitive abilities. Please note that in this model, we have 

not yet controlled for task-general speed of information 

uptake. We introduced Intelligence and WMC as latent 

factors into the model (see Fig. 4B). The model provided 

an almost acceptable fit of the data, χ2(115) = 203.85, 

p < 0.001, CFI = 0.89, RMSEA = 0.07, 95% CI [0.05, 0.09]. 

Intelligence and WMC factors were highly correlated, 

r = 0.76, p < 0.001, 95% CI [0.64, 0.88]. Individual 

differences in executive functions were moderately related 

to intelligence (r = 0.43, p < 0.001, 95% CI [0.25, 0.62]) and 

WMC, r = 0.41, p = 0.001, 95% CI [0.25, 0.58].3

So far, the common variance of the drift rates represented 

both task-general speed of information uptake as well as 

variance specific to executive functions. In the next step, 

we wanted to assess if the relationship between the variance 

specific to executive functions and intelligence as well as 

WMC pertained if we controlled for task-general speed of 

information uptake by introducing a latent speed factor to 

the model. This speed factor represented the covariance of 

Fig. 4  Models with one common factor of executive functions with 

drift rates as homogenous measurement scores. Note. The standard-

ized path weights, the unstandardized residual variances, and the 

correlation coefficients are shown next to the paths; MU = memory 

updating; BIS-PC = processing capacity scale of the Berlin Intel-

ligence Structure Test; BIS-PS = processing speed scale of the Ber-

lin Intelligence Structure Test; BIS-M = memory scale of the Berlin 

Intelligence Structure Test; BIS-C = creativity scale of the Berlin 

Intelligence Structure Test; WMC = working memory capacity

3 If we introduced a higher-order cognitive abilities factor in our 

model instead of intelligence and WMC separately, the general execu-

tive functions factor was also moderately related to cognitive abilities, 

r = .48, p < .001, 95% CI [.31, .66].
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three elementary cognitive tasks. The common executive 

functions factor was regressed on the latent speed factor to 

account for individual differences in task-general speed of 

information uptake. The model provided an almost accept-

able fit of the data, χ2(53) = 114.14, p < 0.001, CFI = 0.87, 

RMSEA = 0.09, 95% CI [0.06, 0.11]. However, there was 

no significant variance in the common executive func-

tions factor independent of task-general speed of informa-

tion uptake, σ2 = − 0.00, p = 0.913, 95% CI [− 0.07, 0.06]. 

Given the small negative and non-significant residual vari-

ance of the common executive functions factor, we followed 

the recommendations by Chen et al. (2012) and fixed this 

residual variance to zero. This hardly changed the model 

fit, ∆ AIC = 1.99, χ2(54) = 114.15, p < 0.001, CFI = 0.88, 

RMSEA = 0.09, 95% CI [0.06, 0.11] (see Fig. 5A). In sum, 

the common factor of executive functions was completely 

explained by the task-general speed of information uptake, 

β = 1.00, p < 0.001. In this context, the shared variance of 

executive function tasks as measured with drift rates only 

represented individual differences in task-general speed of 

information uptake.

Again, we included WMC and intelligence as latent fac-

tors into the model to examine the relations between task-

general speed of information uptake and higher-order cogni-

tive abilities (see Fig. 5B). The model provided an almost 

acceptable fit of the data, χ2(166) = 284.04, p < 0.001, 

CFI = 0.88, RMSEA = 0.07, 95% CI [0.05, 0.09]. Partici-

pants’ task-general speed of information uptake was mod-

erately correlated with intelligence (r = 0.46, p < 0.001, 

95% CI [0.29, 0.63]) and WMC (r = 0.46, p < 0.001, 95% 

CI [0.31, 0.62]).4 Taken together, we found that executive 

functions measured by drift rates revealed one latent factor 

of common executive functions. This factor was completely 

explained by individual differences in task-general speed of 

information uptake. No variance specific to executive func-

tions remained in our model, which could not be explained 

by the general speed of information uptake. Participants with 

a higher general speed of information uptake showed better 

performance in each of the nine executive function tasks and 

revealed higher intelligence test scores as well as greater 

WMC.

Discussion

The aim of the present study was to examine the factor 

structure of the three executive functions as described by 

Miyake et al. (2000) using the drift rate parameter of the 

drift–diffusion model as a homogenous measurement score 

instead of heterogeneous measurement scores.

Heterogenous measurement scores: a partial 
replication of the three-factor model

As a first step, we tried to replicate the original model of 

three distinct but interrelated factors with heterogeneous 

measurement scores, which was nearly identical to the 

model proposed in the seminal paper by Miyake et  al. 

(2000). However, using RT difference scores, it was 

not possible to find significant variance for the factor of 

inhibition, that is, we did not find a coherent structure of 

the inhibition construct. This is in line with some recent 

research, suggesting that inhibition tasks often do not reveal 

a homogeneous structure of the underlying construct if 

one uses difference scores as performance measures from 

different tasks (Frischkorn & von Bastian, 2021; Hull et al., 

2008; Krumm et al., 2009; Rey-Mermet et al., 2018; Stahl 

et al., 2014). When we used the mean RTs of the incongruent 

conditions of inhibition tasks, as done in several previous 

studies (see von Bastian et al., 2020), we found a coherent 

Fig. 5  Models with one 

common factor of executive 

controlled for task-general 

speed of information uptake and 

its correlations to higher-order 

cognitive abilities (drift rates 

as homogenous measurement 

scores). Note. The standardized 

path and regression weights, the 

unstandardized residual vari-

ances, and the correlation coef-

ficients are shown next to the 

paths; non-significant estimators 

are grayed out.; WMC = work-

ing memory capacity

4 If we introduced a higher-order cognitive abilities factor in our 

model instead of intelligence and WMC separately, the correlation 

between higher-order cognitive abilities and task-general speed of 

information uptake was also high, r = .53, p < .001, 95% CI [.37, .69].
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latent inhibition factor and were able to replicate the three-

factor structure of executive functions by Miyake et al. 

(2000) with substantial correlations between these factors. 

However, such condition-specific scores suffer from validity 

problems because they may also be affected by task-general 

processes.

The model of executive functions measured 
with drift rates

We used drift rates of the drift–diffusion model as 

homogenous measurement scores and structural equation 

models to separate task-general properties of drift rates 

from properties specific to executive functions. Our 

approach avoided the use of difference scores and their 

psychometric problems, thereby overcoming the two main 

issues of measuring executive functions—inconsistent 

use of RT- and accuracy-based scores and psychometric 

problems of difference scores. We found three latent factors 

of executive functions that loaded on one higher-level 

common executive functions factor. After introducing the 

higher-order factor, we observed no remaining variance 

specific to the three executive functions on the first-order 

latent level. We therefore specified a more parsimonious 

one-factorial solution, in which all tasks loaded on one latent 

first-order common executive functions factor. This model 

described the data only marginally worse than the more 

complex hierarchical model (∆ AIC = 7.60) and provided a 

good account of the data. In addition, given the absence of 

significant residual variances in the hierarchical model, the 

additional explanatory power of the more complex model 

seems highly questionable. In this context, the one-factor 

solution emerges as the more favorable model. However, 

future work should replicate our results with a larger 

sample size to get a better understanding of the nature of the 

common factor and the very small non-significant executive 

function specific variances as shown in Fig. 3B.

These findings, of a one-factor model, are in contrast to 

the three-factor model proposed by Miyake et al. (2000) and 

several other papers that found distinct factors of executive 

functions by using heterogeneous scoring methods (e.g., 

Friedman et al., 2006, 2008; Himi et al., 2019, 2021; Ito 

et al., 2015; Krumm et al., 2009; Schnitzspahn et al., 2013; 

Vaughan & Giovanello, 2010; Wongupparaj et al., 2015). 

Nevertheless, our finding of one common factor is consistent 

with previous results by Weigard et al. (2021), who also used 

drift rates and found that different cognitive control tasks 

loaded on only one common factor.

In the next step, we controlled for task-general processes 

included in drift rates (i.e., general speed of information 

uptake) and found that the latent common executive 

functions factor was fully accounted for by the task-

general speed information uptake factor. In this model, 

no variance specific to executive functions remained. 

Hedge et al. (2022) found that inhibition tasks account for 

little common variance in inhibition processes but reflect 

consistent differences in task-general processing speed. They 

concluded that executive function processes should only be 

interpreted after controlling for task-general processes.Our 

results confirm the call by Hedge et al. (2022) to control the 

common variance among executive function tasks for task-

general processes, suggesting that the observed common 

variance in the nine executive function tasks reflects nothing 

more than differences in the basic speed of information 

uptake. This is consistent with previous findings indicating 

that tasks supposedly measuring executive functions largely 

capture individual differences in the speed of information 

processing (Frischkorn & von Bastian, 2021; Frischkorn 

et al., 2019).

At this point we want to emphasize that drift rates are 

appropriate measures to separate task-general processes from 

domain-specific processes, and that these do not generally 

only yield one common speed of information uptake factor. 

In a recent paper, Lerche et al. (2020) demonstrated that 

drift rates can reflect different domain-general and domain-

specific processes by showing that drift rates estimated from 

a battery of RT tasks differing in their complexity and in 

their content (figural, numeric, and verbal) reflected distinct 

factors of task-general as well as complexity- and content-

specific variances. These results show that drift rates do not 

only measure the basic speed of information uptake, but that 

they may also reflect distinct processes. In consequence, 

our finding that drift rates in executive function tasks only 

represent task-general speed of information uptake is not a 

methodological artifact. Instead, it indicates that executive 

function tasks measure almost exclusively differences in 

basic speed of information uptake. Thus, executive function 

factors observed in previous studies likely only reflected 

individual differences in general processing speed.

Furthermore, we found that individual differences in 

general speed of information uptake were moderately 

correlated to intelligence and WMC. It is well known that 

information processing speed in elementary cognitive tasks 

is related to cognitive abilities (Doebler & Scheffler, 2016; 

Schubert et al., 2015, 2017, 2022b; Sheppard & Vernon, 

2008). Several papers showing correlations between 

higher-order cognitive abilities and executive functions 

using heterogenous measurement scores (Benedek et al., 

2014; Conway et al., 2021; Friedman et al., 2006, 2008; 

Wongupparaj et  al., 2015) may have overestimated the 

relation between executive functions and higher-order 

cognitive abilities, because it is plausible that they largely 

estimated the relations between information processing 

speed and higher-order cognitive abilities.
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Implications for future research on executive 
functions

From our findings we derive three possible consequences: 

First, there may be no individual differences in cognitive 

abilities that are specific for executive functions. Second, it 

may be necessary to think about the coherence of specific 

executive functions on a theoretical level. Third, many of the 

indicator scores and tasks used so far may be inappropriate 

to capture individual differences in executive functions.

Our first conclusion is contrary to experiences we make 

in daily life. Every day, we experience situations in which 

we have the feeling that we are using executive processes. 

We must ignore irrelevant or distracting information to 

navigate traffic safely, we must update our memory content 

when playing a memory card matching game, and, when 

multitasking, we must shift between different tasks. As 

already mentioned at the beginning of the introduction, 

we consider executive functions as abilities. If executive 

functions exist in the sense of abilities, we have to assume 

that people differ in these abilities. The word “ability” is 

defined “as the quality or state of being able” (Merriam-

Webster, 2022, 13. July), which is characterized by variation, 

because qualities and states vary between individuals. It is 

also well known that an extremely low level of executive 

abilities is associated with unfavorable or pathological 

outcomes, as—for example—extremely low inhibition 

abilities are associated with attention-deficit/hyperactivity 

disorder (ADHD; e.g., Wodka et al., 2007). In consequence, 

the dual-pathway model of ADHD describes poor inhibitory 

control as a central aspect of ADHD symptoms (Sonuga-

Barke, 2002). Taken together, it is hard to believe that people 

do not differ in their executive functions.

Perhaps we should reconsider the coherence of specific 

executive functions on the theoretical level. Von Bastian 

et al. (2020) showed in their review that executive function 

tasks yield on average only small correlations among each 

other (median r = 0.16). Specifically, inhibition tasks did 

usually show absent or very small correlations with each 

other (see von Bastian et al., 2020), which suggests that 

inhibition may be needed to be defined more precisely and 

possibly be split into distinct abilities. Rey-Mermet et al. 

(2018) already demonstrated that two distinct abilities of 

inhibition exist, the inhibition of prepotent responses and the 

inhibition of distractor interference. However, a subsequent 

study could not replicate the proposed two-factorial solution 

with adequate model fit (Gärtner & Strobel, 2021). In our 

study, the inhibition tasks showed only small to absent 

correlations (from r = 08. to r = 0.17) when measured with 

RT-differences scores. This suggests that the executive 

processes contributing to performance in the inhibition tasks 

in our study may reflect distinct abilities, which could be one 

reason for why we did not find a coherent factor of inhibition 

when using RT-difference scores as indicator variables. 

Moreover, it is possible that the other executive functions 

also reflect a more differentiated pattern of the underlying 

abilities. Future research should reflect the divergence of 

executive functions on a theoretical level.

Alternatively, executive function tasks may be 

inappropriate to capture individual differences in executive 

functions. In our study, task-general speed of information 

uptake fully accounted for the shared variance between 

different executive function tasks. It seems that the classical 

executive function tasks capture to large parts task-general 

processes and no variance specific to executive functions. 

Therefore, we as a field should create new tasks or develop 

new cognitive mathematical models to better measure 

individual differences in these executive function abilities.

The development of new tasks to measure executive 

function abilities more validly

Recent studies have proposed developing and modifying 

executive function tasks to better capture individual 

differences in executive functions. Draheim et al. (2021) 

developed a battery of new and modified (Flanker and 

Stroop) inhibition tasks and compared them with different 

classical inhibition tasks. In the newly developed tasks, 

properties of the task (e.g., presentation time of the 

stimulus or the maximally allotted response time) adjusted 

dynamically as a function of participants’ performance 

in previous trials. If the performance was good enough, 

the presentation times of stimuli or response deadlines 

were lowered, otherwise they were raised. In this adaptive 

staircase procedure, the authors used in some tasks the 

individually calibrated presentation times and in other 

tasks the individually calibrated response deadlines 

as dependent variable. Draheim et  al. (2021) found 

substantial intercorrelations between most of these tasks 

and subsequently a coherent latent factor of attentional 

control, which is a construct closely related to executive 

functions. In addition, this latent factor correlated with 

WMC and intelligence and these correlations could not 

be explained by task-general processing speed. Further 

research reported additional evidence for the validity 

of this battery of novel executive function tasks by finding 

a common factor of executive processes independent of 

task-general processing speed (Burgoyne et  al., 2022; 

Draheim et al., 2023). These modified tasks were highly 

reliable (all estimates ≥ 0.86) and fast to administer (see: 

Burgoyne et al., 2022).

However, there is a particular aspect that must be taken 

into account when discussing our findings with regard to 

the framework proposed by Draheim et al., (2021, 2023). 

It is possible that the discrepancy between both studies 
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regarding the correlations between executive function 

abilities and processing speed stems from differences in 

the conceptualization of the mental speed factors and the 

specific tasks used to measure mental speed. Draheim and 

colleagues typically employed tasks in which participants 

compared patterns of stimuli and decided whether two 

patterns were equal or different. In contrast, our tasks 

required participants to make elementary decisions based 

on a currently presented stimulus. Both sets of tasks can 

be considered as measures of mental speed. However, 

the focus lies on different aspects of mental speed. The 

distinction between both concepts can be illustrated 

based on the Cattell-Horn-Carroll (CHC) model (Carroll, 

1993). In the CHC model, Draheim and colleagues’ tasks 

align with the processing speed factor (Gs), while our 

tasks align with the reaction and decision speed factor 

(Gt). Both of these factors belong to the CHC model’s 

broader abilities in Stratum II and are considered to 

have separate contributions to general intelligence 

(e.g., Carroll, 1993). Because our battery of elementary 

cognitive tasks corresponds to the abilities represented 

in Carrol’s Gt factor, the common factor of executive 

function tasks was completely explained by processing 

speed. All the variance shared among executive function 

tasks is essentially attributed to task-general information 

processing and decision-making abilities. In contrast, 

Draheim and colleagues’ elementary cognitive tasks are 

measuring perceptual and clerical speed. These differences 

in the conceptualizations between Draheim et al. (2021, 

2023) and our lab may account for the different empirical 

observations. It remains unclear to which extent the 

cognitive control factor by Draheim et al. (2021, 2023) 

diverges from a speed factor when measured with our 

processing speed tasks.

Our findings shed alarming light on classical executive 

function tasks, revealing that the shared variance among 

these tasks primarily represents task-general processing 

and decision-making abilities. Nevertheless, the work 

by Draheim et  al. (2021, 2023) demonstrates that the 

development of novel measures and new tasks are promising 

approaches to make progress in the research of measuring 

individual differences in executive functions. Because it 

would be important to demonstrate that their tasks do not 

only measure processing speed as measured by the tasks 

included in the present study, it is obvious that more research 

is needed.

Cognitive mathematical modeling approaches to measure 

executive function abilities more validly

In addition to novel tasks and measurement scores, 

cognitive mathematical modeling approaches could also 

be a promising approach to validly measure individual 

differences in executive functions. A recent study validated 

the model parameters of the dual-stage two-phase model 

by Hübner et al. (2010)—a specific cognitive model to 

capture inhibition abilities in the Arrow Flanker Task—

with inhibition-related electrophysiological correlates and 

found meaningful correlations between model parameters 

and event-related potential components (Schubert et al., 

2022a). Jointly, the process parameters explained 37% 

variance in higher-order cognitive abilities (Schubert et al., 

2022a). However, the authors did not control the model 

parameters for the influence of task-general processes. It 

therefore remains open to which degree the parameters 

reflected task-general processing efficiency. Nevertheless, 

the findings by Schubert et al., (2022a) demonstrate that 

cognitive mathematical models could be a fruitful way to 

capture individual differences in executive abilities. The 

use of cognitive mathematical model parameters and the 

development of specific cognitive mathematical models 

should be further promoted in the field of executive 

functions research. However, it is necessary to demonstrate 

that model parameters possess divergent validity to basic 

speed of information uptake.

Limitations

One major limitation of the diffusion modeling approach 

implemented in the present study is that the standard 

drift–diffusion model is not ideally suited to model 

RT distributions associated with incorrect responses in 

inhibition tasks. Because the drift rate is assumed to be 

constant over the course of a single trial, it is unable to 

account for the characteristic data pattern observed in 

conflict tasks, specifically the occurrence of faster errors 

in incongruent trials compared to correct responses 

(White et al., 2011). To address this limitation of the 

standard drift–diffusion model, models with time-varying 

drift rates like the diffusion model for conflict tasks 

(Ulrich et  al., 2015), the dual-stage two-phase model 

(Hübner et al., 2010), and the shrinking spotlight model 

(White et al., 2011) have been developed. Since these 

models assume drift rates that change over time, they are 

more appropriate to account for the characteristic data 

pattern observed in conflict tasks. However, in the present 

study, it was not feasible to estimate these models with 

time-varying drift rates instead of the standard diffusion 

model, as we included not only conflict (inhibition) 

tasks but also updating and shifting tasks in our study. 

As a result, these models with time-varying drift rates 

could only be applied to a subset of our data and not to 

data from all nine executive function tasks. Nonetheless, 

we have confidence that our conclusions were not 

influenced by using the standard diffusion model, as 

our findings align with those of a previous study that 
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used the diffusion model for conflict tasks to estimate 

the correlation of conflict-related model parameters 

across four different conflict tasks (Hedge et al., 2022). 

Consistent with our results, this study also found only 

very low and statistically insignificant correlations 

across tasks, although these correlations may have been 

underestimated due to the low reliabilities of control-

related model parameters.

Another limitation pertaining to the estimation of the 

diffusion model in the present study is that v reflects both 

RTs and accuracies jointly, since the RT distributions 

of both correct and incorrect responses are used for its 

estimation. However, this was not the case for all tasks 

in our study. For the Two Choice Reaction Time task, 

the drift rate parameter mainly reflected RT variance 

because accuracy rates were near ceiling (i.e., there 

was virtually no distribution of incorrect responses, 

mean correct responses 99.47%, SD = 0.98%). That 

is why the parameter recovery revealed no correlation 

between predicted and observed accuracies (r = 0.05). In 

comparison, the quantiles of the RT-distribution of the 

Two Choice Reaction Time task were recovered with 

high precision (range from r = 0.98 to r = 0.99; see also 

Fig. S4 in the supplementary materials). Nevertheless, 

the drift rates of the Two Choice Reaction Time task 

were substantially correlated with the drift rates of both 

other elementary cognitive tasks, r = 0.35 to r = 0.37. 

These manifest correlations were comparable to the 

correlation between the drift rates in those two other 

tasks (r = 0.39) and indicate that the drift rates of the Two 

Choice Reaction Time task showed convergent validity 

to the drift rates of the two other elementary cognitive 

tasks. For the other 11 tasks, we observed correlations 

between r = 0.47 to r = 0.99 for RTs and accuracies 

between predicted and observed scores. All in all, we 

can be relatively certain that our models yielded valid 

parameter estimates.

Finally, we examined a sample of N = 148 participants, 

which is a sufficient sample size as we needed a minimum 

sample size of N = 95 to test the hypothesis of close fit. 

However, given the uncertainty of correlations, examining 

larger groups of individuals would strengthen the 

robustness of our correlational findings (Kretzschmar & 

Gignac, 2019; Schönbrodt & Perugini, 2013). Therefore, 

future research should try to replicate the absolute 

magnitude of correlations in our study as their estimations 

had a relatively large degree of uncertainty.

Conclusion

In our present study, we examined the factor structure 

of the three executive functions by Miyake et al. (2000). 

We used a cognitive mathematical modeling approach to 

overcome the problems associated with the inconsistent 

use of accuracy vs. RT-based scores as indicator variables 

and the use of manifest difference scores, which can 

sometimes cause psychometric problems. Applying the 

drift–diffusion model, we found a one-factorial structure 

of executive function tasks. However, in this analysis, 

we used only the drift rates from the conditions with 

greater processing demands. Because drift rates in 

these conditions were affected by both task-general and 

executive function processes, the latent common executive 

functions factor reflected individual differences in both 

types of processes. After controlling for individual 

differences in these task-general processes, we observed 

no unique variance specific to executive functions. This 

indicates that the covariance between different executive 

function tasks can be fully accounted for by individual 

differences in the general speed of information uptake, 

which was moderately related to higher-order cognitive 

abilities. Applying this drift–diffusion model account 

thus shed alarming light on tasks supposedly measuring 

executive functions. We observed no variance specific to 

executive functions that was independent of the general 

speed of information uptake. Thus, the development or 

modification of executive function tasks is necessary 

to capture individual differences in executive functions 

reliably and validly, assuming that such differences exist.
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Abstract

However

as a means to directly probe underlying cognitive processes, leveraging the EEG’s high 

almost exclusively 

Keywords: executive functions, EEG, event-related potentials, Bayesian structure equation 

modeling, cognitive abilities 
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The factor structure of executive functions measured with electrophysiological 

correlates: An event-related potential analysis

Our everyday life is full of different types of information. This information includes 

relevant content as well as distracting noise. It is therefore essential that we filter the relevant 

parts included in the information from our environment and adjust our ongoing actions based 

on the incoming information. For this, we use basic cognitive processes that help us to keep 

our attentional focus on the relevant information, to plan the next steps, to update new 

relevant information in our mind, and to shift our attentional focus between different ongoing 

actions. In cognitive psychology, such top-down regulated processes would be considered as 

individual abilities under the umbrella term of executive functions (EFs), also known as 

cognitive control, attentional control, executive attention, or cognitive control (Rey-Mermet, 

Gade, Souza, et al., 2019; von Bastian et al., 2020). A wide range of abilities are summarized 

under the term of EFs. In the present study, we focus on three commonly separated EFs, 

namely shifting, inhibition, and updating (Miyake et al., 2000). Shifting is the ability to shift 

between different tasks or mind sets, inhibition is one’s ability to focus attention on the actual 

task and current task-goals while ignoring irrelevant information, and updating is one’s ability 

to monitor the actual memory content and store new information in memory (Friedman et al., 

2008; Friedman & Miyake, 2017; Miyake et al., 2000; Miyake & Friedman, 2012; Rey-

Mermet et al., 2018). Miyake and colleagues (2000) have shown that while these three EFs 

are correlated with each other, there are also substantial parts of variance specific to the each 

of the three underlying EFs. These findings led to the “unity and diversity” framework of EFs, 

which means that the three EFs shifting, inhibition, and updating are considered separate but 

related processes. Subsequent research has provided further support for this description of 

unity and diversity in EFs and also found that EFs are related to individual differences in 

higher-order cognitive abilities such as intelligence and working memory (Burgoyne et al., 

2023; Draheim et al., 2021, 2023; Friedman et al., 2006, 2008, 2011; Friedman & Miyake, 
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2017). Some theoretical accounts even claim that individual differences in EF abilities give 

rise to individual differences in intelligence and working memory capacity (WMC; Kane et 

al., 2008; Kovacs & Conway, 2016; see for an detailed overview: Mashburn et al., 2023).

Measuring executive functions and the problem of behavior-based scores

Despite the extensive attention that EFs have received in cognitive psychological 

research in the recent two decades, a growing body of research identified psychometric 

problems of measures of EFs that cast doubt on the three-factor structure of EFs (Hedge et al., 

2018; Rey-Mermet et al., 2018; Rouder et al., 2023; Rouder & Haaf, 2019). Usually, a 

person’s performance in an EF task (e.g., their inhibition ability) is measured by calculating 

the difference in their mean performances between two conditions. In general, EF tasks (e.g., 

an Arrow Flanker task; Eriksen & Eriksen, 1974) have at least two conditions, one baseline 

condition and one condition with greater processing demands. The baseline condition is 

designed in such a way that it does not require EF abilities at all or at least only to a negligible 

extent. In contrast, the condition with greater processing demands works almost identically to 

the baseline condition except that one manipulation has been added to the design. This 

manipulation requires a specific executive function to make the correct decision. Because this 

additional processing demand makes the task more difficult, participants typically show worse 

performances (i.e., lower accuracies and longer RTs) in conditions with greater processing 

demands in contrast to the baseline conditions. The performance increment between the two 

conditions is thought to represent individual’s performance in the underlying EF (Donders, 

1869). 

While these difference scores are very useful for exploring general cognitive processes 

on the experimental level, it is important to note that they revealed psychometric problems in 

studies investigating individual differences in EFs (Hedge et al., 2018; von Bastian et al., 

2020). This is due to the design of the tasks. In typical EF tasks with two conditions, 
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individuals' performances in the two conditions are highly correlated. For example, when 

reanalyzing data across two sessions from the Flanker task and the Stroop task reported by 

Hedge et al. (2018), strong correlations between both conditions in each of the sessions were 

found (�̅� =. 91). These very high correlations indicate that the different conditions in these 

inhibition tasks measure the same thing. When two conditions within a single task exhibit 

correlations exceeding r = .90, only a small percentage of the variability between the 

conditions remains unexplained. Hence, most of the cognitive processes involved in solving 

an EF task are needed in both conditions, as indicated by the very high correlations between 

performances in both conditions. However, researchers are primarily interested in the 

remaining unexplained variance, which is considered specific to EFs and represents individual 

differences in the experimental effect. For this reason, researchers calculate difference scores. 

However, such difference scores capture not only EF-specific variance but also error 

variance. Consequently, the small percentage of unexplained variance between two conditions 

from our example represents not only individual differences in EFs but also error variances. 

Classical test theory claims that error variables are independent of each other (Lord et al., 

1968; Novick, 1966). In consequence, difference scores of EF tasks include on the one hand 

the very small amount of EF-specific variance (Rouder & Haaf, 2019) and on the other hand 

the variances of the error variables of both conditions (see Schubert et al., 2022, for a more 

extensive treatment of this issue). This disproportionate influence of error variances results in 

low reliabilities of difference scores used to measure EFs as demonstrated in a number of 

recent studies (Hedge et al., 2018; Rouder et al., 2023; Rouder & Haaf, 2019).

In addition or as a consequence of the problem of unsatisfactory reliabilities, various 

scores measuring EF abilities showed insufficient convergent validity to other tasks used to 

measure the same EF (Frischkorn et al., 2019; Hedge et al., 2018; Hull et al., 2008; Karr et al., 

2018; Klauer et al., 2010; Krumm et al., 2009; Rey-Mermet et al., 2018; Rey-Mermet, Gade, 
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Souza, et al., 2019; Rouder et al., 2023; Rouder & Haaf, 2019; Stahl et al., 2014; von Bastian 

et al., 2020). For example, Rey-Mermet et al. (2018) and Rey-Mermet, Gade, Souza, et al. 

(2019) could not find a coherent pattern of correlations for both RT-based variables and 

accuracy-based indicator scores measured with a battery of 11 inhibition tasks. Further 

evidence of insufficient relations between measurements of inhibition has been provided in 

several recent studies (Krumm et al., 2009; Rouder et al., 2023; Rouder & Haaf, 2019; Stahl 

et al., 2014). A systematic review by Karr et al. (2018) reanalyzed nine datasets of EF data in 

adult populations and specified different types of factor models to find out which model 

describes the data best. Therefore, they specified and compared one-factor models, two-factor 

models, three-factor models, and bi-factor models. Their analysis revealed that none of these 

theoretically plausible models described the data clearly better than the others, and none of the 

models described the data sufficiently good (Karr et al., 2018). These findings suggest that 

performance measures derived from EF tasks show a lack of validity.  Now, there is a chance 

that the reliability problem with difference scores is also responsible for the validity problem 

of EF tasks. This is because square root of the reliability of one variable provides the upper 

limit for possible correlations with any other variable. Alternatively, it is possible that both 

psychometric problems are unrelated to each other.

One possible solution to address the challenge of low reliabilities is the utilization of 

structural equation models (SEMs). SEMs allow for the separation of various sources of 

variance inherent in manifest measurement scores into one or more latent factors in addition 

to error variances. The latent factors represent the shared variance among the underlying 

manifest indicator variables and exhibit perfect reliabilities, since they are already separated 

from the statistically independent error variances present in the measured variables. 
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However, even if SEMs solve the problem of low reliability, the validity problem of 

EF tasks remained persistent. In our own recent research (Löffler et al., 2024) , we used a 

battery of nine EF tasks and modeled participants’ individual performances with the drift 

parameters of the drift diffusion model (Ratcliff, 1978), allowing us to control for speed-

accuracy tradeoffs. On the latent level, using SEM, we tried to separate individual differences 

in EF abilities from general, EF-unrelated processes reflected in the drift parameters. Our 

results shed alarming light on EF tasks, as no variance specific to EFs remained after 

controlling for general, EF-unrelated processes included in the drift parameters (Löffler et al., 

2024). Despite using a state-of-the-art modeling approach and combining computational 

models of cognition with SEMs, our findings revealed that EF tasks do not appear to measure 

anything else than general, EF-unrelated processes on a behavioral level.

Measuring executive functions with electrophysiological process parameters 

In the present study, we used electroencephalography (EEG) as an electrophysiological 

technique that offers several advantages compared to behavioral measurements and which is 

therefore a valuable alternative for the examination of EFs. The EEG is a non-invasive 

method that allows the measurement of neural brain activity at the scalp with high temporal 

resolution (Berger, 1929). Various metrics can be extracted from EEG data, either based on 

the frequency spectrum or in the time domain. Analyses in the time domain often employ 

event-related potentials (ERPs), which reflect the electrophysiological activity recorded on a 

specific scalp position after task-related events have occurred. For example, following the 

presentation of a stimulus event, electrophysiological activity can be measured across 

electrodes placed on the scalp and then averaged across many trials. The resulting ERPs are 

commonly divided into components with either positive or negative directions of the voltage 

values at specific recording locations and time windows. These ERPs are sensitive to task-

 Note that the study by Löffler et al. (2024) is based on the same dataset as the present study.
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specific manipulations across different conditions (Gaillard, 1988). In addition, there is 

evidence that parameters from ERP components from specific scalp positions and time 

windows (e.g. the frontal N2 component) are associated with specific cognitive processes, 

such as the N2 is mainly associated with response inhibition (for a brief review see: Luck, 

2014). This makes ERPs suitable markers for assessing individual differences in 

neurocognitive activity during EF tasks. In the present study, we therefore used these ERPs as 

dependent variables.

Typically, ERP components are quantified based on either their amplitude voltage 

values or on the latencies of their peaks. For our investigation, we opted to use two ERP 

parameters, the fronto-central N2 and the parieto-central P3 amplitude, to quantify individual 

differences in the electrophysiological activity during EF tasks. It is crucial to note that these 

ERP measures often exhibit only low-to-moderate reliabilities, which needs to be taken into 

account in individual differences research (Cassidy et al., 2012; Nebe et al., 2023; Schubert et 

al., 2023). Accordingly, we addressed the issue of unreliable ERP components by integrating 

analyses of the electrophysiological measures with a structural equation modeling approach.

The fronto-central N2 component 

The fronto-central N2 component corresponds to the second negative peak of the ERP 

waveform that is recorded at fronto-central electrode sites following the presentation of a 

visual stimulus. This component usually peaks between 200 and 350 milliseconds after the 

visual stimulus was displayed. However, the specific timing of the peak varies depending on 

individual differences and task characteristics (see for an overview of the N2: Folstein & Van 

Petten, 2008). Several theoretical frameworks and decades of empirical research have 

interpreted the N2 as an electrophysiological parameter reflecting cognitive control processes 

and there is a large body of research showing how the amplitude of the N2 is modulated by 

cognitive control demands across different EF tasks (Folstein & Van Petten, 2008; Luck, 
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2014). For example, in typical inhibition tasks such as the Arrow-Flanker task (Eriksen & 

Eriksen, 1974), the N2 component has consistently exhibited a larger amplitude in the 

incongruent trials compared to congruent and neutral trials (e.g., Bartholow et al., 2005; Heil 

et al., 2000; Yeung et al., 2004). This enhanced N2 amplitude in conflict trials could be 

interpreted as indicative of increased activation of prefrontal cognitive control functions, 

given that the frontal N2 is predominantly generated in the anterior cingulate cortex 

(Nieuwenhuis et al., 2003; Yeung et al., 2004), a region in the brain known to play a crucial 

role in EF processes (Cameron et al., 1999). In addition, typical shifting tasks have been 

associated with observable effects on the N2 component, characterized by an increased 

amplitude in shifting trials compared to repeat trials (e.g., Gajewski et al., 2010). Similarly, 

the N2 component has been linked to updating-related processes in typical updating tasks. For 

instance, previous research has demonstrated that N2 amplitudes decrease with higher 

updating demands, as observed in an N-Back task (Gevins et al., 1996). Specifically, the 3-

back condition exhibited smaller N2 amplitudes compared to the 1-back condition (Gevins et 

al., 1996; Salmi et al., 2019). Therefore, based on previous experimental findings, we selected 

the mean amplitude of the N2 component as an ERP parameter that may also capture 

individual differences in EF processes across various EF tasks. 

The parieto-central P3 component

The parieto-central P3 component describes the third positive peak that occurs after a 

relevant stimulus is presented. This ERP component typically peaks between 300 and 650 

milliseconds after the stimulus was presented (for an overview of the P3 see Polich, 2007). 

However, as with any ERP component, the specific timing of the peak varies depending on 

individual differences and task characteristics.

Donchin (1981) as well as Donchin and Coles (1988) interpreted the P3 component as 

a process parameter that reflects context updating, that is, the mental updating of broader 
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environmental representations. Specifically, the P3 reflects changes in the environment that 

are relevant to the ongoing task. In the following years, other researchers provided different 

interpretations and suggested that the P3 component specifically reflects the updating of 

working memory. (Luck, 1998, 2014; Polich, 2007; Polich & Kok, 1995; Vogel et al., 1998; 

Vogel & Luck, 2002). Furthermore, Polich (2007) described the P3 as a process parameter 

representing cognitive demands and the allocation of attentional resources. According to 

Polich's (2007) perspective, the P3 amplitude can be considered as an electrophysiological 

process parameter linked to executive demands or cognitive control. To be more specific, 

inhibition, shifting, and updating tasks demand higher cognitive resources in the conditions 

with greater processing demands compared to those conditions with lower processing 

demands. The mean amplitude of the P3 component is thought to reflect these increased 

updating, attention allocation, and inhibition demands. Consequently, this ERP component 

emerges as a promising parameter to capture individual differences in EFs. 

Empirically, several EF tasks have demonstrated effects on the mean amplitude of the 

P3 component between the condition with greater and the condition with lower processing 

demands. For instance, Pratt et al. (2011) observed increased P3 amplitudes in incongruent 

trials compared to neutral or congruent trials in a classical Flanker task. Additionally, in 

shifting tasks, numerous studies have reported larger P3 amplitudes in shifting conditions 

compared to repeat trials (e.g., Gajewski & Falkenstein, 2011). In updating tasks, particularly 

in the N-Back task, a consistent finding has been that P3 amplitudes decrease with increasing 

updating demands (Dong et al., 2015; Scharinger et al., 2015; Watter et al., 2001). 

Collectively, these findings indicate that heightened EF demands in various EF tasks elicit 

effects on the amplitudes of the P3 component. As a result, we consider the mean amplitude 

of the P3 as a possibly suitable ERP component representing individual differences in EF 

abilities across a broad range of EF tasks.
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The present study

The primary goal of this study was to investigate the factor structure of EFs using 

electrophysiological measures rather than behavioral assessments. We decided to use ERP 

components as process parameters, because they may provide a more accurate representation 

of the underlying cognitive processes due to their higher temporal resolution. To accomplish 

this, we analyzed EEG data collected from 148 participants who completed a battery of nine 

EF tasks and three simple speeded binary choice tasks. Specifically, we focused on 

participants' mean amplitudes of two ERP components: The fronto-central N2 and the parieto-

central P3, both known to be associated with EF processes. Our aim was to assess whether 

EFs, as measured by N2 and P3 amplitudes, exhibited the classical three-factor structure 

previously identified in studies using behavioral measures (e.g., Friedman et al., 2008; 

Friedman & Miyake, 2017; Miyake et al., 2000). Additionally, we examined the divergent 

validity of these factors to general, EF-unrelated properties of ERP components. Therefore, 

we isolated the variance specific to EF on the latent level by controlling for general, EF-

unrelated processes measured with a battery of simple speeded decision tasks (Löffler et al., 

2024). Lastly, we explored correlations between the EF-specific variance in the N2 and P3 

components with intelligence and WMC. This exploration was motivated by accounts positing 

that differences in EF contribute to individual differences in higher-order cognitive abilities 

(e.g., Kane et al., 2008; Kovacs & Conway, 2016; Mashburn et al., 2023). 

Methods

This study was approved by the ethics committee of the faculty of behavioral and 

cultural studies of Heidelberg University (reference number: Löf 2019/1-3). All procedures 

were conducted in accordance with the Declaration of Helsinki.
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Participants

One hundred and fifty-one people from the general population participated in our 

study. We recruited our sample with advertisements in local newspapers, with flyers, and via a 

pool of people generally interested in participating in studies. After three persons withdrew 

from further study attendance, 148 people remained in the final sample (♀ 96, ♂ 51, one 

diverse). Participants’ age ranged for 18 to 60 years (Mage = 31.52, SDage = 13.91). All 

participants were fluent in German. Thirteen participants reported being left-handed. Seventy-

eight participants wore glasses; therefore, all participants had normal or corrected-to-normal 

vision. Four participants had a middle-school degree, six had a qualification for university 

entrance for applied science, 81 participants had qualification for university entrance, 18 

participants had a university degree in applied science, 37 participants had a university 

degree, and two participants had a PhD. This paper is part of a larger study that includes 

several projects. Consequently, the sample size was not specifically planned for this project. 

While our sample size is above average for a study with electrophysiological recordings, it is 

only moderate for SEM analyses. To mitigate any issues related to the moderate sample size, 

we utilized a Bayesian approach to estimate our structural equation models, aiming to benefit 

from shrinkage (see the "Structural Equation Modeling" section in this method part for 

detailed information). As compensation for participating in our study, participants received 75 

€ and personal feedback about their intelligence and WMC test results. 

Materials 

All tasks were programmed in MATLAB 2018b (The MathWorks Inc., Natick, 

Massachusetts) with the software package Psychtoolbox version 3.0.13 (Kleiner et al., 2007). 

In each of the following EF tasks and ECTs, the relevant stimuli were presented centered in 

the middle of the screen in front of a black background. If the task did not require the 

stimulus-presentation in a specific color, the stimuli were shown in gray. The RGB color 
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codes, which we used for the shifting-, updating-, inhibition-, and ECTs can be found in Table 

S1 in the supplementary materials. In the EFs and ECTs, we instructed participants to respond 

as quickly and as accurately as possible. Table 1 shows the presentation times of the EF tasks 

and ECTs. At the beginning of each task, participants completed practice trials with feedback, 

followed by the experimental block without feedback.

Table 1 Presentation times of the experimental tasks

Task Process Fixation 
cross ISI MPT CPT PPT ITI

OE-LM shifting 400 - 600 400 - 600  ---  --- 1000 - 3000 1000 - 1500 
GL shifting 400 - 600 400 - 600  ---  --- 1000 - 3000 1000 - 1500 
NL shifting 400 - 600 400 - 600  ---  --- 1000 - 3000 1000 - 1500 
FL inhibition 400 - 600 400 - 600  ---  --- 1000 - 3000 1000 - 1500 
NP inhibition 400 - 600 400 - 600  ---  --- 1000 - 3000 1000 - 1500 
Stroop inhibition 400 - 600 400 - 600  ---  --- 1000 - 3000 1000 - 1500 
NB updating  --- 400 - 600  ---  --- 1500  ---
KT updating 400 - 600 400 - 600 1000 800 - 1200 1000 - 3000 1000 - 1500 
RS updating 400 - 600 400 - 600 1000 800 - 1200 1000 - 3000 1000 - 1500 
CRT speed 1000 - 1500  ---  ---  --- 1000 - 3000 1000 - 1500 
Sternberg speed 1000 - 1500 400 - 1000 1000 1800 - 2200 1000 - 3000 1000 - 1500 
Posner speed 1000 - 1500  ---  ---  --- 1000 - 3000 1000 - 1500 
Note. All values in the table represent milliseconds; ISI = Inter-stimulus interval; MPT = Memory item presentation time; 
CPT = Cue stimulus presentation time; PPT = Probe stimulus presentation time; ITI = Inter-trial interval; OE-LM = 
Odd/even-less/more task; GL = Global/Local task; NL = Number/Letter task; FL = Arrow Flanker task; NP = Negative 
Priming task; Stroop = Stroop task; NB = N-Back task; KT = Keep-Track task; RS = Running-Span task; CRT = Two Choice 
Reaction Time task; Posner = Posner task; Sternberg = Sternberg Memory task; Probe stimuli were presented until 
participants responded. If participants responded faster than 1000 milliseconds the stimulus remained until 1000 milliseconds 
were elapsed. The stimulus disappeared after 3000 milliseconds if the participants did not respond.

Shifting tasks 

In the following three shifting tasks, the fixation-cross and the stimuli were presented 

in the same color.

Odd/Even-Less/More task. We adopted this task from Sudevan and Taylor (1987). In 

each trial, participants saw a number between one and nine (except five). Depending on the 

color of the stimuli (fixation cross and probe stimulus), participants had to decide whether the 

number was less than or greater than five (red; les/more response-set) or whether the number 

was an odd or an even number (green; odd/even response-set). Participants responded by 
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pressing one of two keys on the keyboard. In 50% of the trials the stimulus appeared in the 

same color as one trial before (repeat condition) and in 50% of the trials the color changed 

between two successive trials (shifting condition). We pseudo-randomized the trials such that 

none of the response-sets and none of the conditions could appear more than three times in a 

row and that none of the digits appeared twice in a row. Participants first completed 10 

practice trials for each response-set (repeat trials only) followed by 20 practice trials in which 

the response-sets could shift. After the practice block, participants completed 384 

experimental trials. 

Global/Local task. We adopted this task from Miyake et al. (2000). In this task, 

participants saw Navon figures (Navon, 1977) centered in the middle of the screen. A Navon 

figure describes a geometric figure with a large shape (global figure) composed of small 

geometric figures (local figures). The figure-set included the following four geometrical 

shapes: Circle, triangle, square, and cross. Within each trial, all the small figures occurred in 

the same shape, but this shape was different from the global figure. Depending on the color of 

the stimuli (fixation cross and probe stimulus), participants had either to identify the shape of 

the large figure (red; global response-set) or the shape of the small figures (green; local 

response-set). Participants responded by pressing one of four keys on the keyboard. In 50% of 

the trials the stimulus appeared in the same color as one trial before (repeat condition) and in 

50% of the trials the color changed between two successive trials (shifting condition). We 

pseudo-randomized the trials such that none of the response-sets and none of the conditions 

could appear more than three times in a row as well as none of the shapes of the global figures 

appeared twice in a row. Participants first completed 10 practice trials for each response-set 

(repeat trials only) followed by 20 practice trials in which the response-sets could shift. After 

the practice block, participants completed 384 experimental trials. 
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Number/Letter task. We adopted this task from Rogers and Monsell (1995). 

Participants simultaneously saw a pair of stimuli consisting of a number and a letter in the 

middle of the screen. Depending on the color the stimuli (fixation cross and probe stimulus), 

participants either had to decide whether the number was less than or greater than five (red; 

number response-set) or whether the letter was a vowel or a consonant (green; letter response-

set). Participants responded by pressing one of two keys on the keyboard. In 50% of the trials 

the stimulus appeared in the same color as one trial before (repeat condition) and in 50% of 

the trials the color changed between two successive trials (shifting condition). We pseudo-

randomized the trials such that none of the response-sets and none of the conditions could 

appear more than three times in a row as well as none of the stimuli appeared twice in a row. 

Participants first completed 10 practice trials for each response-set (repeat trials only) 

followed by 20 practice trials in which the response-sets could shift. After the practice block, 

participants completed 256 experimental trials. 

Inhibition tasks

Arrow-Flanker task. We used a standard Arrow-Flanker task (Eriksen & Eriksen, 

1974) to measure inhibition. In each trial, participants saw a centrally presented arrow, which 

pointed either to the left or to the right side, flanked by four arrows, two on each side. 

Compared to the central arrow (target stimulus), the flanker arrows could either point to the 

same direction (congruent condition) or to the opposite direction (incongruent condition). 

Participants were instructed to indicate whether the target stimulus pointed to the left or to the 

right side, while ignoring the spatial orientation of the flanker arrows. Both conditions 

occurred equally often. Participants responded by pressing one of two keys on the keyboard. 

We pseudo-randomized the trials such that none of the conditions and none of the orientation 

of the target arrow appeared more than three times in a row. Participants completed 20 

practice trials followed by 200 experimental trials.  
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Negative-Priming task. We used the Negative-Priming task developed by Tipper and 

Cranston (1985). In each trial, four horizontal lines appeared next to each other in the middle 

of the vertical axes of the screen. Subsequently, an X and an O appeared simultaneously on 

two of these four lines. By pressing one of four keys on the keyboard, participants had to 

indicate on which of the four lines the O appeared. This target stimulus occurred in half of the 

trials on the same position where the X appeared one trial before. Therefore, in this case, this 

position was negatively primed by the distractor. To redirect the attention to this negatively 

primed position, participants must allocate more attentional resources to overcome the 

remaining inhibition to this position. We pseudo-randomized the trials such that none of the 

conditions (negatively primed vs. not negatively primed) appeared more than three times in a 

row and none of the stimuli appeared more than three times in a row on the same position. 

Participants completed 20 practice trials followed by 192 experimental trials.    

Stroop task. In this task, which was adapted from Stroop (1935), participants saw one 

of four color-words presented in one of four colors in the middle of the screen. The color-set 

consisted of the colors green, red, yellow, and blue. Participants had to indicate the color of 

the word while ignoring the meaning of the word by pressing one of four keys on the 

keyboard. The color and the meaning of the word could either be equal (congruent condition; 

50% of the trials) or it could be different (incongruent condition; 50% of the trials). We 

pseudo-randomized the trials such that none of the conditions appeared more than three times 

in a row and none of the words or colors appeared twice in a row. Participants completed 20 

practice trials followed by 192 experimental trials. 

Updating tasks 

N-Back task. This task was adopted from the verbal working memory conditions of 

the tasks by Gevins et al. (1996). It contained three blocks with different updating steps. The 

first block was a 0-back condition, which started with the presentation of a target letter 
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followed by 96 trials. Participants had to decide whether the presented letter is the target letter 

or not. For each participant, the target and non-target letters were randomly drawn from a set 

of four letters. Before the first block, participants completed 20 practice trials. We did not 

include the data of the 0-back condition in our analyses. The second block was a 1-back 

condition. The stimulus-set in this condition contained four letters. In each trial, participants 

saw one letter and had to indicate whether this letter was the same as one trial before by 

pressing one of two keys on the keyboard. The third block was a 2-back condition. Again, the 

stimulus-set contained four letters. In each trial, participants saw one letter and had to indicate 

whether this letter was the same as two trials before by pressing one of two keys on the 

keyboard. The practice parts of the second and third block contained 30 trials each, followed 

by 96 experimental trials. Fifty percent of the trials were matching-trials, which means that 

the presented stimulus was equal to the target-letter (respectively the stimulus one or two 

trials before). We pseudo-randomized the trials such that none of the matching-conditions and 

none of the letters appeared more than three times in a row.

Keep-Track task. We adopted the Keep-Track task from Miyake et al. (2000). 

Participants completed two blocks with different memory demands (set size one and set size 

three). The stimulus-set was divided in four categories (geometrical-figures, colors, numbers, 

letters). Each of these categories contained six different stimuli. At the beginning of each trial 

in the first block, participants were given one of these categories as target category for the 

current trial. Then they saw a sequence of seven stimuli, which contained stimuli from each of 

the four categories. After this sequence, an additional probe stimulus from the target category 

followed, and participants had to indicate whether this probe was the last stimulus presented 

from that target category by pressing one of two keys on the keyboard. Half of the trials were 

match-trials, which means that the probe was identical to the last stimulus in the target 

category. Moreover, in half of the trials, the stimulus from the target category was updated, 

which means that two stimuli from the target category were shown within one sequence. We 
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pseudo-randomized the trials such that none of the conditions (updating and matching) and 

none of the target categories appeared more than three times in a row. In the second block, 

participants were given three target categories instead of only one, again followed by the 

sequence of seven stimuli and one probe, equal to the procedure of the first block. In both 

blocks, participants completed 10 practice trials followed by 96 experimental trials.  

Running-Span task. We adopted the Running-Span task from Broadway and Engle 

(2010). This task had two blocks with different memory-set sizes (three memory-stimuli in the 

first and five memory-stimuli in the second block). The updating steps ranged from zero to 

three. In the first block, participants saw a sequence of three letters followed by zero to three 

updating letters. After this sequence, a probe stimulus appeared, and participants had to decide 

whether this probe was part of the last three presented letters. In the second block, participants 

saw a sequence of five letters followed by zero to three updating letters. Again, after this 

sequence, a probe stimulus appeared, and participants had to decide whether this probe was 

part of the last five presented letters. They indicated their choice by pressing one of two keys 

on the keyboard. Within each block, half of the trials had zero updating steps and the other 

half of the trials contained one to three updating steps with equal frequency. Additionally, half 

of the trials were match-trials (i.e., the probe stimulus was part of the updated stimuli in the 

previous sequence). We pseudo-randomized the trials such that none of the updating steps, 

none of the matching conditions, and none of the probe stimuli appeared more than three 

times in a row. In each of the two blocks, participants completed 10 practice trials followed by 

120 experimental trials.

Elementary cognitive tasks (ECTs)

Two Choice Reaction Time task. In the Two Choice Reaction Time task, participants 

saw a fixation-cross in the middle of the screen, which was surrounded by one quadratic 

frame on its left and one quadratic frame on its right side. In each trial, a plus sign appeared in 
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one of these frames and participants had to indicate whether this plus appeared in the left or in 

the right frame by pressing one of two keys on the keyboard (Chen et al., 2012). The plus sign 

appeared equally often in both frames. We pseudo-randomized the trials such that none of the 

stimulus presentation sides appeared more than three times in a row. Participants completed 

20 practice trials followed by 100 experimental trials.  

Sternberg Memory task. In each trial of the Sternberg Memory task, developed by 

Sternberg (1969), participants saw a sequence of five distinct digits randomly drawn between 

zero and nine. This sequence represented the memory-set of the corresponding trial. After this 

sequence, a question mark appeared as a cue followed by a probe stimulus. Participants had to 

decide whether this probe was part of the previously presented memory-set by pressing one of 

two keys on the keyboard. In 50% of the trials the probe was part of the memory-set 

(matching condition). We pseudo-randomized the trials such that none of the conditions 

appeared more than three times in a row and none of the probe stimuli appeared twice in a 

row. Participants completed 20 practice trials followed by 100 experimental trials.  

Posner task. In this task, developed by Posner and Mitchell (1967), participants had to 

decide whether a pair of two simultaneously presented letters are semantically identical. The 

stimulus set consisted of the following letters: A, B, F, H, Q, a, b, f, h, q. Participants 

responded by pressing one of two keys on the keyboard. For example, if participants saw an 

“AA” or an “Aa”, they had to respond that the two letters had identical names. Instead, if 

participants saw an “AB” or an “Ab”, they had to response that the two letters had different 

names. Each condition appeared in 50% of the trials. We pseudo-randomized the trials that 

none of the conditions appeared more than three times in a row. Participants completed 20 

practice trials followed by 120 experimental trials. 
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Fluid Intelligence

We used the short version of the Berlin-Intelligence-Structure Test (BIS; Jäger et al., 

1997) to measure participants’ fluid intelligence. This instrument is useful for the assessment 

of a broad range of reasoning abilities in only one hour. The test allows to measure four 

operation-related (processing capacity [PC], processing speed [PS], memory [M], creativity 

[C]) and three context-related (verbal, numerical, figural) components of intelligence with a 

battery of 15 tasks in total. To measure participants intelligence, we aggregated their 

normalized z-score values of the four operation-related scales. In our sample, participants had 

a mean IQ of 95.86 (SD = 15.90).  

Working memory capacity (WMC)

Participants’ WMC was assessed with the Memory-Updating task, the Operation- and 

the Sentence-Span task, and the Spatial Short-Term Memory task from the working memory 

test battery by Lewandowsky et al. (2010). In addition, all except five participants completed 

the Letter-Location Binding task (Wilhelm et al., 2013). Due to an error in the program, we 

could not use the data of the Spatial Short-Term Memory task. As dependent variable, we 

used participants’ proportion of correctly solved items for each task. 

Procedure

Data collection took place within one year and participants came to our laboratory for 

three measurement occasions at three-month intervals. At the beginning of the first 

measurement occasion, participants signed an informed consent. We screened participants for 

color blindness using a set of Ishihara-plates (Ishihara, 2000). In session one and two, we 

prepared participants for EEG recording and seated them in a dimly lit cabin. They then 

completed several tasks in the following order. At the first occasion: Sternberg Memory task, 

Arrow Flanker task, Global Local task, N-Back task,  task, and Stroop 
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task. Moreover, they also completed a questionnaire that asked for gender, age, education, and 

related information. At the second occasion: Running-Span task, Two Choice Reaction Time 

task, Number Letter task, Negative Priming task, Keep-Track task, and Posner task. In total, 

these two measurement occasions lasted approximately 3.5 hours each. At the third 

measurement occasion, participants completed the intelligence test, followed by the working 

memory test battery, and the letter binding task. Additionally, we administrated two further 

short tests measuring higher-order cognitive abilities, a mind-wandering questionnaire, and a 

pretzel task (these data are not reported in this paper). The third measurement occasion lasted 

approximately two hours. We administered all tasks in the same order for all participants to 

reduce between-subjects error variance (Goodhew & Edwards, 2019).

EEG Recording 

We measured participants’ EEG with 32 equidistant Ag-AgCl electrodes (see Figure 

S1 in the supplementary materials for detailed information of the electrode montage). We used 

the FpZ as ground electrode and the Cz as online reference. Offline, we re-referenced the data 

to the average of all electrodes. The impedances of all electrodes were kept under 5 kΩ. We 

recorded the EEG signal with a sampling rate of 1,000 Hz and a high-pass filter of 0.1 Hz. 

Due to recording errors, we had to discard the EEG data from two participants in session one 

and four participants in session two. 

Data Analysis 

For statistical analyses, we used the open-source software R – version 4.2.1 (R. Core 

Team, 2022) and the following packages: We preprocessed the data with “tidyverse” 

(Wickham et al., 2019) and calculated descriptive statistics with “psych” (Revelle, 2020) and 

the correlations with “Hmisc” (Harrell, 2019). Finally, we estimated the SEM parameters with 

a Bayesian approach using the package  “blavaan” (Merkle & Rosseel, 2018).
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EEG data preprocessing and intraindividual outlier analysis

Before preprocessing the EEG data, we conducted intra-individual outlier analyses for 

all tasks and removed any trials with RTs faster than 150 ms or with logarithmized RTs 

deviating more than 3 SDs from the intra-individual mean. On average, 0.69% (range: from 

0.33% to 1.06%) of the trials were detected as intra-individual outliers.

EEG data were preprocessed using the open-source toolbox EEGLAB (version 

2022.1; Delorme & Makeig, 2004) in MATLAB 2022a (The Math Works Inc., Natick, 

Massachusetts). The steps and criterion in the preprocessing pipelines were identical for each 

of the EF tasks and ECTs. First, we created a separate dataset for the independent-component 

analyses (ICA) and down-sampled this to 200 Hz. Afterwards, we filtered the continuous EEG 

and ICA datasets within each task with a second order infinite impulse response Butterworth 

band-pass filter (EEG dataset: 0.1-30 Hz; ICA dataset: 1-30 Hz). Based on the probability 

(threshold 5 SD) and kurtosis (threshold 10 SD) of the channel data, we subsequentially 

detected and discarded bad channels. Later, we interpolated these channels. After the bad-

channel detection, we re-referenced the data to the average reference. Then, we segmented the 

continuous EEG data into segments 1200 ms long, starting 200 ms before stimulus onset. For 

the detection of artifact-contaminated segments, we used an iterative automatic procedure 

with following thresholds: 1000 µV to detect large fluctuations, 5 SD of probability for 

improbable data detection, and 5% maximum of the number of segments that could be 

rejected in each iterative step. Afterwards, we conducted an independent component analysis 

(ICA), using the infomax algorithm (Bell & Sejnowski, 1995). The resulting decomposition 

matrix was added to the EEG dataset to identify independent components containing artifacts 

with the ICLabel algorithm (Pion-Tonachini et al., 2019). On average, 14.07 (SD = 4.37) ICs 

were excluded.  In the last preprocessing step, we conducted a further automated 

identification of artifact-containing segments with the same criterions as before. 
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Event-related potentials 

We quantified and analyzed the ERPs with ERPLAB (version 9; Lopez-Calderon & 

Luck, 2014), an open source toolbox for MATLAB. We calculated the ERPs time-locked on 

different types of stimuli for each EF separately. Shifting ERPs were time-locked to the 

colored fixation cross at the beginning of each trial. Updating ERPs were time-locked to the 

stimuli, which had to be updated in the sequence of the memory-set in the Keep-Track and in 

the Running-Span task, and to each stimulus in the N-Back task. The ERPs for the inhibition- 

and ECTs were time-locked to the probe stimuli. We used the preceding 200 ms before 

stimulus onset as baseline interval. ERP waveforms were calculated in the 1000 ms after 

stimulus onset. By visual inspection of the grand averages, we specified separate time 

windows for each of the different ERP components in each task (see Table 2 for the specific 

time windows). Within these time windows, we extracted participants’ mean amplitudes for 

the corresponding ERP component. For each of the different ERP components, we used the 

same electrode positions in all tasks. We measured the N2 at a fronto-central electrode, and 

the P3 at a parieto-central electrode (see Figure S1 in the supplementary materials).

Table 2 Time windows for mean amplitudes of the ERP components  
Task Process ERP time-locked to: N2 P3

OE-LM shifting fixation cross 320-380 330-580
GL shifting fixation cross 330-385 310-480
NL shifting fixation cross 320-380 340-590
FL inhibition probe 280-360 320-500
NP inhibition probe 250-350 320-540
Stroop inhibition probe 300-370 310-640

NB updating probe/ 
updating stimulus 250-350 310-460

KT updating updating stimulus 290-375 330-660
RS updating updating stimulus 260-310 335-395
CRT speed probe 300-370 270-480
Posner speed probe 290-410 340-670
Sternberg speed probe 300-390 350-670

Note. All values in the table represent milliseconds; OE-LM = Odd/Even-Less/More task; GL = Global/Local 
task; NL = Number/Letter task; FL = Arrow Flanker task; NP = Negative Priming task; Stroop = Stroop task; NB 
= N-Back task; KT = Keep-Track task; RS = Running-Span task; CRT = Two Choice Reaction Time task; Posner 
= Posner task; Sternberg = Sternberg Memory task.
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Structural equation modeling

Bayesian modeling approach: Before we estimated the parameters of the SEMs, we 

conducted inter-individual outlier analyses. Separately for each task, we excluded 

participants’ data if they showed accuracies below 70% . In this step of the inter-individual 

outlier detection, we removed on average 2.20% of participants from each task (range: from 

0% to 6.9%). Furthermore, we removed data if the mean amplitudes of the ERP components 

deviated more than 3 SD from the mean (average of removed data: 0.91 %; range: from 0% to 

2.11%). Afterwards, we z-standardized all variables for subsequent analyses. 

We estimated the SEMs using Bayesian estimation procedures, because Bayesian 

SEMs provide more adequate parameter estimates, particularly in smaller sample sizes, 

compared to conventional frequentist estimation methods (McNeish, 2016). In each model, 

the parameters were sampled with three Markov chain Monte Carlo (MCMC) chains. Each 

chain comprised 1000 warm-up samples and 3000 samples after the warm-ups. Model 

convergence was evaluated based on the Gelman-Rubin convergence statistic R̂, which 

compares the estimated between-chains and within-chain variances for each model parameter 

(Gelman & Rubin, 1992). Negligible differences between these variances were indicated by R̂ 

values close to 1. Goodness-of-fit was assessed using the Bayesian versions of the 

comparative fit index (BCFI) and the root mean square error of approximation (BRMSEA). 

Analogous to the interpretation of the comparative fit indices for frequentist-estimated 

models, BCFI values > .95 and BRMSEA ≤ .06, indicated a good model fit and BCFI values 

> .90 and BRMSEA ≤ .08 indicated an acceptable model fit (Garnier-Villarreal & Jorgensen, 

2020; Hoofs et al., 2018). Because we z-standardized all variables, we fixed the intercepts of 

 Although guessing probability is at 50% for all tasks, except for the Stroop task, the Global/Local task, and the 
Negative Priming task with a guessing probability of 25%, these tasks are generally very easy with subjects 
making very little mistakes (Mean accuracy > 90%). Therefore, we decided to have a more conservative 
threshold for exclusion at 70% instead of a threshold based on the actual guessing probability.
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all manifest variables to zero, both in our candidate models as well as in the corresponding 

baseline models specified for calculating the BCFI.

For the Bayesian SEMs, we used the following priors: For regression and factor 

loading parameters, we used normal priors with μ = 0 and σ = 10, for correlation parameters 

beta priors with α = 1 and β = 1, and for variance parameters gamma priors with a shape of 1 

and a rate of scale of 0.5. Our choice of the beta and gamma priors assures that correlations 

could not exceed the range between -1 and 1, and variances could not take on negative values. 

Model compositions: To examine the factor structure of EFs measured with ERPs and 

simultaneously account for the mean amplitudes of the N2 and the P3, we employed joint 

models across ERP components and tasks. Initially, we attempted a classical six-factor model 

(three EF factors for each ERP component) with manifest difference scores to assess whether 

these scores could effectively capture individual differences in EFs with ERPs. Afterwards, 

we avoided manifest difference scores and instead used the ERPs derived from the conditions 

with greater processing demands. Again, we designed a six-factor joint model, incorporating 

one N2 and one P3 factor for each of the three EFs. In accordance with the three-factor model 

of EF (Miyake et al., 2000), we specified the model with correlations between these latent 

factors.

Subsequently, to assess the common variance across shifting, updating, and inhibition, 

we formulated a hierarchical factor model introducing higher-order factors across the three 

EFs for the N2 and the P3, respectively. Furthermore, to isolate the EF-specific parts within 

these higher-order factors, we controlled these higher-order factors for the general, EF-

unrelated properties of the ERP components, which were measured with a battery of simple 

speeded decision tasks (ECTs). 

In the final step, we examined the specificity of the observed EF-specific variance. To 

achieve this, we employed the same hierarchical model, including indicators from both 
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conditions – those with greater processing demands and those with lower processing 

demands. All resulting latent factors were controlled for general, EF-unrelated properties of 

the ERP components. Furthermore, we introduced higher-order factors over the remaining 

credible residuals of the latent first-level factors on both sides (greater and lower processing 

demands). For instance, a higher-order factor was introduced that loaded onto the residuals of 

the latent incongruent P3 factor and the latent congruent P3 factor in inhibition tasks not 

accounted for by the general P3 factor. Moreover, we assessed the relationships of the latent 

factors with higher-order cognitive abilities, more precisely to WMC and intelligence.

Openness and transparency

We provide access to the preprocessed data and code underlying this paper via the 

Open Science Framework repository at the following link: https://osf.io/a6zr9/ (Löffler et al., 

2024). Furthermore, we provide access to the raw data and materials through the Open 

Science Framework repository: https://osf.io/4pvz3/  (Löffler & Schubert, 2024). Please note 

that the materials for the BIS are commercially licensed and are, therefore, not included. 

Neither the study nor the analyses were preregistered. We declare no conflicts of interest.

Results 

Table 3 shows the descriptive statistics for all relevant variables in our study. Notably, 

the ERP measures exhibited excellent reliability. Table 4 displays the manifest correlations 

between the mean amplitudes of the ERP components.
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Table 3 Descriptive statistics of mean amplitudes of ERP components in each task

Note: The mean amplitudes of the N2 and P3 components are given in μV; MU = memory updating; BIS-PC = 
processing capacity scale of the Berlin-Intelligence-Structure Test; BIS-PS = processing speed scale of the 
Berlin-Intelligence-Structure Test; BIS-M = memory scale of the Berlin-Intelligence-Structure Test; BIS-C = 
creativity scale of the Berlin-Intelligence-Structure Test; = Reliability scores were estimated with Spearman-
Brown corrected correlations; = Reliability scores were estimated with Cronbach’s α.
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Table 4 Manifest correlations between the mean amplitudes of the ERP components in each task  

Note: Bold printed values represent significant correlation coefficients (p <.05).
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Experimental effects 

Prior to investigating the experimental effects on the ERP measures, we conducted an 

initial analysis to examine differences between task conditions at the behavioral level. These 

analyses utilized scores employed by Miyake et al. (2000), including condition-dependent 

mean reaction time scores for the shifting and inhibition tasks and arcsine-transformed 

proportion correct scores for the updating tasks. On the behavioral level, effect sizes revealed 

medium to strong effects, with Cohen’s d ranging from 0.72 for the Running-Span task to 

1.85 for the Stroop task (see Table S2 in the supplementary materials for detailed information 

on the experimental effects at the behavioral level). These findings suggest significant 

variations between task conditions. More details about the behavioral effects and findings can 

be found in a previous publication of the data (Löffler et al., 2024). Based on these results, it 

is evident that the tasks are suitable for further investigation at the electrophysiological level. 

For the sake of completeness, we would like to note that Figure S2 in the supplementary 

materials shows the ERP waves from the fronto-central N2 and the parieto-central P3 of the 

ECTs.

Shifting tasks 

N2. We found a mixed pattern of effects for the differences between the repeat and 

shifting conditions in each of the three tasks when examining the mean amplitudes of the N2 

component (see Figure 1). In the Odd/Even-Less/More task, we did not observe any effect 

between the two conditions, with t(139) = 1.33, p = .185, Cohen’s d = 0.11, 95% CI [-0.05, 

0.28]. However, in the Global/Local task and in the Number/Letter task, participants showed 

larger N2 amplitudes in the shifting than in the repeat conditions, with t(143) = 2.78, p = .009, 

Cohen’s d = 0.23, 95% CI [0.07, 0.40], and t(132) = 2.18, p = .031, Cohen’s d = 0.19, 95% CI 

[0.02, 0.36], respectively.
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P3. We observed moderate to strong effects in the differences between the repeat and 

shifting conditions in each of the three tasks for the mean amplitudes of the P3 component 

(see Figure 1). Participants showed larger P3 amplitudes in shifting compared to repeat trials 

in the Odd/Even-Less/More task t(138) = -10.91, p < .001, Cohen's d = -0.93, 95% CI [-1.13, 

-0.73], in the Global/Local task, t(142) = -7.78, p < 001, Cohen's d = -0.65, 95% CI [-0.83, -

0.47], and in the Number/Letter task t(130) = -8.59, p < .001, Cohen's d = -0.75, 95% CI [-

0.95, -0.56].
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Inhibition tasks

N2. Regarding the mean amplitudes of the N2 component in inhibition tasks, we 

observed an inconsistent pattern of effects between the congruent (no-priming) and 

incongruent (priming) conditions across all three tasks (see Figure 2). Participants showed a 

larger N2 mean amplitude in the incongruent compared to the congruent condition in the 

Arrow-Flanker task, t(142) = 4.34, p < .001, Cohen’s d = 0.36, 95% CI [0.19, 0.53], as well as 

in the Stroop task, t(142) = 2.21, p = .028, Cohen’s d = 0.18, 95% CI [0.02, 0.35]. However, 

we did not find any significant differences in the N2 mean amplitudes between the two 

conditions in the Negative-Priming task, with t(128) = 0.67, p = .505, Cohen’s d = 0.06, 95% 

CI [-0.11, 0.23]. 

P3. We did not observe any effects on the mean amplitudes of the P3 component in the 

inhibition tasks in any of the three tasks (see Figure 2). In detail, we did not find any 

differences in mean P3 amplitudes in the Arrow-Flanker task, t(142) = 1.38, p = .170, Cohen’s 

d = 0.12, 95% CI [-0.05, 0.28], in the Negative-Priming task, t(128) = -0.67, p = .506, 

Cohen’s d = -0.06, 95% CI [-0.23, 0.11], or in the Stroop task, t(144) = 1.91,  p = .058, 

Cohen’s d = 0.16, 95% CI [-0.01, 0.23].
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Updating tasks 

N2. We found small to moderate effects for the differences between the relevant 

conditions in the updating tasks (see Figure 3). Participants showed smaller N2 amplitudes in 

the 2-back condition compared to the 1-back condition in the N-Back task, t(133) = -2.31,  p = 

.022, Cohen’s d = -0.20, 95% CI [-0.37, -0.03]. Also, in the Keep-Track task and the Running-

Span task, they showed smaller N2 amplitudes when memory item was updated in 

participants’ memory compared to items on positions in the memory-set, which were encoded 

for the first time, t(123) = -6.72, 95%, p < .001, Cohen’s d = -0.60, 95% CI [-0.80, -0.41] and, 

t(132) = -9.95,  p < .001, Cohen’s d = -0.86, 95% CI [-1.07, -0.67], respectively. Taken 

together, the condition with greater processing demands showed less negative amplitudes in 

the N2 component compared to the condition with lower processing demands. 

P3. We observed a mixed pattern of effects for the mean amplitudes of the P3 

component in the updating tasks (see Figure 3). Firstly, in the N-Back task, we observed a 

significant difference in P3 amplitude between the 1-back and 2-back conditions. Specifically, 

the P3 amplitude was smaller in the 2-back condition compared to the 1-back condition, 

t(132) = 7.52,  p < .001, Cohen’s d = 0.65, 95% CI [0.47, 0.84]. In contrast, the Running-Span 

task showed an opposite trend. Here, participants exhibited a larger P3 amplitude when an 

item was updated in the memory set, as opposed to when an item was encoded for the first 

time, t(131) = -8.79, p < .001, Cohen’s d = -0.76, 95% CI [-0.96, -0.57]. However, a detailed 

examination of the grand average ERP data, particularly in the parieto-central region, suggests 

that this P3 effect might have originated from a difference already present in the N2 time 

window. Finally, in the Keep-Track task, no significant differences were found in the P3 

amplitudes between updating and memory items, t(122) = -1.68, 95% CI , p =.096, Cohen’s d 

= -0.15, 95% CI [-0.33, 0.03]. Overall, these findings indicated that the effects on P3 
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amplitudes vary depending on the specific updating task involved. This inconsistency 

underscores the complexity of the cognitive processes involved in these tasks.
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indicators. This model demonstrated a mediocre fit to the data, PPp (51) = .330, BCFI = .693, 

95% CI [.380, 1.00], BRMSEA = .030, 95% CI [.007, .050].  The relatively low BCFI value 

implies that the baseline model, which treats all manifest variables as uncorrelated, was 

already adequate in explaining the data. This inference is further supported by the BRMSEA 

of .053 (95% CI [.048, .057] of the baseline model, which suggests that the N2 and P3 

difference scores across tasks may not be credibly related. Additionally, the latent factors in 

our model mostly did not show credible variances, with the exceptions of shifting P3, σ² = 

.050, 95% PI [.001, .283], and updating P3, σ² = .063, 95% PI [.001, .246]. This result 

indicates that our model might not be the best representation of the data structure. Moreover, 

the reliability of the difference scores was largely unsatisfactory. A substantial majority, 15 out 

of 18 difference scores, exhibited Spearman-Brown corrected odd-even correlations below 

.50, as detailed in Table S3 in the supplementary materials. These findings suggest that the 

manifest difference scores of the mean N2 and P3 amplitudes are not adequate for measuring 

individual differences in EFs.

This model is illustrated in Figure 4. It demonstrated a good fit to 

the data PPp (51) = .060, BCFI = .956, 95% CI [.936, .973], BRMSEA = .049, 95% CI [.039, 

.059]. Crucially, this model identified distinct factors for the N2 and P3 components within 

each of the three EFs. These latent factors showed moderate to strong correlations (see Figure 

4). However, an exception was noted: the shifting P3 factor did not show a credible 

relationship with the inhibition N2 and updating N2 amplitudes.
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Figure 4 Three factors of executive functions with N2 and P3 amplitudes and correlated 
factors

Note. The figure displays standardized path weights, unstandardized residual variances, and correlation 
coefficients alongside the corresponding paths. Any non-credible estimates are grayed out. OE-LM = odd/even-
less/more task; GL = Global/Local task; NL = Number/Letter task; FL = Arrow Flanker task; NP = Negative 
Priming task; Stroop = Stroop task; NB = N-Back task; KT = Keep-Track task; RS = Running-Span task; 
Nestpar = Number of estimated parameters; PPp = Posterior predictive p value; BCFI = Bayesian comparative fit 
index; BRMSEA = Bayesian root mean square error of approximation.

Given the correlations we found within the N2 and P3 ERP components, we refined 

our model to include two higher-order latent factors. This is a common factor for greater 

processing demands (GPD) for the N2 component and for the P3 component respectively, as 

shown in Figure 5A. There is one common factor that GPD for the N2 component, and there 

is one analog factor for the P3 component, as shown in Figure 5A. This revised model also fit 

the data well, evidenced by PPp (43) = .010, BCFI = .939, 95% CI [.921, .955], BRMSEA = 

.056, 95% CI [.048, .064]. A key finding in this model was the strong correlation between 

these two higher-order GPD factors, with a correlation coefficient of r = -.51, 95% CI [-.67, -

.34].  This suggests a credible relationship between the GPD factors across the N2 and P3 

components. Additionally, we observed credible residual variances for all lower-level latent 
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factors, except for the P3 updating factor (see Figure 5A). These residual variances may 

indicate individual differences in specific EFs as captured by the ERP components. Prior to 

delving deeper into these individual differences, we aimed to discern the extent to which the 

common GPD factors for N2 and P3 represented shared variance in EFs and variance 

attributable to general, non-EF related decision processes.

To explore the influence of general, EF-unrelated processes on the N2 and P3 

components, we developed a further model. This model incorporated two new factors 

representing these general processes, specifically within the N2 and P3 components. For this 

purpose, we used a battery of three simple decision tasks (ETCs) to construct these factors, 

referred to as ECTs N2 and ECTs P3 (illustrated in Figure 5B). This model showed a 

acceptable fit of the data, PPp (57) < .001, BCFI = .817, 95% CI [.795, .840], BRMSEA = 

.067, 95% CI [.063, .071]. A notable finding was that the common GPD P3 factor was 

completely accounted for by the EF-unrelated ECTs P3 factor, leaving no credible residual 

variance, σ² = .002, 95% PI [.000, .082]. Similarly, the common N2 factor was almost entirely 

explained by the EF-unrelated ECTs N2 factor. However, this factor did show credible 

residual variance, σ² = .010, 95% PI [.003, .239], suggesting that it might capture some EF-

specific processes related to the N2 amplitudes across different EF tasks. Furthermore, the 

two general, EF-unrelated ERP factors correlated strongly negatively with each other r = -.54, 

95% CI [-.68, -.39]. At the first latent level, all residuals exhibited credible variances, with the 

exceptions of the updating P3 (σ² = .056, 95% PI [.000, .165]) and the inhibition N2, σ² = 

.062, 95% PI [.000, .191]. 
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Figure 5 The hierarchical structure of the three factors of executive functions measured with N2 and P3 amplitudes

Note. The figure displays standardized path weights, unstandardized residual variances, and correlation coefficients alongside the corresponding paths. Any non- 
estimates are grayed out. Note that the path coefficients linking the latent “ETCs” factors to the latent “Common” factors reflect regression weights, not factor loadings. CRT = 
Two Choice Reaction Time task; Posner = Posner task; Sternberg = Sternberg Memory task; GPD = Greater processing demands; Nestpar = Number of estimated parameters; PPp 
= Posterior predictive p value; BCFI = Bayesian comparative fit index; BRMSEA = Bayesian root mean square error of approximation. 
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, PPp (57) < .001, BCFI = .856, 95% CI [.842, .867], 

BRMSEA = .078, 95% CI [.075, .082]. 

Findings were similar to the model with greater processing demands: In this model, the 

common P3 factor across the conditions with lower processing demands was fully explained 

by general processes represented by the P3 ECT factor (σ² = .030, 95% PI [.000, .106]). The 

common N2 factor, however, again showed credible residual variance after controlling for the 

ECTs N2 factor, σ² = .129, 95% PI [.004, .283], mirroring observations from the previous 

greater processing demands model. At the first latent level, all residuals showed credible 

variances except for the non-updating N2 (σ² = .046, 95% PI [.000, .145]) and the non-

updating P3 (σ² = .016, 95% PI [.000, .077]) factors. 

The similarity in the structures between these two models raises an important question: 

do the residual variances in both models represent the same or different processes? If we 

follow the concept of additive processes in EF tasks, the residuals of the greater processing 

demand conditions should be independent of the lower processing demands conditions if they 

are specific to EFs. Conversely, if these residuals show strong correlations with their 
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counterparts (e.g., the shifting P3 residuals with the repeat P3 residuals), it implies that these 

variances represent properties common to all tasks within a specific EF (e.g., specific task 

characteristics or heightened attentional control demands), but they may not be indicative of 

experimentally manipulated EF abilities. 
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Figure 6 The three factors of the conditions with less processing demands controlled for general, EF-unrelated properties of the N2 and P3 
components

Note. The figure displays standardized path weights, unstandardized residual variances, and correlation coefficients alongside the corresponding paths. Any non-credible 
estimates are grayed out. Note that the path coefficients linking the latent “ETCs” factors to the latent “Common” factors reflect regression weights, not factor loadings. OE-LM 
= odd/even-less/more task; GL = Global/Local task; NL = Number/Letter task; FL = Arrow Flanker task; NP = Negative Priming task; Stroop = Stroop task; NB = N-Back task; 
KT = Keep-Track task; RS = Running-Span task; CRT = Two Choice Reaction Time task; Posner = Posner task; Sternberg = Sternberg Memory task. LPD = lower processing 
demands; Nestpar = Number of estimated parameters; PPp = Posterior predictive p value; BCFI = Bayesian comparative fit index; BRMSEA = Bayesian root mean square error 
of approximation.
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The model provided a largely acceptable account of the data, PPp (157) < .001, BCFI = 

.889, 95% CI [.883, .895], BRMSEA = .063, 95% CI [.062, .065]. 

we found no variance shared 

between lower and higher processing demands, and no specific variance for either condition.
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relationship with participants’ 

r = .32, 95% CI [.15, .48]). This finding 

suggests that individuals with higher P3 amplitudes tend to have greater WMC
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general, EF-unrelated properties of the N2 
and P3 components

Note. The figure displays standardized path weights, unstandardized residual variances, and correlation coefficients alongside the corresponding paths. Any non-
estimates are grayed out. Note that the path coefficients linking the latent “ECTs” factors to the latent “Common” factors reflect regression weights, not factor loadings. The latent 
variables with colored names were correlated with intelligence and WMC; GPD = greater processing demands; LPD = Lower processing demands; Nestpar = Number of 
estimated parameters; PPp = Posterior predictive p value; BCFI = Bayesian comparative fit index; BRMSEA = Bayesian root mean square error of approximation.
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Discussion

In this study, we aimed to investigate the factor structure of EFs by employing ERP 

mean amplitudes as electrophysiological correlates measuring EF abilities. Specifically, we 

used the mean amplitudes of the fronto-central N2 and parieto-central P3 components, as 

previous studies have found experimental effects in EF tasks on these components (e.g., 

Bartholow et al., 2005; Dong et al., 2015; Gajewski et al., 2010; Heil et al., 2000; Pratt et al., 

2011; Salmi et al., 2019; Scharinger et al., 2015; Watter et al., 2001; Yeung et al., 2004). 

Moreover, we used Bayesian SEMs to disentangle various sources of variance and to isolate 

EF-specific parts of ERP components from variance associated with participants' general, EF-

unrelated processes. Our results revealed that the variances in N2 and P3 amplitudes in EF 

tasks could be decomposed into components specific to the tasks, general cognitive 

processing, and components specific to EF. Further analysis, however, indicated that these 

EF-specific components were present in experimental conditions both with and without 

induced cognitive control demands. Moreover, we found that these components were strongly 

correlated across conditions with varying levels of control demands. Ultimately, our findings 

raise questions about the validity of using N2 and P3 amplitudes as indicators of individual 

differences in EFs, especially when based on the additive framework commonly employed in 

typical EF tasks.

Experimental effects on ERP amplitudes

Shifting tasks

On the experimental level, we observed a mixed pattern of experimental effects. 

Specifically, participants showed larger negative N2 amplitudes and more positive P3 

amplitudes in shifting trials compared to repeat trials in each of the shifting tasks, except for 

the N2 in the Odd-Even/Less-More task. These results align with our hypotheses and are 

consistent with previous research findings (e.g., Gajewski et al., 2010; Gajewski & 

Measuring Cognitive Control through Neurocognitive Process Parameters                                   A3 - 48



Falkenstein, 2011). Shifting trials require more of participants’ cognitive control processes 

and contain enhanced task demands, reflected by enhanced N2 amplitudes (Folstein & Van 

Petten, 2008; Luck, 2014). Furthermore, the observed effects on the P3 amplitudes during 

shifting trials are in line with the interpretation of the P3 component as a process parameter 

reflecting context updating processes in response to relevant environmental changes 

(Donchin, 1981; Donchin & Coles, 1988). During shifting trials, participants have to update 

their response sets as the ongoing tasks changes for the next trial, leading to increased P3 

amplitudes compared to repeat trials. 

Inhibition tasks

(e.g., Bartholow et al., 2005; Heil et al., 2000; Yeung et al., 2004)

(Folstein & Van Petten, 2008; Luck, 2014)

Groom & Cragg (2015) as well as of Pratt et al. (2011)

Polich (2007)
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Polich's (2007)

Updating tasks

Gevins et al. (1996) Salmi et al. (2019)

(Folstein & Van Petten, 2008; Luck, 2014)

(Dong et al., 2015; Scharinger et al., 2015; Watter et al., 

2001)
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(Luck, 1998, 2014; Polich, 2007; Polich & Kok, 1995; 

Vogel et al., 1998; Vogel & Luck, 2002). 

(e.g., Luck, 2014)  

The factor structure of individual differences in ERP components

To study individual differences in ERP amplitudes, we used Bayesian SEMs to 

separate different sources of variance and examine the factor structure of EFs. 

Problems measuring EFs using difference scores

One objective of our study was to investigate whether manifest difference scores would 

exhibit sufficient interrelations to support the three-factor structure of EF (Miyake et al., 

2000). However, this model did not provide an adequate fit to the data, and we found that 

most ERP measures did not correlate across tasks. This aligns with findings from previous 

research, which have demonstrated that manifest difference scores in EF tasks based on 

behavioral measures often suffer from unreliability due to the large influence of unsystematic 

errors (Hedge et al., 2018; Rouder et al., 2023; Rouder & Haaf, 2019; Schubert et al., 2022). 

No EF-specific variance in the conditions with greater processing demands

Because the N2 and P3 difference scores were not meaningfully correlated across 

tasks, we instead used the N2 and P3 amplitudes in the conditions with greater processing 

demands and controlled them for N2 and P3 amplitudes recorded in tasks with minimal 

attentional control demands (three simple decision tasks). This model initially confirmed the 

expected three-factor structure on the first latent level within each of the two ERP 
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components, with moderate to strong intercorrelations within the ERP components, leading to 

a hierarchical structure. This structure included higher-order factors for both the N2 and P3 

components, along with credible residual variances at the first latent level. These findings 

initially aligned with the classical unity/diversity framework of EFs with a higher-order factor 

for the N2 and the P3 components, respectively, along with some remaining credible residual 

variances at the first latent level. It appeared that EF abilities share common mechanisms 

contributing to individual differences in EF (the hierarchical factors). Additionally, each EF 

contains specific abilities, which are independent from the other EFs (the residual variances). 

These findings initially aligned with the classical unity/diversity framework of EFs with a 

higher-order factor for the N2 and the P3 components (e.g., Friedman et al., 2008; Friedman 

& Miyake, 2017; Miyake et al., 2000).

However, when we introduced factors representing general, EF-unrelated processes 

(the latent ECTs factors), these accounted for nearly all the variance in the hierarchical 

factors. The higher-order P3 factor was fully explained, and the higher-order N2 factor 

showed only a small residual variance. Further analysis, including a model with lower 

processing demands conditions, revealed a similar pattern, suggesting that the residuals might 

not be specific to the experimentally induced attentional control demands. Nevertheless, we 

found that some factors specific to shifting and inhibition tasks that loaded onto ERP 

amplitudes measured in conditions with lower as well as greater processing demands could 

not be explained by general, EF-unrelated factors. These factors are unlikely to represent the 

shifting and inhibition demands typically manipulated in EF experiments, as they were not 

exclusive to conditions with higher processing demands. Nonetheless, it is possible that these 

factors might be indicative of elevated attentional control demands. This is because tasks 

involving shifting and inhibition often require more conflict monitoring compared to simpler 

decision tasks that lack response or task-set conflicts. Therefore, these specific factors may 

reflect a different dimension of cognitive processing, potentially linked to general heightened 
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top-down control in conflict tasks, rather than experimentally induced shifting and inhibition 

demands per se. 

This interpretation aligns with the conflict monitoring theory put forth by Botvinick et 

al. (2001). According to this theory, the cognitive system is engaged in a continuous process 

of monitoring the level of conflict encountered during tasks. Depending on the degree of 

conflict, the system adjusts the extent of top-down control accordingly. This suggests that 

individual differences in the ability to monitor and respond to conflict, as well as in the 

modulation of top-down control, could manifest across both low and high processing demand 

conditions, particularly in tasks that inherently involve some form of conflict. Therefore, the 

factors we identified could be indicative of this broader conflict-monitoring and control 

mechanism, rather than being specific to the unique demands of shifting and inhibition.

To further assess the nature of these residual factors, we correlated them with 

intelligence and WMC, based on the premise that differences in attentional control should be 

related to higher-order cognitive abilities (e.g., Kane et al., 2008; Kovacs & Conway, 2016). 

However, no credible correlations were found, suggesting that these factors do not validly 

capture individual differences in EF-related processes. 

In conclusion, our findings indicate that the shared processes among EF tasks are 

general and not specific to EF abilities. This mirrors our recent behavioral research findings 

(Löffler et al., 2024), where general, EF-unrelated processing abilities were found to account 

for the shared variance in EF tasks. This challenges the conventional use of EF tasks in 

individual differences research, suggesting that their shared variance is primarily indicative of 

general processing abilities, both at the electrophysiological and behavioral levels.  
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(e.g., Gevins, 2000)

(Donchin, 1981; Donchin 

& Coles, 1988; Luck, 1998, 2014; Polich, 2007; Polich & Kok, 1995; Vogel et al., 1998; 

Vogel & Luck, 2002).

Limitations

(Larson et al., 2009; Rey-Mermet, Gade, & Steinhauser, 2019)

(Larson et al., 2009)

(e.g., Kopp et al., 1996; Schubert et al., 

2022; Willemssen et al., 2004)

 Cavanagh & Frank, 2014) Klimesch (2012) suggested that the 

individual peak alpha frequency reflects differences in inhibitory control. 

Busch et al. (2024)
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While Busch et al. (2024)

make it evident 

Although 

(Kretzschmar & Gignac, 2019; Schönbrodt 

& Perugini, 2013)

Conclusion

general, EF-unrelated 
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reflect the shifting and inhibition demands 

typically manipulated in EF experiments, but they may still measure overall elevated 

attentional control demands in conflict trials. Third, we found a positive correlation between 

P3 amplitudes measured across various tasks and WMC, which corroborates the theoretical 

perspective of the P3 component as a reflection of working memory updating processes.
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Supplementary Materials 

Figure S1 Electrode montage of 32 equidistant electrodes 

Note. We measured the N2 on the fronto-central electrode 1, and the P3 on parieto-central electrode 11.  
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Table S1 The RGB color codes for the colors used in the experminental tasks 

Table S2 The experminental effects of the EF tasks on the behavioral level

Note OE-LM = odd/even-less/more task; GL = Global/Local task; NL = Number/Letter task; FL = Arrow Flanker 
task; NP = Negative Priming task; Stroop = Stroop task; NB = N-Back task; KT = Keep-Track task; RS = 
Running-Span task; Mean RT = Mean reaction time; A.T. proportion = Arcsine transformed proportion correct; 
95% CI represents the lower and upper boundary of the 95 % confidence interval for Cohen’s d. 

Table S3 Relibilities of the ERP difference scores

Note OE-LM = odd/even-less/more task; GL = Global/Local task; NL = Number/Letter task; FL = Arrow Flanker 
task; NP = Negative Priming task; Stroop = Stroop task; NB = N-Back task; KT = Keep-Track task; RS = 
Running-Span task. Reliability scores were estimated with Spearman-Brown corrected correlations. 
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