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Abstract
Context: Software development is an iterative process requiring continuous adaptation to
user needs. However, a gap often exists between developers’ assumptions and users’ actual
expectations for the software. While direct user participation is valuable for bridging this gap,
practical constraints often make it difficult. Online user feedback provides an alternative source
for insights but is typically unstructured and lacks context. To bridge the gap between developers
and users through online feedback, two key challenges need to be tackled: (1) identifying which
functionalities users discuss in their feedback and (2) understanding how users interact with
these functionalities. Moreover, manually analyzing large volumes of feedback is time-consuming,
highlighting the need for automation and tool support.

Objective: The goal of this thesis is to introduce two approaches to tackle the above mentioned
challenges. One approach, handling challenge (1), facilitates the relation of feedback and existing
requirements of a software. The functionalities of a software are documented in its requirements.
By relating feedback directly to the requirements, developers are able to identify the discussed
functionalities of the software. The other approach, handling challenge (2), allows the analysis
of users’ needs and expectations by extracting the usage information in their feedback. Usage
comprises both the real-life actions of the users as well as the interactions of the user with the
software. This usage information is captured through the application of the TORE framework on
the user feedback and allows developers to gain a better understanding of how the users interact
with the software’s functionalities. For both of these approaches, the relation and the usage
information analysis, this thesis offers machine learning classifiers and tool support to reduce the
manual labour required for the analysis.

Methods: This thesis follows the Design Science approach consisting of solution investigation,
treatment design and treatment validation. The solution investigation is conducted via two
systematic mapping studies in order to identify existing machine learning classifiers and evaluate
their applicability to feedback requirements relation and usage information classification. The
treatment design contains goals that match the two approaches presented in this thesis: The
design and implementation of an approach and accompanying automatic classifiers to relate
feedback to existing requirements and to identify the usage information contained in feedback.
The implemented classifiers are also evaluated on multiple manually created datasets to identify
the best-performing ones. Additionally, a software prototype is presented as part of the treatment
design, which offers tool support for the developed approaches. The treatment validation evaluates
the developed classifiers in the context of a hypothetical deployment scenario in a company.

Contributions: The main contributions of this thesis are the presented approaches for
feedback requirements relation and usage information analysis as well as the classifiers for the
automation of these approaches and their evaluation. Multiple manually created datasets are
also provided to train and evaluate the presented classifiers. Furthermore, two mapping studies
are included, which capture the current state of research towards the relation of software artifacts
and detailed user feedback classification. Additionally, a prototype (Feed.UVL) is created to
provide tool support for the developed approaches. A Jira plugin is also provided to integrate
the tool support for the approaches into existing development workflows.
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Zusammenfassung
Kontext: Softwareentwicklung ist ein iterativer Prozess, der eine kontinuierliche Anpassung
an die Bedürfnisse der NutzerInnen erfordert. Häufig besteht jedoch eine Disparität zwischen
den Annahmen der EntwicklerInnen und den tatsächlichen Erwartungen der NutzerInnen an
die Software. Die direkte Beteiligung der NutzerInnen ist zwar wertvoll, um diese Disparität zu
überbrücken, wird aber durch praktische Beschränkungen oft erschwert. Online-Feedback bietet
eine alternative Quelle für Erkenntnisse, ist aber in der Regel unstrukturiert und hat keinen
Kontext. Um die Unterschiede zwischen EntwicklerInnen und NutzerInnen durch Online-Feedback
zu überbrücken, müssen zwei zentrale Herausforderungen bewältigt werden: (1) Identifizierung
der Funktionen, die NutzerInnen in ihrem Feedback diskutieren, und (2) Verständnis dafür, wie
NutzerInnen mit diesen Funktionen interagieren. Darüber hinaus ist die manuelle Analyse großer
Mengen von Feedback zeitaufwändig, was den Bedarf an Automatisierung und Toolunterstützung
unterstreicht.

Zielsetzung: Das Ziel dieser Dissertation ist es, zwei Ansätze vorzustellen, um die oben
genannten Herausforderungen zu bewältigen. Ein Ansatz, der Herausforderung (1) behandelt,
erleichtert den Bezug zwischen Feedback und bestehenden Anforderungen einer Software. Die
Funktionalitäten einer Software sind in ihren Anforderungen dokumentiert. Indem das Feedback
direkt mit den Anforderungen in Verbindung gebracht wird, können EntwicklerInnen, die disku-
tierten Funktionalitäten der Software identifizieren. Der andere Ansatz, der Herausforderung
(2) behandelt, ermöglicht die Analyse der Erwartungen der NutzerInnen durch die Extraktion
der Nutzungsinformationen in ihrem Feedback. Die Nutzungsinformationen umfassen sowohl
die realen Handlungen der NutzerInnen als auch die Interaktionen der NutzerInnen mit der
Software. Diese Nutzungsinformationen werden durch die Anwendung da TORE-Frameworks
erfasst und ermöglichen es den EntwicklerInnen, ein besseres Verständnis dafür zu erlangen,
wie die NutzerInnen mit den Funktionen der Software interagieren. Für beide Ansätze, die
Bezugsherstellung und die Nutzungsinformationsanalyse, bietet diese Arbeit Klassifikatoren und
Werkzeugunterstützung, um den manuellen Arbeitsaufwand für die Analyse zu reduzieren.

Methode: Diese Arbeit folgt der Design-Science-Methode, bestehend aus Lösungsunter-
suchung, Lösungsentwurf und Lösungsvalidierung. Die Lösungsuntersuchung wird mittels zweier
systematischer Mapping-Studien durchgeführt, um bestehende Klassifikatoren zu identifizieren
und ihre Anwendbarkeit auf die Bezugsherstellung und die Nutzungsinformationsklassifikation
zu bewerten. Der Lösungsentwurf enthält Ziele, die mit den beiden in dieser Arbeit vorgestellten
Ansätzen übereinstimmen: Der Entwurf und die Implementierung eines Ansatzes und begleiten-
der automatischer Klassifikatoren, um Feedback mit bestehenden Anforderungen in Beziehung
zu setzen und die im Feedback enthaltenen Nutzungsinformationen zu identifizieren. Die im-
plementierten Klassifikatoren werden außerdem an mehreren manuell erstellten Datensätzen
evaluiert, um die am besten funktionierenden Klassifikatioren zu identifizieren. Zusätzlich wird
ein Software-Prototyp als Teil des Lösungsentwurfs vorgestellt, der Werkzeugunterstützung für
die entwickelten Ansätze bietet. Die Lösungsvalidierung evaluiert die entwickelten Klassifikatoren
im Rahmen eines hypothetischen Einsatzszenarios in einem Unternehmen.

Beiträge: Die Hauptbeiträge dieser Arbeit sind die vorgestellten Ansätze zur Bezugsher-
stellung und Nutzungsinformationsanalyse sowie die Klassifikatoren zur Automatisierung dieser
Ansätze und deren Bewertung. Mehrere manuell erstellte Datensätze werden ebenfalls bereit-
gestellt, um die vorgestellten Klassifikatoren zu trainieren und zu evaluieren. Darüber hinaus
sind zwei Mapping-Studien enthalten, die den aktuellen Stand der Forschung zur Bezugsher-
stellung von Software-Artefakten und zur detaillierten Klassifikation von Feedback darstellen.
Zusätzlich wird ein Prototyp (Feed.UVL) erstellt, um die entwickelten Ansätze zu unterstützen.
Ein Jira-Plugin wird ebenfalls bereitgestellt, um die Werkzeugunterstützung für die Ansätze in
bestehende Entwicklungs-Arbeitsabläufe zu integrieren.
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Chapter 1
Introduction

This chapter introduces the motivation and associated problems in Section 1.1 as well as the
solution idea for the work presented in this dissertation in Section 1.2. Section 1.3 describes the
applied research methodology. Section 1.4 lists the contributions of this work. Section 1.5 gives
an overview of the structure of this dissertation. Lastly, Section 1.6 lists previous publications.

1.1. Motivation & Problem

Software development is an iterative process that requires continuous improvement to meet
user expectations and remain competitive (Bosch, 2014). As software evolves, developers must
adapt to changing user needs and preferences. However, understanding these needs is not
always straightforward. One significant challenge is the difference in background knowledge
and experience between developers and users (Paech and Schneider, 2020). Technically inclined
developers often have a different perspective on how a system should work compared to the
users who interact with the software in their day-to-day activities. This gap in understanding
can result in discrepancies between what developers assume users need and what users actually
expect or require from the software.

To bridge this gap, user participation is crucial (Sharp et al., 2023). Direct communication
between users and developers allows the latter to gain insights into how the software is used in
real-world scenarios, which can inform decisions about software functionalities and improvements
(Abelein and Paech, 2014). However, achieving effective user participation is not always easy.
Direct communication, for example, in the form of interviews, may not be available or feasible.
Various factors, such as time constraints, geographical distance, or the size of the user base,
can make it challenging to establish direct communication with users. The fact that direct
communication can be so difficult to achieve (Abelein, 2013) can lead to issues where software
behaviour that developers find intuitive may not be so clear to actual users (Mann, 2002).

In situations where direct interaction is not possible, online feedback from users can serve as
an alternative. Users often leave valuable feedback in online forums, social media, app stores, or
customer support channels. These sources provide abundant user-generated content, offering
insights into user experiences and potential requirements for further development (Pagano and
Maalej, 2013). However, these sources present their own challenges. Feedback collected from
online sources is often unstructured, with users discussing various software functionalities in
different contexts (Anders et al., 2023).

Research on the analysis of feedback from online sources has been extensive (Dabrowski et al.,
2022) (Khan et al., 2019) (Lim et al., 2021) (Wang et al., 2019). Among the most common
analysis goals are the classification of feedback into predefined categories, information extraction,
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and content analysis. These approaches directly analyze the content of the feedback without
putting it into the context of the software’s functionalities. Thus, they do not answer the
question of which of the existing functionalities of the software the feedback is actually addressing.
Creating this context would allow feedback to be grouped by common themes more easily, which
is a common task of developers in industry (Z. S. Li et al., 2024). This motivates the first
problem that our approach aims to treat:

P1: Understand which functionalities users are discussing in their feedback

Additionally, feedback also contains concepts relevant to usage information (Anders et al.,
2022). Usage comprises the interactions with the software in terms of UI elements touched, data
input and output and the functionalities used. These interactions are part of a usage context in
terms of the user tasks and activities. Usage information comprises context and usage. Unlike
opinions, such as "this feature is confusing", usage information focuses on the observable or
inferred activities that lead to these opinions. For example, if the feedback of users is influenced
by the fact that they consistently use a particular feature in unexpected ways, this is reflected in
their usage information. By providing this information about how users talk about the software
and their use of it, developers could gain a better understanding of the users. They may also
discover differences in how they envision software and its functionalities being used as opposed
to how their actual user base does. An example taxonomy shows that product quality, user
intention, user experience, and sentiment are classified but not the concepts relating to usage
information (R. Santos et al., 2019).

Users provide both explicit feedback in the form of written messages as well as implicit feedback
in the form of monitoring data, such as logs (Maalej et al., 2009). Monitoring data can provide
insights into which functionalities users are using and how they are using them. However,
monitoring is limited to surface-level interactions and doesn’t capture the full range of usage
information, such as the rationale behind user actions or feedback on specific UI elements. It
also presents ethical and data privacy challenges. The ACM Code of Ethics advises against
collecting more personal information than necessary (Gotterbarn et al., 2018), making explicit
user feedback a more viable source of information. Thus, in order to address the software issues
raised by feedback, developers need to understand how the users are using the functionalities of
the software by analyzing explicit user feedback. (Guzman and Maalej, 2014). This motivates
the second problem our approach aims to treat:

P2: Understand how the users use the functionalities of the software by analysing
their feedback

Despite the importance of feedback, manually analyzing it is a time-consuming and labour-
intensive process, especially given the large volume of feedback developers must handle (Pagano
and Maalej, 2013). Automation and tool support are required to integrate feedback analyses
into development processes adequately. However, as interview studies reveal, developers in the
industry often still manually analyse user feedback instead of using automated approaches (Z. S.
Li et al., 2024) (Johanssen et al., 2019). These studies also highlight the lack of tool support.
Thus, in order to properly address the previously stated problems (P1 and P2), developers need
assistance through automation and tool support.

In summary, developers face the dual challenges of (1) understanding which functionalities
of the software users are using (P1) and how they are using them (P2) and (2) processing vast
amounts of user feedback efficiently, ethically and accurately to gain this understanding.

3



1. Introduction

1.2. Solution Idea

As highlighted in the previous section, to find discrepancies between developers’ expectations
and users’ actual needs, developers must first understand which functionalities of the software
users are discussing in their feedback (P1) and how they are using those functionalities (P1). To
facilitate this, the solution idea encapsulates two approaches: the relation of feedback to existing
software requirements and the extraction of usage information from feedback. Both of these
approaches can be used independently and in conjunction.

The first approach, introduced as feedback requirements relation (FeReRe), focuses on relating
user feedback to existing software requirements in order to treat P1. Software requirements
describe how a functionality is envisioned and how it is designed to work. By relating the
feedback directly to these requirements, it allows developers to understand which functionalities
of the software users are discussing.

The second approach expands on feedback analysis by focusing on usage information classi-
fication (UIC) from feedback in order to treat P2. While other frameworks could be used to
classify usage information, our approach uses the TORE framework (Paech and Kohler, 2004)
to categorize feedback. By classifying feedback according to the TORE levels, we gain a more
granular understanding of how users interact with the system. This allows developers to compare
their expectations to the users’ actual use of the software by analysing how the users actually
use the software.

Additionally, tool support for both approaches is needed to make the information more
accessible for developers.

In summary, our dual approach—relating feedback to requirements through FeReRe and
classifying usage information in feedback through UIC helps with the discovery of discrepancies
between developer expectations and user needs. By automating key aspects of the process,
developers are offered the tools they need to understand their users more effectively and ensure
their software evolves in line with users’ needs.

1.3. Research Methodology

In this section, the methodology used for research and design of the approaches proposed in this
dissertation is explained. Section 1.3.1 explains the fundamental design science methodology
used. Section 1.3.2 introduces the research goals of this dissertation and explains the design
cycle.

1.3.1. Design Science Methodology

The research in this dissertation follows Wieringa’s design science methodology (DSM) (Wieringa,
2014). DSM is a structured framework for problem-solving in the context of information systems
and technology design. The methodology emphasizes the iterative cycle of designing and
evaluating artifacts, such as models, software, or processes, to address real-world problems. DSM
integrates both solution investigation and treatment development through two main cycles: the
design cycle and the engineering cycle.

The design cycle focuses on creating a solution based on current knowledge and requirements.
It consists of the problem investigation, treatment design, and treatment validation. As the
problem tackled by this dissertation is already established (P1 and P2 in Section 1.1), we perform
a solution investigation instead of the problem investigation. Here, we investigate the current
state of the art of related solutions to transfer the already existing knowledge to the tackled
problem.
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Solution Investigation is the process of systematically exploring potential solutions to a
problem. This involves researching existing solutions for related problems and identifying
challenges. Treatment Design refers to the creation of an artifact (such as a system, process,
or software) intended to solve a specific problem. The "treatment" is the proposed solution
that aims to improve a situation by addressing a set of requirements or constraints. Treatment
Validation involves testing the designed treatment to determine if it effectively solves the problem
or meets the targeted objectives. This can be done through simulations, experiments, or field
tests and focuses on evaluating whether the solution satisfies its intended purpose.

The design cycle is part of the larger engineering cycle, where the results of the design cycle
are transferred to the real world (i.e., industry settings) for treatment implementation and
implementation evaluation. In this dissertation, we are focusing solely on the design cycle without
later industry implementation.

The individual steps of the design cycle are made up of two kinds of goals. The first is
the design goal, which describes the design of an artifact to improve the problem context of
stakeholders. Stakeholders, in this case, are people within the social context that are affected
by the project. The Stakeholders have their own goals. In the case of this dissertation, these
stakeholders are software users and developers. The second type of goal that is part of the design
cycle is the knowledge goal. Knowledge goals refer to the objective of gaining new insights or
contributing to scientific knowledge through investigation or evaluation. The knowledge goal
seeks to understand the principles behind why certain treatments work or fail, contributing to
the broader understanding of design science.

1.3.2. Research Goals & Design Cycle

This section describes the social context goals of the two stakeholders relevant to this dissertation:
software users and developers. Afterwards, the design science research goals that support the
social context goals are explained. Figure 1.1 shows the users’ and developers’ primary goals and
the problems preventing developer goal success.

Figure 1.1.: Social Context Goals and Problems that Prevent Goal Success

In the context of this dissertation, the software users’ primary goal within the social context
is to use software that fulfils their needs. These needs can be software-specific, for example, a
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specific UI design, or domain-specific, such as the need for specific requirements that aid the
users in their daily lives.

The user goal is enabled by the developers through their primary goal: Understanding the
user’s feedback in order to adequately address the software’s issues. By understanding the
feedback, developers are able to address any issues the users might have with the software,
thus allowing them to develop software that fulfils the user’s needs. However, as explained in
Section 1.1, two problems exist that prevent this goal from being achieved. P1, the difficulty of
understanding which functionalities users are discussing in their feedback and P2, the difficulty
of understanding how the users are using the functionalities of the software by analysing their
feedback.

The approaches presented in this dissertation tackle P1 by relating feedback to the existing
requirements of the software and tackle P2 by extracting usage information from the feedback,
which explains how the users are using the software.

Figure 1.2.: Design Science Goal Structure of this dissertation including Design Goals (DG)
and Knowledge Goals (KG). Arrows indicate that the fulfilment of one goal or
investigation contributes to the fulfilment of the other
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Thus, in order to tackle the problems that prevent the developers’ goal from being achieved,
which in turn enables the users’ goal, design science research goals are formulated. These can be
seen in Figure 1.2. Design Science Goals are symmetrical for both problems P1 and P2. Goals
related to feedback requirements relation are marked in blue. Goals related to usage information
classification are marked in green.

Starting with the solution investigation, knowledge goals 1 and 2 are understanding the current
state of the art regarding the relation of software artifacts and fine-grained feedback analysis. To
achieve this, two mapping studies are performed to find existing approaches. To find approaches
related to feedback requirements, we research approaches that perform the relation of software
artifacts. These artifacts can be feedback, requirements, commit messages, or other natural
language artifacts created during software development. For the usage information classification
task, we look for approaches that perform similarly fine-grained user feedback classifications.

After analyzing the existing approaches, design goals 1 and 2 are tackled during the treamtent
design. During the design of the approaches, lessons learned from the current state of the art are
considered. To then automate the approaches knowledge goals 3 and 4 are completed. These
include evaluating several classifiers to find the best-performing classifier for each task. Classifiers
are based on machine learning models found during the state-of-the-art investigation. As part
of the design of the approaches, tool support is also created to make the created information
more accessible for developers. Because the requirements for the tool are directly related to the
approaches themselves, there is no separate design goal for the tool support. The tool, Feed.UVL
serves as a proof-of-concept prototype to show how the designed approaches can be integrated
into the development process to help with P1 and P2.

The result of the treatment design are approaches for feedback requirements relation and usage
information extraction along with classifiers for automation of each approach.

During the treatment validation knowledge goals 5 and 6 validate the effectiveness of the
presented approaches and classifiers. The validation is performed on real user data, namely,
feedback and requirements from real software projects. A use case for both feedback requirements
relation and usage information classification is established. The effectiveness of the automation
of both tasks is then evaluated through metrics and comparison to manual task execution. The
designed tool is not validated separately.

This dissertation investigates two different approaches that form separate tasks: the relation
of feedback and requirements and the classification of usage information. Since both tasks are
separate from one another but follow the same design cycle steps, Figure 1.3 shows a general
template for both tasks. The design cycle is repeated for each task. The design cycle derives
from the phases introduced in Figure 1.2.
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Figure 1.3.: Design Cycle Template for this Dissertation. Covering Solution Investigation (SI),
Treatment Design (TD), and Treatment Validation (TV)

1.4. Contributions

This dissertation presents five contributions towards software engineering research.
The two main contributions are the approaches created for feedback requirements relation

(FeReRe) (Section 5.1) and usage information classification (UIC) (Section 6.1) as part of design
goal 1 and design goal 2. These two approaches can be applied independently or in conjunction
to highlight discrepancies between the developers’ expectations of the users’ needs and the users’
actual, expressed needs. For both approaches, classifiers are designed to help automate the tasks
(Sections 5.2 and 6.2) as part of knowledge goal 3 and knowledge goal 4. The effectiveness of
these approaches and related classifiers are evaluated on real user data in Chapters 8 and 9 as
part of knowledge goal 5 and knowledge goal 6.

The third contribution of this dissertation is Feed.UVL is a web-based microservice tool
designed to support the two approaches and related classifiers, which is presented in Chapter 7.
Feed.UVL is designed as part of design goal 1 and design goal 2 and thus provides functionalities
to perform both feedback requirements relation and usage information classification manually
and automatically. Additionally, it provides functionalities to gather feedback from online sources
and manage feedback datasets. This makes the approaches easier to use. Also, a Jira plugin
is presented, which connects to the Feed.UVL database and makes the feedback requirements
relation and usage information classification more accessible for developers.

The fourth contribution is the two mapping studies which capture the current state of research
regarding software artifact relation (Chapter 3) and fine-grained user feedback classification
(Chapter 4). The approaches found during the mapping studies were fundamental towards
identifying existing approaches and challenges. The lessons learned were considered during the
development of the approaches presented in this dissertation. The studies were conducted as
part of knowledge goal 1 and knowledge goal 2.

The fifth contribution is a number of large, manually created datasets which were used for
training and evaluation of the classifiers for both feedback requirements relation and usage
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information classification. These are part of design goals 1 and 2 and knowledge goals 5 and 6.
The datasets presented in Section 2.5 are based on different software products and come from
different feedback sources. All have been annotated through rigorous coding rules and interrater
agreement sessions to provide high quality datasets for future development and reproducibility
of the results presented here.

1.5. Dissertation Structure
As shown in Table 1.1, the dissertation is structured in five parts consisting of 11 chapters. Part I
introduces the dissertation and necessary fundamentals. Part II discusses the two mapping
studies conducted as part of the solution investigation. Part III describes the design of the
FeReRe and UIC approaches designed as a result of design goal. These chapters also evaluate
the best performing classifiers for each approach according to knowledge goals 3 and 4. Part IV
evaluates the effectiveness of the designed approaches as part of a hypothetical deployment
scenario in a company. Lastly, Part V provides a summary and outlook on future work.

Table 1.1.: Structure of the dissertation
Preliminaries Chapter

Part I Introduction 1
Fundamentals 2

Solution Investigation

Part II

State of the Art - Software Artifact Relation
Knowledge Goal 1: Understand the current state of the art regarding the relation of
software artifacts

3State of the Art - Fine-Grained Feedback Classification
Knowledge Goal 2: Understand the current state of the art regarding automatic
fine-grained feedback analysis

4Treatment Design

Part III

Feedback Requirements Relations
Design Goal 1: Design an approach to relate feedback to existing requirements and
provide classifiers for automation
Knowledge Goal 3: Find the best performing classifier for feedback requirements
relation

5

Usage Information Classification
Design Goal 2: Design an approach to extract usage information from user feedback
and provide classifiers for automation
Knowledge Goal 4: Find the best performing classifier for usage information extraction

6

Treatment Validation

Part IV

Feedback Requirements Relation Evaluation
Knowledge Goal 5: Show the effectiveness of automatic feedback requirements relation
on real user data
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Usage Information Classification Evaluation
Knowledge Goal 6: Show the effectiveness of automatic usage information extraction
on real user data

9

Conclusion

Part V Summary 10
Future Work 11

1.6. Previous Publications
Several results of this dissertation have previously been published. Table 1.2 lists these publica-
tions and the chapters of this dissertation they correspond to.
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Table 1.2.: Previous Publications
Publication Chapter
Schrieber H, Anders M, Paech B, Schneider K, "A Vision of Understanding the
Users’ View on Software". In: Joint Proceedings of REFSQ-2021 Workshops,
Essen (Germany)/Virtual, 2021

2

Anders M, Obaidi M, Paech B, Schneider K, "A Study on the Mental Models
of Users Concerning Existing Software". In: Requirements Engineering: Foun-
dation for Software Quality, Lecture Notes in Computer Science, vol 13216,
Springer, pp. 235-250, Birmingham (UK), 2022

2

Anders M, "Relating User Feedback and Existing Requirements". In: Joint
Proceedings of REFSQ-2023 Workshops, Barcelona (Spain), 2023

5, 6

Anders M, Obaidi M, Specht A and Paech B, "What Can be Concluded from
User Feedback? - An Empirical Study". In: IEEE 31st International Require-
ments Engineering Conference Workshops (REW), pp. 122-128. Hannover
(Germany), 2023

2

Anders M, Paech B, Bockstaller L, "Exploring the Automatic Classification of
Usage Information in Feedback". In: Requirements Engineering: Foundation
for Software Quality, Lecture Notes in Computer Science, vol 14588, Springer,
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Chapter 2
Fundamentals

This chapter explains fundamental concepts and terms used in this dissertation. Section 2.1
introduces feedback analysis as a general concept and discusses analysis goals, analysis coarseness,
and feedback sources. Section 2.2 introduces the Task-oriented Requirements Engineering (TORE)
framework used for usage information classification. Section 2.3 introduces relevant machine
learning concepts, the classifiers used in this dissertation, and the metrics used to measure
their performance. Section 2.4 introduces the development tools mentioned throughout the
dissertation. Lastly, Section 2.5 presents the manually created datasets which are used for
training and evaluation of the automatic classifiers designed in this dissertation.

Sections 2.2, 2.3.3 and 2.5 are partially based on previous publications (Anders et al., 2022)
(Anders et al., 2024) (Anders and Paech, 2025).

2.1. Feedback Analysis

Feedback analysis refers to the process of evaluating feedback statements (also referred to as
reviews synonymously) from users to improve a product. The goal is to continuously improve the
product, in the case of this dissertation, software, to meet the users’ needs and expectations and
provide the best possible product. Analysis can either be performed on explicit or implicit user
feedback (Maalej et al., 2009). Explicit feedback refers to written statements from users about
a software product. Implicit feedback refers to indirect forms of feedback, such as monitoring
information automatically logged by software. In this dissertation, we only analyze explicit
feedback in textual form. Alternative forms of explicit feedback, such as drawings, for example,
are not analyzed. The evaluation of feedback through analysis can be performed manually,
automatically, or semi-automatically.

Manual analysis can either be performed in a structured or unstructured manner. A
structured manual analysis approach assigns predefined classes to the feedback. This process is
called coding (Saldana, 2021). An unstructured manual analysis approach does not follow these
coding rules. Rather, the feedback statements are read, for example, by a developer while they
take notes and highlight passages they deem important (Johanssen et al., 2019).

Automatic analysis refers to the process of using a classifier to perform a structured analysis
of the feedback fully automatically. The classifier, designed for a specific analysis goal (Section
2.1.1), performs the feedback classification and provides the developers with an output that they
can then process further (R. Santos et al., 2019).

Semi-automatic analysis is a hybrid between manual and automatic analysis. Here, a
classifier is used as a recommender system, providing the developers with recommendations for
the classification of the feedback. These recommendations are then manually either approved
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or rejected by the developers. The semi-automatic analysis aims to reduce the time needed to
analyze the feedback compared to fully manual analysis while not relying on the performance of
the used classifier as much as during automatic analysis (Felfernig et al., 2013).

2.1.1. Analysis Goals
Any feedback analysis, be it manual, automatic, or semi-automatic, is performed with certain
goals in mind. These goals define what the developers ultimately want to achieve with their
analysis. There are numerous goals for feedback analysis. According to van Oordt et al. (Oordt
and Guzman, 2021), practitioners collect and analyze feedback with seven different goals in
mind with respect to requirements engineering (Figure 2.1). These are the identification of new
features, the prioritization of existing requirements, spotting trends in the feedback, creation
of bug reports, identification of pain points, identification of incompatibilities, issues with the
usability of the software, and making assumptions about the users of the software.

Figure 2.1.: Why do practitioners collect user feedback (Oordt and Guzman, 2021)

These seven general analysis goals can be achieved through the mining of information.
Dabrowski et al. (Dabrowski et al., 2022), for example, differentiate between different types of
mined information and analysis types from app reviews. This can be seen in Table 2.1. This
list, however, is not exhaustive and merely an excerpt of the types of mined information found
by Dabrowski et al. Different analysis goals can be achieved by combining a type of analysis
combined with the mined information. To achieve a practitioner’s goal of finding new features,
for example, information extraction of user requests can be performed on the feedback. Other
analyses are more supportive towards reaching a more general goal, such as the clustering of
similar reviews, for example, to help with the spotting of trends.

For more information about potential analysis goals in research, refer to Chapter 4. The
primary analysis goals that this dissertation aims to support, as classified by (Oordt and Guzman,
2021), are the spotting of trends and the identification of pain points. To achieve this, we perform
two different types of analysis as classified by (Dabrowski et al., 2022). The first is the clustering
of similar reviews by relating feedback directly to existing requirements. The second is the
classification of usage information. Both of these analyses support the stated analysis goals.
Trends can be spotted by clustering common feedback related to the same requirement and by
looking at common usage information appearing in feedback. Pain points can be identified by
looking at the users’ statements about how they use the software through usage information.
These pain points can then be traced back to the requirements through feedback requirements
relation.

2.1.2. Statement, Sentence and Word Analysis
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Table 2.1.: Analysis Types and Mined Information in App Reviews (Dabrowski et al., 2022)
App Review Analysis Mined Information

Features
User RequestInformation Extraction
Non-Functional Requirements (NFR)
User Request Type
NFR TypeClassification
Issue Type

Clustering Similar Reviews
Feature-Specific Reviews
Review-Goal Links
Review-Issue Links

Search and Information Retrieval

Review-Code Links
Feature-SpecificSentiment Analysis
Review
User Request PriorityRecommendation
Review Response

Summarization Review Summary

User feedback can be analyzed at different levels of coarseness (Cambria et al., 2013). The
level of coarseness selected can depend on multiple factors, such as the chosen analysis goals,
available time for analysis, or the capabilities of the classifiers used. In general, there are three
different levels of coarseness. Feedback can be analyzed as a complete statement, such as a whole
app review submitted by a user. It can also be analyzed on a sentence level, where each sentence
is analyzed individually. The least coarse level is the word-based analysis, where each word in a
feedback statement is analyzed individually.

In this dissertation, we perform statement— and sentence-based analyses for the relation of
feedback and requirements in Chapter 5. Word-based analysis is not practical for this goal
because deciding to which requirement an individual word belongs is not feasible, nor does it
provide meaningful information. For the usage information classification (Chapter 6), we perform
sentence- and word-based analyses. A whole feedback statement can contain multiple types of
usage information (Section 2.2). As a result, performing statement-based usage information
classification would result in too much usage information being lost.

2.1.3. Feedback Sources

Feedback can be gathered from a large number of different sources. In their study, van Oordt et
al. (Oordt and Guzman, 2021) identified 20 different sources of feedback that practitioners use
to get explicit and implicit feedback from users and colleagues. These can be seen in Figure 2.2.

Implicit feedback sources such as usage data and error logs are irrelevant to this dissertation
because we only handle explicit feedback. We also do not handle feedback that does not provide
written statements from the software’s users, such as internal blogs, colleagues, and phone calls.
Of the remaining feedback sources, this dissertation performs evaluations using datasets from
review platforms, social media, in-app feedback mechanisms, and surveys (Section 2.5).
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Figure 2.2.: Sources of feedback for practitioners, e denotes explicit feedback and i implicit
feedback (Oordt and Guzman, 2021)

Review platforms are most commonly directly integrated into distribution platforms such as
mobile application stores or other online stores. These review platforms provide functionalities
to write feedback messages directly to software developers and often include the ability to rate
the product. In research, these are among the most commonly used platforms (especially mobile
reviews) (Wang et al., 2019). This dissertation uses reviews from the Google Play Store1.

Social media refers to online platforms that facilitate social interactions between users. These
include platforms such as Twitter, Facebook, or, in the case of this dissertation, the online forum
reddit2. Here, users can exchange messages through forum posts. One user generates a post,
giving it a name and a description, and other users can comment on this post or on previous
comments. What separates social media from other sources, such as review platforms, is the fact
that they are not necessarily designed to give feedback. They can serve as a platform for users to
directly address developers if they have a presence on the platform, but they can also facilitate
discussion between users about the software without developer input. In this regard, they are
different from other sources, like review platforms (Williams and Mahmoud, 2017) (Iqbal et al.,
2021).

In-app feedback mechanisms allow users to send feedback messages directly to the developers
within the software they are using. They may also allow developers to ask specific questions for
the users, allowing them to gather more targeted feedback, for example, for specific functionalities.
This feedback source has the advantage of lowering the steps a user has to go through to submit
feedback compared to other sources. This dissertation uses the SmartFeedback app integrated
into the SmartAge-App-Suite (see Section 2.5 for further details).

1https://www.play.google.com/
2https://www.reddit.com
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Surveys are a way for developers to get targeted feedback from their users. They can target
specific groups of users and, by designing specific survey questions, target specific functionalities
for which they wish to gain feedback. These surveys can either be sent directly to users or be
published in online survey platforms such as Prolific3, as is the case in this dissertation. Here,
participants are paid for their participation. These platforms also allow users to target their
survey towards specific demographics or people with specific knowledge backgrounds.

It should be noted that usage information classification and feedback requirements relation may
also be applied to other feedback sources for which no datasets are presented in this dissertation.
Many of these sources, such as support tickets, emails, and customer departments, are often only
available internally within a company, which prohibits us from creating datasets and performing
evaluations for them.

2.2. Usage Information Classification Framework TORE
We define usage information as the interactions users have with software, namely the UI
elements and software functionalities they engage with, the data they enter, and the data the
software outputs. These interactions occur within a broader usage context, encompassing the
tasks and activities users perform in their daily lives, along with the data they interact with
during these activities.

To classify the usage information, we use the TORE framework, which covers all these concepts
(Paech and Kohler, 2004). TORE was developed for requirements elicitation and specification.
It has also been applied in different industrial development projects in the past (Adam et al.,
2009) to guide requirements engineers in their communication and decisions while eliciting and
specifying requirements.

2.2.1. Original TORE Framework
The original TORE framework consists of 18 decision points. For each decision point, a part
of the requirements is specified. TORE does not prescribe a specific template but gives some
recommendations. The decision points are grouped into four abstraction levels, as shown in
Figure 2.3. It is comprised of two stages. The first stage consists of the TORE levels, i.e. Goal
& Task Level, Domain level, Interaction level, and System level. The levels are detailed by the
second stage, the TORE categories, which specify the decision points.

Figure 2.3.: Original TORE levels and categories (Kücherer, 2018)

The Goal & Task level captures the system context in terms of the persons and roles (stake-
holders) who will be supported by the developed system and those who influence the resulting
system. These stakeholders’ goals and the tasks in the domain are also captured here.

3https://www.prolific.com/
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The Domain level captures the system context in terms of Activities, System Responsibilities,
and Domain Data. The Activities refine the Stakeholder Tasks into individual steps and are
separated into As-is Activities and To-be Activities. As-is Activities describe how each step of a
task is currently being performed. To-be Activities describe steps of Stakeholder Tasks in the
future. System Responsibilities specify the To-be Activities that should be directly supported or
even automated by the system. The Domain Data covers entities as well as their attributes and
relations to one another, which are relevant to the Stakeholder Tasks.

The Interaction level captures decisions on how the software directly supports the users’ tasks
and activities. System Functions specify which functionalities the software will provide and
to what extent. Interactions cover all actions between a user and the system. Interaction
Data captures all data necessary for these user-system interactions. UI Structure groups the
Interaction Data and System Functions through workspaces that represent the individual views
of the software.

On the System level, the graphical user interface (GUI) is described by refining the Interaction
level. The GUI is described through Navigation / Support Functions, which allows users to
navigate between individual screens and realize parts of the System Functions that are visible
to users. Dialogs refine Interactions by defining the sequence in which individual screens are
navigated. UI-Data defines input data provided by users and output data provided by the system.
Screen Structure refines the UI Structure by specifying the visual design of the user interface (UI).

Furthermore, the Application Core details are determined on the System Level. The Application
Core covers the Internal Actions of the software, its’ Architecture, and any Internal Data processed
by the system.

In total, TORE comprises decisions ranging from the context through interactions to the level
of an object-oriented design. We call the decision points categories in this dissertation, as we use
them as coding and classification categories.

As shown in Table 2.2, Adam et al. (Adam et al., 2014) provide guiding questions for all decision
points. These are intended to help make the individual decisions necessary for requirements
engineering more explicit. According to Adam et al. "the TORE framework does not prescribe a
concrete requirements engineering process; rather, it guides and supports requirements engineers
logically.".
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Table 2.2.: Original TORE and Guiding Questions
Decision Point Guiding Question (Adam et al., 2014)

Goal & Task Level
Supported Stakeholders Who are the stakeholders (e.g., departments, roles, persons, etc.) that

are affected by the project?
Stakeholders Goals What goals is the project supposed to achieve? What should be the

benefit at the end?
Stakeholders Tasks Which business processes and/or user tasks are to be analyzed and

addressed in the context of the project?
Domain Level

As-is Activities How are the business processes and/or user tasks currently performed?
What are their strengths and weaknesses?

To-be Activities How should the business processes and/or user tasks be performed in
the future in order to be able to achieve the project goals?

System - Responsibilities Which parts/steps of the to-be business processes and/or user tasks
should be supported or even automated by the system to be developed?

Domain Data Which data and rules are relevant in the considered business processes
and/or user tasks?

Interaction Level
Interaction How should users or external systems interact with the system to be

developed for achieving the results of certain steps in the business pro-
cesses and/or user tasks?

System Functions Which system functions are needed for realizing the system responsibili-
ties or interactions?

Interaction Data Which data are exchanged in the interactions? Which interaction rules
apply?

UI Structure How should data and system functions be grouped logically within the
user interface?

System Level (GUI)
Navigation/Support Functions Which additional functions are needed to support the user’s navigation?
Dialog How should the dialogs between user and system be designed? How do

screen transitions take place?
UI-Data Which UI-Element should be used and which data should they represent?
Screen Structure How should the visual design of the user interface look like?

System Level (Application Core)
Internal Actions How should the system functions be realized by means of methods,

procedures, etc.?
Architecture How should the system be organized/structured internally?
Internal Data How should the business data be represented in the data storage?
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2.2.2. Adapting TORE for Feedback Analysis

In order to apply TORE for user feedback classification, we made several changes to its levels and
categories. We generally kept TORE’s abstraction levels but reduced the number of categories
and levels by combining those for which distinctions were not necessary for feedback analysis.
We also changed some of the categories’ names for clarity and ease of use. Figure 2.4 shows
how the original classes were combined. The colors in the figure correspond to the levels of the
categories. Orange for the Goal & Task Level and Domain Level, yellow for the Interaction Level,
and blue for the System Level.

Figure 2.4.: Transition from original to adapted TORE categories

As a first step, we combined the original first two levels (Goal & Task level and Domain level)
into the Domain level because there was no necessity to maintain the distinction between the two
with the reduced number of classes. Supported Stakeholder and Stakeholders Tasks were renamed
to Stakeholder and Task respectively. During multiple analyses of feedback with the TORE
framework (Anders et al., 2022) (Anders et al., 2024), we found that the Stakeholders Goals
category was almost never expressed by users in their feedback, occurring once in a feedback
dataset of around 26.000 words. Consequently, we removed it from the adapted framework. In
addition, the distinction between As-is Activities and To-be Activities is unnecessary for analyzing
feedback because it concerns existing software. We also combined the System-Responsibilities
with the two types of activities, as they are part of As-Is Activities. The resulting category is
named Activities. No changes were made to the Domain Data.

On the Interaction level, we replaced the original UI Structure category with a Workspace
category. This captures all statements related to specific UI elements, including GUI elements
(originally on the System level), as they refine workspaces.

Lastly, we unified the categories on the System level into one category called System because
users rarely have detailed knowledge of the inner workings of the software and thus do not reliably
differentiate between Internal Actions, Architecture, and Internal Data.

Table 2.3 provides a description of the resulting levels and categories and lists examples of
usage information extracted from feedback. The feedback excerpts are largely extracted from
the datasets introduced in Section 2.5 and discuss the popular hiking app Komoot.

The examples for the levels show usage information assigned to complete sentences. The Domain
level example highlights an everyday action within the domain of Komoot. The Interaction level
example shows a user’s description of an interaction with the software. The System level shows a
remark concerning the system performance.
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Table 2.3.: TORE Categories, their Definitions, and Examples
Category Definition Example

Domain level "It allows me to discover new things"
Stakeholders Roles supported by or influencing the

developed software (e.g. Users or Developers)
"I’m more of a power user while my friend
is an infrequent user"

Tasks Responsibilities of the Stakeholder as part of
larger processes in the domain

"I frequently plan outdoor routes for my
adventures"

Activities Steps in the Stakeholders’ Tasks "This is the best app for running, hiking or
biking out there"

Domain Data Data relevant to an Activity "The app keeps letting me down with bad
information on camping grounds about
35% of the time"

Interaction level "Easy to use and allows me to change
different modes from hiking to biking."

Interaction The interaction between a user and the
software

"You can track your miles, make your own
trails and even get directions"

System Functions Functions executed by the software that
consume, manipulate or produce data.

"It lacks data sharing to Google Fit"

Interaction Data Data relevant for the System Functions or
Interactions

"You deleted the maps I had, and now I
can’t even access online maps"

Workspace Grouping of Interaction Data and System
Functions which are relevant for one Task
and specific UI elements

"The app shows completely different numbers
than it records in the Completed Rides
Tab"

System level "It should not keep reloading data if it has
already been loaded"

System Components of the software as well as data
and actions processed internally

"Komoot’s app has become horribly slow
and I’m not sure if that is because of
loading data from some server"

For the categories, the Stakeholder example highlights two different roles that influence software.
Tasks capture larger processes in the domain, which consist of multiple Activities. These Activities
are individual steps in the domain. In the examples of Table 2.3, this is the Outdoor-Activity-
Domain, for example, hiking and biking. Domain Data captures all entities that are relevant
to the activities of the domain, for example, "camping grounds". Interactions describe actions
performed by the user with the software. System Functions are functionalities that the software
provides or, according to the user, should provide, as can be seen in the example. Interaction
Data comprise data provided and used in the interaction. Workspace highlights which specific
view in the UI or which element in a view the user is discussing. Lastly, the System category
captures mentions of the software as a whole (in the example "app") or users’ discussions about
the inner workings of the software ("loading data" and "server").

2.2.3. Alternative Models
TORE is not the only framework capable of being applied to usage information classification. It
has similarities to other requirements models, which could also be applicable.

Lauesen (Lauesen, 2002), for example, introduces Goal, Domain, Product, and Design levels.
Goal and Domain levels correspond to the original TORE levels. The Product level focuses on
the functions on TORE’s Interaction level. The Design level focuses on the GUI details as in the
original TORE System level.

Gorschek et al. (Gorschek and Wohlin, 2006) also introduce a requirements model with different
abstraction levels. They use Product, Feature, Function, and Component levels. The Product
level comprises Goals as in the original TORE, and the Features correspond to the Activities.
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The Function level corresponds to our Interaction level and the Component level to our System
level. However, we use more categories to distinguish data and UI information in addition to
functions on the Interaction level.

In our view, the fine-grained categories of TORE allow us to extract more detailed usage
information. The setup of levels and categories also allows us to investigate the potential of
classifying different granularities. For these reasons, we chose TORE as the framework for
defining the different types of information that are extracted in this dissertation. However, the
classifiers presented in Section 6.2 could also be applied to any other usage information framework
as long as sufficient training data is created. Thus, TORE serves more as a proof of concept for
the feasibility of usage information classification in user feedback.

2.3. Machine Learning Concepts and Classifiers
This section introduces concepts related to machine learning, which are important for the
dissertation, namely machine learning (ML), deep learning (DL), and large language model (LLM),
as well as related terms.

Afterward, the classifiers used in Section 5.2 to automate the relation of feedback and require-
ments and the usage information classification in Section 6.2 are introduced.

2.3.1. Machine Learning

Michie et al. define machine learning as "automatic computing procedures based on logical or
binary operations, that learn a task from a series of examples" (Michie et al., 1995).

While machine learning is also used in other application areas, such as computer vision, this
dissertation focuses on ML in the context of natural language processing (NLP). NLP refers to
the "theoretically motivated range of computational techniques for analyzing and representing
naturally occurring texts at one or more levels of linguistic analysis for the purpose of achieving
human-like language processing for a range of tasks or applications." as defined by Liddy et al.
(Liddy, 2001).

In simpler terms, this dissertation focuses on models designed to classify written segments
of text corpora into predefined classes. A model is a machine learning algorithm designed to
process and understand data. The classification by the model is based on information gained
through previous text analysis. This process of feeding text data into a model to tune it for the
desired classification is referred to as training (Yan, 2022).

Depending on the available data and the employed model, different types of training can be
used. The two main types of training are supervised and unsupervised training (Goodfellow
et al., 2016). Supervised training utilizes a set of labelled training data to tune the model.
In this case, the provided text contains annotations labelling text segments in the data with
pre-defined classes. This annotation is most often done manually before the model’s training.
On the other hand, unsupervised training does not use annotated data, meaning that rather
than learning on text annotations, the model learns the data’s inherent structure. A third type
exists, called semi-supervised training (Goodfellow et al., 2016). This is a hybrid between
supervised and unsupervised training. Here, a small set of annotated data is used to initally
train the model, which then predicts annotations of larger unlabeled datasets. This process is
repeated iteratively to create more accurate predictions by the model.

Training performed in this dissertation mainly focuses on supervised training. Pre-trained
models, which partly utilize unsupervised training, are also employed.

In machine learning models, features refer to the measurable properties or characteristics of
the data that the model analyzes to make predictions (Nargesian et al., 2017). When applied
to text, features can represent various aspects of the text, such as its length, the frequency of
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certain words, or the presence of specific keywords. These features are used as the model’s input
values, meaning that each feature is assigned a numerical value or a category that the model
processes. In this context, feature engineering is the process of identifying and extracting
these relevant features from the raw text to convert them into input values (Nargesian et al.,
2017). The model uses these numerical or categorical values as the basis for its predictions or
classifications.

The individual segments of a text that a model processes are called tokens (Ali et al., 2024).
Commonly, these are individual words in the text that are processed subsequently. Some models
like BERT can even process subword tokens, where complex words are broken into multiple
tokens to allow for a more effective understanding of the words (see Section 2.3.6).

2.3.2. Deep Learning

Deep learning emerged as a distinct subgroup of machine learning in the NLP context around
2012 (Young et al., 2018). It is most commonly associated with the use of neural networks,
which are a type of model that tries to emulate the human brain.

Neural networks generally consist of neurons that form individual nodes within the model.
These neurons store values and are joined together by a set of biases and weights (Abdi et al.,
1999). The neurons are separated over different layers within the model. While there is no
universally applicable definition for how these networks are set up due to the various types of
neural networks that exist, the layers can generally be separated into three types: the input and
output layers, as well as the hidden layers in between. Figure 2.5 shows a simplified representation
of this.

Figure 2.5.: Simple three layered neural network (O’Shea and Nash, 2015)

The input layer consists of feature vectors, which are mathematical representations of the
input data. Inside the hidden layers, the model learns about the data by adapting the weights
and biases associated with the neurons. The output layer then forms the output for the feature
vectors.

Zhao et al. (Zhao et al., 2021) differentiate "conventional" machine learning and deep
learning approaches by the latter’s better capabilities to handle large amounts of raw data
without the need for extensive feature engineering. They also attribute better capabilities to
deep learning models to correctly process previously unseen data.
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Further details on the specific deep learning approaches relevant to this dissertation can be
found in Sections 2.3.5, 2.3.6, and 2.3.7

2.3.3. Large Language Models

A language model is a statistical or machine learning model that predicts the likelihood of a
sequence of words in a language by understanding patterns, context, and structures within text
data, enabling tasks like text generation, completion, and comprehension (Bengio et al., 2000).

LLMs are a form of language model trained on large text corpora using neural network
architecture (Min et al., 2023). Language model’s primary function is to predict words or
characters succeeding a given input. As such, they are a form of probability model that calculates
which word or character is most likely to occur next in a given text, considering the given input.

These models utilize extensive amounts of text collected for their training. The Llama 3
(Section 2.3.7) training dataset, for example, used over 15 trillion tokens of text and code to
achieve its final model. As a result, these models learn to predict words reliably and are able
to use extensive amounts of context in their predictions. Context refers to the surrounding
text or sequence of words, sentences, or paragraphs that the model uses to understand and
generate predictions (Brown, 2020). In the case of Llama 3, the maximum context that the
model considers is 8192 tokens.

LLMs often come in different configurations differentiated by the number of parameters they
include. These parameters typically refer to the number of weights and biases in the model. A
larger number indicates an increase in the quality of the model but also an increase in complexity.
The more complex the model, the more sophisticated the hardware required.

The training of the models is known as self-supervised learning (Goodfellow et al., 2016).
This is a form of human-unsupervised learning where unlabeled data is fed into the model, but
parts of the text are intentionally hidden. The model is then tasked with predicting the hidden
parts. Its weights and biases are adjusted to achieve the best possible prediction results. This
process is also referred to as masking (Devlin et al., 2018).

Generally, there is a distinction between two types of LLMs, generative and discriminative
models (Bishop and Nasrabadi, 2006). Generative LLMs (such as GPT and LLama in Section
2.3.7) are designed to generate new data (text) similar to the input and training data. They
are able to create semantically correct and contextually relevant text. Discriminative models
(such as BERT in Section 2.3.6) focus on classifying the input data into classes. They are mostly
trained to predict labels or features of an input text.

2.3.4. Stanford Named Entitiy Recognizer (SNER)

The Stanford Named Entity Recognizer (SNER) is a conventional machine learning classifier for
named entity recognition (NER). NER is a natural language processing task aimed at extracting
predefined entities in a text. This is mostly done on a word or term basis, meaning that individual
words or sequences of words in the text are assigned a specific entity class. Common classes
for NER include persons, organizations, dates, and locations (Sang and Meulder, 2003). The
following is a simple example of the extraction of named entities from a sentence.
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Example Sentence:
Jane and John Doe went to Berlin for a conference hosted by Microsoft.

Named Entities:
Jane, John Doe PERSON
Berlin LOCATION
Microsoft ORGANIZATION

Stanford Named Entity Recognizer is an augmentation of a conditional random fields (CRF)
(Lafferty et al., 2001) system. CRFs are a probabilistic model designed to predict labels in
structured data. In our case, this data is the text we want to classify. They predict the
probability of labels given the context of neighbouring labels. This context allows CRFs to
capture the dependencies between labels, increasing the accuracy of predictions. SNER augments
this approach by introducing long-distance dependencies, essentially increasing the number of
neighbouring labels considered when predicting a label.

In this dissertation, SNER is used in Section 6.2 to classify usage information in user feedback.
Usage information extraction does not strictly fit SNERs original design because it mostly focuses
on extracting nouns, as in the example above. Usage Information also contains verbs in the
case of actions performed in everyday life and with the software. However, the capabilities of
NER classifiers like SNER to perform word-based classification while considering the context of
surrounding labels also fit the requirements for a usage information classifier.

2.3.5. Bidirectional Long Short-Term Memory (Bi-LSTM)

Bidirectional long short-term memory (Bi-LSTM) models are a form of neural network that
utilizes bidirectionality and long short-term memory (LSTM) to increase their capabilities of
handling long data sequences. The concepts of bidirectionality (Schuster and Paliwal, 1997) and
LSTM (Hochreiter and Schmidhuber, 1997) were first introduced in 1997.

Essentially, LSTMs are a form of recurrent neural network (RNN) (Pearlmutter, 1989). RNNs
process data by including a "hidden state" that stores information from previous steps, such as
previously processed words. This serves as the short-term memory of the network. As each word
in a given input is processed, the network takes this hidden state information into consideration
when making a prediction. The hidden state is continuously updated, thus allowing the network
to retain information and improve the accuracy of predictions. However, RNNs can struggle
with long-term dependencies, for example, when words that are far apart in a sentence relate to
each other.

LSTMs are designed to address this issue of long-term dependencies. They do this by
introducing a memory cell and so-called "gates" (Hochreiter and Schmidhuber, 1997). The
memory cell stores the information from previous steps, serving as the long-term memory of the
network. The gates handle the information in the memory cell. There are three different types
of gates. The Forget Gate decides which information in the memory cell is retained or discarded.
The Input Gate determines which information should be added to the memory cell. Lastly, the
Output Gate decides which information in the memory cell should be used as the hidden state
for the current processing step.

In standard LSTMs, information is processed in only one direction. In the case of text, this
would mean that the words of a sentence are only processed in the direction that a human
would read. As a result, only words that precede the currently processed word can be used as
context. However, in actuality, words following the currently processed word can also influence
the context and, thus, the correct prediction. Bidirectionality in a Bi-LSTM solves this issue
by also processing the data from the other direction (Schuster and Paliwal, 1997). This allows
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the network to include future context in its predictions by updating its hidden state according
to the words that follow the currently processed word. Figure 2.6 highlights the concept of
bidirectionality through the forward and backward layers in an LSTM.

Figure 2.6.: Basic Bi-LSTM structure 4

This dissertation utilizes a Bi-LSTM based on (N. Li et al., 2019) to classify usage information
in feedback (Section 6.2). The approach feeds word embeddings of the text into the input layer
of a Bi-LSTM. Word embeddings are mathematical representations of words in a text as
vectors. These vectors capture the semantic meaning of the words and their relationships to
other words in the input text. The approach utilizes word2vec (Mikolov et al., 2013) to compute
these embeddings. The classification of the model is improved through the inclusion of these
word embeddings.

2.3.6. Bidirectional Encoder Representations from Transformers (BERT)

The Bidirectional Encoder Representations from Transformers (BERT) model is a deep learning
large language model developed by Google in 2018 (Devlin et al., 2018). The concept of
bidirectionality was introduced in the previous section and functions similarly in BERT by
processing input text from both directions (i.e. left-to-right and right-to-left). BERT can operate
on subword tokens by splitting words into multiple tokens. This allows it to handle even complex
and rarely used words more effectively. A word like "unhappiness" might be divided into up to
three tokens, namely "un" as a prefix indication negation of the word, "happy" as the root word
itself, and "ness" as a suffix indicating a condition.

BERT is pre-trained on a large corpus of text consisting of around 3.3 billion words using
two training techniques: masking, as introduced in Section 2.3.3 and next-sentence-prediction,
where the model trains to determine if one sentence follows another (Devlin et al., 2018). This
pre-training allows the model to learn to generate accurate language representations. It can
then be fine-tuned to specific tasks, such as classification tasks, using only a small amount of
task-specific data.

BERT uses a transformer architecture (Vaswani et al., 2017). Transformers are a type of
neural network architecture that uses self-attention to capture long-range dependencies in the
input text. Essentially, self-attention allows the model to weigh the importance of words in an
input text relative to each other (Vaswani et al., 2017). This is done by computing scores for each
word by comparing them to every other word in the text. This is different from the processing
of Bi-LSTMs because, unlike the Bi-LSTMs bidirectionality, the self-attention mechanism of
the transformer considers every word in the input relative to every other word simultaneously,
regardless of their positions in the sentence. This allows BERT to identify important contextual

4https://www.i2tutorials.com/deep-dive-into-bidirectional-lstm/ (Last Accessed: 30.07.2024)
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relationships, even if words are far apart. The resulting values are a representation of the input
text where the relationships between the words are captured, leading to more effective and
accurate language understanding.

Figure 2.7 shows an overview of the transformer architecture. The encoder on the left consists
of multiple layers of this self-attention. The input text is converted into embeddings and enriched
by multiple layers of self-attention and feed-forward networks. A feed-forward network is a
type of artificial neural network where information moves in one direction—from the input layer,
through one or more hidden layers, to the output layer—without looping back. Each layer’s
neurons take inputs, process them, and pass the results to the next layer (Goodfellow et al.,
2016).

The output of the encoder are contextual representations which capture the relationships and
meanings of each token. The self-attention and feed-forward networks have residual connections
(arrows on the left bypassing the blocks). These combine the original input of each layer with the
output of the self-attention and feed-forward networks, ensuring that information from earlier
layers is not lost. BERT does not use a Decoder, as shown on the right side of Figure 2.7 because,
as a discriminative large language model, it does not generate output text. It merely generates
the context-rich representations of text. In this dissertation, the context-rich representations
generated by BERT are used for both feedback requirements relation and usage information
classification.

Figure 2.7.: The Transformer model architecture (Vaswani et al., 2017)

Several variations of BERT have been designed since its creation (Qiu et al., 2020). Next to
the original BERT, this dissertation also uses DistilBERT (Sanh et al., 2020) and RoBERTa
(Y. Liu et al., 2019). DistilBERT is a 40% smaller version of BERT created to run more efficiently
and 60% faster while maintaining 97% of BERT’s language understanding, according to the
authors. RoBERTa is a variant of BERT that seeks to improve its performance by optimizing
the pre-training process. It removes the next sentence prediction task, trains on a larger dataset,
and uses longer sequences of text.
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2.3.7. GPT & Llama

GPT and Llama are the two generative large language models used in this dissertation. GPT
stands for Generative Pre-Trained Transformer and was first introduced by OpenAI in 2018
(Radford et al., 2018). At the time of writing, the most advanced model available is GPT4o
(OpenAI, 2024). As a proprietary model, many details about its specific architecture and training
data are not publicly available. The model is only available through the chat interface provided
by OpenAI5 or through its API.

Llama (Large Language Model Meta AI), on the other hand, is a semi-open-source model
first released in 2023. The currently most advanced model available is Llama 3 (AI@Meta, 2024).
While some details about the specific training data used are still proprietary information to Meta,
in contrast to GPT, the model can be run locally. As previously mentioned, Llama 3 is trained
on over 15 trillion tokens of text and code with a maximum context length of 8192 tokens.

Unlike BERT, GPT and Llama utilize the Decoder part of the Transformer architecture. For
GPT, this architecture can be seen in Figure 2.8. The decoder generates output sequences from
input information. It takes the text representations and produces one output token at a time,
using what it has generated so far to help decide the next token. Essentially, the decoder converts
abstract input representations into meaningful output sequences, in this case, generating text.

Figure 2.8.: GPT Transformer Architecture (Radford et al., 2018)

Working with these generative large language models is quite different from working with
discriminative models such as BERT. Instead of fine-tuning the models on task-specific data
and using the output representations to, for example, perform classifications, GPT and Llama
generate output text based on the input text given to them. Thus, generative LLMs require
the creation and refinement of prompts which are used as input into the model as clear text.
These prompts describe the task the model is to complete and include the data on which the
task is to be performed. These prompts can take different forms and are suited for different tasks
depending on their intended usage (Ronanki et al., 2024)

2.3.8. Classifier Performance Metrics

In this dissertation, classifiers are evaluated with respect to multiple ground truths (Section 2.5).
These were created via manual annotation through multiple annotators based on predefined and
continuously updated coding rules. These ground truths are treated as the true classification.
This means that it can be assumed that all labels in the ground truth are correctly assigned.

The aim of the evaluation is to determine to what degree a classifier is capable of identifying
the correct classification. We refer to this as the classifier’s performance. Precision (Formula

5https://chatgpt.com/
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2.1), recall (Formula 2.2), and F1-Meassure (Formula 2.3) are used to evaluate this performance
for the usage information classification (Sokolova and Lapalme, 2009). This is either done for
individual classes or as a mean over all classes. Essentially, precision calculates how many of the
instances classified as a certain class are correct. Recall measures how many correct instances of
a class are found by the classifier. F1 calculates the harmonic mean of precision and recall.

Precision = TP

TP + FP
(2.1)

Recall = TP

TP + FN
(2.2)

F1 = 2 · Precision · Recall
Precision + Recall (2.3)

The metrics are calculated by comparing classifier results and ground truth annotation. True
Positives (TP) are instances where the classifier correctly predicted the positive class. For usage
information classification, the positive class is the class that is assigned to a given text segment
in the ground truth. For feedback requirements relation, the positive class is a requirement that
is related to a feedback statement in the ground truth. False Positives (FP) are instances where
the classifier incorrectly predicted the positive class. In this case, the classifier incorrectly assigns
a class to a text segment that is not classified as such in the ground truth and is thus false. False
Negatives (FN) are instances where the classifier fails to predict the positive class. This means
that the classifier does not assign a specific class to a text segment, even though it is classified as
such in the ground truth. True Negatives (TN) (as shown in Formula 2.5) are instances where
the classifier correctly does not assign the class to a segment.

In this dissertation, feedback requirements relation is proposed as a semi-automatic task. This
means that the classifier serves as a recommender system for a human annotator to reduce their
workload when performing the relation. Thus, as a classification task, feedback requirements
relation benefits more from high recall (Berry, 2021) than from precision. High recall leads to
most of the true positives being correctly assigned. This means that only the false positives
have to be filtered out manually, which reduces the amount of manual labour necessary for the
task. Thus, instead of F1, the F2 measure is used for feedback requirements relation tasks as it
puts much greater emphasis on recall than on precision (Formula 2.4) (Sokolova and Lapalme,
2009). It should be noted that other F-Measures exist, which put even more weight on recall
(increased β in Formula 2.4). However, a recommender system, as proposed in this dissertation,
still benefits from precision. Higher precision reduces the number of incorrect recommendations
the system makes and thus reduces the manual labour required to correct them. As a result, F2
was chosen as a reasonable compromise to measure classifier performance. It balances a focus on
high recall while maintaining the relevance of precision.

Fβ = (1 + β2) · Precision · Recall
(β2 · Precision) + Recall where β = 2 (2.4)

For the usage information classification task, however, recall should not be more emphasized
than precision due to the time-intensive labour necessary to classify usage information manually.
The task of manually correcting the automatic classifier’s labels would still be too labour-intensive
for any potential users. This means that precision is also a critical measure for judging the
classifiers’ performance in this task. It is just as important to reduce the number of false positives
as it is to reduce the false negatives for usage information classification. Thus, we decided to use
F1 instead of F2 because it puts a similar emphasis on precision and recall.

Another potential measure is Accuracy (Formula 2.5), which measures the ratio of the number
of correct predictions (TP and TN) to the total number of predictions (Sokolova and Lapalme,
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2009). This can serve as a general performance indicator for a classifier because it shows the
proportion of correctly predicted instances out of all instances. However, accuracy is only really
useful when classes in the dataset are balanced (Chawla et al., 2004), which is not the case for
any of our classification tasks. The metric is thus disregarded for this dissertation.

Accuracy = TP + TN

TP + TN + FP + FN
(2.5)

In summary, we utilize precision, recall, and F1-measure for the usage information classification
and precision, recall, and F2-Measure for the feedback requirements relation.

2.4. Development Tools
During the course of this dissertation, five development and software deployment tools were used.
These were mainly used to aid in the development and deployment of Feed.UVL (Chapter 7).
These tools are Jira, Docker, Jenkins, Traefik and Portainer. Additionally, MLFlow was used to
manage the machine learning experiments performed in Chapters 8 and 9.

Jira is an issue tracking system (ITS) published by Atlassian6. An ITS is a tool designed to
help developers with the management of requirements and development processes. They can also
help with the tracking of bug reports and any tasks related to requirements. In the context of
this dissertation, Jira is used to document requirements for the creation of datasets (Section 2.5).
It is also used by Feed.UVL to provide developers with easier access to the classification results
of feedback requirements relation and usage information classifiers (Section 7.2.6).

Docker7 is a platform that automates the deployment and management of software using
containerization. Containerization is the process of encapsulating a software’s functionalities into
individual units called containers. This enables developers to package software into containers
while ensuring consistent environments across development, testing, and production. In this
dissertation, Docker is used as a framework for the containerization of individual Feed.UVL
functionalities (Section 7.1).

Jenkins8 is an open-source automation server used in this dissertation to facilitate the continuous
deployment of the docker containers that make up Feed.UVLs functionalities. It automates the
process of building, testing, and deploying the code in these containers. This ensures that code
changes are automatically propagated to the production and testing environments of Feed.UVL
without the need for manual intervention.

Traefik9 is an open-source tool that acts as a reverse proxy, meaning it directs incoming
requests to the right backend services. It’s especially useful for applications running in containers
because it automatically detects and configures services without needing manual updates. Traefik
can handle tasks like securing connections with HTTPS and distributing traffic. It also comes
with a dashboard for monitoring traffic and performance.

Portainer10 is an open-source tool that provides a simple web-based interface to manage and
monitor containers, making it easier to work with Docker and other container platforms. It
helps with the deployment of containers, managing volumes and networks, setting up stacks, and
monitoring resource usage. It also supports features like role-based access control to manage
permissions and detailed activity logs.

MLFlow11 is an open-source platform designed to manage the machine learning lifecycle. It is
used in this dissertation to track experiments, manage models, and deploy trained classifiers to

6https://www.atlassian.com/software/jira
7https://www.docker.com/
8https://www.jenkins.io/
9https://www.traefik.io

10https://www.portainer.io/
11https://www.mlflow.org/
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Feed.UVL. For this, it provides several functionalities to log experiments, including all parameters,
metrics, and model files created during the training and evaluation of a classifier.

2.5. Training & Evaluation Datasets
This section explains all of the datasets, which were manually created for the automatic feedback
requirements relation and usage information extraction classifiers. A total of seven datasets
were created covering five different software products. Section 2.5.2 introduces the feedback
requirements relation datasets. Section 2.5.3 introduces the usage information classification
datasets. All datasets used in this dissertation can be accessed through the open-source Github
repository for Feed.UVL12.

2.5.1. SmartAge Project

A large part of the feedback data used in this dissertation was gathered in the context of the
SmartAge project (Radeck and Paech, 2024). In this project, older German adults above the age
of 67 were introduced to SmartVernetzt (translated: "SmartConnected"), which was designed to
improve their daily lives. This app provides information about leisure activities and health-related
topics. A second app, called SmartFeedback, then allowed users to send feedback about both
SmartVernetzt and SmartFeedback itself. Users could answer questions about the app or freely
send feedback messages.

We chose to use the SmartAge dataset because it offered the unique ability to analyze feedback
resulting from specific questions posed directly to the software users. This characteristic is not
present in any of the other datasets used in this dissertation. Also, proximity to the project’s
organizers and developers gave us access to both the feedback data and the requirements for
the developed apps. However, it should be noted that the SmartAge data only became available
towards the later stages of research on this dissertation. Thus, it was not initially present when
work on the usage information classification and feedback requirements relation classifiers was
started.

2.5.2. Feedback Requirements Datasets

To train and evaluate our FeReRe classifiers, we manually created three datasets based on feedback
and requirements from three different apps: Komoot, SmartVernetzt, and SmartFeedback. We
also include another dataset (ReFeed) from an independent publication (Kifetew et al., 2021)
to validate our classifier further. Each dataset consists of requirements for a specific software,
feedback from real users about the software and a ground truth in which the feedback is related
to the requirements.

Our three ground truths were created by manually examining every feedback statement and
relating it to all requirements addressed in the feedback. Two annotators examined every feedback
statement in each dataset and independently performed the relation to requirements. Afterwards,
all disagreements regarding feedback requirements relations between the two annotators were
resolved through discussion. This created the interrater agreement, which guarantees a high-
quality ground truth for training and testing.

The FeReRe Komoot dataset comprises feedback statements crawled from the Google Play
Store13 about the popular hiking app Komoot. We excluded feedback shorter than 25 characters
because it is unlikely to provide meaningful information. We also removed all links and emojis
from the feedback. We could not acquire the initial requirements for Komoot as it is a commercial
12https://www.github.com/feeduvl
13https://www.play.google.com/store/apps/details?id=de.komoot.android
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product. Instead, we recreated the requirements in detail by specifying every function and view
provided by Komoot. We specified these requirements using the Task-oriented Requirements
Engineering framework (TORE) (Paech and Kohler, 2004) in the ITS Jira. Thus, our dataset
specifies all functionalities of Komoot as System Function requirements. Figure 2.9 shows an
example for such a System Function in the form of the "Start Navigation function of the Komoot
app. The activities users use the app for in their daily lives are captured in so-called Sub-Task
requirements. The user interface of Komoot is captured in Workspace requirements. These three
types of requirements comprise the 79 requirements in the provided dataset.

Figure 2.9.: SF: Start Navigation for Komoot App

The FeReRe SmartVernetzt and SmartFeedback datasets were gathered in the context of the
SmartAge project (Section 2.5.1). Like Komoot, we excluded any feedback shorter than 25
characters and removed emojis from the text. To match the language of our other datasets, the
German feedback was then translated into English using DeepL14. We then checked and corrected
all automatic translations manually. Very few translations contained any errors apart from
typos in the original German statements. The requirements for both apps were created by the
app developers themselves, who also used the TORE framework to document the requirements.
Figure 2.10 shows an example sub-task for the SmartVernetzt app.

The FeReRe ReFeed dataset was created as part of an independent study by Kifetew et al.
(Kifetew et al., 2021). The software for this dataset supports home energy management by
allowing users to monitor and analyze their home’s energy consumption. The requirements
for this software are documented as single sentence statements following the structure "The
system shall... <Functionality>". One example of this is the requirement: "The system shall
allow the user to calculate additional meters related to water and electricity consumption". More
information on the creation of the dataset can be found in (Kifetew et al., 2021). We include
this dataset to further evaluate our classifier on more independently created data. Additionally,
it allows us to evaluate the performance on requirements not specified according to TORE.

Table 2.4 provides statistics about the number of feedback statements and requirements
and the total number of sentences for each dataset. As shown in the table, the datasets have

14https://www.deepl.com/en/translator
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Figure 2.10.: UT1S: Get information about the weather for SmartVernetzt

Table 2.4.: Sizes of FeReRe Datasets

Dataset Feedback Feedback
Sentences

Requirements Requirements
Sentences

FeReRe_Komoot 335 1485 79 218
FeReRe_SmartVernetzt 527 723 31 145
FeReRe_SmartFeedback 549 846 29 125
FeReRe_ReFeed 60 261 14 14

some noticeable differences. The average number of sentences per feedback statement is almost
three times larger in Komoot and ReFeed than in SmartVernetzt and SmartFeedback. This
is because the targeted feedback gathered for SmartVernetzt and SmartFeedback through the
SmartFeedback app is more precisely focused on individual functionalities of the software. This
is a result of the questions posed to users. This type of feedback is called pull feedback because it
is gathered through questions actively posed to the users. Komoot and ReFeed, on the other
hand, have feedback which is given by users without specific prompts. This is referred to as push
feedback.

Also, the average number of sentences per requirement is higher on average in our datasets
than in ReFeed. ReFeed consists only of single-sentence requirements, while TORE describes
requirements in more detail. It should be noted that the ReFeed dataset does not contain all
requirements of the software but only those provided by the original paper. We create datasets
that fully specify each software.

For each dataset, a kappa value was calculated using Cohen’s Kappa. Across the entire
SmartVernetzt dataset, annotators reached a Cohen’s Kappa of 0.92, while the kappa for the
SmartFeedback dataset was even higher at 0.95. Annotators reported that the agreement for
these two datasets was mostly due to the nature in which the feedback was collected through
SmartFeedback. More than 90% of the feedback was received as answers to specific questions
posed to the users. These questions made it much simpler for the annotators to relate a
requirement to the feedback. The Cohen’s Kappa for the Komoot dataset was much lower at
0.76. For Komoot no questions were posed, as the feedback came directly from the app store.
Also, the number of requirements was much higher, with 79 requirements compared to 31 and 29
for SmartVernetzt and SmartFeedback, respectively, as can be seen in Table 2.4.
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2.5.3. Usage Information Datasets

For our goal of studying usage information classification, we could not use any existing datasets.
Over the course of multiple research projects, we had different opportunities to collect feedback
data, which resulted in the creation of four different datasets. All come from different user
feedback sources, allowing us to investigate each source’s unique properties and transferability
across feedback sources.

We created datasets to evaluate classifiers’ performances for three different granularities of usage
information classification using the TORE framework: sentence-based TORE Level classification,
word-based TORE Level classification and word-based TORE Category classification. More
details on the different granularities can be found in Section 2.2 and 6.1.

For the sentence-based TORE Level classification, data gathered from the feedback app
SmartFeedback was used. This is partially the same feedback as is used for the feedback
requirements relation datasets but includes more feedback statements in order to provide enough
sentences for the classifiers’ training. For the word-based classification, an online questionnaire,
app reviews and an online forum were used to gather feedback. A significant amount of manual
effort was required to label these datasets manually. Because of this, we could not manually label
every dataset for every granularity. These datasets can also be accessed through the Feed.UVL
Github repository15. Table 2.5 shows information on all four datasets.

Table 2.5.: Usage Information Dataset Characteristics
Sentences Words Source Software Characteristics Coding

UIC_SmartAge 3832 30706 Feedback App SmartFeedback &
SmartVernetzt

Users’ answers to
developers questions

Sentence-based
TORE Level

UIC_Prolific 1146 26607 Questionnaire Komoot Users’ descriptions,
likes,
dislikes and ideas
for improvement of a
software

Word-based
TORE Categories

UIC_Forum 865 13775 Reddit Komoot,
VLC,
Chrome

98 posts and
their comments

Word-based
TORE Categories

UIC_App Review 901 14879 Play Store Komoot 200 randomly crawled
App Reviews

Word-based
TORE Categories

The dataset used for the sentence-based classification was gathered in the context of the
SmartAge project (Section 2.5.1). Accordingly, we refer to this as the UIC SmartAge dataset.
From this data, feedback collected over 3 1/2 months was then manually coded. This set consists
of 3831 sentences, constituting a total of 1821 feedback messages. More information on the
data, including questions asked to users, can be found in (Radeck and Paech, 2024). The data
allows us to analyze whether including these questions as a classification feature improves usage
information classification. We did not perform word-based classification on the SmartAge dataset
because, as Section 6.2 will show that more training data is not necessary, and the additional
coding would have involved another 70 hours of work for each coder involved. Given the fact
that the SmartAge data only became available towards the later stages of the research on this
dissertation, this was not feasible.

Since the project participants are older German adults, their feedback was also given and
then coded in German. However, as classifiers are often trained on purely English data and
monolingual mostly outperform their multilingual counterparts (Wu and Dredze, 2020)(Rönnqvist
et al., 2019), the data was then translated into English using DeepL16. We then checked and
15https://www.github.com/feeduvl
16https://www.deepl.com/en/translator
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corrected the automatic translations. The translated feedback was the same data also used for
the FeReRe SmartAge datasets. For all automatic classification experiments, the English data
was then used. Other than the translation, the only other pre-processing of the data was the
removal of emojis.

The results of the coding for UIC SmartAge data are listed in Table 2.6. As can be seen, the
dataset is very imbalanced, leaning heavily towards the Domain Level. As can be expected from
older adults, the System Level was only rarely used at all. The Interaction Level also shows
only about a quarter of the occurrences of the Domain Level, indicating that older adults tend
to discuss the SmartAge software more towards the effects it has in their real life rather than
specific interactions with the software. 1144 sentences were not assigned to any level. These
sentences were often short answers stating, for example, that a user hadn’t tried a functionality
which they were asked about (e.g. "I can’t say yet") or talking about the context of the SmartAge
project rather than the apps themselves (e.g."I have sent you a message that I will be travelling
for the next week.").

Table 2.6.: SmartAge dataset Number of Sentences assigned to each Code
No Level Domain Level Interaction Level System Level

1144 2062 565 61

The datasets for the word-based classification are called the UIC Prolific, UIC Forum and
UIC App Review dataset. The only pre-processing performed on the datasets was the removal
of web links and emojis. Table 2.7 lists the number of words in each dataset assigned to each
TORE Category code.

Table 2.7.: Number of Words Assigned to each TORE Category Code
Domain

Data
Stake-
holder

Activity Task Inter-
action

Interaction
Data

System
Function

Work-
space

System
No

Category
UIC_Prolific 1097 385 350 249 1048 952 482 81 749 21.214
UIC_Forum 280 33 85 1 572 443 5 345 678 11.333
UIC_App Review 363 77 113 69 844 746 325 90 420 11.832

The Prolific dataset was created through an online survey on the crowd platform Prolific17. A
total of 100 participants took part in the survey. They were asked to answer four main questions
about the Komoot18 hiking app. Namely, "What is the Komoot App and what can the Komoot
App do?", "What do you like about Komoot?", "What do you dislike about Komoot?" and "What
could be improved about Komoot and why?". The survey was part of a prior research project.
More information on the dataset can be found in (Anders et al., 2023).

The UIC Forum dataset consists of 98 threads, including comments crawled from the Reddit
online forum. The threads were randomly sampled from the Google Chrome (40 threads), Komoot
(20 threads), and VLC Video Player (38 threads) sub-forums on Reddit.

The UIC App Review dataset was the same feedback as the FeReRe Komoot dataset, Feedback
crawled from the Google Play Store about the hiking app Komoot.

The coding process was the same for all four datasets. The datasets for the word-based
classification were coded using Feed.UVL’s custom coding tool, which is explicitly designed
for TORE annotation (Chapter 7). The tool helped to reduce the large time cost of manual
annotation on a word level and provided functionalities for easier interrater agreement. The
dataset for the sentence-based classification was coded using Microsoft Excel. Multiple annotators
17https://www.app.prolific.com/
18https://www.play.google.com/store/apps/details?id=de.komoot.android
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coded each part of a dataset. Coding was done in multiple steps. Each annotator coded a portion
of a dataset, and then the annotators met to resolve all disagreements between annotations.
After all disagreements were resolved, coding rules were improved, after which another portion
of the dataset was coded. Note that there was no separate coding for word-based TORE Levels
and TORE Categories because of the high amount of manual effort required when performing
word-based coding. Instead, coders coded TORE Categories on the word level, after which
TORE Levels were abstracted from the categories.

This means that for the word-based TORE Level dataset, all categories on each level (e.g.
Task, Activity, Domain Data and Stakeholder on the Domain Level were transformed into the
corresponding TORE Level. In total, three PhD and four master’s students participated in the
coding, with the author of this dissertation participating in each coding process.

In total, four PhD candidates and four master students participated in the coding, with
the author of this dissertation participating in each coding process. Forum, App Review and
SmartAge were annotated by two coders. Prolific was annotated by three coders. Except for the
author of this dissertation, none of the coders were familiar with TORE other than through an
introductory software engineering lecture some of them had attended. Every coder received a
one-on-one introductory presentation, including an introduction to TORE, example codings, and
a tool presentation. This was then followed by an interactive coding session, where participants
coded example feedback, explained their reasons for assigning codes and discussed these with the
author of this dissertation.

For each dataset, a kappa value was calculated using Brennan & Prediger Kappa (Brennan
and Prediger, 1981). These can be seen in Table 2.8. We chose Brennan & Prediger partially
due to constraints in our initially used coding software, MaxQDA. However, after switching to a
different tool, we continued to use it due to its assumption of marginal distributions, which helps
reduce the risk of the kappa paradox, where values can be low despite relatively high agreement
due to the imbalanced nature of our datasets.

The kappa values for all three datasets where TORE Categories were assigned to words range
from 0.59 to 0.65. Annotators found that the uncertainty over which subsequent words to assign
codes to and which not significantly increased the number of disagreements, thus influencing the
kappa values. In contrast, disagreements regarding sentence-based TORE Level coding were very
low, reaching a kappa of 0.96. A contributing factor to this very high agreement was that there
was no ambiguity over which segment to assign a code to compared to the word-based coding.
Every part of a user’s feedback was assigned either one of the three levels or the "0" category,
indicating that the sentence did not contain any usage information. This, along with the reduced
number of categories (3 levels compared to 9 categories) and the clear distinction between the
levels, made it much easier for coders to agree. Meanwhile, for the word-based coding, different
domain actions like Activity and Task, for example, were much more challenging to differentiate
in users’ statements due to the often ambiguous nature of user feedback.

Additionally, we calculated the precision and recall of each coder. To do this, we used the part
of the human coders’ annotations that was created with the final, revised coding rules. This
was the last 50% of each dataset. We compared each coder’s annotation to the ground truth
after the interrater agreement had been done to calculate the metrics and averaged them over
all coders for each dataset. This was done to compare human performance to the classifiers
during treatment validation (Chapter 9). Table 2.8 shows the average precision and recall for
each dataset across all human coders.
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Table 2.8.: Brennan & Perediger Kappa, Average Precision and Average Recall of human coders
dataset Kappa Avg. Precision Avg. Recall
UIC_SmartAge 0.96 0.98 0.97
UIC_Prolific 0.59 0.86 0.83
UIC_Forum 0.62 0.88 0.83
UIC_App Review 0.65 0.88 0.85
Average for Word-based 0.62 0.87 0.84

The four datasets differ in key ways, particularly in user intent, data characteristics, and
structural organization. The online questionnaire dataset captures responses from users in a
controlled, structured environment motivated by clear purposes, resulting in consistent, purpose-
aligned data. In contrast, app store feedback reflects spontaneous user input, often emotionally
charged and highly variable, aimed directly at app developers. Online forums provide yet another
perspective, with community-driven discussions focused on problem-solving, experience sharing,
and debates. This leads to unstructured, conversational data. Meanwhile, dedicated feedback
apps blend characteristics of structured questionnaires and open-ended feedback, offering a mix of
structured and spontaneous user input. These differences in data characteristics are compounded
by variations in language style and structural organization. Forum feedback, for example, is more
conversational and informal, often using colloquialisms and emotionally charged language, unlike
the structured tone seen in other datasets. Additionally, forums feature nested discussions where
context builds across posts, creating challenges for classifiers trained on standalone comments
from other datasets.

Using these diverse datasets provides a more comprehensive evaluation for usage information
classifiers across different contexts. Each dataset represents a distinct form of user input. This
diversity can strengthen the classifier’s robustness by ensuring it can handle both structured
and unstructured data, formal and informal language, and varying levels of user intent clarity.
However, these differences also introduce challenges, such as the need for classifiers that can
generalize across disparate data sources. Despite these challenges, the inclusion of multiple
datasets ultimately enhances the framework’s applicability in real-world scenarios, as feedback
rarely comes from one homogenous source.

35





Part II.

Solution Investigation

37



Chapter 3
State of the Art - Software Artifact Relation

This mapping study was mainly conducted during a master thesis (Thakur, 2025), which this
dissertation’s author closely supervised. Research questions and synthesis criteria were given to
the student by the supervisor, and the selection of papers was closely monitored. For a more
thorough explanation of the search procedure and a detailed synthesis, please refer to the master
thesis. This chapter will provide short explanations of the study design (Section 3.1), give an
overview of the found publications (Section 3.2), discuss the threats to the validity of the mapping
study (Section 3.3), and then draw conclusions for this dissertation (Section 3.4).

3.1. Study Design
Section 3.1.1 provides the research questions for the mapping study. Section 3.1.2 roughly
explains the procedure for identifying relevant literature.

3.1.1. Research Questions
The main research question for this mapping study is focused on furthering knowledge goal 1
and is further refined into five sub-questions.

RQ1: Which approaches exist to relate different software artifacts with one another?
RQ1.1: Which software artifacts are related by the approaches?
RQ1.2: Which machine learning model is used to perform the relation?
RQ1.3: How and on which data is the model trained for the relation?
RQ1.4: Which pre-processing steps are necessary to use the approaches on their respective

datasets?
RQ1.5: How was the evaluation of the approaches conducted and what are the results of

the evaluation in terms of metrics?

The main research question, RQ1, defines the focus to approaches related to knowledge goal 1.
This mapping study aims to identify approaches that relate software artifacts to one another. We
defined software artifacts as documents created by any stakeholder during software development
or software maintenance. The artifacts we looked for were requirements, software specifications,
bug reports, issue trackers and user feedback. We did not look for approaches relating source
code, because it does not represent a purely natural language artifact. However, many of the
approaches we found relate natural language artifacts to source code, which explains the presence
of these approaches in the mapping study.
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Sub-question RQ1.1 identifies the different software artifacts the approaches use to relate
to one another. Sub-question RQ1.2 analyses which machine learning models are used by the
different approaches to automate the relation process of two software artifacts. Sub-question
RQ1.3 analyses both how the identified models are trained and which data is used for this
training process. Sub-question RQ1.4 looks for any necessary pre-processing steps that the
approaches perform. Lastly, sub-question RQ1.5 analyses the evaluation methodology and
results reported by the approaches.

3.1.2. Selection Procedure

Both literature studies discussed in this dissertation follow the guidelines laid out by (Kitchenham
and Charters, 2007) for systematic mapping studies. A mapping study is different from a literature
review. While the literature review identifies, analyzes and interprets all available evidence
related to the research questions, the mapping study provides a broader overview (Petersen et al.,
2008).

There are two ways of identifying relevant literature for a mapping study. The first is a search
term-based search. Here, researchers begin with predefined keywords or phrases directly related
to their research question. These terms are entered into databases or search engines to retrieve
relevant papers. This method focuses on capturing a broad range of studies that contain or
are tagged with these specific terms, allowing researchers to access a large volume of relevant
literature quickly. By refining search terms, using operators like AND, OR, and NOT, and
applying filters (e.g. publication date), researchers can narrow down results to more directly
relevant studies.

The second method is Snowballing (Wohlin, 2016). This involves exploring references within
previously identified relevant studies to uncover additional related sources. There are two types
of snowballing: backward and forward. Backward snowballing refers to reviewing the reference
list of a relevant study to find prior works that influenced it. Forward snowballing, meanwhile,
involves finding newer studies that have cited the original article. This approach can help
researchers uncover studies they may have missed through keyword searches alone.

The mapping study discussed here used both the search term-based search as a first step to
identify relevant papers and the snowballing method to identify further approaches relevant to the
research questions. For further details on the search terms, relevance criteria, and snowballing,
refer to the relevant master thesis (Thakur, 2025). The search was performed in September 2024.

3.2. Overview of Publications

Using search terms and snowballing, the mapping study identified a total of 18 papers which
deal with software artifact relation. It should be noted that one of these papers ((Lyu et al.,
2023)) is a systematic literature review by Lyu et al., which contains another 40 approaches
specifically dealing with the relation of issue tracker reports to other software artifacts. To keep
the number of approaches manageable for the synthesis, the 40 approaches found by Lyu et al.
are not discussed individually, but rather, the findings of the literature review as a whole are
discussed. Table 3.1 provides a list of the 18 identified papers and the method through which
they were discovered.

3.3. Threats to Validity

This section discusses the threats to the validity of this mapping study according to (Ampatzoglou
et al., 2020).
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Table 3.1.: Relevant Papers for Systematic Mapping Study of Software Artifact Relation
ID Title Ref Source
P1 Recovering Traceability Links between Release Notes and Related

Software Artifacts
(Nath et al., 2024) Search term

P2 Traceability Transformed: Generating More Accurate Links with
Pre-Trained BERT Models

(Lin et al., 2021) Search term

P3 Traceability Support for Multi-Lingual Software Projects (J. Liu et al., 2020b) Search term
P4 Using Frugal User Feedback with Closeness Analysis on Code to

Improve IR-Based Traceability Recovery
(Kuang et al., 2019) Search term

P5 Analyzing Requirements and Traceability Information to Improve
Bug Localization

(Rath et al., 2020) Search term

P6 Towards Automatically Localizing Function Errors in Mobile
Apps with User Reviews

(Yu et al., 2023) Search term

P7 A Software Requirements Ecosystem: Linking Forum, Issue
Tracker, and FAQs for Requirements Management

(Tizard et al., 2022) Search term

P8 A Systematic Literature Review of Issue-Based Requirement
Traceability

(Lyu et al., 2023) Search term

P9 IRRT: An Automated Software Requirements Traceability Tool
Based on Information Retrieval Model

(H. Zhang et al., 2022) Search term

P10 Recovering Semantic Traceability Between Requirements and
Source Code Using Feature Representation Techniques

(L. Zhang et al., 2021) Search term

P11 Recovering Trace Links Between Software Documentation and
Code

(Keim et al., 2024) Search term

P12 Improving the Effectiveness of Traceability Link Recovery Using
Hierarchical Bayesian Networks

(Moran et al., 2020) Search term

P13 Traceability in the Wild: Automatically Augmenting Incomplete
Trace Links

(Rath and Maalej, 2018) Search term

P14 Automating User-Feedback Driven Requirements Prioritization (Kifetew et al., 2021) Search term
P15 Towards Semantically Guided Traceability (J. Liu et al., 2020a) Snowballing P1
P16 User Review-Based Change File Localization for Mobile Appli-

cations
(Zhou et al., 2020) Snowballing P6

P17 Automatically Matching Bug Reports with Related App Reviews (Haering and Nadi, 2021) Snowballing P7
P18 Requirements Traceability Recovery for the Purpose of Software

Reuse: An Interactive Genetic Algorithm Approach
(Hamdi et al., 2022) Snowballing P4

The first threat is the validity of the study selection. As explained, the search was conducted
by a master’s student during their thesis (Thakur, 2025). This poses the threat that the student
might have missed certain publications due to a lack of experience when performing literature
searches. However, we tried to reduce this threat by providing the student with comprehensive
guidelines and close supervision. All papers that showed relevance in their title were discussed
with one of the master thesis supervisors to form the final selection of papers. The student also
documented all searches and paper selections to allow proper supervision. Still, the threat of
missing relevant publications is present in all mapping studies, and search terms might not cover
every single relevant publication. The threat was further reduced by performing snowballing to
cover additional literature that was missed by the search terms.

The second threat concerns the data validity. This threat stems from the fact that the results
reported in the mapping study may be incorrect due to incorrect reporting in the primary papers.
This threat is reduced by only including peer-reviewed publications in this mapping study,
resulting in a high standard for included publications. However, the presence of the literature
review by Lyu et al. (Lyu et al., 2023) could also influence the data validity. Reporting on the 40
individual approaches found by Lyu et al. would have exceeded the scope of this mapping study,
as a proper synthesis of 57 approaches (40 by Lyu and 17 found by the master thesis) creates
problems both in the appropriate visualisation and comparison of the approaches. Instead, the
approaches found by Lyu et al. were reported as one paper, which influences the observations of
the synthesis.

The third threat concerns the research validity of the study. The results of this mapping study
might not be perfectly repeatable because other researchers may choose other works as relevant.
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This threat is present in all mapping studies. However, the student kept a log of the complete
research procedure to facilitate reproducibility as much as possible.

3.4. Conclusion

The mapping study referenced here provided an overview of software artefact relation approaches.
This section draws conclusions from this mapping study for the treatment design and treatment
validation of the feedback requirements relation performed in this dissertation based on the
mapping study’s research questions.

RQ1.1: Which software artifacts are related by the approaches? The systematic
literature review by Lyu et al. (Lyu et al., 2023) focuses specifically on issue reports (i.e. bug
reports) and the software artifacts they are related to. Lyu et al. identified 40 relevant approaches.
They found that issue reports were most commonly related to commit messages (18 out of 40),
with the relation to source code being the second most common (7). Roughly 75% of the papers
(29) relate issue reports to purely natural language artifacts. Of the further approaches identified
by the master thesis, only two handled purely natural language artifacts. The other approaches
relate source code to other natural language artifacts. Out of the 31 approaches handling natural
language artifacts (29 by Lyu et al. and two further approaches), only one relates user feedback
to software requirements. Kifetew et al. (Kifetew et al., 2021) relate the feedback to requirements
by establishing a domain ontology and leveraging this to calculate the similarity between the
two artifacts.

Feedback requirements relation appears to not have been a major research focus in the past.
However, the number of works identified in total that establish relationships between two software
artifacts indicate that creating connections between software artifacts is of great value as it
creates traceability during software development. This creates further motivation to pursue the
task of feedback requirements relation.

RQ1.2: Which machine learning model is used to perform the relation? Looking
at the machine learning methods employed by the 31 approaches relating natural artifacts,
we did not find any clear trend. More than 20 different machine learning models are used by
the approaches, with no clear favourite in terms of usage frequency. Kifetew et al. (Kifetew
et al., 2021), the only approach performing feedback requirements relation, do not use a complex
machine learning classifier. Rather, they identify concepts, capture synonyms for these using
WordNet1 and calculate the Jaccard similarity between concepts in the feedback and concepts in
the requirements. However, given the need to establish domain ontologies and the low precision
of their approach, our conclusion is to instead adopt a machine learning classifier-based approach.
The reason for this is further laid out in Chapter 5. Because of the variety of the used models, we
conclude that it is necessary to experiment with multiple models to identify the best-performing
one.

RQ1.3: How and on which data is the model trained for the relation? Because of the
lack of feedback requirements relation approaches and the plethora of different software artifacts
being related, used data is hard to compare between approaches. Some software artifacts are
easier to obtain than others. Feedback and bug reports, for example, can easily be crawled
from online repositories and are more numerous because they are often documented by the users
themselves. Other artifacts, such as requirements and design documents, are harder to obtain
because they are documented by the developers and are often not publicly available.

Additionally, no conclusions can be drawn on the size of datasets needed, as these also vary
drastically between approaches. The most closely related approach by Kifetew et al. uses very

1https://www.wordnet.princeton.edu/
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small datasets of only 14 requirements and 60 feedback. However, they do not need the data to
train a classifier and only use it for evaluation.

Our main conclusion from this is to utilize the small dataset that is publicly available by
Kifetew et al. (Kifetew et al., 2021) while also creating our own, much larger datasets to facilitate
the training of any machine learning classifiers. Larger datasets also allow a more thorough
evaluation of any designed approach.

RQ1.4: Which pre-processing steps are necessary to use the approaches on their
respective datasets? Usage of pre-processing methods is heterogeneous across approaches.
Some approaches use a plethora of different methods to treat their data. Others do not
appear to process their data much at all before training their classifiers. Because there is no
consistency in which pre-processing methods should be used, our main conclusion is to establish a
baseline classifier first and then experiment with different combinations of preprocessing methods
commonly used, such as stop word removal. This allows us to identify the combination of methods
that provide the best results for feedback requirements relation.

RQ1.5: How was the evaluation of the approaches conducted, and what are the
results of the evaluation in terms of metrics? Most papers empirically validate their
approaches compared to a previously established ground truth. They utilize different metrics for
this but most commonly report precision, recall and F-measure, as is standard in most machine
learning approaches. Following the majority of approaches, we also perform empirical validation
of the classifier to evaluate effectiveness. For reasons already laid out in Section 2.3.8, we decided
to report precision, recall and F2-measure.

Kifetew et al., the only approach performing feedback requirements relation, do not provide
average performance metrics of their classifier for the relation task. However, calculating the
averages of the precision and recall provided in their two studies leads to an average precision of
0.34 and recall of 0.86. These numbers, however, are not representative because of the small
data size and differences in the two experiments conducted in their work. They can still serve as
a general comparison value for our evaluation.
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Chapter 4
State of the Art - Fine-Grained Feedback
Classification

This chapter reports on the findings of a mapping study conducted to further knowledge goal 2:
Understanding the current state of the art regarding automatic fine-grained feedback analysis.
The mapping study provides an overview of current approaches in scientific literature. Section
4.1 describes the study design. Section 4.2 reports the results of the mapping study. Section 4.3
discusses threats to the study’s validity. Section 4.4 draws conclusions for this dissertation from
the mapping study.

4.1. Study Design
Section 4.1.1 provides the research questions for the mapping study. Section 4.1.2 explains the
procedure for identifying relevant literature.

4.1.1. Research Questions

The main research question for this mapping study is focused on furthering knowledge goal 2
and is further refined into five sub-questions.

RQ1: Which classification approaches exist that employ methods to classify natural language
user feedback into known requirements engineering related classes of fine granularity?
RQ1.1: What are the overall goals of these approaches?
RQ1.2: Which predefined classes are used by these approaches to classify the feedback?
RQ1.3: Which automatic methods are used by these approaches?
RQ1.4: Which data sources and data sizes are used by these approaches in which steps?
RQ1.5: How was the evaluation of these approaches conducted, and what are its results?

The main research question, RQ1, focuses on the selection of approaches related to knowledge
goal 2. As the goal is to transfer the findings of the mapping study to usage information
classification, we are looking for approaches that classify natural language user feedback. This
excludes approaches which classify other natural language artifacts, such as requirements. The
question also asks for known requirements engineering related classes. This means that related
approaches must predefine the classes they use for the classification of the feedback, and these
classes must be related to the requirements engineering domain. We are not looking for approaches
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that extract their classes from the feedback, such as is often done in topic modelling, for example
(Blei et al., 2003). Lastly, the question is further specified by asking for classes of fine granularity.
We define fine granularity classes as those referring to what users are specifically talking about in
their feedback. This goes beyond general requirements classes like "Feature" or "Bug" to include,
for example, specific rationale users state in their feedback.

Sub-question RQ1.1 identifies the overall goals of the approaches. With this, we want to
identify which tasks the authors of the approaches want to tackle, especially to find out if any
approaches tackle a goal closely related to usage information classification.

Sub-question RQ1.2 aims to provide further insights into the specific classes the approaches
are using. We want to find out not only how many classes these approaches are using but also
the granularity of the classes. Additional insights can be found here, such as whether approaches
use multiple tiers of classes, where one class has further sub-classes that can be classified in
multiple steps.

Sub-question RQ1.3 focuses on the methods employed in each classification approach. These
may include machine learning models, NLP techniques, or deep learning (Section 2.3). Answering
this question clarifies how each approach automates classification. This helps us identify which
methods are commonly used for fine-grained classification of user feedback.

Sub-question RQ1.4 aims to detail the types and sizes of datasets each approach uses across
training, validation, and testing. Data sources may include online reviews, user feedback from app
stores, issue-tracking systems, or custom datasets from specific software products (Section 2.1.3).
Information on data size is also essential as it affects the generalizability of the classification
model.

Sub-question RQ1.5 focuses on the evaluation methods and the results reported for each
approach. Specifically, we are looking for the common evaluation metrics precision, recall and
F1 (Section 2.3.8) in order to compare the results of the approaches. This also sets a frame of
reference for the performance of our fine-grained user feedback classification approach.

4.1.2. Selection Procedure

As explained in Section 3.1.2, the studies introduced in this dissertation are both systematic
mapping studies. In the previous study on the relation of software artifacts (Chapter 3) we were
able to perform a search-term based search first, after which we performed snowballing on the
relevant papers. However, for this study on fine-grained user feedback classification approaches,
we were unable to perform a search term-based literature search because the terminology within
this field is highly inconsistent. Specifically, "fine-grained" is not an established term commonly
used in papers, meaning it does not reliably appear as a keyword or in titles and abstracts.
Conducting a comprehensive search would require us to identify and include every potential
research objective or focus area related to "fine-grained" classes. This is both impractical and
unlikely to yield consistent results. Consequently, a search term-based method is ineffective for
this review, as it would miss relevant studies due to the varied and non-standardized language
used in the literature.

Instead, we focused our efforts on backwards snowballing a comprehensive set of six existing
literature studies that deal with crowd-sourced requirements and user feedback analysis. This
search was mainly conducted from late 2022 to early 2023. The literature studies we investigated
((Wang et al., 2019), (T. Zhang and Ruan, 2020), (R. Santos et al., 2019), (Lim et al., 2021),
(Khan et al., 2019), and (Dabrowski et al., 2022)) contained a total of 341 individual papers.
The idea behind this was to utilize the search-term based search that these reviews had already
performed in a more general context, like feedback analysis or automatic classification and
narrow the selection of 341 papers to those related to our research question. This process of
"outsourcing" the search-term based search to existing literature avoided the previously stated
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Table 4.1.: Number of Overlapping Articles Cited by the Literature Reviews
Wang et al. Zhang et al. Santos et al. Lim et al. Khan et al. Dabrowski

Wang et al. 9 12 11 6 23
Zhang et al. 9 7 12 10 11
Santos et al. 12 7 13 8 19

Lim et al. 11 12 13 11 15
Khan et al. 6 10 8 11 5

Dabrowski et al. 23 11 19 15 5

problems of designing search terms. Table 4.2 lists the six literature studies, along with their
research questions, the search terms they used, the years in which they searched for literature
and the number of papers they found.

Table 4.1 shows the number of overlapping articles found by the relevant literature studies.
Wang et al., for example, cite 23 articles which are also cited by Dabrowski et al. As can be seen,
there is considerable overlap between the studies. In total, of the 341 papers in the six literature
studies, 273 only appear in one of the studies. 68 articles are cited by two or more literature
studies.

To identify which of the 341 papers were relevant to our research questions, we defined a set of
criteria of relevance, all of which had to be met for the papers to be included in this mapping
study. These were:

CoR1: The article must analyze users’ explicit software feedback.

CoR2: The article must present an approach for (semi-) automatic classification.

CoR3: The article must be related to requirement engineering.

CoR4: The article must use predefined classes.

CoR5: The article must use fine-grained classes

As can be seen, the criteria are analogous to the research questions. This ensured that the
articles were both relevant and able to provide answers to our research questions. CoR1 restricts
articles to those dealing with explicit feedback about software. This meant excluding articles
that handled implicit feedback as well as those dealing with feedback not related to software,
such as product reviews. CoR2 removed articles that did not introduce semi-automatic or fully
automatic classification approaches. Manual approaches or meta-studies, which reported on the
characteristics of user feedback, for example, were excluded. CoR3 excluded articles that were
not directly related to requirements engineering. This criteria excluded articles that analyzed
user feedback for the purposes of, for example, content moderation (i.e. detecting spammers or
fake accounts). CoR4 and CoR5 had the purpose of restricting the selection to articles which
use both predefined and sufficiently fine-grained classes. As previously mentioned, we defined
fine-grained classes as those that analyze what users are specifically talking about with regard to
the software or their rationale behind the feedback.
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Table 4.2.: Literature Studies used for Snowballing
Research Questions Search terms Search

date
Papers
Found

(Wang et al., 2019) A
systematic mapping study
on crowdsourced require-
ments engineering using
user feedback

RQ1 What sources of implicit and explicit
crowdsourced user feedback have been reported
in RE activities according to published litera-
ture?

RQ2 What metadata of crowdsourced user feed-
back are reported in published literature as
being useful for RE?

RQ3 In which RE activities has the crowd-
sourced user feedback been applied?

RQ4 What are the demographics of the research
on applying crowdsourced user feedback for
crowd-based RE according to published litera-
ture?

(ALL (requirements) AND TITLE (user OR app
OR software) AND TITLE (review OR comment
OR feedback)) AND (TITLE (requirements) OR
TITLE (crowd OR crowdsourced OR crowdsourc-
ing OR data-driven))

2006-
2017
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(T. Zhang and Ruan, 2020)
The challenge of data-
driven requirements elici-
tation techniques

RQ1: What is the state of the art in data-driven
requirements elicitation?

RQ2: What are the challenges with data-driven
requirements elicitation?

RQ3: What is the improvement solution for a
particular techniques’ challenge?

Snowballing 2007-
2018

44

(R. Santos et al., 2019)
An Overview of User Feed-
back Classification Ap-
proaches

RQ1: Which automated techniques have been
used in research to classify requirements-
relevant content in user feedback?

RQ2: Which classification algorithms and fea-
tures have been used most often?

RQ3: Which algorithm-feature pairs have
yielded the highest precision and recall values?

(("CrowdRE" OR "Crowd RE") OR ((("User Re-
view" OR "User Feedback" OR "App Review"
OR "Feature Requests" OR "User Opinions" OR
"User Requirements")) AND (Classif* OR Frame-
work OR Tool OR "Text Analysis" OR Mining
OR "Feature Extraction") AND "Requirements
Engineering"))

2013-
2018
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(Lim et al., 2021)
Data-Driven Require-
ments Elicitation: A
Systematic Literature
Review

RQ1: What types of dynamic data are used for
automated requirements elicitation?

RQ2: What types of techniques and technolo-
gies are used for automating requirements elici-
tation?

RQ3: What are the outcomes of automated
requirements elicitation?

Requirements elicitation: “Requirements elicita-
tion” OR “requirements analysis” OR “require-
ments identification” OR “requirements discov-
ery” OR “requirements gathering” OR “require-
ments determination” OR “requirements collec-
tion” OR “requirements engineering” OR “sys-
tem requirements”

Automation: Automat* OR “computer aided”
OR “computer assisted”

Big Data sources and related analytics: “Big
data” OR sensor* OR “Internet of Things”
OR IoT OR “natural language processing” OR
“data mining” OR “artificial intelligence” OR
“data processing” OR “data science” OR “data
analysis” OR “machine learning” OR “data
driven” OR “data oriented” OR “graph ana-
lytics”

2012-
2020

51

(Khan et al., 2019) Crowd
Intelligence in Require-
ments Engineering: Cur-
rent Status and Future Di-
rections

RQ1: What are the current foci of CrowdRE
research?

RQ2: How traditional RE activities are mapped
with CrowdRE activities and how crowd-based
techniques support RE activities?

RQ3: What is a possible future role of intelli-
gence in CrowdRE?

(“CrowdRE” OR “Requirements Crowdsourcing”
OR (“Crowd” AND “Requirements Engineer-
ing”) OR “Crowd-based Requirements Engineer-
ing” OR (“Crowd intelligence” AND “Require-
ments Engineering”)

2010-
2018

97

(Dabrowski et al., 2022)
Analysing app reviews for
software engineering: a
systematic literature re-
view

RQ1: What are the different types of app review
analyses?

RQ2: What techniques are used to realize app
review analyses?

RQ3: What software engineering activities are
claimed to be supported by analysing app re-
views?

RQ4: How are app review analysis approaches
empirically evaluated?

RQ5: How well do existing app review analysis
approaches support software engineers?

(’app review mining’ OR ’mining user review’
OR ’review mining’ OR ’review analysis’ OR
’analyzing user review’ OR ’analyzing app re-
view’) AND (’app store’)

(’app review’ OR ’user review’ OR ’app store
review’ OR ’user feedback’) AND (’software
engineering’ OR ’requirement engineering’ OR
’software requirement’ OR ’software design’ OR
’software construction’ OR ’software testing’ OR
’software maintenance’ OR ’software configu-
ration’ OR ’software development’ OR ’soft-
ware quality’ OR ’software coding’) AND (’app
store’)

2010-
2020

182
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Table 4.3.: Number of Papers matching the criteria of relevance
Criterium Wang et al. Zhang et al. Santos et al. Lim et al. Khan et al. Dabrowski et al. Unique Articles
CoR1: Software Feedback 40 26 38 36 28 135 227
CoR2: (Semi)-automatic 21 17 29 25 12 65 144
CoR3: Requirements Engineering 13 12 25 14 11 38 67
CoR4: Predefined Classes 10 8 23 5 9 30 50
CoR5: Fine-grained Classes 3 0 7 3 3 6 12

Table 4.3 shows how many papers out of the 341 extracted from the literature studies match
the criteria. The table lists both the number of papers per literature study as well as the total
number of unique papers across all six studies. Note that because of the article overlap between
the studies, the number of unique articles is lower than the sum of each row. Each criterium
reduces the number of matching papers from the previous criterium. As can be seen, 114 papers
did not deal with explicit software feedback. Of the remaining 227 papers, 144 provided some
form of semi- or fully-automatic approach, meaning that 83 did not. 67 of the 144 were related
to requirements engineering. Of these, 50 use predefined classes, while only 17 do not. Of the
50 approaches, 38 used classes that were not of sufficiently fine granularity. Some examples are
approaches classifying feedback into functional and non-functional requirements (e.g. (H. Yang
and Liang, 2015)) or into bug reports, suggestions or an "other" class (e.g. (Villarroel et al.,
2016)). In total, out of the 341 papers, we identified 12 that matched all criteria of relevance.
Out of the six studies, (T. Zhang and Ruan, 2020) is the only one that did not yield a relevant
paper.

To further our selection, we then performed another round of snowballing on these 12 papers,
applying the same criteria. We performed both backwards and forward snowballing for these
papers. This resulted in another nine papers that matched our criteria of relevance. These papers
were not included in the literature studies because they were all published after 2020. As can be
seen in Table 4.2, the literature studies performed their searches no later than 2020. In total, we
were able to identify 21 papers which perform (semi-)automatic classification of user feedback
into predefined, fine-grained, requirements engineering related classes.

4.2. Results and Comparison
This section will report on the results of this mapping study and discuss the findings. Section
4.2.1 gives an overview of the identified papers, and Section 4.2.2 compares the approaches
through synthesis.

4.2.1. Overview of Publications
Table 4.4 lists all 21 relevant papers for this mapping study and the sources through which the
papers were found. This source can either be one or multiple of the six literature surveys we
analyzed or one of the other papers found through the literature surveys. As mentioned before,
we discovered 12 approaches through the six surveys we analyzed and another 9 through further
snowballing of the 12 approaches.

Figure 4.1 shows an overview of the publication dates of the relevant approaches. Note that the
six literature surveys we analyzed were published between 2019 and 2022, which could influence
these numbers. The oldest publication found is by (Guzman et al., 2015). The timeline shows an
uptick in 2017, followed by no publications in 2018. Afterwards, publications range between 1
and 4 in the following years.

47



4. State of the Art - Fine-Grained Feedback Classification

Table 4.4.: Relevant Papers for Systematic Mapping Study of Fine-grained User Feedback Classi-
fication

ID Title Ref Snowballing Source

P19 Analyzing reviews and code of mobile apps for better release
planning

(Ciurumelea et al., 2017)

Literature Survey
(Wang et al., 2019)
(R. Santos et al., 2019)
(Dabrowski et al., 2022)

P20 Automatic Classification of Accessibility User Reviews in Android
Apps

(Aljedaani et al., 2022) (Ciurumelea et al., 2017)

P21 Ensemble Methods for App Review Classification: An Approach
for Software Evolution

(Guzman et al., 2015)

Literature Survey
(Wang et al., 2019)
(R. Santos et al., 2019)
(Dabrowski et al., 2022)

P22 Analyzing and automatically labelling the types of user issues
that are raised in mobile app reviews

(McIlroy et al., 2016)
Literature Survey
(Wang et al., 2019)
(R. Santos et al., 2019)

P23 Fine-Tuning Pre-Trained Model to Extract Undesired Behaviors
from App Reviews

(W. Zhang et al., 2022) (McIlroy et al., 2016)

P24 A BERT and Topic Model Based Approach to reviews Require-
ments Analysis

(J. Yang et al., 2021) (McIlroy et al., 2016)

P25 Requirements knowledge acquisition from online user forums (Ali Khan et al., 2020)
Literature Survey
(Lim et al., 2021)

P26 Can end-user rationale improve the quality of low-rating software
applications: A rationale mining approach

(Ullah et al., 2022) (Ali Khan et al., 2020)

P27 Can a Conversation Paint a Picture? Mining Requirements In
Software Forums

(Tizard et al., 2019)
Literature Survey
(Lim et al., 2021)

P28 Which Feature is Unusable? Detecting Usability and User Expe-
rience Issues from User Reviews

(Bakiu and Guzman, 2017)

Literature Survey
(R. Santos et al., 2019)
(Lim et al., 2021)
(Khan et al., 2019)
(Dabrowski et al., 2022)

P29 Automatic Classification of Non-Functional Requirements from
Augmented App User Reviews

(Lu and Liang, 2017)
Literature Survey
(R. Santos et al., 2019)

P30 A Practical User Feedback Classifier for Software Quality Char-
acteristics

(R. d. Santos et al., 2021) (Lu and Liang, 2017)

P31 Evaluating pre-trained models for user feedback analysis in soft-
ware engineering: A study on classification of app-reviews

(Hadi and Fard, 2023) (Lu and Liang, 2017)

P32 Classifying User Requirements from Online Feedback in Small
Dataset Environments using Deep Learning

(Mekala et al., 2021) (Lu and Liang, 2017)

P33 UUX-Posts: a tool for extracting and classifying postings related
to the use of a system

(Mendes and Furtado, 2017)
Literature Survey
(R. Santos et al., 2019)

P34 Listening to the Crowd for the Release Planning of Mobile Apps (Scalabrino et al., 2019)
Literature Survey
(R. Santos et al., 2019)
(Dabrowski et al., 2022)

P35 Mining User Rationale from Software Reviews (Kurtanović and Maalej, 2017)
Literature Survey
(Khan et al., 2019)

P36 Cslabel: An approach for labelling mobile app reviews (L. Zhang et al., 2017)
Literature Survey
(Dabrowski et al., 2022)

P37 Mining non-functional requirements from app store reviews (Jha and Mahmoud, 2019)
Literature Survey
(Dabrowski et al., 2022)

P38 Extracting Arguments Based on User Decisions in App Reviews (Kunaefi and Aritsugi, 2021) (Jha and Mahmoud, 2019)
P39 Empirical Evaluation of ChatGPT on Requirements Information

Retrieval Under Zero-Shot Setting
(J. Zhang et al., 2023) (Jha and Mahmoud, 2019)
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Figure 4.1.: Fine-grained Classification Approach Publications Per Year

4.2.2. Synthesis

The synthesis compares the relevant papers by introducing synthesis criteria derived from the
research questions. Table 4.5 lists the criteria and research questions from which they were
derived.

Table 4.5.: Relevant Papers’ Evaluation Metrics and Results
ID Criterium Relevant RQ
SC1 Approach’s Goal RQ1.1
SC2 Number of Classes RQ1.2
SC3 Used Classes RQ1.2
SC4 Used Methods RQ1.3
SC5 Methods per No. Classes RQ1.2; RQ1.3
SC6 Dataset Sizes RQ1.4
SC7 Dataset Source RQ1.4
SC8 Evaluation Methodology RQ1.5
SC9 Evaluation Metrics RQ1.5
SC10 Evaluation Results RQ1.5

SC1 investigates the overall goal of each approach. This helps identify for which purposes
the approaches were designed and compare similar goals across the different approaches. SC2
compares the number of classes each approach classifies in the user feedback, while SC3 compares
the specific classes of the approaches with one another. SC4 compares all NLP, ML and DL
methods used by the approaches. The idea behind this is to find out which methods are most
commonly used for fine-grained user feedback analysis. Building on this, SC5 does not compare
individual approaches but rather groupings of approaches. The approaches are clustered into
clusters of similar numbers of classes, and the methods employed by these are investigated.
The goal behind this is to see whether a correlation exists between the number of classes used
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by an approach and the methods they employ to classify these classes. SC6 compares the
sizes of the datasets used by the approaches for training and testing, while SC7 identifies the
sources of these datasets. SC8, SC9, and SC10 investigate the evaluations of the approaches.
Their methodology, with regard to the creation of a gold standard, interrater agreement and
cross-validation testing, is compared, as well as the metrics they use to report performance and
their results.

The second column of Table 4.6 lists the overall goals of each approach (SC1). The goals can
be grouped into four categories: Taxonomies, non-functional requirements (NFR), Rationale and
Others. The most common goal category here is the classification into NFR, which seven ap-
proaches perform. Four of these approaches (P24, P29, P30, P37) perform a general classification
of NFRs categories, while three (P20, P28, P33) focus on specific NFRs and their sub-categories.
Five approaches (P19, P21, P22, P34, P36) classify custom taxonomies they introduce within
their work. The taxonomies of P19 and P22 are custom-tailored to app review classification,
while the taxonomies of P21, P34 and P36 are more generic for software feedback in general.
Four approaches (P25, P26, P35, P38) classify user rationale to gain a better understanding of
the users’ reasoning in their feedback. Three approaches (P23, P27, P32) offer unique analysis
goals. P23 classifies feedback into categories of undesirable behaviour, P27 classifies different
types of information that can be found in online forums, and P32 classifies feedback according to
how useful it is.

Two approaches (P31, P39) can not be sorted into the above categories because their overall
goal is not to perform a specific classification but rather to evaluate the performance of specific
classifiers for feedback analysis in general. P31 evaluates the performance of certain pre-trained
models while P39 evaluates the performance of ChatGPT for classification. Both approaches use
datasets from multiple other publications which have their own goals and use these to evaluate
the performance.

Additionally, we see that only three approaches (P22, P4, P36) perform multi-label classification,
where one feedback can be assigned multiple classes. The other 18 approaches all assign only one
class per feedback. It should also be noted that none of the approaches we identified performed
word-based analysis of the feedback (Section 2.1.2). Instead, all approaches either classified
complete statements or individual sentences.

Looking at the third column of Table 4.6 (SC2), we see that the number of classes is very
similar across the rationale approaches, with most using five classes and one using four. NFR
approaches, on the other hand, can differ a lot, with five approaches using 4-5 classes and two
using 23 and 26 different classes. Both of the latter are looking at specific NFR categories.
Taxonomy approaches can also differ more widely, with two approaches using seven classes, one
using 14 and two using 17 classes. Both approaches with the primary goal of evaluating classifiers
use 16 classes, while the approaches in the other category use 23, 8 and 9 classes. On average,
across the 21 approaches, the number of used classes is approximately 11.

The used classes in column four of Table 4.6 (SC3) show a lot of similarities, especially for the
NFR approaches as these most often use standardized definitions for NFRs such as (ISO/IEC,
2010). P22 and P36, both classifying taxonomies, also use the same classes. P36, however,
extends the taxonomy by three more classes.

Table 4.7 (SC4) lists all methods used by the 21 approaches in descending order of usage
frequency. Most of the approaches utilize multiple methods to create their classifiers. In total 22
different methods are used, with 12 of these only being used by a single approach.

The most used method is a support vector machine, which 12 approaches utilize. This is
followed by Naive Bayes which nine approaches use. "Newer" methods like Neural Network or
transformer based models such as BERT are less frequent, placing only as the 7th and 6th mosed
used methods respectively.

50



4.2. Results and Comparison

Table 4.6.: Relevant Papers’ Goals and Classes (SC1, SC2, SC3)
ID Approach’s Goal No. Classes Used Classes

P19 Classify into app taxonomy 17

High and Low-Level Taxonomy
Compatibility into Device, Android version, Hardware
Usage into App usability, UI
Resources into Performance, Battery, Memory
Pricing into Licensing, Price
Protection into Security, Privacy

P20 Classify into app accessibility
categories

4 Principles, Audio/Video, Design, Focus

P21 Classify into software evolu-
tion taxonomy

7 Bug report, Feature strength, Feature shortcoming, User request, Praise,
Complaint, Usage scenario

P22 Classify into custom app
multi-label taxonomie

14 Additional Cost, Functional Complaint, Compatibility Issue, Crashing,
Feature Removal, Feature Request, Network Problem, Other, Privacy
and Ethical Issue, Resource Heavy, Response Time, Uninsteresting
Content, Update Issue, User Interface

P23 Classify into undesirable be-
havior categories

23 Ad disruption, App ranking fraud, App repacking, Bad performance,
Drive-by download, Excessive network traffic, Fail to delete, Fail to exit,
Fail to install, Fail to login or register, Fail to retrieve content, Fail
to start, Hidden app, Illegal redirection, Illegal background behavior,
Inconsistency between functionality and description, Payment deception,
Permission abuse, Praise, Privacy of information leak, Virus, Vulgar
content, Special

P24 Classify into multi-label
NFR categories

5 Usability, Dependability, Performance, Supportability, Miscellaneous

P25 Classify into user rationale
categories

4 Feature, Claim-supporting, Claim-attacking, Issue

P26 Classify into user rationale
categories

5 Claim-attacking, Claim-supporting, Claim-neutral, Decisions, Issues

P27 Classify into different types
of information found in on-
line forums

8 Application usage, Non-informative, Apparent bug, Application guid-
ance, Question on application, Help seeking, Feature request, User setup

P28 Classify into usability and
user experience categories

23 Memorability, Learnability, Efficiency, Errors, Satisfaction, Likeability,
Pleasure, Comfort, Trust, Anticipation, Overall Usability, Hedonic, De-
tailed Usability, User Differences, Support, Impact, Affect and Emotion,
Enjoyment and Fun, Aesthetics and Appeal, Engagement, Motivation,
Enchantment, Frustration

P29 Classify into NFR categories 5 Reliability, Usability, Portability, Performance, Others
P30 Classify into NFR categories 4 Functional suitability, Performance, Compatibility, Usability
P31 Evaluate pre-trained models

for feedback analysis
16 Performance, Portability, Usability, Reliability, Usage scenario, Feature

strength, User experience, Feature shortcoming, Inquiry, Problem, Rat-
ing, Bug report, Feature request, Aspect evaluation, Praise, Irrelevant

P32 Classify into usefulness cate-
gories

9
Useless, Helpful
Helpful, Useless (again on previous helpful)
None, Feature, Stability, Quality, Performance

P33 Classify into usability and
user experience (UUX) cate-
gories

26

Posting related to Use (PRU); Non-PRU
PRU into Usability, UX or UUX
Usability into Efficacy, Efficiency, Memorability, Learn-
ability, Safety, Utility
UX into Satsifaction, Affect, Trust, Esthetics, Frustration,
Motivation, Usability, Pleasure, Anticipation, Impact,
Hedonic quality, Comfort, Engagement, Enchantment,
Accessibility, Support

P34 Classify into taxonomie, clus-
ter and prioritize reviews

7 Functional bug report, Suggestion for new feature, Report of perfor-
mance problems, Report of security issues, Report of excessive energy
consumption, Request for usability improvements, Other

P35 Classify into user rationale
categories

5 Issue, Alternative, Criteria, Decision, Justification

P36 Classify multi-label issue
type taxonomy

17 Additional Cost, Compatibility Issue, Content Complaint, Crashing,
Feature Removal, Feature Request, Functional Complaint, Installation
Issue, Network connection issue, Privacy and ethical issue, Property
safety, Resource heavy, Response time, Traffic wasting, Update issue,
User interface, Other

P37 Classify into NFR categories 4 Dependability, Performance, Supportability, Usability
P38 Classify into user rationale

categories
5 Acquiring, Recommending, Requesting, Rating, Relinquishing decision

P39 Evaluate ChatGPT classifi-
cation for feedback analysis

16 Usability, Security, Operational, Performance, Dependability, Support-
ability, Business, Tool, Travel, Social, News, Navigation, Music, Life,
Education, Entertainment
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Table 4.7.: Relevant Papers’ Used Methods (SC4)
P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39

SVM X X X X X X X X X X X X
Naïve Bayes X X X X X X X X X
Logistic Regression X X X X X X X
Random Forest X X X X X X
TF-IDF X X X X
BERT X X X X
Neural Network X X X
Decision Tree X X
Bag of Words X X
Rule-Based Approach X X
Regression Tree X
Extra Tree Classifier X
K-Nearest Neighbor X
J48 X
CHI2 X
XLNet X
FastText X
ELMO X
Pattern Matching X
AdaBoost X
XGBoost X
ChatGPT X
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Table 4.8.: Relevant Papers’ Overlap Between Number of Classes and Used Methods (SC5)
No. Classes 20+ 10-19 6-9 5 4
Occurrences 3 5 4 5 4

Papers P23, P28, P33 P19, P22, P31, P36, P39 P21, P27, P32, P34 P24, P26, P29, P30, P35 P20, P25, P30 P37
Methods BERT

Pattern Matching
SVM

BERT
ChatGPT
J48
Naive Bayes
Random Forest
Regression Tree
SVM (3x)
TF-IDF
XLNet

BERT
ELMO
FastText
Logistic Regression
Naive Bayes (3x)
Neural Network
Random Forest
SVM (2x)

AdaBoost
BERT
Bag of Words (2x)
CHI2
Decision Tree
Logistic Regression (4x)
Naive Bayes (3x)
Neural Network (2x)
Random Forest (2x)
SVM (4x)
TF-IDF (2x)
XGBoost

Decision Tree
Extra Tree Classifier
K-Nearest Neighbor
Logistic Regression (2x)
Naive Bayes (2x)
Random Forest (2x)
SVM (3x)
TF-IDF
Rule-Based Approach

Table 4.8 shows the comparison of approaches for SC5. When clustering the approaches by
the number of used classes we see which methods are used for which number of classes. The
approaches are clustered in such a way that relatively equal amounts of approaches (3-5) are
present in each. There appears to be no clear correlation between the number of classes and
the methods used to classify them. SVMs are used consistently across all clusters. Methods
such as BERT and Random Forest are also used in four of the five clusters. The cluster with
20+ classes has a much lower variance of methods being used, with only three different methods
being applied. However, it is also the smallest group with only three approaches.

Table 4.9 lists the size of each approach’s dataset used for training and evaluation (SC6) as
well as the sources of these datasets (SC7). Comparison of some dataset sizes is difficult because
some approaches report the number of sentences (P24) or number of forum posts (P27), which
does not directly correlate to the number of reviews, as reported by most of the approaches.
Figure 4.2 further visualizes the number of reviews as a dot plot. For simplicity, all approaches
are tracked as "Number of Reviews" in Figure 4.2. We see that most approaches have less than
5000 reviews in their datasets. Five of these have less than 2000. Ten approaches, however,
have more than 5000 reviews, with three (P27, P31, P26) having 49000 or more. P38 uses the
lowest number of reviews, with only 500. It should be noted that the approaches with 49000 or
more reviews do not use the full size of their dataset for training or testing. They mostly create
random samplings of reviews from the dataset. However, in the absence of actual numbers given
by the approaches, the size of the complete dataset is listed here.

Looking at SC7 in Table 4.9, we see that by far, the most common source for these reviews
is app stores such as the Google Play Store1 or the Apple App Store2. Fifteen approaches use
reviews collected from this source. Three approaches use software reviews collected from the
Amazon store. Reddit, Twitter, a dedicated review website, and dedicated online forums are
each used by only one approach.

1https://www.play.google.com/store
2https://www.apple.com/app-store/
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Table 4.9.: Relevant Papers’ Dataset Size and Sources (SC6, SC7)
Paper Dataset Size Source
P19 7754 Reviews App Store
P20 2663 Reviews App Store
P21 4550 Reviews App Store
P22 7290 Reviews App Store
P23 10358 Reviews App Store
P24 6759 Sentences from Reviews App Store
P25 3319 Forum Comments Reddit
P26 77202 Reviews Amazon
P27 49000 Forum Posts Forums
P28 3491 Reviews Review Website
P29 6696 Reviews App Store
P30 1500 Reviews App Store
P31 55933 Reviews App Store
P32 1000 Reviews App Store
P33 18545 Tweets Twitter
P34 3000 Reviews App Store
P35 1020 Reviews Amazon
P36 3902 Reviews App Store
P37 6000 Reviews App Store
P38 500 Reviews App Store, Amazon
P39 1800 Reviews App Store
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·104
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Figure 4.2.: Dot Plot of the Dataset Sizes per Relevant Paper (SC6)
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Table 4.10.: Relevant Papers’ Evaluation Methodologies (SC8)

Paper Manual
Ground Truth

Interrater
Agreement

Cross
Validation

P19 (X) X
P20 X X
P21 X X X
P22 X X X
P23 X
P24 X
P25 X X X
P26 X X X
P27 X X X
P28 X
P29 X X X
P30 X (X) X
P31 X (X) X
P32 X
P33 X X
P34 X X X
P35 X X X
P36 X X X
P37 X X
P38 X X X
P39 X (X)

Table 4.10 shows the comparison for SC8, the evaluation methodology. For this, we investigate
three factors: whether the authors of each approach manually created a ground truth to which
they compare their classifier, whether they performed interrater agreement to create the ground
truth and whether the classifiers were evaluated using k-fold cross validation. X marks an
approach that used the respective methodology. (X) marks that the methodology was only
partially applied.

We see that all authors manually created a ground truth or used a manually created ground
truth from another source. P19 only does this partially because, while a manual ground truth
was created, this was used to build the taxonomy and not evaluate the classifier. Instead, the
classifier is evaluated by manually labelling its output as correct or incorrect.

Interrater agreement was done by 14 out of 21 approaches. Four approaches did not report
performing any interrater agreement. In this case, their dataset or parts of it were labelled by
only a single person with no overlap with another annotator. Three papers partially performed
interrater agreement. Rather than having two people annotate the same data and then check for
inconsistencies, these papers had the data annotated by one person while another checked those
annotations to see if they agreed with them or not.

Cross validation was done by 12 papers. These were either 5- or 10-fold cross validations. The
other 9 approaches used a split between their training and testing data. Most commonly 80% of
the data was used for training of the classifier and 20% was used for testing. All papers made
sure not to evaluate on the same data that the classifier was trained on.

The second column in Table 4.11 shows the metrics used in the papers to measure the
performance of the classifiers (SC9). Most of the papers used the common metrics precision
(P), recall (R) and F1 (see Section 2.3). Five approaches also used other categories to measure
the performance. These depend on the goal of the approach and are thus not really comparable
across the 21 relevant approaches. Two approaches (P30, P38) only provided F1 results without
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Table 4.11.: Relevant Papers’ Evaluation Metrics and Results (SC9, SC10)

Paper Evaluation
Metrics

Precision (P) Recall (R) F1 Score

P19 P, R, F1 0.89 0.99 0.94
P20 P, R, F1, Other 0.97 0.99 0.98
P21 P, R, F1 0.71 0.62 0.64
P22 P, R, F1, Other 0.65 0.64 0.64
P23 P, R, F1, Other 0.75 0.74 0.75
P24 P, R, F1 0.70 0.65 0.66
P25 P, R, F1 0.64 0.59 0.54
P26 P, R, F1, Other 0.98 0.94 0.96
P27 P, R, F1 0.93 0.87 0.90
P28 P, R, F1 0.68 0.79 0.73
P29 P, R, F1 0.71 0.72 0.72
P30 F1 / / 0.60
P31 P, R, F1 0.96 0.91 0.92
P32 P, R, F1 0.95 0.96 0.93
P33 Other / / /
P34 P, R, F1 0.87 0.86 0.86
P35 P, R, F1 0.87 0.99 0.82
P36 P, R, F1 0.67 0.70 0.68
P37 P, R, Other 0.62 0.54 /
P38 F1 / / 0.95
P39 P, R, F1, Other 0.96 0.95 0.95

precision or recall, while one approach (P37) did not provide F1 but precision and recall. P33 is
the only approach that provided neither precision, recall, nor F1.

The third, fourth, and fifth column of Table 4.11 shows the precision, recall and F1 values for
each approach. These values are difficult to compare, however, due to several factors. Approaches
have different goals and evaluation methodologies, and, most importantly, they report different
granularities of performance metrics. Some approaches may report the precision, recall and
F1 of individual classes, while others only report average values across all classes. They may
also calculate the metrics using different averaging methods. This means that all comparisons
between approaches are highly subjective. To provide some consistency in this mapping study,
we report the highest values for each metric as reported by each approach. This, however, may
make approaches which only report averages appear worse in comparison to approaches only
reporting individual class performance. This also explains why the precision and recall values in
Table 4.11 may not directly correlate to the F1 values.

Because of these problems, instead of comparing the individual performance metrics of each
approach, we calculate the distributions across all approaches. Figure 4.3 shows the distributions
of the metric values seen in Table 4.11. We see that the median precision is 0.81 across the
approaches, with quartile ranges of 0.95 to 0.68. The lowest precision is 0.62, as reported by P37.
The median recall is 0.83, ranging from a lower quartile of 0.65 to an upper quartile of 0.95. The
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Figure 4.3.: Distribution of Precision, Recall, and F1 Scores Across Papers (SC10). Shown
Values from Top to Bottom are: Maximum, Upper Quartile, Median, Lower Quartile,
Minimum

lowest recall is lower than the lowest precision at 0.54, as also reported by P37. Median F1 is
between median precision and recall at 0.82, with an upper quartile of 0.94 and a lower quartile
of 0.66. The lowest F1 is reported by P25 at 0.54.

A complete synthesis matrix combining the synthesis criteria can be found in Appendix B.1.

4.3. Threats to Validity
This section discusses the threats to the validity of this mapping study according to (Ampatzoglou
et al., 2020).

The first threat is the validity of the study selection. As explained in 4.1.2, we were not able
to perform a keyword search due to the specificity of this mapping study’s research questions.
This creates the threat of missing relevant publications because we depend on the six SLRs
from which we used snowballing to find relevant approaches. We tried to mitigate this threat
as much as possible by investigating all 341 papers in the SLRs and performing another round
of snowballing on the relevant papers, both forward and backward. However, even though the
SLRs we used were broadly positioned in the field of feedback analysis, it is still possible that
neither the SLRs’ authors nor we captured some publications.

The second threat concerns the data validity. This threat stems from the fact that the results
reported in this mapping study, especially those of the evaluation results, may be incorrect due
to incorrect reporting in the primary papers. As mentioned before, evaluation methodology
and calculation of metrics can differ from paper to paper, which makes comparing the reported
metrics difficult. We decided to always report the best-reported values for each metric to reduce
the threat. However, this could result in less rigorously evaluated approaches being perceived
as superior because their reported values may be higher. The threat is further reduced by only
including peer-reviewed publications in this mapping study.

The third threat concerns the research validity of the study. The results of this mapping study
might not be perfectly repeatable because other researchers may choose other works as relevant,
especially with regard to CoR5, the fine-grained classification criteria. We tried to provide an
objective definition for fine-grained to reduce this threat, but it still remains somewhat subjective.
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To facilitate reproducibility, we kept a log of the complete research procedure, including a
complete list of the 341 studies and the reason for their exclusion and inclusion into this mapping
study.

4.4. Conclusion

This study provided an overview of fine-grained feedback classification approaches in the literature.
This section draws conclusions for treatment design and treatment validation of the usage
information classification performed in this dissertation based on this mapping study’s research
questions.

RQ1.1: What are the overall goals of these approaches? We were not able to find
other approaches that had the goal of classifying usage information in feedback. The overall goals
can be sorted into four categories: Taxonomies, NFRs, Rational and Others. Usage information
classification falls into the taxonomy group because it uses a taxonomy to identify the different
types of usage information in the feedback.

The taxonomies we identified in this mapping study all focus on classifying characteristics of
the software or the intent of the feedback itself. None incorporate classes focused on the users or
their behaviour. In that, their purpose is very different from usage information classification.
The rationale group is more user-focused by identifying the users’ intent when giving feedback.
However, this group does not focus on the behaviour of the software or the user when using the
software. The NFR group does look at characteristics of the software, but by definition, these
are only non-functional characteristics, so they do not capture the interactions of the users with
the software, as usage information does.

We also could not identify any approaches that perform word-based classification (Section
2.1.2). Instead, all approaches in this mapping study either classify complete statements or
individual sentences to achieve their goals. Thus, it is difficult to draw any conclusions from the
overall goals of the approaches we found that would help with usage information classification.
Our main takeaway is the necessity to evaluate the performance of usage information on different
granularities, both word- and sentence-based.

RQ1.2: Which predefined classes are used by these approaches to classify the
feedback? On average, the approaches we identified use approximately 11 classes for the
fine-grained analysis. However, fine-grained analysis approaches can differ widely in the amount
of classes they use. The approach we found with the lowest amount of classes had only four and
the highest had 26 classes.

When using the adapted TORE framework, as introduced in Section 2.2.2, to classify usage
information, nine classes are used, which is slightly below the average number of classes we found.
However, as the approaches in the mapping study show, even approaches with a lower number of
classes can perform fine-grained analysis.

RQ1.3: Which automatic methods are used by these approaches? No clear trend for
specific machine learning models could be identified, as there seems to be no correlation between
the number of classes an approach uses and the model they use to classify these classes. Some
models are used more often than others (e.g. SVM, Naive Bayes, Logistic Regression). However,
a total of 22 different models were employed.

What makes drawing conclusions from this even more difficult is that the evaluation metrics
reported in Table 4.11 show that even when using the same model, approaches can have very
different performances. The performance appears to be more dependent on the goal and classes
used by the approaches than the machine learning models they employ. For example, approaches
P31 and P32 report very good results when using BERT, while P24 and P25 show much lower
results when using the same model.
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There appears to be no one model, which can universally be applied to fine-grained usage
information classification. Instead, experiments with different machine learning and deep learning
models are needed to identify the one which performs the usage information classificaton best.

RQ1.4: Which data sources and data sizes are used by these approaches in which
steps? App stores appear to be the primary source of feedback for most approaches. This
is likely due to how easy it is to access feedback for a plethora of different applications with
large feedback datasets for each. However, other sources are also used, such as review websites
and social media (e.g., Twitter and Reddit). We draw from this the conclusion that the usage
information classification should not be evaluated on a single data source. Instead, we gather
our data from multiple different sources to best evaluate the generalizability of the approach
across different feedback sources (Section 2.5).

Comparing dataset sizes across approaches is difficult. They differ widely between 500 reviews
and close to 80.000. This means that there is not really a conclusion to draw for the dataset size
we need in order to perform usage information classification, especially with regard to the fact
that word-based or sentence-based annotation is considerably more effort than labelling entire
feedback statements, as most approaches do.

RQ1.5: How was the evaluation of these approaches conducted, and what are its
results? 12 of the 21 approaches perform all three of our evaluation methodology criteria: the
creation of a manual ground truth, using interrater agreement to create the ground truth and
performing k-fold cross validation. In order to perform the best validation possible and provide
high-quality datasets for usage information classification, all three methodologies are also used
for the datasets used in this dissertation.

The most common evaluation metrics are precision, recall and F1. While some approaches
report only part of these metrics or include other metrics, we focus on these three metrics to
evaluate the performance of our classifiers. To circumvent the problems encountered during this
mapping study that approaches report these metrics very differently, either only as averages or
as class-specific metrics, we report on both the overall metrics of the classifier as well as the
individual class performances.

Evaluation results are difficult to compare across papers due to the differences in goals, classes
and evaluation methodology. However, the distributions shown in Figure 4.3 can serve as a general
guideline to compare the results of our evaluation to other fine-grained analysis approaches.
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Chapter 5
Feedback Requirements Relations

This chapter introduces the feedback requirements relation approach in Section 5.1. Afterwards,
the experiments towards automation of the approach through machine learning classification are
explained and discussed in Section 5.2.

The content of this chapter is partially based on a previous publication by the author of this
dissertation (Anders and Paech, 2025). However, new experiments have been performed since
the writing of this paper, mainly concerning experiments with different machine learning models,
resulting in different values being reported compared to the publication.

5.1. FeReRe Approach
In Section 5.1.1, an overview is provided of the FeReRe approach towards feedback requirements
relation. Section 5.1.2 then explains the intended use case of FeReRe.

5.1.1. Overview
The underlying idea of FeReRe is that When feedback is directly related to predefined require-
ments, developers can easily identify whether they are meeting expectations and understand
what needs improvement. The relation helps to understand which functionalities are the primary
focus of users’ feedback and which themes appear related to existing functionalities.

One of the problems in the relation process is that developers and users have very different
vocabularies when discussing software (Kuttal et al., 2020). This can make it difficult to determine
whether a feedback statement and a requirement are related, therefore introducing the risk of
missing important information. We performed early experiments in which we tried directly
relating complete feedback statements to requirements by calculating the cosine similarity of
the word embeddings of both. This was motivated by the work of Haering et al. (Haering and
Nadi, 2021), who related bug reports to feedback. Our experiments with this approach had poor
results. This can be attributed partially to the fact that a single feedback statement can discuss
any number of software functionalities (Anders et al., 2023). As a result, feedback can often not
only be related to a single requirement. Thus, feedback might be misclassified because parts
of it might be related to a requirement while other parts are not. Also, as shown by Kuttal et
al. (Kuttal et al., 2020), developers and users use very different vocabularies when discussing
software. Therefore, the language used in feedback and requirements differs significantly.

We designed FeReRe to handle these two challenges: the fact that feedback can be related to
any number of requirements and the different vocabularies found in feedback and requirements.
As seen in Figure 5.1 the FeReRe approach consists of three steps to determine if a feedback and
a requirement are related.

62



5.1. FeReRe Approach

Figure 5.1.: FeReRe Approach

The first step splits the natural language text of both the requirement and the feedback into
individual sentences (RS and FS). We use the nltk sentence splitter1 to perform this task.

In the second step, every sentence from the feedback is paired with every sentence from the
requirement. A classifier then performs a binary classification for every feedback-requirements-
sentence pair by deciding whether the two sentences in the pair are related to each other.
FeReRe does not require a specific classifier. The approach itself is applicable to any classifier
capable of performing binary classification. Different classifiers are evaluated in Section 5.2. Our
experiments identified BERT-Large (Devlin et al., 2018) as the best-performing classifier for
FeReRe. To cope with the two previously mentioned challenges, we use fine-tuning by generating
positive samples (sentence pairs that are related) and negative samples (sentence pairs that are
not related). The positive and negative samples are combined, and their order is randomized and
fed into the classifier for training. This fine-tuning reduces the risk that vocabulary differences
affect the classification.

Finally, in the third step, it is determined whether a feedback and a requirement are related.
We define the two as related if at least one sentence in the feedback is related to one sentence
in the requirement. This mitigates the risk that complete feedback statements, which can be
related to multiple requirements, affect the classification.

5.1.2. Use Cases

The key use case we see for FeReRe is requirements validation. Feedback that is directly linked
to requirements helps determine whether a feature meets predefined specifications, reducing
ambiguity and subjective opinions. In this regard, FeReRe serves as a grouping mechanism by
grouping feedback related to the same functionalities and creating a connection between the
feedback and the requirements which specify the functionalities of the software. This grouping is
further expanded upon in Section 6.1.3.

Another possible use case is prioritizing issues and improvements. When feedback is mapped
to requirements, it can help developers assess which parts of the software could be affected by
feedback-driven changes by seeing the different requirements a feedback is related to. Changes to
the software, motivated by feedback, rarely affect just a single functionality. Identifying which
requirements are affected is simplified if developers gain access to the information to which
requirements a feedback is related.

1https://www.nltk.org/api/nltk.tokenize.html
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5.2. FeReRe Classifier
The FeReRe task involves a considerable amount of manual labour when performed without
machine learning support. Consequently, this section describes the research towards the creation
of FeReRe classifiers. Classifier selection and experiment configuration draw upon the conclusions
taken from the mapping study conducted as part of the solution investigation (Section 3).

Section 5.2.1 describes the research questions guiding classifier experimentation. Section 5.2.2
describes how the experiments with the classifiers were configured and conducted. Section
5.2.3 discusses the creation of prompts for experiments with generative large language models.
Section 5.2.4 presents the results of the conducted experiments and provides answers to the
research questions. Section 5.2.5 discusses the findings before the threats to validity are discussed
in Section 5.2.6. Lastly, Section 5.3 provides a final conclusion on the feedback requirements
relation.

5.2.1. Research Questions
To analyze the performance of our classifier, we focus on the following research questions (RQ):

RQ1: How well can FeReRe perform feedback requirements relation?

RQ2: Are classification results transferable across software domains?

RQ3: How does the FeReRe classifiers’ performance compare to generative AI?

RQ4: Does the incorporation of already assigned feedback improve the results?

RQ1 analyzes the overall performance of the FeReRe classifier. For this, we train and test the
classifier on individual datasets as well as a combination of all datasets. We evaluate performance
using precision, recall, and F2 measures (Section 2.3.8). First, we identify the best-performing
model using a combination of all available data. Subsequent experiments are investigated using
the best-performing classifier identified in these experiments. We compare the performance of
the best-performing model on individual datasets to that of a combination of all data to see
whether it is feasible to utilize a classifier trained on only one dataset and whether this classifier
performs better than one trained on multiple datasets.

Classifier performance can be highly dependent on the software domain (Devine and al., 2023).
The domain is the specific area of application or problem space that the software is designed
to address or operate within. Even though all of our datasets concern apps, every app has a
different application area (see Section 2.5). This means that a classifier trained on feedback and
requirements from one software might not perform well on data from another software. With
RQ2, we analyze the transferability of the classifier across software domains by testing it on
datasets that are not used for training.

RQ3 analyzes the performance of our approach compared to the state-of-the-art generative
LLM GPT4o. We performed our initial prompt engineering using ChatGPT (the dialogue-tuned
web interface for GPT4o) and then evaluated the performance of the model with our prompts
using the GPT4o API. These results are then compared to the FeReRe classifier.

In a practical usage scenario, relating feedback to requirements is an iterative process. As new
feedback comes in, it must be related to requirements. RQ4 leverages the knowledge of previously
assigned feedback when relating new feedback. The goal is to use the already assigned feedback as
a classification feature. We investigate whether leveraging existing information improves results
further for the classifier. Instead of just comparing sentences from requirements to sentences
from new feedback (as described in Section 5.1), sentences from requirements are combined with
sentences from already assigned feedback and compared to sentences from new feedback.

64



5.2. FeReRe Classifier

5.2.2. Experiment Configuration
Table 5.1 shows a list of all experiments conducted in this paper to evaluate the classifier for the
FeReRe approach, along with the used model, datasets, and relevant RQs for each experiment.

Table 5.1.: FeReRe Experiments, Used Model and Dataset and Relevant RQ
Experiment Model Datasets Research Question

BERT-Base
BERT-Large

Model Comparison DistillBERT-Base Komoot, SmartVernetzt, SmartFeedback, ReFeed RQ1
RoBERTa-Base
Sentence-BERT

Bi-LSTM
Individual Datasets BERT-Large Komoot, SmartVernetzt, SmartFeedback RQ1

Transferability BERT-Large Komoot, SmartVernetzt, SmartFeedback, ReFeed RQ2

GenAI Comparison BERT-Large Komoot RQ3
GPT4o

Incorporate Feedback BERT-Large Komoot, SmartVernetzt, SmartFeedback, ReFeed RQ4

For the Model Comparison experiments, four different BERT variants are trained and evaluated
on a combination of all four datasets. Based on our data and preliminary experiments, we decided
to use the large language model (LLM) BERT (Devlin et al., 2018) and its most commonly used
derivatives as a classifier because it is already trained on extensive amounts of natural language
data. We also experiment with another BERT derivative, namely Sentence-BERT (Reimers,
2019), a BERT variant specifically designed for the classification of sentence similarity. We also
include an experiment with a non-BERT Bi-LSTM model (Hochreiter and Schmidhuber, 1997)
for comparison.

To optimize the parameters for the classifiers, we first performed a grid search for each
hyperparameter configuration with a data split of 80% training and 20% testing data across our
datasets. This was done for every experiment individually. The classifiers were then evaluated
using 5-fold cross-validation. This means that the combined datasets are split into 80% training
and 20% testing data. This process is then repeated five times, ensuring that the testing data is
different in every fold.

For the Individual Datasets experiment related to RQ1, the best-performing classifier from
the model comparison, BERT-Large, is trained and tested on each of our datasets individually.
For this, one dataset (e.g., Komoot) is split into training and testing data, again using 5-fold
cross-validation. We excluded the ReFeed dataset from the individual experiments because our
experiments showed that it was not large enough to train and test the model. Based on 60
feedback and 14 requirements, there were not enough positive samples for the model to learn
adequately. However, in our opinion, a classifier would not be required for such a limited dataset
anyway in real-world applications.

For RQ2, we investigate the transferability of the classifier to unseen software domains. We
perform leave-one-out experiments by training on three of our datasets and testing on the fourth.
For these experiments, 5-fold cross-validation does not apply because we split training and
test datasets among all combinations of datasets. Since we test on entire datasets, no split is
necessary.

Given the capabilities of generative large language models, we also use GPT4o, one of the
most popular models, to perform the relation of feedback and requirements in RQ3. We develop
multiple prompts to perform the task (see Section 5.2.3). GPT4o was chosen because it frequently
outperforms open-source models (Zheng and al, 2024). Due to this difference in performance
on common benchmarks and the resources needed to fine-tune open-source LLMs, we could not
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perform any fine-tuning of generative Models; instead, we used a purely prompt-based approach.
We only use the Komoot dataset to perform the GPT experiments. Due to privacy concerns
related to the SmartVernetzt and SmartFeedback datasets, we cannot send these to the GPT
servers abroad. However, the poor results of GPT for this task (see Section 5.2.4) lead us to
believe that further experiments, for example, with the ReFeed dataset, would not be necessary.

5.2.3. Prompt Engineering

Working with generative LLMs like GPT requires the creation and refinement of prompts, which
are used as input into the model. These prompts can take different forms and are suited for
different tasks depending on their intended usage. Ronanki et al. (Ronanki et al., 2024) propose
five distinct patterns of prompts, namely "Cognitive Verifier", "Context Manager", "Persona",
"Question Refinement", and "Template". We experimented with these patterns as well as Zero-
Shot, Few-Shot, and Chain-of-Thought prompt patterns (Rodriguez et al., 2023). Starting with
an initial prompt, we refined the prompt further to achieve the output we desired from the
model. Refinement of initial prompts is commonly used by other approaches like (Vogelsang and
Fischbach, 2024) and (Rodriguez et al., 2023). A complete list of all prompts can be found in
Table C.1 in Appendix C.1.

5.2.4. Results

In this section, we provide the results of our three research questions.

RQ1: How well can the FeReRe classifier perform feedback requirements relation?

Table 5.2.: RQ1: Best Performing Model for FeReRe approach
Model Precision Recall F2
BERT-base 0.82 0.94 0.91
BERT-Large 0.84 0.95 0.92
DistillBERT 0.72 0.89 0.85
RoBERTa 0.81 0.92 0.90
SBERT 0.68 0.73 0.72
Bi-LSTM 0.65 0.80 0.77

Table 5.2 lists the performance metrics for all six tested models when trained and tested on
all available data using 5-fold cross-validation. BERT-Large achieves the highest F2 score of
0.92 as well as the highest precision and recall. This is followed closely by BERT-base with
0.91. RoBERTa reports the third-highest score of 0.90. DistillBERTs F2 drops to 0.85. The
Bi-LSTM has the second lowest F2 at 0.77, and SBERT performs the worst with an F2 of 0.72.
To maintain a manageable number of reportable experiments and to reduce unnecessary use of
ressources, all subsequent experiments are performed with BERT-Large as the used model.

Table 5.3 shows the performance of the BERT-Large classifier on individual datasets, the
average of these individual performances, and the classifier’s performance when trained and
tested on a combination of all four available datasets (as seen in Table 5.2). The individual
performance is calculated by training and testing the classifier on only a single dataset. As
discussed in Section 5.2.2, the ReFeed dataset can not be used for the individual experiments
because, with 60 feedback messages and 14 requirements, it is simply too small to train a classifier
on and still have enough data remaining to perform reliable testing.
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Table 5.3.: RQ1: BERT-Large Classifier Trained and Tested on Individual Datasets
Dataset Precision Recall F2
Komoot 0.71 0.86 0.82
SmartVernetzt 0.88 0.98 0.96
SmartFeedback 0.85 0.95 0.93
Average 0.81 0.90 0.90
AllCombined 0.84 0.95 0.92

The average individual performance reaches an F2 score of 0.90. The highest F2 for individual
performance is 0.96 for the SmartVernetzt dataset. The lowest F2 is achieved on the Komoot
dataset, with 0.82. For the SmartFeedback and SmartVernetzt datasets, F2 is higher than the
AllCombined classifier, which uses all data for training and testing. For the Komoot dataset, F2
is lower.

Answering RQ1: The FeReRe BERT-Large classifier can perform the feedback require-
ments relation with an F2 of 0.92 when trained and tested on a combination of all four
datasets. Individual performance is higher for some datasets (up to 0.96 F2), while it is
lower for others (0.82 F2).

RQ2: Are classification results transferable across software domains?

Table 5.4.: RQ2: Leave-one-out Experiments for Classifier Transferability
Training Testing Precision Recall F2
SV, SF, ReFeed Komoot 0.30 0.99 0.68
Komoot, SV, ReFeed SF 0.71 0.58 0.60
Komoot, SF, ReFeed SV 0.79 0.65 0.68
Komoot, SF, SV ReFeed 0.64 0.56 0.57

Average 0.61 0.76 0.63

Table 5.4 shows the results of the transferability experiments. In these experiments, the
classifier was trained on three of our datasets and tested on the fourth. The highest F2 was
achieved when testing on the Komoot and SmartVernetzt (SV) datasets, which resulted in a
score of 0.68 for both. The Komoot experiment achieved the highest recall of 0.99 but a low
precision of 0.30. The high recall is likely a consequence of the classifier simply related most
feedback to most requirements, resulting in the low recall. The lowest F2 was achieved with the
ReFeed dataset as a test set with a score of only 0.57. The highest precision was achieved by
testing on the SmartVernetzt (SV) dataset with a precision of 0.79. The average F2 across all
four leave-one-out experiments was 0.63, which is much lower than the results achieved in RQ1
when training and testing on all datasets.

Answering RQ2: Classification of unseen software domains results in a 0.29 lower F2
than a classifier trained on all datasets.
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Table 5.5.: RQ3: Classifier Performance Compared To GPT4o
Classifier Prompt Precision Recall F2

GPT4o

Zero-Shot 0.33 0.21 0.23
Few-Shot 0.10 0.36 0.24
Chain-Of-Thought 0.12 0.33 0.24
Predefined Structure 0.17 0.34 0.28
Cognitive Verifier 0.23 0.38 0.34
Context Manager 0.18 0.33 0.28
Template 0.20 0.33 0.29
Question Refinement 0.16 0.35 0.28
Persona 0.15 0.40 0.30

Average 0.18 0.34 0.28
BERT_Komoot 0.71 0.86 0.82
BERT_LOO_Komoot 0.30 0.99 0.68

RQ3: How does the FeReRe classifiers’ performance compare to generative AI?

Table 5.5 shows the best result achieved by the different GPT4o prompts for the feedback
requirements relation as well as the average across all used prompts. The specific prompts can
be found in Table C.1 in Appendix C.1. Because the classification was only performed on the
Komoot dataset, the results are compared to the BERT classifier trained and tested exclusively
on Komoot (BERT_Komoot) and to the leave-one-out (LOO) classifier from RQ2, which is not
trained on Komoot (BERT_LOO_Komoot). We include the latter to compare the performance
of GPT to a classifier that is also not trained on Komoot data.

On average, GPT4o achieves a low F2 of 0.28. The prompt with the highest F2 is the Cognitive
Verifier with 0.34. Compared to the classifier trained and tested exclusively on Komoot data
(BERT_Komoot), the Cognitive Verifer achieved a 0.48 lower F2. The classifier not trained on
any Komoot data (BERT_LOO_Komoot) outperforms the prompt by an F2 of 0.34. The highest
recall prompt is the Persona prompt with 0.40, which is still lower than either BERT_Komoot
or BERT_LOO_Komoot.

Answering RQ3: GPT4o performs the classification worse than any of our classifier
experiments. A BERT classifier with no knowledge of the Komoot software domain still
outperforms GPT4o.

RQ4: Does the incorporation of already assigned feedback improve the results?

Table 5.6.: RQ3: Classifier Performance Compared To GPT4o
Experiment Precision Recall F2
BERT_Large 0.84 0.95 0.92
BERT_Large_FeedbackIncorporated 0.80 0.95 0.92

Table 5.6 shows the results of the incorporation experiments. For each requirement, a random
feedback statement from the ground truth is selected as "already assigned". This means that the
feedback is treated as if it had already been related to the requirement. The remaining feedback
is then related to the classifier by comparing the feedback to the requirement and the "already
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assigned feedback. Due to a lack of data it was not possible to perform successive experiments
where more than one feedback per requirement was treated as "already assigned". The table
shows that the incorporation of already assigned feedback did not affect the F2 score, which
remains unchanged at 0.92. Recall was also not affected. The only difference is a slight drop in
precision to 0.80 from 0.84.

Answering RQ4: Incorporation of already assigned feedback does not improve the
classification results. F2 and recall remain unchanged, while precision drops by 0.04.

5.2.5. Discussion

Non-Generative LLM Performance:

The results of our experiments demonstrate that the FeReRe BERT-Large classifier performs well,
particularly in terms of recall, which is the most critical metric for the task. Achieving an F2 of
0.92 when trained and tested on a combination of all datasets, the classifier reliably identifies
relevant feedback requirements relations. All BERT derivatives except for SBERT perform fairly
well. SBERT, despite being a model trained specifically for sentence relation tasks, is not able to
relate feedback and requirements as well. BI-LSTM has a similarly worse performance.

The classifier’s performance on individual datasets differs by an F2 of 0.14, ranging from
0.82 on the Komoot dataset to 0.96 on the SmartFeedback dataset. These differences are likely
to be due to the differences in feedback across the datasets. The classifier performs similarly
well on SmartVernetzt and SmartFeedback. Both datasets contain feedback gathered through
a feedback app, which asks the users specific questions about the apps. As such, the feedback
is more targeted to individual functionalities of the software and likely to be related to fewer
different requirements. The Komoot dataset, on the other hand, contains feedback crawled
from an app store. As Table 2.4 shows, this feedback is much longer than the feedback for
SmartVernetzt and SmartFeedback and, thus, more likely to be related to multiple different
requirements. This explains why the classifier struggles more with this type of feedback, as the
chances for misclassification are higher.

Transferability:

The classifier’s transferability across different software domains is limited. Performance drops
sharply when classifying feedback from unseen domains. This indicates that domain-specific
training is necessary to maintain high classification performance, as the classifier’s knowledge
does not transfer well across domains. These findings are in line with other research (Devine
and al., 2023). The poor transferability poses a challenge for developers working in multiple
software domains, as continuous retraining or adaptation of the classifier would be required to
ensure accurate relations. We also notice that in the case of the Komoot testing experiment, the
classifier achieves exceptionally high recall at 0.99 at the cost of a low precision of 0.30. This
indicates that for the data, the classifier defaults to relating most feedback to most requirements,
which produces a high recall but also a high number of false positive classifications. In general,
the findings indicate that a classifier, specifically trained on the software domain it is classifying,
is required for practical usage.

Feedback Incorporation:

Our experiments with using already assigned feedback as a classification feature (RQ4) to
improve the relation were based on the observation that two feedback texts were more likely to be
semantically similar than feedback and requirements text. This is because users tend to write very
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differently in their feedback than developers do when specifying requirements. They use different
words and may pay less attention to spelling and grammar. The idea was to improve the relation
by combining feedback and requirements text when performing the relation. Our experiment,
as shown in Table 5.6, shows that this improvement did not occur. Incorporating the feedback
did not create different results. A qualitative analysis of 200 randomly chosen sentence-pair
classifications of the classifier showed that in almost all cases in which the classifier decided that
a feedback sentence was related to an incorporated feedback sentence, the classifier also decided
that the feedback sentence was related to a requirement sentence as well. The analysis also
showed that in some cases, the classifier related a feedback statement to a requirement solely
because of the incorporated feedback, even though that classification was incorrect. This could
explain the slight drop in precision. Consequently, the qualitative analysis likely indicates that
the classifier is already performing the relation as well as possible and that already assigned
feedback may even introduce noise into the classification, which could also negatively affect the
results.

Generative LLM Performance:

Our experiments show that GPT4o performs worse than the FeReRe BERT classifier. The
results suggest that GPT-based models may currently not be suitable for the relation task.
This is particularly notable as the BERT-Large classifier, even when not trained on the specific
software domain, still provides more accurate results than GPT4o. It is difficult to say why GPT
performs so poorly. Our chain-of-thought (Rodriguez et al., 2023) experiments and asking the
model for explanations on its classification did not provide any meaningful insights. The most
likely explanation seems to be that generative LLMs do not perform such classification tasks
systematically as they merely predict the most likely tokens to respond with, given an input. A
non-generative LLM like BERT can be fed data systematically, and it can be ensured through
code that the model behaves in the intended way and performs the classification.

5.2.6. Threats to Validity

Reliability

The reliability of the results is threatened because of the marginal differences observed between
the BERT-Large, BERT-base and RoBERTa classifiers across the initial experiments in RQ1
(F2 +-0.02). Such small variations make it challenging to draw definitive conclusions about
which model performs best under specific conditions. This also affects successive experiments
where the best-performing classifier (BERT-Large) was used instead of alternative classifiers. To
mitigate the risk of our results being influenced by chance, we employed 5-fold cross-validation
whenever feasible. The absence of statistical testing, however, introduces a limitation. Without
formal statistical analysis, we cannot confirm whether the observed differences in performance
are genuinely significant or merely the result of random variation.

Construct Validity

A threat to the construct validity is the evaluation of the classifier’s performance based on the
presented metrics precision, recall, and F2. In Section 2.3.8, we explained our reasoning behind
these metrics. Different conclusions might be drawn when different evaluation metrics are used.
However, as precision, recall and F-Meassure are very commonly used for machine learning
evaluation, we feel that this risk is minimal. Another threat to the construct validity exists
because the SmartFeedback and SmartVernetzt apps are both highly related. They were designed
as part of the same study and feedback for both apps is given in SmartFeedback. SmartFeedback
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also is a dedicated feedback app which may not be representative of other apps. This may pose
a threat to the conclusions drawn for the transferability experiments.

Internal Validity

One threat to internal validity is the implementation of our approach. We have used widely used
libraries for sentence splitting and models to alleviate this. We also performed our testing with
an established machine learning experiment management platform in MLFlow. Additionally, our
code is publicly available to allow replication. We alleviated the internal threat of manual coding
by employing multiple coders for every dataset and ensuring that two people independently
performed the relation, after which an interrater agreement was established (see Section 2.5).
Another threat to the internal validity is due to the prompt design. Given the non-deterministic
nature of generative LLMs, different prompts often lead to different results. We tried to minimize
this threat by carefully revising our prompts using existing research towards prompt engineering
and evaluating many different prompt patterns.

External Validity

Threats to the external validity are mainly due to our datasets. For the Komoot dataset, we
had to recreate requirements ourselves as the original requirements for the software were not
publicly available. This means that the software wasn’t designed with the specific requirements
we present in our dataset. However, we tried to reduce the threat by systematically recreating all
requirements using the requirements framework TORE. We iteratively refined the requirements
to reproduce requirements that match the software as closely as possible. The study context
in which the SmartAge dataset is gathered also presents a threat. The feedback is gathered
from study participants, who were selected based on their age and the location in which they
lived. While these participants were not paid, they did receive tablets on which they used the
apps. This could influence the feedback they give. We made our datasets publicly available to
allow independent investigation and replication. An external threat to all our datasets is the
fact that all feedback statements are related to at least one requirement. This might not be
representative of other feedback datasets where certain statements may not be relatable to any
feedback. Consequently, it is unclear how well the classifier would perform with feedback that
can not be related to any requirement at all, as this did not occur in our data.

5.3. Conclusion
BERT-base achieved an F2 that is only 0.01 lower than that of BERT-base. Given the very
similar performance of BERT-Large and BERT-base and the significantly higher computation cost
of BERT-large (almost double the amount for training and classification time for our datasets),
BERT-base can be recommended as the preferred classification model, especially for larger
datasets. We performed our experiments with BERT-large nonetheless, as computational power
was not a restriction for the data available to us. However, this recommendation may change
depending on the available datasets, as other data might result in different model performances
where BERT-large could outperform BERT-base.

In summary, the FeReRe approach, using a BERT classifier, is able to perform the classification
accurately. It also fulfils its designed purpose of achieving high recall, promoting its use as a semi-
automatic approach. The semi-automatic approach is further supported by the functionalities
provided by the Feed.UVL tool, which is explained in Chapter 7. The effectiveness of the FeReRE
approach is evaluated in the treatment validation in Chapter 8.
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Chapter 6
Usage Information Classification

This chapter introduces the usage information classification approach in Section 6.1 and identifies
the best-performing classifier towards usage information classification automation in Section 6.2.

The contents of this chapter are largely based on a journal paper that has, at the time of
writing, not been published by the author of this dissertation.

6.1. UIC Approach
This section first provides an overview of the approach towards UIC in Section 6.1.1. Section
6.1.2 then discusses the different granularities of usage information in more detail. Section 6.1.3
introduces the two use cases for the application of UIC. Section 6.1.4 then provides concrete
examples for these use cases.

6.1.1. Overview
As an interview study with software practitioners by Li et al. (Z. S. Li et al., 2024) shows, user
feedback in industry is often manually grouped by themes. These themes represent common
complaints or often desired features. These themes appear when a growing amount of feedback
discusses the same specific issues. This allows developers to identify common issues or concerns
users express. FeReRe is a first step towards grouping feedback through the functionalities it
discusses. Further refining these groups through themes allows for more fine-grained identification
of issues, as developers can clearly see which issues users commonly express for which functionality.
The feedback discussing these themes can be grouped by the various types of different usage
information we analyze. Usage information can also help developers look for more feedback on a
specific theme via the type of usage information it is related to. A developer can, for example,
sort feedback into a user interface (UI) theme or a specific system function theme by looking
at whether that type of usage information is present in the feedback. In this context, FeReRe
serves as the first grouping mechanism by sorting the feedback into related requirements, and
UIC serves as the more fine-grained grouping mechanism by then sorting the feedback of each
requirement into usage information themes.

We investigate increasingly fine-grained granularities of usage information classification. We
can analyze the feedback by classifying which type of usage information is primarily discussed in
whole sentences, or alternatively, we can classify individual words in the feedback by the type of
usage information. We can also analyze coarse levels of usage information and finer categories.

To define the levels and categories of usage information, we use the TORE framework (see
Section 2.2). It encapsulates usage information on three coarse levels. The first level captures
the domain in which the software is used. It encapsulates the different user roles that use
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the software as well as the actions users perform in real life for which they require software
support and related data. The second level encapsulates users’ direct interactions with software,
including the different views they might mention and the functions of the software. The third
level encapsulates individual software components and the architecture of the software, such as
discussions of different servers a software might have. The TORE framework also allows us to
split these levels into more fine-grained categories. These include categories that capture aspects
of the UI, the users’ descriptions of interactions performed in the software or the data exchanged
between the user and the software.

The combination of sentence and word analysis, as well as level and category classification,
yields three different types of granularity:

• Sentence-based TORE Level classification, where entire sentences are analyzed to
determine the primary TORE Level they belong to.

• Word-based TORE Level classification, where individual words are labelled with
TORE Levels.

• Word-based TORE Category classification, which further refines the classification by
assigning words to specific TORE Categories.

Classifying the fine-grained TORE categories is impossible on a sentence-level, because it is
impossible to assign such fine-grained categories to a whole sentence.

6.1.2. Granularities
Sentence-Based TORE Level Classification: Sentence-based classification assigns an entire
sentence to one of the three TORE Levels: Domain Level, Interaction Level, or System Level.
This approach captures the overall context of user feedback without focusing on individual words,
making it useful for understanding broad themes within feedback. One of its key advantages
is that it simplifies classification, reducing the complexity compared to word-level approaches,
as a single label is assigned per sentence. However, it lacks precision since a sentence can
contain multiple types of usage information, making it difficult to capture finer distinctions.
This approach is particularly beneficial when developers need a high-level overview of how users
discuss different usages of the software.

Word-Based TORE Level Classification: In word-based TORE Level classification, each
individual word in the feedback is analyzed and assigned a corresponding TORE Level. This
approach provides a more fine-grained understanding of how users express their interactions with
the software by distinguishing between different parts of the same sentence. A major advantage
is its ability to separate multiple types of usage information within a single piece of feedback,
allowing developers to identify specific mentions of user tasks, interactions, or system-related
aspects. Word-based classification is a more complicated task for both humans and machine
learning classifiers than sentence-based classification. It is, however, particularly useful when
developers want to extract detailed insights without being restricted to the overall sentence
context.

Word-Based TORE Category Classification: The most detailed approach, word-based
TORE Category classification, goes beyond TORE Levels and assigns each word to a specific
category within its respective level. This means that words are labelled as Stakeholder, Task,
Activity, Domain Data, Interaction, System Function, Interaction Data, Workspace or System
(Table 2.3). This level of granularity allows for an in-depth analysis of how users discuss particular
features and functionalities, which is useful for identifying trends, recurring issues, or design
inconsistencies. However, this level of classification is also the most challenging, as words often
carry ambiguous meanings, and the extended amount of classes compared to TORE Levels
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complicates class assignments. The primary advantage of this approach is that it provides the
most detailed information, helping developers understand exactly how users are engaging with
the software or how they are struggling to use it.

6.1.3. Use Cases

We see two potential use cases for usage information classification. These go hand-in-hand with
the use cases identified for FeReRe in Section 5.1.2. The first use case is the above-mentioned
grouping of feedback by common usage information themes. In this case, after relating the
feedback to requirements (Chapter 5), the feedback for each requirement is further grouped by
the usage information it contains. Feedback discussing, for example, certain workspaces, tasks or
system components can be grouped together to establish common themes.

By systematically coding user statements using the TORE framework, developers can extract
structured insights from user feedback. This analysis allows for the identification of frequent
user concerns, patterns of software interaction, and potential usability issues by filtering the
feedback via common usage information themes. Once a developer has identified a problematic
software behaviour, they can easily search for other feedback statements raising the same issues
by searching for the same type of usage information. For this use case, TORE categories are the
targeted granularity as they provide the detailed insights needed to group the feedback.

It must be noted that usage information does not automate the process of identifying issues or
finding solutions for them. Usage information helps in identifying important terms or sentences
that users use to express their usage of the software. It serves as a support mechanism for
developers when finding common issues.

The second potential use case for UIC application is towards requirements validation. Usage
Information can help identify whether the documented requirements cover the users’ actual needs
or whether certain functionalities are missing. For this use case, TORE Levels are mostly sufficient.
Again, FeReRe provides the first step by relating the feedback to the relevant requirements.
As shown in the example in the following Section, in order to identify whether a user task
covers the user’s needs, feedback containing the domain level needs to be analyzed. For cases
where developers want to validate that their system functions are designed the way users are
actually using them, the Interaction Level needs to be analyzed. To validate the requirement, the
developer can analyse whether the highlighted usage information is present in the requirements
documentation as well, i.e. the requirement covers the domain or interaction the user intends to
use it for.

6.1.4. Approach Application

This section provides concrete examples for the application of the UIC use cases

1st Use Case: Feedback Grouping

To illustrate possible use cases for the UIC approach, the following example of coding a user
feedback statement is presented. The coding process involves segmenting the text into meaningful
linguistic units, assigning appropriate labels, and categorizing them within the TORE framework.
The example use cases provide a simplified version of the process. In actuality, while performing
UIC, annotators mentally perform steps 1 and 2 while reading the statements rather than
physically.

Example statement:

“I wish one could turn off automatic replanning. When the GPS signal is lost in the navigation
view, it starts to automatically replan, thereby replacing my originally planned tour.”
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Step 1: Segmentation of the Statment into Text Units
Depending on the granularity. The statement is divided into distinct parts to isolate different

aspects of usage information. Each segment represents either a sentence or a term. As the
following example shows, terms can either be composed of multiple or individual words. They
represent semantically distinct expressions such "turn off" or automatic replanning.

I / wish / one / could / turn off / automatic replanning. / When / the / GPS signal / is / lost
/ in / the / navigation view, / it / starts / to / automatically replan, / thereby / replacing / my

/ originally planned tour.

Step 2: Identification of Relevant Segments
In the second step, segments relevant to usage information are identified. This involves

identifying verb and noun terms and deciding whether they contain relevant usage information.

I / wish / one / could / turn off / automatic replanning. / When / the / GPS signal / is / lost
/ in / the / navigation view, / it / starts / to / automatically replan, / thereby / replacing / my

/ originally planned tour.

Step 3: Assignment of TORE Codes
Each of the relevant segments is mapped to a corresponding TORE Level based on the nature

of the information it conveys. When assigning the codes, the context of each segment is taken
into account. An example of this is originally planned tour below, which in a different context
might be considered as part of the Domain Data category. However, as it is put into the context
of the software’s interaction of replacing a previous tour, it becomes part of the Interaction Data
category. The same is true for the GPS signal in the example. Because the user puts it into
context with the navigation view losing the signal, it is part of the Interaction Data category.

I / wish / one / could / turn off {Interaction} / automatic replanning. {System Function} /
When / the / GPS signal {Interaction Data} / is / lost{Interaction} / in / the / navigation

view, {Workspace} / it / starts / to / automatically replan, {Interaction} / thereby / replacing
{Interaction} / my / originally planned tour. {Interaction Data}

Step 4: Implications and Use of Coded Data
Looking at the above example, a software behaviour is described by the user, which they

find undesirable. It does not constitute a fault in the program as such, as the software behaves
as it is designed. The user, however, desires a different behaviour. Using the identified usage
information terms, like automatic replanning, turn off, and navigation view, a developer is now
able to quickly filter the other feedback statements they have collected to see if other users are
also complaining about this part of the software’s behaviour.

2nd Use Case: Requirements Validation

Figure 6.1 shows one of the user sub-tasks of the Komoot hiking app. In it, the user’s social
interaction activities are described, for which the software should offer support.

Applying the previously introduced steps, this time using TORE Levels instead of categories,
on another example feedback statement results in the following coding.

"I’m a tour guide {Domain Level} so I want to use this app to inform {Domain Level} my
customers {Domain Level} on which routes {Domain Level} we can go."
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Figure 6.1.: Example User Sub-Task for Komoot Hiking App

In order to validate that the software provides the necessary functionalities for the user,
as stated in their feedback, a developer can look at the highlighted section containing usage
information and cross-reference them with the documented requirement. The relation to the
requirements can be automated using FeReRe (Chapter 5). The usage information shows that
the user is a tour guide and wants to inform customers. Looking at the requirement, the
developer can see that this use case is already captured in 1v2: The user wants to share favourite
routes with people outside of the app. Thus, this need, as stated by the user, is covered by the
software. A similar process is also possible with other types of requirements, such as User Stories,
which directly express the requirements as users’ desires and needs. By checking the overlap of
requirements and expressed usage information, gaps in the documented requirements can be
identified.

The examples shown in this section highlight usage information in the form of TORE Levels.
However, if it is the desire of the developer to gain further insights, such as whether, for example,
different types of Stakeholders are mentioned, the use of TORE Categories could provide more
information.

6.2. UIC Classifier

The usage information classification task described in the previous section involves a large
amount of manual labour in order to code the feedback. This is especially so for the finer word-
based granularities. In order to reduce the manual effort required, design goal 2 is supported
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by knowledge goal 4 "Find the best-performing classifier for usage information classification"
(Section 1.3). Consequently, this section describes the research towards the creation of automatic
usage information classification classifiers. Classifier selection and experiment configuration
draw upon the conclusions taken from the mapping study conducted as part of the solution
investigation (Section 4).

Section 6.2.1 describes the research questions for the creation of automatic classifiers. Section
6.2.2 describes how the experiments with the machine learning classifiers were configured and
conducted. Section 6.2.3 discusses the creation of prompts for experiments with generative large
language models. Section 6.2.4 presents the results of the conducted experiments and provides
answers to the research questions. Section 6.2.5 discusses the findings before the threats to
validity are discussed in Section 6.2.6. Lastly, Section 6.3 provides a final conclusion on the usage
information classification.

6.2.1. Research Questions
As described in Section 6.1.2, different granularities of usage information can be identified
in feedback. To explore the automatic classification of these different granularities of usage
information, the following research questions are defined. All research questions except those
pertaining to binary classification and preprocessing were formulated before analyzing any data
and are therefore independent of any assumptions derived from the dataset. This approach
ensures that the data itself does not influence the core inquiries guiding the research. Those
questions pertaining to binary classification (RQ1.2) and the use of preprocessing techniques
(RQ1.3, RQ2.2, RQ3.3) were introduced later as a result of specific observations made during
data collection.

RQ1: How well can automatic sentence-based TORE Level classification be performed?
RQ1.1: Which classifier performs best?
RQ1.2: Does binary classification improve classification results?
RQ1.3: Does preprocessing of the data improve classification results?

RQ2: How well can automatic word-based TORE Level classification be performed?
RQ2.1: Which classifier performs best?
RQ2.2: Does preprocessing of the data improve classification results?
RQ2.3: Are classification results transferable across feedback sources?

RQ3: How well can automatic word-based TORE Category classification be performed?
RQ3.1: Which classifier performs best?
RQ3.2: Does multi-stage classification improve results compared to single-stage classifica-

tion?
RQ3.3: Does preprocessing of the data improve classification results?
RQ3.4: Are classification results transferable across feedback sources?
RQ3.5: Does the specificity of the TORE Categories influence classification results?

All three research questions share some common sub-questions. First, we investigate which
classifier performs the given task best (RQ1.1, RQ2.1 and RQ3.1). Second, because our datasets
are highly imbalanced (see Section 2.5) and online feedback presents some common problems, like
incorrect spelling or irrelevant statements (Section 2.1.3), we investigate whether preprocessing of
the feedback data increases performance (RQ1.3, RQ2.2 and RQ3.3). The imbalance in the data
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is inherent to usage information in feedback because users do not discuss every type of usage
information equally. To combat the incorrect spelling, we apply spellchecking algorithms to the
feedback before training. To reduce the amount of irrelevant statements, we perform relevance
classification on the feedback, excluding sentences which do not contain any information related
to the software.

RQs 2.3 & 3.4 investigate whether the classifier transfers between the different feedback sources.
Other studies have also shown that classifier performance can be highly dependent on the feedback
source (Novielli et al., 2020) (Devine and al., 2023). Thus, we train on one or more of the sources
and test on another source. Note that we do not investigate the generalizability across different
software products; rather, we investigate how the platform through which the feedback is given
affects classifier performance. Due to a lack of data, this is unfortunately impossible for the
sentence-based TORE Level classification in this dissertation.

As described in Section 2.2, TORE is composed of two stages, the levels and categories. In
RQ3.2, we want to investigate the possibility of performing multi-stage classification on the word
level to improve classification results. During multi-stage classification, TORE Levels (first stage)
are classified by one classifier specifically trained for Level classification. This result is then
used as a classification feature for the TORE Category (second stage) classification by another
classifier.

For example, a word identified as being on the Domain Level in the first stage must, in
the second stage, then be either a Stakeholder, Task, Activity or Domain Data. Thus, using
multi-stage classification could improve results by limiting the number of possible classes in the
second stage. However, it also introduces a risk of misclassification in the first stage, leading to
incorrect classification in the second stage. Multi-stage classification is only feasible for TORE
Category classification, as it requires a first stage (TORE Levels) and second stage (TORE
Categories), so it only appears as a sub-question to RQ3.

Some sub-questions differ between the three main research questions. RQ1.2 analyzes whether
training one classifier per sentence-based TORE Level that decides whether a sentence is on the
respective level or not improves classification results. This question does not apply to RQ2 and
RQ3, as some of the TORE categories simply did not occur frequently enough to train a binary
classifier on them. Classifiers trained for classes like Task with only 319 words out of around
55.000 would mostly not label any words, making binary classification useless for a lot of the
classes.

In order to understand the limits of the specificity of TORE Categories, which our classifiers
are able to tell apart, we investigate in RQ3.5 the effects of combining classes which the classifier
struggles to discern from one another. This form of reducing the specificity only makes sense
for the TORE Categories, as the TORE Levels are already of lower specificity and significantly
more dissimilar from one another than the individual categories.

We do not perform sentence-based TORE Category classification, as it is impossible to assign
individual TORE categories to entire sentences. Sentences almost never mention only one TORE
category. Instead, this would require performing multi-label classification, where one sentence
is assigned multiple TORE categories. This would require the creation of new dataset codings
which are not currently available.

6.2.2. Experiment Configuration

Table 6.1 shows a list of all experiments conducted in this paper, along with the models, datasets
and relevant RQs for each experiment. "Basic Classification" refers to experiments where no
additional methods were used to try and improve the results of the classifier. After experimenting
with multiple classifiers in the basic classification experiments, we perform subsequent experiments
with the best-performing model of the basic classification. In our case, this was BERT-Large
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Table 6.1.: Experiments, Used Model and dataset and relevant RQ for each Task
Classification

Task
Experiment Model Datasets RQ

Sentence-Based
TORE Level

Basic Classification
BERT-Large

SmartAge
RQ1.1RoBERTa-Large

Llama3-70B
Include Questions as Feature
Binary Classification RQ1.2
Synthetic Oversampling BERT-Large
Spellchecking RQ1.3
Relevance Classification

Word-Based
TORE Level

Basic Classification

BERT-base
Prolific,
Forum,

App Review
RQ2.1

BERT-Large
Bi-LSTM
RoBERTa-Large
SNER
Llama3-70B App Review

Synthetic Oversampling
Spellchecking BERT-Large

Prolific,
Forum,

App Review

RQ2.2
Relevance Classification
Transferability RQ2.3

Word-Based
TORE Category

Basic Classification

BERT-base

RQ3.1

BERT-Large
Bi-LSTM
RoBERTa-Large
SNER
Llama3-70B App Review

Multi-Stage Classification
BERT-BERT-Large

Prolific,
Forum,

App Review

RQ3.2BiLSTM-BERT-Large
SNER-BERT-Large

Synthetic Oversampling
Spellchecking RQ3.3
Relevance Classification BERT-Large
Transferability RQ3.4
Specificity RQ3.5

for all classification tasks. We decided not to perform every experiment with every model for
multiple reasons. As Table 6.1 shows, we performed 32 experiment-model combinations. The
inclusion of every model with every experiment would have resulted in a much larger amount of
combinations. In our view, this amount is too high to properly report and would not have been
feasible in terms of time and resource consumption. For sustainability reasons, we decided not to
spend these resources.

Classifier Selection

In total, we experimented with six different classifiers. The BERT-Base classifier (Devlin et al.,
2018), the Stanford Named-Entity Recognition classifier (SNER) (Finkel et al., 2005), and a
Bi-LSTM based classifier (N. Li et al., 2019) were selected because all three had been used in
the past to perform word-based classifications such as ours. They also cover three overlapping
areas, namely pre-trained large language models (LLMs) with BERT, neural network deep
learning (DL) with Bi-LSTM and more traditional machine learning (ML) with SNER. We
decided to use BERT-Base as it is widely used in the related literature (Section 4.2.2). Because
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BERT-Base performed better than SNER and Bi-LSTM in our research, we expanded upon that
selection by also experimenting with BERT-Large (Devlin et al., 2018) and the BERT derivative
RoBERTa-Large (Y. Liu et al., 2019).

We also investigated the possibility of using a BERT model specifically trained for Named-
Entity-Recognition tasks such as this one provided by the hugging face library 1. However, we
found that these models were trained to recognize entities such as locations and organizations.
This does not fit our use case, especially for TORE Categories such as Interaction and Activity,
which describe actions and are thus mapped to verbs. Using such a NER model on our data
effectively removes the fine-tuning for entity classes, turning it into a standard BERT model.

Generative LLM Experiments

Given the capabilities of generative large language models, we also employed the Llama3-70B
model (AI@Meta, 2024) to perform all three classification tasks. We decided to use Llama as
opposed to the more widely used GPT (OpenAI, 2024), even though the newest version, at the
time of writing, "GPT4o" uses a significantly larger amount of parameters indicating better
capabilities. This decision was primarily driven by specific constraints on the SmartAge data.
The dataset used in this study contains sensitive information that could, at the time, not be
made publicly available due to data security laws. Consequently, cloud-based models like GPT4o,
which require data to be uploaded to external servers via APIs or web interfaces, are unsuitable
for our analysis. Llama3, as an open-source model, can be run locally, ensuring compliance with
data privacy regulations while still allowing us to utilize the SmartAge dataset. Additionally,
accessing GPT models, particularly GPT-4o, incurs costs which would have been too expensive
for us.

Due to the poor results achieved and issues related to working with generative large language
models as reported in RQ1.1, RQ2.1 and RQ3.1 in Section 6.2.4, we did not conduct any but the
"Basic Classification" experiments with Llama.

Preprocessing Experiments

For the synthetic oversampling experiments, we applied both SMOTE (Chawla et al., 2002) and
ADASYN (He et al., 2008) to the training data to create an artificially balanced dataset. We
only report the results using SMOTE because ADASYN provided slightly worse results in all
experiments.

The spellchecking experiments utilize the LanguageTool2 python library to automatically
correct spelling errors in the users’ feedback. LanguageTool was chosen based on a comparative
study by Näther et al. (Näther, 2020), which benchmarked 14 different spelling tools. Applying
LanguageTool to our datasets resulted in a total of 906 corrections compared to the total of 95.967
words in the datasets. Clearly, the amount of incorrect spellings was much lower than expected
from online feedback sources. We, nonetheless, included the experiments for completeness.

For the relevance classification, we utilized a definition of what constitutes relevant feedback
from the work of Mekala et al. (Mekala et al., 2021), adapted it for the purpose of usage
information classification, and manually removed sentences that did not meet the definition from
the feedback. This removal was conducted by the author of this dissertation and a master’s
student during the course of their thesis (Knorr, 2024). In total, around 24% of the 6744 sentences
in the datasets were removed as irrelevant. The definition for relevant feedback was as follows:

"A review sentence is relevant if it mentions pertinent aspects of the App like features, bug
reports, performance issues, etc., that would help developers to improve the App. A review

1https://www.huggingface.co/dslim/bert-large-NER
2https://www.pypi.org/project/language-tool-python/
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sentence is also relevant if it refers to the domain in which the App is used, such as the role of
the user, the tasks and activities in which the user utilizes the App, and the data associated with
the activities. It is not relevant if it does not relate to the App, its functions or the domain in
which the App is used or if it only contains user feelings, jokes, etc."

Additional Experiments

Because the feedback collected in the SmartAge dataset was created by posing specific questions
about the software to users, we could include the experiment "Include Questions as Feature".
Here, the questions posed to users are used as additional classification features for their feedback.
We investigate how this affects the classification results.

For the multi-stage classification (RQ3.2), we experiment with all classifiers (excluding Llama
for reasons stated in Section 6.2.3) as a first stage to classify TORE Levels. These results
are then fed as a classification feature towards a second-stage BERT-Large classifier, which
decides the specific TORE Category. We additionally create Perfect-BERT, which simulates a
perfect first-stage classifier, in order to see how dependent the second-stage classifier is on the
performance of the first stage.

For the TORE Category specificity experiments (RQ3.5), we analyzed the individual class
performance of our best-performing classifier to see which categories the classifier struggles to
tell apart. We then combined the classesTask & Activity as well as Interaction Data & Domain
Data and completely retrained the best single- and multi-stage classifier configurations with the
combined classes using 5-fold cross-validation.

Experiment Setup

We ran our experiments using the MLFlow machine learning platform3. The complete source
code, including the final hyperparameter setup and the code to reproduce all experiments, is
provided in the online Appendix A. All training and testing was done on a desktop computer
using an AMD Ryzen 7 7800X3D CPU and an NVIDIA RTX 3080Ti GPU using CUDA to
facilitate GPU training.

To optimize the parameters for each classifier, we performed a grid search for each classification
task. We ran experiments for each hyperparameter configuration with a data split of 80% training
and 20% testing data across all available datasets for each task.

For all experiments except those related to RQ2.3 and RQ3.4 and all Llama classifications,
we performed 5-fold cross-validation with the previously established best hyperparameter con-
figuration. Due to multiple issues in working with Llama, explained in Section 6.2.3, we did
not perform cross-validation for any Llama experiment. For the transferability experiments
investigating RQ2.3 and RQ3.4, 5-fold cross-validation does not apply because we split training
and test datasets among all combinations of feedback sources. We then train our best-performing
classifier for each word-based task on one feedback source (i.e. Prolific, App Review or Forum)
and test on another. Additionally, we perform leave-one-out-validation for the word-based tasks
by training on two of our three datasets and testing on the third.

6.2.3. Prompt Engineering

Prompt Development

Working with generative LLMs like Llama requires the creation and refinement of prompts, which
are used as input into the model (Section 2.3.7). These serve to describe the task the model is to
complete and include the data on which the task is to be performed. These prompts can take

3https://www.mlflow.org/
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different forms and are suited for different tasks depending on their intended usage. Ronanki et
al. (Ronanki et al., 2024) propose five different patterns of prompts, namely "Cognitive Verifier",
"Context Manager", "Persona", "Question Refinement", and "Template".

Due to the large amount of manual effort required to run the experiments (as explained in the
following Section 6.2.3), we were unable to conduct the generative LLM experiments with all
prompt patterns. Instead, we performed initial experiments with a 20% sampling of the data to
identify the best-performing pattern for the UIC classification tasks with the patterns presented
by Ronanki et al. We achieved the best results using the "Persona" pattern (see Section 6.2.4).
Here, the model is instructed to behave like a specific role, in our case, a "requirements engineer".
It is then presented with the task it is to complete.

Starting with an initial prompt, we refined the prompt further to achieve the output we
desired from the model. Refinement of initial prompts is commonly used by other approaches like
(Vogelsang and Fischbach, 2024) and (Rodriguez et al., 2023). In the first step, we added TORE
definitions because the model was not familiar with TORE. These definitions were extracted
directly from the coding rules used by the manual annotators and can be seen in Table 2.3.

Because the model was still performing the classification poorly and could not produce
reasonable definitions of TORE when asked, we also added examples from the ground truth
into the prompt. This helped both with understanding the classes as well as the desired output
format. While the number of examples was initially low, we noticed that increasing the number
of examples increased the reliability of the output both in terms of formatting as well as the
correctness of the output classifications. As a result, for both sentence-based and word-based
classification tasks, we included 2% of the data as examples in the prompt. We did not see
further improvement after 2%. Classification by Llama was then done on the remaining data,
which were not presented as examples.

Lastly, we added a more comprehensive description of the specific task for Llama, including
a description of how the output by the model was to be formatted. The final prompt for both
sentence- and word-based classifications used in the experiments can be seen in Figure 6.2.

Difficulties in Working with Generative LLMs

Despite the extensive refinement of the prompts, we encountered several problems with the
classifications using Llama. The limit on a context length of 8192 tokens meant that we had to
split our dataset into multiple pieces and feed every piece into the model in a new conversation.
Exceeding context length by only a few tokens resulted in the model immediately generating
nonsensical outputs (e.g. just outputting seemingly random chains of characters and punctuation).
We were able to come close to the context length for the sentence-based classification, requiring
fewer data splits. However, we found that inputting more than around 250 words for the
classification of the word-based tasks resulted in the model only assigning a few codes (i.e. 1-2
codes in every other sentence). Consequently, data input for word-based tasks was limited to no
more than 250 words per conversation.

Furthermore, despite being told not to change the text or leave out any parts, the model had
a tendency to correct spelling, change contractions, or leave out whole sentences or words in all
three tasks. This caused significant problems for the calculation of precision and recall because
it made mapping the model’s classification to the ground truth impossible. Model outputs had
to be manually compared to the ground truth, and left-out statements had to be fed into the
model again for re-classification. This meant a considerable manual effort.

This also meant that alternative ways of formatting the model’s output were too unreliable.
For example, asking the model only to output the index of a sentence or word next to its code
would have sped up the testing. Given the tendency of the model to ignore some words or
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Figure 6.2.: Final Llama Prompts Used For TORE Classification

sentences, however, this would have been impossible, as there was no way of checking which
index the model was matching to which sentence or word.

Due to these problems, especially the considerable manual effort and the low performance of
the model as reported in Section 6.2.4, we decided to only perform the word-based classification
tasks on the App Review dataset instead of all three datasets.

6.2.4. Results

In this section, we provide the results of all the research questions.

Sentence-based TORE Level Classification

RQ1.1: Which classifier performs best?

Table 6.2.: Sentence-based TORE Level Classifier Results (RQ1.1 & RQ1.3)

Experiment Model Mean
Prec

Mean
Recall

Mean
F1

Llama3-70B 0.56 0.50 0.53
Basic Classification RoBERTa-Large 0.71 0.71 0.71

BERT-Large 0.72 0.75 0.73
Incl. Questions as Features BERT-Large 0.78 0.77 0.77
Synthetic Oversampling BERT-Large 0.71 0.72 0.71
Spellchecking BERT-Large 0.72 0.75 0.73
Relevance Classification BERT-Large 0.73 0.75 0.74
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Table 6.2 shows the results for the basic classifications of sentence-based TORE Levels. The
bottom three rows of the Table are discussed in RQ 1.3. Of the three tested classifiers, BERT-
Large achieved the highest weighted mean F1 of 0.73. RoBERTa achieved almost identical but
slightly lower results with F1 0.71. Llama has the lowest weighted F1 with 0.53. Including
the questions posed to users when collecting feedback as a classification feature yields slight
improvements for the BERT-Large classifier with F1 0.77 (+0.04).

Table 6.3.: Class Performance for Sentence-based TORE Level (RQ1.1 & RQ1.3)

Experiment TORE Level Mean
Prec

Mean
Recall

Mean
F1

BERT-Large
Basic Classification

Domain Level 0.74 0.85 0.79
Interaction Level 0.57 0.46 0.51
System Level 0.00 0.00 0.00
No Level 0.83 0.76 0.79

BERT-Large
Binary Classifier

Domain Level 0.72 0.79 0.75
Interaction Level 0.62 0.46 0.53
System Level 0.13 0.05 0.09
No Level 0.84 0.83 0.84

The class-specific performance of the BERT-Large classifier can be seen in Table 6.3. We see a
large disparity between the performance of the classes with more and less than 1000 occurrences
in the dataset (Table 2.6). The No Level class (indicating that a sentence does not contain usage
information relevant to any of the three levels) and the Domain Level class share an F1 score of
0.79. Domain Level has the highest mean recall, while No Level has the highest mean precision.
F1 for the Interaction Level is lower. The System Level is not classified at all by the classifier.
This is likely due to a lack of training data (only 61 occurrences).

Answering RQ1.1: BERT-Large achieves the highest performance for the sentence-
based TORE Level classification with a weighted mean F1 of 0.73. This is increased further
by including the questions posed to users as a classification feature. The No Level and
Domain Level classes have the highest class performance with an F1 of 0.79.

RQ1.2: Does binary classification improve classification results?
For binary classification, separate classifiers were trained to identify whether each sentence

was on a specific TORE Level or not. The No Level binary classifier decides whether a sentence
contains any usage information at all. The results are shown in Table 6.3. We compare this to
the class-specific performance of the basic classification using the BERT-Large model shown in
Table 6.3. The No Level classifier has the highest F1 of 0.84, which is 0.05 higher than that of
the basic classification. The performance for the Domain Level is worse, while the performance
for the Interaction Level is improved. The System Level is classified but with low performance.

Answering RQ1.2: Binary classification shows small improvement for three out of four
classes. Domain Level however performs worse.

RQ1.3: Does preprocessing of the data improve classification results?
The last three rows of Table 6.2 show the results of using preprocessing techniques before

training and evaluation of the classifier.
SMOTE, as a method of synthetically oversampling the training data to achieve a balanced

training set between the classes, did not increase the weighted mean F1 compared to the basic
classification. Instead, it lowered the F1 score by 0.02. Applying spellchecking to the data did
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not result in any changes in the metrics. The removal of irrelevant sentences only increased F1
by 0.01 due to a 0.01 increase in precision. Recall remained identical.

Answering RQ1.3: Synthetic oversampling leads to a slight reduction in performance
metrics while spellchecking and relevance classification do not cause any changes larger
than 0.01 to the metrics.

Word-based TORE Level Classification

RQ2.1: Which classifier performs best?

Table 6.4.: Word-based TORE Level Classifier Results (RQ2.1 & RQ2.2)

Experiment Model Mean
Prec

Mean
Recall

Mean
F1

BERT-Large 0.81 0.78 0.79
RoBERTa 0.80 0.76 0.78

Basic Classification BERT-base 0.78 0.78 0.78
SNER 0.76 0.70 0.73
Bi-LSTM 0.72 0.65 0.68
Llama3-70B 0.39 0.22 0.30

Synthetic Oversampling BERT-Large 0.83 0.81 0.82
Spellchecking BERT-Large 0.81 0.78 0.79
Relevance Classification BERT-Large 0.82 0.78 0.80

While RQ1 used the SmartAge dataset for training and testing, RQ2 & RQ3 used the Prolific,
Forum and App Review datasets. Table 6.4 shows the results of the six classifiers performing the
basic word-based TORE Level classification. BERT-Large again shows the best F1 score, with
0.79 being slightly higher than the 0.78 of BERT-Base and RoBERTa. Both BERT-Large and
BERT-Base are equal in recall at 0.78, but BERT-Large achieves a slightly higher precision with
0.81. All three non-BERT models perform worse, with the lowest metrics for Llama3-70B.

Table 6.5.: Class Performance for Word-based TORE Level (RQ2.1 & RQ2.2)

Experiment TORE Level Mean
Prec

Mean
Recall

Mean
F1

BERT-Large
Basic Classification

Domain Level 0.76 0.77 0.77
Interaction Level 0.69 0.71 0.70
System Level 0.84 0.81 0.82
No Level 0.95 0.81 0.88

The class-specific performance of the basic classification using BERT-Large is shown in Table
6.5. Of the three TORE Levels, the System Level has the highest F1 with 0.82. This is followed
by the Domain Level and the Interaction Level. The No Level class has the highest performance
of all four classes with an F1 of 0.88. Note that in word-based annotation, this class makes up
the vast majority of the dataset, as most words will not be assigned to any category.

Answering RQ2.1: The best word-based TORE Level classification is performed by
BERT-Large with an F1 of 0.79. The No Level class performs best, followed by the System
Level.
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RQ2.2: Does preprocessing of the data improve classification results?
The results of the preprocessing experiments are shown in the last three rows of Table Table

6.4. Using SMOTE for synthetic oversampling improves the results slightly for all metrics (F1
+0,03). Again, as in RQ1, spellchecking does not cause changes to the performance metrics.
Relevance classification improves the precision by 0.01, leading to a 0.01 increased F1.

Answering RQ2.2: Synthetic oversampling helps for the basic classification while
spellchecking and relevance classification cause no changes larger than 0.01.

RQ2.3: Are classification results transferable across feedback sources?

Table 6.6.: BERT-Large Word-Based TORE Level Transferability Results (RQ2.3)
Training Dataset Test Dataset Precision Recall F1

Prolific Forum 0.55 0.58 0.57
Prolific App Review 0.71 0.59 0.65
App Review Prolific 0.71 0.69 0.70
App Review Forum 0.52 0.54 0.53
Forum Prolific 0.61 0.57 0.59
Forum App Review 0.61 0.51 0.56

Prolific & App Review Forum 0.50 0.66 0.58
Prolific & Forum App Review 0.72 0.68 0.70
App Review & Forum Prolific 0.70 0.78 0.74

Average 0.63 0.62 0.62

Table 6.6 shows the precision, recall and F1 values for all transferability experiments of the
best-performing BERT-Large classifier. It also lists the average across all experiments in the last
row. The experiments shown represent all possible combinations of training and testing data
for the three datasets available with word-based coding. Because training and testing data are
separate, there is no cross-validation for these as the entire datasets were used for training and
testing respectively.

Results are consistently lower than those of the BERT-Large classifier (F1 score 0.79) trained
and evaluated on the combination of all datasets (see Table 6.4). The best-performing combination
of training and testing data by the recall and F1 value is training on App Review and Forum
and testing on Prolific data. When only training and testing on one dataset, all combinations,
including the Forum dataset, perform worse than those without Forum data. When training on
two datasets, only testing on Forum shows worse performance. Training with Forum and another
dataset results in increased performance compared to only training on the forum dataset.

Answering RQ2.3: Word-based TORE Level classification does not transfer well across
different feedback sources. The datasets transfer better if Forum data is not involved.

Word-based TORE Category Classification

RQ3.1: Which classifier performs best?
Table 6.7 shows the mean precision, recall and F1 values for all six tested classifiers for the

word-based TORE Category basic classification. BERT-Large and RoBERTa perform best. Both
have almost identical metrics, differing only by 0.01 in precision and recall. They are followed
by BERT-Base, with SNER and Bi-LSTM behind. The worst performance by far is achieved
by Llama3-70B, with an F1 score of only 0.16. Since BERT-Large and RoBERTa are almost
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Table 6.7.: Word-based TORE Category Classifier Results (RQ3.1 & RQ3.3)

Experiment Model Mean
Prec

Mean
Recall

Mean
F1

BERT-Large 0.67 0.67 0.67
RoBERTa 0.68 0.66 0.67

Basic Classification BERT-base 0.66 0.64 0.65
SNER 0.63 0.52 0.57
Bi-LSTM 0.58 0.51 0.54
Llama3-70B 0.21 0.12 0.16

Synthetic Oversampling BERT-Large 0.68 0.65 0.66
Spellchecking BERT-Large 0.67 0.67 0.67
Relevance Classification BERT-Large 0.68 0.66 0.67

BERT-BERT-Large 0.67 0.66 0.67
Multi-Stage SNER-BERT-Large 0.64 0.58 0.61

Bi-LSTM-BERT-Large 0.56 0.67 0.61
Perfect-BERT-Large 0.88 0.85 0.86

Class Specificity BERT-Large
Comb. Class

0.74 0.74 0.74

BERT-BERT-Large
Comb. Class

0.74 0.73 0.74

identical in performance, we performed further experiments with BERT-Large as it had slightly
higher performance in the previous two classification tasks.

Table 6.8.: Class Performance for Word-based TORE Category (RQ3.1, RQ3.2, RQ3.3, RQ3.5)

Experiment Metric Stake-
holder

Task Activity Domain
Data

Inter-
action

System
Function

Interaction
Data

Work-
space

System No
Category

BERT-Large
Basic
Classification

Mean
Prec

0.85 0.47 0.48 0.53 0.67 0.60 0.69 0.67 0.79 0.95

Mean
Recall

0.94 0.43 0.37 0.60 0.77 0.45 0.66 0.69 0.79 0.96

Mean
F1

0.90 0.45 0.43 0.56 0.72 0.53 0.68 0.68 0.79 0.95

Table 6.8 shows the individual class performance of the BERT-Large classifier for the basic
classification. We can see that results for TORE Categories are very different. Stakeholder, for
example, is the most accurately classified TORE Category with an F1 of 0.90. Task has the
lowest precision of 0.47 and Activity the lowest recall of 0.37. The No Category class has the
highest performance with 0.95 F1. Note that in word-based annotation, this class makes up the
vast majority of the dataset, as most words will not be assigned to any category.

Answering RQ3.1: BERT-Large and RoBERTa perform the word-based TORE Category
classification almost identically well with an F1 of 0.67. There is a large disparity between
the performance of individual classes.

RQ3.2: Does multi-stage classification improve results compared to single-stage classification?
The third section of Table 6.7 shows the results of the multi-stage classification. All classifiers

use a BERT-Large second stage. Between the three classifier combinations SNER-BERT, Bi-
LSTM-BERT and BERT-BERT, we see that the classifier with BERT-Large as the first-stage

87



6. Usage Information Classification

TORE Level classifier outperforms the SNER and Bi-LSTM first-stage in F1. Only the mean
precision is almost identical between Bi-LSTM-BERT and BERT-BERT. This is interesting,
as the Bi-LSTM word-based Level classifier does not outperform the BERT word-based Level
classifiers.

We do not see any remarkable differences between the multi- and single-stage performance of the
classifiers. All metrics between the best-performing multi-stage BERT-BERT and best-performing
single-stage BERT-Large are almost identical.

Table 6.7 also reports the metrics for the Perfect-BERT classifier, which simulates a perfect
first-stage classifier as input for the second-stage BERT-Large classifier. We see remarkably
higher values when compared to the other multi-stage as well as the single-stage classifiers, with
a mean F1 value of 0.86.

Answering RQ3.2: Multi-stage classification does not result in improvement over
single-stage classification. Perfect-BERT, however, shows the potential of multi-stage given
further improvement in first-stage classifiers.

RQ3.3: Does preprocessing of the data improve classification results?
Table 6.7 shows the results of the preprocessing experiments in the second section. Comparing

the results of the synthetic oversampling experiment for BERT-Large with the basic configuration,
we see no real difference between the two, with F1 only differing by 0.01. Again, spellchecking
does not result in any changes to the metrics. Relevance classification also does not affect the F1
metrics, raising precision by 0.01 and lowering recall by 0.01.

Answering RQ3.3: Overall synthetic oversampling for the word-based TORE Category
classification only shows marginal differences to the classification without oversampling.
Spellchecking and relevance classification also do not affect the classifier’s performance.

RQ3.4: Are classification results transferable across feedback sources?

Table 6.9.: BERT-Large Word-Based TORE Category Transferability Results (RQ3.4)
Training Dataset Test Dataset Precision Recall F1

Prolific Forum 0.42 0.44 0.43
Prolific App Review 0.59 0.50 0.55
App Review Prolific 0.56 0.56 0.56
App Review Forum 0.39 0.43 0.41
Forum Prolific 0.46 0.44 0.45
Forum App Review 0.47 0.39 0.43

Prolific & App Review Forum 0.41 0.44 0.43
Prolific & Forum App Review 0.61 0.46 0.54
App Review & Forum Prolific 0.60 0.57 0.59

Average 0.50 0.46 0.49

Table 6.9 shows the precision, recall and F1 values for all TORE category transferability
experiments of the best-performing BERT-Large classifier. It also lists the average across all
experiments in the last row. The experiments shown represent all possible combinations of
training and testing data for the three datasets available with word-based coding. Because
training and testing data are separate, there is no cross-validation for these as the entire datasets
were used for training and testing respectively.
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Results are consistent with those reported for the TORE Level transferability in RQ2.3. Again,
the best-performing combination of training and testing data by the recall and F1 value is training
on App Review and Forum and testing on Prolific data. Also, all combinations, including the
Forum dataset, again perform worse than their counterparts.

Answering RQ3.4: Word-based TORE Category classification does not transfer well
across different feedback sources. The datasets transfer better if Forum is not involved.

RQ3.5: Does the specificity of the TORE Categories influence classification results?
Figure 6.3 shows the normalized confusion matrix for the best performing BERT-Large word-

based TORE Category single-stage classifier on the left. Each row represents the percentages of
predicted labels for every true label. Activity for example was correctly labeled 37% of the time
and mislabeled as Task 15% of the time. The brighter the colour in the off-diagonal elements,
the higher the confusion.

Figure 6.3.: Normalized Confusion Matrix BERT Single-Stage original (left) and combined classes
(right)

Ignoring the default label 0, where no class is assigned to a word, the Stakeholder is the least
confused class in the datasets. We see higher confusion between the Activity, Interaction and
Task classes as well as the Interaction Data and Domain Data classes. The matrix indicates
that the classifier is not able to tell these classes apart consistently. Therefore, we combined the
Activity and Task categories as well as the Interaction Data and Domain Data categories and
re-run the 5-fold cross-validation experiments for BERT-Large single-stage and BERT-BERT
multi-stage. We did not combine the Interaction category with Activity despite the higher
confusion because we see this distinction as essential when extracting usage information in such
specificity.

The right side of Figure 6.3 shows the resulting confusion matrix of the BERT-Large single-
stage, where the classes have been combined. The "Data" category represents the combined
Interaction Data & Domain Data categories. The combined categories show an increase in the
number of correctly assigned labels. The Data class is not misclassified as any other class by
more than 4%. The Task & Activity class has a 0.16 improvement compared to Activity and
Task as separate classes.
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The metrics achieved by the BERT-Large single-stage and multi-stage classifiers with the
combined classes can be seen at the bottom of Table 6.7. The combined class classifiers outperform
BERT-Large basic classification in all metrics. When comparing combined class BERT-Large
single-stage with BERT-BERT multi-stage, we see almost identical precision, recall and F1.

Answering RQ3.5: The results are affected by the specificity of the classes. Less
fine-grained data and domain categories improve classification results overall and reduce
confusion between classes.

6.2.5. Discussion

This section discusses the results of the non-generative and generative LLMs and the effects that
different granularities have on the models’ performance.

Non-Generative LLM Performance

For the word-based TORE Category classification BERT-Large as well as RoBERTa performed
best (RQ3.1). Looking at the category-specific performance, there are large differences between
individual categories. Interestingly, both the highest and lowest performing categories are on the
Domain Level, while the Interaction Level is closer to the mean F1 values. The categories on the
Domain Level, with the exception of Stakeholder, appear to be the hardest to accurately classify.
The System category performs second best.

Multi-stage classification does not improve performance compared to single-stage classifi-
cation (RQ3.2). A possible reason for this could be the dependencies between the two stages
created by the multi-stage approach. The results of the second stage are directly dependent
on how the first stage is classified. This means that misclassifications in the first stage, such
as an Interaction Level being erroneously classified as a Domain Level, are compounded in the
second stage as the categories can now not be correctly assigned. Data imbalance may also
contribute to the lack of multi-stage improvement. As Table 2.7 shows, the datasets are not only
imbalanced in the categories but also on the levels. This means that the first-stage classifier may
already be affected by this imbalance, which is then compounded further during the second-stage
classification. Nonetheless, Perfect-BERT demonstrates the potential for improvement compared
to single-stage classification. To improve results, one could manually annotate the first-stage
classification and then automatically extract detailed usage information in the second stage.

The investigation into the specificity of the TORE Categories (RQ3.5) showed that
the classifier struggles to correctly classify semantically related categories like Domain Data
and Interaction Data. For both categories, often the same words are used (e.g. "to plan a
hiking route[Interaction Data]" and "to go on a hiking route[Domain Data]"). The distinction
between these categories is often dependent on the context of the complete sentence they are used
in. Combining these categories reduced confusion and improved overall results. Fine-grained
classification, such as distinguishing between "Tasks" and "Activities" or Domain Data and
Interaction Data, presents significant challenges due to linguistic ambiguities inherent in user
feedback and data sparsity for certain categories. Linguistic ambiguities arise when users use
imprecise language, making it difficult for the classifier to assign feedback to a single, distinct
category. Users often use the same words to describe different aspects of the software, often
obfuscating the lines between domain and interaction (Anders et al., 2022). Additionally, data
sparsity exacerbates the problem, as certain categories may be underrepresented in the training
data, limiting the model’s ability to learn nuanced distinctions.

The improvement with less specific classes can also be observed when using TORE Levels
instead of TORE Categories (RQ2.1). The less fine-grained TORE Level classification improves
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performance by 0.12 in F1 compared to TORE Categories. Also, class-specific performance was
closer than that of word-based TORE Category classification. TORE Level performance only
differs by an F1 value of 0.12, the lowest difference of the three granularities (sentence-based
TORE Level, word-based TORE Level and word-based TORE Category).

Transferability across feedback sources is low (RQ2.3, RQ3.4). This is in line with the
findings of other works (Novielli et al., 2020) (Devine and al., 2023). A primary reason for
these challenges may be differences in language style and tone between datasets discussed in
Section 2.1.3. These variations in language style and structural organization could explain why
transferability remains a challenge for our classifier. Our assumptions that including datasets
from multiple different sources improves the robustness of the classifier are confirmed by the
transferability experiments. F1 is consistently higher in experiments where two datasets are used
for training and one for testing, compared to experiments where the same dataset is used for
testing but only one is used for training. Including datasets from different sources helps the
classifier’s transferability on unseen data.

Decreasing the granularity further from word- to sentence-based TORE Level classification
(RQ1.1) did not yield improved results. Our highest mean F1 value achieved is 0.77 by including
the questions posed to users as a classification feature. Without these questions, the performance
drops to a mean F1 of 0.73. However, we used different datasets for word-based and sentence-based
classifications, which made the comparison difficult.

For preprocessing, the attempts to improve classification results by introducing synthetic
oversampling (RQ1.3, RQ2.2, RQ3.3) only led to very slight improvements for the word-based Tore
Level classification (+0.03 F1). The other two granularities saw small decreases in performance
with synthetic oversampling. For the word-based classifications, this seems to indicate that the
poor performance of some categories is not correlated with the number of occurrences in the
dataset.

Spellchecking did not cause any changes in the performance metrics, likely due to the much
lower amount of incorrect spelling than was expected. As mentioned in Section 6.2.2, only around
1% of the words in our datasets were incorrectly spelled. Given these low numbers, we also did
not see any differences between the amount of incorrectly spelled across the different datasets.
No dataset source, be it forum, app store, questionnaire or feedback app, had considerably more
misspellings than another.

Relevance classification also did not yield any improvement for any of the granularities, even
though around 24% of the datasets’ sentences were removed as irrelevant. The likely reason for
this is, that the classifiers on every granularity are already well capable of identifying whether a
sentence or word contains no usage information. This can be seen in the No Category and No
Level classes of the class-specific performance tables 6.3, 6.5 and 6.8. Irrelevant sentences tend to
contain less usage information. Consequently, classifiers are already capable of "ignoring" these
sentences even without their removal.

Comparing related work to our results, our highest mean F1 value achieved for the basic
classifications is 0.79 for the word-based TORE Level classification using BERT-Large. As shown
in Figure 4.3 in Section 4.2.2, other related work reports F1 values between 0.54 and 0.98, with
a median of 0.82. This indicates that our classifiers’ performance is on par with those of other
existing fine-grained automatic classifiers while only being slightly lower than the median. This
comparison, though, is difficult due to the very inconsistent reporting of performance metrics
across the related work.

Generative LLM Performance

As discussed in Section 6.2.3, working with Llama posed considerable challenges due to its
unreliability in following commands, especially for the word-based classifications. The classifica-
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tion results are also considerably lower than that of the other tested classifiers (RQ1.1, RQ2.1,
RQ3.1). Of the three tasks, Llama performed best in the sentence-based classification task
while still being considerably lower than the alternative classifiers. A qualitative analysis of the
classifications done by Llama showed that it struggled to understand the TORE Levels and
categories correctly. Llama seemed to even misclassify categories that human coders did not
have a problem distinguishing. We tried to make these categories more clear by including up to
2% of the entire dataset as an example for Llama. We also ensured that the examples given were
representative of the data. While Llama was able to classify short sentences more accurately,
especially those containing no usage information, longer sentences were mostly assigned labels
seemingly randomly. Asking Llama for explanations on why a certain label was assigned also did
not provide meaningful insights, as the model would either start discussing the sentiment of a
sentence, which does not factor into usage information classification, or it would apologize for its
mistake and assign a new label to the sentence without being prompted to do so. Reproducibility
of classification was also nonexistent, as the same set of sentences or words would be classified
differently almost every time they were input into Llama.

6.2.6. Threats To Validity

This section discusses the threats to the validity of the usage information classification experi-
ments.

Reliability

The reliability of the results is threatened because of the marginal differences observed between
classifiers across many experiments, often only ranging from 0.01 to 0.05. Such small variations
make it challenging to draw definitive conclusions about which classifier performs best under
specific conditions. This also affects successive experiments where the best-performing classifier
(BERT-Large) was used instead of alternative classifiers. To mitigate the risk of our results
being influenced by chance, we employed 5-fold cross-validation whenever feasible. The absence
of statistical testing, however, introduces a limitation. Without formal statistical analysis, we
cannot confirm whether the observed differences in performance are genuinely significant or
merely the result of random variation.

Construct Validity

A threat to the construct validity lies in the evaluation of the classifiers’ performance using the
selected metrics: precision, recall, and F1. As detailed in Section 2.3.8, these metrics were chosen
for their widespread use in assessing machine learning classifiers. The use of different metrics
might have led to other observations which we did not make.

Another threat to the construct validity is the fact that all results reported for LLama were
achieved with the prompts reported in Section 6.2.3. While we carefully revised our prompts, due
to the non-discriminative nature of generative LLMs, the use of different prompts can achieve
different results from those reported in this dissertation.

Internal Validity

One threat to internal validity is the implementation of the classifiers. To alleviate this, we
utilize widely used libraries such as Huggingface and performed our testing with an established
machine learning experiment management platform in the form of MLFlow. The code is also
publicly available so results can be replicated.
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We alleviated the internal threat due to the manual coding by employing multiple coders for
every dataset and ensuring that every document was independently coded by two people, after
which an inter-rater agreement was established.

Because we used different datasets for word-based and sentence-based granularities, another
threat to the internal validity is introduced. This makes drawing conclusions on whether differences
in performance are due to the change in granularity or due to dataset-specific characteristics
difficult. This lack of consistency in datasets introduces a confounding factor, making it difficult
to attribute performance changes solely to class granularity.

External Validity

Threats to the external validity are mainly due to the datasets. Almost all data in the word-based
datasets concerns one software product, Komoot. For unrelated reasons, Komoot was chosen
during our initial design of the questionnaire for the Prolific dataset (Anders et al., 2023). While
this helped us to better analyze the transferability across feedback sources in RQ2.3 and RQ3.4,
it poses a threat towards the generalizability of our classifiers on unseen data of different software
products. Given the domain dependence of the classification, especially on the Domain Level,
we don’t expect similar performance of our classifier in different domains. This would require
retraining on data from unseen domains. The generalizability of the sentence-based classifier is
also not tested, as we only have a single dataset available for this task.

The Forum dataset partially contains feedback from other software products. This, however,
introduces another threat, especially for the transferability investigation in RQ2.3 and RQ3.4, as
it is the only one that is not solely about Komoot.

The Prolific dataset presents another inherent threat to online survey platforms. Users are
anonymous participants who are paid for their participation. This could result in them feeling
the need to give feedback that is not representative of their true opinions. To alleviate this
to some degree, answers were checked for originality. Answers found to be copied from online
sources (even those lightly changed from these sources) were excluded from the dataset.

The study context in which the SmartAge dataset is gathered presents a similar threat. The
feedback is gathered by participants of the study, who were selected based on their age and the
location in which they lived. While these participants were not paid, they did receive tablets on
which they used the apps. This could influence the feedback they give.

A potential threat to the validity of our findings also stems from the diverse nature of the
input data sources. These data types differ in terms of context, participant engagement, response
format, and potential biases. The heterogeneity in data sources introduces variability that could
impact the generalizability of our models, as they may perform differently depending on the
source of the input.

6.3. UIC Conclusions

Based on the results reported in this Chapter, automatic word-based TORE Level classification
works better than the other two granularities investigated (RQ2.1). It achieves the highest F1
value and the lowest difference in individual class performance. As discussed in Section 6.1.4,
looking at word-based usage information can allow developers to see whether their software
covers the users’ needs in their daily life and their needs when using the software. Daily life needs
are expressed on the Domain Level and can show whether the software provides the support
users need to accomplish their actions. Software needs are expressed on the Interaction and
System Level and cover whether the software behaves in the way users expect it to behave.
When finer usage information is required, using the word-based TORE Category classifier with
combined classes (RQ3.5) is recommended. The classifier’s performance values are 0.05 lower
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than the word-based TORE Levels, but a more fine-grained insight is provided. A possible
use case for finer usage information being needed is if developers want to identify the different
types of stakeholders that use their software, which the Stakeholder TORE Category offers. The
effectiveness of the classifier is evaluated in the treatment validation in Chapter 9.
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Chapter 7
Feed.UVL

This chapter presents the Feed.UVL tool and its related Jira plugin developed in this dissertation.
Feed.UVL supports developers by providing a web tool which supports feedback collection,
management, analysis, and visualisation through its functionalities and views. Feed.UVL also
serves as a platform to implement feedback analysis approaches, such as the feedback requirements
relation (Chapter 5) and usage information classification (Chapter 6) presented in this dissertation.
The tool was developed as part of the design of the FeReRe and UIC approaches in design goal
1 and design goal 2 (see Figure 1.2). As such, the functionalities provided help tackle P1 and
P2 as specified in Figure 1.1 by providing a platform for developers to manage and execute the
approaches.

Many of Feed.UVL’s functionalities were developed as part of practicals, bachelor and master
theses supervised by the author of this dissertation. A list of contributing theses and reports can
be found in Table 1.

Section 7.1 describes Feed.UVL’s architecture and gives a rough overview of its functionalities.
Section 7.2 describes the functionalities in detail, including their requirements and implementation.
A domain data diagram and a UI structure diagram for Feed.UVL can be found in Appendix C.2

Feed.UVL is an open-source tool whose code is available in the Appendix A. The Appendix also
contains a complete list of all of Feed.UVL’s requirements, which were originially documented in
Jira. This chapter only contains a select number of requirements for each functionality because the
total number of 731 Jira issues, which represent Feed.UVL’s complete documentation (including
test cases, bug reports and mockups) would exceed the scope of this chapter.

7.1. Feed.UVL Architecture

In this section, the foundational tool on which Feed.UVL was developed is introduced. Then the
microservice and deployment architecture on which Feed.UVL is built, is explained and a short
overview over Feed.UVL functionalities is provided.

7.1.1. Foundation

Feed.UVL’s basic architecture is based on a tool called Feed.ai, which was developed during the
OpenReq1 project as part of a dissertation at the University of Hamburg (Stanik, 2020). This
work laid the foundation for the general architecture of Feed.UVL.

Feed.ai was developed as a platform to gather and analyse Twitter feedback for individual
software products. The main view for this was a dashboard, which can be seen in Figure

1https://www.openreq.eu/
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7.1. The tool gathers tweets sent to predefined Twitter accounts, classifies them into three
categories (problem report, inquiry and irrelevant), analysis their sentiment and then visualizes
the frequency of tweets and the classification results. The tool provides further functionalities for
manual correction of automatic classification and comparisons between multiple Twitter accounts.
Further functionalities not relevant to this dissertation were developed and are explained in the
foundational dissertation for Feed.ai (Stanik, 2020).

Figure 7.1.: Feed.ai Dashboard

The decision was made to utilize Feed.ai as a basis for the development of Feed.UVL in order
to promote reuse and to benefit from the fact that Feed.ai had already been evaluated as part of
the underlying dissertation. It should be noted that while Feed.UVL’s core architecture is based
on Feed.ai almost all of its functionalities are significant further developments from the initial
scope for which Feed.ai was developed. Both tools can function completely independently from
one another. After four years of development on Feed.UVL only its backend architecture, and
the general frontend design matches that of Feed.ai.

7.1.2. Microservice Architecture
Feed.ai and, as a result, Feed.UVL is based on a microservice architecture. Microservice
architectures are a design approach in software development where an application is structured as
a collection of independent services that communicate with each other. Each service is designed
to perform a specific function which operates independently. This allows it to be developed,
deployed and maintained separately from other parts of the system. In the case of Feed.UVL,
these independent services communicate over RestAPIs to exchange data.

This architecture contrasts with the traditional monolithic approach (Al-Debagy and Martinek,
2018) (Tapia et al., 2020), where an application is built as a single unit. In a monolithic system,
all components are tightly coupled, making changes or scaling a particular functionality more
challenging. Microservices, on the other hand, enable a more flexible approach to development.
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It allows a focus on specific services without impacting the entire system. The main advantages
for Feed.UVL stemming from the microservice architecture are a flexibility in technology, faster
deployment and better fault isolation.

Flexibility in technology: Because each service operates independently, developers can use
the technology (e.g. programming languages, frameworks) that suits them best. Feed.UVL’s
services, for example, are developed in five different programming languages. While the frontend
is written in VueJs, the service orchestrating the communication between services is written
in GO and its functionalities are written in either Python, C++ or Java. Theoretically, these
functionalities could be written in almost any other programming language.

Faster deployment: Microservices enable parallel development, as different developers can
work on separate services simultaneously. This allows the tool to be developed in parallel, with
one developer not interfering with another. Additionally, changes or updates to one service can
be deployed without affecting others, leading to quicker iterations and more reliable deployment
pipelines. Developers can easily test any changes without having to rebuild the entire software.

Fault isolation: In a microservice architecture, the failure of one service is less likely to bring
down the entire system. This isolation improves the overall resilience of Feed.UVL. The modular
nature of microservices also simplifies debugging and maintenance. Smaller codebases are easier
to understand, test, and modify, which enhances long-term maintainability.

Figure 7.2.: Feed.UVL Architecture Overview
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Feed.UVL microservices can be grouped into five different layers, as can be seen in Figure 7.2.
The left side in green shows Feed.ai’s core services. The right side in blue shows Feed.UVL’s core
services. As mentioned before, both Feed.ai and Feed.UVL are designed to function independently
from one another, leading to multiple similar services on some of the layers.

On the Application Layer, the graphical interface is provided for users. As a web-based tool
Feed.UVL is accessible through almost all web browsers even scaling appropriately for mobile
devices. The GUI provides visualisations of the datasets and classifiers in Feed.UVL as well as
the possibility to interact with the tool’s manual annotation functionalities.

The Data Orchestration Layer handles communication between the backend services on
the lower layers and the application layer. Through these orchestrators, all microservices are
available through API requests. Along with the basic frontend service, which provides the overall
UI on the application layer, the services on the data orchestration layer, together with the storage
service on the Data Storage Layer, are the only non-modular parts of Feed.UVLs architecture
because they are necessary to facilitate communication between the other services.

In the Data Analytics Layer microservices are provided which analyse user feedback. Each
microservice here serves a different analysis purpose and each can be seen as a standalone machine
learning classifier, independent of any existing or future classifier present in the software. Each
service takes raw feedback data and performs its analysis, which then again can be displayed on
the application layer. Splitting each classifier into its own service has the further advantage of
allowing administrators to limit the hardware resources each classifier can access. This prevents
any one classifier from taking up all available resources, affecting the availability of the tool or
leading to crashes.

The Data Collection Layer contains so-called crawlers. These are services which collect
explicit feedback from different software feedback sources. This feedback is then stored in the
form of datasets in Feed.UVL and can be accessed, downloaded or analysed further in the tool.

Lastly, the Data Storage Layer is responsible for data persistence. All data within the tool,
be it feedback datasets, analysis results or annotations, are stored in a database. To prevent any
loss of information or possible racing conditions, all accesses to the storage service happen via
the orchestrators on the data orchestration layer. This allows the orchestrator to manage the
order in which the database is accessed.

7.1.3. Deployment Architecture

Feed.UVL trades the complexity of a difficult one-time setup with easy maintenance and the
previously mentioned advantages of microservice architectures 7.1.2. Most of the tools mentioned
in this section have already been introduced in Section 2.4.

Fundamentally Feed.UVL is deployed on a web-server running a Debian2 Linux instance.
Although theoretically, the application could be run on any operating system. Running a web-
server provides continuous, parallel access to the application through any web browser, without
requiring deployment every time the software needs to be used. Accesses to Feed.UVL’s websites,
as well as related tools like Jenkins and Portainer (Section 2.4), are handled through the reverse
proxy Traefik, running on the server.

The microservice architecture of Feed.UVL is realized by implementing every functionality
in Feed.UVL as its own Docker container. These are configured, built and deployed through
Jenkins. Jenkins also handles the continuous deployment of these services by automatically
rebuilding containers when changes are pushed to their respective Github Repositories3. The
logging functionalities provided by Jenkins also help with debugging any build errors that the

2https://www.debian.org/
3https://www.github.com/feeduvl
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containers might have during development. Jenkins is accessed through it’s own website provided
by the web-server Feed.UVL is running on.

Once the containers are built and deployed by Jenkins, they can be managed through an
instance of Portainer. Just as Jenkins, Portainer can also be accessed through its own provided
website. This allows for continuous, remote monitoring of Feed.UVL. Portainer additionally
provides functionalities to schedule containers, perform cleanup operations on the server, log all
containers and access them individually.

Feed.UVL’s database is running MongoDB4, a NoSQL database also running on Feed.UVLs
web-server. Once the initial configuration of the server is done, all deployment tools (Jenkins,
Portainer, MongoDB) can be started through a single Docker file, which is configured to also
rebuild all necessary containers after a server restart. This, along with a Jenkins pipeline, which
rebuilds all Feed.UVL services allows quick recovery after any server failure and reduces the need
for any human maintenance.

7.1.4. Functionality Overview

Feed.UVL provides functionalities for feedback collection, management, analysis and visualization.
The requirements and implementation, along with detailed screenshots for each functionality, are
documented in the sections listed below. These functionalities can be grouped into the following
categories:

• Feedback Collection (Section 7.2.1)

• Feedback Management (Section 7.2.2)

• Manual Feedback Analysis (Section 7.2.3)

• Automatic Feedback Analysis (Section 7.2.4)

• Feed.UVL Dashboard (Section 7.2.5)

• Jira Plugin (Section 7.2.6)

The Feedback Collection category contains multiple web crawlers which can be used through
Feed.UVL to gather feedback from the web. This includes a crawler for the Google Play Store5

where users specify for which app they wish to gather feedback. A crawler for the online forum
Reddit6 that allows users to specify for which specific subreddit (i.e. which specific forum on
Reddit) they wish to gather posts and comments. Additionally, the Twitter crawler from Feed.ai
is also retained. It should be noted that at the time of writing, changes to both Twitter’s and
Reddit’s API have made crawling these sources more complicated and require a paid membership
at the respective website.

The Feedback Management category allows users to inspect, delete, change or update all
datasets currently handled in Feed.UVL. Next to the above-mentioned crawlers Feed.UVL also
allows users to manually upload any datasets.

Manual Feedback Analysis is provided through Feed.UVL’s annotator which allows users to
create annotations for any dataset stored in Feed.UVL. These annotations can be configured to
either allow annotation of individual words or entire text segments. Additionally, two annotations
of the same dataset can be compared automatically through Feed.UVL’s agreement functionality
which automatically highlights all disagreements between annotators.

4https://www.mongodb.com/
5https://www.play.google.com/store
6https://www.reddit.com/
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Automatic Feedback Analysis is provided through the many machine learning classifiers
implemented in Feed.UVL. Currently, Feed.UVL provides classifiers for concept identification,
data preprocessing, feedback requirements relation, usage information classification, relevance
classification and (through a research project not related to this dissertation) acceptance criteria
classification. The results of automatic analysis by the classifiers are also visualized through the
creation of custom widgets for different types of analysis to best highlight results.

The Feed.UVL Dashboard combines multiple functionalities of Feed.UVL into one single
dashboard with the purpose of allowing both feedback requirements relation and usage information
classification manually and automatically for software projects.

Lastly, the Jira plugin connects to the Feed.UVL database in order to provide the results of
feedback requirements relation and usage information classification to Jira projects. This allows
developers to see feedback related to specific requirements and highlight the contained usage
information directly in Jira, where the requirements of the software are documented.

Figure 7.3.: Feed.UVL Services
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The individual, colour-coded microservices that make up Feed.UVL can be seen in Figure
7.3. Services coloured in red are core backend services, namely the uvl-storage service, which
handles the database and the uvl-orchestration service, which facilitates communication between
all containers.

Services coloured orange are those related to the UI of Feed.UVL. The main service here is
ri-visualization, which provides all views available to users through their browser. Furthermore,
uvl-dashboard provides the functionalities for the Feed.UVL dashboard, uvl-annotation provides
the manual annotation functionalities, and uvl-agreement the interrater agreement functionalities.

The blue-coloured services are the machine learning classifiers implemented in Feed.UVL.
Services are further grouped by the type of analysis they perform. Note that Acceptance Criteria
Classification services stem from an unrelated research project which also uses Feed.UVL’s
functionalities and are thus not connected to this dissertation.

Services in green are related to the feedback collection functionalities. These include uvl-
reddit-crawler and uvl-app-review-crawler as well as the uvl-scheduler, which allows the other
two services to automatically re-crawl their respective websites and update existing datasets in
Feed.UVL with new feedback that might have been submitted since the last crawling.

Lastly, yellow-coloured services are external services. The uvl-jira-plugin connects to the
uvl-storage service to access feedback requirements relation and usage information classification
results and displays them in Jira. The mlflow-stack uses an instance of the machine learning
experiment tool MLFlow (see Section 2.4) in order to automatically deploy larger machine
learning models to Feed.UVL. This reduces the storage requirements of the classifier containers
because models are stored separately.

7.2. Feed.UVL Functionalities
This section will explain the requirements and implementation of the individual functionalities
of Feed.UVL in more detail. Requirements for Feed.UVL were documented using the TORE
Framework (Section 2.2). Due to the sheer number of requirements, not every requirement is
fully specified in this dissertation. We omit detailed System Function descriptions such as pre-
and post-conditions, as well as individual sub-task steps. These were, however, fully specified in
Jira during development and can be found in the digital Appendix A.

Navigation between individual views shown in the following sections is possible through
Feed.UVL’s navigation bar shown in Figure 7.4. The bar can be opened from any other view by
clicking on the top left and will blend into the screen from the left. As can be seen, the bar also
contains the initial views provided by Feed.ai on the bottom under "Twitter-Feed.ai". These are
not further specified here, and descriptions can be accessed in (Stanik, 2020).
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Figure 7.4.: Feed.UVL Navigation Bar

7.2.1. Feedback Collection

Requirements

This section introduces the requirements of Feed.UVL’s functionalities related to the collection
of feedback from online sources. These functionalities include two web crawlers for the online
forum Reddit and the Google Play store, as well as a scheduling function for automated usage of
the web crawlers.

Requirements for the feedback collection functionalities were derived from a need to gather
large amounts of feedback, specifically from very common feedback sources as found in literature
(see Chapters 3 & 3). We also investigated common filters used by publications using online
feedback and derived filter requirements from these.

Table 7.1 lists the user task and related sub-tasks for the feedback collection. The user task
captures the user’s desire to collect and handle natural language datasets and their creation.
The user task is further divided into three sub-tasks. UT1S1 deals with the creation of new
datasets due to predefined criteria by the user. As previously mentioned, the criteria were
derived from common filters applied in machine learning publications, such as date ranges in
which the feedback was submitted and minimum feedback lengths. The second sub-task UT1S2
handles the scheduling of reoccurring crawler runs. This stems from a need to automatically
gather up-to-date feedback and is can help developers see how feedback changes over time when
the software is updated. The third sub-task UT1S3 manages previous and ongoing dataset
aggregations by, for example, changing the schedule to gather data more or less frequently or
stopping the gathering process altogether.
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Table 7.1.: Feedback Collection User Task & Sub-Task Requirements
UT1 Collect Natural Language Datasets

The developer performs tasks related to the collection of natural-language feedback datasets. The task
consists of the creation of new datasets, the scheduling of the continuous updates of a dataset, and the
management of existing dataset collections. This includes an overview of the created datasets and the
associated schedule.
UT1S1 Create New Dataset
The developer first specifies details for the creation of the new feedback dataset, such as the feedback
source they want to gather feedback from and any filter criteria. The developer then performs the
feedback collection, resulting in a new feedback dataset.
UT1S2 Perform a Reoccurring Data Aggregation
The developer repeats the previous gathering of feedback data with the same criteria as before on a
fixed schedule in order to capture feedback which has been submitted since the last gathering.
UT1S3 Manage Excecuted Dataset Creations
The developer obtains an overview of all previously created feedback datasets. They see the gathering
criteria and schedule of each dataset. They make changes to the schedule of individual datasets.

Table 7.2.: Feedback Collection System Function Requirements
SF1: Configure Crawler Run

Description The user configures all necessary information to run the crawler. This includes the name
of the app or subreddit, the data range in which feedback was submitted, the number of
feedback posts to be crawled, the minimum length of feedback, as well as comment depth
(for Reddit crawler). Further additional filters can be configured: Language of the feedback,
removal of URLs and emojis, and list of blacklisted words that exclude feedback.

Implements UT1S1
SF2: Execute Crawler Run

Description The user starts the crawler with the previously configured settings. This option is only
enabled if all necessary configurations have been made.

Implements UT1S1
SF3: Schedule Crawler Run

Description The user selects the option for the crawler to update the dataset continuously with newly
posted feedback. The schedule continues until SF4 is triggered or the date range specified
in SF1 is reached.

Implements UT1S2
SF4: Stop Scheduling Crawler Run

Description The user selects the option to stop the schedule of the crawler run manually. No further
updates to the created dataset are made.

Implements UT1S3
SF5: List Crawler Runs

Description The system lists all previous and ongoing crawler runs in an overview. It displays their
name, the date of creation and how often they have been rerun.

Implements UT1S3
SF6: Remove Entry from Overview

Description The user removes a dataset from the list of all created datasets. The dataset is not deleted
from the database but is not shown in the list anymore.

Implements UT1S3

Table 7.2 lists the system functions which implement the previously introduced sub-tasks for
the feedback collection in Feed.UVL. Six system functions were derived from the sub-tasks. SF1
implements the configuration of the crawler, including all filter criteria. Filters are mostly equal
between app review and Reddit crawler, but differ slightly because of differences between the app
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store and an online forum. The Reddit crawler includes an option to select to which comment
depth users wish to collect comments. This did not make sense for the app review crawler, as
app stores are not conversational platforms. SF2 starts the crawler run. This is restricted until
all necessary configurations are completed in SF1. SF3 allows users to schedule a repeated
crawler run as described in UT1S2, and SF4 allows for the cancellation of the crawler run. SF5
lists every crawler run that has been created in the pas,t along with their names, creation date
and how often they have been rerun according to their schedule. SF6 removes entries from the
overview of all crawler runs in case they are no longer relevant to the user.

Table 7.3.: Feedback Collection Workspace Requirements
WS1: Reddit Crawler View

Description This is the main view of the Reddit crawler. It consists of two smaller workspaces: the
configuration view, in which crawler runs are configured, and the overview view, which
lists all previous and ongoing crawler runs.

Contains WS1.1, WS1,2
WS1.1: Reddit Crawler Configuration View

Description In this view, all parameters and filters for the Reddit crawler are configured.
Contains SF1, SF2, SF3

WS1.2: Reddit Crawler Overview View
Description In this view, all previous and ongoing Reddit crawler runs are listed.
Contains SF4, SF5

WS2: App Review Crawler View
Description This is the main view of the App review crawler. It consists of two smaller workspaces:

the configuration view, in which crawler runs are configured, and the overview view, which
lists all previous and ongoing crawler runs.

Contains WS2.1, WS2.2
WS2.1: App Review Crawler Configuration View

Description In this view, all parameters and filters for the app review crawler are configured.
Contains SF1, SF2, SF3

WS2.2: App Review Crawler Configuration View
Description In this view, all previous and ongoing app review crawler runs are listed.
Contains SF4, SF5

Table 7.3 lists the workspaces which group the feedback collection system functions. Even
though the Reddit and app review crawler are similar in their views, the decision was made
to split them into two seperate views. This was mainly done to maintain the microservice
architecture of Feed.UVL by allowing complete separation of the two crawlers. They can run
independently from one another, and changes to one do not affect the other. As a result the the
main views WS1 and WS2 are both split into two further sub-workspaces WS1.1, WS1.2 and
WS2.1 and WS2.2 respectively. The configuration view of both crawlers contains all filters
and input fields to configure the crawlers. The overview view contains a list of all previous and
ongoing crawler runs created for each crawler.

Implementation

The app review crawler was implemented using Python and utilizes the google-play-scraper7

library. This library provides APIs which allow easier data gathering from the Google Play
Store. It was mainly chosen because it returns crawled data in the form of JSON objects which
matches well with Feed.UVLs MongoDB database. Additionally, API requests using the library

7https://www.pypi.org/project/google-play-scraper/
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are structured fairly minimalistically while still providing all necessary functionalities, simplifying
implementation. Depending on the filter criteria set up by the user, the crawler sends an API
request to the Google Play Store, which returns a list of feedback as a response. The library
already provides some filters, such as, for example, the feedback language. Other filters, however,
had to be manually implemented, such as the filtering of reviews by date.

Figure 7.5.: Feed.UVL App Review Crawler

Figure 7.5 shows the implemented app review crawler running in Feed.UVL. The view consists
of the "Crawler Settings" section which implements WS2.1 and "Job Overview" which implements
WS2.2.

In the crawler settings, the user enters the name of the app, the URL to the Google Play Store
page and the name that the created dataset should have. Then, users can configure whether they
wish to crawl for German or English feedback. In theory, this could easily be expanded to more
languages should the need arise. Following this, users configure the maximum number of feedback
that should be gathered, the date range in which the feedback should have been submitted and
whether they wish for URLs and emojis in the feedback to be removed automatically. They
can also configure the minimum character length that a feedback statement should have to
be included. The last configuration is a blacklist which automatically excludes any feedback
that contains certain words. This can help with the exclusion of spam bots which utilize these
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platforms. After setting all filters, users have the option to make a crawler run reoccurring, at
which point it is automatically scheduled to re-crawl at certain intervals.

In the job overview at the bottom, all previous crawler runs are listed. This overview lists
the relevant App, when the job was created, how often it has been re-crawled according to its
schedule and the name of the created dataset. The buttons on the right of the view allow users
to stop any reoccurring schedules and remove the run from the overview.

Figure 7.6.: Feed.UVL Reddit Crawler

Figure 7.6 shows the implemented Reddit crawler. As can be seen, the view is almost identical
to the app review crawler, with small exceptions in the filters, such as the previously mentioned
commend extraction depth. Additionally, a language filter did not make sense for this feedback
source, as Reddit is (discounting country-specific forums) almost exclusively English. Instead,
the option to "Sort by New" and "Sort by Top" were included. Sort by New gathers posts
starting with the newest one in that forum first. Sort by Top gathers feedback with the one
that has received the most "upvotes" (a form of "Like" showing approval of the post) first. Also,
because both the initial forum post as well as its comments are crawled, the minimum feedback
filter is extended to both filters by the minimum character length of the original post as well as
the minimum character length of comments. If a post does not meet the minimum criteria, it is
not included in the dataset. If the post meets the criteria but some of its comments do not, then
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these comments are not included, but the post is. The scheduling and job overview sections of
the view are identical to those of the app review crawler.

The Reddit crawler was also implemented in Python and uses the Python Reddit API Wrapper
(PRAW8) to send API requests to Reddit, which then returns the posts and comments. PRAW
was chosen because it offered a more complete feature set and more complete documentation
compared to other competing libraries such as jReddit9. The posts and comments returned
by PRAW are then filtered in the crawler’s own code. Recent changes to Reddit’s API have
complicated this process, as Reddit no longer offers a free, unlimited API as it did when the
crawler was originally implemented. Consequently, it now requires a registered, paid membership
to allow API access, which has to be configured when setting up the Reddit crawlers microservice.

Both the App Review and Reddit Crawler use the same scheduling microservice. The scheduler
uses a Flask10 application and the Advanced Python Scheduler (APScheduler11) library to repeat
the crawler runs on a fixed timeline. By default scheduled crawlers are run every 24 hours, but
this can be modified to any desired time.

7.2.2. Feedback Management

Requirements

Requirements for the feedback management functionalities were derived as a consequence of the
feedback collection requirements listed in the previous Section 7.2.1. These requirements allowed
for the creation of new datasets from online feedback. These functionalities resulted in a need
for dataset management functionalities to manage the created datasets. Additionally, further
functionalities were needed to add datasets which could not be crawled through Reddit or the
Google Play Store.

Table 7.4.: Feedback Management User Task & Sub-Task Requirements
UT2 Manage Natural Language Datasets

The developer needs to manage the collection of all their available datasets. Each dataset contains a
number of individual documents. The developer wants to add new datasets to the collection, remove
old datasets from the collection, and look at the documents inside each dataset.
UT2S1 Add Dataset to Collection
The developer adds one of their datasets to the collection of all their available datasets.
UT2S2 Remove Dataset from Collection
The developer removes a dataset that is no longer needed from the collection of all their available
datasets.
UT2S3 Investigate Datasets
The developer looks at a list of all datasets in their collection and investigates the individual documents
inside of a dataset to see the content.

Table 7.4 lists the user task and related sub-tasks for the feedback management functionalities.
UT2 deals with the developer’s needs to inspect, add and remove datasets. Each dataset consists
of individual documents. In an app review dataset for one specific app, for example, each
document would be a single app review on that app’s store page. This user task is further refined
by 3 sub-tasks. UT2S1 concerns adding datasets to the collection of available datasets. This is
different from UT1S1 because instead of creating new datasets, the datasets added in UT2S1
already exist and are merely added to a collection of other datasets. UT2S2 deals with the

8https://www.praw.readthedocs.io/en/stable/
9https://www.github.com/jReddit/jReddit

10https://www.flask.palletsprojects.com/en/stable/
11https://www.apscheduler.readthedocs.io/en/3.x/
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removal of datasets that are already in the collection. This might be necessary because the
datasets are no longer relevant to the developer, or they might be outdated and need to be
replaced with newer data. UT2S3 captures the need to investigate the content of datasets. As
each dataset is made up of individual documents, developers want to see these documents.

Table 7.5.: Feedback Management System Function Requirements
SF6: List All Datasets

Description The system shows a list of all datasets in the database.
Implements UT2S3

SF7: Upload Dataset
Description The user uploads a dataset to the database that they have stored locally on their machine.

The dataset is formatted as a xlsx or csv file with the first column being the content of the
dataset and the second column being a unique ID for each row. Each row represents a
document in the dataset.

Implements UT2S1
SF8: Delete Dataset

Description The user removes a dataset from the database. The dataset is no longer shown in the list
of all datasets. When deleting, the user is given the option to also delete all associated
materials, such as Annotation and Classifier runs related to this dataset.

Implements UT2S2
SF9: Show Dataset Content

Description The system shows the list of documents contained in a specific dataset. Both the text and
the ID of each document are displayed.

Implements UT2S3

Table 7.5 shows the system functions which derive from the sub-task related to UT2. SF6
displays a list of all datasets that are currently stored in the Feed.UVL database. The list
contains all datasets created through SF2: Execute Crawler Run and SF7. SF7 allows for the
manual upload of datasets that are stored on the user’s device. These need to be formatted
properly. The user is prompted how to format the files they wish to upload in the software.
Entries can be deleted from the list and Feed.UVL’s database through SF8. Lastly, SF9 allows
the user to see the documents within a specific dataset.

Table 7.6.: Feedback Management Workspace Requirements
WS3: Upload View

Description In this view, the user can upload datasets from their machine to the system. A list of all
currently available datasets is shown. Users can remove datasets here or navigate to WS4:
Dataset View to see the content of a dataset.

Contains SF6, SF7, SF8, SF29
WS4: Dataset View

Description In this vie,w a list of the documents in a specific dataset is shown along with the ID of the
document. Users can look at different datasets and delete datasets from the database.

Contains SF8, SF9

Table 7.6 lists the workspaces which group the previously introduced system functions. WS3
handles the upload of datasets, removal of datasets and listing of all currently available datasets
in Feed.UVL. WS4 displays the content of each dataset. Both the text as well as the ID of each
document in a dataset is displayed. This view also allows users to delete the currently displayed
dataset as well as select any other dataset for display.
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Implementation

As all parts of the frontend, both the upload view and dataset view are written in VueJS, while
the backend services for these functionalities are written in the programming language GO.
These two languages were dictated by the original setup of Feed.ai from which Feed.UVL was
derived (Section 7.1.1). The feedback management functionalities represent the core functions of
Feed.UVL as they are implemented in the uvl-orchestration and ri-visualization services (Section
7.1.2). Unlike most other functionalities of Feed.UVL these are not optional features because all
other functionalities of the software rely on the ability to manage feedback datasets in Feed.UVL.

Figure 7.7.: Feed.UVL Upload View

Figure 7.7 shows the implemented upload view defined by WS3. At the top, the upload
functionalities are shown. The user is given the option to choose a file from their device and
then upload it to the software. To the right, a hint is shown that explains the required format of
the upload. The system will display a warning message that the upload has failed, should an
upload not meet these requirements. Below the upload the list of all available datasets is shown.
Each dataset is displayed in a box with its name, the option to delete the dataset, the option
to show the content of the dataset and the option to add a ground truth. Pressing delete will
prompt the user to confirm the deletion and allows them to also select an option to delete all
information related to that dataset, such as annotations and classifier runs. Pressing the "Show"
button navigates the user to the dataset view. The "Add Ground Truth" button is related to the
Automatic Feedback Analysis functionalities introduced in Section 7.2.4.
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Figure 7.8.: Feed.UVL Dataset View

Figure 7.8 shows the implemented dataset view defined by WS4. Dataset documents are
displayed as individual entries in a table, with the ID of a document on the left and the text
content on the right. The top left shows a selection option which, when clicked, lists all available
datasets and switches to the selected option. The top right shows a delete button for said dataset.
The same confirmation dialogue is shown when clicking the delete button in the upload view.
The bottom right of the screenshot shows that pagination is used to display datasets. This
reduces load times for very large datasets and makes navigation and readability easier.

7.2.3. Manual Feedback Analysis

Requirements

The requirements for the manual feedback analysis were derived from the functionalities required
to support manual structured analysis as introduced in Fundamentals Section 2.1. This mainly
focused on the necessity to assign predefined categories to individual segments of the feedback.
This motivated the creation of the Feed.UVL Annotator is an annotation tool specifically targeted
for word-level and sentence-level coding of feedback texts. Specific requirements were created
as part of a research project in which the author of this dissertation participated. As part of
the project, usage information was manually classified using the TORE framework (Section 2.2).
Existing annotation tools (namely MAXQDA and QDAMiner) that were used by the participants
of the research project did not provide adequate functionalities to quickly perform the usage
information classification. Consequently, requirements were derived based on the needs of the
participants of the research project with the main focus of allowing easy-to-use usage information
classification.

It should be noted that while usage information classification was the main use case targeted
by the Annotator it is still applicable to any other annotation task, requirement word-level or
sentence-level annotation.

Table 7.7 lists the user task and related sub-tasks for the manual feedback analysis. The
main desire of the developer performing structured manual feedback analysis is to assign codes
to a feedback dataset and then analysing which codes were assigned. An example use case of
this could be a developer assigning sentiment codes (positive, negative, neutral) to feedback
sentences and then seeing if the sentences were predominantly positive or negative to judge users’
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Table 7.7.: Manual Feedback Analysis User Task & Sub-Task Requirements
UT3 Manage Manual Analyses

The developer wants to manage the manual analysis of feedback. For this, they need to perform the
analysis on feedback data by assigning codes to the feedback. Afterwards, they wish to see the results
of the analysis by inspecting the codes they have assigned. In some cases, multiple developers may
wish to see if their analyses of the feedback match and if they are in agreement with the analyses. Also,
developers may wish to discard old analyses because they are no longer relevant.
UT3S1 Perform Manual Analysis
The developer performs the analysis of feedback by choosing a dataset they wish to analyse, defining
the codes they wish to assign to that feedback and then annotating the feedback with the chosen codes.
UT3S2 Inspect Manual Analysis
The developer inspects the analysis once it is complete to see which codes they assigned and calculate
statistics about these codes, such as the number of occurrences of each code.
UT3S3 Create Agreement Between Analyses
Two developers want to find out if they are in agreement about their analysis of the feedback. For this
they see if they have assigned the same codes to the same segments of feedback. They discuss any
differences and resolve them so they are in agreement.
UT3S4 Discard Previous Manual Analyses
The developer wants to discard old analyses that are no longer relevant.

sentiment towards their software. The user task is divided into four sub-tasks. UT3S1 handles
the manual coding itself. For this, developers choose a dataset and the codes they wish to use for
the analysis. They then assign these codes to segments inside the dataset. UT3S2 handles the
inspection of the coding results. Here developers investigate which codes were assigned to which
segments in which frequency. UT3S3 stems from a need for developers to create an agreement
between them and their colleagues. As analysis can be a subjective task, developers might have
to come to an agreement about what the results of the analysis are. To create the agreement,
they need to find out where developers disagree in their analysis and discuss these differences.
UT3S4 deals with the deletion of old analyses. Developers may wish to discard them because
they are out-of-date or no longer relevant.

Table 7.8 lists the system functions that derive from the sub-tasks for the manual feedback
analysis. In total, 18 system functions were created to provide adequate tool support for the
manual feedback analysis. These 18 system functions can be separated into annotation and
agreement functionalities. Annotation functionalities handle the UT3S1, UT3S2 and UT3S4,
while agreement functionalities mainly implement UT3S3.

SF10 - SF16 and SF20 provide functionalities for the manual coding itself. Users may create,
configure, load, save and delete annotations of natural language datasets stored in Feed.UVL.
The system automatically tokenizes the datasets according to whether individual words or
entire sentences in the feedback should be assigned codes. SF15 handles the code assignment.
Feed.UVL annotations support three different types of code. The first type are "word codes",
which are a free-text field in which users can enter any text they wish, which is then assigned
to the segment. The second type are "category codes" which users can define in SF11. These
are a predefined list of categories which can be assigned to segments. TORE categories (Section
2.2), for example, can be used as "category codes". The advantage of category codes is that they
are simpler to select from a given list and thus easier to assign than "word codes". The third
type of code are "relationship codes". These codes define a relationship between two segments
and their category codes. For example, these codes allow users to capture that one segment of
the feedback "affects" another by creating an "affects" relationship code between the segments.
Which relationships exist can also be defined by users using SF11. SF20 allows users to highlight
different segments in the annotation. They may highlight classification results of classifiers in
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Feed.UVL (see Section 7.2.4), or part-of-speech tags such as nouns, verbs and adjectives. They
may also highlight a custom selection of category codes in different colours to quickly see which
segments have been assigned which codes.

SF17 and SF18 deal with the creation, display and export of statistics of an annotation.
Tables are provided that list the occurrences of each type of code. Here, developers can see how
often which code was assigned to which text segment. This allows them to inspect the results of
the analysis and draw conclusions from it.

SF19 defines the recommendation function of the Feed.UVL annotator. This requirement came
from a research project performing usage information classification on a word-level. Researchers
noticed that the same words were often assigned the same usage information categories. To speed
up the annotation process, the recommendation function was created. The function analyses
all annotations which exist in Feed.UVL and stores the most common category code assigned
to a word. If the word is then annotated in a new annotation, the recommendation function
automatically pre-selects the most used category code. This pre-selection does not influence the
amount of clicks users need to make to assign a different code to the word, but it speeds up the
selection process if the pre-selected code is correct.

SF21 - SF27 handle the creation and deletion of agreements between annotations. Users
may create an agreement between any two annotations of the same dataset. The system then
automatically calculates the disagreements, i.e. where codes between the two annotations do
not match, as well as Kappa values about the agreement between the annotations. These
requirements again came from the research project performing usage information classification
when it became necessary for researchers to create an interrater agreement for their dataset to
guarantee a certain quality of data.

Table 7.9 lists the workspaces which group the previously introduced system functions for
the manual feedback analysis. These views can be separated into those related to annotations
and those related to agreements. Annotation and agreement views were intentionally kept
seperate despite heavy reuse of annotation functionalities for the agreements in order to maintain
Feed.UVL’s microservice architecture. Annotation functionalities may be used completely
independently from agreement functionalities as users may not have a need for the creation of
agreements.

WS5 contains the main view in which users create, delete and load annotations. This includes
a list of all existing annotations from which previous annotations may be loaded. WS6 contains
the statistics of individual annotations. Here, tables are provided that list the occurrences
of each code and allow navigation to specific segments of the annotation. WS7 is the main
annotation view. Here, users can assign new codes to segments by clicking on them, which
opens the sub-workspace 7.1 in which the different types of codes can be assigned. WS8 is
the configuration view for annotations, here the category and relationship codes that should be
available in an anotation can be configured. The view also allows for the enabling and disabling of
the recommendation functionality (SF19). WS9 - WS11.1 concern the agreement functionalities.
These workspaces are structured the same way as the annotation workspaces.
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Table 7.8.: Manual Feedback Analysis System Function Requirements
SF10: Create Annotation

Description The user creates a new annotation by selecting a dataset for which to create the annotation. The user can select whether the
annotation should assign codes to individual words or entire sentences.

Implements UT3S1
SF11: Configure Annotation

Description The user decides which predefined codes should be assignable inside of an annotation. They can add new codes or delete existing
ones.

Implements UT3S1
SF12: Load Annotation

Description The user loads a previously created annotation in order to continue working on it.
Implements UT3S1

SF13: Save Annotation
Description The user saves the annotation they are currently working on. The system also automatically saves an annotation every 5 minutes

while it is being worked on to prevent information loss.
Implements UT3S1

SF14: Delete Annotation
Description The user deletes an annotation from the system.
Implements UT3S4

SF15: Assign Code
Description The user assigns a code to a segment. This segment is either an individual word or an entire sentence, depending on the type of

Annotation created in SF10. There are three types of codes: (1) Word codes, which allow users to type any text they wish and
assign it as a code, (2) category codes, which are predefined codes as configured in SF11, and (3) relationship codes which describe a
relationship between two category coded segments. Users can freely choose which types of codes they wish to use.

Implements UT3S1
SF16: Update Code

Description The user changes a code that was previously assigned to a segment. The segment now shows as being coded with the new code and
not the old.

Implements UT3S1
SF17: List Annotation Statistics

Description The system lists statistics about the current annotation. This includes occurences of all three types of codes as well as how often
they appear in combination. Category code occurrences can also be displayed in the form of a heat map.

Implements UT3S2
SF18: Export Annotation Statistics

Description The user downloads the statistics tables to use them outside of the system.
Implements UT3S2

SF19: Show Annotation Recommendations
Description The system displays recommended category codes to the user when assigning codes to a word. The recommendations are based on

the frequency of a code being assigned to the relevant word in all other existing Annotations.
Implements UT3S1

SF20: Highlight Annotation Segments
Description The user can highlight individual segments of the annotation. There are three types of highlights: (1) Highlighting the classification

of Machine Learning Classifiers for the Annotation, (2) Highlighting the Part of Speech Tag of individual words, and (3) Highlighting
the different category codes already coded in the annotation.

Implements UT3S2
SF21: Create Agreement

Description The user creates a new agreement between two annotations of the same dataset.
Implements UT3S3

SF22: Load Agreement
Description The user loads a previously created agreement in order to continue working on it.
Implements UT3S3

SF23: Resolve Disagreement
Description The user resolves disagreements by clicking on a disagreement between the annotations and either selecting one of the two annotations’

codes, rejecting both or creating a new code.
Implements UT3S3

SF24: List Agreement Statistics
Description The system lists all unresolved and resolved disagreements between the two annotations as well as Brennan&Perediger and Fleiss

Kappa.
Implements UT3S3

SF25: Export Agreement Statistics
Description The user downloads the statistics tables to use them outside of the system.
Implements UT3S3

SF26: Save Agreement
Description The user saves the agreement they are currently working on. The system also automatically saves an agreement every 5 minutes

while it is being worked on to prevent information loss.
Implements UT3S3

SF27: Delete Agreement
Description The user deletes an agreement from the system.
Implements UT3S4
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Table 7.9.: Manual Feedback Analysis Workspace Requirements
WS5: Annotation Master View

Description In this view, users can create new annotations, as well as select whether they wish to
create a word-level or sentence-level annotation. The view also lists all existing annotations.
These can either be edited or deleted.

Contains SF10, SF12, SF14
WS6: Annotation Statistics View

Description In this view, different statistics about the currently loaded annotation are shown. Users
can switch between different tables showing the occurrences of each type of code (defined
in SF15). The statistics of category codes can also be shown as a heat map. Users can also
navigate to a specific code in WS7.

Contains SF13, SF17, SF18
WS7: Annotation Edit View

Description In this view the content of the annotation is displayed. Users can switch between seeing all
or individual documents of the dataset. This view also provides the highlighting functions
laid out in SF20. Clicking on a word or sentence (depending on annotation type) navigates
to WS7.1.

Contains SF13, SF20
WS7.1: Annotator Code Input View

Description In this view, users can assign new codes to segments they have previously clicked on. They
may also update codes already assigned to the segment.

Contains SF15, SF16, SF19
WS8: Annotation Configuration View

Description In this view category and relationships code for the annotation can be defined. Users can
delete existing code categories or add new ones. This view also allows users to enable or
disable recommendations (SF19).

Contains SF11
WS9: Agreement Master View

Description In this view, users can create new agreements between two annotations of the same dataset.
The view also lists all existing agreements. These can either be edited or deleted.

Contains SF21, SF22, SF27
WS10: Agreement Statistics View

Description In this view, all unresolved and resolved disagreements are listed. Users can navigate to
the disagreements from here to WS11. The view also shows the Brennan&Perediger and
Fleiss Kappa between the two annotations.

Contains SF24, SF25, SF26
WS11: Agreement Edit View

Description In this view, the content of the agreement is displayed. Users can switch between seeing all
or individual documents of the dataset. Agreements and disagreements between annotations
are highlighted. Clicking on an agreement or disagreement navigates to WS11.1.

Contains SF26
WS11.1: Agreement Code Input View

Description In this view, users can resolve disagreements by rejecting the codes of one or multiple
annotations. They may also create new codes similar to WS7.1.

Contains SF23
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Implementation

The backend part of the annotations functionalities was implemented in Python because of
its excellent support for natural language processing libraries. The main library used by the
annotation functionalities is NLTK12 to perform the tokenization of the datasets into either
sentences or individual words. These tokens are then represented on the UI as clickable elements,
which allow for code assignments. Additionally, a WordNet13 API is used to perform the
lemmatization of each token. During lemmatization, a word is returned to its root. This improves
the performance of the recommendation function as codes can be stored for lemmatized words.

The backend of the agreement functionalities was written in GO. This choice was made as most
of the functionalities of the annotation service could be reused and thus did not require a new
Python implementation. Consequently, GO was favourable as it allowed for easier communication
with the uvl-orchestration microservice, which was also written in GO. Reusing the annotation
functionalities was not a concern for the microservice architecture, as using the agreement
functionalities without annotations would not be feasible anyway.

Figure 7.9.: Feed.UVL Annotation Master View

Figure 7.9 shows the implemented Annotation Master view. At the top, users may select the
dataset they wish to annotate and whether they wish to perform word-level or sentence-level
annotation. This choice is then reflected in the Annotation Edit View (Figure 7.13) by having
either individual words, which can be clicked and assigned code to or entire sentences. Users may
also give the annotation a custom name. Below the annotation creation, all available annotations
are listed along with their names, type of tokenization (word or sentence), when they were last
updated, when they were created and on which dataset the annotation was created. The list
may also be sorted by any of these criteria. Additionally, a search filter is provided to search for
12https://www.nltk.org/
13https://www.wordnet.princeton.edu/
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specific annotation names. To the right, users may either navigate to the Annotation Statistics
view, the Annotation Edit View or delete the annotation from the database.

Figure 7.10.: Feed.UVL Annotation Statistics View

Figure 7.10 shows the Annotation Statistics View for an example annotation. A set of eight
different tables is provided, which can be navigated by clicking on the respective tab. The
"Category Codes" table shown here lists the category codes present in the annotation, how often
they occur in total ("Occurences"), the number of relationship codes they are part of, i.e. how
many segments these category codes are assigned to, are also part of a relationship code, and the
number of appearances they have, i.e. in how many documents of the dataset the code appears
at least once. Similar tables are available for word codes, relationship codes and the combination
of all three ("Combination View"). Additionally, a list of all occurences of each code can be
seen in the "Occurences" tables. These tables help users gain an overview of entire feedback
datasets. They simplify analysing usage information on a meta-level, i.e. investigating which
usage information users are mostly discussing in their feedback or searching for common themes
in the dataset by filtering for specific usage information and related terms.

Lastly, as can be seen in Figure 7.11, the category codes and relationship codes may also be
visualized as a heatmap by clicking on the "Visualization View" tab. This view uses BaklavaJS14

to automatically create a graph representation of the codes. Codes are visualised as boxes and
coloured according to their occurrences or appearances (i.e. how often they are assigned in total
or in how many documents they are assigned at least once). Relationships between category
codes are represented through connections between boxes. This functionality is intended to
provide an easy visualisation of how often certain codes are used in the annotation. Elements
can be moved around freely to reorganize the graph.

Figure 7.12 shows the configuration view of the annotator. Here, users can define the category
and relationship codes that should be available in the annotation. This can be changed at any
time. Users may change or delete existing codes or add new ones. Additionally, the category
code recommendation function may also be disabled or enabled here.

Figure7.13 shows an example Annotation Edit View for a word-level annotation. At the top
left, users may select whether they wish to see all documents or which individual documents
below. When selecting "All Documents", as can be seen at the top, pagination is used to maintain
a reasonable UI scale. To the right of the pagination options, highlighting for classifier results,
part of speech tags of category codes are shown, along with buttons to open the configuration
view, statistics view or save and exit the annotation. The main part of the view is the tokenized
14https://www.github.com/newcat/baklavajs

116



7.2. Feed.UVL Functionalities

Figure 7.11.: Feed.UVL Annotation Statistics Visualization View

Figure 7.12.: Feed.UVL Annotation Configuration View

texts that can be seen below. By default, words that have been assigned codes are coloured
according to the type of code that has been assigned to them. In the shown example, category
codes have been assigned to words, resulting in a blue bounding box around the words.

Clicking on any word opens up the Code Input View at the clicked word. This can be seen at
the bottom of the screenshot for the word "information". The input has several options, which are
reported here from left to right. Clicking on the three bars on the left allows users to highlight
all similar words in the same document and assign the same code to all. Clicking the trash can
icon allows users to delete the assigned codes from that word. The "Name" field allows users to
assign a word code. By default, the lemmatized word is written here, but this can be replaced
with any text the user wishes. Clicking the category field lists all available category codes in
that annotation. If the recommendation function is enabled, the category field is automatically
pre-selected with the most common category code assigned to the clicked word. Clicking on
the "chain" icon to the right of the category field allows users to assign relationship codes. An
example of this can be seen in Figure 7.14. Here, users select the words they wish to relate to
and select a relationship code before confirming their selection. Multiple words can be selected
by holding this Shift key. The remaining two buttons on the right of the input view, move the
view further down in case it is blocking relevant text (arrow icon) and bring up the configuration
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Figure 7.13.: Feed.UVL Annotation Edit & Code Input View

view (gear icon). All functionalities mentioned here are also explained with tooltips by hovering
over the icon.

Figure 7.14.: Feed.UVL Code Input View Relationship

We have omitted further screenshots of the agreement views, as they reuse the same UI structure
as the Annotation Master, Statistics and Edit Views. Screenshots are, however, available in the
digital Appendix A.

7.2.4. Automatic Feedback Analysis

Requirements

The requirements for the automatic feedback analysis functionalities were derived to enable
developers to efficiently analyze feedback using machine learning techniques by complementing the
manual feedback analysis processes. The automation focuses on deploying classifiers, analyzing
feedback datasets, and managing analysis results. These requirements emerged because of the
time and labour-intensive process of manually analysing feedback.

Table 7.10 defines the primary user task, UT4, which is to manage automatic analyses.
Developers aim to perform automated analysis of feedback data using machine learning classifiers,
inspect the results, and discard outdated analyses when necessary. This task is divided into three
sub-tasks. UT4S1 covers performing automatic analysis, where developers select a dataset, define
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Table 7.10.: Automatic Feedback Analysis User Task & Sub-Task Requirements
UT4 Manage Automatic Analyses

The developer wants to manage the automatic analysis of feedback. For this, they need to perform the
analysis on feedback data by using a machine learning classifier to perform the analysis. Afterwards,
they wish to see the results of the analysis by inspecting the classifier results. This may include
inspecting the performance of the classifier. Also, developers may wish to discard old analyses because
they are no longer relevant.
UT4S1 Perform Automatic Analysis
The developer performs the automatic analysis of feedback by choosing a dataset they wish to analyse,
defining the machine learning classifier that performs the analysis and setting its parameters.
UT4S2 Inspect Automatic Analysis
The developer inspects the analysis once it is complete to see the classifier’s classification. They may
also want to analyse the classifier’s performance by calculating performance metrics. They may also
wish to make changes to the classifier’s classification.
UT4S3 Discard Previous Automatic Analyses
The developer wants to discard old analyses that are no longer relevant.

a classifier, and configure its parameters to execute the analysis. UT4S2 focuses on inspecting
the analysis results. This involves examining the classifier’s output, evaluating its performance
through metrics such as precision, recall, and F1 scores, and making manual adjustments to
the classification if needed. UT4S3 addresses the need to discard previous analyses that are no
longer relevant, ensuring that the system remains organized and current. The user task and
sub-task are based on the manual analysis tasks.

Table 7.11 elaborates on the system functions derived from the previously introduced sub-tasks.
SF28 allows users to deploy machine learning classifiers either by directly uploading a trained
model to the system or by using the MLFlow stack (Figure 7.3) to automatically load the model.
This reduces the size of the classifiers’ microservice containers considerably when working with
larger models. SF29 allows users to upload a ground truth in the Upload View, which can
then be used during SF32 to calculate performance metrics. SF30 and SF31 enable users to
configure an analysis run by selecting a classifier, dataset, and associated parameters and to
initiate the analysis process. Once the analysis is executed, SF32 generates the run results,
including calculated performance metrics if a ground truth dataset is available.

For UT4S2, system functions focus on result inspection and modification. SF33 lists all
stored run results, which can be sorted based on various attributes such as date, classifier, or
performance score. SF34 enables filtering of these results by specific criteria like classifier type
or dataset. Once a result is identified, SF35 allows users to view detailed outputs by selecting
the "Show Result" option. Additionally, SF36 supports exporting run results into annotations,
integrating the classification outcomes into manual annotation processes for further inspection,
modification, or use in agreements.

UT4S3 is implemented through SF37, which allows users to delete run results that are no
longer relevant. This ensures the system remains uncluttered and focused on current analyses,
reflecting the developers’ need to manage their workspace efficiently.

Table 7.12 outlines the workspaces that group the system functions. WS12, the Classifier
Analysis View, contains functionalities for configuring and executing analysis runs (SF30, SF31)
and for managing the results list (SF33, SF34). WS13, the Classifier Results View, focuses on
displaying individual run results through SF35. Which widgets are displayed in this view to
show the results depends on each classifier is defined when deploying the classifier to Feed.UVL.
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Table 7.11.: Automatic Feedback Analysis System Function Requirements
SF28: Deploy Machine Learning Classifier

Description The user deploys a machine learning model into Feed.UVL for later use in feedback analysis. The
user may either provide the finished model directly in the classifiers microservice or they may upload
the training run of the classifier to the MLFlow-Stack which then automatically loads the model into
Feed.UVL once the microservice is running.

Implements UT4S1
SF29: Upload Ground Truth

Description The user uploads a ground truth for a dataset. The ground truth consists of an xlsx or csv file with
the ID of the document in the first column and the assigned classes in the second column. This ground
truth can then be seen in WS4: Dataset View and is used to calculate metrics in SF32.

Implements UT4S2
SF30: Configure Analysis Run

Description The user selects the classifier they wish to use and the dataset they wish to perform the classification
on. Custom fields are displayed depending on the classifier, which allows the user to customize the
classifier’s parameters for the run.

Implements UT4S1
SF31: Start Analysis Run

Description The user starts the analysis run with the classifier, dataset and parameters defined in SF30.
Implements UT4S1

SF32: Create Run Results
Description The system creates the run results by running the selected classifier on the dataset. If a ground truth

is present for the dataset, the system calculates precision, recall and F1 metrics.
Implements UT4S1

SF33: List All Run Results
Description The system lists all run results stored in its database. The list can be sorted by date, classifier, dataset,

parameters, run name, status or score (optional).
Implements UT4S2

SF34: Filter Run Results
Description The user filters the list of all run results. They may filter by classifier, dataset or run name.
Implements UT4S2

SF35: Display Run Results
Description The system displays the results of a run when the user clicks on the "Show Result" Button next to a

run.
Implements UT4S2

SF36: Export Run Results
Description The user exports the run results into an annotation. This creates an annotation in WS5: Annotation

Master View, where the classification results are created as codes. The annotation can be inspected,
changed and used for agreement creation as if it were a manual analysis annotation.

Implements UT4S2
SF37: Delete Run Results

Description The user deletes previous run results that are no longer relevant.
Implements UT4S3

Table 7.12.: Automatic Feedback Analysis Workspace Requirements
WS12: Classifier Analysis View

Description In this view, classifier runs can be configured and executed. The View also provides a list
of all previous runs. Users can navigate to WS13: Classifier Results View for each run.

Contains SF30, SF31, SF33, SF34, SF36, SF37
WS13: Classifier Results View

Description In this view, users can inspect the results of a classifier run. Depending on the classifier,
this view provides different widgets to show the results.

Contains SF35
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Implementation

Because Feed.ai originally already provided some support for classifier integration in the form
of a Twitter classifier, integration of the automatic classifier analysis functionalities followed
Feed.ai’s implementation. Consequently, functionalities were implemented directly into the
uvl-orchestration microservice written in GO and do not require any additional services.

Figure 7.15.: Feed.UVL Classifier Analysis View

Figure 7.15 shows the Classifier Analysis View implemented in Feed.UVL. At the top users
select a classifier and a dataset which they wish to analyse. Depending on the classifier selection,
the customizable parameters below the selection change dynamically. In the case of the BERT
classifier selected here, a more detailed classification method can be selected, debug information
can be included in the run results, an annotation can be created from the classification (SF36),
and names can be given to the run and the created annotation.

Once the classifier is started, it will appear in the list of "Last Runs" below with an "In Progress"
status. Once classification is complete, the status will change to either "Finished" or "Failed" if
any errors have occurred. From the list of last runs, users can navigate to the classifier results
view, to the annotation (if one was created) or delete the run.
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Figure 7.16.: Feed.UVL Classifier Results view (Usage Information)

Figure 7.17.: Feed.UVL Classifier Results View (Relevance Classification)

Figures 7.16 and 7.17 show two alternative versions of the Classifier Results View. Because
classification goals can differ, results views are customizable to the classification. Figure 7.16
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shows the results view for a usage information classifier. The results show a summary of the
classification as well as a detailed list of assigned codes (not shown). Figure 7.17 shows the results
view for a relevance classifier, which determines if parts of feedback are relevant for developers.
Below the general parameter information, the results are displayed as a table showing in red
which text segments were removed by the classifier as irrelevant. The new document is then
shown on the right.

7.2.5. Feed.UVL Dashboard
Requirements

Feed.UVL’s Dashboard was designed to unify multiple usage information related functionalities
spread throughout Feed.UVL while also implementing new functionalities for the relation of
feedback and requirements. Consequently, the dashboard can be divided into two separate parts.
The first part combines the manual and automatic feedback analysis functionalities described
in Sections 7.2.3 and 7.2.4. The requirements for this part will not be reported here again as
both the user tasks and system functions are unchanged. Only the workspaces have been slightly
altered to match the dashboard layout.

The second part concerns feedback requirements relation. For this the dashboard provides both
manual as well as automatic analysis functionalities. The requirements for the manual analysis
were derived based on discussions with annotators performing feedback requirements relation.
The goal was to provide tool support to simplify their work. Following this, the requirements for
the automatic feedback requirements relation were derived based on seamless implementation
into the now-established manual analysis functionalities.

Table 7.13.: Feed.UVL Dashboard User Task & Sub-Task Requirements
UT5 Manage Feedback Requirements Relation

The developer manages multiple feedback requirements relation project simultaneously. For each, they
relate user feedback to relevant requirements.
UT5S1 Manage Project Datasets
The developer decides which feedback and which requirements datasets are part of a project. Each
project represents a software product the developer is currently working on.
UT5S2 Relate Feedback to Requirements
The developers relates feedback statements to documented requirements.
UT5S3 Discard Outdated Relations
The developer discards outdated feedback requirements relations that are no longer relevant.
UT5S4 View existing Feedback Requirements Relation
The developer views a previously created feedback requirement relation.

Table 7.13 describes the primary user task for the feedback requirements relation dashboard
and its sub-tasks. UT5 concerns the management of the feedback requirements relation. The
developer’s goal is to perform the relation for multiple software projects and administrate the
datasets used in each one. This includes the feedback and the requirements relevant to each
project. This task is divided into four sub-tasks. UT5S1 concerns the general administration
of the datasets. UT5S2 - UT5S4 are related to the actual relation of feedback to requirements.
This includes the creation of new relations, discarding of old relations and viewing of existing
relations.
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Table 7.14.: Feed.UVL Dashboard System Function Requirements
SF38: Create Dashboard

Description The user creates a new dashboard by selecting whether they wish to perform usage information
classification or feedback requirements relation. They also set a unique name for the dashboard.

Implements UT5S1
SF39: Load Dashboard

Description The user loads a previously created dashboard by selecting the name of the dashboard they wish to
load.

Implements UT5S1
SF40: Add Feedback Dataset

Description The user selects from the list of feedback datasets stored in Feed.UVL, which datasets should be related
to requirements. The user may select one or multiple datasets.

Implements UT5S1
SF41: Import Requirements Dataset

Description The user imports the requirements for a software from Jira. For this, the user selects the name of the
Jira project in which the requirements are stored. Then, they select which specific requirements they
would like to import. These are then stored in Feed.UVL’s database.

Implements UT5S1
SF42: Remove Dataset

Description The user removes either a feedback or requirements dataset from the dashboard. These are then
deleted from the dashboard’s storage. Feedback datasets removed from a dashboard are still retained
in Feed.UVL’s database.

Implements UT5S1
SF43: Delete Dashboard

Description The user deletes a dashboard that is no longer relevant. All information therein is removed. Feedback
datasets are still retained in Feed.UVL’s database

Implements UT5S1
SF44: Update Dashboard

Description The system automatically checks if a dataset used in a dashboard that is currently being loaded (SF39)
has been updated since the last time the dashboard was used. The dashboard then warns the user of
this update.

Implements UT5S1
SF45: Manually Relate Feedback to Requirement

Description The user manually relates feedback to a requirement by selecting every feedback from a list that they
wish to add to a specific requirement. For this a button is provided under the list of requirements
(SF48).

Implements UT5S2
SF46: Automatically Relate Feedback to Requirement

Description The system automatically performs the feedback requirements relation when prompted to by the user.
The user prompts the automatic relation by pressing a button provided in the dashboard. A loading
dialogue appears while the relation is being performed. Afterwards the dashboard reloades with the
results of the relation.

Implements UT5S2
SF47: Delete Releation

Description The user deletes the relation of a specific feedback to a specific requirement. For this, a button is
provided next to each feedback requirements relation.

Implements UT5S3
SF48: List Feedback Related to Requirement

Description The system lists every requirement imported from Jira (SF41). Under each requirement, the feedback
related to that requirement is listed.

Implements UT5S4
SF48: Filter List of Relations

Description The user filters the list of requirements or of related feedback. This is done by entering a search string
into the provided search bars. Only feedback or requirements containing the search string are displayed.
Alternatively, the user may also only show requirements which do not have any feedback related to
them.

Implements UT5S4
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Table 7.14 lists the system functions that derive from the previously introduced user tasks.
SF38 allows users to create a new dashboard by selecting whether they wish to perform usage
information classification or feedback-requirements relation and by assigning a unique name to
the dashboard. SF39 enables users to load a previously created dashboard by selecting its name.
SF40 provides the functionality for users to choose one or more feedback datasets stored in the
system’s database to relate them to requirements. SF41 allows users to import requirements
datasets from Jira by selecting the Jira project and specific requirements, which are then stored
in the system’s database. SF42 lets users remove feedback or requirements datasets from a
dashboard, ensuring that removed feedback datasets remain stored in the database. SF43 permits
users to delete dashboards that are no longer needed, with feedback datasets still retained in the
system’s database. SF44 ensures the system checks for updates to datasets used in a dashboard
being loaded and alerts users to any changes. This prevents users from relating outdated feedback
by informing them of changes to the datasets. SF45 allows users to manually associate feedback
with specific requirements by selecting feedback from a list and assigning it to a requirement.
SF46 automates the process of relating feedback to requirements when triggered by the user,
displaying the results after processing. SF47 lets users delete specific feedback-to-requirement
relations via a button next to each relation. SF48 displays a list of requirements imported from
Jira, with feedback related to each requirement listed below it. Additionally, SF49 enables users
to filter the list by entering a search string, displaying only matching elements.

Table 7.15.: Feed.UVL Dashboard Workspace Requirements
WS14: Dashboard Selection View

Description In this view, the user decides which dashboard they would like to load. They may also
create a new dashboard from this view.

Contains SF38, SF39, SF43
WS15: Feedback Requirements Relation Dashboard View

Description This is the main view of the feedback requirements relation dashboard. It consists of the
configuration view and the relation view.

Contains SF44
WS15.1: Dashboard Configuration View

Description In this view, the user selects their feedback and requirements datasets for the currently
loaded dashboard.

Contains SF40, SF41, SF42
WS15.2: Dashboard Relation View

Description In this view, the user can see a list of all existing feedback requirements relations. Here,
they can add new ones manually or automatically. They can also remove existing relations.

Contains SF45, SF46, SF47, SF48, SF49

Table 7.15 outlines the workspaces that group the system functions. WS14 contains function-
alities for dashboard creation, loading and deletion. WS15 is divided into two sub-workspaces.
WS15.1 groups the functionalities for dataset management for the dashboard. WS15.2 groups
functionalities for relating feedback and requirements both manually and automatically.

Implementation

To maintain Feed.UVL’s microservice architecture, the dashboard, was implemented in such
a way that the usage information and feedback requirements relation sections can function
independently. For the usage information, most of the functionalities were extracted from already
existing containers in Feed.UVL. Some changes were made to these to function with multiple
datasets simultaneously, which was not possible previously. The backend for the feedback
requirements relation functionalities was created in a new container written in Python. This
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was done to seamlessly integrate with automatic relation functionalities, which were written in
Python due to Python’s availability of machine learning libraries.

Figure 7.18.: Feed.UVL Dashboard Selection and Configuration View

Figure 7.18 shows the implementation for WS14 at the top and WS15.1 below. At the top,
users can select the dashboard they wish to load from a dropdown. They may also create a new
dashboard which will open a pop-up which allows them to set a name for the dashboard and
select whether they wish to perform usage information classification or feedback requirements in
the dashboard. Below are the selection options for the import of requirements from Jira. This
is implemented by accessing Jira’s API to import issues from within the selected Jira project.
Users are shown a list of Jira issue types they wish to import in a pop-up. Afterwards, they can
select all or specific issues from the project to import. Below the Jira import, users can select
from the list of datasets stored in Feed.UVL. They may select one or multiple of these datasets
and add them to the dashboard.

Figure 7.19 shows an excerpt from the implementation of WS15.2. In this view, which is placed
below WS15.1, users are presented with a list of all imported requirements in a table. A user may
click on a requirement, which unfolds the list of all feedback related to that requirement. In this
view, users may delete all relations, relate new feedback to the requirement or delete individual
relations. A button is also provided for each requirement to delete it from the dashboard. At the
top of the view, a button allows users to start the automatic relation of feedback and requirements
based on the datasets selected in WS15.1. Search filters are provided for requirements and
feedback to filter for specific texts.
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Figure 7.19.: Feed.UVL Dashboard Relation View

Figure 7.20 shows a screenshot of the usage information classification dashboard whose
requirements are omitted in this section. As can be seen, the dashboard reuses views and
functionalities from the manual and automatic classification functionalities of Feed.UVL (Sections
7.2.3 and 7.2.4). Users select datasets they wish to analyse, select the classifiers they wish to
perform the analysis with and can see and change the results of the classification in the form of
an automatically created annotation.

127



7. Feed.UVL

Figure 7.20.: Feed.UVL Dashboard Usage Information Classification

7.2.6. Jira Plugin

Requirements

Requirements for the Jira plugin were derived from a need to make the information created
and stored in Feed.UVL more accessible to developers without requiring them to switch tools
constantly. More specifically, the plugin is targeted towards allowing developers to see feedback
related to a requirement directly next to that requirement in Jira. Additionally, it allows them
to highlight the usage information contained in that feedback within the same view. Note that
requirements are stored as issues in Jira. Each issue represents a different requirement.
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We do not specify new user tasks for the plugin as its purpose is not to support fundamentally
different tasks than those specified by UT5S4, UT4S2 and UT3S2. The purpose of the plugin is
merely to make this information more easily accessible.

Table 7.16.: Jira Plugin System Function Requirements
SF49: Configure Jira Plugin

Description The user specifies the names of the dashboards for the usage information classification and
feedback requirements relation they wish to import into Jira.

SF50: Import Dashboard Information
Description The system imports the information of the dashboards specified in SF49 and stores it in

Jira. For this, the API provided by Feed.UVL is used.
SF51: Display Related Feedback

Description The system displays a list of related feedback for every requirement.
SF52: Highlight Usage Information

Description The user selects the highlighting of individual types of usage information based on the
TORE Model. The selected usage information is then highlighted in different colours in
the feedback.

SF53: Hide Feedback
Description The user hides individual feedback statements for an issue. This feedback is then no longer

displayed for that issue.
SF54: Filter Feedback

Description The user filters the feedback by entering a search string. Only feedback containing that
string is displayed.

Table 7.16 lists the system functions of the Jira plugin. SF49 allows users to configure the
Jira plugin by specifying the names of dashboards for usage information classification and
feedback-requirements relation that they wish to import into Jira. SF50 enables the system to
import the specified dashboard information using the API provided by Feed.UVL and store it
in Jira. SF51 displays a list of feedback related to each requirement within Jira. SF52 allows
users to highlight specific types of usage information based on the TORE Model (Section 2.2),
with different types highlighted in distinct colours within the feedback. SF53 enables users to
hide individual feedback statements associated with an issue, ensuring the hidden feedback is
no longer displayed for that issue. It should be noted that this does not affect the information
stored in Feed.UVL. SF54 provides functionality to filter feedback by allowing users to enter a
search string, displaying only feedback that contains the specified string.

Table 7.17.: Jira Plugin Workspace Requirements
WS16: Jira Plugin Settings View

Description In this view, the user specifies the names of the dashboards they would like to import
from Feed.UVL. The system then imports the feedback requirements relation and usage
information classification.

Contains SF49, SF50
WS17: Jira Plugin Issue View

Description In this vie,w the feedback is displayed. The view is part of Jira’s default Issue View, which
displays all information related to a specific issue.

Contains SF51, SF52, SF53, SF54

Table 7.17 shows the workspaces which group the system functions of the Jira plugin. WS16
provides an interface for users to enter the dashboards they would like to import into Jira from
Feed.UVL. WS17 groups all functionalities related to the actual displaying of the imported
information.
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Implementation

The Jira plugin was written in Java code due to Atlassian’s (the developer of Jira) extensive
support for plugin development using Java. Jira plugin development was done using Atlassian’s
provided SDK, which provides help with the API, development and running of test environments.
To access information from Feed.UVL, the API of the dashboard container, was extended to
extract the needed information via API requests and store it on the Jira server. The automation
of this means that users only need to specify the names of the dashboards they wish to import
without requiring any further setup of the plugin.

Figure 7.21.: Jira Plugin Settings View

Figure7.21 shows the implementation of WS16: Jira Plugin Settings View. The view is
accessible via the projects setting in every Jira project. As a result, users can specify different
dashboards to import for every project. The names of the two dashboards storing the feedback
requirements relation and usage information classification have to be entered in the provided
input fields. The Save Data button then imports the information. Should the dashboards change
in Feed.UVL, a click on the same button will update the information in Jira. A button is also
provided to navigate to the project’s issue page.

Figure 7.22 shows the plugin inside of the Jira default issue page on the right. The plugin
uses some default functionalities provided by Jira to resize depending on the screen it is being
looked at with. For every issue (i.e. every requirement), the plugin will display the list of related
feedback. By clicking on the eye next to a feedback statement, the feedback is hidden for that
requirement and will no longer be displayed. The top right of the feedback panel offers three
buttons. The button on the left opens the highlighting menu. Here, users can select which type
of usage information they wish to highlight. Highlighting can be seen in the example feedback
shown in the figure. Note that the highlighted information here does not necessarily represent
actual usage information and is only highlighted for demonstration purposes. The middle button
opens the search bar that allows users to only see feedback containing a specific string. The
button on the right will hide the feedback panel completely in case users do not wish to see it.
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Figure 7.22.: Jira Plugin Issue View

7.3. Conclusion
During its development as part of this dissertation Feed.UVL has been applied in different
research contexts, demonstrating its adaptability and effectiveness in classification tasks. In
this dissertation, Feed.UVL was mainly utilized to create the usage information und feedback
requirements relation datasets presented in Section 2.5. It was also utilized to validate the
classifiers presented in the solution investigation of this disseration (Chapter II). Consequently,
this dissertation benefited from its structured approach to data analysis and its integration of
both manual and automated feedback classification methods. The ability to compare annotations
and evaluate classifier performance provided a robust framework for ensuring reliable results.

Beyond the research in this dissertation, Feed.UVL’s manual annotation functionalities have
been successfully employed in a project focused on investigating user-developer communication
that the author of this dissertation was part of (Anders et al., 2022). Other participants of the
project reported that compared to commercial alternatives like MAXQDA, Feed.UVL offered a
more efficient workflow, allowing participants to categorize and analyze feedback far more quickly.
The combination of manual annotation and visualization functionalities facilitated a structured
analysis process, improving the overall quality of use. Especially, the recommendation function
of the manual annotator was praised.

Additionally, Feed.UVL has been utilized in an independent research project investigating
user story similarity. The tool’s microservice-based architecture and modular design enabled
its application in a domain beyond its initial scope without extensive modifications. This
demonstrates its potential for broader applicability in various classification and analysis tasks.

However, as Feed.UVL was only intended as a prototype to support the other focuses of
this dissertation, namely feedback requirements relation and usage information classification,
it lacks some functionalities to be more applicable to practical usage. Future work on the
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tool should increase security by implementing a role-based access control system with limited
permissions. Currently, the tool is locked behind a single password, giving everyone with that
password complete access to the frontend of the application. While the server infrastructure is
locked behind a permission system, the frontend is not. Implementing role-based security would
strengthen Feed.UVL further.

Also, investigating the practical application of Feed.UVL would be an interesting endavour by
implementing it into the workflow of a company. Unfortunately, this was out-of-scope for this
dissertation but could provide an entry for future research.
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Chapter 8
Feedback Requirements Relation Evaluation

The FeReRe approach was not evaluated in a real-life practical scenario in this dissertation.
Instead, this section discusses the effects of observations made during the evaluation of the
classifier and comparison with human coders on a potential practical application. The goal
is to discuss whether problem P1: Understand which functionalities users are discussing in
their feedback, introduced in Section 1.1, is solved by the approach and whether the use cases
introduced in Section 5.1.2 are adequately supported.

Section 8.1 introduces the different factors considered for the evaluation. Section 8.2 discusses
these factors in detail for a company wishing to utilise FeReRe. Lastly, Section 8.3 concludes the
chapter.

8.1. Evaluation Methodology

The evaluation presented in this chapter discusses the theoretical deployment in a software
development company which wishes to utilize the FeReRe approach to create connections
between feedback and requirements for requirements validation as proposed in the FeReRe use
case in Section 5.1.2. Different considerations are necessary to assess whether the utilization of
FeReRe would fit the company. These considerations are the time efficiency and risk of missed
relations by the classifier as well as deployment requirements for software, hardware and the
long-term maintainability of the approach.

To assess these factors, we conduct a comparative evaluation against manual human classifi-
cation. For this comparison, we evaluate the balance between time efficiency and classification
accuracy. For time efficiency, we measure the time required for both manual and automated
feedback relation processes. The comparison highlights potential time savings when using
FeReRe.

For the risk of missed relations, we analyze the impact of incorrect classifications, focusing
on missed relations (false negatives) and incorrect relations (false positives) because these
lead to missing information when utilizing a classifier instead of performing the classification
manually. The implications of these inaccuracies on practical development workflows are discussed,
particularly in the context of human validation in a semi-automatic approach.

For the deployment requirements, we discuss the necessary hardware to run the classifier, how
it is best integrated into existing software workflows, and the requirements for its long-term
maintenance. We provide recommendations on deployment strategies, taking into account the
most important constraints: the need for initial training data, the potential for continuous
learning, and the adaptability of the approach to varying development environments.
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8.2. Evaluation Scenario

Section 8.2.1 introduces the company wishing to use FeReRe and discusses the manual aspects
of feedback requirements relation without the utilization of FeReRe. Section 8.2.2 compares
these manual aspects to the time savings when using the semi-automatic FeReRe approach.
Section 8.2.3 calculates the effect of missed relations due to imperfect classification. Section 8.2.4
discusses hardware and software requirements for the deployment of the approach. Section 8.2.5
discusses the requirements for the long-term maintainability of the classifier.

8.2.1. Scenario

We orient the evaluation scenario towards a hypothetical deployment in the Komoot gmbh, which
develops the Komoot hiking app. In this hypothetical scenario, it is the goal of the company to
utilise the FeReRe approach to semi-automatically relate feedback to requirements in order to
validate whether their requirements match with the user’s needs. This is in line with the primary
use case for FeReRe as introduced in Section 5.1.2. We chose this company because the Komoot
App Store dataset (Section 2.5.2) we have created is the most representative of our datasets. It
consists of 335 unprompted feedback crawled from the actual app store page of the Komoot app,
79 recreated requirements for the entire Application and a manually created relation between the
feedback and requirements. In contrast to the SmartVernetzt and SmartFeedback apps, Komoot
also represents a commercial product with over 40 million users1. The research project scenario
in which SmartFeedback and SmartVernetzt were created is also less representative of practical
application. The ReFeed dataset is not used because we lack the necessary information about
the software and source of the gathered feedback.

The Komoot gmbh is a medium sized company currently employing more than 65 members. We
do not have concrete numbers on the number of feedback the company receives daily. However, a
2013 study found that, on average, apps receive around 22 new feedback messages a day (Pagano
and Maalej, 2013). This number is likely to have risen since 2013, given the rise in popularity of
mobile phones over the years. However, it is also skewed due to the thousands of reviews that
larger apps receive in a day. Because more recent or more detailed studies aren’t available, we
assume the number of 22 new feedback messages for the purpose of this evaluation.

During the creation of the Komoot dataset (Section 2.5.2), it took an average of around 2-3
seconds to relate a feedback statement to a requirement. The dataset contains 335 feedback
statements and consists of 79 requirements. The creation of this dataset took around 15-20 hours,
varying slightly between coders. This time does not include time spent on creating interrater
agreements or correcting any relations. For the purpose of this evaluation, we assume that a
practical application in the company would not include the creation of interrater agreements due
to the time and effort spent on this.

Note that in order to create a complete relationship between feedback and requirements, each
feedback statement needs to be compared to each requirement to determine if they are related.
Comparing 335 feedback with 79 requirements results in a total of 26.465 comparisons. Divided
over 15 hours, this creates an estimate of around 2 seconds per feedback requirements comparison.

Assuming that the developer receives 22 new feedback statements a day and relates these to
their 79 requirements, a total of around one hour would need to be spent to create the complete
relation each day. This number, of course, is only a rough estimate as it depends on multiple
factors, namely the length of the feedback, the number of requirements that the software has,
the efficiency of the coder and how familiar they are with the requirements of the software. In
the final dataset, a feedback statement is related to 2.5 requirements on average. This means

1https://www.komoot.com/jobs
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Table 8.1.: Manual Relation Scenario
Software Requirements Daily Feedback Possible Relations Actual Relations Time Spent
Komoot 79 22 1738 55 58 min

SmartVernetzt 31 22 682 23 23 min
SmartFeedback 29 22 638 23 21 min

ReFeed 14 22 308 67 10 min

that 22 new feedback statements would result in approximately 55 relations between feedback
and requirements.

Table 8.1 lists the above-mentioned number of requirements, daily feedback messages, possible
and actual relations, as well as the time spent creating these relations. We also include these
numbers for SmartVernetzt, SmartFeedback and ReFeed for completeness. Note that due to
the more targeted feedback gathered for the SmartAge apps through the questions asked in
SmartFeedback, the average number of requirements related to feedback is only 1.1 for both apps
compared to 2.5 for Komoot. The average for the ReFeed dataset is 3.1, but as discussed in Section
2.5.2, this dataset does not contain all requirements of the discussed software. Consequently, the
ReFeed dataset is not further considered in this evaluation.

8.2.2. Time Efficiency
When we disregard the time spent on training the classifier (as we also disregard time spent for
humans to get familiar with the software and its requirements), the time it takes for the classifier
to relate 22 feedback statements to 79 requirements becomes negligible even on a moderately
powerful computer without any dedicated GPUs. The machine, using an AMD Ryzen 7 7800X3D
processor and 32GB of DDR5 RAM, needs around 90 seconds to perform the classification,
most of which is spent loading the model. The time is reduced to around 15-16 seconds on a
computer where the classifier is already deployed, thus removing the time needed to load the
model. If a dedicated GPU is used for classification, the classification takes only around 2.5
seconds using an NVIDIA GeForce RTX 3080 Ti. In any of these scenarios, classification is much
more time-efficient than the one hour of manual labour required.

If the classifier were to be used fully automatically, then no further manual labour would be
required. In a semi-automatic approach, such as the one proposed in this dissertation, some
human effort would be required of the developer after the classification. For this semi-automatic
approach, the classifier presents the list of all relations it has classified. The developer can then
accept or decline these.

When we split the 335 feedback in the Komoot dataset into chunks of 22 and let the classifier
relate these to the 79 requirements, it produces an average of 63 relation recommendations per
22 feedback. Using the previous 2-second estimate to decide if feedback and requirements are
related, the developer would need to spend around 2 minutes approving or rejecting the proposed
relations. This is a much shorter time needed than the fully manual approach, which would
require 58 minutes.

8.2.3. Risk of Imperfect Classification
While the classifier is able to perform the relation much more quickly than a human, this likely
comes at a cost to the accuracy of the classification. The high kappa values presented in Section
2.5.2 indicate that humans can perform the classification relatively accurately. While there is
still a risk that multiple coders could make the same mistake, Kappa can be an indicator of the
reliability of the coding process (Carletta, 1996). A high number of disagreements would result in
a low kappa value and would indicate that humans struggle to perform the classification. Given
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the high kappa values, we assume a perfect human relation for the purpose of the comparison to
the classifier’s performance.

As shown in Section 5.2.4, the Kommot classifier achieves a precision of 0.71 and a recall of 0.86.
Using the example 22 feedback statements, assuming the average relation to 2.5 requirements we
have in our datasets, we can calculate the impact of the imperfect classification as follows:

• Number of feedback: 22

• Number of requirements: 79

• Average relationships per feedback: 2.5

• Total relations: 55 = Number of feedback x Average relationships per feedback

• Precision: P = 0.71; Recall: R = 0.86

Missed Relationships Due to Recall (False Negatives)

Recall = TP
TP + FN (8.1)

FN = TP
Recall

− TP (8.2)

TP = Recall × 55 = 0.86 × 55 = 47.3 (8.3)

FN = 55 − 47.3 = 7, 7 (8.4)

By solving the formula used to calculate recall (Formula 8.1) for the false negatives (FN), we
get Formula 8.2. By inserting the above-listed assumed values, we receive a total of 7.7 false
negatives. Thus, approximately eight correct relations are missed by the classifier out of 55 that
would otherwise be classified by a human. This means about 15% of the relations are missed.
The company wishing to deploy FeReRe would have to assess whether this risk is worth the
potential benefits of creating the relations. If they are not created at all in their workflow, then
even an imperfect relation, which misses 15%, would be beneficial.

Precision is lower than recall at 0.71. The impact of the precision score can be calculated as
follows:

Incorrect Relationships Due to Precision (False Positives)

Precision = TP
TP + FP (8.5)

FP = TP
Precision

− TP (8.6)

FP = 47.3
0.71 − 47.3 (8.7)

FP = 66.6 − 47.3 = 19.3 (8.8)

As previously done for the recall formula, we solve the precision calculation Formula 8.5
for the false positives and receive Formula 8.6. Inserting the assumed values, the classifier
incorrectly creates around 19 feedback requirements relations. However, in a semi-automatic
approach, as proposed in this dissertation, the precision value becomes much less relevant as
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the recommendations of the classifier are corrected by a human. Consequently, the 19 incorrect
recommendations would be filtered out. The only relevance precision retains is in the amount
of manual labour required to remove these false positives. As discussed in the previous section,
however, only around 2 minutes are required for this task. Ultimately, these numbers are only
representative of our available data and would have to be assessed by the company wishing to
utilize FeReRe as they may be different.

8.2.4. FeReRe Deployment

Given the time efficiency and missing accuracy considerations discussed in Sections 8.2.2 and
8.2.3, we now discuss the feasibility of deploying the FeReRe approach in a real-world software
development workflow.

Hardware & Software Requirements

A practical deployment of the classifier would involve integrating it into an existing requirements
management system or a feedback analysis tool. This could be achieved in one of the following
ways:

• Standalone Application: A separate tool where developers upload feedback and receive
related requirements.

• Plugin for Issue Tracking Systems: Integration with platforms like Jira or Azure DevOps,
where feedback can be automatically linked to requirements within the project.

• Automated Notification System: Developers receive daily or real-time notifications suggest-
ing requirement relations based on incoming feedback.

Given the classifier’s computational requirements (Section 8.2.2), it can operate on developers’
workstations provided they are equipped with adequate processors or preferably a dedicated GPU.
However, deployment in a cloud environment is recommended to minimize the load on individual
workstations. This also guarantees that all developers access the same classification instead of
performing it individually on each device. The time taken for classification - ranging from 2.5 to
90 seconds depending on the hardware configuration (as discussed in Section 8.2.2) - ensures
that automated suggestions can be provided in a short time, minimizing workflow disruption.

Feed.UVL (Chapter 7) provides an example prototype for a feedback analysis tool which
integrates FeReRe into the analysis workflow. The accompanying Jira plug-in demonstrates how
the information generated by FeReRe can then be integrated more seamlessly into an existing
system without requiring dedicated tools just to utilize the FeReRe information.

Classifier Training Requirements

As shown in Section 5.2.4, the generalizability of the classifier is poor. While this is a consistent
observation for machine learning classifiers (Devine and al., 2023), it means that domain-specific
training is necessary for every software that the approach is to be used on. Consequently, training
data is necessary for the classifier, meaning that a manual ground truth has to be created once
to train the classifier adequately. As our experiments showed, this training data has to contain
a substantial amount of feedback. The ReFeed dataset, for example (Section 2.5.2), does not
contain enough statements with only 60 feedback. A concrete number of feedback statements is
difficult to estimate because it depends on factors such as the number of requirements in the
project, the length of the feedback and how many requirements are covered by the feedback. The
classifier would require training on a growing volume of feedback and continuous evaluation until
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additional training data no longer leads to further improvements. The balance of the dataset, i.e.
how much feedback is related to each requirement, could also affect classification, though we
could not perform any experiments towards this due to a lack of data.

The creation of the ground truth would cost a substantial amount of manual labour, even
though this process would likely only need to be done once per software. An alternative method
would be to utilize continuous learning for the classifier. In continuous learning (also called active
learning or human-in-the-loop in literature) (Mosqueira-Rey et al., 2023), the classifier trains
based on the approval and rejection of its recommendations by humans. This means that the
approach could be deployed with an untrained classifier, which is continuously updated based on
the feedback it receives due to human intervention. This negates the need for a ground truth at
the cost of poor performance at the beginning of the project. Developers would be required to
continuously reject poor recommendations by the classifier until it has gathered enough data
to improve performance. Whether ground truth creation or continuous learning is preferable is
ultimately dependent on the project’s resources. Continuous learning is recommended due to
the long-term potential for improvement beyond the capabilities of a created ground truth. A
mixture of both approaches is also possible, where a smaller ground truth is first used to train
the initial classifier, which is then continuously trained through human approval or denial of the
classifier recommendations (Settles, 2009).

8.2.5. Maintainability
A restriction on the long-term maintainability of the approach is the need for retraining based
on changing requirements or feedback sources. As requirements or feedback sources change
during the course of a software project, the classifier is required to retrain in order to not
provide recommendations for relations based on outdated information. Continuous learning
would provide a solution to this, as over time, the outdated requirements or feedback sources
would be replaced by new information. This, again, however, comes at the cost of short-term
performance. Retraining the classifier would update the information instantaneously, while
continuous learning would take time for the classifier to update.

In summary, a classifier utilizing continuous learning is the preferred deployment strategy for
the FeReRe approach in a practical setting in order to avoid the necessity for large amounts of
training data up front and because of changing requirements.

8.3. Conclusion
In this chapter, we evaluated the FeReRe approach in comparison to manual human relation
of feedback to requirements as well as its practical effectiveness. Our analysis demonstrates
that FeReRe effectively addresses the problem of establishing connections between user feedback
and software requirements, thus proposing a solution for P1: Understand which functionalities
users are discussing in their feedback, introduced in Section 1.1. By automating the classification
process, the approach significantly reduces the manual effort required for feedback analysis while
maintaining an acceptable level of accuracy. The approach, however, is still limited by a need for
training data. The effort required in creating this data can be reduced through the application
of active learning. While FeReRe does not fully automate the use cases proposed in Section
5.1.2, it can serve as a valuable tool to aid developers in efficiently analyzing user feedback and
understanding which functionalities are being discussed. By integrating FeReRe into existing
workflows, development teams can streamline the feedback requirements relation process, making
it more manageable and scalable in real-world scenarios. However, the observations made in this
chapter are only based on the available datasets in the specific use case scenario described in
Section 8.2.1.
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Usage Information Classification Evaluation

As with the previous section, the evaluation of the usage information classification was not
conducted in a real-life practical scenario. The evaluation instead discusses the effects of
observations made during the evaluation of the classifier on a hypothetical deployment scenario
in a software development company. The goal of this is to highlight how P2: Understand how the
users use the functionalities of the software by analysing their feedback, introduced in Section 1.1
is solved by UIC and how the use cases, discussed in Section 6.1.3 are supported by the approach
in a hypothetical deployment.

Section 9.1 discusses the evaluation methodology. Section 9.2 discusses the evaluation based
on the hypothetical deployment scenario. Section 9.3 concludes the evaltion.

9.1. Evaluation Methodology

The evaluation in this chapter mirrors the evaluation for the FeReRe approach presented in
Chapter 8. The theoretical deployment in a software development company which wishes to
utilize UIC is discussed along with the hardware and software requirements needed for usage of
the approach.

First, the time efficiency of the approach is discussed by comparing the automatic classification
to the manual classification of usage information in user feedback. The risk of misclassification
by the classifier is also compared to humans.

The deployment requirements, including the necessary hardware and software, as well as the
requirements for the long-term maintenance of the approach and its classifier, are discussed. The
findings guide recommendations on deployment strategies and data constraints for the classifier.

9.2. Evaluation Scenario

Section 9.2.1 introduces the company wishing to use UIC and discusses the manual aspects of the
usage information classification. Section 9.2.2 compares these manual aspects to the time savings
when using the automatic UIC approach. Section 9.2.3 calculates the number of missed and
misclassified usage information when utilizing the automatic approach. Section 9.2.4 explains
hardware and software requirements for the deployment of the automatic approach. Section 9.2.5
discusses the requirements for the long-term maintainability of the classifier.
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9.2. Evaluation Scenario

9.2.1. Scenario

As in Section 8.2.1, we again orient the evaluation scenario towards deployment of the approach
in the Komoot gmbh, which develops the Komoot hiking app. We chose the Komoot App Review
dataset for the evaluation as it contains 200 publicly crawled feedback statements (Section 2.5.3)
and consequently is the most representative of our datasets. We do not select the SmartAge
dataset because, as a research study with prompted feedback, it does not reflect a realistic
company dataset. The Prolific dataset was not selected because feedback was gathered through
an online questionnaire instead of freely submitted by users. The Forum dataset is not selected
because it contains feedback on multiple different applications (Komoot, VLC and Chrome).

Additionally, as highlighted in Section 6.1.3, the use cases for UIC go hand-in-hand with
the FeReRe approach. By first relating feedback to requirements and then extracting usage
information, developers are able to group feedback by common themes, helping them to identify
common user concerns. Consequently, for the evaluation, we assume that FeReRe has already
been deployed in the company as discussed in Section 8.2 and developers now wish to utilize
UIC to further group the feedback for each requirement into related themes.

In the previous chapter, we assumed that the app would receive around 22 new feedback
statements each day, according to (Pagano and Maalej, 2013). However, to identify themes in
feedback, more than 22 statements are needed to establish enough context for each theme. Thus,
we turn to Ciurumelea et al. (Ciurumelea et al., 2017), who collected feedback for 39 different
apps covering 17 different software domains. They found that the average app in their dataset
contains around 200 reviews. This matches the number of reviews in our Komoot App Review
dataset. Consequently, for the purpose of this evaluation, we assume that developers analyze
sets of 200 feedback statements at a time in order to identify themes.

To identify the themes, the developers would need to perform word-based TORE Category
classification as highlighted in Section 6.1.4. Based on our observations during the creation of
our datasets and using the 200 reviews as a basis, a developer performing manual word-based
TORE Category classification for their app would need around 18 hours to fully classify all 200
reviews at 5.4 minutes per review or 4.4 seconds per word. The final dataset would contain 3047
usage information codes. The specific usage information category distribution for the app review
dataset can be seen in Table 2.7.

With 18 hours of work needed, the manual effort required to perform the word-based classifi-
cation is immense. Additionally, as shown in Table 2.8 in Section 2.5.3, disagreements between
multiple coders performing the task are relatively high, with a Kappa value of only 0.65. This
results in a manual precision of 0.88 and a recall of 0.85. Due to these issues, it is unlikely that
the manual classification would ever be considered in a real-life application scenario. Thus, full
automation of the task is necessary for the application. Even a semi-automatic approach, as
proposed for FeReRe, seems unrealistic for UIC as the time required to check the classifier’s
recommendation would still be too large for word-based analyses.

9.2.2. Time Efficiency

Disregarding the time spent on training the classifier (as we also disregard time spent for humans
to get familiar with the software and the usage information coding rules), the time it takes for
the classifier to classify 200 feedback statements is much shorter. The machine, using an AMD
Ryzen 7 7800X3D processor and 32GB of DDR5 RAM, needs around 82 seconds to perform the
classification, most of which is spent loading the classifier. The time is reduced to around 38
seconds on a computer where the classifier is already deployed, thus removing the time needed to
load the model. If a dedicated GPU is used for classification, the classification takes only around
27 seconds using an NVIDIA GeForce RTX 3080 Ti. In any of these scenarios, classification is
more time-efficient than the required 18 hours of manual labour.
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9. Usage Information Classification Evaluation

9.2.3. Risk of Imperfect Classification

Because even humans perform imperfect usage information classification, we do not compare the
automatic UIC to a perfect classification, as was the case for FeReRe. Rather, we compare the
UIC classifier to the precision and recall achieved by the human coders.

As shown in Section 6.2.4, the BERT-Large classifier, using combined TORE categories,
achieved a precision and recall of 0.74. In contrast, human coders achieved an average precision
of 0.88 and recall of 0.85. This means that the classify has a 15.9% drop in precision and a 12.9%
drop in recall compared to the human coders.

Missed Usage Information Due to Recall (False Negatives)

Using the above precision and recall values and the total number of codes of 3047, we calculate
the number of missed usage information due to the imperfect recall as follows:

Recall = TP

TP + FN
(9.1)

TP = Recall × (TP + FN) = Recall × 3047 (9.2)

FN = TP

Recall
− TP (9.3)

For humans:

TPh = 0.85 × 3047 = 2590 (9.4)

FNh = 3047 − 2590 = 457 (9.5)

( 457
3047

)
× 100 = 15.0% (9.6)

For the classifier:

TPc = 0.74 × 3047 = 2255 (9.7)

FNc = 3047 − 2255 = 792 (9.8)

( 792
3047

)
× 100 = 26.0% (9.9)

Human coders will miss 457 of the 3047 usage information codes in the feedback, while the
classifier will miss 792 instances of usage information. This means that automation of the
approach will lead to 11% more usage information being missed compared to a manual approach.
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9.2. Evaluation Scenario

Incorrect Usage Information Due to Precision (False Positives)

Precision = TP

TP + FP
(9.10)

FP = TP

Precision
− TP (9.11)

For humans:

FPh = 2590
0.88 − 2590 = 295 (9.12)

( 295
3047

)
× 100 = 9.7% (9.13)

For the classifier:

FPc = 2255
0.74 − 2255 = 792 (9.14)

( 792
3047

)
× 100 = 26.0% (9.15)

Due to the imperfect precision human coders incorrectly classify 295 usage information instances
compared to 792 instances for the classifier. This means that the classifier incorrectly classifies
16.3% more usage information.

Table 9.1.: Risk of Imperfect Classification of Usage Information
Metric Humans Category Class Level Class
Precision 0.88 0.74 0.83
Recall 0.85 0.74 0.81
True Positives (TP) 2590 2255 2468
False Negatives (FN) - Missed Codes 457 792 579
False Negatives % 15.0% 26.0% 19.0%
False Positives (FP) - Wrongful Classifications 295 791 504
False Positives % 9.7% 26.0% 16.5%

Table 9.1 summarizes these findings. The last column of the table also contains the calculations
for the best-performing word-based TORE Level classifier. When classifying levels instead of
categories, 7% less usage information is missed, and 9.5% less usage information is wrongfully
classified. However, comparison between the level classifier and humans is not possible because,
as explained in Section 2.5.3, the human coders did not perform TORE level classification, which
is expected to have higher precision and recall even for humans due to the reduced complexity
and number of classes.

In summary, when automating the usage information classification approach, developers can
expect to miss 11% more relations and get 16.3% more wrongful classification than they would
if they manually classified the feedback. This comes at the cost of a 27-82 second automatic
classification compared to an 18 hour manual classification.

9.2.4. UIC Deployment
For the deployment of the automatic UIC approach in real-world software development workflows,
similar restrictions exist as for the FeReRe approach.
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9. Usage Information Classification Evaluation

Hardware & Software Requirements

The hardware and software requirements are identical to the requirements for the FeReRe
approach discussed in Section 8.2.4. A centralized server architecture with a dedicated GPU is
recommended to minimize loading and classification times when utilizing the approach. This
minimizes workflow disruptions and guarantees that all developers are working with the same
information. This also allows them to easily incorporate the information into existing tools for
feedback analysis.

Feed.UVL (Chapter 7) provides dedicated functionalities to automatically and manually extract
usage information from feedback. The accompanying Jira plug-in then supports the use case of
both grouping the feedback by requirements through the FeReRe approach and highlighting the
contained usage information. The search and filter functionalities of the plugin then allow the
developers to look for common themes in the feedback by filtering for explicit types of usage
information or keywords.

Classifier Training Requirements

The training requirements are also similar to those of the FeReRe approach discussed in Section
8.2.4. Generalizability is poor. This means that training data is necessary for every individual
software that the approach is to be used on. This necessitates either the creation of a ground
truth or a continuous learning deployment. The advantages and disadvantages of each are
discussed in Section 8.2.4. Due to the immense time needed for word-based coding, we do not
recommend a continuous learning approach for UIC, as developers are unlikely to be willing to
continuously reject or accept the classifier’s individual usage information classifications. Instead,
a minimal ground truth creation is preferable. Through experiments with our data, we identified
a minimal training size of around 8500 words for the classifier to reach a performance similar
to that reported in Section 6.2.4. This means that once for every software project, around 10
hours would have to be spent on ground truth creation. We recommend splitting this effort over
multiple coders to minimize the labour and also create a varied ground truth which is not only
created by one person.

9.2.5. Maintainability

The only known threat to the long-term maintainability of a UIC classifier is changing feedback
sources. As our experiments with changing feedback sources in Section 6.2.4 show, the classifier
is sensitive to individual feedback sources, be they app store feedback, online questionnaire
or forum. As discussed in Section 2.5, these sources have individual characteristics, user
intents and structural organization. These differences are difficult for the classifier to generalize.
Should feedback sources change during the development of software, for example, from online
questionnaires during development to the app store after initial release, the classifier would
require new training data from the new source. This would mean the creation of another ground
truth to retrain the classifier.

9.3. Conclusion
In this chapter, we evaluated the UIC approach in comparison to manual human usage information
classification as well as its practical effectiveness. Given that the UIC TORE Category classifier
demonstrates worse performance than the FeReRe classifier, resulting in a large number of missed
and incorrect classifications, deployment of UIC in real-world scenarios can not be recommended
as straightforward as for FeReRe. Due to the manual effort involved in creating word-based
TORE Category classifications, deployment can only really be recommended for companies

144



9.3. Conclusion

wishing to fulfil the specific use case for which UIC is designed: The further grouping of feedback
into usage information themes after initial grouping through FeReRe.

If the alternative use case of requirements validation (Section 6.1.3) through UIC TORE Level
classification is the company’s goal, the deployment can more easily be recommended due to the
more similar performance of the classifier to human coders (see Table 9.1) and the reduced time
needed to create word-based TORE Level ground truths for training.
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Part V.

Conclusion
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Chapter 10
Summary

This dissertation utilized the design science approach by Wieringa et al. (Wieringa, 2014) in order
to address the challenges developers face in understanding user feedback and software usage. By
employing Wieringa’s Design Science Methodology (DSM), this research has iteratively designed,
evaluated, and validated two novel approaches to enhance software development processes by
bridging the gap between developers and users.

The dissertation was motivated by the persistent challenge that developers often have a different
perspective on software functionalities compared to users. The research identified two primary
problems: (P1) understanding which functionalities users discuss in their feedback and (P2)
understanding how users use the software functionalities based on their feedback. To address
these problems, this dissertation designed and validated two approaches that facilitate better
feedback understanding.

The first approach, feedback requirements relation (FeReRe), designed as a result of design
goal 1 (Figure 1.2), successfully addresses P1 by systematically linking user feedback to existing
software requirements. These requirements specify the functionalities of the software. Thus, a
relation of feedback to the requirements relates the feedback to the functionalities. This method
provides developers with insights into which functionalities users are discussing. The effectiveness
of FeReRe was validated through testing on real-world user feedback, demonstrating its accuracy
and reliability in associating feedback with corresponding software requirements.

The second approach, usage information classification (UIC), designed as a result of design
goal 2, addresses P2 by extracting and categorizing usage information from user feedback. Using
the TORE framework, this approach classifies user feedback into different usage information
levels and categories, offering developers a fine-grained understanding of how users engage with
the software. This classification provides insights into whether users are utilizing functionalities
as intended or encountering usability challenges.

To further support these approaches, this research introduced a tool called Feed.UVL that
integrates FeReRe and UIC into a single platform, ensuring that the extracted information is
readily accessible and actionable for developers.

Each knowledge and design goal in this research played a role in shaping the designed approaches.
Knowledge Goal 1 involved investigating existing research on software artifact relation. The
knowledge goal was achieved by conducting a comprehensive mapping study (Chapter 3). A
total of 18 different approaches were identified, including one literature review containing 40
approaches for relating bug reports to other software artifacts. While feedback requirements
relation was not a major research focus of any but one of these studies, this knowledge goal
provided valuable insights into existing techniques and their limitations, which guided the design
of FeReRe.
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10. Summary

With knowledge goal 2, we focused on exploring fine-grained classification methods for user
feedback. The mapping study (Chapter 4) reviewed prior classification models and frameworks,
informing the design of automatic UIC classifiers. A total of 21 approaches were identified
through snowballing of existing literature reviews. While none of the approaches handled the
classification of usage information, the knowledge goal nonetheless ensured that automation of
UIC in this dissertation was aligned with existing research on feedback analysis.

With knowledge goal 3, we aimed to evaluate various classifiers for automating the FeReRe
approach (Section 5.2.4). For training and evaluation of the classifiers, together with a preexisting
external dataset, three new datasets were manually created, containing feedback, requirements
and the relations between the two (Section 2.5.2). Seven different machine learning models
(six non-generative and one generative LLM) were tested on the datasets and compared to
identify the most effective classifier for linking user feedback to software requirements. For
the data available in this dissertation, the BERT-Large model achieved the best results with
a precision of 0.84, recall of 0.95 and F2 of 0.92. Additionally, the transferability experiments
across software domains showed that the classifier struggles to generalize across multiple software
domains. Experiments with the incorporation of already assigned feedback did not yield further
improvements.

With knowledge goal 4, we concentrated on assessing classifiers for automating UIC (Section
6.2.4). For training and evaluation of the classifier, four new datasets were created, containing
feedback from the app store, an online forum, a questionnaire and a feedback app. Given the
complexity of categorizing usage information, multiple machine learning techniques were examined
on three different granularities to determine the best-performing approach. Experiments were
performed for sentence-based TORE Level classification, word-based TORE Level classification
and word-based TORE Category classification. Six different machine learning models were used
to identify the best-performing one. BERT-Large, again, performed best for all granularities.
Word-based TORE Level classification was identified as the best-performing granularity with a
precision of 0.81, recall of 0.78 and F1 of 0.79, followed by word-based TORE combined category
classification with a precision, recall and F1 of 0.74. Experiments to improve the classification
through multi-stage classification or preprocessing did not yield meaningful improvements.

With knowledge goal 5, we validated the effectiveness of FeReRe by applying it to a hypothet-
ical real-world software company and comparing its performance against manual classification
(Chapter 8). The approach, when compared to human classification, significantly enhances time
efficiency, with automated classification taking between 2.5 and 90 seconds instead of nearly
an hour of manual work. However, the classifier’s accuracy presents trade-offs, as it achieves
high recall (0.86) but lower precision (0.71), resulting in 15% of the relations being missed.
Deployment considerations highlight the need for hardware capable of handling classification
efficiently and the importance of integrating FeReRe into existing requirement management
systems. Additionally, the classifier requires domain-specific training data, necessitating either
an initial manual ground truth or a continuous learning approach to adapt over time. Long-term
maintainability depends on retraining to account for evolving requirements, with continuous
learning offering a promising solution. Overall, FeReRe provides a method for relating feed-
back to requirements, supporting problem P1 by helping developers understand user-discussed
functionalities, though its effectiveness should be assessed per specific use case and dataset.

With knowledge goal 6, we evaluated the UIC approach by comparing its automated classifica-
tion capabilities to manual human classification in a hypothetical software development scenario.
The findings highlight that while UIC significantly reduces classification time, processing 200
feedback statements in under 82 seconds compared to 18 hours manually, it also introduces a
notable drop in precision (15.9%) and recall (12.9%) relative to human coders. This results in
an 11% increase in missed usage information and a 16.3% rise in incorrect classifications. Due
to the effort required for manual TORE Category classification, full automation is necessary,
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but deployment is recommended primarily for companies seeking to group feedback into themes
following initial classification by FeReRe. The alternative use case of requirements validation
using TORE Level classification is more feasible, as it yields performance closer to human
classification and requires less effort for training data preparation. However, maintaining classifier
accuracy over time depends on consistent feedback sources, as performance deteriorates when
switching between different feedback collection methods.

In conclusion, this dissertation developed and validated automated approaches for analyzing
user feedback in a way that is directly useful for software developers. By relating feedback to
software requirements and extracting detailed usage information, the proposed solutions enable a
deeper understanding of user needs and behaviours. The research contributes to both academia
and industry by providing machine learning research, automated approaches and tool support
that help developers align software evolution with user expectations.
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Chapter 11
Future Work

Several avenues for future work remain open. One promising direction is improving the gener-
alizability of the FeReRe and UIC classifiers by training them on a wider variety of software
domains. The current validation was performed on specific datasets, but expanding the models
to include diverse software categories could enhance their adaptability.

Alternatively, the adaptation and fine-tuning of large open-source generative LLMs like Llama
could provide another avenue towards improvement. While very computationally costly and thus
out-of-scope for this dissertation, these models could provide improved generalizability due to
their immense training datasets.

Beyond technical enhancements, future research could explore the integration of FeReRe
and UIC into existing software development workflows. Studying how developers interact with
these approaches in real-world settings and assessing their impact on software maintenance
and evolution could provide valuable insights into their practical usability. The integration of
Feed.UVL into such workflows would also offer new insights into the requirements developers
have for such feedback analysis tools.

Future research could also extend the current approaches beyond merely grouping user feedback
into meaningful categories. A particularly promising direction is the automation of discrepancy
detection between users and developers. While FeReRe and UIC assist in linking feedback
to software requirements and categorizing usage information, they do not currently analyze
discrepancies in how users perceive functionalities versus how developers intend them to function.
By developing an automated mechanism to compare user feedback with developer expectations,
future work could identify misalignments that may lead to usability issues or unmet expectations.

One potential method for achieving this could involve leveraging natural language processing
techniques to analyze sentiment, intent, and contextual meaning within user feedback. By
applying machine learning models to extract expectations expressed by users, the system could
contrast these findings with documented software requirements and developer annotations.
This approach could highlight specific areas where user expectations diverge from the intended
functionality, enabling targeted improvements in software design. Given the challenges of usage
information classification and the current limitations of automatic classifiers, this research would,
however, present a significant challenge.

Another avenue for future work is enhancing the interpretability of automated classification
results. While machine learning models provide categorization, the underlying reasoning behind
classifications is often unclear. Future research could focus on providing developers with clear
justifications for why certain feedback items are linked to particular requirements or usage
categories. This research is especially interesting, given the recent advancements in generative
LLMs. The transparency would increase trust in automated systems and encourage broader
adoption in industry settings.
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Finally, expanding the scope of feedback sources beyond textual user reviews could further
refine the effectiveness of FeReRe and UIC. Integrating multimodal data, such as voice feedback,
screen recordings, or behavioural analytics, could provide a more holistic view of user experiences.
Machine learning models trained on diverse data sources could offer richer insights into usability
challenges, facilitating more comprehensive software improvement strategies.

By exploring these future directions, the approaches developed in this dissertation could evolve
from static feedback classification methods into dynamic, adaptive tools capable of detecting
and mitigating discrepancies between users and developers in real-time. This would mark a
significant step toward automating user-centred software development processes and ensuring a
closer alignment between software design and user needs.
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Appendix A
Digital Appendix for Tools and Data

This dissertation has a digital appendix containing all datasets used for training and testing of the
FeReRe and UIC classifiers, as well as the code, requirements and screenshots of the Feed.UVL.
Additional material for both mapping studies can also be found there. The appendix can be
accessed through the HeiData dataset "Automating Feedback Analysis to Support Requirements
Relation and Usage Understanding", DOI: https://doi.org/10.11588/DATA/RTCGSG
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Appendix B
Supplementary Material for Solution
Investigation

This appendix provides supplementary material for Chapter II describing the solution investiga-
tion.

B.1. Fine-Grained Feedback Classification
Table B.1 shows a combined synthesis table for all approaches. SC3, the specific classes had
to be omitted due to spacial constraints. Refer back to Table 4.6 for a complete list of classes.
SC8, the evaluation methodology, was summarized into one column where GT stands for the
creation of a manual ground truth, IR stands for interrater agreement, and CV stands for cross
validation.
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Table B.1.: Combined Table of Relevant Paper Goals, Classes, Methods, Dataset, and Evaluation
ID Goal No. Classes Methods Used Dataset Size Source Methodology Results
P19 Classify into app taxonomy 17 TF-IDF, Regression Tree 7754 App Store (GT), IR P 89; R 99; F1 94
P20 Classify into app accessibility categories 4 SVM, Logistic Regression, Random

Forest, Decision Tree, Extra Tree
Classifier, K-Nearest Neighbor

2663 App Store GT, IR P 97; R 99; F1 98

P21 Classify into software evolution taxonomy 7 SVM, Naïve Bayes, Logistic Regres-
sion, Neural Network

4550 App Store GT, IR, CV P 71; R62; F1 64

P22 Classify into custom app multi-label taxonomy 14 SVM, Naïve Bayes, Random Forest,
J48

7290 App Store GT, IR, CV P 65; R64; F1 64

P23 Classify into undesirable behavior categories 23 BERT 10358 App Store GT P 75; R 74; F1 75
P24 Classify into multi-label NFR categories 5 BERT 6759 App Store GT P 70; R 65; F1 66
P25 Classify into user rationale categories 4 SVM, Naïve Bayes, Logistic Regres-

sion, Random Forest
3319 Reddit GT, IR, CV P 64; R 59; F1 54

P26 Classify into user rationale categories 5 SVM, Naïve Bayes, Logistic Regres-
sion, Random Forest, Neural Net-
work

77202 Amazon GT, IR, CV P 98; R 94; F1 96

P27 Classify into different types of information in online fo-
rums

8 Naïve Bayes 49000 Forums GT, IR, CV P 93; R 87; F1 90

P28 Classify into usability and UX categories 23 SVM, Rule-Based Approach 3491 Review Website GT P 68; R 79; F1 73
P29 Classify into NFR categories 5 TF-IDF, Bag of Words, CHI2 6696 App Store GT, IR, CV P 71; R 72; F1 72
P30 Classify into NFR categories 5 SVM, Logistic Regression, TF-IDF,

Decision Tree, Bag of Words
1500 App Store GT, (IR), CV F1 60

P31 Evaluate pre-trained models for feedback analysis 16 BERT, XLNet 55933 App Store GT, (IR), CV P 96; R 91; F1 92
P32 Classify into usefulness categories 9 SVM, Naïve Bayes, BERT, Fast-

Text, ELMO
1000 App Store GT P 95; R 96; F1 93

P33 Classify into UUX categories 26 Pattern Matching 18545 Twitter GT, IR /
P34 Classify into taxonomy, cluster, prioritize reviews 7 Random Forest 3000 App Store GT, IR, CV P 87; R 86; F1 86
P35 Classify into user rationale categories 5 SVM, Naïve Bayes, Logistic Regres-

sion
1020 Amazon GT, IR, CV P 87; R 99; F1 82

P36 Classify multi-label issue type taxonomy 17 SVM 3902 App Store GT, IR, CV P 67; R 70; F1 68
P37 Classify into NFR categories 4 SVM, Naïve Bayes, TF-IDF, Rule-

Based Approach
6000 App Store GT, IR P 62; R 54

P38 Classify into user rationale categories 5 SVM, Naïve Bayes, Logistic Regres-
sion, Random Forest, Neural Net-
work, AdaBoost, XGBoost

500 App Store, Amazon GT, IR, CV F1 95

P39 Evaluate ChatGPT classification for feedback analysis 16 ChatGPT 1800 App Store GT, (IR) P 96; R 95; F1 95
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Appendix C
Supplementary Material for Treatment Design

This appendix provides supplementary material for the Treatment Design of this dissertation.

C.1. FeReRe
In this section supplementary material for the FeReRe approach is provided.

C.1.1. FeRere Prompts
Table C.1 lists the final prompt for each type of prompting approach used to related feedback to
requirements using GPT4o.
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C. Supplementary Material for Treatment Design

Table C.1.: Prompts used for Feedback Requirements Relation using GPT4o
Prompt Name Best Prompt
Zero-Shot Task: Link App Requirements to User feedbackObjective: You are a requirements engineer

for the Komoot app. Your task is to link specific user feedback to related app functionality
requirements. The feedback is provided as unique identifiers that need to be analyzed and
linked to their corresponding requirements based on content relevance. A feedback text relates
to System Function (SF) if it talks about features in the software. A feedback text relates to
a User Subtask (UT) if it talks about the tasks that the software should support. A feedback
text relates to a Workspace if it talks about visual aspects of the software. Adhere strictly to
these tasks when it comes to exporting the results: Export the results according to the output
requirements. Ignore thoughts of a review-centric approach. Pursue a requirement-centric
approach. Ignore any thoughts of demonstrative purposes or making the work efficient. You
must work thoroughly. Do not invent new identifiers and just reuse the identifiers that I give
you, and do not modify them. Ignore thoughts of simplicity in the output and focus on a
complete and consistent creation of the result . Output requirements: Export the results into
a JSON object where every requirement ID is mapped to a set of IDs of the reviews that are
related to the requirement. Template:”KOMOOT-X”: [Review X de.android.komoot XXXX
XX XX]

Few-Shot Task: Link App Requirements to User feedbackObjective: You are a requirements engineer
for the Komoot app. Your task is to link specific user feedback to related app functionality
requirements. The feedback is provided as unique identifiers that need to be analyzed and
linked to their corresponding requirements based on content relevance. A feedback text relates
to System Function (SF) if it talks about features in the software. A feedback text relates to
a User Subtask (UT) if it talks about the tasks that the software should support. A feedback
text relates to a Workspace if it talks about visual aspects of the software. An example of
such a link is: Komoot-8 is related to Review 3.de.komoot.android 2023 07 20, because the
review talks directly about the task that the user wants to accomplish. Adhere strictly to
these tasks when it comes to exporting the results: Export the results according to the output
requirements. Ignore thoughts of a review centric approach. Pursue a requirement-centric
approach. Ignore any thoughts of demonstrative purposes or making the work efficient you
must work thoroughly. Do not invent new identifiers and just reuse the identifiers that I
give you anddo not modify them. Ignore thoughts of simplicity in the output and focus on a
complete and consistent creation of the result. Output requirements: Export the results into
a JSON object where every requirement ID is mapped to a set of IDs of the reviews that are
related to the requirement.Template:”KOMOOT-X”: [Review X de.android.komoot XXXX
XX XX]

Chain-Of-Thought Task: Link App Requirements to User FeedbackObjective: You are a requirements engineer
for the Komoot app. Your task is to link specific user feedback to related app functionality
requirements. The feedback is provided as unique identifiers that need to be analyzed and
linked to their corresponding requirements based on content relevance. A feedback text
relates to System Function (SF) if it talks about features in the software. A feedback text
relates to a User Subtask (UT) if it talks about the tasks that the software should support.
A feedback text relates to a Workspace if it talks about visual aspects of the software 1.
Read the requirements.2. Read and then analyze the feedback 3. Iterate through every
requirement and link every review that is related to this requirement. 4. Export the results
according to the output requirements. Output requirements: Adhere strictly to these tasks
when it comes to exporting the results: Ignore thoughts of a review-centric approach. Pursue
a requirement-centric approach. Ignore any thoughts of demonstrative purposes or making
the work efficient; you must work thoroughly. Do not invent new identifiers and just reuse
the identifiersthat I give you and do not modify them. Ignore thoughts of simplicity in the
output and focus on a complete and consistent creation of the result. Export the results
into a JSON object where every requirement ID is mapped to a set of IDs of the 53 reviews
that are related to the requirement. Template:”KOMOOT-X”: [Review X de.android.komoot
XXXX XX XX]

Predefined Structure You are a requirements engineering expert for the Komoot app. You have collected a set
of reviews for Komoot and you want to find out which requirements a review refers to.
Use the provided reviews and requirements descriptions from Jira to relate the reviews to
their corresponding requirements. Write your results in the following format:”KOMOOT-X”:
[Review X de.komoot.android XXXX XX XX].

Cognitive Verifier Relate the requirements to the reviews that refer to them. Ask me questions if needed to
break the given task into smaller subtasks. All the outputs must be combined before you
generate the final output. Write your results in the following format:”KOMOOT-X”: [Review
X de.komoot.android XXXX XX XX].

Context Manager Relate the requirements to the reviews that refer to them. When you provide an answer,
please explain the reasoning and assumptions behind your response.If possible, address any
potential ambiguities or limitations in order to provide a more complete and accurate response.
Write your results in the following format:”KOMOOT-X”: [Review X de.komoot.android
XXXX XX XX].

Template Relate the requirements to the reviews that refer to them. Write your results in the following
format:”KOMOOT-X”: [Review X de.komoot.android XXXX XX XX].

Question Refinement Relate the requirements to the reviews that refer to them. If needed, suggest a better version
of the question to use that incorporates information specific to this task and ask me if I would
like to use your question instead. Write your results in the following format:”KOMOOT-X”:
[Review X de.komoot.android XXXX XX XX].

Persona Act as a requirements engineering expert and relate the requirements to the views that
refer to them. Write your results in the following format:”KOMOOT-X”: [Review X
de.komoot.android XXXX XX XX].
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C.2. Feed.UVL
This appendix provides supplementary material for Chapter 7 describing the Feed.UVL tool.

C.2.1. Domain Data

Figure C.1.: Feed.UVL Domain Data Diagram

Figure C.1 shows the complete domain data diagram for Feed.UVL. Entities are derived
from the user tasks and sub-tasks of the individual functionalities described in the previous
section. These entities are represented by rectangular boxes connected through relationships.
Relationships are directed arrows with multiplicities and a relationship name.

C.2.2. UI-Structure
Figure C.2 shows the simplified UI-Structure diagram for Feed.UVL. System functions are omitted
due to the size of the diagram. Also, workspaces for the Jira plugin are omitted, even though
it is part of Feed.UVL services it does not connect to any of Feed.UVL’s views since it runs in
a separate software (Jira). At the centre of the diagram is the Navigation bar through which
most other views can be reached. The remaining workspaces are roughly grouped according to
the functionalities presented in the previous sections. More detailed, individual UI-Structure
diagrams for Feed.UVL’s functionalities can be found in the digital Appendix A.
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C. Supplementary Material for Treatment Design

Figure C.2.: Feed.UVL UI-Structure Diagram
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