
S Y M M E T RY- AWA R E N E T W O R K S F O R T H E L H C

Dissertation
Jonas Simon Spinner

Jonas Simon Spinner: Symmetry-aware Networks for the LHC, © April 2025

D I S S E RTAT I O N

submitted to the

Combined Faculty of Mathematics, Engineering and Natural Sciences
of Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

J O N A S S I M O N S P I N N E R

born in Wolfach, Germany

Oral examination: 09.07.2025

S Y M M E T RY- AWA R E N E T W O R K S F O R T H E
L H C

Referees: Prof. Dr. Tilman Plehn
Prof. Dr. Ullrich Köthe

iv

A B S T R A C T

Of all scientific fields, few rival high-energy physics in the degree to
which symmetries dictate its concepts, methods, and discoveries. Surpris-
ingly, while particle-physics researchers were early enthusiasts of machine
learning, they paid limited attention to models engineered around the
discipline’s built-in symmetries. Transformers implement the permutation
symmetry of particles in an efficient and scalable way, yet their systematic
application in high-energy physics is a recent development. We establish au-
toregressive transformers as event generators that grasp the autoregressive
dynamics of QCD jet radiation and reliably generate jet multiplicities be-
yond the limits of the training data. Although various Lorentz-equivariant
graph networks have been introduced for jet tagging, none employed
Lorentz-equivariant transformer architectures. Our Lorentz-equivariant
Geometric Algebra Transformer (L-GATr) closes this gap as the first Lorentz-
equivariant transformer, matching the performance of the graph networks
on small-scale datasets and outscaling them on large-scale datasets. Build-
ing on this foundation, we create the first Lorentz-equivariant generative
network.

Z U S A M M E N FA S S U N G

In nur wenigen wissenschaftlichen Disziplinen spielen Symmetrien eine
ähnlich dominante Rolle wie in Hochenergiephysik. Obwohl Teilchenphy-
siker schnell darin waren, Techniken des maschinellen Lernens auf ihr
Feld anzuwenden, spielten Symmetrien zunächst eine untergeordnete Rolle.
Transformer implementieren die Permutationssymmetrie zwischen Teil-
chen auf eine effiziente und skalierbare Art und Weise, dennoch ist deren
systematische Anwendung in Hochenergiephysik ein noch junges Feld. Wir
entwickeln autoregressive Transformer zur Generierung von LHC-Events,
die die autoregressive Dynamik von QCD Strahlung implementieren und
zuverlässig Multiplizitäten jenseits der Grenzen des Trainingsdatensat-
zes generieren können. Mehrere Lorentz-equivariante Graph-Netzwerke
wurden für Jet-Klassifikation entwickelt, doch bisher gibt es noch kein
Lorentz-equivariantes Netzwerk mit der Transformer-Architektur. Unser
Lorentz-Equivarianter Geometrische Algebra Transformer (L-GATr) schließt
diese Lücke als erster Lorentz-equivarianter Transformer, der auf kleinen
Datensätzen ähnliche gute Ergebnisse wie die Graph-Netzwerke zeigt und
sie auf großen Datensätzen übertrifft. Wir entwickeln das erste Lorentz-
equivariante generative Netzwerk mithilfe der L-GATr-Architektur.

v

C O N T E N T S

1 Introduction 1

2 Collider physics 3

2.1 High-energy physics . 3

2.2 Collider kinematics . 4

2.3 The LHC workflow . 5

2.4 Symmetries in the LHC workflow 9

3 Machine Learning 11

3.1 Deep Learning . 11

3.2 Permutation-equivariant architectures 13

4 LHC Event Generation with JetGPT 17

4.1 Generative model . 17

4.2 Toy models and Bayesian networks 22

4.3 LHC events . 24

4.4 Outlook . 27

5 Extrapolating Jet Radiation with Autoregressive Transformers 29

5.1 Autoregressive jet radiation 29

5.2 Results . 37

5.3 Outlook . 45

6 A Lorentz-Equivariant Transformer for All of the LHC 47

6.1 Lorentz-Equivariant Geometric Algebra Transformer 47

6.2 L-GATr for Amplitude Regression 55

6.3 L-GATr for Jet Tagging . 56

6.4 L-GATr for Event Generation 60

6.5 Outlook . 66

7 Summary and Outlook 69

a Hyperparameters 71

a.1 LHC Event Generation with JetGPT 71

a.2 Extrapolating Jet Radiation with Autoregressive Transformers 71

a.3 A Lorentz-Equivariant Transformer for All of the LHC . . . 72

Bibliography 77

vii

P R E FA C E

The research presented in this thesis was conducted at the Institute for The-
oretical Physics at Heidelberg University from October 2022 to December
2024. The contents of Chapters 4 to 6 are based on work in collaboration
with other researchers and have been previously published as

1A. Butter et al., “Jet diffusion versus JetGPT – Modern networks for the
LHC,” SciPost Phys. Core 8, 026 (2025), arXiv:2305.10475 [hep-ph].

2J. Spinner et al., “Lorentz-equivariant geometric algebra transformers
for high-energy physics,” Advances in Neural Information Processing
Systems (2024), arXiv:2405.14806 [physics.data-an].

3J. Brehmer et al., “A Lorentz-Equivariant Transformer for All of the
LHC,” Submitted to SciPost Phys. (2024), arXiv:2411.00446 [hep-ph].

4A. Butter et al., “Extrapolating Jet Radiation with Autoregressive Trans-
formers,” Submitted to SciPost Phys. (2024), arXiv:2412.12074 [hep-ph].

Furthermore, the author contributed to the following publication. This
work originated from research undertaken during his master’s thesis at
the Institute of Theoretical Particle Physics at the Karlsruhe Institute of
Technology and was completed at the Institute for Theoretical Physics at
Heidelberg University.

1C. A. Manzari et al., “Supernova limits on muonic dark forces,” Phys.
Rev. D 108, 103020 (2023), arXiv:2307.03143 [hep-ph].

Finally, the author is involved in ongoing projects that have not been
ready for publication at the time of writing this thesis.

ix

https://doi.org/10.21468/SciPostPhysCore.8.1.026
https://arxiv.org/abs/2305.10475
https://arxiv.org/abs/2405.14806
https://arxiv.org/abs/2411.00446
https://arxiv.org/abs/2412.12074
https://doi.org/10.1103/PhysRevD.108.103020
https://doi.org/10.1103/PhysRevD.108.103020
https://arxiv.org/abs/2307.03143

1
I N T R O D U C T I O N

Machine learning has become an indispensable tool in our effort to un-
derstand nature at its most fundamental level. Nowhere is this more
evident than at CERN’s Large Hadron Collider (LHC) – arguably the most
complex machine ever built – where protons are accelerated to nearly the
speed of light, collided, and their debris recorded by detector systems
that generate on the order of 1015 bytes of raw data every second [1].
This torrent of information must be filtered, processed, and ultimately
compared with theoretical predictions. Each stage involves decisions in
extraordinarily high-dimensional spaces, decisions that today are often
delegated to machine-learning algorithms, and increasingly to deep neural
networks [2–4]. Such techniques have powered essentially every modern
measurement in high-energy physics, culminating in the 2012 discovery of
the Higgs boson [5, 6].

The demands placed on network architectures in this domain are severe.
Models must natively encode the structure of particle-physics data while
remaining expressive enough to capture intricate correlations in very high
dimensions. Training samples often stem from computationally expensive
first-principle calculations and detailed detector simulations, so data effi-
ciency is paramount. Generative models face additional hurdles: detector
acceptance boundaries and selection cuts introduce sharp edges in the
probability density, yet accurate modeling of the extreme, low-density tails
– sometimes spanning many orders of magnitude – is equally critical.

Although architectures first developed for vision or language tasks offer
convenient starting points [7, 8], they seldom satisfy particle-physics re-
quirements out of the box, largely because the inductive biases encoded in
the underlying physics are not exploited. Particle interactions are governed
by the symmetries of quantum field theory – most notably, permutation
symmetry among particles and the Lorentz symmetry of special relativity
[9]. In this thesis, networks are designed to be explicitly permutation-
and Lorentz-equivariant and are applied to high-energy-physics problems.
Particular emphasis is placed on uncertainty quantification with Bayesian
neural networks (BNNs) to meet the field’s stringent demands for control
and precision.

This thesis is organized as follows. Chapter 2 introduces collider physics,
outlines the LHC data-analysis workflow, and highlights the role of sym-
metries. Chapter 3 provides a concise overview of deep learning with
special attention to permutation-equivariant architectures and, in particular,
transformers – the principal architecture employed in this work. Chapter 4

combines a transformer with an autoregressive density-estimation scheme
to generate reconstructed LHC events at high precision in a GPT-style

1

2 introduction

framework, with Bayesian uncertainty estimates incorporated. Chapter
5 extends this framework to learn event multiplicities; inspired by the
autoregressive nature of QCD jet radiation, higher-multiplicity events are
generated and extrapolations beyond the training range are explored. Chap-
ter 6 introduces the first Lorentz-equivariant transformer as a versatile tool
for collider physics and benchmarks it on regression, classification, and
generative tasks, including the first Lorentz-equivariant generative network,
which is compared with the earlier autoregressive models. Finally, Chapter
7 summarizes the results and outlines directions for future research.

2
C O L L I D E R P H Y S I C S

This chapter presents the fundamentals of LHC event generation and the
underlying physics. An introduction to the Standard Model of high-energy
physics is provided in Section 2.1. Representations of the primary collider-
physics data type – particles – are examined in Section 2.2. The LHC
analysis workflow and its machine-learning applications are described in
Section 2.3. Finally, the importance of symmetries within this workflow is
discussed in Section 2.4.

2.1 high-energy physics

Quantum field theory (QFT) is the foundation of modern high-energy
physics. By specifying the relevant symmetry groups and the particles that
inhabit them, one pins down all possible interaction types; the correspond-
ing particle masses and coupling strengths then complete the model within
the framework of quantum field theory. Currently, the Standard Model
(SM) of particle physics is the most complete theory of high-energy physics.
Its symmetry structure includes the Poincaré group, which underlies rel-
ativistic spacetime, and the gauge groups that describe the strong, weak,
and electromagnetic interactions:

SU(3)c × SU(2)L ×U(1)Y . (2.1)

Within this framework, the SM particles fall into three categories:

• Gauge bosons A total of 12 gauge bosons mediate the interactions
in Eq. (2.1): 8 gluons g for the strong force, the 3 heavy W± and Z
bosons for the weak force, and the photon γ for electromagnetism.

• Fermions Three generations of fermions comprise 6 quarks (u, d, s, c,
b, t), 3 heavy leptons (e, µ, τ), and their corresponding neutrinos (νe,
νµ, ντ). All fermions except these neutrinos possess Dirac masses,
while neutrinos stay massless in the SM.

• Higgs boson The Higgs boson completes the Standard Model, pro-
viding a mechanism that explains the mass of all other particles.

Armed with these building blocks and 19 parameters, QFT can make
first-principle predictions for all known fundamental interactions except
gravity. The SM has been tested extensively—across collider experiments,
cosmological observations, neutrino studies, and more. Yet, it still leaves
some observed phenomena unexplained, most importantly:

• Dark matter Observations on galactic and cosmic scales demand a
mysterious form of matter that only reveals itself through gravity.

3

4 collider physics

• Neutrino mass Studies on neutrinos from several sources provide
evidence that neutrinos can not be exactly massless.

• Matter-antimatter asymmetry Our universe is dominated by mat-
ter, with no sizeable collections of antimatter. The SM offers no reason
for this imbalance.

A huge variety of beyond-the-Standard-Model theories have been pro-
posed to tackle these puzzles and some formal quirks of the SM related to
a concept called naturalness. Modern high-energy physics research strives
both to refine tests of the SM and to probe these extended frameworks.
This thesis zeroes in on collider physics, examining how collider physics
experiments can either confirm or challenge new ideas about our universe.

2.2 collider kinematics

In the practical world of LHC physics, our usual language is ‘particles in a
detector‘. A particle is characterized by its type and four-momentum

p = (E, p⃗) = (E,px,py,pz). (2.2)

The particle mass m appears via the Minkowski metric g

m2 = E2 − p⃗2 = pµpνgµν with g = diag(1,−1,−1,−1). (2.3)

When working in a collider environment, it is natural to align the coordi-
nate system with the collider topology. To this end, we define the z-axis as
the beam direction. Further, it is natural to use the transverse momentum
pT and the azimuthal angle ϕ around the beam axis

p2T = p2x + p2y, tanϕ =
py

px
. (2.4)

To characterize the degree of alignment with the beam, we introduce the
rapidity y, which adds linearly under Lorentz boosts, and its close relative,
the pseudo-rapidity η

y =
1

2
log

E+ pz
E− pz

, η =
1

2
log

|⃗p|+ pz
|⃗p|− pz

. (2.5)

Rapidity and pseudo-rapidity agree in the limit of small particle mass
m≪ E or |⃗p| = E that is common in collider physics. The pseudo-rapidity
can be measured to much higher precision because it does not depend on
the particle energy E, making it a more practical choice.

Even though η ∈ R, the pseudo-rapidity η and azimuthal angle ϕ are
typically of similar magnitude in LHC physics. This motivates the definition
of a simple measure for the angular seperation of two particles

∆R2ij = (ϕi −ϕj)
2 + (ηi − ηj)

2. (2.6)

For practical purposes, the parametrization (pT ,ϕ,η,m) is more useful
than four-momenta (E,px,py,pz). Hence, the former will serve as the
primary momentum representation throughout this thesis.

2.3 the lhc workflow 5

Shower +
hadron.

sim

Detector

MC
sampler

Detector
sim

Recon-
struction

Event
selection

Inference

Discoveries &
measurements

Nature

Quantum
Theory

Scattering
amplitudes

Recon-
struction

Event
selection

Reconstr.
particles

Reconstr.
particles

Figure 2.1: Schematic view of the data-analysis workflow in high-energy physics.
Measurements (top) are processed in parallel with simulated data
(bottom). Their comparison is ultimately the basis for most scientific
conclusions.

2.3 the lhc workflow

The Large Hadron Collider (LHC), located in Geneva, Switzerland, is the
largest operational particle collider. It hosts four main experiments: the In fact, the LHC is

the largest machine
built by humankind.

multi-purpose ATLAS and CMS detectors, the LHCb experiment focusing
on flavor physics, and the ALICE experiment specializing in heavy-ion
physics. With collisions occuring every 30ns, these experiments collect
roughly 1015 bytes of data every second [1]. By the end of its lifetime, the
LHC is expected to produce a dataset on the order of 109 GB. Analyzing
such a vast amount of information presents a remarkable opportunity for
high-energy physics – and calls for especially robust and efficient analytical
tools.

2.3.1 LHC data analysis workflow

This is the most basic
workflow. There are
more approaches, e.g.
anomaly detection,
unfolding and
data-driven analysis
techniques.

The data-analysis workflow in LHC physics is illustrated in Figure 2.1. The
central idea is to take both the collected detector data and the predictions
from various theoretical models, process them in parallel, and ultimately
compare the resulting distributions. The main steps are outlined below,
moving from left to right in Figure 2.1.

Matrix element Starting with the Lagrangian and its associated parame-
ters, one uses QFT to compute the matrix element for a given process and
up to a given order in perturbation theory. Modern event generators like
MadGraph [10] and Sherpa [11] automate this procedure for tree-level and
one-loop processes. A key challenge is that the number of diagrammatic
contributions increases factorially with the number of final-state particles,
making this stage time-consuming for complex processes and higher orders
in perturbation theory.

Monte Carlo sampling Next, one samples LHC events from the proba-
bility distribution defined by the matrix element and phase-space factors.
Events serve as a more flexible representation than the corresponding prob-
abilities, a requirement for the next simulation steps. Sampling from a
high-dimensional distribution is a common task in statistics, and Monte
Carlo sampling is the standard tool to tackle it. In LHC physics, the pro-
posal distribution is constructed based on process-specific phase space

6 collider physics

mappings and a base distribution which is dynamically adapted using
the Vegas algorithm [12]. Small discrepancies in the proposal distribution
require an additional unweighting step.

Parton shower High-energetic quarks and gluon radiation appears inIn higher-order
calculations, one has

to be careful to not
double-count

emissions in matrix
element and parton

shower.

the matrix element at higher orders in perturbation theory, while soft and
collinear emissions are handled by parton shower algorithms. In the soft or
collinear limit, the n+ 1-particle cross-section factorizes into the n-particle
cross-section and a universal splitting kernel [13]. This property underpins
all parton shower approaches, where successive splittings continue until a
cutoff scale is reached—beyond which QCD is non-perturbative.

Hadronization Once the momentum scale drops below ΛQCD ∼ 100 GeV,
partons become strongly coupled and cluster into color-neutral hadrons.
First-principle methods cannot describe this transition, so phenomenologi-
cal models are employed instead, with the Lund string model [14, 15] and
the cluster model [16] among the most widely used. Finally, the decay of
unstable hadrons is simulated. These stages all occur on timescales too
short to be resolved in a detector, whereas subsequent processes unfold at
macroscopic scales.

Detector simulation Within particle detectors, traversing particles are
converted into measurable electronic signals. General-purpose detectors
such as CMS [17] and ATLAS [18] typically combine a tracking system to
measure the momentum of charged particles, electromagnetic and hadronic
calorimeters for energy measurements, and a muon system. Information
from each subsystem is combined to reconstruct the final-state particles [19,
20]. Detector simulations that accurately capture these effects are compu-
tationally expensive and often dominate the computing budget in LHC
analyses.

Jet reconstruction In many analyses, the large number of hadrons pro-
duced via QCD processes is not of primary interest. Instead, hadrons are
clustered into jets – groups of particles that approximate the momentum of
an underlying hard-scatter particle. Various jet algorithms exist; a widely
used option is the anti-kT algorithm [21]. It sequentially merges particles
based on the distance between particles dij and the distance to the beam
diB

dij = min(p−2
T ,i ,p−2

T ,j)
∆R2ij

R2
and diB = p−2

T ,i , (2.7)

where R (commonly 0.4− 1.0) controls the jet cone size, and ∆Rij is the an-
gular distance between particles i and j. At each iteration, the minimum of
all d values is found; if it corresponds to dij, the particles i and j are merged,
or if it corresponds to di,B, particles i is identified as a jet. Intuitively, the
algorithm combines high-pT particles with their lower-pT neighbours until
only well-seperated jets of significant transverse momentum remain.

Event reconstruction In the final step, the reconstructed detector objects
can be matched to particles in the original (hard) process. This task is
inherently ambiguous, since the trajectory from partons to detector signals

2.3 the lhc workflow 7

is only partially observable. Event reconstruction often proceeds by fitting
decay chains to invariant-mass constraints, while neutrinos are inferred
from the missing transverse energy. Depending on the analysis objectives,
event reconstruction may be optional or only partially feasible.

Event selection Finally, the LHC dataset is vast, and using the entire
dataset is neither practical nor necessary for most analyses. Instead, the
data is subjected to multiple selection stages to filter out only the most
relevant events. An online trigger system decides which collisions are
written to disk, and each analysis further refines its selection criteria to
maximize the relevant information in the final dataset.

Inference After reconstruction and event selection are applied to both
measured data and simulated events, the framework of hypothesis testing
provides a systematic way to assess whether the two sets agree or not. Any
significant discrepancy can hint at unaccounted-for effects in the simulation,
or physics beyond the Standard Model.

2.3.2 Machine Learning enhancements

Recent advances in machine learning, combined with the rapidly growing
volume of collider data, demand improvements to the workflow outlined
above. A logical first step is to optimize existing methods – for example, by
parallelizing operations and taking advantage of graphical processing units
(GPUs). Beyond that, machine learning (ML) offers a powerful suite of
big-data techniques that can further enhance the efficiency of the workflow.
Below, we highlight some prominent ML applications in LHC analyses,
loosely divided into cases where ML is used to improve the modelling or
speed up the simulation.

modelling Many operations in the LHC workflow suffer from either
suboptimal numerical techniques or an incomplete understanding of the
underlying physics, like non-perturbative effects. While traditional meth-
ods can address these issues to some extent, modern machine learning
approaches have the potential to significantly advance the state of the art.
Below is a selection of ML applications that illustrate how these techniques
can lead to more efficient or more accurate modeling:

• neural importance sampling One key factor in the efficiency of im-
portance sampling is the quality of the proposal distribution. While
classical techniques such as the vegas algorithm remain widely used,
generative neural networks can produce more accurate proposal dis-
tributions – albeit at the expense of a longer initial training phase. In
particular, normalizing flow–based methods have demonstrated sub-
stantial speed-ups for complex processes, highlighting their potential
to significantly reduce computational overhead [22–24].

8 collider physics

• hadronization models Machine learning offers a versatile, highly
tunable framework for developing empirical models of hadroniza-
tion. [25, 26].

• reconstruction algorithms Machine learning can enhance recon-
struction algorithms at every stage of the data-processing chain – from
track reconstruction and the identification of individual particles to
full event reconstruction [27].

• jet tagging Classifying particle jets according to their originating
particle is a routine procedure in nearly every LHC analysis. Today, it
stands as one of the most mature and widely adopted ML applications
in collider physics [28, 29].

• simulation-based inference Simulation-based inference is a modern
parameter-estimation approach in which neural networks – classi-
fiers or generators – relate the likelihood and posterior distribution.
Given the well-developed simulation frameworks in LHC physics,
this methodology finds a particularly natural application in collider
analyses [30].

• unfolding Unfolding aims to reconstruct underlying events from the
measured detector signals – even reverting back to a stage before the
parton shower if necessary. This can be accomplished via classifier-
based reweighting or generative models, trained on simulated events
and subsequently applied to real data [31–33].

• matrix element method The matrix element method is widely
regarded as the optimal analysis technique in LHC physics. It involves
computing a phase space integral for every observed event, a process
that rapidly becomes unfeasible as the event count grows. Machine
learning techniques – especially the combination of neural importance
sampling with conditional generative networks – hold promise for
making this method both sufficiently expressive and computationally
practical [34, 35].

• anomaly detection One of the central missions of the LHC is to hunt
for anomalous high-energy phenomena – a difficult task, given that
“anomalous” is not strictly defined. Machine learning circumvents
this ambiguity by assigning anomaly scores, offering a model-agnostic
route to uncovering potential new physics [36].

speed Another branch of ML applications aims to accelerate parts of the
simulation chain that are rooted in first principles but are computationally
intensive. Neural networks that bypassing the first-principle simulations
can significantly reduce computation times, provided they are sufficiently
expressive so that their modeling uncertainty remains negligible. These
neural surrogates have to be trained on a dataset that is sufficiently large
for the required precision of the task [37, 38].

2.4 symmetries in the lhc workflow 9

• amplitude regression Matrix element, or amplitude, regression,
refers to the process of fitting a neural network surrogate to the
analytic expression of the matrix element. This technique becomes
particularly valuable at higher orders in perturbation theory, where
direct evaluation of the matrix element is computationally demand-
ing [39, 40].

• detector simulation Detector simulation constitutes one of the
largest contributions to the overall computational cost in LHC simu-
lations. Moreover, it represents the most established application of
generative networks in LHC physics [41].

• event generation Generative networks can be employed to bypass
the entire simulation chain, enabling a direct mapping from the
process specification to reconstructed events [8, 42, 43].

This thesis focuses on machine learning applications in the second class.
In the Chapters 4 and 5 we discuss how autoregressive transformers can be
used to construct event generators. In Chapter 6 we introduce a Lorentz-
equivariant transformer and apply it to amplitude regression, jet tagging
and event generation.

2.4 symmetries in the lhc workflow

Being based on quantum field theory, LHC physics is inherently governed
by a host of symmetries, many of which manifest throughout the analysis
workflow. To build both expressive and efficient tools, it is crucial to embed
these symmetry principles directly into our methods. Demonstrating how
to achieve this constitutes the central objective of this thesis.

In LHC data, the fundamental object is the particle—defined by its
discrete type and its four-momentum. Particles of the same type are in-
distinguishable, leading to an exact permutation symmetry. Permutation-
equivariant architectures – well established in the machine-learning commu-
nity – are therefore a natural fit for particle-based analyses. In Section 3.2,
we will review these architectures with a focus on transformers.

Meanwhile, each particle’s four-momentum transforms under the Lorentz
group’s boosts and rotations. In the remainder of this section, we provide
a concise overview of the Lorentz group’s properties and discuss cases of
Lorentz symmetry breaking in the LHC workflow.

lorentz symmetry The laws of fundamental physics are invariant
with respect to the choice of an inertial reference frame: they do not change
under rotations and boosts from one un-accelerated reference frame into an-
other [44]. Together, these transformations form the special orthochronous Allowing for

accelerating reference
frames would bring
us to the general
theory of relativity.

Lorentz group SO+(1, 3).“Special” and “orthochronous” here mean that
spatial and temporal reflections are not considered as symmetries. In fact,
the fundamental laws of nature are not invariant under those transforma-
tions, an effect known as P-violation [45] and T -violation [46].

10 collider physics

The special orthochronous Lorentz group is the connected component of
the orthogonal group on the four-vector space R1,3 with Minkowski metric
diag(+1,−1,−1,−1). Lorentz transformations mix temporal and spatial
components. Space and time should therefore not be considered as sepa-
rate concepts, but rather as components of a four-dimensional space-time.
Particle four-momenta are another instance of this: they transform in the
vector representation of the Lorentz group, with the Lorentz transformation
mixing energy and spatial momentum

pµ → p ′µ = Λµ
νp

ν, Λ ∈ SO+(1, 3). (2.8)

lorentz symmetry breaking While the underlying laws of physics
are Lorentz invariant, various aspects of the LHC measurement process
explicitly break this symmetry. Key examples include:

• Proton beam The beam axis is a fixed direction in the laboratory
frame. One may formally restore invariance by treating the incoming
protons as additional particles, but in practice the beam direction
singles out a preferred axis.

• Detector geometry The complex arrangement of sensors—layers of
trackers, calorimeters, and muon chambers—is not invariant under
arbitrary rotations or Lorentz boosts. For example, particles striking
the central (barrel) region are typically measured more precisely
than those entering at shallow angles to the beam. However, an
approximate rotational symmetry around the beam axis remains.

• Jet algorithm Jet reconstruction algorithms define jets as collimated
boosted objects. For instance, the anti-kT algorithm [21] uses the
transverse momentum pT and the angular seperate ∆R to define the
distance between particles (2.7). Since pT and ∆R are not invariant
under longitudinal boosts, the resulting jet assignments change with
the reference frame.

Understanding which symmetries are broken (and which persist) is es-
sential when designing Lorentz-aware network architectures. Imposing too
large symmetry groups can render the model incapable of distinguishing
physically distinct configurations, thereby degrading performance.

3
M A C H I N E L E A R N I N G

The foundational knowledge required for the machine-learning applications
treated in the later chapters is presented in this chapter. A concise introduc-
tion to deep learning is given in Section 3.1. Lastly, permutation-equivariant
architectures are examined in Section 3.2, with particular emphasis placed
on transformers, the principal architecture employed in this thesis.

3.1 deep learning

It is called deep
learning, because
neural networks can
be stacked to large
depth.

The strategy in modern machine learning is to embed data into a high-
dimensional latent space, process it with a neural network, and extract the
network output for use in downstream applications. The network is trained
to minimize a loss function, which contains information about the desired
network properties. Training is performed with stochastic gradient descent,
a simple but efficient algorithm that scales well to large networks.

multilayer perceptron The bread and butter of deep learning are
fully-connected networks, or multi-layer perceptions (MLPs). A single
perceptron can be written as

x ′c = ϕ (Wcc ′xc ′ + bc) , (3.1)

where W ∈ Rn×n,b ∈ Rn are free parameters and x, x ′ ∈ Rn is the data
embedded in a high-dimensional latent space. The nonlinearity ϕ is re-
quired to obtain a universal approximator [47]. A multilayer perceptron is
a sequence of tens or hundreds of such perceptron operations that modify
the latent representation x. In practice, the minimal setup (3.1) is modi-
fied with concepts like residual connections, dropout and normalization
techniques to improve the performance. Moreover, one can construct archi-
tectures that mimic the properties of the data, as in convolutional neural
networks (CNNs) for grids, and permutation-equivariant archiectures for
point clouds.

loss function But what is a good choice for the free parameters W,b
in (3.1)? Consider for instance a regresion task, where the dataset consists
of pairs (xi,yi), i = 1 . . .N and the target is to fit a neural network f such
that f(xi) = yi. A common objective or loss function for this task is the
mean squared error (MSE) Note that the losses

αL and L+α with
α ∈ R are
equivalent to L.L =

1

N

N∑
i=1

(yi − f(xi))
2 =

〈
(y− f(x))2

〉
x,y

. (3.2)

11

12 machine learning

A more principled approach to loss functions is to tackle the problem from
a probabilistic perspective. The data is described by a distribution pdata(x),
and the network output is described by pmodel(x). The training objective is
to match these distributions, i.e. pdata(x) = pmodel(x). The Kullback-Leibler
(KL) divergence is a distance measure between two distributions, serving
as a flexible blueprint for loss functions

KL(pdata|pmodel) =

∫
dxpdata(x) log

pdata(x)

pmodel(x)

= −

∫
dxpdata(x) logpmodel(x) + const. (3.3)

For instance, the MSE loss (3.2) can be derived from a gaussian distribution
pmodel(x|y) = Ny,1(x), and the cross-entropy (CE) loss commonly used
for classification tasks can be derived from a multinomial distribution.
Generative networks do not constrain the form of pmodel(x), and hence they
can be directly trained on the KL divergence (3.3).

All projects in this
thesis use the

PyTorch [48]
autodiff library.

gradient descent So how can we find the neural network parameters
that minimize the loss function? Gradient descent is a simple optimization
algorithm that scales well to high-dimensional systems. It relies on auto-
matic differentiation (autodiff), a numerical method to efficiently evaluate
gradients ∇θL of the objective L with respect to the free parameters of the
problem θ. These gradients are then used to update the parameters in the
direction of the gradient descent −∇θL,

θ ′ = θ− λ∇θL. (3.4)

The learning rate λ is a hyperparameter that quantifies the greediness of theA popular
learning rate is
λ = 0.0003 [49].

optimization algorithm. Typically, the gradient ∇θL is only evaluated over
a random subset of the dataset or batch to inrease randomness, this is called
stochastic gradient descent. There are refined version of the basic gradient
descent (3.4) that incorporate also gradient information of previous update
steps to avoid convergence to local minima of the objective. Examples are
the so-called Adam [50], RAdam [51] and Lion [52] optimizers.

bayesian neural networks The training process of a neural network
introduces uncertainties, and the resulting predictions have little value if
these uncertainties are not quantified. A first approach is ensembling, i.e.
training multiple models and estimating the models uncertainty based on
the distribution of predictions. A more principled and scalabled approach
are Bayesian neural networks (BNNs) [53–56]. We assign a prior distributionThe BNN prior is

handled like a
hyperparameter.

of the network parameters p(θ), and ask for the posterior distribution
p(θ|D) of network parameters given the training data D. The key idea is to
approximate the intractable posterior distribution p(θ|D) with a simpler
distribution qϕ(θ) that depends on free parameters ϕ. The parameters ϕ
can be optimized with a KL divergence as the objective

LBNN = KL
(
qϕ(θ)|p(θ|D)

)
. (3.5)

3.2 permutation-equivariant architectures 13

We now use Bayes theorem to rewrite the BNN objective in terms of the
model likelihood pmodel(D|x) BNNs estimate

uncertainties at the
cost of extra free
parameters ϕ.

LBNN =

∫
dθqϕ(θ) log

qϕ(θ)

p(θ|D)
=

∫
dθqϕ(θ) log

qϕ(θ)p(D)

p(D|θ)p(θ)

= −

∫
dθqϕ(θ) logp(D|θ) + KL

(
qϕ(θ)|p(θ)

)
+ logp(D). (3.6)

In the resulting expression the first term is a modification of the usual
objective − logp(D|θ), the second term acts as a regularization for the
model parameters θ, and the third term is a constant that does not affect
the optimization. The integral in the first term is typically approximated
with a single sample in each iteration. In conclusion, training BNNs
amounts to sampling model parameters θ ∼ qϕ(θ) from the approximate
posterior in each iteration, and adding an extra loss term that regulates the
posterior distribution qϕ(θ). More expressive

parametrizations
qϕ(θ) are usually
more expensive to
optimize.

But how what is a good parametrization for the approximate likelihood
qϕ(θ)? A common choice are uncorrelated normal distributions Nµi,σi

for the network parameters θi. This seemingly restrictive ansatz can still
model complex uncertainties if the network is sufficiently deep. The prior is
typically chosen to be a normal distribution with zero mean and a tuneable
standard deviation σp. The KL divergence in the BNN objective (3.6) can
then be evaluated analytically

KL
(
qϕ(θ)|p(θ)

)
=

∑
i

(
µ2i + σ

2
i − σ

2
p

2σ2p
+ log

σp

σi

)
. (3.7)

3.2 permutation-equivariant architectures

The MLPs introduced above are sufficient to construct universal approxima-
tors in the limit of infinite width [47], but in practice finite-width MLPs do
not give sufficient performance for most tasks. In most applications there
are inherent symmetries in the data, and reflecting these symmetries in the
choice of the network architecture can significantly boost performance. For
instance, the discrete translation symmetry of grids is naturally represented
in convolutional neural networks, which are the typical architecture for
image processing tasks. We will focus on permutation symmetry in this
section, and discuss the case of Lorentz symmetry in Chapter 6.

permutation equivariance The underlying principle is called equiv-
ariance. We call an operation f equivariant under the symmetry group G, if
for any possible input x and any transformation t ∈ G Equivariant

networks transform
as tensors of the
respective symmetry
group.

f(t(x)) = t(f(x)). (3.8)

For the case of permutation symmetry, t is a permutation and x is a set.
Invariant operations f are a subclass of equivariant operations where the
output f(x) does not change under transformations t ∈ G,

f(t(x)) = t(f(x)) = f(x). (3.9)

14 machine learning

Equivariance is typically achieved by constraining the available operations.
For instance, permutation-equivariant architectures usually apply the same
learnable operations to each set element individually, and then exchange
information between set elements using simple permutation-invariant op-
erations like summing or taking the maximum over set elements. A very
general class of permutation-equivariant operations are message-passing
graph networks which are based on the operation [57]

x ′i = ϕ

xi,⊕
j

ψ(xi, xj)

 , (3.10)

where xi are embeddings of the set elements, ϕ,ψ are unconstrained neural
networks, and

⊕
is a permutation-invariant aggregation operation like∑

or max. In words, these networks create updates of hidden states x ′i
based on the previous states xi and messages ψ(xi, xj) between pairs of set
elements which are aggregated in a permutation-invariant way.

Enforcing equivariance to symmetries present in the data typically im-
proves performance for two reasons. First, the neural network does not
have to learn the symmetry properties of the output, saving parameters for
the actual task. Second, equivariant architectures typically have parameter
sharing, i.e. the same free parameters are used in different parts of the
network. This acts as an efficient regulator to avoid overfitting.

transformers Transformers [58] are one kind of permutation-equivariant
architecture that empirically shows excellent scaling properties when large
sets or large latent representations are required. They are based on self-
attention [58], which emerges as a special case of (3.10)

x ′ic =
∑
j

Aijvjc =
∑
j

Softmaxj

 d∑
c1=1

qic1
kjc1√
d

 vjc, (3.11)

with qic =WQ
cc ′xic ′ , kic =WK

cc ′xic ′ , vic =WV
cc ′xic ′ .

The matrices WQ,WK,WV ∈ Rd×d are learnable. The softmax operation
is used to normalized the attention matrix Aij, and the scaling factor

√
d

cancels the scaling of the inner product qic1
kjc1

with the latent dimension
d. In practice, h distinct sets of d/h-dimensional keys, queries and values
are constructed from the d-dimensional latent representation x and again
aggregated after attention to increase expressivity, this is called multi-head
attention.

Intuitively, attention compares queries q with keys k to construct the
attention matrix Aij that quantifies the interaction between any pair of
set elements. This matrix is then matched onto values v to obtain the
updated set elements x ′. Attention can also be used to include information
from elements of another set yic into the updates x ′ic by setting kic =

WK
cc ′yic ′ , vic =WV

cc ′yic ′ instead, this is called cross-attention [58].
The superior scaling properties of attention (4.1) is due to the fact that

attention only involves learnable operations on node representations xi, and

3.2 permutation-equivariant architectures 15

not on edge representations xixj which are included as ψ(xi, xj) in the more
general message-passing operation (3.10). This allows the construction of
fused attention kernels [59, 60], which significantly improve the speed and
memory consumption of attention.

Transformers are broadly defined as permutation-equivariant architec-
tures that use attention as the only message-passing operation [58]. They
typically feature a series of blocks which combine attention with a two-layer
MLP to post-process the attention outputs. Layer normalization [61] and
residual connections [62] are typically added to improve training stability
when scaling to many layers.

Language is not
permutation
equivariant:

“this is correct“
̸= “is this correct“.

permutation symmetry breaking Transformers were developed
for language processing, a field where the relevance of permutation equiv-
ariance is not immediately obvious. They were proposed in combination
with positional encodings [58], i.e. extra input features that are different
for each word. This is a form of permutation equivariance breaking, which is
necessary in this case to reflect the properties of the data. Even image patches

can be interpreted as
a set using
permutation
symmetry
breaking [63].

In high-energy physics, an exact permutation symmetry is only present
between identical particles. In practice it often is beneficial to instead
consider the extended group of permutations of all particles, including
those of different kind, and then break this symmetry in a way similar to
language modeling. Usually only a fixed number of particles is present,
allowing a one-hot encoding as a simple way to break this larger symmetry
group down to the exact subgroup.

We emphasize that the examples of symmetry breaking discussed above
do not affect the exact permutation equivariance in the architecture. Instead,
they break permutation equivariance at the level of the inputs by adding
extra reference information onto each set element. In principle this design
allows the network to restore permutation equivariance if the data support
it, by mapping two different reference inputs to the same point in latent
space. This recipe for symmetry breaking in equivariant architectures can
be applied generally. We will see more examples in Section 6.1.3 for the
example of Lorentz-equivariant architectures.

4
L H C E V E N T G E N E R AT I O N W I T H J E T G P T

The research presented in this chapter is based on work in collaboration with
Anja Butter, Nathan Huetsch, Sofia Palacios Schweitzer, Tilman Plehn and Peter
Sorrenson, and has been previously published in Ref. [8]. All tables and figures as
well as parts of the text are similar or identical to the content of these articles.

At the LHC, generative networks are used for many simulation and
analysis tasks, typically to describe virtual or real particles over their
correlated phase space. The number of particles ranges from few to around
50, described by their energy and three momentum directions, sometimes
simplified through on-shell conditions.

Several generative networks have been applied to this task. First, gen-
erative adversarial networks (GANs) have been used to show that the
distribution of LHC events can be tackled with neural networks [42], al-
though not to the necessary level of precision. Bijective networks like INNs
are a better alternative, being able to learn most distribution to percent-level
accuracy [43]. In this chapter, we develop an autoregressive transformer
as an alternative that leverages the approximate permutation symmetry
between particles to build more meaningful internal representations. It
was developed jointly with a denoising diffusion probabilistic model and a
conditional flow matching model, see reference [64] for the comparison.

Because fundamental physics applications require full control and a
conservative and reliable uncertainty estimation of neural networks, we
will develop a Bayesian version the generative transformer. This allows
us to control the uncertainty in the density estimation and to derive an
intuition how the different networks learn the phase space distribution of
the data.

4.1 generative model

Architecture

A distinct shortcoming of traditional generative models like GANs, INNs,
and diffusion models is that they learn the correlations in all phase space
directions simultaneously. This leads to a power-law scaling for instance of
the training effort for a constant precision in the learned correlations [39].
The autoregressive transformer (AT) [65] instead interprets the phase space
vector x = (x1, ...xn) as a sequence of elements xi and factorizes the joint
n-dimensional probability into n probabilities with a subset of conditions,

pmodel(x|θ) =

n∏
i=1

p(xi|x1, ..., xi−1) ≈ pdata(x) , (4.1)

17

18 lhc event generation with jetgpt

x0 ω(0)

x1 ω(1)

x2 ω(2)

... ...

xn−1 ω(n−1)

A10

A20

An−1,0

A21

An−1,1 An−1,2

. . .
An−1,n−2

Figure 4.1: Autoregressive approach to density estimation. The attention matrix
Aij defined in Eq.(4.8) encodes information between components xi.
We introduce an auxiliary condition x0 = 0 for the first phase space
component x1.

as illustrated in Fig. 4.1. This autoregressive approach improves the scaling
with the phase space dimensionality in two ways. First, each distribution
p(xi|x1, ...xi−1) is easier to learn than a distribution conditional on the full
phase space vector x. Second, we can use our physics knowledge to group
challenging phase space directions early in the sequence x1, ..., xn.

The network learns the conditional probabilities over phase space using
a representation

p(xi|ω
(i−1)) = p(xi|x1, ...xi−1) , (4.2)

where the parametersω(i−1) encode the conditional dependence on x1, ...xi−1.
A naive choice are binned probabilities w(i−1)

j per phase space direction,

p(xi|ω
(i−1)) =

∑
bins j

w
(i−1)
j 1(j)(xi) , (4.3)

where 1(j)(x) is one for x inside the bin j and zero outside. A more flexible
and better-scaling approach is a Gaussian mixture,

p(xi|ω
(i−1)) =

∑
Gaussian j

w
(i−1)
j N(xi;µ

(i−1)
j ,σ(i−1)

j) . (4.4)

It generalizes the fixed bins to a set of learnable means and widths.
Our architecture closely follows the Generative Pretrained Transformer

(GPT) models [65], illustrated in Fig. 4.2. The network takes a sequence
of xi as input and evaluates them all in parallel. We use a linear layer to

= x iAT

Em
be

dd
in

g x i1
...

x iα
...

x id

×N

TransformerDecoder

Self-Attention Feed-Forward

x ′i1...
x ′iα...
x ′id

Li
ne

ar

ω(i)

Figure 4.2: Architecture of the autoregressive transformer. All phase space compo-
nents xi are evaluated in parallel, see Fig. 4.1.

4.1 generative model 19

map each value xi in a d-dimensional latent space, denoted as xiα. The
network consists of a series of TransformerDecoder blocks, combining
a self-attention layer with a standard feed-forward network. Finally, a
linear layer maps the latent space onto the representation ω(i−1) of the
conditions.

Equations (4.3) and (4.4) do not provide an actual structure correlating
phase space regions and phase space directions. This means the trans-
former needs to construct an appropriate basis and correlation pattern by
transforming the input x into an x ′, with the same dimension as the input
vector and leading to the ω representation. Its goal is to construct a matrix
Aij that quantifies the relation or similarity of two embedded phase space
components xiα and xjα. We construct the single-headed self-attention [58]
of an input x in three steps.

1. Using the conventions of the first layer, we want to measure the
relation between xi and a given xj, embedded in the d-dimensional
latent space. Replacing the naive scalar product xiαxjα, we introduce
learnable latent-space transformations WQ,K to the elements

qiα =WQ
αβxiβ and kjα =WK

αβxjβ , (4.5)

and use the directed scalar product

Aij ∼ qiαkjα (4.6)

to encode the relation of xj with xi through kj and qi. While the
scalar product is symmetric, the attention matrix does not have to
be, Aij ̸= Aji. These global transformations allow the transformer to
choose a useful basis for the scalar product in latent space.

2. The first problem with Aij given in Eq.(4.6) is that it grows with the
latent space dimensionality, so it turns out to be useful to replace it
by Aij → Aij/

√
d. More importantly, we want all entries j referring

to a given i to be normalized,

Aij ∈ [0, 1] and
∑
j

Aij = 1 . (4.7)

This leads us to the definition

Aij = Softmaxj
qiαkjα√

d
with Softmaxj(xj) =

exj∑
k e

xk
. (4.8)

Similar to the adjacency matrix of a graph, this attention matrix
quantifies how closely two phase space components are related. Our
autoregressive setup sketched in Fig. 4.1 requires us to set

Aij = 0 for j > i . (4.9)

3. Now that the network has constructed a basis to evaluate the relation
between two input elements xi and xj, we use it to update the actual

20 lhc event generation with jetgpt

representation of the input information. We combine the attention
matrix Aij with the input data, but again transformed in latent space
through a learnable matrix WV ,

x ′iα = Aijvjα = AijW
V
αβxjβ

= Softmaxj

(
W

Q
δγxiγW

K
δσxjσ√

d

)
WV

αβxjβ . (4.10)

In this form we see that the self-attention vector x ′ just follows from a
general basis transformation with the usual scalar product, but with
an additional learned transformation for every input vector.

The self-attention can be stacked with other structures like a feed-forward
network, to iteratively construct an optimal latent space representation.
This can either be identified with the final output ω(i) or linked to this
output through a simple linear layer. To guarantee a stable training of
this complex structure, we evaluate the self-attention as an ensemble,
defining a multi-headed self-attention. In addition, we include residual
connections, layer normalization, and dropout just like the GPT model.
Because the sum over j in Eq.(4.10) leads to permutation equivariance in
the phase space components, we break it by providing explicit positional
information through a linear layer that takes the one-hot encoded phase
space position i as input. This positional embedding is then added to the
latent representation xiα.

Training and sampling

The training of the autoregressive transformer is illustrated in Fig. 4.3. We
start with an universal x0 = 0 in p(x1|ω(0)) for all events. The transformer
encodes all parameters ω needed for p(xi|ω(i−1)) in parallel. The chain of
conditional likelihoods for the realized values xi gives the full likelihood
pmodel(x|θ), which in turn can be used for the loss function

LAT =
〈
− logpmodel(x|θ)

〉
x∼pdata

=

n∑
i=1

〈
− logp(xi|ω(i−1))

〉
x∼pdata

. (4.11)

The successive transformer sampling is illustrated in Fig. 4.4. For each
component, ω(i−1) encodes the dependence on the previous components
x1, ..., xi−1, and correspondingly we sample from p(xi|ω

(i−1)). The pa-
rameters ω(0), ...ω(i−2) from the sampling of previous components are
re-generated in each step, but not used further. This way the event genera-
tion is less efficient than the likelihood evaluation during training, because
it cannot be parallelized.

Bayesian version

As any generative network, we bayesianize the transformer by drawing
its weights from a set of Gaussians q(θ). In practice, we replace the

4.1 generative model 21

x0
...

xn−1

xn

AT
ω(0)

...
ω(n−1)

p(x1|ω(0))
...

p(xn|ω(n−1))
L= −
∑n

i=1 log p(x i|ω(i−1))

Figure 4.3: Training algorithm for the autoregressive transformer.

deterministic layers of the transformer by Bayesian layers and add the
KL-regularization from Eq.(3.6) to the likelihood loss of the transformer,
Eq.(4.11)

LB-AT =
〈
LAT

〉
θ∼q(θ)

+ KL[q(θ),p(θ)]. (4.12)

For large generative networks, we encounter the problem that too many
Bayesian weights destabilize the network training. While a determinis-
tic network can switch of unused weights by just setting them to zero, a
Bayesian network can only set the mean to zero, in which case the Gaus-
sian width will approach the prior p(θ). This way, excess weights can
contribute noise to the training of large networks. This problem can be
solved by adjusting the hyperparameter describing the network prior or
by only bayesianizing a fraction of the network weights. In both cases it is
crucial to confirm that the uncertainty estimate from the network is on a
stable plateau. For the transformer we find that the best setup is to only
bayesianizing the last layer.

To implement the autoregressive transformer we use PyTorch with the
RAdam optimizer. All hyperparameters are given in Tab. A.1. We propose
to couple the number of parameters m in the parametrization vector ω(i−1)

to the latent space dimensionality d, because the latent space dimensionality
naturally sets the order of magnitude of parameters that the model can
predict confidently.

x0 = 0 AT ω(0) p(x1|ω(0))

x1 AT ω(0)

ω(1) p(x2|ω(1))

x2
...

xn−1

...

AT
ω(0)

...
ω(n−1) p(xn|ω(n−1))

...
...

xn

Figure 4.4: Sampling algorithm for the autoregressive transformer.

22 lhc event generation with jetgpt

1

2

N
or

m
al

iz
ed

Truth

AT

Train

0.9
1.0
1.1

AT
Tr

ut
h

0.2 0.4 0.6 0.8
x2

0.1
1.0

10.0
δ
[%
]

x2
0.00

0.02

σ

0.2 0.4 0.6 0.8
x2

0.00

0.02

σ
/

p

0

2

4

N
or

m
al

iz
ed

Truth

AT

Train

0.9
1.0
1.1

AT
Tr

ut
h

0.8 1.0 1.2
R

0.1
1.0

10.0

δ
[%
]

R
0.00

0.01

0.02

σ

0.8 1.0 1.2
R

0.00

0.02

0.04

σ
/

p
Figure 4.5: Ramp (upper) and Gaussian ring (lower) distribution from the autore-

gressive transformer with a binned likelihood. We show the learned
density and its Bayesian network uncertainty (left) as well as the abso-
lute and relative uncertainties with a range given by 10 independent
trainings, compared to the statistical uncertainty of the training data in
blue (right).

4.2 toy models and bayesian networks

Before we can turn to the LHC phase space as an application to our
novel generative model, we study its behavior for two simple toy models,
directly comparable to Bayesian INNs [66]. These toy models serve two
purposes: first, we learn about the strengths and the challenges of the
network architecture, when the density estimation task is simple and the
focus lies on precision. Second, the interplay between the estimation of
the density and its uncertainty over phase space allows us to understand
how the network encodes the density. We remind ourselves that an INN
just works like a high-dimensional fit to the correlated 2-dimensional
densities [66].

Our first toy example is a normalized ramp, linear in one direction and
flat in the second,

pramp(x1, x2) = 2x2 . (4.13)

The network input and output are unweighted events. The hyperparame-
ters of the model are given in Tab. A.1. A training dataset of 600k events
guarantees that for our setup and binning the statistical uncertainty on the
phase space density is around the per-cent level. To show one-dimensional
Bayesian network distributions we sample the xi-direction and the θ-space

4.2 toy models and bayesian networks 23

in parallel [43, 66]. This way the uncertainty in one dimension is indepen-
dent of the existence and size of other dimensions.

In Fig. 4.5 we start with a simple representation of the phase space
density using 64 bins. In this naive setup the densities of the ramp and the
Gaussian ring are described accurately, within our per-cent target range.
The largest deviations appear in the tails of the Gaussian ring, but remain
almost within the statistical limitations of the training data.

Unlike for the INN and the diffusion models, the uncertainty in the
right panels of Fig. 4.5 does not show any real features for the ramp or
the Gaussian ring. This shows that the transformer does not use a fit-like
density estimation and does not benefit from the increased correlations in
the center of phase space [66]. Both of these aspects can be understood
from the model setup. First, the autoregressive structure never allows
the transformer to see the full phase space density and encode global
(symmetry) patterns; second, the main motivation of the transformer is
to improve the power-law scaling with the dimensionality of all possible
correlations and only focus on the most relevant correlations at the expense
of the full phase space coverage.

In Fig. 4.6 we show the same results for a mixture of 21 Gaussians. For
this small number of dimensions the advantage over the binned distribution

1

2

N
or

m
al

iz
ed

Truth

AT

Train

0.9
1.0
1.1

AT
Tr

ut
h

0.2 0.4 0.6 0.8
x2

0.1
1.0

10.0

δ
[%
]

x2
0.00

0.02

0.04

σ

0.2 0.4 0.6 0.8
x2

0.00

0.02

0.04

σ
/

p

0

2

4

N
or

m
al

iz
ed

Truth

AT

Train

0.9
1.0
1.1

AT
Tr

ut
h

0.8 1.0 1.2
R

0.1
1.0

10.0

δ
[%
]

R
0.00

0.02σ

0.8 1.0 1.2
R

0.00

0.05

σ
/

p

Figure 4.6: Ramp (upper) and Gaussian ring (lower) distribution from the autore-
gressive transformer with a Gaussian mixture likelihood. We show
the learned density and its Bayesian network uncertainty (left) as well
as the absolute and relative uncertainties with a range given by 10

independent trainings, compared to the statistical uncertainty of the
training data in blue (right).

24 lhc event generation with jetgpt

is not obvious. The main problem appears at the upper end of the ramp,
where there exists enough training data to determine a well-suited model,
but the poorly-suited GMM just fails to reproduce the flat growth towards
the sharp upper edge and introduces a significant artifact, just covered by
the uncertainty. For the Gaussian ring the GMM-based transformer is also
less precise than the binned version, consistent with the lower resolution in
the 2-dimensional model.

The uncertainty predicted by the Bayesian transformer is typically very
small. We therefore add the statistical uncertainty of the training data
to the right panels of Figs. 4.5 and 4.6, providing a lower bound on the
uncertainty. In both cases, the uncertainty of the Bayesian transformer
conservatively tracks the statistical uncertainty of the training data.

The second toy example is a Gaussian ring, or a Gaussian sphere in two
dimensions,

pring(x1, x2) = N(
√
x21 + x

2
2; 1, 0.1). (4.14)

In Fig. 4.7 we illustrate the unique way in which the GMM-based trans-
former reconstructs this density. In the left panel, we show pmodel(x1) after
the first autoregressive step, constructed out of 21 learned Gaussians. The
peaks at ±1 arise from the marginalization along the longest line of sight.
The marginalization also distorts the form of the Gaussians, which are
distributed along the ring. The density after the second autoregressive step,
pmodel(x2|x1), is conditioned on the first component. In the second panel
we show pmodel(x2|x1 = 0) with sharp peaks at ±1 because the event has to
be at the edge of the ring. The Gaussians building the left and right peak
are distributed roughly equally. On the other hand, pmodel(x2|x1 = 1) has a
broad plateau in the center, again from the x1-condition.

4.3 lhc events

Most generative network tasks at the LHC are related to learning and
sampling phase space densities, for instance event generation at the parton
or reconstruction level, the description of detector effects at the reconstruc-

−1 0 1
x1

0

1

p(
x 1
)

Truth

AT

−1 0 1
x2

0

1

2

p(
x 2
|x 1
=

0)

Truth

AT

−1 0 1
x2

0

1

p(
x 2
|x 1
=

1)

Truth

AT

Figure 4.7: Conditional likelihoods for the Gaussian ring. We show the full Gaus-
sian mixture as well as the 21 individual Gaussians, compared to the
truth distribution.

4.3 lhc events 25

tion level, the computation of event-wise likelihoods in the matrix element
method, or the inversion and unfolding of reconstructed events. This is why
we benchmark our new networks on a sufficiently challenging set of LHC
events. Following Ref. [43] we choose the the production of leptonically
decaying Z-bosons, associated with a variable number of QCD jets,

pp→ Zµµ + {1, 2, 3} jets . (4.15)

The network has to learn the sharp Z-peak as well as correlated phase space
boundaries and features in the jet-jet correlations. We generate the training
dataset of 5.4M events (4.0M + 1.1M + 300k) using Sherpa2.2.10 [11]
at 13 TeV, including ISR and parton shower with CKKW merging [67],
hadronization, but no pile-up. The jets are defined by Fastjet3.3.4 [68]
using the anti-kT algorithm [69] and applying the basic cuts

pT ,j > 20 GeV and ∆Rjj > 0.4 . (4.16)

The jets and muons are each ordered in transverse momentum. Our phase
space dimensionality is three per muon and four per jet, i. e.10, 14, and
18 dimensions. Momentum conservation is not guaranteed, because some
final-state particles might escape for instance the jet algorithm. However,
the physically relevant phase space dimensionality is reduced to 9, 13, and
17 by removing the global azimuthal angle.

Our data representation includes a minimal preprocessing. Each particle
is represented by

{ pT ,η,ϕ,m } . (4.17)

Given Eq.(4.16), we provide the form log(pT − pT ,min), leading to an ap-
proximately Gaussian shape. All azimuthal angles are given relative to the
leading muon, and the transformation into artanh(∆ϕ/π) again leads to
an approximate Gaussian. The jet mass is encoded as logm. Finally, we
centralize and normalize each phase space variable as (qi − q̄i)/σ(qi) and
apply a whitening/PCA transformation separately for each jet multiplicity
for the two diffusion models.

We already know from Sec. 4.2 that the autoregressive transformer learns
and encodes the phase space density different from normalizing flows or
diffusion networks. A key structural difference for generating LHC events
is that the transformer can generate events with different jet multiplicities
using the same network. The one-hot-encoded jet multiplicity is provided
as an additional condition for the training. The autoregressive structure can
work with sequences of different length, provided there is an appropriate
way of mapping the sequences onto each other. For the LHC events
we enhance the sensitivity to the angular jet-jet correlations through the
ordering(

(ϕ,η)j1,2,3 , (pT ,η)µ1
, (pT ,ϕ,η)µ2

, (pT ,m)j1,2,3

)
. (4.18)

While the Bayesian transformer does learn the angular correlations also
when they appear at the end of the sequence, this ordering provides a

26 lhc event generation with jetgpt

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+1 jet exclusive

Truth

AT

Train

0.8
1.0
1.2

AT
Tr

ut
h

25 50 75 100 125 150
pT, j1[GeV]

0.1
1.0

10.0

δ
[%
]

0.0

0.1

0.2

N
or

m
al

iz
ed

Z+1 jet exclusive

Truth

AT

Train

0.8
1.0
1.2

AT
Tr

ut
h

80 85 90 95 100
Mµµ[GeV]

0.1
1.0

10.0

δ
[%
]

10−3

10−2

10−1

N
or

m
al

iz
ed

Z+2 jet exclusive

Truth

AT

Train

0.8
1.0
1.2

AT
Tr

ut
h

20 40 60 80
pT, j2[GeV]

0.1
1.0

10.0

δ
[%
]

0.0

0.2

0.4

N
or

m
al

iz
ed

Z+2 jet exclusive

Truth
AT

Train

0.8
1.0
1.2

AT
Tr

ut
h

2 4 6
∆R j1, j2

0.1
1.0

10.0
δ
[%
]

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+jets inclusive

Truth
AT

Train

0.8
1.0
1.2

AT
Tr

ut
h

50 100 150 200∑
i pT, ji

0.1
1.0

10.0

δ
[%
]

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

Z+3 jet exclusive

Truth
AT
Train

0.8
1.0
1.2

AT
Tr

ut
h

2 4 6
∆R j1, j3

0.1
1.0

10.0

δ
[%
]

Figure 4.8: Bayesian autoregressive transformer densities and uncertainties for Z+

1 jet (upper), Z+ 2 jets (center), and Z+ 3 jets (lower) from combined
Z+ jets generation. The uncertainty on the training data is given by bin-
wise Poisson statistics. The network architecture is given in Tab. A.1.
For a comparison with the INN we refer to Fig. 11 of Ref. [43].

significant boost to the network’s precision. For the transformer training,
we want the features of the 3-jet to be well represented in the set of vectors
defined in Eq.(4.18). To train on equal numbers of events with one, two,
and three jets, we sample 1-jet and 2-jet events randomly at the beginning
of each epoch. The loss is first evaluated separately for each jet multiplicity,
and then averaged for the training update.

4.4 outlook 27

In Fig. 4.8 we show a set of kinematic distributions for different jet
multiplicities, including the jet-inclusive scalar sum of the up to three pT ,j.
Starting with the almost featureless pT -distributions in the left panels, we
see that for all three distributions the deviation from the truth, given by
high-statistics training data, is similar for the actual training data and for the
AT-generated events. For sufficient training statistics, the precision on the
phase space density as a function of pT is below the per-cent level, easily on
par with the INN baseline. For a given jet multiplicity this precision drops
with increasing pT and correspondingly decreasing training data, an effect
that is correctly and conservatively modeled by the uncertainty estimate
of the B-AT. Sampling a variable number of jets with the multiplicity as a
condition leads to no additional complication.

In the right panels of Fig. 4.8 we show the most challenging phase space
correlations. We start with the Z-peak, which governs most of the events,
but requires the network to learn a very specific phase space direction very
precisely. Here, the agreement between the true density and the AT result
drops to around 10% without any additional phase space mapping, similar
to the best available INN. The deviation is not covered by the Bayesian
network uncertainty, because it arises from a systematic failure of the
network in the phase space resolution, induced by the network architecture.
However, this effect is less dramatic than it initially looks when we notice
that the ratio of densities just describes the width of the mass peak being
broadened by around 10%. If needed, it can be easily corrected by an event
reweighting of the Z-kinematics. Alternatively, we can change the phase
space parametrization to include intermediate particles, but most likely at
the expense of other observables.

Next, we study the leading challenge of ML-event generators, the jet-
jet correlations and specifically the collinear enhancement right at the
hard jet-separation cut of ∆Rjj > 0.4. Three aspects make this correlation
hard to learn: (i) this phase space region is a sub-leading feature next
to the bulk of the distribution around ∆Rjj ∼ π; (ii) it includes a sharp
phase space boundary, which density estimators will naturally wash out;
and (iii), the collinear enhancement needs to be described correctly, even
though it appears right at the phase space boundary. The benefit of this
ordering (4.18) can be seen in these distributions, which are reproduced at
the per-cent precision without any additional effort. This is true for ∆Rj1j2
and ∆Rj1j3 , reflecting the democratic ordering and training dataset. The
sharp phase space boundary at ∆Rjj = 0.4 can be trivially enforced during
event generation.

4.4 outlook

Generative neural networks are revolutionizing many aspects of our lives,
and LHC physics is no exception. Driven by large datasets and precise
first-principle simulations, LHC physics offers a wealth of opportunities
for modern machine learning, in particular generative networks [70]. Here,

28 lhc event generation with jetgpt

classic network architectures have largely been surpassed by normalizing
flows, especially its INN variant, but cutting-edge new approaches are
extremely promising. In this study we focus on autoregressive generative
transformers.

We have first implemented a Bayesian network version, which allows us
to understand the way that the network approaches the density estimation.
While INNs and diffusion networks first identify classes of functions and
then adapt them to the correlations in phase space [66], the transformer
learns patterns patch-wise and dimension by dimension.

Next, we have applied the autoregressive transformer to the generation
of Z+jets events, with a focus on the conditional setup for variable jet
multiplicities and the precision in the density estimation [43]. The most
challenging phase space correlations are the narrow Z-peak and the angular
jet–jet separation combined with a collinear enhancement.

Altogether, we have found that new generative network architectures
have the potential to outperform even advanced normalizing flows and
INNs. However, autoregressive transformers come with their distinct set of
advantages and challenges. Given the result of our study we expect signifi-
cant progress in generative network applications for the LHC, whenever
the LHC requirements in precision, expressivity, and speed can be matched
by one of the new architectures.

5
E X T R A P O L AT I N G J E T R A D I AT I O N W I T H
AU T O R E G R E S S I V E T R A N S F O R M E R S

The research presented in this chapter is based on work in collaboration with Anja
Butter, François Charton, Javier Mariño Villadamigo, Ayodele Ore and Tilman
Plehn, and has been previously published in Ref. [71]. All tables and figures as
well as parts of the text are similar or identical to the content of these articles.

In this chapter we tackle the physics problem of using generative net-
works to describe jets radiated from a hard scattering process. In funda-
mental QCD, jet radiation is described by successive probabilistic parton
splittings. It is an integral part of QCD predictions for hadron colliders,
where final states with a fixed number of jets are not in line with parton
densities and collinear factorization [72–74]. The corresponding splitting
kernels and the generated phase space correlations are approximately uni-
versal [75]. The generated number of jets follows well-defined patterns,
also predicted by QCD.

Autoregressive generative networks can, just like with language, generate
open-end sequences of particles, or events with a variable number of
particles. An autoregressive generation requires a factorized phase space
probability[76, 77]. This structure matches the QCD aspects of universal
splittings and well-defined jet numbers. Our generative architecture of
choice is an autoregressive transformer [8, 78].

The goal of this chapter is to show, that a generative transformer can
extrapolate in the number of jets and generate approximately universal jet
radiation for higher jet numbers than seen during the training. In Sec. 5.1
we describe the QCD structures motivating an approximately factorized
phase space likelihood and its ML-realization, leading to our autoregressive
generative transformer. We then present extrapolated predictions in the
number of jets in Sec. 5.2, using bootstrapped training data in Sec. 5.2.2,
a truncated loss without fixed stopping condition in Sec. 5.2.3, and a loss
that overrides the stop condition in Sec. 5.2.4. In Appendix A.2 we provide
additional information on how to improve the accuracy of the generative
transformer through including a classifier in the training, in the spirit of a
GAN.

5.1 autoregressive jet radiation

Given that jet radiation in QCD is described by universal splitting kernels
and well-defined scalings in the number of jets, we will train an autore-
gressive transformer with a factorized likelihood loss to generate QCD
jet radiation. The ultimate goal is to show that the transformer not only

29

30 extrapolating jet radiation with autoregressive transformers

describes jet radiation to a number of jets represented in the training data,
but that it can extrapolate to larger jet counts than seen during training.

We first remind ourselves of universal splittings in QCD and the typical
scaling in the number of produced jets. We will then motivate our Z+jets
dataset, exhibiting the universal so-called staircase scaling. To train a
generative network we first derive a factorized phase space probability and
then encode it in a loss function for an autoregressive transformer.

5.1.1 QCD jet radiation

Collinear parton splittings in the initial or final states are the backbone of
QCD predictions for hadron colliders. Their universal nature is the basis
of parton densities, parton showers, and jet radiation, and it defines the
structure of LHC events [72–74]. A challenging consequence of collinear
splittings is that any hard scattering process is accompanied by a variable
number of jets in the final state, as described by jet radiation and parton
showers in the multi-purpose event generators [10, 79–81]. Combining
parton shower and hard matrix element predictions is the theory basis for
the entire precision physics program at the LHC [67, 82–84].

Universal autoregressive structure

The physics background of this chapter is the universal nature of jet ra-
diation from collinear splittings, reflecting the collinear factorization of
the matrix element and the phase space. It allows us to generate events
with n+ 1 final-state jets from events with n final-state jets. For final state
radiation this factorization is schematically written as

σn+1 ∼

∫
dp2

p2
dz
αs

2π
P(z)σn , (5.1)

where p2 is the invariant mass of the splitting parton, z is the momentum
fraction carried out of the hard process σn, and P(z) are the universal
collinear splitting kernels. In the initial state, this factorization is the basis
of the DGLAP equation with the subtracted versions of the same collinear
splitting kernels.

The iterative structure of Eq.(5.1) allows us to simulate parton splittings
as Markov processes, and it also allows us to describe the underlying densi-
ties in an approximately factorized form. Such a factorized density is most
efficiently generated by an autoregressive structure. The key ingredients are
the perturbative QCD splitting functions and the non-splitting probability,
referred to as Sudakov factor.

The actual simulation of, approximately, collinear jet radiation is not
expected to be exact: first, we need to generate final transverse momenta
for the radiated partons while keeping transverse momentum conserva-
tion [85]; second, we need to correct for color and spin correlations [86];
finally, the structure of successive (1 → 2)-splittings might be not be suf-
ficient for the LHC precision [87, 88]. Nevertheless, the form of Eq.(5.1)

5.1 autoregressive jet radiation 31

suggests that in QCD events with increasing number of jets can be derived
from a simple iterative pattern, and such a pattern can in principle be
learned and extrapolated by a neural network with the right (autoregres-
sive) architecture.

Jet rate scaling

Unfortunately, the number of radiated jets in LHC events does not follow a
universal distribution. However, we can derive two distinct patterns. Both
are defined in terms of the ratio of (n+ 1)-jet to n-jet events or in terms of
the fraction of events with n jets,

R(n+1)/n =
σn+1

σn
and P(n) =

σn

σtot
with σtot =

∞∑
n=0

σn . (5.2)

The ratios and the probabilities depend on kinematic cuts regularizing the
soft and collinear divergences, typically the minimum transverse momen-
tum of the counted jets, pT ,min.

1. The first pattern, Poisson scaling, implies in terms of the expectation
value n̄,

R(n+1)/n =
n̄

n+ 1
⇔ P(n) =

n̄ne−n̄

n!
. (5.3)

At colliders, it occurs for processes with large splitting probabilities
and large scale differences, for instance multi-jet production in e+e−

collisions.

2. We focus on the alternative staircase scaling [89–91] with

R(n+1)/n = e−b ⇔ P(n ⩾ nmin) = e
−bnmin . (5.4)

While the ratio e−b is the same for the exclusive and inclusive jet
counts, the probability only has a simple form for the inclusive
jet count, classifying events with nmin jets or more. We can use
the universal scaling to relate P(n) to a successive or conditional
probability

P(n+ 1|n) = R(n+1)/n . (5.5)

At colliders, staircase scaling is predicted for smaller splitting probabilities
and democratic scales [92]. In that case, the jet count distributions can
be derived from QCD using generating functionals [93]. For final state
radiation we quote the scale-dependent result

R(n+1)/n = 1− ∆̃g(Q
2) , (5.6)

with a modified Sudakov factor or non-splitting probability

∆̃g(Q
2) = exp

[
−CA

∫Q2

Q2
0

dt
αs(t)

2πt

(
log

t

Q2
0

−
11

6

)]
. (5.7)

32 extrapolating jet radiation with autoregressive transformers

To leading-log level the integrand is the QCD splitting function in the
collinear approximation. This QCD derivation of staircase scaling requires
democratic scales Q2/Q2

0 ∼ O(1).
At the LHC the standard example is weak boson production with jets,

pp→ Z+n jets with n = {0, 1, 2, 3, ...} (5.8)

Because the two scaling patterns are different, we will limit ourselves
to learning and generating staircase scaling from datasets described by
universal collinear radiation.

5.1.2 Z + jets dataset

We follow the above motivation and Refs. [8, 43] by generating leptonically
decaying Z bosons in association with a variable number of jets. Unlike for
earlier studies, we include higher jet multiplicities to provide a challenge
for the transformer

pp→ Zµµ + {0, · · · , 10} jets. (5.9)

We use MadGraph5_aMC_@NLOv3.5.1 to generate 500M events, includ-
ing ISR and parton shower with Pythiav6.3, using CKKW merging and
hadronization, but no pile-up. The jets are defined with FastJetv3.3.4 using
the anti-kT algorithm with the basic cuts

pT ,j > 20 GeV and ∆Rjj > 0.4. (5.10)

The muons and jets are both ordered in transverse momentum. Our phase
space dimensionality is three per muon and four per jet. Momentum
conservation is not guaranteed, because some final-state particles might
escape for instance the jet algorithm. The distribution of the number of
jets and the corresponding ratios R(n+1)/n are shown in the two panels
of Fig. 5.1. We observe an approximately constant ratio for most of the
spectrum, confirming a staircase scaling as defined in Eq.(5.4). Towards
large numbers of jets we start encountering statistical limitations as well as
phase space limitations.

Of our 500M events we use 80% for training, 10% for validation, and 10%
for testing. The number of events per jet multiplicity is given in Tab. 5.1.
To avoid being entirely dominated by low-multiplicity events, we cap the
number of events with n = 0, 1, 2 to match the number of events with
n = 3.

For the jet momenta, we use a minimal preprocessing [8, 43], where each
particle i is represented in standard jet coordinates

{ (pT ,η,ϕ,m)i } . (5.11)

We enforce the pT cuts in Eq.(5.10) using the transformation log(pT −

pT ,min), which maps allowed transverse momenta to the full real line and
leads to an approximately Gaussian shape. The jet mass is encoded as

5.1 autoregressive jet radiation 33

Number of jets 0 1 2 3 4 5 6 7 8 9 10

Number of events 380M 91M 21M 4.7M 1.1M 230k 52k 11k 2.3k 510 95

Cap 4.7M 4.7M 4.7M - - - - - - - -

Table 5.1: Event counts for our simulated Z+jets dataset. When training networks,
we cap the size of the 0,1,2-jet subsets.

logm. We express angles ϕ relative to the leading muon and apply a
special treatment described in Section 5.1.4 to reflect the periodicity. Finally,
we standardize all phase space variables except ϕ as (x− x̄)/σ(x). For 10

jets the phase space is 45-dimensional.

5.1.3 Factorized probability

Following the discussion in Sec. 5.1.1, QCD jet radiation has two features
that make it an attractive target for autoregressive generative networks: the
universal splitting kernels and the jet ratio patterns. In case of staircase
scaling the ratios of exclusive and inclusive jet rates are also universal.
Equation (5.1) suggests that the phase space density for an event x can be
constructed as a product of conditional distributions, each taking the form

p(xi|x1:i−1) = pkin(xi|x1:i−1) psplit(x1:i−1) , (5.12)

where we denote by x1:i−1 the sequence of particles x1, . . . , xi−1. For
particle i, pkin encodes the kinematics, conditional on the probability psplit

that it will be radiated. Both probabilities are conditioned on the full
previous sequence of particles x1:i−1.

Approximate universality of the splitting kernels and jet ratios translates
to universality of pkin and psplit respectively. This raises the possibility that,
given the right architecture, we can train a neural network to extrapolate
QCD jet radiation patterns in analogy to a collinear parton shower Monte
Carlo approach.

0 1 2 3 4 5 6 7 8 9 10
jets n

102

103

104

105

106

107

108

#
ev

en
ts

N
n

0 1 2 3 4 5 6 7 8 9
jets n

0.00

0.05

0.10

0.15

0.20

0.25

R
(n
+

1)
/
n
=

N
n+

1/
N

n

Figure 5.1: Staircase scaling of the number of jets in our pp→ Z+n jets dataset.
We show statistical uncertainties and use Gaussian error propagation
to estimate the uncertainties for the ratio Rn+1/n.

34 extrapolating jet radiation with autoregressive transformers

x0

x1

STOP

x2

STOP

...

xn

STOP

pkin(x1|x0)

psplit(x1)pkin(x2|x1)

1− psplit(x1)

1− psplit(x1:2)

psplit(x1:2)pkin(x3|x1:2)

psplit(x1:n−1)pkin(xn|x1:n−1)

1− psplit(x1:n)

Figure 5.2: Probability tree for variable-length event generation. To disallow empty
events, we assign psplit(x0) = 1.

Using the conditional probabilities in Eq.(5.12) we can build the likeli-
hood of an n-jet event,

p(x1:n) =

[
n∏

i=1

p(xi|x1:i−1)

] [
1− psplit(x1:n)

]
=

[
n∏

i=1

pkin(xi|x1:i−1)

] [
n∏

i=1

psplit(x1:i−1)

] [
1− psplit(x1:n)

]
,

(5.13)

where the last term gives the probability that there are no further splittings
and the event is complete. In QCD language it corresponds to a Sudakov
factor. In accordance with Eq.(5.11), the phase space probability p(x1:n)
has a well-defined dimensionality 4n. It is normalized both as a continuous
distribution over xi and a categorical distribution over n,

∞∑
n=1

∫
dx1 . . .dxn p(x1:n) = 1 . (5.14)

As illustrated in Fig. 5.2, the generative process can be visualized as a
binary probability tree with a Sudakov stop if no further splitting happens.
The combination of psplit for a splitting or (1− psplit) for no splitting is
described by a Bernoulli distribution pbin with expected splitting probability
psplit

pbin
(
y|psplit

)
= pysplit(1− psplit)

1−y with y ∈ {0, 1}, psplit ∈ [0, 1] .

(5.15)

5.1 autoregressive jet radiation 35

It allows us to unify the factors psplit and 1−psplit in a completely factorized
likelihood

p(x1:n) =

n∏
i=1

pkin(xi|x1:i−1)

n∏
i=0

pbin
(
1− δin|psplit(x1:i)

)
. (5.16)

The Kronecker delta assigns the splitting label zero for the nth particle and
one otherwise. By keeping the full conditioning on x1:i, this likelihood
is completely general and can capture non-universal correlations. This is
important when we describe full events, including the hard process. For
Zµµ+jets events, we also treat the muons autoregressively and enforce a
splitting probability of one for them.

Similarly to the autoregressive decomposition of the likelihood of dif-
ferent particles p(x1:n), we factorize the likelihood of individual particles
pkin(xi+1|x1:i) in terms of their components. The ordering of components
can affect the network performance [8], however for such small sequences
this effect is negligible. The elements of the sequence are one-dimensional,
and we parametrize their distributions with mixtures

pkin(xi+1|x1:i) = pGM(pT ,i+1|x1:i)pvMM(ϕi+1|x1:i,pT ,i+1)

×pGM(ηi+1|x1:i,pT ,i+1,ϕi+1) (5.17)

×pGM(mi+1|x1:i,pT ,i+1,ϕi+1,ηi+1) .

We use Gaussian mixtures pGM for non-periodic variables and von Mises
mixtures pvMM for the periodic variable ϕ. We do not generate the fixed
muons mass in Zµµ+jets events. Periodic likelihoods for angular variables
inform the network about this geometric information and therefore im-
prove the performance. This has been previously shown for normalizing
flows [94] and conditional flow matching [95].

In contrast to the autoregressive structure of p(x1:n) in Eq.(5.13), Eq.(5.18)
is not inspired by physics and other choices are possible. Examples from
the literature are categorical distributions over bins (which suffer from
limited resolution) [8, 78, 96], normalizing flows [35, 97], and conditional
flow matching [35, 97].

We emphasize that this factorized likelihood, built to describe an autore-
gressive generation, generalizes the usual factorization p(x1:n) = p(x1:i|i)p(i) [35,
43] and previous autoregressive approaches [8]. Similar generative ap-
proaches have been developed for jet constituent generation [98], and a
similar factorization for density estimation has been studied in Refs. [76,
77].

5.1.4 Autoregressive transformer

Starting from the physics-motivated factorization in Eq.(5.16), we need
to encode these densities with variable-length inputs x1:i using neural
networks. A transformer fθ with causal attention mask will turn these

36 extrapolating jet radiation with autoregressive transformers

sequences into fixed-sized representations. We use a pre-layernorm trans-
former decoder with GeLU activations, for more information see App. A.2,
and decompose the transformer output as

fθ(x1:i) = (ρi,νi) ∈ R × Rd . (5.18)

The embedding dimension d is a hyperparameter. The ρi represent the
splitting probabilities that parametrize the Bernoulli distributions,

ρi ≈ psplit(x1:i) . (5.19)

The embeddings νi similarly parametrize the kinematic conditionals

pkin(xi|νi−1) ≈ pkin(xi|x1:i−1) . (5.20)

For clarity, we always suppress the dependence of ρi and νi on x1:i and on
the transformer parameters θ.

Loss and training

The loss function of the autoregressive network is given by the likelihood
in Eq.(5.16),

Llike = −
〈

logp(x1:n)
〉
x∼pdata

= −

〈 n∑
i=1

logpkin(xi|νi−1) +

n∑
i=0

logpbin(1− δin; ρi)
〉

x∼pdata

.

(5.21)

The first term is the usual likelihood loss for the kinematic generative
network. The second term is the standard binary cross entropy. In our
generative network it implicitly enforces the correct event multiplicity
through a splitting discriminator.

In Sec. 5.2 we will consider modified training strategies to extrapolate
beyond the maximal multiplicity nmax of events contained in the training
dataset. One strategy is to modify the cross entropy part of the likelihood
loss in Eq.(5.21), for example by removing the contribution from the term
with highest multiplicity nmax

Ltrunc =

〈
−

n∑
i=1

logpkin(xi|νi−1)

−

n∑
i=0

(1− δinmax) logpbin(1− δin; ρi)
〉

x∼pdata

. (5.22)

Using this loss, the splitting prediction for maximum-multiplicity events,
ρnmax , is not explicitly trained. Rather, the weight sharing in the transformer
allows correlations learned at lower multiplicity to be recycled.

When training our transformers on the Z+jets dataset from Sec. 5.1.2, we
use the Adam optimizer with constant learning rate 3× 10−4 and batch

5.2 results 37

size 1024. The batches contain events with different multiplicities following
the distribution in the training data. The validation loss is tracked every
5k iterations, and we restore the network from the checkpoint with lowest
validation loss after 200k iterations.

Sampling

To generate full events x, we sequentially sample from the likelihood
described in Sec. 5.1.3, as visualized in Fig. 5.2. We sample 10M events
in total and split them according to their multiplicities. This procedure
generates samples from the exact likelihood learned by the network, but
does not give us explicit control over the generated jet multiplicities. We
decide on a maximum number of jets, and discard events for which the
transformer predicts further splittings.

Bayesian network

Because we hope to use the autoregressive transformer for extrapolation
beyond the jets present in the training data, we need to quantify the
uncertainty in the predicted phase space density. We resort to Bayesian
neural networks (BNN) [53–56] as a way to learn systematic and statistical
uncertainties together with the mean network predictions. These are a
standard method in LHC physics, for instance for amplitude regression [39],
calibration [99, 100], and classification [101]. They can be generalized to
the density estimation aspect of generative networks [8, 43, 66, 102], where
they return an uncertainty on the unit event weight.

BNNs replace the network parameters θ by learnable distributions q(θ),
usually assumed to be uncorrelated Gaussians. Their loss consists of a
sampled likelihood term and a regularization with a prior-width hyperpa-
rameter,

LBNN = −
〈

logp(x)
〉
x∼pdata,θ∼q

+DKL [q(θ),p(θ)] . (5.23)

To evaluate the BNN we sample from the learned weight distributions, in
our case generating 10 samples, with a given number of 10M events each.

5.2 results

Even though we are interested in extrapolating towards unseen jet numbers,
we first benchmark the accuracy of our transformer in Sec. 5.2.1. We also
show how without modifications the generative network does not actually
extrapolate. For a successful extrapolation we first use a bootstrap approach
in Sec. 5.2.2 and then show in Sec. 5.2.3 and Sec. 5.2.4 how truncating or
overriding the likelihood loss allows the network to generate larger jet
numbers than seen during training.

38 extrapolating jet radiation with autoregressive transformers

10−4

10−2

N
or

m
al

iz
ed

Z + 7 j
Truth

Default

25 50 75 100
pT, j6 [GeV]

0.8
1.0
1.2

D
ef

au
lt

Tr
ut

h

10−4

10−2

N
or

m
al

iz
ed

Z + 7 j
Truth

Default

25 50 75 100
pT, j7 [GeV]

0.8
1.0
1.2

D
ef

au
lt

Tr
ut

h

10−3

10−2

N
or

m
al

iz
ed

Z + 7 j
Truth

Default

0 50 100
pT,Σ [GeV]

0.8
1.0
1.2

D
ef

au
lt

Tr
ut

h

10−4

10−2

N
or

m
al

iz
ed

Z + 8 j
Truth

Default

25 50 75 100
pT, j7 [GeV]

0.8
1.0
1.2

D
ef

au
lt

Tr
ut

h

10−4

10−2

N
or

m
al

iz
ed

Z + 8 j
Truth

Default

25 50 75 100
pT, j8 [GeV]

0.8
1.0
1.2

D
ef

au
lt

Tr
ut

h

10−4

10−3

10−2

N
or

m
al

iz
ed

Z + 8 j
Truth

Default

0 50 100
pT,Σ [GeV]

0.8
1.0
1.2

D
ef

au
lt

Tr
ut

h

Figure 5.3: Selection of features in Z + 7 and 8-jet events for the generative network
trained on the full dataset, including 7 and 8-jet events.

5.2.1 Generating without extrapolation

We begin by demonstrating that our transformer learns the phase space
density precisely across event multiplicity. We train a Bayesian version of
the transformer using all Z+n jet events, from the hard process only, or
n = 0, up to n = 10. We sample 10M events each from 10 BNN predictions.
The jet multiplicity distribution is shown in Fig. 5.4, showcasing that the
generator can learn the universal staircase scaling. In Fig. 5.3, we see that
the network reproduces the kinematic distributions with precision down
to the statistical uncertainty of the test set. The transverse component of
the vector sum of all particle momenta, pT ,Σ, provides a sensitive test of

0 1 2 3 4 5 6 7 8 9 10 11
Jet multiplicity

10−5

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Truth

Default

10−3 10−2 10−1 100

psplit

10−3

10−2

10−1

N
or

m
al

iz
ed

3 jets

4 jets

5 jets

6 jets

7 jets

8 jets

9 jets

10 jets

Figure 5.4: Jet multiplicity distribution (left) and splitting probabilities (right) for
samples generated with the transformer trained on the full dataset up
to 10 jet events.

5.2 results 39

0 1 2 3 4 5 6 7 8 9
Jet multiplicity

10−7

10−6

10−5

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Truth

Naive

0 1 2 3 4 5 6 7 8 9
Jet multiplicity

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Truth

Bootstrap

Figure 5.5: Jet multiplicity distributions for samples generated with the trans-
former using the naive training (left) and bootstrapping (right).

learned global correlation among all particles. All deviations from the
training data are captured by the Bayesian uncertainty.

Next, we inspect whether the network has learned universal structure
in the probability to generate additional jets. In Fig. 5.4 we show the
distributions of psplit predicted during the autoregressive sampling steps.
We train the network on the entire dataset, with up to 10 jets. We ignore
the learned psplit for the first two jets, because we manually capped the
number of training events for up to two jets, as shown in Tab. 5.1. For more
than 6 jets, the distribution stabilizes within the Bayesian uncertainty band,
indicating that between 6 and 10 jets we do not observe a significant effect
from the parton densities [93].

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Z + 7 j
Truth

Naive

25 50 75 100
pT, j6 [GeV]

0.8
1.0
1.2

N
ai

ve
Tr

ut
h

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Z + 7 j
Truth

Naive

25 50 75 100
pT, j7 [GeV]

0.8
1.0
1.2

N
ai

ve
Tr

ut
h

10−3

10−2

N
or

m
al

iz
ed

Z + 7 j
Truth

Naive

0 50 100
pT,Σ [GeV]

0.8
1.0
1.2

N
ai

ve
Tr

ut
h

10−3

10−1

N
or

m
al

iz
ed

Z + 8 j
Truth

Naive

25 50 75 100
pT, j7 [GeV]

0.8
1.0
1.2

N
ai

ve
Tr

ut
h

10−3

10−2

10−1

N
or

m
al

iz
ed

Z + 8 j
Truth

Naive

25 50 75 100
pT, j8 [GeV]

0.8
1.0
1.2

N
ai

ve
Tr

ut
h

10−3

10−1

N
or

m
al

iz
ed

Z + 8 j
Truth

Naive

0 50 100
pT,Σ [GeV]

0.8
1.0
1.2

N
ai

ve
Tr

ut
h

Figure 5.6: Selection of features in Z+ 7 and 8-jet events for a generator trained
on up to 6-jet events.

40 extrapolating jet radiation with autoregressive transformers

Naive extrapolation

Because the termination of the number of jets is implemented probabilisti-
cally, we can naively extrapolate to higher jet numbers. For instance, we
can train the networks with up to 6 jets and assess the small number of
7-jet and 8-jet events they generate. While the quality of 7-jet and 8-jet
events should be worse than for jet numbers seen during training, we want
to know if the transformer can leverage universal properties of the QCD
jet radiation. We show the generated jet multiplicity distribution in the
left panel of Fig. 5.5. Indeed, the network generates events with more than
6 jets, albeit with much lower probability than expected from staircase
scaling.

For perfect training, we expect the rate for events with more jets than
the training set to approach zero. This is because the transformer output
ρi is trained to match the probability that another jet follows particle i,
ρi ≈ psplit(x1:i). In a given training set, with maximum event length nmax,
one always has

psplit(x1:nmax) = 0 . (5.24)

The optimal network would learn ρnmax = 0, and the transformer can ignore
physical correlations. The reason we do not observe exact zero splitting
probabilities is that the weight sharing in the autoregressive transformer
imparts a bias to reuse the pattern learned at low multiplicities.

Given the small but finite rate of 7-jet events generated through naive
extrapolation, we want to see if the transformer has generalized the jet
kinematics. In Fig. 5.6, we show the kinematic features as for the extrap-
olated 7-jet events. Among 100M generated events, the transformer only
generates three 8-jet events, so we cannot assess their quality. However,
the 7-jet events look qualitatively reasonable. In particular, the slightly
broken transverse momentum conservation is reproduced with an accuracy
similar to the baseline in Fig. 5.3. Given that the pT of the 7

th jet is approx-
imately the same scale as the level of momentum non-conservation, this
is a non-trivial result. It suggests that the transformer indeed generalizes
kinematics, and we should mainly address the learned jet multiplicity.

5.2.2 Extrapolation with bootstrap

A simple modification to increase the fraction of learned 7-jet events is to
bootstrap them, i.e. add generated 7-jet events to the training data. This
way, we dynamically break the condition psplit(x1:nmax) = 0 of Eq.(5.24) and
allow the network to adapt its multiplicity distribution. By repeating this
bootstrapping, we can also generate 8 jets and beyond. The fraction of
generated events introduced to the training dataset is a hyperparameter. It
controls the learned multiplicity distribution.

We start to add bootstrapped events after a warm-up stage of 200k itera-
tions, corresponding to a full-length training in the appraoch of Sec. 5.2.1.

5.2 results 41

Without this warm-up stage, the network memorizes the poor-quality sam-
ples of the freshly initialized network. After the warm-up, we generate
a buffer of 1k 7-jet events. For every generated batch we sample a new
deterministic network from the learned weight distribution, making sure
that we cover the full range of the weight posterior distribution. We then
add a single 7-jet event to each batch of 1024 events, corresponding roughly
to the fraction of 7-jet events in the training dataset, and train for another
200k iterations with these settings. After every 50 iterations, we generate a
batch of 32768 events, extract the 7-jet events and add them to the buffer.
Once the buffer contains 50k events, we start to replace its oldest events
with newly generated events. This allows the network to dynamically adapt
the quality of 7-jet events. We observe that the network has to be trained
for a sufficient amount of time in the bootstrapping mode to adapt to the
changed multiplicity distribution.

The obtained jet multiplicity distribution is shown in the right panel of
Fig. 5.5. We now get significantly more 7-jet and 8-jet events, indicating
that the network indeed adapts the multiplicity distribution. The fraction
of 8 jet events is significantly lower than in the training data, because we
only bootstrap 7 jet events. The kinematical distributions of the generated
events are shown in Fig. 5.7. They show that the bootstrapping generator
yields valid kinematic configurations. However, there are deviations in
the kinematic features from the truth that are not covered by the Bayesian
uncertainty.

10−4

10−2

N
or

m
al

iz
ed

Z + 7 j
Truth

Bootstrap

25 50 75 100
pT, j6 [GeV]

0.8
1.0
1.2

B
oo

ts
tr

ap
Tr

ut
h

10−4

10−2

N
or

m
al

iz
ed

Z + 7 j
Truth

Bootstrap

25 50 75 100
pT, j7 [GeV]

0.8
1.0
1.2

B
oo

ts
tr

ap
Tr

ut
h

10−3

10−2

N
or

m
al

iz
ed

Z + 7 j
Truth

Bootstrap

0 50 100
pT,Σ [GeV]

0.8
1.0
1.2

B
oo

ts
tr

ap
Tr

ut
h

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Z + 8 j
Truth
Bootstrap

25 50 75 100
pT, j7 [GeV]

0.8
1.0
1.2

B
oo

ts
tr

ap
Tr

ut
h

10−3

10−2

10−1

N
or

m
al

iz
ed

Z + 8 j
Truth
Bootstrap

25 50 75 100
pT, j8 [GeV]

0.8
1.0
1.2

B
oo

ts
tr

ap
Tr

ut
h

10−4

10−3

10−2

N
or

m
al

iz
ed

Z + 8 j
Truth
Bootstrap

0 50 100
pT,Σ [GeV]

0.8
1.0
1.2

B
oo

ts
tr

ap
Tr

ut
h

Figure 5.7: Selection of features in Z+ 7 and 8-jet events for a generator trained
on up to 6-jet events using the bootstrap technique.

42 extrapolating jet radiation with autoregressive transformers

5.2.3 Extrapolation with truncated loss

A complementary way to combat the suppression of events with more
jets than the training set is to modify the likelihood loss. As discussed in
Sec. 5.2.1, the cause of the suppression is the constant psplit(x1:nmax) = 0

represented by a training dataset with at most nmax jets. A simple solution
is to omit the final Bernoulli contribution from the loss and truncate the
loss as described in Eq.(5.22),

Ltrunc =
〈
−

n∑
i=1

logpkin(xi|νi−1)

−

n∑
i=0

(1− δinmax) logpbin(1− δin; ρi)
〉
x∼pdata

, (5.25)

It differs from the complete likelihood loss of Eq.(5.21) in the addition of
the factor 1− δinmax in front of the Bernoulli component. Now, the splitting
prediction for maximum-length events, ρnmax , is not explicitly trained.
Rather, the weight sharing in the transformer allows correlations learned at
lower multiplicity to be recycled. When sampling a network trained in this
way, the splitting predictions beyond nmax are pure extrapolation.

Using the truncated loss, we again train a transformer on events with
up to 6 jets and again sample up to 8 jets. The generated multiplicities
are shown in Fig. 5.8. Indeed, the network learns and extrapolates the
staircase scaling. We show the extrapolated kinematic correlations in
Fig. 5.9. The only deviation exceeding the BNN uncertainty is a slightly
larger transverse momentum imbalance than expected in 7-jet events. This
result demonstrates that the generative transformer described in Sec. 5.1
has learned the universal pattern of jet radiation.

5.2.4 Extrapolation with override

In the previous section we have shown how truncating the final Bernoulli
term from the likelihood loss allows the network to generate high-quality

0 1 2 3 4 5 6 7 8 9
Jet multiplicity

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Truth

Truncated

0 1 2 3 4 5 6 7 8 9
Jet multiplicity

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Truth

Override

Figure 5.8: Jet multiplicity distributions learned using Ltrunc (left) and Loverride
(right) trained on events with up to 6 jets.

5.2 results 43

10−4

10−2

N
or

m
al

iz
ed

Z + 7 j
Truth

Truncated

25 50 75 100
pT, j6 [GeV]

0.8
1.0
1.2

Tr
un

ca
te

d
Tr

ut
h

10−4

10−2

N
or

m
al

iz
ed

Z + 7 j
Truth

Truncated

25 50 75 100
pT, j7 [GeV]

0.8
1.0
1.2

Tr
un

ca
te

d
Tr

ut
h

10−3

10−2

N
or

m
al

iz
ed

Z + 7 j
Truth

Truncated

0 50 100
pT,Σ [GeV]

0.8
1.0
1.2

Tr
un

ca
te

d
Tr

ut
h

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Z + 8 j
Truth

Truncated

25 50 75 100
pT, j7 [GeV]

0.8
1.0
1.2

Tr
un

ca
te

d
Tr

ut
h

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Z + 8 j
Truth

Truncated

25 50 75 100
pT, j8 [GeV]

0.8
1.0
1.2

Tr
un

ca
te

d
Tr

ut
h

10−4

10−3

10−2

N
or

m
al

iz
ed

Z + 8 j
Truth

Truncated

0 50 100
pT,Σ [GeV]

0.8
1.0
1.2

Tr
un

ca
te

d
Tr

ut
h

Figure 5.9: Selection of features Z+ 7 and 8-jet events, trained with the truncated
loss.

7-jet and 8-jet events. However, the extrapolation can be mis-calibrated.
Because the transformer splitting predictions ρi are trained with a binary
cross entropy, the optimal solution in terms of the non-splitting probability
is the posterior

1− ρi ≈ p(stop at i|x1:i) =
p(x1:i|stop at i)∑

n⩾i p(x1:i|stop at n)
(5.26)

assuming a uniform prior for simplicity. When training on a dataset with
maximum multiplicity nmax, the estimate is biased since the sum over n is
missing terms above nmax. The same effect causes the transformer to stick
to a constant splitting probability ρnmax = 0.

In an alternative approach we show that transverse momentum conser-
vation can be used as an extra handle on the posterior. A violation of
transverse momentum conservation can be induced by removing particles
beyond the hard process and first k jets. The spread in center of momen-
tum scales with k, so we can use transverse momentum conservation to
statistically separate complete and incomplete events. Secondly, we note
that the px,Σ and py,Σ distributions are roughly Gaussians with zero mean,
and hence fully specified by their standard deviation.

In Fig. 5.10, we show the widths of the px,Σ distributions as a function
of the jet number, for complete events and for the hard process plus k jets.
The widths obey an approximately linear scaling when considering a fixed
number of jets, for complete events or otherwise. We can perform a linear
fit to estimate the standard deviations for higher-multiplicity events, giving
analytic expressions for the likelihoods in Eq.(5.26). We arrive at

σ(n;k) = (n− k)mk + σ(k;k) ,

44 extrapolating jet radiation with autoregressive transformers

0 1 2 3 4 5 6 7 8

n

0

20

40

60

80

100

120

140

160

σ
(n

;k
)

k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=7

k=8

Figure 5.10: Standard deviations of px,Σ for the muons and first k jets in Z+n-jet
events. Filled circles indicate complete events, with k = n, while
empty circles are incomplete. Points in the gray region are not used
in any fit, but show the agreement of the extrapolation.

with σ(k;k) = 3.14k+ 9.97 ,

and 1/mk = 0.0088k+ 0.056 . (5.27)

The widths of completed events, σ(k;k), are fit from the bottom row of
filled circles in Fig. 5.10 up to n = 6. The gradients mk of lines with
constant k are fit using events up to n = 5. The fits are shown as dotted
lines in Fig. 5.10, and we see that they extrapolate well to all partial k
values in 7-jet and 8-jet events. Due to the rotation symmetry around the
beam axis, the same values hold for py,Σ and we can assume that the joint
likelihoods are the product of 1D Gaussians.

pfit(x1:k|stop at n) = N
(
px,Σ(x1:k)

∣∣ 0,σ(n;k)
)

×N
(
py,Σ(x1:k)

∣∣ 0,σ(n;k)
)

(5.28)

Using Eq.(5.28) we can calculate target posteriors for an arbitrary max-
imum number of jets. This allows us to modify the likelihood loss by
generalizing the Bernoulli splitting variable δin to a continuous variable
yi ∈ [0, 1] and override the troublesome psplit = 0 label for particle nmax by
this estimate weighted by a hyperparameter λ,

Loverride =

〈
−

n∑
i=1

logpkin(xi|νi−1) −

n∑
i=0

λi logpbin (yi; ρi)

〉
x∼pdata

(5.29)

with yi(x1:n) =

{
(1− δin) i < nmax

1− pfit(stop at i|x1:i) i = nmax
,

(5.30)

and λi = 1− (1− λ)δinmax . (5.31)

5.3 outlook 45

10−4

10−2
N

or
m

al
iz

ed

Z + 7 j
Truth

Override

25 50 75 100
pT, j6 [GeV]

0.8
1.0
1.2

O
ve

rr
id

e
Tr

ut
h

10−4

10−2

N
or

m
al

iz
ed

Z + 7 j
Truth

Override

25 50 75 100
pT, j7 [GeV]

0.8
1.0
1.2

O
ve

rr
id

e
Tr

ut
h

10−4

10−3

10−2

N
or

m
al

iz
ed

Z + 7 j
Truth

Override

0 50 100
pT,Σ [GeV]

0.8
1.0
1.2

O
ve

rr
id

e
Tr

ut
h

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Z + 8 j
Truth

Override

25 50 75 100
pT, j7 [GeV]

0.8
1.0
1.2

O
ve

rr
id

e
Tr

ut
h

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Z + 8 j
Truth

Override

25 50 75 100
pT, j8 [GeV]

0.8
1.0
1.2

O
ve

rr
id

e
Tr

ut
h

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

Z + 8 j
Truth

Override

0 50 100
pT,Σ [GeV]

0.8
1.0
1.2

O
ve

rr
id

e
Tr

ut
h

Figure 5.11: Selection of features Z+ 7 and 8-jet events, trained with Loverride on
up to 6 jets.

The posterior pfit(stop at i|x1:i) is calculated using Eqs.(5.26) and (5.28) up
to 8 jets. In practice, we find the best performance by including a staircase
scaling prior when calculating the posterior. To match the dataset, we
take R(n+1)/n = 0.225 and cap the probabilities for n < 3. Note that the
hyperparameter λ multiplies only the pbin contribution for particle nmax.

We train a network with λ = 0.2 and show its event multiplicity dis-
tribution in Fig. 5.8 and network samples in Fig. 5.11. Similarly to the
truncated loss, this override approach significantly increasing the fraction
of higher-multiplicity events. looking at the kinematics, the pT distribu-
tions now display an excess toward low values, but the global momentum
correlation pT ,Σ is reproduced to greater accuracy than previously. Once
again, this demonstrates that autoregressive transformers can learn the
universal nature of jet radiation.

5.3 outlook

The universality of splitting kernels and jet ratios in QCD provides the
perfect physics question to see if appropriate generative networks can
extrapolate. As an example, we study Z+jets events and the established
staircase scaling of the jet number.

We employ an autoregressive transformer to learn a factorized likelihood
for events across varying jet multiplicity. This autoregressive transformer
sequentially predicts the kinematics of an additional jet along with the
probability to radiate it. When trained the standard way, the transformer
learns the kinematics of up to the 6 jets included in the training data with
high fidelity. It also produces a small number of higher-multiplicity events
with reasonable kinematics.

46 extrapolating jet radiation with autoregressive transformers

The first path towards extrapolation is to modify the training data with
bootstrapping. This approach is straight-forward to adapt the multiplic-
ity distribution, but some kinematic distributions are not learned very
precisely.

Another way to extrapolate is to truncate the loss function and remove
the explicit learning of the hard Sudakov factor for the highest multiplicity.
Alternatively, we can override the hard Sudakov factor using physics
information. We find that all both approaches are equally capable of
generating high-quality events. These results establish that autoregressive
transformers can learn the universal nature of jet radiation.

We emphasize that our study only shows that generative networks can
extrapolate, given the right QCD properties of the training data. We expect
the performance of all extrapolating networks to improve with technical
advances.

6
A L O R E N T Z - E Q U I VA R I A N T T R A N S F O R M E R F O R A L L
O F T H E L H C

The research presented in this chapter is based on work in collaboration with Johann
Brehmer, Víctor Bresó, Pim de Haan, Tilman Plehn, Huilin Qu and Jesse Thaler,
and has been previously published in Refs. [95, 103]. All tables and figures as well
as parts of the text are similar or identical to the content of these articles.

In this chapter, we introduce the Lorentz Geometric Algebra Transformer
(L-GATr), a new general-purpose network architecture for high-energy
physics. It is based on three design choices. First, L-GATr is equivariant
with respect to the Lorentz symmetry.1 It supports partial and approximate
symmetries as found in some high-energy physics applications through
symmetry-breaking inputs. Second, as representations, L-GATr uses the
geometric (or Clifford) algebra over the four-vectors of special relativity.
This algebra is based on the scalar and four-vector properties that LHC
data are naturally parameterized in and extends them to higher orders,
increasing the network capacity. Finally, L-GATr is a Transformer. It
supports variable-length inputs, as found in many LHC problems, and
even large models can be trained efficiently. Because it computes pairwise
interactions through scaled dot-product attention, for which there are
highly optimized backends like Flash Attention [59], the architecture scales
particularly well to problems with many tokens or particles.

After reviewing the construction of L-GATr in Sec. 6.1, we demonstrate
the versatility of L-GATr through three LHC case studies. In Sec. 6.2 we
show how it allows us to efficiently learn precision surrogates for scattering
amplitudes up to a Z + 5 gluon final state. Next, we show in Sec. 6.3
how we can improve transformer-based jet taggers with an equivariant
setup. We show how L-GATr benefits from pre-training for the ultimate
performance and can be generalized to multi-class tagging. Finally, in
Sec. 6.4 we employ L-GATr inside a diffusion generator and show how it
generates LHC events for instance for final states up to tt̄+ 4 jets better
than all benchmarks. We provide a brief summary and outlook in Sec. 6.5.

6.1 lorentz-equivariant geometric algebra transformer

In this section, we discuss the principles behind L-GATr and its most
important features. L-GATr uses the geometric algebra, a mathematical
framework that represents certain geometric objects and operations in a

1 One could extend L-GATr to the full Poincaré symmetry, which additionally includes space-
time translations. However, this is not necessary for most particle-physics applications, as
usually only the momentum, and not the absolute position, of particles is of interest. A key
exception is the study of long-lived particles.

47

48 a lorentz-equivariant transformer for all of the lhc

unified language. Using the language of geometric algebra, it is straight-
forward to build equivariant layers while retaining most of the structure
from typical neural networks. In cases where the Lorentz symmetry is not
completely realized, we show how reference inputs can be used to make
L-GATr equivariant with respect to specific subgroups of the Lorentz group.
Finally, we study how L-GATr scales with the phase space dimensionality,
as compared to other network architectures.

6.1.1 Spacetime Geometric Algebra

A geometric algebra is defined as an extension of a vector space with
an extra composition law — the geometric product [104]. The geometric
product of two vectors x and y is decomposed into a symmetric and an
antisymmetric contribution,

xy =
{x,y}
2

+
[x,y]
2

, (6.1)

where the anti-commutator {x,y}/2 represents the usual inner product,
and [x,y]/2 constitutes a new outer product. This second term defines the
bivector, which can be understood geometrically as an area element of the
plane spanned by x and y. The geometric product xy is an element of
the algebra made up by the sum of a scalar and a bivector. Neither object
is part of the original vector space, so the geometric product extends the
original vector space. This extension can be carried out systematically by
applying the geometric product repeatedly to the basis elements of the
vector space.

To develop L-GATr, we focus on the spacetime algebra G1,3, built from
the vector space R4 with the metric g = diag(1,−1,−1,−1). We choose as
a basis for the vector space a set of four real vectors γµ, which satisfy the
anti-commutation relation

{γµ,γν} = 2gµν . (6.2)

This inner product establishes the basis elements as a set of orthogonal
vectors and fixes their normalization. This happens to also be the defining
property of the gamma matrices, the basis elements of the Dirac algebra
used to describe spinor interactions. Both algebras are closely related, the
only difference being that the spacetime algebra is defined over R4, whereas
the Dirac algebra is defined over C4. This prescription fully recovers all the
algebra properties presented in Ref. [95].

We now construct new elements of the algebra using the geometric prod-
uct defined in Eq. (6.1). All higher-order elements can be characterized
as antisymmetric products of γµ. We organize them in grades, defined
by the number of γµ needed to express them. For instance, the antisym-
metric tensor σµν is generated from the geometric product of two γµ and
consequently has grade two,

γµγν =
{γµ,γν}
2

+
[γµ,γν]
2

= gµν + σµν . (6.3)

6.1 lorentz-equivariant geometric algebra transformer 49

Following Eq. (6.1), σµν is a bivector, which can be interpreted as the plane
opened by µ and ν in Minkowski space. We see that the symmetric term
in the geometric product reduces the grade, while the antisymmetric term
increases it. The whole product γµγν is a sum of grade zero (scalar) and
grade two. A generic element of the algebra that mixes grade information
is called a multivector.

Moving on, the geometric product of three vectors γµγνγρ contains
the antisymmetric tensor ϵµνρσγ

µγνγρ as a trivector or axial vector. The
product of all four γµ leads us to the pseudoscalar

γ5 = γ0γ1γ2γ3 ≡ 1

4!
ϵµνρσγ

µγνγργσ. (6.4)

Pseudoscalars act as parity reversal operations on any object and can be
used to write axial vectors as γµγ5. The missing factor i compared to the
usual definition of γ5 indicates the slight difference between the complex
Dirac algebra and our real spacetime algebra.

Geometric products with more than four γµ can be reduced to lower-
grade structures. Combining all these elements, we can express any multi-
vector of the algebra as

x = xS 1+ xVµ γ
µ + xBµν σ

µν + xAµ γ
µγ5 + xP γ5 with

xS

xVµ
xBµν

xAµ
xP

 ∈ R16 .

(6.5)

In this representation, we only include the nonzero and independent
entries in the antisymmetric bivector. Multivectors can be used to represent
both spacetime objects and Lorentz transformations. For instance, particles
are characterized by their type (i.e. particle identification, or PID) and their
4-momentum pµ,

xS = PID xVµ = pµ xTµν = xAµ = xP = 0 . (6.6)

Using this convenient representation, the spacetime algebra naturally
structures relevant objects like parity-violating transition amplitudes. The
matrix element M is a function of 4-momenta and can be decomposed into
parity-even and parity-odd terms before it gets squared,

|M|2 = |ME|
2 + |MO|2 + 2Re (M∗

EMO) . (6.7)

The first two terms represent a scalar function of the 4-momenta, while the
last is a pseudoscalar function. To calculate this amplitude in the spacetime
algebra, we first embed each 4-momentum into a multivector xi = piµγµ.
Using these multivectors as inputs, the squared amplitude can be obtained
through a sequence of algebra operations. The result of this calculation
will also be a multivector, namely

50 a lorentz-equivariant transformer for all of the lhc

|M|2 = xS1+ xPγ5 with xS1 = |ME|
2 + |MO|2

xPγ5 = 2Re (M∗
EMO) . (6.8)

The geometric algebra explicitly separates the scalar and pseudoscalar com-
ponents of the squared amplitude, highlighting their respective geometric
significance.

The geometric algebra also allows us to perform operations on spacetime
objects. Lorentz transformations act as

Λv(x) = vxv
−1 , (6.9)

where v is a multivector representing an element of the Lorentz group
acting on the algebra element x, and v−1 representings the corresponding
inverse. The representation v of a Lorentz transformation is built by a
simple rule: a multivector encoding an object that is invariant under a
Lorentz transformation will also represent the transformation itself. This
gives a dual interpretation to spacetime algebra elements as, both, geometric
objects and Lorentz transformations.

For instance, boosts along the z-axis are generated by σ03, which also
represents a plane in time vs. z-direction. The multivector for such a boost
with rapidity ω reads

v = eωσ03

= 1 coshω+ σ03 sinhω . (6.10)

If we apply this boost to a particle moving in z-direction, x = Eγ0 + pzγ3,
the transformation in Eq. (6.9) gives us

vxv−1 = (E coshω− pz sinhω)γ0 + (pz coshω− E sinhω)γ3 . (6.11)

This is exactly what we expect from the Lorentz boost. The algebra rep-
resentation allows us to apply this boost on any object in the geometric
algebra, not just vectors. From Eq. (6.9) and the properties of the geomet-
ric product, we see that Lorentz transformations will never mix grades.
Each algebra grade transforms under a separate sub-representation of the
Lorentz group.

The main limitation of the geometric algebra approach is that the space-
time algebra G1,3 covers only a limited range of Lorentz tensor represen-
tations. For instance, this formalism can not represent symmetric rank-2
tensors. For most LHC applications, though, one does not encounter
higher-order tensor representations as inputs or outputs, so this is not a
substantial limitation. Whether higher-order tensors might be needed for
internal representations within a network is an open question [105].

6.1 lorentz-equivariant geometric algebra transformer 51

6.1.2 Constructing a Lorentz-Equivariant Architecture

Based on the multivector representation, we now construct the correspond-
ing transformer network L-GATr. It is equivariant under Lorentz group
transformations Λ

L-GATr
(
Λ(x)

)
= Λ

(
L-GATr(x)

)
. (6.12)

We take advantage of the fact that multivector grades form sub-representations
of the Lorentz group, i. e.all multivector components of the same grade
transform equally under all network operations, whereas different grades
transform differently [95, 106].

The L-GATr architecture uses variations of the standard transformer op-
erations Linear, Attention, LayerNorm, and Activation, adapted to process
multivectors [58, 107]. As usual for transformers, the input x and output
L-GATr(x) are unordered sets of nt ordered lists of nc multivector channels

xic =

xSic
xVµ,ic
xBµν,ic
xAµ,ic
xPic

 i = 1, ...,nt c = 1, ...,nc . (6.13)

We call the set elements xi = {xic : c = 1, ...,nc} tokens, where each
token can represent a particle. In the network, every operation will have
multivectors as inputs and outputs. The full L-GATr architecture is built as

x̄ = LayerNorm(x)

AttentionBlock(x) = Linear ◦ Attention(Linear(x̄), Linear(x̄), Linear(x̄)) + x

MLPBlock(x) = Linear ◦ Activation ◦ Linear ◦ GP(Linear(x̄), Linear(x̄)) + x

Block(x) = MLPBlock ◦ AttentionBlock(x)

L-GATr(x) = Linear ◦ Block ◦ Block ◦ · · · ◦ Block ◦ Linear(x) . (6.14)

We define the modified transformer operations in some detail:

• For the linear layers, we use the fact that equivariant operations on
multivectors process components within the same grade equally. We
use the projection ⟨·⟩k to extract the k-grade and apply different learn-
able coefficients for each grade. As a result, the most general linear
combination of independently-transforming multivector components
is

Linear(x) =
4∑

k=0

vk⟨x⟩k

(
+

4∑
k=0

wkγ
5⟨x⟩k

)
, (6.15)

where v,w ∈ R5 are learnable parameters and k runs over the five
algebra grades. The second term is optional and breaks the symmetry
down to the special orthochronous Lorentz group, the fully-connected
subgroup that leaves out parity and time reversal. In this subgroup,

52 a lorentz-equivariant transformer for all of the lhc

discrete transformations are not present, so any pair of algebra ele-
ments that differ by a γ5 factor can be linearly mixed without breaking
equivariance.

• We extend scaled dot-product attention such that it can be applied to
multivectors

Attention(q,k, v)ic =

nt∑
j=1

Softmaxj

(
nc∑

c ′=1

⟨qic ′ ,kjc ′⟩√
16nc

)
vjc ,

(6.16)

where nc is the number of multivector channels and ⟨·, ·⟩ is the G1,3

inner product. This inner product can be pre-computed as a list of
signs and a Euclidean inner product, allowing us to use standard
transformer implementations.

• Layer normalization on multivectors is non-trivial because the G1,3

norm can have zero and negative contributions. For this reason,
we define layer normalization using the absolute value of the inner
product for each grade separately

LayerNorm(x) =
x√

1

nc

∑nc

c=1

∑4
k=0

∣∣∣〈⟨xc⟩k, ⟨xc⟩k
〉∣∣∣+ ϵ ,

(6.17)

where ϵ is a normalization constant and nc is the number of multi-
vector channels.

• Activation functions applied directly on the multivectors break the
equivariance. We employ scalar-gated activation functions [106],
where the nonlinearity only acts on the scalar component of the
multivector ⟨x⟩0. Specifically, we use the scalar-gated GELU [108]
activation function

Activation(x) = GELU(⟨x⟩0) x . (6.18)

• Finally, the geometric algebra allows for another source of nonlinear-
ity, the geometric product

GP(x,y) = xy with GP(vxv−1, vyv−1) = vGP(x,y)v−1 ,
(6.19)

which is equivariant itself.

These operations strictly generalize standard scalar transformers to the
multivector representation, as illustrated in Table 6.1. We supplement the
list of multivector channels with extra scalar channels to allow a smooth
transition to standard transformers that solely rely on scalar channels.
Moreover, it provides a handle to feed large amounts of scalar information
to the network without overloading the multivector channels.

6.1 lorentz-equivariant geometric algebra transformer 53

Layer type Transformer L-GATr

Linear(x) vx+w
∑4

k=0 vk⟨x⟩k

Attention(q,k,v)ic
∑nt

j=1 Softmaxj

(∑nc
c′=1

qic′kjc′
√
nc

)
vjc

∑nt
j=1 Softmaxj

(∑nc
c′=1

⟨qic′ ,kjc′ ⟩
√
16nc

)
vjc

LayerNorm(x) x

[
1

nc

∑nc
c=1 x2

c +ϵ

]−1/2

x

[
1

nc

∑nc
c=1

∑4
k=0

∣∣∣〈⟨xc⟩k , ⟨xc⟩k
〉∣∣∣+ϵ

]−1/2

Activation(x) GELU(x) GELU(⟨x⟩0)x

GP(x,y) − xy

Table 6.1: Comparison of transformer layers and L-GATr layers. The arguments
x,y,q,k, v are scalars for the transformer, and multivectors for L-GATr.
The second term in the L-GATr linear layer is optional and breaks the
Lorentz group down to its fully connected subgroup.

6.1.3 Breaking Lorentz Symmetry

In many LHC contexts, Lorentz symmetry is only partially preserved.
L-GATr can apply partial symmetry breaking in a tunable manner by in-
cluding reference multivectors as additional inputs. Any network operation
that involves such a reference vector will violate equivariance, breaking
the symmetry group to a subgroup where the reference direction is fixed.
This defines a partial symmetry breaking without altering the structure of
the network. The network always has the option to tune out the reference
vectors when they are not needed. Reference vectors are appended for each
L-GATr input x in the same way, either as extra tokens, or as extra channels
within each token.

For instance, the LHC beam direction breaks the Lorentz group to the
subgroup of rotations around and boosts along the beam axis [109–112].
The natural reference vector is this beam direction, which can be either
implemented as two vectors xV± = (0, 0, 0,±1), or one bivector representing
the x− y plane, xB12 = 1. We find similar performance for both choices.
Generally, we can break the Lorentz group to the subgroup of rotations
in three-dimensional space SO(3) using the reference multivector xV =

(1, 0, 0, 0).
We include such reference multivectors as extra tokens for jet tagging in

Sec. 6.3, and as extra channels for generation in Sec 6.4. In both cases, this
symmetry breaking is crucial, and the specific way it is implemented has a
strong impact on the network performance.

We find it beneficial to add more ways of breaking the symmetry that are
formally equivalent to the reference multivectors discussed above. For jet
tagging, we include additional kinematic inputs like pT ,E,∆R embedded as
scalars. These variables are only invariant under the subgroup of rotations
around the beam axis, and L-GATr can reconstruct them based on the
particles and reference multivectors. For event generation, we extract the m
and pT CFM-velocity components from scalar output channels of L-GATr
and use them to overwrite the equivariantly predicted velocity components.
We explain these aspects further in Sec. 6.3, 6.4.

54 a lorentz-equivariant transformer for all of the lhc

6.1.4 Scaling with the Number of Particles

Fully connected graph neural networks bear a very close resemblance to
transformers [113]; both process data as sets of tokens, both respect full or
partial permutation symmetry, and both can be turned equivariant [95, 111,
112, 114]. Resource efficiency is where the two architectures differ most. To
quantify it, we measure the scaling of speed and memory consumption of a
standard transformer, L-GATr, and the Clifford Group Equivariant Neural
Network (CGENN) [111], which is a graph network built on geometric
algebra representations. We expect the CGENN to represent the strengths
and limitations of equivariant graph networks. We execute network forward
passes with synthetic data on an H100 GPU. Each measurement is done
with a single event consisting of a varying number of particles. To ensure
fairness, all networks consist of a single network block, for the transformers
the attention receives inputs with 72 channels from 4 attention heads, and
the CGENN is set up to be as close as possible to L-GATr. Namely, both
contain 8 multivector channels and 16 scalar channels.

In the left panel of Fig. 6.1, we see that the evaluation time of all networks
is independent of the number of tokens in the few-token regime, but it
eventually scales quadratically. This transition happens when attention
or message passing, rather than other parallelizable operations, becomes
the limiting factor. L-GATr scales like a standard transformer in the many-
token regime because they both use the same attention module. For few
tokens, L-GATr is slower because of the more expensive linear layers. The
CGENN is slower than L-GATr for few tokens, and the quadratic scaling
due to the expensive message passing operation takes off sooner.

As can be seen in the right panel of Fig. 6.1, for many particles L-GATr
and the standard transformer display the same linear scaling in memory
usage with the number of tokens since they use the same attention module.

100 101 102 103 104 105

Number of particles

100

101

102

103

Ev
al

ua
ti

on
ti

m
e

(m
s)

Transformer
CGENN
L-GATr

100 101 102 103 104 105

Number of particles

102

103

104

Pe
ak

m
em

or
y

us
ag

e
(M

B
)

Transformer
CGENN
L-GATr

Figure 6.1: Scaling behavior of L-GATr, a standard transformer, and the equivari-
ant graph network CGENN. The left panel was already discussed in
Ref. [95].

6.2 l-gatr for amplitude regression 55

In contrast, the CGENN scales quadratically in this regime and runs out of
memory already for 1000 particles. We attribute this to the different degree
of optimization in the architectures. For L-GATr we use FlashAttention [59],
heavily optimized for speed and memory efficiency. Graph neural networks
are often optimized for sparsely connected graphs, so the efficiency of the
standard implementation degrades for fully connected graphs.

6.2 l-gatr for amplitude regression

Our first L-GATr case study is for amplitude regression. Partonic scattering
amplitudes can be calculated exactly as a function of phase space. However,
their evaluation can become very expensive if we include high-order cor-
rections and a large number of external particles. Amplitude surrogates as
part of standard event generators speed up these precision predictions [39,
40, 115, 116]. However, standard neural networks struggle to reach suf-
ficient accuracy for realistic numbers of external particles. L-GATr uses
the partial permutation symmetry of particles in the process to efficiently
scale to high multiplicities, and it guarantees the Lorentz invariance of the
amplitude. Extending the studies performed in Ref. [95], we demonstrate
its utility for the partonic processes

qq̄→ Z+ng, n = 1 . . . 4 . (6.20)

We train L-GATr networks with a standard MSE loss to predict the corre-
sponding squared amplitudes A from the initial and final state 4-momenta.

We generate 4× 105 training data points for each multiplicity up to 4

gluons with MadGraph [117]. First, we use a standard run to generate
unweighted phase space points; second, we apply the standalone module

Z + 1g Z + 2g Z + 3g Z + 4g

10−7

10−6

10−5

10−4

10−3

10−2

10−1

M
SE

on
st

an
da

rd
iz

ed
am

pl
it

ud
es

MLP
Transformer
DSI
GAP
CGENN
L-GATr

103 104 105

Number of training data points

10−6

10−5

10−4

10−3

10−2

10−1

M
SE

on
st

an
da

rd
iz

ed
am

pl
it

ud
es

Z + 4g

MLP
Transformer
DSI
GAP
CGENN
L-GATr

Figure 6.2: Left: prediction error from L-GATr and all baselines for Z+ng ampli-
tudes with increasing particle multiplicity. All networks are trained
on 4× 105 points. Right: prediction error as a function of the training
dataset size. Error bands are based on the mean and standard deviation
of five random seeds. These figures are also included in Ref. [95].

56 a lorentz-equivariant transformer for all of the lhc

to compute the squared amplitude values. To avoid divergences, we require
globally

pT > 20 GeV and ∆R > 0.4 (6.21)

for all final-state objects. We train on standardized logarithmic amplitudes

A =
logA− logA

σlogA
. (6.22)

In addition to the L-GATr surrogate we also train a comprehensive set of
benchmarks:

• a standard MLP;

• a standard transformer [58], as L-GATr without equivariance;

• the Geometric Algebra Perceptron (GAP), as L-GATr without trans-
former structure;

• a deep sets network (DSI) [118] combining partial Lorentz and per-
mutation equivariance;

• the CGENN [111] as an equivariant graph network operating on
multivectors like L-GATr.

Details about the implementation and training can be found in the Ap-
pendix A.3.

Performance

Using the MSE loss as a quality metric, we compare the performance of
L-GATr to the baselines in the left panel of Fig. 6.2. Overall, transformer
and graph networks scale better with the number of external particles.
We find that L-GATr is roughly on par with the leading DSI network for
a small number of gluons, but its improved scaling gives it the lead for
higher-multiplicity final states. We find similar performance for L-GATr
when we train a single network on all processes jointly.

Next, we show in the right panel of Fig. 6.2 how the performance scales
with the size of the training dataset. L-GATr stands as a top performer
on all training regimes. In particular for small training sets, L-GATr and
CGENN are very efficient thanks to their equivariant operations.

6.3 l-gatr for jet tagging

Jet tagging is, arguably, the LHC task which is currently impacted most by
modern ML. Two approaches stand out as top performers: transformer-
based architectures and equivariant networks. In this section, we show how
L-GATr sets a new record for jet tagging by combining the merits of both
ideas. All results related to pre-training and multiclass tagging are new to
this paper.

6.3 l-gatr for jet tagging 57

Top tagging

We first study the performance of L-GATr on the top tagging challenge [28],
a representative and extensively studied jet tagging task at the LHC. The
results in this section were first presented in Ref. [95].

The top tagging dataset, originally produced for Ref. [119], consists of
2 M top quark and QCD jets with

pT ,j = 550 . . . 650 GeV , (6.23)

generated with Pythia 8 [80] and interfaced with Delphes for detector
simulation [120] using the default ATLAS card at that time. We train
and evaluate the L-GATr tagger on this dataset following the standard
train/validation/test splitting of 1.2/0.4/0.4 M. Details about the network
implementation and the training method are provided in Appendix A.3.

We compare our L-GATr tagger with the following baselines:

• LorentzNet [112], an equivariant graph network based on functions
of the momentum invariants as coefficients for 4-momenta inputs;

• PELICAN [110], an alternative equivariant graph network based
on momentum invariants and permutation equivariant aggregation
functions;

• CGENN [111], an equivariant graph network operating on multivec-
tors;

• ParT [29], a transformer that includes pairwise interaction features as
an attention bias; and

Network Accuracy AUC 1/ϵB (ϵS = 0.5) 1/ϵB (ϵS = 0.3)

TopoDNN [121] 0.916 0.972 – 295 ± 5

LoLa [122] 0.929 0.980 – 722 ± 17

N-subjettiness [123] 0.929 0.981 – 867 ± 15

PFN [124] 0.932 0.9819 247 ± 3 888 ± 17

TreeNiN [125] 0.933 0.982 – 1025 ± 11

ParticleNet [126] 0.940 0.9858 397 ± 7 1615 ± 93

ParT [29] 0.940 0.9858 413 ± 16 1602 ± 81

MIParT [127] 0.942 0.9868 505 ± 8 2010 ± 97

LorentzNet* [112] 0.942 0.9868 498 ± 18 2195 ± 173

CGENN* [111] 0.942 0.9869 500 2172

PELICAN* [110] 0.9426 ± 0.0002 0.9870 ± 0.0001 – 2250 ± 75

L-GATr* [95] 0.9423 ± 0.0002 0.9870 ± 0.0001 540 ± 20 2240 ± 70

ParticleNet-f.t. [127] 0.942 0.9866 487 ± 9 1771 ± 80

ParT-f.t. [127] 0.944 0.9877 691 ± 15 2766 ± 130

MIParT-f.t. [127] 0.944 0.9878 640 ± 10 2789 ± 133

L-GATr-f.t.* (new) 0.9446 ± 0.0002 0.98793 ± 0.00001 651 ± 11 2894 ± 84

Table 6.2: Top tagging accuracy, AUC, and background rejection 1/ϵB for the stan-
dard dataset [28, 119]. Lorentz-equivariant methods are indicated with
an asterisk, and fine-tuning methods are separated with a horizontal
line. Our error bars are based on the mean and standard deviation of
five random seeds.

58 a lorentz-equivariant transformer for all of the lhc

Beam Time Embedding AUC 1/ϵB (ϵS = 0.3)

– – Token 0.9844 1422

xV3 = ±1 – Token 0.9850 1905

– xV0 = 1 Token 0.9865 1923

xB12 = xB13 = xB23 = 1 xV0 = 1 Token 0.9863 2009

xB12 = 1 xV0 = 1 Channel 0.9865 2060

xV0 = 1, xV3 = ±1 xV0 = 1 Token 0.9869 2114

xV3 = ±1 xV0 = 1 Token 0.9869 2152

xB12 = 1 xV0 = 1 Token 0.9870 2240

Table 6.3: Symmetry breaking. We compare the L-GATr performance on the top
tagging dataset from Ref. [128] using different Lorentz symmetry break-
ing schemes. The last line is our default used in all other tagging
experiments.

• MIParT [127], an extension of ParT with specialized blocks that focus
only on interaction features.

In Tab. 6.2, we see how L-GATr is at least on par with the leading equivariant
baselines, as shown already in Ref. [95].

A key ingredient for the optimization of L-GATr is the symmetry breaking
prescription. For all our tests, we include two reference vectors as extra
tokens: the beam direction as the x− y plane bivector, xB12 = 1, and the
time reference xV = (1, 0, 0, 0), which gives the network a handle to break
the symmetry down to SO(3). We provide a comparison between multiple
reference vector options in Tab. 6.3, where we test their impact on a top
tagging network. From it, it is clear that both the beam direction and the
time reference significantly contribute to boosting the tagging performance.

Multi-class tagging on JetClass

We further study L-GATr for multiclass tagging with the JetClass dataset [29].
JetClass covers a wide variety of jet signatures. Its signal events consist
of jets arising from multiple decay modes of top quarks, W, Z and Higgs
bosons; its background events are made up of light quark and gluon jets.
All types of events are generated with MadGraph [10] and Pythia [80], and
detector effects are simulated with Delphes [129] using the default CMS
card. A kinematic cut

pT ,j = 500...1000 GeV and |ηj| < 2.0 (6.24)

is applied to all jets in the dataset. In total, JetClass contains 100 M jets
equally distributed across 10 classes.

JetClass provides input features of four main categories: the 4-momenta
of the jet particles, kinematic variables like ∆R and logpT that can be
derived from the 4-momenta, particle identification variables, and trajectory
displacement variables. When passing them through L-GATr, all features
besides the 4-momenta are embedded to the network as scalar channels.

6.3 l-gatr for jet tagging 59

All classes H → bb̄ H → cc̄ H → gg H → 4q H → lνqq̄ ′ t → bqq̄ ′ t → blν W → qq̄ ′ Z → qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

ParticleNet [126] 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283

ParT [29] 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402

MIParT [127] 0.861 0.9878 10753 4202 123 1927 5450 31250 16807 542 402

L-GATr 0.866 0.9885 12987 4819 128 2311 6116 47619 20408 588 432

Table 6.4: Tagging accuracy, AUC, and background rejection 1/ϵB for the JetClass
dataset [29]. The AUC is computed as the average of all possible pairwise
combinations of classes, and the acceptances are computed by comparing
each signal against the background class.

All classes H → bb̄ H → cc̄ H → gg H → 4q H → lνqq̄ ′ t → bqq̄ ′ t → blν W → qq̄ ′ Z → qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

ParticleNet (2 M) 0.828 0.9820 5540 1681 90 662 1654 4049 4673 260 215

ParticleNet (10 M) 0.837 0.9837 5848 2070 96 770 2350 5495 6803 307 253

ParticleNet (100 M) 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283

ParT (2 M) 0.836 0.9834 5587 1982 93 761 1609 6061 4474 307 236

ParT (10 M) 0.850 0.9860 8734 3040 110 1274 3257 12579 8969 431 324

ParT (100 M) 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402

MIParT (2 M) 0.837 0.9836 5495 1940 95 819 1778 6192 4515 311 242

MIParT (10 M) 0.850 0.9861 8000 3003 112 1281 3650 16529 9852 440 336

MIParT (100 M) 0.861 0.9878 10753 4202 123 1927 5450 31250 16807 542 402

L-GATr (2 M) 0.839 0.9842 6623 2294 99 981 1980 8097 4902 346 276

L-GATr (10 M) 0.859 0.9875 9804 3883 120 1791 4255 24691 13333 506 373

L-GATr (100 M) 0.866 0.9885 12987 4819 128 2311 6116 47619 20408 588 432

Table 6.5: Tagging accuracy, AUC, and background rejection 1/ϵB on different
sizes of the JetClass dataset [29]. Metrics from other models are taken
from their published results [29, 127].

We use the same architecture as we did for top tagging in all our tests (see
Appendix A.3).

We present the results in Tab. 6.4, including reference metrics from
Refs. [29, 127]. The L-GATr tagger achieves a significant improvement over
the previous state-of-the-art, ParT and MIParT, in essentially all signal
types. In a separate study, we have checked that the quality of L-GATr
predictions steadily increases as we add more features to the training data.
We also train L-GATr with subsets of the dataset to test its data efficiency.
As we can see in the left panel in Fig. 6.3 and Table 6.5, L-GATr achieves a
performance similar to the non-equivariant ParT and MIParT taggers even
if trained with only 10% of all available jets.

Top tagging with JetClass pre-training

The large capacity of transformer architectures motivates using pre-training
to further improve the tagging performance [29]. To this end, we pre-train
L-GATr on the JetClass dataset and fine-tune it for top tagging. The pre-
training uses the same setup as the JetClass training, but the inputs are
limited to the 4-momenta and the derived kinematic variables, as those are
the only available features in the top tagging dataset.

We follow Ref. [29] for the pre-training and fine-tuning procedures.
Once the network is pre-trained on the large dataset, we fine-tune it by
switching the last layer of the network to map to a single output channel
and re-initialize its weights. During fine-tuning, the pre-trained model
weights have to be updated with a smaller learning rate than the new ones,
otherwise the network might dismiss all information from the pre-training.
Further details about the fine-tuning setup are discussed in Appendix A.3.

60 a lorentz-equivariant transformer for all of the lhc

2% 10% 100%

Fraction of the JetClass dataset

0.980

0.982

0.984

0.986

0.988

A
U

C

L-GATr
MIParT
ParT
ParticleNet

2016 2018 2020 2022 2024 2026 2028

time of publication

500

1000

1500

2000

2500

3000

1/
ε

B
(ε

S
=

0.
3)

TopoDNN

LoLa
PFN
TreeNiN

ParticleNet ParT

MIParT
LorentzNet

PELICAN
L-GATr

ParT-f.t.
MIParT-f.t.

ParticleNet-f.t.

L-GATr-f.t.

Non-equivariant
Equivariant
Pretrained

Equivariant+Pretrained

Figure 6.3: AUC metric on JetClass as a function of the training dataset fraction
(left) and the history of top taggers (right).

We show the results from fine-tuned L-GATr in Tab. 6.2, where we
compare different fine-tuned baselines. L-GATr matches the performance
of the best fine-tuned networks in the literature across all metrics.2 To
further illustrate the impact of combining equivariance and pre-training,
we summarize the historical progress in top tagging in the right panel of
Fig. 6.3.

6.4 l-gatr for event generation

Generating LHC events is a key benchmark for neural network architectures,
required for end-to-end generation, neural importance sampling, generative
unfolding [32, 33, 131–134], and optimal inference [34, 35]. For all these
tasks we should reach per-mille-level, or at the very least percent-level
accuracy on the underlying phase space density. We use the L-GATr
architecture to take advantage of the approximate symmetries and to
improve the scaling for increasing numbers of final state particles. Our
reference process is

pp→ tht̄h +n j, n = 0 . . . 4 , (6.25)

with both top quarks decaying hadronically. It is simulated with Mad-
Graph3.5.1, consisting of MadEvent [135] for the underlying hard process,
Pythia8 [80] for the parton shower, Delphes3 [120] for the detector simu-
lation, and the anti-kT jet reconstruction algorithm [21] with R = 0.4 as
implemented in FastJet [136]. We use Pythia without multi-parton inter-
actions and the default ATLAS detector card. We apply the phase space
cuts

pT ,j > 22 GeV ∆Rjj > 0.5 |ηj| < 5 , (6.26)

2 In this table, we see that the prediction made in the title of Ref. [130] turned out accurate.

6.4 l-gatr for event generation 61

and require two b-tagged jets. The events are reconstructed with a χ2-based
algorithm [137], and identical particles are ordered by pT . The sizes of the
tt̄+n j datasets reflect the frequency of the respective processes, resulting
in 9.8M, 7.2M, 3.7M, 1.5M and 480k events for n = 0 . . . 4. We train separate
networks for each multiplicity, to allow for a direct comparison between
different architectures, but we emphasize that transformers can also be
trained jointly on all multiplicities [8]. This is particularly useful in the
case of limited training data, because transformers can transfer information
across multiplicities. The results presented here were briefly discussed in
Ref. [95], but without proper benchmarking.

Conditional flow matching (CFM)

Continuous normalizing flows [138] learn a continuous transition x(t)

between a simple latent distribution x1 ∼ platent(x1) and a phase space
distribution x0 ∼ pdata(x0). Mathematically, they build on two equivalent
ways of describing a diffusion process, using either an ODE or a continuity
equation [2, 8]

dx(t)

dt
= v(x(t), t) or

∂p(x, t)
∂t

= −∇x [v(x(t), t)p(x(t), t)] , (6.27)

with the same CFM-velocity field v(x(t), t). The diffusion process t = 0→ 1

interpolates between the phase space distribution pdata(x0) and the base
distribution platent(x1),

p(x, t) →

{
pdatax0) t→ 0

platent(x1) t→ 1 .
(6.28)

To train the continuous normalizing flow with conditional flow match-
ing [139, 140], we employ a simple linear interpolation

x(t) = (1− t)x0 + tx1 →

{
x0 t→ 0

x1 t→ 1 .
(6.29)

and train the network with parameters θ on a standard MSE loss to encode
the (CFM-)velocity

vθ ((1− t)x0 + tx1, t) ≈ x1 − x0. (6.30)

The network has to learn to match the un-conditional velocity field on the
left hand side to the conditional velocity field on the right hand side. We
then generate phase space configurations using a fast ODE solver via

x0 = x1 −

∫1
0

dt vθ(x(t), t). (6.31)

L-GATr velocity

We compare the L-GATr performance with a set of leading benchmark
architectures, all based on a CFM generator, with

62 a lorentz-equivariant transformer for all of the lhc

Pa
ra

m
et

ri
za

ti
on

M
in

ko
w

sk
is

pa
ce

x

p vp

vraw
x

vxm

vxp

vstable
x

Figure 6.4: To construct the L-GATr velocity, we extract equivariantly predicted
multivectors and symmetry-breaking scalars. We go back and forth
between the parametrization x and Minkowski space p using the map-
ping f from Eq. (6.32).

• a standard MLP [8];

• a standard transformer [33]; and

• an E(3)-GATr [106].

They share the generative CFM setup, which is currently the leading tech-
nique in precision generation of partonic LHC events [8] and calorimeter
showers, for the latter using a vision transformer inside the CFM [141]. Our
task does not require translation-equivariant representations. Therefore, we
do not insert or extract features related to translational equivariance when
using the E(3)-GATr, but internally it can use these representations. Details
about the implementation and training can be found in the Appendix A.3.

Strictly speaking, the underlying problem is only symmetric under rota-
tions around the beam axis. To not over-constrain the network we include
symmetry breaking multivectors as described in Sec. 6.1.3. For the E(3)-
GATr, we include the plane orthogonal to the beam axis as a reference
multivector. For L-GATr, we also include a time reference multivector,
because the distribution is not invariant under boosts along the beam axis.
This step is necessary for any Lorentz-equivariant generative network, as it
is not possible to construct a normalized density that is invariant under a
non-compact group.

To construct an equivariant generator, we have to choose a base dis-
tribution platent(x1) that is invariant under the symmetry group. We use
gaussian distributions in the coordinates (px,py,pz, logm2) with mean and
standard deviation fitted to the phase space distribution pdata(x0). Further-
more, we apply rejection sampling to enforce the phase space constraints
pT > 22 GeV,∆R > 0.5 already at the level of the base distribution.

6.4 l-gatr for event generation 63

The phase space parametrization for which we require straight trajecto-
ries is crucial for the performance of the generator. The standard MLP and
transformer CFMs work directly on x defined as

p =

E

px
py
pz

→ f−1(p) = x =

xp
xm
xη
xϕ

 ≡

log(pT − pmin

T)

logm2

η

ϕ

 , (6.32)

to encode v(x(t), t). We standardize all four x-coordinates using their
mean and standard deviation over the full dataset. The azimuthal angle
ϕ is periodic, and we use this property by adding multiples of 2π to map
generated angles into the allowed region ϕ ∈ [−π,π]. We then choose the
smallest distance between pairs (x0, x1) to construct the target velocity field,
allowing paths to cross the boundary at ϕ = ±π.

In Figure 6.5, we show target probability paths generated in this way. Our
approach ensures that none of the trajectories pass through the phase-space
region pT < pmin

T , where the target density does not have support; instead,
the geodesics lead around this problematic region. The effect of this choice
is also displayed in Table 6.6, where the naive choice of straight trajectories
in p, corresponding to straight lines in Figure 6.5, gives significantly worse
results.

L-GATr starts with p and applies the transformation visualized in Fig. 6.4:
first, we use the mapping f to transform x into the corresponding 4-
momentum p = f(x). Second, we apply the L-GATr network to obtain
the velocity vp = L-GATr(p) = (vE, vpx , vpy , vpz) in Minkowski space. Fi-
nally, we transform this velocity vp back into the parametrization x using
the jacobian of the backwards transformation, yielding the transformed
velocity vx = (vxp , vxm , vη, vϕ)

vx(x(t), t) =
∂f−1(p)

∂p
vp(p(t), t). (6.33)

In practice, we encounter large jacobians from the logarithm transforma-
tions in the above relation for vxm , vxp due to small values of the jet mass
m and the relative transverse momentum pT − pT ,min, leading to unstable
training. To avoid this obstacle, we add a fourth step to the procedure,
where we overwrite the two problematic velocity components with scalar

Data Architecture Base distribution Periodic Neg. log-likelihood AUC

p L-GATr rejection sampling ✓ -30.80 ± 0.17 0.945 ± 0.004

x MLP rejection sampling ✓ -32.13 ± 0.05 0.780 ± 0.003

x L-GATr rejection sampling ✗ -32.57 ± 0.05 0.530 ± 0.017

x L-GATr no rejection sampling ✓ -32.58 ± 0.04 0.523 ± 0.014

x L-GATr rejection sampling ✓ -32.65 ± 0.04 0.515 ± 0.009

Table 6.6: Impact of the choice of trajectory on different L-GATr networks for the
CFM velocity, compared to a MLP velocity network. All networks are
trained on the tt̄+ 0j dataset.

64 a lorentz-equivariant transformer for all of the lhc

−25 0 25 50 75
px [GeV]

−60

−40

−20

0

20

40

60

p y
[G

eV
]

pT < pT,min

Figure 6.5: Target vector field for Riemannian flow matching. Our choice of
metric space guarantees that the generative model respects phase-space
boundaries (red circle).

outputs of the L-GATr network. This adds an additional redundant source
of symmetry breaking to the reference multivectors discussed above.

For the E(3)-GATr, we encode (px,py,pz) as a vector and xm as a scalar.
We then apply a similar transformation as for L-GATr, but without changing
the xm component.

For the full L-GATr architecture we first study the effect of the choice of
data representation, of base distribution, and of trajectories in Tab. 6.6.

Performance

We compare a set of 1-dimensional distributions from the different gen-
erators in Fig. 6.6. Observables like pT ,b, that are part of the phase space
parametrization Eq. (6.32), are easily learned by all networks because of
our choice of target trajectories in Eq. (6.29). All other observables appear
as correlations and are harder to learn. L-GATr outperforms the baselines
across all distributions. Especially angular correlations benefit from the
equivariance encoded in the L-GATr architecture, enabling percent-level
precision in these variables for the first time. The main weakness of all
architectures are the intermediate top mass poles, requiring the correlation
of three external 4-vectors.

To analyze scaling properties, we use the negative log-likelihood eval-
uated on the events and the AUC of a neural classifier. In Fig. 6.7 we
find a clear performance increase with increasing symmetry awareness,
from the unstructured MLP over the permutation-equivariant transformer
to the rotation-equivariant GATr and the Lorentz-equivariant L-GATr.
In particular, the superior L-GATr performance mainly originates from
boost-equivariance, as the rotation-equivariant E(3)-GATr performs only

6.4 l-gatr for event generation 65

marginally better than the plain transformer. This might come as a sur-
prise, as we allow L-GATr to break this boost equivariance using reference
multivectors. This implies that enforcing equivariance in the architecture
and then allowing the network to break it with reference multivectors
outperforms standard non-equivariant networks. Finally, we also compare
to JetGPT [8] approach which constructs the density in a fundamentally
different approach. We find that this approach needs more training data
than the flow matching models to perform well, but eventually matches the
performance of the non-equivariant Transformer CFM and even surpasses
it.

10−4

10−1

M
ar

gi
na

ld
en

si
ty

t t̄ + 1 j

Truth

MLP

Transformer

L-GATr

0 20 40
mb [GeV]

0.9
1.0
1.1

M
od

el
Tr

ut
h

0.0

0.03

M
ar

gi
na

ld
en

si
ty

t t̄ + 1 j

50 100 150
mreco

W [GeV]

0.9
1.0
1.1

M
od

el
Tr

ut
h

0.0

0.015

M
ar

gi
na

ld
en

si
ty

t t̄ + 1 j

150 200 250
mreco

t [GeV]

0.9
1.0
1.1

M
od

el
Tr

ut
h

10−4

10−2

M
ar

gi
na

ld
en

si
ty

t t̄ + 2 j

Truth

MLP

Transformer

L-GATr

0 100 200
pT,b [GeV]

0.9
1.0
1.1

M
od

el
Tr

ut
h

0.0

0.4

M
ar

gi
na

ld
en

si
ty

t t̄ + 2 j

0 2 4 6
∆R j1, j2

0.9
1.0
1.1

M
od

el
Tr

ut
h

0.0

0.015

M
ar

gi
na

ld
en

si
ty

t t̄ + 2 j

150 200 250
mreco

t [GeV]

0.9
1.0
1.1

M
od

el
Tr

ut
h

10−4

10−2

M
ar

gi
na

ld
en

si
ty

t t̄ + 3 j

Truth

MLP

Transformer

L-GATr

0 100 200 300
preco

T,W [GeV]

0.9
1.0
1.1

M
od

el
Tr

ut
h

0.0

0.6

M
ar

gi
na

ld
en

si
ty

t t̄ + 3 j

0 2 4
∆Rbb̄

0.9
1.0
1.1

M
od

el
Tr

ut
h

0.0

0.015

M
ar

gi
na

ld
en

si
ty

t t̄ + 3 j

150 200 250
mreco

t [GeV]

0.9
1.0
1.1

M
od

el
Tr

ut
h

10−4

10−2

M
ar

gi
na

ld
en

si
ty

t t̄ + 4 j

Truth

MLP

Transformer

L-GATr

0 100 200 300
preco

T,t [GeV]

0.9
1.0
1.1

M
od

el
Tr

ut
h

0.0

0.3

M
ar

gi
na

ld
en

si
ty

t t̄ + 4 j

0 2 4 6
∆R j3, j4

0.9
1.0
1.1

M
od

el
Tr

ut
h

0.0

0.015

M
ar

gi
na

ld
en

si
ty

t t̄ + 4 j

150 200 250
mreco

t [GeV]

0.9
1.0
1.1

M
od

el
Tr

ut
h

Figure 6.6: Marginal distributions for tt̄ + 1, 2, 3, 4 jets (top to bottom). We do
not show E(3)-GATr results, as they are very similar to the standard
transformer. The three panels in the bottom row are also included in
Ref. [95].

66 a lorentz-equivariant transformer for all of the lhc

104 105 106

Number of training samples

−32

−30

−28

−26

−24

N
eg

at
iv

e
lo

g
lik

el
ih

oo
d

t t̄ + 0 j

JetGPT

MLP CFM

Transformer CFM

E(3)-GATr CFM

L-GATr CFM

104 105 106

Number of training samples

0.5

0.6

0.7

0.8

0.9

1.0

N
eu

ra
lc

la
ss

ifi
er

A
U

C

t t̄ + 0 j

JetGPT

MLP CFM

Transformer CFM

E(3)-GATr CFM

L-GATr CFM

t t̄ + 0 j t t̄ + 1 j t t̄ + 2 j t t̄ + 3 j t t̄ + 4 j

−5.5

−5.4

−5.3

N
eg

at
iv

e
lo

g
lik

el
ih

oo
d

pe
r

pa
rt

ic
le

JetGPT

MLP CFM

Transformer CFM

E(3)-GATr CFM

L-GATr CFM

t t̄ + 0 j t t̄ + 1 j t t̄ + 2 j t t̄ + 3 j t t̄ + 4 j
0.5

0.6

0.7

0.8

0.9

1.0

N
eu

ra
lc

la
ss

ifi
er

A
U

C

JetGPT

MLP CFM

Transformer CFM

E(3)-GATr CFM

L-GATr CFM

Figure 6.7: Performance of generative networks in terms of a negative log-
likelihood over the events (left) and a trained classifier AUC (right). In
the top row we show the scaling with the size of the training dataset
for the mixed tt̄+ n jet dataset, in the bottom row the scaling with
the number of particles in the final state. The MLP, Transformer and
L-GATr metrics were already discussed in Ref. [95].

6.5 outlook

Modern ML at the LHC has developed from mostly concept development
to the first applications in experiment and theory. For these applications,
performance is the main goal, leading us to the question how we can
train the most precise neural networks on a large, but nevertheless limited
training dataset. In LHC physics, we are in the lucky situation that we can
use the known structure of the phase space. It rests on a complex system
of symmetries, the leading one being the Lorentz symmetry.

To help our network training, we can encode the Lorentz symmetry or
Minkowski metric into the network architecture to avoid learning it. An
appropriate internal or latent representation of the Lorentz group then
enhances the performance of, essentially, every ML-application working on
relativistic phase space objects. Crucially, in cases where symmetries are not

6.5 outlook 67

exact, we can allow an equivariant network to break them using symmetry-
breaking reference frames, leading to significantly better performance than
removing the corresponding equivariance from the network altogether.

L-GATr is a versatile equivariant transformer that constructs such a
Lorentz representation for regression, classification, and generation net-
works. For amplitude regression, a key step in speeding up loop amplitudes
in event generators, L-GATr shows the best performance for more than
three particles in the final state, thanks to its superior data efficiency, lead-
ing to an improved scaling with the phase space dimensionality. For subjet
tagging, L-GATr combines the benefit of equivariance with pre-training on
large datasets and is at least on par with the best available subjet tagger. Fi-
nally, the combination of L-GATr with CFM generator faithfully reproduces
the phase space distribution of top pair production with up to four jets
better than all other CFM setups. We look forward to further applications
of L-GATr at the LHC, as well as generalizations to incorporate additional
domain knowledge from collider physics.

7
S U M M A RY A N D O U T L O O K

Out of all areas of science, high-energy physics is a strong contender for the
field in which symmetries play the most central role. Surprisingly, while
particle physicists were quick to embrace machine learning, architectures
tailored to the symmetries inherent in particle physics problems have
received comparably little attention.

Modern architectures that are both scalable and equivariant with respect
to the symmetries common in high-energy physics have been explored in
this thesis. For permutation equivariance, transformers – already highly
optimized for language processing – can be straightforwardly adapted to
collider applications. For Lorentz equivariance, a variety of architectures
had been proposed, but no transformer offering the favorable scaling
properties of that family was available. Consequently, the first Lorentz-
equivariant transformer was constructed as a versatile architecture based
on geometric-algebra representations.

Transformers are regarded as the leading permutation-equivariant archi-
tecture in terms of scaling. Their success in language modelling, notably
through autoregressive GPT models, motivated the adaptation of an autore-
gressive transformer for LHC event generation. In Chapter 4, the adapted
model was found to outperform established approaches such as GANs and
normalizing flows and to match the performance of denoising diffusion
models and conditional flow matching. A Bayesian-neural-network (BNN)
variant was developed to permit uncertainty quantification. The method
was then extended to generate sequences of variable length in Chapter 5;
the resulting autoregressive density was shown to reproduce naturally the
hierarchical structure of QCD jet radiation. Techniques allowing extrapola-
tion beyond the training data were investigated, and the BNN uncertainties
were observed to capture such out-of-domain regions conservatively.

The Lorentz-Equivariant Geometric Algebra Transformer (L-GATr) archi-
tecture was introduced in Chapter 6 as a universal tool for collider physics.
Lorentz equivariance is achieved with custom layers built from geometric-
algebra representations, combined in a manner analogous to the standard
transformer. L-GATr was benchmarked on classification, regression and
generative tasks and was found to match or surpass existing architectures
in all cases. In particular, the first Lorentz-equivariant generative network
was presented.

As the LHC prepares for its high-luminosity programme and legacy
measurements, all stages of the analysis pipeline are being optimized.
The deployment of performant and data-efficient architectures such as
L-GATr could enhance this pipeline at multiple points, with the ultimate

69

70 summary and outlook

goal of enabling even more precise measurements of nature at its most
fundamental level.

A
H Y P E R PA R A M E T E R S

a.1 lhc event generation with jetgpt

hyperparameter toy models LHC events

Gaussians m 21 43

Bins m 64 -

TransformerDecoder N 4 4

Self-attention Heads 4 4

Latent Space Size d 64 128

Model Parameters 220k 900k

LR Scheduling one-cycle one-cycle
Starter LR 3× 10−4 10−4

Maximum LR 3× 10−3 10−3

Epochs 200 2000

Batch Size 1024 1024

RAdam ϵ 10−8 10−4

Training Events 600k 2.4M, 670k, 190k
Generated Events 600k 1M, 1M, 1M

Table A.1: Training setup and hyperparameters for the Bayesian autoregressive
transformer.

a.2 extrapolating jet radiation with autoregressive trans-
formers

Parameter Value

Optimizer Adam
Learning rate 3 · 10−4

LR schedule constant
Batch size 512

Iterations 200k

Transformer Blocks 3+3

Latent space size d 128

Attention heads 8

Mixture model elements 42

Trainable parameters 1.2M

Table A.2: Architecture and training hyperparameters. We use 3 blocks each for
the particle-level transformer and the component-level transformer.

71

72 hyperparameters

a.3 a lorentz-equivariant transformer for all of the lhc

Amplitude regression

Concerning the DSI baseline, it is an architecture based on the Deep Sets
framework [118] that incorporates momentum invariants as part of the
input. It works in three stages. First, it applies a different learnable
preprocessing block to each particle type in the events, generating a set of
latent space representations for each of the particle inputs. Those latent
space points are then combined way by summing over all identical particle
types, effectively imposing permutation invariance. Finally, the resulting
aggregation together with a collection of all momentum invariants of the
process is fed to another block that performs the actual regression task.
This setup achieves a combination of Lorentz and permutation invariants
in an imperfect way.

We list the hyperparameters of all studied baselines in Table A.3. As
for the preprocessing, in the case of GAP and L-GATr we standardize the
4-momentum inputs using a common normalization for each component
to preserve Lorentz equivariance. For the rest of the baselines we perform
ordinary standarization.

Jet Tagging

We provide the L-GATr hyperparamters for top tagging without pre-
training in Table A.4. All inputs are preprocessed with a 20 GeV scale
factor. L-GATr is trained by minimizing a binary cross entropy loss on the
class labels.

Pre-training and full training on JetClass is performed by training L-
GATr on the full 100M events over 106 iterations. The L-GATr architecture
and training hyperparameters is the same that we used for the ordinary
top tagging. The only differences are that we now work with 10 output

Hyperparameter MLP DSI Transformer GAP CGENN L-GATr

Architecture
128 channels

5 layers
128 channels

4 layers

128 channels
8 heads
8 blocks

96 scalar ch.
96 multivector ch.

8 blocks

72 scalar ch.
8 multivector ch.

4 blocks

32 scalar ch.
32 multivector ch.

8 heads
8 blocks

Activation GELU GELU GELU Gated GELU Gated SiLU [111] Gated GELU
Parameters 7× 104 2.6× 105 1.3× 106 2.5× 106 3.2× 105 1.8× 106

Optimizer Adam [142] Adam [142] Adam [142] Adam [142] Adam [142] Adam [142]
Learning rate 10−4 10−4 10−4 10−4 10−4 10−4

Batch size 256 256 256 256 256 256

Scheduler - - - - - -
Patience 100 100 100 100 100 100

Iterations 2.5× 106 2.5× 106 106 2.5× 105 2.5× 105 2.5× 105

Table A.3: Hyperparameter summary for all baselines studied for the amplitude
task. In the case of DSI, the number of layers and channels refers
to both network blocks, and the latent space of each particle has a
dimensionality of 64. In the case of CGENN, the hidden node features
are identified with the scalar channels, whereas the hidden edge features
are identified with the multivector channels.

A.3 a lorentz-equivariant transformer for all of the lhc 73

Hyperparameter Value

Scalar channels 32

Multivector channels 16

Attention heads 8

Blocks 12

Parameters 1.1× 106

Optimizer Lion [52]
Learning rate 3× 10−4

Batch size 128

Scheduler CosineAnnealingLR [143]
Weight decay 0.2
Iterations 2× 105

Table A.4: Hyperparameter summary for the L-GATr network used for top tagging.

channels and train on a cross entropy loss to accommodate multiclass
training, and we use a batch size of 512 to maximize dataset exposure. As
for the inputs, the 4-momenta are again scaled by the 20 GeV scale, and the
kinematic functions are standardized following the prescription presented
in Ref. [29].

Fine-tuning is implemented by resetting the output layer of the pre-
trained network and restricting it to one output channel. With this build,
the pre-trained weights are trained with a learning rate of 3× 10−5 and the
new weights are trained with a learning rate of 3× 10−3. We also apply
a weight decay of 0.01 and a batch size of 128. The training is performed
across 105 iterations.

Event Generation

We summarize the architecture and training hyperparameters of all four
generator baselines in Table A.5. We split each dataset into 98% for training
and 1% each for validation and testing.

In the classifier test, we train an MLP classifier using binary cross-entropy
to distinguish generated events from true events. The classifier inputs
include the complete events in the x representation defined in Eq. (6.32),
augmented by all pairwise ∆R features, as well as the x representations of
the reconstructed particles t, t̄,W+,W−. The classifier network consists of
3 layers with 256 channels each. Training is conducted over 500 epochs
with a batch size of 1024, a dropout rate of 0.1, and the Adam optimizer
with default parameters. We start with an initial learning rate of 0.0003,
reducing it by a factor of 10 if validation loss shows no improvement for
5 consecutive epochs. The dataset comprises the full truth data and 1M
generated events, with an 80%/10%/10% split for training, testing, and
validation, respectively.

74 hyperparameters

Hyperparameter MLP Transformer L-GATr and E(3)-GATr

Architecture
336

6 layers

108 channels
6 layers
8 heads

32 scalar ch.
16 multivector ch.

8 heads
6 blocks

Activation GELU GELU Gated GELU
Parameters 5.9× 105 5.7× 105 5.4× 105

Optimizer Adam [142] Adam [142] Adam [142]
Learning rate 10−3 10−3 10−3

Batch size 2048 2048 2048

Iterations 2× 105 2× 105 2× 105

Table A.5: Hyperparameter summary for all baselines studied for the genera-
tion task. For all networks, we evaluate the validation loss every 103

iterations and decrease the learning rate by a factor of 10 after no im-
provements for 20 validation steps.

A C K N O W L E D G M E N T S

First of all, I’m really grateful to my advisor, Tilman Plehn, for taking me
on as a PhD student and for all his guidance over the past three years. I
want to thank him for creating such a great research environment in his
group, and more broadly, for helping build a strong community for people
working at the intersection of physics and machine learning in Heidelberg.

I’d also like to thank Ullrich Köthe for serving as a referee for this thesis,
and Stephanie Hansmann-Menzemer and Björn Malte Schäfer for being
part of my examination committee.

I am grateful to the graduate school “Particle physics beyond the Stan-
dard Model“, the CRC TRR 257, and the project “Model-Based AI: Physical
Models and Deep Learning for Imaging and Cancer Treatment‘ of the
Carl-Zeiss-Stiftung for funding the first, second and the third year of my
PhD, respectively.

I’m grateful to everyone I’ve had the chance to collaborate with over
the past three years. Special thanks go to Johann Brehmer for introducing
me to the world of geometric deep learning, and for teaching me how to
code and how to present research properly; to Víctor Bresó for the great
collaboration that made L-GATr happen; and to Sofia Palacios Schweitzer
and Nathan Huetsch for the fun and insightful time exploring the world
of HEP-ML together. I’m also thankful to many other collaborators for
the successful and enjoyable work we’ve done together: Pim de Haan,
Jesse Thaler, Huilin Qu, Ayodele Ore, Javier Villadamigo, François Charton,
Maeve Madigan, Nathanael Ediger, Sebastian Pitz, Luigi Favaro, Peter
Lippmann, Gerrit Gerhartz, Fred Hamprecht, Robert Ziegler, Claudio
Manzari, Jorge Camalich, Anja Butter, and Peter Sorrenson.

But most importantly, I want to thank all the current and former members
of the Heidelberg HEP-ML group for making the past three years such
a great experience! In no particular order, I’d like to thank Luigi Favaro,
Theo Heimel, Lorenz Vogel, Tanmoy Modak, Ayo Ore, Víctor Bresó, Michel
Luchmann, Emma Geoffray, Jona Ackerschott, Claudius Krause, Florian
Ernst, Maeve Madigan, Giovanni de Crescenzo, Javier Villadamigo, Nikita
Schmal, Antoine Petitjean, Daniel Schiller, Sophia Vent, Sebastian Pitz,
Nathanael Ediger, Paula Schuchard, Rebecca Revelli, Henning Bahl, and
anyone else I may have unintentially left out.

Finally, I’m deeply grateful to my friends and family for their constant
support over the years. I truly couldn’t have done this without you!

75

B I B L I O G R A P H Y

1C. D. Centre, Key facts and figures.
2T. Plehn et al., “Modern Machine Learning for LHC Physicists,” (2022),
arXiv:2211.01421 [hep-ph].

3J. Brehmer et al., “Constraining Effective Field Theories with Machine
Learning,” Phys. Rev. Lett. 121, 111801 (2018), arXiv:1805.00013 [hep-ph].

4G. Kasieczka et al., “The machine learning landscape of top taggers,”
SciPost Physics 7, 014 (2019).

5ATLAS collaboration, “Observation of a new particle in the search for
the Standard Model Higgs boson with the ATLAS detector at the LHC,”
Physics Letters B 716, 1–29 (2012).

6CMS collaboration, “Observation of a new boson at a mass of 125 GeV
with the CMS experiment at the LHC,” Physics Letters B 716, 30–61

(2012).
7L. de Oliveira et al., “Jet-images—deep learning edition,” Journal of High
Energy Physics 2016, 1–32 (2016).

8A. Butter et al., “Jet diffusion versus JetGPT – Modern networks for the
LHC,” SciPost Phys. Core 8, 026 (2025), arXiv:2305.10475 [hep-ph].

9A. Einstein, “Zur Elektrodynamik bewegter Körper,” Annalen der Physik
4 (1905).

10J. Alwall et al., “The automated computation of tree-level and next-to-
leading order differential cross sections, and their matching to parton
shower simulations,” JHEP 07, 079 (2014), arXiv:1405.0301 [hep-ph].

11E. Bothmann et al., “Event Generation with Sherpa 2.2,” SciPost Phys. 7,
034 (2019), arXiv:1905.09127 [hep-ph].

12G. P. Lepage, “Adaptive multidimensional integration: VEGAS enhanced,”
J. Comput. Phys. 439, 110386 (2021), arXiv:2009.05112 [physics.comp-ph].

13G. Altarelli and G. Parisi, “Asymptotic Freedom in Parton Language,”
Nucl. Phys. B 126, 298–318 (1977).

14B. Andersson, G. Gustafson, and B. Soderberg, “A General Model for Jet
Fragmentation,” Z. Phys. C 20, 317 (1983).

15T. Sjostrand, “Jet Fragmentation of Nearby Partons,” Nucl. Phys. B 248,
469–502 (1984).

16J.-C. Winter, F. Krauss, and G. Soff, “A Modified cluster hadronization
model,” Eur. Phys. J. C 36, 381–395 (2004), arXiv:hep-ph/0311085.

17S. Chatrchyan et al., “The CMS Experiment at the CERN LHC,” JINST 3,
S08004 (2008).

77

https://arxiv.org/abs/2211.01421
https://doi.org/10.1103/PhysRevLett.121.111801
https://arxiv.org/abs/1805.00013
https://doi.org/10.21468/SciPostPhysCore.8.1.026
https://arxiv.org/abs/2305.10475
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
https://doi.org/10.21468/SciPostPhys.7.3.034
https://doi.org/10.21468/SciPostPhys.7.3.034
https://arxiv.org/abs/1905.09127
https://doi.org/10.1016/j.jcp.2021.110386
https://arxiv.org/abs/2009.05112
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1007/BF01407824
https://doi.org/10.1016/0550-3213(84)90607-2
https://doi.org/10.1016/0550-3213(84)90607-2
https://doi.org/10.1140/epjc/s2004-01960-8
https://arxiv.org/abs/hep-ph/0311085
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08004

78 bibliography

18G. Aad et al., “The ATLAS Experiment at the CERN Large Hadron
Collider,” JINST 3, S08003 (2008).

19A. M. Sirunyan et al., “Particle-flow reconstruction and global event
description with the CMS detector,” JINST 12, P10003 (2017), arXiv:1706.
04965 [physics.ins-det].

20M. Aaboud et al., “Jet reconstruction and performance using particle
flow with the ATLAS Detector,” Eur. Phys. J. C 77, 466 (2017), arXiv:1703.
10485 [hep-ex].

21M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt jet clustering algo-
rithm,” JHEP 04, 063 (2008), arXiv:0802.1189 [hep-ph].

22E. Bothmann et al., “Exploring phase space with Neural Importance
Sampling,” SciPost Phys. 8, 069 (2020), arXiv:2001.05478 [hep-ph].

23T. Heimel et al., “MadNIS - Neural multi-channel importance sampling,”
SciPost Phys. 15, 141 (2023), arXiv:2212.06172 [hep-ph].

24T. Heimel et al., “The MadNIS reloaded,” SciPost Phys. 17, 023 (2024),
arXiv:2311.01548 [hep-ph].

25C. Bierlich et al., “Towards a data-driven model of hadronization us-
ing normalizing flows,” SciPost Phys. 17, 045 (2024), arXiv:2311.09296
[hep-ph].

26J. Chan et al., “Fitting a deep generative hadronization model,” JHEP 09,
084 (2023), arXiv:2305.17169 [hep-ph].

27L. Ehrke et al., “Topological reconstruction of particle physics pro-
cesses using graph neural networks,” Phys. Rev. D 107, 116019 (2023),
arXiv:2303.13937 [hep-ph].

28A. Butter et al., “The Machine Learning landscape of top taggers,” SciPost
Phys. 7, edited by G. Kasieczka and T. Plehn, 014 (2019), arXiv:1902.
09914 [hep-ph].

29H. Qu, C. Li, and S. Qian, “Particle Transformer for Jet Tagging,” (2022),
arXiv:2202.03772 [hep-ph].

30J. Brehmer et al., “A Guide to Constraining Effective Field Theories with
Machine Learning,” Phys. Rev. D98, 052004 (2018), arXiv:1805.00020
[hep-ph].

31A. Andreassen et al., “OmniFold: A Method to Simultaneously Unfold
All Observables,” Phys. Rev. Lett. 124, 182001 (2020), arXiv:1911.09107
[hep-ph].

32M. Bellagente et al., “Invertible Networks or Partons to Detector and
Back Again,” SciPost Phys. 9, 074 (2020), arXiv:2006.06685 [hep-ph].

33N. Huetsch, J. Mariño, et al., “The Landscape of Unfolding with Machine
Learning,” (2024), arXiv:2404.18807 [hep-ph].

34A. Butter et al., “Two invertible networks for the matrix element method,”
SciPost Phys. 15, 094 (2023), arXiv:2210.00019 [hep-ph].

https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/12/10/P10003
https://arxiv.org/abs/1706.04965
https://arxiv.org/abs/1706.04965
https://doi.org/10.1140/epjc/s10052-017-5031-2
https://arxiv.org/abs/1703.10485
https://arxiv.org/abs/1703.10485
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://doi.org/10.21468/SciPostPhys.8.4.069
https://arxiv.org/abs/2001.05478
https://doi.org/10.21468/SciPostPhys.15.4.141
https://arxiv.org/abs/2212.06172
https://doi.org/10.21468/SciPostPhys.17.1.023
https://arxiv.org/abs/2311.01548
https://doi.org/10.21468/SciPostPhys.17.2.045
https://arxiv.org/abs/2311.09296
https://arxiv.org/abs/2311.09296
https://doi.org/10.1007/JHEP09(2023)084
https://doi.org/10.1007/JHEP09(2023)084
https://arxiv.org/abs/2305.17169
https://doi.org/10.1103/PhysRevD.107.116019
https://arxiv.org/abs/2303.13937
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://arxiv.org/abs/1902.09914
https://arxiv.org/abs/1902.09914
https://arxiv.org/abs/2202.03772
https://doi.org/10.1103/PhysRevD.98.052004
https://arxiv.org/abs/1805.00020
https://arxiv.org/abs/1805.00020
https://doi.org/10.1103/PhysRevLett.124.182001
https://arxiv.org/abs/1911.09107
https://arxiv.org/abs/1911.09107
https://doi.org/10.21468/SciPostPhys.9.5.074
https://arxiv.org/abs/2006.06685
https://arxiv.org/abs/2404.18807
https://doi.org/10.21468/SciPostPhys.15.3.094
https://arxiv.org/abs/2210.00019

bibliography 79

35T. Heimel et al., “Precision-Machine Learning for the Matrix Element
Method,” (2023), arXiv:2310.07752 [hep-ph].

36G. Kasieczka et al., “The LHC Olympics 2020 a community challenge for
anomaly detection in high energy physics,” Rept. Prog. Phys. 84, 124201

(2021), arXiv:2101.08320 [hep-ph].
37A. Butter et al., “GANplifying event samples,” SciPost Phys. 10, 139

(2021), arXiv:2008.06545 [hep-ph].
38S. Bieringer et al., “Calomplification — the power of generative calorime-

ter models,” JINST 17, P09028 (2022), arXiv:2202.07352 [hep-ph].
39S. Badger et al., “Loop amplitudes from precision networks,” SciPost

Phys. Core 6, 034 (2023), arXiv:2206.14831 [hep-ph].
40D. Maître and H. Truong, “A factorisation-aware Matrix element emula-

tor,” JHEP 11, 066 (2021), arXiv:2107.06625 [hep-ph].
41C. Krause et al., “CaloChallenge 2022: A Community Challenge for Fast

Calorimeter Simulation,” (2024), arXiv:2410.21611 [cs.LG].
42A. Butter, T. Plehn, and R. Winterhalder, “How to GAN LHC Events,”

SciPost Phys. 7, 075 (2019), arXiv:1907.03764 [hep-ph].
43A. Butter et al., “Generative networks for precision enthusiasts,” SciPost

Phys. 14, 078 (2023), arXiv:2110.13632 [hep-ph].
44A. Einstein, “Zur Elektrodynamik bewegter Körper,” Annalen Phys. 322,

891–921 (1905).
45C. S. Wu et al., “Experimental Test of Parity Conservation in β Decay,”

Phys. Rev. 105, 1413–1414 (1957).
46J. H. Christenson et al., “Evidence for the 2π Decay of the K0

2 Meson,”
Phys. Rev. Lett. 13, 138–140 (1964).

47K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks 2, 359–366

(1989).
48A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep

Learning Library,” (2019), arXiv:1912.01703 [cs.LG].
49A. Karpathy, 3e-4 is the best learning rate for Adam, hands down. Tweet,

Twitter, 24 November 2016.
50D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”

(2014), arXiv:1412.6980 [cs.LG].
51L. Liu et al., “On the variance of the adaptive learning rate and beyond,”

(2019), arXiv:1908.03265 [cs.LG].
52X. Chen et al., “Symbolic discovery of optimization algorithms,” (2023),

arXiv:2302.06675 [cs.LG].
53D. MacKay, “Probable Networks and Plausible Predictions – A Review

of Practical Bayesian Methods for Supervised Neural Networks,” Comp.
in Neural Systems 6, 4679 (1995).

https://arxiv.org/abs/2310.07752
https://doi.org/10.1088/1361-6633/ac36b9
https://doi.org/10.1088/1361-6633/ac36b9
https://arxiv.org/abs/2101.08320
https://doi.org/10.21468/SciPostPhys.10.6.139
https://doi.org/10.21468/SciPostPhys.10.6.139
https://arxiv.org/abs/2008.06545
https://doi.org/10.1088/1748-0221/17/09/P09028
https://arxiv.org/abs/2202.07352
https://doi.org/10.21468/SciPostPhysCore.6.2.034
https://doi.org/10.21468/SciPostPhysCore.6.2.034
https://arxiv.org/abs/2206.14831
https://doi.org/10.1007/JHEP11(2021)066
https://arxiv.org/abs/2107.06625
https://arxiv.org/abs/2410.21611
https://doi.org/10.21468/SciPostPhys.7.6.075
https://arxiv.org/abs/1907.03764
https://doi.org/10.21468/SciPostPhys.14.4.078
https://doi.org/10.21468/SciPostPhys.14.4.078
https://arxiv.org/abs/2110.13632
https://doi.org/10.1002/andp.19053221004
https://doi.org/10.1002/andp.19053221004
https://doi.org/10.1103/PhysRev.105.1413
https://doi.org/10.1103/PhysRevLett.13.138
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1908.03265
https://arxiv.org/abs/2302.06675
http://www.inference.org.uk/mackay/network.pdf
http://www.inference.org.uk/mackay/network.pdf

80 bibliography

54R. M. Neal, “Bayesian learning for neural networks,” PhD thesis (Toronto,
1995).

55Y. Gal, “Uncertainty in Deep Learning,” PhD thesis (Cambridge, 2016).
56A. Kendall and Y. Gal, “What Uncertainties Do We Need in Bayesian

Deep Learning for Computer Vision?” Proc. NIPS (2017), arXiv:1703.
04977 [cs.CV].

57M. M. Bronstein et al., “Geometric Deep Learning: Grids, Groups, Graphs,
Geodesics, and Gauges,” (2021), arXiv:2104.13478 [cs.LG].

58A. Vaswani et al., “Attention is all you need,” Advances in neural infor-
mation processing systems 30 (2017), arXiv:1706.03762 [cs.CL].

59T. Dao et al., “FlashAttention: fast and memory-efficient exact atten-
tion with IO-awareness,” in Advances in neural information processing
systems (neurips) (2022).

60T. Dao, “FlashAttention-2: faster attention with better parallelism and
work partitioning,” in International conference on learning representa-
tions (iclr) (2024).

61J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” (2016),
arXiv:1607.06450 [stat.ML].

62K. He et al., “Deep Residual Learning for Image Recognition,” 10.1109/

CVPR.2016.90 (2015), arXiv:1512.03385 [cs.CV].
63A. Dosovitskiy et al., “An image is worth 16x16 words: transformers for

image recognition at scale,” ICLR (2021), eprint: 2010.11929 (cs.CV).
64A. Butter et al., “Jet diffusion versus jetgpt–modern networks for the

lhc,” arXiv preprint arXiv:2305.10475 (2023).
65A. Radford et al., “Language models are unsupervised multitask learn-

ers,” OpenAI blog 1, 9 (2019).
66M. Bellagente et al., “Understanding Event-Generation Networks via

Uncertainties,” SciPost Phys. 13, 003 (2022), arXiv:2104.04543 [hep-ph].
67S. Catani et al., “QCD matrix elements + parton showers,” JHEP 11, 063

(2001), arXiv:hep-ph/0109231.
68M. Cacciari, G. P. Salam, and G. Soyez, “FastJet User Manual,” Eur. Phys.

J. C 72, 1896 (2012), arXiv:1111.6097 [hep-ph].
69M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt jet clustering algo-

rithm,” JHEP 04, 063 (2008), arXiv:0802.1189 [hep-ph].
70S. Badger et al., “Machine learning and LHC event generation,” SciPost

Phys. 14, edited by A. Butter, T. Plehn, and S. Schumann, 079 (2023),
arXiv:2203.07460 [hep-ph].

71A. Butter et al., “Extrapolating Jet Radiation with Autoregressive Trans-
formers,” Submitted to SciPost Phys. (2024), arXiv:2412.12074 [hep-ph].

72R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and collider physics, Vol. 8

(Cambridge University Press, Feb. 2011).

https://arxiv.org/abs/1703.04977
https://arxiv.org/abs/1703.04977
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1607.06450
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1512.03385
2010.11929
https://doi.org/10.21468/SciPostPhys.13.1.003
https://arxiv.org/abs/2104.04543
https://doi.org/10.1088/1126-6708/2001/11/063
https://doi.org/10.1088/1126-6708/2001/11/063
https://arxiv.org/abs/hep-ph/0109231
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://doi.org/10.21468/SciPostPhys.14.4.079
https://doi.org/10.21468/SciPostPhys.14.4.079
https://arxiv.org/abs/2203.07460
https://arxiv.org/abs/2412.12074

bibliography 81

73T. Plehn, “Lectures on LHC Physics,” Lect. Notes Phys. 844, 1–193 (2012),
arXiv:0910.4182 [hep-ph].

74J. Campbell, J. Huston, and F. Krauss, The Black Book of Quantum Chromo-
dynamics : a Primer for the LHC Era (Oxford University Press, 2018).

75M. van Beekveld et al., “PanScales showers for hadron collisions: all-
order validation,” JHEP 11, 020 (2022), arXiv:2207.09467 [hep-ph].

76A. Andreassen et al., “JUNIPR: a Framework for Unsupervised Machine
Learning in Particle Physics,” Eur. Phys. J. C79, 102 (2019), arXiv:1804.
09720 [hep-ph].

77A. Andreassen et al., “Binary JUNIPR: an interpretable probabilistic
model for discrimination,” Phys. Rev. Lett. 123, 182001 (2019), arXiv:1906.
10137 [hep-ph].

78T. Finke et al., “Learning the language of QCD jets with transformers,”
(2023), arXiv:2303.07364 [hep-ph].

79J. Bellm et al., “Herwig 7.0/Herwig++ 3.0 release note,” Eur. Phys. J.
C76, 196 (2016), arXiv:1512.01178 [hep-ph].

80T. Sjöstrand et al., “An Introduction to PYTHIA 8.2,” Comput. Phys.
Commun. 191, 159–177 (2015), arXiv:1410.3012 [hep-ph].

81E. Bothmann et al., “Event generation with Sherpa 3,” (2024), arXiv:2410.
22148 [hep-ph].

82M. L. Mangano et al., “ALPGEN, a generator for hard multiparton
processes in hadronic collisions,” JHEP 07, 001 (2003), arXiv:hep-ph/
0206293.

83S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations
with Parton Shower simulations: the POWHEG method,” JHEP 11, 070

(2007), arXiv:0709.2092 [hep-ph].
84E. Bothmann et al., “Efficient precision simulation of processes with

many-jet final states at the LHC,” Phys. Rev. D 109, 014013 (2024),
arXiv:2309.13154 [hep-ph].

85S. Höche, F. Krauss, and D. Reichelt, “The Alaric parton shower for
hadron colliders,” (2024), arXiv:2404.14360 [hep-ph].

86M. R. Buckley, T. Plehn, and M. J. Ramsey-Musolf, “Top squark with mass
close to the top quark,” Phys. Rev. D 90, 014046 (2014), arXiv:1403.2726
[hep-ph].

87M. van Beekveld et al., “Introduction to the PanScales framework, version
0.1,” SciPost Phys. Codeb. 2024, 31 (2024), arXiv:2312.13275 [hep-ph].

88M. van Beekveld et al., “A new standard for the logarithmic accuracy of
parton showers,” (2024), arXiv:2406.02661 [hep-ph].

89S. D. Ellis, R. Kleiss, and W. J. Stirling, “W’s, Z’s and Jets,” Phys. Lett. B
154, 435–440 (1985).

90F. A. Berends et al., “Multi - Jet Production in W, Z Events at pp̄ Collid-
ers,” Phys. Lett. B 224, 237–242 (1989).

https://doi.org/10.1007/978-3-642-24040-9
https://arxiv.org/abs/0910.4182
https://doi.org/10.1007/JHEP11(2022)020
https://arxiv.org/abs/2207.09467
https://doi.org/10.1140/epjc/s10052-019-6607-9
https://arxiv.org/abs/1804.09720
https://arxiv.org/abs/1804.09720
https://doi.org/10.1103/PhysRevLett.123.182001
https://arxiv.org/abs/1906.10137
https://arxiv.org/abs/1906.10137
https://arxiv.org/abs/2303.07364
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://arxiv.org/abs/1512.01178
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://arxiv.org/abs/2410.22148
https://arxiv.org/abs/2410.22148
https://doi.org/10.1088/1126-6708/2003/07/001
https://arxiv.org/abs/hep-ph/0206293
https://arxiv.org/abs/hep-ph/0206293
https://doi.org/10.1088/1126-6708/2007/11/070
https://doi.org/10.1088/1126-6708/2007/11/070
https://arxiv.org/abs/0709.2092
https://doi.org/10.1103/PhysRevD.109.014013
https://arxiv.org/abs/2309.13154
https://arxiv.org/abs/2404.14360
https://doi.org/10.1103/PhysRevD.90.014046
https://arxiv.org/abs/1403.2726
https://arxiv.org/abs/1403.2726
https://doi.org/10.21468/SciPostPhysCodeb.31
https://arxiv.org/abs/2312.13275
https://arxiv.org/abs/2406.02661
https://doi.org/10.1016/0370-2693(85)90425-3
https://doi.org/10.1016/0370-2693(85)90425-3
https://doi.org/10.1016/0370-2693(89)91081-2

82 bibliography

91F. A. Berends et al., “On the production of a W and jets at hadron
colliders,” Nucl. Phys. B 357, 32–64 (1991).

92E. Gerwick, T. Plehn, and S. Schumann, “Understanding Jet Scaling
and Jet Vetos in Higgs Searches,” Phys. Rev. Lett. 108, 032003 (2012),
arXiv:1108.3335 [hep-ph].

93E. Gerwick et al., “Scaling Patterns for QCD Jets,” JHEP 10, 162 (2012),
arXiv:1208.3676 [hep-ph].

94J. Ackerschott et al., “Returning CP-observables to the frames they be-
long,” SciPost Phys. 17, 001 (2024), arXiv:2308.00027 [hep-ph].

95J. Spinner et al., “Lorentz-equivariant geometric algebra transformers
for high-energy physics,” Advances in Neural Information Processing
Systems (2024), arXiv:2405.14806 [physics.data-an].

96T. Golling et al., “Masked particle modeling on sets: towards self-supervised
high energy physics foundation models,” Mach. Learn. Sci. Tech. 5,
035074 (2024), arXiv:2401.13537 [hep-ph].

97M. Leigh et al., “Is Tokenization Needed for Masked Particle Modelling?”
(2024), arXiv:2409.12589 [hep-ph].

98J. Birk, A. Hallin, and G. Kasieczka, “OmniJet-α: the first cross-task
foundation model for particle physics,” Mach. Learn. Sci. Tech. 5, 035031

(2024), arXiv:2403.05618 [hep-ph].
99G. Kasieczka et al., “Per-Object Systematics using Deep-Learned Calibra-

tion,” SciPost Phys. 9, 089 (2020), arXiv:2003.11099 [hep-ph].
100G. Aad et al., “Precision calibration of calorimeter signals in the AT-

LAS experiment using an uncertainty-aware neural network,” (2024),
arXiv:2412.04370 [hep-ex].

101S. Bollweg et al., “Deep-Learning Jets with Uncertainties and More,”
SciPost Phys. 8, 006 (2020), arXiv:1904.10004 [hep-ph].

102S. Bieringer et al., “Calibrating Bayesian generative machine learning for
Bayesiamplification,” Mach. Learn. Sci. Tech. 5, 045044 (2024), arXiv:2408.
00838 [cs.LG].

103J. Brehmer et al., “A Lorentz-Equivariant Transformer for All of the
LHC,” Submitted to SciPost Phys. (2024), arXiv:2411.00446 [hep-ph].

104D. Hestenes, Space-time algebra, Documents on modern physics (Gordon
and Breach, 1966).

105S. Villar et al., “Scalars are universal: gauge-equivariant machine learn-
ing, structured like classical physics,” CoRR (2021), arXiv:2106.06610
[cs.LG].

106J. Brehmer et al., “Geometric Algebra Transformer,” in Advances in
Neural Information Processing Systems, Vol. 37, edited by H. Larochelle
et al. (May 2023), arXiv:2305.18415 [cs.LG].

https://doi.org/10.1016/0550-3213(91)90458-A
https://doi.org/10.1103/PhysRevLett.108.032003
https://arxiv.org/abs/1108.3335
https://doi.org/10.1007/JHEP10(2012)162
https://arxiv.org/abs/1208.3676
https://doi.org/10.21468/SciPostPhys.17.1.001
https://arxiv.org/abs/2308.00027
https://arxiv.org/abs/2405.14806
https://doi.org/10.1088/2632-2153/ad64a8
https://doi.org/10.1088/2632-2153/ad64a8
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2409.12589
https://doi.org/10.1088/2632-2153/ad66ad
https://doi.org/10.1088/2632-2153/ad66ad
https://arxiv.org/abs/2403.05618
https://doi.org/10.21468/SciPostPhys.9.6.089
https://arxiv.org/abs/2003.11099
https://arxiv.org/abs/2412.04370
https://doi.org/10.21468/SciPostPhys.8.1.006
https://arxiv.org/abs/1904.10004
https://doi.org/10.1088/2632-2153/ad9136
https://arxiv.org/abs/2408.00838
https://arxiv.org/abs/2408.00838
https://arxiv.org/abs/2411.00446
https://arxiv.org/abs/2106.06610
https://arxiv.org/abs/2106.06610
https://arxiv.org/abs/2305.18415

bibliography 83

107R. Xiong et al., “On layer normalization in the transformer architec-
ture,” in International Conference on Machine Learning (PMLR, 2020),
pp. 10524–10533, arXiv:2002.04745 [cs.LG].

108D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),”
(2016), arXiv:1606.08415 [cs.LG].

109D. Maître, V. S. Ngairangbam, and M. Spannowsky, “Optimal Equivari-
ant Architectures from the Symmetries of Matrix-Element Likelihoods,”
(2024), arXiv:2410.18553 [hep-ph].

110A. Bogatskiy et al., “Explainable equivariant neural networks for particle
physics: PELICAN,” JHEP 03, 113 (2024), arXiv:2307.16506 [hep-ph].

111D. Ruhe, J. Brandstetter, and P. Forré, “Clifford group equivariant neu-
ral networks,” in Advances in Neural Information Processing Systems,
Vol. 37 (May 2023), arXiv:2305.11141 [cs.LG].

112S. Gong et al., “An efficient Lorentz equivariant graph neural network
for jet tagging,” JHEP 07, 030 (2022), arXiv:2201.08187 [hep-ph].

113M. M. Bronstein et al., “Geometric deep learning: grids, groups, graphs,
geodesics, and gauges,” (2021), arXiv:2104.13478 [cs.LG].

114A. Bogatskiy et al., “PELICAN: Permutation Equivariant and Lorentz
Invariant or Covariant Aggregator Network for Particle Physics,” (2022),
arXiv:2211.00454 [hep-ph].

115J. Aylett-Bullock, S. Badger, and R. Moodie, “Optimising simulations
for diphoton production at hadron colliders using amplitude neural
networks,” JHEP 08, 066 (2021), arXiv:2106.09474 [hep-ph].

116D. Maître and H. Truong, “One-loop matrix element emulation with
factorisation awareness,” 10.1007/JHEP05(2023)159 (2023), arXiv:2302.
04005 [hep-ph].

117J. Alwall et al., “The automated computation of tree-level and next-to-
leading order differential cross sections, and their matching to parton
shower simulations,” JHEP 07, 079 (2014), arXiv:1405.0301 [hep-ph].

118M. Zaheer et al., “Deep sets,” (2017), arXiv:1703.06114 [cs.LG].
119T. Heimel et al., “QCD or What?” SciPost Phys. 6, 030 (2019), arXiv:1808.

08979 [hep-ph].
120J. de Favereau et al., “DELPHES 3, A modular framework for fast simu-

lation of a generic collider experiment,” JHEP 02, 057 (2014), arXiv:1307.
6346 [hep-ex].

121M. Aaboud et al., “Performance of top-quark and W-boson tagging with
ATLAS in Run 2 of the LHC,” Eur. Phys. J. C 79, 375 (2019), arXiv:1808.
07858 [hep-ex].

122A. Butter et al., “Deep-learned Top Tagging with a Lorentz Layer,”
SciPost Phys. 5, 028 (2018), arXiv:1707.08966 [hep-ph].

https://arxiv.org/abs/2002.04745
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2410.18553
https://doi.org/10.1007/JHEP03(2024)113
https://arxiv.org/abs/2307.16506
https://arxiv.org/abs/2305.11141
https://doi.org/10.1007/JHEP07(2022)030
https://arxiv.org/abs/2201.08187
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2211.00454
https://doi.org/10.1007/JHEP08(2021)066
https://arxiv.org/abs/2106.09474
https://doi.org/10.1007/JHEP05(2023)159
https://doi.org/10.1007/JHEP05(2023)159
https://arxiv.org/abs/2302.04005
https://arxiv.org/abs/2302.04005
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
https://arxiv.org/abs/1703.06114
https://doi.org/10.21468/SciPostPhys.6.3.030
https://arxiv.org/abs/1808.08979
https://arxiv.org/abs/1808.08979
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://arxiv.org/abs/1307.6346
https://doi.org/10.1140/epjc/s10052-019-6847-8
https://arxiv.org/abs/1808.07858
https://arxiv.org/abs/1808.07858
https://doi.org/10.21468/SciPostPhys.5.3.028
https://arxiv.org/abs/1707.08966

84 bibliography

123L. Moore et al., “Reports of My Demise Are Greatly Exaggerated: N-
subjettiness Taggers Take On Jet Images,” SciPost Phys. 7, 036 (2019),
arXiv:1807.04769 [hep-ph].

124P. T. Komiske, E. M. Metodiev, and J. Thaler, “Energy Flow Networks:
Deep Sets for Particle Jets,” JHEP 01, 121 (2019), arXiv:1810 . 05165
[hep-ph].

125G. Louppe et al., “QCD-Aware Recursive Neural Networks for Jet
Physics,” JHEP 01, 057 (2019), arXiv:1702.00748 [hep-ph].

126H. Qu and L. Gouskos, “ParticleNet: Jet Tagging via Particle Clouds,”
Phys. Rev. D 101, 056019 (2020), arXiv:1902.08570 [hep-ph].

127Y. Wu et al., “Jet Tagging with More-Interaction Particle Transformer,”
10.1088/1674-1137/ad7f3d (2024), arXiv:2407.08682 [hep-ph].

128G. Kasieczka et al., Top quark tagging reference dataset, https://doi.org/
10.5281/zenodo.2603256, Mar. 2019.

129J. de Favereau et al., “DELPHES 3, A modular framework for fast simu-
lation of a generic collider experiment,” JHEP 02, 057 (2014), arXiv:1307.
6346 [hep-ex].

130G. Kasieczka et al., “Deep-learning Top Taggers or The End of QCD?”
JHEP 05, 006 (2017), arXiv:1701.08784 [hep-ph].

131M. Bellagente et al., “How to GAN away Detector Effects,” SciPost Phys.
8, 070 (2020), arXiv:1912.00477 [hep-ph].

132M. Backes et al., “An unfolding method based on conditional invertible
neural networks (cINN) using iterative training,” SciPost Phys. Core 7,
007 (2024), arXiv:2212.08674 [hep-ph].

133A. Shmakov et al., “End-To-End Latent Variational Diffusion Models
for Inverse Problems in High Energy Physics,” (2023), arXiv:2305.10399
[hep-ex].

134S. Diefenbacher et al., “Improving generative model-based unfolding
with Schrödinger bridges,” Phys. Rev. D 109, 076011 (2024), arXiv:2308.
12351 [hep-ph].

135J. Alwall et al., “MadGraph 5 : Going Beyond,” JHEP 06, 128 (2011),
arXiv:1106.0522 [hep-ph].

136M. Cacciari, G. P. Salam, and G. Soyez, “FastJet User Manual,” Eur. Phys.
J. C 72, 1896 (2012), arXiv:1111.6097 [hep-ph].

137G. Aad et al., “Measurements of top-quark pair single- and double-
differential cross-sections in the all-hadronic channel in pp collisions at√
s = 13 TeV using the ATLAS detector,” JHEP 01, 033 (2021), arXiv:2006.

09274 [hep-ex].
138R. T. Chen et al., “Neural ordinary differential equations,” Advances in

Neural Information Processing Systems 31 (2018).
139Y. Lipman et al., “Flow matching for generative modeling,” (2023),

arXiv:2210.02747 [cs.LG].

https://doi.org/10.21468/SciPostPhys.7.3.036
https://arxiv.org/abs/1807.04769
https://doi.org/10.1007/JHEP01(2019)121
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1810.05165
https://doi.org/10.1007/JHEP01(2019)057
https://arxiv.org/abs/1702.00748
https://doi.org/10.1103/PhysRevD.101.056019
https://arxiv.org/abs/1902.08570
https://doi.org/10.1088/1674-1137/ad7f3d
https://doi.org/10.1088/1674-1137/ad7f3d
https://arxiv.org/abs/2407.08682
https://doi.org/10.5281/zenodo.2603256
https://doi.org/10.5281/zenodo.2603256
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://arxiv.org/abs/1307.6346
https://doi.org/10.1007/JHEP05(2017)006
https://arxiv.org/abs/1701.08784
https://doi.org/10.21468/SciPostPhys.8.4.070
https://doi.org/10.21468/SciPostPhys.8.4.070
https://arxiv.org/abs/1912.00477
https://doi.org/10.21468/scipostphyscore.7.1.007
https://doi.org/10.21468/scipostphyscore.7.1.007
https://arxiv.org/abs/2212.08674
https://arxiv.org/abs/2305.10399
https://arxiv.org/abs/2305.10399
https://doi.org/10.1103/PhysRevD.109.076011
https://arxiv.org/abs/2308.12351
https://arxiv.org/abs/2308.12351
https://doi.org/10.1007/JHEP06(2011)128
https://arxiv.org/abs/1106.0522
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097
https://doi.org/10.1007/JHEP01(2021)033
https://arxiv.org/abs/2006.09274
https://arxiv.org/abs/2006.09274
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2210.02747

bibliography 85

140M. S. Albergo, N. M. Boffi, and E. Vanden-Eijnden, “Stochastic in-
terpolants: a unifying framework for flows and diffusions,” (2023),
arXiv:2303.08797 [cs.LG].

141L. Favaro et al., “CaloDREAM – Detector Response Emulation via Atten-
tive flow Matching,” (2024), arXiv:2405.09629 [hep-ph].

142D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
(2014), arXiv:1412.6980 [cs.LG].

143I. Loshchilov and F. Hutter, “SGDR: stochastic gradient descent with
restarts,” CoRR (2016), arXiv:1608.03983 [cs.LG].

https://arxiv.org/abs/2303.08797
https://arxiv.org/abs/2405.09629
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1608.03983

	Abstract
	Zusammenfassung
	Contents
	Publications
	1 Introduction
	2 Collider physics
	2.1 High-energy physics
	2.2 Collider kinematics
	2.3 The LHC workflow
	2.4 Symmetries in the LHC workflow

	3 Machine Learning
	3.1 Deep Learning
	3.2 Permutation-equivariant architectures

	4 LHC Event Generation with JetGPT
	4.1 Generative model
	4.2 Toy models and Bayesian networks
	4.3 LHC events
	4.4 Outlook

	5 Extrapolating Jet Radiation with Autoregressive Transformers
	5.1 Autoregressive jet radiation
	5.2 Results
	5.3 Outlook

	6 A Lorentz-Equivariant Transformer for All of the LHC
	6.1 Lorentz-Equivariant Geometric Algebra Transformer
	6.2 L-GATr for Amplitude Regression
	6.3 L-GATr for Jet Tagging
	6.4 L-GATr for Event Generation
	6.5 Outlook

	7 Summary and Outlook
	A Hyperparameters
	A.1 LHC Event Generation with JetGPT
	A.2 Extrapolating Jet Radiation with Autoregressive Transformers
	A.3 A Lorentz-Equivariant Transformer for All of the LHC
	Acknowledgments

	 Bibliography

