
INAUGURAL-DISSERTATION
zur

Erlangung der Doktorwürde
der

Gesamtfakultät für Mathematik, Ingenieur- und
Naturwissenschaften

der

RUPRECHT-KARLS-UNIVERSITÄT
HEIDELBERG

vorgelegt von

Schrot, Ihno, M. Sc.
aus Gifhorn

Tag der mündlichen Prüfung:

. .

EFFICIENT NUMERICAL METHODS FOR NONLINEAR MODEL
PREDICTIVE CONTROL WITH APPLICATIONS IN ADAPTIVE

CRUISE CONTROL

Advisor:
Prof. Dr. Ekaterina A. Kostina

Zusammenfassung

Angesichts der steigenden Bedeutung von nachhaltiger Mobilität gewinnt die Entwicklung von fortschrit-
tlichen Regelstrategien für Fahrzeuge zunehmend an Bedeutung. In dieser Arbeit leisten wir einen Beitrag
zu diesen Bestrebungen, indemwir an effizienten numerischen Methoden arbeiten, die entscheidend für
die Realisierung eines auf nichtlinearer modellprädiktiver Regelung (NMPC) basierenden ökologischen
adaptiven Geschwindigkeitsregelungssystems (EACC) für Elektrofahrzeuge sind. EACC birgt als NMPC-
Anwendung jedoch besondere Herausforderungen, die es vor der praktischen Anwendung dieser Meth-
oden zu überwinden gilt. In dieser Arbeit entwickeln wir Lösungen für diese Herausforderungen.

NMPC ist eine fortschrittliche Regelungsstrategie, bei der in festen Abtastintervallen das Systemverhal-
ten mithilfe eines mathematischen Modells vorhergesagt und optimiert wird. Zu jeder Abtastzeit wird
dabei ein Optimalsteuerungsproblem (OCP) gelöst, welches durch den aktuellen Systemzustand para-
metrisiert ist. So können Störungen berücksichtigt und abgefangen werden. Eine etablierte Methode,
um NMPC in Echtzeit zu ermöglichen, besteht darin, das OCP mithilfe der Mehrzielmethode (DMS) zu
diskretisieren und anschließend mit dem Echtzeit-Iterationen (RTI) Schema oder dessen Erweiterung,
den Multi-Level Iterationen (MLI), zu lösen. Das RTI Schema reduziert die Rechenzeit, indem es nur eine
geringe Anzahl an Iterationen einer maßgeschneiderten Variante der Sequentiellen Quadratischen Pro-
grammierungsmethode (SQP) durchführt und dabei die Ähnlichkeit aufeinanderfolgender OCPs ausnutzt.
Das MLI Schema steigert diese Effizienz weiter, indem es eine Hierarchie aus inexakten SQP-Iterationen
aufbaut und bereits berechnete Ableitungen wiederverwendet. Dies ist für EACC besonders vorteilhaft,
da die Steuerungen auf Hardware mit begrenzter Rechenkapazität schnell berechnet werden müssen.

Damit das Potential dieser Verfahren für die Realisierung eines NMPC-basierten EACC Systems voll aus-
geschöpft werden kann, müssen wir uns zunächst mit der Herausforderung der Interpolation mehrdi-
mensionaler Kennfelder (LUTs) beschäftigen. Kennfelder sind in realistischen Fahrzeugmodellen un-
verzichtbar. Bei deren Interpolation sollten relevante Datenformen wie Monotonie oder Konvexität erhal-
ten werden. Gleichzeitig muss die Interpolation ausreichend glatt sein, um den Einsatz von ableitungs-
basierten Optimierungsverfahren zu ermöglichen. In dieser Arbeit entwickeln wir eine Interpolation-
stechnik, die unseres Wissens nach die erste glatte, mehrdimensionale und formerhaltende Interpola-
tionsmethode ist. Unsere Methode kann beliebige eindimensionale, glatte, formerhaltende Interpola-
tionsverfahren auf mehrere Dimensionen erweitern.

Essentiell für eine reale Fahrzeugregelung ist es zudem, externe Einflüsse wie die Straßensteigung oder
andere Fahrzeuge in den numerischen Methoden für NMPC zu berücksichtigen. Wir präsentieren neuar-
tige Ansätze, die diese externen Einflüsse explizit in die DMS-Diskretisierung sowie in die RTI- und MLI-
Schemata einbinden. Dies ermöglicht eine flexiblere Reaktion auf reale Fahrsituationen.

Aufbauend darauf entwickeln wir SensEIS Feedback, eine Strategie, die den beschränkten Rechenres-
sourcen bei EACC Systemen Rechnung trägt. SensEIS Feedback reduziert den Online-Rechenaufwand,
indem die Steuerungen während der Fahrt durch Ausnutzung von vorab bestimmten Lösungen für typis-
che Fahrszenarien berechnet werden. Dabei wählt der Regler das am besten passende Szenario aus und
berechnet die Steuerung durch wenigeMatrix-Vektor-Multiplikationen oder durch das Lösen eines einzel-
nen Quadratischen Optimierungsproblems, wodurch die Feedbackverzögerung erheblich verringert wird.

Neben diesen algorithmischen Beiträgen erweitern wir zudem die Theorie zu inexakter NMPC, indem wir
für eine Klasse semilinearer parabolischer partieller Differentialgleichungen (PDEs) asymptotische Sta-
bilität von inexakten NMPC Methoden nachweisen. Damit schaffen wir die Grundlage für die Anwendung
von RTI und MLI für NMPC bei Systemen, die mit PDEs modelliert werden. Im Kontext der Elektrofahrzeu-
gregelung könnte dies unter anderem im Bereich des Thermomanagements Bedeutung erlangen.

Zur Bewertung des Potenzials unserer Methoden führenwir numerische Experimentemit realen Fahrdaten
durch. Dabei verdeutlichen unsere Ergebnisse mit Einsparungen von über 3.4 % im Vergleich zu men-
schlichen Fahrern das beträchtliche Potenzial unserer Ansätze für eine nachhaltige Mobilität.

Abstract

The intensifying need for more energy-efficient transportation is driving the development of advanced
control strategies for sustainable mobility. In this thesis, we contribute to these efforts by developing
efficient numerical methods that are key to realizing an Ecological Adaptive Cruise Control (EACC) system
for an electric vehicle based on Nonlinear Model Predictive Control (NMPC). As an NMPC application, EACC
poses several challenges that must be addressed before these methods can be employed, and we tackle
those challenges in this work.

NMPC is a closed-loop control strategy that uses a dynamical system’s model to predict and optimize
its behavior. The current system state parametrizes an Optimal Control Problem (OCP), which is solved
at fixed sampling times to update the control, thereby reacting to disturbances as they occur. A well-
established approach for real-time NMPC is to discretize the OCP via Direct Multiple Shooting (DMS),
then solve it using the Real-Time Iterations (RTI) scheme or its extension, the Multi-Level Iterations (MLI)
scheme. RTI cuts down on computational cost by carrying out a minimal number of tailored Sequential
Quadratic Programming (SQP) iterations, exploiting similarities in consecutive OCPs. MLI extends this
efficiency by creating a hierarchy of inexact SQP iterations, reusing previous derivative information – a
design that is well-suited for EACC, where control updates must be computed quickly on hardware with
limited resources.

To fully leverage these schemes in EACC, we must address the first major challenge: the interpolation of
multivariate Lookup Tables (LUTs). LUTs are indispensable in realistic vehicle models and their interpola-
tion must preserve vital data ”shapes” like monotonicity or convexity. At the same time, the interpolation
must be sufficiently smooth to enable derivative-based optimization. Addressing this, we propose what
appears to be the first smooth multivariate shape-preserving interpolation method. Our method can
extend any existing univariate smooth shape-preserving interpolation method to higher dimensions.

In addition to ensuring faithful interpolation of LUTs, we further address the treatment of external in-
puts, such as road elevation and the behavior of preceding vehicles – another essential aspect of re-
alistic vehicle control. Our proposed approaches explicitly incorporate external inputs within the DMS
discretization and the RTI and MLI schemes, granting more flexibility in reacting to real-world variations.

Building upon the external input incorporation, we introduce the Sensitivity and External Input Scenario
based (SensEIS) feedback strategy, recognizing the limited computational resources in many automotive
settings. SensEIS feedback reduces online computations by exploiting precomputed control responses
for common driving scenarios. Online, the controller selects the best-matching scenario and updates
the control using only a few matrix-vector multiplications or by solving a single Quadratic Program, thus
significantly reducing feedback delay.

Alongside these algorithmic developments, we also extend the theory of inexact NMPC by proving asymp-
totic stability of inexact NMPC for problemsmodeled by a class of semilinear parabolic Partial Differential
Equations (PDEs). This establishes a theoretical underpinning for extending the RTI and MLI schemes to
PDE-governed problems. In electric vehicle control, NMPC of PDE-governed systems can be relevant for
example in the context of thermal management.

Finally, to assess the potential of our methods, we conduct numerical experiments with real-world driv-
ing data. The results show energy savings of over 3.4 % compared to the human driver, indicating a
significant potential of our methods for advancing sustainable mobility.

Acknowledgements

”This is ten percent luck, twenty percent skill
Fifteen percent concentrated power of will
Five percent pleasure, fifty percent pain
And a hundred percent reason to remember the name”

— FORT MINOR and STYLES OF BEYOND, Remember the Name, 2005*

... or rather ”the names” of the people I would like to thank below, either for their support or for the
great time I had with them during my PhD. I am very grateful to all of you!

First of all, I would like to thank my supervisor, Ekaterina Kostina, for giving me the opportunity to work
on these exciting projects, for her constant support and her trust in me.

For the great cooperation I would like to thank Hans Georg Bock, Andreas Sommer, Julian Niederer,
Andrea Flexeder, Christian Fleck, Matthias Bitzer, Christian Bertsch and Christoph Hansknecht in the
context of the EACC project, Manuel Schaller and Karl Worthmann in the context of the stability analysis
and Andreas Potschka in both projects. A special thanks goes to Manuel Schaller for patiently explaining
the details of PDE-constrained optimal control to me, taking the time to give me thorough feedback on
my work and supporting me even after the stability proof was done, to Hans Georg Bock for inspiring
me to work in the field of optimal control in the first place, for teaching me a great deal about it, and for
the initial spark for SensEIS feedback, and to Andreas Sommer for helping me with our MLI software.

I owe another great deal of thanks to Hridya Vinod Varma, Manuel Weiß, Marta Sauter, Manuel Schaller,
Christian Alber, Julian Niederer, Andrea Flexeder, Dominik Cebulla and Niels Wächter for taking the time
to read earlier drafts of my thesis and providing valuable feedback. This has greatly improved the quality
of my thesis.

I would like to thank Herta Fitzer and the team at the doctoral office for their administrative support. I
would also like to thank the teams at the counselling services that have helped me in the past years.

Furthermore, I gratefully acknowledge the support of the Bundesministerium für Bildung und Forschung
(BMBF) in the research project Modellierung, Optimierung und Regelung vernetzter Fahrzeuge und Fahr-
zeugflotten mit heterogenen Antriebstechnologien in Echtzeit (MORFAE).

Thanks also to all the students I had the pleasure of teaching and supervising - which I really enjoyed -
and whose positive feedback kept me motivated beyond the teaching itself.

Throughout my PhD I have been very fortunate to spend a lot of time with a lot of great people and I
feel that I will never be able to do justice to all of you in the following lines. So please forgive me if I do
not give you the credit you deserve, and know that I really appreciate the time we spent together!

Coming to the Mathematikon in the morning and working here – and having coffee and lunch breaks
– has always been a pleasure for me, thanks to all the friends and colleagues, especially but not only
from the SimOpt, NumOpt, Scoop and the Numerical Analysis and UQ groups.

A big thank you to my friends from tennis, climbing and the Wasseralm crew for helping me unwind after
a hard day or period of work. Further, I want to express my gratitude to the ”chemists” for sharing their
kindness, humour and good times with me. This thanks particularly goes to Franka, whom I additionally
wish to thank for numerous shared active and relaxed moments and meals. Speaking of meals, the Görtz
breakfasts with Leo, Franka, Melli, Tobi and all the others of you who joined were and still are one of my
highlights every week.
*This song was played at the circuit training sessions of the University sports that I attended almost every Thursday evening
during my time as a PhD student. And even though the percentages don’t really describe my PhD journey accurately, at some
point I started joking that these lyrics would make a great and unique start to my acknowledgements when I finished this thesis.
Especially as it is one of my all-time favourite songs. In fact, I joked about using this quote so many times that I finally decided
to actually do it, so here we are. On this occasion: Thanks to Julius, Franka and Leo for the fun circuit training sessions!

Moreover, I wish to extend my heartfelt thanks to my long-time friends, Niels, Fenja, Marvin, Charlotte,
Maike and Lorenzo for supporting me throughout my PhD journey. I owe you not only many great mem-
ories and moments of joy, but also the motivation to keep going when things got tough. Thank you for
being there for me, successfully lifting my spirits and reminding me that there is more to life than a
PhD. I think it’s fair to say that this work would not have been possible without you. This is especially
true for Jasper, whose support and encouragement I have always been able to count on, and for which
I cannot thank him enough.

To all my friends: I look forward to all our future moments together, be it in the mountains, on the tennis
court or wherever life takes us.

To my sister Gesa, thank you for just being a great sister, for making me laugh and for your words of
advice and encouragement whenever I needed them (and maybe even more so when I didn’t). To my
parents, I am eternally grateful for your unconditional support and love throughout my life. I am so
grateful for the values you have instilled in me and the opportunities you have given me.

Finally, I would like to thank my girlfriend Leonie. I am incredibly grateful for your patience, support and
love, especially during the times when I was stressed or overwhelmed. Full of joy, I am looking forward
to our next steps into the future!

A Quick Guide to Reading This
Thesis

Inspired by the PhD theses of Théo Winterhalter and Anja Petković
Komel, this thesis is written in a 1.5 column format. In this format, we
have a wide margin. The wide margin accommodates accompanying
comments, citations, reminders, etc.

This allows us to keep the main text clean and focused on the main
arguments. In particular, we can provide additional information and
remind the reader of previously explained concepts without disrupt-
ing the flow of the main text. Moreover, the reader does not have to
frequently jump back and forth in the document, e.g., to look up an
interesting reference. Finally, the wide margin allows the reader to jot
down their own notes or calculations – something I personally do a
lot when reading mathematical texts.

While the previous features are particularly useful for the paper ver-
sion of the thesis, the electronic version has some additional fea-
tures for convenient electronic reading. The references to definitions
(like Definition 2.1), theorems (like Theorem 4.3), equations (like Equa-
tion (6.4)), and other objects are clickable so one can quickly travel
to the relevant part of the document.

Citations like [208]

[208]: Zanelli et al. (2021), “A Lyapunov
function for the combined system-
optimizer dynamics in inexact model
predictive control”appear in the margin (also clickable) in a short ver-

sion listing just the first author, as well as in the Bibliography where
the full citations can be found. Comments that accompany the main
text are placed close to the text for which they provide additional
information.

This is an example of an accompa-
nying comment that provides help-
ful, but not essential, additional in-
formation for the main text.If we wish to remind the reader of a concept, we use a

reminder like the one to the right.

Reminder: a concept

This is a reminder of a concept that
we have encountered previously.

Sometimes we repeat the defini-
tions of commonly used mathematical concepts. In such cases, we
place a box with a green header on the side.

Definition: side definition

This is a side definition.

Finally, we place small
illustrations in the margin to help the reader visualize the concepts
we are discussing.

Similarly, as in most mathematical texts, we use different environ-
ments for theorems, definitions, lemmas, and examples that make
them stand out. In this document, they look as follows.

An illustrative figure, which we will en-
counter as Figure 5.4.

Theorem 0.1 Theorems and main ideas stand out in these boxes
with a red title, so they are easy to spot.

Corollary 0.1 Lemmas and corollaries, which accompany a theorem,
appear similar to theorems, but with a black title.

Definition 0.1 Definitions and assumptions appear with a red bar
next to them. The defining notions will appear in red.

■ Example 0.1 This is an insightful example. ■

Contents

Zusammenfassung v

Abstract vii

Acknowledgements ix

A Quick Guide to Reading This Thesis xi

Contents xiii

1. Introduction 1
1.1. Objectives . 3
1.2. Contributions . 4
1.3. Thesis outline . 7

MATHEMATICAL BACKGROUND 9

2. Nonlinear Model Predictive Control 11
2.1. Basic principle and algorithm . 12

2.1.1. General setup and terminology . 13
2.1.2. Choice of the transition map for continuous control systems 14
2.1.3. Computation of the control sequence . 15
2.1.4. NMPC algorithm . 18

2.2. Stability results . 18
2.2.1. Stability results for nonlinear systems . 19
2.2.2. Applicability to NMPC . 21

3. Efficient Numerical Methods for NMPC 23
3.1. Solution approaches for Optimal Control Problems . 23
3.2. Direct Multiple Shooting discretization . 25

3.2.1. Control discretization . 26
3.2.2. State discretization . 27
3.2.3. Constraint discretization . 28
3.2.4. Objective function discretization . 30
3.2.5. Resulting Nonlinear Program . 30

3.3. Sequential Quadratic Programming method . 31
3.3.1. General SQP framework . 31
3.3.2. Tailored SQP method for the DMS NLP . 34

3.4. Real-Time Iterations . 40
3.4.1. Initial Value Embedding . 41
3.4.2. RTI phases . 42
3.4.3. Theoretical aspects . 43

3.5. Multi-Level Iterations . 44
3.5.1. MLI levels . 45
3.5.2. Further aspects . 49

CONTRIBUTIONS 53

4. Stability of Inexact NMPC for a Class of Semilinear Parabolic PDEs 55
4.1. Problem setting . 55

4.1.1. System dynamics . 56
4.1.2. OCP formulation . 59
4.1.3. System-optimizer dynamics . 61
4.1.4. Discussion of the assumptions . 62

4.2. Stability proof . 63
4.2.1. Step 1: auxiliary results . 64
4.2.2. Step 2: forward invariant set for the system-optimizer dynamics 65
4.2.3. Step 3: error contraction and LYAPUNOV decrease perturbation 68
4.2.4. Step 4: stability of the positive linear system . 70
4.2.5. Main result: asymptotic stability of the system-optimizer dynamics 72

5. Smooth Multivariate Shape-Preserving Interpolation 77
5.1. Problem formulation . 79

5.1.1. Categories of shape-preservation in multivariate settings 81
5.2. Literature review . 83

5.2.1. Smooth univariate shape-preserving interpolation methods 84
5.2.2. Bivariate shape-preserving interpolation methods 84
5.2.3. Blending schemes . 84
5.2.4. Multivariate interpolation methods . 85

5.3. Novel smooth multivariate shape-preserving interpolation method 85
5.3.1. Univariate interpolation along the grid lines . 86
5.3.2. COONS’ patches . 86
5.3.3. Blending the univariate results together . 90

5.4. Proof of the interpolation and shape-preservation property 93
5.4.1. Auxiliary results . 93
5.4.2. Shape-preservation property . 96
5.4.3. Interpolation property . 98

5.5. Numerical results . 98
5.5.1. 3D example . 99
5.5.2. 4D example . 99

6. External Inputs in DMS, RTI, and MLI 105
6.1. Incorporating external inputs in DMS . 107

6.1.1. External input discretization . 107
6.1.2. Adjusted DMS discretization . 109
6.1.3. Resulting Nonlinear Program . 111

6.2. Incorporating external inputs in the RTI and MLI scheme . 111
6.2.1. External inputs in the RTI scheme . 112
6.2.2. Comparison of the strategies for the RTI scheme . 115
6.2.3. External inputs in the MLI scheme . 116

7. Sensitivity and External Input Scenario based Feedback 117
7.1. Literature review . 118
7.2. Sensitivity theorem . 119
7.3. SensEIS feedback . 124

7.3.1. Variant 1: Using the feedback matrix . 126
7.3.2. Variant 2: Using the feedback generating QP . 129
7.3.3. Full algorithm . 132

7.3.4. Combination with the MLI scheme . 132
7.4. Challenges and future directions of research . 135

8. Application: Ecological Adaptive Cruise Control System 143
8.1. Literature review . 144
8.2. Underlying vehicle model . 145

8.2.1. Vehicle movement . 145
8.2.2. Computation of relevant powers . 147

8.3. OCP formulation . 148
8.3.1. Choice for the control and differential states . 148
8.3.2. Optimization criteria . 149
8.3.3. Constraints . 150

8.4. Numerical results . 150
8.4.1. MLI without explicit treatment of external inputs . 151
8.4.2. MLI with explicit treatment of external inputs . 154
8.4.3. MLI with SensEIS level . 155
8.4.4. SensEIS feedback as standalone method . 159

9. Conclusion 163

APPENDIX 166

A. Proof for Example 3.2 167

B. Proof of Smoothness of our Interpolation Method in the Trivariate Case 169
B.1. Continuity . 171
B.2. Continuous differentiability . 172
B.3. Twice continuous differentiability . 178

C. Gradient and Hessian of Lagrangian of DMS NLP with External Inputs 185
C.1. Gradient of the Lagrangian . 186
C.2. Hessian of the Lagrangian . 187

D. Condensing with External Inputs 193

E. Condensing for SensEIS Feedback 197

Bibliography 201

Acronyms 213

List of Figures 215

List of Tables 217

List of Algorithms 217

Introduction 1.
1.1 Objectives 3
1.2 Contributions 4
1.3 Thesis outline 7

On the very day we started writing the introduction to this thesis,
the Copernicus Climate Change Service published its annual climate
summary report for the year 2024 [48]

[48]: Copernicus Climate Change Ser-
vice (2024), Global Climate Highlights
2024

. Its opening words are:

”2024 saw unprecedented global temperatures, follow-
ing on from the remarkable warmth of 2023. It also be-
came the first year with an average temperature clearly
exceeding 1.5 ◦C above the pre-industrial level - a
threshold set by the Paris Agreement to significantly re-
duce the risks and impacts of climate change. Multiple
global records were broken, for greenhouse gas levels,
and for both air temperature and sea surface temper-
ature, contributing to extreme events, including floods,
heatwaves and wildfires. These data highlight the accel-
erating impacts of human-caused climate change.”

— COPERNICUS CLIMATE CHANGE SERVICE [48]

Moreover, the report states that

”One or two years that exceed 1.5 ◦C above the pre-
industrial level does not imply that the Paris Agreement
has been breached. However, with the current rate of
warming at more than 0.2 ◦C per decade, the probabil-
ity of breaching the 1.5 ◦C target of the Paris Agreement
within the 2030s is highly likely.”

— COPERNICUS CLIMATE CHANGE SERVICE [48]

The message of these words could not be clearer. The situation is ur-
gent. And we, as scientists, have a special responsibility in the efforts
to mitigate human-caused climate change and to adapt to the ad-
verse impacts of climate change. This responsibility is also reflected
in Article 4 of the Paris Agreement [192] [192]: United Nations Framework Con-

vention on Climate Change (UNFCCC)
(2015), Paris Agreement

.

With this in mind, the German Bundesministerium für Bildung und
Forschung (BMBF) (engl.: Federal Ministry of Education and Research)
has developed a strategy for the research for sustainability [34] [34]: Bundesministerium für Bil-

dung und Forschung (BMBF) (2020),
Forschung für Nachhaltigkeit

, the
first goal of which is to achieve the climate goals of the Paris Agree-
ment. One of the actions outlined in the BMBFs strategy is to en-
sure sustainable mobility in urban and rural areas. A look at Ger-
many’s energy consumption underscores the importance of this ac-
tion. The German Umweltbundesamt (engl.: Federal Environmental
Agency) reported an energy consumption for Germany for the year
2023 of about 2368 TW h [191] [191]: Umweltbundesamt (2024), En-

ergieverbrauch nach Energieträgern
und Sektoren

. Approximately 29.4 % of this consump-
tion is attributed to the transportation sector. The development of
novel techniques to achieve energy savings in this sector is therefore
especially urgent and relevant.

A key enabler in this effort whose great potential the BMBF wants
to tap is Mathematical Modeling, Simulation and Optimization (MSO).

2 1. Introduction

MSO offers a powerful set of tools for improving efficiency and re-
ducing energy consumption and greenhouse gas emissions across
various sectors.

One possibility to leverage MSO to contribute to ensure sustainable
mobility is the development of an Ecological Adaptive Cruise Control
(EACC) system. EACC is an Advanced Driver-Assistance System (ADAS)
for vehicles that enables more efficient driving by harnessing knowl-
edge about the road and traffic ahead and the ideal operating points
of a vehicle. For a recent review on the development of EACC in gen-
eral, see [148][148]: Pan et al. (2022), “A review of the

development trend of adaptive cruise
control for ecological driving”

. In particular, improvements for EACC can be put into
practice in the near future and still have a lot of potential.

To successfully drive a car in reality, we need to be able to react to un-
foreseen disturbances while we are driving. Therefore, it is not enough
to compute an energy-efficient control profile, such as speed or accel-
eration, in advance and then sticking to it without adjustments while
driving. This approachwould be called an offline or open-loop control.
Instead, we need to compute our control in an online or closed-loop
fashion whichmeans that we continuously recompute our control tak-
ing into account the current situation. Developing suitable methods
to achieve such a control is what process control is about. A large
number of different methods have been developed in process control.
An advanced method that is particularly powerful is Model Predictive
Control (MPC) or Nonlinear Model Predictive Control (NMPC) when we
consider nonlinear problems. The main idea of NMPC, which is an
adaptation of the summary given in [101, Section 3.1][101]: Grüne et al. (2017), Nonlinear

Model Predictive Control
, is as follows. At

each time point of a given time grid, we optimize the predicted future
behaviour of the system under consideration over a finite time hori-
zon and apply the first element of the resulting control sequence until
the next time point.

We will explain the basic principle
and algorithm of NMPC in detail in
Section 2.1.

The particular strength of the NMPC approach is
that it allows to

▶ minimize an objective

by

▶ using a process model

while

▶ obeying constraints
▶ and being a closed-loop control.

The large number of successful applications of NMPC in the literature
testifies to its potential. We will provide more references to applica-
tions of MPC and NMPC in general in Chapter 2 and to the application
of NMPC to ADASs and EACC-like systems in Chapter 8 and for now
only mention the survey [175, Section 6][175]: Schwenzer et al. (2021), “Review

on model predictive control: an
engineering perspective”

for an impressive and recent
list of MPC applications.

The main challenge we have to overcome if we want to put NMPC-
based EACC into practice is to solve the challenging Optimal Control
Problems (OCPs) fast enough. Fortunately, the development of effi-
cient numerical methods for real-time feasible NMPC in the last two
decades has brought the use of NMPC in real-time within reach. In
particular, the development of the Real-Time Iterations (RTI) scheme

1.1. Objectives 3

by DIEHL and coworkers [57, 59, 61, 64, 67] and its extension the Multi-
Level Iterations (MLI) scheme by WIRSCHING and coworkers [28, 200],
both based on the Direct Multiple Shooting (DMS) method presented
in [29], have led to drastic reductions in computing time.

[57]: Diehl (2001), “Real-time opti-
mization for large scale nonlinear
processes”
[67]: Diehl et al. (2001), “Real-time
optimization for large scale processes:
Nonlinear model predictive control of
a high purity distillation column”
[61]: Diehl et al. (2002), “Real-time
optimization and nonlinear model
predictive control of processes
governed by differential-algebraic
equations”
[59]: Diehl et al. (2003), “Newton-type
methods for the approximate solution
of nonlinear programming problems
in real-time”
[64]: Diehl et al. (2005), “Nominal sta-
bility of real-time iteration scheme for
nonlinear model predictive control”
[200]: Wirsching (2018), “Multi-level
iteration schemes with adaptive level
choice for nonlinear model predictive
control”
[28]: Bock et al. (2007), “Constrained
Optimal Feedback Control of Systems
Governed by Large Differential Alge-
braic Equations”
[29]: Bock et al. (1984), “A Multiple
Shooting Algorithm for Direct Solution
of Optimal Control Problems”

The overall goal of this thesis is to find solutions to the challenges
that still need to be overcome if we want to leverage the MLI scheme
to realize an NMPC-based EACC in practice. In the following, we first
present the detailed objectives of this thesis that result from this
overall objective. Then, we summarize the main contributions that
we develop in this thesis and outline the structure of this thesis.

1.1. Objectives

In order to achieve the overall goal of this thesis, we must develop a
problem formulation that represents an EACC system and then solve
it using our efficient numerical methods for NMPC. It is important
that our problem formulation involves the main challenges such that
our problem forms a representative example. Only then we can ar-
gue that our numerical methods are indeed suited for a real-world
deployment if they perform well for this example. To this end, the
first objective of this thesis is to develop a vehicle model and an
OCP formulation that together are suitable for a real-life EACC sys-
tem. In particular, this means incorporating multivariate Lookup Ta-
bles (LUTs) and external inputs such as road elevation and the speed
of a preceding vehicle (PP0) into both the vehicle model and the OCP
formulation, as these are key components in real-life problems.

This leads directly to the next two objectives. We need to develop a
smooth shape-preserving interpolation method for multivariate LUTs
so that they can suitably evaluated in the optimization process. We
also need to add new, more sophisticated approaches to handle ex-
ternal inputs in the DMS method and the RTI and MLI schemes.

The next objective is to develop a new feedback method that is even
faster than the established levels of the MLI scheme by exploiting
the fact that many driving situations are recurrent and can be solved
in an offline fashion. It should be possible to couple this feedback
method with the MLI scheme.

In addition to the availability of fast numerical methods, the reliabil-
ity of these numerical methods is of paramount importance for the
control of real vehicles. For the control of dynamical systems that
can be modeled with Ordinary Differential Equations (ODEs), the cor-
responding theory is already well established. As a first step towards
laying the foundation for the extension of our numerical methods to
dynamical systems modeled by Partial Differential Equations (PDEs),
the final objective of this thesis is to prove stability of inexact NMPC
for a class of semilinear parabolic PDEs.

4 1. Introduction

In summary, the objectives of this thesis are

(i) to develop a realistic EACC problem formulation consisting of
a vehicle model and an OCP formulation including multivariate
Lookup Tables (LUTs) and external inputs, and to solve it using
our numerical methods for NMPC,

(ii) to develop a smooth shape-preserving interpolation method
for multivariate LUTs,

(iii) to explicitly incorporate external inputs into the DMS method
and the RTI and MLI schemes,

(iv) to develop a novel feedback method that makes use of offline
solved scenarios and is faster than the established MLI levels
but can be coupled with the MLI scheme,

(v) to extend the existing stability results for inexact NMPC to a
class of semilinear parabolic PDEs.

1.2. Contributions

The main contributions of this thesis that we develop in the process
of working towards the above goals are the following.

A stability proof for inexact NMPC for a class of
semilinear parabolic PDEs

When we use schemes such as RTI or MLI to compute the controls in
an NMPC setting, we are performing inexact NMPC. The approach is
called inexact NMPC because we are not solving the resulting OCP to
optimality and are using approximate solutions. A particularly impor-
tant question is whether the resulting controller is capable of steering
the dynamical system of interest to a desired state. This question is
not only relevant from a control theoretical point of view, but also for
practitioners who need to know whether a controller is reliable. For
dynamical systems that can be modeled using ODEs, this question is
answered for a wide range of NMPC formulations. For inexact NMPC
of systems described by PDEs, however, we are not aware of any ex-
isting work. With the stability proof that we present in Chapter 4, we
thus take the first steps in this area of research.

We study the interplay between the system dynamics and the dynam-
ics of the optimizer, i.e., the system-optimizer dynamics. The system
dynamics in our case are given by a class of semilinear parabolic PDEs
similar to those considered in seminal works, such as [44, 160]

[44]: Casas (1997), “Pontryagin’s Prin-
ciple for State-Constrained Boundary
Control Problems of Semilinear
Parabolic Equations”
[160]: Raymond et al. (1999), “Hamil-
tonian Pontryagin’s Principles for
Control Problems Governed by Semi-
linear Parabolic Equations”

, on
the control of semilinear parabolic equations. The formulation of the
OCPs under consideration is also similar to those in these works. We
eventually construct a forward invariant set on which we prove that
the origin is an asymptotically stable point of the system-optimizer
dynamics. We also give an appropriate LYAPUNOV function.

1.2. Contributions 5

A smooth multivariate shape-preserving interpolation
method

For both vehicle dynamics modeling and OCP formulation for a realis-
tic EACC problem, it is common practice in engineering to use LUTs. In
the vehicle model, LUTs from measurements are used for dependen-
cies where no functional expression is available. In the OCP formula-
tion, LUTs are used to fine-tune the behavior of the vehicle to ensure
a comfortable ride for the driver. For the optimization, we need to
interpolate the LUTs to be able to evaluate the dependency at points
that are not included as data points in the LUTs. Often the data in the
LUTs have certain characteristics, such as monotonicity or convexity.
Such features or shapes should be preserved by the interpolation. In
addition, the interpolating function must be smooth enough for our
derivative-based optimization methods. While many smooth shape-
preserving interpolation methods are available for uni- and bivari-
ate LUTs, such methods are not yet available for multivariate LUTs.
In Chapter 5 of this thesis we develop such a smooth multivariate
shape-preserving interpolation method. In particular, we contribute
to the state of the art by

▶ proposing a classification scheme for shape-preservation in the
multivariate case,

▶ developing a method to extend any smooth shape-preserving
univariate interpolation schemes to the multivariate case us-
ing a multivariate blending scheme that is inspired by COONS’
patches,

▶ proving the interpolation and shape-preservation property of
our proposed method for the general multivariate case,

▶ proving the required smoothness property exemplarily for the
trivariate case,

▶ and providing numerical results that in particular numerically
validate the smoothness property also in the quadrivariate case.

Explicit incorporation of external inputs into the DMS
method and the RTI and MLI schemes

When we want to control a vehicle in a real-world scenario, we have
to take several external inputs into account. For example, the slope
of the road affects how much power we need to maintain a certain
speed, or the behavior of a vehicle in front of us limits the speed at
which our vehicle can safely travel. What is special about these exter-
nal inputs is that they are functions of the free variable, i.e., time or
position. The common approach to incorporate external inputs into
the DMSmethod, and thus the RTI and MLI schemes, is to add an artifi-
cial differential state equal to the free variable, thereby reformulating
the external inputs as functions of the differential states. However,
other approaches have not been thoroughly explored. In Chapter 6
we contribute a novel approach to incorporate external inputs into
DMS, RTI and MLI. In particular, we

6 1. Introduction

▶ propose a novel discretization strategy for external inputs within
the framework of the DMS method,

▶ adapt the state, constraint, and objective function discretiza-
tions and the resulting Nonlinear Program (NLP),

▶ present two affiliated new strategies for incorporating external
inputs into both the RTI and MLI schemes,

▶ compare their interpretations,
▶ and develop an adapted condensing strategy for the Quadratic

Program (QP) that arises in the second strategy.

A Sensitivity and External Input Scenario based
feedback strategy

To realize an effective NMPC-based EACC system, it is paramount to
reduce the computation time required to update the controller as far
as possible. While the MLI scheme has already enabled drastic reduc-
tions in the computation times, one potential for even shorter com-
putation times has not yet been exploited. This potential arises from
the fact that many driving situations recur and can be precomputed.
From a more general point of view, the idea is to solve the OCPs that
occur during NMPC for certain choices of external inputs and constant
parameters, so-called scenarios, in an offline phase and then to use
this information to compute feedback online in a very fast way. From
this idea, we develop a feedback strategy in Chapter 7. Our feedback
strategy is based on the sensitivity theorem for families of NLPs. We
develop two variants of this feedback strategy, which we call Sensitiv-
ity and External Input Scenario based (SensEIS) feedback. In the first
variant, we set up a feedback matrix for each scenario, which allows
us to compute feedback with essentially a single matrix-vector prod-
uct. In the second, we set up a feedback-generating QP. In the second
variant, we thus have to solve a QP, but are able to treat active set
changes. Both strategies build on our novel strategies for handling
external inputs. Our contributions here include

▶ the development of a new Sensitivity and External Input Sce-
nario based (SensEIS) feedback strategy,

which includes

▶ the construction of a feedbackmatrix and a feedback-generating
Quadratic Program (QP) for each scenario, mapping changes
in external inputs and constant parameters to a new control,
and examining their respective structure resulting from the dis-
cretization using the DMS method with external inputs,

▶ the development of an adapted condensing strategy for the
feedback generating QP,

▶ the introduction of a scenario selection technique that reduces
chattering caused by repeatedly switching between scenarios,

▶ the presentation of a step size strategy that helps to avoid in-
equality violations when using the feedback matrix,

▶ a first approach on how the novel SensEIS feedback can be com-
bined with the MLI scheme.

1.3. Thesis outline 7

1: Only the speed limit is violated -
with a maximum violation of about
0.000 255 m s−1 .

Problem formulation of and numerical results for a
realistic EACC system

Our final major contribution is to set up a vehicle model and OCP
formulation that serves as a challenging and representative exam-
ple that, when solved, provides a strong argument that our numeri-
cal methods are suitable for implementing a real-world EACC system.
We then put together the pieces from our previous contributions to
successfully solve the resulting NMPC problem. More specifically, our
contributions here are to

▶ set up a vehicle model that makes use of realistic LUTs,
▶ set up an OCP formulation that makes use of realistic LUTs and

minimizes the energy consumption of our vehicle, leads to a
comfortable ride for the driver, and considers safety constraints,

▶ use our novel interpolation method from Chapter 5 to interpo-
late the LUTs,

▶ perform numerical experiments for a selection of the numeri-
cal methods discussed and developed throughout this thesis,
in which we use data from a real measurement drive for the
external inputs,

▶ and demonstrating with our numerical experiments the poten-
tial to save more than 3.4 % of energy compared to the preced-
ing vehicle from the measurement drive with only negligible
constraint violations 1.

1.3. Thesis outline

This thesis consists of two main parts. In the first part, we provide the
mathematical background necessary to present our contributions in
this thesis. The contributions themselves are presented in the second
part of the thesis. The main part of this thesis ends with a conclusion
and outlook in Chapter 9. The Appendix includes auxiliary material.

Part 1: Mathematical Background

The control approach of interest throughout this thesis is NMPC. There-
fore, we begin this thesis by explaining the basic principle and algo-
rithm of NMPC in Chapter 2. In addition to that, we present stabil-
ity results related to NMPC, which we later need for our own stabil-
ity proof in Chapter 4. The OCPs that arise during NMPC are infinite-
dimensional optimization problems. To implement NMPC in practice,
we needmethods to solve these efficiently. The subsequent Chapter 3
therefore revolves around efficient numerical methods for NMPC. In
particular, we first give an overview of solution approaches for OCPs.
Afterwards, we explain the efficient numerical methods on which our
own contributions are based. This specific sequence of methods con-
sists of the DMS as a parameterizationmethod, a Sequential Quadratic
Programming (SQP) method tailored to the resulting NLPs, and then
the RTI and MLI schemes as highly efficient further developments tai-
lored to the use in NMPC.

8 1. Introduction

Part 2: Contributions

In Chapter 4 we first establish stability of inexact NMPC for a class of
semilinear parabolic PDEs which is a result of a rather foundational
nature. The subsequent chapters then contain the building blocks
that we develop and need to solve our desired application problem.
The first building block is the smooth multivariate shape-preserving
interpolation method that we need to interpolate the LUTs. This inter-
polationmethod is introduced in Chapter 5. Next, in Chapter 6 we turn
our attention to the handling of external inputs in the DMS method
and the RTI and MLI schemes. Closely related to the treatment of ex-
ternal inputs is SensEIS feedback, which we develop in Chapter 7. Fi-
nally, we set up the EACC application and report numerical results of
our numerical methods for it in Chapter 8.

Appendix

In Appendix A we prove a statement given in Example 3.2. Appendix B
contains the proof of the claimed smoothness property for our novel
multivariate shape-preserving interpolation method from Chapter 5
for the trivariate case. Auxiliary material for Chapter 6 in the form
of the structure of the relevant Jacobians and Hessians occurring in
the QPs (6.10) and (6.9) and the condensing procedure for QP (6.10)
is contained in Appendix C and Appendix D. Finally, Appendix E com-
plements Chapter 7 by presenting the adapted condensing procedure
for the QP (7.23).

Mathematical Background

Contents

2. Nonlinear Model Predictive Control 11
2.1. Basic principle and algorithm 12
2.2. Stability results 18

3. Efficient Numerical Methods for NMPC 23
3.1. Solution approaches for Optimal Control

Problems 23
3.2. Direct Multiple Shooting discretization . 25
3.3. Sequential Quadratic Programming

method . 31
3.4. Real-Time Iterations 40
3.5. Multi-Level Iterations 44

Nonlinear Model Predictive
Control 2.

2.1 Basic principle 12
2.2 Stability results 18

When developing an Ecological Adaptive Cruise Control (EACC) system,
we must consider several requirements. Firstly, we want to ensure
that the resulting driving behavior is ecological, meaning we aim to
minimize objectives such as total energy consumption or emissions.
Additionally, vehicles differ from each other, so a speed or control
profile that is efficient for one vehicle may be inefficient for another.
Therefore, we would like to take into account amodel of the vehicle’s
dynamics, including both the powertrain and motion dynamics. Of
course, we must also comply with legal and safety constraints, such
as speed limits and maintaining a safe distance.

Optimal control is a broad subject
with a large body of both theory and
applications. In addition, MPC has
its origins in optimal control [101,
p. 4], [159, p. 1]. We refer the inter-
ested reader to [6, 21, 88, 131, 157,
184, 196].

If the list of requirements ended here, this scenario would be a prime
example of optimal control. However, we have not yet mentioned one
of the most important requirements. A vehicle on the road is con-
stantly influenced by surrounding traffic, so we need to react quickly
to disturbances. For example, we must adjust our control if our ve-
hicle needs to slow down unexpectedly due to a vehicle in front of
us. In other words, we need closed-loop control instead of open-loop
control. In short, we need a control strategy that allows us to:

▶ minimize an objective by
▶ utilizing a process model while
▶ obeying constraints
▶ and is closed-loop.

While other popular controllers such as Proportional-Integral Deriva-
tive (PID) [9] or fuzzy controllers [185] [9]: Åström et al. (1995), PID Controllers:

Theory, Design, and Tuning
[185]: Tsoukalas et al. (1997), Fuzzy and
neural approaches in engineering

are closed-loop, they either can-
not handle constraints or do not leverage process models. A control
strategy that satisfies all four main requirements is Model Predictive
Control (MPC). When considering nonlinear systems, we refer to it as
Nonlinear Model Predictive Control (NMPC).

Both MPC and NMPC have been successfully applied to a wide range
of problems. In the early 2000s, a survey by QIN and BADGWELL [156] [156]: Qin et al. (2003), “A survey of

industrial model predictive control
technology”

reported more than 4600 MPC applications by various vendors, indi-
cating the potential of MPC for industrial applications. A more recent
and impressive list of MPC applications is presented in [175, Section
6] [175]: Schwenzer et al. (2021), “Review

on model predictive control: an
engineering perspective”

. Specifically, MPC techniques have also been applied to vehicle con-
trol, as demonstrated by [30, 31, 112, 118, 136, 137, 162, 199, 206, 209]. We
will reference works where MPC has been applied to Ecological Adap-
tive Cruise Control (EACC) in Section 8.1.

Given the extent of the research on MPC, or even just on NMPC, a com-
prehensive presentation of NMPC is beyond the scope of this work.
Instead, we provide a concise presentation of NMPC tailored to offer
the background knowledge needed to present our contributions. For
more comprehensive presentations of MPC, we refer to [40, 101, 124,
159, 164, 197].

12 2. Nonlinear Model Predictive Control

For an overview of the history of MPC development, we recommend
the paper [126][126]: Lee (2011), “Model predictive

control: Review of the three decades
of development”

. In this chapter, we limit ourselves to explaining the
basic principle and algorithm in Section 2.1 and presenting stability
results in Section 2.2 relevant to our contribution in Chapter 4.

2.1. Basic principle and algorithm

We use only the term NMPC from
now on, even though large parts of
the upcoming explanations are not
specific to NMPC but also apply to
MPC. Where a clear distinction is
necessary, we will highlight this.

We start our presentation of NMPC by stressing that NMPC is not a
specific method. Instead, NMPC is an overarching idea that can be
developed into a multitude of methods. The main source of variation
is how the control sequence is computed. The different methods can
often be grouped into subcategories of NMPC, e.g., Economic MPC, Ro-
bust MPC, Output MPC, Distributed MPC, or inexact MPC. For details
on these subcategories, we refer to [159][159]: Rawlings et al. (2022), Model pre-

dictive control: Theory, computation,
and design

.

Our NMPCmethods that we develop
throughout this thesis fall into the
category of inexact Economic NMPC.

Our presentation of NMPC is already tailored in some details such
that our NMPC method fits well into our NMPC framework as we use
it throughout this thesis. For a more general presentation of NMPC, we
recommend the excellent textbook [101]

[101]: Grüne et al. (2017), Nonlinear
Model Predictive Control

, which we will refer to several
times. To summarize the main idea of NMPC, we adapt the summary
given in [101, Section 3.1].

Main idea — Nonlinear Model Predictive Control (NMPC). At each
time point of a given time grid, we optimize the predicted future
behavior of the system of consideration over a finite time horizon
and apply the first element of the resulting control sequence until
the next time point.

In other words, we repeat in NMPC the following main steps at each
sampling time 𝑡 𝑗 :

(i) Obtain the current state 𝑥 𝑗 .
(ii)

For us, optimizing the predicted fu-
ture behavior means setting up and
solving an Optimal Control Problem
(OCP), cf. Subsection 2.1.3.

Compute an optimal control sequence
(
𝑢 𝑗0 , . . . , 𝑢

𝑗
𝑁

)
that opti-

mizes the predicted future behavior of the system over a finite
prediction horizon 𝐼hor

(
𝑡 𝑗
)
.

(iii) Apply the first element of the control sequence as the feedback
value 𝑢 𝑗 until the next sampling time 𝑡 𝑗+1.

This main idea of NMPC is also illustrated by Figure 2.1.

In the following subsections, we properly define the used expressions
and fill the main idea with more mathematical details. First, we de-
scribe the general setup, including, for example, the aforementioned
time grid, and most of the relevant terminology in Subsection 2.1.1.
Then, we turn our attention in Subsection 2.1.2 to how we can utilize
a given Ordinary Differential Equation (ODE) model of our system in
the NMPC framework to predict the future. Afterwards, we shed light
on the optimization process in NMPC in Subsection 2.1.3. Finally, we
present Algorithm 2.1 in Subsection 2.1.4 that formalizes the above
main loop and summarizes our view on the NMPC framework as we
utilize it in later chapters.

2.1. Basic principle and algorithm 13

time 𝑡

prediction horizon

𝑡 𝑗 𝑡 𝑗+1 𝑡 𝑗+𝑁

past trajectory

past feedback values

optimal predicted trajectory

optimal control sequence

feedback value

current state

current time

Figure 2.1.: Illustration of the NMPC
scheme adapted from [101, Fig. 1.1]. At
the current sampling time, we obtain
the current state, compute an optimal
control sequence that leads to an op-
timal predicted trajectory, and use the
first element of the control sequence
as the feedback value.

2.1.1. General setup and terminology

To do NMPC, we update our current control for the system at each
time point of a time grid 0 = 𝑡0 < 𝑡1 < . . . < 𝑡 𝑗 < Depending
on the application, the time grid can either have a finite endpoint, or
we can control the system indefinitely. Moreover, heterogeneous time
grids are also possible. In some cases, the time grid is not even pre-
determined. In most cases, however, a predetermined homogeneous
time grid is used. We will also focus on this setting and consider in-
finite time grids, i.e., we consider 𝑗 ∈ ℕ0. We describe homogeneous
time grids using the following terminology.

Definition 2.1 In a homogeneous time grid, the sampling times 𝑡 𝑗
are given as

𝑡 𝑗 = 𝑗 · 𝑇, 𝑗 ∈ ℕ0 ,

with a sampling period 𝑇 > 0. We call [𝑡 𝑗 , 𝑡 𝑗+1) the 𝑗-th sampling
interval.

For simplicity, we also focus on the case where the prediction horizon
ends on a sampling time, i.e., we define:

Definition 2.2 With a slight overload of notation, we refer by horizon
length to both 2 ≤ 𝑁 ∈ ℕ and 𝑇hor ≔ 𝑁 ·𝑇 . The prediction horizon
at sampling time 𝑡 𝑗 is defined as the interval

𝐼hor
(
𝑡 𝑗
)
≔ [𝑡 𝑗 , 𝑡 𝑗+𝑁).

With the definition of the prediction horizon in place, we can define
what we mean by control sequence in the main idea of NMPC.

As mentioned at the beginning of
this section, NMPC methods vary in
the way that the control sequence
is computed. Therefore, we avoid
a more formal description of how
the optimization procedure yields a
control sequence.

We do not require 𝑈𝑁 = 𝑈 × 𝑈 ×
. . . ×𝑈 .

Definition 2.3 Let the control space 𝑈 and the control sequence
space𝑈𝑁 be arbitrary metric spaces. Optimizing the system behav-
ior over the prediction horizon 𝐼hor

(
𝑡 𝑗
)
yields a control sequence(

𝑢 𝑗0 , . . . , 𝑢
𝑗
𝑁

)
∈ 𝑈𝑁 , where each element 𝑢 𝑗𝑘 , 𝑘 = 0, . . . , 𝑁 , is associ-

ated with the sampling interval [𝑡 𝑗+𝑘 , 𝑡 𝑗+𝑘+1). We set the feedback
value 𝑢 𝑗 ∈ 𝑈 at sampling time 𝑡 𝑗 to the first element of the control
sequence, i.e.,

𝑢 𝑗 ≔ 𝑢 𝑗0. (2.1)

14 2. Nonlinear Model Predictive Control

We continue by specifying the evolution of the system.

In this thesis, except for Chapter 4,
we have 𝑋 = ℝ𝑛𝑥 and 𝑈 = ℝ𝑛𝑢 .

In simple terms, the transition map
𝜃 is our model of how the system
evolves from one state to the next.
𝜃 can be rather general and does
not even have to be continuous [101,
p. 13].

Definition 2.4 We denote the system state at sampling time 𝑡 𝑗 by
𝑥 𝑗 ∈ 𝑋 . Again, the state space 𝑋 can be an arbitrary metric space.
The current state 𝑥 𝑗 , its successor 𝑥 𝑗+1, and the feedback value 𝑢 𝑗
are related through the transition map 𝜃 : 𝑋 ×𝑈 → 𝑋 by

𝑥 𝑗+1 = 𝜃
(
𝑥 𝑗 , 𝑢 𝑗

)
. (2.2)

So far, we have described how the current states and controls are re-
lated to each other in a general way. In this general formulation, there
are two main components that we have to specify in order to perform
NMPC. The first component is the transition map 𝜃. The second one
is the optimization procedure that yields the control sequence. We
discuss these components in the following subsections.

2.1.2. Choice of the transition map for continuous
control systems

With this general formulation, in particular with respect to the tran-
sition map, we are so far describing NMPC for general discrete-time
systems, cf. [101, Section 2.1][101]: Grüne et al. (2017), Nonlinear

Model Predictive Control
. In many applications, including our EACC

system that we present in Chapter 8, however, we are considering dy-
namical systems, i.e., systems where we model the evolution of the
system using an ODE.

In Chapter 4 we use a semilinear
parabolic partial differential equa-
tion instead of an ODE. Also, Dif-
ferential Algebraic Equations (DAEs)
are possible.

In this case, we assume that the evolution of
the state 𝑥 can be modeled using an Initial Value Problem (IVP) of the
form

¤𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)), 𝑡 ∈ [𝑡start , 𝑡final] ⊂ ℝ,

𝑥(𝑡start) = 𝑥init ,
(2.3)

with 𝑥init, 𝑥(𝑡) ∈ ℝ𝑛𝑥 , 𝑢(𝑡) ∈ ℝ𝑛𝑢 for all 𝑡 ∈ [𝑡start , 𝑡final], where 𝑛𝑥 ,
𝑛𝑢 ∈ ℕ, and with a vector field 𝑓 : ℝ𝑛𝑥 ×ℝ𝑛𝑢 → ℝ𝑛𝑥 .

We refer to this setting as the sampled data case, cf. [101, Section 2.1].
The idea of the so-called sampling is now to identify the transition
map 𝜃 with the solution of the IVP (2.3). To be able to reasonably do
so, we have tomake sure that a solution of the IVP (2.3) exists and that
it is unique. This can be guaranteed by means of CARATHEODORY’s The-
orem, see e.g. [178, Theorem 54, p. 476][178]: Sontag (1998), Mathematical

Control Theory
. To that end, we will from now

on assume that the prerequisites of CARATHEODORY’s Theorem are sat-
isfied. In particular, we make the slightly stronger Assumption 2.1 for
𝑓 as it is formulated in [101, Assumption 2.4]. Assumption 2.1 allows
applying CARATHEODORY’s Theorem to the IVP (2.3), cf. [101, p. 16].

In this thesis ‖·‖ denotes the Eu-
clidean norm.

Assumption 2.1 The vector field 𝑓 : ℝ𝑛𝑥 ×ℝ𝑛𝑢 → ℝ𝑛𝑥 is continuous
and LIPSCHITZ in its first argument in the following sense: for each
𝑟 > 0 there exists a constant 𝐿(𝑟) > 0 such that the inequality

 𝑓 (𝑥1 , 𝑢

) − 𝑓 (𝑥2 , 𝑢
)

 ≤ 𝐿(𝑟)

𝑥1 − 𝑥2

holds for all 𝑥1, 𝑥2 ∈ ℝ𝑛𝑥 and all 𝑢 ∈ ℝ𝑛𝑢 with

𝑥1

 < 𝑟,

𝑥2

 < 𝑟
and ‖𝑢‖ < 𝑟.

2.1. Basic principle and algorithm 15

Furthermore, CARATHEODORY’s Theorem requires that the continuous
control 𝑢(·) is a locally LEBESGUE integrable function, i.e., we from here
on assume that 𝑢(·) ∈ 𝐿∞([𝑡start , 𝑡final],ℝ𝑛𝑢). Definition: 𝐿∞([𝑡start , 𝑡final],ℝ𝑛𝑢)

𝐿∞([𝑡start , 𝑡final],ℝ𝑛𝑢) is the space
of essentially bounded measurable
maps from [𝑡start , 𝑡final] ⊂ ℝ to
ℝ𝑛𝑢 . For details, see e.g. [178, Sec-
tion C.1] or [1, Paragraph 2.10].

In NMPC, a common
choice is to use piecewise constant controls. As piecewise constant
functions are a subset of 𝐿∞([𝑡start , 𝑡final],ℝ𝑛𝑢), CARATHEODORY’s The-
orem guarantees the existence of a unique solution also for this type
of control.

Now that we have made sure that a solution of IVP (2.3) exists, we can
specify the choice of the transition map in a formal way.

Definition 2.5 We denote the solution of the IVP (2.3) by

𝑥(·; 𝑥init , 𝑢) : [𝑡start , 𝑡final] → ℝ𝑛𝑥

and its evaluation at 𝑡 ∈ [𝑡start , 𝑡final] by
𝑥(𝑡; 𝑥init , 𝑢) ∈ ℝ𝑛𝑥 ,

where we highlight the dependence on the initial state 𝑥init ∈ ℝ𝑛𝑥

and the control 𝑢(·) ∈ 𝐿∞([𝑡start , 𝑡final],ℝ𝑛𝑢).

To define the transition map for the sampled data case, we need
𝑥
(·; 𝑥 𝑗 , 𝑢 𝑗) which, in accordance with Definition 2.5, is the solution

of the IVP
In contrast to Definition 2.5, the ini-
tial value has changed from 𝑥init to
𝑥 𝑗 in the expression 𝑥

(·; 𝑥 𝑗 , 𝑢 𝑗) .¤𝑥(𝑡) = 𝑓
(
𝑥(𝑡), 𝑢 𝑗(𝑡)) , 𝑡 ∈ [𝑡 𝑗 , 𝑡 𝑗+1],

𝑥
(
𝑡 𝑗
)
= 𝑥 𝑗 .

(2.4)

In other words, 𝑥
(·; 𝑥 𝑗 , 𝑢 𝑗) is the trajectory of the controlled system

originating from the current state 𝑥 𝑗 and controlled using the control
𝑢 𝑗(·) ∈ 𝐿∞ ([𝑡 𝑗 , 𝑡 𝑗+1],ℝ𝑛𝑢

)
over the 𝑗-th sampling interval according to

the model represented by the IVP (2.4). Finally, we set
The control space 𝑈 is accord-
ingly restricted to be a subspace of
𝐿∞

([𝑡 𝑗 , 𝑡 𝑗+1],ℝ𝑛𝑢
)
and the control

sequence space 𝑈𝑁 to be a sub-
space of 𝐿∞

([𝑡 𝑗 , 𝑡 𝑗 + 𝑇],ℝ𝑛𝑢
)
.

𝜃
(
𝑥 𝑗 , 𝑢 𝑗

)
= 𝑥

(
𝑡 𝑗+1; 𝑥 𝑗 , 𝑢 𝑗

) ∀𝑗 ∈ ℕ0. (2.5)

With the choice (2.5), the states 𝑥 𝑗+1 of the discrete-time system (2.2)
coincide with 𝑥

(
𝑡 𝑗+1; 𝑥 𝑗 , 𝑢 𝑗

)
, i.e., the values of the continuous state at

the sampling time 𝑡 𝑗+1 for all 𝑗 ∈ ℕ0, cf. [101, Section 2.2, Thm. 2.7] [101]: Grüne et al. (2017), Nonlinear
Model Predictive Control

.

2.1.3. Computation of the control sequence

We have now discussed the general setting of NMPC and elaborated
on how we can model the system evolution using an ODE if we are
given a control. But, we still need to clarify how we come up with a
control sequence, and with it the feedback value. As mentioned at the
beginning of this chapter, NMPC methods can vary strongly in this as-
pect. Hence, we do not attempt to provide a comprehensive overview
here. Instead, we focus on the case where the control sequence is
computed by solving an OCP at each sampling time. Moreover, we
limit our presentation to an OCP formulation for which our numer-
ical methods are designed. Along the way, we occasionally point to
other common variations, but refer to [101, 159]

[159]: Rawlings et al. (2022), Model pre-
dictive control: Theory, computation,
and design

for comprehensive
overviews and more details.

16 2. Nonlinear Model Predictive Control

With that said, we focus on the case where we first compute a con-
tinuous control 𝑢(·) by solving an OCP and then extract the control
sequence

(
𝑢 𝑗0 , . . . , 𝑢

𝑗
𝑁

)
from it. The OCP has the form

min
𝑥(·), 𝑢(·)

∫ 𝑡 𝑗+𝑇hor

𝑡 𝑗
Ψ(𝑥(𝑡), 𝑢(𝑡))d𝑡 +Φ(

𝑥
(
𝑡 𝑗 + 𝑇hor

))
s.t. ¤𝑥(𝑡) = 𝑓

(
𝑥(𝑡), 𝑢 𝑗(𝑡)) , 𝑡 ∈ 𝐼hor

(
𝑡 𝑗
)
,

0 ≤ ℎ(𝑥(𝑡), 𝑢(𝑡)), 𝑡 ∈ 𝐼hor
(
𝑡 𝑗
)
,

0 = 𝑟e (𝑥 (𝑡 𝑗) , 𝑥 (𝑡 𝑗 + 𝑇hor
))
,

0 ≤ 𝑟i (𝑥 (𝑡 𝑗) , 𝑥 (𝑡 𝑗 + 𝑇hor
))
,

𝑥
(
𝑡 𝑗
)
= 𝑥 𝑗 ,

(2.6)

with 𝐼hor
(
𝑡 𝑗
)
≔ [𝑡 𝑗 , 𝑡 𝑗 + 𝑇hor] and

Ψ : ℝ𝑛𝑥 ×ℝ𝑛𝑢 → ℝ,

Φ : ℝ𝑛𝑥 → ℝ,

ℎ : ℝ𝑛𝑥 ×ℝ𝑛𝑢 → ℝ𝑛ℎ ,

𝑟e : ℝ𝑛𝑥 ×ℝ𝑛𝑥 → ℝ𝑛𝑟e ,

𝑟i : ℝ𝑛𝑥 ×ℝ𝑛𝑥 → ℝ𝑛𝑟i ,

(2.7)

where 𝑛ℎ , 𝑛𝑟e , 𝑛𝑟i ∈ ℕ. An appropriate choice for the spaces of 𝑥(·)
and 𝑢(·) areDefinition:𝑊1,∞ (

𝐼hor
(
𝑡 𝑗
)
,ℝ𝑛𝑥

)
𝑊1,∞ (

𝐼hor
(
𝑡 𝑗
)
,ℝ𝑛𝑥

)
is, as usual,

the Sobolev space that contains
all functions which themselves and
whose first derivatives are measur-
able and essentially bounded func-
tions. For details see e.g. [1, Def. 3.2].

𝑥(·) ∈ 𝑊1,∞ (
𝐼hor

(
𝑡 𝑗
)
,ℝ𝑛𝑥

)
,

𝑢(·) ∈ 𝐿∞(𝐼hor
(
𝑡 𝑗
)
,ℝ𝑛𝑢). (2.8)

The OCP (2.6) covers a wide range of problem formulations as many
other relevant OCP formulations can be transformed into the form
(2.6). For a good overview of these transformations we refer to [138,
Section 5.1][138]: Meyer (2020), “Numerical solu-

tion of optimal control problems with
explicit and implicit switches”

. In particular, OCPs with non-autonomous ODEs, as we will
encounter them in Chapter 6, can be transformed to OCPs of the form
(2.6) by introducing an additional state.

From OCP (2.6) we can also clearly see one of the main advantages of
NMPC, namely the possibility to treat a wide range of constraints. The
formulation (2.6) covers constraint types that reach from simple box
constraints over pure state or control constraints all the way to mixed
state-control constraints, boundary constraints and even periodicity
constraints – and all of that also in nonlinear form.

Again, we would like to formulate conditions that assert the existence
of solutions, this time of OCP (2.6). However, since the OCP (2.6) is an
infinite-dimensional optimization problem, answering this question
needs further theory regarding optimization in BANACH spaces. As the
main focus of this thesis lays on numerical methods, we do not cover
this theory here in detail. We refer to [138, Chapter 5] for a concise
overview of the required theory. For a detailed discussion of the the-
ory we further refer to [88, Chapter 2][88]: Gerdts (2024), Optimal Control of

ODEs and DAEs
. We instead only state the

common smoothness assumption for the appearing functions that
are needed to assert existence of solutions, cf. [138, Assumption 5.2],
[88, Assumption 2.2.5].

2.1. Basic principle and algorithm 17

Assumption 2.2 Let

(�̂� , �̂�) ∈ 𝑊1,∞ (
𝐼hor

(
𝑡 𝑗
)
,ℝ𝑛𝑥

) × 𝐿∞(𝐼hor
(
𝑡 𝑗
)
,ℝ𝑛𝑢)

be given and let 𝑀 be a sufficiently large convex compact neigh-
bourhood of {(�̂�(𝑡), �̂�(𝑡)) ∈ ℝ𝑛𝑥 ×ℝ𝑛𝑢

�� 𝑡 ∈ 𝐼hor
(
𝑡 𝑗
)}

The functions Ψ, Φ, 𝑓 , ℎ, 𝑟e, 𝑟i that appear in the OCP (2.6) satisfy
the following conditions:

(i) Φ is continuously differentiable.
(ii) 𝑟e, 𝑟i are continuously differentiable with respect to both ar-

guments.
(iii) The mappings

(𝑥, 𝑢) ↦→ Ψ(𝑥, 𝑢),
(𝑥, 𝑢) ↦→ 𝑓 (𝑥, 𝑢),
(𝑥, 𝑢) ↦→ ℎ(𝑥, 𝑢)

are continuously differentiable in𝑀 uniformly for 𝑡 ∈ 𝐼hor
(
𝑡 𝑗
)
.

(iv) The partial derivatives 𝜕𝑥Ψ, 𝜕𝑢Ψ, 𝜕𝑥 𝑓 , 𝜕𝑢 𝑓 , 𝜕𝑥ℎ, 𝜕𝑢ℎ are bounded
in 𝐼hor

(
𝑡 𝑗
) ×𝑀.

If we have found a solution 𝑢(·) of the OCP (2.6), we obtain the control
sequence by setting

𝑢 𝑗𝑘 = 𝑢(·)| 𝑡∈[𝑡 𝑗+𝑘𝑇,𝑡 𝑗+(𝑘+1)𝑇]. (2.9)

That means, we divide the OCP solution over the sampling intervals.

As already stated in Definition 2.3, see Equation (2.1), the feedback
value 𝑢 𝑗 is given by the first element of the control sequence, i.e. we
have

𝑢 𝑗 = 𝑢 𝑗0 = 𝑢(·)| 𝑡∈[𝑡 𝑗 ,𝑡 𝑗+𝑇]. (2.10)

The feedback value 𝑢 𝑗 thus depends directly on the current state. In
that sense we make the following definition.

Definition 2.6 The map
𝜇 : 𝑋 → 𝑈

that maps
𝑥 𝑗 ↦→ 𝑢 𝑗 ,

with 𝑢 𝑗 given by Equation (2.10), where 𝑢(·) is an (approximate) so-
lution of the OCP (2.6), is called the (NMPC) feedback law. If 𝑢(·) is
indeed a solution of the OCP (2.6), we call 𝜇 the nominal (NMPC)
feedback law and set it apart by denoting it with 𝜇∗.

18 2. Nonlinear Model Predictive Control

With Definition 2.6 in place, we can define what nominal NMPC is.

Reminder: Transition map

𝜃 is the transition map as defined
in Definition 2.4.

Our methods as we present them in
this thesis fall into the category of
inexact NMPC.

Definition 2.7 If we apply the nominal feedback law 𝜇∗ at all sam-
pling times, the resulting closed-loop system

𝑥 𝑗+1 = 𝜃
(
𝑥 𝑗 , 𝜇∗

(
𝑥 𝑗

))
is called the nominal closed-loop system. If further the nominal
closed-loop system describes the true behaviour of the system
states, i.e. no disturbances occur, we perform nominal NMPC.

If we use a control 𝑢(·) that is not necessarily a solution of OCP (2.6),
we are considering an inexact NMPC or nonoptimal NMPC method.

2.1.4. NMPC algorithm

Now that we have filled the main idea of NMPC with details, we con-
clude our description of NMPC by stating the main algorithm as we
also employ it throughout this thesis.

In practice, the current state has
usually to be measured.

Algorithm 2.1: Main NMPC algorithm.

Input: Time grid 𝑡0 < 𝑡1 < . . . < 𝑡 𝑗 < . . .

At each sampling time 𝑡 𝑗 , 𝑗 ∈ ℕ0 do:
1 𝑥 𝑗 ← Get current state
2 𝑢(·) ← (Approximately) solve the OCP (2.6) to obtain a control
3

(
𝑢 𝑗0 , . . . , 𝑢

𝑗
𝑁

)
← Extract control sequence using Equation (2.9)

4 𝑢 𝑗 ← Set feedback value using Equation (2.1)
5 Apply 𝑢 𝑗 to the system

An important observation is that only the current state 𝑥 𝑗 changes
in the OCP (2.6) between two sampling times. In that sense, we deal
with a sequence of parametric OCPs during our NMPC method. We
will exploit this parametric property in our numerical method.

2.2. Stability results

One of our contributions presented in Chapter 4 of this thesis is a
proof that an inexact NMPC scheme like ours can still lead to stability.
In the current section, we introduce terminology and stability results
that we will later need in Chapter 4. In Subsection 2.2.1, we present sta-
bility results for general nonlinear systems. How these general stabil-
ity results can be applied to NMPC is described in Subsection 2.2.2.

2.2. Stability results 19

2.2.1. Stability results for nonlinear systems

Let 𝑌 be a metric space. We denote its metric by 𝑑𝑌 : 𝑌 ×𝑌 → ℝ+0 . We
consider a nonlinear system

Whenwe turn back to NMPC, the sys-
tem state 𝑥 𝑗 will take the role of 𝑦 𝑗
and 𝜃

(
𝑥 𝑗 , 𝜇

(
𝑥 𝑗

))
the role of 𝜉

(
𝑦 𝑗

)
.

𝑦 𝑗+1 = 𝜉
(
𝑦 𝑗

)
, 𝑗 ∈ ℕ0

𝑦0 ∈ 𝑌 (2.11)

with a not necessarily continuous map 𝜉 : 𝑌 → 𝑌. If we want to high-
light the dependence of 𝑦 𝑗 on the initial state 𝑦0, we also write 𝑦 𝑗

(
𝑦0) .

In the following, we define what it means for such a system to be sta-
ble and how stability can be verified using LYAPUNOV functions.

We start by making two definitions in connection with the nonlinear
system (2.11).

Definition 2.8 A state 𝑦∗ ∈ 𝑌 is called an equilibrium of the nonlin-
ear system (2.11) if

𝜉
(
𝑦∗

)
= 𝑦∗.

Definition 2.9 A set Γ ⊆ 𝑌 is called forward invariant for the non-
linear system (2.11) if

𝜉
(
𝑦
) ∈ Γ ∀𝑦 ∈ Γ.

Next, we follow [101, Definition 2.13] [101]: Grüne et al. (2017), Nonlinear
Model Predictive Control

and use comparison functions
to define asymptotic stability. We define the following four classes of
comparison functions.

𝑟

𝛼
(𝑟)

(a) Typical K function

𝑟

𝛼
(𝑟)

(b) Typical K∞ function

𝑟

𝛿(𝑟
)

(c) Typical L function

Figure 2.2.: Illustrations of typical func-
tions of the comparison function
classes.

Definition 2.10 We define the following four classes of comparison
functions.

K≔

{
𝛼 : ℝ+0 → ℝ+0

���� 𝛼 is continuous & strictly
increasing with 𝛼(0) = 0

}
,

K∞ ≔

{
𝛼 ∈ K

���� 𝛼 is unbounded
}
,

L≔

{
𝛿 : ℝ+0 → ℝ+0

���� 𝛿 is continuous & strictly
decreasing with lim𝑠→∞ 𝛿(𝑠) = 0

}
,

KL≔

{
𝛽 : ℝ+0 ×ℝ+0 → ℝ+0

���� 𝛽 is continuous, 𝛽(·, 𝑠) ∈ K,
𝛽(𝑟, ·) ∈ L ∀𝑠, 𝑟 ∈ ℝ+0

}
.

HAHN was the first to use comparison functions in [106]. About two
decades later, comparison functions also gained popularity in non-
linear control theory, especially due to SONTAG, see e.g. [177].

[106]: Hahn (1967), Stability of Motion
[177]: Sontag (1989), “Smooth stabiliza-
tion implies coprime factorization”

As a last step before we define asymptotic stability, we introduce for
a given radius 𝑟 > 0 the ball

B𝑟
(
𝑦∗

)
≔

{
𝑦 ∈ 𝑌 �� 𝑑𝑌 (

𝑦, 𝑦∗
)
< 𝑟

}
.

We follow the presentation in [101, Definition 2.14] and define stability
in the following way.

20 2. Nonlinear Model Predictive Control

Definition 2.11 Let 𝑦∗ be an equilibrium and Γ ⊂ 𝑌 be a forward
invariant set of the nonlinear system (2.11). We say that 𝑦∗ is

(i) locally asymptotically stable if there exists a function
𝛽 ∈ KL and 𝑟 > 0 such that

𝑑𝑌
(
𝑦 𝑗

(
𝑦0) , 𝑦∗) ≤ 𝛽

(
𝑑𝑌

(
𝑦0 , 𝑦∗

)
, 𝑗

)
(2.12)

holds for all 𝑦0 ∈ B𝑟
(
𝑦∗

)
and all 𝑗 ∈ ℕ0,

(ii) asymptotically stable on a forward invariant set Γ 3 𝑦∗ if
there exists 𝛽 ∈ KL such that Equation (2.12) is satisfied for
all 𝑦0 ∈ Γ and all 𝑗 ∈ ℕ0,

(iii) globally asymptotically stable if there exists 𝛽 ∈ KL such
that Equation (2.12) is satisfied for all 𝑦0 ∈ 𝑌 and all 𝑗 ∈ ℕ0.

Inequality (2.12) means that the distance of the current state 𝑦 𝑗
(
𝑦0)

to the equilibrium 𝑦∗ generally decreases with an increasing iteration
number 𝑗 and is bounded by the initial distance, i.e., the distance of
the initial state 𝑦0 to 𝑦∗.

In this thesis, we frequently say that
the nonlinear system as such is
asymptotically stable. With that we
mean that an asymptotically stable
equilibrium 𝑦∗ exists.

For other variants of stability, e.g. 𝑃-
practically asymptotic stability, see
e.g. [101, Section 2.3].

The distance does not need to de-
crease in every iteration however.

For an interesting survey on how
LYAPUNOV’s stability theorem has in-
fluenced the field of feedback con-
trol, we refer to [139].

For NMPC, however, verifying asymptotic stability by checking Defi-
nition 2.11 directly is often difficult. Instead, it is easier to establish
asymptotic stability by finding a LYAPUNOV function. We define LYA-
PUNOV functions as in [101, Definition 2.18]

[101]: Grüne et al. (2017), Nonlinear
Model Predictive Control

.

Definition 2.12 Consider the nonlinear system (2.11), a point 𝑦∗ ∈ 𝑌
and let 𝑆 ⊆ 𝑌 be a subset of the state space. A function𝑉 : 𝑆→ ℝ+0
is called a LYAPUNOV function on 𝑆, if the following conditions are
satisfied:

(i) There exist functions 𝛼1 , 𝛼2 ∈ K∞ such that

𝛼1
(
𝑑𝑌

(
𝑦, 𝑦∗

)) ≤ 𝑉 (
𝑦
) ≤ 𝛼2

(
𝑑𝑌

(
𝑦, 𝑦∗

))
holds for all 𝑦 ∈ 𝑆.

(ii) There exists a function 𝛼3 ∈ K such that

𝑉
(
𝜉
(
𝑦
)) ≤ 𝑉 (

𝑦
) − 𝛼3

(
𝑑𝑌

(
𝑦, 𝑦∗

))
holds for all 𝑦 ∈ 𝑆 with 𝜉

(
𝑦
) ∈ 𝑆.

The following Theorem 2.1 justifies looking for a LYAPUNOV function
instead of checking Definition 2.11 for asymptotic stability directly and
is taken from [101, Theorem 2.19].

Theorem 2.1 — Asymptotic stability via Lyapunov functions.
Let 𝑦∗ be an equilibrium of the nonlinear system (2.11). If there ex-
ists a LYAPUNOV function 𝑉 on 𝑆, then 𝑦∗ is

(i) locally asymptotically stable if 𝑆 contains a ball B𝑟
(
𝑦∗

)
with

𝜉
(
𝑦
) ∈ 𝑆 for all 𝑦 ∈ B𝑟

(
𝑦∗

)
,

(ii) asymptotically stable on 𝑆 if 𝑆 is forward invariant and 𝑦∗ ∈ 𝑆,
(iii) globally asymptotically stable if 𝑆 = 𝑌.

To prove Theorem 2.1, we construct the functions 𝛼1, 𝛼2, 𝛼3 from the
LYAPUNOV function 𝑉 . For the full proof, we refer to [101, p. 33-35].

2.2. Stability results 21

2.2.2. Applicability to NMPC

In the NMPC case, the nonlinear system (2.11) is replaced by the closed-
loop system

𝑥 𝑗+1 = 𝜃
(
𝑥 𝑗 , 𝜇

(
𝑥 𝑗

))
, (2.13)

cf. Definition 2.7. Moreover, the transition map 𝜃 is given by the solu-
tion of the IVP (2.4), cf. Equation (2.5). So in our NMPC setting, a con-
tinuous process underlies the discrete-time system (2.11). This case
is referred to as a sampled data system. The stability results that we
have presented in Subsection 2.2.1 only apply to the states 𝑦 𝑗 at the
sampling times 𝑡 𝑗 and not over the entire sampling intervals [𝑡 𝑗 , 𝑡 𝑗+1).
In fact, it is also possible to extend the notion of stability to sampled
data systems and ensure that the system is stable over the entire
sampling intervals. For a detailed discussion on this topic, we refer to
[101, Section 2.4].

We have not considered sampled data systems here, as we focus in
our stability proof in Chapter 4 on the interplay of the system and the
optimizer, which forms a discrete-time system.

Efficient Numerical Methods for
NMPC 3.

3.1 OCP solution approaches 23
3.2 DMS discretization . . . 25
3.3 SQP method 31
3.4 RTI 40
3.5 MLI 44

Reminder: OCP (3.1)

▶ OCP (3.1) appeared already
as OCP (2.6) on page 16.

▶ 𝑥(·) ∈ 𝑊1,∞ (
𝐼hor

(
𝑡 𝑗
)
,ℝ𝑛𝑥

)
is

the state trajectory.
▶ 𝑢(·) ∈ 𝐿∞(𝐼hor

(
𝑡 𝑗
)
,ℝ𝑛𝑢) is

the control trajectory.
▶ 𝑡 𝑗 is the 𝑗-th sampling time,

see Definition 2.1.
▶ 𝑇hor is the length of the pre-

diction horizon, see Defini-
tion 2.2.

▶ 𝑥 𝑗 ∈ ℝ𝑛𝑥 is the current sys-
tem state, see Definition 2.4.

▶ 𝐼hor(𝑡 𝑗) ≔ [𝑡 𝑗 , 𝑡 𝑗 + 𝑇hor].
▶ Ψ, Φ, 𝑓 , ℎ, 𝑟e , and 𝑟i are

functions satisfying Assump-
tions 2.1 and 2.2 and, from
Subsection 3.3.2 on, Assump-
tion 3.2. See Equation (2.7)
for their dimensions.

As explained in Chapter 2, the main computational task in NMPC is
solving the OCPs in the second step of the NMPC Algorithm 2.1. For clar-
ity, we restate the OCP as it appears at each NMPC sampling time.

min
𝑥(·), 𝑢(·)

∫ 𝑡 𝑗+𝑇hor

𝑡 𝑗
Ψ(𝑥(𝑡), 𝑢(𝑡))d𝑡 +Φ(

𝑥
(
𝑡 𝑗 + 𝑇hor

))
s.t. ¤𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)), 𝑡 ∈ 𝐼hor

(
𝑡 𝑗
)
,

0 ≤ ℎ(𝑥(𝑡), 𝑢(𝑡)), 𝑡 ∈ 𝐼hor
(
𝑡 𝑗
)
,

0 = 𝑟e (𝑥 (𝑡 𝑗) , 𝑥 (𝑡 𝑗 + 𝑇hor
))
,

0 ≤ 𝑟i (𝑥 (𝑡 𝑗) , 𝑥 (𝑡 𝑗 + 𝑇hor
))
,

𝑥
(
𝑡 𝑗
)
= 𝑥 𝑗 .

(3.1)

OCP (3.1) is an infinite-dimensional optimization problem. We provide
a brief overview of different classes of solution methods available to
address OCP (3.1) in Section 3.1. Our numerical method employs the
Direct Multiple Shooting (DMS) method to discretize OCP (3.1) and the
Sequential Quadratic Programming (SQP) method to solve the result-
ing Nonlinear Program (NLP). We explain DMS in Section 3.2 and the
SQP method in Section 3.3.

Providing feedback to the system as quickly as possible is crucial
for many NMPC applications. Consequently, highly efficient numeri-
cal methods are required to compute new feedback rapidly. One way
to achieve this is by exploiting the fact that subsequent OCPs are only
parametrized by the current state 𝑥 𝑗 . The Real-Time Iterations (RTI)
scheme, based on DMS and the SQPmethod, is a successful approach
to leverage this structure. An enhancement of RTI is the Multi-Level
Iterations (MLI) scheme. We present the RTI scheme in Section 3.4 and
the MLI scheme in Section 3.5.

3.1. Solution approaches for Optimal Control
Problems

[26]: Biral et al. (2016), “Notes on Nu-
merical Methods for Solving Optimal
Control Problems”
[157]: Rao (2010), “A Survey of Numeri-
cal Methods for Optimal Control”
[158]: Rao (2014), “Trajectory Optimiza-
tion: A Survey”
[181]: Teo et al. (2021), Applied and
Computational Optimal Control

In the following, our primary goal is to position our solution approach,
which uses DMS for discretization and the SQPmethod for solving the
NLP, within the broad spectrum of existing approaches. A comprehen-
sive survey of OCP solution methods is beyond the scope of this the-
sis. Our categorization of solution approaches is common, though not
the only possible one, and is certainly incomplete with respect to all
existing methods. For detailed surveys, we refer to [26, 157, 158]. The
textbook [181] contains numerous references to specific methods.

24 3. Efficient Numerical Methods for NMPC

Optimal
Control Problem

First discretize,
then optimize

First optimize,
then discretize

Dynamic
Programming

HAMILTON-JACOBI-BELLMAN
theory

Direct approach Indirect approach

SQP methods
Interior-Point methods

Gradient methods
Penalty methods

Multiplier methods

Semismooth
NEWTON methods,

JOSEPHY-NEWTON methods,
Fixed-point iterations,
Projection methods

Indirect approach Direct approach

Semi-analytical
methods

Semismooth
NEWTON methods,

JOSEPHY-NEWTON methods,
Fixed-point iterations,
Projection methods

SQP methods
Interior-Point methods

Gradient methods
Penalty methods

Multiplier methods

Figure 3.1.: Classification of solution approaches for OCPs. Adapted from [88, Figure 1.9, p. 44]. Highlighted in red is where our
methods are located.

The classification of solution approaches we follow is illustrated in
Figure 3.1. The entire tree of methods, as shown in Figure 3.1, is di-
videded into the ”first discretize, then optimize” and the ”first opti-
mize, then discretize” approaches. The former is adopted in this the-
sis, while the latter is also known as the function space approach.

As the names suggest, in the ”first discretize, then optimize” approach,
we first discretize the infinite-dimensional OCP (3.1) to obtain a finite-
dimensional NLP. Subsequently, the resulting NLP is optimized us-
ing either direct or indirect methods. In direct methods, optimization
techniques such as the SQPmethod or interior-point methods are ap-
plied directly to the NLP. In indirect methods, the focus is on solving
the optimality conditions of the NLP.

The distinction between direct and
indirect methods is not always
clear-cut, as many direct meth-
ods are developed by considering
the optimality conditions. In some
cases, direct and indirect methods
are even equivalent. For instance,
applying the basic SQP method for
equality-constrained NLPs is equiv-
alent to applying NEWTON’s method
to its optimality conditions, see [143,
Section 18.1].

In the ”first optimize, then discretize” approach, the order of these
two steps is reversed. This means that methods operating in suit-
able function spaces are applied first, followed by discretization to
numerically implement these methods. In the optimization step, di-
rect or indirect methods can again be used, but unlike the previous
case, these methods operate in infinite-dimensional function spaces
instead of finite-dimensional ones. A selection of optimization meth-
ods for BANACH spaces can be found in [189][189]: Ulbrich (2009), “Optimization

Methods in Banach Spaces”
. A concise presentation

of necessary optimality conditions for infinite-dimensional problems
is provided in [88, Section 2.3][88]: Gerdts (2024), Optimal Control of

ODEs and DAEs
.

In the ”first optimize, then discretize” approach, researchers often use
the term indirect methods to specifically refer to methods based on
PONTRYAGIN’s Maximum Principle (PMP). For a collection of the origi-
nal works by PONTRYAGIN, see [151]

[151]: Pontryagin et al. (1986), The
mathematical theory of optimal
processes
[27]: Bock (1978), “Numerische Berech-
nung zustandsbeschränkter optimaler
Steuerungen mit der Mehrzielmeth-
ode”
[33]: Bulirsch (1971), “Die Mehrziel-
methode zur numerischen Lösung
von nichtlinearen Randwertproble-
men und Aufgaben der optimalen
Steuerung”

. The PMP provides first-order nec-
essary optimality conditions. From these conditions, the user must
manually derive a nonlinear Multipoint Boundary Value Problem (MP-
BVP). This step requires a thorough understanding of both general
control theory and the specific problem at hand. Moreover, this step
is typically not automatable. The MPBVP can then be solved using nu-
merical methods such as multiple shooting, cf. [27, 33]. In this sense,
these methods can be considered semi-analytical.

Two additional notable classes of approaches are Dynamic Program-
ming (DP) and HAMILTON-JACOBI-BELLMAN (HJB) theory.

3.2. Direct Multiple Shooting discretization 25

The cornerstone of DP is BELLMAN’s principle of optimality:

”An optimal policy has the property that, whatever the
initial state and initial decision are, the remaining deci-
sions must constitute an optimal policy with regard to
the state resulting from the first decision.”

— BELLMAN [18–20]

[18]: Bellman (1954), “The theory of
dynamic programming”
[19]: Bellman (1957), Dynamic Program-
ming
[20]: Bellman (1966), “Dynamic Pro-
gramming”

From this principle, the BELLMAN equation is derived for discrete-time
systems to determine the value function. DP originates from the study
of multi-stage decision processes, which encompass a wide range of
optimization problems. In particular, DP can be applied to OCPs, see,
e.g., [22] [22]: Bertsekas (2020), Dynamic pro-

gramming and optimal control
. HJB theory extends DP but primarily focuses on continuous-

time optimal control problems. The value function remains central to
the approach but is determined by the HJB equation.

To conclude this overview, we locate our method within this catego-
rization. In the first step of our method, we discretize OCP (3.1) us-
ing DMS. In the second step, we apply a tailored variant of the SQP
method to solve the resulting NLP. Thus, our approach falls into the
category of ”first discretize, then optimize” methods. Furthermore, it is
a direct approach, as we work with the NLPs rather than their optimal-
ity conditions. The main advantage of this approach is its numerical
robustness, which is generally considered superior to function space
approaches. Compared to the PMP, this approach frees the user from
particularly challenging and error-prone analytical tasks.

3.2. Direct Multiple Shooting discretization

[4]: Albersmeyer (2010), “Adjoint based
algorithms and numerical methods
for sensitivity generation and op-
timization of large scale dynamic
systems”
[27]: Bock (1978), “Numerische Berech-
nung zustandsbeschränkter optimaler
Steuerungen mit der Mehrzielmeth-
ode”
[29]: Bock et al. (1984), “A Multiple
Shooting Algorithm for Direct Solution
of Optimal Control Problems”
[33]: Bulirsch (1971), “Die Mehrziel-
methode zur numerischen Lösung
von nichtlinearen Randwertproble-
men und Aufgaben der optimalen
Steuerung”
[128]: Leineweber (1999), Efficient
reduced SQP methods for the op-
timization of chemical processes
described by large sparse DAE models
[150]: Plitt (1981), “Ein superlinear
konvergentes Mehrzielverfahren zur
direkten Berechnung beschränkter
optimaler Steuerungen”
[153]: Potschka (2011), “A direct method
for the numerical solution of optimiza-
tion problems with time-periodic PDE
constraints”

As discussed at the end of Section 3.1, we adopt a ”first discretize, then
optimize” approach. The task of this section is to discretize 3.1, i.e., to
transform 3.1 into a finite-dimensional NLP. Our chosen method for
this task is the Direct Multiple Shooting (DMS) method.

Originally, multiple shooting was developed for MPBVPs arising from
the application of PMP by BULIRSCH and BOCK [27, 33]. Later, PLITT intro-
duced it as a discretization technique for OCPs in his diploma thesis
[150], supervised by BOCK. Together, they published the seminal paper
on DMS for OCPs [29]. Initially, it was developed for ODE-constrained
OCPs. However, LEINEWEBER and coworkers extended it to DAEs in
[128–130]. POTSCHKA further extended it to PDEs [153]. Efficient struc-
ture exploitation strategies and sensitivity generation techniques, en-
abling the use of DMS for large-scale systems, were presented in [4,
165, 166]. Moreover, DMS has been implemented in several software
packages. The most prominent of these are MUSCOD-II [122], ACADO
[109], and its successor acados [194].

We describe DMS in the following subsections in four steps. First, in
Subsection 3.2.1, we explain how to discretize the control 𝑢(·). Next, we
introduce the state discretization in Subsection 3.2.2. Subsequently,
we explain how to discretize the constraints and the objective func-
tion in Subsection 3.2.3 and Subsection 3.2.4, respectively. Finally, we
present the resulting NLP in Subsection 3.2.5.

26 3. Efficient Numerical Methods for NMPC

3.2.1. Control discretization

The idea behind control discretization in DMS is to define the control
piecewise over a suitable partition of the control horizon of the OCP.
This partition is referred to as the shooting grid.

In NMPC, we have T= [𝑡 𝑗 , 𝑡 𝑗 +𝑇hor].

The shooting grid is not necessar-
ily equidistant, although this is com-
mon.

Definition 3.1 The partition 𝑡s = 𝜏0 < 𝜏1 < . . . < 𝜏𝑚 < 𝜏𝑀 = 𝑡f
of the control horizon T= [𝑡s , 𝑡f] ⊂ ℝ is called the shooting grid.
The points 𝜏𝑚 , 𝑚 = 0, . . . , 𝑀 are called shooting nodes, and the
intervals [𝜏𝑚 , 𝜏𝑚+1), 𝑚 = 0, . . . , 𝑀−1 are called shooting intervals.

For each shooting interval, we approximate the control 𝑢. Specifically,
for each shooting interval [𝜏𝑚 , 𝜏𝑚+1), 𝑚 = 0, . . . , 𝑀 −1 and each com-
ponent 𝑢𝑖 , 𝑖 = 0, . . . , 𝑛𝑢 − 1 of the control, we use a basis function

While the basis functions can differ
for each component and interval, it
is common to use the same basis
function for all shooting intervals.

𝜉𝑢𝑚,𝑖 : [𝜏𝑚 , 𝜏𝑚+1) ×ℝ𝑛𝑞𝑚,𝑖 → ℝ, (𝜏, 𝑞𝑚,𝑖) ↦→ 𝜉𝑢𝑚,𝑖
(
𝜏; 𝑞𝑚,𝑖

)
,

where 𝑞𝑚,𝑖 ∈ ℝ
𝑛𝑞𝑚,𝑖 are coefficients characterizing the basis function

𝜉𝑢𝑚,𝑖 . To ensure that the resulting controls belong to the control space
𝐿∞(T,ℝ𝑛𝑢), as specified on page 16, we require that

©­­«
𝜉𝑢𝑚,0
...

𝜉𝑢𝑚,𝑛𝑢−1

ª®®¬ ∈ 𝐿∞([𝜏𝑚 , 𝜏𝑚+1),ℝ𝑛𝑢).

We collect the coefficients corresponding to the same shooting inter-
val in a vector

It holds 𝑛𝑞𝑚 =
∑𝑛𝑢−1
𝑖=0 𝑛𝑞𝑚,𝑖 and

𝑛𝑞 =
∑𝑀−1
𝑚=0 𝑛𝑞𝑚 .

𝑞𝑚 ≔ (𝑞𝑇𝑚,0 , . . . , 𝑞𝑇𝑚,𝑛𝑢−1)𝑇 ∈ ℝ𝑛𝑞𝑚 . (3.2)

Similarly,
𝑞 ≔ (𝑞𝑇0 , . . . , 𝑞𝑇𝑀−1)𝑇 ∈ ℝ𝑛𝑞 (3.3)

denotes the collection of all coefficients. The control profile charac-
terized by the coefficients 𝑞 for a given choice of basis functions is
denoted by 𝑢

(
𝑞
)
. In other words, 𝑢

(
𝑞
)
is defined by

𝑢
(
𝜏; 𝑞

)
≔

©­­«
𝜉𝑢𝑚,0

(
𝜏; 𝑞𝑚,0

)
...

𝜉𝑢𝑚,𝑛𝑢−1
(
𝜏; 𝑞𝑚,𝑛𝑢−1

)ª®®¬, (3.4)

for 𝜏 ∈ [𝜏𝑚 , 𝜏𝑚+1), 𝑚 = 0, . . . , 𝑀 − 1.

■ Example 3.1 The two most common choices for basis functions are:

(i) Constant functions, i.e.,

𝜉𝑢𝑚,𝑖
(
𝜏, 𝑞𝑚,𝑖

)
= 𝑞𝑚,𝑖 ∈ ℝ, ∀𝜏 ∈ [𝜏𝑚 , 𝜏𝑚+1),

(ii) Linear functions, i.e., with 𝑞𝑚,𝑖 = (𝑞l
𝑚,𝑖 , 𝑞

r
𝑚,𝑖)𝑇 ∈ ℝ2, we set

𝜉𝑢𝑚,𝑖
(
𝜏, 𝑞𝑚,𝑖

)
=

𝜏𝑚+1 − 𝜏
𝜏𝑚+1 − 𝜏𝑚

𝑞l
𝑚,𝑖 +

𝜏 − 𝜏𝑚
𝜏𝑚+1 − 𝜏𝑚

𝑞r
𝑚,𝑖 .

■

3.2. Direct Multiple Shooting discretization 27

To ensure that the control is continuous, we can use continuous basis
functions combined with control continuity conditions.

Definition 3.2 Let basis functions 𝜉𝑢𝑚,𝑖 be given. Continuity of the 𝑖-
th control component at the 𝑚-th shooting node, with 0 < 𝑚 < 𝑀,
is ensured by adding the (control) continuity condition

0 = 𝜉𝑢𝑚,𝑖
(
𝜏𝑚 , 𝑞𝑚,𝑖

) − 𝜉𝑢𝑚−1,𝑖
(
𝜏𝑚 , 𝑞𝑚−1,𝑖

)
(3.5)

to the DMS NLP.

3.2.2. State discretization

In single shooting, we introduce a
state variable only for the initial
state, while in collocation methods,
several collocation points are used
on each interval.

One of themain features that distinguishes DMS fromother discretiza-
tion techniques, such as Direct Single Shooting or Direct Collocation,
is that it introduces a state variable for each shooting node.

𝑛𝑠 ≔ (𝑀 + 1)𝑛𝑥

Definition 3.3 For each shooting node 𝜏𝑚 , we introduce a variable
𝑠𝑚 ∈ ℝ𝑛𝑥 that represents the state at the shooting node and is
called a node value. We collect the node values in a single vector

𝑠 ≔
©­­«
𝑠0
...
𝑠𝑀

ª®®¬ ∈ ℝ𝑛𝑠 .

These state variables serve as initial values for 𝑀 IVPs. The IVP with
the initial state 𝑠𝑚 determines the state trajectory 𝑥𝑚 on the 𝑚-th
shooting interval and is given by

Reminder: 𝑀

𝑀 denotes the number of shooting
intervals, see Definition 3.1.

The independence of the IVPs for
the shooting intervals allows effi-
cient parallelization of the compu-
tationally expensive ODE integra-
tion step.

¤𝑥𝑚(𝜏) = 𝑓
(
𝑥𝑚(𝜏), 𝑢 (

𝜏; 𝑞
))
, 𝜏 ∈ [𝜏𝑚 , 𝜏𝑚+1),

𝑥𝑚(𝜏𝑚) = 𝑠𝑚 .
(3.6)

The existence of a unique solution
for IVP (3.6) is ensured by Assump-
tion 2.1, as discussed on page 14.

We denote the solution of IVP (3.6) by 𝑥𝑚
(
𝜏; 𝑠𝑚 , 𝑞𝑚

)
or by 𝑥

(
𝜏; 𝑠𝑚 , 𝑞𝑚

)
whenever the respective shooting interval is clear from the context.

In most real-world applications, the state trajectory must be contin-
uous over the entire control horizon. However, so far, the state vari-
ables and IVPs for the individual shooting intervals are independent
of each other, which can lead to discontinuities in the state trajectory
at the shooting nodes. To address this, we enforce continuity at the
shooting nodes by introducing the so-called matching conditions.

The matching conditions ensure
that the endpoint of the state trajec-
tory on the 𝑚-th shooting interval
coincides with the initial state 𝑠𝑚+1
on the next shooting interval.

Definition 3.4 To ensure continuity of the state trajectory 𝑥 over the
entire control horizon T, we impose the matching conditions:

𝑥
(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚

) − 𝑠𝑚+1 = 0, 𝑚 = 0, . . . , 𝑀 − 1. (3.7)

While introducing additional optimization variables 𝑠𝑚 generally in-
creases the overall problem dimensions of the final NLP, the problem
structure induced by the matching conditions allows the application
of a tailored SQP method.

28 3. Efficient Numerical Methods for NMPC

Figure 3.2.: Illustration of the control
and state discretization in DMS. The
control horizon T = [𝑡s , 𝑡f] is divided
over the shooting grid 𝑡s = 𝜏0 <
𝜏1 < . . . < 𝜏𝑚 < 𝜏𝑀 = 𝑡f . For each
shooting node, a node value 𝑠𝑀 is in-
troduced. Over each shooting interval,
coefficients 𝑞𝑚 determine the control.
The colored arrows indicate how the
matching conditions (3.7) enforce con-
tinuity of the state trajectory. 𝜏0 𝜏1 𝜏2 𝜏3 𝜏𝑀−1 𝜏𝑀

Co
nt
ro
l

St
at
e

𝑠0

𝑠1 𝑠2
𝑠3

𝑠𝑀−1

𝑠𝑀

𝑞0

𝑞1
𝑞2 𝑞𝑀−1

𝑥
(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚

) − 𝑠𝑚+1
!
= 0

· · ·

· · ·

In this tailored SQP method, the state variables 𝑠𝑚 , 𝑚 = 1, . . . , 𝑀 can
be eliminated from the subproblems. This elimination technique is
called condensing. Thus, the additional computational workload re-
quired to handle more optimization variables is reduced, and the ad-
vantages of DMS outweigh this overhead in most applications. We de-
scribe the SQPmethod and the condensing technique in Section 3.3.

A major advantage of DMS, especially compared to single shooting, is
that it is significantly easier to find initial guesses for the optimiza-
tion variables for which the IVPs are solvable. For example, consider
an OCP for chemical processes. In the single shooting setting, we only
guess the initial controls 𝑞 and the concentrations at 𝜏0. A forward in-
tegration with these guesses over the entire control horizon T can
easily lead to negative concentrations. However, the process model
might not be defined for negative concentrations, making it impossi-
ble to fully evaluate the discretized OCP. In DMS, we have the advan-
tage of providing an initial guess for the controls at all shooting nodes,
which can be chosen to be positive. Moreover, since the integration
horizons are shorter, it is much more likely that all IVPs can be solved.
The matching conditions ensure that the final solution is continuous,
so there is no penalty for the discontinuous initial trajectory.

The concept of control and state discretization in DMS is illustrated
in Figure 3.2.

3.2.3. Constraint discretization

The formulation of the mixed state-control constraints ℎ in OCP (3.1)
implies that they must be satisfied at all points 𝜏 ∈ T. In theory, we
could ensure that the constraints are satisfied at almost all 𝜏 ∈ Tby
imposing the constraints

The minimum is applied compo-
nentwise.

0 =
∫ 𝜏𝑚+1

𝜏𝑚

min{0, ℎ (𝑥𝑚 (
𝜏; 𝑠𝑚 , 𝑞𝑚

)
, 𝑢

(
𝜏; 𝑞𝑚

))}d𝜏, 𝑚 = 0, . . . , 𝑀 − 1.

(3.8)

3.2. Direct Multiple Shooting discretization 29

Unfortunately, evaluating Equation (3.8) requires additional integra-
tions, which are computationally more expensive than simple eval-
uations of ℎ. An alternative approach to track constraint violations
within the shooting intervals is based on semi-infinite programming.
This method was introduced by POTSCHKA in his diploma thesis [152]
and later elaborated in [154].

[152]: Potschka (2006), “Handling
path constraints in a direct multiple
shooting method for optimal control
problems”
[154]: Potschka et al. (2009), “A minima
tracking variant of semi-infinite
programming for the treatment of
path constraints within direct solution
of optimal control problems”In DMS, however, the mixed state-control constraints are enforced

only at the shooting nodes. Formally, we discretize the mixed state-
control constraints by replacing them with

The mixed state-control constraints
(3.9) are not enforced at the fi-
nal shooting node 𝜏𝑀 , as only the
terminal constraints 𝑟e , 𝑟i , which
do not depend on the control, are
meaningful at the final node.

0 ≤ ℎ (𝑠𝑚 , 𝑢 (
𝜏; 𝑞𝑚

))
, 𝑚 = 0, . . . , 𝑀 − 1. (3.9)

For simplicity, we slightly overload our notation and write (3.9) as

0 ≤ ℎ (𝑠𝑚 , 𝑞𝑚)
, 𝑚 = 0, . . . , 𝑀 − 1. (3.10)

With this approach, violations of the mixed state-control constraints
may occur at points between the shooting nodes. However, in prac-
tice, choosing a sufficiently fine shooting grid is usually sufficient
to avoid significant violations. Another option is to introduce addi-
tional points between the shooting nodes where the constraints are
enforced. The rationale behind both options is that for smooth mixed
state-control constraints and dynamics, the violations can be bounded
by the distance between the points where the constraints are en-
forced. This rationale is illustrated with the following example.

Reminder: Assumption 2.1

We assume that 𝑓 and ℎ are contin-
uously differentiable and therefore
LIPSCHITZ continuous.

■ Example 3.2 Assume we use piecewise constant controls and that 𝑓
and ℎ are LIPSCHITZ continuous with respect to both arguments, and
that 𝑓 (0, 0) = 0. If ℎ

(
𝑠𝑚 , 𝑞𝑚

)
= 0, then positive constants 𝐿𝑥 , 𝐿𝑢 exist

such that

ℎ (𝑥𝑚 (
𝜏; 𝑠𝑚 , 𝑞𝑚

)
, 𝑞𝑚

)

 ≤ (�̂� − 𝜏𝑚)(𝐿𝑥‖ 𝑠𝑚‖ + 𝐿𝑢

𝑞𝑚

)
for all �̂� ∈ [𝜏𝑚 , 𝜏𝑚+1). The proof is given in Appendix A. ■

For the boundary constraints 𝑟e and 𝑟i the discretization is straight-
forward. We only need to replace 𝑥

(
𝑡 𝑗
)
by 𝑠0 and 𝑥

(
𝑡 𝑗 + 𝑇hor

)
by 𝑠𝑀 ,

i.e. we replace

𝑟e (𝑥 (𝑡 𝑗) , 𝑥 (𝑡 𝑗 + 𝑇hor
))

= 0,

𝑟i (𝑥 (𝑡 𝑗) , 𝑥 (𝑡 𝑗 + 𝑇hor
))

= 0

with

𝑟e(𝑠0 , 𝑠𝑀) = 0, (3.11)
𝑟i(𝑠0 , 𝑠𝑀) = 0. (3.12)

30 3. Efficient Numerical Methods for NMPC

3.2.4. Objective function discretization

The objective function∫ 𝑡 𝑗+𝑇hor

𝑡 𝑗
Ψ(𝑥(𝑡), 𝑢(𝑡))d𝑡 +Φ(

𝑥
(
𝑡 𝑗 + 𝑇hor

))
is replaced in the NLP by a sum

Similarly to the boundary con-
straints, we replace 𝑥(𝑡 𝑗 +𝑇hor) with
𝑠𝑀 for the MAYER objective term Φ.

𝑀−1∑
𝑚=0

Ψ𝑚
(
𝑠𝑚 , 𝑞𝑚

) +Φ(𝑠𝑀) (3.13)

Here, Ψ𝑚
(
𝑠𝑚 , 𝑞𝑚

)
is either an exact representation of the LAGRANGE

objective function, i.e.,

The integration can be performed
simultaneously with the state inte-
gration.

Ψ𝑚
(
𝑠𝑚 , 𝑞𝑚

)
=

∫ 𝜏𝑚+1

𝜏𝑚

Ψ
(
𝑥𝑚

(
𝜏; 𝑠𝑚 , 𝑞𝑚

)
, 𝑢

(
𝜏; 𝑞𝑚

))
d𝜏,

or an approximation thereof. A simple approximation that does not
require integration is:

Ψ𝑚
(
𝑠𝑚 , 𝑞𝑚

)
= (𝜏𝑚+1 − 𝜏𝑚)Ψ

(
𝑠𝑚 , 𝑢

(
𝜏𝑚 ; 𝑞𝑚

))
.

3.2.5. Resulting Nonlinear Program

We conclude our description of the DMS method by stating the re-
sulting NLP, whose components we have set up in the preceding sub-
sections. The optimization variables in the DMS discretization of 3.1
are the control coefficients 𝑞 ∈ ℝ𝑛𝑞 (see Equation (3.2), Equation (3.3),
Equation (3.4)) and the node values 𝑠 ∈ ℝ𝑛𝑠 (see Definition 3.3). The
objective function discretization is given by Equation (3.13).

The first set of constraints in the DMS NLP are thematching conditions
(3.7). Since we will use only piecewise constant controls throughout
this thesis, we do not include the control continuity conditions (3.5).
For the discretization of themixed state-control constraints, we adopt
the most common approach and enforce them only at the shooting
nodes, i.e., we add the constraints (3.9), abbreviated in the form of
(3.10), to the DMS NLP. Finally, the DMS NLP also incorporates the
boundary constraints (3.11) and (3.12). The DMS NLP is then given by

min
𝑠∈ℝ𝑛𝑠

𝑞∈ℝ𝑛𝑞

𝑀−1∑
𝑚=0

Ψ𝑚
(
𝑠𝑚 , 𝑞𝑚

) +Φ(𝑠𝑀) (3.14a)

s.t. 0 = 𝑥
(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚

) − 𝑠𝑚+1 , 𝑚 = 0, . . . , 𝑀 − 1, (3.14b)
0 ≤ ℎ (𝑠𝑚 , 𝑞𝑚)

, 𝑚 = 0, . . . , 𝑀 − 1, (3.14c)
0 = 𝑟e(𝑠0 , 𝑠𝑀), (3.14d)
0 ≤ 𝑟i(𝑠0 , 𝑠𝑀), (3.14e)
0 = 𝑥 𝑗 − 𝑠0. (3.14f)

3.3. Sequential Quadratic Programming method 31

The introduction of node values for each shooting node, together with
the matching conditions (3.14b), induces a structure in the NLP (3.14)
that can be efficiently exploited when applying the SQP method to
solve it. We will explain this structure exploitation in detail in Sub-
section 3.3.2. Furthermore, the structure of the NLP (3.14) allows its
components to be evaluated in parallel on multi-core CPUs.

3.3. Sequential Quadratic Programming
method

The Sequential Quadratic Programming (SQP) method, about which
POWELL famously remarked (see, for example, [155, p. 155]

[155]: Powell (1977), “A fast algorithm
for nonlinearly constrained optimiza-
tion calculations”

),

”It can be programmed in an afternoon if one has a
quadratic programming subroutine available [...].”

— POWELL [155]

is one of the most popular and successful methods for solving nonlin-
ear programs. In particular, our efficient numerical methods for NMPC,
namely the real-time iterations (see Section 3.4) and the multi-level
iterations (see Section 3.5), are based on the SQP method. Below, we
provide a concise presentation of the SQP method in general and
then discuss its application to NMPC with DMS. More detailed presen-
tations of the SQP method, including its history, convergence proper-
ties, globalization strategies, and practical implementations, can be
found in [143, Chapter 18], [190, Chapter 19], or [87, Section 5.5].

In fact, the SQP method comes in
a wide variety of forms. Therefore,
the SQP method should be under-
stood more as a general framework
that now encompasses a class of
designs. In [143, p. 529], it is sug-
gested to refer to these as ”active-
set methods for nonlinear program-
ming”.

[143]: Nocedal et al. (2006), Numerical
Optimization
[190]: Ulbrich et al. (2012), Nichtlineare
Optimierung
[87]: Geiger et al. (2002), Theorie
und Numerik restringierter Opti-
mierungsaufgaben

3.3.1. General SQP framework

An insightful and common way to present the SQP method is to inter-
pret it as a NEWTON’s method applied to the optimality system of an
equality-constrained NLP. Thus, we first consider the NLP

min
𝑥 ∈ ℝ𝑛

𝐽(𝑥)
s.t. 0 = 𝑐(𝑥)

(3.15)

where 𝐽 : ℝ𝑛 → ℝ and 𝑐 : ℝ𝑛 → ℝ𝑛𝑐 are twice continuously differen-
tiable functions. We define the Lagrangian of (3.15) as follows.

Definition 3.5 L: ℝ𝑛 ×ℝ𝑛𝑐 → ℝ is the Lagrangian of the NLP (3.15),
defined as

L(𝑥,𝜆) ≔ 𝐽(𝑥) − 𝜆𝑇 𝑐(𝑥),
where 𝜆 ∈ ℝ𝑛𝑐 are the LAGRANGE multipliers or dual variables cor-
responding to the equality constraints 𝑐(𝑥) = 0.

The KARUSH-KUHN-TUCKER (KKT) optimality conditions of (3.15)

𝐹(𝑥,𝜆) ≔
(∇𝑥L(𝑥,𝜆)

𝑐(𝑥)
)
= 0 (3.16)

32 3. Efficient Numerical Methods for NMPC

form a nonlinear system of equations. Applying NEWTON’s method
to solve Equation (3.16), we solve at each step with current iterates
(𝑥𝑘 ,𝜆𝑘) the linear system(

∇2
𝑥𝑥L

(
𝑥𝑘 ,𝜆𝑘

) (
𝜕
𝜕𝑥 𝑐

(
𝑥𝑘

))𝑇
𝜕
𝜕𝑥 𝑐

(
𝑥𝑘

)
0

) (
Δ𝑥𝑘

−Δ𝜆𝑘
)
= −

(∇𝑥L(
𝑥𝑘 ,𝜆𝑘

)
𝑐
(
𝑥𝑘

))
. (3.17)

For a proof of this statement and
remarks on when Assumption 3.1
is satisfied, see, for example, [143,
Lemma 16.1, Section 18.1].

It is well known that the KKT matrix on the right-hand side is nonsin-
gular if, at (𝑥,𝜆) = (𝑥𝑘 ,𝜆𝑘), the following assumption is satisfied.

LICQ stands for linear indepen-
dence constraint qualification. PD
stands for positive definiteness.

Assumption 3.1

(i) LICQ: The Jacobian of the constraints 𝜕
𝜕𝑥 𝑐(𝑥) has full row rank.

(ii) PD: The Hessian of the Lagrangian with respect to the pri-
mal variables is positive definite on the tangent space of the
equality constraints, i.e.

𝑝𝑇∇2
𝑥𝑥L(𝑥,𝜆)𝑝 > 0 for all 𝑝 ≠ 0 with 𝜕

𝜕𝑥
𝑐(𝑥)𝑝 = 0.

We then iterate

𝑥𝑘+1 = 𝑥𝑘 + Δ𝑥𝑘 ,
𝜆𝑘+1 = 𝜆𝑘 + Δ𝜆𝑘 .

Utilizing that

∇𝑥L
(
𝑥𝑘 ,𝜆𝑘

)
= ∇𝑥 𝐽

(
𝑥𝑘

)
−

(
𝜕

𝜕𝑥
𝑐
(
𝑥𝑘

))𝑇
𝜆𝑘 ,

we see that we can equivalently solve the linear system(
∇2
𝑥𝑥L

(
𝑥𝑘 ,𝜆𝑘

) (
𝜕
𝜕𝑥 𝑐

(
𝑥𝑘

))𝑇
𝜕
𝜕𝑥 𝑐

(
𝑥𝑘

)
0

) (
Δ𝑥𝑘

−𝜆QP

)
= −

(∇𝑥 𝐽 (𝑥𝑘)
𝑐
(
𝑥𝑘

))
(3.18)

and iterate
𝑥𝑘+1 = 𝑥𝑘 + Δ𝑥𝑘 ,
𝜆𝑘+1 = 𝜆QP.

(3.19)

The key insight is that the linear system (3.18) constitutes the KKT
optimality conditions of the Quadratic Program (QP)

min
Δ𝑥 ∈ ℝ𝑛

1
2
Δ𝑥𝑇∇2

𝑥𝑥L
(
𝑥𝑘 ,𝜆𝑘

)
Δ𝑥 + ∇𝑥 𝐽

(
𝑥𝑘

)𝑇
Δ𝑥

s.t. 0 = 𝑐
(
𝑥𝑘

)
+ 𝜕

𝜕𝑥
𝑐
(
𝑥𝑘

)
Δ𝑥.

(3.20)

The main loop of the SQP method thus consists of solving the QP
(3.20) and updating the iterates according to Equation (3.19).

3.3. Sequential Quadratic Programming method 33

A significant advantage of the SQP method is that it can be extended
to NLPs with inequality constraints as follows. Consider the NLP

min
𝑥 ∈ ℝ𝑛

𝐽(𝑥)
s.t. 0 = 𝑐(𝑥),

0 ≤ 𝑑(𝑥)
(3.21)

where 𝑑 : ℝ𝑛 → ℝ𝑛𝑑 is a twice continuously differentiable function.
Let 𝜇 ∈ ℝ𝑛𝑑 be the LAGRANGE multipliers for the inequality constraints
𝑑(𝑥) ≥ 0. In each iteration of the SQP method, we now solve the QP

min
Δ𝑥 ∈ ℝ𝑛

1
2
Δ𝑥𝑇∇2

𝑥𝑥L
(
𝑥𝑘 ,𝜆𝑘 , 𝜇𝑘

)
Δ𝑥 + ∇𝑥 𝐽

(
𝑥𝑘

)𝑇
Δ𝑥

s.t. 0 = 𝑐
(
𝑥𝑘

)
+ 𝜕

𝜕𝑥
𝑐
(
𝑥𝑘

)
Δ𝑥,

0 ≤ 𝑑
(
𝑥𝑘

)
+ 𝜕

𝜕𝑥
𝑑
(
𝑥𝑘

)
Δ𝑥.

(3.22)

We denote the optimal solution of (3.22) by Δ𝑥𝑘 and the correspond-
ing LAGRANGE multipliers by 𝜆QP and 𝜇QP, and iterate

𝑥𝑘+1 = 𝑥𝑘 + Δ𝑥𝑘 ,
𝜆𝑘+1 = 𝜆QP ,

𝜇𝑘+1 = 𝜇QP.

(3.23)

We summarize the main SQP method in Algorithm 3.1.

Algorithm 3.1: Local full-step SQP method with exact derivatives.

Input: Initial guesses 𝑥0 ∈ ℝ𝑛 ,𝜆0 ∈ ℝ𝑛𝑐 , 𝜇0 ∈ ℝ𝑛𝑑

while convergence criterion not satisfied do

1

𝑐
(
𝑥𝑘

)
, 𝑑

(
𝑥𝑘

) ← Evaluate constraint residuals,
∇𝑥 𝐽 (𝑥𝑘) ← Evaluate objective function gradient,
𝜕
𝜕𝑥 𝑐

(
𝑥𝑘

)
, 𝜕
𝜕𝑥 𝑑

(
𝑥𝑘

) ← Evaluate constraint Jacobians,
∇2
𝑥𝑥L

(
𝑥𝑘 ,𝜆𝑘 , 𝜇𝑘

) ← Evaluate Hessian of Lagrangian

2 Δ𝑥𝑘 ,𝜆QP , 𝜇QP ← Solve QP (3.22)

3 𝑥𝑘+1 ,𝜆𝑘+1 , 𝜇𝑘+1 ← Update iterates using Equation (3.23)

As the title of Algorithm 3.1 indicates, there are particularities to Algo-
rithm 3.1. First, we are not employing any globalization strategies, as
reflected in the term ”local”. Second, we always take a full step. Third,
all derivatives are exact. All of these features can be varied in practi-
cal SQP methods, for which we refer to [143, Chapter 18] [143]: Nocedal et al. (2006), Numerical

Optimization
. Moreover,

solving the QP (3.22) is not a trivial task, and we refer to [143, Chapter
16] for solution methods.

34 3. Efficient Numerical Methods for NMPC

3.3.2. Tailored SQP method for the DMS NLP

The numerical methods for NMPC that we present and develop in
this thesis are based on an SQP method that is tailored to the DMS
NLP (3.14). As stated in the previous subsection Subsection 3.3.1, all
functions in the NLP which we want to solve have to be twice contin-
uously differentiable for the SQP method to be applicable. Therefore,
we make the following assumption regarding the DMS NLP (3.14).

Assumption 3.2 All functions appearing in the DMS NLP (3.14) are
twice continuously differentiable with respect to the primal vari-
ables 𝑠 and 𝑞. In particular, we tighten Assumption 2.1 to require
that the vector field 𝑓 : ℝ𝑛𝑥 × ℝ𝑛𝑢 → ℝ𝑛𝑥 is twice continuously
differentiable with respect to 𝑥 and 𝑢.

In this subsection, we take a closer look at the QPs that arise when
applying the SQP method to solve the NLP (3.14), which results from
the DMS discretization of the OCP (3.1). We closely follow [200, Section
2.5.1]

[200]: Wirsching (2018), “Multi-level
iteration schemes with adaptive level
choice for nonlinear model predictive
control”

. Let 𝑠 ∈ ℝ𝑛𝑠 and 𝑞 ∈ ℝ𝑛𝑞 be the current primal iterates, and
𝜆 ∈ ℝ𝑛𝑐 and 𝜇 ∈ ℝ𝑛𝑑 the current dual iterates of the SQP method.
The QP that must be solved in each iteration of the SQP method is
given by

For simplicity, we omit the SQP iter-
ation index.

𝜆 and 𝜇 denote the LAGRANGE multi-
pliers corresponding to all equality
and inequality constraints, respec-
tively, of (3.14).

min
Δ𝑠=(Δ𝑠𝑇0 ,...,Δ𝑠𝑇𝑀)𝑇∈ℝ𝑛𝑠

Δ𝑞=(Δ𝑞𝑇0 ,...,Δ𝑞𝑇𝑀−1)𝑇∈ℝ𝑛𝑞

1
2

(
Δ𝑠
Δ𝑞

)𝑇 (
𝐵𝑠𝑠 𝐵𝑠𝑞

𝐵𝑞𝑠 𝐵𝑞𝑞

) (
Δ𝑠
Δ𝑞

)
+

(
𝑏𝑠

𝑏𝑞

)𝑇 (
Δ𝑠
Δ𝑞

)
(3.24a)

s.t. 0 = 𝑆𝑠𝑚Δ𝑠𝑚 + 𝑆𝑞𝑚Δ𝑞𝑚 − Δ𝑠𝑚+1 + 𝛿𝑚 , 𝑚 = 0, . . . , 𝑀 − 1, (3.24b)
0 ≤ 𝐻𝑠

𝑚Δ𝑠𝑚 + 𝐻𝑞
𝑚Δ𝑞𝑚 + ℎ𝑚 , 𝑚 = 0, . . . , 𝑀 − 1, (3.24c)

0 = 𝑅e
𝑠0Δ𝑠0 + 𝑅e

𝑠𝑀Δ𝑠𝑀 + 𝑟e , (3.24d)
0 = 𝑅i

𝑠0Δ𝑠0 + 𝑅i
𝑠𝑀Δ𝑠𝑀 + 𝑟i , (3.24e)

0 = 𝑥 𝑗 − 𝑠0 − Δ𝑠0. (3.24f)

To present the QP (3.24) concisely, we have introduced several abbre-
viations, which we define below before proceeding to investigate QP
(3.24) further.

The convention in the following is
that capital letters represent ma-
trices, such as Jacobians and Hes-
sians, while lowercase letters repre-
sent residuals and gradients.

Interlude: Notation In the objective function, we have introduced

All quantities defined here can al-
ternatively be defined as approxi-
mations of the exact Hessians and
gradients.

𝐵𝑠𝑠 ≔ ∇2
𝑠𝑠L

(
𝑠, 𝑞,𝜆, 𝜇

)
, (3.25a)

𝐵𝑠𝑞 ≔ ∇2
𝑠𝑞L

(
𝑠, 𝑞,𝜆, 𝜇

)
, (3.25b)

𝐵𝑞𝑠 ≔ ∇2
𝑞𝑠L

(
𝑠, 𝑞,𝜆, 𝜇

)
, (3.25c)

𝐵𝑞𝑞 ≔ ∇2
𝑞𝑞L

(
𝑠, 𝑞,𝜆, 𝜇

)
, (3.25d)

3.3. Sequential Quadratic Programming method 35

and

𝑏𝑠 ≔ ∇𝑠
(
𝑀−1∑
𝑚=0

Ψ𝑚
(
𝑠𝑚 , 𝑞𝑚

) +Φ(𝑠𝑀)) , (3.26a)

𝑏𝑞 ≔ ∇𝑞
(
𝑀−1∑
𝑚=0

Ψ𝑚
(
𝑠𝑚 , 𝑞𝑚

) +Φ(𝑠𝑀)) . (3.26b)

If the boundary constraints 𝑟e and
𝑟i do not depend on both argu-
ments, i.e., 𝑠0 and 𝑠𝑀 , the La-
grangian is even separable.

One notable feature of the DMS discretization is that the Hessian of
the Lagrangian L of the NLP (3.14) is sparse, as

0 = ∇2
𝑠𝑚 𝑠𝑙L

(
𝑠, 𝑞,𝜆, 𝜇

)
, if (𝑚, 𝑙) ≠ (0, 𝑀), (𝑀, 0) and 𝑚 ≠ 𝑙,

0 = ∇2
𝑠𝑚 𝑞𝑙L

(
𝑠, 𝑞,𝜆, 𝜇

)
= ∇2

𝑞𝑙 𝑠𝑚L
(
𝑠, 𝑞,𝜆, 𝜇

)𝑇 , if 𝑚 ≠ 𝑙,

0 = ∇2
𝑞𝑚 𝑞𝑙L

(
𝑠, 𝑞,𝜆, 𝜇

)
, if 𝑚 ≠ 𝑙.

Therefore, the Hessian blocks 𝐵𝑠𝑠 , 𝐵𝑠𝑞 , 𝐵𝑞𝑠 , 𝐵𝑞𝑞 have the structure
If we are working with an approxi-
mation of the Hessian, the approx-
imation should preserve this struc-
ture.

𝐵𝑠𝑠 =

©­­­­­­«

𝐵𝑠0𝑠0 0 · · · 0 𝐵𝑠0𝑠𝑀

0 𝐵𝑠1𝑠1 0 · · · 0
... 0

. . . 0
...

0 0 · · · 𝐵𝑠𝑀−1𝑠𝑀−1 0
𝐵𝑠𝑀 𝑠0 0 · · · 0 𝐵𝑠𝑀 𝑠𝑀

ª®®®®®®¬
,

𝐵𝑠𝑞 =

©­­­­«
𝐵𝑠0𝑞0 · · · 0

0
. . . 0

0 · · · 𝐵𝑠𝑀−1𝑞𝑀−1

0 · · · 0

ª®®®®¬
= (𝐵𝑞𝑠)𝑇 ,

𝐵𝑞𝑞 =
©­­«
𝐵𝑞0𝑞0 · · · 0

0
. . . 0

0 · · · 𝐵𝑞𝑀−1𝑞𝑀−1

ª®®¬.
In the constraints, we have introduced the sensitivity matrices

𝑆𝑠𝑚 ≔
𝜕

𝜕𝑠𝑚
𝑥
(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚

)
, 𝑚 = 0, . . . , 𝑀 − 1, (3.27a)

𝑆𝑞𝑚 ≔
𝜕

𝜕𝑞𝑚
𝑥
(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚

)
, 𝑚 = 0, . . . , 𝑀 − 1 (3.27b)

alongside the Jacobians of the constraints

𝐻𝑠
𝑚 ≔

𝜕

𝜕𝑠𝑚
ℎ
(
𝑠𝑚 , 𝑞𝑚

)
, 𝑚 = 0, . . . , 𝑀 − 1, (3.28a)

𝐻𝑞
𝑚 ≔

𝜕

𝜕𝑞𝑚
ℎ
(
𝑠𝑚 , 𝑞𝑚

)
, 𝑚 = 0, . . . , 𝑀 − 1, (3.28b)

𝑅e
𝑠𝑚 ≔

𝜕

𝜕𝑠𝑚
𝑟e(𝑠0 , 𝑠𝑀), 𝑚 ∈ {0, 𝑀} , (3.28c)

𝑅i
𝑠𝑚 ≔

𝜕

𝜕𝑠𝑚
𝑟i(𝑠0 , 𝑠𝑀), 𝑚 ∈ {0, 𝑀}. (3.28d)

36 3. Efficient Numerical Methods for NMPC

To denote the residuals, we have introduced

For the boundary constraints 𝑟e , 𝑟i ,
we overload our notation as it is
clear from the context whether we
are referring to the mappings or
their evaluations.

𝛿𝑚 ≔ 𝑥
(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚

) − 𝑠𝑚+1 , 𝑚 = 0, . . . , 𝑀 − 1, (3.29a)
ℎ𝑚 ≔ ℎ

(
𝑠𝑚 , 𝑞𝑚

)
, 𝑚 = 0, . . . , 𝑀 − 1, (3.29b)

𝑟e ≔ 𝑟e(𝑠0 , 𝑠𝑀), (3.29c)
𝑟i ≔ 𝑟i(𝑠0 , 𝑠𝑀). (3.29d)

Now, we turn our attention back to a closer investigation of the struc-
ture of QP (3.24).

The condensing procedure was al-
ready introduced in the seminal pa-
per on DMS [29].

Condensing of (3.24) In QP (3.24), the steps in all node values

Δ𝑠 =
(
Δ𝑠𝑇0 , . . . ,Δ𝑠

𝑇
𝑀

)𝑇 ∈ ℝ𝑛𝑠

and the steps in all controls

Δ𝑞 =
(
Δ𝑞𝑇0 , . . . ,Δ𝑞

𝑇
𝑀−1

)𝑇 ∈ ℝ𝑛𝑞

are considered as optimization variables. But, the linearizedmatching
conditions (3.24b) eliminate the degrees of freedom associated with
Δ𝑠1 , . . . ,Δ𝑠𝑀 . This feature can be exploited to derive a QP with fewer
variables and constraints, while still yielding the same steps Δ𝑠 and
Δ𝑞. The process of transforming QP (3.24) into this smaller QP (3.41)
is referred to as condensing. To compute Δ𝑠𝑚+1 for 𝑚 = 0, . . . , 𝑀 − 1,
we can recursively apply the linearized matching condition (3.24b) to
obtain

Δ𝑠𝑚+1 = 𝑆𝑠𝑚Δ𝑠𝑚 + 𝑆𝑞𝑚Δ𝑞𝑚 + 𝛿𝑚

= 𝑆𝑠𝑚
(
𝑆𝑠𝑚−1Δ𝑠𝑚−1 + 𝑆𝑞𝑚−1Δ𝑞𝑚−1 + 𝛿𝑚−1

) + 𝑆𝑞𝑚Δ𝑞𝑚 + 𝛿𝑚

= 𝑆𝑠𝑚𝑆
𝑠
𝑚−1Δ𝑠𝑚−1 + 𝑆𝑞𝑚Δ𝑞𝑚 + 𝑆𝑠𝑚𝑆𝑞𝑚−1Δ𝑞𝑚−1 + 𝛿𝑚 + 𝑆𝑠𝑚𝛿𝑚−1

...

≕ 𝐸𝑠0𝑚+1Δ𝑠0 +
𝑚∑
𝑙=0

𝐸𝑞𝑙𝑚+1Δ𝑞𝑙 + �̂�𝑚 .

(3.30)
The condensing matrices 𝐸𝑠0𝑚 applied to Δ𝑠0 are given by the recur-
sion

𝐸𝑠0𝑚 = 𝑆𝑠𝑚−1𝐸
𝑠0
𝑚−1 , 𝑚 = 2, . . . , 𝑀, with 𝐸𝑠01 = 𝑆𝑠0. (3.31)

The condensing matrices 𝐸𝑞𝑙𝑚 applied to Δ𝑞𝑙 in the computation of
Δ𝑠𝑚 are defined for each 𝑙 = 0, . . . , 𝑚 − 1 by the recursion

𝐸𝑞𝑙𝑚 = 𝑆𝑠𝑚−1𝐸
𝑞𝑙
𝑚−1 , 𝑚 = 𝑙 + 2, . . . , 𝑀, with 𝐸𝑞𝑙𝑙+1 = 𝑆𝑞𝑙 . (3.32)

The condensed matching condition residuals �̂�𝑚 are also defined by
a recursion, which reads

�̂�𝑚 = 𝑆𝑠𝑚−1 �̂�𝑚−1 + 𝛿𝑚 , 𝑚 = 1, . . . , 𝑀 − 1 with �̂�0 = 𝛿0. (3.33)

3.3. Sequential Quadratic Programming method 37

In matrix form, we thus have

©­­­­«
Δ𝑠1
Δ𝑠2
...

Δ𝑠𝑀

ª®®®®¬
=

©­­­­«
𝐸𝑠01 𝐸𝑞0

1
𝐸𝑠02 𝐸𝑞0

2 𝐸𝑞1
2

...
. . .

𝐸𝑠0𝑀 𝐸𝑞0
𝑀 · · · 𝐸𝑞𝑀−1

𝑀

ª®®®®¬
©­­­­«

Δ𝑠0
Δ𝑞0
...

Δ𝑞𝑀−1

ª®®®®¬
+

©­­­­«
�̂�0
�̂�1
...

�̂�𝑀−1

ª®®®®¬
. (3.34)

If we replaceΔ𝑠1 , . . . ,Δ𝑠𝑀 using Equation (3.34), we also need to refor-
mulate the objective function accordingly. To that end, we introduce
the condensed Hessian

(
�̂�𝑠0𝑠0 �̂�𝑠0𝑞

�̂�𝑞𝑠0 �̂�𝑞𝑞

)
≔

©­­­­­«
�̂�𝑠0𝑠0 �̂�𝑠0𝑞0 · · · �̂�𝑠0𝑞𝑀−1

�̂�𝑞0𝑠0 �̂�𝑞0𝑞0 · · · �̂�𝑞0𝑞𝑀−1

...
...

...
�̂�𝑞𝑀−1𝑠0 �̂�𝑞𝑀−1𝑞0 · · · �̂�𝑞𝑀−1𝑞𝑀−1

ª®®®®®¬
(3.35)

with

�̂�𝑠0𝑠0 ≔ 𝐵𝑠0𝑠0 +
𝑀∑
𝑚=1

(
𝐸𝑠0𝑚

)𝑇𝐵𝑠𝑚 𝑠𝑚𝐸𝑠0𝑚 + 𝐵𝑠0𝑠𝑀𝐸𝑠0𝑀 + (
𝐸𝑠0𝑀

)𝑇
𝐵𝑠𝑀 𝑠0 , (3.36a)(

�̂�𝑞0𝑠0
)𝑇

= �̂�𝑠0𝑞0 ≔ 𝐵𝑠0𝑞0 + 𝐵𝑠0𝑠𝑀𝐸𝑞0
𝑀 +

𝑀∑
𝑙=1

(
𝐸𝑠0𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸𝑞0

𝑙 , (3.36b)(
�̂�𝑞𝑚 𝑠0

)𝑇
= �̂�𝑠0𝑞𝑚 ≔

(
𝐸𝑠0𝑚

)𝑇𝐵𝑠𝑚 𝑞𝑚 + 𝐵𝑠0𝑠𝑀𝐸𝑞𝑚𝑀 + 𝑀∑
𝑙=𝑚+1

(
𝐸𝑠0𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸𝑞𝑚𝑙 , 𝑚 = 1, . . . , 𝑀 − 1, (3.36c)

�̂�𝑞𝑚 𝑞𝑚 ≔ 𝐵𝑞𝑚 𝑞𝑚 +
𝑀∑

𝑙=𝑚+1

(
𝐸𝑞𝑚𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸𝑞𝑚𝑙 , 𝑚 = 0, . . . , 𝑀 − 1, (3.36d)(

�̂�𝑞𝑝 𝑞𝑚
)𝑇

= �̂�𝑞𝑚 𝑞𝑝 ≔
(
𝐸𝑞𝑚𝑝

)𝑇
𝐵𝑠𝑝 𝑞𝑝 +

𝑀∑
𝑙=𝑝+1

(
𝐸𝑞𝑚𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸

𝑞𝑝
𝑙 , 𝑚 = 0, . . . , 𝑀 − 2, 𝑝 = 𝑚 + 1, . . . , 𝑀 − 1.

(3.36e)

Moreover, we introduce the condensed gradients

The formulas (3.36a), (3.36b), (3.36c)
and (3.38a) differ from their coun-
terparts presented in [200, p.35].
This is because the boundary con-
straints 𝑟e and 𝑟i are forgotten in
[200] in the QP formulation, which
has the label (2.30) in their work,
that corresponds to the DMS NLP,
which has the label (2.19).

(
𝑏𝑠0

𝑏𝑞

)
≔

©­­­­­«
𝑏𝑠0

𝑏𝑞0

...
𝑏𝑞𝑀−1

ª®®®®®¬
(3.37)

with

Definition: 𝑏𝑠𝑚 and 𝑏𝑞𝑚

𝑏𝑠𝑚 is the part of 𝑏𝑠 that corre-
sponds to 𝑠𝑚 , i.e.

𝑏𝑠𝑚 =

{
∇𝑠𝑀Φ(𝑠𝑀), if 𝑚 = 𝑀,

∇𝑠𝑚Ψ𝑚
(
𝑠𝑚 , 𝑞𝑚

)
, else.

And similarly for 𝑏𝑞𝑚 :

𝑏𝑞𝑚 = ∇𝑞𝑚Ψ𝑚
(
𝑠𝑚 , 𝑞𝑚

)
, 0 ≤ 𝑚 < 𝑀.

𝑏𝑠0 ≔ 𝑏𝑠0 +
𝑀∑
𝑚=1

(
𝐸𝑠0𝑚

)𝑇 (
𝐵𝑠𝑚 𝑠𝑚 �̂�𝑚−1 + 𝑏𝑠𝑚

)
+ 𝐵𝑠0𝑠𝑀 �̂�𝑀−1 , (3.38a)

𝑏𝑞0 ≔ 𝑏𝑞0 +
𝑀∑
𝑙=1

(
𝐸𝑞0
𝑙

)𝑇 (
𝑏𝑠𝑙 + 𝐵𝑠𝑙 𝑠𝑙 �̂�𝑙−1

)
, (3.38b)

𝑏𝑞𝑚 ≔ 𝑏𝑞𝑚 + 𝐵𝑞𝑚 𝑠𝑚 �̂�𝑚−1 +
𝑀∑

𝑙=𝑚+1

(
𝐸𝑞𝑚𝑙

)𝑇 (
𝑏𝑠𝑙 + 𝐵𝑠𝑙 𝑠𝑙 �̂�𝑙−1

)
, (3.38c)

for 𝑚 = 0, . . . , 𝑀 − 1.

38 3. Efficient Numerical Methods for NMPC

To reformulate the mixed state-control constraints (3.24c) in terms
of Δ𝑠0 and Δ𝑞, we introduce the condensed mixed state-control con-
straints matrices and residuals

�̂�𝑠
𝑚 ≔ 𝐻𝑠

𝑚𝐸
𝑠0
𝑚 , 𝑚 = 1, . . . , 𝑀 − 1, (3.39a)

�̂�𝑞𝑙
𝑚 ≔

{
𝐻𝑠
𝑚𝐸

𝑞𝑙
𝑚 , if 𝑙 = 0, . . . , 𝑚 − 1,

𝐻𝑞
𝑚 , if 𝑙 = 𝑚

𝑚 = 1, . . . , 𝑀 − 1, (3.39b)

ℎ̂𝑚 ≔ ℎ𝑚 + 𝐻𝑠
𝑚 �̂�𝑚−1 , 𝑚 = 1, . . . , 𝑀 − 1. (3.39c)

To reformulate the boundary constraints (3.24d) and (3.24e), we in-
troduce the condensed boundary equality and inequality constraints
matrices and residuals

�̂�e
0 ≔ 𝑅e

𝑠0 + 𝑅e
𝑠𝑀𝐸

𝑠0
𝑀 , �̂�i

0 ≔ 𝑅i
𝑠0 + 𝑅i

𝑠𝑀𝐸
𝑠0
𝑀 , (3.40a)

�̂�e
𝑞𝑚 ≔ 𝑅e

𝑠𝑀𝐸
𝑞𝑚
𝑀 , �̂�i

𝑞𝑚 ≔ 𝑅i
𝑠𝑀𝐸

𝑞𝑚
𝑀 , 𝑚 = 0, . . . , 𝑀 − 1, (3.40b)

𝑟e ≔ 𝑟e + 𝑅e
𝑠𝑀 �̂�𝑀−1 , 𝑟i ≔ 𝑟i + 𝑅i

𝑠𝑀 �̂�𝑀−1. (3.40c)

We can now state the condensed QP

The constraint (3.41b) is equal to
(3.24c) with 𝑚 = 0. For 𝑚 > 0 (3.24c)
is reformulated in terms of Δ𝑠0 and
Δ𝑞 leading to (3.41c). Even though
the QP (3.41) appears to have more
constraints, it indeed has 𝑀𝑛𝑥 con-
straints less than the uncondensed
QP (3.24) as the linearized matching
conditions (3.24b) vanish.

min
Δ𝑠0∈ℝ𝑛𝑥

Δ𝑞=
©­­«

Δ𝑞0

...
Δ𝑞𝑀−1

ª®®¬∈ℝ
𝑛𝑞

1
2

(
Δ𝑠0
Δ𝑞

)𝑇 (
�̂�𝑠0𝑠0 �̂�𝑠0𝑞

�̂�𝑞𝑠0 �̂�𝑞𝑞

) (
Δ𝑠0
Δ𝑞

)
+

(
𝑏𝑠0

𝑏𝑞

)𝑇 (
Δ𝑠0
Δ𝑞

)
(3.41a)

s.t. 0 ≤ 𝐻𝑠
0Δ𝑠0 + 𝐻𝑞

0Δ𝑞0 + ℎ𝑚 , (3.41b)

0 ≤ �̂�𝑠
𝑚Δ𝑠0 +

𝑚∑
𝑙=0

�̂�𝑞𝑙
𝑚Δ𝑞𝑚 + ℎ̂𝑚 , 𝑚 = 1, . . . , 𝑀 − 1,

(3.41c)

0 = �̂�e
0Δ𝑠0 +

𝑀−1∑
𝑙=0

�̂�e
𝑞𝑙Δ𝑞𝑙 + 𝑟e , (3.41d)

0 ≤ �̂�i
0Δ𝑠0 +

𝑀−1∑
𝑙=0

�̂�i
𝑞𝑙Δ𝑞𝑙 + 𝑟i , (3.41e)

0 = 𝑥 𝑗 − 𝑠0 − Δ𝑠0. (3.41f)

[8]: Andersson (2013), “A general-
purpose software framework for
dynamic optimization”
[117]: Kirches et al. (2011), “Block-
structured quadratic programming for
the direct multiple shooting method
for optimal control”
[127]: Leineweber (1995), “Analyse und
Restrukturierung eines Verfahrens
zur direkten Lösung von Optimal-
Steuerungsproblemen”
[128]: Leineweber (1999), Efficient
reduced SQP methods for the op-
timization of chemical processes
described by large sparse DAE models
[170]: Scholz (2016), “Stabiles Condens-
ing für Optimale Steuerung”

Blow up of the solution of the condensed QP (3.41) If we solve the
condensed QP (3.41), we only obtain stepsΔ𝑠0 andΔ𝑞 in the first place.
We can however compute the remaining steps Δ𝑠𝑚 , 𝑚 = 1, . . . , 𝑀 by
means of Equation (3.34). The LAGRANGE multipliers that we obtain
for the condensed constraints (3.41b) - (3.41f) are equal to the ones
that correspond to the constraints (3.24c) - (3.24f). The LAGRANGE mul-
tipliers for the linearized matching conditions (3.24b) can be recon-
structed as described in [127, p. 92][128].

SQP method for NLP (3.14) with condensing We summarize the tai-
lored SQP method for the NLP (3.14) with condensing, as described in
this section, in Algorithm 3.2. Depending on the use case, it may be
beneficial to use one of the variations of the condensing procedure,
as presented in [8, 117, 170].

3.3. Sequential Quadratic Programming method 39

Algorithm 3.2: Tailored SQP method for NLP (3.14) with condensing.

Input: Current state 𝑥 𝑗 , initial guesses 𝑠0 , 𝑞0 ,𝜆0 , 𝜇0

while convergence criterion not satisfied do

1

𝛿𝑚 , ℎ𝑚 , 𝑟e , 𝑟i ← Evaluate constraint residuals (3.33),
𝑏𝑠 , 𝑏𝑞 ← Evaluate obj. fct. gradients (3.26),
𝑆𝑠𝑚 , 𝑆

𝑞
𝑚 ← Evaluate sensitivity matrices (3.27),

𝐻𝑠
𝑚 , 𝐻

𝑞
𝑚 ,

𝑅e
𝑠 , 𝑅

i
𝑠

← Evaluate Jacobians (3.28),

𝐵𝑠𝑠 , 𝐵𝑠𝑞 , 𝐵𝑞𝑠 , 𝐵𝑞𝑞 ← Evaluate Hessian (3.25) of Lagrangian

2
�̂�𝑚 ← Condense matching condition residuals (3.33),

𝐸𝑠0𝑚 , 𝐸
𝑞𝑙
𝑚 ← Compute condensing matrices (3.31), (3.32)

3

𝑏𝑠0 , 𝑏𝑞 ← Compute condensed gradients (3.37), (3.38),

ℎ̂𝑚 , �̂�
𝑞𝑙
𝑚 , �̂�𝑠

𝑚 ← Condense mixed state-control constraints
(3.24c) using (3.39),

𝑟e , �̂�e
𝑞𝑚 , �̂�

e
0

𝑟i , �̂�i
𝑞𝑚 , �̂�

i
0
← Condense boundary constraints

(3.24d) and (3.24e) using (3.40),
�̂�𝑠0𝑠0 , �̂�𝑠0𝑞

�̂�𝑞𝑠0 , �̂�𝑞𝑞
← Condense Hessian using (3.35), (3.36)

4 Evaluate initial value constraint (3.41f)

5 Δ𝑠0 ,Δ𝑞, �̂�QP , �̂�QP ← Solve condensed QP (3.41)

6
Δ𝑠1 , . . . ,Δ𝑠𝑀 ← Blow up node value steps using (3.34),
𝜆QP , 𝜇QP ← Compute LAGRANGE multipliers, cf. p. 38

7 Update iterates by

𝑠𝑘+1 = 𝑠𝑘 + Δ𝑠,
𝑞𝑘+1 = 𝑞𝑘 + Δ𝑞,
𝜆𝑘+1 = 𝜆QP ,

𝜇𝑘+1 = 𝜇QP.

40 3. Efficient Numerical Methods for NMPC

3.4. Real-Time Iterations

Using DMS as a tool to discretize 3.1 and the tailored SQP method, as
described in Algorithm 3.2, to solve the resulting DMS NLP (3.14), we
can, in principle, perform nominal NMPC as outlined in Algorithm 3.3.

In most cases, the DMS setup, such
as the choice of the shooting grid or
the control basis functions, remains
unchanged throughout the entire
NMPC procedure. In these cases, we
only need to update the DMS NLP
with the current variables in step 2
in Algorithm 3.3.

Algorithm 3.3: Nominal NMPC with DMS and tailored SQP method.

Input: Time grid 𝑡0 < 𝑡1 < . . . < 𝑡 𝑗 < . . .

At each sampling time 𝑡 𝑗 , 𝑗 ∈ ℕ0 do:
1 𝑥 𝑗 ← Get current state
2 NLP (3.14)← Apply DMS to discretize 3.1
3 𝑞0 ← Apply the tailored SQP method Algorithm 3.2 to (3.14)
4 𝑢 𝑗0 ← Set feedback value using (2.1) and (3.4)
5 Apply 𝑢 𝑗0 to the system

However, Algorithm 3.3 has one major drawback: iterating the tailored
SQPmethod in step 3 until convergence can be time-consuming. While
iterating until convergence provides an accurate feedback value for
the system at time 𝑡 𝑗 , the runtime required forces us to apply the
feedback value only at time 𝑡 𝑗 + Δ𝑡d, introducing a feedback delay
Δ𝑡d > 0. Although 𝑢 𝑗0 is an accurate feedback value for the system at
time 𝑡 𝑗 , it may be suboptimal at time 𝑡 𝑗 + Δ𝑡d.
One way to address this issue is to predict the state 𝑥 𝑗+1 and compute
an accurate feedback for this predicted state. This is the idea behind
the advanced-step NMPC controller presented in [211]

[211]: Zavala et al. (2009), “The
advanced-step NMPC controller:
Optimality, stability and robustness” .

Combinations of the advanced-step
NMPC controller and RTI have also
been developed in [145, 146].

Alternatively, we can compute only an approximate feedback for the
system at time 𝑡 𝑗 , minimizing the feedback delay. This approach forms
the basis of the Real-Time Iterations (RTI), primarily developed by
DIEHL in his PhD thesis [57] and in [59, 61, 64, 67]. The RTI achieves a
significant reduction in feedback delay through two main ideas:

[57]: Diehl (2001), “Real-time opti-
mization for large scale nonlinear
processes”
[59]: Diehl et al. (2003), “Newton-type
methods for the approximate solution
of nonlinear programming problems
in real-time”
[61]: Diehl et al. (2002), “Real-time
optimization and nonlinear model
predictive control of processes
governed by differential-algebraic
equations”
[64]: Diehl et al. (2005), “Nominal sta-
bility of real-time iteration scheme for
nonlinear model predictive control”
[67]: Diehl et al. (2001), “Real-time
optimization for large scale processes:
Nonlinear model predictive control of
a high purity distillation column”

Main idea — Real-Time Iterations (RTI) – I. The SQP method is not
iterated until convergence. Instead, only a single SQP iteration, i.e.,
a single (condensed) QP solve, is performed per sampling time.

Main idea — Real-Time Iterations (RTI) – II. The computations
are divided into three phases: preparation, feedback, and transi-
tion. The most computationally expensive tasks are moved to the
preparation phase, which occurs before the sampling time 𝑡 𝑗 . Once
the current state 𝑥 𝑗 is known at sampling time 𝑡 𝑗 , the feedback
phase is executed. This phase involves only a single (condensed)
QP solve, making it very fast, and the feedback value 𝑢 𝑗0 is applied
to the system. In the transition phase, which occurs after the feed-
back phase and before the next preparation phase, the optimiza-
tion variables are updated. If idle time remains, additional auxil-
iary computations can be performed during the transition phase.
The timing of these phases and the communication between the
system and the optimizer are illustrated in Figure 3.3.

3.4. Real-Time Iterations 41

𝑡 𝑗 𝑡 𝑗+1

Δ𝑡d

𝑥 𝑗

𝑢
𝑗
0

𝑥 𝑗+1

Feedback phase 𝑗

Transition
phase 𝑗

Preparation
phase 𝑗 + 1

Idle time
Controller

time 𝑡System

Figure 3.3.: Timing of the RTI phases
and temporal communication (high-
lighted in red) between the system and
the optimizer. Adapted from [171, Fig-
ure 4.4].

Key to these two ideas is the Initial Value Embedding (IVE), which we
describe in Subsection 3.4.1. The main steps of NMPC with RTI for the
sampling time 𝑡 𝑗 are outlined in Algorithm 3.4. Details on the three
referenced phases are provided in Subsection 3.4.2.

Algorithm 3.4: RTI scheme at sampling time 𝑡 𝑗 .
Input: Primal variables 𝑠 𝑗−1, 𝑞 𝑗−1, dual variables 𝜆 𝑗−1, 𝜇𝑗−1 from

previous sampling time 𝑡 𝑗−1

Output: Primal variables 𝑠 𝑗 , 𝑞 𝑗 , dual variables 𝜆 𝑗 , 𝜇𝑗 for current
sampling time 𝑡 𝑗

Preparation phase (between 𝑡 𝑗−1 and 𝑡 𝑗):
1 Prepare condensed QP (3.41) except for (3.41f)

At sampling time 𝑡 𝑗 :
2 Current state 𝑥 𝑗 becomes known

Feedback phase (from 𝑡 𝑗 to 𝑡 𝑗 + Δ𝑡d):
3 Evaluate (3.41f) to complete QP (3.41)
4 𝑞0 ← Solve QP (3.41)
5 𝑢 𝑗0 ← Set feedback value using (2.1) and (3.4)

At time 𝑡 𝑗 + Δ𝑡d:
6 Apply 𝑢 𝑗0 to the system

Transition phase (after 𝑡 𝑗 + Δ𝑡d):
7 Blow up solution of QP (3.41)

Since its development, the RTI scheme has been successfully applied
to numerous real-world problems, ranging from the control of high-
purity distillation columns [67] to optimal robot control [58], the con-
trol of power-generating kites and wind turbines [66, 73, 97–99, 115,
210], autonomous vehicles [209], and embedded control of cranes
[110] or ground vehicles [80].

[58]: Diehl et al. (2006), “Fast Direct
Multiple Shooting Algorithms for
Optimal Robot Control”
[66]: Diehl et al. (2004), “Efficient NMPC
of unstable periodic systems using
approximate infinite horizon closed
loop costing”
[67]: Diehl et al. (2001), “Real-time
optimization for large scale processes:
Nonlinear model predictive control of
a high purity distillation column”
[73]: Ferreau et al. (2011), “Real-time
control of a kite-model using an auto-
generated nonlinear MPC algorithm”
[80]: Frasch et al. (2013), “An auto-
generated nonlinear MPC algorithm
for real-time obstacle avoidance of
ground vehicles”
[97]: Gros et al. (2012), “Aircraft control
based on fast non-linear MPC &
multiple-shooting”
[115]: Ilzhöfer et al. (2007), “Nonlinear
MPC of kites under varying wind con-
ditions for a new class of large-scale
wind power generators”
[209]: Zanon et al. (2014), “Model
Predictive Control of Autonomous
Vehicles”
[210]: Zanon et al. (2014), “Control of
Dual-Airfoil Airborne Wind Energy
systems based on nonlinear MPC and
MHE”

The RTI scheme is occasionally regarded in Time-Distributed Opti-
mization (TDO) as a specific variant of Time-Distributed Sequential
Quadratic Programming (TD-SQP), for example in [132]

[132]: Liao-McPherson et al. (2020),
“Time-distributed optimization for
real-time model predictive control:
Stability, robustness, and constraint
satisfaction”

.

3.4.1. Initial Value Embedding

When transitioning from one sampling time to the next, and conse-
quently from one NLP solution process to the next, an important ques-
tion arises: what initial guesses should be used to restart the SQP
iterations? The conventional approach is as follows.

42 3. Efficient Numerical Methods for NMPC

Conventional approach Once the current state 𝑥 𝑗 becomes known,
we set 𝑠0 = 𝑥 𝑗 and perform a forward integration using the control se-
quence

(
𝑢 𝑗−1

0 , . . . , 𝑢 𝑗−1
𝑁

)
computed at the previous sampling time 𝑡 𝑗−1

to determine 𝑠1 , . . . , 𝑠𝑀 . We then start Algorithm 3.2 with this initial
guess for the node values and controls. While the initial value con-
straint (3.14f) and the matching conditions (3.14b) are already satisfied
with this initial guess, this approach has a significant drawback: three
computationally expensive tasks must be performed after the sam-
pling time 𝑡 𝑗 . Consequently, the feedback delay is substantial. These
three tasks are the integration of the IVPs (3.6), the derivative compu-
tations for QP (3.24) at the specified initial guess, and the condensing
of QP (3.24) as described in Subsection 3.3.2. Additionally, the integra-
tion can fail, similar to single shooting. This contradicts the paradigm
of providing feedback as quickly as possible.

The IVE initialization technique is
not unique to the RTI. Instead, the
IVE can be more generally under-
stood as a technique to augment
parameterized NLPs by adding a
trivial constraint that fixes an opti-
mization variable to the parameter-
ization parameter. More details can
be found in [200, Section 4.1].

Initial Value Embedding Fortunately, all three expensive computa-
tions can be moved to the preparation phase. This is achieved by us-
ing the states and controls computed at the previous sampling time
as initial guesses, along with the derivatives from the previous sam-
pling time. Specifically, the derivatives are evaluated at these states
and controls, ensuring consistency between the derivatives and vari-
ables. The initial guess for 𝑠0 will not initially match 𝑥 𝑗 . However, since
the current state, or initial value, is embedded linearly into the NLP
(3.14) via (3.14f), 𝑠0 will equal 𝑥 𝑗 after the first SQP iteration. In ad-
dition to enabling the relocation of expensive computations to the
preparation phase, the IVE initialization is reported to exhibit faster
convergence of the SQP method, as noted in [65][65]: Diehl et al. (2002), “An Efficient

Algorithm for Nonlinear Model Predic-
tive Control of Large-Scale Systems
Part I: Description of the Method (Ein
effizienter Algorithmus für die nicht-
lineare prädiktive Regelung großer
Systeme Teil I: Methodenbeschrei-
bung)”

.

3.4.2. RTI phases

As described in the main idea of RTI - II, we divide the computations
required for the single SQP iteration into three phases. The temporal
sequence of these phases was illustrated already in Figure 3.3 and
Algorithm 3.4. Below, we discuss these phases in more detail.

Preparation phase The IVE initialization strategy allows us to per-
form steps 1 – 3 of Algorithm 3.2 during the preparation phase. Ac-
cording to the IVE, the current guess for the optimization variables
is provided by the primal variables 𝑠 𝑗−1, 𝑞 𝑗−1 and the dual variables
𝜆 𝑗−1, 𝜇𝑗−1 from the previous sampling time 𝑡 𝑗−1. All evaluations and
derivatives in step 1 of Algorithm 3.2 are based on these variables.

Feedback phase Once the current state 𝑥 𝑗 becomes known, we can
finalize the setup of the condensed QP (3.41) (step 3 in Algorithm 3.4).
This marks the first step of the feedback phase. In the second step,
we solve the QP (3.41) to obtain 𝑠 𝑗0, 𝑞 𝑗 (step 4 in Algorithm 3.4). We
then immediately apply the corresponding control 𝑢 𝑗0 derived from
𝑞 𝑗0 (steps 5 – 6 in Algorithm 3.4).

3.4. Real-Time Iterations 43

[23]: Best (1996), “An Algorithm for the
Solution of the Parametric Quadratic
Programming Problem”
[72]: Ferreau et al. (2008), “An online
active set strategy to overcome the
limitations of explicit MPC”
[74]: Ferreau et al. (2014), “qpOASES:
a parametric active-set algorithm for
quadratic programming”
[80]: Frasch et al. (2013), “An auto-
generated nonlinear MPC algorithm
for real-time obstacle avoidance of
ground vehicles”
[172]: Scholz et al. (2020), “Model-
based optimal feedback control for
microgrids with multi-level iterations”
[173]: Scholz et al. (2021), “Multi-level
iterations for microgrid control with
automatic level choice”
[171]: Scholz (2022), “Model-based op-
timal feedback control For microgrids”
[195]: Verschueren et al. (2016), “Time-
optimal race car driving using an
online exact hessian based nonlinear
MPC algorithm”
[203]: Wirsching et al. (2007), “An on-
line active set strategy for fast adjoint
based nonlinear model predictive
control”
[200]: Wirsching (2018), “Multi-level
iteration schemes with adaptive level
choice for nonlinear model predictive
control”

Thus, the feedback phase primarily consists of solving the QP. Con-
sequently, the feedback delay is determined by the duration of the
QP solution process. A fast QP solution method is therefore crucial for
the successful implementation of the RTI scheme. As noted above, we
must solve a sequence of QPs parameterized by the current state 𝑥 𝑗 ,
with only small changes in the matrices between subsequent feed-
back phases. A QP solution method specifically tailored for such se-
quences is the online active set method for quadratic programming.
Originally, the foundations of this method were developed indepen-
dently of the MPC context under the name primal-dual parametric
quadratic programming method by BEST [23]. Later, FERREAU, BOCK,
and DIEHL revisited this method in the MPC context, leading to the
online active set method presented in [72], which was subsequently
implemented in the open-source software package qpOASES [74]. It
has been successfully combined with RTI, for example in [80, 195], and
its enhancement MLI, as demonstrated in [171–173, 200, 203].

Transition phase In the transition phase, we compute the remaining
variables 𝑠 𝑗1 . . . , 𝑠

𝑗
𝑀 , 𝜆 𝑗 , 𝜇𝑗 by expanding the result of QP (3.41), as de-

scribed on p. 38. These computations correspond to step 6 and step 7
of Algorithm 3.2.

3.4.3. Theoretical aspects

So far, we have focused on explaining how the RTI scheme enables
a fast numerical method for NMPC, but we have not yet provided in-
sights into the theoretical aspects of the RTI. Therefore, we briefly
present the interpretation of the QP step as a Tangential Predictor
(TP) and mention relevant stability results for NMPC with RTI.

The QP solution as TP The NLP (3.14) is parameterized by the current
state 𝑥 𝑗 . From parametric optimization, as discussed in [103] [103]: Guddat et al. (1990), Parametric

Optimization: Singularities, Pathfol-
lowing and Jumps

, we know
that the local minimizer of (3.14) depends piecewise differentiably on
𝑥 𝑗 under suitable assumptions, which are detailed in [103]. If the vari-
ables at sampling time 𝑡 𝑗−1 are indeed a local minimizer of (3.14), it
has been shown in [57, Theorem 3.6] [57]: Diehl (2001), “Real-time opti-

mization for large scale nonlinear
processes”

that the solution step of the
QP (3.24) or (3.41), respectively, serves as a generalized TP for solving
(3.14) with the updated system state 𝑥 𝑗 , provided the IVE initialization
strategy is used. In simple terms, a TP is a first-order approximation
at smooth parts of the solution manifold. A generalized TP can even
”jump” over non-differentiable points of the solution manifold by ac-
counting for active set changes. For further explanations, see [57, Sec-
tion 3.4], [62, Section 5], or [200, Section 4.1]

[62]: Diehl et al. (2009), “Efficient
Numerical Methods for Nonlinear MPC
and Moving Horizon Estimation”
[200]: Wirsching (2018), “Multi-level
iteration schemes with adaptive level
choice for nonlinear model predictive
control”

. The concept is illustrated
in Figure 3.4. As noted in [62, p. 408], the QP solution step is only ap-
proximately a generalized TP if

(i) the variables from the previous sampling time 𝑡 𝑗−1 are only an
approximate local minimizer, or

(ii) any of the Jacobians, the Hessian, the LAGRANGE gradient, or the
constraint residuals are not evaluated exactly.

44 3. Efficient Numerical Methods for NMPC

Figure 3.4.: Illustration of the general-
ized TP adapted from [200, Figure 4.2].
The solution manifold of the NLP (3.14)
(black) exhibits a non-differentiability
where an active set change occurs be-
tween 𝑥 𝑗 and 𝑥 𝑗+1 . If we set up the
QP (3.24) in the optimal primal solu-
tion 𝑤∗(𝑥 𝑗+1), where 𝑤 = (𝑠𝑇 , 𝑞𝑇)𝑇 , the
solution manifold of the QP (3.24) (red)
also exhibits an active set change near
the active set change in the NLP. The
step ΔΔ𝑤 computed by solving the QP
(3.24) remains a good approximation to
the true solution 𝑤∗(𝑥 𝑗+1) as it ”jumps”
over the active set changes.

𝑥

𝑤

𝑥 𝑗 𝑥 𝑗+1

AS change (NLP)

AS change (QP)
𝑤∗(𝑥 𝑗)

𝑤∗(𝑥 𝑗) + Δ𝑤

𝑤∗(𝑥 𝑗+1)

Reminder: Stability of NMPC

We provide background informa-
tion about the stability of NMPC
schemes in Section 2.2.

[63]: Diehl et al. (2007), “A Stabilizing
Real-Time Implementation of Nonlin-
ear Model Predictive Control”
[64]: Diehl et al. (2005), “Nominal sta-
bility of real-time iteration scheme for
nonlinear model predictive control”
[208]: Zanelli et al. (2021), “A Lyapunov
function for the combined system-
optimizer dynamics in inexact model
predictive control”

In the fol-
lowing, we reference works that ad-
dress the conditions under which
NMPC with RTI can still yield a sta-
ble NMPC scheme. Nominal stabil-
ity refers to the stability of nominal
NMPC, i.e., NMPC where the system
behaves exactly as predicted, see
Definition 2.7.

Stability results In [57, 60], contractivity of the optimization vari-
ables was demonstrated, meaning that the SQP iterations, disturbed
by the varying current state 𝑥 𝑗 , still converge. However, this result
does not directly imply the stability of the resulting NMPC scheme.
Subsequent works have shown nominal stability of NMPC with RTI
without mixed state-control constraints, using terminal constraints
(e.g., [64]) or terminal costs (e.g., [63]). A more general approach is pre-
sented in [208], where asymptotic stability of the combined system-
optimizer dynamics is shown for inexact NMPC with 𝑄-linearly con-
vergent optimization algorithms. Additionally, [208] references sev-
eral related results on the stability of NMPC schemes similar to the
RTI. In Chapter 4 of this thesis, we contribute a stability proof for RTI-
like schemes for a class of semilinear parabolic PDEs, using [208] as
a starting point.

3.5. Multi-Level Iterations

Reminder: Sampling period

The sampling period is the time
interval between two subsequent
sampling times, see Definition 2.1.

The RTI scheme presented in Section 3.4 enables us to drastically re-
duce the feedback delay by moving the expensive integration and
derivative computations to the preparation phase, which takes place
before the actual sampling time 𝑡 𝑗 . However, these expensive com-
putations still need to be carried out. Consequently, the sampling
period must be long enough to accommodate the preparation phase.
In other words, while the RTI scheme leads to shorter feedback de-
lays, the expensive computations in the preparation phase still limit
how quickly we can sample. This limitation is particularly problematic
for systems with very fast dynamics, such as a chain of masses con-
nected by springs, as considered in [200, Section 10.1], or the control
of microgrids, as discussed in [171–173]. In such cases, the resulting
NMPC scheme may be too slow to achieve good performance.

[200]: Wirsching (2018), “Multi-level
iteration schemes with adaptive level
choice for nonlinear model predictive
control”
[171]: Scholz (2022), “Model-based op-
timal feedback control For microgrids”

3.5. Multi-Level Iterations 45

[5]: Albersmeyer et al. (2009), “Fast
Nonlinear Model Predictive Control
with an Application in Automotive
Engineering”
[28]: Bock et al. (2007), “Constrained
Optimal Feedback Control of Systems
Governed by Large Differential Alge-
braic Equations”
[81]: Frasch et al. (2012), “Mixed-Level
Iteration Schemes for Nonlinear
Model Predictive Control”
[82]: Frey et al. (2024), “Advanced-Step
Real-Time Iterations With Four Levels
– New Error Bounds and Fast Imple-
mentation in acados”
[104]: Gutekunst et al. (2020), “Fast
moving horizon estimation using
multi-level iterations for microgrid
control”
[119]: Kirches et al. (2012), “Efficient
direct multiple shooting for nonlinear
model predictive control on long
horizons”
[138]: Meyer (2020), “Numerical solu-
tion of optimal control problems with
explicit and implicit switches”
[144]: Nurkanović et al. (2021),
“Multi-level Iterations for Economic
Nonlinear Model Predictive Control”
[172]: Scholz et al. (2020), “Model-
based optimal feedback control for
microgrids with multi-level iterations”
[201]: Wirsching et al. (2008), “An
Adjoint-based Numerical Method
for Fast Nonlinear Model Predictive
Control”

The next stage in the development of the RTI scheme, which addresses
the challenge of accelerating the preparation phase, is the Multi-Level
Iterations (MLI) scheme. The MLI scheme is built around the idea of
employing different variations, known as levels, of inexact SQP in-
stead of the exact SQP used in the RTI scheme. The MLI scheme was
first introduced in [28, Section 4] and has since been successfully ap-
plied tomechanical and chemical processes, as documented in [5, 133,
201–203]. Extensions of the MLI scheme have been developed, includ-
ing EULER steps for model updates and a local feedback law based
on the fastest MLI level in [120], mixed-level and fractional-level MLI
schemes in [81], and its application to NMPC on long horizons in [119].
Moreover, the PhD thesis [200] by WIRSCHING provides a comprehen-
sive overview of the MLI scheme. In recent years, the MLI scheme has
been applied to economic NMPC in [144], extended to Moving Horizon
Estimation (MHE), and subsequently applied to microgrid control in
[104, 171–173]. It has also been combined with the advanced-step con-
troller in [82, 145]. Finally, initial ideas for extending the MLI scheme
to systems with switches have been proposed in [138].

In the following, we first present the different MLI levels in Subsec-
tion 3.5.1 and then discuss additional aspects, such as communication
and scheduling of the levels, in Subsection 3.5.2.

3.5.1. MLI levels

The MLI scheme is an extension of the RTI scheme. As such, we still di-
vide the relevant computations into a preparation phase, a feedback
phase, and a transition phase, as described in Subsection 3.4.2. The
timing of these phases remains as presented in Algorithm 3.4 and Fig-
ure 3.3. Essentially, the MLI scheme comprises different strategies for
setting up the QP (3.41) in step 1 of Algorithm 3.4. The computations
performed in the preparation phase thus vary depending on the strat-
egy. These strategies are referred to as levels in MLI. The different lev-
els can communicate, i.e., exchange data, with each other. This com-
munication occurs during the transition phase. The feedback phase,
as described in steps 3 – 6 of Algorithm 3.4, remains unchanged. For
NMPC with MLI, the feedback phase still involves solving QP (3.41).

To present the MLI scheme concisely, and since the specific structure
of the QP (3.41) is less significant at this point, we consolidate all op-
timization variables, equality constraints, and inequality constraints
into single expressions. We write QP (3.41) for level X ∈ {A, B, C,D} at
sampling time 𝑡 𝑗 in the form

Attention:

In our description of the tailored
SQP method and the RTI in Subsec-
tion 3.3.2 and Section 3.4, we have
generally assumed that all deriva-
tives are computed exactly, even
though many implementations of
the RTI use approximations. In Lev-
els A–C of the MLI scheme, only a
subset of the residuals and deriva-
tives is computed with the current
variable set. Therefore, the compo-
nents of QP (3.42) should be under-
stood as approximations in most
cases in this section.

min
Δ𝑤

1
2
Δ𝑤𝑇𝑄 𝑗

XΔ𝑤 +
(
𝑝 𝑗X

)𝑇
Δ𝑤 (3.42a)

s.t. 0 = 𝑐 𝑗X + 𝐶 𝑗
XΔ𝑤, (3.42b)

0 ≤ 𝑑 𝑗X + 𝐷 𝑗
XΔ𝑤. (3.42c)

46 3. Efficient Numerical Methods for NMPC

The main idea of the MLI scheme is to update the components of
QP (3.42) differently, depending on the current level. Typically, as de-
scribed in [200][200]: Wirsching (2018), “Multi-level

iteration schemes with adaptive level
choice for nonlinear model predictive
control”

, the MLI scheme comprises four levels, which are:

▶ Level D, or full linearization iterations,
▶ Level C, or optimality iterations,
▶ Level B, or feasibility iterations,
▶ Level A, or feedback iterations.

The computational complexity decreases from Level D to Level A.

In addition to the components of QP (3.42), each level X ∈ {B, C,D}
maintains its own set of primal and dual variables 𝑤 𝑗

X, 𝜆
𝑗
X, 𝜇

𝑗
X. Level

A does not maintain its own variable set. Instead, Level A holds ref-
erence primal and dual variables. Similarly, Level B and C maintain
reference data, as described in the respective paragraphs for each
level.

Level D – Full linearization iterations Level D corresponds to the RTI
scheme. Thus, we perform step 1 of Algorithm 3.4 in the preparation
phase using the current Level D variables 𝑤 𝑗

D, 𝜆
𝑗
D, 𝜇

𝑗
D. These variables

are typically the results from the previous sampling time when Level
D was executed. Alternatively, though less commonly, these variables
may have been communicated from one of the lower levels. This is
a viable option, for instance, when Level D is scheduled infrequently,
and its previous set of variables might therefore be outdated.

Let Δ𝑤 and 𝜆QP, 𝜇QP be the solution obtained by solving QP (3.42)
with its components provided by Level D. During the transition phase
of Level D, its variables are updated according to

𝑤 𝑗+1
D = 𝑤 𝑗

D + Δ𝑤, 𝜆
𝑗+1
D = 𝜆QP , 𝜇

𝑗+1
D = 𝜇QP.

The alternative name ”full linearization iterations” arises from the fact
that the constraint Jacobians 𝐶 𝑗

D, 𝐷
𝑗
D and the objective function gra-

dient 𝑝 𝑗D are computed. The lion’s share of the computational load in
Level D stems from these first-order derivative computations and the
calculation of the new Hessian 𝑄 𝑗

D, unless cheaper Hessian approx-
imations are used. Since Level D aligns with the RTI scheme, it also
inherits the convergence and stability properties of the RTI discussed
in Subsection 3.4.3.

Level C – Optimality iterations For many systems, the linearizations
and the Hessian do not change significantly from one sampling time
to the next. This is particularly true when very short sampling pe-
riods are achieved, which is the primary goal of the MLI scheme. At
the same time, computing these linearizations and the Hessian is the
most computationally expensive task in Level D. Therefore, the idea
of Level C is to reuse the linearizations and Hessian from previous
Level D iterations. To achieve this, Level C maintains reference values
�̄� 𝑗

C , �̄�
𝑗
C , �̄�

𝑗
C for the Hessian and constraint Jacobians. These reference

values are communicated from Level D. If Level D is not scheduled at
all, the reference values can be fixed values provided at the start of

3.5. Multi-Level Iterations 47

the NMPC procedure. A typical choice in this case, especially for track-
ing or stabilizing NMPC, is to evaluate the linearizations and Hessian
around a target state that the system is being steered toward. These
reference values are then used for the linearizations and Hessian, i.e.,
we set:

𝑄 𝑗
C = �̄� 𝑗

C , 𝐶 𝑗
C = �̄� 𝑗

C , 𝐷 𝑗
C = �̄� 𝑗

C.

The residuals 𝑐 𝑗C and 𝑑 𝑗C are newly evaluated at 𝑤 𝑗
C.

As a result of reusing the matrices, we need to replace the gradient
of the NLP objective function in the QP objective with a modified
gradient. This modified gradient, and thus 𝑝 𝑗C, is given by

𝑝 𝑗C =

(
𝑏𝑠

𝑏𝑞

)
+

(
𝐶 𝑗

C −
𝜕

𝜕𝑤
𝑐 𝑗C

)𝑇
𝜆
𝑗
C +

(
𝐷 𝑗

C −
𝜕

𝜕𝑤
𝑑 𝑗C

)𝑇
𝜇
𝑗
C

= ∇𝑤L
(
𝑤 𝑗

C ,𝜆
𝑗
C , 𝜇

𝑗
C

)
+

(
𝐶 𝑗

C

)𝑇
𝜆
𝑗
C +

(
𝐷 𝑗

C

)𝑇
𝜇
𝑗
C.

(3.43)

What we describe here in a con-
densed manner is an inexact SQP
method. Inexact SQP methods can
be interpreted as inexact NEWTON
methods – or NEWTON-type meth-
ods depending on the naming con-
vention you follow – applied to
the KKT optimality systems (3.16) for
equality-constrained problems.

To understand where Equation (3.43) originates, we revisit our deriva-
tion of the SQP method as NEWTON’s method applied to the KKT sys-
tem in Subsection 3.3.1. Let us replace the constraint Jacobian in the
linear system (3.17), which determines the NEWTON step for the KKT
optimality system (3.16), with an approximation 𝑀. In this case, the
resulting linear system is no longer equivalent to the linear system
(3.18) that constitutes the KKT system of the SQP QP (3.20). Instead,
we need to replace ∇𝑥 𝐽 (𝑥𝑘) in (3.18) with ∇𝑥L(

𝑥𝑘 ,𝜆𝑘
) + 𝑀. Replac-

ing 𝑀 with 𝐶 𝑗
C and extending this concept to inequality-constrained

problems leads us to the modified gradient Equation (3.43).

The Level C variables are updated analogously to Level D, i.e.,
Δ𝑤 and 𝜆QP , 𝜇QP denote the so-
lution obtained by solving QP (3.42)
with its components provided by
Level C.

𝑤 𝑗+1
C = 𝑤 𝑗

C + Δ𝑤, 𝜆
𝑗+1
C = 𝜆QP , 𝜇

𝑗+1
C = 𝜇QP.

At first glance, it seems that we need to compute the constraint Ja-
cobians 𝜕

𝜕𝑤 𝑐
𝑗
C and 𝜕

𝜕𝑤 𝑑
𝑗
C to compute the modified gradient. However,

they only appear as matrix-vector products with the LAGRANGE mul-
tipliers 𝜆

𝑗
C and 𝜇

𝑗
C. Fortunately, these matrix-vector products can be

computed without explicitly calculating the full Jacobians by using the
adjoint Internal Numerical Differentiation (IND), see [4]

[4]: Albersmeyer (2010), “Adjoint based
algorithms and numerical methods
for sensitivity generation and op-
timization of large scale dynamic
systems”

, or the reverse
mode of Automatic Differentiation (AD), see [95]

[95]: Griewank et al. (2008), Evaluating
Derivatives

. Consequently, the
dominant computational expense in the preparation phase of Level
C becomes the computation of the gradient∇𝑥 𝐽 (𝑥𝑘) of the Lagrangian
of NLP (3.14). To compute ∇𝑥 𝐽 (𝑥𝑘) , we not only need to compute the
aforementioned matrix-vector products but also the gradient of the
objective function of NLP (3.14). Since the constraint Jacobians and
Hessian are not recomputed in Level C, we can also reuse the con-
densed Hessian and condensed mixed state-control constraint ma-
trices, which reduces the cost of condensing. Additionally, the online
active set method mentioned on p. 43 is accelerated if the constraint
matrices remain unchanged [200]

[200]: Wirsching (2018), “Multi-level
iteration schemes with adaptive level
choice for nonlinear model predictive
control”.

48 3. Efficient Numerical Methods for NMPC

If we fix a current state 𝑥 𝑗 and then perform an SQP method where
the QPs are defined by Level C QPs, we are guaranteed local 𝑄-linear
convergence of the iterates toward a KKT point, see [200, Theorem
5.3]

[200]: Wirsching (2018), “Multi-level
iteration schemes with adaptive level
choice for nonlinear model predictive
control”

. This fact explains the alternative name of Level C as optimality
iterations.

Level B – Feasibility iterations Transitioning down to Level B, we aim
to avoid the most expensive computations of Level C. Similar to Level
C, Level B maintains its own primal-dual variables 𝑤 𝑗

B, 𝜆
𝑗
B, 𝜇

𝑗
B and

reference matrices �̄� 𝑗
B, �̄�

𝑗
B, �̄�

𝑗
B, which are obtained from Level D or

offline computations. For the same reasons as in Level C, Level B also
uses a modified gradient 𝑝 𝑗B. Since the most expensive computation
in Level C is the evaluation of the LAGRANGE gradient ∇𝑥 𝐽 (𝑥𝑘) , which
is required to construct the modified gradient 𝑝 𝑗C, Level B eliminates
derivative computations entirely by approximating the modified gra-
dient 𝑝 𝑗B using a first-order TAYLOR expansion

Attention:

If Level C provides the reference
gradient �̄� 𝑗B , it is crucial to em-
phasize that �̄� 𝑗B = 𝑝 𝑗C and not
∇𝑤L

(
𝑤 𝑗

C ,𝜆
𝑗
C , 𝜇

𝑗
C

)
, as �̄� 𝑗B must also

be a modified gradient.

𝑝 𝑗B = �̄� 𝑗B + �̄� 𝑗
B

(
𝑤 𝑗

B − �̄� 𝑗
B

)
, (3.44)

where a reference modified gradient �̄� 𝑗B, reference variables �̄� 𝑗
B, and

reference Hessian �̄� 𝑗
B are either communicated from Level D or pre-

computed offline.

Accordingly, only the residuals 𝑐 𝑗B and 𝑑 𝑗B are newly evaluated at 𝑤 𝑗
B

in Level B. Again, the Level B variables are updated by
Δ𝑤 and 𝜆QP , 𝜇QP denote the so-
lution obtained by solving QP (3.42)
with its components provided by
Level B.

𝑤 𝑗+1
B = 𝑤 𝑗

B + Δ𝑤, 𝜆
𝑗+1
B = 𝜆QP , 𝜇

𝑗+1
B = 𝜇QP.

For Level B, the integration of the IVPs (3.6) required for the con-
straints evaluations becomes the most expensive computation. As
for Level C, we only need to redo parts of the condensing and para-
metric QP solvers benefit from the unchanged QP matrices. For SQP
iterations with only Level B QPs, it has been shown that the iterates
converge towards a feasible point for the NLP (3.14) that, however, is
suboptimal. This earns Level B the alternative name of feasibility it-
erations. If at all, the limit point is a KKT point of a disturbed NLP as
shown in [28]. See also [171, Theorem 5.2].

[28]: Bock et al. (2007), “Constrained
Optimal Feedback Control of Systems
Governed by Large Differential Alge-
braic Equations”
[171]: Scholz (2022), “Model-based op-
timal feedback control For microgrids”

The residual of the initial value con-
straint (3.41f) is part of 𝑐 𝑗 .

Level A – Feedback iterations On the fastest Level A, we do not
update any components of QP (3.42) except for the initial value con-
straint (3.41f). While Level A does not hold its own set of variables
as indicated on p. 46, it thus holds reference values for the Hessian
�̄� 𝑗

A, the Jacobians �̄� 𝑗
A , �̄�

𝑗
A, the modified gradient �̄� 𝑗A, the inequality

residuals �̄� 𝑗A and the remaining components of the equality residuals.
Moreover, it holds a reference value for the control variable 𝑞0 which
we denote by 𝑞0. As the resulting Level A QP is hence equal to the
QP solved at the previous sampling time except for the initial value
constraint, no condensing is required and a parametric QP solver has
the least computations to do. Once we have obtained the solution

3.5. Multi-Level Iterations 49

Δ𝑤 that includes Δ𝑞0 from the QP solver, we only compute 𝑞0 + Δ𝑞0
and apply the resulting control to the system. No further updates of
optimization variables are computed. Using Level A comes down to
applying a Linear Model Predictive Controller (LMPC) [200] [200]: Wirsching (2018), “Multi-level

iteration schemes with adaptive level
choice for nonlinear model predictive
control”

. The price
we pay for the short sampling period is that Level A iterates are not
guaranteed to converge to a feasible point. We can also derive an
explicit feedback law from Level A. For details see, e.g., [200, p. 69].

The computations and update formulas are summarized in Table 3.1.

Level IVE
𝑥 𝑗 − 𝑠0

Residuals
𝑐(𝑤), 𝑑(𝑤)

Gradient
𝑝(𝑤)

Jacobians
𝐶(𝑤), 𝐷(𝑤)

Hessian
𝑄(𝑤,𝜆, 𝜇)

D ✓ ✓ ✓ ✓ ✓

C ✓ ✓ ✓ (✓)1

B ✓ ✓

A ✓
1 Only the products 𝐶(𝑤)𝑇𝜆, 𝐷(𝑤)𝑇𝜇 need to be computed in an adjoint fashion.

(a) Necessary computations.

Level Residuals
𝑐, 𝑑

Gradient
𝑝

Jacobians
𝐶, 𝐷

Hessian
𝑄

D 𝑐(𝑤),
𝑑(𝑤) 𝑝(𝑤) 𝐶(𝑤),

𝐷(𝑤) 𝑄(𝑤,𝜆, 𝜇)

C 𝑐(𝑤),
𝑑(𝑤)

(
𝑏𝑠
𝑏𝑞
) + (

�̄� − 𝐶(𝑤))𝑇𝜆
+(�̄� − 𝐷(𝑤))𝑇𝜇 �̄� ,

�̄� �̄�

B 𝑐(𝑤),
𝑑(𝑤) �̄� + �̄�(𝑤 − �̄�) �̄� ,

�̄� �̄�

A 𝑐,
�̄� �̄�

�̄� ,
�̄� �̄�

(b) Update formulas.

Table 3.1.: Overview about the neces-
sary computations and the respective
update formulas for each MLI level.
The farther to the right a computation
is, the more expensive it is. Adapted
from [171, Table 5.1].

3.5.2. Further aspects

In Subsection 3.5.1, we described how each MLI level operates. While
we have already made some remarks about the communication be-
tween levels, we have yet to explain in more detail the interplay of
the different levels. This interplay has two main aspects: the schedul-
ing of the levels, i.e., determining when each level is applied, and the
communication, i.e., the data exchange between the levels.

The scheduling periods 𝑛A , 𝑛B , 𝑛C ,
𝑛D must be chosen such that a
level is scheduled for every sam-
pling time. The simplest and most
common way to ensure this is to set
𝑛X = 1 for the leftmost level X.

Scheduling of MLI levels For each sampling time 𝑡 𝑗 , we must decide
which MLI level to apply. A straightforward option is to prescribe a
schedule in advance and apply the levels according to this schedule.
Such a schedule is typically written in the form A𝑛AB𝑛BC𝑛CD𝑛D with
𝑛A, 𝑛B, 𝑛C, 𝑛D ∈ ℕ which is interpreted as follows.

50 3. Efficient Numerical Methods for NMPC

Figure 3.5.: Incremental construction
of the MLI schedule A1B2C4D8 via
the schedulesA1 ,A1B2 , andA1B2C4 .
Adapted from [200, Figure 5.1].

A A A A A A A A A A A A A A A A · · · 𝐴1

A B A B A B A B A B A B A B A B · · · 𝐴1𝐵2

A B A C A B A C A B A C A B A C · · · 𝐴1𝐵2𝐶4

A B A C A B A D A B A C A B A D · · · 𝐴1𝐵2𝐶4𝐷8

We start with the leftmost level. Let this level be denoted as X. For
now, we schedule this level X for every 𝑛X-th sampling time. Then,
we move one position to the right, where Level B is usually located
in the general schedule. Let this level be denoted as Y. This level is
then scheduled for every 𝑛Y-th sampling time. If a sampling time is
assigned to both level X and Y, the level scheduled later, i.e., level
Y, takes precedence. We proceed analogously until all levels in the
schedule have been processed. The resulting level choice at sampling
time 𝑡 𝑗 is shown in Algorithm 3.5. An example of the incremental con-
struction of the MLI schedule A1B2C4D8 is provided in Figure 3.5.

From an implementation perspec-
tive, Algorithm 3.5 is typically real-
ized differently. Instead of looping
over the levels, we create an array
that holds the sequence in which
the levels are applied and simply
read its 𝑗-th entry to get Y. This ar-
ray is constructed based on the de-
scription above.

Algorithm 3.5: MLI level choice at 𝑡 𝑗 with a prescribed schedule.
Input: MLI schedule X𝑛X1

1 · · ·X𝑛X𝑁
𝑁 with 𝑁 levels and index 𝑗 of

current sampling time 𝑡 𝑗

Output: Level Y to be applied around 𝑡 𝑗

1 for 𝑖 = 𝑁 to 1 do
2 if 𝑗 mod 𝑛X𝑖 = 0 then
3 Y← X𝑖
4 return

In addition to this prescribed scheduling, adaptive level choice meth-
ods form a second group of scheduling strategies. In [200, Section 6.4][200]: Wirsching (2018), “Multi-level

iteration schemes with adaptive level
choice for nonlinear model predictive
control”
[172]: Scholz et al. (2020), “Model-
based optimal feedback control for
microgrids with multi-level iterations”

,
an adaptive level choice method based on contraction estimates is
proposed. If the MLI scheme is executed on a multi-core CPU, the
different levels can run in parallel. For this scenario, SCHOLZ et. al.
developed a level choice based on computation time in [172].

Communication between MLI levels The communication between
MLI levels has two main aspects:

▶ the provision of the components of QP (3.42), and
▶ the exchange of optimization variables.

These two communication aspects differ in terms of the hierarchy of
the levels involved and the ”age” of the data being exchanged. For the
communication of QP components, the hierarchy of the levels is typ-
ically top-down. In a top-down hierarchy, data is passed from higher
levels to lower levels. This communication style matches the one de-
scribed in [200, Algorithm 1]. This is because higher levels compute
more components of the QP (3.42) than lower levels. For components
updated in both communicating levels, such as the constraint resid-
uals in Levels B, C, and D, it may also make sense to exchange these
components in the opposite direction.

3.5. Multi-Level Iterations 51

For the communication of optimization variables, four different hier-
archies (and hybrid forms of these four) are reasonable. The most
suitable hierarchy depends on the problem and the MLI schedule in
use. The four communication forms are: For interpretations of these four

forms and recommendations on
when to use each, refer to [200, Sec-
tion 5.3.2].

Level A is exempt from this as it op-
erates without its own set of vari-
ables, as described in the previous
subsection.

▶ Top-down variable communication: Optimization variables are
passed only from higher levels to lower levels, cf. [200, Alg. 2].

▶ Bottom-up variable communication: Optimization variables are
passed only from lower levels to higher levels, cf. [200, Alg. 3].

▶ Maximum variable communication: All levels exchange their op-
timization variables with all other levels, cf. [200, Alg. 4].

▶ Minimum variable communication: No optimization variables
are exchanged between levels, cf. [200, Alg. 5].

Let us clarify what we mean by the ”age” of the data.

Attention:

In the description of MLI in [171],
this difference in the data’s age
between the two communication
channels is incorrectly ignored.
There, equations (5.10) and (5.13),
in combination with Algorithm
5.2 and Figure 5.2, suggest that
optimization variables are also
exchanged before being updated
by the QP solution.

The QP compo-
nents are computed during the preparation phase of the levels and
are evaluated at the variables 𝑤 𝑗 , 𝜆 𝑗 , 𝜇𝑗 , i.e., as they are before the
sampling time 𝑡 𝑗 . However, if the optimization variables themselves
are exchanged between levels, it does not make sense to exchange
them in their pre-sampling state. Instead, we first update the opti-
mization variables to obtain 𝑤 𝑗+1, 𝜆 𝑗+1, 𝜇𝑗+1 and then communicate
these updated variables to the other levels. In this sense, the opti-
mization variable data is ”younger” than the QP component data, as
it reflects the state after the sampling time 𝑡 𝑗 . Otherwise, redundant
computations may occur, as illustrated in Example 3.3. The only ex-
ception is the reference control 𝑞0 obtained by Level A. This reference
control must necessarily come from 𝑤 𝑗 , i.e., from before the sampling
time. Otherwise, Level A may exhibit undesired behavior.

■ Example 3.3 Consider the case where Level D holds its set of primal
optimization variables 𝑤 𝑗

D during the preparation phase for sampling
time 𝑡 𝑗 . In this phase, Level D evaluates the equality constraint resid-
uals 𝑐 𝑗D = 𝑐

(
𝑤 𝑗

D

)
. Now, assume that Level C is scheduled for the next

sampling time 𝑡 𝑗+1. If we were to communicate 𝑤 𝑗
D down to Level C

instead of the updated 𝑤 𝑗+1
D , the following redundancy would occur.

During its preparation phase for 𝑡 𝑗+1, Level C would also evaluate the
constraints 𝑐 . However, since 𝑤 𝑗+1

C = 𝑤 𝑗
D due to this flawed commu-

nication scheme, we would have

𝑐 𝑗+1
C = 𝑐

(
𝑤 𝑗+1

C

)
= 𝑐

(
𝑤 𝑗

D

)
= 𝑐 𝑗D.

This example demonstrates that the optimization variables must be
updated by the QP solution before being broadcast to other levels. ■

In Figure 3.6, we illustrate the described communication. In Figure 3.6
top-down variable communication is employed.

Finally, deviations from the standard scheduling and communication
schemes, such as mixed-level or fractional-level iterations, are also
possible. For more details, refer to [200, Section 5.5]. A comprehensive
study of different MLI schemes is provided in [107].

[200]: Wirsching (2018), “Multi-level
iteration schemes with adaptive level
choice for nonlinear model predictive
control”
[107]: Haßkerl et al. (2016), “Study of
the performance of the multi-level
iteration scheme for dynamic online
optimization for a fed-batch reactor
example”

52 3. Efficient Numerical Methods for NMPC

𝑥 𝑗−1

𝑥 𝑗

𝑥 𝑗+1

𝑥 𝑗+2

Time 𝑡

System Level D Level C Level B Level A

Preparation phase

Feedback phase

Transition phase

𝑤 𝑗−1
D , 𝜆 𝑗−1

D , 𝜇𝑗−1
D

𝑄 𝑗−1
D , 𝐶 𝑗−1

D , 𝐷 𝑗−1
D ,

𝑝 𝑗−1
D , 𝑐 𝑗−1

D , 𝑑 𝑗−1
D

Δ𝑤, 𝜆QP , 𝜇QP

𝑤 𝑗
D , 𝜆

𝑗
D , 𝜇

𝑗
D

Evaluation

Solve (3.42)

Update
𝑢 𝑗−1

𝑤 𝑗
C ,

𝜆
𝑗
C , 𝜇

𝑗
C

�̄� 𝑗
C ,

�̄� 𝑗
C , �̄�

𝑗
C

𝑝 𝑗C , 𝑐
𝑗
C , 𝑑

𝑗
C

Δ𝑤, 𝜆QP , 𝜇QP

𝑤 𝑗+1
C , 𝜆 𝑗+1

C , 𝜇𝑗+1
C

𝑢 𝑗

𝑤 𝑗+1
B ,

𝜆
𝑗+1
B

𝜇
𝑗+1
B

�̄� 𝑗+1
B�̄� 𝑗+1

B ,

�̄� 𝑗+1
B

𝑐 𝑗+1
B
�̄� 𝑗+1

B

�̄� 𝑗+1
B

�̄� 𝑗+1
B𝑝 𝑗+1

B

�̄� 𝑗+1
B

�̄� 𝑗+1
B

�̄� 𝑗+1
B

𝑐 𝑗+1
B
�̄� 𝑗+1

B

�̄� 𝑗+1
B ,

�̄� 𝑗+1
B

Δ𝑤, 𝜆QP , 𝜇QP

𝑤 𝑗+2
B , 𝜆 𝑗+2

B , 𝜇𝑗+2
B

𝑢 𝑗+1

�̄� 𝑗+2
A

�̄� 𝑗+2
A

�̄� 𝑗+2
A

�̄� 𝑗+2
A

�̄� 𝑗+2
A

𝑐 𝑗+2
A
�̄� 𝑗+2

A

Δ𝑤
𝑢 𝑗+2

Symbols:
Computations within a level

Data exchange with system

Communication between levels
(color indicates data age)

Data (color indicates data age)
Colors for data age:

Computed between 𝑡 𝑗−2 and 𝑡 𝑗−1

Computed between 𝑡 𝑗−1 and 𝑡 𝑗

Computed between 𝑡 𝑗 and 𝑡 𝑗+1

Figure 3.6.: Example of communication between the different MLI levels with top-down variable communication. Note that the
sizes of the different phases do not represent their computational complexity.

Contributions

Contents

4. Stability of Inexact NMPC for a Class of Semi-
linear Parabolic PDEs 55
4.1. Problem setting 55
4.2. Stability proof 63

5. Smooth Multivariate Shape-Preserving Inter-
polation 77
5.1. Problem formulation 79
5.2. Literature review 83
5.3. Novel smooth multivariate shape-

preserving interpolation method 85
5.4. Proof of the interpolation and shape-

preservation property 93
5.5. Numerical results 98

6. External Inputs in DMS, RTI, and MLI 105
6.1. Incorporating external inputs in DMS . . 107
6.2. Incorporating external inputs in the RTI

and MLI scheme 111

7. Sensitivity and External Input Scenario based
Feedback 117
7.1. Literature review 118
7.2. Sensitivity theorem 119
7.3. SensEIS feedback 124
7.4. Challenges and future directions of re-

search . 135

8. Application: Ecological Adaptive Cruise Con-
trol System 143
8.1. Literature review 144
8.2. Underlying vehicle model 145
8.3. OCP formulation 148
8.4. Numerical results 150

Stability of Inexact NMPC for a
Class of Semilinear Parabolic

PDEs 4.
4.1 Problem setting 55
4.2 Stability proof 63

While themain focus of this thesis is on NMPC based on anODEmodel
for the vehicle and engine dynamics, we also want to consider the in-
ternal dynamics of the vehicle, which may be modeled using PDEs,
in future work. In particular, we want to investigate how the numer-
ical methods for ODE-based NMPC presented and developed in this
thesis can be transferred to PDE-based NMPC. From an engineering
point of view, it is crucial to establish that the numerical methods
are reliable. As a consequence, we have focused our attention first
on establishing stability results. For the ODE-based NMPC, we have
mentioned relevant results in Section 2.2.

For inexact NMPC schemes for PDEs, however, we are not aware of
any existing work. In this sense, the results on the stability of inexact
NMPC for a class of semilinear parabolic PDEs that we develop in this
chapter are first steps in this direction. As such, we hope that our re-
sults will serve as a starting point for further results for other classes
of PDEs and provide a justification for the development and use of
corresponding numerical methods for real-world applications.

Our approach builds strongly on the work [208] [208]: Zanelli et al. (2021), “A Lyapunov
function for the combined system-
optimizer dynamics in inexact model
predictive control”

that considers inexact
NMPC for a class of ODEs. We begin with a description of the problem
setting and the relevant assumptions in Section 4.1. Section 4.2 con-
tains the proof of our main stability result, Theorem 4.3. The proof is
structured into several steps.

4.1. Problem setting

We consider an NMPC scheme where we compute a new control at
each node of an equidistant time grid 𝑡0 , 𝑡1 , . . . , 𝑡 𝑗 , . . .with 𝑡 𝑗 = (𝑗−1)𝑇
for a 𝑇 > 0.

Reminder: NMPC

In a nutshell, we use a nonlin-
ear model to predict and optimize
the behavior of a dynamical system
over a prediction horizon in NMPC.
In particular, we recompute the con-
trol at each sampling time and ap-
ply it only until the next sampling
time. See Chapter 2 or [101, Chapter
1] for details.

The prediction horizon at sampling time 𝑡 𝑗 is given by
[𝑡 𝑗 , 𝑡 𝑗 +𝑇hor), where the horizon length is defined as 𝑇hor ≔ 𝑁𝑇 for an
𝑁 ∈ ℕ. The NMPC scheme of interest is an inexact one, i.e., the control
applied is not necessarily equal to the solution of the OCPs.

In the following, we first specify the class of PDEs that is used to de-
scribe the system dynamics. We then formulate the OCP arising in
the NMPC setting of interest. In this chapter, we study the interplay
between the system dynamics and the optimizer dynamics. By opti-
mizer dynamics, we mean how the control applied to the system is
modified by the optimization method, or optimizer for short, based
on the current state and the previous control. We describe the op-
timizer dynamics and the combined system-optimizer dynamics in
more detail in Subsection 4.1.3. Finally, we give some comments on
the assumptions made in this section.

56 4. Stability of Inexact NMPC for a Class of Semilinear Parabolic PDEs

4.1.1. System dynamics

LetΩ ⊂ ℝ𝑑 be a bounded LIPSCHITZ domain.Definition: LIPSCHITZ domain

In simple terms, a LIPSCHITZ domain
is a domain with a boundary that
can locally be seen as the graph of
a LIPSCHITZ continuous function. For
a formal definition, see e.g. [7, A8.2,
p. 259].

With𝑄hor ≔ Ω×(0, 𝑇hor)
we denote the space-time cylinder and with Σhor ≔ 𝜕Ω × (0, 𝑇hor) its
lateral surface. We consider semilinear parabolic PDEs of the form

¤𝑦 − Δ𝑦 + 𝑓 (𝑥, 𝑦) = 0 in 𝑄hor ,

𝜕𝜈𝑦 + 𝑔(𝑥, 𝑦) = 𝑢 in Σhor ,

𝑦(0) = 𝑦0 in Ω,

(4.1)

where ¤𝑦 ≔ 𝜕
𝜕𝑡 𝑦, and 𝜕𝜈𝑦 is the normal derivative, 𝑦0 ∈ 𝐶(Ω̄) and

Definition: 𝐶(Ω) and 𝐿∞(𝐷)

For a domain 𝐷 ⊂ ℝ𝑑 , the space of
continuous functions is denoted by
𝐶(𝐷) and the space of essentially
bounded measurable functions by
𝐿∞(𝐷). For details, see standard
textbooks on the subject, e.g. [1,
Paragraphs 1.26, 2.10].

𝑢 ∈ 𝑈ad = {𝑢 ∈ 𝐿∞(Σhor) | 𝑢l(𝑥) ≤ 𝑢(𝑥, 𝑡) ≤ 𝑢u(𝑥) a.e. in Σhor} , (4.2)

and where 𝑓 , 𝑔, 𝑢l and 𝑢u satisfy the following conditions:

The conditions stated here corre-
spond mainly to the assumptions
5.1, 5.4 and 5.6 from [184].

The functions 𝑓 : Ω ×ℝ→ ℝ and 𝑔 : 𝜕Ω ×ℝ→ ℝ

(i) are measurable on Ω and 𝜕Ω, respectively, for fixed 𝑦 ∈ ℝ,
(ii) are twice differentiable with respect to 𝑦 for almost all 𝑥 ∈ Ω

and 𝑥 ∈ 𝜕Ω, respectively,
(iii) are monotonically increasing in 𝑦 for almost all 𝑥 ∈ Ω, 𝑥 ∈ 𝜕Ω,

respectively,
Monotonically increasing in 𝑦
means 𝜕

𝜕𝑦 𝑓 (𝑥, 𝑦), 𝜕
𝜕𝑦 𝑔(𝑥, 𝑦) ≥ 0. (iv) satisfy

��� 𝜕𝑙

𝜕𝑦 𝑙 𝑓 (𝑥, 0)
��� ≤ 𝑀1 and

��� 𝜕𝑙

𝜕𝑦 𝑙 𝑔(𝑥, 0)
��� ≤ 𝑀2 with constants

𝑀1 , 𝑀2 > 0 for all 𝑙 = 0, 1, 2 and for almost all 𝑥 ∈ Ω and
𝑥 ∈ 𝜕Ω,𝜕0

𝜕𝑦0 is the original function.

and their second derivative with respect to 𝑦

(v) is locally LIPSCHITZ-continuous in 𝑦 for all 𝑥 ∈ Ω and 𝑥 ∈ 𝜕Ω,
respectively.

Moreover, we assume that

(vi) 𝑢l , 𝑢u ∈ 𝐿∞(𝜕Ω) and that they satisfy 𝑢l(𝑥) ≤ 𝑢u(𝑥) for almost
all 𝑥 ∈ 𝜕Ω.

[184]: Tröltzsch (2009), Optimale
Steuerung partieller Differentialgle-
ichungen: Theorie, Verfahren und
Anwendungen
[44]: Casas (1997), “Pontryagin’s Prin-
ciple for State-Constrained Boundary
Control Problems of Semilinear
Parabolic Equations”
[160]: Raymond et al. (1999), “Hamil-
tonian Pontryagin’s Principles for
Control Problems Governed by Semi-
linear Parabolic Equations”

Under these assumptions, the following Theorem 4.1 holds. It is taken
from [184, Satz 5.5, p. 213] and summarizes results from [44, 160].

Definition: 𝐿𝑝 and𝑊(0, 𝑇)
The LEBESGUE space with 1 ≤ 𝑝 <
∞ is denoted by 𝐿𝑝 . For details,
see standard textbooks on the sub-
ject, e.g. [1, Paragraph 2.1]. The space
𝑊(0, 𝑇) is a HILBERT space given as

𝑊(0, 𝑇) ≔
{
𝑦 ∈ 𝐿2 (

0, 𝑇, 𝐻1(Ω)) ����
𝜕

𝜕𝑡
𝑦 ∈ 𝐿2 (

0, 𝑇, 𝐻1(Ω)∗)}
see, e.g. [184, p. 118], with the
SOBOLEV space 𝐻1(Ω) and its dual
space 𝐻1(Ω)∗ . For a definition of a
weak solution in 𝑊(0, 𝑇) ∩ 𝐿∞(𝑄),
see [184, p. 212].

Theorem 4.1 — Existence of continuous weak solution of IVP (4.1).
Requirements: conditions (i), (iii) and (v)
The semilinear parabolic IVP (4.1) has for all 𝑢 ∈ 𝐿𝑠(Σhor), 𝑦0 ∈
𝐶(Ω̄), 𝑠 > 𝑑 + 1 a unique weak solution 𝑦 ∈ 𝑊(0, 𝑇hor) ∩ 𝐿∞(𝑄hor).
Moreover, 𝑦 is continuous on 𝑄hor.

The IVP (4.1) describes the evolution of the state 𝑦 with initial state 𝑦0
and control 𝑢 over the entire prediction horizon. For NMPC, however,
the evolution from one sampling time 𝑡 𝑗 to the next sampling time 𝑡 𝑗+1
plays an important role, too. Let 𝑦 𝑗 be the current state at the sam-
pling point 𝑡 𝑗 and 𝑢𝑗 the control that is applied for the time [𝑡 𝑗 , 𝑡 𝑗+1).
The respective IVP is obtained by replacing 𝑄hor by 𝑄 ≔ Ω × (0, 𝑇)

4.1. Problem setting 57

and Σhor by Σ ≔ 𝜕Ω × (0, 𝑇) and 𝑦0 by 𝑦 𝑗 and 𝑢 by 𝑢𝑗 , i.e. the IVP has
the form

We don’t need to shift the time ar-
guments by 𝑡 𝑗 as we chose all in-
volved functions to not have an ex-
plicit time dependency.

¤𝑦 − Δ𝑦 + 𝑓 (𝑥, 𝑦) = 0 in 𝑄,
𝜕𝜈𝑦 + 𝑔(𝑥, 𝑦) = 𝑢𝑗 in Σ,

𝑦(0) = 𝑦 𝑗 in Ω.

(4.3)

Since we have only changed the time horizon, we still know from [184,
Satz 5.5, p. 213] that there is a solution to IVP (4.3). For completeness,
we formulate the following corollary.

Corollary 4.1 — Existence of continuous weak solution of IVP (4.3).
Requirements: conditions (i), (iii) and (v)
The semilinear parabolic IVP (4.3) has for all 𝑢𝑗 ∈ 𝐿𝑠(Σ), 𝑦 𝑗 ∈ 𝐶(Ω̄),
𝑠 > 𝑑+ 1 a unique weak solution 𝑦 ∈ 𝑊(0, 𝑇) ∩ 𝐿∞(𝑄). Moreover, 𝑦
is continuous on �̄�.

We denote this weak solution of the IVP (4.3) by 𝑦
(
𝑥, 𝑡; 𝑦 𝑗 , 𝑢𝑗

) ∈ ℝ. The
dependencies highlight that 𝑦 is evaluated at (𝑥, 𝑡) ∈ 𝑄 and that the
initial value problem is equipped with the initial state 𝑦 𝑗 ∈ 𝐶(Ω̄) and
the control 𝑢𝑗 ∈ 𝐿𝑠(Σ). We abbreviate

We omit the space and time depen-
dencies of the control 𝑢 for brevity.

𝑦
(
𝑇; 𝑦 𝑗 , 𝑢𝑗

)
≔ 𝑦

(·, 𝑇; 𝑦 𝑗 , 𝑢𝑗
) ∈ 𝐶(Ω̄),

𝑦(𝑦 𝑗 , 𝑢𝑗) ≔ 𝑦
(·, ·; 𝑦 𝑗 , 𝑢𝑗) ∈ 𝐶(�̄�).

Corollary 4.1 guarantees us that the system state remains continuous
throughout the NMPC procedure, i.e. 𝑦 𝑗 ∈ 𝐶(Ω̄) for all 𝑗 ∈ ℕ, if the
system starts with an initial state 𝑦0 ∈ 𝐶(Ω̄) and if we apply controls
𝑢𝑗 ∈ 𝐿𝑠(Σ) on all intervals [𝑡 𝑗 , 𝑡 𝑗+1).
Moreover, we can establish the following inequality by extending [184,
Satz 5.8, p. 217]. Inequality (4.4) is important for us because it bounds
the deviation in the state 𝑦 caused by choosing different controls 𝑢.

Lemma 4.1 — Lipschitz continuity of 𝑦 w.r.t. 𝑢.
Requirements: conditions (i) - (vi)
The inequality

𝑦 (𝑇; 𝑦0 , 𝑢1

) − 𝑦 (𝑇; 𝑦0 , 𝑢2
)

𝐿𝑝 (Ω) ≤ 𝐿‖𝑢1 − 𝑢2‖𝐿𝑠 (Σ) (4.4)

is satisfied for all 𝑢1 , 𝑢2 ∈ 𝐿𝑠(Σ), 𝑠 > 𝑑 + 1 and all 1 ≤ 𝑝 ≤ ∞ with
a constant 𝐿 > 0 that is independent of 𝑢1 and 𝑢2.

58 4. Stability of Inexact NMPC for a Class of Semilinear Parabolic PDEs

Proof. From [184, Satz 5.8, p. 217] we get the existence of 𝐿 > 0 such
that

𝑦(𝑦0 , 𝑢1) − 𝑦(𝑦0 , 𝑢2)

𝑊(0,𝑇) +

𝑦(𝑦0 , 𝑢1) − 𝑦(𝑦0 , 𝑢2)

𝐶(�̄�)

≤ 𝐿‖𝑢1 − 𝑢2‖𝐿𝑠 (Σ).
We exploit embedding results for LEBESGUE spaces and the definition
of the space 𝐿∞(Ω), see e.g. [1, Chapter 2][1]: Adams et al. (2003), Sobolev spaces , to estimate

𝑦 (𝑇; 𝑦0 , 𝑢1

) − 𝑦 (𝑇; 𝑦0 , 𝑢2
)

𝐿𝑝 (Ω)

≤ vol(Ω) 1
𝑝

𝑦 (𝑇; 𝑦0 , 𝑢1

) − 𝑦 (𝑇; 𝑦0 , 𝑢2
)

𝐿∞(Ω)

= vol(Ω) 1
𝑝 ess sup

𝑥∈Ω

��𝑦 (𝑇; 𝑦0 , 𝑢1
) − 𝑦 (𝑇; 𝑦0 , 𝑢2

) ��
≤ vol(Ω) 1

𝑝 sup
𝑥∈Ω

��𝑦 (𝑇; 𝑦0 , 𝑢1
) − 𝑦 (𝑇; 𝑦0 , 𝑢2

) ��
≤ vol(Ω) 1

𝑝 max
𝑥∈Ω̄

��𝑦 (𝑇; 𝑦0 , 𝑢1
) − 𝑦 (𝑇; 𝑦0 , 𝑢2

) ��
≤ vol(Ω) 1

𝑝 max
(𝑥,𝑡)∈�̄�

��𝑦(𝑦0 , 𝑢1) − 𝑦(𝑦0 , 𝑢2)
��

= vol(Ω) 1
𝑝

𝑦(𝑦0 , 𝑢1) − 𝑦(𝑦0 , 𝑢2)

𝐶(�̄�)

≤ vol(Ω) 1
𝑝

(

𝑦(𝑦0 , 𝑢1) − 𝑦(𝑦0 , 𝑢2)

𝐶(�̄�)

+

𝑦(𝑦0 , 𝑢1) − 𝑦(𝑦0 , 𝑢2)

𝑊(0,𝑇)

)
.

The assertion follows with 𝐿 ≔ vol(Ω) 1
𝑝 𝐿. ■

Finally, we assume that

We will formulate in Assumption 4.2
that the optimal control to the ini-
tial state 𝑦0 = 0 will be 𝑢∗ = 0.

(vii) 𝑓 and 𝑔 are such that 𝑦(·; 0, 0) = 0.

We conclude this section with an example of a semilinear parabolic
PDE that satisfies the assumptions made so far.

■ Example 4.1 The semilinear parabolic initial value problem

¤𝑦 − Δ𝑦 + 𝑦3 + 𝑦 = 0 in 𝑄,
𝜕𝜈𝑦 = 𝑢 in Σ,

𝑦(0) = 𝑦0 in Ω,

satisfies the assumptions made in the present subsection. As domain
we can, for example, use Ω ≔ (0, 1) × (0, 1) ⊂ ℝ2. As bounds we can
choose 𝑢l(𝑥, 𝑡) = 0 and 𝑢u(𝑥, 𝑡) = 1. ■

4.1. Problem setting 59

4.1.2. OCP formulation

We consider the case, where the arising OCP at sampling time point
𝑡 𝑗 with current state 𝑦 𝑗 ∈ 𝐶(Ω̄) has the form

min
∫
Ω
𝜙
(
𝑥, 𝑦(𝑥, 𝑇hor)

)
d𝑥 +

∬
𝑄hor

𝜑
(
𝑥, 𝑦(𝑥, 𝑡))d𝑥d𝑡

+
∬

Σhor

Ψ
(
𝑥, 𝑦(𝑥, 𝑡), 𝑢(𝑥, 𝑡))d𝑥d𝑡

over 𝑦 ∈ 𝐶(�̄�hor), 𝑢 ∈ 𝐿𝑠(Σhor),
s. t. ¤𝑦 − Δ𝑦 + 𝑓 (𝑥, 𝑦) = 0 in 𝑄hor ,

𝜕𝜈𝑦 + 𝑔(𝑥, 𝑦) = 𝑢 in Σhor ,

𝑦(0) = 𝑦 𝑗 in Ω,

𝑢l(𝑥) ≤ 𝑢(𝑥, 𝑡) ≤ 𝑢u(𝑥) a.e. in Σhor

(4.5)

where the functions 𝜙, 𝜑,Ψ satisfy the following conditions.
The functions 𝑓 , 𝑔, 𝑢l , and 𝑢u are as
stated in Subsection 4.1.1.

The func-
tions 𝜙 : Ω ×ℝ→ ℝ, 𝜑 : Ω ×ℝ→ ℝ and Ψ : 𝜕Ω ×ℝ2 → ℝ

(i) are measurable on Ω and 𝜕Ω, respectively, for fixed (𝑦, 𝑢) ∈ ℝ2

(ii) are twice differentiable with respect to 𝑦 and 𝑢 for almost all
𝑥 ∈ Ω and 𝑥 ∈ 𝜕Ω, respectively,

(iii) satisfy ���� 𝜕𝑙𝜕𝑦 𝑙
𝜙(𝑥, 0)

���� ≤ 𝑀3 ,���� 𝜕𝑙𝜕𝑦 𝑙
𝜑(𝑥, 𝑡, 0)

���� ≤ 𝑀4 ,���� 𝜕𝑙

𝜕(𝑦, 𝑢)𝑙Ψ(𝑥, 𝑡, 0, 0)
���� ≤ 𝑀5

with constants 𝑀3 , 𝑀4 , 𝑀5 > 0 for all 𝑙 = 0, 1, 2 and for almost
all 𝑥 ∈ Ω and 𝑥 ∈ 𝜕Ω, 𝜕0

𝜕𝑦0 is the original function.

and their second derivatives with respect to 𝑦 and 𝑢

(iv) are locally LIPSCHITZ-continuous in 𝑦 and 𝑢 for all 𝑥 ∈ Ω and
𝑥 ∈ 𝜕Ω, respectively.

Existence of optimal solutions of the OCP (4.5) is proved by the fol-
lowing Theorem 4.2, which is taken from [184, Satz 5.7, p.215]

[184]: Tröltzsch (2009), Optimale
Steuerung partieller Differentialgle-
ichungen: Theorie, Verfahren und
Anwendungen

.

Theorem 4.2 — Existence of optimal solution of OCP (4.5).
Requirements: conditions (i) - (vi) from Subsection 4.1.1
The OCP (4.5) has at least one optimal solution �̄�

(
𝑦 𝑗

)
with asso-

ciated optimal state �̄� if the functions Ψ and 𝜑 are convex with
respect to 𝑦 and 𝑢.

By virtue of Theorem 4.2, we can define the mapping that maps the
current state 𝑦 𝑗 to optimal control �̄� restricted to the next sampling
interval. Formally, 𝑢∗ is defined as

In other words, 𝑢∗ is the state-to-
feedback map.𝑢∗ : 𝐶(Ω̄) → Σhor , 𝑦 𝑗 ↦→ 𝑢∗

(
𝑦 𝑗

)
≔ �̄�

(
𝑦 𝑗

) | 𝑡∈[0,𝑇).

60 4. Stability of Inexact NMPC for a Class of Semilinear Parabolic PDEs

We assume that the nominal NMPC satisfies Assumption 4.1 which will
play an important role throughout this chapter.

Reminder: Nominal NMPC

In nominal NMPC we always apply
𝑢∗

(
𝑦𝑗

)
. See Chapter 2 for details.

To formulate Assump-
tion 4.1, we introduce the following notation.

For 𝑟𝑦 , 𝑟𝑢 > 0, 𝑦 𝑗 ∈ 𝐿𝑝(Ω) and 𝑢𝑗 ∈ 𝐿𝑠(Σ) we abbreviate

BΩ,𝑝
(
𝑦 𝑗 , 𝑟𝑦

)
≔

{
�̃� ∈ 𝐿𝑝(Ω)

���

�̃� − 𝑦 𝑗

𝐿𝑝 (Ω) ≤ 𝑟𝑦} ,
BΣ,𝑠

(
𝑢𝑗 , 𝑟𝑢

)
≔

{
�̃� ∈ 𝐿𝑠(Σ)

���

�̃� − 𝑢𝑗

𝐿𝑠 (Σ) ≤ 𝑟𝑢}.

𝑉 is basically a LYAPUNOV function
with additional regularity for the
nominal NMPC and 𝑌�̄� is a level set
of it.

Moreover, for sets 𝐴, 𝐵, we use the notation 𝐴 ⊕ 𝐵 to denote the
MINKOWSKI sum of𝐴 and 𝐵 defined as𝐴⊕𝐵 ≔ {𝑎 + 𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

Assumption 4.1 Let 𝑉 : 𝐶(Ω̄) → ℝ be a continuous function and
�̄� > 0 be a constant. Let 𝑌�̄� be defined as

𝑌�̄� ≔
{
𝑦 ∈ 𝐶(Ω̄) �� 𝑉 (

𝑦
) ≤ �̄�}

.

There exist constants 𝑎1 , 𝑎2 , 𝑎2 , 𝑇𝑉 > 0 and 𝑞 ∈ ℕ and 1 ≤ 𝑝 ≤ ∞
such that for 𝑇 ≤ 𝑇𝑉 and for any 𝑦 𝑗 ∈ 𝑌�̄� the conditions

𝑎1

𝑦 𝑗

𝑞𝐿𝑝 (Ω) ≤ 𝑉 (

𝑦 𝑗
) ≤ 𝑎2

𝑦 𝑗

𝑞𝐿𝑝 (Ω) , (4.6)

𝑉
(
𝑦
(
𝑇; 𝑦 𝑗 , 𝑢∗(𝑦 𝑗))) ≤ 𝑉 (

𝑦 𝑗
) − 𝑇𝑎3

𝑦 𝑗

𝑞𝐿𝑝 (Ω) (4.7)

hold. Moreover, there exist constants 𝑟𝑦 , 𝜇 > 0 such that for all
𝑦1 , 𝑦2 ∈ 𝑌�̄� ⊕ BΩ,𝑝

(
0, 𝑟𝑦

)
the condition���𝑉 (

𝑦1) 1
𝑞 −𝑉 (

𝑦2) 1
𝑞

��� ≤ 𝜇

𝑦1 − 𝑦2

𝐿𝑝 (Ω) (4.8)

holds.

Furthermore, we assume that 𝑢∗ satisfies the following assumption.

𝑟𝑢 is determined by Assumption 4.3.
Assumption 4.2 Let 𝑟𝑦 be as in Assumption 4.1 and 𝑟𝑢 > 0 fixed.
There exist positive constants 𝛼 ∈ (0, 1) and 𝑇𝛼 , 𝛾 > 0 such that for
all 𝑦 𝑗 ∈ 𝑌�̄� , 0 ≤ 𝑇 ≤ 𝑇𝛼 the condition

𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

)) − 𝑢∗ (𝑦 𝑗))

𝐿𝑠 (Σ) ≤ 𝛼𝑟𝑢 (4.9)

holds. Moreover,

𝑢∗ (𝑦1) − 𝑢∗ (𝑦2)

𝐿𝑠 (Σ) ≤ 𝛾

𝑦1 − 𝑦2

𝐿𝑝 (Ω) (4.10)

holds for all 𝑦1 ∈ 𝑌�̄� and 𝑦2 ∈ BΩ,𝑝
(
𝑦1 , 𝑟𝑦

)
. Finally, we define

𝑦∗ ≔ 0, (4.11)

and assume
𝑢∗

(
𝑦∗

)
= 0.

Assumption 4.2 implies for 𝑦∗ ∈ 𝑌�̄� that

Attention:

The condition 𝑦∗ ∈ 𝑌�̄� is not guaran-
teed, and in our proof in Section 4.2
we need to pay close attention that
it is satisfied when we wish to utilize
Equation (4.12).

𝑢∗ (𝑦)

𝐿𝑠 (Σ) ≤ 𝛾

𝑦 − 𝑦∗

𝐿𝑝 (Ω) (4.11)= 𝛾

𝑦

𝐿𝑝 (Ω) ∀𝑦 ∈ BΩ,𝑝
(
0, 𝑟𝑦

)
. (4.12)

4.1. Problem setting 61

In combination with Example 4.1, we think of the following example.

■ Example 4.2 Let 𝜔 > 0. At time 𝑡 𝑗 with current state 𝑦 𝑗 ∈ 𝐶(Ω̄) we
solve the OCP given by

min 1
2

∬
𝑄hor

��𝑦(𝑥, 𝑡)��2d𝑥d𝑡 + 𝜔
2

∬
Σhor

|𝑢(𝑥, 𝑡)|2d𝑥d𝑡

over 𝑦 ∈ 𝐶(�̄�hor), 𝑢 ∈ 𝐿𝑠(Σhor),
s. t. ¤𝑦 − Δ𝑦 + 𝑦3 + 𝑦 = 0 in 𝑄hor ,

𝜕𝜈𝑦 = 𝑢 in Σhor ,

𝑦(0) = 𝑦 𝑗 in Ω,

0 ≤ 𝑢(𝑥, 𝑡) ≤ 1 a.e. in Σhor.

(4.13)

■

Attention:

So far, we have not been able to
verify that Example 4.2 satisfies As-
sumptions 4.1 and 4.2. We will dis-
cuss this issue, among others, in
Subsection 4.1.4.

4.1.3. System-optimizer dynamics

We are interested in the case of inexact NMPC. This means that we
consider the case where a control 𝑢𝑗 , which may differ from 𝑢∗

(
𝑦 𝑗

)
,

is applied during the interval [𝑡 𝑗 , 𝑡 𝑗+1). In our setting the control 𝑢𝑗 is
computed by an optimization method as an (approximate) solution
of the OCP (4.5). The current state 𝑦 𝑗 and the previous control 𝑢𝑗−1
serve as input to the optimization method.

Definition: Optimizer

We will refer to this optimization
method simply as the optimizer.

In the case 𝑗 = 0, the
previous control 𝑢𝑗−1 is replaced by an initial guess 𝑢init ∈ 𝐿𝑠(Σ) for
the control. To avoid case distinctions, we define 𝑢−1 ≔ 𝑢init. In this
sense, the optimizer defines a map 𝜉 : 𝐿𝑝(Ω) × 𝐿𝑠(Σ) → 𝐿𝑠(Σ), which
we call the optimizer dynamics, which determines

𝑢𝑗 ≔ 𝜉
(
𝑦 𝑗 , 𝑢𝑗−1

)
for all 𝑗 ∈ ℕ0. (4.14)

For the optimizer, we make the assumption that it exhibits 𝑄-linear
convergence if the initial guess 𝑢𝑗−1 is sufficiently close to the optimal
control 𝑢∗

(
𝑦 𝑗

)
. We formalize this assumption as

Assumption 4.3 Let 𝑟𝑦 be as in Assumption 4.1. There exist positive
constants 𝑟𝑢 > 0 and 0 < 𝜅 < 1 such that the optimizer computes
𝑢𝑗 in 𝑘 ∈ ℕ iterations such that

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ) ≤ 𝜅𝑘

𝑢𝑗−1 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ) (4.15)

for all 𝑦 𝑗 ∈ 𝑌�̄� ⊕ BΩ,𝑝
(
0, 𝑟𝑦

)
and 𝑢𝑗−1 ∈ B𝑟𝑢 ,𝑠

(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
.

The interplay between the system dynamics (4.3) and the optimizer
dynamics (4.14) is summarized in the system-optimizer dynamics which
is given as We could shift the index 𝑗 in order

to have 𝑗 ∈ ℕ0 in both parts of
the dynamics. However, such a shift
makes the notation less intuitive for
the other parts of this work.

𝑢𝑗 = 𝜉
(
𝑦 𝑗 , 𝑢𝑗−1

)
, for all 𝑗 ∈ ℕ0 ,

𝑦 𝑗 = 𝑦
(
𝑇; 𝑦 𝑗−1 , 𝑢𝑗−1

)
, for all 𝑗 ∈ ℕ, (4.16)

with given 𝑦0 ∈ 𝐶(Ω̄) and 𝑢−1 = 𝑢init ∈ B𝑟𝑢 ,𝑠
(
𝑢∗

(
𝑦0

)
, 𝑟𝑢

)
.

62 4. Stability of Inexact NMPC for a Class of Semilinear Parabolic PDEs

4.1.4. Discussion of the assumptions

Discussion of Assumption 4.1 In the finite-dimensional case and
with a fixed 𝑇 , Assumption 4.1 implies that the origin is exponentially
stable for the nominal NMPC, cf. e.g. [159, Theorem 2.21][159]: Rawlings et al. (2022), Model pre-

dictive control: Theory, computation,
and design

. In the present
infinite-dimensional case however, this assumption requires further
discussion. Equation (4.8) implies that the DINI derivative 𝑉 ′+ of 𝑉
along the optimal trajectory satisfies

𝑉 ′+
(
𝑦 𝑗

)
= lim sup

𝑇↘0

1
𝑇

(
𝑉

(
𝑦
(
𝑇; 𝑦 𝑗 , 𝑢∗(𝑦 𝑗))) −𝑉 (

𝑦 𝑗
)) (4.7)≤ −𝑎3

𝑦 𝑗

𝑞𝐿𝑝 (Ω).
Therefore, Assumption 4.1 implies that 𝑉 is a LYAPUNOV function for
the nominal NMPC, which is equivalent to asymptotic stability at zero
on𝑌�̄� [140, Definition 11, Proposition 14]

[140]: Mironchenko et al. (2018),
“Characterizations of Input-to-State
Stability for Infinite-Dimensional
Systems”

. As discussed in [208, Remark
4]

[208]: Zanelli et al. (2021), “A Lyapunov
function for the combined system-
optimizer dynamics in inexact model
predictive control”

,
Equation (4.8) is satisfied if 𝑉 is LIPSCHITZ continuous over 𝑌�̄� and
if 𝑉

1
𝑞 is LIPSCHITZ continuous at 𝑦 = 0. An example where this is the

case is as follows. If 𝑞 = 2, it suffices that 𝑉 is twice continuously
differentiable at 𝑦 = 0.

Discussion of Assumption 4.2 For our stability proof, it is essential
that we can estimate

(i) how changes in the optimizer state affect the system state,
(ii) vice versa, how changes in the system state, more precisely the

current state, affect the optimizer state.

While Lemma 4.1 gives us an estimate for (i), research on estimates for
(ii) is still in its beginning. In particular, the only work we are aware
of that addresses the question of stability with respect to initial data
is [45][45]: Casas et al. (2022), “Stability for

Semilinear Parabolic Optimal Control
Problems with Respect to Initial Data”

. But, the authors also state in [45]:

”We do not know associated works, where perturbations
of the initial data were addressed in the context of PDE
control.”

— CASAS and TRÖLTZSCH [45]

While Theorem 3.4 in [45] already resembles Equation (4.10) of our As-
sumption 4.2, we need the stronger formulation Equation (4.10) for
our proof. Unfortunately, checking Assumption 4.2 is difficult in gen-
eral. In particular, we have not yet been able to verify Assumption 4.2
for our guiding Example 4.2. On the one hand, the results in [45] give
us hope that Assumption 4.2 is satisfied by some problem classes.

Equation (4.9) also requires some discussion. In the finite-dimensional
case, Assumption 9 from [208][208]: Zanelli et al. (2021), “A Lyapunov

function for the combined system-
optimizer dynamics in inexact model
predictive control”

can be used where we have to use
Equation (4.9). At first sight it seems that also in the present infinite-
dimensional case Equation (4.9) could be derived from Equation (4.10).
To do this, however, we need estimates for

𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗
(
𝑦 𝑗

)) − 𝑦 𝑗

𝐿𝑝 (Ω)
for 𝑇 → 0. But, the existing theory for semilinear parabolic PDEs does
not provide suitable estimates.

4.2. Stability proof 63

Informally, Equation (4.9) means that 𝑢∗ does not exhibit jumps larger
than 𝑟𝑢 along the optimal trajectory starting from 𝑦 𝑗 . We can expect
this behaviour if the system dynamics and the optimal control are
sufficiently smooth. But, Equation (4.9) prevents us from considering
control systems with bang-bang solutions. Then again, this is also
true for Assumption 9 in [208].

Discussion of Assumption 4.3 Assumption 4.3 is simply the defini-
tion of 𝑄-linear convergence. The availability of optimization meth-
ods that have a 𝑄-linear convergence rate is not an issue. For exam-
ples of optimization methods with sometimes even stronger conver-
gence rates, see e.g. [189]

[189]: Ulbrich (2009), “Optimization
Methods in Banach Spaces”

.

This includes that Lemma 4.1 can be
proved.

Finally, we remark that we are not restricted to IVPs of the form (4.3),
nor to OCPs of the form (4.5). We could consider any other PDE or OCP
formulation, as long as all the assumptions made in this section are
satisfied.

4.2. Stability proof

The goal of this section is to show asymptotic stability of the origin
(𝑦∗ , 𝑢∗) = (0, 0) for the system-optimizer dynamics (4.16).

Reminder: Asymptotic stability

In simplified terms, a point 𝑥∗ is
defined as asymptotically stable if
the distance of the system state to
𝑥∗ becomes arbitrarily small as the
system evolves. To establish asymp-
totic stability, we primarily need to
find a LYAPUNOV function. See Defi-
nition 2.11 on p. 20 for details.

Our proof
consists of five main steps. To leverage our assumptions, we must
ensure that 𝑦 𝑗+1 and 𝑢𝑗 remain in 𝑌�̄� and in BΣ,𝑠

(
𝑢∗

(
𝑦 𝑗+1

)
, 𝑟𝑢

)
, re-

spectively, if 𝑦 𝑗 ∈ 𝑌�̄� and 𝑢𝑗−1 ∈ BΣ,𝑠
(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
. For this purpose, in

step 1 (Subsection 4.2.1) we establish the auxiliary results Lemma 4.3
and Corollary 4.2. In step 2 (Subsection 4.2.2) we use these two re-
sults to prove in Lemmas 4.4 and 4.5 that 𝑢𝑗 ∈ BΣ,𝑠

(
𝑢∗

(
𝑦 𝑗+1

)
, 𝑟𝑢

)
and 𝑦 𝑗+1 ∈ 𝑌�̄� if 𝑦 𝑗 ∈ 𝑌�̄� and 𝑢𝑗−1 ∈ BΣ,𝑠

(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
. With Lem-

mas 4.4 and 4.5 established, we conclude in the form of Lemma 4.6
that
𝑢𝑗 ∈ BΣ,𝑠

(
𝑢∗

(
𝑦 𝑗+1

)
, 𝑟𝑢

)
and 𝑦 𝑗 ∈ 𝑌�̄� for all 𝑗 ∈ ℕ0 if 𝑦0 ∈ 𝑌�̄� and

𝑢init ∈ BΣ,𝑠
(
𝑢∗

(
𝑦0

)
, 𝑟𝑢

)
. In step 3 (Subsection 4.2.3), we derive esti-

mates for the evolution of

𝐸 𝑗 ≔

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ) , and 𝑉𝑗 ≔ 𝑉

(
𝑦 𝑗

) 1
𝑞

in Lemmas 4.7 and 4.8 which require that 𝑢𝑗−1 ∈ BΣ,𝑠
(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
and

𝑦 𝑗 ∈ 𝑌�̄� . Therefore, it is imperative to establish Lemma 4.6 first. Lem-
mas 4.7 and 4.8 leave us with a positive linear system of the form(

𝑉𝑗+1
𝐸 𝑗+1

)
≤ 𝐴

(
𝑉𝑗
𝐸 𝑗

)
with 𝐴 ∈ ℝ2×2

≥0 . (4.17)

As 𝑉𝑗 ≥ 0 due to Assumption 4.1 and Lemma 4.6 and as 𝐸 𝑗 ≥ 0 by
definition and 𝐴 ∈ ℝ2×2

≥0 for all 𝑗 ∈ ℕ0, we have that

0 ≤
(
𝑉𝑗
𝐸 𝑗

)
≤

(
𝑉u
𝑗

𝐸u
𝑗

)
,

64 4. Stability of Inexact NMPC for a Class of Semilinear Parabolic PDEs

where 𝑉u
𝑗 and 𝐸u

𝑗 are given by

We will encounter this equation
later again as Equation (4.25).

(
𝑉u
𝑗+1

𝐸u
𝑗−1

)
= 𝐴

(
𝑉u
𝑗

𝐸u
𝑗

)
with

(
𝑉u

0
𝐸u

0

)
≔

(
𝑉0
𝐸0

)
.

In step 4 (Subsection 4.2.4), we establish asymptotic stability of the
positive linear system (4.25) in Lemma 4.9. Finally, in step 5 (Subsec-
tion 4.2.5), we prove asymptotic stability of the system-optimizer dy-
namics (4.16) in Theorem 4.3.

From now on we assume that

0 < 𝑇 ≤
{
𝑇𝑉 , 𝑇𝛼 ,

𝑎2
𝑎3

}
. (4.18)

4.2.1. Step 1: auxiliary results

First, we establish with Lemma 4.2 that the state stays in the level set
𝑌�̄� if we apply the optimal feedback 𝑢∗.

Lemma 4.2 — Optimal state remains in 𝑌�̄� .
Requirements: Assumption 4.1
We have with �̄� ≔ 𝑎3

𝑎2
that

𝑉
(
𝑦
(
𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))) (4.6)≤ (1 − 𝑇�̄�)𝑉 (
𝑦 𝑗

) ≤ �̄� , (4.19)

i.e. 𝑦
(
𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

)) ∈ 𝑌�̄� for all 𝑦 𝑗 ∈ 𝑌�̄� , 𝑢𝑗−1 ∈ BΣ,𝑠
(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
.

Proof. We leverage Assumption 4.1 to estimate

𝑉
(
𝑦
(
𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))) (4.7)≤ 𝑉
(
𝑦 𝑗

) − 𝑇𝑎3

𝑦 𝑗

𝑞𝐿𝑝 (Ω)

(4.6)≤ (1 − 𝑇�̄�)𝑉 (
𝑦 𝑗

) ≤ �̄� ,
Equation (4.18) implies 𝑇 ≤ 1

�̄� . where we have exploited 𝑇 ≤ 1
�̄� and 𝑦 𝑗 ∈ 𝑌�̄� , i.e. 𝑉

(
𝑦 𝑗

) ≤ �̄� . ■

Next, we bound the deviation of the trajectory with the suboptimal
control 𝑢𝑗 from the optimal trajectory.

Reminder: Iteration number 𝑘

With 𝑘 we denote the number of it-
erations the optimizer does to com-
pute 𝑢𝑗 , see Assumption 4.3.

Lemma 4.3 — Bound on deviation away from optimal trajectory.
Requirements: Assumption 4.3
There exists a 𝐾1 ∈ ℕ, which is independent of 𝑦 𝑗 and 𝑢𝑗−1, such
that

𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗

) − 𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗
(
𝑦 𝑗

))

𝐿𝑝 (Ω) ≤ 𝑟𝑦 (4.20)

holds for all 𝑦 𝑗 ∈ 𝑌�̄� , 𝑢𝑗−1 ∈ BΣ,𝑠
(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
and all 𝑘 ≥ 𝐾1.

Proof. We have

𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
) − 𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))

𝐿𝑝 (Ω)

(4.4)≤ 𝐿

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ).

4.2. Stability proof 65

As 𝑦 𝑗 ∈ 𝑌�̄� ⊂ 𝑌�̄� ⊕ BΩ,𝑝
(
0, 𝑟𝑦

)
and 𝑢𝑗−1 ∈ BΣ,𝑠

(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
, we can

exploit Assumption 4.3 to continue with
𝑢𝑗−1 ∈ BΣ,𝑠

(
𝑢∗

(
𝑦𝑗

)
, 𝑟𝑢

)
means that

𝑢𝑗−1 − 𝑢∗

(
𝑦𝑗

)

𝐿𝑠 (Σ) ≤ 𝑟𝑢 .

𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
) − 𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))

𝐿𝑝 (Ω)

(4.15)≤ 𝜅𝑘𝐿

𝑢𝑗−1 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)

≤ 𝜅𝑘𝐿𝑟𝑢 .

As 𝜅 ∈ (0, 1), we find 𝐾1 ∈ ℕ such that
𝐾1 depends on 𝜅, 𝐿, 𝑟𝑢 and 𝑟𝑦 .

𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗

) − 𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗
(
𝑦 𝑗

))

𝐿𝑝 (Ω) ≤ 𝜅𝑘𝐿𝑟𝑢 ≤ 𝑟𝑦 ∀𝑘 ≥ 𝐾1.

■

As a corollary, we obtain that the next state remains ”close” to the
level set𝑌�̄� . The exact formulation of this statement is Corollary 4.2.

We will improve this statement in
the form of Lemma 4.5 that states
𝑦
(
𝑇; 𝑦𝑗 , 𝑢𝑗

)
∈ 𝑌�̄� . But, we need

Corollary 4.2 to arrive at Lemma 4.5.

Corollary 4.2 — Successor state remains close to 𝑌�̄� .
Requirements: Assumption 4.1, Assumption 4.3, 𝐾1 as in Lemma 4.3
We have

𝑦
(
𝑇; 𝑦 𝑗 , 𝑢𝑗

) ∈ 𝑌�̄� ⊕ BΩ,𝑝
(
0, 𝑟𝑦

)
for all 𝑦 𝑗 ∈ 𝑌�̄� , 𝑢𝑗−1 ∈ BΣ,𝑠

(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
and all 𝑘 ≥ 𝐾1.

Proof. We need to find �̂� ∈ 𝑌�̄� with

𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗

) − �̂�

𝐿𝑝 (Ω) ≤ 𝑟𝑦 . We
show that �̂� = 𝑦

(
𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))
does the trick. To that end, we need to

check

(i)

𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗

) − 𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗
(
𝑦 𝑗

))

𝐿𝑝 (Ω) ≤ 𝑟𝑦 ,

(ii) 𝑦
(
𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

)) ∈ 𝑌�̄� .
Fortunately, we have already shown with Lemma 4.3 that (i) is satisfied
and with Lemma 4.2 that (ii) is satisfied. ■

4.2.2. Step 2: forward invariant set for the
system-optimizer dynamics

First, we establish that the controls 𝑢𝑗 remain close enough to the
optimal control 𝑢∗

(
𝑦 𝑗

)
such that the optimizer continuously exhibits

𝑄-linear convergence to 𝑢∗
(
𝑦 𝑗

)
. More formally:

We have formulated in Assump-
tion 4.3 that 𝑢𝑗 has to be in the ball
B𝑟𝑢 ,𝑠

(
𝑢∗

(
𝑦𝑗+1

)
, 𝑟𝑢

)
to guarantee 𝑄-

linear convergence of the optimizer.

Reminder:

𝑦𝑗+1 = 𝑦
(
𝑇; 𝑦𝑗 , 𝑢𝑗

)
, see (4.16).

Lemma 4.4 — Controls 𝑢𝑗 remain in region of 𝑄-linear convergence.
Requirements: Assumptions 4.2 and 4.3
There exists 𝐾2 ∈ ℕ, which is independent of 𝑦 𝑗 and 𝑢𝑗−1, such that

𝑢𝑗 − 𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗

))

𝐿𝑠 (Σ) ≤ 𝑟𝑢 ,

i.e. we have
𝑢𝑗 ∈ B𝑟𝑢 ,𝑠

(
𝑢∗

(
𝑦 𝑗+1

)
, 𝑟𝑢

)
,

for all 𝑦 𝑗 ∈ 𝑌�̄� , 𝑢𝑗−1 ∈ BΣ,𝑠
(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
and 𝑘 ≥ 𝐾2.

66 4. Stability of Inexact NMPC for a Class of Semilinear Parabolic PDEs

Proof. We start off by estimating

𝑢𝑗 − 𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
))

𝐿𝑠 (Σ) ≤

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)︸ ︷︷ ︸

(I)
+

𝑢∗ (𝑦 𝑗) − 𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

)))

𝐿𝑠 (Σ)︸ ︷︷ ︸

(II)
+

𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))) − 𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
))

𝐿𝑠 (Σ)︸ ︷︷ ︸
(III)

.

We continue by estimating the summands (I), (II), and (III) separately:

(I): As 𝑦 𝑗 ∈ 𝑌�̄� and 𝑢𝑗−1 ∈ BΣ,𝑠
(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
, we can use Assump-

tion 4.3 to estimate

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ) (4.15)≤ 𝜅𝑘

𝑢𝑗−1 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ) ≤ 𝜅𝑘𝑟𝑢 .

(II): As 𝑦 𝑗 ∈ 𝑌�̄� and 0 < 𝑇 ≤ 𝑇𝛼 , we can use Assumption 4.2 to bound

𝑢∗ (𝑦 𝑗) − 𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗
(
𝑦 𝑗

)))

𝐿𝑠 (Σ)

(4.9)≤ 𝛼𝑟𝑢 .

(III): By assumption we have 𝑦 𝑗 ∈ 𝑌�̄� and 𝑢𝑗−1 ∈ BΣ,𝑠
(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
. In

addition to that, we have shown with Lemma 4.2, that

𝑦
(
𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

)) ∈ 𝑌�̄� .
Moreover, Corollary 4.2 yields that

𝑦 𝑗 ∈ BΩ,𝑝
(
𝑦
(
𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))
, 𝑟𝑦

)
.

Hence, we can use Lemma 4.1 and Assumptions 4.2 and 4.3 to
estimate

𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))) − 𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
))

𝐿𝑠 (Σ)
(4.10)≤ 𝛾

𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗
(
𝑦 𝑗

)) − 𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
)

𝐿𝑝 (Ω)

(4.4)≤ 𝛾𝐿

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)

(4.15)≤ 𝜅𝑘𝛾𝐿

𝑢𝑗−1 − 𝑢∗

(
𝑦 𝑗

)

𝐿𝑠 (Σ) ≤ 𝜅𝑘𝛾𝐿𝑟𝑢 .

We put the estimates for (I), (II), (III) back together to obtain

𝑢𝑗 − 𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
))

𝐿𝑠 (Σ) ≤
(
𝜅𝑘(1 + 𝛾𝐿) + 𝛼

)
𝑟𝑢 .

As 𝜅, 𝛼 ∈ (0, 1), we find 𝐾2 ∈ ℕ such that 𝜅𝑘(1 + 𝛾𝐿) ≤ 1− 𝛼 and
accordingly

𝐾2 depends on 𝜅, 𝛾, 𝐿 and 𝛼.

𝑢𝑗 − 𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
))

𝐿𝑠 (Σ) ≤ 𝑟𝑢
for all 𝑘 ≥ 𝐾2.

■

4.2. Stability proof 67

Next, we improve the statement 𝑦
(
𝑇; 𝑦 𝑗 , 𝑢𝑗

) ∈ 𝑌�̄� ⊕ BΩ,𝑝
(
0, 𝑟𝑦

)
from

Corollary 4.2 to 𝑦
(
𝑇; 𝑦 𝑗 , 𝑢𝑗

) ∈ 𝑌�̄� .
Lemma 4.5 — Current state remains in 𝑌�̄� .
Requirements: Assumptions 4.1 and 4.3
There exists 𝐾3 ∈ ℕ, which is independent of 𝑦 𝑗 and 𝑢𝑗−1 but de-
pends on 𝑇 , such that 𝑦

(
𝑇; 𝑦 𝑗 , 𝑢𝑗

) ∈ 𝑌�̄� for all 𝑦 𝑗 ∈ 𝑌�̄� , 𝑢𝑗−1 ∈
BΣ,𝑠

(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
and 𝑘 ≥ 𝐾3.

Proof. Let 𝑘 ≥ 𝐾1, where 𝐾1 is as in Corollary 4.2. In this case, it follows
from Corollary 4.2 that 𝑦

(
𝑇; 𝑦 𝑗 , 𝑢𝑗

) ∈ 𝑌�̄� ⊕BΩ,𝑝
(
0, 𝑟𝑦

)
, which allows us

to use Assumption 4.1 to get

𝑉
(
𝑦
(
𝑇; 𝑦 𝑗 , 𝑢𝑗

)) 1
𝑞 ≤

���𝑉 (
𝑦
(
𝑇; 𝑦 𝑗 , 𝑢𝑗

)) 1
𝑞 −𝑉 (

𝑦
(
𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))) 1
𝑞

���
+𝑉 (

𝑦
(
𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))) 1
𝑞 .

For the first summand we estimate���𝑉 (
𝑦
(
𝑇; 𝑦 𝑗 , 𝑢𝑗

)) 1
𝑞 −𝑉 (

𝑦
(
𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))) 1
𝑞

���
(4.8)≤ 𝜇

𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
) − 𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))

𝐿𝑝 (Ω)

(4.4)≤ 𝜇𝐿

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)

(4.15)≤ 𝜅𝑘𝜇𝐿

𝑢𝑗−1 − 𝑢∗

(
𝑦 𝑗

)

𝐿𝑠 (Σ) ≤ 𝜅𝑘𝜇𝐿𝑟𝑢 .

(4.21)

For the second summand we use Lemma 4.2 to obtain

𝑉
(
𝑦
(
𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))) 1
𝑞 ≤ (1 − 𝑇�̄�) 1

𝑞 �̄�
1
𝑞 .

Together, we thus have

𝑉
(
𝑦
(
𝑇; 𝑦 𝑗 , 𝑢𝑗

)) 1
𝑞 ≤ 𝜅𝑘𝜇𝐿𝑟𝑢 + (1 − 𝑇�̄�)

1
𝑞 �̄�

1
𝑞 .

As 𝜅 ∈ (0, 1) and 0 < 𝑇 ≤ 1
�̄� , we find �̄� such that �̄� depends on 𝜅, 𝜇, 𝐿, 𝑟𝑢 , 𝑇, 𝑎2 , 𝑎3 , 𝑞

and �̄� .

𝜅𝑘𝜇𝐿𝑟𝑢 ≤
(
1 − (1 − 𝑇�̄�) 1

𝑞

)
�̄�

1
𝑞

and accordingly
𝑉

(
𝑦
(
𝑇; 𝑦 𝑗 , 𝑢𝑗

)) 1
𝑞 ≤ �̄� 1

𝑞 ,

i.e. 𝑦
(
𝑇; 𝑦 𝑗 , 𝑢𝑗

) ∈ 𝑌�̄� for all 𝑘 ≥ 𝐾3 ≔ max{𝐾1 , �̄�}.
𝐾3 depends on 𝑟𝑦 , 𝜅, 𝜇, 𝐿, 𝑟𝑢 , 𝑇 , 𝑎2 ,
𝑎3 , 𝑞 and �̄� .■

Now, we can show that 𝑦 and 𝑢𝑗 remain in 𝑌�̄� and BΣ,𝑠
(
𝑢∗

(
𝑦 𝑗+1

)
, 𝑟𝑢

)
throughout the entire NMPC procedure.

Lemma 4.6 — Lemmas 4.4 and 4.5 apply at all times.
Requirements: Assumption 4.1, Assumption 4.2, Assumption 4.3
There exists 𝐾4 ∈ ℕ, which is independent of 𝑦 𝑗 and 𝑢𝑗−1, such that
𝑦 𝑗 ∈ 𝑌�̄� and 𝑢𝑗−1 ∈ BΣ,𝑠

(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
for all 𝑗 ∈ ℕ0 if 𝑦0 ∈ 𝑌�̄� , 𝑢−1 =

𝑢init ∈ BΣ,𝑠
(
𝑢∗

(
𝑦0

)
, 𝑟𝑢

)
and 𝑘 ≥ 𝐾4.

68 4. Stability of Inexact NMPC for a Class of Semilinear Parabolic PDEs

Proof.
𝐾4 depends on 𝜅, 𝛾, 𝐿, 𝜇, 𝑟𝑦 , 𝑟𝑢 , 𝑇 ,
𝑎2 , 𝑎3 , 𝑞, 𝛼 and �̄� .

We set 𝐾4 ≔ max{𝐾2 , 𝐾3} and then prove the assertion by
induction. For 𝑗 = 0 the assertion is satisfied by the assumptions for
𝑦0 and 𝑢init. If the assertion holds for a fixed 𝑗 ∈ ℕ0, Lemma 4.4 yields
𝑢𝑗 ∈ BΣ,𝑠

(
𝑢∗

(
𝑦 𝑗+1

)
, 𝑟𝑢

)
and Lemma 4.5 yields 𝑦 𝑗+1 ∈ 𝑌�̄� . ■

In other words, Lemma 4.6 states that the set

Λ ≔
{
(𝑦, 𝑢) ∈ 𝐶(Ω̄) × 𝐿𝑠(Σ)

��� 𝑉 (
𝑦
) ≤ �̄� ,

𝑢 − 𝑢∗ (𝑦)

𝐿𝑠 (Σ) ≤ 𝑟𝑢}

is forward invariant under the system-optimizer dynamics (4.16).

That is if 𝑘 ≥ 𝐾4 .

4.2.3. Step 3: error contraction and LYAPUNOV decrease
perturbation

With 𝑦 𝑗 ∈ 𝑌�̄� and 𝑢𝑗−1 ∈ BΣ,𝑠
(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
for all 𝑗 ∈ ℕ0 established, we

can now develop estimates for the perturbations of the error contrac-
tion and the LYAPUNOV decrease. To do so, we repeat the definitions

𝐸 𝑗 ≔

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)

for the error contraction and

𝑉𝑗 ≔ 𝑉
(
𝑦 𝑗

) 1
𝑞

for the LYAPUNOV decrease. First, we study the contraction of 𝐸 𝑗 .

Lemma 4.7 — Error contraction estimate.
Requirements: Assumption 4.1, Assumption 4.2, Assumption 4.3, 𝐾4 as in
Lemma 4.6
Let 𝑦0 ∈ 𝑌�̄� , 𝑢−1 = 𝑢init ∈ BΣ,𝑠

(
𝑢∗

(
𝑦0

)
, 𝑟𝑢

)
and 𝑘 ≥ 𝐾4. Then,

𝐸 𝑗+1 ≤ 𝜅𝑘𝐶1𝐸 𝑗 + 𝜅𝑘𝐶2𝑉𝑗 ,

holds for all 𝑗 ∈ ℕ0, where

𝐶1 ≔ 1 + 𝐿𝛾,
𝐶2 ≔ 𝛾𝑎

− 1
𝑞

1

(
1 + (1 − 𝑇�̄�) 1

𝑞

)
.

Proof. From Lemma 4.6 we get 𝑦 𝑗 ∈ 𝑌�̄� , 𝑢𝑗−1 ∈ BΣ,𝑠
(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
for all

𝑗 ∈ ℕ0. Therefore, we can use Assumption 4.3 to estimate

𝐸 𝑗+1
(4.15)≤ 𝜅𝑘

𝑢𝑗 − 𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
))

𝐿𝑠 (Σ)
≤ 𝜅𝑘

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ) + 𝜅𝑘

𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
)) − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)

= 𝜅𝑘𝐸 𝑗 + 𝜅𝑘

𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗

)) − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ).
(4.22)

4.2. Stability proof 69

Reminder:

We can use Lemma 4.3 as, in particu-
lar, 𝑘 ≥ 𝐾4 ≥ max{𝐾2 , 𝐾3} ≥ 𝐾3 ≔
max{𝐾1 , �̄�} ≥ 𝐾1 .

To estimate the second summand, we recall that Lemma 4.3 yields
that 𝑦

(
𝑇; 𝑦 𝑗 , 𝑢𝑗

) ∈ BΩ,𝑝
(
𝑦 𝑗 , 𝑟𝑦

)
. This allows us to exploit Assumption 4.2

to obtain

𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
)) − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ) (4.10)≤ 𝛾

𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
) − 𝑦 𝑗

𝐿𝑝 (Ω)

≤ 𝛾
(

𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗

) − 𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗
(
𝑦 𝑗

))

𝐿𝑝 (Ω)︸ ︷︷ ︸

(I)

+

𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗
(
𝑦 𝑗

)) − 𝑦 𝑗

𝐿𝑝 (Ω)︸ ︷︷ ︸
(II)

)
.

We estimate the summands (I) and (II) separately.

(I): From Lemma 4.3 we get

𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
) − 𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))

𝐿𝑝 (Ω)

(4.4)≤ 𝐿

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)

= 𝐿𝐸 𝑗 .

(II): As we have seen in the proof of Corollary 4.2, cf. Equation (4.19),
we have 𝑦

(
𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

)) ∈ 𝑌�̄� . Therefore, we can use Assump-
tion 4.1 to obtain

𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

)) − 𝑦 𝑗

𝐿𝑝 (Ω) ≤

𝑦 (𝑇; 𝑦 𝑗 , 𝑢∗
(
𝑦 𝑗

))

𝐿𝑝 (Ω) +

𝑦 𝑗

𝐿𝑝 (Ω)
(4.6)≤ 𝑎

− 1
𝑞

1

(
𝑉

(
𝑦
(
𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))) 1
𝑞 +𝑉 (

𝑦 𝑗
) 1
𝑞

)
(4.19)≤ 𝑎

− 1
𝑞

1

(
1 + (1 − 𝑇�̄�) 1

𝑞

)
𝑉

(
𝑦 𝑗

) 1
𝑞 .

We combine (I) and (II) again to obtain

𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
)) − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ) ≤ 𝛾𝐿𝐸 𝑗 + 𝛾𝑎

− 1
𝑞

1

(
1 + (1 − 𝑇�̄�) 1

𝑞

)
𝑉𝑗

= 𝛾𝐿𝐸 𝑗 + 𝐶2𝑉𝑗 .
(4.23)

We finish the proof by plugging in Equation (4.23) into Equation (4.22)
and obtaining

𝐸 𝑗+1
(4.22)≤ 𝜅𝑘𝐸 𝑗 + 𝜅𝑘

𝑢∗ (𝑦 (𝑇; 𝑦 𝑗 , 𝑢𝑗
)) − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)

(4.23)≤ 𝜅𝑘𝐸 𝑗 + 𝜅𝑘
(
𝛾𝐿𝐸 𝑗 + 𝐶2𝑉𝑗

)
= 𝜅𝑘𝐶1𝐸 𝑗 + 𝜅𝑘𝐶2𝑉𝑗 .

■

70 4. Stability of Inexact NMPC for a Class of Semilinear Parabolic PDEs

Now, we examine the perturbation of the LYAPUNOV decrease (4.7)
caused by using a suboptimal control 𝑢𝑗 instead of the optimal 𝑢∗.

Lemma 4.8 — Lyapunov decrease perturbation.
Requirements: Assumption 4.1, Assumption 4.2, Assumption 4.3, and 𝐾4 as
in Lemma 4.6
Let 𝑦0 ∈ 𝑌�̄� , 𝑢−1 = 𝑢init ∈ BΣ,𝑠

(
𝑢∗

(
𝑦0

)
, 𝑟𝑢

)
and 𝑘 ≥ 𝐾4. Then,

𝑉𝑗+1 ≤ 𝐶3𝐸 𝑗 + 𝐶4𝑉𝑗

holds for all 𝑗 ∈ ℕ0, where

𝐶3 ≔ 𝜇𝐿,

𝐶4 ≔ (1 − 𝑇�̄�) 1
𝑞 ∈ [0, 1).

Proof. From Lemma 4.6 we get 𝑦 𝑗 ∈ 𝑌�̄� , 𝑢𝑗−1 ∈ BΣ,𝑠
(
𝑢∗

(
𝑦 𝑗

)
, 𝑟𝑢

)
for all

𝑗 ∈ ℕ0. Therefore, we can employ Equation (4.19) of Lemma 4.2 and
proceed as in the proof of Lemma 4.5, cf. Equation (4.21), to get

𝑉𝑗+1 ≤
���𝑉 (

𝑦
(
𝑇; 𝑦 𝑗 , 𝑢𝑗

)) 1
𝑞 −𝑉 (

𝑦
(
𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))) 1
𝑞

���
+𝑉 (

𝑦
(
𝑇; 𝑦 𝑗 , 𝑢∗

(
𝑦 𝑗

))) 1
𝑞

(4.19),(4.21)≤ 𝜇𝐿

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ) + (1 − 𝑇�̄�) 1

𝑞𝑉
(
𝑦 𝑗

) 1
𝑞 = 𝐶3𝐸 𝑗 + 𝐶4𝑉𝑗 .

Note that 𝐶4 ∈ [0, 1) as 0 < 𝑇 ≤ 1
�̄� , cf. Equation (4.18). ■

4.2.4. Step 4: stability of the positive linear system

Lemmas 4.7 and 4.8 yield that the development of 𝑉𝑗 and 𝐸 𝑗 can be
written as (

𝑉𝑗+1
𝐸 𝑗+1

)
≤

(
𝐶4 𝐶3

𝜅𝑘𝐶2 𝜅𝑘𝐶1

) (
𝑉𝑗
𝐸 𝑗

)
=: 𝐴

(
𝑉𝑗
𝐸 𝑗

)
, (4.24)

with
𝑉0 ≔ 𝑉

(
𝑦0

) 1
𝑞 , and 𝐸0 ≔

𝑢0 − 𝑢∗𝑦0

𝐿𝑠 (Σ).

We recall that 𝑢0 is computed through 𝑘 iterations of the optimizer
started at 𝑢init. As 𝜅𝑘 , 𝐶1 , 𝐶2 , 𝐶3 , 𝐶4 ≥ 0, we have 𝐴 ∈ ℝ2×2

≥0 . As addi-
tionally, 𝐸 𝑗 ≥ 0 for all 𝑗 ∈ ℕ0 by definition and

𝑉𝑗 = 𝑉
(
𝑦 𝑗

) 1
𝑞

(4.6)≥ 𝑎
1
𝑞

1

𝑦 𝑗

𝐿𝑝 (Ω) ≥ 0

for all 𝑗 ∈ ℕ0 by virtue of Lemma 4.6 and Assumption 4.1, we have
that

𝑉u
𝑗 ≥ 𝑉𝑗 and 𝐸u

𝑗 ≥ 𝐸 𝑗 ∀𝑗 ∈ ℕ0

if we define 𝑉u
𝑗 and 𝐸u

𝑗 through(
𝑉u
𝑗+1

𝐸u
𝑗−1

)
= 𝐴

(
𝑉u
𝑗

𝐸u
𝑗

)
with

(
𝑉u

0
𝐸u

0

)
≔

(
𝑉0
𝐸0

)
. (4.25)

4.2. Stability proof 71

As 𝐴 ∈ ℝ2×2
≥0 and 𝑉u

𝑗 , 𝐸
u
𝑗 ≥ 0 for all 𝑗 ∈ ℕ0, the system (4.25) is a

positive linear system. Thus, we can use [208, Theorem 23]
[208]: Zanelli et al. (2021), “A Lyapunov
function for the combined system-
optimizer dynamics in inexact model
predictive control”

, which is
an adapted version of the results presented in [116]

[116]: Kaczorek (2008), “The Choice of
the Forms of Lyapunov Functions for a
Positive 2D Roesser Model”

, to prove asymp-
totic stability of the origin (𝑉u , 𝐸u) = (0, 0) and to state an associated
LYAPUNOV function for the system (4.25).

Lemma 4.9 — Lyapunov function for system (4.25).
There exists 𝐾5 ∈ ℕ such that for all 𝑘 ≥ 𝐾5 the origin (0, 0) ∈ ℝ2

is asymptotically stable for the system (4.25) for all (𝑦0 , 𝑢init) ∈ Λ
with a LYAPUNOV function �̃� in ℝ2

≥0 which is given by

�̃�
(
(𝑉u

𝑗 , 𝐸
u
𝑗)

)
= 𝑉u

𝑗 + 𝛽𝐸u
𝑗 ,

where 𝛽 ≔ 2𝜇𝐿.

Proof. By virtue of [208, Theorem 23], we need to find 𝑤 ∈ ℝ2
≥0 and

0 < �̂� ∈ ℝ such that

max
𝑖=1,2

[(
𝐴𝑇 − 𝕀)𝑤]

𝑖 ≤ −�̂�.

We set 𝑤 =

(
1
𝛽

)
. With that choice, we have

(
𝐴𝑇 − 𝕀)𝑤 < 0 (componen-

twise) if
𝐶4 − 1 + 𝜅𝑘𝐶2𝛽 < 0,

𝐶3 +
(
𝜅𝑘𝐶1 − 1

)
𝛽 < 0,

𝛽 > 0.

(4.26)

As 𝜅 ∈ (0, 1), 𝐶1 > 0, there exists �̄� ∈ ℕ such that 𝜅𝑘𝐶1 < 1 for all
𝑘 ≥ �̄�. With that (4.26) is satisfied if and only if

𝐶3

1 − 𝜅𝑘𝐶1
< 𝛽 <

1 − 𝐶4

𝜅𝑘𝐶2
and 𝛽 > 0.

As
𝐶3

1 − 𝜅𝑘𝐶1

𝑘→∞−→ 𝐶3 and 1 − 𝐶4

𝜅𝑘𝐶2

𝑘→∞−→ ∞,

there exists �̃� ∈ ℕ such that

𝐶3

1 − 𝜅𝑘𝐶1
< 2𝐶3 <

1 − 𝐶4

𝜅𝑘𝐶2
∀𝑘 ≥ max{�̄�, �̃�}.

Choosing 𝛽 = 2𝐶3 = 2𝜇𝐿 and 𝐾5 ≔ max{�̄�, �̃�} concludes the proof.
■

In fact, for all fixed 𝛿 ∈ (1,∞) we
find a 𝐾5,𝛿 ∈ ℕ such that 𝛽 = 𝛿𝜇𝐿
can be chosen in the definition of �̃� .
The smaller 𝛿, the smaller 𝐾5,𝛿 can
be chosen.

72 4. Stability of Inexact NMPC for a Class of Semilinear Parabolic PDEs

Lemma 4.9 allows us to bound the current state 𝑦 𝑗 and the associated
optimal control 𝑢∗

(
𝑦 𝑗

)
in the form of Corollary 4.3.

Corollary 4.3 — Bounds for 𝑦𝑗 and 𝑢∗
(
𝑦𝑗

)
.

Requirements: Assumption 4.1, Assumption 4.2, Assumption 4.3 and 𝐾5 as
in Lemma 4.9
Let 𝑘 ≥ 𝐾5. For all (𝑦0 , 𝑢init) ∈ Λ exists a 𝐽

(
𝑦0 , 𝑢init

) ∈ ℕ, which
depends on 𝑦0 , 𝑢init, such that

𝑦 𝑗

𝐿𝑝 (Ω) ≤ 𝑟𝑦 , i.e. 𝑦 𝑗 ∈ BΩ,𝑝

(
0, 𝑟𝑦

)
,

and

𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ) ≤ 𝛾

𝑦 𝑗

𝐿𝑝 (Ω) (4.27)

for all 𝑗 ≥ 𝐽 (𝑦0 , 𝑢init
)
.

Proof. From Lemma 4.9 we know that

0 ≤ 𝑎
1
𝑞

1

𝑦 𝑗

𝐿𝑝 (Ω) ≤ 𝑉𝑗 ≤ 𝑉u

𝑗

𝑗→∞−→ 0. (4.28)

Therefore, there exists a 𝐽
(
𝑦0 , 𝑢init

) ∈ ℕ such that

𝑦 𝑗

𝐿𝑝 (Ω) ≤ 𝑟𝑦 for all

𝑗 ≥ 𝐽
(
𝑦0 , 𝑢init

)
. Moreover, Equation (4.28) implies that 𝑦 𝑗

𝑗→∞−→ 𝑦∗ = 0.
Now, we need the continuity of 𝑉 from Assumption 4.1 to get

𝑉
(
𝑦∗

)
= 𝑉

(
lim
𝑗→∞ 𝑦 𝑗

)
= lim

𝑗→∞𝑉
(
𝑦 𝑗

)
= 0,

which implies that 𝑦∗ ∈ 𝑌�̄� . This allows us to use Equation (4.12) to
obtain

𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ) ≤ 𝛾

𝑦 𝑗

𝐿𝑝 (Ω)
for all 𝑗 ≥ 𝐽

(
𝑦0 , 𝑢init

)
as we have now secured that 𝑦∗ = 0 ∈ 𝑌�̄� and

𝑦 𝑗 ∈ BΩ,𝑝
(
𝑦∗ = 0, 𝑟𝑦

)
. ■

4.2.5. Main result: asymptotic stability of the
system-optimizer dynamics

The following Theorem 4.3 is the main result of this chapter. Theo-
rem 4.3 states that the origin (𝑦∗ , 𝑢∗) = (0, 0) is asymptotically sta-
ble for the system-optimizer dynamics (4.16). The forward invariant
set 𝑆 on which this stability holds is of a rather technical nature.
However, we can illustrate its role by the following interpretation of
Lemma 4.9 and Theorem 4.3 in conjunction with Corollary 4.3. For all
𝑦0 ∈ 𝑌�̄� , 𝑢init ∈ BΣ,𝑠

(
𝑢∗

(
𝑦0

)
, 𝑟𝑢

)
the states 𝑦 𝑗 converge towards 𝑦∗ = 0

and the controls 𝑢𝑗 converge towards 𝑢∗
(
𝑦 𝑗

)
. As 𝑢∗ is not necessarily

continuous, this does not yet imply that 𝑢𝑗
𝑗→∞−→ 𝑢∗ = 0. But, for all

𝑦0 ∈ 𝑌�̄� , 𝑢init ∈ BΣ,𝑠
(
𝑢∗

(
𝑦0

)
, 𝑟𝑢

)
exists a finite number of NMPC steps

𝐽
(
𝑦0 , 𝑢init

)
after which (𝑦 𝑗 , 𝑢𝑗) have entered the forward invariant set

𝑆 from where on asymptotic stability is guaranteed.

4.2. Stability proof 73

Theorem 4.3 — Asymptotic stability of the system-optimizer dynamics.
Requirements: Assumption 4.1, Assumption 4.2, Assumption 4.3 and 𝐾5 as
in Lemma 4.9
Let 𝑘 ≥ 𝐾5. Then, the equilibrium (𝑦∗ , 𝑢∗) = (0, 0) ∈ 𝐿𝑝(Ω) × 𝐿𝑠(Σ)
is asymptotically stable on the forward invariant set

𝑆 ≔
⋃

(𝑦0 ,𝑢init)∈Λ

{(
𝑦 𝑗

(
𝑦0 , 𝑢init

)
, 𝑢𝑗

(
𝑦0 , 𝑢init

)) �� 𝑗 ≥ 𝐽 (𝑦0 , 𝑢init
)}
,

where 𝐽
(
𝑦0 , 𝑢init

)
is as in Corollary 4.3, with

𝑉so
((
𝑦, 𝑢

))
≔ 𝑉

(
𝑦
) 1
𝑞 + 2𝜇𝐿

𝑢 − 𝑢∗ (𝑦)

𝐿𝑠 (Σ)
as LYAPUNOV function for the system-optimizer dynamics (4.16).

Proof. First we show that 𝑆 is forward invariant. To that end, let
(
𝑦, 𝑢

) ∈
𝑆. By construction of 𝑆 there exist

(
𝑦0 , 𝑢init

) ∈ Λ and 𝐽
(
𝑦0 , 𝑢init

) ∈ ℕ
such that

𝑦 = 𝑦 𝑗
(
𝑦0 , 𝑢init

)
, and 𝑢 = 𝑢𝑗

(
𝑦0 , 𝑢init

)
for a 𝑗 ≥ 𝐽 (𝑦0 , 𝑢init

)
. Again by the construction of 𝑆, we immediately

obtain

𝑦
(
𝑇; 𝑦, 𝑢

)
= 𝑦 𝑗+1

(
𝑦0 , 𝑢init

)
and 𝜉

(
𝑦
(
𝑇; 𝑦, 𝑢

)
, 𝑢

)
= 𝑢𝑗+1

(
𝑦0 , 𝑢init

)
and accordingly (

𝑦
(
𝑇; 𝑦, 𝑢

)
, 𝜉

(
𝑦
(
𝑇; 𝑦, 𝑢

)
, 𝑢

)) ∈ 𝑆.
Next we show that 𝑉so is indeed a LYAPUNOV function for the system-
optimizer dynamics (4.16) on 𝑆. To that end, we need to show, cf. [101,
Definition 2.18]

[101]: Grüne et al. (2017), Nonlinear
Model Predictive Control

, that functions 𝛼1 , 𝛼2 ∈ K∞ and 𝛼3 ∈ K exist such
that

Reminder: Comparison functions

K≔
{
𝛼 ∈ 𝐶 (

ℝ+0 ,ℝ
+
0
) �� 𝛼 is strictly

increasing with 𝛼(0) = 0.
}

K∞ ≔
{
𝛼 ∈ K

�� 𝛼 is unbounded
}

Cf. Definition 2.10 on p. 19.

(i) 𝛼1

(

𝑦 𝑗 − 𝑦∗

𝐿𝑝 (Ω) +

𝑢𝑗 − 𝑢∗

𝐿𝑠 (Σ)) ≤ 𝑉so
((
𝑦 𝑗 , 𝑢𝑗

))
,

(ii) 𝑉so
((
𝑦 𝑗 , 𝑢𝑗

)) ≤ 𝛼2

(

𝑦 𝑗 − 𝑦∗

𝐿𝑝 (Ω) +

𝑢𝑗 − 𝑢∗

𝐿𝑠 (Σ)) ,
(iii)

𝑉so
((
𝑦 𝑗+1 , 𝑢𝑗+1

)) ≤
𝑉so

((
𝑦 𝑗 , 𝑢𝑗

)) − 𝛼3

(

𝑦 𝑗 − 𝑦∗

𝐿𝑝 (Ω) +

𝑢𝑗 − 𝑢∗

𝐿𝑠 (Σ))
hold for all (𝑦 𝑗 , 𝑢𝑗) ∈ 𝑆.

We can use our results from Subsec-
tion 4.2.4 because (𝑦𝑗 , 𝑢𝑗) ∈ Λ as
𝑆 ⊂ Λ.

As 𝑗 ≥ 𝐽
(
𝑦0 , 𝑢init

)
by construction for (𝑦 𝑗 , 𝑢𝑗) ∈ 𝑆, we can use Equa-

tion (4.27) from Corollary 4.3.

74 4. Stability of Inexact NMPC for a Class of Semilinear Parabolic PDEs

(i) We make a case distinction for 𝑎
1
𝑞

1 − 𝛽𝛾:

Case: 𝑎
1
𝑞

1 − 𝛽𝛾 > 0: Here, we have

𝑉so
((
𝑦 𝑗 , 𝑢𝑗

))
= 𝑉

(
𝑦 𝑗

) 1
𝑞 + 𝛽

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)
≥ 𝑉 (

𝑦 𝑗
) 1
𝑞 + 𝛽

(

𝑢𝑗

𝐿𝑠 (Σ) −

𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ))
(4.6)≥ 𝑎

1
𝑞

1

𝑦 𝑗

𝐿𝑝 (Ω) − 𝛽

𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ) + 𝛽

𝑢𝑗

𝐿𝑠 (Σ)

(4.27)≥
(
𝑎

1
𝑞

1 − 𝛽𝛾

)

𝑦 𝑗

𝐿𝑝 (Ω) + 𝛽

𝑢𝑗

𝐿𝑠 (Σ)

=

(
𝑎

1
𝑞

1 − 𝛽𝛾

)

𝑦 𝑗 − 𝑦∗

𝐿𝑝 (Ω) + 𝛽

𝑢𝑗 − 𝑢∗

𝐿𝑠 (Σ)

≥ min
{
𝑎

1
𝑞

1 − 𝛽𝛾, 𝛽

} (

𝑦 𝑗 − 𝑦∗

𝐿𝑝 (Ω) +

𝑢𝑗 − 𝑢∗

𝐿𝑠 (Σ)) .
Case: 𝑎

1
𝑞

1 − 𝛽𝛾 ≤ 0: Here, we need to make an additional case
distinction for

𝑦 𝑗

𝐿𝑠 (Σ) − 1
𝛾

𝑢𝑗

𝐿𝑠 (Σ). If

𝑦 𝑗

𝐿𝑠 (Σ) ≤ 1
𝛾

𝑢𝑗

𝐿𝑠 (Σ), we
proceed as above to find

𝑉so
((
𝑦 𝑗 , 𝑢𝑗

)) ≥ (
𝑎

1
𝑞

1 − 𝛽𝛾

)

𝑦 𝑗 − 𝑦∗

𝐿𝑝 (Ω) + 𝛽

𝑢𝑗 − 𝑢∗

𝐿𝑠 (Σ)

≥
(
𝑎

1
𝑞

1 − 𝛽𝛾

)
sup

‖ 𝑦𝑗‖ 𝐿𝑝 (Ω)≤ 1
𝛾 ‖𝑢𝑗‖ 𝐿𝑠 (Σ)

𝑦 𝑗

𝐿𝑝 (Ω) + 𝛽

𝑢𝑗

𝐿𝑠 (Σ)

=

(
𝑎

1
𝑞

1 − 𝛽𝛾

)
1
𝛾

𝑢𝑗

𝐿𝑠 (Σ) + 𝛽

𝑢𝑗

𝐿𝑠 (Σ) = 𝑎

1
𝑞

1
𝛾

𝑢𝑗

𝐿𝑠 (Σ).
If instead,

𝑦 𝑗

𝐿𝑠 (Σ) > 1
𝛾

𝑢𝑗

𝐿𝑠 (Σ), we have

𝑉so
((
𝑦 𝑗 , 𝑢𝑗

)) ≥ 𝑉 (
𝑦 𝑗

) 1
𝑞

(4.6)≥ 𝑎
1
𝑞

1

𝑦 𝑗

𝐿𝑝 (Ω) ≥ 𝑎

1
𝑞

1
𝛾

𝑢𝑗

𝐿𝑠 (Σ).
Both times we thus have

𝑉so
((
𝑦 𝑗 , 𝑢𝑗

)) ≥ 𝑎
1
𝑞

1
𝛾

𝑢𝑗

𝐿𝑠 (Σ) = 𝑎
1
𝑞

1
𝛾

𝑢𝑗 − 𝑢∗

𝐿𝑠 (Σ)
for all (𝑦 𝑗 , 𝑢𝑗) ∈ 𝑆. Moreover, we have from Assumption 4.1 that

𝑉so
((
𝑦 𝑗 , 𝑢𝑗

)) ≥ 𝑉 (
𝑦 𝑗

) 1
𝑞

(4.6)≥ 𝑎
1
𝑞

1

𝑦 𝑗

𝐿𝑝 (Ω) = 𝑎

1
𝑞

1

𝑦 𝑗 − 𝑦∗

𝐿𝑝 (Ω).

Together we have established that

𝑉so
((
𝑦 𝑗 , 𝑢𝑗

)) ≥ 𝑎
1
𝑞

1
2

𝑦 𝑗 − 𝑦∗

𝐿𝑝 (Ω) + 𝑎 1
𝑞

1
2𝛾

𝑢𝑗 − 𝑢∗

𝐿𝑠 (Σ)
≥ min

{
1, 1

𝛾

}
𝑎

1
𝑞

1

(

𝑦 𝑗 − 𝑦∗

𝐿𝑝 (Ω) +

𝑢𝑗 − 𝑢∗

𝐿𝑠 (Σ)) .

4.2. Stability proof 75

We set

𝐶 ≔


min

{
𝑎

1
𝑞

1 − 𝛽𝛾, 𝛽

}
, if 𝑎

1
𝑞

1 − 𝛽𝛾 > 0,

min
{
1, 1

𝛾

}
𝑎

1
𝑞

1 , else

and conclude (i) by setting

𝛼1

(

𝑦 𝑗 − 𝑦∗

𝐿𝑝 (Ω) +

𝑢𝑗 − 𝑢∗

𝐿𝑠 (Σ))
≔ 𝐶

(

𝑦 𝑗 − 𝑦∗

𝐿𝑝 (Ω) +

𝑢𝑗 − 𝑢∗

𝐿𝑠 (Σ)) .
(ii) For the upper bound on 𝑉so we proceed by estimating

𝑉so
((
𝑦 𝑗 , 𝑢𝑗

)) (4.6)≤ 𝑎
1
𝑞

2

𝑦 𝑗

𝐿𝑝 (Ω) + 𝛽

(

𝑢𝑗

𝐿𝑠 (Σ) +

𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ))
(4.27)≤

(
𝑎

1
𝑞

2 + 𝛾𝛽

)

𝑦 𝑗

𝐿𝑝 (Ω) + 𝛽

𝑢𝑗

𝐿𝑠 (Σ)

≤ max
{
𝑎

1
𝑞

2 + 𝛾𝛽, 𝛽

} (

𝑦 𝑗 − 𝑦∗

𝐿𝑝 (Ω) +

𝑢𝑗 − 𝑢∗

𝐿𝑠 (Σ))
≕ 𝛼2

(

𝑦 𝑗 − 𝑦∗

𝐿𝑝 (Ω) +

𝑢𝑗 − 𝑢∗

𝐿𝑠 (Σ)) .
(iii) For the final part (iii), we first note that

𝑉so
((
𝑦 𝑗+1 , 𝑢𝑗+1

))
=

(
1, 𝛽

) (𝑉
(
𝑦 𝑗+1

) 1
𝑞

𝑢𝑗+1 − 𝑢∗ (𝑦 𝑗+1
)

𝐿𝑠 (Σ)

)
.

We note that the LYAPUNOV function �̃� is the same indepen-
dent of the initial state and control in Λ. We can hence ap-
ply its properties to the dynamics (4.25) started in 𝑉

(
𝑦 𝑗

) 1
𝑞 and

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ). More precisely, we get with [208, Theorem 23]

[208]: Zanelli et al. (2021), “A Lyapunov
function for the combined system-
optimizer dynamics in inexact model
predictive control”(

1, 𝛽
)
𝐴

(
𝑉

(
𝑦 𝑗

) 1
𝑞

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)

)
= �̃�

(
𝐴

(
𝑉

(
𝑦 𝑗

) 1
𝑞

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)

))
≤ �̃�

(
𝑉

(
𝑦 𝑗

) 1
𝑞 ,

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)) − �̂�

(

𝑉
(
𝑦 𝑗

) 1
𝑞

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)

)

1

=
(
1, 𝛽

) (𝑉
(
𝑦 𝑗

) 1
𝑞

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)

)
− �̂�

(

𝑉
(
𝑦 𝑗

) 1
𝑞

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)

)

1

.

It then follows that(
1, 𝛽

) (𝑉
(
𝑦 𝑗+1

) 1
𝑞

𝑢𝑗+1 − 𝑢∗

(
𝑦 𝑗+1

)

𝐿𝑠 (Σ)

)
≤ (

1, 𝛽
)
𝐴

(
𝑉

(
𝑦 𝑗

) 1
𝑞

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)

)
≤ (

1, 𝛽
) (𝑉

(
𝑦 𝑗

) 1
𝑞

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)

)
− �̂�

(

𝑉
(
𝑦 𝑗

) 1
𝑞

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)

)

1

.

76 4. Stability of Inexact NMPC for a Class of Semilinear Parabolic PDEs

Therefore, we get

𝑉so
((
𝑦 𝑗+1 , 𝑢𝑗+1

))
≤ 𝑉so

((
𝑦 𝑗 , 𝑢𝑗

)) − �̂� (𝑉 (
𝑦 𝑗

) 1
𝑞 +

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)) .

With the same computations as for (i), but with 𝛽 = 1, we obtain

𝑉
(
𝑦 𝑗

) 1
𝑞 +

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)
≥ �̃�

(

𝑦 𝑗 − 𝑦∗

𝐿𝑝 (Ω) +

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ)) ,
with

�̃� ≔


min

{
𝑎

1
𝑞

1 − 𝛾, 1
}
, if 𝑎

1
𝑞

1 − 𝛾 > 0,

min
{
1, 1

𝛾

}
𝑎

1
𝑞

1 , else.

Defining

𝛼3 ≔ �̂��̃�
(

𝑦 𝑗 − 𝑦∗

𝐿𝑝 (Ω) +

𝑢𝑗 − 𝑢∗ (𝑦 𝑗)

𝐿𝑠 (Σ))

concludes the proof.

■

Smooth Multivariate
Shape-Preserving Interpolation 5.

5.1 Problem formulation . . 79
5.2 Literature review 83
5.3 Novel approach 85
5.4 Proofs 93
5.5 Numerical results 98

In real-life engineering tasks, it is common to encounter situations
where we lack a suitable functional formulation for the dependence
of one quantity on another. In other cases, a functional formulation
may exist, but its evaluation is too computationally expensive to be
practical. A typical approach in such cases is to take measurements or
evaluate the expensive formula at dedicated points and interpolate
between these measurements. An example is the fuel consumption
of an internal combustion engine as a function of speed and mean
effective pressure, see, for example, [169, Bild 5-6]

[169]: Schnabel et al. (2011), Grund-
lagen der Straßenverkehrstechnik
und der Verkehrsplanung: Band
1-Straßenverkehrstechnik

. We refer to such
a collection of measurement or evaluation points, along with the cor-
responding function values, as a Lookup Table (LUT). In fact, we also
use LUTs in our OCP formulation for our Ecological Adaptive Cruise
Control (EACC) system application, as described in Chapter 8.

In particular, LUTs, as they appear in engineering applications, some-
times involve more than just one or two free variables. For interpo-
lation, this means that we need to interpolate not only univariate or
bivariate data but also multivariate data. Even if a complete model
or all system properties are unknown, some information about the
system modeled by a LUT is often available. For example, it may be
known that the process state must be non-negative everywhere, such
as when modeling concentrations, or monotonic with respect to a
certain free variable. Consequently, there is a need for interpolation
methods that preserve this kind of information, which is, of course,
also encoded in the LUT. We refer to such interpolation methods as
shape-preserving interpolation methods. We explain our understand-
ing of shape-preservation in more detail in Section 5.1.

Another engineering requirement is that the interpolation method be
a local scheme, meaning that the value of the interpolation function
depends only on a few nearby data points.

The simplest interpolation method is linear interpolation of the data.
For details, see standard textbooks on numerical analysis, such as
[10, 180] [10]: Atkinson (1991), An introduction

to numerical analysis
[180]: Süli et al. (2003), An Introduction
to Numerical Analysis

. Although it is the simplest method, linear interpolation ac-
tually satisfies the requirements mentioned so far. It can be extended
to multivariate settings, preserves most typical shapes, and works lo-
cally. Unfortunately, it does not fulfill a final requirement that arises
when we want to perform optimal control or NMPC of systems mod-
eled using LUTs. This last requirement is that the interpolating func-
tion must be sufficiently smooth, which at least means continuously
differentiable—a property that linear interpolation does not possess.

While smooth shape-preserving interpolation methods for univariate
and bivariate cases and smooth multivariate interpolation methods
exist, to the best of our knowledge, a smooth, multivariate, and shape-
preserving interpolation method has not yet been presented. One
of the main contributions of this thesis is the development of such

78 5. Smooth Multivariate Shape-Preserving Interpolation

an interpolation method. The main idea behind our novel interpola-
tion method is to use COONS’ patchesWe explain COONS’ patches in Sub-

section 5.3.2.
to extend univariate interpo-

lation methods to the multivariate case. Our proposed interpolation
method has the following advantages:

▶ It works in the multivariate case for gridded data.
▶ It preserves shapes in an SP2 sense.We define SP2 in Definition 5.6.

▶ It can preserve virtually all shapes of interest if a univariate
method exists that preserves this shape.

▶ It has the same order of smoothness as the univariate interpo-
lation method, allowing an arbitrarily high degree of smooth-
ness to be achieved by utilizing, e.g., the univariate method pre-
sented in [49][49]: Costantini (1988), “An algorithm

for computing shape-preserving in-
terpolating splines of arbitrary degree”

.
▶ It inherits locality if the univariate method is a local scheme.

The presentation of our novel method in this chapter is structured
as follows. First, we clarify the problem at hand in Section 5.1. Next,
we review existing approaches to shape-preserving and multivariate
interpolation methods in Section 5.2. Section 5.3 contains the descrip-
tion of our novel method. Numerical results for our method on some
test problems are reported in Section 5.5. A proof that our described
method indeed produces shape-preserving interpolations is given in
Section 5.4. A proof regarding the arbitrary smoothness for the gen-
eral multivariate case is currently in progress.

Theorem 5.1 contains the precise
statement.

To present the problem at hand and our method concisely, we make
use of a multi-index notation.

By uni-, bi-, or trivariate, we refer to
situations where 𝑖 = 1, 𝑖 = 2, or 𝑖 =
3, respectively.

Definition 5.1 An 𝑛-dimensional multi-index 𝛼 is a tuple

𝛼 =
(
𝛼1 , . . . , 𝛼𝑛

)𝑇 ∈ ℕ𝑛
0 . (5.1)

Moreover, we write 𝛼 ≤ 𝛾 if and only if 𝛼𝑖 ≤ 𝛾𝑖 for all 𝑖 ∈ {1, . . . , 𝑛}.
For a fixed maximum multi-index 0 < 𝛼max =

(
𝛼1

max , . . . , 𝛼
𝑛
max

)𝑇 ,
we use the abbreviation

{𝛼 | 0 ≤ 𝛼 ≤ 𝛼max} ≔
{
𝛼 ∈ ℕ𝑛

0
�� 0 ≤ 𝛼𝑖 ≤ 𝛼𝑖max ∀𝑖 ∈ {1, . . . , 𝑛}

}
.

We occasionally need to fix some indices in a multi-index and vary
others. For that, we extend the multi-index notation of Definition 5.1
by the following definitions.

Definition 5.2 For a subset M⊂ {1, . . . , 𝑛} with
1 ≤ 𝑚 ≔ |M| ≤ 𝑛 − 1,

we define the multi-index 𝛼M that corresponds to the dimensions
M by

𝛼M ≔
(
𝛼𝑖1 , . . . , 𝛼𝑖𝑚

)𝑇 ∈ ℕ𝑚
0 ,

where the dimension indices 𝑖1 , . . . , 𝑖𝑚 ∈ {1, . . . , 𝑛} satisfy
𝑚⋃
𝑘=1
{𝑖𝑘} = M,

5.1. Problem formulation 79

and, if 𝑚 > 1, additionally

𝑖1 < . . . < 𝑖𝑚 .

Similarly, we denote by 𝛼¬M the multi-index that corresponds to
dimensions not in M, which we define by

𝛼¬M ≔
(
𝛼𝑖1 , . . . , 𝛼𝑖𝑛−𝑚

)𝑇 ∈ ℕ𝑛−𝑚
0 ,

where the dimension indices 𝑖1 , . . . , 𝑖𝑛−𝑚 ∈ {1, . . . , 𝑛} satisfy
𝑛−𝑚⋃
𝑘=1
{𝑖𝑘} = {1, . . . , 𝑛} \M,

and, if 𝑚 < 𝑛 − 1, additionally

𝑖1 < . . . < 𝑖𝑛−𝑚 .

If M = {𝑖}, we write 𝛼𝑖 ∈ ℕ0, which is consistent with 𝛼𝑖 denoting
a single index, and 𝛼¬𝑖 ∈ ℕ𝑛−1

0 instead of 𝛼{𝑖} and 𝛼¬{𝑖} , respec-
tively. We can also define a recombination of 𝛽M and 𝛾¬M, which
we denote by 𝛽M|𝛾¬M ∈ ℕ𝑛

0 for given

𝛽M =
(
𝛽𝑖1 , . . . , 𝛽𝑖𝑚

)𝑇 ∈ ℕ𝑚
0 ,

𝛾¬M =
(
𝛾 𝑗1 , . . . , 𝛾 𝑗𝑛−𝑚

)𝑇 ∈ ℕ𝑛−𝑚
0 ,

by setting

𝛽M|𝛾¬M ≔
(
𝛼1 , . . . , 𝛼𝑛

)𝑇 with 𝛼𝑖 ≔

{
𝛾𝑖 if 𝑖 ∈ M,

𝛽𝑖 else.

Similarly, we can also split a given 𝛼 ∈ ℕ𝑛
0 into 𝛼M ∈ ℕ𝑚

0 and
𝛼¬M ∈ ℕ𝑛−𝑚

0 , meaning that

𝛼 = 𝛼M|𝛼¬M.

In other words, 𝛼M contains the
components of 𝛼 that correspond
to the dimensions collected in M,
and 𝛼¬M the components that cor-
respond to dimensions other than
the ones in M.

If 𝑖 ∈ M, then there exists a 𝑘 ∈
{1, . . . , 𝑚} such that 𝛾𝑖 = 𝛽𝑖𝑘 . If
𝑖 ∉ M, then there exists a 𝑘 ∈
{1, . . . , 𝑛 − 𝑚} such that 𝛾𝑖 = 𝛾¬𝑖𝑘 .

If a multi-index is obtained by split-
ting, it inherits the same base sym-
bol from the multi-index it was split
off. Therefore, if multi-indices 𝛼M,
𝛼¬M occur together, they are ob-
tained from the same parent multi-
index 𝛼 , whereas multi-indices with
different base symbols, i.e., for ex-
ample, 𝛽𝑖 and 𝛽 𝑗 , do not have a par-
ent multi-index.

5.1. Problem formulation

We are concerned with the interpolation of a gridded data set, which
we define as follows. The convention regarding sub- and

superscripts employed in this chap-
ter is as follows: indices written as
superscripts refer to the dimension,
while indices written as subscripts
enumerate elements within a fixed
dimension.

Definition 5.3 For each dimension 𝑖 ∈ {1, . . . , 𝑛}, we assume an
ordered one-dimensional node set

N𝑖 ≔
{
𝑥 𝑖0 < . . . < 𝑥 𝑖

𝛼𝑖max

}
⊂ ℝ. (5.2)

80 5. Smooth Multivariate Shape-Preserving Interpolation

Figure 5.1.: The total node set N,
arising from the Cartesian product
of N1 and N2 , forms a grid in ℝ2 .
The two-dimensional multi-index 𝛼 =(
𝛼1 , 𝛼2)𝑇 is used to reference a spe-
cific node in N.

ℝ

ℝ

𝑥1
0 𝑥1

1 𝑥1
𝛼1 𝑥1

𝛼1
max

𝑥2
0

𝑥2
1

𝑥2
𝛼2

𝑥2
𝛼2

max

· · · · · ·

...

...

N1 =

=

N2

𝑥0,0

𝑥0,1

𝑥0,𝛼2

𝑥0,𝛼2
max

𝑥1,0

𝑥1,1

𝑥1,𝛼2

𝑥1,𝛼2
max

𝑥
𝛼1 ,0

𝑥
𝛼1 ,1

𝑥
𝛼1 ,𝛼2

𝑥
𝛼1 ,𝛼2

max

𝑥
𝛼1

max ,0

𝑥
𝛼1

max ,1

𝑥
𝛼1

max ,𝛼2

𝑥
𝛼1

max ,𝛼2
max

· · · · · ·

...

...

· · · · · ·

...

...

· · · · · ·

...

...

· · · · · ·

...

...

The (total) node set N ⊂ ℝ𝑛 is then defined as

N≔ N1 × · · · ×N𝑛 .

Each node 𝑥𝛼 in the total node setN can be referenced by defining

𝑥𝛼 ≔
(
𝑥1
𝛼1 , . . . , 𝑥𝑛𝛼𝑛

)𝑇 ∈ ℝ𝑛

for each multi-index 0 ≤ 𝛼 ≤ 𝛼max ≔
(
𝛼1

max , . . . , 𝛼
𝑛
max

)𝑇 . For each
node 𝑥𝛼 , a data point 𝑑𝛼 ∈ ℝ is given. Since the nodes form an
𝑛-dimensional grid defined by the total node set N, we refer to
the data set

D≔ {(𝑥𝛼 , 𝑑𝛼) ∈ ℝ𝑛 ×ℝ | 0 ≤ 𝛼 ≤ 𝛼max} (5.3)

as a gridded data set.

Figure 5.1 illustrates the gridded nature of the node set and the use
of the multi-index notation in the bivariate case.

Our goal is to compute a smooth interpolation of the data set D.

Definition: 𝐶𝑞(ℝ𝑛 ,ℝ)
𝐶𝑞(ℝ𝑛 ,ℝ) denotes the space of
𝑞-times continuously differentiable
functions, while 𝐶0(ℝ𝑛 ,ℝ) denotes
the space of all continuous func-
tions from ℝ𝑛 to ℝ. For details, see
standard textbooks on the subject,
e.g., [1, Paragraph 1.26].

Definition 5.4 A function 𝑝 : ℝ𝑛 → ℝ is called an interpolation of
the data set D with smoothness of order 𝑞 if the interpolation
condition

𝑝(𝑥𝛼) = 𝑑𝛼 , for all 0 ≤ 𝛼 ≤ 𝛼max

is satisfied and if 𝑝 ∈ 𝐶𝑞(ℝ𝑛 ,ℝ).

Additionally, the interpolation 𝑝 should be shape-preserving.

Frequently, a function is called
smooth if it has a smoothness or-
der 𝑞 > 1. Whenever the smooth-
ness order itself is not important,
we omit it and only refer to smooth
interpolations.

Unfor-
tunately, the term shape-preserving is not used consistently through-
out the literature. This inconsistency also applies to the term ”shape.”

5.1. Problem formulation 81

In an attempt to provide a unifying definition, we state the rather gen-
eral Definition 5.5.

Attention:

In some works, for example [125],
shape-preserving interpolation is
understood in a different sense, to
which we refer to as fair or visually
pleasing interpolation, cf. [89, Sec-
tion 2.1]. We discuss this issue in
more detail on p. 85.

Definition 5.5 A shape is a property of the data set D, which is a
discrete object, that can be reasonably generalized to the graph

G𝑝 ≔
{(𝑥 , 𝑝(𝑥)) �� 𝑥0 ≤ 𝑥 ≤ 𝑥𝛼max

}
of the interpolation 𝑝 , which is a continuous object. The interpo-
lation is then said to be shape-preserving if all shapes of interest
exhibited by the data set D are also exhibited by the graph G𝑝 .

Definition 5.5 obviously leaves some room for interpretation. There-
fore, it is, to some degree, up to researchers and practitioners to state
which shapes are of interest for their method or application and how
this shape is defined for the data set and for the interpolation. This
also applies to us, and therefore we provide details on our interpre-
tation of Definition 5.5 in the following Subsection 5.1.1.

5.1.1. Categories of shape-preservation in multivariate
settings

Our proposed method inherits its shape-preservation property from
the method applied to solve the arising univariate interpolation prob-
lems. Therefore, we adopt the rather general Definition 5.5 of the term
shape and only name typical shapes in Example 5.1.

■ Example 5.1 The following shapes are typical choices for shapes
that must be preserved in shape-preserving interpolation. [32]: Brodlie et al. (1991), “Preserving

convexity using piecewise cubic
interpolation”
[52]: Costantini et al. (1991), “A local
scheme for bivariate co-monotone
interpolation”
[70]: Dougherty et al. (1989),
“Nonnegativity-, monotonicity-,
or convexity-preserving cubic and
quintic Hermite interpolation”
[113]: Hussain et al. (2008), “Positivity-
preserving interpolation of positive
data by rational cubics”
[114]: Hyman (1983), “Accurate
Monotonicity Preserving Cubic Inter-
polation”
[123]: Kuijt (1998), “Convexity preserv-
ing interpolation: stationary nonlinear
subdivision and splines”
[212]: Zhu (2018), “𝐶2 positivity-
preserving rational interpolation
splines in one and two dimensions”

▶ Positivity: If all data points are positive, i.e., 𝑑𝛼 ≥ 0 for all
0 ≤ 𝛼 ≤ 𝛼max, the interpolation should satisfy 𝑝(𝑥𝛼) ≥ 0 for
all 𝑥0 ≤ 𝑥 ≤ 𝑥𝛼max

. See, e.g., [113, 212].
▶ Monotonicity: If data points are monotonically increasing or de-

creasing, respectively, along one or more directions, the inter-
polation should also be monotonically increasing or decreas-
ing, respectively, in this region. In a univariate setting, it is clear
how monotonicity in both the data set and the interpolation
should be understood. In multivariate settings, different inter-
pretations are possible. We revisit this issue when defining our
categorizations of shape-preservation in Definition 5.6. See, for
example, [52, 114].

▶ Convexity and concavity: Similarly tomonotonicity, different def-
initions of convexity and concavity, respectively, are used for
both the data set and the interpolation. Nevertheless, convexity
and concavity are common shapes of interest in shape-preserving
interpolation. See, for example, [32, 70, 123].

■

In multivariate settings, some shapes allow for multiple conceivable
definitions, as illustrated in the following Example 5.2.

82 5. Smooth Multivariate Shape-Preserving Interpolation

■ Example 5.2 To define monotonicity in a bivariate data set D, we
could consider the following two definitions. The first is based on the
edges of the rectangles in the node grid, while the second considers
the entire rectangles.

(0, 0) (1, 0)

(0, 1) (1, 1)

1
2

3
4

(a) The example data set D ={((0
0
)
, 1

)
,
((1

0
)
, 2

)
,
((0

1
)
, 3

)
,
((1

1
)
, 4

)}
is monotonically increasing according
to both definitions.

(0, 0) (1, 0)

(0, 1) (1, 1)

1

4

3
2

(b) The example data set D ={((0
0
)
, 1

)
,
((1

0
)
, 4

)
,
((0

1
)
, 3

)
,
((1

1
)
, 2

)}
is monotonically increasing only ac-
cording to the first definition.

Figure 5.2.: Visualizations of two ex-
ample data sets illustrating that the
two monotonicity definitions in Exam-
ple 5.2 can lead to different interpreta-
tions of the shape of a given data set.

(i) The data set is monotonically increasing along the edge
[𝑥1

𝛼1 , 𝑥1
𝛼1+1] × 𝑥2

𝛼2 or the edge 𝑥1
𝛼1 × [𝑥2

𝛼2 , 𝑥2
𝛼2+1], respectively, if

𝑑(𝛼1 ,𝛼2) ≤ 𝑑(𝛼1+1,𝛼2) , or 𝑑(𝛼1 ,𝛼2) ≤ 𝑑(𝛼1 ,𝛼2+1) , resp.

(ii) The data set is monotonically increasing on the rectangle
[𝑥1

𝛼1 , 𝑥1
𝛼1+1] × [𝑥2

𝛼2 , 𝑥2
𝛼2+1] if

𝑑(𝛼1 ,𝛼2) ≤ 𝑑(𝛼1+1,𝛼2) , 𝑑(𝛼1 ,𝛼2+1) ≤ 𝑑(𝛼1+1,𝛼2+1) ,
𝑑(𝛼1 ,𝛼2) ≤ 𝑑(𝛼1 ,𝛼2+1) , 𝑑(𝛼1+1,𝛼2) ≤ 𝑑(𝛼1+1,𝛼2+1) ,
𝑑(𝛼1 ,𝛼2) ≤ 𝑑(𝛼1+1,𝛼2+1).

If we examine the two example data sets illustrated in Figure 5.2, we
observe that these two definitions can indeed lead to different inter-
pretations of the shape of a given data set.

In Definition 5.5, we stated that the shape definitions must be rea-
sonably transferable from the data set to the interpolation. Possible
transfers of the two definitions given above to the interpolation are:

(i) The interpolation 𝑝 is monotonically increasing along the edge
[𝑥1

𝛼1 , 𝑥1
𝛼1+1] × 𝑥2

𝛼2 or the edge 𝑥1
𝛼1 × [𝑥2

𝛼2 , 𝑥2
𝛼2+1], respectively, if

𝑝(𝑥) ≤ 𝑝 (
𝑦
)
for all 𝑥 , 𝑦 ∈ [𝑥1

𝛼1 , 𝑥1
𝛼1+1] × 𝑥2

𝛼2 with 𝑥1 ≤ 𝑦1 ,

or
𝑝(𝑥) ≤ 𝑝 (

𝑦
)
for all 𝑥 , 𝑦 ∈ 𝑥1

𝛼1 × [𝑥2
𝛼2 , 𝑥2

𝛼2+1] with 𝑥2 ≤ 𝑦2 , resp.

(ii)

𝑥 ≤ 𝑦 is meant componentwise, i.e.,
it means 𝑥 𝑖 ≤ 𝑦 𝑖 ∀𝑖 ∈ {1, 2}.

The interpolation 𝑝 is monotonically increasing on the rectan-
gle [𝑥1

𝛼1 , 𝑥1
𝛼1+1] × [𝑥2

𝛼2 , 𝑥2
𝛼2+1] if

𝑝(𝑥) ≤ 𝑝 (
𝑦
)
for all 𝑥 , 𝑦 ∈ [𝑥1

𝛼1 , 𝑥1
𝛼1+1] × [𝑥2

𝛼2 , 𝑥2
𝛼2+1] with 𝑥 ≤ 𝑦 .

■

Example 5.2 also demonstrates that different definitions of a spe-
cific shape can vary in strictness. It is likely agreeable that the sec-
ond monotonicity definition in Example 5.2 is stricter than the first,
as it considers entire rectangles for the shape definition instead of
only the edges. Consequently, we propose the following categoriza-
tion scheme for how interpolations can preserve shapes.

Definition 5.6 To define the categories, we introduce

N𝑖 ⊂ N̄𝑖 ≔ [𝑥 𝑖0 , 𝑥 𝑖𝛼𝑖max
] ⊂ ℝ,

i.e., the straight line from 𝑥 𝑖0 to 𝑥 𝑖
𝛼𝑖max

. We then propose the follow-
ing shape-preservation categories for an interpolation 𝑝 of a given
data set D with node set N.

5.2. Literature review 83

▶ Shape Preservation Category 1 (SP1): Shapes are preserved
along parallel grid lines of the grid formed by N for a single
direction 𝑖 ∈ {1, . . . , 𝑛}, i.e., on the set(

𝑖−1�
𝑗=1

N𝑗

)
× N̄𝑖 ×

(
𝑛�

𝑗=𝑖+1
N𝑗

)
.

▶ Shape Preservation Category 2 (SP2): Shapes are preserved
along all grid lines of the grid formed by N, i.e. on the set

𝑛⋃
𝑖=1

(
𝑖−1�
𝑗=1

N𝑗

)
× N̄𝑖 ×

(
𝑛�

𝑗=𝑖+1
N𝑗

)
.

▶ Shape Preservation Category 3 (SP3): Shapes are preserved
at each point

𝑥 ∈ N̄≔
𝑛�
𝑖=1

N̄𝑖

in each direction

𝑣 ∈ V≔ {𝑣 ∈ ℝ𝑛 | 0 ≤ 𝑣, ‖𝑣‖=1}.
In other words, the interpolation is shape-preserving for each
𝑥 ∈ N̄, 𝑣 ∈ Valong the capped line

{𝑥 + 𝑡𝑣 | 𝑡 ∈ ℝ≥0} ∩ N̄.

(a) SP1 directions for 𝑖 = 1.

(b) SP2 directions.

𝑥

⋃
𝑣∈V
{𝑥 + 𝑡𝑣 | 𝑡 ∈ ℝ≥0} ∩ N̄

{𝑥 + 𝑡𝑣 | 𝑡 ∈ ℝ≥0} ∩ N̄

(c) SP3 directions at some 𝑥 ∈ N̄.

Figure 5.3.: Visualizations of the sets
on which the interpolation 𝑝 pre-
serves shapes in the three shape-
preservation categories in the bivari-
ate case.

The category that most shape-preserving interpolation methods fall
into is SP2. This includes our method, as proposed in Section 5.3.

5.2. Literature review

In this section, we give an overview of existing work related to smooth
multivariate shape-preserving interpolation, divided into four parts.
First, we examine smooth univariate shape-preserving methods in
Subsection 5.2.1. These methods are of interest because our approach
requires solving univariate interpolation problems. Especially, meth-
ods with the ability to preserve multiple shapes and a higher smooth-
ness are of interest. Next, we focus on bivariate shape-preserving
methods. While our approach can handle general multivariate inter-
polation problems, bivariate interpolation is a common case. There-
fore, we list alternatives to our method for the bivariate case in Sub-
section 5.2.2. A common approach to bivariate interpolation in Com-
puter Aided Geometric Design (CAGD) is the use of blending schemes.
Since our method employs a blending scheme to combine univariate
interpolations, we review popular works on blending schemes in Sub-
section 5.2.3. Finally, we discuss existing methods for multivariate in-
terpolation in Subsection 5.2.4. To the best of our knowledge, no mul-
tivariate interpolation method exists that is both shape-preserving
and achieves smoothness of order 𝑞 > 1. Our proposed method is
unique in meeting all these requirements.

Reminder: Smoothness order 𝑞

We say that a function 𝑓 has a
smoothness of order 𝑞 if 𝐶𝑞(ℝ𝑛 ,ℝ),
cf. Definition 5.4.

84 5. Smooth Multivariate Shape-Preserving Interpolation

5.2.1. Smooth univariate shape-preserving interpolation
methods

[2]: Akima (1970), “A New Method
of Interpolation and Smooth Curve
Fitting Based on Local Procedures”
[55]: De Boor (1978), A practical guide
to splines
[49]: Costantini (1988), “An algorithm
for computing shape-preserving
interpolating splines of arbitrary
degree”
[84]: Fritsch et al. (1980), “Monotone
Piecewise Cubic Interpolation”
[89]: Goodman (2002), “Shape preserv-
ing interpolation by curves”
[142]: Nielson (1974), “Some piecewise
polynomial alternatives to splines
under tension”
[174]: Schweikert (1966), “An interpola-
tion curve using a spline in tension”
[179]: Späth (1974), Spline algorithms
for curves and surfaces

Shape-preserving interpolationmethods for univariate data have been
extensively studied. AKIMA’s seminal work [2] presents an interpola-
tion method that, in our understanding, falls into the category of vi-
sually pleasing interpolation (see the discussion on p. 85). FRITSCH
and CARLSON introduced methods for monotonicity-preserving inter-
polation in [83, 84]. Other early works include [55, 142, 174, 179]. For
additional references, we direct the reader to the survey [89] and the
references therein.

Many shape-preserving interpolation methods developed over time
produce interpolating functions in 𝐶1. However, we are particularly
interested in methods that yield interpolating functions in 𝐶𝑞 , 𝑞 ≥ 2.
A noteworthy paper on this topic is [49], where COSTANTINI presents a
method that preserves monotonicity and convexity/concavity while
producing interpolating functions of arbitrary smoothness. Moreover,
the method does not require derivative information, making it user-
friendly. The method is formulated in a general setting, allowing ex-
tensions to preserve additional data properties. In the follow-up work
[50], the method is extended to include broader settings, such as pe-
riodicity conditions.

5.2.2. Bivariate shape-preserving interpolation methods
[3]: Akima (1974), “A Method of Bivari-
ate Interpolation and Smooth Surface
Fitting Based on Local Procedures”
[41]: Carlson et al. (1985), “Monotone
Piecewise Bicubic Interpolation”
[51]: Costantini et al. (1990), “Shape-
Preserving Bivariate Interpolation”
[85]: Fritsch et al. (1985), “Monotonicity
preserving bicubic interpolation: A
progress report”
[108]: Heß et al. (1994), “Positive
quartic, monotone quintic 𝐶2-spline
interpolation in one and two dimen-
sions”
[113]: Hussain et al. (2008), “Positivity-
preserving interpolation of positive
data by rational cubics”
[167]: Schmidt et al. (1993), “S-convex,
monotone, and positive interpolation
with rational bicubic splines of 𝐶2-
continuity”

The methods discussed above are designed for univariate interpola-
tion. However, bivariate shape-preserving interpolation has also re-
ceived considerable attention. One of the earliest works in this area
is the extension of [2] presented in [3]. However, like its predeces-
sor, this method only produces fair or visually pleasing interpolations.
CARLSON and FRITSCH also explored monotonicity-preserving interpo-
lation in the bivariate setting, publishing a series of works [41–43, 85].
These methods, however, produce interpolations in 𝐶1. Notable bi-
variate shape-preserving interpolations with higher smoothness are
presented in [51, 52, 108, 113, 167].

5.2.3. Blending schemes
[46]: Coons (1964), Surfaces for
computer-aided design
[14]: Barnhill (1983), “Computer aided
surface representation and design”
[53]: Costantini et al. (1996), “A bicubic
shape-preserving blending scheme”
[90]: Gordon (1969), “Distributive
lattices and the approximation of
multivariate functions”
[94]: Gregory (1974), “Smooth interpo-
lation without twist constraints”
[205]: Worsey (1984), “A modified 𝐶2

Coons’ patch”
[212]: Zhu (2018), “𝐶2 positivity-
preserving rational interpolation
splines in one and two dimensions”

Bivariate interpolation is often referred to as the computation of in-
terpolating surfaces, particularly in CAGD. One popular approach to
creating interpolating surfaces is the use of blending schemes, which
originated in CAGD research. The first widely known blending scheme
is COONS’ patches, introduced in [46]. Over the years, COONS’ patches
were further developed into GREGORY squares [94], generalized into
GORDON surfaces [90–93], and used to generate 𝐶2 surfaces [14, 205].
We discuss COONS’ patches in more detail in Subsection 5.3.2, as our
approach is also based on them. COONS’ patches have also been used
for bivariate shape-preserving interpolations, e.g., [53, 54] for 𝐶1 in-
terpolations and [212] for positivity-preserving 𝐶2 interpolations.

5.3. Novel smooth multivariate shape-preserving interpolation method 85

[15]: Barnhill (1985), “Surfaces in
computer aided geometric design: a
survey with new results”
[93]: Gordon (1971), “Blending-function
methods of bivariate and multivariate
interpolation and approximation”

Although multivariate interpolation is less prominent in CAGD, there
are some use cases, e.g., [16] and those listed in [15, p. 11]. Outside
CAGD, multivariate interpolation methods based on GREGORY squares
or GORDON surfaces have also emerged, e.g., [17, 93]. However, these
methods are not designed to be shape-preserving.

5.2.4. Multivariate interpolation methods

For multivariate interpolation, many methods have been developed
beyond the CAGD-rooted approaches mentioned in Subsection 5.2.3.
Techniques include polynomial interpolation, divided differences, KER-
GIN’s interpolation theory, multivariate BIRKHOFF and HERMITE inter-
polation, radial basis functions, and more. For references on these
techniques, see [86, 147] [86]: Gasca et al. (2000), “Polynomial

interpolation in several variables”
[147]: Olver (2006), “On Multivariate
Interpolation”

.

However, none of these methods addresses shape preservation. In
fact, multivariate shape-preserving interpolation has received little
attention. Since LUTs with more than two or three variables are com-
mon in engineering, preserving shape in the multivariate case is still
desirable. The only paper explicitly addressing multivariate shape-
preserving interpolation is [125] [125]: Lavery (2001), “Shape-preserving,

multiscale interpolation by bi- and
multivariate cubic L1 splines”

. But, the author states on p. 334 :

”In bi- and multivariate situations just as in univariate
situations, preserving linearity, monotonicity and con-
vexity (concavity) is, contrary to a widespread assump-
tion, not equivalent to preserving shape.”

— LAVERY [125]

This statement clarifies that the method in [125] produces interpola-
tions that are shape-preserving in a sense different from ours. While
we agree that shape is not equivalent to the mentioned properties,
we follow the argument in [89] that these properties are typically de-
sirable in shape-preserving interpolation. In our view, LAVERY’s inter-
pretation of shape-preserving could be classified as fair or visually
pleasing interpolation, as described in [89]. Furthermore, the interpo-
lations computed by the method in [125] are in 𝐶1.

5.3. Novel smooth multivariate
shape-preserving interpolation method

We now present our novel method for smooth multivariate shape-
preserving interpolation. The main idea of it is as follows.

Main idea — Smooth multivariate shape-preserving interpolation. We
apply an arbitrary univariate interpolation method that is both
shape-preserving and smooth to all the univariate interpolation
problems arising along the grid lines of the node set N. These
interpolations form a curve network, which we extend into the in-
terior of the hypercubes of the grid N by applying a multivariate
generalization of COONS’ patches.

86 5. Smooth Multivariate Shape-Preserving Interpolation

The resulting interpolation preserves, in a SP2 sense, all the shapes
preserved by the univariate method. Depending on the smoothness
of the univariate method and the blending functions, the resulting
interpolation can achieve any desired degree of smoothness.

We divide the presentation of our method into three steps. First, we
describe the interpolation of the univariate interpolation problems
along all grid lines, see Subsection 5.3.1. Then, we present COONS’
patches in Subsection 5.3.2. Finally, we explain in Subsection 5.3.3 how
we blend the univariate interpolation results together. The complete
algorithm for our interpolation method is given in Algorithm 5.1.

5.3.1. Univariate interpolation along the grid lines

When moving along a grid line of the grid D, the nodes and data
points along that line form a univariate interpolation problem if we
aim to interpolate the data along that line. The corresponding univari-
ate data set for this interpolation problem is defined as follows.

There are ∏
𝑗∈{1,...,𝑛}\{ 𝑖}

(
𝛼
𝑗
max + 1

)
parallel grid lines and, accordingly,
as many univariate interpolation
problems in the direction 𝑖 .

Definition 5.7 Let 𝑖 ∈ {1, . . . , 𝑛} be the dimension, or informally the
direction, along which we follow the grid lines. Along each grid line
with fixed multi-index 0 ≤ 𝛼¬𝑖 ≤ 𝛼¬𝑖max, a univariate interpolation
problem arises with the univariate data sets D

𝑖
𝛼¬𝑖 given as

D
𝑖
𝛼¬𝑖 ≔

{(
𝑥
𝛼𝑖
, 𝑑𝛼𝑖 |𝛼¬𝑖

)
∈ ℝ ×ℝ

��� 0 ≤ 𝛼𝑖 ≤ 𝛼𝑖max

}
. (5.4)

Asmentioned in our literature review in Section 5.2, numerous univari-
ate shape-preserving interpolation methods already exist. Therefore,
we do not develop our own method to solve the univariate interpola-
tion problems. Instead, we use an existing method. The choice of the
univariate interpolation method affects

For our numerical results in
Section 5.5, we have chosen the
method presented in [49] as the
univariate interpolation method.

▶ which shapes are preserved,
▶ the smoothness order,
▶ whether the multivariate interpolation is local,
▶ and the computational load.

From now on, we thus assume that a univariate interpolation

𝑝 𝑖
𝛼¬𝑖 : ℝ→ ℝ

of D𝑖
𝛼¬𝑖 can be computed for all 𝑖 ∈ {1, . . . , 𝑛} , 0 ≤ 𝛼¬𝑖 ≤ 𝛼¬𝑖max.

5.3.2. COONS’ patches

The first step in our method, i.e., the interpolation of the univariate
data sets, results in a network of curves. Figure 5.4 shows such a curve
network in the bivariate case.

5.3. Novel smooth multivariate shape-preserving interpolation method 87

Figure 5.4.: A curve network resulting
from the interpolation of the univari-
ate data sets for an illustrative bivari-
ate problem.

Figure 5.5.: The functions ℎ𝑘 corre-
spond to the horizontal grid lines,
while 𝑣𝑘 correspond to the vertical grid
lines, as illustrated.

The idea behind our multivariate method is to achieve SP2 shape-
preservation by producing an interpolation that matches the univari-
ate interpolations along the grid lines, thereby inheriting the shape-
preservation of the univariate interpolations. To achieve this, we need
a blending scheme that smoothly blends the curves of the curve net-
work while preserving their values on the grid lines.

A similar problem – in a bivariate setting – arises in car design. De-
signers prescribe the shape of the car at specific points by specifying
feature curves. The surface of the car should then match these fea-
ture curves and fill the space between them in a natural-looking way.
A tool to solve such problems was developed in the automotive con-
text by COONS, who consulted for Ford [71, p. 399] [71]: Farin (2002), Curves and Surfaces

for CAGD
. Today, this tool

is known as COONS’ patches. COONS’ patches were first introduced in
[46] [46]: Coons (1964), Surfaces for

computer-aided design
. In this subsection, we present the idea behind COONS’ patches

in the bivariate case. For our method, we extend the technique to the
multivariate case in Subsection 5.3.3. For further reading on COONS’
patches, we refer to [12, 13]

[12]: Barnhill (1977), “Representation
and Approximation of Surfaces”
[13]: Barnhill (1982), “Coon’s patches”

and [71, Chapter 22].

Curve network To keep the explanation of COONS’ patches simple,
we focus on a single two-dimensional rectangle
𝑄 ≔ [𝑠0 , 𝑠1] × [𝑡0 , 𝑡1] ⊂ ℝ2. Together with the rectangle 𝑄 we con-
sider the four functions

ℎ𝑘 : [𝑠0 , 𝑠1] ⊂ ℝ→ ℝ, 𝑠 ↦→ ℎ𝑘(𝑠), 𝑘 ∈ {0, 1} ,
𝑣𝑘 : [𝑡0 , 𝑡1] ⊂ ℝ→ ℝ, 𝑡 ↦→ 𝑣𝑘(𝑡), 𝑘 ∈ {0, 1} , (5.5)

with
ℎ1(𝑠0) = 𝑑01 = 𝑣0(𝑡1), ℎ1(𝑠1) = 𝑑11 = 𝑣1(𝑡1),
ℎ0(𝑠0) = 𝑑00 = 𝑣0(𝑡0), ℎ0(𝑠1) = 𝑑10 = 𝑣0(𝑡0), (5.6)

for data points 𝑑00, 𝑑01, 𝑑10, 𝑑11 ∈ ℝ. The functions and data points
are visualized in Figure 5.5. The goal is to find a surface

𝑝 : 𝑄 ⊂ ℝ2 → ℝ, (𝑠 , 𝑡) ↦→ 𝑝(𝑠 , 𝑡)
that is equal to the functions ℎ𝑘 , 𝑣𝑘 , 𝑘 ∈ {0, 1} on the respective edge.
In other words, 𝑝 should satisfy

𝑝(𝑠 , 0) = ℎ0(𝑠), 𝑝(𝑠 , 1) = ℎ1(𝑠), for all 𝑠 ∈ [𝑠0 , 𝑠1],
𝑝(0, 𝑡) = 𝑣0(𝑡), 𝑝(1, 𝑡) = 𝑣1(𝑡), for all 𝑡 ∈ [𝑡0 , 𝑡1]. (5.7)

Lofted surfaces As an intermediate step to construct the surface 𝑝 ,
we blend the parallel functions into each other, i.e., ℎ0 into ℎ1 and 𝑣0
into 𝑣1. This is done using a blending function 𝑤. We define blending
functions as follows.

We will discuss some common
choices for the blending function
together with the resulting variant
of the COONS’ patches in Exam-
ple 5.3.

Definition 5.8 We call a function 𝑤 : [0, 1] ⊂ ℝ → [0, 1] ⊂ ℝ a
blending function if it satisfies

𝑤(0) = 0, 𝑤(1) = 1 (5.8)

and is strictly monotously increasing.

88 5. Smooth Multivariate Shape-Preserving Interpolation

(a) Lofted surface 𝑝ℎ . (b) Lofted surface 𝑝𝑣 .

Figure 5.6.: Lofted surfaces for an illustrative biviarate problem with the weight function 𝑤(𝑧) = 10𝑧3 − 15𝑧4 + 6𝑧5 .

Moreover, we say that a blending function is of smoothness order
𝑞 ∈ ℕ0 if 𝑝 ∈ 𝐶𝑞([0, 1], [0, 1]) and additionally

d𝑘

d𝑘𝑧
𝑤(0) = 0, d𝑘

d𝑘𝑧
𝑤(1) = 0 for all 𝑘 ∈ ℕ with 𝑘 ≤ 𝑞. (5.9)

Performing the mentioned blending of parallel functions yields us
the two, so called lofted, surfaces 𝑝ℎ , 𝑝𝑣 : 𝑄 ⊂ ℝ2 → ℝ defined by

𝑝ℎ (𝑠 , 𝑡) ≔
(
1 − 𝑤

(
𝑡 − 𝑡0
𝑡1 − 𝑡0

))
ℎ0(𝑠) + 𝑤

(
𝑡 − 𝑡0
𝑡1 − 𝑡0

)
ℎ1(𝑠),

𝑝𝑣 (𝑠 , 𝑡) ≔
(
1 − 𝑤

(
𝑠 − 𝑠0
𝑠1 − 𝑠0

))
𝑣0(𝑡) + 𝑤

(
𝑠 − 𝑠0
𝑠1 − 𝑠0

)
𝑣1(𝑡).

The lofted surface 𝑝ℎ is now equal to ℎ0 and ℎ1 on the respective
horizontal edge of the rectangle 𝑄, but not equal to 𝑣0 and 𝑣1 on the
other two sides. The same holds for 𝑝𝑣 just with the sides switched.
This can also be seen in our illustrative example shown in Figure 5.6.

Correction surface Let us examine the difference between each lofted
surface and the univariate functions on the sides where they do not
match the curve network. For 𝑝ℎ on the edge {𝑠0}×[𝑡0 , 𝑡1], we have

In the second step, we have used
the relation between the curves
and the data points given in Equa-
tion (5.6).

𝑣0(𝑡) − 𝑝ℎ (𝑠0 , 𝑡)
= 𝑣0(𝑡) −

(
1 − 𝑤

(
𝑡 − 𝑡0
𝑡1 − 𝑡0

))
ℎ0(𝑠0) − 𝑤

(
𝑡 − 𝑡0
𝑡1 − 𝑡0

)
ℎ1(𝑠0)

= 𝑣0(𝑡) −
(
1 − 𝑤

(
𝑡 − 𝑡0
𝑡1 − 𝑡0

))
𝑑00 − 𝑤

(
𝑡 − 𝑡0
𝑡1 − 𝑡0

)
𝑑01.

(5.10)

Equation (5.10) is not very insightful so far, but if we exploit that

𝑤

(
𝑠0 − 𝑠0
𝑠1 − 𝑠0

)
= 0,

5.3. Novel smooth multivariate shape-preserving interpolation method 89

Figure 5.7.: COONS’ patch for an illustra-
tive bivariate problem with the weight
function 𝑤(𝑧) = 10𝑧3 − 15𝑧4 + 6𝑧5 .

we can expand Equation (5.10) to

𝑣0(𝑡) − 𝑝ℎ (𝑠0 , 𝑡)
=

(
1 − 𝑤

(
𝑠0 − 𝑠0
𝑠1 − 𝑠0

))
𝑣0(𝑡) + 𝑤

(
𝑠0 − 𝑠0
𝑠1 − 𝑠0

)
𝑣1(𝑡)

− ©­«
1 − 𝑤

(
𝑠0−𝑠0
𝑠1−𝑠0

)
𝑤

(
𝑠0−𝑠0
𝑠1−𝑠0

) ª®¬
𝑇 (
𝑑00 𝑑01
𝑑10 𝑑11

)©­«
1 − 𝑤

(
𝑡−𝑡0
𝑡1−𝑡0

)
𝑤

(
𝑡−𝑡0
𝑡1−𝑡0

) ª®¬
= 𝑝𝑣 (𝑠0 , 𝑡) − 𝑝ℎ𝑣 (𝑠0 , 𝑡),

(5.11)

where we have introduced the correction surface 𝑝ℎ𝑣 defined as

𝑝ℎ𝑣 (𝑠 , 𝑡) ≔ ©­«
1 − 𝑤

(
𝑠−𝑠0
𝑠1−𝑠0

)
𝑤

(
𝑠−𝑠0
𝑠1−𝑠0

) ª®¬
𝑇 (
𝑑00 𝑑01
𝑑10 𝑑11

)©­«
1 − 𝑤

(
𝑡−𝑡0
𝑡1−𝑡0

)
𝑤

(
𝑡−𝑡0
𝑡1−𝑡0

) ª®¬.
Definition of COONS’ patches If we proceed analogously for the other
sides and then for the other lofted surface 𝑝𝑣 , we find that

𝑣1(𝑡) − 𝑝ℎ (𝑠1 , 𝑡) = 𝑝𝑣 (𝑠1 , 𝑡) − 𝑝ℎ𝑣 (𝑠1 , 𝑡), (5.12)
ℎ0(𝑠) − 𝑝ℎ (𝑠 , 𝑡0) = 𝑝𝑣 (𝑠 , 𝑡0) − 𝑝ℎ𝑣 (𝑠 , 𝑡0), (5.13)
ℎ1(𝑠) − 𝑝ℎ (𝑠 , 𝑡1) = 𝑝𝑣 (𝑠 , 𝑡1) − 𝑝ℎ𝑣 (𝑠 , 𝑡1). (5.14)

From Equation (5.11) - Equation (5.14) we derive that adding the other
lofting surface and subtracting the correction surface works as a rem-
edy for all sides of the rectangle, which amounts to the definition of
COONS’ patches.

Definition 5.9 The Generalized COONS’ patch 𝑝 with a blending func-
tion 𝑤 for the rectangle 𝑄 with the curve network ℎ𝑘 , 𝑣𝑘 ,
𝑘 ∈ {0, 1} and data points 𝑑00 , 𝑑01 , 𝑑10 , 𝑑11 ∈ ℝ as related via Equa-
tion (5.5) and Equation (5.6) is defined by

𝑝(𝑠 , 𝑡) ≔ 𝑝ℎ (𝑠 , 𝑡) + 𝑝𝑣 (𝑠 , 𝑡) − 𝑝ℎ𝑣 (𝑠 , 𝑡).

That the generalized COONS’ patches are indeed equal to the curve
network on the grid lines, i.e., satisfy condition (5.7), is a direct con-
sequence of the property (5.8) of the blending functions and Equa-
tion (5.6).

By not specifying a particular blending function 𝑤, we have intro-
duced generalized COONS’ patches. In the following Example 5.3, we
mention popular choices for the blending function.

■ Example 5.3 Common choices for the blending function 𝑤 in Defini-
tion 5.9 include the following.

▶ Choosing 𝑤(𝑧) = 𝑧 leads to a bilinearly blended COONS’ patch,
which was also the first type of COONS’ patches to be developed
and was originally presented in [46] [46]: Coons (1964), Surfaces for

computer-aided design

. This linear blending func-
tion has the smoothness order 𝑞 = 0 as

d
d𝑧
𝑤(0) = d

d𝑧
𝑤(1) = 1 ≠ 0.

90 5. Smooth Multivariate Shape-Preserving Interpolation

▶ Choosing 𝑤(𝑧) = 3𝑧2−2𝑧3 leads to partially bicubically blended
COONS’ patches, cf. [71, Section 22.2][71]: Farin (2002), Curves and Surfaces

for CAGD

. This cubic HERMITE polyno-
mial blending function has a smoothness order 𝑞 = 1.

▶ Choosing 𝑤(𝑧) = 10𝑧3−15𝑧4+6𝑧5 leads to partially biquintically
blended COONS’ patches. This blending function has a smooth-
ness order 𝑞 = 2, which in combination with twice continuously
differentiable univariate interpolations leads to a 𝐶2 multivari-
ate interpolation in our method and is used to compute the
numerical results presented in Section 5.5.

■

The zero corner twist issue applies
only to COONS’ patches with blend-
ing functions of smoothness or-
der 𝑞 > 0. For bilinearly blended
COONS’ patches, the disadvantage is
that the interpolation surface is not
differentiable across the rectangle
boundaries, cf. [71, Section 22.2].

Zero corner twist issue Unfortunately, COONS’ patches have one sig-
nificant disadvantage: the mixed second derivatives at the corners of
the rectangle are zero, i.e.,

𝜕2

𝜕𝑠𝜕𝑡
𝑝(𝑠 , 𝑡) = 0, for 𝑠 ∈ {𝑠0 , 𝑠1} , 𝑡 ∈ {𝑡0 , 𝑡1}.

This deficiency is known as the zero corner twist. To avoid this issue,
it is necessary to prescribe the cross-boundary derivatives, cf. [71,
Chapter 22.2][71]: Farin (2002), Curves and Surfaces

for CAGD
. Much research has been conducted in this direction.

However, for our method, we have decided to accept this shortcom-
ing in exchange for the advantage of not requiring cross-boundary
derivatives. This allows us to easily extend COONS’ patches to the
multivariate case. It also facilitates the use of our method in real
engineering applications. This is because in engineering, the task of
measuring the data is often decoupled from the use of the data. As a
result, cross-boundary derivatives are typically not built into the data
set. The situation is even more challenging when the data is automat-
ically processed, e.g. on embedded hardware, for potentially different
purposes.

5.3.3. Blending the univariate results together

In the first step of our proposed method, we interpolate all the uni-
variate data sets as described in Subsection 5.3.1. This step results in
a curve network. Unlike the situation described for COONS’ patches in
Subsection 5.3.2, this curve network spans all directions 𝑖 ∈ {1, . . . , 𝑛}
rather than just two. Nevertheless, we can generalize the idea of COONS’
patches for the bivariate case to the multivariate case. Essentially, we
weight the univariate interpolations and data points such that their
influence diminishes towards the parallel edges and other corners of
the 𝑛-dimensional hypercubes of the grid N.

Reminder: Interpolation 𝑝

The interpolation 𝑝 is a function 𝑝 ∈
𝐶𝑞(ℝ𝑛 ,ℝ) that satisfies 𝑝 (𝑥𝛼) =
𝑑𝛼 , for all 0 ≤ 𝛼 ≤ 𝛼max , cf. Defi-
nition 5.4.

In our method, we define the interpolation 𝑝 of the data set D piece-
wise over the 𝑛-dimensional hyperrectangles𝑄𝛼 . Specifically, we set

𝑝(𝑥) = 𝑝𝛼 (𝑥), for all 𝑥 ∈ 𝑄𝛼 , (5.15)

for all 0 ≤ 𝛼max−1, where𝑄𝛼 is given by the following Definition 5.10.

5.3. Novel smooth multivariate shape-preserving interpolation method 91

Definition 5.10 The 𝑛-dimensional hyperrectangles𝑄𝛼 of the node
grid N are defined as

𝑄𝛼 ≔
𝑛�
𝑖=1

[
𝑥 𝑖
𝛼𝑖
, 𝑥 𝑖

𝛼𝑖+1

]
.

for all 0 ≤ 𝛼max − 1.

The construction of the functions 𝑝𝛼 is the key task in this subsection.
To define 𝑝𝛼 concisely, we introduce the mappings 𝐼0 , 𝐼1.

Definition: Power set P

P({1, . . . , 𝑛}) is the power set of
{1, . . . , 𝑛}.

In simple terms, 𝐼0 , 𝐼1 provide the
subsets of directions whose cor-
responding entries in the binary
multi-index 𝛽 are 0 and 1, respec-
tively.

Definition 5.11 The mappings

𝐼0 , 𝐼1 :
𝑛⋃
𝑖=1
{0, 1} 𝑖 → P({1, . . . , 𝑛})

are defined for a multi-index 𝛽 =
(
𝛽𝑖1 , . . . , 𝛽𝑖𝑚

)𝑇 ∈ {0, 1}𝑚 by

𝐼0
(
𝛽
)
≔

{
𝑗 ∈ {𝑖1 , . . . , 𝑖𝑚}

�� 𝛽 𝑗 = 0
}
,

𝐼1
(
𝛽
)
≔

{
𝑗 ∈ {𝑖1 , . . . , 𝑖𝑚}

�� 𝛽 𝑗 = 1
}
.

(5.16)

Moreover, we introduce the abbreviation

𝑤 𝑖
𝛼𝑖

(
𝑥 𝑖

)
≔ 𝑤

(
𝑥 𝑖 − 𝑥 𝑖

𝛼𝑖

𝑥 𝑖
𝛼𝑖+1 − 𝑥 𝑖𝛼𝑖

)
(5.17)

for all 𝑖 ∈ {1, . . . , 𝑛} , 0 ≤ 𝛼𝑖 ≤ 𝛼𝑖max−1. Using this, we define 𝑝𝛼 (𝑥).

The factor (𝑛−1) in front of the data
points arises because 𝑛 univariate
interpolations meet at each corner
of the hyperrectangle. As we sum up
these univariate interpolations, we
need to remove (𝑛 − 1) times the
data points.

Definition 5.12 The function 𝑝𝛼 (𝑥) is computed from the univariate
interpolations 𝑝 𝑖

𝛼¬𝑖+𝛽¬𝑖 , 𝛽
¬𝑖 ∈ {0, 1}𝑛−1 , 𝑖 ∈ {1, . . . , 𝑛} and the data

points 𝑑𝛼+𝛽 , 𝛽 ∈ {0, 1}𝑛 that are adjacent to the hyperrectangle𝑄𝛼

by generalizing the idea of COONS’ patches to the multivariate case.
Specifically,

𝑝𝛼 (𝑥) ≔
𝑛∑
𝑖=1

∑
𝛽¬𝑖∈{0,1}𝑛−1

𝑤𝛼

(
𝛽¬𝑖 , 𝑥

)
𝑝 𝑖
𝛼¬𝑖+𝛽¬𝑖

(
𝑥 𝑖

)
− (𝑛 − 1) ∑

𝛽∈{0,1}𝑛
𝑤𝛼

(
𝛽 , 𝑥

)
𝑑𝛼+𝛽 ,

(5.18)

where the collective weight function

𝑤𝛼 (·, ·) :
𝑛⋃
𝑘=1
{0, 1}𝑘 ×ℝ𝑛 → ℝ

is defined for a binary multi-index 𝛾 ∈ {0, 1}𝑘 and 𝑥 ∈ 𝑄𝛼 by

𝑤𝛼 (𝛾 , 𝑥) ≔
(∏
𝑗∈𝐼0(𝛾)

(
1 − 𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗

))) (∏
𝑗∈𝐼1(𝛾)

𝑤 𝑗
𝛼 𝑗

(
𝑥 𝑗

))
. (5.19)

We summarize our novel smooth multivariate shape-preserving inter-
polation method in Algorithm 5.1.

92 5. Smooth Multivariate Shape-Preserving Interpolation

Algorithm 5.1: Smooth multivariate shape-preserving interpola-
tion.
Input:

Data:
▶ One-dimensional node sets N𝑖 , 𝑖 ∈ {1, . . . , 𝑛}, cf. eq. (5.2)
▶ Data set D, cf. eq. (5.3)

User choices:

▶ Univariate shape-preserving interpolation method that
yields interpolations 𝑝 𝑖

𝛼¬𝑖 ∈ 𝐶𝑞(ℝ,ℝ) of the univariate data
sets D

𝑖
𝛼¬𝑖 for all 0 ≤ 𝛼¬𝑖 ≤ 𝛼¬𝑖max , 𝑖 ∈ {1, . . . , 𝑛}

▶ Blending function 𝑤 with smoothness of order 𝑞, cf. Def. 5.8

From application:

▶ Evaluation point 𝑥 ∈ �𝑛
𝑖=1 N̄

𝑖

Output: 𝑝(𝑥), where 𝑝 is an interpolation of the data set D with
smoothness of order 𝑞 that is shape-preserving in the
SP2 sense, cf. Def. 5.4 and Def. 5.6

Optional preparational step:

0 𝑝 𝑖
𝛼¬𝑖 ← Precompute all univariate interpolations for
0 ≤ 𝛼¬𝑖 ≤ 𝛼¬𝑖max , 𝑖 ∈ {1, . . . , 𝑛}
Main method:

1 𝛼 ← Find hyperrectangle 𝑄𝛼 3 𝑥
2 𝑝 𝑖

𝛼¬𝑖+𝛽¬𝑖
(
𝑥 𝑖

) ← Evaluate univariate interpolations adjacent to 𝑄𝛼

for 𝛽¬𝑖 ∈ {0, 1}𝑛−1 , 𝑖 ∈ {1, . . . , 𝑛}
3 𝑤 𝑖

𝛼𝑖

(
𝑥 𝑖

) ← Compute weights according to eq. (5.17) for
𝑖 ∈ {1, . . . , 𝑛}

4 𝑝𝛼 (𝑥) ← Evaluate eq. (5.18) and eq. (5.19)
5 𝑝(𝑥) ← 𝑝𝛼 (𝑥)

Finally, we state that our novel interpolation method is indeed an
interpolation and is shape-preserving in the SP2 sense, even in the
multivariate case, as shown in Theorem 5.1. As mentioned at the be-
ginning of the chapter on p. 78, a proof that our described method
yields an interpolation with smoothness of order 𝑞 in the multivariate
case is still in progress and is intended to be published elsewhere.

Theorem 5.1 The function 𝑝 : ℝ𝑛 → ℝ constructed as described
in this subsection, particularly according to Equation (5.15) and
Equation (5.18), is an interpolation of the data set D, as defined
in Definition 5.3, according to Definition 5.4. Moreover, 𝑝 is shape-
preserving in the SP2 sense, as defined in Definition 5.6.

Proof. The statement is split into Theorem 5.2 and Corollary 5.1, whose
proofs are given in Section 5.4. ■

5.4. Proof of the interpolation and shape-preservation property 93

5.4. Proof of the interpolation and
shape-preservation property

To prove that our proposed method yields an interpolation that is
shape-preserving in the SP2 sense, i.e., to establish Theorem 5.1, we
primarily need to demonstrate the shape-preservation property, which
is stated in Theorem 5.2. The interpolation property then follows di-
rectly from the interpolation property of the univariate interpolations,
as shown in Corollary 5.1.

Reminder: Intuition of our method

We weight the univariate interpo-
lations and data points such that
their influence diminishes towards
the parallel edges and other cor-
ners, respectively, see p. 90.

In the first step, in Subsection 5.4.1, we establish auxiliary results con-
cerning the product of blending functions, which, in essence, recover
the intuition behind our method. Using these auxiliary results, we
prove the shape-preservation property in Subsection 5.4.2. The inter-
polation property is demonstrated in Subsection 5.4.3.

5.4.1. Auxiliary results

The main task is to investigate the properties of the collective weight
functions 𝑤𝛼 (·, ·), as defined in Equation (5.19), for evaluation points
𝑥 located on the edges of the hyperrectangle. We begin by defining
the edges of the hyperrectangles and the grid lines of the node set.

Definition 5.13 We denote by 𝐾 𝑖
𝛼𝑖 |𝛼¬𝑖+𝛽¬𝑖 with 𝛽¬𝑖 ∈ {0, 1}𝑛−1 the

edges of the hyperrectangle 𝑄𝛼 , i.e.,

𝐾 𝑖
𝛼𝑖 |𝛼¬𝑖+𝛽¬𝑖 ≔

𝑖−1�
𝑗=1

{
𝑥 𝑗
𝛼 𝑗+𝛽 𝑗

}
×

[
𝑥 𝑖
𝛼𝑖
, 𝑥 𝑖

𝛼𝑖+1

]
×

𝑛�
𝑗=𝑖+1

{
𝑥 𝑗
𝛼 𝑗+𝛽 𝑗

}
.

A grid line of the node set is denoted for a fixed direction
𝑖 ∈ {1, . . . , 𝑛} and 0 ≤ 𝛼¬𝑖 ≤ 𝛼¬𝑖max by 𝐿𝑖

𝛼¬𝑖 and defined as

𝐿𝑖
𝛼¬𝑖 ≔

𝑖−1�
𝑗=1

{
𝑥 𝑗
𝛼 𝑗

}
×

[
𝑥 𝑖0 , 𝑥

𝑖

𝛼𝑖max

]
×

𝑛�
𝑗=𝑖+1

{
𝑥 𝑗
𝛼 𝑗

}
=

𝛼𝑖max−1⋃
𝛼𝑖=0

𝐾 𝑖
𝛼𝑖 |𝛼¬𝑖 .

The nodes and data points along the edge 𝐾 𝑖
𝛼𝑖 |𝛼¬𝑖+𝛽¬𝑖 belong to the

univariate data set D
𝑖
𝛼¬𝑖+𝛽¬𝑖 , and accordingly, the univariate interpo-

lation 𝑝 𝑖
𝛼¬𝑖+𝛽¬𝑖 is applied on the edge 𝐾 𝑖

𝛼𝑖 |𝛼¬𝑖+𝛽¬𝑖 .

Our first auxiliary result, Lemma 5.1, states that the weight of 𝑝 𝑖
𝛼¬𝑖+𝛽¬𝑖

is one on the edge 𝐾 𝑖
𝛼𝑖 |𝛼¬𝑖+𝛽¬𝑖 but zero on parallel edges.

94 5. Smooth Multivariate Shape-Preserving Interpolation

Lemma 5.1 Let 𝑖 ∈ {1, . . . , 𝑛} and 0 ≤ 𝛼 ≤ 𝛼max, with 𝛼¬𝑖 con-
structed from 𝛼 , and 𝛽¬𝑖 ∈ {0, 1}𝑛−1. For all 𝑥 ∈ 𝐾 𝑖

𝛼𝑖 |𝛼¬𝑖+𝛽¬𝑖 it holds
that

𝑤𝛼

(
𝛽¬𝑖 , 𝑥

)
= 1, (5.20)

but for 𝛾¬𝑖 ∈ {0, 1}𝑛−1 with 𝛽¬𝑖 ≠ 𝛾¬𝑖 , we have

𝑤𝛼

(
𝛾¬𝑖 , 𝑥

)
= 0. (5.21)

Proof. We first prove Equation (5.20). Since 𝑥 ∈ 𝐾 𝑖
𝛼𝑖 |𝛼¬𝑖+𝛽¬𝑖 , we have

𝑥 𝑗 = 𝑥 𝑗
𝛼 𝑗
, ∀𝑗 ∈ 𝐼0 (𝛽¬𝑖) ,

𝑥 𝑗 = 𝑥 𝑗
𝛼 𝑗+1 , ∀𝑗 ∈ 𝐼1

(
𝛽¬𝑖

)
.

The immediate consequences are

Here, we use Equation (5.17) and
Equation (5.8). 𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗

)
= 𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗
𝛼 𝑗

)
= 𝑤©­«

𝑥 𝑗
𝛼 𝑗
− 𝑥 𝑗

𝛼 𝑗

𝑥 𝑗
𝛼 𝑗+1 − 𝑥

𝑗
𝛼 𝑗

ª®¬ = 0

and accordingly
1 − 𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗

)
= 1

for all 𝑗 ∈ 𝐼0
(
𝛽¬𝑖

)
, and

𝑤 𝑗
𝛼 𝑗

(
𝑥 𝑗

)
= 𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗
𝛼 𝑗+1

)
= 𝑤©­«

𝑥 𝑗
𝛼 𝑗+1 − 𝑥

𝑗
𝛼 𝑗

𝑥 𝑗
𝛼 𝑗+1 − 𝑥

𝑗
𝛼 𝑗

ª®¬ = 1

for all 𝑗 ∈ 𝐼1 (𝛽¬𝑖) . Therefore, we have

𝑤𝛼

(
𝛽¬𝑖 , 𝑥

)
= ©­«

∏
𝑗∈𝐼0(𝛽¬𝑖)

(
1 − 𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗

))ª®¬©­«
∏

𝑗∈𝐼1(𝛽¬𝑖)
𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗

)ª®¬ = 1,

which is Equation (5.20).

Now, we prove Equation (5.21). Let 𝑘 ∈ {1, . . . , 𝑛} \ { 𝑖} be one of the
indices with 𝛽𝑘 ≠ 𝛾𝑘 . If 𝛾𝑘 = 0 and 𝛽𝑘 = 1, we have 𝑥𝑘 = 𝑥𝑘

𝛼𝑘+1 and
thus

The intermediate step here is the
same as above.

1 − 𝑤𝑘
𝛼𝑘

(
𝑥𝑘

)
= 1 − 𝑤𝑘

𝛼𝑘

(
𝑥𝑘
𝛼𝑘+1

)
= 0. (5.22)

As 𝑘 ∈ 𝐼0
(
𝛾¬𝑖

)
, we obtain

𝑤𝛼

(
𝛾¬𝑖 , 𝑥

)
=(

1 − 𝑤𝑘
𝛼𝑘

(
𝑥𝑘

))
︸ ︷︷ ︸

(5.22)
= 0

©­«
∏

𝑗∈𝐼0(𝛾¬𝑖)\{𝑘}

(
1 − 𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗

))ª®¬©­«
∏

𝑗∈𝐼1(𝛾¬𝑖)
𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗

)ª®¬ = 0.

The case where 𝛾¬𝑘 = 1 and 𝛽¬𝑘 = 0 works analogously.
In this case, we have 𝑤𝑘

𝛼𝑘

(
𝑥𝑘

)
= 0

and 𝑘 ∈ 𝐼1
(
𝛾¬𝑖

)
. ■

5.4. Proof of the interpolation and shape-preservation property 95

The following Lemma 5.2 addresses the weight of the univariate inter-
polations in the remaining directions.

Lemma 5.2 Let 𝑖 ∈ {1, . . . , 𝑛} and 0 ≤ 𝛼 ≤ 𝛼max, with 𝛼¬𝑖 con-
structed from 𝛼 , and 𝛽¬𝑖 ∈ {0, 1}𝑛−1. For all 𝑥 ∈ 𝐾 𝑖

𝛼𝑖 |𝛼¬𝑖+𝛽¬𝑖 , 𝑘 ∈
{1, . . . , 𝑛} \ { 𝑖} and 𝛾¬𝑘 ∈ {0, 1}𝑛−1 it holds that

(i) 𝑤𝛼

(
𝛾¬𝑘 , 𝑥

)
= 1−𝑤 𝑖

𝛼𝑖

(
𝑥 𝑖

)
if 𝛽 𝑗 = 𝛾 𝑗 for all 𝑗 ∈ {1, . . . , 𝑛}\{ 𝑖 , 𝑘}

and 𝛾𝑖 = 0,
(ii) 𝑤𝛼

(
𝛾¬𝑘 , 𝑥

)
= 𝑤 𝑖

𝛼𝑖

(
𝑥 𝑖

)
if 𝛽 𝑗 = 𝛾 𝑗 for all 𝑗 ∈ {1, . . . , 𝑛} \ { 𝑖 , 𝑘}

and 𝛾𝑖 = 1,
(iii) 𝑤𝛼

(
𝛾¬𝑘 , 𝑥

)
= 0 if 𝛽 𝑗 ≠ 𝛾 𝑗 for a 𝑗 ∈ {1, . . . , 𝑛} \ { 𝑖 , 𝑘}.

Proof. We prove the three statements (i)–(iii) one by one:
(i): Since 𝛾𝑖 = 0, we have 𝑖 ∈ 𝐼0 (𝛾¬𝑘) , and therefore

𝑤𝛼

(
𝛾¬𝑘 , 𝑥

)
=

(
1 − 𝑤 𝑖

𝛼𝑖

(
𝑥 𝑖

))©­«
∏

𝑗∈𝐼0(𝛾¬𝑘)\{𝑖}

(
1 − 𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗

))ª®¬©­«
∏

𝑗∈𝐼1(𝛾¬𝑘)\{𝑖}
𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗

)ª®¬. (5.23)

For all 𝑗 ∈ 𝐼0 (𝛾¬𝑘) \ {𝑖}, we have 𝛽 𝑗 = 𝛾 𝑗 = 0, and thus 𝑥 𝑗 = 𝑥 𝑗
𝛼 𝑗
, which

implies 1 − 𝑤 𝑗
𝛼 𝑗

(
𝑥 𝑗

)
= 1. For all 𝑗 ∈ 𝐼1 (𝛾¬𝑘) \ {𝑖}, we have 𝛽 𝑗 = 𝛾 𝑗 = 1,

and thus 𝑥 𝑗 = 𝑥 𝑗
𝛼 𝑗+1, which implies 𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗

)
= 1. Therefore, we obtain

The steps to show 𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗

)
= 0, 1

are the same as in the proof of
Lemma 5.1.

©­«
∏

𝑗∈𝐼0(𝛾¬𝑘)\{𝑖}

(
1 − 𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗

))ª®¬©­«
∏

𝑗∈𝐼1(𝛾¬𝑘)\{𝑖}
𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗

)ª®¬ = 1.

Thus, Equation (5.23) simplifies to

𝑤𝛼

(
𝛾¬𝑘 , 𝑥

)
= 1 − 𝑤 𝑖

𝛼𝑖

(
𝑥 𝑖

)
.

For (ii), we have 𝛾𝑖 = 1, 𝑖 ∈
𝐼1

(
𝛾¬𝑘

)
, and thus 𝑤 𝑖

𝛼𝑖

(
𝑥 𝑖

)
replaces(

1 − 𝑤 𝑖
𝛼𝑖

(
𝑥 𝑖

))
in Equation (5.23).

(ii): The proof follows analogously to that of (i).

(iii): We proceed similarly to the proof of Equation (5.21). Let

𝑙 ∈ {1, . . . , 𝑛} \ { 𝑖 , 𝑘} such that 𝛽𝑙 ≠ 𝛾𝑙 .

If 𝛾𝑙 = 0 and 𝛽𝑙 = 1, we obtain

1 − 𝑤 𝑙
𝛼𝑙

(
𝑥 𝑙

)
= 0. (5.24)

Since 𝑙 ∈ 𝐼0 (𝛾¬𝑖) , we have

𝑤𝛼

(
𝛾¬𝑘 , 𝑥

)
=

(
1 − 𝑤 𝑙

𝛼𝑙

(
𝑥 𝑙

))
︸ ︷︷ ︸

(5.24)
= 0

©­«
∏

𝑗∈𝐼0(𝛾¬𝑘)\{𝑙}

(
1 − 𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗

))ª®¬©­«
∏

𝑗∈𝐼1(𝛾¬𝑘)
𝑤 𝑗

𝛼 𝑗

(
𝑥 𝑗

)ª®¬ = 0.

■

96 5. Smooth Multivariate Shape-Preserving Interpolation

Finally, we also examine the influence of the data points for
𝑥 ∈ 𝐾 𝑖

𝛼𝑖 |𝛼¬𝑖+𝛽¬𝑖 . The result is stated in Lemma 5.3.

Lemma 5.3 Let 𝑖 ∈ {1, . . . , 𝑛} and 0 ≤ 𝛼 ≤ 𝛼max, with 𝛼¬𝑖 con-
structed from 𝛼 , and 𝛽¬𝑖 ∈ {0, 1}𝑛−1. For all 𝑥 ∈ 𝐾 𝑖

𝛼𝑖 |𝛼¬𝑖+𝛽¬𝑖 and
𝛾 ∈ {0, 1}𝑛 it holds that

The difference from Lemma 5.2 is
that we now consider the weight for
the data points. Therefore, we use
the index 𝛾 instead of 𝛾¬𝑘 .

(i) 𝑤𝛼 (𝛾 , 𝑥) = 1 − 𝑤 𝑖
𝛼𝑖

(
𝑥 𝑖

)
if 𝛽 𝑗 = 𝛾 𝑗 for all 𝑗 ∈ {1, . . . , 𝑛} \ { 𝑖}

and 𝛾𝑖 = 0,
(ii) 𝑤𝛼 (𝛾 , 𝑥) = 𝑤 𝑖

𝛼𝑖

(
𝑥 𝑖

)
if 𝛽 𝑗 = 𝛾 𝑗 for all 𝑗 ∈ {1, . . . , 𝑛} \ { 𝑖} and

𝛾𝑖 = 1,
(iii) 𝑤𝛼 (𝛾 , 𝑥) = 0 if 𝛽 𝑗 ≠ 𝛾 𝑗 for some 𝑗 ∈ {1, . . . , 𝑛} \ { 𝑖}.

Proof. The proof is entirely analogous to that of Lemma 5.2. The only
difference is that 𝛾¬𝑘 is replaced by 𝛾 throughout. ■

5.4.2. Shape-preservation property

We can now prove the shape-preservation property of our method.

In simple terms, Theorem 5.2 states
that the multivariate interpolation
reduces to the univariate interpo-
lations on the edges of the hyper-
rectangles. Since these are shape-
preserving, the multivariate inter-
polation is shape-preserving in the
SP2 sense.

Theorem 5.2 Let 𝑖 ∈ {1, . . . , 𝑛} and 0 ≤ �̃�¬𝑖 ≤ 𝛼¬𝑖max be fixed, and let
the function 𝑝 : ℝ𝑛 → ℝ be constructed as described in Section 5.3,
particularly according to Equation (5.15) and Equation (5.18). For all
𝑥 ∈ 𝐿𝑖

�̃�¬𝑖 , it holds that

𝑝(𝑥) = 𝑝 𝑖
�̃�¬𝑖

(
𝑥 𝑖

)
, (5.25)

which means that 𝑝 is shape-preserving in the SP2 sense, as de-
fined in Definition 5.6.

Proof. Let 0 ≤ 𝛼𝑖 ≤ 𝛼𝑖max − 1 such that 𝑥 𝑖 ∈
[
𝑥 𝑖
𝛼𝑖
, 𝑥 𝑖

𝛼𝑖+1

]
. Moreover, let

0 ≤ 𝛼¬𝑖 ≤ 𝛼¬𝑖max − 1 and 𝛽¬𝑖 ∈ {0, 1}𝑛−1 such that

�̃�¬𝑖 = 𝛼¬𝑖 + 𝛽¬𝑖 . (5.26)

We abbreviate 𝛼 ≔ 𝛼𝑖 |𝛼¬𝑖 . Then, we have that
There are 2𝑛−1 many hyperrect-
angles which contain the edge
𝐾 𝑖
𝛼𝑖 |𝛼¬𝑖+𝛽¬𝑖 . So far, it could be that

𝑝 is thus not uniquely defined on
the edge 𝐾 𝑖

𝛼𝑖 |𝛼¬𝑖+𝛽¬𝑖 . However, the
following steps in the proof show
that 𝑝 is indeed uniquely defined,
with the values as given in Equa-
tion (5.25), as the following steps
work for all these hyperrectangles.

𝑥 ∈ 𝐾 𝑖
𝛼𝑖 |𝛼¬𝑖+𝛽¬𝑖 ⊂ 𝑄𝛼 .

According to Equation (5.15) we thus set

𝑝(𝑥) = 𝑝𝛼 (𝑥),
where 𝑝𝛼 is given as in Equation (5.18). For this proof, we rearrange

5.4. Proof of the interpolation and shape-preservation property 97

the terms in Equation (5.18) to

𝑆1 contains the information from
all univariate interpolations in the
fixed direction 𝑖 and 𝑆2 the infor-
mation from all univariate interpo-
lations in the orthogonal directions.
𝑆3 the contains the influence of the
data points.

𝑝𝛼 (𝑥) =
∑

𝛾¬𝑖∈{0,1}𝑛−1

𝑤𝛼

(
𝛾¬𝑖 , 𝑥

)
𝑝 𝑖
𝛼¬𝑖+𝛾¬𝑖

(
𝑥 𝑖

)
︸ ︷︷ ︸

≕𝑆1(𝑥)

+ ∑
𝑗∈{1,...,𝑛}\{ 𝑖}

∑
𝛾¬𝑗∈{0,1}𝑛−1

𝑤𝛼

(
𝛾¬𝑗 , 𝑥

)
𝑝 𝑗
𝛼¬𝑗+𝛾¬𝑗

(
𝑥 𝑗

)
︸ ︷︷ ︸

≕𝑆2(𝑥)

− (𝑛 − 1) ∑
𝛾∈{0,1}𝑛

𝑤𝛼 (𝛾 , 𝑥)𝑑𝛼+𝛾︸ ︷︷ ︸
≕𝑆3(𝑥)

.

(5.27)

We investigate the three summands 𝑆1 , 𝑆2 and 𝑆3 individually.

S1(x): From Lemma 5.1 we know that 𝑤𝛼

(
𝛾¬𝑖 , 𝑥

)
= 1 if 𝛾¬𝑖 = 𝛽¬𝑖 and

that 𝑤𝛼

(
𝛾¬𝑖 , 𝑥

)
= 0 if not. Therefore, 𝑆1 collapses to

That means that along the direction
𝑖 only the interpolation of the data
on the edge on which 𝑥 is located
has an influence.

𝑆1(𝑥) = 𝑝 𝑖
𝛼¬𝑖+𝛽¬𝑖

(
𝑥 𝑖

)
. (5.28)

S2(x): Lemma 5.2 yields that

𝑆2(𝑥) =
∑

𝑗∈{1,...,𝑛}\{ 𝑖}

(
1 − 𝑤 𝑖

𝛼𝑖

(
𝑥 𝑖

))
𝑝 𝑗
𝛼¬𝑗+𝛾¬𝑗

(
𝑥 𝑗

) + 𝑤 𝑖
𝛼𝑖

(
𝑥 𝑖

)
𝑝 𝑗
𝛼¬𝑗+𝛿¬𝑗

(
𝑥 𝑗

)
,

where 𝛽¬𝑗 , 𝛿¬𝑗 ∈ {0, 1}𝑛−1 such that

𝛽𝑘 = 𝛾𝑘 = 𝛿𝑘 for all 𝑘 ∈ {1, . . . , 𝑛} \ { 𝑖 , 𝑗} , (5.29a)
𝛾𝑖 = 0, (5.29b)
𝛿𝑖 = 1. (5.29c)

As 𝑥 𝑗 = 𝑥 𝑗
𝛼 𝑗+𝛽 𝑗 for all 𝑗 ∈ {1, . . . , 𝑛} \ 𝑖 , the interpolation property of

the univariate interpolations yields

𝑝 𝑗
𝛼¬𝑗+𝛾¬𝑗

(
𝑥 𝑗

)
= 𝑝 𝑗

𝛼¬𝑗+𝛾¬𝑗
(
𝑥 𝑗
𝛼 𝑗+𝛽 𝑗

)
= 𝑑𝛼 𝑗+𝛽 𝑗 |𝛼¬𝑗+𝛾¬𝑗 ,

𝑝 𝑗
𝛼¬𝑗+𝛿¬𝑗

(
𝑥 𝑗

)
= 𝑝 𝑗

𝛼¬𝑗+𝛿¬𝑗
(
𝑥 𝑗
𝛼 𝑗+𝛽 𝑗

)
= 𝑑𝛼 𝑗+𝛽 𝑗 |𝛼¬𝑗+𝛿¬𝑗 ,

which we can write by defining 𝛾 𝑗 ≔ 𝛽 𝑗 , 𝛿 𝑗 ≔ 𝛽 𝑗 as
The other components of 𝛾 and 𝛿
are determined by Equation (5.29).

𝑝 𝑗
𝛼¬𝑗+𝛾¬𝑗

(
𝑥 𝑗

)
= 𝑑𝛼+𝛾 ,

𝑝 𝑗
𝛼¬𝑗+𝛿¬𝑗

(
𝑥 𝑗

)
= 𝑑𝛼+𝛿 .

We thus have found

In other words: As the components
of 𝑥 for these directions are equal
to node points, the influence of
these interpolations is equal to the
one of the data points.

𝑆2(𝑥) =
∑

𝑗∈{1,...,𝑛}\{ 𝑖}

(
1 − 𝑤 𝑖

𝛼𝑖

(
𝑥 𝑖

))
𝑑𝛼+𝛾 + 𝑤 𝑖

𝛼𝑖

(
𝑥 𝑖

)
𝑑𝛼+𝛿

= (𝑛 − 1)
((

1 − 𝑤 𝑖
𝛼𝑖

(
𝑥 𝑖

))
𝑑𝛼+𝛾 + 𝑤 𝑖

𝛼𝑖

(
𝑥 𝑖

)
𝑑𝛼+𝛿

)
.

(5.30)

98 5. Smooth Multivariate Shape-Preserving Interpolation

S3(x): We apply Lemma 5.3 to directly obtain

𝑆3(𝑥) = (𝑛 − 1)
((

1 − 𝑤 𝑖
𝛼𝑖

(
𝑥 𝑖

))
𝑑𝛼+𝛾 + 𝑤 𝑖

𝛼𝑖

(
𝑥 𝑖

)
𝑑𝛼+𝛿

)
= 𝑆2. (5.31)

Plugging in our findings Equation (5.28) - Equation (5.31) for 𝑆1 , 𝑆2
and 𝑆3 back into Equation (5.27) and recalling the multi-index relation
(5.26) yields the final statement

𝑝𝛼 (𝑥) = 𝑆1(𝑥) + 𝑆2(𝑥) − 𝑆3(𝑥)
= 𝑆1(𝑥) + 𝑆2(𝑥) − 𝑆2(𝑥) = 𝑆1(𝑥)
= 𝑝 𝑖

𝛼¬𝑖+𝛽¬𝑖
(
𝑥 𝑖

)
= 𝑝 𝑖

�̃�¬𝑖
(
𝑥 𝑖

)
.

■

5.4.3. Interpolation property

Corollary 5.1 Let the function 𝑝 : ℝ𝑛 → ℝ be constructed as de-
scribed in Section 5.3, particularly according to Equation (5.15) and
Equation (5.18). Then 𝑝 is an interpolation of the data set D, i.e.,

𝑝(𝑥𝛼) = 𝑑𝛼

holds for all 0 ≤ 𝛼 ≤ 𝛼max, i.e., for all 𝑥𝛼 ∈ N.

Proof. For all 𝑖 ∈ {1, . . . , 𝑛} we have 𝑥𝛼 ∈ 𝐿𝑖𝛼¬𝑖 for 𝛼¬𝑖 obtained from
𝛼 by removing its 𝑖-th component. From Theorem 5.2 we thus get

𝑝(𝑥𝛼) = 𝑝 𝑖
𝛼¬𝑖

(
𝑥 𝑖
𝛼𝑖

)
.

As the univariate interpolations are interpolations of the univariate
data sets, we have

𝑝 𝑖
𝛼¬𝑖

(
𝑥 𝑖
𝛼𝑖

)
= 𝑑𝛼𝑖 |𝛼¬𝑖 = 𝑑𝛼 .

■

5.5. Numerical results

Attention:

Although the examples are ab-
stracted, we intentionally present
them in a way that prevents conclu-
sions about their origin.

In this section, we apply our novel interpolation method to two ab-
stracted examples resulting from an industrial collaboration. The first
example is a 3D case, meaning its data set D is a subset of ℝ3 × ℝ.
The second example is a 4D case.

For both examples, we used the method presented in [49]

[49]: Costantini (1988), “An algorithm
for computing shape-preserving in-
terpolating splines of arbitrary degree”

to solve
the arising univariate interpolation problems. The hyperparameters
of the method were chosen such that the resulting multivariate inter-
polation is twice continuously differentiable.

5.5. Numerical results 99

As a blending function, we use 𝑤(𝑧) = 10𝑧3 − 15𝑧4 + 6𝑧5 which has
the smoothness order 𝑞 = 2.

Naturally, we cannot visualize the full multivariate interpolation in
this document. Therefore, we present the interpolation results along
slices with two-dimensional planes.

5.5.1. 3D example

In Figure 5.8, we show the evaluation of the multivariate interpolation
𝑝 computed with our proposedmethod along a slice where one of the
three free variables 𝑥1, 𝑥2, 𝑥3 is fixed to a value in its respective node
set. E.g., in Figure 5.8a, for a fixed 0 ≤ 𝛼1 ≤ 𝛼1

max, we visualize the
set(𝑥2 , 𝑥3 , 𝑝(𝑥))

������ 𝑥 = ©­«
𝑥1

𝑥2

𝑥3

ª®¬ with 𝑥1 = 𝑥1
𝛼1 ∈ N1 , (𝑥2 , 𝑥3) ∈ N̄2 × N̄3

.
As confirmed by our theoretical findings in Theorem 5.1, our method
produces an interpolation that preserves the shape properties of the
univariate interpolations, such as monotonicity and convexity, while
interpolating the data set.

Asmentioned earlier, we think that ourmethod preserves the smooth-
ness order of the univariate interpolations if the blending functions
have the same smoothness order. However, a proof of this claim in
the multivariate setting is still under development. With the chosen
univariate method and blending function, the interpolation for the
3D example should be twice continuously differentiable. Our primary
interest in the plots for the first and second derivatives is to verify
whether the derivatives appear continuous.

Attention:

To obtain the derivative plots, we
approximate the derivatives using
finite differences at a large num-
ber of points. Unfortunately, scat-
terplots of these results are difficult
to interpret. Therefore, we chose
to plot surfaces instead. However,
surface plots interpolate the calcu-
lated derivative results, potentially
hiding discontinuities. Given the
large number of evaluation points,
we are confident that any discon-
tinuities would manifest as steep
changes in the surfaces.In Figure 5.9, we show the first derivative of the interpolation with

respect to 𝑥2 and 𝑥3, while keeping 𝑥1 fixed to 𝑥1 = 𝑥1
𝛼1 ∈ N1.

These plots in Figure 5.9 should be compared with Figure 5.8a. The
first derivatives appear continuous, as claimed for our method.

The second derivatives, shown in Figure 5.10, also appear continuous,
supporting our hypothesis. The zero corner twists

Reminder: Zero corner twist

Zero corner twist means that the
mixed second derivatives vanish at
the corners of the hyperrectangles,
cf. the paragraph about the zero cor-
ner twist on p. 90.

for the mixed sec-
ond derivatives are visible in Figure 5.10a and Figure 5.10b. The non-
mixed second derivatives do not vanish, as shown in Figure 5.10c.

5.5.2. 4D example

The following results of our method applied to a 4D example show
the ability of our method to successfully perform shape-preserving
multivariate interpolation. Similar to the 3D example results in Sub-
section 5.5.1, the following Figure 5.11 and Figure 5.12 show that the in-
terpolation is indeed shape-preserving in the SP2 sense and appears
to be twice continuously differentiable, but has zero corner twists.

100 5. Smooth Multivariate Shape-Preserving Interpolation

Figure 5.8.: Multivariate interpolation
of a 3D example evaluated at slices
where one of the three free variables
𝑥1 , 𝑥2 , 𝑥3 is fixed to a value in its
respective node set. The white dots
represent the data points included
in the slice. The dark gray lines are
the results of the univariate interpola-
tions of these data points, computed
using the method presented in [49].
Our method produces an interpolation
that preserves the shape properties of
the univariate interpolations, such as
monotonicity and convexity.

(a) 𝑥1 = 𝑥1
𝛼1 ∈ N1 for a fixed 0 ≤ 𝛼1 ≤ 𝛼1

max .

(b) 𝑥2 = 𝑥2
𝛼2 ∈ N2 for a fixed 0 ≤ 𝛼2 ≤ 𝛼2

max .

(c) 𝑥3 = 𝑥3
𝛼3 ∈ N3 for a fixed 0 ≤ 𝛼3 ≤ 𝛼3

max .

5.5. Numerical results 101

(a) First derivative w.r.t. 𝑥2 with 𝑥1 = 𝑥1
𝛼1 ∈ N1 for a fixed 0 ≤ 𝛼1 ≤ 𝛼1

max .

(b) First derivative w.r.t. 𝑥3 with 𝑥1 = 𝑥1
𝛼1 ∈ N1 for a fixed 0 ≤ 𝛼1 ≤ 𝛼1

max .

Figure 5.9.: Selected first derivatives of
the multivariate interpolation of a 3D
example evaluated at the slice used in
Figure 5.8a. The dotted gray lines indi-
cate the projection of the grid N onto
the plotted surface. The first deriva-
tives appear continuous, as claimed
for our method.

102 5. Smooth Multivariate Shape-Preserving Interpolation

Figure 5.10.: Selected second deriva-
tives of the multivariate interpolation
of a 3D example evaluated at the slice
used in Figure 5.8a. The dotted gray
lines indicate the projection of the grid
N onto the plotted surface. The sec-
ond derivatives also appear continu-
ous, supporting our hypothesis. The
zero corner twists for the mixed sec-
ond derivatives are visible. However,
the non-mixed second derivatives do
not vanish.

(a) Mixed second derivative w.r.t. 𝑥2 and then 𝑥3 with 𝑥1 = 𝑥1
𝛼1 ∈ N1 for a fixed

0 ≤ 𝛼1 ≤ 𝛼1
max .

(b) Mixed second derivative w.r.t. 𝑥2 and then 𝑥3 with 𝑥1 = 𝑥1
𝛼1 ∈ N1 for a fixed

0 ≤ 𝛼1 ≤ 𝛼1
max represented as heat map.

(c) Non-mixed derivative w.r.t. twice 𝑥1 with 𝑥1 = 𝑥1
𝛼1 ∈ N1 for a fixed 0 ≤ 𝛼1 ≤ 𝛼1

max .

5.5. Numerical results 103

(a) 𝑥3 = 𝑥3
𝛼3 ∈ N3 , 𝑥4 = 𝑥4

𝛼4 ∈ N4 for fixed 0 ≤ 𝛼3 ≤ 𝛼3
max and 0 ≤ 𝛼4 ≤ 𝛼4

max .

(b) 𝑥2 = 𝑥2
𝛼2 ∈ N2 , 𝑥3 = 𝑥3

𝛼3 ∈ N3 for fixed 0 ≤ 𝛼2 ≤ 𝛼2
max and 0 ≤ 𝛼3 ≤ 𝛼3

max .

Figure 5.11.: Multivariate interpolation
of a 4D example evaluated at slices
where two of the four free variables
𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 are fixed to values in
their respective node set. The white
dots represent the data points in-
cluded in the slice. The dark gray lines
are the results of the univariate inter-
polations of these data points, com-
puted using the method presented in
[49]. Our method produces an interpo-
lation that preserves the shape prop-
erties of the univariate interpolations,
such as monotonicity and convexity.

104 5. Smooth Multivariate Shape-Preserving Interpolation

Figure 5.12.: Selected second deriva-
tives of the multivariate interpolation
of a 4D example evaluated at the slice
used in Figure 5.11a. The dotted gray
lines indicate the projection of the grid
N onto the plotted surface. The sec-
ond derivatives also appear continu-
ous. The zero corner twists for the
mixed second derivatives are visible.

(a) Mixed second derivative w.r.t. 𝑥1 and then 𝑥2 with 𝑥3 = 𝑥3
𝛼3 ∈ N3 , 𝑥4 = 𝑥4

𝛼4 ∈ N4

for fixed 0 ≤ 𝛼3 ≤ 𝛼3
max and 0 ≤ 𝛼4 ≤ 𝛼4

max .

(b) Mixed second derivative w.r.t. 𝑥1 and then 𝑥2 with 𝑥3 = 𝑥3
𝛼3 ∈ N3 , 𝑥4 = 𝑥4

𝛼4 ∈ N4

for fixed 0 ≤ 𝛼3 ≤ 𝛼3
max and 0 ≤ 𝛼4 ≤ 𝛼4

max represented as heat map.

External Inputs in DMS, RTI, and
MLI 6.

6.1 External inputs in DMS . 107
6.2 External inputs in RTI

and MLI 111

In Chapter 3, we presented efficient numerical methods for NMPC,
where the OCP governing the NMPC scheme is given by

Reminder: OCP (6.1)

▶ OCP (6.1) appeared already
as OCP (2.6) on p. 16 and OCP
(3.1) on p. 23.

▶ 𝑥(·) ∈ 𝑊1,∞ (
𝐼hor

(
𝑡 𝑗
)
,ℝ𝑛𝑥

)
is

the state trajectory.
▶ 𝑢(·) ∈ 𝐿∞(𝐼hor

(
𝑡 𝑗
)
,ℝ𝑛𝑢) is

the control trajectory.
▶ 𝑡 𝑗 is the 𝑗-th sampling time,

see Definition 2.1.
▶ 𝑇hor is the length of the pre-

diction horizon, see Defini-
tion 2.2.

▶ 𝑥 𝑗 ∈ ℝ𝑛𝑥 is the current sys-
tem state, see Definition 2.4.

▶ 𝐼hor(𝑡 𝑗) ≔ [𝑡 𝑗 , 𝑡 𝑗 + 𝑇hor].
▶ Ψ, Φ, 𝑓 , ℎ, 𝑟e , and 𝑟i are

functions satisfying Assump-
tion 3.2. See Equation (2.7)
for their dimensions.

min
𝑥(·), 𝑢(·)

∫ 𝑡 𝑗+𝑇hor

𝑡 𝑗
Ψ(𝑥(𝑡), 𝑢(𝑡))d𝑡 +Φ(

𝑥
(
𝑡 𝑗 + 𝑇hor

))
s.t. ¤𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)), 𝑡 ∈ 𝐼hor

(
𝑡 𝑗
)
,

0 ≤ ℎ(𝑥(𝑡), 𝑢(𝑡)), 𝑡 ∈ 𝐼hor
(
𝑡 𝑗
)
,

0 = 𝑟e (𝑥 (𝑡 𝑗) , 𝑥 (𝑡 𝑗 + 𝑇hor
))
,

0 ≤ 𝑟i (𝑥 (𝑡 𝑗) , 𝑥 (𝑡 𝑗 + 𝑇hor
))
,

𝑥
(
𝑡 𝑗
)
= 𝑥 𝑗 .

(6.1)

In theory, the OCP formulation (6.1) can also cover cases where the
functions depend on constant parameters 𝜌 ∈ ℝ𝑛𝜌 and external in-
puts 𝜎 ∈ ℝ𝑛𝜎 that vary with the free variable 𝑡. To be precise, we define
external inputs as follows.

We introduce 𝜎 𝑗 to reflect that
external inputs are not necessar-
ily predefined for the entire NMPC
procedure but possibly only for
the upcoming prediction horizon
𝐼hor

(
𝑡 𝑗
)
. This can, for example, oc-

cur when external inputs are ob-
tained through measurements.

Definition 6.1 External inputs are functions 𝜎 : ℝ → ℝ𝑛𝜎 that are
typically not constant. Unlike the state 𝑥 and the control 𝑢, external
inputs are not free variables in the OCP but fixed. By

𝜎 𝑗 : 𝐼hor
(
𝑡 𝑗
) → ℝ𝑛𝜎 , 𝑗 ∈ ℕ0

we denote the external inputs for the next prediction horizon 𝐼hor
(
𝑡 𝑗
)
.

We do not require that

𝜎 𝑗(𝑡) ≠ 𝜎𝑘(𝑡), for 𝑗 ≠ 𝑘 ∈ ℕ0 , 𝑡 ∈ 𝐼hor
(
𝑡 𝑗
) ∩ 𝐼hor

(
𝑡𝑘

)
.

Constant parameters can simply be considered as part of the func-
tion descriptions. External inputs can also be incorporated into the
function descriptions by transforming them to be state-dependent,
which is achieved by introducing a differential state that equals the
free variable via

𝑥𝑡(0) = 0,
¤𝑥𝑡(𝑡) = 1, for all 𝑡 ∈ ℝ+. (6.2)

We then have
𝜎 𝑗(𝑡) = 𝜎 𝑗(𝑥𝑡(𝑡)) for all 𝑡 ∈ ℝ+ (6.3)

and can thus include the external inputs in OCP (6.1). In addition to
external inputs, constant parameters 𝜌 ∈ ℝ𝑛𝜌 can also play a role. We
denote the constant parameters at the sampling time 𝑡 𝑗 as 𝜌 𝑗 .

In NMPC applications, however, it is beneficial to treat external in-
puts and constant parameters explicitly, as they can be subject to dis-

106 6. External Inputs in DMS, RTI, and MLI

turbances and are typically estimated through measurements. Tech-
niques for explicitly handling constant parameters are well devel-
oped, primarily in the context of Moving Horizon Estimation (MHE);
see, for example, [104, 121][104]: Gutekunst et al. (2020), “Fast

moving horizon estimation using
multi-level iterations for microgrid
control”
[121]: Kühl et al. (2011), “A real-time
algorithm for moving horizon state
and parameter estimation”

. In contrast, the default approach for han-
dling external inputs relies on the aforementioned transformation.
This approach is not well suited to handle disturbances in the exter-
nal inputs and requires a formula for the mapping 𝑡 ↦→ 𝜎(𝑡). In most
real-world applications, external inputs are measured, and this map-
ping is typically an interpolation of the measurements. A sufficiently
smooth interpolation, however, is often expensive to compute and is
typically piecewise defined. The latter can complicate the numerical
solution of the IVPs (3.6), particularly the derivative computations in
the DMS method.

Therefore, in this chapter, we present strategies to explicitly incor-
porate external inputs into the DMS method and the RTI and MLI
schemes. Our strategy has the advantage of accounting for distur-
bances in the external inputs in RTI- or MLI-based NMPC. Moreover,
our strategies allow users to choose how to represent the external in-
puts, whether through accurate measurement representations or ap-
proximations. This flexibility enables users to avoid potentially expen-
sive interpolations and select representations best suited to their ap-
plications. Finally, the strategies presented in this chapter can serve
as an important building block for further numerical methods for
NMPC. In particular, our novel Sensitivity and External Input Scenario
based (SensEIS) feedback, introduced in Chapter 7, relies on the ex-
plicit treatment of external inputs and constant parameters. This is
because we need derivatives of the optimal solution of the discretized
version of OCP (6.1) with respect to the external inputs. Even if we ap-
proximate the external inputs using splines, as done in [136, 137][136]: Merino (2018), “Real-time opti-

mization for estimation and control:
Application to waste heat recovery for
heavy duty trucks”
[137]: Merino et al. (2018), “A Nonlinear
Model-Predictive Control Scheme
for a Heavy Duty Truck’s Waste Heat
Recovery System Featuring Moving
Horizon Estimation”

, the
number of coefficients for which we need to differentiate the optimal
solution quickly becomes impractical.

Within this thesis, we encounter external inputs in the context of the
EACC application presented in Chapter 8. There, we account for infor-
mation such as the elevation profile of the driving route or the veloc-
ity of a preceding vehicle. Both are functions of the free variable 𝑡,
and we model these as external inputs.

The goals of this chapter are to extend the DMS method to discretize
OCPs of the form

min
𝑥(·), 𝑢(·)

∫ 𝑡 𝑗+𝑇hor

𝑡 𝑗
Ψ

(
𝑥(𝑡), 𝑢(𝑡); 𝜌 𝑗 , 𝜎 𝑗(𝑡))d𝑡 +Φ(

𝑥
(
𝑡 𝑗 + 𝑇hor

)
; 𝜌 𝑗 , 𝜎 𝑗

(
𝑡 𝑗 + 𝑇hor

))
s.t. ¤𝑥(𝑡) = 𝑓

(
𝑥(𝑡), 𝑢(𝑡); 𝜌 𝑗 , 𝜎 𝑗(𝑡)) , 𝑡 ∈ 𝐼hor

(
𝑡 𝑗
)
,

0 ≤ ℎ (𝑥(𝑡), 𝑢(𝑡); 𝜌 𝑗 , 𝜎 𝑗(𝑡)) , 𝑡 ∈ 𝐼hor
(
𝑡 𝑗
)
,

0 = 𝑟e (𝑥 (𝑡 𝑗) , 𝑥 (𝑡 𝑗 + 𝑇hor
)
; 𝜌 𝑗 , 𝜎 𝑗

(
𝑡 𝑗
)
, 𝜎 𝑗

(
𝑡 𝑗 + 𝑇hor

))
,

0 ≤ 𝑟i (𝑥 (𝑡 𝑗) , 𝑥 (𝑡 𝑗 + 𝑇hor
)
; 𝜌 𝑗 , 𝜎 𝑗

(
𝑡 𝑗
)
, 𝜎 𝑗

(
𝑡 𝑗 + 𝑇hor

))
,

𝑥
(
𝑡 𝑗
)
= 𝑥 𝑗

(6.4)

and to adjust the RTI and MLI schemes to work with the resulting DMS
NLP that includes external inputs.

6.1. Incorporating external inputs in DMS 107

In the following Section 6.1, we present our novel technique to incor-
porate external inputs into the DMSmethod. Afterwards, in Section 6.2,
we propose two strategies to adjust the RTI and MLI schemes to work
with the resulting DMS NLP that includes external inputs. One strategy
is designed for cases where the upcoming external inputs are avail-
able before the next sampling time, while the other is for cases where
they only become available together with the current state 𝑥 𝑗 . Both
strategies have different interpretations in terms of PNLP methods.

6.1. Incorporating external inputs in DMS

Our extension of the DMS method to explicitly consider external in-
puts is based on the following main idea:

Main idea — External inputs in DMS. External inputs are discretized
using the same technique applied to discretize the control. Fur-
thermore, instead of representing the external inputs exactly in
the finite-dimensional DMS NLP, we approximate them. The user
is provided with the option to define a mapping that transforms
the external inputs into their approximation, allowing the user to
design an approximation best suited to the specific application.

We first present the details of the external input discretization in Sub-
section 6.1.1. In Subsection 6.1.2, we explain the adjustments required
for the state, constraint, and objective function discretization. The re-
sulting NLP is described in Subsection 6.1.3.

6.1.1. External input discretization

Unlike the state and control discretization, external inputs are not
free variables in the OCP. Instead, there is a ground truth, and we aim
to formulate a representation of it which is characterized by a finite-
dimensional vector 𝑣𝑚 ∈ ℝ𝑛𝑣𝑚 for each shooting interval [𝜏𝑚 , 𝜏𝑚+1),
𝑚 = 0, . . . , 𝑀 − 1. We assume that 𝜎 𝑗 is our best available estimate
of the true external inputs at the sampling time 𝑡 𝑗 , typically obtained
as an interpolation of measurements of the ground truth.

Similarly to the control discretization (see Subsection 3.2.1), the user
can choose the basis functions 𝜉𝜎

𝑚,𝑖 for the external inputs. These ba-
sis functions are characterized by coefficients 𝑣𝑚,𝑖 . Additionally, and
unlike state and control discretization, the user can define a mapping
𝜁 that transforms the external inputs 𝜎 𝑗 into the coefficients 𝑣𝑚,𝑖 . This
flexibility allows the user to design an approximation of the external
inputs tailored to the specific application. The following describes
this process in more detail.

108 6. External Inputs in DMS, RTI, and MLI

While the basis functions can differ
for each component and interval, it
is common to use the same basis
function across all shooting inter-
vals.

For each shooting interval [𝜏𝑚 , 𝜏𝑚+1), 𝑚 = 0, . . . , 𝑀 − 1 and each
component 𝜎𝑖 , 𝑖 = 0, . . . , 𝑛𝜎 − 1 of the external input, we introduce a
basis function

𝜉𝜎
𝑚,𝑖 : [𝜏𝑚 , 𝜏𝑚+1) ×ℝ𝑛𝑣𝑚,𝑖 → ℝ, (𝜏, 𝑣𝑚,𝑖) ↦→ 𝜉𝜎

𝑚,𝑖(𝜏; 𝑣𝑚,𝑖),

where 𝑣𝑚,𝑖 ∈ ℝ
𝑛𝑣𝑚,𝑖 are coefficients characterizing the basis function

𝜉𝜎
𝑚,𝑖 . Some common choices for basis functions are provided in Exam-

ple 3.1 and Example 6.1. The coefficients corresponding to the same
shooting interval are collected in a vector

It holds 𝑛𝑣𝑚 =
∑𝑛𝜎−1
𝑖=0 𝑛𝑣𝑚,𝑖 .

𝑣𝑚 ≔ (𝑣𝑇𝑚,0 , . . . , 𝑣𝑇𝑚,𝑛𝜎−1)𝑇 ∈ ℝ𝑛𝑣𝑚 .

Unlike to the controls, but similar to state variables, we also introduce
an external input value 𝑣𝑀 ∈ ℝ𝑛𝜎 for the final shooting node 𝜏𝑀 . All
external input coefficients are collected in 𝑣, i.e.,

It holds 𝑛𝑣 = 𝑛𝜎 +∑𝑀−1
𝑚=0 𝑛𝑣𝑚 .

𝑣 ≔ (𝑣𝑇0 , . . . , 𝑣𝑇𝑀)𝑇 ∈ ℝ𝑛𝑣 .

The external input approximation characterized by the coefficients 𝑣𝑚
for a given choice of basis functions is denoted by �̃�(·; 𝑣). Specifically,
�̃�(·; 𝑣) is defined as

�̃�(𝜏; 𝑣) ≔ ©­­«
𝜉𝜎
𝑚,0(𝜏; 𝑣𝑚,0)

...
𝜉𝜎
𝑚,𝑛𝜎−1(𝜏; 𝑣𝑚,𝑛𝜎−1)

ª®®¬,
for 𝜏 ∈ [𝜏𝑚 , 𝜏𝑚+1), 𝑚 = 0, . . . , 𝑀 − 1, and

�̃�(𝜏𝑀 ; 𝑣) ≔ 𝑣𝑀 .

Unlike control coefficients, external input coefficients are not free
variables. Instead, they are determined by a user-providedmapping 𝜁
that transforms the external inputs 𝜎 𝑗 into external input coefficients
𝑣 𝑗 , such that

𝜎 𝑗(𝑡) ≈ �̃�
(
𝑡; 𝑣 𝑗 = 𝜁

(
𝜎 𝑗

))
for all 𝑡 ∈ 𝐼hor

(
𝑡 𝑗
)
for a given choice of basis functions. We also write

�̃�
(
𝜏; 𝑣 𝑗𝑚

)
for 𝜏 ∈ [𝜏𝑚 , 𝜏𝑚+1) to emphasize that the approximation of

the external inputs depends only on 𝑣 𝑗𝑚 for 𝜏 ∈ [𝜏𝑚 , 𝜏𝑚+1).
As mentioned earlier, the user can choose the map 𝜁 to ensure that
the resulting approximation �̃�(·; 𝑣) is well suited to the specific appli-
cation. Two simple choices for 𝜁 are provided in Example 6.1.

■ Example 6.1 Two simple choices for the map 𝜁 are as follows:

(i) Using constant basis functions, i.e.,

𝜉𝜎
𝑚,𝑖(𝜏, 𝑣𝑚,𝑖) = 𝑣𝑚,𝑖 ∈ ℝ,

for all 𝑚 = 0, . . . , 𝑀 − 1, 𝑖 = 0, . . . , 𝑛𝜎 − 1, and 𝜏 ∈ [𝜏𝑚 , 𝜏𝑚+1).
The coefficients 𝑣𝑚,𝑖 are set as the average of the external inputs

6.1. Incorporating external inputs in DMS 109

over each shooting interval. The map 𝜁 is given by

𝑣 𝑗 = 𝜁
(
𝜎 𝑗

)
=

©­­­­­«
1

𝜏1−𝜏0

∫ 𝜏1

𝜏0
𝜎 𝑗(𝜏)d𝜏
...

1
𝜏𝑀−𝜏𝑀−1

∫ 𝜏𝑀
𝜏𝑀−1

𝜎 𝑗(𝜏)d𝜏
𝜎 𝑗(𝜏𝑀)

ª®®®®®¬
.

(ii) Using linear basis functions: With 𝑣𝑚,𝑖 = (𝑣l
𝑚,𝑖 , 𝑣

r
𝑚,𝑖)𝑇 ∈ ℝ2, set

𝜉𝜎
𝑚,𝑖(𝜏, 𝑣𝑚,𝑖) =

𝜏𝑚+1 − 𝜏
𝜏𝑚+1 − 𝜏𝑚

𝑣l
𝑚,𝑖 +

𝜏 − 𝜏𝑚
𝜏𝑚+1 − 𝜏𝑚

𝑣r
𝑚,𝑖 ,

for all𝑚 = 0, . . . , 𝑀−1, 𝑖 = 0, . . . , 𝑛𝜎−1, and 𝜏 ∈ [𝜏𝑚 , 𝜏𝑚+1). This
linearly interpolates the external input values at the shooting
nodes. The map 𝜁 is given by

𝑣 𝑗 = 𝜁
(
𝜎 𝑗

)
=

©­­­­­­­­«

(
𝜎 𝑗(𝜏0)
𝜎 𝑗(𝜏1)

)
...(

𝜎 𝑗(𝜏𝑀−1)
𝜎 𝑗(𝜏𝑀)

)
𝜎 𝑗(𝜏𝑀)

ª®®®®®®®®¬
.

■

6.1.2. Adjusted DMS discretization

We still need to incorporate the discretized external inputs into the
discretization of the states, constraints, and the objective function.
For the state discretization, we need to adjust the formulation of the
matching conditions (3.7), which ensure the continuity of the state
trajectory over the entire control horizon. The matching conditions
are now given by

𝑥
(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
− 𝑠𝑚+1 = 0, 𝑚 = 0, . . . , 𝑀 − 1,

where 𝑥
(
·; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
is the solution of the IVP.

Attention:

As a consequence of only approxi-
mating the true external inputs, we
must accept that the predicted tra-
jectory deviates from the true tra-
jectory, even if no further model er-
rors or disturbances are present.

¤𝑥(𝜏) = 𝑓
(
𝑥(𝜏), 𝑢 (

𝜏; 𝑞
)
; 𝜌 𝑗 , �̃�

(
𝜏; 𝑣 𝑗𝑚

))
, 𝜏 ∈ [𝜏𝑚 , 𝜏𝑚+1),

𝑥(𝜏𝑚) = 𝑠𝑚 .

Mixed state-control constraints ℎ are typically discretized in the DMS
method by enforcing them pointwise at the shooting nodes, as ex-
plained in Subsection 3.2.3. We continue to utilize this strategy and
modify the discretized mixed state-control constraints (3.9) to

0 ≤ ℎ
(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , �̃�

(
𝜏𝑚 ; 𝑣 𝑗𝑚

))
, 𝑚 = 0, . . . , 𝑀 − 1. (6.5)

As indicated in the OCP formulation (6.4), the boundary constraints
𝑟e , 𝑟i are now allowed to depend on the external inputs as well.

110 6. External Inputs in DMS, RTI, and MLI

The boundary constraints (3.11) and (3.12) are thus extended to
For example, in the case of air-
planes, these boundary conditions
could specify that the airplanemust
have the same elevation as the run-
way at the beginning and end of the
flight.

0 = 𝑟e
(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , �̃�

(
𝜏0; 𝑣 𝑗0

)
, �̃�

(
𝜏𝑀 ; 𝑣 𝑗𝑀

))
, (6.6)

0 ≤ 𝑟i
(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , �̃�

(
𝜏0; 𝑣 𝑗0

)
, �̃�

(
𝜏𝑀 ; 𝑣 𝑗𝑀

))
. (6.7)

If we want to ensure that the constraints are also satisfied with 𝜎 𝑗 at
the shooting nodes, i.e.,

ℎ
(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , �̃�

(
𝜏𝑚 ; 𝑣 𝑗𝑚

))
= ℎ

(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝜎 𝑗(𝜏𝑚)

)
,

for all 𝑚 = 0, . . . , 𝑀 − 1, and

𝑟e
(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , �̃�

(
𝜏0; 𝑣 𝑗0

)
, �̃�

(
𝜏𝑀 ; 𝑣 𝑗𝑀

))
= 𝑟e (𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝜎 𝑗(𝜏0), 𝜎 𝑗(𝜏𝑀)

)
,

𝑟i
(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , �̃�

(
𝜏0; 𝑣 𝑗0

)
, �̃�

(
𝜏𝑀 ; 𝑣 𝑗𝑀

))
= 𝑟i (𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝜎 𝑗(𝜏0), 𝜎 𝑗(𝜏𝑀)

)
,

we need to choose the basis functions 𝜉𝜎
𝑚,𝑖 , 𝑚 = 0, . . . , 𝑀 − 1, 𝑖 =

0, . . . , 𝑛𝜎 − 1 such that

�̃�
(
𝜏𝑚 ; 𝑣 𝑗𝑚

)
= 𝜎 𝑗(𝜏𝑚) for all 𝑚 = 0, . . . , 𝑀 − 1.

One option where this is the case is the second choice for the map 𝜁
presented in Example 6.1.

As in Subsection 3.2.3, we slightly overload our notation and simply
write (6.5), (6.6) and (6.7) as

0 ≤ ℎ
(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
, 𝑚 = 0, . . . , 𝑀 − 1,

and

0 = 𝑟e
(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
,

0 ≤ 𝑟i
(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
.

For the objective function discretization, the extension to include ex-
ternal inputs works similarly. As with the boundary constraints, the
MAYER termΦ can now additionally depend on the final external input.
Thus, we replace the objective function (3.13) with

𝑀−1∑
𝑚=0

Ψ𝑚

(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
+Φ

(
𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗𝑀

)
.

As in Subsection 3.2.4, Ψ𝑚 is either an exact representation of the
LAGRANGE objective function or an approximation thereof.

6.2. Incorporating external inputs in the RTI and MLI scheme 111

6.1.3. Resulting Nonlinear Program

The NLP that results from the discretization of the OCP (6.4) using
the DMS method, as described in Section 6.1 to incorporate external
inputs, is given by

min
𝑠∈ℝ𝑛𝑠

𝑞∈ℝ𝑛𝑞

𝑀−1∑
𝑚=0

Ψ𝑚

(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
+Φ

(
𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗𝑀

)
s.t. 0 = 𝑥

(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
− 𝑠𝑚+1 , 𝑚 = 0, . . . , 𝑀 − 1,

0 ≤ ℎ
(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
, 𝑚 = 0, . . . , 𝑀 − 1,

0 = 𝑟e
(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
,

0 ≤ 𝑟i
(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
,

0 = 𝑥 𝑗 − 𝑠0.

(6.8)

Analogously to Assumption 3.2 for the DMS NLP (3.14), we make the
following smoothness assumption to ensure that our SQP-based op-
timization algorithms presented in Section 6.2 and Chapter 7 can be
applied to the NLP (6.8).

Assumption 6.1 All functions appearing in the NLP (6.8) are twice
continuously differentiable with respect to the primal variables 𝑠
and 𝑞 and additionally with respect to the constant parameter 𝜌
and the external inputs 𝑣 In particular, we tighten Assumption 2.1
to require that the vector field 𝑓 : ℝ𝑛𝑥 ×ℝ𝑛𝑢 ×ℝ𝑛𝜌 ×ℝ𝑛𝜎 → ℝ𝑛𝑥 is
twice continuously differentiable with respect to 𝑥, 𝑢, 𝜌 and 𝜎.

6.2. Incorporating external inputs in the RTI
and MLI scheme

Reminder: RTI and MLI

In the RTI scheme, two main ideas
are implemented. First, only a sin-
gle SQP iteration is performed per
sampling time. Second, the compu-
tations are divided into a prepara-
tion phase, a feedback phase, and
a transition phase, where only the
duration of the feedback phase de-
termines the feedback delay. In the
MLI scheme, the RTI scheme is ex-
tended by updating the QP solved
in the RTI scheme using different
levels, thereby further reducing the
required computation time. For de-
tails, see Section 3.4 and Section 3.5.

As our focus remains on the development of efficient numerical meth-
ods for NMPC, the next step in our framework for handling external
inputs is to investigate how the RTI and MLI schemes can be adapted
to the novel DMS NLP (6.8). We propose two different strategies, each
tailored to one of the following cases. In the first case, the external
inputs for the next sampling time 𝑡 𝑗 are already available before that
time 𝑡 𝑗 . In the second case, the external inputs only become available
at or after the time 𝑡 𝑗 . The second case is realistic if the external in-
puts need to be measured online, whereas the first case applies to
situations where external inputs can be retrieved from a database or
similar sources.

In Subsection 6.2.1, we present strategies to incorporate external in-
puts into the RTI scheme. A comparison of these strategies is provided
in Subsection 6.2.2. Subsequently, we discuss how the MLI scheme can
be adjusted accordingly in Subsection 6.2.3.

112 6. External Inputs in DMS, RTI, and MLI

6.2.1. External inputs in the RTI scheme

To adapt the RTI scheme, we need to examine how the SQP method
can be tailored to the DMS NLP (6.8) such that performing a single
step, i.e., solving a single QP at each sampling time, can be achieved
with minimal feedback delay while still providing effective feedback.
In the following, we focus on computing the feedback for the sampling
time 𝑡 𝑗 .

Strategy 1 – if external inputs are available a priori If the external
inputs 𝜎 𝑗(𝑡) are known for all 𝑡 ∈ 𝐼hor

(
𝑡 𝑗
)
sufficiently in advance of

the sampling time 𝑡 𝑗 , we can apply the tailored SQP method from
Subsection 3.3.2 without any specific modifications to the DMS NLP
(6.8). This involves setting up the QP

min
Δ𝑠=(Δ𝑠𝑇0 ,...,Δ𝑠𝑇𝑀)𝑇∈ℝ𝑛𝑠

Δ𝑞=(Δ𝑞𝑇0 ,...,Δ𝑞𝑇𝑀−1)𝑇∈ℝ𝑛𝑞

1
2

(
Δ𝑠
Δ𝑞

)𝑇 (
𝐵𝑠𝑠 𝐵𝑠𝑞

𝐵𝑞𝑠 𝐵𝑞𝑞

) (
Δ𝑠
Δ𝑞

)
+

(
𝑏𝑠

𝑏𝑞

)𝑇 (
Δ𝑠
Δ𝑞

)
s.t. 0 = 𝑆𝑠𝑚Δ𝑠𝑚 + 𝑆𝑞𝑚Δ𝑞𝑚 − Δ𝑠𝑚+1 + 𝛿𝑚 , 𝑚 = 0, . . . , 𝑀 − 1,

0 ≤ 𝐻𝑠
𝑚Δ𝑠𝑚 + 𝐻𝑞

𝑚Δ𝑞𝑚 + ℎ𝑚 , 𝑚 = 0, . . . , 𝑀 − 1,
0 = 𝑅e

𝑠0Δ𝑠0 + 𝑅e
𝑠𝑀Δ𝑠𝑀 + 𝑟e ,

0 = 𝑅i
𝑠0Δ𝑠0 + 𝑅i

𝑠𝑀Δ𝑠𝑀 + 𝑟i ,

0 = 𝑥 𝑗 − 𝑠0 − Δ𝑠0 ,

(6.9)

with the key difference from QP (3.24) in Subsection 3.3.2 being that
all quantities are evaluated at the already updated external inputs
and constant parameters 𝑣 𝑗 , 𝜌 𝑗 . The state and control variables used
for the evaluation are the same as in QP (3.24), i.e., 𝑠 𝑗−1 , 𝑞 𝑗−1, which
originate from the sampling time 𝑡 𝑗−1. These evaluations can still be
performed during the preparation phase of the RTI scheme, as the
external inputs and constant parameters are available a priori. The
QP (6.9) can then be condensed as described for QP (3.24) in Subsec-
tion 3.3.2. Consequently, the feedback and transition phases of the
RTI scheme remain as described in Subsection 3.4.2.

Strategy 2 – if external inputs become available after the sampling
time If the external inputs are not known in advance, the strategy
from the previous case is no longer viable. This is because the deriva-
tives cannot be computed during the preparation phase, and com-
puting them during the feedback phase would result in unaccept-
ably large feedback delays. To enable the computation of derivatives
in a preparation phase before the sampling time 𝑡 𝑗 , the strategy in
this case is to treat the external inputs similarly to the current state
𝑥 𝑗 . Specifically, the concept of the IVE discussed in Subsection 3.4.1
is extended to include the external inputs and constant parameters.
This means that derivatives with respect to the external inputs and
constant parameters are also computed, and their update steps Δ𝑣𝑚 ,
𝑚 = 0, . . . , 𝑀, and Δ𝜌 are included as trivial optimization variables

6.2. Incorporating external inputs in the RTI and MLI scheme 113

in the QP (3.24). More precisely, the QP solved for the sampling time
𝑡 𝑗 in this strategy is given by

min
Δ𝑠=(Δ𝑠𝑇0 ,...,Δ𝑠𝑇𝑀)𝑇∈ℝ𝑛𝑠

Δ𝑞=(Δ𝑞𝑇0 ,...,Δ𝑞𝑇𝑀−1)𝑇∈ℝ𝑛𝑞

Δ𝑣𝑇=(Δ𝑣𝑇0 ,...,Δ𝑣𝑇𝑀)𝑇∈ℝ𝑛𝑣

Δ𝜌∈ℝ𝑛𝜌

1
2

©­­­«
Δ𝑠
Δ𝑞
Δ𝜌
Δ𝑣

ª®®®¬
𝑇©­­­«
𝐵𝑠𝑠 𝐵𝑠𝑞 𝐵𝑠𝜌 𝐵𝑠𝑣

𝐵𝑞𝑠 𝐵𝑞𝑞 𝐵𝑞𝜌 𝐵𝑞𝑣

𝐵𝜌𝑠 𝐵𝜌𝑞 𝐵𝜌𝜌 𝐵𝜌𝑣

𝐵𝑣𝑠 𝐵𝑣𝑞 𝐵𝑣𝜌 𝐵𝑣𝑣

ª®®®¬
©­­­«
Δ𝑠
Δ𝑞
Δ𝜌
Δ𝑣

ª®®®¬ +
©­­­«
𝑏𝑠

𝑏𝑞

𝑏𝜌

𝑏𝑣

ª®®®¬
𝑇©­­­«

Δ𝑠
Δ𝑞
Δ𝜌
Δ𝑣

ª®®®¬ (6.10a)

s.t. 0 = 𝑆𝑠𝑚Δ𝑠𝑚 + 𝑆𝑞𝑚Δ𝑞𝑚 + 𝑆𝜌𝑚Δ𝜌 + 𝑆𝑣𝑚Δ𝑣𝑚 − Δ𝑠𝑚+1 + 𝛿𝑚 , 𝑚 = 0, . . . , 𝑀 − 1,
(6.10b)

0 ≤ 𝐻𝑠
𝑚Δ𝑠𝑚 + 𝐻𝑞

𝑚Δ𝑞𝑚 + 𝐻𝜌
𝑚Δ𝜌 + 𝐻𝑣

𝑚Δ𝑣𝑚 + ℎ𝑚 , 𝑚 = 0, . . . , 𝑀 − 1, (6.10c)
0 = 𝑅𝑠0e Δ𝑠0 + 𝑅𝑠𝑀e Δ𝑠𝑀 + 𝑅𝜌

eΔ𝜌 + 𝑅e
𝑣0
Δ𝑣0 + 𝑅e

𝑣𝑀
Δ𝑣𝑀 + 𝑟e , (6.10d)

0 ≤ 𝑅𝑠0i Δ𝑠0 + 𝑅𝑠𝑀i Δ𝑠𝑀 + 𝑅𝜌
i Δ𝜌 + 𝑅i

𝑣0
Δ𝑣0 + 𝑅i

𝑣𝑀
Δ𝑣𝑀 + 𝑟i , (6.10e)

0 = 𝑥 𝑗 − 𝑠 𝑗−1
0 − Δ𝑠0 , (6.10f)

0 = 𝜌 𝑗 − 𝜌 𝑗−1 − Δ𝜌 , (6.10g)

0 = 𝑣 𝑗𝑚 − 𝑣 𝑗−1
𝑚 − Δ𝑣𝑚 , 𝑚 = 0, . . . , 𝑀. (6.10h)

In addition to the notation defined in Equations (3.25) – (3.29) on p. 34,
we have introduced in Equation (6.10) the Hessian blocks

The Hessian blocks are evaluated
at the primal-dual variables
𝑠 𝑗−1 , 𝑞 𝑗−1 ,𝜆𝑗−1 , 𝜇𝑗−1 , which are the
results from the previous sampling
time 𝑡 𝑗−1 , and the parameter and
external input values 𝜌𝑗−1 , 𝑣 𝑗−1 .

(∇2
𝑠𝜌L ∇2

𝑠𝑣L

∇2
𝑞𝜌L ∇2

𝑞𝑣L

)
≕

(
𝐵𝑠𝜌 𝐵𝑠𝑣

𝐵𝑞𝜌 𝐵𝑞𝑣

)
, (6.11a)(∇2

𝜌𝑠L ∇2
𝜌𝑞L

∇2
𝑣𝑠L ∇2

𝑣𝑞L

)
≕

(
𝐵𝜌𝑠 𝐵𝜌𝑞

𝐵𝑣𝑠 𝐵𝑣𝑞

)
, (6.11b)(∇2

𝜌𝜌L ∇2
𝜌𝑣L

∇2
𝑣𝜌L ∇2

𝑣𝑣L

)
≕

(
𝐵𝜌𝜌 𝐵𝜌𝑣

𝐵𝑣𝜌 𝐵𝑣𝑣

)
, (6.11c)

the sensitivity matrices

𝑆𝜌𝑚 ≔
𝜕

𝜕𝜌
𝑥
(
𝜏𝑚+1; 𝑠 𝑗−1

𝑚 , 𝑞 𝑗−1
𝑚 ; 𝜌 𝑗−1 , 𝑣 𝑗−1

𝑚

)
, 𝑚 = 0, . . . , 𝑀 − 1, (6.12a)

𝑆𝑣𝑚 ≔
𝜕

𝜕𝑣
𝑥
(
𝜏𝑚+1; 𝑠 𝑗−1

𝑚 , 𝑞 𝑗−1
𝑚 ; 𝜌 𝑗−1 , 𝑣 𝑗−1

𝑚

)
, 𝑚 = 0, . . . , 𝑀 − 1, (6.12b)

the path constraints Jacobians

𝐻𝜌
𝑚 ≔

𝜕

𝜕𝜌
ℎ
(
𝑠 𝑗−1 , 𝑞 𝑗−1; 𝜌 𝑗−1 , 𝑣 𝑗−1

𝑚

)
, 𝑚 = 0, . . . , 𝑀 − 1, (6.13a)

𝐻𝑣
𝑚 ≔

𝜕

𝜕𝑣
ℎ
(
𝑠 𝑗−1 , 𝑞 𝑗−1; 𝜌 𝑗−1 , 𝑣 𝑗−1

𝑚

)
, 𝑚 = 0, . . . , 𝑀 − 1, (6.13b)

114 6. External Inputs in DMS, RTI, and MLI

the boundary constraints Jacobians

𝑅𝜌
e ≔

𝜕

𝜕𝜌
𝑟e

(
𝑠 𝑗−1

0 , 𝑠 𝑗−1
𝑀 ; 𝜌 𝑗−1 , 𝑣 𝑗−1

0 , 𝑣 𝑗−1
𝑀

)
, (6.14a)

𝑅𝜌
i ≔

𝜕

𝜕𝜌
𝑟i

(
𝑠 𝑗−1

0 , 𝑠 𝑗−1
𝑀 ; 𝜌 𝑗−1 , 𝑣 𝑗−1

0 , 𝑣 𝑗−1
𝑀

)
, (6.14b)

𝑅e
𝑣0

≔
𝜕

𝜕𝑣0
𝑟e

(
𝑠 𝑗−1

0 , 𝑠 𝑗−1
𝑀 ; 𝜌 𝑗−1 , 𝑣 𝑗−1

0 , 𝑣 𝑗−1
𝑀

)
, (6.14c)

𝑅i
𝑣0

≔
𝜕

𝜕𝑣0
𝑟i

(
𝑠 𝑗−1

0 , 𝑠 𝑗−1
𝑀 ; 𝜌 𝑗−1 , 𝑣 𝑗−1

0 , 𝑣 𝑗−1
𝑀

)
, (6.14d)

𝑅e
𝑣𝑀

≔
𝜕

𝜕𝑣𝑀
𝑟e

(
𝑠 𝑗−1

0 , 𝑠 𝑗−1
𝑀 ; 𝜌 𝑗−1 , 𝑣 𝑗−1

0 , 𝑣 𝑗−1
𝑀

)
, (6.14e)

𝑅i
𝑣𝑀

≔
𝜕

𝜕𝑣𝑀
𝑟i

(
𝑠 𝑗−1

0 , 𝑠 𝑗−1
𝑀 ; 𝜌 𝑗−1 , 𝑣 𝑗−1

0 , 𝑣 𝑗−1
𝑀

)
, (6.14f)

and the boundary constraints residuals

𝑟e ≔ 𝑟e
(
𝑠 𝑗−1

0 , 𝑠 𝑗−1
𝑀 ; 𝜌 𝑗−1 , 𝑣 𝑗−1

0 , 𝑣 𝑗−1
𝑀

)
, (6.15a)

𝑟i ≔ 𝑟i
(
𝑠 𝑗−1

0 , 𝑠 𝑗−1
𝑀 ; 𝜌 𝑗−1 , 𝑣 𝑗−1

0 , 𝑣 𝑗−1
𝑀

)
. (6.15b)

The structures of the relevant Jacobians and Hessian blocks in QP
(6.10) are listed in Appendix C. The QP (6.10) can be condensed into a
smaller QP with the form

min
Δ𝑠0∈ℝ𝑛𝑥

Δ𝑞=(Δ𝑞𝑇0 ,...,Δ𝑞𝑇𝑀−1)𝑇∈ℝ𝑛𝑞

Δ𝑣𝑇=(Δ𝑣𝑇0 ,...,Δ𝑣𝑇𝑀)𝑇∈ℝ𝑛𝑣

Δ𝜌∈ℝ𝑛𝜌

1
2

©­­­«
Δ𝑠0
Δ𝑞
Δ𝜌
Δ𝑣

ª®®®¬
𝑇©­­­«
�̂�𝑠0𝑠0 �̂�𝑠0𝑞 �̂�𝑠0𝜌 �̂�𝑠0𝑣

�̂�𝑞𝑠0 �̂�𝑞𝑞 �̂�𝑞𝜌 �̂�𝑞𝑣

�̂�𝜌𝑠0 �̂�𝜌𝑞 �̂�𝜌𝜌 �̂�𝜌𝑣

�̂�𝑣𝑠0 �̂�𝑣𝑞 �̂�𝑣𝜌 �̂�𝑣𝑣

ª®®®¬
©­­­«
Δ𝑠0
Δ𝑞
Δ𝜌
Δ𝑣

ª®®®¬ +
©­­­«
𝑏𝑠0

𝑏𝑞

𝑏𝜌

𝑏𝑣

ª®®®¬
𝑇©­­­«

Δ𝑠0
Δ𝑞
Δ𝜌
Δ𝑣

ª®®®¬
s.t. 0 ≤ 𝐻𝑠

0Δ𝑠0 + 𝐻𝑞
0Δ𝑞0 + 𝐻𝜌

0Δ𝜌 + 𝐻𝑣
0Δ𝑣0 + ℎ0 ,

0 ≤ �̂�𝑠
𝑚Δ𝑠0 +

𝑚∑
𝑘=0

�̂�𝑞𝑘
𝑚 Δ𝑞𝑘 + �̂�𝑣𝑘

𝑚 Δ𝑣𝑘 + �̂�𝜌
𝑚Δ𝜌 + ℎ̂𝑚 , 𝑚 = 1, . . . , 𝑀 − 1,

0 = �̂�e
0Δ𝑠0 +

𝑀−1∑
𝑘=0

�̂�e
𝑞𝑘Δ𝑞𝑘 + �̂�e

𝑣𝑘Δ𝑣𝑘 + 𝑅e
𝑣𝑀

Δ𝑣𝑀 + �̂�e
𝜌Δ𝜌 + 𝑟e ,

0 ≤ �̂�i
0Δ𝑠0 +

𝑀−1∑
𝑘=0

�̂�i
𝑞𝑘Δ𝑞𝑘 + �̂�i

𝑣𝑘Δ𝑣𝑘 + 𝑅i
𝑣𝑀

Δ𝑣𝑀 + �̂�i
𝜌Δ𝜌 + 𝑟i ,

0 = 𝑥 𝑗 − 𝑠 𝑗−1
0 − Δ𝑠0 ,

0 = 𝜌 𝑗 − 𝜌 𝑗−1 − Δ𝜌 ,
0 = 𝑣 𝑗𝑚 − 𝑣 𝑗−1

𝑚 − Δ𝑣𝑚 , 𝑚 = 0, . . . , 𝑀.

(6.16)

The condensing procedure, which is an extended version of the one
presented in Subsection 3.3.2, is detailed in Appendix D. Since all
matrices in the condensed QP (6.16) depend solely on the primal-
dual variables 𝑠 𝑗−1 , 𝑞 𝑗−1 ,𝜆 𝑗−1 , 𝜇𝑗−1, which are results from the previ-
ous sampling time 𝑡 𝑗−1, and the parameter and external input values
𝜌 𝑗−1 , 𝑣 𝑗−1, the condensing can be performed during the preparation
phase. Thus, the fast feedback of the RTI scheme is preserved.

6.2. Incorporating external inputs in the RTI and MLI scheme 115

6.2.2. Comparison of the strategies for the RTI scheme

The two strategies proposed in the previous Subsection 6.2.1 are gen-
erally not equivalent to each other. Furthermore, neither is equivalent
to the default approach, where the artificial state 𝑥𝑡 is introduced, as
defined by the IVP (6.2), to treat the external inputs as functions of the
differential state in the form of Equation (6.3), as described on p. 105.
The RTI scheme is then applied as outlined in Section 3.4. In this sec-
tion, we interpret the steps computed by our two novel strategies and
the default approach.

Interpretation of the computed step For Strategy 1, the solution of
QP (6.9) represents a step in the primal variables that is a generalized
TP, as described in Subsection 3.4.3, and is equivalent to one step of
the EULER predictor path-following method from PNLP if exact deriva-
tives are used [57, p. 48], cf. also [103, Section 3.3, p. 73] [57]: Diehl (2001), “Real-time opti-

mization for large scale nonlinear
processes”
[103]: Guddat et al. (1990), Parametric
Optimization: Singularities, Pathfol-
lowing and Jumps

. Regarding
the parameter 𝜌 𝑗 and the external inputs 𝑣 𝑗 , a step of a predictor-
corrector scheme is performed, with a trivial predictor and a single
SQP iteration as the corrector step, cf. again [103, Section 3.3, p. 73].
Solving the QP (6.10) in Strategy 2 corresponds to performing a step
of the EULER predictor path-following method with respect to both
the current state 𝑥 𝑗 and the parameter 𝜌 𝑗 and the external inputs 𝑣 𝑗 .
In both cases, the new values 𝜌 𝑗 , 𝑣 𝑗 are reached. In the default ap-
proach, the RTI scheme again results in a step of the EULER predictor
path-following method [57, p. 48]. However, in this case, the solution
manifold is parameterized only by the current state. Consequently,
only a linear approximation of the novel external inputs is utilized.
Thus, the computed solution approximates the optimal solution for

𝜌 𝑗−1 , 𝜁

(
𝜎 𝑗−1 (𝑡 𝑗−1) + 𝜕

𝜕𝑡
𝜎 𝑗−1 (𝑡 𝑗−1) (𝑡 𝑗 − 𝑡 𝑗−1)) ,

rather than for 𝜌 𝑗 , 𝑣 𝑗 .

Computational effort The computational effort for the first strategy
is nearly identical to that of the RTI scheme applied to systems with-
out external inputs, with the only addition being the evaluation of
the map 𝜁. For the second strategy, as well as when external inputs
are transformed into functions of the states, the computational ef-
fort increases due to the need to compute derivatives with respect
to the parameters and external inputs and to account for them in
the condensing. However, the fact that the resulting QP (6.10) and its
condensed form (6.16) include additional optimization variables and
constraints does not significantly increase the computational effort,
as these variables and trivial constraints can be eliminated from the
QPs (6.10), (6.16) in a preprocessing step before solving the QP.

116 6. External Inputs in DMS, RTI, and MLI

6.2.3. External inputs in the MLI scheme

Fortunately, both of our novel strategies for incorporating external
inputs into the RTI scheme can be seamlessly integrated into the MLI
scheme without significant challenges.

Strategy 1 – if external inputs are available a priori The intuitive
extension of the strategy proposed for the RTI scheme, when external
inputs are available a priori, to the MLI scheme involves solving a
QP of the form (6.9), where the Hessian, linearizations, and residuals
are evaluated at external inputs of varying ages, as they are reused
from previous sampling times. The modified gradient used in Level
C and below would still be computed using Equation (3.43), and the
LAGRANGE gradient would still be approximated in Level B and A using
Equation (3.44).

To determine whether this intuitive approach is theoretically justified,
we recall that solving QP (6.9) was interpreted as a step of a trivial pre-
dictor combined with an SQP method as a corrector. As mentioned in
Section 3.5, the MLI scheme is essentially an inexact SQP method. In-
corporating our first strategy for external inputs into the MLI scheme
in this intuitive manner results in a step that can be viewed as a
combination of a trivial predictor and an inexact SQP method as a
corrector. In our opinion, this combination – trivial predictor and in-
exact SQP method as a corrector – is the appropriate adaptation of
the previous combination – trivial predictor and exact SQP method
as a corrector.

Thus, to incorporate our first strategy for external inputs into the MLI
scheme, we make the following adjustment: If a specific MLI level is
scheduled at sampling time 𝑡 𝑗 , all quantities of the MLI QP (3.42) up-
dated at this level are evaluated using the current external inputs 𝑣 𝑗
and parameters 𝜌 𝑗 . For all remaining components of the QP (3.42), the
reference values communicated from other levels are used. As these
componentsmay have been evaluated at an outdated set of variables,
the external inputs and parameters at which they were evaluatedmay
also be outdated.

Strategy 2 – if external inputs become available after the sampling
time Incorporating the second strategy for external inputs into the
MLI scheme is also straightforward. Since the external inputs and pa-
rameters are included as optimization variables, the QP (6.10) that
needs to be solved at each sampling time can be directly written in
the form of the MLI QP (3.42). The existing MLI scheme, as described
in Section 3.5, can then be used without modifications. Only the num-
ber of variables and constraints, and consequently the number of
required derivatives, increases.

Sensitivity and External Input
Scenario based Feedback 7.

7.1 Literature review 118
7.2 Sensitivity theorem . . . 119
7.3 SensEIS feedback 124
7.4 Challenges 135

The overarching goal of this thesis is to develop efficient numerical
methods to realize an NMPC-based Ecological Adaptive Cruise Control
(EACC) system. To foster the use of our methods in real-life scenarios,
we must ensure that our methods can be run on the onboard con-
trol units of vehicles reasonably fast. These onboard control units
typically have much less computing power than personal comput-
ers, let alone high-performance computers. In particular, we have
to deal with much less available memory and single-core CPUs. De-
spite the lack of computational power, it remains paramount that we
are always able to provide feedback within the available computation
time.

Even though the RTI and MLI schemes that we have presented in
Section 3.4 and Section 3.5 already drastically reduce the computa-
tion time required to compute feedback, we strive to amend the MLI
scheme by an additional level that allows for even shorter sampling
times than Level A. The method proposed in this chapter can then ei-
ther be scheduled as a regular MLI level or serve as a fallback option
in case the MLI feedback could not be computed in time. It could also
be used as a standalone feedback method.

For the development of this method, we make use of the following
observation about our guiding use case, the EACC system. Ideally, our
EACC system improves the efficiency and comfort of the drive at all
times. Although we will face unforeseeable situations, we will also
encounter some driving situations repeatedly with minor variations.
In fact, we usually spend most of the driving time in such situations.
Such situations can be, for example:

The velocities correspond to com-
mon German speed limits.

▶ driving at a constant speed of 30 km h−1, 50 km h−1, 70 km h−1 or
100 km h−1 without a preceding vehicle,

▶ accelerating after having stopped, for example at a traffic light,
or after a speed limit has been lifted,

▶ decelerating to stop or to match an upcoming speed limit,
▶ following a preceding vehicle with a time gap of 2 s, 5 s or 10 s,
▶ driving uphill, downhill, or on an even level.

In this chapter, we propose a method that taps the potential of know-
ing these situations in advance. We call this method Sensitivity and
External Input Scenario based (SensEIS) Feedback or Level. The main
idea of our proposed SensEIS feedback is to harness the potential of
knowing these situations or scenarios, as we will call them from now
on, in advance. It can be summarized as follows.

118 7. Sensitivity and External Input Scenario based Feedback

The term that reads ”sensei” in
Japanese usually means teacher or
is used for professionals. In our pro-
posed SensEIS feedback, the feed-
back is based on the information
obtained from the scenarios. In this
sense, the scenarios teach us how
to choose good feedback for new
parameters. By naming our feed-
back SensEIS feedback, we capture
this intuition in a memorable way.

Main idea — Sensitivity and External Input Scenario based (SensEIS)
Feedback. We solve the OCP that we use in our NMPC scheme for
several scenarios and set up a feedback matrix or a feedback-ge-
nerating QP in an offline phase using results from parametric sen-
sitivity analysis from Parametric Nonlinear Programming (PNLP). In
the online phase, where we control the system of interest, the so-
lutions of the scenarios together with the feedback matrix or the
feedback-generating QP are used to compute feedback with only
a single matrix-vector product, or a single QP solve, and vector-
vector summations.

Our novel SensEIS feedback offers the following features:

▶ We can choose between feedback that can be computed with
a single matrix-vector product and some vector-vector summa-
tions but cannot consider active set changes, or feedback that
incorporates active set changes and is computed by a QP solve.

▶ All expensive computations are outsourced to an offline phase.
▶ We can not only react to changes in the finite-dimensional pa-

rameter vector and current state but also to changes in the con-
tinuous external inputs.

▶ It can serve both as a standalone method or as an extension of
the MLI scheme.

Our presentation of the SensEIS feedback in this chapter is structured
as follows. First, we outline the development of sensitivity-based tech-
niques from nonlinear programming over optimal control to NMPC in
Section 7.1. An important requirement for SensEIS feedback is the dif-
ferentiability of the discretized OCP’s solution. Therefore, we report
relevant results in that field in Section 7.2. We then proceed to pro-
pose the SensEIS feedback in Section 7.3. Finally, Section 7.4 discusses
arising difficulties together with strategies to solve or mitigate these
difficulties and future directions of research.

7.1. Literature review

[39]: Büskens et al. (2001), “Sensitivity
Analysis and Real-Time Optimization
of Parametric Nonlinear Programming
Problems”
[75]: Fiacco (1976), “Sensitivity analysis
for nonlinear programming using
penalty methods”
[76]: Fiacco (1983), Introduction to
Sensitivity and Stability Analysis in
Nonlinear Programming
[77]: Fiacco et al. (1968), Nonlinear Pro-
gramming: Sequential Unconstrained
Minimization Techniques
[163]: Robinson (1974), “Perturbed
Kuhn-Tucker points and rates of
convergence for a class of nonlinear-
programming algorithms”

In general, the idea of using sensitivity-based techniques from PNLP
to create fast online feedback methods is well established. The foun-
dation for these techniques was laid with the research on sensitiv-
ity analysis for nonlinear programming. One of the key figures in the
development of sensitivity analysis for nonlinear programming is FI-
ACCO. In their influential book [77], FIACCO and MCCORMICK developed
Sequential Unconstrained Minimization Techniques. Particularly, the
penalty method, which was first presented in [75], went on to become
a cornerstone in sensitivity analysis. With his book [76], FIACCO pub-
lished a reference work for stability and sensitivity analysis for non-
linear programming that is still frequently relied on today. ROBINSON
also established the differentiability of solutions of NLPs using the
Implicit Function Theorem (IFT) in [163], independently from FIACCO
according to [39].

7.2. Sensitivity theorem 119

Reminder: Indirect vs. direct

In direct approaches, we apply opti-
mization methods to directly solve
the optimization problem, whereas
in indirect approaches, we solve the
optimization problems indirectly by
solving their optimality conditions.
Cf. our overview of solution ap-
proaches in Section 3.1 starting on
p. 23.

[11]: Augustin et al. (2001), “Sensitivity
Analysis and Real-Time Control of
a Container Crane under State Con-
straints”
[24]: Biegler (2013), “A Survey on
Sensitivity-based Nonlinear Model
Predictive Control”
[35]: Büskens (1998), “Opti-
mierungsmethoden und Sen-
sitivitätsanalyse für optimale
Steuerprozesse mit Steuer- und
Zustands-Beschränkungen”
[38]: Büskens et al. (2001), “Sensitivity
Analysis and Real-Time Control of
Parametric Optimal Control Problems
Using Nonlinear Programming Meth-
ods”
[57]: Diehl (2001), “Real-time opti-
mization for large scale nonlinear
processes”
[69]: Domínguez et al. (2011), “Recent
Advances in Explicit Multiparametric
Nonlinear Model Predictive Control”
[100]: Grötschel et al. (2001), Online
Optimization of Large Scale Systems
[120]: Kirches et al. (2010), “Efficient
Numerics for Nonlinear Model Predic-
tive Control”
[134]: Maurer et al. (2001), “Sensitivity
Analysis and Real-Time Control of
Parametric Optimal Control Problems
Using Boundary Value Methods”
[135]: Maurer et al. (1995), “Solution dif-
ferentiability for parametric nonlinear
control problems with control-state
constraints”
[204]: Wolf et al. (2016), “Fast NMPC
schemes for regulatory and economic
NMPC – A review”

At the end of the 1990s and in the early 2000s, researchers started ap-
plying sensitivity-based techniques to OCPs as well. Noteworthy pa-
pers on this topic are contained in the collection [100]. In particular,
the works [11, 134] that apply boundary value methods to compute
approximate solutions quickly in an indirect fashion are contained
in [100]. In the category of direct approaches, the collection [100] in-
cludes the works from BÜSKENS and MAURER [38, 39] that build on
their previous works [35–37, 135].

NMPC schemes that make use of sensitivity results followed soon.
In fact, the RTI scheme first presented in 2001 [57, 67] exploits that
the sequence of DMS NLPs is parametrized by the current state, also
compare Section 3.4. Similarly, theMLI scheme, in particular its Level A,
as we discussed it in Section 3.5, has a strong connection with results
from PNLP. Further sensitivity-based NMPC schemes are surveyed in
[24, 25]. Moreover, the review paper [204] does not only provide an
excellent survey on fast regulatory and economic NMPC schemes in
general, but in particular covers methods rooted in PNLP.

Our proposed SensEIS feedback bears similarities with the explicit
feedback law that was proposed as an extension of the MLI scheme
in [120] and the Level A of the MLI scheme. However, our method
differs from these two approaches with respect to the linearization
points and the ability to outsource the expensive computations to an
offline phase. Moreover, we consider several scenarios in the offline
phase, which allows us to choose from several precomputed feedback
matrices online.

The fact that we precompute several feedback matrices, or feedback-
generating QPs, in an offline phase places our approach between
the feedback proposed in [120] and Level A on the one side and ap-
proaches from explicit multiparametric NMPC on the other side. Mul-
tiparametric NMPC methods apply techniques from multiparametric
nonlinear programming. The goal in explicit multiparametric NMPC
is to compute an explicit NMPC controller by partitioning the state
space and computing feedback matrices on these partitions. This way,
a piecewise approximation of the NLP that represents a suitable dis-
cretization of the NMPC OCP is constructed. For more information on
explicit multiparametric NMPC, we refer to [69]. The contrast to our
method is that we do not compute feedback matrices for the entire
state space but only for selected scenarios, i.e., points in the param-
eter space.

7.2. Sensitivity theorem

Underlying the main idea of SensEIS feedback is the assumption that
the optimal solution of the NLP (6.8) depends continuously on the
external inputs and the constant parameters in the vicinity of the sce-
narios. In particular, SensEIS feedback relies on a first-order TAYLOR
approximation of the mapping from the external inputs and constant
parameters to the optimal solution of the NLP (6.8).

120 7. Sensitivity and External Input Scenario based Feedback

In this section, we present the main sensitivity theorem (Theorem 7.1)
of PNLP. The sensitivity theorem is the cornerstone of the proposed
SensEIS feedback and many existing sensitivity-based methods as it
establishes under which conditions the optimal solution of an NLP
depends continuously on the parameters. We consider the following
family of NLPs throughout this section.

In our case, the NLP (7.1) will be
the DMS NLP (6.8) of the OCP (6.4),
where constant parameters 𝜌𝑗 and
external inputs 𝑣 𝑗 have been in-
cluded, which together with the cur-
rent state 𝑥 𝑗 take the role of 𝑝 in the
NLP (7.1).

Definition 7.1 For at least twice continuously differentiable func-
tions

𝐽 : ℝ𝑛𝑧 ×ℝ𝑛𝑝 → ℝ,

𝑐 : ℝ𝑛𝑧 ×ℝ𝑛𝑝 → ℝ𝑛𝑐 ,

𝑑 : ℝ𝑛𝑧 ×ℝ𝑛𝑝 → ℝ𝑛𝑑

we consider the parametrized NLP

min
𝑧 ∈ ℝ𝑛𝑧

𝐽
(
𝑧, 𝑝

)
(7.1a)

s.t. 0 = 𝑐
(
𝑧, 𝑝

)
, (7.1b)

0 ≤ 𝑑 (𝑧, 𝑝) (7.1c)

which is parametrized by 𝑝 ∈ ℝ𝑛𝑝 . If it exists, we denote the solu-
tion of NLP (7.1) by 𝑧∗

(
𝑝
) ∈ ℝ𝑛𝑧 .

We assume that for a reference parameter �̄� ∈ ℝ𝑛𝑝 the NLP (7.1) has a
unique solution 𝑧∗

(
�̄�
) ∈ ℝ𝑛𝑧 . Our goal in the following is to establish

under which conditions the NLP (7.1) has a unique solution 𝑧∗
(
𝑝
)
for

𝑝 in a neighborhood of �̄� and when and how we can compute the
Jacobian 𝜕

𝜕𝑝 𝑧
∗ (�̄�) so that we can approximate 𝑧∗

(
𝑝
)
by

𝑧∗
(
𝑝
) ≈ 𝑧∗ (�̄�) + 𝜕

𝜕𝑝
𝑧∗

(
�̄�
) (
𝑝 − �̄�) . (7.2)

These questions have been thoroughly investigated in the literature.
The key to answering this question is the main sensitivity or stability
theorem of PNLP as it was first proven in [75, Theorem 2.1][75]: Fiacco (1976), “Sensitivity analysis

for nonlinear programming using
penalty methods”

. In fact,
there is not just one version of the theorem. Instead, a number of
versions with slightly different requirements exist today. We present
the theorem using the notion of the critical cone and strongly regular
local solutions, similarly to [88, Theorem 6.1.4][88]: Gerdts (2024), Optimal Control of

ODEs and DAEs
. We thus first define

the critical cone and strongly regular local solutions and then state
the sensitivity theorem (Theorem 7.1).

In the following, it will be important to distinguish between the com-
ponents of the inequality constraint (7.1c) in NLP (7.1) that are equal
to zero and those that are greater than zero for a given pair (𝑧, 𝑝). To
that end, we specify that

𝑑
(
𝑧, 𝑝

)
≕

©­­«
𝑑1

(
𝑧, 𝑝

)
...

𝑑𝑛𝑑
(
𝑧, 𝑝

)ª®®¬
with 𝑑𝑖 : ℝ𝑛𝑧 × ℝ𝑛𝑝 → ℝ for all 𝑖 = 1, . . . , 𝑛𝑑 and make the following
definition.

7.2. Sensitivity theorem 121

Sometimes, we will simply write A

and I for brevity when it is clear to
which (𝑧, 𝑝) the index sets belong.

Definition 7.2 For a given pair (𝑧, 𝑝) ∈ ℝ𝑛𝑧 × ℝ𝑛𝑝 the index set of
active inequality constraints, or short active set, is given by

A
(
𝑧, 𝑝

)
≔

{
𝑖 ∈ {1, . . . , 𝑛𝑑}

�� 𝑑𝑖 (𝑧, 𝑝) = 0
}

and the index set of inactive inequality constraints, or inactive set,
by

I
(
𝑧, 𝑝

)
≔

{
𝑖 ∈ {1, . . . , 𝑛𝑑}

�� 𝑑𝑖 (𝑧, 𝑝) > 0
}

The inequality constraint

𝑑𝑖
(
𝑧, 𝑝

) ≥ 0

is called active if 𝑖 ∈ A
(
𝑧, 𝑝

)
and inactive if 𝑖 ∈ I

(
𝑧, 𝑝

)
. By 𝑑A

and 𝑑Iwe denote the active and inactive constraints, respectively,
formally given as

𝑑A
(
𝑧, 𝜌

)
≔

©­­«
𝑑𝑖1

(
𝑧, 𝑝

)
...

𝑑𝑖𝑛A
(
𝑧, 𝑝

)ª®®¬,
with 𝑖 𝑗 ∈ A

(
𝑧, 𝑝

)
for all 𝑗 = 1, . . . , 𝑛A ≔

��A(
𝑧, 𝑝

) �� and
𝑑I

(
𝑧, 𝜌

)
≔

©­­«
𝑑𝑖1

(
𝑧, 𝑝

)
...

𝑑𝑖𝑛I
(
𝑧, 𝑝

)ª®®¬,
with 𝑖 𝑗 ∈ I

(
𝑧, 𝑝

)
for all 𝑗 = 1, . . . , 𝑛I ≔

��I(
𝑧, 𝑝

) ��. The LAGRANGE
multipliers corresponding to the active and inactive constraints,
respectively, are similarly denoted by 𝜇A ∈ ℝ𝑛A and 𝜇I ∈ ℝ𝑛I.

Next, we define the critical cone and afterwards strongly regular local
solutions.

An explanation of why the set TC is
called the critical cone can be found
in [88, p. 310].

Both definitions are taken from [88, Definition 6.1.2] [88]: Gerdts (2024), Optimal Control of
ODEs and DAEs

.

Definition 7.3 The critical cone TC
(
𝑧, 𝑝

)
of NLP (7.1) is defined as

TC
(
𝑧, 𝑝

)
≔

Δ𝑧 ∈ ℝ𝑛𝑧

������
𝜕
𝜕𝑧 𝑐

(
𝑧, 𝑝

)
Δ𝑧 = 0,

𝜕
𝜕𝑧 𝑑𝑖

(
𝑧, 𝑝

)
Δ𝑧 ≥ 0, 𝑖 ∈ A

(
𝑧, 𝑝

)
, 𝜇𝑖 = 0,

𝜕
𝜕𝑧 𝑑𝑖

(
𝑧, 𝑝

)
Δ𝑧 = 0, 𝑖 ∈ A

(
𝑧, 𝑝

)
, 𝜇𝑖 > 0

.
Definition 7.4 A local minimum �̄� of NLP (7.1) with parameter �̄� is a
strongly regular local solution, if the following properties hold.

(i) �̄� is feasible, i.e. 𝑐
(
�̄� , �̄�

)
= 0 and 𝑑

(
�̄� , �̄�

) ≥ 0.
(ii) �̄� satisfies the Linear Independence Constraint Qualification

(LICQ), i.e., the Jacobian (
𝜕
𝜕𝑧 𝑐

(
�̄� , �̄�

)
𝜕
𝜕𝑧 𝑑A

(
�̄� , �̄�

))
has full row rank.

122 7. Sensitivity and External Input Scenario based Feedback

(iii) The KKT conditions hold at
(
�̄� , �̄�, �̄�

)
, where �̄� ∈ ℝ𝑛𝑐 and �̄� ∈

ℝ𝑛𝑑 are the LAGRANGEmultipliers for the equality and inequal-
ity constraints, respectively.

(iv) The Strict Complementarity Condition (SCC) holds, i.e,

�̄� + 𝑑 (�̄� , �̄�) > 0. (7.3)

(v) The Positive Definiteness Condition (PD) is satisfied, i.e., the
Hessian of the Lagrangian of NLP (7.1) is positive definite on
the critical cone, i.e.,

Δ𝑧𝑇∇2
𝑧𝑧L

(
�̄� , �̄�, �̄� , �̄�

)
Δ𝑧 > 0

holds for all Δ𝑧 ∈ TC
(
�̄� , �̄�

) \{0}, where the Lagrangian of NLP
(7.1) is defined as

L
(
𝑧,𝜆, 𝜇, 𝑝

)
≔ 𝐽

(
𝑧, 𝑝

) − 𝜆𝑇 𝑐 (𝑧, 𝑝) − 𝜇𝑇𝑑 (𝑧, 𝑝) .
We now state the sensitivity theorem, which is the cornerstone of Sen-
sEIS feedback. We present the theorem similarly to [88, Theorem 6.1.4][88]: Gerdts (2024), Optimal Control of

ODEs and DAEs
,

but tailor the expression for the solution derivatives to our needs.

We have encountered the LICQ and
PD before for equality constrained
NLPs in Assumption 3.1.

The LAGRANGE multipliers are
unique due to the LICQ.

Theorem 7.1 — Sensitivity Theorem.
Let 𝐽 , 𝑐, 𝑑 of NLP (7.1) be twice continuously differentiable. Let fur-
ther �̄� be a strongly regular local solution of NLP (7.1) with a nominal
parameter �̄� and let �̄�, �̄� be the associated LAGRANGE multipliers,
compare Definition 7.4. Then there exist balls

B𝜀
(
�̄�
) ⊂ ℝ𝑛𝑝 ,

B𝛿
(
�̄� , �̄�, �̄�

) ⊂ ℝ𝑛𝑧 ×ℝ𝑛𝑐 ×ℝ𝑛𝑑 ,

with radii 𝜀, 𝛿 > 0, such that NLP (7.1) has a unique strongly regular
local solution (

𝑧∗
(
𝑝
)
,𝜆∗

(
𝑝
)
, 𝜇∗

(
𝑝
)) ∈ B𝛿

(
�̄� , �̄�, �̄�

)
for all 𝑝 ∈ B𝜀

(
�̄�
)
. Moreover, the active set remains the same, i.e.

A
(
𝑧∗

(
𝑝
)
, 𝑝

)
= A

(
�̄� , �̄�

)
for all 𝑝 ∈ B𝜀

(
�̄�
)
.

In addition, the mapping

𝑝 ↦→ (
𝑧∗

(
𝑝
)
,𝜆∗

(
𝑝
)
, 𝜇∗

(
𝑝
))

is continuously differentiable with respect to 𝑝 with

©­­«
𝜕
𝜕𝑝 𝑧
∗ (�̄�)

− 𝜕
𝜕𝑝𝜆
∗ (�̄�)

− 𝜕
𝜕𝑝𝜇
∗
A

(
�̄�
)ª®®¬ = −

©­­­«
∇2
𝑧𝑧L

(
𝜕
𝜕𝑧 𝑐

)𝑇 (
𝜕
𝜕𝑧 𝑑A

)𝑇
𝜕
𝜕𝑧 𝑐 0 0
𝜕
𝜕𝑧 𝑑A 0 0

ª®®®¬
−1©­­«
∇2
𝑧𝑝L
𝜕
𝜕𝑝 𝑐
𝜕
𝜕𝑝 𝑑A

ª®®¬, (7.4a)

𝜕

𝜕𝑝
𝜇∗I

(
�̄�
)
= 0, (7.4b)

for all 𝑝 ∈ B𝜀
(
�̄�
)
, where all Jacobians on the right-hand side are

evaluated at
(
�̄� , �̄�

)
and the Hessian blocks at

(
�̄� , �̄�, �̄� , �̄�

)
.

7.2. Sensitivity theorem 123

Proof. The main proof is the one of Theorem 6.1.4 in [88] [88]: Gerdts (2024), Optimal Control of
ODEs and DAEs

and is based
on the application of the Implicit Function Theorem (IFT). However,
we have tailored the derivative expressions to our later need, so we
shall prove the correctness of our presentation in the following. From
[88, Theorem 6.1.4] we get, after reordering and accounting for the dif-
ferent convention regarding the sign of the inequalities and the LA-
GRANGE multipliers of the equality constraints in [88], that the deriva-
tives are obtained as the solution of the uniquely solvable linear sys-
tem

©­­­­«
∇2
𝑧𝑧L

(
𝜕
𝜕𝑧 𝑐

)𝑇 −
(
𝜕
𝜕𝑧 𝑑

)𝑇
𝜕
𝜕𝑧 𝑐 0 0

−Ξ̄ · 𝜕
𝜕𝑧 𝑑 0 −Γ̄

ª®®®®¬
©­­«

𝜕
𝜕𝑝 𝑧
∗ (�̄�)

− 𝜕
𝜕𝑝𝜆
∗ (�̄�)

𝜕
𝜕𝑝𝜇
∗ (�̄�)

ª®®¬ = −©­­«
∇2
𝑧𝑝L
𝜕
𝜕𝑝 𝑐

−Ξ̄ · 𝜕
𝜕𝑝 𝑑

ª®®¬, (7.5)

where

Ξ̄ ≔ diag
(
𝜇1 , . . . , 𝜇𝑛𝑑

)
, Γ̄ ≔ diag

(
𝑑1 , . . . , 𝑑𝑛𝑑

)
,

where the inequality constraints are evaluated at
(
�̄� , �̄�

)
. We then equiv-

alently write Equation (7.5) as

©­­­­«
∇2
𝑧𝑧L

(
𝜕
𝜕𝑧 𝑐

)𝑇 (
𝜕
𝜕𝑧 𝑑

)𝑇
𝜕
𝜕𝑧 𝑐 0 0

Ξ̄ · 𝜕
𝜕𝑧 𝑑 0 −Γ̄

ª®®®®¬
©­­«

𝜕
𝜕𝑝 𝑧
∗ (�̄�)

− 𝜕
𝜕𝑝𝜆
∗ (�̄�)

− 𝜕
𝜕𝑝𝜇
∗ (�̄�)

ª®®¬ = −©­­«
∇2
𝑧𝑝L
𝜕
𝜕𝑝 𝑐

Ξ̄ · 𝜕
𝜕𝑝 𝑑

ª®®¬, (7.6)

Without loss of generality, we assume that the inequality constraints
are ordered such that

That A
(
�̄� , �̄�

)∪I(
�̄� , �̄�

)
= {1, . . . , 𝑛𝑑}

is ensured by the fact that �̄� is feasi-
ble as a strongly regular local solu-
tion and thus satisfies 𝑑

(
�̄� , �̄�

) ≥ 0.

A
(
�̄� , �̄�

)
= {1, . . . , 𝑛A} , I

(
�̄� , �̄�

)
= {𝑛A+ 1, . . . , 𝑛𝑑}.

Due to the SCC (7.3) we get in this case that

𝜇𝑖 > 0, 𝑑𝑖 = 0 for all 𝑖 ∈ A
(
𝑧, 𝑝

)
,

𝜇𝑖 = 0, 𝑑𝑖 > 0 for all 𝑖 ∈ I
(
𝑧, 𝑝

)
.

Therefore, we can write

Ξ̄ =

(
Ξ̄A 0
0 0

)
, Γ̄ =

(
0 0
0 Γ̄I

)
,

with invertible blocks

Ξ̄A ≔ diag
(
𝜇1 , . . . , 𝜇𝑛A

)
, Γ̄I ≔ diag

(
𝑑𝑛A+1 , . . . , 𝑑𝑛𝑑

)
.

The linear system (7.6) thus can equivalently be written as

©­­­­­­«
∇2
𝑧𝑧L

(
𝜕
𝜕𝑧 𝑐

)𝑇 (
𝜕
𝜕𝑧 𝑑A

)𝑇 (
𝜕
𝜕𝑧 𝑑I

)𝑇
𝜕
𝜕𝑧 𝑐 0 0 0

Ξ̄A · 𝜕
𝜕𝑧 𝑑A 0 0 0

0 0 0 −Γ̄I

ª®®®®®®¬
©­­­­­«

𝜕
𝜕𝑝 𝑧
∗ (�̄�)

𝜕
𝜕𝑝𝜆
∗ (�̄�)

− 𝜕
𝜕𝑝𝜇
∗
A

(
�̄�
)

− 𝜕
𝜕𝑝𝜇
∗
I

(
�̄�
)
ª®®®®®¬
= −

©­­­­«
∇2
𝑧𝑝L
𝜕
𝜕𝑝 𝑐

Ξ̄A · 𝜕
𝜕𝑝 𝑑A
0

ª®®®®¬
.

(7.7)

124 7. Sensitivity and External Input Scenario based Feedback

The last block row shows that

𝜕

𝜕𝑝
𝜇∗I

(
�̄�
)
= 0,

which is Equation (7.4b). The third block row is equivalent to

𝜕

𝜕𝑧
𝑑A

𝜕

𝜕𝑝
𝑧∗

(
�̄�
)
= − 𝜕

𝜕𝑝
𝑑A.

Therefore, we obtain from the linear system (7.7) that

©­­­«
∇2
𝑧𝑧L

(
𝜕
𝜕𝑧 𝑐

)𝑇 (
𝜕
𝜕𝑧 𝑑A

)𝑇
𝜕
𝜕𝑧 𝑐 0 0
𝜕
𝜕𝑧 𝑑A 0 0

ª®®®¬
©­­«

𝜕
𝜕𝑝 𝑧
∗ (�̄�)

− 𝜕
𝜕𝑝𝜆
∗ (�̄�)

− 𝜕
𝜕𝑝𝜇
∗
A

(
�̄�
)ª®®¬ = −©­­«

∇2
𝑧𝑝L
𝜕
𝜕𝑝 𝑐
𝜕
𝜕𝑝 𝑑A

ª®®¬. (7.8)

Non-singularity of the saddle-point system on the left hand side of
the linear system Equation (7.8) is a consequence of the LICQ and PD,
compare Definition 7.4, and can be shown as in [88, p. 315][88]: Gerdts (2024), Optimal Control of

ODEs and DAEs
in the

proof of Theorem 6.1.4. As a consequence, Equation (7.8) is equivalent
to Equation (7.4a) which concludes the proof. ■

In the upcoming Section 7.3 we will explain how we leverage Theo-
rem 7.1 in our proposed SensEIS feedback.

7.3. SensEIS feedback

As stated in the introduction of this chapter, the overarching goal of
this thesis is to develop efficient numerical methods to realize an
NMPC-based EACC system. The core task in this context is to compute
an approximate solution of the OCP

min
𝑥(·), 𝑢(·)

∫ 𝑡 𝑗+𝑇hor

𝑡 𝑗
Ψ

(
𝑥(𝑡), 𝑢(𝑡); 𝜌 𝑗 , 𝜎 𝑗(𝑡))d𝑡 +Φ(

𝑥
(
𝑡 𝑗 + 𝑇hor

)
; 𝜌 , 𝜎 𝑗

(
𝑡 𝑗 + 𝑇hor

))
s.t. ¤𝑥(𝑡) = 𝑓

(
𝑥(𝑡), 𝑢(𝑡); 𝜌 𝑗 , 𝜎 𝑗(𝑡)) , 𝑡 ∈ 𝐼hor

(
𝑡 𝑗
)
,

0 ≤ ℎ (𝑥(𝑡), 𝑢(𝑡); 𝜌 𝑗 , 𝜎 𝑗(𝑡)) , 𝑡 ∈ 𝐼hor
(
𝑡 𝑗
)
,

0 = 𝑟e (𝑥 (𝑡 𝑗) , 𝑥 (𝑡 𝑗 + 𝑇hor
)
; 𝜌 𝑗 , 𝜎 𝑗

(
𝑡 𝑗
)
, 𝜎 𝑗

(
𝑡 𝑗 + 𝑇hor

))
,

0 ≤ 𝑟i (𝑥 (𝑡 𝑗) , 𝑥 (𝑡 𝑗 + 𝑇hor
)
; 𝜌 𝑗 , 𝜎 𝑗

(
𝑡 𝑗
)
, 𝜎 𝑗

(
𝑡 𝑗 + 𝑇hor

))
,

𝑥
(
𝑡 𝑗
)
= 𝑥 𝑗 ,

(7.9)

efficiently at each sampling time 𝑡 𝑗 . Note that the OCP (7.9) is not
governed by a Differential Algebraic Equation (DAE), but only an ODE.
This is because the external inputs 𝑣 𝑗 and the constant parameter 𝜌 𝑗
are not optimization variables but fixed.

Reminder: OCP formulation

The OCP (7.9) is an adapted ver-
sion of the NMPC OCP (2.6), where
we have added a current param-
eter vector 𝜌 and external inputs
𝜎. The OCP (7.9) was also consid-
ered in Chapter 6 as OCP (6.4). The
suitable spaces for the optimization
variables are as for OCP (2.6) and
given in Equation (2.8).

7.3. SensEIS feedback 125

We use a ”first discretize, then optimize” approach.
Reminder: First discretize then op-
timize approach

In the ”first discretize, then opti-
mize approach” we first discretize
the infinite-dimensional 3.1 to ob-
tain a finite-dimensional NLP, see
Section 3.1 for more information.

For the discretiza-
tion of the OCP (7.9) we use the DMS method as described in Sec-
tion 3.2 and its extension to treat external inputs in Section 6.1. As a
result, we have to compute an approximate solution of an NLP of the
form

In the NMPC case: 𝜌 = 𝜌𝑗 , 𝑣 = 𝑣 𝑗

and �̂� = 𝑥 𝑗 .

min
𝑠∈ℝ𝑛𝑠

𝑞∈ℝ𝑛𝑞

𝑀−1∑
𝑚=0

Ψ𝑚
(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 , 𝑣𝑚

) +Φ(
𝑠𝑀 ; 𝜌 , 𝑣𝑀

)
(7.10a)

s.t. 0 = 𝑥
(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 , 𝑣𝑚

) − 𝑠𝑚+1 , 𝑚 = 0, . . . , 𝑀 − 1, (7.10b)
0 ≤ ℎ (𝑠𝑚 , 𝑞𝑚 ; 𝜌 , 𝑣𝑚

)
, 𝑚 = 0, . . . , 𝑀 − 1, (7.10c)

0 = 𝑟e (𝑠0 , 𝑠𝑀 ; 𝜌 , 𝑣0 , 𝑣𝑀
)
, (7.10d)

0 ≤ 𝑟i (𝑠0 , 𝑠𝑀 ; 𝜌 , 𝑣0 , 𝑣𝑀
)
, (7.10e)

0 = �̂� − 𝑠0. (7.10f)

The NLP (7.10) is parametrized by

▶ the discretized external inputs 𝑣 =
©­­«
𝑣0
...
𝑣𝑀

ª®®¬ ∈ ℝ𝑛𝑣 ,

▶ the parameter 𝜌 ∈ ℝ𝑛𝜌 ,
▶ the state �̂� ∈ ℝ𝑛𝑥 ,

which we collect in a single parameter vector

𝑝 ≔ ©­«
�̂�
𝜌
𝑣

ª®¬ ∈ ℝ𝑛𝑝 ,

with 𝑛𝑝 = 𝑛𝑥 +𝑛𝜌+𝑛𝑣 . In that sense, the NLP (7.10) can be understood
as an NLP parametrized by 𝑝 in the sense of Definition 7.1.

As described in the main idea of SensEIS, we aim to leverage results
from sensitivity analysis to compute the first control coefficient 𝑞0
and from it the NMPC feedback value 𝑢 𝑗 . More specifically, we want to
apply Theorem 7.1.

In the SensEIS feedback we provide two different variants to com-
pute 𝑞0 from the NLP (7.10) based on Theorem 7.1. The first is based
on the explicit computation of the matrix on the right-hand side of
Equation (7.4a) and then computing 𝑞0 using a matrix-vector prod-
uct including this matrix. For the second approach, we interpret the
linear system posed by Equation (7.4a) as the KKT system of a suit-
ably formulated QP. We then extend the QP to consider the inactive
constraints, too. Solving the resulting QP thus constitutes the second
approach. We present both approaches in the following subsections
and state the full algorithm in Subsection 7.3.3. We conclude by pre-
senting three options for how SensEIS feedback can be combined
with the MLI scheme in Subsection 7.3.4.

126 7. Sensitivity and External Input Scenario based Feedback

7.3.1. Variant 1: Using the feedback matrix

Our proposed SensEIS feedback can be divided into an offline phase
that takes place once before we start the NMPC procedure and an
online phase that is carried out at each sampling time 𝑡 𝑗 . Before we
delve into further details of the two phases, we make the following
abbreviating definition.

Definition 7.5 For a nominal parameter �̄� , let 𝐾
(
�̄�
)
be defined as

𝐾
(
�̄�
)
≔ −

©­­­«
∇2
𝑧𝑧L

(
𝜕
𝜕𝑧 𝑐

)𝑇 (
𝜕
𝜕𝑧 𝑑A

)𝑇
𝜕
𝜕𝑧 𝑐 0 0
𝜕
𝜕𝑧 𝑑A 0 0

ª®®®¬
−1©­­«
∇2
𝑧𝑝L
𝜕
𝜕𝑝 𝑐
𝜕
𝜕𝑝 𝑑A

ª®®¬.
We refer to 𝐾

(
�̄�
)
as the feedback matrix, compare Equation (7.4a).

For the DMS NLP (7.10), the equality constraints 𝑐 consist of the match-
ing conditions (7.10b), the equality boundary constraint (7.10d), and the
initial value constraint (7.10f). The inequality constraints 𝑑 accordingly
consist of the inequality mixed state-control constraints (7.10c) and
the inequality boundary constraint (7.10e). The optimization variables
𝑧 ∈ ℝ𝑛𝑧 comprise the node values 𝑠 ∈ ℝ𝑛𝑠 and the control coefficients
𝑞 ∈ ℝ𝑛𝑞 . We thus write the feedback matrix 𝐾

(
�̄�
)
corresponding to the

DMS NLP (7.10) with parameter vector �̄� as

𝐾
(
�̄�
)
= −

©­­­­­­«
∇2
𝑠𝑠L ∇2

𝑠𝑞L
(
𝜕
𝜕𝑠 𝑐

)𝑇 (
𝜕
𝜕𝑠 𝑑

)𝑇
∇2
𝑞𝑠L ∇2

𝑞𝑞L
(

𝜕
𝜕𝑞 𝑐

)𝑇 (
𝜕
𝜕𝑞 𝑑

)𝑇
𝜕
𝜕𝑠 𝑐

𝜕
𝜕𝑞 𝑐 0 0

𝜕
𝜕𝑠 𝑑

𝜕
𝜕𝑞 𝑑 0 0

ª®®®®®®¬

−1©­­­­«
∇2
𝑠�̂�L ∇2

𝑠𝜌L ∇2
𝑠𝑣L

∇2
𝑞�̂�L ∇2

𝑞𝜌L ∇2
𝑞𝑣L

𝜕
𝜕�̂� 𝑐

𝜕
𝜕𝜌 𝑐

𝜕
𝜕𝑣 𝑐

0 𝜕
𝜕𝜌 𝑑

𝜕
𝜕𝑣 𝑑

ª®®®®¬
(7.11)

with

The Hessian blocks are evaluated
at the reference parameter values
𝑝 = �̄� =

((ˆ̄𝑥)𝑇 , (�̄�)𝑇 , (�̄�)𝑇)𝑇 and
the primal-dual solution 𝑠 , �̄� , �̄� , �̄�
of the NLP (7.10) with �̄� .

∇2
𝑠𝑠L ∈ ℝ𝑛𝑠×𝑛𝑠 , ∇2

𝑞𝑠L ∈ ℝ𝑛𝑞×𝑛𝑠 ,

∇2
𝑠𝑞L ∈ ℝ𝑛𝑠×𝑛𝑞 , ∇2

𝑞𝑞L ∈ ℝ𝑛𝑞×𝑛𝑞 ,

∇2
𝑠�̂�L ∈ ℝ𝑛𝑠×𝑛𝑥 , ∇2

𝑞�̂�L ∈ ℝ𝑛𝑞×𝑛𝑥 ,

∇2
𝑠𝜌L ∈ ℝ𝑛𝑠×𝑛𝜌 , ∇2

𝑞𝜌L ∈ ℝ𝑛𝑞×𝑛𝜌 ,

∇2
𝑠𝑣L ∈ ℝ𝑛𝑠×𝑛𝑣 , ∇2

𝑞𝑣L ∈ ℝ𝑛𝑞×𝑛𝑣 ,

7.3. SensEIS feedback 127

and

The Jacobians are evaluated at the
reference parameter values 𝑝 = �̄� =((ˆ̄𝑥)𝑇 , (�̄�)𝑇 , (�̄�)𝑇)𝑇 and the primal
solution 𝑠 , �̄� of the NLP (7.10) with
�̄� .

𝜕

𝜕𝑠
𝑐 ∈ ℝ𝑛𝑠+𝑛𝑟e×𝑛𝑠 , 𝜕

𝜕𝑠
𝑑 ∈ ℝ𝑀𝑛ℎ+𝑛𝑟i×𝑛𝑠 ,

𝜕

𝜕𝑞
𝑐 ∈ ℝ𝑛𝑠+𝑛𝑟e×𝑛𝑞 , 𝜕

𝜕𝑞
𝑑 ∈ ℝ𝑀𝑛ℎ+𝑛𝑟i×𝑛𝑞 ,

𝜕

𝜕�̂�
𝑐 ∈ ℝ𝑛𝑠+𝑛𝑟e×𝑛𝑥 , 0 =

𝜕

𝜕�̂�
𝑑 ∈ ℝ𝑀𝑛ℎ+𝑛𝑟i×𝑛𝑥 ,

𝜕

𝜕𝜌
𝑐 ∈ ℝ𝑛𝑠+𝑛𝑟e×𝑛𝜌 , 𝜕

𝜕𝜌
𝑑 ∈ ℝ𝑀𝑛ℎ+𝑛𝑟i×𝑛𝜌 ,

𝜕

𝜕𝑣
𝑐 ∈ ℝ𝑛𝑠+𝑛𝑟e×𝑛𝑣 , 𝜕

𝜕𝑣
𝑑 ∈ ℝ𝑀𝑛ℎ+𝑛𝑟i×𝑛𝑣 .

The detailed structure of the blocks in the feedback matrix (7.11) for
the DMS NLP is given in Appendix C.

Offline phase A fundamental component that sets ourmethod apart
from the explicit MLI feedback proposed in [120] [120]: Kirches et al. (2010), “Efficient

Numerics for Nonlinear Model Predic-
tive Control”

and explicit multi-
parametric NMPC is that we compute the feedback matrix 𝐾 neither
for only a single nominal parameter �̄� nor do we map out the entire
space P ⊂ ℝ𝑛𝑝 from which the parameter can be chosen. Instead, we
compute 𝐾

(
�̄� 𝑖

)
for selected scenarios, i.e., selected

�̄� 𝑖 = ©­«
ˆ̄𝑥 𝑖
�̄�𝑖

�̄� 𝑖

ª®¬ ∈ P, 𝑖 = 0, . . . , 𝑛scen.

The selection of suitable scenarios is primarily a task for the user, who
should make use of problem-specific domain knowledge. Reminder: EACC scenarios

At the beginning of the chapter, we
have mentioned scenarios which
could be used for the external in-
puts in an EACC system.

However,
we believe that developing automated scenario selection strategies
is a promising direction for future research.

For each scenario �̄� 𝑖 ∈ P, we then solve the DMS NLP (7.10) to obtain
the respective primal variables 𝑠 𝑖 , �̄� 𝑖 and associated dual variables
�̄�𝑖 , �̄�𝑖

A
. In general, any suitable NLP solver can be applied to solve

the NLP (7.10). Our recommendation, though, is to use the tailored
SQP method as described in Subsection 3.3.2. The advantage of this
tailored SQP method over other general-purpose NLP solvers is that
it efficiently exploits the structure of NLP (7.10).

The final step in the offline phase for each scenario is to explicitly
construct the feedback matrix 𝐾

(
�̄� 𝑖

)
according to Equation (7.11) us-

ing suitable numerical linear algebra techniques, for which we refer
to textbooks about numerical linear algebra like [56, 182] [182]: Trefethen et al. (1997), Numerical

Linear Algebra
[56]: Demmel (1997), Applied Numeri-
cal Linear Algebra

. Of course,
explicit inversion of the first matrix on the right-hand side of Equa-
tion (7.11) should be avoided. Fortunately, we can compute the feed-
back matrix without doing so by solving the matrix linear system
posed by Equation (7.11). This is especially efficient if In other words, the linear system

can be solved if the number of
parameters and external inputs is
much smaller than the number of
rows/columns of the inverse on the
right-hand side of Equation (7.11).

𝑛𝑝 = 𝑛𝑥 + 𝑛𝜌 + 𝑛𝑣 � 2(𝑀 + 1)𝑛𝑥 +𝑀(𝑛𝑞 + 𝑛ℎ) + 𝑛𝑟e + 𝑛𝑟i .

128 7. Sensitivity and External Input Scenario based Feedback

Even though the duration of the offline phase is less relevant, we still
recommend that future research addresses the question of whether
structure exploitation is possible to accelerate the solution of the
linear system (7.11).

If we only need the feedback value 𝑢 𝑗 and thus only 𝑞0 at each sam-
pling time, we can decrease the storage requirement and the required
computation in the online phase by only storing the block row of
𝐾
(
�̄� 𝑖

)
that yields 𝜕

𝜕𝑝 𝑞0, i.e., the reduced feedback matrix

�̂�
(
�̄� 𝑖

)
≔ (0, 𝕀, 0)𝐾 (

�̄� 𝑖
)
, (7.12)

where the first zero block has the size 𝑛𝑞0 × (𝑀 + 1)𝑛𝑥 , the identity
block the size 𝑛𝑞0 × 𝑛𝑞0 , and the second zero block the size

𝑛𝑞0 × 𝑛𝑞 − 𝑛𝑞0 + (𝑀 + 1)𝑛𝑥 +𝑀𝑛ℎ + 𝑛𝑟e + 𝑛𝑟i .

The external input discretization
𝑣 𝑗 might be known already before
the sampling time. But, the current
state 𝑥 𝑗 and the parameter 𝜌𝑗 are
only available from the sampling
time 𝑡 𝑗 onwards.

Online phase At the sampling time 𝑡 𝑗 , the parametrizing quantities,
i.e., the current state 𝑥 𝑗 , the parameter 𝜌 𝑗 , and the external input
discretization 𝑣 𝑗 become known. The task at hand at this point is
to choose a suitable scenario, i.e., a �̄� 𝑖 ∈ P, whose feedback ma-
trix 𝐾

(
�̄� �̄�

)
we use to compute the feedback. We suggest the simple

procedure of defining the closest scenario �̄� �̄� by

The external inputs are scaled down
in order to avoid that they domi-
nate the scenario selection as there
is a vector for the external input for
each shooting interval, whereas the
current state and the parameter are
only a single vector for the entire
horizon each.

�̄� ≔ arg min
𝑖∈{0,...,𝑛scen}

 ˆ̄𝑥 𝑖 − 𝑥 𝑗

𝑊𝑥
+

�̄�𝑖 − 𝜌 𝑗

𝑊𝜌
+ 1
𝑀 + 1

�̄� 𝑖 − 𝑣 𝑗

𝑊𝑣
, (7.13)

where ‖·‖𝑊 is a weighted Euclidean norm with weight matrix𝑊. The
weight matrices are introduced to account for different scaling of the
different components. Moreover, the weight matrices can be used to
put more weight on some of the components based on expert knowl-
edge regarding the application.

Different selection strategies are also conceivable. In particular, we
are choosing a single scenario at each sampling time. A different idea
is to consider the feedback based on multiple scenarios at the same
time and combine the results in an appropriate way. We suggest ex-
ploring this idea in future research.

Once the reference scenario �̄� �̄� has been selected, it only remains to
compute the update step either as

©­­­«
Δ𝑠
Δ𝑞
−Δ𝜆
−Δ𝜇A

ª®®®¬ = 𝐾
(
�̄� �̄�

)©­­«
ˆ̄𝑥 �̄� − 𝑥 𝑗
�̄� �̄� − 𝜌 𝑗

�̄� �̄� − 𝑣 𝑗
ª®®¬ (7.14)

or, in the reduced case, as

Δ𝑞0 = �̂�
(
�̄� �̄�

)©­­«
ˆ̄𝑥 �̄� − 𝑥 𝑗
�̄� �̄� − 𝜌 𝑗

�̄� �̄� − 𝑣 𝑗
ª®®¬. (7.15)

7.3. SensEIS feedback 129

Following Equation (7.2), the steps are then added to the solutions
obtained in the scenarios, i.e., we set

©­­­«
𝑠
𝑞
𝜆

𝜇A(𝑧,𝑝)

ª®®®¬ =

©­­­­«
𝑠 �̄�

�̄� �̄�

�̄� �̄�

�̄��̄�
A

ª®®®®¬
+

©­­­«
Δ𝑠
Δ𝑞
Δ𝜆
Δ𝜇A

ª®®®¬ (7.16)

or, in the reduced case,

𝑞0 = �̄� �̄�0 + Δ𝑞0. (7.17)

7.3.2. Variant 2: Using the feedback generating QP

The variable step Δ𝑧, Δ𝜆, Δ𝜇A computed using the feedback matrix
𝐾
(
�̄�
)
according to ©­«

Δ𝑧
−Δ𝜆
−Δ𝜇A

ª®¬ = 𝐾
(
�̄�
)
Δ𝑝

solves the linear system

©­­­«
∇2
𝑧𝑧L

(
𝜕
𝜕𝑧 𝑐

)𝑇 (
𝜕
𝜕𝑧 𝑑A

)𝑇
𝜕
𝜕𝑧 𝑐 0 0
𝜕
𝜕𝑧 𝑑A 0 0

ª®®®¬
©­«

Δ𝑧
−Δ𝜆
−Δ𝜇A

ª®¬ = −©­­«
∇2
𝑧𝑝L
𝜕
𝜕𝑝 𝑐
𝜕
𝜕𝑝 𝑑A

ª®®¬Δ𝑝
or equivalently

©­­­«
∇2
𝑧𝑧L

(
𝜕
𝜕𝑧 𝑐

)𝑇 (
𝜕
𝜕𝑧 𝑑A

)𝑇
𝜕
𝜕𝑧 𝑐 0 0
𝜕
𝜕𝑧 𝑑A 0 0

ª®®®¬
©­«

Δ𝑧
−(�̄� + Δ𝜆)
−(�̄�A+ Δ𝜇A

)ª®¬ = −
©­­­«
∇2
𝑧𝑝LΔ𝑝 +

(
𝜕
𝜕𝑧 𝑐

(
�̄� , �̄�

))𝑇
�̄� +

(
𝜕
𝜕𝑧 𝑑A

(
�̄� , �̄�

))𝑇
�̄�A

𝜕
𝜕𝑝 𝑐Δ𝑝
𝜕
𝜕𝑝 𝑑AΔ𝑝

ª®®®¬. (7.18)

The reference variables �̄�, �̄�, �̄�A are the optimal solution and multi-
pliers of the NLP

min
𝑧 ∈ ℝ𝑛𝑧

𝐽
(
𝑧, �̄�

)
s.t. 0 = 𝑐

(
𝑧, �̄�

)
,

0 = 𝑑A
(
𝑧, �̄�

) (7.19)

i.e., the solution of NLP (7.1) with the active inequalities considered
as equality constraints. Thus, the reference variables satisfy the KKT
conditions for NLP (7.19) and thus in particular

0 = ∇𝑧 𝐽
(
�̄� , �̄�

) − (
𝜕

𝜕𝑧
𝑐
(
�̄� , �̄�

))𝑇
�̄� −

(
𝜕

𝜕𝑧
𝑑A

(
�̄� , �̄�

))𝑇
�̄�A.

130 7. Sensitivity and External Input Scenario based Feedback

Therefore, we can equivalently write the linear system (7.18) as

©­­­«
∇2
𝑧𝑧L

(
𝜕
𝜕𝑧 𝑐

)𝑇 (
𝜕
𝜕𝑧 𝑑A

)𝑇
𝜕
𝜕𝑧 𝑐 0 0
𝜕
𝜕𝑧 𝑑A 0 0

ª®®®¬
©­«

Δ𝑧
−(�̄� + Δ𝜆)
−(�̄�A+ Δ𝜇A

)ª®¬ = −©­­«
∇2
𝑧𝑝LΔ𝑝 + ∇𝑧 𝐽

𝜕
𝜕𝑝 𝑐Δ𝑝
𝜕
𝜕𝑝 𝑑AΔ𝑝

ª®®¬.
(7.20)

Similar to the derivation of the SQP method in Subsection 3.3.1, we
interpret the linear system (7.20) as the KKT optimality system of a QP.
The suitable QP in the present case is given by

Under the stated smoothness as-
sumptions, the Hessian of the La-
grangian is symmetric and thus(
∇2
𝑧𝑝L

)𝑇
= ∇2

𝑝𝑧L.

min
Δ𝑧 ∈ ℝ𝑛𝑧

1
2
Δ𝑧𝑇∇2

𝑧𝑧L
(
�̄� , �̄�, �̄�A, �̄�

)
Δ𝑧 + Δ𝑝𝑇∇2

𝑝𝑧L
(
�̄� , �̄�, �̄�A, �̄�

)
Δ𝑧 + ∇𝑧 𝐽 (�̄� , �̄�)𝑇Δ𝑧

s.t. 0 =
𝜕

𝜕𝑧
𝑐
(
𝑧, �̄�

)
Δ𝑧 + 𝜕

𝜕𝑝
𝑐
(
𝑧, �̄�

)
Δ𝑝,

0 =
𝜕

𝜕𝑧
𝑑A

(
𝑧, �̄�

)
Δ𝑧 + 𝜕

𝜕𝑝
𝑑A

(
𝑧, �̄�

)
Δ𝑝.

(7.21)

We continue to follow the ideas used in the derivation of the SQP
method and propose to extend the QP (7.21) such that all inequalities
are considered. This leads to the QP

min
Δ𝑧 ∈ ℝ𝑛𝑧

1
2
Δ𝑧𝑇∇2

𝑧𝑧L
(
�̄� , �̄�, �̄�A, �̄�

)
Δ𝑧 + Δ𝑝𝑇∇2

𝑝𝑧L
(
�̄� , �̄�, �̄�A, �̄�

)
Δ𝑧 + ∇𝑧 𝐽 (�̄� , �̄�)𝑇Δ𝑧

s.t. 0 =
𝜕

𝜕𝑧
𝑐
(
𝑧, �̄�

)
Δ𝑧 + 𝜕

𝜕𝑝
𝑐
(
𝑧, �̄�

)
Δ𝑝,

0 ≤ 𝜕

𝜕𝑧
𝑑
(
𝑧, �̄�

)
Δ𝑧 + 𝜕

𝜕𝑝
𝑑
(
𝑧, �̄�

)
Δ𝑝.

(7.22)

In our case where the general NLP (7.1) is given by the NLP (7.10) that
arises from the DMS discretization of OCP (7.9) with a reference pa-
rameter vector �̄� , the QP (7.22) for a current parameter vector 𝑝 𝑗 is
given by

min
Δ𝑠=(Δ𝑠𝑇0 ,...,Δ𝑠𝑇𝑀)𝑇∈ℝ𝑛𝑠

Δ𝑞=(Δ𝑞𝑇0 ,...,Δ𝑞𝑇𝑀−1)𝑇∈ℝ𝑛𝑞

1
2

(
Δ𝑠
Δ𝑞

)𝑇 (
𝐵𝑠𝑠 𝐵𝑠𝑞

𝐵𝑞𝑠 𝐵𝑞𝑞

) (
Δ𝑠
Δ𝑞

)
+ ©­«

Δ𝑥 𝑗

Δ𝜌 𝑗

Δ𝑣 𝑗

ª®¬
𝑇©­«
𝐵�̂�𝑠 𝐵�̂�𝑞

𝐵𝜌𝑠 𝐵𝜌𝑞

𝐵𝑣𝑠 𝐵𝑣𝑞

ª®¬
(
Δ𝑠
Δ𝑞

)
+

(
𝑏𝑠

𝑏𝑞

)𝑇 (
Δ𝑠
Δ𝑞

)
(7.23a)

s.t. 0 = 𝑆𝑠𝑚Δ𝑠𝑚 + 𝑆𝑞𝑚Δ𝑞𝑚 + 𝑆𝜌𝑚Δ𝜌 𝑗 + 𝑆𝑣𝑚Δ𝑣 𝑗𝑚 − Δ𝑠𝑚+1 , 𝑚 = 0, . . . , 𝑀 − 1, (7.23b)

0 ≤ 𝐻𝑠
𝑚Δ𝑠𝑚 + 𝐻𝑞

𝑚Δ𝑞𝑚 + 𝐻𝜌
𝑚Δ𝜌

𝑗 + 𝐻𝑣
𝑚Δ𝑣

𝑗
𝑚 + ℎ̄𝑚 , 𝑚 = 0, . . . , 𝑀 − 1, (7.23c)

0 = 𝑅e
𝑠0Δ𝑠0 + 𝑅e

𝑠𝑀Δ𝑠𝑀 + 𝑅e
𝜌Δ𝜌

𝑗 + 𝑅e
𝑣0
Δ𝑣 𝑗0 + 𝑅e

𝑣𝑀
Δ𝑣 𝑗𝑀 , (7.23d)

0 ≤ 𝑅i
𝑠0Δ𝑠0 + 𝑅i

𝑠𝑀Δ𝑠𝑀 + 𝑅i
𝜌Δ𝜌

𝑗 + 𝑅i
𝑣0
Δ𝑣 𝑗0 + 𝑅i

𝑣𝑀
Δ𝑣 𝑗𝑀 + 𝑟i , (7.23e)

0 = Δ𝑥 𝑗 − Δ𝑠0. (7.23f)

7.3. SensEIS feedback 131

In addition to the notation defined in Equations (3.25) – (3.29) on p. 34
and in Equations (6.11) – (6.15) on p. 113, we have introduced in Equa-
tion (7.23) the steps ©­«

Δ𝑥 𝑗

Δ𝜌 𝑗

Δ𝑣 𝑗

ª®¬ ≔ ©­«
𝑥 𝑗 − ˆ̄𝑥
𝜌 𝑗 − �̄�
𝑣 𝑗 − �̄�

ª®¬,
and the Hessian blocks are now evaluated at the reference parameter
values

𝑝 = �̄� = ©­«
ˆ̄𝑥
�̄�
�̄�

ª®¬
and the primal-dual solution 𝑠 , �̄� , �̄�, �̄� of the NLP (7.10) with �̄� . Simi-
larly, the sensitivity matrices, constraints Jacobians, and residuals are
evaluated at 𝑠 , �̄� , and �̄� .

As we have done for the QP that arises in the SQP method tailored to
the DMS NLP (3.14), we can condense the QP (7.23) to a QP that has only
Δ𝑠0 and Δ𝑞 as optimization variables. We describe the condensing
procedure for QP (7.23) in Appendix E.

The resulting condensed QP has the same form as the QP (3.41) that
we have encountered in the tailored SQP method for the DMS NLP.
That means the condensed form of QP (7.23) is given by

min
Δ𝑠0∈ℝ𝑛𝑥

Δ𝑞=(Δ𝑞𝑇0 ,...,Δ𝑞𝑇𝑀−1)𝑇∈ℝ𝑛𝑞

1
2

(
Δ𝑠0
Δ𝑞

)𝑇 (
�̂�𝑠0𝑠0 �̂�𝑠0𝑞

�̂�𝑞𝑠0 �̂�𝑞𝑞

) (
Δ𝑠0
Δ𝑞

)
+

(
𝑏𝑠0

(
𝜌 𝑗 , 𝑣 𝑗

)
𝑏𝑞

(
𝜌 𝑗 , 𝑣 𝑗

))𝑇 (
Δ𝑠0
Δ𝑞

)
s.t. 0 ≤ 𝐻𝑠

0Δ𝑠0 + 𝐻𝑞
0Δ𝑞0 + ℎ0

(
𝜌 𝑗 , 𝑣 𝑗

)
,

0 ≤ �̂�𝑠
𝑚Δ𝑠0 +

𝑚∑
𝑗=0

�̂�
𝑞 𝑗
𝑚Δ𝑞 𝑗 + ℎ̂𝑚

(
𝜌 𝑗 , 𝑣 𝑗

)
, 𝑚 = 1, . . . , 𝑀 − 1,

0 = �̂�e
0Δ𝑠0 +

𝑀−1∑
𝑗=0

�̂�e
𝑞 𝑗Δ𝑞 𝑗 + 𝑟e (𝜌 𝑗 , 𝑣 𝑗) ,

0 ≤ �̂�i
0Δ𝑠0 +

𝑀−1∑
𝑗=0

�̂�i
𝑞 𝑗Δ𝑞 𝑗 + 𝑟i (𝜌 𝑗 , 𝑣 𝑗) ,

0 = Δ𝑥 𝑗
(
𝑥 𝑗

) − 𝑠0 − Δ𝑠0 ,

(7.24)

where we have explicitly highlighted that only

▶ the residuals ℎ0, ℎ̂𝑚 , 𝑟e, and 𝑟i,
▶ the gradients 𝑏𝑠0 and 𝑏𝑞 ,
▶ the step Δ𝑥 𝑗 in the initial value

depend on the new parameters 𝑥 𝑗 , 𝜌 𝑗 , 𝑣 𝑗 . In fact, these are the only
quantities that we still need to compute online to set up the QP (7.24).
All condensing matrices can be computed in the offline phase as they
only depend on the reference parameters that characterize the sce-
narios. Therefore, the computational effort required for the condens-
ing in SensEIS feedback is comparable to the one for Level B in the
MLI scheme. The complete adjusted condensing procedure is given
in Appendix E.

132 7. Sensitivity and External Input Scenario based Feedback

Let now Δ𝑠, Δ𝑞 denote the primal solution of the QP (7.23), or the
blown up solution of QP (7.24), and 𝜆QP, 𝜇QP the associated dual
variables. Let further �̄� be the index of the selected reference scenario
according to Equation (7.13). We then again follow Equation (7.2) and
compute our approximate solution to NLP (7.10) by setting(

𝑠
𝑞

)
=

(
𝑠 �̄�

�̄� �̄�

)
+

(
Δ𝑠
Δ𝑞

)
,(

𝜆
𝜇

)
=

(
𝜆QP
𝜇QP

)
,

(7.25)

or, in the reduced case, again only
In the reduced case, we do not even
need to blow up the solution of the
condensed QP (7.24).

Reminder: Generalized Tangential
Predictor (TP)

We discussed the generalized TP in
Subsection 3.4.3 as the RTI scheme
produces steps that are approx-
imated generalized TPs. We said
there that in simple terms, a TP
is a first-order approximation at
smooth parts of the solution man-
ifold and a generalized TP can even
”jump” over the non-differentiable
points of the solution manifold by
taking active set changes into ac-
count.

𝑞0 = �̄� �̄�0 + Δ𝑞0. (7.26)

As we solve the NLP (7.10) until convergence for the scenarios, the step
Δ𝑠,Δ𝑞 that we compute by solving the QP (7.22) is a generalized TP.
Therefore, active set changes can be taken into account.

7.3.3. Full algorithm

In the offline phase of SensEIS feedback, we perform Algorithm 7.1. In
the online phase, we perform Algorithm 7.2 at each sampling time 𝑡 𝑗
when the current parameters

𝑝 𝑗 ≔ ©­«
𝑥 𝑗

𝜌 𝑗

𝑣 𝑗

ª®¬
become known. As we have illustrated in the previous two subsec-
tions, there are two different variants of SensEIS feedback. In the first,
we use the feedback matrix, and in the second, we use the feedback
generating QP. In both variants, we can choose whether we compute
an approximation for all primal-dual variables or only for the first
control coefficients 𝑞0, which are the only ones we need to provide
feedback to the system.

7.3.4. Combination with the MLI scheme

So far, we have presented SensEIS feedback as a standalone method.
However, we can also use SensEIS feedback to extend the MLI scheme
that we presented in Section 3.5. For that, we can think of three dif-
ferent approaches, which we present in the following paragraphs. Hy-
brids between these three approaches are also conceivable. However,
we will not discuss these further.

SensEIS feedback as a fallback In this approach, we exploit that the
SensEIS feedback for one sampling time 𝑡 𝑗 does not depend on vari-
ables from any other sampling time. In contrast, the MLI scheme also
requires variables and linearizations from previous sampling times.

7.3. SensEIS feedback 133

Algorithm 7.1: Offline phase for SensEIS feedback.

Input: A set of scenarios �̄� 𝑖 = ©­«
ˆ̄𝑥 𝑖
�̄�𝑖

�̄� 𝑖
ª®¬, 𝑖 = 0, . . . , 𝑛scen.

Output: For all 𝑖 = 0, . . . , 𝑛scen

Variant 1 with full feedback:
▶ the optimal primal-dual solution 𝑠 �̄� , �̄� �̄� , �̄� �̄� , �̄��̄�

A
for the active

set A
(
𝑠 �̄� , �̄� �̄� , �̄� 𝑖

)
,

▶ the feedback matrix 𝐾
(
�̄� 𝑖

)
given by Equation (7.11)

Variant 1 with reduced feedback:
▶ the optimal first control coefficients �̄� �̄�0,
▶ the reduced feedback matrix �̂�

(
�̄� 𝑖

)
given by Equation (7.12)

Variant 2 with full feedback:
▶ the optimal primal-dual solution 𝑠 �̄� , �̄� �̄� , �̄� �̄� , �̄��̄�

A
for the active

set A
(
𝑠 �̄� , �̄� �̄� , �̄� 𝑖

)
,

▶ all components needed to set up QP (7.22) or its condensed
form (7.24)

Variant 2 with reduced feedback:
▶ the first optimal control coefficients �̄� �̄�0,
▶ all components needed to set up QP (7.22) or its condensed

form (7.24)

for 𝑖 ← 0 to 𝑛scen do
𝑠 �̄� , �̄� �̄� , �̄� �̄� , �̄��̄�

A
← Solve NLP (7.10) with �̄� = �̄� 𝑖

Compute Jacobians of constraints w.r.t. 𝑠, 𝑞, �̂�, 𝜌, 𝑣
Compute Hessian of Lagrangian w.r.t. 𝑠, 𝑞, �̂�, 𝜌, 𝑣
Variant 1:

A
(
𝑠 �̄� , �̄� �̄� , �̄� 𝑖

)
← Identify active set according to

Definition 7.2
𝐾
(
�̄� 𝑖

) ← Compute full feedback matrix using
Equation (7.11)
Only for reduced feedback:
�̂�
(
�̄� 𝑖

) ← Compute reduced feedback matrix using
Equation (7.12)

Variant 2:
𝐸𝑠0𝑚 , 𝐸

𝑞 𝑗
𝑚 ← Compute matrices (3.31), (3.32),

�̂�
𝑞 𝑗
𝑚 , �̂�𝑠

𝑚 ← Condense constraints (3.24c) w. (3.39),
�̂�e
𝑞𝑚 , �̂�

e
0 ← Condense constraints (3.24d) w. (3.40),

�̂�i
𝑞𝑚 , �̂�

i
0 ← Condense constraints (3.24e) w. (3.40)

�̂�𝑠0𝑠0 , �̂�𝑠0𝑞

�̂�𝑞𝑠0 , �̂�𝑞𝑞
← Condense Hessian w. (3.35), (3.36)

134 7. Sensitivity and External Input Scenario based Feedback

Algorithm 7.2: Online phase for SensEIS feedback.

Input:

▶ a set of scenarios ©­«
ˆ̄𝑥 𝑖
�̄�𝑖

�̄� 𝑖
ª®¬, 𝑖 = 0, . . . , 𝑛scen,

▶ the output of Algorithm 7.1

Output: The control coefficients 𝑞0 and, for the full feedback,
additionally 𝑠, 𝑞,𝜆, 𝜇

1 �̄� ← Identify closest scenario using (7.13)
Variant 1 with full feedback:

2 Δ𝑠,Δ𝑞,Δ𝜆,Δ𝜇A← Compute update step using full feedback
matrix 𝐾

(
�̄� �̄�

)
using (7.14)

3 𝑠, 𝑞,𝜆, 𝜇A(𝑧,𝑝) ← Compute approximate solution using (7.16)

Variant 1 with reduced feedback:
2 Δ𝑞0 ← Compute update step using reduced feedback matrix

�̂�
(
�̄� �̄�

)
using (7.15)

3 𝑞0 ← Compute approximate solution using (7.17)
Variant 2 with full feedback:

2 Complete setting up condensed QP (7.24)
3 Δ𝑠,Δ𝑞,𝜆QP , 𝜇QP ← Solve QP (7.24) and blow up its solution
4 𝑠, 𝑞,𝜆, 𝜇← Compute approximate solution using (7.25)
Variant 2 with reduced feedback:

2 Complete setting up condensed QP (7.24)
3 Δ𝑞0 ← Solve QP (7.24)
4 𝑞0 ← Compute approximate solution using (7.26)

In SensEIS feedback, this information is taken from the precomputed
scenarios. Moreover, SensEIS feedback is very fast, especially if the
feedback matrix is used. Thus, SensEIS feedback can serve well as a
fallback option when applying the MLI scheme. This means that we
use SensEIS feedback whenever a QP in the MLI scheme could not be
solved successfully in time. This can either happen due to very strict
limitations on the available computation time or because a QP hap-
pens to be infeasible. The latter is an inherent difficulty of the SQP
method, as demonstrated in [143, Section 18.3][143]: Nocedal et al. (2006), Numerical

Optimization
.

If the MLI feedback could not be computed successfully, we then ex-
ecute the online phase of SensEIS feedback as given in Algorithm 7.2
after the failure has happened. For this purpose, the feedback matrix-
based variant with reduced SensEIS feedback is favorable as this vari-
ant has the lowest computation time of all variants. To make sure that
SensEIS feedback is, in fact, available in time, the time limit for the MLI
feedback phase should be shortened such that this fallback strategy
can still be realized.

7.4. Challenges and future directions of research 135

SensEIS feedback as a provider of derivatives and variables The
idea of this approach is that the Hessian blocks, linearizations, and
primal-dual variables that have been computed for the scenarios are
used to update the respective components in the MLI QP. In that
sense, SensEIS feedback takes a similar role as Level D in the MLI
scheme, with the difference that its feedback is not necessarily passed
to the system. The advantage over the use of Level D or C is that the
derivatives do not have to be computed online as they are already
available from the scenarios. Therefore, new derivatives can be used
for faster lower MLI levels without having to use the slower Levels D
and C.

In this approach, we only perform online the first step of Algorithm 7.2,
i.e., the scenario selection, and then communicate the derivatives and
variables from the scenarios to the MLI levels.

If the derivatives provided by the offline scenarios are used without
the respective primal-dual variables as current variables in the MLI
scheme, we are in an inexact SQP method setting. Hence, modified
gradients have to be used, as in Level C and the lower levels.

We explained the idea behind the
modified gradients in the descrip-
tion of MLI Level C on p. 46.

SensEIS feedback as a scheduled MLI level This approach extends
the previous approach. Here, SensEIS feedback does not only provide
derivative and variable information to other MLI levels, but we also
use it to provide feedback. Accordingly, SensEIS feedback is treated
the same as the other MLI levels. That means that SensEIS feedback
can be scheduled with other MLI levels and communicates its deriva-
tive and variable information to other MLI levels according to the cho-
sen communication scheme.

Reminder: MLI communication
schemes

We described the different MLI
communication schemes in Subsec-
tion 3.5.2.

A difference from the existing MLI levels
is that the SensEIS level does not obtain derivatives and usually no
variables from the other MLI levels. The reason for that is that the Sen-
sEIS level has good derivative and variable information at its disposal
from the scenarios.

7.4. Challenges and future directions of
research

In this section, we turn our attention to challenges that we have ob-
served when applying SensEIS feedback to the EACC system applica-
tion presented in Chapter 8. For each challenge, we discuss remedies
that we have found or future research directions required to over-
come these challenges.

Inequality violations with Variant 1 The feedback matrix-based vari-
ant, i.e., Variant 1, of SensEIS feedback potentially violates inequality
constraints that are inactive in the optimal solution of the selected
reference scenario. In Figure 7.1, we can see, for example, that the max-
imum velocity and the minimal acceleration are violated in the EACC
system application if we use Variant 1 of SensEIS feedback.

136 7. Sensitivity and External Input Scenario based Feedback

0 500 1000 1500 2000

20

40

60

80

100

120

140

(a) Velocity trajectory

0 500 1000 1500 2000
-4

-2

0

2

(b) Control trajectory

Figure 7.1.: Variant 1 of SensEIS feedback violates upper speed limits (a) and lower control bounds (b) in the EACC system application.

One remedy is to use the second variant of SensEIS feedback, which
is based on the feedback generating QP (7.22). While still being a very
fast feedback strategy, this second variant is slower than the first.
Therefore, we might want to use Variant 1 as often as possible instead
of Variant 2. To achieve that, we suggest two strategies. The first is to
only follow the computed step direction until the first inactive con-
straint becomes active. The full strategy is presented for the QP (7.22)
in Algorithm 7.3. To state Algorithm 7.3, let for a fixed reference index
�̄� ∈ {1, . . . , 𝑛scen} and fixed new parameters 𝜌 𝑗 , 𝑣 𝑗 be Δ𝑠0 = Δ𝑥 𝑗 and
Δ𝑞 be the step computed by Variant 1 of SensEIS feedback. For these,
we define

𝑏 captures the fixed effect of the
parameters in the linearized con-
straints. 𝑎 captures the one of the
step in the controls, which we can
choose. The step size is then cho-
sen such that the effect of the step
in the controls compensates the ef-
fect of the parameters such that fea-
sibility is achieved – if possible.

𝑎 =
©­­«

𝑎1
...

𝑎𝑀𝑛𝑑+𝑛𝑟i

ª®®¬ ≔

©­­­­­­­­­­­­«

𝐻𝑞
0Δ𝑞0

1∑
𝑗=0
�̂�
𝑞 𝑗
1 Δ𝑞 𝑗

...
𝑀−1∑
𝑗=0

�̂�
𝑞 𝑗
𝑀−1Δ𝑞 𝑗

𝑀−1∑
𝑗=0

�̂�i
𝑞 𝑗Δ𝑞 𝑗

ª®®®®®®®®®®®®¬
, (7.27)

𝑏 =
©­­«

𝑏1
...

𝑏𝑀𝑛𝑑+𝑛𝑟i

ª®®¬ ≔

©­­­­­­«

𝐻𝑠
0Δ𝑠0 + ℎ0

(
𝜌 𝑗 , 𝑣 𝑗

)
�̂�𝑠

1Δ𝑠0 + ℎ̂1
(
𝜌 𝑗 , 𝑣 𝑗

)
...

�̂�𝑠
𝑀−1Δ𝑠0 + ℎ̂𝑀−1

(
𝜌 𝑗 , 𝑣 𝑗

)
�̂�i

0Δ𝑠0 + 𝑟i (𝜌 𝑗 , 𝑣 𝑗)
ª®®®®®®¬
. (7.28)

7.4. Challenges and future directions of research 137

The inspiration for this strategy is the homotopy step length determi-
nation in the QP solution algorithm qpOASES presented in [74] [74]: Ferreau et al. (2014), “qpOASES:

a parametric active-set algorithm for
quadratic programming”

.

Algorithm 7.3: Step size strategy for Variant 1 of SensEIS feedback.
Input:

▶ new parameters 𝑥 𝑗 , 𝜌 𝑗 , 𝑣 𝑗 ,
▶ reference index �̄� ∈ {1, . . . , 𝑛scen} selected in step 1 in

Algorithm 7.2,
▶ the step Δ𝑠0 = Δ𝑥 𝑗 and Δ𝑞 computed by Variant 1 of SensEIS

feedback

Output: Step length 𝜅 ∈ [0, 1] for adjusted step
(
Δ𝑥 𝑗

𝜅Δ𝑞

)
1 𝑎𝑖 , 𝑏𝑖 ← Evaluate (7.27), (7.28)
2 if 𝑎𝑖 + 𝑏𝑖 < 0 and 𝑏𝑖 < 0 hold for some 𝑖 ∈ {1, . . . , 𝑀𝑛𝑑 + 𝑛𝑟i} then
3 return no feasible step size found

4 Set
𝜒+ ≔ {𝑖 | 𝑏𝑖 < 0, 𝑎𝑖 + 𝑏𝑖 ≥ 0} ,
𝜒− ≔ {𝑖 | 𝑏𝑖 ≥ 0, 𝑎𝑖 + 𝑏𝑖 < 0}

5 Set

𝜅min ≔

{
max𝑖∈𝜒+

−𝑏𝑖
𝑎𝑖
, if 𝜒+ ≠ ∅,

0, else
,

𝜅max ≔

{
min𝑖∈𝜒−

−𝑏𝑖
𝑎𝑖
, if 𝜒− ≠ ∅,

1, else
6 if 𝜅min ≤ 𝜅max then
7 return 𝜅 = 𝜅max

8 else
9 return no feasible step size found

Even if a feasible step size 𝜅 could be found, this heuristic can have
the following two drawbacks. First, while an inequality constraint vi-
olation can be avoided, we might pay for this by violating equality
constraints occurring in QP (7.24). We have deliberately designed Al-
gorithm 7.3 such that the linearized initial value constraint is satisfied
though. Moreover, to execute Algorithm 7.3, we need some matrices
that occur in QP (7.24), which leads to a higher storage requirement
than Variant 1 typically has. It also should be noted that only viola-
tions of the linearized inequalities are avoided, not necessarily of the
original nonlinear inequality constraints.

While Algorithm 7.3 can help mitigate the challenge of inequality vio-
lations, it is not a fully satisfying remedy. Using Variant 2 of SensEIS
feedback instead is amore reliable approach to avoid inequality viola-
tions. To still use Variant 1 as often as possible, we suggest adaptively
switching between the two variants as follows. If a step computed by
Variant 1 leads to a violation of the (linearized) inequality constraints,
we switch to Variant 2 for the next sampling time where SensEIS feed-
back is used and possibly apply Algorithm 7.3 to adjust the step from
Variant 1. If the active set has stayed the same for several sampling
times with Variant 2 SensEIS feedback, we switch back to Variant 1.

138 7. Sensitivity and External Input Scenario based Feedback

Figure 7.2.: The SensEIS feedback chat-
ters due to rapid alternation between
reference scenarios in the EACC system
application.

1400 1450 1500 1550

-1

0

1

2

Chattering due to scenario selection If we use SensEIS feedback at
several sampling times in quick succession, we can encounter the
situation where SensEIS feedback leads to chattering in the control
variables. Chattering means that the control frequently switches be-
tween two or more identical or very similar values. Figure 7.2 shows
such a situation for the EACC system application.

This problem is caused by the way we select the reference scenario,
i.e., by Equation (7.13). If the distances of two or more scenarios to the
current parameters are very similar, i.e.,

 ˆ̄𝑥 𝑙 − 𝑥 𝑗

𝑊𝑥

+

�̄�𝑙 − 𝜌 𝑗

𝑊𝜌
+ 1
𝑀 + 1

�̄� 𝑙 − 𝑣 𝑗

𝑊𝑣

≈

 ˆ̄𝑥 𝑖 − 𝑥 𝑗

𝑊𝑥
+

�̄�𝑖 − 𝜌 𝑗

𝑊𝜌
+ 1
𝑀 + 1

�̄� 𝑖 − 𝑣 𝑗

𝑊𝑣

for some 𝑖 ≠ 𝑙 ∈ {1, . . . , 𝑛scen}, then �̄� can quickly alternate between
two or more values.

Fortunately, this challenge can usually be overcome by introducing a
discount for the latest reference index. That means that we modify
our reference index selection (7.13) to

�̄� ≔ arg min
𝑖∈{0,...,𝑛scen}

𝜔
(
𝑖 , �̄�old

) (

 ˆ̄𝑥 𝑖 − 𝑥 𝑗

𝑊𝑥
+

�̄�𝑖 − 𝜌 𝑗

𝑊𝜌
+ 1
𝑀 + 1

�̄� 𝑖 − 𝑣 𝑗

𝑊𝑣

)
, (7.29)

where �̄�old denotes the previously chosen reference index andwhere

𝜔
(
𝑖 , �̄�old

)
≔

{
𝛾, if 𝑖 = �̄�old ,

1, else,

with a constant 𝛾 ∈ (0, 1). In our experiments for the EACC system
application, 𝛾 = 0.8 worked well. A second possible remedy is to
smoothly blend the feedback from several nearby scenarios.

Chattering in combination with the MLI scheme If SensEIS feedback
is scheduled as an MLI level, we can again encounter chattering. In
this case, the chattering occurs if both MLI Level D and SensEIS level
are used. An example is shown in Figure 7.3. The reason is that Level
D and SensEIS level use linearizations that are independent of each
other. Therefore, the feedback that Level D and SensEIS level compute
differs slightly even if SensEIS level communicates its computed vari-
ables to Level D after each sampling time.

7.4. Challenges and future directions of research 139

0 50 100 150 200 250 300 350 400 450 500

20

40

60

80

100

120

140

(a) Velocity trajectory

0 50 100 150 200 250 300 350 400 450 500

-1

0

1

2

(b) Control trajectory

Figure 7.3.: Scheduling both Level D and the SensEIS level causes chattering in the EACC system application. Here, Level D is used
at every 5th sampling time and otherwise SensEIS level is used.

As a consequence, the control that is realized alternates between the
control profiles that stem from Level D and SensEIS level. However, the
chattering is less pronounced than the one discussed in the previous
paragraph. We can also see in Figure 7.3 that the chattering can vanish
again if the linearizations used by Level D and SensEIS level are close
enough to each other. This again is the case if the current parameters
are sufficiently close to a scenario and if the primal variables are
close enough to the solution of this scenario.

We can mitigate this type of chattering by making sure that Level D
and SensEIS level take into account the variables computed by each
other. A strategy to achieve this is the following: We treat the latest
control variables that were computed by the MLI scheme or SensEIS
level as external inputs and penalize deviations from these controls.
Let 𝑞old be the latest control variables computed by either the MLI
scheme or SensEIS level. We then change the objective function of
the DMS NLP (7.10) to

𝑀−1∑
𝑚=0

Ψ𝑚
(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 , 𝑣𝑚

) + 1
2

𝑞𝑚 − 𝑞old

𝑚

2
𝑊𝑚
+Φ(

𝑠𝑀 ; 𝜌 , 𝑣𝑀
)

(7.30)

with suitable weight matrices𝑊𝑚 , 𝑚 = 0, . . . , 𝑀 − 1.

However, this approach is only a heuristic. It also requires the user
to select appropriate weight matrices and introduces further external
inputs that must be covered by scenarios.

140 7. Sensitivity and External Input Scenario based Feedback

3000 3500 4000 4500 5000 5500 6000

20

40

60

80

100

120

140

(a) Velocity trajectory

3000 3500 4000 4500 5000 5500 6000

-1

0

1

2

(b) Control trajectory

Figure 7.4.: Big jumps can be seen in the control profile computed by using only Variant 1 of SensEIS feedback for the EACC system
application even though we consider 5 different external inputs and one constant parameter and have solved 3600 scenarios in
the offline phase.

Large numbers of scenarios required The heuristic proposed above
to mitigate the chattering caused by using both Level D and SensEIS
level requires us to treat the control profile from a previous sampling
time as an external input. This increases the number of parameters
that have to be considered in SensEIS feedback. Moreover, we have
mentioned for both chattering types that they are also an artifact of
scenarios not being close enough to the current parameters. Both is-
sues point us to the challenge that SensEIS feedback requires a large
number of scenarios to produce good feedback for all parameters in
the online phase. The number of scenarios is driven by the number of
parameters in the OCP (7.9) that should be considered and how many
values for each parameter should be considered.

In Figure 7.4, we see the state and control profile for the EACC system
application from Chapter 8 where we use only Variant 1 of SensEIS
feedback. There, we have considered 5 different external inputs and
one constant parameter for which we have solved 3600 scenarios in
the offline phase. Despite this large scenario number, we can see big
jumps in the control profile. These happen when the reference sce-
nario is switched. The fact that these jumps are big indicates that the
number of scenarios is still too small to obtain a satisfying control
using SensEIS feedback only.

In our experience, the main challenge of SensEIS feedback is the large
number of scenarios required to produce good feedback for all pa-
rameters in the online phase. Although the duration of the offline
phase is not a critical issue for many applications, storing the data
from the offline phase can become a problem. In the EACC system
application, e.g., the memory on the embedded system is limited.

7.4. Challenges and future directions of research 141

Therefore, tomake SensEIS feedback well applicable to problems with
a large number of parameters, future research should address the
challenge of reducing the number of scenarios required to produce
satisfactory feedback. We suggest two directions for this.

For the first, we recall that the impulse for the development of Sen-
sEIS feedback is the fact that in applications like the EACC system,
some scenarios occur repeatedly. In fact, the vision was not that Sen-
sEIS feedback should be used during all driving situations, but only
in situations that are similar to these scenarios. Furthermore, we as-
sumed that there are only a few dozen, not thousands, of such sce-
narios. Moreover, if we wished to cover (almost) the entire parameter
space, we should rather use techniques developed in explicit mul-
tiparametric NMPC, see for example the aforementioned work [69] [69]: Domínguez et al. (2011), “Recent

Advances in Explicit Multiparametric
Nonlinear Model Predictive Control”

.
Therefore, we propose to precompute only typical scenarios and then
apply SensEIS feedback if and only if the current parameters are suffi-
ciently close to a precomputed scenario and otherwise rely on the MLI
scheme. The computation time that is saved when SensEIS feedback
is used can then be used to perform additional computations that im-
prove the performance of the MLI scheme, like computing new deriva-
tives, performing additional SQP iterations, or preparing upcoming
sampling times in an advanced step fashion, cf. [145, 211] [145]: Nurkanović et al. (2019), “The

Advanced Step Real Time Iteration for
NMPC”
[211]: Zavala et al. (2009), “The
advanced-step NMPC controller:
Optimality, stability and robustness”

.

The second proposal is to develop strategies to smoothly blend the
feedback based on different scenarios together. The way we currently
choose the reference scenario, see Equation (7.13) and Equation (7.29),
we select only a single scenario as a reference and fully commit to the
feedback resulting from this scenario. However, if the current param-
eters fall between multiple scenarios, it may be beneficial to consider
the feedback from all scenarios that are close enough and thenmerge
them. As we have already mentioned in the respective paragraph, we
expect that such an approach will also solve the challenge of chatter-
ing caused by rapid reference scenario switches.

Application: Ecological Adaptive
Cruise Control System 8.

8.1 Literature review 144
8.2 Underlying vehicle

model 145
8.3 OCP formulation 148
8.4 Numerical results 150

Throughout the entire thesis, the guiding application has been Ecolog-
ical Adaptive Cruise Control (EACC) systems. EACC is a variant of Adap-
tive Cruise Control (ACC) that places a stronger emphasis on achieving
an ecological driving style. ACC is an Advanced Driver-Assistance Sys-
tem (ADAS) that, as an enhancement of simple Cruise Control (CC)
systems that maintain a user-defined velocity, adjusts the velocity of
a vehicle to maintain a safe distance from the preceding vehicle (PP0).
The goal of EACC systems is not only to maintain a safe distance from
the PP0 but also to do so in an energy-efficient manner. At the same
time, the driving style should remain comfortable for the passengers.
Moreover, constraints such as speed limits or limitations of the ve-
hicle’s powertrain must be taken into account. Therefore, NMPC is a
suitable control technique for EACC systems, as it allows us to incorpo-
rate all these requirements into the OCP (6.4) that governs the NMPC
scheme. To implement NMPC-based EACC systems in real vehicles, we
need highly efficient numerical methods for NMPC. Throughout this
thesis, we have developed such numerical methods. In this chapter,
we will apply these numerical methods to a realistic formulation of
an EACC system for an electric vehicle.

We have explained NMPC in detail in Chapter 2. As described there,
central components of any NMPC scheme include a model for the
system of interest, an objective function to minimize, and possibly
constraints on the system state and control. In our case, the model is
represented by an ODE. These components are combined in an OCP of
the form (6.4), which serves as the cornerstone of the NMPC scheme
as described in Subsection 2.1.3. We have collaborated closely with an
industrial partner to set up an OCP formulation that, while being an
abstracted problem based on standard vehicle models, still captures
several challenges arising in realistic EACC scenarios. Consequently,
a successful application of our numerical methods to this abstracted
problem serves as a compelling demonstration of their capability to
address real-life applications.

Attention:

Out of consideration for our indus-
trial partner, we cannot disclose
some details regarding the OCP for-
mulation. In particular, this con-
cerns the LUTs and constants used,
as well as details about certain
terms in the objective function.

In this chapter, we will first review other published applications of
NMPC to real-life electric vehicle control problems in Section 8.1. To
prepare for the formulation of the OCP, we will next present the un-
derlying vehicle model in Section 8.2. Subsequently, we will develop
the OCP (6.4) for our EACC system application in Section 8.3. Finally,
we will present numerical results of our numerical methods applied
to the EACC system application in Section 8.4.

144 8. Application: Ecological Adaptive Cruise Control System

8.1. Literature review

[79]: Fors et al. (2023), “Long-Horizon
Vehicle Planning and Control Through
Real-Time Iterations”
[80]: Frasch et al. (2013), “An auto-
generated nonlinear MPC algorithm
for real-time obstacle avoidance of
ground vehicles”
[81]: Frasch et al. (2012), “Mixed-Level
Iteration Schemes for Nonlinear
Model Predictive Control”
[102]: Guanetti et al. (2018), “Control of
connected and automated vehicles:
State of the art and future challenges”
[111]: Hrovat et al. (2012), “The devel-
opment of Model Predictive Control in
automotive industry: A survey”
[118]: Kirches et al. (2013), “Mixed-
integer NMPC for predictive cruise
control of heavy-duty trucks”
[136]: Merino (2018), “Real-time opti-
mization for estimation and control:
Application to waste heat recovery for
heavy duty trucks”
[137]: Merino et al. (2018), “A Nonlinear
Model-Predictive Control Scheme
for a Heavy Duty Truck’s Waste Heat
Recovery System Featuring Moving
Horizon Estimation”
[141]: Musa et al. (2021), “A Review of
Model Predictive Controls Applied to
Advanced Driver-Assistance Systems”
[148]: Pan et al. (2022), “A review of the
development trend of adaptive cruise
control for ecological driving”
[149]: Pendleton et al. (2017), “Per-
ception, Planning, Control, and
Coordination for Autonomous Vehi-
cles”
[168]: Schmied et al. (2015), “Nonlinear
MPC for Emission Efficient Cooperative
Adaptive Cruise Control”
[176]: Siampis et al. (2018), “A Real-
Time Nonlinear Model Predictive
Control Strategy for Stabilization of
an Electric Vehicle at the Limits of
Handling”
[186]: Turri et al. (2017), “Cooperative
Look-Ahead Control for Fuel-Efficient
and Safe Heavy-Duty Vehicle Platoon-
ing”
[187]: Turri et al. (2017), “A model pre-
dictive controller for non-cooperative
eco-platooning”
[193]: Vajedi et al. (2016), “Ecological
Adaptive Cruise Controller for Plug-In
Hybrid Electric Vehicles Using Nonlin-
ear Model Predictive Control”
[198]: Weißmann et al. (2017), “Energy-
Optimal Adaptive Cruise Control based
on Model Predictive Control”
[209]: Zanon et al. (2014), “Model
Predictive Control of Autonomous
Vehicles”

Given the importance of vehicle traffic for both individuals and the
economy, as well as its significant contribution to greenhouse gas
emissions and global energy consumption, it is not surprising that
the development of control techniques for vehicles has been a highly
active area of research over the past two decades. A driving factor in
this context has been the advent of increasingly powerful yet efficient
mathematical control methods and computing units. These advance-
ments have enabled the application of mathematical control tech-
niques to real-life vehicle control problems. Consequently, a large
body of literature has been published on this topic. For readers in-
terested in exploring this field, we recommend the surveys [102, 149],
which cover perception, planning, control, and coordination for con-
nected and automated vehicles.

An important branch of vehicle control techniques is based on MPC
methods. MPC-based methods have also been extensively studied.
Therefore, we do not provide a detailed review of MPC-based tech-
niques for vehicle control here. Instead, we refer interested readers
to a comprehensive survey on this topic, such as [111].

As mentioned at the beginning of this chapter, our work focuses on an
ecological driving assistance system, i.e., an Advanced Driver-Assistance
System (ADAS). A wide range of MPC-based methods have been ap-
plied to ADASs, and we refer readers to the survey paper [141]. Sev-
eral of these works specifically apply NMPC techniques to develop
ecological Adaptive Cruise Control (ACC) systems. For a recent review
of the development of ecological ACC systems, we recommend [148].
Notable examples leveraging NMPC include [168, 186, 187, 193, 198].
Typically, tracking NMPC formulations are employed, where either a
desired distance to the PP0 is tracked [187, 193] or a precomputed
speed profile is followed [186, 198].

The aforementioned works, along with most references cited therein,
primarily focus on problem formulation rather than on numerical
methods for efficiently solving the resulting NMPC problems. Instead,
toolkits such as FORCESPRO [207], which builds on the solver FORCES
[68], or ACADO [109] are often used to automatically generate solvers.

Works that place a stronger emphasis on numerical methods similar
to ours and target similar applications include the following. In [118],
heavy-duty trucks are considered, with the main numerical challenge
being the treatment of mixed-integer NMPC problems. Heavy-duty
trucks are also the focus of [136, 137], where the waste heat recovery
system is of particular interest. As the RTI scheme described in Sec-
tion 3.4 is also implemented in ACADO, it has been utilized for NMPC
in autonomous vehicles, for example, in [168, 176, 209]. Further works
applying the RTI scheme to similar applications include [79, 80]. To
the best of our knowledge, the MLI scheme described in Section 3.5
has not yet been used to implement an ecological driving assistance
system. In [81], an extension of the MLI scheme was applied to sta-
bilize a vehicle after a disturbance, but not for ecological driving. In
[136, p. 118], it was proposed as future research to use the MLI scheme
for the presented problem, but this has not yet been realized.

8.2. Underlying vehicle model 145

Our contributions in this chapter are thus twofold. First, we present
the first application of the MLI scheme to an ecological driving assis-
tance system, thereby demonstrating its potential for deployment in
real vehicle control. Second, we provide a proof of concept for Sen-
sEIS feedback from Chapter 7, along with our strategy for handling
external inputs as described in Chapter 6.

8.2. Underlying vehicle model

For the movement of the road vehicle under consideration, we fo-
cus solely on its longitudinal dynamics. For its description in Subsec-
tion 8.2.1, we follow the popular textbook [105, Subsection 2.1.1] [105]: Guzzella et al. (2013), Vehicle

Propulsion Systems
. In

Subsection 8.2.2, we introduce the powers relevant to our OCP formu-
lation. Table 8.1 summarizes all constants referenced in the following
sections.

Symbol Meaning Unit
𝐴f Frontal area of the vehicle m2

𝑐d Aerodynamic drag coefficient dimensionless
𝑐r Rolling friction coefficient dimensionless
𝐹d Disturbance forces N
𝑔 Standard gravity m s−2

𝛾 Transmission ratio dimensionless
𝑚v Vehicle mass kg
𝑃aux Auxiliary power for HVAC W
𝑟w Radius of the wheels m
𝜌a Density of ambient air kg m−3

Θe Moment of inertia of engine components kg m2

Θw Moment of inertia of wheels kg m2

Table 8.1.: Constants used in themodel
of the vehicle dynamics.

8.2.1. Vehicle movement

If time 𝑡 in s is used as the independent variable, the longitudinal
position 𝑠 ∈ ℝ in m and velocity 𝑣 in m s−1, depending on the accel-
eration 𝑎 in m s−2, are given for 𝑡0 ≤ 𝑡 ∈ ℝ by the IVP(d

d𝑡 𝑠(𝑡)
d
d𝑡 𝑣(𝑡)

)
=

(
𝑣(𝑡)
𝑎(𝑡)

)
,(

𝑠(𝑡0)
𝑣(𝑡0)

)
=

(
𝑠0
𝑣0

)
.

If instead the position 𝑠 is used as the independent variable, the time
𝑡 ∈ ℝ and velocity 𝑣, depending on the acceleration 𝑎, are given for
𝑠0 ≤ 𝑠 ∈ ℝ by the IVP (d

d𝑠 𝑡(𝑠)
d
d𝑠 𝑣(𝑠)

)
=

(
1
𝑣(𝑠)
𝑎(𝑠)
𝑣(𝑠)

)
, (8.1a)(

𝑡(𝑠0)
𝑣(𝑠0)

)
=

(
𝑡0
𝑣0

)
. (8.1b)

146 8. Application: Ecological Adaptive Cruise Control System

Figure 8.1.: Illustration of the balance
of forces (8.2). Adapted from [105, Fig.
2.1]. The traction force 𝐹t actively accel-
erates or decelerates the vehicle. The
aerodynamic and rolling friction forces
𝐹a and 𝐹r , along with the disturbance
forces 𝐹d , decelerate the vehicle. The
gravitational force 𝐹g can either accel-
erate, decelerate, or have no effect, de-
pending on the road inclination 𝛼.

𝛼

𝐹a
𝐹d

𝐹g

𝐹r

𝐹t

𝑚v · 𝑔

𝑣

In both cases, the acceleration 𝑎 is determined by the balance of
forces

𝑚v𝑎 = 𝐹t − (
𝐹a + 𝐹r + 𝐹g + 𝐹d

)
, (8.2)

where

▶ 𝐹t is the traction force,
▶ 𝐹a is the aerodynamic friction force,
▶ 𝐹r is the rolling friction force,
▶ 𝐹g is the force caused by the gravitation if the vehicle is driving

up- or downhill,
▶ 𝐹d collects any other disturbing forces.

The rolling friction force and the gravitational force 𝐹g depend on the
road inclination 𝛼. Figure 8.1 schematically illustrates how the differ-
ent forces act on the vehicle. Below, we briefly present the equations
for these forces. For more details, refer to [105, Subsection 2.1.1][105]: Guzzella et al. (2013), Vehicle

Propulsion Systems
. The

disturbance forces 𝐹d are treated as constant.

Traction force 𝐹t The traction force 𝐹t is the force used to actively
accelerate or decelerate the vehicle. In our application, where we con-
sider an electric vehicle, the source of the traction force 𝐹t is the force
𝐹em exerted by the electric motor. However, part of the force 𝐹em is
used to accelerate the wheels and rotating parts within the power-
train. The force 𝐹em is given asFriction losses are accounted for as

disturbance forces 𝐹d .

The constants 𝛾 and 𝑟w are defined
in Table 8.1.

𝐹em =
𝛾

𝑟w
𝑇em ,

where 𝑇em is the torque exerted by the electric motor. The forces 𝐹in
that are exerted to accelerate the rotating parts are called inertial
forces and can be written as

We assume no wheel slip. The con-
stants 𝛾, 𝑟w ,Θw ,Θe are defined in
Table 8.1.

𝐹in =

(
1
𝑟2
w
Θw + 𝛾2

𝑟2
w
Θe

)
d
d𝑡
𝑣.

The traction force 𝐹t is then given as

𝐹t = 𝐹em − 𝐹in

=
𝛾

𝑟w
𝑇em −

(
1
𝑟2
w
Θw + 𝛾2

𝑟2
w
Θe

)
d
d𝑡
𝑣.

(8.3)

8.2. Underlying vehicle model 147

Aerodynamic friction force 𝐹a For the aerodynamic friction force 𝐹a,
we use the simplified expression

As in [105, Section 2.1.1], we assume
the vehicle has a prismatic shape
with frontal area 𝐴f . The constants
𝜌a , 𝐴f , 𝑐d are defined in Table 8.1.

𝐹a =
1
2
𝜌a𝐴f 𝑐d𝑣2.

The aerodynamic drag coefficient 𝑐d is generally not constant and
must be determined experimentally. However, it is common practice
to assume it to be constant [105, p. 15] [105]: Guzzella et al. (2013), Vehicle

Propulsion Systems
.

Rolling friction force 𝐹r Similarly to the aerodynamic friction force,
we use a simplified model for the rolling friction force 𝐹r. Specifically,
we assume the rolling friction coefficient 𝑐r to be constant, which is a
common simplification [105, p. 15] [105]: Guzzella et al. (2013), Vehicle

Propulsion Systems
. For positive velocities, the rolling

friction force 𝐹r is modeled as

𝐹r = 𝑐r𝑚v𝑔 cos(𝛼),
where 𝛼 is the road inclination in rad.

Gravitational force 𝐹g The gravitational force is as usual given as

𝐹g = 𝑚v𝑔 sin(𝛼),
where again 𝛼 is the inclination of the road in rad.

8.2.2. Computation of relevant powers

To compute the relevant powers for our OCP formulation, we first de-
termine the torque𝑇em that the electric motor must deliver to achieve
a desired acceleration or traction force 𝐹t. The torque 𝑇em can be
derived from the balance of forces (8.2). First, we solve (8.2) for the
traction force 𝐹t and then use

𝑇em =
𝑟w
𝛾
𝐹em.

As indicated in Figure 8.2, the power required by the electric motor is
computed from the torque 𝑇em and the current angular speed 𝜔em,
which is given by

𝜔em =
𝛾

𝑟w
𝑣

using a bivariate LUT.

Reminder: Bivariate LUT

A bivariate Lookup Table (LUT) is a
data set

D ≔
{(𝑥𝛼 , 𝑑𝛼) ∈ ℝ2 ×ℝ ��

0 ≤ 𝛼 ≤ 𝛼max
}
,

cf. Definition 5.3. Such LUTs can be
interpolated in a shape-preserving
way using our novel interpolation
method proposed in Section 5.3.

In an electric vehicle, the power 𝑃em of the electric motor is supplied
by the battery. The battery also needs to provide auxiliary power 𝑃aux
for heating, ventilation, air conditioning (HVAC). We assume 𝑃aux to
be constant. The total power 𝑃batt required from the battery is thus
given by If 𝑃aux were not constant, it could

still be incorporated as an exter-
nal input. We proposed novel tech-
niques for incorporating external in-
puts into DMS and the RTI and MLI
schemes in Chapter 6.

𝑃batt = 𝑃em + 𝑃aux.

Delivering the power 𝑃batt also incurs losses. These power losses 𝑃loss
in the battery depend on 𝑃batt and the state of charge (SoC) of the

148 8. Application: Ecological Adaptive Cruise Control System

battery. This dependency is typically measured and provided as a bi-
variate LUT. The SoC could be included in the dynamics using the
COULOMB counting method. For details, see [105, p. 113][105]: Guzzella et al. (2013), Vehicle

Propulsion Systems
. However, we

assume a constant SoC in our model.

8.3. OCP formulation

We examine the three main components of OCP (6.4) separately. First,
we specify our choice for the controls and differential states of inter-
est in Subsection 8.3.1. Subsection 8.3.2 provides details on the struc-
ture of the objective function used. In Subsection 8.3.3, we present
the constraints considered in our OCP formulation.

Figure 8.2 summarizes the most important relations between

▶ the control, denoted by 𝑢,
▶ the differential states, which are the velocity 𝑣 and the time 𝑡,
▶ forces, denoted by 𝐹,
▶ powers, denoted by 𝑃,
▶ torques, denoted by 𝑇 ,
▶ the external inputs, which include information about the route

and the first preceding vehicle (PP0),
▶ and the components of OCP (6.4).

These relationships are described in the previous Section 8.2 and the
present section.

8.3.1. Choice for the control and differential states

As the LUT used to compute the electric motor power 𝑃em cannot be
evaluated in reverse (i.e., to compute the torque 𝑇em from 𝑃em), our
options for the control choice are somewhat limited. The two most
relevant options are the torque 𝑇em and the vehicle’s acceleration.
Choosing the torque 𝑇em has the advantage of being closer to what
can be controlled in a real vehicle. However, in this case, bounds on
the acceleration 𝑎 would become nonlinear mixed state-control con-
straints. If we instead choose the acceleration as the control, these
constraints become simple box constraints. We thus decide to use
the acceleration as the control, i.e., we choose

The unit of the control 𝑢 is thus
m s−2 .

𝑢(·) = 𝑎(·),
where 𝑎(𝑠) ∈ ℝ, in the OCP formulation (6.4).

Next, we need to decide whether to use time 𝑡 or position 𝑠 as the
independent variable. Both options are common and have been used
in similar work. We choose the position 𝑠 as the independent variable
for three reasons. First, the way we have, in discussion with our indus-
trial partner, decided to model some comfort aspects in the objective
function requires this choice. Second, bounds on the vehicle’s veloc-
ity are given as functions of the position 𝑠. Choosing the position 𝑠
as the free variable turns these bounds into simple box constraints
instead of nonlinear mixed state-control constraints. Finally, external

8.3. OCP formulation 149

States
𝑣, 𝑡

ODE
r.h.s.

Control
𝑢

Track
data

PP0
data

Constraints

𝐹t 𝐹a 𝐹g 𝐹r𝐹d

Balance of forces (8.2)

𝑇em

𝑃em𝑃aux

𝑃batt

𝑃loss
Objective
function

LUT

LUT

LUT

Figure 8.2.: Overview of the relation-
ships between the most important
quantities used in the EACC prob-
lem formulation. Ellipses denote com-
ponents of the OCP (6.4). Wherever
Lookup Tables (LUTs) are used, the
arrows are annotated with ”LUT ”.
Other parameters and external inputs
(diamond-shaped), such as the auxil-
iary power 𝑃aux , the disturbance force
𝐹d , and the track and PP0 data, are
omitted for clarity.

inputs, such as the road’s inclination 𝛼, are also functions of the po-
sition 𝑠. Thus, to leverage our novel SensEIS feedback presented in
Chapter 7, we need to choose the position 𝑠 as the free variable. The
drawback of this choice is that the velocity 𝑣(𝑠)must remain positive
at all times due to the form of the ODE (8.1a). Therefore, stopping the
vehicle is not considered in our experiments.

The differential states 𝑥 in the OCP (6.4) are thus

𝑥(·) =
(
𝑣(·)
𝑡(·)

)
∈ ℝ2.

8.3.2. Optimization criteria

The goal of an ecological driving assistance system is to achieve highly
efficient driving behavior, i.e., to reduce energy consumption. At the
same time, we must ensure that the resulting driving behavior is ac-
ceptable to a human driver. To achieve this, we include comfort as-
pects in the OCP (6.4). In close collaboration with our industrial part-
ner, we have developed an objective function that incorporates such
comfort aspects. These include, but are not limited to, smooth follow-
ing of the PP0 and avoidance of rapid velocity changes. The objective
function Ψ is thus given by

Ψ = 𝑤0𝑃em + 𝑤1𝑃loss +
𝑘∑
𝑖=1

𝑤𝑖+1Ψc
𝑖 , (8.4)

where 𝑘 ∈ ℕ and 𝑤𝑖 ∈ ℝ, 𝑖 = 0, . . . , 𝑘 + 1 are constant weights, and
Ψc
𝑖 , 𝑖 = 1, . . . , 𝑘 are functions introduced for the comfort aspects.

150 8. Application: Ecological Adaptive Cruise Control System

From amathematical perspective, the objective functionΨ as given in
Equation (8.4) presents the following challenges. First, external inputs
in the form of track data and PP0 data influence all its components.
Second, LUTs are used in modeling some components, such as the
power 𝑃em. Third, in its original form, some comfort aspects Ψc

𝑖 are
not differentiable. Fortunately, we have the tools to address these
challenges. We have extended the methodology of the DMS method
and the RTI and MLI schemes to include external inputs in Chapter 6.
For evaluating the LUTs, we employ our novel shape-preserving inter-
polation method from Chapter 5. For the non-differentiable comfort
aspects, we use differentiable approximations.

8.3.3. Constraints

We have already mentioned some relevant constraints. These include
bounds for the acceleration

𝑎min ≤ 𝑢(𝑠) ≤ 𝑎max ,

for all 𝑠0 ≤ 𝑠 ∈ ℝ, where 𝑎min < 𝑎max ∈ ℝ, and upper speed limits

𝑣(𝑠) ≤ 𝑣max(𝑠)
for all 𝑠0 ≤ 𝑠 ∈ ℝ. Additionally, we enforce a minimal time gap be-
tween the controlled vehicle and the PP0. Let 𝑡PP0(𝑠) be the time at
which the PP0 is at position 𝑠, and let Δ𝑡min > 0 be a constant mini-
mal time gap. The respective constraint can then be formulated as

0 ≤ 𝑡(𝑠) − 𝑡PP0(𝑠) − Δ𝑡min.

Finally, we can theoretically include nonlinear mixed state-control
constraints to account for limitations on other quantities, such as the
torque 𝑇em. However, in our numerical experiments, the solution has
always remained safely within these limitations. Therefore, we have
ultimately omitted these constraints.

8.4. Numerical results

In this section, we present numerical results for the application of
our numerical methods to the EACC system problem as described in
the previous subsections. We report results for four different choices
of numerical methods, which differ as follows:

(i) We apply the standard MLI scheme as described in Section 3.5.
The external inputs are not explicitly treated, instead, they are
interpreted as functions of the differential states based on Equa-
tions (6.2) and (6.3). A novel aspect is the use of our newly de-
veloped interpolation method from Chapter 5 for interpolating
the multivariate LUTs.

(ii) We additionally use our novel strategy to incorporate a priori
known external inputs into the MLI scheme, as detailed in Sub-
section 6.2.3.

8.4. Numerical results 151

0 5 10 15 20 25 30
-200

-150

-100

-50

0

50

Figure 8.3.: Elevation profile of the test drive route.

(iii) We employ our novel SensEIS level from Chapter 7 within the
MLI scheme.

(iv) We use SensEIS feedback as a standalone method.

More details on the specific method choices are provided in the re-
spective subsections. In all our numerical experiments, the road in-
clination 𝛼 and the driving behavior of the PP0 are derived from post-
processed measurements of a real-world test drive provided by our
industrial partner. Similarly, the maximum velocity 𝑣max is based on
this test drive. Figure 8.3 shows the elevation profile of the test drive
route. We make the simplifying assumption that all external inputs,
including the PP0 information, are known a priori. Looking ahead to
scenarios where we control fleets of vehicles, this simplification is
not overly unrealistic. If the PP0 is driven by a human driver, we can
only predict its future velocity. As vehicle velocity prediction is an
important task for many ADASs, it has been addressed by several re-
searchers. For a concise overview of common approaches to vehicle
velocity prediction, we refer to [161] [161]: Rezaei et al. (2015), “Prediction of

Vehicle Velocity for Model Predictive
Control”

.

8.4.1. MLI without explicit treatment of external inputs

In our first experiment, we apply the standard MLI scheme as de-
scribed in Section 3.5. Reminder: NMPC and DMS

The sampling period 𝑇 and the pre-
diction horizon 𝑇hor are defined in
Definitions 2.1 – 2.2. Shooting inter-
vals are defined in Definition 3.1,
and constant control basis func-
tions are described in Example 3.1.
The MLI schedule is explained in
Subsection 3.5.2.

The external inputs are not explicitly treated,
instead, they are interpreted as functions of the differential states
based on Equations (6.2) and (6.3). The NMPC prediction horizon length
𝑇hor is 1060 m, divided into 53 shooting intervals of 20 m each. The
sampling period 𝑇 is 2 m. Our control variable, as described in Sub-
section 8.3.1, is the acceleration 𝑎 of the vehicle, given in m s−2, with
bounds 𝑎min = −1.14 m s−2 and 𝑎max = 2.12 m s−2. We use constant
basis functions for the control and the MLI schedule A1B3C4D7.

The initial position 𝑠0 is 0 m. The initial differential states are

𝑡0 = 2 s = 𝑡PP0(𝑠0) + 2 s,
𝑣0 = 17.8667 m s−1 = 𝑣PP0(𝑡0).

The initial time gap between our controlled vehicle and the PP0 is
thus 2 s, and both vehicles move with the same initial velocity.

152 8. Application: Ecological Adaptive Cruise Control System

0 1 2 3 4 5 6 7 8

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8

-1

0

1

2

(a) Results for the section of the driving route from 𝑠 = 0 m to 𝑠 = 8358 m.

9 10 11 12 13 14 15 16

20

40

60

80

100

120

140

9 10 11 12 13 14 15 16

-1

0

1

2

(b) Results for the section of the driving route from 𝑠 = 8360 m to 𝑠 = 16 718 m.

17 18 19 20 21 22 23 24 25

20

40

60

80

100

120

140

17 18 19 20 21 22 23 24 25

-1

0

1

2

(c) Results for the section of the driving route from 𝑠 = 16 720 m to 𝑠 = 25 078 m.

Figure 8.4.: Velocity and acceleration trajectories computed using the MLI scheme without explicit treatment of external inputs, as
described in Subsection 8.4.1. The involved LUTs are interpolated using our novel method presented in Chapter 5. The trajectories
for the entire driving route are split into four parts, displayed in Figures 8.4a – 8.4d.

8.4. Numerical results 153

26 27 28 29 30 31 32 33

20

40

60

80

100

120

140

26 27 28 29 30 31 32 33

-1

0

1

2

(d) Results for the section of the driving route from 𝑠 = 25 080 m to 𝑠 = 33 438 m.

Velocity and acceleration trajectory computed using the MLI scheme without explicit treatment of external inputs as described in
Subsection 8.4.1. The involved LUTs are interpolated using our novel method that we presented in Chapter 5. The trajectories for
the entire driving route are split into four parts which are displayed in Figures 8.4a – 8.4d.

0 5 10 15 20 25 30
0

2

4

6

Figure 8.5.: The time gap 𝑡(𝑠) − 𝑡PP0(𝑠) between our controlled vehicle and the PP0 in the first numerical experiment using the
MLI scheme without explicit treatment of external inputs. The minimum time gap is never violated. The initial time gap is 2 s, and
the final time gap is approximately 1.8 s.

1: The acceleration used by the PP0
leads to power requests to the elec-
tric motor that exceed the bounds of
the LUT available for the battery losses.
In such cases, we used the maximum
loss given in the LUT. As losses tend
to increase with larger power requests,
we expect the actual savings to exceed
3.4 %.

Figure 8.4 shows the results for the velocity and control (i.e., accel-
eration) trajectories. We observe that the resulting velocity adheres
to its upper bound most of the time. Only upon close inspection, as
seen in Figure 8.4b at 𝑠 ≈ 14 km, do we notice slight violations. These
violations occur because some of the arising QPs in this part of the
driving route are infeasible. In such cases, we reuse the result from
the last successful sampling time.

If several subsequent QPs are infea-
sible, we shift the control variables
accordingly.

The control bounds are satisfied
throughout the entire driving route.

Furthermore, Figure 8.5 shows that our controlled vehicle maintains
the minimum time gap Δ𝑡min = 1 s at all times. Moreover, the final
time gap is approximately 1.8 s, about 0.2 s shorter than the initial
time gap of 2 s. In other words, the travel time of our controlled vehi-
cle is slightly shorter than that of the PP0. Thus, the energy savings
of more1 than 3.4 % achieved compared to the PP0 are not simply
due to driving slower on average but rather due to driving more effi-
ciently. Additionally, we compare our energy consumption to that of
a reference velocity, which is the speed profile of a human driver who
followed the PP0 during the measurement drive.

154 8. Application: Ecological Adaptive Cruise Control System

0 5 10 15 20 25 30

0

5

10

15

(a) Comparison to the PP0. The final relative energy savings are approximately 3.4 %.

0 5 10 15 20 25 30

0

5

10

15

(b) Comparison to the reference velocity. The final relative energy savings are approximately 2.9 %.

Figure 8.6.: Relative energy savings of our controlled vehicle separated into the three components 𝑃em , 𝑃loss and 𝑃aux . The total
energy consumption of our controlled vehicle is about 4.22 kW h.

The respective relative energy savings over the driving route are pre-
sented in Figure 8.6. As we do not possess any information about the
vehicle type of the PP0, we use the same model to compute the en-
ergy consumption of the PP0 as for our controlled vehicle.

We observe that the energy savings are primarily due to reductions in
the power 𝑃em requested from the electric motor. Around 𝑠 = 15 km,
the PP0 violates the velocity bounds, thereby building up a time gap
to our vehicle, as also seen in Figure 8.5. Consequently, the PP0 saves
auxiliary power 𝑃aux compared to our vehicle.

In summary, the control and velocity profile computed using our nu-
merical methods result in a driving behavior that

▶ obeys all constraints, except for a few meters,
▶ is slightly faster than the PP0,
▶ and still achieves energy savings of about 3.4 %.

8.4.2. MLI with explicit treatment of external inputs

In our second numerical experiment, we treat the external inputs ex-
plicitly using the technique described in Chapter 6, particularly in Sub-
section 6.2.3. We assume that the external inputs are known a priori.
Constant basis functions and the same mapping 𝜁 as in Example 6.1
are used for external input discretization. The remaining settings are
identical to those in the first experiment from Subsection 8.4.1.

Reminder: Settings 1st experiment

▶ prediction horizon
𝑇hor = 1060 m,

▶ 53 shooting intervals of
20 m length each,

▶ sampling period 𝑇 = 2 m,
▶ control: 𝑎 in m s−2 with

bounds 𝑎min = −1.14 m s−2

and 𝑎max = 2.12 m s−2 ,
▶ MLI schedule: A1B3C4D7 ,
▶ 𝑡0 = 2 s = 𝑡PP0(𝑠0) + 2 s,
▶ 𝑣0 = 17.8667 m = 𝑣PP0(𝑡0)

8.4. Numerical results 155

Figure 8.7 shows the results obtained with the explicit treatment of ex-
ternal inputs. The results are mostly very similar to those displayed
in Figure 8.4 for the first numerical experiment. However, examining
the time gap between our controlled vehicle and the PP0 shown in
Figure 8.8, we observe that the minimum time gap Δ𝑡min = 1 s is oc-
casionally violated. Our observation is that this treatment of external
inputs slightly increases the likelihood of obtaining infeasible QPs,
likely due to additional disturbances caused by updating the exter-
nal input discretization.

On the positive side, explicitly treating the external inputs increases
the relative energy savings, shown in Figure 8.9, by up to about 4.3 %
compared to the PP0 and 3.8 % compared to themeasurement drive.

An obvious conjecture is that the increased savings compared to the
first numerical experiment are only achieved because the time gap
constraint is occasionally violated. However, the comparison of en-
ergy consumption without and with explicit treatment of external in-
puts shown in Figure 8.10 reveals that the increased savings are pri-
marily achieved when the minimum time gap is not violated. In fact,
Figure 8.10 suggests that intermediate violations of theminimum time
gap are disadvantageous because the controller quickly decelerates
our vehicle to satisfy the time gap constraint again. This behavior
can also be observed when comparing the control profiles from Fig-
ure 8.4a and Figure 8.7a between 𝑠 = 6 km and 𝑠 = 7 km.

In summary, our findings from the second numerical experiment are
that treating external inputs as described in Subsection 6.2.3 leads
to

▶ a slight increase in the number of sampling times where the QP
is infeasible, likely causing occasional violations of the time gap
constraints,

▶ but even greater energy savings compared to the first numerical
experiment.

Thus, we conclude that treating the external inputs using our pro-
posed approach is promising. However, further research is required
to avoid constraint violations.

8.4.3. MLI with SensEIS level

We now investigate the performance of an MLI schedule where Sen-
sEIS level is also used, as described in Subsection 7.3.4. In this ex-
periment, the NMPC prediction horizon 𝑇hor is 1050 m, divided into 75
shooting intervals of 14 m each. The sampling period remains 𝑇 = 2 m.
Again, the acceleration 𝑎 inm s−2 is used as the control. The MLI sched-
ule is modified such that Level D is performed at every 4th sampling
time, while SensEIS level is used at all other sampling times.

156 8. Application: Ecological Adaptive Cruise Control System

0 1 2 3 4 5 6 7 8

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8

-1

0

1

2

(a) Results for the section of the driving route from 𝑠 = 0 m to 𝑠 = 8358 m.

9 10 11 12 13 14 15 16

20

40

60

80

100

120

140

9 10 11 12 13 14 15 16

-1

0

1

2

(b) Results for the section of the driving route from 𝑠 = 8360 m to 𝑠 = 16 718 m.

17 18 19 20 21 22 23 24 25

20

40

60

80

100

120

140

17 18 19 20 21 22 23 24 25

-1

0

1

2

(c) Results for the section of the driving route from 𝑠 = 16 720 m to 𝑠 = 25 078 m.

Figure 8.7.: Velocity and acceleration trajectories computed using the MLI scheme with explicit treatment of external inputs as
described in Subsection 8.4.2. The involved LUTs are interpolated using our novel method presented in Chapter 5. The trajectories
for the entire driving route are split into four parts, displayed in Figures 8.7a – 8.7d.

8.4. Numerical results 157

26 27 28 29 30 31 32 33

20

40

60

80

100

120

140

26 27 28 29 30 31 32 33

-1

0

1

2

(d) Results for the section of the driving route from 𝑠 = 25 080 m to 𝑠 = 33 438 m.

Velocity and acceleration trajectories computed using the MLI scheme with explicit treatment of external inputs as described in
Subsection 8.4.2. The involved LUTs are interpolated using our novel method presented in Chapter 5. The trajectories for the entire
driving route are split into four parts, displayed in Figures 8.7a – 8.7d.

0 5 10 15 20 25 30
0

2

4

6

Figure 8.8.: The time gap 𝑡(𝑠) − 𝑡PP0(𝑠) between our controlled vehicle and the PP0 in the second numerical experiment using the
MLI scheme with explicit treatment of external inputs. The minimum time gap is occasionally violated. The initial time gap is 2 s,
and the final time gap is approximately 1.2 s.

In the scenarios, the free variable 𝑠 ranges from 𝑠 = 0 to 𝑠 = 𝑇hor. For
external inputs used in SensEIS level, we choose

It is important that the external in-
puts are chosen such that they do
not increase (or decrease) over the
time the vehicle is controlled. For
example, choosing the time 𝑡PP0(𝑠)
at which the PP0 reaches the posi-
tion 𝑠 is a poor choice, as this value
constantly increases. Instead, it is
more appropriate to consider the
time gap between our vehicle and
the PP0 plus the time elapsed since
the PP0 was at the sampling posi-
tion, which is exactly what we do.

▶ the road inclination 𝛼,
▶ the maximum velocity 𝑣max,
▶ the velocity 𝑣PP0 of the PP0,
▶ the relative PP0 time 𝑡PP0, defined as the time gap plus the

time elapsed since the PP0 was at the sampling position 𝑠 𝑗 , i.e.,
𝑡PP0

(
𝑠 𝑗

) − 𝑡 (𝑠 𝑗) + ∫ 𝑇hor

0
1

𝑣PP0(𝑠)d𝑠

and as constant parameters

▶ the current velocity of our controlled vehicle 𝑣(𝑠),
▶ the control from the previous sampling time, i.e., the current

acceleration of our vehicle 𝑎(𝑠).
For the external inputs, we use constant basis functions and the map
𝜁 as in Example 6.1. In the scenarios, we further use the same value
for each shooting interval, i.e., we set

Reminder: 𝑣𝑚

𝑣𝑚 denotes the coefficients of the
basis functions of the external in-
puts for the shooting interval with
index 𝑚, cf. Subsection 6.1.1.𝑣0 = 𝑣1 = . . . = 𝑣𝑀 .

158 8. Application: Ecological Adaptive Cruise Control System

0 5 10 15 20 25 30

0

5

10

15

(a) Comparison to the PP0. The final relative energy savings are approximately 4.3 %.

0 5 10 15 20 25 30

0

5

10

15

(b) Comparison to the reference velocity. The final relative energy savings are approximately 3.8 %.

Figure 8.9.: Relative energy savings of our controlled vehicle with explicit treatment of external inputs, separated into the three
components 𝑃em , 𝑃loss , and 𝑃aux . The total energy consumption of our controlled vehicle is about 4.18 kW h.

The values for each external input and constant parameter used in
the scenarios are given in Table 8.2. Since these quantities are inde-
pendent of each other, we precompute a scenario for each possible
combination of values, resulting in 3600 scenarios. Additionally, Ta-
ble 8.2 includes the inverse of the weights used in the scenario selec-
tion for each external input and constant parameter, cf. Equation (7.13).

Moreover, we

▶ apply the step size strategy Algorithm 7.3 to avoid inequality vi-
olations when using the feedback matrix-based variant,

▶ adaptively switch between the QP- and the feedback matrix-
based variant, as described in the first paragraph of Section 7.4,

▶ use the modified reference index selection Equation (7.29) with
𝛾 = 0.8,

▶ and use the modified objective Equation (7.30) to better align
the MLI feedback and SensEIS feedback.

Figure 8.11 shows the results obtained with the resulting controller.
Unfortunately, we were only able to control the vehicle up to 𝑠 =
4836 m. Beyond this point, infeasible QPs occur too frequently, leading
to unreasonable controller behavior. Additionally, minor chattering in
the controls persists because the MLI feedback and SensEIS feedback
slightly disagree, even with the modified objective Equation (7.30). At
least, Figure 8.12 shows that the minimum time gap is maintained
except for a brief distance.

8.4. Numerical results 159

0 5 10 15 20 25 30
-1

0

1

2

3

4

5

Figure 8.10.: Relative energy savings of our controlled vehicle from the second numerical experiment compared to the first numer-
ical experiment. The energy savings are split into the three components 𝑃em , 𝑃loss , and 𝑃aux . The final relative energy savings are
approximately 0.9 %.

Table 8.2.: Values for the external inputs and constant parameters in the precomputed scenarios for SensEIS level. Here, 𝑠 𝑗 denotes
the current sampling position.

Quantity Values Inverse weight Unit
road inclination 𝛼 {−0.025, 0.0, 0.025} 0.015 rad
maximum velocity 𝑣max {15.2778, 23.6111} 23.2 m s−1

velocity 𝑣PP0 of the PP0 {9.0, 15.0, 22.5, 31.0} 23.6 m s−1

relative PP0 time 𝑡PP0(𝑠) {1.25, 1.75, 2.5, 4.0, 7.5, 15.0} + ∫ 𝑠
0

1
𝑣PP0(𝜎)d𝜎 22.9 s

current velocity 𝑣
(
𝑠 𝑗

) {0.5, 0.7, 0.9, 1.0, 1.1} · 𝑣max 20.0 m s−1

previous control {−1.0, −0.5, 0.0, 0.5, 1.25} 1.0 m s−2

In summary, the third numerical experiment confirms the challenges
of SensEIS level discussed in Section 7.4, particularly the chattering
behavior of the control when SensEIS level and other MLI levels are
used together.

8.4.4. SensEIS feedback as standalone method

Finally, we use SensEIS feedback as a standalone method to control
our vehicle in the described EACC system application. The setup is
as described for the third numerical experiment in Subsection 8.4.3
except for two changes. First, we now only use SensEIS feedback and
no MLI level at all sampling points. Second, we reduce the sampling
period to 𝑇 = 1 m. This decision can be justified as SensEIS feedback
is significantly faster than Level D of the MLI scheme and thus we
can use a shorter sampling period and still expect that the feedback
would be available in time, even on vehicle hardware.

Figures 8.13 and 8.14 show the results that we obtain with SensEIS feed-
back. Comparing these results to the one for MLI with SensEIS level,
we see that the overall behaviour is similar, but without chattering
in the control. Unfortunately, also SensEIS feedback leads to infea-
sible QPs shortly after 𝑠 = 4.8 km after which the controls become
unusable.

160 8. Application: Ecological Adaptive Cruise Control System

0 1 2 3 4

20

40

60

80

100

120

140

0 1 2 3 4

-1

0

1

2

Figure 8.11.: Velocity and acceleration trajectories computed using the MLI scheme where Level D is used at every 4th sampling time
and SensEIS level at all other sampling times. The involved LUTs are interpolated using our novel method presented in Chapter 5.
After 𝑠 = 4836 m, the controller produces unusable results.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

Figure 8.12.: The time gap 𝑡(𝑠) − 𝑡PP0(𝑠) between our controlled vehicle and the PP0 in the third numerical experiment where we
use the MLI scheme with SensEIS level. The minimum time gap is briefly undercut once.

0 1 2 3 4

20

40

60

80

100

120

140

0 1 2 3 4

-1

0

1

2

Figure 8.13.: Velocity and acceleration trajectory computed using SensEIS feedback at all sampling times. The involved LUTs are
interpolated using our novel method that we presented in Chapter 5. After 𝑠 = 4857 m the controller leads to unusable results.

8.4. Numerical results 161

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

Figure 8.14.: The time gap 𝑡(𝑠)− 𝑡PP0(𝑠) between the our controlled vehicle and the PP0 in the fourth numerical experiment where
we use SensEIS feedback at all sampling times. The minimum time gap is briefly undercut once and again towards the end, where
SensEIS feedback leads to unusable controls.

Both, the third numerical experiment discussed in Subsection 8.4.3
and the current experiment suggest that for such an application with
many relevant external inputs and constant parameters even 3600
scenarios are not sufficiently many. This strengthens our previous
conclusion from Section 7.4 that the challenge of considering enough
parameters in sufficient detail to get good feedback from SensEIS
feedback for all parameters, without exploding the number of scenar-
ios to solve, is the Achilles heel of SensEIS feedback. Finding reme-
dies for this problem has to be the primary task for future research
in order to really capitalize on the potential of SensEIS feedback.

Conclusion 9.
The goal of this thesis project was to find solutions to the challenges
that still need to be overcome if we want to leverage the Multi-Level It-
erations (MLI) scheme to realize an Ecological Adaptive Cruise Control
(EACC) system based on Nonlinear Model Predictive Control (NMPC) in
practice. In the following, we summarize our main developments that
we presented in this thesis and outline future research directions aris-
ing from our work.

Summary

NMPC is an advanced control method. In essence, to perform NMPC,
we repeatedly update our control by solving an Optimal Control Prob-
lem (OCP) that takes into account the current situation. The general
challenge for numerical NMPC is to solve the OCPs sufficiently fast
to achieve a high frequency of control updates. Since these OCPs
are infinite-dimensional optimization problems, this requires sophis-
ticated numerical methods. In the ”first discretize, then optimize” ap-
proach, we first discretize the OCPs, which leads to finite-dimensional
Nonlinear Programs (NLPs) that are then solved. A specific combina-
tion of methods that has been successfully used in several challeng-
ing NMPC applications is to use the Direct Multiple Shooting (DMS)
method for the discretization and then the Real-Time Iterations (RTI)
scheme or the Multi-Level Iterations (MLI) scheme to efficiently com-
pute solutions to the sequence of NLPs. Both schemes can allow very
high sampling frequencies by exploiting the structure of the Quadratic
Programs (QPs) to be solved when a tailored Sequential Quadratic
Programming (SQP) method is used to solve the NLPs.

The EACC application that we are considering is particularly challeng-
ing for three reasons.

First, multivariate Lookup Tables (LUTs) are commonly used in reality,
both in the vehicle model and the OCP formulation. Therefore, our
problem formulation also includes LUTs. For the optimization process
we need to interpolate these LUTs. The challenge lays in computing a
multivariate interpolation that is sufficiently smooth and additionally
preserves certain patterns of the data. To the best of our knowledge,
such an interpolation method has not been presented before. In this
thesis, we have developed a smooth multivariate shape-preserving
interpolation method. The main idea of our interpolation method is
to apply smooth univariate shape-preserving interpolation methods
to univariate subproblems and then aptly blend them together.

Second, external inputs such as the road elevation or the behaviour
of a preceding vehicle (PP0) enter the OCPs and have to be handled
appropriately. In principle, there exists a transformation that allows to
transform the OCPs with external inputs back into a form that can be

164 9. Conclusion

handled by the existing methods. However, in our opinion explicitly
considering external inputs in the DMS, RTI, and MLI holds further
potential and opens new possibilities. Therefore, we presented novel
strategies for incorporating external inputs into DMS, RTI, and MLI. In
particular, these novel strategies are an indispensable component for
our contribution for overcoming the third challenge.

Third, the computing power available in real vehicles is rather limited.
Thus, although the MLI scheme provides levels that are already quite
inexpensive, we strive to develop even faster feedback methods. Our
contribution to this third challenge is the development of a new Sen-
sitivity and External Input Scenario based (SensEIS) feedback. SensEIS
feedback takes advantage of the fact that many driving scenarios are
recurrent and can be precomputed. The connection to external inputs
and thus the second challenge is that these driving situations are in
particular characterized by external inputs. We have developed two
different variants of SensEIS feedback, where the faster variant es-
sentially requires only a matrix-vector product to compute the next
control. The application purpose of SensEIS feedback is not limited to
the EACC problem but extends to all applications where reasonable
scenarios can be formed and precomputed.

Finally, from both a control theoretical and a practitioners point of
view, it is important to know how reliable the inexact NMPC schemes
realized by our numerical methods are. Regarding this question, we
have provided, to the best of our knowledge, the first stability result
for inexact NMPC for Partial Differential Equations (PDEs). Specifically,
we proved asymptotic stability of the origin of the system-optimizer
dynamics for a class of semilinear parabolic PDEs.

Ultimately, we combined our new developments and the MLI scheme
and applied them to our EACC problem, which was equipped with data
from a real test drive. In these numerical experiments, we demon-
strated the potential to save more than 3.4 % of energy compared
to the preceding vehicle from the test drive with only negligible con-
straint violations. If we extrapolate these savings to the total energy
consumption of the transportation sector of about 698 TW h as re-
ported in [191][191]: Umweltbundesamt (2024), En-

ergieverbrauch nach Energieträgern
und Sektoren
[188]: U.S. Energy Information Adminis-
tration (EIA) (2025), Energy Conversion
Calculators

, our numerical methods have the potential to save
about 23.7 TW h of energy. This is equivalent to the energy produced
by burning about 3.9million metric tons of coal [188]! And that’s just
for Germany...

Future directions of research

From our stability results for inexact NMPC for a class of semilinear
parabolic PDEs, we see three immediate directions for the future. First,
our results require an estimate of how the optimal solution of a PDE-
constrained OCP depends on the initial state. Establishing such esti-
mates is an area of research for which very few results are available.
More research in this direction may also benefit our stability results
by possibly discovering appropriate estimates that are easier to verify.
The second direction is to investigate generalizations of our results
to other classes of PDEs.

165

Finally, we hope that our work will stimulate the development of adap-
tations of the RTI or MLI scheme to NMPC for PDEs. Given the success
of these methods in NMPC for ODEs, we believe this is a particularly
promising research question.

But also for NMPC for ODEs this thesis provides starting points for fur-
ther developments. In our view, our novel extension of DMS to exter-
nal inputs could be well suited for NMPC with DMS for long horizons,
because it solves a challenge that arises when using a DMS grid with
coarser intervals toward the end of the prediction horizon. To illus-
trate this challenge, consider the following example. Consider control-
ling a heavy truck in a hilly area. Suppose the engine torque control
is chosen and discretized with constant basis functions, and the road
elevation, which is the external input, is not approximated. The opti-
mizer may then have to assume the same torque both up and down
a hill, which may make the climb infeasible or cause speed violations
downhill. Approximating the external inputs would be a remedy. But
with the traditional approach, this would introduce perturbations in
the model equations that would not be accounted for. Our method
could address this by approximating the external inputs over long
intervals, and taking changes in the approximation into account in
the same way as changes in the current state. Longer prediction hori-
zons should also further improve the performance of our numerical
methods in the EACC application.

While the newly developed SensEIS feedback provides even faster
feedback than the MLI scheme, we also identified challenges that
need to be addressed. We discussed them in Section 7.4. The most
important one that needs to be worked on is how to keep the num-
ber of precomputed scenarios low while still providing good feedback.
A possible remedy might be to develop strategies to smoothly blend
the feedback from different scenarios together. Furthermore, the in-
terplay with the MLI scheme can still be improved. In particular, we
suggest for future research to more thoroughly investigate the idea
of using the scenarios only as providers of derivatives for the MLI
scheme. This has the potential to completely remove online deriva-
tive computations from the MLI scheme, while still being able to react
to changing variables.

Finally, as mentioned before, a proof that our interpolation method
can realize an arbitrary degree of smoothness also for the general
multivariate case is currently in progress.

By addressing these open challenges, future research can further add
to the 3.9million metric tons of coal that our simulations suggest
could be saved frombeing burned if ourmethods were widely adopted.

Appendix

Contents

A. Proof for Example 3.2 167

B. Proof of Smoothness of our Interpolation
Method in the Trivariate Case 169
B.1. Continuity 171
B.2. Continuous differentiability 172
B.3. Twice continuous differentiability 178

C. Gradient and Hessian of Lagrangian of DMS
NLP with External Inputs 185
C.1. Gradient of the Lagrangian 186
C.2. Hessian of the Lagrangian 187

D. Condensing with External Inputs 193

E. Condensing for SensEIS Feedback 197

Proof for Example 3.2 A.
Proof. We exploit the LIPSCHITZ continuity of ℎ and estimate

We assumed ℎ
(
𝑠𝑚 , 𝑞𝑚

)
= 0 at the

beginning of the example. More-
over, the controls do not appear on
the right-hand side of our first LIP-
SCHITZ continuity estimation, as we
use piecewise constant controls.

We assumed 𝑓 (0, 0) = 0 at the be-
ginning of the example.

Definition: GRONWALL’s Lemma

One integral form of GRON-
WALL’s Lemma states: Let
𝛾 : [𝜏𝑚 , 𝜏𝑚+1] → ℝ be a continuous
function, 𝛼 : [𝜏𝑚 , 𝜏𝑚+1] → ℝ a
non-decreasing function whose
negative part is integrable on every
closed and bounded subset of
[𝜏𝑚 , 𝜏𝑚+1], and 𝐿 ≥ 0. If

𝛾(�̂�) ≤ 𝛼(�̂�) + 𝐿
∫ �̂�

𝜏𝑚
𝛾(𝜏)d𝜏

for all �̂� ∈ [𝜏𝑚 , 𝜏𝑚+1], then
𝛾(�̂�) ≤ 𝛼(�̂�)e𝐿(�̂�−𝜏𝑚)

holds for all �̂� ∈ [𝜏𝑚 , 𝜏𝑚+1].

The subtle change in the second
line is that we estimate

e�̃�𝑥 (�̂�−𝜏𝑚) ≤ e�̃�𝑥 (𝜏𝑚+1−𝜏𝑚) .

ℎ (𝑥𝑚 (
�̂�; 𝑠𝑚 , 𝑞𝑚

)
, 𝑞𝑚

)

 =

ℎ (𝑥𝑚 (

�̂�; 𝑠𝑚 , 𝑞𝑚
)
, 𝑞𝑚

) − ℎ (𝑠𝑚 , 𝑞𝑚)

≤ �̃�

𝑥𝑚 (

�̂�; 𝑠𝑚 , 𝑞𝑚
) − 𝑠𝑚

.

The state 𝑥𝑚
(
�̂�; 𝑠𝑚 , 𝑞𝑚

)
is the solution of the IVP 2.4 and thus

𝑥𝑚
(
�̂�; 𝑠𝑚 , 𝑞𝑚

)
= 𝑠𝑚 +

∫ �̂�

𝜏𝑚

𝑓
(
𝑥𝑚

(
𝜏; 𝑠𝑚 , 𝑞𝑚

)
, 𝑞𝑚

)
d𝜏.

This allows us to estimate the deviation 𝑥𝑚
(
𝜏; 𝑠𝑚 , 𝑞𝑚

) − 𝑠𝑚 by

𝑥𝑚 (
�̂�; 𝑠𝑚 , 𝑞𝑚

) − 𝑠𝑚

 =

∫ �̂�

𝜏𝑚

𝑓
(
𝑥𝑚

(
𝜏; 𝑠𝑚 , 𝑞𝑚

)
, 𝑞𝑚

)
d𝜏

≤

∫ �̂�

𝜏𝑚

 𝑓 (𝑥𝑚 (
𝜏; 𝑠𝑚 , 𝑞𝑚

)
, 𝑞𝑚

)

d𝜏

≤
∫ �̂�

𝜏𝑚

 𝑓 (𝑥𝑚 (
𝜏; 𝑠𝑚 , 𝑞𝑚

)
, 𝑞𝑚

) − 𝑓 (0, 0)

d𝜏.

(A.1)

At this point, we leverage the LIPSCHITZ continuity of 𝑓 with positive
constants �̃�𝑥 , �̃�𝑢 and obtain

 𝑓 (𝑥𝑚 (

𝜏; 𝑠𝑚 , 𝑞𝑚
)
, 𝑞𝑚

) − 𝑓 (0, 0)

 ≤ �̃�𝑥

𝑥𝑚 (
𝜏; 𝑠𝑚 , 𝑞𝑚

)

 + �̃�𝑢

𝑞𝑚

. (A.2)
To apply GRONWALL’s Lemma [96] [96]: Gronwall (1919), “Note on the

Derivatives with Respect to a Param-
eter of the Solutions of a System of
Differential Equations”

in the next step, we estimate

𝑥𝑚 (
𝜏; 𝑠𝑚 , 𝑞𝑚

)

 =

𝑥𝑚 (

𝜏; 𝑠𝑚 , 𝑞𝑚
) − 𝑠𝑚 + 𝑠𝑚

≤

𝑥𝑚 (
𝜏; 𝑠𝑚 , 𝑞𝑚

) − 𝑠𝑚

 + ‖ 𝑠𝑚‖ . (A.3)

Combining estimates (A.2) and (A.3) in (A.1) yields

𝑥𝑚 (
�̂�; 𝑠𝑚 , 𝑞𝑚

) − 𝑠𝑚

≤

∫ �̂�

𝜏𝑚

�̃�𝑥

𝑥𝑚 (

𝜏; 𝑠𝑚 , 𝑞𝑚
) − 𝑠𝑚

 + �̃�𝑥‖ 𝑠𝑚‖ + �̃�𝑢

𝑞𝑚

d𝜏

=
∫ �̂�

𝜏𝑚

�̃�𝑥

𝑥𝑚 (

𝜏; 𝑠𝑚 , 𝑞𝑚
) − 𝑠𝑚

d𝜏 + (�̂� − 𝜏𝑚)

(
�̃�𝑥‖ 𝑠𝑚‖ + �̃�𝑢

𝑞𝑚

) .
(A.4)

The estimate (A.4) is now in a suitable form to apply the integral form
of GRONWALL’s Lemma, leading to

𝑥𝑚 (

�̂�; 𝑠𝑚 , 𝑞𝑚
) − 𝑠𝑚

 ≤ (�̂� − 𝜏𝑚)e�̃�𝑥 (�̂�−𝜏𝑚)

(
�̃�𝑥‖ 𝑠𝑚‖ + �̃�𝑢

𝑞𝑚

)
≤ (�̂� − 𝜏𝑚)e�̃�𝑥 (𝜏𝑚+1−𝜏𝑚)

(
�̃�𝑥‖ 𝑠𝑚‖ + �̃�𝑢

𝑞𝑚

) .
Defining 𝐿𝑥 ≔ e�̃�𝑥 (𝜏𝑚+1−𝜏𝑚)�̃�𝑥 and 𝐿𝑢 ≔ e�̃�𝑥 (𝜏𝑚+1−𝜏𝑚)�̃�𝑢 concludes the
proof. ■

Proof of Smoothness of our
Interpolation Method in the

Trivariate Case B.
B.1 Continuity 171
B.2 Continuous differentiabil-

ity 172
B.3 Twice continuous differen-

tiability 178

In the following we show that the interpolation 𝑝 computed by our
novel interpolation method that we presented in Chapter 5 in the
trivariate case, i.e. 𝑛 = 3 is twice continuously differentiable if the
univariate interpolations are twice continuously differentiable and a
blending function of smoothness order 𝑞 = 2 is used.

In the interior of each hyperrectangle 𝑄𝛼 the function 𝑝𝛼 is twice
continuously differentiable as sum and product of twice continuously
differentiable functions. The main task lays in proving the same at the
intersection of two neighbouring hyperrectangles 𝑄𝛼 and 𝑄𝛼+𝛿 with
0 ≠ 𝛿 ∈ {−1, 0, 1}3.
We write the multiindex 𝛼 that we use for enumeration in this trivari-
ate setting as

𝛼 =
(
𝑖 , 𝑗 , 𝑘

)
and the multiindex 𝛿 as

𝛿 =
(
𝛿1 , 𝛿2 , 𝛿3)

The expanded form of the representation (5.18) for 𝑝𝑖, 𝑗 ,𝑘 evaluated
at

𝑥 =
(
𝑥1 , 𝑥2 , 𝑥3)𝑇 ∈ 𝑄𝑖, 𝑗 ,𝑘

is

𝑝𝑖 , 𝑗 ,𝑘(𝑥) = (1−𝑤2
𝑗

(
𝑥2)) (1−𝑤3

𝑘

(
𝑥3)) 𝑝1

𝑗 ,𝑘

(
𝑥1)

+ (1−𝑤2
𝑗

(
𝑥2)) 𝑤3

𝑘

(
𝑥3) 𝑝1

𝑗,𝑘+1
(
𝑥1)

+ 𝑤2
𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝑝1

𝑗+1,𝑘
(
𝑥1)

+ 𝑤2
𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝑝1

𝑗+1,𝑘+1
(
𝑥1)

+ (1−𝑤1
𝑖

(
𝑥1)) (1−𝑤3

𝑘

(
𝑥3)) 𝑝2

𝑖 ,𝑘

(
𝑥2)

+ (1−𝑤1
𝑖

(
𝑥1)) 𝑤3

𝑘

(
𝑥3) 𝑝2

𝑖,𝑘+1
(
𝑥2)

+ 𝑤1
𝑖

(
𝑥1) (1−𝑤3

𝑘

(
𝑥3)) 𝑝2

𝑖+1,𝑘
(
𝑥2)

+ 𝑤1
𝑖

(
𝑥1) 𝑤3

𝑘

(
𝑥3) 𝑝2

𝑖+1,𝑘+1
(
𝑥2)

+ (1−𝑤1
𝑖

(
𝑥1)) (1−𝑤2

𝑗

(
𝑥2)) 𝑝3

𝑖, 𝑗

(
𝑥3)

+ (1−𝑤1
𝑖

(
𝑥1)) 𝑤2

𝑗

(
𝑥2) 𝑝3

𝑖, 𝑗+1
(
𝑥3)

+ 𝑤1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) 𝑝3

𝑖+1, 𝑗
(
𝑥3)

+ 𝑤1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) 𝑝3

𝑖+1, 𝑗+1
(
𝑥3)

− 2 (1−𝑤1
𝑖

(
𝑥1)) (1−𝑤2

𝑗

(
𝑥2)) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖, 𝑗 ,𝑘

− 2 (1−𝑤1
𝑖

(
𝑥1)) (1−𝑤2

𝑗

(
𝑥2)) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖, 𝑗 ,𝑘+1

− 2 (1−𝑤1
𝑖

(
𝑥1)) 𝑤2

𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖 , 𝑗+1,𝑘

− 2 (1−𝑤1
𝑖

(
𝑥1)) 𝑤2

𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖 , 𝑗+1,𝑘+1

170 B. Proof of Smoothness of our Interpolation Method in the Trivariate Case

− 2 𝑤1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖+1, 𝑗 ,𝑘

− 2 𝑤1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖+1, 𝑗 ,𝑘+1

− 2 𝑤1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖+1, 𝑗+1,𝑘

− 2 𝑤1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖+1, 𝑗+1,𝑘+1.

The two hyperrectangles𝑄𝛼 and𝑄𝛼+𝛿 can intersect in three different
ways.

(i) They intersect at a face. In this case we have��𝛿1�� + ��𝛿2�� + ��𝛿3�� = 1.

Without loss of generality, we consider the case where 𝛿1 = 𝛿2 =
0 in the following. The other two cases work analogously. The
intersection is then given by

S2
𝛼 ,𝛿 ≔ 𝑄𝛼 ∩𝑄𝛼+𝛿 =

©­«
𝑥1

𝑥2

𝑥3
𝑘

ª®¬
������
𝑥1
𝑖 ≤ 𝑥1 ≤ 𝑥1

𝑖+1 ,
𝑥2
𝑗 ≤ 𝑥2 ≤ 𝑥2

𝑗+1 ,

𝑘 ≔ max{𝑘, 𝑘 + 𝛿3}

.
(ii) They intersect at an edge. In this case we have��𝛿1�� + ��𝛿2�� + ��𝛿3�� = 2.

Without loss of generality, we consider the case where 𝛿1 = 0 in
the following. The other two cases work analogously. The inter-
section is then given by

S1
𝛼 ,𝛿 ≔ 𝑄𝛼 ∩𝑄𝛼+𝛿 =


©­­«
𝑥1

𝑥2
𝑗

𝑥3
𝑘

ª®®¬
�������
𝑥1
𝑖 ≤ 𝑥1 ≤ 𝑥1

𝑖+1 ,
𝑗 ≔ max{ 𝑗, 𝑗 + 𝛿2} ,
𝑘 ≔ max{𝑘, 𝑘 + 𝛿3}

.
(iii) They intersect at a vertex. In this case we have��𝛿1�� + ��𝛿2�� + ��𝛿3�� = 3

and the intersection is given by

S0
𝛼 ,𝛿 ≔ 𝑄𝛼 ∩𝑄𝛼+𝛿 =


©­­«
𝑥1
𝑖
𝑥2
𝑗

𝑥3
𝑘

ª®®¬
�������
𝑖 ≔ max{𝑖, 𝑖 + 𝛿1} ,
𝑗 ≔ max{ 𝑗, 𝑗 + 𝛿2} ,
𝑘 ≔ max{𝑘, 𝑘 + 𝛿3}

.
In the following we show continuity of 𝑝 in Section B.1, then contin-
uous differentiability in Section B.2 and finally twice continuous dif-
ferentiability in Section B.3. Each time, we will go through the three
different ways that the hyperrectangles can intersect that we have
described above.

B.1. Continuity 171

B.1. Continuity

(i) Intersection at a face We have that

Here we use the definition (5.17) of
𝑤3
𝑘

(
𝑥3)

and 𝑤(0) = 0, cf. Equa-
tion (5.8). Further we have defined
𝑘 ≔ max{𝑘, 𝑘 + 𝛿3} above. Further
it is 𝛿3 ≠ 0 because we focus on the
case where 𝛿1 = 𝛿2 = 0.

𝑤3
𝑘

(
𝑥3
𝑘

)
=

{
0, if 𝛿3 = −1,
1, if 𝛿3 = 1

= 1−
{

1, if 𝛿3 = −1,
0, if 𝛿3 = 1

= 1−𝑤3
𝑘+𝛿3

(
𝑥3
𝑘

)
.

Therefore, we have

𝑝𝑖, 𝑗 ,𝑘(𝑥) = (1−𝑤2
𝑗

(
𝑥2)) 𝑝1

𝑗 ,𝑘

(
𝑥1)

+ 𝑤2
𝑗

(
𝑥2) 𝑝1

𝑗+1,𝑘

(
𝑥1)

+ (1−𝑤1
𝑖

(
𝑥1)) 𝑝2

𝑖,𝑘

(
𝑥2)

+ 𝑤1
𝑖

(
𝑥1) 𝑝2

𝑖+1,𝑘

(
𝑥2)

+ (1−𝑤1
𝑖

(
𝑥1)) (1−𝑤2

𝑗

(
𝑥2)) 𝑝3

𝑖, 𝑗

(
𝑥3)

+ (1−𝑤1
𝑖

(
𝑥1)) 𝑤2

𝑗

(
𝑥2) 𝑝3

𝑖 , 𝑗+1
(
𝑥3)

+ 𝑤1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) 𝑝3

𝑖+1, 𝑗
(
𝑥3)

+ 𝑤1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) 𝑝3

𝑖+1, 𝑗+1
(
𝑥3)

− 2 (1−𝑤1
𝑖

(
𝑥1)) (1−𝑤2

𝑗

(
𝑥2)) 𝑑𝑖 , 𝑗 ,𝑘

− 2 (1−𝑤1
𝑖

(
𝑥1)) 𝑤2

𝑗

(
𝑥2) 𝑑𝑖 , 𝑗+1,𝑘

− 2 𝑤1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) 𝑑𝑖+1, 𝑗 ,𝑘

− 2 𝑤1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) 𝑑𝑖+1, 𝑗+1,𝑘

= 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥),

which ensures continuity if the hyperrectangles intersect at a face.

As mentioned above, we consider
without loss of generality the case
where 𝛿1 = 0. The other two cases
work analogously.

(ii) Intersection at an edge We have already established in form of
Theorem 5.2 that 𝑝 is equal to the univariate interpolation on the
edges. Thus, we have for all 𝑥 ∈ S1

𝛼 ,𝛿 that

𝑝𝑖, 𝑗 ,𝑘(𝑥) = 𝑝1
𝑗,𝑘

(
𝑥1) = 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥),

which ensures continuity if the hyperrectangles intersect at an edge.

(iii) Intersection at a vertex We have already established in form of
Corollary 5.1 that 𝑝 is an interpolation. Thus, we have

𝑝𝑖, 𝑗 ,𝑘

(
𝑥
𝑖 , 𝑗 ,𝑘

)
= 𝑑𝑖, 𝑗 ,𝑘 = 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3

(
𝑥
𝑖, 𝑗 ,𝑘

)
,

which ensures continuity if the hyperrectangles intersect at a ver-
tex.

172 B. Proof of Smoothness of our Interpolation Method in the Trivariate Case

B.2. Continuous differentiability

We show continuity of the first derivative exemplarily for the deriva-
tive with respect to 𝑥1. The other two cases work analogously. For
𝑥 ∈ 𝑄𝑖 , 𝑗 ,𝑘 the derivative of 𝑝𝑖 , 𝑗 ,𝑘 with respect to 𝑥1 is given by

𝜕

𝜕𝑥1 𝑝𝑖, 𝑗 ,𝑘(𝑥) = (1−𝑤2
𝑗

(
𝑥2)) (1−𝑤3

𝑘

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗 ,𝑘

(
𝑥1)

+ (1−𝑤2
𝑗

(
𝑥2)) 𝑤3

𝑘

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗 ,𝑘+1

(
𝑥1)

+ 𝑤2
𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘

(
𝑥1)

+ 𝑤2
𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘+1

(
𝑥1)

− 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤3

𝑘

(
𝑥3)) 𝑝2

𝑖,𝑘

(
𝑥2)

− 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤3

𝑘

(
𝑥3) 𝑝2

𝑖,𝑘+1
(
𝑥2)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤3

𝑘

(
𝑥3)) 𝑝2

𝑖+1,𝑘
(
𝑥2)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤3

𝑘

(
𝑥3) 𝑝2

𝑖+1,𝑘+1
(
𝑥2)

− 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) 𝑝3

𝑖, 𝑗

(
𝑥3)

− 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) 𝑝3

𝑖, 𝑗+1
(
𝑥3)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) 𝑝3

𝑖+1, 𝑗
(
𝑥3)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) 𝑝3

𝑖+1, 𝑗+1
(
𝑥3)

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖 , 𝑗 ,𝑘

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖 , 𝑗 ,𝑘+1

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖 , 𝑗+1,𝑘

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖 , 𝑗+1,𝑘+1

− 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖+1, 𝑗 ,𝑘

− 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖+1, 𝑗 ,𝑘+1

− 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖+1, 𝑗+1,𝑘

− 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖+1, 𝑗+1,𝑘+1.

(B.1)

We will again investigate the three different intersection types (i) -
(iii) described above. However, we will split our investigation into two
parts. In the first, we have

��𝛿1
�� = 1 and in the second 𝛿1 = 0.

B.2. Continuous differentiability 173

Case 1:
��𝛿1

�� = 1

Here, we have that 𝑥1 = 𝑥1
𝑖
for all three intersection types. It holds

that
𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1
𝑖

)
=

𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1
𝑖+1

)
= 0 (B.2)

cf. Equation (5.9). Thus, the expression for 𝜕
𝜕𝑥1 𝑝𝑖, 𝑗 ,𝑘(𝑥) collapses for

𝑥1 = 𝑥1
𝑖
to

𝜕

𝜕𝑥1 𝑝𝑖 , 𝑗 ,𝑘(𝑥) = (1−𝑤2
𝑗

(
𝑥2)) (1−𝑤3

𝑘

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗,𝑘

(
𝑥1
𝑖

)
+ (1−𝑤2

𝑗

(
𝑥2)) 𝑤3

𝑘

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗,𝑘+1

(
𝑥1
𝑖

)
+ 𝑤2

𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘

(
𝑥1
𝑖

)
+ 𝑤2

𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘+1

(
𝑥1
𝑖

)
(B.3)

and the one for 𝜕
𝜕𝑥1 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥) to

𝜕

𝜕𝑥1 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥) = (1−𝑤2
𝑗+𝛿2

(
𝑥2)) (1−𝑤3

𝑘+𝛿3

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗+𝛿2 ,𝑘+𝛿3

(
𝑥1
𝑖

)
+ (1−𝑤2

𝑗+𝛿2

(
𝑥2)) 𝑤3

𝑘+𝛿3

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗+𝛿2 ,𝑘+1+𝛿3

(
𝑥1
𝑖

)
+ 𝑤2

𝑗+𝛿2

(
𝑥2) (1−𝑤3

𝑘+𝛿3

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1+𝛿2 ,𝑘+𝛿3

(
𝑥1
𝑖

)
+ 𝑤2

𝑗+𝛿2

(
𝑥2) 𝑤3

𝑘+𝛿3

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1+𝛿2 ,𝑘+1+𝛿3

(
𝑥1
𝑖

)
.

(B.4)

(i) Intersection at a face This intersection type is characterized by
the fact that

��𝛿1
��+ ��𝛿2

��+ ��𝛿3
�� = 1. As we are currently focussing on the

case where
��𝛿1

�� = 1, we have that 𝛿2 = 𝛿3 = 0. Considering this fact
immediately reveals the equality of the expressions (B.3) and (B.4).

(ii) Intersection at an edge Here, we have that
��𝛿2

��+��𝛿3
�� = 1. We show

the case
��𝛿2

�� = 1 explicitly. The case
��𝛿3

�� = 1 works analogously.

If 𝛿2 = 1, then 𝑥2 = 𝑥2
𝑗
= 𝑥2

𝑗+1 and thus 𝑤2
𝑗

(
𝑥2) = 1 and 𝑤2

𝑗+𝛿2

(
𝑥2) = 0.

Therefore, we have that

𝜕

𝜕𝑥1 𝑝𝑖 , 𝑗 ,𝑘(𝑥) = (1 − 𝑤3
𝑘

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘

(
𝑥1
𝑖

)
+ 𝑤3

𝑘

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘+1

(
𝑥1
𝑖

)
= (1 − 𝑤3

𝑘+𝛿3

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗+𝛿2 ,𝑘+𝛿3

(
𝑥1
𝑖

)
+ 𝑤3

𝑘+𝛿3

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗+𝛿2 ,𝑘+1+𝛿3

(
𝑥1
𝑖

)
=

𝜕

𝜕𝑥1 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥).

174 B. Proof of Smoothness of our Interpolation Method in the Trivariate Case

If instead 𝛿2 = −1, then 𝑥2 = 𝑥2
𝑗
= 𝑥2

𝑗 and thus 𝑤2
𝑗

(
𝑥2) = 0 and

𝑤2
𝑗+𝛿2

(
𝑥2) = 1 in which case we obtain

𝜕

𝜕𝑥1 𝑝𝑖 , 𝑗 ,𝑘(𝑥) = (1 − 𝑤3
𝑘

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗,𝑘

(
𝑥1
𝑖

)
+ 𝑤3

𝑘

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗 ,𝑘+1

(
𝑥1
𝑖

)
= (1 − 𝑤3

𝑘+𝛿3

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1+𝛿2 ,𝑘+𝛿3

(
𝑥1
𝑖

)
+ 𝑤3

𝑘+𝛿3

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1+𝛿2 ,𝑘+1+𝛿3

(
𝑥1
𝑖

)
=

𝜕

𝜕𝑥1 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥).

(B.5)

(iii) Intersection at a vertex We first take a look at the values of the
different weights.

▶ If 𝛿2 = 1, then 𝑥2 = 𝑥2
𝑗

= 𝑥2
𝑗+1 and thus 𝑤2

𝑗

(
𝑥2) = 1 and

𝑤2
𝑗+𝛿2

(
𝑥2) = 0.

▶ If 𝛿2 = −1, then 𝑥2 = 𝑥2
𝑗

= 𝑥2
𝑗 and thus 𝑤2

𝑗

(
𝑥2) = 0 and

𝑤2
𝑗+𝛿2

(
𝑥2) = 1.

▶ If 𝛿3 = 1, then 𝑥3 = 𝑥3
𝑘

= 𝑥3
𝑘+1 and thus 𝑤3

𝑘

(
𝑥3) = 1 and

𝑤3
𝑘+𝛿3

(
𝑥3) = 0.

▶ If 𝛿3 = −1, then 𝑥3 = 𝑥3
𝑘

= 𝑥3
𝑘 and thus 𝑤3

𝑘

(
𝑥3) = 0 and

𝑤3
𝑘+𝛿3

(
𝑥3) = 1.

From that we obtain that

𝜕

𝜕𝑥1 𝑝𝑖 , 𝑗 ,𝑘(𝑥) =



𝜕
𝜕𝑥1 𝑝1

𝑗+1,𝑘+1

(
𝑥1
𝑖

)
, if 𝛿2 = 𝛿3 = 1,

𝜕
𝜕𝑥1 𝑝1

𝑗+1,𝑘

(
𝑥1
𝑖

)
, if 𝛿2 = 1, 𝛿3 = −1,

𝜕
𝜕𝑥1 𝑝1

𝑗,𝑘+1

(
𝑥1
𝑖

)
, if 𝛿2 = −1, 𝛿3 = 1,

𝜕
𝜕𝑥1 𝑝1

𝑗,𝑘

(
𝑥1
𝑖

)
, if 𝛿2 = 𝛿3 = −1

=



𝜕
𝜕𝑥1 𝑝1

𝑗+𝛿2 ,𝑘+𝛿3

(
𝑥1
𝑖

)
, if 𝛿2 = 𝛿3 = 1,

𝜕
𝜕𝑥1 𝑝1

𝑗+𝛿2 ,𝑘+1+𝛿3

(
𝑥1
𝑖

)
, if 𝛿2 = 1, 𝛿3 = −1,

𝜕
𝜕𝑥1 𝑝1

𝑗+1+𝛿2 ,𝑘+𝛿3

(
𝑥1
𝑖

)
, if 𝛿2 = −1, 𝛿3 = 1,

𝜕
𝜕𝑥1 𝑝1

𝑗+1+𝛿2 ,𝑘+1+𝛿3

(
𝑥1
𝑖

)
, if 𝛿2 = 𝛿3 = −1

=
𝜕

𝜕𝑥1 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥).

Case 2: 𝛿1 = 0

Here, we only know that 𝑥1
𝑖 ≤ 𝑥1 ≤ 𝑥1

𝑖+1. Therefore, the terms for
𝜕

𝜕𝑥1 𝑝𝑖, 𝑗 ,𝑘(𝑥) and 𝜕
𝜕𝑥1 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥) do not collapse into a form simi-

lar to Equations (B.3) and (B.4). In exchange, we do not need to con-
sider the case where the hyperrectangles intersect at a vertex, as this
would require that

��𝛿1
�� = 1.

B.2. Continuous differentiability 175

(i) Intersection at a face As 𝛿1 = 0, we have here that
��𝛿2

�� + ��𝛿3
�� = 1.

We show the case
��𝛿2

�� = 1 explicitly. The case
��𝛿3

�� = 1 works analo-
gously.

If 𝛿2 = 1, then 𝑥2 = 𝑥2
𝑗
= 𝑥2

𝑗+1 and thus 𝑤2
𝑗

(
𝑥2) = 1 and 𝑤2

𝑗+𝛿2

(
𝑥2) = 0.

Therefore, we have that

𝜕

𝜕𝑥1 𝑝𝑖, 𝑗 ,𝑘(𝑥) = (1 − 𝑤3
𝑘

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘

(
𝑥1) + 𝑤3

𝑘

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘+1

(
𝑥1)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1)(1 − 𝑤3

𝑘

(
𝑥3))(𝑝2

𝑖+1,𝑘
(
𝑥2) − 𝑝2

𝑖,𝑘

(
𝑥2))

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1)𝑤3

𝑘

(
𝑥3) (𝑝2

𝑖+1,𝑘+1
(
𝑥2) − 𝑝2

𝑖 ,𝑘+1
(
𝑥2))

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝑝3

𝑖+1, 𝑗+1
(
𝑥3) − 𝑝3

𝑖 , 𝑗+1
(
𝑥3))

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1)(1 − 𝑤3

𝑘

(
𝑥3))(𝑑𝑖, 𝑗+1,𝑘 − 𝑑𝑖+1, 𝑗+1,𝑘

)
+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1)𝑤3

𝑘

(
𝑥3) (𝑑𝑖, 𝑗+1,𝑘+1 − 𝑑𝑖+1, 𝑗+1,𝑘+1

)
= (1 − 𝑤3

𝑘+𝛿3

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗+𝛿2 ,𝑘+𝛿3

(
𝑥1) + 𝑤3

𝑘+𝛿3

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗+𝛿2 ,𝑘+1+𝛿3

(
𝑥1)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1)(1 − 𝑤3

𝑘+𝛿3

(
𝑥3))(𝑝2

𝑖+1+𝛿1 ,𝑘+𝛿3

(
𝑥2) − 𝑝2

𝑖+𝛿1 ,𝑘+𝛿3

(
𝑥2))

+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1)𝑤3

𝑘+𝛿3

(
𝑥3) (𝑝2

𝑖+1+𝛿1 ,𝑘+1+𝛿3

(
𝑥2) − 𝑝2

𝑖+𝛿1 ,𝑘+1+𝛿3

(
𝑥2))

+ 𝜕

𝜕𝑥1𝑤
1
𝑗+1+𝛿2

(
𝑥1) (𝑝3

𝑖+𝛿1 , 𝑗+𝛿2

(
𝑥3) − 𝑝3

𝑗+𝛿2 , 𝑗+𝛿2

(
𝑥3))

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1)(1 − 𝑤3

𝑘+𝛿3

(
𝑥3))(𝑑𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3 − 𝑑𝑖+1+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3

)
+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1)𝑤3

𝑘+𝛿3

(
𝑥3) (𝑑𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+1+𝛿3 − 𝑑𝑖+1+𝛿1 , 𝑗+𝛿2 ,𝑘+1+𝛿3

)
=

𝜕

𝜕𝑥1 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥).

If instead 𝛿2 = −1, then 𝑥2 = 𝑥2
𝑗
= 𝑥2

𝑗 and thus 𝑤2
𝑗

(
𝑥2) = 0 and

𝑤2
𝑗+𝛿2

(
𝑥2) = 1 in which case we obtain

𝜕

𝜕𝑥1 𝑝𝑖 , 𝑗 ,𝑘(𝑥) = (1 − 𝑤3
𝑘

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗,𝑘

(
𝑥1) + 𝑤3

𝑘

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗 ,𝑘+1

(
𝑥1)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1)(1 − 𝑤3

𝑘

(
𝑥3))(𝑝2

𝑖+1,𝑘
(
𝑥2) − 𝑝2

𝑖,𝑘

(
𝑥2))

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1)𝑤3

𝑘

(
𝑥3) (𝑝2

𝑖+1,𝑘+1
(
𝑥2) − 𝑝2

𝑖 ,𝑘+1
(
𝑥2))

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝑝3

𝑖+1, 𝑗
(
𝑥3) − 𝑝3

𝑖 , 𝑗

(
𝑥3))

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1)(1 − 𝑤3

𝑘

(
𝑥3))(𝑑𝑖, 𝑗 ,𝑘 − 𝑑𝑖+1, 𝑗 ,𝑘

)
+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1)𝑤3

𝑘

(
𝑥3) (𝑑𝑖 , 𝑗 ,𝑘+1 − 𝑑𝑖+1, 𝑗 ,𝑘+1

)

176 B. Proof of Smoothness of our Interpolation Method in the Trivariate Case

= (1 − 𝑤3
𝑘+𝛿3

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1+𝛿2 ,𝑘+𝛿3

(
𝑥1) + 𝑤3

𝑘+𝛿3

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1+𝛿2 ,𝑘+1+𝛿3

(
𝑥1)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1)(1 − 𝑤3

𝑘+𝛿3

(
𝑥3))(𝑝2

𝑖+1+𝛿1 ,𝑘+𝛿3

(
𝑥2) − 𝑝2

𝑖+𝛿1 ,𝑘+𝛿3

(
𝑥2))

+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1)𝑤3

𝑘+𝛿3

(
𝑥3) (𝑝2

𝑖+1+𝛿1 ,𝑘+1+𝛿3

(
𝑥2) − 𝑝2

𝑖+𝛿1 ,𝑘+1+𝛿3

(
𝑥2))

+ 𝜕

𝜕𝑥1𝑤
1
𝑗+1+𝛿2

(
𝑥1) (𝑝3

𝑖+𝛿1 , 𝑗+1+𝛿2

(
𝑥3) − 𝑝3

𝑗+1+𝛿2 , 𝑗+1+𝛿2

(
𝑥3))

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1)(1 − 𝑤3

𝑘+𝛿3

(
𝑥3))(𝑑𝑖+𝛿1 , 𝑗+1+𝛿2 ,𝑘+𝛿3 − 𝑑𝑖+1+𝛿1 , 𝑗+1+𝛿2 ,𝑘+𝛿3

)
+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1)𝑤3

𝑘+𝛿3

(
𝑥3) (𝑑𝑖+𝛿1 , 𝑗+1+𝛿2 ,𝑘+1+𝛿3 − 𝑑𝑖+1+𝛿1 , 𝑗+1+𝛿2 ,𝑘+1+𝛿3

)
=

𝜕

𝜕𝑥1 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥).

(ii) Intersection at an edge As 𝛿1 = 0, we have here that
��𝛿2

��+��𝛿3
�� = 2.

Using the results for the values of the different weights that we have
listed above for the intersection at a vertex in the first case, we obtain
the following terms.

If 𝛿2 = 𝛿3 = 1, we have

𝜕

𝜕𝑥1 𝑝𝑖, 𝑗 ,𝑘(𝑥) =
𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘+1

(
𝑥1)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝑝2

𝑖+1,𝑘+1

(
𝑥2
𝑗

)
− 𝑝2

𝑖,𝑘+1

(
𝑥2
𝑗

))
+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝑝3

𝑖+1, 𝑗+1

(
𝑥2
𝑗

)
− 𝑝3

𝑖, 𝑗+1

(
𝑥3
𝑘

))
+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝑑𝑖+1, 𝑗+1,𝑘+1 − 𝑑𝑖 , 𝑗+1,𝑘+1

)
=

𝜕

𝜕𝑥1 𝑝
1
𝑗+𝛿2 ,𝑘+𝛿3

(
𝑥1)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) (𝑝2

𝑖+1+𝛿1 ,𝑘+𝛿3

(
𝑥2
𝑗

)
− 𝑝2

𝑖+𝛿1 ,𝑘+𝛿3

(
𝑥2
𝑗

))
+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) (𝑝3

𝑖+1+𝛿1 , 𝑗+𝛿2

(
𝑥2
𝑗

)
− 𝑝3

𝑖+𝛿1 , 𝑗+𝛿2

(
𝑥3
𝑘

))
+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) (𝑑𝑖+1+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3 − 𝑑𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3

)
=

𝜕

𝜕𝑥1 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥).

B.2. Continuous differentiability 177

If 𝛿2 = 1 and 𝛿3 = −1, we have

𝜕

𝜕𝑥1 𝑝𝑖, 𝑗 ,𝑘(𝑥) =
𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘

(
𝑥1)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝑝2

𝑖+1,𝑘

(
𝑥2
𝑗

)
− 𝑝2

𝑖,𝑘

(
𝑥2
𝑗

))
+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝑝3

𝑖+1, 𝑗+1

(
𝑥2
𝑗

)
− 𝑝3

𝑖, 𝑗+1

(
𝑥3
𝑘

))
+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝑑𝑖+1, 𝑗+1,𝑘 − 𝑑𝑖 , 𝑗+1,𝑘

)
=

𝜕

𝜕𝑥1 𝑝
1
𝑗+𝛿2 ,𝑘+1+𝛿3

(
𝑥1)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) (𝑝2

𝑖+1+𝛿1 ,𝑘+1+𝛿3

(
𝑥2
𝑗

)
− 𝑝2

𝑖+𝛿1 ,𝑘+1+𝛿3

(
𝑥2
𝑗

))
+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) (𝑝3

𝑖+1+𝛿1 , 𝑗+𝛿2

(
𝑥2
𝑗

)
− 𝑝3

𝑖+𝛿1 , 𝑗+𝛿2

(
𝑥3
𝑘

))
+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) (𝑑𝑖+1+𝛿1 , 𝑗+𝛿2 ,𝑘+1+𝛿3 − 𝑑𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+1+𝛿3

)
=

𝜕

𝜕𝑥1 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥).

If 𝛿2 = −1 and 𝛿3 = 1, we have

𝜕

𝜕𝑥1 𝑝𝑖, 𝑗 ,𝑘(𝑥) =
𝜕

𝜕𝑥1 𝑝
1
𝑗 ,𝑘+1

(
𝑥1)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝑝2

𝑖+1,𝑘+1

(
𝑥2
𝑗

)
− 𝑝2

𝑖,𝑘+1

(
𝑥2
𝑗

))
+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝑝3

𝑖+1, 𝑗

(
𝑥2
𝑗

)
− 𝑝3

𝑖, 𝑗

(
𝑥3
𝑘

))
+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝑑𝑖+1, 𝑗 ,𝑘+1 − 𝑑𝑖 , 𝑗 ,𝑘+1

)
=

𝜕

𝜕𝑥1 𝑝
1
𝑗+1+𝛿2 ,𝑘+𝛿3

(
𝑥1)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) (𝑝2

𝑖+1+𝛿1 ,𝑘+𝛿3

(
𝑥2
𝑗

)
− 𝑝2

𝑖+𝛿1 ,𝑘+𝛿3

(
𝑥2
𝑗

))
+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) (𝑝3

𝑖+1+𝛿1 , 𝑗+1+𝛿2

(
𝑥2
𝑗

)
− 𝑝3

𝑖+𝛿1 , 𝑗+1+𝛿2

(
𝑥3
𝑘

))
+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) (𝑑𝑖+1+𝛿1 , 𝑗+1+𝛿2 ,𝑘+𝛿3 − 𝑑𝑖+𝛿1 , 𝑗+1+𝛿2 ,𝑘+𝛿3

)
=

𝜕

𝜕𝑥1 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥).

178 B. Proof of Smoothness of our Interpolation Method in the Trivariate Case

If 𝛿2 = 𝛿3 = −1, we have

𝜕

𝜕𝑥1 𝑝𝑖, 𝑗 ,𝑘(𝑥) =
𝜕

𝜕𝑥1 𝑝
1
𝑗 ,𝑘

(
𝑥1)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝑝2

𝑖+1,𝑘

(
𝑥2
𝑗

)
− 𝑝2

𝑖 ,𝑘

(
𝑥2
𝑗

))
+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝑝3

𝑖+1, 𝑗

(
𝑥2
𝑗

)
− 𝑝3

𝑖 , 𝑗

(
𝑥3
𝑘

))
+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝑑𝑖+1, 𝑗 ,𝑘 − 𝑑𝑖, 𝑗 ,𝑘

)
=

𝜕

𝜕𝑥1 𝑝
1
𝑗+1+𝛿2 ,𝑘+1+𝛿3

(
𝑥1)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) (𝑝2

𝑖+1+𝛿1 ,𝑘+1+𝛿3

(
𝑥2
𝑗

)
− 𝑝2

𝑖+𝛿1 ,𝑘+1+𝛿3

(
𝑥2
𝑗

))
+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) (𝑝3

𝑖+1+𝛿1 , 𝑗+1+𝛿2

(
𝑥2
𝑗

)
− 𝑝3

𝑖+𝛿1 , 𝑗+1+𝛿2

(
𝑥3
𝑘

))
+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) (𝑑𝑖+1+𝛿1 , 𝑗+1+𝛿2 ,𝑘+1+𝛿3 − 𝑑𝑖+𝛿1 , 𝑗+1+𝛿2 ,𝑘+1+𝛿3

)
=

𝜕

𝜕𝑥1 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥).

B.3. Twice continuous differentiability

We exemplarily show that the second derivatives are continuous across
the boundaries of the hyperrectangles for 𝜕2

𝜕𝑥1𝜕𝑥1 𝑝𝑖 , 𝑗 ,𝑘(𝑥) and for
𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖 , 𝑗 ,𝑘(𝑥). The proofs for the derivatives 𝜕
𝜕𝑥2 𝑝𝑖, 𝑗 ,𝑘(𝑥), 𝜕2

𝜕𝑥1𝜕𝑥1 𝑝𝑖 , 𝑗 ,𝑘(𝑥)
and 𝜕2

𝜕𝑥1𝜕𝑥3 𝑝𝑖, 𝑗 ,𝑘(𝑥) and 𝜕2

𝜕𝑥2𝜕𝑥3 𝑝𝑖 , 𝑗 ,𝑘(𝑥) work analogously. As 𝑝𝑖, 𝑗 ,𝑘 is
twice continuously differentiable within the hyperrectangle 𝑄𝑖 , 𝑗 ,𝑘 , we
know that

𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖, 𝑗 ,𝑘(𝑥) =
𝜕2

𝜕𝑥2𝜕𝑥1 𝑝𝑖, 𝑗 ,𝑘(𝑥),
𝜕2

𝜕𝑥1𝜕𝑥3 𝑝𝑖, 𝑗 ,𝑘(𝑥) =
𝜕2

𝜕𝑥3𝜕𝑥1 𝑝𝑖, 𝑗 ,𝑘(𝑥),
𝜕2

𝜕𝑥2𝜕𝑥3 𝑝𝑖, 𝑗 ,𝑘(𝑥) =
𝜕2

𝜕𝑥3𝜕𝑥2 𝑝𝑖, 𝑗 ,𝑘(𝑥).

Thus, we do not need to consider the derivatives on the right side
explicitly.

We first turn our attention to 𝜕2

𝜕𝑥1𝜕𝑥1 𝑝𝑖 , 𝑗 ,𝑘(𝑥).

B.3. Twice continuous differentiability 179

For 𝑝𝑖, 𝑗 ,𝑘 and 𝑥 ∈ 𝑄𝑖, 𝑗 ,𝑘 we have that

𝜕2

𝜕𝑥1𝜕𝑥1 𝑝𝑖 , 𝑗 ,𝑘(𝑥) = (1−𝑤2
𝑗

(
𝑥2)) (1−𝑤3

𝑘

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗,𝑘

(
𝑥1)

+ (1−𝑤2
𝑗

(
𝑥2)) 𝑤3

𝑘

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗,𝑘+1

(
𝑥1)

+ 𝑤2
𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘

(
𝑥1)

+ 𝑤2
𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘+1

(
𝑥1)

− 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤3

𝑘

(
𝑥3)) 𝑝2

𝑖 ,𝑘

(
𝑥2)

− 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤3

𝑘

(
𝑥3) 𝑝2

𝑖 ,𝑘+1
(
𝑥2)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤3

𝑘

(
𝑥3)) 𝑝2

𝑖+1,𝑘
(
𝑥2)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤3

𝑘

(
𝑥3) 𝑝2

𝑖+1,𝑘+1
(
𝑥2)

− 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) 𝑝3

𝑖 , 𝑗

(
𝑥3)

− 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) 𝑝3

𝑖 , 𝑗+1
(
𝑥3)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) 𝑝3

𝑖+1, 𝑗
(
𝑥3)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) 𝑝3

𝑖+1, 𝑗+1
(
𝑥3)

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖, 𝑗 ,𝑘

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖, 𝑗 ,𝑘+1

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖, 𝑗+1,𝑘

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖, 𝑗+1,𝑘+1

− 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖+1, 𝑗 ,𝑘

− 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤2

𝑗

(
𝑥2)) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖+1, 𝑗 ,𝑘+1

− 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖+1, 𝑗+1,𝑘

− 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤2

𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖+1, 𝑗+1,𝑘+1.

(B.6)

Comparing Equation (B.6) with Equation (B.1) for the first derivative
𝜕

𝜕𝑥1 𝑝𝑖, 𝑗 ,𝑘(𝑥), we see that they have the same structure. The only differ-
ence is that in Equation (B.6) the operator 𝜕

𝜕𝑥1 replaces the operator
𝜕

𝜕𝑥1 in Equation (B.1). As analogously to Equation (B.2) it holds that

Cf. again Equation (5.9).𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1
𝑖

)
=

𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1
𝑖+1

)
= 0,

180 B. Proof of Smoothness of our Interpolation Method in the Trivariate Case

the proof for the continuity of 𝜕2

𝜕𝑥1𝜕𝑥1 𝑝𝑖, 𝑗 ,𝑘(𝑥) across the boundaries
of the hyperrectangles proceeds completely analogously to the one
of the contiuity of 𝜕

𝜕𝑥1 𝑝𝑖 , 𝑗 ,𝑘(𝑥).
Next, we investigate 𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖 , 𝑗 ,𝑘(𝑥). For 𝑥 ∈ 𝑄𝑖, 𝑗 ,𝑘 the derivative
𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖 , 𝑗 ,𝑘(𝑥) is given by

𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖, 𝑗 ,𝑘(𝑥) = − 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗,𝑘

(
𝑥1)

− 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗,𝑘+1

(
𝑥1)

+ 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘

(
𝑥1)

+ 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘+1

(
𝑥1)

− 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤3

𝑘

(
𝑥3)) 𝜕

𝜕𝑥2 𝑝
2
𝑖,𝑘

(
𝑥2)

− 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤3

𝑘

(
𝑥3) 𝜕

𝜕𝑥2 𝑝
2
𝑖,𝑘+1

(
𝑥2)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (1−𝑤3

𝑘

(
𝑥3)) 𝜕

𝜕𝑥2 𝑝
2
𝑖+1,𝑘

(
𝑥2)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝑤3

𝑘

(
𝑥3) 𝜕

𝜕𝑥2 𝑝
2
𝑖+1,𝑘+1

(
𝑥2)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) 𝑝3

𝑖 , 𝑗

(
𝑥3)

− 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) 𝑝3

𝑖 , 𝑗+1
(
𝑥3)

− 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) 𝑝3

𝑖+1, 𝑗
(
𝑥3)

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) 𝑝3

𝑖+1, 𝑗+1
(
𝑥3)

− 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖, 𝑗 ,𝑘

− 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖, 𝑗 ,𝑘+1

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖, 𝑗+1,𝑘

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖, 𝑗+1,𝑘+1

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖+1, 𝑗 ,𝑘

+ 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖+1, 𝑗 ,𝑘+1

− 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) (1−𝑤3

𝑘

(
𝑥3)) 𝑑𝑖+1, 𝑗+1,𝑘

− 2 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) 𝑤3

𝑘

(
𝑥3) 𝑑𝑖+1, 𝑗+1,𝑘+1.

(B.7)

We distinguish again between the three different intersection types.

B.3. Twice continuous differentiability 181

(i) Intersection at a face Let first be 𝛿3 = 0. We show exemplarily the
case where

��𝛿1
�� = 1. The case

��𝛿2
�� = 1 works analogously. It is either

𝑥1 = 𝑥1
𝑖 or 𝑥

1 = 𝑥1
𝑖+1. As in both cases we have

𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) = 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) = 0,

the expression (B.7) reduces to

𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖, 𝑗 ,𝑘(𝑥) =
𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2)(1 − 𝑤3

𝑘

(
𝑥3))(𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝
1
𝑗 ,𝑘

(
𝑥1))

+ 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2)𝑤3

𝑘

(
𝑥3) (𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘+1

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝
1
𝑗,𝑘+1

(
𝑥1)) .

Remembering that 𝛿2 = 𝛿3 = 0, we see that thus

𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖, 𝑗 ,𝑘(𝑥) =
𝜕

𝜕𝑥2𝑤
2
𝑗+𝛿2

(
𝑥2)(1 − 𝑤3

𝑘+𝛿3

(
𝑥3))(𝜕

𝜕𝑥1 𝑝
1
𝑗+1+𝛿2 ,𝑘+𝛿3

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝
1
𝑗+𝛿2 ,𝑘+𝛿3

(
𝑥1))

+ 𝜕

𝜕𝑥2𝑤
2
𝑗+𝛿2

(
𝑥2)𝑤3

𝑘+𝛿3

(
𝑥3) (𝜕

𝜕𝑥1 𝑝
1
𝑗+1+𝛿2 ,𝑘+1+𝛿3

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝
1
𝑗+𝛿2 ,𝑘+1+𝛿3

(
𝑥1))

=
𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥).

Let now be 𝛿3 = 1 and accordingly 𝛿1 = 𝛿2 = 0. Here, we have that

𝑥3 =

{
𝑥2
𝑘 , if 𝛿3 = −1,
𝑥2
𝑘+1 , if 𝛿3 = 1

.

Therefore, we get

𝑤3
𝑘

(
𝑥3) = {

0, if 𝛿3 = −1,
1, if 𝛿3 = 1

,

𝑤3
𝑘+𝛿3

(
𝑥3) = {

1, if 𝛿3 = −1,
0, if 𝛿3 = 1

.

182 B. Proof of Smoothness of our Interpolation Method in the Trivariate Case

For 𝛿3 = 1 we thus get

𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖, 𝑗 ,𝑘(𝑥)

=
𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) (𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘+1

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝
1
𝑗,𝑘+1

(
𝑥1))

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝜕

𝜕𝑥1 𝑝
2
𝑖+1,𝑘+1

(
𝑥2) − 𝜕

𝜕𝑥1 𝑝
2
𝑖 ,𝑘+1

(
𝑥2))

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) (𝑝3

𝑖, 𝑗

(
𝑥3) − 𝑝3

𝑖 , 𝑗+1
(
𝑥3) + 𝑑𝑖, 𝑗+1,𝑘+1 − 𝑑𝑖 , 𝑗 ,𝑘+1

)
− 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) (𝑝3

𝑖+1, 𝑗
(
𝑥3) − 𝑝3

𝑖+1, 𝑗+1
(
𝑥3) + 𝑑𝑖+1, 𝑗+1,𝑘+1 − 𝑑𝑖+1, 𝑗 ,𝑘+1

)
=

𝜕

𝜕𝑥2𝑤
2
𝑗+𝛿2

(
𝑥2) (𝜕

𝜕𝑥1 𝑝
1
𝑗+1+𝛿2 ,𝑘+𝛿3

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝
1
𝑗+𝛿2 ,𝑘+𝛿3

(
𝑥1))

+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) (𝜕

𝜕𝑥1 𝑝
2
𝑖+1+𝛿1 ,𝑘+𝛿3

(
𝑥2) − 𝜕

𝜕𝑥1 𝑝
2
𝑖+𝛿1 ,𝑘+𝛿3

(
𝑥2))

+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗+𝛿2

(
𝑥2) (𝑝3

𝑖+𝛿1 , 𝑗+𝛿2

(
𝑥3) − 𝑝3

𝑖+𝛿1 , 𝑗+1+𝛿2

(
𝑥3) + 𝑑𝑖+𝛿1 , 𝑗+1+𝛿2 ,𝑘+𝛿3 − 𝑑𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3

)
− 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗+𝛿2

(
𝑥2) (𝑝3

𝑖+1+𝛿1 , 𝑗+𝛿2

(
𝑥3) − 𝑝3

𝑖+1+𝛿1 , 𝑗+1+𝛿2

(
𝑥3) + 𝑑𝑖+1+𝛿1 , 𝑗+1+𝛿2 ,𝑘+𝛿3 − 𝑑𝑖+1+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3

)
=

𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥).

For 𝛿3 = −1 we get

𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖, 𝑗 ,𝑘(𝑥)

=
𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) (𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝
1
𝑗 ,𝑘

(
𝑥1))

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) (𝜕

𝜕𝑥1 𝑝
2
𝑖+1,𝑘

(
𝑥2) − 𝜕

𝜕𝑥1 𝑝
2
𝑖 ,𝑘

(
𝑥2))

+ 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) (𝑝3

𝑖, 𝑗

(
𝑥3) − 𝑝3

𝑖 , 𝑗+1
(
𝑥3) + 𝑑𝑖, 𝑗+1,𝑘 − 𝑑𝑖 , 𝑗 ,𝑘

)
− 𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) (𝑝3

𝑖+1, 𝑗
(
𝑥3) − 𝑝3

𝑖+1, 𝑗+1
(
𝑥3) + 𝑑𝑖+1, 𝑗+1,𝑘 − 𝑑𝑖+1, 𝑗 ,𝑘

)
=

𝜕

𝜕𝑥2𝑤
2
𝑗+𝛿2

(
𝑥2) (𝜕

𝜕𝑥1 𝑝
1
𝑗+1+𝛿2 ,𝑘+1+𝛿3

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝
1
𝑗+𝛿2 ,𝑘+1+𝛿3

(
𝑥1))

+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) (𝜕

𝜕𝑥1 𝑝
2
𝑖+1+𝛿1 ,𝑘+1+𝛿3

(
𝑥2) − 𝜕

𝜕𝑥1 𝑝
2
𝑖+𝛿1 ,𝑘+1+𝛿3

(
𝑥2))

+ 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗+𝛿2

(
𝑥2) (𝑝3

𝑖+𝛿1 , 𝑗+𝛿2

(
𝑥3) − 𝑝3

𝑖+𝛿1 , 𝑗+1+𝛿2

(
𝑥3) + 𝑑𝑖+𝛿1 , 𝑗+1+𝛿2 ,𝑘+1+𝛿3 − 𝑑𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+1+𝛿3

)
− 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) 𝜕

𝜕𝑥2𝑤
2
𝑗+𝛿2

(
𝑥2) (𝑝3

𝑖+1+𝛿1 , 𝑗+𝛿2

(
𝑥3) − 𝑝3

𝑖+1+𝛿1 , 𝑗+1+𝛿2

(
𝑥3) + 𝑑𝑖+1+𝛿1 , 𝑗+1+𝛿2 ,𝑘+1+𝛿3 − 𝑑𝑖+1+𝛿1 , 𝑗+𝛿2 ,𝑘+1+𝛿3

)
=

𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥).

B.3. Twice continuous differentiability 183

(ii) Intersection at an edge Let first be 𝛿3 = 0 and accordingly
��𝛿1

�� =��𝛿2
�� = 1. Because of this, it is either 𝑥1 = 𝑥1

𝑖 or 𝑥
1 = 𝑥1

𝑖+1 and 𝑥2 = 𝑥2
𝑗

or 𝑥2 = 𝑥2
𝑗+1. As a consequence, we have

𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) = 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) = 0,

𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) = 𝜕

𝜕𝑥2𝑤
2
𝑗+𝛿2

(
𝑥2) = 0.

As one of these derivatives occurs as a factor in each summand of
𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖 , 𝑗 ,𝑘(𝑥), cf. Equation (B.7), we obtain

This is the zero corner twist issue
that we discussed at the end of Sub-
section 5.3.2.

𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖 , 𝑗 ,𝑘(𝑥) = 0 =
𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥).

Let now be 𝛿3 = 1. We exemplarily show the case
��𝛿1

�� = 1. The case
where

��𝛿2
�� = 1 works analogously. As again 𝑥1 = 𝑥1

𝑖+1 and 𝑥2 = 𝑥2
𝑗 we

again have that

𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) = 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) = 0.

This leads to

𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖 , 𝑗 ,𝑘(𝑥) =
𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2)(1 − 𝑤3

𝑘

(
𝑥3))(𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝
1
𝑗 ,𝑘

(
𝑥1))

+ 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2)𝑤3

𝑘

(
𝑥3) (𝜕

𝜕𝑥1 𝑝
1
𝑗+1,𝑘+1

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝
1
𝑗,𝑘+1

(
𝑥1))

=


𝜕

𝜕𝑥2𝑤2
𝑗

(
𝑥2) (𝜕

𝜕𝑥1 𝑝1
𝑗+1,𝑘

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝1
𝑗 ,𝑘

(
𝑥1)) , if 𝛿3 = −1,

𝜕
𝜕𝑥2𝑤2

𝑗

(
𝑥2) (𝜕

𝜕𝑥1 𝑝1
𝑗+1,𝑘+1

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝1
𝑗 ,𝑘+1

(
𝑥1)) , if 𝛿3 = 1

=


𝜕

𝜕𝑥2𝑤2
𝑗+𝛿2

(
𝑥2) (𝜕

𝜕𝑥1 𝑝1
𝑗+1+𝛿2 ,𝑘+1+𝛿3

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝1
𝑗+𝛿2 ,𝑘+1+𝛿3

(
𝑥1)) , if 𝛿3 = −1,

𝜕
𝜕𝑥2𝑤2

𝑗+𝛿2

(
𝑥2) (𝜕

𝜕𝑥1 𝑝1
𝑗+1+𝛿2 ,𝑘+𝛿3

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝1
𝑗+𝛿2 ,𝑘+𝛿3

(
𝑥1)) , if 𝛿3 = 1

=
𝜕

𝜕𝑥2𝑤
2
𝑗+𝛿2

(
𝑥2)𝑤3

𝑘+𝛿3

(
𝑥3) (𝜕

𝜕𝑥1 𝑝
1
𝑗+1+𝛿2 ,𝑘+1+𝛿3

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝
1
𝑗+𝛿2 ,𝑘+1+𝛿3

(
𝑥1))

+ 𝜕

𝜕𝑥2𝑤
2
𝑗+𝛿2

(
𝑥2)(1 − 𝑤3

𝑘+𝛿3

(
𝑥3))(𝜕

𝜕𝑥1 𝑝
1
𝑗+1+𝛿2 ,𝑘+𝛿3

(
𝑥1) − 𝜕

𝜕𝑥1 𝑝
1
𝑗+𝛿2 ,𝑘+𝛿3

(
𝑥1))

=
𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥).

(iii) Intersection at a vertex As for the intersection at a edge in the
case where 𝛿3 = 0, we have here again that

𝜕

𝜕𝑥1𝑤
1
𝑖

(
𝑥1) = 𝜕

𝜕𝑥1𝑤
1
𝑖+𝛿1

(
𝑥1) = 0, 𝜕

𝜕𝑥2𝑤
2
𝑗

(
𝑥2) = 𝜕

𝜕𝑥2𝑤
2
𝑗+𝛿2

(
𝑥2) = 0.

and accordingly that
This is again the zero corner twist
issue that we discussed at the end
of Subsection 5.3.2.

𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖 , 𝑗 ,𝑘(𝑥) = 0 =
𝜕2

𝜕𝑥1𝜕𝑥2 𝑝𝑖+𝛿1 , 𝑗+𝛿2 ,𝑘+𝛿3(𝑥).

Gradient and Hessian of
Lagrangian of DMS NLP with

External Inputs C.
C.1 Gradient of the La-

grangian 186
C.2 Hessian of the Lagrangian 187

In the following we present the structure of the gradient and the
Hessian of the Lagrangian of the DMS NLP that corresponds to the
OCP (6.4). We do this to aid in the understanding and implementa-
tion of the numerical methods that are presented in Chapter 3 and
Chapters 6 – 7 and make use of the gradient and Hessian blocks and
their structure that we present in the following. We consider the most
general OCP (6.4), i.e. where external inputs and both mixed state-
control and boundary constraints are present. The gradient and Hes-
sian blocks for simpler cases can then be obtained by just dropping
dependencies and constraints that are not present in these cases.

For information on this transforma-
tion we refer to [138, Section 5.1].

For ease of presentation we assume that the OCP has been trans-
formed such that only the MAYER Φ objective term is present. The
NLP that we consider in the following is thus a slight simplification
of NLP (6.8) and given by

min
𝑠∈ℝ𝑛𝑠

𝑞∈ℝ𝑛𝑞

Φ
(
𝑠𝑀 ; 𝜌 , 𝑣𝑀

)
s.t. 0 = 𝑥

(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
− 𝑠𝑚+1 , 𝑚 = 0, . . . , 𝑀 − 1,

0 ≤ ℎ
(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
, 𝑚 = 0, . . . , 𝑀 − 1,

0 = 𝑟e
(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
,

0 ≤ 𝑟i
(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
,

0 = 𝑥 𝑗 − 𝑠0.

(C.1)

The Lagrangian L of the NLP (C.1) is given by

We drop the dependencies of the
Lagrangian in the remaining part of
this chapter for readibility.

L
(
𝑠, 𝑞, 𝑥 𝑗 , 𝜌 𝑗 , 𝑣 𝑗 ,𝜆MC ,𝜆𝑟 ,𝜆IVE , 𝜇ℎ , 𝜇𝑟

)
≔ Φ

(
𝑠𝑀 ; 𝜌 , 𝑣𝑀

)
−
𝑀−1∑
𝑚=0

(
𝜆MC
𝑚

)𝑇 (
𝑥
(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
− 𝑠𝑚+1

)
− (𝜆𝑟)𝑇

(
𝑟e

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

))
− (

𝜆IVE)𝑇 (
𝑥 𝑗 − 𝑠0

)
−
𝑀−1∑
𝑚=0

(
𝜇ℎ𝑚

)𝑇 (
ℎ
(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

))
− (

𝜇𝑟
)𝑇 (

𝑟i
(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

))

186 C. Gradient and Hessian of Lagrangian of DMS NLP with External Inputs

with the LAGRANGE multipliers

𝜆MC =
©­­«
𝜆MC

0
...

𝜆MC
𝑀−1

ª®®¬ ∈ ℝ𝑀𝑛𝑥 , 𝜆𝑟 ∈ ℝ𝑛𝑟e , 𝜆IVE ∈ ℝ𝑛𝑥 ,

𝜇ℎ =
©­­«

𝜇ℎ0
...

𝜇ℎ𝑀−1

ª®®¬ ∈ ℝ𝑀𝑛ℎ , 𝜇𝑟 ∈ ℝ𝑛𝑟i .

(C.2)

In the following we first present the structure of the gradient of the
Lagrangian L given in Equation (C.2), which includes the Jacobians of
the constraints of the NLP (C.1), and then the structure of the Hessian.
For Chapter 3 and Chapters 6 – 7 the derivatives with respect to the
state variables 𝑠, the control variables 𝑞, the constant parameters 𝜌
and the external inputs 𝑣 are of interest.

C.1. Gradient of the Lagrangian

The gradient of the Lagrangian L with respect to the state variables
𝑠, the control variables 𝑞, the constant parameters 𝜌 and the external
inputs 𝑣 is given by

The dimensions of the blocks of the
gradient are:

▶ ∇𝑠L ∈ ℝ(𝑀+1)𝑛𝑥 ,
▶ ∇𝑞L ∈ ℝ𝑀𝑛𝑞 ,
▶ ∇𝜌L ∈ ℝ𝑛𝜌 ,
▶ ∇𝑣L ∈ ℝ𝑛𝑣 .

∇L=
©­­­«
∇𝑠L
∇𝑞L
∇𝜌L
∇𝑣𝑚L

ª®®®¬.
The structures of these gradients are given by

∇𝑠L=

©­­­­­­­«

0
0
...
0

∇𝑠𝑀Φ
(
𝑠𝑀 ; 𝜌 , 𝑣𝑀

)
ª®®®®®®®¬
−

©­­­­­­­­­«

−𝕀 (
𝑆𝑠0

)𝑇 0 · · · 0

0 −𝕀 (
𝑆𝑠1

)𝑇 . . .
...

...
. . .

. . .
. . . 0

0 · · · 0 −𝕀
(
𝑆𝑠𝑀−1

)𝑇
0 · · · 0 0 −𝕀

ª®®®®®®®®®¬

©­­­­­­«

𝜆IVE

𝜆MC
0

𝜆MC
1
...

𝜆MC
𝑀−1

ª®®®®®®¬

−

©­­­­­­­­­­«

(
𝜕
𝜕𝑠0
ℎ
(
𝑠0 , 𝑞0; 𝜌 𝑗 , 𝑣 𝑗0

))𝑇
𝜇ℎ0(

𝜕
𝜕𝑠1
ℎ
(
𝑠1 , 𝑞1; 𝜌 𝑗 , 𝑣 𝑗1

))𝑇
𝜇ℎ1

...(
𝜕

𝜕𝑠𝑀−1
ℎ
(
𝑠𝑀−1 , 𝑞𝑀−1; 𝜌 𝑗 , 𝑣 𝑗𝑀−1

))𝑇
𝜇ℎ𝑀−1

0

ª®®®®®®®®®®¬
−

©­­­­­­­­­«

(
𝜕
𝜕𝑠0
𝑟e

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

))𝑇
𝜆𝑟 +

(
𝜕
𝜕𝑠0
𝑟i

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

))𝑇
𝜇𝑟

0
...
0(

𝜕
𝜕𝑠𝑀

𝑟e
(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

))𝑇
𝜆𝑟 +

(
𝜕

𝜕𝑠𝑀
𝑟i

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

))𝑇
𝜇𝑟

ª®®®®®®®®®¬
,

C.2. Hessian of the Lagrangian 187

∇𝑞L=

©­­­­«
(
𝑆𝑞0

)𝑇
𝜆MC

0
...(

𝑆𝑞𝑀−1

)𝑇
𝜆MC
𝑀−1

ª®®®®¬
−

©­­­­­«

(
𝜕

𝜕𝑞0
ℎ
(
𝑠0 , 𝑞0; 𝜌 𝑗 , 𝑣 𝑗0

))𝑇
𝜇ℎ0

...(
𝜕

𝜕𝑞𝑀−1
ℎ
(
𝑠𝑀−1 , 𝑞𝑀−1; 𝜌 𝑗 , 𝑣 𝑗𝑀−1

))𝑇
𝜇ℎ𝑀−1

ª®®®®®¬
,

∇𝜌L= ∇𝜌Φ(
𝑠𝑀 ; 𝜌 , 𝑣𝑀

) − (
𝜕

𝜕𝜌
𝑟e

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

))𝑇
𝜆𝑟 −

(
𝜕

𝜕𝜌
𝑟i

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

))𝑇
𝜇𝑟

−
𝑀−1∑
𝑚=0

(
𝑆𝜌𝑚

)𝑇
𝜆MC
𝑚 +

(
𝜕

𝜕𝜌
ℎ
(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

))𝑇
𝜇ℎ𝑚 ,

∇𝑣L=

©­­­­­­­«

0
...
0
0

∇𝑣𝑀Φ
(
𝑠𝑀 ; 𝜌 , 𝑣𝑀

)
ª®®®®®®®¬
−

©­­­­­­«

(
𝑆𝑣0

)𝑇
𝜆MC

0
...(

𝑆𝑣𝑀−1

)𝑇
𝜆MC
𝑀−1

0

ª®®®®®®¬
−

©­­­­­«

(
𝜕

𝜕𝑣0
ℎ
(
𝑠0 , 𝑞0; 𝜌 𝑗 , 𝑣 𝑗0

))𝑇
𝜇ℎ0

...(
𝜕

𝜕𝑣𝑀−1
ℎ
(
𝑠𝑀−1 , 𝑞𝑀−1; 𝜌 𝑗 , 𝑣 𝑗𝑀−1

))𝑇
𝜇ℎ𝑀−1

ª®®®®®¬
.

C.2. Hessian of the Lagrangian

The Hessian of the Lagrangian Lwith respect to the state variables 𝑠,
the control variables 𝑞, the constant parameters 𝜌 and the external
inputs 𝑣 is given by

∇2L=
©­­­«
∇2
𝑠𝑠L ∇2

𝑠𝑞L ∇2
𝑠𝜌L ∇2

𝑠𝑣L

∇2
𝑞𝑠L ∇2

𝑞𝑞L ∇2
𝑞𝜌L ∇2

𝑞𝑣L

∇2
𝜌𝑠L ∇2

𝜌𝑞L ∇2
𝜌𝜌L ∇2

𝜌𝑣L

∇2
𝑣𝑠L ∇2

𝑣𝑞L ∇2
𝑣𝜌L ∇2

𝑣𝑣L

ª®®®¬,
where the dimensions of the blocks of the Hessian are given by

∇2
𝑠𝑠L ∈ ℝ(𝑀+1)𝑛𝑥×(𝑀+1)𝑛𝑥 , ∇2

𝑠𝑞L ∈ ℝ(𝑀+1)𝑛𝑥×𝑀𝑛𝑞 ,

∇2
𝑠𝜌L ∈ ℝ(𝑀+1)𝑛𝑥×𝑛𝜌 , ∇2

𝑠𝑣L ∈ ℝ(𝑀+1)𝑛𝑥×𝑛𝑣 ,

∇2
𝑞𝑞L ∈ ℝ𝑀𝑛𝑞×𝑀𝑛𝑞 , ∇2

𝑞𝜌L ∈ ℝ𝑀𝑛𝑞×𝑛𝜌 ,

∇2
𝑞𝑣L ∈ ℝ𝑀𝑛𝑞×𝑛𝑣 , ∇2

𝜌𝜌L ∈ ℝ𝑛𝜌×𝑛𝜌 ,

∇2
𝜌𝑣L ∈ ℝ𝑛𝜌×𝑛𝑣 , ∇2

𝑣𝑣L ∈ ℝ𝑛𝑣×𝑛𝑣 .

Under the common assumption that the Lagrangian is twice continu-
ously differentiable, the Hessian of the Lagrangian is symmetric. We
therefore only present the upper triangular part of the Hessian. From
here on, the index 𝑙 is used to denote the scalar components of the
vectors.

188 C. Gradient and Hessian of Lagrangian of DMS NLP with External Inputs

∇2
𝑠𝑠L

The Hessian block ∇2
𝑠𝑠L is given by

∇2
𝑠𝑠L=

©­­­­­­­«

∇2
𝑠0𝑠0L 0 · · · 0 ∇2

𝑠0𝑠𝑀L

0 ∇2
𝑠1𝑠1L

. . .
... 0

...
. . .

. . . 0 0
0 · · · 0 ∇2

𝑠𝑀−1𝑠𝑀−1L 0
∇2
𝑠𝑀 𝑠0L 0 0 0 ∇2

𝑠𝑀 𝑠𝑀L

ª®®®®®®®¬
,

with

∇2
𝑠0𝑠0L= −

𝑛𝑥∑
𝑙=1
∇2
𝑠0𝑠0𝑥𝑙

(
𝜏1; 𝑠0 , 𝑞0; 𝜌 𝑗 , 𝑣 𝑗0

)
𝜆MC

0,𝑙

−
𝑛ℎ∑
𝑙=1
∇2
𝑠0𝑠0 ℎ𝑙

(
𝑠0 , 𝑞0; 𝜌 𝑗 , 𝑣 𝑗0

)
𝜇ℎ0,𝑙

−
𝑛𝑟e∑
𝑙=1
∇2
𝑠0𝑠0 𝑟

e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝑠0𝑠0 𝑟

i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 ,

∇2
𝑠𝑚 𝑠𝑚L= −

𝑛𝑥∑
𝑙=1
∇2
𝑠𝑚 𝑠𝑚 𝑥𝑙

(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜆MC
𝑚,𝑙

−
𝑛ℎ∑
𝑙=1
∇2
𝑠𝑚 𝑠𝑚 ℎ𝑙

(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜇ℎ𝑚,𝑙 , 𝑚 = 1, . . . , 𝑚 − 1,

∇2
𝑠𝑀 𝑠𝑀L=∇2

𝑠𝑀 𝑠𝑀Φ
(
𝑠𝑀 ; 𝜌 , 𝑣𝑀

)
−

𝑛𝑟e∑
𝑙=1
∇2
𝑠𝑀 𝑠𝑀 𝑟

e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝑠𝑀 𝑠𝑀 𝑟

i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 ,

∇2
𝑠0𝑠𝑀L= −

𝑛𝑟e∑
𝑙=1
∇2
𝑠0𝑠𝑀 𝑟

e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝑠0𝑠𝑀 𝑟

i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 ,

∇2
𝑠𝑀 𝑠0L= −

𝑛𝑟e∑
𝑙=1
∇2
𝑠𝑀 𝑠0 𝑟

e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝑠𝑀 𝑠0 𝑟

i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 .

∇2
𝑠𝑞L

The Hessian block ∇2
𝑠𝑞L is given by

∇2
𝑠𝑞L=

©­­­­­­­«

∇2
𝑠0𝑞0L 0 · · · 0

0 ∇2
𝑠1𝑞1L

. . .
...

...
. . .

. . . 0
0 · · · 0 ∇2

𝑠𝑀−1𝑞𝑀−1L

0 · · · 0 0

ª®®®®®®®¬
,

with

∇2
𝑠𝑚 𝑞𝑚L= −

𝑛𝑥∑
𝑙=1
∇2
𝑠𝑚 𝑞𝑚 𝑥𝑙

(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜆MC
𝑚,𝑙

−
𝑛ℎ∑
𝑙=1
∇2
𝑠𝑚 𝑞𝑚 ℎ𝑙

(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜇ℎ𝑚,𝑙 , 𝑚 = 0, . . . , 𝑀 − 1.

C.2. Hessian of the Lagrangian 189

∇2
𝑠𝜌L

The Hessian block ∇2
𝑠𝜌L is given by

∇2
𝑠𝜌L=

©­­«
∇2
𝑠0𝜌L
...

∇2
𝑠𝑀𝜌L

ª®®¬,
with

∇2
𝑠0𝜌L= −

𝑛𝑥∑
𝑙=1
∇2
𝑠0𝜌𝑥𝑙

(
𝜏0; 𝑠0 , 𝑞0; 𝜌 𝑗 , 𝑣 𝑗0

)
𝜆MC

0,𝑙

−
𝑛ℎ∑
𝑙=1
∇2
𝑠0𝜌ℎ𝑙

(
𝑠0 , 𝑞0; 𝜌 𝑗 , 𝑣 𝑗0

)
𝜇ℎ0,𝑙

−
𝑛𝑟e∑
𝑙=1
∇2
𝑠0𝜌𝑟

e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝑠0𝜌𝑟

i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 ,

∇2
𝑠𝑚𝜌L= −

𝑛𝑥∑
𝑙=1
∇2
𝑠𝑚𝜌𝑥𝑙

(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜆MC
𝑚,𝑙

−
𝑛ℎ∑
𝑙=1
∇2
𝑠𝑚𝜌ℎ𝑙

(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜇ℎ𝑚,𝑙 , 𝑚 = 1, . . . , 𝑀 − 1,

∇2
𝑠𝑀𝜌L=∇2

𝑠𝑀𝜌Φ
(
𝑠𝑀 ; 𝜌 , 𝑣𝑀

)
−

𝑛𝑟e∑
𝑙=1
∇2
𝑠𝑀𝜌𝑟

e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝑠𝑀𝜌𝑟

i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 .

∇2
𝑠𝑣L

The Hessian block ∇2
𝑠𝑣L is given by

∇2
𝑠𝑣L=

©­­­­­­­­«

∇2
𝑠0𝑣0

L 0 · · · 0 ∇2
𝑠0𝑣𝑀

L

0 ∇2
𝑠1𝑣1

L
. . .

... 0
...

. . .
. . . 0 0

0 · · · 0 ∇2
𝑠𝑀−1𝑣𝑀−1

L 0
∇2
𝑠𝑀𝑣0

L 0 0 0 ∇2
𝑠𝑀𝑣𝑀

L

ª®®®®®®®®¬
,

with

∇2
𝑠0𝑣0

L= −
𝑛𝑥∑
𝑙=1
∇2
𝑠0𝑣0

𝑥𝑙
(
𝜏0; 𝑠0 , 𝑞0; 𝜌 𝑗 , 𝑣 𝑗0

)
𝜆MC

0,𝑙

−
𝑛ℎ∑
𝑙=1
∇2
𝑠0𝑣0

ℎ𝑙
(
𝑠0 , 𝑞0; 𝜌 𝑗 , 𝑣 𝑗0

)
𝜇ℎ0,𝑙

−
𝑛𝑟e∑
𝑙=1
∇2
𝑠0𝑣0

𝑟e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝑠0𝑣0

𝑟i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 ,

∇2
𝑠𝑚𝑣𝑚L= −

𝑛𝑥∑
𝑙=1
∇2
𝑠𝑚𝑣𝑚 𝑥𝑙

(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜆MC
𝑚,𝑙

−
𝑛ℎ∑
𝑙=1
∇2
𝑠𝑚𝑣𝑚 ℎ𝑙

(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜇ℎ𝑚,𝑙 , 𝑚 = 1, . . . , 𝑀 − 1,

190 C. Gradient and Hessian of Lagrangian of DMS NLP with External Inputs

∇2
𝑠𝑀𝑣𝑀

L=∇2
𝑠𝑀𝑣𝑀

Φ
(
𝑠𝑀 ; 𝜌 , 𝑣𝑀

)
−

𝑛𝑟e∑
𝑙=1
∇2
𝑠𝑀𝑣𝑀

𝑟e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝑠𝑀𝑣𝑀

𝑟i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 ,

∇2
𝑠0𝑣𝑀

L= −
𝑛𝑟e∑
𝑙=1
∇2
𝑠0𝑣𝑀

𝑟e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝑠0𝑣𝑀

𝑟i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 ,

∇2
𝑠𝑀𝑣0

L= −
𝑛𝑟e∑
𝑙=1
∇2
𝑠𝑀𝑣0

𝑟e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝑠𝑀𝑣0

𝑟i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 .

∇2
𝑞𝑞L

The Hessian block ∇2
𝑞𝑞L is given by

∇2
𝑞𝑞L=

©­­­­­«
∇2
𝑞0𝑞0L 0 · · · 0

0 ∇2
𝑞1𝑞1L

. . .
...

...
. . .

. . . 0
0 · · · 0 ∇2

𝑞𝑀−1𝑞𝑀−1L

ª®®®®®¬
,

with

∇2
𝑞𝑚 𝑞𝑚L= −

𝑛𝑥∑
𝑙=1
∇2
𝑞𝑚 𝑞𝑚 𝑥𝑙

(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜆MC
𝑚,𝑙

−
𝑛ℎ∑
𝑙=1
∇2
𝑞𝑚 𝑞𝑚 ℎ𝑙

(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜇ℎ𝑚,𝑙 , 𝑚 = 0, . . . , 𝑀 − 1.

∇2
𝑞𝜌L

The Hessian block ∇2
𝑞𝜌L is given by

∇2
𝑞𝜌L=

©­­«
∇2
𝑞0𝜌L
...

∇2
𝑞𝑀−1𝜌L

ª®®¬,
with

∇2
𝑞𝑚𝜌L= −

𝑛𝑥∑
𝑙=1
∇2
𝑞𝑚𝜌𝑥𝑙

(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜆MC
𝑚,𝑙

−
𝑛ℎ∑
𝑙=1
∇2
𝑞𝑚𝜌ℎ𝑙

(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜇ℎ𝑚,𝑙 , 𝑚 = 0, . . . , 𝑀 − 1.

C.2. Hessian of the Lagrangian 191

∇2
𝑞𝑣L

The Hessian block ∇2
𝑞𝑣L is given by

∇2
𝑞𝑣L=

©­­­­­­«

∇2
𝑞0𝑣0

L 0 · · · 0 0

0 ∇2
𝑞1𝑣1

L
. . .

... 0
...

. . .
. . . 0 0

0 · · · 0 ∇2
𝑞𝑀−1𝑣𝑀−1

L 0

ª®®®®®®¬
,

with

∇2
𝑞𝑚𝑣0

L= −
𝑛𝑥∑
𝑙=1
∇2
𝑞𝑚𝑣0

𝑥𝑙
(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜆MC
𝑚,𝑙

−
𝑛ℎ∑
𝑙=1
∇2
𝑞𝑚𝑣0

ℎ𝑙
(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜇ℎ𝑚,𝑙 , 𝑚 = 0, . . . , 𝑀 − 1.

∇2
𝜌𝜌L

The Hessian block ∇2
𝜌𝜌L is given by

∇2
𝜌𝜌L=∇2

𝜌𝜌Φ
(
𝑠𝑀 ; 𝜌 , 𝑣𝑀

)
−
𝑀−1∑
𝑚=0

𝑛𝑥∑
𝑙=1
∇2
𝜌𝜌𝑥𝑙

(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜆MC
𝑚,𝑙

−
𝑛ℎ∑
𝑙=1
∇2
𝜌𝜌ℎ𝑙

(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜇ℎ𝑚,𝑙

−
𝑛𝑟e∑
𝑙=1
∇2
𝜌𝜌𝑟

e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝜌𝜌𝑟

i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 .

∇2
𝜌𝑣L

The Hessian block ∇2
𝜌𝑣L is given by ∇2

𝜌𝑣L=
(
∇2
𝜌𝑣0

L · · · ∇2
𝜌𝑣𝑀

L
)
with

∇2
𝜌𝑣0

L= −
𝑀−1∑
𝑚=0

𝑛𝑥∑
𝑙=1
∇2
𝜌𝑣0
𝑥𝑙

(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜆MC
𝑚,𝑙

−
𝑀−1∑
𝑚=0

𝑛ℎ∑
𝑙=1
∇2
𝜌𝑣0
ℎ𝑙

(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜇ℎ𝑚,𝑙 ,

∇2
𝜌𝑣𝑚L= −

𝑛𝑥∑
𝑙=1
∇2
𝜌𝑣𝑚 𝑥𝑙

(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜆MC
𝑚,𝑙

−
𝑛ℎ∑
𝑙=1
∇2
𝜌𝑣𝑚 ℎ𝑙

(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜇ℎ𝑚,𝑙 , 𝑚 = 1, . . . , 𝑀 − 1,

∇2
𝜌𝑣𝑀

L=∇2
𝜌𝑣𝑀

Φ
(
𝑠𝑀 ; 𝜌 , 𝑣𝑀

)
−

𝑛𝑟e∑
𝑙=1
∇2
𝜌𝑣𝑀

𝑟e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝜌𝑣𝑀

𝑟i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 .

192 C. Gradient and Hessian of Lagrangian of DMS NLP with External Inputs

∇2
𝑣𝑣L

The Hessian block ∇2
𝑣𝑣L is given by

∇2
𝑣𝑣L=

©­­­­­­­­«

∇2
𝑣0𝑣0

L 0 · · · 0 ∇2
𝑣0𝑣𝑀

L

0 ∇2
𝑣1𝑣1

L
. . .

... 0
...

. . .
. . . 0 0

0 · · · 0 ∇2
𝑣𝑀−1𝑣𝑀−1

L 0
∇2
𝑣𝑀𝑣0

L 0 0 0 ∇2
𝑣𝑀𝑣𝑀

L

ª®®®®®®®®¬
,

with

∇2
𝑣0𝑣0

L= −
𝑀−1∑
𝑚=0

𝑛𝑥∑
𝑙=1
∇2
𝑣0𝑣0

𝑥𝑙
(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜆MC
𝑚,𝑙

−
𝑀−1∑
𝑚=0

𝑛ℎ∑
𝑙=1
∇2
𝑣0𝑣0

ℎ𝑙
(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜇ℎ𝑚,𝑙 ,

−
𝑛𝑟e∑
𝑙=1
∇2
𝑣0𝑣0

𝑟e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝑣0𝑣0

𝑟i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 ,

∇2
𝑣𝑚𝑣𝑚L= −

𝑛𝑥∑
𝑙=1
∇2
𝑣𝑚𝑣𝑚 𝑥𝑙

(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜆MC
𝑚,𝑙

−
𝑛ℎ∑
𝑙=1
∇2
𝑣𝑚𝑣𝑚 ℎ𝑙

(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
𝜇ℎ𝑚,𝑙 , 𝑚 = 1, . . . , 𝑀 − 1,

∇2
𝑣𝑀𝑣𝑀

L=∇2
𝑣𝑀𝑣𝑀

Φ
(
𝑠𝑀 ; 𝜌 , 𝑣𝑀

)
−

𝑛𝑟e∑
𝑙=1
∇2
𝑣𝑀𝑣𝑀

𝑟e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝑣𝑀𝑣𝑀

𝑟i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 ,

∇2
𝑣0𝑣𝑀

L= −
𝑛𝑟e∑
𝑙=1
∇2
𝑣0𝑣𝑀

𝑟e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝑣0𝑣𝑀

𝑟i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 ,

∇2
𝑣𝑀𝑣0

L= −
𝑛𝑟e∑
𝑙=1
∇2
𝑣𝑀𝑣0

𝑟e
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜆𝑟𝑙 −

𝑛𝑟i∑
𝑙=1
∇2
𝑣𝑀𝑣0

𝑟i
𝑙

(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
𝜇𝑟𝑙 .

Condensing with External Inputs D.
In this appendix, we present the condensing procedure for QP (6.10).

In analogy to Equation (3.29) in Subsection 3.3.2 we use

𝛿𝑚 ≔ 𝑥
(
𝜏𝑚+1; 𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
− 𝑠𝑚+1 , 𝑚 = 0, . . . , 𝑀 − 1,

ℎ𝑚 ≔ ℎ
(
𝑠𝑚 , 𝑞𝑚 ; 𝜌 𝑗 , 𝑣 𝑗𝑚

)
, 𝑚 = 0, . . . , 𝑀 − 1,

𝑟e ≔ 𝑟e
(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
,

𝑟i ≔ 𝑟i
(
𝑠0 , 𝑠𝑀 ; 𝜌 𝑗 , 𝑣 𝑗0 , 𝑣

𝑗
𝑀

)
.

Similarly to the condensing matrices 𝐸𝑠0𝑚 and 𝐸𝑞𝑙𝑚 , cf. Equations (3.31) and (3.32), we define 𝐸𝜌
𝑚 and 𝐸𝑣𝑙𝑚 for

𝑚 = 1, . . . , 𝑀 and 𝑙 = 0, . . . , 𝑀 − 1 by

𝐸𝜌
𝑚 = 𝑆𝑠𝑚−1𝐸

𝜌
𝑚−1 + 𝑆𝜌𝑚−1 , 𝑚 = 2, . . . , 𝑀, with 𝐸𝜌

1 = 𝑆𝜌0 ,

𝐸
𝑣𝑙
𝑚 = 𝑆𝑠𝑚−1𝐸

𝑣𝑙
𝑚−1 , 𝑚 = 𝑙 + 2, . . . , 𝑀, with 𝐸

𝑣𝑙
𝑙+1 = 𝑆𝑣𝑙 .

We can then proceed as for the condensing of QP (3.24), cf. Equation (3.30), to compute Δ𝑠𝑚+1 for 𝑚 =
0, . . . , 𝑀 − 1 by

Δ𝑠𝑚+1 = 𝐸𝑠0𝑚+1Δ𝑠0 +
𝑚∑
𝑙=0

(
𝐸𝑞𝑙𝑚+1Δ𝑞𝑙 + 𝐸

𝑣𝑙
𝑚+1Δ𝑣𝑙

)
+ 𝐸𝜌

𝑚+1Δ𝜌 + �̂�𝑚 ,

where the condensed matching conditions residuals �̂�𝑚 are as before defined by the recursion

�̂�𝑚 = 𝑆𝑠𝑚−1 �̂�𝑚−1 + 𝛿𝑚 , 𝑚 = 1, . . . , 𝑀 − 1, with �̂�0 = 𝛿0. (3.33)

To reformulate the objective function in terms of the remaining optimization variables, we need to adjust
the condensed Hessian �̂�. The condensed Hessian has the block structure

�̂� =
©­­­«
�̂�𝑠0𝑠0 �̂�𝑠0𝑞 �̂�𝑠0𝜌 �̂�𝑠0𝑣

�̂�𝑞𝑠0 �̂�𝑞𝑞 �̂�𝑞𝜌 �̂�𝑞𝑣

�̂�𝜌𝑠0 �̂�𝜌𝑞 �̂�𝜌𝜌 �̂�𝜌𝑣

�̂�𝑣𝑠0 �̂�𝑣𝑞 �̂�𝑣𝜌 �̂�𝑣𝑣 .

ª®®®¬
In the following, we give the expressions for the respective blocks.

First, we consider the blocks in the first column and accordingly the first row. The blocks �̂�𝑞𝑠0 and �̂�𝑣𝑠0
are themselves partitioned into blocks by

�̂�𝑞𝑠0 =
©­­«
�̂�𝑞0𝑠0

...
�̂�𝑞𝑀−1𝑠0

ª®®¬, �̂�𝑣𝑠0 =
©­­«
�̂�𝑣0𝑠0

...
�̂�𝑣𝑀 𝑠0

ª®®¬.

194 D. Condensing with External Inputs

The first column and row are then made up from the blocks

�̂�𝑠0𝑠0 ≔ 𝐵𝑠0𝑠0 +
𝑀∑
𝑙=1

(
𝐸𝑠0𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸𝑠0𝑙 + 𝐵𝑠0𝑠𝑀𝐸𝑠0𝑀 +

(
𝐸𝑠0𝑀

)𝑇
𝐵𝑠𝑀 𝑠0 ,(

�̂�𝑞0𝑠0
)𝑇

= �̂�𝑠0𝑞0 ≔ 𝐵𝑠0𝑞0 + 𝐵𝑠0𝑠𝑀𝐸𝑞0
𝑀 +

𝑀∑
𝑙=1

(
𝐸𝑠0𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸𝑞0

𝑙 ,(
�̂�𝑞𝑚 𝑠0

)𝑇
= �̂�𝑠0𝑞𝑚 ≔

(
𝐸𝑠0𝑚

)𝑇𝐵𝑠𝑚 𝑞𝑚 + 𝐵𝑠0𝑠𝑀𝐸𝑞𝑚𝑀 + 𝑀∑
𝑙=𝑚+1

(
𝐸𝑠0𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸𝑞𝑚𝑙 , 𝑚 = 1, . . . , 𝑀 − 1,(

�̂�𝜌𝑠0
)𝑇

= �̂�𝑠0𝜌 ≔ 𝐵𝑠0𝜌 + 𝐵𝑠0𝑠𝑀𝐸𝜌
𝑀 +

𝑀∑
𝑙=1

(
𝐸𝑠0𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸𝜌

𝑙 +
(
𝐸𝑠0𝑙

)𝑇
𝐵𝑠𝑙𝜌 ,(

�̂�𝑣0𝑠0
)𝑇

= �̂�𝑠0𝑣0 ≔ 𝐵𝑠0𝑣0 + 𝐵𝑠0𝑠𝑀𝐸𝑣0
𝑀 +

(
𝐸𝑠0𝑀

)𝑇
𝐵𝑠𝑀𝑣0 +

𝑀∑
𝑙=1

(
𝐸𝑠0𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸

𝑣0
𝑙 ,(

�̂�𝑣𝑚 𝑠0
)𝑇

= �̂�𝑠0𝑣𝑚 ≔
(
𝐸𝑠0𝑚

)𝑇𝐵𝑠𝑚𝑣𝑚 + 𝐵𝑠0𝑠𝑀𝐸𝑣𝑚𝑀 + 𝑀∑
𝑙=𝑚+1

(
𝐸𝑠0𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸𝑣𝑚𝑙 , 𝑚 = 1, . . . , 𝑀 − 1,(

�̂�𝑣𝑀 𝑠0
)𝑇

= �̂�𝑠0𝑣𝑀 ≔ 𝐵𝑠0𝑣𝑀 +
(
𝐸𝑠0𝑀

)𝑇
𝐵𝑠𝑀𝑣𝑀 .

Next, we consider the blocks in the second column and accordingly the second row that have not been
considered already. We partition the block �̂�𝑞𝑞 into the blocks

�̂�𝑞𝑞 =
©­­«
�̂�𝑞0𝑞0 · · · �̂�𝑞0𝑞𝑀−1

...
...

�̂�𝑞𝑀−1𝑞0 · · · �̂�𝑞𝑀−1𝑞𝑀−1

ª®®¬,
which are given by

�̂�𝑞𝑚 𝑞𝑚 ≔ 𝐵𝑞𝑚 𝑞𝑚 +
𝑀∑

𝑙=𝑚+1

(
𝐸𝑞𝑚𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸𝑞𝑚𝑙 , 𝑚 = 0, . . . , 𝑀 − 1,(

�̂�𝑞𝑝 𝑞𝑚
)𝑇

= �̂�𝑞𝑚 𝑞𝑝 ≔
(
𝐸𝑞𝑚𝑝

)𝑇
𝐵𝑠𝑝 𝑞𝑝 +

𝑀∑
𝑙=𝑝+1

(
𝐸𝑞𝑚𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸

𝑞𝑝
𝑙 , 𝑚 = 0, . . . , 𝑀 − 2, 𝑝 = 𝑚 + 1, . . . , 𝑀 − 1.

The block �̂�𝜌𝑞 is given by

�̂�𝜌𝑞 =
©­­«
�̂�𝜌𝑞0

...
�̂�𝜌𝑞𝑀−1

ª®®¬,
where (

�̂�𝑞0𝜌
)𝑇

= �̂�𝜌𝑞0 ≔ 𝐵𝜌𝑞0 +
𝑀∑
𝑙=1

(
𝐸𝜌
𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸𝑞0

𝑙 + 𝐵𝜌𝑠𝑙𝐸𝑞0
𝑙 ,(

�̂�𝑞𝑚𝜌
)𝑇

= �̂�𝜌𝑞𝑚 ≔ 𝐵𝜌𝑞𝑚 + (
𝐸𝜌
𝑚
)𝑇
𝐵𝑠𝑚 𝑞𝑚 +

𝑀∑
𝑙=𝑚+1

(
𝐸𝜌
𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸𝑞𝑚𝑙 + 𝐵𝜌𝑠𝑙𝐸𝑞𝑚𝑙 , 𝑚 = 1, . . . , 𝑀 − 1.

The block �̂�𝑣𝑞 is given by

�̂�𝑣𝑞 =
©­­«
�̂�𝑣0𝑞0 · · · �̂�𝑣0𝑞𝑀−1

...
...

�̂�𝑣𝑀 𝑞0 · · · �̂�𝑣𝑀 𝑞𝑀−1

ª®®¬,
where

195

(
�̂�𝑞0𝑣0

)𝑇
= �̂�𝑣0𝑞0 ≔ 𝐵𝑣0𝑞0 + 𝐵𝑣0𝑠𝑀𝐸𝑞0

𝑀 +
𝑀∑
𝑙=1

(
𝐸
𝑣0
𝑙

)
𝐵𝑠𝑙 𝑠𝑙𝐸𝑞0

𝑙 ,(
�̂�𝑞𝑚𝑣𝑚

)𝑇
= �̂�𝑣𝑚 𝑞𝑚 ≔ 𝐵𝑣𝑚 𝑞𝑚 +

𝑀∑
𝑙=𝑚+1

(
𝐸𝑣𝑚𝑙

)
𝐵𝑠𝑙 𝑠𝑙𝐸𝑞𝑚𝑙 , 𝑚 = 1, . . . , 𝑀 − 1,(

�̂�𝑞𝑝𝑣𝑚
)𝑇

= �̂�𝑣𝑚 𝑞𝑝 ≔
(
𝐸𝑣𝑚𝑝

)𝑇
𝐵𝑠𝑝 𝑞𝑝 +

𝑀∑
𝑙=𝑚+1

(
𝐸𝑣𝑚𝑙

)
𝐵𝑠𝑙 𝑠𝑙𝐸

𝑞𝑝
𝑙 , 𝑚 = 0, . . . , 𝑀 − 2, 𝑝 = 𝑚 + 1, . . . , 𝑀 − 1,(

�̂�𝑞𝑚𝑣𝑝
)𝑇

= �̂�𝑣𝑝 𝑞𝑚 ≔ 𝐵𝑣𝑝 𝑠𝑝𝐸𝑞𝑚𝑝 +
𝑀∑

𝑙=𝑚+1

(
𝐸
𝑣𝑝
𝑙

)
𝐵𝑠𝑙 𝑠𝑙𝐸𝑞𝑚𝑙 , 𝑚 = 0, . . . , 𝑀 − 2, 𝑝 = 𝑚 + 1, . . . , 𝑀 − 1,(

�̂�𝑞𝑚𝑣𝑀
)𝑇

= �̂�𝑣𝑀 𝑞𝑚 ≔ 𝐵𝑣𝑀 𝑠𝑀𝐸𝑞𝑚𝑀 , 𝑚 = 0, . . . , 𝑀 − 1.

In the third column and the third row the blocks �̂�𝜌𝜌 and �̂�𝑣𝜌 remain. The block �̂�𝜌𝜌 is given by

�̂�𝜌𝜌 = 𝐵𝜌𝜌 +
𝑀∑
𝑙=1

(
𝐸𝜌
𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸𝜌

𝑙 +
(
𝐸𝜌
𝑙

)
𝐵𝜌𝑠𝑙 + 𝐵𝑠𝑙𝜌𝐸𝜌

𝑙 .

The block �̂�𝑣𝜌 is given by

�̂�𝑣𝜌 =
©­­«
�̂�𝑣0𝜌

...
�̂�𝑣𝑀𝜌

ª®®¬,
where (

�̂�𝜌𝑣0
)𝑇

= �̂�𝑣0𝜌 ≔ 𝐵𝑣0𝜌 + 𝐵𝑣0𝑠𝑀𝐸𝜌
𝑀 ,(

�̂�𝜌𝑣𝑚
)𝑇

= �̂�𝑣𝑚𝜌 ≔ 𝐵𝑣𝑚𝜌 + 𝐵𝑣𝑚 𝑠𝑚𝐸𝜌
𝑀 +

𝑀∑
𝑙=𝑚+1

(
𝐸𝑣𝑚𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸𝜌

𝑙 +
(
𝐸𝑣𝑚𝑙

)𝑇
𝐵𝑠𝑙𝜌 , 𝑚 = 1, . . . , 𝑀 − 1,(

�̂�𝜌𝑣𝑀
)𝑇

= �̂�𝑣𝑀𝜌 ≔ 𝐵𝑣𝑀𝜌 + 𝐵𝑣𝑀 𝑠𝑀𝐸𝜌
𝑀 .

The final block �̂�𝑣𝑣 has the structure

�̂�𝑣𝑣 =
©­­«
�̂�𝑣0𝑣0 · · · �̂�𝑣0𝑣𝑀

...
...

�̂�𝑣𝑀𝑣0 · · · �̂�𝑣𝑀𝑣𝑀

ª®®¬,
where

�̂�𝑣0𝑣0 ≔ 𝐵𝑣0𝑣0 + 𝐵𝑣0𝑠𝑀𝐸
𝑣0
𝑀 +

(
𝐸
𝑣0
𝑀

)𝑇
𝐵𝑠𝑀𝑣0 +

𝑀∑
𝑙=1

(
𝐸
𝑣0
𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸

𝑣0
𝑙 ,

�̂�𝑣𝑚𝑣𝑚 ≔ 𝐵𝑣𝑚𝑣𝑚 +
𝑀∑

𝑙=𝑚+1

(
𝐸𝑣𝑚𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸𝑣𝑚𝑙 , 𝑚 = 1, . . . , 𝑀 − 1,

�̂�𝑣𝑀𝑣𝑀 ≔ 𝐵𝑣𝑀𝑣𝑀 ,

196 D. Condensing with External Inputs

(
�̂�𝑣𝑝𝑣𝑚

)𝑇
= �̂�𝑣𝑚𝑣𝑝 ≔

(
𝐸𝑣𝑚𝑝

)𝑇
𝐵𝑠𝑝𝑣𝑝 +

𝑀∑
𝑙=𝑝+1

(
𝐸𝑣𝑚𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸

𝑣𝑝
𝑙 , 𝑚 = 0, . . . , 𝑀 − 2, 𝑝 = 𝑚 + 1, . . . , 𝑀 − 1,(

�̂�𝑣𝑀𝑣0
)𝑇

= �̂�𝑣0𝑣𝑀 ≔ 𝐵𝑣0𝑣𝑀 + 𝐸𝑣0
𝑀𝐵

𝑠𝑀𝑣𝑀 ,(
�̂�𝑣𝑀𝑣𝑚

)𝑇
= �̂�𝑣𝑚𝑣𝑀 ≔ 𝐸𝑣𝑚𝑀 𝐵𝑠𝑀𝑣𝑀 , 𝑚 = 1, . . . , 𝑀 − 1.

Next, we turn our attention to the condensed gradients 𝑏𝑠0 , 𝑏𝑞 , 𝑏𝜌, and 𝑏𝑣 . The condensed gradients 𝑏𝑠0
and 𝑏𝑞 are as given in Equations (3.37) and (3.38). The condensed gradient 𝑏𝑣 is subdivided according to

𝑏𝑣 =
©­­«
𝑏𝑣0

...
𝑏𝑣𝑀

ª®®¬.
The condensed gradients 𝑏𝜌 and 𝑏𝑣 are then given by

𝑏𝜌 ≔ 𝑏𝜌 +
𝑀∑
𝑙=1

𝐵𝜌𝑠𝑙 �̂�𝑙−1 +
(
𝐸𝜌
𝑙

)𝑇 (
𝐵𝑠𝑙 𝑠𝑙 �̂�𝑙−1 + 𝑏𝑠𝑙

)
,

𝑏𝑣0 ≔ 𝑏𝑣0 + 𝐵𝑣0𝑠𝑀 �̂�𝑀−1 +
𝑀∑
𝑙=1

(
𝐸
𝑣0
𝑙

)𝑇 (
𝐵𝑠𝑙 𝑠𝑙 �̂�𝑙−1 + 𝑏𝑠𝑙

)
,

𝑏𝑣𝑚 ≔ 𝑏𝑣𝑚 + 𝐵𝑣𝑚 𝑠𝑚 �̂�𝑚−1 +
𝑀∑

𝑙=𝑚+1

(
𝐸𝑣𝑚𝑙

)𝑇 (
𝐵𝑠𝑙 𝑠𝑙 �̂�𝑙−1 + 𝑏𝑠𝑙

)
, 𝑚 = 1, . . . , 𝑀 − 1,

𝑏𝑣𝑀 ≔ 𝑏𝑣𝑀 + 𝐵𝑣𝑀 𝑠𝑀 �̂�𝑀−1.

Finally, we reformulate the constraints in terms of the remaining optimization variables. To that end, we
introduce for the mixed state-control constraints in analogy to Equation (3.39)

�̂�𝜌
𝑚 ≔ 𝐻𝑠

𝑚𝐸
𝜌
𝑚 + 𝐻𝜌

𝑚 , 𝑚 = 1, . . . , 𝑀 − 1,

�̂�
𝑣𝑙
𝑚 ≔

{
𝐻𝑠
𝑚𝐸

𝑣𝑙
𝑚 , if 𝑙 = 0, . . . , 𝑚 − 1,

𝐻𝑣
𝑚 , if 𝑙 = 𝑚

𝑚 = 1, . . . , 𝑀 − 1,

ℎ̂𝑚 ≔ ℎ𝑚 + 𝐻𝑠
𝑚 �̂�𝑚−1 , 𝑚 = 1, . . . , 𝑀 − 1,

and for the boundary constraints in analogy to Equation (3.40)

�̂�e
𝜌 ≔ 𝑅e

𝑠𝑀𝐸
𝜌
𝑚 + 𝑅e

𝜌 ,

�̂�e
𝑣𝑙 ≔

{
𝑅e
𝑠𝑀𝐸

𝑣0
𝑀 + 𝑅e

𝑣0
, if 𝑙 = 0,

𝑅e
𝑠𝑀𝐸

𝑣𝑙
𝑀 , if 𝑙 = 1, . . . , 𝑀 − 1,

�̂�i
𝜌 ≔ 𝑅i

𝑠𝑀𝐸
𝜌
𝑚 + 𝑅i

𝜌 ,

�̂�i
𝑣𝑙 ≔

{
𝑅i
𝑠𝑀𝐸

𝑣0
𝑀 + 𝑅i

𝑣0
, if 𝑙 = 0,

𝑅i
𝑠𝑀𝐸

𝑣𝑙
𝑀 , if 𝑙 = 1, . . . , 𝑀 − 1,

𝑟e ≔ 𝑟e + 𝑅e
𝑠𝑀 �̂�𝑀−1 ,

𝑟i ≔ 𝑟i + 𝑅i
𝑠𝑀 �̂�𝑀−1.

With that, we arrive at QP (6.16) as the condensed form of QP (6.10).

Condensing for SensEIS
Feedback E.

In this appendix, we present the condensing procedure for QP (7.23).

In contrast to Subsection 3.3.2, we have to add the disturbances caused
by the changing parameters and external inputs to the residuals of
the constraints. In analogy to Equation (3.29) we thus define

As all residuals are evaluated at
the primal solution 𝑠 , �̄� of NLP (7.10)
with the reference parameters ˆ̄𝑥 , �̄� ,
and �̄� , it is 𝑥

(
𝜏𝑚+1; 𝑠𝑚 , �̄�𝑚 ; �̄� , �̄�𝑚

) −
𝑠𝑚+1 = 0 for all 𝑚 = 0, . . . , 𝑀 − 1
and 𝑟e = 0.

𝛿𝑚 ≔ 𝑆𝜌𝑚Δ𝜌
𝑗 + 𝑆𝑣𝑚Δ𝑣 𝑗𝑚 , 𝑚 = 0, . . . , 𝑀 − 1,

ℎ𝑚 ≔ 𝐻𝜌
𝑚Δ𝜌

𝑗 + 𝐻𝑣
𝑚Δ𝑣

𝑗
𝑚 + ℎ̄𝑚 , 𝑚 = 0, . . . , 𝑀 − 1,

𝑟e ≔ 𝑅e
𝜌Δ𝜌

𝑗 + 𝑅e
𝑣0
Δ𝑣 𝑗0 + 𝑅e

𝑣𝑀
Δ𝑣 𝑗𝑀 ,

𝑟i ≔ 𝑅i
𝜌Δ𝜌

𝑗 + 𝑅i
𝑣0
Δ𝑣 𝑗0 + 𝑅i

𝑣𝑀
Δ𝑣 𝑗𝑀 + 𝑟i.

With that we can write (7.23) as

min
Δ𝑠=(Δ𝑠𝑇0 ,...,Δ𝑠𝑇𝑀)𝑇∈ℝ𝑛𝑠

Δ𝑞=(Δ𝑞𝑇0 ,...,Δ𝑞𝑇𝑀−1)𝑇∈ℝ𝑛𝑞

1
2

(
Δ𝑠
Δ𝑞

)𝑇 (
𝐵𝑠𝑠 𝐵𝑠 𝑞

𝐵𝑞𝑠 𝐵𝑞𝑞

) (
Δ𝑠
Δ𝑞

)
+ ©­«

Δ𝑥 𝑗

Δ𝜌 𝑗

Δ𝑣 𝑗

ª®¬
𝑇©­«
𝐵�̂�𝑠𝑚 𝐵�̂�𝑞

𝐵𝜌𝑠 𝐵𝜌𝑞

𝐵𝑣𝑠 𝐵𝑣𝑞

ª®¬
(
Δ𝑠
Δ𝑞

)
+

(
𝑏𝑠

𝑏𝑞

)𝑇 (
Δ𝑠
Δ𝑞

)
s.t. 0 = 𝑆𝑠𝑚Δ𝑠𝑚 + 𝑆𝑞𝑚Δ𝑞𝑚 − Δ𝑠𝑚+1 + 𝛿𝑚 , 𝑚 = 0, . . . , 𝑀 − 1,

0 ≤ 𝐻𝑠
𝑚Δ𝑠𝑚 + 𝐻𝑞

𝑚Δ𝑞𝑚 + ℎ𝑚 , 𝑚 = 0, . . . , 𝑀 − 1,
0 = 𝑅e

𝑠0Δ𝑠0 + 𝑅e
𝑠𝑀Δ𝑠𝑀 + 𝑟e ,

0 ≤ 𝑅i
𝑠0Δ𝑠0 + 𝑅i

𝑠𝑀Δ𝑠𝑀 + 𝑟i ,

0 = Δ𝑥 𝑗 − Δ𝑠0 ,

where the constraints are now in a form that is analogous to the one
used in QP (3.24) for which the traditional condensing is formulated.

Similarly to the condensing matrices 𝐸𝑠0𝑚 and 𝐸𝑞𝑙𝑚 , cf. Equations (3.31)
and (3.32), we define 𝐸𝜌

𝑚 and 𝐸𝑣𝑙𝑚 for 𝑚 = 1, . . . , 𝑀 and 𝑙 = 0, . . . , 𝑀−1
by

𝐸𝜌
𝑚 = 𝑆𝑠𝑚−1𝐸

𝜌
𝑚−1 + 𝑆𝜌𝑚−1 , 𝑚 = 2, . . . , 𝑀, with 𝐸𝜌

1 = 𝑆𝜌0 ,

𝐸
𝑣𝑙
𝑚 = 𝑆𝑠𝑚−1𝐸

𝑣𝑙
𝑚−1 , 𝑚 = 𝑙 + 2, . . . , 𝑀, with 𝐸

𝑣𝑙
𝑙+1 = 𝑆𝑣𝑙 .

We can then proceed as for the condensing of QP (3.24), cf. Equa-
tion (3.30), to compute Δ𝑠𝑚+1 for 𝑚 = 0, . . . , 𝑀 − 1 by

Δ𝑠𝑚+1 = 𝐸𝑠0𝑚+1Δ𝑠0 +
𝑚∑
𝑙=0

𝐸𝑞𝑙𝑚+1Δ𝑞𝑙 + �̂�𝑚 ,

198 E. Condensing for SensEIS Feedback

where the condensed matching conditions residuals �̂�𝑚 are as before
defined by the recursion

�̂�𝑚 = 𝑆𝑠𝑚−1 �̂�𝑚−1 + 𝛿𝑚 , 𝑚 = 1, . . . , 𝑀 − 1, with �̂�0 = 𝛿0. (3.33)

The explicit form of �̂�𝑚 for QP (7.23) given by

�̂�𝑚 = 𝐸𝜌
𝑚+1Δ𝜌

𝑗 +
𝑚∑
𝑙=0

𝐸
𝑣𝑙
𝑚+1Δ𝑣

𝑗
𝑙 . (E.1)

The condensed Hessian remains given by Equations (3.35) and (3.36).

The general form of the condensed gradients 𝑏𝑠0 and 𝑏𝑞 given by
Equations (3.37) and (3.38) also remains the same. For convenience
however, we give the full expressions for them where we have incor-
porated the new definition of �̂�𝑚 . The condensed gradient 𝑏𝑠0 is given
by

It is 𝐵�̂�𝑠𝑚 = 0 for 𝑚 = 1, . . . , 𝑀,
cf. Appendix C. Therefore, the terms(
𝐵�̂�𝑠𝑚

)𝑇
Δ𝑥 𝑗 do not occur for 𝑚 =

1, . . . , 𝑀 in the following expres-
sions for 𝑏𝑠0 and 𝑏𝑞𝑚 .

𝑏𝑠0 = 𝑏𝑠0 +
𝑀∑
𝑚=1

(
𝐸𝑠0𝑚

)𝑇𝐵𝑠𝑚 𝑠𝑚𝑏𝑠𝑚
+

(
(𝐵𝜌𝑠0 + 𝐵𝜌𝑠𝑀)𝑇 + 𝐵𝑠0𝑠𝑀𝐸𝜌

𝑀

)
Δ𝜌 𝑗

+
𝑀∑
𝑚=1

(
𝐸𝑠0𝑚

)𝑇𝐵𝑠𝑚 𝑠𝑚 (
𝐸𝜌
𝑚 + (𝐵𝜌𝑠𝑚)𝑇

)
Δ𝜌 𝑗

+
𝑀∑
𝑚=1

(
𝐸𝑠0𝑚

)𝑇𝐵𝑠𝑚 𝑠𝑚 (
(𝐵𝑣𝑠)𝑇Δ𝑣 𝑗𝑚 +

𝑚−1∑
𝑙=0

𝐵𝑠0𝑠𝑀𝐸
𝑣𝑙
𝑚Δ𝑣

𝑗
𝑙

)
+

𝑀∑
𝑙=0

𝐵𝑠0𝑠𝑀𝐸
𝑣𝑙
𝑀Δ𝑣 𝑗𝑙

+ (𝐵𝑣0𝑠0 + 𝐵𝑣0𝑠𝑀)𝑇Δ𝑣 𝑗0 + (𝐵𝑣𝑀 𝑠0 + 𝐵𝑣𝑀 𝑠𝑀)𝑇Δ𝑣 𝑗𝑀
+

(
𝐵�̂�𝑠0

)𝑇
Δ𝑥 𝑗 .

The condensed gradient 𝑏𝑞𝑚 for 𝑚 = 0, . . . , 𝑀 − 1 is given by

𝑏𝑞𝑚 = 𝑏𝑞𝑚 +
𝑀∑

𝑙=𝑚+1

(
𝐸𝑞𝑚𝑙

)𝑇
𝑏𝑠𝑙

+
𝑚−1∑
𝑙=1

𝐵𝑞𝑚 𝑠𝑚𝐸
𝑣𝑙
𝑚Δ𝑣

𝑗
𝑙

+
(
𝐵𝑞𝑚 𝑠𝑚𝐸𝜌

𝑚 +
𝑀∑

𝑙=𝑚+1

(
𝐸𝑞𝑚𝑙

)𝑇 (
(𝐵𝜌𝑠𝑙)𝑇 + 𝐵𝑠𝑙 𝑠𝑙𝐸𝜌

𝑙

))
Δ𝜌 𝑗

+
𝑀∑

𝑙=𝑚+1

(
𝐸𝑞𝑚𝑙

)𝑇(𝐵𝑣𝑙 𝑠𝑙)𝑇Δ𝑣 𝑗𝑙
+

𝑀∑
𝑙=𝑚+1

𝑙−1∑
𝑘=0

(
𝐸𝑞𝑚𝑙

)𝑇
𝐵𝑠𝑙 𝑠𝑙𝐸

𝑣𝑘
𝑙 Δ𝑣 𝑗𝑘 .

In general, Equation (3.39) continues to describe the condensed resid-
uals of the mixed state-control constraints. The same holds for Equa-
tion (3.40c) and the residuals of the boundary constraints.

199

To explicitly state the form that ℎ̂𝑚 takes with the condensed residu-
als �̂�𝑚 of the matching conditions as given in Equation (E.1), we intro-
duce in analogy to Equation (3.39)

�̂�𝜌
𝑚 ≔ 𝐻𝑠

𝑚𝐸
𝜌
𝑚 + 𝐻𝜌

𝑚 , 𝑚 = 1, . . . , 𝑀 − 1,

�̂�
𝑣𝑙
𝑚 ≔

{
𝐻𝑠
𝑚𝐸

𝑣𝑙
𝑚 , if 𝑙 = 0, . . . , 𝑚 − 1,

𝐻𝑣
𝑚 , if 𝑙 = 𝑚

𝑚 = 1, . . . , 𝑀 − 1.

The explicit form of ℎ̂𝑚 for 𝑚 = 1, . . . , 𝑀 − 1 is then

ℎ̂𝑚 = ℎ̄𝑚 + �̂�𝜌
𝑚Δ𝜌

𝑗 +
𝑚∑
𝑙=0

�̂�
𝑣𝑙
𝑚Δ𝑣

𝑗
𝑙 .

We proceed similarly for the boundary constraints (7.23d) - (7.23e). I.e.,
we define for 𝑚 = 1, . . . , 𝑀 − 1 in analogy to Equation (3.40)

�̂�e
𝜌 ≔ 𝑅e

𝑠𝑀𝐸
𝜌
𝑚 + 𝑅e

𝜌 ,

�̂�e
𝑣𝑙 ≔

{
𝑅e
𝑠𝑀𝐸

𝑣0
𝑀 + 𝑅e

𝑣0
, if 𝑙 = 0,

𝑅e
𝑠𝑀𝐸

𝑣𝑙
𝑀 , if 𝑙 = 1, . . . , 𝑀 − 1,

�̂�i
𝜌 ≔ 𝑅i

𝑠𝑀𝐸
𝜌
𝑚 + 𝑅i

𝜌 ,

�̂�i
𝑣𝑙 ≔

{
𝑅i
𝑠𝑀𝐸

𝑣0
𝑀 + 𝑅i

𝑣0
, if 𝑙 = 0,

𝑅i
𝑠𝑀𝐸

𝑣𝑙
𝑀 , if 𝑙 = 1, . . . , 𝑀 − 1.

The explicit form of 𝑟e and 𝑟i is then

𝑟e = �̂�e
𝜌Δ𝜌

𝑗 + 𝑅e
𝑣𝑀

Δ𝑣 𝑗𝑀

𝑀−1∑
𝑙=0

�̂�e
𝜌Δ𝑣

𝑗
𝑙 ,

𝑟i = 𝑟i + �̂�i
𝜌Δ𝜌

𝑗 + 𝑅i
𝑣𝑀

Δ𝑣 𝑗𝑀

𝑀−1∑
𝑙=0

�̂�i
𝜌Δ𝑣

𝑗
𝑙 .

Finally, we define

ℎ0
(
𝜌 𝑗 , 𝑣 𝑗

)
≔ ℎ0 ,

ℎ̂𝑚
(
𝜌 𝑗 , 𝑣 𝑗

)
≔ ℎ̂𝑚 , 𝑚 = 1, . . . , 𝑀 − 1,

𝑟e (𝜌 𝑗 , 𝑣 𝑗) ≔ 𝑟e ,

𝑟i (𝜌 𝑗 , 𝑣 𝑗) ≔ 𝑟i

to arrive at QP (7.24) which is the condensed version of QP (7.23).

Bibliography

[1] R. A. Adams and J. J. Fournier. Sobolev spaces. 2nd ed. Vol. 140. Pure and Applied Mathematics.
Amsterdam: Elsevier, 2003 (cited on pages 15, 16, 56, 58, 80).

[2] H. Akima. “A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures”.
In: J. ACM 17.4 (1970), pp. 589–602 (cited on page 84).

[3] H. Akima. “A Method of Bivariate Interpolation and Smooth Surface Fitting Based on Local Proce-
dures”. In: Commun. ACM 17.1 (1974), pp. 18–20 (cited on page 84).

[4] J. Albersmeyer. “Adjoint based algorithms and numerical methods for sensitivity generation and
optimization of large scale dynamic systems”. PhD thesis. Heidelberg University, 2010 (cited on
pages 25, 47).

[5] J. Albersmeyer, D. Beigel, C. Kirches, L. Wirsching, H. G. Bock, and J. P. Schlöder. “Fast Nonlinear
Model Predictive Control with an Application in Automotive Engineering”. In: Nonlinear Model
Predictive Control: Towards New Challenging Applications. Ed. by L. Magni, D. M. Raimondo, and
F. Allgöwer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 471–480 (cited on page 45).

[6] V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin. Optimal Control. Boston, MA: Springer US, 1987
(cited on page 11).

[7] H. W. Alt. Linear Functional Analysis. London: Springer London, 2016 (cited on page 56).
[8] J. Andersson. “A general-purpose software framework for dynamic optimization”. PhD thesis. KU

Leuven, 2013 (cited on page 38).
[9] K. Åström and T. Hägglund. PID Controllers: Theory, Design, and Tuning. ISA - The Instrumentation,

Systems and Automation Society, 1995 (cited on page 11).
[10] K. E. Atkinson. An introduction to numerical analysis. 2nd ed. Milton Keynes: John Wiley & Sons,

1991 (cited on page 77).
[11] D. Augustin and H. Maurer. “Sensitivity Analysis and Real-Time Control of a Container Crane un-

der State Constraints”. In: Online Optimization of Large Scale Systems. Ed. by M. Grötschel, S. O.
Krumke, and J. Rambau. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 69–82 (cited on
page 119).

[12] R. E. Barnhill. “Representation and Approximation of Surfaces”. In: Mathematical Software. Ed. by
J. R. Rice. Academic Press, 1977, pp. 69–120 (cited on page 87).

[13] R. E. Barnhill. “Coon’s patches”. In: Computers in Industry 3.1 (1982). Double Issue- In Memory of
Steven Anson Coons, pp. 37–43 (cited on page 87).

[14] R. E. Barnhill. “Computer aided surface representation and design”. In: Surfaces in Computer Aided
Geometric Design. Ed. by R. E. Barnhill and W. Boehm. Amsterdam: North-Holland, 1983, pp. 1–24
(cited on page 84).

[15] R. E. Barnhill. “Surfaces in computer aided geometric design: a survey with new results”. In: Com-
puter Aided Geometric Design 2.1 (1985), pp. 1–17 (cited on page 85).

[16] R. E. Barnhill, B. R. Piper, and S. E. Stead. “A multidimensional surface problem: pressure on a
wing”. In: Computer Aided Geometric Design 2.1 (1985), pp. 185–187 (cited on page 85).

[17] R. E. Barnhill and A. J. Worsey. “Smooth interpolation over hypercubes”. In: Computer Aided Geo-
metric Design 1.2 (1984), pp. 101–113 (cited on page 85).

[18] R. Bellman. “The theory of dynamic programming”. In: Bulletin of the American Mathematical
Society 60.6 (1954), pp. 503–515 (cited on page 25).

[19] R. Bellman.Dynamic Programming. Princeton, NJ: Princeton University Press, 1957 (cited on page 25).
[20] R. Bellman. “Dynamic Programming”. In: Science 153.3731 (1966), pp. 34–37 (cited on page 25).

[21] L. D. Berkovitz. Optimal Control Theory. Vol. 12. New York, NY: Springer New York, 1974 (cited on
page 11).

[22] D. P. Bertsekas. Dynamic programming and optimal control. 4th ed. Vol. 1. Athena scientific op-
timization and computation series. Belmont, Massachusetts: Athena Scientific, 2020 (cited on
page 25).

[23] M. J. Best. “An Algorithm for the Solution of the Parametric Quadratic Programming Problem”.
In: Applied Mathematics and Parallel Computing: Festschrift for Klaus Ritter. Ed. by H. Fischer, B.
Riedmüller, and S. Schäffler. Heidelberg: Physica-Verlag HD, 1996, pp. 57–76 (cited on page 43).

[24] L. T. Biegler. “A Survey on Sensitivity-based Nonlinear Model Predictive Control”. In: IFAC Pro-
ceedings Volumes 46.32 (2013). 10th IFAC International Symposium on Dynamics and Control of
Process Systems, pp. 499–510 (cited on page 119).

[25] L. T. Biegler, X. Yang, and G. A. G. Fischer. “Advances in sensitivity-based nonlinear model predictive
control and dynamic real-time optimization”. In: Journal of Process Control 30 (2015). CAB/DYCOPS
2013, pp. 104–116 (cited on page 119).

[26] F. Biral, E. Bertolazzi, and P. Bosetti. “Notes on Numerical Methods for Solving Optimal Control
Problems”. In: IEEJ Journal of Industry Applications 5.2 (2016), pp. 154–166 (cited on page 23).

[27] H. G. Bock. “Numerische Berechnung zustandsbeschränkter optimaler Steuerungenmit der Mehrziel-
methode”. In: Carl-Cranz-Gesellschaft (1978) (cited on pages 24, 25).

[28] H. G. Bock, M. Diehl, E. Kostina, and J. P. Schlöder. “Constrained Optimal Feedback Control of
Systems Governed by Large Differential Algebraic Equations”. In: Real-Time PDE-Constrained Op-
timization. 2007. Chap. 1, pp. 3–24 (cited on pages 3, 45, 48).

[29] H. G. Bock and K. J. Plitt. “A Multiple Shooting Algorithm for Direct Solution of Optimal Control
Problems”. In: IFAC Proceedings Volumes 17.2 (1984). 9th IFAC World Congress: A Bridge Between
Control Science and Technology, Budapest, Hungary, 2-6 July 1984, pp. 1603–1608 (cited on pages 3,
25, 36).

[30] A. Britzelmeier and M. Gerdts. “Non-linear Model Predictive Control of Connected, Automatic Cars
in a Road Network Using Optimal Control Methods”. In: IFAC-PapersOnLine 51.2 (2018). 9th Vienna
International Conference on Mathematical Modelling, pp. 168–173 (cited on page 11).

[31] A. Britzelmeier, M. Gerdts, and T. Rottmann. “Control of interacting vehicles usingmodel-predictive
control, generalized Nash equilibrium problems, and dynamic inversion”. In: IFAC-PapersOnLine
53.2 (2020). 21st IFAC World Congress, pp. 15146–15153 (cited on page 11).

[32] K. Brodlie and S. Butt. “Preserving convexity using piecewise cubic interpolation”. In: Computers
& Graphics 15.1 (1991), pp. 15–23 (cited on page 81).

[33] R. Bulirsch. “Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproble-
men und Aufgaben der optimalen Steuerung”. In: Report der Carl-Cranz-Gesellschaft 251 (1971)
(cited on pages 24, 25).

[34] Bundesministerium für Bildung und Forschung (BMBF). Forschung für Nachhaltigkeit. Eine Strate-
gie des Bundesministeriums für Bildung und Forschung. Accessed: 2025-01-13. 2020 (cited on
page 1).

[35] C. Büskens. “Optimierungsmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit
Steuer- und Zustands-Beschränkungen”. PhD thesis. Institut für Numerische Mathematik, Univer-
sität Münster, 1998 (cited on page 119).

[36] C. Büskens and H. Maurer. “Sensitivity Analysis and Real-Time Control of Nonlinear Optimal Con-
trol Systems via Nonlinear Programming Methods”. In: Variational Calculus, Optimal Control and
Applications. Ed. by W. H. Schmidt, K. Heier, L. Bittner, and R. Bulirsch. Basel: Birkhäuser Basel,
1998, pp. 185–196 (cited on page 119).

[37] C. Büskens and H. Maurer. “Realtime control of robots with initial value perturbations via nonlin-
ear programming methods”. In: Optimization 47.3-4 (2000), pp. 383–405 (cited on page 119).

[38] C. Büskens and H. Maurer. “Sensitivity Analysis and Real-Time Control of Parametric Optimal
Control Problems Using Nonlinear Programming Methods”. In: Online Optimization of Large Scale
Systems. Ed. by M. Grötschel, S. O. Krumke, and J. Rambau. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 57–68 (cited on page 119).

[39] C. Büskens and H. Maurer. “Sensitivity Analysis and Real-Time Optimization of Parametric Nonlin-
ear Programming Problems”. In: Online Optimization of Large Scale Systems. Ed. by M. Grötschel,
S. O. Krumke, and J. Rambau. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 3–16 (cited
on pages 118, 119).

[40] E. F. Camacho and C. Bordons. Model Predictive Control. Grimble, Michael J. and Johnson, Michael
A. London: Springer London, 2007 (cited on page 11).

[41] R. E. Carlson and F. N. Fritsch. “Monotone Piecewise Bicubic Interpolation”. In: SIAM Journal on
Numerical Analysis 22.2 (1985), pp. 386–400 (cited on page 84).

[42] R. E. Carlson and F. N. Fritsch. “An Algorithm for Monotone Piecewise Bicubic Interpolation”. In:
SIAM Journal on Numerical Analysis 26.1 (1989), pp. 230–238 (cited on page 84).

[43] R. E. Carlson and F. N. Fritsch. “A Bivariate Interpolation Algorithm for Data that are Monotone
in One Variable”. In: SIAM Journal on Scientific and Statistical Computing 12.4 (1991), pp. 859–866
(cited on page 84).

[44] E. Casas. “Pontryagin’s Principle for State-Constrained Boundary Control Problems of Semilinear
Parabolic Equations”. In: SIAM Journal on Control and Optimization 35.4 (1997), pp. 1297–1327 (cited
on pages 4, 56).

[45] E. Casas and F. Tröltzsch. “Stability for Semilinear Parabolic Optimal Control Problems with Re-
spect to Initial Data”. In: AppliedMathematics and Optimization 86.2 (2022), p. 16 (cited on page 62).

[46] S. A. Coons. Surfaces for computer-aided design. Tech. rep. Was available as AD 663 504 from the
National Technical Information service, Springfield, VA 22161, but has been replaced by [47]. USA:
Design Division. Mech. Eng. Dept. MIT, 1964 (cited on pages 84, 87, 89).

[47] S. A. Coons. Surfaces for computer-aided design of space forms. Tech. rep. Project MAC-TR 41. USA:
MIT, 1967 (cited on page 203).

[48] Copernicus Climate Change Service. Global Climate Highlights 2024. Accessed: 2025-01-10. 2024
(cited on page 1).

[49] P. Costantini. “An algorithm for computing shape-preserving interpolating splines of arbitrary
degree”. In: Journal of Computational and Applied Mathematics 22.1 (1988), pp. 89–136 (cited on
pages 78, 84, 86, 98, 100, 103).

[50] P. Costantini. “Boundary-Valued Shape-Preserving Interpolating Splines”. In: ACM Trans. Math.
Softw. 23.2 (1997), pp. 229–251 (cited on page 84).

[51] P. Costantini and F. Fontanella. “Shape-Preserving Bivariate Interpolation”. In: SIAM Journal on
Numerical Analysis 27.2 (1990), pp. 488–506 (cited on page 84).

[52] P. Costantini and C. Manni. “A local scheme for bivariate co-monotone interpolation”. In: Computer
Aided Geometric Design 8.5 (1991), pp. 371–391 (cited on pages 81, 84).

[53] P. Costantini and C. Manni. “A bicubic shape-preserving blending scheme”. In: Computer Aided
Geometric Design 13.4 (1996), pp. 307–331 (cited on page 84).

[54] P. Costantini and C. Manni. “Monotonicity-preserving interpolation of nongridded data”. In: Com-
puter Aided Geometric Design 13.5 (1996), pp. 467–495 (cited on page 84).

[55] C. De Boor. A practical guide to splines. Applied mathematical sciences. New York: Springer, 1978
(cited on page 84).

[56] J. W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics,
1997 (cited on page 127).

[57] M. Diehl. “Real-time optimization for large scale nonlinear processes”. PhD thesis. Heidelberg
University, 2001 (cited on pages 3, 40, 43, 44, 115, 119).

[58] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber. “Fast Direct Multiple Shooting Algorithms for Op-
timal Robot Control”. In: Fast Motions in Biomechanics and Robotics: Optimization and Feedback
Control. Ed. by M. Diehl and K. Mombaur. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 65–93 (cited on page 41).

[59] M. Diehl, H. G. Bock, and J. P. Schlöder. “Newton-type methods for the approximate solution of
nonlinear programming problems in real-time”. In: High Performance Algorithms and Software
for Nonlinear Optimization. Springer, 2003, pp. 177–200 (cited on pages 3, 40).

[60] M. Diehl, H. G. Bock, and J. P. Schlöder. “A Real-Time Iteration Scheme for Nonlinear Optimization
in Optimal Feedback Control”. In: SIAM Journal on Control and Optimization 43.5 (2005), pp. 1714–
1736 (cited on page 44).

[61] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer. “Real-time optimization
and nonlinear model predictive control of processes governed by differential-algebraic equa-
tions”. In: Journal of Process Control 12.4 (2002), pp. 577–585 (cited on pages 3, 40).

[62] M. Diehl, H. J. Ferreau, and N. Haverbeke. “Efficient Numerical Methods for Nonlinear MPC and
Moving Horizon Estimation”. In: Nonlinear Model Predictive Control: Towards New Challenging
Applications. Ed. by L. Magni, D. M. Raimondo, and F. Allgöwer. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 391–417 (cited on page 43).

[63] M. Diehl, R. Findeisen, and F. Allgöwer. “A Stabilizing Real-Time Implementation of Nonlinear
Model Predictive Control”. In: Real-Time PDE-Constrained Optimization. 2007. Chap. 2, pp. 25–52
(cited on page 44).

[64] M. Diehl, R. Findeisen, F. Allgöwer, H. G. Bock, and J. P. Schlöder. “Nominal stability of real-time
iteration scheme for nonlinear model predictive control”. In: IEE Proceedings-Control Theory and
Applications 152.3 (2005), pp. 296–308 (cited on pages 3, 40, 44).

[65] M. Diehl, R. Findeisen, S. Schwarzkopf, I. Uslu, F. Allgöwer, H. G. Bock, E. D. Gilles, and J. P. Schlöder.
“An Efficient Algorithm for Nonlinear Model Predictive Control of Large-Scale Systems Part I: De-
scription of the Method (Ein effizienter Algorithmus für die nichtlineare prädiktive Regelung
großer Systeme Teil I: Methodenbeschreibung)”. In: at - Automatisierungstechnik 50.12 (2002),
p. 557 (cited on page 42).

[66] M. Diehl, L. Magni, and G. De Nicolao. “Efficient NMPC of unstable periodic systems using approx-
imate infinite horizon closed loop costing”. In: Annual Reviews in Control 28.1 (2004), pp. 37–45
(cited on page 41).

[67] M. Diehl, I. Uslu, R. Findeisen, S. Schwarzkopf, F. Allgöwer, H. G. Bock, T. Bürner, E. D. Gilles, A.
Kienle, J. P. Schlöder, et al. “Real-time optimization for large scale processes: Nonlinear model
predictive control of a high purity distillation column”. In: Online optimization of large scale
systems. Springer, 2001, pp. 363–383 (cited on pages 3, 40, 41, 119).

[68] A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N. Jones. “Efficient interior point
methods for multistage problems arising in receding horizon control”. In: 2012 IEEE 51st IEEE Con-
ference on Decision and Control (CDC). 2012, pp. 668–674 (cited on page 144).

[69] L. F. Domínguez and E. N. Pistikopoulos. “Recent Advances in Explicit Multiparametric Nonlinear
Model Predictive Control”. In: Industrial & Engineering Chemistry Research 50.2 (2011), pp. 609–619
(cited on pages 119, 141).

[70] R. L. Dougherty, A. S. Edelman, and J. M. Hyman. “Nonnegativity-, monotonicity-, or convexity-
preserving cubic and quintic Hermite interpolation”. In:Mathematics of Computation 52.186 (1989),
pp. 471–494 (cited on page 81).

[71] G. Farin. Curves and Surfaces for CAGD. A Practical Guide. Fifth Edition. The Morgan Kaufmann
Series in Computer Graphics. San Francisco: Morgan Kaufmann, 2002 (cited on pages 87, 90).

[72] H. J. Ferreau, H. G. Bock, and M. Diehl. “An online active set strategy to overcome the limitations of
explicit MPC”. In: International Journal of Robust and Nonlinear Control 18.8 (2008), pp. 816–830
(cited on page 43).

[73] H. J. Ferreau, B. Houska, K. Geebelen, and M. Diehl. “Real-time control of a kite-model using an
auto-generated nonlinear MPC algorithm”. In: IFAC Proceedings Volumes 44.1 (2011), pp. 2488–2493
(cited on page 41).

[74] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl. “qpOASES: a parametric active-set
algorithm for quadratic programming”. In: Mathematical Programming Computation 6.4 (2014),
pp. 327–363 (cited on pages 43, 137).

[75] A. V. Fiacco. “Sensitivity analysis for nonlinear programming using penalty methods”. In: Mathe-
matical Programming 10.1 (1976), pp. 287–311 (cited on pages 118, 120).

[76] A. V. Fiacco. Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Vol. 165.
Mathematics in Science and Engineering. Academic Press, New York, 1983 (cited on page 118).

[77] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Minimization
Techniques. This book was reprinted as [78]. Wiley, New York, 1968 (cited on page 118).

[78] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Minimization
Techniques. Society for Industrial and Applied Mathematics, 1990 (cited on page 205).

[79] V. Fors and J. C. Gerdes. “Long-Horizon Vehicle Planning and Control Through Real-Time Iterations”.
In: 2023 IEEE Intelligent Vehicles Symposium (IV). 2023, pp. 1–6 (cited on page 144).

[80] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli, and M. Diehl. “An auto-generated
nonlinear MPC algorithm for real-time obstacle avoidance of ground vehicles”. In: 2013 European
Control Conference (ECC). 2013, pp. 4136–4141 (cited on pages 41, 43, 144).

[81] J. V. Frasch, L. Wirsching, S. Sager, and H. G. Bock. “Mixed-Level Iteration Schemes for Nonlin-
ear Model Predictive Control”. In: IFAC Proceedings Volumes 45.17 (2012). 4th IFAC Conference on
Nonlinear Model Predictive Control, pp. 138–144 (cited on pages 45, 144).

[82] J. Frey, A. Nurkanović, and M. Diehl. “Advanced-Step Real-Time Iterations With Four Levels –
New Error Bounds and Fast Implementation in acados”. In: IEEE Control Systems Letters 8 (2024),
pp. 1703–1708 (cited on page 45).

[83] F. N. Fritsch and J. Butland. “A Method for Constructing Local Monotone Piecewise Cubic Inter-
polants”. In: SIAM Journal on Scientific and Statistical Computing 5.2 (1984), pp. 300–304 (cited on
page 84).

[84] F. N. Fritsch and R. E. Carlson. “Monotone Piecewise Cubic Interpolation”. In: SIAM Journal on
Numerical Analysis 17.2 (1980), pp. 238–246 (cited on page 84).

[85] F. N. Fritsch and R. E. Carlson. “Monotonicity preserving bicubic interpolation: A progress report”.
In: Computer Aided Geometric Design 2.1 (1985), pp. 117–121 (cited on page 84).

[86] M. Gasca and T. Sauer. “Polynomial interpolation in several variables”. In: Advances in Computa-
tional Mathematics 12.4 (2000), pp. 377–410 (cited on page 85).

[87] C. Geiger and C. Kanzow. Theorie und Numerik restringierter Optimierungsaufgaben. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2002 (cited on page 31).

[88] M. Gerdts. Optimal Control of ODEs and DAEs. Berlin, Boston: De Gruyter Oldenbourg, 2024 (cited
on pages 11, 16, 24, 120–124).

[89] T. N. T. Goodman. “Shape preserving interpolation by curves”. In: Algorithms For Approximation IV.
Ed. by J. Levesley, I. J. Anderson, and J. C. Maso. University of Huddersfield Proceedings Published,
2002, pp. 24–35 (cited on pages 81, 84, 85).

[90] W. J. Gordon. “Distributive lattices and the approximation of multivariate functions”. In: Approxi-
mation with Special Emphasis on Splines. Ed. by I. Schoenberg. Madison: University of Wisconsin
Press, 1969 (cited on page 84).

[91] W. J. Gordon. Free-form surface interpolation through curve networks. Tech. rep. GMR-921. General
Motors Research Laboratories, 1969 (cited on page 84).

[92] W. J. Gordon. “Spline-blended surface interpolation through curve networks”. In: Journal of Math-
ematics and Mechanics 18.10 (1969), pp. 931–952 (cited on page 84).

[93] W. J. Gordon. “Blending-function methods of bivariate and multivariate interpolation and ap-
proximation”. In: SIAM Journal on Numerical Analysis 8.1 (1971), pp. 158–177 (cited on pages 84,
85).

[94] J. A. Gregory. “Smooth interpolation without twist constraints”. In: Computer Aided Geometric De-
sign. Ed. by R. E. Barnhill and R. F. Riesenfeld. Academic Press, 1974, pp. 71–87 (cited on page 84).

[95] A. Griewank and A. Walther. Evaluating Derivatives. 2nd. Philadelphia: Society for Industrial and
Applied Mathematics, 2008 (cited on page 47).

[96] T. H. Gronwall. “Note on the Derivatives with Respect to a Parameter of the Solutions of a System
of Differential Equations”. In: Annals of Mathematics 20.4 (1919), pp. 292–296 (cited on page 167).

[97] S. Gros, R. Quirynen, and M. Diehl. “Aircraft control based on fast non-linear MPC & multiple-
shooting”. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC). 2012, pp. 1142–1147
(cited on page 41).

[98] S. Gros, R. Quirynen, and M. Diehl. “An improved real-time economic NMPC scheme for Wind
Turbine control using spline-interpolated aerodynamic coefficients”. In: 53rd IEEE Conference on
Decision and Control. 2014, pp. 935–940 (cited on page 41).

[99] S. Gros, M. Zanon, and M. Diehl. “Control of Airborne Wind Energy systems based on Nonlinear
Model Predictive Control & Moving Horizon Estimation”. In: 2013 European Control Conference
(ECC). 2013, pp. 1017–1022 (cited on page 41).

[100] M. Grötschel, S. O. Krumke, and J. Rambau. Online Optimization of Large Scale Systems. Berlin
and Heidelberg: Springer, 2001 (cited on page 119).

[101] L. Grüne and J. Pannek. Nonlinear Model Predictive Control. Cham: Springer International Publish-
ing, 2017 (cited on pages 2, 11–15, 19–21, 55, 73).

[102] J. Guanetti, Y. Kim, and F. Borrelli. “Control of connected and automated vehicles: State of the art
and future challenges”. In: Annual Reviews in Control 45 (2018), pp. 18–40 (cited on page 144).

[103] J. Guddat, F. G. Vazquez, and H. T. Jongen. Parametric Optimization: Singularities, Pathfollowing
and Jumps. Stuttgart: Teubner, 1990 (cited on pages 43, 115).

[104] J. Gutekunst, R. Scholz, A. Nurkanović, A. Mešanović, H. G. Bock, and E. Kostina. “Fast moving hori-
zon estimation using multi-level iterations for microgrid control”. In: at - Automatisierungstech-
nik 68.12 (2020), pp. 1059–1076 (cited on pages 45, 106).

[105] L. Guzzella and A. Sciarretta. Vehicle Propulsion Systems. Introduction to Modeling and Optimiza-
tion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013 (cited on pages 145–148).

[106] W. Hahn. Stability of Motion. Berlin, Heidelberg: Springer Berlin Heidelberg, 1967 (cited on page 19).
[107] D. Haßkerl, A. Meyer, N. Azadfallah, S. Engell, A. Potschka, L. Wirsching, and H. G. Bock. “Study of

the performance of the multi-level iteration scheme for dynamic online optimization for a fed-
batch reactor example”. In: 2016 European Control Conference (ECC). 2016, pp. 459–464 (cited on
page 51).

[108] W. Heß and J. W. Schmidt. “Positive quartic, monotone quintic 𝐶2-spline interpolation in one and
two dimensions”. In: Journal of Computational and Applied Mathematics 55.1 (1994), pp. 51–67
(cited on page 84).

[109] B. Houska, H. J. Ferreau, and M. Diehl. “ACADO toolkit—An open-source framework for automatic
control and dynamic optimization”. In: Optimal Control Applications and Methods 32.3 (2011),
pp. 298–312 (cited on pages 25, 144).

[110] B. Houska, H. J. Ferreau, and M. Diehl. “An auto-generated real-time iteration algorithm for non-
linear MPC in the microsecond range”. In: Automatica 47.10 (2011), pp. 2279–2285 (cited on page 41).

[111] D. Hrovat, S. Di Cairano, H. Tseng, and I. Kolmanovsky. “The development of Model Predictive
Control in automotive industry: A survey”. In: 2012 IEEE International Conference on Control Appli-
cations. 2012, pp. 295–302 (cited on page 144).

[112] A. Huber and M. Gerdts. “A dynamic programming MPC approach for automatic driving along
tracks and its realization with online steering controllers”. In: IFAC-PapersOnLine 50.1 (2017). This
material is partly based upon work supported by the Air Force Office of Scientific Research, Air
Force Materiel Command, USAF, under Award No, FA9550-14-11-0298., pp. 8686–8691 (cited on
page 11).

[113] M. Z. Hussain and M. Sarfraz. “Positivity-preserving interpolation of positive data by rational cu-
bics”. In: Journal of Computational and Applied Mathematics 218.2 (2008). The Proceedings of the
Twelfth International Congress on Computational and Applied Mathematics, pp. 446–458 (cited
on pages 81, 84).

[114] J. M. Hyman. “Accurate Monotonicity Preserving Cubic Interpolation”. In: SIAM Journal on Scientific
and Statistical Computing 4.4 (1983), pp. 645–654 (cited on page 81).

[115] A. Ilzhöfer, B. Houska, and M. Diehl. “Nonlinear MPC of kites under varying wind conditions for a
new class of large-scale wind power generators”. In: International Journal of Robust and Nonlin-
ear Control: IFAC-Affiliated Journal 17.17 (2007), pp. 1590–1599 (cited on page 41).

[116] T. Kaczorek. “The Choice of the Forms of Lyapunov Functions for a Positive 2D Roesser Model”.
In: International Journal of Applied Mathematics and Computer Science 17.4 (2008), pp. 471–475
(cited on page 71).

[117] C. Kirches, H. G. Bock, J. P. Schlöder, and S. Sager. “Block-structured quadratic programming for
the direct multiple shooting method for optimal control”. In: Optimization Methods and Software
26.2 (2011), pp. 239–257 (cited on page 38).

[118] C. Kirches, H. G. Bock, J. P. Schlöder, and S. Sager. “Mixed-integer NMPC for predictive cruise control
of heavy-duty trucks”. In: 2013 European Control Conference (ECC). 2013, pp. 4118–4123 (cited on
pages 11, 144).

[119] C. Kirches, L. Wirsching, H. G. Bock, and J. P. Schlöder. “Efficient direct multiple shooting for nonlin-
ear model predictive control on long horizons”. In: Journal of Process Control 22.3 (2012), pp. 540–
550 (cited on page 45).

[120] C. Kirches, L. Wirsching, S. Sager, and H. G. Bock. “Efficient Numerics for Nonlinear Model Predictive
Control”. In: Recent Advances in Optimization and its Applications in Engineering. Ed. by M. Diehl, F.
Glineur, E. Jarlebring, andW. Michiels. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 339–
357 (cited on pages 45, 119, 127).

[121] P. Kühl, M. Diehl, T. Kraus, J. P. Schlöder, and H. G. Bock. “A real-time algorithm for moving horizon
state and parameter estimation”. In: Computers & Chemical Engineering 35.1 (2011), pp. 71–83
(cited on page 106).

[122] P. Kühl, H. J. Ferreau, J. Albersmeyer, C. Kirches, L. Wirsching, S. Sager, A. Potschka, G. Schulz, M.
Diehl, D. B. Leineweber, and A. A. S. Schäfer. MUSCOD-II Users’ Manual. Users’ Manual. Heidelberg,
Germany: Universität Heidelberg, 2016 (cited on page 25).

[123] F. Kuijt. “Convexity preserving interpolation: stationary nonlinear subdivision and splines”. PhD
thesis. University of Twente, 1998 (cited on page 81).

[124] W. H. Kwon and S. Han. Receding Horizon Control: Model Predictive Control for State Models. Lon-
don: Scholars Portal, 2005 (cited on page 11).

[125] J. E. Lavery. “Shape-preserving, multiscale interpolation by bi- and multivariate cubic L1 splines”.
In: Computer Aided Geometric Design 18.4 (2001), pp. 321–343 (cited on pages 81, 85).

[126] J. H. Lee. “Model predictive control: Review of the three decades of development”. In: International
Journal of Control, Automation and Systems 9.3 (2011), pp. 415–424 (cited on page 12).

[127] D. B. Leineweber. “Analyse und Restrukturierung eines Verfahrens zur direkten Lösung vonOptimal-
Steuerungsproblemen. The Theory of MUSCOD in a Nutshell”. Diploma thesis. Heidelberg Univer-
sity, 1995 (cited on page 38).

[128] D. B. Leineweber. Efficient reduced SQP methods for the optimization of chemical processes de-
scribed by large sparse DAE models. Tech. rep. 613. Düsseldorf: VDI Verlag, 1999 (cited on pages 25,
38).

[129] D. B. Leineweber, I. Bauer, H. G. Bock, and J. P. Schlöder. “An efficient multiple shooting based
reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects”.
In: Computers & Chemical Engineering 27.2 (2003), pp. 157–166 (cited on page 25).

[130] D. B. Leineweber, A. Schäfer, H. G. Bock, and J. P. Schlöder. “An efficient multiple shooting based
reduced SQP strategy for large-scale dynamic process optimization: Part II: Software aspects and
applications”. In: Computers & Chemical Engineering 27.2 (2003), pp. 167–174 (cited on page 25).

[131] F. L. Lewis, D. L. Vrabie, and V. L. Syrmos. Optimal Control. Wiley, 2012 (cited on page 11).
[132] D. Liao-McPherson, M. M. Nicotra, and I. Kolmanovsky. “Time-distributed optimization for real-

time model predictive control: Stability, robustness, and constraint satisfaction”. In: Automatica
117 (2020), p. 108973 (cited on page 41).

[133] C. Lindscheid, D. Haßkerl, A. Meyer, A. Potschka, H. G. Bock, and S. Engell. “Parallelization of modes
of the multi-level iteration scheme for nonlinear model-predictive control of an industrial pro-
cess”. In: 2016 IEEE Conference on Control Applications (CCA). 2016, pp. 1506–1512 (cited on page 45).

[134] H. Maurer and D. Augustin. “Sensitivity Analysis and Real-Time Control of Parametric Optimal
Control Problems Using Boundary Value Methods”. In: Online Optimization of Large Scale Systems.
Ed. by M. Grötschel, S. O. Krumke, and J. Rambau. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 17–55 (cited on page 119).

[135] H. Maurer and H. J. Pesch. “Solution differentiability for parametric nonlinear control problems
with control-state constraints”. In: Journal of Optimization Theory and Applications 86.2 (1995),
pp. 285–309 (cited on page 119).

[136] E. G. Merino. “Real-time optimization for estimation and control: Application to waste heat recov-
ery for heavy duty trucks”. PhD thesis. Heidelberg University, 2018 (cited on pages 11, 106, 144).

[137] E. G. Merino, J. P. Schloder, and C. Kirches. “A Nonlinear Model-Predictive Control Scheme for a
Heavy Duty Truck’s Waste Heat Recovery System Featuring Moving Horizon Estimation”. In: 2018
Annual American Control Conference (ACC). 2018, pp. 6329–6334 (cited on pages 11, 106, 144).

[138] A. Meyer. “Numerical solution of optimal control problems with explicit and implicit switches”.
PhD thesis. Heidelberg University, 2020 (cited on pages 16, 45, 185).

[139] A. Michel. “Stability: the common thread in the evolution of feedback control”. In: IEEE Control
Systems Magazine 16.3 (1996), pp. 50–60 (cited on page 20).

[140] A. Mironchenko and F. Wirth. “Characterizations of Input-to-State Stability for Infinite-Dimensional
Systems”. In: IEEE Transactions on Automatic Control 63.6 (2018), pp. 1692–1707 (cited on page 62).

[141] A. Musa, M. Pipicelli, M. Spano, F. Tufano, F. De Nola, G. Di Blasio, A. Gimelli, D. A. Misul, and G.
Toscano. “A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems”.
In: Energies 14.23 (2021) (cited on page 144).

[142] G. M. Nielson. “Some piecewise polynomial alternatives to splines under tension”. In: Computer
Aided Geometric Design. Ed. by R. E. Barnhill and R. F. Riesenfeld. Academic Press, 1974, pp. 209–
235 (cited on page 84).

[143] J. Nocedal and S. J. Wright. Numerical Optimization. 2nd ed. Springer New York, 2006 (cited on
pages 24, 31–33, 134).

[144] A. Nurkanović, S. Albrecht, and M. Diehl. “Multi-level Iterations for Economic Nonlinear Model
Predictive Control”. In: Recent Advances in Model Predictive Control: Theory, Algorithms, and Ap-
plications. Ed. by T. Faulwasser, M. A. Müller, and K. Worthmann. Cham: Springer International
Publishing, 2021, pp. 65–105 (cited on page 45).

[145] A. Nurkanović, A. Zanelli, S. Albrecht, and M. Diehl. “The Advanced Step Real Time Iteration for
NMPC”. In: 2019 IEEE 58th Conference on Decision and Control (CDC). 2019, pp. 5298–5305 (cited on
pages 40, 45, 141).

[146] A. Nurkanović, A. Zanelli, S. Albrecht, G. Frison, and M. Diehl. “Contraction Properties of the Ad-
vanced Step Real-Time Iteration for NMPC”. In: IFAC-PapersOnLine 53.2 (2020). 21st IFAC World
Congress, pp. 7041–7048 (cited on page 40).

[147] P. J. Olver. “On Multivariate Interpolation”. In: Studies in Applied Mathematics 116.2 (2006), pp. 201–
240 (cited on page 85).

[148] C. Pan, A. Huang, L. Chen, Y. Cai, L. Chen, J. Liang, and W. Zhou. “A review of the development trend
of adaptive cruise control for ecological driving”. In: Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering 236.9 (2022), pp. 1931–1948 (cited on pages 2,
144).

[149] S. D. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. H. Eng, D. Rus, and M. H. Ang. “Percep-
tion, Planning, Control, and Coordination for Autonomous Vehicles”. In: Machines 5.1 (2017) (cited
on page 144).

[150] K. J. Plitt. “Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung beschränkter
optimaler Steuerungen”. Diploma thesis. Rheinische Friedrich-Wilhelms-Universität Bonn, 1981
(cited on page 25).

[151] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. The mathematical theory
of optimal processes. Vol. volume 4. Classics of Soviet mathematics. Boca Raton: CRC Press, Taylor
& Francis Group, 1986 (cited on page 24).

[152] A. Potschka. “Handling path constraints in a direct multiple shooting method for optimal control
problems”. Diploma thesis. Heidelberg University, 2006 (cited on page 29).

[153] A. Potschka. “A direct method for the numerical solution of optimization problems with time-
periodic PDE constraints”. PhD thesis. Heidelberg University, 2011 (cited on page 25).

[154] A. Potschka, H. G. Bock, and J. P. Schlöder. “A minima tracking variant of semi-infinite programming
for the treatment of path constraints within direct solution of optimal control problems”. In:
Optimization Methods and Software 24.2 (2009), pp. 237–252 (cited on page 29).

[155] M. J. D. Powell. “A fast algorithm for nonlinearly constrained optimization calculations”. In: Numer-
ical Analysis. Ed. by G. A. Watson. Berlin, Heidelberg: Springer Berlin Heidelberg, 1977, pp. 144–157
(cited on page 31).

[156] S. Qin and T. A. Badgwell. “A survey of industrial model predictive control technology”. In: Control
Engineering Practice 11.7 (2003), pp. 733–764 (cited on page 11).

[157] A. V. Rao. “A Survey of Numerical Methods for Optimal Control”. In: Advances in the Astronautical
Sciences 135 (2010), pp. 497–528 (cited on pages 11, 23).

[158] A. V. Rao. “Trajectory Optimization: A Survey”. In: Optimization and Optimal Control in Automotive
Systems. Ed. by H. Waschl, I. Kolmanovsky, M. Steinbuch, and L. del Re. Cham: Springer Interna-
tional Publishing, 2014, pp. 3–21 (cited on page 23).

[159] J. B. Rawlings, D. Q. Mayne, andM. Diehl.Model predictive control: Theory, computation, and design.
2nd ed., 4th printing. Santa Barbara (California): Nob Hill Publishing, LLC, 2022 (cited on pages 11,
12, 15, 62).

[160] J. P. Raymond and H. Zidani. “Hamiltonian Pontryagin’s Principles for Control Problems Governed
by Semilinear Parabolic Equations”. In: Applied Mathematics and Optimization 39.2 (1999), pp. 143–
177 (cited on pages 4, 56).

[161] A. Rezaei and J. B. Burl. “Prediction of Vehicle Velocity for Model Predictive Control”. In: IFAC-
PapersOnLine 48.15 (2015). 4th IFAC Workshop on Engine and Powertrain Control, Simulation and
Modeling E-COSM 2015, pp. 257–262 (cited on page 151).

[162] M. Rick, J. Clemens, L. Sommer, A. Folkers, K. Schill, and C. Büskens. “Autonomous Driving Based on
Nonlinear Model Predictive Control and Multi-Sensor Fusion”. In: IFAC-PapersOnLine 52.8 (2019).
10th IFAC Symposium on Intelligent Autonomous Vehicles IAV 2019, pp. 182–187 (cited on page 11).

[163] S. M. Robinson. “Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-
programming algorithms”. In: Mathematical Programming 7.1 (1974), pp. 1–16 (cited on page 118).

[164] J. A. Rossiter. Model-based predictive control: A practical approach. Control series. Boca Raton:
CRC Press, 2004 (cited on page 11).

[165] A. A. S. Schäfer. “Efficient reduced Newton-type methods for solution of large-scale structured
optimization problems with application to biological and chemical processes”. PhD thesis. Hei-
delberg University, 2005 (cited on page 25).

[166] J. P. Schlöder. Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parame-
teridentifizierung. Ed. by E. Brieskorn. Bonner Mathematische Schriften. 1988 (cited on page 25).

[167] J. W. Schmidt and W. Heß. “S-convex, monotone, and positive interpolation with rational bicubic
splines of 𝐶2-continuity”. In: BIT 33.3 (1993), pp. 496–511 (cited on page 84).

[168] R. Schmied, H. Waschl, R. Quirynen, M. Diehl, and L. del Re. “Nonlinear MPC for Emission Efficient
Cooperative Adaptive Cruise Control”. In: IFAC-PapersOnLine 48.23 (2015). 5th IFAC Conference on
Nonlinear Model Predictive Control NMPC 2015, pp. 160–165 (cited on page 144).

[169] W. Schnabel and D. Lohse. Grundlagen der Straßenverkehrstechnik und der Verkehrsplanung:
Band 1-Straßenverkehrstechnik. 3., vollst. überarb. Aufl. Studium. Berlin et al.: Verl. für Bauwesen,
Beuth, and Kirschbaum, 2011 (cited on page 77).

[170] R. Scholz. “Stabiles Condensing für Optimale Steuerung”. Master thesis. Heidelberg University,
2016 (cited on page 38).

[171] R. Scholz. “Model-based optimal feedback control For microgrids”. PhD thesis. Heidelberg Univer-
sity, 2022 (cited on pages 41, 43–45, 48, 49, 51).

[172] R. Scholz, A. Nurkanović, A. Mešanović, J. Gutekunst, A. Potschka, H. G. Bock, and E. Kostina. “Model-
based optimal feedback control for microgrids with multi-level iterations”. In: Operations Re-
search Proceedings 2019. Springer, 2020, pp. 73–79 (cited on pages 43–45, 50).

[173] R. Scholz, A. Nurkanović, A. Mešanović, J. Gutekunst, A. Potschka, H. G. Bock, and E. Kostina. “Multi-
level iterations for microgrid control with automatic level choice”. In: Scientific Computing in
Electrical Engineering. Springer, 2021, pp. 293–301 (cited on pages 43–45).

[174] D. G. Schweikert. “An interpolation curve using a spline in tension”. In: J. Math. Phys 45.3 (1966),
pp. 312–317 (cited on page 84).

[175] M. Schwenzer, M. Ay, T. Bergs, and D. Abel. “Review on model predictive control: an engineering
perspective”. In: The International Journal of Advanced Manufacturing Technology 117.5 (2021),
pp. 1327–1349 (cited on pages 2, 11).

[176] E. Siampis, E. Velenis, S. Gariuolo, and S. Longo. “A Real-Time Nonlinear Model Predictive Control
Strategy for Stabilization of an Electric Vehicle at the Limits of Handling”. In: IEEE Transactions
on Control Systems Technology 26.6 (2018), pp. 1982–1994 (cited on page 144).

[177] E. D. Sontag. “Smooth stabilization implies coprime factorization”. In: IEEE Transactions on Auto-
matic Control 34.4 (1989), pp. 435–443 (cited on page 19).

[178] E. D. Sontag. Mathematical Control Theory. Ed. by J. E. Marsden, L. Sirovich, M. Golubitsky, and W.
Jäger. Vol. 6. New York, NY: Springer New York, 1998 (cited on pages 14, 15).

[179] H. Späth. Spline algorithms for curves and surfaces. Winnipeg: Utilitas Mathematica Pub., 1974
(cited on page 84).

[180] E. Süli and D. F. Mayers. An Introduction to Numerical Analysis. Cambridge University Press, 2003
(cited on page 77).

[181] K. L. Teo, B. Li, C. Yu, and V. Rehbock. Applied and Computational Optimal Control. Vol. 171. Cham:
Springer International Publishing, 2021 (cited on page 23).

[182] L. N. Trefethen and D. Bau III. Numerical Linear Algebra. The book has been reissued as [183].
Philadelphia, PA: Society for Industrial and Applied Mathematics, 1997 (cited on page 127).

[183] L. N. Trefethen and D. Bau III. Numerical Linear Algebra, Twenty-fifth Anniversary Edition. Philadel-
phia, PA: Society for Industrial and Applied Mathematics, 2022 (cited on page 210).

[184] F. Tröltzsch. Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und An-
wendungen. 2., überarb. Aufl. Studium. Wiesbaden: Vieweg + Teubner, 2009 (cited on pages 11,
56–59).

[185] L. H. Tsoukalas, R. E. Uhrig, and L. A. Zadeh. Fuzzy and neural approaches in engineering. Adaptive
and Learning Systems for Signal Processing, Communications, and Control. New York: A Wiley-
Interscience Publication, John Wiley & Sons, 1997 (cited on page 11).

[186] V. Turri, B. Besselink, and K. H. Johansson. “Cooperative Look-Ahead Control for Fuel-Efficient and
Safe Heavy-Duty Vehicle Platooning”. In: IEEE Transactions on Control Systems Technology 25.1
(2017), pp. 12–28 (cited on page 144).

[187] V. Turri, Y. Kim, J. Guanetti, K. H. Johansson, and F. Borrelli. “A model predictive controller for
non-cooperative eco-platooning”. In: 2017 American Control Conference (ACC). 2017, pp. 2309–2314
(cited on page 144).

[188] U.S. Energy Information Administration (EIA). Energy Conversion Calculators. Accessed: 2025-01-16.
2025 (cited on page 164).

[189] M. Ulbrich. “Optimization Methods in Banach Spaces”. In: Optimization with PDE Constraints. Dor-
drecht: Springer Netherlands, 2009, pp. 97–156 (cited on pages 24, 63).

[190] M. Ulbrich and S. Ulbrich. Nichtlineare Optimierung. Basel: Springer Basel, 2012 (cited on page 31).
[191] Umweltbundesamt. Energieverbrauch nach Energieträgern und Sektoren. Accessed: 2025-01-13.

2024 (cited on pages 1, 164).
[192] United Nations Framework Convention on Climate Change (UNFCCC). Paris Agreement. Adopted

December 12, 2015. Accessed: 2025-01-10. 2015 (cited on page 1).
[193] M. Vajedi and N. L. Azad. “Ecological Adaptive Cruise Controller for Plug-In Hybrid Electric Vehicles

Using Nonlinear Model Predictive Control”. In: IEEE Transactions on Intelligent Transportation
Systems 17.1 (2016), pp. 113–122 (cited on page 144).

[194] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren, A. Zanelli, B. Novoselnik, T. Albin, R.
Quirynen, and M. Diehl. “acados – a modular open-source framework for fast embedded optimal
control”. In: Mathematical Programming Computation (2021) (cited on page 25).

[195] R. Verschueren, M. Zanon, R. Quirynen, and M. Diehl. “Time-optimal race car driving using an
online exact hessian based nonlinear MPC algorithm”. In: 2016 European Control Conference (ECC).
2016, pp. 141–147 (cited on page 43).

[196] R. Vinter. Optimal Control. Boston: Birkhäuser Boston, 2010 (cited on page 11).
[197] L. Wang. Model Predictive Control System Design and Implementation Using MATLAB®. London:

Springer London, 2009 (cited on page 11).
[198] A. Weißmann, D. Görges, and X. Lin. “Energy-Optimal Adaptive Cruise Control based on Model

Predictive Control”. In: IFAC-PapersOnLine 50.1 (2017). 20th IFAC World Congress, pp. 12563–12568
(cited on page 144).

[199] A. Winkler, J. Frey, T. Fahrbach, G. Frison, R. Scheer, M. Diehl, and J. Andert. “Embedded Real-Time
Nonlinear Model Predictive Control for the Thermal Torque Derating of an Electric Vehicle”. In:
IFAC-PapersOnLine 54.6 (2021). 7th IFAC Conference on Nonlinear Model Predictive Control NMPC
2021, pp. 359–364 (cited on page 11).

[200] L. Wirsching. “Multi-level iteration schemes with adaptive level choice for nonlinear model pre-
dictive control”. PhD thesis. Heidelberg University, 2018 (cited on pages 3, 34, 37, 42–51).

[201] L. Wirsching, J. Albersmeyer, P. Kühl, M. Diehl, and H. G. Bock. “An Adjoint-based Numerical Method
for Fast Nonlinear Model Predictive Control”. In: IFAC Proceedings Volumes 41.2 (2008). 17th IFAC
World Congress, pp. 1934–1939 (cited on page 45).

[202] L. Wirsching, H. G. Bock, and M. Diehl. “Fast NMPC of a chain of masses connected by springs”.
In: 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Con-
ference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. 2006,
pp. 591–596 (cited on page 45).

[203] L. Wirsching, H. J. Ferreau, H. G. Bock, and M. Diehl. “An online active set strategy for fast adjoint
based nonlinear model predictive control”. In: IFAC Proceedings Volumes 40.12 (2007). 7th IFAC
Symposium on Nonlinear Control Systems, pp. 234–239 (cited on pages 43, 45).

[204] I. J. Wolf and W. Marquardt. “Fast NMPC schemes for regulatory and economic NMPC – A review”.
In: Journal of Process Control 44 (2016), pp. 162–183 (cited on page 119).

[205] A. J. Worsey. “A modified 𝐶2 Coons’ patch”. In: Computer Aided Geometric Design 1.4 (1984), pp. 357–
360 (cited on page 84).

[206] K. Yu, J. Yang, and D. Yamaguchi. “Model predictive control for hybrid vehicle ecological driving
using traffic signal and road slope information”. In: Control Theory and Technology 13.1 (2015),
pp. 17–28 (cited on page 11).

[207] A. Zanelli, A. Domahidi, J. Jerez, and M. Morari. “FORCES NLP: an efficient implementation of
interior-point methods for multistage nonlinear nonconvex programs”. In: International Journal
of Control 93.1 (2017), pp. 13–29 (cited on page 144).

[208] A. Zanelli, Q. Tran-Dinh, and M. Diehl. “A Lyapunov function for the combined system-optimizer dy-
namics in inexact model predictive control”. In: Automatica 134 (2021), p. 109901 (cited on pages xi,
44, 55, 62, 63, 71, 75).

[209] M. Zanon, J. V. Frasch, M. Vukov, S. Sager, and M. Diehl. “Model Predictive Control of Autonomous
Vehicles”. In: Optimization and Optimal Control in Automotive Systems. Ed. by H. Waschl, I. Kol-
manovsky, M. Steinbuch, and L. del Re. Cham: Springer International Publishing, 2014, pp. 41–57
(cited on pages 11, 41, 144).

[210] M. Zanon, G. Horn, S. Gros, and M. Diehl. “Control of Dual-Airfoil Airborne Wind Energy systems
based on nonlinear MPC and MHE”. In: 2014 European Control Conference (ECC). 2014, pp. 1801–
1806 (cited on page 41).

[211] V. M. Zavala and L. T. Biegler. “The advanced-step NMPC controller: Optimality, stability and ro-
bustness”. In: Automatica 45.1 (2009), pp. 86–93 (cited on pages 40, 141).

[212] Y. Zhu. “𝐶2 positivity-preserving rational interpolation splines in one and two dimensions”. In:
Applied Mathematics and Computation 316 (2018), pp. 186–204 (cited on pages 81, 84).

Acronyms

A
ACC Adaptive Cruise Control. vii, xv, 2, 11, 53, 77, 117, 143, 144, 146, 148, 150, 152, 154, 156, 158, 160, 163, 213
AD Automatic Differentiation. 47
ADAS Advanced Driver-Assistance System. 2, 143, 144, 151

B
BMBF Bundesministerium für Bildung und Forschung. ix, 1

C
CAGD Computer Aided Geometric Design. 83–85
CC Cruise Control. vii, xv, 2, 11, 53, 77, 117, 143, 144, 146, 148, 150, 152, 154, 156, 158, 160, 163, 213
CPU Central Processing Unit. 31, 117

D
DAE Differential Algebraic Equation. 14, 25, 124
DMS Direct Multiple Shooting. v, vii, xiii–xv, 3–9, 23, 25–31, 34–37, 40, 53, 105–112, 114, 116, 119, 120, 125–127,

130, 131, 139, 147, 150, 151, 163–166, 185, 186, 188, 190, 192, 215, 217
DP Dynamic Programming. 24, 25

E
EACC Ecological Adaptive Cruise Control. v, vii, ix, xv, 2–8, 11, 14, 53, 77, 106, 117, 124, 127, 135, 136, 138–141,

143, 144, 146, 148–150, 152, 154, 156, 158–160, 163–165, 215

H
HJB HAMILTON-JACOBI-BELLMAN. 24, 25
HVAC heating, ventilation, air conditioning. 145, 147

I
IFT Implicit Function Theorem. 118, 123
IND Internal Numerical Differentiation. 47
IVE Initial Value Embedding. xiii, 41–43, 112
IVP Initial Value Problem. 14, 15, 21, 27, 28, 42, 48, 56, 57, 63, 106, 109, 115, 145

K
KKT KARUSH-KUHN-TUCKER. 31, 32, 47, 48, 122, 125, 129, 130

L
LICQ Linear Independence Constraint Qualification. 32, 121, 122, 124
LMPC Linear Model Predictive Controller. 49
LUT Lookup Table. v, vii, 3–5, 7, 8, 77, 85, 143, 147–150, 152, 153, 156, 157, 160, 163
LUTs Lookup Tables. 149

M
MHE Moving Horizon Estimation. 45, 106
MLI Multi-Level Iterations. v, vii, ix, xiii–xv, 3–9, 23, 43–47, 49–53, 105–108, 110–119, 125, 127, 131, 132, 134,

135, 138, 139, 141, 144, 145, 147, 150–160, 163–165, 215, 217
MPBVP Multipoint Boundary Value Problem. 24, 25
MPC Model Predictive Control. 2, 11, 12, 43, 144
MSO Mathematical Modeling, Simulation and Optimization. 1, 2

N

NLP Nonlinear Program. xiii–xv, 6, 7, 23–25, 27, 30, 31, 33–35, 37–44, 47, 48, 106, 107, 111, 112, 118–122, 125–127,
129–133, 139, 163, 166, 185, 186, 188, 190, 192, 197, 217

NMPC Nonlinear Model Predictive Control. v, vii, xiii, xiv, 2–4, 6–9, 11–16, 18–21, 23, 24, 26, 28, 30–32, 34, 36,
38, 40–48, 50, 52, 53, 55–58, 60–62, 64, 66–68, 70, 72, 74, 76, 77, 105, 106, 111, 117–119, 124–127, 141, 143,
144, 151, 155, 163–165, 215, 217

O
OCP Optimal Control Problem. v, vii, xiii–xv, 2–7, 9, 12, 15–18, 23–26, 28, 34, 53, 55, 59, 61, 63, 77, 105–107,

109, 111, 118–120, 124, 125, 130, 140, 143, 145, 147–149, 163, 164, 185, 215
ODE Ordinary Differential Equation. 3, 4, 12, 14–16, 25, 27, 55, 124, 143, 149, 165

P
PD Positive Definiteness Condition. 32, 122, 124
PDE Partial Differential Equation. v, vii, ix, xiv, 3, 4, 8, 25, 44, 53, 55, 56, 58, 60, 62–64, 66, 68, 70, 72, 74, 76,

164, 165
PID Proportional-Integral Derivative. 11
PMP PONTRYAGIN’s Maximum Principle. 24, 25
PNLP Parametric Nonlinear Programming. 107, 115, 118–120
PP0 preceding vehicle. 3, 143, 144, 148–151, 153–155, 157–161, 163, 215

Q
QP Quadratic Program. vii, xiv, 6, 8, 32–34, 36–51, 111–116, 118, 119, 125, 129–137, 153, 155, 158, 159, 163, 193,

196–199

R
RTI Real-Time Iterations. v, vii, xiii, xiv, 2–5, 7–9, 23, 40–46, 53, 105–108, 110–117, 119, 132, 144, 147, 150,

163–165, 215, 217

S
SCC Strict Complementarity Condition. 122, 123
SensEIS Sensitivity and External Input Scenario based. v, vii, ix, xiv, xv, 6, 8, 53, 106, 117–120, 122, 124–141,

145, 149, 151, 155, 157–161, 164–166, 197, 198, 215, 217
SoC state of charge. 147, 148
SP1 Shape Preservation Category 1. 83
SP2 Shape Preservation Category 2. 78, 83, 86, 87, 92, 93, 96, 99
SP3 Shape Preservation Category 3. 83
SQP Sequential Quadratic Programming. v, vii, xiii, 7, 9, 23–25, 27, 28, 31–35, 37–42, 44, 45, 47, 48, 111, 112,

115, 116, 127, 130, 131, 134, 135, 141, 163, 214, 217

T
TDO Time-Distributed Optimization. 41
TD-SQP Time-Distributed Sequential Quadratic Programming. 41
TP Tangential Predictor. 43, 44, 115, 132, 215

List of Figures

2.1. Illustration of the NMPC scheme. 13
2.2. Illustrations of typical functions of the comparison function classes. 19

3.1. Classification of solution approaches for OCPs. 24
3.2. Illustration of the control and state discretization in DMS. 28
3.3. Timing of RTI phases and communication. 41
3.4. Illustration of the generalized TP. 44
3.5. Incremental construction of an MLI schedule. 50
3.6. Example of top-down variable communication in MLI. 52

5.1. Illustration of the node set N. 80
5.2. Example data sets associated with different monotonicity definitions. 82
5.3. Visualizations of shape-preservation categories. 83
5.4. Curve network for an illustrative bivariate problem. 87
5.5. Illustration of the functions ℎ𝑘 and 𝑣𝑘 . 87
5.6. Lofted surfaces for an illustrative bivariate problem. 88
5.7. COONS’ patch for an illustrative bivariate problem. 89
5.8. Multivariate interpolation of a 3D example. 100
5.9. First derivatives of the multivariate interpolation of a 3D example. 101
5.10. Second derivatives of the multivariate interpolation of a 3D example. 102
5.11. Multivariate interpolation of a 4D example. 103
5.12. Second derivatives of the multivariate interpolation of a 4D example. 104

7.1. Constraint violations in Variant 1 of SensEIS feedback. 136
7.2. Chattering of SensEIS feedback. 138
7.3. Chattering of MLI with SensEIS level. 139
7.4. Big jumps in SensEIS feedback. 140

8.1. Illustration of the balance of forces. 146
8.2. Overview of quantities in the EACC problem formulation. 149
8.3. Elevation profile of the test drive route. 151
8.4. Driving profile for the EACC system application computed with standard MLI. 152
8.5. Time gap 𝑡(𝑠) − 𝑡PP0(𝑠) when using standard MLI. 153
8.6. Relative energy savings when using standard MLI. 154
8.7. Driving profile for the EACC system application computed with MLI with explicit treatment of

external inputs. 156
8.8. Time gap 𝑡(𝑠) − 𝑡PP0(𝑠) when using MLI with explicit treatment of external inputs. 157
8.9. Relative energy savings when using MLI with explicit treatment of external inputs. 158
8.10. Comparison of relative energy savings when using MLI with and without explicit treatment of

external inputs. 159
8.11. Driving profile for the EACC system application computed with MLI with SensEIS level. 160
8.12. Time gap 𝑡(𝑠) − 𝑡PP0(𝑠) when using MLI with SensEIS level. 160
8.13. Driving profile for the EACC system application computed with SensEIS feedback as a stan-

dalone method. 160
8.14. Time gap 𝑡(𝑠) − 𝑡PP0(𝑠) when using SensEIS feedback as a standalone method. 161

List of Tables

3.1. Overview about MLI computations and update formulas. 49

8.1. Constants used in the model of the vehicle dynamics. 145
8.2. Values for external inputs and constant parameters for SensEIS. 159

List of Algorithms

2.1. Main NMPC algorithm. 18

3.1. Local full-step SQP method with exact derivatives. 33

3.2. Tailored SQP method for the DMS NLP. 39

3.3. Nominal NMPC with DMS and tailored SQP method. 40

3.4. RTI scheme at sampling time 𝑡 𝑗 . 41

3.5. MLI level choice at 𝑡 𝑗 with a prescribed schedule. 50

5.1. Smooth multivariate shape-preserving interpolation. 92

7.1. Offline phase for SensEIS feedback. 133

7.2. Online phase for SensEIS feedback. 134

7.3. Step size strategy for Variant 1 of SensEIS feedback. 137

	Title Page – Submission
	Title Page – Publication
	Zusammenfassung
	Abstract
	Acknowledgements
	A Quick Guide to Reading This Thesis
	Contents
	1 Introduction
	1.1 Objectives
	1.2 Contributions
	1.3 Thesis outline

	Mathematical Background
	2 NMPC
	2.1 Basic principle
	2.1.1 General setup
	2.1.2 Transition map
	2.1.3 Control sequence
	2.1.4 NMPC algorithm

	2.2 Stability results
	2.2.1 Stability of nonlinear systems
	2.2.2 Applicability to NMPC

	3 Efficient Numerical Methods for NMPC
	3.1 OCP solution approaches
	3.2 DMS discretization
	3.2.1 Controls
	3.2.2 States
	3.2.3 Constraints
	3.2.4 Objective function
	3.2.5 Resulting NLP

	3.3 SQP method
	3.3.1 General framework
	3.3.2 Tailored SQP

	3.4 RTI
	3.4.1 IVE
	3.4.2 RTI phases
	3.4.3 Theoretical aspects

	3.5 MLI
	3.5.1 MLI levels
	3.5.2 Further aspects

	Contributions
	4 Stability of Inexact NMPC for Semilinear Parabolic PDEs
	4.1 Problem setting
	4.1.1 System dynamics
	4.1.2 OCP formulation
	4.1.3 System-optimizer dynamics
	4.1.4 Discussion of assumptions

	4.2 Stability proof
	4.2.1 Step 1
	4.2.2 Step 2
	4.2.3 Step 3
	4.2.4 Step 4
	4.2.5 Main result

	5 Smooth Multivariate Shape-Preserving Interpolation
	5.1 Problem formulation
	5.1.1 Shape preservation categories

	5.2 Literature review
	5.2.1 Univariate case
	5.2.2 Bivariate case
	5.2.3 Blending schemes
	5.2.4 Multivariate methods

	5.3 Novel approach
	5.3.1 Univariate preparations
	5.3.2 Coons' patches
	5.3.3 Blending univariate results

	5.4 Proofs
	5.4.1 Auxiliary results
	5.4.2 Shape preservation
	5.4.3 Interpolation

	5.5 Numerical results
	5.5.1 3D example
	5.5.2 4D example

	6 External inputs in DMS, RTI, and MLI
	6.1 External inputs in DMS
	6.1.1 External input discretization
	6.1.2 Adjusted DMS discretizations
	6.1.3 Resulting NLP

	6.2 External inputs in RTI and MLI
	6.2.1 External inputs in RTI
	6.2.2 Strategy comparison for RTI
	6.2.3 External inputs in MLI

	7 SensEIS Feedback
	7.1 Literature review
	7.2 Sensitivity theorem
	7.3 SensEIS feedback
	7.3.1 Variant 1
	7.3.2 Variant 2
	7.3.3 Full algorithm
	7.3.4 Combination with MLI

	7.4 Challenges

	8 EACC Application
	8.1 Literature review
	8.2 Underlying vehicle model
	8.2.1 Vehicle movement
	8.2.2 Relevant powers

	8.3 OCP formulation
	8.3.1 Controls and states
	8.3.2 Optimization criteria
	8.3.3 Constraints

	8.4 Numerical results
	8.4.1 Standard MLI
	8.4.2 MLI with external inputs
	8.4.3 MLI with SensEIS
	8.4.4 SensEIS as standalone

	9 Conclusion
	Appendix
	A Proof for Example 3.2
	B Proof of Smoothness of Interpolation
	B.1 Continuity
	B.2 Continuous differentiability
	B.3 Twice continuous differentiability

	C Structure of Hessian of Lagrangian
	C.1 Gradient of the Lagrangian
	C.2 Hessian of the Lagrangian

	D Condensing with External Inputs
	E Condensing for SensEIS

	Bibliography
	Acronyms
	List of Figures
	List of Tables
	List of Algorithms

