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Abstract

In the Standard Model of particle physics, the masses of fermions and gauge bosons are
generated by the Higgs mechanism at the classical level. The Higgs boson is an ele-
mentary scalar field and its mass is not protected against quantum correction from new
scales thereby giving rise to the hierarchy problem. In this thesis, we explore classical
scale invariance as a potential solution to the hierarchy problem. Our main result is the
proposal of Custodial Naturalness, which is based on a combination of classical scale
invariance and an enhanced custodial symmetry in the scalar sector, imposed at some
high scale. Both symmetries are radiatively broken, and dimensional transmutation
generates an intermediate scale that spontaneously breaks the enhanced custodial sym-
metry. The Standard Model Higgs boson arises as a pseudo-Nambu-Goldstone-boson
associated with this breaking. We present several models in which Custodial Natural-
ness is realized. The number of free parameters in the minimal model is the same as in
the Standard Model, and extensions can populate the neutrino portal or introduce dark
matter candidates. Further, we also discuss outer automorphisms. The transformations
of fields under outer automorphisms are not symmetries of the Lagrangian. We show
that they can be thought of as symmetries of the beta functions. Further, we explore
connections to naturalness and discuss scale transformations as outer automorphisms.

Zusammenfassung

Im Standardmodell der Teilchenphysik werden die Massen von Fermionen und Eichboso-
nen auf der klassischen Ebene durch den Higgs-Mechanismus erzeugt. Das Higgs-Boson
ist ein elementares skalares Feld und seine Masse ist nicht beschützt gegen Quantenkor-
rekturen von neuen Skalen. Dies führt zu dem Hierarchieproblem. In dieser Arbeit unter-
suchen wir die klassische Skaleninvarianz als mögliche Lösung für das Hierarchieproblem.
Das Hauptergebnis dieser Arbeit ist der Vorschlag von Custodial Naturalness, welcher
auf einer Kombination der klassischen Skaleninvarianz und einer Erweiterung der cus-
todialen Symmetrie im skalaren Sektor beruht, welche bei einer hohen Skala realisiert
werden. Beide Symmetrien werden durch Quantenkorrekturen gebrochen, und dimen-
sionale Transmutation erzeugt eine Zwischenskala, welche spontan die erweiterte custo-
diale Symmetrie bricht. Das Higgs-Boson des Standardmodells ist ein Pseudo-Nambu-
Goldstone-Boson, welches mit dieser Brechung assoziiert ist. Wir präsentieren mehrere
Modelle, in denen Custodial Naturalness realisiert ist. Die Anzahl der freien Parame-
ter im minimalen Modell ist die gleiche wie im Standardmodell während Erweiterungen
das Neutrinoportal erzeugen oder Kandidaten für dunkle Materie einführen können. In
dieser Arbeit diskutieren wir zudem äußere Automorphismen. Die Transformationen
von Feldern unter äußeren Automorphismen sind keine Symmetrien der Lagrangedichte.
Wir zeigen, dass diese als Symmetrien der Beta-Funktionen betrachtet werden können.
Außerdem untersuchen wir Verbindungen zu Naturalness und diskutieren Skalentrans-
formationen als äußere Automorphismen.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is remarkably successful in de-

scribing the known particles and their interactions. Central for the description

of interactions are gauge symmetries. The gauge group of the SM is given by

SU(3)c×SU(2)L×U(1)Y. The electroweak sector is spontaneously broken to elec-

tromagnetism as SU(2)L × U(1)Y → U(1)em by the Higgs mechanism [5–7]. The

discovery of the Higgs boson with a mass of 125GeV confirmed this final piece

of the SM [8, 9]. The value of 125GeV for the Higgs mass allows for the SM to

be valid up to the Planck scale fulfilling constraints from triviality [10] and vac-

uum stability [11–13]. It turns out that the Higgs potential is metastable and the

quartic coupling is close to zero at the Planck scale [14–16].

In the SM, the Higgs boson stands out as it is the only elementary scalar

field. While gauge bosons are required to be massless due to unitarity and fermion

masses are protected by chiral symmetry, the mass terms of elementary scalar

fields are not protected by any internal symmetry. If there was a new mass scale

Λ, then there would be loop corrections to the Higgs mass ∝ Λ2. Naively, one

expects that the Higgs mass is close to Λ unless there is a very precise cancellation

of the different contributions to the Higgs mass. This is known as the hierarchy

problem.

The classical action of the SM has only one dimensionful coupling which is

the Higgs mass parameter. All other couplings are marginal. It turns out that

an action with only dimensionless couplings is scale invariant.1 In case of the

1In this thesis, we often use the terms scale invariance and conformal for classical scale

invariance. Occasionally, we also discuss the case where these symmetries hold at the quantum

level. It should be clear from context, whether we refer to the symmetry of the classical action

or the symmetry that holds at the quantum level.

1



SM, this scale invariance is explicitly broken by the Higgs mass parameter. In

the context of Quantum Field Theory (QFT), there is a second source of explicit

breaking of scale invariance given by the scale anomaly. Quantum corrections

generate a scale dependence of the couplings which manifests in the non-vanishing

beta functions. In Ref. [17], Bardeen argued that, if there is no mass scale other

than the electroweak (EW) scale, then the anomalous breaking of scale invariance

will not give divergent contributions to the Higgs mass parameter and the SM does

not have a hierarchy problem. The hierarchy problem manifests itself when new

physics and therefore additional scales are introduced.

A natural step is to consider scenarios where the approximate scale invariance

of the SM is promoted to an exact symmetry of the classical action.2 Coleman and

Weinberg showed that in classically scale invariant theories, dimensional transmu-

tation in the weak coupling regime can generate a scale [22]. The simplest incarna-

tion, i.e. the SM without a Higgs mass term, is excluded as it requires a light top

quark and a Higgs mass below 10GeV [22–24]. In models with additional scalar

fields, symmetry breaking via the Coleman-Weinberg mechanism can successfully

be realized, for example in minimal realizations [25–34], including dark matter

(DM) [35–42] and B − L gauge symmetry [43–47]. Left-right symmetric models

have been considered in Ref. [48] and the generation of neutrino masses in scale

invariant models is realized in Refs. [49–54].

In these scale invariant extensions of the SM, a large separation between the

EW scale and the Planck scale is naturally achieved by dimensional transmutation.

The classical action has only dimensionless couplings which have a logarithmic

dependence on the renormalization scale. Due to this logarithmic running, it

typically takes many orders of magnitude for the couplings to reach the critical

values where spontaneous symmetry breaking occurs and an intermediate scale is

generated. The Higgs doublet obtains a mass term via the scalar portal coupling.

Typically, new particles gain masses of order of the intermediate scale and, due to

experimental constraints, these new particles are required to be heavy giving rise

to the little hierarchy problem.

The little hierarchy problem is often addressed by the idea that the Higgs

boson might be a pseudo Nambu Goldstone boson (pNGB) of a spontaneously

broken global symmetry. It can be realized for example in composite Higgs mod-

els [55–58], little Higgs models [59–64] and twin Higgs models [65–67]. Goldstones

theorem [68–70] implies that for any global continuous symmetry which is sponta-

2Scale invariance can be imposed as a symmetry of the classical action. It might also originate,

for example, via the resurgence mechanism [18–21] in the context of asymptotic safety.
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neously broken, there is a massless scalar field. This so called Goldstone boson π

has shift symmetry, i.e. the action is invariant under π(x) → π(x) + θ where θ is

a constant. Shift symmetry requires that the Goldstone boson has only derivative

interactions while mass terms and quartic interactions of the Goldstone boson vi-

olate shift symmetry. If the global symmetry is approximate, then we will expect

contributions to the mass of the pNGB proportional to the amount of explicit

symmetry violation and the scale of spontaneous symmetry breaking. In the SM,

shift symmetry of the Higgs boson is badly violated by the top Yukawa interaction

and, to a lesser extent, by the electroweak gauge interactions and the scalar quar-

tic term in the potential. Naively, one expects the scale where the approximate

global symmetry is spontaneously broken, to be close to the EW scale. Alterna-

tively, there could be a top partner which, together with the SM top quark, forms

a multiplet under the global symmetry. Regardless one expects new physics at

∼ 1TeV.

One of the main results of this thesis is the concept called Custodial Natu-

ralness [1, 2]. This concept combines classical scale invariance with an enhanced

custodial symmetry in the scalar sector. The Higgs boson is assumed to be the

pNGB associated with the spontaneous breaking of the enhanced custodial sym-

metry. The Higgs field is a fundamental scalar field and the top Yukawa coupling

is a marginal coupling, just as in the SM. By similar reasoning to Bardeen’s argu-

ment, there are no large contributions to the Higgs mass from the top quark loop.

This is in contrast to strongly coupled models where the top Yukawa interaction is

generated at the intermediate scale. In models realizing Custodial Naturalness the

top Yukawa interaction violates the global symmetry explicitly and no top partner

is introduced. However, it can be shown that the contributions to the Higgs mass

associated with this explicit symmetry violation are small due to the nature of

the top Yukawa coupling as a marginal coupling. Previous work on an elementary

Goldstone Higgs boson [71,72] also finds that a top partner is not necessary.

Custodial Naturalness is based on the combination of conformal and enhanced

custodial symmetry. The scalar sector consists of the Higgs doublet and an ad-

ditional complex scalar field. At some high scale such as the Planck scale, the

potential has a SO(6) custodial symmetry and is scale invariant. Both symme-

tries are radiatively broken and at an intermediate scale the Coleman-Weinberg

potential has a non trivial minimum such that SO(6) custodial symmetry is spon-

taneously broken. The Higgs boson is much lighter than the intermediate scale

as it is a pNGB associated with this spontaneous breaking of SO(6) custodial

symmetry. The charge assignment and particle content of the minimal realization
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of Custodial Naturalness are very similar to the conformal version [43, 44] of the

minimal B − L model [73–79].

Solutions to the hierarchy problem where the Higgs boson is a pNGB rely on

symmetries which are explicitly broken. Explicitly broken symmetries are closely

connected to t’Hoofts understanding of naturalness [80] which states that dimen-

sionless parameters will be naturally small if, by setting them to zero, the symme-

try of the model is enhanced. This concept of naturalness relies on the behaviour

of the beta functions under the symmetry transformations of the explicitly broken

symmetry. It turns out that such explicitly broken symmetries are often con-

nected to so called outer automorphisms. Mathematically, outer automorphisms

are maps from the symmetry group to itself. We can define how fields transform

under outer automorphisms. These transformations are not symmetries but they

can be absorbed into the couplings of the theory. Outer automorphisms can play

an important role in understanding features of a model. For example they map

redundant parts of the parameter space onto each other. Some aspects of outer

automorphisms in particle physics have been studied for example in Refs. [81–91].

In this work we show that outer automorphism transformations can be understood

as symmetries of the beta functions, i.e. the beta functions transform covariantly.

This then implies the underlying argument of t’Hooft naturalness, i.e. the beta

function of a small coupling is small if by setting this coupling to zero a symmetry

in enhanced. Scale transformations (dilations) are an outer automorphism of the

Poincarè group. Due to the scale anomaly, dilations serve as an important example

to understand anomalies of outer automorphisms.

This thesis is structured as follows: In Chapter 2 we introduce scale symmetry

and discuss the scale anomaly and in Chapter 3 we review die hierarchy prob-

lem and various approaches that address the hierarchy problem. The effective

potential, which is essential to understand the vacuum structure of scale invari-

ant models, is introduced in Chapter. 4. Chapter 5 discusses the relation of the

effective potential to the beta functions and we present calculations that illus-

trate how a pNGB obtains a mass in scale invariant settings. In Chapter 6 we

introduce the concept of Custodial Naturalness. We also discuss different models

that realize Custodial Naturalness and the experimental signatures. Chapter 7

introduces outer automorphisms and we discuss the transformation properties of

beta functions. We also provide several examples. In Chapter 8 we draw our

conclusions.
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Chapter 2

Scale invariance and scale

anomaly

In this chapter we introduce scale transformations and discuss how fields and the

action transform. The Noether current for scale transformations can be expressed

in terms of the modified energy momentum tensor. Scale invariance of the clas-

sical action does not imply scale invariance at the quantum level. In QFT, scale

symmetry is typically anomalous and we discuss the origin and consequences of

the anomaly.

2.1 Scale transformations in classical field theory

2.1.1 Scale transformations

Scale transformations (also called dilations) are space-time transformations that

act on a space-time point xµ as

xµ → x′µ = eσxµ, (2.1)

where σ is a real number. The fields transform as

ϕ(x) → ϕ′(x) = edσϕ(eσx), (2.2)

where d = 1 for bosons and d = 3
2
for fermions. For infinitesimal σ, we have

ϕ′(x) = ϕ(x) + σ(d+ xν∂ν)ϕ(x). (2.3)
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The transformation of the action is found by

S[ϕ′] =

∫
d4xL[ϕ′(x), ∂µϕ

′(x)]

=

∫
d4xL[ϕ(x), ∂µϕ(x)]+

+ σ

(
δL
δϕ

(d+ xν∂ν)ϕ(x) +
δL
δ ∂µϕ

(d+ 1 + xν∂ν)∂µϕ(x)

)

=S[ϕ] + σ

∫
d4x

(
∂ν (x

νL) + d
δL
δϕ
ϕ(x) + (d+ 1)

δL
δ ∂µϕ

∂µϕ(x)− 4L
)
.

(2.4)

The action will be symmetric under dilations if S[ϕ′] = S[ϕ]. This requires that

the integrand vanishes up to total derivatives and therefore scale invariance implies

d
δL
δϕ
ϕ(x) + (d+ 1)

δL
δ ∂µϕ

∂µϕ(x)− 4L = 0. (2.5)

Since d is equal to the mass dimension of the field ϕ, for any dimension four opera-

tor the contributions cancel. Thus Eq. (2.5) implies that there are no dimensionful

couplings in the Lagrangian.

For a scale invariant action, we find that the Lagrangian transforms as

δL = ∂ν(x
νL), (2.6)

and the Noether current [92] for scale transformations is given by

Dµ(x) =
δL

δ(∂µϕa(x))
(d+ xν∂ν)ϕa(x)− xµL. (2.7)

2.1.2 Modified energy momentum tensor

The Noether currents for space-time translations and Lorentz transformations can

all be expressed in terms of the energy momentum tensor, which is given by

T µν =
δL
δ∂µϕ

∂νϕ− gµνL. (2.8)

For example, translation invariance implies

∂µT
µ
ν = 0. (2.9)
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Ref. [93] showed that it is possible to define a new energy momentum tensor as

Θµν = T µν + ∂λΣ
µνλ, (2.10)

where Σµνλ = −Σλνµ. One can easily check that, due to translation invariance,

∂µΘ
µν = 0. (2.11)

Ref. [93] showed that this modified energy momentum tensor is connected to the

Noether current of scale transformations (see Eq. (2.7)) via

Dµ = xνΘ
µν , (2.12)

and therefore scale invariance implies

∂µD
µ = Θµ

µ = 0. (2.13)

For illustration, consider a real scalar field ϕ with the following Lagrangian

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − λ

4!
ϕ4. (2.14)

The modified energy momentum tensor is given by [93]

Θµν = Tµν −
1

6

(
∂µ∂ν − gµν□

2
)
ϕ2, (2.15)

and the equations of motion imply that

∂µD
µ = Θµ

µ = m2ϕ2, (2.16)

which is in line with the observation in Eq. (2.5) that dimensionful couplings violate

scale invariance.

2.1.3 Conformal symmetry

Scale invariance is closely related to conformal symmetry. The conformal group is

generated by Lorentz transformations, translations, dilations (see Eq. (2.1)) and

by the so called special conformal transformations. The latter act in space-time

points as

xµ → xµ − bµx2

1− 2b · x+ b2x2
= xµ + 2(b · x)xµ − bµx2, (2.17)
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where we expanded for infinitesimal transformations in the second step. In four

space-time dimension, the conformal group is isomorphic to SO(4, 2) and has 15

generators. By definition, conformal invariance implies scale invariance.

Under specific circumstances, the converse is also true. For example, consider

a classical field theory in four dimensions, which is Poincarè invariant, and has

renormalizable interactions. Then scale invariance implies conformal invariance of

the classical action [93–95] (see also Refs. [96,97]).1

In QFT the analogue question is more involved. Whether a theory, which is

invariant under dilations even at the quantum level, is also conformally invariant

is not conclusively answered. In two space-time dimensions there is a proof that

scale invariant QFTs necessarily posses conformal invariance. In four space-time

dimensions, there is no such proof. Under certain assumptions (such as unitary

and causality) there is a perturbative proof of the enhancement of scale invariance

to conformal invariance [97,99].

2.2 Scale anomaly

Scale invariance of the classical action does not imply scale invariance of the corre-

sponding QFT. Quantum effects generate the running of couplings which violates

scale symmetry explicitly. In the path integral formulation of QFT, the anomaly

must come from the transformation of the path integral measure since the classical

action is assumed to be invariant.

2.2.1 Scale anomaly from path integral measure

Consider the generating functional

Z[J ] =

∫
Dϕ exp

(
iS[ϕ] + i

∫
d4x J(x)ϕ(x)

)

=

∫
Dϕ′ exp

(
iS[ϕ′] + i

∫
d4x J(x)ϕ′(x)

)
,

(2.18)

1There are examples where scale invariance does not imply conformal invariance of the classical

action. For example, the free Maxwell theory in d ̸= 4 is scale invariant but not conformal

invariant [98].
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where in the second equality we substitute the integration variable. In order to

express the measure Dϕ′ in terms of Dϕ we use the Fujikawa trick [100] by writing

ϕ =
∑

n anϕn for some orthogonal basis ϕn. Then we have

Dϕ =
∏

n

dan. (2.19)

The transformed measure Dϕ′ can be written as

Dϕ′ =
∏

n

da′n =
∏

n

dan det(J) =
∏

n

dan e
Tr log J = Dϕ eTr log J , (2.20)

where Jnm := ∂a′n
∂am

is the Jacobian matrix. For an infinitesimal transformation

ϕ′(x) = ϕ(x) + δϕ(x), we have

a′n = an +

∫
d4x δϕ(x)ϕn(x), (2.21)

and therefore

Dϕ′ =
∏

n

dan

(
1 + Tr

∫
d4x

∂

∂am
δϕ(x)ϕn(x)

)
. (2.22)

If we expand Eq. (2.18) for infinitesimal transformations and set the source J(x) =

0, we will find

0 =

∫
Dϕ

(
Tr

∫
d4x

∂

∂am
δϕ(x)ϕn(x) + δS

)
eiS =:

∫
Dϕ (A+ δS) eiS. (2.23)

For the scale transformation δϕ = (d+ xν∂ν)ϕ, we have

A = Tr

∫
d4x

∂

∂am
δϕ(x)ϕn(x) = Tr

∫
d4xϕn(x)(d+ xν∂ν)ϕm(x). (2.24)

We might try to use partial integration and calculate

A = (d− 2)Tr

∫
d4xϕn(x)ϕm(x) = (d− 2)Tr δnm = (d− 2)

∑

n

δnn, (2.25)

where we used that ϕn is an orthogonal basis. This expression diverges and there-

fore we need to use a regulator.

As an example, we sketch this calculation for the massless ϕ4 theory (i.e.

Eq. (2.14) with m2 = 0) following Ref. [101]. We introduce a regulator function

f (λ2n/M
2) as

A = Tr

∫
d4xϕn(x)(1 + xν∂ν)f

(
λ2n/M

2
)
ϕm(x), (2.26)

9



where λn are the eigenvalues defined by the equation
(
∂µ∂

µ + λ
2
ϕ2
)
ϕn = λnϕn and

f

(
λ2n
M2

)
=

1

1−
(
λn
M

)4 . (2.27)

Ref. [101] explicitly calculates the anomaly A and the result is given by2

A =

∫
d4x

1

32π2

(
λ

2
ϕ2

)
=

∫
d4x

βλ
4!
ϕ4. (2.28)

Therefore the scale anomaly is simply given by the non-vanishing beta function.

Eq. (2.23) suggests that

A = −δS, (2.29)

which justifies the statement that, under scale transformations, the couplings

transform as λ→ λ− σβλ.

2.2.2 Scale anomaly from loop calculations

We have shown how the scale anomaly can be derived from the transformation

of the path integral measure. This is not the only way to see that an anomaly is

present. The violation of the symmetry by quantum effects also shows up in the

calculation of loop diagrams. The following argument does hold for any anomalous

symmetry.

The Feynman rules are obtained from the classical Lagrangian which is invari-

ant under the symmetry. Therefore, in any Feynman diagram, every vertex and

every propagator transforms covariantly. Superficially it seems that there is no

way that the symmetry is broken. However, in loop diagrams we need to regular-

ize the divergences in order to make predictions. If there is an anomaly present,

the regulator will break the symmetry. One needs to be careful since the converse

statement is not correct. For example, in QED with cutoff regularization, the

cutoff breaks gauge invariance, however gauge invariance is not anomalous.3 In

different regularisation schemes, such as dimensional regularization, gauge invari-

ance is never broken. We should make the more precise statement: If a symmetry

is anomalous, then every regulator will break the symmetry.

2There are some subtleties in this calculation. There is an infinity which occurs even for the

free theory known to be scale invariant. Therefore this infinity needs to be subtracted. There

is also the usual quadratic divergence which is canceled by the counterterm. Further ϕn are

obtained by assuming fluctuations around a saddle point truncated at leading order. The beta

function found by this procedure only includes the one-loop contribution.
3Gauge symmetries are required to be anomaly free, as otherwise unitarity is violated.
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Scale symmetry is anomalous, unless the beta functions vanish, i.e. the theory

lives at a fixed point. In cutoff regularization, the cutoff scale Λ breaks scale

invariance. In dimensional regularization, the scale µ is introduced to keep the

marginal couplings dimensionless. This scale then breaks scale invariance.

At this point we comment on an idea to regularize the divergence without

breaking scale invariance [102] (see also [103–107]). Suppose in dimensional regu-

larization, the scale µ is replaced by µ2ϵ → (ω2)
ϵ/(1−ϵ)

where ω is a dynamical field

with non-zero expectation value. Since ω transforms covariantly under scale trans-

formations, the regularization process does not break scale invariance and there is

no scale anomaly. In the broken phase, where we expand around the VEV of ω,

this regularization scheme gives very similar results to traditional regularization

schemes. However new interactions involving ω are present. In the unbroken phase

the theory is non-renormalizable due to the interactions involving (ω2)
ϵ/(1−ϵ)

and

it is unclear whether this is a well defined theory. It should also be noted that

scale invariant renormalization is not simply a new regularization scheme. It does

introduce new interactions and therefore the theory is altered compared to other

regularization schemes.
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Chapter 3

Hierarchy problem

The particle content of the SM includes an elementary scalar field given by the

Higgs boson. The masses of scalar fields are sensitive to new scales giving rise to

the hierarchy problem [108–112]. In case of a single scale system, the quadratic

divergences are an artifact of renormalization and such a system does not have a

hierarchy problem. The hierarchy problem manifests if there are two or more mass

scales present. In this chapter, we discuss the different aspects of the hierarchy

problem and present some popular approaches to address the hierarchy problem.

To some degree, the hierarchy problem is connected to the understanding of

renormalization. However, the discussion in this chapter should no be seen as

a review of renormalization. We only mention those aspects of renormalization

relevant to understanding the hierarchy problem and do not provide any more

details on renormalization than necessary.

3.1 Quadratic divergence

Consider a toy model which consists of a single real scalar field ϕ with a Lagrangian

given by

L = −1

2
ϕ□ϕ− m2

2
ϕ2 − λ

4!
ϕ4. (3.1)

Now, we consider the two-point functions in order to figure out how the mass term

is renormalized. The two-point function is given by the geometric series

= + 1PI + 1PI 1PI + ...

=
i

p2 −m2 + Σ(p2)
,

(3.2)
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where Σ is given by the sum of all 1PI graphs, i.e.

1PI = iΣ(p2). (3.3)

In the previous equation, we dropped the in- and outgoing propagators. It is

important to realize that the mass of ϕ is not simply given by the bare mass m.

The parameter m2 should be thought of as a parameter in the Lagrangian which

needs to be fixed by a measurement. Typically a measurement fixes the pole mass

mP of ϕ. The pole of the propagator in Eq. (3.2) is given at

(
p2 −m2 + Σ(p2)

)
p2=m2

P
= 0. (3.4)

This condition can be used to fix the mass parameter m2.1

The leading order contribution to Σ is given by

= −iλ
2

∫
d4k

(2π)4
i

k2 −m2
. (3.5)

This integral is quadratically divergent. Wick rotating and evaluating the integral

over the angular coordinates gives

−iλ
2

∫
d4k

(2π)4
i

k2 −m2
= − iλ

16π2

∫ ∞

0

dkE
k3E

k2E +m2
. (3.6)

Introducing a cutoff Λ, we find

− iλ

16π2

∫ Λ

0

dkE
k3E

k2E +m2
= − iλ

32π2

(
Λ2 +m2 ln

(
m2

m2 + Λ2

))
. (3.7)

From Eq. (3.4) we find the one-loop result

m2
P = m2 − λ

32π2

(
Λ2 +m2 ln

(
m2

m2 + Λ2

))
. (3.8)

Introducing a counterterm m2 = m2
P + δm, where δm is formally at one-loop order,

gives

δm =
λ

32π2

(
Λ2 +m2

P ln

(
m2
P

m2
P + Λ2

))
. (3.9)

1There is a second renormalization condition connected to the residue of the pole. We do not

discuss this further as in this section we only consider scalar diagrams at one-loop level where

the wave function renormalization is trivial.
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Sometimes the hierarchy problem is formulated as follows: Why is there an almost

exact cancellation between the bare mass term m2 and Λ2? This formulation of

the hierarchy problem fails to fully capture the essence of the hierarchy problem.

The reason is that Λ is just an unphysical regulator introduced, to allow us to

deal with the divergence of the loop integral. We can just a well choose a different

regularisation scheme. For example in dimensional regularisation we find

−iλ
2

∫
d4k

(2π)4
i

k2 −m2
→− iλµ4−d

2

∫
ddk

(2π)d
i

k2 −m2

=
−iλµ4−d

2(4π)d/2

(
1

m2

)1−d/2
Γ

(
1− d

2

)
,

(3.10)

where µ is the usual renormalization scale and Γ is the Gamma function, i.e. the

analytical continuation of the factorial. Expanding for d = 4− ϵ we find

=
−iλ
32π2

m2

(
−2

ϵ
− 1 + ln

(
m2

µ24πe−γE

))
, (3.11)

where γE is the Euler-Mascheroni constant. Using the on-shell renormalization

condition Eq. (3.4) and introducing a counterterm as m2 = m2
P + δm, we find

δm =
λ

32π2
m2
P

(
−2

ϵ
− 1 + ln

(
m2
P

µ24πe−γE

))
. (3.12)

In dimensional regularisation, there still is a divergence that is canceled by the

counterterm. In four dimensions this divergence is no worse than the divergence

for marginal couplings and there is no reason to assume that there is anything

wrong with with a small mass term in this toy model.2

We have seen that the appearance of the quadratic divergence depends on

the renormalization scheme (more precisely the regularization scheme). Should

we therefore conclude that the quadratic divergence is unphysical? In QFT, we

do not expect any renormalization scheme to be “better” than any other.3 All

physical predictions should be scheme independent. Therefore, we conclude that

the quadratic divergence is unphysical. For a discussion of scheme dependence in

the Wilsonian approach to renormalization, we refer to Refs. [113,114].

2To be precise, in dimensional regularisation we cannot even say if the mass term is small as

there is no other scale, to which we can compare.
3It is however conceivable that at some UV scale, QFT is embedded, for example into string

theory, in which case the UV completion might determine the “correct” renormalization scheme.
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3.2 Scale symmetry and Bardeen argument

We have calculated the loop integral Eq. (3.5) in cutoff regularisation and dimen-

sion regularisation. The difference between the two result is even more profound,

if we take the limit m2 → 0. We find

=

{
0 in dimensional regularisation,

− iλ
32π2Λ

2 in cutoff regularisation.
(3.13)

In dimensional regularisation, we can safely set the mass m2 to zero. It will

not be introduced by loop corrections. In cutoff regularisation, for m2 = 0 the

counterterm δm is still required to cancel the quadratic divergence.

The theory described by the Lagrangian in Eq. (3.1) with m2 = 0 is invari-

ant under scale transformations (x → λx). For non-zero λ this scale symmetry

is anomalous, i.e. broken by quantum corrections in form of non-vanishing beta

functions (see Chap. 2). Since scale symmetry is anomalous, the regularisation

procedure always violates scale invariance. A crucial difference between cutoff

regularization and dimensional regularisation lies in the way scale symmetry is

broken. In cutoff regularisation the cutoff Λ breaks scale symmetry, and in the

limit Λ → ∞ scale symmetry violation is maximized. In contrast, in dimensional

regularization, the only source of scale symmetry violation is µ4−d. This scale µ

only show up in logarithms and µ should not be taken to infinity. Even though

dimensional regularisation also explicitly breaks scale symmetry, it does so in a

minimal way and m2 is protected from loop corrections by scale invariance.

The idea that scale symmetry protects the scalar mass term has been proposed

in Ref. [17]. This so called Bardeen’s argument has originally been formulated for

the SM and also holds for any other single scale system such as our toy model

Eq. (3.1). In the following we sketch the arguments formulated for the SM Higgs

boson.

The Lagrangian of the SM is approximately scale invariant and the Higgs mass

term m2
H explicitly breaks scale invariance. This explicit symmetry breaking can

be seen from Noether current of dilations Dµ. Similar to our discussion in Chap. 2,

we have ∂µD
µ = 2m2

HH
†H. The Dilation current is related to the modified energy

momentum tensor Θµ
ν , and we have ∂µD

µ = Θµ
µ. Therefore

Θµ
µ

∣∣∣∣
classical

= 2m2
HH

†H. (3.14)
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At one-loop, we have the additional anomalous contributions

Θµ
µ

∣∣∣∣
one-loop

= 2∆m2
HH

†H +
∑

i

βλiOi, (3.15)

where Oi are dimension four operators and βλi are the corresponding beta func-

tions. The second term reflects the anomalous breaking of scale symmetry via the

running of couplings. The term 2∆m2
HH

†H describes the corrections to the Higgs

mass with ∆m2
H ∝ m2

H and not ∝ Λ2. The quadratic divergences ∝ Λ2 explicitly

violate scale invariance and are not consistent with the Ward identities Eqs. (3.14)

and (3.15).

The findings in this section can be summarized in the simple statement: The

SM does not have a hierarchy problem. Or more general: Any model with a single

mass scale does not have a hierarchy problem.

3.3 Hierarchy problem

The hierarchy problem manifests itself, if there are two physical scales present. In

order to see this, we consider a simple toy model consisting of two real scalar fields

ϕ and Φ with a Lagrangian given by

L = −1

2
Φ□Φ− 1

2
ϕ□ϕ− M2

2
Φ2 − m2

2
ϕ2 − λΦ

4!
Φ4 − λp

4
Φ2ϕ2 − λϕ

4!
ϕ4. (3.16)

The hierarchy problem occurs, if two physical scale are widely separated, so we

assume m2 ≪ M2. We now compute the contribution to the two point function

of ϕ with Φ running in the loop. The one-loop contribution to Σ is given by

ϕ ϕ

Φ

=− iλp
2

∫
d4k

(2π)4
i

k2 −M2

=





−iλp
32π2M

2
(
−2
ϵ
− 1 + ln

(
M2

µ24πe−γE

))
in dimensional reg.

−iλp
32π2

(
Λ2 +M2 ln

(
M2

M2+Λ2

))
in cutoff reg.

(3.17)

For cutoff regularization there is the same quadratic divergence as in the single

scalar system. However, in the two scalar system in dimensional regularization,

there is also a large correction to m2 given by ∼ λp
32π2M

2. The appearance of
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these quadratic corrections to the mass of the light scalar is quite generic. For any

new physics with a heavy scale ΛNP that has interactions with the light scalar ϕ,

there are correction to m2 given by ∆m2 ∝ Λ2
NP.

4 The hierarchy problem is then:

Why do the different contributions to the mass of the light scalar field cancel very

precisely. This is a problem of fine tuning between the bare mass and the loop

corrections.

The situation in Eq. (3.16) is qualitative very different to the situation in

Eq. (3.1). Scale invariance is badly violated by the large mass term M2 and

therefore the limitm2 → 0 does not restore scale invariance. There is no symmetry

protecting the mass term m2 from large corrections.

An important insight is that the hierarchy problem does not make a theory

inconsistent. Fore example, using the on-shell subtraction scheme, we find with

m2 = m2
P + δm,

δm =





λp
32π2M

2
(
−2
ϵ
− 1 + ln

(
M2

µ24πe−γE

))
in dimensional reg.

λp
32π2

(
Λ2 +M2 ln

(
M2

M2+Λ2

))
in cutoff reg.

(3.18)

Nothing is wrong with fixing our bare mass parameter is such a way that the pole

mass is small (i.e. m2
P ≪ M2) as long as we accept the tuning. The hierarchy

problem is not observable.5

Up to this point we encountered the hierarchy problem as a fine tuning problem

where the bare mass and loop corrections to the scalar mass cancel very precisely.

Under certain circumstances, the hierarchy problem already occurs at tree level.

In the following we present a simple example where tree level contributions to the

scalar mass are generated. In this case it is very obvious why there must be a fine

tuning and there are no subtleties from the different renormalization schemes.

4There is some controversy, whether the quadratic corrections discussed in this section are

physical. Refs. [115–118] present a renormalization scheme where the quadratic correction to

scalar mass terms from physical scales are absent. If correct, this would imply that these correc-

tions are scheme dependent and therefore unphysical, and there would be no hierarchy problem.

There is however no consensus on the validity of this result. For example Ref. [119] claims that

divergences are implicitly subtracted and this renormalization scheme is equivalent to the usual

procedure.
5Ref. [120] claims that the hierarchy problem is unphysical since it is not observable. However,

this interpretation does not explain the tuning of the parameters in the Lagrangian.
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Consider Eq. (3.16) with a negative mass term for Φ, i.e. M2 < 0. Φ obtains a

VEV given by ⟨Φ⟩ =
√

−6M2

λΦ
and expanding around as Φ = ⟨Φ⟩+ Φ̂ gives for the

scalar potential

V = −M2Φ̂2 +
1

2

(
m2 − 3

λp
λΦ
M2

)
ϕ2 + interaction terms. (3.19)

In order for ϕ to have a small mass term, we require m2−3 λp
λΦ
M2 ≪ −6M2

λΦ
. Unless

λp ≪ 1,6 there needs to be a very precise cancellation of m2 and 3 λp
λΦ
M2 which is

again a question of fine tuning.

3.4 Solutions to the hierarchy problem

There are a number of different approaches that address the hierarchy problem.

In this section, we briefly introduce some of these approaches and sketch how the

hierarchy problem is solved. We first discuss approaches that explain why the

Higgs boson does not receive quadratic correction from new physics between the

EW and the Planck scale. These approaches often come with new physics at the

O(TeV) scale. The increasingly stringent collider bounds push the scale of the new

physics higher, which typically gives a new tuning problem of the Higgs mass. This

is known as the little hierarchy problem. We first discuss approaches that allow

for large scale separations such as the separation of the EW scale and the Planck

scale in Sec. 3.4.1. We then discuss approaches to the little Hierarchy problem in

Sec. 3.4.2.

3.4.1 Separation of EW and Planck scale

Supersymmetry

Supersymmetry is a classic solution to the hierarchy problem. Space-time symme-

try is extended by fermionic operators [123] which transform bosons into fermions

and vice versa. For a review of supersymmetry we refer to Ref. [124].

6Small values of the portal coupling can be technically natural, if λp = 0 leads to a double

Poincaré symmetry [121,122].
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In order to illustrate how supersymmetry addresses the hierarchy problem, we

consider a simple supersymmetric Lagrangian, the Wess-Zumino model [125]. The

Lagrangian is given by

L = iψ̄σ̄µ∂µψ − m

2
(ψψ + ψ̄ψ̄) + |∂µϕ|2 −m2|ϕ|2

− y(ϕψψ + h.c.)− ym
(
ϕ2ϕ∗ + h.c.

)
− y2|ϕ4|,

(3.20)

where ψ is a Weyl spinor with a Majorana mass term and ϕ is a complex scalar

field. y is assumed to be real. We now calculate the one-loop corrections to the

Higgs mass term. Ignoring external momenta7 and evaluating the trace over the

gamma matrices, we find

=y2
∫

d4k

(2π)4
1

k2 −m2
, (3.21)

=(−1)y2
∫

d4k

(2π)4
Tr[σµk

µσ̄νk
ν ]

[k2 −m2]2
= (−1)y2

∫
d4k

(2π)4
k2

[k2 −m2]2
,

(3.22)

=m2y2
∫

d4k

(2π)4
1

[k2 −m2]2
. (3.23)

The fermion loop has an additional factor of (−1) due to the different spin-

statistics. Summing all three contributions simply gives zero and therefore the

mass of ϕ does not receive corrections.

Exact supersymmetry predicts that for every SM field there is a mass degen-

erate superpartner with the same quantum numbers. None of these superpartner

have been observed and supersymmetry needs to be broken. In order for supersym-

metry to remain a solution to the hierarchy problem, the supersymmetry breaking

scale, cannot be too large. The largest contribution to the Higgs mass stems from

the top quark loop which is canceled by the superpartner of the top quark, the

stop. With no experimental evidence, the limits on the stop mass require some

fine tuning in supersymmetric models. For a review of the current status of fine

tuning we refer to Ref. [126].

7Momentum dependence is only important for the wave function renormalization.
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Dimensional transmutation

EWSB is not the only mechanism of scale generation in the SM. The QCD scale

is generated by a mechanism called dimensional transmutation. At the classical

level, the QCD Lagrangian is scale invariant. The scale anomaly induces a scale

dependence which manifests in the running of couplings. Along the RG flow,

the QCD gauge coupling g3 reaches a critical value at which perturbation theory

breaks down. This leads to a formation of quark and gluon condensates and chiral

symmetry is spontaneously broken. Large scale separations can occur naturally

since the logarithmic running usually spans many orders of magnitude before the

critical value is reached.

Technicolor is based on the idea that electroweak symmetry is broken in a sim-

ilar fashion to QCD [108,111,127–129]. The electroweak gauge group is embedded

into a larger group G as a weakly gauged subgroup. “Technifermions” with elec-

troweak charges form a condensate similar to QCD and this condensate breaks

electroweak symmetry. Technicolor models suffer from a number of shortcomings.

They typically lead to large corrections to EW precision observables [130–133]

and it is hard to include fermion masses [130, 131]. Further and maybe most im-

portantly, technicolor models do not explain the presence of the 125GeV Higgs

boson. The idea of EWSB by a strongly coupled sector is revived in compos-

ite Higgs models where confinement scale is larger than EW scale and vacuum

misalignment breaks the electroweak gauge symmetry. We will discuss composite

Higgs models in the next section. For a review on technicolor models, we refer to

Ref. [134].

Dimensional transmutation can also occur in the weak coupling regime. In

Ref. [22], Coleman and Weinberg showed that in scalar massless electrodynamics,

the scalar field obtains a VEV and the scale of spontaneous symmetry breaking is

roughly given by the scale where the scalar quartic coupling turns negative. Such

classically scale invariant Coleman-Weinberg type models are the main topic of

this thesis. The original setup is discussed in more detail in Chap. 4. Chapters 5

and 6 also cover classically scale invariant models.

Extra dimensions

Originally, extra dimensions were introduced in an attempts to unify electromag-

netism and gravity [135,136]. In such Kaluza-Klein (KK) models, a 5th space-time

dimension, which is compact, is introduced. Fields propagate in all 5 dimensions

and excitations in the 5th dimension lead to a tower of 4d particles with masses
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∼ n/R, where n is an integer number and R is the radius of the extra dimension.

The gravitational coupling in five dimensions M5 =:M∗, which is the 5d analogue

of the Planck mass, is connected to the 4d Planck mass by

M2
Pl = 2πRM3

∗ . (3.24)

On large distances the extra dimension is inaccessible and in four dimensions we

get the usual predictions for gravity. In KK models one typically has M∗ ∼ MPl

and not much is gained for the hierarchy problem.

Lowering the Planck scale is more successfully realized in models with large

extra dimensions. Suppose the SM fields are trapped in a (3 + 1)-dimensional

subspace of a higher dimensional space-time [137]. This subspace is usually called

the brane. Gravity is assumed to propagate in all d dimension (often said to

“‘live in the bulk”). The extra dimensions are compact, however their size can be

larger than the weak scale [138]. The coupling constant of gravity in d dimensions

Md =:M∗ is then the fundamental scale. It is related to the Planck scale by

M2
Pl =Md−2

∗ Vd−4 ∼Md−2
∗ Rd−4, (3.25)

where Vd−4 is the volume of the extra dimension and R is the size of the extra

dimension. There is no hierarchy problem if M∗ ∼ O(TeV). From Eq. (3.25)

we find for M∗ ∼ O(TeV) that R ∼ 1032/(d−4)TeV−1, and for d = 5, we find

R ∼ 1015 cm. At scales smaller than R, the gravitational coupling is modified

as gravity propagates in d dimensions rather than four dimensions. The case

d = 5 is quickly excluded and Cavendish experiments pose constraints on the

d = 6 case [139]. At first glace, it seems that with M∗ ∼ O(TeV) and d ≥ 6,

the hierarchy problem is solved. However, in practice we swapped the hierarchy

problem to a problem called radius stabilization. M∗ and 1/R are vastly different

without a good reason.

The Randall-Sundrum model [140] for a warped extra dimension is an inter-

esting possibility to address the hierarchy problem. In this model, we have a

5-dimensional space-time with an anti-de Sitter metric

ds2 =

(
R

z

)
(ηµνdx

µdxν − dz2). (3.26)

The SM lives in the IR brane localized at z = R′ ≫ R and the Higgs VEV is

warped down from its natural value v ∼ 1
R

to vR
R′ ∼ 1

R′ . The Planck scale is not

warped down and MPl ∼ 1
R
.
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Other approaches

In models of cosmological relaxation [141], the quadratic correction to the Higgs

mass are not suppressed and the mass parameter of the Higgs boson m2
H close to

the cutoff. During inflation in the early universe, a new field ϕ will scan many dif-

ferent field values. A portal term g|H|2ϕ, with a dimensionful coupling g, induces

corrections to the Higgs mass which depend on the field value of ϕ. ϕ naturally

settles at a value where m2
H and gϕ cancel and the Higgs mass is small.

Historical solutions such as Nnaturalness introduce many copies of the SM [142].

For N ∼ Λ2/m2
H copies, where Λ is the cutoff, we expect that by chance one copy

has a light Higgs boson. A difficulty in this approach is that one needs to ensure

that reheating only reheats the lightest sector.

A large number (N ∼ 1032) of new fields might also lower the scale where

gravity becomes strong down to M∗ =MPl/
√
N [143,144]. This essentially lowers

the cutoff down to ∼ TeV scales.

There also are anthropic arguments worth pointing out. For example, Ref. [145]

argues that the closeness of the QCD scale and the EW scale is required as other-

wise baryons are unstable or complex elements would not exist.

3.4.2 Little hierarchy problem

Composite Higgs

Composite Higgs models [55–58] introduce the Higgs boson as a composite scalar

field originating from a strongly coupled sector. This can be used to address the

issues of technicolor models. The strongly coupled sector generates a scale f > vEW
via dimensional transformations which spontaneously breaks a global symmetry

of the Lagrangian. In the minimal composite Higgs model, the breaking pattern

is given by SO(5) → SO(4) [146]. The SU(2)L gauge group is embedded into the

SO(4) group and the Higgs boson is a pNGB associated with the breaking SO(5) →
SO(4). Electroweak symmetry is broken by the misalignment mechanism [56, 58],

where the direction of the VEV is shifted away from the EW preserving value

effectively introducing a VEV for the (composite) Higgs doublet. Generating the

Higgs couplings, especially the top Yukawa coupling, inevitably breaks the shift

symmetry which protects the Higgs boson from quadratic corrections and typically

some tuning is required in these models.
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Little Higgs

Similar to composite Higgs models, little Higgs models realize the idea of the

Higgs boson as a pNGB of a spontaneously broken global symmetry. The global

symmetry is explicitly broken, however only collectively [59–64] which allows for an

additional protection of the Higgs mass. Collective symmetry breaking means that

the symmetry is explicitly broken only if two or more couplings in the Lagrangian

are non-zero. If only only one coupling of these couplings is non-zero, then the

Higgs boson is a massless Goldstone boson.

Twin Higgs

Twin Higgs models [65–67, 147–152] assume that there is a copy of the SM. The

SM Higgs H and the Higgs boson from the copy H ′ have a potential that has an

approximate SU(4) symmetry. A parity symmetry, i.e. the exchange symmetry of

the SM and the copied SM, ensures that the quantum corrections to the scalar

mass terms are always symmetric under the global SU(4) symmetry. Corrections

to the quartic couplings are not SU(4) symmetric, however these corrections are

only logarithmically divergent. The parity (exchange) symmetry is spontaneously

broken together with the SU(4) symmetry and the mirror sector obtains a mass.

The Higgs field is the pNGB associated with this spontaneous breaking and there-

fore the Higgs mass is suppressed compared to the parity breaking scale. Due to

light new degrees of freedom in the hidden sector, twin Higgs models often suffer

from cosmological constraints [153–156].
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Chapter 4

Effective Potential

Scale invariant theories are on the boundary between the symmetry preserving and

the symmetry breaking phase. Small perturbations in form of loop corrections

decide whether the vacuum of the theory breaks the symmetry. The effective

potential takes these loop corrections to the potential into account. In this chapter

we sketch the derivation of the effective action and the effective potential. We then

discuss the Coleman-Weinberg potential which serves as an example of spontaneous

symmetry breaking in a scale invariant theory.

4.1 Effective action

We start by introducing the effective action, where we somewhat follow the deriva-

tion given in Ref. [157]. Many steps of the derivation are also found in the original

Coleman-Weinberg paper [22].

A QFT can be studied using the canonical quantization approach or the path

integral formulation. For the derivation of effective potentials the latter is most

convenient. The generating functional is defined by

Z[J ] =

∫
Dϕ eiS[ϕ]+i

∫
d4x J(x)ϕ(x), (4.1)

where S[ϕ] is the classical action and Dϕ should be understood as integrating

over all possible field configurations. This generating functional contains all the

information about the QFT. For example time-ordered products are obtained by

⟨Ω|T {ϕ(x1)...ϕ(xn)}|Ω⟩ = (−i)n 1

Z[0]

δnZ

δJ(x1)...δJ(xn)

∣∣∣∣
J=0

. (4.2)
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We can define the functionalW [J ] = −i lnZ[J ]. As a consequence,W [J ] generates

the connected Feynman diagrams, i.e.

⟨Ω|T {ϕ(x1)...ϕ(xn)}|Ω⟩connected = (−i)n δnW [J ]

δJ(x1)...δJ(xn)

∣∣∣∣
J=0

. (4.3)

We define the classical field φcl as the weighted average over all possible field

configurations of the field ϕ in the presence of the source J . It is obtained from

the generating functional by

φcl(x) = ⟨J |ϕ(x)|J⟩ = δW [J ]

δJ(x)
. (4.4)

The effective action Γ[φcl] is then defined as the Legendre transform of W [J ],

explicitly

Γ[φcl] = W [Jφ]−
∫
d4x Jφ(x)φcl(x), (4.5)

where Jφ is obtained by solving Eq. (4.4) at J = Jφ.

The effective action is a powerful object. It allows us to find the vacuum config-

urations and directly gives the one-particle irreducible (1PI) n-point functions by

taking derivatives of the effective action. The first derivative of Γ[φcl] is evaluated

to
δΓ[φcl]

δφcl(x)
= −Jφ(x). (4.6)

The field configuration φ0 is defined by Jφ0 = 0. Thus we simply have

δΓ[φcl]

δφcl(x)

∣∣∣∣
φcl=φ0

= 0. (4.7)

This equation is the analogue to the equations of motion in classical field theory,

obtained from δS
δϕ

= 0. The field φ0 fulfills the classical equations of motion with

the classical action replaced by the effective action. In Eq. (4.4), we defined φcl

as the expectation value in the presences of the source J and therefore φ0 is the

expectation value for ϕ at the true vacuum of the theory.

The second derivative of Γ[φcl] turns out to be the inverse propagator

δ2Γ[φcl]

δφcl(x)δφcl(y)

∣∣∣∣
φcl=φ0

= iG(x, y)−1 = i
[
⟨Ω|T {ϕ(x)ϕ(y)}|Ω⟩connected

]−1

. (4.8)

Any higher derivative yields the 1PI n-point function, i.e. for n ≥ 3 we have

δnΓ[φcl]

δφcl(x1)...δφcl(xn)

∣∣∣∣
φcl=φ0

= −i⟨Ω|ϕ(x1)...ϕ(xn)|Ω⟩1PI. (4.9)
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4.2 One-loop approximation

Apart from very simple settings, it is not possible to calculate the effective action

exactly. Often one resorts to the so called loop expansion which is equivalent to

an expansion in powers of ℏ. The zero loop effects are captured at tree level and

the one-loop effect are of O(ℏ). There are several ways of obtaining the one-loop

approximation for the effective action. In the following, we sketch an approach

based on functional methods. This was originally derived in Ref. [158].

The tree level effects are captured by the stationary-phase evaluation of the

generating functional. Eq. (4.1) is dominated by the field configurations ϕ(0) that

fulfill the classical equations of motion in presence of the source, i.e.

δS

δϕ(x)

∣∣∣∣
ϕ=ϕ(0)

= −J(x). (4.10)

At leading order, the generating functional is then given by

Z[J ] ≈ exp

{
iS[ϕ(0)] + i

∫
d4x J(x)ϕ(0)(x)

}
, (4.11)

and Eq. (4.5) implies

Γ[φcl] ≈ S[φcl]. (4.12)

The tree level (or zero loop) approximation of the effective action is simply given

by the classical action.

Now we include fluctuations around ϕ(0) by expanding ϕ = ϕ(0) + ϕ̂. The

classical action is then expanded as

S[ϕ(0) + ϕ̂] =S[ϕ(0)] +

∫
d4x

(
δS

δϕ(x)

∣∣∣∣
ϕ=ϕ(0)

)
ϕ̂(x)

+

∫
d4x d4y

1

2
ϕ̂(x)

(
δ2S

δϕ(x)δϕ(y)

∣∣∣∣
ϕ=ϕ(0)

)
ϕ̂(y) +O(ϕ̂3)

=S[ϕ(0)]−
∫
d4x J(x)ϕ̂(x) +

∫
d4x d4y

1

2
ϕ̂(x) iD̂−1(x, y)ϕ̂(y) +O(ϕ̂3),

(4.13)

where we used Eq. (4.10) in the second equality and defined D̂−1 as the inverse

propagator (at tree level) in the shifted theory. The truncation at quadratic order
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implicitly keeps terms up to O(ℏ) and therefore corresponds to the one-loop ex-

pansion [157]. This approximation reduces the path integral to a Gaussian integral

which can be evaluated as

Z[J ] = exp

{
iS[ϕ(0)] + i

∫
d4x J(x)ϕ(0)(x)

}
×

×
∫

Dϕ exp

{
i

∫
d4x d4y

1

2
ϕ̂(x) iD̂−1(x, y)ϕ̂(y)

}

=exp

{
iS[ϕ(0)] + i

∫
d4x J(x)ϕ(0)(x)− 1

2
ln det

(
iD̂−1(x, y)

)}
.

(4.14)

The logarithm of this expression gives us W [J ]. In order to obtain the effective

action, we need to perform the Legendre transform. We find

Γ[φcl] =W [Jφ]−
∫
d4x Jφ(x)φcl(x)

=S[ϕ(0)] +

∫
d4x J(x)

(
ϕ(0)(x)− φcl(x)

)
+ i

1

2
ln det

(
iD̂−1(x, y)

)

(4.10)
= S[ϕ(0)] +

∫
d4x

(
δS

δϕ(x)

∣∣∣∣
ϕ=ϕ(0)

)
(
φcl(x)−ϕ(0)(x)

)
+ i

1

2
ln det

(
iD̂−1(x, y)

)

=S[φcl] + i
1

2
ln det

(
iD̂−1(x, y)

)
,

(4.15)

where in the last equality we used the Taylor expansion

S[φcl] = S[ϕ(0)] +

∫
d4x J(x)

(
ϕ(0)(x)− φcl(x)

)
+O(ℏ2). (4.16)

D̂−1 is defined as the second functional derivative of the action evaluated at ϕ =

ϕ(0). We might as well evaluate it at φcl since difference in the effective action is

of O(ℏ2).
To summarize, the one-loop effective action is given by

Γ[φcl] = S[φcl] + i
1

2
ln det

(
δ2S

δϕ(x)δϕ(y)

∣∣∣∣
ϕ=φcl

)
. (4.17)

For general functions φcl(x), it is not possible to evaluate the functional determi-

nant. If we employ the derivative expansion, we can obtain explicit results. This

leads to the definition of the effective potential.
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4.3 Effective potential

In this work, we are mainly concerned with the vacuum expectation values (VEVs)

of scalar fields which can be obtained by using Eq. (4.7). We will now assume

translation invariance for φcl (or equivalently keep the 0th order of the derivative

expansion). From now on, we denote these constant background fields for scalar

fields as ϕb. Then we define the effective potential as

Γ[ϕb] =: −
∫
d4xVeff[ϕb]. (4.18)

The condition for the true vacuum value ⟨ϕ⟩ of the background field ϕb follows

from Eq. (4.7) and is given by

δVeff[ϕb]

δϕb

∣∣∣∣
ϕb=⟨ϕ⟩

= 0. (4.19)

With the assumption of constant background fields, we can now explicitly calculate

the one-loop contributions to the effective potential.

Consider the case where ϕ is a real scalar field. Then the inverse propagator is

given by

iD̂−1 = −□−m2
eff(ϕb), (4.20)

where m2
eff = δ2Vtree

δϕ2

∣∣
ϕ=ϕb

for the tree level potential Vtree. In order to evaluate the

functional determinant we write

ln det
(
iD̂−1

)
=Tr ln

(
iD̂−1

)
=

∫
d4x⟨x| ln

(
−□−m2

eff(ϕb)
)
|x⟩

=

∫
d4x

∫
d4k

(2π)4
d4k′

(2π)4
⟨x|k⟩⟨k| ln

(
−□−m2

eff(ϕb)
)
|k′⟩⟨k′|x⟩

=

∫
d4x

∫
d4k

(2π)4
ln
(
k2 −m2

eff(ϕb)
)

=

∫
d4x

∫
d4k

(2π)4
ln
(
−k2 +m2

eff(ϕb)
)
+ i const.

(4.21)

The constant, which originates from the minus sign in the logarithm, is field inde-

pendent and can be dropped. Now the momentum integral can be evaluated, for
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example, in dimensional regularization. This is done using a trick, where we Wick

rotate and then introduce a dummy variable α [159]. We find

µ4−d
∫

ddk

(2π)d
ln
(
−k2 +m2

eff(ϕb)
)
= iµ4−d

∫
ddkE
(2π)d

ln
(
k2E +m2

eff(ϕb)
)

= −iµ4−d ∂

∂α

∫
ddkE
(2π)d

1

(k2E +m2
eff(ϕb))

α

∣∣∣∣
α=0

= −iµ4−d ∂

∂α

(
1

(4π)d/2
Γ
(
α− d

2

)

Γ(α)

1

(m2
eff(ϕb))

α−d/2

)∣∣∣∣
α=0

= −iµ4−dΓ
(
−d

2

)

(4π)d/2
(
m2

eff(ϕb)
)d/2

,

(4.22)

where µ is the usual RG scale. In the last equality we used that Γ(α) → 1/α

as α → 0 following Ref. [159]. Expanding around the standard 4-dimensional

space-time d = 4− ϵ gives

−iµ4−dΓ
(
−d

2

)

(4π)d/2
(
m2

eff(ϕb)
)d/2

= −im
4
eff(ϕb)

32π2

[
2

ϵ
+ ln

(
4πe−γEµ2

m2
eff(ϕb)

)
+

3

2

]
. (4.23)

Combining this result with Eqs. (4.15) and (4.18) and absorbing the appropriate

MS counterterms gives

Veff[ϕb] = Vtree[ϕb] +
m4

eff(ϕb)

64π2

[
ln

(
m2

eff(ϕb)

µ2

)
− 3

2

]
. (4.24)

The first term is the tree level potential Vtree which comes from the classical action

and the second term is the one-loop contribution to the effective potential.

Next we consider how fermion loops contribute to the effective potential. We

assume that only scalar fields obtain a non zero expectation value. In the expansion

of the action as in Eq. (4.14) there will be an additional term given by

∫
d4x d4y ψ̄(x)

(
δ2S

δψ̄(x)ψ(y)

∣∣∣∣
ϕ=ϕb,ψ=0

)
ψ(y) =:

∫
d4x d4y ψ̄(x)

(
iD̂−1

)
ψ(y).

(4.25)

For fermions the Gaussian path integral is evaluated (analogously to Eq. (4.14))

as
∫

Dψ̄Dψ exp

{
i

∫
d4x d4y ψ̄(x) iD̂−1(x, y)ψ(y)

}
= exp

{
ln det

(
iD̂−1(x, y)

)}
.

(4.26)
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Note the relative minus sign compared to the contribution from scalar fields. For

Dirac fermions the inverse propagator can be written as

iD̂−1 = −(i/∂ −meff), (4.27)

and, assuming real effective masses, the contribution to Eq. (4.15) is given

i ln det
[
−(i/∂ −meff)

]
=i ln

√
det
[
−
(
i/∂ −meff

) (
i/∂ −meff

)]

=i ln
√

det
[
−
(
−i/∂ −meff

) (
i/∂ −meff

)]

=i
1

2
ln det

[
−□−m2

eff

]
,

(4.28)

where we used that i/∂−meff has the same eigenvalues as −i/∂−meff in the second

equality. The determinant can then be evaluated similarly to the scalar field case.

The only difference is that there are still spinor indices and the trace will give

an additional total factor of 4. For Weyl fermions this factor would be 2. The

contribution to the effective potential is then given by

Veff[ϕb]

∣∣∣∣
Dirac fermion

= −4
m4

eff(ϕb)

64π2

[
ln

(
m2

eff(ϕb)

µ2

)
− 3

2

]
. (4.29)

Gauge boson contributions are simplest calculated in Landau gauge. After

applying the condition ∂µA
µ = 0, the additional term in Eq. (4.14) is given by

∫
d4x d4y Aµ(x)

(
δ2S

δAµ(x)Aν(y)

∣∣∣∣
ϕ=ϕb,Aµ=0

)
Aµ(y)

=:

∫
d4x d4y Aν(x)

(
iD̂−1

µν

)
Aµψ(y).

(4.30)

The inverse propagator is given by
(
iD̂−1

)µν
= gµν(□+m2

eff)− ∂µ∂ν . (4.31)

Using the Weinstein–Aronszajn identity (Sylvester’s determinant theorem)

det (λIn + AB) = λn−1 (λ+BA) , (4.32)

where λ is a number, A and B are n × 1 and 1 × n matrices respectively and In
is the n× n identity matrix, we evaluate the determinant over the Lorentz indices

detµν and obtain in d dimensions

detµν

(
iD̂−1

)µν
= detµν

(
gµν(□+m2

eff)− ∂µ∂ν
)
= −m2

eff

(
□+m2

eff

)d−1
. (4.33)
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The contribution to Eq. (4.14) is then

i ln det
(
−m2

eff

(
□+m2

eff

)d−1
)
= iTr ln

(
−m2

eff

(
□+m2

eff

)d−1
)
, (4.34)

where the determinant and trace do not run over the Lorentz indices. Using the

same steps as in Eq. (4.21)

iTr ln
(
−m2

eff

(
□+m2

eff

)d−1
)
=

∫
d4x

∫
d4k

(2π)4
ln
(
m2

eff(−k2 +m2
eff)

d−1
)
+ i const.

(4.35)

and the momentum integral is evaluated similarly to Eq. (4.22) as

µ4−d
∫

ddk

(2π)d
ln
(
m2

eff(−k2 +m2
eff)

d−1
)
= iµ4−d

∫
ddkE
(2π)d

ln
(
m2

eff(k
2
E +m2

eff)
d−1
)

=− iµ4−d ∂

∂α

∫
ddkE
(2π)d

1

(m2
eff(k

2
E +m2

eff)
d−1)

α

∣∣∣∣
α=0

=− iµ4−d ∂

∂α

(
1

(4π)d/2
Γ
(
(d− 1)α− d

2

)

Γ((d− 1)α)

1

(m2
eff)

(d−1)α−d/2+α

)∣∣∣∣
α=0

=− iµ4−d(d− 1)
Γ
(
−d

2

)

(4π)d/2
(
m2

eff

)d/2
.

(4.36)

Expanding for d = 4− ϵ gives

−iµ4−d(d− 1)
Γ
(
−d

2

)

(4π)d/2
(
m2

eff

)d/2
= −i 3 m

4
eff

32π2

[
2

ϵ
+ ln

(
4πe−γEµ2

m2
eff

)
+

5

6

]
. (4.37)

Again combining this result with Eqs. (4.15) and (4.18) and absorbing the appro-

priate MS terms gives the gauge boson contribution to the effective potential

Veff[ϕb]

∣∣∣∣
gauge

= 3
m4

eff(ϕb)

64π2

[
ln

(
m2

eff(ϕb)

µ2

)
− 5

6

]
. (4.38)

The contributions to the one-loop effective potential and generalized to multiple

fields scalar background fields, described as a vector ϕ⃗b, can be summarized as

Veff

[
ϕ⃗b

]
= Vtree

[
ϕ⃗b

]
+
∑

i

ni(−1)2si

64π2
m4

eff

(
ϕ⃗b

)

ln



m2

eff

(
ϕ⃗b

)

µ2


− Ci


 (4.39)

where the sum runs over all effective masses. Ci =
5
6
(3
2
) for vector bosons (scalars

and fermions), (−1)2si = +
(−)1 for bosons (fermions) and ni is the number of degrees
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of freedom. The number of degrees of freedom are found by multiplying the internal

degrees of freedom with the space-time degrees of freedom which are given by

ni
∣∣
space-time

=





1 real scalar fields

2 complex scalar fields

2 Weyl fermions

4 Dirac fermions

3 gauge bosons

. (4.40)

The effective masses are given by

(
m2

eff

)
ab
=

δ2S

δϕaδϕb

∣∣∣∣
ϕ⃗=ϕ⃗b,Aµ=0,ψ=0

for real scalar fields, (4.41)

(
m2

eff

)
ab
=

δ2S

δAµaδAb,µ

∣∣∣∣
ϕ⃗=ϕ⃗b,Aµ=0,ψ=0

for vector bosons, (4.42)

(meff)ab =
δ2S

δψ̄aδψb

∣∣∣∣
ϕ⃗=ϕ⃗b,Aµ=0,ψ=0

for fermions. (4.43)

The effective masses are, in general, matrices and in Eq. (4.39) the eigenvalues

should be used. Alternatively one can use the full matrices, in which case the

logarithm should be interpreted as the matrix logarithm (i.e. the inverse function

of the matrix exponential).

It turns out that the effective potential depends on the choice of gauge [158].

In our previous calculation, we worked in Landau gauge and a different gauge

would lead to a different effective potential. This gauge dependence is in principle

unproblematic as the effective potential itself is not directly observable. Crucially

the minimum of the effective potential is gauge independent. In this thesis we

will always use Landau gauge and for a discussion of the subtleties of the gauge

dependence of the effective potential, we refer to Ref. [160].

The effective potential is defined by a Legendre transform of the generating

functional. Therefore we expect the effective potential to be convex. However,

in many examples calculated from Eq. (4.39) it is not [161–163]. The issue of

non-convex potential is related to the issue of imaginary parts in the effective

potential. For example, if we have an effective mass given by m2
eff = −m2 + 3λϕ2

b ,

for ϕ2
b ≪ m2 the argument of the logarithm is negative and the effective potential

is complex. A discussion of this issue is beyond the scope of this thesis and we

refer to Refs. [13, 164]. For the practical purpose of determining the VEVs, one

should use the absolute value of the effective potential.
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4.4 Massless scalar electrodynamics

In their original work [22], Coleman and Weinberg discuss the massless ϕ4 model,

and also massless scalar electrodynamics. For the first model, the potential simply

has a minimum at ϕb = 0 and no spontaneous symmetry breaking occurs. Massless

scalar electrodynamics turns out to be more interesting.

Consider a single scalar field ϕ and a gauged U(1) symmetry under which the

scalar field has charge Qϕ = 1. The potential can be written as1

Vtree = λ|ϕ|4. (4.44)

At one-loop, the beta function for λ is given by

βλ =
1

16π2

(
6g4 + 20λ2 − 12g2λ

)
, (4.45)

where g is the U(1) gauge coupling. For g ̸= 0, this beta function is strictly

positive. Therefore λ will turn negative along the RG flow towards the IR for any

positive (perturbative) initial value for λ. Negative values for λ are problematic as

the tree level potential becomes unbounded. Coleman and Weinberg showed that

massless scalar electrodynamics is not ill-defined and this apparent instability is

naturally evaded. This can be easily seen by considering the effective potential.

We choose the RG scale µ close to the scale where the tree level potential turns

unstable and therefore λ ≪ 1. We can use global U(1) transformations to ensure

that the background field ϕb is real. The effective potential, where we only include

gauge boson loops2, follows from Eq. (4.39) and is given by

Veff = λϕ4
b +

3

64π2
(2g2ϕ2

b)
2

[
ln

(
2g2ϕ2

b

µ2

)
− 5

6

]
, (4.46)

which has a minimum at ϕb = ⟨ϕ⟩ with

ln

(⟨ϕ⟩2
µ2

)
= −16π2λ

3g4
− ln

(
2g2
)
+

1

3
. (4.47)

Massless scalar electrodynamics does not have a vacuum instability. The true

minimum of the scalar potential is not at the origin and electrodynamics is spon-

taneously broken. Expanding around the minimum yields the mass for the vector

boson

m2
V = 2g2⟨ϕ⟩2. (4.48)

1We use a different normalization of fields and couplings compared to Ref. [22].
2Scalar loops come with λ2 and can be neglected.
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The field corresponding to the radial excitation of the scalar field is often called

dilaton and its mass is given by

m2
S =

3g4⟨ϕ⟩2
4π2

≈ βλ
2
⟨ϕ⟩2. (4.49)

The dilaton mass is suppressed with respect to the symmetry breaking VEV ⟨ϕ⟩
by the beta function βλ. This can be understood by the observation that scale

symmetry is spontaneously broken and the dilaton is the Goldstone boson asso-

ciated with this breaking. Since scale symmetry is also explicitly broken by the

anomaly i.e. the beta functions, the dilaton mass is proportional to this explicit

breaking.

The Coleman-Weinberg mechanism is an example of dimensional transmutation

in the weak coupling regime. Initially the Lagrangian has no explicit scale and

due to the running of couplings, λ reaches a critical value and ϕ obtains a VEV,

generating a scale. This happens for small values of the couplings and which allows

us to use perturbation theory methods.

4.5 Gildener Weinberg approximation

In the previous section we discussed scalar electrodynamics, where we could solve

the minimum equation of the single scalar field analytically. In case of multiple

scalar fields this is in general not possible. Gildener and Weinberg proposed a

widely used approximation scheme for the multi scalar case [24, 165]. This ap-

proximation estimates the alignment of the VEV from the tree level potential.

We present the general procedure following Ref. [24] and then give an example

calculation in a case with two scalar fields.

Any scale invariant tree level potential can be written as

Vtree =
∑

ijkl

fijkl
24

ΦiΦjΦkΦl, (4.50)

where Φi denotes the components of the scalar fields written in terms of real fields.

The indices i, j, k, l run over all real scalar degrees of freedom. The scalar couplings

are defined as

fijkl =
∂4

∂Φi∂Φj∂Φk∂Φl

Vtree, (4.51)

which guarantees that fijkl is symmetric under exchange of two indices. Assuming

1 ≫ fijkl ≫ g4, where g denotes other couplings in the model, the potential is
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dominated by the tree level contributions. This also requires all scalar couplings

to be positive which guarantees that the minimum of the tree level potential is

at the origin. Now we assume that along the RG flow, the tree level potential

develops a flat direction. We denote the scale where this happens as µGW. This

condition can be written as

min
NiNi=1

(fijklNiNjNkNl) = 0 at µ = µGW, (4.52)

where Ni is a unit vector. Calling the solution to this equation Ni = ni, then the

flat direction is along the ray Φi = niϕ, where ϕ is the distance from the origin.

In order to find ni, we need to solve

fijklninjnknl = 0, fijklnjnknl = 0, fijkluiujnknl ≥ 0, (4.53)

for any vector ui. This procedure gives a tree level estimate for the direction of

the VEV. In order to determine the distance from the origin ϕ, one needs to find

the minimum of the effective potential along the ray Φi = niϕ, i.e. solve

∂

∂ϕ
Veff (niϕ) = 0. (4.54)

As an example, consider a model with two scalar fields H and Φ3 and a tree

level potential given by

Vtree = λH |H|4 + 2λp|H|2|Φ|2 + λΦ|Φ|4. (4.55)

Solving Eq. (4.53), we find the following solutions

Φ = ϕ, H = 0, λΦ = 0, λp ≥ 0, (4.56)

Φ = 0, H = ϕ, λH = 0, λp ≥ 0, (4.57)

Φ =

√
λH

λH − λp
ϕ, H =

√
−λp

λH − λp
ϕ, λΦ =

λ2p
λH

, λp ≤ 0. (4.58)

The conditions on the couplings, i.e. λΦ = 0, λH = 0 or λΦ = λ2p/λH are not fine

tuning. There exists a RG scale where one of these conditions is true [13]. Along

the flat direction, loop corrections generate a non-trivial minimum.

3Φ should not be confused with Φi.
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4.6 Renormalization group equation for the ef-

fective potential

The effective action is independent of the choice of the artificial RG scale µ. This

can be expressed as [22]

µ
d

dµ
Γ[φcl] =

[
µ
∂

∂µ
+
∑

i

βλi
∂

∂λi
+
∑

a

γa

∫
d4xφacl(x)

δ

δφacl(x)

]
Γ[φcl] = 0,

(4.59)

where βλi is the beta function for the generic coupling λi defined as

βλi = µ
∂λi
∂µ

, (4.60)

and γa is the anomalous dimension for the field φacl given by

γaφ
a
cl = µ

∂φacl
∂µ

. (4.61)

With the definition of the effective potential Eq. (4.18), we find

µ
d

dµ
Veff[ϕb] =

[
µ
∂

∂µ
+
∑

i

βλi
∂

∂λi
+
∑

a

γaϕ
a
b

∂

∂ϕab

]
Veff[φcl] = 0. (4.62)

A solution to Eq. (4.62) is called the RG improved effective potential. However

finding such a solution is difficult and not always possible. For practical application

one typically chooses the RG scale µ close to the physical scales and then one can

safely use the effective potential in the fixed order loop expansion. If there are two

or more physical scales, the situation is more involved. A number of approaches

have been suggested, for example in Refs. [166–174].
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Chapter 5

Effective potential and RGEs

The effective potential obeys the Callan-Symanzik equation Eq. (4.62). In very

simple cases this equation can be integrated and the effective potential can be

written in term of the beta functions. In this Chapter, we review how this can

be done in the case of a single massless scalar field. We then discuss how the

effective potential of two massless scalar fields is connected to the beta functions

and investigate how the mass of a pNGB is generated in such a setting. We restrict

ourselves to the one-loop effective potential.

We start by expanding the effective potential formally in terms of ℏ which is

equivalent to the loop expansion. Up to O(ℏ) we write1

Veff[ϕb] = Vtree[ϕb] + V1[ϕb], (5.1)

with the tree level potential Vtree and the one-loop contribution (see Eq. (4.39))

V1 =
∑

i

(−1)2sini
64π2

m4
eff,i

(
ln

(
m2

eff,i

µ2

)
− Ci

)
. (5.2)

Now we apply the renormalization group equation of the effective potential Eq. (4.62).

Equating terms of O(ℏ) yields [13]
(∑

i

βλi
∂

∂λi
+
∑

a

γaϕ
a
b

∂

∂ϕab

)
Vtree[ϕb] = −µ ∂

∂µ
V1[ϕb]. (5.3)

One immediate use of this equation is that it gives a way to calculate the one-loop

beta functions. Combining Eqs. (5.2) and (5.3) yields
(∑

i

βλi
∂

∂λi
+
∑

a

γaϕ
a
b

∂

∂ϕab

)
Vtree[ϕb] = 2

∑

i

(−1)2sini
64π2

m4
eff,i, (5.4)

1This approach is found in Ref. [13]
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and the beta functions are found by comparing coefficients (assuming the anoma-

lous dimensions are known). In some cases, Eq. (5.3) can be used to write the

effective potential in terms of beta functions (and anomalous dimensions). In the

next section we will show how this can be done in the single scalar model.

5.1 Single scalar field potential

Consider the tree level potential of a single massless real scalar field ϕ, given by

Vtree =
λ

4!
ϕ4. (5.5)

Then Eq. (5.3) reads

−µ ∂

∂µ
V1 = (βλ + 4γ)

ϕ4
b

4!
. (5.6)

Before integrating this equation, we need to clarify some points. The beta function

and anomalous dimensions are of O(ℏ) and since we are working at O(ℏ), they
can be considered to be constant. Next we need to specify the initial condition.

At µ = ϕb there is only one dimensionful quantity present and V1/ϕ
4
b =: D/4! is

dimensionless and therefore field independent.2 With this in mind, we integrate

V1 =

(
D −

∫ µ

ϕb

dµ′

µ′ (βλ + 4γ)

)
ϕ4
b

4!
=

(
D +

(βλ + 4γ)

2
ln

(
ϕ2
b

µ2

))
ϕ4
b

4!
. (5.7)

The one-loop effective potential is then given by

Veff =
λ+D

4!
ϕ4
b +

βλ + 4γ

2 · 4! ϕ4
b ln

(
ϕ2
b

µ2

)
. (5.8)

A similar result has been obtained in Ref. [13]. We stress that this procedure

crucially depends on the fact that there is only one physical scale present in this

model.

5.2 Two scalar fields potential

In case of several scalar fields, we cannot simply integrate Eq. (5.3). In the single

scalar case, the argument of the logarithm is fixed by the fact that there is only one

physical scale present. This does not work in the two scalar case. If there are two

2Note that this only holds in the case of a single scalar field.
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scalar fields whose VEVs are similar in size, there is no way around analyzing the

full one-loop effective potential. In many physical settings one is interested in the

case with a hierarchy between the VEVs of the scalar fields. In the following, we

show how the effective potential is related to the beta functions in the hierarchical

setting.

We focus on a scale invariant potential with two scalar fields Φ and H, and

assume that the symmetries of our model lead to a scalar potential which can be

written as

Vtree = λΦ|Φ|4 + λH |H|4 + 2λp|Φ|2|H|2. (5.9)

Further we assume that, at some scale µ, both λΦ and λp turn small simultaneously

and the potential develops a flat direction. (The Gildener Weinberg approximation

for this potential is discussed in Chap. 4.) The field Φ obtains a VEV given by

⟨Φ⟩ and the portal coupling generates a small (positive or negative) mass term

for H. We will study the effective potential in the region where Hb ≪ Φb ≈ ⟨Φ⟩.
We also assume that for each field only one real component will obtain a non-zero

expectation value. In Chap. 6 we will have such a setup, where H is the SM Higgs

doublet and Φ is a complex scalar singlet charged under an U(1) symmetry. By

assumption, λΦ and λp are small and we will not include them in the calculation of

the effective masses. In Chap. 6 we will include λp however the numerical difference

is small.

The symmetry that enforces the shape of the potential in Eq. (5.9) also ensures

that the effective masses only depend on the scalar fields squared, i.e. m2
eff(Φ

2
b , H

2
b ).

Expanding Eq. (5.2) for Hb ≪ Φb yields

V1 =DΦΦ
4
b +DHH

4
b + 2DpΦ

2
bH

2
b

+
CλΦ
2

Φ4
b ln

(
Φ2
b

µ2

)
+
CλH
2
H4
b ln

(
H2
b

µ2

)
+
C̃λH
2
H4
b ln

(
Φ2
b

µ2

)
+CλpΦ

2
bH

2
b ln

(
Φ2
b

µ2

)

+ λ6
H6
b

Φ2
b

+ Cλ6
H6
b

Φ2
b

ln

(
H2
b

µ2

)
+ C̃λ6

H6
b

Φ2
b

ln

(
Φ2
b

µ2

)
+ ... ,

(5.10)

for some model dependent coefficients Di, Ci and C̃i. If we plug this into Eq. (5.3)

and compare the coefficients of powers of Φb and Hb, we find

CλΦ =βλΦ − 4λΦγΦ, C̃λH + CλH =βλH − 4λHγH , (5.11)

Cλp =βλp − 2λp(γΦ + γH), C̃λ6 =− Cλ6 . (5.12)
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The beta function will always occur together with the anomalous dimensions, so

we define

β̃λΦ := βλΦ − 4λΦγΦ, β̃λH := βλH − 4λHγH , β̃λp := βλp − 2λp(γΦ + γH).

(5.13)

Further, β̃λH is split up into β̃λH = β̃hλH + β̃lλH by defining

β̃hλH := C̃λH , β̃lλH := CλH . (5.14)

With the final definition

λ̃Φ = λΦ +DΦ, λ̃H = λH +DH , λ̃p = λp +Dp, (5.15)

the expanded one-loop effective potential can be written as

Veff =λ̃ΦΦ
4
b + λ̃HH

4
b + 2λ̃pΦ

2
bH

2
b

+
β̃λΦ
2

Φ4
b ln

(
Φ2
b

µ2

)
+
β̃lλH
2
H4
b ln

(
H2
b

µ2

)
+
β̃hλH
2
H4
b ln

(
Φ2
b

µ2

)
+β̃λpΦ

2
bH

2
b ln

(
Φ2
b

µ2

)

+ λ6
H6
b

Φ2
b

+ Cλ6
H6
b

Φ2
b

ln

(
H2
b

Φ2
b

)
+ ... .

(5.16)

This equation shows how the effective potential is related to the beta function in

case of two scalar fields. When studying the effective potential, one is typically

interested in the VEVs of the scalar fields. For this purpose, the above equation is

not particularly helpful. We discuss an approach to understand the VEVs of the

two scalar system in the following section.

5.2.1 Minimum of the two scalar effective potential

The minimum of the effective potential is found by solving

∂Veff
∂Φb

∣∣∣∣
Φb=⟨Φ⟩,Hb=⟨H⟩

= 0,
∂Veff
∂ϕb

∣∣∣∣
Φb=⟨Φ⟩,Hb=⟨H⟩

= 0. (5.17)

These equations can usually only be solved numerically which is not very insightful.

In the following we propose an analytic way of studying the minimum structure

of the effective potential. Our procedure resembles the functional approach to

Effective Field Theories (EFTs) (see e.g. Ref. [175]). However, we are working

with effective potentials which are functions of the background fields and our
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procedure can be understood purely as expanding the effective potential in the

region of interest.

We start by solving the minimum condition for Φb while allowing for general

values of Hb. This defines Φ̃(Hb) via

∂Veff
∂Φb

∣∣∣∣
Φb=Φ̃(Hb)

= 0. (5.18)

Note that Φ̃(Hb = ⟨H⟩) = ⟨Φ⟩. Now we define a new potential for Hb as

VEFT(Hb) := Veff(Hb, Φ̃(Hb)). (5.19)

One can easily check that this new potential has a minimum at Hb = ⟨H⟩ since

the first derivative vanishes, i.e.

∂VEFT
∂Hb

∣∣∣∣
Hb=⟨H⟩

=
∂Veff
∂Hb

+
∂Veff
∂Φb

∂Φ̃

∂Hb

∣∣∣∣∣
Hb=⟨H⟩,Φb=⟨Φ⟩

= 0, (5.20)

which simply follows from the definition Eq. (5.19) and the fact that ⟨Φ⟩ and ⟨H⟩
fulfill the minimum conditions Eq. (5.17).

Before approximating Veff, we first want to know about the values of Φb near

the minimum. We expand

Φ̃(Hb) = Φ0

(
1 + δΦ2

H2
b

µ2
+ δΦ4

H4
b

µ4
+ ...

)
, (5.21)

and solve Eq. (5.18) order by order in Hb. We find at leading order

Φ0 = e
− 1

4
− λ̃Φ
β̃λΦ µ, (5.22)

which agrees with the usual result of dimensional transmutation. To O (H2
b ) we

find

Φ̃(Hb) = Φ0


1−

λ̃p + β̃λp

(
1
4
− λ̃Φ

β̃λΦ

)

β̃λΦ

H2
b

Φ2
0

+ ...


 , (5.23)

41



indicating that the VEV of Φ is well approximated by ⟨Φ⟩ ≈ Φ0, if λ̃p is small.

We now expand Eq. (5.19) in powers of Hb/Φ0 and we find up to O(H4
b )

3

VEFT =− β̃λΦ
4

Φ4
0 + 2

[
λ̃p − β̃λp

(
1

4
+
λ̃Φ

β̃λΦ

)]
Φ2

0H
2
b

+


λ̃H −

(
1

4
+
λ̃Φ

β̃λΦ

)
β̃hλH − 2

(
β̃λp

(
1
4
− λ̃Φ

β̃λΦ

)
+ λ̃p

)2

β̃λΦ


H4

b

+
β̃lλH
2
H4
b ln

(
H2
b

µ2

)
.

(5.24)

The shape of this expression is quite similar to the expression found for the effective

potential of a single scalar field (see Eq. (5.8)). In fact the effective potential for

a singe massive scalar field H can be written as

Veff =m2H2
b + λ̃H4

b +
βλH

∣∣
no scalar

2
H4
b ln

(
H2
b

µ2

)
+ contributions from scalar loops,

(5.25)

where λ̃ ∼ λ+ 1
64π2 (g

4 ln g2+ ...) and g stands for the gauge and Yukawa couplings.

Scalar loops play a special role, since the scalar effective masses contain a sum of

m2 and λH2
b and therefore the logarithm cannot be written as ln(H2

b /µ
2). In the

case with two scalar fields we ignored the portal coupling λp for the calculation

of the effective masses m2
eff and therefore no such terms occur in Eq. (5.24). In

Chap. 6 we will treat the portal coupling consistently while in this chapter we

ignore scalar loops.

We also provide the expression for Veff up to O(H6
b ). In order to simplify the

expression, we give the result for µ = Φ0. Then we have

VEFT =− β̃λΦ
4

Φ4
0 + 2λ̃pΦ

2
0H

2 +


λ̃H −

(
2λ̃p + β̃λp

)2

2β̃λΦ


H4 +

β̃lλH
2
H4 ln

(
H2

Φ2
0

)

+


λ6 +

(
2λ̃p + β̃λp

)(
2
(
β̃2
λp

+ λ̃pβ̃λp − 2λ̃2p

)
− 3β̃λΦ β̃

h
λH

)

6β̃2
λΦ


 H

6

Φ2
0

+ Cλ6
H6

Φ2
ln

(
H2

Φ2
0

)
.

(5.26)

3µ and Φ0 are not independent, but connected by Eq. (5.22).
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The form of Eq. (5.24) suggests that β̃lλH is related to the beta function of λH
in the effective field theory, i.e. the model obtained by integrating out the fields

that obtain a mass of O(⟨Φ⟩). We show in the following example that β̃lλH actually

is the beta function calculated only using degrees of freedom that do not obtain a

mass from VEV of Φ.

5.2.2 Example

Consider a toy model with two scalar fields Φ and H and a gauge group given

by U(1)A × U(1)B. The charges of the scalar fields are given by H ∼ (1
2
, 0) and

Φ ∼ (1
2
, 1
2
). The effective mass matrix for the gauge boson is given by

mV =

(
g2A
2
Φ2
b

gAgB
2

Φ2
b

gAgB
2

Φ2
b

g2B
2
(H2

b + Φ2
b)

)
, (5.27)

where gA and gB are the U(1)A and U(1)B gauge couplings respectively. The

effective potential is obtained from Eq. (4.39). For simplicity, we do not include

scalar loops. We now expand the potential similarly to Eq. (5.16) and obtain

Veff =

{
λΦ +

3(g2A + g2B)
2

256π2

[
ln

(
g2A + g2B

2

)
− 5

6

]}
Φ4
b +

3(g2A + g2B)
2

256π2
Φ4
b ln

(
Φ2
b

µ2

)

+

{
2λp −

3g4B
128π2

[
ln

(
g2A + g2B

2

)
− 1

3

]}
Φ2
bH

2
b +

3g4B
128π2

H2
bΦ

2
b ln

(
Φ2
b

µ2

)

+



λH+

3g4B
256π2


ln

(
g2A + g2B

2

)
− 5

6
+
3g4B + 2g2Ag

2
B + 4g4A ln

(
gAgB
g2A+g

2
B

)

2 (g2A + g2B)
2





H4

b

+
3g4B

256π2 (g2A + g2B)
2

(
2g2Ag

2
B + g4B

)
H4
b ln

(
Φ2
b

µ2

)

+
3g4Bg

2
A

256π2 (g2A + g2B)
2H

4
b ln

(
H2
b

µ2

)
.

(5.28)
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By comparing coefficients with Eq. (5.16), we can now read of λ̃i and β̃λi . Eq. (5.24)

at µ = Φ0 reads explicitly

VEFT =− 3(g2A + g2B)
2

512π2
Φ2

0 +

{
2λp +

3g4B
128π2

[
ln

(
g2A + g2B

2

)
− 1

3

]}
Φ2

0H
2
b

+




λH +

3g4B
256π2


ln

(
g2A + g2B

2

)
− 5

6
+

3g4B + 2g2Ag
2
B + 4g4A ln

(
gAgB
g2A+g

2
B

)

2 (g2A + g2B)
2




−

(
2λp +

3g4B
128π2

[
ln
(
g2A+g

2
B

2

)
+ 2

3

])2

2
3(g2A+g2B)

2

128π2




H4
b

+
3g4Bg

2
A

256π2 (g2A + g2B)
2H

4
b ln

(
H2
b

µ2

)
.

(5.29)

The VEV of Φ breaks the gauge group as U(1)A × U(1)B → U(1) where the

unbroken U(1) has a gauge coupling g related to the original gauge couplings by

1

g2
=

1

g2A
+

1

g2B
. (5.30)

With this definition, we find for β̃lλH

β̃lλH =
3g4Bg

2
A

128π2 (g2A + g2B)
2 =

3g4

128π2
, (5.31)

which demonstrates that β̃lλH is (at least in this example) the beta function for λH
in the phase where the heavy fields with masses proportional to ⟨Φ⟩ are integrated
out.

We show the running of couplings for a benchmark point in Fig. 5.1 (left). The

VEV of Φ is roughly given by the scale where λΦ ≈ βλΦ and therefore also close

to the scale where λΦ crosses zero. At the scale of symmetry breaking, λp needs

to be small in order to insure a hierarchy between ⟨Φ⟩ and the mass term for H.

5.3 Goldstone boson calculation

From Eq. (5.26), we can tell that there is a hierarchy between Φ0 and H only if

λ̃p is small at µ = Φ0. An often used mechanism to explain hierarchies in scalar
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Figure 5.1: The running of the scalar quartic couplings in the toy model (left) and

the effective potential in the direction of Φb (with Hb = 0). The couplings at µ = 1

are chosen as gA = 0.7, gB = 0.5, λH = 0.01 and λp = 10−4. λΦ is chosen in such

a way that µ = Φ0 and is numerically given by λΦ = 8.6 · 10−4.

masses, is to have the light scalar field as a Goldstone boson of a spontaneously

broken global symmetry. In this section we show that our calculation is explicitly

consistent with Goldstones theorem [68–70]. If the global symmetry is explicitly

broken, we expect the mass of the pNGB to have a mass proportional to the scale of

symmetry breaking multiplied by the amount of explicit symmetry breaking. We

also demonstrate that this intuition is not quite correct as the explicit symmetry

breaking might only contribute to the mass of the pNGB at subleading level.

5.3.1 Exact symmetry

Consider the case where we have an exact global symmetry of rotations between

Φ and H. In this case, the one-loop potential is given by

Veff = λ̃
(
Φ2
b +H2

b

)2
+
β̃λ
2

(
Φ2
b +H2

b

)2
ln

(
Φ2
b +H2

b

µ2

)
. (5.32)

VEFT, i.e. Eq. (5.24) is then given by

VEFT = − β̃λ
4
Φ4

0. (5.33)

This results agrees with the expectation that Goldstone bosons have only derivative

interactions and the potential is flat. We have checked that this result also holds
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for higher order terms. The derivative interactions of a Goldstone boson do not

show up in our calculations, as we calculate the effective potential for constant

background fields.

5.3.2 Approximate symmetry

Now consider the case where the global symmetry is explicitly broken, however

the interactions that violate the symmetry only involve H and do not involve Φ.

In this case the effective potential is approximated by

Veff ≈λ
(
Φ2
b +H2

b

)2
+
β̃λ
2

(
Φ2
b +H2

b

)2
ln

(
Φ2
b +H2

b

µ2

)

+ (λH − λ)H4
b +

β̃h∆λH
2

H4
b ln

(
Φ2
b

µ2

)
+
β̃l∆λH
2

H4
b ln

(
H2
b

µ2

)
,

(5.34)

where (λH − λ), β̃h∆λH and β̃l∆λH explicitly violate the global symmetry. The po-

tential VEFT is then given by

VEFT ≈ − β̃λ
4
Φ4

0 +

(
(λH − λ)− β̃h∆λH

4

β̃λ + 4λ

β̃λ

)
H4
b +

β̃l∆λh
2

H4
b ln

(
H2
b

µ2

)
, (5.35)

andH is massless. In realistic models, higher order corrections will generate a mass

term for H which is however loop suppressed compared to the naive expectation

for a mass term of a pNGB.

5.3.3 Non-conformal case

Qualitatively similar results are found in the case where tree level mass terms are

present. We first consider a potential with global symmetry of rotations between

Φ and H given by

V = −m2
(
|H|2 + |Φ|2

)
+ λ

(
|H|2 + |Φ|2

)2
. (5.36)

For m2 > 0, the potential has a minimum at |Φ|2 + |H|2 = m2/(2λ). Integrating

out the massive radial excitation at tree level gives a flat potential

VEFT = −m
4

2λ
, (5.37)

as one expects from Goldstones theorem.
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If we now consider a slight variation of the potential given by

V = −m2
(
|H|2 + |Φ|2

)
+ λ

(
|H|2 + |Φ|2

)2
+ (λH − λ)|H|4. (5.38)

For λH > λ, the minimum is given by ⟨H⟩ = 0 and ⟨Φ⟩ =
√
m2/(2λ). Integrating

out the heavy radial excitation at tree level yields

VEFT = −m
4

2λ
+ (λH − λ) |H|4. (5.39)

The difference (λH − λ) explicitly breaks the global symmetry of rotations. At

leading order this breaking does not contribute to the mass term of the pNGB.

However a quartic interaction for the pNGB H is generated. Higher order correc-

tions will introduce a mass term which is suppressed by loop factors.

Generally, if we have an explicitly broken global continuous symmetry, where

the symmetry violating interactions only involve the pNGB, then the mass term

for the pNGB is only generated at subleading order.
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Chapter 6

Custodial Naturalness

In this chapter, we propose a mechanism called Custodial Naturalness which ex-

plains the separation of the EW scale and potential UV completions of the SM.

Custodial Naturalness is based on a combination of classical scale invariance

and enlarged custodial symmetry. Both symmetries are explicitly broken by quan-

tum effects and spontaneously broken by the Coleman-Weinberg mechanism. We

realize Custodial Naturalness in models where the scalar sector consists of the SM

Higgs doublet H and a complex scalar field Φ which is a singlet under the SM

gauge group. Both scalar fields have the identical charge under a new gauged

U(1) group. After spontaneous symmetry breaking, the pNGB associated with

the breaking of the enlarged custodial symmetry is given by the SM Higgs boson.

The results presented in this chapter are published in Refs. [1,2] in collaboration

with Manfred Lindner and Andreas Trautner.

6.1 General Idea

Consider a potential which is symmetric under a SO(6) custodial symmetry1

V = λ
(
|H|2 + |Φ|2

)2
. (6.1)

A VEV in the H −Φ system breaks the enlarged custodial symmetry as SO(6) →
SO(5) giving rise to five Goldstone bosons and the radial mode, which is the

dilaton. Such a VEV also breaks the gauge group SU(2)L × U(1)Y × U(1)X to

1This symmetry is a symmetry of the scalar potential, explicitly broken by gauge and Yukawa

interactions and we call this symmetry “custodial symmetry”. The SM SO(4) custodial symmetry

is a subgroup of this SO(6) group.
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Figure 6.1: The running of the scalar quartic couplings for a typical parameter

point. At the high scale Λhigh =MPl, we have λΦ = λp = λH and SO(6) custodial

symmetry is realized. λH crosses zero and |λH | is shown by the dashed line. λp and

λΦ remain close to each other due to custodial symmetry. This figure is published

in Ref. [1].

electromagnetism U(1)em and four of the Goldstone modes are absorbed into the

longitudinal degrees of freedom of the massive gauge bosons. The final Goldstone

boson takes the role of the SM Higgs boson. The dilaton is the also a pNGB

namely the pNGB associated spontaneous breaking of scale symmetry.

SO(6) custodial symmetry is not an exact symmetry. It is broken by gauge

and Yukawa interactions. We need to specify the scale where we impose custodial

symmetry. In this work we always take this scale to be the Planck scale MPl. To

be precise, Eq. (6.1) is now understood as

Vtree = λ
(
|H|2 + |Φ|2

)2
at µ =MPl. (6.2)
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Figure 6.2: An illustration for the alignment of the VEV in the Φ − H plane.

The dilaton hΦ is given by the radial excitation and the orthogonal excitation

corresponds to the Higgs boson h. This figure is published in Ref. [2].

The RG flow radiatively breaks SO(6) custodial symmetry and the scalar potential

takes the more general form

Vtree = λH |H|4 + 2λp|H|2|Φ|2 + λΦ|Φ|4. (6.3)

Fig. 6.1 shows the running of the couplings for a typical parameter point illustrating

how λH runs to large positive values while λp and λΦ stay close to each other.

Custodial symmetry protects the difference λp − λΦ. At some intermediate scale

λΦ becomes small and λp turns negative, and the tree level potential develops a

flat direction. This happens typically around ∼ 105GeV. In order to understand

the orientation of the VEV, one can use the Gildener Weinberg approximation.

We discuss this approximation for the same potential as Eq. (6.3) in Sec. 4.5. At

the scale µGW, where the potential develops the flat direction, we have λp < 0 and

the Gildener Weinberg approximation yields

H2

Φ2
=

−λp
λH

, λΦ =
λ2p
λH

at µ = µGW. (6.4)

The orientation of the VEV in the H−Φ plane is visualized in Fig. 6.2. The VEV

is close to the boundary between the phase of unbroken and broken EW symmetry

realizing the multi-phase criticality scenario [176–178].

6.1.1 Particle content and charge assignment

Custodial Naturalness can be realized in minimal extensions of the SM. We restrict

ourselves to family-universal charges under the gauge group. The particle content
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includes the SM (with 3 right-handed neutrinos), the complex scalar singlet Φ

and a new gauge group U(1)X . We also consider models with additional vector-

like fermions. Gauge anomaly cancellation requires that the U(1)X charges are a

linear combination of hypercharge and B − L. We give the charges of all fields in

Tab. 6.1. One can freely choose the basis of the two U(1) gauge groups. For our

purposes, it is most convenient to choose the basis in such a way that the Higgs

boson and Φ both have U(1)X charge of 1. This relates the U(1)X charge of a

general field Q(X) to its hypercharge Q(Y) and its B − L charge Q(B−L) by

Q(X) = 2Q(Y) +
1

qΦ
Q(B−L), (6.5)

where qΦ is the B − L charge of Φ.

Adding a single set of new vector-like fermions can couple the new sector via

the neutrino portal. With the charges given in Tab. 6.1 (middle), we have the

following Yukawa interaction

LYuk ⊃ yαψψ̄LΦ
†ναR + h.c., (6.6)

which is the minimal possibility to introduce a Yukawa interaction involving Φ.

We refer to this model as the neutrino portal model. We also discuss a model with

two additional fermions (Tab 6.1 (bottom)). In principle, α is a free parameter and

for any choice that prohibits Yukawa interactions to the right-handed neutrinos,

the new fermions are stable and therefore DM candidates. In this case the new

Yukawa interactions are given by

LYuk ⊃ yψψ̄LΦ
†ψR + yψ′ψ̄′

LΦψ
′
R + h.c. (6.7)

6.1.2 Custodial symmetry violation

Gauge and Yukawa interactions explicitly break SO(6) custodial symmetry. In

Fig. 6.1, λp and λΦ remain close to each other while λH runs to large positive

values driven by the top Yukawa coupling. This is an important feature of our

model. We show in Sec. 6.1.3 that the hierarchy between the intermediate scale and

the EW scale is, to leading order, given by the splitting λp−λΦ. This dependence

might also be guessed from Eq. (6.4). This section is devoted to a discussion of

the different contributions to βλp − βλΦ .
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Table 6.1: The particle content and charge assignments for the models realizing

Custodial Naturalness. The “minimal particle content”, i.e. the SM fields and Φ, is

present in every model. Also shown are the additional fermions which populate the

neutrino portal or might make up DM. The U(1)X charges are a linear combination

of hypercharge and B − L.

Name Generations SU(3)c × SU(2)L × U(1)Y × U(1)X U(1)B−L

Minimal particle content

Q 3
(
3,2,+1

6

)
+1

3
+ 1

3qΦ
+1

3

L 3
(
1,2,−1

2

)
−1− 1

qΦ
−1

uR 3
(
3,1,+2

3

)
+4

3
+ 1

3qΦ
+1

3

dR 3
(
3,1,−1

3

)
−2

3
+ 1

3qΦ
+1

3

eR 3 (1,1,−1) −2− 1
qΦ

−1

νR 3 (1,1, 0) − 1
qΦ

−1

H 1
(
1,2,+1

2

)
+1 0

Φ 1 (1,1, 0) +1 qΦ

Minimal set of additional fermions

ψL 1 (1,1, 0) −
(

1
qΦ

+ 1
)

−(1 + qΦ)

ψR 1 (1,1, 0) −
(

1
qΦ

+ 1
)

−(1 + qΦ)

Additional fermions that allow for DM

ψL 1 (1,1, 0) α
qΦ

α

ψR 1 (1,1, 0) α
qΦ

+ 1 α + qΦ

ψ′
L 1 (1,1, 0) α

qΦ
+ 1 α + qΦ

ψ′
R 1 (1,1, 0) α

qΦ
α
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SM contributions

The SM gauge and Yukawa interactions, especially the O(1) top Yukawa coupling,

break SO(6) custodial symmetry. All of these interactions only couple to H and

not to Φ. Therefore, they drive λH away from the symmetric point while the effect

on λp − λΦ is much smaller. The difference in beta functions induced by the SM

interactions is given by

βλp − βλΦ

∣∣∣∣
SM

≃ 1

16π2
λp

[
−9

2
g2L − 3

2
g2Y + 12λH + 6y2t

]
, (6.8)

where gL and gY are the SU(2)L and hypercharge gauge couplings respectively and

yt is the top Yukawa coupling. Since λΦ reaches critical values around µGW, typical

values for the custodially symmetric coupling λ are given by λ ≈ 6g4X
16π2 ln

(
MPl

µGW

)
.

For gX = 0.1 we find λ ≈ 10−4 and therefore λp ≲ 10−4. The contribution from

Eq. (6.8) is negative for 1011GeV ≲ µ < MPl and positive for µ ≲ 1011GeV.

The integrated effect gives λp − λΦ > 0. Therefore, if there were no additional

sources of custodial symmetry violation, the Higgs doublet would not obtain a

VEV (see Eq. (6.4)). Additional custodial symmetry violation needs to contribute

with opposite sign. Alternatively, we could to lower the scale at which we impose

custodial symmetry to Λhigh ≈ 1011GeV.

Contributions from the new gauge sector

The new U(1) gauge group also contributes to custodial symmetry violation, how-

ever the explicit form depends on the basis of U(1) charges. If Φ and H have

different U(1) charges, then this charge difference contributes to βλp − βλΦ . The

U(1)X basis is defined in a way that there is no charge difference. Since we have

two U(1) gauge groups, we also need to consider gauge kinetic mixing,2 which also

violates custodial symmetry. When rotating to the (symmetric) U(1)X basis, the

contribution of the charge difference to βλp − βλΦ is shifted into the gauge kinetic

mixing parameter. The covariant derivative in the B − L basis is given by

[
∂µ + i

(
Q(Y), Q(B−L)

)(gY g̃

0 gB−L

)(
A

(Y)
µ

A
(X)
µ

)]
ϕ, (6.9)

2Terms such as ϵFµνF ′
µν and off-diagonal gauge couplings do not violate gauge invariance and

need to be included [179, 180]. All these terms can be absorbed into a single off-diagonal entry

in the gauge coupling matrix [181].
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where g̃ is the gauge kinetic mixing parameter, gB−L is the B −L gauge coupling,

and A
(Y)
µ and A

(X)
µ are the U(1) gauge fields. ϕ denotes a generic field. With

the definition of the charges in the U(1)X basis in Eq. (6.5), we can rewrite the

covariant derivative as

[
∂µ + i

(
Q(Y), Q(X)

)(gY g̃ − 2qΦgB−L

0 qΦgB−L

)(
A

(Y)
µ

A
(X)
µ

)]
ϕ

=:

[
∂µ + i

(
Q(Y), Q(X)

)(gY g12
0 gX

)(
A

(Y)
µ

A
(X)
µ

)]
ϕ,

(6.10)

where we defined g12 as the gauge kinetic mixing parameter in the U(1)X basis

and gX as the corresponding gauge coupling. In the U(1)X basis the charges of

H and Φ are identical and therefore only gauge kinetic mixing contributes to the

differential running of λp and λΦ. The contribution is given by

βλp − βλΦ

∣∣∣∣
g12

≃ 1

16π2

[
6g12g

3
X +

3

2
g212g

2
X

]
. (6.11)

In order for the difference λp − λΦ to remain small, g12 needs to be small.3 We

cannot simply set g12 to zero since it will be generated at loop level. We need to

construct our models in such a way, that g12 can be small for all scales. For the

value qΦ = −16
41
, gauge kinetic mixing will not be generated at one-loop if set to

zero at some scale. This value was independently found in Refs. [182–184] and

aligns with the “charge orthogonality condition” [185]. We estimate that values of

|qΦ| ∈
[
1
3
, 5
11

]
allow for small gauge kinetic mixing g12 and in this work we explicitly

consider qΦ = −1
3
and qΦ = −3

8
. The flow of g12 for these two values of qΦ is shown

in Fig. 6.3. At one-loop, g12 flows towards the line given by g12 =
14
41
gX for qΦ = −1

3

and towards the line given by g12 = 10
123
gX for qΦ = −3

8
. In the minimal model

we will often impose the boundary condition of g12
∣∣
MPl

= 0. Such a trajectory is

highlighted in Fig. 6.3 (left).

Without loss of generality, we can assume gX > 0. Typically |g12| ≪ gX and

the first term in Eq. (6.11) dominates. If g12 is positive, the contributions from

gauge kinetic mixing counteract the SM contributions to βλp −βλΦ which can lead

to λp < λΦ and therefore the Higgs field will obtain a VEV. It is also possible that

g12 flips the sign along the RG flow and the integrated effect should be considered.

3In principle we could also require gX to be small which would lead to a new sector which

has only small couplings to the SM.
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Figure 6.3: The one-loop RG flow from the UV to the IR in the gX−g12 plane. The
lines with g12 = 14

41
gX for qΦ = −1

3
and g12 = 10

123
gX for qΦ = −3

8
are highlighted

in red and a typical trajectory for the minimal model is marked in blue. The

hypercharge gauge coupling is set to gY = 0.48. This figure is published in Ref. [2].

Contributions from the new Yukawa sector

New fermions introduce Yukawa interactions involving Φ (see Eqs. (6.6) and (6.7)).

Since these interactions only involve Φ, they drive λΦ and λp away from each other.

Assuming real Yukawa couplings, the contribution is given by

βλp − βλΦ

∣∣∣∣
yψ

≃
∑

k 2y
4
ψk

16π2
. (6.12)

Here, and in this entire chapter, the sum over k should be understood as follows:

In the neutrino portal model, the sum runs over the single value ȳψ :=
√
yαψy

α
ψ

and in the DM model, the sum runs over yψ and y′ψ. The contributions of the new

Yukawa interactions lead to λp < λΦ therefore leading to EWSB.

6.1.3 Effective potential

We derive the one-loop effective potential in Chap. 4. In our model, the effective

potential is a function of the background fields Φb and Hb and the minimum is

given by Φb = ⟨Φ⟩ and Hb = ⟨H⟩. The formula for the effective potential is given

by

Veff = Vtree +
∑

i

ni(−1)2si

64π2
m4
i,eff

[
ln

(
m2
i,eff

µ2

)
− Ci

]
, (6.13)
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where the sum runs over the effective masses of all fields. ni is the number of

degrees of freedom, (−1)1si is +
(−)1 for bosons (fermions). In MS, Ci =

3
2
for scalar

fields and fermions and Ci =
5
6
for vector bosons. For the neutral gauge bosons

the effective masses are given by the eigenvalues of

MV =




g2Y
2
H2
b −gY gL

2
H2
b

(2gX+g12)gY
2

H2
b

−gY gL
2
H2
b

g2L
2
H2
b − (2gX+g12)gL

2
H2
b

(2gX+g12)gY
2

H2
b − (2gX+g12)gL

2
H2
b 2

(
2gX+g12

2

)2
H2
b + 2g2XΦ

2
b


 , (6.14)

and for the charged gauge bosons we have m2
W± = g2L/2H

2
b . gY is the hypercharge

gauge coupling and gL is the SU(2)L gauge coupling. For the top quark with

Yukawa coupling yt, we have an effective mass of mt = ytHb and we ignore all

other SM Yukawa interactions. From the tree level potential, we find the effective

mass matrix for the neutral CP even scalar fields to be

(
2λpH

2
b + 6λΦΦ

2
b 4λpHbΦb

4λpHbΦb 2λpΦ
2
b + 6λHH

2
b

)
. (6.15)

The other scalar degrees of freedom contribute with effective masses given by

(2λpΦ
2
b + 2λHH

2
b , 2λpΦ

2
b + 2λHH

2
b , 2λpΦ

2
b + 2λHH

2
b , 2λpH

2
b + 2λΦΦ

2
b). In the neu-

trino portal model we also include the effective mass m2
ψ = yαψy

α
ψΦ

2
b = ȳ2ψΦ

2
b and in

the DM model we have two additional effective masses given by mψ = yψΦb and

mψ′ = yψ′Φb.

In order to analyze the effective potential, we use techniques very similar to

those developed in Chap. 5. We define Φ̃(Hb) via

∂Veff
∂Φb

∣∣∣∣
Φb=Φ̃(Hb)

= 0, (6.16)

for general values of Hb and use the solution to define

VEFT(Hb) := Veff(Hb, Φ̃(Hb)). (6.17)

As shown in Chap. 5,

∂VEFT
∂Hb

∣∣∣∣
Hb=⟨H⟩

=
∂Veff
∂Hb

+
∂Veff
∂Φb

∂Φ̃

∂Hb

∣∣∣∣∣
Hb=⟨H⟩,Φb=⟨Φ⟩

= 0, (6.18)
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which follows from the fact that ⟨H⟩ and ⟨Φ⟩ fulfill the minimum conditions of Veff.

From the Gildener Weinberg approximation (Eq. (6.4)), we expect that ⟨H⟩ ≪ ⟨Φ⟩.
We can approximate ⟨Φ⟩ = Φ̃(⟨H⟩) ≈ Φ̃(0) =: Φ0. Analytically we obtain

ln

(
Φ2

0

µ2

)
= − 16π2λΦ(

3g4X + 4λ2p −
∑

k y
4
ψk

)

−
{
g4X [3 ln (2g2X)− 1] + 4λ2p [ln (2λp)− 1]−∑k

[
y4ψk
(
ln y2ψk − 1

)]}
(
3g4X + 4λ2p −

∑
k y

4
ψk

) ,

(6.19)

which is the usual Coleman-Weinberg result of dimensional transmutation. We

now expand VEFT for Hb ≪ Φ0. At quadratic order we find

VEFT ⊃2

[
λp−

3
(
gX + g12

2

)2
g2X

3g4X + 4λ2p −
∑

k y
4
ψk

(
λΦ+

∑

k

{
y4ψk
16π2

[
2

3
+ln

(
2g2X
y2ψk

)]})]
Φ2

0H
2
b

+
λpλH
16π2

[...] Φ2
0H

2
b ,

(6.20)

where we dropped terms proportional to the λpλH/(16π
2) factor. For small g12

and small yψ, this is approximated by ≈ 2(λp − λΦ)Φ
2
0H

2
b . Custodial symmetry

ensures that λp − λΦ remains small. Crucially, the custodial symmetry violation

from SM interactions (EW gauge couplings and top Yukawa coupling) does not

show up in Eq. (6.20). Despite the O(1) top Yukawa coupling, the Higgs mass is

protected by the pNGB nature.

Eq. (6.20) is obtained without assuming a specific value for the RG scale µ.

The only requirement is, that µ should be close to the physical scales (for example

Φ0). It turns out, that VEFT takes a particularly convenient form if we choose

µ = µ0 :=
√
2gXΦ0e

−1/6. With this choice, the quadratic term in VEFT is given by

VEFT ⊃ 2λp



1 +

[4λp + 6λH ]
[
ln
(

2λpΦ2
0

µ20

)
− 1
]

16π2



H2

bΦ
2
0. (6.21)

At µ = µ0,

λΦ
∣∣
µ=µ0

=

∑
k y

4
ψ

[
ln
(

yψ√
2gX

)
− 1

3

]
− 2λ2p

[
ln
(
λp
g2X

)
− 2

3

]

8π2
, (6.22)

and therefore |λΦ| ≪ |λp|. The mass term of the Higgs field is well approximated

by 2λpΦ
2
0 at µ0.
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The expansion Hb ≪ Φ0 implicitly treats 2λpΦ
2
0 as large. This is not necessarily

in issue. In the following, we propose a slightly different expansion that takes into

account that 2λpΦ
2
0 is roughly of order of the EW scale. This new expansion

scheme will allow us to make a precise connection to the SM effective potential.

Instead of expanding in powers of Hb/Φ0, we introduce an artificial expansion

parameter ϵ defined as
Hb

Φ0

→ ϵ
Hb

Φ0

, λp → ϵ2λp. (6.23)

This definition is similar to the ’t Hooft-Veneziano limit [186, 187] with ϵ → 0

corresponding to

Φ0

Hb

→ ∞,
λp
λH

→ 0, λpΦ
2
0 = λHH

2
b (fixed). (6.24)

This limit also aligns with the flat direction of the Gildener Weinberg approxima-

tion given by

λHH
2 = −λpΦ2. (6.25)

Now we expand VEFT in powers of ϵ and at up to O(ϵ4), we find at µ = µ0

VEFT =
−3g4X +

∑
k y

4
ψk

32π2
Φ4

0 + 2λpΦ
2
0H

2
b + λHH

4
b

+
∑

i

ni(−1)2si

64π2
m4
i,eff

[
ln

(
m2
i,eff

µ2
0

)
− Ci

]
−

3
(
g12
2
+ gX

)4 (∑
k y

4
ψk

)

16π2
(
3g4X −∑k y

4
ψk

) H4
b ,

(6.26)

where the sum over i runs over the gauge bosons in the SM, and the top quark

effective mass. The sum also includes scalar mass terms given by {2λpΦ2
0 +

6λHH
2
b , 2λpΦ

2
0+2λHH

2
b , 2λpΦ

2
0+2λHH

2
b , 2λpΦ

2
0+2λHH

2
b }. These are the effective

masses one obtains from a tree level potential given by Vtree = 2λpΦ
2
0|H|2+λH |H|4.

Essentially, we find that Eq. (6.26) is the one-loop effective potential of the SM

[188] up to the last term. This term gives a small corrections to the Higgs quartic

coupling. We checked that the difference of the expansion in powers of ϵ compared

to powers of Hb/Φ0 is small. Explicitly, the terms quadratic in Hb differ by terms

∝ λ2pH
2
bΦ

2
0 and for the quartic terms by terms ∝ λpH

4
b .

6.1.4 Vector boson masses

The VEVs of H and Φ spontaneously break the gauge symmetry and give rise to

the masses of the gauge bosons. The mass matrix for the neutral gauge bosons
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is given by Eq. (6.14) evaluated at Φb = ⟨Φ⟩ and Hb = ⟨H⟩. This matrix is

diagonalized by two rotations, explicitly UTMVU with

U =



c −sc′ ss′

s cc′ −cs′
0 s′ c′


 , (6.27)

where c = cos θW , s = sin θW and c′ = cos θ′, s′ = sin θ′. θW is the weak mixing

angle given by θW = arctan
(
gY
gL

)
and

tan(2θ′) := − 2(g12 + 2gX)
√
g2L + g2Y ⟨H⟩2[

g2L + g2Y − (g12 + 2gX)
2] ⟨H⟩2 − 4 g2X⟨Φ⟩2

. (6.28)

The eigenvalues of the vector boson mass matrix i.e. the masses of the neutral

gauge bosons Z and Z ′ are given by

m2
Z =

1

2
(g2L + g2Y )⟨H⟩2 − (g12 + 2gX)

2(g2L + g2Y )

8g2X

⟨H⟩4
⟨Φ⟩2 +O

(⟨H⟩6
⟨Φ⟩4

)
, (6.29)

m2
Z′ =2g2X⟨Φ⟩2 +

1

2
(g12 + 2gX)

2⟨H⟩2 + (g12 + 2gX)
2(g2L + g2Y )

8g2X

⟨H⟩4
⟨Φ⟩2 +O

(⟨H⟩6
⟨Φ⟩4

)
,

(6.30)

while the third eigenvalue vanishes and the photon does not obtain a mass. The

mass of the Z boson slightly different compared to the SM prediction. The new

U(1)X gauge group explicitly breaks the SO(4) custodial symmetry of the SM

(similar to hypercharge), therefore modifying the predictions formW/mZ . Keeping

all SM couplings fixed, the shift in the Z mass remains in the 2σ range [189], if

⟨Φ⟩ ≳ 18TeV. Direct Z ′ searches typically constrain ⟨Φ⟩ to be larger than this

limit.

6.1.5 Scalar masses

The scalar masses are obtained from the curvature of the effective potential at the

minimum, i.e. m2
ab = ∂ϕa∂ϕbVeff evaluated at Hb = ⟨H⟩ = and Φb = ⟨Φ⟩. The

full expression for the mass matrix is quite unwieldy, however an approximate

expression can be found. We checked numerically that these expressions give a

somewhat reasonable approximation. For the Higgs boson we find

m2
h ≈

[
−λp +

3
(
gX + g12

2

)2
g2X

3g4X + 4λ2p −
∑

k y
4
ψk

(
λΦ +

∑

k

{
y4ψk
16π2

[
2

3
+ ln

(
2g2X
y2ψk

)]})]
⟨Φ⟩2.

(6.31)
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Approximating for small g12 and small yψ, this simplifies to

m2
h ≈ (−λp + λΦ) ⟨Φ⟩2, (6.32)

illustrating the nature of the Higgs boson as a pNGB associated with spontaneous

breaking of SO(6) custodial symmetry. The radial excitation, i.e. the dilaton

obtains a mass given by

m2
hΦ

≈
3g4X −∑k y

4
ψk

+ 4λ2p
4π2

⟨Φ⟩2 ≈ 2βλΦ⟨Φ⟩2. (6.33)

This relation illustrates the suppression of the dilaton mass by the beta functions,

i.e. the scale anomaly. This is understood since the dilaton is the pNGB associated

with spontaneous breaking of scale symmetry. The mixing angle θ between the

dilaton and the Higgs boson is approximated by

tan θ ≈

[
λp −

3(gX+
g12
2 )

2
g2X

3g4X+4λ2p−
∑
k y

4
ψ

(
λΦ +

∑
k

{
y4ψ

16π2

[
2
3
+ ln

(
2g2X
y2ψ

)]})]
⟨Φ⟩⟨H⟩

m2
h −m2

hΦ

+

[
3(gX+

g12
2 )

2
g2X

16π2

]
⟨Φ⟩⟨H⟩

m2
h −m2

hΦ

.

(6.34)

The value of this mixing angle is proportional to custodial symmetry violation and

typically tan θ ≲ 10−2.

6.2 Models realizing Custodial Naturalness

6.2.1 Minimal model

The particle content of the minimal model that realizes Custodial Naturalness is

given in Tab. 6.1 (top). No new fermions apart from the right-handed neutrinos are

introduced. The parameter qΦ is set to qΦ = −1
3
. Along the RG flow towards the

IR, the gauge kinetic mixing parameter g12 runs towards g12 =
14
41
gX at one-loop. In

Sec. 6.1.2 we find that small positive values of g12 are required for EWSB. We will

see below that, in the minimal model, the boundary condition g12
∣∣
MPl

= 0 leads

to EWSB since g12 runs towards small positive values. Such a boundary condition

is justified since it enhances custodial symmetry at the high scale. The scalar

sector of the minimal model has only one free parameter, the SO(6) custodially

symmetric coupling λ. In the new gauge sector we have another new parameter
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gX . If we do not impose g12
∣∣
MPl

= 0, the model is slightly less minimal and g12
becomes a free parameter. In summary, we trade the two parameters of the SM

Higgs potential (mSM
H , λSMH ) for λ and gX and the minimal model has the same

number of parameters as the SM.

Since the minimal model is as predictive as the SM, in principle one should

perform a fit of the model parameters to the experimental measurements. In this

work we restrict ourselves to a parameter scan. Below we will see, that due to

experimental uncertainties (mostly on the top pole mass), we are not able to give

a single value as prediction for the Z ′ mass and the dilaton mass.

For our parameter scan, we will do the following: We randomly select input

values at the low scale and these couplings are then run up to MPl. At MPl we

impose SO(6) custodial symmetry. Then we use these values that now obey SO(6)

custodial symmetry as a reasonable starting point at MPl and run the couplings

down to the intermediate scale where we calculate the effective potential and match

to the SM.

In more detail, we start by choosing a random value for the top pole mass Mt

in the 3σ rangeMt ∈ [170.4, 174.6]GeV. Using the formulas in Ref. [16], we obtain

the values for the SM gauge and Yukawa couplings in MS. We fix λSMH andmSM
H , i.e.

the parameters of the SM Higgs potential by requiring that the one-loop effective

potential of the SM at µ =Mt has a minimum at 246.22GeV and the Higgs mass

obtained from second derivative matches the central value of the measured Higgs

mass. Using the two-loop SM RGEs, we run these couplings up to µ̃0 which is

randomly chosen in the range µ̃0 ∈ [500, 106] GeV. Next we randomly choose

gX
∣∣
µ̃0

∈ [0, 0.20]. We now use µ̃0 =
√
2gXΦ0e

−1/6 where Φ0 is given by Eq. (6.19)

to determine λΦ
∣∣
µ̃0

(λp can safely be neglected in Eq. (6.19)). For λH and λp the

precise values will be fixed by custodial symmetry and we use λH
∣∣
µ̃0

= λSMH
∣∣
µ̃0

and

λp
∣∣
µ̃0

= λΦ
∣∣
µ̃0

as reasonable estimates. This set of couplings is then run up to MPl

using the two-loop RGEs of the minimal model found using PyR@TE [190]. At MPl

we impose SO(6) custodial symmetry. This is done by defining λ := λΦ
∣∣
MPl

. This

implicitly sets λH , λp|MPl
= λ. For the minimal setup, we then impose g12

∣∣
MPl

= 0.

We also consider a scenario where we choose random values for g12 in the range

g12
∣∣
MPl

∈ [−0.1, 0.1] ·gX
∣∣
MPl

. Now all parameters at the high scale are fixed. Using

the two-loop RGEs, we run this set of parameters down to µ0 which is determined

by iteratively using the definition µ0 =
√
2gXΦ0e

−1/6 and Eq. (6.19). At µ0 we

determine the VEVs ⟨Φ⟩, ⟨H⟩, and scalar masses mhΦ and mh numerically from

the full one-loop effective potential. In order to match to the SM, we choose λSMH
∣∣
µ0

61



103 104 105

mZ ′ [GeV]

0.00

0.05

0.10

0.15

0.20

0.25

0.30
g X
| M

P
l

qΦ = −1
3

Excluded by ATLAS

g12|MPl
= 0

−0.05

0.00

0.05

g 1
2

g X

∣ ∣ M
P

l

103 104 105

mZ ′ [GeV]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

g X
| M

P
l

qΦ = −1
3

Excluded by ATLAS

g12|MPl
= 0

100

101

102

103

104

∆

Figure 6.4: Parameter points in the minimal model that yield the correct EW scale

in the mZ′ − gX plane. The left plot shows the amount of custodial symmetry

violation given by g12/gX
∣∣
MPl

and the right plot shows the amount of fine tuning.

These figures are published in Ref. [2].

and mSM
H

∣∣
µ0

in such a way that the SM one-loop effective potential gives the same

Higgs VEV and Higgs mass as the full effective potential Eq. (6.13), where both

effective potentials are evaluated at µ0. We then run the SM couplings down to

Mt using the two-loop RGEs of the SM where we obtain the Higgs VEV and Higgs

mass from the SM one-loop effective potential (at µ = Mt). From the inverted

formulas in Ref. [16], we obtain the top pole mass. In our plots we show points for

which the Higgs VEV lies within the ±0.1GeV interval of the experimental value.

Unless stated otherwise, no constraint on the Higgs mass is used. We checked that

the points with correct Higgs mass have a similar distribution in the scatter area

as points with arbitrary Higgs mass. The numerical routine agrees with the one

used in Refs. [1, 2] and also the same datasets are used.

Figure 6.4 shows the results of our parameter scan. For g12
∣∣
MPl

= 0 (red

stars) there is a clear relation between mZ′ and gX . If we allow for g12
∣∣
MPl

̸= 0,

the parameter space opens up and the hierarchy between the EW scale and the

intermediate scale is determined by the value of g12
∣∣
MPl

. Positive values lead to

more custodial symmetry violation and therefore to a larger separation of λp and

λΦ and a smaller hierarchy between the intermediate scale and the EW scale. For

g12
∣∣
MPl

≲ −0.075 · gX
∣∣
MPl

, λp > λΦ at µ = µ0 and therefore EWSB does not occur.

Custodial Naturalness is a mechanism to solve the hierarchy problem, which is a

problem of fine tuning. Fine tuning is often quantified using the Barbieri-Giudice
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measure [191]. This measure does not actually measure fine tuning, but rather

sensitivity on small changes in the parameters (see Ref. [192] for a discussion).

Dimensional transmutation is exponentially sensitive to changes in the parameters

but still not considered fine tuning. For our purpose, we use a fine tuning measure

which is a modification of the original Barbieri-Giudice measure. We quantify fine

tuning of the hierarchy between the intermediate scale and the EW scale with

∆ := max
gi

∣∣∣∣∣
gi
⟨H⟩
⟨Φ⟩

∂ ⟨H⟩
⟨Φ⟩
∂gi

∣∣∣∣∣ = max
gi

∣∣∣∣
gi
⟨H⟩

∂⟨H⟩
∂gi

− gi
⟨Φ⟩

∂⟨Φ⟩
∂gi

∣∣∣∣ . (6.35)

Defined in this way, the sensitivity from dimensional transmutation is automati-

cally subtracted and the tuning required for the little hierarchy, i.e. the separation

between the intermediate scale and the EW scale, is quantified. In practice, we

calculated ∆ by using small variation of the parameters at the high scale and then

evaluate the changes of the VEVs at the low scale. We show the tuning required

for our parameter points in Fig. 6.4 (right). For most of our parameter space the

tuning ∆ is well below 102 and these point are not fine tuned at all. For large

values of mZ′ , ∆ takes larger values since for these points, tuning between the

SM contributions to λp − λΦ and the contributions from g12 is required. Further

there seems to be a minimum (valley of minimal fine tuning) present. The physical

meaning of this valley is unclear. At this valley, ∆ ∼ O(1) while outside of the

minimum, ∆ is roughly around 10, which is still not considered fine tuned. We

also checked that this minimum is not present if, in Eq. (6.35), we replace ⟨H⟩ by
mh. The order of magnitude for ∆ outside of the valley does not change.

The strongest direct constraints on our model come from direct Z ′ searches. We

calculate the Z ′ production cross section times branching ratio into dileptons (e+e−

and µ+µ−) using MadGraph5 aMC@NLO [196]. The UFO file [197] was generated using

FeynRules [198]. We show the fiducial cross section times branching ratio for our

parameter points and the comparison to the current limits for dilepton searches at

ATLAS [193] and CMS [194] in Fig. 6.5 (left). We use the same fiducial cuts as

in Ref. [193]. We also calculate the fiducial cross section times branching ratio for

different values of mZ′ and gX (see Fig. 6.5 (right)). This allows us to recast the

limits from Ref. [193] by finding the value of mZ′ for which the line with constant

gX intersects the 95%C.L. exclusion limit from ATLAS. If there a two intersections

of these lines, we take the lower value. Interpolating then yields the limits in the

mZ′ − gX plane.

The minimal setup with g12
∣∣
MPl

= 0 has the same number of parameters as the

SM. In principle this allows us to fix all the parameters by the measurements of
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Figure 6.5: Left: Production cross section times branching ratio (Z ′ → l+l− for

l = e, µ) for the parameter points of the minimal model with correct Higgs mass

and the limits from dilepton searches at ATLAS [193] and CMS [194] at 95%C.L.

Also shown are expected limits at HL-LHC at 14TeV [195]. Right: Production

cross section times branching ratio for different values of mZ′ and gX for qΦ = −1
3
.

The same cuts as in Ref. [193] are used. These figures are published in Ref. [2].

the masses and interactions of the SM fields, and the Z ′ mass and dilaton mass

are predictions. However, in practice a large range of values for these two masses

is possible. This is mainly due to the experimental uncertainty on the top mass.

The top Yukawa coupling gives a large contribution in the running of λH . The

uncertainty is magnified by the running over orders of magnitude and manifests as

an uncertainty in the prediction of the Higgs mass. We show the relation between

the Higgs mass and the top quark mass in Fig. 6.6 (top left) for all points not

excluded by direct Z ′ searches. In the minimal setup, there is an approximately

linear relation and the measurement of the Higgs mass constrains the top pole

mass to lie at the lower end of the 1σ range of the current measurement. In order

to fix the Z ′ mass, the top quark mass needs to be measured with permille level

accuracy. For g12
∣∣
MPl

̸= 0, most points still obey the same linear relation as in the

minimal setup while a few points reach to larger values of Mt and there are no

points with correct Higgs mass and Mt ≲ 171.5GeV.

The mass of the dilaton, given by Eq. (6.33), is suppressed by βλΦ compared

to the intermediate scale. We show the numerical results for mhΦ in Fig. 6.6 (top

right). The points with g12
∣∣
MPl

= 0 (red stars) give a dilaton mass of ≈ 70GeV

and therefore, in the minimal scenario, the dilaton is always lighter than the Higgs
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boson. With g12
∣∣
MPl

̸= 0, the dilaton mass varies between 40GeV and a few

100GeV.

The Higgs dilaton mixing angle, given by Eq. (6.34), is suppressed by ⟨H⟩/⟨Φ⟩
and typically sin2 θ ≲ 10−5 for viable points (see Fig. 6.6). Experimental con-

straints on the Higgs-scalar mixing angle [199–201] are therefore avoided. If

mh ≈ mhΦ , the mixing angle is much larger reaching values up to sin2 θ ∼ O(1).

6.2.2 Neutrino portal model

The minimal fermionic extension is given in Tab. 6.1 (middle). The charges of ψL
and ψR are chosen in such a way that there is a Yukawa interaction involving Φ

(see Eq. (6.6)). This Yukawa interaction automatically involves the right-handed

neutrinos. We further choose qΦ = −3
8
. For this choice, along the RG flow towards

the IR, the gauge kinetic mixing parameter g12 runs towards g12 =
10
123
gX at one-

loop. If g12 is set to zero at Planck scale, the contributions of gauge kinetic

mixing to λp − λΦ are too small to overcome the SM contributions. We need

to introduce additional sources of custodial symmetry violation in order to obtain

EWSB. This is achieved by considering non vanishing Yukawa interaction involving

Φ, i.e. yψ ̸= 0 or simply taking g12
∣∣
MPl

> 0.

The VEVs of the scalar field generate Dirac mass terms for the neutral fermions

given by

Lmass ⊃ yαβν ⟨H⟩ναLνβR + yβψ⟨Φ⟩ψLνβR + h.c.

=
(
ναL ψL

)
(
yαβν ⟨H⟩ 0

yβψ⟨Φ⟩ 0

)(
νβR
ψR

)
+ h.c.

=:
(
ναL ψL

)
MN

(
νβR
ψR

)
+ h.c.

(6.36)

After symmetry breaking there remains an accidental global lepton number sym-

metry and Majorana mass terms are not generated. ψR does not have a Yukawa

interaction and therefore ψR remains a massless Weyl spinor due to unbroken chi-

ral symmetry. This implies that there also will be a massless left handed Weyl

spinor. We can obtain the masses of the neutral fermions by the eigenvalues of

MNM
†
N =

(
yαβν (y†ν)

βα′⟨H⟩2 yαβν (y∗ψ)
β⟨H⟩⟨Φ⟩

yβψ(y
†
ν)
βα′⟨H⟩⟨Φ⟩ yβψ(y

∗
ψ)
β⟨Φ⟩2

)
. (6.37)
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The lower left entry of this matrix dominates and the mass of the heavy eigenstate

is, assuming real Yukawa couplings, given by mψ ≈
√
yβψy

β
ψ⟨Φ⟩ = ȳψ⟨Φ⟩. The

Dirac spinor corresponding to this heavy eigenstate can be written as

Ψ ∼
(
cos(αψ)ψL + sin(αψ)νL

ν ′R

)
, (6.38)

for a linear combination of the right-handed neutrinos ν ′R. The mixing angle

αψ between ψL and the active neutrinos is approximately given by sin(αψ) ≈
yν⟨H⟩/⟨Φ⟩ where yν denotes a typical entry of the neutrino Yukawa matrix yαβν .

The two light but massive eigenstates have a mass of approximately yν⟨H⟩ and

therefore yν ∼ 10−11. This implies that sin(αψ) ≪ 10−11. Since the matrix

Eq. (6.37) has rank three, the remaining state is a massless Weyl spinor given

by an active left handed neutrino. While the addition of the minimal set of new

fermions populates the neutrino portal, we do not explain the smallness of neutrino

masses.

We study the parameter space of the neutrino portal model using a parameter

scan with the same setup as in the minimal model. We perform two scans, one

where we randomly sample ȳψ = 0 and g12
∣∣
MPl

∈ [0, 0.2] · gX
∣∣
MPl

and one with

ȳψ
∣∣
µ̃0

∈ [0, 0.9] · gX
∣∣
µ̃0

and g12
∣∣
MPl

= 0 while all other parameters are sampled

in the same range as in the minimal model. The same dataset has been used in

Ref. [2].

As discussed earlier, in models with qΦ = −3
8
, additional sources of custodial

symmetry violation are required to overcome the SM contributions to λp−λΦ and

ensure that the Higgs field obtains a VEV. In Fig. 6.7 (top) we illustrate how

this can be achieved by g12
∣∣
MPl

> 0 and by ȳψ ̸= 0. For large values of g12 or

ȳψ, custodial symmetry violation is large and the hierarchy between the EW and

the intermediate scale is small. We also show the fine tuning required for each

parameter point in Fig. 6.7 (bottom).

We also recast the Z ′ limits from dilepton searches for models with qΦ = −3
8
.

We use the same setup as for the minimal model and we do not include the effects

of the new fermions as final states. This does affect the width of the Z ′ boson,

however, we checked that the effect on our results is negligible. The fiducial cross

section times branching ratio for different values of mZ′ and gX are shown in

Fig. 6.8. The recast limits obtained for qΦ = −3
8
are very similar to the limits

obtained for qΦ = −1
3
and in all plots in this chapter, points excluded by these

limits are again marked by black squares.
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Figure 6.7: Parameter points in the neutrino portal model that yield the correct

EW scale. The top plots show the custodial symmetry violation and the bottom

plots show the amount of fine tuning. The plots on the left have ȳαψ = 0 and

g12
∣∣
MPl

̸= 0 and the plots on the right have ȳαψ ̸= 0, g12
∣∣
MPl

= 0. These figures are

published in Ref. [2].
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Figure 6.8: Production cross section times branching ratio for different values of

mZ′ and gX for qΦ = −3
8
and the 95%C.L. limits from ATLAS [193] and CMS [194].

The same cuts as in Ref. [193] are used.

The top pole mass and the Higgs mass have a similar linear relation as in the

minimal model while a few points with correct Higgs mass reach the upper end

of the 3σ range for the top mass uncertainty (see Fig. 6.9 (top)). For ȳψ ̸= 0 the

dilaton mass can reach small values if 3g4X ≈ ȳ4ψ (see Eq. (6.33)). The numerical

results for the dilaton mass are shown Fig. 6.9 (middle). For ȳψ ̸= 0 the dilaton

mass is limited by the scan range of ȳψ and for ȳψ = 0, g12
∣∣
MPl

̸= 0 the dilaton mass

takes similar values as in the minimal model with g12
∣∣
MPl

̸= 0. Also shown are

the values for the Higgs dilaton mixing angle for our parameter points in Fig. 6.9

(bottom).

6.2.3 Dark matter model

In the DM model we introduce two vector like fermions that do not interact with

the neutrino sector. The charges are chosen in such a way that Yukawa interactions

involving Φ are possible (see Eq. (6.7)). The charges of these new fermions are

found in Tab. 6.1 (bottom). The parameter α is only constrained by the require-

ment that the Yukawa interaction involving right-handed neutrinos is forbidden.

For our parameter scans, we choose α = 1
2
. Similar to the neutrino portal model,

we choose qΦ = −3
8
which necessitates additional sources of custodial symmetry

violation for realistic EWSB.

The VEV of Φ generates mass terms for the new fermions given by

Lmass ⊃ yψ⟨Φ⟩ψ̄LψR + yψ′⟨Φ⟩ψ̄′
Lψ

′
R + h.c. =: mψψ̄LψR +mψ′ψ̄′

Lψ
′
R + h.c. (6.39)
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Figure 6.9: The top pole mass vs the Higgs mass for parameter points not excluded

by dilepton searches in the neutrino portal model (top). Parameter points of the

neutrino portal model in the mZ′ − mhΦ plane (middle) and the mixing angle θ

vs the dilaton mass mhΦ (bottom). The points marked with orange crosses have a

Higgs mass outside of the 3σ range and the black squares indicate points excluded

by dilepton searches. The plots on the left have ȳαψ = 0 and g12
∣∣
MPl

̸= 0 and the

plots on the right have ȳαψ ̸= 0, g12
∣∣
MPl

= 0. These figures are published in Ref. [2].
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Figure 6.10: Feynman diagrams for the DM annihilation via the Z ′ channel (left)

and the Feynman diagram for the spin independent DM nucleon scattering (right).

These are the dominant diagrams for the respective process.

and we denote the two massive Dirac fermions as ψ and ψ′. After symmetry

breaking the Lagrangian is symmetric under two global accidental U(1) symmetries

under which only ψ and ψ′ transform. This guarantees that ψ and ψ′ are stable

and therefore they constitute two-component DM candidates.

In this section, we assume that ψ and ψ′ are in thermal equilibrium in the early

universe. This assumption is only correct, if the reheating temperature after the

phase transition to the U(1)X breaking vacuum is high enough. In this case ψ and

ψ′ are produced via Z ′ decays. The thermal history of the Universe for models

similar to ours in discussed in Sec. 6.3. We note that, if the reheating temperature

is not high enough, then ψ and ψ′ do not reach thermal equilibrium and the DM

relic density needs to be reevaluated. Naively, we expect that in this case the relic

is smaller compared to the results presented in this section, which in turn opens

up the allowed parameter space [202].

The DM candidates ψ and ψ′ form two-component DM and the total DM relic

density is given by

Ωh2 = (Ωh2)ψ + (Ωh2)ψ′ , (6.40)

where (Ωh2)ψ and (Ωh2)ψ′ denote the relic density of ψ and ψ′ respectively. ψ

and ψ′ separately freeze out and the dominant DM annihilation channel is given

in Fig. 6.10 (left) with SM fermions in the final state.

To study the allowed parameter space for the DM model, we conduct a param-

eter scan. We use the same basic setup as in the previous sections. We conduct

two scans, one where we choose g12
∣∣
MPl

= 0 and one with g12
∣∣
MPl

= −0.1 · gX
∣∣
MPl

.

For simplicity, we set yψ = yψ′ and randomly choose yψ ∈ [0, 0.8] · gX
∣∣
µ̃0
. Similar

to the neutrino portal model, non-zero values for yψ and yψ are required to cancel

the SM contributions to λp − λΦ and lead to successful EWSB. For the scan with
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g12
∣∣
MPl

= −0.1 · gX
∣∣
MPl

, the Yukawa interaction also need to cancel the contribu-

tions from gauge kinetic mixing. The results of our parameter scan are shown in

Fig. 6.11. Similar to the previous sections, the hierarchy between the intermediate

and EW scale is smaller, if custodial symmetry violation in form of yψ = yψ is larger

(Fig. 6.11 (top)). The scan with g12
∣∣
MPl

= −0.1 · gX
∣∣
MPl

allows for larger values of

mψ at fixed mZ′ compared to the scan with g12
∣∣
MPl

= 0. We also show the amount

of fine tuning calculated from Eq. (6.35) in Fig. 6.11 (middle). For the scan with

g12
∣∣
MPl

= −0.1 ·gX
∣∣
MPl

, the cancellation of the contributions to λp−λΦ from gauge

kinetic mixing and the Yukawa couplings need to cancel and therefore the tuning

is larger compared to the scan with g12
∣∣
MPl

= 0. Assuming thermal equilibrium for

ψ and ψ′ we calculate the relic density via the freeze out process using micrOMEGAs

6.0.5 [203]. The model files are generated with SARAH-4.15.2 [204]. The results

for the relic density is shown in Fig. 6.11 (bottom). Near the Z ′ resonance for DM

annihilation (i.e. mψ ≈ mψ′ ≈ 1
2
mZ′), the relic density turns out to be close to and

below the observed value of Ωh2 = 0.12 [205] while in the rest of the parameter

space the relic density is too large. For our parameter scan we used yψ = yψ′ . It

turns out that this needs to hold up to deviations of a few percent, in order for

mψ and mψ′ to be close to the Z ′ resonance simultaneously. The relation yψ = yψ′

can be imposed by a parity-like symmetry that exchanges ψL ↔ ψ′
R and ψ′

L ↔ ψR.

In Fig. 6.11, all points that overproduce DM are marked with gray bordered plus

symbols. For the scan with g12
∣∣
MPl

= 0, only few points are not excluded by AT-

LAS and yield Ωh2 ≤ 0.12. For the scan g12
∣∣
MPl

= −0.1 · gX
∣∣
MPl

the parameter

space opens up since for fixed mZ′ the ratio mψ/mZ′ is larger. Thus points with

mψ ≈ mψ′ ≈ 1
2
mZ′ have larger values of mZ′ where ATLAS is less sensitive.

The scattering cross section for DM scattering off nucleons can be calculated

using micrOMEGAs 6.0.5. The dominant contribution to WIMP nucleon scat-

tering is given by the t-channel Z ′ exchange (see Fig. 6.10 (right)). Assuming

mψ = mψ′ , the spin independent scattering cross section σSI for both ψ and ψ′ is

identical (σSI = σSI(ψ) = σSI(ψ
′)). We show the spin independent scattering cross

section for our parameter points in Fig. 6.12. The ATLAS limits on the Z ′ boson

already exclude all points accessible by XENONnT. The sensitivity of the DAR-

WIN experiment will reach the neutrino floor and probe parts of our parameter

space [208]. Fermionic DM with a heavy Z ′ mediator have been widely studied in

the literature, see e.g. Refs. [209–214].

We show the relation between the top pole mass and the Higgs mass in Fig. 6.13

(top). The results are very similar to the behavior found in the previous sections.

The points for which DM is not overproduced seem to be evenly distributed in
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Figure 6.11: Parameter points in the DM model that yield the correct EW scale.

Shown are the amount of custodial symmetry violation (top) and the amount of fine

tuning (middle) and the DM relic density (bottom) for the scans with g12
∣∣
MPl

= 0

(left) and g12
∣∣
MPl

= −0.1 · gX
∣∣
MPl

(right). All plots assume yψ = yψ′ . Points

excluded by ATLAS searches are marked with black squares and point for which

DM is overproduced are marked with gray plus symbols while the remaining points

are marked by a bright green border. These figures are published in Ref. [2].
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Figure 6.12: Spin independent DM nucleon scattering cross section for the DM

model. Also shown are the XENONnT limits [206] (black line) and neutrino

floor [207] (black dashed line). Points excluded by ATLAS are marked with black

squares, points where the Higgs mass is outside of its 3σ range are marked by

orange crosses and the cyan “tri-down” points are used to indicate points which

yield a relic density Ωh2 > 0.12. The green points are not excluded. These figures

are published in Ref. [2].

the scatter area. We also show the dilaton mass as a function of mZ′ in Fig. 6.13

(middle) and the Higgs dilation mixing angle in Fig. 6.13 (bottom). The results

agree with those for the neutrino model with ȳψ ̸= 0.

6.3 Experimental signatures

The massive Z ′ boson in our models has couplings to all SM fermions and can be

searched for at colliders. We already discussed the current limits from dilepton

searches [193, 194] which exclude mZ′ ≲ 4TeV. The reach to higher masses is

limited since at LHC, a heavy on-shell Z ′-boson can only be produced from the high

momentum tail of the parton distribution function. We show the limits recast from

ATLAS and projections for proposed future colliders in Fig. 6.14. The projections,

taken from Ref. [215, Fig. 8.3], assume hypercharge-universal couplings of the Z ′

boson. The couplings of the Z ′ boson in our models differ by an O(1) factor

compared to the hypercharge-universal Z ′ boson. Large parts of our parameter

space can be probed by these proposed future colliders. In the DM model, all

viable points found in our scans can be tested by HE-LHC, FCC-hh/ee/eh or a

10TeV muon collider.
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Figure 6.13: The relation of the top pole mass and the Higgs mass for points not

excluded by ATLAS (top). Points with Ωh2 < 0.12 are dark bordered. Parameter

points of the DM model in the mZ′−mhΦ plane (middle) and the mixing angle θ vs

the dilaton mass mhΦ (bottom). Points excluded by the ATLAS are marked with

black squares, points where the Higgs mass is outside of its 3σ range are marked

by orange crosses and the cyan “tri-down” points are used to indicate points which

yield a relic density Ωh2 > 0.12. The green points are not excluded. These figures

are published in Ref. [2].
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Figure 6.14: Parameter points in the mZ′ − gX
∣∣
µ0

plane for the minimal model

(top), the neutrino portal model (middle) and the DM model (bottom). Points

excluded by the ATLAS are marked with black squares, points where the Higgs

mass is outside of its 3σ range are marked by orange crosses and, for the DM

model, the cyan “tri-down” points are used to indicate points which yield a relic

density Ωh2 > 0.12. The green points are not excluded. Explicitly shown are

the recast ATLAS limits [193] and the projections Z ′ searches at future colliders

(assuming hypercharge universal couplings) Ref. [215]. These figures are published

in Ref. [2].
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The dilaton typically has a mass roughly in the 40−400GeV range and a mixing

angle with the Higgs boson sin2 θ ≲ 10−5. The Higgs-dilaton mixing induces a

coupling of the dilaton to the SM fields given by OhΦ ≈ sin θ × OSM
h→hΦ

where

OSM
h→hΦ

are the SM operators involving the Higgs boson h where h is replaced

by the dilaton hΦ. Further interactions of the dilaton could originate from the

trace anomaly [216–218]. These interaction involve pairs of gauge boson and are

suppressed by hΦ/vΦ and therefore easily avoided [219,220].

Dilaton production at colliders is possible through the Higgs mixing with an

estimated efficiency of one dilaton per 105 Higgs bosons assuming sin2 θ ∼ O(10−5).

With smaller mixing angles, the production is further suppressed. However for

such small mixing angles, the dilaton becomes long lived. For example, with

sin2 θ ∼ O(10−7) we expect one dilaton with a lifetime of τhΦ→SM ∼ O(10−15 s) per

107 Higgs bosons. This opens up the possibility for displaced vertex searches at

Higgs factories [221–223].

The three-scalar vertices in the limit (g12 ≪ 1, yψ ≪ 1 and λΦ − λp ≪ 1) are

approximated by

∂3Veff
∂h3

≈ 6λH
√
2⟨H⟩, (6.41)

∂3Veff
∂h2∂hΦ

≈
(
m2
hΦ

−m2
h

) 1√
2⟨Φ⟩

, (6.42)

∂3Veff
∂h∂h2Φ

≈
(
3m2

hΦ
−m2

h

) ⟨H⟩√
2⟨Φ⟩2

. (6.43)

If 2mhΦ < mh, the Higgs decay to two dilatons is kinematically allowed, however

strongly suppressed with a branching ratio of roughly Γh→hΦhΦ/Γh,tot ∼ O(10−8).

The dilaton emission from a virtual Higgs h→ hhΦ is also highly suppressed.

6.4 Finite temperature effects

In the cosmological evolution of the Universe one needs to include temperature cor-

rections to the effective potential. It turns out that models with Coleman-Weinberg

symmetry breaking generically have a first order phase transition (FOPT) [23,224,

225].

The models discussed in this chapter are very similar to the classically confor-

mal B − L model. In particular, the minimal model that realizes Custodial Nat-

uralness has the same particle content as the classically conformal B − L model.

The differences are that in the minimal model Φ has a charge of qΦ = −1
3
in the
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B − L basis compared to the value qΦ = 2 in the classically conformal B − L

model and that we impose SO(6) custodial symmetry. Refs. [226–230] investigate

the thermal history of the Universe in the classically conformal B − L model. We

note that Ref. [228] considers different values for the gauge kinetic mixing param-

eter showing that the qualitative results are fairly independent of this parameter.

Therefore, we expect the cosmological evolution of the Universe in our models to

closely resemble the evolution in the classically conformal B−L model. The differ-

ent values of qΦ can be largely compensated by rescaling of the gauge coupling. In

this section we briefly summarize the main findings of Refs. [226–230]. A detailed

analysis of the finite temperature potential and the phase transitions should be

conducted in future work.

For a sufficiently high temperature T , the effective potential has a minimum

at Φ = 0 and H = 0. During the expansion of the Universe, the temperature

drops and the potential develops a second minimum. At a critical temperature

Tc ∼ mZ′ , this second minimum becomes the global minimum however the fields

Φ and H remain trapped at (Φ, H) = (0, 0) due to a thermal barrier which does

not disappear at low temperatures. The fields can tunnel to the global minimum

which leads to the formation of bubbles. In the classically conformal B−L model,

the percolation temperature Tp, i.e. the temperature where the formation and ex-

pansion of bubbles becomes efficient, is Tp ≪ Tc. Since the fields are trapped in

the false vacuum, this leads to a period of thermal inflation with N ∼ 10 [228]

where N is the number of e-folds. For large parts of the parameter space, perco-

lation is inefficient for temperatures down to the QCD scale. Ref. [227] finds that

this happens if gB−L ≲ 0.2 at µ = mZ′ . Taking into account the different charge

of Φ in the B − L model compared to the models discussed in this chapter, we

rescale this bound and find that for gX ≲ 0.4 percolation remains inefficient. With

Nf = 6 massless quarks, QCD undergoes a FOPT with a critical temperature

of TQCD
c ≈ 85MeV [231, 232] and no strong supercooling. After the QCD phase

transition, a linear term in the Higgs potential is generated from the top quark

condensate which in turn induces a Higgs VEV of [227,230]

vH,QCD =
∣∣∣yt/(

√
2λH)⟨tt̄⟩

∣∣∣
1/3

≈ 100MeV. (6.44)

For the parameters space relevant in our model, Ref. [227] finds that the fields are

trapped at (Φ, H) = (0, vH,QCD/
√
2) followed by an FOPT to the realistic B − L

breaking vacuum. In contrast, Ref. [230] finds that QCD induces a tachyonic

instability and the transition to the B − L breaking vacuum happens without

a FOPT. We stress that in both cases, the QCD phase transition is first order.
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Gravitational wave signals originating from bubble collisions can be probed by

future gravitational wave observatories [226–230,233–237].

The decay hΦ → hh can reheat the SM thermal bath if mhΦ > 2mh and

the reheating temperature Trh is found to be roughly of ∼ O(TeV) [230]. For

mhΦ < 2mh scalar mixing might provide a reheating mechanism [238]. A more

detailed analysis of the reheating process is required to find out whether QCD and

EW symmetry is restored after reheating and, in case of our DM model, whether

the DM candidates are in thermal equilibrium after reheating.

Our model introduces new light degrees of freedom given by the right-handed

components of the Dirac neutrinos. If these new light degrees of freedom are

produced after the period of thermal inflation, they contribute to ∆Neff and this

contribution can potentially be detected in future CMB measurements [239–241].

6.5 Future directions

The models constructed in this chapter assume family universal U(1)X charges

and therefore the new charges are required to be a linear combination of the

B − L charge and hypercharge. Non-universal U(1) charge assignments such as

U(1)Lµ−Lτ can potentially connect “Custodial Naturalness” to flavor anomalies for

example the muon anomalous magnetic moment [242–247]. One can also consider

B − L charge assignments where the right-handed neutrinos have the charges

νR ∼ (−4,−4, 5). For such a charge assignment, gauge anomalies cancel and the

Yukawa interaction of the lepton doublet with the right-handed neutrinos and the

Higgs doublet is forbidden. This setup is often used to explain the smallness of

neutrino masses [248–251].

In order for λΦ to reach critical values, bosonic loops need to contribute to βλΦ .

In the models presented in this chapter, these contribution come from the U(1)X
gauge group. One can also consider the case where these contributions come from

an additional scalar field S which is a singlet under enhanced custodial symmetry.

In this case Φ and S can be real fields and, at the high scale, the potential is given

by

V = λ

(
|H|2 + 1

2
Φ2

)2

+
λHS
2

(
|H|2 + 1

2
Φ2

)
S2 +

λS
4!
S4 at µ =MPl. (6.45)

This potential has a SO(5) symmetry where Φ and the real components of H form

a 5-plet. If we include right-handed neutrinos νR, then the Yukawa interaction

LYuk ⊃ yαβN Φν̄αRν
β
R, (6.46)

79



can contribute as additional custodial symmetry violation, similar to the Yukawa

interactions discussed in Sec. 6.1.2. After spontaneous symmetry breaking where

Φ obtains a VEV, a Majorana mass for νR is generated and the low-scale type I see-

saw scenario is realized. The scalar field S is odd under an accidental unbroken Z2

symmetry and therefore a stable DM candidate. A setup with similar particle con-

tent but without enhanced custodial symmetry has been considered in Ref. [178].

In this reference the DM relic density has been calculated using the freeze out

scenario. Ref. [252] discusses Coleman-Weinberg symmetry breaking induced by

scalar loops and finds that the reheating temperature ranges from ∼ 10−104GeV.

This suggests that for parts of the parameter space, S is not thermalized after the

phase transition and the relic density is lower then expected from the freeze out

mechanism [253]. A detailed study of this realization of Custodial Naturalness is

currently ongoing in collaboration with Manfred Lindner and Andreas Trautner.

A publication is planned in Ref. [3].

In this chapter, SO(6) custodial symmetry is imposed at the Planck scale. In

Sec. 6.1.2 we discuss that the SM contributions to βλp − βλΦ change sign around

1011GeV. If the scale where custodial symmetry is restored is lowered, then the

integrated effect of the SM contribution to λp − λΦ can be sufficient to trigger

EWSB. In this case no additional sources of custodial symmetry breaking are re-

quired. In such a setting, the charge assignment qΦ = −16
41

seems particularly

interesting, since g12 remains zero at one-loop and thus only contributes to custo-

dial symmetry violation at two-loop. Such a charge assignment and the lower scale

of custodial symmetry might originate from a grand unified theory (GUT). Similar

to the way the SM custodial symmetry is embedded in Pati-Salam unification [254]

(SO(4) ⊂ SO(10)), SO(6) custodial symmetry is expected to be embedded in the

GUT group.

Future work should also consider the inclusion of baryo- or leptogenesis [202,

235,236,255–260] or include different DM production mechanisms [202,261]. One

should also investigate the possibility for inflation where Φ takes the role of the

inflaton [238,262,263].
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Chapter 7

Symmetries of beta functions

Outer automorphisms can be understood as the non-trivial symmetries of a sym-

metry group. Acting as transformation of the fields, these outer automorphisms

are not symmetries, but the transformation can be absorbed into the couplings [86].

For example the CP transformation in the SM is an outer automorphism [81, 82]

which maps the couplings to their complex conjugate.

In this chapter, we derive how the beta function functions transform under

outer automorphisms. We show that the beta functions, seen as a set of partial

differential equation, have a symmetry given by the transformations of couplings

under the outer automorphism.1 This allows us to derive general constraints on the

form of the beta functions. The transformation of beta functions under the outer

automorphisms can be used to validate the argument on which t’Hooft naturalness

is based. We also briefly discuss scale transformation as an outer automorphism

of the Poincarè group.

The results presented in this chapter are part of ongoing work in collaboration

with Andreas Trautner and a publication is planned in Ref. [4].

7.1 Outer automorphism

Say we have a symmetry group G. Automorphisms are bijective homomorphisms

from the group to itself, i.e. u : G→ G where u preserves the group structure. The

maps u form a group, namely the automorphism group Aut(G). Some elements

1By symmetry we mean a transformation g, and for any for any solution x(t) to a differential

equation ẋ = F (x), g(x(t)) is also a solution. This agrees with the definition given for example

in Ref. [264, Definition 2.23].
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u ∈ Aut(G) can be written as multiplication with group elements, i.e. there exist

a group element h ∈ G such that u(g) = h · g · h−1 for all g ∈ G. These auto-

morphisms are called inner. Any automorphism which is not inner, is an outer

automorphism.2

The symmetry transformations under a group element g ∈ G act on a field ϕ(r)

in the r representation as

ϕ(r) → ρr(g)ϕ
(r), (7.1)

where ρr(g) is the matrix representation of the group element g. The action is

symmetric, if

S
[
ϕ(r)
]
= S

[
ρr(g)ϕ

(r)
]
. (7.2)

In this chapter, we consider more general transformations given by

ϕ(ri) u→ ϕ̃(ri) := F(ϕ(ri)) = Uϕ(r′
i), (7.3)

where the field ϕ(ri) in the ri representation is mapped to a field ϕ(r′
i) in the r′

i

representation. The matrix U is defined as a solution to

ρri(u(g)) = Uρr′
i
(g)U−1. (7.4)

In Ref [87] (see also Refs. [83, 84, 86, 265]) it is shown that a solution to Eq. (7.4)

exists if and only if u is an automorphism. The solutions to Eq. (7.4) are not

unique. For example for any solution U , eiαU for some phase α is also a solution.

For each solution to Eq. (7.4), we have a corresponding transformation acting on

the fields via Eq. (7.3). Sometimes one refers to the transformation in Eq. (7.3) as

the transformation under the (outer) automorphism. All possible transformations

that fulfill Eq. (7.4) form a group which we denote by H. Since U = ρr(h) for

any h ∈ G is a solution to Eq. (7.4), the symmetry group G is a subgroup of H.

Further, H contains the automorphism group Aut(G) and the phase rotations of

U as subgroups.

The transformation in Eq. (7.3) is not a symmetry of the action, however, the

following statement is true:

Finding 1 If for every field ϕ(ri), also ϕ(r′
i) is part of the particle content3 then

following relation holds:

S[ϕ, λn] = S[ϕ̃, fn(λ)], (7.5)

2We clarify that the outer automorphism group is defined differently. In this chapter, we are

only concerned with outer automorphism in the sense that they are not inner.
3This is equivalent to demanding that the particle content of the model can be written in

representations of the group H (or more precisely of the subgroup generated by U). If this is

not the case, the “possible” symmetry is maximally broken by the particle content.
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for some function fn(λ) determined by the transformation in Eq. (7.3) i.e. the

outer automorphisms transformation.

This statement has been shown in Ref. [86] and we repeat the arguments below.

We write the Lagrangian in terms of operators On[ϕ]

L[ϕ, λn] =
∑

n

λnOn[ϕ], (7.6)

where each operator is invariant under the symmetry transformations Eq. (7.1) and

λn are independent couplings. This sum must include every independent operator

consistent with all symmetries, as expected from renormalizability. Now we write

L[ϕ, λn] = L[F−1(ϕ̃), λn] := L̃[ϕ̃, λn] =
∑

k

f̃k(λm)Õk[ϕ̃], (7.7)

where we decomposed L̃ in a similar way as we decomposed L. Under the sym-

metry transformation Eq. (7.1), ϕ̃(ri) transforms as

ϕ̃(ri) = Uϕ(r′
i) → Uρr′

i
(g)ϕ(r′

i) = ρri(u(g))Uϕ
(r′
i) = ρri(u(g))ϕ̃

(ri), (7.8)

i.e. ϕ̃(ri) transforms in the ρri representations (of a different group element). As the

operator decomposition Eq. (7.6) includes all operators invariant under symmetry

transformations, there exists an operator Onm such that4

Onm [ϕ̃] = Õm[ϕ̃]. (7.9)

Therefore we have

L̃[ϕ̃, λn] =
∑

k

f̃k(λm)Õk[ϕ̃] =
∑

k

f̃k(λm)Onm [ϕ̃] :=
∑

n

fn(λm)On[ϕ̃]=L[ϕ̃, fn(λm)],

(7.10)

which implies Eq. (7.5).

Observation 1 If the operators in Eq. (7.6) are monomials in the fields, then

Eq. (7.5) is given by

S[ϕ, λn] = S[ϕ̃, Ũλ], (7.11)

for some matrix Ũ determined by the transformation in Eq. (7.3). Since the trans-

formation in Eq. (7.3) form the group H, the matrices Ũ also form a group, which

we denote as H̃. The couplings λn transform under representations of H̃.

4Technically this might be a linear combination, however the argument still holds.
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If the operators On are monomials in the fields, then we can write

λnOn[ϕ] = λnT
n
ab...ϕaϕb..., (7.12)

where the indices a, b, ... run over all fields and T nab... is some tensor. Eq. (7.6) acts

on ϕa as a matrix multiplication ϕa → Uaa′ϕa′ . Then we have

λnT
n
ab...ϕaϕb...→ λnT

n
ab...U

aa′U bb′ϕa′ϕb′ ... =: λn(T
′)nab...ϕaϕb... (7.13)

Since we have a complete set of operators O[ϕ], (T ′)n is simply a linear com-

bination of T n and therefore the transformation of λn is described by a matrix

multiplication.

Observation 2 Say the couplings fulfill fn(λ) = λn. Then the transformation

ϕ→ ϕ̃ leaves the Lagrangian invariant. u is then part of the symmetry group.

Finding 2 If the outer automorphism transformation (Eq. (7.3)) leaves the path

integral measure invariant, then S[ϕ, λn] and S[ϕ, fn(λ)] lead to the same physical

predictions. Therefore these parts of the parameter space are redundant.

Consider the generating functional

Z[J ] =

∫
Dϕ exp

(
i

∫
d4x L[ϕ, λn] + Jϕ

)
. (7.14)

By field redefinition invariance, we know that

Z ′[J ] =

∫
Dϕ exp

(
i

∫
d4x L[ϕ, λn] + Jϕ̃

)
, (7.15)

gives the same predictions as Z[J ].5 Using Eq. (7.5) we can rewrite this to

Z ′[J ] =

∫
Dϕ exp

(
i

∫
d4x L[ϕ̃, fn(λ)] + Jϕ̃

)

=

∫
Dϕ det

[
δF−1[ϕ]

δϕ

]
exp

(
i

∫
d4x L[ϕ, fn(λ)] + Jϕ

)

=

∫
Dϕ exp

(
i

∫
d4x L[ϕ, fn(λ)] + Jϕ

)
.

(7.16)

where we assumed det
[
δF [ϕ]
δϕ

]
= 1 in the final equality.6 As Eq. (7.14) and

Eq. (7.16) give the same predictions, the function fn maps redundant parts of

the parameter space to one another.

5By same predictions, we mean same S-matrix elements [266, 267]. A modern derivation of

field redefinition invariance is given in Ref. [268].
6This is the same requirement as anomaly freedom.
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Finding 3 The redundancy in parameter space also manifests itself in the struc-

ture of the RGEs. If we consider the beta functions as functions with the couplings

as arguments (i.e. βλn( . )) then

βλn(fk(λ)) =
∂fn(λ)

∂λm
βλm(λk). (7.17)

Therefore the transformation λ→ f(λ) is a symmetry of the beta functions.

The generating functionals in Eq. (7.14) and Eq. (7.16) have the same functional

form and therefore the beta functions we calculate with these two theories have

the same functional form, i.e.

µ
∂

∂µ
λn :=βλn(λk), (7.18)

µ
∂

∂µ
fn(λ) :=βfn(λ)(fk(λ)) = βλn(fk(λ)). (7.19)

Eq. (7.17) follows from the chain rule.

Observation 3 With the assumption of the operators On being monomials, the

couplings transform under representations of H̃ (see Observation 1). Eq. (7.17)

implies that the beta functions transform under the same representations as the

couplings. We write the couplings transforming in the ri representation as λri.

Then expanding the beta function as a power series, we find

βλri =
∑

j,k

cjk
[
λrj ⊗ λrk

]
ri
+
∑

j,k,l

cjkl
[
λrj ⊗ λrk ⊗ λrl

]
ri
+ ... (7.20)

where
[
λrj ⊗ λrk

]
ri

is the tensor product of λrj and λrk projected onto ri.

A similar to approach is used for the two Higgs doublet model (2HDM) in Refs. [269–

271] where the tensor structure of the couplings under basis transformations is used

to constrain the all-loop beta functions. For a discussion of the outer automor-

phisms in the 2HDM we refer to Ref. [91]. The tensor structure of the couplings

is also used in high loop calculations as for example in Ref. [272].

Observation 4 t’Hooft naturalness: The notion of t’Hooft naturalness states

that a set of couplings can be naturally small, if and only if the symmetries of

85



the model are enhanced by setting this set of couplings to zero. If the (approxi-

mate) symmetry transformation is an outer automorphism, i.e. can be written as

Eq. (7.3), then Observation 3 implies t’Hooft naturalness.7

Any coupling that preserves the symmetry, transforms trivially under fn(λ). For

couplings that violate the symmetry explicitly, Eq. (7.20) implies that the beta

function transforms covariantly and therefore the beta function of symmetry vio-

lating couplings must be proportional to symmetry violating couplings.

7.2 Example I: Cyclic group of order three

As a first example, we consider a model with the symmetry group Z3 = ⟨a|a3 = e⟩.
This group has three irreducible representations all of which are one-dimensional.

They are given by the trivial representation, ρr(a) = ω and ρr(a) = ω2 with

ω = ei
2π
3 . The group Z3 has a non-trivial outer automorphism given by the Z2

group that exchanges a and a2. For this outer automorphism u, we evaluate

Eq. (7.4) and find

ρr(u(a)) = ρr(a
2) = ω2 = ρr(a). (7.21)

Thus u maps the representation r to the conjugate representation r. We start by

considering the case U = 1. Now consider a single scalar field ϕ which transforms

in the r representation. The most general renormalizable potential is given by

V = m2|ϕ|2 + (κϕ3 + h.c.) + λ|ϕ|4. (7.22)

The conjugate field ϕ∗ transforms in the conjugate representation r and the outer

automorphism maps ϕ → ϕ∗. Therefore the outer automorphism is the CP-

transformation. However all couplings in Eq. (7.22) are real up to unphysical

phases. Thus CP is already a symmetry of the theory and nothing is gained by

the outer automorphism.

Another solution to Eq. (7.4) is the phase rotation U = eiα. The couplings

transform as

m2 → m2, κ→ e3iακ, λ→ λ, (7.23)

and κ = 0 enhances the symmetry to a global U(1).

7Ref. [80] assumes, without proof, that the beta function for a coupling a is proportional to

a, if a = 0 enhances a symmetry. To our knowledge, our argument here gives the first strict

derivation of this proportionality.
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At this point, we could use Eq. (7.17) to constrain the form of the beta func-

tions. However due to the different mass dimensions of the couplings, the beta

functions are already tightly constrained and no new insight is gained. We now

consider another example where we can constrain the form of the beta functions.

7.3 Example II: Dihedral group of order eight

Consider the dihedral group of order eight, D8 = ⟨a, b|a4 = b2 = abab = e⟩.
It turns out to be more convenient to choose s = b and t = ab as generating

elements which implies D8 = ⟨s, t|s2 = t2 = (st)4 = e⟩. There are five irreducible

representations of D8. The representations map the generating elements as follows

I s t

1++ 1 1 1

1+− 1 1 −1

1−+ 1 −1 1

1−− 1 −1 −1

2 1 σ3 σ1

where σi are the Pauli matrices. D8 has an outer automorphism given by the

Z2 operation which exchanges s ↔ t. Consequently this exchanges the 1+− ↔
1−+ representations while it leaves the other representations invariant. For the

one-dimensional representation, Eq. (7.4) is solved by U = ±1,8 while for the 2

representation, we find

U2 =

(
1√
2

1√
2

1√
2

− 1√
2

)
. (7.24)

Now consider a real field in the 2 representation

Φ =

(
ϕ1

ϕ2

)
. (7.25)

The most general renomalizable potential is given by

V = m2
(
ϕ2
1 + ϕ2

2

)
+ λ

(
ϕ4
1 + ϕ4

2

)
+ 2λpϕ

2
1ϕ

2
2, (7.26)

8A complex phase is only allowed if we consider complex fields.
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Figure 7.1: RG flow for Example II in the λ-λp plane. The red line corresponds

to the enhanced outer automorphism symmetry. Green lines correspond to decou-

pling limits. Mapping of parameter points under the outer automorphism is shown

(blue points and arrows). Trajectories through these points are highlighted.

and the action of the outer automorphism Φ → U2Φ maps the couplings to

m′2 = m2, λ′ =
λ+ λp

2
, λ′p =

3λ− λp
2

. (7.27)

At the point of enhanced symmetry, λ = λp, the theory has aD16 symmetry (which

turns out to be an accidental O(2) symmetry). In Fig. 7.1, we show the RG flow

and the symmetry enhanced line with λp = λ. We also show how different parts

of the parameter space are mapped onto each other by the outer automorphism.

These parts of the parameter space are redundant.

The transformation in Eq. (7.27) is a Z2 transformations. We can write the

couplings in terms of irreducible representations as

λ1 = 3λ+ λp, λ1′ = λ− λp. (7.28)
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These couplings transform under the Z2 transformation as

λ1 → λ1, λ1′ → −λ1′ . (7.29)

Observation 3 then implies that the one-loop beta functions are given by

βλ1 =c1λ
2
1 + c2λ

2
1′ , (7.30)

βλ′1 =c3λ1λ1′ . (7.31)

Non-zero values of λ1′ explicitly break the Z2 outer automorphism. We explicitly

see that βλ′1 ∝ λ1′ and therefore λ1′ can be naturally small.

In terms of λ and λp, the beta functions are given by

βλ =
1

4
(9c1 + c2 + 3c3)λ

2 +
1

4
(6c1 − 2c2 − 2c3)λλp +

1

4
(c1 + c2 − c3)λ

2
p, (7.32)

βλp =
1

4
(9c1 + c2 − 9c3)λ

2 +
1

4
(6c1 − 2c2 + 6c3)λλp +

1

4
(c1 + c2 + 3c3)λ

2
p. (7.33)

Setting λp = 0 leads to the decoupling of ϕ1 and ϕ2 and the beta function βλp
should reflect that. Therefore c3 = c1 +

1
9
c2 and

βλ =
1

3
(9c1 + c2)λ

2 +

(
c1 −

5

9
c2

)
λλp +

2

9
c2λ

2
p, (7.34)

βλp =

(
3c1 −

1

3
c2

)
λλp +

(
c1 +

1

3
c2

)
λ2p. (7.35)

An explicit calculation of the beta functions yields

c1 =
5

4π2
, c2 =

9

4π2
. (7.36)

7.4 Example III: Pauli Group

Consider the Pauli Group GC4◦D4 , i.e. the group generated by the Pauli matrices

σ1, σ2, σ3. The field

Φ =

(
ϕ1

ϕ2

)
, (7.37)

transforms in the 2 representation. Then the most general renomalizable potential

is given by

V =m2
(
|ϕ1|2 + |ϕ2|2

)
+ λ1

(
|ϕ1|2 + |ϕ2|2

)2

+ λ21

(
|ϕ1|4 − 4|ϕ1|2|ϕ2|2 + |ϕ2|4

)
+ λ22

(
ϕ2
1(ϕ

†
2)

2 + (ϕ†
1)

2ϕ2
2

)

+ λ41

(
ϕ4
1 + ϕ4

2

)
+ h.c. + λ42ϕ

2
1ϕ

2
2 + h.c.

(7.38)
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Now consider the following transformations on the fields

(I) :

(
ϕ1

ϕ2

)
→
(

0 i

−1 0

)(
ϕ1

ϕ2

)
,

(II) :

(
ϕ1

ϕ2

)
→ 1√

2

(
1 1

1 −1

)(
ϕ1

ϕ2

)
,

(III) :

(
ϕ1

ϕ2

)
→
(
ϕ†
1

ϕ†
2

)
,

(IV) :

(
ϕ1

ϕ2

)
→
(
i
1
4 0

0 i
1
4

)(
ϕ1

ϕ2

)
.

(7.39)

The first three transformations are outer automorphism with the fourth one is the

trivial automorphism with a phase. The couplings transform (i.e. λ → f(λ)) as

follows under these outer automorphisms

(I) : λ22 → −λ22 , λ42 → −λ42 ,

(II) : λ21 →
1

2
(λ22 − λ21) , λ22 →

1

2
(3λ21 + λ22) ,

λ41 →
(
1

2
λ41 +

1

4
λ42

)
, λ42 →

(
3λ41 −

1

2
λ42

)
,

(III) : λ41 → λ∗41
, λ42 → λ∗42

,

(IV) : λ41 → −iλ41 , λ42 → −iλ42 ,

(7.40)

These coupling transformations generate the group D4 × S3 and the couplings

transform under the following irreducible representations:

λ1 11 trivial representation,(
λ21

λ22

)
2 lifted from S3,




Re(λ41)

Re(λ42)

Im(λ41)

Im(λ42)


 4 faithful.

(7.41)

90



The beta functions at one-loop are then given by

βλ1 =
1

16π2
(c11 [1⊗ 1]1 + c12 [2⊗ 2]1 + c13 [4⊗ 4]1) , (7.42)

(
βλ21
βλ22

)
=

1

16π2
(c21 [1⊗ 2]2 + c22 [2⊗ 2]2 + c23 [4⊗ 4]2) , (7.43)

(
βλ41
βλ42

)
=

1

16π2
(c41 [1⊗ 4]4 + c42 [2⊗ 4]4) , (7.44)

or explicitly

βλ1 =
1

16π2

[
c11λ

2
1 + c12

(
λ221

+
1

3
λ222

)
+ c13

(
|λ41|2 +

1

12
|λ42|2

)]
, (7.45)

(
βλ21
βλ22

)
=

1

16π2

[
c21

(
λ1λ21

λ1λ22

)
+ c22

(
λ221

− 1
3
λ222

−2λ21λ22

)
+ c23

( |λ41|2 − 1
12
|λ42 |2

1
2

(
λ41λ

∗
42

+ λ∗41
λ42

)
)]

,

(7.46)
(
βλ41
βλ42

)
=

1

16π2

[
c41

(
λ1λ41

λ1λ42

)
+ c42

(
λ21λ41 +

1
6
λ22λ42

2λ22λ41 − λ21λ42

)]
. (7.47)

There are three interesting decoupling limits: We can decouple the two sectors

consisting of ϕ1 and ϕ2 by setting

λ21 =
1

2
λ1, λ22 = 0, λ42 = 0. (7.48)

By setting

λ22 =
1

2
λ1 − λ21 , Re(λ41) =

1

6
(λ1 + λ21) ,

Re(λ42) =
1

2
λ1 − λ21 , Im(λ41) = Im(λ42) = 0,

(7.49)

the sectors containing {Re(ϕ1),Re(ϕ2)} and {Im(ϕ1), Im(ϕ2)} decouple. We can

also decouple a singe real field (e.g. Re(ϕ1)) by setting

λ21 =
1

2
λ1, Re(λ41) =

1

4
λ1, λ22 = 0, Im(λ41) = 0, λ42 = 0. (7.50)

The RG flow should respect the decoupling limits. This constrains

c21 = c11 +
1

8
c12 −

1

32
c13 , c22 =

1

4
c12 +

1

16
c13 , c23 =

1

2
c13 ,

c41 = c11 −
1

8
c12 +

1

32
c13 , c42 =

3

4
c12 +

1

16
c13 ,

(7.51)

leaving three coefficients that need to be determined. An explicit calculation of

the one-loop beta functions gives

c11 = 24, c12 = 24, c13 = 96. (7.52)
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7.5 Four scalar fields without symmetries

We have seen how the outer automorphisms constrain the shape of the beta func-

tions. If the group of outer automorphisms is large, we will find many constraints

on the shape of the beta functions. For a model with no symmetry, all fields trans-

form under the trivial representation ρr = ρr′ = I and Eq. (7.4) is solved by any

invertible matrix U . Taking into account that the kinetic terms should remain in-

variant, for N real scalar fields, the group of outer automorphism transformations

H is given by O(N). We will now discuss a model with four reals scalar fields and

no symmetry imposed. The most general potential can be written as

V = m2
ijϕiϕj + κijkϕiϕjϕk + λijklϕiϕjϕkϕl, (7.53)

with 1 ≤ i ≤ j ≤ k ≤ l ≤ 4. Since we can reorder the fields in each operator

(for example ϕ1ϕ2 = ϕ2ϕ1), there are 10 independent mass parameters, 20 cubic

couplings and 35 quartic couplings. As there is no symmetry present, the group

of outer automorphism transformations H is given by O(4). We will focus on

SO(4) ∼= SU(2) × SU(2) and the four reals scalar fields transform under the ϕ ∼
(2,2) representation of SU(2) × SU(2). The couplings can be decomposed into

irreducible representations as9

m2 ∼ (1,1)⊕ (3,3) =: m2
(1,1) +m2

(3,3), (7.54)

κ ∼ (2,2)⊕ (4,4) =: κ(2,2) + κ(4,4), (7.55)

λ ∼ (1,1)⊕ (3,3)⊕ (5,5) =: λ(1,1) + λ(3,3) + λ(5,5). (7.56)

In this section we focus on the quartic couplings. Similar calculations can be done

for the cubic couplings and masses. Since beta functions transform in a covariant

way, we again write them in terms of tensor products. At quadratic order in

couplings (one-loop) we find

βλ(1,1) =c
(1)
1

[
λ(1,1) ⊗ λ(1,1)

]
(1,1)

+ c
(2)
1

[
λ(3,3) ⊗ λ(3,3)

]
(1,1)

+ c
(3)
1

[
λ(5,5) ⊗ λ(5,5)

]
(1,1)

,

(7.57)

βλ(3,3) =c
(1)
3

[
λ(1,1) ⊗ λ(3,3)

]
(3,3)

+ c
(2)
3

[
λ(3,3) ⊗ λ(3,3)

]
(3,3)

+ c
(3)
3

[
λ(5,5) ⊗ λ(5,5)

]
(3,3)

+ c
(4)
3

[
λ(3,3) ⊗ λ(5,5)

]
(3,3)

, (7.58)

βλ(5,5) =c
(1)
5

[
λ(1,1) ⊗ λ(5,5)

]
(5,5)

+ c
(2)
5

[
λ(3,3) ⊗ λ(3,3)

]
(5,5)

+ c
(3)
5

[
λ(5,5) ⊗ λ(5,5)

]
(5,5)

+ c
(4)
5

[
λ(3,3) ⊗ λ(5,5)

]
(5,5)

. (7.59)

9Antisymmetric tensor products such as
[
ϕ(2,2) ⊗ ϕ(2,2)

]
(3,1)

vanish.
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We know that the decoupling limit exists and is stable under the RG flow. All

the possible decoupling limits (decoupling one scalar field or decoupling into two

sectors each with two real scalar fields) constrains the coefficients as

c
(3)
1 =− 20c

(1)
1 + 15c

(2)
1 , c

(1)
3 =

5

3
c
(1)
1 , c

(2)
3 =

2

3
c
(1)
1 +

1

4
c
(2)
1 ,

c
(3)
3 =− 15c

(1)
1 +

45

4
c
(2)
1 , c

(4)
3 = −25

3
c
(1)
1 +

15

2
c
(2)
1 ,

c
(1)
5 =c

(1)
1 , c

(2)
5 =

1

4
c
(2)
1 , c

(3)
5 = −7c

(1)
1 +

21

4
c
(2)
1 , c

(4)
5 = −c(1)1 +

3

2
c
(2)
1 .

(7.60)

This leaves only two free coefficients in the one-loop beta functions,

βλ(1,1) =c
(1)
1

[
λ(1,1) ⊗ λ(1,1)

]
(1,1)

+ c
(2)
1

[
λ(3,3) ⊗ λ(3,3)

]
(1,1)

+
(
−20c

(1)
1 + 15c

(2)
1

) [
λ(5,5) ⊗ λ(5,5)

]
(1,1)

, (7.61)

βλ(3,3) =
5

3
c
(1)
1

[
λ(1,1) ⊗ λ(3,3)

]
(3,3)

+

(
2

3
c
(1)
1 +

1

4
c
(2)
1

)[
λ(3,3) ⊗ λ(3,3)

]
(3,3)

+

(
−15c

(1)
1 +

45

4
c
(2)
1

)[
λ(5,5) ⊗ λ(5,5)

]
(3,3)

(7.62)

+

(
−25

3
c
(1)
1 +

15

2
c
(2)
1

)[
λ(3,3) ⊗ λ(5,5)

]
(3,3)

,

βλ(5,5) =c
(1)
1

[
λ(1,1) ⊗ λ(5,5)

]
(5,5)

+
1

4
c
(2)
1

[
λ(3,3) ⊗ λ(3,3)

]
(5,5)

+

(
−7c

(1)
1 +

21

4
c
(2)
1

)[
λ(5,5) ⊗ λ(5,5)

]
(5,5)

(7.63)

+

(
−c(1)1 +

3

2
c
(1)
1

)[
λ(3,3) ⊗ λ(5,5)

]
(5,5)

.

Note how this are fewer free coefficients as in Sec. 7.4. Since we started with the

general case, the group of potential symmetries is larger compared to the Pauli

group example and therefore we have more constraints on the beta functions. Note

that, if we now impose symmetries, the coefficients c
(1)
1 , c

(2)
1 do not change. With

the structure of the beta function known in the general case, we could now impose

the same symmetry as in Sec. 7.4 and obtain the beta functions for the Pauli group

model.

We now impose decoupling of ϕ3 and ϕ4 together with parity and exchange

symmetry. Then the potential for ϕ1 and ϕ2 can be written as

V = λ
(
ϕ4
1 + ϕ4

2

)
+ 2λp ϕ

2
1ϕ

2
2. (7.64)
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In this case the beta functions are given by

βλ =

(
−1

2
c
(1)
1 +

3

4
c
(2)
1

)
λ2 +

(
5

6
c
(1)
1 − 1

2
c
(2)
1

)
λλp +

(
−1

3
c
(1)
1 +

1

4
c
(2)
1

)
λ2p

βλp =
1

2
c
(1)
1 λλp +

(
−1

2
c
(1)
1 +

1

2
c
(2)
1

)
λ2p

(7.65)

and comparing to the known beta function we find

c
(1)
1 =

96

16π2
, c

(2)
1 =

160

16π2
, (7.66)

which fixes all the one-loop beta functions for the four scalar system.

7.6 Dilations

One of the main topics of this thesis are models with classical scale invariance.

It turns out that scale transformations are outer automorphisms the of Poincarè

group [82]. At the level of the classical action, scale transformations simply trans-

form the dimensionful couplings (see Eq. (7.5)). For example consider the following

action

S[ϕ, {m2, λ}] =
∫
d4x

1

2
∂µϕ(x)∂

µϕ(x)− 1

2
m2ϕ(x)2 − λ

4!
ϕ(x)4. (7.67)

For the scale transformation we have ϕ′(x) = eσϕ(eσx) and for the action we then

find

S[ϕ, {m2, λ}] =
∫
d4x

1

2
∂µϕ(x)∂

µϕ(x)− 1

2
m2ϕ2(x)− λ

4!
ϕ4(x)

=

∫
d4x′

1

2
∂′µϕ(x

′)∂′µϕ(x′)− 1

2
m2ϕ2(x′)− λ

4!
ϕ4(x′)

=

∫
d4x e4σ

[
e−2σ 1

2
∂µϕ(e

σx′)∂µϕ(eσx)− 1

2
m2ϕ2(eσx)− λ

4!
ϕ4(eσx)

]

=

∫
d4x

1

2
∂µϕ

′(x)∂µϕ′(x)− 1

2
e2σm2ϕ′2(x)− λ

4!
ϕ′4(x)

=S[ϕ′, {e2σm2, λ}].
(7.68)

In the derivation of Finding 3, we assumed that the functional measure transforms

trivially, i.e. the outer automorphism transformation is anomaly free. As discussed
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in Chap. 2, this does not hold for dilations. Scale transformations map the marginal

couplings λ → λ + σβλ. Repeating the calculation of the scale anomaly, we find

that for the ϕ4 model, Eq. (7.16) should read

Z ′[J ] =

∫
Dϕ exp

{
iS

[
ϕ,

{[
1+σ

(
2+

λ

16π2

)]
m2,

[
λ+σ

3λ2

16π2

]}]
+

∫
d4x Jϕ

}

=

∫
Dϕ exp

{
iS
[
ϕ,
{
m2 + σ

(
2m2 + βm2

)
, λ+ σβλ

}]
+

∫
d4x Jϕ

}
,

(7.69)

where we assumed infinitesimal scale transformations and generalized the anomaly

calculation in Chap. 2 to include the mass term. This is a remarkable result. De-

spite the non-invariance of the measure, the outer automorphism transformations

can be absorbed into couplings. However the transformation of the couplings

differs from the classical result. Similar to the arguments in Finding 2, Z[J ]

and Z ′[J ] have the same functional form and the parameter points {m2, λ} and

{m2 + σ (2m2 + βm2) , λ+ σβλ} are physically redundant. A simple calculation

shows that Eq. (7.17) trivially holds.

7.7 Outlook

In the previous section, we discussed an outer automorphism where the transfor-

mation does not leave the path integral measure invariant. We speculate that the

findings of this example should generalize. The general argument should look as

follows:

Consider the case where the symmetry G is anomaly free. Then the quantum

effective action is symmetric, i.e. Γ[ϕ(r)] = Γ[ρr(g)ϕ
(r)]. It is typically assumed

that the effective action contains all operators consistent with the symmetries of

the action. Since the set of operators is complete, the arguments given for the

classical action S in Finding 1 should also apply for the effective action Γ.10 Then

we would have, similar to Eq. (7.5),

Γ[ϕ, λ] = Γ[ϕ̃, f (Γ)(λ)]. (7.70)

It should be noted that this f (Γ)(λ) in general differs from the f(λ) found from

the classical action. If the outer automorphism transformation is anomalous, i.e.

10Subtleties might arise, since the couplings multiplying the operators are not necessarily

independent.
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the path integral measure is not invariant, then f (Γ) and f are expected to be

different. We already saw this for dilations where classically

f(λ) = λ, (7.71)

while the anomaly leads to

f (Γ)(λ) = λ+ σβλ. (7.72)

Future work should also investigate whether our results can be used to constrain

the all-loop beta functions similar to Refs. [270,271]. In Refs. [270,271] the tensor

structure of the beta functions in the 2HDM is fixed by arguments using the

Cayley-Hamilton theorem. In our case, one should be able to derive similar all-

loop beta functions by using syzygies, i.e. a generalization of the Cayley-Hamilton

theorem.

The arguments in this chapter are based on symmetries and outer automor-

phisms. They hold to all orders in perturbation theory. While we have presented

the arguments for QFT, in principle they should generalize to other theories where

the renormalization group is used.
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Chapter 8

Conclusion and Outlook

In the SM, the fermions and gauge bosons obtain their masses via the Higgs mech-

anism and, at the classical level, Higgs mass parameter is the only dimensionful

quantity. This mass parameter is not protected against corrections from potential

UV completions of the SM giving rise to the hierarchy problem.

Scale transformations are space-time transformations that rescale each space-

time point. Classically, fields transform according to their mass dimension and

scale symmetry is realized if there are no dimensionful couplings. Scale invari-

ance of the classical action does not imply scale invariance at the quantum level.

The scale anomaly manifests itself as the non vanishing beta functions and scale

symmetry is explicitly broken.

Scale invariance plays a crucial role in understanding the hierarchy problem.

Bardeen argued that, in the absence of new scales, the Higgs mass term is protected

against large corrections by scale invariance. The anomalous breaking of scale

invariance does not lead to large corrections to the Higgs mass and the SM does

not have a hierarchy problem. Once new physics, that comes with a new scale,

is introduced, the Higgs mass receives corrections proportional to this new scale.

This then leads to the hierarchy problem.

In classically scale invariant settings, the explicit breaking of scale invariance

by the scale anomaly can be translated to a physical scale via dimensional trans-

mutation. Coleman and Weinberg showed that, in the weak coupling regime, the

gauge group of massless scalar electrodynamics is spontaneously broken. In order

to obtain the VEV, one needs to consider loop contributions to the potential which

is done by using the effective potential.

The effective potential is independent of the RG scale and therefore follows a

Callan-Symanzik type equation. We used this Callan-Symanzik equation to write
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the effective potential in terms of beta functions. In the case of a single massless

scalar field at one-loop, this can be done by integrating the RG equation. In case of

multiple scalar fields, writing the effective potential in terms of beta functions is not

so straightforward. We focused on the case with two massless scalar fields where

the VEVs are hierarchical. In this setup, we wrote the effective potential in terms

of beta functions and developed a procedure to approximate the effective potential

of the light scalar field. We applied this procedure to models with an approximate

symmetry of rotation between to two scalar fields. After spontaneous breaking of

this approximate symmetry, we expect a pNGB and our procedure allowed us to

identify which sources of symmetry breaking contribute to the mass of the pNGB

at leading order.

The main result of this thesis is the concept of Custodial Naturalness which

addresses the hierarchy problem. The idea is based on a combination of classical

scale invariance together with a scalar sector which has an enhanced custodial

symmetry at some high scale. Both symmetries are radiatively broken. At an

intermediate scale, the enlarged custodial symmetry is spontaneously broken via

the Coleman-Weinberg mechanism and the SM Higgs boson is a pNGB associated

with this spontaneous breaking.

We realized Custodial Naturalness in models where the scalar sector consists

of the SM Higgs doublet and an additional complex scalar field which is a singlet

under the SM gauge group. At the Planck scale the scalar potential is symmet-

ric under a SO(6) custodial symmetry. Both scalar fields have an identical charge

under a new U(1)X gauge group, which is a linear combination of B−L and hyper-

charge. The contributions of the new gauge boson to the beta function of the scalar

quartic couplings drive these couplings to critical values and the new scalar field

obtains a VEV. This VEV spontaneously breaks the U(1)X gauge group giving rise

to a heavy Z ′ boson which typically has a mass of ∼ 4− 100TeV. Simultaneously,

SO(6) custodial symmetry is broken and the Higgs boson is the pNGB associated

with this breaking. The VEV of the new scalar field also spontaneously breaks

classical scale invariance giving rise to a dilaton with a mass typically in the range

of 30− 1000GeV.

The minimal realization, consisting of the SM fields including right-handed

neutrinos, the new scalar field and the U(1)X gauge boson, has the same number of

parameters as the SM. Further, we showed that Custodial Naturalness can address

the hierarchy problem even if the high scale boundary conditions are varied and

additional sources of custodial symmetry violation are included. We presented
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models with additional fermions that populate the neutrino portal or are DM

candidates.

Our models predict a thermal history of the Universe that includes a period

of strong supercooling followed by a FOPT. Details of the cosmological evolution

and potential gravitational wave signals should be explored in more detail in future

work.

Another promising realization of Custodial Naturalness based on SO(5) cus-

todial symmetry was briefly sketched. This realization introduces scalar DM and

neutrino mass generation by a low-scale type I seesaw mechanism. This model and

potential connections to leptogenesis should be studied in future work.

We have introduced outer automorphisms and showed how fields transform

under these outer automorphisms. These transformations are not symmetries of

the action but can be undone by a transformation of the couplings. We showed

that the beta functions transform covariantly under these coupling transforma-

tions and illustrated how this constrains the structure of the beta functions in

several examples. Connections to t’Hooft naturalness and scale transformations

were discussed. Scale transformations served as an example to demonstrate how

our results might generalize to the case where the outer automorphism transforma-

tion does not leave the path integral measure invariant. In case of anomalous outer

automorphism transformations there should also exist a coupling transformation

similar to the classical case. We presented some arguments why this should be

the case, and the details need to be worked out in future work. Further investiga-

tion should also determine how outer automorphisms can fix the structure of the

all-loop beta functions.

In summary, this thesis introduced the concept of Custodial Naturalness which

is based on conformal symmetry combined with an enhanced custodial symmetry.

The enhanced custodial symmetry is spontaneously broken via dimensional trans-

mutation and the Higgs boson emerges as a pNGB, offering an explanation of both

the little hierarchy and the separation of the EW and the Planck scale. Custodial

Naturalness can be realized in minimal extensions of the SM and can be tested at

future colliders and through by gravitational wave signatures originating from a

FOPT.

99



Acknowledgments

I would like to express my gratitude to Manfred Lindner for the opportunity to

pursue my doctoral research at Max Planck Institute for Kernphysik (MPIK), as

well as for his supervision and guidance throughout my PhD studies.

I am also thankful to Joerg Jaeckel for serving as the second referee of my
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results will be published in
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