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Summary
Magnetic fields are thought to play a significant role in various phenomena in the Universe,
in particular in the evolution and the structure of stars. With asteroseismology, it is possible
to probe the inner structure of stars. In this thesis, we investigate the properties of the
oscillations of red giants that show signs of energy loss. We observationally constrained the
mechanism causing this energy loss and found that it is consistent with the predicted effect
of magnetic field in the core of the red giant. Using recent developments, we were also able
to observe frequency shifts due to a magnetic field in the core of stars. We analysed stars
with both magnetic frequency shifts and energy loss in the oscillations and showed that both
phenomena can be explained by a magnetic field with the same field strength located in the
core of the stars.

Zusammenfassung
Es wird angenommen, dass Magnetfelder bei verschiedenen Phänomenen im Universum
eine wichtige Rolle spielen, insbesondere bei der Entwicklung und dem Aufbau von Sternen.
Mit der Asteroseismologie ist es möglich, die innere Struktur von Sternen zu untersuchen.
In dieser Arbeit untersuchen wir die Eigenschaften der Schwingungen von Roten Riesen,
die Anzeichen von Energieverlust zeigen. Wir haben den Mechanismus, der diesen En-
ergieverlust verursacht, durch Beobachtungen eingegrenzt und festgestellt, dass er mit dem
vorhergesagten Effekt des Magnetfeldes im Kern des Roten Riesen übereinstimmt. Dank
neuester Entwicklungen konnten wir auch Frequenzverschiebungen aufgrund eines Mag-
netfelds im Kern von Sternen beobachten. Wir analysierten Sterne, bei denen sowohl mag-
netische Frequenzverschiebungen als auch Energieverluste in den Oszillationen auftreten,
und zeigten, dass beide Phänomene durch ein Magnetfeld mit der gleichen Feldstärke im
Kern der Sterne erklärt werden können.
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symbol name value in SI units

M⊙ Solar mass 1.988410 × 1030 kg

L⊙ Solar luminosity 3.828 × 1026 W

R⊙ Solar radius 6.957 × 108 m

σ Stefan-Boltzmann constant 5.6703744191844314 × 10−8 W m−2 K−4

c Speed of light in vacuum 2.99792458 × 108 m s−1

G Gravitational constant 6.6743 × 10−11 m3 kg−1 s−2
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1
Context and theoretical background

Almost a century ago, Eddington (1926) deplored the fact that mankind would never be able
to unravel the mysteries of the interior of the stars from observations. What he found par-
ticularly unfortunate was that – at least, within the scope of knowledge at the time – we can
never verify calculations of the internal structure (from first principles) using observations.
However, Christensen-Dalsgaard and Gough (1976) realised fifty years later that geophysi-
cal methods can be applied to stars showing pulsations (i.e. small periodic variations in the
observed intensity of the Sun) in order to infer the internal structure of a star from these pul-
sations. The field of helioseismology was born. Further developments of the theoretical and
observational methods permitted the identification of these pulsations as resonant modes in
the Sun that are repeatedly stochastically excited and damped in the convective outer regions
of the Sun (see e.g. Goldreich and Keeley, 1977; Goldreich and Kumar, 1988; Balmforth,
1992). Evidently, asteroseismology was developed by applying the same physical principles
to stars outside our solar system. The advent of space missions such as CoRoT (Baglin et al.,
2006), Kepler (Koch et al., 2010; Borucki et al., 2010) and TESS (Ricker et al., 2014) lead to
an important leap forward in the number of target stars (see e.g. Bowman et al., 2020). Space
missions also greatly improved the data quality as the targets can be observed for a longer
time without interruptions such as the day/night cycle (i.e. better resolution of the oscillation
frequencies) and without the noise contribution of the Earth’s atmosphere (see e.g. Bowman
et al., 2020). A succinct introduction to the observational methods can be found in Sect. 1.2.
We refer the reader to reviews such as Aerts et al. (2010); Hekker and Christensen-Dalsgaard
(2017); Basu and Chaplin (2018, and references therein) for additional information.

One characteristic type of pulsating star is a solar-like oscillator. These stars exhibit
oscillation modes driven by turbulent convection in their convective outer regions, similar to
the Sun (see e.g. Houdek et al., 1999; Samadi and Goupil, 2001; Dupret et al., 2009). The
internal structure of solar oscillators at various evolutionary stages can however greatly differ
from the Sun. Red giants are a particularly interesting type of solar-like oscillator because
their non-radial oscillation modes have a mixed oscillation character which results from the
coupling of oscillation modes from different mode cavities (see Sect. 1.2). Due to this mixed
character, the oscillation modes carry information from the inner and outer regions of the
star. Since their detection (Hekker et al., 2009; De Ridder et al., 2009) specific methods have
been developed that allowed to precisely determine the evolutionary stage of a red giant (see
e.g. Bedding et al., 2011; Mosser et al., 2011b; Kallinger et al., 2012; Vrard et al., 2016) as
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1 Context and theoretical background

well as, for example, its core-rotation rate (see e.g. Beck et al., 2011; Deheuvels et al., 2014;
Gehan et al., 2018).

Over a decade ago, Mosser et al. (2012) analysed over a thousand red giants and iden-
tified a subset of 50 stars with signs of energy dissipation in certain oscillation modes. Up
until today, the source of this additional damping of these specific modes remains unclear. In
an attempt to explain the observed reduction of the mode amplitudes, Fuller et al. (2015) de-
veloped the magnetic greenhouse effect, which models the complete dissipation of the mode
energy of a non-radial mode by conversion into Alfvén waves due to a strong magnetic field
in the central regions of the star (i.e. in the core). We can generalise this framework by not
making any assumptions on the source of the additional damping, which we subsequently
called the full dissipation framework. Although the global features of a large sample of stars
(over 600 with signs of energy dissipation) seem to be in agreement with the predictions
of the full dissipation framework (see Stello et al., 2016a,b), the analysis of the individ-
ual modes in several stars (Mosser et al., 2017a; Arentoft et al., 2017) challenges the main
assumption of the framework: complete mode energy dissipation. A framework consider-
ing partial dissipation has been developed recently (Loi and Papaloizou, 2017; Loi, 2020;
Müller et al., 2025). These new developments however still have to be confronted to obser-
vations. Moreover, futher theoretical analysis is required to assess the validity of this new
framework under more general assumptions (see e.g. Loi and Papaloizou, 2018). As the
presence of a magnetic field in the core has been suggested to explain the observed dissipa-
tion of mode energy, it is important to search for other observational magnetic effects on the
properties of the oscillation modes in red giants (Mathis et al., 2021; Bugnet et al., 2021;
Bugnet, 2022; Li et al., 2022; Deheuvels et al., 2023; Hatt et al., 2024). If we can observe
these effects and mode-energy dissipation simultaneously for a star, we can observationally
link the mode-energy dissipation to the presence of a magnetic field. In this thesis, we will
mainly focus on obtaining new observational constraints on the damping mechanism at play
in these stars. We are also particularly interested to what extent magnetic fields play a role
in this mechanism.

In the following sections, we briefly summarise the stellar evolution for the low-mass
stars up to the CHeB phase (Sect. 1.1), introduce the basic concepts of red-giant asteroseis-
mology (Sects 1.2.1 and 1.2.2) and discuss the observational effects of a magnetic field in
the core on the observed oscillation modes (Sect. 1.2.3).

1.1. Low-mass star evolution

In this section, we briefly describe the evolution of low-mass stars (0.8 -2.5 M⊙) up to
the core-Helium burning (CHeB) phase. After its formation thorugh the collapse of giant
molecular cloud, the protostar accretes mass and contracts to attain hydrostatic equilibrium
before being able to start nuclear fusion in the core (Kippenhahn et al., 2013). The star is
said to have reached the main sequence (Kippenhahn et al., 2013). We mainly focus on the
changes in the stellar structure during the main sequence and the red-giant-branch (RGB)
phase to better understand the properties of solar-like oscillation modes (Sect. 1.2.1). A
more detailed description may be found in Kippenhahn et al. (2013).
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1.1 Low-mass star evolution

1.1.1. Main sequence
The main sequence is characterised by a stable phase of nuclear hydrogen-burning (i.e.
nuclear fusion reactions) in the core. For stars at the lower end of the mass range (0.8 -1.2
M⊙), the central temperature is not high enough, so that the temperature-sensitive nuclear
reaction rates of the CNO cycle are low compared to those of the pp-chain (Kippenhahn
et al., 2013). The nuclear reactions of the pp-chain are therefore the main source of nuclear
energy. These nuclear reactions gradually deplete the hydrogen content in the central regions
of the star (Kippenhahn et al., 2013). The temperature gradient allows for a radiative core
(i.e. energy is transported throught the core by radiation, see Kippenhahn et al., 2013), while
the outer envelope is fully convective (i.e. energy is transported through large convective
motions, see Kippenhahn et al., 2013). The change in composition due to nuclear fusion
in the core perturbs the hydrostatic equilibrium causing the core to contract, increasing the
temperature and thus the nuclear reaction rates of the pp-chains (Kippenhahn et al., 2013).
The gradual contraction eventually leads to a more efficient energy transport and an increase
in the luminosity.

For the higher-mass end of the mass range of interest for red giants (1.2-2.5 M⊙), the
central temperature is so high that the nuclear reaction rates of the CNO-cycle are large
and the cycle can efficiently generate nuclear energy. Due to the high energy flux of this
chain of nuclear reactions, only convection can efficiently transport the energy, resulting in
a convective core (Hekker and Christensen-Dalsgaard, 2017). To maintain hydrostatic and
thermal equilibrium of the star during the nuclear burning through the CNO-cycle, the outer
envelope has to expand and cools down (Kippenhahn et al., 2013). Due to convection in
the core, the hydrogen depletion occurs homogeneously in the entire core. When almost
all core-hydrogen is depleted, the entire star contracts to counteract the decreasing energy
production rate in the central regions of the star (Hekker and Christensen-Dalsgaard, 2017).

The main sequence, independent of the stellar structure of the star, ends once hydrogen
is fully depleted in the core. Before the ignition of the inert helium core, the energy produc-
tion of contraction and H-shell burning allows the star to maintain hydrostatic and thermal
equilibrium (Kippenhahn et al., 2013).

1.1.2. Stellar evolution after the main sequence until helium-ignition in
a degenerate way

After central hydrogen depletion, the core of stars with M ≲ 1.4 M⊙ starts contracting as
the core mass increases due to hydrogen shell burning. The central density increases dur-
ing the contraction and becomes so large that the core becomes degenerate (Hekker and
Christensen-Dalsgaard, 2017). Along with the core contraction, the envelope expands and
cools down (Kippenhahn et al., 2013).

The stellar envelope reaches to deeper shells as a lower temperature leads to higher
opacity. As the fraction of the star that is convective increases, it quickly reaches the Hayashi
line, which is the locus in the Hertzsprung-Russell diagram of fully convective stars of a
given mass M and a given chemical composition according to Kippenhahn et al. (2013). It
can be shown that stars cannot be found on the right of this line if they are in hydrostatic and
convective equilibrium (Kippenhahn et al., 2013). At this point in its evolution the star has
a radiative degenerate helium core and a deep-reaching envelope that is largely convective.
The star is said to have reached the Red Giant Branch (RGB).

As the star is situated close to its Hayashi line, its effective temperature will remain
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1 Context and theoretical background

almost constant as long as the star is dominantly convective in its envelope. This means
that any change in radius will immediately affect the luminosity by virtue of the Stefan-
Boltzmann law (Kippenhahn et al., 2013). The core is significantly more dense than the en-
velope and predominantly determines the luminosity of the star (Kippenhahn et al., 2013).
Due to the ongoing nuclear burning the core mass increases and consequenly so does the
luminosity of the star (Hekker and Christensen-Dalsgaard, 2017). As the convective region
reaches very deep into the star and material from the central regions reach the surface, called
the first dredge-up event (Hekker and Christensen-Dalsgaard, 2017). After the first dredge-
up event, the star continues climbing the RGB as the mass of the core increases and at a
certain point the hydrogen burning region attains the discontinuity generated by the convec-
tive outer envelope. Due to the change in chemical composition the luminosity decreases
briefly and starts increasing again as the composition in the convectively well-mixed enve-
lope is homogeneous. It is not clear how the chemical discontinuity affects the onset and the
extend of the variation of the luminosity (Hekker et al., 2020).

During the hydrogen shell burning, the temperature of the core continues to increase
until helium ignition at the tip of the RGB (Hekker and Christensen-Dalsgaard, 2017). In
the degenerate core, the pressure only depends on the core density. Nuclear energy pro-
duced by helium burning is transformed into the internal energy of the non-degenerate ions
(Kippenhahn et al., 2013). This increase in temperature leads to an even more efficient he-
lium burning. In other words, the star goes through a thermonuclear runaway (Hekker and
Christensen-Dalsgaard, 2017). The core temperature gets so high that the degeneracy is
lifted and the stellar core expands (Kippenhahn et al., 2013). This burst in nuclear energy is
known as the Helium flash at the tip of the RGB.

Once the degeneracy is completely lifted, thermal equilibrium in the now convective core
is restored and a combination of core helium burning together with hydrogen shell burning
can start (Hekker and Christensen-Dalsgaard, 2017). The star is said to have reached the
Zero Age Horizontal Branch or ZAHB, the equivalent of the Main Sequence for central
helium burning.

1.1.3. Stellar evolution after the main sequence until helium-ignition in
a non-degenerate way

At the end of the Main Sequence the helium core of stars with M ≳ 1.4 M⊙ is not degener-
ate. At first, the star remains in thermal equilibrium at the beginning of the hydrogen shell
burning. Due to a growing core mass, the star gets out of thermal equilibrium. The outer
regions of the star will therefore cool down as they are expanding as long as the temperature
in the core is not high enough to ignite helium (Kippenhahn et al., 2013). The expansion
of the envelope results, by virtue of the virial theorem, in a decreasing effective temperature
and luminosity. Moreover, the opacity of the envelope will increase leading to the formation
of a convective region at the surface growing to deeper layers (Hekker and Christensen-
Dalsgaard, 2017). The formation of this convective region is related to a strong luminosity
dip. The star has become a red giant with a deep convective envelope and is located close
to its Hayashi line. The envelope is so extended that the luminosity is mainly determined by
the mass of the core. Due to the nuclear burning, the mass of the core increases as well as the
luminosity. As the convective region reaches very deep into the star the star goes through the
first dredge- up event (Kippenhahn et al., 2013). After core-helium ignition, the envelope
contract as the core expands. The expansion of the core results in a decrease of the temper-
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1.2 Asteroseismology: staring into the deep

ature and density in the hydrogen-burning shell. This decrease in temperature is linked to
a decrease in the production rate of the hydrogen burning and thus of the luminosity. Once
helium is depleted in the core the star starts expanding again.

1.2. Asteroseismology: staring into the deep

In this section, we describe important concepts from the theory of stellar oscillations. These
theoretical concepts are of great use to interpret the observed oscillations in red giants. We
emphasise the effect that a core-magnetic field exerts on the oscillation modes to help us
develop tests to assess the potential presence of a core-magnetic field in red giants that show
signs of mode-energy loss.

1.2.1. Theoretical stellar oscillations
We briefly describe how to derive a crude approximation to the equations describing stellar
oscillations in the following section (see e.g. Unno et al., 1989; Aerts et al., 2010; Basu
and Chaplin, 2018). We note that the simplifications are necessary to make the system
analytically solvable. In practice, the full system of equations is solved using numerical
methods (see e.g. Townsend and Teitler, 2013).

The oscillations are considered to be small, linear perturbations to the equilibrium state
of a star. The equilibrium solution of the stellar equations (conservation of mass, momentum
and energy, together with Poisson’s equation) is spherically symmetric, time-independent
and typically static. We can describe a perturbation Q′ to the equilibrium state Q0(r) of the
quantity Q either from a fixed position in space (i.e. an Eulerian perturbation)

Q(r, t) = Q0(r) + Q′(r, t) (1.1)

or moving along with a perturbed mass element (i.e. a Lagrangian perturbation)

δQ(r, t) = Q′(r, t) + ξ(r, t) · ∇Q0. (1.2)

Here ξ(r, t) is the Lagrangian displacement from equilibrium.
By perturbing all equilibrium quantities in the stellar structure equations and expressing

the quantities in spherical polar coordinates, we obtain a set of fourth-order differential
equations. This set of equations constitutes an eigenvalue problem where each eigenfunction
and eigenvalue ω describe a mode of oscillation.

The eigenfunctions of this system can be separated in time and spatial variables (see e.g.
Basu and Chaplin, 2018). The time-dependence is typically expressed as exp(iωt) with a
complex eigenvalue ω = ωr + ωii. The real part of ω, ωr, is the frequency of the oscillatory
behaviour, while its complex part ωi describes the contribution from excitation (i.e. growth)
and damping (i.e. decay) processes (see e.g. Hekker and Christensen-Dalsgaard, 2017, and
references therein). Here, we derive the oscillation equations in the adiabatic case and we
therefore do not expect damping or excitation (i.e. energy exchange with the surroundings),
resulting in a real frequency ω. The spatial part of the eigenfunctions of this system can
be described with radial displacement functions together with horizontal displacement func-
tions in the form of spherical harmonics Ym

l (θ, ϕ) of spherical degree l and azimuthal order
m as a function of the co-latitude θ (measured from the pole) and longitude ϕ. The spherical
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1 Context and theoretical background

degree l and azimuthal order m, together with the radial order n (or overtone) specify the
geometry of each oscillation mode.

The radial order n can be seen as the labels for the different eigenfrequencies of the sys-
tem for a given spherical degree l (Basu and Chaplin, 2018). Conventionally, we define the
radial order n as the number of nodes in the radial direction. The spherical degree l indicates
how many nodal lines are visible at the stellar surface and |m| how many of these surface
nodal lines are parallel to the equator (Aerts et al., 2010). It should be noted that since we
assumed spherical symmetry, the definition of the equator is ambiguous (i.e. any great circle
could be defined as the equator) and therefore the eigenfrequencies and eigenfunctions will
not depend on the azimuthal order m. Rotation or magnetism, for example, can break the
spherical symmetry, rendering the eigenfrequencies and eigenfunctions dependent on m.

To reduce the order of the system of differential equations, we can ignore the perturba-
tion of the gravitational potential, the so-called Cowling approximation (see e.g. Basu and
Chaplin, 2018). This approximation is valid for high radial order n or high spherical degree
l. For high radial order (i.e. high number of nodes for the eigenfunction in the radial di-
rection), the eigenfunctions vary more rapidly than the equilibrium quantities (Aerts et al.,
2010). Assuming high radial order, the so-called asymptotic approximation, and being far
enough from the stellar centre (Aerts et al., 2010; Basu and Chaplin, 2018), we can further
simplify the system of equations to

d2ξr
dr2 = −K(r)ξr (1.3)

with

K(r) =
ω2

c2
s

(
N2

ω2 − 1
) (

S 2
l

ω2 − 1
)
. (1.4)

The function K(r) depends on the angular frequency ω, the adiabatic sound speed cs and
the Lamb and buoyancy frequencies S l and N, defined respectively as

S 2
l ≡

l(l + 1)c2
s

r2 (1.5)

and

N2 ≡ g
(

1
Γ1

∂ ln p
∂r
− ∂ ln ρ
∂r

)
(1.6)

where g is the local gravitational acceleration, p is pressure and Γ1 is the first adiabatic
exponent. We note that N2 indicates if a layer at position r is unstable against convection
(N2 < 0, see e.g. Hekker and Christensen-Dalsgaard, 2017).

The sign of the function K(r) determines the (exponential or periodic) behaviour of the
perturbation (see also Aerts et al., 2010; Basu and Chaplin, 2018). When ω2 > S 2

l ,N
2

or ω2 < S 2
l ,N

2, the last two factors in Eq. (1.4) have the same sign and K(r) is positive.
We expect an oscillatory behaviour in these regions of the star. The boundaries of these
are set by the turning points (where K(r) = 0) of the characteristic frequencies S 2

l and N2

or the physical boundaries of the star (the stellar centre and surface). The standing waves
forming through the reflection of the waves at these boundaries of the propagative regions
are the global oscillations of the star (Unno et al., 1989). The oscillations are said to be
trapped within these so-called mode cavities. Outside of the propagative regions, we expect
an exponentially damped behaviour in the evanescent zone (i.e. last two factors in Eq. (1.4)
have opposite signs).
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Figure 1.1: Propagation diagram for a 1.0 M⊙ star at the start of the RGB phase, with the radial
profiles (in units of the stellar radius R∗) of S 1/(2π) (dash-dotted) and N/(2π) (dashed) determining
the mode cavities. At a typical oscillation frequency for this star (horizontal solid line) we mark
the g-mode cavity (blue), the p-mode cavity (green) and the evanescent zones (orange) for a dipole
mode.

The physical conditions in such a mode cavity determine the properties of the trapped
oscillations (Aerts et al., 2010). To determine these properties, we have to solve Eq. (1.3)
within the mode cavity. The general solutions can be obtained using the JWKB method
(after Jeffreys, Wentzel, Kramers, and Brillouin, see Aerts et al., 2010, in particular their
Appendix E). By matching the solutions at the different turning point, we can obtain the
condition for standing waves in a mode cavity:∫ ru

rl

K(r)1/2dr =
(
n − 1

2

)
π (1.7)

where rl and ru are the boundaries of the considered mode cavity. In other words, the stand-
ing waves in a mode cavity (i.e. the global oscillations) fulfil the condition set by Eq. (1.7).

In Fig. 1.1, the radial profiles of the frequencies S l/(2π) and N/(2π) are shown for a
1.0 M⊙ star at the start of the RGB phase. We see that the regions where ω2 > S 2

l ,N
2 and

ω2 < S 2
l ,N

2, the so-called mode cavities, are found in the inner and outer regions of the star.
We also define the normalised mode inertia Inl of a oscillation mode of radial order n and

l as (Hekker and Christensen-Dalsgaard, 2017)

Inl =

∫
V
ρ|ξ(r, t)|2dV

M|ξ(R)|2 , (1.8)

where V , M and R are the total volume, mass, and radius of the star, and where |ξ(R)|2 rep-
resents the average squared photospheric displacement (Hekker and Christensen-Dalsgaard,
2017). The mode inertia is useful to characterise the contributions of the different stellar
regions to the oscillation mode (Hekker and Christensen-Dalsgaard, 2017).
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1 Context and theoretical background

1.2.1.1 Pressure modes (p-modes)

For high frequencies ω2 > S 2
l ,N

2, we can approximate K as

K(r) ≃ 1
c2

s

(
ω2 − S 2

l

)
. (1.9)

This expression is strongly dependent on the sound speed and can be obtained from the
dispersion relation of plane sound waves (Aerts et al., 2010). We identify these modes as
standing acoustic waves with the pressure gradient as the restoring force. These modes are
therefore called pressure modes, or p-modes.

Expanding the condition for standing waves in Eq. (1.7), we find the following expres-
sion for the frequencies (see e.g. Aerts et al., 2010):

νnpl =
ωnpl

2π
≃

(
np +

l
2
+ ϵp

)
∆ν − d0l, (1.10)

with np the acoustic radial order (an integer value), ϵp a phase shift, d0l a small second-
order correction and the large frequency separation ∆ν defined as (see e.g. Hekker and
Christensen-Dalsgaard, 2017)

∆ν ≡
[
2
∫ R

0

dr
cs

]−1

. (1.11)

From the expression for the frequencies of p-modes (Eq.(1.10)), we deduce that p-modes
of the same spherical degree l are equally spaced in frequency in successive acoustic radial
orders (by the large frequency separation ∆ν).

1.2.1.2 Gravity modes (g-modes)

We also expect an oscillatory behaviour of the eigenfunctions if ω2 < S 2
l ,N

2. Taking the
limit ω2 ≪ S 2

l , we can approximate K by

K(r) ≃ l(l + 1)
r2

(
N2

ω2 − 1
)
. (1.12)

We can relate this expression to the dispersion relation for gravity waves ( at least for the
radial component, see e.g. Aerts et al., 2010). The restoring force of the oscillations is
thus gravity, hence the name gravity modes, or g-modes. A thorough asymptotic analysis
(Tassoul, 1980) based on Eq. (1.7) shows that the matching condition for standing waves is

νngl =
ωngl

2π
≃ 1

∆Πl

(
ng + l/2 + ϵg

) (1.13)

with ng the radial order (an integer value), ϵg a phase shift and the asymptotic period spacing
for g-modes of spherical degree l (see e.g. Aerts et al., 2010)

∆Πl ≡ 2π2

√
l(l + 1)

∫ r2

r1

Ndr
r
. (1.14)

where r1 and r2 are the inner and outer turning points of the g-modes (i.e. the boundaries
of the g-mode cavity). From Eq. (1.13), we see that g-modes in successive radial orders are
equally spaced in period.
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1.2 Asteroseismology: staring into the deep

1.2.1.3 Mixed modes

From the propagation diagram of a RGB star shown in Fig. 1.1, it is clear that mode propa-
gation through both cavities at a given frequency is possible. If a mode from one cavity has
enough energy to travel through the evanescent zone without being completely damped, it
could keep an oscillatory behaviour in the other cavity. Such modes are called mixed modes
since they behave as p-modes in the outer layers of the star and as g-modes in the innermost
regions of the star.

We can describe those modes in the asymptotic limit in a similar fashion as the pure p-
and g-modes. It can be shown that the frequencies of the mixed modes fulfil the following
matching conditions (see Shibahashi, 1979; Unno et al., 1989):

cot
(∫ rb

ra

K(r)1/2dr
)

tan
(∫ rd

rc

K(r)1/2dr
)
= q (1.15)

with ra and rb the inner and outer limit of the g-mode cavity, rc and rd the inner and outer
limit of the p-mode cavity, and the coupling factor (i.e. how much energy is transported
between the mode cavities)

ql =
1
4

exp
(
−2

∫ rb

rc

|K(r)1/2|dr
)
. (1.16)

We note that the expression for ql is only an approximation of the true coupling strength
between the mode cavities (Basu and Chaplin, 2018).

Using a similar approach as for the derivation of the pure p- and g-mode frequencies, we
can rewrite Eq. (1.15) as

tan
(
π

[
ν

∆ν
− l

2
− ϵp

])
= ql tan

(
π

[
1
ν∆Πl

− ϵg
])
. (1.17)

The solutions of this equation are the asymptotic mixed-mode frequencies of spherical de-
gree l.

1.2.1.4 Mode excitation and damping of oscillations in red giants

The oscillations observed in red giants and solar-like stars are stable (see e.g. Samadi et al.,
2015, and references therein). The driving mechanism operating in red giants is called
stochastic driving. Turbulent motions in the outer convective regions of the star are suffi-
ciently strong to transfer acoustic energy into the energy of the global oscillations (Aerts
et al., 2010). Hence, the modes are of a stochastic nature. As the modes are mainly excited
and damped by the turbulent motions, their resulting mode amplitudes will be small (Basu
and Chaplin, 2018). The solar-like oscillations are also damped by radiative losses in the
central regions of the star (Basu and Chaplin, 2018).

1.2.2. Observational asteroseismology
To extract the frequencies from a variable quantity, we have to transform our dataset (i.e.
varying measurements as a function of time) from the time-domain into the frequency-
domain by applying a Fourier transform (see e.g. Aerts et al., 2010; Basu and Chaplin,
2018, for more information). Since the oscillations are not coherent over the length of the
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1 Context and theoretical background

observations, the phase of the oscillations is not maintained (Basu and Chaplin, 2018). We
can therefore compute the frequency power spectrum (i.e. the squared norm of the Fourier
Transform) without loss of information (Aerts et al., 2010; Basu and Chaplin, 2018). The
frequency power spectrum is typically computed in units of power per unit frequency (i.e.
ppm2 Hz−1), which is the frequency power spectrum divided by the frequency resolution
δν = 1/T with T the total timespan of the dataset (Hekker and Christensen-Dalsgaard, 2017;
Basu and Chaplin, 2018). We therefore call it the power density spectrum (PDS) or simply
power spectrum. The highest frequency of the power spectrum is the Nyquist frequency
νNyq = 1/(2δt) where δt is the sampling rate of the data (Hekker and Christensen-Dalsgaard,
2017).

The varying quantity for oscillation modes is either the stellar intensity (i.e. periodic
increases and decreases in the observed intensity) or the radial velocity of the star (i.e. the
inward and outward motions of the stellar surface). Intensity measurements will be more af-
fected by the convective motions at the stellar surface than the radial-velocity measurements
while the radial-velocity measurements have a lower sensitivity to the stellar limb (Hekker
and Christensen-Dalsgaard, 2017; Basu and Chaplin, 2018). The intensity measurements of
stars (except the Sun) are integrated over the stellar disk causing a geometrical cancellation
effect that renders it difficult to observe oscillation modes with a spherical degree l > 3 (see
e.g. Aerts et al., 2010; Basu and Chaplin, 2018). This cancellation effect occurs because a
higher degree l results in more nodal lines dividing the stellar surface into zones. Neigh-
bouring zones have opposite signs, so that the contributions of these zones to the integral
over the stellar disk cancel each other out (see e.g. Aerts et al., 2010).

If observational gaps and aliases (e.g. from the motions of the instrumentation or obser-
vation conditions such as day/night cycles) are present in the observed dataset, the observed
profiles of the oscillations are affected. It can be shown that the gaps will generate side-
bands in the observed profiles in the power spectrum of the star. The number of gaps and
their length compared to the total timespan T determines how strong these sidebands in the
power spectrum are compared to the intrinsic profile of the oscillation mode.

1.2.2.1 Power spectrum of a typical red giant

Other periodical variations contribute to the power spectrum of a red giant in addition to
stellar oscillations. The main additional constributions are attributed to the granulation from
the convective motions on the surface, magnetic surface activity, and rotation.

The effect of granulation in the power spectrum has been empirically modelled (Kallinger
et al., 2014) as a sum of three so-called granulation components:

Pbgr(ν) =
3∑

j=1

H j

1 +
(
ν
b j

)4 , (1.18)

with H j and b j are the height and characteristic frequency (related to the characteristic
timescale of motion of the granules) of the jth granulation component. This is equiva-
lent to modelling the granulation process at the stellar surface as a combination of damping
processes (see e.g. Basu and Chaplin, 2018).

The effect of surface magnetic activity (i.e. stellar spots) will be observed at lower fre-
quency and is typically incorporated within the granulation component with the lowest char-
acteristic frequency (Basu and Chaplin, 2018).

10
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Figure 1.2: Power spectrum P (ν) of the red giant KIC 9145955 as a function of cyclic frequency ν.
The granulation components are respresented by the three dashed curves (orange, yellow and blue).
we also show the photon noise contribution (purple dotted line) and the bell-shaped power envelope
(green dashed-dotted curve). The total background model for the power spectrum is shown by the
red solid curve.
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1 Context and theoretical background

In addition to all the physical processes that are related to stellar activity at the surface,
we also have to consider the contribution of the photon noise in the instrumentation (Hekker
and Christensen-Dalsgaard, 2017). As the length of the timeseries from spatial missions are
typically of the order of years, the photon count is so high that the Poisson’s distribution
of the photon noise is approximately gaussian (Basu and Chaplin, 2018). A normally dis-
tributed noise contribution to the signal has a constant contribution Pn to the power spectrum
(Basu and Chaplin, 2018).

Lastly, the combined contribution of all solar-like oscillations to the power spectrum has
a bell shape that is centred around the frequency of maximum oscillation power νmax (Hekker
and Christensen-Dalsgaard, 2017). We describe this power excess in the power spectrum as
a Gaussian function of the form

Posc(ν) = Pg exp
[
− (ν − νmax)2

2σenv
2

]
, (1.19)

with Pg and σenv the height and width of the power excess.
Our total background model for the power spectrum is (see also Fig. 1.2)

PB (ν) = Pn + η
2
a(ν)Pbgr(ν). (1.20)

we note that the contribution of the oscillations is not part of the background model. We
however have to consider this contribution to correctly model the background contribution
in the power spectrum.

The factor η2
a(ν), called the apodization, is needed to account for the fact that the inte-

gration time of the instrument (the time needed to integrate the signal in the detector) is not
infinitely small. It can be shown that this attenuation factor can be written as

η2
a(ν) = sinc2 (πνδt) = sinc2

(
πν

2νNyq

)
(1.21)

with sinc(ν) = sin(ν)/ν and sinc(0) = 1 (Hekker and Christensen-Dalsgaard, 2017).

1.2.2.2 Signal of oscillation mode in power spectrum

The different contributions being identified, we now focus on the information that we can
extract from the signal of individual oscillation modes in the power spectrum. An oscillation
mode in a star can be described as the solution to the equation for a damped and driven
harmonic oscillator (e.g. Samadi et al., 2015):

d2ξr
dr2 + 2ηp

dξr
dr
+ ω2

pξr = f (t) (1.22)

with ηp the damping rate of the mode, ωp = 2πνp the angular eigenfrequency of the mode
and f (t) the forcing term. The Fourier Transform of an infinitely long timeseries of such a
mode would have the form (see Eq. (5.56) from Aerts et al., 2010)

P(ν) =
1

16π2ν2
pη

2
p

P f (ν)

1 + 8π2(ν−νp)2

2ηp

. (1.23)

where P f (ν) is the average power spectrum of the forcing term f (t) and ν = ω/2π. This
Lorentzian profile only occurs for time series with an infinitely large timespan. The fre-
quency resolution δν of the power spectrum of an observed time series determines how well
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1.2 Asteroseismology: staring into the deep

the shape of the Lorentzian profile can be resolved. If η/δν ≫ 1, the mode peak in the fre-
quency spectrum resembles a Lorentzian profile as the frequency resolution is small enough
to resolve the entire profile in the frequency spectrum (Aerts et al., 2010). In other words, the
timespan of the observations is long enough to extend over a large number of independent
realisations of the mode (Basu and Chaplin, 2018). We therefore model individual resolved
mode oscillations in the power spectrum of a red giant using the Lorentzian function (see
e.g. Hekker and Christensen-Dalsgaard, 2017):

P(ν) =
Hp

1 +
( 2(ν−νp)
Γp

)2 . (1.24)

Here Hp, νp and Γp are the height, central frequency and linewidth of the Lorentzian profile.
We note that we can directly relate the mode linewidth measured in the power spectrum to
the mode damping rate ηp, namely

Γp =
ηp

π
. (1.25)

The mode amplitude of a resolved mode in the power spectrum Ap,res is defined as the square
root of the area under the Lorentzian profile:

A2
p,res =

πΓpHp

2
. (1.26)

If, η/δν ≪ 1, the Lorentzian profile will be unresolved and therefore the observed profile
of the mode resembles a sinc2-function:

P (ν) = Hp sinc2
(
π
ν − νp

δν

)
. (1.27)

Similarly as for a resolved mode, the mode amplitude Ap,unres of an unresolved mode is
defined as the square root of the area under the profile:

A2
p,unres = Hpδν. (1.28)

1.2.2.3 Interpretation of the oscillation power spectrum

After dividing the power spectrum by the background contribution in Eq. (1.20) and limiting
the frequency range to the range where the contribution of the solar-like oscillations dom-
inates the power spectrum, we obtain a normalised power spectrum, as shown in Fig. 1.3.

To interpret the observed power spectrum, let us recall that the asymptotic frequencies
of pure pressure radial (l = 0), dipole (l = 1), and quadrupole (l = 2) modes in red giants
are (i.e. Eq. (1.10), see also Tassoul, 1980):

νnp0 =
(
np + ϵp

)
∆ν

νnp1 =
(
np + 1/2 + ϵp

)
∆ν − d01

νnp2 =
(
np + 1 + ϵp

)
∆ν − d02

(1.29)

We thus expect that the radial and quadrupole pressure modes are located close to each other
in frequency, because νnp+1 0−νnp2 ≃ d02 (second-order term in the asymptotic expression). In
other words, we expect to detect a repeating pattern of radial and quadrupole pairs of modes.
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Figure 1.3: Power spectrum of the red giant KIC 9145955 normalised by the background model,
shown for the frequency range in which oscillations are observed. We specifically show the frequency
ranges derived from the universal pattern (see text for more details) where we expect radial (l = 0),
dipole (l = 1), and quadrupole (l = 2) modes in respectively black, blue and orange. we note that
octupolar (l = 3) modes are most likely also present within the dipole-mode frequency ranges.

Since successive pure pressure modes of the same spherical degree are almost always sep-
arated in frequency by the large frequency separation ∆ν, it is convenient to construct the
échelle diagram (Grec et al., 1983) of the power spectrum. This diagram consists of stacked
segments of the frequency range of length ∆ν. In Fig. 1.4, we show such a diagram for the
power spectrum in Fig. 1.3 and we observe that the radial modes do not align vertically in
the échelle diagram as predicted by the asymptotic frequencies in Eq. (1.29). Based on the
observations of hundreds of stars, Mosser et al. (2011b) confirmed that the deviation from
the linear alignment in the échelle diagram is due to a second-order term in the radial or-
der in the asymptotic expressions in Eq. (1.29). The authors derived the so-called universal
pattern to describe the frequencies of pure pressure modes of spherical order l in the power
spectrum of any red giant as a function of νmax and ∆ν:

νnpl =

[
np +

l
2
+ ϵp +

α

2

(
np − νmax

∆ν

)2
]
∆ν − d0l, (1.30)

where α is the curvature of the frequency pattern of pure pressure modes. A recent study
suggests that there is a connection between the curvature of the large frequency separation
and the structure in the outer regions of the star (see Hekker et al., in prep.). We show
the expected location of the pure pressure modes in the échelle diagram in Fig 1.4. Two
main ridges describe the radial and quadrupole modes. The dipole-mode spectrum is much
richer than predicted by the universal pattern. For this particular star, we observe dipole
mixed modes suggesting that the coupling between the mode cavities for the dipole modes is
strong enough to allow dipole modes to propagate through both mode cavities. To simplify
the description of the universal pattern and the identified modes, we omitted to show the
octupolar modes in Figs 1.3 and 1.4.

Let us now focus on the pure g-modes to further interpret the remaining observed modes
in the power spectrum in Fig. 1.3. The asympotic expression for the frequency of a g-mode
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Figure 1.4: Frequency échelle diagram for the star KIC 9145955 with a large frequency separation
∆ν of 11 µHz. We show the identified radial (l = 0), dipole (l = 1), and quadrupole (l = 2) modes
as respectively black, blue and orange dots. The theoretical ridges derived from the universal pattern
are shown as full curves.

νngl of spherical degree l is
1
νngl
=

[
ng +

1
2
+ ϵg

]
∆Πl, (1.31)

with ∆Πl the asymptotic period spacing.
In a similar way as what was done for the frequencies of the pure p-modes, we can

construct a period échelle diagram (P = 1/ν) of the dipole modes to help us interpret the
detected oscillation frequencies. We see in Fig. 1.5 that the observed dipole modes do not
align vertically as expected for pure g-modes. The deviation from the central alignment is
strongest at the frequencies of the pure pressure modes (indicated with blue dashed lines in
Fig. 1.5). This is a clear indication that these modes are mixed, since these modes have most
likely a strong contribution from the p-mode cavity (i.e. behaving mainly as a p-mode).
Furthermore, we observe a recurring pattern in each radial order (i.e. between successive
acoustic radial modes, indicated with black dashed lines in in Fig. 1.5). The analytical
expression for the mixed modes Eq. (1.17) describes this observed pattern.

Based on the deviation of the observed period from the asymptotic period spacing of
pure g-modes, Mosser et al. (2015) derived an expresssion for the observed period spacing
∆P between successive mixed modes together with its relation to the asymptotic g-mode
period spacing ∆Π1 through the ζ-function:

∆P = ζ(ν)∆Π1. (1.32)

The ζ-function is defined as

ζ(ν) =

1 + ν2 q∆Π

q2∆ν +
(
1 − q2)2

∆ν sin2 θp

−1

, (1.33)

where θp is taken to be

θp ≡
π
(
ν − νp

np1

)
∆ν

, (1.34)
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Figure 1.5: Period échelle diagram for the star KIC 9145955 with an asymptotic period spacing
∆Π1 of 76.9 s. We show the observed dipole modes (blue dots) as well as the frequencies of the
pure pressure dipole modes (blue dashed lines). Different acoustic radial orders are indicated by the
frequencies of the radial modes (black dashed lines).
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with νp
np1 the frequency of the pure pressure dipole mode in radial order np.

From Goupil et al. (2013) and later Deheuvels et al. (2014, 2015) we can relate the
function ζ(ν) to the inertia of the mixed modes and in particular to the ratio of the mode
inertia in the g-mode cavity (Ig) to the total mode inertia (Ig+ Ip, i.e. over the g- and p- mode
cavities respectively):

ζ(ν) ≃ Ig
Ig + Ip

. (1.35)

This means that this function can be used to quantify the contribution from the mode cavities
to the mode properties. If ζ ≃ 1 for a mode, this mode has a predominant g-mode character
(i.e. Ig ≫ Ip). From Eq. (1.32), we deduce that g-dominated modes have a period spacing
close to the asymptotic period spacing of g-modes. If however ζ ≃ 0 the mode has a
predominant p-mode character (i.e. Ig ≪ Ip). According to Eq. (1.32), these modes aslo
have the largest deviation from the asymptotic period spacing as seen in Fig. 1.5. Dipole
modes with a predominant p-mode character are almost equally spaced in frequency by the
large frequency separation ∆ν.

1.2.3. Effect of a magnetic field on mixed oscillation modes

In this thesis, we aim to assess if a magnetic field in the core can explain the observed
mode-energy loss in non-radial modes of red giants. We therefore focus in this section on
the observational effects that a magnetic field can have on the mixed modes of red giants.

We typically distinguish two regimes for magnetic fields when evaluating their effect on
oscillations. Firstly, weak magnetic fields are described as a perturbation to the restoring
forces of the oscillations, similar to what is done for so-called slow rotation (see e.g. Bugnet
et al., 2021; Mathis et al., 2021; Li et al., 2022). Recent developments indicate that these
weak magnetic fields shift the frequencies of all non-radial modes; even zonal modes (m =
0) (Mathis et al., 2021). In contrast to rotationally induced frequency shifts, the magnetic
frequency shift is always positive and only depends on the absolute value of the azimuthal
order m. The properties of the magnetic shift imply that weak magnetic fields inherently
lead to asymmetric multiplets (modes with same radial order n and spherical degree l but
different m) of non-radial mixed modes (Bugnet et al., 2021; Mathis et al., 2021; Li et al.,
2022) that can be observed (see e.g. Li et al., 2022, 2023; Hatt et al., 2024). In general, we
expect to observe the combined effect of rotation and magnetism (see Fig. 7 of Bugnet et al.,
2021, for a representative sketch of the effect of magnetic and rotation frequency shifts on
the mixed-mode frequency of non-radial modes). Disentangling the contribution from both
effects remains a complex problem (see e.g. Bugnet et al., 2021; Li et al., 2022; Hatt et al.,
2024).

Secondly, strong magnetic fields are able to efficiently dissipate mode energy in the
central regions of a star (see e.g. Fuller et al., 2015; Loi and Papaloizou, 2017; Loi, 2020;
Rui and Fuller, 2023; Müller et al., 2025). The threshold field strength at which the mode
energy entering the g-mode cavity is fully dissipated is called the critical field strength Bcrit.
Due to this full dissipation of the g-mode character, we expect to only detect pure pressure-
modes. To investigate the mode properties when the g-mode character is fully dissipated
(independently of the source of the additional damping) the full dissipation framework was
developed (see Chapter 3).
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1.2.3.1 Weak magnetic field in the core: magnetic shift

Mathis et al. (2021) derived the asymptotic magnetic shift for pure pressure and pure gravity
modes. Similar as for rotation (Goupil et al., 2013), the magnetic shift of mixed modes is
a combination of the pure p- and g-mode magnetic shifts. The contribution of the shift in
in each mode cavity is set by the mode character, which is represented by the function ζ(ν).
Because the field is strongest in the core, Bugnet (2022) showed that the magnetic shift is
dominated by the contribution from the g-mode cavity. Following the theoretical develop-
ments by Mathis et al. (2021) and Bugnet (2022), we can write the observed frequency νobs

of a mixed dipole mode affected by the magnetic shift as

νobs = ν +

( |m| + 1
2

)
ζ(ν)δνmag,g(ν) (1.36)

with ν the asymptotic unperturbed mixed dipole-mode frequency, m the azimuthal order of
the dipole mode, and δνmag,g(ν) the frequency-dependent shift on the pure g-mode frequen-
cies due to the magnetic field in the core.

Li et al. (2022) as well as Mathis et al. (2021); Bugnet et al. (2021) independently derived
that the frequency-dependence of δνmag,g can be written as

δνmag,g(ν) =
(
νmax

ν

)3
δνmag,g (ν = νmax) =

(
νmax

ν

)3
δνmag (1.37)

where δνmag is the intrinsic magnetic shift measured at νmax.
Using Eq. (1.37) to rewrite the observed frequency in Eq. (1.36), we find

νobs = ν +

( |m| + 1
2

) (
νmax

ν

)3
ζ(ν)δνmag (1.38)

It is not always straightforward to determine |m| observationally and we therefore define
the effective magnetic shift δνmag,eff as

δνmag,eff ≡ (|m| + 1) δνmag. (1.39)

We can now describe observed frequencies as a function of the unperturbed asymptotic
mixed-mode frequencies, the ζ-function, and the effective magnetic shift:

νobs = ν +
ζ(ν)δνmag,eff

2

(
νmax

ν

)3
. (1.40)

The expression in Eq. (1.40) can be fitted to the observed dipole-mode frequencies to obtain
the effective magnetic shift δνmag,eff .

1.2.3.2 Strong magnetic field in the core: the full dissipation framework

To determine the effects of a strong magnetic field in the core on the mode properties, we can
use the predictions in the general full dissipation framework. We briefly summarise the main
predictions in the following paragraphs and refer the reader to Chapter 3 for more detailed
information about the framework. We note that a magnetic field is considered strong for a
mode of spherical degree l if the magnetic field strength is larger than the critical magnetic
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field at the radial coordinate rH (the radial coordinate of the hydrogen-burning shell, as
(Fuller et al., 2015; Rui and Fuller, 2023):

Bcrit = 2π2√µ0ρ
ν2

max√
l(l + 1)N

rH, (1.41)

where ρ is the mass density, rH the radial coordinate of the H-burning shell and µ0 the
magnetic permeability in vacuum.

To quantify the effect of the full dissipation of the g-mode character we require a proxy
for the energy in an oscillation mode. We define for this purpose the normalised visibility
3nl of a non-radial oscillation mode of spherical degree l in the acoustic radial order n as

3nl ≡
A2

nl

A2
n0Gl
, (1.42)

with Anl the amplitude of the mode, An0 the amplitude of the radial mode of the same acous-
tic radial order and Gl a geometrical factor depending on spherical degree, limb-darkening
effects and the bolometric correction (see e.g. Ballot et al., 2011). In this study, we use the
mean observed visibility of stars with typical dipole modes as the geometrical factor Gl in
Eq. (1.42) (G1 ≈ 1.35 and G2 ≈ 0.688, see e.g. Mosser et al., 2012; Stello et al., 2016b).
These values are roughly similar to the values that Ballot et al. (2011) obtained for pure
p-modes considering the spectral response function of the Kepler instrumentation.

Since the g-mode character is fully dissipated, we only observe one mode of spherical
degree l per acoustic radial order (i.e. no mixed character). In other words, all the observed
oscillation modes will be pure pressure modes. Within this framework, we can also relate
the normalised visibility to the ratio of the radial-mode linewidth to the non-radial-mode
linewidth:

3nl =
Γn0

Γnl
. (1.43)

Lastly, we can express the normalised visibility in this framework as a function of the
radial-mode linewidth, the coupling factor ql (i.e. how strongly the mode cavities couple
which acts as a proxy for the fraction of energy transmitted to the g-mode cavity) and the
large frequency separation ∆ν (Takata, 2016; Mosser et al., 2017a):

3l ≃
[
1 − ln

(
1 − ql

1 + ql

)
∆ν

πΓ0

]−1

. (1.44)

In the limit of a thick evanescent zone (i.e. ql ≪ 1, see e.g. Unno et al., 1989, for more
information), the expression in Eq. (1.44) can be approximated as

3l ≃
(
1 +

2ql∆ν

πΓ0

)−1

= (1 + 4ql∆ντ)−1, (1.45)

with the radial-mode lifetime τ = (2πΓ0)−1 (see Fuller et al., 2015; Mosser et al., 2017a, and
references therein).

1.3. Aim and overview of the thesis
Over ten years ago, red giants with very low dipole-mode visibility, the so-called suppressed
dipole-mode stars, were mentioned for the first time. Various mechanisms, such as rapid ro-
tation (Garcı́a et al., 2014) or non-linear coupling (Weinberg and Arras, 2019; Weinberg
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et al., 2021) have been proposed to explain the observed mode-energy dissipation. Even
if some of these mechanisms can explain the dissipation, they are typically not able to re-
produce the observed individual mode properties (frequencies, linewidths or amplitudes) of
the non-radial modes. An example of such a mechanism is the magnetic greenhouse effect
proposed by Fuller et al. (2015) and further developed by Cantiello et al. (2016) and Rui
and Fuller (2023). With this mechanism, the energy entering the g-mode cavity is fully
dissipated (by a magnetic field in the core). This result can in fact be used as the main
assumption for a theoretical framework, the full dissipation framework. In this framework
the nature of the full dissipation is not specified allowing for global predictions. These pre-
dictions for the normalised visibility seem to agree with the observations of Stello et al.
(2016a,b). When Mosser et al. (2017a) analysed the power spectra of individual stars, the
authors found that the majority of the stars still exhibit mixed non-radial modes. Since the
g-mode character should be fully dissipated, Mosser et al. (2017a) concluded that we cannot
interpret the observed mode properties within the full dissipation framework. As the obser-
vations suggest only partial dissipation of the g-mode character, we can further generalise
the framework to allow for partial dissipation (see e.g. Loi and Papaloizou, 2017; Loi, 2020;
Müller et al., 2025). The so-called partial dissipation framework can be interpreted as an
intermediate regime in between full dissipation and no dissipation of the g-mode character
(see e.g. Mosser et al., 2017a, for more information about these edge cases). If this inter-
pretation is correct, it implies that a fraction of the stars with lower visibility can still be
described within the so-called full dissipation framework (i.e. a fraction of the stars exhibits
signs of very efficient damping leading to strong partial dissipation). Identifying this small
number of stars within the suppressed dipole-mode stars would help to constrain the applica-
bility of the full and partial dissipation frameworks. The main aim of this thesis is to obtain
observational constraints on the mechanism causing the mode suppression in the non-radial
modes of suppressed dipole-mode stars. A subsequent aim is to confirm or disprove that the
observed mode suppression is the result of a magnetic field in the core of the star using the
new observational constraints.

Before testing if the full dissipation framework can be used the describe a number of sup-
pressed dipole-mode stars, it is important to observationally confirm that the mode-energy
is indeed dissipated in the central regions of the star (i.e. the main assumption of the full
and partial dissipation frameworks). To this end, we compared the radial-mode properties
of suppressed dipole-mode stars to the properties of stars with typical dipole-mode visibility
(see Chapter 2).

To verify the validity of the full dissipation framework and its applicability, we can as-
sess three main predictions of this framework (see Chapter 3). Firstly, we only observe pure
pressure modes, as the g-mode character is fully dissipated. Furthermore, pure pressure
modes that are damped compared to the no-dissipation case should have a visibility that is
directly equal to the ratio of the radial-mode linwidth to the linwidth of the non-radial mode
in the same acoustic radial order (see e.g. Benomar et al., 2014; Mosser et al., 2017a, and ref-
erences therein). Lastly, within the full dissipation framework, the normalised visibility can
be expressed as a function of radial-mode properties and the coupling factor (see Eqs (1.44)
and (1.45) Takata, 2016). By comparing the predicted visibility from this expression to the
observed visibility, we can assess if the full dissipation framework can explain the observed
visibility of suppressed dipole-mode stars.

Lastly, it would be valuable to connect the detection of mode-energy dissipation to the
presence of a magnetic field in the core of a star. If we furthermore can estimate the field
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strength of the magnetic field and compare it to the critical magnetic field, we even could
confirm that the observed mode suppression is consistent with the observed strength of the
magnetic field in the core of the star. (see e.g. Li et al., 2022, 2023; Deheuvels et al.,
2023; Hatt et al., 2024) already confirmed the presence of magnetic fields based on observed
magnetic shifts in the dipole modes (Mathis et al., 2021; Bugnet et al., 2021; Bugnet, 2022;
Li et al., 2022). The stars analysed by Deheuvels et al. (2023) are of particular interest as
they do not show any contribution from rotation and thus allow for a more precise estimation
of the magnetic field strength. These stars are thus the perfect testing ground to assess if
mode suppression can indeed be observationally linked to a magnetic field in the core of
a star. From the dipole modes, we can indeed confirm the presence of the magnetic field
and estimate its strength. From the properties of the quadrupole modes, we can infer if
these quadrupole modes experience full or partial dissipation of their g-mode character. We
therefore computed our own field strength estimates from the magnetic shifts obtained from
a fit to the dipole modes following the approach developed by Mathis et al. (2021); Bugnet
et al. (2021); Bugnet (2022) (see Chapter 4) and furthermore compared our quadrupole-
mode visibility to the predictions in the full dissipation framework (see Chapter 4).
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The radial modes of stars with sup-
pressed dipole modes

Authors Quentin Coppée, Jonas Müller, Michaël Bazot and Saskia Hekker

Chapter info This chapter is a reproduction of the first paper I published as part of my
doctoral studies Coppée et al. (2024), A&A, 690 A324. We showed that the mode suppres-
sion in the suppressed dipole-mode stars is due to addtional damping in the central regions
of the star by analysing and comparing the radial-mode properties of stars with suppressed
and typical dipole modes. I was the main author of this paper and I computed, analysed and
interpreted the results. The original idea of this project came from my supervisor, Saskia
Hekker. Together with Michaël Bazot and Jonas Müller, they helped me with the interpreta-
tion of the results and provided useful comments and suggestions for the text and figures.

Abstract The Kepler space mission provided high-quality light curves for more than 16
000 red giants. The global stellar oscillations extracted from these light curves carry infor-
mation about the interior of the stars. Several hundred red giants were found to have low
amplitudes in their dipole modes (i.e. they are suppressed dipole-mode stars). A number
of hypotheses (involving e.g. a magnetic field, binarity, or resonant mode coupling) have
been proposed to explain the suppression of the modes, yet none has been confirmed. In
this study, we aim to gain insight into the mechanism at play in suppressed dipole-mode
stars by investigating the mode properties (linewidths, heights, and amplitudes) of the ra-
dial oscillation modes of red giants with suppressed dipole modes. We selected from the
literature suppressed dipole-mode stars and compared the radial-mode properties of these
stars to the radial-mode properties of stars in two control samples of stars with typical (i.e.
non-suppressed) dipole modes. We find that the radial-mode properties of the suppressed
dipole-mode stars are consistent with the ones in our control samples, and hence not affected
by the suppression mechanism. From this we conclude that (1) the balance between the ex-
citation and damping in radial modes is unaffected by the suppression, and by extrapolation
the excitation of the non-radial modes is not affected either; and (2) the damping of the
radial modes induced by the suppression mechanism is significantly less than the damping
from turbulent convective motion, suggesting that the additional damping originates from

23
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the more central non-convective regions of the star, to which the radial modes are least
sensitive.

2.1. Introduction

The space missions CoRoT (Michel et al., 2006) and Kepler (Borucki et al., 2010) trans-
formed asteroseismology into a field of observation-driven research by providing high-
quality light curves for more than 100 000 stellar objects, including more than 16 000
red giants (Yu et al., 2018). This transformation is reflected in the major developments
of red-giant asteroseismology over the last ten years (see e.g. Chaplin and Miglio, 2013;
Hekker and Christensen-Dalsgaard, 2017; Garcı́a and Ballot, 2019, for reviews). In red gi-
ants we observe stochastically excited oscillations undergoing inherently convective damp-
ing in the outer regions and diffusive damping in the core (e.g. Houdek et al., 1999; Samadi
and Goupil, 2001; Dupret et al., 2009). Advancements in the field are mostly due to the
detection of non-radial modes in the spectrum of these stars (Hekker et al., 2006; De Rid-
der et al., 2009). These modes have a mixed character (Beck et al., 2011; Bedding et al.,
2011; Mosser et al., 2011a): they behave as gravity modes in the core region (the g-mode
cavity) and as pressure modes in the outer layers of the star (the p-mode cavity). These
mixed modes therefore carry information from both the p- and g-mode cavities (e.g. Beck
et al., 2011; Bedding et al., 2011), while the radial modes that are pure p-modes only carry
information from their p-mode cavity, which makes up nearly the entire star (see e.g. Ong
and Basu, 2019).

Over a decade ago, Mosser et al. (2012) identified a set of red giants with dipole modes
with unexpectedly low amplitudes. They showed that, except for the dipole-mode ampli-
tudes, the stars have similar global properties as the other red giants in their sample. An
observational analysis of a larger sample of stars with longer light curves was performed by
Stello et al. (2016b). They selected red-giant-branch (RGB) stars and computed for each star
the dipole-mode visibility (i.e. the ratio of the total power in the dipole modes to the total
power in the radial modes). This measurement revealed that the suppression of the dipole
modes relative to the radial modes decreases as stars ascend the RGB (i.e. there is less sup-
pression for stars with a weaker coupling between the p- and g-mode cavity; see Stello et al.,
2016b). The same methodology applied to quadrupole and octupole modes showed that the
suppression is less pronounced for higher spherical degrees (Stello et al., 2016b).

So far, the power in the radial modes of suppressed dipole-mode stars has not been stud-
ied. In this work we investigated whether the energy of the radial modes in suppressed
dipole-mode stars is different than the energy of the radial modes in stars with dipole modes
with typical visibility. We aim to gain insight into the balance between the excitation and
damping of these modes as well as into the potential region where the suppression mecha-
nism dominates (i.e. either in the outer regions or in the core) by investigating the total mode
power (as per the amplitude and the height) and the mode lifetime (as per the linewidth) of
the radial modes.

One mechanism proposed to explain the suppression of the dipole modes is the presence
of an internal magnetic field that dominates the regions of the star below a critical depth
(Fuller et al., 2015). This depth can be linked to a critical frequency, below which the inward
travelling gravity waves are refracted as magnetic waves over a broad range of spherical
degrees. This means that the core magnetic field suppresses all contributions from the central
regions to the observed non-radial oscillation modes (the ‘magnetic greenhouse effect’). The
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radial modes remain unaffected. The prediction for the dipole-mode visibilities of red giants
made by Fuller et al. (2015) is in agreement with the observed visibilities of Mosser et al.
(2012) and Stello et al. (2016b).

Using the individual frequencies of suppressed dipole-mode stars, Mosser et al. (2017a)
show that some of these stars still have a significant number of mixed dipole modes, albeit
with lower amplitudes. This means that the central regions still contribute to the observed
non-radial modes. Loi and Papaloizou (2017) propose a mechanism that induces additional
damping of the non-radial modes in the presence of a core magnetic field. They show that
the contribution of the central regions of the star to the non-radial modes can be partially
suppressed through resonances with torsional Alfvén waves. These results suggest that the
dipole modes can experience additional damping caused by a core magnetic field and still
retain their mixed character. In the case of a strong core magnetic field, Rui and Fuller
(2023) show that the contribution of gravity modes should be completely suppressed in red
giants. They note that a more general approach (e.g. considering higher-order WKB terms
or a non-harmonic time dependence) could potentially allow dipole modes to conserve a
mixed character in the presence of a strong core magnetic field.

It is also worth noting that such strong core magnetic fields have been observed in red
giants using magnetic frequency splittings (see e.g. Deheuvels et al., 2023). For one of the
analysed stars, the reported field is stronger than the critical field derived by Fuller et al.
(2015), suggesting that gravity waves should not be able to propagate in the central regions
of that particular star. Upon analysis of its power spectrum, Deheuvels et al. (2023) found
mixed-mode suppression only at low frequencies. This result is an indication that strong
core magnetic fields may be linked to mixed-mode suppression.

Another mechanism that can explain the suppression of dipole modes is the non-linear
mode coupling between mixed modes as proposed by Weinberg and Arras (2019). The non-
radial-mode visibilities computed with this mechanism (Weinberg et al., 2021) quantitatively
match the visibilities of the more evolved red giants reported by Stello et al. (2016b). For
this mechanism as well as for the core magnetic field, the radial modes are predicted to be
unaffected.

Alternatively, mode suppression could potentially be explained by the presence of a
stellar companion as its tidally induced effect can excite non-radial oscillation modes (see
e.g. Ivanov et al., 2013), indirectly impacting the properties of the stochastically excited
oscillation modes. Statistical results also suggest that the fraction of stars with suppressed
dipole modes is larger in binary stars compared to stars that are not known to be part of a
binary (see e.g. Themeßl et al., 2017). Due to the non-radial nature of tidal effects, the radial
modes are not affected by the tidally induced oscillations (see e.g. Beck et al., 2019, and
references therein).

Finally, strong surface magnetic fields inhibit convection in the upper stellar layers, re-
sulting in less stochastic excitation and thus smaller amplitudes for radial and non-radial
modes (e.g. Chaplin et al., 2011). Hence, this will have an impact on both the non-radial
and radial modes, which is confirmed by Gaulme et al. (2014) and Schonhut-Stasik et al.
(2020), who found red giants in eclipsing binaries with no or reduced observable oscilla-
tions (i.e. the tidal effect causes enhanced magnetic activity). The presence of a surface
magnetic field is the only mechanism that would impact the radial as well as the non-radial
modes.

We note here that a high core-rotation rate has also been proposed to explain the sup-
pression of the dipole modes (see e.g. Garcı́a et al., 2014). Garcı́a et al. (2014), however,
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2 The radial modes of stars with suppressed dipole modes

dismissed this mechanism as the cause of the suppression of the dipole modes for KIC
8561221. It is therefore most likely not the main reason for the suppression in the popula-
tion of suppressed dipole-mode stars, and we do not consider it further here.

In Sect. 2.2 we specify how we selected RGB stars for our low dipole-mode visibility
sample and our control samples, and in Sect. 2.3 we describe the method we applied to obtain
the radial-mode properties of the selected stars. We define the metrics we used to investigate
the radial-mode properties in Sect. 2.4 and present the results of our comparisons thereof in
Sect. 2.5. We dedicate Sect. 2.6 to the discussion of our results and the conclusions.

2.2. Sample selection
In this section we describe the selection of stars for our low-visibility sample and how
we constructed the control samples. We selected two control samples based on different
approaches to compare the distributions of the radial-mode properties of the suppressed
dipole-mode stars to those of stars with typical, non-suppressed dipole modes.

For all the stars considered in this work, we used long-cadence kepseismic light curves1.
We only selected stars for which we have time series data with a time span longer than
1230 days and a filling factor larger than 0.77. These constraints ensure a high frequency
resolution and avoid aliasing effects due to a window effect. We also cross-matched our
set of stars with the APOGEE Data Release 17 (DR17) catalogue (Blanton et al., 2017;
Abdurro’uf et al., 2022) to obtain stellar effective temperature Teff and metallicity [Fe/H].

We adopted the evolutionary stage (ES) provided by Kallinger (2019) to distinguish
between RGB and core-He-burning (CHeB) stars in our sample. If Kallinger (2019) did not
provide an ES determination, we determined the ES with the same methodology (Kallinger
et al., 2012; Kallinger, 2019). This method relies on the frequencies of the three radial
modes closest to the frequency of maximal oscillation power, νmax, and can therefore be
applied to all stars in our samples consistently, irrespective of their dipole-mode visibility.

2.2.1. Low-visibility sample
In the literature we find two main sources of stars with suppressed dipole modes, Mosser
et al. (2012) and Stello et al. (2016a,b). With the available data of Stello et al. (2016a) and
Mosser et al. (2017a), we selected the candidates for our sample of suppressed dipole-mode
stars. As shown by Stello et al. (2016a,b), the distribution in visibility of dipolar modes
in their sample of stars is mostly bimodal: one subset of stars centred around 1.5 (typical
visibility, Ballot et al., 2011) and another at lower visibility (see Fig. 2.1). We divided the
sample of Stello et al. (2016b) into two regimes using the frequency of maximal oscillation
power, νmax, since the bimodality is less pronounced for the most evolved stars (< 70 µHz) ,

• low, 50 µHz ≤ νmax < 70 µHz,

• high, νmax ≥ 70 µHz.

In each νmax regime, we fitted a bimodal Gaussian distribution to the dipole-mode visibility
distribution and used the intersection of the two Gaussian components as the threshold visi-
bility (see Figs. 2.1 and 2.2) and consider the stars with a dipole-mode visibility lower than

1http://dx.doi.org/10.17909/t9-mrpw-gc07
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Figure 2.1: Dipole-visibility distribution as a function of νmax colour-coded by mass (all data from
Stello et al., 2016b). The vertical dashed line indicates the boundary between the two νmax regimes,
for which the computed visibility thresholds are indicated with horizontal orange lines (see the main
text for more details). Note that the negative visibilities are attributed to measurement scatter caused
by the uncertainty in the estimation of the background model (see Stello et al., 2016b, for further
details).

these thresholds as candidates for our low-visibility sample. In this way, we selected in total
759 stars with low dipole-mode visibility from the sample of Stello et al. (2016a,b). We
further included about 40 red giants analysed by Mosser et al. (2017a) that are not present
in the sample of Stello et al. (2016a,b).

After cross-matching with the stars in the APOGEE DR17 our sample consists of 494
red giants, 451 RGB and 43 CHeB stars, with low dipole-mode visibility and spectroscopic
parameters from APOGEE DR17. Since the number of RGB stars is an order of magnitude
larger than the number of CHeB stars, we focus on the RGB stars for the remainder of this
paper.

2.2.2. Control samples S p and S c

For our control samples, we pre-selected RGB stars from the APOKASC2 catalogue (Pin-
sonneault et al., 2019) with a typical dipole-mode visibility (around 1.5; see e.g. Ballot et al.,
2011). From this, we constructed a control sample, S p, of stars with observed stellar prop-
erties similar to those of suppressed dipole-mode stars. To this end, we selected stars by
assigning to each star in our low-visibility sample a star with a typical dipole-mode visibil-
ity, similar Teff, [Fe/H], and νmax, and large frequency separation, ∆ν (see Sect. 2.3 for details
on how we obtained the last two parameters). To identify the most suitable configuration for
our control sample S p, we used the Kuhn-Munkres algorithm (Kuhn, 1955, 1956; Munkres,
1957)2. This algorithm pairs up elements from two distinct sets and finds the configuration
of pairs where the sum of the distances d between elements in a pair is the smallest. We

2Python package munkres, https://github.com/bmc/munkres,©Brian M. Clapper
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Figure 2.2: Dipole-mode visibility distribution in the different νmax regimes for the RGB and CHeB
stars analysed by Stello et al. (2016b). The thresholds for the visibility are highlighted with a vertical
red line. In the low νmax regime, we selected a higher visibility threshold than that obtained from the
intersection of the Gaussian components. The dipole-mode visibilities are taken from Stello et al.
(2016b).

defined the distance between two stars in a pair as

d2 =

(
Teff,T − Teff, L

)2

σ2
Teff

+

(
νmax,T − νmax, L

)2

σ2
νmax

+
(∆νT − ∆νL)2

σ2
∆ν

+
([Fe/H]T − [Fe/H]L)2

σ2
[Fe/H]

,

(2.1)

where the subscript T (L) denotes parameters of the star with typical (low) visibility. For the
uncertainties, σi, we adopted the following definitions:

σTeff =
√
σ2

Teff, T,intr + σ
2
Teff, L,intr + 2σ2

Teff,emp, (2.2)

σ[Fe/H] =

√
σ2

[Fe/H]T,intr + σ
2
[Fe/H]L,intr + 2σ2

[Fe/H],emp, (2.3)

σνmax =

√
σ2
νmax,T

+ σ2
νmax,L
, (2.4)

σ∆ν =
√
σ2
∆ν,T + σ

2
∆ν,L. (2.5)

We combined in quadrature the intrinsic uncertainties (subscript intr) of the spectroscopic
parameters from APOGEE DR17 and the empirical uncertainties determined to mitigate
the discrepancy between asteroseismic and spectroscopic ES classifications (σTeff,emp = 44
K,σ[Fe/H],emp = 0.04 dex; see Elsworth et al., 2019). For the asteroseismic parameters, we
combined in quadrature the uncertainties from our code TACO (σνmax,L, and σ∆ν,L; see Sect.
2.3 for more information) and the APOKASC2 catalogue (σνmax,T, and σ∆ν,T; see Pinson-
neault et al., 2019).

Having similar spectroscopic and asteroseismic properties does not mean that the masses
of the stars in our samples are similar as well. To assure that a different mass distribution
does not affect our conclusions, we also generated a second control sample, S c, by randomly
selecting 450 RGB stars with typical dipole-mode visibilities following the cumulative den-
sity function (CDF) of the stellar mass distribution observed in the low dipole-mode visi-
bility sample. We estimated the masses M from the asteroseismic scaling relation (see e.g.
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Ulrich, 1986; Brown et al., 1991; Kjeldsen and Bedding, 1995) with reference values from
Themeßl et al. (2018).

2.3. Frequency analysis

We performed the frequency analysis of the light curves of the stars in our samples with our
peakbagging code TACO (Tools for the Automated Characterisation of Oscillations, Hekker
et al., in prep.). In this section we provide an overview of the different steps we took to
obtain the radial-mode properties.

First we describe the power density distribution (PDS) with a global model comprising
the contribution of the oscillations and of the background (see Kallinger et al., 2014, for
more details). We performed the remaining steps in the analysis on the background nor-
malised PDS.

We applied the peak detection method developed by Garcı́a Saravia Ortiz de Montellano
et al. (2018) to detect the peaks in the normalised PDS. We fitted a Lorentzian function,

Ppeak (ν) =
Hpeak

1 +
(
ν−νpeak

γpeak

)2 , (2.6)

to each individual detected peak with νpeak, Hpeak, and γpeak the central frequency, height,
and half width at half maximum (HWHM) of the peak. We used a maximum likelihood
estimation optimisation and computed lower limits of the uncertainties for each peak using a
Hessian matrix. Finally, to identify the radial and quadrupole modes, we cross-correlated the
observed normalised PDS with a synthetic normalised PDS based on the universal pattern
(Mosser et al., 2011b).

We compared the values of νmax and ∆ν obtained with our code to the results obtained
using ABBA (Kallinger, 2019) and the FREQ method (Vrard et al., 2018). The comparison
shows that our results are in agreement with the results of ABBA and the FREQ method.
For νmax the agreement is within one ∆ν and for ∆ν within 3σ. Graphical representations of,
and additional information about this comparison can be found in Appendix A.1.

2.4. Radial-mode properties

The width, height and amplitude of the Lorentzian function (Eq. 2.6) describing an oscilla-
tion mode carry information about the excitation and damping processes affecting this mode
(see e.g. Hekker and Christensen-Dalsgaard, 2017, and references therein).

The HWHM γpeak or linewidth Γpeak (full width at half maximum) of a mode are directly
related to the mode-damping rate, η, and the mode lifetime, τ,

γpeak =
Γpeak

2
=
η

2π
=

1
2πτ
, (2.7)

while A2
peak (the square of the mode amplitude, i.e. the area under the Lorentzian) and Hpeak

(the height of the Lorentzian; see Eq. 2.6) are related to the total energy of the mode and are
defined as

A2
peak = πγpeakHpeak. (2.8)
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Figure 2.3: Cumulative distributions of the global linewidth, Γ, for the S p (left) and S c (right)
control samples (blue) compared to the low-visibility sample (orange). The distributions are shown
as histograms in the background (see the right vertical axis for the fraction of stars per bin). The
respective p-values of the KS test are shown in the top-left corner of the panels.

To condense the information of the different radial modes per star into a single value for the
linewidth, amplitude, and height, we defined a global radial linewidth (Γ), amplitude (A),
and height (H) as the classical weighted average properties of the three radial modes closest
to νmax, namely the modes for which we typically obtain the most precise mode parameters:

Γ ≡ w1Γ1 + w2Γ2 + w3Γ3

w1 + w2 + w3
(2.9)

A ≡ W1A1 +W2A2 +W3A3

W1 +W2 +W3
(2.10)

H ≡ W1H1 +W2H2 +W3H3

W1 +W2 +W3
, (2.11)

with the weights wi = σ
−2
Γi

, Wi = σ
−2
A , and Wi = σ

−2
Hi

defined as a function of the uncer-
tainties σΓi , σAi , and σHi of the ith radial mode. To take the spectral response of the Kepler
instrumentation into account, we applied the bolometric correction from Ballot et al. (2011)
to the global radial amplitude. In other words, we computed the bolometric amplitude ABol

for each star:

ABol = A ·
( Teff

5934 K

)0.8

. (2.12)

We compared our resulting amplitudes and linewidths with values available in the lit-
erature. We find that the individual and global radial-mode properties for the stars in our
samples are similar to the ones computed in the same way based on the linewidths and am-
plitudes reported by Kallinger (2019, ABBA). We find agreement with the results based
on the data from Kallinger (2019) within 10%, which is within the typical uncertainties.
Furthermore, our bolometric amplitudes are consistent with the results obtained by Vrard
et al. (2018). However, our global radial-mode linewidths are about 40% smaller than the
ones reported by Vrard et al. (2018, i.e. the FREQ method). By comparing the linewidths
obtained by Vrard et al. (2018) and Kallinger (2019), we also observe that the linewidths
in Vrard et al. (2018) are systematically broader. Although we find that our linewidths are
overall narrower for the stars we have in common, the distributions in the global radial-mode
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parameters are still consistent independent of the datasets that were chosen (the dataset re-
sulting from our code or the datasets from Vrard et al. 2018 or Kallinger 2019). Comparisons
of the differences between the datasets can be found in Appendix A.2.

2.5. Results

In this section we present the comparison of the CDFs of global radial-mode properties
(Γ, H, and ABol) from each control sample to the ones from the low dipole-mode visibility
sample (see Figs. 2.3, 2.4, and 2.5). For a quantitative comparison, we used the p-values of
the Kolmogorov-Smirnov two-sample test (the KS test hereafter; Hodges, 1958), that is, the
probability that the two samples are taken from the same underlying distribution (the null
hypothesis). A p-value smaller than 1 % indicates that we can reject the null hypothesis.

We find that we cannot reject the hypothesis that the distributions in Γ for stars in S p and
S c are similar to the distribution for suppressed dipole-mode stars (see Fig. 2.3, where the
p-values of the KS test are 82 and 12 %, respectively). Since Γ can be related to the average
mode-damping rate η, and consequently to the average mode lifetime, τ (see Eq. 2.7), we
conclude that the convective damping of the radial modes is not altered by the suppression
mechanism in suppressed dipole-modes stars.

We additionally find that we cannot reject the hypothesis that the distribution in the bolo-
metric amplitude ABol and H observed in S p and S c are similar to the distribution observed
for suppressed dipole-mode stars (see Fig. 2.4, where the p-values of KS test are 27 and 4 %,
respectively, and Fig. 2.5, where the p-values are 24 and 53 %). This indicates that the total
power in the radial modes (scaling as A2

Bol and as H) is comparable for stars with low and
typical dipole-mode visibility.

We checked that the conclusions we draw from the KS test are not influenced by the
randomness implemented in our selection procedures. We therefore generated 5000 real-
isations of S p and S c by randomly selecting a value in the uniformly distributed interval
[x − σx, x + σx] for parameter x (Teff, [Fe/H], νmax, ∆ν, M, Γ, H, and ABol) with uncertainty
σx. If we cannot reject the null hypothesis of the KS test for a large majority of these
realisations compared to the distribution observed in the low-visibility sample for a given
parameter, we conclude that this parameter has a similar distribution for both control and
low-visibility sample. For all our parameters we can conclude that the low-visibility and
control samples are drawn from the same underlying distribution.

Additionally, we repeated the selection procedure to generate four additional control
samples S c to investigate the influence of the random selection of stars for our control sam-
ple. It is important to mention that the same star can be selected for different samples. Again,
we find no significant difference in the distributions of the radial-mode properties of low-
and typical-visibility stars for any of these samples.

Finally, we checked if our results are independent of the chosen metric in Eqs. 2.9, 2.10,
and 2.11. We repeated our comparison with the properties of the three central radial modes,
and with the arithmetic mean instead of a weighted mean. For all metrics, we obtain the
same results: the distributions of the radial-mode properties for our low-visibility stars are
consistent with the properties of the stars in our control samples.
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Figure 2.4: Same as Fig. 2.3, but now for bolometric amplitude, ABol.

2.6. Discussion and conclusions

In this study we measured and compared the radial-mode properties of stars with suppressed
and non-suppressed dipole modes. We find that the linewidths, and by extension the radial-
mode damping rates of the radial modes (see Eq. 2.7), are similarly distributed for both types
of stars.

We also show that the bolometric amplitudes and the heights of the radial modes are
distributed similarly for suppressed and non-suppressed dipole-mode stars. Moreover, since
the radial-mode height is independent of the mode inertia, our results show that the mode
energy (related to the height and the squared bolometric amplitude) is similarly distributed
for both types of stars.

As the mode energy represents the balance between damping and excitation processes
(see e.g. Hekker and Christensen-Dalsgaard, 2017), we infer from our results that the ex-
citation of the radial modes is unaffected by the mechanism causing the suppressed-dipole
modes. Assuming that modes of different spherical degrees are excited in a similar manner,
this means that all modes are excited similarly in stars with suppressed and non-suppressed
dipole modes. This then leads us to conclude that the observed suppression is caused by
additional damping and not by lack of excitation.

The additional source of damping does not significantly affect the radial modes (i.e.
the convective damping in radial modes seems unaffected). Under the assumption that the
convective damping of the dipole modes is similar to the convective damping of the radial
modes (see e.g. Mosser et al., 2017a), the additional damping is likely taking place in the
stellar core, to which mixed modes are more sensitive than the radial modes.

Since we find that the excitation of the radial modes remains unaffected by the suppres-
sion mechanism, our results suggest that a mechanism impacting the mode excitation, such
as the presence of a strong surface magnetic field, is likely not the cause of the suppression
of the dipole modes in low-visibility stars. For the core magnetic field mechanism, Fuller
et al. (2015) note that the magnitude of the core magnetic field is assumed to be too low
to affect the radial modes. Different theoretical approaches, such as those developed by
Lecoanet et al. (2017) or Loi and Papaloizou (2017), confirm that the presence of a core
magnetic field can reduce the dipole-mode amplitudes without affecting the radial modes.
Additionally, Cantiello et al. (2016) extended the theoretical analysis of Fuller et al. (2015)
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by investigating the generation, evolution, and detectability of core magnetic fields and cor-
roborated the results from Fuller et al. (2015). Based on a more general analysis, Rui and
Fuller (2023) conclude that above a given magnetic field strength, inward travelling gravity
waves will indeed be refracted at a critical depth and will be converted to outgoing slow
magnetic waves that dissipate before reaching the stellar surface, leaving the radial-mode
properties unaffected.

The resonant mode coupling is a three-wave interaction between mixed modes where
a non-radial mode destabilises two other modes with an initially low amplitude (Weinberg
and Arras, 2019). According to Weinberg et al. (2021), the relatively small displacements
near the stellar centre and the large damping rate dominated by convective damping prevent
the radial modes from being impacted by this interaction. For red giants in binaries, Beck
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Figure 2.5: Same as Fig. 2.3, but now for height, H.

et al. (2019) conclude that the tidal effects do not significantly impact the radial modes,
as no change in the large frequency separation and no radial-mode amplitude modulation
were observed. Based on the binary fraction (about 10 %) in our low dipole-mode visibility
sample, it appears nevertheless unlikely that binarity alone can cause the suppression.

In summary, our findings support either a strong core magnetic field or resonant mode
coupling as the suppression mechanism, while surface-magnetic fields seem rather unlikely.
According to the binary fraction in the suppressed dipole-mode sample, tidal effects are
likely not the cause of the mode suppression. Further investigations into core magnetic
fields will be presented in a forthcoming work by Müller et al. (in prep.).
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Authors Quentin Coppée, Jonas Müller, Jeong Yun Choi and Saskia Hekker

Chapter info This chapter is based on the second paper I submitted as part of my doctoral
studies. With this study, we showed that a combination of the full and partial dissipation
frameworks are needed to explain the mode properties of the suppressed dipole-mode stars.
I was the main author of this paper and I computed, analysed and interpreted the results.
The original idea of this project came from my supervisor, Saskia Hekker. I was able to
identify new canditates for my sample with the help of my collaborator, Jeong Yun Choi, and
developed the concept of the full dissipation framework together with Jonas Müller. All co-
authors (Jonas Müller, Jeong Yun Choi and Saskia Hekker) helped me with the interpretation
of the results and provided useful comments and suggestions for the text and figures.

Abstract Over ten years ago, a subset of red giants with reduced dipole-mode amplitudes
was detected, the so-called suppressed dipole-mode stars. The reduced mode amplitudes
indicate mode energy loss, recently confirmed to be due to additional damping in the cen-
tral regions of the stars. To explain the reduced mode amplitudes (i.e. the suppression), a
framework was proposed in which all the mode energy entering the inner mode cavity is
dissipated. Further observational analysis of these stars challenged the full dissipation as-
sumption revealing contributions from the inner mode cavity in the observed dipole modes.
A framework considering partial dissipation has subsequently been developed. In this study,
we aim to verify the validity and the extent of the framework assuming all the mode energy
in the inner mode cavity to be dissipated (i.e. the full dissipation framework).

Based on the mode properties (frequencies, amplitudes and linewidths) and the visibili-
ties of the non-radial modes of a set of about 450 suppressed dipole-mode stars, we verified
three predictions of the full dissipation framework. We firstly should only detect pure pres-
sure modes (i.e. no contribution from the central regions of the star) in the power spectrum.
Secondly, we expect the visibility and the ratio of the radial-mode damping rate to non-
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radial mode damping rate to be lower than unity, and we expect a linear relation between
these two quantities. Finally, we can predict the visibility using an expression depending
on the radial-mode damping rate, the coupling between the mode cavities and the frequency
separation between radial modes and compare these predictions to the observed normalised
visibility.

Analysing the power spectra of the suppressed dipole-mode stars, we find three main
morphologies based on the number of dipole modes observed per acoustic radial order: the
fully suppressed (no dipole modes in any acoustic radial order), p-dominated only (one
dipole mode per radial order) and the partially suppressed dipole-mode stars (more than one
dipole mode in at least one radial order). For the fully suppressed and p-dominated only
stars, the non-radial mode properties are in line with the predictions of the full dissipation
framework. The partially suppressed dipole-mode stars have quadrupole-mode properties in
line with the full dissipation framework while their dipole-mode properties are not consistent
with the predictions of the full dissipation framework.

We conclude that the effect and the onset of the additional damping mechanism in sup-
pressed dipole-mode stars depends on spherical degree. Our findings indicate that a com-
bination of full and partial energy dissipation within the same star is needed to explain the
diversity observed in the suppressed dipole-mode stars. For example, the additional source
of damping would cause full dissipation of the g-mode character for the quadrupole modes
of a given star while it only causes partial dissipation of the g-mode character in the dipole
modes of the same star.

3.1. Introduction

The Kepler space-borne mission (Borucki et al., 2010) provided light curves for more than
16 000 red giants (Yu et al., 2018), greatly contributing to the development of red-giant as-
teroseismology (see e.g. Hekker and Christensen-Dalsgaard, 2017; Garcı́a and Ballot, 2019,
for reviews). Red giants exhibit solar-like oscillations driven by turbulent convection in their
envelope (see e.g. Houdek et al., 1999; Samadi and Goupil, 2001; Dupret et al., 2009). The
non-radial oscillation modes of these stars have a mixed oscillation character; they behave
like a pressure mode in the outer layers of the star (p-mode cavity) and like a gravity mode in
the core regions (g-mode cavity) of the star. These modes are therefore of particular interest
as they carry information about the inner and outer regions of a star. The detection of these
mixed modes in red giants (Hekker et al., 2009; De Ridder et al., 2009) enabled among oth-
ers the precise determination of evolutionary stages (see e.g. Bedding et al., 2011; Mosser
et al., 2011b; Kallinger et al., 2012; Vrard et al., 2016) and core-rotation rates (see e.g. Beck
et al., 2011; Deheuvels et al., 2014; Gehan et al., 2018).

The study of red giants performed by Mosser et al. (2012) reveals the existence of red
giants with reduced dipole-mode visibility (i.e. a reduction in the mode energy in the dipole
modes compared to the mode energy in the radial modes). Since the mode energy is set by
the balance between excitation and damping (see e.g. Hekker and Christensen-Dalsgaard,
2017), the reduction observed in those so-called suppressed dipole-mode stars could be the
result of inhibited excitation or additional damping. In their study, Coppée et al. (2024)
find that the radial-mode amplitudes and linewidths of the suppressed dipole-mode stars are
consistent with those of red giants with typical dipole modes. This result indicates that the
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radial modes are unaffected by the mechanism causing the mode suppression1. This means
that the excitation and convective damping of the radial modes are similar in stars with
typical and reduced dipole-mode amplitudes. Assuming similar excitation of all modes,
Coppée et al. (2024) conclude that the mode suppression is due to additional damping.

Fuller et al. (2015) propose a theoretical framework in which the additional damping
(the magnetic greenhouse effect) results in full dissipation of the mode energy entering the
g-mode cavity. In this general full dissipation framework (independent of the source of the
additional damping), all observed modes are pure pressure modes and the observed non-
radial mode visibility is proportional to the ratio of the radial mode damping rate to non-
radial mode damping rate (see Mosser et al., 2017a, and references therein). Additionally,
the visibility can be expressed as a function of the average damping rate, frequency spacing
of the radial modes and the coupling between the mode cavities (see Fuller et al., 2015;
Mosser et al., 2017a, and references therein). Fuller et al. (2015) find that their predictions
for the dipole-mode visibility in the full dissipation framework are in line with the obser-
vations of Mosser et al. (2012). Stello et al. (2016a,b) confirm the agreement between the
theoretical visibility range and the observed visibilities for their sample of RGB stars with
suppressed dipole modes. The theoretical predictions reproduce the reducing impact of the
additional damping on the dipole-mode visibility as the star ascends the red giant branch
(RGB, Stello et al., 2016a,b). Cantiello et al. (2016) extend the analysis of Fuller et al.
(2015) by predicting the dipole-mode visibility for core-He-burning (CHeB) stars. Further-
more, Rui and Fuller (2023) and Cantiello et al. (2016) confirm the conclusions from Fuller
et al. (2015) that the observed mode suppression can be caused by the dissipation of the
mode energy in the g-mode cavity.

The validity of the full dissipation framework has however been challenged by Mosser
et al. (2017a). These authors find evidence for the presence of mixed modes in the power
spectra of more than a hundred suppressed dipole-mode stars. Moreover, these authors
show that their observed visibility is larger than predicted in the full dissipation framework
using the average damping rate and frequency spacing of the radial mode and coupling
between the mode cavities. Additionally, Mosser et al. (2017a) and Arentoft et al. (2017)
independently find that observed visibilities for CHeB stars are not in agreement with the
predictions of Cantiello et al. (2016). Fuller et al. (2015) suggest that the stars for which the
predicted visibility is lower than the observed visibility are undergoing partial mode-energy
dissipation in the g-mode cavity. Such a framework was developed by Loi and Papaloizou
(2017, 2018); Loi (2020); Müller et al. (2025).

In this study, we aim to verify the validity of the full dissipation framework and its
extent by comparing the predictions of this framework to the features of the suppressed
dipole-mode stars. To this end, we analysed the power spectra and computed the observed
visibility of the non-radial modes of these stars.

In Sect. 3.2, we summarise the effects of the full dissipation framework on the mode
properties of suppressed dipole-mode stars. We specify the methods we used to obtain the
global asteroseismic parameters and individual mode properties in Sect. 3.3. We present the
results of our tests pertaining to the validity and the extent of the full dissipation framework
in Sect. 3.4 and more general results in Sect. 3.5. We dedicate Sects 3.6 and 3.7 to the
discussion and the conclusions of our study.

1For clarity, we use mode suppression to describe the reduced mode amplitudes, while we refer to the
mode-energy loss as dissipation.
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3.2. The full dissipation framework
The main assumption in the full dissipation framework is that the mode energy entering
the g-mode cavity is fully dissipated due to a strong additional damping mechanism. To
determine the effects of this additional damping on the mode properties, we investigate the
energy in an oscillation mode. We define for this purpose the normalised visibility 3nl of a
non-radial oscillation mode of spherical degree l in the acoustic radial order n as

3nl ≡
A2

nl

A2
n0Gl
, (3.1)

with Anl the amplitude of the mode, An0 the amplitude of the radial mode of the same acous-
tic radial order and Gl a geometrical factor depending on spherical degree, limb-darkening
effects and the bolometric correction. In this study, we use the mean observed visibility of
stars with typical dipole modes as the geometrical factor Gl in Eq. (3.3) (G1 ≈ 1.35 and
G2 ≈ 0.688, see e.g. Mosser et al., 2012; Stello et al., 2016b). These values are roughly
comparable to the theoretical mode visibilities computed by Ballot et al. (2011) for pure
p-modes considering the spectral response function of the Kepler instrumentation.

We interpret the normalised visibility (Eq.(3.1)) as a measure of the energy of a mode
of spherical degree l relative to the energy of the radial mode in the same acoustic radial
order. If the effect of the damping in the central regions of the star is negligible, Mosser
et al. (2012, 2017a) show that the total normalised visibility vnl for an acoustic radial order
n is equal to

vnl ≡
N∑

i=1

3inl = 1, (3.2)

where 3inl is the normalised visibility of mixed mode i in the acoustic radial order and N
the number of mixed modes in the considered acoustic radial order. This result implies that
all the mixed modes of degree l associated with the acoustic radial order of the radial mode
have a combined mode energy (not considering core damping) similar to the radial mode
of the same acoustic radial order. In other words, we do not expect the total normalised
visibility vnl to be larger than unity. Moreover, Eq. (3.2) implies that any additional form of
damping results in a lower total normalised visibility (i.e. vnl < 1). This means that the total
normalised visibility should always be smaller than unity in the full dissipation framework
as we assume a strong additional source of damping to cause the dissipation.

To aid in the application of the visibility measurements in observed stars, we further
define the normalised visibility of a star 3l as the weighted average (i.e. weighted by the
energy in the radial modes) of the visibility of the five acoustic radial orders closest to the
frequency of maximum oscillation power νmax (see Sect. 3.3):

3l ≡
nmax+2∑

k=nmax−2

wk
A2

kl

A2
k0Gl
, (3.3)

with wk = A2
k0/A

2
0 the fractional contribution of each radial mode to the total radial-mode

power A2
0 (i.e. the sum of the squared radial-mode amplitudes of the five most central acous-

tic radial orders) and nmax the acoustic radial order closest to νmax. We note that Eq. (3.3) is
equivalent to the ratio of the total mode energy in the modes with spherical degree l to the
total mode energy in the radial modes.
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3.2.1. Normalised visibility as a function of linewidth ratio

Benomar et al. (2014) derive an expression relating mode amplitude, mode inertia Inl and
mode linewidth Γnl of a non-radial mode of spherical degree l to those of the closest radial
mode in the same radial acoustic order n:

A2
nlI

2
nlΓnl = A2

n0I2
n0Γn0Gl. (3.4)

The full dissipation of the mode energy entering the g-mode cavity implies that we only
observe one mode of spherical degree l per acoustic radial order as the observed modes
do not have a mixed character. In other words, all the observed oscillation modes in this
framework are pure pressure modes. We can therefore assume for these modes that Inl ≃ In0

(see e.g. Mosser et al., 2017a). Using this assumption and Eq. (3.4), we rewrite Eq. (3.1) as

3nl =
A2

nl

A2
n0Gl

=
Γn0

Γnl

(
In0

Inl

)2

≃ Γn0

Γnl
. (3.5)

Similarly as for the normalised visibility of a star (Eq. (3.3)), we compute the linewidth
ratio Γ0/Γl of a star as

Γ0

Γl
≡

nmax+2∑
k=nmax−2

wk
Γk0

Γkl
. (3.6)

Combining Eqs (3.3), (3.5) and (3.6), we expect the normalised visibility of pure pressure
modes to be equal to the ratio of the radial-mode linewidth to the non-radial mode linewidth:

3l =
Γ0

Γl
. (3.7)

From the results of Mosser et al. (2012, 2017a), we expect the visibility to be equal to 1
if we only consider surface damping. Following our definitions and Eq. (3.7), the linewidth
ratio should also be equal to 1. We can understand this when we consider the relation
between the mode linewidth and the mode damping rate (ηl = πΓl, see e.g. Houdek et al.,
1999; Hekker and Christensen-Dalsgaard, 2017). If we neglect the contribution of the core
damping (similarly as for Eq. (3.2)), the mode damping rate ηl of a non-radial pure pressure
mode is close to the radial-mode damping rate η0 (i.e. ηl ≃ η0). We therefore expect that in
the case of no additional damping the visibility of pure pressure modes given by Eq. (3.7) is
equal to

3l =
Γ0

Γl
=
η0

ηl
≃ 1. (3.8)

To derive Eq. (3.8), we only assumed that all modes are pure pressure modes. However, in
the full dissipation framework, the pure pressure modes are the result of an additional source
of damping. We therefore expect in this framework that the mode damping rate of the non-
radial mode is larger than in the case of only surface damping (ηl > η0). This means that
the linewidth ratio defined in Eq. (3.6) should be smaller than unity in the full dissipation
framework. We therefore predict that the total normalised visibility and the linewidth ratio
are directly related to each other (i.e. due to their pure pressure-mode character) and both
smaller than one (i.e. due to the additional source of damping).
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3.2.2. Normalised visibility as a function of the radial-mode properties
and the coupling between mode cavities

Using the relation between mode linewidth and mode-damping rate, we find from Eq. (3.5)
that

3nl ≃ Γn0

Γnl
=

(
ηnl

ηn0

)−1

=

(
ηnl

πΓn0

)−1

. (3.9)

Takata (2016) derive an expression for the damping rate ηnl of non-radial modes in the
case of energy leaking into the g-mode cavity and being dissipated. This expression for
the damping rate depends on the coupling factor ql (i.e. how strongly the mode cavities
couple which acts as a proxy for the fraction of energy transmitted to the g-mode cavity)
and the large frequency separation ∆ν (see Sect. 3.3). Introducing the expression for the
damping rate, we obtain the general expression for the average normalised visibility 3l (see
our Eq. (3.3), and also Mosser et al., 2017a):

3l ≃
[
1 − ln

(
1 − ql

1 + ql

)
∆ν

πΓ0

]−1

. (3.10)

In the limit of a thick evanescent zone (i.e. ql ≪ 1, see e.g. Unno et al., 1989, for more
information), the expression in Eq. (3.10) becomes

3l ≃
(
1 +

2ql∆ν

πΓ0

)−1

= (1 + 4ql∆ντ)−1, (3.11)

with the radial-mode lifetime τ = (2πΓ0)−1 (see Fuller et al., 2015; Mosser et al., 2017a, and
references therein).

3.3. Frequency analysis
Here we provide a description of the methods we used to obtain the global asteroseismic
parameters (i.e. νmax and ∆ν) and individual mode properties (i.e. the mode frequency νnl, the
mode linewidth Γnl, and the mode amplitude Anl) needed to compute the different definitions
of normalised visibility. We performed the frequency analysis of the light curves of the stars
in our sample with our peakbagging code TACO (Tools for the Automated Characterisation
of Oscillations, Hekker et al., in prep.).

Firstly, we fitted the power density spectrum (PDS) with a global model comprising the
broad contribution of the oscillations and of the background (see Kallinger et al., 2014, for
more details):

PB (ν) = Pn + µ(ν)2
(
Pbgr(ν) + Pg exp

[
− (ν − νmax)2

2σenv
2

])
. (3.12)

Here, Pn is the white noise and µ(ν) the apodization2 (the attenuation resulting from the fact
that the integration times are not infinitely short). The stellar contribution to the background
signal Pbgr(ν) is modelled with three granulation components (see e.g. Kallinger et al., 2014).
The contribution from the oscillations called the oscillation power envelope is described
with a Gaussian function. The centre of the power envelope νmax, called the frequency

2The apodization is typically represented by η(ν), here a different symbol has been chosen as to not be
confused with the mode-damping rate.
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of maximum oscillation power, is an important global seismic parameter. The other two
parameters, Pg and σenv, are respectively the height and standard deviation of the oscillation
power envelope.
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Figure 3.1: Typical examples of morphology categories as observed in the PDS of RGB suppressed
dipole-mode stars: Full suppression (FS, top-left), P-dominated modes only (PD, top-right panel),
Partial suppression (PS, bottom-left panel), and Step suppression (Step, bottom-right panel). See text
for more details of the definition of the morphologies.

Secondly, we applied the peak detection method developed by Garcı́a Saravia Ortiz de
Montellano et al. (2018) to detect the resolved and unresolved modes in the PDS normalised
by the background model (terms Pn + µ

2Pbgr in Eq. (3.12)). To each individual resolved
mode we fitted a Lorentzian function

Pnl (ν) =
2A2

nl

πΓnl

1

1 +
(

2(ν−νnl)
Γnl

)2 , (3.13)

with νnl, Anl and Γnl the central frequency, mode amplitude and mode linewidth (i.e the
full-width at half maximum of the peak). To each unresolved mode we fitted a squared sinc
function

Pnl (ν) =
A2

nl

δν
sinc2

(
π
ν − νnl

δν

)
, (3.14)

with δν, the frequency resolution of the power spectrum. We optimised the fit with a Max-
imum Likelihood Estimation and obtain an estimate of lower limits of the uncertainties for
each peak from the Hessian matrix.

Lastly, we identified the radial, quadrupole and octupole modes starting from the central
radial order using the Universal Pattern (UP, Mosser et al., 2011b) as a guide and eventually
determined ∆ν (large frequency separation between successive radial modes) from a linear
fit through the identified radial modes.
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3.4. Testing the predictions of full dissipation framework

To test the validity and the extent of the full dissipation framework, we used the stars selected
by Coppée et al. (2024). In addition, we also incorporated all suppressed dipole-mode stars
from Arentoft et al. (2017) as well as a set of potential suppressed dipole-mode stars from
the APOKASC2 catalogue (Pinsonneault et al., 2018) identified using the Shannon entropy
(Shannon, 1948) of their power density spectra (see Choi et al., subm., for more informa-
tion). For this study, we computed the normalised visibility of the dipole and quadrupole
modes of the stars in our sample (i.e. Eq. (3.3)), as well as visibility thresholds, below which
only suppressed dipole-mode stars are found (see also Coppée et al., 2024).

In Sect. 3.2, we highlighted three main observable implications of the additional source
of damping in the full dissipation framework. We expect to not observe mixed non-radial
modes (i.e. only one mode of degree l > 0 per acoustic radial order). For this one mode, the
normalised visibility is expected to be smaller than one and to be proportional to the ratio of
the radial-mode linewidth to the non-radial mode-linewidth (Eq. (3.7)). We can furthermore
confront our measurements to the predicted normalised visibility based on the radial-mode
linewidth, large frequency separation and the coupling factor. Here, we assess the validity of
the full dissipation framework for suppressed dipole-mode stars by verifying if these three
implications hold for these stars.

3.4.1. Mixed dipole-mode detection
Our first test of the full dissipation framework involves the detection of mixed non-radial
modes in the power spectra of suppressed dipole-mode stars. To facilitate the presentation
of our results in the remainder of this paper, we divided our sample in three main PDS mor-
phology categories (see Fig. 3.1) based on the number of dipole modes per radial acoustic
order observed in the PDS of the star: no dipole modes (full suppression or FS category), one
dipole mode (pressure-dominated dipole modes or the PD category) or at least two dipole
modes (partially suppressed dipole-mode stars or PS category) We define these categories
in the following paragraphs.

3.4.1.1 Full suppression (FS)

For this type of PDS morphology, we do not detect any significant modes in the predicted
dipole-mode frequency range in contrast with the radial-, quadrupole- and octupole-mode
frequency ranges (see top-left panel of Fig. 3.1). We categorise all stars where no dipole
mode is detected in any of the five most central acoustic radial orders as fully suppressed.
It is important to note that this morphology is only observed in RGB stars and not in CHeB
stars.

3.4.1.2 Pressure-dominated dipole modes only (PD)

In the spectra of the stars in this category, we find clear signatures of one dipole mode per
radial order (see top-right panel of Fig. 3.1). We consider stars with exactly one mode (and
never more than one) in one or more acoustic radial order for our PD category.

From the asymptotic theory we know that the coupling between mode cavities as well
as glitches can cause the frequencies of mixed modes to differ from the asymptotic frequen-
cies (see Mosser et al., 2017a, and references therein for more information). The observed

42



3.4 Testing the predictions of full dissipation framework

modes can therefore be considered as pure p-modes if, within uncertainty, the observed and
asymptotic pure p-mode frequencies are consistent with each other. To this end, we com-
puted the asymptotic pure p-mode frequencies using the UP. We fitted these frequencies to
the observed frequencies to obtain an estimate of the small frequency separation between
radial and nominal dipole modes δν01 (see e.g. Mosser et al., 2011b). The residuals of the fit
of asymptotic frequencies to the observed frequencies are shown in units of ∆ν in Fig. 3.2
for a typical star in the PD category. Similar to Mosser et al. (2017a), we use a typical
uncertainty due to the noise contribution (highlighted areas in Fig. 3.2) to determine the
agreement between observed and asymptotic frequencies and so whether these stars belong
in the PD category.

3.4.1.3 Partial suppression (PS)

Stars in this category show the typical set of radial and non-radial modes, with reduced
power in the non-radial modes (see bottom-left panel of Fig. 3.1). We categorised stars as
PS if we detected at least two dipole modes in one of the five most central acoustic radial
orders (i.e. closest to νmax).

3.4.1.4 Step suppression (Step)

In our sample, two RGB stars have a peculiar morphology combining PS and FS morphol-
ogy: we find no significant dipole modes below a threshold frequency and significant dipole
modes with reduced power above this frequency for two stars (see bottom-right panel of
Fig. 3.1). This step-suppression (Step) morphology should be interpreted as a special case
within the PS category. These stars were first detected by eye and confirmed by comparing
the behaviour of the visibility per radial order as a function of frequency.
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Figure 3.2: Difference between observed and asymptotic frequency of pure p-modes as a function
of mode frequency for spherical degrees l = 0, 1, 2 (in black, blue and orange respectively). We
highlight the noise-uncertainty intervals for each spherical degree.

We find that about 10% of our stars are categorised as FS stars and almost 10% of the
stars in our sample (1 CHeB and 38 RGB stars) are PD stars. Furthermore, the fact that
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no dipole modes were detected in the PDS of the FS stars indicates that a strong additional
damping is occuring in the core. From Eq. (3.7), strong additional damping (ηl ≫ η0) would
indeed result in a very low mode visibility (3l ≪ 1). The stars in the FS and PD category
can thus be described within the full dissipation framework. However, we detected mixed
dipole modes in the remaining 80% of our sample, the PS stars. The detection of mixed
modes in the PDS of the PS stars provides an indication that the full dissipation framework
is not valid for these stars.
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Figure 3.3: Weighted linewidth ratio of non-radial to radial mode as a function of the observed
normalised visibility. Top-left: quadrupole-mode properties of the RGB stars in the FS and PD
category. Top-right: dipole-mode properties of the stars in the PD category (RGB and CHeB stars
indicated by full and open markers). Bottom-left: quadrupole-mode properties of the RGB stars in
the PS category. Bottom-right: quadrupole-mode properties of the CHeB stars in the PD and PS
category. We highlight the one-to-one proportionality expected in the full dissipation framework
(black solid line) and the measured slope m (dashed lines and highlighted areas set by a 1 sigma
uncertainty). Because of the large uncertainty on m and c for the quadrupole-mode properties of the
PS CHeB stars, we only show the results of the linear fit (without highlighting the area set by the
uncertainties on the fit parameters). The typical uncertainty on the measurements is shown in the
top-left corner of the panels for the RGB stars (i.e. left column).

3.4.2. Comparison with linewidth ratios
The second test of the full dissipation framework consist of comparing the observed nor-
malised visibility 3l with the linewidth ratio Γ0/Γl. According to Eq. (3.7) the normalised
visibility is directly proportional to the linewidth ratio for pure pressure modes. Moreover,
any additional source of damping will reduce the normalised visibility 3l. In the case of full
dissipation, we therefore not only expect that the constant of proportionality is close to 1,
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but also that the values of the linewidth ratio and the normalised visibility are smaller than
1. This constant of proportionality can be seen as the slope m of a linear fit with the inter-
cept c set to zero. However, considering the uncertainties on the normalised visibility and
linewidth ratios, we fitted a linear relation with a non-zero intercept g(x) = mx + c to the
datapoints (see Table 3.1) to estimate the constant of proportionality. We also computed the
Pearson correlation coefficient (Pearson, 1895, see Table 3.1) to assess the linearity of the
relation between normalised visibility and linewidth ratio.

3.4.2.1 FS category

Our average linewidth ratios of the quadrupole modes (Γ0/Γ2) are in line with the observed
quadrupole-mode visibility 32 (see top-left panel in Fig. 3.3) for most of the FS stars. Two
stars have a high linewidth ratio (i.e. larger than one). These stars have narrow and weaker
quadrupole modes due to a low signal-to noise level. These narrow quadrupole modes di-
rectly impact the average linewidth ratio. The values of 32 and Γ0/Γ2 of all FS stars are
consistent within three sigmas with the one-to-one relation and these values are predom-
inantly smaller than one. From this, we deduced that the linewidth ratio and normalised
quadrupole-mode visibility of the FS stars seem to be in line with the predictions of the full
dissipation framework.

Table 3.1: Results of the linear fit and correlation coefficient for the different morphologies and mode
degrees.

PDS morphology m c Correlation

FS (l = 2, RGB) 0.58± 0.17 0.28± 0.09 0.25

PD (l = 1, RGB) 0.66± 0.13 0.13± 0.02 0.66

PD (l = 2, RGB) 0.62± 0.17 0.24± 0.11 0.31

PS (l = 2, RGB) 1.01± 0.06 -0.05± 0.05 0.55

PS (l = 2, CHeB) 3.2± 1.3 -1.6± 1.0 0.30

3.4.2.2 PD category

For the dipole modes of the stars in the PD category, the correlation coefficient indicates that
the correlation is strong (see top-right panel in Fig. 3.3). At the low observed dipole-mode
visibilities, it becomes complex to distinguish between narrow features and the global shape
of a mode. In some cases, the procedure for the mode-fitting only considers these narrow
features which results in smaller linewidths and amplitudes. This in turn translates into a
larger linewidth ratio and smaller observed visibility. We therefore see a larger number of
PD stars in that part of the parameter space (see very low visibility part of the top-right
panel in Fig. 3.3). All observations for the dipole modes of the stars in the PD category are
consistent within three sigmas with the predicted one-to-one line (black solid line), are all
smaller than one and the correlation is strong. We conclude that our dipole-mode properties
are in line with the predictions of the full dissipation framework.

Our linewidth ratio (Γ0/Γ2) and observed visibility 32 of the PD stars are consistent
within three sigmas with the predicted one-to-one relation. The slope m as well as well
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as c indicate that the relation between the average linewidth ratio (Γ0/Γ2) and the observed
visibility 32 (see top-right panel in Fig. 3.3) is in line with the predicted relation in the full
dissipation framework. From our results for the quadrupole modes, we conclude that our
quadrupole-mode properties of the stars in the PD category are consistent with the predic-
tions in the full dissipation framework.

Our observed dipole-mode and quadrupole-mode properties for the stars in the PD cate-
gory seem to indicate that these stars can be described within the full dissipation framework.
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Figure 3.4: Normalised visibility 31 (left column) and 32 (right column) as a function of νmax for the
RGB stars in our sample, colour-coded by mass. For clarity, we subdivided our sample in mass bins
(increasing mass from top to bottom). The highlighted regions show the predicted visibility ranges
from Cantiello et al. (2016) for a mass of 1.25 (blue), 1.5 (green) and 1.75 (ochre) M⊙.

3.4.2.3 PS category

The observed quadrupole-mode visibility 32 and the average linewidth ratio of radial and
quadrupole modes are close to the one-to-one line for PS stars in the RGB and CHeB phase
(see bottom panels in Fig. 3.3 and Table 3.1). The correlation is more pronounced for the
RGB stars (see Table 3.1). The fit parameters m and c for the PS RGB stars are consistent
with their expected values within one sigma, confirming that our measurements are in agree-
ment with the one-to-one line. In addition to m and c, we find that normalised visibility and
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linewidth ratio of the quadrupole modes for each star in the PS category are consistent within
three sigma with the one-to-one relation. We therefore conclude that the quadrupole-mode
properties of the PS RGB stars in line with the predictions of the full dissipation framework.

Due their low number of CHeB stars in the PS category and the fact that the measure-
ments of these stars are grouped together, a linear fit is not really meaningful. Since we
find that normalised visibility and linewidth ratio of the quadrupole modes for each star in
the PS category are consistent within three sigma with the one-to-one relation and that their
values are predominantly smaller than one, we conclude that our results for the quadrupole
modes of the PS CHeB stars are in agreement with the predictions in the full dissipation
framework.
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Figure 3.5: Same as in Fig. 3.4, now for the CHeB stars in our sample. The coloured highlighted
regions show the predicted visibility ranges from Cantiello et al. (2016) for a mass of 1.75 (ochre)
and 2 M⊙ (red).

For about one quarter of the PS stars (typically at low νmax), we find that, within two
sigmas, their linewidth ratio and visibility of the quadrupole modes are close to unity. These
two quantities are expected to be close to unity for pure pressure quadrupole modes only
affected by convective damping (see Sect. 3.2 as well as Mosser et al., 2017a, and references
therein). Our results thus indicate that the quadrupole modes of these stars are not strongly,
if at all, affected by the additional source of damping. As their linewidth ratio and visibility
still follow the predicted behaviour of pure pressure modes, it suggests that the quadrupole
modes in these stars are pure pressure modes.

3.4.2.4 Significance of correlation coefficients

The Pearson correlation coefficient measures if the relationship between two quantities is lin-
ear (Pearson, 1895). To determine the significance of the correlation coefficient (and the lin-
ear relationship) for the different PDS categories. We constructed for each subsample, 2000
realisations of the observed visibilities and linewidth ratios by perturbing these parameters
within their uncertainties (i.e. with a Monte Carlo approach). We then computed the cor-
relation coefficients for each realisation. We always find correlation coefficients larger than
zero indicating a positive linear relationship between the observed visibility and linewidth
ratio. We also computed the p-value of the Kolmogorov-Smirnov test (Hodges, 1958) i.e.
the probability that the correlation coefficient is zero (the null hypothesis). We find that in
more than 70% of the realisations we can reject the null hypothesis (p-value below 5%),
confirming that the correlation coefficient is most likely non-zero.
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3.4.3. Comparison with predicted visibility

The third test of the full dissipation framework is the comparison between the observed
normalised visibility and the predicted visibility ranges based on asteroseismic observables
(i.e. Eqs (3.10) or (3.11)). We show the normalised dipole- and quadrupole-mode visibility
of the RGB and CHeB stars in our sample as a function of νmax in Figs 3.4 and 3.5. In addi-
tion to the observed visibilities, we also show the predicted visibility ranges from Cantiello
et al. (2016). We note that these predictions are based on the assumption of a thick evanes-
cent zone (i.e. Eq. (3.11)), thought to be valid only for the most evolved RGB stars (i.e. low
νmax RGB stars, see e.g. Pinçon et al., 2020). The general expression (Eq. (3.10)) derived
using the formalism of Takata (2016) should be valid for all red giants. The visibilities pre-
dicted using this general expression or in the thick-evanescent region limit are consistent
within the reported uncertainties (see Mosser et al., 2017a, using their own observed ql for
both expressions). Our conclusions should therefore be independent of the selected expres-
sion to compute the predicted visibility (for the same coupling factor ql). However, we note
that the estimate of ql from models considering the general formalism for the coupling (e.g.
Takata, 2016) may differ significantly from the observed ql. Considering this formalism for
the coupling will consequently affect the predicted visibility (i.e. through Eq. (3.10)).

3.4.3.1 RGB stars

By definition the visibility of stars in the FS category is zero (i.e. no detected dipole modes).
The true normalised visibility is most likely very small but not necessarily zero. These cases
of very strong suppression do not seem to fit within the predicted visibility ranges from
Cantiello et al. (2016). This is most likely due to the fact that Eq. (3.11) can never be zero
for any finite values of Γ0, ∆ν and q1. From Eq. (3.10), we expect a zero visibility in the
limit of total coupling between the mode cavities (ql = 1). The observed quadrupole-mode
visibility of the FS stars are in turn larger than predicted from Eq. (3.11) for the higher
mass stars in the FS category (see the bottom-right panel in Fig. 3.4). The quadrupole-mode
visibility for these higher mass stars are in line with the predicted range within two sigmas.

We find that the dipole-mode visibility measurements of the RGB stars in the PD cate-
gory are within the predicted range from Eq. (3.11) (see left column of Fig. 3.4). In other
words, the observed values for the visibility of these stars are consistent with the predictions
in the full dissipation framework (in the thick evanescent zone limit). Similarly as for the
dipole modes, our observed quadrupole-mode visibilities are in line with the predictions of
Cantiello et al. (2016) within two sigmas (see right column of Fig. 3.4).

Most of the stars in the PS category (about 90%) fall within the predicted dipole-mode
visibility range, especially at lower νmax (i.e. more evolved RGB stars, see Fig. 3.4). Al-
though their PDS morphology suggests that the full dissipation framework is not valid for
these stars, their observed visibility seems to be impacted similarly as expected in the full
dissipation framework. The higher than predicted visibilities for the remaining 10% of PS
stars also suggest the presence of a mechanism that can cause partial dissipation of the en-
ergy in the g-mode cavity of RGB stars as proposed by Mosser et al. (2017a). We indeed
expect dipole modes to retain their mixed character in the case of partial dissipation and
thus to have more energy (i.e. larger mode amplitudes and thus higher visibility) than in the
full dissipation framework. The interplay between the efficiency of the damping mechanism
(determining how much mode energy is dissipated) and the coupling factor (determining
how much mode energy enters the g-mode cavity) therefore predominantly influence the
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properties of the stars in the PS category.

3.4.3.2 CHeB stars

For the CHeB stars in our sample (see both panels of Fig. 3.5), our dipole-mode and quadrupole-
mode visibility measurements are not in agreement with the predictions from Cantiello et al.
(2016) (except for one PS star). This inconsistency is most likely due to the fact that the
weak coupling assumption is not valid for CHeB stars (see e.g. Hekker et al., 2018). A sim-
ilar discrepancy between predicted and observed dipole-mode visibility for CHeB stars has
already been pointed out by Mosser et al. (2017a) and Arentoft et al. (2017). Additionally,
we also do not find CHeB stars in the FS category, although we expect stronger coupling
between the mode cavities than on the RGB.

3.5. Comparison mass and rotation distributions with liter-
ature values

In this section, we highlight our results that do not directly relate to the full dissipation
framework. These results are set in the context of previous studies in the literature (e.g.
Fuller et al., 2015; Cantiello et al., 2016; Stello et al., 2016b; Mosser et al., 2017a).

3.5.1. Mass distribution
We computed the asteroseismic masses with the scaling relation using the reference values
from Themeßl et al. (2018). We found that our distribution peaks around 1.25 M⊙ and
contains masses up to 1.8 M⊙ (see green histogram in Fig. 3.6). The previously reported
mass distributions for RGB stars (Stello et al., 2016a; Mosser et al., 2017a) peak around
1.6 M⊙ and are almost not populated below 1.3 M⊙ (see orange histogram with masses
from Stello et al., 2016a). The main difference between the studies is the choice of the
reference values (from Themeßl et al., 2018; Mosser et al., 2013, or solar reference values).
Several studies on binary systems suggest that the reference value for the large frequency
separation should be lower than previously presumed (see e.g. Hekker, 2020, for an overview
of reference values). We also compared our distribution with the distribution based on the
masses from Hon et al. (2024) (blue histogram). For their grid-based emulator approach,
the authors used the masses from Yu et al. (2018) (grey histogram). For the subset of stars
that are in both samples, we find that the mass estimates are similar. The distribution of this
subset of stars computed with their mass estimates peaks around 1.35 M⊙. All these results
suggest that the previously reported masses are an overestimation of the true stellar mass.

3.5.2. Rotation
We only observe rotational splittings in a small fraction of the set of partially suppressed
dipole-mode stars (less than 8%). Evidently, we do not expect observable rotation signatures
in the FS morphology. We potentially could detect rotational signatures in the PDS of PD
stars. However, their modes would mainly affected by the rotation in the outer regions of the
star (see e.g. Goupil et al., 2013). From observations the rotation rates in the outer regions
of the stars are lower than the core rotation rates (see e.g. Deheuvels et al., 2014). We
therefore expect small rotational signatures in the PDS of PD stars and at the observed low
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visibility they are most likely not observable. The overall observed fraction of stars showing
rotation in our sample is thus most likely an underestimate of the true fraction of stars with a
typical rotation rate. Based on the work from Gehan et al. (2018), we expect a significantly
larger number of stars showing rotational evidence in their power spectra (about 15% of
their stars).
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Figure 3.6: Mass distribution for the RGB stars in our sample obtained from scaling relation with
reference values from Themeßl et al. (2018, in green), from masses published by Stello et al. (2016a,
in orange) and Hon et al. (2024, in blue). The overall mass distribution of RGB stars from Yu et al.
(2018, in grey) is shown in the background.

3.6. Discussion

3.6.1. Visibility measurements in the literature
We compared our observed visibility and radial-mode linewidths with previous observa-
tions (Mosser et al., 2012; Stello et al., 2016a,b; Mosser et al., 2017a). We find that our
observations are comparable to the visibility measurements found in the literature (see Ap-
pendix B.1). We note that these previous studies computed visibility by integrating the PDS
over the frequency ranges relevant for the different spherical degrees. The comparison with
these studies therefore also confirms that our method to determine the visibility using fitted
amplitudes is valid. A major difference with literature values is that our approach can not
result in a negative visibility (see e.g. Stello et al., 2016b). The stars with negative values
in the literature were found to be part of the FS (Full Suppression) category (i.e. very low
visibility).

Mosser et al. (2017a) find a discrepancy between their observed and predicted 31. They
compute the predicted visibility for the stars in their sample from both the general expression
and the expression in the thick evanescent zone limit (i.e. Eqs (3.10) and (3.11)) using their
observed Γ0, ∆ν and q1. The authors even obtained rotational splittings and period spacings
for a vast majority of the stars in their sample. Their results indicate that the dipole-mode
properties of their set of stars cannot be described within the full dissipation framework. We
find that the RGB stars from the set of 71 stars for which they obtained coupling factors are
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all part of the PS category. We therefore confirm that for the dipole modes of these stars the
full dissipation assumption breaks down. However, for about one third of these stars, we
find that their observed visibility is within one sigma of the predicted visibility range from
Cantiello et al. (2016). If we rewrite Eqs (3.10) and (3.11) to compute the coupling factor ql

that is needed to match the observed visibility, we find values below the observed range of
coupling factors on the RGB (see e.g. Mosser et al., 2017b). These stars are an example of
the theoretical case where the combined effect of efficiency of the damping and the coupling
between the mode cavities have to be considered to properly describe the observations of the
stars in the PS category. In other words, we need to investigate these stars within the partial
dissipation framework (see e.g. Müller et al., in prep.). Our results as well as the results by
Mosser et al. (2017a) also show that visibility alone is not enough to constrain the additional
damping mechanism at play in suppressed dipole-mode stars.

3.6.2. Quadrupole-mode properties consistent with full dissipation frame-
work

In previous studies in the literature, it has been shown that the additional damping mecha-
nism is related to the coupling between the mode cavities (Stello et al., 2016a,b) and that its
onset is frequency-dependent (so-called step suppression, see bottom-right panel of Fig. 3.1
and Mosser et al., 2017a). In this study, we furthermore find that the quadrupole-mode
properties of almost all RGB stars in our sample can be described by the full dissipation
framework, even if the dipole-mode properties of the star do not fit within this framework.
Our results thus suggest that the efficiency of the additional damping mechanism depends
on the spherical degree of the considered modes. Additionally, we can also conclude from
our results that when the dipole-mode properties of a star are consistent with the predictions
of the full dissipation framework, so are the quadrupole-mode properties of the same star.
This means that the onset of the additional damping mechanism is also degree-dependent,
which is consistent with theoretical predictions for different implementations of the source
of additional damping (e.g. Fuller et al., 2015; Loi, 2020; Müller et al., 2025).

3.6.3. Comparison with linewidth ratios of radial to quadrupole modes

When comparing the linewidth ratio and normalised visibility of quadrupole modes for the
different PDS categories (see Section 3.4.2), we find that these properties are almost al-
ways in line with the properties of pure pressure modes. Because of the weak coupling for
the quadrupole modes, it is not straightforward to resolve the (potential) mixed quadrupole
modes and in particular the g-dominated quadrupole modes. We therefore expect that the
observed properties are predominantly determined by the properties of the p-dominated
quadrupole modes. This explains why even at visibilities close to unity the properties of
the quadrupole modes are in line with those of pure quadrupole pressure modes.

In the full dissipation framework we expect that the additional damping will reduce the
observed visibility and increase the linewidth of the quadrupole modes (as linewidth is di-
rectly related to the mode damping rate). The linewidth of a mode can however also be
broadened by the contribution of unresolved mixed modes or rotational multiplets. We pre-
viously mentioned that the coupling is supposedly weak and that rotational features are less
frequently observed than expected for typical red giants, suggesting that these contributions
are small. We furthermore expect that at lower visibility, these additional contributions to
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the observed linewidth will be affected more strongly and therefore be negligible in compar-
ison to the contribution of additional damping experienced by the p-dominated quadrupole
mode.

3.6.4. Relation between morphology and evolution along the RGB
We show the distribution of the different morphologies in Fig. 3.7 for different νmax-regimes.
The stars in the FS category are mainly located at high νmax values (dominant morphology for
νmax ≥ 140 µHz). At lower νmax in our sample (50 µHz ≤ νmax < 100 µHz) the PS category
dominates the distribution. We find the stars from the PD category mainly at the higher νmax

end of the distribution (νmax ≥ 100 µHz). Since νmax is decreasing as a star ascends the RGB
(i.e. evolution goes from right to left in Fig. 3.7), the observed morphology seems to be
linked to the evolution along the RGB.
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Figure 3.7: Distribution of morphologies in different νmax-ranges for RGB stars.

To understand why these morphologies dominate at different stages along the RGB, we
take a closer look at evolutionary changes that could affect the observed suppression of the
mode amplitudes. The main evolutionary change determining the reduced visibility is the
evolution of the coupling between the two mode cavities (Stello et al., 2016b). The coupling
factor ql ( i.e. how strongly the mode cavities are coupled, see e.g. Hekker and Christensen-
Dalsgaard, 2017, for more information) mainly determines the fraction of the total mode
energy that can be dissipated in the central regions of the star. A larger ql (i.e. stronger
coupling) allows for a stronger effect of the additional damping on the modes, since a larger
fraction of mode energy can be dissipated in the inner regions. The extent of the evanescent
zone between the mode cavities determines how strong the coupling between the cavities is
(Shibahashi, 1979; Unno et al., 1989; Hekker et al., 2018). As the star ascends the RGB, it
is expected that the coupling factor decreases in the observed frequency range (e.g. Dupret
et al., 2009). A lower νmax (i.e. more evolved on the RGB) can therefore be related to a
weaker coupling between the mode cavities allowing less energy to be dissipated. We hence
expect more stars in the PS category (i.e. partially suppressed) at lower νmax as the coupling
is supposedly weaker. This is exactly what we see in the distribution of the stars in the PS
category in Fig. 3.7.
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3.6 Discussion

We can expect that the stars with the highest νmax (at the start of the RGB) have a rather
strong coupling between the mode cavities (see e.g. Mosser et al., 2017b), leading to a large
amount of mode energy that can be dissipated. This is also reflected in the observations as
the stars undergoing the strongest dissipation, mainly stars of the FS category, have a high
νmax (see Fig. 3.4 and e.g. Stello et al., 2016b; Mosser et al., 2017a). We emphasise here that
next to ql, the efficiency of the damping mechanism also plays a role in the amount of energy
the modes lose. As even the energy of the dipole mode in the p-mode cavity is dissipated,
we can interpret fully suppressed dipole-mode stars as stars with a high coupling factor and
an efficient additional damping mechanism acting in their central regions.

We also find stars from the PD and PS categories at high νmax. These early RGB stars are
expected to have a relatively strong coupling for RGB stars. From observations, we indeed
see a spread in the coupling factors at a given νmax (see e.g. Mosser et al., 2017b). These
variations in the coupling factors affect the observed visibility and can explain the observed
spread at high νmax.

RGB stars with low νmax have a relatively weak coupling between mode cavities (com-
pared to earlier in their evolution). If the damping mechanism is efficient, we expect that the
energy that reaches the central regions of the star is lost completely. On the other hand, if
the damping mechanism is less efficient, only a fraction of the total energy in the core is lost.
This difference in efficiency would be visible in the power spectrum through the absence or
the presence of g-dominated mixed dipole modes (i.e. PD or PS morphology observed in
the PDS). We note that the observed dipole-mode frequencies of the stars in the PD cate-
gory do not show signs of mixed character (i.e. coupling between the mode cavities). Their
observed normalised visibility however clearly indicates energy dissipation is occurring in
the central regions of the star. This means that the damping is so efficient that the modes in
the g-mode cavity cannot couple with the modes in the p-mode cavity. In other words, we
do not observe coupling through the presence of mixed modes, while the coupling factor ql

is expected to be non-zero as per the reduced visibilities.
For the CHeB stars, we expect higher coupling strengths than for RGB stars (see e.g.

Mosser et al., 2017a). As we do not observe CHeB stars with fully suppressed dipole modes,
the additional damping mechanism does not seem to be efficient enough to completely dis-
sipate the energy in the g-mode cavity.

As the coupling factor ql of a star also decreases with spherical degree l, we expect
quadrupole and higher degree modes to be less affected by the damping mechanism. This
connection between coupling factor and mode suppression has already been discussed for
the observed (Stello et al., 2016b; Mosser et al., 2017a) and predicted (Fuller et al., 2015;
Cantiello et al., 2016) normalised visibility.

3.6.5. Difference in mass distributions
The mass distribution of RGB stars appears to peak at lower mass than reported in previous
studies (see e.g. Stello et al., 2016a,b; Mosser et al., 2017a). The observed mass distribution
is similar to the mass distribution of all Kepler red giants. We also note that the observed
mass distribution encompasses the same mass range as the stars for which magnetic split-
tings (i.e. direct measurement of a core-magnetic field, see e.g. Deheuvels, 2024) have been
determined. The observed mass distribution is thus in line with the hypothesis of a core-
magnetic field as the additional damping mechanism in suppressed dipole-mode stars as
proposed by Fuller et al. (2015). Additionally, Bugnet et al. (2021) conclude from their
study that low- (M ≲ 1.1M⊙) and intermediate-mass (M ≳ 1.1M⊙) stars are able to develop
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a significant core-magnetic field. This result indicates that the mass is not a determining
factor for the development of a strong core-magnetic field.

3.6.6. Observed distribution of rotational features

The lack of rotational signatures in suppressed dipole-modes can be the result of the ampli-
tude suppression. These stars could however also be very slow rotators (splittings of about
0.1 µHz, see e.g. Gehan et al., 2018) as the angular momentum transport in these stars may
be affected by the damping mechanism as well. It has for example been shown that core-
magnetic fields can influence the redistribution of angular momentum in a star (Fuller et al.,
2019). Alternatively, a merger scenario could explain our observations, as low rotation rates
(along with a strong magnetic field) are the expected properties of merger products (see e.g.
Schneider et al., 2020; Rui and Fuller, 2021). If we assume further that the merger occurs
on the main sequence, we do not expect the asteroseismic properties of the merger product
to differ significantly from the properties of a genuine single star with similar mass (Rui and
Fuller, 2021). Lastly, the observed lack of rotational features could be due to the inclination
at which we observe these stars preventing us from resolving the rotational multiplets. The
latter seems highly unlikely, as we expect an isotropic distribution of the inclinations (see
e.g. Kuszlewicz et al., 2019).

3.7. Conclusions

We conducted this study to assess the validity of the full dissipation framework for describ-
ing the suppressed dipole-mode stars. To this purpose we analysed the power spectra of these
stars searching for signs of mixed non-radial modes, compared the observed normalised vis-
ibility to the linewidth ratio and to the visibility predicted within the theoretical framework.
We found that about 20% of our sample has mode properties completely consistent with the
predictions of the full dissipation framework. The dipole-mode properties of the remaining
80% of our sample suggest only partial dissipation as mixed dipole modes are observed. For
most of these stars, their quadrupole-mode properties however imply that the full dissipation
framework is still valid for modes with a higher spherical degree. Our results thus indicate
that the full dissipation framework is needed to explain (part of) the properties of suppressed
dipole-mode stars. As it does not encompass all suppressed dipole-mode stars, our results
suggest that the additional damping mechanism at play in these stars should allow a com-
bination of partial and full dissipation of the mode energy entering the g-mode cavity. The
onset and the effect of the damping mechanism should furthermore depend on the spherical
degree.

In summary, our findings are in line with a damping mechanism causing partial to full
dissipation of the energy entering the g-mode cavity depending on frequency and spherical
degree of the modes as well as the evolutionary stage of the star. These constraints have
to be considered for the further development of potential damping mechanism in the partial
dissipation framework. Loi and Papaloizou (2017); Loi (2020); Müller et al. (2025) show
that the presence of a core magnetic field can lead to an additional source of damping in the
partial dissipation framework. We further explore the implications of a core-magnetic field
in the partial dissipation framework in detail (see Müller et al., in prep.).
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Abstract The effect of a magnetic field in the core on the oscillation modes of red giants
can be described in two regimes: the weak- and strong-field regime. The threshold between
the two regimes is the so-called critical field strength. In the strong-field regime, we expect
the energy of the mode in the g-mode cavity to be dissipated. In the weak-field regime,
we expect the mixed-mode frequencies to be shifted to higher frequencies. As the critical
field strength decreases with spherical degree, a subset of red giants should have magnetic
frequency shifts in their dipole modes, while the g-mode contribution in their quadrupole
modes is fully dissipated. In this regard, finding stars with dipole and quadrupole modes in
the weak- and strong-field regime is valuable, as these stars are interesting testing grounds to
observationally link the presence of a magnetic field (through the dipole modes) with mode
suppression (through the quadrupole modes) in red giants.

In this study, we aim to observationally confirm the link between mode-energy dissi-
pation and the presence of a strong magnetic field in the core of the star. To this end,
we determined the dipole-mode frequency shifts in the power spectra of eleven stars from
the literature known to have significant magnetic shifts and to show negligible rotational
effects. We also verified whether the quadrupole-mode properties of these stars (i.e. mode
amplitude, mode linewidth) are consistent with predictions in the full dissipation framework.
Based on the measured magnetic shift and the observed non-radial modes we estimated the
minimal magnetic field strength of the magnetic field in the core of the stars. By comparing
these estimated magnetic field strength to the critical field strength of the quadrupole modes,
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4 Magnetic shift and mode suppression in non-radial modes of red giants

we assessed the observational confirmation that the observed magnetic field can cause the
observed mode suppression in the quadrupole modes.

For eight stars in our sample, our results indicate full dissipation of the g-mode contri-
bution in their quadrupole modes. The magnetic field estimates of these stars are all larger
than the quadrupole-mode critical magnetic field. In other words, we expect the quadrupole
modes to be in the strong-field regime which is directly confirmed by the quadrupole-mode
properties (i.e. full dissipation). We thus found observational evidence that mode suppres-
sion is caused by magnetic field in the core of red giants.

The remaining three stars show signs of partial dissipation in the quadrupole modes in
the form of quadrupole-mode doublets. These doublets can be interpreted as p-dominated
quadrupole modes or as magnetically shifted quadrupole modes. If we consider the first
interpretation, only two of the three stars have magnetic field estimates that can explain the
partial dissipation observed in the quadrupole modes. If we however consider the second
interpretation, the quadrupole-mode properties of all three stars can be explained by the
presence of a magnetic field in their core. We note that these quadrupole-mode magnetic
shifts, if confirmed theoretically, would be the first observations of this effect in quadrupole
modes.

We conclude that the estimates of the magnetic field strength obtained from the dipole-
mode magnetic shifts are consistent with the magnetic field strength required to explain
the quadrupole-mode visibility for ten of the eleven stars in our sample. The values for
the remaining star are also consistent with the presence of a strong magnetic field if the
observed quadrupole-mode doublets are magnetically shifted modes. We thus found strong
indications that the observed mode-energy dissipation can be linked to the presence of a
core-magnetic field. Moreover, we confirm that the combination of dipole and quadrupole-
mode properties is a promising prospect to further understand and constrain magnetic fields
in red giants.

4.1. Introduction

In Sect. 1.2.3, we introduced the effect of a magnetic field in the core on the oscillation
modes of a red giant. We identified two regimes based on the threshold field strength defined
as the critical field strength Bcrit,l, which depends on the spherical degree l of the oscillation
mode (see Eq. (1.41) and Fuller et al., 2015; Rui and Fuller, 2023). In the weak-field
regime (B < Bcrit,l), the non-radial modes should be shifted to higher frequencies (see e.g.
Bugnet et al., 2021; Mathis et al., 2021; Li et al., 2022). If the magnetic perturbation is
the only effect on the frequencies, we can estimate the strength of the magnetic field from
the observed frequency shifts (Deheuvels et al., 2023). Finding signs of these magnetic
frequency shifts are strong indications that a magnetic field is present in the core of the star
(see e.g. Li et al., 2022, 2023; Deheuvels et al., 2023; Hatt et al., 2024).

In the strong-field regime (B > Bcrit,l), the mode-energy in the g-mode cavity is fully
dissipated. This means that the oscillation modes in this regime can be described within the
full dissipation framework (see Sect. 3.2).

As the critical field strength decreases with spherical degree, the critical field strength
for the dipole modes Bcrit,1 is always larger than that for the quadrupole modes Bcrit,2. There
is therefore a magnetic field strength in between Bcrit,1 and Bcrit,2 where the magnetic field
would cause full mode-energy dissipation in the g-mode cavity of the quadrupole modes
(i.e. strong-field regime) and frequency shifts in the dipole modes (i.e. weak-field regime).
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4.2 Frequency analysis

Red giants harbouring a magnetic field with such a field strength would be a interesting
testing ground for the magnetic effects on solar-like oscillations. These stars would indicate
observationally that a magnetic field in the core of a red giant causes mode-energy dissi-
pation in the g-mode cavity. To this end, we selected the sample of stars from Deheuvels
et al. (2023). The power spectra of these stars do not have strong indications of rotation
allowing for a straightforward estimation of the magnetic field strength. Furthermore, all
these stars have confirmed magnetic shifts in the dipole modes Deheuvels et al. (2023) and
two of the stars (KIC 3109742 and KIC 6975038, a step-suppression star, see Sect. 3.4.1)
even show signs of energy dissipation in the dipole modes. These stars are therefore good
candidates to asses the observational link between mode-energy dissipation and the presence
of a magnetic field in the stellar core.

We outline our methodology to obtain the global asteroseismic parameters and individ-
ual mode properties (frequencies, linewidths and amplitudes) of the stars in Sect. 4.2. We
describe how we obtained the magnetic shift and consequently the field strength estimate
in Sect. 4.3. In Sect. 4.4, we discuss the quadrupole-mode properties of the stars in our
sample and whether these properties are consistent with the full dissipation of the energy in
the g-mode cavity. In Sect. 4.7, we compare the magnetic-field estimates to the dipole- and
quadrupole-mode critical magnetic fields. We dedicate Sect. 4.8 to the conclusions of our
study.

4.2. Frequency analysis
We used our peakbagging code TACO (Tools for the Automated Characterisation of Oscil-
lations, Hekker et al., in prep.) to analyse the light curves of our stars. In the following
section, we outline how we determined the frequency of maximal oscillation power νmax and
the large frequency separation ∆ν for each star as well as the mode frequency νnl, the mode
linewidth Γnl, and the mode amplitude Anl of the individual modes detected in the power
spectra of the stars in our sample. These steps are similar to the steps discussed in Sect. 3.3.

Firstly, we fitted our background model (Eq. (1.20)) together with an power envelope to
the power density spectrum of the star using the following expression (see Sect. 1.2.2 for
more information):

PB (ν) = Pn + η
2(ν)

(
Pbgr(ν) + Pg exp

[
− (ν − νmax)2

2σenv
2

])
. (4.1)

Secondly, we detected resolved and unresolved modes in the power spectrum, nor-
malised by the background model without the power envelope, using the peak detection
method developed by Garcı́a Saravia Ortiz de Montellano et al. (2018). Each individual
resolved mode was fitted with a Lorentzian function

Pnl (ν) =
2A2

nl

πΓnl

1

1 +
(

2(ν−νnl)
Γnl

)2 , (4.2)

with νnl, Anl and Γnl the central frequency, mode amplitude and mode linewidth (i.e the full-
width at half maximum of the peak). Each unresolved mode was fitted with squared sinc
function

Pnl (ν) =
A2

nl

δν
sinc2

(
π
ν − νnl

δν

)
, (4.3)
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4 Magnetic shift and mode suppression in non-radial modes of red giants

with δν, the frequency resolution of the power spectrum. Using a Maximum Likelihood
Estimation, we optimised the fit and estimated lower limits of the uncertainties for the pa-
rameters of every peak from the Hessian matrix.

We lastly performed the mode identification of the detected modes using the Universal
Pattern (UP, Mosser et al., 2011b) as a guide starting from the central radial order. The mode
identification is focussed on the radial, quadrupole and octupole modes, as the remaining
modes are dipole modes. We eventually determined ∆ν (large frequency separation between
successive radial modes) from a linear fit through the identified radial modes.

Table 4.1: Fitted parameters for the stars in our sample. Uncertainties are set by the 25th and 75th
percentile of the posterior distributions of the MCMC approach.

∆Π1 εg δν01 δνmag,eff

KIC [s] [µHz] [µHz]

6182668 83.21+2.51
−1.35 0.08+0.26

−1.00 0.03+0.23
−0.72 5.05+0.51

−0.44

9474201 82.02+0.20
−0.37 −0.15+0.33

−0.45 0.5+0.06
−0.04 4.67+0.13

−0.21

6842204 84.56+16.08
−9.87 0.41+0.57

−0.65 −0.11+0.54
−0.58 1.22+3.46

−1.22

8560280 78.59+1.32
−2.18 −0.2+0.24

−0.68 −0.01+0.10
−0.25 2.38+0.48

−0.34

8689270 79.94+0.24
−8.18 0.21+0.06

−0.41 0.11+1.23
−0.01 0.08+0.20

−0.08

3216736 77.78+0.13
−5.64 −0.25+0.87

−0.50 −0.13+0.04
−0.15 2.66+2.28

−0.08

5180345 77.23+0.13
−13.23 0.31+0.49

−0.41 −0.04+0.05
−0.54 2.11+1.55

−0.07

6975038 68.51+6.35
−2.55 0.27+0.88

−0.95 0.14+0.54
−0.28 3.96+0.86

−0.38

3109742 75.05+0.61
−6.09 −0.25+0.53

−0.32 −0.07+0.07
−0.55 1.59+2.14

−0.29

6614684 73.41+1.73
−6.60 −0.2+0.99

−0.38 −0.20+0.18
−0.31 1.42+1.98

−0.08

7728945 72.85+0.95
−7.90 0.03+0.42

−0.37 −0.19+0.30
−0.36 0.99+1.92

−0.46

4.3. Magnetic shift determination

In this section, we describe how we determined the magnetic shift from the observed dipole
modes by fitting the perturbed asymptotic mixed-mode frequencies (Eq. 1.40) to the ob-
served frequencies using an Markov chain Monte Carlo (MCMC) approach, similar to De-
heuvels et al. (2023). We recall Eq. (1.40) obtained from the approach developed by Mathis
et al. (2021); Bugnet (2022):

νobs = ν +
1
2

(
νmax

ν

)3
ζ(ν)δνmag,eff , (4.4)

with the effective magnetic shift δνmag,eff defined as

δνmag,eff ≡ (|m| + 1) δνmag. (4.5)
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Here m is the azimuthal order of the oscillation mode and δνmag is the intrinsic magnetic
shift measured at νmax.

The asymptotic frequencies ν of the mixed dipole modes depend on the mode coupling
factor q1, the period spacing ∆Π1, the gravitational offset εg and the small frequency sepa-
ration for the dipole modes δν01 (see Eq. (1.17) and e.g. Hekker and Christensen-Dalsgaard,
2017). To reduce the number of fitting parameters, we estimated the coupling factors q1 fol-
lowing the method developed by Vrard et al. (2016) and kept these fixed. From the method
of Vrard et al. (2016), we simultaneously obtained an estimate for ∆Π1 which was used as
initial value for this parameter. We estimated the initial value of δν01 using the scaling re-
lation as a function of ∆ν from Mosser et al. (2018), while the initial value of εg was set to
0.25 (see Takata, 2016; Mosser et al., 2018).

We chose uniform priors for the fitting parameters ∆Π1, δν01, and δνmag,eff . For εg we set
up a Gaussian prior with a mean of 0.28 and a spread of 0.12 (see Deheuvels et al., 2023, and
references therein). The best-fit values for all four fitting parameters are listed in Table 4.1.
We set the 25th and 75th percentile of the posterior distributions of the MCMC approach as
the uncertainties on the best-fit values.

4.4. Magnetic field-strength constraints from quadrupole-
mode properties

We can assess the full dissipation of the g-mode character in quadrupole modes by com-
paring the observed relation between the average normalised visibility 32 and the average
linewidth ratio Γ0/Γ2 to the prediction in the full dissipation framework (see e.g. Mosser
et al., 2017a, and Chapter 3 of this thesis). We recall that the predicted relation is

32 =
Γ0

Γ2
. (4.6)

We computed 32 and Γ0/Γ2 in a similar fashion as in Chapter 3 of this thesis, namely

32 =

nmax+2∑
k=nmax−2

wk
A2

k2

A2
k0G2

(4.7)

and
Γ0

Γ2
=

nmax+2∑
k=nmax−2

wk
Γk0

Γk2
. (4.8)

Here Ak2 (Γk2) is the amplitude (linewidth) of the quadrupole mode in acoustic radial order
k, Ak0 (Γk0) the amplitude (linewidth) of the radial mode of the same acoustic radial order,
wk = A2

k0/A
2
0 the fractional contribution of each radial mode to the total radial-mode power

A2
0 (i.e. the sum of the squared radial-mode amplitudes of the five most central acoustic

radial orders), nmax the acoustic radial order closest to νmax and G2 a geometrical factor
considering the effects of spherical degree, limb-darkening and the instrumentation (see e.g.
Ballot et al., 2011). For this study, we adopted G2 ≈ 0.688 (see e.g. Mosser et al., 2012;
Stello et al., 2016b).

In Fig. 4.1, we show the linewidth ratio Γ0/Γ2 as a function of the normalised visibility
32. In a few stars (triangular markers in Fig. 4.1), we find indications of two quadrupole
modes per radial order, suggesting that the g-mode contribution to the quadrupole modes
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Figure 4.1: Linewidth ratio as a function of the normalised visibility for the quadrupole modes.
The markers indicates the number of detected quadrupole modes in an acoustic radial order (dots for
quadrupole-mode singlets and triangles for quadrupole mode doublets). The step-suppression star
(KIC 6975038) is highlighted with a square marker. The grey solid line shows the predicted one-to-
one relation between the linewidth ratio and the normalised visibility in case of full dissipation of the
g-mode character.

is not completely dissipated. This is confirmed by the values of their measured visibility
and linewidth ratio, as these values are not in line with the predicted relation assuming
full dissipation of the g-mode contribution (solid line in Fig. 4.1). One of these stars has
an observed visibility close to one, suggesting that the modes of this star are not strongly
affected, if at all, by an additional source of damping.

Except for one star at low visibility, we also see in Fig. 4.1 that the stars with one
quadrupole mode per acoustic radial order (circles and square markers) have quadrupole-
mode properties consistent with the prediction in the case of full dissipation of the g-mode
character. The star at low visibility has only three observed acoustic radial orders with unex-
pectedly small and narrow quadrupole modes. The low-visibility of the quadrupole modes
is however a strong sign of mode-energy dissipation.

4.5. Azimuthal order of observed non-radial modes

As mentioned in Sect. 1.2.3.1 and repeated in Sect. 4.3, the intrinsic magnetic shift δνmag,
needed to estimate the magnetic field strength, can be obtained from the effective mag-
netic shift δνmag,eff if the azimuthal order m of the observed modes is known, δνmag =

δνmag,eff/ (|m| + 1). In this section, we deduce the azimuthal order m of the dipole modes
with the help of the quadrupole modes.
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4.5 Azimuthal order of observed non-radial modes

In general, we expect dipole triplets and quadrupole quintuplets when we consider linear
perturbations of rotational or magnetic nature (see e.g. Goupil et al., 2013; Bugnet et al.,
2021). Since we observe dipole-mode singlets together with quadrupole-mode singlets or
doublets, we also have to consider the effect of the inclination angle i on the mode amplitudes
(Gizon and Solanki, 2003). The mode amplitude of an oscillation mode of spherical degree
l and azimuthal order m is reduced by a factor Elm(i) (see Fig. 4.2 and Gizon and Solanki,
2003) defined as

Elm(i) =
(l − |m|)!
(l + |m|)!P|m|l (cos i)2, (4.9)

with P|m|l the associated Legendre functions of spherical degree l and azimuthal order |m|.
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Figure 4.2: Factor Elm for dipole (green) and quadrupole (blue) modes as a function of the inclination
angle i. The azimuthal order |m| of the mode is indicated by the linestyle.

If the effect of rotation is negligible and we consider magnetic perturbation (as expected
for the stars in our sample), we detect dipole-mode singlets at an inclination angle close to
0◦ or 90◦ (see Fig. 4.2). In the first case (i ≃ 0◦) we expect to observe a quadrupole-mode
singlet while in the latter (i ≃ 90◦) we would detect a quadrupole doublet. We can therefore
deduce that the 8 stars with dipole- and quadrupole-mode singlets are seen pole-on (i ≃ 0◦).
From Fig. 4.2, we deduce that the azimuthal order of the dipole and quadrupole modes of
stars with dipole- and quadrupole-mode singlets is 0.

If we assume that the quadrupole doublets observed in the three stars are of magnetic
nature, we can conclude that these stars are seen equator-on (i ≃ 90◦). We deduce from
Fig. 4.2 that |m| = 1 for the observed dipole-mode singlets, while the quadrupole modes
have azimuthal orders |m| = 0 or |m| = 2. We however also have to consider that the
quadrupole-mode doublets in these three stars could be two p-dominated quadrupole modes
resulting from the mode coupling between the two mode cavities. In this case, both modes
have the same azimuthal order. From this result and the fact that we observe dipole-mode
singlets, we conclude that in this assumption the three remaining stars are seen pole-on and
furthermore that |m| = 0 for the observed dipole and quadrupole modes.
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4 Magnetic shift and mode suppression in non-radial modes of red giants

Up until now we neglected the effect of rotation on the observed oscillation modes. We
can confirm this assumption based on the observed non-radial modes. If rotation would
affect the modes, we would only expect to observe dipole-mode singlets at an inclination
angle i close to 0◦. This is indeed the only configuration where we observe dipole singlets
(i.e. m = 0 or zonal dipole mode, see full green curve in Fig. 4.2). At these low inclina-
tion angles only the zonal (m = 0) quadrupole modes should be visible (full blue curve in
Fig. 4.2). The zonal dipole and quadrupole modes are however unaffected by the rotational
perturbation (see e.g. Aerts et al., 2010). As we do observe frequency shifts, we conclude
that rotation alone cannot account for the observed dipole and quadrupole modes.

We also assumed that both modes in the quadrupole-mode doublets are indeed quadrupole
modes. If one of these modes was not of quadrupolar nature, we would expect that they
are of dipolar nature with a strongly g-dominated mode character based on the observed
frequency patterns (see e.g. the behaviour of the ζ-function in Hekker and Christensen-
Dalsgaard, 2017). These modes are typically unresolved and would have narrow widths of
the order of the frequency resolution of the power spectrum (see Sect. 1.2.2.2). The observed
additional modes have observed linewidths of the same order as the radial and quadrupole
modes in the neighbouring acoustic radial orders. These linewidths suggest that the modes
most likely have a p-dominated character. As the observed dipole-mode frequency patterns
do not seem to agree with the frequencies of these additional modes, we concluded that the
additional modes are most likely quadrupole modes.

4.6. Magnetic field estimation

Following the discussion in Sect. 4.5, eight stars have dipole modes with azimuthal order
|m| = 0. The intrinsic magnetic shift for these stars is equal to the measured effective
magnetic shift (δνmag = δνmag,eff/ (|0| + 1) = δνmag,eff). For the remaining three stars, we
have two valid interpretations for which the azimuthal order of the observed dipole modes
is either 0 or 1. In the latter case, the intrinsic magnetic shift is equal to half the measured
effective magnetic shift, δνmag = δνmag,eff/ (|1| + 1) = δνmag,eff/2.

We estimated the minimal magnetic field strength B of the field in our stars by computing
(see Li et al., 2022; Deheuvels et al., 2023)

B =
32µ0π

5

3
δνmagν

3
max

I (4.10)

with µ0 the magnetic permeability in vacuum and I defined as

I =
∫

G

(
N
r

)3 dr
ρ∫

G

(
N
r

)
dr
. (4.11)

Here N is the buoyancy frequency (Eq. (1.6)), ρ the mass density, r the radial coordinate,
and the integrals are taken over the g-mode cavity.

To calculate the factor I, we require knowledge of the inner structure of the stars (i.e.
radial profiles of the buoyancy frequency N and the density ρ). We therefore computed three
evolutionary tracks (see Müller et al., in prep.) with varying stellar mass (M∗ = 1, 1.25 and
1.5 M⊙) and solar metallicity (Zinit = 0.02) using version r23.05.1 of the publicly available
stellar evolution code MESA (Modules for Experiments in Stellar Evolution Paxton et al.,
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2011, 2013, 2015, 2018, 2019; Jermyn et al., 2023). For each star we used the radial profiles
of N and ρ of the selected model for which mass and νmax were the closest to the observed
mass from Yu et al. (2018) and our estimate of νmax.

The estimates of the magnetic field strength from Eq. 4.10 are shown in Fig. 4.3 and
listed in Table 4.2. We note that the use of stellar models and the assumptions used to derive
Eq. 4.10 (see Li et al., 2022) renders the determination of the uncertainty on the magnetic
field strength estimate difficult. We estimated the uncertainty reported in this study through
error propagation of the uncertainty on νmax and δνmag (see Tables 4.1 and 4.2).

For the three stars with partial dissipation in the quadrupole modes, we only listed the
magnetic field estimate in the case that the quadrupole-mode doublets are two p-dominated
modes (i.e. m = 0 for the dipole modes). We also computed the magnetic field estimates in
the case the doublets are caused by magnetic shifts (open triangles in Fig. 4.3).

Table 4.2: Global asteroseismic parameters and magnetic field strength es-
timates for the stars in our sample.

νmax ∆ν M a B∗

KIC [µHz] [µHz] [M⊙] [kG]

6182668 220.53 ± 11.03 16.42 ± 0.82 1.24 ± 0.09 653+117
−111

9474201 201.24 ± 10.06 15.02 ± 0.75 1.53 ± 0.09 486+74
−76

6842204 178.60 ± 8.93 14.07 ± 0.70 1.26 ± 0.06 230+124
−116

8560280 164.60 ± 8.23 13.53 ± 0.68 1.11 ± 0.06 308+39
−32

8689270 163.15 ± 8.16 13.36 ± 0.67 1.14 ± 0.05 57+73
−29

3216736 148.91 ± 7.45 12.48 ± 0.62 1.23 ± 0.08 241+210
−37

5180345 139.01 ± 6.95 11.89 ± 0.59 1.17 ± 0.07 188+141
−29

6975038 121.19 ± 6.06 10.54 ± 0.53 1.29 ± 0.08 194+51
−35

3109742 102.01 ± 5.10 9.17 ± 0.46 1.32 ± 0.09 88+119
−21

6614684 91.12 ± 4.56 8.15 ± 0.41 1.56 ± 0.10 61+86
−10

7728945 90.82 ± 4.54 8.26 ± 0.41 1.51 ± 0.09 51+99
−25

a Masses from Yu et al. (2018).

4.7. Comparison field strength and magnetic field regimes
In this section, we assess if the observed full or partial dissipation of the g-mode character
observed in the quadrupole modes of the stars in our sample can be explained by the mag-
netic field in the core causind dipole-mode frequency shifts. To this end, we can compare the
estimated magnetic field strength B to the critical magnetic field for the quadrupole modes
Bcrit,2. In the case of full or dissipation of the g-mode character, we expect respectively that
B > Bcrit,2 (strong-field regime) and B < Bcrit,2 (weak-field regime). For this study, we de-
fined the critical magnetic field for modes of degree l at the radial coordinate rH, the location
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Figure 4.3: Magnetic field estimated from the observed magnetic shifts in the dipole modes as a
function of νmax for stars with masses close to 1 (red), 1.25 (blue) and 1.5 M⊙ (purple). The critical
magnetic field strength for dipole and quadrupole modes are indicated with a dashed and full curve
respectively, while the markers distinguish the stars with quadrupole singlets (dots and squares, top
panel) or doublets (triangle, bottom panel). The star KIC 6975038 (square) shows clear signs of
mode suppression in the dipole modes. We highlighted the region between the two critical magnetic
fields in each panel.
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of the hydrogen-burning shell, (Fuller et al., 2015)

Bcrit = 2π2√µ0ρ
ν2

max√
l(l + 1)N

rH. (4.12)

In Fig. 4.3, we plot the magnetic field strength estimates as well as the critical magnetic
field for the dipole and quadrupole modes, colour-coded by mass. We firstly remark that the
star KIC 6975038 (square in top panel of Fig. 4.3) is the only star with an estimated magnetic
field larger than the critical magnetic field of the dipole modes (dashed lines in Fig. 4.3). If
the core-magnetic field would cause the additional damping and the corresponding dissipa-
tion of the g-mode cavity, we would expect that not only the quadrupole but also the dipole
modes are affected. This is confirmed observationally, as the star is known to exhibit dipole-
mode suppression at lower frequencies in its power spectrum (see Step-suppression star in
Fig. 3.1 in Chapter 3). We note that the magnetic-shift determination was performed using
only the dipole modes at higher frequencies (ν > 130µHz).

For the stars with full dissipation in the quadrupole modes (dots in top panel of Fig. 4.3),
we expect that their magnetic field is in between the dipole-mode and quadrupole-mode
critical field strength, assuming that the mode-energy dissipation is caused by the magnetic
field. This is exactly the range in which we find their magnetic field estimates in Fig. 4.3
(see highlighted regions).

The magnetic field strength estimates for the three stars with partial dissipation in the
quadrupole modes are shown in the bottom panel of Fig. 4.3 in the case that the doublets
are actual p-dominated without magnetic shifts (full triangles). Two of these estimates
are consistent with the expected field strength regime for these stars (weak field regime,
B < Bcrit,2). If we however consider that these quadrupole-mode doublets are the results of
magnetic shifts, we found that the magnetic field estimates of all three stars are consistent
with the weak-field regime as expected from the partially dissipated g-mode character in the
quadrupole modes.

We found that ten of the eleven stars (or all stars if we consider magnetic shifts in the
quadrupole modes) have magnetic field estimates consistent with the mode-energy dissipa-
tion in the quadrupole modes. In other words, the observed mode-energy dissipation and
frequency shifts can be explained by a magnetic field with the same field strength located in
the core of the star.

4.8. Conclusions
In this study, we analysed a sample of stars with known magnetic shifts and lack of rotational
effects (Deheuvels et al., 2023). By determining the intrinsic magnetic shift causing the
observed frequency shifts in the dipole modes, we were able to estimate the magnetic field
strength of the fields in the core of the stars. As the observed shifts can only be explained
through a magnetic shift, we can assume that magnetic fields are indeed present in the core
of the stars in our sample. From the quadrupole-mode properties of the stars, we were able to
distinguish two subsets: eight stars show sign of full dissipation of the g-mode character in
the quadrupole modes, while the remaining three show signs of partial dissipation. From the
comparison of the magnetic field estimates for the stars in the two subsets to the critical field
strength (threshold field strength between full and partial dissipation due to the magnetic
field, see e.g. Fuller et al., 2015) of the quadrupole modes, we concluded that these estimates
are in line with the observed full and partial dissipation of the mode-energy in the g-mode
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4 Magnetic shift and mode suppression in non-radial modes of red giants

cavity of the quadrupole modes. We furthermore conclude that for the first time, two distinct
magnetic effects in the dipole and quadrupole modes be explained by a magnetic field with
the same field strength located in the core of the star. Further observational results like the
results presented in this study are needed to strengthen the observational link between the
presence of a core-magnetic field and mode suppression. We expect that new candidates can
be found among the stars of the PS category (see Chapter 3).

We report three potential cases of quadrupole-mode doublets that could be due to mag-
netic shifts. A thorough theoretical analysis based on the work of Mathis et al. (2021);
Bugnet et al. (2021); Bugnet (2022) could confirm if these doublets are of magnetic nature.
If this can be confirmed, it would be the first observational evidence for quadrupole-mode
magnetic shifts.

We also confirm that the theoretical developments of Mathis et al. (2021); Bugnet (2022)
can be used to describe magnetic shift as well as the approach developed by Li et al. (2022);
Deheuvels et al. (2023). As suggested by Bugnet et al. (2024), the quadrupole modes contain
key informations about the magnetic field and a thorough analysis of their properties can be
beneficial for our understanding of core-magnetism.

Acknowledgments We acknowledge funding from the ERC Consolidator Grant Dipolar-
Sound (grant agreement # 101000296).
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5
Conclusions and outlook

In this chapter, I summarise the main results and conclusions of the research presented in
Chapters 2, 3, and 4. I furthermore discuss interesting remaining open questions that still
have to be addressed.

The main aim of this thesis is to obtain observational constraints on the mechanism
causing the mode suppression in the non-radial modes of suppressed dipole-mode stars. A
subsequent aim is to confirm or disprove that the observed mode suppression is the result of
a magnetic field in the core of the star using the new observational constraints. In this regard,
we used the predictions of the full and partial dissipation framework developed for magnetic
fields in the core of red giants by Fuller et al. (2015); Cantiello et al. (2016); Rui and Fuller
(2023) and Loi and Papaloizou (2017); Loi (2020); Müller et al. (2025) respectively.

We confirmed in Chapter 2 that the observed mode suppression in suppressed dipole-
mode stars is caused by an additional source of damping in the core of the star. In summary,
we found that the distributions of the radial-mode damping rates (i.e. the linewidth) and the
radial-mode energy (i.e. the squared amplitude) are similar for stars with low and typical
dipole-mode visibility. Since the mode energy is set by the balance of mode damping and
mode excitation, we deduced that the mode excitation for the radial modes is unaffected
by the mechanism responsible for the low mode amplitudes. Assuming that the excitation
is the same for all modes, independent of spherical degree, the low visibility is not caused
by a lack of excitation but merely by additional damping. As the radial-mode damping is
also unaffected by the additional damping mechanism, we concluded that this additional
source of damping is most likely localised in the central regions of the star. Based on our
observations, we thus expect the presence of an additional source of damping in the central
regions of red giants with low dipole-mode visibility. This is also in line with the full and
partial dissipation frameworks, since the main assumption of these frameworks is that an
additional damping process dissipates the mode energy in the g-mode cavity of red giants.

As the partial dissipation framework has to be confirmed to hold under more general
assumptions (see e.g Loi and Papaloizou, 2018, considering rotational and magnetic effects
simultaneously), we focused on one of the limits of the framework, the full dissipation
framework (see e.g. Fuller et al., 2015), for which several predictions can be tested (see
Chapter 3). With our results, we confirmed just as Mosser et al. (2017a) that the normalised
visibility is not enough to characterise a suppressed dipole-mode star. The morphology, or
in other words the number of detected dipole modes per radial order, must also be taken
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into account. We conclude from our study that about 20% of the stars in our sample can be
explained in the full dissipation framework, indicating that the partial dissipation framework
is indeed needed and more importantly that the full dissipation limit has to be taken into
account. For the remaining 80% we find that the dipole-mode properties are not in line with
the predictions of the framework. However, for about 75% of them, their quadrupole-mode
properties suggest that the full dissipation framework can still be valid, at least for higher
spherical degree. This indicates that the additional damping mechanism has a threshold and
an efficiency that both depend on spherical degree. These results are consistent with the
magnetic greenhouse effect proposed by Fuller et al. (2015).

In Chapter 4 we showed that for ten out of eleven red giants with clear magnetic shifts,
the mode properties of dipole and quadrupole modes can be explained by a magnetic field
with the same field strength located in the core of the stars. We conclude from this study
that the observed mode-energy dissipation is consistent with the presence of a strong mag-
netic field in the core of the star. After the step-suppression star discussed by Deheuvels
et al. (2023), these are the first stars with strong observational indications of mode-energy
dissipation due to a magnetic field in the core of the star. Our sample is small and should be
extended with stars from the PS category (partially suppressed dipole-mode stars, see Chap-
ter 3). We also confirmed observationally that the combination of dipole and quadrupole
modes can be important to constrain the (configuration of) the magnetic field (see also
Bugnet et al., 2024).

In Chapter 4 we also mentioned the possibility that the observed quadrupole-mode dou-
blets in the stars with quadrupole-mode partial dissipation could be interpreted as magneti-
cally shifted quadrupole modes. If this can be theoretically confirmed, it would be the first
observational case of quadrupole magnetic shifts. A more in-depth analysis of these stars
and of the theoretical predictions of Mathis et al. (2021) are required to understand these
quadrupole-mode doublets.

In Chapter 3 and 4 we found several observational constraints that can be used in the
further developments of the partial dissipation framework (see e.g. Müller et al., in prep.). It
would be interesting to compare the future predictions of this framework to stars showing a
combination of magnetic and rotational frequency shifts. In general, finding more stars with
magnetic shifts would be helpful to confirm the link between mode suppression and core
magnetic fields.

In our study, we also found that the suppressed dipole-mode stars show less clear signs of
rotation than expected. This observation can also be interpreted as a sign of the presence of
a core-magnetic field. Fuller et al. (2019) have indeed shown that core-magnetic fields can
influence the angular momentum redistribution. Alternatively, we expect merger products to
have low rotation rates (along with a strong magnetic field) (see e.g. Schneider et al., 2020;
Rui and Fuller, 2021). Rui and Fuller (2021) showed that if the merger happens on the main
sequence, the asteroseismic properties of the merger product are very similar to that of a
genuine single star. It would be valuable to simulate such a low-mass merger on the main
sequence and follow its evolution until the CHeB phase. This could further confirm if strong
magnetic fields can be formed. More importantly, it would also explain why we would only
observe strong magnetic fields in this small fraction of the whole set of red giants observed
by Kepler (see e.g. Yu et al., 2018). From Bugnet et al. (2021), we know that almost all
low-mass stars are able to develop a significant core-magnetic field, but it is still unknown
how magnetic fields strong enough to cause mode-energy dissipation can form.

Overall, in this thesis, I investigated the suppressed dipole-mode stars and found im-
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portant observational constraints that should be considered in the further developments of
the partial dissipation framework. I furthermore confirmed observationally that a magnetic
field in the core can indeed explain the mode-energy dissipation in oscillation modes of red
giants. The future of magneto-asteroseismology of red giants seems very promising.
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A
Appendices for Chapter 2: The radial
modes of stars with suppressed dipole
modes

A.1. Comparison of νmax and ∆ν with literature values

In this section we compare the values of νmax and ∆ν obtained with our code to the values
found in the literature. We find agreement between our results and the data from Vrard et al.
(2018) and Kallinger (2019) for the stars we have in common with their samples (about
70% of our samples). We show in Fig. A.1 and A.2 as well as in Fig. A.3 and A.4 the
difference in νmax and ∆ν between our results for our low-visibility sample, S c and S p and
the data published by respectively Kallinger (2019) and Vrard et al. (2018) as a function of
their uncertainties. We defined the uncertainty on the difference in νmax as one ∆ν and on
the difference in ∆ν as the combination of the individual uncertainties in quadrature (similar
to e.g. in Eq. 2.5). We find that our values for νmax are within 1 ∆ν and ∆ν within 3σ of
the given uncertainties. The few outliers in the differences of ∆ν are caused by a different
number of detected radial modes.
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Figure A.1: Difference between the νmax (left) and ∆ν (right) derived in this work and the results of
ABBA (Kallinger, 2019) expressed in σ for stars in the low-visibility sample (orange) and S c (blue).
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Figure A.2: Same as in Fig. A.1, but now for S p (blue).
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Figure A.3: Same as in Fig. A.1, but now for a comparison with the FREQ results (Vrard et al.,
2018).

A.2. Comparison of individual linewidths, amplitudes, and
heights with literature values

In this section we compare the values of the linewidths, amplitudes and heights obtained
with our code to the values found in the literature. Kallinger (2019) and Vrard et al. (2018)
do not report values for the heights of the detected peaks. We therefore computed the heights
using Eq. 2.8 with the reported values for the linewidths and amplitudes. We find that our
results are in agreement with the values from Kallinger (2019, see our Figs. A.5 and A.6).
By comparing our results of our low-visibility sample and our control samples with the
values of Vrard et al. (2018, see our Figs. A.7 and A.8), we find that our linewidths are
about 40% narrower than their linewidths (i.e. there is an offset between the two sets of
parameters). A similar offset is as expected also observed in the mode heights. These
values for the linewidths and heights are, however, still within 3σ, three times the combined
uncertainty in quadrature. By comparing the linewidths obtained by Vrard et al. (2018) and
Kallinger (2019), we also observe that the linewidths in Vrard et al. (2018) are systematically
broader. Our results are overall in agreement with the values from Vrard et al. (2018) for the
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Figure A.4: Same as in Fig. A.3, but now for S p (blue).

stars present in both samples. Our distributions of our radial-mode parameters are therefore
consistent with the distributions obtained with the values of Vrard et al. (2018) and Kallinger
(2019) for the stars we have in common.
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Figure A.5: Difference between the linewidths (left), bolometric amplitudes (middle), and heights
(right) based on our results and the Kallinger (2019) data for stars in the low-visibility sample (or-
ange) and S c (blue).
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Figure A.6: Same as in Fig. A.5, but now for S p (blue).
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Figure A.7: Same as in Fig. A.5, but now for the comparison with the FREQ results (Vrard et al.,
2018).
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Figure A.8: Same as in A.7, but now for S p (blue).
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B
Appendices for Chapter 3: Full and
partial dissipation of g-mode character
in the non-radial modes of suppressed
dipole-mode stars

B.1. Comparison of visibility measurements with literature

In this section, we compare the visibility measurements computed in this study to the visi-
bility measurements found in the literature. The main difference in our approach is that we
use fitted amplitudes instead of amplitudes obtained by integrating the PDS over specific
frequency ranges (see Stello et al., 2016b; Mosser et al., 2017a, for more information). For
this comparison, we compute the absolute value of difference between their and our visibil-
ity measurements ∆3l in units of the combined uncertainty on the measurements. We note
that we take an uncertainty of 10% on the measurements from (Stello et al., 2016b; Mosser
et al., 2017a) as no specific uncertainty is mentioned. This chosen uncertainty is in line with
the reported typical uncertainties. We consider agreement between the measurements if the
ratio of the difference to the combined uncertainty is smaller than three.

Only one star we have in common with the sample of Mosser et al. (2017a) has signif-
icantly different dipole-mode visibility (see Fig. B.1). We also find that our results for the
dipole-mode visibility are in agreement with the values from Stello et al. (2016b) for about
95% of the stars we have in common with their sample. The few stars for which we don’t
find agreement seem to have a high noise level in their PDS or a negative visibility mea-
surement in the literature (see e.g. Stello et al., 2016b). The high noise level will contribute
to a larger dipole-mode visibility (i.e. the noise contribution is integrated together with the
contribution of the modes). According toStello et al. (2016b) their negative visibility mea-
surements are due to their background determination. A too large background model will
indeed result in a negative contribution to the integral computed to obtain the mode ampli-
tudes. Our measurements and the associated uncertainties for these stars are often small
leading to large differences in uncertainty units (see stars with ∆31/σ1 around 5 and 8 in
Fig. B.1).
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Our quadrupole-mode visibility measurements are in agreement with the measurements
of Stello et al. (2016b) (see Fig. B.2). We conclude from this comparison that our measure-
ments are comparable to the measurements presented in the literature.
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Figure B.1: Cumulative distribution of the difference between the dipole-mode visibilities ∆31 based
on our results and the data of Stello et al. (2016b) (green) and Mosser et al. (2017a) (blue) in units of
combined uncertainty σ1. The grey dashed line indicates the 3-sigma acceptance limit.
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Figure B.2: Same as Fig. B.1, now for the quadrupole-mode visibility measurements.
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Deheuvels, S., Doğan, G., Goupil, M. J., Appourchaux, T., Benomar, O., Bruntt, H., Cam-
pante, T. L., Casagrande, L., Ceillier, T., Davies, G. R., et al., “Seismic constraints
on the radial dependence of the internal rotation profiles of six Kepler subgiants and
young red giants,” Astronomy & Astrophysics, vol. 564, A27, 2014, doi:10.1051/0004-
6361/201322779.

Deheuvels, S., Li, G., Ballot, J., and Lignières, F., “Strong magnetic fields detected in
the cores of 11 red giant stars using gravity-mode period spacings,” Astronomy & As-
trophysics, vol. 670, L16, 2023, doi:10.1051/0004-6361/202245282.

Dupret, M. A., Belkacem, K., Samadi, R., Montalban, J., Moreira, O., Miglio, A., Godart,
M., Ventura, P., Ludwig, H. G., Grigahcène, A., et al., “Theoretical amplitudes and life-
times of non-radial solar-like oscillations in red giants,” Astronomy & Astrophysics, vol.
506, no. 1, pp. 57–67, 2009, doi:10.1051/0004-6361/200911713.

Eddington, A. S., The Internal Constitution of the Stars, 1926.

Elsworth, Y., Hekker, S., Johnson, J. A., Kallinger, T., Mosser, B., Pinsonneault, M., Hon,
M., Kuszlewicz, J., Miglio, A., Serenelli, A., et al., “Insights from the APOKASC deter-
mination of the evolutionary state of red-giant stars by consolidation of different meth-
ods,” Monthly Notices of the Royal Astronomical Society, vol. 489, no. 4, pp. 4641–4657,
2019, doi:10.1093/mnras/stz2356.

87

https://doi.org/10.1088/2041-8205/732/1/L5
https://doi.org/10.1146/annurev-astro-082812-140938
https://doi.org/10.1038/259089a0
https://doi.org/10.1051/0004-6361/202450037
https://doi.org/10.1038/nature08022
https://doi.org/10.5281/zenodo.13373930
https://doi.org/10.1051/0004-6361/201526449
https://doi.org/10.1051/0004-6361/201526449
https://doi.org/10.1051/0004-6361/201322779
https://doi.org/10.1051/0004-6361/201322779
https://doi.org/10.1051/0004-6361/202245282
https://doi.org/10.1051/0004-6361/200911713
https://doi.org/10.1093/mnras/stz2356


Bibliography

Fuller, J., Cantiello, M., Stello, D., Garcia, R. A., and Bildsten, L., “Asteroseismology can
reveal strong internal magnetic fields in red giant stars,” Science, vol. 350, no. 6259, pp.
423–426, 2015, doi:10.1126/science.aac6933.

Fuller, J., Piro, A. L., and Jermyn, A. S., “Slowing the spins of stellar cores,” Monthly
Notices of the Royal Astronomical Society, vol. 485, no. 3, pp. 3661–3680, 2019,
doi:10.1093/mnras/stz514.

Garcı́a, R. A. and Ballot, J., “Asteroseismology of solar-type stars,” Living Reviews in Solar
Physics, vol. 16, no. 1, 4, 2019, doi:10.1007/s41116-019-0020-1.
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