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Abstract

The land carbon sink partly mitigates climate change by taking up one third of the
anthropogenic fossil fuel CO2 emissions every year. Semiarid ecosystems contribute
significantly to the interannual dynamics of the land sink. However, state-of-the-art
land-atmosphere CO2 flux estimates by in situ measurement-based atmospheric in-
versions and dynamic global vegetation models (DGVMs) show large uncertainties for
semiarid regions in the Southern Hemisphere. This cumulative thesis demonstrates
the potential of satellite data to improve regional CO2 flux estimates in the Southern
Hemisphere and to be used as an atmospheric constraint to evaluate DGVMs. CO2

fluxes based on the Greenhouse Gases Observing Satellite (GOSAT) for 2009 - 2018
are evaluated in three study regions in Australia, southern Africa, and South Amer-
ica. Vegetation processes driving the flux dynamics are identified by using DGVMs
that align well with the GOSAT-based fluxes. We find that ecosystem respiration
responding to soil moisture and soil rewetting drives seasonal and interannual vari-
ability in the carbon cycle in semiarid regions. This work calls for improving the
representation of soil rewetting processes in DGVMs to accurately model the carbon
dynamics in semiarid regions and thereby reduce uncertainties of the global carbon
budget and enable more accurate projections of climate-carbon feedbacks.





Zusammenfassung

Die terrestrische Kohlenstoffsenke verlangsamt den Klimawandel, indem sie ein Drit-
tel der menschengemachten fossilen CO2 Emissionen aufnimmt. Semiaride Ökosys-
teme tragen signifikant zu der Jahr-zu-Jahr Variabilität der Kohlenstoffsenke bei.
Etablierte Methoden zur Abschätzung der CO2 Flüsse wie beispielsweise atmosphär-
ische Inversionen mit in situ Messungen oder globale Vegetationsmodelle (DGVMs)
weisen hohe Unsicherheiten in semiariden Regionen der Südhemisphäre auf. Die vor-
liegende kumulative Doktorarbeit zeigt das Potential von Satellitendaten, die sub-
kontinentalen CO2-Flussabschätzungen zu verbessern und als Auswahlkriterium in
der Analyse von DGVMs genutzt zu werden. CO2 Flüsse, die auf Messungen des
Greenhouse Gases Observing Satellite (GOSAT) basieren, werden für 2009-2018 in
drei Regionen in Australien, dem südlichen Afrika und Süd-Amerika analysiert. Die
Vegetationsprozesse, die die Flussdynamiken antreiben, werden mithilfe von DGVMs
identifiziert, die mit den GOSAT basierten Flüssen übereinstimmen. Die Resultate
zeigen, dass die auf Bodenwiederbefeuchtung reagierende Respiration der Ökosys-
teme die saisonale und Jahr-zu-Jahr Variabilität der Kohlenstoffflüsse in semiariden
Regionen antreibt. Die vorliegende Arbeit fordert eine Verbesserung der Repräsen-
tation von der Wiederbefeuchtung von Böden in DGVMs, um die Genauigkeit der
modellierten Kohlenstoffflüsse in semiariden Gebieten zu verbessern und damit die
Unsicherheiten in den Abschätzungen der globalen Kohlenstoffsenken und -quellen
zu reduzieren und eine präzisere Prognose der Rückkopplung von Klima und Kohlen-
stoffkreislauf zu ermöglichen.
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1. Introduction

Orbiting the Earth at a couple of hundred of kilometers height, satellites started
to measure CO2 concentrations in our Earth’s atmosphere more than two decades
ago (Pan et al., 2021). Their measurements provide us with global insights into the
state of our atmosphere, such as the recent rise in CO2 concentrations driven by
human-made emissions. At the same time, they also allow us to estimate the in-
creasing amount of atmospheric CO2 taken up by the land ecosystems (Basu et al.,
2013; Peiro et al., 2022; Byrne et al., 2023), which together with the CO2 uptake
into the ocean slows climate change (Friedlingstein et al., 2025). The future develop-
ment of these sinks is debated as large uncertainties in our sink estimates and in our
knowledge about the CO2 exchange processes and their response to changing climate
conditions exist (Raupach et al., 2014; Crisp et al., 2022; Gruber et al., 2023). The
sparsity of ground-based measurements, which is especially prominent in the South-
ern Hemisphere, is one large source of uncertainty. Satellites provide the potential to
overcome these limitations. As they also measure in remote regions, they can comple-
ment the sparse network of ground-based measurements and can help us improve our
understanding of the global carbon cycle and its response to climate change (Sellers
et al., 2018; Palmer et al., 2019; Byrne et al., 2020; Villalobos et al., 2020; Chen et al.,
2021).

In this cumulative thesis, we use satellite CO2 measurements of the Greenhouse
Gas Observing Satellite (GOSAT) to investigate the terrestrial carbon cycle and its
seasonal and interannual variability in three regions in the Southern Hemisphere
(Figure 1.1): Australia with New Zealand (Metz et al., 2023, 2025b), southern Africa
(south of 10°S, Metz et al., 2025a) and the temperate parts of South America as
defined by the Transcom modeling project (see, e.g., Jacobson et al. (2023a)), further
called the ’South American Temperate’ region (Vardag et al., 2025).

This introduction chapter outlines the fundamentals of the global carbon cycle,
including a description of ecosystem CO2 fluxes between land and atmosphere in Sec-
tion 1.1. Section 1.2 presents the available data sources of CO2 concentration and flux
measurements. The concept of atmospheric inversions is introduced in Section 1.3.
Section 1.4 describes the used CO2 flux datasets from dynamic global vegetation mod-
els (DGVMs). Finally, a short overview of the methods utilized, and the publications
included in this thesis are displayed in Sections 1.5 and 1.6, respectively.
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1. Introduction

Figure 1.1.: GOSAT total column CO2 concentration measurements from 2009 to
2019. The study regions, Australia, southern Africa, and the South American Tem-
perate region (from east to west) are edged in red.

1.1. The Global Carbon Cycle

With CO2 emissions from fossil fuel combustion and land-use change amounting
to more than 10 GtC per year, humans are continuously increasing the CO2 con-
centrations in the Earth’s atmosphere. This causes a global temperature increase,
which leads to significant changes in the climate of the Earth (Friedlingstein et al.,
2025). Land ecosystems and oceans absorb approximately half of human-made CO2

emissions every year, thus dampening the rise in atmospheric CO2 concentrations
(Friedlingstein et al., 2025). Despite steadily increasing emissions, the land and ocean
sinks also increase keeping the absorbed fraction approximately constant (Bennedsen
et al., 2019). The increase in these natural carbon sinks is believed to be driven by
a growing amount of global vegetation biomass on land and by acidification of the
oceans (Keenan and Williams, 2018; IPCC, 2023). Despite their importance, our
knowledge about how climate change impacts the ocean and land sinks is still in-
sufficient, and large uncertainties exist in predictions of the future sink development
under a changing climate (Le Quéré et al., 2018; Bastos et al., 2020). It is debated
whether and to what extent the natural carbon sinks can keep pace with the an-
thropogenic fossil fuel emissions in future (Raupach et al., 2014; Crisp et al., 2022;
Gruber et al., 2023). Changes in the ocean overturning rate and reduced chemical
capacity are expected (Raupach et al., 2014) and increasing respiration emissions
exceeding the CO2 uptake by vegetation growth were found (Bond-Lamberty et al.,
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1.1. The Global Carbon Cycle

2018). Therefore, research to improve our process understanding of the interaction of
natural carbon sinks and climate is crucial to reliably predict future climate change.

1.1.1. The Land Sink

In its assessment reports published every 5-7 years, the Intergovernmental Panel on
Climate Change (IPCC) summarizes the best estimates for anthropogenic CO2 emis-
sions and natural carbon sinks. The Global Carbon Budget Project (e.g. Friedling-
stein et al., 2025) follows the IPCC methodology to estimate these so-called global
carbon budgets annually to ”develop a comprehensive, policy-relevant understand-
ing of the global carbon cycle” (Global Carbon Project, 2003). The annual report
presents estimates for the amount of CO2 released by burning fossil fuels and land-
use change. Additionally, it reports estimates of the counterbalancing amount of CO2

taken up by the ocean and land sinks, and the CO2 remaining in the atmosphere.
Figure 1.2a, published in the most recent Global Carbon Budget report, displays the
annual carbon emissions and the individual sinks over the last two centuries. The
annual uptake of carbon into the land sink accounts for 30% of the total carbon sink
(land + ocean + atmosphere, Friedlingstein et al., 2025).

In contrast to the rather smooth increase in the ocean sink, land fluxes exhibit
strong interannual variability. This variability is reflected in the fluctuations of the
atmospheric sink, that is, in the variability of the annual atmospheric CO2 growth
rate, which can vary substantially from one year to the next (see Figure 1.2b). The
interannual variability of the terrestrial carbon sink is driven by climate variability
(Zeng et al., 2005; Liu et al., 2017; Pan et al., 2020; Humphrey et al., 2021; Wang
et al., 2022a; Liu et al., 2024a), as temperature and precipitation heavily influence
ecosystem dynamics, such as vegetation growth (see Section 1.1.3). Climate modes
like the El Niño Southern Oscillation phenomenon vary climatic conditions in recur-
rent patterns and show large correlations with the size of the terrestrial carbon sink
(Zeng et al., 2005; Liu et al., 2024a). So-called El Niño years, which lead to warmer
and drier conditions globally, usually cause higher atmospheric growth rates (16% in
the period 1959 - 2021, Liu et al. (2024a)). In contrast, the cooler and wetter condi-
tions in La Niña years reduce the growth rate by 9% (1959-2021, Liu et al., 2024a).
Extraordinary anomalies like the La Niña year 2011, can lead to enhanced vegeta-
tion growth reducing the atmospheric growth rate anomalies by -0.5 ppm/year (Liu
et al., 2024a). Changes in the carbon sink in response to climate anomalies provide
an exceptional opportunity to study the influence of climatic changes on terrestrial
ecosystems.

The carbon emissions and the estimated total carbon sink (sum of ocean and
land sink and atmospheric growth) in Figure 1.2a do not balance perfectly. The
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1. Introduction

Figure 1.2.: The annual CO2 fluxes of the global carbon cycle. Panel a) shows
the development of the flux components over the last 170 years in gigatons carbon
per year. The fossil and land-use change CO2 emissions are partly taken up by the
ocean and the land sink and partly remain in the atmosphere. The total emissions
are mirrored as red dashed line to illustrate the budget imbalance. Panel b) shows
the CO2 concentrations measured locally at the Mauna Loa observatory as annual
averages (red line) and the annual atmospheric CO2 growth rate based on global CO2

concentration measurements (grey bars).
Panel a) is taken with modifications from Friedlingstein et al. (2025, © Author(s)
2025, https://creativecommons.org/licenses/by/4.0/). Panel b) is based on global
CO2 growth rates and annual average CO2 concentration measurements at Mauna
Loa provided by NOAA (2024).

gap between emissions and total sink is called ’budget imbalance’ and reflects our
imperfect knowledge of the carbon cycle. It shows large year-to-year changes and
is proposed to be mainly caused by errors in the estimation of the land and ocean
sink (Le Quéré et al., 2018). The budget imbalance points towards the limitations
of our current datasets’ accuracy and towards deficits in our process understanding
in land-atmosphere CO2 exchange (Bastos et al., 2020). The uncertainties in carbon
flux estimates become even larger when looking at smaller scales (Bastos et al., 2020).
Therefore, regional-level analyses are important to identify sources of errors in the
global flux estimates (Le Quéré et al., 2018) by improving our knowledge about the
mechanisms and regions driving the development of the natural carbon sinks under
climate change (Ballantyne et al., 2012).

1.1.2. Ecosystem Fluxes in the Land-Atmosphere CO2 Exchange

The net exchange of CO2 between ecosystems and atmosphere is called net biome
productivity (NBP) and results from the interplay of much larger biospheric gross
fluxes (see Figure 1.3). On the one hand, vegetation absorbs CO2 through photosyn-
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1.1. The Global Carbon Cycle

Figure 1.3.: Ecosystem fluxes. The different components in the carbon exchange of
an ecosystem are given based on Schulze (2006) and Keenan and Williams (2018).

thesis and uses it to build up biomass. This flux, called gross primary productivity
(GPP), is more than ten times larger than the human fossil fuel emissions (Friedling-
stein et al., 2025). On the other hand, there is a release of CO2 stored in vegetation
and soils by autotrophic and heterotrophic respiration. Autotrophic respiration (Ra)
is caused by growth and maintenance respiration when the plants’ metabolism con-
verts formerly stored carbon compounds into energy while releasing CO2 (Keenan and
Williams, 2018). Heterotrophic respiration (Rh) is produced by microbes respiring
carbon stored in dead biomass, soils, and soil water. Both respiratory fluxes originate
above and below ground. Emissions from Ra occur not only in the biomass above
ground, such as leaf and stems, but also in the roots below ground. Emissions by the
decomposition of organic matter occur in dead wood and heart-rots above ground
(Harmon et al., 2011), but also in soil organic matter and soil litter. The sum of Ra
and Rh, called total ecosystem respiration (TER), nearly offsets GPP. The sum of
all respiratory fluxes below ground is called soil respiration (Bond-Lamberty et al.,
2024). Soil respiration is assumed to constitute the largest component of TER (Law
et al., 2002; Bond-Lamberty et al., 2024) and its temporal patterns are similar to
TER (Barba et al., 2018).
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1. Introduction

The net ecosystem exchange (NEE) is the residual of balancing TER and GPP and
is defined as:

NEE = −NEP =

TER︷ ︸︸ ︷
Rh+ ︸ ︷︷ ︸

-NPP

Ra−GPP (1.1)

with NPP being the net primary productivity, the plant uptake of CO2 which
is used for long-term biomass growth. Net ecosystem productivity (NEP) is defined
with opposite sign of NEE (Keenan and Williams, 2018). Photosynthesis and respira-
tion dominate the circulation of carbon between ecosystems and their surroundings.
Additionally, there are smaller contributions of CO2 emissions by fires and other
disturbance fluxes (’other ’) such as harvest, land-use change, non-CO2 carbon emis-
sions, and lateral transport through terrestrial-aquatic carbon transfer (Keenan and
Williams, 2018). The resulting net exchange between land and atmosphere, NBP, is
given by

NBP = NEE + fire+ other. (1.2)

1.1.3. Environmental Drivers of Ecosystem Fluxes

The terrestrial carbon gross fluxes and, with that, also the resulting net fluxes have a
natural variability driven by environmental conditions. Photosynthesis and therefore
GPP depends directly on the input of photosynthetically active radiation. Further-
more, temperature and precipitation impact GPP (Baldocchi et al., 2016). For ex-
ample, there is an optimal leaf temperature for photosynthesis, water is essential for
plant growth, and sub- or supra-optimal air moisture conditions lead to plant stomata
closure (Way et al., 2021). Hence, water-stress conditions and high temperatures can
limit GPP. The specific temperature and precipitation dependencies of GPP differ for
individual species. Finally, also the ambient CO2 concentration impacts GPP. Based
on the Calvin-Benson cycle mechanisms for carbon fixation, one could assume that
elevated CO2 concentrations cause a larger biospheric carbon sink, but the net effect
of climate change on the terrestrial carbon sink is debated (Way et al., 2021).

Also TER and its components, Ra and Rh, are impacted by climate and envi-
ronmental conditions. Recent photosynthetic carbon uptake is the main driver of
Ra (Unger et al., 2012). For this reason, Ra is indirectly affected by soil moisture
through the dependence of GPP on water availability. Rh is directly affected by
temperature, as the kinetics of the enzymatic reactions are temperature-dependent
(Davidson et al., 2006). This so-called intrinsic temperature dependence (Davidson
et al., 2006) is often described by the Q10 law, which quantifies how much a reaction
rate increases with a 10°C temperature rise (Bond-Lamberty et al., 2024). However,
temperature is not the only driver of Rh, but environmental conditions such as sub-
strate supply, desiccation stress, and the amount of root and microbial biomass also

16



1.1. The Global Carbon Cycle

impact Rh (Davidson and Janssens, 2006). Desiccation stress is directly caused by
the decline in water availability and also the substrate supply depends on soil water as
a transport medium (Moyano et al., 2013), making soil moisture an important driver
of Rh. The impact of different soil moisture levels on Rh is visualized in Figure 1.4.

Figure 1.4.: Illustration of the soil moisture impact on heterotrophic respiration.
The top panels depict the interaction of microbial cells and organic substrate in soil
pores for different soil moisture conditions (dry to saturated conditions from left to
right). The bottom panel shows the schematic trajectory of Rh in dependence on
soil moisture. Furthermore, the extent of gas transport, solute transport, metabolic
cost, and predation pressure on microorganisms is indicated dependent on the soil
moisture. Ψ is the soil water potential and π is the cell osmotic potential under which
a stable turgor pressure can be maintained. Reprinted from Moyano et al. (2013),
with permission from Elsevier.

In the case of suboptimal soil moisture conditions (Figure 1.4A), the transport
of substrate to soil microbe communities is hampered. Furthermore, microbes are
exposed to osmotic stress, which increases the metabolic cost to maintain osmotic
equilibrium with the surrounding (Davidson et al., 2006; Schimel et al., 2007; Moyano
et al., 2013). Both conditions strongly limit Rh. However, also high soil water levels
(Figure 1.4C) can hamper Rh. The water in the soil pores hinders oxygen diffusion
and only anaerobic decomposition, which is generally slower, can take place (Davidson
and Janssens, 2006). Hence, Rh can be limited by sub- and supraoptimal soil moisture
levels and maximizes under intermediate soil moisture conditions (Figure 1.4B).

17



1. Introduction

1.1.4. Semiarid Regions

Dryland ecosystems cover 41% of the global land surface (Bastos et al., 2022). They
are characterized by precipitation being lower than the amount of evaporation during
most of the year (Wang et al., 2022b). This exposes the ecosystems to water-stress
and extensive drought conditions. In semiarid parts of the drylands, there is still a
sufficient amount of precipitation in the wet season so that substantial vegetation can
grow (Bastos et al., 2022). Given the sensitivity of vegetation growth and ecosystem
respiration to water availability and temperature described in the previous section,
carbon flux dynamics in semiarid regions are largely driven by precipitation and
temperature dynamics. Due to their high sensitivity to climate and their large spatial
extent (see Figure 1.5) semiarid regions have a large potential impact on the dynamics
of the global carbon sink.

Figure 1.5.: Map of global drylands. The distribution of our world’s drylands is
given for different aridity classes. The aridity classes are based on the aridity index
(AI) following the guidelines of the United Nations Environment Program (Middleton
and Thomas, 1993). The figure is created with data of the Global Aridity Index
and Potential Evapotranspiration Climate Database v3 (Zomer and Trabucco, 2019;
Zomer et al., 2022).

The relation of precipitation and potential evapotranspiration is often used to de-
fine the extent of semiarid regions. Exact definitions vary, e.g. Frater et al. (2009)
define areas with precipitation below evapotranspiration during seven to nine months
to be semiarid. Others use the aridity index (AI) defined as the ratio of precipita-
tion and potential evapotranspiration (Feng and Fu, 2013; Wang et al., 2022b; Feld-
man et al., 2024b) following the guidelines of the United Nations Environment Pro-
gram (Middleton and Thomas, 1993). The guidelines distinguish between hyper-arid
(AI <= 0.03), arid (0.03 < AI <= 0.2), semiarid (0.2 < AI <= 0.5), dry sub-humid

18
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(0.5 < AI <= 0.65), and humid (0.65 < AI) regions. As shown in Figure 1.5, large ar-
eas in the Southern Hemisphere are drylands. The Australian continent is dominated
by arid and semiarid ecosystems. Southern hemispheric Africa and South America
are also partly covered by arid and semiarid regions. We use a simplified definition
for semiarid regions similar to Frater et al. (2009) taking into account the seasonality
of precipitation. We identify regions with a distinct drought phase by selecting areas
with marginal precipitation in at least four consecutive months. These conditions are
given in the whole southern Africa region and in large parts of Australia (see Fig-
ure S3 in Metz et al., 2023) and the South American Temperate region (see Figure 3
in Vardag et al., 2025)

Dry conditions hamper the growth of larger trees and closed vegetation, so that sa-
vannas, grass-, and shrublands are the dominant vegetation types in drylands (Bastos
et al., 2022). In Australia, the arid and semiarid regions are sparsely vegetated and
mainly covered by savannas (Haverd et al., 2013). Similarly, the southern African
vegetation is mainly grasses, shrubs, and savannas and is highly water-limited in its
growth (Williams et al., 2008). In South America, the drylands in the Andes, south-
ern Argentina and the easternmost semiarid region are mainly covered by forests,
other woodlands, grasslands, or barren land (FAO, 2019).

In all three regions, a distinct drought season characterizes the local climate. In
addition to the large seasonal variability, year-to-year fluctuations are also high, caus-
ing large variability in ecosystem dynamics on seasonal and interannual time scales
(Williams et al., 2007; Teckentrup et al., 2021; Villalobos et al., 2022; Ernst et al.,
2024). For example, in 2011 Australia experienced persistent wet conditions caused
by an interplay of multiple climate modes. This led to strong vegetation growth and
an exceptionally large Australian carbon sink, which contributed around 60% to the
global terrestrial carbon sink anomaly in this year (Poulter et al., 2014; Detmers
et al., 2015).

Recent findings suggest a prominent role of semiarid ecosystems in driving global
carbon flux variability and trends (Poulter et al., 2014; Ahlström et al., 2015) due
to the strong impacts of precipitation and water availability on semiarid vegetation
(Haverd et al., 2017; Piao et al., 2020). As shown in Figure 1.6, semiarid regions have
been found to be the ecosystems which impact the trend and variability of the global
terrestrial carbon sink most.

The dominant processes for carbon uptake and emission in semiarid regions are,
however, not completely understood and state-of-the-art vegetation models struggle
to accurately represent the carbon fluxes (MacBean et al., 2021; Wang et al., 2022b).
For example, vegetation models have difficulties estimating the interannual variability
of carbon fluxes in semiarid regions (MacBean et al., 2021; Teckentrup et al., 2021)
and modeling the response of carbon fluxes to water availability correctly (MacBean
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1. Introduction

Figure 1.6.: Contributions of global
ecosystems to the mean global terres-
trial carbon sink, its trend and in-
terannual variability (IAV). The con-
tribution of different land ecosystems
to the mean (top panel, D), trend
(middle panel, E), and IAV (bottom
panel, F) of global NBP is given. The
contributions are estimated using the
biogeochemical dynamic global vege-
tation model LPJ-GUESS (red marker
line) and the TRENDY ensemble of
vegetation models (boxplot). From
Ahlström et al. (2015). Reprinted
with permission from AAAS.

et al., 2021; Wang et al., 2022b). Uncertainties also remain in our knowledge about
driver attribution for semiarid carbon fluxes. Disentangling the effect of precipitation
and temperature is challenging (Meng et al., 2024; Wang et al., 2022a,b) and the
impact of the temporal distribution of precipitation, e.g. its seasonality or pulse
events of precipitation, on semiarid ecosystems remains uncertain (Wang et al., 2022b;
Feldman et al., 2024a).

The Birch Effect

Precipitation pulses can have a large impact on carbon fluxes in semiarid regions
(Huxman et al., 2004). In arid and semiarid ecosystems, plant growth and respi-
ration are strongly reduced during the drought phase as a large fraction of species
are dormant. The first rain events at the beginning of the rainy season induce the
reactivation of these species. Thereby, plants and soil microbes react differently to
precipitation events. Most plants need to develop a substantial canopy before being
able to take up carbon via photosynthesis (Huxman et al., 2004). In addition, fre-
quent or large rain events are necessary so that water reaches deeper soil layers where
the plant roots are located (Huxman et al., 2004). Moreover, persistent humidity in
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the air is needed to avoid stomata closure, which inhibits photosynthesis (Way et al.,
2021).

Soil respiration, however, can increase rapidly after precipitation events, as increas-
ing soil moisture immediately increases microbial activity and decomposition (Austin
et al., 2004). Moreover, even small precipitation pulses can affect biochemical pro-
cesses driven by microbial communities close to the surface (Austin et al., 2004). This
difference in the responses of photosynthesis and respiration causes dry ecosystems
to act as an immediate carbon source at the onset of the rainy season. The onset
of carbon assimilation by plant growth is delayed, but then increasingly dominates
the CO2 exchange. This causes the ecosystems to be an effective sink in the growth
period.

Soil respiration pulses caused by the immediate microbial response to soil rewetting
events are known under the term ’Birch Effect’ (Birch, 1964; Jarvis et al., 2007;
Casals et al., 2011; Unger et al., 2012). These pulses show strong nonlinear dynamics
(Fan et al., 2015). In addition to the direct dependence of microbial activity on soil
moisture, other effects that amplify CO2 release into the atmosphere are described in
literature. Firstly, percolating water fills pore spaces which have formerly been filled
with high concentrations of CO2 accumulating from soil respiration during drought
phases (Huxman et al., 2004). This leads to an immediate release of this CO2 into
the atmosphere. Secondly, percolating water transports carbon into the soils and soil
re-wetting can break soil structures and liberate formerly inaccessible labile carbon,
both leading to enhanced substrate availability (Manzoni et al., 2014; Fan et al.,
2015). Due to these effects, soil respiration pulses in rewetting cycles emit a larger
amount of CO2 than constantly moist soils (Singh et al., 2023).

1.2. Satellite and In Situ Measurements

In this thesis, different measurement datasets are used to analyze the carbon cycle
and vegetation CO2 exchange processes in the study regions. We use satellite and
in situ measurements of atmospheric CO2 and flux tower measurements of local CO2

fluxes. Furthermore, we take solar-induced fluorescence (SIF) measurements as a
proxy for GPP.

1.2.1. CO2 Concentration Measurements

The dynamics of CO2 in our atmosphere can be directly assessed by measuring at-
mospheric CO2 concentrations. We use local in situ CO2 measurements and satellite
total column CO2 measurements.
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In situ CO2 measurements

Numerous laboratories and institutions around the world maintain local atmospheric
greenhouse gas observations, such as CO2 mole fraction measurements (Masarie et al.,
2014). Since 1996 the GLOBALVIEW data product exists which, maintained by
the National Oceanic and Atmospheric Administration (NOAA), collects the mea-
surements of various laboratories. The data product and its extension within the
Observation Package (ObsPack) framework is created for the scientific community
(Masarie et al., 2014). The datasets include different types of atmospheric CO2 mole
fraction measurements, i.e., in situ or flask measurements from ships, aircraft, towers,
or surface platforms (Masarie et al., 2014). The measurements have a high quality
with a measurement accuracy of at least 0.1 ppm (Hall et al., 2021). They are pro-
vided by different institutions, including NOAA, the Commonwealth Scientific and
Industrial Research Organisation (CSIRO), and the Integrated Carbon Observation
System (ICOS) (Jacobson et al., 2023a). Figure 1.7 shows the locations, types and
maintaining institutions of the measurement sites. In the following, these local CO2

mole fraction measurements will be referred to as ’in situ measurements’.

Figure 1.7.: Observational network of CO2 concentration measurements as used
in CarbonTracker CT2022. Figure provided by NOAA Global Monitoring Labora-
tory, Boulder, Colorado, USA (https://gml.noaa.gov) and taken from Jacobson et al.
(2023a).
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Satellites

For more than 20 years, satellites have been measuring CO2 concentrations from space
(Pan et al., 2021). With the launch of GOSAT in 2009, CO2 columns with high sen-
sitivity to near-surface concentrations started to be measured to observe CO2 sources
and sinks (Basu et al., 2013; Pan et al., 2021). Other satellite projects followed, such
as the Orbiting Carbon Observatory-2 (OCO-2) in 2014, increasing the spatial reso-
lution of CO2 measurements (Pan et al., 2021). Both satellites, GOSAT and OCO-2,
measure sunlight scattered back from the Earth’s surface. The measured spectra in
the near infrared range contain CO2 absorption signals. These signals can be used
to infer column averaged dry air CO2 mole fractions (XCO2) along the light path
column. To do so, retrieval algorithms that model the measurement of the sunlight
and the radiative transfer through the atmosphere are used to inversely estimate
the amount of CO2 in the air column (Rodgers, 2000). In the present dissertation,
GOSAT XCO2 data generated with the RemoTeC radiative transfer and retrieval
algorithm version 2.4.0 (Butz et al., 2011; Butz, 2022) and with the NASA Atmo-
spheric CO2 Observations from Space (ACOS) algorithm version 9 (Taylor et al.,
2022) are used. The two retrievals differ in the implementation of the inverse frame-
work and in the data preparation. For example, they differ in the used optimization
methods, the handling of surface pressure, and the micro-physical aerosol proper-
ties. Furthermore, they apply different bias corrections on the XCO2 values retrieved
from the measured spectra, and RemoTeC uses a stricter filtering of the data. These
methodological differences can lead to differences in the retrieved XCO2 data even
though both retrievals use the same GOSAT measurement spectra. OCO-2 XCO2

data used in this thesis are only retrieved with the ACOS algorithm version 10r and
version 11.1r (OCO-2 Science Team et al., 2020; OCO-2/OCO-3 Science Team et al.,
2022; Jacobs et al., 2024). GOSAT and OCO-2 differ in the amount and character-
istics of the measurements. Both fly in a sun-synchronous orbit covering the Earth
within three (GOSAT) and 16 (OCO-2) days. GOSAT has a sub-satellite field of
view of about 10 km x 10 km, which is larger than for OCO-2 (1.3 km x 2.3 km).
Furthermore, OCO-2 measures 50 times more frequently than GOSAT (Crisp, 2008;
Suto et al., 2021).

Satellites measure CO2 in the whole air column through which the measured sun-
light passes. In contrast to that, in situ measurements are point samples which are
mostly taken close to the surface. Furthermore, satellites cannot provide the same
high precision as in situ measurements. GOSAT has a single measurement precision
between 1.5 ppm (ACOS) and 1.9 ppm (RemoTeC) (Buchwitz et al., 2017; Taylor
et al., 2022) and a seasonal and regional systematic error of 0.5 ppm and 0.6 ppm,
respectively (RemoTeC) (Buchwitz et al., 2017). Additional challenges, for example,
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cloud coverage, aerosols in the atmosphere, high solar zenith angles, and changing
surface albedo, pose problems in inferring valid CO2 concentrations from satellite
measurements (Butz et al., 2011; Basu et al., 2013; Guerlet et al., 2013). Multiple
validation and filter steps need to be applied to allow reliable records of satellite
XCO2 measurements (Butz et al., 2011; Basu et al., 2013; Guerlet et al., 2013). This
leads to a reduced amount of satellite measurements over the cloudy tropics, high lat-
itudes and high-altitude regions. This is clearly visible in Figure 1.1, which shows all
GOSAT XCO2 measurements from 2009 to 2019 inferred by the RemoTeC retrieval.
In the following, the term satellite measurements refers to the retrieved XCO2 values
and not to the initially measured absorption spectra.

1.2.2. Local CO2 Flux Measurements

To gain insight into the local land-atmosphere exchange of CO2 in response to tem-
perature and soil moisture, we make use of local CO2 flux measurements by eddy
covariance systems. The eddy covariance technique allows direct and continuous
measurements of surface fluxes of tracers such as CO2 (Aubinet et al., 2012; Pas-
torello et al., 2020). The measurement technique is used at numerous measurement
sites around the world. Measurement devices are mounted at different heights on
tower constructions (Pastorello et al., 2020). The measurement sites will be referred
to as flux towers in the following. By measuring vertical wind velocities and CO2 con-
centration variations with high frequency (ten measurements per second), turbulent
CO2 fluxes between biosphere and atmosphere can be derived for half-hour intervals
(Aubinet et al., 2012). The area which influences the measurement is called the foot-
print and can extend up to hundreds of meters around the tower, depending on the
wind situation (Pastorello et al., 2020). In addition to trace gas fluxes, flux towers
usually measure energy and water exchange between land surface and atmosphere.
Furthermore, other environmental parameters like air and soil temperature and soil
moisture are also recorded.

There are multiple regional flux tower networks, for example the OzFlux network
for Australia and New Zealand (Beringer et al., 2016, 2022) or AmeriFlux for North
and South America (Novick et al., 2018). The FLUXNET initiative (Baldocchi et al.,
2001) collects and provides the station data of the regional networks centrally. Most
but not all stations of the regional networks are included in this global database. In
this thesis, we use the AmeriFlux and FLUXNET stations in the South American
Temperate region and southern Africa. The OzFlux network sites are particularly
important as they play a central role in Metz et al. (2025b) in addition to being used
in Metz et al. (2023).

24



1.2. Satellite and In Situ Measurements

The OzFlux network

The OzFlux network was established in the year 2001 in Australia and New Zealand.
The following short introduction is based on the network website (https://www.
ozflux.org.au/) and a review article by Beringer et al. (2022). There are more than
50 flux tower sites in the OzFlux network (see Figure 1.8) with 29 sites being currently
active. The stations cover a broad range of ecosystems and climate conditions. Most
of the stations are located in semiarid or arid regions with a low amount of annual
precipitation and a distinct drought season. However, there are also stations with
high annual rainfall of up to 5700 mm per year that enable the growth of tropical
forests at these sites.

Figure 1.8.: The OzFlux network in Australia and New Zealand. The flux tower
stations are given with the corresponding FLUXNET name if possible. The back-
ground map shows the different ecosystems in Australia and New Zealand. The
Figure is taken without modifications from Beringer et al. (2022, © 2022 The Au-
thors. https://creativecommons.org/licenses/by/4.0/).

In our analyses, we only include the OzFlux stations located in Australia. We use
half-hourly measurements of net CO2 flux (NEE), soil temperature, and soil moisture.
Soil moisture and soil temperature are measured close to the surface at a depth of
5 cm to 10 cm. We only use stations with at least one year of measurements. We
calculate daily nighttime NEE averages as a proxy for TER as done in previous
studies (Mahecha et al., 2010; Barba et al., 2018; Pastorello et al., 2020; Meng et al.,
2024). This approach assumes that photosynthesis and, therefore, GPP can only take
place with sufficient sunlight. Hence, GPP is close to zero during night, so that the
measured night fluxes only consist of TER.
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1.2.3. SIF: Solar-Induced Fluorescence

We use SIF measurements in our analyses. SIF emerges during the photosynthesis
process. Parts of the photosynthetically active radiation (PAR) absorbed by chloro-
phyll in plant leafs is not used in the light reactions of photosynthesis, but get dissi-
pated as fluorescence (Meroni et al., 2009; Joiner et al., 2018) as shown in Figure 1.9.
The emitted fluorescence is in the red and near-infrared spectral ranges and can be
measured by satellites (Frankenberg et al., 2011; Joiner et al., 2018). SIF is found to
be proportional to GPP in biome-scale analyses with monthly time resolution (Zhang
et al., 2016a,b; Joiner et al., 2018; Sun et al., 2018; Pierrat et al., 2022). Hence, SIF
can be used as a proxy for GPP (Li et al., 2018). We use SIF measurements of
the GOME-2 satellite (Joiner et al., 2023) to access the seasonal timing of biomass
build-up.

Figure 1.9.: Light ab-
sorption and emissions in
leafs. PAR gets partly
absorbed by chlorophyll in
the chloroplast (cp) of the
plant cells. The chlorophyll
molecules return from their
exited states to their ground
states by driving photo-
synthesis, releasing energy
as heat, or re-emitting the
light as chlorophyll fluores-
cence (SIF).

1.3. Top-down Estimates of Carbon Fluxes by
Atmospheric Inversions

CO2 concentration measurements can be fed into atmospheric inversion systems to
infer land-atmosphere fluxes based on the concentration measurements (e.g., Röden-
beck et al. (2003); Peters et al. (2007); Basu et al. (2013); Chandra et al. (2022)).
Many atmospheric inversion systems are based on Bayesian optimization techniques
(Chevallier et al., 2006; Byrne et al., 2023). The systems optimize surface fluxes
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transported forward through the atmosphere to agree best with concentration mea-
surements within the given transport and measurement uncertainties. At the same
time, the systems prevent the fluxes from deviating too far from assumed prior fluxes
within the given prior uncertainties (Rodgers, 2000).

1.3.1. Bayesian Inversion

The Bayesian optimization technique is based on Bayes’ theorem which formulates
the probability for a state x (in this context a vector of CO2 fluxes) given a set of
(CO2 concentration) measurements y (Rodgers, 2000):

P (x|y) = P (y|x)P (x)
P (y) . (1.3)

Thereby, P (y|x) is the probability of measurements given a certain state. P (x) and
P (y) describe the probabilities of the measurements and the state given their un-
certainties, respectively. The state x and the measurements y in an atmospheric
inversion are connected by an atmospheric transport model. For chemically inert
gases, such as CO2, the atmospheric transport can be described by a linear function
of the fluxes with the atmospheric transport operator matrix H:

y = Hx + εy. (1.4)

By assuming a Gaussian distribution of the measurement errors εy and the flux uncer-
tainties, the probabilities can be described by a normal distribution using the mean
of the measurements as y = Hx and prior knowledge of the state xa (Rodgers, 2000):

P (y|x) = 1√
(2π)m|R|

exp
(
−1

2
(y − Hx)TR−1(y − Hx)

)
(1.5)

and

P (x) = 1√
(2π)n|B|

exp
(
−1

2
(xa − x)TB−1(xa − x)

)
. (1.6)

The covariance matrices R and B are symmetric with the variances of the measure-
ments and of the prior fluxes on the respective diagonals. The covariances of the
measurements (and prior fluxes) are on the off-diagonals of R (and B) and are given
by

covi,j = σiσjcorri,j (1.7)

pairwise for the measurements yi and yj (and prior fluxes xi and xj) with their
correlation corr and individual standard deviation σ. By inserting Equation 1.5 and
1.6 in Equation 1.3, and by combining all normalization factors including P(y) in one
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factor C, we get the following:

P (x|y) = C ∗ exp
(
−1

2
(y − Hx)TR−1(y − Hx)− 1

2
(xa − x)TB−1(xa − x)

)
. (1.8)

The most likely set of fluxes given a measurement can now be obtained by maximizing
Equation 1.8. This equals minimizing its exponent, which can be handled like a cost
function J with

J =
1

2
(y − Hx)TR−1(y − Hx) + 1

2
(xa − x)TB−1(xa − x). (1.9)

Hence, the land-atmosphere fluxes x are optimized taking into account the mea-
surements y, the prior fluxes xa, the atmospheric transport model H, the uncertainties
of atmospheric transport and measurements R, and the uncertainties associated with
prior fluxes B. The choice of the prior fluxes, the transport model, and the associated
uncertainties vary among inversions. At the end of Section 1.3.2, the configurations
of the TM5 four-dimensional variational inversion system (TM5-4DVar, Basu et al.,
2013) are described in more detail.

Evaluating the result of an inversion

Having a look at Equation 1.9, we can see that the availability of measurements and
the choice of the uncertainties in the covariance matrices determine the weighting of
the measurement and the prior information in the inversion. An inverse problem can
be highly underconstrained, meaning that there are considerably fewer independent
measurements than independent state vector elements. In this case, the inversion
heavily relies on the prior for those fluxes that are not connected to measurements via
atmospheric transport (or prior flux correlations). Furthermore, high measurement
uncertainties in combination with comparably small prior flux uncertainties also put
more weight on the second part of the cost function J. Therefore, also in this case,
the posterior fluxes will strongly resemble the prior fluxes. For this reason, posterior
fluxes that align closely with the prior fluxes can indicate a sparse availability of
measurements or a weak weighting of the measurement information in the inversion by
using large measurement uncertainties compared to the prior uncertainties. However,
also if prior fluxes already capture the ’true’ state of the atmosphere well, there will
be a good agreement of prior and posterior fluxes, as the measurements agree well
with the prior fluxes and do not induce any changes.

Different metrics exist to quantitatively evaluate the information content provided
by the measurements in an inversion. Using the exact analytical solution of Equa-
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tion 1.9 given by

x̂ = xa + (HTR−1H + B−1)−1 HTR−1 (y − Hxa) (1.10)

with the optimized posterior state x̂ (see Rodgers, 2000), the corresponding poste-
rior covariances can be calculated as

Sx̂ = (HTR−1H + B−1)−1. (1.11)

Comparing the posterior covariances to the prior covariances can give some indication
about the information content. Another useful metric is the Averaging Kernel A
(Rodgers, 2000) with

A = (HTR−1H + B−1)−1 HTR−1H. (1.12)

Using A and the unity matrix I and neglecting the measurement error εy, the posterior
state can be expressed as

x̂ = Ax + (I−A)xa. (1.13)

This expression shows that A can be used as a measure of how much the inversion
can reveal about the true state and how much it only reproduces the given prior
knowledge. Hence, A can be a useful metric to evaluate the results of an inversion.

However, the matrix multiplication and matrix inversion needed in Equation 1.10
and 1.11 are becoming increasingly computationally costly with increasing dimensions
of the inverse problem (Yadav and Michalak, 2013). For inversion setups with large
state vectors and a large number of measurements (as given in global atmospheric
inversions) the exact analytical solution cannot be calculated and iterative approaches
to find the minimum of Equation 1.9 are used. Doing so, the posterior covariance
matrix and metrics such as the averaging kernel can only be approximated.

1.3.2. Global GOSAT Inversion with TM5-4DVar

We use the atmospheric inversion system TM5-4DVar to estimate global CO2 fluxes
based on CO2 concentration measurements. We assimilate GOSAT CO2 concentra-
tion measurements together with in situ CO2 concentration measurements from the
GlobalView+ 5.0 and NRT 5.0 dataset provided by NOAA (Carbontracker Team,
2019; Cooperative Global Atmospheric Data Integration Project, 2019). The follow-
ing description of the TM5-4DVar setup is based on Basu et al. (2013), if not stated
otherwise.

As indicated by its name, the inversion system uses the global chemistry Trans-
port Model, version 5 (TM5) and a Four-Dimensional Variational Data Assimilation
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(4DVar) inversion scheme based on a Bayesian optimization technique to optimize
land-atmosphere fluxes on a weekly 3°x2° resolution (Metz et al., 2023). The 4DVar
inversion scheme seeks to minimize the cost function J given in Equation 1.9 using
an adjoint model to estimate the gradient of J. It iteratively optimizes the state in
the three spatial dimensions also considering its temporal development.

The optimized net surface flux is internally split up into ocean, biosphere, fire, and
anthropogenic fossil fuel fluxes. As anthropogenic fluxes have much smaller uncer-
tainties compared to biogenic and ocean fluxes (Friedlingstein et al., 2025), they are
assumed to be correctly represented by the prior fluxes and are therefore not opti-
mized. While the ocean fluxes can be separated spatially from the other fluxes, the
fire and biosphere fluxes cannot be distinguished and are optimized jointly. The inver-
sion uses climatological prior fluxes, namely fire emissions of the Quick Fire Emission
Database (QFED, Darmenov and Da Silva (2015)) and fossil fuel emissions of the
Open-source Data Inventory for Anthropogenic CO2 (ODIAC, Oda and Maksyutov,
2011; Oda et al., 2018). More details about the prior fluxes used can be found in Weir
et al. (2020). The priors for ocean, biosphere, and fire fluxes are taken as mean sea-
sonal cycle from 2000 to 2019 with a year-specific scaling to match the annual global
atmospheric CO2 growth rate. A daily cycle is imposed on the biospheric fluxes.

The entries in the prior flux covariance matrix B are calculated as

cov(xr1,t1 , xr2,t2) = σr1,t1σr2,t2Cr(r1, r2)Ct(t1, t2) (1.14)

with the uncertainty σr,t of each individual prior flux xr,t at position r and time t

on the diagonal and correlated uncertainties on the off-diagonals with exponentially
decaying correlation functions over space and time (Cr and Ct). The uncertainties of
the individual prior fluxes are fractions (0.84 over land, 0.6 over ocean) of the absolute
prior fluxes themselves with a fixed minimum value to avoid zero uncertainties.

TM5-4DVar uses daily averages of in situ measurements. For that, only mea-
surements during four hours in the afternoon for low altitudes or during four hours
after midnight for mountain stations are averaged. In these times, the footprint of
the stations is assumed to be the largest, as the planetary boundary layer is at its
highest (afternoon) and its lowest height (night). Satellite measurements are indi-
vidually assimilated in the inversion. The errors of the satellite measurements can
be correlated, for example, due to atmospheric transport uncertainties or retrieval
uncertainties. TM5-4DVar accounts for these correlations by inflating the errors of
the satellite measurements. The inflation factor depends on the proximity of the
surrounding measurements. Errors of clustered measurements are inflated more so
that these measurements are weighted less. The observations are then assumed to
be independent, so that the measurement covariance matrix R is diagonal. Tak-
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ing into account the measurement errors σobs and the uncertainties of the modeled
atmospheric transport σmod the entry at the i-th position on the diagonal is

Rii = σ2
obs,i + σ2

mod,i. (1.15)

Thereby, σmod is calculated as the standard deviation of the CO2 mixing ratios in
the grid cells around the measurement. In Basu et al. (2013), with a 6°x4° spa-
tial resolution, the mean errors for the in situ measurements are 3 ppm (σmod) and
2.5 ppm (σobs) and for satellite measurements 0.05 ppm (σmod) and 3.6 ppm (σobs).
The high σobs for in situ measurements, compared to the single measurement error
of 0̃.1 ppm, reflects the variability of the CO2 concentrations during the four-hour
averaging window.

As already mentioned above, for global inversions as performed with TM5-4DVar,
the exact solution of the inverse problem cannot be calculated, and an iterative
approach is used to find the minimum of the cost function (see Basu et al. (2013)
for more details). For this reason, the posterior covariances and metrics such as the
averaging kernel can only be approximated and are not reported because of the large
associated uncertainties.

In our studies, we use three inversion configurations: Two inversions assimilating in
situ measurements together with GOSAT/RemoTeC and GOSAT/ACOS individually
(in the following called ’TM5-4DVar/RemoTeC+IS’ and ’TM5-4DVar/ACOS+IS’, re-
spectively) and one inversion with in situ measurements only (’TM5-4DVar/IS’). The
mean of ’TM5-4DVar/RemoTeC+IS’ and ’TM5-4DVar/ACOS+IS’ will be referred to
as ’TM5-4DVar/GOSAT+IS’ in the following. The different inversion runs allow us
to analyze the impact of the different measurement datasets on the optimized fluxes.
Next to TM5-4DVar/IS, we also use the in situ measurement-based atmospheric
inversions CarbonTracker (Peters et al., 2007; Jacobson et al., 2023b) and CAMS
(Chevallier et al., 2005, 2010, 2019). Both provide CO2 fluxes for the whole time pe-
riod from 2009 to 2018. In the following, we will refer to these atmospheric inversions
(including TM5-4DVar/IS) as ’in-situ-only inversions’.

1.3.3. OCO-2 MIP: The Orbiting Carbon Observatory-2 Model
Intercomparison Project

In the Orbiting Carbon Observatory-2 model intercomparison project (OCO-2 MIP),
14 different atmospheric inversion modeling groups collaborate with the aim of ana-
lyzing the effect of assimilating OCO-2 XCO2 measurements in different atmospheric
inversions (Byrne et al., 2023). Within the project, different measurement config-
urations using in situ measurements and land or ocean OCO-2 measurements, and
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combinations of these, are used to conduct different inversion experiments. In the
publications presented in this thesis, we use the inversion experiment with in situ mea-
surements only (in the following called ’MIP/IS’) and the experiment with in situ
measurements together with land and ocean OCO-2 measurements (in the follow-
ing called ’MIP/OCO-2+IS’). For both inversion experiments, OCO-2 MIP provides
fluxes only from 2015 on. The 14 different atmospheric inversion systems use the
same fossil fuel prior fluxes but differ in the other assumed prior fluxes, their used
transport models and inversion systems. More details on the individual models are
given in Table 1 in Byrne et al. (2023). With the different models and measurement
configurations, the project aims at quantifying the impact of transport model errors,
inversion setups, measurement setups, and retrieval errors on the optimized CO2

fluxes. Like TM5-4DVar, the other OCO-2 MIP models can also only report a total
land flux, as fire and biosphere fluxes cannot be separated in the inversions. Next to
the optimized land-atmosphere fluxes of the different experiments, the OCO-2 MIP
project also provides the individual prior fluxes used in the models. Furthermore, 5%
of the OCO-2 measurements are withheld for validation purposes. By transporting
their optimized fluxes forward in time, the model groups calculate XCO2 values at
the location of these OCO-2 measurements (’OCO-2 cosamples’). The prior fluxes
and the OCO-2 cosamples are used in the publications of this thesis (Metz et al.,
2023, 2025a) for evaluation purposes.

1.4. Bottom-up Carbon Flux Estimates

The atmospheric inversions described in Section 1.3 provide estimates of the net CO2

exchange between land and atmosphere. However, they cannot partition the net flux
into its components (e.g. GPP and TER, see Figure 1.3). Bottom-up approaches do
not only provide net fluxes, but also model the individual vegetation gross fluxes. By
comparing the top-down fluxes provided by the atmospheric inversions with bottom-
up model estimates, we can analyze the vegetation processes driving the net flux
dynamics. We make use of flux datasets from two different bottom-up approaches:
DGVMs and FLUXCOM. Both are described in more detail in the following.

1.4.1. Dynamic Global Vegetation Models

We use CO2 flux datasets of DGVMs which are included in the “trends and drivers
of the regional-scale terrestrial sources and sinks of carbon dioxide” (TRENDY, ver-
sion 9, Le Quéré et al., 2013) intercomparison project. The aim of the project is
to provide global land CO2 flux estimates for the annual global carbon budget esti-
mated by the Global Carbon Project (e.g. Friedlingstein et al., 2025). We use the 18
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DGVMs in TRENDY version 9, which provide monthly CO2 fluxes: CABLE-POP,
CLASSIC, CLM5.0, DLEM, IBIS, ISAM, ISBA-CTRIP, JSBACH, JULES-ES-1p0,
LPJ, LPX-Bern, OCN, ORCHIDEE, ORCHIDEE-CNP, ORCHIDEEv3, SDGVM,
VISIT, and YIBs. The models simulate global vegetation and soil carbon dynamics
and are driven by a common set of meteorological input data, CO2 concentrations,
and land-use data (Le Quéré et al., 2013; Friedlingstein et al., 2020). They parame-
terize the individual processes driving the CO2 exchange (e.g., respiration given the
ambient temperature, water availability, and biomass), which allows the models to
provide output for NEE, GPP, TER, and its components Ra and Rh. Most of the
models also give NBP and fewer models consider and provide fire and land-use change
fluxes. More details about the models are given in Bastos et al. (2020, Table 1) and
Friedlingstein et al. (2025, Table S1).

Initially, the individual models have been designed with a focus on different ecosys-
tems and regions (Seiler et al., 2022). For this reason, the models differ in the consid-
ered processes and assumed environmental conditions, e.g., they use different spatial
distribution of vegetation types (Friedlingstein et al., 2020; Teckentrup et al., 2021).
Furthermore, the models differ largely in the parameterization of processes. The re-
sponse of vegetation fluxes to the onset of the rainy season plays a major role in the
results of this thesis. In the following, a short overview of the GPP and TER response
parameterizations is given. The focus is thereby on the most important TRENDY
models for this thesis, namely JSBACH (Delire et al., 2020), OCN (Zaehle et al.,
2010), LPJ (Poulter et al., 2011), CABLE-POP (Haverd et al., 2018), CLASSIC
(Melton et al., 2020), ORCHIDEE (Krinner et al., 2005), ORCHIDEEv3 (Vuichard
et al., 2019), and YIBs (Yue and Unger, 2015). The characteristics of the models are
discussed in more detail in the given references. For the modeling of GPP, TRENDY
models use plant functional types (PFTs) to classify plants into groups with similar
traits. The models differ in the spatial distribution and in the parameterizations of
growth dynamics assumed for individual PFTs (Seiler et al., 2022). Most models
have drought-impacted PFTs, such as grasslands and shrublands. The growth of
these plants largely depends on sufficient accumulation of soil moisture in the rooting
zone (JSBACH, OCN, LPJ, CLASSIC, ORCHIDEE, ORCHIDEEv3, and CABLE-
POP). Various other drivers of GPP are possible, such as the accumulation of warm
days, so-called ’growing degree days’ (LPJ) or the development of sufficient leaf area
(OCN) needed for the growing season to start. These parameterizations can lead to a
delayed increase in GPP with respect to the start of the rainy season. The respiration
component Rh depends on temperature alone (YIBs), or temperature in combina-
tion with precipitation (JSBACH) or soil moisture (LPJ, CLASSIC, ORCHIDEEv3,
CABLE-POP, and ORCHIDEE). Short-term (days to months in contrast to years)
Rh dynamics are commonly driven by litter respiration with short turn-over times.
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Therefore, soil moisture in the upper soil layers is more important for short-term Rh
dynamics than deeper soil layer moisture. The exact functional parameterization of
the soil moisture dependence of Rh varies from a simple steadily increasing depen-
dence (LPJ) to more complex parabolic functions with an optimal soil moisture range
(CABLE-POP).

Due to the different parameterizations and processes implemented in the models,
the models’ output fluxes can vary largely. Friedlingstein et al. (2020) and Seiler et al.
(2022) show that TRENDY models in general perform better for certain parameters
than for others. They find that TRENDY models have a higher skill in modeling
surface runoff than vegetation biomass and GPP. The lowest skill scores and the
largest deviations are reported for the modeled leaf area index, NEE, and below all
soil organic carbon.

1.4.2. FLUXCOM and GFED

The second bottom-up dataset we use is the FLUXCOM dataset (Jung et al., 2020).
FLUXCOM upscales local eddy covariance tower CO2 flux measurements to global
scale by using machine learning models combined with Moderate Resolution Imaging
Spectroradiometer (MODIS, Justice et al., 2002) satellite remote sensing data (Tra-
montana et al., 2016; Jung et al., 2020). In total 224 flux measurement towers of
the FLUXNET dataset are used (Tramontana et al., 2016). Only eight of the towers
are in the study regions of this thesis (four in Australia, three in southern Africa,
and one in the South American Temperate region). Nine different machine learning
algorithms are trained and used to predict NEE, GPP, and TER fluxes globally with
a spatial resolution of 0.08° x 0.08° and a temporal resolution of eight days. The
final dataset is the ensemble mean of the nine flux estimates. We use the FLUXCOM
NEE dataset version 1 (setup RS_V006) as described in Jung et al. (2020).

To compare the NEE estimate of FLUXCOM with the NBP estimates of the at-
mospheric inversions and TRENDY models, we add fire emissions to FLUXCOM. To
do so, we use CO2 emissions provided by the Global Fire Emission Database (GFED,
van der Werf et al., 2017). GFED uses the burned area and the active fire product
of MODIS (Giglio et al., 2013) combined with biomass estimates of the Carnegie-
Ames-Stanford-Approach biogeochemical model (CASA model) and biome-specific
emission factors to estimate fire CO2 emissions (van der Werf et al., 2017).
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1.5. Analyzing Carbon Flux Dynamics by Combining
Top-down and Bottom-up Estimates

This section provides an overview of the methodological workflow used in the publi-
cations presented in this thesis. In Section 1.5.1 to Section 1.5.4 the methods used
in Metz et al. (2023), Metz et al. (2025a), and Vardag et al. (2025) are outlined.
Section 1.5.4 also describes the analysis workflow in Metz et al. (2025b). A schematic
illustration of the methods used is given in Figure 1.10. Details on the individual
analysis steps can be found in the corresponding publication and its supplemental
material.

Figure 1.10.: Schematic illustration of the used methods. The top-down net CO2

flux estimates of atmospheric inversions based on satellite and in situ measurements
are compared with bottom-up net CO2 flux estimates by DGVMs. The DGVMs
estimating fluxes which align well with the top-down estimates are selected. Their
modeled gross fluxes are used for further analysis of the vegetation processes driving
the net CO2 exchange. SIF measurements are used to further evaluate the DGVMs
and to analyze the seasonality in vegetation biomass buildup. Land use data and
meteorological data are utilized to examine the impact of land cover and climate
conditions on the fluxes. Finally local CO2 flux measurements serve to analyze local
flux variability in response to local temperature and soil moisture dynamics.

1.5.1. Regional Analysis of Satellite XCO2 Measurements

For our analyses we use GOSAT XCO2 measurements retrieved with ACOS and Re-
moTeC (see Section 1.2.1). Before using the satellite measurements in an atmospheric
inversion, we examine their robustness in the region of interest. We are especially
interested in the following questions:
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How does the sampling of the satellite measurements impact the continental
signal?

GOSAT overpasses are around 12:50 local time with a return time of three days (Suto
et al., 2021). However, clouds and aerosols in the atmosphere can prevent reliable
measurements. The sampling of a region can, therefore, be inhomogeneous in space
and time. When analyzing the regional CO2 concentration variability, it is important
to verify whether the entire analyzed region drives the signal or whether the region
is temporally inhomogeneously sampled. In Figure 1.1, for example, one can see that
the measurement density is lower over the Andes in the South American Temperate
region and in the north of the southern Africa regions towards the equator. Such
sampling assessments can provide important information for the later analyses of
satellite-based atmospheric inversion fluxes and are included in the supplement of
Metz et al. (2023, Figure S4) and Metz et al. (2025a, Figure A5 and A6).

Are there systematic features in the seasonal or interannual variability of the
CO2 concentrations?

To access the variability in CO2 concentrations over the region of interest more eas-
ily, we detrend the data by subtracting the background of increasing global CO2

concentrations from the GOSAT measurements. As background, we assume linearly
increasing global CO2 concentrations and use the annual growth rates of CO2 concen-
trations provided by NOAA (NOAA, 2024, see Figure 1.11). The remaining XCO2

signal is then dominated by the regional seasonal variability of CO2 concentrations.
In the given example of detrended monthly averaged GOSAT XCO2 in Figure 1.11,
we can directly see that the concentrations are the highest at the end of each year.
Moreover, CO2 concentrations are especially low in 2011 and 2017 over southern
Africa.

How do the GOSAT measurements compare with other CO2 concentration
measurements?

In addition to GOSAT, XCO2 can be obtained from other satellites and ground-
based total column measurements. By comparing the two GOSAT XCO2 retrievals
(ACOS and RemoTeC) with each other and with measurements of other devices, the
robustness of the found signal can be assessed. Next to the OCO-2 satellite, which
started measuring five years later than GOSAT, there are ground-based stations of
the Total Carbon Column Observing Network (TCCON, Wunch et al., 2011) and the
Collaborative Carbon Column Observing Network (COCCON, Frey et al., 2019) that
perform total column measurements of CO2. When comparing GOSAT XCO2 with
these measurements, one needs to be aware of the different temporal and spatial mea-

36



1.5. Analyzing Carbon Flux Dynamics

Figure 1.11.: Detrending monthly and regionally averaged XCO2. The linearly
increasing global atmospheric CO2 concentration background (red line with left y-
axis) is calculated using the growth rates reported by NOAA (2024) given on top. The
background is subtracted from the total monthly mean XCO2 (black) over southern
Africa to obtain the detrended XCO2 in grey.

surement sampling. TCCON and COCCON stations are at certain fixed locations,
and overpasses of GOSAT need to be selected to accurately perform a measurement
comparison. OCO-2 has a slightly different ground track and a different sampling
than GOSAT. Moreover, also the ACOS and RemoTeC datasets differ in the included
GOSAT measurements, as both retrievals apply different filter criteria. Hence, also
when comparing different satellite datasets, a cosampling by only selecting co-located
measurements is needed. For example, a discussion of the effect of cosampling is in-
cluded in Metz et al. (2025a) in Figure A1.

1.5.2. Flux Estimates Based on Satellite and In Situ CO2 Data

As described in Section 1.3.2, we assimilate GOSAT XCO2 (not detrended) and in
situ measurements in the atmospheric inversion TM5-4DVar. By comparing the dif-
ferent measurement configurations (TM5-4DVar/GOSAT+IS, TM5-4DVar/IS, TM5-
4DVar/prior) we can evaluate the impact of the different measurement types on the
estimated CO2 fluxes. If the estimated fluxes closely follow the prior fluxes, this can
indicate that they are only weakly constraint by the atmospheric concentration mea-
surements. Either because only few measurements exist in the respective region or
because the inversion weights the prior fluxes more strongly than the measurements
(see Section 1.3.1).

To verify the consistency of our flux estimates and findings, we compare our es-
timated fluxes with those provided by the OCO-2 MIP ensemble. Firstly, we as-
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sess how well the TM5-4DVar inversions align with the OCO-2 MIP. Specifically,
we compare TM5-4DVar/IS with MIP/IS estimates and we evaluate how well TM5-
4DVar/GOSAT+IS aligns with MIP/OCO-2+IS. Secondly, we verify that our find-
ings regarding the information content of the used measurement types (satellite and
in situ) as described above, also hold true for OCO-2 MIP. To do so, we analyze
whether the estimated fluxes of the satellite inversions differ significantly from those
of the in-situ-only inversions and the prior fluxes, i.e. we analyze whether the differ-
ences between satellite-based inversion fluxes, in-situ-only inversion fluxes, and the
prior fluxes are larger than the spreads within the individual inversion groups. If this
is the case, we can see that the two measurement types provide (different) information
on the regional carbon fluxes.

For our analyses, we average the fluxes regionally and monthly. Even though TM5-
4DVar optimizes the fluxes on finer scale of weekly, 2° latitude x 3° longitude, the
fluxes on this resolution are highly underconstrained due to the comparably sparse
measurement density. The allocation of the high-resolution fluxes is, therefore, highly
uncertain. Only by averaging the fluxes spatially and temporally, a sufficient amount
of measurements is available to constrain the fluxes.

To assess the fraction of CO2 exchange between land and atmosphere, which is
only caused by vegetation processes (that is, NEE), we subtract GFED fire emissions
(Section 1.4.2) from TM5-4DVar/GOSAT+IS. We thereby neglect the ’other’ distur-
bance fluxes in Equation 1.2, i.e. we assume that land-use change and lateral fluxes
are of minor importance for the seasonal and interannual variability in the regional
carbon cycle compared to GPP, Ra, and Rh. We test this assumption and find that
estimates of riverine fluxes and land-use change fluxes are smaller than 1%-2% of the
monthly gross fluxes (GPP, Ra, and Rh) for our study regions (see Appendix B.1).
Thus, we do not expect a substantial impact of riverine fluxes and land-use change
fluxes on the seasonal and interannual variability in CO2 fluxes in our study regions,
and neglecting the ’other’ disturbance fluxes is a valid assumption for our analyses.

To summarize, by comparing the optimized fluxes of the different inversion setups,
we aim at identifying which measurement types can provide information about the
carbon cycle in our regions of interest. By choosing the inversion setup which uses
the most measurement information instead of mainly relying on prior information,
we improve the carbon flux estimates in the study regions. We can then use these
flux estimates for further analyses.

1.5.3. Flux Estimates by DGVMs

The DGVMs in the TRENDY ensemble do not only model the net fluxes between
atmosphere and land, but also model the underlying vegetation fluxes like GPP and
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TER. Furthermore, their estimates are derived by simulating individual vegetation
processes such as photosynthesis given the environmental conditions. Hence, they
inform not only on the carbon exchange fluxes, but also provide information on the
processes driving the net carbon exchange. However, as most of the models are
originally developed for different regions, the TRENDY models largely differ in the
modeled processes and their specific implementation. This results in substantially
varying model estimates of the fluxes in specific regions, which often do not agree in
magnitude, seasonal timing, and interannual variability as found in Teckentrup et al.
(2021), Metz et al. (2023), Metz et al. (2025a), Vardag et al. (2025), and Foster et al.
(2024). Hence, regional CO2 flux estimates of the TRENDY ensemble have large
uncertainties.

We use our TM5-4DVar/GOSAT+IS fluxes and GOME-2 SIF measurements as
atmospheric constraints on the NBP, NEE, and GPP fluxes, respectively. By se-
lecting only the TRENDY models that align best with the atmospheric constraints,
we identify those models that most accurately capture the carbon dynamics in the
respective region. The selected models can then be used to further analyze the gross
fluxes driving the net exchange between land and atmosphere. Taking into account
climatic conditions and knowledge about the implemented processes in the selected
TRENDY models, the vegetation processes driving the carbon flux variability can be
identified. In doing so, we combine the advantages of the top-down and bottom-up
approaches. We use our measurement-based fluxes which most accurately represent
the true atmospheric conditions and use the consistent vegetation models to analyze
the underlying vegetation fluxes and identify driving processes and climatic drivers.

1.5.4. Local Flux Measurements Can Help to Track Down
Vegetation Processes

In the publications of this thesis we use flux tower measurements of the FLUXNET
and OzFlux network. Flux towers measure the CO2 fluxes between surface and at-
mosphere and environmental conditions such as soil moisture and temperature every
30 minutes (see Section 1.2.2).

In the first three publications, we use flux tower measurements to verify our hypoth-
esis that the Birch effect takes place in our study regions. The flux tower measure-
ments have the disadvantage of not being representative for the whole study regions
as they only inform about fluxes in their vicinity. Hence, they cannot be used to con-
strain a continent’s carbon budget. This is especially the case in the South American
Temperate region and southern Africa, where only one and three flux towers are lo-
cated in the semiarid areas of each region, respectively. However, the local scale of the
measurements also has advantages. The measurements are representative of the local
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vegetation exchange processes and do not average over multiple exchange processes
in different areas as our regional flux estimates do. Furthermore, flux towers provide
high temporal resolution flux measurements compared to the atmospheric inversion
and TRENDY fluxes. We use daily averages of the CO2 flux, soil moisture, and
temperature measurements. By doing so, we can observe the immediate response of
the local CO2 fluxes to precipitation, soil moisture, and temperature changes. While
this does not imply that the observed effects take place in the entire study region,
we can prove the existence of certain responses occurring at least at the flux tower
locations in semiarid regions.

In Metz et al. (2025b) we use 40 OzFlux flux towers to investigate the response of
TER to soil moisture in Australia. We perform linear regressions of the daily averages
of measured TER and soil moisture and use the estimated slopes as a measure of the
sensitivity of TER to soil moisture. The flux towers cover a broad range of climatic
conditions and ecosystems in Australia (see Figure 1.8). This enables us to analyze the
direct response of TER to soil moisture in different aridity regimes. Furthermore, we
compare the found sensitivities to those calculated with daily resolved modeled CO2

fluxes of the vegetation model LPJ at the individual flux tower locations. In doing
so, the flux tower measurements provide the opportunity to assess the performance
of vegetation models with respect to the implementations of certain parameters.

1.6. Overview of Publications

The aim of the present thesis is to evaluate the potential of satellite data to improve
CO2 flux estimates in semiarid regions in the Southern Hemisphere and to analyze the
seasonal and interannual variability of these fluxes to better understand the climatic
drivers of the carbon cycle in these remote regions. The thesis is composed of three
peer-reviewed publications and one unpublished manuscript. In the following, short
summaries of the publications and the manuscript are given.

Publication 1

The first publication (Metz et al., 2023) investigates the dynamics in satellite-based
CO2 fluxes and total column concentrations in Australia. We find large CO2 emis-
sions at the end of the year, which largely control the interannual variability in the
Australian CO2 fluxes. In situ measurement-based atmospheric inversions and the
ensemble mean of TRENDY vegetation models fail in capturing these carbon flux
dynamics accurately. By identifying a subset of vegetation models that reproduce
the end of the year emissions, we find that they are caused by a dephasing of Rh and
GPP at the beginning of the rainy season in the semiarid regions of Australia. Rewet-
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ting conditions are the main driver of the early increase in Rh compared to GPP.
The findings indicate a relevant contribution of the formerly only locally known Birch
effect to the continental-scale CO2 emissions.

This publication shows that satellite measurements can provide the basis for ob-
serving CO2 flux dynamics and pinpointing individual CO2 exchange processes in
remote regions. We therewith improve the accuracy of CO2 flux estimates and pro-
vide specific recommendations on how to improve vegetation models for Australia.

Publication 2

In the second publication (Metz et al., 2025a), we use the GOSAT-based CO2 fluxes
to analyze the southern African carbon cycle. We compare GOSAT-based and
OCO-2-based CO2 fluxes. A good agreement was found for those MIP/OCO-2+IS
models that put sufficient weight on the used OCO-2 measurements. Furthermore,
we find a large spread in the CO2 fluxes modeled by TRENDY models. By using
the satellite-based CO2 fluxes and GOME-2 SIF measurements as atmospheric con-
straints on the TRENDY NBP, NEE, and GPP fluxes, respectively, we can identify
three vegetation models that capture well the carbon dynamics in southern Africa.
Using the subset of vegetation models, we find a dephasing of Rh and GPP at the start
of the rainy season that shapes the seasonal cycle of carbon fluxes. The interannual
variability of the CO2 fluxes is, however, driven by GPP.

This study emphasizes the advantages of using satellite-based atmospheric con-
straints to reduce the uncertainty in carbon flux estimates in southern Africa and to
further track down the processes driving the variability in CO2 fluxes. This publi-
cation shows that the methods used in Metz et al. (2023) can be applied to other
regions with a sparse in situ measurement coverage. It reveals the impact of soil
rewetting-driven Rh on the seasonal cycle of semiarid CO2 fluxes in southern Africa.

Publication 3

In this publication (Vardag et al., 2025) the CO2 flux variability in the South Amer-
ican Temperate region is investigated. We find large discrepancies in CO2 flux esti-
mates of models within the TRENDY project. We can identify two TRENDY models
that align well with GOSAT-based CO2 fluxes. Using this subset of vegetation mod-
els, we can pinpoint the semiarid region in the east to drive the seasonality of the
CO2 fluxes in the whole study region. We find a clear dephasing of Rh and GPP
in this eastern semiarid area, which drives the seasonality in CO2 fluxes. Local flux
measurements show the existence of the Birch effect in this region and suggest the
importance of the effect on a regional scale in the South American Temperate region.

This study underlines the importance of accurately modeling the impact of soil

41



1. Introduction

rewetting on soil respiration in semiarid regions. Together with Metz et al. (2023)
and Metz et al. (2025a), it shows the advantages of satellite data and the importance
of Rh emission dynamics in the semiarid regions in the Southern Hemisphere.

Publication 4

In this submitted manuscript (Metz et al., 2025b), we analyze the sensitivity of TER
to soil moisture by using measurements of 40 OzFlux flux towers in Australia. We
find the highest sensitivities at semiarid measurement sites. In contrast to that, TER
measured at humid stations does not show a significant dependence on soil moisture.
We compare these findings with TER dynamics modeled by the vegetation model
LPJ. In agreement with the OzFlux measurements, the modeled TER sensitivities
at dry stations are high. However, LPJ also shows significant sensitivities at humid
stations, which is in contrast to the OzFlux results. Our findings indicate that the
response of Rh to soil moisture implemented in LPJ needs to be reduced for high
soil moisture levels. Furthermore, we suggest that a closer evaluation of soil moisture
dynamics in LPJ is required. Both can help to enable LPJ to capture the carbon flux
dynamics in the different aridity regimes in Australia more accurately.

This study deepens the findings of Metz et al. (2023) with respect to possible
improvements of vegetation models for Australian CO2 flux estimations. The study
provides specific recommendations for LPJ to improve the TER response to soil
moisture in different aridity regimes in Australia.
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This chapter displays the publications included in this thesis. Due to licensing rea-
sons for Metz et al. (2023), the manuscript version ”accepted for publication”, instead
of the finally published one, is reproduced here. The second and third publications
are included as published in Biogeosciences and Geophysical Research Letters, re-
spectively, without any changes. The last publication is included as an unpublished
manuscript submitted to Environmental Research Letters.

The first publication, Metz et al. (2023), is published with the following Copyright:
”© 2023 The Authors, some rights reserved; exclusive licensee American Association
for the Advancement of Science. No claim to original U.S. Government Works.” Please
find more information about the license for the reuse of the publication here: https:
//www.science.org/do/10.5555/science-journals-editorial-policies/full/
standardandusgovtlicensetopublish_2024-1733323122573.pdf. The second pub-
lication (Metz et al., 2025a) and the third publication (Vardag et al., 2025) are dis-
tributed under the Creative Commons Attribution 4.0 license (https://creativecom-
mons.org/licenses/by/4.0/).

The first Section 2.1 summarizes the author contributions of the individual publi-
cations. It is followed by the publications in the following order: Metz et al. (2023)
in Section 2.2, Metz et al. (2025a) in Section 2.3, Vardag et al. (2025) in Section 2.4,
and finally the manuscript of Metz et al. (2025b) in Section 2.5. The publications
have not been used in other dissertations.

2.1. General Information and Author Contributions

Publication 1

Soil Respiration–driven CO2 Pulses Dominate Australia’s Flux Variability

Published on March 31st, 2023 in Science

https://www.science.org/doi/epdf/10.1126/science.add7833

Author list: Eva-Marie Metz, Sanam N. Vardag, Sourish Basu, Martin Jung, Bern-
hard Ahrens, Tarek El-Madany, Stephen Sitch, Vivek K. Arora, Peter R. Briggs,
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Pierre Friedlingstein, Daniel S. Goll, Atul K. Jain, Etsushi Kato, Danica Lombar-
dozzi, Julia E. M. S. Nabel, Benjamin Poulter, Roland Séférian, Hanqin Tian, Andrew
Wiltshire, Wenping Yuan, Xu Yue, Sönke Zaehle, Nicholas M. Deutscher, David W.
T. Griffith, André Butz

Author contributions: I am the main author of the publication. I conducted the
complete data analyses and visualization of the data. Together with André Butz and
Sanam Vardag, I developed the applied analysis methods and conceptualization. The
paper was written jointly by André Butz, Sanam Vardag, Martin Jung, Sourish Basu,
and me.

Publication 2

Seasonal and Interannual Variability in CO2 Fluxes in Southern Africa
Seen by GOSAT

Published on January 30th, 2025 in Biogeoscience

https://doi.org/10.5194/bg-22-555-2025

Author list: Eva-Marie Metz, Sanam N. Vardag, Sourish Basu, Martin Jung, André
Butz

Author contributions: I am the main author of the publication. I analyzed and
visualized the data. Together with André Butz and Sanam Vardag, I developed the
applied analysis methods and conceptualization. I wrote the first draft which was
then finalized with the feedback of André Butz, Sanam Vardag, Martin Jung and
Sourish Basu.

Publication 3

CO2 Release during Soil Rewetting Shapes the Seasonal Carbon Dynamics
in South American Temperate Region

Published on April 22nd, 2025 in Geophysical Research Letters

https://doi.org/10.1029/2024GL111725

Author list: Sanam Noreen Vardag, Eva-Marie Metz, Lukas Artelt, Sourish Basu,
André Butz

Author contributions: I am an important contributor to this publication. I to-
gether with Lukas Artelt did the data analyses and visualization. The basis of the
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analyses scripts have been written by me and further developed and adapted by
Lukas Artelt. Together with André Butz and Sanam Vardag, I developed the applied
analysis methods and conceptualization. Sanam Vardag wrote the first draft, which
got finalized with the feedback of me and the other co-authors.

Publication 4: Manuscript draft

Responses of Terrestrial Ecosystem Respiration to Soil Moisture Across
Australia’s Aridity Regimes

Submitted to Environmental Research Letters

Author list: Eva-Marie Metz, Sanam N. Vardag, Andrew F. Feldman, Benjamin
Poulter, Thomas Colligan, Brenden J. Fischer-Femal, André Butz

Author contributions: I am the main author of the publication. I analyzed and
visualized the data. The development of the applied analysis methods and the concep-
tualization was carried out by me together with André Butz, Sanam Vardag, Andrew
Feldman, and Benjamin Poulter. I wrote the first draft, which was then finalized
with the feedback of all co-authors.
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2.2. Publication 1: Soil Respiration–driven CO2 Pulses
Dominate Australia’s Flux Variability

Eva-Marie Metz, Sanam N. Vardag, Sourish Basu, Martin Jung, Bernhard Ahrens,
Tarek El-Madany, Stephen Sitch, Vivek K. Arora, Peter R. Briggs, Pierre Friedling-
stein, Daniel S. Goll, Atul K. Jain, Etsushi Kato, Danica Lombardozzi, Julia E. M. S.
Nabel, Benjamin Poulter, Roland Séférian, Hanqin Tian, Andrew Wiltshire, Wenping
Yuan, Xu Yue, Sönke Zaehle, Nicholas M. Deutscher, David W. T. Griffith, André
Butz

From

Metz, E.-M., Vardag, S. N., Basu, S., Jung, M., Ahrens, B., El-Madany, T., Sitch,
S., Arora, V. K., Briggs, P. R., Friedlingstein, P., Goll, D. S., Jain, A. K., Kato, E.,
Lombardozzi, D., Nabel, Julia E. M. S., Poulter, B., Séférian, R., Tian, H., Wiltshire,
A., Yuan, W., Yue, X., Zaehle, S., Deutscher, N. M., Griffith, D. W. T., and Butz,
A.: Soil respiration-driven CO2 pulses dominate Australia’s flux variability, Science,
379, 1332–1335, https://doi.org/10.1126/science.add7833, 2023.

This is the author’s version of the work. It is posted here by permission of the
AAAS for personal use, not for redistribution. The definitive version was published
in Science 379, (2023-03-31), doi: 10.1126/science.add7833 .

Please note that references 50-130 of the supplemental materials are already given
in the reference list of the main manuscript. For this reason, they are not given again
with the supplementary materials as stated in the original Supplementary Materials
list in the accepted manuscript.
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Abstract: The Australian continent contributes substantially to the year-to-year variability of the 

global terrestrial carbon dioxide (CO2) sink. However, the scarcity of in-situ observations in 

remote areas prevents deciphering the processes that force the CO2 flux variability. Here, 

examining atmospheric CO2 measurements from satellites in the period 2009-2018, we find 

recurrent end-of-dry-season CO2 pulses over the Australian continent. These pulses largely control 

the year-to-year variability of Australia's CO2 balance, due to 2-3 times higher seasonal variations 

compared to previous top-down inversions and bottom-up estimates. The pulses occur shortly after 

the onset of rainfall and are driven by enhanced soil-respiration preceding photosynthetic uptake 

in Australia’s semi-arid regions. The suggested continental-scale relevance of soil-rewetting 

processes has large implications for our understanding and modelling of global climate-carbon 

cycle feedbacks. 

One Sentence Summary: Satellite CO2 measurements find large CO2 pulses over Australia 

attributable to rewetting of seasonally dry soils. 
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Terrestrial ecosystems drive the seasonal and year-to-year variability of the global carbon dioxide 

(CO2) sink (1). Previous research identified semi-arid regions as hotspots of global CO2 balance 

inter-annual variability (2–5) due to their large sensitivity of photosynthetic carbon uptake to 

fluctuations in water availability (6, 7). The Australian continent is primarily covered with semi-

arid ecosystems and experiences large variations in rainfall. This makes Australia particularly 

relevant for the variability in the global carbon cycle (8–13), contributing up to 60% to yearly 

anomalies of the global terrestrial CO2 sink (2). 

However, current approaches for attributing global CO2 sink variations to certain regions and 

mechanisms are highly uncertain, which limits our ability to model climate-carbon cycle feedbacks 

and project future climate (14, 15). Global process-based ecosystem models underestimate 

observed CO2 flux variability across semi-arid sites due to the complexity of carbon-water cycle 

interactions and the diversity of ecosystem responses to water fluctuations (16, 17). The same 

holds true for machine learning based models trained on local carbon flux observations (18, 19), 

which is due to the scarcity of available flux measurements in low-latitude semi-arid regions (20) 

as well as due to the inability to represent potentially important non-instantaneous carry-over 

effects (21). Atmospheric transport inversions based on in-situ measurements of airborne CO2 also 

suffer from the scarcity of observations in remote areas and thus the inversions cannot reliably 

attribute CO2 flux variability to specific regions, despite growing monitoring capacities (22, 23). 

However, recent satellite observations of atmospheric column CO2 deliver data where ground-

based in-situ concentration measurements and carbon flux networks are sparse and thus, satellite 

CO2 data can fill important gaps and provide new constraints on regional scale patterns and 

processes (8, 24–28).  

Here, using satellite observations of atmospheric CO2 concentrations from the Greenhouse 

Gases Observing Satellite (GOSAT) for the period 2009 to 2018, we identify a net CO2 pulse to 
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the atmosphere that occurs over Australia at the end of the dry season in most years with variable 

magnitude. We show that this pattern appears to dominate the seasonal and year-to-year variations 

of Australia’s CO2 balance for that period, while it is not evident in traditional atmospheric 

inversions using in-situ measurements only, in the FLUXCOM machine learning based 

extrapolations of in-situ flux measurements (18, 20), and most process-based ecosystem models 

of the TRENDY initiative (29). The few process-based TRENDY models that reproduce the CO2 

pulse pattern qualitatively suggest that it is caused by rapid respiratory carbon release with the 

onset of the rainy season while the increase in photosynthetic carbon uptake lags behind. This 

observed process is consistent with the phenomenon of respiration pulses after rewetting events 

discussed in the context of the “Birch effect” (30, 31). Such pulses have been described extensively 

in local studies of water-limited systems (32) but their large-scale relevance remained unknown. 

 

Atmospheric CO2 peak over Australia 

The Greenhouse Gases Observing Satellite (GOSAT) has been delivering global measurements 

of the column-average dry-air mole fractions (“concentrations”) of atmospheric CO2 since its 

launch in 2009 (33). After subtracting the secular trend (34), the record of GOSAT concentrations 

for the period 2009-2018 (Fig. 1) reveals a seasonal pattern above Australia with CO2 draw-down 

in March, April, May (MAM) and a CO2 peak of variable magnitude at the end of the dry season 

in October, November, December (OND). These patterns are consistent among two retrievals 

independently applied to GOSAT (GOSAT/RemoTeC (35) and GOSAT/ACOS (36), Table S1) 

and they are present in CO2 concentrations measured by the Orbiting Carbon Observatory (OCO-

2 (37, 38), period 2015 to 2018, Table S1) as well as in ground-based data of the Total Carbon 

Column Observing Network (39) (Fig. S1 and S2). 
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Fig. 1. Detrended CO2 concentrations over Australia from satellite and models. (A) Detrended 

column-average dry-air mole fractions of CO2 measured by GOSAT (red) and simulated by inverse 

models assimilating in-situ ground-based measurements (blue). Data are monthly averages for 

Australia. Red shading indicates the range of the GOSAT/RemoTeC and GOSAT/ACOS 

algorithms. Blue shading indicates the range of the CarbonTracker, CAMS, and TM5-4DVAR 

inverse models. (B) Mean and standard deviation (shading) over the period 2009 to 2018. 

 

In contrast, the atmospheric column CO2 concentrations simulated by three inverse atmospheric 

transport models (CarbonTracker CT2019B (40), CAMS (41), TM5-4DVAR (42)) underestimate 

the CO2 draw-down in MAM and lack the CO2 pulses in OND (Fig. 1). Driven by atmospheric 

winds, these transport models deliver concentration fields that are optimally compatible with in-

situ measured CO2 concentrations and the a priori biogenic, oceanic, fire and fossil CO2 surface-

atmosphere fluxes (34).  However, due to their sparsity in and around Australia (see Fig. S3 

compared to Fig. S4), the in-situ measurements provide only marginal constraints on the regional 

flux balance. Thus, the discrepancy between CO2 concentrations from GOSAT and traditional in-
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situ based atmospheric inversions hints at the existence of a carbon release mechanism in 

Australian ecosystems that has remained undetected by the existing in-situ CO2 monitoring system. 

 

Australian top-down and bottom-up fluxes 

To improve on the surface flux estimates for Australia, we feed the GOSAT CO2 concentrations 

into one of the atmospheric inverse models (TM5-4DVAR) together with the in-situ CO2 

measurements. We find indeed that the recurring end-of-dry-season CO2 concentration peaks are 

attributed to a carbon release pattern originating from land ecosystems, which is not present in the 

inversions when assimilating in-situ CO2 data alone (Fig. 2A and Fig. S5).  

Our new estimates of Australia’s carbon balance variability based on assimilating GOSAT 

together with in-situ data show a nearly doubled peak-to-peak amplitude of the seasonal cycle 

(175±40 TgC/month, mean ± standard deviation over the 2009 to 2018 period, July-to-June peak-

to-peak amplitude) compared to the in-situ-only inversions (88±13 TgC/month). Moreover, the 

end-of-dry-season CO2 pulses found by the GOSAT inversions imply a more than 4-fold greater 

year-to-year variability of the annual CO2 fluxes (0.207 PgC/a, standard deviation over the 2010 

to 2018 period) than for the in-situ-only inversions (0.039 PgC/a) (Fig. S6 and Table S2). Fluxes 

obtained by assimilating OCO-2 together with in-situ data for the period 2015 to 2018 show the 

same end-of-dry-season pulses and agree well with the fluxes of the GOSAT inversion (see Fig. 

S7). 
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Fig. 2. Australian net CO2 fluxes. (A) Top-down estimates of the net monthly Australian carbon 

fluxes inferred by in-situ CO2 measurements based inverse models (blue) and by TM5-4DVAR 

assimilating in-situ measurements together with GOSAT observations (red), compared to bottom-

up FLUXCOM+GFED NBP (yellow) and the TRENDY ensemble mean NBP (grey). Shading 

indicates the range among the various top-down data streams (in-situ based CarbonTracker, 

CAMS, and TM5-4DVAR in blue, TM5-4DVAR+GOSAT/RemoTeC and TM5-4DVAR+GOSAT/ACOS in 

red) and the standard deviation among the TRENDY ensemble (grey). (C) NBP of a subgroup of 

TRENDY models (black) compared to the other models (grey), to the GOSAT inversions (red, 

same as in (A)) and to GFED fire emissions (orange). Shading as in (A). (B) and (D) Mean and 

standard deviation (shading) over the period 2009 to 2018 and the mean peak-to-peak seasonal 

cycle amplitudes (bars). Positive fluxes correspond to carbon emissions into the atmosphere. 
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To understand the origin of the CO2 pulses, we compare to bottom-up estimates from machine 

learning (FLUXCOM (18, 20)) and 18 process-based dynamic global vegetation models (DGVMs) 

from the TRENDY (v9) ensemble (42). Those also provide the component fluxes of gross primary 

productivity (GPP) and terrestrial ecosystem respiration (TER) enabling the attribution to 

variations in photosynthetic carbon uptake and respiratory carbon release. We further include fire 

emissions (FIRE) from the Global Fire Emission Database (GFED) as a potential factor for 

explaining the pattern. To compare to the top-down inversions, we calculate net biome production 

(NBP = TER + FIRE - GPP) by adding fire emissions from GFED to net ecosystem exchange 

(NEE = TER – GPP) from FLUXCOM. That is, positive fluxes correspond to carbon emissions 

into the atmosphere. For TRENDY, NBP is taken directly from the simulations of the DGVMs. 

We find that FLUXCOM+GFED derived NBP lacks the end-of-dry-season CO2 pulses (Fig. 2A) 

and its seasonal amplitude (64±16 TgC/month) underestimates the one found by the GOSAT 

inversions by a factor of 3. This could be explained by the sparsity of Australian flux tower data 

in the training of the FLUXCOM machine learning models (only 4 of 224 sites lie in Australia, 

see Fig. S3) causing extrapolation errors (18), and by known weaknesses in representing certain 

fluctuations in response to water availability (19) or “memory” effects due to non-accounted 

carbon pool dynamics (43). Our analysis further suggests that local and transported fire emissions 

might contribute at the beginning of the carbon pulses but cannot explain their magnitude and 

duration (Fig. 2B and Fig. S8).  

The ensemble of TRENDY NBP simulations shows a large inter-model spread and also no end-

of-dry-season CO2 pulses on average (Fig. 2A) causing a seasonal amplitude (85±20 TgC/month) 

which is about half of that of the GOSAT inversions. However, the dry season pulses are present 

in a subset of five of the TRENDY DGVMs (Fig. 2B and Table S1, ‘Characteristics of 

TRENDYselection’ in 34). For this subset, the timing, the duration and the magnitude (except for the 
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year 2009) of the pulses and their seasonal amplitude (123±31 TgC/month) are closer to the pulses 

found by the GOSAT inversions. This finding suggests that the CO2 pulses can be explained by 

ecosystem processes shaping the phasing of photosynthesis and respiration. 

 

Phasing of respiration and photosynthesis 

We find that the subset of DGVMs which are in good agreement with the GOSAT inversions 

reveals a distinctly different seasonal timing of GPP and TER than the other DGVMs. For the 

selected subset, the CO2 pulses are driven by TER, which increases rapidly at the onset of the rainy 

season while GPP takes up only a few weeks later (Fig. 3A). The pulses originate mainly from an 

early increase of soil-respiration in semi-arid regions (Fig. S9, Fig. S10A). For the other DGMVs, 

TER and GPP show a mostly synchronous phasing throughout the year yielding no CO2 pulses 

(Fig. 3B and Fig. S10B). The precipitation records for the semi-arid regions of Australia (Fig. 3C, 

Fig. S3) suggest that the soil-respiration driven pulses shown by the GOSAT inversions and the 

selected TRENDY models are weaker or do not occur in years with anomalously strong 

precipitation during the dry period (Austral winter) such as in the La Nina years 2010 and 2016. 

This implies that the observed pulses are conditional on rewetting of dry soils and that it is through 

the strength of the pulses that climatic conditions have control on Australia’s annual CO2 balance 

(Fig. S6) 
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Fig. 3. Seasonal timing of gross carbon fluxes among TRENDY models. (A) Gross primary 

production (GPP, green) and total respiration (TER, purple) for Australia for the selection of 

TRENDY DGVMs that replicate the end-of-dry-season CO2 pulses. The difference of TER and 

GPP is given in black in the lower part together with GOSAT-based inversion where GFED fire 

emissions are subtracted (dashed red). (B) Same as panel a but for the other TRENDY models that 

do not replicate the end-of-dry-season CO2 pulses. (C) Mean monthly precipitation over the entire 

Australian region (black) and the semi-arid part (see Fig. S3) of Australia (blue). 
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The detected continental-scale CO2 pulses are consistent with site-level observations of dryland 

ecosystems which show an asynchronous response of respiration and photosynthesis to 

precipitation pulses (44). The rapid response of microbial respiration to rewetting events, is known 

as “Birch effect” and has been described in the literature of specific sites in some semi-arid regions 

for many decades (30–32). After being dormant in the dry period, soil microbes are activated by 

the moisture supply from rainfall. Benefitting from warm soils, accumulated and readily available 

substrate gets respired quickly going along with rapid growth of microbial populations. These 

dynamics of soil microbial processes cause respiration CO2 pulses with rewetting of dry soils 

which are evident in Australian flux tower data (Fig. S11 and S12). Photodegradation of surface 

litter (45) and the death of microorganisms during the dry period (46, 47) may lead to the 

accumulation of easily decomposable substrate available to microorganisms at the onset of rain. It 

remains an open question whether the respiration pulses are mainly driven by substrates 

accumulated during the dry period and to what extent they are fueled by mobilization and 

decomposition of physically protected carbon (47). These processes are not represented explicitly 

or in detail in the TRENDY DGVMs and thus, the DGVMs cannot resolve how the site-level 

mechanisms scale up to the continental-scale effect observed here. Nonetheless, a selection of 

models effectively captures the continental-scale CO2 pulses by a fast response of respiration and 

a delayed response of photosynthesis to the onset of the rainy season. This highlights the 

importance of subtle differences in effective parameterizations of respiration and photosynthesis 

to moisture fluctuations. Associated uncertainties affect the skill of the models to represent the 

carbon cycle of semi-arid ecosystems.  

Our study demonstrates that the soil-respiration driven CO2 pulses over Australia following the 

end of the dry season are of large-scale relevance and appear to dominate the variability of the 

continent’s carbon balance. The GOSAT inversions have shed light on a blind spot of previous 
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top-down and bottom-up approaches for quantifying and attributing CO2 flux variability. This is 

important since Australia’s semi-arid regions contribute largely to the IAV of the global terrestrial 

carbon sink and since it is the ecosystem response to the phasing of dry and wet periods that drives 

the seasonal mechanism behind the large IAV. Thus, our study calls for revisiting the contributions 

of global semi-arid systems to CO2 balance variations and for assessing implications for our ability 

to model climate-carbon feedbacks in semi-arid regions. Only a few of the global vegetation 

models are able to reproduce the observed CO2 pulses which suggests that only their respective 

parameterizations are able to represent the sensitivity of the underlying mechanism to changes in 

climatic conditions and thus, to accurately project semi-arid carbon flux variability under a 

changing climate. Considering the large uncertainties associated with modeling climate-carbon 

feedbacks (14,15,48), our findings may contribute continental-scale mechanistic understanding 

that can help reduce these uncertainties for dryland ecosystems which are found particularly 

sensitive to climate change (49). 

 

References and Notes 

1.   P. Friedlingstein, M. O’sullivan, M. W. Jones, R. M. Andrew, J. Hauck, A. Olsen, G. P. Peters, 

W. Peters, J. Pongratz, S. Sitch, C. Le Quéré, J. G. Canadell, P. Ciais, R. B. Jackson, S. Alin, 

Aragão, Luiz E. O. C., A. Arneth, V. Arora, N. R. Bates, M. Becker, A. Benoit-Cattin, H. C. 

Bittig, L. Bopp, S. Bultan, N. Chandra, F. Chevallier, L. P. Chini, W. Evans, L. Florentie, P. 

M. Forster, T. Gasser, M. Gehlen, D. Gilfillan, T. Gkritzalis, L. Gregor, N. Gruber, I. Harris, 

K. Hartung, V. Haverd, R. A. Houghton, T. Ilyina, A. K. Jain, E. Joetzjer, K. Kadono, E. Kato, 

V. Kitidis, J. I. Korsbakken, P. Landschützer, N. Lefèvre, A. Lenton, S. Lienert, Z. Liu, D. 

Lombardozzi, G. Marland, N. Metzl, D. R. Munro, Nabel, Julia E. M. S., S.-I. Nakaoka, Y. 

Niwa, K. O’Brien, T. Ono, P. I. Palmer, D. Pierrot, B. Poulter, L. Resplandy, E. Robertson, C. 

Rödenbeck, J. Schwinger, R. Séférian, I. Skjelvan, A. J. P. Smith, A. J. Sutton, T. Tanhua, P. 

P. Tans, H. Tian, B. Tilbrook, G. van der Werf, N. Vuichard, A. P. Walker, R. Wanninkhof, 

A. J. Watson, D. Willis, A. J. Wiltshire, W. Yuan, X. Yue, S. Zaehle, Global Carbon Budget 

2020. Earth Syst. Sci. Data. 12, 3269–3340 (2020), doi:10.5194/essd-12-3269-2020. 

2.   B. Poulter, D. Frank, P. Ciais, R. B. Myneni, N. Andela, J. Bi, G. Broquet, J. G. Canadell, F. 

Chevallier, Y. Y. Liu, S. W. Running, S. Sitch, G. R. van der Werf, Contribution of semi-arid 

ecosystems to interannual variability of the global carbon cycle. Nature. 509, 600–603 (2014), 

doi:10.1038/nature13376. 

60



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for 

redistribution. The definitive version was published in Science 379, (2023-03-31), doi: 10.1126/science.add7833. 

 

 

3.   A. Ahlström, M. R. Raupach, G. Schurgers, B. Smith, A. Arneth, M. Jung, M. Reichstein, J. 

G. Canadell, P. Friedlingstein, A. K. Jain, others, The dominant role of semi-arid ecosystems 

in the trend and variability of the land CO2 sink. Science. 348, 895–899 (2015). 

4.   M. Jung, M. Reichstein, C. R. Schwalm, C. Huntingford, S. Sitch, A. Ahlström, A. Arneth, G. 

Camps-Valls, P. Ciais, P. Friedlingstein, F. Gans, K. Ichii, A. K. Jain, E. Kato, D. Papale, B. 

Poulter, B. Raduly, C. Rödenbeck, G. Tramontana, N. Viovy, Y.-P. Wang, U. Weber, S. 

Zaehle, N. Zeng, Compensatory water effects link yearly global land CO2 sink changes to 

temperature. Nature. 541, 516–520 (2017), doi:10.1038/nature20780. 

5.   V. Humphrey, A. Berg, P. Ciais, P. Gentine, M. Jung, M. Reichstein, S. I. Seneviratne, C. 

Frankenberg, Soil moisture‐atmosphere feedback dominates land carbon uptake variability. 

Nature. 592, 65–69 (2021). 

6.   S. Piao, X. Wang, K. Wang, X. Li, A. Bastos, J. G. Canadell, P. Ciais, P. Friedlingstein, S. 

Sitch, Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob Change 

Biol. 26, 300–318 (2020), doi:10.1111/gcb.14884. 

7.   V. Haverd, A. Ahlström, B. Smith, J. G. Canadell, Carbon cycle responses of semi-arid 

ecosystems to positive asymmetry in rainfall. Glob Change Biol. 23, 793–800 (2017), 

doi:10.1111/gcb.13412. 

8.   R. G. Detmers, O. Hasekamp, I. Aben, S. Houweling, T. T. Leeuwen, A. Butz, J. Landgraf, P. 

Köhler, L. Guanter, B. Poulter, Anomalous carbon uptake in Australia as seen by GOSAT. 

Geophys. Res. Lett. 42, 8177–8184 (2015), doi:10.1002/2015GL065161. 

9.   X. Ma, A. Huete, J. Cleverly, D. Eamus, F. Chevallier, J. Joiner, B. Poulter, Y. Zhang, L. 

Guanter, W. Meyer, Z. Xie, G. Ponce-Campos, Drought rapidly diminishes the large net CO2 

uptake in 2011 over semi-arid Australia. Sci. Rep. 6, 37747 (2016), doi:10.1038/srep37747. 

10. J. Cleverly, D. Eamus, Q. Luo, N. Restrepo Coupe, N. Kljun, X. Ma, C. Ewenz, L. Li, Q. Yu, 

A. Huete, The importance of interacting climate modes on Australia’s contribution to global 

carbon cycle extremes. Sci. Rep. 6, 23113 (2016), doi:10.1038/srep23113. 

11. Z. Xie, A. Huete, J. Cleverly, S. Phinn, E. McDonald-Madden, Y. Cao, F. Qin, Multi-climate 

mode interactions drive hydrological and vegetation responses to hydroclimatic extremes in 

Australia. Remote Sensing of Environment. 231, 111270 (2019), 

doi:10.1016/j.rse.2019.111270. 

12. A. Bastos, M. O’Sullivan, P. Ciais, D. Makowski, S. Sitch, P. Friedlingstein, F. Chevallier, C. 

Rödenbeck, J. Pongratz, I. T. Luijkx, others, Sources of uncertainty in regional and global 

terrestrial CO2 exchange estimates. Global Biogeochemical Cycles. 34, e2019GB006393 

(2020). 

13. L. Teckentrup, M. G. de Kauwe, A. J. Pitman, D. S. Goll, V. Haverd, A. K. Jain, E. Joetzjer, 

E. Kato, S. Lienert, D. Lombardozzi, others, Assessing the representation of the Australian 

carbon cycle in global vegetation models. Biogeosciences. 18, 5639–5668 (2021). 

61



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for 

redistribution. The definitive version was published in Science 379, (2023-03-31), doi: 10.1126/science.add7833. 

 

 

14. P. M. Cox, C. Huntingford, M. S. Williamson, Emergent constraint on equilibrium climate 

sensitivity from global temperature variability. Nature. 553, 319–322 (2018), 

doi:10.1038/nature25450. 

15. S. Wenzel, P. M. Cox, V. Eyring, P. Friedlingstein, Projected land photosynthesis constrained 

by changes in the seasonal cycle of atmospheric CO2. Nature. 538, 499–501 (2016), 

doi:10.1038/nature19772. 

16. D. L. Hoover, A. A. Pfennigwerth, M. C. Duniway, Drought resistance and resilience: The role 

of soil moisture–plant interactions and legacies in a dryland ecosystem. J. Ecol. (Journal of 

Ecology). 109, 3280–3294 (2021), doi:10.1111/1365-2745.13681. 

17. N. MacBean, R. L. Scott, J. A. Biederman, P. Peylin, T. Kolb, M. E. Litvak, P. Krishnan, T. P. 

Meyers, V. K. Arora, V. Bastrikov, D. Goll, D. L. Lombardozzi, Nabel, Julia E. M. S., J. 

Pongratz, S. Sitch, A. P. Walker, S. Zaehle, D. J. P. Moore, Dynamic global vegetation models 

underestimate net CO2 flux mean and inter-annual variability in dryland ecosystems. Environ. 

Res. Lett. 16, 94023 (2021), doi:10.1088/1748-9326/ac1a38. 

18. G. Tramontana, M. Jung, C. R. Schwalm, K. Ichii, G. Camps-Valls, B. Ráduly, M. Reichstein, 

M. A. Arain, A. Cescatti, G. Kiely, others, Predicting carbon dioxide and energy fluxes across 

global FLUXNET sites with regression algorithms. Biogeosciences. 13, 4291–4313 (2016). 

19. P. Bodesheim, M. Jung, F. Gans, M. D. Mahecha, M. Reichstein, Upscaled diurnal cycles of 

land–atmosphere fluxes: a new global half-hourly data product. Earth Syst. Sci. Data. 10, 

1327–1365 (2018), doi:10.5194/essd-10-1327-2018. 

20. M. Jung, C. Schwalm, M. Migliavacca, S. Walther, G. Camps-Valls, S. Koirala, P. Anthoni, 

S. Besnard, P. Bodesheim, N. Carvalhais, others, Scaling carbon fluxes from eddy covariance 

sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences. 17, 

1343–1365 (2020). 

21. S. Sippel, M. Reichstein, X. Ma, M. D. Mahecha, H. Lange, M. Flach, D. Frank, Drought, 

Heat, and the Carbon Cycle: a Review. Curr. Clim. Change Rep. 4, 266–286 (2018), 

doi:10.1007/s40641-018-0103-4. 

22. J. Beringer, L. B. Hutley, I. McHugh, S. K. Arndt, D. Campbell, H. A. Cleugh, J. Cleverly, V. 

Resco de Dios, D. Eamus, B. Evans, C. Ewenz, P. Grace, A. Griebel, V. Haverd, N. Hinko-

Najera, A. Huete, P. Isaac, K. Kanniah, R. Leuning, M. J. Liddell, C. Macfarlane, W. Meyer, 

C. Moore, E. Pendall, A. Phillips, R. L. Phillips, S. M. Prober, N. Restrepo-Coupe, S. Rutledge, 

I. Schroder, R. Silberstein, P. Southall, M. S. Yee, N. J. Tapper, E. van Gorsel, C. Vote, J. 

Walker, T. Wardlaw, An introduction to the Australian and New Zealand flux tower network 

–OzFlux. Biogeosciences. 13, 5895–5916 (2016), doi:10.5194/bg-13-5895-2016. 

23. J. Cleverly, D. Eamus, W. Edwards, M. Grant, M. J. Grundy, A. Held, M. Karan, A. J. Lowe, 

S. M. Prober, B. Sparrow, B. Morris, TERN, Australia’s land observatory: addressing the 

global challenge of forecasting ecosystem responses to climate variability and change. Environ. 

Res. Lett. 14, 95004 (2019), doi:10.1088/1748-9326/ab33cb. 

62



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for 

redistribution. The definitive version was published in Science 379, (2023-03-31), doi: 10.1126/science.add7833. 

 

 

24. P. J. Sellers, D. S. Schimel, B. Moore, J. Liu, A. Eldering, Observing carbon cycle–climate 

feedbacks from space. Proc. Natl. Acad. Sci. USA. 115, 7860–7868 (2018), 

doi:10.1073/pnas.1716613115. 

25. P. I. Palmer, L. Feng, D. Baker, F. Chevallier, H. Bösch, P. Somkuti, Net carbon emissions 

from African biosphere dominate pan-tropical atmospheric CO2 signal. Nature 

communications. 10, 1–9 (2019). 

26. B. Byrne, J. Liu, M. Lee, I. Baker, K. W. Bowman, N. M. Deutscher, D. G. Feist, D. W. T. 

Griffith, L. T. Iraci, M. Kiel, J. S. Kimball, C. E. Miller, I. Morino, N. C. Parazoo, C. Petri, C. 

M. Roehl, M. K. Sha, K. Strong, V. A. Velazco, P. O. Wennberg, D. Wunch, Improved 

Constraints on Northern Extratropical CO2 Fluxes Obtained by Combining Surface‐Based and 

Space‐Based Atmospheric CO2 Measurements. J. Geophys. Res. Atmos. 125 (2020), 

doi:10.1029/2019JD032029. 

27. Z. Chen, D. N. Huntzinger, J. Liu, S. Piao, X. Wang, S. Sitch, P. Friedlingstein, P. Anthoni, A. 

Arneth, V. Bastrikov, D. S. Goll, V. Haverd, A. K. Jain, E. Joetzjer, E. Kato, S. Lienert, D. L. 

Lombardozzi, P. C. McGuire, J. R. Melton, Nabel, Julia E M S, J. Pongratz, B. Poulter, H. 

Tian, A. J. Wiltshire, S. Zaehle, S. M. Miller, Five years of variability in the global carbon 

cycle: comparing an estimate from the Orbiting Carbon Observatory-2 and process-based 

models. Environ. Res. Lett. 16, 54041 (2021), doi:10.1088/1748-9326/abfac1. 

28. Y. Villalobos, P. Rayner, S. Thomas, J. Silver, The potential of Orbiting Carbon Observatory-

2 data to reduce the uncertainties in CO2 surface fluxes over Australia using a variational 

assimilation scheme. Atmos. Chem. Phys. 20, 8473–8500 (2020), doi:10.5194/acp-20-8473-

2020. 

29. S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-Tortarolo, A. Ahlström, S. C. 

Doney, H. Graven, C. Heinze, C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N. 

Viovy, S. Zaehle, N. Zeng, A. Arneth, G. Bonan, L. Bopp, J. G. Canadell, F. Chevallier, P. 

Ciais, R. Ellis, M. Gloor, P. Peylin, S. L. Piao, C. Le Quéré, B. Smith, Z. Zhu, R. Myneni, 

Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences. 12, 

653–679 (2015), doi:10.5194/bg-12-653-2015. 

30. H. F. Birch, Mineralisation of plant nitrogen following alternate wet and dry conditions. Plant 

Soil. 20, 43–49 (1964), doi:10.1007/bf01378096. 

31. P. Jarvis, A. Rey, C. Petsikos, L. Wingate, M. Rayment, J. Pereira, J. Banza, J. David, F. 

Miglietta, M. Borghetti, G. Manca, R. Valentini, Drying and wetting of Mediterranean soils 

stimulates decomposition and carbon dioxide emission: the “Birch effect”. Tree Physiol. (Tree 

Physiology). 27, 929–940 (2007), doi:10.1093/treephys/27.7.929. 

32. P. Casals, L. Lopez-Sangil, A. Carrara, C. Gimeno, S. Nogués, Autotrophic and heterotrophic 

contributions to short-term soil CO2 efflux following simulated summer precipitation pulses in 

a Mediterranean dehesa. Global Biogeochem. Cycles. 25, n/a-n/a (2011), 

doi:10.1029/2010GB003973. 

33. A. Kuze, H. Suto, K. Shiomi, S. Kawakami, M. Tanaka, Y. Ueda, A. Deguchi, J. Yoshida, Y. 

Yamamoto, F. Kataoka, T. E. Taylor, H. L. Buijs, Update on GOSAT TANSO-FTS 

63



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for 

redistribution. The definitive version was published in Science 379, (2023-03-31), doi: 10.1126/science.add7833. 

 

 

performance, operations, and data products after more than 6 years in space. Atmos. Meas. 

Tech. 9, 2445–2461 (2016), doi:10.5194/amt-9-2445-2016. 

34. Materials and methods are available as supplementary materials at the Science website. 

35. A. Butz, S. Guerlet, O. Hasekamp, D. Schepers, A. Galli, I. Aben, C. Frankenberg, J.-M. 

Hartmann, H. Tran, A. Kuze, G. Keppel-Aleks, G. Toon, D. Wunch, P. Wennberg, N. 

Deutscher, D. Griffith, R. Macatangay, J. Messerschmidt, J. Notholt, T. Warneke, Toward 

accurate CO2 and CH4 observations from GOSAT. Geophys. Res. Lett. 38, n/a‐n/a (2011), 

doi:10.1029/2011GL047888. 

36. T. E. Taylor, C. W. O’Dell, D. Crisp, A. Kuze, H. Lindqvist, P. O. Wennberg, A. Chatterjee, 

M. Gunson, A. Eldering, B. Fisher, M. Kiel, R. R. Nelson, A. Merrelli, G. Osterman, F. 

Chevallier, P. I. Palmer, L. Feng, N. M. Deutscher, M. K. Dubey, D. G. Feist, O. E. García, D. 

W. T. Griffith, F. Hase, L. T. Iraci, R. Kivi, C. Liu, M. de Mazière, I. Morino, J. Notholt, Y.-

S. Oh, H. Ohyama, D. F. Pollard, M. Rettinger, M. Schneider, C. M. Roehl, M. K. Sha, K. 

Shiomi, K. Strong, R. Sussmann, Y. Té, V. A. Velazco, M. Vrekoussis, T. Warneke, D. Wunch, 

An 11-year record of XCO2 estimates derived from GOSAT measurements using the NASA 

ACOS version 9 retrieval algorithm. Earth Syst. Sci. Data. 14, 325–360 (2022), 

doi:10.5194/essd-14-325-2022. 

37. A. Eldering, P. O. Wennberg, D. Crisp, D. S. Schimel, M. R. Gunson, A. Chatterjee, J. Liu, F. 

M. Schwandner, Y. Sun, C. W. O’Dell, C. Frankenberg, T. Taylor, B. Fisher, G. B. Osterman, 

D. Wunch, J. Hakkarainen, J. Tamminen, B. Weir, The Orbiting Carbon Observatory-2 early 

science investigations of regional carbon dioxide fluxes. Science. 358, eaam5745 (2017), 

doi:10.1126/science.aam5745. 

38. Y. Villalobos, P. J. Rayner, J. D. Silver, S. Thomas, V. Haverd, J. Knauer, Z. M. Loh, N. M. 

Deutscher, D. W. T. Griffith, D. F. Pollard, Interannual variability in the Australian carbon 

cycle over 2015–2019, based on assimilation of OCO-2 satellite data. Atmospheric Chemistry 

and Physics Discussions, 1–57 (2022), doi:10.5194/acp-2022-15. 

39. D. Wunch, G. C. Toon, J.-F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. 

T. Griffith, V. Sherlock, P. O. Wennberg, The Total Carbon Column Observing Network. Phil. 

Trans. R. Soc. A. 369, 2087–2112 (2011), doi:10.1098/rsta.2010.0240. 

40. W. Peters, A. R. Jacobson, C. Sweeney, A. E. Andrews, T. J. Conway, K. Masarie, J. B. Miller, 

L. M. P. Bruhwiler, G. Pétron, A. I. Hirsch, D. E. J. Worthy, G. R. van der Werf, J. T. 

Randerson, P. O. Wennberg, M. C. Krol, P. P. Tans, An atmospheric perspective on North 

American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA. 104, 18925–

18930 (2007), doi:10.1073/pnas.0708986104. 

41. F. Chevallier, P. Ciais, T. J. Conway, T. Aalto, B. E. Anderson, P. Bousquet, E. G. Brunke, L. 

Ciattaglia, Y. Esaki, M. Fröhlich, CO2 surface fluxes at grid point scale estimated from a global 

21 year reanalysis of atmospheric measurements. J. Geophys. Res. Atmos. 115 (2010). 

42. S. Basu, S. Guerlet, A. Butz, S. Houweling, O. Hasekamp, I. Aben, P. Krummel, P. Steele, R. 

Langenfelds, M. Torn, S. Biraud, B. Stephens, A. Andrews, D. Worthy, Global CO2 fluxes 

64



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for 

redistribution. The definitive version was published in Science 379, (2023-03-31), doi: 10.1126/science.add7833. 

 

 

estimated from GOSAT retrievals of total column CO2. Atmos. Chem. Phys. 13, 8695–8717 

(2013), doi:10.5194/acp-13-8695-2013. 

43. S. Besnard, N. Carvalhais, M. A. Arain, A. Black, B. Brede, N. Buchmann, J. Chen, J. G. P. 

W. Clevers, L. P. Dutrieux, F. Gans, M. Herold, M. Jung, Y. Kosugi, A. Knohl, B. E. Law, E. 

Paul-Limoges, A. Lohila, L. Merbold, O. Roupsard, R. Valentini, S. Wolf, X. Zhang, M. 

Reichstein, Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in 

global forests. PloS one. 14, e0211510 (2019), doi:10.1371/journal.pone.0211510. 

44. T. E. Huxman, K. A. Snyder, D. Tissue, A. J. Leffler, K. Ogle, W. T. Pockman, D. R. 

Sandquist, D. L. Potts, S. Schwinning, Precipitation pulses and carbon fluxes in semiarid and 

arid ecosystems. Oecologia. 141, 254–268 (2004). 

45. F. E. Moyano, S. Manzoni, C. Chenu, Responses of soil heterotrophic respiration to moisture 

availability: An exploration of processes and models. Soil Biology and Biochemistry. 59, 72–

85 (2013), doi:10.1016/j.soilbio.2013.01.002. 

46. W. BORKEN, E. MATZNER, Reappraisal of drying and wetting effects on C and N 

mineralization and fluxes in soils. Glob Change Biol. 15, 808–824 (2009), doi:10.1111/j.1365-

2486.2008.01681.x. 

47. J. P. Schimel, Life in Dry Soils: Effects of Drought on Soil Microbial Communities and 

Processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018), doi:10.1146/annurev-ecolsys-

110617-062614. 

48. V. K. Arora et al., Carbon–concentration and carbon–climate feedbacks in CMIP6 models and 

their comparison to CMIP5 models. Biogeosciences. 17, 4173–4222 (2020), doi:10.5194/bg-

17-4173-2020. 

49. X. Lian et al., Multifaceted characteristics of dryland aridity changes in a warming world. Nat 

Rev Earth Environ. 2, 232–250 (2021), doi:10.1038/s43017-021-00144-0. 

50. K. R. Gurney, R. M. Law, A. S. Denning, P. J. Rayner, B. C. Pak, D. Baker, P. Bousquet, L. 

Bruhwiler, Y.-H. Chen, P. Ciais, I. Y. Fung, M. Heimann, J. John, T. Maki, S. Maksyutov, P. 

Peylin, M. Prather, S. Taguchi, Transcom 3 inversion intercomparison: Model mean results for 

the estimation of seasonal carbon sources and sinks. Global Biogeochem. Cycles. 18, n/a-n/a 

(2004), doi:10.1029/2003GB002111. 

51. OCO-2 Science Team, Michael Gunson, Annmarie Eldering, ACOS GOSAT/TANSO-FTS 

Level 2 Full Physics Standard Product, V9r, Greenbelt, MD, USA, Goddard Earth Sciences 

Data and Information Services Center (GES DISC, 2022), 

https://doi.org/10.5067/OSGTIL9OV0PN 

52. OCO-2 Science Team, Michael Gunson, Annmarie Eldering, “OCO-2 Level 2 bias-corrected 

XCO2 and other select fields from the full-physics retrieval aggregated as daily files, 

Retrospective processing V10r, Greenbelt, MD, USA, Goddard Earth Sciences Data and 

Information Services Center (GES DISC, 2022), https://doi.org/10.5067/E4E140XDMPO2. 

65



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for 

redistribution. The definitive version was published in Science 379, (2023-03-31), doi: 10.1126/science.add7833. 

 

 

53. A. R. Jacobson, K. N. Schuldt, J. B. Miller, T. Oda, P. Tans, A. Andrews et al., CarbonTracker 

CT2019, NOAA Global Monitoring Laboratory (2020); 

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2019B/. 

54. F. Chevallier, R. J. Engelen, P. Peylin, The contribution of AIRS data to the estimation of CO2 

sources and sinks. Geophys. Res. Lett. 32, L23801 (2005).  

55. F. Chevallier, M. Remaud, C. W. O’Dell, D. Baker, P. Peylin, A. Cozic, Objective evaluation 

of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmos. Chem. Phys. 19, 

14233–14251 (2019), doi:10.5194/acp-19-14233-2019. 

56. K. A. Masarie, W. Peters, A. R. Jacobson, P. P. Tans, ObsPack: a framework for the 

preparation, delivery, and attribution of atmospheric greenhouse gas measurements. Earth Syst. 

Sci. Data. 6, 375–384 (2014), doi:10.5194/essd-6-375-2014. 

57. NOAA, Global Monitoring Laboratory: Trends in Atmospheric Carbon Dioxide  (available at 

https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_gr.html). 

58. B. Byrne, D. F. Baker, S. Basu, M. Bertolacci, K. W. Bowman, D. Carroll, A. Chatterjee, F. 

Chevallier, P. Ciais, N. Cressie, D. Crisp, S. Crowell, F. Deng, Z. Deng, N. M. Deutscher, M. 

Dubey, S. Feng, O. García, D. W. T. Griffith, B. Herkommer, L. Hu, A. R. Jacobson, R. 

Janardanan, S. Jeong, M. S. Johnson, D. B. A. Jones, R. Kivi, J. Liu, Z. Liu, S. Maksyutov, J. 

B. Miller, S. M. Miller, I. Morino, J. Notholt, T. Oda, C. W. O’Dell, Y.-S. Oh, H. Ohyama, P. 

K. Patra, H. Peiro, C. Petri, S. Philip, D. F. Pollard, B. Poulter, M. Remaud, A. Schuh, M. K. 

Sha, K. Shiomi, K. Strong, C. Sweeney, Y. Té, H. Tian, V. A. Velazco, M. Vrekoussis, T. 

Warneke, J. R. Worden, D. Wunch, Y. Yao, J. Yun, A. Zammit-Mangion, N. Zeng, National 

CO2 budgets (2015–2020) inferred from atmospheric CO 2 observations in support of the 

Global Stocktake. Earth System Science Data Discussions. 1-59 (2022), 

https://doi.org/10.5194/essd-2022-213.  

59. S. Crowell, D. Baker, A. Schuh, S. Basu, A. R. Jacobson, F. Chevallier, J. Liu, F. Deng, L. 

Feng, K. McKain, A. Chatterjee, J. B. Miller, B. B. Stephens, A. Eldering, D. Crisp, D. 

Schimel, R. Nassar, C. W. O'Dell, T. Oda, C. Sweeney, P. I. Palmer, D. B. A. Jones, The 2015–

2016 carbon cycle as seen from OCO-2 and the global in situ network. Atmos. Chem. Phys. 19, 

9797–9831 (2019), doi:10.5194/acp-19-9797-2019.  

60. H. Peiro, S. Crowell, A. Schuh, D. F. Baker, C. O'Dell, A. R. Jacobson, F. Chevallier, J. Liu, 

A. Eldering, D. Crisp, F. Deng, B. Weir, S. Basu, M. S. Johnson, S. Philip, I. Baker, Four years 

of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) version 9 

and in situ data and comparison to OCO-2 version 7. Atmos. Chem. Phys. 22, 1097–1130 

(2022), doi:10.5194/acp-22-1097-2022. 

61. A. S. Darmenov, A. da Silva, “The Quick Fire Emissions Dataset (QFED): Documentation of 

versions 2.1, 2.2 and 2.4” in Technical Report Series on Global Modeling and Data 

Assimilation, Volume 38 (R. D. Koster, 2015). 

62. T. Oda, S. Maksyutov, A very high-resolution (1 km×1 km) global fossil fuel CO2 emission 

inventory derived using a point source database and satellite observations of nighttime lights. 

Atmos. Chem. Phys. 11, 543–556 (2011), doi:10.5194/acp-11-543-2011. 

66



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for 

redistribution. The definitive version was published in Science 379, (2023-03-31), doi: 10.1126/science.add7833. 

 

 

63. T. Oda, S. Maksyutov, R. J. Andres, The Open-source Data Inventory for Anthropogenic 

Carbon dioxide (CO2), version 2016 (ODIAC2016): A global, monthly fossil-fuel CO2 gridded 

emission data product for tracer transport simulations and surface flux inversions. Earth Syst. 

Sci. Data. 10, 87–107 (2018), doi:10.5194/essd-10-87-2018. 

64. B. Weir, L. E. Ott, G. J. Collatz, S. R. Kawa, B. Poulter, A. Chatterjee, T. Oda, S. Pawson, 

Bias-correcting carbon fluxes derived from land-surface satellite data for retrospective and 

near-real-time assimilation systems. Atmos. Chem. Phys. 21, 9609–9628 (2021), 

doi:10.5194/acp-21-9609-2021. 

65. G. R. van der Werf, J. T. Randerson, L. Giglio, T. T. van Leeuwen, Y. Chen, B. M. Rogers, 

M. Mu, M. J. E. van Marle, D. C. Morton, G. J. COLLATZ, R. J. Yokelson, P. S. Kasibhatla, 

Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data. 9, 697–720 (2017), 

doi:10.5194/essd-9-697-2017. 

66. J. Muñoz Sabater, ERA5-Land monthly averaged data from 1981 to present. Copernicus 

Climate Change Service (C3S) Climate Data Store (CDS), Accessed on 20.12.2021 (2019), 

doi:10.24381/cds.68d2bb3. 

67. J. Muñoz Sabater, ERA5-Land monthly averaged data from 1981 to present. Copernicus 

Climate Change Service (C3S) Climate Data Store (CDS), Accessed on 20.12.2021 (2021), 

doi:10.24381/cds.68d2bb3. 

68. C. H. Reick, V. Gayler, D. Goll, S. Hagemann, M. Heidkamp, J. E. M. S. Nabel, T. Raddatz, 

E. Roeckner, R. Schnur, S. Wilkenskjeld, “JSBACH 3 - The land component of the MPI Earth 

System Model: documentation of version 3.2”. (2021). 

69. J. R. Melton, V. K. Arora, E. Wisernig-Cojoc, C. Seiler, M. Fortier, E. Chan, L. Teckentrup, 

CLASSIC v1.0: the open-source community successor to the Canadian Land Surface Scheme 

(CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 1: Model framework 

and site-level performance. Geosci. Model Dev. 13, 2825–2850 (2020), doi:10.5194/gmd-13-

2825-2020. 

70. B. Poulter, P. Ciais, E. Hodson, H. Lischke, F. Maignan, S. Plummer, N. E. Zimmermann, 

Plant functional type mapping for earth system models. Geosci. Model Dev. 4, 993–1010 

(2011), doi:10.5194/gmd-4-993-2011. 

71. X. Yue, N. Unger, The Yale Interactive terrestrial Biosphere model version 1.0: description, 

evaluation and implementation into NASA GISS ModelE2. Geosci. Model Dev. 8, 2399–2417 

(2015), doi:10.5194/gmd-8-2399-2015. 

72. S. Zaehle, A. D. Friend, P. Friedlingstein, F. Dentener, P. Peylin, M. Schulz, Carbon and 

nitrogen cycle dynamics in the O-CN land surface model: 2. Role of the nitrogen cycle in the 

historical terrestrial carbon balance. Global Biogeochem. Cycles. 24, n/a-n/a (2010), 

doi:10.1029/2009GB003522. 

73. J. R. Melton, R. K. Shrestha, V. K. Arora, The influence of soils on heterotrophic respiration 

exerts a strong control on net ecosystem productivity in seasonally dry Amazonian forests. 

Biogeosciences. 12.4, 1151-1168 (2015), doi:10.5194/bg-12-1151-2015. 

67



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for 

redistribution. The definitive version was published in Science 379, (2023-03-31), doi: 10.1126/science.add7833. 

 

 

74. J. Beringer, Adelaide River OzFlux tower site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2013); http://hdl.handle.net/102.100.100/14228. 

75. J. Cleverly, Alice Springs Mulga OzFlux site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2011); http://hdl.handle.net/102.100.100/14217. 

76. I. Schroder, Arcturus Emerald OzFlux tower site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2014); http://hdl.handle.net/102.100.100/14249. 

77. J. Laubach, Ashley Dene Research Station OzFlux, Australian and New Zealand Flux Research 

and Monitoring (2019); http://hdl.handle.net/102.100.100/78604. 

78. J. Laubach, Beacon Farm OzFlux, Australian and New Zealand Flux Research and Monitoring 

(2016); http://hdl.handle.net/102.100.100/26730. 

79. J. Beringer, Boyagin OzFlux tower site OzFlux, Australian and New Zealand Flux Research 

and Monitoring (2017); http://hdl.handle.net/102.100.100/61760. 

80. Calperum Tech, Calperum Chowilla OzFlux tower site OzFlux, Australian and New Zealand 

Flux Research and Monitoring (2013); http://hdl.handle.net/102.100.100/14236. 

81. M. Liddell, Cape Tribulation OzFlux tower site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2013); http://hdl.handle.net/102.100.100/14242. 

82. J. Beringer, Collie OzFlux, Australian and New Zealand Flux Research and Monitoring (2018); 

http://hdl.handle.net/102.100.100/70007. 

83. M. Liddell, Cow Bay OzFlux tower site OzFlux, Australian and New Zealand Flux Research 

and Monitoring (2013); http://hdl.handle.net/102.100.100/14244. 

84. A. Griebel, CumberlandPlain Melaleuca OzFlux, Australian and New Zealand Flux Research 

and Monitoring (2019); http://hdl.handle.net/102.100.100/77413. 

85. E. Pendall, Cumberland Plain OzFlux Tower Site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2015); http://hdl.handle.net/102.100.100/25164. 

86. J. Beringer, Daly Pasture OzFlux tower site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2013); http://hdl.handle.net/102.100.100/14238. 

87. P. Isaac, Daly Regrowth OzFlux tower site_old_20131128 OzFlux, Australian and New 

Zealand Flux Research and Monitoring (2010); http://hdl.handle.net/102.100.100/14215. 

88. J. Beringer, Daly Uncleared OzFlux tower site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2013); http://hdl.handle.net/102.100.100/14239. 

89. R. Simpson, Dargo High Plains OzFlux Tower Site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2012); http://hdl.handle.net/102.100.100/14221. 

90. M. Silva, Digby Plantation OzFlux, Australian and New Zealand Flux Research and 

Monitoring (2022) local: MONa66b5e42-b7b8-47b9-8338-86a0ee0c6881. 

68



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for 

redistribution. The definitive version was published in Science 379, (2023-03-31), doi: 10.1126/science.add7833. 

 

 

91. J. Beringer, Dry River OzFlux tower site OzFlux, Australian and New Zealand Flux Research 

and Monitoring (2013); http://hdl.handle.net/102.100.100/14229. 

92. M. Silva, Gatum Pasture OzFlux, Australian and New Zealand Flux Research and Monitoring 

(2022) local: MON34708884-3e7d-4c5a-ba8c-1597e1ff867d. 

93. R. Silberstein, Gingin OzFlux, Australian and New Zealand Flux Research and Monitoring 

(2015); http://hdl.handle.net/102.100.100/22677. 

94. C. Macfarlane, Great Western Woodlands OzFlux, Australian and New Zealand Flux Research 

and Monitoring (2013); http://hdl.handle.net/102.100.100/14226. 

95. J. Beringer, Howard Springs OzFlux tower site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2013); http://hdl.handle.net/102.100.100/14234. 

96. J. Beringer, Howard Springs Understory OzFlux tower site OzFlux, Australian and New 

Zealand Flux Research and Monitoring (2013); http://hdl.handle.net/102.100.100/14240. 

97. J. Beringer, Litchfield OzFlux tower site OzFlux, Australian and New Zealand Flux Research 

and Monitoring (2015); http://hdl.handle.net/102.100.100/25690. 

98. P. Grace, Longreach Mitchell Grass Rangelands OzFlux tower site OzFlux, Australian and 

New Zealand Flux Research and Monitoring (2019); 

http://hdl.handle.net/102.100.100/100147. 

99. R. Simpson, Nimmo High Plains OzFlux Tower Site OzFlux, Australian and New Zealand 

Flux Research and Monitoring (2012); http://hdl.handle.net/102.100.100/14220. 

100. E. vanGorsel, Otway OzFlux tower site OzFlux, Australian and New Zealand Flux Research 

and Monitoring (2012); http://hdl.handle.net/102.100.100/14222. 

101. J. Beringer, Red Dirt Melon Farm OzFlux tower site OzFlux, Australian and New Zealand 

Flux Research and Monitoring (2014); http://hdl.handle.net/102.100.100/14245. 

102. J. Beringer, Ridgefield OzFlux tower site OzFlux, Australian and New Zealand Flux Research 

and Monitoring (2016); http://hdl.handle.net/102.100.100/33951. 

103. J. Beringer, Riggs Creek OzFlux tower site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2014); http://hdl.handle.net/102.100.100/14246. 

104. M. Liddell, Robson Creek OzFlux tower site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2013); http://hdl.handle.net/102.100.100/14243. 

105. D. Rowlings, Samford Ecological Research Facility OzFlux tower site OzFlux, Australian 

and New Zealand Flux Research and Monitoring (2011); 

http://hdl.handle.net/102.100.100/14219. 

106. J. Beringer, Sturt Plains OzFlux tower site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2013); http://hdl.handle.net/102.100.100/14230. 

69



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for 

redistribution. The definitive version was published in Science 379, (2023-03-31), doi: 10.1126/science.add7833. 

 

 

107. J. Cleverly, Ti Tree East OzFlux Site OzFlux, Australian and New Zealand Flux Research 

and Monitoring (2013); http://hdl.handle.net/102.100.100/14225. 

108. W. Woodgate, Tumbarumba OzFlux tower site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2013); http://hdl.handle.net/102.100.100/14241. 

109. J. Beringer, Wallaby Creek OzFlux tower site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2013); http://hdl.handle.net/102.100.100/14231. 

110. A. Phillips, Warra OzFlux tower site OzFlux, Australian and New Zealand Flux Research 

and Monitoring (2015); http://hdl.handle.net/102.100.100/22566. 

111. J. Beringer, Whroo OzFlux tower site OzFlux, Australian and New Zealand Flux Research 

and Monitoring (2013); http://hdl.handle.net/102.100.100/14232. 

112. S. Arndt, Wombat State Forest OzFlux-tower site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2013); http://hdl.handle.net/102.100.100/14237. 

113. J. Beringer Yanco JAXA OzFlux tower site OzFlux, Australian and New Zealand Flux 

Research and Monitoring (2013); http://hdl.handle.net/102.100.100/14235. 

114. D. W. Griffith, N. M. Deutscher, V. A. Velazco, P. O. Wennberg, Y. Yavin, G. Keppel-Aleks, 

R. A. Washenfelder, G. C. Toon, J.-F. Blavier, C. Paton-Walsh, N. B. Jones, G. C. Kettlewell, 

B. J. Connor, R. C. Macatangay, C. Roehl, M. Ryczek, J. Glowacki, T. Culgan, G. W. Bryant, 

TCCON data from Darwin (AU), Release GGG2014.R0, CaltechDATA (2014); 

https://doi.org/10.14291/tccon.ggg2014.darwin01.R0/1149290. 

115. Griffith, D. W. T., Velazco, V. A., Deutscher, N. M., Paton-Walsh, C., Jones, N. B., Wilson, 

S. R., Macatangay, R. C., Kettlewell, G. C., Buchholz, R. R., & Riggenbach, M. O., TCCON 

data from Wollongong (AU), Release GGG2014.R0, CaltechDATA (2014); 

https://doi.org/10.14291/tccon.ggg2014.wollongong01.R0/1149291.  

116. F. Di Giuseppe, S. Rémy, F. Pappenberger, F. Wetterhall, Combining fire radiative power 

observations with the fire weather index improves the estimation of fire emissions (2017). 

117. C. Wiedinmyer, S. K. Akagi, R. J. Yokelson, L. K. Emmons, J. A. Al-Saadi, J. J. Orlando, A. 

J. Soja, The Fire INventory from NCAR (FINN) – a high resolution global model to estimate 

the emissions from open burning. Geosci. Model Dev. 4, 625–641 (2011), doi:10.5194/gmdd-

3-2439-2010. 

118. D. S. Goll, E. Joetzjer, M. Huang, P. Ciais, Low Phosphorus Availability Decreases 

Susceptibility of Tropical Primary Productivity to Droughts. Geophys. Res. Lett. 45, 8231–

8240 (2018), doi:10.1029/2018GL077736. 

119. G. Krinner, N. Viovy, N. de Noblet-Ducoudré, J. Ogée, J. Polcher, P. Friedlingstein, P. Ciais, 

S. Sitch, I. C. Prentice, A dynamic global vegetation model for studies of the coupled 

atmosphere-biosphere system. Global Biogeochem. Cycles. 19 (2005), 

doi:10.1029/2003GB002199. 

70



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for 

redistribution. The definitive version was published in Science 379, (2023-03-31), doi: 10.1126/science.add7833. 

 

 

120. N. Vuichard, P. Messina, S. Luyssaert, B. Guenet, S. Zaehle, J. Ghattas, V. Bastrikov, P. 

Peylin, Accounting for carbon and nitrogen interactions in the global terrestrial ecosystem 

model ORCHIDEE (trunk version, rev 4999): multi-scale evaluation of gross primary 

production. Geosci. Model Dev. 12, 4751–4779 (2019), doi:10.5194/gmd-12-4751-2019. 

121. V. Haverd, B. Smith, L. Nieradzik, P. R. Briggs, W. Woodgate, C. M. Trudinger, J. G. 

Canadell, M. Cuntz, A new version of the CABLE land surface model (Subversion revision 

r4601) incorporating land use and land cover change, woody vegetation demography, and a 

novel optimisation-based approach to plant coordination of photosynthesis. Geosci. Model 

Dev. 11, 2995–3026 (2018), doi:10.5194/gmd-11-2995-2018. 

122. D. M. Lawrence, R. A. Fisher, C. D. Koven, K. W. Oleson, S. C. Swenson, G. Bonan, N. 

Collier, B. Ghimire, L. Kampenhout, D. Kennedy, E. Kluzek, P. J. Lawrence, F. Li, H. Li, D. 

Lombardozzi, W. J. Riley, W. J. Sacks, M. Shi, M. Vertenstein, W. R. Wieder, C. Xu, A. A. 

Ali, A. M. Badger, G. Bisht, M. Broeke, M. A. Brunke, S. P. Burns, J. Buzan, M. Clark, A. 

Craig, K. Dahlin, B. Drewniak, J. B. Fisher, M. Flanner, A. M. Fox, P. Gentine, F. Hoffman, 

G. Keppel‐Aleks, R. Knox, S. Kumar, J. Lenaerts, L. R. Leung, W. H. Lipscomb, Y. Lu, A. 

Pandey, J. D. Pelletier, J. Perket, J. T. Randerson, D. M. Ricciuto, B. M. Sanderson, A. Slater, 

Z. M. Subin, J. Tang, R. Q. Thomas, M. Val Martin, X. Zeng, The Community Land Model 

Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. 

J. Adv. Model. Earth Syst. 11, 4245–4287 (2019), doi:10.1029/2018MS001583. 

123. H. Tian, G. Chen, C. Lu, X. Xu, D. J. Hayes, W. Ren, S. Pan, D. N. Huntzinger, S. C. Wofsy, 

North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full 

accounting of the greenhouse gas budget. Climatic change. 129, 413–426 (2015), 

doi:10.1007/s10584-014-1072-9. 

124. W. Yuan, D. Liu, W. Dong, S. Liu, G. Zhou, G. Yu, T. Zhao, J. Feng, Z. Ma, J. Chen, Y. 

Chen, S. Chen, S. Han, J. Huang, L. Li, H. Liu, S. Liu, M. Ma, Y. Wang, J. Xia, W. Xu, Q. 

Zhang, X. Zhao, L. Zhao, Multiyear precipitation reduction strongly decreases carbon uptake 

over northern China. J. Geophys. Res. Biogeosci. 119, 881–896 (2014), 

doi:10.1002/2014JG002608. 

125. P. Meiyappan, A. K. Jain, J. I. House, Increased influence of nitrogen limitation on CO2 

emissions from future land use and land use change. Global Biogeochem. Cycles. 29, 1524–

1548 (2015), doi:10.1002/2015GB005086. 

126. C. Delire, R. Séférian, B. Decharme, R. Alkama, J.-C. Calvet, D. Carrer, A.-L. Gibelin, E. 

Joetzjer, X. Morel, M. Rocher, D. Tzanos, The Global Land Carbon Cycle Simulated With 

ISBA‐CTRIP: Improvements Over the Last Decade. J. Adv. Model. Earth Syst. 12 (2020), 

doi:10.1029/2019MS001886. 

127. A. A. Sellar, C. G. Jones, J. P. Mulcahy, Y. Tang, A. Yool, A. Wiltshire, F. M. O’connor, M. 

Stringer, R. Hill, J. Palmieri, others, UKESM1: Description and evaluation of the UK Earth 

System Model. J. Adv. Model. Earth Syst. 11, 4513–4558 (2019). 

128. S. Lienert, F. Joos, A Bayesian ensemble data assimilation to constrain model parameters and 

land-use carbon emissions. Biogeosciences. 15, 2909–2930 (2018), doi:10.5194/bg-15-2909-

2018. 

71



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for 

redistribution. The definitive version was published in Science 379, (2023-03-31), doi: 10.1126/science.add7833. 

 

 

129. A. P. Walker, T. Quaife, P. M. van Bodegom, M. G. de Kauwe, T. F. Keenan, J. Joiner, M. 

R. Lomas, N. MacBean, C. Xu, X. Yang, F. I. Woodward, The impact of alternative trait-

scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global 

gross primary production. The New phytologist. 215, 1370–1386 (2017), 

doi:10.1111/nph.14623. 

130. E. Kato, T. Kinoshita, A. Ito, M. Kawamiya, Y. Yamagata, Evaluation of spatially explicit 

emission scenario of land-use change and biomass burning using a process-based 

biogeochemical model. Journal of Land Use Science. 8, 104–122 (2013), 

doi:10.1080/1747423x.2011.628705. 

 

Acknowledgments: We thank the Japanese Aerospace Exploration Agency, National Institute for 

Environmental Studies and the Ministry of Environment for the GOSAT data and their continuous 

support as part of the Joint Research Agreement. OCO-2 data were produced by the OCO-2 project 

at the Jet Propulsion Laboratory, California Institute of Technology, and obtained from the OCO-

2 data archive maintained at the NASA Goddard Earth Science Data and Information Services 

Center. CarbonTracker CT2019B results are provided by NOAA ESRL, Boulder, Colorado, USA 

from the website at http://carbontracker.noaa.gov. We thank all TRENDY modelers for providing 

model output as part of the TRENDY v9 ensemble. The study has greatly benefited from 

discussions with Christian Frankenberg. 

 

 

Author contributions:   

AB, SNV, and EMM were involved in conceptualization and methodology. EMM 

conducted the formal analysis and the visualization under supervision of AB and SNV. 

AB, SNV, EMM, MJ, and SB wrote the original draft. SB performed the dedicated TM5-

4DVar runs. SS, VKA, PRB, PF, DSG, AKJ, EK, JEMSN, BP, RS, HT, AW, WY, XY, 

SZ provided TRENDY data. NMD and DWTG provided TCCON data. All authors 

contributed to the editing and review of the manuscript. 

Competing interests: Authors declare that they have no competing interests. 

Data and materials availability: GOSAT/RemoTeC2.4.0 XCO2 data can be obtained from 

doi: 10.5281/zenodo.5886662 (last access: 2022-02-25). GOSAT/ACOS data is available at 

https://oco2.gesdisc.eosdis.nasa.gov/data/GOSAT_TANSO_Level2/ACOS_L2_Lite_FP.9r/ 

(last access: 2020-07-28).  OCO-2 data is available at 

https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_10r/summary (last access: 2020-11-

01). TCCON data can be downloaded at https://data.caltech.edu/records/269 (last access: 

2022-02-25). CarbonTracker CT2019B CO2 fluxes and concentrations can be downloaded 

from https://gml.noaa.gov/aftp/products/carbontracker/co2/CT2019B/fluxes/monthly/ (last 

access: 2021-02-19) and 

https://gml.noaa.gov/aftp/products/carbontracker/co2/CT2019B/molefractions/co2_total_mo

nthly/ (last access: 2022-02.25) respectively. CAMS concentrations and fluxes can be found at 

datasets/data/cams-ghg-inversions/ (last access: 2021-10-07). GFAS emissions records are 

available at https://apps.ecmwf.int/datasets/data/cams-gfas/ (last access: 2020-11-13). CAMS 

and GFAS data were generated using Copernicus Atmosphere Service Information [2021] and 

72



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for 

redistribution. The definitive version was published in Science 379, (2023-03-31), doi: 10.1126/science.add7833. 

 

 

neither the European Commission nor ECMWF is responsible for any use that may be made 

of the information it contains. GFED fire emissions are available at 

https://www.geo.vu.nl/~gwerf/GFED/GFED4/ (last access: 2020-07-10). FINN data were 

retrieved from the American National Center for Atmospheric Research 

https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar (last access: 2020-11-18). 

The used OzFlux data can be downloaded from https://www.ozflux.org.au/ (last access: 2021-

11-16). ERA5-land data records contain modified Copernicus Atmosphere Service 

Information [2021] available at the Climate Data Store 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means (last 

access: 2021-12-20). This work used eddy covariance data collected by the TERN-OzFlux 

facility. OzFlux would like to acknowledge the financial support of the Australian Federal 

Government via the National Collaborative Research Infrastructure Scheme and the Education 

Investment Fund. OzFlux data is available at https://data.ozflux.org.au (last access: 2023-01-

20). TRENDYv9 model output and FLUXCOM products are available at 

https://sites.exeter.ac.uk/trendy and http://fluxcom.org/CF-Download/, respectively. Datafiles 

S1, S2, and S3 in the supplement contain monthly TRENDY and FLUXCOM data as used 

here. Monthly TM5-4DVar data are available in datafile S1 and S4. 

The code used in this study is available at github. 

Supplementary Materials: 

Materials and Methods 

Figs. S1 to S12 

Tables S1 to S2 

References (50-130) 

Data S1 to S4 
  

73



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for 

redistribution. The definitive version was published in Science 379, (2023-03-31), doi: 10.1126/science.add7833. 

 

 

Materials and Methods 

Summary of observation and model data 

The main characteristics of the observation and model data are listed in Table S1. 

 

TRANSCOM region Australia 

Our region of interest is ’Australia’ as defined by the TRANSCOM-3 experiment (50) 

including the Australian continent and New Zealand. For the main analysis, concentration and flux 

data are averaged and aggregated, respectively, over a month or a year for the entire region. 

Satellite concentrations are only reported if averaging includes more than 10 data points. To avoid 

sampling effects on the coastline, all flux datasets are aggregated on a 1°×1° grid before applying 

the TRANSCOM region mask to aggregate over the entire region and one month. Grid cells with 

their centers inside the Australian region are counted to belong to the region. The only exceptions 

are the TM5-4DVAR fluxes, as they are already provided as monthly regional fluxes. 

 

CO2 concentrations 

We primarily use GOSAT column-average dry-air mole fractions of CO2 (Fig. 1), also denoted 

XCO2, generated by operating the RemoTeC radiative transfer and retrieval algorithm (8, 35) on 

shortwave-infrared spectra of sunlight backscattered to GOSAT by the Earth’s surface and 

atmosphere (called GOSAT/RemoTeC). The algorithm version employed here corresponds to the 

one used previously (8) with updates related to the quality filtering and to ancillary input data, in 

particular updated a priori gas concentrations. Furthermore, we also use GOSAT CO2 records 

generated by the NASA Atmospheric CO2 Observations from Space (ACOS) algorithm version 

9r(Lite) (51) (called GOSAT/ACOS). Fig. S4 illustrates the measurement count over Australia for 

dry and rainy seasons.  

To confirm robustness of the satellite data, we compare GOSAT CO2 against records of the 

Orbiting Carbon Observatory-2 version 10 (OCO-2) (52) covering the time period 2014 to 2018 

(Table S1 and Fig. 1). We further compare the satellite data to ground-based measurements of the 

column-average dry-air mole fractions reported by the Total Carbon Column Observing Network 

(TCCON) (39). Thereby, data of the two Australian stations Darwin and Wollongong are used 

(Table S1 and Fig. S2). Both stations are located near the coastline and neither are in the semi-arid 

regions (see Fig. S3). Therefore, the comparison to the continental GOSAT data suffers from 

limited representativeness. 

Simulated CO2 concentrations (Fig. 1) are taken from three inverse atmospheric transport 

models (Table S1) that estimate surface-atmosphere fluxes which are optimally compatible with 

atmospheric concentration measurements and prior flux knowledge: TM5 four-dimensional 

variational inversion system (TM5-4DVAR) (42), CarbonTracker (CT2019B) (40, 53), and the 

Copernicus Atmosphere Monitoring Service (CAMS) (41, 54, 55). Given the optimized fluxes, the 

transport model is run forward to produce simulated concentration fields. All three models 

assimilate ground-based in-situ CO2 concentration measurements collected from the global 

monitoring networks (56). We use TM5-4DVAR for further analysis to assimilate the 

GOSAT/RemoTeC and GOSAT/ACOS data together with the in-situ observations. 

For illustrating the seasonal concentration dynamics in Fig. 1, we remove the secular increase 

of CO2 concentrations in the atmosphere by detrending the concentration data, i.e. we subtract the 

global atmospheric background assuming a piece-wise yearly linear increase according to the 

annual mean carbon dioxide growth rates (GR) reported by the National Oceanic and Atmospheric 

Administration (NOAA) based on globally averaged marine surface data (57). Thus, the 

background concentration for month m ([1,...,12]) and year y ([2009,...,2018]) reads: 

74



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for 

redistribution. The definitive version was published in Science 379, (2023-03-31), doi: 10.1126/science.add7833. 

 

 







1

2009,
12

)(
y

i yimy GR
m

GRBGBG       (1) 

where BG is an overall offset determined by setting the mean of the detrended CO2 concentrations 

to zero, the second term accumulates the growth since the start of the time series in the year 2009 

until the start of year y, and the third term accounts for the fractional increase during the respective 

year y. We subtract the background individually for all CO2 concentration data sets (satellite as 

well as simulation data). Note that detrending is only applied to concentration data used in Fig. 1 

for illustration purposes, the inverse models assimilate whole CO2 concentrations. 

 

CO2 top-down fluxes 

The three inverse atmospheric models TM5-4DVAR, CarbonTracker, and CAMS, that provide 

simulated CO2 concentration fields, also provide estimates of the surface-atmosphere fluxes 

compatible with ground-based in-situ CO2 measurements (Fig. 2A). For further analysis, we use 

TM5-4DVAR to assimilate the GOSAT CO2 data together with the ground-based in-situ 

observations (Fig. 2A and 2B). Fig. S5 compares the TM5-4DVAR flux estimates for the in-situ 

and GOSAT-based inversions to the a priori fluxes. The in-situ based fluxes show only small 

departures from the prior while the GOSAT-based inversion deviates substantially which hints at 

the additional information content unlocked by the satellite data. Furthermore, for the period 2014-

2018, we examine carbon flux estimates from the OCO-2 Model Intercomparison Project (MIP) 

(58-60), that assimilate OCO-2 satellite data together with ground-based in-situ data (Fig. S7). 

Depending on whether GOSAT/RemoTeC, GOSAT/ACOS, or OCO-2 MIP data are used, we 

denote the respective flux estimates in the Extended Materials with InverseModel+GOSAT/RemoTeC/, 

InverseModel+GOSAT/ACOS,and InverseModel+OCO-2. The models provide output in terms of the net 

CO2 fluxes partitioned into biosphere, oceanic, fire, and fossil fluxes. TM5-4DVAR is configured 

to estimate weekly biosphere and oceanic fluxes on a regular 3°(longitude) × 2°(latitude) grid 

while fire and fossil emissions are imposed from the Quick Fire Emissions Dataset (QFED (61)) 

and the Open-source Data Inventory for Anthropogenic CO2 (ODIAC (62, 63)), respectively. The 

construction of the prior oceanic, fire and biosphere fluxes are detailed elsewhere (64). We average 

the oceanic, biospheric and fire fluxes between 2000 and 2019 to create 20-year climatological 

land and ocean sinks. We then apply year-specific scaling on these sinks to match the observed 

annual atmospheric CO2 growth given year-specific fossil CO2 emissions. The prior fluxes thus 

constructed follow the atmospheric growth of CO2 over two decades.   

For all inversions, NBP is calculated as the sum of a posteriori biosphere fluxes and fire 

emissions. Positive fluxes correspond to carbon emissions into the atmosphere, negative fluxes 

indicate carbon uptake by the ecosystems. While all TM5-4DVAR data is already provided on the 

scale of TRANSCOM regions, CAMS and CarbonTracker fluxes are aggregated on a 1°x1° grid 

before applying the TRANSCOM region mask. 

 

CO2 bottom-up fluxes 

FLUXCOM provides estimates of global bottom-up net ecosystem exchange (NEE) based on 

upscaling of local flux measurements. To this end, a machine learning approach uses the eddy 

covariance measurements by the FLUXNET tower network together with meteorological and 

satellite remote sensing data to deliver NEE globally at fine spatial resolution (18, 20). The 

FLUXCOM version, used here, only includes four stations of the Australian OzFlux network (Fig. 

S3). To calculate FLUXCOM compatible NBP (Fig. 2A), we take the sum of the remote sensing 

FLUXCOM ensemble and fire emissions from the Global Fire Emission Database (GFED) v4.1s 

(65). Fluxes due to land-use change are neglected. 
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The TRENDY model inter-comparison project collects various DGVMs and contributes to the 

Global Carbon Project (1). Here, we use 18 TRENDY version 9 models listed in Table S1. NBP, 

GPP and TER provided by the TRENDY DGVMs are aggregated on a 1°x1° grid before applying 

the TRANSCOM region mask. As the land-ocean masks among the TRENDY models differ, the 

continental NBP is taken as mean flux in units µgCO2m
−2s−1, then multiplied by the Australian 

region area to obtain total fluxes and converted to TgC/month. Most of the models provide NBP 

directly. For the models CABLE-POP and DLEM, not providing net fluxes, NBP is constructed 

from only GPP and TER, as both models do not provide FIRE fluxes. The subset of models 

showing the end-of-dry-season CO2 pulses is termed TRENDYselection. The other subset of 

TRENDY models not showing the pulses are called TRENDYothers (Fig. 2B, Fig. 3, Fig. S9, Fig. 

S10, and Table S1). 

Figure 3C shows the timing of bottom-up NBP for correlations with monthly mean 

precipitation. The latter is taken from the European Centre for Medium Range Weather Forecasts 

(ECMWF) ERA5-land data product (66, 67). We average the ERA-5 data over entire Australia 

and the semi-arid parts (see Fig. S3) defined as all the 1°x1° grid cells with less than 22 mm of 

monthly mean precipitation during four consecutive months in the ten-year averaged annual cycle.  

 

Characteristics of  TRENDYselection 

The model subset TRENDYselection  consists of the five models JSBACH (68), CLASSIC (69), LPJ 

(70), YiBs (71), and OCN (72). They show characteristics that lead to a temporal shift, a dephasing, 

between the increase of respiration and GPP at the end of the dry season in semi-arid ecosystems. 

In all five models, GPP is either constrained by a drought dependent phenology for semi-arid plants 

(grass and shrublands) or dependent on a certain amount of moisture in the soil column. Except 

for YiBs, soil-respiration (heterotrophic respiration) is (co-)driven by soil moisture or 

precipitation. Large sensitivity of soil-respiration to upper soil moisture or precipitation causes 

respiration to increase early after a precipitation event. The GPP increase, however, is delayed 

because soil moisture needs to accumulate or, GPP is purely phenology driven.  

 JSBACH uses the soil carbon module YASSO, which drives soil-respiration by (15-days mean) 

precipitation. JSBACH has primarily C4 grasses and raingreen shrubs in Australia. GPP for both 

plant types in JSBACH depends on a soil moisture driven phenology. Thereby, sufficient soil 

moisture needs to be available in the upper soil layer (grasses) or the deeper root zone (shrubs) for 

the plants to grow. The need for soil moisture to accumulate leads to a delayed start of the growing 

season after the initial rainfalls, especially for raingreen shrubs. At the beginning of the growing 

season, plant respiration (autotrophic respiration) is implemented to exceed GPP (68). 

In CLASSIC respiration as well as GPP are driven by soil moisture. Soil-respiration is 

constrained at both high and low moistures values in the soil. Thereby, the soil-respiration is 

separated into litter respiration driven by surface near soil moisture and soil carbon respiration 

driven by deeper soil moisture. The soil moisture controls of GPP are determined by soil moisture 

in the rooting zone. Hence, litter respiration starts immediately after precipitation events whereas 

soil moisture needs to accumulated and infiltrate the soils before GPP can start to increase (69,73). 

LPJ assumes deciduous and evergreen plants in Australia. While GPP of some plant types is 

soil moisture driven, other plant types (deciduous plants) are driven by first January growing 

degree days. Soil respiration is limited by temperature and soil moisture. This may lead to lags 

between GPP and soil respiration (70). 

YiBs includes a drought-dependent phenology for semi-arid plants, such as shrubland and 

grassland. Thereby, shrubland GPP in regions with mean soil temperatures greater than 12°C is 
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driven by soil moisture in the whole soil column. Grassland GPP is additionally affected by 

temperature. The respiration in YiBs is mainly driven by temperature (71). 

In OCN, GPP for grasses and raingreen plant functional types is dependent on the exceedance 

of a soil moisture threshold. Furthermore, for a substantial increase of GPP a sufficiently high 

leave area index (LAI) needs to develop, which is in turn driven by the daily available carbon. 

Both, the need of soil moisture to accumulate after the start of the rainy season and the necessary 

allocation of available carbon from below ground, leads to a time delay of the increase in GPP 

after the start of the rainy season.  At the same time GPP starts to increase, plant respiration 

becomes activated, leading to an early season phase in which plant respiration exceeds GPP. Soil-

respiration is driven by soil moisture in the whole soil column and in the upper soil layers. Due to 

the sensitivity to the upper soil layer moisture, soil-respiration can increase rapidly after a 

precipitation event (72). 

 

Local OzFlux stations 

In our analyses, we consider the following stations from the OzFlux network: Adelaide River (AU-

Ade, 74), Alice Springs Mulga (AU-ASM, 75), Arcturus Emerald (76), Ashley Dene dry (NZ-

And, 77), Ashley Dene wet (NZ-Adw, 77), Beacon Farm (NZ-BFm, 78), Boyagin (AU-Boy, 79), 

Calperum Chowilla (AU-Cpr, 80), Cape Tribulation (AU-Ctr, 81), Collie (AU-Col, 82), Cow Bay 

(AU-Cow, 83), Cumberland Plain  Maleleuca (84), Cumberland Plain (AU-Cum, 85), Daly Pasture 

(AU-DaP, 86), Daly Regrowth (87), Daly Uncleared (AU-DaS, 88), Dargo High Plains (AU-Drg, 

89), Digby Plantation (90), Dry River (AU-Dry, 91), Gatum Pasture (92), Gingin (AU-Gin, 93), 

Great Western Woodlands (AU-GWW, 94), Howard Springs (AU-How, 95), Howard Springs 

Understory (96), Lichtfield (AU-Lit, 97), Longreach Mitchell Grass Rangelands (98), Nimmo 

High Plains (AU-Nim, 99), Otway (AU-Otw, 100), Red Dirt Melon Farm (101), Ridgefield (AU-

Rgf, 102), Riggs Creek (AU-Rig, 103), Robson Creek (AU-Rob, 104), Samford Ecological 

Research Facility (AU-Sam, 105), Sturt Plains (AU-Stp, 106), Ti Tree East (AU-TTE, 107), 

Tumbarumba (AU-Tum, 108), Wallaby Creek (AU-Wac, 109), Warra (AU-Wrr, 110), Whroo 

(AU-Whr, 111), Wombat State Forest (AU-Wom, 112), Yanco  JAXA (AU-Ync, 113). 

We use the surface upward mole flux of carbon dioxide (‘Fc’/’Fco2’), rainfall amount 

(‘Precipitation’), and soil moisture content (‘SWS’) of the OzFlux L3 data and calculate daily 

aggregates. Only stations providing data for these three parameters were taken into account. To 

detect CO2 emission pulses due to precipitation rewetting dry soils (‘Birch effects’), we run filter 

statistics over the entire dataset. We identify local pulse events by 1) substantial precipitation (> 5 

mm/d), 2) low soil moisture the day before precipitation (SWS in the lower 10% of the individual 

stations SWS range and SWS <7%), 3) and an increase in net CO2 flux compared to the previous 

seven days. If the three filter criteria are met, we count a local Birch event for the respective station 

(red dots for the examples in Fig. S11). Then, for each month, we count the stations, which show 

at least one precipitation driven respiration pulse. This number is shown in Fig. S12 together with 

how many stations were active per month in total. 
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Fig. S1. Detrended CO2 concentrations above Australia from GOSAT, OCO-2 and inverse 

models. Detrended monthly mean column-average dry-air mole fractions of CO2 measured by 

GOSAT (red), OCO-2 (black, from 2014) and simulated by in-situ-driven inverse models (blue) 

averaged over continental Australia. Red shading indicates the range of the GOSAT/RemoTeC 

and GOSAT/ACOS algorithms. Blue shading indicates the range of the CarbonTracker, CAMS, 

and TM5-4DVAR inverse models. 
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Fig. S2. Detrended CO2 concentrations above Australia from satellite and TCCON stations. 

Detrended monthly mean column-average dry-air mole fractions of CO2 measured by GOSAT 

(red) averaged over continental Australia and for individual TCCON stations (Darwin (114) in 

grey, Wollongong (115) in black). Red shading indicates the range of the GOSAT/RemoTeC and 

GOSAT/ACOS algorithms. 
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Fig. S3. TRANSCOM region and CO2 measurement stations. The Australian regions of the 

TRANSCOM-3 intercomparison project is depicted in dark grey. The TRANSCOM region 

Australia includes Australia and New-Zealand and is divided in a semi-arid (blue) and not semi-

arid part (black borders) on a 1°x1° grid. The CO2 concentration measurement stations included in 

ObsPack (56) are shown in purple (crosses for surface and tower measurements, dot for Pacific 

Ocean Cruise (POC) measurements). These measurements are used by the inverse models. The 

eddy covariance flux measurement towers within FLUXNET and used by FLUXCOM are given 

as red crosses. The three OzFlux towers used in Fig. S11 are given as red dots with labels. The 

two TCCON stations are marked as yellow triangles with labels. 
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Fig. S4. Number and distribution of GOSAT CO2 concentration data above Australia. (A) 

and (C) Total number of GOSAT/RemoTeC and (B) and (D) GOSAT/ACOS data from 2009 to 

2018 per 3°x2° grid cell for (A) and (B) the dry months (April – September) and (C) and (D) the 

rainy season (October – March). The spatial data pattern results from the stripe-like GOSAT 

sampling procedure. The maximum number of measurements per 1°x1° grid cell is 1022 (A), 1843 

(B), 536 (C), and 1028 (D). The radiative transfer treatment in RemoTeC requires stricter filtering 

of the GOSAT data and causes a reduced number of measurements in GOSAT/RemoTeC 

compared to GOSAT/ACOS. 
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Fig. S5. Australian net CO2 fluxes from TM5-4DVAR comparing in-situ based and GOSAT 

inversions with the a priori data. Like Fig. 2A, but highlighting the comparison to a priori fluxes. 

Top-down estimates of the net monthly Australian carbon fluxes inferred by TM5-4DVAR 

assimilating in-situ CO2 measurements alone (blue) and together with GOSAT observations (red) 

compared to the prior fluxes used by TM5-4DVAR (black, dotted). Shading indicates the range 

among GOSAT/RemoTeC and GOSAT/ACOS.  
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Fig. S6. Australian annual and monthly net CO2 fluxes. Like Fig. 2A, but highlighting annual 

fluxes (July to June). Top-down estimates of the net Australian carbon fluxes inferred by inverse 

models assimilating in-situ CO2 measurements alone (blue), and inferred by TM5-4DVAR 

assimilating in-situ CO2 together with GOSAT observations (red).  Monthly CO2 fluxes (lines) 

refer to the left-hand ordinate (TgC/month), annual CO2 fluxes (bars) refer to the right-hand 

ordinate (units TgC/year).   For the monthly fluxes, shading indicates the range among the various 

top-down data streams. For the annual fluxes (sum of monthly fluxes between July and June), the 

range among the data streams is indicated by the error bars. 
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Fig. S7. Australian net CO2 fluxes including estimates from the OCO-2 Model 

Intercomparison Project (MIP). Like Fig. 2A, but additionally with OCO-2 based fluxes for the 

period 2015-2018. Top-down estimates of the net monthly Australian carbon fluxes inferred by 

inverse models assimilating in-situ CO2 measurements alone (blue), and inferred by TM5-4DVAR 

assimilating in-situ CO2 together with GOSAT observations (red), compared to the ensemble-

mean fluxes of the OCO-2 Model Intercomparison Project (MIP, black), bottom-up 

FLUXCOM+GFED NBP (yellow) and the TRENDY ensemble mean NBP (grey). Shading 

indicates the range among the various top-down data streams (blue, red) and the standard deviation 

among the TRENDY and MIP ensemble (light grey and dark grey). 
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Fig. S8. CO2 fire emissions in Australia. The monthly CO2 fire emissions collected by three fire 

emission databases (GFED in orange, Global Fire Assimilation System (GFAS (116)) in red and 

the Fire INventory from NCAR (FINN (117)) in purple). The FINN fire emissions are additionally 

given amplified by a factor of ten to visualize their seasonal structure. 
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Fig. S9. Seasonal timing of gross carbon fluxes among the selected TRENDY models. (A), 

Gross primary production (GPP, green) and total respiration (violet) for the semi-arid parts of 

Australia (see map Fig. S3) for the selection of TRENDY DGVMs that replicate the end-of-dry-

season CO2 pulses. NBP is shown in black in the lower part (grey shading indicates the standard 

deviation among the model subset). (B), Same as panel (A) but for the parts of Australia which are 

not semi-arid. 
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Fig. S10. Seasonal cycle of semi-arid carbon fluxes among the TRENDY models. (A) Gross 

primary production (GPP, green), plant respiration (blue), soil-respiration (brown) and total 

respiration (black dotted) for the semi-arid parts of Australia (see map Fig. S3) among the 5 

selected TRENDY models that show end-of-dry-season CO2 pulses. (B) Same as (A) but for the 

13 TRENDY models that do not show the CO2 pulses. The monthly fluxes are averaged over the 

period 2009 to 2018 and over the respective TRENDY subsets. The shadings indicate the standard 

deviations among the models (transparent) and among the period 2009 to 2018 (stripes pattern). 
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Fig. S11. Local data from OzFlux eddy covariance flux towers. (A)-(C) Daily mean net carbon 

fluxes (green), precipitation (blue) and soil moisture (red dashed) measured by OzFlux stations for 

periods illustrating local correlations between moisture supply and CO2 fluxes. Red dots mark 

precipitation events which correlate with rewetting of previously dry soil and a subsequent CO2 

emission pulse (see Fig. S11 for the statistics among all OzFlux stations) (A) Station record Daly 

Uncleared (88). (B) Station record Dry River (91). (C) Station record Alice Springs Mulga (75) 

(ASM). The locations of the stations are given in Fig. S3. 
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Fig. S12. Occurrence of local CO2 pulses correlated with rewetting. Monthly count of OzFlux 

stations measuring at least one CO2 emission pulse correlated with rewetting of dry soil (blue). 

Black and grey bars count the number of stations measuring at least for half of the month and the 

number of stations measuring without interruption in that month, respectively. 
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Table S1. Summary of datasets. 

Description Dataset Resolution References 

GOSAT XCO2 GOSAT/RemoTeC v2.4.0 10.5 km footprint (35) 
  GOSAT/ACOS v9r(Lite) 10.5 km footprint (36, 51) 

Validation XCO2 OCO-2 v10r 1.3×2.3 km footprint (36, 52) 
  TCCON Darwin, Wollongong local (39, 114, 115) 

Model XCO2 TM5 − 4DVARin−situ regional, monthly (42) 
based on in-situ data CarbonTracker CT2019Bin−situ 3°×2°, monthly (40, 53) 

  CAMSin−situ v20r2 3.7°×1.81°, monthly (41, 54, 55) 

Inverse Modelin−situ TM5 − 4DVARin−situ regional, monthly (42) 
  CarbonTracker CT2019Bin−situ 1°×1°, monthly (40, 53) 

  CAMSin−situ v20r2 3.7°×1.81°, monthly (41, 54, 55) 

Inverse Model+GOSAT TM5-4DVAR/RemoTeC regional, monthly (42) 
  TM5-4DVAR/ACOS regional, monthly (42) 

FLUXCOM FLUXCOM NEE 0.08°×0.08°, 8-days (18, 20) 
+ GFED GFED v4.1s 0.25°×0.25°, monthly (65) 

TRENDYselection JSBACH S3 1.86°x1.88° 1) (68) 
  CLASSIC S3 2.80°x2.81° 1) (69) 

  LPJ S3 0.5°x0.5° 1) (70) 

  YIBs S3 1°x1° 1) (71) 

  OCN S3 1°x1° 1) (72) 

TRENDYothers ORCHIDEE-CNP S3 2°x2° 1) (118) 
  ORCHIDEE S3 0.5°x0.5° 1) 

(119) 
  ORCHIDEEv3 S3 2°x2° 1) 

(120) 
  CABLE-POP S3 1°x1° 1) (121) 

  CLM5.0 S3 0.94°x1.25° 1) (122) 

  DLEM S3 0.5°x0.5° 1) (123) 

  IBIS S3 1°x1° 1) (124) 

  ISAM S3 0.5°x0.5° 1) (125) 

  ISBA-CTRIP S3 1°x1° 1) (126) 

  JULES-ES-1.0 S3 1.25°x1.88° 1) (127) 

  LPX-Bern S3 0.5°x0.5° 1) (128) 

  SDGVM S3 1°x1° 1) (129) 

  VISIT S3 0.5°x0.5° 1) (130) 

precipitation ERA5-land data 1°×1°, monthly (66, 67) 
  total precipitation    

1) all TRENDY model data is provided in monthly temporal resolution 

The main characteristics and references of the observation and model data are listed. Links to the 

data-sets are provided in the ’Availability of data and materials’ section. 
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Table S2. Seasonal and interannual variability of CO2 flux datasets. 
Ensembles Mean Amplitude 

[TgC/month] 
Relative Amplitude Standard Deviation 

[TgC/month] 
IAV [TgC/a] 

Inv. Model+GOSAT 174.53 1 40 207 

Inv. Modelin-situ  87.64 0.50 13 39 

TRENDYall 85.40 0.49 20 210 
TRENDYselection 122.95 0.70 31 236 
TRENDYothers 104.83 0.60 27 201 

FLUXCOM+GFED 64.09 0.37 16 157 
GFED 21.82 0.13 10  

July-to-June peak-to-peak amplitude of NBP (mean in TgC/month, relative w.r.t. the GOSAT 

inversions, standard deviation in TgC/month over the 2009 to 2018 period) and NBP interannual 

variations (IAV) (standard deviation in TgC/a over the 2010 to 2018 period) for the datasets used. 
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Abstract. The interannual variability in the global carbon
sink is heavily influenced by semiarid regions. Southern
hemispheric Africa has large semiarid and arid regions. How-
ever, there is only a sparse coverage of in situ CO2 mea-
surements in the Southern Hemisphere. This leads to un-
certainties in measurement-based carbon flux estimates for
these regions. Furthermore, dynamic global vegetation mod-
els (DGVMs) show large inconsistencies in semiarid re-
gions. Satellite CO2 measurements offer a spatially exten-
sive and independent source of information about the south-
ern African carbon cycle.

We examine Greenhouse Gases Observing Satellite
(GOSAT) CO2 concentration measurements from 2009 to
2018 in southern Africa. We infer CO2 land–atmosphere
fluxes which are consistent with the GOSAT measurements
using the TM5-4DVar atmospheric inversion system. We find
systematic differences between atmospheric inversions per-
formed on satellite observations versus inversions that as-
similate only in situ measurements. This suggests limited
measurement information content in the latter. We use the
GOSAT-based fluxes and solar-induced fluorescence (SIF; a
proxy for photosynthesis) as atmospheric constraints to se-
lect DGVMs of the TRENDYv9 ensemble which show com-
patible fluxes. The selected DGVMs allow for the study of
the vegetation processes driving the southern African carbon
cycle. By doing so, our satellite-based process analyses pin-
point photosynthetic uptake in the southern grasslands to be
the main driver of the interannual variability in the southern

African carbon fluxes, agreeing with former studies based
on vegetation models alone. We find that the seasonal cycle,
however, is substantially influenced by enhanced soil respira-
tion due to soil rewetting at the beginning of the rainy season.
The latter result emphasizes the importance of correctly rep-
resenting the response of semiarid ecosystems to soil rewet-
ting in DGVMs.

1 Introduction

The terrestrial carbon sink currently takes up nearly one-third
of anthropogenic greenhouse gases and thereby mitigates cli-
mate change (Friedlingstein et al., 2023). The amount of
CO2 taken up by global ecosystems varies substantially from
year to year. This interannual variability (IAV) reflects the re-
sponse of ecosystem carbon uptake to varying climate condi-
tions, such as temperature or precipitation fluctuations (Zeng
et al., 2005; Zhang et al., 2018; Piao et al., 2020). Current
vegetation models struggle to accurately reproduce the IAV
of the terrestrial carbon sink, and an imbalance exists be-
tween the modeled and measured total global sink estimates
(Friedlingstein et al., 2023). The imbalance is even stronger
when examining carbon fluxes on smaller spatial scales (Bas-
tos et al., 2020) and implies that there is still an insufficient
understanding of the terrestrial processes driving land carbon
exchange. A better understanding is needed to improve cli-
mate models and climate change predictions (Steiner, 2020).
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Semiarid regions contribute substantially to the IAV in the
global terrestrial carbon sink. In these regions, precipitation
and temperature fluctuations heavily impact the IAV in car-
bon fluxes (Poulter et al., 2014; Ahlström et al., 2015). Africa
has large areas of semiarid and arid ecosystems (Williams
et al., 2007) and contributes substantially to the global IAV
(Williams et al., 2007; Valentini et al., 2014; Pan et al.,
2020). However, in situ CO2 measurements in Africa are
very sparse, leading to large uncertainties in carbon flux es-
timates from atmospheric inversions and machine learning
approaches (Valentini et al., 2014; Ernst et al., 2024). Dy-
namic global vegetation models (DGVMs) also show large
inconsistencies amongst each other and tend to underesti-
mate the interannual CO2 flux variability in semiarid regions
(MacBean et al., 2021).

Satellite CO2 concentration measurements, for example,
from the Greenhouse Gases Observing Satellite (GOSAT)
measuring CO2 concentrations since 2009 or the Orbit-
ing Carbon Observatory-2 (OCO-2) launched in 2014, have
much denser coverage compared with in situ measurements.
Previous studies have found systematic differences between
satellite-based CO2 concentrations and fluxes in southern
Africa and those based on in situ measurements (Mengistu
and Mengistu Tsidu, 2020; Byrne et al., 2023). Byrne et
al. (2023) attribute these differences mainly to the sparse cov-
erage of in situ CO2 measurements. The studies emphasize
the potential of satellite-based atmospheric inversions to pro-
vide additional information and, therefore, more robust esti-
mates of the carbon fluxes in southern Africa, which then en-
able research on processes driving the CO2 exchange. Metz
et al. (2023) demonstrate the potential of combining satellite-
based CO2 flux estimates with DGVMs in Australia to deci-
pher soil respiration processes driving the Australian terres-
trial CO2 exchange at the continental scale.

Here, we investigate the decadal dataset of GOSAT CO2
concentrations over southern Africa from 2009 to 2018. We
run a global inversion with GOSAT and in situ measurements
to infer GOSAT-satellite-based CO2 exchange between the
land and atmosphere and compare the results to those based
on in situ measurements alone, to FLUXCOM products, and
to the TRENDYv9 ensemble of DGVMs. By selecting a sub-
set of DGVMs that match the satellite-based carbon fluxes,
we analyze the underlying processes driving the IAV and sea-
sonal variability in the southern African carbon cycle.

2 Data and methods

2.1 Study region

Our study region spans southern Africa south of 10° S in-
cluding Madagascar (see Fig. 1). This region agrees with
the region selection in Mengistu and Mengistu Tsidu (2020)
and considers the different climatic conditions found on the
African continent. North of the study region, Africa is influ-

enced by the low-pressure system of the Intertropical Con-
vergence Zone, leading to a tropical wet regime. In southern
Africa, high-pressure cells lead to dry conditions and cause
the existence of the Kalahari Desert (Mengistu and Mengistu
Tsidu, 2020). Even though total annual precipitation is de-
creasing southwards, the whole region experiences distinct
wet and dry seasons and is influenced strongly by the IAV
in precipitation (Fan et al., 2015; Valentini et al., 2014). The
study region is mainly covered by (woody) savannas, grass-
land, and shrubland (see Fig. 1).

The vegetation is mostly water limited in its growth
(Williams et al., 2008) and exposed to large seasonal fires.
The fire season starts in May in the western part of south-
ern Africa and spreads eastwards to reach southern hemi-
spheric Africa in September (Edwards et al., 2006). Fires
on the whole African continent are the largest contributor
to global fire carbon emissions, accounting for more than
half of these emissions (van Marle et al., 2017; Shi et al.,
2015; Valentini et al., 2014). They reduce the African car-
bon sink significantly (Lasslop et al., 2020). We subdivide
the study region into a northern, savanna-dominated region
and a southern grassland and shrubland region separated at
17° S, excluding Madagascar.

2.2 Total column CO2 measurements

For our analyses, we use column-averaged dry-air mole frac-
tions of CO2 (XCO2; referred to as CO2 concentrations in
the following) measured by the Greenhouse Gases Observ-
ing Satellite (GOSAT) over land in our study region. GOSAT
was launched in 2009 and has a sub-satellite field of view of
10.5 km radius with a sparse sampling grid. We use GOSAT
CO2 concentration data generated by applying version 2.4.0
of the RemoTeC radiative transfer and retrieval algorithm
(Butz, 2022), as used in Metz et al. (2023). The retrieval ver-
sion covers the period from April 2009 to June 2019 and is
based on the preceding RemoTeCv2.3.8, as used in Detmers
et al. (2015). The major updates between versions 2.3.8 and
2.4.0 are stricter quality filtering in the latter and updated an-
cillary input data, especially for the prior gas concentrations
used. Moreover, GOSAT CO2 concentration data generated
by version 9 of the NASA Atmospheric CO2 Observations
from Space (ACOS) algorithm (Lite), available for the pe-
riod from April 2009 to June 2020, are used (Taylor et al.,
2022). In the following, the datasets are called GOSAT/Re-
moTeC and GOSAT/ACOS (see Table A1 for more infor-
mation about the datasets and the nomenclature used in this
study). GOSAT/ACOS single measurements have a precision
of 1.5 ppm and a mean bias of 0.2 ppm in validation against
TCCON (Taylor et al., 2022). GOSAT/RemoTeC was found
to have a similar precision of 1.9 ppm (Buchwitz et al., 2017)
and, by construction, a mean bias of 0 ppm in comparison to
TCCON after bias correction. GOSAT/RemoTeC was found
to have regional and seasonal systematic errors of 0.6 and
0.5 ppm, respectively (Buchwitz et al., 2017).

Biogeosciences, 22, 555–584, 2025 https://doi.org/10.5194/bg-22-555-2025

96



E.-M. Metz et al.: Seasonal and interannual variability in southern African CO2 fluxes 557

Figure 1. Study region southern Africa. The land cover in the study region is given based on MODIS (MCD12C1) data (Friedl and Sulla-
Menashe, 2022). Additionally, the main region used for the analyses is depicted using a red box. In the inset map on the right-hand side, the
land cover is aggregated into larger land cover classes and on a 1°× 1° spatial resolution, which is used for most of the analyzed data. The
main region, thereby, comprises 547 grid cells. The dashed boxes show the subdivision into a northern and a southern region. Madagascar is
part of the main region, but it is excluded in the subdivision. The pie charts depict the share of the different land cover classes in the main
study region (M), the northern subregion (N), and the southern subregion (S). The locations of the Gobabeb COCCON measurement site
(Frey et al., 2021; Dubravica et al., 2021) and the flux tower in Kruger National Park (Archibald et al., 2009) are given as a red circle and red
diamond, respectively.

For evaluation purposes, land glint and land nadir (LGLN)
XCO2 data (version 11.1r) measured by the Orbiting Car-
bon Observatory-2 (OCO-2) satellite are used (OCO-2/OCO-
3 Science Team et al., 2022; Jacobs et al., 2024). OCO-2
was launched in 2014 and has a sub-satellite field of view
of 1.3 km× 2.3 km. Furthermore, Collaborative Carbon Col-
umn Observing Network (COCCON) XCO2 data from the
Gobabeb station (Namibia; Frey et al., 2021; Dubravica et
al., 2021) are taken for comparison. COCCON stations mea-
sure XCO2 using a sun-viewing ground-based Fourier trans-
form infrared spectrometer (Frey et al., 2019). We use the
full dataset of COCCON measurements (i.e., we do not ap-
ply further filtering or co-sampling to GOSAT), as there are
too few coinciding GOSAT measurements.

To examine the seasonal variability in CO2 concentrations
in the study region, the global background trend is subtracted
from the total CO2 measurements to obtain detrended CO2
concentrations. For this, we assume a yearly linear increase
in the global atmospheric CO2 and use the annual mean
CO2 growth rate (GR) published by the National Oceanic
and Atmospheric Administration (NOAA). The growth rates
are based on globally averaged CO2 concentration measure-
ments of marine surface sites (NOAA, 2024); their calcula-
tion is further described in the main text and in Fig. A3 in
Taylor et al. (2023) and in Pandey et al. (2024). The follow-
ing equation describes the used background trend:

BGy,m = BG0+
∑y−1

i=2009
(GRi)+

m

12
GRy . (1)

Thereby, the increase in the CO2 concentrations in the previ-
ous years from 2009 onwards is described by the second part
in the equation. The increase within the previous months in
the respective year is given by the third part. Both are added
to an overall offset BG0 in 2009. This offset is estimated so

that the mean of the detrended CO2 concentrations over the
whole time period is zero.

2.3 Fluxes

2.3.1 Top-down fluxes

Carbon fluxes can be obtained by assimilating measured
CO2 atmospheric concentrations in an atmospheric inver-
sion. Atmospheric inversions typically build on Bayesian
optimization (i.e., they optimize forward-transported CO2
emissions such that these agree best with the observations
within measurement and model uncertainties, while concur-
rently not deviating from the prior within given prior un-
certainties). For our study, we use three atmospheric inver-
sions based on in situ CO2 measurements: the TM5 four-
dimensional variational inversion system (TM5-4DVar; Basu
et al., 2013), NOAA’s modeling and assimilation system Car-
bonTracker (CT2022; Peters et al., 2007; Jacobson et al.,
2023), and the Copernicus Atmosphere Monitoring Service
(CAMS; Chevallier et al., 2005, 2010, 2019). The models es-
timate global CO2 fluxes based on a set of in situ CO2 mea-
surements from global monitoring networks (Masarie et al.,
2014). The models use different prior datasets. For exam-
ple, for the biogenic CO2 fluxes, TM5-4DVar and Carbon-
Tracker build on different implementations of the Carnegie–
Ames–Stanford approach (Randerson et al., 1996), as fur-
ther described in Metz et al. (2023), Weir et al. (2021), and
Jacobson et al. (2023), while CAMS uses biogenic fluxes
of the ORCHIDEE model (Chevallier et al., 2019). Further-
more, the inversion systems use different transport mod-
els and inversion techniques. While TM5-4DVar and Car-
bonTracker use the TM5 transport model, CAMS uses the
LMDZ global atmospheric transport model. TM5-4DVar and
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CAMS make use of a 4DVar data assimilation, while Car-
bonTracker uses an ensemble Kalman filter. All three mod-
els use ECMWF ERA5 data as meteorological drivers. The
output resolution is monthly at 3°× 2° for TM5-4DVar and
CarbonTracker2022 and monthly at 3.7°× 1.81° for CAMS
(see Table A1 for more details). The ensemble of the three
models is referred to as “in-situ-only” inversions in the fol-
lowing, while TM5-4DVar based on in situ measurements is
called “TM5-4DVar/IS”.

In addition to in situ measurements, satellite CO2 con-
centration measurements can be assimilated by atmospheric
inversions. To this end, we use the TM5-4DVar model and
assimilate GOSAT CO2 concentration measurements over
land and ocean as well as the in situ measurements. We
use the individual total CO2 concentration measurements;
i.e., we do not apply any detrending or spatiotemporal av-
eraging. Detrending and spatiotemporal averaging is only
applied for visualization purposes to show the variability
in the monthly CO2 concentrations (Sect. 3.1). Depend-
ing on the specific GOSAT dataset used, we refer to these
fluxes in the following as “TM5-4DVar/RemoTeC+ IS”,
“TM5-4DVar/ACOS+ IS”, or (when using the mean of both)
“TM5-4DVar/GOSAT+ IS”. More details about the TM5-
4DVar settings can be found in Metz et al. (2023). For com-
parison, we also draw on data of the OCO-2 Model Intercom-
parison Project (MIP; Byrne et al., 2023) for the years from
2015 to 2018. Within the MIP, atmospheric inversions esti-
mate carbon fluxes by assimilating OCO-2 satellite XCO2
observations and in situ data. All MIP inversion models use
the same fossil fuel emission dataset but differ with respect
to the chosen datasets for all other prior fluxes (Byrne et
al., 2023). We specifically make use of the LNLGIS (as-
similation of OCO-2 LNLG observations and in situ mea-
surements) and the IS (assimilation of in situ measurements
only) experiment in the following, referred to as “MIP/OCO-
2+ IS” and “MIP/IS”, respectively. Like Byrne et al. (2023),
we exclude the LoFI MIP model, as it uses a nontradi-
tional inversion scheme differing from the MIP protocol.
MIP/OCO+ IS and MIP/IS provide fluxes with a monthly,
1°× 1° resolution.

All inversions optimize for biogenic and oceanic fluxes
but impose anthropogenic fossil fuel emissions and fire emis-
sions. The sum of (imposed) fire and biogenic fluxes yields
our net biome productivity (NBP) estimates. In this study,
positive fluxes denote a release of CO2 from land into the at-
mosphere. All fluxes are regridded to monthly, 1°× 1° fluxes
before performing the region selection.

By transporting the posterior fluxes after the optimiza-
tion, atmospheric inversions can model posterior concentra-
tion fields, which can be interpolated to the time and location
of the satellite measurements for comparison. This so-called
co-sampling is used to eliminate sampling errors when com-
paring modeled concentrations to satellite measurements. We
use the modeled and co-sampled posterior concentrations of

the in-situ-only inversions introduced at the beginning of this
section.

2.3.2 Bottom-up fluxes

We compare the top-down CO2 fluxes to bottom-up flux
datasets from DGVMs as collected by version 9 of the
“Trends and drivers of the regional-scale terrestrial sources
and sinks of carbon dioxide” (TRENDY; Le Quéré et al.,
2013; Sitch et al., 2020) intercomparison project. The project
was established to support the annual global carbon bud-
get estimation conducted by the Global Carbon Project
(e.g., Friedlingstein et al., 2020). These TRENDY models
give vegetation CO2 fluxes simulated using a harmonized
set of meteorological input data and CO2 concentrations (Le
Quéré et al., 2013; Friedlingstein et al., 2020). We use the
NBP, gross primary productivity (GPP), autotrophic respira-
tion (RA), and heterotrophic respiration (RH) of 18 DGVMs
(see Table A1 in the Appendix). We thereby use the follow-
ing definition:

NBP= NEE+fire+fluc= TER− GPP + fire + fluc

= RH − NPP + fire + fluc, (2)

with the total ecosystem respiration (TER), calculated as
the sum of RA and RH; the fire emissions (fire); the land
use change fluxes (fluc); and the net primary productivity
(NPP), calculated as the GPP minus the RA. Most of the
TRENDY models provide NBP fluxes directly. In the case of
the CABLE-POP and DLEM models, NBP is calculated as
RH minus NPP, as both models do not provide fire and land
use change fluxes. The spatial resolutions of the model out-
put differ (see Table A1). Therefore, we aggregate fluxes on
a monthly, 1°× 1° grid before applying the region selection.

Additionally, we use version 1 (setup RS_V006) of the
FLUXCOM net ecosystem exchange (NEE) product, as de-
scribed in Jung et al. (2020). FLUXCOM uses machine
learning models and meteorological data to upscale eddy-
covariance tower CO2 flux measurements to the global scale
(Tramontana et al., 2016; Jung et al., 2020). To obtain an
NBP estimate, we combine the NEE fluxes with fire CO2
emissions provided by the Global Fire Emissions Database
(GFED; van der Werf et al., 2017). FLUXCOM and GFED
are provided as 0.08°× 0.08°, 8 d fluxes and 0.25°× 0.25°,
daily fluxes, respectively, and are aggregated on a monthly,
1°× 1° grid before applying the region selection.

2.4 Other datasets

To investigate the climatic conditions influencing the carbon
fluxes, we use temperature, upper-layer soil moisture, and
precipitation datasets of the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA5-Land data prod-
uct (Muñoz Sabater, 2019) with a monthly resolution on a
0.25°× 0.25° spatial grid. ERA5 datasets are aggregated on
a 1°× 1° grid before performing the region selection. Fur-
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thermore, we use solar-induced fluorescence (SIF) measure-
ments by the GOME-2 satellite from 2009 to January 2018
(Joiner et al., 2023). SIF is considered to be proportional to
GPP on a monthly timescale and at a biome resolution (Sun
et al., 2018; Joiner et al., 2018; Pierrat et al., 2022; Zhang et
al., 2016a, b). It can, therefore, be used as a proxy for CO2
uptake by photosynthesis (Li et al., 2018).

3 Results

3.1 Monthly CO2 concentrations by atmospheric
inversions

To access the seasonal and interannual dynamics in south-
ern Africa, we detrend the monthly mean CO2 concentra-
tions following Eq. (1) (see Sect. 2.2). The remaining CO2
enhancements for the study region are shown in Fig. 2.
The GOSAT-measured CO2 enhancements reveal a clear
seasonal cycle with a minimum concentrations in the first
half of the year and maximum concentrations in the sec-
ond half of the year. This general seasonal timing is con-
firmed by the posterior concentrations of the in-situ-only in-
versions. However, yearly reoccurring differences between
GOSAT and the in-situ-only based CO2 enhancements from
September to November are clearly visible. Thus, the spread
between GOSAT/ACOS and GOSAT/RemoTeC (see also
Fig. A1) is much smaller than their difference from and the
spread among the in-situ-only inversions. The difference pat-
tern between GOSAT and in-situ-only-based CO2 concentra-
tions has already been described by Mengistu and Mengistu
Tsidu (2020) and has been shown by Taylor et al. (2022).
Furthermore, especially in the second half of the year, differ-
ent in-situ-only inversions are not consistent, as indicated by
the large shading in Fig. 2a (see also the individual models
in Fig. A2). Reasons for these discrepancies will be further
analyzed in Sect. 3.3.

For comparison, we additionally use the OCO-2 satellite,
which was launched in 2014, and 1 year of COCCON CO2
column measurements in Namibia. Both datasets show a sim-
ilar seasonal cycle to that seen by GOSAT; i.e., they show
concentration maxima later in the year than the in-situ-only
inversions (see Figs. A3 and A4). No other total column
measurement sites – e.g., of the COCCON network or To-
tal Carbon Column Observing Network (TCCON, Wunch et
al., 2011) – with coinciding consecutive measurements for
more than 1 year exist in the Southern Hemisphere for conti-
nental Africa, limiting the validation possibilities of satellite
total column measurements in this region.

3.2 Southern African top-down and bottom-up CO2
fluxes

Assimilating the GOSAT CO2 concentration measurements
in TM5-4DVar, we obtain GOSAT-based top-down fluxes at
a monthly resolution for the study region (see Sect. 2.3.1).

As for the concentrations, a clear seasonal cycle is visi-
ble (Fig. 3). From January to May, CO2 is taken up by the
land surface, with a maximum uptake around March. From
June to December, CO2 is released into the atmosphere and
reaches a maximum flux in September to November. The
number of GOSAT measurements (see Figs. A5 and A6) is
variable throughout the year, with the smallest number oc-
curring during the rainy season around December and Jan-
uary. This leads to larger uncertainties in the monthly mean
satellite CO2 concentrations and satellite-based fluxes dur-
ing the transition from maximum to minimum concentrations
and fluxes.

A similar timing of the seasonal cycle is also cap-
tured by the in-situ-only inversion fluxes (CAMS, CT2022,
and TM5-4DVar/IS). However, the in-situ-only inver-
sions’ seasonal amplitude is smaller than for TM5-
4DVar/GOSAT+ IS. To analyze the differences found be-
tween TM5-4DVar/GOSAT+ IS and the in-situ-only atmo-
spheric inversions, we evaluate the information content pro-
vided by the measurements about the southern African car-
bon fluxes. To this end, we compare the TM5-4DVar fluxes
(TM5-4DVar/IS and TM5-4DVar/GOSAT+ IS) to the prior
fluxes of the inversion model. From Fig. 4, it becomes clear
that the in-situ-only fluxes (TM5-4DVar/IS) mainly follow
the dynamics of the prior fluxes, whereas the GOSAT-based
fluxes deviate significantly from the prior. This is expected,
as the sparse coverage of in situ measurements in Africa (and
the Southern Hemisphere in general) provides only little in-
formation about the African carbon fluxes. In contrast, satel-
lites provide nearly global coverage of CO2 measurements.
Using these measurements in TM5-4DVar, new information
about the southern African carbon fluxes can be obtained and
may lead to a deviation of TM5-4DVar/GOSAT+ IS from
the prior. This finding also explains the differences among
the three in-situ-only inversions (see shaded range of the in-
situ-only inversions in Fig. 3). The inversions assume differ-
ent prior fluxes, which they follow closely, as the information
from the in situ data does not substantially inform the inver-
sion.

When assimilating OCO-2 satellite measurements in-
stead of GOSAT measurements, the MIP/OCO-2+ IS en-
semble mean also shows a larger amplitude of the south-
ern African carbon fluxes compared with in-situ-only inver-
sions and MIP/IS (Fig. 5). However, the spread among the
MIP/OCO-2+ IS models is large, especially during the max-
imum emissions from September to November. Some mod-
els show lower emissions similar to the in-situ-only inver-
sions, whereas others agree with TM5-4DVar/GOSAT+ IS.
By analyzing the performance of the individual models in
these 3 months, we find that three MIP/OCO-2+ IS models
reproduce the OCO-2 measurements the best (see Fig. A7),
indicating that the OCO-2 measurements were given a con-
siderable weight in the inversion and, thus, that the optimized
fluxes were informed by measurements (see Appendix A). At
the same time, these three inversion models (Baker, CAMS,
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Figure 2. Monthly southern African detrended CO2 concentrations. GOSAT-measured and detrended CO2 concentrations are depicted in
red. Modeled posterior CO2 concentrations of three in-situ-only inversions are co-sampled (cs) on GOSAT and depicted as the mean (in
blue). Panel (a) shows the monthly mean CO2 concentrations. The shading indicates the range among the individual ensemble members
(GOSAT/ACOS+ IS and GOSAT/RemoTeC+ IS in red; CT2022, CAMS, and TM5-4DVar/IS in blue). Panel (b) shows the mean seasonal
cycle for 2009–2018, with the standard deviation over the years given as shading.

Figure 3. Top-down and bottom-up southern African net CO2 fluxes. Panel (a) shows the mean monthly net CO2 fluxes for the southern
African region, while panel (b) shows the mean seasonal cycle of the fluxes over the 2009 to 2018 period. The TM5-4DVar/GOSAT+ IS
fluxes are given in red, whereas in-situ-only inversion fluxes are shown in blue. The mean over all TRENDY models is given in gray. GFED
fire emissions are shown in orange, whereas they are displayed in combination with FLUXCOM NEE in yellow. The shading indicates
the range over the GOSAT-based fluxes (TM5-4DVar/ACOS+ IS and TM5-4DVar/RemoTeC+ IS) and the in-situ-only inversion fluxes
(CT2022, CAMS, and TM5-4DVar/IS) and the standard deviation over the TRENDY ensemble in panel (a). In panel (b), shading indicates
the standard deviation over the years. Positive fluxes indicate emissions into the atmosphere. Negative fluxes correspond to an uptake of CO2
into the land surface.

and TM5-4DVar/OCO-2+ IS) show the largest CO2 emis-
sions and agree best with TM5-4DVar/GOSAT+ IS (see
Figs. 5 and A7–A9). Still, their estimated emissions are
slightly lower than those of TM5-4DVar/GOSAT+ IS. When
directly comparing the two TM5-4DVar inversions TM5-
4DVar/GOSAT+ IS and TM5-4DVar/OCO-2+ IS (Fig. 5),
the latter has smaller emission values. This is most likely a
result of the slightly smaller seasonal amplitude of the CO2
concentrations measured by OCO-2 compared with GOSAT
(see Fig. A3).

In conclusion, we find that satellite-based inversions,
which are actually compatible with the satellite measure-
ments, show larger carbon fluxes in southern Africa than in-

situ-only inversions, which suffer from the limited informa-
tion provided by the sparse in situ measurements for southern
Africa. Our results support current studies (e.g., Basu et al.,
2013; Sellers et al., 2018; He et al., 2023) reporting that satel-
lite observations do inform atmospheric inversions well for
flux estimates at subcontinental scales. Satellite CO2 concen-
tration measurements, therefore, provide a unique informa-
tion source and are especially valuable in regions with sparse
in situ measurement coverage. The already long record pro-
vided by GOSAT will be more and more complemented over
time by the growing record of OCO-2 and future CO2 sensors
providing even more extensive measurements.
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Figure 4. Top-down southern African net CO2 fluxes from TM5-4DVar. In panel (a), mean monthly net CO2 fluxes for the south-
ern African region from the TM5-4DVar prior (dotted gray line), the in-situ-only inversion TM5-4DVar/IS (solid gray line), and the
TM5-4DVar/GOSAT+ IS inversion (solid red line) are given. Red shading indicates the range of the TM5-4DVar/ACOS+ IS and TM5-
4DVar/RemoTeC+ IS inversions. Panel (b) shows the mean seasonal cycle for 2009–2018, with the standard deviation over the years given
as shading.

Figure 5. Top-down southern African net CO2 fluxes from MIP. In panel (a), mean monthly net CO2 fluxes for the study region are given
by TM5-4DVar/GOSAT+ IS (solid red line), the MIP/OCO-2+ IS ensemble mean (solid gray line), the mean over three selected MIP
models (CAMS, TM5-4DVar, and Baker; solid black line), and TM5-4DVar/OCO-2+ IS as part of the MIP ensemble (dashed red line).
In-situ-only inversion fluxes are given as a solid blue line for the mean of CAMS, CT2022, and TM5-4DVar/IS, whereas they are given
as a dotted black line from the MIP/IS ensemble. The shading indicates the range over the GOSAT fluxes (TM5-4DVar/ACOS+ IS and
TM5-4DVar/RemoTeC+ IS), the MIP ensemble, and the three selected MIP models. Panel (b) gives the mean seasonal cycle from 2015 to
2018, with shading indicating the range over the MIP ensembles’ models and the standard deviation of the TM5-4DVar/GOSAT+ IS over
the years.

Next to the in-situ-only inversion fluxes, we compare the
TM5-4DVar/GOSAT+ IS fluxes to FLUXCOM CO2 fluxes.
As FLUXCOM only provides NEE fluxes, we add GFED
fire CO2 emissions to obtain an NBP estimate. In Fig. 3,
FLUXCOM+GFED only reaches positive monthly fluxes
from June to September due to fire emissions occurring dur-
ing that time. From October to May, it shows a net CO2 up-
take. While the timing of the maximum sink agrees well be-
tween FLUXCOM+GFED and the inversion fluxes, FLUX-
COM+GFED shows a smaller amplitude and an earlier
drop in emissions compared with TM5-4DVar/GOSAT+ IS

and in-situ-only inversion fluxes. The tendency of FLUX-
COM to report a stronger carbon sink for the Southern
Hemisphere compared with other datasets is described in
Jung et al. (2020). It is expected that the sparsity of eddy-
covariance towers in Africa or in similar ecosystems hampers
the machine-learning-based approach of FLUXCOM for es-
timating CO2 fluxes in the study area. Jung et al. (2020) de-
scribed larger uncertainties due to representation errors in
semiarid regions.

Finally, we compare the inversion results to the ensem-
ble of process-based vegetation models of the TRENDYv9
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Figure 6. Seasonal cycle of SIF and selected TRENDY models.
The normalized mean seasonal cycles of GOME-2 SIF (2009–
January 2018), GPP from the three selected DGVMs (ORCHIDEE,
ORCHIDEEv3, and CABLE-POP), and OCN GPP (2009–2018)
are shown using solid black symbols, colored dotted lines, and a
red dot-dash line, respectively. The spatial standard deviation over
monthly GOME-2 SIF aggregated to 1°× 1° is given as shading.

project. The mean of the DGVM ensemble in Fig. 3a shows
a smaller amplitude than the GOSAT fluxes and compares
with the in-situ-only inversion fluxes. However, as indicated
by the large standard deviation, the models deviate sub-
stantially from each other. Foster et al. (2024) and Metz et
al. (2023) observed a similar large spread among DGVMs for
the North American temperate region and Australia, respec-
tively. Both studies highlight the importance of performing
a sub-selection of DGVMs agreeing well with atmospheric
CO2 measurements.

3.3 GOSAT and SIF atmospheric constraints on
TRENDY models

Given the large spread of the TRENDY models, we se-
lect DGVMs according to their agreement with the GOSAT-
based CO2 fluxes and SIF. Thus, in a first step, we compare
the monthly mean DGVM and TM5-4DVar/GOSAT+ IS
NBP and NEE fluxes based on the root-mean-square error
(RMSE) of the monthly fluxes and the agreement in the
seasonality. In a second step, only for the well-matching
DGVMs, we additionally compare the GPP normalized mean
seasonal cycle to the GOME SIF normalized mean seasonal
cycle. Only models with a timing of the minimum and max-
imum GPP agreeing within ±1 month with the normalized
SIF seasonal cycle are selected (see Fig. 6). This ensures the
correct seasonal timing of the modeled GPP fluxes.

Based on these criteria, we select the ORCHIDEE (RMSE
NBP: 60.2 TgC per month; RMSE NEE: 68.2 TgC per
month), ORCHIDEEv3 (RMSE NBP 70.2 TgC per month;
RMSE NEE: 56.2 TgC per month) and CABLE-POP (RMSE

NBP: 78.2 TgC per month; RMSE NEE: 63.6 TgC per
month) models. All other models, except for the model OCN,
had already been excluded in the first step of the NBP and
NEE comparison. OCN performs well in the NBP and NEE
comparison but shows larger deviations in the SIF–GPP com-
parison (see Fig. 6). Therefore, it was excluded in the sec-
ond selection step and is not included in the TRENDY se-
lection. The exclusion of OCN underlines the importance of
the SIF/GPP selection and demonstrates that a correct timing
of the net CO2 exchange fluxes does not necessarily imply
the correctness of the modeled gross fluxes. In general, it is
noteworthy that only 3 out of 18 TRENDY models pass our
selection process. This again reveals the large uncertainties
associated with the TRENDY ensemble estimate for semi-
arid southern Africa.

The NBP mean over these three models is given in Fig. 7a
and b. The models reproduce the timing and strength of
the TM5-4DVar/GOSAT+ IS NBP fluxes. Only at the be-
ginning of the emission period around July to September
are the TRENDY selection fluxes lower. Furthermore, the
selection shows a significantly smaller sink in 2012 and a
smaller source in 2016. Note that ORCHIDEE is part of the
TRENDY selection and is also used by the in-situ-only in-
version CAMS as prior flux assumption. This explains why
CAMS best matches TM5-4DVar/GOSAT+ IS CO2 fluxes
and GOSAT CO2 concentrations (see Figs. A2 and A7, re-
spectively).

Fire emissions contribute substantially to the seasonality
in the southern African carbon fluxes. They largely explain
the beginning of the emission period from July to September
(see Fig. 3). Different fire emission data products differ sig-
nificantly and suggest large uncertainties in the magnitude of
the actual fire emissions in our study region (see Fig. A10).
GFED, which we use for our analyses, shows the largest fire
emissions but could even underestimate the actual emissions
as suggested by current literature for southern hemispheric
Africa (Ramo et al., 2021; van der Velde et al., 2024).

To exclude the influence of fire emission in the compar-
ison, we analyze the monthly NEE fluxes of the TRENDY
selection compared with the TM5-4DVar/GOSAT+ IS NBP
fluxes with GFED fire emissions subtracted. The subtraction
of the fire emissions leads to a better agreement between both
datasets, especially at the beginning of the emission period,
suggesting that fire fluxes in the DGVMs do not agree with
the GFED fire fluxes (see Fig. 7c and d). This goes along with
the large uncertainties in DGVM fire fluxes reported previ-
ously (Bastos et al., 2020).

Figure 7c additionally shows the annual NEE fluxes
(July–June) as bars. The absolute difference between TM5-
4DVar/GOSAT+ IS and TRENDY annual fluxes is large in
some years. These differences are caused by a stronger sink
at the beginning of 2012 and enhanced emissions at the end
of 2013 and 2016 in TM5-4DVar/GOSAT+ IS compared
with TRENDY. However, while both datasets do not agree on
the absolute value of annual fluxes in most of the years, they
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Figure 7. Annual and mean monthly NBP and NEE fluxes in southern Africa. The NBP fluxes from TM5-4DVar/GOSAT+ IS (red) and
selected TRENDY models (black) are given as mean monthly fluxes in panel (a) and as the mean seasonal cycle in panel (b). Similar to that,
panels (c) and (d) show the monthly NEE fluxes (GFED is subtracted from TM5-4DVar/GOSAT+ IS). Additionally, the annual (July–June)
NEE fluxes of the selected TRENDY models and TM5-4DVar/GOSAT+ IS–GFED fluxes are given. The shading indicates the standard
deviation over the TRENDY models and the range of TM5-4DVar/ACOS+ IS and TM5-4DVar/RemoTeC+ IS in panels (a) and (c) and the
standard deviation of the monthly fluxes over the years in panels (b) and (d).

show a similar IAV. Both datasets show a slightly stronger
CO2 uptake from 2010 to 2012. These years were strong
and moderate La Niña years with enhanced rainfall in 2010
and 2011 in the study region compared with the long-term
mean (see Fig. A11). Additionally, lower-than-average tem-
peratures led to enhanced soil moisture near the surface in
2010–2011. The soil moisture declined in 2012 to reach the
long-term average. In 2015 and 2016, the sink given by the
GOSAT and TRENDY selection NEE fluxes is small. These
2 years were a weak and a strong El Niño year, respectively,
with dry conditions and, in the case of 2016, exceptionally
high temperatures (see Fig. A11). These findings agree well
with the results of Pan et al. (2020), who highlighted the
fact that temperature and precipitation extremes heavily im-
pact African ecosystems and, therefore, play a key role in the
African carbon fluxes.

To conclude, the monthly NEE and NBP fluxes and, to a
lesser extent, the IAV in the selected TRENDY models agree
well with TM5-4DVar/GOSAT+ IS NEE and NBP, although
the latter was not a criterion in the selection process of the
TRENDY models. This suggests that the selected models in-
deed capture the carbon cycle dynamics, even on a decadal
timescale. For this reason, we use the model selection for
further investigations of the vegetation processes driving the
southern African carbon cycle.

3.4 Seasonal and interannual variability in TRENDY
gross fluxes

To investigate the vegetation dynamics shaping the seasonal
cycle of the southern African CO2 exchange, we use the se-
lected TRENDY models to further split up the net ecosys-
tem exchange fluxes into the gross fluxes NPP (GPP−RA)
and RH. The gross and net fluxes are given as the mean sea-
sonal cycle and annual anomalies in Fig. 8. In the mean sea-
sonal cycle for the whole study region (Fig. 8a), we can see a
clear difference in timing between RH and GPP−RA. Het-
erotrophic respiration increases early in September and Oc-
tober, while RA increases 1–2 months later along with GPP
(see Fig. A12). The dephasing between RH and GPP−RA
leads to a prolonged emission phase in the net CO2 ex-
change. It takes place in the whole region and occurs in the
savanna-dominated north (Fig. 8c) and in the grassland and
shrublands in the south (Fig. 8e). The dephasing takes place
in every year (see Fig. A13) and is present in all selected
TRENDY models. It causes a mean CO2 release of 494 TgC
during the emission phase, which is about 17 % and 18 %
of the annual total RH and GPP−RA, respectively. When
looking at the monthly precipitation over the study region
(see Fig. A14), one can identify a distinct drought phase oc-
curring in the whole study region. The subsequent start of the
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rainy season in September and October temporally coincides
with the early increase in RH. This finding resembles the re-
sults of Metz et al. (2023) in Australia: an increase in soil
respiration with the beginning of the rainy season prior to the
start of the growing season. Their study found soil respira-
tion pulses resulting from the rewetting of soils to cause the
continental-scale increase in soil respiration. Such soil respi-
ration pulses at local arid sites are discussed in the context of
the Birch effect (Birch, 1964; Jarvis et al., 2007), whereby
the rewetting of the soil enables microbial populations to
grow and to transform the carbon stored in the soils into
CO2 emissions. CO2 is then released in substantial amounts
within a short period of time. As in Metz et al. (2023), we
find short-duration emission pulses in the daily flux record of
a FLUXNET station in the study region. Exemplary annual
records of the FLUXNET station in the Kruger National Park
(Archibald et al., 2009) show CO2 emission caused by pre-
cipitation pulses (see Fig. A15). This is also reported in Fan
et al. (2015), who studied a 2-year measurement record of
carbon fluxes in Kruger National Park in more detail. Their
study found recurring respiration emission pulses due to pre-
cipitation events and attributed them to the Birch effect. The
TM5-4DVar/GOSAT+ IS fluxes indicate an even larger time
lag between the increase in soil respiration and NPP in some
years compared with TRENDY. A prolonged emission phase
of an additional 1–2 months (see Fig. 7c) takes place in years
with especially low soil moisture (2013, 2015, and 2016; see
Fig. A11). This later drop in emissions could either be caused
by a delayed start of the GPP rise in the growing season or
enhanced soil respiration due to the drier conditions causing
an enhanced accumulation of soil carbon during the years.
It is not possible to investigate this further, as none of the
TRENDY DGVMs captured the IAV in the timing of the
emission phase.

It is noteworthy that large parts of the unselected “other”
TRENDY models miss the dephasing between RH and
GPP−RA. Their NBP estimates, therefore, do not agree
with the emissions around October found by the satellite in-
version. Implementing soil respiration due to rewetting more
accurately in those models could improve their agreement
with the satellite-based fluxes. Metz et al. (2023) found that
the dephasing in the TRENDY models is most likely caused
by a different response time of soil respiration and vegeta-
tion growth to precipitation; e.g., water needs to percolate
into the deeper soil layers with plant roots to initiate plant
growth, whereas heterotrophic respiration is driven by upper-
soil-layer soil moisture or precipitation. The implementation
of such a time lag between heterotrophic respiration and GPP
seems to be a necessary but not a sufficient prerequisite to ac-
curately capture the seasonal carbon flux variability in semi-
arid southern Africa. Our results call for studies on how to
implement the response of ecosystems to soil rewetting more
accurately to improve the consistency and accuracy of the
TRENDY ensemble in semiarid regions.

Looking at the annual gross flux anomalies given by the
TRENDY selection (Fig. 8b), we see that the IAV in NBP and
NEE is mainly driven by GPP. Enhanced GPP from 2010 to
2012 leads to a constantly stronger uptake of CO2. In 2017,
a strongly enhanced GPP causes a large CO2 sink. Reduced
GPP in 2013, 2015, and 2016 results in positive NEE anoma-
lies associated with a reduced NEE sink. RH only plays a mi-
nor role and mostly slightly counteracts the GPP anomalies.
These findings agree with the studies of Ciais et al. (2009),
Weber et al. (2009), and Williams et al. (2008), who iden-
tified GPP variability as a major source of African fluxes’
IAV. It is, however, in contrast to semiarid Australia, where
Metz et al. (2023) found a large IAV in RH driven by precip-
itation anomalies during the dry season. The African study
region, however, has a distinct and regular dry season every
year (see Fig. A14), leading to a smaller influence of RH on
the IAV. Note that GOSAT suggests a much smaller annual
CO2 sink in 2017. However, the discrepancy is mainly caused
by a significant difference in the emissions in the second half
of the year, while both datasets agree well with respect to the
phase of carbon uptake (see Fig. 7c). Therefore, the TM5-
4DVar/GOSAT+ IS fluxes support the large GPP anomaly
given by the TRENDY models but suggest stronger respira-
tion or fire fluxes at the end of 2016.

Looking at the subregions (Fig. 8d and f), one can see
that the sinks in 2010, 2011, and 2017 are mainly driven
by the southern grassland region, where enhanced precipita-
tion occurred during these years (see Fig. A11). The com-
parably large release in 2016 seems to be driven by the
whole African region experiencing the highest annual tem-
peratures and driest conditions within the 10-year study
period. Therefore, the GPP IAV seems to be heavily im-
pacted by precipitation variability. According to GFED (see
Fig. A10), fire emissions play a minor role in impacting GPP
and driving NBP anomalies. The variability in fire emissions
is much lower than for NBP and GPP−RA. In the whole
study region, the IAV (calculated as standard deviation over
the years) in the GPP−RA and NBP fluxes is 97.7 and
94.1 TgC yr−1, respectively. The IAV in GFED fire emissions
is 27.3 TgC yr−1, which is a similarly low value to the IAV in
RH (27.1 TgC yr−1). Furthermore, the annual fire emissions
do not amplify the trend in the NBP anomalies. They were
at a normal level during the large positive NBP anomaly in
2016. Higher-than-average fire emissions counteract the sink
anomalies in 2011–2012, and only the slightly reduced fires
in 2017 amplify the sink anomaly.

4 Conclusions

The sparsity of in situ CO2 concentration and flux measure-
ments results in large uncertainties in carbon flux estimates in
the southern African region. We show that satellite measure-
ments provide additional information, leading to an improve-
ment in our knowledge about the southern African carbon
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Figure 8. Annual and mean monthly CO2 net and gross fluxes. The mean monthly fluxes (a, c, e) and annual (July–June) anomalies (b, d,
f) of NEE, NBP, GPP−RA, and RH of the selected TRENDY models are given in black, gray (dotted), green, and blue, respectively. The
fluxes are given for the whole study region (a, b), the savanna-dominated northern region (north of 17° S; c, d), and the southern region with
grassland and shrubland (e, f). The annual anomalies are calculated by subtracting the individual long-term mean of the annual fluxes. Thus,
a positive GPP anomaly denotes a reduced GPP and vice versa. The shading in panels (a), (c), and (e) indicates the standard deviation over
the three selected models (ORCHIDEE, ORCHIDEEv3, and CABLE-POP).

cycle. Our study demonstrates that satellite-measurement-
based atmospheric inversions and SIF can be used as at-
mospheric constraints for sub-selecting TRENDY DGVMs.
This is necessary, as TRENDY flux estimates show a large
spread in our study region.

Using the satellite-based selection of TRENDY DGVMs,
we find that the IAV in NBP and NEE in southern Africa
is driven by GPP variability. This supports findings by Ciais
et al. (2009), Weber et al. (2009), and Williams et al. (2008)
using individual vegetation models. The enhancements in an-
nual GPP mainly originate in the grasslands and shrublands
in the southern part of the study region and occur in years
with an enhanced amount of precipitation. The seasonal vari-
ability in the southern African carbon fluxes is impacted by
soil respiration dynamics, which are driven by the onset of

the rainy season. Respiration pulses have been reported un-
der the term of the Birch effect for arid Africa (Fan et al.,
2015) and have been shown to be relevant at the continental
scale in semiarid Australia (Metz et al., 2023). This enforces
the relevance of rain-induced CO2 emissions for the southern
African region and for semiarid regions in general. Our re-
sults emphasize the importance of correctly representing the
response of semiarid ecosystems to soil rewetting in DGVMs
(e.g., different response times of RH and GPP), as this was
found to be a prerequisite to accurately capture the seasonal
carbon cycle dynamics.
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Appendix A: The performance of the individual MIP
models.

In Fig. 5, the ensemble mean of MIP/OCO-2+ IS shows
lower emissions than TM5-4DVar/GOSAT+ IS in the sec-
ond half of the year. A selection of three models (Baker,
TM5-4DVar, and CAMS), however, shows larger fluxes and
agrees better with the GOSAT-based fluxes (see Sect. 3.2 and
Fig. 5). Next to the OCO-2-informed posterior fluxes used for
the analysis in the main text, the MIP/OCO-2+ IS dataset
provides the prior fluxes used by the individual MIP mod-
els. Furthermore, 5 % of the OCO-2 measurements are with-
held for validation purposes and modeled XCO2 values co-
sampled on the left-out measurements are provided for each
model except CSU. The OCO-2 co-samples and the prior
fluxes of the MIP models can be used to further evaluate the
differences between the three selected models and the other
MIP models.

In Fig. A7, the mismatch between XCO2 modeled by
the MIP and XCO2 measured by OCO-2 is given for the
months of the strongest emissions (September–November).
The XCO2 mismatch is the smallest for the three selected
models, Baker, TM5-4DVar, and CAMS, which concurrently
have the smallest mismatch to TM5-4DVar/GOSAT+ IS.
Hence, the models that reproduce the OCO-2 measurements
best also agree best with the GOSAT-based CO2 fluxes.

The differences between posterior and prior fluxes for the
MIP models are given in Fig. A8. TM5-4DVar and Baker
have the largest differences between the posterior and prior
fluxes. Therefore, it is likely that, even though the prior fluxes
of TM5-4DVar and Baker deviate strongly from the GOSAT-
based fluxes (see Fig. A9), considerable weight was given
to the OCO-2 measurements in the inversion. As a result,
the posterior fluxes are closer to the GOSAT-based fluxes
than to their prior fluxes (Fig. A8). As the CAMS prior al-
ready agrees reasonably well with TM5-4DVar/GOSAT+ IS
fluxes, no conclusion on the weights can be drawn here.

The other MIP models, which have lower emission fluxes,
show larger mismatches to the OCO-2 XCO2 measurements
for September to November (Fig. A7). Although, for most
of these models, assimilating OCO-2 increases the emission
fluxes and reduces the difference to the GOSAT-based fluxes
(see Figs. A8 and A9), the changes (i.e., the difference be-
tween posterior and prior fluxes) are small compared with
TM5-4DVar and Baker (see Fig. A8). The larger mismatch
to OCO-2 XCO2 and the smaller posterior–prior flux differ-
ences seem to indicate that a smaller weight was given to
the OCO-2 measurements compared with the selected MIP
models.

In general, the GOSAT flux mismatch and the OCO-2
XCO2 mismatch is larger in October and November than in
September. This is most likely caused by the prior fluxes in
September already being closer to the GOSAT-based fluxes
than in the other 2 months (see Fig. A9b).
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Table A1. Summary of the datasets. The main characteristics and references of the observation and model data are listed. Links to the datasets
are provided in the “Data availability” section.

Description Dataset Resolution References

GOSAT XCO2 GOSAT/RemoTeC v2.4.0 10.5 km footprint Butz et al. (2011); Butz (2022)
GOSAT/ACOS v9r(Lite) 10.5 km footprint Taylor et al. (2022); OCO-2 Science Team

et al. (2019)

Validation XCO2 OCO-2 v11r 1.3 km× 2.3 km
footprint

Jacobs et al. (2024); OCO-2/OCO-3
Science Team et al. (2022)

COCCON Gobabeb local Frey et al. (2021); Dubravica et al. (2021)

Model XCO2 TM5− 4DVar/IS 3°× 2°, monthly Basu et al. (2013)
based on in situ data CarbonTracker CT2022 3°× 2°, monthly Peters et al. (2007); Jacobson et al. (2023)

CAMS v21r1 3.7°× 1.81°, monthly Chevallier et al. (2005, 2010, 2019);
Copernicus Atmosphere Monitoring
Service (2020)

In-situ-only inversions TM5 − 4DVar/IS 3°× 2°, monthly Basu et al. (2013)
CarbonTracker CT2022 1°× 1°, monthly Peters et al. (2007); Jacobson et al. (2023)
CAMS v20r1 3.7°× 1.81°, monthly Chevallier et al. (2005, 2010, 2019);

Copernicus Atmosphere Monitoring
Service (2020)

TM5-
4DVar/GOSAT+ IS

TM5-4DVar/RemoTeC+ IS
and TM5-4DVar/ACOS+ IS

3°× 2°, monthly Basu et al. (2013)

TM5-4DVar/OCO-
2+ IS

TM5-4DVar of MIP/LNLGIS 1°× 1°, monthly Basu et al. (2013); Byrne et al. (2023);
Baker et al. (2022)

MIP/OCO-2+ IS
MIP/IS

MIP/LNLGIS experiment
MIP/IS experiment

1°× 1°, monthly Byrne et al. (2023); Baker et al. (2022)

SIF GOME-2 Daily_Averaged_SIF 40 km× 40 km/80 km Joiner et al. (2023)

FLUXCOM FLUXCOMv1 NEE, RS_V006 0.08°× 0.08°, 8 d Tramontana et al. (2016); Jung et al. (2020)

GFED GFED v4.1s 0.25°× 0.25°, monthly van der Werf et al. (2017, 2015)

TRENDYselection ORCHIDEE S3 0.5°× 0.5°∗ Krinner et al. (2005)
ORCHIDEEv3 S3 2°× 2°∗ Vuichard et al. (2019)
CABLE-POP S3 1°× 1°∗ Haverd et al. (2018)

TRENDYothers YIBs S3 1°× 1°∗ Yue and Unger (2015)
OCN S3 1°× 1°∗ Zaehle et al. (2010)
ORCHIDEE-CNP S3 2°× 2°∗ Goll et al. (2018)
JSBACH S3 1.86°× 1.88°∗ Reick et al. (2021)
CLASSIC S3 2.80°× 2.81°∗ Melton et al. (2020)
LPJ S3 0.5°× 0.5°∗ Poulter et al. (2011)
CLM5.0 S3 0.94°× 1.25°∗ Lawrence et al. (2019)
DLEM S3 0.5°× 0.5°∗ Tian et al. (2015)
IBIS S3 1°× 1°∗ Yuan et al. (2014)
ISAM S3 0.5°× 0.5°∗ Meiyappan et al. (2015)
ISBA-CTRIP S3 1°× 1°∗ Delire et al. (2020)
JULES-ES-1.0 S3 1.25°× 1.88°∗ Sellar et al. (2019)
LPX-Bern S3 0.5°× 0.5°∗ Lienert and Joos (2018)
SDGVM S3 1°× 1°∗ Walker et al. (2017)
VISIT S3 0.5°× 0.5°∗ Kato et al. (2013)

ERA5 meteorological
data

ERA5-Land data
total precipitation, upper-layer
soil moisture, temperature

1°× 1°, monthly Muñoz Sabater (2019)

MODIS MODIS (MCD12C1) data 0.05°× 0.05°, 2015 Friedl and Sulla-Menashe (2022)

∗ All TRENDY model data are provided at a monthly temporal resolution.
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Table A2. Monthly fluxes of TM5-4DVar/GOSAT+ IS in southern Africa. The monthly fluxes of TM5-4DVar/RemoTeC+ IS (“RT+ IS”),
TM5-4DVar/ACOS+ IS (ACOS+ IS), and the mean of both are given in teragrams of carbon per month for the whole study region.

Year Month RT+ IS ACOS+ IS Mean Year Month RT+ IS ACOS+ IS Mean

2009 4 −157.56 −195.50 −176.53 2014 3 −218.74 −194.84 −206.79
2009 5 −83.13 −102.61 −92.87 2014 4 −160.54 −153.89 −157.21
2009 6 6.71 6.29 6.50 2014 5 −84.72 −81.25 −82.99
2009 7 93.92 109.99 101.96 2014 6 30.42 42.46 36.44
2009 8 163.05 163.17 163.11 2014 7 82.04 99.66 90.85
2009 9 219.63 198.25 208.94 2014 8 95.93 122.13 109.03
2009 10 232.99 144.91 188.95 2014 9 215.17 154.74 184.96
2009 11 140.76 88.81 114.79 2014 10 229.27 176.57 202.92
2009 12 −32.79 −44.05 −38.42 2014 11 199.23 168.02 183.62
2010 1 −144.40 −113.34 −128.87 2014 12 36.93 −35.25 0.84
2010 2 −153.14 −157.85 −155.50 2015 1 −73.64 −86.37 −80.01
2010 3 −144.99 −172.86 −158.93 2015 2 −139.19 −135.31 −137.25
2010 4 −74.81 −121.29 −98.05 2015 3 −153.79 −149.43 −151.61
2010 5 −57.83 −84.45 −71.14 2015 4 −144.28 −131.81 −138.04
2010 6 24.59 16.57 20.58 2015 5 −62.78 −63.61 −63.19
2010 7 69.44 86.01 77.73 2015 6 2.16 22.31 12.24
2010 8 129.28 152.92 141.10 2015 7 49.88 85.39 67.64
2010 9 208.69 202.44 205.57 2015 8 117.11 107.91 112.51
2010 10 239.32 194.63 216.98 2015 9 189.95 139.90 164.93
2010 11 262.58 166.15 214.37 2015 10 225.03 150.79 187.91
2010 12 57.84 −24.29 16.78 2015 11 259.19 212.22 235.70
2011 1 −189.14 −146.26 −167.70 2015 12 112.16 78.85 95.50
2011 2 −229.46 −193.03 −211.24 2016 1 −72.92 −69.47 −71.20
2011 3 −156.96 −183.26 −170.11 2016 2 −148.67 −155.69 −152.18
2011 4 −111.27 −115.31 −113.29 2016 3 −176.60 −134.03 −155.32
2011 5 −70.44 −72.17 −71.31 2016 4 −159.32 −128.91 −144.11
2011 6 22.49 39.77 31.13 2016 5 −77.83 −56.86 −67.35
2011 7 88.88 101.56 95.22 2016 6 28.77 72.38 50.58
2011 8 170.18 183.09 176.63 2016 7 61.68 117.42 89.55
2011 9 214.57 202.08 208.32 2016 8 111.76 166.74 139.25
2011 10 215.25 137.67 176.46 2016 9 178.65 176.21 177.43
2011 11 108.61 83.75 96.18 2016 10 278.49 178.25 228.37
2011 12 −69.23 −42.93 −56.08 2016 11 344.93 213.55 279.24
2012 1 −198.76 −174.22 −186.49 2016 12 126.39 48.90 87.64
2012 2 −204.51 −185.68 −195.09 2017 1 −141.60 −144.98 −143.29
2012 3 −201.66 −209.21 −205.43 2017 2 −218.16 −157.23 −187.70
2012 4 −157.34 −149.79 −153.56 2017 3 −266.37 −195.15 −230.76
2012 5 −85.64 −61.66 −73.65 2017 4 −171.98 −145.48 −158.73
2012 6 26.99 55.95 41.47 2017 5 −87.55 −94.62 −91.09
2012 7 81.80 111.87 96.84 2017 6 −4.45 17.30 6.43
2012 8 105.47 131.05 118.26 2017 7 36.00 108.33 72.17
2012 9 182.86 156.69 169.77 2017 8 125.62 175.62 150.62
2012 10 216.78 172.23 194.51 2017 9 191.89 212.30 202.10
2012 11 130.49 155.95 143.22 2017 10 285.32 197.40 241.36
2012 12 −29.84 −24.57 −27.20 2017 11 233.14 175.95 204.54
2013 1 −195.13 −142.42 −168.78 2017 12 3.21 3.05 3.13
2013 2 −181.41 −141.65 −161.53 2018 1 −131.45 −111.65 −121.55
2013 3 −150.87 −134.34 −142.60 2018 2 −119.89 −127.09 −123.49
2013 4 −133.19 −113.00 −123.10 2018 3 −167.60 −135.00 −151.30
2013 5 −72.44 −40.57 −56.51 2018 4 −208.14 −153.04 −180.59
2013 6 34.37 52.38 43.38 2018 5 −137.36 −102.90 −120.13
2013 7 64.78 85.80 75.29 2018 6 −21.20 23.47 1.14
2013 8 96.91 130.53 113.72 2018 7 29.86 98.30 64.08
2013 9 176.64 185.33 180.99 2018 8 110.99 163.25 137.12
2013 10 219.32 178.29 198.80 2018 9 202.02 201.28 201.65
2013 11 249.06 191.11 220.08 2018 10 182.51 179.17 180.84
2013 12 202.08 64.14 133.11 2018 11 223.74 184.91 204.33
2014 1 −79.09 −119.87 −99.48 2018 12 226.30 148.33 187.31
2014 2 −187.16 −169.20 −178.18
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Figure A1. Monthly southern African detrended CO2 concentrations measured by GOSAT. GOSAT/ACOS is given in black, while
GOSAT/RemoTeC is given in red. Dashed lines show the mean CO2 concentrations over the whole dataset. The mean CO2 concentra-
tions of the soundings included in both datasets, ACOS and RemoTeC, are given as solid lines. “cs” stands for co-sampled and indicates
that only soundings also included in the other dataset are considered. The deviations due to different sampling are on a sub-part-per-million
scale and do not explain the differences between ACOS and RemoTeC. Modeled posterior CO2 concentrations of the in-situ-only inversions
are co-sampled (cs) on GOSAT and depicted as the mean (in blue) for comparison. The shading indicates the range among the individual
in-situ-only inversions. Panel (b) shows the mean seasonal cycle for 2009–2018, with the standard deviation over the years given as shading.

Figure A2. Monthly southern African detrended CO2 concentrations given by inversions and satellites. Like Fig. 1 but with detrended XCO2
of individual in-situ-only inversions co-sampled (cs) on the GOSAT measurements in dark blue (CT2022 – dashed; CAMS – dot-dash; and
TM5-4DVar/IS – dotted). Panel (a) gives the monthly mean CO2 concentrations, whereas panel (b) shows the mean seasonal cycle for 2009–
2018. The shading indicates the range among GOSAT/ACOS and GOSAT/RemoTeC and the range among the three in-situ-only inversions
in panel (a). In panel (b), the shading indicates the standard deviation over the year.
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Figure A3. Monthly southern African detrended CO2 concentrations given by inversions and satellites. Like Fig. 1 but with detrended XCO2
measurements of OCO-2 (in black) for the time period from 2015 to 2018. Panel (a) gives the monthly mean CO2 concentrations, whereas
panel (b) shows the mean seasonal cycle for 2015–2018. The shading indicates the range among GOSAT/ACOS and GOSAT/RemoTeC and
the range among the three in-situ-only inversions in panel (a). In panel (b), the shading indicates the standard deviation over the years.

Figure A4. Monthly southern African detrended CO2 concentrations given by inversions, satellites, and COCCON measurements. Like
Fig. 1 but only for January 2017–February 2018 and with detrended XCO2 measurements from the Gobabeb COCCON station (in black).
The full dataset of COCCON measurements is used, without performing a co-sampling on GOSAT measurements or further filtering.
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Figure A5. Number and distribution of satellite CO2 concentration measurements above southern Africa. (a, d, g) Total number of
GOSAT/ACOS, (b, e, h) GOSAT/RemoTeC, and (c, f, i) OCO-2 data per 3°× 2° grid cell for (a–c) the months of carbon uptake (January–
June), (d–f) the emission season (July–December), and (g–i) the month with the strongest emissions. GOSAT/ACOS and GOSAT/RemoTeC
measurements from 2009 to 2018 and OCO-2 measurements from September 2014 to 2018 are included. The maximum of the color scale is
the same for all time periods but different for OCO-2 compared with GOSAT/ACOS and GOSAT/RemoTeC. Compared with GOSAT/ACOS,
GOSAT/RemoTeC has a reduced number of measurements, as the RemoTeC algorithm applies stricter filtering of the GOSAT soundings.

Figure A6. Number of satellite measurements per month. The numbers of satellite measurements in the GOSAT/ACOS (dashed red line),
GOSAT/RemoTeC (solid dark-red line), and OCO-2 (dotted gray line) datasets are given. Note that the number of OCO-2 measurements is
shown divided by 100 to enable a comparison to the much less abundant GOSAT measurements.
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Figure A7. Mismatch between GOSAT-informed and OCO-2-informed fluxes versus the mismatch between OCO-2-informed simulated
XCO2 and OCO-2-measured XCO2. For the MIP/OCO-2+ IS inversions, 5 % of the OCO-2 measurements are withheld for validation
purposes and modeled XCO2 values co-sampled on the measurements are provided for each model except CSU. Panel (a) gives the RMSE
of the OCO-2 measurements and the modeled co-sampled XCO2 from September to November for each model. In panel (b), the mean
differences in the OCO-2 measurements and modeled co-samples for each month and model are given. In both panels, the OCO-2 XCO2
mismatch is plotted against the difference in the monthly TM5-4DVar/GOSAT+ IS and individual MIP/OCO-2+ IS CO2 fluxes for the
strongest emission period from September to November. The MIP models Baker, CAMS, and TM5-4DVar are highlighted in yellow, blue,
and red, respectively. The other individual MIP models are given in gray. The three highlighted models show the smallest OCO-2 XCO2
mismatch and the smallest difference from the monthly fluxes of TM5-4DVar/GOSAT+ IS (with the exception of Baker in September; b).

Figure A8. Mismatch between GOSAT-informed and OCO-2-informed fluxes versus the difference between OCO-2-informed fluxes and
model prior fluxes. The individual MIP models differ with respect to their assumed prior fluxes. In this figure, the differences in the monthly
posterior to the prior fluxes (x axis) and to the GOSAT-based fluxes (TM5-4DVar/GOSAT+ IS, y axis) are compared. Differences are calcu-
lated using the monthly flux over the whole study region and the time period from 2015 to 2018. Panel (a) shows the mean over September to
November, the time of the strongest CO2 emissions. In panel (b), the differences are given for each of the three individual months. The MIP
models Baker, CAMS, and TM5-4DVar are highlighted in yellow, blue, and red, respectively. The other individual MIP models are given in
gray. For most of the models, the assimilation of OCO-2 measurements increases the mean monthly fluxes from September to November
(difference from prior larger than zero). Only for CAMS, UT, and some models in September are the mean posterior fluxes smaller than the
prior fluxes.
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Figure A9. Mismatch between GOSAT-informed and OCO-2-informed fluxes versus the difference between GOSAT-informed fluxes and
OCO-2 MIP prior fluxes. The differences in the monthly GOSAT inversion fluxes (TM5-4DVar/GOSAT+ IS) compared with the MIP
posterior (y axis) and MIP prior fluxes (x axis) for the individual MIP models are given. Panel (a) gives the mean differences for the months
from September to November. Panel (b) shows the differences for the individual months. The MIP models Baker, CAMS, and TM5-4DVar
are highlighted in yellow, blue, and red, respectively. The other individual MIP models are given in gray. The 1 : 1 line is given as a dotted
gray line. For most of the MIP models, assimilating OCO-2 reduces the flux difference to the GOSAT-based fluxes (i.e., markers are below
the 1 : 1 line).

Figure A10. The CO2 fire emissions in southern Africa. The monthly CO2 fire emissions collected by three fire emission databases: GFED
(in orange), the Global Fire Assimilation System (GFAS; Kaiser et al., 2012; Copernicus Atmosphere Monitoring Service, 2022; in red), and
the Fire INventory from NCAR (FINN; Wiedinmyer et al., 2011, 2021; in purple). Furthermore, the annual (July–June) GFED fire emissions
are shown on the right-hand y axis. Please note that the right-hand y axis starts at 280 TgC yr−1 for better visualization of the fire emissions.
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Figure A11. Climate anomalies. The annual anomalies of ERA5 precipitation, temperature, and upper-layer soil moisture are displayed using
solid blue, solid red, and gray hatching, respectively. The annual anomalies are calculated by subtracting the individual long-term mean of
the annual values and are given for the whole study region in panel (a), for the northern subregion in panel (b), and for the southern subregion
in panel (c).

Figure A12. Mean monthly CO2 net and gross fluxes. Like Fig. 8a but also including the GPP and RA of the TRENDY selection.
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Figure A13. Monthly CO2 fluxes in the northern (a) and southern (b) subregions. The monthly NEE, NPP (GPP−RA), and RH fluxes from
the selected TRENDY models are given in black, green, and violet, respectively, for the northern southern African region in panel (a). The
TM5-4DVar/GOSAT+ IS–GFED NEE fluxes are additionally shown as a dotted red line. The same is given in panel (b) for the southern
subregion.
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Figure A14. Mean monthly precipitation and mean temperature over southern Africa. The mean monthly precipitation is given as blue bars,
whereas the mean temperature is shown using a solid red line.

Figure A15. Local data from the FLUXNET eddy-covariance flux tower in Kruger National Park. Daily mean net carbon fluxes (green),
precipitation (blue), and soil moisture (red) measured by the ZA-Kru FLUXNET station (Archibald et al., 2009; Scholes, 2013). Panel (a)
shows the year 2005, whereas panel (b) shows 2010.
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Code availability. The code used in this study is available from
https://doi.org/10.5281/zenodo.12528504 (Metz, 2024) or GitHub
(https://github.com/ATMO-IUP-UHEI/MetzEtAl2024, last access:
25 June 2024).

Data availability. GOSAT/RemoTeC2.4.0 XCO2 data can be ob-
tained from Zenodo: https://doi.org/10.5281/zenodo.5886662
(Butz, 2022). GOSAT/ACOS data are available from
https://oco2.gesdisc.eosdis.nasa.gov/data/GOSAT_TANSO_
Level2/ACOS_L2_Lite_FP.9r/ (OCO-2 Science Team, 2019,
https://doi.org/10.5067/VWSABTO7ZII4). OCO-2 data are
available from https://doi.org/10.5067/8E4VLCK16O6Q
(OCO-2/OCO-3 Science Team et al., 2022). CarbonTracker
CT2022 CO2 fluxes and concentrations can be downloaded
from https://gml.noaa.gov/aftp/products/carbontracker/co2/
CT2022/fluxes/monthly/ and https://gml.noaa.gov/aftp/products/
carbontracker/co2/CT2022/molefractions/co2_total_monthly/
(Jacobson et al., 2023, https://doi.org/10.25925/z1gj-3254),
respectively. CAMS concentrations and fluxes can be found
at https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/
cams-global-greenhouse-gas-inversion (Copernicus Atmo-
sphere Monitoring Service, 2020). GFAS emission records
are available from https://ads.atmosphere.copernicus.eu/
datasets/cams-global-fire-emissions-gfas (Copernicus Atmo-
sphere Monitoring Service, 2022). CAMS and GFAS data
were generated using Copernicus Atmosphere Monitoring
Service information 2021; neither the European Commis-
sion nor the European Centre for Medium-Range Weather
Forecasts (ECMWF) is responsible for any use that may be
made of the information they contain. The MIP data can be
downloaded from https://gml.noaa.gov/ccgg/OCO2_v10mip/
(Baker et al., 2022). GFED fire emissions are available
from https://www.geo.vu.nl/~gwerf/GFED/GFED4/ (van
der Werf et al., 2015). FINN data were retrieved from
the American National Center for Atmospheric Research:
https://www.acom.ucar.edu/Data/fire/ (Wiedinmyer et al., 2021).
ERA5-Land data records contain modified Copernicus Atmosphere
Monitoring Service information 2021 available from the Climate
Data Store https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-land-monthly-means (Muñoz Sabater, 2019,
https://doi.org/10.24381/cds.68d2bb30). TRENDYv9 model output
is available upon request from https://mdosullivan.github.io/GCB/
(Sitch et al., 2020). FLUXCOM products are available
from http://fluxcom.org/CF-Download/ (Jung et al., 2020,
https://doi.org/10.5194/bg-17-1343-2020; Tramontana et al.,
2016, https://doi.org/10.5194/bg-13-4291-2016). Data from the
ZA-Kru FLUXNET station can be downloaded from FLUXNET:
https://fluxnet.org/data/fluxnet2015-dataset/ (Scholes, 2013,
https://doi.org/10.18140/FLX/1440188). The Gobabeb COCCON
station data are available from https://secondary-data-archive.
nilu.no/evdc/ftir/coccon/gobabeb/version2/ (Dubravica et al.,
2021, https://doi.org/10.48477/coccon.pf10.gobabeb.R02).
MODIS MCD12C1 data are available from https:
//search.earthdata.nasa.gov/search with the following DOI:
https://doi.org/10.5067/MODIS/MCD12C1.061 (Friedl and
Sulla-Menashe, 2022). “L2 Daily Solar-Induced Fluores-
cence (SIF) from MetOp-A GOME-2” V2 data are available
from https://search.earthdata.nasa.gov/ (Joiner et al., 2023,

https://doi.org/10.3334/ORNLDAAC/2292). Monthly TM5-4DVar
data are given in Table A2.
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Abstract Processes driving the terrestrial carbon fluxes in the South American Temperate (SAT) region are
not well understood due to limited availability of in situ and flux tower measurements. This study leverages
atmospheric CO2 measurements by the Greenhouse Gases Observing Satellite to additionally constrain net
carbon fluxes in the SAT region. By identifying Dynamic Global Vegetation Models that closely align with
observational data, we pinpoint the processes driving the seasonal land‐atmosphere CO2 exchange. We reveal
that the onset of rainfall triggers an early increase in heterotrophic respiration while autotrophic respiration and
gross primary production are delayed leading to an increase in net ecosystem exchange in September to October.
Our findings suggest that soil rewetting processes in semi‐arid areas dominate seasonal carbon dynamics and
need to be accurately represented in global carbon cycle models to improve the global carbon budget.

Plain Language Summary Understanding the patterns of carbon dynamics in the South American
Temperate region is challenging because there are not many ground‐based measurements available. This study
uses satellite data, along with computer models, to examine what influences the seasonal changes of carbon
fluxes in this region from 2009 to 2018. Our study finds that the start of the rainy season causes a quick rise in
carbon release from soil. However, the carbon uptake by plants happens later leading to an increase of CO2 flux
in the middle of the year. These results suggest that the rewetting of dry soils plays a major role in controlling
carbon cycles in semi‐arid areas. Therefore, it is important to include these processes accurately in global carbon
cycle models to improve our understanding of the global carbon budget.

1. Introduction
Anthropogenic CO2 emissions are released to the atmosphere and are increasing the global CO2 concentration. On
average, land and ocean sinks take up roughly half of the emitted CO2 and therefore slow down the rise of at-
mospheric CO2 (Friedlingstein et al., 2023). How much CO2 is taken up by the land sink is driven by terrestrial
processes and varies considerably from year to year due to the ecosystems’ dependence on environmental and
climatic conditions such as soil moisture and temperature (Piao et al., 2020;Wang et al., 2016). Understanding the
terrestrial processes is a prerequisite of forecasting global biospheric uptake and release of CO2 under climate
change and changing environmental stressors (Steiner, 2020).

Semi‐arid ecosystems contribute substantially to interannual variability of the global carbon cycle (Ahlström
et al., 2015; Poulter et al., 2014). These regions can eventually become even more important, as in future, arid and
semi‐arid regions may spread due to climate change—especially in the Southern Hemisphere (Cherlet et al., 2018;
Pokhrel et al., 2021). Gross CO2 fluxes are controlled by hydrological and meteorological conditions (MacBean
et al., 2021). Increased soil moisture can enhance carbon uptake by promoting gross primary production (GPP)
and can affect microbial activity in the soil (Bond‐Lamberty et al., 2024). Local studies showed that rain pulses in
semi‐arid ecosystems can suddenly activate soil microbes, which respire accumulated substrate leading to
respiration pulses. This effect is referred to as Birch effect (Birch, 1964)and the magnitude depends strongly on
the rain pulse intensity (Huxman et al., 2004; Silva et al., 2024). The regional scale net effect for semi‐arid regions
is still unknown as it depends on the timing and magnitude of the rain pulses, on the ecosystem type, on the
available carbon stocks and on the prevailing prior environmental conditions such as drought (Silva et al., 2024).
This makes it especially difficult to generalize patterns found in local eddy‐covariance flux measurements to
inform on the regional carbon budget, although these direct flux measurements provide the ground truth of local
carbon dynamics.
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In order to obtain an understanding of the terrestrial processes, Dynamic Global Vegetation Models (DGVMs)
can be used as they represent the biogenic carbon cycle and its dynamics given environmental conditions such as
temperature, precipitation and land‐use types (Sitch et al., 2015). This approach enables deeper understanding of
the causes influencing the carbon budget. However, model results for net CO2 exchange vary considerably be-
tween different models as they include different processes, interactions and constants (Foster et al., 2024; Metz
et al., 2023; Teckentrup et al., 2021). As photosynthetic and respiratory gross fluxes can be large, this adds
additional complexity to the accurate determination of net fluxes. Therefore, it is important to determine which
DGVM performs well for the area of interest. Atmospheric observations can be used to determine the net carbon
fluxes (Foster et al., 2024). Eddy‐covariance flux measurements provide local constraints but are typically not
representative of larger regional scales. Ground‐based in situ observations assimilated into inverse atmospheric
transport models can inform on regional carbon dynamics from the top‐down perspective (Chevallier et al., 2010;
Gurney et al., 2008; Rödenbeck et al., 2003). However, in regions with sparse in situ observations, uncertainties in
retrieved fluxes are large (J. S. Wang et al., 2018). In these regions, satellite observations can provide additional
top‐down constraints on CO2 fluxes (Basu et al., 2013; He et al., 2022, 2023; Sellers et al., 2018). Recently, based
on satellite measurements of XCO2 (column‐average dry‐air mole fraction of CO2), Metz et al. (2023) revealed a
continental‐scale CO2 pulse after heavy rain events over the semi‐arid regions of Australia and associated it with
soil respiration after rainfall. Combining the complementary strengths of process‐based ecosystem models with
top‐down approaches can enhance our understanding of both, the magnitude of the carbon fluxes on continental
scale, but also the processes driving the carbon dynamics.

Here we focus on the South American Temperate (SAT) region as it has large dry areas and contributes
considerably to uncertainties in the global carbon budget (Bastos et al., 2020). Therefore, the SAT region offers an
opportunity to better understand the carbon dynamics in dry areas and reduce global carbon budget uncertainties.
In this study, we use the combination of bottom‐up and top‐down approaches to analyze the drivers of the seasonal
carbon dynamics in the SAT region. Understanding the drivers of the carbon cycle in this region will aid un-
derstanding the role of semi‐arid regions for the global carbon budget.

2. Data and Methods
2.1. South American Temperate (SAT) Region

We use the SAT region definition from the TRANSCOM‐3 experiment (colored in Figure S1 in Supporting
Information S1). The region lies south and east of the Amazon rainforest and incorperates large drylands (Cherlet
et al., 2018; Mitsugi, 2019). It exhibits a range of different landcovers with mainly barren or sparsely vegetated
land in the west and grasslands and savannas in the east (see Figure S2 in Supporting Information S1). As a
criterion to distinguish humid and arid regions, we use a mean monthly precipitation rate of 1 mm/day/grid cell
for at least four consecutive months as threshold. Applying this threshold divides the SAT region into two
approximately equally sized parts. As the arid region is divided by the humid region in the middle, we later further
differentiate the arid region into east and west. More details on the region and threshold are given in Text S1 in
Supporting Information S1.

2.2. DGVMs–TRENDYv9 Ensemble

To assess the underlying processes of the carbon cycle, we used the S3 in Supporting Information S1 simulations
of the “Trends and drivers of the regional scale terrestrial sources and sinks of carbon dioxide” (TRENDY) 2023
ensemble version 9 consisting of process‐based DGVMs that can simulate vegetation dynamics driven by
meteorological input data (Friedlingstein et al., 2020; Sitch et al., 2015). In total, we use 18 DGVMs, namely
CLASSIC, OCN, ISBA‐CTRIP, ISAM, YIBs, ORCHIDEE, SDGVM, VISIT, LPX‐Bern, CLM5.0, ORCHID-
EEv3, ORCHIDEE‐CNP, LPJ, JULES‐ES‐1p0, JSBACH, CABLE‐POP, DLEM and IBIS, which are listed in
Table S1 in Supporting Information S1. The models are run globally and provide outputs for net biome production
(NBP), GPP and terrestrial ecosystem respiration (TER), as well as for heterotrophic respiration (Rh) and
autotrophic respiration (Ra). Few models additionally give non‐respiratory fluxes, such as fire and land use
change fluxes, explicitly, while others do not account for fire and land use change fluxes. Net ecosystem exchange
(NEE) is then given as:

NEE = NBP − non − respiratory fluxes = TER − GPP = Ra + Rh − GPP,

Geophysical Research Letters 10.1029/2024GL111725
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Note that with the above definition, net CO2 release into the atmosphere has a positive sign, net CO2 uptake from
the atmosphere has a negative sign, and that individual gross fluxes are strictly positive by definition. Lateral
fluxes such as riverine fluxes are neglected as DGVMs do not account for them and as they are small compared to
the gross fluxes in the SAT region (Liu et al., 2024).

2.3. TM5‐4DVAR–Top‐Down CO2 fluxes

In an inversion, CO2 observations are assimilated to obtain CO2 fluxes between the atmosphere and the biosphere
and ocean. We use the Tracer Model‐5 four‐dimensional variational inversion system (TM5‐4DVAR) for this
purpose (Basu et al., 2013), which assimilates atmospheric CO2 mole fractions and estimates CO2 fluxes
considering prior flux estimates and uncertainties in measurements and prior fluxes.

We use two different data sets as input for the inversion system:

1. In situ CO2 data only: CO2 GLOBALVIEWplus v5.0 ObsPack

This is a collection of worldwide in situ measurements of the atmospheric CO2 mole fractions (Cooperative
Global Atmospheric Data Integration Project, 2019). The global spatial coverage is inhomogeneous and the
Southern Hemisphere is sparsely covered. Apart from monthly aircraft profiles over Amazonia, there are only
three surface stations in the entire SAT region, one located in the Amazon forest, one in the east of Brazil and one
in the south. We name the resulting fluxes TM5‐4DVAR/IS.

2. In situ CO2 data plus XCO2 from the Greenhouse Gases Observing Satellite (GOSAT)

In addition to the in situ data set (i), we leverage GOSATXCO2 from 2009 to 2018. Due to its good coverage over
the SAT region this adds novel and substantial information to the inversion. We use data obtained from the
radiative transfer and retrieval algorithm RemoTeC v.2.4.0 (Butz, 2022; Butz et al., 2011), as well as the NASA
Atmospheric CO2 Observations from Space (ACOS) algorithm v.9 (Taylor et al., 2022). The XCO2 records and
individual CO2 fluxes of both retrieval algorithms are shown in Figure S3 in Supporting Information S1 along
with further information on data selection and sampling (Texts S2.1 and S2.2 in Supporting Information S1). In
the following, we refer to the mean of atmospheric inversions assimilating the two retrieval products as TM5‐
4DVAR/IS+GOSAT, while the spread between the two inversions is a measure of uncertainty. Prior fluxes for
the biosphere were taken from the Carnegie‐Ames‐Stanford‐Approach (CASA) biogeochemical model (van der
Werf et al., 2010). All prior fluxes are based on climatological averages and exhibit a yearly repetitive seasonal
cycle without interannual variability (Metz et al., 2023).

In our setting, TM5‐4DVAR is configured to estimate weekly biosphere and oceanic fluxes on a regular 3°
(longitude) × 2° (latitude) global grid while fire and fossil emissions are imposed from the Quick Fire Emissions
Data set and the Open‐source Data Inventory for Anthropogenic CO2, respectively. To avoid large sampling
effects on the coastline, all flux data sets are mapped on a 1° × 1° grid before applying the TRANSCOM region
mask to aggregate over the entire region and 1 month.

2.4. ERA5‐Data

To understand the relation between carbon fluxes and climatic conditions, we use temperature, upper layer soil
moisture (0–7 cm depth), and precipitation data sets of the European Center for MediumRangeWeather Forecasts
ERA5‐land reanalysis product (Muñoz Sabater, 2019). ERA5 data has a spatial resolution of 0.25° × 0.25° and
provides monthly averages. ERA5 data sets are aggregated on a 1° × 1° grid before performing the region
selection.

3. Results
3.1. Bottom‐Up: DGVMs Show Inconsistent Carbon Dynamics

We analyze the NEE of 18 different TRENDY models from 2009 to 2018 and find substantial deviations from
each other, both in magnitude and seasonal cycle (see gray lines in Figure 1). The models suggest fundamentally
different carbon dynamics for the SAT region. They differ in the interannual variability, as well as in the seasonal
cycle. While some models show an uptake in the austral summer months, others show an uptake in the winter
months. Finally, also the magnitude of the monthly fluxes is different by up to an order of magnitude. The large
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differences suggest that the carbon balance of the SAT region is not well understood and cannot be constrained by
multiple DGVMs alone.

One must be cautious when using the mean of these models, as it can be disproportionately influenced by those
with large seasonal amplitudes, which may result in biased results for the model mean. This reinforces the recent
findings by Foster et al. (2024) who analyzed the North American carbon budget and found that many DGVMs
are not consistent amongst each other. This diagnosis requires independent measurement‐based information on
the actual net fluxes to identify the models representing the seasonal carbon dynamics in the SAT region well.
Therefore, we use the satellite‐based top‐down CO2 fluxes to analyze the carbon fluxes over the SAT region from
2009 to 2018.

3.2. Top‐Down: TM5‐4DVAR CO2 fluxes Exhibit Discriminating Power

We analyze the top‐down fluxes TM5‐4DVAR/IS and TM5/4DVAR/IS+GOSAT to provide independent in-
formation on the net CO2 fluxes over SAT region. While the timing of the seasonal cycle agrees well between the
two inversion fluxes, the magnitude of the peaks and dips differ slightly (Figure S5 in Supporting Informa-
tion S1). The differences are smaller than differences between the TRENDY models and are most likely due to
sparseness of the in situ data offering limited information on SAT fluxes (see Text S2.3.2 in Supporting Infor-
mation S1 for more details). To this end, in the following we use the TM5‐4DVAR/IS+GOSAT fluxes to fully
exploit all available measurements within the inversion. We find that every year the maxima of the TM5‐4DVAR/
IS+GOSAT fluxes occur in September or October while the minima occur between January and March (red line
in Figure 1). While the timing of the seasonal cycle stays constant over the course of the years, the magnitude
shows some inter‐annual variations (Figure 1 and Figure S5 in Supporting Information S1). However, in this
study, we focus further investigations on the mean seasonal cycle as it is consistent throughout the entire time
periods.

Figure 1. (a) Monthly Net ecosystem exchange (NEE) flux of the entire South American Temperate (SAT) region of the 18
TRENDYmodels (in gray) and of the TM5‐4DVAR/IS+GOSATminus GFED 4.1 fire fluxes (Randerson et al., 2018) (red).
The shading indicates the spread between the two retrievals RemoTeC and Atmospheric CO2 Observations from Space
(TM5‐4DVAR/IS+RemoTeC and TM5‐4DVAR/IS+ACOS). The mean of all TRENDY models is shown as black line.
Panel (b) shows the mean seasonal cycle from 2009 to 2018 of the TM5‐4DVAR/IS+GOSAT inversions‐GFED 4.1 and of
all TRENDY models and their mean. The shading indicates the standard deviation of the years.
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While not the focus of this study, we additionally compare to the fluxes from the OCO‐2 MIP ensemble (Byrne
et al., 2023) for the available shorter period, 2015–2018, and find that the timing of the seasonal cycle agrees well
with TM5‐4DVAR/IS+GOSAT fluxes, but OCO‐2 MIP shows a slightly smaller amplitude (Figure S6 and S7,
Text S3 in Supporting Information S1). The difference in the magnitude of the flux maxima and minima between
GOSAT and OCO‐2 based fluxes are much smaller than the spread of the TRENDY model ensemble.

The consistent seasonal cycle of the top‐down constraints on net CO2 fluxes for the SAT region, creates a
discriminating power for the TRENDY products. The net fluxes of TM5‐4DVAR/IS+GOSAT provide the
required novel and independent information to select those DGVMs, which are able to capture the seasonal cycle
correctly.

3.3. Combining Bottom‐Up and Top‐Down to Gain Process Understanding

We identify the DGVMs whose NEE compares best to the TM5‐4DVAR/IS+GOSAT net fluxes minus GFED
fire emissions in the SAT region. Then, we examine the gross fluxes from these selected DGVMs to better
understand the driving processes. Grouping the DGVMs, we find models with the same timing and magnitude as
the TM5‐4DVAR/IS+GOSAT estimate (selected strict models: CLASSIC and OCN). Some models show a
similar timing and magnitude, but the match of the individual DGVMs is worse than those of the selected strict
models (selected loose: ISBA‐CTRIP, ISAM, YIBs and ORCHIDEE). Seven models show a clear time shift with
respect to TM5‐4DVAR/IS+GOSAT fluxes and a much higher amplitude (other high amplitude: VISIT, DLEM,
CABLE‐POP, LPX‐Bern, ORCHIDEEv3, CLM5.0 and SDGVM). Finally, the five remaining models (other low
amplitude) do not capture the top‐down seasonal cycle at all. They generally have a smaller amplitude and further
they show pronounced time shifts in their seasonal cycle compared to the top‐down estimate (Figure S8 in
Supporting Information S1). The selection of models does not change when using NBP (see Figure S9 in Sup-
porting Information S1) rather than NEE (see Figure 1).

We focus on the DGVMs, which can represent the carbon dynamics of the SAT region in accordance with the
TM5‐4DVAR/IS+GOSAT inversions (selected strict models) to examine the processes underlying the net carbon
dynamics. Note that the analysis of the selected loose models leads to the same findings as for the strict models
despite a slightly worse agreement of the individual models to TM5‐4DVAR/IS+GOSAT.

To get insights into the processes leading to the observed net fluxes, we partition the NEE into the gross fluxes
GPP and TER, of which the latter consists of Ra and Rh for the selected strict models (see Figure 2). While the
general shape of GPP and TER is similar with a minimum in July to September and a maximum in December to
January, TER precedes the rise of GPP, leading to the net positive NEE flux with maximal emissions in
September to October. The net negative NEE in the months December to March, however, is mainly due to a
difference in the magnitude of both gross fluxes, while their timing is in phase. Differentiating TER further, one
can see that the early rise of respiration is driven by Rh whereas Ra remains in phase with the GPP signal.

A similar pattern of a dephasing between Rh and GPP was found by Metz et al. (2023) over the semi‐arid regions
of Australia occurring shortly after rainfall events following dry periods. To study if the wetting of dry soils may
also play a role in the SAT region, we further divide the area into humid and arid parts and conduct a sub‐regional
analysis of fluxes in conjunction with precipitation, temperature and soil moisture.

3.4. Sub‐Regional Analysis: Arid Regions Influence Seasonal Cycle

We analyze the relation between environmental parameters and the observed ecosystem fluxes in the humid, arid
east, and arid west regions of the SAT region as outlined in Sect. 2.1 and shown in Figure S1 in Supporting
Information S1, as well as Figure 3. For all three regions, precipitation is higher between October and April than
in the rest of the year. During this time, the arid regions receive a considerable amount of precipitation. The upper
soil water content is mainly driven by precipitation and evaporation. In average, the arid regions have consid-
erably lower soil water content than the humid regions. The arid east region exhibits a pronounced seasonal cycle
of soil water content with low values from July to September (<0.2 m3/m3). Details on precipitation, evaporation,
soil moisture and temperature are given in Figures 3d–3f.

We analyze the DGVM fluxes and compare them to TM5‐4DVAR/IS+GOSAT for the three subregions. Note
that the percentage uncertainties of inversely derived CO2 fluxes—such as those from TM5‐4DVAR—increase as
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the subregion size decreases (Chevallier et al., 2010; Zhang et al., 2023). Studying net and gross CO2 fluxes for
these three identified regions (see Figures 3a–3c) along with the precipitation, we find that the humid area exhibits
much larger gross fluxes of GPP and respiration compared to both arid regions. However, the net fluxes in the arid
east region are slightly larger than the net flux in the humid region. The reason is that for the humid area
(Figure 3b), GPP and Ra and Rh are in phase. However, for the arid east region (and to a lesser extent in the arid
west region), we find an early increase of Rh with respect to GPP and Ra. The different land cover types in the arid
east and arid west region (Figure S2 in Supporting Information S1) affect their sensitivity to climate (Poulter
et al., 2011; Teckentrup et al., 2023) and therefore explain the slightly different behavior of both arid regions. The
increase of Rh coincides with precipitation onset and soil rewetting after a dry period. The shift in the mean
seasonal cycle of Rh with respect to GPP and Ra leads to a positive net flux of CO2 into the atmosphere reaching a
maximum amplitude in September and October and dominating the seasonal carbon dynamics of the entire SAT
region. The sensitivity of Rh to soil rewetting after the dry season can also be seen over the course of the entire
time series. The magnitude of the soil respiration correlates to the magnitude of precipitation in the rewetting
month (Figure S10 in Supporting Information S1).

Flux tower measurements can provide the ground truth on local and short‐term carbon dynamics and support
findings from regional analyzes as conducted here, however they are rare in the semi‐arid parts of the SAT region.
There is only one FLUXNET station (BR‐CST Caatinga Serra Talhada station (Antonino, 2022), Text S4 in
Supporting Information S1) in the semi‐arid parts of our study region. The measurements show an immediate
response of respiration triggered by rain pulses after dry periods and preceding the uptake by GPP (see Figures
S11 and S12 in Supporting Information S1). While these data are not representative of the entire SAT region, and
only 1 year of measurements exists, this local flux behavior is consistent with the mechanism found on continental
scale in this study. It demonstrates the existence of local rain induced short term respiration pulses at the
beginning of the rainy season. The sum of local pulses may explain the large‐scale signal seen in DGVMs and
from the inversion.

Figure 2. NEE from TRENDY (gray, selected strict) can be further partitioned into gross primary production (GPP) (green)
and terrestrial ecosystem respiration (Ra+Rh, dark blue), with the latter being the sum of autotrophic (Ra, cyan dotted) and
heterotrophic (Rh, blue dashed) respiration. The NEE (NBP‐GFED) from TM5‐4DVAR/IS+GOSAT is shown in red
dashed. Net biome production for TRENDY (black) and TM5‐4DVAR (red) are shown additionally, but fire emissions are
small compared to the mean net fluxes. Note that respiration fluxes release CO2 into the atmosphere and GPP takes up carbon
from the atmosphere. However, both are illustrated as positive fluxes.
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4. Conclusions
The SAT region is poorly constrained in terms of carbon fluxes. This follows from a low density of in situ CO2

and flux tower measurements in this region. Therefore, large uncertainties in carbon flux estimates exist,
hampering an understanding of relevant carbon exchange processes. We analyzed the seasonal cycle of the land‐
atmosphere carbon fluxes in the SAT region from 2009 to 2018. The missing process understanding of terrestrial
gross fluxes manifests itself in the large disagreement between different DGVMs and calls for considering
additional independent information to quantify the carbon dynamics. We used GOSAT XCO2 measurements
along with in situ CO2 measurements in a TM5‐4DVAR atmospheric inversion to obtain net carbon fluxes in the
SAT region and to identify the TRENDY models that are most consistent with TM5‐4DVAR CO2 fluxes. While
the top‐down approach only provided the net CO2 flux, it enabled the selection of the consistent process‐based
models to analyze the gross fluxes and drivers.

The CLASSIC and OCN models matched the TM5‐4DVAR/IS+GOSAT fluxes best. A mean of the fluxes of
these two models (selected strict TRENDY models) was calculated. Within the selected strict TRENDY models,
we further differentiated into the gross biospheric fluxes GPP, heterotrophic and autotrophic respiration. We
found that an early increase in heterotrophic respiration compared to the rise in GPP and autotrophic respiration
leads to a maximum release in NBP in September to October. The early increase of heterotrophic respiration
coincided with the start of precipitation and soil rewetting after the dry season. While none of the models account
for soil microbial activity explicitly, a quick reaction of Rh to precipitation seems to be a necessary, but not
sufficient prerequisite for models to accurately capture the CO2 flux dynamics in semi‐arid SAT region (Text S5
in Supporting Information S1).

Figure 3. Left: Map of SAT region (colored) with separation between arid (yellow) and humid (green) areas. For more detail see Figure S1 in Supporting Information S1.
Left column: Mean seasonal cycle of TRENDY fluxes (NBP, GPP, Ra+Rh, Rh, Ra and NEE) in the arid east (a), humid (b) and arid west (c) of the SAT region. As a
reference, also the TM5‐4DVAR/IS+GOSAT NEE and NBP for the respective subregion is shown although uncertainties of the inversion increase with smaller areas.
The colored area around each line indicates the standard deviation from the mean of the models. In the lower part of each panel, the ERA5 precipitation is shown as bar
plot. Right column: Mean seasonal cycles of monthly precipitation per day, temperature, upper layer soil water content and evaporation, all taken from ERA5, for the
arid east region (d), humid region (e) and arid west region (f). The colored areas around each line represent the standard deviation from the year‐to‐year variability. Note
that the y‐scale differs for each region.

Geophysical Research Letters 10.1029/2024GL111725

VARDAG ET AL. 7 of 10

 19448007, 2025, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
111725 by H

eidelberg U
niversity, W

iley O
nline L

ibrary on [05/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

133



We next analyzed what region drives the seasonal cycle in the SAT subcontinent. We found that the humid
regions exhibit the largest gross fluxes. However, nevertheless the arid east region dominates the net flux of the
SAT region due to a distinct early rise of heterotrophic respiration triggered by precipitation after long periods of
drought. In the humid region, GPP, heterotrophic and autotrophic respiration are large, but in phase such that the
gross fluxes mostly compensate each other and do not contribute as much to the net flux seasonal cycle as the arid
east region. While the dominant role of the arid regions for the seasonal carbon cycle may be unexpected as gross
fluxes are considerably smaller than in the humid area, the importance of other semi‐arid regions has been re-
ported elsewhere (Ahlström et al., 2015; Poulter et al., 2014). Our findings strengthen the importance of semi‐arid
regions for the SAT region.

In particular, the fast increase of NEE after rainfall was also observed in other semi‐arid regions (Jarvis et al.,
2007; Metz et al., 2023). Metz et al. (2023) found a CO2 pulse at the end of the dry season in Australia, which they
linked to soil microbes that were dormant during the dry period and were activated when the soil was re‐wetted.
Our results suggest that soil rewetting processes in semi‐arid areas play an important role in the SAT region, as
well. Therefore, soil rewetting must be represented in vegetation and climate models accurately to constrain the
regional carbon dynamics and finally reduce uncertainties of the global carbon budget.

Data Availability Statement
GOSAT/RemoTeC2.4.0 XCO2 data can be obtained from https://doi.org/10.5281/zenodo.5886662 (Butz, 2022)
(last access: 2024‐05‐15). GOSAT/ACOS data are available at https://oco2.gesdisc.eosdis.nasa.gov/data/
GOSAT_TANSO_Level2/ACOS_L2_Lite_FP.9r/ (OCO‐2 Science Team et al., 2019, https://doi.org/10.5067/
VWSABTO7ZII4). OCO‐2 data are available at https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_10r/
summary (OCO‐2/OCO‐3 Science Team et al., 2022). The monthly CO2 net biome productivity data for SAT
region using TM5‐4DVAR can be obtained from Artelt et al. (2024). The processing code can be obtained from
Artelt and Metz (2024). The MIP data can be downloaded from https://www.gml.noaa.gov/ccgg/OCO2_v10mip/
(Baker et al., 2022) (last access: 2022‐11‐06). ERA5‐land data records contain modified Copernicus Atmosphere
Service Information [2021] available at the Climate Data Store https://cds.climate.copernicus.eu/datasets/rean-
alysis‐era5‐land‐monthly‐means (Muñoz Sabater, 2019, last access: 2021‐12‐20). Eddy covariance data was
collected by the FLUXNET community and is part of the AmeriFlux network available under the AmeriFluxCC‐
BY‐4.0License at https://ameriflux.lbl.gov/login/?redirect_to=/data/download‐data/. TRENDYv9 model
output is available upon request from https://mdosullivan.github.io/GCB/ (Sitch et al., 2020). GFED fire emis-
sions are available from https://www.geo.vu.nl/~gwerf/GFED/GFED4/ (Randerson et al., 2018). MODIS
MCD12C1 data are available from https://search.earthdata.nasa.gov/search with the following DOI: https://doi.
org/10.5067/MODIS/MCD12C1.061 (Friedl and Sulla‐Menashe, 2022).
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Introduction  

To provide the interested reader with background information, we have included 

supporting information on how we define and substructure the South American 

Temperate region (Figure S1), what landcover types cover the SAT region (Figure S2), the 

GOSAT XCO2 data (Figure S3 and S4), the GOSAT based fluxes (Figure S5), OCO-2 XCO2 

data (Figure S6) and the OCO-2 MIP fluxes (Figure S7), the grouping of TRENDY models 

(Figure S8), the NBP of the TM5/4DVAR/IS+GOSAT  flux compared to the NBP of the TRENDY 
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2 

 

models (Figure S9), the interannual variation of soil respiration response to precipitation 

(Figure S10) as well as the flux tower data from the site BR-CST (Figure S11 and S12). We 

provide some background on the TRENDYv9 models and their references in Table S1. We 

have included supporting information on how we define and substructure the South 

American Temperate region (Text S1), the GOSAT XCO2 data (Text S2), the GOSAT based 

fluxes (Text S2), OCO-2 XCO2 data (Text S3) and the OCO-2 MIP fluxes (Text S3), the flux 

tower data from the site BR-CST (Text S4) as well as additional information about the 

selected Trendy models (Text S5).  
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Figure S1. South American Temperate (SAT) region is shown colored. The yellow color 

denotes arid areas (value of <1 mm/day/grid cell mean monthly precipitation for at least 

four months) and green shows the humid part of the SAT region. Positions of aircraft 
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4 

 

profiling locations, shipboard sampling locations, in situ surface and tower CO2 

measurement and the FLUXNET station are marked as well. 

 

 

Fig. S2: Land cover map of South America based on based on MODIS (MCD12C1) data 

(Friedl and Sulla-Menashe, 2022). 
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Figure S3: XCO2 measurements by the satellite GOSAT (red: retrieved by ACOS, orange: 

retrieved by RemoTeC) for the SAT region. Panel (a) shows the total time series of 

monthly mean XCO2 values 2009-2019. Panel (b) shows the mean seasonal cycle for the 

same time period. The shading in the right panel indicates the standard deviation from 

the mean flux value of each month. 
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Figure S4: Seasonal cycle of XCO2 in the SAT region calculated by TM5-4DVar from the 

optimized carbon flux when assimilating different data sets and co-sampling the XCO2 

data on GOSAT-RemoTeC.  
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Figure S5: TM5-4DVar CO2 fluxes in the SAT region assimilating different data sets for its 

optimization. Positive values represent carbon emissions, negative values a carbon 

uptake. The left panel of the figure shows the time series of monthly mean carbon flux 

values from 2009 to 2019. The right panel shows the MSC for the same time period. The 

shading in the right panel indicates the standard deviation from the mean flux value of 

each month.  
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Figure S6: Measured OCO-2 XCO2 values in SAT region from 2015-2020. Left: Whole 

time series of monthly mean XCO2, right: Mean seasonal cycle over 2015-2020.  
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Figure S7: CO2 fluxes in SAT region using different data sets for assimilation. Left: Time 

series. Right: Mean seasonal cycle (mean from 2015 to 2020).  
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Figure S8: NBP in the SAT region as seen by the four TRENDY model groups compared 

to the TM5-4DVAR/IS+GOSAT flux. Panel (a) shows the entire time period. The shading 

of the TRENDY groups illustrates the standard deviation between the models of a group. 

The shading of TMs-4DVAR/IS+GOSAT shows the spread of TM5-4DVAR/IS+ACOS and 

TM5-4DVAR/IS+RT. Panel (b) shows the mean seasonal cycle. Here, the shading indicates 

the standard deviation over the years. 
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Figure S9: Total TM5/4DVAR/IS+GOSAT NBP flux (red) compared to the NBP of the TRENDY 
models (gray). Note that some of the TRENDY models account for fire fluxes, while others do not 
(see Table S1).   
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Figure S10: For the month of October (which is the onset month of precipitation after 

the dry season), we plot the precipitation and soil respiration anomalies, so the 

difference to the long-term (2009-2018) October mean in the arid east region.   

 

 

 

 

Figure S11: NEE (dark green) measured from 2014 to 2015 of the FLUXNET BR-CST 

station and precipitation (blue). TER (nighttime NEE) and GPP as provided in the 

FLUXNET data set are given in orange and light green, respectively. The time series starts 

on the 160th day of the year 2014 (9th of June) and ends on day 210 in year 2015 (29th 

of July). The black vertical line indicates the start of 2015.  
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Figure S12: Mean of half-hourly nighttime NEE (= TER) (yellow) and daytime NEE (green) 

and the daily precipitation from the BR-CST AmeriFlux station of days 310 to 340 in 2014.  
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Table S1. TRENDYv9 DGVMs and their references and characteristics. S3 model runs were 

used for all models.  

 

 Model and reference 

number  

Cabl

e-
pop 

[1]  

Class

ic  
 

[2]  

CLM

5 
 

 [3]  

DL

ME 
 

[4]  

IBIS  

 
 

[5]  

ISA

M  
 

[6]  

ISB

A  
 

[7]  

JSB

ACH 
 

 [8]  

JUL

ES.E
S.10 

[9]  

LPX.

Bern 
 

 [10]  

LPJ 

 
 

[11]  

OCN  

 
 

[12]  

ORC

HID
EE 

[13]  

ORC

HID
EE.C

NP 

[14]  

ORC

HID
EEv

3 

[15]  

SDG

VM  
 

[16]  

VISI

T  
 

[17]  

YIBs  

 
 

[18]  

Selected  

 

 
Original Resolution  

   

No 

 

  
1x1  

Yes  

  

 
2.18

5x2.

185  

No 

   

  
1.25

x0.9

375  

 No 

 

  
0.5x

0.5  

 No 

 

  
1x1  

No 

  

  
0.5x

0.5  

No 

  

  
1x1  

No 

  

  
1.87

5x1.

875  

No 

  

  
1.87

5x1.

25  

No 

  

  
0.5x

0.5  

No 

  

  
0.5x

0.5  

 Yes 

  

 
1x1  

 No 

 

  
0.5x

0.5  

 No 

 

  
2x2  

No 
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Text S1. South American Temperate region  

South America has large dry areas (i.e. hyper-arid, arid, semi-arid and dry sub-humid regions 

as defined by the United Nations Environment Programme World Conservation Monitoring 

Centre (UNEP-WCMC)) representing about 30% of the continent’s total area and 9% of the 

global drylands (Mitsugi, 2019) – most of which are located in the SAT region. The SAT region 

as defined by the TRANSCOM-3 experiment (colored in Fig. S1) spans from south of the 

Amazon rainforest in the northern part down to Patagonia, encompassing a diverse array of 

climatic zones (Cherlet et al., 2018).  The region consists of arid/semi-arid areas in the north-

east and in the mountainous west and humid areas in the center (see Fig. S1). As a threshold 

for arid regions, we use a mean monthly precipitation rate of 1 mm/day/grid cell for at least 

four consecutive months. We choose this threshold such that we assure dry soils for several 

months in the arid regions. These drought conditions are required to observe effects such as 

the Birch effect (Metz et al., 2023). Applying this threshold divides the SAT region into two 

approximately equally sized parts. As the arid region is divided by the humid region in the 

middle, we further differentiate the arid region into east and west. While the east arid region 

is dominated by savannas and croplands, the western region is mostly covered by shrublands 

and bare soil due to high altitudes (see Fig. S2). Gross fluxes from the SAT area are aggregated 

on a 1°x1° grid before applying the TRANSCOM region mask. As the land-ocean masks among the 

TRENDY models differ, the mean flux is in units μgCO2m−2s−1, then multiplied by the SAT region area 

to obtain total fluxes and converted to TgC/month/region. Region refers to entire SAT region, humid, 

arid, arid east or arid west region.  

 

Text S2. GOSAT 

 

S.2.1. GOSAT XCO2  

Column-average dry-air mole fractions of CO2 (XCO2) are retrieved from GOSAT 

measurements from 2009 to 2018 using two different retrieval algorithms: RemoTeC radiative 

transfer and retrieval algorithm v.2.4.0 (Butz et al., 2011; Butz et al., 2022) as well as the NASA 

Atmospheric CO2 Observations from Space (ACOS) algorithm v.9 (Taylor et al., 2022). Only 

measurements of good quality flag were used (e.g. xco2_quality_flag = 0 for ACOS). The 

provided data is already bias-corrected by comparing it to the Total Carbon Column Observing 

Network (TCCON) and deriving global correction factors. The ACOS retrieval keeps 
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considerably more measurements than RemoTeC (roughly factor 2), especially over the 

Tropics and along the Andes mountains. This is due to stricter filter criteria applied by the 

RemoTeC algorithm. Concentrations are averaged and aggregated over a month over the 

whole region.  

 

To analyze the regional XCO2 enhancements, we remove the general increase of CO2 

concentrations in the atmosphere by detrending the concentration data with the annual mean 

CO2 growth rates reported by the National Oceanic and Atmospheric Administration (NOAA) 

based on globally averaged marine surface data as described in Metz et al. (2023). The 

detrended XCO2 measurements (Fig. S3) from RemoTeC show a clear decrease in 2014, but 

the amplitude remains approximately constant at 1.7 ppm. The ACOS retrieval shows a similar 

behavior and shift, but the amplitude reduces after the shift in 2014 from 2.2 ppm to 1.7 ppm. 

The origin of the shift is unclear due to lack of available reference data during this time period. 

It therefore remains an open question whether the shift is due to technical changes made 

during this period or if it has a biophysical origin.  

XCO2 measurements by GOSAT show a clear mean seasonal cycle reaching the highest XCO2 

values in July to August and lowest XCO2 values in February to March (see Fig. S3). Both 

retrieval algorithms see the same seasonal pattern, but ACOS retrieves slightly lower XCO2 

enhancements compared to RemoTeC from September to February.  

 

 

S.2.2 Sampling effect  

Differences in the XCO2 values between data products partly stem from the differences in the 

spatial coverage of the data over the SAT region. These differences are mainly caused by 

differences in filter criteria applied when using the two different algorithms ACOS and 

RemoTeC. To analyze the effect of sampling, we co-sample the forward transported fluxes to 

RemoTeC soundings (Fig. S4). One can see that TM5-4DVAR/IS+ACOS and TM5-

4DVAR/IS+RemoTeC closely follow each other and show the same seasonal cycle. Therefore, 

differences in XCO2 (Fig. S3) are mainly due to sampling effects.  Both co-sampled satellite 

retrievals deviate substantially from the prior and the in situ based TM5-4DVAR XCO2 

concentration showing the added value of the satellite measurements for optimizing the CO2 
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fluxes.  These differences are expected as the coverage of in situ data is poor in the SAT region. 

This also leads to TM5-4DVAR/IS closely following the prior.  

 

 

S.2.3. GOSAT fluxes 

S.2.3.1 Comparison of CO2 fluxes between ACOS and RemoTeC 

To obtain fluxes, we assimilate observation data using TM5-4DVAR following Sect. 2.3. For 

both retrievals, individual fluxes over the SAT region are obtained. While we use the mean in 

the main manuscript, we here also discuss differences between fluxes from both retrieval 

algorithms. The flux maxima between the two retrievals (TM5-4DVAR/IS+RT and TM5-

4DVAR/IS+ACOS) are slightly shifted by one month and the magnitude of fluxes differs by 

about 60 TgC/month/region (Fig. S5). Both retrievals have a similar shape and show larger 

maxima than the prior and the TM5-4DVAR/IS. For the minimum fluxes, the two TM5-

4DVar/GOSAT setups agree better in magnitude, also better than the agreement to the TM5-

4DVAR/IS setup but show slight differences in their shape. TM5-4DVAR/IS+RT fluxes exhibit a 

more distinct minimum than TM5-4DVAR/IS+ACOS. The general shape of both products is 

similar and deviates from TM5-4DVAR/IS in terms of amplitude.  

 

 

S.2.3.2 Comparison between TM5-4DVAR CO2 fluxes and prior 

Consistently among TM5-4DVAR/IS and TM5-4DVAR/IS+GOSAT, the maxima of the estimated 

fluxes occur in September or October while the minima occur between January and March 

(Fig. S5). While the timing of the seasonal cycle coincides between the two inversions, there 

exist differences in the magnitude of the peaks (carbon release) and dips (carbon uptake) 

although differences are not as large as for the TRENDY models.  

When assimilating the in situ data only (TM5-4DVAR/IS) the inversion estimates larger dips at 

the end of each year compared to the dips in the prior fluxes. When additionally assimilating 

GOSAT data, these dips become much less pronounced, but at the same time the peaks 

increase relative to TM5-4DVAR/IS and the prior. The large impact the additional assimilation 

of GOSAT XCO2 has on the flux estimates suggests that, due to their sparseness, the in situ 

data alone have limited information about SAT fluxes.  
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The flux magnitude shows different interannual variations (Fig. S5). In particular, the TM5-

4DVAR/IS+GOSAT inversion shows a shift in the year 2014. This shift is also present in the 

observed XCO2 values over the SAT region, which are significantly lower after 2015 than before 

(see Fig. S3 und S4). While mean annual TM5-4DVAR/IS+GOSAT fluxes are positive from 2010 

to 2013, they become negative thereafter suggesting a shift from a carbon source to a carbon 

sink. This behavior is not captured by TM5-4DVAR/IS fluxes (see Fig. S5). Due to lack of 

additional data constraints, the reason for this shift remains unclear. In this study, we focus 

our investigation on the mean seasonal cycle rather than on the interannual variability.  

 

 

Text S3. OCO-2  

 

S3.1. OCO-2 XCO2 

The Orbiting Carbon Observatory-2 (OCO-2) satellite is in orbit since 2014 and provides XCO2 

data with high resolution (<3km2).   OCO-2 measures in the NADIR and GLINT viewing 

geometries. The ACOS retrieval (v10) is used to retrieve XCO2 data from measured spectra.  

When comparing XCO2 measurements from GOSAT and OCO-2 for the years 2015-2018, one 

finds a generally good agreement between both satellites – especially with respect to the 

shape of the XCO2 enhancements and the timing of the peaks (see Fig. S6). The timing of the 

maximum and minimum XCO2 coincides. OCO-2 has a slightly faster decrease in the CO2 

concentration after reaching its maximum, especially compared to GOSAT-RemoTeC. 

However, differences between GOSAT-RemoTeC and GOSAT-ACOS, which were shown to 

mainly originate from sampling errors, exceed differences between both satellites using the 

same ACOS retrieval.  

 

 

 S3.2 OCO-2 CO2 fluxes 

Within the Model Intercomparison Project (MIP) global OCO-2 measurements were 

assimilated for 14 different global flux inversion models (Byrne et al., 2023) and an ensemble 

mean was computed. Comparing the CO2 fluxes from OCO-2 and GOSAT for the years 2015-

2018 it becomes apparent that maximum and minimum in CO2 fluxes align well (Fig. S7). The 

principal shape of the seasonal cycle is the same reinforcing the net seasonal cycle of the SAT 
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region with maxima in August to October and minima from January to March. However, the 

MIP ensemble using OCO-2 and in situ measurements retrieves fluxes with a slightly smaller 

amplitude than the GOSAT-retrieved fluxes in close agreement to the MIP ensemble using in 

situ data only.  

 

Text S.4. Local flux tower measurements 

While the TM5-4DVAR CO2 fluxes provide a regional estimate of the carbon dynamics in the 

SAT region, flux towers can provide an understanding of the local gross fluxes leading to the 

net effect and can help localize and understand the origin of the net flux. For now, only one 

flux tower station is available for a short time period (2014-2015) in the semi-arid region of 

the SAT region. The station is BR-CST Caatinga Serra Talhada station (Antonino, 2022). It is part 

of the FLUXNET towers within the AmeriFlux network. The station is located at 7.968 °E, 

38.384 °S at an altitude of 468m above sea level in a seasonal tropical dry forest (Caatinga) in 

the semi-arid region of Brazil. The measured net flux can be further portioned into GPP and 

TER assuming that nighttime respiration can be interpolated into the day under consideration 

of temperature changes.  The whole time series of net carbon fluxes is shown in Fig. S11. We 

find one heavy rain event following a period of low precipitation. This event was in November 

2014 (Day 321-323), on which precipitation reached 40 mm/day.  

 

Fig. S12 shows the precipitation event on days 321-323, which was followed by a direct 

response of increasing NEE as soon as the first precipitation occurs. As there is no 

photosynthesis occurring at night, NEE at night corresponds to a pure respiration signal and 

can be interpolated to the entire day. Daytime NEE gives the net ecosystem exchange 

balancing photosynthesis and respiration. One can see that the precipitation event triggers an 

immediate increase in respiration (NEE nighttime) leading to a positive NEE (daytime). While 

respiration remains high in the consecutive days, the NEE (daytime) decreases and reaches its 

original value about a week after the rainfall event. A further partitioning between autotrophic 

and heterotrophic respiration is not possible and would require additional soil chamber 

measurements.  

 

While the station is not representative of the entire arid SAT region, the local observations 

strengthen the assertion that the regional scale net flux could indeed be attributed to local 
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responses of respiration to rain pulses after dry periods as suggested by the DGVMs. This 

might indeed explain the large CO2 peaks in September retrieved in flux inversions over the 

SAT region.  

 

Text S5. Selected DGVMs: CLASSIC and OCN  

 

In the CLASSIC model, both respiration and GPP are influenced by soil moisture. Soil 

respiration is categorized into two components: litter respiration, which is driven by moisture 

near the soil surface, and soil carbon respiration, which is driven by moisture deeper in the 

soil. GPP is regulated by soil moisture within the rooting zone. Consequently, litter respiration 

is immediately activated following precipitation events, whereas GPP increases delayed as the 

precipitation percolates into the deeper soil layers. 

In the OCN model, GPP for grasses and rain-green plant functional types is contingent on 

surpassing a critical soil moisture threshold. For GPP to significantly increase, a sufficiently 

high leaf area index (LAI) must develop, which is driven by the available daily carbon. Both the 

requirement for soil moisture to accumulate after the onset of the rainy season and the 

allocation of carbon from below ground result in a delayed GPP increase. Concurrently, as GPP 

begins to rise, plant respiration is activated. Soil respiration is influenced by soil moisture 

throughout the entire soil profile, especially in the upper layers. Because of its sensitivity to 

moisture in the upper soil layers, soil respiration can increase rapidly following precipitation 

events.  
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Abstract 

The terrestrial biosphere is the largest net sink of global CO2, but its sink capacity varies 

considerably from year to year depending on environmental conditions. Recent work has 

highlighted the importance of semi-arid ecosystems in interannually varying global concentrations 

of atmospheric CO2. We therefore need to better understand the dynamics and drivers of the CO2 

fluxes and their modelling along semi-arid to humid gradients. Respiration is an even more 

uncertain flux compared to photosynthetic fluxes and its spatially variability is not well understood. 

Here we focus on terrestrial ecosystem respiration (TER) in Australia, and, specifically, on 

disentangling the impacts of temperature and soil water on TER. 

We use nighttime net ecosystem exchange (NEE) data as a viable proxy for daily TER collected 

by 40 flux tower stations within the OzFlux network over the last 20 years in Australia. These 

stations cover a broad range of climatic conditions enabling us to analyze the dependence of TER 

on soil moisture under varying aridity and temperature conditions. We find that the sensitivity of 

TER to soil moisture is the strongest in semi-arid regions. In these dry locations, the TER sensitivity 

to soil moisture increases strongly with temperature. Soil respiration fluxes at humid stations are 

large but exhibit low sensitivity to high soil moisture levels indicating that TER at humid stations 

is not water-limited. Using the dynamic global vegetation model LPJ, we show that common model 

approaches assuming increasing TER with increasing soil moisture for all soil moisture levels 

perform poorly in reproducing the observed TER patterns in Australia due to interactions with 

carbon availability and representation of soil hydrology. Hence a more sophisticated description of 
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the dependence of TER on soil moisture is necessary to capture TER dynamics under different 

climatic conditions accurately. 

 

1. Introduction 

Terrestrial ecosystems partly mitigate climate change by taking up around one third of 

anthropogenic CO2 emissions (Friedlingstein et al 2025). The net uptake of CO2 into the 

ecosystems is a balance of two gross CO2 fluxes: The uptake of CO2 by gross primary production 

(GPP) through photosynthesis and the release of carbon by terrestrial ecosystem respiration (TER) 

and fluxes due to disturbances like wildfires (Keenan and Williams, 2018). TER partly offsets GPP 

leading to a net uptake of CO2 into the ecosystems. However, since TER and GPP fluxes are similar 

in magnitude, the net uptake is only a few percent of the TER fluxes (Friedlingstein et al 2025). 

Hence, even small changes in GPP or TER can have a major impact on the net terrestrial carbon 

sink. It is therefore crucial to understand the dynamics and drivers of these gross fluxes as well as 

their sensitivity to environmental parameters to be able to accurately predict the net CO2 exchange 

between biosphere and atmosphere under a changing climate. While there exist vegetation proxies 

for GPP, such as solar-induced fluorescence (Frankenberg et al 2011), the normalized difference 

vegetation index (e.g., Zhou et al 2001) and the enhanced vegetation index (e.g., Shi et al 2017), 

there is no such proxy for TER. This hampers the analysis of TER on global and regional scale and 

calls for bottom-up TER simulations. Accurate TER simulations of present and future conditions 

require a good understanding and an adequate implementation of the sensitivity of TER to 

environmental conditions.  

Temperature has a direct effect on TER by the kinetics of microbially linked enzymatic reactions 

being temperature dependent (Davidson et al 2006, Bond-Lamberty et al 2024). This temperature 

dependence is often referred to as intrinsic temperature sensitivity and described by the Q10 law 

and the Arrhenius formula (Davidson and Janssens, 2006, Tjoelker et al 2001). However, 

ecosystem respiration is not only driven by temperature but is also largely impacted by other 

changing environmental conditions, such as vegetation growth, the amount of root and microbial 

biomass, substrate supply, and desiccation stress (Davidson et al 2006, Unger et al 2012, Moyano 

et al 2013). These additional environmental impacts cause the apparent temperature sensitivity to 

differ from the intrinsic temperature sensitivity and lead to TER dynamics which cannot be 

explained by temperature variability alone. Precipitation and soil moisture thus have a major impact 
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on TER, especially in dry environments (Moyano et al 2013). Reduced soil water can impose 

desiccation stress on microbe communities. Furthermore, variability in soil water also impacts 

supply and transport of substrate and oxygen conditions in the soil. Therefore, soil water can 

heavily reduce the rate of respiration compared to what would be theoretically possible given the 

ambient temperatures (Davidson et al 2006, Lellei-Kovacs et al 2011, Moyano et al 2013).  

The parametrizations of TER dependence on soil water vary considerably among carbon cycle and 

vegetation models (Sierra et al 2015, Tucker and Reed, 2016). Current vegetation models can either 

output TER as the sum of heterotrophic and autotrophic respiration (Rh and Ra, respectively) or as 

the individual components. For Rh, for example, models agree on a reduction of respiration at low 

soil moisture levels, but they have parameterizations with considerably different functional 

dependencies (Sierra et al 2015). Furthermore, the models differ significantly in how Rh varies 

with high soil moisture. While some models assume a linear relationship for all soil moisture levels 

(Sierra et al 2015), others assume saturation (Sierra et al 2015, Sitch et al 2015) or declining 

sensitivities for high soil moistures (Sierra et al 2015, e.g., Melton et al 2015, Trudinger et al 2016, 

Haverd et al 2018). This leads to large uncertainties in TER carbon flux estimates. 

Dryland regions cover about 40% of the global land surface (Wang et al 2022). It is known that 

semi-arid ecosystems have a substantial impact on the global terrestrial carbon sink (Poulter et al 

2014, Ahlström et al 2015). As drought conditions can limit soil respiration, soil moisture dynamics 

can be a major source of TER variability in semi-arid or arid environments (MacBean et al 2021, 

Metz et al 2023). The importance of semi-arid regions for the global scale carbon cycle and the 

enhanced impact of soil water on TER under dry conditions emphasizes the need for an improved 

understanding of the TER – soil moisture relationship in these environments.  

Here, we ask: How does the TER sensitivity to soil moisture vary across a range of aridity 

conditions and temperatures in Australia? To this end, we use eddy covariance data provided by 

the OzFlux network (Beringer et al 2022). We use daily-averaged nighttime net ecosystem 

exchange (NEE), temperature and soil moisture measurements of 40 flux towers collected over the 

past 20 years. The OzFlux stations are located in diverse regions of Australia to enable addressing 

our question (Beringer et al 2022). The dataset enables us to analyze the dependence of TER on 

soil moisture under varying aridity conditions and temperatures. In a second step we apply the 

analysis to modelled TER data using the Lund-Potsdam-Jena Earth Observation SIMulator (LPJ-

EOSIM) vegetation model (Sitch et al 2003, Poulter et al 2011, Fischer-Femal et al 2025) to 
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identify existing limitations in TER models and to point out possible improvements for the 

modelling of TER with respect to its soil moisture dependence under semi-arid conditions. 

 

2. Data and Methods 

2.1. The OzFlux network 

The OzFlux network (https://www.ozflux.org.au/, Beringer et al 2022), established in 2001, 

comprises over 50 flux tower stations in Australia and New Zealand with 29 stations currently 

active. In our study we limit the stations used to those located in Australia (figure 1). In total, we 

use data from 36 stations with four stations reporting two datasets as flux towers are installed at 

different locations at the same site. A list of stations and their characteristics are given in table A1. 

In total, the used data sums up to 324 measurement years. The stations cover a broad range of 

biomes, soil types and climate conditions (Beringer et al 2022, OzFlux 2024). The mean annual 

precipitation amount varies from below 300 mm per year to up to 5700 mm and the recorded 

temperature ranges (-10°C up to 46°C) are large (OzFlux 2024). This leads to large differences in 

the mean soil moisture in the upper soil for the different stations as shown in figure 1 and figure 

A1.  
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Figure 1: The OzFlux flux towers in Australia cover a broad range of soil moisture conditions. The locations 

of the used OzFlux stations are shown along with the mean measured soil moisture over the measurement 

period for the individual stations (color coding). Furthermore, the arid, semi-arid, dry sub-humid and humid 

regions in Australia based on the Global Aridity Index (AI) and Potential Evapotranspiration (ET0) Climate 

Database v3 (Zomer and Trabucco 2019, Zomer et al 2022) are given (gray tones). The stations are 

numbered according to increasing mean soil moisture. Stations classified as dry are displayed with ‘x’ 

markers, wet stations are given with upright crosses. The corresponding station names and more 

information about the OzFlux stations including the individual data reference can be found in table A1. 

 

2.2. Night-time NEE as proxy for TER 

We use the half-hourly non-gapfilled, quality filtered L3 data as provided by the OzFlux Data 

Center (https://data.ozflux.org.au/portal/). Only stations with at least one year of measurements are 

considered. We make use of the NEE, soil moisture, and soil temperature (Ts) data: we use the 

surface upward mole flux of carbon dioxide (‘Fc’ or ‘Fco2’), the soil water content in the upper 

soil layer (depth varies between stations from 5 cm to 10 cm depth) given as volume fraction of 

condensed water in soil (‘Sws’), and the soil temperature (‘Ts’), respectively. We only use data 
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which passes the quality filtering (QC = 0) and exclude 1.5 years of unreasonable soil water content 

data (constant zero values) for the Tri Tree East station. Only half-hourly data points with all three 

variables (NEE, Sws, and Ts) having valid measurements are kept. Data points with at least one of 

the three variables missing are discarded. Following other studies (e.g., Mahecha et al 2010, Barba 

et al 2018, Pastorello et al 2020, and Meng et al 2024), we use the nighttime NEE data as estimate 

for TER, assuming photosynthesis and therefore GPP only taking place under sufficient sunlight. 

As not all stations provide photosynthetically active or shortwave radiation, we define the nighttime 

as time with a sun elevation angle (get_altitude function of the python package pysolar.solar) below 

zero. Doing so, our nighttime definition is more conservative than other studies which use a 

threshold of 20 W/m² of photosynthetically active radiation (Barba et al 2018, Meng et al 2024). 

We calculate daily nighttime NEE averages for all days with at least five nighttime measurements.  

2.3. Sensitivity Analyses 

We use a linear regression between daily mean values of TER and Sws to determine the sensitivity 

of TER to soil moisture. We take the calculated slope as a measure for the sensitivity of TER to 

soil moisture and the coefficient of determination (R²) as a measure of how much TER is driven 

by soil moisture alone. To account for the temperature effect on TER, we bin the data in 5°C 

temperature bins and perform the linear regression on the individual temperature bins. Only 

temperature bins with at least 100 daily data points are used in the analyses. Figure A2 shows the 

daily data of the Alice Springs station and the fitted slopes for the different temperature intervals 

as a typical example for stations with low soil moisture.  

2.4. TER and Rh implementation in LPJ 

We use the LPJ-EOSIM (hereafter LPJ) dynamic global vegetation model (DGVM) to perform the 

same sensitivity analyses as for the Ozflux measurements. LPJ is part of the “trends and drivers of 

the regional-scale sources and sinks of carbon dioxide” (TRENDY, Le Quéré et al 2013) 

intercomparison project. It was found to perform well for monthly carbon fluxes in Australia (Metz 

et al 2023). In Metz et al (2023), LPJ was one of the 5 out of 18 TRENDY models which was 

found to capture main features of the seasonal dynamics in Australia. We run LPJ with the same 

configuration as in the S3 simulations of TRENDY (Sitch et al 2024). We use the same forcing for 

the increase in CO2 concentrations, and time-varying land-use change. Instead of the monthly CRU 

climate dataset as in TRENDY, we take daily MERRA-2 data (Poulter et al 2011, Gelaro et al 
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2017) available at 0.5 degree resolution. We use the LPJ simulations of the single gridcells closest 

to the locations of the OzFlux stations from 1900 to 2023, thereby only selecting the days in which 

we have quality-filtered data of the corresponding OzFlux station. 

LPJ modeled TER is separated into Rh and Ra. Heterotrophic respiration Rh is simulated to be 

limited by temperature and soil moisture. As described in Sitch et al (2003), Rh is driven by 

decomposition of the soil carbon pools through first order kinetics: 

𝑅ℎ =
𝑑𝐶

𝑑𝑡
= −𝑘𝐶         (1) 

where C is the carbon pool size [gC/m²], dC is the respiration as the amount of carbon emitted by 

the carbon pool in the chosen time (t) interval (dt) with the decomposition rate k [1/year]. The 

decomposition rate depends on the turnover times of the carbon pool 𝑡𝑡𝑢𝑟𝑛 [years], a functional 

response g(T) to soil temperature T ([K]), and a functional response f(swc) to soil water content 

changes (swc):  

𝑘 = 𝑡𝑡𝑢𝑟𝑛 ∗ 𝑔(𝑇) ∗ 𝑓(𝑠𝑤𝑐).        (2) 

The response functions are implemented as follows: 

𝑔(𝑇) = exp⁡[308.56𝐾 ∗ (
1

56.02𝐾
−

1

𝑇+227.13𝐾
)],     (3) 

which is a modified Arrhenius equation (Lloyd and Taylor 1994) and 

𝑓(𝑠𝑤𝑐) = (
1−exp(−𝑠𝑤𝑐)

1−exp(−1)
).        (4) 

The functional response of Rh in dependence on swc is illustrated in figure A3.  

Autotrophic respiration Ra is calculated for the individual plant components leaf, sapwood, and 

roots. For sapwood and roots, Ra is separated into maintenance and growth respiration. 

Maintenance respiration Rm depends on temperature (Tair for sapwood, Tsoil for roots) as given in 

equation (3), and the carbon C and carbon nitrogen ratios cn in living biomass, which is built up 

by photosynthesis: 

𝑅𝑚𝑥 = 𝑟 ∗
𝐶𝑥

𝑐𝑛𝑥
𝑝ℎ ∗ 𝑔(𝑇).        (5) 
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Thereby, x stands for sapwood or roots, r is a reference respiration rate at 10°C, and ph is the 

phenology status (ph=1 for sapwood). Growth respiration Rg is calculated as a fraction (25%) of 

modelled GPP minus maintenance respiration: 

𝑅𝑔𝑟𝑜𝑜𝑡𝑠+𝑠𝑎𝑝𝑤𝑜𝑜𝑑 = 0.25 ∗ (𝐺𝑃𝑃 − 𝑅𝑚𝑟𝑜𝑜𝑡𝑠 − 𝑅𝑚𝑠𝑎𝑝𝑤𝑜𝑜𝑑)   (6) 

For leafs, Ra is calculated as fraction b of maximum rate of photosynthesis (Amax) following 

Haxeltine and Prentice (1996): 

𝑅𝑎𝑙𝑒𝑎𝑓 = 𝑏 ∗ 𝐴𝑚𝑎𝑥 

Low soil moisture indirectly limits Ra by reducing GPP and by triggering leaf senescence when 

dropping below a dynamic threshold. More details about photosynthesis and respiration are given 

in Sitch et al (2003) and Haxeltine and Prentice (1996). 

The soil water content is implemented as a saturation fraction relative to the soil water holding 

capacity and wilting point. For posterior sensitivity studies, we converted LPJ’s soil water content 

to volume fraction of condensed water in soil (Sws) as reported by the OzFlux stations.  
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3. Results and Discussion 

3.1. Semi-arid stations show the largest sensitivity of TER to soil moisture  

The sensitivity of our estimated TER to soil moisture varies substantially for the individual OzFlux 

stations and temperature intervals. Figure 2 shows the sensitivities for each station and 5°C interval. 

We find different response regimes. Stations with a mean soil moisture content of less than 12%, 

further called ‘dry stations’ show a distinct sensitivity of TER to soil moisture. Most dry stations 

(12 out of 15) are in arid or semi-arid areas in Australia (see figure 1). We find the highest 

sensitivities for semi-arid stations. The sensitivities significantly decline with increasing mean soil 

moisture. For more humid stations (mean soil moisture more than 12%, further called ‘wet 

stations’), we find low sensitivities of less than 18.9 
𝜇𝑚𝑜𝑙

𝑚2𝑠
/
𝑚3

𝑚3
 (95% interval).  

An analysis of variance (ANOVA) test (python scipy.stats.f_oneway) confirms that the sensitivities 

in the two regimes (dry stations and wet stations) differ significantly (p < 0.001). The dry regime 

is characterized by low soil moisture conditions. The soil moisture at the individual dry stations 

mainly (75% of the measurements) ranges between 0% and 16% (see figure A1). Such low soil 

moisture conditions have been found to limit microbial activity by causing osmotic stress and 

limited substrate diffusion (see text A1) and the direct dependency of TER on soil moisture is 

visible in the measurements (see figure A5). Therefore, we conclude that the high sensitivity of dry 

stations originates from the suboptimal soil moisture levels, and thus respiration is water-limited. 

In contrast, the more humid conditions at wet stations (soil moisture mainly above 10%, see figure 

A1) seem to be within an optimal soil moisture range, so that there is no water limitation for TER 

at these sites. Only two wet stations have higher sensitivities around 20°C, comparable with the 

sensitivities found for the dry stations. These sensitivities can be explained by the soil moisture at 

the stations being exceptionally low only for temperatures around 20°C (see text A1). 
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Figure 2: TER sensitivities to soil moisture for the OzFlux stations. The slopes of the individual linear 

regressions of TER [mu mol/m²/s] versus Sws [m³/m³] are used as a measure for the sensitivity of TER to 

soil moisture. They are given for each station and 5°C temperature intervals as colored markers. The 

OzFlux stations are ordered by the mean soil moisture measured at the individual station and numbered in 

agreement with the overview map in figure 1. The arrow at the bottom and the vertical dashed line indicate 

the grouping into dry (orange) and wet (blue) stations. The error bars show the standard error of the 

estimated slopes. The same figure, but with the mean soil moisture on the x-axis is given in figure A4. 

 

Figure 2 also bins the station data into different temperature regimes. It is apparent that there exists 

a clear temperature dependence of the sensitivities. Especially when looking at the dry stations, the 

sensitivity increases with increasing temperatures. This effect is expected as it reflects the intrinsic 

temperature sensitivities of TER (Davidson and Janssens, 2006, see figure A3). Importantly, it 

appears that the temperature dependence alone does not drive the different dry and wet response 

regimes in figure 2, given that differences in sensitivities for low and high temperatures are 
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observed across the dry and wet regimes. Soil moisture and temperature are likely co-variates, and 

the station characteristics span a wide range of combinations of temperature and soil moisture 

enabling an analysis of the soil moisture sensitivities for each temperature bin (figure 3).  

 

Figure 3: TER sensitivities to soil moisture for OzFlux stations grouped by temperature bins. The individual 

TER sensitivities for each station and temperature bin are smoothed with a Gaussian filter (standard 

deviation of 1 (stations) and 2 (temperatures)). Black dots indicate the temperature bins at each stations 

with sufficient measurements to calculate a sensitivity. The OzFlux stations are ordered by the mean soil 

moisture measured at the station, which is given as black graph above the station names. The stations are 

numbered in agreement with the overview map in figure 1. The gap in the surface and soil moisture graph 

indicates the grouping into dry (left) and wet (right) stations. The coefficient of determination for the 

individual TER-to-Sws fits is indicated by the color of the surface. The p-value of the Anova test comparing 

the mean sensitivities for the dry against the wet group for each temperature bin are given on the left side 
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of the figure. The original and unsmoothed sensitivities are given for each individual temperature bin in 

figure A6. 

 

We find that the significant positive respiration response at the dry stations to soil moisture appears 

for temperature regimes above 20°C. For the temperature bins above 20°C, the sensitivity of the 

dry stations is significantly larger than for the wet stations (p=0.0046, p=0.0001, and p=0.00002 in 

the ANOVA test for the intervals 20°C – 25°C, 25°C – 30°C, 30°C – 35°C, respectively). 

Especially for the temperature intervals 20°C – 25°C and 25°C – 30°C, TER in the different 

humidity regimes reacts differently to soil moisture (see figure 3, and figure A6e and A6f). For 

even higher temperatures, the number of measurements is too low to obtain reliable results, 

especially for the wet stations.  

To determine how much TER is controlled by soil moisture, we calculate R² of the linear regression 

for TER and soil moisture at each individual site (see surface color in figure 3). While it is not 

expected that TER is driven by soil moisture alone, we find that R² is higher for the dry stations 

than for the wet stations. Moreover, the R² increases with temperature. The findings can be 

condensed by using the dry/wet grouping of the stations and conducting a statistical analysis on the 

R² values for each temperature bin and each group (figure 4).  

 

Figure 4. Coefficient of determination (R²) for wet (panel a) and dry stations (panel b) grouped by 

174



temperature. The R² values in each bin are given as boxplots, with the median and mean value given as 

green solid and dashed lines, respectively. An ANOVA test was performed comparing the R² values of the 

wet stations against those of the dry stations for each temperature bin. The p-values of the ANOVA test are 

given next to the corresponding temperatures boxplots in panel (b) for temperature bins with enough R² 

values. 

 

Up to 15 °C, R² values are low (mean and median < 0.15) for dry and wet conditions, implying that 

soil moisture has no or an only minor effect on TER. For the temperatures above 20°C, R² increases 

for the dry stations up to 0.35 (median) and 0.50 (max), while staying low for the wet stations. The 

highest R² is reached for the temperature interval 25°C-30°C. Indeed, the ANOVA test confirms 

that there is a significant difference for the R² values between wet and dry stations for the 

temperature intervals 20°C – 25°C and 25°C – 30°C (p < 0.05, figure 4). 

These findings underline the importance of soil moisture as driver of TER under dry conditions 

and high temperatures and, conversely, the small impact of soil moisture on TER in humid 

environments and under low temperatures. Our findings point towards different response 

mechanisms of TER to soil moisture in different soil moisture regimes. When modelling carbon 

fluxes in regions with large aridity ranges, accurately capturing the different response regimes is, 

therefore, crucial. Next, we explore the TER fluxes of the vegetation model LPJ to analyze whether 

the model can represent the response regimes found in the OzFlux data.  
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3.2. TER response to soil moisture in LPJ 

To analyze the performance of the vegetation model LPJ, we calculate the sensitivities of TER to 

soil moisture using LPJ daily data. The sensitivities of TER (calculated as sum of Ra and Rh) to 

soil moisture are given in figure 5. They are nearly twice as high as found with the OzFlux 

measurements. As for the OzFlux analysis, the highest sensitivities occur at semi-arid stations. 

However, it is clearly visible that, contrary to our findings using the OzFlux measurements, the wet 

stations in LPJ show higher sensitivities of TER to soil moisture. The observed moisture gradient 

does not appear in the model: The sensitivities at the wet stations are comparable to those of the 

dry stations and there is no decline in sensitivities with increasing mean soil moisture per station. 

This is confirmed by an ANOVA test indicating that there is no significant difference between the 

mean sensitivities at the dry and wet stations (p > 0.11 for the various temperature bins). The 

different behavior of TER at high soil moisture levels for LPJ compared to OzFlux measurements 

is also clearly visible when looking at the measured and modeled TER and soil moisture values for 

wet stations (see figure A7 and figure A8). While TER in LPJ increases with increasing soil 

moisture, the OzFlux measurements do not show such a dependency. For the dynamics among the 

dry stations, sensitivities tend to decrease for the driest stations. This is also visible for the OzFlux 

measurements in figure 2. However, in both cases the low number of arid stations prohibits a 

statistical assessment.  

These results show that the vegetation model is not capable of reproducing the different observed 

TER responses in the dry and wet regimes. As TER is modelled as the sum of Ra and Rh, in the 

following we explore their individual behavior to analyze the origin of the non-vanishing TER-to-

soil moistures sensitivities for wet stations.  

 

176



 

Figure 5: TER sensitivities given by the vegetation model LPJ. Like figure 2, but with LPJ data. Sensitivities 

are calculated for 5°C bins of the modelled soil temperature, as soil temperature is mainly used to drive Ra 

and Rh in LPJ (see Section 2.4). The LPJ sensitivities with air temperature binning are given in figure A9. 

The modeled sensitivities of Rh and Ra to soil moisture are given in figure A10. They show similar 

dynamics of the sensitivities as for TER. In particular, both, Ra and Rh, show significant 

sensitivities to soil moisture for the wet stations. Thus, both respiratory fluxes do not match the 

findings of small sensitivities for wet stations based on the OzFlux measurements.  

Looking at the implementation in LPJ, Ra and Rh are both dependent on soil moisture. Ra depends 

indirectly and non-linearly on soil moisture as photosynthesis and leaf carbon are reduced when 

soil moisture levels drop below a (dynamic) water stress threshold (Sitch et al 2003). Hence, Ra is 

only impacted by soil moisture if soil moisture drops below the water stress threshold. The 

considerable Ra sensitivities in LPJ, therefore, could indicate that water stress occurs for all wet 

stations contrasting OzFlux-based findings. A comprehensive evaluation of the soil moisture and 
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the water stress threshold dynamics, among other tests, could help to improve the response of Ra 

to soil moisture in humid regions.  

Rh is directly driven by soil moisture. As given in equations (2) and (4), and in figure A3, LPJ 

assumes steadily increasing Rh with increasing soil water content. Even though the slope of the 

Rh(swc) function (equation (4)) decreases with increasing soil water content, there is no saturation 

or negative sensitivity as found in the OzFlux measurements. This could cause LPJ to have 

considerable TER sensitivities to soil moisture for wet stations in contrast to the OzFlux 

sensitivities. Improving the functional response of Rh(swc) by using unimodal or saturating 

functions as also suggested by Moyano et al (2013) could improve the performance of LPJ in 

comparison to OzFlux. While such an implementation is beyond the scope of this study, our 

findings quantify the dependencies of TER on soil moisture and temperature and can be used as a 

basis to improve TER in dynamic global vegetation models.  
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4. Summary 

We use daily nighttime NEE data as proxy for TER measured over the last 20 years by 40 flux 

towers of the OzFlux network in Australia. We calculate TER sensitivities to soil moisture by 

performing a linear regression for 5°C temperature bins for each measurement site. We find that 

the TER sensitivities to soil moisture are significantly higher at dry stations, than at wet sites. We 

explain the two different response regimes with the soil moisture distribution at the individual sites. 

Low soil moisture conditions are expected to cause osmotic stress or limited substrate transport 

which reduce TER. We find the highest sensitivities at semi-arid stations. At the wet stations, we 

find smaller limitation of TER to soil water availability and sensitivities are therefore close to zero 

for high soil moisture. Our findings demonstrate that under dry conditions soil moisture can be an 

important driver of TER while this is not the case for wet conditions. Furthermore, there is an 

additional temperature dependence where TER sensitivities to soil moisture at drier sites greatly 

increase above temperatures of 20°C. This underlines the importance of accurately implementing 

the TER sensitivity to soil moisture in vegetation models, especially in regions with large aridity 

gradients such as Australia.  

We show that the vegetation model LPJ is unable to reproduce the two different response regimes 

of TER to soil moisture for the dry stations and wet stations. The model shows significant 

sensitivities in Ra and Rh to soil moisture for wet stations, contradicting our findings from the 

OzFlux measurements. Modelled Ra seems to react too strongly to soil moisture changes under 

humid conditions. This could point towards LPJ assuming water stress conditions for wet stations, 

which is in contrast to the small sensitivities found in the OzFlux results. For Rh, the larger 

sensitivities could be caused by the parameterization of Rh, steadily increasing with increasing soil 

water content. Our OzFlux results indicate that a more complex functional response of Rh(swc) 

with constant or declining Rh for high soil moistures would be needed to capture the Rh dynamics 

at Australian flux tower stations correctly. 

 

Data Availability: 

OzFlux L3 data can be downloaded from https://data.ozflux.org.au/portal/. Data of the Global 

Aridity Index (AI) and Potential Evapotranspiration (ET0) Climate Database can be downloaded 

from https://doi.org/10.6084/m9.figshare.7504448.v6. The code to run LPJ is available on GitHub 
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(https://github.com/LPJ-EOSIM/LPJ-wsl_v2.0). The LPJ data used in the analysis can be 

downloaded from https://doi.org/10.5281/zenodo.15173378. The code used for the analyses is 

available on zenodo (https://doi.org/10.5281/zenodo.15173353). 
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Text A1: The driver of TER sensitivity to soil moisture 

In section 3.1 we find two main regimes of TER sensitivity to soil moisture. While, for the dry 

stations, soil moisture has a significant impact on TER, TER at wet stations shows little sensitivity 

to soil moisture. Figure A1 shows the distribution of the measured soil moisture at the individual 

sites in the same site order as in figure 2.  

Figure A1: Soil moisture measurements at the individual OzFlux stations. The daily nightime soil 

moisture values of each station are given as boxplots. All moisture measurements are given in 

black; the green boxplots show the soil moistures for soil temperatures between 20°C and 25°C. 

Only boxplots with at least 100 soil moisture measurements are displayed. The stations are ordered 

according to their mean soil moisture measured.  

 

For all dry stations the median of soil moisture is smaller than 10% and soil moisture mainly ranges 

between 0% and 16% (75% interval) and only some outliers at the Dry River station reach more 

than 30% soil moisture. For most wet stations, the soil moisture is mainly (75%) above 10% and 

mainly (75%) stays below 50%. The Alpine Peatland and Fogg Dam stations form exceptions with 
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soil moistures values up to 100%. Both stations are exposed to extreme conditions limiting the 

measurement capabilities of the stations. While the Fogg Dam station is seasonally flooded, the 

Alpine Peatland station has around 3 months of snow cover on average (OzFlux 2024). When 

looking only at the soil moisture distribution at soil temperatures between 20°C to 25°C, the wet 

stations Gatum Pasture and to a lesser extent also Whroo have low soil moistures around 10% and 

15%, respectively, which is at the lower end of their soil moisture range for all temperatures. 

Taking into account our findings from Section 3.1 and the soil moisture distribution in Figure A1 

suggests that the soil moisture at the wet stations is large enough for TER not being limited by 

water availability anymore. The dry stations, however, are (temporally) exposed to severe drought 

conditions leading to a drying out of the upper soil layer. 

Laboratory and field experiments evaluating soil moisture sensitivity of TER under different aridity 

conditions found different soil moisture regimes with varying TER responses (e.g., Xu et al 2004, 

Lellei-Kovács et al 2011, Vicca et al 2014). Soil respiration is assumed to be the largest component 

of TER and exhibit similar temporal patterns (Law et al 2002, Barba et al 2018, Bond-Lamberty 

et al 2024). Lellei-Kovács et al (2011) and Vicca et al (2014) define soil moisture regimes with 

optimal, suboptimal and supra-optimal soil moisture conditions leading to varying soil respiration 

rates. In the latter two regimes, soil respiration is limited by soil moisture: While at suboptimal soil 

moisture conditions, microbial activity is reduced due to osmotic stress and limited substrate 

diffusion (Schimel et al 2007, Moyano et al 2013), supra-optimal high soil moisture conditions 

lead to low oxygen conditions limiting respiration (Davidson and Janssens, 2006). Investigating 

sandy soils, Lellei-Kovács et al (2011) found a threshold for optimal soil moisture of 7% above 

which soil respiration is not limited by soil water availability. This threshold is expected to be 

slightly higher in soils with high clay and silt content, due to the enhanced water holding capacity 

of the soils. All dry stations have median soil moisture below 10% and therefore fall in the range 

of suboptimal soil moisture conditions as found by Lellei-Kovács et al (2011). Hence, it is to be 

expected that reduced microbial activity and substrate diffusion limits soil respiration at the dry 

stations and that changes in soil moisture directly translate in changes in soil respiration and 

therefore TER. This explains the presence of high sensitivities for the dry stations. Also, for the 

two wet stations Gatum Pasture and Whroo, which show high sensitivities at around 20°C 

temperature, low soil moisture conditions are present in this temperature range even though they 
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have in general a higher mean soil moisture. This water limitation explains their high sensitivities 

while being grouped in the wet stations.  

For the wet stations the majority of soil moisture measurements (75%) have higher values than 

10%. Our findings of no or low sensitivities to soil moisture at these stations therefore go along 

with the finding of a water-unlimited respiration regime by Lellei-Kovács et al (2011). Other 

studies found even negative TER sensitivity on soil moisture for supra-optimal soil moisture 

conditions (Sierra et al 2015). We mostly find no sensitivity of TER on soil moisture at the humid 

stations as for example shown in figure A7 but can identify single stations with negative 

sensitivities which could hint at a limitation of TER by limited oxygen transport (Yarramundi 

Control, figure A5).  

 

 

  

183



 

Figure A2: TER and soil moisture measured by the OzFlux station Alice Springs Mulga. Daily 

values are given colored according to the measured soil temperature. For each 5°C bin the linear 

regression fit is shown as colored dashed line. The calculated slope and R² values are given in the 

legend with the respective temperature.  
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Figure A3: Response of heterotrophic respiration on soil water content changes and temperature. 

The heterotrophic respiration using the implementation of Rh in LPJ is given dependent on 

temperature and soil water content (swc) as saturation fraction. Panel a) shows the functional 

response of Rh to temperature for different swc and panel b) gives the response of Rh to swc for 

different temperatures. The corresponding functions are given in the main text (equations (3) and 

(4)). 
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Figure A4: TER sensitivities to soil moisture for the OzFlux stations. The slopes of the individual linear 

regressions of TER [mu mol/m²/s] versus Sws [m³/m³] are used as a measure for the sensitivity of TER to 

soil moisture. They are given for each station and 5°C temperature intervals as colored markers. Like 

figure 2, but with mean measured soil moisture of the individual stations on the x axis instead of the 

station names. The vertical dashed line indicate the grouping into dry (left) and wet (right) stations. The 

error bars show the standard error of the estimated slopes.  
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Figure A5: TER and soil moistures measured at individual OzFlux stations and temperature 

intervals. 2D histograms for the stations Dry River, Daly River Uncleared, Howard Springs, and 

Yarramundi Control are shown for the temperature ranges 35°C-40°C, 30°C-35°C, 25°C-30°C, 

and 15°C-20°C, respectively. The number of measurements in the individual TER and soil moisture 

bins is given with individual color bars. 
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Figure A6: TER sensitivities to soil moisture for OzFlux stations grouped by temperature bins 

(panels a to h). The OzFlux stations are ordered by the mean soil moisture measured at the station 

and numbered in agreement with the overview map in figure 1. The arrow at the bottom and the 

vertical dashed line indicate the grouping into dry (orange) and wet (blue) stations. The error bars 

show the standard error of the estimated slopes. The coefficient of determination for the individual 

TER-to-Sws fits is given as grey background shading. The p-value of the Anova test comparing the 

mean sensitivities for the dry against the wet group are given in the panel titles. 
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Figure A7: TER and soil moistures measured and modelled at Robson Creek and Gingin OzFlux 

stations. 2D histograms for the stations Robson Creek and Gingin are shown for the temperature 

range 15°C-20°C. The number of measurements in the individual TER and soil moisture bins is 

given with individual color bars. Panel a and c show the measured OzFlux values, Panel b and d 

show the modelled values with LPJ. 
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Figure A8: TER and soil moistures measured and modelled at Gingin and Alice Springs OzFlux 

stations for the year 2014. Panel a and b give the daily soil moistures as volume fractions measured 

by OzFlux (blue) and modeled by LPJ (black). Panel c and d show the nighttime NEE measured by 

OzFlux (green) and the Ra+Rh modeled by LPJ (black). The left panels (a and c) are for Gingin 

and the right panels for Alice Springs Mulga (panel b and d). The dotted lines indicate days without 

valid measurements. The respiratory fluxes for Alice Springs Mulga clearly show the same 

variability as the soil moisture for the OzFlux measurements as well for LPJ. For Gingin, however, 

only LPJ shows similar dynamics for Ra+Rh and the soil moisture. The measured TER at Gingin 

clearly does not follow the soil moisture dynamics.   
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Figure A9: TER sensitivities to soil moisture given by the vegetation model LPJ. As LPJ mainly 

drives the TER components with the soil temperature, we use the soil temperature of LPJ for the 

5°C-binning in figure 5 in the main text. In this figure, sensitivities are calculated for 5°C bins of 

the modelled air temperature. The sensitivities using air temperature binning result in the same 

findings as shown in figure 5 and described in the main text. Please note, that the soil and air 

temperatures of LPJ are in general lower than measured soil temperatures.  
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Figure A10: TER sensitivities to soil moisture given by the vegetation model LPJ. Like figure 2, 

but with LPJ data for Ra in Panel a and Rh in Panel b. Sensitivities are calculated for 5°C bins of 

the modelled soil temperature, as soil temperature is used to drive Rh and most of Ra in LPJ. Based 

on Rh(swc) in equation (2) and (4), we would expect slightly lower sensitivities for the wet stations 

than for the dry stations as the slope of Rh(swc) decreases with increasing soil water content. This 

is, however, not the case for the sensitivities given in panel (b). When taking a look at the litter 

modeled by LPJ (see figure A11); we see that most wet stations have higher amounts of litter than 

the dry stations. As Rh depends linearly on the litter content in equation (4), most likely the 

enhanced litter compensates for the decline in sensitivities expected by Rh(swc). 
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Figure A11: Organic carbon in litter modelled by LPJ at the OzFlux sites. The litter organic carbon 

[gC/m²] modelled by LPJ for each of the OzFlux stations is shown. Like in figure 2, the stations 

are ordered according to their mean soil moisture.  
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Table A1: OzFlux Station Characteristics 

# Station Mean 

Precip. 

[mm] 

(1) 

Sws 

(2) 

Ecosystem (3) Soil texture 

(clay/silt/sand) 

[%] (4) 

Meas. 

height 

[m] 

(1) 

Citation (1) 

1 Ti Tree East 305 0.024 Desert & Shrub 18/6/77 10 Cleverly 

2013 

2 Calperum 240 0.035 Mediterranean 

forest and 

woodlands 

16/8/76 20 Tech 2013 

3 Gingin 641 0.041 Mediterranean 

forest and 

woodlands 

10/8/82 15 Silberstein 

2015 

4 Boyagin 445 0.043 Mediterranean 

forest and 

woodlands 

11/9/80 4 Beringer 

2017 

5 Alice Springs 

Mulga 

306 0.046 Desert & Shrub 18/6/77 12 Cleverly 

2011 

6 Red Dirt 

Melon Farm 

 0.046 Trop. Grass, 

Savanna & Shrub 

9/2/88 21 Beringer 

2014a 

7 Daly River 

Uncleared 

1170 0.050 Trop. Grass, 

Savanna & Shrub 

8/4/88 23 Beringer 

2013a 

8 Collie 933 0.064 Mediterranean 

forest and 

woodlands 

9/7/85 35 Beringer 

2018 

9 Dry River 895 0.067 Trop. Grass, 

Savanna & Shrub 

27/10/64 15 Beringer 

2013b 

10 Litchfield  0.088 Trop. Grass, 

Savanna & Shrub 

16/14/70 31 Beringer 

2015 

11 Daly River 

Pasture 

1250 0.088 Trop. Grass, 

Savanna & Shrub 

13/4/83 15 Beringer 

2013c 

12 Cumberland 

Melaleuca 

800 0.092 Temp. Broadleaf 

Forest 

15/15/70 15 Griebel 2019 
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13 Arcturus 572 0.107 Trop. Grass, 

Savanna & Shrub 

41/16/43 7 Schroder 

2014 

14 Howard 

Springs 

1700 0.111 Trop. Grass, 

Savanna & Shrub 

20/19/61 23 Beringer 

2013d 

15 Howard 

Springs 

Understory 

1700 0.111 Trop. Grass, 

Savanna & Shrub 

20/19/61 23 Beringer 

2013e 

16 Ridgefield 446 0.142 Mediterranean 

forest and 

woodlands 

8/9/82 3 Beringer 

2016 

17 Cumberland 

Plain 

800 0.144 Temp. Broadleaf 

Forest 

14/14/72 29 Pendall 2015 

18 Great 

Western 

Woodlands 

240 0.150 Mediterranean 

forest and 

woodlands 

17/11/72 35 Macfarlane 

2013 

19 Yanco 465 0.160 Temp. Grass, 

Savanna & Shrub 

37/12/50 8 Beringer 

2013f 

20 Yarramundi 

Control 

728 0.162 Temp. Broadleaf 

Forest 

15/28/58 2 Ewenz 2022a 

21 Gatum 

Pasture 

736 0.170 Temp. Broadleaf 

Forest 

13/18/68 3 Silva 2022 

22 Riggs Creek 650 0.175 Temp. Grass, 

Savanna & Shrub 

15/22/63 3 Beringer 

2014b 

23 Whroo 558 0.179 Temp. Broadleaf 

Forest 

16/24/60 36 Beringer 

2013g 

24 Yarramundi 

Irrigated 

728 0.191 Temp. Broadleaf 

Forest 

15/28/58 2 Ewenz 2022b 

25 Adelaide 

River 

1730 0.205 Trop. Grass, 

Savanna & Shrub 

14/14/72 15 Beringer 

2013h 

26 Wombat 650 0.205 Temp. Broadleaf 

Forest 

22/21/57 30 Arndt 2013 

27 Cape 

Tribulation 

5700 0.227 Trop. Moist 

Broadleaf Forest 

39/27/34 45 Liddell 2013a 

28 Nimmo 1700 0.237 Mont. Grass & 

Shrub 

20/25/55 2 Simpson 

2012a 
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29 Otway 800 0.245 Temp. Broadleaf 

Forest 

14/14/72 5 Van Gorsel 

2012 

30 Cow Bay 4000 0.260 Trop. Moist 

Broadleaf Forest 

33/29/38 35 Liddell 2013c 

31 Tumbarumba 1000 0.261 Mont. Grass & 

Shrub 

20/25/55 70 Woodgate 

2013 

32 Robson 

Creek 

2236 0.262 Trop. Moist 

Broadleaf Forest 

42/24/35 40 

 

Liddell 2013b 

33 Mitchell 

Grass 

Rangeland 

 0.263 Trop. Grass, 

Savanna & Shrub 

44/13/42 4 Grace 2019 

34 Sturt Plains 640 0.274 Trop. Grass, 

Savanna & Shrub 

30/15/55 5 Beringer 

2013i 

35 Warra 1700 0.289 Temp. Broadleaf 

Forest 

30/22/48 81 Phillips 2015 

36 Wallaby 

Creek 

1700 0.304 Temp. Broadleaf 

Forest 

24/24/52 5 Beringer 

2013j 

37 Samford 1102 0.423 Temp. Broadleaf 

Forest 

29/24/47 2 Rowlings 

2011 

38 Dargo 1900 0.427 Mont. Grass & 

Shrub 

20/25/55 2 Simpson 

2012b 

39 Alpine 

Peatland 

1274 0.720 Mont. Grass & 

Shrub 

19/25/57 2 Gunawardha 

2022 

40 Fogg Dam 1411 0.944 Trop. Grass, 

Savanna & Shrub 

46/32/23 15 Beringer 

2013k 

(1) https://www.ozflux.org.au/monitoringsites/index.html 

(2) Mean over OzFlux measurements 

(3) Beringer et al 2022 

(4) https://soilgrids.org/ 
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3. Discussion

In this thesis, three semiarid regions in the Southern Hemisphere are analyzed: Aus-
tralia (Metz et al., 2023, 2025b), southern Africa (Metz et al., 2025a), and the South
American Temperate region (Vardag et al., 2025). This chapter takes up the discus-
sions included in the individual publications and provides a comprehensive analysis
of shared findings among the studies. To this end, the first section, Section 3.1,
addresses the opportunities given by the increasing amount of satellite CO2 concen-
tration measurements. The following Section 3.2 discusses the role of TER as a driver
of CO2 flux variability in semiarid environments. Section 3.3 compares and discusses
the TRENDY model selections for the individual study regions and provides specific
recommendations on how to improve the accuracy of the models. Finally, Section 3.4
follows up with a discussion of systematic errors in ensemble means.

3.1. The Potential of Satellite Measurements to
Improve CO2 Flux Estimates in Southern
Hemispheric Regions

Metz et al. (2023), Metz et al. (2025a), and Vardag et al. (2025) investigate the
information content that in situ and satellite CO2 measurements can provide in at-
mospheric inversions estimating CO2 fluxes in the Southern Hemisphere. The results
show that in-situ-only inversions mostly stick close to the prior fluxes. This is a sign
for a largely under-constrained inversion in which the measurements (in this case
due to their sparseness) cannot add much information in the inversion. The poste-
rior fluxes of the inversion therefore strongly rely on the assumed prior fluxes. This
causes large uncertainties in the flux estimates which manifest in the large devia-
tions among the three in-situ-only inversions CAMS, CarbonTracker, TM5-4DVar/IS
(Metz et al., 2023, 2025a) and the in-situ-only inversions in the MIP/IS ensemble
(Metz et al., 2025a). As the assumed prior fluxes of the models differ, their pos-
terior estimates also differ substantially. Hence, when using in-situ-only inversions
in regions with sparse in situ measurements one needs to keep in mind that their
flux estimates contain only to a limited extent information about the state of the
atmosphere and largely reflect the used prior information with the associated uncer-
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3. Discussion

tainties. This is especially important because inversions normally do not provide the
associated posterior uncertainty estimates, which could indicate the degree of uncer-
tainty reduction reached by the assimilation of measurements. Therefore, a thorough
analysis of the information content remains vital. Also FLUXCOM is affected by
the general sparseness of measurements in semiarid regions. We find deviations of
FLUXCOM from the other flux estimates (Metz et al., 2023, 2025a) indicating large
uncertainties in the estimated fluxes. These uncertainties can be caused by a lack
of training data in semiarid regions, as also pointed out by Jung et al. (2020). A
newer version of FLUXCOM (FLUXCOM-X, Nelson et al., 2024) makes use of the
growing measurement network capacities and, for example, includes more OzFlux
flux towers in Australia to reduce uncertainty of estimates. Concluding, the sparse
coverage of in situ measurements causes high uncertainties in CO2 flux estimates of
in situ measurement-based approaches in the study regions.

The satellites GOSAT and OCO-2 provide an extensive measurement coverage in
the Southern Hemisphere. We find a good consistency of the satellite CO2 prod-
ucts. In general, CO2 concentrations and fluxes based on the two GOSAT datasets
(ACOS and RemoTeC) agree well with each other and with those based on OCO-2.
The small differences in the XCO2 data from the two GOSAT retrievals can be
partly explained by the different data sampling due to different filtering of the mea-
surements, but are likely also caused by methodological differences in the retrievals
(see Section 1.2.1, Figure A1 in Metz et al. (2025a), and Text S.2.2 in Vardag et al.
(2025)). Furthermore, we find slightly smaller amplitudes in OCO-2-based CO2 fluxes
(MIP/OCO-2+IS) compared to GOSAT-based CO2 fluxes in all three regions. This
is likely caused by the slightly smaller seasonal amplitudes in OCO-2 XCO2 in Aus-
tralia and southern Africa compared to GOSAT XCO2. Still, these differences are
small and the seasonal timing of the OCO-2 and GOSAT CO2 products agrees well.
Hence, the satellites show a consistent picture of the land-atmosphere CO2 exchange
in southern hemispheric regions, which agrees well with (sparsely available) validation
measurements of TCCON and COCCON.

Metz et al. (2023), Metz et al. (2025a), and Vardag et al. (2025) show that satellite
data can fill the gaps of in situ measurements in the Southern Hemisphere. Assimi-
lating GOSAT data in TM5-4DVar led to changes in the estimated posterior fluxes
compared to TM5-4DVar/IS and prior fluxes. This proves that satellites provide
additional information that is not contained in the prior fluxes or in situ measure-
ments. In all three study regions, TM5-4DVar/GOSAT+IS shows larger fluxes than
TM5-4DVar/IS. This results in seasonal amplitudes, which are larger by 38% for
Australia, 67% for southern Africa and 6% for the South American Temperate region
(see Table B.1). Furthermore, in Australia and less significantly in southern Africa,
the TM5-4DVar/GOSAT+IS fluxes show a different seasonality than the fluxes of
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TM5-4DVar/IS and the used prior. In the South American Temperate region, the
seasonal timing of TM5-4DVar/GOSAT+IS and TM5-4DVar/IS agrees quite well,
verifying that the prior fluxes already capture well the seasonal timing of the fluxes.
Concluding, these findings underline the importance of taking into account satellite
data, where in situ measurements do not provide sufficient information. Assimilating
both together in an inversion enhances the accuracy of the estimated carbon fluxes
by taking into account all available CO2 measurement information.

In this thesis, we only use one atmospheric inversion, TM5-4DVar, to estimate CO2

fluxes based on GOSAT measurements. To test the impact of the chosen atmospheric
inversion model on flux estimates, we perform a detailed analysis of the different in-
version models in the OCO-2 MIP ensembles (MIP/OCO-2+IS and MIP/IS) for
southern Africa (Metz et al., 2025a). The models differ strongly in the estimated
posterior fluxes even though they assimilate the same (in situ or OCO-2 satellite)
measurements. The deviations among the posterior fluxes reduce when assimilating
OCO-2 and in situ measurements together (MIP/OCO-2+IS) compared to MIP/IS
and the prior fluxes. This confirms that the satellite provides additional information
in the inversions as discussed above. However, also for MIP/OCO-2+IS the differ-
ences among the models remain substantial. We find that these deviations originate
in different weights which the inversions put on the measurements, for example, by
using different measurement uncertainties. We were able to show that the models
putting the most weight on the OCO-2 data agreed the best with each other and
with TM5-4DVar/GOSAT+IS fluxes. This confirms that satellite-based inversions
show a consistent picture of CO2 fluxes when weighting the satellite measurements
sufficiently. Unfortunately, the inversions do not provide other evaluation metrics,
for example, the covariance matrices used or other parameters like the averaging ker-
nel or information content for the Bayesian inversions. Such metrics would enable a
more profound analysis of how much the assumed measurement uncertainties drive
the differences between the inversions compared to other parameters such as differ-
ences in the modeled atmospheric transport and inversion strategies. Concluding,
the OCO-2 MIP analysis demonstrates that not only the used measurement data,
but also the implementation of those heavily influence the flux estimates. Measure-
ments must be sufficiently weighted to obtain a reliable flux estimate. If done so, the
MIP/OCO-2+IS inversions agree well with the TM5-4DVar/GOSAT+IS inversions
and confirm the findings described above.

In conclusion, Metz et al. (2023), Metz et al. (2025a), and Vardag et al. (2025)
clearly show the high value of the long records of satellite XCO2 measurements to
improve regional scale CO2 flux estimates, in the whole Southern Hemisphere. These
results add to the growing number of studies that point out the advantages of satellites
to complement in situ measurements in atmospheric inversions (e.g. Basu et al., 2013;
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Detmers et al., 2015; Ma et al., 2016; Villalobos et al., 2020). GOSAT now provides
16 years of measurements and is still measuring. The dataset is and will continuously
be complemented by OCO-2 and future CO2 satellite missions with more extensive
measurements. Already now the dataset covers three strong El Nino periods and one
strong La Nina year. With more occurrences of such repeating climate patterns, more
analyses of the climatic drivers of global carbon fluxes and the contributing regions
will be possible. Furthermore, such a long-term dataset will enable multidecadal
trend analyses of CO2 concentrations and fluxes.

3.2. Vegetation Processes Driving the Carbon Cycle in
Semiarid Regions

This thesis identifies dominant CO2 exchange processes that drive the variability of
CO2 fluxes in semiarid regions. The publications included in this thesis jointly show
that respiration, especially Rh emissions, plays an important role in the carbon flux
dynamics in semiarid regions. Metz et al. (2023) shows that soil respiration causes
large CO2 emission pulses at the end of the dry season in semiarid areas, which drive
the interannual and seasonal variability of CO2 fluxes in Australia. Metz et al. (2025a)
and Vardag et al. (2025) find that such respiration emissions in response to the start
of the rainy season also occur in semiarid parts of southern Africa and the South
American Temperate region. In these two regions, these emissions largely impact
the seasonal variability of the continental-scale carbon fluxes. Thereby, the results
are robust with respect to the exact definition of semiarid regions, as the respiration
signal dominates the CO2 flux variability in the whole study regions.

We identify soil moisture as a main driver of TER and Rh in our study regions.
Metz et al. (2025b) shows that the sensitivity of TER to soil moisture across aridity
gradients in Australia is the highest in semiarid regions. In humid parts of Australia,
soil moisture has only a minor impact on TER. The respiration pulses in Metz et al.
(2023), Metz et al. (2025a) and Vardag et al. (2025) are driven by increasing soil
moisture at the beginning of the rainy season. They also only occur in the semiarid
parts of the study regions and are not found in the humid areas. Soil moisture-driven
respiration emissions are therefore found to be important and characteristic for the
carbon cycle in semiarid regions.

Metz et al. (2023), Metz et al. (2025a) and Vardag et al. (2025) find that the
continental-scale Rh emission pulses are not only driven by increasing soil moisture
but are also conditional on rewetting of formerly dry soils. This finding is consistent
with local observations of immediate and rapid increases in measured CO2 emissions
with precipitation events on a daily timescale (see Figure S11 in Metz et al. (2023),
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Figure A15 in Metz et al. (2025a) and Figure S11 in Vardag et al. (2025)). Such rapid
responses of microbial respiration to soil rewetting events are described in literature
under the term ”Birch effect” and have been shown to release more CO2 than con-
stantly moist soils (Birch, 1964; Jarvis et al., 2007; Casals et al., 2011; Singh et al.,
2023, see also Section 1.1.4). Our studies now indicate that the Birch effect impacts
the carbon flux dynamics in Australia, southern Africa and the South American Tem-
perate region and mainly drives the observed early rapid increase in respiration at the
beginning of the rainy season. With that, we suggest that this formerly only locally
known effect is also relevant for the seasonality and interannual variability of carbon
fluxes on continental scale.

Concluding, we find respiration dynamics driven by soil moisture and rewetting of
soils to have a significant contribution to the CO2 flux variability in all three semiarid
study regions and thus throughout the Southern Hemisphere and potentially in other
global semi-arid regions. Hence, respiration dynamics are a large contributor to the
variability of the global carbon sink. In particular, we discover the important role of
rewetting-driven respiration pulses and find different TER response regimes to soil
moisture. With these findings, we are able to demonstrate that precipitation and
soil moisture are important drivers of interannual and seasonal variability in the land
CO2 sink of semiarid regions. We further show that the impact of precipitation and
soil moisture on the carbon exchange in semiarid regions also originates from their
large impact on soil respiration and not only from their impact on GPP like found
in Piao et al. (2020) and Haverd et al. (2017).

3.3. Process Implementations in the TRENDY Models

In all three study regions in the Southern Hemisphere, Australia (Metz et al., 2023),
southern Africa (Metz et al., 2025a), and the South American Temperate region
(Vardag et al., 2025), we are able to identify TRENDY models that agree well with
the NBP and NEE estimates of the TM5-4DVar/GOSAT+IS inversion. We identify
implemented processes they have in common and which can therefore be assumed
to play a dominant role in the carbon cycle in the study regions. Based on our
findings, we were able to derive suggestions on how to improve the TRENDY models
in semiarid regions.

TRENDY model selections for the individual study regions

The following models were identified out of the 18 TRENDY models to perform best
in the individual regions:
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• Australia:
LPJ, JSBACH, YIBs, OCN, and CLASSIC

• Southern Africa:
CABLE-POP, ORCHIDEE, ORCHIDEEv3 (OCN)

• South American Temperate region:
CLASSIC, OCN (ORCHIDEE, YIBs, ISAM, ISBA-CTRIP).

The models listed in two regions are given in bold, those listed in three regions
are bold-underlined. The models in brackets do not belong to the final selection.
In the South American Temperate region they have only been included in the loose
selection, which fits slightly worse to TM5-4DVar/GOSAT+IS NBP (see Figure S8
in Vardag et al. (2025)). In southern Africa, the model in the bracket only passed the
NEE and NBP comparison but failed in the SIF comparison. There is no model which
belongs to the final strict selection in all three regions. OCN is in the final selection
for Australia and the South American Temperate region but gets excluded in southern
Africa as OCN GPP does not align well with GOME-2 SIF. It is important to note,
that the SIF comparison was only performed in southern Africa and not in Australia
and the South American Temperate region (see Section 1.5.3). The exclusion of OCN
in southern Africa underlines the importance of not only constraining net fluxes but
also gross fluxes. This is especially important when the gross fluxes vary, like in
southern Africa. For Australia and the South American Temperate region, the gross
fluxes of the selected TRENDY models are largely consistent.

Commonalities of the selected models

In all three publications, we identify a temporal dephasing between the increase of
GPP and the increase of Rh (’GPP-Rh-dephasing’) in semiarid areas at the beginning
of the rainy season to be needed to accurately capture the NBP and NEE fluxes. All
selected models have parameterizations so that Rh increases rapidly with the start of
the rainy season, while GPP increases delayed or independently (see Section 1.4.1).
In terms of vegetation processes, these parameterizations translate in soil microbes
being located mainly close to the surface as for example shown by Taylor et al. (2002)
and reacting to the increasing shallow soil moisture with the beginning of the rainy
season. For GPP, the sensitivity to deep soil moisture refers to plant roots being
located in deeper soils, which get rewetted delayed compared to shallow soils. The
’growing degree days’-implementation translates to plants sprouting and needing to
develop a relevant leave area before the plant biomass can grow.

In southern Africa and the South American Temperate region also some other
models, that do not belong to the selected models, show the GPP-Rh-dephasing.
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Therefore, the dephasing seems to be a necessary but not sufficient prerequisite to
model the carbon fluxes in the regions accurately. This is to be expected as the
dephasing shapes the seasonal cycle of the carbon fluxes but is not the only process
driving the net CO2 exchange between land and atmosphere. Carbon fluxes at other
times than the beginning of the rainy season, as well as the seasonal amplitude of the
fluxes also need to be modeled accurately.

Why does the model selection differ between the study regions?

By being selected, the TRENDY models proof to be able to capture carbon flux
dynamics in semiarid areas correctly. Still, the model selections differ between the
study regions. Hence, a model which accurately captures the CO2 fluxes in one
semiarid region does not necessarily perform well in other semiarid regions. This
raises the question, why the selected models do not perform well in all semiarid
study regions?

Most of the selected models were found to also have a GPP-Rh-dephasing in the
other study regions. However, these models are not included in the other selec-
tions because they perform worse with respect to other important characteristics of
the seasonality of CO2 fluxes. An example of such a model is JSBACH. JSBACH
shows the GPP-Rh-dephasing not only in Australia (see Figure B.1), where it be-
longs to the model selection, but also in southern Africa (see Figure B.2). However,
JSBACH fails to accurately model the seasonal timing of GPP, TER and NBP in
southern Africa. The fluxes are typically delayed by two months compared with
TM5-4DVar/GOSAT+IS and the selected TRENDY models. Therefore, JSBACH
does not belong to the selected models in southern Africa. There are multiple po-
tential reasons for JSBACH to perform well in Australia but not in southern Africa.
As shown in Figure B.3, PFTs of JSBACH in Australia differ from those in southern
Africa. For example, there are more raingreen shrubs in Australia than in south-
ern Africa and, vice versa, there are more tropical trees in southern Africa than in
Australia. Hence, while JSBACH performs well in the PFTs dominating Australia,
it could perform worse for those in southern Africa. Furthermore, different climate
conditions in the study regions can be another reason for the different performance
of JSBACH. For example, the mean precipitation in southern Africa is higher than in
Australia (see Figure 3c in Metz et al. (2023) and Figure A14 in Metz et al. (2025a)).
This could lead to deviations, such as time delays, in the response of CO2 fluxes to
the different amounts of precipitation.

There are also some of the selected models which do not have a GPP-Rh-dephasing
in the other study regions and, therefore, directly disqualify for the model selections
there. YiBs is one of these models. It belongs to the selected models in Australia, but
in southern Africa it does not show a significant dephasing and is therefore unable
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to accurately capture the NBP fluxes (see Figures B.4 and B.5). Here again, the
differences in the assumed PFTs (see Figure B.6) and in the climate conditions in
the two regions could be the reason for the different behavior of YIBs with respect
to the dephasing between the two regions.

Concluding, different climate conditions or different PFT distributions might ex-
plain why the model selections do not agree in all three regions. This goes along with
the current literature showing that the assumed PFTs in a region can vary signifi-
cantly between TRENDY models (Teckentrup et al., 2021, for Australia) and that,
especially in dry regions, the assumed land cover classification significantly influences
the sensitivity of the carbon fluxes to climate (Poulter et al., 2011). TRENDY en-
semble runs with a common set of PFTs in all models could provide further insights
into the differences between the models and their performances.

Possible Improvements for the TRENDY models

The publications in this thesis point out uncertainties in the modeling of CO2 fluxes
in semiarid regions and call for an improvement of the TER parameterizations in
state-of-the-art vegetation models. This thesis presents concrete suggestions on how
to improve the parameterization in vegetation models for semiarid ecosystems.

At the maximum, five out of the 18 TRENDY models are selected in the individual
study regions. Hence, at least two-thirds of the TRENDY ensemble fail in capturing
the carbon fluxes in the semiarid regions accurately. This underlines the large un-
certainties of the TRENDY ensemble in semiarid regions and calls for improving the
implementation of soil-rewetting processes in the majority of models. Thereby, a first
and important step would be the implementation of different response times of Rh
and GPP to soil rewetting. In the discussion above and in Section 1.4.1, the different
parameterizations to achieve such a behavior are discussed. Using soil moisture in
shallow and deeper soil depths to drive Rh and GPP, respectively, is a commonly
used way to create the necessary time-lag.

Moreover, we show that also the selected models can be improved. Metz et al.
(2025b) shows that the well-performing model LPJ in Australia has difficulties mod-
eling TER in the transition of dry to humid soil conditions. We show that a more
sophisticated parameterization of TER in response to soil moisture is necessary for
the model to perform correctly in arid as well as in humid regions. This includes a
more complex dependence of Rh on soil moisture. Low or even negative sensitivities
of Rh to high soil moisture levels are needed to reflect limited Rh under supra-optimal
soil moisture conditions. Furthermore, a comprehensive evaluation of soil moisture
dynamics and the water-stress threshold for Ra is needed to improve the performance
of Ra in LPJ.

Finally, the selected TRENDY models do not explicitly capture the Birch effect
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which we observe in our study regions. The parameterizations causing the GPP-Rh-
dephasing are based on empirical relationships and generalize and consolidate existing
processes. For example, the response function of Rh to soil moisture is described by
simple functional dependencies (see e.g., Equation 4 in Metz et al., 2025b) found in
empirical studies. Microbial communities, their dynamics, and the impact of rewet-
ting on substrate availability are not modeled in the TRENDY models. They are,
therefore, not able to model the Birch effect explicitly. The resulting gross fluxes are
correct in the study regions and study times because the used generalized description
incorporates the enhanced release of CO2 caused by the Birch effect. For example,
assuming a stronger general sensitivity of Rh to soil moisture than given in reality
can compensate for an enhanced release of CO2 by the Birch effect. However, as soon
as environmental conditions change, the missing explicit process implementation can
lead to inaccuracies in the estimated fluxes. Modeling the dynamics of microbial com-
munities and the effect of rewetting on substrate availability explicitly could therefore
improve the reliability of the DGVMs for semiarid regions.

3.4. Systematic Errors in Model Ensembles

This dissertation analyzes and discusses the source of uncertainties in multiple model
ensembles, which estimate global CO2 fluxes. The two most important ensemble
datasets are the TRENDY ensemble of DGVMs and the OCO-2 MIP ensemble of at-
mospheric inversions. TRENDY flux estimates are used in the Global Carbon Project
reports and are compared to top-down fluxes of atmospheric inversions. Thereby, the
mean of the individual ensembles is used as the best flux estimate and the standard
deviation (TRENDY) and range (atmospheric inversions) are used as uncertainty
measure (Friedlingstein et al., 2025) .

In contrast to that, the publications in this thesis show that the mean of the
TRENDY model ensemble and for southern Africa the mean of the OCO-2 MIP
ensemble (MIP/OCO-2+IS) do not provide the best flux estimates for the study re-
gions. Instead of simply using the ensemble mean of TRENDY and MIP/OCO-2+IS,
we perform an informed selection of the best performing models for each region. We
demonstrate that by using atmospheric constraints (TM5-4DVar/GOSAT+IS fluxes
and SIF measurements for TRENDY, and OCO-2 cosamples for MIP/OCO-2+IS) on
the ensembles we succeed in selecting the best performing models. This significantly
reduces the uncertainties of the ensemble estimates. For example, through the se-
lection of the TRENDY models, the ensemble uncertainty (mean standard deviation
among the models) is reduced by a factor of 1.8, 2.6, and 2.6 for Australia, southern
Africa, and the South American Temperate region, respectively. While the reduction
of the uncertainty is obvious when performing a sub-selection, the magnitude of the
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uncertainty reduction is impressive.
We analyze why some models perform worse than others. We find systematic errors

in the remaining ensemble members that do not belong to the selected models. In
case of TRENDY, we identify an implementation of a dephasing between GPP and
Rh at the beginning of the rainy season as a prerequisite for vegetation models to
correctly capture the carbon flux dynamics in semiarid regions. Models without this
implementation fail in capturing the carbon flux dynamics, and therefore introduce
a systematic error in the TRENDY mean. In case of the MIP/OCO-2+IS models
in southern Africa, we find that those models that put a considerable weight on the
satellite measurements in the inversion align best with our GOSAT-based flux esti-
mate. OCO-2 MIP models that do not sufficiently weight the measurements show
much larger deviations. Here again, not accounting enough for the assimilated mea-
surements introduces a systematic error in the ensemble mean of MIP/OCO-2+IS.
These systematic errors, in contrast to statistical errors (e.g., due to a parameter
choice), do not cancel out when the mean of the whole ensemble is taken. This un-
derlines the value of using atmospheric constraints to exclude models with systematic
errors.

Finally, it is important to note that there is no common set of models which per-
forms best for all world regions and could be used globally. The differences in the
TRENDY model selections in the three study regions (see Section 3.3) already make
that clear. In order to obtain an improved global estimate, it would rather need
a reliable uncertainty assessment for each model and each world region so that an
uncertainty-weighted average can be calculated. This reinforces the call for develop-
ing and reporting uncertainty measures for atmospheric inversions. Furthermore, it
underlines the importance of regional validation studies of vegetation models. Such
studies can improve our process understanding and can identify the parameter im-
plementations causing the largest uncertainties in the flux estimates. The presented
publications take an important step in this direction by pointing out uncertainties
in the individual CO2 flux estimates, identifying driving processes of CO2 exchange,
and discovering deficiencies in respiration parameterizations of vegetation models for
the entire Southern Hemisphere.
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This thesis provides CO2 flux estimates from 2009 to 2018 based on satellite mea-
surements for three largely semiarid regions in the Southern Hemisphere: Australia,
southern Africa, and the South American Temperate Transcom region. Furthermore,
it deciphers vegetation processes that drive the seasonal and interannual CO2 ex-
change in the regions and identifies their climatic drivers.

The presented work demonstrates that satellite data can improve sub-continental
scale carbon flux estimates. We first show that CO2 flux estimates by in-situ-only
inversions have large uncertainties as the sparse in situ measurements cannot provide
sufficient information about the carbon dynamics in the study regions. Satellite data
is found to provide additional information, complementing in situ measurements.
We show that the CO2 concentration and flux products of the GOSAT and OCO-2
satellites compare well. The satellite-based flux estimates have significantly lower
uncertainties compared to in-situ-only inversions. With that, this work underlines the
importance of taking into account satellite CO2 measurements in CO2 flux estimates
in the Southern Hemisphere.

Also bottom-up DGVMs of the TRENDY ensemble are found to deviate strongly
in the study regions. We use the top-down satellite-based CO2 fluxes and SIF mea-
surements as atmospheric constraints to evaluate the DGVMs. This combination of
top-down and bottom-up approaches allows us to use the advantages of both datasets.
We make use of the robust GOSAT-based CO2 flux estimate to only select vegetation
models that capture the same flux dynamics. We then use the gross fluxes of the se-
lected TRENDY models and the knowledge about their implemented processes. This
allows us to decipher vegetation processes that drive the net ecosystem exchange of
CO2. We identify a dephasing in the increase of Rh and GPP in semiarid parts of the
study regions to drive the net CO2 flux variability. Using precipitation data and daily
flux tower measurements, we show that soil rewetting at the beginning of the rainy
season drives the early increase in Rh. We find short-term CO2 emissions by soil
respiration pulses in semiarid areas which are caused by precipitation events. These
short-term rewetting-driven respiration pulses are known on local scale under the
term ”Birch effect”. The results in Metz et al. (2023) indicate that these local pulses
accumulate over Australia and cause large CO2 emissions that drive the seasonal and
interannual variability of the continents’ CO2 fluxes. We find a dephasing of Rh and
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GPP and the occurrence of such rewetting-driven respiration pulses also in southern
Africa and the South American Temperate region. In these two study regions, they
are shown to substantially impact the seasonality of net fluxes. With our results,
we reveal the large-scale relevance of the previously only locally known effect of soil
respiration pulses. The accumulated effect is shown to be large enough to cause CO2

emissions which drive the variability in the regional ecosystem CO2 exchange and to
be detected from space by satellite.

We investigate the sensitivity of TER to soil moisture in more detail using mea-
surements of 40 flux tower stations in Australia. We find different response regimes
of TER to soil moisture. Soil moisture emerges to be a limiting factor for TER in
arid and semiarid regions which is reflected in the large sensitivities of TER to soil
moisture. In humid regions, however, soil moisture is found to have no impact on
TER indicating that TER is not water-limited. The publications included in this
thesis jointly show that soil moisture-driven respiration emissions are an important
and characteristic driver of the carbon cycle in semiarid regions.

Based on the results of this thesis, specific recommendations on how to improve
the CO2 flux estimates from DGVMs in semiarid regions are derived. We show that
TRENDY models need to better represent soil rewetting processes. The necessary
dephasing of Rh and GPP could be achieved by implementing different response times
of Rh and GPP to the increase of soil moisture at the beginning of the rainy season.
Explicitly implementing microbial community dynamics could further enhance the
robustness of the modeled respiration. Finally, we find that DGVMs struggle in
capturing the response of respiration fluxes to soil moisture in the transition from
dry to humid regimes. We emphasize that a more sophisticated parameterization of
TER sensitivity to soil moisture is necessary in models to perform correctly in arid as
well as humid regions. For example, we show that a declining or negative sensitivity
to high soil moisture levels is needed in the implementation of Rh.

In conclusion, this thesis improves our estimates and understanding of the carbon
cycle in the entire Southern Hemisphere. Using the growing number of satellite
measurements, we are able to reduce the uncertainties of current state-of-the-art
regional CO2 flux estimates significantly. We succeed in deciphering processes driving
the variability in CO2 fluxes and thereby reveal the continental scale relevance of
the so far only locally known effect of soil respiration pulses. This work calls for
improving the representation of soil rewetting processes in semiarid regions in DGVMs
and provides specific recommendations to do so. With the findings of this thesis, we
enhance the process understanding of semiarid ecosystems, which improves our ability
to model the global carbon cycle in response to changing climate conditions in the
future.
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A. Lists

A.1. List of Abbreviations

Abbreviation Full name and Description

ACOS NASA Atmospheric CO2 Observations from Space -
retrieval to retrieve XCO2 values from GOSAT mea-
surement spectra

AI aridity index
CAMS Copernicus Atmosphere Monitoring Service - atmo-

spheric inversion model
CarbonTracker atmospheric inversion model
CASA Carnegie-Ames-Stanford-Approach biogeochemical

model
COCCON Collaborative Carbon Column Observing Network
CSIRO Commonwealth Scientific and Industrial Research

Organisation
DGVM dynamic global vegetation model
FLUXCOM machine learning based approach to upscale fluxtower

CO2 fluxes globally
FLUXNET global collection of fluxtower measurements
GFED Global Fire Emission Database
GOSAT Greenhouse Gas Observing Satellite
GPP gross primary productivity
IAV interannual variability
ICOS Integrated Carbon Observation System
in-situ-only inversions atmospheric inversions only assimilating in situ CO2

measurements
IPCC Intergovernmental Panel on Climate Change
MIP/IS OCO-2 MIP ensemble assimilating in situ CO2 mea-

surements
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A. Lists

MIP/OCO-2+IS OCO-2 MIP ensemble assimilating in situ and
OCO-2 CO2 measurements

MODIS Moderate Resolution Imaging Spectroradiometer
NBP net biome productivity
NEE net ecosystem exchange
NEP net ecosystem productivity
NOAA National Oceanic and Atmospheric Administration
NPP net primary productivity
ObsPack Observation Package
OCO-2 Orbiting Carbon Observatory-2
OCO-2 cosamples modeled XCO2 values at the location of the OCO-2

measurements
OCO-2 MIP OCO-2 Model Intercomparison Project - Ensemble

of atmospheric inversions assimilating in situ and
OCO-2 CO2 measurements

OzFlux network of flux towers in Australia and New Zealand
PAR photosynthetically active radiation
PFT plant functional type
Ra autotrophic respiration
RemoTeC retrieval algorithm used to retrieve XCO2 values from

GOSAT measurement spectra
Rh heterotrophic respiration
SIF Solar-Induced Fluorescence
TCCON Total Carbon Column Observing Network
TER total ecosystem respiration
TM5-4DVar Transport Model version 5 four-dimensional varia-

tional inversion system (Basu et al., 2013)
TM5-4DVar/ACOS+IS TM5-4DVar global inversion assimilating in situ and

GOSAT/ACOS CO2 measurements
TM5-4DVar/GOSAT+IS mean of TM5-4DVar/RemoTeC+IS and TM5-

4DVar/ACOS+IS
TM5-4DVar/IS TM5-4DVar global inversion only assimilating in situ

CO2 measurements
TM5-4DVar/RemoTeC+IS TM5-4DVar global inversion assimilating in situ and

GOSAT/RemoTeC CO2 measurements
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A.1. List of Abbreviations

TRENDY trends and drivers of the regional-scale terrestrial
sources and sinks of carbon dioxide - Ensemble of
DGVMs providing global CO2 flux estimates

XCO2 column averaged dry air CO2 mole fractions
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B. Methods and Data

B.1. Land-Use Change and Lateral Carbon Fluxes

When subtracting fire emissions from the net fluxes of TM5-4DVar/GOSAT+IS to
obtain a GOSAT-based NEE estimate, we neglect the ’other’ disturbance fluxes in
Equation 1.2. Hence, we assume that land-use change and lateral fluxes are of minor
importance for the seasonal and interannual variability in the regional carbon cycle
compared to GPP, Ra, and Rh. In the following the literature and data sources are
described which show that the riverine and land-use change carbon fluxes are smaller
than 1-2% of the vegetation gross fluxes (GPP, Ra and Rh) in the study regions.

Villalobos et al. (2023) show that riverine and land-use change carbon fluxes are
smaller than 1% of the vegetation gross fluxes (GPP, Ra and Rh) in Australia (see
Figure 2 in Villalobos et al., 2023). Liu et al. (2024b) derived a gridded dataset
of riverine fluxes. It shows that the riverine carbon flux is significantly lower than
100 TgC/year for the South American Temperate region and southern Africa (see
Figure 4 in Liu et al., 2024b). The yearly total respiration of the South American
Temperate region is more than 10.000 TgC/year (see Figure 2 in Vardag et al., 2025)
and more than 5000 TgC/year in southern Africa (see Figure A12 in Metz et al.,
2025a), such that the effect is expected to be only about 1-2% of the total respiration
signal. The carbon fluxes by land-use changes as estimated by TRENDY are also
below 1% of the vegetation gross fluxes as shown in the reviewer response (Metz
et al., 2024) to Metz et al. (2025a) for southern Africa. Using the same approach, the
same can be shown for the TRENDY land-use change fluxes for the South American
Temperate region.
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B. Methods and Data

B.2. Seasonal Amplitudes of TM5-4DVar Inversions

MSC Amplitude [TgC/month]

Inversion Australia Southern
Africa

South
American
Temperate

TM5-4DVar/IS 105.14 226.65 359.45

TM5-4DVar/GOSAT+IS 144.83 377.89 380.39

TM5-4DVar prior 104.77 237.08 220.00

TM5-4DVar/GOSAT+IS -
TM5-4DVar/IS

39.69 151.24 20.94

TM5−4DV ar/GOSAT+IS
TM5−4DV ar/IS

1.38 1.67 1.06

Table B.1.: Mean seasonal cycle amplitudes. Peak-to-peak amplitudes of the mean
seasonal cycle (MSC) of the different TM5-4DVar inversion setups for Australia,
southern Africa, and the South American Temperate region.

246



B.3. TRENDY PFTs and Timeseries of Fluxes

B.3. TRENDY PFTs and Timeseries of Fluxes

Figure B.1.: Australian carbon fluxes modeled by JSBACH. The carbon fluxes NBP,
GPP and TER modeled by JSBACH are given in black, green and blue, respectively.
Furthermore, the NBP fluxes of TM5-4DVar/GOSAT+IS are given in red dashed.

Figure B.2.: Southern African carbon fluxes modeled by JSBACH. The carbon
fluxes NBP, GPP and TER modeled by JSBACH are given in black, green and blue,
respectively. Furthermore, the NBP fluxes of TM5-4DVar/GOSAT+IS are given in
red dashed.
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B. Methods and Data

Figure B.3.: Distribution of plant functional types in JSBACH. The fraction of each
PFT in the grid cells is shown.
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B.3. TRENDY PFTs and Timeseries of Fluxes

Figure B.4.: Australian carbon fluxes modeled by YIBs. The carbon fluxes NBP,
GPP and TER modeled by YIBs are given in black, green and blue, respectively.
Furthermore, the NBP fluxes of TM5-4DVar/GOSAT+IS are given in red dashed.

Figure B.5.: Southern African carbon fluxes modeled by YIBs. The carbon fluxes
NEE, GPP and TER modeled by YIBs are given in black, green and blue, respec-
tively. Furthermore, the NEE fluxes of TM5-4DVar/GOSAT+IS-GFED are given
in red dashed. Please note, as the NBP fluxes of YIBs aligned well with TM5-
4DVar/GOSAT+IS, the NEE fluxes are given in this figure to show why YIBs was
not selected in southern Africa.
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B. Methods and Data

Figure B.6.: Distribution of plant functional types in YIBs. The fraction of each
PFT in the grid cells is shown.
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