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Abstract

Uncertainties are crucial in particle physics, affecting experimental data and theoretical
predictions. This thesis investigates the impact of uncertainties on global analyses and
the estimation of uncertainties using machine learning architectures. In the first part
of this thesis, we perform global analyses using effective field theory approaches. We
start with the Standard Model effective field theory in the top, Higgs, and electroweak
sectors, including public experimental likelihoods. In particular, we focus on the role of
theory uncertainties and their interplay with correlations. Next, we perform the first
global electric dipole moment analysis constraining model parameters from the hadronic-
and weak-scale Lagrangians while exploring the impact of theory uncertainties on the
parameter constraints. The second part discusses machine-learning methods that have
become increasingly important with the growing data from future LHC runs. Thus, we
study the calibration of systematic and statistical uncertainties and the precision and
reliability of machine learning architectures for amplitude surrogate models. We compare
Bayesian neural networks and repulsive ensembles as uncertainty estimators regarding
their precision and use Kolmogorov-Arnold networks to explore the impact of activation
functions.
Overall, this work emphasizes the importance of reducing theory uncertainties and paves
new ways of uncertainty estimation using machine learning models in particle physics
and global analyses.

Zusammenfassung

Unsicherheiten sind in der Teilchenphysik von entscheidender Bedeutung für experi-
mentelle Daten und theoretische Vorhersagen. In dieser Arbeit werden die Auswirkungen
von Unsicherheiten in verschiedenen globalen Analysen und auch die Abschätzung von
Unsicherheiten im Bereich des maschinellen Lernens untersucht. Zunächst werden globale
Analysen mithilfe effektiver Feldtheorien durchgeführt. Als erstes wird die effektive
Feldtheorie des Standardmodells im Top-, Higgs- und elektroschwachen Sektor unter Ver-
wendung von öffentlichen, experimentellen Likelihood-Funktionen eingeschränkt. Dabei
liegt ein Fokus auf der Rolle der Theorieunsicherheiten und deren Zusammenspiel. Als
nächstes wird die erste globale Analyse mit elektrischen Dipolmomenten durchgeführt,
die Modellparameter aus den hadronischen und schwachen Lagrangedichten einschränkt,
wobei wir die Auswirkungen von Theorieunsicherheiten auf die Parameterbereiche unter-
suchen. Der zweite Teil der Arbeit befasst sich mit Methoden des maschinellen Lernens,
die angesichts der wachsenden Datenmengen am LHC immer wichtiger werden. Zu diesem
Zwecke werden die Kalibrierung von systematischen und statistischen Unsicherheiten,
sowie die Präzision und Zuverlässigkeit von Architekturen des maschinellen Lernens für
Amplitudensurrogatmodelle untersucht. Dazu werden Bayes’sche neuronale Netze und
repulsive Ensembles als Unsicherheitsschätzer hinsichtlich ihrer Präzision verglichen und
Kolmogorov-Arnold-Netze verwendet, um die Auswirkungen verschiedener Aktivierungs-
funktionen zu untersuchen.
Insgesamt unterstreicht diese Arbeit die Bedeutung der Reduzierung theoretischer Un-
sicherheiten und zeigt neue Wege der Unsicherheitsabschätzung mit Hilfe von Modellen
des maschinellen Lernens in der Teilchenphysik und bei globalen Analysen auf.
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Chapter 1
Introduction

The Standard Model (SM) is the mathematical foundation of particle physics, describing
fundamental particles and their interactions. It has been completed by discovering the
Higgs boson at the Large Hadron Collider (LHC) in 2012 [4,5]. Since then, the predictions
of the SM have become more and more precise, but some questions remain open. Such
unanswered questions address the nature of dark matter, the origin of baryon asymmetry,
or the neutrino mass. Experimental evidence in astroparticle physics and cosmology
indicates these open questions that currently cannot be answered by the SM. However,
there are no traces of such new physics or physics beyond the Standard Model (BSM) in
the LHC data so far [6–15]. One existing idea to solve these questions is to extend the SM
to higher orders in perturbation theory, describing it by an effective field theory (EFT).
This EFT approach of the SM, the Standard Model effective field theory (SMEFT),
assumes new physics hidden at higher energy scales, which the LHC does not reach.
Thus, these new particles are produced off-shell and cannot be directly probed with LHC
searches. Building on the SM, SMEFT describes a model-independent approach for new
physics searches. However, in its low-energy limit, it must retain the SM.

Given the sheer amount of data produced by the LHC in recent years, a single-parameter
analysis, including only single measurements, cannot include all the effects and correla-
tions between different measurements and parameters. When performing a global analysis,
all effects hidden in the data and model, such as possible interplays and connections
between different SMEFT parameters, must be included. Thus, we have to perform a
global analysis in the SMEFT framework, including data from Higgs, top processes, and
electroweak precision observables (EWPOs). Additionally, we incorporate measurements
with publicly available likelihoods from ATLAS top production processes and determine
their impact on the overall analysis. Including these experimental likelihoods simplifies
the treatment of correlations and uncertainties in a global analysis by providing detailed
information about different uncertainty categories and their correlations. In the global
SMEFT analysis, uncertainties within the ATLAS and CMS experiments are treated as
correlated, while only the Luminosity is correlated between both experiments. Further-
more, we consider systematic, statistical, and theory uncertainties and investigate the
impact of theory uncertainties on the constraints of the SMEFT parameters.

SMEFT is an excellent example of an EFT in the high-energy limit. However, the
EFT approach can also address problems within a low-energy limit. An example of an
EFT in the low-energy limit is a weak-scale EFT describing processes at the GeV scale.
This weak-scale EFT can describe electric dipole moment (EDM) measurements and
link them to SMEFT dimension six operators. As mentioned before, the SM fails to
explain the baryon asymmetry in the universe. The Sakharov conditions [16] do not solve
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1 Introduction

that question but provide structures that are required to answer this question. These
requirements are: (i) Charge (C) and Charge-Parity (CP) violation, (ii) baryon number
violation, and (iii) a deviation from the thermal equilibrium. The first requirement of C-
and CP-violation can be read off from fundamental Lagrangians, like the SM Lagrangian.
However, with the neutron EDM measurement agreeing with zero, the CP violation
arising from the quantum chromodynamic (QCD) phase in the SM is too small to explain
the observed baryon asymmetry [17–22]. A new approach is needed to explain this baryon
asymmetry and the resulting CP violation. If the measured EDMs exclude zero, they are
a possible explanation for this CP violation. Thus, they are among the best hints for CP
violation and baryon asymmetry. EDM measurements include a wide range of different
atoms and molecules [23–26], but up until now, they have only been evaluated using single
parameters and measurement estimates. We extend this evaluation to a global approach
using an EFT based on weak-scale [24,27–32] and hadronic Lagrangians [23,26,27,33].
Thus, EDMs can be introduced in a global analysis, similar to the SMEFT framework,
to simultaneously evaluate several measurements and parameters.

With the entering of the High Luminosity (HL) phase of the LHC, a large amount of
data will be generated, and thus they probe the predictions with more precision [34].
Previously used tools for data evaluation, like Monte Carlo Markov Chains (MCMCs), will
face computational problems regarding speed and data storage. At this point, machine
learning (ML) techniques need to enter the physicist’s toolbox as a more efficient tool.
These techniques can consider every aspect of the provided data. In particle physics,
we include many experimental measurements and precise simulations of theoretical
predictions for these measurements from first principles [35], which leads to a large
data set size. Hence, ML applications can be found in various aspects of LHC physics.
Some examples are generative networks for event generation and simulation [36–44] and
surrogates for amplitude regression tasks [45–50]. This thesis focuses on the benefits of
ML algorithms applied to amplitude surrogates for a loop-induced gluon fusion process.
In this task of amplitude regression, results with controlled accuracy and precision are
required, including handling different uncertainty types, such as systematic and statistical
uncertainties. These amplitude surrogate models are part of ongoing research [51].

Thus, ML architectures can combine the speed and precision in their predictions with
a controlled uncertainty estimation. These uncertainties arising from measurements
are important to take into account, as are uncertainties originating from the network
architecture. For this purpose, we use Bayesian Neural Networks (BNNs) [52–55],
Repulsive Ensembles (REs) [56–58] and a Neural Network (NN) with a heteroscedastic
loss. They provide systematic and statistical uncertainties by their sampling nature.

This thesis is organized in the following way: We introduce the basic concepts of EFTs
for SMEFT and how EDMs are connected to a low-energy EFT approach in Ch. 2.
Next, SFitter as the tool of choice for the global analyses is presented in Ch. 3. We
also discuss the advantages of MCMCs. Ch. 4 and Ch. 5 present the results from the
global analyses in the SMEFT and EDM sectors. The SMEFT global analysis focuses on
implementing likelihood measurements in SFitter and their impact on uncertainties
and correlations. Chapter 4 ends with a combined analysis using Higgs, top, and EWPO
data. The global analysis performed on EDM measurements in Ch. 5 focuses on the
impact of theory uncertainties and different measurements on the global analysis results.
We then move on to some introduction to ML algorithms and discuss different network
architectures like BNNs and REs in Ch. 6.

Then, Ch. 7 describes the uncertainty estimation using BNNs, REs, and more advanced
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architectures on amplitude surrogates. We also focus on the impact of network expressivity
and data preprocessing on the intrinsic uncertainties. Finally, we summarize the results
and discuss future research directions in Ch. 8.
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Chapter 2
Effective Field Theories and SMEFT

2.1 The Effective Field Theory Formalism

This chapter starts with an introduction to the EFT formalism, following the approach of
Refs. [59–66]. An EFT is a powerful tool used to describe physical systems in well-defined
regions. With the incomplete SM, we can assume that BSM physics occurs at higher
orders Λ≫ v. Where v = 246.22 GeV is the cut-off scale for electroweak processes, at
which the SM is still valid. Hence, we aim to describe the deviations from the SM in a
model-independent and reproducible way. New physics can be discovered through direct
searches, like bump-hunts, which led to the discovery of the Higgs boson, and indirect
searches, like deviations in the high-energy tails of distributions. These subtle deviations
in indirect searches often hint at a discovery before it is actually revealed by a direct
detection method. Due to their higher-order expansion, EFTs can cover these subtle
deviations in searches for new physics. Thus, they are a versatile and model-independent
way to start the search for BSM physics at higher energy scales Λ. First, we explain the
general idea and construction of an EFT. Next, in Sec. 2.1.2, we continue to construct
SEMFT as an EFT build-up from the SM. We will list all necessary ingredients, such
as symmetries, fields, and additional operators used in a global analysis. Additionally,
we consider EDMs as low-energy EFT obtained from the weak-scale and hadronic-scale
Lagrangians.

2.1.1 Constructing an EFT

As a quantum field theory (QFT) an EFT is built from a set of fields and their corre-
sponding derivatives as building blocks of the effective Lagrangian Leff. Besides the field
content, the EFT is also defined by its underlying symmetries, which are encoded in the
Lagrangian. Keeping these two building blocks in mind, we can start by constructing
Leff from all possible operators Oi, which are invariant under the underlying symmetries,
and coefficients ci:

Leff =
∑

i

ciOi . (2.1)

Compared to a QFT, which is usually renormalizable and removes every term with
dimension D > 4, an EFT does not have to be renormalizable. The effective Lagrangian
of an EFT shown in Eq. (2.1) contains a sum over an infinite number of operators Oi.
This infinite number of operators requires an endless amount of counter-terms, leading to
a non-renormalizable theory. However, in Sec. 2.1.2 we show, that EFTs can be truncated
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2 Effective Field Theories and SMEFT

to a finite number of operators resulting in a renormalizable theory. Without trunctation,
the infinite number of operators in Leff naturally leads to the question of how it can be
used to predict BSM physics?

This question can be addressed by introducing the method of power counting. Power-
counting motivates the truncation of higher-order terms in the Lagrangian, reducing the
number of operators to a finite number and making the theory renormalizable. An EFT
only effectively describes new physics at higher energy scales by construction. With this,
the effective description is only valid in certain phase space regions. We can define these
regions by introducing a cut-off energy Λ and assume that our constructed EFT is only
valid for energies E ≪ Λ. By introducing that cut-off scale, we also introduce an energy
dependence to the effective Lagrangian, and the EFT becomes an expansion in terms of
δ = E/Λ. This enables us to truncate Eq. (2.1) at a fixed order regarding the energy
ratio δ. This truncation transforms the infinite number of operators into a finite number,
resulting in a renormalizable theory. By applying the condition δ ≪ 1, we ensure that our
phase space region is within the allowed description of the EFT. Additionally, by assuming
different mass and energy dimensions for various operators, the significance of certain
operators in relation to specific observables may change. Introducing this power counting
scheme, we address a specific value for δ to every operator. Using this assigned value of
δ, the operators and coefficients in the effective Lagrangians can be ordered in terms of δ,
with a mass dimension Di for the operators Oi. To produce a dimensionless action of our
effective Lagrangian [S(Leff)] = 0, we require [Leff] = 4. This implies a mass dimension
of [ci] = 4 −Di for the coefficients in the effective Lagrangian. However, the different
mass dimensions of the different ci make it challenging to formulate a consistent and
uniform basis for the operators and coefficients in global analyses later on. To make the
comparison and interplay between several operators and their coefficients more apparent,
we introduce dimensionless Wilson coefficients (WCs) Ci. Therefore, the dimensionality
of the coefficients ci is factored out in powers of the energy scale Λ. This leads to the
new formulation of the effective Lagrangian

Leff =
∑

i

Ci

ΛDi−4Oi . (2.2)

By construction, every operator that enters an arbitrary process at tree level is accompa-
nied by a factor 1

ΛDi−4 , and thus, the operator has mass dimension n = Di−4. If multiple
operators are inserted, their individual contributions sum up to a total contribution of

n =
∑

i

(Di − 4) . (2.3)

We can now use this power-counting formula for n to determine where to truncate our
Lagrangian from Eq. (2.2) to include specific orders n. If we only want to include leading
order (LO) terms in the EFT expansion with n = 0, only terms with dimension D ≤ 4 are
included. If we want to go to next-to-leading order (NLO) terms with n = 1 and D = 5
dimensional operators are included, and with next-to-next-to-leading order (NNLO) terms
equal to n = 2 are included. These terms can either be a quadratic D = 5 contribution
or a linear D = 6 contribution. This new ordering of operators in terms of dimension
allows us to easily determine where to truncate our EFT and which operators to consider.
The final expression for the effective Lagrangian reads

Leff = LD≤4 +
∑

i

C5
i

Λ O
5 +

∑
i

C6
i

Λ2O
6 + ... . (2.4)
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2 Effective Field Theories and SMEFT

The first part of the effective Lagrangian in Eq. (2.4), LD≤4, describes the LO terms
in δ. These include all the relevant operators in a renormalizable QFT, such as the
SM operators. The following terms are the NLO and NNLO operators in terms of δ.
These are subleading in n and thus neglected in the QFT. If we move to lower scales
of the energy E, they are suppressed and become less important. This shows that the
constructed EFT provides a theory that is only valid in well-defined phase-space regions.
It describes deviations from SM physics at given energy scales without knowing all the
details from higher energy scales. Also, by introducing a new energy scale Λ, we implicitly
assume that the particles, which might enter in BSM physiscs, are heavy and thus are
integrated out in the low-energy limit E ≪ Λ.

To construct an EFT based on a renormalizable QFT we can choose between a top-down
or bottom-up approach. In the top-down approach the EFT is treated as a limit of
a well-known, renormalized QFT in a low-energy regime. It starts from the complete
high-energy theory which is then matched to a low-energy theory. Therefore, we integrate
out the heavy particles, or so-called degrees of freedom (DOF). Next, we let the couplings
run to the appropriate scale of the low-energy processes. Thus, the corresponding WCs
can be treated as a function of the high-energy theory parameters. One example of a
top-down approach is the weak effective field theory (WET), in which we reduce the full
SM to the weak scale and integrate out the top quark, W , Z, and Higgs boson.

The opposite of the top-down approach is the bottom-up approach, in which we take
an existing theory as a starting point and build an EFT based on the particle content
of this low-energy theory and (non-accidental) symmetries. The constructed EFT is
then agnostic about new physics outside its validity. However, we have to find all the
independent operators that can be built from the assumed low-energy particle content
and underlying symmetries. In principles there are infinitely many operators, leading
to a non-renormalizable theory. To make the constructed EFT renormalizable again,
we can use the previously introduced concept of power counting by ordering all new
operators in expansion as a separation of scale. Then, we can define an energy cut-off in
δ and only keep the necessary terms for our theory. The resulting WCs and operators
parameterize the new physics in terms of low-energy degrees of freedom and symmetries
that are already known. This provides an effective theory that is UV model-independent,
and by truncation at a particular order, it is also renormalizable.

2.1.2 SMEFT

One example of an effective theory, built by using the bottom-up approach, is SMEFT.
The SM is an excellent description up to the EW scale with a vacuum expectation value
(vev) around v ∼ 246 GeV. BSM physics might not be visible at such low scales because
it may consist of new, heavy particles at a scale Λ≫ v. Thus, they can be treated as
integrated out of the UV complete theory. This results in operators of dimension D ≥ 5,
consisting of interactions using the SM degrees of freedom. We will use the SMEFT
framework to break down and parameterize the effects of these high-mass fields on energy
scales accessible by the LHC [59,62,65, 67–70]. Therefore, we start by writing down the
symmetries and particle content of the SM to construct the SMEFT framework. The
most critical SM symmetry is the gauge symmetry group

SU(3)c × SU(2)L × U(1)Y , (2.5)
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2 Effective Field Theories and SMEFT

Field SU(3)c SU(2)L U(1)Y

qi = {uL,i, dL,i} 3 2 1/6
uR,i 3 1 2/3
dR,i 3 1 −1/3

lj = {νL,j , eL,j} 1 2 −1/2
eR,j 1 1 −1

ϕ 1 2 1/2
G 8 1 0
W 1 3 0
B 1 1 0

Table 2.1: Conventions for the SM field content and their corresponding quantum
numbers. The indices i, j ∈ {1, 2, 3} denote the three different fermion families
of leptons and quarks and L,R denote left- and right-handed fermions.

where the first term describes the strong interactions and the remaining ones account for
the electric and weak forces. The SU(2)L × U(1)Y combination is realized linearly, and
the Higgs is represented as a doublet in the SU(3)c group. Another global symmetry of
the SM is the Charge-Parity-Time (CPT) symmetry and a spacetime symmetry, realized
by a Poincaré ISO(3, 1) group. As for the particle content, displayed in Tab. 2.1, we
assume three generations of fermions, where ϕ denotes the content of the Higgs doublet
and G,W and B representing the gauge fields of the SU(3)c, SU(2)L and the U(1)Y

respectively. The conventions for the three fermion generations are shown in Table 2.1.

With the field and particle content of the SM, we can construct the SMEFT Lagrangian
in the following way,

LSMEFT = LSM +
∑
D>4

∑
i

Ci

ΛD−4O
D
i , (2.6)

where LSM denotes the SM Lagrangian, and the other term denotes the higher-order
expansion.

The physical SM Lagrangian reads as follows

LSM = Lfermion + LYukawa + LGauge + LHiggs (2.7)

Lfermion = i
∑

j

(
l̄L,j /DlL,j + ēR,j /DeR,j + q̄L,j /DqL,j + d̄R,j /DdR,j + ūR,j /DuR,j

)
LYukawa = −

∑
j

(
l̄L,jYlϕeR,j + q̄L,jYdϕdR,j + q̄L,jYuϕ̃uR,j + h. c.

)
LGauge = −1

4W
a
µνW

aµν − 1
4BµνB

µν − 1
4G

A
µνG

Aµν

LHiggs = (Dµϕ)†Dµϕ+ m2
h

2 ϕ†ϕ− λ

2
(
ϕ†ϕ

)2
.

The sum over j in the Lfermion and LYukawa indicate the sum over the three fermion
generations. At the same time, Yl,d,u are the different Yukawa matrices in the generation
space, and ϕ̃ = iσ2ϕ⋆, with the Pauli matrices σ. In LGauge, the upper case indices span
the color space and the lower case ones the isospin space, with GA representing the eight
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2 Effective Field Theories and SMEFT

gluons and (W a, B) the four electroweak gauge bosons.

Next, we discuss the second part of the SMEFT Lagrangian in Eq. (2.6), consisting
of operators with dimensions five, six, and higher-order operators. There, we have to
consider all operators that can be constructed from the Lorentz invariant operators of
the SM field content concerning the SM gauge symmetries.

The Dimension 5 Operator

At dimension five, only one new operator contributes to the SMEFT. This operator is
called the Weinberg operator [71] and is given by

O5
ij =

(
l̄ci ϕ̃

⋆
) (
ϕ̃†lj

)
+ h.c. , (2.8)

where ϕ̃ is the same as in the Yukawa Lagrangian in Eq. (2.8) and lc denotes the charge-
conjugated leptons with i, j as indices for the lepton generation. This operator violates
the lepton number conservation, but it is allowed in SMEFT because the lepton number
conservation is only an accidental symmetry of the SM and thus does not have to be
preserved. Also, the Weinberg operator generates the mass and mixing terms for the
neutrinos. After the electroweak symmetry breaking (EWSB), the O5 is reduced to

O5 ∼ v2

2 ν̄
c
LνL , (2.9)

which indicates a Majorana mass term. The detection of neutrino oscillations [72] first
provided the existence of this phenomenon of a non-zero neutrino mass difference ∆m2.

Dimension 6 Operators

When going from dimension four to dimension five, we only have to take one additional
operator into account, but the number of operators gets larger as soon as we also take
dimension six operators into account. At dimension six, 63 new operators are entering.
Of those newly entering operators, 59 are baryon number conserving, and additional four
operators are baryon number violating. This is without considering all the different flavor
structures, CP violating operators and hermitian conjugates. Considering these operators,
the number of dimension six operators grows to 2499 [73]. Different conventions, also
known as bases, can be used to build these operators. The two most used bases are the
Warsaw basis [70] and the HISZ basis [74]. Both bases reduce the number of operators
by applying different equations of motions and integration by parts as tool. It is also
possible to transform one basis into another by applying a basis rotation. However, this
rotation may change the process class and category of the operator since an operator
that consists purely of the Higgs doublet on an HISZ basis might get an additional
four-fermion interaction when rotated into the Warsaw basis. Additionally, a complete
list of all 2499 operators is provided in Ref. [73]. The SMEFT global analysis, discussed
in Chapter 4, takes 43 operators into account from the top, Higgs, and electroweak
sectors and the invisible decay of the Higgs. The following list of operators is taken from
Refs. [1] and [75]. Considering more operators would exceed the number of available
measurements to obtain constraints for all these operators. With this, we truncate the

9
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effective Lagrangian to

Leff =
∑

j

(
Cj

Λ2
‡Oj + h.c.

)
+
∑

k

Ck

Λ2 Ok , (2.10)

where ‡Ok denotes non-hermitian operators. We neglect the Weinberg operator at
dimension five and operators exceeding dimension 6. This choice is motivated by the
Λ-suppression of the higher order terms, which can be assumed to directly translate to
suppressing their effects on LHC observables. We only consider CP-conserving operators
and assume separate U(2) symmetries in the first and second quark generations [76,77]

qi = (ui
L, d

i
L) ui = ui

R, di = di
R for i = 1, 2

Q = (tL, bL) t = tR, b = bR , (2.11)

and a lepton U(3) symmetry. In the quark sector, all masses except the one of the top
quark are assumed to be zero.

With these assumptions, we are left with 22 different operators in the top sector. These
operators can be split up into three groups. First, we have eight operators that encounter
a chiral LL or RR structure when interacting with fermions

O1,8
Qq = (Q̄γµT

AQ) (q̄iγ
µTAqi) O1,1

Qq = (Q̄γµQ) (q̄iγ
µqi)

O3,8
Qq = (Q̄γµT

Aτ IQ) (q̄iγ
µTAτ Iqi) O3,1

Qq = (Q̄γµτ
IQ) (q̄iγ

µτ Iqi)
O8

tu = (t̄γµT
At) (ūiγ

µTAui) O1
tu = (t̄γµt) (ūiγ

µui)
O8

td = (t̄γµTAt) (d̄iγµT
Adi) O1

td = (t̄γµt) (d̄iγµdi) . (2.12)

Next, six operators contain a LR or RL chiral structure in current-current interactions

O8
Qu = (Q̄γµTAQ) (ūiγµT

Aui) O1
Qu = (Q̄γµQ) (ūiγµui)

O8
Qd = (Q̄γµTAQ) (d̄iγµT

Adi) O1
Qd = (Q̄γµQ) (d̄iγµdi)

O8
tq = (q̄iγ

µTAqi) (t̄γµT
At) O1

tq = (q̄iγ
µqi) (t̄γµt) . (2.13)

Finally, there is an additional set of eight operators which couple two heavy quarks to
gauge bosons [78],

O1
ϕQ = (ϕ† i

←→
Dµ ϕ) (Q̄γµQ) ‡OtB = (Q̄σµνt) ϕ̃ Bµν

O3
ϕQ = (ϕ† i

←→
DI

µ ϕ) (Q̄γµτ IQ) ‡OtW = (Q̄σµνt) τ I ϕ̃W I
µν

Oϕt = (ϕ† i
←→
Dµ ϕ) (t̄γµt) ‡ObW = (Q̄σµνb) τ IϕW I

µν

‡Oϕtb = (ϕ̃†iDµϕ) (t̄γµb) ‡OtG = (Q̄σµνTAt) ϕ̃ GA
µν . (2.14)

The relation of these operators with the Warsaw basis [70] is worked out in the appendix
of Ref. [79]. The interactions with the physical states are given by the gauge structure of
the electroweak SM, so we use the combinations

C±ϕQ = C1
ϕQ ± C3

ϕQ and CtZ = cwCtW − swCtB . (2.15)

This way, C−ϕQ and CtZ characterize a tt̄Z interaction, CtW a tbW interaction, and C3
ϕQ

both tbW and bb̄Z interactions. These are all operators we take into account for the
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top sector. To include the Higgs and electroweak sector in the global analysis, we have
to extend the list of operators by additional 20 SMEFT parameters and the branching
ratio of the Higgs to dark matter agents, BRinv, as a free parameter. The operators are
chosen based on Ref [75], rotated from the HISZ to the Warsaw basis to match them with
the operators from the top sector. The operators constrained by di-boson, Higgs, and
electroweak data can be divided into several groups. First, seven operators are purely
constrained by bosonic interactions,

OϕG = ϕ†ϕGA
µνG

Aµν OW = εIJKW Iν
µ W Jρ

ν WKµ
ρ

Oϕ□ = (ϕ†ϕ)□(ϕ†ϕ) OϕD = (ϕ†Dµϕ)∗(ϕ†Dµϕ)
OϕB = ϕ†ϕBµνB

µν OϕW = ϕ†ϕW I
µνW

Iµν

OϕW B = ϕ†τ IϕW I
µνB

µν . (2.16)

Next, four single-current operators are modifying the Yukawa couplings,

Oeϕ,22 = (ϕ†ϕ)(l̄2µϕ) Oeϕ,33 = (ϕ†ϕ)(l̄3τϕ)
Ouϕ,33 = (ϕ†ϕ)(Q̄3tϕ) Odϕ,33 = (ϕ†ϕ)(Q̄3bϕ) , (2.17)

and eight operators that contribute to the electroweak gauge boson coupling to fermions,

Oϕe = (ϕ†i←→Dµϕ)(ēγµe) Oϕb = (ϕ†i←→D µϕ)(b̄γµb)

Oϕd =
2∑

i=1
(ϕ†i←→Dµϕ)(d̄iγ

µdi) Oϕu =
2∑

i=1
(ϕ†i←→Dµϕ)(ūiγ

µui)

O(1)
ϕq =

2∑
i=1

(ϕ†i←→Dµϕ)(q̄iτ
Iγµqi) O(3)

ϕq =
2∑

i=1
(ϕ†i←→Dµϕ)(q̄iγ

µqi)

O(1)
ϕl = (ϕ†i←→Dµϕ)(l̄γµl) O(3)

ϕl = (ϕ†i←→D I
µϕ)(l̄τ Iγµl) . (2.18)

Lastly, we also consider the four-lepton operator

Oll = (l̄γµl)(l̄γµl) . (2.19)

The global SMEFT analysis performed in Ch. 4 includes all these 43 operators.

Yet, one might wonder why we stop at dimension six and do not consider dimension eight
operators. Since we cannot measure the WCs and operator contributions directly, we
have to extract them from measured physical observables, like cross-sections (total and
differentiable) and signal strength measurements. In these physical measurements, the
SMEFT parameters appear in linear and quadratic terms, with a respective suppression
in terms of Λ−2 and Λ−4. These quadratic contributions are entering with the same order
as linear dimension eight terms would. So, there are some choices to make: Do we include
linear and quadratic dimension six terms, and if we include quadratic contributions,
should we then also include linear dimension eight terms? First, including linear and
quadratic contributions makes the process of deriving SMEFT predictions in the global
analysis more complex and makes the results harder to interpret. However, we want to
include both whenever possible since there are some good reasons for doing so. Including
both contributions ensures a positive prediction of the physical observable in the SMEFT.
If we only include linear terms for some WC combinations, the predictions can get
negative, leading to an unphysical result. These unphysical predictions are hard to handle
and constrain in global analyses, and up until now, there has been no good way to control
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the numerical responses to such negative predictions. Another argument for including
the quadratic contribution is the introduction of interference between different WCs.
This interference helps prevent some flat directions in the global analysis, which can
occur when the data is best described by an interplay of different WCs [79]. Some might
argue that stopping after quadratic dimension six contributions is not well motivated
because they enter with the same energy suppression of Λ−4 as linear dimension eight
terms would enter. From a mathematical point of view, this totally makes sense, but
the linear dimension eight terms encounter the same problem as the linear dimension six
terms, as they can shift the prediction towards negative values, making them unphysical.
With dimension eight a large number of new operators would enter in the Lagrangian,
making it harder to constrain all operators [80]. Additionally, the present dimension six
operators already test a large variety of possible interactions. These are the reasons why
we decided to truncate the SMEFT Lagrangian in the global analysis after the quadratic
dimension six contributions.

Considering different process classes

As mentioned earlier, 2499 new operators enter the SMEFT when moving to the dimension
six expansion. However, we restrict the global analysis to only 43 operators. This
restriction is also motivated by the fact that including all 2499 is numerically challenging.
Additionally, there are more possible operators than processes which can constrain them
at the LHC. Furthermore, the different operators can be assigned to different process
classes, which they constrain.

By performing a global analysis, we want to constrain as many different classes of
processes at the LHC as possible with a sufficient number of operators and corresponding
data. Also, many operators contribute to more than one class, enabling us to cover
correlations and interplays between different processes, which is extremely valuable in a
global analysis. These process classes include EWPOs, Higgs, and top data. With more
subcategories like tt̄ or single-t production in the top, or di-boson processes in the Higgs
sector. Table 2.2 shows the WCs used in the SMEFT global analysis and what process
classes they constrain. Noticeably, most of the operators constrain more than one class,
which enhances the cross-talk between several coefficients and measurements.

Based on the choice of WCs included in the global analysis, we constrain all possible
process classes and ensure that the global analysis also includes mixing between different
classes. In the end, we do not include all operators and orders, but the motivated choice
of truncating the Lagrangian beyond dimension six and the careful selection of the 43
WCs ensure that the global analysis performed can provide everything you would expect
from a global analysis. Namely, it covers correlations between different operators and
processes, covers most of the different processes, and includes a variety of data, like
EWPO, Higgs production and decay, top production and decay, and several cross-section,
rate, and signal strength measurements.

After discussing the SMEFT as an approach for an EFT at higher energy scales, we can
also describe low-energy phenomena in terms of an EFT and effective Lagrangians using
the top-down approach. Therefore, we have a look at EDMs and how they can be treated
as low-energy EFT.
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Operator Top Higgs EW Operator Top Higgs EW

O1,8
Q,q ✓ ✓ OϕG ✓
O1,1

Q,q ✓ ✓ OW ✓
O3,8

Q,q ✓ ✓ Oϕ□ ✓
O3,1

Q,q ✓ ✓ OϕD ✓ ✓ ✓
O8

tu ✓ ✓ OϕB ✓
O1

tu ✓ ✓ OϕW ✓
O8

td ✓ ✓ OϕW B ✓ ✓ ✓
O1

td ✓ ✓ Oeϕ,22 ✓
O8

Qu ✓ ✓ Oeϕ,33 ✓
O1

Qu ✓ ✓ Ouϕ,33 ✓ ✓
O8

Qd ✓ ✓ Odϕ,33 ✓
O1

Qd ✓ ✓ Oϕe ✓ ✓ ✓
O8

tq ✓ ✓ ✓ Oϕb ✓ ✓ ✓
O1

tq ✓ ✓ ✓ Oϕd ✓ ✓ ✓
O1

ϕQ ✓ ✓ ✓ Oϕu ✓ ✓ ✓
O3

ϕQ ✓ ✓ ✓ O(1)
ϕq ✓ ✓ ✓

Oϕt ✓ ✓ O(3)
ϕq ✓ ✓ ✓

Oϕtb ✓ ✓ O(1)
ϕl ✓ ✓ ✓

OtB ✓ ✓ O(3)
ϕl ✓ ✓ ✓

OtW ✓ ✓ Oll ✓ ✓ ✓
ObW ✓ ✓
OtG ✓ ✓

Table 2.2: Process classes for the dimension six operators entering in the global
SMEFT analysis. Left: List of operators for the top sector. Right: List of
operators for the Higgs sector.

2.2 Electric dipole moments

With the SMEFT approach, we described an extension of the SM that helps address open
BSM physics questions in a model-agnostic way. Another approach to address the baryon
asymmetry as a first-order phase transition are EDMs. Similar to SMEFT, EDMs can be
treated as low-energy EFT, based on Lagrangians of the weak- and hadronic-scale. For
the baryon asymmetry, the Sakharov equations [16] can tell us precisely which structures
are required: (i) C- and CP-violation, (ii) baryon number violation, and (iii) a deviation
from thermal equilibrium. The first condition of the C- and CP-violation is especially
interesting to us because it can be read off fundamental Lagrangians. The C-symmetry
describes a symmetry under charge conjugation by switching all particles with their
respective antiparticles. This holds for all charges relevant to the forces in the SM. As an
example of processes in the SM violating the C-symmetry, one can name weak interactions,
such as the β-decay [81]. Next, CP-symmetry is an extension of the C-symmetry, taking
charge conjugation (C) and parity (P) into account. Parity describes the invariance under
flipping the sign of all spatial coordinates. By combining C and P conservation, the
CP-symmetry relates charge and spatial properties of the SM interactions and particles.
Weak interactions, such as Kaon decay processes [82], violate this CP-symmetry in the
SM. The origin of the CP-violation in the Kaon-decays is related to the effect of fermion
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mixing among three generations in the SM. These fermion mixings are described by the
Cabibbo-Kobayashi-Maskawa-matrix (CKM-Matrix), which not only contains the three
mixing angles between the fermions, θ12, θ13 and θ23, but also a CP-violating complex
phase δ [83]. Another source of CP-violation in the SM can arise from the QCD θ-term,

θ

32π2G
A
µνG̃

Aµν , (2.20)

with GA
µν the gluon field strength tensor and G̃Aµν the dual field strength tensor. This

term can contribute to CP-violation in strong interactions if it is non-zero. However,
measurements of the neutron EDM being consistent with zero indicate a small value for
θ, leading to the assumption that the CP violation in the QCD is too small to explain
the baryon asymmetry reasonably [17–22].

EDM measurements provide a reliable way to detect CP violation since they provide a
direct way to detect asymmetries between matter and antimatter. EDMs are a measure of
separation between positive and negative electrical charges in a particle or system. If this
electric dipole moment is non-zero, it indicates an imbalance in the charge distribution
and, thus, a difference between the particle and antiparticle content of a system. In
single particle systems, like the electron EDM or muon EDM, it is more complex to
detect a non-zero EDM, as the electron itself is negatively charged and, thus, should
not have any asymmetrical charge distribution. However, if there is a violation of the
CP-symmetry, there might be an imbalance in the charge distribution, leading to a
non-zero EDM measurement. The same holds for neutron EDM, which is the sum of
the individual quarks and their charge. The measured EDMs from single particle and
nucleon systems are small, additional systems, such as atoms and molecules, are used for
EDM measurements. These are treated as asymmetrical systems consisting of smaller,
individual parts, like electrons, protons, and neutrons. The CP-violating effect responsible
for creating EDMs in these smaller parts can add up to a larger overall contribution to
the EDM of the respective atomic or molecular system. With this, it is easier to detect
the sum of multiple smaller parts being non-zero in more complex structures than directly
measuring the EDM of the electron or other fundamental structures.

2.2.1 EDMs from Lagrangians

As seen in Fig. 2.1, EDM measurements can be directly connected to fundamental theories
through WCs. Therefore, we start from a fundamental theory or Lagrangian, which
is CP violating (CPV). After writing down these Lagrangians, they can be reduced
to a set of low-energy effective Lagrangians. This procedure is equivalent to the top-
down approach described in section 2.1.2. In the following global analysis, we start
with a weak-scale and a hadronic-scale Lagrangian. The introduced WCs then can
be matched onto the corresponding parameters in the low-energy theory, for example,
CS or CT , which describe semileptonic interactions. These low-energy parameters and
WCs can be determined from various measurements on an atomic and molecular level.
Since fundamental Lagrangians describe these parameters, they can be determined using
various measurements. Performing a global analysis allows us to include many different
parameters and measurements simultaneously to encounter possible correlations and
connections between these different parameters.

Next, we will discuss the building blocks of our global analysis, namely the underlying
Lagrangians and the extraction of the different WCs used. Therefore, we consider the
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CKM, θ, SUSY, Multi Higgs, LR-symmetry  Fundamental	theory	

Low	energy	parameters	

Atom/molecule	level	

               gπ0  gπ1 (gπ2)                                                CT
					CS

0(1) 	

Nucleus	level	

Paramagnetic Diamagnetic 

d,t, 3He	

dn dp
	

Solid state 

Schiff moment	

Wilson	coefficients	 θ								Cggg, Cqqqq(1,8), CqH				dud  dud       semileptonic     de ~	

Figure 2.1: The connection from fundamental theories at high energy scales and
their parameters to EDM measurements at low-energy scales. The displayed
low-energy parameters are all constrained in the performed global analysis with
the additional parameter CP , defined in Eq. (2.38). The figure is taken from
Ref. [26].

CP-violating weak-scale Lagrangian and the hadronic-scale Lagrangian. Later, these two
Lagrangians are matched to create an overall parameter set.

This work focuses on combining different measurements and parameters in a global
analysis and includes the effect of uncertainties at the hadronic scale. Thus, we will not
provide a detailed analysis of CP-violating new physics at the electroweak scale and the
renormalization group evolution from the GeV- to the electroweak scale.

Weak-scale Lagrangian

We start by discussing the modifications of the weak-scale Lagrangian and add a CP-
violating behavior. For this weak-scale EFT we consider the SM leptons and quarks
except the top quark, photons, and gluons as particles entering the Lagrangian. The
CP-viloating behavior is introduced by the corresponding operators which appear in the
Lagrangian as

LCPV = LCKM + Lθ̄ + Ldipole + LWeinberg + LEFT , (2.21)

where the CP violation coming from the neutrino sector is neglected [24]. The first term,
LCKM, represents the CP violation from the δ-phase in the CKM matrix. The second
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term, Lθ̄, arises from a modified gluon field strength description, including the QCD
θ-term

Lθ̄ = g2
3

32π2 θ̄ Tr(GµνG̃µν) , (2.22)

where g3 represents the strong coupling constant, Gµν is the gluon field strength tensor,
and G̃µν = ϵµνλσGλσ/2 is the dual of the gluon field strength tensor. θ̄ describes the
rescaled, CP-violating QCD parameter, where the bar notation indicates the included
corrections from the quark mass matrix. In principle, θ̄ can be treated as a model
parameter; however, by the agreement of the neutron EDM with zero, the value of θ̄
would be negligibly small. So, we can neglect this term in the global analysis.

The first two terms in the Lagrangian in Eq. (2.21) have mass dimension four, while
the remaining terms are all higher dimensional and thus not part of a renormalizable
extension. Continuing with the Ldipole term, it describes with dE

f the electric dipole
moments of fermions and dC

q represents the chromoelectric dipole moments of quarks.
Both appear at mass dimension five in the Larangian

Ldipole = − i2F
µν
∑

f=q,ℓ

dE
f

(
f̄σµνγ5f

)
− i

2g3G
a
µν

∑
f=q

dC
q (q̄σµνγ5T

aq) . (2.23)

The indices q and ℓ denote quarks and leptons of all three generations, and Fµν is the
electromagnetic field strength tensor. As a convention for the metric we choose (1,−1)
with γ5 = −iγ0γ1γ2γ3. T a are the SU(3) generators and σµν = i [γµ, γν ] /2 defines
the fermion spins. The two parts of the Lagrangian Ldipole and LWeinberg, have mass
dimension five, and the Weinberg part is defined as

LWeinberg = 1
3d

G fabcG
a
µνG̃

bνρGc µ
ρ . (2.24)

This part is again built on the gluon field strength tensor Ga
µν and introduces the gluonic

chromo-electric dipole moment dG. Additionally, CP violation can also occur in terms of
mass dimension six and higher, encoded in the term

LEFT =
∑

i

C
(6)
i

Λ2 O
(6)
i +O(Λ−3) , (2.25)

which is only generated at higher energy scales Λ ≫ v, with v the electroweak scale.
The motivation behind this EFT expansion is the same as we used for the SMEFT
framework [23, 24, 27–32, 84–87]. Relevant dimension-six operators generating EDMs
include the following semileptonic and quark 4-fermion operators,

LEFT ⊃Cℓeqd

(
L̄jeR

) (
d̄RQj

)
+ C

(1)
ℓequ

(
L̄jeR

)
ϵjk

(
Q̄kuR

)
+ C

(3)
ℓequ

(
L̄jσµνeR

)
ϵjk

(
Q̄kσµνuR

)
+ C

(1)
quqd

(
Q̄juR

)
ϵjk

(
Q̄kdR

)
+ C

(8)
quqd

(
Q̄jT auR

)
ϵjk

(
Q̄kT adR

)
+ h.c. . (2.26)

Hadronic-scale Lagrangian

The challenge to describe EDMs by the Lagrangian, which is written down in Eq. (2.21),
is that EDMs are measured far below the electroweak scale, where the propagating
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degrees of freedom are leptons, non-relativistic nucleons N = (p, n)T , with an average
mass mN , and pions π⃗ = (π+, π0, π−)T [23,26,27,33,84,86]. As convention for the isospin
we use τ3 |n⟩ = − |n⟩.

When we evolve the weak-scale Lagrangian to the experimentally more relevant GeV scale,
only the lepton EDMs dE

ℓ ≡ dℓ in Eq. (2.23) remain unchanged. All other parameters are
scale dependent, as the relation between charged leptons scales with the lepton mass. The
muon and tauon EDMs can be included by factorizing them out from the hadronic-scale
Lagrangian, but since the indirect constraints on EDMs are weaker than the direct ones
and there is little interplay between model parameters, we can neglect them.

This leads to the following Lagrangian describing the EDMs at the relevant GeV-scale

Lhad ⊃ LN + LπN + LeN −
i

2F
µνde ēσµνγ5e , (2.27)

where we include the observable for the electron EDM de directly. LN , as the first term
in the Lagrangian, is defined as

LN =− 2N̄
[
dp

1 + τ3
2 + dn

1− τ3
2

]
SµNvνF

µν , (2.28)

where Sµ and vν are the nucleon’s spin and velocity, and the choice of dN is defined by
the isoscalar and isovector contributions. Next, the second term LπN in the Lagrangian
describes the interactions between pions and nucleons,

LπN =N̄
[
g(0)

π τ⃗ · π⃗ + g(1)
π π0 + g(2)

π

(
3τ3π

0 − τ⃗ · π⃗
) ]
N

+ C1
(
N̄N

)
∂µ

(
N̄SµN̄

)
+ C2

(
N̄ τ⃗N

)
· ∂µ

(
N̄SµN̄ τ⃗

)
+ · · · , (2.29)

with τ being the Pauli matrices and the ellipses indicating higher-order interactions,
such as terms including more than one pion. These higher-order terms are neglected
because of their suppression compared to the leading-order terms. Also, the contribution
involving g

(2)
π , representing the isotensor contribution, is suppressed relative to g

(0,1)
π ,

the corresponding isoscalar and isovector contributions, by one order in the chiral
expansion [88, 89]. The second line in Eq. (2.29) can be neglected because the shown
chiral expansion in terms of Ci is suppressed and only enters at NNLO. Finally, the second
term in Eq. (2.27) describes the effective interactions between electrons and nucleons,
corresponding to the higher-dimensional operators in Eq. (2.26). These contributions can
be organized according to their tensor structure, isospin character, and their dependence
on the electron and nucleon fields, and spins [26,27]:

LeN =− GF√
2

(ēiγ5e) N̄
(
C

(0)
S + C

(1)
S τ3

)
N

+ 8GF√
2
vν (ēσµνe) N̄

(
C

(0)
T + C

(1)
T τ3

)
SµN

− GF√
2

(ēe) ∂µ

mN

[
N̄
(
C

(0)
P + C

(1)
P τ3

)
SµN

]
, (2.30)

where S, P, T denote the scalar, pseudoscalar and tensor contributions, 0 denotes the
isoscalar part of that contribution and 1 the isovector part.

Taking all observables from the hadronic scale Lagrangian from Eq. (2.27) into account,
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we end up with eleven independent Lagrangian parameters for the global analysis, namely{
de, C

(0,1)
S , C

(0,1)
T , C

(0,1)
P , g(0)

π , g(1)
π , dn,p

}
. (2.31)

2.2.2 Matched Lagrangians

The set of model parameters listed in Eq. (2.31) can be further simplified by matching
the semileptonic part of the hadronic-scale Lagrangian at the GeV-scale to the 4-fermion
interaction in Eq. (2.26) of the weak-scale Lagrangian. Therefore, we evaluate both
Lagrangians for external nucleons. By doing so, the light quarks inside these nucleons
are related to LN via

g
(0)
S ψ̄NψN = 1

2
〈
N
∣∣∣ūu+ d̄d

∣∣∣N〉
g

(1)
S ψ̄Nτ3ψN = 1

2
〈
N
∣∣∣ūu− d̄d∣∣∣N〉

g
(0)
T ψ̄NσµνψN = 1

2
〈
N
∣∣∣ūσµνu+ d̄σµνd

∣∣∣N〉
g

(1)
T ψ̄Nσµντ3ψN = 1

2
〈
N
∣∣∣ūσµνu− d̄σµνd

∣∣∣N〉
g

(0)
P ψ̄Nγ5ψN = 1

2
〈
N
∣∣∣ūγ5u+ d̄γ5d

∣∣∣N〉
g

(1)
P ψ̄Nγ5τ3ψN = 1

2
〈
N
∣∣∣ūγ5u− d̄γ5d

∣∣∣N〉 . (2.32)

These relations now define the scalar, pseudoscalar, and tensor contributions of the
nucleon form factors g(0,1)

S,T,P . Now, the hadronic-scale WCs written down in Eq. (2.30)
can be matched to the SMEFT WCs from Eq. (2.26) as [24,26],

C
(0)
S = −g(0)

S

v2

Λ2 Im
(
Cℓedq − C

(1)
ℓequ

)
C

(1)
S = g

(1)
S

v2

Λ2 Im
(
Cℓedq + C

(1)
ℓequ

)
C

(0)
T = −g(0)

T

v2

Λ2 Im
(
C

(3)
ℓequ

)
C

(1)
T = −g(1)

T

v2

Λ2 Im
(
C

(3)
ℓequ

)
C

(0)
P = g

(0)
P

v2

Λ2 Im
(
Cℓedq + C

(1)
ℓequ

)
C

(1)
P = −g(1)

P

v2

Λ2 Im
(
Cℓedq − C

(1)
ℓequ

)
. (2.33)

Here, the six couplings C(0,1)
S,T,P describing the scalar, tensor, and pseudoscalar semileptonic

interactions with their respective isoscalar and isovector contribution, are expressed in
terms of only three SMEFT Wilson coefficients at dimension six, implying

C
(0)
P

g
(0)
P

= C
(1)
S

g
(1)
S

C
(0)
T

g
(0)
T

= C
(1)
T

g
(1)
T

C
(0)
S

g
(0)
S

= C
(1)
P

g
(1)
P

. (2.34)

These relations link the C(0)
S,P,T to the C(1)

S,P,T coefficients using g
(0,1)
S,T,P . With this, we

can reduce the number of semileptonic parameters down to three independent ones that
actually enter the hadronic-scale global analysis. We choose them as C(0)

S,T,P and combine
them using the known ratios of hadronic matrix elements to construct the full Lagrangian.
However, we still preserve the full dependence on the C(1)

S,P,T coefficients, even though
there might be isospin-violating effects. Furthermore, this relation also holds when, for
the included experimental systems, the C(1)

S might differ significantly. This effect will be
discussed later.
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Additionally to the light quark contributions described by Eq. (2.33), we have to adopt the
relations in Eq. (2.34) to also consider the heavy quark contributions. These contributions
are hidden in the nucleon form factors, which are renormalized at an appropriate mass
scale.

Starting from the relations for C(0,1)
S , the effective parameter combining the isoscalar and

isovector parts of the scalar contributions is independent of the nuclear spin. This makes
the implementation fairly straightforward,

CS = C
(0)
S + Z −N

Z +N
C

(1)
S

= C
(0)
S + Z −N

Z +N

g
(1)
S

g
(0)
P

C
(0)
P with g

(1)
S

g
(0)
P

≈ 0.1 . (2.35)

In the second line, we replace, based on Eq. (2.33), C(1)
S with C

(0)
P . Based on the small

isospin violation of the nucleon matrix element, g(1)
S is suppressed relatively to g(0)

S . If
we apply that knowledge to Eq. (2.35), one can argue that C(1)

S ≪ C
(0)
S . Additionally,

having a look at all heavy nuclei in the atomic and molecular systems for which EDMs
have been measured, it is recognizable that the isoscalar and isovector contributions
always occur in approximately the same ratio, (Z −N)/(Z +N) ≈ −0.2. Based on these
findings, it is arguable that the parameter C(0)

S might be system-independent, but we
do not rely on this assumption and still include C(0)

S as a free parameter in the global
analysis.

Next, we move on by relating the pseudoscalar and tensor parts of the semileptonic
interactions. There, we start from the linear combination of nucleons, namely C(n,p)

P,T =
C

(0)
P,T∓C

(1)
P,T , with the upper sign reflecting n, accordingly to our chosen isospin convention.

Based on that relation, the coefficients for any given nucleus are constructed by the sum
over spins of the constituent nucleons, where ⟨σp,n⟩ is the expectation value of these spins,
evaluated via Pauli operators for the measured nuclear state [90,91]

CP,T =
C

(n)
P,T ⟨σn⟩+ C

(p)
P,T ⟨σp⟩

⟨σn⟩+ ⟨σp⟩
. (2.36)

For CT , we can see from Eq.(2.33) that the isoscalar and isovector couplings differ
only through the corresponding nucleon form factors. These are calculated with small
theoretical uncertainties in lattice QCD [92], which allows us to write

CT =
(

1− g
(1)
T

g
(0)
T

⟨σn⟩ − ⟨σp⟩
⟨σn⟩+ ⟨σp⟩

)
C

(0)
T with g

(1)
T

g
(0)
T

≈ 1.7 . (2.37)

Similarly, for CP , it can be shown that

CP = C
(0)
P − g

(1)
P

g
(0)
S

⟨σn⟩ − ⟨σp⟩
⟨σn⟩+ ⟨σp⟩

C
(0)
S with g

(1)
P

g
(0)
S

≈ 20.2 . (2.38)

Coming from the derivations of CS,P,T , we are left now with g
(0,1)
P . Starting by the

derivation of g(1)
P , we follow Ref. [24]. Thus, we only consider the first generation of

19



2 Effective Field Theories and SMEFT

quarks as the relevant light ones, in a way that g(1)
P is dominated by the π-pole contribution

g
(1)
P = gAm̄N

m̄

m2
π

m2
π − q2 + heavy quarks m̄ = mu +md

2 . (2.39)

With m̄N ≈ 940 MeV being the average nucleon mass, m̄ the average light quark mass,
and gA is the isovector part of the axial vector coupling [93]. Next, the coupling g(0)

P

appearing in Eq. (2.35), involves the isoscalar axial coupling g(0)
A , which is obtained from

the sum of the light quark axial charges [94]. We extend this light quark contribution to
g

(0)
P by also allowing a light s-quark. Now the π-pole dominance has to be replaced by

an octet η-pole with a modified average light quark mass m∗,

g
(0)
P = g

(0)
A m̄N

m∗
m2

η

m2
η − q2 + heavy quarks m∗ = m̄+ 2ms

3 . (2.40)

Note, that the heavy quarks enter differently in g(1)
P compared to g(0)

P , due to the different
poles we consider. This difference can be derived using the U(1)A axial anomaly together
with the divergence of the anomaly-free axial current Jq

µ5 = q̄γµγ5q for all quarks q [94–97].
However, these represent only a relatively minor contribution to g(1)

P , but since the η-
pole is suppressed by a factor m∗/m̄ compared to the π-pole, its contribution to g(0)

p is
approximately at the same level as the light quark contribution.

As a final simplification, not really necessary, but still reducing the parameter set by one
and removing a poorly constrained direction in model space, we assume

dp ≈ −dn . (2.41)

To justify this choice, we have to look at the structures of the atoms and molecules
of the different measurements. These measurements will be discussed in more detail
in Chapter 5.1. Considering the nuclei of the measured closed-shell system, these are
typically dominated either by a valence proton (see TlF) or a valence neutron (all others).
Also, one can assume that the short-range nucleon EDMs are dominated by their isovector
contribution. In the sense of global analyses, this assumption can be relaxed since we also
include theory uncertainties concerning the contributions of all nucleons to the overall
EDM. In addition, with the present experimental limits, only TlF has a leading sensitivity
for dp.

With these simplifications, as described in this section, the set of low-energy parameters
given in Eq.(2.31) reduces to

cj ∈
{
de, C

(0)
S , C

(0)
T , C

(0)
P , g(0)

π , g(1)
π , dn

}
. (2.42)

These seven Lagrangian parameters define the model parameter for our global EDM
analysis.

Finally, the different measurements we will consider in the global analysis will be discussed
in Chapter 5.1. With this, we define the bases for global analyses in the SMEFT and
EDM sectors. These results provide the theoretical framework needded to perform the
global analyses using SFitter as tool. This will also include the discussion of different
uncertainty treatments on model parameters, such as in the EDM analysis, and on
experimental data, which plays a role in both analyses.
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Chapter 3
SFitter as a Tool for Global Analyses

In the previous chapter, we introduced the concept of EFTs in the high-energy and
low-energy limits, using SMEFT and the weak-scale EFT for describing EDMs. These
EFTs are powerful frameworks for discussing new physics effects in an (almost) model
independent and global approach. The next challenge is now to analyze the data and
evaluate the framework provided by the model to determine the values of the corresponding
WCs. We choose to use the SFitter framework [98] as analysis tool of our choice to
answer these questions. SFitter was developed as a multi-purpose analysis tool for
various topics, for example supersymmetric (SUSY) dark matter [99–104] and Higgs
searches [105–107], but it also serves as tool for global SMEFT [1,75,79,108–111] and
EDM [2] analyses. Its original prupose is analysing different searches in particle physics,
especially to test different SUSY models. However, it has recently been adopted to
include other physical models containing multiple measurements and parameters. This is
possible due to its flexible and adaptive framework, making including new processes and
models fairly easy. SFitter is based on the principle of a basic likelihood analysis, where
the predictions and corresponding measurements are compared to determine the overall
likelihood. This likelihood is then computed for one point in the model or parameter
space at a time and later combined into a global approach. The used experimental
data in this analysis is implemented by including correlations and different kinds of
uncertainties that occur when performing experiments and matching them to theoretical
predictions. Including these different measurements, uncertainties, and correlations gives
us a combination of individual likelihoods when considering multiple parameters, which
later get combined into a full, exclusive likelihood.

When we perform a global analysis in the SMEFT sector, the used model parameters
are the WCs obtained from higher-order terms in the SMEFT Lagrangian written in
Eq. (2.6). The data is obtained from different collider measurements and experiments.
This includes data mostly from the ATLAS and CMS experiments, but also EWPO
measurements from the Large Electron–Positron Collider (LEP). Overall, we include
total and differential cross-sections, rate and signal-strength measurements.
The experimental data in the EDM sector consists of different EDM measurements,
including neutron EDM, molecules like ThO, HfF, and TlF, and atomic EDM measure-
ments, such as Hg, Ra, or Tl. The model parameters listed in Eq. (2.42) are obtained
from the matching of the weak-scale Lagrangian from Eq. (2.21) to the hadronic-scale
Lagrangian in Eq. (2.27).

Technically, the global analysis is performed by sampling around an initial point of
interest followed by mapping out the whole phase space using an MCMC algorithm. The
values of the considered WCs are a priori unknown, and need to be determined from
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experimental data. Therefore, we consider all the relevant operators and WCs for the
included measurements. With this procedure, we encounter a problem: We have a model
providing predictions for physical parameters of a set of free parameters and we have
a set of experimental data. Thus, we must find a way to combine both aspects to get
reasonable, well-defined results that best describe the data. However, uncertainties and
correlations still have to be included in the parameter estimation. Therefore, the overall
fitting can be described as a two-step process:

1. Define a measure for the goodness of the fit.

2. Maximize or minimize this measure.

This chapter is structured as follows: First, we will focus on constructing the likelihood,
including different kinds of uncertainties and the generalization towards a combined
likelihood. Next, we will discuss the inclusion of correlations in the likelihood, how to
evaluate this likelihood, and which statistical test is used. Lastly, we will discuss the
extraction of the limits on the actual parameters for a profiling and marginalization
approach.

3.1 Constructing the likelihood

To find the best model parameter configuration for the given experimental data, first,
one has to define a measure for the quality of the fit. We will see that the likelihood
approach serves as the most powerful and versatile ansatz to determine the goodness
of the fit and demonstrate how to construct the likelihood and generalize it to multiple
parameters. Next, in Sec. 3.2, we will discuss the evaluation and optimization of this
likelihood to examine the best-fit point of the model.

When the same experiment is performed several times, we would expect different outcomes
every time, either due to the measuring devices’ imprecision or the system’s stochastic
nature. A probability density function (PDF) p of the measured parameter x describes
the expected distribution of those different outcomes. Naturally, the PDF p needs to
fulfill the condition ∫

p(x)dx = 1 , (3.1)

and being larger than zero for all possible and allowed values for x. The above equation
misses a crucial part, the expected distribution is not only dependent on the observable
x but also on the model parameter α. Thus, the PDF should be written as p(x|α) in
general. For clarity, we will assign Latin letters to the measurements and Greek ones
to the model parameters. The model is defined over all predictions encoded by α and
the assumptions we make on the PDF. The PDF also depends on the experimental
results and the uncertainties affecting the experimental outcome. Therefore, if we want
to consider the full model, we have to take an effective description of the experimental
values depending on the observables x into account and their influence on the assumed
PDF shape. We distinguish between three PDF distributions and thus three different
uncertainty types:

1. Poissonian distribution (statistical uncertainties)
Uncertainties following a Poissonian distribution are intrinsic for each measurement.
These might vanish for an infinite number of measurements performed or events
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recorded and thus are also called statistical uncertainties. It is defined as the
probability of observing d events, when expecting νd events. The PDF for the
Poisson distribution is given by

pPois(d|νd) = (νd)d

d! e−νd , νd > 0 , (3.2)

with the variance given by σ2
d = νd.

2. Gaussian distribution (systematic uncertainties)
In the limit of large d and νd, the Poisson distribution in Eq. (3.2) converges towards
a Gaussian distribution

pGauss(d|νd) = 1√
2π

exp
(
−(d− νd)2

2σ2
d

)
, (3.3)

which is used to describe systematic uncertainties. Additionally, to statistical
uncertainties, systematic ones arise from external factors and will not vanish within
the limit of repeating an experiment an infinite number of times. The uncertainty on
the luminosity, photon reconstruction, tagging, or the energy scales are considered
as systematic uncertainties. Since we usually have large amounts of data to extract,
we expect them to follow a Gaussian shape, but this assumption does not necessarily
have to be true. In principle, assuming a Gaussian distribution here is only an
approximation.

3. Flat distribution (Theory uncertainties)
Lastly, we have to consider uncertainties arising from theoretical predictions. Unlike
experimental uncertainties, these do not follow a specific distribution. Rather,
the outcome of a measurement is equally likely within the range σd around the
central value νd and we do not expect any tails in the distribution, leading to
d ∈ [νd − σd, νd + σd]. Two examples for a theoretical uncertainty are either scale
uncertainties or the uncertainties on the semileptonic and hadronic parameters
in the EDM framework. Regarding scale uncertainty, a central scale µ is usually
varied by a factor 2. This leads to a possible spread between µ/2 and 2µ which has
no statistical meaning. All outcomes in this area with a width of 2σd are equally
probable and there is no reason to favor one outcome over the other. But beyond
those boundaries, the assumption is not valid, leading to a distribution without any
tails. Similar to calculating the hadronic and semileptonic parameters of the EDM
Lagrangian, they depend on various choices regarding masses and spin states, with
this all outcomes are equally likely. For these reasons, we assume a flat distribution
with a box-shape, which is realised using a Heaviside function Θ

pFlat(νd|νmin
d , νmax

d ) = 1
2σd

Θ(νd − νmin
d )Θ(νmax

d − νd) , σd = (νmax
d − νmin

d ) .

(3.4)

For a fixed measurement x the PDF p(x|α) is called a likelihood L(α) = L(x|α) = p(x|α).
The Likelihood L(α) is not a probability in terms of α, since it is not normalized. For
convenient reasons it is common to work with the negative log-likelihood −2 logL(α)
instead of L(α). The product of several likelihoods translates to a sum for the log-
likelihood approach, and all normalization factors become additive constants.
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3.1.1 Combining likelihoods

Normally, we have more than one measurement, model parameter, and uncertainty. How
do we combine these different likelihoods into one likelihood we can implement into
SFitter? For n independent and identically distributed measurements x in a data set
D the combined likelihood reads

L(α) = L(D|α) =
n∏

i=1
p(xi|α) . (3.5)

This decomposition can be used to combine likelihoods from different measurements.
Resulting in an exclusive likelihood, which is a function dependent on the model param-
eters αx, nuisance parameters for systematic θsyst and theory θtheo uncertainties, and
the expected background b of the measurement. Nuisance parameters are additional
parameters, which are relevant for an accurate description of the model without being of
interest in our fit. With this we can start from the exclusive likelihood for one channel,
and then generalize it to multiple channels.

The exclusive likelihood for one channel is constructed from different building blocks
multiplied with each other

Lexcl(αx, θsyst, θtheo, b) = Pois(d|m(αx, θsyst, θtheo, b))
× Pois(bCR|b k)

∏
i

Nθsyst,i,σi
(0)
∏
j

Fθtheo,j ,σj
(0) . (3.6)

The first factor in the exclusive likelihood represents the expected contribution from
the considered model m depending on the different parameters the model contains, like
α, the background b and the respective uncertainties for a given observed data d. The
second term shows the contribution from the expected background b, given the observed
background in the control region (CR) bCR and an interpolation factor k between the
CR and signal region (SR). The signal region is defined as the part of the data set where
the signal is expected to appear. In contrast the control region is dominated by the
background and used to estimate and validate the background in the SR. Due to their
statistical nature, both contributions are best described by a Poissonian distribution.
The last two factors given in Eq. (3.6), represent the contributions of nuisance parameters
for systematic θsyst and theory θtheo uncertainties. They should be centered around zero
with a given half-width σ. As mentioned before, in SFitter the systematic uncertainties
should follow a Gaussian and the theory uncertainties should follow a flat distribution.

As derived in Eq. (3.6) this likelihood for one channel can be generalized to N channels
by replacing

Pois(d|m)Pois(bCR|b k)→
∏

l

Pois(dl|ml)Pois(bCRl
|bl kl)

Nθsyst,i,σi
(0)→ N

θ⃗syst,i,Σi
(⃗0)

Fθtheo,j ,σj
(0)→

∏
l

Fθtheo,lj ,σlj
(0) . (3.7)

These generalizations imply uncorrelated theory uncertainties and correlated systematic
uncertainties. The correlations between systematic uncertainties are encoded using an
N -dimensional Gaussian with Σi as covariance matrix with uncertainties in a category
i entering different channels l. In our global analyses, we either fully correlate or
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uncorrelate systematic uncertainties. This choice is justified by the fact, that the
appearing correlations are negligible or fully correlated, as we show in Ch. 4.

In SFitter there are two possible ways to evaluate the constructed likelihood: By
profiling over the likelihood or by applying Bayesian marginalization. Section 3.2.2 will
present more details on these two methods. In the context of marginalization, the second
line in Eq. (3.6) can be understood as priors, which encode our prior knowledge or belief
on the expected background b and nuisance parameters θsyst and θtheo. While for the
profiling approach, these assumptions should be understood as PDFs constructed from
auxiliary measurements.

Starting from the constructed exclusive likelihood in Eq. (3.6), and after generalizing
it to multiple channels in Eq. (3.7) we can move one to construct either the profiled or
marginalized likelihood. The profiled likelihood is obtained by taking the maximum of
the likelihood varying the background b and the nuisance parameters θsyst and θtheo

Lprofile(αx) = max
b,θsyst,θtheo

Lexcl(αx, θsyst, θtheo, b) . (3.8)

On the other hand, the marginalized likelihood is obtained by integrating over these
parameters

Lmarg(αx) =
∫ ∏

i

dθsyst,i

∫ ∏
j

dθtheo,j

∫
dbLexcl(αx, θsyst, θtheo, b) . (3.9)

From a theoretical point of view, the only difference between both methods is shown
in Eqs. (3.8) and (3.9) by either computing the maximum of the nuisance parameter
or integrating over those, however, there are more assumptions to take care of in the
practical implementation. To make the marginalization approach in highly dimensional
spaces efficient, we must find a way to approximate the integrals. Although many of
the integrals written down in Eq. (3.9) can be solved analytically, generalizing it to N
channels still requires us to solve a N -dimensional integral. Therefore, we choose to solve
them numerically. These and other assumptions for the marginalization treatment are
discussed in detail in Ref. [75]. Regarding the profiling treatment, more information on
handling uncertainties and different channels can be found in Ref. [112,113].

3.1.2 Introducing correlations

As mentioned for the generalization of the exclusive likelihood in Eq. (3.7), we can
consider correlations between systematic uncertainties.

For LHC measurements, systematic uncertainties are often estimated for single measure-
ments based on the same secondary measurements. The uncertainty on the luminosity,
for example, is determined once and then used for all LHC experiments. Some detector
effects from CMS or ATLAS are also estimated and calibrated once and then applied to
every measurement. We consider the correlations of two experimental channels, i and j,
as a dimensionless measure. This measure describes the dependence of both channels on
each other. It is given by a quadratic relationship through the correlation matrix C

Cij = corr(xi, xj) = Vij

σiσj
= E[(xi − x̄i)(xj − x̄j)]

σiσj
, (3.10)
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where V denotes the covariance, calculated from the expectation value E of the deviations
from the measurements x from their mean x̄. From Eq. (3.10) we can directly see, that
the correlation matrix has to be symmetric with 1 as its diagonal entries. The off-
diagonal entries are the correlation coefficients ρij = Cij . In practice, these correlation
coefficients ρij are often unknown and need to be estimated from the individual uncertainty
sources. As we only correlate systematic uncertainties, we can replace Vij in Eq. (3.10)
by V syst

ij = σi,systσj,systρij,syst and use the full experimental uncertainty consisting of
systematic and statistical uncertainties for σiσj :

Cij =
∑

syst σi,systσj,systρij,syst

σi,expσj,exp
, with σ2

i,exp =
∑
syst

σ2
i,syst +

∑
Pois

σ2
i,Pois . (3.11)

In SFitter we assume all systematic uncertainties to be fully correlated between
measurements of the same experiment, the only exception is the luminosity, which is
correlated between the ATLAS and CMS experiment. To be more specific, we choose
ρij = 0.99, to ensure the invertability of the final correlation matrix is still given.

Finally, the full log-likelihood, or equivalently, the χ2 is computed as

−2 logL = χ2 = χT
i C
−1
ij χj , (3.12)

with χ2
i = −2 logLi for each individual channel i and thus χi =

√
χ2

i .

3.2 Likelihood mapping and evaluation

Next, we are interested in mapping the likelihoods in the regions around the best fit
point, the point with the highest likelihood, and how to evaluate the results.

To perform this mapping of the phase space of the likelihood, we need two ingredients.
First, a reliable method to compare two likelihood points, a statistical test, and second,
an efficient sampling of the parameter space, where we use the MCMC approach.

3.2.1 Likelihood ratio as statistical test and MCMC

To compare two models or hypotheses with each other, we need a statistical test. This
test serves as a measure for the goodness of the fit, where a test model mtest is compared
to a reference or baseline model m0 given the experimental data d. In SFitter the
likelihood ratio is chosen as the statistical test method. This method was proven by
Neyman and Pearson [114] to be the most efficient one. Therefore, we consider a zero
hypothesis m0 and a test hypothesis mtest and compute the likelihood ratio as

t(m) = L(mtest|d)
L(m0|d) . (3.13)

Where in the case of setting limits, the point for the zero hypothesis H0 is chosen as the
best fit point of the model m0 = mbest, such that L(mbest|d) = maxm L(m|d). When it
is implemented in a MCMC setting to determine the next point, H0 is the current model
point of the chain m0 = mcurrent.

Using the likelihood ratio as test statistics also has another benefit. According to Wilk’s
theorem [115], the likelihood ratio follows a χ2-distribution for a large sample size. The
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degrees of freedom of the χ2-distribution are precisely the number of parameters α in
our model configuration m [115,116]. This allows us to use the known χ2 properties on
setting limits to evaluate the parameters in our analysis.

Furthermore, we need an efficient way to map the phase space region around the best fit
point accordingly. We use a MCMC algorithm to map the phase space region around
this best fit point. With this, a test point mtest is obtained by sampling from either a
Gaussian, Breit-Wigner or flat distribution, centered at the current point mcurrent. Thus,
the acceptance of the test point only depends on the present point and not any previous
points of the chain [117]. Then, the acceptance of mtest depends on the outcome of the
likelihood ratio from Eq. (3.13), comparing the test point with the current point. If

L(mtest|d)
L(mcurrent|d) > 1 , (3.14)

the test point is accepted and added to the chain as new current point mnext = mcurrent.
If the ratio is smaller than one, the mtest only gets accepted in the case of

L(mtest|d)
L(mcurrent|d) ≥ r , (3.15)

with r ∈ [0, 1], a random value sampled from a uniform distribution [118,119]. Otherwise
mtest gets rejected and the current point remains the next mnext = mcurrent.

This algorithm is called the Metropolis algorithm [120], which ensures that the probability
of the test point to be selected is

min
(

1, L(mtest|d)
L(mcurrent|d)

)
. (3.16)

Starting from a random test point, the chain prefers new points with higher likelihoods
than the previous point. This drives the MCMC to the region of the highest likelihood.
However, by introducing r as a rate to accept points with a lower likelihood, the algorithm
is also able to map out regions around the maxima. It can also be used to explore more
complex structures. Suppose all the parameters of the MCMC are fine-tuned accordingly.
In that case, it scales linearly with the dimensionality of the parameter space, making it
computationally less expensive than other methods, such as using a grid. To suppress
the influence of the initial conditons on the outcome of the chain we introduce a burn-in
phase, which deletes the start of the chain up to a certain percentage of points. For the
profiling approach this limit is usually set to 1%, while for marginalization it is around
10%. The higher percentage for the marginalization is justified by the integration over
the likelihood, which requires an accurate representation of the phase space density.

3.2.2 Extracting parameter limits

Next, we discuss extracting parameter limits from the likelihood and the MCMC results.
Starting from the map of the profiled and marginal likelihood in Eqs. (3.8) and (3.9),
we want to extract the limits on the corresponding parameters of our model. Therefore,
we profile or marginalize over all but the one or two parameters we want to constrain.
From here onwards, the treatment is different for either profiling or marginalization, so
we discuss them separately.
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3 SFitter as a Tool for Global Analyses

For the profile likelihood, the proper way to define these intervals is to use the Feldman-
Cousins approach, which is based on Neyman’s construction of the likelihood ratio as an
ordering rule. However, this approach is cumbersome and numerically challenging. We
use likelihood based intervals as an alternative. By caluclating the χ2 value in Eq. (3.12),
we can set the limits on the χ2 distribution by calculating parameter values which exceed
a certain threshold. This threshold depends on the number of DOFs and the confidence
level (CL) one wants to set. The values for either one or two DOFs and the corresponding
CLs are given in Tab. 3.1.

Extracting limits from the marginalization approach is slightly different. We start by
identifying the global maximum of our likelihood and then integrate around that point.
While integrating, we choose integral borders on iso-likelihood contours. If there are
additional peaks, their likelihood is computed only if they exceed a certain threshold,
and then only that part exceeding the threshold is integrated. We stop integrating to
determine the interval’s limits when the integral value is larger than 68% or 95% of the
full integral.

The Bayesian counterpart to confidence intervals is called credible intervals and defined
by the marginalization approach. Confidence and credible intervals are two different
things, and thus, the limits do not have to match. However, to make the results of both
methods comparable, we also compute the credible intervals from the profile likelihood.

DOF/CL 68% 95%
1 0.989 3.841
2 2.279 5.991

Table 3.1: χ2 values to set the 68% and 95%CL limits on a distribution with 1
or 2 DOF.

This section discusses SFitter as tool of choice, by discussing the construction of an
exclusive likelihood, the corresponding treatment of uncertainties and correlations, and
different evaluation treatments, we can put it into action now. Based on the EFT-
framework for SMEFT and the description of EDMs via a weak-scale EFT, introduced
in Ch. 2, we perform the actual global analyses.
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Chapter 4
Global Analysis using Published Likelihoods

The research and results presented in this chapter are based on work in collaboration
with Maeve Madigan, Tilman Plehn, and Nikita Schmal and have been published in
Ref. [1]. All figures and tables, as well as parts of the text, are similar or identical to the
ones in the article.

Model-agnostic approaches are a promising avenue for understanding observed deviations
from the SM. Thus, we choose SMEFT as a high-energy EFT expansion of the SM
discussed in depth in Ch. 2. As model parameters we introduce the WCs of the SMEFT
framework. To capture these deviations most efficiently, as much data as possible
from different measurement types has to be included. Therefore, we perform a global
analysis incorporating different ATLAS and CMS measurements using SFitter, which
is explained in detail in Ch. 3. In particular we want to test the top sector [79, 121–130],
since it provides a combination with the bottom sector [131–136] and a much broader
set of precision measurements [137], which can then eventually test the impact of flavor
symmetries. Recently, several groups also have performed a combined SMEFT analysis of
the electroweak and top sectors [138,139], SMEFT analyses combined with parton density
extraction [140–143], and even SMEFT analyses with lighter new particles [144–146].

The top sector provides unique aspects in the systematic searches for BSM physics
that do not exist in the electroweak sector. From a theory perspective, the top sector
is closely linked to the hierarchy problem or the dynamic origin of the Higgs vacuum
expectation value, one of the problems that we are trying to improve our understanding
with measurements from the LHC [147]. Experimentally, the precision measurements
performed at the LHC go beyond simple kinematic distributions of top pair productions
and extend to associated top pair production with gauge bosons, single top production,
and top decay kinematics. This effort is beautifully matched by precision predictions [148].
Combining both aspects phenomenologically, the top groups from the ATLAS and CMS
experiments provide experimental results in a way that makes the implementation in
an external global analysis easy and provides optimal uncertainty treatment. This
includes unfolded rate measurements, unfolded kinematic distributions, and most recently
published likelihoods [149–151].

The publication of experimental data in the format of public likelihoods is a major step
in the way experimental results can be re-interpreted [152–157]. The used HistFactory
format [158] allows for efficient use of likelihoods using software such as pyhf [159,160],
Spey [161], and the simplified likelihood frameworks [162]. In the classic BSM sector,
many likelihoods have already been made public and analyzed [163]. In the top sector,
public ATLAS likelihoods [149–151] should be used outside the collaborations. We aim
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4 Global Analysis using Published Likelihoods

to fill this gap by using them as the basis of a global SMEFT analysis of the top sector
using SFitter.

In this chapter, we provide updated results based on an earlier dimension-six SMEFT
analysis of the top sector using the SFitter framework [79]. With its adaptive nature
to include new measurements, models, and different formats, SFitter is a perfect tool
for including public likelihoods in a global analysis and determining their impact. We
will start by discussing the different types of data we included and the implementation of
three public likelihoods in Sec. 4.2. We will then include these likelihoods in the first
SFitter analysis of the electroweak and top sectors in Sec. 4.3. While the physics behind
combining these two sectors is largely understood [138, 139], in our global SFitter
analysis, we will focus on the impact of theory uncertainties. In addition, we will probe
the impact of a profile likelihood compared to Bayesian marginalization when extracting
limits on single Wilson coefficients, where we saw significant effects on the Higgs and
electroweak sector [75].

4.1 Setup

In this section, we will discuss the setup and implementation of public likelihoods in
SFitter. A detailed explanation of the SMEFT sector and all of the Wilson coefficients
used in this global analysis is provided in Ch. 2. Therefore, we only briefly discuss the
SMEFT Lagrangian and used Wilson coefficients here and directly start by discussing
the used data and prediction formats and their implementation in SFitter.

4.1.1 Data, predictions, and uncertainties

Predictions in the top sector are governed by the effective Lagrangian shown in Eq. (2.10)
and truncated beyond mass dimension six. Additionally, we assume the separate U(2)
symmetries from Eq. (2.11) for the first and second generations. Next, the Wilson
coefficients implemented in the top sector are discussed in Eqs. (2.12)-(2.14). The effect
of the different operators and WCs on the different LHC observables are summarized in
Tab. 4.1. Here, the main question is which operators modify the LHC rate and kinematic
predictions through interference with the SM-matrix element, which only contributes
at dimension-6 squared order. Next, we will elaborate further on implementing public
likelihoods and how they are constructed and provided.

With the combined SMEFT analysis of the Higgs, electroweak, and top sector as a physical
goal, the technical goal of this study is to integrate published experimental likelihoods
into an SMEFT analysis for the first time. To simplify the procedure of including future
experimental results as extensions to our current dataset, we analyze three measurements
with publicly available likelihoods in the HistFactory [158] format on HEPData: An
ATLAS measurement of the total inclusive tt̄ cross section [149], an ATLAS measurement
of the total inclusive tt̄Z cross section [150] and an ATLAS measurement of the total
inclusive single-top cross section in the s-channel [151]. The implementation of these
likelihoods into the SFitter framework will be discussed in more detail in Section 4.2.
To obtain a realistic assessment of the effect of these likelihoods on the SMEFT, we
incorporate them into a global analysis.

With this in mind, our analysis in the top sector considers all measurements listed in
Tables 4.2 and 4.3. The analysis is an update to a previous global top analysis performed
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4 Global Analysis using Published Likelihoods

Wilson coeff. tt̄ single t tW tZ t-decay tt̄Z tt̄W

Eq
.(

2.
12

)
C1,8

Qq Λ−2 — — — — Λ−2 Λ−2

C3,8
Qq Λ−2 Λ−4 [Λ−2] — Λ−4 [Λ−2] Λ−4 [Λ−2] Λ−2 Λ−2

C8
tu, C8

td Λ−2 — — — — Λ−2 —
C1,1

Qq Λ−4 [Λ−2] — — — — Λ−4 [Λ−2] Λ−4 [Λ−2]
C3,1

Qq Λ−4 [Λ−2] Λ−2 — Λ−2 Λ−2 Λ−4 [Λ−2] Λ−4 [Λ−2]
C1

tu, C1
td Λ−4 [Λ−2] — — — — Λ−4 [Λ−2] —

Eq
.(

2.
13

) C8
Qu, C8

Qd Λ−2 — — — — Λ−2 —
C8

tq Λ−2 — — — — Λ−2 Λ−2

C1
Qu, C1

Qd Λ−4 [Λ−2] — — — — Λ−4 [Λ−2] —
C1

tq Λ−4 [Λ−2] — — — — Λ−4 [Λ−2] Λ−4 [Λ−2]

Eq
.(

2.
14

)

C−
ϕQ — — — Λ−2 — Λ−2 —

C3
ϕQ — Λ−2 Λ−2 Λ−2 Λ−2 Λ−2 —

Cϕt — — — Λ−2 — Λ−2 —
Cϕtb — Λ−4 Λ−4 Λ−4 Λ−4 — —
CtZ — — — Λ−2 — Λ−2 —
CtW — Λ−2 Λ−2 Λ−2 Λ−2 — —
CbW — Λ−4 Λ−4 Λ−4 Λ−4 — —
CtG Λ−2 [Λ−2] Λ−2 — [Λ−2] Λ−2 Λ−2

Table 4.1: Wilson coefficients and their contributions to top observables via
SM-interference (Λ−2) and via dimension-6 squared terms only (Λ−4). A square
bracket indicates that the Wilson coefficient contributes to the interference at
NLO in QCD. Table adapted from Ref. [75].

by SFitter in Ref. [79]. In Tables 4.2 and 4.3, the measurements that are new relative to
those included in Ref. [79] are highlighted, as well as those for which a public likelihood
is available. Whenever possible, we prefer to include measurements containing the full
Run II luminosity and choose such measurements that are in the boosted regime in which
the sensitivity to energy-growing SMEFT operators is maximized; see, for example, the
top pair production invariant mass distribution of Ref. [179]. Thus, the dataset consists
of a total of 122 data points spanning the tt̄, tt̄+X(Z,W, γ) and single top (s, t-channel,
tW and tZ) sectors, including measurements of top-pair production charge asymmetries
AC and W boson polarization in top decays (F0, FL).

Precision predictions from perturbative quantum field theories are a key ingredient
of global analyses to obtain a good baseline. Thus, most observables in this analysis
unfold at the parton level while assuming stable top quarks. This allows us to use fixed-
order calculations to determine the SM predictions at NLO in QCD using MadGraph5
aMC@NLO [217, 218] and NNPDF 4.0 [219] interfaced with LHAPDF [220]. Alongside the
observables listed in Tables 4.2 and 4.3, we note whether the SM predictions for these
observables are approximated at NNLO in QCD using a K-factor approximation and
referencing the source of these QCD k-factors. In the case of new top quark pair
production observables, these QCD k-factors are calculated using HighTea [148].

For calculations at NLO in QCD on the effect of the SMEFT on all updated measurements
in the top sector, we used the FeynRules [221] model SMEFTatNLO [222] up to quadratic
order in the EFT expansion. The exceptions made are the measurements of the tt̄γ
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4 Global Analysis using Published Likelihoods

total cross sections at 8 TeV by ATLAS [192] and CMS [191], for which the SMEFT
predictions at LO in QCD are taken from Ref. [141].

We must also consider theory uncertainties, which appear when comparing a measurement
to a first-principle description. They might cover a wide range of approximations that can
be calculated, such as an LHC cross section obtained from a fundamental renormalized
Lagrangian. The truncation of the perturbative series in QCD and the electroweak gauge
coupling dominates the LHC. Because these perturbative series converge very slowly for
LHC rates, theory predictions have become limiting factors for interpreting many LHC
measurements in terms of actual physics. Aside from the size of the theory uncertainties,

Experiment E [GeV] L [fb−1] Channel Obs. # Bins New Likeli. QCD k-factor

CMS [164] 8 19.7 eµ σtt̄ [165]
ATLAS [166] 8 20.2 lj σtt̄ [165]

CMS [167] 13 137 lj σtt̄ ✓ [165]
CMS [168] 13 35.9 ll σtt̄ [165]

ATLAS [169] 13 36.1 ll σtt̄ ✓ [165]
ATLAS [170] 13 36.1 aj σtt̄ ✓ [165]
ATLAS [149] 13 139 lj σtt̄ ✓ ✓ [165]

CMS [171] 13.6 1.21 ll, lj σtt̄ ✓ [171]

CMS [172] 8 19.7 lj 1
σ

dσ
dpt

T
7 [173–175]

CMS [172] 8 19.7 ll 1
σ

dσ
dpt

T
5 [173–175]

ATLAS [176] 8 20.3 lj 1
σ

dσ
dmtt̄

7 [173–175]

CMS [167] 13 137 lj 1
σ

dσ
dmtt̄

15 ✓ [148]
CMS [177] 13 35.9 ll 1

σ
dσ

d∆ytt̄
8 [173–175]

ATLAS [178] 13 36 lj 1
σ

dσ
dmtt̄

9 ✓ [148]
ATLAS [179] 13 139 aj, high-pT

1
σ

dσ
dmtt̄

13 ✓

CMS [180] 8 19.7 lj AC [181]
CMS [182] 8 19.5 ll AC [181]

ATLAS [183] 8 20.3 lj AC [181]
ATLAS [184] 8 20.3 ll AC [181]

CMS [185] 13 138 lj AC ✓ [181]
ATLAS [186] 13 139 lj AC ✓ [181]

ATLAS [150] 13 139 σtt̄Z ✓ ✓ [187]
CMS [188] 13 77.5 σtt̄Z [187]

CMS [189] 13 35.9 σtt̄W [187]
ATLAS [190] 13 36.1 σtt̄W ✓ [187]

CMS [191] 8 19.7 σtt̄γ ✓
ATLAS [192] 8 20.2 σtt̄γ ✓

Table 4.2: Top pair observables included in our global analysis. “New” is defined
relative to the previous SFitter analysis [79]. “Likeli.” indicates a dataset for
which a public likelihood is available — further details of these datasets are
provided in Sec. 4.2.
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it is problematic that they do not follow any statistical pattern or model [223], and
assuming a Gaussian distribution is neither justified nor conservative.

Because of their impact on global analyses of effective Lagrangians, SFitter puts an
emphasis on the proper description of these uncertainties, including their correlations
between different observables, as described in Ch. 3. In the top sector, the theory
uncertainties are critical for the precisely measured top pair production rates [79] and
are correlated between different final states for rate measurements. We typically use the
theory uncertainties reported in the respective publications, with the exception that we
enforce a minimum scale uncertainty of 10% for total rates in single top production and
2% for bin-wise kinematic distributions.

Experiment
√
s [TeV] L [fb−1] Channel Obs. # Bins New Likeli. QCD k-factor

ATLAS [193] 7 4.59 t-ch σtq+t̄q

CMS [194] 7 1.17 (e)
1.56 (µ) t-ch σtq+t̄q

ATLAS [195] 8 20.2 t-ch σtq, σt̄q

CMS [196] 8 19.7 t-ch σtq, σt̄q

ATLAS [197] 13 3.2 t-ch σtq, σt̄q [198]
CMS [199] 13 2.2 t-ch σtq, σt̄q [198]
CMS [200] 13 35.9 t-ch 1

σ
dσ

d|pT,t| 5 ✓

CMS [201] 7 5.1 s-ch σtb̄+t̄b

CMS [201] 8 19.7 s-ch σtb̄+t̄b

ATLAS [202] 8 20.3 s-ch σtb̄+t̄b

ATLAS [151] 13 139 s-ch σtb̄+t̄b ✓ ✓

ATLAS [203] 7 2.05 tW (2l) σtW +t̄W

CMS [204] 7 4.9 tW (2l) σtW +t̄W

ATLAS [205] 8 20.3 tW (2l) σtW +t̄W

ATLAS [206] 8 20.2 tW (1l) σtW +t̄W ✓
CMS [207] 8 12.2 tW (2l) σtW +t̄W

ATLAS [208] 13 3.2 tW (1l) σtW +t̄W

CMS [209] 13 35.9 tW (eµj) σtW +t̄W

CMS [210] 13 36 tW (2l) σtW +t̄W ✓

ATLAS [211] 13 36.1 tZ σtZq

ATLAS [212] 7 1.04 F0, FL

CMS [213] 7 5 F0, FL

ATLAS [214] 8 20.2 F0, FL

CMS [215] 8 19.8 F0, FL

ATLAS [216] 13 139 F0, FL ✓

Table 4.3: Single top and top decay observables included in our global analy-
sis. “New” is defined relative to the previous SFitter analysis [79]. “Likeli.”
indicates a dataset for which a public likelihood is available — further details of
these datasets are provided in Sec. 4.2.
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Figure 4.1: Left: Impact of O(8)
Qd on the unfolded ATLAS mtt̄ distribution in

the lepton+jets channel [178]. Right: Impact of this operator on the unfolded
ATLAS mtt̄ distribution in the all-hadronic channel measured with boosted top
quarks [179].

Boosted top pair production

As part of our dataset, we highlight the reinterpretation of the ATLAS measurement of tt̄
production in the lepton+jets channel [178] and the ATLAS measurement of tt̄ production
using boosted top quarks in the all-hadronic channel [179]. Both are differential in the
top-pair invariant mass, as shown in Fig.4.1. The measurement using boosted top quarks
is unfolded to a fiducial Parton-level phase space, defined by

pT,t1 > 500 GeV and pT,t2 > 350 GeV , (4.1)

allowing for an easy comparison with fixed-order calculations. This, alongside the high-
mtt̄ reach up to 4 TeV of this distribution, makes it an excellent candidate for constraining
the energy-growing SMEFT four-fermion operators of the top sector. We display the
impact of one of these operators, O8

Qd, in Fig.4.1.

The theory uncertainty is shown in blue in both figures and compared to the statistical
and systematic uncertainties in the experimental data. In both cases, the values of
C8

Qd chosen are those which would produce a 3σ deviation in a one-parameter analysis.
We observe that, while the measurement unfolded to the full phase space is sensitive
to the energy-growing effects of O8

Qd, this sensitivity is significantly enhanced by the
measurement of boosted top quarks. The lower panel in both figures shows the ratio of
the upper and lower bounds of C8

Qd and the SM prediction.

4.1.2 SFitter as framework

The SFitter framework, as in depth discussed in Ch. 3, is a tool for global analyses
of LHC measurements in the context of BSM physics. There, the relation of this data
to full models with a proper uncertainty treatment in precision matching is crucial
because the typical scale variation between directly probed energies and those that are
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indirectly accessible is not very large. On the other hand, the assumed EFT description
is not universal but only defined by possible on-shell propagators in the observables and
relative to the UV completion and its typical coupling strengths. Without additional
information on the underlying model, the Lagrangian in Eq.(2.10) is degenerate along
Ck ∼ Λ2, which means the EFT assumption of large Λ improves for larger postulated
couplings. This is the reason why SFitter SMEFT analyses start with the truncated
dimension-6 Lagrangian at face value. Tab. 4.1 shows that some WCs only enter with
dimension-6 squared contributions to the LHC observables. Therefore, we truncate the
Lagrangian rather than the LHC rate prediction. All of these assumptions always need
to be validated for a given dataset and UV-Completion [102, 224–226]. However, the
assumptions we made in this global analysis ensure that we optimally use all kinematic
information provided, especially those in the tail regions of the considered distributions.

As mentioned earlier, the heart of SFitter is the extraction of a fully exclusive likelihood
for a given measurement d from Sec. 4.1.1, evaluated over a combined Wilson coefficient
c space with nuisance parameters θ,

p(d|c, θ) = Pois(d|m(c, θ, b)) Pois(bCR|b k)
∏

i

Ci(θi, σi) . (4.2)

This likelihood also incorporates the effects of statistical, systematic, and theory uncer-
tainties. The first Poisson distribution gives the probability to observe d events given
the corresponding theory prediction m(c, θ, b), which in turn depends on the predicted
background count b. The background rate is, itself, constrained by measurements bCR
in the control region, implemented as a scaled prediction kb with a suitable factor k.
The constraint function C gives the distribution of the nuisance parameter θi, given a
width measure σi, depending on the source of uncertainty. As discussed in Ch. 3, the
distribution can either follow a Gaussian, Poissonian, or flat distribution.

The flat scale uncertainty, which is considered a theory uncertainty, is not parametrization
invariant, as one would expect from a fixed range, but without a preferred central
value, we consider it conservative. They are obtained in the top sector by varying the
renormalization and factorization scales µR and µF by a factor of 2 around their respective
central value. These are process dependent and chosen to be µR = µF = mt + 1

2mV for
associated tt̄ production with V = W,Z. For tt̄ production, the sum of the transverse
masses of the top and anti-top is used, while for single top production, they are set to
the top mass mt.

By ansatz, we construct all measurements d in SFitter are uncorrelated, and it constructs
an individual likelihood for each measurement, as defined in Eq (4.2). With this, the full
likelihood is constructed as a product of individual contributions. As pointed out in Ch. 3,
we include systematic uncertainties as correlated Gaussians, while theory uncertainties
are correlated for all measurements with identical predictions. They are also correlated
within one measurement across all bins but not across several different measurements.

In the SMEFT sector for constructing the exclusive likelihood, SFitter uses cross section
predictions over the entire model parameter space and extracts the quadratic behavior
analytically, which guarantees sufficient precision even for small Wilson coefficients. Then,
an MCMC algorithm is used to evaluate the likelihood in Eq. (4.2) numerically. Finally,
to combine uncertainties by removing nuisance parameters or to reduce the space of
physical Wilson coefficients, SFitter can employ a profile likelihood or a Bayesian
marginalization [75, 99]. Obviously, these two methods give different results. Only for
uncorrelated Gaussians do the profile likelihood and Bayesian marginalization lead to
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the common result of errors added in quadrature. For a flat likelihood, the uncorrelated
profile likelihood adds the two uncertainties linearly, which happens for the scale and
PDF uncertainty in SFitter. The profile likelihood combination of a flat and a Gaussian
uncertainty gives the well-known RFit prescription [227]. In contrast, when applying
marginalization on the combination of Gaussian and flat uncertainties, the central limit
theorem ensures that the final posterior will be Gaussian again.

4.2 Public likelihoods

For a standard SFitter analysis, we extract systematic uncertainties for each mea-
surement from the respective experimental publications. Systematics of the same type
are fully correlated between measurements of the same experiment. This approach has
drawbacks. For instance, we can only use the uncertainty categories reported in the
experimental publications or on HEPData, and this information often needs to be extracted
by hand. Public likelihoods include the full information on many systematic uncertainties
in a documented manner, making their implementation more accurate and efficient.

Likelihoods are published in the HistFactory format [158], similar to the SFitter
likelihood in Eq.(4.2). For each bin b measured as a kinematic distribution of a given
channel or final state, it provides

p(db|µ, θ) = Pois(db|mb(µ, θ))
∏

i

Ci(ai|θi) , (4.3)

where db and mb are the measured and expected number of events in bin b. The nuisance
parameters θi are constrained by Ci(ai|θi) with the auxiliary data ai. The parameter
of interest µ describes, for instance, a signal strength. This corresponds to the Wilson
coefficients shown in Eq.(4.2).

The analysis of these publicly provided likelihoods is performed using pyhf [159, 160],
a python module allowing for easy construction of HistFactory likelihoods and their
subsequent statistical analysis. It uses data published in the JSON format to compute

Description Modification Constraint C

Luminosity (“lumi”) κsb = λ N (l = λ0|λ, σλ)
Normalization unc. (“normsys”) κsb = gp(α|κsb,α=±1) N (a = 0|α, σ = 1)
Correlated Shape (“histosys”) ∆sb = fp(α|∆sb,α=±1) N (a = 0|α, σ = 1)
MC Stat. (“staterror”) κsb = γb

∏
bN (aγb

= 1|γb, δb)
Uncorrelated Shape (“shapesys”) κsb = γb

∏
b Pois(σ−2

b |σ
−2
b γb)

Normalization (“normfactor”) κsb = µ

Table 4.4: List of modifiers in the construction of the HistFactory likelihoods,
adapted from Ref. [228]. Per-bin modifiers are denoted as γb, while interpolated
modifiers are denoted as α. Here gp and fp describe different interpolation
strategies used to compute these from the values κsb,α=±1,∆sb,α=±1 provided
in the likelihood. Luminosity and scale factors affect all bins equally and are
denoted as λ and µ, respectively.
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the predicted number of events using

mb =
∑

s

(∏
κ

κsb

)(
m̄sb +

∑
∆

∆sb

)
, (4.4)

with the nominal expected rate m̄sb and multiplicative (κsb) and additive (∆sb) modifiers
for each physics process s. These modifiers correspond to the nuisance parameters
affecting the event rate mb. The type of modifier and the constraints on its corresponding
nuisance parameter depend on the uncertainty type. The most common ones are given
in Tab. 4.4. Using the public likelihoods in terms of modifiers and nominal rates m̄sb,
we can reproduce the experimental results. For visualization, we use cabinetry [229], a
python library making use of pyhf for statistical analyses.

Starting from a public likelihood, we can organize the full set of nuisance parameters
with respect to their systematic uncertainties in a few categories. This allows for an
easier numerical treatment at no cost. To compute the ranges of the nuisance parameters
for these categories, we start by using a profile likelihood to determine the corresponding
central values, and as a second step, we perform an analysis for the distribution of the
nuisance parameter. In this section, we will show the implementation and corresponding
testing of three public ATLAS likelihoods.

4.2.1 ATLAS tt̄ likelihood

As the first public likelihood, we analyze the tt̄ rate measurement in the lepton+jets
final state [149]. The likelihood consists of three channels or signal regions, using the
aplanarity, minimum lepton-jet mass, and average angular distance between jets. In this
case, the parameter of interest µ is in the tt̄ signal strength, with a total of 177 nuisance
parameters covering the systematic uncertainties.

To test our implementation and evaluation of the public likelihood, we first reproduce
some key results from the ATLAS analysis in Fig. 4.2. Therefore, we show the values for
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Figure 4.2: Impact of nuisance parameters on the tt̄ total rate fit. We compare
the ATLAS result [149] (left) and our evaluation of the public likelihood (right).
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the single nuisance parameters that maximize the likelihood and corresponding pulls,

pull = θ̂ − θ0
∆θ . (4.5)

Here, θ̂ describes the maximum likelihood values, and θ0 is the value before the fit,
normalized to the pre-fit uncertainty ∆θ. We also show the impact of the individual
nuisance parameters on the signal strength µ. This impact is determined by repeating
the fit after fixing the nuisance parameter to its maximum-likelihood value θ̂, shifted
by its prefit (postfit) uncertainties ±∆θ(±∆θ̂). The left panel of Fig. 4.2 is taken from
Ref. [149], while the right panel shows our reproduced results. Both sets show excellent
agreement, with negligible differences for a few select nuisance parameters.

As a next step, we analyze the full likelihood as a function of a single nuisance parameter.
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Figure 4.4: Left: Correlations between individual nuisance parameters affecting
the tt̄ rate with at least one correlation greater than 0.4. Right: Correlations
between categories of systematic uncertainties extracted from the tt̄ likelihood
as implemented in SFitter.
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This allows us to check the validity of the assumption of a Gaussian likelihood, which
is assumed for systematic uncertainties in SFitter. For each nuisance parameter, we
generally find excellent agreement with the Gaussian assumption, as shown on the
left-hand side, with only a few exceptions. In Fig. 4.3, one parameter shows excellent
agreement and one parameter shows poor agreement. We are even able to control the
larger deviations, showing a good agreement with the Gaussian approximation when
we translate them into terms of standard deviations. The categorization of nuisance
parameters washes out non-Gaussian shapes in these exceptions when categorized with
Gaussian-shaped parameters.

Finally, we test the correlations between individual and categorized nuisance parameters;
for later, we use the categories implemented in SFitter. The left panel of Fig. 4.4 shows
the correlations of all individual nuisance parameters with at least one correlation greater
than 0.4. Since the public likelihoods do not provide additional metadata on all nuisance
parameters, their labels do not necessarily match those used in the impact plots. We
find that out of the many nuisance parameters included in the public likelihood, only
very few are significantly correlated. The strong correlations are mainly seen for nuisance
parameters impacted by modeling choices or jets.

In the standard SFitter profiling approach, we group these individual nuisance parame-
ters into uncorrelated categories and implement these categories with a single nuisance
parameter each. Standard categories cover leptons, jets, tagging, and luminosity. Addi-
tional categories are process-specific, such as certain backgrounds or missing transverse
energy. For all processes in our dataset, we use 21 nuisance parameters describing the
systematic uncertainties assumed to be uncorrelated. Using the full likelihood, we show
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Figure 4.5: Impact of nuisance parameters on the tt̄Z total rate fit. We compare
the ATLAS result [150] (left) and our evaluation of the public likelihood (right).
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the correlations between these categories in the right panel of Fig. 4.4. The fact that the
correlations between categories essentially vanish validates this SFitter approach.

4.2.2 ATLAS tt̄Z likelihood

The second likelihood we implement is from the tt̄Z rate measurement [150]. It simultane-
ously fits both 3-lepton and 4-lepton signal regions and the corresponding control regions.
The parameter of interest is the tt̄Z signal strength. A total of 230 nuisance parameters
are provided to describe the systematic uncertainties. Unlike for the tt̄ likelihood, there
are no uncertainties on the shape of the signal since each signal region is described by a
single bin.

Following the method described for the tt̄ analysis, we also test the tt̄Z likelihood and
our implementation into SFitter. Figure 4.5 compares the impact of the nuisance
parameters and pulls taken from Ref. [150] with those reproduced by us. We see excellent
agreement for all nuisance parameters.

Same as for the previous likelihood implementation, we show the correlations between
different nuisance parameters, with at least one correlation greater than 0.3 in the left
panel of Fig. 4.6. Then, we can compare them to the SFitter implementation shown
in the right panel. We find that the correlations between these individual nuisance
parameters are already much smaller in this likelihood compared to the previous one.
The only strong correlation seems to appear between scale uncertainties and the signal
strength of the corresponding background. Consequently, the results, after combining all
nuisance parameters into the SFitter categories, display negligible correlations between
categories.
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Figure 4.6: Left: Correlations between individual nuisance parameters affecting
the tt̄Z rate with at least one correlation greater than 0.3. Right: Correlations
between categories of systematic uncertainties extracted from the tt̄Z likelihood
as implemented in SFitter.
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Figure 4.7: Impact of nuisance parameters on the s-channel single top rate fit.
We compare the ATLAS result [151] (left) and our evaluation of the public
likelihood (right).

4.2.3 ATLAS s-channel single top likelihood

Lastly, we implement the likelihood for a signal strength measurement of an s-channel
single top production [151]. Unlike the previous measurements, it only consists of a single
channel, using the matrix element method (MEM) to determine the probability that an
event is a signal event. The discriminant defined using the MEM gives a distribution
with 171 nuisance parameters affecting the rate and shape of the signal.

Once again, we validate our implementation of this likelihood in Fig. 4.7, showing the
impact and pulls of different nuisance parameters from Ref. [151] in the left panel and
our reproduction on the right. We find perfect agreement, which shows that regardless of
the process considered, the public likelihoods allow for easy and precise reproduction of
the experimental results in more detail than most global analyses will ever need or want
to use.

The correlations in the left panel of Fig. 4.8 show strong correlations between select
nuisance parameters. The strongest correlations appear between jet-related uncertainties
and the signal strengths of the two dominant backgrounds, tt̄ and W+jets. For SFitter,
these nuisance parameters are put into the background uncertainty category. These
strong correlations are therefore implicitly included in this larger category, and the final
implementation into SFitter is essentially uncorrelated, as one can see in the right of
Fig. 4.8. While one still finds a nonzero correlation between the jet and background
uncertainties and between the jet and lepton uncertainties, these are all negligibly small.
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Figure 4.8: Left: Correlations between individual nuisance parameters affecting
the s-channel single top rate with at least one correlation greater than 0.3. Right:
Correlations between categories of systematic uncertainties extracted from the
single top likelihood as implemented in SFitter.

4.3 Global analysis

Using, for the first time, public likelihoods in a global SMEFT analysis allows us to look
at different relevant questions than in previous global analyses. From the data included
in our analysis, we know that our global analysis is somewhat unlikely to uncover a
fundamental and statistically significant breakdown of the SM. Therefore, we first look
at the impact on the constraining power from new measurements, especially boosted top
kinematics, relative to Ref. [79]. We then study the impact of correlated uncertainties
encoded in the public likelihoods. From a pure statistics perspective, we will also check
if lower-dimensional limits, which are either extracted by profiling or by marginalization,
differ. Finally, we provide SMEFT limits combining the updated top sector analysis with
the electroweak and Higgs sector from Ref. [75].

4.3.1 Better and boosted measurements

Before we study more conceptual questions of global SMEFT analyses, we update our
dataset with new measurements, as marked in Tabs. 4.2 and 4.3. In Fig. 4.9, we show
the constraints on a selection of 2-dimensional correlations of Wilson coefficients, using
all top data compared to the previous SFitter top analysis [79]. All constraints are the
result of an analysis of all 22 Wilson coefficients. To extract limits on pairs of coefficients,
we use a profile likelihood approach. Potential differences in marginalization will be
discussed in Sec. 4.3.3.

The left panel in Fig. 4.9 shows the impact on the four-fermion operators O1
Qu and

O8
tq. Both operators receive constraints from top pair production, now with a public

likelihood [149], as well as new data in the boosted regime [179] and at 13.6 TeV [171].
The measurements, including boosted kinematics [179], provide the dominant constraining
power and will be discussed in more detail below.

42



4 Global Analysis using Published Likelihoods

−0.5 0.0 0.5
C1
Qu/Λ2 [TeV−2]

−1

0

1

C
8 tq

/Λ
2

[T
eV
−

2 ]

Old dataset

New dataset

0

1

0 1 −5 0
C3
φQ/Λ2 [TeV−2]

−0.4

−0.2

0.0

0.2

C
31 Q
q/

Λ
2

[T
eV
−

2 ]

0

1

0 1

−20 0
Cφt/Λ2 [TeV−2]

0

10

20

C
− φQ

/Λ
2

[T
eV
−

2 ]

0

1

0 1

Figure 4.9: Profile likelihood correlations for three pairs out of the 22 Wilson
coefficients, illustrating the impact of the new data listed in Tabs. 4.2 and 4.3
(black) compared to the previous analysis [79] (blue).

The right panel shows the improvement in constraints on O3
ϕQ and O31

Qq. With single
top production providing constraints on them, and we again benefit from the public
likelihood [151], a new pT,t distribution in t-channel single top production [200], and new
measurements of the tW production cross section [206,210]. We observe an improvement
in the individual constraints and their correlation. In particular, O31

Qq receives some
constraining power from boosted top pair production, which in turn allows single top
measurements to constrain O3

ϕQ.

Finally, in the lower panel of Fig. 4.9 we highlight the improvement in probing Oϕt and
O−ϕQ. As before, these operators are constrained by measurements of tt̄Z production, for
which we use a public likelihood. However, in this case, we only find a small change in
the correlated likelihood.

Altogether, we find that the public likelihoods do not have a significant effect on our
SMEFT limits. As discussed in Sec. 4.2, the likelihoods available and included in our
analysis all describe total cross sections, which limits their impact. On the positive side,
public likelihoods allow for accurate modeling of correlated systematics, an aspect we
will discuss in Sec 4.3.2.

Much of the improvement we see from our new dataset is due to the boosted regime.
For SMEFT analyses, such measurements are extremely helpful to constrain operators,
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Figure 4.10: Profile likelihood correlations showing the impact of boosted top
pair kinematics [179] (black), compared to the same dataset without this one
measurement (blue).

including momentum scaling. As discussed in Sec. 4.1.1, we add the unfolded ATLAS
measurement of boosted top pair production [179]. In Fig. 4.1, we already showed the
impact of a single SMEFT operator O8

Qd on the normalized mtt̄ distribution of this
measurement.

Here, we study its effect on the global analysis. Figure 4.10 demonstrates the impact
on a selection of two-operator correlations. The complete analysis including all data in
Tab. 4.2 and Tab. 4.3 is compared to the case where the measurement of boosted tops
from Ref. [179] is excluded. In the first panel, we observe an increase in constraining
power on O18

Qq, while the constraints on OtG are stable. This follows because this operator
is instead constrained by the tt̄ total cross section. In contrast, the limits on the Wilson
coefficients for energy-growing 4-fermion operators improve by a factor of two, as shown
in the right-hand panel for O8

Qq and O8
td.
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Figure 4.11: Profile likelihood correlations including correlated systematic and
theory uncertainties (blue) versus ignoring correlations between experimental
systematics (black).
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4.3.2 Correlated systematics

Public likelihoods, as discussed in Sec. 4.2, allow us to model and study correlated
systematic uncertainties across measurements by the same experiment. For measurements
without public likelihoods, the approximate treatment of correlations is discussed in
Sec. 4.1.2. For the Higgs sector, we already know that the correlations of systematic
uncertainties had a highly visible impact on the SMEFT analysis [75]. In particular, they
lead to a marked shift in the most likely values of Wilson coefficients while leaving the
width of the limits unchanged.

Here, we assess the impact of correlating systematic uncertainties in the top sector. In
Fig. 4.11, we show two sets of constraints for a selection of Wilson coefficients. In blue, we
show the constraints from a global analysis where all correlations between experimental
systematics and theory uncertainties are included. In black, we show the same results,
but we treat all experimental systematics as uncorrelated. For all Wilson coefficients, we
find good agreement, which indicates that in the top sector, the correlations of systematic
uncertainties cannot be ignored but have a limited effect on the final SMEFT limits.

We know that statistical uncertainties are not the leading challenge for global SMEFT
analyses. So, if the correlations between experimental systematics are not really relevant
either, it leaves the open question of which uncertainties then actually dominate the
SMEFT analysis. While for the Higgs sector, the modeling of theory uncertainties has
surprisingly little effect on the SMEFT limits [75], the QCD nature of top pair production
suggests that the situation will be different here. As a test, in Fig. 4.12, we repeat the
comparison of Fig. 4.11, neglecting all theory uncertainties. As before, we show the
global analysis with correlated systematics in blue, while in black, these correlations
are removed. Now, we are able to see a significant difference. When neglecting the
correlations, we observe an increase in the size of the constraints as well as a sizable shift
in the most likely point due to the flat distribution modeling theory uncertainties. This
is particularly marked in the 2-dimensional constraints on C18

Qq and C8
tq.

Comparing Figs. 4.11 and 4.12, we learn of the importance of theory uncertainties in the
top sector. If we neglect the theory uncertainties, the effect of correlated systematics is
non-negligible. While theory uncertainties currently wash out these effects, we expect

−0.1 0.0 0.1
CtG/Λ2 [TeV−2]

−0.1

0.0

0.1

C
31 Q
q/

Λ
2

[T
eV
−

2 ]

No syst corr.

With syst corr.

0

1

0 1 −0.2 0.0 0.2
C18
Qq/Λ2 [TeV−2]

−0.50

−0.25

0.00

0.25

C
8 tq

/Λ
2

[T
eV
−

2 ]

0

1

0 1

Figure 4.12: Profile likelihood correlations, ignoring theory uncertainties alto-
gether, and either including correlated systematic uncertainties (blue) or ignoring
correlations between experimental systematics (black).
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them to become more important as SM calculations become more precise and theory
uncertainties are reduced. Moreover, we cannot make any statement about the potential
impact of public likelihoods for those kinematic measurements that drive the SMEFT
sensitivity.

4.3.3 Marginalization vs profiling

As defined in Eq.(4.2), the central object of any SFitter analysis is a fully exclusive
likelihood, which is evaluated over the combined space of Wilson coefficients and nuisance
parameters. Obviously, the nuisance parameters are irrelevant to the physics interpretation
of the global SMEFT analysis. In addition, we are usually not interested in showing all
22 Wilson coefficients at the same time, and instead, we usually reduce this space down
to one or two dimensions. Statistically, this can be done by profiling or marginalizing the
likelihood. Only for perfect Gaussian distributions do the two methods give the same
results, as discussed in Sec. 4.1.2 and Ch. 3. In the Higgs-electroweak sector, significant
deviations between the two methods appear through a large under-fluctuation in one bin
of a kinematic distribution [75].

Fig. 4.13 displays a selection of correlations from a marginalization (black) and profiling
(blue) of the fully exclusive likelihood from all top sector measurements and Wilson
coefficients. We show constraints for OtG vs O1

tq and O18
Qq vs O8

Qd, but similar effects
can be seen in many operator pairs. In general, marginalization leads to narrower
constraints than results obtained from profiling. This is particularly evident in the
left panel of Fig. 4.13, and it is due to theory uncertainties and their flat likelihood
distribution. With this choice, the profile likelihood can force a perfect agreement between
data and predictions over a wide range of values for critical Wilson coefficients. When
we marginalize over the exclusive likelihood, the difference between Gaussian and flat
uncertainties is less pronounced, leading to more Gaussian and narrower one-dimensional
distributions, as discussed in detail in Ref. [75]. This effect is especially visible in the top
sector, where theory uncertainties are not only poorly defined [223], but also large.
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Figure 4.13: Comparison between marginalization (black) and profiling (blue) in
a global analysis of the top sector.
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Figure 4.14: Results from a combined SMEFT analysis of the top sector and the
Higgs-electroweak sector, showing the constraints at 95% CL on 43 degrees of
freedom, resulting from a profiled likelihood.

4.3.4 Top-Higgs-electroweak combination

Finally, making use of the numerical improvements in the SFitter implementation,
we can combine the top-sector SMEFT analysis from this paper with the SFitter
analysis of the Higgs, di-boson, and electroweak precision observables from Ref. [75]. This
combination has been studied in the literature in detail, showing that the two sectors are
linked, for instance, through OtG [138,139].

We confirm this state of the art and show the combined SFitter profile likelihood of
the two sectors in Fig. 4.14. In total, 43 degrees of freedom are constrained: The 22
coefficients constrained by the top sector and 21 additional operators relevant to the
Higgs, di-boson, and electroweak observables, discussed in Sec 2.1.2, where the notation
and conventions for both operator sets are provided. From the discussion above and in
Ref. [75], it is clear that the challenges and limitations of the global analyses in the two
sectors are not the same. We show the limits at 95% CL from one-dimensional profile
likelihoods of the combined fit (blue) and under the assumption of theory uncertainties
reduced by a factor of 2 (orange). The numerical values of the constraints shown in
Fig. 4.14 are provided in Tab. A.1 in App. A.

In the top sector, we find strong constraints on the four-fermion operators. The constraints
on their Wilson coefficients are driven by kinematic distributions such as the ATLAS
measurement of the boosted top discussed in Sec. 4.1.1, and therefore, theory uncertainties
do not play an important role in their constraints. Conversely, the constraint on CtG

improves significantly when theory uncertainties are halved, indicating that theory
uncertainties dominate constraints obtained from top quark pair production total cross
sections. Similarly, this hypothetical reduction of theory uncertainties has an effect on
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the constraints obtained from the single top, tt̄W and tt̄Z on coefficients such CtW , CbW ,
and CtZ .

On the other hand, we observe no significant changes in the constraints on the operators
relevant to the Higgs, di-boson, and electroweak sectors, shown in the lower half of
Fig. 4.14, when theory uncertainties are reduced. The exception is CϕG, which also
benefits from the top quark data through its correlation with CtG and Ctϕ. This is in
agreement with Ref. [75], where it was found that in the Higgs-gauge sector, systematic
uncertainties are the dominant source of uncertainty for many of the observables in this
sector.

4.4 Outlook

Global SMEFT analyses are an exciting development at the LHC, as they combine their
role as a precision hadron collider with the goal of interpreting all measurements in terms
of precision quantum field theory. This precision theme implies that even if we know that
the current measurements do not rule out the Standard Model, limits on SMEFT Wilson
coefficients provide important information about fundamental physics.

To extract limits on fundamental physics parameters, we need a comprehensive uncertainty
treatment covering experimental statistical uncertainties, experimental systematics, and
theory uncertainties. For the latter two, it is crucial to include correlations. Public
likelihoods are the state of the art in communicating such experimental results to a
broader community. Therefore, we include, for the first time, public ATLAS likelihoods
for cross section measurements in a global analysis. These public likelihoods allow us to
systematically evaluate the effects of correlations of systematic and theory uncertainties
on a global analysis.

The basis of the global SFitter analysis is a fully exclusive likelihood. It includes a
large set of rate and kinematic measurements, either pre-processed by ATLAS or CMS,
unfolded, or extracted and backward-engineered from experimental publications. The
uncertainty treatment is very flexible, including a choice of flat nuisance parameters
for correlated theory uncertainties. Starting from the fully exclusive likelihood, we can
employ a profile likelihood or a Bayesian marginalization treatment to extract limits on
individual Wilson coefficients. In the top sector, we find no significant difference between
these two statistical approaches.

The focus of this chapter was on the role of different uncertainties, their correlations,
and the role of public likelihoods in this context. In a similar analysis, albeit without
public likelihoods, we found that in the electroweak sector, the correlations were crucial,
whereas the theory uncertainties were not (yet) a limiting factor [75]. Intriguingly, the
situation in the top sector is the opposite: Theory uncertainties are crucial, while the
correlations of experimental systematics have a limited impact on the SMEFT limits.
This reflects the QCD nature and the statistics of top pair production.

We have demonstrated that public likelihoods provide a much more flexible approach
to handling nuisance parameters. However, fully leveraging their potential currently
proves difficult due to the large number of measurements included in our global analysis.
We emphasize that this is not a final statement about public likelihoods in SMEFT
analyses. The reason for this is that we find kinematic measurements of boosted top
pair production driving the improvement of the SMEFT limits. For unfolded kinematic
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measurements, there are no public likelihoods available yet, but we are looking forward
to implementing them in SFitter in the future once they are available.

We finished this study of the impact of theory uncertainties in a consistent theory
framework of LHC data by performing the first combined SFitter analysis of the
Higgs, electroweak, and top sectors. This further displayed the limiting effect of theory
uncertainties on the constraining power of modern top measurements compared to those
in the Higgs sector.
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Chapter 5
Global EDM analysis

The research and results presented in this chapter are based on work in collaboration
with Skyler Degenkolb, Tanmoy Modak, Margarete Mühlleitner and Tilman Plehn and
have been published in Ref. [2]. All figures and tables, as well as parts of the text, are
similar or identical to the ones in the article.

We have introduced the concepts of EFTs and how EDMs can be addressed as a low-energy
EFT in Ch. 2. Based on this theoretical approach, the next step is to implement the EDM
framework into SFitter as a tool for global analyses, discussed in Ch. 3. Based on an
MCMC algorithm and equipped with a frequentist approach for likelihood construction,
SFitter is ideal for the task of performing a global analysis using EDM data. Therefore,
it has to be adapted from SMEFT data and parameters, coming with their own challenges,
to also perform an analysis using EDM data. Different from the linear and squared
contributions in SMEFT, the relation between EDM measurements and their model
parameters is linearly, but the uncertainty implementation differs slightly. For LHC
experiments, all uncertainties are treated as uncertainties on the experimental data,
whereas now only systematic and statistical uncertainties are applied to experimental
data, while the theory uncertainties depend on the model parameters. This global
analysis provides updated limits on a multidimensional model space and a comprehensive
uncertainty treatment, including uncertainties from theoretical calculations. Also, we
can identify the impact of current and future measurements on the parameter limits or
the impact of reduced uncertainties due to the flexibility of SFitter.

This chapter is organized in the following way: We start by describing the used mea-
surements, their implementation, uncertainties, and the model parameters entering the
considered processes in Sec. 5.1. Next, we provide single parameter ranges from the data
on individual model parameters in Sec. 5.2. Then, Sec. 5.3 discusses the results from the
global analysis with and without theory uncertainties, first, on a well-defined sub-space
and then on the full parameter configuration.

5.1 EDM Measurements

The Lagrangian parameters derived in Section 2.2, Eq. (2.42), can be used to predict the
measured EDMs di. These measurements are linked to the Lagrangian parameters in
terms of linear combinations with system-specific coefficients αi,cj ,

di =
∑
cj

αi,cjcj . (5.1)
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System i Measured di [e cm] Upper limit on |di| [e cm] Reference

n (0.0± 1.1stat ± 0.2syst) · 10−26 2.2 · 10−26 [230]
205Tl (−4.0± 4.3) · 10−25 1.1 · 10−24 [231]
133Cs (−1.8± 6.7stat ± 1.8syst) · 10−24 1.4 · 10−23 [232]

HfF+ (−1.3± 2.0stat ± 0.6syst) · 10−30 4.8 · 10−30 [233]
ThO (4.3± 3.1stat ± 2.6syst) · 10−30 1.1 · 10−29 [234]
YbF (−2.4± 5.7stat ± 1.5syst) · 10−28 1.2 · 10−27 [235]

199Hg (2.20± 2.75stat ± 1.48syst) · 10−30 7.4 · 10−30 [236,237]
129Xe (−1.76± 1.82) · 10−28 [238,239]
171Yb (−6.8± 5.1stat ± 1.2syst) · 10−27 1.5 · 10−26 [240]
225Ra (4± 6stat ± 0.2syst) · 10−24 1.4 · 10−23 [241]
TlF (−1.7± 2.9) · 10−23 6.5 · 10−23 [242]

Measured ωi [mrad/s] Rescaling factor xi for di Reference

HfF+ (−0.0459± 0.0716stat ± 0.0217syst)† 0.999 [233]
ThO (−0.510± 0.373stat ± 0.310syst) 0.982 [234]
YbF (5.30± 12.60stat ± 3.30syst) 1.12 [235]

Table 5.1: Measured EDM values and 95%CL ranges. For 129Xe we combine two
independent results with similar precision, using inverse-variance weighting. For
the open-shell molecules, we also provide the measured angular frequencies and
the rescaling factor which allows us to use xidi for each experimentally reported
di. For the definition of xi, see text. †The frequency for HfF+ is scaled by a
factor of 2 relative to Ref. [233], to consistently use Eq. (5.8) for all systems.

The measurements we analyze are listed in Tab. 5.1 and discussed below. Unless otherwise
indicated, we always refer to the isotopes and charge states that are given in Tab. 5.1,
with the relevant isotopes, for the considered molecular systems in this global analysis,
these are 180Hf, 232Th, 174Yb, 205Tl, 16O, and 19F. Furthermore, we decided to neglect
constraints of weaker experimental bounds from 85Rb [243,243], Xem [244], PbO [245],
Eu0.5Ba0.5TiO3 [246], and the Λ hyperon [247]. Additionally, the limits from µ and τ
leptons will factorize from the hadronic-scale Lagrangian and thus will not be included
in this global analysis, but will be part of future analyses.

As discussed in Sec. 2.2, the α-values for all C(0,1)
S,P,T can be extracted from the corresponding

relations of the low-energy parameters given in Eq. (2.42). For this derivation we follow
the steps from Eqs. (2.35)-(2.38) and find

α
C

(0)
S

= αCS
− αCP

g
(1)
P

g
(0)
S

⟨σn⟩ − ⟨σp⟩
⟨σn⟩+ ⟨σp⟩

α
C

(0)
P

= αCP
+ αCS

g
(1)
S

g
(0)
P

Z −N
Z +N

α
C

(0)
T

=
(

1− g
(1)
T

g
(0)
T

⟨σn⟩ − ⟨σp⟩
⟨σn⟩+ ⟨σp⟩

)
αCT

, (5.2)
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System i ⟨σn⟩ ⟨σp⟩ ⟨σz⟩(0)
αi,CS

[e cm] αi,CP
[e cm] αi,CT

[e cm]

Tl 0.274 0.726 1 −6.77 · 10−18 [249] 1.5 · 10−23 [250] 5 · 10−21 [250]
Cs −0.206 −0.572 −0.778 7.8 · 10−19 [24] 2.2 · 10−23 [250] 9.2 · 10−21 [250]

199Hg −0.302 −0.032 −0.334 −2.8 · 10−22 [251] 6 · 10−23 [252] 1.7 · 10−20 [252]
129Xe 0.73 0.27 1 −6.28 · 10−23 [252] 1.6 · 10−23 [252] 5.7 · 10−21 [252]
171Yb −0.3 −0.034 −0.334 −7.34 · 10−22 [253] 3.60 · 10−23 [253] 1.04 · 10−20 [253]
225Ra 0.72 0.28 1 5.63 · 10−21 [253] −6.4 · 10−22 [252] −1.8 · 10−19 [252]
TlF 0.274 0.726 1 1.09 · 10−16 [253] 3.8 · 10−18 [253] 1.06 · 10−15 [254]

Table 5.2: Effective parameters used as input to our global analysis, as summa-
rized in Tab. 5.3.

with the αCS,P,T
given in Tab. 5.2. In this table we also show

⟨σz⟩(0) = ⟨σn⟩+ ⟨σp⟩ , (5.3)

which is proportional to the isoscalar sum of neutron and proton spin projections in a
shell model of the nucleus, a factor of two being given by the usual relation of the spin and
Pauli operators. The shell model is not expected to be reliable for the deformed nuclei
171Yb and 225Ra. The values given in Tab. 5.2 are chosen to optimize the agreement of the
calculated and measured nuclear magnetic moments within this framework. Literature
values are available for these nuclear species [91]. The spin fractions contributing to
semileptonic coefficients in TlF only take into account the 205Tl nucleus, though see
Ref. [248] for some consideration of contributions from the 19F nucleus. For α129Xe,CS

we
use a scaling relation to derive a value from α129Xe,CT

of the cited reference.

5.1.1 Nucleons

Starting with the simplest possible, hadronic EDM measurement, from single nucleons.
Their EDM can be translated directly from the Lagrangian in Eq. (2.28) and written as

− i2F
µνdN

(
N̄σµνγ5N

)
. (5.4)

Despite the direct translation from the Lagrangian, the nucleon EDM can also be described
by chiral perturbation theory, which is based on the hadronic-scale Lagrangian. In that
case, the nucleon EDM consists of short-range nucleon contributions dsr

N , NNLO pion-loop
contributions, and potential direct contributions to Eq. (5.4) within and beyond SM [255],

dn = dsr
n −

egA

8π2Fπ

[
g(0)

π

(
ln m2

π

m2
N

− πmπ

2mN

)
− g

(1)
π

4 (κ0 − κ1) m
2
π

m2
N

ln m2
π

m2
N

]
(5.5)

dp = dsr
p + egA

8π2Fπ

[
g(0)

π

(
ln m2

π

m2
N

− 2πmπ

mN

)
− g

(1)
π

4

(
2πmπ

mN
+
(5

2 + κ0 + κ1

)
m2

π

m2
N

ln m2
π

m2
N

)]
,

where Fπ = 92 MeV is the pion decay constant [256], mπ = 139 MeV, mN = 940 MeV,
gA ≈ 1.27 is the nucleon isovector axial charge, and the isoscalar and isovector nucleon
anomalous magnetic moments are κ0 = −0.12 and κ1 = 3.7.
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The renormalization scale in this case is set to the nucleon mass, while the occurrence of
splitting the nucleon into proton and neutron masses will lead to higher-order effects.
However, these effects and uncertainties coming from higher-order contributions are
negligibly small compared to other sources of experimental and theoretical uncertainties.
The hadronic-scale parameters can be related to parameters of the weak-scale, where the
finite values of g(0,1)

π are related to a CKM phase or θ̄, but also to hadronic 4-fermion
operators. The input from the presently most sensitive neutron EDM measurement to
our global analysis is given in Tab. 5.1.

In Eq. (5.5) we can see, that we could either use dsr
n,p or dn,p in our set of model

parameters. In terms of a global analysis, the choice does not matter, because these
Lagrangian parameters, including their renormalization condition, are just the parameters
of the outcome. Nevertheless, their real purpose is to compute other observables and
compare them to measurements using a consistent theoretical framework. Choosing one
definition will thus have an impact on the definition of other parameters.

As argued in Sec. 2.2, one could absorb dp or equivalently dsr
p into dn, dsr

n respectively.
Then, the two choices will no longer be equivalent, and we must be careful when
switching from one version to another. Choosing dn,p as model parameters implies that
we use measured values as Lagrangian parameters, with a corresponding renormalization
condition called on-shell renormalization in collider physics. In that case, we extract dn

and dp from data and could use Eq. (5.5) to translate them into dsr
n,p. The dn,p scheme is

used throughout this thesis, however the alternative implementation using dsr
n,p, which is

a better approximation for the relation dsr
p = −dsr

n , will be discussed in App. B, where we
also present a complete set of results using this approach.

5.1.2 Open-shell (paramagnetic) systems

Paramagnetic atoms and molecules, more precisely referred to as atoms and molecules
with open electronic shells1, are primarily sensitive to the electron EDM and scalar
electron-nucleon couplings C(0,1)

S , written down in Eq. (2.30), due to their atomic shell
structure. For open-shell systems, it is common to distinguish between the case of
open-shell atoms with the atomic EDM contribution

di = αi,dede + αi,CS
CS +

∑
cj

αi,cjcj for i ∈ {Tl,Cs} (5.6)

and open-shell molecules. Nevertheless, in both cases, the terms involving the Lagrangian
parameters de and C

(0,1)
S dominate. For molecular systems, the experimentally relevant

or measured quantity is not a fixed dipole moment but rather a phase difference that
accumulates over the measurement time and is interpreted as frequency. This frequency
is often reported as a parity- and time-reversal-violating frequency shift ωi,

ωi = η
(m)
i,de

de + k
(m)
i,CS

CS +
∑
cj

α
(m)
i,cj

cj for i ∈ {HfF+,ThO,YbF} , (5.7)

where the superscript (m) indicates the molecular system. These angular frequencies
are also listed in Tab. 5.1. Given ωi as frequency, emphasize that it does not scale

1We prefer the nomenclature of open- and closed-shell systems, rather than paramagnetic or diamagnetic
(respectively), since this more clearly indicates the properties that are relevant for determining the
leading contributions to the total system EDM.
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5 Global EDM analysis

with the experimental applied electric field in a simple way, as it is the case for atomic
structures. It rather depends on the specific molecular structure and the so-called effective
electric field Eeff that saturates when the molecule is polarized. It is noticeably, that
αi,de is dimensionless, while η(m)

i,de
has dimension

[
mrad× (s e cm)−1]. Similarly, αi,CS

has the units of an EDM with [e cm], while k(m)
i,CS

has units of angular frequency given by[
mrad× (s)−1].

Considering the remaining contributions to open-shell molecular EDMs, which have weak
dependencies on other low-energy constants, we can see that, in particular, the µ and τ
leptons are indirectly constrained via the limits from ThO and Hg [269]. However, we
are not aware of any established values for the coefficients of semileptonic or hadronic
parameters. We thus take α(m)

i,cj
= 0 in Eq. (5.7), while for the open-shell atoms we obtain

values for semileptonic coefficients either from the literature or by scaling arguments, as
reported in Tabs. 5.2 and 5.3.

Starting from the truncated version of Eq. (5.7), we are able to adapt the convention in
such a way that all signs, g-factors, spin magnitudes etc. are absorbed into the coefficients
on the right side, leaving us with

ωi = η
(m)
i,de

de + k
(m)
i,CS

CS

= −Eeff,i

ℏ
de + Wi

ℏ
CS . (5.8)

Commonly used, Eeff refers to the effective electric field where

Eeff = Eeff sgn(J⃗ · n̂) ⟨n̂ · ẑ⟩ , (5.9)

and J⃗ is the total electronic angular momentum, n̂ is the direction of the internuclear
axis, and ẑ is the direction of the externally applied electric field. With this we can
define Ω = J⃗ · n̂ as a quantum number, and ⟨n̂ · ẑ⟩ indicates the degree of polarization
of the molecule by the applied electric field. More information and conventions used
for the internal electric field, orientation of the internuclear axis, etc. can be found in
Appendix A.3 of Ref. [270].

The truncated expression for the frequency shift thus provides us with physical expressions
for the two constants,

η
(m)
i,de

= −Eeff,i

ℏ
and k

(m)
i,CS

= Wi

ℏ
. (5.10)

Unfortunately, the frequency measurement cannot be directly converted into a perma-
nent molecular dipole moment due to the molecule’s electrical polarization during the
measurement. The linear energy shift originates in the saturation of the electric field in
the lab-frame given by ⟨n̂ · ẑ⟩ → 1, and the limited dependency on the external field is
the same as the one of an induced dipole moment. Therefore, to translate the molecular
frequency difference ωi to terms of a permanent dipole moment, we define the molecule’s
di in relation to the given effective electric field,

−Eeff,idi ≡ −Eeff,ide +WiCS . (5.11)
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5 Global EDM analysis

We can use this form to define, in analogy to Eq. (5.6),

di = de + αi,CS
CS ⇔ αi,de = 1 and αi,CS

= − Wi

Eeff,i
=
k

(m)
i,CS

η
(m)
i,de

. (5.12)

With this treatment, we can also re-cast the limits from the open-shell molecules for
our global analysis in units of [e cm]. Now, all coefficients for all considered systems
are expressed in the same units, which has the side effect, that αi,de = 1 holds for
all open-shell molecules. This approach also serves two additional purposes: (i) Many
different conventions are used for these coefficients, sometimes using the same symbols
to describe different quantities. In many publications, these measured quantities are
linked to the electron EDM, which makes a comparison relatively straightforward and all
quantities have to be ultimately connected to a measured experimental phase; (ii) As
first pointed out in Refs. [265,266], there is a considerable variation in the literature for
given values of η(m)

i,de
and k(m)

i,CS
in a given system, but there is much less variation in their

ratio. By dividing Eq. (5.7) by η(m)
i,de

the uncertainty on this coefficient should be passed
on to all other semileptonic and hadronic coefficients.

Note that we use η(m)
i,de

to obtain the sole-source limits on de from the experimentally
measured ωi but also to convert the experimentally measured frequency values into EDM
units for Tab. 5.1. These experimental limits for EDMs from open-shell molecules in
Tab. 5.1 are all rescaled by the indicated factor xi. The listed xi differ from the unity
value in the case when the updated values for η(m)

i,de
differ from the cited publications.

This is typically the case when improved molecular structure calculations have become
available since the experimental limit was published.

Recommended values for many of the αi,cj are given in Tables III-V of Ref. [26] and
in Table 4 of Ref. [251], including in many cases the ranges corresponding to theory
uncertainties (or at least different reported values). We give our choices for αi,cj in
Tab. 5.3.

5.1.3 Closed-shell (diamagnetic) systems

In contrast to the open-shell systems, where sub-leading contributions are largely neglected
due to lack of theory inputs, the small contributions of de and C(0)

S are considered for all
closed-shell systems. These are typically smaller contributions to the EDM observable,
mostly in such cases where all electron spins are paired and the main contributions
coming rather from nucleon EDMs, nuclear forces, which are mediated by pion exchange
with strengths g(0,1,2)

π , and the nuclear-spin-dependent semileptonic interactions C(0)
T

(and possibly C(0)
P ). The experimental precision, especially of Hg, is nevertheless high

enough to contribute meaningful constraining power for de and C
(0)
S .

Unfortunately, it seems, that the arguments [251] towards the effect of closed-shell systems
and their constraining power in the de − CS subspace due to a different sign of the ratio
αi,de/αi,CS

compared to open-shell systems, does not hold for Hg or most of the other
systems listed in Tab. 5.1. While recent calculations [253] may indicate that αi,de and
αi,CS

in some highly-correlated closed-shell systems could indeed have a different sign, the
theory uncertainties for these cases are large enough to cross zero. Numerical calculations
for specific systems so far only support ratios of the same sign [271]. Two subtleties are
important to consider in this context: (1) The value for αi,de includes contributions from
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5 Global EDM analysis

multiple different interactions [252,253,257,272] whose contributions must be summed,
and (2) our implementation of α

C
(0)
S

could generate sign changes via the difference of
terms in Eq. (5.2).

At the moment, as it can be seen from Tabs. 5.2 and 5.3, Ra and Yb are the only
measured systems where this situation appears to arise. These may thus represent special
cases among closed-shell systems, in that sense that reducing the error of experimental
and theory inputs could significantly impact the de−C(0)

S subspace that is complementary
to the dominating open-shell constraints. The supporting arguments for such claims
should, however, be examined in detail.

The contributions of nuclear forces and nucleon EDMs are frequently interpreted via the
Schiff moment of a given nucleus [26], which is more easily related to nuclear structure
parameters [250]. In terms of our model coefficients, the Schiff moment Si of system
i and a system-specific coefficient ki,S can be expressed in terms of the corresponding
EDM via

ki,SSi =
∑

cj∈{dn,p,g
(0,1,2)
π }

αi,cjcj

≈ ki,S

[
si,ndn + si,pdp + mNgA

Fπ

(
ai,0g

(0)
π + ai,1g

(1)
π

)]
. (5.13)

where the coefficients si,N (N = n, p) indicate contributions from EDMs of unpaired
nucleons and the coefficients ai,m (m = 0, 1, 2) parameterize the strength of a CP-violating
pion exchange, organized by isospin, for the nucleus of system i. We drop the g(2)

π term
as discussed in Chapter 2.2 and note that the coefficients in front of g(0)

π and g
(1)
π will

change when we replace dn,p with dsr
n,p.

The coefficient ki,S is calculated for many systems of interest and can, in principle, be
large in heavy and especially deformed nuclei such as 225Ra. This corresponds to a
nuclear-structure induced enhancement of the observable EDM, which applies to both
the nucleon EDMs and the pion-exchange forces. This implies that among the potentially
leading contributions from the six hadronic-scale model parameters C(0)

P,T , dn,p, and g(0,1)
π ,

very different weights can be expected according to the electronic and nuclear structure
of the various closed-shell systems. Inspecting Tab. 5.3 reveals that to a limited extent,
this is indeed already the case. However, this complementarity is not yet fully exploited.

Despite the pion pole enhancement, C(0)
P appears to be suppressed relative to C(0)

T in
all measured systems. The coefficients of g(0,1)

π are typically of comparable size for a
given system, although possibly different in sign. Unfortunately, the coefficients of dn,p

are not well known for most nuclei, although in principle these can be calculated. For
the pion-exchange forces, even in nuclei that have been the object of many studies, the
corresponding theory uncertainties are large. This is especially true for soft nuclei such
as the chosen Hg and Xe, in which non-static deformations can present special challenges.

For nuclei with spin I > 1/2, a CP-violating nuclear magnetic Quadrupole moment can,
in principle, exist in analogy to a Schiff-moment-induced EDM and can also be analyzed
within a common global analysis. At the moment, among the experimental systems that
have already been measured, Cs is the only one where this effect is expected to be most
relevant.

58



5 Global EDM analysis

As part of a global analysis, a large number of experimental measurements from com-
plementary closed-shell systems can disentangle contributions from model parameters,
which are relevant at some level for all considered measurements. In this sense the role of
de and C

(0)
S takes on a new importance, not only to further constrain these parameters

themselves, but also as an additional contribution to the EDM that brings along uncer-
tainties which dilute the constraining power for other model parameters. Closed-shell
molecular systems such as TlF or systems containing Schiff-enhanced nuclides introduce
complementary constraining power to our global analysis.

We finally note that closed-shell systems unite theory inputs from different communities.
Different conventions for assigning a negative isospin projection in the nucleon doublet
must be carefully noted when combining calculated coefficients from different sources,
especially when we include semileptonic interactions with nuclear forces. Reference [273]
makes an effort to disambiguate a part of this issue for α

g
(0,1,2)
π ,129Xe.

5.2 Single parameter ranges

In this chapter, we provide toy ranges of individual model parameters taken from the set
of {

de, C
(0)
S , C

(0)
T , C

(0)
P , g(0)

π , g(1)
π , dn, dp

}
, (5.14)

using the set of EDM measurements one by one. To extract these single parameter
ranges, we utilize Eq. (5.6) and include all EDM measurements listed in Tab. 5.1 and the
model dependencies from Tab. 5.3. For the likelihood we assume a Gaussian form, which
means that all limits are quoted as symmetric one-sigma error bars around the central,
best-fit value. While these single-parameter limits allow us to compare the reach of
different measurements for CP violation as a whole, they do not give the allowed ranges
of the individual model parameters. Contributions from different model parameters to
the same measurement can cancel. Because an EFT builds on the assumption that many
higher-dimensional operators are induced by a given physics model, the single-parameter
limits are overly optimistic.

Using the single-parameter constraints given in Tab. 5.4 we can compare the impact of
different EDM measurements on a given model parameter, with the caveat that multi-
dimensional correlations might change that picture. Starting with the electron EDM
de, the open-shell molecules HfF+ and ThO provide the strongest constraints, while the
open-shell YbF molecule has a similar constraining power as the closed-shell Hg. The
same two open-shell molecules lead the constraining power for the scalar electron-nucleon
coupling C(0)

S , again followed by Hg, YbF, and Tl.

The pseudoscalar and tensor electron-nucleon couplings C(0)
P,T can be probed by the

open-shell atoms and the closed-shell systems. This is done most efficiently using Hg at
present and then, with much reduced constraining power, followed by Tl, Xe, and TlF. It
is difficult to estimate the impact of these measurements on the combination of C(0)

P and
C

(0)
T , and we will see in the next section how this more complex dependence affects the

full global analysis.

The four hadronic parameters, g(0,1)
π and dn,p, are most strongly constrained by the

neutron EDM measurement and again Hg, suggesting that there will be significant
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System i de [e cm] C
(0)
S C

(0)
P C

(0)
T

Tl (7.2± 7.7) · 10−28 (5.9± 6.4) · 10−8 (−2.9± 3.1) · 10−6 (−4.5± 4.9) · 10−5

Cs (−1.5± 5.6) · 10−26 (−2.3± 8.9) · 10−6 (1.3± 5.0) · 10−4 (−1.1± 4.1) · 10−4

199Hg (1.9± 2.7) · 10−28 (−1.7± 2.5) · 10−9 (3.3± 4.7) · 10−8 (−3.4± 4.9) · 10−10

129Xe (2.2± 2.3) · 10−25 (8.4± 8.7) · 10−7 (−1.0± 1.1) · 10−5 (−1.4± 1.5) · 10−7

171Yb (−4.7± 3.6) · 10−24 (5.2± 4.0) · 10−6 (−1.4± 1.1) · 10−4 (1.8± 1.4) · 10−6

225Ra (−0.7± 1.1) · 10−22 (3.5± 5.3) · 10−4 (−5.2± 7.9) · 10−3 (−0.9± 1.3) · 10−4

TlF (−1.3± 2.1) · 10−26 (−1.2± 2.0) · 10−7 (−1.1± 1.9) · 10−5 (−0.9± 1.6) · 10−8

HfF+ (−1.3± 2.1) · 10−30 (−1.4± 2.3) · 10−10

ThO (4.3± 4.0) · 10−30 (2.8± 2.7) · 10−10

YbF (−2.4± 5.9) · 10−28 (−2.7± 6.6) · 10−8

g
(0)
π g

(1)
π dn [e cm] dp [e cm]

Tl (6.2± 6.7) · 10−8 (−1.8± 1.9) · 10−6 (7.0± 7.5) · 10−20 (−2.5± 2.7) · 10−20

Cs (−2.2± 8.6) · 10−6 (−0.7± 2.6) · 10−6 (−1.8± 6.9) · 10−19 (−0.3± 1.0) · 10−20

199Hg (−0.7± 1.0) · 10−12 (−3.6± 5.1) · 10−13 (−1.6± 2.3) · 10−26 (−1.6± 2.3) · 10−25

129Xe (4.5± 4.7) · 10−10 (6.0± 6.2) · 10−10 (−7.7± 7.9) · 10−24 (−3.6± 3.7) · 10−23

171Yb (2.4± 1.8) · 10−9 (1.2± 0.9) · 10−9 (6.0± 4.6) · 10−23 (6.0± 4.6) · 10−22

225Ra (2.3± 3.5) · 10−9 (−5.8± 8.7) · 10−10 (−0.7± 1.1) · 10−20 (−3.4± 5.0) · 10−20

TlF (2.4± 4.1) · 10−11 (−0.7± 1.2) · 10−9 (2.7± 4.6) · 10−23 (−1.0± 1.6) · 10−23

Table 5.4: Single-parameter ranges allowed by each of the EDM measurements
given in Tab. 5.1 and coefficients from Tab. 5.3. The neutron EDM itself is
best constrained by the direct experimental measurement using neutrons, see
Tab. 5.1.

correlations between the leptonic and hadronic model parameters in the global analysis.
The other closed-shell systems lead to much weaker limits, but will still be needed to
constrain the 3-dimensional hadronic model space. Note that we are fixing the relation
between the neutron and proton parameters in the Lagrangian, Eq. (2.41), but from
Tab. 5.3 we know that different measurements probe different mixtures of these two
parameters.

5.3 Global analysis

To combine the available EDM measurements and analyze them in terms of the hadronic-
scale Lagrangian and its parameters, as in Eq. (2.42), we use the established SFitter
analysis tool. It constructs a global likelihood with a comprehensive uncertainty treatment
and analyses it regarding high-dimensional correlations. Depending on the preferred
statistical framework, lower-dimensional and one-dimensional likelihoods for the indi-
vidual model parameters can be derived by profiling or marginalization. Assuming that
experimental uncertainties are Gaussian, profiling and marginalization have to lead to
identical results. For the theory uncertainties, discussed in Sec. 5.3.5, the difference
between the two approaches makes a formal, but not significant difference.
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5.3.1 SFitter framework

SFitter as tool for global analyses was thoroughly introduced in Chapter 3. Thus we
provide here only a short review of SFitter used for EDMs. It has a strong focus on
the correct treatment of uncertainties, including theory uncertainties [223], and can also
switch between Bayesian and frequentist approaches [75,99], and includes some published
experimental likelihoods [1].

Our first SFitter analysis of EDMs relates the 11 measurements from Tab. 5.1 to
the seven model parameters in Eq. (2.42). In general, SFitter includes statistical,
systematic, and theory uncertainties. The heart of SFitter is the fully exclusive
likelihood as a function of model and nuisance parameters. All measurements are
described as uncorrelated, with the individual systematic uncertainties described by
either Poisson or Gaussian likelihood. Statistical uncertainties are, usually, uncorrelated
as well and described by a Poisson distribution, turning into a Gaussian for high statistics.
Experimental systematics are assumed to have a Gaussian shape, but can be described
by any nuisance parameter.

For the EDM analysis, the situation is relatively simple. First, from Eq. (5.1) we know
that all observables depend on the model parameters linearly. Second, we can combine the
statistical and systematic experimental uncertainties into the symmetric Gaussian error
bars given in Tab. 5.1. Finally, we do not have to consider nuisance parameters, if we
assume that the likelihood has a Gaussian form for each independent measurement. This
Gaussian assumption also implies that for uncorrelated uncertainties, a profile likelihood
and Bayesian marginalization will yield the same result.

Theory uncertainties have no well-defined likelihood shape, and no maximum, but they
can be thought of as a range [223]. A flat theory uncertainty is not parametrization-
invariant, as one would have expected from a fixed range, but without a preferred central
value we consider it conservative. With this implementation in SFitter following a
flat distribution, the central value of the parameter can be shifted within this range at
no cost in the likelihood. Therefore, compared to analyses without considering theory
uncertainties, the impact of the central value of certain parameters is negligible for larger
ranges allowed by theory uncertainties. For the EDM global analysis, theory uncertainties
significantly affect most α-values: The central values given in Tab. 5.3 mainly impact
implementations that neglect theory uncertainties, while the corresponding ranges are by
far more relevant when theory uncertainties are taken into account.

To construct the exclusive likelihood, SFitter evaluates EDM predictions over the
entire model parameter space. It uses a Markov chain to encode the likelihood in the
distribution of points covering the model space. To remove nuisance parameters or
to extract limits on a reduced number of model parameters, SFitter can employ a
profile likelihood or a Bayesian marginalization [75, 99]. These two methods will give
different results, except for the case when uncorrelated Gaussians are calculated. While
profiling over flat theory uncertainties and Gaussian experimental uncertainties leads to
the RFit [227] prescription, profiling over two parameters with flat likelihood leads to
linearly added uncertainties even for uncorrelated parameters.

While Eq. (5.1) suggests a homogeneous set of model parameters, the typical sizes of the
model parameters in Eq. (2.42) and the α-values in Tab. 5.3 can be extremely different.
For numerical reasons, we internally re-scale each model parameter and each α-value
such that all model parameters are evaluated with a similar size. Concretely, this means
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Figure 5.1: Correlations from the 4-dimensional analysis of {de, C
(0)
S , g

(0)
π , dn},

based on all EDM measurements but neglecting theory uncertainties. The
ellipses indicate 68% and 95% CL.

rescaling de by a factor 1029, C(0)
S by 109, g(1)

π and g(0)
π by 1010, C(0)

T by 108, C(0)
P by 106,

and dn/p by 1023. These rescalings are also reflected in the way we present our results.

5.3.2 Well-constrained model sub-space

As a starting point for the global analysis and to be able to understand the main features
of this newly implemented measurements and model space, we consider a sub-space of
well-known and well-constrained parameters. Following the discussion in Sec. 5.2, we
expect de and C

(0)
S to be constrained well by the open-shell molecules HfF+ and ThO.

Similarly, the hadronic parameters g(0)
π and dn are strongly constrained by the neutron

and Hg EDMs. This means the model sub-space{
de, CS , g

(0)
π , dn

}
(5.15)

should be constrained well by the full set of measurements given in Tab. 5.1.

More than in the numerical constraints and boundaries, we are interested in the correlation
of the constraints for these four model parameters. In Fig. 5.1 we show these correlations
extracted as 2-dimensional profile likelihoods from the fully exclusive, 4-dimensional
likelihood. Three structural aspects stick out: (i) A strong anti-correlation between de

and C
(0)
S ; (ii) a very slight anti-correlation between g

(0)
π and dn; and (iii) essentially no

correlations between the {de, C
(0)
S } and {g(0)

π , dn} parameter subsets.
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Within the leptonic sector, the strong correlations between de and C
(0)
S and their in-

dependence from the remaining parameter space are expected to remain for the full
global analysis. The reason is that it is induced by the strongest measurements of HfF+

and ThO, and according to our parameterization as shown in Tabs. 5.3 and 5.4, those
two measurements are not affected by any other model parameter. This means the
upper-left panel of Fig. 5.1 factorizes from our global EDM analysis, and we can consider
the remaining model parameters separately and without including the HfF+ and ThO
measurements further.

Moving from the leptonic to the hadronic sector where the situation is different for the
model parameter. Similar to the ThO and HfF+ measurements, the neutron and Hg
measurements are three orders more constraining than the other measurements. However,
they are constraining more model parameters than just dn and g(0)

π , so for the sub-space
analysis we could have as well chosen g

(0)
π vs g(1)

π , without any change in the conclusion.
This leads to the expansion of the hadronic parameter space as the next step to see what
patterns might emerge. The parameters de and C

(0)
S will be kept factorized for the rest

of our global analysis.

To understand the role of approximately flat directions in our model space, we can
diagonalize and invert the α-matrix given in Tab. 5.3 for the well-constrained subsystem.
To be able to invert the α-matrix, we have to truncate it to a squared form. We know that
the leading constraints in the de−C(0)

S plane come from the ThO and HfF+ measurements
and can be described by the invertible relation

(
dHfF+

dThO

)
=

αHfF+,de
αHfF+,C

(0)
S

αThO,de αThO,C
(0)
S

 (
de

C
(0)
S

)
. (5.16)

We can diagonalize the α-submatrix, find the eigenvalues 1.0 and 5.93 · 10−21, and invert
it to give the model parameters as a function of the measurements,(

de

C
(0)
S

)
=
(

2.55 −1.55
−1.69 · 1020 1.69 · 1020

) (
dHfF+

dThO

)

=
(

2.55dHfF+ − 1.55dThO

(−1.68dHfF+ + 1.69dThO) · 1020

)
. (5.17)

Approximately flat directions in model space appear because the measurements are
uncorrelated. We could determine de much more precisely and without any effect from
C

(0)
S if we could measure the fully correlated combination (2.55dHfF+ − 1.55dThO), which

unfortunately is not possible.

Deliberately correlated measurements can be envisioned, for instance via comagnetometry,
as already used for the neutron and Xe measurements. In this interpretation it could
be advantageous to perform correlated measurements of two systems, with comparable
sensitivity to both system EDMs; unlike the usual comagnetometer implementation,
where it is usually assumed that one can be neglected entirely.
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5.3.3 Hadronic parameters from closed-shell systems

For the purely hadronic sector, we define a second simplified model parameter space,{
g(0)

π , g(1)
π , dn

}
. (5.18)

All three parameters are constrained by the neutron and closed-shell EDMs, while we
know from the above discussion that the constraints from closed-shell systems on de and
C

(0)
S are weaker than those from their open-shell counterparts.

From Tab. 5.4 we see that the neutron and Hg measurements strongly constrain two
of the three hadronic model parameters in Eq. (5.18). To understand the correlations
structure induced by the remaining closed-shell measurements, we show the correlated
constraints of the six possible parameter pairs for the closed-shell measurements on the
different 2-dimensional sub-spaces of Eq. (5.18).

Starting with the left panel of Fig. 5.2, with the g(0)
π vs. g(1)

π plane, we can see different
correlation patterns. This implies that performing a global analysis will constrain this
sub-space much better than any single pair of measurements. In the center panel, the
situation changes when we look at the correlations with the neutron EDM-parameter
dn. Three combinations are aligned to similar negative correlations between dn and g

(0)
π .

In the right panel, the situation is similar for g(1)
π , with a positive correlation and less

striking. In both cases, the exceptions are the combinations of Xe with Ra, TlF, and Yb,
which constrain dn extremely well and without any correlation with g

(0,1)
π . While this

sounds like an advantage, we remind ourselves that from Tab. 5.4 and Fig. 5.1 we know
that those limits on dn are three orders of magnitude weaker than what can be expected
from including the neutron and the Hg measurements.

Altogether, Fig. 5.2 confirms that the constraints of the sub-leading four closed-shell
measurements on the 3-dimensional hadronic parameter space of Eq. (5.18) are correlated
in a non-trivial manner. Evaluating these correlations requires a global analysis of the
formally over-constraining set of closed-shell measurements.
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Figure 5.2: Correlations from three 2-dimensional analyses in the {g(0)
π , g

(1)
π , dn}

parameter space, each based on a different pair of closed-shell EDM measure-
ments, as indicated by the color. The ellipses indicate 68% CL, neglecting theory
uncertainties.
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5.3.4 Poorly constrained model parameters

Finally, we combine the effects of all remaining parameters,{
C

(0)
T , C

(0)
P , g(0)

π , g(1)
π , dn

}
, (5.19)

ignoring the ThO and HfF+ measurements, which constrain the factorized de − C(0)
S

subspace, and also ignoring the neutron and Hg measurements. The latter constrain the
above parameters, but because they are much stronger than all other measurements, they
will induce narrow correlations in the allowed 5-dimensional parameter space, which will
make it hard to constrain other parameter combinations.

Narrow correlations in a higher-dimensional parameter space vanish when we profile
the likelihood onto 2-dimensional correlations or even single model parameters. For
example, consider a 2-dimensional parameter space constrained by one strong and one
weak measurement. The strong measurement leads to a narrow correlation between the
two parameters. When we extract the profile likelihood for one model parameter, we
can adjust the other model parameter so that the two parameters trace this narrow
correlation. This way, the entire length of the correlation pattern gets projected onto the
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Figure 5.3: Correlations from the 5-dimensional analysis of
{C(0)

T , C
(0)
P , g

(0)
π , g

(1)
π , dn} and the factorized de − C(0)

S plane from Fig. 5.1. We
ignore the neutron and Hg measurements, which induce narrow correlation
patterns in the 5-dimensional parameters space and do not affect the profiled
2-dimensional correlations. The ellipses indicate 68% and 95% CL, neglecting
theory uncertainties.
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1-dimensional profile likelihood. The weak measurement dominates the individual profile
likelihoods, while the strong measurement allows us to link the second model parameter
from a first model parameter precisely.

In our case of the hadronic sub-space, this implies that as long as the correlations
induced by the neutron and Hg measurements cross the entire parameter space, we can
ignore these two measurements and their induced correlation patterns in the following
discussion of 2-dimensional correlations and single-parameter profile likelihoods. Losing
the best few measurements contributing to the global analysis is an unfortunate effect
of the conservative profile likelihood approach, but it should also exist for standard
error ellipses using Bayesian marginalization. The main difference is that this kind of
effect is numerically extremely challenging to compute using marginalization, while it is,
essentially, trivial for the profile likelihood approach.

Given these considerations of correlations, we are left with five model parameters,
constrained by seven measurements of comparable constraining power. The only exception
we see in Fig. 5.3 is a strong leading correlation between g

(0)
π and C

(0)
T , induced by the

fact that the TlF measurement is leading for both parameters by one order of magnitude
compared to others. All other model parameters are nicely constrained. The allowed
range, for instance for g(0)

π is of the order 10−9. This can be compared to the constraints
from Fig. 5.1, of the order 10−12. The same hierarchy of measurements can be observed
for g(1)

π and for dn, as confirmed by Tab. 5.4. This means that the 5-dimensional allowed
parameter space illustrated by Fig. 5.3 is crossed by two correlation patterns, roughly
three orders of magnitude more narrow than the full parameter space. We emphasize
that explaining this extremely narrow correlation poses a numerical fine-tuning problem
in the model parameter space, which the profile likelihood does not address.

As before, we can truncate the number of available measurements for the poorly con-
strained 5-dimensional subspace given in Eq. (5.19) to the five leading measurements,
and invert the corresponding α-submatrix to find

C
(0)
T

C
(0)
P

g
(0)
π

g
(1)
π

dn


=



7.14 · 1018 −3.21 · 1018 6.50 · 1019 −8.77 · 1013 −1.94 · 1015

−1.03 · 1017 −5.40 · 1019 1.09 · 1021 −3.74 · 1014 −3.26 · 1016

−2.49 · 1014 −1.45 · 1017 2.83 · 1018 −2.37 · 1012 −8.60 · 1013

3.10 · 1014 −3.46 · 1016 −2.56 · 1018 1.58 · 1012 5.49 · 1013

0. 0. 0. 0. 1.





dTl

dHg

dXe

dTlF

dn


.

(5.20)

5.3.5 Theory uncertainties

Theory uncertainties always appear when we use a quantum field theory to predict
observables, like EDMs, from Lagrangian parameters: No calculation method is arbitrarily
precise, and a variety of systematic errors can affect the accuracy. While there is some
hope in estimating and controlling uncertainties for small expansion parameters, like in a
high-energy EFT expansion, it is far more difficult for uncertainties associated with QCD
observables at low energies (whether from lattice calculations or sum-rule estimates).
Also, quantifying the precision of nuclear physics calculations and linking them to an
effective quantum field theory is a challenge in itself. On the other hand, we have to
estimate all of these uncertainties, and we can only ignore them after having shown
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that they are significantly smaller than the experimental uncertainties of the associated
measurements.

For our global EDM analysis, the theory uncertainties we have to consider only affect the
αi,cj in Eq. (5.1). The estimated range of the theory uncertainties for every parameter
is also given in Tab. 5.3. Currently, we treat them in SFitter as uncorrelated theory
uncertainties, however, this assumption can be modified if necessary. Because of the flat
likelihood as a function of the theory nuisance parameter, the profile likelihood approach
leads to the theory uncertainties adding linearly, weighted by the respective model
parameter. By profiling over the independent α-ranges, the numerical evaluation gets
simplified in two ways: First, any parameter–observable pair for which α is compatible
with zero will effectively be removed from the global analysis, because the optimal choice
of α will remove all contributions from the corresponding model parameter; second, even
if we cannot choose α such that measurement and prediction agree, we can choose it to
maximize the likelihood and to minimize the impact of the measurement, which means
we choose the smallest allowed absolute value of α.

Same as in Sec. 5.3.2 we start with the well-constrained 4-dimensional subspace
{de, C

(0)
S , g

(0)
π , dn}. Again, de and C(0)

S are constrained by the open-shell molecules HfF+

and ThO, just as without theory uncertainties. From Tab. 5.3 we see that we can ignore
the theory uncertainty in relating the electron EDM parameter de to these systems. In
the hadronic sector, the effect of theory uncertainties on the relation of dn and g

(0)
π

originating from the Hg and neutron measurement is either trivial or reasonably small,
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Figure 5.4: Correlations from the 4-dimensional analysis of {de, C
(0)
S , g

(0)
π , dn}.

The orange curves show the effect of theory uncertainties on the results of
Fig. 5.1. The ellipses indicate 68% and 95% CL.
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although for the neutron, this situation should not be over-interpreted. The quoted
uncertainty arises from propagating ranges for the constants within Eq. (5.5), and not
from careful evaluations of the chiral expansion itself.

In Fig. 5.4, we show the numerical impact of the theory uncertainties on the 2-dimensional
correlations. The slightly stronger HfF+ measurement, which determines the width of
the correlation pattern, is only minimally affected by the theory uncertainties, while the
larger theory uncertainties on the ThO measurement extend the length of the ellipse
visibly. The main effect of the theory uncertainties is on g

(0)
π , where they shift the

allowed ranges from slightly negative to sizeable positive values. This analysis includes
all measurements, so according to Tab. 5.4, g(0)

π is most strongly constrained by the Hg
measurement (with a negative central value) and TlF (with a large and positive central
value). Adding the theory uncertainties weakens the Hg measurement, which means
the two leading constraints get balanced differently, and the entire range moves to the
positive values preferred by the TlF measurement.

Moving on, we can now look at the effect of the theory uncertainties on the less-constrained
hadronic sector for closed-shell systems, discussed in Sec. 5.3.3. Here, Tab. 5.3 shows
sizeable, order-one theory uncertainties. In addition, some of the α-values include an
allowed zero value when we include theory uncertainties. Specifically, g(1)

π will no longer
be constrained by the Yb measurement, and it will also lose the Hg constraint. Also,
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Figure 5.5: Correlations from the 5-dimensional analysis of
{C(0)

T , C
(0)
P , g

(0)
π , g

(1)
π , dn}, and the factorized de − C(0)

S plane from Fig. 5.4. The
orange curves show the effect of theory uncertainties on the results of Fig 5.3.
The ellipses indicate 68% and 95% CL.
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some of the theory uncertainties entering the closed-shell sector are not consistent with
α = 0 but are large, so we expect a sizeable impact on the global analysis.

Finally, we can look at all seven EDM parameters. As for the case without theory
uncertainties, the neutron and Hg limits are much more constraining than the other
measurements of the hadronic sector. Following the argument given in Sec. 5.3.4, this
means that 2-dimensional correlations and single-parameter limits extracted by profiling
over the likelihood will not be impacted by these strong measurements. The shift in
the constrained 2-dimensional correlations is shown in Fig. 5.5. In comparison, their
effect on the factorized parameters de and C

(0)
S (copied from Fig. 5.4) is mild, and the

constraints on the hadronic model parameters are significantly weaker. The leading
correlation in this parameter extraction we found out to come from the TlF measurement
constraining g

(0)
π and C

(0)
T in a correlated manner. When we allow for the additional

theory uncertainties, this correlation expands almost to a flat direction. In turn, this
large effect extends to the entire hadronic sector, weakening and shifting essentially all
constraints. The large shifts addressed in Fig. 5.5, mostly seen for C(0)

P , originate in the
treatment and implementation of theory uncertainties. The dominant measurement for
C

(0)
P suffers from large theory uncertainties, allowing for a shift in estimating the central

parameter value, as discussed in Sec. 5.3.1. This clearly emphasizes the impact of theory
uncertainties on the correlations and allowed ranges of the model parameters. To obtain
a more coherent picture of these parameter correlations and ranges, theory uncertainties
must be reduced (ideally including also a more nuanced treatment of the corresponding
likelihoods). There are already some measurements and parameter combinations, like the
de and C

(0)
S subspace, for which theory uncertainties are reasonably well under control

(as compared to other elements of Tab. 5.3). For this case, theory uncertainties produce
no significant change of the correlation behavior.

5.4 Outlook

EDMs are extremely sensitive, targeted probes for one of the most important symmetries
of elementary particles, which is directly related to the baryon asymmetry in the universe.
The number of EDM measurements performed in various systems has grown rapidly in
recent years. This leads to the question of how the different measurements are contributing
to constraining and understanding CP violation in terms of a fundamental Lagrangian.

We can choose different Lagrangians to answer this question, starting with UV-complete
models versus EFTs. Without a specific hint for BSM physics, we chose an EFT
description. Next, we have a choice of different energy scales with different degrees of
freedom. For our first SFitter analysis, we rely on the hadronic-scale Lagrangian, valid
at the GeV scale and describing the interactions of electrons and nucleons. After relating
the hadronic-scale Lagrangian to its weak-scale SMEFT counterpart we want to constrain
the seven Lagrangian parameters given in Fig. 5.6 through 11 independent measurements
given in Tab. 5.1.

As a toy analysis, we examine the single-parameter constraints from all individual EDM
measurements. These limits are all driven by the same small set of highly constraining
measurements, such as the open-shell molecular ion HfF+, the neutron EDM, or the
closed-shell atom Hg. The extremely strong constraints indicated in Fig. 5.6 do not allow
for a cancellation of contributions from two model parameters to a given measurement
at the price of creating a numerical fine-tuning problem in the model parameter space.
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Figure 5.6: 68% CL constraints from the global EDM analysis on the parameters
of the hadronic-scale Lagrangian. We show (i) hugely over-constrained single-
parameter ranges allowed by the best available measurement; (ii) over-optimistic
allowed ranges for profiled single parameters, ignoring theory uncertainties; (iii)
allowed ranges for profiled single parameters, including experimental and theory
uncertainties.

While the single-parameter estimates indicate the strength of an experiment looking
for a sign of CP violation, they should not be confused with a measurement of a given
parameter.

For our global analysis, we use SFitter, with its focus on statistical interpretation and a
comprehensive uncertainty treatment. First, we ignore all theory uncertainties and only
consider experimental uncertainties as uncorrelated, following a Gaussian distribution
(combining the statistical and systematic uncertainties reported in the respective papers).
In this case, Bayesian marginalization and profile likelihood yield the same result.

In Sec. 5.3.2, we find that a small set of powerful measurements constrains the electron-
hadron interactions as well as a subset of the hadronic sector. The correlated limits
on the electron EDM parameter de and the scalar coupling C(0)

S are especially strong
and factorize from the hadronic sector. Next, we find in Sec. 5.3.3 that the constraints
on the hadronic sector from the closed-shell systems show rich correlations, motivating
our global analysis further, as described in Sec. 5.3.4. For the hadronic parameters, the
narrow correlations from the strong neutron and Hg constraints do not appear in profiled
2-dimensional correlations or single-parameter limits. As a result, the hadronic model
parameters are constrained much worse than the single-parameter results suggest, as
shown in Fig. 5.6.

Finally, we show the same limits but include theory uncertainties. Such uncertainties
always appear when we relate measurements to fundamental Lagrangian parameters.
We assume a flat likelihood within allowed ranges of the factors relating the Lagrangian
parameters to the EDM predictions. While the impact of the theory uncertainties on
the factorized {de, C

(0)
S } sector is relatively mild, the correlated analysis of the hadronic

parameters leads to a significant weakening of the constraints on all model parameters.
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Chapter 6
Machine Learning basics

This chapter serves as a short introduction to machine learning (ML) and, more specifically,
deep learning. One of the many applications for ML networks is regression. Such an
application will be discussed later in the scope of precision and uncertainty estimation in
amplitude regression. Thus, this chapter is structured in the following way: In Sec. 6.1,
we discuss the basic concepts of fully connected networks, their loss functions, and their
optimization. Since every measurement and prediction has to come with uncertainties,
we need network architectures that can capture these uncertainties. Therefore, the
different uncertainty types entering ML applications are introduced in Sec. 6.2 and later
implemented into actual network architectures in Sec. 6.3.

6.1 Introduction to neural networks

This section provides a brief introduction to neural networks (NN). We start by discussing
the setup of a simple architecture consisting of only linear layers with some non-linearities
in between. Next, we explain the construction of a loss function and network optimization.

6.1.1 Fully connected networks

The core task of NN architectures is approximating high-dimensional, complex functions
using a series of more straightforward, linear functions with non-linearities in between.
These non-linearities are the so-called activation functions. This links every input feature
to the output features, which is then called a fully connected network.

A single layer of this network is constructed as

y = Φ(Wx+ b) , (6.1)

with Φ the activation function, x as input parameters with Dx dimensions and y the
output parameters with Dy dimensions. b is the so-called bias, having Dy dimensions and
W is a Dy×Dx dimensional matrix. In this layer, W and b are the trainable parameters of
the network, and they are optimized with respect to the corresponding training objective.
This most simple type of network architecture, consisting of linear layers followed by
non-linearities or activation functions, is also called a Multilayer perceptron (MLP)
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network. Some popular choices as activation functions include these component-wise
functions such as [274,275]

ReLU(x) =
{

0 for x ≤ 0
x for x > 0

(6.2)

LeakyReLU(x) =
{
βx for x ≤ 0
x for x > 0

(6.3)

GELU(x) = x · 1
2[1 + erf(x/

√
2)] (6.4)

Sigmoid(x) = 1
1 + exp(−x) . (6.5)

The factor β in the LeakyReLU function ensures a small slope for negative values of x
instead of a flat slope as in the ReLU case. The corresponding β is determined before
the training process starts and thus not modified during training. Often, no activation
function is applied to the last layer of a network if the output should be unconstrained.
In the considered example of a regression task for amplitude surrogates, we are interested
in the unconstrained output and compare it to the truth labels to determine the precision
of the results.

6.1.2 Loss function and optimization

Optimizing a neural network requires a loss function that connects all the trainable
parameters with the training data D. This loss function aims to represent the posterior
p(θ|D), which we want to maximize as a training objective. Since the posterior is not
accessible in the training process, equivalent to maximizing the posterior, we can maximize
the likelihood function, which is given as

L = − log p(D|θ) = −
N∑

i=1
log p(Di|θ) . (6.6)

For simplicity reasons, we can replace the likelihood with the log-likelihood to treat
constant prefactors as additional, constant terms in the loss. Applying this likelihood
approach to a regression task, we assume a Gaussian distribution as an ansatz with no
uncertainties for further simplifications. This ansatz results in the mean squared error
(MSE) as a loss function, where the network fθ with its trainable network parameter θ
connects the input xi with the true value/truth label yi. It can be written as

L = 1
N

N∑
i=1

(yi − fθ(xi))2 . (6.7)

Instead of maximizing the likelihood or log-likelihood, we can equivalently minimize the
negative log-likelihood function as loss. To minimize this negative log-likelihood function,
we apply the gradient descent method as a computationally efficient approach, where the
trainable parameters are updated in small steps in the opposite direction of the gradient,
the direction of the steepest descent, to minimize them. This method is performed by
calculating the gradient of the loss function with respect to the trainable parameters,

θ ← θ − α∇θL , (6.8)
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where α describes the learning rate. A downside of this method is that it can easily get
stuck in local minima when performed on the entire training data. To prevent the network
from getting stuck, the training dataset is randomly divided into smaller batches, and
then the optimization is performed batch-wise. This adapted method is called stochastic
gradient descent (SGD). Also, more sophisticated algorithms are based on the SGD and
implement further improvements. The Adam optimizer [276] is such an example of an
improved SGD. It adapts the learning rate α based on the mean and variance of the
gradient and computes the next update step based on these two parameters and not
only on the raw gradients, as SGD does. Thus, Adam leads to a faster and more stable
convergence. Another modification, based on Adam, is AdamW [277], which decouples
the weight decay from the learning rate. Weight decay is a commonly used regularization
technique to prevent overfitting. It adds a penalty term to the loss function, encouraging
the network to learn smaller parameter values and pushing them toward zero. In this
thesis, AdamW is used for all networks discussed.

The learning rate α can either be a fixed parameter throughout the training or be adapted
with a scheduler. This has the advantage of modifying the learning rate during the
training process because different learning rates are more practical at different stages of
the training. At the beginning of the training, a large learning rate is preferred, leading
to faster convergence, and the network is less likely to converge to a local minimum
instead of the global minimum. At the end of the training process, a smaller learning
rate leads to more stability in the training and increases the precision of the prediction.

There are different forms of loss functions, the one used in regression tasks being the
likelihood loss. One example of such a likelihood loss is the MSE loss written down in
Eq. (6.7). This MSE loss is used when we do not encounter any uncertainties. If we
assume different uncertainties from the phase space, we have to modify this loss function
accordingly by adding the variance σ. This updated probability function can be written
as

pθ(x, y) = pθ(y|x)p(x) ∝ exp
(

(y − fθ(x))2

2σ2

)
p(x) . (6.9)

The resulting loss function from the updated probability function is called a heteroscedastic
loss. This heteroscedastic loss now includes two adaptable functions over the input space.
These functions are characterized by the trainable network parameters fθ(x) and σ(x),

Lhet =
〈 |y − fθ(x)|2

2σ(x)2 + log σ(x)
〉

x∼D

. (6.10)

Here, σ(x)2 is unknown and must be learned by the network. Thus, we are able to extend
the simple MSE loss to capture uncertainties from the network training.

6.2 Different types of uncertainties in ML

One important aspect of statistics is that every measurement or prediction has to come
with uncertainties; otherwise, it is not complete. Measuring or predicting anything
without a corresponding uncertainty for the assumed model or experimental setting is
impossible. Therefore, the uncertainty treatment we know from other applications in
physics, such as global analyses, has to be translated into deep learning.
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With the already introduced uncertainty σ in the heteroscedastic loss, we show that it is
possible for networks also to predict these uncertainties. Furthermore, the uncertainties
in machine learning can be divided into two categories:

1. Systematic or epistemic uncertainties
These are intrinsic uncertainties in the data, like noise or other effects, namely
those originating from the experimental setup. Even after perfect training, these
uncertainties do not vanish but reach a plateau. Also, they cannot be reduced with
better network expressivity or improved training. Additionally, some uncertainties
can arise from the network architecture, such as poorly tuned hyperparameters and
network expressivity or not fully converging training.

2. Statistical or aleatoric uncertainties
Here, the uncertainties originate from the limited amount of training data the
network is trained on. Even if the network is expressive enough and perfectly
fine-tuned, the limitations in training data lead to an uncertainty of the network
weights. However, they vanish within the limits of infinite training data and perfect
training.

The terms systematic and statistical uncertainties are characterized from a physicist’s
point of view, while most computer scientists will call them epistemic and aleatoric
uncertainties [54]. In this thesis, the uncertainties are categorized as follows: We will use
the terms systematic and statistical uncertainties, where the systematic uncertainties
encounter noisy data or labels and structural uncertainties, like limited network expressiv-
ity, a non-optimal architecture, or choice of hyperparameters. In contrast, the statistical
uncertainties arise from limited training data.

6.3 Different network architectures

This section discusses different network architectures and how they can be used in
regression tasks. First, we start with Bayesian Neural Networks (BNNs) and then
discuss Repulsive Ensembles (REs) as a complementary approach. Lastly, we look at
Kolmogorov-Arnold Networks (KANs) and how they can help improve the accuracy of
network predictions.

6.3.1 Bayesian neural networks

A BNN [52–55] can be constructed for any given model based on a likelihood loss with
a fixed training data set, like in a typical regression task setting [49]. We start by
considering a training dataset D with N points (xi, yi) and Eq. (6.6) as the loss function
we want to minimize.

To make this network Bayesian, we want to sample the posterior distribution p(θ|D) of the
network weights θ. Therefore, we can either directly calculate it, which is intractable, or
we approximate it using a variational inference (VI) [278, 279] approach. When choosing
the VI approach, the true posterior is approximated by a more straightforward, tractable
distribution qϕ(θ), with trainable parameters ϕ. The new training objective has now
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become to minimize the Kullback-Leibler (KL) divergence [280] between the approximate
and true posterior

ϕopt = arg min
ϕ

KL(qϕ(θ), p(θ|D)) . (6.11)

The appearing KL divergence can be expressed in terms of the prior and using Bayes’
theorem

KL(qϕ(θ)|p(θ|D)) =
∫

dθ qϕ(θ) log qϕ(θ)
p(θ|D)

=
∫

dθ qϕ(θ) log qϕ(θ)p(D)
p(D|θ)p(θ)

= −
∫

dθ qϕ(θ) log p(D|θ) +
∫

dθ qϕ(θ) log qϕ(θ)
p(θ) +

∫
dθ qϕ(θ) log p(D)

= −⟨log p(D|θ)⟩θ∼qϕ(θ) + KL(qϕ(θ), p(θ)) + log p(D) . (6.12)

From there on, the full log-likelihood can be written as the sum of the single log-likelihood
terms obtained from independent data points,

log p(D|θ) =
N∑

i=0
log p(yi|xi, θ) . (6.13)

Now, the adapted formula for a split-up training dataset into M batches is given by

log p(D|θ) ≈ N

M

M∑
i=0

log p(yi|xi, θ) . (6.14)

Since the evidence p(D) does not depend on the trainable weights ϕ, it can be neglected
in the loss function. With this, we can approximately calculate the expectation value of
the likelihood with respect to the parameters θ by drawing a sample of qϕ(θ) for every
batch. The complete loss function reads

LBNN = − 1
M

M∑
i=0

log p(yi|xi, θ) + 1
N

KL(qϕ(θ), p(θ)) with θ ∼ qϕ(θ) , (6.15)

where we divided Eq. (6.12) by N to obtain the log-likelihood loss term in the first term
of the equation, and yi are the truth labels of the data set D. The second term acts as a
regularization of the network weights.

We choose uncorrelated Gaussians for the prior and posterior distributions. While these
are restrictive assumptions on both, the network can still model complex uncertainties.
The reason for that lies in the structure of the network, with many linear layers and
non-linearities in between. Therefore, an injection of a Gaussian approximation in early
layers can lead to non-linear effects on the output [54].

The prior is often chosen as

p(θ) ∼ N (0, σp) , (6.16)

with µp = 0 and standard deviation σp. The posterior is approximated using factorized
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Gaussians

qϕ(θ) =
K∏
j

N (θj |µj , σj) , (6.17)

where ϕ = {µj , σj} and K is the number of parameters in the neural network. Comparing
the parameter numbers used in the training process for an MLP with a BNN, the MLP
has θj as trainable parameters, while the BNN has parameter pairs ϕj = (µj , σj). Thus,
the number of parameters in the training process doubles for a BNN compared to an
MLP. With the Gaussian distribution as a choice for the prior and posterior, the KL
divergence can be computed analytically

KL(qϕ(θ), p(θ)) =
∑

j

(
log σp

σj
+
σ2

j + µ2
j

2σ2
p

− 1
2

)
. (6.18)

Sampling from qϕ(θ) while computing the gradients is possible by using the reparameter-
ization trick [281]

θ = µ+ σϵ with ϵ ∼ N (0, 1) . (6.19)

Since the gradients ∂θ/∂µ and ∂θ/∂σ can be computed, we can use backpropagation to
compute the gradients of the loss with respect to µ and σ.

6.3.2 Repulsive ensemble

An ensemble of networks can be used as alternative to BNNs for uncertainty estimation.
However, the ensemble members have to explore the full space of local minima. Further-
more, it has to be ensured that the estimated uncertainty covers the entire probability
distribution [282,283]. Using a network ensemble is another way to go beyond a single
set of best-fit parameters.

Starting from an ensemble of networks with different initializations, the training results
in a range of possible training outcomes by converging to different local minima in the
phase space. Based on Eq. (6.8), we have seen an update of network parameters using
the gradient descent method, where only a single network was updated. However, in an
ensemble of networks, all members must be updated simultaneously when minimizing
the loss function. As a general form for updating the weights, we obtain

θt+1 = θt + α∇θt log(p(θt|D) , (6.20)

with the learning rate α and the training data set D. The shown update rule does not
lead to or even require interaction between members. Thus, several of them can converge
to the same minimum, which can cause the posterior to collapse and prevent the ensemble
from providing a reasonable uncertainty estimation. On the other hand, if the ensemble
is sufficiently spread out and the members approach different local minima, it can give
us a reasonable distribution over parameter space, thus complementing BNNs in deriving
the loss function locally and globally. Therefore, we insert an interaction between the
ensemble members by introducing a repulsive kernel k(θ, θj), turning them into a RE.
This additional term forces the ensemble to spread around the (local) minimum in the
loss. Also, the repulsive kernel k(θ, θj) should increase with decreasing distance of one
ensemble member θ to all other members. By connecting the different members via a
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kernel function and ensuring the spread over the whole phase space, REs can provide
decent results, even when there is too little training data to train a BNN [57,58]. With
this new adaptation, we have to modify the update rule for the gradient descent, including
the kernel

θt+1 = θt + α∇θt log p(θt|D)− α
∇θt

∑n
j=1 k(θt, θt

j)∑n
i=1 k(θt, θt

i)
. (6.21)

Throughout this thesis, we choose a Gaussian kernel written as

k(x, x′) = exp
(
−
∑

i(xi − x′i)2

2

)
. (6.22)

Updating the ensemble members for every step during the training procedure can also
be seen as a time evolution process, described using properties of ordinary differential
equations (ODEs). Therefore, the extended update rule leads towards the ensemble
of networks sampling the posterior distribution θ ∼ p(θ|D). To prove this posterior
relation, we extend the update rule from Eq. (6.21) to a time-dependent probability
density function ρ(θ, t). A similar procedure was done for the set up of conditional flow
matching networks [282, 284] by describing the time evolution through an ODE or a
continuity equation

dθ
dt = v(θ, t) or ∂ρ(θ, t)

∂t
= −∇θ [v(θ, t)ρ(θ, t)] . (6.23)

With a given velocity field v(θ, t), the individual paths θ(t) describe the evolving density
ρ(θ, t). If the velocity field is chosen as

v(θ, t) = −∇θ log ρ(θ, t)
π(θ) , (6.24)

the two equivalent conditions read

dθ
dt = −∇θ log ρ(θ, t)

π(θ)
∂ρ(θ, t)
∂t

= −∇θ [ρ(θ, t)∇θ log π(θ)] +∇2
θρ(θ, t) . (6.25)

We can see that the continuity equations evolve into the Fokker-Planck equation, with
ρ(θ, t) → π(θ) as the unique stationary probability distribution. A more detailed
derivation for the repulsive ensemble can be found in Ref. [282].

As the next step, we can now relate the ODE from Eq. (6.23) to the previously determined
update rule for repulsive ensembles, written down in Eq. (6.21). With this, the discretized
version of the ODE becomes

θt+1 − θt

α
= −∇θt log ρ(θt)

π(θt) . (6.26)

Since the explicit expression for the density ρ(θt) is unknown, it can be approximated by
a superposition of kernels with correct normalization

ρ(θt) ≈ 1
n

n∑
i=1

k(θt, θt
i) with

∫
dθtρ(θt) = 1

n

n∑
i=1

∫
dθtk(θt, θt

i) = 1 . (6.27)
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Inserting this kernel approximation into the discretized ODE results in

θt+1 − θt

α
= ∇θt log π(θt)− ∇θt

∑
i k(θt, θt

i)∑
i k(θt, θt

i)
. (6.28)

If we choose π(θ) ≡ p(θ|D), we can identify the form of the discretized ODE with the
update rule written in Eq. (6.21), confirming the correct convergence.

Until now, we encoded the repulsive ensemble only in weight space, but the desired
predictions are provided in function space. For example, if two networks encode the
same function by applying a permutation on the weights, they will not be affected by
the repulsive force. Therefore, we have to introduce the repulsive term on the network
output in the function space fθ(x), translating it from weight space to function space by

f t+1 − f t

α
= ∇f t log p(f |D)−

∑
j ∇f tk(f, fj)∑

j k(f, fj) . (6.29)

Nevertheless, the kernel can still be approximated as a Gaussian in a multidimensional
space with an appropriately wide width. However, the network training is still defined in
weight space, so the function space update rule has to be adapted to weight space using
the appropriate Jacobian

θt+1 − θt

α
= ∇θt log p(θt|D)− ∂f t

∂θt

∑
j ∇f tk(fθt , fθt

j
)∑

j k(fθt , fθt
j
) . (6.30)

Furthermore, we cannot evaluate the repulsive kernel in function space. Thus, we have
to apply the same trick as for the BNN and evaluate the function for a finite batch of
points x,

θt+1 − θt

α
≈ ∇θt log p(θt|D)−

∑
j ∇θtk(fθt(x), fθt

j
(x))∑

j k(fθt(x), fθt
j
(x)) , (6.31)

As a last step, we have to translate the update rule from Eq. (6.31) into a loss function
for the training of the RE. As for the BNN, we can obtain a tractable likelihood loss by
applying Bayes’ theorem, where we can neglect the evidence p(D) but have to include
the prior p(θ), which is again assumed to be Gaussian

log p(θ|D) = log p(D|θ)− θ2

2σ2 + const. , (6.32)

where the second term represents the L2-normalization.

Given the training data set of size N , evaluated in batches of size B, fθt is evaluated for
all x1, ..., xB samples in the batch. Also, not all occurrences of θ in the modified update
rule are inside the gradient. To separate them clearly, we use the stop-gradient operation,
denoted as f̂θj

. With these assumptions and modifications, we end up with the following
loss function for a repulsive ensemble with n members

LRE =
n∑

i=1

[
− 1
B

B∑
b=1

log p(xb|θi) + β

N

∑n
j=1 k(fθi

(x), f̂θj
(x))∑n

j=1 k(f̂θi
(x), f̂θj

(x))
+ θ2

i

2Nσ2

]
. (6.33)

The repulsive prefactor is usually chosen as β = 1. Again, a typical choice for the kernel
is a Gaussian with a width given by the median heuristic [285]. With σ entering the loss
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function in Eq. (6.33), REs are capable of estimating an uncertainty on the predictions.
Thus, this additional parameter σ is connected to the repulsion. To provide us with a
reliable uncertainty estimation of σ, the repulsion has to be applied in the log-likelihood
space. This log-likelihood space is again used in the Amplitude regression task presented
in Ch. 7.

6.3.3 Kolmogorov-Arnold networks

A KAN [286,287] differs from a normal fully connected network in the sense that it does
not learn weights but different activation functions for each layer. This is especially
interesting for high-precision tasks because the activation function is responsible for
adding non-linearities to the linear layers and thus affects the final prediction and the
accuracy of the learned function. So far, only networks with static activation functions
have been introduced, but KANs have the feature of learnable activation functions to
better approximate the target distribution.

KANs are based on the Kolmogorov-Arnold representation theorem, which also underlies
the deep set architecture [288] in a slightly different form. The theorem states that any
multivariate smooth function with an n-dimensional input x and a function f : [0, 1]n → R,
can be written as a finite composition of uni-variate functions and addition,

f(x) = f(x1, . . . , xn) =
2n+1∑
q=1

Φq

 n∑
p=1

ϕq,p(xp)

 , (6.34)

where ϕq,p : [0, 1] → R and Φq : R → R. This theorem has downsides in practice since
the uni-variate functions need to be non-smooth and/or fractal [289]. However, this
problem can be resolved by expanding the decomposition into multiple layers, as shown
in Ref. [286].

Consider a KAN consisting of L layers, with indices l = 0, 1, ..., L− 1 and nl dimensional
input vector xl to each layer. We then can define the action of each layer l via

xl+1,j =
nl∑

i=1
ϕl,j,i(xl,i) with j = 1, . . . , nl+1 , (6.35)

where the nl+1 × nl dimensional functions ϕl,j,i are learnable. These functions could
either be splines or rational functions [286,290,291].

Additionally, the sum in Eq. (6.35) can be turned into an operator matrix representation,

xl+1 =


ϕl,1,1(·) ϕl,1,2(·) · · · ϕl,1,nl

(·)
ϕl,2,1(·) ϕl,2,2(·) · · · ϕl,2,nl

(·)
...

... . . . ...
ϕl,nl+1,1(·) ϕl,nl+1,2(·) · · · ϕl,nl+1,nl

(·)


︸ ︷︷ ︸

≡ Φl

xl , (6.36)

where the function ϕl,j,i takes xl,i as input. Using this matrix representation, we can
write down the full KAN network as

KAN(x) = (ΦL−1 ◦ ΦL−2 ◦ . . . ◦ Φ1 ◦ Φ0)x , (6.37)
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with the form of a normal MLP network for comparison

MLP(x) = (WL−1 ◦ activation ◦WL−2 ◦ . . . ◦ activation ◦W0)x . (6.38)

In this representation, the Wl are the linear operations, and the “activation” is a chosen
fixed activation function. The use of KANs in physics is not entirely new; they have
already been used in collider physics problems [292,293].

As a middle ground between using full KAN networks or normal MLP networks, one can
use GroupKAN networks [291]. They combine the features of simpler MLP networks with
the advantage of learnable activation functions from the KAN architecture. Therefore,
every layer gets replaced by a GroupKAN layer,

activation(x)→ GroupKANlayerl(x) =


ϕl,gl(1)(x1)
ϕl,gl(2)(x2)

...
ϕl,gl(nl)(xnl

)

 . (6.39)

Notably, in the GroupKAN layer, sub-indices are introduced by grouping various functions
together

gl : {1, 2, ..., nl} → {1, 2, ..,ml} . (6.40)

This can be read as gl(i) = k if i belongs to group k and ml is the number of groups in
the layer l. The number of groups can vary between one, only one common activation
function is used for the full layer, and n, all entries have different activation functions.

This leads to the overall structure of the GroupKAN network with the form

GroupKAN(x) = (WL−1 ◦GroupKANlayerL−2 ◦WL−2 ◦ . . . ◦GroupKANlayer0 ◦W0)x .
(6.41)

Comparing this GroupKAN structure to the structure of the full KAN network in
Eq. (6.37), the GroupKAN implementation reduces the complexity significantly. Per layer
in the KAN network, nl+1 × nl functions have to be learned, while for the GroupKAN,
only ml ≤ nl functions have to be learned. Still, the GroupKAN is more expressive than
a normal MLP and can be inserted into any other architecture straightforwardly, making
it far more versatile.

To conclude this chapter, we introduced the basic concepts of deep learning and the
different types of uncertainties that need to be considered. We also introduced three
different network architectures, namely BNNs, REs, and KANs. This knowledge is now
put into action by applying it to the actual task of amplitude regression in Ch. 7, starting
by using KANs as approach to learn the activation function and then testing the BNN’s
and RE’s prediction precision and ability to learn systematic and statistical uncertainties.
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Chapter 7
Accurate Uncertainty Estimation using
Amplitude Regression

The research and the results presented in this chapter are based on work in collaboration
with Henning Bahl, Luigi Favaro, Manuel Haußmann, Tilman Plehn, and Ramon Winter-
halder and have been published in Ref. [3]. All figures and tables, as well as parts of the
text, are similar or identical to the ones in the article.

We have introduced the basic concepts of a deep learning network and the loss function in
Sec. 6.1. Based on these fundamental concepts, more advanced architectures like BNNs,
REs, or KANs were discussed in Sec. 6.3. Next, these architectures are used on a physics
regression task to test their accuracy in the prediction and the precision in estimating
the different uncertainty types explained in Sec. 6.2.

The goal of particle physics is to identify the fundamental properties of particles within
and beyond the SM. This goal can only be achieved by an optimal interplay of precision
in predictions and measurements, which is constantly challenged by the vast amount of
recorded and simulated data, its complexity, and its coverage of all aspects for optimal
analysis. On the theory and simulation side of this challenge, we can use neural networks
to improve and accelerate every aspect of the simulation chain, starting from phase-space
sampling [39–42, 44, 294–297] to scattering amplitude evaluations [45–49, 51, 298–302],
end-to-end event generation [284,303–306], and ultra-fast detector simulations [307–328].

Mainly used networks for these tasks are surrogate and generative networks trained
on simulated training data [329, 330]. Given the requirements from LHC data and
performances, they have to function in a controlled and precise way over the entire
phase space. [331–335]. With the LHC and the connected simulation chain generating
larger amounts of data, the theory predictions shift to higher-order calculations, leading
to the need to implement higher orders in perturbation theory. Here, we need to
ensure that network surrogates trained on theory predictions are controlled and precise
enough to reflect the precision of the underlying theory. Surrogates or density estimators
can learn uncertainties on the network prediction, for instance, as BNNs [54,336,337],
REs [56–58], or likelihood methods [338,339]. Even if the learned uncertainty is not used
in a downstream analysis, a reliable uncertainty estimate is key to the justification for
using an ML surrogate.

Therefore, we use surrogate amplitudes encoded in modern neural networks [45–49,51,
298–302] to evaluate higher-order scattering amplitudes as fast as tree-level amplitudes.
With this aspect, the challenge for these networks is that perturbative quantum field
theory requires them to reliably reproduce the theory prediction on the training data
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with sufficient accuracy. We study limitations to precision surrogates, the accuracy, and
the control via a learned uncertainty.

For that reason, we already introduced our different architectures in Sec. 6.3, namely
a deterministic network using a heteroscedastic loss function to estimate systematic
uncertainties, a BNN to learn statistical and systematic uncertainties, and an RE to learn
statistical uncertainties. Statistical uncertainties are defined as vanishing for infinite
amounts of training data, while systematics can have many sources related to the training
data, the network architecture, or the network training. The latter are the limiting factor
in LHC applications. Thus, we are highly interested in learning systematic uncertainties,
assuming that statistical limitations are negligible.

In Sec. 7.1, we adapt the different architectures, already generally introduced in Sec. 6.3,
to the amplitude regression task and the concrete definition of these different uncertainties
for the networks. Next, Sec. 7.2 introduces our dataset of loop-induced amplitudes for
the partonic process gg → γγg [47,49], and in Sec. 7.3, we perform a systematic study
of the effect of activation functions on the accuracy of amplitude learning, using KANs.
This is followed by a deeper look into uncertainties induced by adding artificial noise
to our dataset in Sec. 7.4 and the calibration of the learned statistical uncertainties in
Sec. 7.5.

7.1 Learned uncertainties

In this project, we train a regression network to learn the transition amplitude or matrix
element squared A(x) as a function of phase space x,

ANN(x) ≈ Atrue(x) . (7.1)

The key property of a transition amplitude is that Atrue is exact at a given order in
perturbation theory, i.e. there are no stochastic processes entering the prediction, making
it ideal for an uncertainty and precision study. The training data Dtrain consists of phase
space points and their corresponding amplitude values (x,A)j .

7.1.1 Heteroscedastic loss

We now denote the network parameters as θ, and the network training is maximizing the
probability of the network parameters to describe the training data, p(θ|Dtrain). Because
we do not have access to this probability, we use Bayes theorem and instead minimize
the negative log-likelihood on a set of amplitudes

L = −
〈
log p(A|x, θ)

〉
x∼Dtrain

. (7.2)

The form of the log-likelihood depends on the nature of the training data. As shown
in Sec. 6.1 for including systematic uncertainties, the natural choice is a Gaussian with
heteroscedastic variance. Thus, we can specify the general heteroscedastic loss from
Eq. (6.10) to the amplitude dataset with ANN(x) and σ(x) being the two functions over
the phase space

Lhet =
〈 |Atrue(x)−ANN(x)|2

2σ(x)2 + log σ(x)
〉

x∼Dtrain

. (7.3)
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As mentioned, the variance σ2(x) is unknown and must be learned. Therefore, we have
to include a normalization to drive σ(x) towards large values. For this work, we have
tested that it is sufficient to assume a Gaussian likelihood, but the heteroscedastic loss
can be extended to a Gaussian mixture model for σ(x) [336,340].

Even without using the built-in uncertainty, it has the advantage of acting as a cutoff,
allowing the network to ignore unlearnable aspects and features to focus on other features
without overtraining.

However, a heteroscedastic loss does not capture uncertainties arising from the actual
training. This is why we also include a BNN and an RE for quantifying per-amplitude
uncertainty.

7.1.2 Bayesian neural network

A full explanation and derivation of the loss function for a BNN is provided in Sec. 6.3.1.
Here, we mainly focus on the motivation for using BNNs in regression tasks, adapting
the loss function in Eq. (6.15) to this specific task, and the derivation of uncertainties.

Regarding LHC tasks, BNNs can be used e.g., for amplitude regression [49], jet calibra-
tion [337], classification [336], and generative networks [284,331,341,342].

Assuming that the amplitude for a given phase space point is following a probability
distribution p(A|x) with mean

⟨A⟩(x) =
∫

dA A p(A|x) , (7.4)

the network will encode this probability as weight configurations, conditional on the
training data. Following the derivation in Sec. 6.3.1, we get the following expression for
the KL-divergence

KL[q(θ), p(θ|Dtrain)] = KL[q(θ), p(θ)]−
∫

dθ q(θ) log p(Dtrain|θ)

+ log p(Dtrain)
∫

dθ q(θ) . (7.5)

Again, the first term acts as regularization, while the second one represents the negative
log-likelihood. The third term simplifies to log p(Dtrain), the evidence of Dtrain. It is a
constant with respect to θ, so the modified BNN loss compared to Eq. (6.15) is

LBNN = KL[q(θ), p(θ)]−
〈

log p(Dtrain|θ)
〉

θ∼q(θ)
. (7.6)

We are free to choose the prior p(θ), so we follow common practice and choose independent
Gaussians with a given width for each weight.

Uncertainties

To extract the uncertainty for A(x), we rewrite Eq.(7.4) such that we sample over θ and
define an expectation value and the corresponding variance

⟨A⟩(x) =
∫

dθ q(θ) A(x, θ) with A(x, θ) =
∫

dA A p(A|x, θ)
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σ2
tot(x) =

∫
dθ q(θ)

[
A2(x, θ)−A(x, θ)2 +

(
A(x, θ)− ⟨A⟩(x)

)2
]

≡ σ2
syst(x) + σ2

stat(x) , (7.7)

where A2(x, θ) is defined in analogy to A(x, θ). Thus, the total uncertainty can be
factorized into two terms. The first,

σ2
syst(x) ≡

∫
dθ q(θ) σ(x, θ)2 =

∫
dθ q(θ)

[
A2(x, θ)−A(x, θ)2

]
,

corresponds to the learned error in the heteroscedastic loss in Eq.(7.3). Given exact
Atrue(x), it vanishes in the limit of arbitrarily well-known data and perfect network
training

p(A|x, θ) = δ(A−Atrue(x)) ⇔ A2(x, θ) = Atrue(x)2 = A(x, θ)2 . (7.8)

We will see that it approaches a plateau for large training datasets, so we refer to it as a
systematic uncertainty—accounting for noisy data or labels [337], limited expressivity
of the network (structure uncertainty) [49], non-optimal network architectures in the
presence of symmetries, non-smart choices of hyperparameters or any other sources of
systematic uncertainty.

The second error is the θ-sampled variance

σ2
stat(x) =

∫
dθ q(θ)

[
A(x, θ)− ⟨A⟩(x)

]2
, (7.9)

It vanishes in the limit of perfect training, leading to uniquely defined network weights
θ0,

q(θ) = δ(θ − θ0) ⇔ ⟨A⟩(x) = A(x, θ0) , (7.10)

and is thus called statistical uncertainty.

For small training datasets, these two uncertainties cannot be easily separated, but we can
separate them clearly for sufficiently large training datasets [336], where σstat approaches
zero, while the systematic error σsyst reaches a finite plateau. Usually, in LHC physics,
we can make sure to use enough training data such that

σtot(x) ≈ σsyst(x)≫ σstat(x) . (7.11)

Correspondingly, we focus on the extraction and validation of learned systematic uncer-
tainties.

7.1.3 Repulsive ensembles

An alternative way to compute the uncertainty on a network output is using (repulsive)
ensembles. An in-detailed derivation and explanation for these can be found in Sec. 6.3.2
of this thesis. Thus, they will only be briefly discussed in the scope of uncertainty
estimation and their adaption to the amplitude regression tasks.

Adapting the general loss function for REs in Eq. (6.33) to this specific task using the
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Amplitudes A(x), the new loss function for n repulsive ensembles read as

LRE =
n∑

i=1

[
− 1
B

B∑
b=1

log p(A|xb, θi) + β

N

∑n
j=1 k(Aθi

(x), Âθj
(x))∑n

j=1 k(Âθi
(x), Âθj

(x))
+ θ2

i

2Nσ2

]
. (7.12)

For a training dataset of size N , evaluated for B batches, Aθi
(x) is evaluated for all

x1, ..., xB. Again, not all occurrences of θ are inside the gradient, so we use the stop-
gradient operation, denoted as Âθj

(x). The kernel is chosen as a Gaussian with a
width given by the median heuristic [285]. The network outputs not only the predicted
amplitude but also the learned variance. We have to select in which space the repulsion
is applied. In this application, we use the log-likelihood space. As a note, applying the
repulsion to the amplitudes and variances separately does not lead to different results.

7.1.4 Calibration and pulls

To determine if the learned uncertainty is correctly calibrated, we can look at pull
distributions. Let us start with a deterministic network learning ANN(x) ≈ Atrue(x) using
a heteroscedastic loss. Given the learned local uncertainty σ(x) by the network, we can
evaluate the pull of the learned combination as

thet(x) = ANN(x)−Atrue(x)
σ(x) , (7.13)

If σ(x) captures the absolute value of the deviation of the learned function from the truth
exactly and for any x-value, then the pull would be

ANN(x) = Atrue(x)± σ(x) ⇔ t(x) = ±1 . (7.14)

Realistically, an uncertainty estimate will only capture the maximum deviation, so the
per-amplitude deviation of |ANN(x)−Atrue(x)| might be smaller. For a stochastic source
of uncertainties, the learned values ANN(x) are assumed to follow a Gaussian distribution
around the mean ⟨ANN(x)⟩. The width of this Gaussian should be given by the learned
uncertainty, which means the pull will follow a unit Gaussian.

As an example, let us assume that we learn Atrue(x) from noisy training data,

Atrue(x) → Atrain(x) with p(Atrain(x)) = N (Atrue(x), σ2
train(x)) . (7.15)

We then minimize the heteroscedastic log-likelihood loss from Eq.(7.3) based on this
smeared input amplitudes Atrain(x). If the network were allowed to overfit perfectly,
the outcome would be ANN(x) = Atrain(x). In that case, σ(x) is not needed for the loss
minimization and hence not learned at all. If we keep the network from overtraining, the
best that the network can learn from some unbiased data is

ANN(x) ≈ Atrue(x) and σ(x) ≈ σtrain(x) . (7.16)

In that case, we can define a pull function over phase space as

thet(x) = ANN(x)−Atrain(x)
σ(x) . (7.17)

When the input noise is learned as the network uncertainty, it follows a unit Gaussian.
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Note that the pull compares the learned function with the training data, not with the
idealized data in the limit of zero noise.

Systematic pull

We can translate this result for a deterministic network with a heteroscedastic loss to the
BNN and variational inference in the limit q(θ) = δ(θ − θ0),

⟨A⟩(x) =
∫

dθdA A p(A|x, θ) q(θ) =
∫

dA A p(A|x, θ0) . (7.18)

The network is trained well if

p(A|x, θ0) ≈ p(A|x) . (7.19)

In the Gaussian case, this is equivalent to learning its mean and width

⟨A⟩(x) ≈ Atrue(x) and σsyst(x) ≈ σtrain(x) . (7.20)

As argued above, the systematic pull relates the learned A(x) to the actual and potentially
noisy training data Atrain(x),

tsyst(x) = 1
σsyst(x)

∫
dA [A−Atrain(x)] p(A|x, θ0)

= 1
σsyst(x)

[∫
dA A p(A|x, θ0)−Atrain(x)

∫
dA p(A|x, θ0)

]
= ⟨A⟩(x)−Atrain(x)

σsyst(x) . (7.21)

Notably, we do not have to approximate the integral in the definition of tsyst(x) since the
network directly predicts the parameters of p(A|x, θ0).

Statistical pull

To define a pull, equivalently to the one of the systematic uncertainty, to test the
calibration of the statistical uncertainty, we remind ourselves that we need to extract the
statistical uncertainties defined in Eq.(7.9) using the unbiased sample variance from N
amplitudes sampled from the posterior weight distributions, θi ∼ q(θ),

⟨A⟩(x) ≈ 1
N

∑
i

A(x, θi)

σ2
stat(x) ≈ 1

N − 1
∑

i

[
A(x, θi)− ⟨A⟩(x)

]2
. (7.22)

This definition provides us with the pull distribution

t̂stat(x, θ) = A(x, θ)− ⟨A⟩(x)
σstat(x) . (7.23)

It samples amplitudes from the posterior, and it calculates the deviation from the
expectation value ⟨A⟩ and the uncertainty σstat(x), both computed by sampling θ. This
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pull is guaranteed to follow a standard Gaussian for large N , as σstat(x) is calculated
from the variance of A(x, θ). Under the assumption of perfect training, we can replace
the expectation value with its learning target, ⟨A⟩(x) ≈ Atrue(x). To take all the different
ensemble members into account, we define the pull

tstat(x, θ) = A(x, θ)−Atrue(x)
σstat(x) . (7.24)

This pull should again be a standard Gaussian, which means we can use it to test the
calibration of the learned statistical uncertainty σstat(x).

Scaled pull

The problem with Eq.(7.24) is that the pull depends on θ, which means it can only be
computed for individual members of the BNN or RE, but not for the sampled set of
amplitudes. For a global pull, we would need to replace A(x, θ) with a prediction after
sampling and averaging over θ.

Starting with systematics, we can already define the underlying problem when we extract
the prediction and the uncertainty from ensembles. When we evaluate the ensemble
members together, ensembling improves the central value, but the learned uncertainty
does not benefit from the ensemble structure, which will become clearer in the following
sections. In the next section, we will indeed see that ensembling, without or with a
repulsive kernel, will lead to poorly calibrated, under-confident systematic pulls.

Moving on to statistical uncertainties, when extracting the expectation value and the
variance from M samples, we know the scaling. Assuming identically distributed variables
with unit weights, taking means for the prediction should reduce the statistical error by
a factor

√
M , so we define the scaled standard deviation as

σstat,M (x) = σstat(x)√
M

. (7.25)

In analogy to Eq.(7.23), we can define the corresponding averaged pull as

t̂stat,M (x) = ⟨A⟩M (x)− ⟨A⟩(x)
σstat,M (x) . (7.26)

To test the calibration, we would again replace the full expectation value with its learning
target, ⟨A⟩(x) ≈ Atrue(x) and define

tstat,M (x) = ⟨A⟩M (x)−Atrue(x)
σstat,M (x) . (7.27)

Under the above conditions, it should follow a standard Gaussian. By varying M , we can
interpolate between the member-wise pull of Eq.(7.24) for M = 1 and the fully sampled
pull with maximal M . We will see later that it starts deviating significantly beyond the
single-element case M = 1. This does not imply that the statistical uncertainties are
poorly calibrated but that the two samplings are not (sufficiently) independent.
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7.2 Amplitude data and network architectures

As the benchmark for our surrogate amplitudes we choose the squared loop-induced
matrix elements for the partonic process [47,49]

gg → γγg , (7.28)

where we generate unweighted events with Sherpa [343], and then obtain the correspond-
ing amplitudes with the NJet library [344]. A set of basic cuts on the partons,

pT,j > 20 GeV |ηj | < 5 Rjj,jγ,γγ > 0.4
pT,γ > 40, 30 GeV |ηγ | < 2.37 , (7.29)

mimics the detector acceptance and object definition. The total size of the dataset is 1.1M
phase space points with their corresponding amplitudes. Unless explicitly mentioned, we
only use 70% of the data for training and train for 1000 epochs.

The accuracy of the network prediction is measured locally by

∆(x) = ANN(x)−Atrue(x)
Atrue(x) . (7.30)

To illustrate the accuracy of the networks, we histogram these values for a test dataset
containing 20% of the complete dataset. The remaining 10% is used for validation and
the selection of the best network. The width of the histogrammed ∆-values for the test
dataset provides the accuracy of the surrogate amplitude.

Neural networks

The following sections include detailed studies on the accuracy and learned uncertainties
of several network architectures. With increasing complexity, we use the following network
architectures:

• an MLP, a fully connected network with linear layers followed by non-linearities,
also labeled as Det;

• an MLP-I, like the MLP but including Mandelstam invariants as additional input
features, also labeled as Det-I;

• a Deep Sets (DS) network [288], which learns an embedding for each particle type;

• a Deep Sets Invariants (DSI) network, i.e. DS with Mandelstam invariants as
additional inputs;

• an L-GATr network, a fully Lorentz and permutation-equivariant network architec-
ture [299,301].

In the following, the MLP networks are used for the BNN and RE results. The DS network
introduces an embedding step before a standard MLP. It is shared across particles of the
same type, and it is implemented as a fully connected network with a final representation
vector of dimension 64. All the representations are concatenated before being passed to
the second fully connected network, which predicts the amplitudes. The DSI version uses
a structure similar to the DS, where the input four-vectors are concatenated to Lorentz
invariants. It is a specialized architecture for LHC amplitudes [299], combining a deep sets
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architecture [288] — providing permutation invariance — with Lorentz invariants [299].
As an additional test, we compared these architectures also to an MLP-I network, where
we explored the effect of only using Lorentz invariants to train the MLP network

As mentioned above, for both the MLP-I and the DSI, we augment all possible combina-
tions of Mandelstam invariants from the input four-vectors,

sij = (pi + pj)2 = 2pipj , (7.31)

which we additionally transform with a logarithm to obtain O(1) quantities that are
easier to handle by neural networks. The L-GATr architecture can be used for amplitude
regression [51, 58, 299, 301]. We use a modified version of the original network, adding
the heteroscedastic loss and the learned systematic uncertainties. The choice of hyperpa-
rameters for all the networks — if not stated explicitly in the text — can be found in
App. C.

7.3 KAN amplitudes

As previously discussed in Sec. 6.3.3 KANs [286, 287] are an ideal representation to
systematically test different types of non-linearities. Thus, we perform a systematic study
of the effect of different types of non-linearities on fixed non-linear activation functions
as part of the network training.

In addition to the KAN network, structured as

KAN(x) = (ΦL−1 ◦ ΦL−2 ◦ . . . ◦ Φ1 ◦ Φ0)x , (7.32)

we also test GroupKAN network architectures, introduced in Ref. [291]. These are in
between a fully implemented KAN architecture and normal MLP networks. Thus, they
can be viewed as normal MLP networks with learnable activation functions in between,
making it easier to test and train different implementations and types of non-linearities.
The overall structure of a GroupKAN network can be written as

GroupKAN(x) = (WL−1 ◦GroupKANlayerL−2 ◦WL−2 ◦ . . . ◦GroupKANlayer0 ◦W0)x ,
(7.33)

which reduces the overall complexity and training time compared to a KAN.

7.3.1 Activation functions

To test the effect of various activation functions not only on a single architecture, we
investigate and compare three different architectures. The first one is a simple MLP
with three hidden layers and 128 hidden dimensions. For this MLP architecture, we
compare the use of different non-linearities, three fixed activation functions, such as
ReLU, GELU, and leaky ReLU, to a GroupKAN approach with 1, 2, 4, or 8 groups,
which we denote as “GroupKAN-1” etc. We parameterize the learnable GroupKAN
activation functions using rational functions [290,291] with an order five polynomial in
the numerator and denominator, respectively. The used MLP networks have ∼ 4 · 104

parameters. Additionally, we also test a DSI architecture with ∼ 2 · 105 parameters by
again comparing several fixed activation functions to the GroupKAN approach. Moreover,
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Figure 7.1: Accuracy on a logarithmic scale for the MLP, DSI, and KAN networks.
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Figure 7.2: Learned activation functions for the GroupKAN-1 MLP and DSI
networks.

we test a full KAN network with three hidden layers and 64 hidden dimensions. We use
B-splines with a polynomial order of three for the learnable functions and a grid size of
ten. The KAN network has ∼ 1 · 105 parameters.

As a result, we show |∆| distributions for the various MLP and KAN networks in the
upper left panel of Fig. 7.1. There, we can see that the GroupKan networks provide us
with the most accurate predictions, with the bulk of the distribution lying between 10−4

and 10−3. We observe no significant performance increase when the number of groups
is increased. The GELU network is slightly worse than the GroupKAN network. In
contrast, the ReLU and LeakyReLU networks have significantly worse performance with
|∆| values centered around ∼ 10−2. The KAN network lies in between the GroupKAN
and ReLU/LeakyReLU results. Notably, the KAN distribution has a shoulder for large
|∆|, indicating that the prediction is significantly worse for a subset of all amplitudes.

Next, we turn to the DSI architecture as shown in the right panels of Fig. 7.1. We again
observe that the GroupKAN and the GELU networks have similar performance, while
the ReLU and LeakyReLU networks perform significantly worse. In contrast to the
MLP networks, the network using a GELU as an activation function, however, slightly
outperforms the GroupKAN networks.

We provide a visualization of the learned activation functions for the GroupKAN-1
networks in Fig. 7.2. In the left panel, the MLP GroupKAN-1 activation functions
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for the three layers are shown in comparison to the tested fixed activation functions.
The learned activation functions behave similarly to the fixed activation functions for
x ∼ 0 but deviate significantly for larger |x| values. The behavior is similar for the DSI
GroupKAN-1 network, for which we show the activation layer of the summary net in the
right panel of Fig. 7.2. Notably, the learned activation functions are flatter than for the
MLP case.

In conclusion, we find full KAN networks to provide no significant improvement over
architectures with fixed activation functions. GroupKAN layers can, however, be a useful
tool to enhance the accuracy of MLP networks. For more complex architectures like the
DSI architecture, we find no improvement above a well-chosen fixed activation function.
They, nevertheless, can be helpful in establishing a basis line if an extensive scan of
different fixed activation functions is not feasible.

From the MLP and DSI GroupKAN study, Fig. 7.2 shows that there is a slight preference
towards choosing the GELU as an activation function compared to the ReLU. Therefore,
we compared the impact of both activation functions on a normal MLP network labeled
as Det. Fig 7.3 shows this comparison, indicating a clearly more precise prediction when
using the GELU activation function compared to the ReLU function.

7.4 Systematics

From the two sources of uncertainties, statistics and systematics, we start by studying
the systematics. They can be extracted through the heteroscedastic loss, which can be
included in the BNN and the RE. For LHC applications, like amplitude regression, this
uncertainty type dominates the total uncertainty. In this section, we study the surrogate
limitations traced by systematic limitations. Therefore, we start by introducing artificial
noise and then move on to study the network expressivity and symmetry-aware network
architectures.

Unless mentioned explicitly, we use a BNN prior variance σprior = 1 and a repulsive
prefactor of β = 1 for the repulsive ensemble.
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Figure 7.3: Comparing GELU and ReLU as possible activation functions for a
deterministic network (Det).

91



7 Accurate Uncertainty Estimation using Amplitude Regression

7.4.1 Systematics from noise

There are many sources of systematic uncertainties, and as a starting point, we apply
Gaussian noise to the data set to determine if the noise can be learned by the networks [337].
Using Eq.(7.15), we define the artificial noise level relative to the amplitude,

Atrain ∼ N (Atrue, σ
2
train) with σtrain = fsmearAtrue , (7.34)

where we consider the relative noise fractions

fsmear = {0.25, 0.5, 0.75, 1, 2, 3, 5, 7, 10}% . (7.35)

This introduces stochastic systematics in the data. Assuming that the additional system-
atics factorizes, it should appear as added to the other uncertainties in quadrature,

σ2
tot = σ2

syst + σ2
stat = σ2

syst,0 + σ2
noise + σ2

stat ⇔ σ2
noise = σ2

syst − σ2
syst,0 . (7.36)

The contribution σsyst,0 represents the systematic uncertainty stemming, for instance, from
a limited network expressivity, where σnoise indicates the artificially added uncertainty
from the noise.

In Fig. 7.4 we show the two learned uncertainties from the BNN as a function of the
amount of training data. Each point is the median of the respective uncertainty extracted
from a test sample of 200K amplitudes. We perform this scan for the noise levels
σsmear = {5, 2, 0}% (left to right). For the largest noise rate, we see that the learned
statistical uncertainty vanishes towards the large training sample, leaving us with a
well-defined plateau for the systematic uncertainty. On the other hand, we also see
that the split into statistical and stable systematic uncertainties only applies in the
limit of large training samples and vanishing σstat. For finite training data size, the
systematic uncertainty depends on the training sample size as well. The reason is that,
for limited training data, systematic uncertainties can occur when the network’s, in
principle, sufficient expressivity is not fully explored after limited training time.

When we reduce the artificial noise to 2%, the learned systematics plateau drops to the
corresponding values, and without added noise, it reaches a finite plateau below 1%
relative systematics. It represents the next level of systematic uncertainty. We will see in
Sec. 7.4.2 that it is related to the expressivity or size of the regression network.

In Fig. 7.5, we confirm that the learned systematics indeed reproduce the artificial noise
added to the training data. In the left panel, we show the extracted uncertainties for

104 105 106

Ntrain

0.05

0.10

σ
/A fsmear = 5%

σsyst

σstat

σtot

104 105 106

Ntrain

0.000

0.025

0.050

0.075

0.100

σ
/A fsmear = 2%

σsyst

σstat

σtot

104 105 106

Ntrain

0.00

0.02

0.04

0.06

0.08

σ
/A fsmear = 0%

σsyst

σstat

σtot

Figure 7.4: Relative systematic and statistical uncertainties learned by the BNN
as a function of the dataset size, for 5%, 2%, and zero artificial noise on the
training data.
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the BNN, the REs, and a deterministic network with a heteroscedastic loss. All three
methods agree for the systematic type of uncertainty, including the feature that for noise
below 2%, the learned systematic uncertainty approach a new target value around 0.5%
of relative systematic uncertainty.

For the BNN and the RE, we also look at the learned statistical uncertainty, which should
be independent of the added noise. For the BNN, the learned statistical uncertainty is
below 0.1% in the no-noise limit. Adding noise makes this estimate less reliable, which
reflects the numerical problem of separating two contributions and adding in quadrature if
one of them is a factor 100 larger than the other. Interestingly, the statistical uncertainty
learned by the REs is significantly larger. Because the data efficiency of the two network
training can, in principle, be different, this is expected, and we will discuss the learned
statistical uncertainties more in Sec. 7.5

In the right panel of Fig. 7.5, we show the calibration curve for the input vs learned noise
using the definition of Eq.(7.36). It confirms the excellent and consistent behavior of the
three different implementations. The differences in the learned statistical uncertainties
are numerically too small to affect the calibration significantly. As a word of caution

— in the Appendix, we also show the extracted noise when we apply REs without a
heteroscedastic loss. While one might speculate that in this setup, the REs would still
learn the systematic uncertainty, it really does not. REs without heteroscedastic loss are
really limited to statistical uncertainties.

The correlation shown in Fig. 7.5 indicates that the learned systematics extract the
added noise correctly. However, the correlation only shows the median uncertainty, so we
still want to check the uncertainty distributions using the systematic pulls introduced in
Eq.(7.21). In Fig. 7.6, we show the relative accuracy and the systematic pull distributions
for three different noise levels. If stochastic systematics are learned correctly, the
pull should follow a unit Gaussian. In the upper panels, we first confirm that the
accuracy improves with less noise, first consistently for the three methods, and then
towards zero noise with different accuracies for the REs on the one side, the BNN, and
the heteroscedastic noise. In all cases, the relative accuracy distributions follow an
approximate Gaussian curve.
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Figure 7.5: Left: Relative uncertainty versus artificial noise for different network
architectures. The “noise only” curve shows the scaling of the systematics,
assuming the added noise is the only source of uncertainty. The exact numbers
are given in Tab. C.2. Right: Extracted noise, defined in Eq.(7.36), as a function
of the input noise for BNN, REs, and a heteroscedastic deterministic network.
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Figure 7.6: Relative accuracy (upper) and systematic pull (lower) for the BNN,
REs, and heteroscedastic loss for decreasing added noise.

In the second row of Fig. 7.6, we show the systematic pull, combining the accuracy in the
numerator with the learned uncertainty in the denominator. This combination should
become a universal unit Gaussian. The BNN and the heteroscedastic network indeed
reproduce this pattern for all added noise levels. In the zero noise limit, the RE gives
a too-narrow systematic pull distribution, indicating that the learned systematics from
the heteroscedastic modification of the REs are too conservative. From Fig. 7.5, we
can speculate that the too-large learned systematics in the limit of zero noise is related
to the fact that the REs extract a common σsyst ≈ σstat ≈ 0.5% in this limit. The
heteroscedastic loss in the REs only extracts the correct systematics when it is larger
than the learned statistical uncertainty.

Calibrating ensembles

In Fig. 7.6, we observe a poor calibration of (repulsive) ensembles. We have checked that
the repulsive kernel has hardly any impact on our setup, so we can look at standard
ensembles to understand this issue. The left panel of Fig. 7.7 confirms that the different
initializations of the ensemble members lead to convergence in different local minima,
which may predict some amplitudes better than others. Extracted independently for
each member, and with a heteroscedastic loss, we see that the pull is perfectly calibrated.

In Sec. 7.1.4, we have already discussed that ensemble training improves the accuracy of
the amplitude regression, but the learned uncertainties do not benefit from them. This
is confirmed by the right panel of Fig. 7.7, where the RE pull from a larger ensemble
becomes increasingly too narrow. While the mean network prediction becomes more
accurate, the learned σsyst only accounts for the systematics of the single network, which
leads to the poorly calibrated systematic RE pull.

Because the narrow pull distributions as Gaussian do not show any bias, we can solve this
issue using a targeted calibration step. The simplest solution introduces a single global
parameter, which rescales all the amplitudes and effectively changes the parameters of
each learned Gaussian as σsyst → σsyst × T . Fig. 7.8 shows the systematic pull before
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Figure 7.7: Systematic pulls for the repulsive ensemble with a different number of
ensemble members. We show the systematic pulls from single ensemble members
(left) and the standard averaged prediction of the full ensemble (right).

and after the calibration procedure. The calibration parameter T is estimated using
stochastic gradient descent on the full training dataset and evaluated on the test dataset.
The loss used for the optimizer is the usual heteroscedastic loss,

LT (x) =
〈
|Atrue(x)−A(x)|2

2σ2(x)T 2 + log σ(x)T
〉

x∼Dtrain

. (7.37)

7.4.2 Systematics from network expressivity

Adding artificial noise as the, by definition, dominant uncertainty to our amplitude data
immediately bears the question: Where does the systematic uncertainty in the limit of
no noise in Fig. 7.6 come from?

In this section, we examine the effect of network size and network expressivity on
systematic uncertainty. Fig. 7.9 shows the learned systematics as a function of the noise
and for different numbers of hidden layers. Starting with the deterministic network and
a heteroscedastic loss, without any additional noise, the median relative systematics
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Figure 7.8: Systematic pulls (left) and σsyst/A (right) for the repulsive ensemble
before and after the calibration. The fitted value of the temperature parameter
is T = 0.27.
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Figure 7.9: Relative uncertainty versus added noise for different numbers of
hidden layers. We show results for a deterministic network with heteroscedastic
loss and for the BNN. The exact numbers are given in Tab. C.3.

decreases from 5% for one hidden layer to better than 0.5% for five or six hidden layers.
On the other hand, we see that training more than three or four hidden layers is starting
to be less stable. For just one hidden layer, all noise scenarios are not learned correctly.
This indicates that the network is too small to extract the amplitudes and corresponding
uncertainty. This improves for two hidden layers, at least down to 2% noise, and for three
hidden layers to 0.25% noise. This means that more expressive networks can describe the
amplitudes with smaller and smaller noise, finally reaching a systematics plateau around
⟨σsyst/A⟩ = 0.38%.

Also, Fig. 7.9 shows the results for repeating the same study for the BNN, which has to
separate these joint systematics from the statistical uncertainty, according to Fig. 7.5 and
Tab. C.2 at the 0.1% level in the limit of little or no noise. We know that very large BNNs
run into stability issues when the Bayesian layers destabilize the training. The reason
for this is a too large deterministic network can switch off unused weights by setting
them to zero. A BNN can only do this for the mean, while the widths of the network
parameter will be driven to the prior hyperparameter. During training, these parameters
with zero mean but finite width add unwanted noise. The solution is to only Bayesianize
the number of layers needed to express the learned uncertainty. Specifically, we only use
a Bayesian layer as the last layer for our networks, which has more than three hidden
layers. With this caveat, the BNN results in Fig. 7.9 reproduce the results from the
heteroscedastic loss, even with more stable training thanks to the BNN regularization.

Fig. 7.10 displays the systematic pull distributions again, now as a function of the number
of hidden layers. All pull distributions are close to the expected unit Gaussian for
stochastic sources of the underlying systematics. Given that the systematics we are
looking at is the increasing expressive power of the network, this Gaussian distribution is
not guaranteed. For one hidden layer, we also show the lowest and highest quantiles in
the amplitude size separately. Both of them drive the deviation of the pull distribution
from the unit Gaussian, indicating that learning the extreme amplitude values challenges
the network expressivity. The situation improves from two hidden layers onward. For
large networks, the BNN’s pull distributions become slightly too wide, which means the
systematic uncertainty is underestimated. This can be explained by the small number of
actual Bayesian network weights and the choice of the prior hyperparameter.

In Fig. 7.11, we check the stability of the BNN with four and six hidden layers as a
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Figure 7.10: Systematic pulls for all test amplitudes without noise, shown for an
increasing number of hidden layers. For one and two hidden layers we also show
the extreme quantiles of the amplitudes are shown, to identify the failure mode.

function of the prior hyperparameter. While limiting the BNN sampling to the last layer
stabilizes the network, the question is if the trained network still samples the entire
posterior. To see this, we study the systematic pulls for different values of the prior
hyperparameter. We confirm the existence of a broad plateau for this hyperparameter
but shift to smaller prior values for more hidden layers. Larger networks with a smaller
fraction of Bayesian layers need to be pushed to sample the full statistical uncertainty.

7.4.3 Systematics from symmetries

After identifying added noise and the number of network parameters as the two leading
sources of systematic uncertainties, the question is what source of systematics leads to
the plateau value for the heteroscedastic network around 0.38% in Fig. 7.9 and Tab. C.3.
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Figure 7.11: Systematic pulls for all test amplitudes without noise, shown for 4
and 6 hidden layers. We use a BNN with different prior widths, and only the
last layer is Bayesian.
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architecture # hidden layers
1 2 3 4 5 6

⟨σDet/A⟩ (Tab. C.3) 0.050 0.010 0.0056 0.0041 0.0038 0.0038
⟨σI

Det/A⟩ 0.00380 0.00138 0.00098 0.00086 0.00102 0.00104
⟨σI

Det/A⟩ float64 — — 0.00106 — — 0.00107
⟨σI

Det/A⟩ float64+leakyReLU — — 0.00091 — — 0.00092

⟨σDS
Det/A⟩ — — 0.00019 — — —
⟨σDSI

Det/A⟩ — — 0.000054 — — —
⟨σDSI

Det/A⟩ with L2-norm — — 0.000068 — — —
⟨σDSI

Det/A⟩ 2000 epochs — — 0.000039 — — —
⟨σDSI

BNN/A⟩ — — 0.000070 — — —
⟨σDSI

RE /A⟩ — — 0.000051 — — —

Table 7.1: Comparison of different architectures, starting from a standard het-
eroscedastic network and adding different features, then turning to deep sets
without and with invariants.

To identify this source, we work with more advanced architectures that incorporate the
symmetries of our amplitude data. The two key symmetries for LHC amplitudes are
Lorentz and permutation invariance [299, 301], where for our simple (2 → 3) process
Lorentz invariance is more relevant. In Tab. 7.1, we document the development when
improving the network architecture. We start by considering the Det-I, which includes
Mandelstam invariants as additional features, σI. This leads to a sizeable improvement in
the learned uncertainty, which we know tracks the corresponding improvement in accuracy.
This improvement exists for all network sizes, with a performance plateau from three to
six hidden layers, and for three hidden layers, it reduces the systematics to around 0.1%.
Further changes, like higher machine precision or alternative activation functions, do not
improve the performance of the standard MLP architecture as deterministic network Det.

In a second step shown in Tab. 7.1, we replace the standard deterministic network with
a deep sets architecture designed for amplitude regression, σDS. We find a significant
performance boost to a relative systematic uncertainty around 0.02%. Combining the
deep sets architecture with Lorentz invariants defines σDSI, resulting in another drop in
the relative systematic uncertainty to around 0.005%. This level can be stabilized by
adding an L2-normalization and training the normalized network for 2000 epochs. For
the BNN version of the DSI network, the systematic uncertainty does not quite reach this
level but comes extremely close. Notably, when switching to the DSI architecture, we
have to train and evaluate the network in double precision to avoid numerical artifacts.

Finally, we look at the systematic pull of the advanced network architectures in Fig. 7.12.
The upper panels show the improved accuracy of the networks, now also adding the new
Lorentz-equivariant geometric algebra transformer (L-GATr) [299,301]. This architecture
improves the scaling with the number of particles in the final state and is almost on par
with the leading DSI, BNN-DSI, and uncalibrated RE-DSI variants. Their accuracy is
stable on the 10−5 level, with suppressed and symmetric tails. The relative systematic
uncertainty is asymmetric, but this is exactly the distribution we expect from a unit-
Gaussian pull distribution, reflecting the asymmetric distributions of the training and test
amplitudes. All networks, except for the RE variant, have perfectly calibrated systematic
uncertainties. This calibration traces the next leading systematics at the 10−5 level.
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Figure 7.12: Upper: Accuracy on a linear and logarithmic scale for different
network architectures using a heteroscedastic loss, as well as the BNN and the
RE version of the DSI network. Lower: Relative systematic uncertainties and
systematic pulls, indicating the poor calibration of σsyst learned by REs.

7.5 Statistics

The second contribution to the uncertainty arises from limited statistics, and it should
vanish in the limit of infinite training data. In this section, we test the statistical pulls
defined in Sec. 7.1.4 for both BNN and RE. We start by applying the scaled statistical
pull to a large set of amplitudes from the approximate posterior and then turn to
the sampled statistical pull. After validating the statistical pull, we confirm that the
statistical uncertainties are a sub-leading contribution to the total error for our most
precise network.

Scaled statistical uncertainties

We start from a θ-independent pull, as defined in Eq.(7.27), and study its scaling behavior.
For these results, we use samples of N = 512, which is the largest number of members
we can train in parallel for the ensemble. The left panel of Fig. 7.13 shows the pulls for
the RE-DSI. The scaling behavior we expect for tstat,M agrees with a standard Gaussian
pull for M ≪ N . As M approaches the number of samples used to estimate σstat, the
correlation between the two variables increases until the scaling of σstat,M does not hold
anymore, making the pull narrower. Removing the θ dependence in the Atrue residuals
also does not provide good calibration, as with increasing M , the pulls drift towards
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over-confident uncertainties. We observe a similar behavior for the BNN-DSI in the right
panel of Fig. 7.13. Thus, we conclude that the sample variance of the mean is not a
reliable uncertainty and, for the rest of the section, shifts to the sampled statistical pull
with 128 members.

Sampled statistical uncertainties

In Fig. 7.14, we show the sampled statistical pull, defined in Eq.(7.24) for the BNN-DSI
and RE-DSI networks from our default training. In the left panel, we use only 10% of
the training dataset, and both learned uncertainties are reasonably well calibrated given
the limited amount of training data; in the right panel, we use the full training dataset.
We see that the statistical uncertainty from the RE-DSI network is calibrated across
small and large training datasets. In contrast, the statistical uncertainty of the BNN-DSI
network becomes overconfident by roughly a factor of two for the full training dataset.

Finally, we look at the learned uncertainties of the DSI networks as a function of the
size of the training dataset. In the left panel of Fig. 7.15, we compare the total relative
uncertainties and the accuracies. The asymptotic values for the total uncertainty are
similar for all training dataset sizes and coincide with the full dataset. The main difference
between the two networks is that the accuracy of the RE-DSI is significantly better
because of the assembly. We already know that the main reason for the mismatch
between the accuracy and the uncertainty estimate is the poor calibration of the REs for
the systematic uncertainties, where the learned uncertainty does not benefit from the
ensembling the same way the learned amplitudes do.

The right panel of Fig. 7.15 splits the learned uncertainties into the relative systematic
and statistical uncertainties for the BNN and RE. For small training datasets, the
uncertainties learned by the two methods behave differently. This is expected for two
reasons: First, the two methods approximate the posterior using different approaches
with different implicit biases. Second, and more fundamentally, the separation of the
total uncertainty into statistical and systematic contributions is not uniquely defined
away from the limit of infinite statistics or negligible statistical uncertainties.
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Figure 7.13: Distribution of tstat,M (x), defined in Eq.(7.27), for a test set of
amplitudes learned by a RE-DSI (left) and a BNN-DSI (right). The mean ⟨A⟩
and the statistical uncertainty σstat are estimated from 512 amplitudes.
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Figure 7.14: Statistical pulls from the exact training data for 10% (left) and all
(right) of the training data.

Towards more training data, the systematic uncertainties show a crossing point between
BNN and RE, with the ensembles providing smaller uncertainties for large datasets. In
this regime, the statistical uncertainties from the BNNs are slightly overconfident, while
the statistical RE uncertainties are well calibrated, as we know from Fig. 7.14. On the
other hand, the systematic uncertainties from the BNN are perfectly calibrated. This
suggests that in splitting the total uncertainty into systematics and statistical parts, the
BNN maintains a perfect calibration of the systematics through the heteroscedastic loss
at the expense of underestimating the statistical uncertainties by a factor of two.

7.6 Outlook

Fast, accurate, and controlled surrogate amplitudes are a key ingredient to higher-order
event generation with future ML event generators. In terms of accuracy, standard MLP
architectures have been surpassed, for instance, by a deep-set architecture with Lorentz
invariants (DSI) or just by adding an invariant preprocessing; an alternative path might

10−4

10−3

〈σ
to

t/
A 〉

BNN-DSI

RE-DSI

104 105 106

Ntrain

10−5

10−4

〈∆
〉

10−4

10−3


 σ
sy

st
/A
� BNN-DSI

RE-DSI

104 105 106

Ntrain

10−4

10−3

〈σ
st

at
/A
〉

Figure 7.15: Left: Relative total uncertainty for the BNN-DSI and RE-DSI, and
relative accuracy. The means and error bars are obtained by averaging over five
trainings. Right: Relative uncertainties, split into systematics and statistics, as
a function of the size of the training dataset.
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be Lorentz-equivariant transformers (L-GATr).

We first studied the impact of activation functions on the accuracy using KANs and
learnable activation functions through GroupKANs. While KANs perform worse than a
well-chosen fixed activation function, GroupKANs yield comparable performance. This
also leads to the conclusion that the chosen activation function has a significant impact
on the accuracy of the network predictions, as seen by comparing the ReLU with a GELU
activation function for a deterministic network.

For deep networks, appropriate architectures can learn the uncertainties in parallel to the
central values for amplitudes over phase space. Heteroscedastic losses in deterministic
networks probe systematic uncertainties only, while BNNs and REs, combined with a
heteroscedastic loss, track systematic and statistical uncertainties.

For systematic uncertainties, we found that a heteroscedastic loss and the BNN learn
well-calibrated uncertainties. We tested this for added noise, network expressivity, and
the symmetry implementation in the networks — in decreasing order of the size of
the effect on the accuracy and the corresponding uncertainty. REs benefit from their
ensemble nature in learning the mean amplitude but not in learning the systematic
uncertainty. However, this significant mismatch could be removed through re-calibration.
Importantly, we also showed that REs trained without a heteroscedastic loss do not learn
any systematic uncertainties.

Statistical uncertainties are currently less relevant for LHC applications because networks
are trained on comparably cheap simulations. However, for the DSI architecture, the
BNN and the REs indicate that systematic uncertainties are reduced to the current
level of statistical uncertainties. Calibrating the statistical uncertainties is conceptually
challenging. We find that the BNN estimate is overconfident by roughly a factor of two,
while the REs provide a calibrated statistical uncertainty.

Altogether, we have found that for surrogate loop amplitudes, learned uncertainties
provide a meaningful way to control the training, identify challenges, and quantify
the accuracy of the surrogates. They are key to understanding the improvement in
relative accuracy from the percent level for naive networks to the 10−5 accuracy level for
modern architectures. For the most relevant systematic uncertainties in practice, BNNs
are sensitive to a wide range of sources of systematics and provide us with calibrated
uncertainty estimates throughout.
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Chapter 8
Summary and Outlook

With the beginning of the HL-LHC, the LHC is entering an era of more precise measure-
ments and producing vast amounts of data. To make the most out of this data, we need
fast and precise simulations and analysis techniques. Additionally, we have to include
a comprehensive treatment of uncertainties. In this thesis, we presented the impact of
uncertainties in two global analyses, first using the SMEFT framework and then using a
weak-scale EFT approach for EDM measurements. Further, we discussed different ML
architectures and their ability to learn uncertainties and provide precise predictions for
amplitude surrogates.

In Chapter 4, we performed a SMEFT global analysis including the top, Higgs, and
electroweak sectors and studied the implementation of publicly available likelihoods from
three ATLAS top-production measurements in SFitter. We benchmarked our results
with the provided pull distributions and correlation matrices to justify the assumptions
made in SFitter. Additionally, we included a boosted tt̄ production measurement
in the all-hadronic channel. This boosted measurement was the driving factor for the
improved constraints on kinematically enhanced operators. Thus, the distribution was
mainly responsible for the improved constraints in the updated top sector analysis
compared to the old data set. Including experimental likelihoods enabled us to correlate
systematic uncertainties between measurements of the same experiment more precisely.
Considering correlations while neglecting theory uncertainties had a negligible impact
on the constraints. On the other hand, including theory uncertainties in addition to
correlations improved the constraints on the Wilson coefficients. Additionally, comparing
the constraints obtained from profiling and marginalization, we observed a slight shift in
the central value. This shift occurred because the profiling approach could benefit from
the flat distribution of the theory uncertainties by shifting the central value at no cost in
the likelihood.

These findings concluded that theory uncertainties currently dominate the constraints
on top-sector operators, which is also evident in the global analysis. In contrast to the
top sector, the influence of those uncertainties in the Higgs and electroweak sectors
is negligible and only visible on operators strongly correlated with the top sector. By
improving systematic and statistical uncertainties in future LHC runs, we also have to
reduce theory uncertainties to fully benefit from the upcoming data, for example, by
improving the event generation chain.

Moreover, we extended the scope of SFitter by including EDM measurements in a
low-energy EFT addressing EDMs below the weak scale in Chapter 5. Thus, we chose the
hadronic and weak-scale Lagrangians to describe the EDMs at a GeV scale. This choice
was motivated by their ability to address the interactions of electrons and nucleons, the
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8 Summary and Outlook

driving forces in EDMs. The hadronic-scale Lagrangian was linked to the weak-scale
SMEFT Lagrangian to obtain relations to SMEFT dimension six operators. In total, we
included eleven measurements and seven model parameters. By performing this global
analysis, we encountered several challenges. First, the experimental results differ in
precision, leading to order of magnitude differences between measurements and model
parameters. Thus, some highly constraining measurements limited the single-parameter
estimations. Because of this, we considered only a subset of parameters, from which we
could determine the exact measurements responsible for the constraints. HfF+ and ThO
turned out as leading measurements on the de − C(0)

S sub-space, and we could factorize
them out since both measurements only constrain de and C(0)

S . The global analysis found
rich correlation patterns in the hadronic sector, including all corresponding parameters.
However, when we included the most substantial measurements in the hadronic sector,
namely Hg and the neutron measurement, we encountered some narrow correlations.
These narrow correlations did not appear in the single-parameter limits, implicating
weaker constraints. Next, we included theory uncertainties on the corresponding model
parameters. The theory uncertainties had to be combined from various sources using
different conventions and calculations to obtain them. These different conventions resulted
in highly asymmetrical uncertainties; some included zero as a possible parameter value.
By including zero as a possibility, the fit automatically prefers this as the best option, and
the corresponding measurement did not contribute to the constraints of the parameter.
When including theory uncertainties by a flat distribution, we allowed for a shift in
the central value. This behavior was seen in the results of the global analysis by a
disagreement in the central values with and without theory uncertainties. Additionally,
excluding some measurement parameter pairs changed the impact ordering for some
measurements, leading to slightly different correlation patterns. In conclusion, theory
uncertainties significantly impact the correlations and constraints obtained from the global
analysis using EDMs. Thus, it is necessary to perform such a global analysis to determine
all these effects. Furthermore, we have seen that for obtaining more reliable constraints,
the precision of the measurements has to be improved, and theory uncertainties must be
reduced.

With the demand for more precise measurements and reduced uncertainties, we started
investigating the ability of different machine learning architectures to learn uncertainties
and determine the precision of their predictions. To fully understand the effect of various
networks on the predictions, we started by using KANs to determine the impact of
activation functions on the precision of the output. Comparing standard activation
functions to different GroupKAN approaches, we found the GELU activation function to
be the best compromise between computing time and precision. Next, we introduced a
systematic uncertainty to MLPs, BNNs, and REs using a heteroscedastic loss. The BNNs
and REs could also provide an estimate of statistical uncertainty. By adding external noise
via Gaussian smearing to the amplitudes, we observed that the different architectures
could learn external noise as an additional systematic uncertainty. For any external noise
exceeding 2% of the amplitude value, noise is the dominant uncertainty source. This
behavior was also reflected in the pull distribution of the systematic uncertainty, as all
architectures provided perfectly calibrated results for 5% noise. We observed a reasonable
estimate and calibration for BNNs for the systematic uncertainties without artificial
noise. In contrast to the BNN, the RE benefited from its ensemble nature in precision
and in estimating the statistical uncertainties. Additionally, the different architectures
obtained uncertainty from the heteroscedastic loss. To better understand this uncertainty
from the loss function, we fine-tuned the network expressivity by varying the number of
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8 Summary and Outlook

hidden layers for the MLP and BNN. For the BNN, the prior was varied by three orders
of magnitude to ensure stable training and guarantee a prior plateau. Including the
kinematic invariants in the input features of the network had the most significant effect in
reducing the model uncertainties. This resulted in an overall model uncertainty estimate
and precision of the predictions for MLPs, BNNs, and REs of 0.001% or order 10−5.
Comparing this number to actual systematics from experiments and theory uncertainties,
they are negligibly small.

Overall, we conclude that a reliable and robust uncertainty treatment is key for making
the most of future HL-LHC runs and other experimental measurements. As future
tasks, amplitude surrogates must be tested on more advanced and complicated processes
involving higher-order corrections to ensure precision stability. Further, we want to
implement them in the actual event generation chain, for example, as provided by
MadGraph5_aMC@NLO [218] or MadNIS [294,295], to increase the level of precision
and speed up compared to the current treatment. The ultimate goal is to perform NLO
simulations with the same speed as LO simulations. Also, more precise calculations
would benefit more areas in physics, as we have seen in the global analysis of EDM
measurements. Again, theory uncertainties are the driving factor of the parameter
constraints. They lead to huge differences between the limits obtained from a single
parameter estimation and a complete global analysis. In future analyses, correlations can
be introduced between measurements and parameters, as in the SMEFT analysis, and
their impact can be determined compared to the existing global analysis. Also, different
parameterizations can be tested on their correlation patterns and constraints since many
different parameterization schemes are available for EDMs. The weak-scale EFT provides
a link to SMEFT dimension six operators. Linking both induces the goal of performing a
global analysis linking the SMEFT operators used in the top, Higgs, and electroweak
sectors to EDM measurements and their parameters.

In conclusion, theory uncertainties are crucial in global analyses and will become even
more critical when entering the HL-LHC phase. Thus, we have to develop new frameworks
and adapt existing tools with the help of ML architectures. To tackle these challenges,
we must provide a fast, precise, flexible, and trustworthy framework for event generation
and uncertainty estimation.
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Chapter A
Higgs, top, di-boson and electroweak
combination

In producing the global analysis of Sec. 4.3.4 and Fig. 4.14, we have combined the top
sector from Ref. [1] with the Higgs, di-boson, and electroweak sectors from Ref. [75],
taking all data from within these references. The corresponding Wilson coefficients for
the Higgs, di-boson, and electroweak sectors in the Warsaw basis are provided in Ch. 2,
Eqs. (2.16)-(2.19). The final parameter set thus consists of the 22 operators from the
top sector and 20 operators from the Higgs, di-boson, and electroweak sectors and the
additional Branching ratio of the Higgs to dark matter agents BRinv.

The numerical values of the boundaries of the 95% CL intervals shown in Fig. 4.14 for all
43 parameters are reported in Table A.1.
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A Higgs, top, di-boson and electroweak combination

Coefficient Full analysis Halved theory unc. Coefficient Full analysis Halved theory unc.

CϕG [-9.25, 6.35] [-5.56, 5.1] CtG [-0.46, 0.35] [-0.12, 0.19]
Cϕ□ [-1.14, 1.72] [-1.0, 1.27] C

(18)
Qq [-0.29, 0.08] [-0.21, 0.08]

Cuϕ,33 [-7.03, 9.11] [-7.03, 9.11] C
(38)
Qq [-0.23, 0.15] [-0.23, 0.09]

Cϕe × 10 [-2.73, 1.79] [-2.73, 1.59] C
(8)
tq [-0.37, 0.15] [-0.26, 0.12]

Cϕb × 10 [-11.46, -1.25] [-10.17, -1.33] C
(8)
Qu [-0.49, 0.2] [-0.43, 0.18]

CϕD × 10 [-3.48, 5.4] [-3.33, 5.4] C
(8)
Qd [-0.7, 0.4] [-0.68, 0.33]

CϕB × 10 [-2.12, 0.63] [-2.15, 0.63] C
(8)
tu [-0.38, 0.1] [-0.35, 0.1]

CϕW × 10 [-3.15, 4.29] [-3.0, 4.28] C
(8)
td [-0.42, 0.2] [-0.4, 0.11]

CϕW B × 10 [-2.24, 1.64] [-2.24, 1.26] C
(11)
Qq [-0.1, 0.06] [-0.08, 0.05]

C
(1)
ϕl × 10 [-1.14, 1.07] [-1.14, 1.0] C

(31)
Qq [-0.08, 0.06] [-0.06, 0.04]

C
(3)
ϕl × 10 [-1.38, 0.27] [-1.36, 0.17] C

(1)
tq [-0.08, 0.09] [-0.07, 0.1]

CW × 20 [-1.1, 1.2] [-1.1, 1.12] C
(1)
Qu [-0.08, 0.11] [-0.09, 0.1]

Cdϕ,33 × 20 [-0.94, 1.51] [-0.58, 1.36] C
(1)
Qd [-0.15, 0.14] [-0.13, 0.1]

Cϕd × 20 [-2.83, 3.81] [-2.19, 3.05] C
(1)
tu [-0.11, 0.08] [-0.1, 0.09]

Cϕu × 20 [-1.75, 1.39] [-1.75, 1.31] C
(1)
td [-0.14, 0.12] [-0.14, 0.11]

C
(3)
ϕq × 20 [-1.56, 0.84] [-1.54, 0.8] C

(3)
ϕQ [-0.66, 0.32] [-0.56, 0.23]

C
(1)
ϕq × 20 [-1.39, 1.08] [-1.46, 1.08] CtW [-0.16, 0.31] [-0.13, 0.26]

Ceϕ,22 × 100 [-0.29, 0.58] [-0.3, 0.58] CbW /10 [-0.17, 0.19] [-0.12, 0.12]
Ceϕ,33 × 100 [-1.35, 2.06] [-1.26, 1.37] CtZ/10 [-0.3, 0.17] [-0.24, 0.09]
Cll × 100 [-4.61, 0.21] [-4.51, 0.0] C

(1)
ϕQ/10 [-0.56, 0.78] [-0.41, 0.79]

BRinv [0, 7.6] [0, 7.03] Cϕtb/10 [-0.54, 0.48] [-0.37, 0.36]
Cϕt/100 [-0.2, 0.11] [-0.17, 0.07]

Table A.1: Numerical values for the 95% CL limits shown in Fig. 4.14. We
emphasize that the reduction of the theory uncertainties by a factor two is
entirely hypothetical.
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Chapter B
Alternative parametrization

In an alternative parametrization, we choose dsr
n,p as our model parameters and perform

the global SFitter analysis for the set

cj ∈
{
de, C

(0)
S , C

(0)
T , C

(0)
P , g(0)

π , g(1)
π , dsr

n

}
, (B.1)

rather than Eq.(2.42). To remove the proton EDM parameter we now identify

dsr
p ≈ −dsr

n (B.2)

instead of Eq.(2.41). The linear relations from Eq.(5.13) turn into

ki,SSi =
∑

cj∈{dsr
n,p,g

(0,1,2)
π }

αi,cjcj

≈ ki,S

[
si,nd

sr
n + si,pd

sr
p + mNgA

Fπ

(
ai,0g

(0)
π + ai,1g

(1)
π

)]
, (B.3)

and the coefficients ai,0 and ai,1 now include additional terms from the relation between
dn,p and dsr

n,p. In this Appendix we collect versions of all figures from the main body of
the paper, derived using the alternative model parameter choice.
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B Alternative parametrization

−2 0 2 4

C
(0)
S × 1009

−4

−2

0

2

d
e
×

10
29

[e
cm

]

−2.5 0.0 2.5
g(0)
π × 1012

−4

−2

0

2

d
e
×

10
29

[e
cm

]

−5 0 5
dsr
n × 1026 [e cm]

−4

−2

0

2

d
e
×

10
29

[e
cm

]

−2.5 0.0 2.5
g(0)
π × 1012

−2

0

2

4

C
(0

)
S
×

10
09

−5 0 5
dsr
n × 1026 [e cm]

−2

0

2

4

C
(0

)
S
×

10
09

−5 0 5
dsr
n × 1026 [e cm]

−2.5

0.0

2.5

g
(0

)
π
×

10
12

Figure B.1: Correlations from the 4-dimensional analysis of {de, C
(0)
S , g

(0)
π , dsr

n },
based on all EDM measurements but neglecting theory uncertainties. The
ellipses indicate 68% and 95% CL. Figure corresponding to Fig. 5.1 for the dn,p

parametrization.
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Figure B.2: Correlations from three 2-dimensional analyses in the {g(0)
π , g

(1)
π , dsr

n }
parameter space, each based on a different pair of closed-shell EDM measure-
ments, as indicated by the color. The ellipses indicate 68% CL, neglecting theory
uncertainties. Figure corresponding to Fig. 5.2 for the dn,p parametrization.
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B Alternative parametrization

System i ki,S

[
cm/fm3] si,n

[
fm2] si,p

[
fm2]

Tl −4.2+2.1
−1.8 · 10−18 [253] 0.14±0.03 −0.38+1.38

−0.45
Cs −9.99+2.9

−4.1 · 10−18 [253] 0.1±0.1

199Hg −2.26±0.23 · 10−17 [345] 0.6+1.33
−0.12 0.06+0.20

−0.01
129Xe 3.62±0.25 · 10−18 [345] 0.63+0.16

−0.12 0.14±0.03

171Yb −2.10+0.22
−0.0 · 10−17 [252,346] 0.54+0.13

−0.11 0.054+0.016
−0.014

225Ra −8.5+0.25
−0.3 · 10−17 [252,346,347] 0.63+0.16

−0.12 0.14+0.04
−0.03

TlF −4.59±0.41 · 10−13 [345] 0.14±0.03 −0.38+1.38
−0.45

ai,0
[
e fm3] ai,1

[
e fm3] ai,2

[
e fm3]

Tl 0.113+0.017
−0.008 −0.004+0.0

−0.006 −0.226+0.044
−0.03 [348]

Cs −0.006+0.0
−0.074 −0.02±0.01 −0.04+0.0

−0.017 [349]
199Hg 0.01+0.4

−0.005 0.02+0.07
−0.05 0.02+0.04

−0.01 [24]
129Xe −0.008+0.003

−0.042 0.006+0.044
−0.003 −0.009+0.004

−0.091 [349]
171Yb 0.01+0.02

−0.0 0.02+0.034
−0.027 0.02+0.04

−0.01 [350]
225Ra −1.5+0.5

−4.5 6+18
−2 −4+3

−11 [351]
TlF 0.113+0.017

−0.008 −0.004+0.0
−0.006 −0.226+0.044

−0.03 [348]

Table B.1: Quantities used as inputs for computing the hadronic coefficients in
Tab.s 5.3 and B.2. Ranges are inferred from the distribution of literature values,
and should be taken as indicative; signs are adapted as necessary to match
our conventions. In some cases where the valence nucleon is n (respectively
p) literature values are not available for the si,p (respectively, si,n). For these
cases we estimate based on the spin fractions of Tab. 5.2, as done previously
for near-spherical nuclei within the shell model [352]. For some discussion of
these estimations, and in particular difficulties associated with sTl,p and sHg,n

see Ref. [346] and references therein. We do not report the coefficient sCs,p
separately from αCs,p, since the latter includes also contributions from a nuclear
magnetic quadrupole moment [353,354]. This should be borne in mind if using
Eq. 5.13 for 133Cs or nuclei with spin I > 1/2; see also [250,355] for relating a
magnetic quadrupole moment to our coefficients ai,j . References given for ai,2
indicate the sources for central values for all three coefficients ai,j ; the ranges
are inferred from the broader distribution of literature values, see e.g. [24] for a
related discussion.
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System
i

α
i,d

e
α

i,C
(0)
S

[e
cm

]
α

i,C
(0)
P

[e
cm

]
α

i,C
(0)
T

[e
cm

]
α

i,g
(0)
π

[e
cm

]
α

i,g
(1)
π

[e
cm

]
α

i,d
srn

α
i,d

srp

n
−

−
−

−
1
.38

±
0

.02
·10

−
14

2
.73

±
0

.02
·10

−
16

1
(−

1)
205T

l
−

558
±

28
[249]
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.77

±
0

.34
·10

−
18

1
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.5
−

0
.8

·10
−

19
8
.8

+
4

.0
−

1
.2

·10
−

21
−

6
.74

+
4

.85
−

5
.12
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18
2
.20
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5
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B Alternative parametrization

System i de [e cm] C
(0)
S C

(0)
P C

(0)
T

Tl (7.2± 7.7) · 10−28 (5.9± 6.4) · 10−8 (−2.9± 3.1) · 10−6 (−4.5± 4.9) · 10−5

Cs (−1.5± 5.6) · 10−26 (−2.3± 8.9) · 10−6 (1.3± 5.0) · 10−4 (−1.1± 4.1) · 10−4

199Hg (1.9± 2.7) · 10−28 (−1.7± 2.5) · 10−9 (3.3± 4.7) · 10−8 (−3.4± 4.9) · 10−10

129Xe (2.2± 2.3) · 10−25 (8.4± 8.7) · 10−7 (−1.0± 1.1) · 10−5 (−1.4± 1.5) · 10−7

171Yb (−4.7± 3.6) · 10−24 (5.2± 4.0) · 10−6 (−1.4± 1.1) · 10−4 (1.8± 1.4) · 10−6

225Ra (−0.7± 1.1) · 10−22 (3.5± 5.3) · 10−4 (−5.2± 7.9) · 10−3 (−0.9± 1.3) · 10−4

TlF (−1.3± 2.1) · 10−26 (−1.2± 2.0) · 10−7 (−1.1± 1.9) · 10−5 (−0.9± 1.6) · 10−8

HfF+ (−1.3± 2.1) · 10−30 (−1.4± 2.3) · 10−10

ThO (4.3± 4.0) · 10−30 (2.8± 2.7) · 10−10

YbF (−2.4± 5.9) · 10−28 (−2.7± 6.6) · 10−8

g
(0)
π g

(1)
π dsr

n dsr
p

n (0± 8.1) · 10−13 (0± 4.1) · 10−11 (0± 1.1) · 10−26 (0± 1.1) · 10−26

Tl (5.9± 6.4) · 10−8 (−1.8± 2.0) · 10−6 (7.0± 7.5) · 10−20 (−2.5± 2.7) · 10−20

199Hg (−4.7± 6.6) · 10−13 (−3.6± 5.1) · 10−13 (−1.6± 2.3) · 10−26 (−1.6± 2.3) · 10−25

129Xe (1.2± 1.2) · 10−9 (5.9± 6.1) · 10−10 (−7.7± 7.9) · 10−24 (−3.6± 3.7) · 10−23

171Yb (1.6± 1.2) · 10−9 (1.2± 0.9) · 10−9 (6.0± 4.6) · 10−23 (6.0± 4.6) · 10−22

225Ra (2.3± 3.5) · 10−9 (−5.8± 8.7) · 10−10 (−0.7± 1.1) · 10−20 (−3.4± 5.0) · 10−20

TlF (2.3± 3.9) · 10−11 (−0.7± 1.2) · 10−9 (2.7± 4.6) · 10−23 (−1.0± 1.6) · 10−23

Table B.3: Single-parameter ranges allowed by each of the EDM measurements
given in Tab. 5.1, using the coefficients from Tab. B.2.
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Figure B.3: Correlations from the 5-dimensional analysis of
{C(0)

T , C
(0)
P , g

(0)
π , g

(1)
π , dsr

n } and the factorized de − C(0)
S plane from Fig. 5.1. We

ignore the neutron and Hg measurements, which induce narrow correlation
patterns in the 5-dimensional parameters space and do not affect the profiled
2-dimensional correlations. The ellipses indicate 68% and 95% CL, neglecting
theory uncertainties. Figure corresponding to Fig. 5.3 for the dn,p parametriza-
tion.
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The orange curves show the effect of theory uncertainties on the results of
Fig. 5.1. The ellipses indicate 68% and 95% CL. Figure corresponding to Fig. 5.4
for the dn,p parametrization.
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Figure B.5: Correlations from the 5-dimensional analysis of
{C(0)

T , C
(0)
P , g
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π , g
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n }, and the factorized de − C(0)
S plane from Fig. 5.4. The

orange curves show the effect of theory uncertainties on the results of Fig 5.3.
The ellipses indicate 68% and 95% CL. Figure corresponding to Fig. 5.5 for the
dn,p parametrization.
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Figure B.6: 68% CL constraints from the global EDM analysis on the parameters
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allowed ranges for profiled single parameters including experimental and theory
uncertainties. Figure corresponding to Fig. 5.6 for the dn,p parametrization.
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Chapter C
Learning Uncertainties: Additional material
and hyperparameters

Hyperparameters

This section provides the hyperparameters for the training of an MLP and a DS(I)
combination.

Parameter MLP DS(I)

Size of latent rep. - 64
Activation function ReLU GELU
Number of layers 3 3
Hidden nodes 128 128
Batch size 1024 1024
Scheduler One cycle Cosine
Max learning rate 10−3 10−3

Number of epochs 1000 1000

Table C.1: Network and training parameters of the MLP/DSI.

Summary tables

A detailed table for all networks versus noise split into different uncertainty contributions:
In the last rows of Tab. C.2, we show the total uncertainties learned by the two networks,
by defining the square sum of the statistic and systematics. The BNN and RE results are
similar. Just out of interest, we also show the uncertainty from the RE in a setup where
we do not add the additional heteroscedastic loss. We see that it overestimates the total
uncertainty without added noise and does not track the systematics from added noise at
all. This indicates that the REs without heteroscedastic uncertainty are not well-suited
to extract a systematic uncertainty like added noise.
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C Learning Uncertainties: Additional material and hyperparameters

0% 0.25% 0.5% 0.75% 1% 2% 3% 5% 7% 10%

⟨σhet/A⟩
25 0.0054 0.0061 0.0073 0.0094 0.012 0.021 0.030 0.051 0.072 0.104
50 0.0047 0.0053 0.0068 0.0090 0.011 0.021 0.030 0.051 0.072 0.103
75 0.0047 0.0053 0.0067 0.0089 0.011 0.021 0.030 0.051 0.073 0.104

⟨σsyst, BNN/A⟩
25 0.0067 0.0069 0.0082 0.010 0.013 0.022 0.032 0.051 0.072 0.103
50 0.0053 0.0060 0.0076 0.010 0.012 0.021 0.031 0.052 0.072 0.103
75 0.0054 0.0059 0.0076 0.010 0.012 0.022 0.032 0.052 0.073 0.104

⟨σsyst, RE/A⟩
25 0.0054 0.0061 0.0076 0.0095 0.012 0.021 0.031 0.050 0.070 0.101
50 0.0045 0.0054 0.0070 0.0090 0.011 0.021 0.030 0.050 0.071 0.101
75 0.0045 0.0052 0.0069 0.0090 0.011 0.021 0.030 0.050 0.070 0.101

⟨σstat, BNN/A⟩
25 0.0012 0.0013 0.0015 0.0018 0.0020 0.0028 0.0039 0.0061 0.0071 0.0084
50 0.0012 0.0012 0.0014 0.0018 0.0019 0.0027 0.0037 0.0059 0.0072 0.0085
75 0.0012 0.0013 0.0016 0.0019 0.0022 0.0031 0.0041 0.0066 0.0081 0.010

⟨σstat, RE/A⟩
25 0.0057 0.0059 0.0061 0.0065 0.0066 0.0076 0.0088 0.0106 0.012 0.015
50 0.0046 0.0050 0.0053 0.0056 0.0057 0.0068 0.0078 0.0096 0.011 0.015
75 0.0045 0.0048 0.0052 0.0055 0.0055 0.0066 0.0077 0.0094 0.011 0.013

⟨σtot, BNN/A⟩
25 0.0068 0.0071 0.0083 0.011 0.013 0.022 0.032 0.052 0.072 0.104
50 0.0055 0.0061 0.0077 0.010 0.012 0.021 0.032 0.052 0.072 0.103
75 0.0055 0.0061 0.0078 0.010 0.012 0.022 0.032 0.053 0.073 0.105

⟨σtot, RE/A⟩
25 0.0078 0.0085 0.0098 0.012 0.013 0.022 0.032 0.051 0.072 0.104
50 0.0065 0.0073 0.0088 0.011 0.013 0.022 0.031 0.051 0.072 0.102
75 0.0064 0.0071 0.0087 0.011 0.013 0.022 0.031 0.051 0.071 0.102

⟨σMSE, RE/A⟩
25 0.0081 0.0080 0.0082 0.0082 0.0084 0.0089 0.0096 0.0111 0.013 0.015
50 0.0074 0.0073 0.0074 0.0075 0.0077 0.0081 0.0087 0.0101 0.011 0.014
75 0.0073 0.0073 0.0073 0.0074 0.0075 0.0079 0.0085 0.0098 0.011 0.014

Table C.2: Learned uncertainties as a function of added noise, in terms of the
median relative uncertainty for three amplitude quantiles. We use three hidden
layers and show the learned systematic, statistical, and total uncertainties. For
the latter, we also show the RE trained only with an MSE loss instead of a full
heteroscedastic loss.
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# layers 0% 0.25% 0.5% 0.75% 1% 2% 3% 5% 7% 10%

⟨σDet/A⟩

1 0.050 0.049 0.048 0.050 0.052 0.056 0.060 0.076 0.094 0.122
2 0.010 0.011 0.012 0.014 0.015 0.023 0.033 0.052 0.071 0.102
3 0.0056 0.0062 0.0077 0.010 0.012 0.021 0.031 0.051 0.072 0.104
4 0.0041 0.0048 0.0066 0.0086 0.011 0.020 0.031 0.052 0.073 0.105
5 0.0038 0.0046 0.0061 0.0083 0.011 0.021 0.030 0.053 0.072 0.110
6 0.0038 0.0043 0.0062 0.0085 0.012 0.021 0.031 0.054 0.072 0.102

⟨σsyst, BNN/A⟩
1 0.050 0.050 0.046 0.050 0.050 0.053 0.060 0.076 0.094 0.120
2 0.012 0.011 0.013 0.014 0.016 0.024 0.033 0.053 0.073 0.103
3 0.0067 0.0071 0.0083 0.011 0.013 0.022 0.032 0.052 0.073 0.104

⟨σsyst, BNN/A⟩
4 0.0043 0.0049 0.0068 0.0090 0.011 0.021 0.033 0.051 0.073 0.103
5 0.0038 0.0068 0.0065 0.0091 0.014 0.023 0.033 0.054 0.073 0.103
6 0.0034 0.0055 0.0063 0.0084 0.018 0.020 0.031 0.052 0.072 0.101

Table C.3: Learned uncertainties as a function of added noise and the number
of hidden layers, each with 128 dimensions. For the BNN with 4 or more
hidden layers only the last layer is Bayesian, and the prior hyperparameter is
σprior = 0.316 for 4 and 5 hidden layers and σprior = 0.1 for 6 hidden layers.

0% 0.25% 0.5% 0.75% 1% 2%

⟨σsyst, DSI RE/A⟩ 5.1·10−5 0.00249 0.00498 0.00753 0.0100 0.0205
⟨σsyst, DSI BNN/A⟩ 7.0·10−5 0.00251 0.00499 0.00754 0.0100 0.0201

⟨σstat, DSI RE/A⟩ 4.8·10−5 0.00014 0.00025 0.00042 0.00068 0.00136
⟨σstat, DSI BNN/A⟩ 2.3·10−5 0.00016 0.00026 0.00070 0.00083 0.0014

⟨σtot, DSI RE/A⟩ 7.0·10−5 0.00250 0.00500 0.00756 0.0100 0.0205
⟨σtot, DSI BNN/A⟩ 7.4·10−5 0.00451 0.00506 0.00757 0.0101 0.0201

Table C.4: Learned uncertainties as a function of added noise, in terms of the
median relative uncertainty. We use the DSI network.
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