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“Nachdem nun einerseits gezeigt werden konnte, dass mehrpolige Mitosen zur Entstehung 

solcher aus ihrem Gleichgewicht geratener Zellen führen, und nachdem andererseits bekannt 

ist, dass in Geschwülsten simultane Mehrteilungen vorkommen, wird die Hypothese eines 

Zusammenhanges beider Erscheinungen einer Prüfung wert sein. Freilich müsste dabei noch 

vorausgesetzt werden, dass nicht nur in der entwickelten, sondern schon in der entstehenden 

Geschwulst mehrpolige Mitosen vorkämen. Wodurch diese selbst verursacht werden, wäre 

eine zweite Frage…” 

 

Theodor Boveri, Über Mehrpolige Mitosen als Mittel zur Analyse des Zellkerns, 1902 
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Summary 
 

Chromosomal instability (CIN) is a hallmark of cancer, implicated in both tumor initiation and 

progression. Yet, its origins in normal, untransformed tissues remain poorly understood. 

Polyploidy is a feature of many adult tissues – particularly in exocrine glands such as the 

pancreas and the mammary gland. Although polyploidy has been linked to CIN in malignancies, 

the role of polyploidy in mutation acquisition within naïve tissues remains largely unexplored. 

 

In this thesis, I investigate the link between polyploidy and CIN during tissue remodeling, utilizing 

organoid and in vivo models of pancreatic injury. I demonstrate that polyploid acinar cells 

contribute to regeneration by undergoing acinar-to-ductal metaplasia. This transition involves 

extensive cellular remodeling, including cell shrinkage, which disrupts proper spindle 

orientation, especially in binucleated, polyploid acinar cells. These spindle defects result in 

mitotic errors such as lagging chromosomes, chromatin bridges, and the formation of 

micronuclei. Crucially, I observe extensive DNA damage within these micronuclei, consistent 

with chromothripsis, revealing a pathway to CIN in untransformed cells. 

To explore the broader relevance of this mechanism, I employed a lactating mammary gland 

organoid model, that was developed under my supervision. In this model, polyploidy was 

induced through pregnancy hormone treatment mimicking transitions that occur to prepare the 

tissue for milk production during lactation. Strikingly, this model recapitulated the mitotic 

abnormalities and CIN observed in the pancreas, suggesting that polyploidy-associated 

chromosomal instability is a conserved feature of glandular tissues. Notably, all findings were 

obtained in primary, untransformed cells without genetic manipulation or genotoxic stress, 

supporting a physiological origin of CIN linked to polyploid cell division. 

 

To acquire these findings, I developed an imaging and image analysis workflow to quantitatively 

assess ploidy states, nuclear number, micronuclei frequency, and expression levels of key 

markers. This workflow is also detailed in the thesis. 

 

Together, my results uncover a novel mechanism by which normal polyploid cells contribute to 

CIN during tissue regeneration. This work provides new insights into the origins of chromosomal 

instability in regenerative contexts, highlighting the dual role of polyploidy in promoting both 

tissue repair and chromosomal mis-segregation.  
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Zusammenfassung 
 

Chromosomeninstabilität (CIN) ist ein Kennzeichen von Krebs, das sowohl bei der 

Tumorentstehung als auch beim Fortschreiten des Tumors eine Rolle spielt. Die Ursprünge 

dieser Instabilität in normalen, nicht transformierten Geweben sind jedoch nach wie vor kaum 

bekannt. Polyploidie ist ein Merkmal vieler adulter Gewebe - insbesondere in exokrinen Drüsen 

wie der Bauchspeicheldrüse und der Brustdrüse. Obwohl Polyploidie mit CIN bei bösartigen 

Erkrankungen in Verbindung gebracht wurde, ist die Rolle der Polyploidie bei der Mutagenese in 

naiven Geweben noch weitgehend unerforscht. 

 

In dieser Arbeit untersuche ich den Zusammenhang zwischen Polyploidie und CIN während des 

Gewebeumbaus unter Verwendung von Organoid- und In-vivo-Modellen der Pankreasverletzung. 

Ich zeige, dass polyploide Azinuszellen zur Regeneration beitragen, indem sie eine azinär-duktale 

Metaplasie durchlaufen. Dieser Übergang ist mit einem umfassenden zellulären Umbau 

verbunden, zu dem auch die Schrumpfung der Zellen gehört, wodurch die korrekte 

Spindelausrichtung gestört wird, insbesondere bei zweikernigen, polyploiden Azinuszellen. 

Diese Spindeldefekte führen zu mitotischen Fehlern wie langsame Folgechromosomen, 

Chromatinbrücken und der Bildung von Mikronuklei. Entscheidend ist, dass ich innerhalb dieser 

Mikronuklei umfangreiche DNA-Schäden beobachte, die mit Chromothripsis übereinstimmen 

und einen Weg zu CIN in nicht transformierten Zellen aufzeigen. 

Um die allgemeine Bedeutung dieses Mechanismus zu untersuchen, habe ich ein 

Organoidmodell der laktierenden Brustdrüse verwendet, das unter meiner Aufsicht entwickelt 

wurde. In diesem Modell wurde die Polyploidie durch eine Behandlung mit 

Schwangerschaftshormonen induziert, die die Übergänge nachahmt, die zur Vorbereitung des 

Gewebes auf die Milchproduktion während der Laktation stattfinden. Auffallend ist, dass dieses 

Modell die in der Bauchspeicheldrüse beobachteten mitotischen Anomalien und CIN 

rekapitulierte, was darauf hindeutet, dass die mit Polyploidie verbundene chromosomale 

Instabilität ein konserviertes Merkmal von Drüsengeweben ist. Bemerkenswert ist, dass alle 

Ergebnisse in primären, nicht transformierten Zellen ohne genetische Manipulation oder 

genotoxischen Stress erzielt wurden, was für einen physiologischen Ursprung von CIN in 

Verbindung mit polyploider Zellteilung spricht. 

 

Um diese Erkenntnisse zu gewinnen, habe ich einen Arbeitsablauf für die Bildgebung und 

Bildanalyse entwickelt, um den Ploidiezustand, die Kernzahl, die Mikronuklei-Häufigkeit und die 
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Expressionsniveaus wichtigster Marker quantitativ zu bestimmen. Auch dieser Arbeitsablauf 

wird in der Dissertation ausführlich beschrieben. 

 

Zusammengenommen decken meine Ergebnisse einen neuartigen Mechanismus auf, durch den 

normale polyploide Zellen zur CIN während der Geweberegeneration beitragen. Diese Arbeit 

bietet neue Einblicke in den Ursprung der chromosomalen Instabilität in regenerativen Kontexten 

und unterstreicht die doppelte Rolle der Polyploidie bei der Förderung der Gewebereparatur und 

der chromosomalen Fehlaufspaltung.  
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1 Introduction 
The question of what causes cancer has fascinated and perplexed humankind for millennia. In 

ancient times, it was attributed to disbalanced bodily fluids or divine retribution. With the rise of 

scientific medicine in the 19th century, figures like Theodor Boveri and Rudolf Virchow 

fundamentally transformed our understanding of cancer, framing it as a disease of cells. 

Virchow's insight that "omnis cellula e cellula" established the cellular basis of pathology, while 

Boveri's visionary hypothesis that chromosomal aberrations could drive tumor formation laid the 

conceptual groundwork for modern cancer genetics (Boveri, 1914; Virchow, 1858). Over the past 

century, and particularly in recent decades, advances in molecular biology, genomics, and 

imaging technologies have revolutionized our ability to probe the molecular mechanisms 

underlying cancer. And yet, despite this technological progress, our fundamental understanding 

of how chromosomal instability arises in normal tissues remains incomplete. Much of what we 

know about chromosomal instability is derived from highly artificial models: cancer cell lines 

grown in vitro, genetically manipulated organisms, or experimental conditions far removed from 

physiological reality. As a result, key questions remain: Can chromosomal instability emerge in 

unperturbed tissues? What cellular states or structural features predispose certain cells to 

genomic derailment? And how do these instabilities unfold in the early, often silent, stages of 

disease development? This thesis aims to explore these questions by investigating the origins of 

chromosomal instability in polyploid cells within naïve, unmanipulated glandular tissues, 

shedding light on a fundamental, yet largely overlooked, aspect of tumor initiation. 

1.1 Exocrine glands 

In mammals, exocrine glands are epithelial-derived structures specialized for the production 

and secretion of various substances onto external or internal epithelial surfaces via ductal 

systems. These secretions – including enzymes, mucus, sweat, lipids, and milk – fulfill vital 

physiological roles, supporting digestion, thermoregulation, surface protection, and 

reproductive processes. Exocrine glands range from unicellular forms, such as mucus-secreting 

goblet cells, to complex multicellular organs like the salivary glands, pancreas, mammary 

glands, and liver. The regulation of exocrine gland function is mediated through coordinated 

neural and hormonal signals, ensuring secretion is precisely timed and localized. 

In both humans and mice, the developmental architecture, molecular regulation, and secretory 

functional outputs of exocrine glands are broadly conserved. The fundamental developmental 
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pathways controlling exocrine gland formation – involving signaling cascades such as fibroblast 

growth factor (FGF), epidermal growth factor (EGF), and the activity of transcription factors 

including hepatocyte nuclear factor 1β (HNF1β), and SRY-box transcription factor 9 (SOX9), are 

highly conserved across species (W. Guo et al., 2012; Jennings et al., 2015; McNally & Stein, 

2017; Tanaka et al., 2021). These similarities have positioned the mouse as a central model for 

elucidating mechanisms of exocrine gland morphogenesis, homeostasis, regeneration, and 

disease.  

 

1.1.1 The pancreas 

1.1.1.1 Anatomy and function of the pancreas 

The pancreas functions as a multifunctional organ, fulfilling both endocrine and exocrine roles. 

The endocrine compartment, composed of hormone-producing cells, is organized into discrete 

clusters known as pancreatic islets, which are embedded within the surrounding exocrine tissue. 

Despite comprising only 1-2 % of the total pancreatic volume, the islets, particularly the insulin-

secreting beta cells, have been the subject of intense research focus largely due to their critical 

role in glucose homeostasis and their involvement in the pathogenesis of diabetes mellitus 

(Ionescu-Tirgoviste et al., 2015). In contrast, many fundamental aspects of the exocrine 

pancreas, including its development, disease mechanisms, and regenerative capacity, remain 

relatively underexplored. 

The exocrine pancreas is characterized by a highly branched ductal network organized into 

interconnected lobes and lobules. It produces and transports a digestive fluid rich in enzymes 

essential for nutrient breakdown. This fluid is conveyed through a hierarchical ductal system 

comprising the main pancreatic duct, interlobular ducts, intralobular ducts, and intercalated 

ducts before being discharged into the duodenum via the common bile duct. Along the ductal 

system, epithelial cells secrete bicarbonate ions into the lumen, neutralizing gastric acid and 

creating a pH environment favorable for enzymatic activity (Longnecker & Thompson, 2023). 

Pancreatic acinar cells sit the termini of the intercalated ducts and are organized into single-

layered, grape-like structures known as acini (Figure 1.1). Acinar cells are the predominant cell 

type of the pancreas and are specialized for the production and apical storage of digestive 

enzymes within secretory granules. Remarkably, they exhibit the highest rate of protein synthesis 

among all adult mammalian cell types (Case, 1978). Upon stimulation via the hormone 

cholecystokinin (CCK), these enzymes are released via exocytosis into the ductal lumen through 

the acinar cell's apical membrane (Cheng et al., 2020). 

Specialized ductal cells, termed centroacinar cells, extend from the terminal ducts into the 

center of each acinus, forming a critical link between acinar and ductal compartments 
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(Longnecker & Thompson, 2023). In histological sections, acinar and ductal cells are 

distinguishable by their size and morphology: acinar cells are approximately 20 µm in diameter 

with abundant cytoplasm, whereas ductal cells are smaller (approximately 5 µm) with nuclei that 

occupy the majority of the cell's cross-sectional area (Motta et al., 1997). Molecularly, ductal 

cells are identified by the expression of markers such as cytokeratin 19 (CK19), HNF1β, and 

SOX9, while acinar cells are characterized by the expression of digestive enzymes like α-amylase 

and the transcription factor Pancreas transcription factor 1 subunit alpha (PTF1A). 

Finally, pancreatic stellate cells locate between pancreatic lobules and acinar cells and fulfill 

the role of fibroblast-like cell to produce and regulate extracellular matrix components. 

 

 

 

Figure 1.1 | Pancreas anatomy. 

Hormone producing endocrine cells are organized in pancreatic islets. The exocrine compartment consists of enzyme 

producing acinar cells and a ductal network that channels the pancreatic juice into the duodenum via the common 

bile duct. Several acinar cells form a grape-like acinus. Digestive enzymes are stored in apically located zymogen 

granules of acinar cells and get secreted into intercalated ducts via the acinar cell’s apical membrane. Parts of the 

figure created with BioRender.com. 

 

1.1.1.2 Clonal and transcriptional heterogeneity of acinar cells 

To sustain tissue integrity and ensure recovery from both daily cellular attrition and injury-

induced loss, multicellular organisms have evolved robust mechanisms of tissue replenishment 

and homeostatic maintenance. Typically, this regenerative capacity is mediated by somatic stem 

cells and progenitor populations, which possess the ability to self-renew and differentiate into 
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specialized cell types. A prevailing organizational paradigm across many tissues involves the 

localization of stem cells within specialized microenvironments known as niches, which 

maintain stem cells in a quiescent and undifferentiated state under homeostatic conditions 

(Moore & Lemischka, 2006). Upon tissue injury, stem cells are activated, exit quiescence, and 

proliferate to regenerate the damaged tissue. Prominent examples of adult stem cell niches 

include the subventricular zone in the brain, the hematopoietic stem cell niche in the bone 

marrow, and the bulge region of hair follicles (Doetsch, 2003; Orkin & Zon, 2008; Tumbar et al., 

2004). 

Alternative models of tissue regeneration have also been documented. In certain organs, such 

as articular cartilage and the kidney, tissue repair, although with rather limited capacities, 

predominantly occurs through the proliferation of pre-existing, differentiated cells without a 

requisite stem cell population, (Benigni et al., 2010; Goldring & Marcu, 2009). Moreover, recent 

studies have highlighted the role of dedifferentiation, wherein mature, post-mitotic somatic cells 

revert to a progenitor-like or multipotent state. These dedifferentiated cells and their progeny 

may subsequently either redifferentiate into their original lineage or undergo transdifferentiation 

into other distinct cell types, thereby contributing to tissue repair and regeneration (Iismaa et al., 

2018; Varga & Greten, 2017). 

In contrast to organs with well-defined stem cell niches, the adult exocrine pancreas lacks a 

clearly identifiable somatic stem cell population. Instead, the acinar cell compartment, which 

constitutes the majority of the exocrine pancreas, is maintained by the replication of 

differentiated acinar cells. Multiple studies have demonstrated that, under homeostatic 

conditions, acinar cells are lineage-restricted and exhibit little evidence of multipotency (Desai 

et al., 2007; Wollny et al., 2016). Utilizing lineage tracing approaches, Wollny and colleagues 

revealed clonal heterogeneity within the acinar cell population, identifying a subset of long-lived, 

unipotent cells responsible for acinar maintenance (Wollny et al., 2016). Upon injury, a distinct 

subset of quiescent cells becomes activated to compensate for cell loss, indicating a functional 

division of labor within the acinar compartment. Thus, the population of otherwise quiescent 

regenerative acinar cells can be considered as a pool of facultative progenitor cells (Z. Jiang et 

al., 2020). 

Single-cell transcriptomic profiling facilitated the identification of stathmin-1 (STMN1), a 

microtubule destabilizer, as a marker associated with both inherent and injury-induced 

proliferative capacity in acinar cells (Wollny et al., 2016). Additionally, doublecortin-like kinase 1 

(DCLK1), another microtubule regulator, was identified as a marker of the facultative progenitor 

population that would account for injury-induced cell loss (Westphalen et al., 2016). More 
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recently, high-throughput sequencing technologies gave more insights into the transcriptional 

heterogeneity within acinar cells. Totsi et al. identified three distinct populations, consisting of 

acinar-s (secretory), acinar-i (idling) and acinar-Reg+ cells (Tosti et al., 2021). While acinar-s cells 

possess pronounced secretory capabilities (~50 % of their transcripts encode digestive 

enzymes), acinar-i cells show gene enrichment in insulin and glucagon signaling and are found 

near pancreatic islets. Acinar-Reg+ cells are defined by high expression of the regenerating (REG) 

family of genes which are associated with inflammation and regeneration. Their proximity to 

macrophages and lack of progenitor gene signature hints at a paracrine function in immune 

modulation upon injury. Another study identified transient amplifying progenitors (TAPs) marked 

by trefoil factor 2 (Tff2) which contribute to homeostasis but do not possess regenerative 

capacities upon injury (Z. Jiang et al., 2023). A link between these progenitors and the distinct 

proliferative population of acinar cells during homeostasis found by Wollny et al., 2016 seems 

plausible. 

 

1.1.1.3 Tissue remodeling: acinar cell plasticity and regeneration 

Among pancreatic pathologies, pancreatitis, characterized by inflammation of the pancreas, is 

the most common cause of injury to the exocrine pancreas. Pancreatitis may present as either 

an acute or chronic condition and can be precipitated by a variety of etiologies, including 

gallstones, chronic alcohol consumption, traumatic injury, and genetic predispositions. 

Regardless of the initiating factor, pancreatitis typically results from aberrant intracellular 

activation of digestive enzymes, leading to autodigestion, inflammation, and acinar cell death 

(Motta et al., 1997). In response to such injury, acinar tissue regeneration is mediated 

predominantly by the proliferation of surviving acinar cells, with no evidence for lineage 

conversion from non-acinar cells (Desai et al., 2007). Importantly, despite the regenerative 

process, the acinar lineage remains lineage-restricted, showing no multipotent differentiation 

toward other pancreatic cell types. 

Nevertheless, acinar cell regeneration is accompanied by significant cellular plasticity. A 

proportion of acinar cells transiently dedifferentiates following injury, adopting a less specialized 

phenotype and forming structures termed tubular complexes (de la Porte et al., 1991). These 

duct-like structures exhibit molecular features associated with pancreatic ductal cells, including 

upregulation of CK19 and SOX9, and concomitant downregulation of acinar-specific markers 

such as those encoding digestive enzymes (Means et al., 2005; Pinho et al., 2011). This process 

is referred to as acinar-to-ductal metaplasia (ADM). The functional identity of dedifferentiated 

acinar cells remains a topic of ongoing investigation. The classical definition of metaplasia as 
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conversion from one differentiated tissue type into another requires the transdifferentiation from 

one mature cell type to another. In contrast dedifferentiation is rather associated to the loss of a 

specialized function toward a less differentiated identity. In pancreas biology literature, the 

terms “ADM”, “acinar cell transdifferentiation” and “acinar cell dedifferentiation” are often used 

interchangeably, which is probably because ADM can involve processes of both, cell identity loss 

and cell identity conversion (Grimont et al., 2022; Marstrand-Daucé et al., 2023; Parte et al., 

2022). However, for the rest of this thesis, I will stick to the most used term ADM. Rather than 

fully adopting a ductal phenotype, ADMs exhibit characteristics akin to embryonic pancreatic 

progenitor cells, expressing developmental markers such as Nestin and pancreatic and 

duodenal homeobox 1 (PDX1; Jensen et al., 2005; Means et al., 2005). Consequently, ADM is 

increasingly regarded as a form of injury-induced developmental reprogramming, reactivating 

latent embryonic gene expression programs to facilitate tissue repair (Storz, 2017). 

 

1.1.1.4 Pancreatic ductal adenocarcinoma 

The exocrine compartment of the pancreas serves as the cellular origin for pancreatic ductal 

adenocarcinoma (PDAC), the most prevalent and aggressive form of pancreatic cancer. With a 

five-year survival rate ranging between 1% and 4%, PDAC remains among the most lethal 

malignancies and ranks as the fourth leading cause of cancer-related deaths globally (Siegel et 

al., 2022). Despite significant advances in cancer therapeutics for other malignancies, the 

prognosis for unresectable and metastatic PDAC patients has only seen minimal improvement, 

with median survival times lingering between 4 to 6 months post-diagnosis (Bengtsson et al., 

2020; De Dosso et al., 2021). This dismal outlook is attributed to the highly invasive and 

metastatic nature of PDAC, its asymptomatic early stages leading to delayed diagnosis, and the 

marked resistance of the tumor to both conventional chemotherapies and emerging therapeutic 

strategies such as immunotherapies (Ryan et al., 2014). 

Given these challenges, there is a critical need to deepen our understanding not only of fully 

developed tumors but also of the early molecular and cellular events underpinning PDAC 

initiation and progression. It is widely recognized that PDAC in humans arises through the 

stepwise malignant transformation of neoplastic precursor lesions (Distler et al., 2014). The 

most abundant and best characterized of these precursor lesions are pancreatic intraepithelial 

neoplasias (PanINs), which represent the primary histological precursor to PDAC (Maitra et al., 

2005). A striking feature of PanIN and PDAC is the high prevalence of activating point mutations 

in the KRAS gene, particularly within codon 12, observed in over 90% of cases (Kanda et al., 

2012). 
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Preclinical studies utilizing genetically engineered mouse models have been instrumental in 

elucidating the cellular origins of PDAC. Oncogenic KRAS activation in either ductal or acinar 

cells can drive tumorigenesis (Ferreira et al., 2017; A. Y. L. Lee et al., 2019). However, lineage 

tracing experiments have demonstrated that ductal cells, upon oncogenic KRAS expression, 

typically fail to initiate PanIN formation (Brembeck et al., 2003; Ferreira et al., 2017). In contrast, 

acinar cells exhibit a pronounced susceptibility to oncogenic transformation, forming expanded 

PanIN lesions that subsequently progress to invasive carcinoma (Carrière et al., 2007; Ferreira et 

al., 2017; Guerra et al., 2007). Thus, current models support acinar cells as the predominant cell-

of-origin for PDAC (Kopp et al., 2012; Marstrand-Daucé et al., 2023; Parte et al., 2022). 

Under physiological conditions, acinar cells that undergo pancreatitis-induced acinar-to-ductal 

metaplasia (ADM) typically revert to their differentiated acinar phenotype during tissue 

regeneration (Jensen et al., 2005). However, the presence of oncogenic KRAS mutations, along 

with aberrant and sustained epidermal growth factor receptor (EGFR) signaling, can "lock" ADMs 

in their proliferative progenitor-like state (Figure 1.2). This pathological dedifferentiation 

culminates in persistent ADM lesions, which may then irreversibly progress to PanIN lesions. 

PanINs are histologically classified into three grades based on the extent of architectural and 

cytological atypia: PanIN-1 (low-grade), PanIN-2 (intermediate-grade), and PanIN-3 (high-grade 

or carcinoma in situ; Pian et al., 2025). Importantly, early PanIN lesions (PanIN-1 and PanIN-2) 

frequently undergo oncogene-induced senescence, a protective mechanism driven by KRAS 

mutations that halts further neoplastic progression (Collado et al., 2005; Morton et al., 2010; 

Serrano et al., 1997). However, this senescence barrier can be circumvented by the acquisition 

of additional genetic alterations, particularly in tumor suppressor genes such as cyclin-

dependent kinase inhibitor 2A (CDKN2A encoding p16
INK4A

), mothers against decapentaplegic 

homolog 4 (SMAD4), breast cancer 2 (BRCA2), and tumor protein 53 (TP53). These secondary 

mutations facilitate the progression from senescent PanIN lesions to high-grade PanIN-3 and 

ultimately to invasive PDAC (Hruban et al., 2000; Morton et al., 2010; Storz, 2017; Wilentz et al., 

1998). Another study questioned this gradual model by linking the rapid clinical development of 

PDAC tumors to single catastrophic events causing the necessary mutations for tumor 

development – thus exploiting the more recent punctuated equilibrium model of tumorigenesis 

(Notta et al., 2016).  

At present, the role of cellular heterogeneity during the transition from normal acinar cells 

through ADM and premalignant lesion formation to overt malignancy remains poorly defined. 

Addressing the molecular, functional, and morphological diversity of individual acinar cells 

under conditions reflective of early tumorigenesis is crucial to unravel the complex mechanisms 
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driving PDAC initiation. Such studies hold promise for identifying novel biomarkers and 

therapeutic targets that could improve early detection and intervention in this devastating 

disease. 

 

Figure 1.2 | Acinar cell regeneration is linked with carcinogenesis. 

During pancreatitis, acinar cells dedifferentiate towards a duct-/progenitor-like phenotype and re-differentiate back 

into acinar cells as part of the regenerative process. Upon oncogenic EGFR/KRAS signaling, these cells get locked in 

their dedifferentiated state and progress further into PanIN 1 lesions. CDKN2A inactivation is required for progression 

towards PanIN 2 lesions. Additional mutations in tumor suppressor genes such as SMAD4, BRCA2 and TP53 may lead 

to cancerous PanIN 3 lesions and PDAC. Parts of the figure created with BioRender.com. 

 

1.1.1.5 Modelling ADM and PDAC initiation 

In order to better understand the processes governing acinar plasticity and ADM formation, the 

Martin-Villalba lab developed a robust protocol for the isolation and culture of acinar-derived 

organoids (Wollny et al., 2016). These organoids faithfully recapitulate key features of ADM, 

including the downregulation of acinar markers (e.g., digestive enzymes) and upregulation of 

ductal-associated markers (e.g., CK19, SOX9), alongside morphological changes such as the 

formation of spherical structures with expansive lumina and decreased average cell size (Figure 

1.3 A). If cultured for 10 days or longer in presence of EGF, a fraction of these organoids 

undergoes further morphological transformation including papillary folding, aligned columnar 

cells accompanied with reduced proliferation – all features of early PanIN lesions (Figure 1.3 B; 

Brunken, 2019). Thus, acinar-derived organoid models represent a promising platform for 

dissecting the molecular and cellular mechanisms underlying acinar dedifferentiation, injury-

induced plasticity, tissue regeneration, and modelling of early pancreatic cancer development. 
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Figure 1.3 | Acinar cell-derived organoids recapitulate features of ADM and PanIN lesions. 

(A) Confocal immunofluorescence images of mouse acinar cell derived organoids (mADOs) fixed at different time 

points in culture (d0, d1, d3, d6, d10) and stained for E-Cadherin (E-Cad, cyan), the acinar cell marker α-Amylase (α-

Amy, magenta) and nuclei using 4',6-Diamidino-2-phenylindol (DAPI, white). Scale bars 20 μm. (B) Top row: 

immunohistochemical images of human pancreas tissue sections showing naïve, ADM/TC and PanIN-lesion tissue. 

E-Cadherin (brown), hematoxylin (blue). Scale bar lengths indicated on images. Bottom row: immunofluorescence 

images of mouse pancreatic acinar-derived organoids (mADOs). mADO development recapitulates ADM and PanIN 

formation in vitro. Scale bar 20 μm (left), 50 μm (center), 100 μm (right). All images were adapted from (Brunken, 2019). 

 

1.1.2 The mammary gland 

1.1.2.1 Anatomy and function of the mammary gland 

The mammary gland is a specialized secretory organ whose primary function is the production 

and delivery of milk to feed offspring. Structurally, the adult mammary gland consists of a 

branched ductal tree embedded within a stromal fat pad (Figure 1.4). The epithelial component 

of the gland is organized into a bilayered structure comprising two distinct cell types: the inner 

luminal epithelial cells and the outer myoepithelial cells (Biswas et al., 2022). 

Luminal cells line the ducts and alveoli and are primarily responsible for milk synthesis and 

secretion. These cells express characteristic markers such as keratin 8 (K8), which distinguishes 

them from surrounding cell types, while myoepithelial cells express keratin 5 (Stingl et al., 2006). 

Myoepithelial cells form a contractile layer surrounding the luminal cells, facilitating the ejection 

of milk during lactation by compressing the alveoli. Both cell types play crucial roles in 

maintaining mammary gland architecture and function, and disruptions in their interactions can 

lead to pathological conditions. 
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The stromal compartment, composed of adipocytes, fibroblasts, immune cells, and 

extracellular matrix components, provides mechanical support and biochemical signals 

essential for glandular homeostasis and remodeling (Biswas et al., 2022). 

 

Figure 1.4 | Mammary gland anatomy. 

Left: schematic cross-section of human mammary gland tissue with secretory gland lobules embedded in fat tissue. 

Right: schematic magnification of a secretory duct with keratin 8 (K8)-expressing luminal cells and keratin 5 (K5)-

expressing myoepithelial cells. Figure created with Biorender.com. 

 

1.1.2.2 Mammary gland development 

Mammary gland development is a highly dynamic process that occurs in distinct stages 

throughout life: embryonic development, puberty, pregnancy, and adulthood. The initial 

formation of the mammary anlage during embryogenesis gives rise to a rudimentary ductal 

structure. However, most postnatal mammary gland development occurs during puberty, 

characterized by extensive ductal elongation and branching morphogenesis (Macias & Hinck, 

2012). 

This process is mediated by an involved interplay of systemic hormones and local growth factors 

(Arendt & Kuperwasser, 2015). In puberty, estrogen, especially the biologically most potent 

version 17β-estradiol (E2)
1
, produced by the ovaries, plays a central role in ductal elongation, 

primarily acting on stromal cells to induce paracrine signaling that stimulates epithelial 

proliferation in the outgrowing terminal end buds (TEBs, Figure 1.5).  

 

 

 

1Since E2 was used in different experiments throughout this thesis to assess the effect of estrogen, the terms 

“estrogen” and “E2” will be used interchangeably in the following sections.  
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Progesterone (P4) promotes side-branching and alveolar bud formation, preparing the gland for 

potential future lactation. In addition to ovarian hormones	prolactin (Prl), secreted by the anterior 

pituitary, and growth hormone, acting through insulin-like growth factor 1 (IGF-1), are critical 

regulators of ductal development and epithelial differentiation (Brisken et al., 1998; Neville et al., 

2002). Furthermore, paracrine mediators such as amphiregulin, wingless Int-1 (Wnt) proteins, 

and receptor activator of nuclear factor κB (NFκB) ligand (RANKL) contribute to local signaling 

pathways that fine-tune epithelial morphogenesis (Brisken et al., 2000; Ciarloni et al., 2007; 

Hennighausen & Robinson, 2005). 

 

1.1.2.3 Tissue remodeling:  pregnancy, lactation, and involution 

The mammary gland undergoes its most profound remodeling during the reproductive cycle. 

Pregnancy induces massive epithelial expansion and alveolar differentiation in preparation for 

lactation. This transformation is driven by hormonal cues, including elevated levels of estrogen, 

progesterone, prolactin, and placental lactogens (Hennighausen & Robinson, 2005; Neville et 

al., 2002). Estrogen and progesterone continue to stimulate ductal and alveolar growth, whereas 

prolactin plays a pivotal role in terminal differentiation of luminal cells into secretory alveolar 

cells capable of synthesizing milk components (Figure 1.5; Watson & Khaled, 2008). Oxytocin 

mediates the milk ejection reflex by stimulating myoepithelial cell contraction during lactation 

(Nickerson et al., 1954). 

Following parturition, the lactational phase is maintained by continued prolactin signaling in 

response to suckling-induced stimuli, which suppress hypothalamic dopamine release and 

sustain prolactin secretion. Milk synthesis and secretion require not only hormonal stimulation 

but also a finely tuned metabolic program within luminal cells to produce proteins, lipids, and 

carbohydrates (Anderson et al., 2007). 

Upon weaning, the mammary gland undergoes involution, a tightly regulated process involving 

extensive epithelial cell apoptosis, extracellular matrix remodeling, and clearance of milk and 

cellular debris (Watson, 2006). Involution is marked by the withdrawal of lactogenic hormones, 

increased expression of pro-apoptotic signals such as signal transducer and activator of 

transcription 3 (STAT3) activation, and the re-establishment of the adipose-rich stromal 

environment (Sargeant et al., 2014). This process restores the gland to a near pre-pregnant state, 

preserving the capacity for future reproductive cycles. 
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Figure 1.5 | Mammary gland development and remodeling. 

Schematic representations of mammary gland growth, branching and tissue remodeling during post-natal 

development, adulthood and the reproductive cycle. Relevant hormones are highlighted: E2 (estrogen), P4 

(progesterone), Prl (prolactin). Figure created in Biorender.com. 

 

1.1.2.4 Breast Cancer 

Breast cancer arises from the malignant transformation of epithelial cells within the mammary 

gland and represents the most common cancer in women worldwide (Siegel et al., 2022). The 

majority of breast cancers are thought to originate from luminal epithelial cells, although basal-

like tumors may arise from myoepithelial or progenitor populations (Visvader & Stingl, 2014). 

Subtypes of breast cancer are classified based on molecular markers such as estrogen receptor 

(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu) 

expression, with significant implications for prognosis and therapy (Perou et al., 2000). The triple-

negative (ER-, PR-, HER2/neu-) breast cancer (TNBC) represents the subtype with highest 

metastasis and recurrence rate and is accompanied with the poorest prognosis, mainly due to 

the lack of therapeutic options (Dent et al., 2007). 

Importantly, the periods of pregnancy, lactation, and involution profoundly influence breast 

cancer risk and biology. Pregnancy-associated breast cancer (PABC) refers to breast cancer 

cases with a diagnosis during pregnancy or up to one year after giving birth (Galati et al., 2023). 
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Although full-term pregnancy is associated with a long-term reduction in breast cancer risk, there 

is a transient increase in risk immediately following childbirth (Liu et al., 2002; P. Schedin, 2006). 

Postpartum breast cancer (PPBC), defined as breast cancer diagnosed up to ten years after 

delivery, is associated with particularly aggressive tumor biology and poorer clinical outcomes 

compared to breast cancer in nulliparous women (Borges et al., 2020). Studies indicate that an 

increase in breast cancer risk after childbirth can even persists for more than two decades for 

TNBC and ER-positive breast cancer (Liu et al., 2002; Nichols et al., 2018). The involution process 

itself is thought to create a pro-tumorigenic microenvironment characterized by immune 

suppression, extracellular matrix remodeling, and increased stromal protease activity, all of 

which may facilitate tumor initiation and progression (Lyons et al., 2011). 

Thus, understanding the unique physiological and molecular changes that occur in the 

mammary gland during the reproductive cycle is crucial for elucidating the mechanisms 

underlying breast cancer development and for improving strategies for early detection and 

treatment. 

1.2 Polyploidy 

1.2.1 Definition and implications on cell physiology 

As a key concept in genetics and cell biology, the term ploidy (Greek -plóos, “-fold”) describes 

the number of homologous sets of chromosomes in a cell. In addition, ploidy is used to define 

the “genetic make-up” of each cell in a given organism and thus to classify the organism itself. 

The ploidy of an organism as well as a cell’s ploidy, are described by the Latin small case letter 

“n” (2n meaning diploid, 4n meaning tetraploid etc.). Of note, the cell’s DNA content (tracked by 

the capital letter “C”) might differ from its ploidy. For instance, a cycling diploid cell in G2 phase 

of the cell cycle, contains the same of amount of DNA as a tetraploid cell, despite still being 

diploid (2n/4C). Although these notions of ploidy and DNA content are not as standardized as for 

example SI-units, I will stick to them throughout this thesis as most of the relevant literature 

does. 

Mammalian reproduction includes the fusion of a sperm and an oocyte, both containing a single 

or haploid chromosome set, generating a zygote containing two homologous chromosome sets. 

Therefore, mammals are considered diploid organisms
2
. 

 

2The Plains Viscacha rat (Tympanoctomys barrerae) was initially regarded as the first known tetraploid mammal due 

to its exceptionally large genome (M. Gallardo et al., 1999). However later studies questioned the tetraploid status and 

as of now the scientific community has not reach consensus (M. H. Gallardo et al., 2006; Svartman et al., 2005). 
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Polyploidy, which refers to more than two complete sets of chromosomes, occurs mainly in 

plants, including most flowering plants as well as many plants bred for agriculture. In the animal 

kingdom, polyploidy occurs less often but some examples include the autotetraploid 

Salmonidae fish or amphibians such as the allotetraploid Xenopus laevis as well as several 

insect species. Autotetraploidy refers the spontaneous duplication of the whole genome while 

allotetraploidy originates from the fusion of two genomes from two different species generating 

hybrid organisms. Polyploidization usually occurs during times of increased stress such as 

environmental changes and mass extinction events (Van de Peer et al., 2017). Polyploidy 

facilitates a certain stress resistance and increases the number of genes available to adapt to 

such stress and can thus be considered as a genetic playground. 

Being polyploid has several implications on cell physiology. First, polyploid cell are often larger 

than diploids due to the increased DNA content (Darmasaputra, van Rijnberk, et al., 2024). For 

one thing, the DNA increases the spatial demand per se. For another thing, polyploidy can lead 

to altered gene expression. Multiple gene copies can lead to higher levels of transcription, 

causing greater output of cellular building blocks (Choudhury et al., 2024). However, gene 

expression might also be tightly regulated to prevent such effects, leading to dosage 

compensation (Darmasaputra, van Rijnberk, et al., 2024). Additionally, polyploidy can cause 

changes in cell cycle dynamics leading to altered timing and duration of the different cell cycle 

phases (Comai, 2005). 

 

1.2.2 Polyploidy in human and murine tissues 

While Homo sapiens and Mus musculus are diploid organisms (2n = 46 and 2n = 40, respectively), 

several tissues in these species harbor polyploid cells with varying functions. Here, it must be 

mentioned, that polyploidy on the cellular level can occur in different variations. First, nuclear 

polyploidy describes a cell state, where the cell nucleus itself contains more than 2 sets of 

chromosomes, so the whole cell’s DNA is packed within one compartment (Donne et al., 2020). 

Such phenotype is normally generated by endoreplication, which refers to completing the S 

phase of the cell cycle but skipping mitosis and cytokinesis. Mitotic slippage, the premature exit 

of mitosis before chromosome segregation upon stress, can cause nuclear polyploidy in an 

erroneous manner as well. Second, cellular polyploidy describes the phenomenon of having 

more than one nucleus per cell (Donne et al., 2020). Such multinucleated cells can be generated 

via endomitosis (replication and mitosis but cytokinesis is skipped) or cell fusion. Additionally, 

failed cytokinesis can generate multinucleated cells due to defective chromatin segregation. Of 

course, mixed forms with more than two polypoid nuclei per cell can exist as well.  
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1.2.2.1 Polyploid cardiomyocytes and megakaryocytes 

Cardiomyocytes actively proliferate during fetal development. However, after birth hyperplastic 

growth of the heart switches to hypertrophic growth including multinucleation and 

polyploidization of most cardiomyocytes in human and mouse (Y. Guo & Pu, 2020). Polyploid 

cardiomyocytes increase in cell size leading to an enhanced contractile force generation to 

pump blood efficiently to every organ. On top, polyploidization in the heart works as an “decision 

point” to limit proliferation. It is thought that this limited proliferative capacity helps to maintain 

a highly organized structure in the heart needed for proper electrical and mechanical function. 

While limited proliferation prevents cancer development from the heart, it also limits heart 

regeneration – one of the main causes for accumulative damage in heart tissue with time and 

increasing risks of coronary heart diseases with age (Kirillova et al., 2021). 

 Another cell type that is polyploid but shows limited proliferative capacities is the 

megakaryocyte (Mazzi et al., 2018). Diploid megakaryocyte progenitor cells divide normally in the 

bone marrow. However, once a progenitor commits to become a megakaryocyte, it switches to 

repeating cycles of endomitosis, leading to giant cells with a DNA content of up to 64n. Such high 

ploidy levels support the function of megakaryocytes in constantly producing blood platelets, but 

they will not produce daughter cells anymore (Mazzi et al., 2018). 

 

1.2.2.2 Polyploidy in exocrine glands 

A third kind of cell that is often polyploid rather describes a whole group of different cell types – 

secretory exocrine cells. Such cells include hepatocytes, luminal alveolar cells of the mammary 

gland and pancreatic acinar cells, the latter two will be used as model tissues presented in this 

thesis (Donne et al., 2020; Rios et al., 2016; Wollny et al., 2016). 

Nevertheless, murine hepatocytes, the chief functional cells of the liver, are by far the best 

studied cells regarding the function and consequences of polyploidy in glandular tissues. Thus, 

a broad overview of the current knowledge about hepatocyte polyploidy will help grasping 

parallels to polypoid cells from the pancreas and the mammary glands. Hepatocytes are mostly 

diploid in the developing liver up to the point of weaning (Donne et al., 2020). Changing diet from 

a high-fat, non-toxic and constant diet (mother’s milk) to more complex solid food, forces 

hepatocytes to adapt with more functional capacity. Polyploidization increases metabolic 

activity, blood protein and bile output and helps in detoxifying environmental chemicals. Thus 

over 90 % of murine hepatocytes and approximately 30-40 % of human hepatocyte become 

polyploid (Donne et al., 2020). While human polyploid hepatocytes are mostly binucleated and 

tetraploid, murine hepatocytes can regularly become 8n or 16n. Interestingly, cell fusion has 
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been discussed as a potential rare mechanism for liver polyploidization, although other studies 

found that endoreplication and endomitosis represent the principal mechanisms for polyploid 

hepatocyte generation (Darmasaputra, Geerlings, et al., 2024; Gentric & Desdouets, 2014; Wang 

et al., 2003). In contrast to the previous examples of polyploid cell types, hepatocytes can still 

proliferate under certain circumstances (Duncan et al., 2010; Matsumoto et al., 2020). In the 

naïve liver, homeostasis is maintained by slow hepatocyte turnover. Notably, the pool of diploid 

hepatocytes can sustain liver turnover without invoking any stem-cell–like precursors. Although 

diploid and polyploid cells can both proliferate under such normal physiological conditions, 

diploid hepatocytes are the principal drivers of homeostatic renewal. In humans, diploid 

hepatocytes show a seven-fold higher annual generation rate (Heinke et al., 2022). Polyploid 

hepatocytes, by contrast, divide rather infrequently, making only a minor contribution to routine 

cell replacement. A whole different situation emerges in the injured liver. The liver is well known 

for its extraordinary regenerative capacities. For example, after a 70 % partial hepatectomy (PHx) 

in rodents, remnant hepatocytes re-enter cell cycle and proliferate to restore the liver mass 

within about 7-14 days in mice (Miyaoka et al., 2012). In this scenario, both diploid and polyploid 

hepatocytes contribute to regrowth via self-renewal of the differentiated cells, again without any 

need for progenitor activation. Diploid hepatocytes often respond robustly as their smaller size 

and genomic simplicity can translate to faster cell cycle completion. That said, polyploid 

hepatocytes are far from inert during regeneration. Recent lineage-tracing in mice revealed that 

the bulk of polyploid hepatocytes can clonally expand after injury, meaning most regenerating 

hepatocyte clones originate from pre-existing hepatocytes of any ploidy rather than from a 

diploid pool of cells exclusively (Matsumoto et al., 2020). Of note, although dedicated stem or 

progenitor cells are not required for efficient regeneration after most liver injuries, severe or 

chronic damage of hepatocyte such as alcoholic/non-alcoholic steatohepatitis (NASH), or toxin-

induced liver failure that exhausts mature hepatocytes, can activate an additional pool of 

otherwise dormant bipotent progenitor cells (Lowes et al., 2003). These oval cells express 

markers of immature liver cells such as α-fetoprotein (AFP) but additionally express hepatocyte 

(albumin) and cholangiocyte (CK19) markers. 

 

As mentioned above, other exocrine glands where polyploid cells can be found include the 

pancreas and the mammary gland. Binucleated pancreatic acinar cell have been known for 100 

years (Dolley, 1925). Yet, they remain a highly understudied phenomenon, often unnoticed by the 

scientific community.  In the adult mouse pancreas, acinar cells appear to be binucleated at 

amounts of approximately 40 % (Figure 1.6. A), while around 15 % of human acinar cells are 



 17 

binucleated (Figure 1.6 B, Wollny et al., 2016). Similar to hepatocytes in the liver, polyploid acinar 

cell emergence coincides with nutrition shift imposed during weaning, most probably to adapt to 

changed demands on food digestion and boost enzyme production (Anzi et al., 2018). Both, 

hepatocyte and pancreatic acinar cell binucleation upon weaning have been shown to depend 

on the atypical E2F transcription factors E2F7 and E2F8 which repress genes important for proper 

cytokinesis, leading to omitted cytokinesis
3
 (Matondo et al., 2018; Pandit et al., 2012).  

 

Figure 1.6 | Binucleated acinar cells in the exocrine pancreas. 

(A) Left: immunofluorescence images of mouse pancreatic tissue stained for E-Cadherin (grey) and nuclei using DAPI 

(blue). Scale bar 50 μm. Right: quantification of the abundance of binucleated acinar cells in the mouse pancreas. (B) 

immunohistochemical images of human pancreatic tissue stained for E-Cadherin (brown) and nuclei using 

hematoxylin (blue). Scale bar 50 μm. Right: quantification of the abundance of binucleated acinar cells in the human 

pancreas. Adapted from Wollny et al., 2016. 

 

3Note: the term “omitted cytokinesis” is not commonly used in literature. Instead “failed cytokinesis” is more regularly 

used. However, “failed cytokinesis” also refers to an erroneous abortion of cytokinesis. Thus, I use “omitted 

cytokinesis” to emphasize a scheduled skip of cytokinesis to generate polyploid cells in a targeted manner. 
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Compared to the pancreas and the liver, the mammary gland is an exocrine tissue with much 

stronger temporal restrictions regarding it secretory function. The transient nature of milk 

secretion can also be observed by the presence of polyploid luminal alveolar cells during 

lactation (Figure 1.7). In the mouse mammary glands, polyploid luminal cells emerge at late 

pregnancy between 16.5 and 18.5 days of pregnancy (dP) and reach levels of up to 50 % by two 

days of lactation (dL) at which approximately 50 % of the polyploid cells are binucleated  

(Molinuevo et al., 2024; Rios et al., 2016). Apart from mice, binucleated luminal cells were 

detected in various mammalian species including human with an abundance of approximately 

30 % (Rios et al., 2016). The resulting increase in DNA content and cell size in polyploid luminal 

cells is believed to support milk production for adequate offspring nourishment (Fu et al., 2015; 

Rios et al., 2016). Similar to acinar cells and hepatocytes, binucleated luminal cells emerge 

through omitted cytokinesis. This is triggered by the upregulation of Aurora kinase A (AURKA), a 

critical regulator of proper spindle formation during mitosis (Rios et al., 2016). In contrast, 

mononucleated polyploid luminal cells are generated via physiological DNA damage upon 

mitotic stress during pregnancy, leading to cyclin-dependent kinase 1 (CDK1) inhibition and 

mitotic arrest, effectively causing endoreplication (Molinuevo et al., 2024). After weaning, rapid 

tissue remodeling induced by involution leads to the disappearance of binucleated luminal cells 

within 48 hours, potentially through apoptosis (Rios et al., 2016). 

 

Figure 1.7 | Polyploid luminal cells in the mouse mammary gland. 

Left: immunofluorescence image of mouse mammary gland tissue at 4 days of lactation stained for E-Cadherin (E-

Cad, green), F-actin (red) and nuclei using DAPI (white). Scale bar 40 μm. Right: flow cytometry-based quantification 

of ploidy levels in different cell compartments of the mouse mammary gland at different stages of pregnancy (dP) and 

lactation (dL). Adapted from Rios et al., 2016. 

 

 

 



 19 

1.2.3 Whole genome duplication and cancer 

Apart from physiological polyploidy, as seen in various human tissues, polyploidy is linked to 

cancer in a complex interplay of stabilizing and destabilizing forces. On the one hand polyploidy 

provides multiple copies of tumor suppressor genes, such as tumor protein 53 (TP53) or 

phosphatase and tensin homolog (PTEN) and thus provides a certain degree of resilience against 

inactivating mutations. On the other hand, this resilience facilitates an increased resistance to 

apoptosis. Under which circumstances such aspects would facilitate pro- or anti-tumorigenic 

effects is matter of active research. Polyploid giant cancer cells (PGCC) for example, are believed 

to play critical roles in tumor relapse after chemotherapeutic treatments. Their increased DNA 

content combined with a low turnover rate provide selective adaption to survive such treatments. 

After the treatment period, these cells can repopulate the tumor via amitotic cell divisions 

(neosis) generating highly variable daughter cells (Sundaram et al., 2004). On top, the treatment 

using DNA damaging reagents itself can cause the emergence polyploid cancer cells. 

Furthermore, polyploidy is inherently linked to chromosomal instability and aneuploidy, both 

hallmarks of cancer and premalignant lesions, as described thoroughly in the next section 

(Storchova & Pellman, 2004). Another study showed that unscheduled polyploidy is linked to 

improper scaling of cell mass and replication factors, leading to replication stress and DNA 

damage in proliferative polypoid cells (Gemble et al., 2022). Together, it can be said that 

polyploidy in cancer acts as a reservoir of DNA damage by amplifying its accumulation and 

alleviating its consequences at the same time, as nicely presented in a recent study (Hayashi et 

al., 2024). 

 

1.3 Chromosomal instability 

Chromosomal instability (CIN) refers to an increased rate of chromosomal mis-segregation and 

structural alterations, leading to dynamic changes in the karyotype over time. CIN is a hallmark 

of many cancers and plays a critical role in tumorigenesis by promoting genetic diversity, drug 

resistance, and aggressive tumor evolution. The following sections provide an overview of the 

cellular mechanisms underlying CIN, its relationship with polyploidy, and its pathological 

consequences. 

1.3.1 Chromosome Segregation Errors and Aneuploidy 

Faithful and symmetric mitotic segregation of chromosomes into two daughter cells is pivotal for 

sustained genomic integrity (Figure 1.8 A). However, errors during this process are common in 
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cancer cells and are a major source of aneuploidy, defined as an abnormal number of 

chromosomes. 

One of the key mechanisms underlying chromosome mis-segregation is the formation 

of merotelic attachments, where a single kinetochore becomes simultaneously attached to 

microtubules emanating from both spindle poles (Figure 1.8 B, Cimini et al., 2001). Unlike 

syntelic or monotelic errors, merotelic attachments are often not detected by the spindle 

assembly checkpoint (SAC) and can persist into anaphase (Cimini et al., 2002). As a 

consequence, the affected chromosome lags during segregation, forming a lagging 

chromosome visible in the anaphase spindle midzone (Figure 1.8 B). 

Lagging chromosomes are a principal cause of aneuploidy, as they can be mis-segregated into 

the wrong daughter cell or fail to be incorporated into the main nucleus at all (Cimini et al., 2002). 

In addition to lagging chromosomes, mis-segregation events can result in the formation of 

chromatin bridges, where chromosome arms are stretched between daughter cells due to 

unresolved sister chromatid entanglements, dicentric chromosomes, or DNA repair defects 

(Maciejowski et al., 2015) 

Chromatin bridges often undergo mechanical rupture during cytokinesis, leading to further 

chromosomal fragmentation and rearrangements. These breakage events can initiate breakage-

fusion-bridge (BFB) cycles, a mutagenic process described by Barbara McClintock in maize, 

where broken chromosomes fuse, mis-segregate, and break again in successive cell divisions, 

driving genome instability (McClintock, 1941). 

Thus, chromosome segregation errors during mitosis are central to the generation of aneuploidy 

and complex chromosomal rearrangements observed in cancer cells. 

 

1.3.2 The Link Between Polyploidy and Chromosomal Instability 

Polyploidy is closely associated with increased chromosomal instability. One key mechanism 

linking polyploidy to CIN is the deregulation of centrosome numbers. Normally, cells have two 

centrosomes that create a bipolar spindle during mitosis. However, polyploid cells frequently 

harbor supernumerary centrosomes (Ganem et al., 2009). 

Extra centrosomes predispose cells to form multipolar spindles, leading to highly abnormal 

chromosome segregation patterns (Figure 1.8 C). While many polyploid cells cluster their 

centrosomes into two poles to achieve a pseudo-bipolar mitosis, this clustering process is still 

error-prone due to transient multipolarity before clustering (Kwon et al., 2008). Even when 

centrosomes are successfully clustered, the presence of extra microtubule-organizing centers 

increases the likelihood of merotelic kinetochore attachments, resulting in elevated rates of 
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lagging chromosomes and subsequent aneuploidy (Ganem et al., 2009). Together, polyploidy 

does not only reflect a distinguished genomic state but actively promotes ongoing CIN through 

mechanical and regulatory vulnerabilities during cell division. 

 

1.3.3 Micronuclei and Chromothripsis 

Lagging chromosomes that fail to be incorporated into the main daughter nuclei can 

form micronuclei, small extranuclear bodies surrounded by their own nuclear envelope (Figure 

1.8 B, C; Fenech et al., 2011). Similarly, chromatin bridges that break during cytokinesis can 

result in acentric chromosomal fragments that form micronuclei. 

Micronuclei are a hallmark of genome instability and have clinical relevance as biomarkers for 

cancer diagnosis and prognosis. Elevated frequencies of micronuclei are observed across a wide 

range of tumor types and correlate with poor clinical outcomes (Fenech et al., 2011; Terradas et 

al., 2010). 

Beyond serving as indicators of instability, micronuclei play a direct mechanistic role in genome 

rearrangements through a phenomenon known as chromothripsis. Chromothripsis is 

characterized by massive, localized genomic fragmentation and chaotic reassembly, resulting in 

complex structural rearrangements (Stephens et al., 2011). As such, it is often confined to a 

single chromosome. 

Micronuclei are particularly prone to chromothripsis due to several vulnerabilities. 

The micronuclear envelope is often structurally defective and prone to spontaneous rupture 

during interphase (Hatch et al., 2013). Upon rupture, micronuclear chromatin is exposed to the 

cytoplasm, leading to extensive DNA damage. Furthermore, DNA replication within micronuclei 

is asynchronous and incomplete, causing replication stress and further increasing the risk of 

chromosomal fragmentation (C.-Z. Zhang et al., 2015). 

Chromothripsis contributes to tumorigenesis by enabling the rapid accumulation of oncogenic 

rearrangements and copy number alterations in a single catastrophic event, accelerating tumor 

evolution and adaptation (C.-Z. Zhang et al., 2013). Genomic studies have revealed that 

chromothripsis is prevalent in a wide range of human cancers, including PDAC and breast cancer 

with a prevalence of over 60 %  (Cortés-Ciriano et al., 2020; Y. Li et al., 2020; Voronina et al., 

2020). 

Thus, micronuclei mark chromosomal instability and actively fuel cancer progression by driving 

complex genomic alterations that. 
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Figure 1.8 | Schematic overview of chromatin segregation errors and their link to polyploidy. 

(A) Normal mitosis of a diploid cell generating two diploid daughter cells. (B) Diploid cell, that encounters a merotelic 

attachment and a lagging chromosome highlighted in magnification boxes. Generated daughter cells can exhibit 

micronuclei. (C) A tetraploid binucleated cell in G1 phase undergoing a multipolar spindle arrangement in metaphase 

due to its increased centrosome numbers (2 in G1 phase), which are highly prone to merotelic attachments, lagging 

chromosomes and micronuclei. Figure generated in Biorender.com. 
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1.4 Quantitative image analysis in biomedical research 

Advances in imaging technologies, such as confocal, light-sheet and super-resolution 

microscopy, have enabled researchers to visualize biological structures with high spatial 

resolution. However, extracting meaningful quantitative information from these complex 

datasets requires sophisticated computational methods. In this thesis, a customized image 

analysis pipeline was developed to segment individual cells from confocal images, classify them 

based on morphological characteristics, and quantify fluorescence intensities at the single-cell 

level. In the following sections, I introduce key concepts of computer vision and image analysis 

that form the foundation of this approach. 

 

1.4.1 Digital Representation of Images 

In digital systems, images are represented as arrays of numerical values. In grayscale images, 

each pixel is assigned an intensity value that typically ranges from 0 (black) to 65536 (white) for 

16-bit encoding (which was used in this thesis). More formally, an image can be mathematically 

described as a two-dimensional (2D) function: 

	": (%, ') → * 

where (%, ')  represent the spatial coordinates and *  the corresponding pixel intensity value. 

Modern biomedical imaging systems often allow to additionally acquire data along the optical 

depth axis +, and eventually along the temporal dimension	, creating a three-dimensional (3D) 

image stack or a four-dimensional (4D) hyperstack, respectively. In fluorescence microscopy, it 

is furthermore common to capture multiple optical channels corresponding to different 

fluorophores or biomolecular stains (Figure 1.9). Each optical channel highlights distinct 

biological structures, such as nuclei, membranes, or specific proteins, thus resulting in multi-

channel images. Together, digital fluorescence microscopy images are encoded as multi-

dimensional numerical arrays formally represented as: 

	": (%, ', +, -, ,) → * 

where - indexes the imaging channels. 

By encoding images as numerical data, computers can perform mathematical operations on 

them, enabling tasks such as filtering, transformation, segmentation, and classification 

(Gonzalez & Woods, 2017). 
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Figure 1.9 | Images are stored as multidimensional arrays of pixel values. 

Schematic illustration of how an actual microscopy image, here showing DNA (white), kinetochores (red), 

microtubules (cyan) and centrosomes (magenta), gets stored as a multidimensional array of values that correspond 

to the individual pixel intensities. 

 

1.4.2 Classical Feature Extraction and Classification 

Image classification aims to assign a label to an image based on its content or meaning. Early 

computer vision approaches achieved this by manually designing algorithms to extract 

measurable properties, known as features, from the image data. Features captured aspects 

such as edge orientation, texture patterns, or shape contours, serving as compact 

representations of the visual information. 

Common examples of classical feature extraction include the use of Sobel filters for edge 

detection, Histograms of Oriented Gradients (HOG) for shape characterization and Local Binary 

Patterns (LBP) for capturing texture information (Dalal & Triggs, 2005; Sobel & Feldman, 1973; 

Yang & Chen, 2013). After extracting features, classification algorithms such as support vector 

machines (SVMs) or decision trees were used to map feature vectors to class labels (Cortes & 

Vapnik, 1995). 

Although effective in controlled settings, the success of these methods was limited by the quality 

and relevance of the chosen features, which often required domain expertise and laborious trial-

and-error optimization. 
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1.4.3 Deep Learning and Multilayer Perceptrons 

Although many of the core algorithms underlying modern artificial intelligence (AI) technologies, 

such as transformers and diffusion models, were developed decades ago, it was the 

combination of abundant data availability and dramatic advances in computational power that 

fueled the deep learning revolution, enabling computers to excel in tasks that were previously 

thought to be exclusive to human cognition. The introduction of deep learning offered an 

alternative approach by enabling models to learn features directly from raw image data. The 

foundational architecture for deep learning in supervised tasks is the multilayer perceptron 

(MLP), an artificial neural network composed of an input layer, one or multiple hidden layers, and 

an output layer (Rosenblatt, 1958). 

Each neuron in the network performs a weighted summation of its inputs, applies a non-linear 

activation function, such as the rectified linear unit (ReLU) or the sigmoid function, and passes 

the result forward to the next layer (Nair & Hinton, 2010). During the feedforward process, the 

input is propagated through successive layers, transforming it into increasingly abstract 

representations. 

Training an MLP involves minimizing a loss function, which quantifies the discrepancy between 

predicted and true class labels. The optimization of the network weights is achieved via gradient 

descent algorithms, where gradients are calculated efficiently through backpropagation 

(Rumelhart et al., 1986). During backpropagation, the error is reversely propagated from the 

output layer to the input layer to update the weights in a manner that reduces the overall loss. 

Key hyperparameters, such as the learning rate, which controls the magnitude of weight updates, 

and the number of epochs, which determines how many complete passes are made over the 

training data, have a critical influence on the final model performance. 

 

1.4.4 Convolutional Neural Networks 

Although MLPs are powerful, they treat all inputs as independent, ignoring the spatial 

relationships inherent in image data. Convolutional neural networks (CNNs) address this 

limitation by incorporating local connectivity and parameter sharing through convolutional 

operations (Figure 1.10 A; Lecun et al., 1998). 

In a convolutional layer, a set of small learnable filters is applied across the input image to 

produce feature maps that preserve spatial hierarchies. These filters, also referred to as 

convolutional kernels, locally extract patterns such as gradients, textures, edges or corners and 

are optimized during training. Pooling layers, typically using max pooling operations, 

downsample feature maps by summarizing local neighborhoods, reducing computational 
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complexity and imparting translational invariance (Figure 1.10 B). The stride parameter controls 

the step size of the convolution or pooling operation, directly influencing the size of the resulting 

feature maps. Dropout layers introduce random deactivation of neurons during training, 

mitigating overfitting by encouraging redundancy in feature representations (Srivastava et al., 

2014). At the final stage, fully connected layers integrate the spatial features into global feature 

vectors for classification. 

 

Figure 1.10 | Schematic representation of image classification using CNNs. 

(A) Visualization of convolutional operations on images to extract generalizing features. A convolutional filter (here 

3x3) slides over the input pixel values with a distinct stride and calculates an element-wise multiplication and 

summation to convolve image features. (B) High-level architecture of a CNN. The feature extractor component with 

convolutional filters and pooling layers creates highly convolved feature maps. A classification component flattens 

the final feature map into a 1D vector and classifies the image using fully connected layers and a normalization 

function (here Softmax) to convert the output into a probability function corresponding to the number of possible 

classes. 
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Several landmark CNN architectures, some of which were used as part of this thesis have 

significantly advanced the field. AlexNet demonstrated that deep networks trained with graphical 

processor unit (GPU) acceleration could dramatically outperform traditional approaches in 

large-scale image classification tasks, notably winning the 2012 ImageNet competition by a 

significant margin (Krizhevsky et al., 2012). Its use of ReLU activations, dropout regularization, 

and overlapping max pooling introduced key design principles that remain standard today. 

VGGNet proposed a simple yet powerful architecture composed of 

sequential 3×33×3 convolutions and demonstrated that deeper networks could achieve better 

performance when trained appropriately (Simonyan & Zisserman, 2015).  

ResNet addressed the challenge of training extremely deep networks by introducing residual 

connections, also referred to as skip connections, which create shortcuts allowing gradients to 

flow more easily during backpropagation, thus preventing vanishing gradient problems, which 

were not only an issue in computer vision but especially problematic in natural language 

processing tasks (He et al., 2015). The skip connection has since then been used in many 

architectures including modern generative models such as transformers, and diffusion models 

for image generation. Interestingly, a recent study mapped the Drosophila melanogaster larva 

brain connectome and found “multilayer shortcut” connections, recapitulating the information 

flow from skip connections (Winding et al., 2025; Xu et al., 2024).  EfficientNet further optimized 

network design by proposing a compound scaling method that systematically balances network 

depth, width, and input resolution, achieving state-of-the-art performance with fewer 

parameters (Tan & Le, 2020). 

 

1.4.5 Image Segmentation 

Image segmentation aims at subdividing an image into distinctly labeled regions, each 

corresponding to a particular class or object. In semantic segmentation, every pixel is classified 

into a category, but individual objects belonging to the same category are not distinguished 

(Figure 1.11). In contrast, instance segmentation differentiates individual objects, producing 

unique labels for each instance. Panoptic segmentation combines both approaches, providing a 

unified framework that assigns each pixel both a semantic label and an instance label when 

applicable, ensuring comprehensive scene understanding. 
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Figure 1.11 | Overview of different segmentation tasks in computer vision. 

A confocal immunofluorescence image of a mouse pancreatic tissue section was stained for E-Cadherin (white) and 

nuclei using DAPI (green). Semantic segmentation: each pixel gets a label assigned corresponding to its semantic 

class. Instance segmentation: objects in images get detected, located and assigned to an own instance label. 

Panoptic segmentation: combines semantic segmentation and instance segmentation to label individual objects of 

multiple classes. 

 

1.4.5.1 Classical segmentation approaches 

Classical methods for semantic segmentation include thresholding techniques, where pixels are 

separated based on intensity values. Otsu's method is a well-known algorithm that automatically 

determines the optimal threshold by minimizing intra-class variance (Otsu, 1979). Another 

popular approach is watershed segmentation, which treats the image as a topographic surface 

and segments regions by simulating the flooding of basins from local minima (Beucher & 

Lantuéjoul, 1979). Although effective for simple images, these techniques often struggle with 

overlapping objects, heterogeneous intensities, and noise, which are common challenges in 

biomedical images. 
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1.4.5.2 Deep Learning for Semantic Segmentation 

Deep learning approaches have dramatically improved semantic segmentation by reframing the 

task as a pixel-wise classification problem. The U-Net architecture is among the most influential 

models in this domain, particularly for biomedical applications (Ronneberger et al., 2015). 

U-Net consists of an encoder-decoder structure, where the encoder progressively reduces 

spatial resolution while capturing semantic context through a series of convolutions and pooling 

operations. The decoder restores spatial resolution through upsampling and convolutional 

operations. Critically, skip connections are used to concatenate corresponding feature maps 

from the encoder to the decoder, enabling the network to retain fine-grained spatial information 

essential for precise segmentation. 

Due to its efficiency, robustness, and ability to perform well even with limited training data, U-

Net has become the gold standard for tasks such as cell segmentation and tissue structure 

delineation. 

 

1.4.5.3 Instance Segmentation 

Instance segmentation methods combine object detection, which locates objects within an 

image, and semantic segmentation, which assigns class labels to pixels. This dual challenge is 

particularly relevant for biological images containing dense and overlapping structures. 

In bioimage analysis, specialized deep learning models have been developed for this purpose. 

StarDist represents cells as star-convex polygons, predicting radial distances from a central 

point to the object boundary at fixed angles (Schmidt et al., 2018). This strategy allows for 

efficient and accurate delineation of tightly packed and irregularly shaped cells. 

Cellpose adopts a fundamentally different approach to cell segmentation by modeling spatial 

vector flows rather than directly predicting object masks (Stringer et al., 2021). Specifically, 

Cellpose transforms a manually annotated input training image into its vector flow 

representation with spatial gradients pointing to the center of each cell (Figure 1.12 A). This flow-

based representation allows the model to handle highly variable cell morphologies, including 

elongated, rounded, or irregular shapes, without requiring a fixed object template (Figure 1.12 B). 

A neural network is then trained to predict the flow field vectors for each pixel for the horizontal 

and vertical axes, creating horizontal and vertical gradients and effectively encoding the direction 

and relative distance to the nearest cell edge (Figure 1.12 C). In addition, the neural network 

predicts for each pixel an associated probability that it belongs to a cell or not based on the 

annotation mask, similar to standard semantic segmentation. 



 30 

The underlying architecture of Cellpose is based on a modified U-Net (Figure 1.12 D). During 

inference, predicted flow fields are integrated using a numerical integration process (similar to 

gradient descent) to reconstruct coherent individual cell masks from the pixel-wise flow 

information. Effectively, every pixel tracks its gradient to its fixed center and all pixels whose 

gradients track into the same center are assigned with the same cell label (Figure 1.12 E, F). 

This approach enables Cellpose to generalize remarkably well across a wide range of biological 

datasets, including fluorescent images, histological stains, and even non-biomedical imagery, 

without requiring extensive retraining. Furthermore, the model can adapt to novel cell types or 

imaging modalities by fine-tuning on a relatively small number of annotated examples, making it 

particularly well-suited for heterogeneous datasets. Throughout this thesis, Cellpose was 

employed as the primary instance segmentation tool, given its robustness and versatility for 

automated and high-throughput single-cell analysis from image data. 
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Figure 1.12 | Cellpose algorithm for cell instance segmentation. 

(A) Annotation labels from manual annotation of training data are converted into their vector flow representations of 

spatial gradients via simulated diffusion. (B) Examples of vector flow representations for different cell morphologies, 

Cellpose can segment. (C) A neural network based on a modified U-Net architecture (D) is trained to predict the 

horizontal and vertical gradients as well as a binary segmentation mask of cells and background. These three layers of 

information are integrated to generate a combined gradient map. (E) For prediction, each pixel’s gradient is tracked to 

its fixed center point to assign converging gradients to the same cell, thus producing instance segmentation masks 

(F). Adapted from Stringer et al., 2021. 
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1.5 Aims of the thesis 

Although the role of polyploid cells in exocrine tissues regarding their increased secretory 

capacities is well established, studies addressing their behavior under non-homeostatic 

conditions are largely missing. 

Considering the inherent potential of polyploid cells to serve as source for chromosomal 

instability and DNA damage, polyploidy is a highly understudied feature of many adult human 

tissue and cell types. Its implications in regeneration have been mainly addressed in 

cardiomyocytes, where polyploidy acts as a roadblock to proliferation and regeneration. 

However, in exocrine glands, where polyploid secretory cells occur across several organs, the 

situation is less clear. Considering the current literature, addressing polyploid hepatocytes, 

pancreatic acinar cells and mammary gland luminal cells, creates a blurred image regarding their 

proliferative capacities and their potential to acquire chromosomal instability under non-

homeostatic conditions. Thus, the overall goal of this PhD project is to determine whether 

polyploid cells in exocrine tissues, that undergo tissue remodeling beyond homeostasis, activate 

proliferative capacities and serve as a source of chromosomal instability, potentially leading to 

tumor initiation. Specifically, my PhD thesis project aims to: 

1. Characterize the role of binucleated pancreatic acinar cells in regeneration. 

Assess changes in cellular ploidy levels during the regenerative process. Investigate 

whether polyploid acinar cells undergo ADM and proliferation in response to injury. 

Determine whether polyploid acinar cells under de- or re-polyploidization. 

2. Evaluate the contribution of polyploidy to chromosomal instability in pancreatic 

regeneration. 

Assess mitotic errors, micronuclei formation, and chromothripsis in regenerating acinar 

cells. Determine whether polyploid acinar cells are more susceptible to CIN compared 

to their diploid counterparts. Identify the fate of micronucleated cells and their ability to 

continue proliferating. 

3. Extend findings to polyploid luminal cells of the mammary gland 

Investigate whether lactation-induced polyploid luminal cells exhibit similar CIN-related 

features. Determine the impact of hormone-induced polyploidization on genomic 

stability. Assess the potential link between polyploid luminal cells and postpartum 

breast cancer. 
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2 Results 
The following sections of this thesis will present the experimental results and method 

development outcomes obtained during my PhD work. Some of the data presented in the first 

results section 2.1 were initially generated during my master’s thesis project while working in the 

same laboratory. All results that were exclusively obtained during my master’s thesis have 

already been described in the introduction. Data originating from my master's work that are 

mentioned in the results sections are clearly indicated as such in the corresponding figure 

captions and were further extended during my PhD by including additional time points or data 

points, thus warranting their inclusion in the results part of this thesis. 

2.1 Binucleated acinar cells act as facultative progenitors 

2.1.1 Ploidy dynamics under non-homeostatic conditions 

Previous experiments performed in the Martin-Villalba lab demonstrated that more than 40 % of 

pancreatic acinar cells in mice and 15% in humans are binucleated (Wollny et al., 2016). 

Furthermore, it was concluded that binucleated acinar cells would represent a terminally 

differentiated cell state, not contributing to proliferation during homeostasis or injury. This 

finding was based on the lack of proliferating binucleated acinar cells in the naïve or injured 

mouse pancreas. Additionally, it was observed that single binucleated acinar cells or cell 

clusters of higher number exclusively consisting of binucleated cells, would not form mouse 

acinar-derived organoids (mADOs) in vitro. Thus, Wollny and colleagues inferred that 

binucleated acinar cells neither belong to the small group of cells with long-term proliferative 

capacities nor to the sub-population of facultative progenitors replenishing the pancreas during 

regeneration (Wollny et al., 2016). However, the effect of pancreatic injury on the number of 

nuclei per cell and ploidy of the acinar population has not yet been addressed. Thus, I first asked 

if a pancreatic injury changes the mononucleated-to-binucleated cell ratio and whether this shift 

is reversed upon regeneration. To examine this, I employed cerulein-induced pancreatitis (CiP) 

in mice. Cerulein mimics the hormone cholecystokinin, triggering pancreatic acinar cells to 

release digestive enzymes (Kim, 2008). When administered in supramaximal doses, cerulein 

overwhelms the secretion capacity, causing early activation of zymogens. This premature 

activation leads to pancreatic autodigestion and initiates an inflammatory response. I fixed 

pancreas tissue at distinct days after the last cerulein injection (days post injection, dpi) and 

assessed the kinetics over the course of an acute inflammatory response (2 dpi, 4 dpi) to the fully 

regenerated organ (28 dpi to 91 dpi, Figure 2.1 A). By using immunofluorescence (IF) staining for 
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E-Cadherin to distinguish cell boundaries and thereby being able to track nuclear numbers, I 

quantified the abundance of binucleated acinar cells. I found that their number significantly 

drops from approximately 40 % (naïve) to 32 % at 2 dpi and 24 % at 4 dpi (Figure 2.1 B, C). The 

proportion of binucleated cells rose back to 31 % at 28 dpi and was almost back to original value 

of 40 % at 91 dpi. Thus, I could show that acute injury of the pancreas leads to fewer binucleated 

acinar cells and that this transient decrease is restored as regeneration is complete. This result 

is in line with findings from binucleated hepatocytes, which represent a growth end point when 

generated in regeneration and thus have been proposed to play a role in organ size control 

(Wilkinson et al., 2019).  

Next, I aimed to examine whether binuclear acinar cells upon injury are generated through cell 

fusion or endomitosis. For this, I administered bromodeoxyuridine (BrdU) immediately after the 

last cerulein injection. At 91 days, no binucleated cells containing a mix of BrdU⁺ and BrdU⁻ 
nuclei were detected. Instead, all BrdU-labeled binucleated acinar cells exhibited BrdU 

incorporation in both nuclei, supporting endomitosis as the predominant mechanism of 

regeneration (Figure 2.1 D). Considering the short BrdU bioavailability of several hours after the 

last cerulein injection, this furthermore shows that binucleation is facilitated as an early 

response to injury, at a time when the overall amount of binucleated cell is still decreasing 

(Maltsev et al., 2022). Endomitosis has also been proposed as the main mechanism for 

hepatocyte and acinar cell binucleation during development indicating a potential execution of 

developmental programs to regenerate lost binucleated cells and to signal growth stop and the 

resolution of the regenerative process (Brodsky, 1985; Darmasaputra et al., 2024). 
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Figure 2.1 | Nuclear number dynamics in the regenerating mouse pancreas. 

(A) Experimental setup to assess pancreas regeneration and post-regeneration after acute inflammation using 

cerulein-induced pancreatitis (CiP). (B) IF staining of healthy (naïve), regenerating (4 dpi) and post-regenerative (91 dpi) 

mouse pancreatic tissue. Injury was mediated by cerulein-induced pancreatitis. DAPI (blue), E-Cadherin (white) and 

annotations indicating binucleated cells (magenta). Scale bar: 50 μm. (C) Quantification of the fraction of binucleated 

acinar cells in naïve and injured (2 dpi, 4 dpi, 28 dpi and 91 dpi) mouse pancreata. Data from naïve, 2 dpi and 4 dpi 

were already acquired during my master’s thesis (Brunken, 2019) and complemented with 28 dpi and 91 dpi and 

collectively reanalyzed for this. P-values were calculated by one-way ANOVA followed by Tukey's post hoc test (n = 3 

mice). (D) IF image of post-regenerative mouse pancreatic tissue after cerulein-induced pancreatitis (91 dpi) and 

subsequent BrdU treatment. BrdU pulse was administered at 0 dpi. DAPI (white), E-Cadherin (cyan), BrdU (magenta). 

Yellow squares indicated zoomed-regions highlighting binucleated cells with BrdU-positive nuclei. Scale bar 50 μm. 
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Next, I examined the decline in binucleated cells during the early stages of regeneration. Given 

that both mononucleated and binucleated acinar cells show comparable susceptibility to 

apoptosis after pancreatic injury and the acute phase of necrosis and cell death is over, the 

observed decrease in binucleated cells from 2 dpi to 4 dpi cannot be explained by cell death 

alone (Lugea et al., 2006; Quan et al., 2018; Wollny et al., 2016). An alternative explanation is that 

binucleated cells divide to form mononucleated cells. To investigate this possibility, I employed 

the 3D in vitro culture of primary acinar cells supplemented with epidermal growth factor (EGF) 

and fibroblast growth factor 2 (FGF2), generating mouse acinar-derived organoids (mADOs), 

which allowed real-time tracking of binucleated acinar cell fates (Figure 2.2 A; Wollny et al., 

2016). As described previously, this model recapitulates acinar-to-ductal metaplasia (ADM) and 

tubular structure formation, processes that acinar cells undergo in vivo to support proliferation 

and pancreatic regeneration (Marstrand-Daucé et al., 2023; Storz, 2017). I fixed mADOs at 

different time points in culture and stained for E-Cadherin to quantify cell nuclei numbers and 

ploidy. Additionally, I stained for α-Amylase to assess and validate the progress of ADM (Figure 

2.2 B). As reported previously, the number of α-Amylase expressing cells decreased during 

mADO culture indicating the onset and progression of ADM (Figure 2.2 B; Wollny et al., 2016). In 

accordance with the data I obtained from in vivo pancreatitis, the fraction of binucleated cells in 

mADOs significantly decreased from ~40 % to approximately 13 % at 13 days (d13) of culture 

(Figure 2.2 C). I additionally assessed the overall ploidy of the mADO culture using an image 

analysis pipeline described in section 2.4. Interestingly, the overall number of polyploid cells did 

not change proportionally but dropped from 42 % at d0 to 30 % at d13. 

 

 

Figure 2.2 | ADM and ploidy dynamics in mADOs. 
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(A) Experimental setup to assess the role of polyploid pancreatic acinar cells in regeneration and early tumor formation 

using mouse acinar-derived organoids (mADOs). (B) Quantification of α-amylase-expressing cells in mADOs at 

different times in culture. P-values were calculated by one-way ANOVA followed by Tukey's post hoc test (n=3 mice). 

(C) Quantification of binucleated (dark grey) and all polyploid (light grey) cells in mADOs at different times in culture. 

P-values between binucleated and polyploid cells were calculated using a two-sided paired Student’s t test for each 

timepoint (d0, d5, d13). Changes over time were compared using a Repeated Measures ANVOA followed by Tukey's 

post hoc test for binucleated and polyploid cells respectively (n=3 mice). 

 

2.1.2 Binucleated acinar cells divide in mADOs 

Next, I followed the fate of binucleated cells in mADOs in real time by live confocal and light-

sheet imaging over several hours. To distinguish between mono- and binucleated cells, I took 

advantage of H2B-mCherry/mG double reporter mice which fluorescently label the cell nuclei as 

well as plasma membranes in all cells (Strnad et al., 2016). Intriguingly, I observed that 

binucleated acinar cells do divide (Figure 2.3 A). During mitosis, both nuclei condensate into a 

single metaphase plate and give rise to two mononucleated cells. As cell divisions performed by 

polyploid cells might possess altered timings compared to diploid cells, I determined the 

required time from nuclear envelope breakdown (NEB) to anaphase based on live-cell imaging 

recordings. While mitoses from binucleated cells exhibited an otherwise normal mitotic phase 

sequence, the time from NEB to anaphase and therefore the overall duration of cell division was 

significantly prolonged (Figure 2.3 B). The observed delay is likely due to an extended spindle 

assembly checkpoint during metaphase, which ensures that all kinetochores are properly 

attached to microtubule fibers (McAinsh & Kops, 2023). 

To further examine whether the proliferative binucleated cells perform a full cell cycle, including 

an S phase, or rather represent a diploid cell state locked at a late cell cycle stage, I performed 

short-term BrdU labeling of mADO cultures starting directly after cell plating. I labelled cells in 

fresh wells every 2 hours and fixed after a pulse time of another 2 hours. As early as 24 hours after 

cell plating, I began to see BrdU-positive cells, including binucleated cells (Figure 2.3 C). In all 

cases, both nuclei were always BrdU-positive, as previously shown in cerulein-induced 

pancreatitis in vivo. These results indicate that binucleated cells represent a true polyploid cell 

state, capable of proliferating with synchronized onset of replication in both nuclei. 
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Figure 2.3 | Binucleated acinar cell proliferate in mADOs. 

(A) Live-cell image series showing a binucleated acinar cell mitosis in H2B-mCherry/mG mice in interphase, 

metaphase and telophase. H2B (magenta), plasma membranes/mG (cyan). Scale bar: 20 μm. Yellow squares highlight 

zoomed regions with H2B (white) and binucleated cell annotation (magenta). Scale bar: 5 μm. (B) Duration 

measurements from nuclear envelope breakdown (NEB) to anaphase derived from mitotic cells from live-cell imaging 

data. Upper graph shows density distribution and kernel density plot of mononucleated (cyan) and binucleated 

(yellow) cell durations. Data is shown as histogram with bin size 4 and Kernel Density Estimation. Lower panel shows 

boxplots of mononucleated (cyan) and binucleated (yellow) cell durations. P-value was calculated using a two-sided 

unpaired Student’s t test (n = 50 mitotic events from 3 mice). (C) IF images of short-term BrdU pulse-chase experiments 

in mADOs (24h in culture). BrdU-pulse given at 22 h, chase time 2h. BrdU (magenta), E-Cadherin (cyan). Yellow box 

indicates zoomed region showing a cell cluster with a binucleated BrdU-positive cell. Scale bars: 50 μm 

 

2.1.3 Binucleated acinar cells undergo ADM and proliferate in vivo 

In contrast to the data I acquired from mADOs, cell divisions of binucleated cells were not 

detected previously following CiP in mice. Wollny and colleagues had previously quantified 

prophase cells by phospho-histone H3 (pHH3) staining at 5 days after pancreatitis induction, 

which can be considered as an advanced stage of regeneration where proliferative binucleated 
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cells could have divided already (Wollny et al., 2016). Therefore, I quantified proliferating (pHH3-

positive) and ADM (CK19-positive) acinar cells at 2 dpi. To distinguish mononucleated from 

binucleated pHH3-positive cells, I focused the quantification on late G2- and early M-phase 

nuclei, indicated by speckled pHH3 staining co-localizing with round and not fully condensed 

nuclear DAPI stain (LI et al., 2005). Notably, I did not only detect binucleated cells that stain 

positive for CK19 and pHH3, but at 2 dpi approximately 35 % of all CK19-expressing and 33 % of 

all pHH3-positive acinar cells were binucleated (Figure 2.4 A, B). These findings imply that 

binucleated acinar cells undergo ADM and proliferate at this early stage of regeneration – 

although with a slightly reduced propensity or slower dynamics compared to their 

mononucleated counterparts. As mentioned above, DCLK1 specifically marks the pool of 

facultative progenitor acinar cells, which possess the ability undergo ADM upon CiP (Bailey et 

al., 2014; Westphalen et al., 2016). To further validate that binucleated acinar cells exhibit 

regenerative capacities, I thus stained naïve pancreatic tissue for DCLK1. Indeed, I found that 

approximately 39 % of all DCLK1 expressing acinar cells are binucleated, supporting a significant 

contribution of binucleated acinar cells to the subset of facultative progenitor cells (Figure 2.4 C, 

D). 

DCLK1-positive/CK19-positive binucleated cells could potentially get arrested in G1 in an in vivo 

setting by a “tetraploidy checkpoint” – a potential mechanism to prevent cells from cycling after 

polyploidization that has been proposed in the early 2000s (Andreassen et al., 2001; Margolis et 

al., 2003). To assess if binucleated acinar cells would become arrested during ADM, I stained 

mouse pancreatic tissue from cerulein-induced pancreatitis for γ-Tubulin. Polyploidy is often 

accompanied by an increased number of centrosomes (Bloomfield & Cimini, 2023; Duensing & 

Duensing, 2010). γ-Tubulin labels nucleation sites for microtubule formation at centrosomes and 

can thus be used as a proxy for cell ploidy. These extra centrosomes can lead to a multipolar 

spindle formation with up to four individual spindle poles in case of a tetraploid cell with four 

centrosomes (Baudoin et al., 2020; Duensing & Duensing, 2010; Faggioli et al., 2011; Maiato & 

Logarinho, 2014). I screened pancreas tissue after CiP for such metaphase figures that would 

correspond to polyploid cells. At 2 dpi, I found multipolar metaphases in CiP with up to 8 

centrosomes, indicating that tetraploid and even octoploid cells can enter mitosis (Figure 2.4 E). 

Of note, I found no cell with two metaphase plates, indicating that so called “double mitoses”, 

at which both nuclei undergo mitosis individually, do not play major role in pancreatic 

regeneration. This supports that binuclear cells divide via nuclear aggregation as observed in 

organoids.  
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Figure 2.4 | Binucleated acinar cells contribute to regeneration upon inflammation. 

(A) IF image of injured mouse pancreas (CiP, 2 dpi) to assess the contribution of binucleated acinar cells to ADM 

(cytokeratin 19-expressing, CK19) and proliferation (phospho-histone H3-positive, pHH3). DAPI (magenta), CK19 

(cyan), pHH3 (yellow). Yellow box indicates zoomed region. Scale bar: 20 μm. Image was adapted from Brunken, 2019 

(B) Quantification of the binucleated cell fraction in pHH3- and CK19-expressing acinar cells in cerulein-induced 

pancreatitis at 2 dpi. P-value was calculated using a two-sided unpaired Student’s t test (n = 3 mice). This data was 

partially presented in Brunken, 2019 and complemented and re-analyzed with more data points per replicate for this 

thesis. (C) IF image of naïve mouse pancreatic tissue to assess the contribution of binucleated acinar cells to the pool 

of facultative progenitors (Doublecortin-like kinase 1-expressing, DCLK1). DAPI (magenta), DCLK1 (cyan). Scale bar: 

20 μm. (D) Quantification of binucleated cell fraction in DCLK1-expressing naïve acinar cells. P-value was calculated 

using a two-sided unpaired Student’s t test (n = 3 mice). (E) IF image of injured mouse pancreas (CiP, 2 dpi) stained for 

γ-Tubulin (magenta) and nuclei using DAPI (cyan), highlighting a multipolar metaphase. White arrow heads indicate 

centrosomes). The images shows a cell with 8 centrosomes in total visible in other focal planes, which were not 

projected for better visibility. Scale bar 5 μm. 

2.2 ADM promotes multipolar spindle orientations in binucleated cells 

2.2.1 Multipolar mitoses originate from binucleated acinar cells 

Multipolar mitoses have been observed in hepatocytes as part of the so-called “ploidy 

conveyor,” a process that describes the dynamic de- and re-polyploidization to regulate ploidy 

levels and facilitate adaptive advantages in regenerating liver tissue (Duncan et al., 2010). 

However, unlike the regenerating pancreas, hepatocyte proliferation during liver regeneration 

does not require metaplasia. Hepatocyte-to-cholangiocyte transdifferentiation is not a normal 

feature of regeneration but rather occurs in response to chronic injury, such as biliary obstruction 
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or liver fibrosis (Sekiya & Suzuki, 2014). In contrast, acinar-to-ductal metaplasia (ADM) is 

essential for acinar cell proliferation and pancreatic regeneration.  

Thus, I examined whether the additional constrain imposed by metaplasia in the pancreas 

influences the tendency to undergo multipolar cell division and ploidy reduction in 

mononucleated or binucleated polyploid acinar cells. To address this question, I first screened 

H2B-mCherry mADO live-cell imaging data for fully completed multipolar mitoses. I additionally 

employed live-cell imaging of mADOs of the EGFP-Tuba mouse model, in which fluorescently 

labels α-Tubulin which enables the visualization of the individual microtubule spindles. I 

frequently observed mitoses completing with three poles, generating three daughter nuclei, two 

of which exhibited reduced DNA content (Figure 2.5 A). Notably, multipolar mitoses 

predominantly occurred in binucleated cells, while mononucleated polyploid cells rarely 

underwent this process. Instead, their centrosomes tended to cluster and form two poles (Figure 

2.5 B).  

 

Figure 2.5 | Binucleated acinar cells are prone to multipolar mitoses. 

(A) Live-cell image series from H2B-mCherry mADOs showing binucleated cell undergoing multipolar mitosis leading 

to a ploidy reduction of daughter nuclei. H2B (white), nuclei annotation (magenta).Yellow arrows indicate spindle 

locations. Scale bar 20 μm. (B) Quantification of the fraction of multipolar divisions that was performed by binucleated 

cells in mADOs (n = 2 mice). 

 

2.2.2 Nuclear positioning impacts spindle geometry 

A higher likelihood for binucleated cells to undergo multipolar mitosis may be attributed to the 

restricted intracellular space resulting from metaplasia, which is associated with a significant 

decrease in cell size, combined with the increased spatial demands of two nuclei. I quantified 

the sizes of naïve acinar cells and metaplastic ADM cells from mADOs. As expected, cells that 

underwent ADM exhibit significantly reduced sizes (Figure 2.6 A, B, C). 



 42 

 

Figure 2.6 | mADOs undergo metaplasia-induced cell shrinking. 

(A) Brightfield images of naïve acinar (top row) and ADM (d6 mADOs, bottom row) cells (left column) with 

corresponding segmentation masks in blue and red (center column) and overlay (right column) used for cell size 

measurements. Scale bar 50 μm. (B) Histogram of cell sizes from naïve (blue) and ADM (red) cells. Data is shown as 

histogram with bin size 50 and Kernel Density Estimation. (C) Cell area measurements of naïve acinar and ADM cells 

based on dissociated tissue and mADOs in pixels (px). P-value was calculated using a two-sided unpaired Student’s t 

test (n = 3 mice). 
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In addition, it has been proposed that the DNA itself might act as a physical barrier to prevent 

centrosomes from clustering to form bipolar spindle orientations in polyploid cells (Klisch et al., 

2016). An unfavorable positioning of the centrosomes could further facilitate multipolar spindle 

arrangements. A previous study showed that centrosomes in binucleated G0/G1 cow 

trophoblasts cluster near the interspace between the two nuclei (Klisch et al., 2016). Such a 

positioning in combination with limited intracellular space might impair centrosome migration to 

the cell cortices during prophase. The positioning effect might even be stronger if the nuclei 

orient along the long axis of the cell, as this is the axis a cell generally tends to divide along 

(Hertwig, 1884; Middelkoop et al., 2024; Théry et al., 2005). In addition, an orientation of the 

nuclei parallel to the axis of division, could prevent microtubule fibers from proper attachment 

to all kinetochores of both nuclei as the nuclei would shield each other in a bipolar spindle 

geometry. To resolve this issue and pass the spindle assembly checkpoint, a multipolar spindle 

orientation might be more favorable. Thus, I hypothesized that the cell shrinking induced by ADM, 

could force the nuclei in binucleated cells to orient along the long/division axis creating an 

unfavorable initial situation for bipolar mitoses. To test my hypothesis, I first stained naïve acinar 

cells for the centrosome marker pericentrin to assess centrosome positioning during G0/G1. In 

accordance with the data from cow trophoblasts, centrosomes in binucleated acinar cells 

cluster near the interface of the two nuclei (Figure 2.7). 

 

Figure 2.7 | Centrosomes in G1 binucleated acinar cells locate close to the nuclear interface. 

IF images of two examples (rows) of the centrosome localization in naïve binucleated acinar cells. DAPI (magenta), 

pericentrin (cyan), annotation highlighting nuclear interface (yellow). Scale bar 5 μm. 
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Next, I assessed the nuclear orientation of binucleated cells just before mitosis using live-cell 

imaging of EGFP-Tuba mADOs. I distinguished orientations along the short and the long/division 

axis of the cell and classified the subsequent mitosis as bipolar or multipolar (Figure 2.8 A). 

Intriguingly, I found that multipolar spindle formations were always accompanied by nuclei 

orientations along the long/division axis of the cell (Figure 2.8 B). In contrast, most bipolar 

divisions were performed with nuclei positioned along the short axis of the cell, perpendicular to 

the cell’s division axis. Of note, a fraction of binucleated cells exhibited nuclei orientations along 

the long axis, forming initial multipolar spindles but managed to resolve the multipolar geometry 

by centrosome clustering and still divided in a bipolar manner. These findings indicate that nuclei 

orientation and cell size have a pivotal impact on the spindle geometry and the number and 

ploidy of daughter cells.  

 

Figure 2.8 | Nuclear orientation dictates mitotic outcome. 

(A) Live-cell image series from H2B-mCherry mADOs showcasing mitotic binucleated cells with different nuclear 

orientations. Top row: prior to mitosis, the nuclei orientation (green) is perpendicular to the cell’s long axis (yellow) 

which corresponds to the division axis (blue). Red annotations indicate the centrosome localizations with red arrows 

highlighting the microtubule orientation. Bottom row: the nuclei orientation equals the cell’s long axis and mitosis axis. 

H2B (white), nuclei annotation (magenta). Scale bar 5 μm. (B) Classification of the nuclei orientation either along the 

long or the short cell axis before multipolar mitoses based on live-cell imaging data from EGFP-Tuba mADOs. Data is 

shown as mean from 50 mitotic events (25 from bipolar and 25 from multipolar mitoses). Data collection and analysis 

for this figure was assisted by Daria Kocherhina, whom I supervised during her lab internship. 
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Taken together, my findings define a new role for binucleated pancreatic acinar cells as 

facultative progenitors, that can undergot ADM and divide at early stages of pancreas 

regeneration replenishing lost pancreatic tissue with two or more than two cells per mitotic 

passage, creating a highly dynamic change of nuclei numbers per cell and cell ploidies. This 

suggests that proliferating polyploid glandular cells are not exclusive to the liver. Rather, it 

underscores a conserved regenerative strategy across various glandular organs, wherein injury 

triggers proliferation of otherwise quiescent polyploid secretory cells. However, the concurrent 

occurrence of metaplasia-associated cell shrinkage may elevate the risk of multipolar mitosis, 

potentially leading to long-term complications. 

 

 

2.3 mADOs show signs of chromosomal instability 

2.3.1 Binucleated acinar cells possess mitotic errors and micronuclei accumulation 

in mADOs 

My next aim was to investigate, whether "scheduled" polyploidy as it occurs in binucleated acinar 

cells indeed represents a vulnerable state for chromatin segregation errors and CIN. Studies of 

mammalian cell lines have demonstrated many times that polyploidy in its unscheduled form is 

perceived as a mutational process and thus is considered as a key step towards aneuploidy and 

the generation and evolution of cancer genomes (Duensing & Duensing, 2010; Storchova & 

Pellman, 2004). A major contributor to the vulnerability of a polyploid cell to acquire CIN, lies in 

its tendency to form multipolar spindle geometries which possess an especially high chance for 

merotelic microtubule attachments and lagging chromosomes (Cimini et al., 2002; Cosenza & 

Krämer, 2016; Gisselsson, 2008; Guerrero et al., 2010; Pidoux et al., 2000; Storchova & Pellman, 

2004; Thompson & Compton, 2008, 2011). Thus, I acquired live-cell imaging data of H2B-

mCherry mADOs and thoroughly screened mitotic events. I especially focused on early stages of 

mADO formation to capture the first binucleated cell divisions and acquire data as close as 

possible to an in vivo setting. I observed that the formation of mADOs is initiated by arranging 

cells from a primary acinus cell cluster into a spherical shape featuring a big lumen. This step 

lacks any cell divisions and recapitulates the formation of tubular complexes as seen in ADM in 

tissue. Strikingly, I found that the first binucleated cell divisions that occur after 24-48 h are 

frequently (~47 % ± 10.2 %) accompanied by chromosome segregation errors such as lagging 

chromosomes and DNA anaphase bridges (Figure 2.9 A). 

Lagging chromosomes might end up forming micronuclei as they often are not integrated into the 

main nucleus. Since I frequently observed multipolar spindle formations as well as lagging 
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chromosomes and chromatin bridges in polyploid acinar cells during ADM, I screened for 

micronuclei by immunofluorescence staining of wild type mADOs (Figure 2.9 B). I detected 

micronuclei in almost all organoids with a peak of micronucleus abundance at 4 to 5 days of 

culture. This probably reflects the time when most of the binucleated cells in a forming mADO 

divided once. As describe previously, micronuclei are believed to play key roles in tumor initiation 

and evolution by promoting DNA damage and mutagenesis, which may give growth advantages 

to genetically unstable cells (Di Bona & Bakhoum, 2024; Mazzagatti et al., 2024). Their 

tumorigenic effect is linked to chromothripsis - the catastrophic shattering and reassembly of 

whole or partial chromosomes (Simovic-Lorenz & Ernst, 2025; C.-Z. Zhang et al., 2015). 

Micronuclei often lack nuclear membrane components such as Lamin A/C or Lamin B, leading 

to instability and rupture, which contributes to chromothripsis (Crasta et al., 2012; Hatch et al., 

2013; Maciejowski et al., 2015, 2020; C.-Z. Zhang et al., 2015). While these events are frequently 

observed in cancer cells, engineered or treated cultures and tumors, they are rarely observed in 

normal cells, except in developmental contexts like germline and congenital disorders (Bertelsen 

et al., 2016; Kloosterman & Cuppen, 2013; Middelkamp et al., 2017). To assess whether 

micronuclei envelope instability and chromothripsis occur during ADM, I stained mADO cells for 

the nuclear envelope component Lamin A/C and the DNA damage marker γH2A.X. At d5, 

approximately 67 % of all micronuclei stained negative for Lamin A/C, indicating differences in 

micronucleus lamina integrity and composition and potential envelope instability in a majority of 

micronuclei (Figure 2.9 C, D). Notably, 44 % of the d5 micronuclei in mADOs exhibited massive 

DNA damage as indicated by strong γH2A.X immunofluorescence signals independent of the 

main nuclei, which can be used as a readout for the occurrence of chromothripsis events (Figure 

2.9 D; Kalsbeek & Golsteyn, 2017; C.-Z. Zhang et al., 2015). 
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Figure 2.9 | mADOs exhibit signs of chromosomal instability. 

(A) Live-cell image series from H2B-mCherry mice showing mitotic errors formed in proliferative binucleated cells at 

the onset of mADO formation (d1). H2B (magenta), yellow boxes indicate zoomed regions highlighting mitotic errors at 

different time points. Scale bar 20 μm. (B) IF staining from whole-mount d5 mADOs for γH2A.X (magenta), E-Cadherin 

(cyan) and nuclei using DAPI (white). Yellow arrows highlight micronuclei with strongly active DNA damage response 

in mADOs. Scale bar 20 μm. (C) Immunofluorescence images of dissociated d5 mADOs cells stained to assess 

micronuclear envelope composition for Lamin A/C. DAPI (white), Lamin A/C (magenta), α-Tubulin (cyan). Scale bar 10 
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μm. (D) Micronuclei (MN) characterization of d5 mADOs based on nuclear envelope composition (Lamin A/C low 

signal) or DNA damage response (γH2A.X high signal). Data is shown as percentage of all assessed micronuclei (n = 3 

mice). 

 

Apart from causing micronuclei and their potential downstream effects, lagging chromosomes 

can also represent obstacles for cleavage furrow ingression during cytokinesis (Cimini et al., 

2002; Pidoux et al., 2000).  Revisiting live-cell imaging data from H2B-mCherry/mG mice, I found 

that lagging chromosomes in mADOs eventually resulted in regressed cleavage furrows leading 

to failed cytokinesis and additional whole genome doubling of the single binucleated daughter 

cell (Figure 2.10). As the cleavage furrow is almost closed but then starts to regress, it rather 

indicates a failed attempt of cytokinesis than a omitted scheduled endomitosis.  

 

Figure 2.10 | Mitotic errors cause 

failed cytokinesis and 

hyperpolyploidization. 

Live-cell image series of a d5 H2B-

mCherry/mG mADO cell exhibiting 

a lagging chromosome with 

micronucleation (white arrow) and 

a subsequent failed cytokinesis 

resulting in a binucleated cell with 

hyperpolyploidization. White 

arrowhead indicates cleavage 

furrow regression. H2B (magenta), 

mG (cyan). Yellow annotation 

indicates nuclei, and red 

annotation indicates cell borders. 

Scale bar 10 μm. 
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2.4 Excursion: Addressing quantitative image analysis  

This section deals with experimental and computational method development to quantitively 

assess cell properties from confocal images. The graphs in this section display representative 

data sets that I obtained during my PhD work but for better visibility do not represent the full data 

that was used in section 2.5 to draw actual biological conclusions. These representative graphs 

from method development are plotted with dark background. 

 

2.4.1 Experimental layout to enable quantitative assessment of confocal images 

As I observed that mADOs exhibit signatures of chromosomal instability, I evaluated different 

methods to i) quantitatively assess these signatures and ii) assign the underlying ploidy and 

nuclear number of the corresponding cells. A high throughput would certainly be possible using 

a flow cytometry-based method. Others reported that mononucleated and binucleated 

cardiomyocytes could be distinguished cytometrically by measuring the photomultiplier tube 

(PMT) signal width recorded from a fluorescent DNA dye (Windmueller et al., 2020). As the width 

of such a signal correlates with the time an object takes to pass the laser, a binucleated cell 

creates a larger signal width than a mononucleated cell even if the underlying DNA content is 

same. The signal area in turn, could be used to determine the overall DNA content of the cell. 

However, I tested this method using a BD LSRFortessa
TM

 analyzer, but I was not able to receive a 

sufficient separation of the signal widths from mononucleated and binucleated acinar cells (data 

not shown). Possible reasons for this include a potentially low resolution of the PMTs of the BD 

LSRFortessa
TM

 or the proximity of the two nuclei in acinar cells in contrast to a larger nuclear 

distance in other cell types such as cardiomyocytes (qualitative comparison of the images 

shown in (Yücel et al., 2020) with images from this thesis are sufficient to see the differences). 

However, apart from the nuclear number, the quantification of CIN itself had to be addressed as 

well.  As chromosome segregation errors are of rather transient nature, I decided to focus on 

micronuclei as a less transient consequence of such errors. Again, micronuclei can be assessed 

by flow cytometry. By lysing the cells to obtain a nuclei suspension and measuring the forwards 

scatter area signal and area signals from a DNA dye it is possible to distinguish the larger and 

brighter primary nuclei from micronuclei. This method is regularly used to determine the 

genotoxicity of substances by exposing cells in vitro to different chemicals and measuring the 

relative micronuclei abundance in the aftermath (Rodrigues et al., 2021). To be able to distinguish 

micronuclei from debris and to acquire statistically relevant numbers of events, this approach 

requires a high abundance of micronuclei – at least in a control sample to set up the gates. As 
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the cellular yield of primary mADO cultures is generally low compared to 2D cell cultures from 

established cell lines and the problem regarding the nuclear number per cell persisted, I decided 

to develop a reproducible fluorescence imaging-based approach. Nuclear dyes such as DAPI or 

Hoechst, make the detection of binucleated cells and micronuclei easily accessible. To 

complement the detection of micronuclei, I aimed at measuring the DNA damage response by 

γH2A.X signals. Furthermore, I had to consider actively cycling cells, as a diploid cell in G2 would 

have a doubled DNA content despite still being diploid (2n/4C). This was possible by staining for 

the replication regulatory factor geminin. Geminin binds and inhibits chromatin licensing and 

DNA replication factor 1 (CDT1) in early S phase. CDT1 facilitates the loading of the 

minichromosome maintenance (MCM) helicase to the DNA which licenses an origin for 

replication. By negatively regulating replication, geminin prevents re-replication of DNA before 

mitosis. Geminin accumulates and remains bound to CDT1 until the end of mitosis. Thus, I used 

geminin staining, to fully exclude S/G2/M cells from the quantification as the determination of 

the underlying ploidy proves to be difficult. Finally, I stained for α-Tubulin as a marker for the cell 

body to enable instance segmentation of whole cells.  

As mADOs are three-dimensional structures, fixing and staining as whole-mount organoids 

would make quantitative assessment of fluorescence signals difficult for two reasons. First, 

fluorescence signals from confocal microscopes change along the depth axis (+), with generally 

decreasing intensities the further away the focal plane locates from the objective. Fluorescent 

beads added to the culture could serve as a control to correct for depth-dependent signal loss 

but might create other artifacts and an overall less accessible and reproducible method, as one 

would ideally add beads corresponding to each optical channel to be recorded. Second, cell 

segmentation in 3D is much more elaborate regarding data preparation (i.e. labeling of training 

and testing data sets), more error prone due to algorithm complexity and computationally more 

intensive. Additionally, robust pre-trained models for 2D cell segmentation are often readily 

available and need less fine-tuning and adaption to new data sets for transfer learning. Thus, I 

decided to enzymatically dissociate mADOs prior to fixation and fixate single cells onto standard 

microscopy slides as a 2D monolayer using a Cytospin
TM

 centrifuge. After fixation with 4 % 

paraformaldehyde, mADO cells could be stained for γH2A.X, geminin, α-Tubulin and nuclei using 

standard immunocytochemistry protocols and imaged by confocal microscopy as multi-image 

tile scans (Figure 2.11, see methods).  
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Figure 2.11 | Staining panel to assess ploidy, DNA damage and micronuclei from mADOs. 

Representative IF images from mADOs that were dissociated into single cells, fixed at d5 and stained for α-Tubulin 

(cyan), γH2A.X (magenta), geminin (yellow) and nuclei (white) using DAPI. Scale bar 10 μm.  

 

2.4.2 Computational analysis of ploidy levels and DNA damage response 

This section describes the computational approach for single cell analysis of confocal images 

for cell ploidy, DNA damage response level, nuclear number and micronucleus abundance. A 

broad overview of the method including the previously describe experimental approach as well 

as instance cell segmentation, image classification and fluorescence signal analysis is shown in 

Figure 2.12. 
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Figure 2.12 | Schematic overview of the experimental and computational workflow. 

Schematic experimental and image analysis workflow to classify cells based on confocal images and assess ploidy 

state as well as γH2A.X signal intensities quantitatively. mADO cultures were dissociated into single cells, fixated onto 

microscopy slides using a CytospinTM centrifuge and stained for geminin (cell cycle marker), α-Tubulin (cell body 

marker) and nuclei using DAPI to measure DNA content. Maximum intensity projections (MaxIP) of α-Tubulin confocal 

images were instance segmented using a custom Cellpose model. Each cell’s MaxIP of the DAPI channel was cropped 

based on its cell segmentation shape and fed into a convolutional neuronal network to classify it according to either 

mononucleated, “mononucleated micronucleated”, “binucleated”, “binucleated micronucleated” or “no cell”. 

Instance segmentation images were further used to extract various numerical features to correct for mis-segmented 

cells and assess measures such as DAPI, geminin and γH2A.X signal intensities. 

 

As the raw confocal imaging data was acquired in the format of a 3D stack (of a 2D cell 

monolayer), I transformed those stacks into 2D maximum intensity projections (MaxIPs) and sum 

intensity projections (SumIPs). MaxIPs of the α-Tubulin images give a good representation of cell 

morphology with clear outer borders and were thus used to perform instance segmentation. 

However, as MaxIPs only consider the pixel value with highest intensity from each confocal +-

slice per %' -pixel coordinate, I used SumIPs of the DAPI, γH2A.X and geminin channels for 

fluorescence intensity measurements. 

To be able to extract features such as ploidy and DNA damage response from single cells, I 

needed to segment cells as individual objects. The segmentation mask is used to localize each 

cell within an image and represents its morphology and the segmentation label is additionally 

used as an identifier for each cell. I tested different approaches for cell instance segmentation 

including simple thresholding followed by watershed segmentation, Random forest-based 

classification using ilastik and deep-learning-based methods such as StarDist and Cellpose. 

Finally, I decided to stick to Cellpose because of two reasons. First, their pre-trained “Cyto2” 
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model already yielded decent segmentation results without any fine-tuning as it has been trained 

on fluorescent data of cell bodies from a 2D monolayer (Figure 2.13). Second, Cellpose 2.0’s 

human-in-the-loop approach made it possible to fine-tune their existing models with minimal 

labeling effort and without the need of another software tool (Pachitariu & Stringer, 2022). 

Additionally, it made deep learning-based cell segmentation accessible to students that I 

supervised during my PhD work with minimal programming requirements. 

 

Figure 2.13 | Exemplary instance segmentation using Cellpose 2.0. 

Left: α-Tubulin MaxIP input image from a d8 mADO. Center: instance segmentation using the pretrained Cyto2 model. 

Right: instance segmentation using a custom fine-tuned Cyto2 model, re-trained on 10 α-Tubulin MaxIPs (not including 

the shown). 

 

Next, I had to extract corresponding cell morphology features such as the area and the perimeter, 

as well as fluorescence pixel intensity values for each cell to assign DNA content, cell cycle state 

and DNA damage response. The perimeter was later used to calculate the circularity for each cell 

to assess mis-segmented cells like doublets or cells touching the image border. The area was 

used to exclude mis-segmented objects such as debris with a very small area or clusters of 

multiple cells merged into one label with a very large area (Figure 2.14). Although the fine-tuned 

Cyto2 model from Cellpose 2.0 achieved very good segmentation results, these data curation 

steps further improved the overall quality. 
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Figure 2.14 | Filtering segmented objects for single cells. 

Circularity is plotted against area of segmented objects to exclude mis-segmented objects such as clusters of multiple 

cells or debris. The data shows two biological replicates from d8 mADOs. 

 

To assess the DNA content of each cell I calculated the background corrected total cellular 

fluorescence (CTCF) of the DAPI channel (see methods). As the geminin expression and γH2A.X 

intensities correlate with DNA content, I calculated the background corrected mean cellular 

fluorescence (CMnCF) for those channels. Like fluorescence intensity values from flow 

cytometry experiments, the pixel intensity values from confocal images are relative and not 

absolute measures, meaning that they are not standardized across experiments or even across 

different days of recordings from the same experiment. This is because just by shutting off and 

turning on again the detectors and lasers, even with constant laser powers, detector voltages 
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and intensity thresholds, can result in shifted fluorescence intensity distributions. Thus, the 

background corrected intensity values CTCF and CMnCF can only be compared within one 

recording of multiple tile scans. To achieve comparability between the different recordings, I 

normalized the data to known distributions within the recorded data. For DNA content, I used the 

diploid 2n/2C population and for geminin and γH2A.X, I used the marker-negative populations. 

Figure 2.15 visualizes this process for two biological replicates of d8 mADOs recorded on two 

different days. To identify the respective populations in the data, I first scaled the CTCF and 

CMnCF data to values between 0 and 100 for each channel (DAPI, geminin, γH2A.X). Then I 

smoothed their density distributions using a Gaussian smoothing algorithm. Next, I detected the 

largest peak of the smoothed data by local maximum detection. This approach assumes that 

most of the cells in each image have a 2C DNA content, are geminin-negative and yH2A.X-

negative which is the case in mADOs and was validated for each experiment by visual inspection 

of the respective histograms. To further refine the center of each distribution, I fitted a Gaussian 

distribution with the center of the largest detected peak as an initial guess for the mean. Finally, 

I normalized the scaled data to mean of the respective normal distribution. For the DNA content, 

I multiplied the normalized DAPI CTCF values additionally by the factor 2, so they interpretable 

as DNA content (C) or ploidy (n) levels, respectively. Classification of DNA contents, cell cycle 

stage and DNA damage response is then possible via simple thresholding of the normalized data 

(Figure 2.15). Another way of classifying the cell states based on the normalized fluorescence 

intensities is described in the next section and involves the usage of Plotly Dash apps. 
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Figure 2.15 | Fluorescence intensity normalization. 

Upper panel (magenta box): raw DAPI CTCF and geminin and γH2A.X CMnCF values for two biological replicates of d8 

mADOs. Center panel (blue box): after scaling the raw CTCF/CMnCF density distributions (blue curves), Gaussian 
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smoothing (magenta curves), peak detection (yellow dots) and Gaussian fitting (green dashed curves), the center of 

the corresponding largest peak is estimated by the mean of the Gaussian fit (green vertical dashed line) for each 

channel and replicate. Bottom panel (green box): Normalization to the center of the largest peaks leads to aligned 

distributions. Peaks corresponding to different DNA contents can be easily distinguished (2C, 4C, 8C). 

 

2.4.3 Dash apps to aid quantitative image analysis 

Classification of the data that I acquired from image analysis requires a general understanding 

of the underlying biology. As shown in Figure 2.15, the assignment of DNA content states via the 

normalized DAPI CTCF is relatively straight forwards. However, for other distributions such as the 

geminin and yH2A.X CMnCF data, it is less clear where to set thresholds. So, when is a cell in G2 

and when does it have activated DNA damage response? The big advantage of an image-based 

as opposed to for example a flow cytometry-based approach lies in the capability of additionally 

evaluating the data by visual inspection of the images. For human visual perception it is often 

easier to judge if a cell is positive for certain marker when observing microscopy images in 

context, compared to a more abstract data distribution. Additionally, comparing individual cells 

by visual inspection of the images and their corresponding data points in the graphs serves as a 

good control to validate the reliability of the method. As I could not find any appropriate software 

tools that combine an image viewer with the ability to load and plot corresponding numerical 

data and link data points back to objects in the image defined by a segmentation mask, I 

employed Plotly Dash to develop such a data analysis app (Figure 2.16). Dash is an open-source 

Python framework that can be used to build interactive web applications, especially for data 

visualization and analysis tasks. My dash app loads 2D images (i.e. the SumIPs from my 

experiments), corresponding instance segmentation masks and the numerical data tables 

generated by cell feature extraction. It is split into an “Image pane” and a “Plotting pane”. The 

image pane always displays the currently chosen image file from the “Image file” dropdown 

menu. It is possible to select individual channels, adjust the displayed contrast range and to 

overlay the corresponding label masks as yellow cell outlines if “Toggle labels” is active. The 

plotting pane shows a graph with all data points from the selected filters from the “Sample” and 

“Replicate” dropdown menus colored in cyan. This works if the file naming scheme of each image 

file has been given correctly. It always plots the properties selected under the “X” and “Y” 

dropdown menus. If both, “X” and “Y” have the same property selected, a histogram of the 

corresponding property is shown. Magenta data point represent cells that are currently visible in 

the image pane. It is also possible to click or select cells from the image pane that are displayed 

as yellow data points in the plotting pane. Vice versa, it is possible to click or select data points 

in the plotting pane to highlight cells in the image pane with blue outlines. Finally, the user can 
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select pre-defined markers or classes to classify data points selected in the plotting pane and 

save the class information for each classified cell in an exportable data table. In Figure 2.16, 

normalized geminin CMnCF (geminin_CMnCF_norm) is plotted against normalized DAPI CTCF 

(nuc_CTCF_norm) from three replicates of a WT mADO sample. The image pane shows one 

SumIP tile from replicate 1. The datapoints in the plotting pane were selected using a lasso tool 

and the magenta data points falling into this area are highlighted in blue in the image pane. It can 

be observed that most of the highlighted cells show a strong geminin expression. However, one 

highlighted cell at the upper image border exhibits a weaker signal compared to the other geminin 

positive cells. This cell probably corresponds to the magenta data point close to the lower border 

of the selected area. Thus, by visual inspection of the image data and reciprocal comparison to 

the numerical data, the user can evaluate whether it makes sense to rather strictly classify cells, 

in this case as G2, or not. In this example, it makes sense to select G2 cells rather generously 

because these cells would be excluded from the final quantification anyway. Since the 

classification filter works on the whole data set and not only on the cells that are shown in the 

image pane, it also allows for an unbiased classification across all replicates and samples. Even 

if the cell stage classification is done by simple thresholding from the extracted and normalized 

fluorescence intensities, the dash app proved to greatly enhance exploratory data analysis prior 

to thresholding and validation of applied thresholds in the aftermath. 

 

Figure 2.16 | Dash app user interface for cell state classification and exploratory data analysis. 

The dash app is split into an image and a plotting plane and provides functionality to classify cell states based on 

measured image features such as fluorescence intensities by interactive reciprocal validation on images and 

measured data. Selected data shows geminin-positive (G2) cells. 
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One drawback of the way I plot the labels in the image pane and link them to the data points in 

the plotting pane is its high demand on computational power. Even with GPU accelerated 

plotting, large data sets of several tens of thousands of cells make the dash app much less 

responsive. To cope with such large data sets, I adapted the app to create a second, light weight 

version which only contains the plotting and classifications capabilities. Thus, large image data 

sets could be handled by using smaller subsets of the data for exploratory data analysis in the 

original dash app and the analysis on the full data set could be performed in the second version. 

 

2.4.4 Nuclear number and micronuclei detection using CNNs 

After determination of ploidy and DNA damage response, I aimed on linking the abundance of 

micronuclei to ploidy and nuclear numbers per cell. As micronuclei often occur as a result from 

merotelic attachments and lagging chromosomes, I assumed that the ploidy but also the nuclear 

count might play a role in the process of micronuclei generation in mADOs. To determine the 

nuclear count and micronuclei presence, I aimed to train convolutional neural networks for 

image classification. To be able classify each cell separately and link it to the properties I 

extracted from the previous analysis steps, I cropped each cell from the MaxIP images based on 

its α-Tubulin instance segmentation and saved it separately at a size of 90x90 pixels. Thus, the 

segmentation label could also serve as an identifier for the image classification procedure. I 

stratified these images into 5 different classes including “mononucleated”, “mononucleated 

micronucleated”, “binucleated”, “binucleated micronucleated”, and “no cell”. Originally, I also 

included a class for mitotic cells. However, as the number of clearly mitotic cells was relatively 

low, the classification performance generally did not yield as sufficient results as for the other 

classes. Furthermore, mitotic cells could already be detected by geminin staining, making the 

detection via image classification redundant.  

Next, I had to find a proper CNN architecture.  CNNs for image classification consist of a feature 

extractor component (convolutional and pooling layers) and a classifier at the end (fully 

connected layer). Training of a CNN from scratch, where all layers in the feature extractor part 

are randomly initialized, requires huge amounts of labeled data. Like the transfer learning 

approach that I used with the Cyto2 model of Cellpose for instance segmentation, it is possible 

to use pretrained CNNs for image classification. The open-source machine learning framework 

TensorFlow together with its high-level application programming interface Keras provides 

pretrained CNNs for various architectures in Python. Although these networks have usually not 

been trained on biological images, it can be reasonable to re-use (parts of) the feature extractor 

component. CNNs extract low level features (edges, gradients, textures) in early layers and high-

level features (patterns, entire objects) in deeper layers. This means that a network that has been 
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trained on images showing round objects such as wheels from a vehicle or footballs, are likely 

able to extract features of other round objects, such as cells or nuclei. Thus, I decided to focus 

on networks that have been trained on the ImageNet data set (Deng et al., 2009). The ImageNet 

data set consists of approximately 14 million images from 1000 different classes including 

animals, vehicles, scenes, and everyday objects. As one of the most structured data sets with 

high quality labels, ImageNet is widely employed for benchmarking. It is furthermore used in the 

ImageNet Large Scale Visual Recognition Challenge, one of the most impactful computer vision 

challenges, as it sparked the deep learning boom in 2012 when AlexNet won the challenge by 

beating traditional methods by a huge margin (Krizhevsky et al., 2012). I experimented with 

various CNN architectures that have been trained on the ImageNet data set including VGGs, 

ResNets and EfficientNets. I received the best results using the EfficientNet B1 architecture 

consisting of 340 convolutional layers. Because my data set consisting of 1981 labeled images 

from five classes was much smaller compared to the ImageNet data set, allowing the network to 

train on all 340 layers poses a high risk of overfitting. Thus, it made sense to perform transfer 

learning only on a subset of the deeper layers for high-level feature extraction and the final fully 

connected layer for classification. The rest of network does not get updated by backpropagation, 

so it remains frozen. This preserves the low-level features already learned in early layers and 

keeps the network grounded in its generalized knowledge. I achieved best results by unfreezing 

the last 24 layers and adapting the fully connected layer for classification to 5 classes of the 

EfficientNet B1 network pre-trained on the ImageNet dataset. For other hyperparameter 

configurations, such as the optimizer algorithm, pooling method, batch size and classifier 

activation function, see methods section. 

Training the network for 200 epochs at a learning rate of 10
-5

 using Sparse Categorical Cross 

Entropy as loss function, resulted in an overall model accuracy of 0.9469 (or 94.69 %) on the 

validation data and 0.9470 (94.70 %) on the training data at epoch 76 (Figure 2.17 A), indicating 

very good convergence. Accordingly, the training and validation loss functions converged at 

epoch 76 (Figure 2.17 B). 
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Figure 2.17 | Learning curves from training an EfficientNet B1 model on d8 mADO images. 

(A) Accuracy curve for train (blue) and validation (red) sets. (B) Corresponding loss curve from Sparse Categorical 

Cross Entropy loss. 

 

Further training resulted in divergence of the loss and accuracy curves with lower performance 

on the validation data and higher performance on the training data, indicating overfitting. Thus, 

the model at epoch 76 was used for further model validation on a test set consisting of another 

396 images. The classification report is shown Table 1 for all five classes “mononucleated” 

(mononuc), “mononucleated micronucleated” (mononuc MN), “binucleated” (binuc), 

“binucleated micronucleated” (binuc MN) and “no. cell”. The network showed an overall very 

good performance across all five classes with most metrics reaching 85 % or higher. The overall 

accuracy on the test set reached 94 %. The “micronucleated” classes showed a slightly lower 

performance compared to their “non-micronucleated” counterparts. The “no cell” category had 

a 100 % positive rate for the test set, most probably because these images were either 

completely black or only showed some debris, making those images quite different from the 

other classes. The corresponding confusion matrix indicating the number of correctly and 

incorrectly classified images by comparing the predicted (columns) vs actual (rows) classes is 

shown in Table 2. 

The results from the next sections regarding quantification of ploidy, DNA damage response, and 

micronuclei abundance were obtained by employing this image analysis pipeline.  
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Table 1 | Classification report for EfficientNet B1 prediction on 396 test images from mADOs. 

Class Precision Recall F1-score Support 

mononuc 0.97 0.95 0.96 177 

mononuc MN 0.84 0.97 0.90 39 

binuc 0.99 0.92 0.95 88 

binuc MN 0.87 0.90 0.88 58 

no cell 1.00 1.00 1.00 34 

 

Table 2 | Confusion matrix for EfficientNet B1 prediction on 396 test images from mADOs. 

 mononuc mononuc MN binuc binuc MN no cell 

mononuc 169 0 0 8 0 

mononuc MN 0 38 1 0 0 

binuc 0 7 81 0 0 

binuc MN 6 0 0 52 0 

no cell 0 0 0 0 34 

 

 

2.5 Chromosomal instability in mADOs is linked to polyploidy 

As mentioned, micronuclei can be more easily detected, compared to transient chromatin 

segregation errors. Thus, I next addressed the quantification of micronucleated cells and γH2A.X 

signal intensities in mADO cells as well as their underlying DNA content. At d5 in culture, I found 

that the amount of γH2A.X high cells is strongly increased in the polyploid fraction of mADO cells 

(Figure 2.18 A). Additionally, my analysis revealed that the ploidy distribution of γH2A.X high cells 

is generally shifted towards cells with higher DNA content, with many cells showing an 

intermediate ploidy, presumably indicating aneuploid chromosome sets (Figure 2.18 B). In 

contrast, γH2A.X low cells showed a more distinct bimodal distribution of diploid and tetraploid 

cells. 

I further classified segmented cells at d5 by the presence of micronuclei based on the underlying 

DNA content and nuclear number. Here, I observed the highest abundance of micronuclei in 

binucleated polyploid cells (9.37 %; Figure 2.18 C). Mononucleated polyploid cells still exhibited 

a greater proportion of micronucleation compared to mononucleated diploid cells. These results 

indicate that micronuclei formation often co-occurs with cleavage furrow regression leading to 

failed cytokinesis as described above. My assay does not consider cells that underwent 
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multipolar mitoses and ploidy reduction to become diploid while still being able to carry 

micronuclei generated in the ploidy reducing mitoses or earlier. This implies that the true number 

of micronuclei linked to an initially polyploid genome could even be higher. 

To validate my findings in an in vivo setting, I revisited the cerulein-induced pancreatitis model 

and stained tissue sections at 4 dpi for α-Amylase and CK19 to detect acinar cells that underwent 

ADM. I regularly found binucleated α-Amylase/CK19-double-positive cells carrying a 

micronucleus (Figure 2.18 D). Of note, no micronuclei were detected in naïve freshly isolated 

acinar cells, indicating that those micronuclei were formed during the inflammatory response 

against the cerulein treatment. 

My results indicate that early cell divisions of polyploid acinar cells undergoing ADM are 

especially prone to chromatin segregation errors leading to micronuclei formation with extensive 

DNA damage as seen in chromothripsis. 
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Figure 2.18 | Chromosomal instability is linked to the polyploid state in mADOs. 

(A) Box plot showing γH2A.X intensity quantification in d5 mADOs comparing diploid (2N) and polyploid (4N) cells. P-

value was calculated using a two-sided paired Student’s t test (n = 3 mice). (B) Ploidy distributions by histograms and 

KDE curves of γH2A.X high and γH2A.X low cells in d5 mADOs (n = 3 mice). Data is shown as histogram with bin size 

0.07 and Kernel Density Estimation. (C) Micronuclei abundance in d5 mADO based on percent of micronucleated cells 

according to ploidy and nuclear number: diploid (2n, cyan), polyploid mononucleated (4n mononuc, yellow), polyploid 

binucleated (4n binuc, grey). P-values were calculated by one-way ANOVA followed by Tukey's post hoc test (n = 3 

mice). (D) IF image from mouse cerulein-induced pancreatitis at 2 dpi. Pancreatitis sections stained against α-

Amylase (cyan) and CK19 (magenta). Yellow magnification box shows micronucleated acinar cell with red arrow 

indicating micronucleus. Yellow arrows indicate CK19-/Amylase-double-positive binucleated acinar cells, d: duct. 

Scale bar 50 μm. This image was recorded with assistance from Sanzhar Aitbay, a student, whom I supervised for his 

master’s thesis. 
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2.5.1 Micronucleated cells in mADOs remain proliferative 

An ongoing question, that is regularly discussed in the light of tumor formation and evolution, 

addresses the fate of aneuploid/micronucleated cells. Excessive unrepaired DNA damage often 

leads to cell cycle arrest paired with increased autophagy which ultimately might lead to cell 

death and clearance (De Zio et al., 2012; Matt & Hofmann, 2016). Such protection can normally 

be facilitated by cell-intrinsic pathways like ataxia telangiectasia mutated (ATM) and ataxia 

telangiectasia and Rad 3 related (ATR) mediated p53 stabilization or the cyclic GMP-AMP 

synthase (cGAS) - Stimulator of interferon genes (cGas-STING) signaling axis – although the 

contribution of cGA-STING signaling to sensing chromothripsis-induced DNA damage from 

micronuclei is still under debate (Abuetabh et al., 2022; Flynn et al., 2021; Mackenzie et al., 2017; 

Takaki et al., 2024). In contrast, it was shown that micronucleated cells can re-enter cell cycle 

and pass their aneuploid genome to daughter cells (Hintzsche et al., 2017). Importantly, these 

findings were obtained from either immortalized, or cancer cell lines or primary cells treated with 

cytotoxic chemicals and/or ionizing radiation. Thus, it is debatable to what extend 

micronucleated cells re-enter cell cycle and complete further mitoses under physiological 

conditions. Using live-cell imaging of H2B-mCherry mADOs, I found that micronucleated cells 

are indeed capable of maintaining proliferative capacities (Figure 2.19 A). In these cells, the 

micronucleus eventually gets reintegrated into the main nucleus and further mitotic defects can 

be commonly observed. Those reintegration events would be especially likely if the micronuclear 

DNA contains centromeric regions, which possess a certain degree of protection against DNA 

damage and can facilitate microtubule binding. 

To further delineate the full process of a mitotic error with micronuclei formation and subsequent 

proliferation, I subjected H2B-mCherry/mG mADOs to long-term live-cell imaging over the 

course of 4 days, starting at d3 and using an inverted light-sheet fluorescence microscope. 

Tracking of the individual nuclei and cells based on the mCherry and GFP signals allowed me to 

reproduce the lineage relations in the growing organoid (Figure 2.19 B). First, I noticed that the 

two daughter cells from an aberrant binucleated cell division behaved differently. While the 

micronucleated sister cell remained proliferative (highlighted in red), the other sister cell 

stopped proliferating, putatively because of the chromosome loss. Second, the proliferative 

micronucleated sister cells did not show growth disadvantages compared to other cells and had 

a similar cell cycle length. Generally, I measured an average doubling rate of 16.2 h. A similar 

experiment has been performed on mouse intestinal organoids, that acquired mitotic errors due 

to a highly proliferative phenotype with a rapid doubling rate of approximately 10 h (de Medeiros 

et al., 2022). While these cells potentially acquired mitotic errors because of their high (error 
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prone) turnover rate, I propose that the tendency of pancreatic acinar cells to perform aberrant 

mitoses is inherently linked to the combination of polyploidy/binucleation and metaplasia.   

 

Figure 2.19 | Micronucleated mADO cells remain proliferative. 

(A) Live-cell image series of a d13 H2B-mCherry mADO. White arrow indicates micronuclei reintegration upon mitosis. 

White arrow heads indicate a subsequent chromatin bridge in the same cell. Scale bar 20 μm. (B) Reconstructed 

lineage tree of mADO long-term live-cell imaging over 87 h (d3-d7). Grey tracks indicate mononucleated, blue tracks 

indicate binucleated cells. Red tracks indicate the lineage of a micronucleated cell from a binucleated mitosis with 

retained proliferative capacities. 

 

2.5.2 Genomic analyses showcase consequences of mitotic errors in mADOs 

To assess the genomic landscape of polyploid acinar cells after proliferation on the 

molecular level, I subjected cells from day 9 mADOs to single-cell whole genome 

sequencing. I employed Strand-seq, which gave me two advantages. First, by sequencing 

only the template strand of a single nucleus, haplotype information enables the distinction 

of homologous chromosomes and the detection of complex genomic rearrangements. Each 

read can be assigned to a specific strand orientation defined as either Watson (W) or Crick 

(C). Second, Strand-seq requires the processing of cells which have BrdU incorporated into 

the nascent strand from the previous replication phase. This allowed me to enrich for cells 

that have divided and potentially underwent chromatin segregation errors. To specifically 

sort for diploid and polyploid nuclei, I used a two-step fluorescence-activated cell sorting 

(FACS) strategy based on the fluorescent ubiquitylation-based cell cycle indicator 2 (Fucci2) 

model (Figure 2.20). As this mouse model labels geminin with mVenus, this enabled me to 

specifically exclude S-, G2- and M-phase cells – similar to my image analysis pipeline – 

which might possess an increased DNA content despite being diploid. Additionally, the 

Fucci2 model expresses chromatin licensing and DNA replication factor 1 (CDT1) fused to 

mCherry, hence labeling cells in G0/G1. After sorting for G0/G1 cells based on mCherry 

signal, cells were lysed to extract single intact nuclei. BrdU incorporation could be 
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determined by the detection of Hoechst33342 quenching in the second sorting step, while 

propidium iodide (PI) labeling was used to resolve the DNA content of the nuclei. This led to 

four distinct populations in the second sorting step, two for each ploidy level (2n, 4n) and 

two for BrdU incorporation (quenched vs. unquenched) Hoechst33342 signal. 

 

Figure 2.20 | Sorting strategy to sort single nuclei for Strand-seq according to ploidy. 

Sorting strategy to sort single nuclei for Strand-seq. An initial sorting step consisted of sorting mCherry+ cells from 

Fucci2, indicating non-cycling cells (sort_1). After lysis, doublet nuclei were excluded and BrdU incorporation was 

assessed by quenching of Hoechst33342 (Hoechst 33342 signals roughly half upon BrdU incorporation). Blue arrows 

in the BrdU- (no BrdU during mADO culture) control graph indicate, where the fractions of different ploidy levels would 

be expected to shift if BrdU is incorporated. BrdU+ graph shows the sorting from a BrdU treated sample. Propidium 

iodide (PI) is used to separate the Hoechst33342 peaks by ploidy, as PI is not affected by BrdU incorporation and to 

sort BrdU+ nuclei for Strand-seq (sort_2). Magenta annotations indicate gating. 2n: diploid nuclei, 4n: tetraploid nuclei, 

SSC-A: side scatter area signal, FSC-A: forward scatter area signal, FSC-H: forward scatter height signal. 

 

The library preparation was performed by Katharina Bauer from the single-cell open lab of 

the German Cancer Research Center (DKFZ) Heidelberg. I sequenced 96 nuclei and 

obtained 42 high-quality genomes (22 from diploid and 20 from tetraploid nuclei). The 

computational analysis of the Strand-seq data was performed by Enrico Frigoli, a 

bioinformatics PhD student in the Martin-Villalba lab. The average ploidy of each cell was 

assessed by visual inspection of the Strand-seq results as shown in Figure 2.21 A and B. 

Enrico Frigoli’s method of visualizing the Strand-seq data for each chromosome separately, 

furthermore allowed to identify sister chromatid exchanges and structural abnormalities 

(Figure 2.22 C). 
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Figure 2.21 | Distinction of ploidy levels and structural rearrangements in Strad-seq data. 

(A, B) Theoretical distributions of Watson fractions (WF) - defined as the proportion of sequencing reads aligned to the 

Watson strand relative to the total number of aligned reads within a genomic bin - are shown for diploid (A) and 

tetraploid (B) loci. During DNA replication, each strand has a 50 % probability to be used as template, resulting in 

possible configurations of Crick-Crick (CC), Crick-Watson (CW), Watson-Crick (WC), and Watson-Watson (WW) in the 

daughter cells with diploid chromosomes, with analogous configurations for tetraploid loci. Plotting the WF of genomic 

bins across chromosomes allows for the inference of cellular ploidy, as some values can only be explained by a 

specific ploidy/copy number value (within a reasonable range), e.g. 33 % and 66 % are specific for 3n, 25 % and 75 % 

for 4n. Additionally, combining WF data with normalized total read counts enables the estimation of chromosome 

copy numbers when WFs take ambiguous values such as 0 % and 100 %. (C) The same type of visualization allows to 

spot sister chromatid exchanges (top panel) and large structural variants such as duplications and deletions (bottom 

panel). Plots prepared by Enrico Frigoli. 

 

He identified five cells exhibiting whole-chromosome aneuploidies and/or major structural 

variants (SVs) of which 3 had a tetraploid basal ploidy. Among these, one cell exhibited a complex 

ploidy structure characterized by several chromosomes gains or losses, or having larger 

segments deleted, while other chromosomes remained intact and were present in two or four 

copies (Figure 2.22 A). Notably, the presence of extensive deletions, especially of chromosome 

11 suggests that the deleted regions may have originated from a lagging chromosome that was 

lost during mitosis. Another tetraploid cell possessed aneuploidies including the loss or gain of 

a full chromosome copy leading to a pentaploid state, and triploid loci (Figure 2.22 B). These 

findings demonstrate that organoids derived from primary naïve acinar cells can acquire 

features typically found in tumors and that polyploid cells are likely to be more susceptible to 

these transformations. Again, cells that might have been polyploid initially and reduced their 

ploidy due to multipolar mitoses could not be identified by this method. 

Mitotic errors and catastrophic DNA damage has not been linked to the natively occurring 

polyploidy found in acinar cells so far. 



 69 

 

Figure 2.22 | Strand-seq identifies structural abnormalities in mADOs. 

(A) Single-cell Strand-seq plot showing: a diploid chromosome (chr1), a tetraploid chromosome (chr2), a heterozygous 

duplication at the start of chr10, and a deletion in chr11. Left panels display coverage tracks with read depth divided 

by Watson and Crick strands, total read depths, and normalized Watson/Crick fractions, at a 200 kilobases (kb) bin 

resolution. The dotted lines represent the median value for the cell. Right panels show Watson fraction versus 

chromosomal (Chrom.) coordinates, colored by ploidy, to highlight genomic gains or losses across chromosomes, in 
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5 megabase (Mb) steps (smoothed over a 10 Mb window); gray points in the background represent data from the same 

chromosome in other cells. (B) Single-cell Strand-seq plot showing a triploid chromosome (chr8) and a pentaploid 

chromosome (chr18) from a tetraploid cell analogous to (A). Plots prepared by Enrico Frigoli. 

 

2.6 Conserved principles of tissue remodeling, polyploidy, and 

chromosomal instability across glandular organs 

2.6.1 Establishment of polyploid lactating mammary gland-derived organoids 

Unlike the pancreas and the liver, which retain polyploid cells throughout life, the mammary 

glands in both humans and mice generate polyploid cells only during pregnancy and lactation, a 

period when milk production is essential to nourish offspring (Rios et al., 2016). During 

pregnancy, luminal cells in the mammary gland differentiate into secretory alveolar cells that 

produce and secrete milk. Following weaning, the gland undergoes post-lactational involution, a 

process in which these alveolar cells either return to a quiescent state or undergo apoptosis, 

resulting in a reduction in organ size (Oakes et al., 2006). This dynamic transition makes the 

mammary gland an especially valuable model for studying naïve polyploidy, as the non-lactating 

gland provides an ideal physiological control. Moreover, both preclinical and epidemiological 

evidence suggest that improper regulation of post-lactational involution may play a role in 

tumorigenesis (Jung et al., 2022; Lyons et al., 2011; Radisky & Hartmann, 2009). To broaden the 

relevance of my findings from the pancreas, I therefore chose to investigate the mammary gland 

as a complementary system. To this end, Veronika Lummer, a medical doctor student, whom I 

supervised for her thesis, established lactating mouse mammary-derived organoids (mMDOs) 

based on a published protocol (Sumbal et al., 2020). During an initial morphogenesis phase 

where isolated epithelial mammary gland cells are cultured in medium containing FGF2 

(morphogenesis medium, MOM) for 6 days, a known regulator of mammary branching 

development, the growing organoids undergo branching morphogenesis (Figure 2.23, Figure 2.24 

A; Ewald et al., 2008; Rivetti et al., 2020). The lactating capacities of these organoids mainly rely 

on prolactin (Prl) treatment after the morphogenesis phase (Sumbal et al., 2020). Besides 

prolactin to induce milk production, Veronika additionally added other known pregnancy-related 

factors - namely progesterone (P4), estrogen (E2) and EGF to stimulate the formation of polyploid 

cells. Estrogen induces ductal elongation and further branching during pregnancy and 

additionally increases the expression of prolactin receptors (Arendt & Kuperwasser, 2015). 

Progesterone is a known mediator of alveolar growth and differentiation in synergy with prolactin 

(Brisken et al., 1998; H. J. Lee & Ormandy, 2012).  EGF is further a critical regulator of cell 

proliferation and has been shown to play important roles in binucleation of luminal mammary 
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gland cells (Borellini & Oka, 1989; Rios et al., 2016). After the initial morphogenesis phase, 

mMDOs were cultured in this hormone-enriched medium (pregnancy-lactation medium, PLM) 

for another 6 days (Figure 2.23).  

 

Figure 2.23 | Workflow to generate lactating polyploid mammary gland-derived organoids. 

Experimental workflow to generate lactating mouse mammary gland organoids (mMDOs) consisting of diploid and 

polyploid secretory cells. The procedure includes cells extraction, 6 days morphogenesis supplementing with FGF2 

and 6 days of pseudopregnancy/lactation including polyploidization and milk production induced by EGF, prolactin, 

estrogen and progesterone. 

 

IF staining for the luminal cell marker keratin 8 (K8) and the myoepithelial cell marker keratin 5 

(K5) indicates a near-physiologic cell composition and gland architecture, with a branched 

luminal epithelium supported by myoepithelial cells in mMDOs (Figure 2.24 A; C. M.-C. Li et al., 

2020). Using my previously described image analysis pipeline for the quantitative assessment of 

marker expression and DNA content based on fluorescence intensities from confocal images, I 

examined mMDO cells for various properties. Another student, Sefa Berkay Cayir, whom I 

supervised for his master’s thesis project, assisted during these wet lab experiments. First, I 

investigated the cellular composition of mMDOs based on K8. I assessed the abundance of K8-

positve cells in mMDOs exclusively cultured in MOM for 12 days or MOM for 6 days and PLM for 

another 6 days. To isolate the individual effects of key pregnancy hormones and EGF, each factor 

was selectively omitted from the culture medium in separate cultures. Quantification revealed 

that 66.24 % of organoid cells were K8-positive following treatment with morphogenesis 

medium, indicating a predominance of luminal lineage cells (Figure 2.24 B). Subsequent 

exposure to pregnancy hormones did not significantly alter this composition, with the proportion 

of luminal cells ranging between 63.31 % and 73.07 %, showing no statistically significant 

differences. These data confirm the near-physiologic cell composition in mMDOs (C. M.-C. Li et 

al., 2020) . 
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Figure 2.24 | mMDOs resemble in situ architecture and cell composition. 

(A) IF image of mouse mammary gland-derived organoid (mMDO) stained for the luminal cell marker keratin 8 (K8, 

magenta) and the myoepithelial cell marker keratin 5 (K5, cyan). Scale bar 20 μm. Image acquired by Veronika Lummer. 

(B) Quantification of luminal cells (K8+) in mMDOs treated with morphogenesis medium for 12 days (MOM) or 

morphogenesis medium for 6 days followed by different combinations of hormones in pregnancy-lactation medium 

(PLM) for 6 days. P-values (not shown) between culture conditions were calculated by one-way ANOVA followed by 

Tukey's post hoc test (n = 3 mice) but did not yield values below 0.05. 

 

Next, I addressed the lactating capacities of mMDOs. IF staining of whole-mount mMDOs for the 

human and murine milk protein β-casein, revealed β-casein producing cells and milk storage in 

mMDO lumina (Figure 2.25 A). Quantitative examination of the abundance of β-casein-positive 

cells confirmed the lactogenic effect of prolactin (Figure 2.25 B). Culture conditions lacking 

prolactin failed to induce β-casein expression, whereas all media containing prolactin led to the 

emergence of β-casein–positive cells, with proportions ranging from 1.82 % to 5.46 %. No 

significant differences were observed among the prolactin-containing conditions.	Since no β-

casein–positive cells were detected under prolactin-deficient conditions, a traditional statistical 

test comparing conditions with and without prolactin was not appropriate. Instead, Cohen’s d 

was calculated to assess the effect size, revealing a large effect (Cohen’s d: PLM/MOM = 2.88; 

PLM/PLM -Prl: 2.86). 
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Figure 2.25 | Pregnancy hormones induce lactation in mMDOs. 

(A) IF image of lactating mMDO stained against α-Tubulin (blue) and β-Casein (green). Scale bar 50 μm. (B) 

Quantification of β-Casein-positive cells in mMDOs cultured with MOM for 12 days or MOM for 6 days followed by 

different combinations of hormones in PLM for 6 days. P-values (not shown) between culture conditions were 

calculated by one-way ANOVA followed by Tukey's post hoc test (n = 3 mice) but did not yield values below 0.05 (MOM 

and PLM -Prl were not considered as no β-Casein-positive cells were detected). 

 

By using geminin staining as a proxy for cycling cells in the mMDO culture, I further aimed to 

delineate the effect of different pregnancy hormones on the proliferative capacities 

(Wohlschlegel et al., 2002). Additional staining for β-casein and subsequent analysis of β-

casein–positive and –negative cells revealed a markedly higher proportion of proliferating cells 

among the β-casein–positive fraction (Figure 2.26 A). Since lactating cells under MOM and PLM 

without prolactin conditions did not develop, no statistical test was performed for these 

conditions. In β-casein–negative cells, the proportion of cycling cells remained low across all 

treatments and ranged from 2.69 % to 5.89 %. In contrast, β-casein–positive cells exhibited 

substantially higher proliferation rates, ranging from 22.30 % to 36.62 %. The highest percentage 

of proliferating cells was observed in organoids treated with the complete pregnancy-lactation 

medium. These results indicate a synergistic effect of hormones and factors associated with 

growth of the mammary gland (estrogen, progesterone and EGF) and prolactin – potentially by a 

co-expression of the corresponding receptors or in a paracrine manner. 

By extending the published protocol for lactating mammary gland organoids with additional 

pregnancy hormones, Veronika Lummer observed the occurrence of binucleated polyploid cells, 

which was recorded by us using live-cell imaging of H2B-mCherry/mG mMDOs (Figure 2.26 B). 

Thus, I investigated the amount of polyploid cells under different culture conditions. mMDOs that 
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were not treated with pregnancy-associated hormones showed a low level of polyploid cells 

(5.12 %; Figure 2.26 C). Treatment with pregnancy related hormones led to a notable increase in 

the proportion of polyploid cells across most conditions, with polyploidy reaching up to 15.41 %. 

Although the full pregnancy medium (PLM) did not result in a statistically significant increase in 

polyploid cells compared to the MOM control (p = 0.088), the effect size (Cohen’s d = 2.269) 

indicated that a larger sample size might confirm this effect. Significant increases in polyploid 

cell populations were observed in conditions lacking EGF (PLM -EGF) and progesterone (PLM -

P4). Notably, the hormone combination including prolactin, EGF, and progesterone – but lacking 

estrogen – produced only a minimal increase in polyploid cells (6.06 %). Moreover, both PLM -

EGF and PM -P4 showed significantly higher levels of polyploidy compared to the estrogen-

deficient condition. This result indicates a potential role of estrogen in promoting 

polyploidization of the lactating mammary gland. The polyploidization effect of estrogen can be 

further seen by specifically addressing β-casein-positive cells (Figure 2.26 D). β-casein-negative 

and β-casein-positive cells in the culture condition lacking estrogen did not show a significant 

difference regarding ploidy levels (6.17 % vs 1.85 %). However, all estrogen-containing 

conditions showed significantly elevated polyploidy levels in the β-casein-positive fraction of 

mMDO cells with the complete PLM exhibiting highest levels of 40.15 %. These results support 

the polyploidization effect of estrogen, specifically acting on β-casein-positive cells. Again, such 

effect could be mediated by a co-expression of the prolactin and the estrogen receptors as it has 

been reported for breast cancer cells (Murphy et al., 1984). β-casein-positive cells from complete 

PLM additionally showed a significantly increased polyploid cell number compared to the 

medium conditions lacking EGF. This result is in line with findings from Rios and colleagues who 

identified EGF as a critical factor of mammary gland polyploidization upon pregnancy (Rios et al., 

2016). They additionally identified Aurora kinase A as an important mediator of cytokinesis 

“failure” or omission and binucleation. Given that estrogen has been shown to induce Aurora 

kinase A expression through GATA-3-activation in breast cancer cells, it can be postulated that 

increasing estrogen levels during pregnancy not only promote expansion of the mammary 

luminal cells but also contribute to their polyploidization (S. Jiang et al., 2010). 
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Figure 2.26 | Pregnancy hormones induce polyploidization in mMDOs. 

(A) Comparison of the fraction of cycling (geminin-positive) cells among β-Casein-positive and β-Casein-negative cells 

for different hormone treatments. P-values between β-Casein-positive and β-Casein-negative cells within each 

culture condition were calculated using a two-sided paired Student’s t test. P-values between culture conditions were 

calculated by one-way ANOVA followed by Tukey's post hoc test (n = 3 mice). (B) Image from live-cell microscopy of 

H2B-mCherry/mG mMDOs after adding lactation medium. Yellow boxes highlight regions showing binucleated cells. 

H2B (magenta), mG (cyan). Scale bar 50 μm. Image recorded with assistance from Veronika Lummer. (C) Ploidy 

measurements of mMDOs cultured with MOM for 12 days or MOM for 6 days followed by different combinations of 

hormones in PLM for 6 days. P-values between culture conditions were calculated by one-way ANOVA followed by 

Tukey's post hoc test (n = 3 mice). (D) Comparison of the fraction of polyploid cells among β-Casein-positive and β-

Casein-negative cells for different hormone treatments. P-values between β-Casein-positive and β-Casein-negative 

cells within each culture condition were calculated using a two-sided paired Student’s t test. P-values between culture 

conditions were calculated by one-way ANOVA followed by Tukey's post hoc test (n = 3 mice). 
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2.6.2 Polyploid luminal cells in lactating mammary gland organoids acquire mitotic 

defects and micronuclei 

The original protocol of the lactating mammary gland organoids which served as a template for 

polyploid lactating mMDOs, demonstrated that hormone withdrawal by switching back to MOM 

after the lactation transformation, led to another remodeling mimicking involution. Thus, to 

address the behavior of binucleated/polyploid cells under such conditions Veronika Lummer 

and I performed live-cell imaging of H2B-mCherry/mG mMDOs in a joint effort. Similar to the 

pancreatic acinar cells upon ADM in mADOs, binucleated mMDO cells were capable of 

proliferating, eventually undergoing multipolar mitoses (Figure 2.27 A). Notably, quantification of 

the amount of cycling cells among the β-casein-positive fraction revealed a significantly higher 

amount of polyploid cells that were actively cycling (Figure 2.27 B). On top, IF staining for γH2A.X 

and α-Tubulin revealed binucleated/polyploid cells with micronuclei and pronounced DNA 

damage response (Figure 2.27 C). Image-based quantification of the γH2A.X-high fraction of 

mMDO cells demonstrates a significantly higher proportion of polyploid cells with active DNA 

damage response (Figure 2.27 D). Finally, live-cell imaging of H2B-mCherry/mG mMDOs 

revealed that cells exhibited signs of CIN by undergoing chromatin segregation errors and 

micronuclei accumulation and eventually remained proliferative, as described for the pancreatic 

acinar cells (Figure 2.27 E).  
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Figure 2.27 | Polyploid cells in lactating mMDOs exhibit sings of chromosomal instability. 

(A) Live-cell image series of an H2B-mCherry/mG mMDO after hormone withdrawal showing a dividing binucleated 

cell undergoing multipolar mitosis: H2B (magenta), mG (cyan). Scale bar 20 μm. (B) Quantification of β-Casein-positive 

cycling cells among the diploid and polyploid fraction in d12 mMDOs (6 days MOM + 6 days PLM). P-value was 

calculated using a two-sided paired Student’s t test (n = 3 mice).  (C) Immunofluorescence images of γH2A.X high 

binucleated mMDO cell with micronuclei. DAPI (white), α-Tubulin (cyan), γH2A.X (yellow). Scale bar 10 μm. (D) γH2A.X 

measurement of diploid and polyploid mMDO cells at d12 (6 days MOM + 6 days PLM). P-value was calculated using a 
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two-sided paired Student’s t test (n = 3 mice). (E) Live-cell image series of an H2B-mCherry/mG mMDO after hormone 

withdrawal showing a micronucleated cell undergoing mitosis. Upper row: H2B (magenta), mG (cyan). Bottom row: 

yellow annotation indicated nuclei of interest. Scale bar 20 μm. 

  



 79 

3 Discussion 

3.1 Polyploidy in regenerating glands – a deal with the devil? 

My findings reveal a striking plasticity of binucleated polyploid acinar cells in response to injury, 

offering new insights into pancreatic regeneration and the early stages of tumor initiation. 

Although these cells remain highly quiescent under homeostatic conditions, they gain 

proliferative capacities following injury by undergoing acinar-to-ductal metaplasia (ADM) – a 

pivotal event in both tissue repair and tumorigenesis. Upon ADM, binucleated acinar cells re-

enter the full cell cycle and frequently divide, often producing two, and occasionally three, 

mononucleated daughter cells. This results in a reduction of ploidy and a depletion of the 

binucleated cell population. The generation of more than two daughter cells in a single division 

event is driven by the presence of supernumerary centrosomes, which increases the likelihood 

of forming more than two spindle poles during mitosis. My data show that such multipolar 

divisions are more prevalent in binucleated than in polyploid mononucleated acinar cells, likely 

due to unfavorable centrosomal and nuclear positioning that arises after metaplasia-induced 

cell shrinkage. Moreover, these atypical cell divisions are highly susceptible to mitotic 

segregation errors, often resulting in lagging chromosomes, micronuclei formation, and 

extensive DNA damage – hallmarks of chromosomal instability and key drivers of tumor 

evolution, as exemplified by chromothripsis. 

 

Cell culture experiments previously showed that polyploid cells rapidly eliminate extra 

centrosomes, likely as an adaptive strategy to mitigate the risk of chromosomal segregation 

errors (Baudoin et al., 2020; Bloomfield & Cimini, 2023). This process involves asymmetric 

centrosome clustering, where centrosomes are unequally distributed – for example, one 

centrosome on one pole and three on the other in a tetraploid cell – ultimately giving rise to 

polyploid cells with a single centrosome. These single-centrosome polyploid cells may possess 

a proliferative advantage over their multi-centrosome counterparts due to improved fidelity in 

chromosome segregation. As a result, cells with multiple centrosomes are selectively lost over 

time. Interestingly, similar mechanisms have evolved in polyploid organisms such as the 

allotetraploid Xenopus laevis, which employ strategies to maintain accurate chromatin 

segregation despite increased genomic content (Kubiak Jacek Z.and Prigent, 2012). However, 

this adaptive mechanism appears to be absent during pancreatic development, polyploidization, 

and homeostasis, as binucleated acinar cells continue to retain supernumerary centrosomes. 

This raises the question of whether the absence of mechanisms to reduce excess centrosome 
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numbers in polyploid acinar cells reflects a lack of selective pressure, given that these cells 

typically only divide under extreme conditions. Even if adverse outcomes such as cancer were to 

emerge years later (or within months in mice), the organism might already be beyond 

reproductive age and thus excluded from the inheritable gene pool. Alternatively, the persistence 

of supernumerary centrosomes could represent an adaptive feature that enhances regenerative 

capacity – enabling a rapid proliferative response by producing more than two daughter cells per 

division and introducing genetic variability through potential chromatin segregation errors. Such 

variability could confer regenerative advantages, as suggested by the “ploidy conveyor” model 

proposed for polyploid hepatocytes, which involves dynamic cycles of de- and repolyploidization 

(Duncan et al., 2010). 

 

Interestingly, larger, longer-lived animals tend to have fewer binucleated polyploid pancreatic 

acinar cells, with an inverse correlation observed between cell size and both organismal size and 

lifespan (Anzi et al., 2018; Wollny et al., 2016). In addition, smaller animals like mice exhibit a 

much higher prevalence of polyploid hepatocytes and luminal mammary gland cells during 

lactation – likely reflecting an adaptation to meet greater metabolic demands and to enhance 

regenerative capacity in response to frequent injuries or stress (Donne et al., 2020; Rios et al., 

2016). 

However, while polyploidy is often linked to tumorigenesis due to its association with 

chromosomal instability, it has also been proposed as a tumor-suppressive mechanism, 

especially in the liver, by offering redundancy in tumor suppressor genes like TP53, thereby 

increasing resistance to oncogenic mutations (discussed in more detail in the following section, 

(Y.-H. Lin et al., 2020; S. Zhang et al., 2018)). 

This leads me to a key question: Why have smaller, short-lived animals evolved to widely utilize 

such a seemingly advantageous strategy: boosting metabolism, enhancing regeneration, and 

potentially suppressing tumors through a relatively simple process like endoreplication or 

endomitosis – while larger, long-lived animals like humans, which are also capable of polyploidy, 

employ it far more sparingly? 

This question ties into Peto’s Paradox – the observation that larger animals with vastly more cells 

and longer lifespans, such as elephants and whales, do not exhibit proportionally higher cancer 

rates (Tollis et al., 2017). Proposed explanations include increased tumor suppressor gene 

copies (e.g., elephants have 20 retrocopies of TP53 Callier, 2019), enhanced immune 

surveillance, and reduced rates of cell division. 
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In mammals, the capacity to regenerate often represents a trade-off with tumor suppression 

(Maggiore & Zhu, 2024; Zhuang et al., 2025). While enhanced regeneration relies on stem cell 

activation, proliferation, and resistance to apoptosis, these same features can increase cancer 

risk. Of note, amphibians like axolotls and salamanders, which display both high regenerative 

ability and low tumor incidence, are an exception – and thus a subject of ongoing research (Roy 

& Gatien, 2008; Vieira et al., 2019). 

Based on my findings, I propose that polyploidy represents a similar trade-off. At steady state, 

polyploid secretory cells may offer tumor-suppressive advantages. However, upon injury and 

activation, their division can lead to chromosomal mis-segregation, ploidy reduction, and 

genomic instability – factors that can promote tumorigenesis. In mice, this trade-off skews 

toward regeneration: their short lifespan (~2 years) means that early reproductive success 

outweighs the risks of late-onset cancers. Rapid tissue repair is evolutionarily more valuable than 

long-term tumor suppression. 

In contrast, humans require durable organ function well before sexual maturity. For us, 

maintaining long-term genomic integrity is critical. As a result, we might limit glandular polyploidy 

and instead rely more heavily on diploid regeneration. Of course, polyploidy would represent only 

one facet of tissue-level cancer resistance. While it doesn't fully explain species-level 

differences in cancer incidence, particularly in the context of Peto's Paradox, it may constitute 

one important layer within a broader, multi-tiered system of tumor suppression in long-lived 

organisms. 

 

3.2 Scheduled polyploidy as a potential origin of genomic instability 

As described in the previous section, the polyploid state of a cell has been perceived 

controversially in relation to cancer. While many studies show detrimental effects of extra 

centrosomes, leading to chromatin segregation defects and DNA damage combined with higher 

resilience to undergo apoptosis, other studies propose a buffering effect of the extra copies of 

tumor suppressor genes, facilitating a certain degree of protection against loss of heterozygosity 

which has been primarily proposed for polyploid hepatocytes (H. Lin et al., 2021; Y.-H. Lin et al., 

2020; Matsumoto et al., 2021; Storchova & Pellman, 2004; S. Zhang et al., 2018). However, 

studies about tumor initiation often employ genetically engineered animal models or chemical 

treatments that would affect almost every cell in the corresponding tissues. For instance, 

diethylnitrosamine (DEN) mediated tumor induction leads to DNA alkylation adducts and 

tumorigenesis in hepatocytes (Montesano, 1981). This results in the formation of dozens of 

independent tumor nodules throughout the liver. Considering that DEN is a mutagen directly 
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causing DNA damage, a buffering effect in polyploid cells after high dosage treatment seems 

reasonable. However, “real-world” tumorigenesis is most often not induced by single high 

dosages of a mutagen affecting almost every cell in the organ as it is commonly performed in the 

lab but rather the results of multiple regeneration rounds following multiple or chronic injuries 

over many months and years, counting ageing as a mutagen itself. No matter if a gradual or the 

more recently proposed punctuated equilibrium model is consulted to explain tumor evolution, 

when the question of the origin of a tumor is raised, the cells that show the greatest tendency to 

DNA damage and genetic instability among the known risk factors should be considered 

(Graham & Sottoriva, 2017). Notta et al. proposed for the pancreas, that the traditional view of 

mutation acquisition in a gradual manner does not match clinical observations of pancreatic 

cancer genomes per se (Notta et al., 2016). Thus, they suggested that a significant amount of 

PDACs arise through chromatin segregation error-related catastrophic events, like 

chromothripsis, that induce multiple mutations simultaneously. My data fits these observations 

very well, providing the binucleated polyploid state of an acinar cell as a potential origin for this 

punctuated equilibrium. Of note, the punctuated model of tumor evolution most probably exists 

side-by-side to the gradual one and represents an alternative route to PDAC formation. 

Accordingly, the cell of origin for PDAC might vary from case to case. Besides acinar cells, the 

ductal compartment of the exocrine pancreatic epithelium has been proposed as the origin of 

PDAC and depending on the cell type of origin, the mode of mutation acquisition might vary as 

well (Ferreira et al., 2017). 

 

3.3 How do polyploid secretory cells cope with chromosomal 

instability? 

As my data demonstrates, neither micronucleated primary acinar cells in mADOs nor 

micronucleated primary luminal mammary gland cells in mMDOs are inevitably silenced or killed 

by internal cues. Instead, a subset retains proliferative capacities and further accumulates 

chromosomal instability. So how do these cells manage to deal with CIN? 

Members of the E2F family of transcription factors have been implicated in regulating hepatocyte 

polyploidization by inducing cell cycle arrest in cells harboring extra centrosomes (Sladky et al., 

2020). Since E2F transcription factors were also proposed as regulators for acinar cell ploidy, it 

is likely that the pancreas employs a similar mechanism to control for ploidy levels (Matondo et 

al., 2018). This supports the notion of the binucleated state as a growth endpoint. 
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In polyploid hepatocytes, extra centrosomes lead to PIDDosome-mediated Caspase 2 activation 

leading to p53 dependent cell cycle arrest thus facilitating the prevention of further 

polyploidization (Burigotto et al., 2021; Rizzotto et al., 2024). This system works by the 

accumulation of p53-induced death domain (PIDD) accumulation via ankyrin repeat domain-

containing protein 26 (ANKRD26), a protein associated to centrosomes. PIDD accumulation 

further leads to PIDDosome-assembly, Caspase 2 activation and finally p53 stabilization through 

murine double minute 2 (MDM2) cleavage (Yao et al., 2024). Thus, the more centrosomes a cell 

contains, the stronger the p53 response will be, hence limiting further growth and 

polyploidization. Interestingly, the same signaling axis has been shown to lead to p53-induced 

apoptosis in hematopoietic cell lines (Nalm6, BaF3) cells upon unscheduled polyploidization 

(Rizzotto et al., 2024). As scheduled polyploidization in epithelial glandular cells but also 

cardiomyocytes does not lead to apoptosis but to cell cycle arrest, it is likely that these cells 

exhibit a higher tolerance to p53-associated activity. This effect could also lead to a generally 

increased resilience towards chromosomal instability and DNA damage – eventually even as an 

adaptive mechanism to aid regeneration as discussed in the previous section. Since the 

PIDDosome axis is active in polyploid hepatocytes to limit extensive polyploidization of levels 

higher than 8n, a factor that links p53 to this pathway and the regular DNA damage response 

pathway might be differentially regulated in polyploid secretory cells. Regular DNA damage 

response functions by the detection of damaged sites by kinases such as ATM (double-strand 

breaks) or ATR (single-strand breaks) which phosphorylate H2A.X histones to provide a platform 

for DNA damage repair (Abuetabh et al., 2022). In parallel, ATM/ATR start to phosphorylate p53 

directly or indirectly through checkpoint kinase phosphorylation to prevent p53 from degradation 

by MDM2. Stabilized p53 induces the expression of cell cycle repressors such as p21 (cyclin-

dependent kinase 2 inhibitor) to give the cell enough time to repair the damage. If DNA damage 

repair takes too long, it additionally induces mediators of apoptosis such as p53 upregulated 

modulator of apoptosis (PUMA) and NOXA. However, ATM (responsible for double strand break 

detection), can also phosphorylate MDM2, thereby inhibiting its activity directly (Maya et al., 

2001). Since MDM2 links both centrosome/PIDDosome-mediated and DNA damage-mediated 

cell cycle arrest/apoptosis, it might be worth checking its expression and regulation in polyploid 

exocrine cells. 

Another potentially involved pathway is the cGAS/STING pathway for cytosolic DNA sensing and 

subsequent interferon type I response. Commonly understood as a pathway to detect 

pathogenic DNA to induce inflammation and cell death, repress cell cycle and activate innate 

immunity, studies showed that cGAS can also bind to self-DNA when presented as micronuclei 
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with ruptured envelopes (Mackenzie et al., 2017). Other studies demonstrated that the binding 

of cGAS to self-DNA does not lead to forwarding of the signal to induce an interferon response 

because of the interaction with an acidic patch in the histone H2A-H2B hetero-dimer that inhibits 

its synthase activity (Flynn et al., 2021; Pathare et al., 2020; Takaki et al., 2024). Accordingly, 

mitotic nuclear envelope breakdown does not lead to cGas/STING activation. Yet, the activation 

of the cGAS/STING pathway by small, nucleosome-lacking fragments of DNA, such as small 

extrachromosomal circular DNAs (eccDNA), which can emerge from chromothripsis, is still 

under debate. Interestingly, eccDNA has additionally been shown to activate STING in an cGAS-

independent manner (Wu et al., 2023, 2024). Hence a closer look on the cGAS/STING signaling 

activity in polyploid secretory cells could further shed light on the intricate capacities of these 

cells to withstand chromosomal instability. 

 

3.4 Polyploid luminal cells of the mammary gland and postpartum 

breast cancer 

Postpartum breast cancer (PPBC) is characterized by an increased risk of breast cancer following 

childbirth, with incidence peaking around six years postpartum and remaining elevated 

particularly among women who give birth after the age of 30	 (Albrektsen et al., 2005). While 

polyploid cells in the mammary gland, critical for milk production during pregnancy and 

lactation, have not yet been directly implicated in PPBC, my findings suggest they may play a 

contributory role. Specifically, I observed that polyploid mammary cells retain proliferative 

potential, show signs of mitotic errors, and exhibit elevated DNA damage following exposure to 

pregnancy-associated hormones. Interestingly, polyploid mammary gland cells showed 

increased proliferative capacities compared to their diploid counterparts. This result stands in 

contrast to my data on binucleated cells from the mouse pancreas, where polyploidy evoked 

slightly limited proliferative capacities. These data were collected in vivo (CiP) though, which 

makes comparability difficult. Yet, a potential explanation might be given by a differential 

activation of polyploid cell proliferation levels depending on the strength of the underlying 

causative effect (injury/ADM or involution). Such effects were reported for the liver, where a 

relatively mild injury (30 % partial hepatectomy) did not lead to an activation of polyploid 

hepatocytes and hypertrophy as principal driver of regeneration whereas a severe injury (70 % 

partial hepatectomy) activated binucleated hepatocytes to contribute to regeneration (Miyaoka 

et al., 2012). 
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Notably, estrogen-driven activation of Aurora kinase A, which can induce polyploidization in 

mammary-derived organoids (mMDOs), has also been implicated in breast cancer pathogenesis 

(S. Jiang et al., 2010). These observations support the hypothesis that polyploidization may 

contribute to the development of PPBC. This is further reinforced by recent evidence showing 

that DNA damage during lactation can itself induce polyploidy in mammary gland cells 

(Molinuevo et al., 2024). 

The post-lactation involution process creates a tumor-promoting microenvironment through 

extensive tissue remodeling, epithelial cell apoptosis, immune cell infiltration, and extracellular 

matrix remodeling - conditions that facilitate tumor growth and metastasis (P. Schedin, 2017). 

The inflammation and immune suppression associated with involution resemble wound healing 

and may allow emerging malignant cells to evade immune detection (Clarkson et al., 2000, 2003; 

Hennigar et al., 2015). Polyploid cells are particularly well-suited to survive and adapt within such 

pro-tumorigenic environments, suggesting that polyploidization could enhance susceptibility to 

PPBC by reinforcing these effects(X. Li et al., 2024). 

3.5 Polyploid cells as potential origin for human cancers 

Polyploid cells, while generally genetically buffered under homeostasis, undergo ploidy 

reduction and multipolar divisions during regeneration, which are highly error prone. These 

events often result in lagging chromosomes, micronuclei, and chromothripsis, mechanisms 

known to drive genomic instability and oncogenesis. Despite this, most regenerative events do 

not lead to cancer, suggesting the existence of intrinsic control systems capable of eliminating 

genomically aberrant cells. A strong candidate for such a system is the immune surveillance 

network, particularly natural killer (NK) cells, which are adept at detecting and eliminating 

aneuploid or chromosomally unstable cells (Chan et al., 2014). 

This balance, however, appears fragile. Many chronic disease states, including hepatitis, fatty 

liver disease, and chronic pancreatitis, are characterized by immune compromising or immune 

exhaustion, either by medication or the disease itself (Bosch et al., 2024; Ebrahimi et al., 2023; 

Glaubitz et al., 2023). Additionally, chronic CIN itself, induced by polo-like kinase 1 

overexpression has been shown to facilitate immune evasion by NK cell suppression in a breast 

cancer model (Kandala et al., 2023). Interestingly, polo-like kinase 1 is also a substrate for Aurora 

kinase A, and both have been shown to induce polyploidy in the mammary gland during lactation 

(Rios et al., 2016). 

When immune oversight is diminished, polyploid cells undergoing aberrant mitosis may 

accumulate mutations unchecked, increasing the likelihood of malignant transformation. This 
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model aligns well with epidemiological data: chronic pancreatitis is one of the strongest risk 

factors for pancreatic ductal adenocarcinoma, while chronic liver inflammation significantly 

increases the risk for hepatocellular carcinoma (Campbell et al., 2021; Gandhi et al., 2022). 

Similarly, proliferative phases of the mammary gland during pregnancy and lactation involve 

polyploid alveolar cells, and when paired with inflammatory conditions or hormonal 

dysregulation, may contribute to breast cancer development. 

By contrast, tissues like the skin, which regenerate primarily through diploid progenitor cells and 

exhibit relatively low polyploidy, are less prone to inflammation-driven cancers. Chronic 

inflammatory conditions such as atopic dermatitis or psoriasis, though intense, rarely 

predispose to skin cancer unless coupled with external mutagens such as UV radiation (Crisafulli 

et al., 2021; Wan et al., 2023). This suggests that polyploidy creates a unique vulnerability: the 

tendency to accumulate chromosome segregation errors during regeneration that, under 

immune surveillance failure, can translate into clonal expansion of precancerous cells. 

In essence, polyploidy in regenerating secretory tissues may represent a biological "deal with the 

devil" – an evolutionary compromise where enhanced regenerative plasticity and metabolic 

efficiency are tolerated at the cost of potential genome instability, buffered in healthy states by 

robust immune clearance. When this buffer is weakened by chronic injury or inflammation, the 

risk of transformation sharply rises. This model provides a unifying framework for understanding 

why certain polyploidy-enriched organs are hotspots for inflammation-associated cancers, 

while others remain comparatively resistant. 
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4 Conclusion 
Over a century ago, Theodor Boveri proposed that errors in mitotic chromosome segregation and 

multipolar mitoses could serve as the foundation for cancer development (Boveri, 1902, 1914). 

However, he also argued that for such mechanisms to be causative, they would need to be 

observed not only in malignant but also in premalignant tissues. Despite this early insight, the 

occurrence and relevance of chromosomal instability (CIN) in normal tissues has remained 

largely unexplored. Instead, the field has often taken for granted that CIN is an inevitable feature 

of cancer progression, with many studies focusing on its dramatic consequences such as 

chromothripsis, micronuclei formation, and genomic chaos – without investigating the origin of 

CIN in physiologically normal or regenerative contexts. 

My work addresses this long-standing gap by demonstrating that naturally occurring polyploid 

cells in exocrine glands, such as the pancreas and mammary gland, can serve as a physiological 

source of CIN. These cells, while normally quiescent, retain the capacity to re-enter the cell cycle 

in response to injury or hormonal stimuli. Upon doing so, their supernumerary centrosomes 

predispose them to multipolar mitoses, mitotic errors, and DNA damage, creating a cellular 

environment ripe for CIN and its associated phenomena including micronuclei formation, 

chromothripsis, and potentially tumorigenic clonal expansion. Notably, these cells are often 

resistant to apoptosis and capable of continued proliferation, providing a selective advantage for 

propagation of damaged genomes. Thus, my findings reveal a previously underappreciated 

source of chromosomal instability within normal regenerating tissues, offering a new lens 

through which to understand the earliest steps of tumor initiation – one rooted not only in 

mutation but in tissue architecture, ploidy, and regenerative demand. 

Looking ahead, an important challenge will be to unravel how polyploid cells tolerate or respond 

to CIN, both through intrinsic mechanisms such as the PIDDosome complex, ATM/ATR-mediated 

DNA damage response, and cGAS-STING signaling and through extrinsic factors, including 

interactions with immune surveillance cells, like natural killer cells.  

Indeed, a suppressed or immature immune system may further enable the expansion of these 

CIN-prone cells, contributing to tumor emergence. This could help explain epidemiological 

observations linking cancer risk to chronic inflammation, repetitive tissue injury, and even 

physiological processes like post-lactational involution, where transient immunosuppression 

and tissue remodeling might create a permissive environment for transformation. 

From a broader perspective, understanding how CIN arises in non-malignant tissues opens new 

avenues for preventive medicine – an area of increasing importance as traditional medicine, 

focused on treating disease after onset, approaches its therapeutic limits. By identifying the 
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cellular origins and molecular pathways that permit or suppress CIN under normal conditions, 

we may uncover novel targets for early intervention, long before pathological transformation 

occurs. 

In sum, this work revisits Boveri’s foundational insights through the lens of modern regenerative 

biology, showing that the roots of chromosomal instability – and thus cancer – may lie not only in 

mutation, but in the very cells designed to repair and sustain our tissues. By recognizing the dual 

nature of polyploid cells as both, regenerative agents and potential seeds of instability, we move 

closer to a future where cancer prevention is proactive, targeted, and grounded in the biology of 

normal tissue homeostasis.  
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5 Materials and methods 

5.1 Materials 

5.1.1 Animals 

 

Table 3 | Mouse strains 

Strain Full name Function/Phenotype Source 
C57BL/6N - Wildtype DKFZ Heidelberg, 

Central animal 

laboratory 

H2B-mCherry B6-Gt(ROSA)26Sortm3Sia Constitutive histone 

2B (H2B)-mCherry 

Prof. Dr. Jan 

Ellenberg, EMBL 

Heidelberg 

mG B6-

Gt(ROSA)26Sortm4.1(ACTB-

EGFP)Luo/Amv) 

Constitutive 

membrane-localized 

GFP expression 

Prof. Dr. Takashi 

Hiragi, EMBL 

Heidelberg 

H2B-mCherry/mG B6-Gt(ROSA)26Sortm3.1Sia 

Gt(ROSA)26Sortm4.1(ACTB-

EGFP)Luo/Amv 

Constitutive H2B-

mCherry and 

membrane-localized 

GFP expression 

Crossed from 

H2B-mCherry 

and mG mice at 

DKFZ Heidelberg, 

Central animal 

laboratory 

EGFP-Tuba B6-

Gt(ROSA)26Sortm12.1Sia 

Constitutively EGFP-

α-Tubulin expression 

Prof. Dr. Jan 

Ellenberg, EMBL 

Heidelberg 

Fucci2 B6-Tg(Gt(ROSA)26Sor-

Fucci2)#Sia 

mCherry-hCdt1 

expression in G0/G1 

and mVenus-

hGeminin expression 

in S/G2/M phase 

Dr. Michael 

Milsom, DKFZ 

Heidelberg 
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5.1.2 Chemicals & reagents 

Table 4 | Chemicals, reagents and Kits 

Reagent Supplier 

B27 Serum-Free Supplement Gibco 

Boric acid (H3BO3) Sigma Aldrich 

Bovine Serum Albumin (BSA) Sigma Aldrich 

BrdU (5-Bromo-2’-deoxyuridine) Thermo Fisher 

Calcium chloride (CaCl2) 1M Thermo Fisher 

DAPI (4’,6-diamidino-2-phenylindole) Sigma Aldrich 

Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12) Gibco 

Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12) + 

Gluta- MAX™ 

Gibco 

Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12) 

Gibco with: L-glutamine without: HEPES, phenol red 

Gibco 

Dulbecco’s Phosphate-Buffered Saline (DPBS) Gibco 

Ethylenediaminetetraacetic acid (EDTA) Merck 

Ethanol, absolute Sigma Aldrich 

Fetal Bovine Serum (FBS) 

Biological 

Industries 

Fluoromount G eBioscience 

Gentamicin Reagent Solution Gibco 

Goat Serum Merck 

Hank’s Balanced Salt Solution (HBSS) Gibco 

Hydrogen chloride (HCl) Sigma Aldrich 

Hoechst33342 Invitrogen 

Horse Serum Biochrom 

Insulin-Transferrin-Selenium (ITS-X) Gibco 
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Ketavet Pfizer 

Matrigel®, Growth Factor Reduced Corning 

Magnesium chloride (MgCl2) 1M Thermo Fisher 

N-2 Supplement Gibco 

NextSeq 500/550 Mid Output Kit v2.5 (150 cycles) Illumina 

NP-40 Surfactant-Amps
TM

 Thermo Fisher 

Paraformaldehyde (Roti®-Histofix 4%) Carl Roth 

Penicillin-Streptomycin Gibco 

ProFreeze
TM

-CDM Lonza 

Propidium iodide, 1 mg/ml Thermo Fisher 

RBC Lysis Buffer Invitrogen 

Rompun Bayer 

Sodium Azide (NaN3) Sigma Aldrich 

Sodium chloride (NaCl) 0.9 % Sigma Aldrich 

Sodium chloride (NaCl) 5M RNase-free Thermo Fisher 

Sodium hydroxide (NaOH) Sigma Aldrich 

Sodium tetraborate (Na2B4O7) Sigma Aldrich 

Sucrose Sigma Aldrich 

Tissue-Tek® O.C.T.™ Compound Sakura 

Triton™-X 100 Sigma Aldrich 

TrypLE ™ Express Gibco 

UltraPure
TM

 1M Tris-HCl-Buffer, pH 7.5 Invitrogen 
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Table 5 | Recombinant proteins and hormones 

Protein/Hormone Supplier 

Collagenase A Sigma-Aldrich 

Collagenase Type IV Gibco 

DNAse I Sigma Aldrich 

Dispase® II Sigma Aldrich 

rhEGF Active Biosciences 

β-Estradiol Sigma-Aldrich 

bFGF2 Pelobiotech 

rhFGF2 Miltenyi Biotec 

Progesterone Sigma Aldrich 

Murine Prolactin Peprotech 

 

 

Table 6 | Primary Antibodies 

Antibody Host Dilution Supplier Catalog number 

Anti-α-Amylase Rabbit 1:200 Sigma-Aldrich A8273 

Anti-α-Tubulin Rat 1:500 abcam ab6160 

Anti-β-Casein Mouse 1:200 Santa Cruz sc-166530 

Anti-BrdU Rat 1:100 abcam ab6362 

Anti-Cytokeratin 19 Rat 1:50 Hybridoma Bank Troma III Conc. 

Anti-DCLK1 Rabbit 1:200 Abcepta AP7219B 

Anti-E-Cadherin Rat 1:1000 Thermo Fisher 13-1900 

Anti-γ-H2A.X Mouse 1:200 Novus Biologicals 05-636 

Anti-γ-Tubulin Rabbit 1:200 abcam ab11317 

Anti-Geminin Rabbit 1:500 abcam ab195047 
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Anti-Keratin 5 (K5) Rabbit 1:500 Biolegend 905501 

Anti-Keratin 8 (K8) Mouse 1:500 Biolegend 904805 

Anti-Lamin A/C Mouse 1:200 Cell Signaling 4777S 

Anti-Pericentrin Rabbit 1:100 abcam ab4448 

Anti-Phospho-Histone 3 Rabbit 1:250 Merck 06-570 

 

Table 7: Secondary antibodies 

Antibody Conjugate Dilution Supplier Catalog number 

Anti-Mouse 

Alexa Fluor® 

488 

1:200 Life Technologies A-21202 

Anti-Rabbit 

Alexa Fluor® 

568 

1:200 Life Technologies A-10042 

Anti-Rat 

Alexa 

Fluor®647 

1:200 Life Technologies A-21247 

 

5.1.3 Solutions and media 

Table 8 | Solutions and media 

Solution/Medium Components 

Perfusion Solution 

Ketavet, 5.71 mg/ml 
Rompun 2.80, mg/ml 

in 0.9 % NaCl 

Pancreatic organoid culture (POC) 

medium 

DMEM/F12 supplemented with: B27 Serum-Free 

Supplement (1x) N-2 Supplement (1x) 

20 ng/ml rHu EGF 20 ng/ml rhFGF2 

1% Penicillin-Streptomycin 

Separation Buffer 

0.5 % BSA 

2 mM EDTA in PBS 

Solution D 1 mg/ml Collagenase Type IV in POC1 

Solution R 1 % BSA in PBS 

Solution S 4 % BSA in PBS 

Solution P 0.1 % BSA in PBS 

Solution W 2 % PenStrep in PBS 

Digestion Solution I 

2mg/ml Collagenase A 0.25% Trypsin 

5% FBS 

10 μL/ml Gentamicin in Basal DMEM/F12 

Digestion Solution II 

5 mg/ml Dispase 2 

0.5 mg/ml DNAse 1 in Basal DMEM/F12 

Wash Medium 1 

5% FBS 

in DMEM/F12 + GlutaMAX™ 
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Wash Medium 2 

0.1% FBS 

in PBS 

Basal Mammary Media (BMM) 

500 ml DMEM/F12 + GlutaMAX™ 

5 ml 100X ITS-X 

5 ml 100X Pen-Strep 

Morphogenesis Organoid Medium 

(MOM) 

1X BMM 

45 ng/ml bFGF2 

Pregnancy Organoid Medium 

(PLM) 

1X BMM 

25 ng/ml rhEGF 

40 ng/ml b-Estradiol 

120 ng/ml Progesterone 
120 ng/ml murine Prolactin 

Wash/Block Buffer (WBB) 

150 mg BSA 

1.5 ml Horse Serum 

1.5 ml Goat Serum 

in 27 ml PBS/0.1%TritonX-100 

Nuclei staining buffer (NSB) 

1.0 ml 1 M Tris-HCl, pH 7.5 
308 μl 5 M NaCl 
10 μl 1 M CaCl2 

5 μl 1M MgCl2 

266.5 μl 7.5 % BSA 
100 μl 10 % (vol/vol) NP40 
10 μl 10 mg/ml Hoechst33342 
100 μl 1 mg/ml PI 

Freeze buffer 

425 μl 2x ProFreeze-CDM 
75 μl 100 % DMSO 
500 μl 1x PBS 

0.15 M sodium borate buffer, pH 

8.5 

3.1 g boric acid 

4.75 g sodium tetraborate 

filled to 1000 ml with ddH2O 

 

5.1.4 Devices and equipment 

Table 9 | Devices and equipment 

Category Type / Model Supplier 

Biological Safety Cabinet NU-437-600E Nuaire 

Cell strainer 100μm Corning 

Centrifuge Heraeus® Multifuge™ 3S-R Thermo Fisher 

Cytospin Cytospin 3 Shandon Shandon 

Confocal Microscope A1R Nikon 

Confocal Microscope TCS SP8 Leica 
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Counting chamber Neubauer Improved Brand 

Cryomicrotome CM 1950 Leica 

FACS Sorter FACSAria
TM

 Fusion BD Biosciences 

Flow Cytometer LSR Fortessa
TM

 BD Biosciences 

Graphics processing unit RTX4090 Nvidia Corporation 

Incubator Heracell™ 240i Thermo Fisher 

Lightsheet Microscope InVi-SPIM Luxendo 

Magnetic Stirrer Yellow MAG HS 7 YellowLine 

Microscopy Slides Superfrost® Plus Thermo Fisher 

Microscopy/Cell Culture 

slides 

CELLview™ Greiner Bio-One 

Microscopy/Cell Culture 

slides 

Lab-Tek® Chamber SlideTM 

system 

Thermo Fisher 

Microscopy/Cell Culture 

multiwell plate 

96 Well Sensoplate Greiner Bio-One 

Orbital Mixer Intelli Mixer NeoLab 

PVDF filter 0.2 μm Cytvia 

Scale Secura Sartorius 

Sequencer NextSeq 550 Illumina 
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5.2 Methods 

5.2.1 Animal models 

All animals used in this project were housed under specific pathogen-free conditions at a 12 h 

light dark circle at 22 °C and fed ad libitum. All procedure and experiments were in accordance 

with the German Cancer Research Center (DKFZ) guidelines and approved by the 

Regierungspräsidium Karlsruhe. For this study, C57BL/6N mice are referred to as wild type (WT). 

The following transgenic mouse lines were used: 

• H2B-mCherry (B6-Gt(ROSA)26Sortm3Sia): This mouse line constitutively expresses 

histone 2B (H2B) fused to mCherry, which endogenously labels cell nuclei. 

• mG (B6-Gt(ROSA)26Sortm4.1(ACTB-EGFP)Luo/Amv): The mG construct specifically 

labels plasma membranes by utilizing a modified part of the membrane-bound domain 

of the MARCKS protein fused to GFP. 

• EGFP-Tuba (B6-Gt(ROSA)26Sortm12.1Sia): These mice constitutively express EGFP 

fused to α-Tubulin, labeling microtubule fibers as part of the cytoskeleton as well as the 

mitotic spindle. 

• Fucci2 (B6-Tg(Gt(ROSA)26Sor-Fucci2)#Sia): The Fucci2 mouse model expresses 

mCherry-hCdt1 in G1 and mVenus-hGeminin in S/G2/M phase. 

H2B-mCherry and EGFP-Tuba mouse lines were kindly provided by Dr. Jan Ellenberg (EMBL 

Heidelberg) and the mG mouse line was kindly provided by Dr. Takashi Hiragi (former EMBL 

Heidelberg) and transferred to the DKFZ animal housings via embryo transfer. Fucci2 mice were 

a kind gift from Dr. Michael Milsom (DKFZ Heidelberg). Material transfer agreements with the 

original owners of the mouse lines were conducted. 

R26-H2B-mCherry and mG mice were crossed to generate H2B-mCherry/mG double reporter 

mouse lines. All mice were aged 8-16 weeks when used in experiments. 

 
5.2.2 Cerulein-induced pancreatitis 

Acute pancreatitis in mice was induced using the oligopeptide cerulein (Sigma-Aldrich, C9026) 

in WT mice. Cerulein was dissolved in phosphate-buffered saline (PBS) to a concentration of 5 

μg/ml and administered hourly (50 μg/kg body weight) by 7 intraperitoneal (i.p.) injections on two 

consecutive days (14 injections in total). The day of the last injection was defined as 0 dpi. Three 

replicates of cerulein-treated mice were sacrificed and employed for pancreas extraction at 2 
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dpi, 4 dpi, 28 dpi and 91 dpi, respectively. To control for injection-induced injuries, three WT mice 

were i.p.-injected with comparable volumes of 0.9 % NaCl and otherwise treated identically. 

 

5.2.3 Mouse pancreas extraction 

To obtain pancreatic tissue, mice were anesthetized by an i.p. injection of 700 µl – 800 µl Ketavet 

(5.71 mg/ml)/Rompun (2.80 mg/ml) in 0.9 % NaCl. Blood cells were cleared out by a left-

ventricular perfusion using 20 ml Hank’s balanced salt solution (HBSS). In case of tissue fixation 

for cryo-sectioning, perfusion was continued with another 20 ml of 4 % Roti-Histofix (Carl Roth). 

The pancreas was exposed by opening the abdominal cavity via a mid-abdominal vertical 

incision. Pancreatic tissue was extracted and attached adipose tissue was removed, if 

necessary. Until further usage, pancreatic tissue was kept in PBS on ice. 

 

5.2.4 Mouse acinar-derived organoid culture 

The following solutions were prepared and sterile-filtered: S (4 % bovine serum albumin (BSA) in 

PBS), R (1 % BSA in PBS), D (1 mg/ml Collagenase IV in 0.25 % BSA in PBS) and W (2 % Penicillin-

Streptomycin in PBS). Pancreatic tissue was extracted and collected in 10 ml solution W on ice. 

The tissue was separated from remaining fat and rinsed once more in 10 ml solution W. The tissue 

was then minced into small pieces with a volume of approximately 1 mm
3
. Tissue pieces were 

collected, rinsed in 10 ml solution W and then digested in solution D for 30 min at 37 °C and 5 % 

CO2. Every 5 min, the suspension was pipetted up and down using serological pipettes (5 ml) to 

further facilitate dissociation. The digestion product was filtered through a 100 µm cell strainer 

to remove pancreatic islets and the cell strainer was rinsed with 10 ml Solution R. Four 

centrifugation tubes (15 ml) were prepared, each containing 6 ml of Solution C. For each tube, 5 

ml of the filtered cell suspension were gently transferred on top to achieve a BSA gradient by layer 

separation. Acini were isolated by a single centrifugation step at 50 x g and 4 °C for 2 min. The 

supernatants were, removed and the pellets were resuspended and washed with Solutions C and 

I, successively (50 x g, 4 °C for 2 min). After the last washing step, the pellets were resuspended 

in 500 µl Pancreatic organoid culture (POC) medium (1:1 DMEM/F12 + GlutaMAX
TM

 2 % (v/v) B27 

serum free supplement, 1 % (v/v) N2 supplement, 1 % penicillin-streptomycin, 2 mM L-glutamine 

20 ng/ml rhEGF, 20 ng/ml rhFGF2) each and pooled. At this point, acinar cells build clusters of 

approximately 4-10 cells per cluster. Since cell-cell contacts facilitate organoid formation for 

this cell type, no further dissociation steps were performed. Acinar cells were counted and mixed 

with ice cold unpolymerized Matrigel® according to a density of 250 cells/µl. For 3D organoid 

culture, a 20 µl-droplet of this mixture was placed in each well of the respective cell culture 



 98 

dishes and incubated for 20 min at 37 °C and 5 % CO2 to facilitate Matrigel® polymerization, 

before POC medium was added. Acinar cells were cultured at 37 °C and 5 % CO2 in either 24-well 

plastic plates for fixed-cell imaging experiments and Strand-seq, 10-well CELLview
TM

 Slides 

(Greiner Bio-One) for confocal live-cell imaging or Luxendo TruLife dishes for light sheet live-cell 

imaging. The time point of cell seeding in Matrigel® was defined as day 0 (d0). 

 

5.2.5 Mouse mammary gland extraction 

Female animals were euthanized via cervical dislocation. Following sacrifice, the 

mice were pinned in supine position and the ventral area was disinfected with 70% ethanol. A 

nick was cut above the pubis with small surgical scissors and continued towards the thoracic 

nipples. Then, two lateral incisions were made, and the skin was peeled to reveal the inguinal 

mammary fat pads. For thoracic pads, the same procedure was repeated in the thoracic area. To 

remove the fat pads, they were squeezed and pulled with the forceps while making small 

incisions to remove them from the skin. Lastly, collected mammary glands were washed in 1x 

cold PBS and transferred to a 50 mL tube containing 1x Dulbecco’s Modified Eagle 

Medium/Nutrient Mixture F-12 (DMEM/F12 (1:1) + GlutaMAX™) at room temperature (RT). 

 

5.2.6 Mouse mammary gland derived organoid culture 

The protocol for mouse mammary gland derived organoids was adapted from  

After extraction, glands were quickly rinsed in 1x DPBS and transferred to a 100 mm petri dish for 

mincing with 2 sterile disposable scalpels. Then, minced mammary tissue was transferred to a 

50 mL falcon containing 10 mL of pre-warmed digestion medium I (2 mg/ml Collagenase A, 0.25 

% trypsin, 5 % fetal bovine serum (FBS), 10 μg/ml gentamicin in 1:1 DMEM/F12 + GlutaMAX
TM

) and 

incubated on an orbital shaker at 200 rpm at 37 °C for 40 min. After digestion, the tube was briefly 

vortexed and the content was transferred to a 15 mL falcon, which was centrifuged at 450 x g for 

10 min. Resulting fat layer contains trapped mammary cells inside, so together with the 

supernatant it was taken to a new falcon and pipetted up-down to release the epithelial cells 

from the fat. The fat mixture was centrifuged again, and the pellet was combined with the main 

pellet to maximize the yield. The combined pellet was resuspended in 5 mL wash medium I (5 % 

FBS in 1:1 DMEM/F12 + GlutaMAX
TM

) and inverted 5-6 times, followed by centrifugation for 5 min 

at 450 x g. The supernatant was discarded, and the pellet was resuspended with red blood cell 

lysis buffer (RBC) and incubated for 1 min at RT to get rid of red blood cells. After the incubation, 

8 mL PBS/1%FBS was added into the tube, and it was centrifuged for 2 min at 200 x g. The 

supernatant was aspirated, and the pellet was resuspended with 4 mL pre-warmed digestion 
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medium II (5 mg/ml Dispase 2, 0.5 mg/ml DNAse I in 1:1 DMEM/F12 + GlutaMAX
TM

). The cells were 

incubated in digestion medium II for 5 min in a 37 °C water bath. 6 mL wash medium II (0.1 % FBS 

in PBS) was added to stop the reaction. Then the tube was centrifuged at 450 x g for 5 min and 

the pellet was resuspended in 1 mL Morphogenesis Organoid Medium (MOM, 1:1 DMEM/F12 + 

GlutaMAX
TM 

supplemented with 1 % (v/v) ITS-X, 2 %, 1 % penicillin-streptomycin, 45 ng/ml 

rhFGF2). Freshly isolated primary mammary epithelial cells were mixed with growth factor 

reduced Matrigel® and plated in domes in 8 µL Matrigel® pre-coated 24-well culture 

plates for fixed-cell experiments or 10-well CELLview
TM

 Slides (Greiner Bio-One) for live-cell 

imaging (one dome per well, 20 µL of Matrigel® per dome, ~1500 organoids per dome) to increase 

the stability of the domes. After the Matrigel® polymerization in upside down position for 35 min 

at 37 °C, the 3D organoid cultures were covered with pre-warmed MOM and incubated at 37 °C 

in 5% CO2 incubator. Fresh media change was done once in every 2 days periodically, all media 

were prepared freshly every time. For the experiments, the organoids were cultured in MOM for 6 

days, followed by either another 6 days in MOM, 6 days in Pregnancy-Lactation Medium (PLM) or 

6 days in PLM lacking one of the factors E2, P4, Prl and EGF. 

 

5.2.7 Fixation and single-cell dissociation for mADOs and mMDOs 

At given time points, mADO and mMDO cultures were dissociated using TrypLE
TM

 for 20-30 min 

with visual validation of dissociation under the microscope. After dissociation, single cells were 

washed once in PBS and fixed for 15 min in 4 % PFA for further usage. 

 

5.2.8 In vivo BrdU-assay 

BrdU (15 mg/ml in 0.9 % NaCl) was administered i.p. according to 150 mg/kg body weight to three 

C57BL/6N WT mice at 1 dpi after cerulein-induced pancreatitis. Mice were sacrificed and 

pancreas tissue was extracted at 91 dpi. 

 

5.2.9 In vitro BrdU-assay 

mADOs from one C57BL/6N WT mouse were cultured in 24-well plates as described above. 

Starting at 0 h after cell plating, BrdU was added to POC medium to a final concentration of 10 

μM for three wells. After 2 h incubation the cells from these three wells were dissociated and 

fixed and BrdU was added to another three wells. This procedure was followed 24 h 

consecutively. 
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5.2.10 Immunohistochemistry (IHC) staining 

After extraction, pancreatic tissue was post-fixed in 4 % PFA for 2 h at 4 ◦C. For tissue 

dehydration, the pancreas was immersed in 30 % sucrose in PBS and incubated at 4 °C until it 

settling to the bottom of the vial. The tissue was embedded in Tissue-Tek® O.C.T.
TM

 Compound 

and stored at −80 °C. Prior to antibody staining, the tissue was cut into sections of 20 µm 

thickness using a cryomicrotome (−20 °C) and applied to microscope slides (Superfrost®Plus, 

Thermo Fisher). The tissue was incubated in PBS at RT until the surrounding Tissue-Tek® O.C.T.
TM

 

Compound was completely removed. Tissue sections were bordered using a hydrophobic pen. 

In case of BrdU staining, tissue sections were incubated in 2 M HCl for 30 min at 37 °C followed 

by neutralization with 0.15 M sodium borate buffer for 30 min at RT and three times washing in 

PBS for 5 min at RT. For permeabilization, the tissue was incubated in 0.1 % Triton
TM

-X 100 in PBS 

for 30 min at RT. Blocking was performed by incubation in wash/block buffer (0.1 % Triton
TM

-X 100 

in PBS) for 1 h at RT. Primary antibodies were diluted in wash/block buffer according to Table S1 

and applied to the tissue sections for primary staining over night at 4 °C. Afterwards, the tissue 

was washed three times with wash/block buffer for 5 min at RT. Secondary antibodies were 

diluted in wash/block buffer according to Table S1. Tissue sections were incubated in secondary 

antibody solution for 1 h at RT. After washing three times in wash/block buffer for 5 min at RT, the 

tissue was mounted using Fluoromount G, with DAPI (4’,6’-diamidino-2-phenylindole) and 

stored at 4 °C until data acquisition. For BrdU staining, DNA hydrolysis was performed before 

permeabilization using 2M HCl for 30 min at 37 °C. HCl was neutralized using 0.15 M borate buffer 

for 30 min at RT. The tissue was washed three times for 5 min in PBS before continuation with the 

standard IHC protocol. 

 

5.2.11 Immunocytochemistry (ICC) staining 

After dissociation and fixation at given time points, single mADO and mMDO cells were fixed on 

microscopy slides by Cytospin
TM

 centrifugation (10 min at 8000 rpm). Cell areas were bordered 

using a hydrophobic pen. For permeabilization, cells were incubated in 0.1 % Triton
TM

-X 100 in 

PBS for 30 min at RT. Blocking was performed by incubation in wash/block buffer for 1 h at RT. 

Primary antibodies were diluted in wash/block buffer according to Table S1 and applied to the 

tissue sections for primary staining over night at 4 °C. Afterwards, the cells were washed three 

times with wash/block buffer for 5 min at RT. Secondary antibodies were diluted in wash/block 

buffer according to Table S1. Cells were incubated in secondary antibody solution for 1 h at RT. 

After washing three times in wash/block buffer for 5 min at RT, cells were mounted using 

Fluoromount G, with DAPI (4’,6’-diamidino-2-phenylindole) and stored at 4 °C until data 
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acquisition. For BrdU staining, DNA hydrolysis was performed before permeabilization using 2M 

HCl for 30 min at 37 °C. HCl was neutralized using 0.15 M borate buffer for 30 min at RT. Cells 

were washed three times for 5 min in PBS before continuation with the standard IHC protocol. 

 

5.2.12 Fixed-sample confocal imaging 

IHC/ICC-stained tissue sections and cells were imaged as xyz stacks using a Leica TCS SP8 

confocal microscope. The %' resolution was set to 1024 x 1024 pixels at a line frequency of 200 

Hz (tissue sections) or 400 Hz (Cytospin
TM

 slides) and a z-step size of 2 µm (∆z = 2 µm). Tunable 

spectral photomultiplier tubes were used as detectors. Images were acquired using a 40x 

immersion oil-based objective (Leica 40x Plan Apo NA 1.30). The following laser and filter setup 

was used to image fixed samples: 

 

Table 10 | Optical setup for fixed-sample imaging. 

Fluorophore Excitation wavelength Detection filter 

DAPI UV-diode (405 nm) 412 nm – 489 nm 

Alexa Fluor® 488 Laser (488 nm) 504 nm – 543 nm 

Alexa Fluor® 568 Laser (552 nm) 575 nm – 622 nm 

Alexa Fluor® 647 Laser (638 nm) 641 nm – 763 nm 

 

 

5.2.13 Live-cell imaging 

Time-lapse imaging of mADOs and mMDOs was performed using a Nikon A1R confocal 

microscope as well as a Luxendo InVi SPIM light sheet microscope (long-term imaging for lineage 

tree reconstruction of mADOs only). Live-cell imaging using a Nikon A1R confocal microscope 

was performed with a 20x air objective (Nikon 20x Plan Apo λ NA 0.75) at z-step sizes of ∆z = 2 

µm. The %' resolution was set to 1024 x 1024 pixels at a line frequency of 200 Hz. Light sheet 

imaging using a Luxendo InVi SPIM was performed with a 10x illumination objective (10x CFI Plan 

Fl NA 0.3) and a 25x detection objective (Nikon 25x CFI Apo NA 1.1) at ∆z = 1 µm and 2048 x 2048 

pixels (∆x = 204 nm, ∆y = 204 nm). The light sheet diameter was set to 1.7 µm. 

Double-fluorescent H2B-mCherry/mG mice were used to detect single cells within organoids 

and to determine the number of nuclei per cell as well as NEB to anaphase durations. EGFP-Tuba 

mice were used to visualize spindle formations in mADOs to quantify and characterize multipolar 

division events. Time periods of imaging ranged from 8 h to 84 h depending on the experiment at 
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a temporal resolution of 6 frames per hour (∆t = 10 min). The following laser and filter setup was 

used to image live cell samples imaged by Nikon A1R: 

Table 11 | Optical setup for live-cell imaging (Nikon A1R). 

Fluorophore Excitation Wavelength Detection filter 

GFP/EGFP Laser (488 nm) 500 nm – 550 nm 

mCherry Laser (561 nm) 600 nm – 650 nm 

 

The following laser and filter setup was used to image live cell samples imaged by Luxendo InVi 

SPIM: 

Table 12 | Optical setup for live-cell imaging (Luxendo InVi SPIM). 

Fluorophore Excitation Wavelength Detection filter 

GFP Laser (488 nm) 497 nm – 554 nm 

mCherry Laser (561 nm) 610 nm – 651 nm 

 

 

5.2.14 Manual quantitative image analysis 

Manual cell counting was performed for all experiments involving the analysis of tissue sections 

using the built-in Cellcounter tool in Fiji ImageJ (v2.14.0/1.54f). This includes the quantification 

of mononucleated and binucleated cells as well as CK19-, pHH3- and DCLK1-positive. 

Additionally, the quantification of amylase-expressing cells in mADOs was performed likewise. 

Manual image annotations for visualization purposes were drawn using Napari (v0.4.18) or 

Inkscape (v1.3.2). NEB to anaphase durations were determined by visual frame-to-frame 

inspection and quantification of time lapse movies of H2B-mCherry/mG mADOs using Fiji ImageJ 

(v2.14.0/1.54f). Bipolar and multipolar divisions in mADOs were assessed by screening EGFP-

Tuba time-lapse movies for the corresponding type of division using Fiji ImageJ (v2.14.0/1.54f). 

The nuclear orientation axis of binucleated cells before bipolar or multipolar division was 

assessed by manually annotating and measuring the cell’s long and short axes in the last time 

frame before NEB becomes visible using Fiji ImageJ (v2.14.0/1.54f). 

For the lineage tree reconstruction from long-term live-cell imaging experiment, raw data was 

cropped using the Fiji plugin BigDataProcessor2 (v1.7.1). Cropped images were subjected to 

denoising via Noise2Void (v0.3.3, https://github.com/juglab/n2v) and deconvolution via flowdec 

(v1.1.0, https://github.com/hammerlab/flowdec). After conversion to BigDataViewer (v6.3.0) 

xml/h5 files, the lineage tree was reconstructed using Mastodon (v1.0.0-beta-30).  

 

https://github.com/juglab/n2v
https://github.com/hammerlab/flowdec
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5.2.15 Automated quantitative image analysis 

Dissociated organoids were fixed and adhered to microscopy slides using Cytospin and cells 

were subsequently stained for α-tubulin, geminin, γH2A.X, and nuclei using DAPI as described 

previously. Alpha-tubulin staining enabled the segmentation of cell bodies, while geminin was 

used to identify cells in G2/M (exhibiting doubled DNA content) for exclusion from further 

analysis, and γH2A.X to detect DNA damage; DAPI staining provided a measure of DNA content. 

Confocal images were exported as both maximum and sum intensity projections for each of the 

four channels using Fiji/ImageJ (v2.14.0/1.54f). The maximum projection of the alpha-tubulin 

channel was employed for instance segmentation with Cellpose (v2.2.3), whose “Cyto 2” model 

was fine-tuned on a subset of α-tubulin images. For each segmented object, features including 

area and perimeter (derived from the masked labels) and the median and integrated pixel 

intensities for DAPI, γH2A.X, and geminin (obtained from the masked sum intensity projections) 

were extracted using numpy (v1.24.3) and scikit-image (v0.21.0). Corrected total cellular 

fluorescence (CTCF) and corrected mean cellular fluorescence (CMnCF) values were then 

calculated for each channel by subtracting the background fluorescence intensity (I!"#$%&'()*
+),-%&",-*

, 

I!"#$%&'()*.-")
) value multiplied with area of each object (A) from the object’s mean and integrated 

fluorescence intensities (I'!/-#,
+),-%&",-*

, I'!/-#,.-")
)  respectively: 

 

2324	 = 	 "012345675389:53; − "1:4<890=7;675389:53; ∙ 8 

 

239:4	 = 	 "012345>3:7 − "1:4<890=7;>3:7 ∙ 8 

 

Each objects circularity was calculated using the objects area and perimeter (P) according to: 

C	=	4π	∙ AP 

Area and circularity were used to flag mis-segmented objects (e.g., doublets or cells at image 

borders). Subsequent analyses focused on DAPI CTCF and geminin and γH2A.X CMnCF, with the 

corresponding histograms scaled between 0 and 100 and smoothed via a Gaussian smoothing 

algorithm. For each channel, the largest peak was detected (local maximum approach via 

scipy.signal.find_peaks (v1.10.1)) and defined as diploid (2n) for DAPI, G0/G1 for geminin, and 

γH2A.X low for γH2A.X – an assumption verified by visual inspection. After Gaussian fitting 

around the largest peak with the peak center as an initial guess for the mean, the histograms 

were normalized according to the fitted mean of the normal distribution. In case of DNA content 

via DAPI CTCF, the values were additionally multiplied by the factor 2 to enable readability as 
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ploidy values. Normalized fluorescence thresholds were established as follows: DAPI CTCF 

values of 1.5–2.5 (diploid), 3.5–4.5 (tetraploid), and >4.5 (higher polyploidy). For the normalized 

geminin and γH2A.X values the thresholds were selected using the Dash app as presented in 

section 2.4.3 by plotting the corresponding CMnCF fluorescence intensity values against the 

normalized DAPI CTCF. To assess micronuclei presence and determine nuclear number, the 

maximum projection of the DAPI channel was cropped for each cell, based on the α-tubulin 

segmentation label, generating individual 90x90 pixels-sized cell patches. A classifier built on an 

ImageNet pre-trained EfficientNet B1 convolutional neural network (CNN) using Tensorflow 

(v2.13.0) was re-trained for 200 epochs on 1985 labeled images with a validation split of 0.2 and 

at a learning rate of 10
-5

 using an Nvidia RTX 4090 GPU, to categorize each cell patch into one of 

5 classes (“mononucleated”, “binucleated”, “mononucleated micronucleated”, “binucleated 

micronucleated”, and “no cell” - representing mis-segmentation or debris):  

 

 base_model = tf.keras.applications.EfficientNetB1(include_top=False, 

                   input_shape = (90,90,3), 

                   pooling = 'avg', 

                   weights = 'imagenet') 

 

The training data was augmented using a random flip in horizontal and vertical orientations, 

random rotation as well as random contrast. The batch size was set to 16. The last 24 layers were 

additionally unfrozen to enable feature leaning from high-level features. The top of the 

architecture was complemented by adding a flatten layer, a dense layer with 500 neuron (ReLu 

activation) and another dense layer with 5 neurons (Softmax activation) for class output. The final 

model consisted of 7233676 parameters. For the loss function, Sparse categorical cross entropy 

was used. The model performance was tracked by validation loss and best weights were saved. 

The model performance was tested on test set consisting of 396 images from all 5 classes. The 

model performance was assessed by precision (positive predictive value), recall (sensitivity) and 

F1-score (harmonic mean of precision and recall). 

The resulting cell classification was integrated with the extracted features for downstream 

analysis. Full code for the image analysis pipeline is available at 

https://github.com/janbrunken/PloidyAnalysis_2D. In case of changes to the repository, all 

source code is of course also available upon request. 

All classification results that went into the final quantifications were assessed by visual 

inspection of the classified image patches and manually corrected if necessary. 

For the data analysis and visualization app development, Plotly Dash (v2.15.0) was used. 

https://github.com/janbrunken/PloidyAnalysis_2D
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5.2.16 Fluorescence-activated cell sorting (FACS) for Strand-seq 

mADOs generated from Fucci2 mice were cultured in POC medium as described above. BrdU 

was added to the medium at 40 μM and incubated for 40 h. At d9, the cells were dissociated into 

single cells as described above. An initial sorting step was performed with intact cells to exclude 

G2 (mVenus
+
) cells and enrich for G0/G1 (mCherry

+
). At this, single cells were sorted into nuclei 

staining buffer containing Hoechst33258 and propidium iodide (PI) as described by the author of 

the Strand-seq protocol (Sanders et al., 2017). After cell lysis, nuclei were sorted by 

Hoechst33258 signal to detect BrdU incorporation and PI signal to distinguish different DNA 

contents of nuclei (see Fig. S4a). For further details regarding the selection process of sorting 

gates, I refer to the original Strand-seq protocol (Sanders et al., 2017). Single BrdU-containing 

nuclei were sorted into 96-well plates containing 5 μl freeze buffer (42.5 % (v/v) 2x Profreeze-

CDM, 7.5 % DMSO (v/v), 50 % (v/v) PBS) and stored at -80 °C until further processing. 

 

5.2.17 Strand-seq 

Strand-seq was used to detect structural variants in mADO cultures. The library preparation of 

sorted nuclei was performed by Katharina Bauer according to the original protocol as described 

in (Sanders et al., 2017). Sequencing was performed using a NextSeq 550 sequencing system 

using a NextSeq 500/550 Mid Output Kit v2.5 (150 cycles) according to the manufacturers 

instructions. 

 

5.2.18 Processing and analysis of Strand-seq data 

Processing and analysis of the Strand-seq data was performed by Enrico Frigoli. Raw sequencing 

files were processed using the MosaiCatcher pipeline (v2.3.5, (Weber et al., 2023)) to align reads 

on mm10 genome, filter low quality cells, and obtain raw read counts at 200kb genomic bins. The 

strandtools package (https://git.embl.de/cosenza/strandtools) was then used to normalize 

binned counts and to generate, in addition to custom python code, coverage track plots. 

For each genomic bin, the number of reads aligned to each strand defined the Watson Fraction 

(WF), that is, the number of reads aligned to the Watson strand over the total number of reads 

(sequencing depth) for each bin. For the ploidy of each nucleus, the presence of SVs was 

assessed by visually inspecting WFs and normalized total counts across each chromosome in 

each high-quality nucleus. 

 

 

https://git.embl.de/cosenza/strandtools
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5.2.19 Statistical analysis 

Statistical analyses were performed using scipy (v1.10.1). P-values less that 0.05 are considered 

as statistically significant. Comparisons between two groups were performed using a paired 

Student’s t test in case of paired biological replicates or an unpaired Student’s t test in case of 

unpaired biological replicates. Comparisons between more than two groups were performed 

using analysis of variance (ANOVA) followed by a Tukey’s post hoc test. Cohen’s d values were 

calculated using numpy (v1.23.5) according to: 

 

d	=	 µ?-µ@
Bs?@+s@@2

 

 

with µ? and µ@ as the mean values of group 1 and 2 and s? and  s@ as their corresponding standard 

deviations. 

 

5.2.20 Plotting 

Graph visualization apart from Strand-seq was done using Plotly (v5.17.0). For box plots shown 

in this thesis, whiskers represent minimum and maximum values, the box covers the data 

between the q1 and q3 quartiles, the horizontal line represents the median and the dashed 

horizontal line represents the mean. Each data point is shown separately. 

Figures were prepared using Inkscape (v1.3.2).  
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6 Appendix 

6.1 Statistical analysis output 

 

Statistical analyses were performed using scipy (v1.10.1). Note that the hormones estrogen (E2) 

and progesterone (P4) are labeled as E2 and P4 in the statistical analysis, respectively. 

 

Figure 2.1 C: Nuclear number in vivo 
 
Statistical analysis of the nuclear number in vivo was performed using one-way ANOVA followed by 
Tukey's post hoc test.  
 
F_onewayResult(statistic=64.10323603339648, pvalue=4.3308487198860804e-07) 
 
 Multiple Comparison of Means - Tukey HSD, FWER=0.05  
============================================================= 
group1 group2 meandiff p-adj lower  upper  reject 
-------------------------------------------------------------------------------------------- 
 2 dpi 28 dpi -0.9433  0.9492 -5.3086  3.422    False 
 2 dpi  4 dpi -7.6533  0.0013 -12.0186   -3.288     True 
 2 dpi 91 dpi 7.8267  0.0011 3.4614    12.192     True 
 2 dpi  naïve 11.2633 0.0001 6.898   15.6286    True 
28 dpi  4 dpi -6.71   0.0035 -11.0753  -2.3447    True 
28 dpi 91 dpi 8.77  0.0004 4.4047   13.1353    True 
28 dpi  naïve 12.2067 0.0    7.8414    16.572    True 
 4 dpi 91 dpi 15.48  0.0   11.1147  19.8453    True 
 4 dpi  naïve 18.9167 0.0   14.5514   23.282    True 
91 dpi  naïve 3.4367  0.1456  -0.9286    7.802    False 
-------------------------------------------------------------------------------------------- 
 
Descriptive Statistics 
naïve: min=41.96, max=44.44, mean=43.13666666666666, std=1.244842694212136, n=3 
2 dpi: min=29.89, max=34.23, mean=31.873333333333335, std=2.1939538129444123, n=3 
4 dpi: min=23.58, max=24.95, mean=24.22, std=0.6894200461257278, n=3 
28 dpi: min=29.53, max=32.1, mean=30.930000000000003, std=1.3003461077728498, n=3 
91 dpi: min=38.07, max=42.15, mean=39.699999999999996, std=2.1600694433281524, n=3 
 
Figure 2.2 B: Amylase kinetics 
 
Statistical analysis of the amylase kinetics was performed using one-way ANOVA followed by Tukey's 
post hoc test. 
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Multiple Comparison of Means - Tukey HSD, FWER=0.05   
============================================================== 
group1 group2 meandiff p-adj lower   upper  reject 
--------------------------------------------------------------------------------------------- 
d0 d1   -1.5567  0.9935 -14.2449 11.1315   False 
d0    d3    -12.68   0.0502 -25.3682    0.0082    False 
d0     d6  -70.7433 0.0  -83.4315  -58.0551    True 
d0      d10  -95.3333  0.0 -108.0215  -82.6451    True 
d1     d3  -11.1233 0.0935 -23.8115    1.5649    False 
d1    d6  -69.1867     0.0  -81.8749  -56.4985    True 
d1  d10  -93.7767     0.0  -106.4649  -81.0885    True 
d3    d6  -58.0633     0.0   -70.7515  -45.3751    True 
d3      d10  -82.6533    0.0   -95.3415  -69.9651    True 
d6    d10    -24.59   0.0006  -37.2782  -11.9018    True 
--------------------------------------------------------------------------------------------- 
 
Descriptive statistics 
d0: min=97.62, max=99.93, mean=98.62333333333333, std=1.184497080339728, n=3 
d1: min=95.5, max=99.16, mean=97.06666666666666, std=1.885983386282425, n=3 
d3: min=82.54, max=88.96, mean=85.94333333333333, std=3.227418989429989, n=3 
d6: min=17.69, max=36.84, mean=27.88, std=9.63406975270576, n=3 
d10: min=1.9, max=5.34, mean=3.2899999999999996, std=1.8124844826921969, n=3 
 
Figure 2.2 C: Ploidy kinetics in vitro 
 
 1. Compare Polyploid vs Binucleated at each time point using paired t-test. 
 
d0: Paired t-test between Binucleated & Polyploid: p-value = 0.1091 
d5: Paired t-test between Binucleated & Polyploid: p-value = 0.0206 
d13: Paired t-test between Binucleated & Polyploid: p-value = 0.0022 
 
2. Compare changes over time for Binucleated and Polyploid using Repeated Measures ANOVA for 
normally distributed data 
 
Repeated Measures ANOVA for Binucleated Cells: 
              Anova 
================================================= 
     F Value   Num DF  Den  DF  Pr > F 
------------------------------------------------------------------------- 
day 152.7068  2.0000   4.0000   0.0002 
================================================= 
 
Repeated Measures ANOVA for Polyploid Cells: 
             Anova 
================================================= 
     F Value   Num DF  Den DF   Pr > F 
------------------------------------------------------------------------- 
day  10.9743  2.0000   4.0000   0.0238 
================================================= 
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Post-hoc comparisons (pairwise comparisons across time points) 
 
Post-hoc pairwise comparisons for Binucleated: 
 Multiple Comparison of Means - Tukey HSD, FWER=0.05   
=================================================================== 
group1  group2  meandiff  p-adj     lower      upper     reject 
----------------------------------------------------------------------------------------------------- 
d0       d5  -20.3433  0.0001   -26.4558  -14.2308    True 
d0      d13  -27.0067     0.0   -33.1192  -20.8942    True 
d5      d13   -6.6633  0.0357   -12.7758   -0.5508    True 
----------------------------------------------------------------------------------------------------- 
 
 
 
 
Post-hoc pairwise comparisons for Polyploid: 
 Multiple Comparison of Means - Tukey HSD, FWER=0.05  
=================================================================== 
group1  group2  meandiff  p-adj     lower      upper    reject 
----------------------------------------------------------------------------------------------------- 
d0       d5   -7.2467   0.0422   -14.182  -0.3113    True 
d0      d13    -11.95   0.0045   -18.8854  -5.0146    True 
d5      d13   -4.7033  0.1742   -11.6387    2.232    False 
----------------------------------------------------------------------------------------------------- 
 
Descriptive statistics 
Descriptive statistics for Binucleated: 
d0: min=37.55, max=42.27, mean=39.98, std=2.363112354502006, n=3 
d5: min=17.75, max=22.24, mean=19.636666666666667, std=2.329213028757423, n=3 
d13: min=9.98, max=14.83, mean=12.973333333333334, std=2.6171804166570807, n=3 
 
Descriptive statistics for Polyploid: 
d0: min=38.19, max=45.5, mean=42.199999999999996, std=3.706359399734463, n=3 
d5: min=33.43, max=37.77, mean=34.95333333333333, std=2.4420141959729365, n=3 
d13: min=28.32, max=31.92, mean=30.25, std=1.814028665705149, n=3 
 
Figure 2.3 B: NEB to anaphase 
 
Statistical analysis of the time from NEB to anaphase time of mononucleated and binucleaeted cells 
was performed using t-Test. 
 
Ttest_indResult(statistic=-5.36459924475027, pvalue=2.304851485588728e-06) 
 
Descriptive statistics 
mononucleated : min=10, max=40, mean=19.166666666666668, std=7.755316082290385, n=24 
binuncleated: min=20, max=50, mean=31.923076923076923, std=8.952868040680938, n=26 
 
 
Figure 2.6 C Cell size 
 
Statistical analysis of the cell size was performed using t test. 
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Ttest_indResult(statistic=8.08020717194209, pvalue=0.0012745821380656093) 
 
Descriptive statistics 
d0: min=65, max=5077, mean=923.8992048643593, std=564.9820610012046, n=4276 
d6: min=57, max=4896, mean=536.6985149901933, std=378.119701757392, n=3569 
 
 
Figure 2.18 A: yH2AX high cells 
 
Statistical analysis of the yH2AX high cells was performed using t test. 
 
Ttest_indResult(statistic=-34.93234958417755, pvalue=4.007477638810532e-06) 
 
Descriptve statistics 
2n: min=4.74898236092266, max=5.847953216374268, mean=5.170488497275614, 
std=0.5925118837153398, n=3 
³4n: min=18.088737201365188, max=18.55670103092784, mean=18.25223102784067, 
std=0.263919018306324, n=3 
 
Figure 2.18 C: Micronucleated cells 
 
Statistical analysis of the micronuclei in vitro was performed using one-way ANOVA followed by 
Tukey's post hoc test. 
 
F_onewayResult(statistic=56.170059795990376, pvalue=0.00013033400466231704) 
 
Multiple Comparison of Means - Tukey HSD, FWER=0.05  
========================================================================= 
group1    group2  meandiff p-adj     lower   upper reject 
-------------------------------------------------------------------------------------------------------------- 
2n    4n_binuc      7.69   0.0001    5.4637   9.9163   True 
2n   4n_mononuc    3.9267   0.004    1.7004   6.153    True 
4n_binuc  4n_mononuc   -3.7633  0.0049   -5.9896  -1.537    True 
-------------------------------------------------------------------------------------------------------------- 
 
Descriptive statistics 
2n: min=0.99, max=2.25, mean=1.6533333333333333, std=0.632639971337042, n=3 
4n_mono: min=4.51, max=6.8, mean=5.579999999999999, std=1.152345434320803, n=3 
4n_bin: min=8.7, max=10.24, mean=9.343333333333334, std=0.8006455728556388, n=3 
 
Figure 2.24 B: K8-positive cells, all samples 
 
One-way ANOVA between samples 
ANOVA result: F=1.694244524611953, p=0.21040956612437076 
 
Descriptive statistics 
PLM -Prl: min=60.01825650387951, max=68.64437913299045, mean=65.34524360096022, 
std=4.656891063845407, n=3 
MOM: min=56.4129856306546, max=74.395329441201, mean=66.244809194117, 
std=9.108307079881683, n=3 
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PLM -EGF min=66.18754277891856, max=66.72318779143704, mean=66.51132394728371, 
std=0.28482101476723515, n=3 
PLM -P4: min=71.47937411095306, max=74.80314960629921, mean=73.07278660366103, 
std=1.6661144821090481, n=3 
PLM: min=65.49865229110512, max=76.81288173237091, mean=70.86005143069877, 
std=5.680254402490224, n=3 
PLM -E2: min=61.46226415094339, max=64.57818796308332, mean=63.314098443220246, 
std=1.6390022083236957, n=3 
 
Cohen's d for all sample pairs 
            PLM -PRL vs MOM: -0.12436053770714725 
            PLM -PRL vs PLM -EGF: -0.353457034343611 
            PLM -PRL vs PLM -P4: -2.209557822706405 
            PLM -PRL vs PLM: -1.0617980198463701 
            PLM -PRL vs PLM -E2: 0.5818376204279868 
            MOM vs PLM -PRL: 0.12436053770714725 
            MOM vs PLM -EGF: -0.041360554886662265 
            MOM vs PLM -P4: -1.0428514206763289 
            MOM vs PLM: -0.6080415014028898 
            MOM vs PLM -E2: 0.4478477448634707 
            PLM -EGF vs PLM -PRL: 0.353457034343611 
            PLM -EGF vs MOM: 0.041360554886662265 
            PLM -EGF vs PLM -P4: -5.4897926635813015 
            PLM -EGF vs PLM: -1.0813446270477443 
            PLM -EGF vs PLM -E2: 2.717992643125063 
            PLM -P4 vs PLM -PRL: 2.209557822706405 
            PLM -P4 vs MOM: 1.0428514206763289 
            PLM -P4 vs PLM -EGF: 5.4897926635813015 
            PLM -P4 vs PLM: 0.5286336216936766 
            PLM -P4 vs PLM -E2: 5.905001701348681 
            PLM vs PLM -PRL: 1.0617980198463701 
            PLM vs MOM: 0.6080415014028898 
            PLM vs PLM -EGF: 1.0813446270477443 
            PLM vs PLM -P4: -0.5286336216936766 
            PLM vs PLM -E2: 1.8050758192031167 
            PLM -E2 vs PLM -PRL: -0.5818376204279868 
            PLM -E2 vs MOM: -0.4478477448634707 
            PLM -E2 vs PLM -EGF: -2.717992643125063 
            PLM -E2 vs PLM -P4: -5.905001701348681 
            PLM -E2 vs PLM: -1.8050758192031167 
 
Figure 2.25 B: β-Casein-positive cells, all samples 
 
One-way ANOVA 
ANOVA result: F=5.168473580615222, p=0.0092743326978943 
 
 
 
 
Tukey HSD 
Multiple Comparison of Means - Tukey HSD, FWER=0.05         
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========================================================================== 
group1         group2     meandiff  p-adj    lower     upper    reject 
--------------------------------------------------------------------------------------------------------------- 
PLM -PRL MOM  -0.0323     1.0  -4.6226  4.5579    False 
PLM -PRL PLM -EGF    4.1379   0.0865  -0.4524   8.7282    False 
PLM -PRL PLM -P4  1.7853   0.7766  -2.805    6.3755   False 
PLM -PRL PLM     5.4238   0.0179   0.8335   10.0141  True 
PLM -PRL PLM -E2    2.1667   0.6218  -2.4236    6.757    False 
MOM  PLM -EGF    4.1702  0.0832  -0.4201   8.7605  False 
MOM  PLM -P4    1.8176   0.7643  -2.7727   6.4079    False 
MOM  PLM     5.4561   0.0172   0.8658   10.0464   True 
MOM  PLM -E2    2.1991   0.6082  -2.3912   6.7894    False 
PLM -EGF PLM -P4   -2.3526  0.5439  -6.9429   2.2377    False 
PLM -EGF PLM     1.2859   0.9278  -3.3044   5.8762    False 
PLM -EGF PLM -E2   -1.9712  0.7033 -6.5614   2.6191    False 
PLM -P4 PLM     3.6385    0.155  -0.9518   8.2288    False 
PLM -P4 PLM -E2    0.3815   0.9997  -4.2088   4.9718    False 
PLM      PLM -E2   -3.2571  0.2356  -7.8473   1.3332    False 
--------------------------------------------------------------------------------------------------------------- 
 
Descriptive statistics 
PLM -PRL: min=0.0, max=0.0516173434273916, mean=0.03234353469983593, 
std=0.02818156912537332, n=3 
MOM: min=0.0, max=0.0, mean=0.0, std=0.0, n=3 
PLM -EGF: min=1.973859695918912, max=6.890198968312454, mean=4.17022506852825, 
std=2.499644450240362, n=3 
PLM -P4: min=1.3045659809332664, max=2.533692722371968, mean=1.8175964934327233, 
std=0.639229927744965, n=3 
PLM: min=2.4904775857017287, max=7.6923076923076925, mean=5.4561174294395665, 
std=2.676533510489137, n=3 
PLM -E2: min=0.6343452650657001, max=4.054054054054054, mean=2.199067005277458, 
std=1.72823392872268, n=3 
 
Cohen's d for each pair of samples 
            PLM -PRL vs MOM: 1.6230702138728714 
            PLM -PRL vs PLM -EGF: -2.3409234502628817 
            PLM -PRL vs PLM -P4: -3.9458085800697873 
            PLM -PRL vs PLM: -2.8656280325758905 
            PLM -PRL vs PLM -E2: -1.7727938070824172 
            MOM vs PLM -EGF: -2.3593710895538837 
            MOM vs PLM -P4: -4.021197225546492 
            MOM vs PLM: -2.882876390814753 
            MOM vs PLM -E2: -1.7994961976756816 
            PLM -EGF vs PLM -P4: 1.289538743982284 
            PLM -EGF vs PLM: -0.49656026862423047 
            PLM -EGF vs PLM -E2: 0.9173132121038143 
            PLM -P4 vs PLM: -1.8699145814666842 
            PLM -P4 vs PLM -E2: -0.29277232638683753 
            PLM vs PLM -E2: 1.4457496852803202 
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Figure 2.26 A: cycling cells 
 
Paired t-Tests between b-Casein+ and b-Casein- cells per sample 
            PLM -PRL: t=-4.605122285461162, p=0.044060845016483295 
            PLM -EGF: t=8.810689515069122, p=0.012638219453633895 
            PLM -P4: t=14.691648412402264, p=0.0046010142992528895 
            PLM: t=6.337386482206637, p=0.024005919071619978 
            PLM -E2: t=9.592828105460802, p=0.010692938394270574 
            MOM: t=-12.624719751781495, p=0.0062157361417392734 
 
Cohen's d for each sample between b-Casein+ and b-Casein- 
            PLM -PRL: -3.7600666008331145 
            PLM -EGF: 6.282240317704417 
            PLM -P4: 11.424565925918445 
            PLM: 6.2811846394055095 
            PLM -E2: 8.594251273449673 
            MOM: -10.308040512500321 
 
One way ANOVA between samples for b-casein+ cells 
ANOVA result: F=52.32485462399954, p=9.849859854635167e-08 
Tukey HSD for b-casein+ cells 
Multiple Comparison of Means - Tukey HSD, FWER=0.05         
========================================================================== 
group1  group2     meandiff  p-adj    lower      upper    reject 
--------------------------------------------------------------------------------------------------------------- 
PLM -PRL           MOM       0.0      1.0   -9.7872   9.7872    False 
PLM -PRL     PLM -EGF   26.8853     0.0   17.0982  36.6725    True 
PLM -PRL     PLM -P4   22.2631 0.0001 12.476   32.0503    True 
PLM -PRL  PLM    36.6278     0.0   26.8406  46.4149    True 
PLM -PRL     PLM -E2   22.3004  0.0001   12.5132  32.0875    True 
MOM       PLM -EGF   26.8853     0.0   17.0982  36.6725    True 
MOM      PLM -P4   22.2631  0.0001  12.476   32.0503    True 
MOM   PLM    36.6278     0.0   26.8406  46.4149    True 
MOM      PLM -E2   22.3004  0.0001  12.5132  32.0875    True 
PLM -EGF     PLM -P4   -4.6222  0.6213  -14.4093    5.165    False 
PLM -EGF  PLM     9.7424   0.0513   -0.0447  19.5296   False 
PLM -EGF     PLM -E2   -4.5849  0.6287  -14.3721   5.2022    False 
PLM -P4  PLM    14.3646  0.0036  4.5775   24.1518    True 
PLM -P4     PLM -E2    0.0372     1.0   -9.7499   9.8244    False 
PLM      PLM -E2  -14.3274  0.0037 -24.1145  -4.5402    True 
--------------------------------------------------------------------------------------------------------------- 
 
Descriptive statistics for b-casein+ cells 
PLM -PRL: min=0.0, max=0.0, mean=0.0, std=0.0, n=3 
MOM: min=0.0, max=0.0, mean=0.0, std=0.0, n=3 
PLM -EGF: min=23.711340206185564, max=32.62032085561498, mean=26.885328462041624, 
std=4.976096934147361, n=3 
PLM -P4: min=20.51282051282051, max=25.0, mean=22.263138752500453, 
std=2.40075931056185, n=3 
PLM: min=30.55555555555556, max=42.85714285714285, mean=36.627762215997514, 
std=6.152299592819014, n=3 
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PLM -E2: min=19.047619047619047, max=24.24242424242424, mean=22.3003848003848, 
std=2.834608059188502, n=3 
 
 Cohen's d for each pair of samples for b-casein+ cells 
            PLM -PRL vs PLM -EGF: 1.6230702138728714 
            PLM -PRL vs PLM -P4: -2.3409234502628817 
            PLM -PRL vs PLM: -3.9458085800697873 
            PLM -PRL vs PLM -E2: -2.8656280325758905 
            PLM -PRL vs MOM: -1.7727938070824172 
            PLM -EGF vs PLM -P4: -2.3593710895538837 
            PLM -EGF vs PLM: -4.021197225546492 
            PLM -EGF vs PLM -E2: -2.882876390814753 
            PLM -EGF vs MOM: -1.7994961976756816 
            PLM -P4 vs PLM: 1.289538743982284 
            PLM -P4 vs PLM -E2: -0.49656026862423047 
            PLM -P4 vs MOM: 0.9173132121038143 
            PLM vs PLM -E2: -1.8699145814666842 
            PLM vs MOM: -0.29277232638683753 
            PLM -E2 vs MOM: 1.4457496852803202 
 
One way ANOVA between samples for b-casein- cells 
ANOVA result: F=0.5019075253116787, p=0.769432740443051 
Descriptive statistics for b-casein- cells 
PLM -PRL: min=3.2485233984552475, max=6.079027355623101, mean=4.239613377542958, 
std=1.5945778025344526, n=3 
MOM: min=2.2857142857142856, max=3.007518796992481, mean=2.6918523805421906, 
std=0.3693091950747171, n=3 
PLM -EGF: min=3.782312925170068, max=5.263157894736842, mean=4.5368112513228525, 
std=0.74082376035301, n=3 
PLM -P4: min=2.6548672566371683, max=2.9743589743589745, mean=2.8254004399880377, 
std=0.1608348175370093, n=3 
PLM: min=0.0, max=8.022836538461538, mean=4.007205179080179, std=4.011424906576742, 
n=3 
PLM -E2: min=2.560819462227913, max=4.756756756756757, mean=3.7818479984141526, 
std=1.1184660742105752, n=3 
 
Cohen's d for each pair of samples for b-casein- cells 
            MOM vs PLM -EGF: 1.3372944928026835 
            MOM vs PLM: -0.23904309107349278 
            MOM vs PLM -P4: 1.2479181819361014 
            MOM vs PLM -E2: 0.07613966661193738 
            MOM vs PLM -PRL: 0.3323759664398203 
            PLM -EGF vs PLM: -3.1520283700061826 
            PLM -EGF vs PLM -P4: -0.4688681128448978 
            PLM -EGF vs PLM -E2: -0.46177012755827224 
            PLM -EGF vs PLM -PRL: -1.3087173127492544 
            PLM vs PLM -P4: 3.192664804133393 
            PLM vs PLM -E2: 0.1836059412489871 
            PLM vs PLM -PRL: 0.795848408252707 
            PLM -P4 vs PLM -E2: -0.4163065701052043 
            PLM -P4 vs PLM -PRL: -1.1970406746800497 
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            PLM -E2 vs PLM -PRL: 0.07652980299155368 
 
Figure 2.26 C: Ploidy all cells, all samples 
 
One way ANOVA between samples 
ANOVA result: F=5.83908881083062, p=0.0058271833167736495 
 
Tukey HSD between samples 
                    Multiple Comparison of Means - Tukey HSD, FWER=0.05         
========================================================================== 
group1         group2   meandiff  p-adj    lower      upper    reject 
--------------------------------------------------------------------------------------------------------------- 
PLM -PRL       MOM    -4.2122  0.6014 -12.9407   4.5164    False 
PLM -PRL  PLM -EGF    6.0754   0.2515 -2.6531   14.804    False 
PLM -PRL     PLM -P4    5.4554   0.3485 -3.2732  14.1839   False 
PLM -PRL  PLM      3.636   0.7272   -5.0926  12.3645   False 
PLM -PRL     PLM -E2   -3.2799   0.799  -12.0085   5.4486    False 
MOM       PLM -EGF   10.2876  0.0182 1.559   19.0162    True 
MOM      PLM -P4    9.6676   0.0272 0.939   18.3961    True 
MOM   PLM     7.8481   0.0876 -0.8804  16.5767   False 
MOM      PLM -E2   0.9322    0.999  -7.7963   9.6608    False 
PLM -EGF     PLM -P4     -0.62   0.9999   -9.3486   8.1085    False 
PLM -EGF  PLM    -2.4394  0.9285 -11.168   6.2891    False 
PLM -EGF     PLM -E2   -9.3553  0.0333  -18.0839  -0.6268    True 
PLM -P4  PLM    -1.8194  0.9784   -10.548   6.9091    False 
PLM -P4     PLM -E2   -8.7353  0.0498  -17.4639  -0.0068    True 
PLM      PLM -E2   -6.9159  0.1553  -15.6445   1.8127    False 
--------------------------------------------------------------------------------------------------------------- 
 
Descriptive statistics 
PLM -PRL: min=7.690984170681349, max=11.55015197568389, mean=9.335298485361227, 
std=1.9918409198526368, n=3 
MOM: min=4.010025062656641, max=6.285714285714287, mean=5.123129700957249, 
std=1.1386512015587462, n=3 
PLM -EGF: min=10.669511869831954, max=18.83458646616541, mean=15.410724991881215, 
std=4.238947076082041, n=3 
PLM -P4: min=12.159223950493391, max=18.46619576185671, mean=14.790683480037636, 
std=3.2805499492436265, n=3 
PLM: min=10.080183276059564, max=18.461538461538463, mean=12.971276129546055, 
std=4.7569465174401575, n=3 
PLM -E2: min=3.79096813170216, max=7.741251325556734, mean=6.055375363721843, 
std=2.037696775982308, n=3 
 
Cohen's d for each pair of samples 
            PLM -PRL vs MOM: 2.5963581758489633 
            PLM -PRL vs PLM -EGF: -1.8344760046441226 
            PLM -PRL vs PLM -P4: -2.01023722589662 
            PLM -PRL vs PLM: -0.9970760430584129 
            PLM -PRL vs PLM -E2: 1.627834759325887 
            MOM vs PLM -EGF: -3.314683912835187 
            MOM vs PLM -P4: -3.937171465010857 
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            MOM vs PLM: -2.269109825533668 
            MOM vs PLM -E2: -0.5648037059660016 
            PLM -EGF vs PLM -P4: 0.1635922816796867 
            PLM -EGF vs PLM: 0.5414503128396695 
            PLM -EGF vs PLM -E2: 2.8130264515083523 
            PLM -P4 vs PLM: 0.4452799790273633 
            PLM -P4 vs PLM -E2: 3.1988436238375373 
            PLM and PLM -E2: 1.8899590608982675 
 
Figure 2.26 D: Ploidy β-Casein+ and β-Casein- cells, all samples 
 
Paired t-Tests between b-Casein+ and b-Casein- cells per sample 
            PLM -PRL: t=-8.129045894014114, p=0.014797789656658898 
            PLM -EGF: t=6.279066457470026, p=0.024437634677580134 
            PLM -P4: t=13.56902239806769, p=0.005387437040695935 
            PLM: t=3.101840869919939, p=0.09010772976728443 
            PLM -E2: t=-3.1389499157384257, p=0.08826185796025521 
            MOM: t=-7.793010645995699, p=0.016070203691524936 
 
Cohen's d for each sample between b-Casein+ and b-Casein- 
            PLM -PRL: -6.637338178667094 
            PLM -EGF: 3.4282567348852147 
            PLM -P4: 5.9045217091123785 
            PLM: 3.3920165443922423 
            PLM -E2: -1.5964369997769094 
            MOM: -6.362966547588858 
 
One way ANOVA between samples for b-casein+ cells 
ANOVA result: F=43.094884536565075, p=2.948370332704509e-07 
 
Tukey HSD for b-casein+ cells 
Multiple Comparison of Means - Tukey HSD, FWER=0.05          
========================================================================== 
group1      group2  meandiff  p-adj    lower      upper     reject 
--------------------------------------------------------------------------------------------------------------- 
PLM -PRL            MOM       0.0      1.0  -12.9638   12.9638   False 
PLM -PRL      PLM -EGF    27.025   0.0002  14.0612   39.9888    True 
PLM -PRL     PLM -P4   29.7475  0.0001 16.7837   42.7112    True 
PLM -PRL  PLM    40.1538     0.0     27.19    53.1176    True 
PLM -PRL    PLM -E2    1.8519    0.996  -11.1119   14.8156   False 
MOM       PLM -EGF    27.025   0.0002 14.0612   39.9888    True 
MOM      PLM -P4   29.7475  0.0001  16.7837   42.7112    True 
MOM   PLM    40.1538     0.0     27.19    53.1176    True 
MOM      PLM -E2    1.8519    0.996  -11.1119   14.8156   False 
PLM -EGF     PLM -P4    2.7225   0.9777  -10.2413   15.6862   False 
PLM -EGF  PLM    13.1288  0.0465   0.165    26.0926    True 
PLM -EGF     PLM -E2  -25.1731  0.0003  -38.1369  -12.2094    True 
PLM -P4  PLM    10.4063  0.1471   -2.5574   23.3701   False 
PLM -P4     PLM -E2  -27.8956  0.0001  -40.8594  -14.9318    True 
PLM      PLM -E2   -38.302     0.0  -51.2657  -25.3382    True 
--------------------------------------------------------------------------------------------------------------- 
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Descriptive statistics for b-casein+ cells 
PLM -PRL: min=0.0, max=0.0, mean=0.0, std=0.0 n=3 
MOM: min=0.0, max=0.0, mean=0.0, std=0.0 n=3 
PLM -EGF: min=24.324324324324326, max=29.94652406417112, mean=27.024990699945217, 
std=2.8175998915166995 n=3 
PLM -P4: min=28.205128205128204, max=31.25, mean=29.747454082560466, 
std=1.5228256287947792 n=3 
PLM: min=28.57142857142857, max=49.53703703703704, mean=40.1538022616454, 
std=10.654404889918641 n=3 
PLM -E2: min=0.0, max=5.555555555555555, mean=1.8518518518518519, 
std=3.2075014954979206 n=3 
 
Cohen's d for each pair of samples for b-casein+ cells 
            PLM -PRL vs PLM -EGF: 1.6230702138728714 
            PLM -PRL vs PLM -P4: -2.3409234502628817 
            PLM -PRL vs PLM: -3.9458085800697873 
            PLM -PRL vs PLM -E2: -2.8656280325758905 
            PLM -PRL vs MOM: -1.7727938070824172 
            PLM -EGF vs PLM -P4: -2.3593710895538837 
            PLM -EGF vs PLM: -4.021197225546492 
            PLM -EGF vs PLM -E2: -2.882876390814753 
            PLM -EGF vs MOM: -1.7994961976756816 
            PLM -P4 vs PLM: 1.289538743982284 
            PLM -P4 vs PLM -E2: -0.49656026862423047 
            PLM -P4 vs MOM: 0.9173132121038143 
            PLM vs PLM -E2: -1.8699145814666842 
            PLM vs MOM: -0.29277232638683753 
            PLM -E2 vs MOM: 1.4457496852803202 
 
One way ANOVA between samples for b-casein- cells 
ANOVA result: F=4.616185599626204, p=0.013976812802048547 
Tukey HSD for b-casein- cells 
Multiple Comparison of Means - Tukey HSD, FWER=0.05         
========================================================================== 
group1      group2  meandiff  p-adj    lower      upper    reject 
--------------------------------------------------------------------------------------------------------------- 
PLM -PRL           MOM    -4.2148  0.6412   -13.339   4.9093    False 
PLM -PRL      PLM -EGF    5.5545   0.3738 -3.5696  14.6787   False 
PLM -PRL     PLM -P4    5.1731    0.444   -3.9511  14.2973   False 
PLM -PRL  PLM      2.213   0.9592   -6.9111  11.3372   False 
PLM -PRL     PLM -E2   -3.1669  0.8444  -12.2911   5.9573   False 
MOM       PLM -EGF    9.7693   0.0335  0.6452   18.8935    True 
MOM      PLM -P4    9.3879   0.0425  0.2638   18.5121    True 
MOM   PLM     6.4279   0.2415 -2.6963   15.552    False 
MOM      PLM -E2    1.0479   0.9986 -8.0762  10.1721   False 
PLM -EGF     PLM -P4   -0.3814     1.0   -9.5056   8.7428    False 
PLM -EGF  PLM    -3.3415  0.8146 -12.4657   5.7827    False 
PLM -EGF     PLM -E2   -8.7214   0.064  -17.8456   0.4027    False 
PLM -P4  PLM    -2.9601  0.8764  -12.0842   6.1641    False 
PLM -P4     PLM -E2     -8.34   0.0807  -17.4642   0.7842    False 
PLM      PLM -E2   -5.3799  0.4051  -14.5041   3.7442    False 
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--------------------------------------------------------------------------------------------------------------- 
 
 Descriptive statistics for b-casein- cells 
PLM -PRL: min=7.694956102599415, max=11.55015197568389, mean=9.337949853142746, 
std=1.98963123041085, n=3 
MOM: min=4.010025062656641, max=6.285714285714287, mean=5.123129700957249, 
std=1.1386512015587462, n=3 
PLM -EGF: min=10.394557823129253, max=18.532969176746, mean=14.892476022778625, 
std=4.13640159098359, n=3 
PLM -P4: min=11.947127605490596, max=18.25641025641026, mean=14.511061293199992, 
std=3.316408966365437, n=3 
PLM: min=7.478632478632479, max=17.61904761904762, mean=11.550989519739518, 
std=5.356689447809045, n=3 
PLM -E2: min=3.815169478644171, max=7.783783783783783, mean=6.1710552701477726, 
std=2.086069732888949, n=3 
 
Cohen's d for each pair of samples for b-casein- cells 
            PLM -PRL vs MOM: 2.6001662432496007 
            PLM -PRL vs PLM -EGF: -1.7113771001949143 
            PLM -PRL vs PLM -P4: -1.8916538515320298 
            PLM -PRL vs PLM: -0.5477019486592535 
            PLM -PRL vs PLM -E2: 1.5536019155473508 
            MOM vs PLM -EGF: -3.2203029372878635 
            MOM vs PLM -P4: -3.786334424273017 
            MOM vs PLM: -1.659925004761544 
            MOM vs PLM -E2: -0.6235767054859247 
            PLM -EGF vs PLM -P4: 0.10174064810876596 
            PLM -EGF vs PLM: 0.6982376947146032 
            PLM -EGF vs PLM -E2: 2.6623929174997056 
            PLM -P4 vs PLM: 0.6644494890427349 
            PLM -P4 vs PLM -E2: 3.0103955253215213 
            PLM vs PLM -E2: 1.3235299494262656 
 
Figure 2.27 B: β-Casein+ cycling cells by ploidy 
Paired t-test between 2n and ³4n 
            t=-5.400689209860441, p=0.032616685409400034 
 
Descriptive statistics 
2N: min=15.606936416184972, max=20.869565217391305, mean=18.70989360810924, 
std=2.7552052995443157, n=3 
³4N: min=45.30386740331492, max=58.2089552238806, mean=49.8376075423985, 
std=7.258150360197397, n=3 
 
Cohen's d for 2n and ³4n 
            Cohen's d: -5.670283497400286 
 
Figure 2.27 D: yH2A.X high by ploidy, all cells 
 
Paired t-test between 2n and ³4n 
            t=-7.823436880639164, p=0.01594841759372563 
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Descriptive statistics 
2n: min=0.2783576896311761, max=0.8373205741626795, mean=0.49310487581007306, 
std=0.30113360540514267, n=3 
³4n: min=2.515723270440252, max=2.9069767441860463, mean=2.7249978642026504, 
std=0.1970497708005941, n=3 
 
Cohen's d for 2N and ³4n 
            Cohen's d: -8.770747585670701 
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