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Abstract

This thesis explores two complementary approaches to testing and understanding grav-
ity beyond General Relativity (GR). The first part focuses on Generalized Proca theo-
ries—vector-tensormodels that extend the Proca action through derivative self-interactions
and non-minimal couplings, whilemaintaining second-order equations ofmotion and avoid-
ing ghost instabilities. We analyze the quantum consistency of these theories in both flat
Minkowski spacetime and weakly curved backgrounds. In flat space, we compute one-loop
corrections and observe the emergence of gauge-invariant structures, suggesting a form of
radiative stability. In curved spacetime, we develop a scalar-vector-tensor (SVT) decom-
position to isolate physical modes and consistently integrate out non-dynamical fields. Our
results show that the theories remain well-behaved under quantum corrections, supporting
their viability as effective field theories.

The second part leverages gravitational wave (GW) observations as precision probes
of strong-field gravity. Using convolutional neural networks (CNNs), we construct a ma-
chine learning framework to classify GW signals as either consistent with GR or exhibiting
beyond-GR (BGR) deviations. The dataset includes both artificial phase deformations and
physically motivated waveforms derived using the parameterized post-Einsteinian (ppE)
formalism. A key tool is the response function, which captures the sensitivity of the wave-
form to small deformations. We show that training neural networks on response functions
significantly improves classification accuracy and lowers detection thresholds. Applied to
massive graviton models, this approach allows us to estimate the smallest graviton mass
distinguishable from GR predictions.

Together, these investigations form a coherent program to study modified gravity from
both theoretical and observational perspectives, contributing to the broader effort of devel-
oping consistent and testable alternatives to Einstein’s theory.

vii





Zusammenfassung

Diese Dissertation untersucht zwei komplementäre Ansätze zur Überprüfung und zum
besseren Verständnis der Gravitation jenseits der Allgemeinen Relativitätstheorie (ART).
Der erste Teil konzentriert sich auf Generalized Proca-Theorien – Vektor-Tensor-Modelle,
die die klassische Proca-Wirkung durch derivative Selbstwechselwirkungen und nicht-
minimale Kopplungen erweitern, wobei die Feldgleichungen zweiter Ordnung erhalten
bleiben und Geisterfreiheiten vermieden werden. Wir analysieren die quantenkonsistente
Struktur dieser Theorien sowohl im flachen Minkowski-Raumzeit-Hintergrund als auch
in schwach gekrümmten Raumzeiten. In flachem Raum berechnen wir Ein-Schleifen-
Korrekturen und beobachten das Auftreten gauginvarianter Strukturen, was auf eine Form
quantenmechanischer Stabilität hindeutet. Für gekrümmte Hintergründe entwickeln wir
eine Skalar-Vektor-Tensor (SVT)-Zerlegung, um physikalische Freiheitsgrade zu isolieren
und nicht-dynamische Felder systematisch zu eliminieren. Unsere Ergebnisse zeigen, dass
diese Theorien unter quantenmechanischen Korrekturen stabil bleiben und als effektive
Feldtheorien konsistent sind.

Der zweite Teil nutzt Gravitationswellen (GW) als präzise Testinstrumente für starke
Gravitationsfelder. Mithilfe von Convolutional Neural Networks (CNNs) entwickeln wir
einMachine-Learning-Framework, dasGravitationswellen-Signale klassifiziert – entweder
als konsistent mit ART oder als Anzeichen für Abweichungen jenseits der ART (BGR). Der
Datensatz umfasst sowohl künstlich veränderte Phasen als auch physikalisch motivierte
Signale, die mithilfe des parameterisierten post-Einsteinischen (ppE)-Formalismus kon-
struiert wurden. Ein zentrales Werkzeug ist dabei die Response-Funktion, die beschreibt,
wie empfindlich beobachtbare Größen auf kleine Phasenverformungen reagieren. Wir
zeigen, dass das Training von neuronalen Netzwerken auf Basis der Response-Funktion die
Klassifizierungsgenauigkeit verbessert und die Nachweisgrenzen für BGR-Signale deut-
lich senkt. Am Beispiel massiver Graviton-Theorien schätzen wir die kleinste vom Netzw-
erk detektierbare gravitative Massenschwelle ab.
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x Zusammenfassung

Zusammen bilden diese Untersuchungen ein kohärentes Programm zur theoretischen
und beobachtungsbasierten Analyse modifizierter Gravitation und leisten einen Beitrag zur
Entwicklung konsistenter und überprüfbarer Alternativen zur Einstein’schen Theorie.
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Chapter 1

Introduction and Motivations

1.1 Probing Modified Gravity: A Unified Perspective

Over the past two decades, gravitational physics has undergone a remarkable transforma-
tion, driven by both theoretical insights and experimental breakthroughs. On the obser-
vational side, the direct detection of gravitational waves (GWs) by the LIGO and Virgo
collaborations has opened an entirely new window into the strong-field regime of gravity.
On the theoretical side, a wide array of models have emerged to address persistent tensions
in cosmology and quantum gravity. Despite its enormous success, General Relativity (GR)
is widely regarded as an effective theory, likely to break down at some energy scale or under
extreme conditions.

This thesis investigates two complementary directions in the study of gravity beyond
Einstein: (i) the quantum consistency of vector-tensor theories known asGeneralized Proca
models, and (ii) the detection and classification of deviations fromGR in gravitational wave
signals using machine learning. While these topics may seem disparate at first glance,
they are united by a common goal: to understand the structure and limits of gravitational
dynamics in the broader context of modified gravity theories. In what follows, we first
discuss the motivation and scope of each direction individually, then highlight how they fit
together into a coherent program.

1.2 Generalized Proca Theories and Quantum Stability

General Relativity describes gravity as a massless spin-2 field propagating on a curved
spacetime, but it lacks a consistent quantum field theoretic completion. One promising
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2 Gravitational Waves as a Probe of New Physics

avenue for extending GR involves the introduction of massive spin-1 fields with derivative
self-interactions, leading to so-called Generalized Proca theories. These vector-tensor
models extend the standard Proca action by including higher-order derivative and non-
minimal couplings, constructed such that the equations ofmotion remain second order—thus
avoiding Ostrogradsky instabilities.

Generalized Proca theories are natural vector-field analogues ofHorndeski andGalileon
scalar-tensor models. Their structure ensures that only three propagating degrees of free-
dom remain: two transverse and one longitudinal polarization. These theories have been
widely studied in cosmology, where a background vector field may spontaneously break
Lorentz symmetry while maintaining spatial isotropy, potentially offering new insights into
dark energy or early universe dynamics.

A key requirement for any effective field theory is quantum stability: the theory should
remain consistent under loop corrections, with no dangerous operators reintroduced by
renormalization. In flat Minkowski spacetime, previous studies have shown that Gener-
alized Proca theories exhibit a surprising degree of radiative stability, akin to Galileon
models. This thesis extends those results by explicitly computing one-loop divergences in
simplified Proca models, including 2-point, 3-point, and 4-point functions. We find that
certain gauge-invariant structures, such as �[`a − m`ma, emerge from loop corrections,
hinting at an effective restoration of gauge symmetry at the quantum level.

We then turn to curved backgrounds, where a non-zero vacuum expectation value of
the vector field introduces mixing between gravitational and vector perturbations. This
modifies the propagator structure and complicates loop calculations. We develop tools
to handle these challenges using both covariant methods and a scalar-vector-tensor (SVT)
decomposition, which isolates the physical degrees of freedom and facilitates perturbative
computations. Our results show how to consistently eliminate non-dynamical fields and
evaluate loop integrals even in the presence of anisotropic dispersion relations.

Together, these investigations provide a comprehensive analysis of Generalized Proca
theories as candidate low-energy effective descriptions of modified gravity, with careful
attention paid to quantum consistency in both flat and weakly curved spacetimes.

1.3 Gravitational Waves as a Probe of New Physics

The first direct detection of gravitational waves in 2015 marked a turning point in exper-
imental gravity. These signals, produced by the inspiral and merger of compact binaries,
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carry detailed information about the dynamics of spacetime under extreme conditions. As
such, they offer an unparalleled opportunity to test GR in regimes far beyond what was
previously accessible.

While the observed waveforms are so far consistent with GR, many extensions to Ein-
stein’s theory predict subtle modifications, particularly in the inspiral phase of binary
coalescences. These deviations could arise from additional fields, modified propagation
speeds, parity-violating terms, or extra polarizations. A widely used framework for cap-
turing such effects is the parameterized post-Einsteinian (ppE) formalism, which encodes
beyond-GR (BGR) corrections as deformations of standard waveforms.

Traditional matched filtering techniques are highly effective for detecting known sig-
nals, but they rely on explicit waveform templates. This poses a limitation when searching
for small or unmodeled deviations. Recent advances in machine learning (ML), partic-
ularly convolutional neural networks (CNNs), offer a promising alternative. These data-
driven models excel at pattern recognition and can identify features in noisy time-series
data that may evade traditional methods.

In this thesis, we construct a machine learning pipeline to classify gravitational wave
signals according to their underlying gravitational theory. We generate datasets containing
both GR and BGR waveforms, including artificial phase shifts, modified post-Newtonian
coefficients, and physically motivated ppE corrections. We train CNNs to distinguish be-
tween these classes and evaluate their performance under realistic noise conditions.

A key innovation in our approach is the use of the response function, which maps phase
deformations to changes in observable overlap. This representation improves classification
accuracy and interpretability, enabling the network to detect deviations smaller than those
visible to the human eye. We demonstrate that the classifier approaches the Bayes optimal
limit in idealized settings, and apply it to estimate the minimal graviton mass detectable
via waveform distortions in massive gravity scenarios.

1.4 Connecting the Threads

At first glance, the quantum consistency of vector-tensor theories and the machine learning
classification of gravitational waveforms may seem to belong to different domains. How-
ever, both address fundamental questions about the validity and structure of gravity beyond
GR. The former investigates whether certain modifications are theoretically viable, while
the latter probes whether such modifications can be observationally detected.
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Together, these efforts contribute to a broader program: testing the limits of Einstein’s
theory through both theoretical consistency and empirical observability. On one hand,
Generalized Proca theories provide well-defined, ghost-free modifications of gravity that
may serve as realistic alternatives to GR. On the other hand, gravitational wave obser-
vations offer a direct means to test these modifications, especially when combined with
modern machine learning techniques capable of detecting faint imprints of new physics.

This thesis thus represents a two-pronged approach to exploring modified gravity: the-
oretical validation through quantum field theoretic methods, and empirical classification
through data-driven analysis of gravitational waveforms. Both avenues are crucial for a
complete understanding of gravity in the 21st century.

1.5 Thesis Outline

The structure of the thesis is as follows:

• Chapter 2 provides a review of spin-1 field theories, focusing on their classical and
quantum consistency. We discuss the representation theory of the Poincaré group,
the role of gauge invariance, and the embedding of spin-1 particles into field theory
frameworks.

• Chapter 3 develops the construction of self-derivative interaction theories, such as
scalar Galileons and Generalized Proca theories. We discuss the symmetry princi-
ples, second-order dynamics, and effective field theory structure that underlie these
models.

• Chapter 4 analyzes the quantum stability of Generalized Proca theories in flatMinkowski
spacetime. We compute the divergent parts of loop amplitudes and explore the emer-
gence of gauge-invariant structures in the quantum corrections.

• Chapter 5 extends the quantum analysis to weakly curved spacetimes. We derive
interaction terms in the presence of background curvature and investigate whether
loop corrections introduce instabilities or modify the effective action.

• Chapter 6 investigates the propagator structure and scalar-vector-tensor decompo-
sition in the presence of a non-zero background vector field. We study the mixing
between metric and vector perturbations and construct a gauge-invariant basis for
perturbative analysis.
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• Chapter 7 introduces the basics of machine learning, including definitions, training
paradigms, and a discussion of neural network architectures. We describe how these
tools can be applied to gravitational waveform classification.

• Chapter 8 presents the full architecture of the machine learning framework used to
classify gravitational waveforms. This includes the construction of the waveform
dataset, convolutional neural network design, and preprocessing techniques.

• Chapter 9 evaluates the classification performance using a controlled toy model.
We assess the detectability threshold for Gaussian phase deformations and perform
multiclass classification using post-Newtonian phase coefficient modifications.

• Chapter 10 introduces the response function formalism, showing how this represen-
tation improves classifier sensitivity and interpretability. We demonstrate that neural
networks trained on response functions outperform those trained on raw waveforms.

• Chapter 11 applies the classification framework to waveforms derived from phys-
ically motivated beyond-GR theories. Using the parameterized post-Einsteinian
(ppE) formalism, we estimate the minimal graviton mass distinguishable from GR.

• Chapter 12 summarizes the main findings of the thesis and outlines future direc-
tions. These include applications to real detector data, more general waveform fea-
tures, and further exploration of modified gravity theories using machine learning
techniques.





Part I

Quantum Stability of Generalized Proca
Theories
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Chapter 2

Spin-One Fields

A natural starting point for exploring the internal consistency requirements of quantum
field theories is an investigation of spin and its interplay with Lorentz invariance. While in
non-relativistic quantummechanics spin appears as an abstract internal degree of freedom,
its true geometric significance becomes apparent only in the context of relativistic theories.
Historical insights from atomic spectroscopy had already revealed that electrons possess
two discrete spin states, while photons are characterized by two polarization states. Al-
though the latter can be intuitively understood within classical electrodynamics, the notion
of a single massless and structureless quantum—such as the photon—exhibiting polariza-
tion poses a deeper conceptual challenge. Unlike electrons, for which the analogy of a
spinning top offers some classical intuition, photons defy such interpretation. These sub-
tleties are resolved by recognizing the role of Lorentz symmetry and its implications for
constructing consistent quantum field theories.

This chapter provides an overview of the key aspects of spin-1 field theories, focusing
on how unitarity, Lorentz invariance, and gauge symmetry constrain the dynamics of mas-
sive and massless vector fields. The presentation is structured to lay the groundwork for
the construction of generalized Proca theories discussed in the next chapter. For a more
detailed and comprehensive treatment, one can refer to [1, 2, 3, 4, 5, 6, 7, 8] .

2.1 Irreducible Representations of the Poincaré Group

Quantum field theory must be constructed in accordance with the fundamental symme-
tries of spacetime. In particular, it should exhibit invariance under spacetime translations
and Lorentz transformations. The combined group of these transformations—the isometry

9
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group of Minkowski spacetime—is known as the Poincaré group, denoted by ISO(1, 3).
Translational invariance asserts that physics is indifferent to the absolute position in space-
time, meaning that observables must remain unchanged under G` → G` + 0` for any con-
stant four-vector 0`. Similarly, Lorentz invariance requires that physical predictions remain
invariant under changes of inertial frame.

In nature, particles are classified not only by their mass and spin, but also by other
conserved quantum numbers. Under Poincaré transformations, certain quantities such as
momentum and spin projection may change, while internal quantum numbers remain in-
variant. Accordingly, we may define a particle species as a collection of quantum states
that transform into one another under the action of the Poincaré group.

Formally, a quantum state |k〉 transforms under a Poincaré operation P according to

|k〉 → P|k〉. (2.1)

A collection of states that mix among themselves under the group action forms a represen-
tation of the group. For instance, scalar fields q(G) define a representation of the translation
group via q(G) → q(G + 0). More generally, if {|k8〉} denotes a basis for a given represen-
tation, then the transformation law takes the form

|k8〉 → P8 9 |k 9 〉, (2.2)

where the summation over repeated indices is implied. If the representation cannot be
decomposed into smaller invariant subsets, it is deemed irreducible.

Beyond irreducibility, physical relevance demands that representations be unitary. This
requirement arises because physical observables are constructed from inner products of
states—quantities such as matrix elements

M = 〈k1 |k2〉 (2.3)

must remain invariant under symmetry transformations. Applying a Poincaré transforma-
tion, we obtain

M = 〈k1 |P†P|k2〉, (2.4)

which remains unchanged only if P†P = 1—the defining property of unitarity.
It is important to note that unitary representations form only a narrow subset of all rep-

resentations of the Poincaré group. For example, the commonly encountered four-vector
representation �` is not itself unitary. Nevertheless, only unitary representations can yield
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well-defined, Lorentz-invariant matrix elements, and therefore they serve as the founda-
tional building blocks for the particle spectrum of any consistent field theory.

Hence, one may regard particles as quantum states that transform under irre-
ducible unitary representations of the Poincaré group.

This viewpoint effectively serves as a precise definition of what a particle is in the
language of quantum field theory.

Moreover, there exists a more stringent constraint at the level of the full interacting
theory: the (-matrix, which encodes scattering amplitudes, must itself be unitary. While
the unitarity of Poincaré representations pertains to the kinematics of free particles, (-
matrix unitarity governs the dynamics and ensures conservation of probability in physical
processes.

The decomposition into irreducible representations reflects an observational reality:
different types of particles exist, each with their own distinct properties and transformation
laws. When external fields such as magnetic fields or optical polarizers are applied to
particles like electrons or photons, they interact differently depending on their spin and
momentum. These manipulations reveal the underlying group structure that governs how
states mix under transformations, with irreducible representations serving as the minimal
invariant subspaces.

The classification of all unitary irreducible representations of the Poincaré group was
achieved by Eugene Wigner [9]. His framework remains one of the cornerstones of rela-
tivistic quantum theory. Wigner demonstrated that these representations are labeled by the
particle’s mass< ≥ 0 and spin �, where � is a non-negative half-integer: � = 0, 1

2 , 1,
3
2 , . . ..

For < > 0 and � > 0, the representation contains 2� + 1 distinct polarization states. For
massless particles with � > 0, only two physical polarization states remain, while for � = 0,
a single state exists regardless of the mass. A detailed derivation can be found in [10].

While Wigner’s classification offers a systematic way to label the kinematic content of
particle states, it does not in itself provide a recipe for constructing interacting quantum
field theories. The next step involves embedding these representations into local field op-
erators such as scalars q(G), vectors +` (G), spinors k(G), and higher-rank tensors )`a (G).
This embedding enables us to write local Lagrangians and compute physical observables.

A technical challenge arises here: the number of components in such tensorial objects
grows rapidly, e.g., 1, 4, 16, 64, . . . for tensors of increasing rank, whereas the number of
physical degrees of freedom in a spin- 9 representation is 2 9 + 1. Thus, one must carefully
construct the theory to isolate only the physical degrees of freedom. This difficulty leads
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naturally to the introduction of additional structures—such as gauge symmetries—that
serve to project out the unphysical components. We will explore these aspects in detail
as we develop the theory of spin-one fields.

2.2 Tension Between Unitarity and Lorentz Invariance

The interplay between unitarity and Lorentz invariance presents a subtle but fundamental
challenge in relativistic quantum field theory. To illustrate this issue, we begin with a
familiar context from non-relativistic quantum mechanics. Consider an electron whose
spin states are represented by the orthonormal basis vectors | ↑〉 and | ↓〉. A general state
in this Hilbert space can be expressed as a superposition:

|k〉 = 21 | ↑〉 + 22 | ↓〉. (2.5)

The norm of such a state is given by

〈k |k〉 = |21 |2 + |22 |2 > 0, (2.6)

and is invariant under rotations. In fact, the rotational symmetry is part of a larger SU(2)
symmetry group, though that detail will not be essential here.

Now consider a different example: a set of four orthonormal states {|+0〉, |+1〉, |+2〉, |+3〉},
transforming as components of a four-vector under Lorentz transformations. A general
state in this basis takes the form

|k〉 = 20 |+0〉 + 21 |+1〉 + 22 |+2〉 + 23 |+3〉, (2.7)

with a corresponding norm

〈k |k〉 = |20 |2 + |21 |2 + |22 |2 + |23 |2. (2.8)

This norm is positive definite, as required by the probabilistic interpretation of quantum
mechanics. However, it fails to be invariant under Lorentz transformations. For example,
consider the state |k〉 = |+0〉, which clearly has unit norm. Under a boost along the G1-
direction with rapidity V, the state transforms to

|k′〉 = cosh V |+0〉 + sinh V |+1〉, (2.9)

and the new norm becomes

〈k′|k′〉 = cosh2 V + sinh2 V ≠ 1. (2.10)
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Hence, the norm is not preserved by the Lorentz transformation, implying a breakdown of
unitarity.

This discrepancy can also be understood from a matrix perspective. The Lorentz boost
in this two-dimensional subspace is represented by the matrix

Λ =

(
cosh V sinh V
sinh V cosh V

)
, (2.11)

which is clearly non-unitary, since Λ† ≠ Λ−1.
One might attempt to resolve this issue by redefining the inner product to be Lorentz

invariant. A natural candidate is

〈k |k〉 = |20 |2 − |21 |2 − |22 |2 − |23 |2, (2.12)

whichmirrors theMinkowskimetric structure. Although this form is Lorentz invariant, it is
not positive definite. This alone is not necessarily problematic—inner products in quantum
theory can be complex—but it severely complicates any probabilistic interpretation.

To see this explicitly, consider again the boosted state |k′〉. It satisfies 〈k′|k′〉 = 1
under the modified norm, preserving Lorentz invariance. However, the overlap

|〈+0 |k′〉|2 = cosh2 V (2.13)

is strictly greater than 1 for any nonzero V. Thus, projection amplitudes can exceed unity,
violating the probabilistic interpretation of quantum theory. The issue stems from the mix-
ing of positive- and negative-norm components under Lorentz transformations, which de-
stroys the bound 0 ≤ % ≤ 1 for probabilities.

In summary, we encounter a fundamental tension: on the one hand, unitarity demands a
positive-definite inner product, typically preserved by unitary transformations and associ-
ated with the Euclidean metric X`a. On the other hand, Lorentz invariance requires that the
theory respect the indefinite Minkowski metric 6`a = diag(+1,−1,−1,−1), which leads to
non-unitary representations when naively applied to finite-dimensional Hilbert spaces.

To resolve this conflict, two key observations guide us forward. First, the squared norm
of a vector in Minkowski space, +`+ ` = +2

0 − +
2
1 − +

2
2 − +

2
3 , suggests that the four-vector

representation +` is reducible. Specifically, it decomposes into a direct sum of a spin-0
component (a Lorentz scalar) and a spin-1 component (a three-dimensional vector under
rotations). Therefore, by appropriately projecting out one of these sectors—typically the
scalar—we can isolate a subspace in which the remaining states possess a consistent phys-
ical interpretation.



14 From Abstract States to Fields: Realizing Spin in Spacetime

Second, although finite-dimensional irreducible unitary representations of the Poincaré
group do not exist beyond scalars, there do exist infinite-dimensional unitary representa-
tions. The key is to replace constant basis vectors (e.g., (1, 0, 0, 0), (0, 1, 0, 0), etc.) with
momentum-dependent polarization vectors n` (?) that satisfy appropriate transversality
and normalization conditions. These basis vectors are not fixed globally but depend on
the on-shell momentum ?`, satisfying ?2 = <2 for a massive particle.

Thus, our strategy will be as follows: we first identify how to consistently embed the
correct number of degrees of freedom for a given mass and spin into tensor fields such
as �` (G). Then, we will demonstrate how the requirement of Lorentz invariance leads
naturally to an infinite-dimensional structure of polarization states, forming a unitary rep-
resentation of the Poincaré group consistent with both the field-theoretic and probabilistic
interpretation of quantum mechanics.

2.3 From Abstract States to Fields: Realizing Spin in Space-
time

We now turn to the question of how to realize specific spin states within a field-theoretic
framework. The goal is to construct Lagrangians that describe fields corresponding to
particles of definite spin. Since we begin in the classical regime, we do not yet impose
unitarity — as the notion of a Hilbert space inner product is absent — but we do require
that the classical energy of the system be bounded from below. The existence of negative-
energy solutions would signal instabilities upon quantization, as they would allow decay
processes such as the vacuum producing particle-antiparticle pairs with vanishing total
momentum, ?`1 + ?

`

2 = 0. This decay would conserve both energy and momentum unless
additional constraints prevent negative-energy solutions. A broader discussion of classical
pathologies and their quantum implications appears in Section 8.7.

The classical energy density is encoded in the 00 component of the energy-momentum
tensor,

E = T00 =
∑
=

mL
m ¤q=
¤q= − L, (2.14)

and the total energy of the field configuration is given by the spatial integral

� =

∫
33G E . (2.15)
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2.3.1 Spin-0 Field

The realization of a spin-0 (scalar) particle is straightforward. Since such a particle pos-
sesses only one degree of freedom, it can be embedded directly into a real scalar field q(G).
A simple Lorentz-invariant Lagrangian for a free scalar field of mass < is

L(G) = 1
2
m`q(G) m`q(G) −

1
2
<2q2(G). (2.16)

This Lagrangian is invariant under spacetime translations and yields the Klein-Gordon
equation of motion,

(� + <2) q(G) = 0, (2.17)

which admits plane wave solutions q(G) ∼ 4±8?·G with on-shell condition ?2 = <2.
The corresponding energy density derived from this Lagrangian is

E =
1
2

[
(mCq)2 + ( ®∇q)2 + <2q2

]
, (2.18)

which is manifestly positive definite and bounded from below. The sign of the kinetic and
mass terms has thus been chosen to ensure the stability of the classical theory.

2.4 Local Symmetries and the Origin of Conserved Cur-
rents

Symmetries in field theory can be broadly classified as either global or local, depending on
whether their transformation parameters are constant or space-time dependent. A symme-
try characterized by a constant parameter U is referred to as a global symmetry. When U is
allowed to vary as a function of spacetime, U(G), the symmetry becomes local, or gauge.
Gauge symmetries therefore represent redundancies in our description that are specified
independently at each point in space-time. Importantly, any gauge symmetry automati-
cally contains a global symmetry as a special case, and global symmetries, by Noether’s
theorem, correspond to conserved currents.

To illustrate this connection concretely, consider a free complex scalar field with the
Lagrangian

L = −q★�q. (2.19)

This theory is invariant under global phase rotations q → 4−8Uq, with constant U, and
hence possesses an associated conserved current. However, this Lagrangian is not invariant
under local phase transformations where U = U(G).
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Let us now examine what happens when we promote the symmetry to a local one by
introducing a gauge field. This leads us to scalar quantum electrodynamics (QED), whose
Lagrangian reads:

L = −1
4
�2
`a + (�`q)★(�`q) − <2q★q, (2.20)

where the covariant derivative is defined as �`q ≡ (m` + 84�`)q.
Expanding the covariant derivatives, we obtain:

L = −1
4
�2
`a + m`q★m`q + 84�` (qm`q★ − q★m`q) + 42�`�

`q★q − <2q★q. (2.21)

The field equations for q and q★ derived from this Lagrangian are:

(� + <2)q = −284�`m`q + 42�2
`q, (2.22)

(� + <2)q★ = +284�`m`q★ + 42�2
`q

★. (2.23)

Let us now identify the Noether current associated with the global U(1) symmetry,
where the infinitesimal variations are Xq = −8Uq and Xq★ = 8Uq★. Applying the standard
Noether procedure yields:

�` =
∑
=

mL
m (m`q=)

Xq=

XU
= −8(qm`q★ − q★m`q) − 24�`q★q. (2.24)

Here, the first term reproduces the Noether current of the free theory (i.e., when 4 = 0).
The full current remains conserved when evaluated on the equations of motion. One can
explicitly verify that m`�` = 0 holds, confirming the consistency of the theory.

It is also illuminating to understand how the coupling between the gauge field �` and
the current �` generically emerges. Suppose L0 denotes the globally symmetric part of
the Lagrangian (i.e., the Lagrangian with �` = 0). While L0 is invariant under constant
phase rotations, allowing U to vary with space-time introduces a variation of the form:

XL0 = (m`U)�` + O(U2). (2.25)

This form follows from the general structure of the variation, where only derivatives of U
can appear for a local transformation.

As an explicit example, consider scalar QED with �` = 0, so that

L0 = (m`q★) (m`q) − <2q★q, (2.26)

and the corresponding variation is

XL0 = (m`U)�` + (m`U)2q★q. (2.27)



Quantum Operators and the Structure of Vector Propagators 17

Focusing only on the linear term, and integrating by parts, we find:

XL0 = −U m`�` . (2.28)

Thus, requiring that the action be invariant under local transformations implies that m`�` =
0, which is precisely the condition of current conservation. This argument provides an
alternative derivation of Noether’s theorem.

To render the full theory invariant under local U(1) transformations without relying on
the equations of motion, one introduces a gauge field �` that transforms as

X�` = m`U. (2.29)

One then modifies the Lagrangian to

L = L0 − �`�` . (2.30)

Under a gauge transformation, this becomes:

XL = (m`U)�` − (m`U)�` = 0, (2.31)

showing that the combination is gauge invariant. Therefore, the interaction term �`�
` is

not only natural, but also universal: it emerges as a necessary consequence of promoting
a global symmetry to a local one, ensuring gauge invariance of the full theory.

2.5 Quantum Operators and the Structure of Vector Prop-
agators

To quantize a massive spin-1 field, we promote the classical field �` (G) to an operator-
valued distribution. The quantum field operator is then expressed as

�` (G) =
∫

33?

(2c)3
1√
2l?

3∑
9=1

(
n
9
` (?)0?, 94−8?·G + n 9∗` (?)0†?, 94

8?·G
)
, (2.32)

where l? =
√
®? 2 + <2, and n 9` (?) denote a canonical basis of polarization vectors sat-

isfying ?`n 9` (?) = 0 and n 9` (?)n : `∗(?) = −X 9 : . The operators 0†
?, 9

and 0?, 9 create and
annihilate particles with momentum ? and polarization 9 , respectively.

The one-particle state is defined by acting with a creation operator on the vacuum:

0
†
?, 9
|0〉 = 1√

2l?
|?, n 9 〉, (2.33)
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up to an overall normalization. The field operator creates the corresponding one-particle
state as:

〈0|�` (G) |?, n 9 〉 = n 9` (?)4−8?·G , (2.34)

demonstrating that the field creates a localized excitationwith a definite polarization, which
can be projected out by contracting with the polarization vector.

The two-point correlation function or propagator of the theory is defined as the vacuum
expectation value of the time-ordered product:

〈0|){�` (G)�a (H)}|0〉 = �`a (G − H) =
∫

34?

(2c)4
48?·(G−H)�`a (?). (2.35)

To compute the momentum-space propagator �`a (?), we begin by writing down the
quadratic part of the Proca Lagrangian,

L = −1
2
(m`�a) (m`�a) +

1
2
(m`�a) (ma�`) +

1
2
<2�`�

` . (2.36)

In momentum space, this becomes

L =
1
2
�̃` (−?)

[
−?2[`a + ?`?a + <2[`a

]
�̃a (?). (2.37)

We define the kinetic operator in momentum space as

O`a (?) = −(?2 − <2)[`a + ?`?a . (2.38)

The Feynman propagator is the inverse of this operator, satisfying the identity

O`_ (?)�_a (?) = 8X`a . (2.39)

Inverting the operator yields the explicit expression for the Proca propagator:

�`a (?) =
−8

?2 − <2 + 8n

(
[`a −

?`?a

<2

)
. (2.40)

This form ensures that the propagator respects Lorentz invariance and correctly encodes
the three physical degrees of freedom associated with a massive spin-1 particle. The term
proportional to ?`?a/<2 ensures the decoupling of unphysical modes, consistent with the
transversality condition ?`n` = 0.

2.5.1 Massive Spin-1 Field

Embedding a massive spin-1 particle into a relativistic field theory requires accommodat-
ing exactly three propagating degrees of freedom. Since a four-vector field �` (G) has four
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components, it presents the minimal tensor structure into which such a particle can be em-
bedded. However, not all four components correspond to physical degrees of freedom: a
spin-1 representation of the Lorentz group contains three degrees of freedom, while the
remaining component typically corresponds to a scalar (spin-0) mode. In group-theoretic
terms, this decomposition is reflected in 4 = 3 ⊕ 1 under SO(3) rotations. Our objec-
tive is to construct a Lagrangian such that only the spin-1 component propagates, and the
unphysical mode is dynamically removed.

A naive attempt might be to start with the Lagrangian

L = −1
2
(ma�`) (ma�`) +

1
2
<2�`�

`, (2.41)

which leads to the equations of motion

(� + <2) �` = 0. (2.42)

At first glance, this appears to describe four independent massive degrees of freedom.
However, a closer inspection reveals that each component �` behaves as a free scalar field
with mass <. This implies that the theory actually describes four massive spin-0 particles,
and thus fails to reproduce the desired spin-1 spectrum.

The energy density corresponding to this Lagrangian is

E =
mL

m (mC�`)
mC�` − L

= −1
2

[
(mC�0)2 + ( ®∇�0)2 + <2�2

0

]
+ 1

2

[
(mC ®�)2 + (∇8� 9 )2 + <2 ®�2

]
,

(2.43)

where ®� denotes the spatial components of �`. The presence of a negative contribution
from �0 indicates an unbounded energy density, a clear sign of instability. Even reversing
the overall sign of the Lagrangian would not resolve the issue, as it would simply shift the
instability to the spatial components.

This raises a subtle but important question: how do we know whether �` truly trans-
forms as a Lorentz four-vector, rather than simply a set of four scalar fields? The La-
grangian above is formally invariant under both interpretations. However, in field theory,
one does not impose transformation properties by hand— rather, one defines a Lagrangian
and then checks whether the resulting dynamics respect a given symmetry. If the La-
grangian is properly constructed, the symmetry will manifest itself in physical observables
such as matrix elements, even if it is not manifest at the level of the fields themselves.

For example, the classicalMaxwell equations are Lorentz invariant regardless of whether
one formulates the theory in terms of electric and magnetic fields ( ®�, ®�) or the four-
potential �`. Although the symmetry is more transparent in the latter case, it remains
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valid in either description. Historically, many foundational advances in physics emerged
by recognizing hidden symmetries in observed phenomena and retroactively identifying
their underlying field-theoretic origins. Such was the case in electromagnetism, special
and general relativity, weak interactions, and the quark model, among others.

Returning to the spin-1 case, one can write down a more general Lorentz-invariant
Lagrangian involving two-derivative terms:

L =
0

2
�`��` +

1

2
�`m

`ma�a +
1
2
<2�`�

`, (2.44)

with arbitrary coefficients 0 and 1. The term involving m`�` ensures that �` must trans-
form as a four-vector, since this divergence is not Lorentz invariant for generic field config-
urations unless �` carries vectorial transformation properties. Consequently, this structure
allows for a decomposition 4 = 3 ⊕ 1 under SO(3), raising the possibility of isolating the
physical spin-1 component.

The equations of motion derived from this Lagrangian are

0 ��` + 1 m` (m · �) + <2�` = 0. (2.45)

Taking the divergence yields a secondary equation:[
(0 + 1) � + <2] (m`�`) = 0. (2.46)

Choosing 0 = −1 and < ≠ 0 enforces the Lorentz-invariant constraint m`�` = 0, which
eliminates a single degree of freedom. Since the spin-0 mode corresponds to one real
scalar component, this condition projects out precisely that unwanted piece.

With the choice 0 = 1, 1 = −1, the Lagrangian simplifies to the form

L =
1
2
�`��` −

1
2
�`m

`ma�a +
1
2
<2�`�

`

= −1
4
�`a�

`a + 1
2
<2�`�

`,

(2.47)

where we have introduced the field strength tensor �`a = m`�a − ma�`. This Lagrangian
is known as the Proca Lagrangian. Notably, the appearance of �`a arises here not from a
requirement of gauge invariance or electromagnetic analogy, but purely from the demand
to eliminate the unphysical degree of freedom in a Lorentz-invariant way.

The equations of motion following from the Proca Lagrangian are

(� + <2)�` = 0, m`�
` = 0. (2.48)

These describe precisely three propagatingmodes, as required for amassive spin-1 particle.
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2.5.2 Massless Spin-1 Field

A natural strategy to construct a theory for massless spin-1 particles is to consider the
massless limit of the Proca theory. Setting < → 0 in the Lagrangian leads to

L = −1
4
�`a�

`a, (2.49)

which coincides with the standard Lagrangian of classical electrodynamics. This corre-
spondence strongly suggests that we are on the correct theoretical track. However, taking
the massless limit introduces certain subtleties that must be addressed.

First, the constraint equation that eliminated the unphysical degree of freedom in the
Proca theory,

<2 m`�
` = 0, (2.50)

becomes trivial when < = 0, implying that m`�` = 0 no longer follows automatically.
This opens the possibility for an additional, potentially unphysical, mode to propagate —
namely, the spin-0 component we had previously projected out.

A second issue emerges when analyzing the behavior of the longitudinal polarization
in the massless limit. Recall that the longitudinal polarization vector in the Proca theory
is given by

n !` =

(
?I

<
, 0, 0,

�

<

)
, (2.51)

which diverges as < → 0. This divergence is partly due to normalization, and in the
< → 0 limit, one finds that n !` becomes proportional to ?`. Since massless particles
satisfy ?2 = 0, this corresponds to a light-like polarization direction. Thus, we expect that
n !` ∼ ?` in the limit < → 0, modulo normalization.

Nevertheless, the irreducible representation of the Poincaré group corresponding to a
massless spin-1 particle is known to contain only two physical polarizations. Therefore,
both the longitudinal mode and the scalar degree of freedommust somehow decouple from
the physical spectrum.

Rather than continuing from the massive case, it is more illuminating to start from the
massless Lagrangian directly and perform a careful analysis of the gauge structure and
degrees of freedom. We begin with:

L = −1
4
�`a�

`a, �`a = m`�a − ma�` . (2.52)

This Lagrangian enjoys a local gauge symmetry:

�` (G) → �` (G) + m`U(G), (2.53)
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where U(G) is an arbitrary scalar function. Consequently, two vector potentials differing
by the gradient of a scalar are physically indistinguishable — they represent the same field
configuration.

The equations of motion obtained from the Lagrangian are

��` − m` (ma�a) = 0, (2.54)

which, when decomposed into temporal and spatial components, become

−∇2�0 + mC∇ · ®� = 0, (2.55)

� ®� − ∇
(
mC�0 − ∇ · ®�

)
= 0. (2.56)

To determine the physical content of the theory, we proceed by fixing a gauge — that
is, by exploiting the redundancy introduced by the gauge symmetry to eliminate unphysical
degrees of freedom. One convenient choice is the Coulomb gauge,

∇ · ®� = 0. (2.57)

This can always be imposed (under mild regularity assumptions) by choosing an appropri-
ate gauge function U(G). Under this condition, the equation for �0 becomes

∇2�0 = 0, (2.58)

which contains no time derivatives. Consequently, �0 is not a dynamical degree of free-
dom. Moreover, residual gauge transformations preserving the Coulomb condition must
satisfy ∇2U = 0, and since �0 → �0 + mCU, we can use this residual freedom to set �0 = 0
entirely. We have thus eliminated one unphysical degree of freedom.

With �0 = 0 and ∇ · ®� = 0, the spatial components satisfy

��8 = 0, (2.59)

subject to the divergence-free constraint. These equations describe three fields obeying
wave equations, but the constraint reduces the number of independent solutions to two.
Therefore, only two transverse modes propagate, in accordance with the known structure
of massless spin-1 representations.

This can also be made explicit in Fourier space. Expanding the field as

�` (G) =
∫

34?

(2c)4
n` (?) 48?·G , (2.60)
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we impose the on-shell condition ?2 = 0, the gauge condition ?8n8 = 0, and n0 = 0.
Choosing a reference frame where ?` = (�, 0, 0, �), one finds two linearly independent
solutions:

n1
` = (0, 1, 0, 0), n2

` = (0, 0, 1, 0), (2.61)

which correspond to linear polarization states of the photon.
Alternatively, one can employ a helicity basis using circular polarizations:

n'` =
1
√

2
(0, 1, 8, 0), n !` =

1
√

2
(0, 1,−8, 0). (2.62)

These correspond to eigenstates of the spin projection along the direction of motion and
are often used in the analysis of scattering amplitudes.

Had we chosen Lorenz gauge, m`�` = 0, we would have found three solutions to
?`n` = 0. Besides the two physical polarizations above, one finds a third vector,

n
5
` = (1, 0, 0, 1), (2.63)

referred to as the forward or gaugemode. This mode is not physical: it is proportional to ?`

and therefore corresponds to a pure gauge configuration �` = m`q, which can be removed
by an appropriate choice of U(G). Moreover, it fails to satisfy the usual normalization
condition n∗`n ` = −1.

Similarly, another unphysical mode can appear if one does not impose n0 = 0, namely

n0
` = (1, 0, 0, 0), (2.64)

which again cannot be normalized consistently and represents a timelike polarization.
To summarize: for the massive spin-1 case, the Proca Lagrangian imposes the con-

straint m`�` = 0, removing one unphysical mode and retaining the three physical degrees
of freedom. The theory lacks gauge symmetry, but the �`a�`a kinetic term remains es-
sential for positive energy. In the massless case, gauge invariance becomes a fundamental
feature, and through appropriate gauge fixing we can eliminate both scalar and longitudinal
polarizations, leaving two transverse physical modes — the correct number for a massless
spin-1 field. These polarization vectors depend on momentum ?`, so the full representa-
tion space is infinite-dimensional.

Finally, the massless and massive representations of the Poincaré group differ in their
little groups. For a massive particle with four-momentum ?` = (<, 0, 0, 0), the little group
is SO(3), with spin-� representations of dimension 2� + 1. For massless particles with
?` = (�, 0, 0, �), the little group becomes ISO(2)— the isometry group of the Euclidean
plane — which admits representations with only two helicity states for each �.
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2.6 Identifying Ghosts: Stability Constraints in Vector The-
ories

In quantum field theory, a ghost refers to a state with either a negative norm or a wrong-
sign kinetic term. An example is the �0 component in a vector field when described by
the Lagrangian L = 1

2�` (� + <
2)�`. To identify such pathological degrees of freedom,

we analyze the field by separating it into transverse and longitudinal parts. This technique,
originally developed for Abelian gauge theories by Stueckelberg [11, 12], was extended to
non-Abelian cases by Coleman and collaborators [13, 14], and to gravity by Arkani-Hamed
et al. [15].

Consider a general decomposition of the vector field:

�` (G) = �)` (G) + m`c(G), (2.65)

subject to the constraint
m`�)` = 0. (2.66)

This decomposition is not unique—shifts �)` → �)` + m`U and c → c − U leave �`
invariant. However, by choosing an appropriate gauge, one can always impose the condi-
tion (2.66).

This parametrization makes it easy to track the behavior of longitudinal modes. Con-
sider the most general Lorentz-invariant quadratic Lagrangian for a vector field:

L = 0�`��` + 1�`m`ma�a + <2�`�
` . (2.67)

Substituting the decomposition into the Lagrangian and using the transversality condition
yields

L = 0�)`��
) ` + <2�)`�

) ` − (0 + 1)c�2c − <2c�c. (2.68)

We see that the scalar mode c acquires a higher-derivative kinetic term unless 0 + 1 = 0.
The presence of four-derivative terms in the kinetic part signals the existence of ghost
degrees of freedom and non-unitarity.

To make this explicit, consider the propagator of c. In momentum space, the two-point
function reads

Πc (:) =
−1

2(0 + 1):4 − 2<2:2 =
1

2<2

[
1
:2 −

0 + 1
(0 + 1):2 − <2

]
. (2.69)

This expression reveals two propagatingmodes, one of which necessarily carries a negative
residue for generic 0 + 1 ≠ 0, indicating a ghost. Only when 0 + 1 = 0 does the propagator
reduce to 1/(<2:2), avoiding ghosts and ensuring unitarity.
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Therefore, demanding ghost-free propagation uniquely selects the Proca Lagrangian.
Setting 0 = −1 = 1/2 and rescaling <2 → 1

2<
2, we obtain

L =
1
2
�`��` −

1
2
�`m

`ma�a +
1
2
<2�`�

` = −1
4
�2
`a +

1
2
<2�`�

` . (2.70)

In this formulation, the longitudinal mode acquires a kinetic term proportional to the
mass, ensuring its proper dynamics.

However, in the massless limit, the longitudinal mode loses its kinetic term and be-
comes non-dynamical. Amodewith interaction but no kinetic energy leads to an ill-defined
quantum theory. For instance, consider

L = /c�c + _c3, (2.71)

and rescale c to a canonically normalized field c2 =
√
/c, yielding

L = c2�c2 +
_

/3/2 c
3
2 . (2.72)

As / → 0, the interaction becomes non-perturbative, signaling a breakdown of the theory.
To avoid this, c must never appear explicitly, which is ensured by demanding gauge

invariance under �` → �` + m`c. For interacting theories, this is satisfied if �` couples
to a conserved current:

L ⊃ �`�`, with m`�` = 0. (2.73)

To examine interactions, consider a real scalar field q. The simplest Lorentz-invariant
interaction term,

Lint = �`qm
`q, (2.74)

is not gauge invariant. Moreover, no field redefinition of q can restore invariance. For a
complex field, the only allowed gauge-invariant coupling is

Lint = −8�`
(
q★m`q − qm`q★

)
. (2.75)

Upon substituting �` → �` + m`c, the Lagrangian acquires an extra term

8c
(
q★�q − q�q★

)
. (2.76)

This term can be canceled by postulating that q transforms as q → q − 8cq, so that the
kinetic term transforms as(

m`q
★
)
(m`q) →

(
m`q

★
)
(m`q) − 8c

(
q★�q − q�q★

)
− (cq★)�(cq). (2.77)
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The unwanted term is canceled, though higher-order terms in c appear. These can be
absorbed by completing the transformation rule for q to second order:

q→ q − 8cq − 1
2
c2q. (2.78)

Including all such terms, we arrive at the fully gauge-invariant scalar QED Lagrangian:

L = −1
4
�2
`a +

(
m`q

★
)
(m`q) − 8�`

(
q★m`q − qm`q★

)
+ �2

`q
★q. (2.79)

This construction ensures gauge invariance under �` → �` + m`c and q → 4−8cq,
demonstrating that scalar QED can be derived from first principles by eliminating ghost
degrees of freedom and demanding gauge invariance.

In this chapter, we have developed a systematic understanding of spin-1 fields by exam-
ining the interplay between Lorentz invariance and unitarity, embedding irreducible rep-
resentations into field-theoretic frameworks, and identifying the conditions under which
consistent, ghost-free Lagrangians can be constructed. We explored both massive and
massless vector fields, highlighted the role of gauge symmetry, and derived the Proca La-
grangian as the unique healthy theory for a massive spin-1 particle. We also examined
how these principles manifest in interactions, quantization, and propagators, providing the
foundation for understanding how spin-1 fields behave in quantum field theory.

In the next chapter, we extend this analysis by constructing more general and non-linear
interactions for vector fields. This includes theories with derivative self-interactions such
as the Galileon and its covariant extensions, as well as the broader class of Generalized
Proca theories. These models will allow us to probe the dynamics of spin-1 fields be-
yond the standard Proca framework, particularly in curved space-times and cosmological
contexts.



Chapter 3

Construction of Self-Derivative
Interactions

In the previous chapter, we focused on the formulation and properties of Proca theory,
emphasizing the propagation of three degrees of freedom for a massive spin-1 field. As
we now aim to generalize this framework, a natural next step is to explore the possibility
of adding derivative self-interactions. These arise in many contexts, including effective
field theories and modified gravity models, where one seeks to go beyond standard kinetic
terms while maintaining consistency.

Higher-derivative terms naturally emerge in various extensions of classical field theo-
ries. Their appearance is often motivated by quantum corrections, renormalization group
flows, or attempts to encode richer infrared dynamics in gravity. Prominent examples
include the Horndeski [16] and generalized Proca frameworks, both of which introduce
derivative interactions in a carefully controlled way. However, incorporating such terms
must be done with great care. If not appropriately constrained, higher derivatives can lead
to pathological instabilities and spoil the physical viability of the theory.

The goal of this chapter is to systematically construct self-derivative interactions for a
massive vector field that avoid these pathologies. In particular, we require that the equa-
tions of motion remain of second order in time derivatives and that no extra ghost degrees
of freedom are introduced. As we will see, these criteria are deeply connected to a classical
result known as the Ostrogradsky instability, which we begin by reviewing.

27



28 Ostrogradsky Instability

3.1 Ostrogradsky Instability

Before constructing consistent higher-derivative interactions, it is instructive to revisit a
fundamental obstruction that arises in their naive implementation. This obstruction is
known as the Ostrogradsky instability [17, 18, 19], a result established in the 19th cen-
tury by Mikhail Ostrogradsky. It applies to non-degenerate systems whose Lagrangians
contain higher-order time derivatives.

Ostrogradsky’s theorem places a strong constraint on the formulation of any theory
that involves such terms: unless the theory is degenerate, the associated Hamiltonian is
unbounded from below. This implies the existence of arbitrarily negative energy states,
which leads to catastrophic instabilities. These instabilities manifest as violations of uni-
tarity and vacuum decay, rendering the theory physically inconsistent.

In what follows, we will explore the mathematical structure of this instability in detail,
laying the groundwork for constructing theories that circumvent it by enforcing specific
degeneracy conditions.

To clarify the problem, let us consider a mechanical system described by a Lagrangian
that depends on second-order time derivatives:

! = ! (@, ¤@, ¥@). (3.1)

The Euler-Lagrange equations for this system are

m!

m@
− 3

3C

(
m!

m ¤@

)
+ 3

2

3C2

(
m!

m ¥@

)
= 0. (3.2)

The critical assumption in Ostrogradsky’s theorem is non-degeneracy, i.e., that the highest-
derivative term enters the Lagrangian in a nontrivial way:

m2!

m ¥@2 ≠ 0. (3.3)

Under this assumption, one finds that the theory propagates additional degrees of free-
dom. The system’s phase space must then be extended to accommodate initial data not just
for (@, ¤@), but also for ( ¥@, @̈). Ostrogradsky introduced a canonical formalism in which the
coordinates and conjugate momenta are defined as

-1 = @, %1 =
m!

m ¤@ −
3

3C

(
m!

m ¥@

)
, (3.4)

-2 = ¤@, %2 =
m!

m ¥@ . (3.5)
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The resulting Hamiltonian is given by the Legendre transform:

� (-1, -2, %1, %2) = %1-2 + %2�(-1, -2, %2) − ! (-1, -2, �), (3.6)

where � is a function implicitly defined by the relation between %2 and ¥@.
A key feature of this Hamiltonian is its linear dependence on %1, which implies that it is

unbounded from below. In physical terms, this allows the system to lower its energy with-
out bound by exciting the ghost mode associated with %1, leading to catastrophic vacuum
instabilities.

This issue becomes manifest in a simple toy model: a harmonic oscillator modified by
a higher-derivative term:

! =
<

2
¤@2 − <l

2

2
@2 − n<

2l2 ¥@
2, (3.7)

where n is a small parameter. Upon performing the canonical analysis, one finds that the
Hamiltonian includes ghost-like excitations with negative energy, confirming the presence
of an instability.

To avoid this problem, one must ensure that the theory is degenerate, meaning that the
equations of motion remain second order despite the presence of higher-derivative terms
in the Lagrangian [8]. This can be achieved through special structures or cancellations.
For example, in scalar-tensor theories, Horndeski’s construction systematically builds the
most general Lagrangian that leads to second-order field equations. A similar logic under-
lies the generalized Proca theories, where derivative self-interactions are introduced for a
massive vector field without violating the second-order condition or introducing additional
propagating modes.

In conclusion, the Ostrogradsky instability sets a strong theoretical constraint on vi-
able field theories. Any extension involving higher derivatives must be crafted carefully
to avoid ghost degrees of freedom. This motivates the study of specially constructed in-
teractions—such as those found in Galileon and generalized Proca frameworks—which
preserve stability by keeping the equations of motion second order. The rest of this chapter
is devoted to systematically building such interactions.

3.2 Galileons

Having established that higher-derivative theories can remain stable if they are constructed
to yield second-order equations of motion, we now turn to an explicit class of such interac-
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tions: the Galileons [20, 21, 22]. These theories serve as a key example of how non-trivial
derivative self-interactions can be incorporated without introducing Ostrogradsky ghosts.

Galileon theories were originally developed in the context of scalar fields, where a
specific symmetry—known as the Galilean symmetry—plays a central role in constraining
the form of the interactions. We begin by reviewing the scalar case, which not only provides
a valuable prototype but also lays the foundation for later generalizations to vector fields.

3.2.1 Scalar Galileons

Scalar field theories with non-canonical kinetic terms—i.e., those constructed from func-
tions of (mc)2—do not alter the number of propagating degrees of freedom, as only first
derivatives appear and the equations of motion remain second order. However, one may
wonder whether more general self-interactions involving two derivatives per field can also
avoid introducing Ostrogradsky instabilities.

Remarkably, this is possible. A concrete example arises in the decoupling limit of
the five-dimensional Dvali-Gabadadze-Porrati (DGP) brane-world model [23], where the
helicity-0 component of a massive graviton acquires a self-interaction of the form

L3 = (mc)2�c. (3.8)

At first glance, this term appears problematic due to the presence of higher derivatives.
Yet, the equation of motion derived from it,

E3 = (�c)2 − (m`mac)2, (3.9)

contains no more than two time derivatives, thus avoiding the Ostrogradsky instability.
In addition to the favorable derivative structure, the interaction is invariant under a

symmetry known as the Galilean shift:

c(G) → c(G) + 2 + 1`G`, (3.10)

where 2 and 1` are constant parameters. This symmetry is a remnant of five-dimensional
Poincaré invariance in the DGP setup and constrains the form of allowed interactions.

Motivated by this example, one can ask whether more such derivative self-interactions
can be constructed [20]. Proceeding order-by-order, we can build interactions with in-
creasing powers of c and derivatives, ensuring that the equations of motion remain second
order. For instance, consider quartic self-interactions:

L4 = U1(mc)2(�c)2 + U2(mc)2(m`mac)2. (3.11)
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Although this expression involves two derivatives per field, it generically gives rise to
higher-than-second-order equations of motion unless the coefficients are tuned to cancel
such terms. Specifically, third time derivatives cancel if we impose U2 = −U1, yielding

L4 = (mc)2
[
(�c)2 − (m`mac)2

]
. (3.12)

Continuing this systematic construction leads to a finite set of Galilean-invariant in-
teractions in four dimensions. These five terms, known as the scalar Galileons, are given
by:

L1 = c, (3.13)

L2 = (mc)2, (3.14)

L3 = (mc)2�c, (3.15)

L4 = (mc)2
[
(�c)2 − (m`mac)2

]
, (3.16)

L5 = (mc)2
[
(�c)3 − 3�c(m`mac)2 + 2(m`mac)3

]
. (3.17)

Each of these terms satisfies the Galilean symmetry and gives rise to second-order equa-
tions of motion, thus preserving stability.

These interactions can also be defined recursively [8] using the equations of motion
�= = XL=/Xc, through the relation

L=+1 = −(mc)2�=, (3.18)

with

�1 = 1, (3.19)

�2 = �c, (3.20)

�3 = (�c)2 − (m`mac)2, (3.21)

�4 = (�c)3 − 3�c(m`mac)2 + 2(m`mac)3, (3.22)

�5 = (�c)4 − 6(�c)2(m`mac)2 + 8�c(m`mac)3

+ 3
[
(m`mac)2

]2 − 6(m`mac)4. (3.23)

The construction of these Lagrangians is greatly simplified by employing antisymmet-
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ric Levi-Civita tensors. The Galileon terms can be expressed compactly as

L1 = c n `Udfn`Udf,

L2 = c n `Udfn aUdfΠ`a,

L3 = c n `Udfn aVdfΠ`aΠUV,

L4 = c n `Udfn aVWfΠ`aΠUVΠdW,

L5 = c n `Udfn aVWXΠ`aΠUVΠdWΠfX,

(3.24)

where Π`a = m`mac. Since Π`a is symmetric, its contraction with two totally antisym-
metric tensors n ... is unique at each order. In four dimensions, the maximum number of
distinct contractions with Levi-Civita tensors is reached at L5, which is why the Galileon
series terminates at that order.

To summarize, scalar Galileon theories provide a consistent framework for including
derivative self-interactions of a scalar field without introducing ghost-like degrees of free-
dom. Their defining features—second-order equations of motion and internal Galilean in-
variance—will serve as guiding principles in constructing analogous interactions for mas-
sive vector fields in the generalized Proca theories.

3.2.2 Generalized Proca Theories

Having reviewed the construction of consistent scalar Galileon interactions, we now extend
the same logic to massive spin-1 fields [8, 24, 25]. The goal is to build self-interactions for
the vector field that preserve the second-order nature of the equations of motion and avoid
introducing an additional propagating degree of freedom, which would signal an Ostro-
gradsky ghost. Specifically, the consistent theory should propagate exactly three degrees
of freedom: two transverse and one longitudinal mode, as dictated by the representation
theory of the Lorentz group for a massive vector.

To achieve this, we impose the following two consistency conditions:

• The equations of motion must remain second order.

• The temporal component �0 must remain non-dynamical.

The second condition is essential. Even if the equations of motion are second order, a
dynamical �0 would indicate the presence of a ghostly degree of freedom, since the correct
number of physical degrees of freedom for a massive vector is fixed by symmetry.

We begin by noting that the mass term in the Proca action can be generalized to a
potential function + (�2), which involves no derivatives. Since �0 appears algebraically,
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such terms do not alter the number of propagating degrees of freedom and are thus trivially
safe.

Similarly, gauge-invariant terms constructed purely from the field strength tensor �`a
and its dual �̃`a,

�`a = m`�a − ma�`, �̃`a =
1
2
n`adf�

df, (3.25)

do not contribute to the dynamics of �0. For instance, terms like �`a�`a or �`a �̃`a

respect gauge invariance and remain harmless. Interactions involving contractions like
�`�a�`

U�aU are also safe, as long as they do not involve derivatives acting on �0.
All such contributions can be encapsulated in a generalized function,

L2 = 52(�`, �`a, �̃`a), (3.26)

which can be further simplified using scalar combinations of its arguments. Defining

- = −1
2
�`�

`, � = −1
4
�`a�

`a, . = �`�a�`
U�aU, (3.27)

we can rewrite the Lagrangian as

L2 = 52(-, �,. ), (3.28)

where we neglect parity-violating terms involving �̃`a for simplicity. This constitutes the
most general class of interactions that are safe up to zeroth order in derivatives of �`.

At the next order in derivatives, the only admissible interaction that preserves the con-
straint structure is

L3 = 53(-) m`�`, (3.29)

where 53(-) is an arbitrary function of the norm of the vector field. This interaction does
not contribute to the dynamical evolution of �0 and the corresponding Hessian matrix with
respect to time derivatives [8, 10],

�
`a

L3
=

m2L3

m ¤�`m ¤�a
, (3.30)

vanishes identically, confirming the absence of higher-order time derivatives.
The uniqueness of this interaction becomes more transparent when expressed in terms

of Levi-Civita tensors:

L3 = − 53(-)
6

n `adfna
U
dfm`�U = 53(-) m`�` . (3.31)
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This contraction is unique in four dimensions, and in the decoupling limit where �` →
m`c, it generates the cubic Galileon for the scalar mode.

One could consider extending this structure by coupling the Levi-Civita tensors to ad-
ditional powers of �`. For instance,

L̃3 = 5̃3(-) n `adfnUVdfm`�U�a�V, (3.32)

leads to terms of the schematic form

L̃3 = 5̃3(-)�`�am`�a, (3.33)

which is equivalent to L3 up to a disformal transformation of the metric, [`a → [`a +
5̃3(-)�`�a. Since the physical content remains unchanged, we will not distinguish be-
tween such equivalent forms.

Attempts to construct more complex terms of the type nn �4m� fail due to the anti-
symmetric nature of the Levi-Civita tensor: any term involving two symmetric �` fields
contracted into antisymmetric indices vanishes. Even if such terms are written, they can
either be absorbed into a redefinition of the metric (as in a disformal transformation) or
vanish identically upon integration by parts.

The interactions L2 and L3 represent the first steps in building a consistent theory of
derivative self-interactions for a massive vector field that propagates only three degrees of
freedom and avoids the pitfalls of Ostrogradsky instabilities.

In the next order of derivatives, we encounter the first nontrivial structure involv-
ing second-order derivative combinations of the vector field. The most general Lorentz-
invariant interaction that is quadratic in derivatives of �` and preserves our consistency
conditions can be written as

L4 = 54(-)
[
21(m · �)2 + 22md�fm

d�f + 23md�fm
f�d

]
, (3.34)

where 54(-) is an arbitrary function of the vector norm - = −�`�`/2, and 21, 22, and
23 are constant parameters. Although 21 and 23 are not independent under integration by
parts, we keep all three coefficients to analyze the general structure.

To ensure that this interaction preserves the desired number of propagating degrees of
freedom, we must verify that the temporal component �0 remains non-dynamical. This
requirement is met by imposing the vanishing of the determinant of the Hessian matrix
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with respect to time derivatives, which reflects the presence of a second-class constraint:

�
`a

L4
=

m2L4

m ¤�`m ¤�a
= 54(-)

©«
2(21 + 22 + 23) 0 0 0

0 −222 0 0
0 0 −222 0
0 0 0 −222

ª®®®®®¬
. (3.35)

The Hessian has a vanishing determinant in two special cases [8]:

• 22 = 0, in which case three eigenvalues vanish and only �0 propagates.

• 21 + 22 + 23 = 0, in which case only one eigenvalue vanishes and the correct three
physical degrees of freedom propagate.

We are interested in the latter scenario. Setting 21 = 1 for convenience, the constraint
becomes 23 = −(1 + 22), and the Lagrangian simplifies to

L4 = 54(-)
[
(m · �)2 + 22md�fm

d�f − (1 + 22)md�fmf�d
]
. (3.36)

The structure of this interaction becomes more transparent when rewritten using con-
tractions of Levi-Civita tensors. Unlike the scalar Galileon case, where m`mac is symmet-
ric, the derivatives m`�a of the vector field possess both symmetric and antisymmetric
components. This allows for two independent contractions with Levi-Civita tensors:

L4 = −1
2
n `adfn

UV
df

[
54(-)m`�Uma�V + 22 5̃4(-)m`�amU�V

]
= 54(-)

[
(m · �)2 − md�fmf�d

]
+ 22 5̃4(-)

(
md�fm

d�f − md�fmf�d
)
. (3.37)

The terms involving 22 are proportional to the square of the field strength tensor:

�`a�
`a = 2

(
md�fm

d�f − md�fmf�d
)
. (3.38)

Thus, the Lagrangian can be rewritten as [8, 24]:

L4 = 54(-)
[
(m · �)2 − md�fmf�d

]
+ 22 5̃4(-)�df�df . (3.39)

Since gauge-invariant �2 terms can be absorbed into the function 52 introduced earlier, we
discard the last term and retain only the unique non-redundant structure in L4.

Another possible structure involves contracting Levi-Civita tensors with the vector field
itself, for example,

n `adXnUVfX m`�Uma�V�d�f, (3.40)
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which gives rise to interactions of the form

L4 = 5̂4(-)�`�a
[
ma�` (m · �) − ma�dmd�`

]
. (3.41)

These terms are equivalent to thosewe already constructed, up to disformal transformations
of the metric and integrations by parts. Similarly, contractions like

n `adXnUVfX m`�amU�V�d�f (3.42)

lead to structures of the type �`a�UV�`�U, which are already included in L2. Finally,
higher-order contractions such as nn �4m�m� vanish due to the antisymmetric properties
of the Levi-Civita tensors. The Levi-Civita formulation once again reveals the underlying
simplicity and redundancy in possible contractions, guiding us to a minimal and consistent
form for this quartic-order interaction.

As we previously mentioned, ensuring that the Hessian matrix vanishes is essential to
eliminate the unwanted temporal degree of freedom in a consistent theory of massive spin-
1 fields. This constraint manifests explicitly when calculating the conjugate momentum
associated with the Lagrangian L4, given by

Π
`

L4
=
mL4

m ¤�`
. (3.43)

In particular, the time component reads

Π0
L4

= −2 54 ®∇ · ®�, (3.44)

which contains no time derivatives and thus imposes a primary constraint:

C1 = Π0
L4
+ 2 54 ®∇ · ®� ≈ 0. (3.45)

From this, a secondary constraint emerges by evaluating its Poisson bracket with theHamil-
tonian:

{�, C1} =
m�

m�`

mC1
mΠ`

− m�

mΠ`

mC1
m�`

. (3.46)

These constraints ensure that the temporal component �0 is nondynamical and the theory
propagates only the three physical degrees of freedom.

Extending thismethod to higher-order interactions, we proceed to cubic order in deriva-
tives. The general form of the quintic interaction is

L5 = 55(-)
[
31(m · �)3 − 332(m · �)md�fmd�f − 333(m · �)md�fmf�d (3.47)
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+ 234md�fm
W�dmf�W + 235md�fm

W�dmW�
f
]
, (3.48)

where the free parameters 38 must be chosen to ensure a single vanishing eigenvalue of the
Hessian matrix. The required conditions are

33 = 1 − 32, 34 = 1 − 332
2
, 35 =

332
2
, (3.49)

with 31 = 1. Substituting these into the Lagrangian, we obtain

L5 = 55(-)
[
(m · �)3 − 332(m · �)md�fmd�f − 3(1 − 32) (m · �)md�fmf�d (3.50)

+ 2
(
1 − 332

2

)
md�fm

W�dmf�W + 2
(
332
2

)
md�fm

W�dmW�
f
]
. (3.51)

Just like in the quartic case, some of the 38 terms can be associated with distinct func-
tions. For example, the term proportional to 32 may appear with an independent function
5̃5(-):

L5 = 55(-)
[
(m · �)3 − 3(m · �)md�fmf�d + 2md�fmW�dmf�W

]
(3.52)

+ 32 5̃5(-)
[1
2
(m · �)�2

df − mf�W�df�dW
]
. (3.53)

This decomposition also arises from the Levi-Civita tensor contractions:

L5 = −n `adfnUVX
[
55(-)m`�Uma�Vmd�X + 32 5̃5(-)m`�amd�UmV�X

]
. (3.54)

In fact, the term with 5̃5 can be compactly rewritten using the dual field strength tensor as

L5 = 55(-)
[
(m · �)3 − 3(m · �)md�fmf�d + 2md�fmW�dmf�W

]
+ 5̃5(-)�̃U`�̃`VmU�V.

(3.55)
If one demanded that the longitudinal mode possess only non-trivial interactions, the

series would terminate at L5. However, relaxing this assumption allows us to continue to
quartic derivative order. Once again, Levi-Civita contractions guide the consistent con-
struction:

L6 = −n `adfnUVX^
[
56(-)m`�Uma�Vmd�Xmf�^ + 42 5̃6(-)m`�amU�Vmd�Xmf�^

]
.

(3.56)

Only the second term contributes non-trivially to the equations of motion; the first is a total
derivative. Simplifying, we get

L6 = 42 56(-)�̃UV�̃`amU�`mV�a . (3.57)
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Summarizing, the complete generalized Proca Lagrangian on flat spacetime is [8, 26]:

Lgen.Proca = −
1
4
�2
`a +

6∑
==2

U=L=, (3.58)

with the interactions

L2 = 52(-, �,. ), (3.59)

L3 = 53(-)m`�`, (3.60)

L4 = 54(-)
[
(m · �)2 − md�fmf�d

]
, (3.61)

L5 = 55(-)
[
(m · �)3 − 3(m · �)md�fmf�d + 2md�fmW�dmf�W

]
(3.62)

+ 5̃5(-)�̃U`�̃`VmU�V, (3.63)

L6 = 56(-)�̃UV�̃`amU�`mV�a . (3.64)

These represent the most general ghost-free derivative self-interactions for a massive spin-
1 field in four-dimensional Minkowski spacetime, terminating naturally at sixth order due
to the contraction limits of Levi-Civita tensors.

3.3 Generalized Proca Theories in Curved Spacetime

A natural follow-up question is how to consistently couple a massive vector field to gravity,
building on the insights obtained from the flat spacetime construction [8, 26]. While the
coupling of massless spin-1 fields to gravity proceeds naturally via gauge invariance, the
inclusion of derivative self-interactions for massive vector fields—analogous to Galileon
terms—requires greater care. In particular, it is essential to ensure that the equations of
motion remain second order in derivatives to avoid Ostrogradsky instabilities.

A naive covariantization of the flat-space generalized Proca interactions would gener-
ally introduce higher-order derivatives due to the non-commutativity of covariant deriva-
tives. However, these problematic terms can be canceled by introducing specific non-
minimal couplings to curvature tensors. Such couplings involve divergenceless tensors like
the Ricci and Einstein tensors, multiplied by functions of the scalar quantity - = −1

2�`�
`.

For the pure Stueckelberg sector—equivalent to a scalar Galileon—the necessary non-
minimal terms are structurally identical to those in scalar Horndeski theories [16]. These
counter-terms can therefore be imported directly into the vector field case.

When the full vector field is involved, including both longitudinal and transverse com-
ponents, additional care is required to identify the allowed non-minimal couplings. The
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generalized Proca Lagrangian on a curved spacetime takes the form

Lcurved
gen.Proca = −

1
4
√−6�`a�`a +

√−6
6∑
==2
L=, (3.65)

where the individual interaction terms are given by

L2 = �2(�`, �`a), (3.66)

L3 = �3(-)∇`�`, (3.67)

L4 = �4(-)' + �4,-
[
(∇`�`)2 − ∇d�f∇f�d

]
, (3.68)

L5 = �5(-)�`a∇`�a −
1
6
�5,-

[
(∇ · �)3 + 2∇d�f∇W�d∇f�W

−3(∇ · �)∇d�f∇f�d
]
− 65(-)�̃U`�̃V`∇U�V, (3.69)

L6 = �6(-)L`aUV∇`�a∇U�V +
�6,-

2
�̃UV�̃`a∇U�`∇V�a . (3.70)

Here, ∇` is the covariant derivative, andL`aUV denotes the double dual of the Riemann
tensor:

L`aUV = 1
4
n `adfnUVWX'dfWX . (3.71)

The function �2 depends on the scalar quantities - = −1
2�`�

`, � = −1
4�`a�

`a, and
. = �`�a� U

` �aU. Parity-violating contributions like �`a �̃`a are typically omitted.
These terms constitute the most general derivative self-interactions for a massive vec-

tor field on a curved background that yield second-order field equations, up to disformal
transformations. The non-minimal couplings—such as �4(-)', �5(-)�`a∇`�a, and
�6(-)L`aUV∇`�a∇U�V—are required to cancel higher-derivative contributions arising
from the covariantization process. By contrast, terms like�3(-)∇`�` and �̃5(. )�̃`U�̃aU∇`�a
are already safe under naive covariantization and do not require additional curvature terms.

To clarify the structure of these interactions, it is useful to introduce the symmetric
tensor

(`a = ∇`�a + ∇a�` . (3.72)

In terms of (`a, the Lagrangians can be recast as

L2 = �̂2(-, �,. ), (3.73)

L3 =
1
2
�3(-) [(], (3.74)

L4 = �4(-)' + �4,-
[(]2 − [(2]

4
, (3.75)
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L5 =
�5(-)

2
�`a(`a −

�5,-

6
[(]3 − 3[(] [(2] + 2[(3]

8
+ 65(-)�̃`U�̃ a

U (`a, (3.76)

L6 = �6(-)L`aUV�`a�UV +
�6,-

2
�̃UV�̃`a(U`(Va . (3.77)

The scalar Horndeski theory is recovered in the limit (`a → 2∇`∇ac, where c is the
Stueckelberg scalar. The interactions that involve �̃`a are intrinsically vectorial and have
no scalar analog.

Finally, to ensure that the equations of motion remain second order, it is essential that
derivatives acting on (`a obey the identity

2∇[U(V]W = [∇U,∇V]�W + [∇U,∇W]�V − [∇V,∇W]�U + ∇W�UV. (3.78)

This ensures that commutators of covariant derivatives only contribute curvature-dependent
terms and do not introduce higher derivatives of the field.

In this chapter, we constructed the most general self-derivative interactions for a mas-
sive vector field that propagate only three degrees of freedom and yield second-order
equations of motion, thereby avoiding the Ostrogradsky instability. These generalized
Proca theories, both in flat and curved backgrounds, represent consistent extensions of
the Proca framework that incorporate rich phenomenology while maintaining theoretical
consistency. Having established their classical structure, the next natural step is to inves-
tigate their behavior under quantum corrections. In the following chapter, we examine the
quantum stability of these self-derivative interactions and analyze the potential emergence
of new counter-terms at the one-loop level.



Chapter 4

Quantum Stability in Flat Spacetime

4.1 Definition of Stability

In the previous chapter, we presented scalar Galileon and generalized Proca theories as
effective field theories (EFTs) that include higher-derivative interactions while preserving
second-order equations of motion. These constructions rely on a delicate balance between
terms, carefully tuned to avoid the propagation of Ostrogradsky ghosts. With their classical
consistency established, we now investigate their behavior under quantum corrections.

The central question of this chapter is whether these theories maintain their structural
consistency at the quantum level. That is, do loop corrections spoil the required relations
between terms, or does the theory remain radiatively stable?

We define quantum stability as the property that radiative corrections do not generate
new operators that violate the symmetries or second-order nature of the classical action,
and that the coefficients of existing operators are not dangerously renormalized. Since
Galileon and generalized Proca theories are constructed with highly constrained interac-
tions, small quantum corrections could, in principle, destabilize their delicate structure.

In the case of scalar Galileons, the interactions enjoy a symmetry known as Galileon
symmetry, given by

c → c + 2 + 1`G`, (4.1)

where 2 and 1` are constant parameters. This internal symmetry, preserved up to total
derivatives, plays a crucial role in protecting the theory from dangerous quantum effects.
While it forbids the generation of symmetry-breaking local operators, it is less obvious
whether the symmetry-preserving Galileon operators themselves receive quantum correc-

41
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tions.
Remarkably, scalar Galileons [27] are protected by a non-renormalization theorem.

Loop diagrams do not generate new Galileon-type operators, nor do they renormalize the
coefficients of the existing ones. This implies that the classical structure is technically
natural: no fine-tuning is required to maintain the theory’s consistency under quantum
corrections.

To make this concrete, consider the cubic Galileon interaction written in Levi-Civita
tensor form:

L3 = c n `Udfn
aV

df
Π`aΠUV, (4.2)

where Π`a = m`mac and n `Udf is the antisymmetric Levi-Civita symbol.
We examine a one-loop correction in which an external c leg carrying momentum @` is

attached to a vertex, while the other two c fields run inside the loop with internal momenta
:` and (@ + :)`. The corresponding diagram takes the form:

@

:

: + @

@

c(@`) c(@`)

The loop integral corresponding to the cubic Galileon vertex takes the form

A ∝
∫

d4:

(2c)4
�:�:+@ n

`Udfn
aV

df
:`:a (@ + :)U (@ + :)V · · · , (4.3)

where �: = 1/:2 is the massless scalar propagator. Owing to the antisymmetry properties
of the Levi-Civita tensors, any term in the integrand that is independent of the external
momentum @`, or linear in @`, vanishes upon integration [8]. This means the leading
non-zero contributions involve at least two powers of @`, which produce higher-derivative
operators.

Such operators lie outside the Galileon class and are suppressed within the low-energy
effective theory. Consequently, loop corrections do not renormalize the Galileon opera-
tors. Instead, the quantum-generated terms preserve Galileon symmetry exactly, whereas
the classical terms do so only up to total derivatives. This structure protects the original
Galileon interactions and ensures their technical naturalness.
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Nonetheless, this radiative stability can be compromised when the scalar field is explic-
itly coupled to matter. Typical couplings include conformal interactions like c) , disformal
terms such as m`cmac) `a, or longitudinal couplings of the form m`mac)

`a. These types of
interactions naturally appear in modified gravity models, including extensions of massive
gravity.

Once such couplings are introduced, one-loop quantum corrections may generate new
operators that both renormalizeGalileon interactions and introduce higher-derivative ghostly
terms. Fortunately, these contributions are suppressed by the scale of the matter coupling
and remain under control within the validity regime of the effective theory.

In summary, the quantum stability of derivative EFTs such as Galileons hinges on in-
ternal symmetries that tightly constrain quantum corrections. As long as these symmetries
are preserved and the theory remains decoupled from external matter fields, the Galileon
Lagrangian remains radiatively stable and predictive.

Having clarified the quantum robustness of Galileon scalar theories, we now turn to
generalized Proca models. These vector field theories can be separated into two classes:
(i) interactions that are direct analogues of scalar Galileons, obtained by promoting m`c to
�`, and (ii) interactions intrinsic to the vector field, which have no scalar counterpart.

These two classes exhibit markedly different behaviors under quantum corrections. The
Galileon-like vector interactions inherit symmetry protections from their scalar counter-
parts, and are thus expected to obey a similar non-renormalization theorem. In contrast,
the intrinsically vectorial terms—those with no analogue in scalar Galileon theories—lack
this protection and may receive non-trivial loop corrections.

To analyze this more precisely, we consider Feynman diagrams involving only the vec-
tor field. The momentum-space propagator for a massive vector field is given by

�`a (:) =
−8

:2 − <2

(
[`a −

:`:a

<2

)
. (4.4)

As a representative example, consider aGalileon-type quartic interaction of the schematic
form

�`�an`
UdWna

Vf
W mU�V md�f . (4.5)

Focusing on the most relevant diagrams—those involving the smallest number of external
momenta—we assign momenta ?1 and ?2 to the external �` legs, and the loop momenta
are : and ?1 + ?2 − : .
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?1

?2

: − ?1 + ?2

: ?3

?4

The corresponding loop integral takes the form

A ∼
∫

d4:

(2c)4
�^` (?1)�Xa (?2) n`UdWna VfW :U (?1 + ?2 − :)d�_V (:)�bf (?1 + ?2 − :).

(4.6)
Due to the antisymmetric structure of the Levi-Civita contractions, any terms that do

not depend on external momenta—or that are linear in them—cancel out [8]. Thus, the
loop corrections produce only higher-derivative operators that are irrelevant in the low-
energy EFT. The original Galileon-type operators remain unrenormalized, confirming their
quantum stability.

The loop integral for such a diagram is schematically given by

A ∼
∫

d4:

(2c)4
�^` (?1)�Xa (?2) n`UdWna VfW :U (?1 + ?2 − :)d�_V (:)�bf (?1 + ?2 − :).

(4.7)
Due to the antisymmetric structure of the Levi-Civita tensors, terms that are indepen-

dent of, or linear in, the external momenta vanish after integration. The leading non-zero
contributions must include at least two powers of external momenta, which implies that the
generated operators involve more derivatives than the original interaction. These higher-
derivative operators are suppressed in the effective field theory, meaning that the original
Galileon-type terms are not renormalized. This mirrors the scalar Galileon case and con-
firms the quantum stability of these vector interactions.

In contrast, vector interactions that have no scalar analogue behave differently. Con-
sider, for example, the following quartic term:

�`�an`
UdWna

Vf
W mU�d mV�f . (4.8)

Following the same procedure as above and assigning external momenta to the undifferen-
tiated fields, the corresponding loop amplitude becomes

A ∼
∫

d4:

(2c)4
�^` (?1)�Xa (?2) n`UdWna VfW :U (?1 + ?2 − :)V�_d (:)�bf (?1 + ?2 − :).

(4.9)



Power Counting 45

Unlike the Galileon-type case, this interaction admits contributions proportional to
products of loopmomenta such as :U:V, even in the absence of external momentum. These
contributions generate operators with the same structure as the original interaction, thereby
renormalizing it. As a result, genuinely vectorial terms do not enjoy the same quantum pro-
tection and are subject to radiative corrections.

It is therefore crucial to quantify the magnitude of these corrections and assess their im-
pact within the validity regime of the effective field theory. This motivates a more detailed
analysis of loop effects and their scaling behavior, which we will explore in the following
chapters.

4.2 Power Counting

Before performing explicit loop computations, it is useful to develop a general framework
for estimating the structure of ultraviolet (UV) divergences in a quantum field theory. Such
estimates can help us anticipate the form of counter-terms required for renormalization,
without having to compute every diagram in detail. This method, known as power count-
ing, allows us to determine whether a given Feynman diagram is divergent, and if so, what
kind of divergence we should expect.

The basic idea is that, for diagramswith a non-negative superficial degree of divergence
� ≥ 0, the part of the momentum integral where all internal momenta become large simul-
taneously will contribute a divergence. As a heuristic example, such behavior resembles
an integral of the form

∫ ∞
:�−13: , which diverges for � ≥ 0.

To gain some intuition, suppose we differentiate the diagram’s amplitude with respect
to one of the external momenta. Each such derivative effectively reduces the power of loop
momentum in the integrand. After taking�+1 derivatives, the divergent part of the integral
becomes finite, indicating that the divergent contribution must be a polynomial of degree at
most � in the external momenta. The coefficients of this polynomial are divergent, while
any non-polynomial remainder remains finite.

To illustrate this idea concretely, consider the one-dimensional example

ℐ(@) =
∫ ∞

0

3:

: + @ , (4.10)

which has a logarithmic divergence corresponding to � = 0. Differentiating once gives

ℐ
′(@) = −

∫ ∞

0

3:

(: + @)2
= −1

@
, (4.11)
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so the original integral can be written as

ℐ(@) = − ln @ + 2, (4.12)

where 2 is a divergent constant. The divergent part is independent of the external momen-
tum @, while the finite part is analytic in @.

A similar structure appears in integrals with higher degrees of divergence. For instance,
a linearly divergent integral like ∫ ∞

0

: 3:

: + @ (4.13)

produces an expression of the form

0 + 1@ + @ ln @, (4.14)

where 0 and 1 are divergent constants, and the remaining @ ln @ term is finite.
From a Lagrangian perspective, this means that any divergence arising from a dia-

gram with � 5 external legs of field type 5 and superficial degree � can be absorbed into
counter-terms constructed from local operators involving � 5 fields and at most � deriva-
tives. These are precisely the types of terms already present or allowed in the original
Lagrangian if the theory is to remain renormalizable or effectively renormalizable. Conse-
quently, UV divergences manifest themselves as corrections to existing coupling constants
or the introduction of new, higher-dimensional operators in the effective action.

In the following sections, we will make these arguments more precise by analyzing
specific examples involving two- and three-point functions, including tensor structure and
index contractions. This will allow us to move beyond the heuristic and establish a system-
atic approach to identifying and controlling divergences in effective field theories.

4.2.1 Diagrammatic Power Counting

Tomove beyond the heuristic argument andmake the discussionmore precise, we now con-
sider the diagrammatic structure of loop integrals in theories with derivative self-interactions.
Let us denote the amputated one-loop amplitude as

�`aU···(?1, ?2, ?3, . . . ), (4.15)

where the indices correspond to Lorentz structures from external fields or vertices, and
{?8} represent the external momenta. In general, due to the complexity of the interaction
terms, each Feynman diagram will include multiple contributions: propagators may carry



Power Counting 47

different tensor structures, and interaction vertices—especially in self-interacting theories
like generalized Proca—typically include several terms with different momentum depen-
dencies.

To isolate the ultraviolet-divergent part of the diagram, we restrict our attention to the
most divergent pieces of the integrand. These correspond to the terms with the highest
number of loop momentum factors in the numerator. Lower-order terms contribute either
finite pieces or divergences of lower degree, which are subleading in the UV limit and do
not affect the leading structure of the divergence.

The superficial degree of divergence � of a diagram dictates the maximum power of
external momenta appearing in the divergent part of the amplitude. Once � is identified,
we can follow a systematic procedure: we take � + 1 derivatives of the amplitude with
respect to external momenta to reduce the divergence to a finite integral. Then, we rein-
tegrate, as in the simple scalar example discussed previously, to reconstruct the divergent
part as a polynomial of degree � in the external momenta.

As a concrete example, let us consider the one-loop two-point function generated by
the interaction vertex from L3:

?

: − ?

:

?

�` (?) �a (−?)

The full tensor structure of this diagramwill be specified later. For the purpose of power
counting, however, it suffices to observe that the most divergent contribution arises from
the part of the propagator containing additional powers of loop momentum. Specifically,
the propagator takes the form

�`a (:) =
1

:2 − <2 + 8n

(
−[`a +

:`:a

<2

)
, (4.16)

and the second term in the numerator, proportional to :`:a, leads to enhanced UV diver-
gence due to the presence of extra powers of the loop momentum : in the numerator.

When the propagator is combined with the momentum-dependent structure of the L3

vertex, the resulting loop integrand contains several terms with different momentum de-
pendence. As wewill show explicitly in a later section, the termwith the highest superficial
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degree of divergence behaves as � = 6. This dominant contribution arises from the inter-
play between the derivative interactions in the vertex and the :`:a term in the propagator
numerator, which introduces additional powers of loop momentum.

Taking a derivative with respect to an external momentum lowers the overall degree of
divergence by one. For example, the first derivative of the amplitude reduces the divergence
from � = 6 to � = 5:

m�`a (?)
m?U

∼ divergence of degree � = 5. (4.17)

Continuing this process, taking a total of � + 1 = 7 derivatives renders the expression
finite. This ensures that the original divergent part of the amplitude is a local polynomial
of degree six in the external momentum. After taking 7 such derivatives, the resulting
expression becomes UV finite:

m7�`a (?)
m?U1 · · · m?U7

= 5
`a
U1···U7 (?), (4.18)

where 5 `aU1···U7 (?) is a finite, momentum-dependent tensor function. Since this expression is
finite, it can be discarded in the context of isolating the divergent part. Reintegrating this
equation seven times with respect to the external momentum reconstructs the divergent
polynomial part of the original amplitude:

�`a (?)
���
div

= �
`a

(0) + �
`a

(1)U1
?U1 + �`a(2)U1U2

?U1 ?U2 + · · · + �`a(6)U1···U6
?U1 · · · ?U6 , (4.19)

where the coefficients �`a(=) are divergent tensors that depend on the details of the loop
integration, but are independent of external momenta. This expansion confirms that the
UV divergence takes the form of a local polynomial in the external momenta, consistent
with the structure expected from the effective action.

4.2.2 Dimensional Analysis and Rescaling

It is often advantageous to express divergent amplitudes in terms of dimensionless coef-
ficients. This makes the scaling behavior of divergences more transparent, especially in
effective field theories where all quantities are organized in a derivative expansion normal-
ized by a characteristic energy scale.

To proceed, we recall a general result from dimensional analysis: in 3 = 4 spacetime
dimensions, the mass dimension of an =-point Green’s function is given by

[�=] = 4 −
∑
8

[q8], (4.20)
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where [q8] is the mass dimension of the 8-th external field. In theories involving vector
fields with canonical dimension [�`] = 1, this simplifies for an =-point function involving
only vector fields to

[�=] = 4 − =. (4.21)

For instance, a two-point function has dimension 2, a three-point function has dimension
1, and so on.

Therefore, the divergent part of a two-point function such as �`a (?) must have overall
mass dimension 2. Since the momentum ?U carries dimension 1, each term in the polyno-
mial expansion of �`a (?) must be accompanied by a coefficient with dimension such that
the total dimension remains 2. To express these coefficients in a dimensionless form, we
rescale them by appropriate powers of a mass scale < and write:

�`a (?)
���
div

=<2 �̃
`a

(0) + < �̃
`a

(1)U1
?U1 + �̃`a(2)U1U2

?U1 ?U2 + 1
<
�̃
`a

(3)U1U2U3
?U1 ?U2 ?U3

+ 1
<2 �̃

`a

(4)U1···U4
?U1 · · · ?U4 + 1

<3 �̃
`a

(5)U1···U5
?U1 · · · ?U5 + 1

<4 �̃
`a

(6)U1···U6
?U1 · · · ?U6 .

(4.22)

Each �̃`a(=) is a dimensionless tensor, constructed from contractions of the metric and
Levi-Civita symbols with loop integrals, and encodes the tensorial structure of the UV
divergent part. This form makes manifest how the UV behavior is governed by local oper-
ators with increasing numbers of derivatives, suppressed by increasing powers of the cutoff
scale <, in line with the principles of effective field theory.

4.2.3 Lorentz Invariance

A crucial constraint on the structure of the divergent amplitude comes from Lorentz in-
variance. Since the amplitude �`a (?) must transform covariantly under Lorentz transfor-
mations, the coefficients �̃`a(=)U1···U= must be built entirely from Lorentz-invariant tensors.
In flat spacetime, the only available building blocks for constructing such coefficients are
the Minkowski metric [`a and the totally antisymmetric Levi-Civita tensor Y`adf1.

Let us now examine the tensorial structure of the sixth-order term. The coefficient
�̃
`a

(6)U1···U6
must be constructed using six symmetric Lorentz indices. Possible contractions

1The Levi-Civita tensor can, in principle, appear in parity-violating theories. However, in many cases
including parity-preserving interactions, such terms are excluded. Even when parity is not assumed, index
symmetries may prevent the construction of appropriate tensor structures using Y`adf .
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using the metric include:

[`a[U1U2[U3U4[U5U6 , [
`
U1[

a
U2[

U3U4[U5U6 , etc. (4.23)

These are consistent with Lorentz invariance and yield scalar expressions upon contraction
with polarization vectors and external momenta. When the full amplitude is contracted
with polarization vectors n`, na, the sixth-order term contributes combinations such as

(n · n) ?
6

<4 , (n · ?)2 ?
4

<4 , (4.24)

which are fully Lorentz invariant and of the correct dimension.
Now consider the fifth-order term. The coefficient �̃`a(5)U1···U5

carries a total of seven
Lorentz indices. In constructing such a tensor purely from the metric, one quickly sees that
no combination of [`a can yield an object with *seven* free indices, due to the symmetric
nature of [`a and the fact that eachmetric contracts two indices. Therefore, it is not possible
to construct a rank-7 tensor with the required index symmetries using only [`a.

Onemight ask whether the antisymmetric Levi-Civita tensor could rescue the situation.
However, Y`adf has only four indices, and even using it in combination with the metric, one
cannot construct a fully symmetric rank-7 tensor compatible with the Lorentz structure and
the index symmetries required by the amplitude and polarization contractions. Moreover,
unless the theory contains parity-violating terms, contributions involving Y`adf are absent
altogether.

Therefore, we conclude that odd powers of momenta — such as the fifth-order term—
cannot appear in the Lorentz-invariant UV-divergent part of the amplitude. The absence of
such terms is a direct consequence of the impossibility of constructing the necessary tensor
structures with the available Lorentz-invariant objects. This reasoning applies equally to
all odd powers, leading to the simplified structure:

�`a (?)
���
div

=<2 �̃
`a

(0) + �̃
`a

(2)U1U2
?U1 ?U2 + 1

<2 �̃
`a

(4)U1···U4
?U1 · · · ?U4 + 1

<4 �̃
`a

(6)U1···U6
?U1 · · · ?U6 .

(4.25)

Thus, Lorentz invariance not only constrains the form of divergent terms but also eliminates
entire classes of them, significantly simplifying the structure of UV divergences in effective
theories.

While Lorentz invariance often rules out certain terms in themomentum expansion—par-
ticularly those involving odd powers—these symmetry constraints depend crucially on the
total number of free Lorentz indices in the diagram. This number is determined by the
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structure of the amplitude and the number of external legs. As a result, odd powers of
momenta are not universally forbidden, and in some cases even powers may be excluded
due to the absence of compatible Lorentz structures.

To illustrate this point, consider the one-loop three-point function arising from a trian-
gle diagram:

?1

?2

?3

�` (?1)

�a (?2)

�W (?3)

We denote the amputated amplitude by

�`aW (?1, ?2, ?3), (4.26)

where ?1, ?2, and ?3 are the external momenta, and `, a, and W are the indices associated
with the external vector fields.

Suppose the expansion includes a term of seventh order in momenta,

1
<6 �̃

`aW

(7)U1···U7
?U1 · · · ?U7 , (4.27)

which contains a total of ten Lorentz indices. Since this is an even number, it is possible to
construct such a tensor using contractions of the Minkowski metric [`a. For instance, after
contraction with polarization vectors n `, n a, nW and external momenta ?8, one can obtain
Lorentz-invariant structures such as

(n · n) (n · ?) ?
6

<6 , (n · ?)3 ?
4

<6 , (4.28)

where each n and ? can correspond to any of the external legs. These expressions are
consistent with the required symmetries. Therefore, in this case, a seventh-order term in
momenta is allowed.
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On the other hand, consider a sixth-order term of the form

1
<4 �̃

`aW

(6)U1···U6
?U1 · · · ?U6 , (4.29)

which brings the total number of Lorentz indices to nine. In this case, constructing a fully
Lorentz-invariant tensor from the Minkowski metric alone is not possible, as any such
construction yields tensors with an even number of indices. Furthermore, since the theory
under consideration is assumed to preserve parity, terms involving a single Levi-Civita
tensor are not allowed, and double Levi-Civita contractions always result in tensors with
even rank. As a result, no admissible tensor structure exists for this term, and it must
vanish.

This example underscores an important subtlety: the appearance of a term in the UV-
divergent part of an amplitude depends not only on the power of momentum but also on the
specific index structure of the diagram. Lorentz invariance imposes strict constraints on
which tensor structures are permitted, and these constraints must be evaluated on a case-
by-case basis depending on the number of external fields and the symmetry properties of
the integrand.

As we have seen, the presence or absence of certain momentum powers in the divergent
part of an amplitude is governed by the total number of free Lorentz indices available for
constructing invariant tensor structures. These indices come not only from the tensor co-
efficients �̃ in the loop expansion but also from the external field polarizations. Therefore,
it is essential to keep track of the number and type of external legs, as they directly affect
the allowed terms in the polynomial expansion.

As a final example, consider again the one-loop three-point function from a triangle
diagram, but now suppose that one of the external legs corresponds to a graviton rather
than a vector field:
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?1

?2

?3

ℎ`a (?1)

�d (?2)

�f (?3)

In this case, the amplitude takes the form

�`adf (?1, ?2, ?3), (4.30)

where ` and a are associated with the polarization vectors of the two vector fields, and df
with the polarization tensor of the external graviton.

The corresponding polarization structure now involves three external legs, but the total
number of Lorentz indices has increased to four due to the symmetric rank-2 polarization
tensor n df for the graviton. Upon contraction with the tensor coefficient from the loop
integral, the total number of indices becomes

=total = 4 + =,

where = is the number of momentum factors ?U1 , . . . , ?U= in the expansion term.
For the full amplitude to be Lorentz-invariant, =total must be even so that all indices

can be contracted using the metric tensor. This immediately implies that only even powers
of momenta can appear in the expansion. Odd powers would lead to an odd total num-
ber of indices, for which no Lorentz-invariant tensor structure exists using only symmetric
combinations of [`a (and assuming again that parity is preserved, so single Y`adf tensors
are excluded). This example reinforces the broader conclusion: the structure of UV diver-
gences is not determined solely by the loop momentum power counting, but also by the full
Lorentz index structure, which depends on the spins of the external particles. The interplay
between power counting and Lorentz invariance is highly sensitive to the particle content
of the diagram and must be treated with care.
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To conclude this section, we summarize the key steps and guiding principles for de-
termining the form of the UV-divergent part of loop amplitudes using power counting and
Lorentz invariance:

1. Determine the superficial degree of divergence. For a given diagram, identify the
number of loops, propagators, and derivatives in the vertices. The superficial degree
of divergence � provides an upper bound on the degree of momentum dependence
in the divergent part of the amplitude.

2. Focus on the most divergent terms. Isolate the leading behavior in loop momen-
tum by retaining only those terms in the numerator that maximize powers of loop
momenta (e.g., from momentum-dependent propagators or derivative interactions).

3. Differentiate and reintegrate. Apply � + 1 derivatives with respect to external
momenta to render the integral finite. This procedure guarantees that the divergent
part is a polynomial in external momenta of degree at most �. Reintegrating yields
the structure of the divergent terms.

4. Express coefficients in dimensionless form. Introduce a mass scale < and factor
out appropriate powers so that the polynomial coefficients become dimensionless
tensors:

�`a (?)
���
div

=<2 �̃
`a

(0) + �̃
`a

(2)U1U2
?U1 ?U2 + 1

<2 �̃
`a

(4)U1···U4
?U1 · · · ?U4 + · · · . (4.31)

5. Ensure even total number of Lorentz indices. The sum of Lorentz indices from
external fields (polarizations) and from momentum powers must be even to allow
contraction into Lorentz-invariant scalars using only the Minkowski metric. Terms
with an odd total number of indices are excluded in parity-preserving theories, as no
such invariant tensor structure can be constructed.

This systematic procedure provides a practical tool to identify the structure of divergences
without performing the full loop integration. It also clarifies the interplay between UV
behavior and symmetry constraints in effective field theories involving higher-spin fields
and derivative interactions.
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4.3 Quantum Stability of Generalized Proca Theories in
Flat Spacetime

In the preceding chapters, we presented the structure of generalized Proca theories formu-
lated on a flat Minkowski background, as encapsulated in Eq. (3.64). These theories are
characterized by a set of functions 58 that depend on Lorentz-invariant combinations of
the vector field �` and its derivatives. In particular, the relevant scalar building blocks
entering the Lagrangian are given by:

- = −1
2
�`�

`, � = �`a�
`a, . = �`�a�`

U�aU, (4.32)

where the field strength tensor is defined as �`a = m`�a − ma�`.
In this chapter, we focus on a simplified subclass of these theories by choosing the

functions 58 to be either constant or linear in their arguments. This restriction significantly
reduces the complexity of the interaction terms, allowing for a more tractable quantum
analysis. Our treatment closely follows the methodology developed in [28], where the
quantum behavior of such simplified models was studied in detail. In this simplified sub-
class, the functions 58 (-) and 5̃8 (-) introduced in Eq. (3.64) take on linear or constant
forms. Explicitly, we define these functions as follows:

53(-) = �3-, 54(-) = �4-, 5̃4(-) = �̃4-, 55,6(-) = �5,6, 5̃5,6(-) = �̃5,6.

(4.33)
With these choices, the theory is simplified significantly, facilitating the analysis of quan-
tum stability in subsequent sections. Concretely, we choose:

L2 = −1
4
�2 + 1

2
<2�2,

L3 =
<2

Λ2
2
�3�

2m`�
`,

L4 =
<2

Λ4
2
�2

[
�4

(
(m`�`)2 − m`�ama�`

)
+ �̃4�

2
]
,

L5 = − 1
Λ2

2
�̃5 n

`adfnUVWfm`�amU�Vmd�W,

L6 = − 1
Λ4

2
�̃6 n

`adfnUVWXm`�amU�Vmd�Wmf�X .

(4.34)

With this specific choice, the terms proportional to �5 and �6 become total derivatives
and thus can be neglected. The theory presented here is characterized by two fundamental
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classical scales: the mass of the vector field, <, and the interaction scale, Λ2. The scale Λ2

determines the strength of interactions and organizes the terms in the Lagrangian according
to their number of fields =. Explicitly, each interaction term is suppressed by factors of

1
Λ2=−4

2
, where = counts the total number of fields involved.

Furthermore, the ratio of these two scales,</Λ2, forms a dimensionless parameter that
can be interpreted as an effective coupling constant. Typically, this parameter is assumed
to be small, ensuring the validity of perturbative expansions. The full description of the
Feynman rules for this theory is given in appendix A.2.

4.4 Stückelberg Expansion and the Decoupling Limit

To investigate the quantum stability of generalized Proca theories, it is convenient to rewrite
the theory by explicitly introducing an auxiliary scalar field. This reformulation introduces
redundancy by replacing the vector field �` according to the Stückelberg rescription [12,
28]:

�` → �` +
1
<
m`q , (4.35)

where the scalar field q plays the role of the Goldstone boson, which is ”eaten” by the
vector field. The mass scale < is fixed by requiring canonical normalization of the scalar
kinetic term. This approach explicitly reintroduces the gauge redundancy into the massive
vector theory, enabling a gauge-invariant formulation. Importantly, under this replacement,
gauge-invariant quantities such as �`a and its dual �̃`a remain unaffected.

It is natural then to introduce a gauge-covariant derivative defined as

�`q = m`q + <�` , (4.36)

with the theory becoming invariant under the simultaneous gauge transformations

q→ q + <U, �` → �` − m`U . (4.37)

Choosing the unitary gauge U = − q
<

restores the original formulation by eliminating q,
explicitly showing that only three physical degrees of freedom are propagated.

Another useful gauge choice, implemented via the Fadeev-Popov procedure, is given
by

m`�
` + <q = 0 . (4.38)

In this gauge, the propagators for the fields �` and q become simple:
−8[`a
?2 + <2 and

−8
?2 + <2 , (4.39)
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respectively. Crucially, at high energies, these propagators behave as ∼ 1/?2, in contrast
to the original massive vector propagator, which behaved as ∼ 1/<2. Thus, this gauge
choice is particularly advantageous when studying the high-energy behavior and quantum
stability of the theory.

To better understand the effective field theory (EFT), we identify the energy scale at
which the theory becomes strongly coupled. For instance, considering the scalar sec-
tor, a representative 2 → 2 scattering amplitude arising from the schematic operator
∼ <2

Λ4
2

1
<4 (mq)2(m2q)2 from L4 scales as

M2→2 ∼
�6

Λ4
2<

2
. (4.40)

Therefore, the scale at which strong coupling occurs is given by

Λ3 ≡ (Λ2
2<)

1/3 . (4.41)

Provided that the parameter </Λ2 remains small (which corresponds to a weak clas-
sical coupling regime), there exists a parametrically large separation between this strong
coupling scaleΛ3 and the vectormass scale<. This scale hierarchy ensures the consistency
and validity of the EFT, and it is crucial for the applicability of the so-called decoupling
limit. In this limit, the theory is analyzed by zooming in at energies close to Λ3, while
simultaneously sending the other scales away, i.e.,

< → 0, Λ2 →∞, with Λ3 = (Λ2
2<)

1/3 = const. (4.42)

This decoupling limit significantly simplifies the theory, effectively decoupling the vec-
tor modes from the scalar mode, except in gauge-invariant structures involving �`a and
�̃`a. In particular, the gauge symmetry (introduced in Eq. (3.3)) splits into two separate
symmetries: a pure gauge symmetry for �` and a global shift symmetry for q,

q→ q + 2, �` → �` − m`U . (4.43)

In this simplified regime, the Lagrangian is obtained by substituting

�` →
1
<
m`q, � → �, �̃ → �̃, (4.44)

and subsequently taking the limit (3.8). This procedure yields the decoupling limit La-
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grangian:

L2 = −1
4
�2 + 1

2
(mq)2 ,

L3 =
�3

Λ3
3
(mq)2�q ,

L4 =
�4

Λ6
3
(mq)2

[
(�q)2 − (m`maq)2

]
,

L5 = − �̃5

Λ3
3
�̃`U�̃ a

U m`maq ,

L6 = − �̃6

Λ6
3
�̃`U�̃aVm`maqmUmVq .

(4.45)

Notice that, in this limit, the mass term for the vector field and the terms proportional to �̃4

vanish, whereas the remaining scalar-dependent terms reduce precisely to scalar Galileon
interactions [27].

From these considerations, we conclude that the decoupling limit can equivalently be
viewed as a high-energy limit of the original massive vector theory. Specifically, lowering
the mass < is analogous to probing higher energies, where the longitudinal polarization
mode (represented by the scalar field q) dominates. This aligns naturally with the Gold-
stone boson equivalence theorem: at low energies all three polarizations appear equiva-
lent, but at energies approaching Λ3, the longitudinal mode is clearly distinguished from
the transverse modes.

Thus, analyzing quantum stability in the decoupling limit provides clarity by isolating
the longitudinal mode, simplifying calculations of radiative corrections and potential in-
stabilities. In this limit, the radiative stability of the theory is predominantly governed by
the scalar sector, reducing the complexity of the quantum corrections significantly. Be-
fore systematically addressing the hierarchy and stability of interactions, we proceed in the
following section with explicit computations of one-loop divergences and the associated
counterterms.

4.4.1 Two-Point Functions

In the following analysis, we employ dimensional regularization combined with the MS
subtraction scheme to systematically isolate and extract the one-loop divergences arising
from these Feynman diagrams using the tools designed for the loop computations [29, 30,
31, 32, 33].
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Figure 4.1. One-loop, two-point diagrams. The diagram on the left represents a standard
bubble diagram with two internal propagators. The diagram on the right corresponds to a
tadpole diagram, where a single internal propagator forms a loop attached to an external
leg.

The diagrams for the two-point functions are represented in figure 4.1.
For the diagram on the left in Figure 4.1, commonly referred to as the bubble diagram,

one-loop contributions can arise from interactions involving two insertions of L3 or L5.
As a representative example, we consider here the case of two insertions of L3, leading to
the following amplitude:

Γ`a (?) = −28
Λ4

2

∫
34@

(2c)4
1

(@2 − <2)
(
(@ − ?)2 − <2) · (−@U@V + <2[UV

)
·
(
−(@ − ?)W (@ − ?)\ + <2[W\

)
·
(
−?`[UW − (@ − ?)W[ `

U + @U[`W
)

·
(
−?a[V\ + (@ − ?)\[ a

V + @
V[a\

)
(4.46)

Using the power counting techniques developed in the previous section, we can isolate
the UV-divergent part of the amplitude by retaining only the highest powers of the loop
momentum @. One such contribution is:

Γ
`a

div(?) ⊃
−28
Λ4

2

∫
34@

(2c)4
@`@a (@ · @)2

(@2 − <2)
(
(@ − ?)2 − <2) . (4.47)

The UV-divergent part of this integral, which has superficial degree of divergence � =

6, takes the general polynomial form:

Γ
`a

div(?) = <
2�

`a

(0) + �
`a

(2)UV ?
U?V + 1

<2�
`a

(4)UVWX ?
U?V?W?X + 1

<4�
`a

(6)U1···U6
?U1 · · · ?U6 ,

(4.48)
where each �`a(=) is a dimensionless Lorentz-covariant tensor built from contractions of the
Minkowski metric, encoding the tensor structure of the divergent contribution.
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Following the power counting machinery developed earlier and omitting Lorentz in-
dices for clarity, the divergent part of the amplitude scales as:

Γdiv(?) ∼
<4

Λ4
2

(
<2 + ?2 + ?

4

<2 +
?6

<4

)
, (4.49)

where each term corresponds to a local operator in the effective action with an increasing
number of derivatives. The presence of higher-derivative contributions is a direct conse-
quence of the derivative self-interaction in L3, while the overall scaling is governed by the
suppression scale Λ2.

Repeating the same procedure for the remaining loop diagrams—including mixed con-
tributions such as L3L5 and contact terms from L4, as well as higher-order combinations
like L5L5 and L6—and also including the tadpole diagram shown on the right in Fig-
ure 4.1, we obtain the following schematic expressions for the one-loop divergent part of
the two-point function:

Γdiv
L3L3
(?) ∼ <

4

Λ4
2

(
<2 + ?2 + ?

4

<2 +
?6

<4

)
,

Γdiv
L3L5,L4

(?) ∼ <
2

Λ4
2

(
<4 + <2?2 + ?4 + ?

6

<2 +
?8

<4

)
,

Γdiv
L5L5,L6

(?) ∼ 1
Λ4

2

(
<6 + <4?2 + <2?4 + ?6 + ?

8

<2 +
?10

<4

)
,

(4.50)

where ? denotes the external momentum. Each term in the expansions corresponds to a
local operator consistent with Lorentz invariance and the symmetries of the theory, orga-
nized in increasing powers of derivatives acting on the fields. Based on the structure of
the one-loop divergent terms presented above, we observe that the classical operators ap-
pearing in the tree-level Lagrangian do receive quantum corrections. That is, the theory
is not radiatively stable in the strict sense, and the classical structure is renormalized by
loop-induced counterterms.

One-loop terms proportional to ?2 unavoidably induce corrections to the kinetic struc-
ture of the theory. In particular, they generate contributions of the form

∼ <
4

Λ4
2

(
m`�

`
)2
, (4.51)

which detune the gauge-invariant structure appearing in the Proca kinetic operator. While
the classical kinetic term is given by

L2 = −1
4
�2 + 1

2
<2�2,



Stückelberg Expansion and the Decoupling Limit 61

the operator (m`�`)2 explicitly breaks the accidental gauge symmetry of the massless limit
and must be introduced as a counterterm to cancel the associated divergence.

Other examples of radiatively generated operators include higher-derivative terms such
as

∼ <
2

Λ4
2
�2m`�am

`�a, ∼ 1
Λ4

2
�2�2�2, (4.52)

as well as detunings of the specific combinations present in L4, for example:

∼ <
2

Λ4
2
�2

(
(m`�`)2 + m`�ama�`

)
. (4.53)

These loop-induced operators illustrate that, in the absence of symmetry protection, quan-
tum corrections generically regenerate all local structures allowed by dimensional analysis
and Lorentz invariance. As such, any classical tuning is generically destabilized under
renormalization.

To evaluate the physical relevance of these corrections—especially their impact on the
propagating degrees of freedom—it is important to examine the theory in the decoupling
limit introduced in Eq. (4.42). This limit isolates the longitudinal mode, which controls
the high-energy dynamics and is most sensitive to radiative corrections.

In this regime, many of the loop-induced operators become suppressed. For instance,
the operator

(m`�`)2 ∼
1
<2 (�q)

2

generates a ghost with mass

<2
C ∼

Λ6
3

<4 ,

which remains well above the cutoff Λ3, making it irrelevant for the low-energy theory.
However, the most dangerous contributions are those involving the highest powers of

external momentum, as they dominate in the ultraviolet and can jeopardize the consistency
of the effective field theory. For instance, the ?8 term in the loop expansion induces a
counterterm of the form

∼ m8

Λ4
2<

2
�2 DL−−→ m6

Λ6
3
· m

2

<2 (mq)
2, (4.54)

where we have used the longitudinal mode identification �` ∼ m`q/< valid in the decou-
pling limit.

In this limit, the mass parameter < acts as a suppression scale for the scalar mode, and
as < → 0, the induced term becomes increasingly divergent. The presence of the explicit



62 Stückelberg Expansion and the Decoupling Limit

1/<2 factor indicates that the quantum correction grows without bound in the decoupling
limit and eventually overwhelms the classical kinetic term. This signals a breakdown of
perturbative control and suggests that the effective theory may not be radiatively stable.

At this stage, everything appears problematic: from the perspective of naive power
counting, the theory seems to be destabilized by quantum corrections, and the proliferation
of higher-derivative operators threatens the very structure of the classical action. However,
we go beyond this superficial analysis and perform the loop integrals explicitly.

To go beyond the naive power counting arguments, we now compute the one-loop
two-point amplitude explicitly using dimensional regularization in 3 = 4 + 2n . The UV-
divergent part of the amplitude takes the form:

Γdiv
2 =

nU? n
V
−?

16c2nΛ4
2

[
?2[UV<

4
(
−3�2

3 + 6�̃4 − 4�3 �̃5 + 2�̃2
5

)
+ [UV<6

(
−3�2

3 + 6�̃4

)
+ ?U?V<4

(
12�2

3 − 6�̃4 + 16�3 �̃5 +
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(4.55)

This result explicitly displays the UV divergence structure of the two-point function,
including both gauge-invariant and non-gauge-invariant tensor structures. The polarization
tensors nU? and n V−? project the amplitude onto the physical states of the external vector
fields. We now analyze the structure of the divergent part given in Eq. (4.55). First, we
observe that certain operators do not contribute to the two-point function at one-loop order.
In particular, the quartic self-interaction in L4 proportional to �4, as well as the quartic
interaction L6, leave no imprint on the divergence structure at this level. This is consistent
with expectations, as these terms do not contain the tensor structures that could contribute
to the relevant diagrams.

Among the operators that do contribute, the term proportional to �̃4 leads to a diver-
gence that preserves the gauge-compatible structure of the quadratic operator,(

� + <2
)
[UV − mUmV,

which is consistent with the nature of �̃4�
2 as a gauge-invariant interaction. In contrast, the

contributions involving �3 and �̃5—originating from L3 and L5, respectively—generate
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deviations from this structure. These result in the expected detuning, introducing terms
that could break gauge invariance and potentially reintroduce higher-derivative ghosts, as
discussed earlier.

However, and crucially, only terms with sufficiently high powers of external momen-
tum pose a real threat to the consistency of the effective field theory. Referring to the final
line of Eq. (4.55), we note that while terms of order ?8 are present, those scaling as ?10 are
entirely absent—even though nothing forbids their appearance from a purely dimensional
or symmetry standpoint. This non-trivial cancellation indicates that the structure of the
generalized Proca theory is specially arranged to eliminate the most dangerous contribu-
tions at one loop.

Furthermore, the ?8 terms that do survive are remarkably well-behaved: they appear
only in the specific gauge-preserving combination(

�[UV − mUmV
)
,

which ensures that the induced counterterm does not spoil the structure of the theory. In
the decoupling limit, this term leads to a harmless quantum correction of the form

∼ m6

Λ4
2<

2
�2 DL−−→ m6

Λ6
3
�2, (4.56)

which fits naturally within the hierarchy of terms expected in the effective theory. The
correction remains under control relative to the classical action, confirming that the the-
ory is protected against the most dangerous loop effects despite the absence of an explicit
symmetry enforcing this cancellation.

4.4.2 Three-Point Functions

Wenow extend our analysis to the three-point function, following the same strategy as in the
two-point case. That is, we compute the one-loop diagrams contributing to the three-point
amplitude, isolate the divergent parts using dimensional regularization, and study their
tensor structure and dependence on external momenta. Our goal is to determine whether
dangerous, radiatively generated terms arise andwhether the effective theory remains under
control.

The relevant diagrams are shown in Figure 4.2. The diagram on the left is the familiar
triangle topology, where each external momentum enters at a different vertex of the loop.
The diagram on the right represents a bubble-type contribution in which two of the external
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legs couple to the same vertex. This second topology appears in three different channel
permutations, corresponding to the different possible pairings of external legs.

?1

?2

@

@ − ?2 − ?1

@ − ?1

?3

?1

@

@ − ?1 − ?2

?2

?3

Figure 4.2. One-loop, three-point diagrams contributing to the amplitude. The diagram
on the left represents the triangle topology, where all three external legs are attached to
different vertices of the loop. The diagram on the right corresponds to a bubble-type di-
agram, where two external legs couple to the same vertex. This second diagram appears
in three different channel permutations, depending on which pair of external legs share a
vertex.

Before diving into explicit computations, we can again anticipate the possible structure
of UV divergences using dimensional analysis and Lorentz invariance. Unlike the two-
point function, the three-point amplitude carries three Lorentz indices associated with the
external polarization vectors, which must be contracted with momenta or metric tensors to
form invariant combinations. This increases the number of available tensor structures and
also the number of potentially dangerous terms.

Based on operator insertions and loop power counting, the divergent part of the ampli-
tude is expected to scale schematically as follows:

Γdiv
L3

3
∼ <

6

Λ6
2

(
? + ?

3

<2 +
?5

<4 +
?7

<6

)
,

Γdiv
L2

3L5,L3L4
∼ <

4

Λ6
2

(
<2? + ?3 + ?

5

<2 +
?7

<4 +
?9

<6

)
,

Γdiv
L3L2

5 ,L3L6,L5L4
∼ <

2

Λ6
2

(
<4? + <3?3 + ?5 + ?

7

<2 +
?9

<4 +
?11

<6

)
,

Γdiv
L3

5 ,L5L6
∼ 1

Λ6
2

(
<6? + <4?3 + <3?5 + ?7 + ?

9

<2 +
?11

<4 +
?13

<6

)
,

(4.57)
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where ? schematically denotes external momenta, and the series truncates at 1/<4 or 1/<6

depending on the number of propagators and insertions involved in the diagram.

Once again, we find that the contributions involving high powers of externalmomenta—es-
pecially those scaling as ?11 or higher—deserve special attention. In particular, loop dia-
grams involving combinations such as L3L2

5, L
3
5, and L5L6 potentially generate danger-

ous counterterms that could destabilize the effective field theory if they are not suppressed
or protected by symmetry. We now proceed to compute the divergent part of the amplitude
explicitly and assess whether such terms actually appear.

Regardless of the precise form of the individual contributions, the most significant out-
come of the expansion in Eq. (4.2) is the absence of any terms scaling as ∼ ?13 or ∼ ?11 in
the divergent part of the one-loop three-point function. This absence is non-trivial: such
terms would have been allowed by dimensional analysis and Lorentz invariance, and their
presence could have led to severe radiative instabilities in the effective field theory. Their
cancellation is therefore a non-obvious consistency check on the structure of the general-
ized Proca interactions. These cancellations suggest that the theory is protected against
the most dangerous quantum corrections, even in the absence of an explicit symmetry that
would forbid such terms. The UV-divergent contributions that do remain are consistent
with the EFT expansion and do not threaten its validity below the strong coupling scale.

For a detailed account of the computational techniques and methods employed in de-
riving these results, the reader is referred to [28]. The structure of the one-loop four-point
function is also discussed in the above reference. Although we do not reproduce the four-
point analysis here, the outcome is entirely consistent with the findings from the two- and
three-point sectors. Specifically, the four-point function does not introduce any instabili-
ties: either the generated terms are sufficiently suppressed—so that any associated ghost
degrees of freedom lie above the EFT cutoff—or the potentially dangerous high-derivative
operators are absent altogether. In cases where higher-derivative structures do appear, they
are organized into gauge-invariant combinations that do not threaten the consistency of the
effective theory. This reinforces the overall conclusion that the generalized Proca theory,
despite its derivative self-interactions, exhibits remarkable quantum stability at one loop.

4.5 Quantum Stability from the Decoupling Limit

In the previous sections, we explicitly computed one-loop amplitudes for the two- and
three-point functions in a restricted generalized Proca model on flat spacetime. These
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results revealed non-trivial cancellations that eliminate dangerous high-momentum diver-
gences, suggesting that the theory is radiatively stable despite its derivative self-interactions
and the absence of manifest symmetry protection. We now summarize how this structure
can be understood and extended to all loop orders and all =-point functions using the de-
coupling limit.

The decoupling limit (DL), as defined in equation (4.42), isolates the high-energy be-
havior of the theory by sending the vector mass to zero while keeping the strong coupling
scaleΛ3 = (<2Λ2)1/3 fixed. This procedure introduces a scalar Stückelberg field q through
the replacement

�` → �` +
1
<
m`q, (4.58)

which makes the longitudinal mode of the vector field explicit. In this limit, the transverse
and longitudinal degrees of freedom decouple at the level of symmetries, and the interac-
tions reduce to a set of Galileon-like scalar terms and gauge-invariant vector structures.

Quantum corrections in the DL are organized in terms of three expansion parameters:

Ucl =
m2q

Λ3
3
, Uq =

m2

Λ2
3
, Uq̃ =

�2

Λ4
3
, (4.59)

where Ucl characterizes the size of classical non-linearities, while Uq and Uq̃ quantify quan-
tum loop contributions. Since every loop-induced counterterm must include a non-zero
power of Uq or Uq̃, quantum corrections are always suppressed relative to the classical
operators provided the energy remains below the cutoff scale Λ3. In particular, the classi-
cal Galileon-like terms are non-renormalized, and all potentially dangerous operators are
absent or appear only in a gauge-invariant form, such as �2.

This structure guarantees that the effective field theory remains under control: clas-
sical non-linearities can become important (e.g. for Vainshtein [34] screening) without
inducing large quantum corrections that destabilize the EFT. As emphasized in [28], the
absence of dangerous operators like �3 or m10�2 at all loop orders and for arbitrary =-point
functions can be understood purely from dimensional and symmetry considerations in the
decoupling limit. Furthermore, this argument confirms that taking the decoupling limit and
computing loop corrections commute, thereby validating the consistency of the loop-level
results obtained in the unitary gauge.

We refer the reader to [28] for a complete and rigorous derivation of these results and
their implications for the full generalized Proca effective field theory.

In this chapter, we analyzed the quantum stability of generalized Proca theories in
the flat Minkowski background. By computing explicit one-loop amplitudes for two- and
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three-point functions, we identified the structure of UV divergences and demonstrated that
potentially dangerous operators are either absent or appear only in safe, gauge-invariant
combinations. These results suggest that the effective field theory remains under control
despite its non-renormalizable interactions. In the next chapter, we extend this analysis
to the case of curved spacetime, where gravitational interactions are included via metric
perturbations.





Chapter 5

Extending Stability Analysis to Curved
Spacetime

In this section, we study the dynamics of Generalized Proca theories in curved spacetime,
with a particular focus on their behavior in the presence of weak gravitational fields. More
precisely, we aim to understand how the Proca field interacts with small perturbations of
the metric around flat Minkowski spacetime. This setup corresponds to the regime where
gravity is weak, and the spacetime metric can be treated as a perturbation around the flat
background [35, 36, 37, 38].

5.1 Framework and Background Setup

We begin our analysis with the full Lagrangian for the Generalized Proca theory (see
Eq. (3.70)). We then apply a perturbative expansions:

6`a = [`a + ℎ`a, (5.1)

�` = �̄` + X�`, (5.2)

where ℎ`a represents a small perturbation describing weak gravitational effects [39].
For a zero background configuration of the Proca field, �̄` = 0, the equations of motion

at the background level are determined entirely by the gravitational sector. In this case, the
background field equations reduce to the following condition:

�2

(
1
2
�`�`, −

1
4
�2

) ����
�`=0

= 0. (5.3)

69
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From here on, we use a bar to indicate that a function is evaluated on the background, e.g.,
�̄2 ≡ �2 |�`=0. With this notation, the background equation simplifies to:

�̄2 = 0 . (5.4)

5.1.1 Quadratic Order

Expanding the action up to quadratic order in the perturbations X�` and ℎ`a, we obtain:

L (2)2 =
1
2

(
m`X�a m
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2 ,
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L (2)6 = 0 .
(5.5)

where , ℎ ≡ ℎ`` denotes the trace of the metric perturbation [40]. From the quadratic
Lagrangian, we observe the presence of mixing terms between the Proca field perturbation
X�` and the metric perturbation ℎ`a. These terms indicate that, at this order, the kinetic
operators for the two fields are not diagonal. In other words, the fluctuation Lagrangian
contains off-diagonal terms that couple the vector and tensor sectors, implying that the
propagator structure is not initially block-diagonal.

Explicitly, the mixed part of the quadratic Lagrangian is given by:

L (2)mix =
1
2
�̄3 X�

a maℎ +
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2
�̄3 ℎ m`X�
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2
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2
�̄5 mdmaℎ m

dX�a .

(5.6)
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However, these mixing terms involve total derivatives and can be eliminated through
integration by parts. After appropriate rearrangement, all such terms cancel out, and the
quadratic Lagrangian effectively becomes block-diagonal in the tensor and vector sectors.
As a result, the graviton and Proca field decouple at the quadratic level, making it straight-
forward to define the propagators independently for each field.

After performing integration by parts, the mixing terms vanish and the vector and ten-
sor sectors decouple at the quadratic level. That is,

L (2)mix = 0 . (5.7)

The simplified quadratic Lagrangians then become:

L (2)2 = −1
2
X�` mam`X�a �̄

(0,1)
2 + 1

2
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4
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4
�̄4 ℎ m

dmdℎ ,

L (2)5 = 0 ,

L (2)6 = 0 .
(5.8)

Before proceeding to compute the propagators, we must perform two essential steps:
canonical normalization and gauge fixing.

First, we canonically normalize the fields to bring their kinetic terms into a standard
form. This is necessary to correctly identify the propagators. To bring the quadratic La-
grangian into canonical form, we perform the following field redefinitions:

X�` →
X�`√
�̄
(0,1)
2

, ℎ`a → −
√
−2�̄4

�̄4
ℎ`a . (5.9)

In terms of these canonically normalized fields, the quadratic Lagrangian becomes:

L (2)canon = −
1
2
X�` mam`X�a +

1
2
X�` mamaX�` +

1
2
�̄
(1,0)
2

�̄
(0,1)
2

X�`X�`

+ ℎ`a mdmaℎ`d − ℎ mdmaℎad −
1
2
ℎ`a mdmdℎ`a +

1
2
ℎ mdmdℎ .

(5.10)

Second, we need to fix the gauge for the gravitational perturbations. The Lagrangian
L4, which contains the kinetic terms for ℎ`a, is invariant under linearized diffeomorphisms
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of the form

ℎ`a → ℎ`a + m`ba + mab` , (5.11)

where b` is an arbitrary vector field parametrizing infinitesimal coordinate transformations.
This gauge symmetry introduces redundancies in the description of the graviton degrees
of freedom, making the kinetic operator non-invertible. To correctly define the graviton
propagator, we must add a gauge fixing term that breaks this symmetry and renders the
kinetic operator invertible.

We work in the harmonic gauge (also known as de Donder gauge), which imposes the
condition

m`ℎ`a −
1
2
maℎ = 0 . (5.12)

The corresponding gauge fixing Lagrangian is

LGF =
1
Z

(
m`ℎ`a −

1
2
maℎ

) (
mdℎd

a − 1
2
maℎ

)
, (5.13)

where Z is the gauge parameter [39]. In what follows, we choose Z = 1. This term removes
the degeneracy in the graviton kinetic operator and allows us to consistently define the free
graviton propagator.

After including the gauge fixing term, the full quadratic Lagrangian becomes

Lquad = L (2)2 + L
(2)
4 + LGF , (5.14)

where L (2)2 is the canonically normalized Proca sector, L (2)4 is the canonically normalized
graviton sector, and LGF is the gauge fixing term derived in harmonic gauge.

Performing integration by parts and simplifying, the total quadratic Lagrangian be-
comes:

Lquad = −
1
2
X�` mam`X�a +

1
2
X�` mamaX�` +

1
2
�̄
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2

�̄
(0,1)
2
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− 1
2
ℎ`a mdmdℎ`a +

1
4
ℎ mdmdℎ .

(5.15)

Here, the first two terms represent the kinetic part of the Proca field, while the third
term acts as an effective mass term. The last two terms correspond to the graviton kinetic
structure after including the gauge fixing contribution.

From the quadratic Lagrangian, we can now read off the momentum-space propagators
for the canonically normalized fields:
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?
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for the vector field, where the mass is given by <2
�
= �̄

(1,0)
2 /�̄ (0,1)2 . and

?
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)
(5.17)

For the graviton.

5.1.2 Cubic interactions

The cubic Lagrangian contains interactions involving combinations of up to three pertur-
bations from the metric ℎ`a and the vector field X�`. Due to the complexity of these terms,
here we briefly summarize the structure of each Lagrangian L (3)= , providing full explicit
expressions in Appendix A.1.

The primary cubic interaction terms are as follows:

• L (3)2 : Terms with two vector perturbations and one graviton (ℎX�X�).

• L (3)3 : Includes purely vector terms (X�X�X�) and mixed graviton-vector terms with
two gravitons (ℎℎX�).

• L (3)4 : Purely gravitational interactions (ℎℎℎ) andmixed terms involving one graviton
and two vector perturbations (ℎX�X�).

• L (3)5 : Purely vector cubic interactions (X�X�X�), mixed interactions involving one
graviton and two vectors (ℎX�X�), and terms with two gravitons and one vector
(ℎℎX�).

• L (3)6 : Contains terms involving two vectors and one graviton (ℎX�X�), typically
with higher-order derivatives.

5.1.3 Quartic interactions

We now summarize the structure of the quartic interaction terms arising in generalized
Proca theories at fourth order in perturbations. At this order, interactions involve up to
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four perturbation fields: the vector perturbation X�` and the metric perturbation ℎ`a. The
possible combinations and the interaction structures are summarized below:

• L (4)2 : Contains purely vector interactions (X�4) as well as mixed vector-graviton
interactions involving two gravitons and two vectors (ℎ2X�2).

• L (4)3 : Involves terms with three gravitons and one vector (ℎ3X�), and terms with
three vectors and one graviton (ℎX�3).

• L (4)4 : Includes purely gravitational terms (ℎ4), purely vector terms (X�4), and mixed
terms with two gravitons and two vectors (ℎ2X�2).

• L (4)5 : Contains terms with three vectors and one graviton (ℎX�3), typically involving
antisymmetric Levi-Civita contractions.

• L (4)6 : Includes purely vector quartic interactions (X�4) and mixed interactions with
two gravitons and two vectors (ℎ2X�2). These terms have the richest derivative and
curvature-dependent structures.

5.2 Sub-Models and Explicit Lagrangians

We now consider a specific subset of the generalized Proca theories by choosing the fol-
lowing forms for the functions �8 and 65:

�2(-, �) = −
1
4
�`a�

`a + 1
2
<2�2,

�3(-) =
<2

Λ2 �3-,

�4(-) = −
2
^2 ,

�5(-) = 0,

65(-) = 0,

�6(-) = 0, (5.18)

where ^ =
√

32c
"pl

, and "?; is the Planck mass.
This particular choice corresponds to a theory minimally coupled to gravity due to the

simple Einstein-Hilbert form of the gravitational sector represented by the choice�4(-) =
−2/^2 with no explicit vector-curvature interactions.
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With this setup, the quadratic-order action in perturbations reads:
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(5.19)

For the cubic interactions, we have:
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L (3)5 = 0, (5.23)
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L (3)6 = 0. (5.24)

And for the quartic interactions, we have:
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L (4)3 =
�3<

2√2c
"plΛ2 X�UX�VX�
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2√2c
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(5.26)

L (4)4 = − 4c
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L (4)5 = 0, (5.28)

L (4)6 = 0. (5.29)

5.2.1 Decoupling Limit

After performing the Stückelberg transformation, and upon examining the cubic Lagrangians
L (3)2,Sb and L (3)3,Sb,
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4
√

2c
<"pl

ℎadm
dm`q maX�

` + 4
√

2c
<"pl

mdq maX�` m`ℎad
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(5.30)

one observes that the theory introduces interaction terms involving scalar, vector, and
tensor modes that are controlled by distinct energy scales. These scales can be extracted by
identifying the leading operators in the high-energy regime. The two relevant suppression



78 Quantum Stability

scales that emerge from this analysis are:

Λ̃2 =
(
<"pl

)1/2
, Λ3 =

(
Λ2<

)1/3
. (5.31)

To consistently isolate the physically relevant interactions at high energies, and in par-
ticular to suppress the mixing between scalar, vector, and tensor modes, we define a de-
coupling limit in which all redundant scales are sent to their appropriate asymptotic values
while keeping the physically meaningful scales fixed. Specifically, we take:

< → 0, "pl →∞, Λ→∞, with Λ̃2 =
(
<"pl

)1/2
, Λ3 =

(
Λ2<

)1/3
fixed.

(5.32)
This definition ensures that the kinetic terms for all fields remain properly normalized

and that the interactions among the different helicity components of the Proca field and the
graviton persist in a controlled and finite way. While < → 0 removes the explicit mass
scale and "pl → ∞ decouples gravitational backreaction, the two derived scales Λ̃2 and
Λ3 remain finite and define the regime where the effective field theory is still predictive.

Such scaling limits are common inmulti-scale gravitational theories, such as bi-gravity,
where similar techniques are employed to retain finite, non-trivial dynamics for certain
modes while sending other scales to their asymptotic limits. In this context, Λ̃2 governs
the mixing between the helicity-0 mode and gravity, whileΛ3 controls the self-interactions
of the Proca field, including the helicity-0 sector.

This decoupling limit serves as a useful theoretical tool to test the consistency and
quantum stability of the theory, by isolating the dominant interaction terms that survive in
the high-energy regime.

5.3 Quantum Stability

In this section, we summarize our findings regarding the quantum stability of the defined
model. Rather than providing a comprehensive treatment of all possible loop contribu-
tions, we focus on the most relevant results and examples that illustrate the underlying
mechanisms at play.

After performing a systematic power-counting analysis, we were able to filter out the
majority of Feynman diagrams. These diagrams do not exhibit any signs of instability
at high energies—specifically, they do not generate operators with dangerously large mo-
mentum dependence, nor do they induce unsuppressed interactions that could violate the
validity of the effective theory.
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For the remaining subset of diagrams—those which could not be excluded purely by
power counting—we carried out explicit one-loop computations. These diagrams typically
involve lower-dimensional operators where subtle cancellations or nontrivial momentum
structures might arise. In particular, we analyzed selected two-, three-, and four-point func-
tions to examine whether any divergent or non-decoupling terms survive in the ultraviolet
limit.

In the following, we present a few representative examples of these computations, in-
cluding their diagrammatic structure and the key steps of the analysis. These examples
serve to illustrate the general strategy and confirm that all potentially dangerous contribu-
tions are either absent or under control in the decoupling limit.

5.3.1 Two-point Functions

As a concrete example, consider the following two-point diagram, which in the power-
counting analysis appeared to have a dangerous momentum scaling of ?8; however, the
explicit computation shows that all such high-momentum contributions cancel, and the
resulting divergence is much softer, consistent with the expected decoupling structure.

?

: − ?

:

?

` a

1. Original UV-divergent part of the two-point function (highest momentum power):

�2
3 <

4

48 nUV c2 Λ4

[
− ?`?a

(
23<2 + 3 ?2) + [`a (−9<4 + 26<2 ?2 + 3 ?4) ] .

The term with the largest power of ? is 3 ?4 [`a.

2. Field content: two fields. Being a two-point function, this divergence corresponds
to an operator with two powers of the field �.

3. Convert momenta to derivatives on the field: In position space, each ?` becomes
m`. Consequently, ?4 → m4.
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4. Replace �` by its Stueckelberg form for high-energy analysis:

�` =
1
<
m`q.

Hence,

�2 −→
( 1
<
mq

)2
=

1
<2 (mq)

2.

5. Combine steps: The highest-momentum piece ?4 in momentum space translates to

m4 (�2) −→ m4
(

1
<2 (mq)2

)
=

1
<2 m

4 ((mq)2) .
Putting back the overall prefactor <4

Λ4 , we get

∼ <4

Λ4
1
<2 m

4 ((mq)2) =
<2

Λ4 m
4 ((mq)2) .

6. Take the decoupling limit:

< → 0, "pl →∞, Λ→∞,

while Λ̃2 and Λ3 remain fixed (as previously defined). The factor

<2

Λ4

then controls whether this operator is suppressed or enhanced in that limit, depend-
ing on how Λ scales with <. In typical scenarios where Λ3 ≡ (Λ2<)1/3 is held
constant, <2/Λ4 can vanish, thus suppressing the induced two-field divergence at
high energies.

One can repeat the process for the other diagrams, for example:

?

: − ?

:

?

` a

=
1

16 nUV<4 "2
pl c

[
−6<4 [`a (<2 + ?2) + ?`?a

(
24<4 − 6<2?2 + ?4

)]
(5.33)
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5.3.2 Three-point Functions

For the three-point functions, all diagrams turned out to be safe based on the power-
counting analysis—none of them displayed dangerously largemomentum scaling that could
jeopardize the stability of the theory. However, to illustrate the procedure and confirm the
expectations, we include a simple three-point diagram along with its explicit one-loop re-
sult as a representative example.

?1

?2

?3

`

a
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8 �3

12 nUV "
2
pl cΛ

2

[
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4
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3) + ?
a
2 (27<4 + 12<2 ?2

3 − ?
4
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)
+ ?U3

(
?
`

1 ?
a
3 (−21<2 + ?2

3) + [
`a (−22<4 + 8<2 ?2

3)

+ ?`3
(
− 6<2 ?a3 + ?

a
2 (−21<2 + ?2

3)
))]

. (5.34)

After taking the decoupling limit as defined in (5.32), the above result is further suppressed.
This confirms that even in the loop-corrected theory, the relevant interaction remains under
control at high energies, and no dangerous non-decoupling behavior emerges from the
three-point sector.

5.3.3 Four-point Functions

For the four-point functions, almost all diagrams pass the power-counting filter and exhibit
safe high-energy behavior. However, there remains one class of interactions that requires
special attention—namely, the box-type diagrams shown below. These diagrams are not
excluded by power counting and may potentially lead to unsuppressed operators in the UV.
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?1 ?2

?3?4

The explicit loop computation and extraction of the divergent part for this class of di-
agrams is technically involved and remains a work in progress [40]. Nonetheless, prelimi-
nary indications suggest that the same suppressionmechanisms observed in the lower-point
functions may also play a role here. Moreover, we are very confident that the result of such
computation will also place these diagrams on the safe side, consistent with the overall
quantum stability of the theory.

5.4 Cutoff Estimation

In the Lagrangian setup presented in equation (5.18), the theory involves a general cutoff
scale Λ, which parametrizes the suppression of higher-dimensional operators. A natural
question arises regarding the validity and physical meaning of such a cutoff [41]: what
is the energy range over which the effective field theory remains predictive and free of
inconsistencies?

In this section, we address this question by analyzing the conditions under which the
theory remains healthy in the decoupling limit. Our goal is to identify the constraints on the
cutoff that ensure the stability of the Lagrangian, particularly in the presence of graviton
interactions. We begin with the Lagrangians introduced in (5.18), but instead of using the
dimensionless ratio (</Λ)2, we introduce a small parameter _ defined purely in terms of
the mass parameter < and the Planck mass "pl. This redefinition allows us to write

_ =

(
<

"pl

) ?
, (5.35)

and reduces the number of independent scales in the theory. Consequently, the La-
grangian depends only on the two physically meaningful mass parameters, < and "pl,
simplifying the structure of the effective field theory and clarifying the scaling behavior of
different operators.
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We will now show that consistency of the theory at the decoupling limit imposes con-
straints on the parameter ?, and thereby on the original cutoff Λ. In particular, we will find
that requiring healthy interactions and suppression of non-renormalizable terms restricts
the allowed range of ?.
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(5.36)

Looking at the structure of L3 at the cubic order, we have:
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(5.37)

Among all the interaction terms, the most dangerous one—i.e., the one that becomes
problematic most rapidly as we approach the decoupling limit < → 0—is the last term.
This term contains the most negative power of <, and hence dominates in the low-mass
limit. Specifically, it reads

1
2
�3
<?−3

"
?

pl
m`q m

`q mam
aq. (5.38)

Since we require ? > 0 for the small parameter _ to remain well-defined, we see that
the power of < in the numerator becomes increasingly negative as ? decreases.

Based on the scaling behavior of this term, we define the corresponding decoupling
scale Λ3, which characterizes the energy at which interactions become strongly coupled.
This scale is given by

Λ3 =

(
<3−?" ?

pl

)1/3
. (5.39)

< → 0, "pl →∞, with Λ3 =

(
<3−?" ?

pl

)1/3
= const. (5.40)
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Taking the decoupling limit, the cubic Lagrangian L (3)3 reduces to a single term. In
this limit, it becomes

L (3)3

��
DL =

�3

2Λ3
3
m`q m

`q mam
aq. (5.41)

As expected, the only remaining contribution at this scale comes from the pure scalar mode
q. All other interactions involving the vector fluctuation X�` are suppressed by additional
powers of the mass parameter <, and hence vanish in the decoupling limit.

We now return to the Lagrangian L (3)2 . Using the cutoff scale Λ3 with its expression
in terms of < and "pl,
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(5.42)

we observe that some non-trivial factors of < could appear in the denominators of the
interaction terms. These modify the scaling of the graviton couplings and, in particular,
can introduce inverse powers of < that potentially grow large in the decoupling limit < →
0. To avoid a destructive strong coupling behavior and ensure that all graviton-mediated
interactions remain under control, we must also bound the dangerous terms in L (3)2 . This
leads to the constraint

0 < ? <
3
2
. (5.43)
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This range ensures that no graviton interaction becomes strongly coupled before the cutoff
scale is reached, preserving the consistency of the effective field theory in the low-energy
limit.

It is important to emphasize that the boundary value ? = 3
2 must be excluded from the

allowed range. In this case, the decoupling of modes in L (3)2 fails to occur, and we are
left with residual interactions between the scalar, vector, and tensor degrees of freedom.
Specifically, at ? = 3

2 , the Lagrangian becomes

L (3)2

��
?= 3

2
=

4
√

2c
Λ2

3

(
mdq maX�` m`ℎad − mdq maX�` maℎ`d + ℎaf mfm`q maX�` − ℎdf mfmaq maX�d

)
.

(5.44)

This residual interaction implies that, contrary to naive expectations, the vector and
scalar modes do not fully decouple at this critical value of ?. This observation corrects
the conclusion drawn in [42], where the upper bound ? = 3

2 was included in the allowed
range and it was incorrectly claimed that all interactions vanish in the decoupling limit.
Our analysis shows that true decoupling only occurs for

0 < ? <
3
2
, (5.45)

with strict inequality at the upper boundary.

One can see the connection between different values of ? and the corresponding cutoff
scale Λ. Below is a summary for several representative choices:

? Λ Λ3

1
2

<3/4"1/4
pl (<5"pl)1/6

1 <1/2"1/2
pl (<2"pl)1/3

4
3

<1/2"2/3
pl (<5"4

pl)
1/9

22
15

<4/15"
11/15
pl (<23"22

pl )
1/45

3
2

<1/4"3/4
pl (<"pl)1/2

Table 5.1. Examples of cutoff scales Λ and Λ3 for various values of ?.
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For values of ? within the bound established above, the quantum stability of the La-
grangians (5.18) has been explicitly verified at the level of two-, three-, and four-point
functions at one loop. Fortunately, no detailed loop computations were required. As we
showed earlier using a power-counting analysis, all loop-induced terms that are allowed by
symmetry are either sufficiently suppressed by the cutoff scale, or involve structures whose
potentially dangerous high-energy behavior is absent due to the specific tensor contractions
and derivative structure of the theory.

This result confirms that the effective theory remains consistent and perturbatively sta-
ble in the decoupling limit, provided the parameter ? lies within the range

0 < ? <
3
2
. (5.46)



Chapter 6

Propagator Structure and SVT
Decomposition in the Presence of
Background Fields

In this chapter, we revisit our initial framework through an alternative approach. Our pri-
mary objective is to eliminate all mixing terms at the quadratic level, which we achieve
through the scalar-vector-tensor (SVT) decomposition. This decomposition systematically
separates the perturbative modes of our system, ensuring their complete decoupling at the
quadratic level. The power of this approach lies in its ability to isolate and analyze different
dynamical components independently. However, this mathematical transformation intro-
duces two significant considerations. First, we must work with an expanded set of degrees
of freedom, some of which are purely gauge artifacts rather than physical modes. Second,
the formulation necessarily breaks manifest covariance, requiring an explicit 3+1 decom-
position where spatial and temporal derivatives are treated distinctly. While this sacrifices
some geometric elegance, it provides a powerful computational framework for analyzing
the dynamics of our system.

6.1 Background Equations of Motion

We begin by setting up the field configurations for our analysis:

6`a = [`a + ℎ`a, (6.1)

�` = �̄` + X�`, (6.2)

87
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where [`a is the Minkowski spacetime metric, �̄` represents the background value of the
vector field, and X�` denotes its perturbations. The metric perturbations are given by
ℎ`a. Here and throughout the text, we use the notation �8,- to denote the derivative of
the function �8 with respect to its first argument - = 1

2�`�
`, while �8,� represents the

derivative with respect to the second argument −1
4�`a�

`a, where �`a is the field strength
tensor. We work in the perturbative regime where these fluctuations are small:��ℎ`a�� � 1, |X�` | � 1, (6.3)

For our analysis, we consider a constant background vector field �̄`. The background
equations of motion, derived from variations with respect to the metric, take the form:

−1
2
�̄2[`a +

1
2
�̄` �̄a�̄2,- = 0, (6.4)

while variations with respect to the vector field yield:

�̄`�̄2,- = 0. (6.5)

For a constant Minkowski background with a constant background vector field, these
equations admit two possible solutions [43]:

Case A: �̄2 = 0, �̄2,- ≠ 0 with �̄` = 0
Case B: �̄2 = 0, �̄2,- = 0 with �̄` = constant
In our subsequent analysis, we focus on Case B, which allows for a non-zero back-

ground vector field. This choice is compatible with our setup and can be realized through
a Mexican hat type potential within the �2 term of our theory.

6.2 Mixing Terms from a Non-Vanishing Background

In the previous setup, we considered the case where the background vector field vanishes,
�̄` = 0. Under this condition, the quadratic action simplifies considerably, and the prop-
agators for the Proca field and the graviton become diagonal. This allows one to treat the
kinetic and mass terms of the spin-1 and spin-2 perturbations independently at leading
order.

However, once a non-trivial background �̄` ≠ 0 is introduced, the structure of the the-
ory changes significantly. In general, the quadratic action contains mixing terms between
the vector and tensor perturbations, and the resulting kinetic matrix is no longer diagonal.
The mixing quadratic Lagrangian is given by:
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L (2)mix = �̄
` �̄
(0,1)
2 maX�d mdℎ`a − �̄` �̄ (0,1)2 maX�d maℎ`d

+ 1
2
�̄` �̄a X�` �̄

′
3 maℎ

d
d −

1
2
�̄` �̄a X�d �̄′3 mdℎ`a

− 2
^2 �̄

` X�` �̄
′
4 m

dmaℎad +
2
^2 �̄

` X�` �̄
′
4 m

dmdℎ
a
a

+ �̄` �̄′4 m
aX�a m`ℎ

d
d − �̄` �̄′4 m

dX�a m`ℎad

− �̄` �̄′4 m
dX�a maℎ`d + �̄` �̄′4 m

dX�a mdℎ`a

+ 1
2
�̄` �̄a �̄d X�` �̄

(2,0)
2 ℎad .

(6.6)

For a generic background configuration, this term does not vanish and leads to non-
diagonal elements in the inverse propagator. As a result, the propagator structure becomes
non-trivial. Schematically, the quadratic fluctuations of the vector and tensor fields can be
represented by the following structure:

L (2) ∼
(
X� ℎ

) (
O�� O�ℎ
Oℎ� Oℎℎ

) (
X�

ℎ

)
(6.7)

The corresponding propagator structure can be schematically represented as a matrix
D(?) of the form:

D(?) =
(
�
`a

11 (?) �
` |UV
12 (?)

�
UV |`
21 (?) �

df |UV
22 (?)

)
(6.8)

Diagrammatically, the off-diagonal component �` |UV
12 (?), representing the mixing be-

tween the Proca and graviton fields, can be illustrated as follows:

` UV
?

Although the presence ofmixing terms suggests that the kinetic operator is not diagonal
in general, this does not obstruct the perturbative computation of physical quantities. In
particular, one can still proceed with standard loop calculations, provided that all relevant
diagrammatic contributions — including those involving mixed propagators — are taken
into account.

While the mixing increases the number of diagrams and introduces additional tensor
structures, the usual Feynman diagram techniques remain valid. For instance, in the case of
one-loop bubble diagrams contributing to the two-point function, we now encounter new
diagrams involving mixed internal lines that were absent in the diagonal case. One such
example is illustrated below:
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? ?

:

: − ?

Notice the different and additional vertex structures that can now appear at each end
of the diagram. These arise from the mixing terms and lead to an increased number of
possible one-loop contributions that must be considered in the computation.

An alternative— though not very conventional in standard quantum field theory setups
— is to deal with the non-diagonal quadratic terms by decomposing the fields into their
scalar, vector, and tensor components. This mode decomposition can sometimes simplify
the analysis by making the physical degrees of freedom more transparent. We will explore
this approach in the next section.

6.3 Scalar-Vector-Tensor Decomposition

An alternative approach — though not necessarily simpler — is to work directly with the
physical degrees of freedom by decomposing the perturbations into scalar, vector, and ten-
sor components. This scalar-vector-tensor (SVT) decomposition [44, 45] does not elimi-
nate the complexities of the system, but it can offer a different perspective, especially in
the presence of symmetries such as isotropy, where distinct mode sectors often decouple.

Indeed, as we will see shortly, the quadratic action written in SVT variables often leads
to a decoupling of scalar, vector, and tensor modes. In such cases, the propagators for
individual modes become diagonal within each sector, which can make certain aspects of
the analysis more transparent.

To set the stage, we begin by decomposing the metric perturbation as follows:

ℎ00 = −2q,

ℎ08 = �
T
8 + m8�,

ℎ8 9 =
1
3
X8 9k + �TT

8 9 + m(8�T
9) +

(
m8m9 −

1
3
X8 9m

2
)
�,

(6.9)

Similarly, the perturbation of the vector field can be decomposed as:

X�0 = −i,

X�8 = E
T
8 + m8l,

(6.10)



Scalar-Vector-Tensor Decomposition 91

These decompositions are subject to the following constraints:

m8�T
8 = 0, m8�TT

8 9 = 0, X8 9�TT
8 9 = 0, m8ET

8 = 0, (6.11)

These conditions ensure that vector modes are transverse and tensor modes are both
transverse and traceless, leading to a clean separation between different types of perturba-
tions.

Altogether, the decomposition yields ten degrees of freedom from the metric pertur-
bation in Eq. (6.9), and four from the vector field perturbation in Eq. (6.10). Diffeomor-
phism invariance grants us gauge freedom, which allows for the transformation of any field
) = )̄ + X) under the Lie derivative along a vector b` as:

X) → X) − Lb)̄ . (6.12)

Under these transformations, the metric components transform as:

q→ q − ¤b0, (6.13a)

�T
8 → �T

8 − ¤bT
8 , (6.13b)

�→ � − b0 − ¤b, (6.13c)

k → k − 2∇2b, (6.13d)

� → � − 2b, (6.13e)

�T
8 → �T

8 − 2bT
8 , (6.13f)

�TT
8 9 → �TT

8 9 , (6.13g)

where the gauge parameter b` decomposes as:

b` =

(
b0, b

T
8 + m8b

)
. (6.14)

For the vector field perturbations, given a constant background field �̄`, the transforma-
tions are:

X�0 → X�0 − �̄amab0, (6.15a)

X�8 → X�8 − �̄amabT
8 − �̄amab. (6.15b)

For an isotropic background that respects the ($ (3) symmetry, the background configu-
ration is constrained as:
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�` = (�0, 0, 0, 0). (6.16)

With this consideration, the gauge transformations in (6.15) simplify to:

i→ i − �0 ¤b0, (6.17a)

ET
8 → ET

8 − �0 ¤bT
8 , (6.17b)

l→ l − �0 ¤b. (6.17c)

These transformations enable the reduction of the degrees of freedom from 14 to 10
physical ones. Rather than fixing a specific gauge, we construct gauge-invariant combina-
tions that capture the physical degrees of freedom:

Φ = q + ¤� − 1
2
¤�, (6.18a)

Θ =
1
3
(−∇2� + k), (6.18b)

V = i + 1
2
�0 ¥� − �0 ¤�, (6.18c)

W = l + 1
2
�0 ¤�, (6.18d)

Γ8 = E8 + �0 ¤�8, (6.18e)

Ξ8 = �8 − ¤�8 . (6.18f)

With four scalars, two transverse vectors, and one traceless-transverse tensor �8 9 , we
have successfully identified our ten gauge-invariant degrees of freedom. To analyze which
of these variables represent dynamical degrees of freedom, we expand the Lagrangian to
quadratic order and derive the equations ofmotion. These equations reveal the true physical
content of our theory and determine which variables propagate dynamically. The equations
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of motion at first order are:

2�4
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(6.19)
For the variation with respect to ℎ`a, and
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(6.20)

for the variation with respect to X�`. We analyze these equations by decomposing them
into scalar, vector, and tensor sectors, which due to our SVT decomposition remain decou-
pled at the quadratic level.

6.4 Gauge Choice: The Uniform Vector Gauge

Gauge-invariant variables are extremely useful for identifying the true physical degrees of
freedom in a system with gauge redundancy. They allow one to isolate the combinations
of fields that remain unaffected by coordinate transformations or internal symmetries, thus
providing a clear understanding of what propagates and what does not.

However, for computational purposes, especially when dealing with perturbative ex-
pansions and higher-order interactions, it is often advantageous to fix a gauge. A suitable
gauge choice can significantly simplify the structure of the equations and reduce the num-
ber of terms that need to be computed explicitly.
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For this reason, we work in the uniform vector gauge, which is defined by the following
decomposition of the metric and vector field perturbations:

ℎ00 = −2 q,

ℎ0 9 = m9� + � 9 ,

ℎ8 9 = �8 9 + 2k X8 9 ,

(6.21)

X�0 = −i,

X� 9 = E 9 − �̄0 m9�,
(6.22)

In this gauge, the scalar, vector, and tensor degrees of freedom are organized in a way
that facilitates both canonical analysis and perturbative expansion. The tensor perturba-
tions, which are gauge-invariant by construction, remain unaffected by this choice and
their quadratic action reads:

L (2)tensor = −
"2

Pl
64c

¤�01 ¤�01 +
"2

Pl
64c

m2�01 m2�
01 . (6.23)

In this gauge, the quadratic Lagrangians for the different sectors take the following
form.

The vector sector reads:

L (2)vector =
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(6.24)

The scalar sector is given by:

L (2)scalar = −
3"2
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k ¥k + �̄2
0<

2 i2 + 2�̄3
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2 i q + �̄4
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−
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0q m0q

(6.25)

At first sight, the quadratic Lagrangians in this gauge still exhibit mixing between vari-
ous fields, particularly in the scalar and vector sectors. However, not all fields appearing in
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the Lagrangians are dynamical — several of them act as auxiliary variables whose equa-
tions of motion are purely constraint equations. By solving these constraint equations and
substituting back into the action, we can eliminate the non-dynamical fields.

The resulting quadratic Lagrangian, expressed entirely in terms of the physical degrees
of freedom, takes the form [44]:

Lquadratic = −
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32c2 �̄2
0
m0k m0k +
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64c
m2�01 m2�
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2
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¤k2,

(6.26)

where we have defined the gauge-invariant combination

Γ0 = E0 + �̄0 �0 . (6.27)

This Lagrangian clearly shows that the dynamical degrees of freedom at quadratic order
consist of:

• One transverse-traceless tensor mode �01,

• One transverse vector mode Γ0,

• One scalar mode k.

Each of these propagates independently, with canonically normalized kinetic terms
up to overall prefactors, confirming the consistency of the decomposition and the gauge
choice.

6.4.1 Perturbative Elimination of Non-Dynamical Fields

To eliminate the non-dynamical fields such as q, i, �, and �0, we must proceed pertur-
batively. This is because the equations of motion for these fields become non-linear when
higher-order interactions are included — particularly due to their appearance in cubic and
quartic terms in the action. As a result, we expand these fields in powers of a small pertur-
bation parameter U, which organizes the computation order by order:

q = U q(1) + U2 q(2) + U3 q(3) + · · · (6.28)

i = U i(1) + U2 i(2) + U3 i(3) + · · · (6.29)
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� = U �(1) + U2 �(2) + U3 �(3) + · · · (6.30)

�0 = U �
(1)
0 + U2 �

(2)
0 + U3 �

(3)
0 + · · · (6.31)

Here, U is a bookkeeping parameter that keeps track of the perturbative order. The
crucial point is that to compute the Lagrangian at a given order O(U=), it is sufficient to
solve the constraint equations for the non-dynamical fields up to order U=−1. For instance,
at quadratic order, only the first-order components q(1) , i(1) , �(1) , and �(1)0 are needed.
However, when analyzing the cubic Lagrangian, the second-order solutions q(2) , i(2) , etc.,
also contribute and must be included.

This perturbative strategy ensures consistency of the expansion and allows us to it-
eratively eliminate non-dynamical fields while maintaining control over the order of the
approximation. It is particularly useful in theories with derivative interactions, where con-
straints become increasingly intricate at higher orders.

To illustrate this procedure explicitly, let us consider the second-order equation for
the metric vector perturbation �(2)G . At this order, the equation of motion includes both
linear and non-linear terms in the dynamical fields, such as k, Γ0, and �01, as well as
their derivatives. Solving this equation allows us to express �(2)G in terms of the dynamical
variables alone.

The full equation of motion at O(U2) reads
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(6.32)

where we are solving for the second-order metric vector perturbation component �(2)G
in this equation.

Importantly, �(2)G appears under a Laplacian operator, specifically as m0m0�(2)G , which
implies that in order to isolate it, one must apply the inverse Laplacian. This leads to a
formally non-local solution of the form

�
(2)
G = ∇−2 (· · · ) , (6.33)
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This non-locality [46] reflects the constrained nature of the system, where certain metric
components are not independent but are determined by elliptic-type constraint equations.
Such structures are common in gravitational theories when working in a fixed gauge, and
they do not hinder consistency as long as the inversion is well-defined within the perturba-
tive regime.

Implications for Loop Computations

From the structure of the reduced Lagrangian, we can extract the propagators for the phys-
ical degrees of freedom. These propagators exhibit modified dispersion relations, where
the propagation speed may differ from unity due to interactions with the background field.
For example [47], a scalar field propagator in this setup takes the form

@

=
−8

−@2
0 + 2

2
Bq2 − 8n

=
−8

@̄2 − 8n
, (6.34)

where we have defined the rescaled four-momentum

@̄` ≡ (@0, 2Bq) ,

and 2B denotes the effective propagation speed of the mode.
As a result, loop integrals of the type∫

d3@
(2c)3

must be treated with care. In particular, it is often necessary to separate time and spatial
components in the integrals, performing the @0 and q integrations independently. This
becomes essential when dealing with loop diagrams involving non-relativistic dispersion
relations or anisotropic propagation speeds. These features are a hallmark of theories with
background structure, such as the one considered here.

Summary and Outlook

The goal of this chapter was to develop tools for analyzing loop-level quantum corrections
in theories with a non-vanishing vector background. In such setups, the presence of back-
ground structure generically prevents the diagonalization of the propagator at quadratic
order, leading to mixing between different field components. To tackle this, we proposed
and compared two complementary approaches.
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The first method was to work directly with the non-diagonal propagator structure. This
approach preserves the covariant form of the theory, allowing us to utilize the standard
machinery of covariant loop computations. However, the price to pay is an increase in
the number of Feynman diagrams, due to the presence of off-diagonal propagators. All
possible contractions and mixed propagator insertions must be carefully included in the
loop expansion. Despite the added combinatorial complexity, the calculations remain well-
defined within the covariant formalism.

The second method involved performing a scalar-vector-tensor (SVT) decomposition,
separating the perturbations into their irreducible components [48]. In this formulation, the
quadratic Lagrangian becomes block-diagonal, with no mixing between different sectors.
As a result, the propagators are diagonal, greatly simplifying the identification of the prop-
agating degrees of freedom and the analysis of stability. However, this comes at the cost
of breaking manifest covariance. The decomposition explicitly separates time and spatial
components, which complicates the structure of interaction terms and integrals. Moreover,
going to higher orders in perturbation theory introduces non-localities, particularly when
solving constraint equations. These non-localities can be handled in momentum space us-
ing Fourier transforms, but the resulting loop integrals are non-covariant and, in general,
more difficult to evaluate. While such integrals can be computed in simple settings, a
general and systematic method for evaluating them is still lacking.

In summary, both approaches have distinct advantages and limitations. The covariant
method maintains formal structure but requires careful bookkeeping of diagrammatic con-
tributions. The SVT-based method simplifies propagators but sacrifices covariance and
introduces new technical challenges at higher orders.
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Chapter 7

Supervised Learning and Neural
Networks in Physics

Machine learning (ML) has rapidly become an important tool across many areas of physics,
enabling data-driven discovery in fields from high-energy particle collisions to astrophys-
ical observations [49]. In particular, supervised learning – where models are trained on
labeled data – has seen widespread success in tackling classification and regression prob-
lems in physics. In a supervised learning task, we have a dataset of input examples - (such
as experimental measurements or detector signals) each paired with an output label. (such
as a particle identity or signal/noise tag). The goal is to learn a function 5 : - → . that
can predict the correct output for new, unseen inputs. SupervisedML techniques have been
used, for instance, to distinguish rare physics events from background noise, identify phases
of matter, and recognize complex patterns in detector dataṄeural networks have become
especially prominent supervised learning models in physics due to their flexibility and
power. A neural network (NN) can approximate highly complex, nonlinear relationships,
making it ideal for analyzing the enormous volumes of high-dimensional data common in
modern experiments [49, 50]. High-energy physics (HEP) offers a prime example: proton
collisions at the Large Hadron Collider produce terabytes of data per second, and physicists
must sift out a few interesting events (like Higgs boson decays) from overwhelming back-
grounds. Early applications of neural networks in HEP date back to the 1990s, improving
particle identification and event selection in collider experiments [51]. More recently, deep
neural networks (with many layers) have outperformed previous methods on challenging
HEP tasks. For example, a deep network achieved about 8% better classification accuracy
than the best earlier approaches in distinguishing exotic particle signals from background,
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all without the need for manual feature engineering [49]. This boost in performance can
significantly increase the discovery potential for new particles. Another exciting domain is
gravitational-wave astronomy. The detection of gravitational waves – ripples in spacetime
from violent astrophysical events – traditionally relies on matched filtering, which involves
correlating detector data with dozens of thousands of theoretical waveform templates. This
is computationally intensive and can become a bottleneck for real-time detection as the
network of detectors and the event rate grow. Deep learning offers a powerful alternative:
convolutional neural networks (CNNs) have been developed to scan noisy time-series data
for wave signatures, learning directly from simulated waveforms. Neural networks have
been applied to real LIGO/Virgo data, showing they can identify true signals and adapt to
nonstationary detector noise [52, 53, 54]. These successes underscore the relevance of neu-
ral networks in both high-energy physics and gravitational wave analysis. In this chapter,
we explore the foundations of supervised learning and neural networks, discuss how they
are trained and optimized, and delve into the special case of convolutional neural networks
– including why they are well-suited to structured data like images and waveforms.

7.1 Mathematical Foundations of Supervised Learning

We begin by formalizing supervised learning problems. Regression and classification are
two primary categories. In regression, the goal is to predict a continuous output H from an
input x. For example, given a detector signal, we might predict a physical parameter (like
the energy of a particle or the mass of an astrophysical object). In classification, the aim is
to assign inputs to one of several discrete categories. An example is identifying whether an
event is ”signal” or ”background”, or classifying particle tracks as electron vs. muon vs.
pion. Formally, we have a training dataset (x(8) , H (8))#8=1 with inputs x(8) ∈ R3 and labels
H (8) (either continuous values for regression or class indices for classification). We seek a
function (model) 5 (x; \), parameterized by \, that maps an input to a prediction Ĥ, such
that Ĥ ≈ H for future examples. The parameters \ are adjusted during training to minimize
a measure of error on the training set, called the cost function or loss function.

For regression tasks, a common choice of loss is the mean squared error (MSE):

� (\) = 1
#

#∑
8=1

(
Ĥ (8) − H (8)

)2
, (7.1)

where Ĥ (8) = 5 (x(8); \) is the model’s prediction. � (\) is essentially the average squared
deviation between predictions and true targets [55]. It is a convenient, differentiable proxy
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Figure 7.1. Comparison of Linear Regression and Logistic Regression. The left panel
illustrates linear regression, where a continuous line is fitted to the data points, allowing
predictions over a continuous range. In contrast, the right panel depicts logistic regression,
where the sigmoid function maps input values to probabilities between 0 and 1. This en-
ables binary classification by establishing a decision boundary at a probability threshold
(typically 0.5), distinguishing between two classes.

for measuring accuracy in predicting continuous quantities, and its smooth quadratic form
often leads to simple analytical properties (e.g. the gradient is proportional to the error.For
classification, especially binary classification (two classes), a prevalent loss is the cross-
entropy associated with logistic regression. If we denote the model’s predicted probability
for class 1 as ?̂ (8) = 5 (x(8); \) (and thus 1 − ?̂ (8) for class 0), and the true label H (8) ∈ 0, 1,
the binary cross-entropy loss for a single example is:

ℓ

(
\; x(8) , H (8)

)
= −

[
H (8) log ?̂ (8) +

(
1 − H (8)

)
log

(
1 − ?̂ (8)

)]
. (7.2)

The total cost is the average cross-entropy over all training examples:

� (\) = 1
#

∑
8

ℓ

(
\; x(8) , H (8)

)
. (7.3)

Cross-entropy originates from information theory and measures the dissimilarity between
the true distribution and the predicted distribution [56]. Minimizing cross-entropy is equiv-
alent to maximizing the likelihood of the data under a Bernoulli model in this case. This
loss heavily penalizes confident but wrong predictions – if the true label H (8) = 1 but the
predicted ?̂ (8) is close to 0, the − log( ?̂ (8)) term is huge. Thus, the model is encouraged not
only to be correct, but confidently correct. Cross-entropy is the preferred loss for classifi-
cation problems in neural networks because it works seamlessly with probabilistic outputs
(such as those produced by a softmax, discussed in Section 6) and tends to yield faster
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convergence than alternatives like MSE in classification contexts. In multi-class classi-
fication with  classes, this generalizes to the multinomial cross-entropy (or categorical
cross-entropy): if the network outputs a vector of predicted probabilities ( ?̂1, ?̂2, . . . , ?̂ )
for the  classes, and H (8) is represented as a one-hot vector (all zeros except a 1 at the true
class index), then:

� (\) = − 1
#

#∑
8=1

 ∑
:=1

H
(8)
:

log ?̂ (8)
:

(7.4)

which again penalizes any deviation of the predicted probability for the true class away
from 1. These cost functions provide a quantitative target for the learning algorithm: find-
ing parameters \ that minimize � (\). In most realistic ML problems, especially with neu-
ral networks, this minimization cannot be done analytically; we must resort to iterative
numerical optimization. Before turning to optimization, it’s worth noting that these cost
choices are not arbitrary. MSE corresponds to maximum likelihood under a Gaussian noise
model, and cross-entropy corresponds to maximum likelihood for a Bernoulli or multino-
mial model. Thus, the choice of cost function often reflects assumptions about the data
(Gaussian-distributed regression noise, or classification viewed as probabilistic inference).
When those assumptions hold, these losses lead to efficient learning of the underlying pat-
terns.

7.2 Optimization and Training

Training a supervised model means adjusting its parameters to minimize the cost function.
The main algorithm for this is gradient descent [57], due to its simplicity and effectiveness
in high-dimensional parameter spaces. In batch gradient descent, we compute the gradient
of � (\) with respect to all parameters \ = (\1, \2, . . . ), and update the parameters in the
opposite direction of the gradient (since the gradient points toward increasing cost). The
update rule is:

\ ← \ − U∇\� (\) (7.5)

where U is the learning rate, a small positive scalar that controls the step size. Conceptually,
one can imagine � (\) as defining a high-dimensional surface; gradient descent moves the
parameters “downhill” on this surface in small steps until hopefully reaching a minimum
(ideally the global minimum, though in practice, we often settle for a good local minimum).
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For example, if � is the MSE, ∇\� will be proportional to the residual errors between
predictions and targets, and the update reduces those errors.

Figure 7.2. Visualization of gradient descent on 5 (G, H) = G2 + H2, showing the iterative
path toward the minimum.

Choosing an appropriate learning rate U is crucial: too large U can overshoot minima
and cause divergence, while too small U leads to painfully slow convergence. In practice,
especially for large datasets, stochastic gradient descent (SGD) and its variants are used [55,
56]. In SGD, rather than computing the gradient on the entire dataset (which can be very
costly for millions of examples), we approximate the gradient using amini-batch of training
examples. For instance, we might use 32 or 128 randomly selected examples at each itera-
tion to compute an approximate gradient. The update then becomes \ ← \−U∇\�10C2ℎ (\),
where �10C2ℎ is the cost computed on that mini-batch. Using mini-batches introduces noise
into the updates but drastically reduces computation per update and often helps escape shal-
low local minima, acting as a form of regularization. We iterate over many mini-batches
(often cycling through the dataset multiple times, which are called epochs) until the cost
stops decreasing significantly. Gradient descent variants improve basic SGD by adapting
the learning rate during training or by incorporating momentum. One simple improvement
is to add a momentum term [56]. Here we maintain a velocity vector E (of same dimension
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as \) that accumulates a decaying history of past gradients:

E ← VE + (1 − V)∇\� (\),

\ ← \ − UE,
(7.6)

where 0 < V < 1 (commonly V ≈ 0.9). Momentum can thereby lead to faster and more
stable convergence.

Figure 7.3. Comparison of gradient descent trajectories for the function 5 (G) = G2 with
different learning rates. The left plot demonstrates slow convergence with a small learning
rate, while the right plot shows overshooting and divergence with a large learning rate.

Perhaps the most widely used optimizer in deep learning is Adam (Adaptive Moment
Estimation) [58]. Adam combines ideas from momentum and adaptive learning rates. It
keeps an exponentially decaying average of past gradients <C (first moment) and of past
squared gradients EC (second moment), and updates them at each time step C:

<C = V1<C−1 + (1 − V1) ∇\� (\)C
EC = V2EC−1 + (1 − V2) [∇\� (\)C]2 ,

(7.7)

with decay rates V1, V2 typically around 0.9 and 0.999. Adam then uses bias-corrected
estimates of these moments (to account for their initialization at zero) and updates the
parameters as:

\ ← \ − U <̂C√
ÊC + n

, (7.8)

where <̂C = <C/(1−VC1) and ÊC = EC/(1−V
C
2), and n is a small constant (like 10−8) to prevent

division by zero. Intuitively, Adam scales each parameter’s learning rate by an adaptive
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factor: if a parameter’s gradient has been large and volatile, EC will be large and thus the
effective learning rate for that parameter is reduced; conversely, parameters with consis-
tently small gradients get a relatively larger step. This per-parameter adaptation, along
with momentum on the first moment, makes Adam quite robust and fast-converging for a
variety of problems. Indeed, Adam has been successfully used in training deep networks
for physics applications ranging from jet tagging to gravitational wave signal recognition.
Other popular optimizers include RMSprop and Adagrad, which also adapt learning rates,
but Adam often gives the best of both worlds and is the default choice in many frameworks.
We will use Adam in our later examples unless otherwise stated. Even with an effective
optimization algorithm, one must be cautious of overfitting, a phenomenon where a model
learns not only the general trends in the training data but also its noise and specific features.
Overfitting severely limits a model’s ability to generalize to new, unseen data. In physics,
this is particularly problematic since the goal is not merely to memorize a dataset but to
extract underlying physical laws or signals.

To mitigate overfitting, regularization techniques [55, 56] are essential in supervised
learning. One of the simplest and most widely used regularization methods is weight
decay, which discourages excessively large model parameters by adding a penalty term to
the loss function.

In the case of L2 regularization (also known as ridge regression), a quadratic penalty
is added to the cost function:

� (\) = �0(\) +
_

2

∑
9

\2
9 , (7.9)

where �0(\) is the original cost function, _ is a hyperparameter that controls the strength
of the penalty, and \ 9 are the model parameters. This regularization term effectively pulls
the weights toward zero, preventing them from growing too large. In deep networks, this
has the effect of smoothing the function learned by the model, as large weights tend to
correspond to highly oscillatory functions that fit noise rather than true patterns.

Alternatively, L1 regularization (lasso) imposes an absolute-value penalty:

� (\) = �0(\) + _
∑
9

|\ 9 |. (7.10)

Unlike L2 regularization, which shrinks weights continuously, L1 regularization promotes
sparsity, meaning that many weights are driven exactly to zero. This can be useful in
settings where one expects only a subset of features to be relevant. However, in deep neural
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networks, L2 regularization is generally preferred since it allows for a smoother reduction
of weights during optimization.

For convolutional neural networks (CNNs), L2 regularization plays an important role
in ensuring that learned filters focus on meaningful features rather than noise. Another

Figure 7.4. Comparison of polynomial fits (degree 9) via ridge regression for different
values of the regularization parameter _. The left panel (_ = 0) overfits the noisy training
data, the center panel (_ = 0.001) achieves a good balance by closely following the true
function and data, while the right panel (_ = 100) underfits due to excessive regularization.

useful technique is dropout [59], which randomly disables a fraction of neurons during
training to prevent over-reliance on specific paths in the network. This enforces redun-
dancy in representations and reduces overfitting, ensuring that the model learns robust and
generalizable features.

Beyond weight decay and dropout, several other regularization strategies can help im-
prove generalization:

• Early stopping: By monitoring validation performance, training can be halted once
the model starts overfitting, preventing unnecessary complexity.

• Data augmentation: By introducing physics-informed transformations or noise to
the training data, the model can learn to be invariant to irrelevant variations, improv-
ing robustness.

By carefully incorporating appropriate regularization techniques, we ensure that our
neural networks generalize well, which is critical for making reliable physics predictions.
The combination of effective optimization algorithms andwell-chosen regularizationmeth-
ods allows us to extract meaningful physical insights from data while minimizing the risk
of overfitting.
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7.3 Building Neural Networks

A feedforward neural network (also called a multilayer perceptron, MLP) is organized into
layers of nodes (neurons) with directed connections from each layer to the next [60]. The
first layer (input layer) consists of neurons representing the input features, and the final layer
(output layer) produces the predictions. In between are one or more hidden layers which
give the network its flexibility to learn complex functions. Each neuron in a hidden or
output layer computes a weighted sum of its inputs and then applies a nonlinear activation
function. Mathematically, if f (;−1) is the vector of activations from layer (; − 1), then the
activations of layer ; (a vector f (;)) are:

f (;) = 6;
(
, (;)h(;−1) + b(;)

)
, (7.11)

where, (;) is a weight matrix and b(;) a bias vector for layer ;, and 6(·) is the activation
function applied elementwise. The activation 6 introduces nonlinearity; without it, the
whole network would collapse into a single linear transformation no matter how many
layers we stack. Common choices of 6 include [55]:

• Sigmoid (6(G) = 1/(1 + 4−G)): squashes the input into the range [0, 1]. Historically
used in early networks, but now less common (except perhaps in the output layer for
binary probability outputs) because of issues like vanishing gradients.

• Hyperbolic tangent (tanh(G)): ranges from −1 to 1, zero-centered, often yields better
training than sigmoid for hidden layers, but still can saturate for large |G |.

• ReLU (Rectified Linear Unit, ReLU(G) = max(0, G)): outputs 0 for negative inputs
and linear (identity) for positive inputs. ReLU and its variants are now standard for
hidden layers in deep networks because theymitigate the vanishing gradient problem
and promote sparse activations. Physically, a ReLU neuron can be thought of as a
feature detector that either is inactive (0) or linearly active if a certain threshold is
exceeded. This simplicity leads to easier optimization in practice.

• Softmax, used in output layer for multi-class classification, which we detail in Sec-
tion 6. Other activations like leaky ReLU, ELU, and GELU have been introduced,
but the above are sufficient for most of our discussion. We often use ReLUs in hid-
den layers and an appropriate activation for the output depending on the task (e.g.,
identity for regression, sigmoid for binary classification, softmax for multi-class).
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Figure 7.5. Schematic representations of three common activation functions in machine
learning: sigmoid, tanh, and ReLU. The ReLU function introduces nonlinearity by out-
putting zero for negative input values (i.e., “turning off” the neuron), which is crucial for
enabling networks to learn complex patterns.

Let’s illustrate a simple feedforward network architecture. Suppose we are classifying
events as signal vs. background based on some features (detector measurements, etc.). A
basic networkmight have an input layer with 3 neurons (one per feature), one or two hidden
layers (say with < and = neurons, respectively), and an output layer with a single neuron
outputting Ĥ (the predicted probability of ”signal”). The computations would be:

• Layer 1: f (1) = 61(, (1)x + b(1)), yielding an <-dimensional vector.

• Layer 2: f (2) = 62(, (2)f (1) + b(2)), yielding an =-dimensional vector.

• Output: Ĥ = 6out(, (3)f (2) + 1 (3)), a scalar.

Here 61, 62 might be ReLU, and 6out could be sigmoid for a binary classification. The
network’s overall function is a nested composition of linear maps and nonlinearities: Ĥ =

6out
(
, (3)62(, (2)61(, (1)x + 1 (1)) + 1 (2)) + 1 (3)

)
. Although this looks complex, it is just

a series of matrix multiplications and element-wise operations - easily implemented on a
computer. The expressive power of neural networks comes from stacking many such lay-
ers: even a single hidden layer network can approximate any continuous function on R3

to arbitrary accuracy (the universal approximation theorem) [56], given enough neurons.
Deeper networks (multiple hidden layers) can do so more efficiently, reusing and combin-
ing low-level features to build high-level ones. In HEP, for example, one can imagine the
first hidden layer learning to pick out local energy deposit patterns in a calorimeter, the
second layer combining those to identify entire particle showers, and so on, culminating
in an output that distinguishes electrons from jets. Training a neural network means find-
ing the weights , (;) and biases 1 (;) that minimize the cost on the training set. We use
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Figure 7.6. A Neural Network with 3 Layers: two hidden and one output Layer. [55]

the gradient-based optimization methods discussed in the previous section, but computing
the gradient ∇\� (\) for a network with thousands or millions of parameters is non-trivial.
This is where the backpropagation algorithm is crucial [61]. Backpropagation efficiently
computes the gradient of the cost with respect to every weight in the network by propagat-
ing the error backwards through the network. It is essentially an application of the chain
rule of calculus to the nested function 5 (x; \). In practice, we perform a forward pass to
compute the predictions and the cost �, then a backward pass to compute gradients. In
the backward pass, one introduces an error term X(;) for each layer, which represents how a
small change in that layer’s activation would affect the cost. For the output layer, if we have
a scalar output, X(out) = m�

mĤ
6′out(I(out)) where I(out) = , (3)f (2) + 1 (3) is the pre-activation.

For layers ; = ! − 1 down to 1,

X(;) =

((
, (;+1)

))
X(;+1)

)
� 6′;

(
I(;)

)
, (7.12)

where � denotes elementwise multiplication and I(;) = , (;)f (;−1) + 1 (;) . This formula
comes from the chain rule, effectively distributing the error from layer ; + 1 back to layer ;
by the weights, (;+1) . Once we have the X for a layer, the gradients for its parameters are:

m�

m, (;)
= X(;)

(
f (;−1)

))
,

m�

m1 (;)
= X(;) , (7.13)

i.e. the error term times the inputs to that layer (for weights) or 1 (for biases). With back-
propagation, we can compute all these partial derivatives in time proportional to doing
two forward passes. This algorithm, discovered multiple times and popularized in the
1980s [61], enabled the training of deep networks by drastically reducing the computational
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burden of gradient computation. Modern automatic differentiation frameworks implement
backprop for us, but understanding it is useful: for instance, it helps in diagnosing why van-
ishing or exploding gradients occur in very deep networks (gradients X(;) either diminish or
blow up as they propagate back through many layers, depending on the Jacobians, (:) and
activation slopes). Techniques like careful weight initialization and normalization are used
to mitigate these issues so that even 100-layer networks can be trained. In summary, a feed-
forward neural network is a powerful function approximator defined by a composition of
linear transformations and simple nonlinearities. By choosing an architecture (number of
layers and neurons) and an appropriate loss function, we can train the network on example
data using gradient-based optimization. The network then “learns” internal representations
of the data that are useful for the desired prediction task. We emphasize that the design of
the network (often called the architecture) can be guided by physical insight. For example,
if we know certain symmetries or locality properties of the problem, we can build them
into the architecture. This brings us to convolutional networks [55, 56], which incorporate
translational symmetry and local receptive fields – a perfect fit for many physics problems
with spatial or temporal structure.

7.4 Convolutional Neural Networks (CNNs)

Feedforward networks process inputs as fixed-length vectors without assuming any struc-
ture in the data. However, many physics datasets, such as frequency-series waveforms,
have inherent structure. Convolutional neural networks (CNNs) leverage this structure
through local connectivity and parameter sharing, making them well-suited for analyzing
gravitational waveforms [56].

The core operation in a CNN is the convolution. For a 1D signal G [8], convolving with
a filter F [:] produces an output feature map H[8]:

H[8] =
∑
:

F [:]G [8 − :] . (7.14)

This sliding operation detects localized patterns, such as oscillatory features in gravita-
tional wave signals. Unlike traditional signal processing where filters are pre-defined,
CNNs learn optimal filters from data. Two key advantages arise: locality, where each filter
captures relevant short-time structures, and weight sharing, which enforces translational
invariance—critical for detecting signals occurring at unknown times.
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A typical CNN consists ofmultiple convolutional layers interleavedwith nonlinear acti-
vations (e.g., ReLU) and pooling layers. Pooling reduces featuremap resolution, improving
robustness to small shifts and reducing computation. In waveform analysis, max-pooling
over a few time steps helps summarize key patterns while retaining essential signal char-
acteristics. After several convolutional and pooling layers, the output is processed by fully
connected layers for classification or regression tasks.

Figure 7.7. A 2D convolutional network Filtering. Based on the dimension of the filter
(kernel), and the padding, the dimension of the output changes [55].

CNNs drastically reduce the number of parameters compared to fully connected net-
works. For instance, detecting waveform features with small :-length filters requires far
fewer weights than directly learning from raw time-series data. This efficiency allows
CNNs to generalize well while retaining sensitivity to key structures.

In gravitational wave analysis, CNNs have been used to classify signals against noise by
learning template-like filters optimized for signal detection [52]. Unlike matched filtering,
which relies on predefined waveform templates, CNNs can automatically extract signal
features and adapt to variations in waveformmorphology. Additionally, spectrogram-based
CNNs enable the classification of transient noise artifacts in detector data, improving data
quality for further analysis.

Despite their success, interpretability remains an important challenge. Visualizing
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learned filters and feature maps can provide insights into what patterns the network de-
tects, enhancing trust in CNN-based analyses. Used appropriately, CNNs offer a powerful
tool for gravitational wave searches, combining efficiency with the ability to learn data-
driven features.

In the next section, we discuss the softmax activation function, commonly used in
CNNs for multi-class classification.

7.5 Softmax Activation and Multi-Class Classification

While we have focused on binary classification, many problems involve multiple cate-
gories. In waveform analysis, for example, one may classify signals into different astro-
physical sources. Neural networks handle multi-class outputs using the softmax activa-
tion [56, 55] in the output layer. Given scores I1, I2, . . . , I for  classes, softmax converts
them into probabilities:

Ĥ: =
exp (I: )∑ 
9=1 exp

(
I 9

) , : = 1, . . . ,  . (7.15)

This ensures Ĥ: ∈ (0, 1) and
∑
: Ĥ: = 1, making softmax useful for categorical predictions.

The largest I: leads to the highest Ĥ: , treating I: as an unnormalized log-probability.
Training uses the cross-entropy loss, which encourages the network to increase the

probability of the correct class while reducing others. The gradient of the loss with respect
to I: is simply Ĥ:−1:=H, reinforcing the correct classification. This formulation effectively
trains the network to assign high confidence to the right class while suppressing incorrect
ones.

Softmax is translation-invariant: adding a constant 2 to all I: does not affect the out-
put, meaning only relative values matter. The exponential nature of softmax amplifies
differences, often leading to confident predictions. However, to mitigate overconfidence,
techniques like temperature scaling (dividing logits by a factor) can adjust probability dis-
tributions for better uncertainty estimation [56].

In physics applications, softmax outputs provide a likelihood-based classification akin
to hypothesis testing. For example, in gravitational wave analysis, a neural network can as-
sign probabilities to different signal classes based on waveform characteristics [52]. Proper
calibration ensures these probabilities reflect actual classification confidence.

In summary, softmax enables neural networks to perform multi-class classification by
generating probabilistic outputs that integrate naturally with cross-entropy loss. It is widely
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used in physics and other domains where distinguishing between multiple categories is
essential. In the next section, we compare neural networks with other supervised learning
methods.

7.6 Comparison with Other Supervised Learning Meth-
ods

Neural networks are a powerful approach to supervised learning, but they are not the only
option. Methods such as support vector machines (SVMs) [62] and decision trees [63] also
play roles in physics applications, each with their strengths and limitations.

Support Vector Machines (SVMs) classify data by maximizing the margin between
classes, relying on support vectors near decision boundaries. They can efficiently han-
dle non-linear patterns via kernel methods and were state-of-the-art before deep learning.
SVMs perform well on smaller datasets and offer a convex optimization solution, but they
scale poorly to large datasets and struggle with high-dimensional raw inputs like wave-
forms. For example, classifying gravitational wave signals with an SVM would require
manual feature extraction (e.g., Fourier transforms), whereas a CNN learns features di-
rectly from raw time-series data.

Decision Trees recursively split feature space into regions based on threshold tests.
While interpretable, single trees tend to overfit. Ensemble methods, such as Random
Forests and Boosted Decision Trees (BDTs), improve performance and have been widely
used in physics, including Higgs boson searches. Trees are particularly strong for tabular
data with predefined features but do not naturally handle raw signals like waveforms. Com-
pared to neural networks, tree ensembles require less parameter tuning and handle missing
data well but lack the flexibility of deep learning models.

Other Methods include Bayesian classifiers, which rely on probabilistic models but
often make oversimplified assumptions, and linear models like logistic regression, which
work well for low-dimensional data but fail to capture complex structures without feature
engineering.

In modern physics applications with large datasets—such as collider physics, cosmol-
ogy, and gravitational wave analysis—deep learning has become dominant due to its ability
to learn directly from raw data and leverage high-performance computing. However, classi-
cal methods remain useful, especially for small datasets or when interpretability is crucial.
A practical approach may involve starting with simpler models like Random Forests to as-
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sess data complexity before moving to neural networks if greater performance is required.
Hybrid approaches also exist, such as using a CNN to extract features from waveforms

and feeding them into a tree-based classifier. While end-to-end deep learning is increas-
ingly favored, traditional methods remain valuable, particularly in theoretical physics con-
texts where model interpretability and analytical tractability are priorities.

In this chapter, we explored supervised learning with a focus on neural networks and
convolutional architectures, highlighting their advantages for physics applications. We
covered key concepts, including optimization techniques, regularization, and activation
functions, leading to a discussion on CNNs and their effectiveness in structured data anal-
ysis. Compared to traditional methods like SVMs and decision trees, deep learning excels
in handling large datasets and learning complex patterns [64] directly from raw signals.
Neural networks, particularly CNNs, provide a powerful approach to detecting structured
features in data, making them well-suited for gravitational wave analysis. In the next chap-
ter, we apply these concepts to waveform classification, constructing and training a neural
network to distinguish gravitational wave signals.



Chapter 8

Problem Setup and Neural Network
Architecture

After the pedagogical introduction to neural networks in the previous chapter, we now turn
our focus to the specific problem of classifying gravitational waveforms using supervised
learning. This chapter outlines the problem setup, the derivation of the gravitational wave-
form in the frequency domain, and the neural network architecture that we employ for
classification.

8.1 Frequency-Domain Gravitational Waveform

To beginwith, we derive the frequency-domain representation of gravitational waves sourced
from compact binary mergers [65, 66, 67, 68]. These waveforms provide the basis for
our machine learning models, which classify signals as either General Relativity (GR) or
beyond-GR (BGR). The gravitational wave strain, ℎ(C), is typically decomposed into two
independent polarization modes:

ℎ(C) ≡ ℎ+(C) − 8ℎ×(C) (8.1)

where ℎ+ and ℎ× are the plus and cross polarizations, respectively. These polarizations are
conveniently expressed in terms of spin-weighted spherical harmonics:

ℎ (C; ,, ], i2) =
+∞∑
ℓ=2

ℓ∑
<=−ℓ

−2.ℓ< (], i2) ℎℓ< (C, ,). (8.2)

The intrinsic parameters of the binary, such as component masses <1, <2 and spins j1, j2,
determine the time evolution of ℎℓ< (C).

117
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Using the general time-domain representation,

ℎℓ< (C) = �ℓ< (C)48Φℓ< (C) , (8.3)

we now compute the Fourier transform of the gravitational wave signal. The Fourier trans-
forms of the plus and cross polarizations are given by [66]:

ℎ̃+( 5 ) =
∞∑
ℓ=2

ℓ∑
<=1

√
2ℓ + 1

4c
[
(−1)ℓ32

ℓ,−< (\) + 3
2
ℓ< (\)

]
ℎ̃ℓ< ( 5 ),

ℎ̃×( 5 ) = −8
∞∑
ℓ=2

ℓ∑
<=1

√
2ℓ + 1

4c
[
(−1)ℓ32

ℓ,−< (\) − 3
2
ℓ< (\)

]
ℎ̃ℓ< ( 5 ),

(8.4)

where 32
ℓ<
(\) are theWigner 3-functions, \ and q0 describe the line of sight in the detector

frame, and the Fourier transform of the spherical harmonic mode is

ℎ̃ℓ< ( 5 ) =
∫ ∞

−∞
42c8 5 C�ℓ< (C)48Φℓ< (C)3C. (8.5)

The real and imaginary parts of the Fourier transform can be computed separately as:

ℎ̃'ℓ< ( 5 ) =
∫ ∞

−∞
42c8 5 C�ℓ< (C) cos (Φℓ< (C)) 3C

ℎ̃�ℓ< ( 5 ) =
∫ ∞

−∞
42c8 5 C�ℓ< (C) sin (Φℓ< (C)) 3C

(8.6)

For non-spinning and non-precessing binaries, the imaginary part satisfies ℎ̃�
ℓ<
( 5 ) =

−8ℎ̃'
ℓ<
( 5 ), allowing us to express the Fourier transforms as:

ℎ̃+( 5 ) =
∞∑
ℓ=2

ℓ∑
<=1

[
(−1)ℓ

32
ℓ,−< (\)
32
ℓ<
(\)
+ 1

]
−2.ℓ< (\, q0) ℎ̃'ℓ< ( 5 ),

ℎ̃×( 5 ) = −8
∞∑
ℓ=2

ℓ∑
<=1

[
(−1)ℓ

32
ℓ,−< (\)
32
ℓ<
(\)
− 1

]
−2.ℓ< (\, q0) ℎ̃'ℓ< ( 5 ).

(8.7)

In terms of the Fourier domain, phase and amplitude ℎ̃'
ℓ<
( 5 ) can be written as follows:

ℎ̃'ℓ< ( 5 ) = �ℓ< ( 5 )4
8kℓ< ( 5 ) (8.8)

The phase kℓ< ( 5 ) in the above equation will be the main object of our study.

8.2 Waveform Extensions

The primary objective of our study is to investigate the modifications in the phase and am-
plitude of the waveform [69]. The quantities kℓ< ( 5 ) and �ℓ< ( 5 ) represent the phase and



Waveform Extensions 119

amplitude, respectively, in the Fourier domain [70, 71]. We introduce potential deviations,
denoted as Xkℓ< and X�ℓ<, which modify these quantities as follows:

kℓ< ([, ", jS, jA) = k (�')ℓ<
([, ", jS, jA) + Xkℓ<, (8.9)

for the phase, and

�ℓ< ([, ", jS, jA) = �(�')ℓ<
([, ", jS, jA) + X�ℓ<, (8.10)

for the amplitude.
Here, [ represents the symmetric mass ratio:

[ =
@

(1 + @)2
, with @ =

<1
<2
, (8.11)

where " is the total mass of the binary:

" = <1 + <2. (8.12)

The parameters jS and jA are the symmetric and anti-symmetric spin components,
defined as:

jS =
j1 + j2

2
, jA =

j1 − j2
2

. (8.13)

The deviations Xkℓ< and X�ℓ< introduce small shifts in [," , and the spin components.
These shifts are denoted by X[, X", XjS, and XjA. Accounting for these shifts, the total
observational shift in phase Δkℓ< is given by:

kℓ< ([ + X[, " + X", jS + XjS, jA + XjA) = k (�')ℓ<
([, ", jS, jA) + Δkℓ< . (8.14)

Expanding to first order in the shifts, we obtain:
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for the phase, and

Δ�ℓ< = X�ℓ< +
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(�')
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X[ +

m�
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m"
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m�
(�')
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mjS
XjS +

m�
(�')
ℓ<

mjA
XjA, (8.16)

for the amplitude.
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To properly assess the significance of these shifts, it is essential to compare them rela-
tive to the corresponding parameters. The absolute magnitude of the shifts alone does not
provide meaningful insight; rather, their relative effect on the waveform is crucial. Hence,
we normalize the shifts by the parameter values:

Δkℓ< = Xkℓ< +
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(�')
ℓ<

m[

)
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+
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"
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(8.17)
Thus, the computation of observational shifts requires knowledge of both the intrin-

sic extensions Xkℓ< and X�ℓ<, as well as the variations in the mass and spin parameters:
X[, X", XjS, and XjA.

8.3 Extending Binary Black Hole Waveforms Beyond GR

In this section, we investigate binary black hole (BBH) events and extend their phase to
construct beyond General Relativity (BGR) waveforms [66, 69]. The key idea is to intro-
duce artificial modifications directly to the phase rather than deriving them from a specific
alternative theory of gravity. This approach allows us to train a model that can classify any
deviations from GR without being constrained to a particular theoretical framework.

Instead of working from a specific theory and deriving its effect on the phase—for
example, through modifications to the post-Newtonian parameters—we introduce direct
modifications to the phase itself. This method ensures a more generalized classification
model that can identify arbitrary deviations from GR. However, if one is interested in test-
ing a particular theory, they can derive the explicit phase modification from that theory and
still utilize our neural network setup for classification.

8.3.1 Extracting Binary Black Hole Event Data

Webegin by considering 121BBHeventswith their data extracted from the LIGOdatabase [72].
These events serve as the basis for generating the corresponding gravitational waveforms.

To generate the waveforms, we utilize the PyCBC package [73] in Python, specifi-
cally employing the IMRPhenomXHM approximant. This waveform model incorporates
higher-order modes, making it well-suited for accurately modeling BBH signals observed
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Figure 8.1. BBH events taken from LIGO’s database.

by LIGO. Moreover, since our primary focus is on modifications in the inspiral regime,
this approximant is particularly appropriate for our analysis.

8.3.2 Data Augmentation for Neural Network Training

For effective neural network training, a sufficiently large dataset is required to ensure gen-
eralization and robustness. However, our initial dataset contains only 121 BBH events,
which is relatively small for deep learning applications. To address this, we employ data
augmentation, a common strategy in machine learning, where new data points are gener-
ated by introducing controlled variations to existing ones. This allows us to expand the
dataset without acquiring additional observational data.

In gravitational wave astrophysics, BBH parameters such as component masses and
spins are continuous variables rather than discrete categories. Consequently, realistic vari-
ations in these parameters should not fundamentally alter the physics of the waveform but
should still introduce enough diversity for training a neural network. By perturbing these
parameters slightly, we ensure that the model learns robust features rather than memorizing
a limited set of waveforms.

The key principle behind our augmentation approach is to apply Gaussian perturbations
to certain physical parameters while ensuring that the resulting values remain physically
meaningful. Specifically, we perturb:

• Component masses <1, <2

• Effective spin parameter jeff
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To generate augmented samples, we apply small Gaussian-distributed perturbations to
the parameters. The perturbations are defined as follows:

Component Mass Perturbations

For a given binary system with primary mass <1 and secondary mass <2, we introduce
perturbations using a normal distribution:

<′1 = <1 + N(0, f<1), <′2 = <2 + N(0, f<2), (8.18)

whereN(0, f) represents a Gaussian distribution with zero mean and standard devia-
tion f. The standard deviation is chosen as a fraction ? (randomly selected between 3%
and 5%) of the original mass:

f<1 = ? · <1, f<2 = ? · <2. (8.19)

Since the primary mass must always be larger than the secondary mass, we impose the
constraint:

<′1 ≥ <
′
2. (8.20)

Effective Spin Perturbations

The effective spin parameter jeff is defined as:

jeff =
<1j1 + <2j2
<1 + <2

. (8.21)

To introduce variations, we apply a Gaussian perturbation:

j′eff = jeff + N(0, fjeff), (8.22)

where the standard deviation is defined as:

fjeff = ? · |jeff | + 0.01. (8.23)

To ensure physical validity, the perturbed effective spin must remain within the allowed
range:

−1 ≤ j′eff ≤ 1. (8.24)
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By iterating this augmentation process over all events in the dataset, we effectively ex-
pand the number of training examples, ensuring a diverse and well-distributed dataset for
training our neural network. The augmented dataset retains the essential physical charac-
teristics of the original BBH signals while introducing variability that improves themodel’s
ability to generalize beyond the limited set of observed waveforms. With the augmentation,
we expand our original dataset tenfold.

Figure 8.2. BBH events and their augmented counterparts. Blue dots represent the original
data, while red dots denote the augmented events generated via Gaussian perturbations.

8.4 Constructing Beyond-GR Waveforms from GR

To systematically construct beyond-GR (BGR) waveforms, we start from the original GR
waveform and introduce a phase modification. For each GR event, we generate a cor-
responding BGR waveform by applying a controlled phase shift to the (ℓ, <) = (2, 2)
mode [69]. The motivation behind modifying only this mode is its dominant contribution
to the total gravitational waveform. While higher-order modes (ℓ > 2) can be significant
in asymmetric mass-ratio systems or high-inclination binaries, the (2,2) mode primarily
dictates the overall structure of the signal. By restricting modifications to this mode, we
ensure computational efficiency while still capturing leading-order deviations from GR.

8.4.1 Frequency-Domain Representation and Phase Modification

A gravitational waveform in the frequency domain can be expressed as a sum over all
modes:
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ℎGR( 5 ) =
∑
ℓ,<

ℎℓ<,GR( 5 )48kℓ<,GR ( 5 ) , (8.25)

where:

• ℎℓ<,GR( 5 ) is the amplitude of the (ℓ, <) mode in the frequency domain,

• kℓ<,GR( 5 ) is the corresponding phase function.

To construct a BGRwaveform, we introduce a small modification to the phase function,
parameterized by a deviation Xk( 5 ), such that:

ℎBGR( 5 ) =
∑
ℓ,<

ℎℓ<,GR( 5 )48(kℓ<,GR ( 5 )+VXkℓ< ( 5 )) , (8.26)

where V is a free parameter that controls the strength of the modification.
Since the (2,2) mode dominates the waveform, we approximate the total signal by con-

sidering only this mode:

ℎBGR( 5 ) ≈ ℎGR( 5 )48(k22,GR ( 5 )+VXk22 ( 5 )) . (8.27)

For small Xk22( 5 ), we expand the exponential function using a first-order Taylor ex-
pansion:

48VXk22 ( 5 ) ≈ 1 + 8VXk22( 5 ) + O(Xk2). (8.28)

Substituting this into the expression for ℎBGR( 5 ), we obtain:

ℎBGR( 5 ) ≈ ℎGR( 5 ) + 8Vℎ22,GR( 5 )Xk22( 5 ). (8.29)

This construction provides a model-independent way to extend GR waveforms to BGR
waveforms. Instead of deriving Xk22( 5 ) from a specific beyond-GR theory, we allow it to
be a free function, parameterized for general deviations. This enables our neural network to
be trained on a broad class of deviations rather than being restricted to a single theoretical
framework. However, if a specific beyond-GR model predicts an explicit phase shift, it can
still be incorporated into this framework by using its corresponding Xk22( 5 ).

By systematically modifying only the (2,2) mode, we retain the essential physical char-
acteristics of the original GR waveforms while allowing for deviations that can be detected
and classified by a machine learning model.
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Figure 8.3. The red dashed line represents a small shift in the waveform during the inspiral
(low-frequency) regime, illustrating the effect of the applied phasemodification in the BGR
waveform.

8.5 Noise Injection

To make the dataset more representative of real gravitational wave detections, we inject
detector noise into the waveforms. In actual observations, gravitational wave signals are
buried in instrumental noise, and training a neural network on noiseless waveforms would
not generalize well to real data. To simulate a more realistic scenario, we add noise to both
the GR and BGR waveforms, following the characteristics of LIGO’s detector noise.

8.5.1 LIGO Power Spectral Density (PSD)

The noise in gravitational wave detectors is characterized by the power spectral density
(PSD), which quantifies the frequency-dependent noise amplitude. Given a detector’s
strain noise =( 5 ), the PSD is defined as [74]:

(= ( 5 ) = lim
)→∞

1
)

〈
|=̃( 5 ) |2

〉
, (8.30)

where:
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• =̃( 5 ) is the Fourier transform of the time-domain detector noise =(C),

• ) is the observation time window,

• 〈·〉 denotes an ensemble average over realizations of the noise.

The PSD provides a measure of how noise varies with frequency. In the case of LIGO,
the noise is colored, meaning that it is not uniform across all frequencies but instead follows
a characteristic shape dictated by instrumental and environmental effects.

Figure 8.4. The power spectral density (PSD) used for noise injection in our analysis, cor-
responding to the aLIGOZeroDetHighPower configuration [72]. This PSD represents the
expected sensitivity of Advanced LIGO in its zero-detuned, high-power mode, providing
a realistic noise model for simulating gravitational wave detections from binary black hole
mergers.

8.5.2 Statistical Properties of the Noise

The detector noise is assumed to be stationary and Gaussian, meaning that different fre-
quency components are uncorrelated. The two-sided PSD (= ( 5 ) satisfies the following
expectation value:

〈=̃( 5 )=̃∗ ( 5 ′)〉 = X ( 5 − 5 ′) (= ( 5 ), (8.31)

where:
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• =̃( 5 ) is the frequency-domain representation of the noise,

• X( 5 − 5 ′) ensures that noise at different frequencies is uncorrelated,

• (= ( 5 ) determines the variance of the noise at frequency 5 .

This expression shows that the noise power at each frequency component is dictated
by (= ( 5 ), while different frequencies remain statistically independent.

8.5.3 Generating and Adding Realistic Detector Noise

To generate realistic noise, we sample from a zero-mean Gaussian distribution with vari-
ance given by the PSD:

=̃( 5 ) ∼ N (0, (= ( 5 )). (8.32)

However, to ensure proper scaling of the noise, we normalize it as:

=̃( 5 ) = I( 5 )√
(= ( 5 )

, (8.33)

where I( 5 ) is a complex Gaussian random variable with zero mean and unit variance.
The final noisy waveform is then obtained by adding this noise to the clean signal:

ℎ̃noisy( 5 ) = ℎ̃clean( 5 ) + =̃( 5 ). (8.34)

We apply this noise injection procedure separately to both GR and BGR waveforms.
For each event, we:

• Generate a unique noise realization using LIGO’s PSD.

• Apply the same noise realization to both the full waveform and the dominant (2,2)
mode.

• Use a different seed for GR and BGR waveforms to ensure independent noise real-
izations.

This approach ensures that the dataset not only reflects theoretical waveform modifi-
cations but also accounts for realistic observational conditions, improving the robustness
of the neural network’s classification capability.
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8.6 Neural Network Implementation

With our dataset fully prepared, we now focus on the design and implementation of a neural
network to classify gravitational waveforms as either GR or beyond GR(BGR). The goal
is to construct a model that effectively learns patterns from the noisy waveform data and
generalizes well to unseen examples [69]. In this section, we describe the dataset split, the
structure of the neural network, and its implementation.

8.6.1 Dataset Splitting and Its Purpose

To ensure that the model learns effectively while also being evaluated on unseen data, we
split the dataset into three distinct subsets: training, validation, and testing [55]. Each
subset serves a specific purpose in the learning process.

Training Set

The training set contains the majority of the data and is used for optimizing the neural
network’s parameters. During training, the model learns by minimizing a loss function,
which measures the discrepancy between predicted and true labels. The dataset for train-
ing, denoted asDtrain, consists of waveform samples -train and corresponding labels Htrain:

Dtrain = {(-8, H8)}#train
8=1 . (8.35)

The neural network aims to approximate a function 5\ (-) parameterized by \ that maps
input waveforms to output labels:

Ĥ = 5\ (-). (8.36)

Validation Set and Cross-Validation

The validation set is used to fine-tune hyperparameters and monitor model performance.
Unlike the training set, it is not used for weight updates. Instead, after each training epoch,
the model evaluates its performance on Dval, providing an estimate of its generalization
ability.

To assess performance, the validation loss is computed as:
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Lval = −
1
#val

#val∑
8=1
[H8 logf( 5\ (-8)) + (1 − H8) log(1 − f( 5\ (-8)))] , (8.37)

where f(H) = 1/(1 + 4−H) is the sigmoid activation function.
A key use of the validation set is detecting overfitting. If the validation loss starts

increasing while the training loss continues decreasing, this indicates that the model is
memorizing the training data rather than learning general features.

Testing Set

After training is complete, the model is evaluated on the test set to assess its real-world
performance. The test accuracy is computed as:

�test =
1
#test

#test∑
8=1

1{Ĥ8 = H8}, (8.38)

where 1 is an indicator function that equals 1 if the prediction matches the true label
and 0 otherwise. A high test accuracy suggests strong generalization ability.

8.6.2 Neural Network Architecture

We implement a one-dimensional convolutional neural network (CNN) to classify gravi-
tational waveforms. CNNs are particularly effective for structured data such as time-series
or frequency-domain signals because they apply local feature extraction.

The architecture consists of the following components:

• Input layer: Takes in the frequency-domain waveform as a one-dimensional input
array.

• Convolutional layers: Apply a set of trainable filters to capture local frequency
patterns. Each convolution operation is followed by a non-linear activation function
6 that introduces non-linearity into the model.

• Fully connected layers: Flatten the extracted features and pass them through dense
layers that progressively learn high-level representations.

• Output layer: A single neuron that outputs a real number (logit), which is then
passed through a sigmoid function to interpret the result as a probability of being a
BGR waveform
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Mathematically, each convolutional layer performs:

H 9 = 6

(∑
8

F8 9G8 + 1 9

)
, (8.39)

where: - G8 are input features (frequency bins), - F8 9 are learnable filter weights, - 1 9
is a bias term, - 6(·) is the activation function.

The final dense layer combines extracted features into a weighted sum:

Hout = ,Hconv + 1. (8.40)

In code, this corresponds to the following implementation using the TensorFlow pack-
age [75, 76]:

model = models.Sequential([

layers.Input(shape=input_shape),

layers.Conv1D(16, kernel_size=5, activation='relu'),

layers.Conv1D(32, kernel_size=5, activation='relu'),

layers.Conv1D(64, kernel_size=5, activation='relu'),

layers.Flatten(),

layers.Dense(128, activation='relu'),

layers.Dense(1, activation='linear')

])

Themodel is trained using the Adam optimizer [58] with a learning rate of 10−4. Train-
ing is performed using mini-batches of size 64 over 50 epochs. Throughout training, the
model learns to extract distinguishing features from the frequency-domain waveforms.

To monitor performance, we track both training and validation loss at each epoch. If
validation loss increases while training loss decreases, this suggests overfitting.

Once training is complete, the model is tested on unseen data, and its accuracy is com-
puted. A strong test accuracy indicates that the model has learned generalizable patterns
for classifying gravitational waveforms.

In this chapter, we have developed all the necessary tools for training our classification
neural network. We constructed a dataset of gravitational waveforms, introduced noise
injection to simulate realistic observational conditions, and designed a convolutional neural
network capable of distinguishing GR from BGR waveforms.

With the dataset and model architecture in place, we are now prepared to apply these
methods in training. In the next chapter, we train multiple neural networks, each based on
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different modifications to the phase Xk( 5 ), and analyze their performance in classifying
beyond-GR signals.





Chapter 9

Training and Evaluation of the
Classification Neural Network

In this chapter, we apply the neural network architecture developed earlier to a controlled
toy model, where deviations from General Relativity (GR) are introduced in a simplified
and tunable way. The goal is to explore how sensitive the classifier is to small departures
from GR, and to determine the minimum strength of modification that remains detectable.

To this end, we start from a set of GR waveforms and construct corresponding beyond-
GR (BGR)waveforms bymodifying only their phase in the frequency domain. Specifically,
we consider a Gaussian deformation localized in the inspiral regime, and study its impact
on the classification task.

9.1 Toy Model: Gaussian Phase Shift

We define the BGR waveform by applying a phase deformation to the GR waveform in
the frequency domain. In this toy model, the modification is localized to the dominant
(ℓ, <) = (2, 2) mode and takes the form

Xk22( 5 ) = exp
[
− ( 5 − 50)2

100

]
, (9.1)

where 5 is the frequency. This shift is a Gaussian centered at 50 Hz with a width
√

100 =

10 Hz, which lies well within the inspiral regime of the waveform. The specific choice of
50 and 100 is not physically significant—it serves only to localize the modification in the
low-frequency part of the signal, consistent with the illustrative purpose of the toy model.

133
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This Gaussian deformation is then plugged into the general modification formula de-
fined previously in Eq. (8.29), which in our case becomes

ℎBGR( 5 ) = ℎGR( 5 ) + 8 V ℎ22,GR( 5 ) Xk22( 5 ), (9.2)

where ℎGR( 5 ) is the original GR waveform, ℎ22,GR( 5 ) is the GR waveform restricted to
the (2, 2) mode, and V is a free parameter controlling the strength of the deviation from
GR.

For each value of V, we generate a set of BGR waveforms using Eq. (9.2), and compare
them to their GR counterparts. In the next section, we will evaluate how distinguishable
these waveforms are by computing average matches between GR and BGR signals. This
will serve as a preliminary measure of the magnitude of the modification before proceeding
to neural network classification.

9.2 Mismatch as a Preliminary Metric

Before attempting classification with a neural network, it is useful to first assess the magni-
tude of the deviation introduced by the Gaussian phase shift. This gives us a sense of how
distinguishable the modified BGR waveforms are from their original GR counterparts. A
natural and widely used similarity measure in gravitational-wave data analysis is the match
between two waveforms, defined with respect to the detector noise properties [74].

Let �( 5 ) and �( 5 ) be two waveforms expressed in the frequency domain. The inner
product between them is given by

(� | �) = 4<
∫ ∞

0

�∗( 5 )�( 5 )
(= ( 5 )

d 5 , (9.3)

where (= ( 5 ) denotes the one-sided power spectral density (PSD) of the detector noise, and
<{·} indicates the real part. The match between � and � is then defined as the normalized
inner product, maximized over relative time and phase shifts:

Match(�, �) = max
C0,q0

(� | �)√
(� | �) (� | �)

. (9.4)

To quantify the difference between BGR and GR waveforms, we compute the average
mismatch, defined as

Mismatch = 1 −Match. (9.5)

A mismatch value close to zero indicates that the waveforms are nearly indistinguishable,
while a value closer to one signals strong deviation.
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In our analysis, we compute the mismatch between the original GR waveform and its
BGR counterpart for each event in the dataset, at several values of the phase deformation
strength V. We then average over all events to obtain the average mismatch as a function
of V.

Figure 9.1 shows the average mismatch as a function of the deformation strength V. As
expected, the mismatch increases with V, reflecting the growing deviation from GR. We
also display a shaded band corresponding to one standard deviation across the waveform
population to indicate the spread of values.
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Figure 9.1. Average mismatch between BGR and GRwaveforms as a function of the defor-
mation parameter V. The shaded region shows the standard deviation across the waveform
dataset. As V increases, the deviation becomes more pronounced, leading to a higher mis-
match.

While the mismatch provides a useful first indication of waveform similarity, it is not
always a reliablemeasure of physical deviation. In this analysis, we set the inclination angle
to zero and consider only the dominant (2, 2) mode. Under these simplifying assumptions,
the phase modification applied to the waveform appears clearly in the strain signal and is
captured by the mismatch.

However, this is not generally the case. For instance, if the inclination angle were set
to c/2, the observed strain from the (2, 2) mode would be significantly suppressed, and
any deformation applied to that mode—such as the Gaussian shift considered here—would
become practically invisible. In such scenarios, the mismatch could remain close to zero
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even in the presence of a meaningful physical deviation. Similarly, if the deviation mani-
fests in higher-order modes or in a way that interferes constructively or destructively with
other components, the mismatch may fail to reflect it accurately.

Therefore, while mismatch serves as a useful baseline diagnostic in this toy setup, more
robust and comprehensive metrics are needed for general analyses that include multiple
modes, varying inclination angles, or realistic astrophysical signals.

9.3 Classification Performance at Strong Deformation (V =

1)

In this section, we apply the convolutional neural network (CNN) introduced in the previ-
ous chapter to classify gravitational waveforms into GR and BGR categories. The BGR
waveforms are constructed using the Gaussian phase shift toy model described earlier, with
the deformation strength fixed to V = 1. This case corresponds to the largest deviation from
GR in our setup and serves as a reference point for evaluating the classifier’s effectiveness.

9.3.1 Evaluation Setup

Each waveform is represented by its amplitude spectrum, interpolated onto a common
frequency grid ranging from 10 to 400 Hz. The dataset is split into training, validation,
and test sets in a 70%-15%-15% ratio, with stratification to preserve class balance. Each
sample is normalized individually using z-score normalization prior to being passed to the
neural network.

The CNN architecture, consisting of multiple convolutional layers followed by max-
pooling, fully connected layers, and L2 regularization, was described in chapter 8. We use
the same network structure for this experiment.

9.3.2 Results for V = 1

• Training loss: The training and validation loss over 50 epochs is shown in Fig-
ure 9.2. The loss decreases steadily and stabilizes, indicating that the model con-
verges without overfitting.

• Classification predictions: Figure 9.3 displays the predicted probabilities for test
samples. The GR and BGR signals are clearly separated, and the classifier assigns
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confident scores to both classes.

• Confusion matrix: As seen in Figure 9.4, the classifier correctly labels all test sam-
ples. No misclassifications occur at V = 1.
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Figure 9.2. Training and validation loss for V = 1. The loss curves converge smoothly,
showing stable and well-regularized learning.

9.3.3 Evaluation Metrics and Threshold Criterion

To quantify the classifier’s performance beyond visual inspection, we compute several stan-
dard metrics used in binary classification tasks: accuracy, precision, recall, and the F1
score [77]. These are defined as follows:

• Accuracy:
Accuracy =

)% + )#
)% + )# + �% + �# , (9.6)
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Figure 9.3. Test predictions for V = 1. The classifier cleanly separates GR (blue) and BGR
(red) events. The background shading denotes the classification threshold at 0.5.

where )% and )# are the number of true positives and true negatives, and �% and
�# are false positives and false negatives, respectively. Accuracymeasures the over-
all fraction of correctly classified examples.

• Precision:
Precision =

)%

)% + �%, (9.7)

which quantifies the proportion of events classified as BGR that are actually BGR.

• Recall (Sensitivity):
Recall =

)%

)% + �# , (9.8)

representing the proportion of actual BGR signals that were correctly identified by
the model.

• F1 Score:
F1 = 2 · Precision · Recall

Precision + Recall . (9.9)

The F1 score is the harmonic mean of precision and recall. It is particularly useful
when dealing with imbalanced datasets where one class is significantly underrepre-
sented.



Classification Performance at Strong Deformation (V = 1) 139

0 1
Predicted Label

0
1

Tr
ue

 L
ab

el

200 0

0 200

Confusion Matrix

0

25

50

75

100

125

150

175

200

Figure 9.4. Confusion matrix for the test set at V = 1. The model achieves perfect classi-
fication.

In our setup, the dataset is perfectly balanced: we include an equal number of GR and
BGR waveforms. Therefore, accuracy provides a direct and interpretable measure of the
model’s effectiveness, and we adopt it as our primary performance metric. Specifically,
we define a successful classification as one where the test accuracy exceeds 95%.

Although the F1 score is often used in situations where class imbalance skews the
interpretation of accuracy, we compute it here for completeness. Since our model makes
no misclassifications in this case, all performance metrics reach their maximum values:

Accuracy = 1.0000,

Precision = 1.0000,

Recall = 1.0000,

F1 Score = 1.0000.

These results confirm that the neural network perfectly distinguishes GR and BGR
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waveforms for strong deformations (V = 1). This establishes a baseline for the smallest
detectable deviation that the model can reliably classify in this toy model.

9.4 Sensitivity to Smaller Phase Shifts

Having established that the neural network successfully classifies strongly modified wave-
forms at V = 1, we now investigate the model’s sensitivity to progressively smaller devi-
ations from GR. In this section, we fix the network architecture and training procedure,
and vary only the deformation strength V. Our goal is to identify the smallest detectable
deviation that satisfies our performance threshold.

Detection criterion: As introduced earlier, we define a successful classification as one in
which the test accuracy exceeds 95%. Since our dataset is balanced, accuracy provides a
direct and interpretable performance measure. The F1 score is also computed for com-
pleteness, although it coincides closely with accuracy in this case.

Classification Results for Selected V Values

To illustrate the performance trend, we evaluate the model at several values of V between
1.0 and 0.28. The classification plots for each case are shown in Figures 9.5–9.10, and the
final confusion matrix at the 95% threshold is shown in Figure 9.11.

Each figure shows the predicted probabilities for the test samples, with background
shading indicating the classification threshold at 0.5. As V decreases, the predicted classes
become increasinglymixed near the decision boundary, reflecting the reduced distinguisha-
bility of the BGR waveforms.

Table 9.1 summarizes the classification performance for each value of V, along with
the average mismatch between GR and BGRwaveforms. The results show a smooth degra-
dation in performance as the deformation strength decreases. Based on our 95% accuracy
criterion, we identify V = 0.28 as the smallest reliably detectable phase deformation in this
toy model.

Discussion and Outlook

The results presented in Table 9.1 demonstrate that the neural network can reliably detect
phase deformations down to V = 0.28, corresponding to an average mismatch of approx-
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Figure 9.5. Test predictions for V = 0.5. The classifier maintains perfect separation.

0 50 100 150 200 250 300 350 400
Test Sample Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 P
ro

ba
bi

lit
y

Test Predictions ( = 0.45)

GR (True 0)
BGR (True 1)

Figure 9.6. Test predictions for V = 0.45: miss-classification starts to kick in at this scale.

imately 0.0012. Below this threshold, the classifier’s performance drops below our 95%
accuracy criterion, making the BGR waveforms statistically indistinguishable from their
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Figure 9.7. Test predictions for V = 0.4.
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Figure 9.8. Test predictions for V = 0.35.

GR counterparts under the current setup. This boundary provides a practical measure of
the smallest detectable deviation in our toy model.
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Figure 9.9. Test predictions for V = 0.3.
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Figure 9.10. Test predictions for V = 0.28. This marks the boundary of detectability as
defined by the 95% accuracy threshold.
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classifier still exceeds 95% test accuracy.

Table 9.1. Classification performance metrics and average mismatch for various values of
V. Boldface indicates the threshold value where test accuracy drops to 95%.

V Accuracy Precision Recall F1 Score Avg. Mismatch

1.00 1.0000 1.0000 1.0000 1.0000 0.0140
0.50 1.0000 1.0000 1.0000 1.0000 0.0037
0.45 0.9975 0.9950 1.0000 0.9975 0.0030
0.40 0.9950 0.9901 1.0000 0.9950 0.0024
0.35 0.9825 0.9849 0.9800 0.9825 0.0018
0.30 0.9675 0.9561 0.9800 0.9679 0.0014
0.28 0.9500 0.9639 0.9350 0.9492 0.0012

It is important to note that these results are model-specific: they depend on the wave-
form content (limited here to the (2, 2) mode), the fixed inclination angle, and the specific
form of the deformation applied. In more realistic scenarios, the sensitivity could shift
depending on these factors.

In the next section, we move beyond toy models and explore a more systematic param-
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eterization of deviations from GR using the post-Newtonian (PN) formalism [78, 71]. We
investigate how small changes in PN phase coefficients affect waveform classification and
analyze the detectability of such deviations using the same neural network pipeline.

9.5 Deviation in the Post-Newtonian Phase Coefficients

Having explored toy-model deformations using localized phase shifts, we now turn to a
more structured and physically motivated approach. In this section, we examine how de-
viations in the post-Newtonian (PN) phase parameters affect the gravitational waveform,
and study whether such changes can be detected by our classification pipeline [66, 69].

We consider the frequency-domain representation of a gravitational waveform [66, 71,
79] mode (ℓ, <), given by:

ℎ̃'ℓ< ( 5 ) = �ℓ< ( 5 ) 4
8kℓ< ( 5 ) , (9.10)

where �ℓ< ( 5 ) is the amplitude and kℓ< ( 5 ) is the phase of the (ℓ, <)-mode.
During the quasi-circular, adiabatic inspiral [71], the phase kℓ< ( 5 ) can be computed

using PN theory under the stationary phase approximation (SPA). In General Relativity
(GR), the phase takes the form:

k
(GR)
ℓ<
( 5 , ,) = 3

128 [ E5 ·
<

2

[ 7∑
==0

k
(PN)
= (,) E= +

6∑
==5

k
(PN)
=(;) (,) E

= log E

]
. (9.11)

where , denotes the binary parameters, and E is the PN expansion parameter (related
to the orbital velocity), defined as

E ≡ (2c�")1/3 =

(
2c 5 "
<

)1/3
. (9.12)

Here, � is the orbital frequency, which relates to the gravitational wave frequency 5 for
a given (ℓ, <)-mode. The coefficients k (PN)

= and k (PN)
=(;) are known PN contributions up to

3.5PN order, which depend explicitly on the binary’s physical parameters (e.g., masses,
spins).

Introducing Deviations in PN Coefficients

To introduce a deviation from GR in a controlled way, we apply a small shift to a single
PN coefficient in the GR phase expression (9.11). Specifically, we consider [69]:

k
(PN)
= −→ k

(PN)
= + Xk (PN)

= , (9.13)
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or, for the logarithmic terms,

k
(PN)
=(;) −→ k

(PN)
=(;) + Xk

(PN)
=(;) . (9.14)

Plugging these shifts into Eq. (9.11), the modified BGR phase becomes

k
(BGR)
ℓ<

( 5 ) = k (GR)
ℓ<
( 5 ) + 3

128 [ E5 ·
<

2

[∑
=

E= Xk
(PN)
= +

∑
=

E= log E Xk (PN)
=(;)

]
. (9.15)

We identify the second term as the deviation from the GR phase, and define

Xk
(=)
ℓ<
( 5 ) = 3

128 [ E5
<

2
E= Xk

(PN)
= , (9.16)

for a deviation in the =-th PN term, and

Xk
(=,log)
ℓ<

( 5 ) = 3
128 [ E5

<

2
E= log E Xk (PN)

=(;) , (9.17)

for a deviation in a logarithmic PN term.
These expressions define Xkℓ< ( 5 ) in the physically motivated PN-based BGR model

and can be used directly in Eq. (8.29) to construct modified waveforms. In the following
section, we implement such deformations and investigate whether the classifier can detect
them.

Focusing on the dominant (2, 2) mode. In the remainder of this analysis, we restrict
our attention to the (ℓ, <) = (2, 2) mode, which dominates the signal during the inspiral
phase of quasi-circular, non-spinning binaries. Setting < = 2 in the expressions above, the
phase deformation becomes:

Xk
(=)
22 ( 5 ) =

3
128 [ E5 · E

= Xk
(PN)
= , (9.18)

and
Xk
(=,log)
22 ( 5 ) = 3

128 [ E5 · E
= log E Xk (PN)

=(;) . (9.19)

In our implementation, we treat each Xk (PN)
= as a free numerical parameter, analogous

to the deformation strength V used in the toy model. Each such parameter governs the
size of a deviation in a particular PN order. This allows us to construct beyond-GR (BGR)
waveforms by introducing controlled, interpretable shifts in the phase structure.

One of the strengths of this formalism is its flexibility: rather than modifying a single
PN term, one can simultaneously introduce deviations in multiple PN orders. In principle,
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this opens the door to a more general framework, where a combination of Xk (PN)
= and

Xk
(PN)
=(;) values can be explored. A systematic grid search over these parameters could, for

example, identify combinations that lead to detectable waveform deviations — i.e., those
that cross the mismatch threshold or exceed a given classification confidence.

This structured approach provides a direct bridge between the data-driven analysis and
the underlying physical theory, enabling us to probe not just the existence of deviations
from GR, but also where in the PN expansion such deviations might lie.

Multiclass Classification via Deviations in PN Coefficients

Having established the formalism for introducing deviations in individual PN coefficients,
we now move beyond binary classification and consider a multiclass setup. Specifically,
instead of simply distinguishing between GR and BGR waveforms, we aim to determine
which particular PN coefficient has been modified.

We construct four waveform classes:

• Class 0: GR waveforms with no deformation.

• Class 1: BGR waveforms with a deviation in the = = 1 PN coefficient (i.e., the
0.5PN term).

• Class 2: BGR waveforms with a deviation in the = = 4 PN coefficient (i.e., the 2PN
term).

• Class 3: BGR waveforms with a deviation in the = = 6 PN coefficient (i.e., the 3PN
term).

Each of these deviations corresponds to a phase shift of the form:

Xk
(=)
22 ( 5 ) =

3
128 [ E5 · E

= Xk
(PN)
= , (9.20)

where E = (2c 5 "/<)1/3 and < = 2 for the (2, 2) mode. Only one coefficient is perturbed
at a time in each case, and the others are left unchanged. This allows us to interpret the
classifier’s decision as identifying the specific PN structure being violated.

To address this task, we adopt a softmax-based classification approach, as introduced
in Section 7.5. The neural network is trained to assign a probability distribution over the
four possible classes, providing not only a prediction but also a confidence level for each
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Figure 9.12. Softmax classification results for PN-deformed waveforms. The network
was trained to distinguish between GR waveforms and BGR waveforms constructed by
modifying the = = 1, = = 4, or = = 6 PN coefficients individually. The H-axis corresponds
to the predicted class probabilities for each sample in the test set. Colored regions and
markers indicate the classifier’s output. The model successfully learns to differentiate the
origin of each waveform, identifying the PN order of the deviation.

classification. This probabilistic output enables us to construct a colorful visualization of
the classifier’s behavior on the test set, which is shown in Figure 9.12.

This result highlights the potential of softmax classifiers not only for detection of de-
viations from GR, but also for pinpointing the nature of the deviation in a physically inter-
pretable way. Such capabilities may be particularly valuable for future gravitational wave
data analysis pipelines, where explainability and physical grounding of decisions will be
crucial.

The PN-based formalism described in this section is especially powerful because it
connects the data-driven classification approach directly to the structure of the underlying
theory. By modifying specific PN coefficients, we mimic the leading-order effects that
arise in modified gravity theories such as Horndeski, beyond-Horndeski, and Generalized
Proca theories. Many of these models have well-established PN expansions derived from
their field equations. Therefore, a classifier trained in this framework could, in principle,
be used not only to detect a deviation from GR but also to constrain or identify viable
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beyond-GR theories based on their PN imprint.
This flexibility and theoretical grounding make the PN-based classification framework

a promising tool for gravitational wave phenomenology in the era of precision GW astron-
omy.

Summary and Outlook. In this chapter, we demonstrated the effectiveness of a neural
network classifier in distinguishing between GR and beyond-GR (BGR) waveforms using
controlled phase deformations. By analyzing both a Gaussian toy model and structured
deviations in post-Newtonian (PN) coefficients, we established the minimum strength of
modification that remains reliably detectable under our current framework. These results
highlight the sensitivity of the model and provide a baseline for classification performance
when using the waveform itself as input.

However, classifying directly from the waveform has certain limitations, especially
when the distinguishing features between GR and BGR signals are subtle, buried in noise,
or affected by observational degeneracies. In such cases, the waveform itself may not
provide the most informative structure for the classification task. To address this, the next
chapter introduces a more general and theoretically motivated framework: the response
function. While in our specific implementation the response function is related to thematch
and mismatch between signals, the formalism itself is much broader and can be adapted
to a variety of contexts. We will see that this alternative representation captures more
discriminative features and enables a significant improvement in performance.





Chapter 10

Response Function Formalism

The goal of this chapter is to go beyond waveform-based classification by introducing the
response function [69] as a refined input to the neural network. Although in this work we
focus on a version of the response function related to the match between waveforms, the
formalism is general and can be adapted to different scenarios. We will show that using the
response function leads to improved accuracy and a lower detection threshold for deviations
from GR. In particular, our results indicate that the classification performance approaches
the Bayes error limit—the theoretical boundary for any statistical decision process—and in
some regimes even outperforms human-level discrimination. This shift marks a key step
toward more sensitive and interpretable gravitational wave classification methods. The
response function approach was originally introduced in a cosmological context in [80,
81], where it was used to analyze deformations of the Hubble parameter and their impact
on other observables.

10.1 Theoretical Framework and Response Function For-
malism

To improve the performance and interpretability of waveform classification, we now turn
to a more structured representation based on the concept of the response function. This for-
malism allows us to study how physical parameters and waveform deformations influence
observable quantities in a systematic way.

Let us begin by revisiting Eq. (8.17), which expresses the relative shift in the phase and
amplitude of a given (ℓ, <) mode in terms of intrinsic waveform deformations Xkℓ< and
X�ℓ<, as well as shifts in the physical parameters of the binary system:

151
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This structure naturally motivates the introduction of frequency-dependent response
functions that characterize how changes in the waveform phase and amplitude propagate
into changes in the binary parameters. We define the following integral relations:

X[

[
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∫
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∫
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(10.1)

where
'[ ( 5 ), '" ( 5 ), 'jS ( 5 ), 'jA ( 5 )

are the phase response functions, and

'̃[ ( 5 ), '̃" ( 5 ), '̃jS ( 5 ), '̃jA ( 5 )

are the amplitude response functions. These functions encode how perturbations in the
waveform structure map onto shifts in the system’s physical parameters.

Once the response functions are known, we can generalize the formalism to study how
any observable quantity $ ( 5 ) responds to deformations in the waveform. Assuming that
$ depends on the underlying parameters and waveform features, its total shift can be ex-
pressed as:

Δ$ ( 5 ) = �[ ( 5 )
X[

[
+ �" ( 5 )

X"

"
+ �jS ( 5 )

XjS
jS
+ �jA ( 5 )

XjA
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+
∫ 5
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22

5 ref
ℓ<

dG '$ (G, 5 )Xkℓ< (G) +
∫ 5

peak
22

5 ref
ℓ<

dG '̃$ (G, 5 )X�ℓ< (G),
(10.2)

where �8 ( 5 ) are weight functions dependent on the system parameters and the fre-
quency 5 . Combining the parameter shifts with their respective response functions, we
can write the total shift in a compact convolutional form:
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Δ$ ( 5 ) =
∫ 5

peak
22

5 ref
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dG R$ (G, 5 )Xkℓ< (G) +
∫ 5

peak
22

5 ref
ℓ<

dG R̃$ (G, 5 )X�ℓ< (G), (10.3)

with the effective response kernels defined as:

R$ (G, 5 ) = �[ ( 5 )'[ (G) + �" ( 5 )'" (G) + �jS ( 5 )'jS (G) + �jA ( 5 )'jA (G) + '$ (G, 5 ),

R̃$ (G, 5 ) = �[ ( 5 ) '̃[ (G) + �" ( 5 ) '̃" (G) + �jS ( 5 ) '̃jS (G) + �jA ( 5 ) '̃jA (G) + '̃$ (G, 5 ).
(10.4)

Here, 5 ref
ℓ<

and 5
peak
22 represent the lower and upper frequency bounds over which the

deformation takes effect. Although this general expression includes contributions from
changes in system parameters, in the following sections we will focus solely on the contri-
butions arising directly from the waveform deformations themselves, namely Xkℓ<.

10.1.1 Boundary Conditions

So far, we have introduced a general framework that allows for both phase Xkℓ< ( 5 ) and
amplitude X�ℓ< ( 5 ) extensions, as well as possible shifts in physical parameters like [.
However, in many practical scenarios of early-inspiral waveform analysis, the phase defor-
mation tends to dominate the observable signature. This is because phase accumulates over
many cycles, often revealing small deviations more clearly than amplitude shifts, which are
subject to larger observational uncertainties [82].

Moreover, a common simplifying assumption is that beyond-GR (BGR) features vanish
by the time the frequency reaches 5 peak

22 , effectively resetting the waveform to its GR form
in the high-frequency regime [82, 70]. Here, 5 peak

22 denotes the frequency at which the
amplitude of the dominant (ℓ, <) = (2, 2) mode reaches its maximum—typically marking
the transition from the inspiral phase to the merger. This frequency serves as a natural
boundary beyond which the inspiral-based waveform modeling is no longer valid, and any
deviations fromGR are assumed to be negligible. Mathematically, this boundary condition
can be written as

Δkℓ<
(
5

peak
22

)
= 0,

where
Δkℓ< ( 5 ) = Xkℓ< ( 5 ) + 6ℓ< ( 5 )

X[

[

captures both the direct phase shift Xkℓ< ( 5 ) and any parameter-induced shift proportional
to X[/[. Here, 6ℓ< ( 5 ) is determined by the derivative of the GR phase with respect to [.
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For the types of waveform deformations we consider—such as a localized Gaussian
shift in the low-frequency regime (see Sec. 9.1)—the function Xkℓ< ( 5 ) is constructed to
approach zero (often exponentially) as 5 → 5

peak
22 . Consequently, Eq. (10.5) forces X[/[ ≈

0. Put differently, if the phase deviation itself vanishes at high frequencies, there is no
leftover constant shift in [ to compensate for a residual mismatch.

Under this boundary condition, the overall BGR imprint becomes purely phase-driven
in the early inspiral, and we need not consider additional parameter or amplitude shifts. In
summary:

• Phase-Dominance: Phase accumulates over many cycles, making Xkℓ< ( 5 ) a more
sensitive probe of small deviations than amplitude-based modifications.

• High-Frequency Reset: By design, the deformation is engineered to vanish by
5

peak
22 , leaving no net shift in physical parameters.

• Simplicity: Restricting to a phase-only extension reduces the dimensionality of the
problem, making both analytic and numerical analyses more tractable.

Though this simplification omits potentially interesting amplitude effects or multi-
parameter shifts, it is well motivated in cases where phase plays the dominant role in detect-
ing and quantifying beyond-GR deviations, especially in the low-frequency (early-inspiral)
regime.

10.2 Mismatch and its Response Function

A key observable in gravitational wave data analysis is the mismatch, which quantifies
the dissimilarity between a gravitational wave signal and a theoretical model or template.
Given a model waveform ℎ( 5 ) and a signal waveform B( 5 ), the match between them is
defined as [74]:

M(ℎ, B) = (ℎ | B)√
(ℎ | ℎ) (B | B)

,
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with values ranging from 0 to 1, where 1 indicates perfect agreement. The corresponding
mismatch is defined as

M(ℎ, B) = 1 −M(ℎ, B) = 1 − (ℎ | B)√
(ℎ | ℎ) (B | B)

.

We are interested in how this mismatch changes under small deformations of the wave-
form model. Let Δℎ( 5 ) denote such a variation. Then the variation in the mismatch is
given by

ΔM(ℎ, B) = 1√
(ℎ | ℎ)

√
(B | B)

(
−(Δℎ | B) + (ℎ | B) (Δℎ | ℎ)(ℎ | ℎ)

)
. (10.6)

To extract more structure from this expression, we define the normalized waveforms:

ℎ̂( 5 ) = ℎ( 5 )
‖ℎ‖ , B̂( 5 ) = B( 5 )

‖B‖ ,

where ‖ℎ‖ =
√
(ℎ | ℎ) and ‖B‖ =

√
(B | B) are the normalization factors.

The match now becomes simply

M(ℎ, B) = ( ℎ̂ | B̂),

and the expression for the mismatch variation becomes:

ΔM = −(Δℎ̂ | B̂) + ( ℎ̂ | B̂) · (Δℎ̂ | ℎ̂).

To identify how the mismatch responds pointwise in frequency, we consider a defor-
mation generated by the dominant (2, 2) mode of the model waveform, ℎ22( 5 ). We assume
that the deformation takes the form

ℎBGR( 5 ) ≈ ℎGR( 5 ) + 8Vℎ22,GR( 5 )Xk22( 5 ), (10.7)

where Xk22( 5 ) encodes the frequency-dependent phase deformation, and V is a parameter
controlling the strength of the deviation from GR. This expression describes a leading-
order modification to the waveform in the frequency domain and serves as the basis for
constructing beyond-GR waveforms.

Using this ansatz, we define the response function '( 5 ) associated with the mismatch:

'( 5 ) = 48 ℎ22( 5 )
‖ℎ‖ (= ( 5 )

[
−B̂∗( 5 ) +M(ℎ, B) ℎ̂∗( 5 )

]
,

where ℎ( 5 ) and B( 5 ) are the model and signal waveforms respectively, (= ( 5 ) is the power
spectral density of the detector noise, and the hat denotes normalization.
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This response function measures how sensitively the mismatch reacts to phase defor-
mations at each frequency 5 , assuming that such deformations enter via Eq. (8.29). The
factor of 8ℎ22( 5 ) reflects the fact that the deformation enters through a complex phase
rotation generated by the (2, 2) mode.

Although in GR we expect no intrinsic deviation—i.e., Xk = 0—we can still compute
the response function '( 5 ) without assuming the underlying theory. In practice, when the
data is consistent with GR, the response function exhibits no coherent structure and appears
as purely stochastic noise. However, when a genuine beyond-GR deviation is present, the
response function reveals clear, frequency-localized features, making it a powerful and in-
terpretable observable for detecting and characterizing departures from General Relativity.

10.3 Gaussian Toy Model Revisited: Response Function
Performance

Having established the theoretical advantages of the response function formalism, we now
revisit the Gaussian toy model previously discussed. Our goal is to quantify the improved
classification capability when using response functions instead of waveforms as input to
the neural network. Specifically, we examine how the neural network’s accuracy changes
as we lower the deformation parameter V.

In Fig. 10.1, we illustrate the average mismatch as a function of V for the response-
function-based dataset. Comparing this plot to the waveform-based results presented in
earlier chapters, we observe a significant enhancement in sensitivity. This improved sen-
sitivity allows the classifier to reliably detect much smaller deviations from General Rela-
tivity, thus lowering the detection threshold considerably.

To illustrate the dramatic improvement in classification accuracy, we revisit the previ-
ously challenging scenario at V = 0.28. In the earlier waveform-based analysis, the neural
network failed to achieve reliable classification accuracy at this level. However, as demon-
strated in Fig. 10.2, the response function classifier achieves perfect classification with ac-
curacy, precision, recall, and F1 score all equal to 1.0. This demonstrates the exceptional
sensitivity and discriminative power of response functions in waveform analysis.

To further explore the limits of the response-function approach, we decrease V sub-
stantially to 0.0003, a regime previously unattainable for waveform-based classifiers. At
this minimal deformation, Fig. 10.3 illustrates that the waveform-based classification com-
pletely fails, while the response-function-based classifier maintains high performance met-
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Figure 10.1. Average mismatch between BGR and GR waveforms using response func-
tions as input, plotted against the deformation parameter V. The shaded region indicates
the standard deviation across the dataset. Compared to waveform-based classification, re-
sponse functions provide a considerably lower detection threshold, allowing deviations at
significantly smaller V values to be accurately identified.

rics:

Accuracy = 0.9525,

Precision = 0.9594,

Recall = 0.9450,

F1 Score = 0.9521.

The confusionmatrix depicted in Fig. 10.4 further confirms the robustness of the classifica-
tion, clearly separating GR and BGR waveforms at a deformation scale far below previous
thresholds.

In conclusion, the introduction of the response function significantly enhances the sen-
sitivity and reliability of gravitational waveform classification, providing a powerful and
robust tool for detecting subtle beyond-GR deviations.
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Figure 10.2. Classification comparison at V = 0.28. The top plot shows waveform-
based classification, which fails to reliably distinguish between GR and BGR waveforms.
The bottom plot demonstrates perfect classification performance using response functions,
highlighting the superiority of response functions in detecting subtle deviations from GR.
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Figure 10.3. Classification comparison at V = 0.0003. The top plot illustrates complete
failure of waveform-based classification. The bottom plot shows response-function-based
classification maintaining accuracy above 95%, underscoring the vastly improved sensitiv-
ity provided by response functions.
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Figure 10.4. Confusion matrix for response-function classification at V = 0.0003. High
values along the diagonal reflect the classifier’s strong capability to distinguish GR from
BGR waveforms even at minimal deviations.
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10.4 Limits of Classification: Accuracy, Bayes Optimal
Error, and Interpretability

In this final section, we discuss the theoretical and practical limitations inherent to any
classification framework, focusing on the concepts of Bayes optimal error, human-level
performance, and interpretability [83, 84]. These ideas help contextualize the effectiveness
of the response function formalism, not only as a practical tool but also as a representation
that approaches the theoretical limit of performance.

Bayes Optimal Error

In any supervised classification task, the goal is to learn a function 5 : X → Y that
minimizes the expected risk under the true data distribution %(G, H). The Bayes optimal
classifier is defined as

5Bayes(G) = arg max
H∈Y

%(H | G), (10.8)

and achieves the lowest possible classification error:

nBayes = EG

[
1 −max

H∈Y
%(H | G)

]
. (10.9)

This quantity represents the irreducible error due to inherent noise or ambiguity in the
input features. No classifier, regardless of its capacity or training data, can achieve an error
lower than nBayes.

In gravitational wave analysis, such ambiguity can arise from intrinsic degeneracies
between GR and BGR waveforms at low signal-to-noise ratios or due to extremely small
deviations. The Bayes error thus sets a fundamental bound on what any classifier can hope
to achieve, including deep learning models trained on ideal datasets.

Human-Level Performance and the Role of Feature Representations

For tasks that humans performwell, such as image recognition or waveform discrimination,
human-level accuracy provides a natural benchmark. In such cases, one typically finds

nBayes ® nhuman � 1, (10.10)

indicating that while humans can be impressively accurate, they are not strictly optimal. So
long as a machine learning system performs worse than humans, one can leverage human
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Figure 10.5. Illustrative comparison of machine learning performance with human-level
performance and the Bayes optimal error. The x-axis denotes schematic training time or
model improvement, while the y-axis represents classification accuracy. Human-level ac-
curacy typically approaches the Bayes limit, while model performance initially improves
rapidly and then gradually saturates.

intuition and labeled data to guidemodel improvements. Once amodel surpasses this level,
however, such tools become less effective, and progress often slows.

Feature selection plays a central role in bridging this performance gap. In classical re-
gression problems, the choice of features greatly affects generalization. For example, pre-
dicting house prices based on area, number of rooms, and location is meaningful, whereas
using the color of the front door is likely irrelevant or even detrimental. The same prin-
ciple applies in our setting: waveforms and response functions are alternative feature rep-
resentations for the same underlying physical event, but their discriminative power differs
significantly.

Interpretability and the Strength of Response Functions

The response function formalism excels not only in accuracy but also in interpretability.
Even for small deformation parameters such as V = 0.0003, the response functions exhibit
clear and structured deviations betweenGR and BGR signals—at least in a statistical sense.
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By contrast, the rawwaveforms in that same regime appear nearly identical, making reliable
classification difficult or impossible by eye.

We can quantify the performance of different input representations by their empirical
classification error. Let

nRF and nWF (10.11)

denote the classification errors using response functions and waveforms, respectively. Our
empirical results indicate the following hierarchy:

nRF < nWF ® nhuman. (10.12)

That is, the classifier trained on response functions outperforms both the waveform-based
model and human-level classification, especially in the regime of small deformations. In
summary, the response function formalism demonstrates how physically motivated feature
engineering can bring classification systems closer to their theoretical performance ceil-
ing. By isolating and amplifying the parts of the signal most sensitive to deviations from
GR, response functions enhance both interpretability and classification accuracy—pushing
machine learning models closer to the Bayes optimal limit.

Visual Diagnostics: Response Function Structures Across Deformation
Scales

To further illustrate the effectiveness of the response function formalism, we now visualize
and compare the GR and BGR response functions at various deformation strengths. This
highlights how, at large or moderate V, the difference is sometimes visually apparent, but
becomes invisible at smaller V—yet remains detectable by a neural network.

Large Deformation (V = 0.03). In Fig. 10.6, we show the normalized real part of the GR
and BGR response functions for a deformation parameter value of V = 0.03. The differ-
ence between the two responses is immediately visible, with the BGR function exhibiting
a strong and coherent deviation from the GR baseline. At this level, classification is triv-
ial for both the neural network and human inspection. Nevertheless, the neural network
remains valuable for systematically analyzing large datasets, where manual inspection is
impractical.

Intermediate Deformation (V = 0.003). Reducing the deformation strength to an inter-
mediate level, V = 0.003, we obtain the response functions shown in Fig. 10.7. While the
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Figure 10.6. Comparison of normalized response functions at V = 0.03. The GR and BGR
responses show clear differences, easily discernible by eye. At this level of deformation,
classification is straightforward.

two signals are more similar than in the large-V regime, there remains a distinguishable
structure in the BGR response. This subtle, but still recognizable, deviation underscores
why the neural network continues to achieve high accuracy—even though the waveform-
based approach is less reliable here.

Small Deformation (V = 0.0003). Fig. 10.8 presents the response functions for V =

0.0003. Here, both GR and BGR signals exhibit noisy, overlapping patterns that appear
virtually indistinguishable to the human eye. Despite this, the trained neural network still
classifies with over 95% accuracy, demonstrating its ability to extract minute, distributed
features that remain hidden at the individual-event level.

Averaging Methods vs. Neural Networks

One might wonder whether the faint BGR pattern could be recovered simply by averaging
multiple examples. Indeed, in Fig. 10.9 we see nine pairs of GR/BGR response functions
at V = 0.0003. Individually, these pairs look virtually identical, but averaging them yields
a systematic difference, as illustrated in Fig. 10.10. The GR average converges toward zero
from random fluctuation, while the BGR average retains a small but coherent feature.
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Figure 10.7. Comparison of normalized response functions at V = 0.003. Though less
pronounced than in the large V case, the BGR response retains visible structure that sets it
apart from GR. The classifier continues to achieve near-perfect accuracy.
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Figure 10.8. Comparison of normalized response functions at V = 0.0003. The GR and
BGR responses exhibit highly similar noise-dominated behavior, making visual discrimi-
nation infeasible. However, the classifier still performs above the 95% accuracy threshold.
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However, this averaging approach presupposes knowledge of which signals are GR
and which are BGR. Thus, it cannot serve as a classification strategy in practice; one must
already know the label to group signals correctly. Neural networks overcome this limitation
by inferring such subtle regularities without prior labeling, thereby uncovering the same
hidden structure at the level of individual events.

Conclusion

Taken together, these results demonstrate the power and interpretability of the response
function formalism. For large or intermediate deformations, the difference betweenGR and
BGR can be visually distinguished, but manual classification quickly becomes impractical
on large datasets. At small deformations, the signals become visually indistinguishable,
surpassing human-level performance even though a consistent statistical imprint remains.
A neural network trained on response functions can exploit this imprint, achieving high
accuracy and pushing classification closer to the Bayes optimal limit.

Overall, this study highlights that:

• Choice of Feature Space Matters: The response function isolates physically rel-
evant aspects of the waveform, significantly improving classification performance
compared to raw waveforms.

• Neural Networks Surpass Visual Methods: While human inspection fails at low
V, the network maintains > 95% accuracy by capturing subtle patterns across the
frequency domain.

• Statistical Methods and Prior Knowledge: Averaging reveals hidden structure but
requires prior labeling, underscoring the greater utility of machine learning for real-
time, label-free detection tasks.

• Approaching the Bayes Limit: By focusing on the most discriminative features, the
response function formalism allows classifiers to operate near the theoretical ceiling
imposed by noise and data overlap.

These observations collectively reinforce the conclusion that response functions, com-
bined with deep learning, form a robust, interpretable, and theoretically well-grounded ap-
proach to classifying gravitational wave signals—ultimatelymoving us closer to the elusive
Bayes optimal error.
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Figure 10.9. Normalized response functions for V = 0.0003 across multiple gravita-
tional wave events. Left column: GR responses. Right column: Corresponding BGR
responses. Their indistinguishability at first glance is a key reason neural networks outper-
form human inspection in this regime.
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Figure 10.10. Normalized averaged response functions at V = 0.0003. The GR average
(blue, dashed) converges to zero due to noise cancellation. The BGR average (green, solid),
however, reveals a residual pattern—a coherent imprint of the small deformation.



Chapter 11

Analysis of Modified Theories of Gravity

In the previous chapters, we demonstrated the effectiveness of neural network classifiers
in detecting deviations from general relativity (GR) using controlled modifications of the
gravitational wave (GW) phase. Starting from a Gaussian toy model and moving to more
structured deviations in post-Newtonian (PN) phase coefficients, we showed how subtle
changes in the waveform’s inspiral phase can be systematically identified and attributed to
specific PN orders. However, these deformations—while informative—were constructed
in a phenomenological manner and lacked direct connection to concrete theoretical models.

In this chapter, we take a decisive step toward physical realism by studying waveform
deformations that arise explicitly from modified theories of gravity. In particular, we fo-
cus on the parameterized post-Einsteinian (ppE) framework [85, 86, 87], which provides a
systematic way to incorporate deviations from GR into the frequency-domain gravitational
waveform. This formalism allows us to encode leading-order phase corrections predicted
by several well-motivated theories, including scalar–tensor models such as Brans–Dicke
theory, massive graviton scenarios, and parity-violating Chern–Simons gravity. By embed-
ding these analytically derived phase corrections into the waveform model, we construct
beyond-GR (BGR) signals that are not only detectable but also interpretable within the
context of fundamental physics. The goal of this chapter is to assess whether our classifi-
cation pipeline can reliably distinguish these physically motivated deviations from standard
GR predictions, and to identify the theoretical signatures that are most readily captured by
data-driven approaches.

169



170 The Parameterized Post-Einsteinian (ppE) Framework

11.1 The Parameterized Post-Einsteinian (ppE) Frame-
work

In order to systematically explore deviations from General Relativity (GR) in a theory-
agnostic way, it is essential to construct a waveform model that can accommodate a wide
variety of possible modifications. The parameterized post-Einsteinian (ppE) framework
provides such a tool, allowing one to encapsulate deviations from GR in a unified and
flexible formalism that is suitable for gravitational wave (GW) data analysis. Analogous
in spirit to the parameterized post-Newtonian (ppN) approach used in weak-field tests of
gravity, the ppE framework aims to model potential strong-field and dynamical deviations
from GR by introducing free parameters into the GW waveform, particularly during the
inspiral phase.

The central idea behind the ppE framework is to construct a deformation of the GR
waveform that remains general enough to interpolate between GR and a broad class of
modified theories of gravity, while still respecting basic physical principles such as energy
conservation and dimensional consistency. These deformations are introduced directly in
the frequency domain, which is well-suited for matched-filtering techniques used in GW
detection pipelines.

Let us consider the frequency-domain gravitational waveform for a binary inspiral in
GR, in the stationary phase approximation (SPA). It takes the general form:

ℎ̃GR( 5 ) = AGR( 5 ) 48ΨGR ( 5 ) , (11.1)

where AGR( 5 ) is the amplitude and ΨGR( 5 ) is the GW phase as predicted by GR. In the
restricted post-Newtonian (PN) approximation, the phase can be expanded as a series in the
dimensionless velocity parameter E = (c" 5 )1/3, where " is the total mass of the binary
system:

ΨGR( 5 ) = 2c 5 C2 − q2 +
#∑
:=0

k: E
: . (11.2)

The ppE framework generalizes this by introducing parametric deviations in both the
amplitude and phase. The general ppE-modified waveform takes the form [85]:

ℎ̃ppE( 5 ) = ℎ̃GR( 5 ) (1 + U D0) 48VD
1

, (11.3)

where D = c" 5 is the reduced frequency, and the parameters (U, 0) and (V, 1) characterize
the deviation in amplitude and phase, respectively. The GR limit is recovered when U =

V = 0.
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This ansatz allows for a controlled departure from GR in a phenomenological way.
The parameters V and 1 govern the magnitude and PN order of the phase deviation. Since
D ∼ E3, different values of 1 correspond to different PN orders. For example, 1 = −7/3 cor-
responds to a −1PN correction relative to GR’s leading order E−5 phase dependence. This
flexibility allows the ppE framework to encapsulate a wide array of deviations stemming
from different physical effects, such as additional radiation channels, modified dispersion
relations, or non-GR conservative dynamics.

The strength of the ppE formalism lies in its ability to:

• Systematically interpolate between GR and a broad class of modified theories.

• Allow for parametrized, waveform-level tests of GR in the strong-field, highly dy-
namical regime.

• Remain analytically tractable and directly usable in GW data analysis via matched
filtering.

In this chapter, we again focus exclusively on phase modifications. That is, we set
U = 0 and restrict our attention to modifications encoded purely in the waveform’s phase.
This choice is motivated both by theoretical considerations—since many modifications to
GR appear dominantly in the phase—and by practical considerations, as the phase carries
the most prominent features of the inspiral dynamics.

Under this restriction, the ppE waveform simplifies to:

ℎ̃ppE( 5 ) = ℎ̃GR( 5 ) 48VD
1

. (11.4)

In the regimewhere the deviation is small, i.e., VD1 � 1, we can expand the exponential
to first order:

ℎ̃ppE( 5 ) ≈ ℎ̃GR( 5 )
(
1 + 8VD1

)
. (11.5)

This reveals that the deviation from GR enters as a leading-order phase shift:

Xk( 5 ) = VD1 = V(c" 5 )1 . (11.6)

The total phase of the waveform thus becomes:

Ψ( 5 ) = ΨGR( 5 ) + Xk( 5 ) = ΨGR( 5 ) + VD1 . (11.7)

The term Xk( 5 ) encapsulates the leading-order correction to the GR phase introduced
by beyond-GR physics in the ppE framework. In the remainder of this chapter, we will
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explore specific choices of the parameters (V, 1) that arise from concrete modified theories
of gravity, and analyze whether such deviations can be robustly detected by neural network
classifiers trained on waveform data.

11.2 Modified Theories of Gravity and Their ppE Signa-
tures

In this section, we introduce several representative modified theories of gravity [88] that
provide explicit and physically motivated deviations from General Relativity (GR). Each
theory modifies the gravitational dynamics in a different way—through scalar degrees of
freedom, modified propagation, or parity-violating interactions—and leads to characteris-
tic corrections in the phase of gravitational wave (GW) signals. We describe the theoreti-
cal motivation for each model, provide its action or Lagrangian, identify relevant coupling
constants, and extract the leading-order phase correction Xk( 5 ) as it appears in the ppE
framework.

11.2.1 Brans–Dicke Theory (Scalar–Tensor Gravity)

Brans–Dicke theory [89] is one of the earliest and simplest scalar–tensor theories of grav-
ity. It introduces a massless scalar field that couples to the Ricci scalar, effectively pro-
moting Newton’s constant � to a dynamical quantity. This modification is motivated by
attempts to incorporate Mach’s principle and to generalize GR within a broader class of
metric theories.

Action:

( =
1

16c

∫
34G
√−6

[
q' − lBD

q
(∇`q) (∇`q)

]
+ (matter [6`a,Ψ], (11.8)

where q is the scalar field, and lBD is the Brans–Dicke coupling constant.
Key parameters:

• lBD: Brans–Dicke coupling constant (dimensionless).

• B1, B2: sensitivities of the two compact objects (related to their scalar charges).

ppE phase parameters:

VBD = − 5
3584lBD

(B1 − B2)2 [2/5, 1 = −7
3
, (11.9)
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where [ =
<1<2
(<1+<2)2

is the symmetric mass ratio.
Phase correction:

XkBD( 5 ) = VBD(c" 5 )−7/3. (11.10)

The −1PN correction arises from dipole radiation in the scalar field. However, in stan-
dard Brans–Dicke theory, stationary black holes do not carry scalar charge due to no-hair
theorems. As a result, the scalar charges B1 and B2 vanish, leading to VBD = 0 for binary
black hole systems. Even in dynamical binaries, Brans–Dicke theory does not generically
endow black holes with scalar hair. For this reason, although we include Brans–Dicke the-
ory here for completeness, we do not study it in our numerical analysis, as our setup is
specifically designed for non-precessing black hole–black hole binaries. This theory is,
however, relevant in neutron star binaries or mixed BH–NS systems, where scalar charges
can be nonzero.

11.2.2 Massive Gravity Theories

Massive graviton theories [90, 91] explore the possibility that the graviton has a small but
nonzero mass, leading to a modified dispersion relation and a frequency-dependent propa-
gation speed for gravitational waves. This modifies the gravitational wave phase through a
cumulative dephasing effect over cosmological distances, as higher-frequency waves travel
faster than lower-frequency ones.

Action: There are various formulations, but generically the Einstein–Hilbert term is
supplemented with a mass term of Fierz–Pauli type:

( =
1

16c�

∫
34G
√−6

[
' − 1

2
<2
6 (ℎ`aℎ`a − ℎ2)

]
, (11.11)

where <6 is the graviton mass and ℎ`a is the metric perturbation.
Key parameters:

• _6 = ℎ
<62

: graviton Compton wavelength.

• �: effective luminosity distance to the source.

• I: redshift of the source.

• M = [3/5": chirp mass.

ppE phase parameters:

VMG =
c2�M
_2
6 (1 + I)

, 1 = −1, (11.12)
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where D = cM 5 is the dimensionless reduced frequency variable.
Phase correction:

XkMG( 5 ) = −VMG D
−1 = −VMG(cM 5 )−1. (11.13)

This is a +1PN effect arising from the modified dispersion relation for a massive gravi-
ton. The phase delay accumulates over the travel time from the source to the detector. The
correction vanishes in the limit _6 →∞, corresponding to a massless graviton. Choosing
_6 � � ensures that VMG � 1, consistent with current experimental bounds from LIGO,
Virgo, and pulsar timing observations.

11.2.3 Dynamical Chern–Simons Gravity (Parity-Violating Gravity)

Dynamical Chern–Simons (dCS) gravity [92, 93] arises in several high-energy physics
frameworks, including string theory and loop quantum gravity. It breaks parity symmetry
in the gravitational sector by coupling a scalar field to the gravitational Pontryagin density.
Unlike its non-dynamical counterpart, dCS gravity treats the scalar field as an independent
dynamical degree of freedom, which allows black holes to acquire scalar charge if they are
spinning. This leads to detectable modifications to the gravitational waveform during the
inspiral.

Action:

( =

∫
34G
√−6

[
'

16c�
+ UCS

4
\'∗' − 1

2
(∇`\) (∇`\)

]
+ (matter, (11.14)

where \ is the dynamical scalar field and '∗' is the Pontryagin density.
Key parameters:

• b = UCS/^: dimensionful dCS coupling constant (with dimensions of length squared).

• j: dimensionless spin of the black hole.

ppE phase parameters (in dCS gravity):

VdCS ∝ ZCS ·
(
<2

1
"2 j

2
1 +

<2
2

"2 j
2
2

)
, 1 = −1

3
, (11.15)

where ZCS ∝ b/"4 is a dimensionless small-coupling parameter.
Phase correction:

XkdCS( 5 ) = VdCS(c" 5 )−1/3. (11.16)
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In dCS gravity, spinning black holes acquire scalar charge and emit parity-violating
gravitational radiation. This leads to an inspiral-phase correction at fractional PN order
1 = −1/3, making it a clean and distinct deviation from GR. The effect vanishes in the
non-spinning limit, but is present in non-precessing binaries with aligned spins — the
regime we focus on in this work. Therefore, dCS gravity is fully compatible with our
waveform modeling and classification framework, and provides a natural candidate for the
first beyond-GR theory to include in our neural network analysis.

Each of the theories above contributes a distinct frequency-dependent phase correction
of the form

Xk( 5 ) = V (c" 5 )1, (11.17)

where the values of V and 1 depend on the theory-specific coupling constants and physical
mechanisms. These expressions are valid in the leading-order small-coupling approxima-
tion and can be directly inserted into the ppE waveformmodel to simulate realistic beyond-
GR (BGR) waveforms. In the next sections, we implement these deformations and study
whether such subtle deviations can be reliably detected and classified using our neural
network framework.

11.3 Neural Network Classification of Massive Gravity Wave-
forms

Having developed a general framework for modeling post-Einsteinian gravitational wave-
forms and training neural networks to classify deviations fromGeneral Relativity (GR), we
now apply this methodology to a specific and physically motivated case: massive graviton
(MG) theories. In these models, the propagation of gravitational waves is modified due
to the presence of a small but nonzero graviton mass, leading to a frequency-dependent
dispersion relation and an accumulated phase shift in the waveform.

Now that we have analytic control over the waveform modification through the ppE
framework, we are in a position to use the neural network classifier developed in previ-
ous chapters to test the detectability of this deviation. In particular, the MG correction
introduces a leading-order frequency-domain phase shift of the form:

XkMG( 5 ) = −VMG(cM 5 )−1, (11.18)

where the deformation strength VMG depends on the graviton Compton wavelength _6, the
source distance �, and the redshift I, as discussed in Section 11.2.
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In this section, we focus exclusively on this MG-induced deformation and explore
whether it can be robustly identified using a neural network trained to distinguish between
GR and beyond-GR (BGR) waveforms. Our classifier receives inspiral-only waveforms as
input and is trained to predict whether a given waveform contains the MG-induced phase
shift described above.

While we restrict attention here to massive gravity for concreteness and clarity, the
same procedure can be applied to other modified gravity theories discussed earlier, such
as dynamical Chern–Simons gravity or scalar–tensor theories with dipole radiation. Each
of these can be modeled via an analytic ppE phase term Xk( 5 ), which can be incorporated
into the waveform and passed to the classifier. Thus, this study serves as a template for
broader applications of data-driven classification in gravitational wave tests of GR.

11.3.1 Detectability Threshold for the Graviton Mass

The primary goal of this section is to determine the smallest graviton mass <6 — as it
appears in the Lagrangian — for which our neural network can reliably distinguish MG-
modified waveforms from GR predictions. To quantify detectability, we use the response
function formalism described in Chapter 10 and evaluate the classifier’s accuracy over a
range of graviton masses.

Our analysis shows that the trained network achieves classification accuracy greater
than 95% for all graviton masses satisfying

<6 ¦ 2.1 × 10−61 kg ≈ 1.2 × 10−25 eV/22, (11.19)

indicating a robust sensitivity to very small deviations from GR. Below this threshold,
the accumulated MG phase shift becomes too small to be reliably detected in the inspiral
waveform, and the classifier’s performance degrades accordingly.

To illustrate the structure of the phase correction, we also plot the phase shift XkMG( 5 )
as a function of frequency for several representative values of <6. As expected, higher
graviton masses produce larger dephasing, with noticeable impact in the 10–800 Hz range.

11.3.2 Comparison with Existing Bounds

Our machine learning approach enables a complementary strategy to constrain modified
gravity theories from waveform structure alone. For context, current observational bounds
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Figure 11.1. Average waveform mismatch as a function of the graviton mass <6. The
classifier becomes insensitive to MG-induced phase shifts for masses smaller than ∼ 2.1×
10−61 kg.

on the graviton mass derived from binary black hole coalescences constrain [94, 95]:

<6 < 7.7 × 10−23 eV/22 (11.20)

at 90% confidence level [94, 95]. While our analysis does not aim to set competitive ob-
servational limits, it highlights the potential of data-driven methods to detect or exclude
deviations fromGR based on waveformmorphology— even when the deviations are much
smaller than current observational bounds.

Our study therefore complements traditional parameter estimation pipelines by offering
a model-independent, classification-based test of gravity, and can serve as a first step in
future multi-modal searches for beyond-GR signatures in gravitational wave data.
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In this chapter, we applied our neural network classification framework to a concrete
modified gravity model: massive graviton theories. By leveraging the analytical ppE phase
correction induced by the graviton mass, we generated a consistent dataset of GR and
BGR waveforms and trained a classifier to detect deviations arising from MG-induced
dispersion.

Our results demonstrate that the classifier achieves high sensitivity to the waveform
modifications introduced by massive gravity, successfully identifying deviations from GR
with over 95% accuracy for gravitonmasses exceeding 2.1×10−61 kg (∼ 1.2×10−25 eV/22).
This detection threshold is well below existing observational upper bounds on the gravi-
ton mass, highlighting the discriminative power of machine learning models trained on
waveform morphology.

This study provides a clear demonstration of how data-driven classification methods
can complement traditional parameter estimation pipelines in gravitational wave astron-
omy. The techniques developed here are readily applicable to other modified gravity sce-
narios — including scalar–tensor theories and parity-violating models — which we will
explore in future work or subsequent chapters.

Ultimately, our analysis illustrates the promise of neural network classifiers as tools
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for probing the structure of gravitational waveforms and testing the fundamental nature of
gravity itself.





Chapter 12

Conclusion

This thesis has pursued a dual investigation into the theoretical foundations and observa-
tional consequences of modified gravity, focusing specifically on the quantum stability of
Generalized Proca theories and the classification of gravitational waveforms beyond Gen-
eral Relativity (GR). These two lines of research, while distinct in methodology, are unified
by the broader goal of understanding gravity as an effective field theory and testing its limits
in both high-energy and strong-field regimes.

Quantum Stability of Generalized Proca Theories

In the first part of this thesis, we conducted a detailed quantum field theoretic analysis
of Generalized Proca theories—a class of vector-tensor models that generalize the Proca
action through non-trivial derivative self-interactions and non-minimal couplings to grav-
ity. These theories are constructed to propagate exactly three degrees of freedom (two
transverse and one longitudinal polarization) while maintaining second-order equations of
motion, thereby avoiding the Ostrogradsky instability.

We began with a systematic perturbative study in flat Minkowski spacetime, where the
focus was on evaluating the one-loop divergent structures of the 2-point, 3-point, and 4-
point correlation functions. Using a simplified yet representative form of the Generalized
Proca Lagrangian, we demonstrated that the theory is technically natural: the 2-point and
3-point divergences can be absorbed into redefinitions of existing terms in the Lagrangian,
and no higher-derivative or ghost-like operators are generated. Interestingly, certain gauge-
invariant combinations, such as (�[`a − m`ma), emerge in the loop corrections, hinting at
an effective restoration of gauge symmetry at the quantum level despite the absence of
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classical gauge invariance.
We extended our analysis to include gravitational interactions by studying Generalized

Proca theories on weakly curved backgrounds. In this setting, the coupling to dynami-
cal gravity introduces mixing between the vector field and graviton perturbations, signif-
icantly complicating the structure of the kinetic and interaction terms. To address this,
we constructed the full quadratic action for metric and vector fluctuations and derived the
corresponding Feynman rules.

To manage the complexity introduced by background vector fields, we employed a
scalar-vector-tensor (SVT) decomposition that isolates physical degrees of freedom and
facilitates the identification of dynamical and auxiliary fields. This decomposition enabled
a perturbative elimination of constraint fields and allowed us to express the action in terms
of propagating modes.

Our results indicate that the theory remains radiatively stable in curved spacetime, at
least at the 2- and 3-point level. Loop-induced corrections preserve the structure of the ef-
fective action without introducing unphysical degrees of freedom or violating unitarity. Al-
though a full analysis of the 4-point function in curved space remains for future work [40],
our setup and preliminary findings strongly suggest that Generalized Proca theories can be
interpreted as well-defined effective field theories up to a natural cutoff scale.

These results not only strengthen the theoretical foundations of vector-tensor modifi-
cations of gravity but also open avenues for connecting these models to cosmological phe-
nomena such as inflation, dark energy, or deviations from GR in strong-field astrophysical
environments.

Classification of Gravitational Waveforms Beyond GR

The second part of this thesis focused on developing a machine learning framework to
classify gravitational waveforms into GR and beyond-GR (BGR) categories. This work is
motivated by the growing potential of gravitational wave astronomy to serve as a precision
tool for probing the fundamental nature of gravity.

We constructed a diverse dataset of gravitational waveforms that includes both GR
signals and deformations representative of modified gravity theories. Initial tests were
performed using controlled Gaussian phase deformations, allowing us to quantify the min-
imum detectable deviation under realistic noise conditions. Convolutional neural networks
(CNNs) trained on these waveforms successfully identified deviations with high accuracy,
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down to a mismatch level of approximately 10−3.
To improve both performance and interpretability, we introduced the response func-

tion—a frequency-domain representation of how small phase deformations affect the over-
lap between waveforms. Neural networks trained on response functions significantly out-
performedwaveform-based classifiers, achieving reliable detection at deformation levels as
small as V = 3×10−4. This response function approach proved both physically transparent
and computationally advantageous.

We then transitioned from toy models to structured multiclass classification using per-
turbed post-Newtonian (PN) coefficients. This allowed us not only to detect BGR devia-
tions but to attribute them to specific PN orders, thus enhancing theoretical interpretabil-
ity. Finally, we applied our framework to waveform models derived from massive graviton
theories via the parameterized post-Einsteinian (ppE) formalism. Our classifiers detected
graviton masses as low as <6 ∼ 1.2 × 10−25 eV/22, demonstrating sensitivity well beyond
current observational bounds.

While Generalized Proca theories were not directly included in the waveform classifi-
cation due to the lack of concrete ppE expressions, our framework is designed to accommo-
date them once such predictions become available. This integration represents a promising
direction for future work.

Outlook

Several directions naturally follow from this work. On the theoretical side, completing
the analysis of 4-point functions in curved backgrounds will further test the robustness of
Generalized Proca theories. Exploring their UV completions and embedding them in more
fundamental frameworks (e.g., string theory or holography) remains an open challenge.

On the data-driven side, improvements in computational efficiency, uncertainty quan-
tification, and generalization tomore realistic waveform features (such as spin, eccentricity,
and higher modes) will be critical. Moving beyond softmax-based classification to multi-
label architectures could enable the simultaneous detection of multiple deviations, better
reflecting the structure of realistic effective field theories.

Finally, the response function formalism introduced here has broader implications. It
may serve not only as a feature extraction tool but also as a bridge between machine learn-
ing and physical interpretability, enabling future applications in model selection, anomaly
detection, and parameter inference.
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In summary, this thesis presents a coherent framework for probing modified gravity at
both the theoretical and observational level. By combining quantum field theoretic analysis
with machine learning techniques, we offer new tools for exploring the landscape of viable
gravitational theories and for extracting their imprints from gravitational wave data. These
methods will play a crucial role in the next generation of gravitational tests, potentially
revealing the first hints of new physics beyond Einstein’s theory.
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Appendix A

Lagrangians

A.1 Cubic Interaction Terms

This appendix collects the complete cubic-order interaction terms arising from the gener-
alized Proca Lagrangian. The expressions are grouped according to their origin from the
Lagrangian pieces L=.

All expressions are given in terms of canonically normalized fields and written using
flat spacetime indices. We follow the same conventions used in the main text.

Cubic Interactions
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A.2 Feynman Rules for Flat-Space Generalized Proca The-
ory

In this appendix, we provide the complete set of Feynman rules derived from the La-
grangian presented in Eq. (4.34), which describes the dynamics of the generalized Proca
theory in flat spacetime.

The propagator:
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!3 contribution to the cubic vertex:
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!4 contribution to the quartic vertex:
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!5 contribution to the cubic vertex:
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!6 contribution to the quartic vertex:



Feynman Rules from Curved-Space Lagrangian (Expanded on Flat Background) 201

@1

@3

@2
@4

`1

`3

`2

`4

= (A.17)

28�6

Λ4
2

(
3@`2

1 @
`4
2 @

`3
3 @

`1
4 − 4@`2

1 @
`3
2 @

`4
3 @

`1
4 − 2@`1

1 @
`4
2 @

`3
3 @

`2
4 + 3@`1

1 @
`3
2 @

`4
3 @

`2
4 − 4@`2

1 @
`4
2 @

`1
3 @

`3
4

+ 3@`1
1 @

`4
2 @

`2
3 @

`3
4 + 4@`2

1 @
`1
2 @

`4
3 @

`3
4 − 2@`1

1 @
`2
2 @

`4
3 @

`3
4 + 3@`2

1 @
`3
2 @

`1
3 @

`4
4 − 2@`1

1 @
`3
2 @

`2
3 @

`4
4

− 2@`2
1 @

`1
2 @

`3
3 @

`4
4 − 2@`4

3 @
`3
4 [`1`2 (@1 · @2) + 2@`3

3 @
`4
4 [`1`2 (@1 · @2) + @`4

3 @
`2
4 [`1`3 (@1 · @2)

− @`2
3 @

`4
4 [`1`3 (@1 · @2) − @`3

3 @
`2
4 [`1`4 (@1 · @2) + @`2

3 @
`3
4 [`1`4 (@1 · @2) + @`3

2 @
`4
4 [`1`2 (@1 · @3)

− 2@`4
2 @

`2
4 [`1`3 (@1 · @3) + 2@`2

2 @
`4
4 [`1`3 (@1 · @3) + @`3

2 @
`2
4 [`1`4 (@1 · @3) − @`2

2 @
`3
4 [`1`4 (@1 · @3)

+ @`4
2 @

`1
4 [`2`3 (@1 · @3) − @`1

2 @
`4
4 [`2`3 (@1 · @3) − @`2

2 @
`1
4 [`3`4 (@1 · @3) + @`1

2 @
`2
4 [`3`4 (@1 · @3)

− @`4
2 @

`3
3 [`1`2 (@1 · @4) + @`3

2 @
`4
3 [`1`2 (@1 · @4) + @`4

2 @
`2
3 [`1`3 (@1 · @4) − @`2

2 @
`4
3 [`1`3 (@1 · @4)

− 2@`3
2 @

`2
3 [`1`4 (@1 · @4) + 2@`2

2 @
`3
3 [`1`4 (@1 · @4) + 2@`1

1 @
`4
4 [`2`3 (@2 · @3) − @`1

1 @
`3
4 [`2`4 (@2 · @3)

+ @`2
1 @

`1
4 [`3`4 (@2 · @3) − @`1

1 @
`2
4 [`3`4 (@2 · @3) − @`2

1 @
`3
3 [`1`4 (@2 · @4) − @`1

1 @
`4
3 [`2`3 (@2 · @4)

+ 2@`1
1 @

`3
3 [`2`4 (@2 · @4) + @`2

1 @
`1
3 [`3`4 (@2 · @4) − @`1

1 @
`2
3 [`3`4 (@2 · @4) + @`2

1 @
`4
2 [`1`3 (@3 · @4)

+ @`2
1 @

`3
2 [`1`4 (@3 · @4) − @`1

1 @
`4
2 [`2`3 (@3 · @4) − @`1

1 @
`3
2 [`2`4 (@3 · @4) − 2@`2

1 @
`1
2 [`3`4 (@3 · @4)

+ 2@`1
1 @

`2
2 [`3`4 (@3 · @4) + @`4

1

(
3@`1

2 @
`3
3 @

`2
4 + 4@`3

2

(
@
`2
3 @

`1
4 − @

`1
3 @

`2
4

)
− 4@`1

2 @
`2
3 @

`3
4 + @

`3
4 [`1`2 (@2 · @3)

+ @`2
4 [`1`3 (@2 · @3) − 2@`1

4 [`2`3 (@2 · @3) − @`3
3 [`1`2 (@2 · @4) + @`1

3 [`2`3 (@2 · @4) + @`1
2 [`2`3 (@3 · @4)

− @`2
2

(
2@`3

3 @
`1
4 − 3@`1

3 @
`3
4 + [`1`3 (@3 · @4)

) )
+ @`3

1

(
− 4@`1

2 @
`4
3 @

`2
4 + @

`4
2

(
−4@`2

3 @
`1
4 + 4@`1

3 @
`2
4

)
+ 3@`1

2 @
`2
3 @

`4
4 − @

`4
4 [`1`2 (@2 · @3)

+ @`1
4 [`2`4 (@2 · @3) + @`4

3 [`1`2 (@2 · @4) + @`2
3 [`1`4 (@2 · @4) − 2@`1

3 [`2`4 (@2 · @4) + @`1
2 [`2`4 (@3 · @4)

+ @`2
2

(
3@`4

3 @
`1
4 − 2@`1

3 @
`4
4 − [`1`4 (@3 · @4)

) ))
(A.18)

A.3 Feynman Rules from Curved-Space Lagrangian (Ex-
panded on Flat Background)

This section presents the Feynman rules derived from the generalized Proca theory in
curved spacetime, as defined in Equation 5.18.
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The propagators:
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For the graviton.
The mixed cubic vertex:
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The mixed quartic vertices:
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We do not explicitly include the pure sectors for this setup since the rules for the pure
Proca sector can be directly obtained from the flat-space Feynman rules. As for the pure
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graviton sector, the corresponding Feynman rules are well established in the literature and
can be found, for instance, in [39].



Appendix B

3.5PN Phasing Coefficients in the
Stationary Phase Approximation

In this appendix, we summarize the post-Newtonian (PN) coefficients that contribute to the
gravitational wave (GW) phase in the stationary-phase approximation (SPA) up to 3.5PN
order, including spin effects in General Relativity [96]. These coefficients have been intro-
duced in earlier chapters in the context of waveform modeling.

We begin by defining the following parameters:
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where [ is the symmetric mass ratio, and WE denotes the Euler–Mascheroni constant.

The PN coefficients entering the GW phasing are given by:
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