
Dissertation
submitted to the

Combined Faculty of Mathematics, Engineering and Natural Sciences
of Heidelberg University, Germany

for the degree of
Doctor of Natural Sciences

Put forward by
Yash Mohan Sharma
born in New Delhi, India

Oral examination: July 17th, 2025





Decoding the Reionization-Epoch
Intergalactic Medium with the Most

Distant Quasars

Referees:
Dr. Fabian Walter
Prof. Dr. Ralf Klessen



This work is licensed under a Creative Commons
“Attribution-NonCommercial-NoDerivs 3.0 Unported” li-
cense.

https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en




Abstract
At high-redshifts z ≥ 6, the neutral hydrogen column densities in the IGM are so large
that almost all of the Lyα photons around the resonance are absorbed. At those redshifts,
the Lyα damping wing signals have proven to be instrumental in studying the epoch of
reionization. With the recent advancements in the discovery and measurement of high-
redshift sources (galaxies and quasars), it is becoming ever more crucial to explore what
this new set of sources might reveal regarding the reionization history and its topology.
Hence, in this thesis, we aim to comprehensively study signatures of astrophysical,
IGM, and reionization source parameters on the reionization topology as seen through
the spectra of an ensemble of damping wing profiles. For this, in chapter one, using
21cmFAST we generated the reionization models subjected to a large set of astrophysical
parameters. We found that the neutral fraction, xHI, quasar lifetime, tq, quasar host halo
mass, Mqso, and minimum halo mass that can support star formation, Mmin, significantly
impact both the median signal and the scatter of the ensemble of damping wings. But
just the idea of an ensemble is not sufficient. We need to quantize it and confirm if such
an ensemble is observationally possible. That’s why, in the second chapter, we studied
the constraining power of damping wings over the parameters filtered in chapter one.
We showed that the constraints provided by only 64 quasars at redshift 7, xHI = 0.5+0.02

−0.02,
Mmin = 8.78+0.53

−0.53, log tq/yr = 6.0+0.12
−0.12, and log Mqso/M⊙ = 11.52+0.32

−0.31 are comparable to
the results from other observables like 21cm signal, and our methodology works for as
low as 32 quasars. Even though this proved the strength of our damping wing analysis,
it did not show that of our suite of models. Hence, using the similar reionization models
developed in chapters one and two, in chapter three, instead of calculating Lyα optical
depth, we looked at the Lyman continuum optical depth at z = 6. Subsequently, we
studied the ionizing photons’ mean free path (MFP) dependency on the filtered set of
parameters from chapter one. We then plotted our models of transmission flux in the
Lyman continuum regime against the stacked quasar spectra to estimate the range of
these parameters that best fit the spectra. Our results implied that to explain the short
MFP from the late reionization models, we would need xHI ≥ 0.35 and a very short
tq (= 104yrs) or xHI ≈ 0.5 for tq = 106yrs. Thus, indicating that the late reionization
models are insufficient to explain the short MFP of ionizing photons, we need some
additional Lyman limit systems within the quasar proximity zone to explain the short
MFP of the ionizing photons at z = 6.



Zusammenfassung
Bei hohen Rotverschiebungen z ≥ 6, wo die Säulendichten des neutralen Wasserstoffs
so groß sind, dass fast alle Lyα-Photonen um die Resonanz herum absorbiert wer-
den, haben sich die Dämpfungsflügel-Signaturen als entscheidend für die Untersuchung
der Reionisierungsära erwiesen. Mit den jüngsten Fortschritten bei der Entdeckung
und Messung von Quellen mit hoher Rotverschiebung (Galaxien und Quasare) wird
es immer wichtiger zu untersuchen, was diese neuen Quellen über die Geschichte der
Reionisierung und ihre Topologie verraten könnten. Daher ist es das Ziel dieser Arbeit,
Signaturen von astrophysikalischen, IGM- und Reionisierungsquellenparametern auf die
Reionisierungstopologie, wie sie durch die Spektren eines Ensembles von Damping-Wing-
Profilen sichtbar wird, umfassend zu untersuchen. Zu diesem Zweck haben wir in
Kapitel 1 mit 21cmFAST Reionisierungsmodelle unter Verwendung einer großen Anzahl
astrophysikalischer Parameter erstellt. Wir haben festgestellt, dass der Neutralanteil
xHI, die Lebensdauer von Quasaren tq, die Masse des Quasar-Wirtshalos Mqso und
die minimale Halomasse, die Sternentstehung unterstützen kann, Mmin, sowohl das
mittlere Signal als auch die Streuung des Ensembles von Damping Wings signifikant
beeinflussen. Aber die Idee eines Ensembles allein reicht nicht aus. Wir müssen sie
quantisieren und bestätigen, ob ein solches Ensemble beobachtbar ist. Aus diesem
Grund haben wir im zweiten Kapitel die Einschränkungsfähigkeit von Dämpfungsflügeln
auf die im ersten Kapitel gefilterten Parameter untersucht. Wir haben gezeigt, dass
die Einschränkungen, die nur durch 64 Quasare bei Rotverschiebung 7, xHI = 0, 5+0,02

−0,02,
Mmin = 8, 78+0,53

−0,53, log tq/yr = 6, 0+0,12
−0,12 und log Mqso/M⊙ = 11, 52+0,32

−0,31 sind vergleichbar
mit den Ergebnissen anderer Beobachtungsgrößen wie dem 21-cm-Signal, und unse-
re Methodik funktioniert bereits für 32 Quasare. Auch wenn dies die Stärke unserer
Dämpfungsflügelanalyse bewiesen hat, hat es nicht die Stärke unserer Modellreihe ge-
zeigt. Daher haben wir in Kapitel 3 anstelle der Berechnung der optischen Tiefe Lyα
die optische Tiefe des Lyman-Kontinuums bei z = 6 untersucht, wobei wir die in den
Kapiteln 1 und 2 entwickelten Reionisationsmodelle verwendet haben. Anschließend
haben wir die Abhängigkeit der mittleren freien Weglänge (MFW) der ionisierenden
Photonen von den gefilterten Parametern aus Kapitel 1 untersucht. Anschließend haben
wir unsere Modelle des Transmissionsflusses im Lyman-Kontinuum-Bereich gegen die
gestapelten Quasarspektren aufgetragen, um den Bereich dieser Parameter zu schätzen,
der am besten zu den Spektren passt. Unsere Ergebnisse deuten darauf hin, dass zur
Erklärung der kurzen MFW aus den späten Reionisierungsmodellen xHI ≥ 0, 35 und
eine sehr kurze tq (= 104Jahre) oder xHI ≈ 0, 5 für tq = 106Jahre erforderlich wären.
Dies deutet darauf hin, dass die späten Reionisierungsmodelle nicht ausreichen, um die
kurze MFW ionisierender Photonen zu erklären. Wir benötigen daher einige zusätzliche



Lyman-Limit-Systeme in der Quasar-Nähezone, um die kurze MFW der ionisierenden
Photonen bei z = 6 zu erklären.
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The bright stars twinkling in the night sky, guiding people in the earliest eras of
human voyages, were not only followed by sails and ships but also by the human mind
and curiosity. The ever-so-lasting fascination with the motion of stars, moon, and sun on
the blanket of the sky grew more mysterious with every exploration, presenting herself

1
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in all manners of work, from poetic tales of romance to the fundamentals of human
culture, everyone everywhere has bathed in the ocean of her mysteries. The mysteries
began with counting the heavenly bodies in the sky and eventually drove people to
question the very nature of the Universe. Modern cosmology, the subject of studying
the cosmos (Universe), sails on the same ocean, covering the nature and evolution of
the Universe from its birth to the present era, hoping to see the shore someday. We,
too, will sail the same boat with similar aspirations. In this thesis of our journey,
we explore and strengthen our understanding of one of the most actively researched
periods in the evolution of the Universe, called the Epoch of Reionization (EoR). We
will first begin our journey by studying the evolution of the Universe and develop the
necessary skills for the development of the later chapters. From chapter two onwards,
we will study the work I carried out during my PhD days at Max Planck Institute
for Astronomy (MPIA), and finally, in chapter five, we will conclude with a summary
and future applications of my work.

1.1 The Standard Cosmological Model

Most of the discussions and derivations in this section are inspired by the descriptions
in Peebles, 1993 and lecture notes from Prof. Luca Amendola.

Before studying the Universe, let’s describe the Universe we want to study. The
standard model of cosmology that we will use in this study follows Λ-Cold Dark Matter
(ΛCDM). Where Λ refers to the dark energy and CDM represents cold Dark Matter
(DM), which means the DM is nonrelativistic and only interacts via gravity. ΛCDM
assumes the cosmological principle, that the Universe on a large scale is homogeneous and
isotropic. The other parameters that define ΛCDM are Ωm,ΩΛ,Ωr, σ8, h are described
in the section below.

1.1.1 Expanding Universe Dynamics

The expanding Universe, following the cosmological principle, can be described by the
Fiedmann-Lemaitre-Robertson-Walker (FLRW) metric:

ds2 = c2dt2 − a2(t)
[

dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)
]

(1.1)

Here (r, θ, ϕ) are the comoving coordinates that do not change with the Universe’s
expansion, and c is the speed of light. Looking at the equations, one could see the

https://lucaamendola.wordpress.com/about/
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spherical symmetry on the spatial part of FLRW due to the cosmological principle.
We define comoving coordinates from the proper coordinates by multiplying the proper
coordinates by the time-dependent scale factor a(t), which has been normalized so that
at present a(t0) = 1. The factor k on the dr part of the Eq. (1.1) represents the
spatial curvature of the Universe. To formulate the expansion of the Universe, all we
now would like to know is the scale factor a(t). This can be derived from Einstein’s
field equations and the energy-momentum conservation law. Separating the spatial and
temporal parts, we get the Friedmann equations.

(
ȧ

a

)2
≡ H2(t) = 8πG

3
ρ− kc2

a2 + Λc2

3
ä

a
= −4πG

3

(
ρ+ 3p

c2

)
+ Λc2

3

(1.2)

Λ is the cosmological constant and represents the contribution from dark energy.
H(t) ≡ ȧ/a is known as the Hubble-Lemaître parameter, which gives a measurement of
how fast the Universe is expanding. The present value of the Hubble-Lemaître parameter
(H0) is commonly parametrized using h or h−1, where h = H0/(100kms−1Mpc−1).
The term ρ(t) is the total matter-energy density, and p(t) is the total pressure in
the Universe at time t.

For an object at rest in the comoving frame, the distance D and velocity V in
the proper coordinates are given by,

D = ar

Ḋ = ȧr = HD
(1.3)

This is called the Hubble-Lemaître law.
Using the energy conservation law, we can define the matter density and pressure rela-

tion:

ṗ(t) + 3(̇a)(t)
a(t)

(ρ+ p) = 0 (1.4)

We can solve the above equation by substituting (p = wρ). This gives us the energy-
density relation. The value of w depends on which kind of interaction dominates. Solving
Eq. (1.4) for ρ, we get

ρ ∝ a−3(1+w)
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Substituting this relation in the first Friedmann equations, Eq. (1.2), we get relation for
scale factor,

a(t) ∝ t
2

3(1+w) . (1.5)

Another useful quantity related to the scale factor a(t) is the redshift. As the Universe
is expanding, the wavelength of the photon traveling through the Universe stretches. We
can represent this stretch using a parameter called redshift z, which is nothing but the
Doppler shift of the photon’s wavelength.

z = λobs − λem

λem

(1.6)

The relation between z and a can be easily derived from Eq. (1.3). For the radiation
emitted at tem with wavelength λem, which is observed at to with wavelength λo.

dλ

λ
= V

c
= HD

c
= −Hdt = −da

a

. The negative sign is because λo > λem while dt = tem − to This gives us λem = aλo.
Substituitng this in Eq. (1.6), we get,

1 + z = a−1 (1.7)

Now let’s try to break down the density relations for different components (matter,
radiation, curvature, and dark energy) from 1.2, to see which component drives which
part of the Universe.

• Radiation: The radiation component (relativistic in nature) follows pr = ρr/3, that
is w = 1/3 and ρ ∝ a−4. Substituting w in Eq. (1.5), we get a(t) ∝ t1/2. The
Universe must be radiation dominated at small values of a or at early times

• Matter: The nonrelativistic matter (DM + baryons) contains the bulk of the mass
of the Universe. They interact primarily via gravity. The equation of state for
a cold DM is p = 0. The total matter density is then ρm = ρDM + ρb, this
implies ρm ∝ a−3, and from the Eq. (1.5), we get a(t) = t2/3. Matter must
have started to dominate after the radiation dominance ended. The Universe was
matter-dominated until z ∼ 0.3 or tage ∼ 10 billion years.

• Dark energy: The dark energy or the cosmological constant, which accelerates
the expansion of the Universe, is assumed to follow the following equation of state
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pΛ = −ρΛ, where the pressure is negative. Thus, the density is constant throughout
the evolution of the Universe. The scale factor changes exponentially with time for
dark energy domination. The Universe is dominated by dark energy at present.

• Curvature: The final component is the curvature of the Universe, which can be
seen from Eq. (1.2) to be evolving as ∝ a−2.

These components in the Friedmann equation are represented in the form of density
parameters, defined as Ωα = ρα(t)

ρc(t) , with the critical density ρc(t) = 3H2(t)/8πG. Thus,
the first Friedmann equation can be rewritten as:

H2(t) = H2
0

[
Ωm,0

a3 + Ωr,0

a4 + ΩΛ + Ωk,0

a2

]
(1.8)

Where the subscript ’0’ denotes the value of the density parameters at present.
The values used in this work are provided by Aghanim et al., 2020, with cosmological
parameters h = 0.676, Ωm = 0.309, Ωb = 0.0489, and σ8 = 0.810, h = 0.7. Thus
completing the description of our standard model.

1.2 Traveling Through Cosmic Time

The evolution of the Universe is divided into various epochs defined by specific physical
conditions and dominant processes. This section will briefly discuss these epochs and
the chronological transitions between them. Everything started with the Big Bang,
The Planck Epoch, around 13.8 Gyrs ago, when the Universe was highly energetic
and dense. The Universe then transitions into the phases of cooling and reheating
throughout its evolutionary stages, giving rise to the Universe we see today. The
Fig. 1.1 gives the pictorial view of the evolution of the Universe. After the Big Bang,
around tage ∼ 10−36s, the Universe started to expand exponentially, entering into the
Inflationary Epoch. The Universe has been expanding ever since. During this period,
the Universe underwent exponential expansion (of the order of 1026) within a fraction of
a second, from tage ∼ 10−36s to tage ∼ 10−33s. This extreme expansion is hypothesized
to cause the flat geometry (flatness problem) and stretch the quantum fluctuations to
the astronomical scales, which later became the density perturbations (Guth, 1981). It
ended in a transition phase called reheating, leading to the formation of standard model
particles. The Universe continued to expand after this, though at a much slower rate,
which also allowed the Universe to cool down and enter into various particle-forming
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epochs (e.g., Quark epoch, Hadron epoch, Lepton epoch, etc). Around tage ∼ 200−1200s
the Universe entered the Big Bang Nucleosynthesis (BBN) epoch. During this period, the
Universe had cooled enough to allow protons and neutrons to form primordial hydrogen
and other light elements like helium, lithium, etc. (Alpher et al., 1948).

Figure 1.1. This image depicts the evolution of the Universe, marked with major epochs/eras
along with their time stamps. The mini panel zooms into the galaxy cluster, the Milky Way
galaxy, and the Solar System from left to right. Credits: ESA – C. Carreau

.

After the end of BBN (tage ∼ 1200s till tage ∼ 380, 000 yrs), the Universe was in the
photon epoch. Initially in this epoch, the Universe was in a radiation-dominated phase,
where the energy density of radiation (photons and neutrinos) was greater than that of
matter (DM and baryons). The photon pressure was the dominant factor in determining
the Universe’s expansion rate, see Eq. (1.2) for reference. Since the energy density of
radiation decreases much faster than the energy density of matter due to expansion, it
eventually lead to the matter-radiation equality, which happened around z ∼ 3500 or
tage 43, 000 yrs. After this, the energy density of the Universe was dominated by matter.
During the whole photon epoch, photons were constantly scattered by free electrons via
Thomson scattering, coupling them into a photon-baryon fluid, leading to a completely
opaque Universe. The coupling of photons to the baryonic perturbations caused them to
oscillate as acoustic waves known as Baryon Acoustic Oscillations (BAO). The imprints
of BAO can be seen in the Cosmic Microwave Background (CMB).

The Universe remained opaque to radiation until z 1100 or tage 380, 000, yrs, causing
the average photon energy to drop low enough that they cannot ionize the neutral
hydrogen (HI) atoms. The electrons can now combine with protons to form stable HI.
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This is known as recombination, and the era is hence called the recombination epoch. As
the free electrons combined with protons, the number density of electrons reduced, which
allowed photons to travel freely without being scattered. This event is called photon
decoupling. The Universe started to become transparent to photons. The photons,
after decoupling, were observed today as CMB (Penzias and Wilson, 1979). After
their last scattering from free electrons during the recombination epoch, the photons
could represent the size of the Universe where it transitions from being opaque to being
transparent. This is called the surface of last scattering. The CMB photons around the
recombination had a blackbody spectrum corresponding to T ∼ 3000 K, which, after
being redshifted to us, corresponds to the blackbody radiation of T ∼ 2.75 K. Due to
the primordial density perturbations in the early Universe, small-scale inhomogeneities
and anisotropies can also be seen in the CMB. These fluctuations in the CMB can
be used to constrain the properties of the Universe (Aghanim et al., 2020). This is
the furthest we can see from our telescopes. However, current efforts aim to identify
smaller-scale perturbations, probing the Universe as early as ∼ 10−14s (Biscoveanu et al.,
2020; Collaboration et al., 2015; Amaro-Seoane et al., 2023). This era of recombination
continued till the rate of recombination was greater than the rate of expansion of the
Universe. After this point, the amount of HI in the Universe froze.

After the recombination epoch ended, the Universe entered the Dark Ages until the
first bright objects formed. The Dark Age continued from z ∼ 1100 or tage ∼ 380, 000
yrs, till z ∼ 30 or tage ∼ 100 Myrs. There were no galaxies or stars, the Universe was
filled with HI and helium. Due to the initial perturbations in the matter density fields,
the DM, unaffected by the CMB radiation, started to collapse gravitationally and form
the bound structures, called DM halos. The baryonic matter density closely followed
the DM gravitational potential wells. The collapse of baryonic gas was opposed by its
gas pressure, eventually reaching a quasi-equilibrium state. The gas, primarily HI, could
cool down due to thermal collisions followed by de-excitation, hence collapsing further
within the DM halos. This eventually led to the formation of the first generation of
stars, referred to as Population III or Pop III. The Pop III stars were formed around
z ∼ 30 or tage ∼ 100 Myrs, leading to the era of Cosmic Dawn. These extremely massive
stars were one of the earliest sources of UV radiation (≥ 100 − 200M⊙) (Bromm et al.,
1999; Abel et al., 2000; Klessen and Glover, 2023). Due to their large mass, these
stars were short-lived (of the order ∼ 10 Myr) and ended with supernovae. This led
to the metal enrichment of their environment. The metal enrichment allowed for more
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effective cooling. Due to this, the gas could further fragment into smaller clumps and
form smaller but much longer-lived Pop II stars. These stars built up denser stellar
clusters and complicated structures, which eventually led to the assembly of the first
galaxies. These galaxies were also a strong UV source. The Pop III stars, the source of
UV radiation, were able to ionize the surrounding gas and the Universe. This was also
the beginning of the reionization of the Universe. However, due to the short lifespan
of Pop III stars, they could not sustain it and could only ionize the Universe locally.
Galaxies, on the other hand, were very stable and carried large-scale reionization of
the Intergalactic Medium (IGM) via bubble-like structures. These bubbles, which were
isolated initially, started to grow and eventually overlap as more and more galaxies were
formed. This marked the end of the cosmic dawn era and the beginning of the EoR. The
cosmic dawn ended approximately at z ∼ 15 or tage ∼ 250 Myrs, when the first galaxies
were formed. The epoch of reionization can be debated to have begun around z ∼ 30−15
from the formation of the first stars to the first galaxies, but it ended approximately at
z ∼ 5.5 or tage ∼ 1 Gyr (Bosman et al., 2022).

Galaxies of various masses were formed at this time, some were big enough to host
Active Galactic Nuclei (AGN) with black holes of mass MBH ∼ 106M⊙ (Larson et al.,
2023). These AGNs were the progenitors of the earliest Super Massive Black Holes
(SMBH) or quasars, around z ∼ 7.5 or tage ∼ 650 Myrs. The Universe was almost
completely ionized when the reionization ended; the IGM was reheated to t ∼ 104

K. This heating potentially suppressed the formation of very small galaxies. The new
Universe has now transitioned to the era where galaxy structure formation dominates.
Smaller galaxies and DM halos could merge to form larger and more complex structures.
These structures also grew by accreting more and more gas. Baryonic gas was heated
because of reionization, and heated the IGM. The gas within the halos was cooler and
got cooler due to much more efficient cooling mechanisms (e.g., molecular cooling, etc).
This increased the star formation rate (SFR) within the halos. The SFR peaked around
z ∼ 2 or tage ∼ 3.2 Gyrs (Madau and Dickinson, 2014). Around z ∼ 0.3 − 0.7 or
tage ∼ 7−10 Gyrs, the energy density from dark energy started to dominate, accelerating
the expansion of the Universe, entering into the accelerated expansion or dark energy
dominated era, which defines the present era (z = 0). We expect this accelerated
expansion to continue into the future.
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1.3 Theory of Structure Formation

Most of the discussions and derivations in this section are inspired from the works in
Peacock, 1998; Padmanabhan, 2000; Barkana and Loeb, 2001; Narlikar, 2002; Mo
et al., 2010; Peebles, 1993.

Starting with the standard cosmological principle, where the Universe is homogeneous
and isotropic at large scales. The structures present today, such as galaxies, galaxy
clusters, and the overall cosmic web, could only be formed if we assume some small-scale
fluctuations in the initial density field. The fluctuations in the CMB indicate that the
Universe is largely inhomogeneous at small scales. These initial density perturbations
will eventually grow over time, giving rise to gravitationally bound stable objects. Even-
tually, the perturbations would grow so large that the baryonic matter would start to
collapse within these stable objects, giving rise to the first stars and galaxies. These
objects, being the first sources of light, will eventually mark the beginning of the era
of reionization. In this section, we will address how the large-scale and small-scale
structures are formed from the initial density perturbations, how they evolve, and how
we calculate them in our simulations.

1.3.1 Linear Perturbation Thoery

As the Universe continued to evolve and began its journey to take its modern shape, the
initial density perturbations also grew. The scale of these perturbations can be further
divided into two categories, first when the amplitude of the perturbation was small and
the size of the structure formed was much smaller than the horizon size (c/H(t)), such
that the density contrast relative to the background was much smaller than unity. The
second is when the density contrast is much higher than unity. In this section, we will
study the former, the linear perturbation theory.

1.3.1.1 Ideal Fluid

We begin the treatment of the effects of perturbations by using the Newtonian theory for
the evolution of the density ρ, under pressure P and velocity v⃗ of a non-relativistic fluid
influenced by the gravitational potential ϕ. This approximation works well for both the
pressureless particles, like dark matter1, and baryons under local thermal equilibrium
due to frequent collisions. The equations of motion of such a fluid are then given by

1Given the velocity dispersion is small enough to be neglected.
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the following equations:

Euler : Du⃗(r⃗, t)
Dt

= − ∇⃗rp

ρ(r⃗, t)
− ∇⃗rΦ(r⃗, t) (1.9)

Continuity : Dρ(r⃗, t)
Dt

+ ρ∇⃗r.[v⃗(r⃗, t)] = 0 (1.10)

Poisson : ∇2
rΦ(r⃗, t) = 4πGρ(r⃗, t) (1.11)

Here r⃗2 is in proper coordinates and D/Dt = ∂/∂t + u⃗.∇. The above equations have
six unknown variables (ρ, ux, uy, uz, P, and ϕ), but only five equations. Thus, these need
to be supplemented with the equation of state for the fluid pressure P . Before we write
down the equation of state, let’s first describe our perturbations in the density δ(r⃗, t) as,

δ(r⃗, t) = ρ(r⃗, t) − ⟨ρ(t)⟩
⟨ρ(t)⟩

(1.12)

where ρ(x⃗, t) is the density (matter or energy) of the Universe at a position x⃗ and
time t, where ⟨ρ(t)⟩ is the mean density over the whole space at that time. It is useful
to switch to comoving units when discussing the time evolution of the FLRW Universe
by employing the following transformation:

r⃗ = ax⃗

u⃗ = ȧx⃗+ v⃗, v⃗ ≡ a⃗̇x

∇r⃗ → 1
a

∇x; ∂
∂t

→ ∂

∂t
− ȧ

a
x⃗ · ∇x

(1.13)

Where, v⃗ and x⃗ are comoving peculiar velocities and distances, a is the scale factor,
and ȧ/a = H(t) is the Hubble-Lemaître constant. The ∂/∂t is now with fixed x⃗. For the
sake of convenience, we will drop the x⃗ subscripts here onwards. Furthermore, unless
stated otherwise, all the variables will implicitly depend on x⃗ and t. Now rewriting,
Eq. (1.9), Eq. (1.10) and Eq. (1.11) and using the relation that ⟨ρ⟩ ∝ a−3, we get the
following equations in comoving space,

Euler : ∂v⃗
∂t

+ ȧ

a
v⃗ + 1

a
(v⃗ · ∇)v⃗ = −∇Φ

a
− ∇P
a⟨ρ⟩(1 + δ)

(1.14)

2From here onward, we will follow the notation; r⃗, u⃗ are the distance and velocity in proper
coordinates, and x⃗, v⃗ are the distance and velocity in comoving coordinates.
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Continuity : ∂δ
∂t

+ 1
a

∇ · [(1 + δ)v⃗] = 0 (1.15)

Poisson : ∇2ϕ = 4πG⟨ρ⟩a2δ, ϕ ≡ ϕ+ aäx2/2. (1.16)

Now to derive the equation of state, we need to consider the thermodynamic processes
acting on the fluid. For a general case the Pressure P of the fluid can depend upon both
the density ρ and the specific entropy S of the fluid, i.e.,

P = P (ρ, S) (1.17)

Using the second law of thermodynamics, dS = dQ/T , where T is the temperature
of the background. The dQ is the infinitesimal addition of heat to the unit mass fluid,
and using the difference between heating (H) and cooling (C) rates per unit volume V
to describe the change dQ over time, i.e, (dQ = V (H − C)dt), we get

T
dS

dt
= H − C

ρ
, (1.18)

In §1.4, we show that for a gas in IGM, H can be determined by physical processes
such as radiation from stars, and quasars. While C could be determined by collisional
excitation or absorption processes. Now applying the first law of thermodynamics for
the monoatomic non-relativistic ideal gas of unit mass (dQ = dU + W ), we get

T dS = d

(
3
2
P

ρ

)
+ P d

(
1
ρ

)
, (1.19)

Using P =
(

ρ
µmp

)
kBT , where µ is the mean molecular weight in terms of mp, we

get the following equation of state,

P ∝ ρ5/3 exp
(2

3
µmp

kB

S
)
. (1.20)

Using the Eq. (1.20) to derive the ∇P/P̄ term in the Euler Eq. (1.14),

∇P
P̄

= 1
⟨ρ⟩

(∂P
∂ρ

)
S

∇ρ+
(
∂P

∂S

)
ρ

∇S

 , (1.21)

using the definition of adiabatic sound,

c2
s ≡

(
∂P

∂ρ

)
S

(1.22)
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we get,

∇P
P̄

= 1
⟨ρ⟩

[
c2

s∇ρ+ 2
3
ρ T ∇S

]
= c2

s∇δ + 2
3

(1 + δ)T ∇S
(1.23)

Substituting the above relation in the Euler Eq. (1.14), we get,

∂v⃗

∂t
+ ȧ

a
v⃗ + 1

a
(v⃗ · ∇)v⃗ = −∇Φ

a
− c2

s

a(1 + δ)
∇δ − 2T

3a
∇S (1.24)

We can argue that for the linear regime, the perturbations δ ≪ 1 and the velocity
v⃗ ≪ 1, we can ignore all the non-linear terms. Hence we can rewrite continuity Eq. (1.15),
and Euler equation from Eq. (1.24) into a linearized form as,

Continuity : ∂δ
∂t

+ 1
a

∇ · v⃗ = 0 (1.25)

Euler : ∂v⃗
∂t

+ ȧ

a
v⃗ = −∇Φ

a
− c2

s

a
∇δ − 2T

3a
∇S (1.26)

Now if we take the partial derivative of Eq. (1.25) with respect to t, we get the
following sets of relations:

∇ · v⃗ = −a · ∂δ
∂t

∇ · δv⃗
δt

= −a · ∂
2δ

∂t2

(1.27)

Taking the gradient of the Eq. (1.26), then substituting for the results from above
and the Eq. (1.16), we get

∂2δ

∂t2
+ 2H∂δ

∂t
= 4πG⟨ρ⟩δ + c2

s

a2 ∇2δ + 2T
3a2 ∇2S, (1.28)

Where, H = ȧ/a is the Hubble-Lemaître constant. Let’s compare the above equation
with a damped harmonic oscillator. We can see that the second term on the left-hand
side of the above equation is like the damping coefficient; it represents the Hubble drag,
which does surpass the perturbation growth via the expansion of the Universe. The terms
on the right hand side represent the external force, this external force could either aid
in the growth or dampen the system depending on their relative phase with the ∂δ/∂t.
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The first term on the right hand side, the gravitational term causes the perturbation to
grow because of gravitational instability. The second term, ∇2δ represents the spatial
variations on density while ∇2§ represents the spatial variations on entropy.

For the linear regime approximation, where the size of the structures are much smaller
than (c/H(t)), we can neglect the curvature of the Universe. In that case we can represent
the perturbations as a Fourier transform of plane waves, i.e.,

δ(x⃗, t) =
∑

k⃗

δk⃗(t) exp(i⃗k · x⃗), δk⃗(t) = 1
Vbox

∫
δ(x⃗, t) exp(−i⃗k · x⃗) d3x⃗ (1.29)

Where Vbox is the volume of our simulation box with periodic boundary conditions.
The wave vector k⃗ is also written in comoving space. Now taking the Fourier transform of
Eq. (1.28), which is done simply by replacing δ(x⃗) → δ(k⃗), S(x⃗) → S(k⃗), ∇ → i⃗k and
∇2 → −k2, we get the equations of motion for the perturbations in the Fourier space,

d2δk⃗

dt2
+ 2 ȧ

a

dδk⃗

dt
=
[
4πG⟨ρ⟩ − k2c2

s

a2

]
δk⃗ − 2T

3a2k
2Sk⃗

(1.30)

The Fourier transform of the continuity Eq. (1.25) gives the relation for the velocity
field,

v⃗k⃗ = iak

k2
dδk⃗

dt
. (1.31)

As the above calculations are much faster in Fourier space. These results are very
crucial for the understanding of how the density fields are calculated and evolved within
a simulation box. In the §2.2, we will use the Fourier transform of the velocity field
derived above to perturb the halos to their final locations. We will reference the above
two equations again when discussing how our simulation boxes work.

1.3.1.2 Special Cases

Now we will try to solve the equation of motion for the perturbation (Eq. (1.28) and
Eq. (1.30)) in the linear regime for the following cases:

• Isentropic initial perturbations with Adiabatic evolution: In this case we can ignore
the specific entropy and set k2S(k⃗) = 0 in the Eq. (1.30). Thus giving us the
relation:
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δ̈k⃗ + 2 ȧ
a
δ̇k⃗ =

[
4πG⟨ρ⟩ − k2c2

s

a2

]
δk⃗ (1.32)

We can either move back to proper units (in which case there will be no ȧ
a
x⃗·∇x term

and the above equation will reduce to simple equation of δ̈k⃗ =
[
4πG⟨ρ⟩ − k2c2

s

a2

]
δk⃗,

or we can just ignore the expansion of the Universe in the equation Eq. (1.32). In
either case we will get an equation similar to a simple harmonic oscillator, whose
solutions can be given by:

δ(t) = e± t/τ , τ = 1√
4πG⟨ρ⟩ − c2

sk
2

(1.33)

These solutions to the above equation depend on a characteristic length scale λJ =
1/kJ . It characterizes the length scale at which the above equation transitions from
oscillatory mode to growing/ decaying mode. This length is called Jeans length
and is defined as,

λJ = cs

√
π

G⟨ρ⟩
(1.34)

for the λ < λJ , or k > kJ , the solution is a combination of sine and cosine waves
(oscillatory solution), hence the perturbations are bound. But for the λ > λJ , or
k < kJ , the solution is now a linear combination of two exponential functions, one
representing the growing mode (et/τ ) while the other represents the decaying mode
(e−t/τ ). For large time scales, the perturbation could grow very large and cause
the gravitational collapse.

Since pressure forces in a fluid travel at the speed of sound within the fluid, which
can be written as cs ∝ λJ(Gρ)−1/2, i.e., the pressure forces can cover λJ distance
within (Gρ)−1/2 time (gravitational free-fall time). Thus for any length shorter
than Jeans length l < λJ , the pressure forces are fast enough counter balance the
gravitational pull. But for the length scales larger than λJ the pressure force can
not react to the gravitational build up. Thus for the mass of fluid greater than
within a sphere of Jeans length diameter, i.e., MJ = 4πρ/3 × (λJ/2)3, called Jeans
mass, the pressure gradient could not support the self gravity, thus causing the
fluid to collapse. By substituting the value of λJ in MJ , we get, MJ ∝ ρ−1/2.
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Similarly, recalling that for a non relativistic ideal gas P ∝ ρ T , thus the sound
speed cs = (

√
∂P/∂ρ)s ∝ T 1/2. This gives us the relationship between MJ ∝ λ3

J ∝
c3

s ∝ T 3/2.

• Isentropic and pressureless fluid: In this case we will ignore even the pressure term
and just look at the gravitational term. The equation of motion for perturbations
for this fluid is given by,

δ̈k⃗ + 2Hδ̇k⃗ = 4πG⟨ρ⟩δk⃗ (1.35)

Where H = ȧ/a, Hubble-Lemaître constant. From our cosmological standard
model, we showed,

H(t) ≡ ȧ

a
,

dH

dt
+H2 = −4πG

3
(ρm − 2ρv) (1.36)

Where, ρm ∝ a−3 is the matter density and ρv = constant. Now differentiating the
above equation with t while using the fact that d/dt = d/da × da/dt = ȧd/da =
aHd/da. Thus dρ/dt = aHdρ/da ∝ −3Hρ, we get,

d2H

dt2
+ 2HdH

dt
= 4πGρmH (1.37)

The above equation looks just the same as the Eq. (1.35). Thus one of the solutions
of δk⃗(t) = H(t). For both the matter and radiation dependent Universes, it can
be shown H(t) ∝ t−1. Thus one of the solutions for δk⃗(t) ∝ t−1. Now, using the
definition of the Wronskian, W (t) = δ1δ̇2 − δ2δ̇1, if δ1 and δ2 are the solutions of
the Eq. (1.35), one can show that

dW

dt
= −2H(t)W (t)∫ dW

W
= −2

∫
H(t)dt ∝ −2 ln(a)

=⇒ W = δ1δ̇2 − δ2δ̇1 =∝ a−2

(1.38)

Now after substituting δ1 ∝ t−1 in the above relation, we get the growing mode
solution,
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δ2 ∝ H(t)
∫ dt′

a2(t′)H2(t′)
(1.39)

for an Einstein-de Sitter Universe, δ2 ∝ t2/3, thus the solutions to the above case
are:

Growing mode : δ ∝ H(t)
∫ a

0

dt′

H2(t′)a2(t′)
Decaying mode : δ ∝ H(t)

(1.40)

The growing mode solution sometimes is also written as,

δ2 ∝ D(z) ∝ g(z)
(1 + z)

(1.41)

where g(z) is the growth factor and can be approximated to Carroll et al., 1992

g(z) ≈ 5
2

Ωm(z)
[
Ω4/7

m (z) − ΩΛ(z) +
(

1 + Ωm(z)
2

)(
1 + ΩΛ(z)

70

)]−1

(1.42)

1.3.2 Nonlinear Evolution

As the Universe continues to evolve to large time scales, it is dominated by the growing
mode solution from Eq. (1.41). Thus, making perturbations bigger and bigger.

We can note that even though we assumed a linear limit in the earlier section, the
density and velocity equations are nonlinear. A complete nonlinear solution can only be
provided by N-body simulations. In these simulations, a discrete set of particles are used.
These particles interact with each other via gravitational interactions. The equation of
motions of all these particles are solved at small time steps iteratively, where the position
and velocities are modified at each times stamp. However, these simulations are slow
and computationally expensive. It is beneficial to rather study some approximate cases
of nonlinear perturbations to develop semi-numerical models to evaluate the physics
beyond the linear regime. Furthermore, these approximate solutions can provide very
accurate physical understanding of the non linear evolution of the Universe.

1.3.2.1 Zeldovich Approximation: Quasi Linear Approximation

We begin our treatment of non-linear perturbation by employing the simple but very
effective technique of transforming coordinates from Eulerian to Lagrangian, Yakov B.
Zel’dovich, 1970 showed how the Linear Perturbation Theory (LPT) in this frame can
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encompass the non-linear effects from Eulerian coordinates. In this section, we will
use the Zeldovich approximation to calculate the velocity and density distribution of a
volume of particles to picture its kinematics.

Let us begin by assuming the ideal fluid case of pressureless gas shown above (New-
tonian approximation) and considering that enough time has passed that we are well
within the growing perturbation regime, but also within the linear approximation case.
For such a case, we can write a particle’s actual position r⃗ in terms of time t and its
Lagrangian coordinate q⃗ ≡ q⃗(t = 0), up to first order as,

r⃗ = a(t)q⃗ + b(t)f⃗(q⃗) (1.43)

The first term of the above equation describes the cosmological expansion, b(t) is the
temporal growth function, and f⃗(q⃗) is the spatial distribution of the initial perturbations.

The second term in the above equation looks very similar to the linear evolution of
density perturbation as derived in Eq. (1.41),

δ(r⃗, t) = D(t)δi(r⃗), (1.44)

where δi(r⃗) is the density perturbation at some initial time and D(t) is normalized
such that D(ti) = 1. The density field thus grows self-similarly with time3. Thus, we
could assume that f⃗(q⃗) should be some function of δ(x⃗), while b(t) should be related to
D(t)4. But let’s not get ahead of ourselves and try to derive the relations.

Now, let us calculate the deformation tensor of a small volume of particles centered at
q⃗,

Dik ≡ ∂x⃗i

∂q⃗i

= a(t)δik + b(t)∂f⃗i

∂q⃗i

. (1.45)

3Which means for any times t1 and t2 we get δ(r⃗, t2) = (D(t2)/D(t1))δ(r⃗, t1).
4Spoiler: I got ahead of myself, if we write the position of the particle in comoving coordinates,

i.e., r⃗ = a(t)r⃗, where r⃗ = q⃗ + (b(t)/a(t))f⃗(q⃗) we can see that the growing term is related to b(t)
as D(t) = (b(t)/a(t)). The perturbations in space can be related to the perturbations in density by
recalling that the only force that will carry the perturbations is the gravitational force, which depends
on the masses of the interacting particles. From the Poisson equation in comoving coordinates Eq. (1.16)
we can write ∇2ϕ(r⃗, a) = 4πGρ2δ(r⃗, a) = 4πGρ2D(a)δi(r⃗) = (D(a)/a)(4πGρ3δi(r⃗)), now from the
Eq. (1.11), Poisson : ∇2

rΦ(r⃗, t) = 4πGρ(r⃗, t) = 4πGρia
3δ(r⃗), we get ∇2ϕ(r⃗, a) = (D(a)/a)∇2ϕi(r⃗).

Solving this equation, we get ϕ(r⃗, a) = (D(a)/a)ϕi(r⃗) up to some constant. Now recalling that
the force F (r⃗, a) = −∇ϕ(r⃗, a) = −(D(a)/a)∇ϕi(r⃗) this perturbation in force is going to drive the
perturbation in the position of the particles. Taking the divergence of the force, we get ∇ · F (r⃗, a) =
−(D(a)/a)∇2ϕi(r⃗) = −(D(a)/a)4πGρia

3δ(r⃗) or ∇ · F (r⃗, a) ∝ −D(a)δ(r⃗). The term f⃗(q⃗) is nothing but
some sort of acceleration given by this force. Hence, we can predict that ∇ · f(r⃗, a) ∝ −D(a)δ(r⃗).
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Where δik is the Kronecker delta, not the density. The tensor Dik is also the Jacobian
matrix for the transformation from r⃗ to q⃗. Since we assumed only the growing mode
for perturbation, which either stretches or compresses the volume (depending on time
and a(t)), thus Dik is a positive definite symmetric matrix. Which means we can
choose q⃗ such that the coordinate axes align along ∂f⃗i

∂q⃗i
(the set of fundamental axes),

we can write Dik as,

D =

∥∥∥∥∥∥∥
a(t) − αb(t) 0 0

0 a(t) − βb(t) 0
0 0 a(t) − βb(t)

∥∥∥∥∥∥∥ . (1.46)

This represents how a perturbed volume, which looks like a cube at ti has transformed
into a parallelepiped. Where (−α,−β,−γ) are the three eigenvalues of the strain
tensor ∂f⃗i/∂q⃗j. Using this, we can now calculate the density near the particle from
the conservation of mass,

ρ(r⃗, t)
⟨ρ(t)⟩

=
[(

1 − b

a
α

)(
1 − b

a
β

)(
1 − b

a
γ

)]−1

(1.47)

These eigen values (α, β, γ) are functions of q⃗. We can find the maximum values for
these eigenvalues before they collapse the volume. Let’s look at α, if α(q⃗) > 0, then for
α = αm, such that at time t = tc, a(tc) − αmb(tc) = 0. This will give us the moment
when ρ → 0, hence collapsing the volume. Infinite density resulting from the unilateral
compression along the α−axis. It is possible that the collapse can happen along more
than one direction; the probability of collapse happening along one or two directions is
∼ 42%, whereas for the collapse to happen along all three directions, the probability is
∼ 8% (Doroshkevich and Ya B Zel’dovich, 1964). For more than one direction, the order
of collapse axes depends on which axis has the largest value. The unilateral compression
transforms the three-dimensional ellipsoid in q⃗-space into a flat two-dimensional sheet
in r⃗, called pancakes. The bilateral compression will form the filament-like structures,
the collapse along all three dimensions will create a node, and if all (α, β, γ > 0), then
there will be no collapse and the void will be formed instead. From here onwards, we
revert to our old notation a ≡ a(t), where we omit the explicit mentioning of the time
dependency, and we do the same with b ≡ b(t).

Now, we can define our equations of motion. Taking the time derivative of Eq. (1.43),
we get,
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u⃗ = ȧq⃗ + ḃf⃗(q⃗);
du⃗

dt
= äq⃗ + b̈f⃗(q⃗),

(1.48)

Since we assumed only the growing mode, D was symmetric. This also implies that
D and by extension f⃗ are irrational. Thus we can write f⃗ as a gradient of some potential,

f⃗(q⃗) = ∇⃗ψ(q⃗) (1.49)

Now, if we expand Eq. (1.47) and keep only the first order terms, then we can derive
the relation for density perturbation δ and f⃗ as follows,

δ = − b

a
(α + β + γ) = − b

a
∇⃗.f⃗ (1.50)

From Eq. (1.44), we can confirm that D = b/a. Similarly, we can calculate the
co-moving velocity v⃗ from Eq. (1.48).

v⃗ = 1
a

( ˙⃗x− ȧ

a
x⃗) = 1

a

(
b− ȧb

a

)
f⃗ (1.51)

The comoving velocity relation is consistent with the continuity relation in Eq. (1.15)
(∇ · v⃗ = −δ̇). From Freidmann equations in Eq. (1.2) and the growth equation for δ
from Eq. (1.35), we get the following relation for b

b̈

b
= −2ä

a
= 8πGρ0

3
(1.52)

For Ω = 1, b ∝ t4/3. Using this relation, we can now calculate the equations of motion
of the particle volume from Eq. (1.48). Similar to the Eq. (1.31), we can calculate the
displacement field f⃗ in Fourier space:

f⃗k = −i δk

k2 k⃗.
(1.53)
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Zeldovich approximation is also a first-order perturbation theory, but in La-
grangian space. The benefit that this coordinate transformation gives is that
when we linearize the equations in Eulerian coordinates, we ignore the terms
like ∇ · (v⃗δ) and v⃗ · ∇v⃗, see Eq. (1.24), but in Zeldovich approximation, we
linearize the displacement field f⃗ instead of the density δ. Since δ ∝ ∇·f ∝ ∇·v⃗,
thus taking into account the contribution from the velocity gradients. That’s
why it gives accurate results even when the fluctuations are nonlinear, hence
called quasi-linear approximation. Furthermore, the Zeldovich approximation
can calculate the collapse, which can be well described by the equations of
motion explained in this section. It starts to fail after forming these collapsed
structures, since the particles no longer move along the direction of initial
velocities as assumed in this theory; rather, these particles oscillate in the deep
potential created by the collapse. Thus, we must go beyond the quasi-linear
approximation to study the collapsed structures.

Summary

1.3.2.2 Spherical Collapse

As the Universe continues to evolve, the perturbations get bigger and bigger, to a
point where the density perturbation of the structure being formed (galaxies and galaxy
clusters) is much greater than unity, δ ≫ 1. Such objects lie way beyond the linear and
quasi-linear perturbation theories. This section will study the nonlinear gravitational
collapse in Λ = 0 Universe. Since we are concerned with the Universe at high-redshift,
which was matter-dominated, we can neglect the contributions from Λ.

Let’s assume a spherically symmetric shell of mass M within the shell and radius r,
which evolves according to the Newtonian equation, given by,

d2r

dt2
= −GM

r2 (1.54)

Assuming the mass M is constant during the collapse, hence we can integrate the
above equation to get the energy relation,

1
2

(
dr

dt

)2

= GM

r
+ E (1.55)

Where E is the specific energy. The solutions to non-trival values of E for the above
equation can be given in the parametric form, which depends on the sign of E. For the
collapse of the shell, E < 0, the solution to the above equation can be parameterized as,

r = A(1 − cos θ), t = B(θ − sin θ) (1.56)
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where A and B are two constants which can be determined from the initial conditions.
During earlier times, when θ ≪ 1, we can expand the Eq. (1.56) in the powers of θ,
keeping only the terms up to the order θ5. By substituting it back into the Eq. (1.54)
and Eq. (1.55), we can solve for A and B.

A3 = GMB2 and A = GM/(−2E) (1.57)

The values of A and B can be calculated from the initial conditions. At θ =
π, the shell attains the maximum value of radius, rmax = 2A, at the maximum ra-
dius time tmax = πB.

Usually, r and t are represented in terms of Lagrangian radius rl = (3M/4π⟨ρ(t)⟩)1/3,
perturbation δl and the growth factors as shown in the Eq. (1.42), δi = δl(t)aigi/atgt,
where δi is the initial perturbation which evolved to time t via LPT, at is the scale
factor at time t and gt is the growth factor at time t. For the present time t0 ≫ ti

(sufficiently early time), the growth factor around this time, gi ≈ 1, thus the density
perturbation at time t, is written as δi ≈ (δl(t)gt)ai/at. The density parameter Ωi

evolves with time t in a similar fashion, i.e., (Ω−1
i − 1) = (Ω−1

t − 1)ai/at. For our
case, at high redshift, the Universe is matter-dominated, we also make the following
substitutions, t−1

i ≈ 3
2Ω1/2

t Ht(at/ai)3/2 and rl ≈ riat/ai. Hence, the new forms of r
and t are now written as,

r

ri(t)
= 1

2
· 1 − cos θ[

5δi(t)/3g(t) + (1 − Ω−1
i )

] (1.58)

Hit = 1
2Ω1/2

i

· θ − sin θ[
5δi(t)/3g(t) + (1 − Ω−1

i )
]3/2 (1.59)

The above two equations can provide us with the complete description of the evolution
of the spherical shell. To understand the implications of the above equations, we can
look at the following cases:

• Case 1 - Early time: For very early time, we can approximate t ≈ B θ3/6 and
r ≈ A θ2/2. Solving for r we get r ∝ t2/3, which agrees with our linear perturbation
growing mode results. The shell expands with the bubble flow, a ∝ t2/3.

• Case 2 - Turnaround: The gravitational pull of the sphere gets large enough that
it stops expanding according to the Hubble flow and achieves a maximum radius
of

rmax/ri(t) =
[
δi(t)/3g(t) + (1 − Ω−1

i )
]−1

(1.60)
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at the turnover time tta.

Hitta = π

2Ω1/2
i

[
δi(t)/3g(t) + (1 − Ω−1

i )
]−3/2

. (1.61)

The overdensity/ density perturbation required for the spherical shell to reach the
size rmax at time tta is,

δl(tta) = 3g(tta)
5


[

π

2Ω1/2
i (tta)H(tta)tta

]2/3

−
[
1 − Ω−1(tta)

]
= 3

5

(3π
4

)2/3
≈ 1.06

(1.62)

Which follows from the assumption Ω = 1, and for the linear regime Hiti ≈ 2/3.
Using the property ρ(t) = ⟨ρ(t)⟩(rl/r(t))3, where ⟨ρ(t)⟩ is the background density
at rl, we can write the true density as,

ρrmax(ta) = ⟨ρ(ta)⟩
(

rl(ta)
rmax(ta)

)3

=
(3π

4

)2
⟨ρ(ta)⟩ (1.63)

• Case 3 - Collapse: As the perturbation continues to increase, the sphere starts
contracting. Under the influence of gravity alone for θ = 2π it entirely collapses
to a singularity. The time it takes to collapse tcol = 2tta. Substituting the value of
tcol in the Eq. (1.62), we get the overdensity requirement for the collapse as,

δl(tcol) = 3g(tcol)
5


[

π

Ω1/2
i (tcol)H(tcol)tcol

]2/3

−
[
1 − Ω−1(tcol)

]
= 3

5

(3π
2

)2/3
(Ω(tcol)0.0185 ≈ 1.686(Ω(tcol)0.0185

(1.64)

Note, that all the factors in the Eq. (1.62) at tcol, depends only on Ω(t), hence
δl(tcol) is also a function of Ω(t), although the dependency is very weak. Similar
to the turnover case, the results here are extrapolated from the linear regime.

• Case 4 - Viriaization: However, the collapse in principle does not occur. This is
because the above equations are invalid for very low values of r. As the shell
collapses, the particles in the mass shell could cross the shell, and hence our
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assumption of constant mass fails. Furthermore, as the mass shell starts to collapse,
the work done by the gravitational potential energy in collapsing raises the kinetic
energy of the particles within the shell. Due to which, at a specific size, the kinetic
energy (K) is big enough to balance the gravitational potential (U) and form
something called virialized objects. This usually happens when U = −2K (the
virial objects, also shown in §1.3.6, are formed when the shell size has reduced to 1/2
of the maximum value. In our model, this occurs at θ = 3π/2 with δl(tvir) = 1.4.

The Virial theorem states that for a bound system in equilibrium, the time-averaged
kinetic energy (⟨K⟩) of the system is related to the time-averaged potential energy
⟨U⟩ of the same system. For potential energy of the form U ∝ rn, the virial
theorem is written as,

⟨K⟩ = −n

2
⟨U⟩

for gravitational potential, where n = -1

⟨K⟩ = −1
2

⟨U⟩

(1.65)

This is a very crucial theorem for the structure formation under quasi-static equi-
librium.

Let us try to quickly calculate the true nonlinear over-density of the virialized
objects. Assuming Λ = 0 and a matter-dominated Universe, let’s consider a sphere
of mass M , which has reached the maximum expansion at some time tmax after
which it starts to collapse under its gravity. At the maximum expansion, the
total energy of the system is given by the internal energy E = −3GM2/5rmax.
Since it’s the turnaround point, the kinetic energy is zero. When the sphere starts
to collapse, the energy spent in the work done by gravity to reduce the size, is
converted into the kinetic energy of the particles making up this system5. The
sphere eventually reaches a quasi-static equilibrium state, where the gravitational
collapse is supported by the kinetic energy of the particles within the system. The
properties of such objects are described by the virial theorem, Eq. (1.65). We will
look at the different virial quantities of such a quasi-static object in the §1.3.6.

5The primary idea of the collapse is in redistribution of the gravitational potential energy. For
baryons it is easy to see how the kinetic energy comes into the picture. But for DM the gravitational
interactions alone can redistribute the energy via the process called “Shell Crossing” and “Violent
Relaxation” (Lynden-Bell, 1967).
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For now, let’s try to calculate the over-density relation for such objects. Assuming
that the object still has the uniform distribution of mass, the potential energy at
the final virial radius rvir is thus given by U = −3GM2/5rvir. According to the
virial theorem, U = 2E = −2K, where K is the kinetic energy of the system. This
implies that rvir = rmax/2. Usually, different literature assumes different values of
time it takes for the system to virialize, one can either assume it to be t(θ = 3π/2)
in the Eq. (1.59) or t(θ = 2π) = 2tmax. Here we will use tvir = 2tmax as in Mo
et al., 2010. The overdensity can thus be written as,

1 + ∆vir = ρtvir

⟨ρtvir
⟩

= ρttmax(rmax/rvir)3

⟨ρt2tmax⟩

= ρttmax

⟨ρttmax⟩
⟨ρttmax⟩
⟨ρt2tmax⟩

(
rmax

rvir

)3 (1.66)

Recall from the Eq. (1.63), ρttmax/⟨ρttmax⟩ = (3π/4)2, and ⟨ρttmax⟩/⟨ρt2tmax⟩ = 4, we
get ∆vir = 18π2 ≈ 178.

The above relation can be generalized for Ωm ̸= 1 (Bryan and Norman, 1998) using
the following approximation,

∆vir ≈ 18π2 + 82x− 39x2 for ΩR = 0
∆vir ≈ 18π2 + 60x− 32x2 for ΩΛ = 0

(1.67)

where x = Ω(tvir) − 1.

1.3.3 Halo Mass Function

In the above section, we described the spherical collapse of matter (DM and baryonic)
into virialized objects called DM halos. These DM halos are crucial for the formation
of galaxies and stars. In this section, we will calculate the Halo Mass Function (HMF)
to formulate how these halos are populated and distributed. We will present both the
Press-Schecter Press-Schechter (PS) (Press and Schechter, 1974) and Excursion-Set (ES)
(Bond et al., 1991) formalisms.

Before we begin to describe the individual formalism, we first need to set the stage
for these formalisms to work upon. Let’s define the density field at a given time by
considering the overdensity field evolving linearly with time t, defined as δ(x⃗, t) =
δ0(x⃗)D(t). Where δ0(x⃗) is the overdensity field linearly evolved to the time t using
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the normalized growth factor D(t), as shown in Eq. (1.42). From the Eq. (1.64), the
critical overdensity field, at which the collapse would occur to form a virialized object
is δ(x⃗, t) > δc = 1.686 or equivalently δ0(x⃗) > 1.686/D(t) ≡ δc(t). The δ(x⃗, t) is then
convolved with a smoothing window function W (x⃗;R), which can connect these density
fields to the mass. The W (x⃗;R) is a window function with the characteristic filter size R
corresponding to a mass M . The dependency of W (x⃗;R) on M depends on the kind of
window function we use. In Chapter 2, we will demonstrate the working of 21cmFAST
using a k-sharp top hat window function. The smoothed overdensity then looks like,

δs(x⃗;R) =
∫
d3y W (|x⃗− y⃗|;R)δ(y⃗). (1.68)

From here onward, we will start distinguishing between PS and ES.

1.3.3.1 Press-Schecter Formalism

In PS Formalism, we fix the size of the filter and convolve the density at each pixel
with W (x⃗;R), subject to the periodic boundary condition, and then check the collapsed
condition. i.e., δs > δc. Thus, the PS formalism states that the probability δs > δc is
the same as the fraction of total mass present in the form of halos at time t, with mass
greater than M. If we assume δ0(x⃗) is Gaussian random field, hence δs(x⃗), also becomes
a Gaussian random field, we can define the probability that δs > δc as,

P (δ > δc(t)) = 1√
2πσ(M)

∫ ∞

δc(t)
exp

[
− δ2

s

2σ2(M)

]
dδs = 1

2
erfc

(
δc(t)√
2σ(M)

)
(1.69)

where,

σ2(M) = ⟨δ2
s(x⃗;R)⟩ =

∫
dk
k2P (k)

2π2 |W̃R(k)|2 (1.70)

is the mass variance of the smoothed density field with the power spectrum P(k)
of the density perturbations, and W̃R(k) is the W (x⃗;R) in Fourier space. The σ(M)
describes the typical size of the overdensity.

There is one caveat: since the PS formalism has a fixed filter scale R, this could
under-count the halo mass fraction. Consider regions that may look under-dense on
small scales, but are part of an overdense region on a bigger scale, will not be considered
as part of the halo. This is called the cloud-in-cloud problem. It can be shown by
taking M → 0, making σ(M) → ∞ (as the W (x⃗;R) decreases to smaller mass-scales,
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W̃R(k) broadens, hence increasing σ(M)). The probability from Eq. (1.69) suggests,
P (δ > δc(t)) → 1/2. Suggesting that even when the fluctuations are very large (large
σ(M)) only half of the total mass in the Universe collapses into virial objects. To correct
for this, Press and Schechter introduced an ad hoc fudge factor of 2, assuming that the
mass in the under-dense region will eventually be accreted into overdense regions, and
doubling their mass. Thus, the final probability F (> M) of the fraction of mass present
within the collapsed objects with mass greater than M , is now F (> M) = 2P (δc(t)).

The number density of collapsed objects within the mass range M → M + dM is,

n(M, t) dM = ⟨ρ⟩
M

∂F (> M)
∂M

dM

= 2⟨ρ⟩
M

∂P [δ > δc(t)]
∂M

dM =
√

2
π

⟨ρ⟩
M2

δc

σ
exp

(
− δ2

c

2σ2

) ∣∣∣∣∣ d ln σ
d lnM

∣∣∣∣∣ dM
(1.71)

This is known as the PS mass function. The only time-dependent term in the above
equation is δc(t), and the mass-dependent term is σ(M). We can then define a variable
ν = δc(t)/σ(M), thus rewriting the Eq. (1.71) as,

n(M, t) dM = ⟨ρ⟩
M2fPS(ν)

∣∣∣∣∣ d ln ν
d lnM

∣∣∣∣∣ dM (1.72)

where,

fps(ν) =
√

2
π
ν exp −ν2/2. (1.73)

Finally, the halo mass function (HMF), which describes the number density of dark
matter halos as function of their mass, is given by,

dn

dM
= ⟨ρ⟩
M2fP S(ν)

∣∣∣∣∣ d ln ν
d lnM

∣∣∣∣∣ . (1.74)

However, on the high mass end, the simplistic nature of the PS formalism (assuming
a spherical collapse model) does not perform well (Peacock, 1998). We can instead use
the Sheth-Tormen (ST) mass function (Sheth and Tormen, 2002), which utilizes the
ellipsoidal collapse model to encapsulate the anisotropies. It is given by,

dn

dM
= A

⟨ρ⟩
M2 [1 + (aν2)−p]fP S(ν)

∣∣∣∣∣ d ln ν
d lnM

∣∣∣∣∣ . (1.75)

The constants A, a, and p can be calibrated to match N-body simulations.
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1.3.3.2 Excursion Set Theory

In semi-numerical simulations, the ES theory is usually employed to calculate the HMF.
After evolving the initial random Gaussian density fields to the time t for a simulation
box of size L. We gradually vary the size of the filter scale R starting from R ≈ L.
This is the primary difference between PS and ES formalism. The mass variance now
is also a function of R, for the sake of clarity, we will follow the same notation as in
(Mo et al., 2010) and call it S, thus,

S(M,R) ≡ σ2(R) =
∫ dk

k

k3P (k)
2π2 |W̃ (k;R)|2. (1.76)

After re-smoothing the density fields at every stage of R, we check for the collapsed
condition criteria δ(S) ≥ δc. Now, if we look at a pixel at some distance x⃗, as we change
R, the value for overdensity δS(x⃗) gets renewed, since all the pixels had random initial
overdensity, this new value is also random. If we look at the value of δS(x⃗) as a function
of S, it resembles a random walk. Thus, we instead look at the probability when the
δS(x⃗) crosses the δc for the first time. Redefining the Eq. (1.69) in terms of “first crossing
function” f(S). Where f(S) is a statistical distribution function at which a random walk
of δS(x⃗) crosses δc for the first time. Mathematically, it is defined as,

f(S) = 1√
2π

δc

S3/2 exp
(

− δ2
c

2S

)
. (1.77)

The HMF can then similarly be defined by replacing F (> M) with f(S),

dn

dM
= ⟨ρ⟩
M
f(S)

∣∣∣∣∣ dSdM
∣∣∣∣∣

= ⟨ρ⟩
M

1√
2π

δc

S3/2 exp
(

− δ2
c

2S

) ∣∣∣∣∣ dSdM
∣∣∣∣∣
. (1.78)

Again, by using the ellipsoidal collapse correction from (Sheth and Tormen, 2002),
we can write the first crossing function as:

fST (S) = 1√
2π

|T (S)|
(S)3/2 exp

[
−B(S)2

2S

]
(1.79)

With

B(S) =
√
aδc(z)[1 + β(aν)−α] (1.80)
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denoting the barrier of the ellipsoidal collapse. The quantity T (S) is given by,

T (S) =
n∑

i=0

Si

i!
∂iB(S)
∂Si

(1.81)

The new HMF with the ellipsoidal correction will then be,

dn

dM
= ⟨ρ⟩
M
fST (S)

∣∣∣∣∣ dSdM
∣∣∣∣∣

= ⟨ρ⟩
M

1√
2π

|T (S)|
(S)3/2 exp

[
−B(S)2

2S

] ∣∣∣∣∣ dSdM
∣∣∣∣∣

(1.82)

1.3.4 Collapsed Fraction

A very important quantity in all the studies of structure formation is the collapsed
fraction fcoll (Press and Schechter, 1974; Bond et al., 1991; Lacey and Cole, 1993; Sheth
and Tormen, 1999). fcoll is defined as the fraction of matter that has collapsed to form
bound structures within a given mass range. It also represents the probability that a
randomly chosen region of the Universe will have δ(x⃗, t) > δc at a given mass scale and
time. Thus, quantifies the fraction of matter that has undergone gravitational collapse
within the specified mass range. In terms of the HMF, it is given by:

fcoll(Mmin, t) = 1
⟨ρm⟩

∫ ∞

Mmin

M
dn

dM
dM (1.83)

For the PS formalism, the collapsed fraction is nothing but the probability F (> M):

fcoll(Mmin, t) = erfc
(

δc(t)√
2σ(M)

)
(1.84)

For ES, it is given by the integral of the first crossing function as shown in the
Eq. (1.77)

fEST
coll (> M) =

∫ ∞

S(M)
f(S ′) dS ′ (1.85)

Similarly, we can get the ellipsoidal corrected collapsed fraction by integrating the
first cross function fST (S) from the Eq. (1.79),

fST
coll(> M) =

∫ ∞

S(M)
fST (S ′) dS ′ (1.86)
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1.3.5 Conditional quantities

As explained above, the major difference between PS and ES is that the smoothing filter
scale in ES is not fixed. Hence, when calculating the above quantities, i.e., first crossing
function, mass function, HMF, and collapsed fraction, which were integrated over the
entire volume of the simulation box, we may want to average them out based on smaller
regions. Let’s say we select Ncell number of grid cells within the large box. Let the
mass of this set be Mcell; hence, what we would want are the conditional quantities,
which are given by (Sheth and Tormen, 2002),

n(Mh|Mcell; δL,0) = ⟨ρm⟩
Mh

f(S|Scell; δL,0)
dS

dMh

(1.87)

Where δL,0 is the initial density contrast of the cell linearly extrapolated to z = 0. The
function f(S|Scell) is similar to the one we calculated above. Hence, we can just modify
all our ES quantities with the conditional ES quantities and get the following results:

• Conditional first crossing fraction:

f(S|Scell; δL,0) = 1√
2π

δc(z) − δL,0

(S − Scell)3/2 exp
[
− [δc(z) − δL,0]2

2(S − Scell)

]
(1.88)

• Conditional ellipsoidal first crossing fraction:

f(S|Scell; δL,0) = 1√
2π

|T (S|Scell)|
(S − Scell)3/2 exp

[
− [B(S) − δL,0]2

2(S − Scell)

]
(1.89)

With

B(S) =
√
aδc(z)[1 + β(aν)−α] (1.90)

T (S|Scell) =
n∑

i=0

(Scell − s)i

i!
∂i[B(S) − δL,0]

∂si
(1.91)

• Conditional collapsed fraction:

fcoll(Mmin|Scell; δL,0) =
∫ smin

Scell

dsf(S|Scell; δL,0) (1.92)

where smin = σ2(Mmin).
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1.3.6 Virial Objects

In the earlier section, we defined the virial theorem, Eq. (1.65), and showed that for
the spherical collapse, the collapsing body will reach a quasi-static equilibrium to form
a stable structure, see §1.3.2.2. The critical density ∆vir required for such an object
to form in a matter-dominated Universe was ∆vir ≈ 18π2. While, the modified critical
overdensity for Ωm + ΩΛ = 1 from the Eq. (1.67) (Bryan and Norman, 1998) is given by,

∆vir ≈ 18π2 + 82x− 39x2 (1.93)

with x = Ωz
m − 1 evaluated at redshift z, and Ωz

m is given by,

Ωz
m = Ωm(1 + z)3

Ωm(1 + z)3 + ΩΛ + Ωk(1 + z)2 . (1.94)

Now, within these viral objects, the baryonic gas can further collapse to form galaxies
and galactic clusters. Unlike dark matter, the baryonic perturbations are affected by the
pressure term along with the gravitational interaction. As we saw in §1.3.2.2.

From the Eq. (1.66), for matter dominated Universe, the critical density ∆vir =
18π2 ≫ 1, the density relation gives us,

∆vir = ρtvir

⟨ρtvir
⟩

(1.95)

where, ⟨ρtvir
⟩ is the background density. Which we can assume to be critical density

ρc (see §1.3.2.2). Thus for a halo of mass M and radius rvir, and redefining ρtvir
≡ ρhalo,

we can rewrite the above equation as,

ρhalo = ∆c · ρc = 3M
4πr3

vir

(1.96)

Rewriting the above equation fro rvir,

r3
vir = 3M

4π∆c · ρc

(1.97)

Now substituting for ρc(z) = 3H3
0

8πG
[Ωm(1 + z)3 + ΩΛ + Ωk(1 + z)2] = 3H3

0
8πG

Ωm(1+z)3

Ωz
m

in the above equation, we get

rvir ∝ M

[
Ωm

Ωz
m

∆c

]−1/3

(1 + z)−1 (1.98)

This can finally be written in physical units as (Barkana and Loeb, 2001),
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rvir = 0.784
(

M

108 h−1 M⊙

)1/3 (Ωm

Ωz

∆c

18π2

)−1/3 (1 + z

10

)−1
h−1 kpc. (1.99)

Now equating the kinetic energy of the particles K = 3
2

M
µmp

kBTvir with the total
internal energy U = −3GM2/5rvir, according to the virial theorem, we get the following
result for the Tvir (Barkana and Loeb, 2001),

Tvir = µmp

5kB

GM

R
= 1.98 × 104

(
µ

0.6

)(
M

108 h−1 M⊙

)2/3 (Ωm

Ωz

∆c

18π2

)1/3 (1 + z

10

)
K.

(1.100)

Inverting the above equation to get the massM as a function of viral temperature Tvir,

M(Tvir, z) = 108h−1M⊙

(
Tvir

1.98 × 104K

)3/2 ( µ

0.6

)−3/2
[(

Ωm

Ωz
m

)(
∆c

18π2

)]−1/2 (1 + z

10

)−3/2
.

(1.101)

1.4 Reionization

Soon (in cosmological sense) after the halos have formed and the gas within these halos
cooled down to form stars, these stars started to radiate energetic photons (Eph ≥ 13.6eV)
which eventually ionized the HI in the ambient medium. These photons could travel
further beyond the host halos and ionize the IGM, which was predominantly neutral.
Thus, embarking on the era of reionization. During this era, the Universe went through
a phase transition from being predominantly neutral to ionized. In this section, we
will work on the physics of reionization and derive the equations that will be useful for
comprehending reionization as a whole, along with this thesis. The derivations in this
section are inspired from the discussions in Tirthankar Roy Choudhury, 2022

1.4.1 The Gas Cools Down

In the previous §1.3.2.2, we have looked into the idea of how some tiny perturbations in
the matter density of the Universe could lead to the formation of virialized structures,
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like halos. Because of their deep potential wells, these gravitationally bound dense halos
can attract the baryons to form dense gas clouds. Once attracted, the gas particles will
subsequently settle into the virial equilibrium state as defined in §1.3.6. The gas particles
in the halos will move around with the circular velocity ∼ vc ≡

√
GM
Rvir

. Due to which
they will heat to the temperatures ∼ Tvir. This process is known as shock heating6.

For a halo at z = 10, and assuming ∆vir = 18π2 (1.67) for a matter dominated
Universe, density of the gas within a virialized halo is ρb ∼ 10−25gm cm−3 (see equations:
Eq. (1.99), Eq. (1.100), and Eq. (1.101)). The number density for this case (assuming
µ ∼ 1) nb ∼ 6 × 10−2cm−3. Which is insufficient for the star formation. Hence, the
gas must first cool down and condense for the stars to form. Cooling of the gas at high
redshift usually occurs via collisional excitation of atoms, followed by radiative cooling by
photon emission. Basically, converting the kinetic energy of photons into the radiation
that can escape the halo. Thus reducing the total energy of the system and, hence,
cooling it. As shown in Padmanabhan, 2000 for a gas composed primarily of hydrogen
and helium, the collisional excitation of HI and helium shows peaks around 2 × 104 K
and 9 × 104 K. But this process drops rapidly for the gas temperature T ≲ 104 K. Thus,
for Tvir ≲ 104 K, the gas will not be able to cool down and hence the minimum mass
required for the halos to form stars at high redshift ∼ 108M⊙

7, see Eq. (1.101).
Thus to conclude, in order for the gas to cooldown within these halos, there exists

a minimum threshold on the mass of the halos that can support star formation, Mmin.
The value of the Mmin depends upon the composition of the gas within the halos. In
§1.6 we demonstrate how we apply this threshold in our simulations.

1.4.2 And the Stars are born

The cooling of gas leads to a decrease in pressure, due to which the gas starts to collapse
under the gravitational pressure. Since the Jeans mass (Mj ∝ T 3/2) is proportional to
the temperature, this makes smaller masses collapse under gravitational pressure. When
the gas collapses, the density increases, further reducing the Jeans mass Mj ∝ ρ−1/2 and

6The Temperature and mass relation for a viral object are shown in the equation in Eq. (1.101).
7This minimum mass criteria is valid only for high redshift where the Universe is primarily made of

hydrogen and helium. At low redshifts, where heavy metals are present, the cooling can also occur at
lower temperatures. Furthermore, the other way cooling can occur at low temperatures is through the
rotational and vibrational levels of molecules like H2 and CO. The presence of H2 can lower the cooling
temperature to Tvir ∼ 500 K, corresponding to halo masses M ∼ 106M⊙. These halos are known as mini
halos and can be important sources of stars at high redshifts. But, given the complexity of forming H2
and the formation of the stars leading to suppression in molecular cooling due to the feedback process,
makes a good case to ignore them for the time being.
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causing further collapse. Consequently, the large clouds start fragmenting into smaller
size clumps. This eventually forms stars depending on when and how the fragmentation
process stops (Benedetta Ciardi and Ferrara, 2005; Dayal and Ferrara, 2018).

The collapsing gas can form stars of mass Mstar under the probability distribution
given by the Initial Mass Function (IMF). The IMF gives the relative number of stars
within a given mass range. At high redshifts, due to poor cooling in the absence of metals,
the fragmentation stopped early, forming very massive stars (Bromm, 2013), called
Population III or PopIII stars. Due to their heavy mass, these stars were short-lived, but
were a great source of ionizing photons. Eventually, with the metal enrichment of the
medium, facilitating the cooling mechanism, the next generation of stars, Population II
or PopII stars, could form. The IMF of popII stars is well distributed with a significant
contribution coming from Mstar ∼ M⊙ (Mo et al., 2010). Let us now try to derive some
results to calculate the ionizing efficiency of stars within a halo.

Let us assume that a fraction fstar of baryonic gas formed stars. Assuming a very
simplistic model, we can define the total stellar mass within the halo as,

Mstar = fstar(Mh, t)
(

Ωb

Ωm

)
Mh, (1.102)

where, Mh is the halo mass. We can then define the star formation rate as,

Ṁstar(M, t, tform) = fstar(Mh, tform)
(

Ωb

Ωm

)
Mh Λstar(t− tform; Mh, tform), (1.103)

where, tform is the galaxy formation time and Λstar(t−tform; Mh, tform) is the star forma-
tion profile.

For continuous star formation, we can assume Λstar(t; Mh, tform) to be constant. While
the short burst of stars we can write Λstar(t; Mh, tform) = δD(t).

1.4.3 They Started Radiating

Next, we would like to compute the ionizing radiation from stars, which is the major
driver for the reionization. We do so by using population synthesis models. According to
the population synthesis model, the O-type stars with mass ∼ 15 − 90M⊙, are the major
contributors to the ionizing photons budget due to their high surface temperatures. Due
to their high mass, these stars are short lived (∼ 106 yrs) hence their profiles can be
approximated with Λstar(t; Mh, tform) = δD(t). Lastly, the contribution to the ionizing
photons is much higher for these low metallicity stars due to inefficient cooling.
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With this in mind, we can write the total luminosity of a halo of mass Mh as,

Lν(Mh, t, tform) =
∫ ∞

tform
dt′ Ṁstar(Mh, t

′, tform) lν(t− t′; Mh, tform)

= fstar(Mh, tform)
(

Ωb

Ωm

)
M

∫ ∞

tform
dt′ Λstar(t′ − tform) lν(t− t′; Mh, tform)

(1.104)

Where, lν(t; Mh, tform) is the specific luminosity, and is defined as the luminosity per
unit mass of stars formed for a burst of star formation at t = 0 inside a halo of mass
Mh, and formation time tform. Using the total luminosity, we can define the ionizing
radiation, obtained by dividing the luminosity by the photon energy hν and integrating
it above ν = νion, where νion is the minimum ionizing photon frequency.

Ṅγ(Mh, t, tform) =
∫ ∞

νion
dν

Lν(Mh, t, tform)
hν

= fstar(Mh, tform)
(

Ωb

Ωm

)
M
∫ ∞

tform
dt′ Λstar(t′ − tform)

×
∫ ∞

νion
dν

lν(t− t′; Mh, tform)
hν

(1.105)

Now, assuming the lifespan of stars is much shorter than the age of the Universe,
we can approximate the above integral as,

Ṅγ(Mh, t, tform) = fstar(Mh, tform) Nγ/b(Mh, tform)
(

Ωb

Ωm

)
M Λstar(t− tform). (1.106)

where, Nγ/b is the total ionizing photons per unit mass of the stars, produced by
a halo and is defined as,

Nγ/b(Mh, tform) =
∫ ∞

0
dt

∫ ∞

νion
dν

lν(t; Mh, tform)
hν

(1.107)

Thus writing, the integral over lν , as;

∫ ∞

νion
dν

lν(t; Mh, tform)
hν

= Nγ/b(Mh, tform) δD(t), (1.108)

and integrating over t to get the equation showed in Eq. (1.106).
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1.4.4 Escaping Photons

The ionizing photons produced by the stars within the halo must escape to the IGM
to ionize it. Not all the photons produced may escape into the IGM. Hence, we will
instead have some fraction of the photons escaping, as only these photons participate
in reionization. We quantify this with a parameter called escape fraction, fesc. Thus
modifying the equation eq:Ndot with the fesc to get,

Ṅγ(Mh, t, tform) = fesc(Mh, tform) fstar(Mh, tform) Nγ/b(Mh, tform)
(

Ωb

Ωm

)
M Λstar(t− tform).

(1.109)
With this relation, we can calculate the ionizing photon rate as a function of halo mass

Mh. We can simplify it further by assuming the short burst model for the Λstar(t− tform),
i.e., the duration of star formation is much smaller than the age of the Universe, and
substituting Λstar(t − tform) ≈ δD(t − tform), we get

Ṅγ(Mh, t, tform) = fesc(Mh, tform) fstar(Mh, tform) Nγ/b(Mh, tform)
(

Ωb

Ωm

)
M δD(t− tform).

(1.110)
We can now integrate the above equation for t ≥ tform to get the total ionizing

photons. Since the star formation and starburst happen over a very short period, we get
the following form for the total amount of escaping photons:

Nγ(Mh, t) = fesc(Mh, t) fstar(Mh, t) Nγ/b(Mh, t)
(

Ωb

Ωm

)
M. (1.111)

Nγ turns out to be the product of the all the three unknowns; fesc, fstar and Nγ/b,
making these parameters highly degenrate with each other. Thus, instead of modelling
them individually, we can instead look at their combination and define it as the new
and only reionization parameter. This parameter is called the reionization efficiency
parameter (ζ) and is defined as follows,

ζ(Mh, t) =
fesc(Mh, t) fstar(Mh, t) Nγ/b(Mh, t) mp

1 − Y
, (1.112)

where Y is helium weight fraction (usually taken to be 0.24). Thus simplifying Nγ to

Nγ(Mh, t) = ζ(Mh, t) (1 − Y )
(

Ωb

Ωm

)
M

mp

. (1.113)
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The parameter ζ is usually treated as a free parameter in reionization models. In
Chapter 2, we will return to ζ again and use a similar form as described above, with some
slight modifications, and show how we calculate this term in our simulations. Nonetheless,
the physical intuition and the meaning of this parameter remain the same.

We can now integrate the equation for the total number of photons escaping from
a halo, Eq. (1.105), with the HMF from Eq. (1.74), Eq. (1.78) or Eq. (1.75) to get the
mean number of ionizing photons from all the halos that can support star formation
(halos with mass Mh ≥ Mmin) per unit comoving volume, which is given by,

n̄γ(t) =
∫ ∞

Mmin
dM Nγ(Mh, t)n(Mh, t)

= 1 − Y

mp

(
Ωb

Ωm

)∫ ∞

Mmin
dM ζ(Mh, t) Mh n(Mh, t)

(1.114)

Assuming ζ to be independent of Mh, then

n̄γ(t) = 1 − Y

mp

(
Ωb

Ωm

)
ζ(t)

∫ ∞

Mmin
dM Mh n(Mh, t)

= 1 − Y

mp

(
Ωb

Ωm

)
ζ(t) ⟨ρ⟩m fcoll(Mhmin, t)

= n̄H ζ(t) fcoll(Mhmin, t),

(1.115)

Where ⟨ρ⟩m is the mean comoving matter density, and fcoll is the collapsed fraction
described in the Eq. (1.83). The mean hydrogen number density for the comoving
volume is then written as,

n̄H = ⟨ρ⟩H

mp

= (1 − Y )Ωb

Ωm

⟨ρ⟩m

mp

. (1.116)

Thus, from the last term of the Eq. (1.115), under all the approximations made so
far, the ratio of mean ionizing photon to hydrogen density, or the mean ionizing (Q̄HII)/
neutral fraction (x̄HI), assuming every escaping ionizing photon ionizes a hydrogen atom,
is given by the product of ionizing photon efficiency and the collapsed fraction, ζ fcoll.
This is a very remarkable and valuable result. We will use this result to calculate the
ionized pixels within our simulations as well.

Accounting for the halo mass Mh dependency of ζ we get the similar results,

⟨ζ fcoll(Mhmin, t)⟩ = n̄γ(t)
n̄H

= 1
⟨ρ⟩m

∫ ∞

Mmin
dM ζ(Mh, t) Mh

dn(Mh, t)
dM

.

(1.117)
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Finally, we can define the global mean emissivity of ionizing photons by differentiating
the above quantity with respect to time, i.e.,

ϵ(t) = ˙̄nγ(t) = n̄H
d⟨ζ fcoll(Mhmin, t)⟩

dt
. (1.118)

The emissivity can be understood as the average number of photons per unit time
and per unit comoving volume available for hydrogen reionization. It is one of the most
important quantities in modeling reionization.

1.4.4.1 Feedback Process

The feedback processes act as an intermediary between the IGM and the galaxies.
These processes can quench the production of ionizing photons within the galaxies
and also affect the growth of the galaxy. In this section, we will very briefly describe
these process; for greater detail, one can refer to (Benedetta Ciardi and Ferrara, 2005;
Dayal and Ferrara, 2018)

• Chemical feedback: This refers to the change in metallicity of the gas composition
within the galaxy. When the first heavy stars die (via supernovae), they dump
heavier metals formed in their core into the near interstellar medium. This in-
creases the metallicity of the next generation of stars, suppressing ionizing photon
production.

• Mechanical feedback: The supernovae can also heat the interstellar medium, thus
suppressing the star formation. In some cases, they can eject the gas into the IGM.
The simplest way to model it is via Mmin.

• Radiation feedback: If the energy of an ionizing photon Eph > 13.6 eV, the excess
energy goes into the electron’s kinetic energy, thus raising the temperature of the
IGM. This heating can prevent the cooling of gas in lighter halos. It also lowers
the accretion rate of the gas within, thus halting the growth of the galaxy.

1.4.5 Ionizing the Universe

Here we will take a big leap in the continuity. When the photons escape to the IGM
and start ionizing the HI gas and possibly changing the thermal state of the IGM, one
should begin with the radiative transfer equations for a complete understanding of the
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reionization process. Unfortunately, the discussion of radiative transfer is beyond the
scope of this thesis, and instead of deriving the necessary results, we will quote the
results directly where they seem fit. The readers are advised to refer to the following
texts for self-study (Padmanabhan, 2000; Mo et al., 2010; Peacock, 1998; Narlikar, 2002;
Tirthankar Roy Choudhury, 2022). Nonetheless, the omission of the radiative transfer
section will not hamper the understanding of the work carried out in this thesis, and
it is left up to the reader.

We begin by assuming a simplistic form of the rate of ionized fraction within an
ionized region surrounded by an optically thick ambient medium (such that all the
radiation is absorbed locally, which is a fair approximation for the Universe near the
EoR with high HI, called local absorption),

dQHII

dt
=

˙̄nγ

n̄II
HII

−QHII
n̄II

HI
n̄II

HII
ΓII

HI. (1.119)

Here n̄II
HII is the average ionized hydrogen number density, n̄II

HI is the average HI
number density, and ΓII

HI is the hydrogen photoionization rate, in the ionized region.
The superscript II represents quantities in the ionized region. ˙̄nγ is the emissivity and
n̄II

HII is the average ionized hydrogen number density. The n̄II
HII can be present in the

ionized regions in the form of high-density clumps of gas, which can remain neutral even
after absorbing all the ionizing photons. These self-shielded objects can be seen in the
quasar spectra as Lyman Limit Systems (LLS); we will study their effects on the quasar
spectra in Chapter 4 as well. These objects usually have very high recombination rates.

The hydrogen photoionization rate in the ionized region depends upon the ionizing
source and is given by,

ΓII
HI ≡ 4π

∫ ∞

νion

dν

hν
σH(ν)J̄ II

ν = 4π
∫ ∞

νion

dν

hν
σH(ν)

 ¯̃J II
ν

a3

 , (1.120)

where ¯̃J II
ν is the average comoving intensity/ source in the ionized region, and σH(ν)

is the absorption cross-section of the photoionization rate. For our initial assump-
tion of local absorption, one can show that the mean intensity J̄ II

ν is homogeneous
within the ionized region.

One can picture the Eq. (1.119) as the amount of ionizing photons produced within
the ionized region can either increase the total number of ionized fraction (the term
on the left-hand side) or can be absorbed by the neutral gas within the ionized region
(the second term on right-hand side). We have already studied the first term on the
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right-hand side of the Eq. (1.119). However, to study the second term, we need some
information about the residual HI density n̄II

HI. We begin by writing the evolution
equation of HI density within the IGM as,

dnHI(t,x)
dt

= −ΓHI(t,x)nHI(t,x) + a−3 αR(T (t,x))nHII(t,x)ne(t,x), (1.121)

The global nHI density will decrease as more and more HI is ionized. The first
term on the right-hand side of the above equation represents the decrease in nHI due
to photoionization of the gas8. The second term on the right-hand side of the above
equation represents the increase in the nHI due to the recombination of HII with the
free electrons. The ne(t,x) thus represents the free electron density, αR(T ) is the
temperature-dependent recombination rate, and a3 is the factor to convert the densities
from comoving to proper units. Although, the above equation is for any point in the
IGM, hence we dropped the superscript II, but solving it for the HII regions is more
relevant for the study of reionization.

Before we move further, we want to draw some connection between ΓHI, the photoion-
ization rate, and the recombination time scale trec, the average timescale in which the free
electron and HII recombine to form HI, at the photoionization equilibrium. In general
ΓHI ∝ t−1

rec, during photoionization equilibrium and is expressed as, ΓHI ∼ 1
trec

(
ne nHII

nHI

)
.

For the time scales we are interested in (≫ trec or (Γ−1
HI )), the system settles down into the

quasi-equilibrium state, known as the photoionization equilibrium. In this case, the left-
hand side of the dnHI(t,x)/dt term is zero and the solution to the Eq. (1.121) is given by,

ΓHI(t,x)nHI(t,x) ≈ αR(T (t,x))nHII(t,x)ne(t,x). (1.122)

The approximation of very short Γ−1
HI at high redshift is a tricky subject. Especially

near the self-shielded regions or the edges of the ionized bubbles, the ionizing photons
are completely absorbed, causing the transmitted ionizing radiation to weaken. The
ΓHI in these cases be very small (Kušmić et al., 2022). Hence, one needs to be careful
when using this approximation. Nevertheless, we are safe to make this approximation
for the case where we are interested in the average properties of the ionized regions.
Given that the photoionization equilibrium condition is valid, and given that the local

8We use the terms gas and hydrogen interchangeably, although even at high redshift, there could be
other elements like helium. However, for the course of this thesis, we are only concerned with hydrogen
reionization.
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absorption approximation allows us to assume homogeneous mean intensity within the
ionized regions, we can integrate the Eq. (1.122) and normalize with the total ionized
region column VHII to get,

ΓII
HI

∫
VHII

d3x

VHII
nHI(t,x) = a−3 αR(T )

∫
VHII

d3x

VHII
nHII(t,x)ne(t,x). (1.123)

The above equation can further be rewritten in terms of a new quantity called
the clumping factor,

ΓII
HI n̄

II
HI = a−3 αR(T ) C n̄II

HII n̄
II
e , (1.124)

The clumping factor characterizes the fluctuations in the ionized regions of the IGM.
It is defined as follows,

C ≡
∫

VHII
(d3x/VHII)nHII(t,x)ne(t,x)[∫

VHII
(d3x/VHII)nHII(t,x)

] [∫
VHII

(d3x/VHII)ne(t,x)
]

= nHII ne
II

n̄II
HII n̄

II
e

(1.125)

The clumping factor arises due to the density2 dependency of the recombination
term. To evaluate the C, we must know both the density structure of the IGM and
how the ionization fronts propagate in the high-density regions. This is not so easy
to model. One should note that, during the calculations of C, we assumed uniform
temperature across the ionized region (isothermal case) and took the αR(T ) out of the
integral. In principle, there could be a temperature gradient within the ionized region,
but usually the temperature dependence of αR(T ) is relatively weak ∼ T−0.7, hence
we can ignore that part.

Now, substituting the result from the Eq. (1.124) to the Eq. (1.119), we can write
the rate of change of QHII as,

dQHII

dt
= ṅγ

nII
HII

−QHIIa
−3 CαR(T )nII

e (1.126)

Finally, we can make more substitutions from the properties of the ionized regions.
We can write nII

HII ≈ n̄H (assuming almost all the hydrogen atoms have ionized), and
nII

e = χHe × nII
HII ≈ χHe × n̄H , where χHe accounts for the additional contribution of free

electrons from helium9. Lastly, substituting for the ṅγ from the Eq. (1.118), we get
9let Y be the mass fraction of helium atoms, then the fraction of electrons present in helium =
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dQHII

dt
= d⟨ζfcoll⟩

dt
−QHII χHe a

−3CαR(T )nH . (1.127)

This equation can be solved for the ζ and C by looking at the reionization history
of the Universe. If we keep every other parameter fixed and only increase the value of
ζ, increasing the ionizing photon budget in the Universe, we end up with a Universe
that reionizes pretty early, also referred to as the early reionization model. Whereas
if we keep everything fixed and only vary C, hence increasing the clumpiness, either
the density or the amount of dense HI systems, which end up increasing the overall
recombination rate of the Universe. This slows down the reionization process, giving
us late reionization models.

Even though we calculated the ionization efficiency using the stars, the equa-
tions and working principle of our prescription of reionization models remain
the same even if we substitute stars with galaxies. What we actually calculated
was the ionizing photon budgets from all the bright stars in a galaxy. Further-
more, the structure of galaxies and stars does not matter for our modeling,
which uses semi-numerical techniques. What matters is correctly associating
ζ with the halo mass. Since ζ is usually derived using N-body simulations
and later used in our models, we don’t have to worry about the complicated
modeling of galaxies. This is also one of the reasons, 21cmFAST can get away
by modeling the density fields via DM halos.

Clarification

Y/4 (or 2Y/4), given the ionization state of the helium. If nH is the number density of hydrogen, then
the number density of helium is = Y/(1 − Y ) × nH . Thus, the total number of electrons coming from
the contribution of both hydrogen and helium χHe = (1 + Y/4(1 − Y ))nH . For singly ionized helium
with Y = 0.24, χHe ≈ 1.08, while for doubly ionized helium χHe ≈ 1.16.
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After the formation of virialized objects such as dark matter halos, the baryonic
gas within these halos (given that Mhalo > Mmin to facilitate the cooling) can
further collapse by fragmenting into clumps of much denser objects, such as
stars. In this section, we showed how the first generation of massive stars (Pop
III), capable of producing ionizing photons, will drive the reionization in the
IGM. We mapped the contribution of each halo to the reionization budget by
calculating the reionization efficiency parameter ζ given by Eq. (1.112). Finally,
in the Eq. (1.127), we showed how the ionized bubbles carved by these ionizing
photons grow.

Summary

1.5 Observing the Reionization

In the previous section, we developed an understanding of how the neutral gas in the
IGM changes during the evolution of reionization. We will now see how we can actually
measure/ calculate the various quantities mentioned in §1.4. There are a few ways
to study the reionization topology observationally, but for the sake of this thesis, we
will mention only a handful of them.

1.5.1 CMB

As described in §1.2, after the matter decoupled from the radiation, the photons scattered
from the surface of last scattering, called CMB photons. These photons started to stream
freely throughout the Universe. During reionization, CMB photons, when scattered off
by the free electrons present in the IGM via Thomson scattering, polarize the CMB
power spectrum. The CMB optical depth of Thomson scattering relates to the ionized
fraction in the following way,

τel = c σT

∫ tLS

t0
dt n̄e(t) a−3(t) = c σT n̄H

∫ tLS

t0
dt χHe(t) QHII(t) a−3, (1.128)

where, n̄e = χHeQHII n̄H is the free electron number density averaged over all
volume, σT is the cross-section for Thomson scattering, and tLS is the cosmic time during
the surface of last scattering. Hence, by measuring τel we can probe the integrated
reionization history. To calculate τel, we study the large-scale polarization produced by
the Thomson scattering on the CMB angular power spectrum.
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1.5.2 21cm Line

The ground state of a HI atom consists of two hyperfine states (i.e., the triplet when
the spin states of the proton and electron are parallel, and the singlet when the spin
states are antiparallel), with the antiparallel alignment typically representing a slightly
lower energy state than the parallel alignment. At the thermal equilibrium, the spins
of electrons and the protons in the HI tend to be antiparallel due to the influence of
the electromagnetic interaction. However, quantum mechanics dictates that there is a
probability for the spins to be in either parallel or antiparallel configurations. Due to
this probabilistic nature, if the atom transitions from triplet to singlet, it produces a
photon having a rest wavelength of 21 cm or a rest frequency of 1420 MHz.

This signal is directly proportional to the HI density. The effects of the 21 cm signal
can be seen against the CMB by comparing the spin temperature Ts (which is directly
coupled to the gas temperature) against the CMB temperature, Tγ. If Ts > Tγ, then the
21 cm signal can be seen on the emission spectra, whereas if Ts < Tγ, then the 21 cm
signal can be seen on the absorption spectra (Bowman et al., 2018; Singh et al., 2022).

This signal can provide a complementary view of our Universe by directly study-
ing the HI distribution. The globally averaged signal carries the global signature of
thermal and ionization histories in the Universe. There are multiple ongoing efforts
worldwide to detect it, namely, Low-Frequency Array (LOFAR) (B. Gehlot et al., 2019;
Florent G Mertens et al., 2020), Murchison Widefield Array (MWA) (Barry et al., 2019;
Cathryn M Trott et al., 2020), Giant Metrewave Radio Telescope (GMRT) (Paciga
et al., 2013), and Hydrogen Epoch of Reionization Array (HERA) (DeBoer et al., 2017;
HERA Collaboration et al., 2023).

1.5.3 Quasar spectra

In order to study the Universe during reionization, we need some bright sources of light
from that era. Quasars, being one of the most luminous non-transient objects in the
Universe, satisfy this requirement effectively.

After the discovery of the first quasars as bright point-like emitters (similar to stars
in brightness but at much larger distances), they were initially called “quasi-stellar radio
sources”(Hazard et al., 1963; Schmidt, 1963). Sooner, with the discovery of more sources
with similar spectral features in the rest-UV regime, but not so prevalent radio emission
(Sandage, 1965), they all were clubbed into a single category of “quasi-stellar objects”,
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“QSOs”, or quasars. The extreme brightness of quasars is due to the active super-massive
black hole of mass MBH ∼ 107−10M⊙ at the center of the galaxy, accreting the gas around
it. As the gas is accreted, it is compressed and heated. Due to the temperature gradient
along the radius of the disk, it emits radiation in all wavelengths. With the advancement
in modern technology and the launch of the Euclid telescope, the anticipation of finding
more and more high-redshift quasars is ever so high.

In the Fig. 1.2 we show a typical quasar spectrum at the redshift z = 1.34 (Charlton
and Churchill, 2001). Once the light rays emitted by quasars enter the IGM, they can
interact with the gas in the IGM through various processes, e.g., Thomson scattering,
Rayleigh scattering, Compton scattering, etc. Thus acting as a tool to probe the Universe.
Let Fν(t0) be the Spectral Energy Distribution (SED) of the quasar reaching us at time
t = t0. Let the intrinsic SED be Fν . Assuming there’s no emission along the line of
sight of the quasar, then the Flux reaching us is given by

Fν(t0) = Fνa
2 exp (−τ(ν)) (1.129)

where τ(ν) is the optical depth of the medium. This is a very generic relation for
any light; when travelling through a medium, it suffers attenuation from the medium.
In the following sections, we will discuss how this light can be attenuated and how to
calculate its respective optical depth. Although one can dive deeper into the properties
of the quasars and how they affect the surrounding IGM, most of it will be covered in the
upcoming chapters. Hence, we will rather discuss it where it is relevant. For instance,
other than stars, quasars can also ionize the Universe and modify the ionized bubbles
around their host halos. In Chapter 2 we will calculate and show the effect of ionized
bubbles and discuss the quasar lifetime effects. In Eq. (3.5), we explain and discuss the
quasar proximity zones. Hence, we will skip those details for now.

1.5.4 Ly − α Absorption

The Lyman-alpha (Ly − α) transition refers to the transition of a hydrogen atom’s
electron from the second energy level n = 2 to the ground state n = 1, emitting a
photon with a wavelength of 1216 Å (or a frequency of ∼ 2.47 × 1015Hz). As discussed
in the section §1.5.3, the HI density of the IGM along the line of sight of quasar spectra
will attenuate the flux from the quasar as shown in Eq. (1.129). Here, the σα is the
absorption cross section of the Lyα transition.
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Figure 1.2. A typical quasar spectra at redshift z = 1.34. The absorption line bluewards of
the Ly − α represents the Ly − α forest. The DLA (Damped Lyman Alpha) systems show very
wide absorption features. The LLS (Lyman Limit Systems) shows sharp breaks in the spectra
as all of the ionizing photons are absorbed.

The profile of σα is given by the Rayleigh scatter cross-section of photons with
frequency ν = να (which is a Lorentzian profile) modified by the thermal motion of
absorbing HI atoms along the line of sight, given by the Maxwell-Boltzmann distribution
(which is a Gaussian profile), results in a Voigt profile. The Voigt profile at the resonance
resembles a Gaussian core, but has a long Lorentzian tail far from the resonance. The
cross-section is written as follows:

σα(ν) = fα πe
2

mec
ϕ(ν − να), (1.130)

where fα = 0.416 is the Lyα oscillator strength and ϕ(ν − να) is the Voigt profile.
Thus, for the photons with frequency ν traveling through a medium with HI number

density given by nHI. The optical depth is written as

τα(ν) =
∫

nHIσ(ν)dr =
∫

nHI
fα πe

2

mec
ϕ(ν − να)dr, (1.131)

for Lyα absorption around the resonance, the Voigt profile can be approximated
with a Dirac delta function. We can convert ν into observed frequency, νo = ν (1 + z),
and the infinitesimal length element dr, to infinitesimal redshift dz, using the following
relation from FLRW cosmology,

dr

dz
≡ c

H(z)(1 + z)
= c/H0

(1 + z)
√

Ωm(1 + z)3 + ΩΛ
. (1.132)
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Now substituting for νo and dz the Eq. (1.131) can be integrated to give

τGP (zα) = πe2

mec
fα

nHI(zα)
ναH(zα)

, (1.133)

where zα is the redshift when any photon blueward of Lyα is redshifted to Lyα
frequency. The τGP is also called the Gunn-Peterson optical depth. The Gunn-Peterson
effect refers to the absorption of photons by HI in the IGM at Lyα the resonance. We
can substitute for H(zα) and nHI = nH,0 xHI (1 + z)3, where xHI is the neutral fraction
and nH,0 is the number density today, we can re-write the above equation as (Gunn
and Peterson, 1965; Barkana and Loeb, 2001)

τGP (z) ≈ 1.8 × 105xHI

(
Ωbh

2

0.022

) (1 + z

7

)3 ( H0

70 km/s/Mpc

)
(1.134)

Where Ωb is the baryon density parameter. We can see that even for xHI = 10−4,
τGP ≈ 10. Thus insinuating that even with very low xHI all of the Lyα photons will
be absorbed. We see this feature in the quasar spectra at high redshifts, where the
flux blueward of Lyα is completely absent. This is called the Gunn-Peterson trough. If
the xHI is very low (which it is for low redshifts), the frequencies blueward of Lyα can
eventually be redshifted to Lyα frequency and absorbed at that redshift. Hence, we see
many absorption lines, corresponding to Lyα at different redshifts in the quasar spectra.
This series of absorption lines is called the Lyman-alpha forest. In the Figure 1.3, the
first three plots show the dense Lyα forest absorption blueward of Lyα. Whereas, in
the fourth plot, we see the Gunn-Peterson trough.

The observed Lyα absorption features can be used to trace the s density and opacity
fluctuations at different cosmic epochs. This can quickly be shown from the photoioniza-
tion equilibrium condition (this is a valid assumption at low redshifts when the IGM is
highly ionized). Now for such case, nHI ≪ nH , nHII ≈ nH , ne = χHenH , and from
1.122, we can write

nHI = χHe

a3
αR(T )

ΓHI
n2

H (1.135)

The recombination rate as a function of Temperature (Rauch, 1998) and the Temperature-
density power-law relation (Hui and Gnedin, 1997) can be approximated as,

α(T ) = 4.2 × 10−13cm3s−1
(

T

104K

)−0.7
. (1.136)

and,



1. Theoretical Framework 47

Figure 1.3. The first three panels of this figure show the quasars spectra showing Ly − α
forest, while the last panel shows the Gunn-Peterson trough. The trough is strongly visible the
closer to the EoR we move. This image is taken from (R. H. Becker et al., 2001).

T = T0(1 + δb)γ−1, (1.137)

where δb is the baryonic overdensity contrast. Now, combining all the above terms
with the Eq. (1.131) to get,
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τα(δb) = 5.01
(
χHe

1.08

)(1 − Y

0.76

)2 (Ωbh
3/2

0.0269

)2 (1 + z

6.5

)6 ( 9.23
H(z)/H0

)
(1.138)

×
(

T0

104 K

)−0.7 (10−12 s−1

ΓHI

)
(1 + δb)β, (1.139)

where β = 2.7 − γ. This gives us the relation between the Lyα optical depth and the
baryonic matter overdensity contrast, given we know the values for ΓHI, T0, and γ.

1.5.5 Damping wings

As we showed in Section §1.5.4, the Lyα absorption cross-section is so high that all the
photons near the resonance of Lyα are completely absorbed for high-redshifts. Thus
leaving us with the Gunn-Peterson trough. This restricts the applicability of Lyα
transitions. However, we also saw that the general profile of the Lyα transmission is
a Voigt profile. The Voigt profile, away from the resonance, has a long Lorentzian tail.
Hence, for the case where xHI is very high, we can expect some absorption from the tail
of the Lyα profile, dampening the incoming flux. This tail, since seen in the absorption
spectra, is called the Lyα damping wing. The damping wings can also be observed on
the red side of the Gunn-Peterson trough (Miralda-Escudé, 1998), even if the Lyα forest
on the blue side is fully opaque (absorbed).

In figure Fig. 1.4 (F. Wang et al., 2020), on the top panel, we see the full spectrum of
quasar (J0252-0203, at redshift z = 7.00), with a fit on the red side using the principal
component analysis (PCA). On the blue side, we see the prediction made using PCA.
The bottom panels show the zoomed-in version near Lyα. On the bottom left panel, we
see how the quasar spectrum is being dominated by the Gunn-Peterson trough on the
blue side. But not with a sharp cut, we instead see the signature of the Ly−α damping
wing, which is being highlighted on the bottom right panel. We also see the damping
effects on the right side. This is how the damping wing signature looks.

Following the work in Miralda-Escudé, 1998, we will now try to calculate the Lyα
damping wing profile caused by the homogeneous neutral IGM. The Rayleigh scattering
cross-section profile of the Lyα resonance line by HI for a photon with angular frequency
ω is written as(see the section §23, “Resonance line shape” in (Peebles, 1993)),

σ(ω) = 3λ2
αΛ2

8π
(ω/ωα)4

(ω − ωα)2 + (Λ2/4) (ω/ωα)6 . (1.140)
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Figure 1.4. This figure illustrates what the damping wing profile looks like in the high redshift
quasar spectrum, closer to the EoR. The bottom panels show how the Gunn-Peterson trough
is not a sharp cut, and the red side of Lyα has the damping wing imprint. This quasar under
study is J0252-0203, at redshift z = 7.00. This image is taken from (F. Wang et al., 2020).

Where Λ = 6.25 × 108s−1 is the decay constant for Lyα resonance, and ωα = 2πνα =
2πc/λα. For the tail part (∥ω − ωα∥ ≫ Λ) we can ignore (ω/ωα)6. Assuming constant
nHI ≡ n0 for the IGM at zn < z < zs, where zs is the redshift of the source and negligible
HIdensity for z < zn, the optical depth at observed wavelength λ = λα(1 + zs) + ∆λ
from the Eq. (1.131) can then be written as,

τ(∆λ) =
∫ zs

zn

dz

1 + z

c

H(z)
n0(1 + z)3 σ

(
ω

ωα

)
, with ω

ωα

= (1 + z)
(1 + zs)(1 + δ)

=
∫ zs

zn

dz

1 + z

c

H(z)
n0(1 + z)3 3λ2

αΛ2

8πω2
α

(ω/ωα)4

(ω/ωα − 1)2

(1.141)

where 1+δ = λ/[λα(1+zs)] or λα/λ = ω/ωα = [(1+δ)(1+zs)]−1. The Gunn-Peterson
optical depth from the Eq. (1.133) is τGP (zs) = 3λ3

αΛn0/[8πcH(zs)], where Λ = 8π2e2

mecλ2f ,
and using H(z) ∝ (1 + z)3/2, we get the following integral:

τ(∆λ) = τ0Rα

π

∫ zs

zn

dz

1 + z

( 1 + z

1 + zs

)11/2
(1 + δ)−4

[
1 + z

(1 + zs) (1 + δ)
− 1

]−2

. (1.142)

Where Rα = Λ/4πν . Now substituting x = (1 + z)/[(1+zs)(1+δ)] we get the follow-
ing form,
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τ(∆λ) = τ0Rα

π
(1 + δ)3/2

∫ x2

x1

dx x9/2

(1 − x)2 , (1.143)

The result of the integral is:

∫ dx x9/2

(1 − x)2 = x9/2

1 − x
+ 9

7
x7/2 + 9

5
x5/2 + 3x3/2 + 9x1/2 − 9

2
log 1 + x1/2

1 − x1/2 . (1.144)

1.5.5.1 Modified Damping Wing Profile

In our work, we use the modified version of the above equation (D. Mortlock, 2016; Kist
et al., 2024), where the following approximation for σ(ω) is used:

σ(ω) = 1
4

3λ2
αΛ2

8π
(ω/ωα)2

(ω − ωα)2 + (Λ2) (16π2)
if |ω − ωα| ≪ ωα (1.145)

yielding the following result:

∫ dx x1/2

4(1 − x)2 = x1/2

4(1 − x)
+ 1

8
log 1 + x1/2

1 − x1/2 . (1.146)

The difference between these two models is, in Eq. (1.146) the cross-section near the
wings is approximated by a simple Lorentzian profile, whereas Eq. (1.144) inherently
assumes a two-level hydrogen model, in which the bound electron is confined to the
ground state (n = 1) and the excited state (n = 2) or the 1s and 2p states. The
Eq. (1.146) is more accurate in the low wavelength regime, while the Eq. (1.144) is more
accurate in the long wavelength regime. Since most of the absorption happens when the
photons first enter the IGM, Eq. (1.146) is a better approximation (D. Mortlock, 2016).

1.6 Simulation techniques

We have seen some observational probes in the previous section. We would now like to see
the available technology that we can employ to have a better theoretical understanding
of the observations. The modeling of the reionization epoch can be broadly classified
into three categories:

• Analytical/ Semi-Analytical Models: Analytic or Semi-analytic uses approximate
analytic or parametric equations to solve the problem on hand. These methods
often replace the complex motion of multi-particle systems with statistical models.
That’s why the early semi-analytical models (Wyithe and Loeb, 2003; T Roy
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Choudhury and Ferrara, 2006; Pritchard et al., 2010; Mitra et al., 2011; Mitra
et al., 2012; Mitra et al., 2015) have been reasonably successful in constraining
the globally averaged quantities. The global properties of reionization can be
derived by solving the Eq. (1.126), a first-order differential equation. Combining
the Eq. (1.124) with ΓHI ∼ 1

trec

(
ne nHII

nHI

)
and substituting it in Eq. (1.126), we can

further simplify to into
dQHII

dt
= ṅion

n̄H

− QHII

t̄rec

(Tirthankar Roy Choudhury, 2022). It simplifies the overall equation at the expense
of inhomogeneities in the ionization. These techniques are ideal for exploring a
large parametric space of models.

• Full Radiation Hydrodynamic Simulations: As the name suggests, these simula-
tions are the combination of the radiative transfer (RT) simulations, which aim to
solve the full RT equations to calculate very precise interactions of photons prop-
agating through a medium, and the full set of hydrodynamic equations (Eq. (1.9),
Eq. (1.10), Eq. (1.11)) in cosmological settings. These are coupled with gravity
to simulate the exact evolution of dark matter and gas required for the structure
formation. The governing equation for the RT models is,

∂Iν

∂t
+ c

a
n̂ · ∇⃗Iν − ȧ

a
ν
∂Iν

∂ν
+ 3 ȧ

a
Iν = −cκνIν + cjν , (1.147)

where Iν is the specific intensity, κν is the absorption coefficient, jν is the emission
coefficient and n̂ is the direction of the unit vector. The following are some research
groups working on these simulations (Mellema et al., 2006; Iliev et al., 2006; Trac
and Cen, 2007; Ghara et al., 2015; Ocvirk et al., 2016; Katz et al., 2019; Ocvirk
et al., 2020; Kannan et al., 2022; Garaldi et al., 2022; Puchwein et al., 2023). Due
to their high complexity, these simulations are computationally demanding and
time-consuming. For our work, which requires running a grid of models for the
comprehensive study of a wide range of parameter space, these simulations are not
feasible.

• Semi-Numerical Simulations: Semi-numerical simulations provide a middle ground.
These simulations combine analytical models with numerical methods to simulate
the formation and evolution of cosmic structures such as galaxies, dark matter
halos, and the IGM. They use either the empirical results derived from observations
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or full radiation-hydrodynamic simulations to replace the complicated physics to
set up the analytic framework and then employ numerical techniques like ES to
solve for the desired results. Hence, they can capture most of the required physics
without compromising much with efficiency. One such semi-numerical simulation
tool, 21cmFAST (Mesinger and S. R. Furlanetto, 2008; Mesinger et al., 2011),
which we used in this work, has been discussed in detail in §2.2, along with the
theory of its working. Some other examples of semi-numerical simulations for
reionization are: SIMFAST21 - (Santos et al., 2010), zreion - (Battaglia et al.,
2013), DRAGONS - (Mutch et al., 2016; Geil et al., 2016), ASTRAEUS - (Hutter
et al., 2021), and SCRIPT - (Tirthankar Roy Choudhury and Paranjape, 2018).

1.7 Structure of the thesis

In this thesis, we aim to understand and decode the topology of the Universe at high
redshift, especially during the EoR z = 7. To view the Universe around that period,
we generate extensive sets of large and patchy reionization boxes using 21cmFAST,
subjected to varying astrophysical, IGM, and reionization source parameters. Within
each box, defined by a unique combination of parameters, we locate halos of various
masses, divided into specific mass bins. We assume these halos can host quasars and
draw a random sightline through these quasars. We collect all these sightlines, and
assuming they are the line of sight towards us, we study their properties when they
travel through the box. These halo-sightline pairs will appear in every chapter and
are the fundamental tools for all our analysis. We also keep the initial and boundary
conditions constant between every model.

In Chapter 2, we use these models to study the dependency of the reionization
topology on the varying astrophysical, IGM, and reionization source parameters by
studying their signatures on Lyα damping wings. We use the aforementioned halo-
sightline pairs and calculate the Lyα damping wing optical depth along them. We
then study the properties of their median signal, M(DW), and the sightline-to-sightline
68-percentile scatter width around the median, ∆SW68. The M(DW) and ∆SW68

are then used to show the nature of the dependency of the reionization topology on
the model parameters.

In Chapter 3, we use similar models as described above and the M(DW), and ∆SW68

profiles calculated above to quantify the constraining power of the damping wings on
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the model parameters using the Fisher Information Matrix (FIM). We also forecast the
number of quasars needed to conduct our damping wing analysis robustly.

In Chapter 4, we calculate the quasar transmission flux for the ionizing photons
at redshift z = 6 instead of calculating the damping wing profiles. We then study
the dependency of the ionizing photon transmission flux on the model parameters and
qualitatively look for the parameter space that can reproduce the short Mean Free Path
(MFP) for ionizing photons at z = 6.

Finally, in Chapter 5, we summarize all our significant results and discuss the future
prospects of the different projects carried out in this thesis.



2
Damping Wings Statistics

The work in this chapter has been presented and published in the AAS Journals under
(Sharma et al., 2025). Additional details regarding the operating principle of 21cmFAST
have been added to fit the thesis narrative. I carried out the scientific tasks and wrote all
the texts with the support and guidance provided by the co-authors Fred Davies, Prakash
Gaikwad, Fahad Nasir, and Sarah Bosman.

The damping wing signatures in high-redshift quasars have proven instrumental
in studying the epoch of reionization. With the upcoming Euclid mission
set to discover many more quasars, it is crucial to explore what this new set
of quasars might reveal not only about the reionization history but also its
topology. The topology should influence the shape and variation of quasar-
damping wing signals across sightlines. We use 21cmFAST to generate patchy
reionization models in cosmological volumes with diverse astrophysical parame-
ters for the ionizing sources. We examine the median, M(DW) and the sightline-
to-sightline variation ∆SW68 for an ensemble of damping wing signals. We find
that the neutral fraction xHI, quasar lifetime tq, quasar host halo mass Mqso,
and minimum DM halo mass (that can support star formation) Mmin signifi-
cantly impact the M(DW). Parameters tied to the reionization topology, like
xHI and Mmin, strongly affect ∆SW68, compared to tq. Our findings highlight
that quasar damping wings are sensitive to Mmin, a key variable linking reioniza-
tion topology, history, and feedback processes. We also explore the convergence
of damping wing signals and ionized bubble sizes with box size. We present
a suite of models to assess the ability of future quasar samples to constrain
astrophysical model parameters and the additional systematic uncertainty on
the neutral fraction incurred when fixed to a single fiducial value.

Abstract

54
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2.1 Introduction

At redshifts close to the EoR, nearly all the flux corresponding to the Lyα wavelength
is absorbed even when the HI fraction (xHI) is as low as 10−4 (Gunn and Peterson,
1965). However, as we saw in ??, the absorption cross-section of Lyman transitions
exhibits a long-tail behaviour. Hence, we can instead observe the absorption around
these tails far from the peak, the so-called “damping wing” (see §2.3.3) (Miralda-Escudé,
1998). These damping wing signals in the spectra of high-redshift quasars have been
used to constrain the global neutral fraction, xHI. Studies such as (Daniel J Mortlock
et al., 2011; Bradley Greig et al., 2017; Frederick B. Davies et al., 2018; F. Wang et al.,
2020; Bradley Greig et al., 2022) showed that the xHI = 0.5 at z ∼ 7.0 − 7.5. Most
of the damping wing analysis were used to constrain mostly the neutral fraction, xHI,
(Bradley Greig et al., 2017; Frederick B. Davies et al., 2018; Charlotte A Mason et al.,
2018). While works like (Kist et al., 2024) tried to constrain both the xHI and the quasar
lifetime tq. In (Bradley Greig et al., 2019), it was hinted that the choice of the source
model could shift the neutral fraction inference, and therefore should be included in the
damping wings study. However, it was not emphasized much, as it was believed that it
may not be important when considering the damping wings from individual quasars. The
uncertainty on the neutral fraction from a single quasar – largely due to cosmic variance –
was large. Hence, it becomes useful to consider an ensemble of damping wings spectra to
explore the source parameter dependency of the reionization topology using the damping
wings. Furthermore, the single-source models are inadequate in incorporating the effect
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of reionization topology on the intrinsic scatter of the damping wing signal. Thus
demanding a need for a comprehensive analysis of an ensemble of damping wing signals
with a wider choice of parameters, covering both the astrophysical and source parameters.
As a result, this chapter aims to examine the dependence of the median damping wing
profile, M(DW), and the sightline-to-sightline scatter, ∆SW68, on a set of source and
astrophysical parameters. Unless stated otherwise, we will use the term “astrophysical
parameters” when discussing the source, IGM, and astrophysical parameters.

In §2.2, we begin by first defining the architecture of the 21cmFAST simulation and
how it carries out the theory discussed in the §1.3. We then discuss the parameter space
and Lyα damping wing calculations in our models. Finally, we end the §2.3 with the
summary of all the parameters used, and the properties of our simulation boxes. In §2.4,
we demonstrate the results from our models and summarize the behaviour of damping
wings subjected to the changes in the selected batch of parameters. In §2.5, we present
our understanding of these results and the interesting features we observe. Lastly, in
Appendix A.1, we perform various convergence tests for the damping wing signal across
different box sizes, to determine the optimum box size for our study. We assume a
flat ΛCDM cosmology throughout our work, based on the results from Planck (Aghanim
et al., 2020), with cosmological parameters h = 0.68, Ωm = 0.3, Ωb = 0.045, and σ8 = 0.8.

2.2 21cmFAST

21cmFAST is a semi-numeric simulation tool that produces 3D cosmological boxes of
various physical fields in the early universe (Mesinger et al., 2011; Murray et al., 2020;
Muñoz et al., 2022; Qin et al., 2020; Park et al., 2019). For our case, we generated
boxes with density and ionization fields subject to our range of astrophysical parameters.
21cmFAST uses evolved IGM density, which is generated by perturbing the initial linear
density field using second-order perturbation theory (Scoccimarro, 1998). This field is
then smoothed onto a lower-resolution grid using an ES approach (S. R. Furlanetto
et al., 2004). The ionized fields are computed from the evolved IGM density field by
comparing the number of photons, integrated over time and produced by both UV and
X-ray sources, to the number of neutral atoms within regions of decreasing filters of
radius R. The size of these filters starts from the maximum photon horizon, Rmfp, down
to the individual pixel resolution of a single cell, Rcell. The cells are flagged as fully
ionized if the condition in the equation (Bradley Greig and Mesinger, 2018):
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ζfcoll(x, z,R,Mmin) ≥ 1 (2.1)

Here fcoll represents the fraction of collapsed matter residing within halos in the
region R with mass greater than Mmin (Press and Schechter, 1974; Bond et al., 1991;
Lacey and Cole, 1993; Sheth and Tormen, 1999). Effectively, Mmin sets the minimum
mass of halos that can support star formation.

Below this threshold mass of Mmin the star formation is inefficient, thus quenching the
amount of ionizing photons produced by such galaxies. The quenching of star formation
may arise due to Supernova feedback, photoheating feedback, or inefficient cooling (Paul
R. Shapiro et al., 1994; Mark L. Giroux et al., 1994; Hui and Gnedin, 1997; Barkana and
Loeb, 2001; Springel and Hernquist, 2003; Mesinger and Dijkstra, 2008; Okamoto et al.,
2008; Sobacchi and Mesinger, 2013b; Sobacchi and Mesinger, 2013a). In our simulations,
this suppression is estimated using a redshift-independent duty cycle (Park et al., 2019).

fduty(Mh) = exp
(

−Mmin

Mh

)
(2.2)

Thus, for halos with a mass close to Mmin, only a fraction fduty of them are forming
stars with an efficiency of fstar, the rest do not. This parameter, in conjunction with the
xHI controls the ionized bubble size distribution within our simulation boxes.

2.2.1 Density And Ionized Fields Calculation

In 21cmFAST, the evolved density fields are calculated by evolving the initial density
fluctuations forward in time using perturbation theory. Specifically, 21cmFAST typically
employs second-order perturbation theory by default, which provides a more accurate
description of the nonlinear evolution of density fluctuations compared to LPT. Users
can choose to switch to LPT for faster calculations by setting “USE_2LPT” to false
when defining initial conditions (we discussed LPT in §1.7).

The simulation begins by generating initial conditions that describe the density fluc-
tuations in the universe. These initial density fluctuations are represented as a Gaussian
random field, with the mean and covariance functions determined by the underlying cos-
mological parameters and the initial power spectrum. The mathematical representation
of Gaussian random fields involves specifying the mean and covariance functions.
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• Mean Function: The mean function typically assumes a homogeneous and isotropic
universe, where the mean density is constant across space. Therefore, the mean
function µ(x) is usually a constant value.

• Covariance Function: The covariance function sets the correlation between density
fluctuations at different points in space. For Gaussian random fields, the covariance
C(x,x′) function between two points x⃗ and x⃗′ is determined using the matter power
spectrum P (k) through Fourier transforms:

C(x,x′) =
∫ d3k

(2π)3P (k)eik·(x−x′) (2.3)

Once the mean and covariance functions are specified, the Gaussian random field
can be generated by drawing samples from a multivariate Gaussian distribution with the
mean and covariance functions as parameters. These are the overdensities we require
for the perturbation as shown in Eq. (1.28), Eq. (1.30), Eq. (1.32), and Eq. (1.35).
21cmFAST generates the density and velocity initial conditions in Lagrangian space and
not in Eulerian space. These density fields are then evolved to the desired redshift using
first-order perturbation theory from (Yakov B. Zel’dovich, 1970), which is the Zel’dovich
approximation (see §1.3.2.1). Before we proceed further, it is crucial to mention that
the perturbation approach of 21cmFAST follows the DM evolution and does not capture
virialized structure. There is no distinction between baryons and DM in 21cmFAST.
This approximation works for large-scale structure, where the pixel scale is comparable
to the size of the DM halos, as the baryons mostly follow the gravitational potential
of DM on those scales. The complication arises when the baryons have to collapse,
but we don’t deal with it here.

After obtaining the density field, we follow the excursion-set formalism as discussed
in §1.3.3, i.e., we take the density field perturbed to the desired redshift and smoothen
it over with a filter function, as shown in Eq. (1.68). The filter scale is then varied
from the size of the entire box to the 1 voxel resolution in discrete steps of a factor
of 1.1. 21cmFAST uses a sharp k-space top hat filter to smooth the density field over
different spatial scales. The sharp k-space top hat smoothing filter in k space is given
by W (k,R) is given by:

W̃k(kR) ∝

1, k ≥ kmax

0, k < kmax

(2.4)
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where kmax corresponds to the Nyquist frequency of the simulation grid (Nyquist,
1928; Shannon, 1949; Mesinger et al., 2011). The choice of this filter function is exciting
because the distribution of change in the density ∆δs is independent of δs and depends
only on the variance S(M) ≡ σ2(k) (see the Eq. (1.76));

S ≡ σ2(R) =
∫ dk

k

k3P (k)
2π2 |W (kR)|2 (2.5)

Which means, as we change the filter scale from R → R − dR, the change in δc

follows a Markovian random walk. Note that the change in δc represents the Markovian
random walk feature only for the k-sharp top hat filter. Now, the next step in ES
theory, after smoothing the density field, is to calculate the first crossing point. For the
filter scale R, if (δR > δc), where δc ≈ 1.686, critical density for the spherical collapse,
then we assign a halo of mass M = (4π/3)⟨ρ⟩R3, where ⟨ρ⟩ is the mean matter density,
to the central pixel of that filter.

In §1.3.3 we defined the first crossing function for ES and modified ES in detail. The
analytic form of first crossing function for ES is given by,

f(σ2)dσ2 = 1√
2π

δc

S3/2 exp
(

− δ2
c

2S

)
dσ2 (2.6)

where δc is the critical density threshold for collapse. The HMF is related to the first
crossing by Eq. (1.78). We rewrite the equation here again for completeness’s sake:

dn

dM
= ⟨ρ⟩
M
f(S)

∣∣∣∣∣ dSdM
∣∣∣∣∣ (2.7)

In , as we saw earlier, the halos are calculated by running the smoothing filter across
the box with monotonically decreasing size. At every filter, the collapse condition is
checked, and when the collapsed condition is satisfied for the first time, the mass is
assigned to the center of the pixel corresponding to the filter scale. One can substitute the
above equation with the ST mass function as well. The basic idea will remain the same.

Once these halos are located (their mass and coordinates are found) using the LPT.
Their positions need to be corrected, especially across different redshifts. Since PS and
ES were derived keeping LPT in mind. 21cmFAST uses the linear fields to locate halos.
These halos are then displaced using the gradient of the velocity fields from the Zeldovich
approximation. The first order approximation of velocity gradient used in 21cmFAST is
calculated by taking the line-of-sight derivative of the linear velocity field from Eq. (1.31)
(Re-quoting the velocity field here for the sake of convenience):
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v⃗(k⃗) = i⃗k

k2 δ̇(k⃗) = i⃗k

k2 Ḋ(z)δ(k⃗) (2.8)

The velocity gradient used in 21cmFAST is then given by,

dvr

dr
(k⃗, z) = ikrvr(k⃗z) ≈ −k2

r

k2 Ḋ(z)δ(k⃗) (2.9)

The computed velocity fields are then used to perturb the positions of the halos
to the Eulerian space. By applying these velocity-induced displacements, 21cmFAST
ensures that the halo positions are accurately reflected. This is a very brief summary of
the halo finder algorithm of 21cmFAST. This is also how 21cmFAST calculates the
evolved density fields.

So far, we haven’t had to use the analytic expression of the first crossing function.
But in order to calculate the collapsed fraction fcoll, we will have to rely on the analytic
calculation since we are not resolving the individual halos down to tiny scales. After
smoothing the density field at a given filter scale Rcell, the conditional collapsed fraction
is calculated using the conditional first-crossing distribution (see Eq. (1.88)),

fcoll(δcell, Scell; z) = N̄ erfc

 δc(z) − δcell√
2 (Smin − Scell)

 (2.10)

We write fcoll instead of the first crossing function, because they are both the same for
the PS formalism. The value of N̄ is used, which matches the mean ST collapsed fraction
from N-body simulations. Thus giving us the amount of matter that has collapsed into
the halos, with halo mass M ≥ Mmin, where Mmin is the threshold above which the halos
can form stars. The value of this collapsed fraction, in conjunction with the ionizing
efficiency ζ, defined in §1.4.4, subject to the condition in Eq. (3.24) determines the
ionized field in 21cmFAST.

2.3 Model Calculations

In this section, we describe the models we used to calculate our astrophysical parameters,
how they are calculated in 21cmFAST, and how they control the reionization topology.
In the §2.3.3, we describe the form of Lyα damping wing optical depth we used in our
calculations. In the sections §2.3.4 we summarize all the parameters along with their
fiducial values and ranges we used in our reionization models, and finally, in the §2.3.5
we establish the properties of our simulation boxes.
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Figure 2.1. The upper panel shows a sample slice of the ionized box, along with three different
halos (red, green, and orange) located at various positions within the box. The trajectories of
random sightlines passing through these halos are also displayed. We show the damping wing
signals corresponding to the respective sightlines in the lower panel.

2.3.1 Simulation Parameters

The standard 21cmFAST approach considers a simplified model for calculating the stellar
mass of galaxies and the number of ionizing photons in our simulations. The stellar mass
of a galaxy, Mstar, can be expressed as a function of its host halo mass, Mh as follows
(Park et al., 2019; Kuhlen and Faucher-Giguère, 2012; Dayal et al., 2014; Behroozi and
Silk, 2015; Mitra et al., 2015; Mutch et al., 2016; Sun and S. R. Furlanetto, 2016;
Yue et al., 2016) (see §1.4.2)

Mstar(Mh) = fstar

(
Ωb

Ωm

)
Mh. (2.11)

Here fstar denotes the fraction of galactic baryons present in stars. The fstar also
has a power law dependency on halo mass (Park et al., 2019; Behroozi and Silk, 2015),
which comes from the fact that gas is being exchanged between the IGM and the halo
due to feedback processes:

fstar = fstar,10

(
Mh

1010M⊙

)αstar

, (2.12)

where fstar,10 is the normalization factor representing the fraction of galactic gas in stars
normalized to a halo mass of 1010M⊙, and αstar represents the power law index of the
dependence of fstar on halo mass.

We can express the other important quantity, fesc, which governs the fraction of
ionizing photons escaping from star-forming galaxies into the IGM, in a manner similar
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to fstar (Park et al., 2019),

fesc = fesc,10

(
Mh

1010M⊙

)αesc

, (2.13)

where fesc,10 is the normalization factor representing the fraction of ionizing UV escape
fraction normalized to 1010M⊙ halo mass fraction, and αesc represents the power law
dependency of fesc on halo mass. Both fstar and fesc have a physical upper limit of
≤ 1 by definition. This parameter plays a critical role in understanding the effects of
feedback processes. Given the uncertainty surrounding both the nature and the precise
value of fesc, it can be used to calibrate the value of the neutral fraction when varying
other source parameters.

Together these quantities tell us how much stellar mass is present in any galactic DM
halo and how many ionizing photons they eject into the IGM. We can now calculate the
ionizing UV efficiency of a galaxy (Bradley Greig and Mesinger, 2017) (see Eq. (1.112)):

ζ(Mh) = 30
(

fesc

0.12

)(
fstar

0.05

)(
Nγ/b

4000

)( 1.5
1 + nrec

)
, (2.14)

where Nγ/b is the number of ionizing photons per baryon produced in the stars and
nrec is the number of times hydrogen atom recombines. For our case, the rate of
recombination is so small in the IGM compared to Hubble expansion that we can
neglect nrec in the last term.

In the following, we will abbreviate the normalization terms fstar,10 and fesc,10 as fstar

and fesc, respectively, unless stated otherwise.
We aim to compare the effects of the aforementioned parameters on reionization

topology at a fixed neutral fraction. In our models, we adjust fesc to calibrate the
desired global neutral fraction for a given combination of parameters. We expect fstar

to be degenerate with fesc, something which we also see in our results, although a subtle
distinction remains due to differences in the halo mass corresponding to the upper limit
value of 1. All of the parameters described thus far are astrophysical in nature and can
be tuned in our simulations, thereby impacting the reionization topology on a global
scale. Table Table 2.1 lists these parameters, along with their respective ranges and
fiducial values used in this study.

2.3.2 Quasar Model

After obtaining the reionization topology, we conduct our analysis by selecting random
halos of a specific mass and observing a line of sight toward each halo, assuming it hosts
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Figure 2.2. The first panel shows the slice of the ionized box with xHI = 0.25, the second
panel represents xHI = 0.5, while the third panel represents xHI = 0.75.

a quasar. In contrast to the calculation of the ionization field described above, for this,
we require instantiating discrete halos within the semi-numerical simulation box. We use
the method from (Mesinger and S. Furlanetto, 2007) to locate DM halos using ES theory
on the initial conditions. These halo positions are then perturbed using velocity fields,
calculated via LPT, to obtain the corrected locations at the desired redshift. Although
the ionized field we derive is based solely on the density field, we use this halo catalog
to position our quasars. This approach enables us to include lower-mass halos in our
damping wing analysis, which would otherwise require much higher particle resolution.
Given that quasars are likely to reside in halos with masses around 1012M⊙, we explored
a range from 109M⊙ to 1012M⊙ to fully capture the dependence on host halo mass
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(e.g. Pizzati et al., 2024; Eilers et al., 2024) and probe the regime of damping wings that
affect lower-mass galaxies as well (Keating et al., 2024).

Since we are observing a line of sight towards a quasar, a sufficiently luminous quasar
could influence the reionization topology in its vicinity, potentially changing the strength
of its observed damping wing. To study this effect, we assume a quasar with a lifetime
tq, residing in a halo of mass Mqso. During its active lifetime, the quasar carves out
an ionized bubble around it, R(tq). The ionizing photon emission rate for luminous
quasars at redshift z ≥ 7 is Ṅph ≃ 1057s−1 (Daniel J Mortlock et al., 2011). The
Strömgren radius of this bubble is expressed as (Paul R Shapiro and Mark L Giroux,
1987; Cen and Haiman, 2000):

R(tq) =
(

3Ṅphtq

4π⟨nH⟩

)1/3

, (2.15)

where ⟨nH⟩ is the average number density of HI within the sphere.
The above equation assumes a homogeneous reionization process, whereas reion-

ization is inherently inhomogeneous. Moreover, quasar emission is likely anisotropic,
meaning the equation does not fully capture the overall shape of the ionized bubble.
However, since we are primarily concerned with ionizing photons along the line of sight,
we can use the relation to estimate the expansion of the ionized bubble by considering
the density and neutral fraction distribution along the line of sight, assuming spherical
dilution of the photon flux. Specifically, we calculate the total number of HI atoms
on a spherical shell of radius Rtq and a thickness of 1 pixel. To ionize these hydrogen
atoms, an equivalent number of photons is required. Therefore, we equate the total
number of photons produced by the quasar over its lifetime, tq, with the number of
hydrogen atoms encountered on a spherical shell, incorporating variations in density
and neutral fraction along our line of sight:

Ṅphtq =
∫ Rion

0
nH(r)4πr2dr. (2.16)

The integration is performed over the voxels along the line of sight corresponding to
the radius of the bubble, neglecting any recombination within this region, which should
be negligible for the quasar lifetimes we consider. Here, nH(r) represents the number
density of hydrogen atoms in the voxel spanning the distance between r and r+ dr. We
thus obtain the radius Rtq . Quasar activity modifies the reionization topology locally, up
to the extent of Rtq . We assume the ionizing photon emission rate, Ṅph, remains constant,
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meaning the quasar lifetime, tq, is the sole parameter controlling the distance to the
ionization front. Notably, the case of tq = 0 is analogous to a sightline originating from
a typical star-forming galaxy, which produces significantly fewer ionizing photons than
a luminous quasar, especially for small host halo masses (Mh ≤ 1011M⊙). The effects
of quasar lifetime are incorporated a posteriori into our calculation, specifically during
the computation of random skewers through the simulation box. They are evaluated
exclusively along the line of sight for computational efficiency.

2.3.3 Lyα Damping Wings

We calculate the transmitted flux from the total Lyα damping wing optical depth
τD at an observed wavelength of [λobs = λα(1 + z)] (where λα = 1215.67 Å is the
Lyα restframe wavelength) along the length of our random skewer (treated as the
line of sight), originating from a halo at redshift zs. This is done by summing the
contribution of τD from each HI patch encountered along the length of the skewer using
the approximation (Mesinger and S. R. Furlanetto, 2008), (see §1.5.5 for the derivation
of the damping wing profile)

τD(z) = τGPRα

π

∑
i

{
xHI(i)(1 + δ(i))

(1+zbi

1+z

)3/2
×
[
I
(1+zbi

1+z

)
− I

(1+zbi

1+z

)]}
, where τGP ≈

7.16 × 105[(1 + zs)/10]3/2 is the Gunn-Peterson optical depth of the IGM (Gunn and
Peterson, 1965), and Rα = Λ/(4πνα), where Λ = 6.25 × 108s−1 is the decay constant of
Lyα at resonance and να = 2.47×1015Hz is the frequency of the Lyα transition. xHI(i) is
the HI fraction in the ith patch, and δ(i) is the matter overdensity in that patch. Lastly,
the integration term I is defined as (D. Mortlock, 2016; Kist et al., 2024),

I(x) = 1
4

[
x1/2

1 − x
+ 2 log

∣∣∣∣∣1 − x1/2

1 + x1/2

∣∣∣∣∣
]
. (2.17)

In our calculation of optical depth, we do not include the absorption inside the
proximity zone and are looking at the IGM damping wing alone, as our primary concern
is to study the effects of reionization topology.

2.3.4 Summary of Parameters

In this subsection, we summarize all the parameters used in the simulation. The first
type is the “Source parameters”, which can be tuned in the simulation and have a
global effect on reionization topology. These include fstar, αstar, αesc, and Mmin. As
stated previously, the upper limit of fstar is ≤ 1. The key distinction between αstar and
αesc lies in their respective ranges: αstar has a positive range, reflecting the fact that
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Figure 2.3. The median (solid line) and mean (dashed line) transmitted flux for a given neutral
fraction. The mean and median are calculated over 10,000 randomly distributed sightlines
originating at the halos of mass Mqso ≈ 4 × 1011M⊙.

Parameter Range Fiducial model Parameter type
xHI (Global mean neutral fraction) (0.25, 0.75) 0.5 IGM parameter

Mmin (Minimum halo mass to support star formation) (2Mp, 200Mp) 20Mp Source parameter
αesc (−1, 0) −0.5 Source parameter
αstar (0, 1) 0.5 Source parameter

log10 fstar (−2,−0.25) −1.125 Source parameter
tq (Quasar lifetime) (0 Myr, 30 Myr) 1 Myr Quasar parameter

Mqso (Host halo mass) (≈ 1 × 109M⊙,≈ 4 × 1012M⊙) ≈ 4 × 1011M⊙ Quasar parameter

Table 2.1. Astrophysical Parameters Space: This table lists all the parameters used in our
study along with their respective ranges, fiducial values, and parameter types.

higher-mass halos tend to have more gas available for star formation, while αesc has
a negative range, indicating that high-mass halos possess deeper potential wells which
prevent the formation of low-density channels through which ionizing photons can escape.
Our parameter ranges are consistent with the constraints outlined in (Park et al., 2019),
following calibration to UV Luminosity Function (LF). Finally, the range of Mmin is
determined based on the average mass of a pixel (Mp) within the simulation box. In our
fiducial case, the pixel mass is Mp ≈ 108.28M⊙. Thus, we set Mmin slightly above this
value (= 2×Mp) to avoid numerical issues from unresolved halos and extended the range
up to 200 ×Mp. The fiducial value for Mmin is approximately 109.58M⊙ (= 20 ×Mp).

The second parameter type is the “IGM parameter”, which is indirectly adjusted by
varying fesc in our simulation. The sole constraint on fesc is that fesc ≤ 1. For xHI, we
chose a range of (0.25, 0.75), with a fiducial value of 0.5 at redshift 7.

Lastly, the third type is the “Quasar parameters”, which include the lifetime of quasar
activity (tq) and the mass of the halo hosting the quasar (Mqso). The lower limit of tq = 0
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Myr (inactive quasar) represents galaxy spectra for low-mass halos, while the upper limit
of tq = 30 Myr. The studies done in (Morey et al., 2021; Eilers et al., 2021) suggest
the average lifetime of a quasar ∼ 1 Myr for a population of quasars around z ≥ 6.
Hence, for our fiducial model, we set tq = 1 Myr.

The range of Mqso is determined after the simulation has run and the halo catalog has
been generated, but typical values of Mqso range from 109M⊙ to 1012M⊙. The selection
of Mqso and grid parameters is discussed in the next subsection.

2.3.5 Grid Parameters

To analyze the signature of damping wings, we generate a grid of simulation boxes
with reionization topologies governed by the parameters in Table 2.1, using 21cmFAST.
Each box in the grid has a side length of 512 Mpc, with 20483 number of grids and
a grid of 5123 for the ionized field. Periodic boundary conditions are applied to all
boxes. After generating the simulation boxes and halo catalog, we select a sample
of 6-7 evenly distributed mass bins, depending on the total number of available bins,
ranging from 109 to 1012M⊙.

For each mass bin, we require a host halo for the quasar and a randomly directed
sightline originating from the halo. We achieve this by randomly sampling 10,000 halos
from each bin and drawing a skewer in a random direction from each halo. This random
skewer serves as our line of sight, along which we evaluate the damping wing signal.
In cases where the number of halos in the mass bin is fewer than 10,000 (for very
massive halos), we loop over the existing halo sample with different random sightlines
to generate 10,000 skewers. Each skewer extends over a length of 300 Mpc. Along these
skewers, we compute the Lyα damping wing optical depth using Equation §2.3.3 and
evaluate the transmission flux. This entire set of mass bins, along with 10,000 skewers
for each bin, constitutes one model.

The selection of halos and sightlines remains consistent across different models, with
only the parameters discussed above being varied. For our analysis, we plot the mean
and median transmission flux for the observed wavelength, for each mass bin and model.
We also examine the sightline-to-sightline scatter within the 68th percentile region around
the median, which we call ∆SW68, to study the impact of these parameters and cosmic
variance. In all our results we display the plots for halo mass Mqso ≈ 4 × 1011M⊙

(fiducial value of Mqso) unless stated otherwise.
Lastly, we tested the effect of changes in reionization topology, due to varying box
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Figure 2.4. The M(DW) signals for all three different values of xHI calculated over 10,000
randomly distributed sightlines originating at the halos of mass Mqso ≈ 4 × 1011M⊙. The
shaded region in the upper panel represents the 68 percentile scatter of the damping wings
around the M(DW). The lower panel shows the width of the 68 percentile region, also called
scatter with ∆SW68. The higher the value of xHI the higher the effect of damping on the
transmission flux. Also, the higher the value of xHI the lower (more constrained) the width of
the ∆SW68.

sizes, on the damping wings, while maintaining a consistent grid resolution. The box
sizes tested range from [(256 Mpc)3, (512 Mpc)3, (640 Mpc)3, (768 Mpc)3, (896 Mpc)3],
with the ICs and evolved field cell sizes scaled proportionally, i.e., ICs = 4 × box size
with a cell size of 1 Mpc. For each box size, we ran a set of six different realizations
of the initial conditions to minimize uncertainties arising from the random distribution
of the initial Gaussian fields. The goal of these tests was to determine the box size
beyond which the average damping wing profiles converge. The results and discussions
of these tests are presented in Appendix A.1.

2.4 Results

In this Section, we present our findings from running the grid of models. All simu-
lations were conducted with boxes of 512 Mpc in length at redshift 7.0. Unless oth-
erwise specified, the parameter values used in our case studies are based on the fidu-
cial model Table 2.1.

For illustration purposes, the upper panel of Fig. 2.1 displays a sample slice of the
ionized box from our fiducial model. On this panel, the red (green and orange) dots rep-
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Figure 2.5. The distribution of high-mass (≈ 9 × 1011M⊙) (left plot) and low-mass halos
(≈ 4 × 109M⊙) (right plot). The high-mass halos reside in ionized regions, whereas the low-
mass halos are distributed all over the box

resent halos, and the corresponding red (green and orange) lines indicate the trajectory
of light from the quasar along the line of sight. In the lower panel of the same Figure,
we show the resulting damping wing signal from the respective color-coded sightline.

As expected, we observe the strongest damping of the transmitted flux for the orange
halo, which is located in a predominantly neutral region and encounters several neutral
islands along the sightline. In contrast, the green and red halos, situated in ionized
regions, experience less damping. However, while both the red and green halos reside in
ionized regions, the sightline from the red halo traverses more neutral islands compared
to that of the green halo. As a result, the red sightline experiences relatively greater
damping than the green one. This illustrates the dependence of the Lyα signal on both
the local environment of the host halo and the global environment along the sightline.

In Fig. 2.2 we present the slices of the ionized box for 0.25, 0.50, and 0.75 mean
global neutral fraction to illustrate how the reionization topology changes with the xHI.
In Fig. 2.3 we show the mean transmitted flux for the same values of xHI. Unlike the
median transmission flux, which represents a typical damping wing spectra, the mean
transmission flux averages multiple damping wing profiles that terminate at various
distances, effectively stacking them on top of one another. As a result of this stacking
and the substantial cosmic variance, a long-tail behavior is observed in the mean signal.
This tail is particularly prominent in cases with greater scatter, such as xHI = 0.25.

Some studies have examined this stacking of profiles in detail (Ďurovčíková et al.,
2024). However, for our purposes, we are more interested in examining the individual
damping wing profiles and their variation with reionization topology. Therefore, we focus
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on the M(DW), which better captures the appearance of a typical damping wing, rather
than the mean. Furthermore, the M(DW) is more robust for high-redshift quasars, as
the number of sightlines is limited. From this point onward, unless stated otherwise, our
analysis will be based primarily on the M(DW).

In Fig. 2.4, we present the M(DW) signals for three different values of xHI (0.25,
0.5, 0.75), originating from halos with fiducial Mqso. The shaded region represents the
68th percentile scatter of the damping wings around the M(DW). As expected, for larger
values of xHI, the sightlines encounter more neutral regions, resulting in significantly more
damping. The shaded region illustrates the variability of the damping wings within the
68th percentile around the M(DW).

We also observe that for higher values of xHI, it is more probable for a sightline to
intersect a neutral island earlier in its journey. Conversely, for lower values of xHI, the
sightline can travel a greater distance before encountering any neutral islands. This
trend is reflected in the scatter width (∆SW68) of the damping wing profiles, shown in
the lower panel of Fig. 2.4. Notably, ∆SW68 increases as the neutral fraction decreases,
particularly at larger distances.

The most massive halos tend to reside deep within ionized regions, as these high-mass
halos correspond to the peaks in the density field, which host higher concentrations of
both high- and low-mass halos. In contrast, low-mass halos are more evenly distributed
throughout the simulation box. This distribution is evident in Fig. 2.5. The left panel
shows that high-mass halos (≈ 9×1011M⊙) are biased towards ionized regions, while the
right panel illustrates that low-mass halos (≈ 4 × 109M⊙) are dispersed throughout the
box. This bias is also reflected in the damping wing signals for these halos. In Fig. 2.6,
we observe overall weaker damping for sightlines originating in massive halos, consistent
with their tendency to be located in larger ionized regions.

Fig. 2.7 illustrates the effect of tq on the damping wings. The first three plots show
the location of the halo and the corresponding sightline, ordered by increasing tq values [0,
1, 30] Myr. The red-shaded region represents the size of the ionized bubble. In the fourth
plot, we compare the damping wing profiles for the quasar-off case (tq = 0 Myr) with the
quasar-on cases (tq = 1 and 30 Myr). The tq = 0 case is particularly relevant for damping
wing signals originating from galaxies (e.g. (Umeda et al., 2024; Keating et al., 2024)).

In Fig. 2.8 we explore the effects of quasar lifetime for two extreme cases (tq = 0
and tq = 30 Myr) on an ensemble of halos with the fiducial Mqso. As expected, quasar
lifetime significantly impacts the M(DW), being the second most dominant factor after
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Figure 2.6. Similar to Fig. Fig. 2.4, we show the variation in the M(DW) signal and ∆SW68
as a function of the mass of halo hosting quasar (Mqso). Quasars living in more massive halos
suffer less damping.

Figure 2.7. The effect of quasar lifetime on damping wings. The upper three panels show
the halos and the sightlines for tq = [0, 1.30] Myr from left to right, with the shaded region
representing the size of the respective ionized bubble carved by the quasar. The lower panel
shows the effect of quasar activity on the damping wings. The longer the quasar is active, the
bigger the ionized bubble and hence less damping is observed.

the neutral fraction. This raises the issue of degeneracy between quasar lifetime and
neutral fraction when examining any particular damping wing profile (e.g. Frederick B.
Davies et al., 2018). We note that if tq is longer than 30 Myr, the quasar carves out a
large enough ionized region that the damping wing signal is almost entirely erased, even
in a fully neutral IGM. Therefore, for practical measurements, we restrict tq ≤ 30 × 106

years. Despite the significant variation in the M(DW) signal across this range of tq, the
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Figure 2.8. Similar to Fig. Fig. 2.4, the upper panel shows the damping wing signals for
tq = 0 Myr (red) and tq = 30 Myr (blue). The dotted curve represents the fiducial model with
tq = 1 Myr.

width of the scatter at fixed distance from the ionization front remains largely unchanged,
indicating that tq has a minimal effect on the scatter. We discuss this further in §2.5,
where we evaluate the effective values of xHI required to reproduce the M(DW) signals
for different tq. This behavior can be attributed to the fact that quasar activity primarily
alters the reionization topology locally, while the scatter arises from the distribution of
HI beyond the edge of the local bubble.

We also explore the impact of varying Mmin, which dictates the minimum halo
mass capable of supporting star formation. For higher values of Mmin, only the most
massive halos contribute to the reionization topology. Since these halos are far fewer
in number compared to their lower-mass counterparts, the reionization topology is
primarily governed by larger ionized bubbles. In Fig. 2.9, we present slices of the ionized
boxes for Mmin = 108.58M⊙ and Mmin = 1010.58M⊙. As expected, the ionized field
for Mmin = 108.58M⊙ features finer ionized bubbles and extended neutral regions. In
contrast, the slice corresponding to Mmin = 1010.58M⊙ exhibits larger, more coarsely
distributed ionized regions. Consequently, for Mmin = 1010.58M⊙, we anticipate an
overall reduction in the damping effect.

In Fig. 2.10, we observe that the change in reionization topology due to varying Mmin

has a noticeable impact on the damping wing profiles. Specifically, for Mmin = 1010.58M⊙,
there is indeed less damping compared to Mmin = 108.58M⊙, as the neutral islands are
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Figure 2.9. The slice of the ionized box with Mmin = 108.58M⊙ and Mmin = 1010.58M⊙ from
left to right respectively. On the left panel, we see the dominance of smaller and finer bubbles.
Whereas, the topology is dominated by much larger and coarser bubbles on the right panel.

smaller. For the same reason, and as discussed in the case of xHI, we observe more
scatter in the damping wings for Mmin = 1010.58M⊙. Although the Mmin = 108.58M⊙ box
appears more patchy, the likelihood of encountering a neutral region along any random
sightline is higher in this box compared to the Mmin = 1010.58M⊙ box. This is because
the Mmin = 108.58M⊙ box contains larger and more widely distributed neutral islands
than the Mmin = 1010.58M⊙ box.

Figure 2.10. Similar to Fig. Fig. 2.4, we show the effect of Mmin on damping wing signals.
For Mmin = 1010.58M⊙ (blue) where bigger bubbles govern the reionization topology, there is
less damping compared to the Mmin = 108.58M⊙ (red). In the lower panel, we see that the
Mmin = 1010.58M⊙ has much higher ∆SW68 than the Mmin = 108.58M⊙.
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Finally, in Fig. 2.11 we present a comprehensive overview showcasing the effects of
all the model parameters on the damping wings. We have already explored the impact
of xHI, tq, and Mmin in the previous Sections. For the remaining parameters—αstar, αesc,
and fstar—we do not observe any significant effect on the M(DW) or the scatter. This
lack of impact is likely due to these parameters being degenerate with another crucial
factor, the escape fraction fesc, which is used in the calculation of the ionizing efficiency
of high-redshift galaxies, as expressed in the Eq. (3.25).

The ionizing efficiency ζ, which governs the global ionization state of the intergalactic
medium (IGM), is directly influenced by fesc. Since αstar, αesc, and fstar primarily affect
galaxy formation and star formation rates, their impact is indirectly reflected in fesc.
Thus, changes in these parameters are absorbed by adjustments in fesc, which controls
the total number of ionizing photons escaping into the IGM, leading to a muted effect
on the observed damping wings.

In conclusion, while xHI, tq, and Mmin play a direct and substantial role in shaping
the damping wing profiles, parameters like αstar, αesc, and fstar being degenerate with fesc

for the calculation of xHI do not show any variations in our plots.

2.5 Discussion and Conclusion

The results above have established an understanding of how each parameter affects the
M(DW) profile and the sightline-to-sightline scatter of the damping wings around the
median. We observed that parameters influencing the global ionization topology, such
as xHI and Mmin, significantly impact the scatter of the damping wings. In contrast, tq,
which alters the local ionization topology, does not substantially affect the overall scatter.
In this Section, we aim to further discuss this behavior and explore the possibility of
handling the degeneracy between xHI and tq.

As noted in the previous Section, the damping wing signals vary rapidly with changes
in both xHI and tq, raising the issue of degeneracy in the M(DW). In Fig. 2.4, we
observe that variations in the global mean neutral fraction (xHI) have a pronounced
effect on both the M(DW) and the scatter. This is expected since any change in xHI

necessitates an alteration in the overall reionization topology of the box. However, if
the quasar is switched on for a time tq, it only modifies the neutral fraction within the
region described by Equation Eq. (3.26), which is a local phenomenon. Therefore, this
local modification contributes minimally to the scatter of longer damping wings, which
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Figure 2.11. A comprehensive overview of the damping wing signals resulting from variations
in all the parameters, along with their respective scatter and ∆SW68. xHI, tq, and Mmin
have a significant effect on both the M(DW) profile and the scatter. The scatter for all the
plots is calculated with 10,000 randomly distributed sightlines originating at the halos of mass
Mqso ≈ 4 × 1011M⊙.

extend well beyond the radius of the ionized bubble.
We can potentially use this difference in impact to explore the degeneracy between xHI

and tq. As illustrated in Fig. 2.12, when we match the effective value of xHI to obtain the
same M(DW) for different values of tq, we are unable to recover the scatter. Furthermore,
we observe that the scatter induced by xHI evolves much more rapidly than that caused
by tq. Thus, for an ensemble of damping wings, studying the scatter in conjunction with
the M(DW) may provide a more robust constraint on both of these parameters.

We also observe that Mmin has a noticeable effect on the M(DW) signals and a
stronger effect on the scatter. As shown in Fig. 2.9, the strong variation in scatter arises
from the fact that changes in Mmin affect the bubble size distribution around the halos.
With larger and coarser bubbles, the probability of encountering a neutral island along
a random sightline varies significantly with direction. A skewer can travel much longer
distances before encountering any neutral patch, thus leading to a strong correlation with
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Figure 2.12. The upper panel of the first plot shows the effective value of xHI = 0.685 to match
the mean signal from tq = 0 Myr. The upper panel of the second plot shows the effective value
of xHI = 0.21 to match the mean signal from tq = 30 Myr. The shaded region on both plots
represents the 68 percentile scatter from the M(DW). The bottom panels show the width of
their respective scatter. We see that when we try to match the M(DW), the scatter varies
rapidly with xHI as opposed to tq.

the scatter. This suggests that the statistics of damping wing absorption features may
provide a novel probe of the ionizing output of the lowest mass galaxies, which can be
regulated both by internal (supernovae, winds) and external (photoionization) feedback
processes, as well as the escape fraction of ionizing photons.

Finally, in the Appendix Appendix A.1, we establish that the damping wing profiles
computed using a simulation box length of 512 Mpc converge within the 10% error limit
with our fiducial parameters, and hence are sufficient for our studies.

With our study, we have shown that the Lyα damping wings are a very powerful tool
to not just constrain the neutral fraction (xHI), but also the properties of the source model.
We have established that other than xHI, the quasar lifetime (tq), the mass of the host
halo (Mqso), and the minimum mass of the halo that can support star formation (Mmin)
can have significant effect on the damping wing profile. We also looked at the sightline-to-
sightline scatter of damping wings and showed how this scatter can be used to somewhat
break the degeneracy between tq and xHI. This is because quasar activity primarily
alters the reionization topology locally, while the scatter arises from the distribution
of HI beyond the edge of the local bubble. In the near future we are expected to see
more than just a few z > 7 quasars. The Euclid mission is poised to uncover hundreds
of luminous high-redshift quasars (Barnett et al., 2019; Schindler et al., 2023). Thus
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making this systematic uncertainty not only relevant but possible to measure.

• The Lyα damping wings are sensitive to xHI, tq, Mmin and Mqso.

• xHI changes both the M(DW) and ∆SW68 signal

• tq mainly changes the shape of M(DW), but only shifts the ∆SW68. Thus,
this feature can be used to distinguish between the effects of xHI and tq on
damping wing spectra

• Mmin controls the distribution of bubble sizes among the permitted
star-forming halos

Take away points
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Fisher Matrix Analysis

The work in this chapter has been submitted and is under review in the AAS Journals
at the time of writing this thesis. I carried out all the scientific results presented in
this chapter, with the support and guidance provided by the co-author Fred Davies. I
also wrote all the texts in this paper, except for the proximity zone section, which was
written by co-author Fred Davies.

The reionization topology near the epoch depends on a multitude of param-
eters, namely xHI, Mmin, tq, and Mqso. The effect on reionization topology
as a function of these parameters can be seen through the changes in the
median damping wing profile and the sightline-to-sightline scatter ∆SW68 of
a set of quasar spectra. Combining these two observables can provide strong
constraints on these parameters. In this work, we derived the constraints on
the abovementioned parameters using the Fisher Information Matrix (FIM).
We showed that the constraints provided by only 64 quasars at redshift 7, xHI
= 0.5+0.02

−0.02, Mmin = 8.78+0.53
−0.53, log tq/yr = 6.0+0.12

−0.12, and log Mqso/M⊙ = 11.52+0.32
−0.31

are comparable to the results from other observables like 21cm signal. We also
studied the dependencies of these constraints as a function of the number of
quasars, the spectral noise, and the continuum noise. We also looked at the
changes in the nature of these constraints at multiple redshifts and luminosities
of the sources. We discovered that the overall constraints on xHI, tq, and Mmin
improve when we go lower in redshift or look at the fainter sources due to the
decreasing effects of proximity zones.

Abstract
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3.1 Introduction

The previous chapters paint the picture of how Lyα damping wings are a crucial resource
to study the universe during the epoch of reionization. While a good amount of literature
exists, where people tried to constrain xHI and tq using a single quasar damping wing
spectrum (Kist et al., 2024). We showed in Chapter 2 how the ensemble of damping
wings can also be used to effectively study the source parameters, namely Mmin (minimum
mass of the halo that can support star formation) and Mqso (quasar’s host halo mass).
We argued that the quasar’s sightline-to-sightline variation within the ensemble, together
with median damping wing spectra, is a potential source to effectively constrain and help
relax the degeneracy between all our selected parameters. Hence, in this chapter, we set
out to quantitatively analyze the spectra of an ensemble of damping wings to derive
the constraints on our astrophysical parameters filtered from the analysis of Chapter 2.
We adopt the Fisher-matrix or FIM analysis to study the constraining power of the
median damping wing profile for an ensemble of quasars (M(DW)), and 68-percentile
sightline-to-sightline scatter width around the median (∆SW68) over the aforementioned
set of astrophysical parameters.

To understand how this analysis works, we will first set up the theoretical framework
of the Fisher Information and derive the intuition behind its ability to constrain the
model parameters based on the observational data.

In §3.2, we derive the form of FIM we used in our calculations, and provide basic
intuitions behind the working of FIM. In §3.3, we briefly describe the models for the
filtered parameter space that we will focus on in this work. In §3.4, we derive the
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required observables for the calculations of FIM from the ensemble of damping wings
resulting from the grid of models presented in Chapter 2. Then, in §3.5, we show the
constraints we get from our analysis, how robust these constraints are, and discuss the
nature of these constraints. In §3.6, we explore how the constraints obtained above vary
with factors such as the number of quasars (Nquasars), spectral noise, and continuum noise.
We use this information to calculate the lower bound on Nquasars required to conduct our
analysis successfully. We assume a flat ΛCDM cosmology throughout our work, based on
the results from Planck (Aghanim et al., 2020), with cosmological parameters h = 0.676,
Ωm = 0.309, Ωb = 0.0489, and σ8 = 0.810.

3.2 Fisher Information Formalism

The FIM or simply Fisher Matrix is a statistical tool that helps determine the amount
of information any set of data contains about the model parameter, or how effectively an
experiment or observation can constrain model parameters. It is beneficial for predicting
the precision of future experiments or observations while they are still in the design phase.
Let us begin by deriving the relationship between the likelihood function and the FIM
to get the intuition behind using FIM to constrain the model parameters.

3.2.0.1 Curvature of Likelihood function

Let L(λ) be the likelihood function of our data set, modeled by some parameter λ.
We can Taylor expand our likelihood function around some fiducial value (λ0) of the
parameter for which the likelihood function assumes maxima. Then,

L(λ) = L(λ0) + ∂L
∂λ

∣∣∣∣∣
λ0

(λ− λ0) + 1
2!
∂2L
∂λ2

∣∣∣∣∣
λ0

(λ− λ0)2 + ... (3.1)

The first derivative is zero since the likelihood is maximum at λ0. If we ignore the
higher-order terms, we can rewrite the above equation as,

L(λ) ≈ L(λ0) + 1
2
∂2L
∂λ2

∣∣∣∣∣
λ0

(λ− λ0)2 (3.2)

The above equation implies that the likelihood function has a parabolic shape as a
function of λ. Instead of looking at the likelihood function, we can rather look at the
log of the likelihood function, as it also peaks at the same value. In that case, the shape
of the likelihood function resembles a Gaussian distribution. Thus,
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ln L(λ) ≈ ln L(λ0) + 1
2
∂2 ln L
∂λ2

∣∣∣∣∣
λ0

(λ− λ0)2 (3.3)

We can simplify the above equation to,

L(λ) = N0 e

1
2

∂2 ln L
∂λ2

∣∣∣∣∣
λ0

(λ−λ0)2

. (3.4)

Let’s call F = −∂2 ln L
∂λ2

∣∣∣∣∣
λ0

and compare the relation Eq. (3.4) with a Gaussian distri-

bution f(x) = 1
σ

√
2π
e− 1

2

(
x−µ

σ

)2
, with a mean value (µ) of the parameter at λ0, then we

see that the inverse of F represents the variance (σ2) (or uncertainty) of the parameter λ.
F represents nothing but the curvature (Hessian for a more general case) of the log-

likelihood function, which is equivalent to the inverse of the variance/uncertainty of the
parameter λ (Fisher, 1925). Thus, the higher the F value, the lower the uncertainty in
our parameter estimation. We will later try to derive the formal definition of the Fisher
matrix and compare it with the result in the Eq. (3.4) to complete our picture.

3.2.0.2 General Form of Fisher Information Matrix

We can generalize the above equations for a multivariate Gaussian, for a set of parameters
λα = {λ1, λ2...λr}. In that case, under some regularity conditions (Schervish, 2012) (refer
to the appendix E of Ly et al., 2017 for a discussion on the regularity conditions and see
§3.2.0.3), for an observable O ≡ O(λα), we can define the FIM as follows,

Fij = −
∫

O

(
∂2

∂λi∂λj

ln f(O|λα)
)
pλα(O)dO

= −E
[

∂2

∂λi∂λj

ln f(O|λα)
∣∣∣∣∣λα

]
.

(3.5)

Here f(O|λα) is any probability distribution function that is used to estimate the
parameters λα, for any data-set O, in the Eq. (3.4) it was the likelihood function.
The integral (expectation value) is done over different realizations of data. The above
equation represents a more general representation of the FIM. As discussed above, the
inverse of the FIM now will represent the covariance matrix of all our parameters.
According to the Cramér-Rao theorem, the inverse of FIM is the lower bound to the
covariance matrix provided by any unbiased estimator, i.e., FIM provides the minimum
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uncertainties on the estimation of parameters, given a data set (observations). The
derivation of the Cramér-Rao theorem and the form of FIM used in the Eq. (3.5) are
discussed later in the §3.2.0.3. Let’s continue and derive the FIM using χ2 as our log-
likelihood function. The χ2 is given as

ln L(λα) = ln f(O|λα) ∝ −χ2(λα)
2

=
∑N

k=1
1
2

(
Ok(λα) − Oobs

k

σk

)2

(3.6)

Here, O(k, λα) are the theoretical values generated from our modeling, Oobs(k) is
the observed value, and σi is the error/ uncertainty in the observed values. Let’s now
calculate the Fisher information of the χ2 for a simple one-parameter case.

1
2
∂2χ2

∂λ2 =
∑N

k=1
1
2
∂2

∂λ2

(
Ok(λ) − Oobs

k

σk

)2

=
∑N

k=1
∂

∂λ

(
Ok(λ) − Oobs

k

σ2
k

)
∂Ok(λ)
∂λ

=
∑N

k=1
1
σ2

(
∂Ok(λ)
∂λ

)2

+
(

Ok(λ) − Oobs
k

σ2
k

)
∂2Ok(λ)
∂λ2

(3.7)

Now, taking the expectation value of the above equation over the realizations of the
observed data Oobs

k , where the mean value of the observations is Ok(λ). We see that the
second term in the Eq. (3.7) goes to zero. Thus resulting in to

〈
1
2
∂2χ2

∂λ2

〉
=
∑N

k=1

〈
1
σ2

k

(
∂Ok(λ)
∂λ

)2〉
(3.8)

Now generalizing for a set of parameters λα = {λ1, λ2...λr}, the FIM can now be writ-
ten as,

Fij =
〈

1
2
∂2χ2

∂λiλj

〉
=
∑N

k=1

〈
1
σ2
∂Ok(λ)
∂λi

∂Ok(λ)
∂λj

〉
(3.9)

The summation here is over all the observables Ok ( ≡ Ok(λ)); for our case, this is
the sum over all the pixels of the damping wings and scatter width signals (∆SW68). In
Eq. (3.9), these observations are assumed to be uncorrelated, but in reality, the pixels
of our signals can have a correlation. In that case, we can re-write the above equation
in the more general form (Tegmark, 1997), by replacing the single uncertainties with
a full covariance matrix C of our data and (O1,O2, ...,ON) by the vector Ô. Thus
re-writing the Eq. (3.9) as
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Fij = 1
2

tr

C−1 ∂C
∂λi

C−1 ∂C
∂λj

+
〈
∂ÔT

∂λi

C−1 ∂Ô
∂λj

〉
(3.10)

For our work, we assume that the covariance matrix C does not vary with pa-
rameters. Hence, we can ignore the first term in the above equation and write the
general correlated FIM as:

Fij =
〈
∂ÔT

∂λi

C−1 ∂Ô
∂λj

〉
. (3.11)

This is the form of FIM that we will use in our calculations. We can then derive the
uncertainties in our parameter estimation by taking its inverse.

3.2.0.3 Alternative Expression of Fisher Information Matrix

In this section, we will derive the form used in Eq. (3.5) from the very definition of
the score function and the original definition of FIM, being the expectation value of
the square of the score function1.

The score function in statistics is defined as the derivative of the log-likelihood
function with respect to the model parameters. Mathematically, it is written as,

s(λ; O) ≡ ∂ ln L(λ; O)
∂λ

(3.12)

The score function represents the steepness of the log-likelihood function evaluated
at the fiducial value of the parameter vector. Here O represents the observable vector
described earlier, and λ is the parameter vector. As discussed in §3.2.0.1, the score
function vanishes at the maximum (or minimum) value of the log-likelihood function.
Now, let’s calculate the expectation value of the score function,

E

[
∂ ln L(λ; O)

∂λ

]
= E

[
1

L(λ; O)
∂L(λ; O)

∂λ

]

=
∫

O

(
1

L(λ; O)
∂L(λ; O)

∂λ

)
L(λ; O)dO

(3.13)

A likelihood function is just another probability distribution function of the data
points at a given parameter vector. When maximizing the likelihood function, we

1A part of this derivation follows from the lecture notes on Cramér-Rao Bound from Harvard Business
School.
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usually treat it as a function of the model parameter for fixed data points. However,
thinking of likelihood as a function of the model parameter and the data points is more
useful. Thus, we can calculate the expectation values using the likelihood function as
the probability distribution function. The expectation value is calculated for the sample
set of observables within a given model parameter vector. That being set, continuing
the above derivation, we get,

E

[
∂ ln L(λ; O)

∂λ

]
=
∫

O

∂L(λ; O)
∂λ

dO (3.14)

If the likelihood function is well-behaved (i.e., it is continuous and differentiable
within its domain, refer to Appendix E of Ly et al., 2017 for more rigorous treatment
of the regularity conditions), we can interchange the order of integral and derivative
(see Leibniz integral rule), giving us

E

[
∂ ln L(λ; O)

∂λ

]
= ∂

∂λ

∫
O

L(λ; O)dO

= ∂

∂λ
(1) = 0

(3.15)

Thus, the expectation value of the score function is 0. Since the score function is
the gradient of the log-likelihood function, the further the value of the log-likelihood
function from the maximum value (which is the 0 of the score function), the higher the
value of the score function, while the sign depends upon if the parameter value is smaller
or bigger than the most likely value. If we draw a physical analogy where the negative
log-likelihood function is some potential, where the parameter values tend to be closer
to the minimum (maximum for log-likelihood), then the gradient of log-likelihood of
it represents the force that the data exerts on the model parameters to bring it closer
to the data itself. Since the expectation value of the score function is 0, it is more
useful to look at its absolute magnitude or square. The expectation value of the square
of the score function (with zero mean) is nothing but the variance. This expectation
value is called the Fisher Information.

I(λ) = E[(s(λ; O))2] = E

(∂ ln L(λ; O)
∂λ

)2
 = V ar

[
∂ ln L(λ; O)

∂λ

]
(3.16)

Using the above definition of Fisher Information, we want to get the relation we used
in Eq. (3.5). To do so, let us look at the second derivative of the log-likelihood function,
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∂2 ln L(λ; O)
∂λ2 = ∂

∂λ

[
∂ ln L(λ; O)

∂λ

]
= ∂

∂λ

[
1

L(λ; O)
∂L(λ; O)

∂λ

]

= − 1
L2(λ; O)

[
∂L(λ; O)

∂λ

]2

+ 1
L(λ; O)

∂2L(λ; O)
∂λ2

= −
[
∂ ln L(λ; O)

∂λ

]2

+ 1
L(λ; O)

∂2L(λ; O)
∂λ2

(3.17)

Now, taking the expectation value,

E

[
∂2 ln L(λ; O)

∂λ2

]
= −E

[∂ ln L(λ; O)
∂λ

]2
+ E

[
1

L(λ; O)
∂2L(λ; O)

∂λ2

]
(3.18)

Again, if the log-likelihood is well-behaved, we can interchange the order of the deriva-
tive and the integral from the second term on the right-hand side of the above equation.

E

[
1

L(λ; O)
∂2L(λ; O)

∂λ2

]
=
∫

O

1
L(λ; O)

∂2L(λ; O)
∂λ2 L(λ; O)dO

=
∫

O

∂2L(λ; O)
∂λ2 dO

= ∂2

∂λ2

∫
O

L(λ; O)dO = 0

Thus, the Eq. (3.18) can be finally written as,

E

[
∂2 ln L(λ; O)

∂λ2

]
= −E

[∂ ln L(λ; O)
∂λ

]2
 (3.19)

Thus proving the alternate form of FIM used in the Eq. (3.5).

3.2.0.4 Cramér-Rao Bound

Before we prove the Cramér-Rao bound, let us recall some properties of the random vari-
ables;

• The Covariance matrix of two random variables, X and ,Y is given as:
Cov(X,Y ) = E[XY ] −E[X][Y ], if Either of E[X] or E[Y ] is 0, then Cov(X,Y ) =
E[XY ]

• The correlation between two random variables is given by ρX,Y = Cov(X,Y )
σ(X)σ(Y ) , and

|ρX,Y | ≤ 1
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Let’s consider an unbiased estimator U(O) of the parameter λ, which is the function
of the data/ observable O only. Using the definition of the score function s(λ; O) from
Eq. (3.12), we first calculate the covariance function between the two.

Cov(U(O), s(λ; O)) = E[U(O)s(λ; O)]

= E

[
U(O)∂ ln L(λ; O)

∂λ

]

=
∫

O

(
U(O)∂ ln L(λ; O)

∂λ

)
L(λ; O)dO

=
∫

O

(
U(O)

L(λ; O)
∂L(λ; O)

∂λ

)
L(λ; O)dO

=
∫

O
U(O)∂L(λ; O)

∂λ
dO

(3.20)

Since U(O) is the function of the data only, we can bring the derivative out of the inte-
gral,

Cov(U(O), s(λ; O)) = ∂

∂λ

∫
O
U(O)L(λ; O)dO

= ∂

∂λ
E[U(O)]

(3.21)

Since, U(O) is an unbiased estimator of the parameter λ, the expectation value of
U(O) is nothing but λ E[U(O)] = λ. Thus, the covariance function becomes

Cov(U(O), s(λ; O)) = ∂

∂λ
E[U(O)] = ∂λ

∂λ
= 1 (3.22)

Now, let’s look at the correlation function between U(O) and s(λ; O),

(ρ(U(O), s(λ; O)))2 = (Cov(U(O), s(λ; O))2)
V ar(U(O)V ar(s(λ; O))

V ar(U(O)) = 1
(ρ(U(O), s(λ; O)))2V ar(s(λ; O))

V ar(U(O)) ≥ 1
V ar(s(λ; O))

V ar(U(O)) ≥ 1
I(λ)

(3.23)

Recalling the fact that |ρX,Y | ≤ 1 and the variance of score function is Fisher
information I(λ) ( Eq. (3.16)), the above equation proves the fact that the inverse
of the Fisher Information provides the lower bound on the uncertainties produced by
any unbiased estimator.
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Figure 3.1. In this figure, we show how a typical damping wing signal (black dashed curve)
is modified by the addition of a proximity zone (red curve) and by both a proximity zone and
noise (blue curve)

3.3 Model Setup

This section will first define the parameter space we filter after studying the damping
wings in Chapter 2. Then, we will set up the formalism for the Fisher Matrix or FIM
calculations. We will derive the form of FIM that is convenient for our studies of the
astrophysical parameters and look at the physical understanding of it. We will also look
at an interpretation of the FIM that relates to the covariance matrix of the parameters.

3.3.1 Parameter Space

In this work, we will continue the results of Chapter 2 where we filtered the parameters
based on their impact on the median damping wing signal and the sightline-to-sightline
scatter. The final list of parameters is the global mean neutral fraction xHI, the quasar
activity lifetime tq, the minimum mass of the halos that can support star formation
Mmin and the mass of the quasar’s host halo Mqso. The fiducial values and ranges of
these parameters are shown in Table 3.1.

1. The Global Mean Neutral Fraction — xHI: This parameter represents the
mean of the total amount of neutral hydrogen in our simulation boxes. In 21cm-
FAST, individual pixels are flagged as ionized if they meet the following condition
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(Bradley Greig and Mesinger, 2018):

ζfcoll(x, z, R,Mmin) ≥ 1 (3.24)

In this equation, R is the filter scale at which our excursion set formalism works,
fcoll denotes the fraction of collapsed matter residing within halos in the region
R with a mass exceeding Mmin (Press and Schechter, 1974), (Bond et al., 1991),
(Lacey and Cole, 1993), (Sheth and Tormen, 1999). Effectively, Mmin establishes
the minimum mass of halos capable of supporting star formation. The parameter
ζ represents the UV ionizing efficiency of dark matter halos within the filter size,
as described by (Bradley Greig and Mesinger, 2017):

ζ(Mh) = 30
(

fesc

0.12

)(
fstar

0.05

)(
Nγ/b

4000

)( 1.5
1 + nrec

)
, (3.25)

Where fesc controls the fraction of ionizing photons escaping from star-forming
galaxies into the intergalactic medium (IGM). fstar represents the fraction of galac-
tic baryons that are converted into stars, Nγ/b is the number of ionizing photons
produced per baryon in the stars, and nrec indicates the number of times a hydrogen
atom recombines. For this specific scenario regarding the IGM, we can neglect nrec

in the last term.

We can now calibrate the simulation boxes to achieve the desired xHI by adjusting
the value of ζ, by tuning the value of fesc, as noted in the Chapter 2. For our
fiducial case at redshift z = 7, we set xHI = 0.5. We also run models for different
redshifts, namely, z = 6.5 with xHI = 0.35 and z = 6 with xHI = 0.15.

2. The Quasar Activity Lifetime — tq: Similar to the approach used in the
Chapter 2, we represent the effects of tq by carving out an ionized bubble around
the halo, with the radius depending on the quasar’s lifetime. Assuming our selected
halo hosts a quasar with lifetime tq, it carves out an ionized bubble with a radius
of R(ttq) around it. We assume a constant ionizing photon emission rate of Ṅph ≃
1057s−1 (Daniel J Mortlock et al., 2011). The radius of this bubble is given by
(Paul R Shapiro and Mark L Giroux, 1987; Cen and Haiman, 2000):

R(tq) =
(

3Ṅphtq

4π⟨nH⟩

)1/3

, (3.26)
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Where ⟨nH⟩ is the average number density of neutral hydrogen within the sphere.
Although this equation assumes homogeneous reionization, it can still be used to
calculate the expansion of the ionized bubble along the line of sight. Another
consideration is that while this equation assumes a fixed value of tq, in reality,
quasar lifetimes can vary even at a fixed redshift. To account for this variability, we
used a log-normal distribution of quasar lifetimes, with the mean value representing
the required tq for the model and a fixed standard deviation of 0.8 for all the values
of tq (Morey et al., 2021; Eilers et al., 2021; Khrykin et al., 2021).

3. The Minimum Mass Of Halos That Support Star Formation — Mmin:
Mmin defines the minimum mass of halos capable of supporting star formation,
acting as a threshold below which star formation becomes inefficient. In 21cmFAST
simulations, this suppression is estimated using a redshift-independent duty cycle
for a given halo mass Mh (Park et al., 2019):

fduty(Mh) = exp
(

−Mmin

Mh

)
. (3.27)

Thus, for halos with mass approximately equal to Mmin, only a fraction fduty can
form stars with an efficiency of fstar. Mmin and xHI together control the distribution
of ionized bubble sizes within our simulation boxes.

4. The Mass Of The Quasar’s Host Halo — Mqso: Once the density and density
fields are established, we utilize the method from (Mesinger and S. Furlanetto,
2007) to identify dark matter halos using excursion set theory. The positions
of these halos are then perturbed using velocity fields calculated via linear per-
turbation theory to obtain the corrected locations at the desired redshift. While
the ionized field we derive is based solely on the density field, we use this halo
catalog to place our quasars. This strategy allows us to include lower-mass halos
in our damping wing analysis, which would otherwise require much higher particle
resolution. Since quasars are likely to reside within massive halos, we select Mqso

∼ 3.3×1011M⊙ as our fiducial value to ensure a sufficient number of massive halos
are present.
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Parameter Fiducial model σ(Nquasars = 64) Parameter type
xHI 0.5 0.5+0.02

−0.02 IGM parameter
log 10Mmin/M⊙ 8.78 8.78+0.49

−0.49 Source parameter
log tq/yr 1 Myr 6.0+0.10

−0.09 Quasar parameter
log Mqso/M⊙ 11.52 11.52+0.24

−0.24 Quasar parameter

Table 3.1. Astrophysical Parameters Space: This table lists all the parameters used in our
study, along with their fiducial values, the constraints obtained after FIM analysis for Nquasars
= 64, and at redshift z = 7, and parameter types.

Figure 3.2. This figure show the median damping wing signal (M(DW)) from each sample
and its distribution. The red curve in the main plot shows the expectation value of M(DW)
profiles and the thin black lines show the distribution of the M(DW) for 100 random samples.
In the mini-plot we show the distribution of the M(DW) at a specific pixel (at Lyα). The solid
black line on the mini-plot is the fitted normal distribution over the distribution of M(DW).

3.3.2 Proximity Zone

The quasar proximity zone is the region surrounding the quasar where the intense
radiation from the quasar ionizes the IGM, influencing the nearby topology. To extract
constraints from the damping wing signal blueward of rest-frame Lyα, we must also
model the proximity zone Lyα transmission, which was originally neglected in Chapter 2.
As our goal is to construct an efficient forecasting framework, we opt for a simplified
approach compared to the radiative transfer simulations employed by recent works
(e.g. (Frederick B. Davies et al., 2018; Ďurovčíková et al., 2024; Kist et al., 2024)). We
instead use a modified version of the hydrodynamical simulation-calibrated approach
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from the appendix of Frederick B. Davies et al., 2020, shown to reproduce the statistics
of proximity zone sizes at z ∼ 6.

In this method, the mean profile of the Lyα transmission is computed assuming a
relationship between the effective optical depth τeff ≡ − ln F̄ , where F̄ is the mean Lyα
transmission, and the strength of the ionizing flux from the quasar. We recalibrate
the relationship from Frederick B. Davies et al., 2020 using skewers from the same
hydrodynamical simulation employed in their analysis, but now including snapshots at
z = 7 and z = 6.5 as well as at z = 6; we direct the reader to Frederick B. Davies et al.,
2020 for details. We find that the relationship between the Lyα optical depth and the
photoionization rate ΓHI closely follows a power-law relation,

τLyα = τ0 ×
(

ΓHI

2.5 × 10−13 s−1

)−0.55

, (3.28)

where the best-fit normalization factor τ0 is 9.3, 7.5, and 5.7 at z = 7.0, z = 6.5,
z = 6.0, respectively. For our fiducial ionizing quasar luminosity and the average quasar
spectral energy distribution from (Lusso et al., 2015), the photoionization rate scales
with comoving distance R from the quasar as

ΓHI = 1.85 × 10−11 s−1
(
Ṅion

1057 s

)(
R

1 + z

)−2
, (3.29)

where, for simplicity, we neglect the contribution from the UV background as the quasar’s
ionization radiation always dominates inside the proximity zone.

The stochasticity of Lyα absorption is then accounted for by drawing τi from a
random distribution centered on τLyα(R). Similar to Frederick B. Davies et al., 2020,
from the hydrodynamical simulation skewers we find that a lognormal distribution with
σln τ = 0.7 provides a good fit to the distribution of τLyα on our 1 Mpc pixel scale (see
also George D. Becker et al., 2007).

3.4 Data Sampling

As established, the FIM can be utilized to derive the lowest possible estimates for the
uncertainties of our parameters based on a given set of observations. This section will
discuss how we derive the set of observables required for FIM calculations from the
models previously presented in §3.3.

To summarize §3.3, we generate a suite of astrophysical parameters dependent suite of
patchy reionization models using 21cmFAST (Mesinger et al., 2011; Murray et al., 2020;
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Figure 3.3. In this figure, we show the scatter width signal (∆SW68) from each sample and
its distribution. The red curve in the main plot shows the expectation value of ∆SW68 profiles
and the thin black lines show the distribution of the ∆SW68 for 100 random samples. In the
mini-plot we show the distribution of the ∆SW68 at a specific pixel (at Lyα). The solid black
line on the mini-plot is the fitted normal distribution over the distribution of ∆SW68.

Muñoz et al., 2022; Qin et al., 2020; Park et al., 2019) over large cosmological volumes
(512 cMpc3) at z = 7. We identify halos within the desired mass bin in the simulation box
and randomly select a sample of 10,000 halo-sightline pairs. The damping wing optical
depth along each sightline is then calculated to obtain our damping wing signal. This
process yields an ensemble of 10,000 damping wing profiles across the entire box, serving
as a probe of reionization topology over the whole box. We then add the proximity
zone, followed by spectral and continuum noises to our dataset. For our analysis, we
define the median signal of this ensemble of damping wings of a specific mass (M(DW))
and the 68-percentile scatter about the median signal, referred to as the scatter width
(∆SW68), as our observables for the FIM.

In this work, we aim to assess the constraining power of M(DW) and ∆SW68 on the
parameters summarized in the Table 3.1 using the FIM, and to forecast the minimum
number of quasars required for a robust analysis. To achieve this, we first modify our
damping wing signals to create a more realistic mock spectrum.

We begin by incorporating the proximity zone into all damping wing signals, as
discussed in sub §3.3.2. After this, we introduce noise into our dataset of damping wings
by first adding normally distributed spectral noise to each sightline, with a mean of 0



3. Fisher Matrix Analysis 93

Figure 3.4. In this figure, we plot the overlaying corner plot for three different observables,
with the parametric constraints stated in the Table 3.1. From the top left/ along the diagonal
plots show the 1D marginalized distributions, which show the uncertainties on the individual
parameter. The off-diagonal plots show the 2D marginalized distributions, showing the
correlation between a given combination of parameters. The contours show 1, 2σ confidence
intervals. The blue contours represent 1D, 2D distributions with M(DW) as the only observable;
the red contours represent the same for ∆SW68 as the only observable, while the orange
contours represent the combination of both the M(DW) and ∆SW68. The numbers on
certainties are for the combined signal only. These calculations are for z = 7, with Nquasars
= 64, SNR − A = 10 and SNR − M = 10.
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Figure 3.5. Similar to the Fig. 3.4, in this figure we show the 1D marginalized distribution
along the diagonal representing the uncertainties on each parameter and 2D marginalized
contour plots of each pair of parameters. Here we plot the contours for Nquasars = 128, SNR − A
= 10 and SNR − M = 10 at z = 7.

and a standard deviation of 1/(additive-signal-to-noise ratio (SNR − A)). Subsequently,
we multiply each sightline by normally distributed continuum noise, with a mean of 1
and a standard deviation of 1/(continuum-signal-to-noise ratio (SNR − M)). Unlike the
spectral noise, for continuum noise, we draw a single value for the noise per sightline.
This conservatively treats the continuum error as fully covariant. We add the continuum
noise because the complete picture of the intrinsic quasar spectra is still not perfectly
understood. However, the current models can predict the quasar spectra roughly within
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Figure 3.6. In this figure we plot the correlation matrices of all the parameters from M(DW),
∆SW68 and their combination, arranged column-wise respectively, for Nquasars = 64 (first row)
and Nquasars 128 (second row).

the 10% error limit. To account for this uncertainty, we include some continuum noise
in our damping wing spectra. Fig. 3.1 visualizes a mock damping wing signal after
incorporating both the proximity zone and the added noises, revealing a suppression of
the signal on the bluer side of the spectra due to the presence of the proximity zone. This
forward-modeled dataset constitutes our new mock data, which we will use to sample
M(DW) and ∆SW68 for FIM calculations.

Once we have our mock dataset, we prepare Nsample (= 6000) samples, each containing
Nquasars random sightlines selected from the more extensive set of mock data. We vary
Nquasars in powers of 2 to examine how constraints change as a function of Nquasars. For
each sample, we calculate the median value of the damping wing profile (M(DW)) and
the scatter width (∆SW68), thus generating a set of realizations for both M(DW) and
∆SW68. Subsequently, we compute the expectation of M(DW) and ∆SW68 values defined
in Eq. (3.5) over the whole sample.

The mean values of these realizations (Nsample) for each pixel of M(DW) and ∆SW68

provide the expectation values of our vector Ô. In conjunction with varying Nquasars, we
explore different values of SNR − A and SNR − M for all FIM calculations. We use the
following fiducial values: Nquasars = 64, SNR − A = 10, and SNR − M = 10.

One of the primary advantages of employing FIM is that it requires the calculation
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of only the first-order derivative with respect to the model parameters. This process
can be efficiently performed by running only three simulation boxes per parameter, that
is: one for the fiducial box and two for the parameter values slightly perturbed around
the fiducial value, i.e., λi(1 ± δ), where δ represents a small change around the fiducial
values. Consequently, for a set of P parameters, we need to run only 2P + 1 simulations
to determine the FIM (see Eq. (3.11)) and ultimately derive the uncertainties in the
parameters. We performed the convergence tests on the derivative and subsequently the
FIM, we find for xHI, δ = 2%; log tq/yr, δ = 0.7%; and log Mmin/M⊙, δ = 2.5%, the
derivatives and FIM converge. For log Mqso/M⊙, the δ depends on our simulation mass
bins, which depend on our pixel scale. For our case, the δ(log Mqso/M⊙) = 1.4%

3.5 Results

In this section, we present the results of the FIM calculations from our study. We begin
by demonstrating a typical damping wing signal from our simulation in the Fig. 3.1,
where the black dashed curve shows the damping wing profile generated by our simulation
box. Once we add the effects of the proximity zone, we observe the suppression on the
bluer side of the spectrum, which is shown by the red curve. The blue curve shows
the effect of the proximity zone, spectrum noise, and the continuum noise. Next, we
demonstrate the mock data set after sampling used in the FIM calculations. In Fig. 3.2,
we show the distribution of the median damping wing signal (M(DW)) represented by
thin black lines alongside the expectation value depicted as a red curve. The distribution
of M(DW) at the Lyman-alpha (Lyα) pixel is also included. The pixel distribution of
M(DW) is approximately Gaussian, consistent with our assumption for the likelihood
function discussed in §3.2. Similarly, in Fig. 3.3, we present the distribution and
expectation value of the scatter width (∆SW68), along with its pixel distribution. We
note that the pixel variation of ∆SW68 is also roughly Gaussian, further validating
our likelihood assumption.

In Fig. 3.4, we present the corner plots for M(DW) only, ∆SW68 only, and their
combination, highlighting the constraints on each parameter derived from the FIM calcu-
lations. The diagonal elements represent the one-dimensional marginalized distributions
of uncertainties for the individual parameters, while the off-diagonal elements show the
two-dimensional marginalized contours, illustrating the correlation between each pair
of parameters. The constraint values in this plot are derived from the combination
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of M(DW) and ∆SW68, which we refer to as the combined signal. Notably, with
just 64 quasars, we achieve strong constraints on xHI and tq from the combined signal.
The constraints on Mmin (approximately 0.53 dex) and Mqso (approximately 0.32 dex)
are also reasonable.

In Fig. 3.6, we display the correlation matrices for all parameters about each observ-
able. The columns represent correlation matrices calculated using M(DW), ∆SW68, and
their combination, with the first row corresponding to Nquasars = 64, while the second row
corresponds to Nquasars = 128. The inverse of the FIM provides the covariance matrix of
the parameter estimates λ̂ (where λ̂ serves as an estimator of a parameter λ ∈ λα from
the dataset). The off-diagonal elements of each plot represent the correlation between
the estimates of two parameters, λi and λj.

Fig. 3.6 shows that xHI positively correlates with tq and Mmin. Referring to Fig. 2.11,
increasing the estimated value of xHI for a given dataset causes more damping, shifting
the M(DW) to the longer wavelength. But to observe the given dataset, this shift
must be balanced by a counter shift from tq or Mmin. Thus, we must also increase the
estimates of tq and Mmin. This same reasoning applies to ∆SW68; increasing xHI reduces
the overall ∆SW68 while raising tq, especially Mmin, increases the ∆SW68. Conversely,
we can use similar arguments to explain the negative correlation for M(DW) between
tq and Mmin. As increasing tq increases the ionized bubble around the quasar, which
can be balanced by decreasing the estimate for Mmin. We also note that the correlation
between xHI and Mmin for M(DW) is relatively weaker than for ∆SW68 since the M(DW)
of Mmin does not exhibit significant changes. Whereas the correlation between xHI and
tq for M(DW) is relatively stronger than for ∆SW68, since the ∆SW68 of tq does not
vary much over the extensive range of tq (refer to Fig. 2.12). Similarly, in the second
row of Fig. 3.6, we present the correlation matrices for Nquasars = 128. The correlation
behavior remains consistent with Nquasars.

In Fig. 3.5, we see that with just 128 quasars, the constraints on Mmin are already
≈ 0.36 dex. The constraints on Mmin are close to those obtained in Park et al., 2019;
Charlotte A Mason et al., 2018. This tells us that with a sufficient number of quasar
spectra, with a significantly smaller number of simulations, we can achieve as reasonable
constraints as obtained from the 21cm signal in Park et al., 2019; Charlotte A Mason
et al., 2018. These calculations so far are done at redshift 7. The forecasts for Euclid
(Schindler et al., 2023) predict a reasonable number of quasars at the redshift ≥ 7.

In Fig. A.8 and Fig. A.9 (the plots are in the Appendix A.2), we present the contour
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Figure 3.7. In this Figure, we show the redshift dependency of the constraints on each
individual parameter as a function of Nquasars. In each plot, the different line styles show the
constraints obtained from: the solid lines are for the combined (M(DW) +∆SW68) signal, the
dashed lines are for the M(DW) signal, and the dotted lines are for the ∆SW68 signal. Whereas
the color-scheme represents the redshifts, red is for z = 6, blue is for z = 6.5, and orange is for
z = 7. The upper-left plot shows the variation of constraints of xHI as a function of Nquasars, the
upper-right plot shows the variation of constraints of tq as a function of Nquasars, the lower-left
plot shows the variation of constraints of Mmin as a function of Nquasars, and the lower-right
plot shows the variation of constraints of Mqso as a function of Nquasars.

plots for redshifts 6 and 6.5, respectively. The fiducial values of xHI for these respective
cases are 0.15 and 0.35. According to the findings of the Chapter 2, reducing the
values of xHI results in a significant increase in the width of the ∆SW68, amplifying the
uncertainty in the ∆SW68 measurement. Intuitively, this should degrade the constraints
on Mmin. However, as illustrated in Fig. 3.1, the proximity zone also suppresses the
spectrum, further diminishing the constraints derived from M(DW). As we progress
to lower redshifts, the effects of the proximity zone also decrease, thereby increasing
the constraints obtained from M(DW) and ∆SW68. Consequently, we observe that the
constraining power on Mmin remains relatively consistent across all redshifts examined.
We specifically analyze Mmin, as it presents the least stringent constraints among all
the parameters considered.

In the Fig. 3.7, we explore the redshift dependency of the constraints on each individ-
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ual study parameter as a function of Nquasars. On each panel in the Fig. 3.7, we also plot
a solid black curve which shows the scaling relation of the uncertainties with Nquasars at
z = 7. One should expect the uncertainties to scale as σ(Nquasars = 256)×

√
256/

√
Nquasars

for large Nquasars, assuming the likelihood has a Gaussian distribution. We see that for
Nquasars ≥ 32, the black curve is very close to the orange curve (combined signal at z = 7).
Whereas, it deviates very rapidly for low Nquasars, signaling that our Gaussian likelihood
approximation fails for very low Nquasars. Our model overestimates the constraints for
low Nquasars; this is because the effective ∆SW68 and the range of M(DW) profiles get
very narrow for low Nquasars, hence making the constraints stricter. For high enough
Nquasars we match the 1/

√
Nquasars scaling, which confirms that our Gaussian likelihood

approximation is valid.
The constraints on the parameters suffer from a trade-off between the effects of the

proximity zone and the ∆SW68 as we vary the redshift. Fig. 3.7 captures this effect with
all the other parameters. We notice that at redshifts 6.5 and 7, the constraints are more
or less the same for all the parameters except tq. Whereas, the constraints are always
better at redshift 6. Let’s look at individual parameters; for xHI there is suppression on
the M(DW) from the proximity zone, and as we lower the redshift, the ∆SW68 spreads
out, making the constraints worse. If we look at the redshift 7 (orange curve), the
constraints from ∆SW68 are relatively better than M(DW). As we go lower in redshift,
the suppression from proximity zone on M(DW) decreases much rapidly, causing the
constraints from M(DW) and ∆SW68 (dashed and dotted lines respectively) to be much
closer for redshift 6 and 6.5 (red and blue curves respectively). The suppression from
the proximity zone for redshift 6 is so low that the overall constraints are much better
than the redshifts 6.5 and 7. For Mmin and Mqso where the constraints from ∆SW68

play a major role, we see the constraints overall do not change much with redshift.
For tq, we see another factor playing in, which is the effective bubble size around the
halo. As the redshift decreases, the effective ionized bubble sizes increase due to the
decrease in xHI. This means that the overall ionized region around a halo once the
quasar is switched on increases. Since the quasar erases any neutral topology around
it, it effectively reduces the difference between individual sightlines for a larger length.
Thus reducing the spread of ∆SW68 as we go to lower redshift (keeping in mind that
there is intrinsic scatter on tq since it is drawn from a lognormal distribution with some
variance, hence, the ∆SW68 cannot get arbitrarily low).
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Figure 3.8. In this Figure, we show the dependency of σ(Mmin) on the survey parameters
(Nquasars, SNR − A and SNR − M). on the leftmost panel we plotted the heatmap of Nquasars
vs SNR − M with the colorbar representing σ(Mmin). The yellow curves show the contours
of σ(Mmin) = [0.35, 0.5, 0.65]. Similarly, the rightmost panel is the heatmap for Nquasars vs
SNR − A with the same colorbar and contour scheme. The middle panel has 3 line plots of
σ(Mmin) vs each of the survey parameters. The topmost line-plot show the variation of σ(Mmin)
vs Nquasars with SNR − A = 10 and SNR − M = 10. The middle line-plot show the variation
of σ(Mmin) with SNR − A with Nquasars = 64 and SNR − M = 10. While, the bottom-most
line-plot show the variation of σ(Mmin) vs SNR − M with Nquasars = 64 and SNR − A = 10.

3.6 Dependence on Survey Parameters

So far, we have seen how the constraints and correlations between various parameters
vary as we vary their fiducial values. We also looked at the relationship between the
shape of the 2D marginalized contours and all the parameter combinations. In this
section, we would like to see how much these constraints are affected if we change the
survey parameters, namely SNR − A, SNR − M or Nquasars in our sampling. The value of
Nquasars is the number of quasars we need to observe to sufficiently use both the M(DW)
and the ∆SW68 statistics to justify the results obtained in the Chapter 2. We see that
for xHI and tq, the constraints are already very small for just 64 quasars. Hence, it is
rather more useful to look at the convergence for the uncertainties in Mmin and Mqso.
We show the calculations for redshift 7, unless stated otherwise.

In the Fig. 3.8, we show the variation on the constraints on Mmin (σ(Mmin)) with
respect to the survey parameters. The left-most and the right-most figures show the
heatmap plot of Nquasars vs SNR − M and SNR − A with the colorbar representing
the σ(Mmin). The yellow curves on each heatmap show the contours for σ(Mmin) =
[0.35, 0.5, 0.65]. We see that the contours, hence σ(Mmin), do not change much with the
changes in the continuum noise. The middle three plots in the same figure show the
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Figure 3.9. Similar to the Fig. 3.8, here we show the dependency of σ(Mqso) on the survey
parameters, through the heatmaps and line plots. The leftmost and rightmost heatmaps show
the distribution of σ(Mqso) over the range of Nquasars and SNR − M and SNR − A respectively.
The yellow curves are the contours for σ(Mqso) = [0.15, 0.25, 0.35]. While the middle panel
contains the line-plots of σ(Mqso) as a function of Nquasars, SNR − A and SNR − M from top
to bottom respectively.

line-plot variation of σ(Mmin) vs Nquasars, SNR − A, and SNR − M from top to bottom,
respectively. For each line plot of the survey parameter, we assume the fiducial values
of the other two parameters. From these line plots, it is evident that Nquasars has the
most significant impact on the constraints of Mmin. The additive/ spectral noise does
not show a significant drop beyond 10%, which is also our fiducial value.

Similarly, in the Fig. 3.9, we show the similar heatmap with contours σ(Mqso) =
[0.15, 0.25, 0.35], and line-plot figures for Mqso. Since the constraints on Mqso were a bit
already stricter, the dynamic range of σ(Mqso) is even smaller. The observations remain
the same: that Nquasars is the most dominant survey parameter, and signal-to-noise ratio
(SNR) = 10 is a reasonable amount of noise for both spectral and continuum noises.
This suggests that we would need to observe as many quasars as possible to increase
the robustness of our analysis. Furthermore, the measurements of Nquasars increase
roughly linearly with time. In contrast, the observation time increases quadratically
to improve the SNR for the spectral noise, thus making our analysis even more useful
and time-conserving.

3.7 Discussion and Conclusion

In this work, we studied the constraining prowess of an ensemble of Lyα damping wings
using the FIM analysis. We began by generating patchy reionization simulation boxes
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with the specific values of the astrophysical parameters described in the Table 3.1. Using
each box, for the desired mass bins, we generated a set of 10,000 randomly generated
halo-sightline pairs. We then calculated our Lyα damping wing profiles along these
sightlines to get our mock dataset. We then forward-modeled each sightline with the
proximity zone, spectral noise, and continuum noise to generate a more realistic dataset.
Finally we calculated the median (M(DW)) and the 68 percentile sightline-to-sightline
scatter width around the median (∆SW68) for a batch of Nquasars sightlines and used them
along with their combination as the observables for the calculation of FIM as described
in the Eq. (3.11). From the inverse of the FIM of the observables described above, we
got the lower bound on the constraints on our chosen set of astrophysical parameters.
We also looked at the redshift dependency of our study, by repeating the same analysis
for z = 6, 6.5 and 7, where z = 7 is our fiducial case.

Ṅph = 1057s−1 Ṅph = 1056s−1

constraints (σ) Nquasars = 64 Nquasars = 128 Nquasars = 64 Nquasars = 128
σ(tq) ±0.12 ±0.08 ±0.13 +0.11,−0.10

σ(Mmin) ±0.53 +0.37,−0.38 ±0.49 ±0.39
σ(Mqso) +0.32,−0.31 +0.24,−0.25 +0.33,−0.32 ±0.24

Table 3.2. This table lists the change in constraints of tq, Mmin and Mqso for Nquasars 64 and
128, as we change the luminosity of quasar, i.e., for Ṅph = 1057s−1 and Ṅph = 1056s−1

.

The results from our study suggest that for a big enough set of quasars (Nquasars

≥ 32), the Gaussian likelihood assumption for the FIM is a valid approximation. We also
observe that for (Nquasars ≈ 128) our constraints on Mmin are as good as the constraints
obtained from 21 cm studies (Park et al., 2019; Charlotte A. Mason et al., 2023). But
unlike 21 cm, we have treated each redshift independently, which is a conservative choice.
Furthermore, if we extrapolate the constraints at Nquasars = 256, assuming the Gaussian
likelihood, with σ(Nquasars = 256) ×

√
256/

√
Nquasars curve for xHI we get for Nquasars = 1

σ(xHI) = 0.20 and for tq we get Nquasars = 1 σ(tq) = 0.95, which are close to the values
obtained in (Kist et al., 2024) with full-continuum and full-simulation model.

We should note that our analysis has some caveats. We have assumed a simple model
for the proximity zone and neglected the non-equilibrium effects, the effects of flickering
(Frederick B. Davies et al., 2020; Satyavolu et al., 2023; Zhou et al., 2024), and the
heating from Helium reionization. We leave these complications to future work.

Another caveat that we addressed was that we assumed all the quasars have the same
luminosity, i.e., Ṅph = 1057s−1, but the quasars at high redshift could be fainter. The
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luminosity of the quasars affects our analysis in two ways: first, by determining the size
of the ionized bubble around the quasar, and then by calculating the proximity zone.
As we have seen, a decrease in either of these factors changes the constraining power
of our analysis. To test this we run another set of models with Ṅph = 1056s−1. From
Eq. (3.29) and Eq. (3.28) we can see that as we decrease the Ṅph, the ΓHI decreases but
the Lyα optical depth, τLya increases, which increases the suppression of the damping
wing signal. Thus reducing the constraining power of M(DW). But the decrease of Ṅph

also decreases the ionized bubble around the quasar, due to which the variation from
sightline-to-sightline and hence ∆SW68 increases for tq, as noted from the Fig. 3.7. We
know from the Fig. 3.6 that the tq and Mmin are negatively correlated, hence the reduction
of the bubble size increases the constraining power of Mmin instead. The amalgamation
of these processes reduces the overall constraining power for tq as we look at the fainter
quasars, and changes the constraints on Mmin and Mqso as shown in the Table 3.2. The
changes to the constraints of xHI are negligible.

With our study, we have shown the constraining abilities of M(DW) and ∆SW68

given a high enough number of quasars (Nquasars ≥ 32), and the constraints obtained
from our calculations are on par with the studies using 21 cm signal (Park et al., 2019;
Charlotte A. Mason et al., 2023). The number of quasars predicted is well within the
forecast range shown in (Schindler et al., 2023). Furthermore, there will imminently be
dozens (of the order of 30) of JWST quasars spectra for z ≥ 7, with the signal-to-noise
ratios comparable to or even better than our fiducial values (GO 9180; PI Hennawi).

• The FIM constraints follow the Gaussian likelihood approximation for
Nquasars ≥ 32

• For Nquasars = 64 quasars at redshift 7, xHI = 0.5+0.02
−0.02, Mmin = 8.78+0.53

−0.53,
log tq/yr = 6.0+0.12

−0.12, and log Mqso/M⊙ = 11.52+0.32
−0.31

• The constraints improve as go lower in redshift due to decreasing quasar
proximity zone effects

• for quasars with Ṅph = 1057, and 1056, the constraints remain more or less
same

• The constraints are most dependent on Nquasars, followed by spectral noise
and least dependent on continuum noise

Take away points
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Understanding the short mean free path at

z = 6
The work presented in this chapter is being prepared to be submitted for publication.
My contribution to this work as a primary author has been to develop the necessary
reionization simulation boxes, calculate the bubble size distribution and MFP from these
boxes as a function of the set of astrophysical parameters, and analyze the results from
the MFP calculations. As a co-author, Fred Davies provided guidance and supervision
during this work. Yongda Zhu provided us with the Lyman series attenuation model and
normalized quasar spectra to compare our models with the data.

The Lyman continuum (Lyman Continuum (LyC)) mean free path (MFP) for
low redshifts has been shown to follow a power-law relation. But at redshift,
z = 6, the MFP is extremely short. The source of the short MFP is debatable.
Hence, in this work, we explore the astrophysical parameter dependency of
LyC MFP. We aim to fit the quasar spectra with the transmission profiles
generated by our extensive suite of astrophysical parameters, to look for the
set of parameter values that best describe the data. We find that Mmin and
Mqso have negligible effect on the final transmitted flux. While xHI and tq
affect the signal the most. Our results implied that to explain the short MFP
from the late reionization models, we would need xHI ≥ 0.35 and a very short
tq (= 104yrs) or xHI ≈ 0.5 for tq = 106yrs. Thus, indicating that the late
reionization models are insufficient to explain the short MFP of ionizing pho-
tons, we need some additional Lyman limit systems within the quasar proximity
zone to explain the short MFP of the ionizing photons at z = 6.
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4.1 Introduction

So far, we have studied how to probe the reionization topology using Lyα damping
wings. In the Chapter 2, we saw that these damping wings are not only sensitive to the
global topology but also to the local topology. We also saw how changing Mmin changes
the distribution of the bubble sizes across the whole box, and by changing the tq,
which changes the ionized bubble, locally shifts the whole damping wing profile. In the
Appendix A.1, we studied how the distribution of the ionized bubbles in a simulation box
changes as we change the box size, while keeping the resolution and initial conditions
the same. In the Fig. A.7, we plotted the distribution of the ionized bubble around
the 100 most massive halos as a function of the box size. However, the study of the
ionized bubbles has far more implications than just testing the convergence of the boxes.
Studying the ionized bubble distribution is crucial in understanding the evolution of
neutral gas during reionization. In a very simplistic case, the boundary of these bubbles
acts as the length scale at which the radiation from the luminous objects within these
bubbles starts to suffer absorption or scattering from the IGM. Thus, on first order, the
distance traveled by photons before suffering from any attenuation is at least as large as
the size of the ionized bubble. This distance is nothing but the mean free path (MFP) of
these photons. Of course, it is not the complete picture, but it is a good start to derive
the mean free path of photons, whether they are absorbed or scattered.

Using a similar methodology as in Appendix A.1, we select a set of 10,000 random
halos of a given mass from our simulation boxes. We then draw a random sightline from
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these halos, assuming they host a quasar. We then look at the neutral gas density along
this sightline. We define the boundary of the ionized bubble as the length from the
center of the halo to the first pixel at which the HI fraction is greater than 0 (xHI(r) > 0).
Averaging over all these sightlines from all the halos of a given mass gives us the average
ionized bubble radius for that mass. Repeating the same exercise for different xHI, tq,
Mmin, and Mqso provides us with the variation of the bubble size distribution as a function
of our astrophysical parameters. Now, assuming the flux to be 1 in the ionized region
and 0 once the sightline hits the neutral pixel, we then stack all these step-wise fluxes
to calculate the flux as a function of distance. We define the MFP for such flux as
the distance at which the flux drops to 1/e. This is a very generic way of calculating
MFP from simulations. We do need to take into account the fact that the absorption
cross-section of different radiation could be different, and hence, the MFP or the change
in flux is a function of wavelength/ frequency of the incoming photon. We will discuss
the methods to include the wavelength/ frequency dependencies later in this chapter.

In observations, especially at high redshift (z > 5), where the signal-to-noise ratio of
the quasar spectra is not good enough, we usually stack a bunch of quasars at specific
redshift bins to average out the noise and get average absorption features. This averaged
flux is then compared with the intrinsic quasar flux to get the MFP. The intrinsic flux
gets attenuated due to the absorption while traveling through the IGM. This attenuation
is given by e−τ(r), where τ(r) is the effective optical depth due to the absorption of the
IGM, which is a function of the distance from the quasar. For the ionizing photons
with wavelengths less than 912 Å, we can compare the observed flux to the intrinsic
flux blueward of 912 Å. The ratio of the observed flux to the intrinsic flux gives us
the relation for the optical depth (e−τ(r)). We define MFP (λMFP as the distance at
which the observed flux drops to 1/e from the intrinsic value, i.e., the distance at which
the optical depth reaches unity.

The MFP of the Lyman system can be broadly categorized into two categories: the
LyC region and the Lyman Series (LyS) region. The LyC photons are the photons
with the energy greater than the ionization potential of HI , Eion = 13.6 eV. This
corresponds to the wavelength shorter than the Lyman limit, λLL = 911.76 Å (for the
sake of simplicity, we will use λLL = 912Å). In this process, the photon is completely
absorbed, and the energy is used to eject the electron out of the HI atom, thus ionizing
it in the process. In the case of LyS, the photons interact with the HI via resonant
scattering (or resonant absorption, which is followed by re-emission). In this case, the
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incoming photon excites the electron into some excited state, re-emitting the photon in
a random direction and de-exciting back to the ground state. The LyS refers to the
transition of the electron from the ground state to any excited state or vice versa. We
showed some basic properties of Lyman absorption in §1.5.4.

In this chapter, we will focus on the MFP of LyC photons, i.e., the ionizing photons,
as it provides a clear indication of the progress of reionization. In observations, the MFP
of ionizing photons is measured by stacking the spectra of quasars at similar redshifts
and observing the average drop of their flux past the Lyman limit (Stengler-Larrea et al.,
1995; Prochaska et al., 2010; Songaila and Cowie, 2010). At z ∼ 3 − 4, this MFP comes
from optically-thick HI gas residing in the halos of galaxies (Lyman limit systems), i.e.,
small dense clouds with HI column density high enough to be optically thick to the LyC
photons at the Lyman limit (NHI ≥ 1.6 × 1017cm−2), within the fully-reionized IGM at
those redshifts. Initially, the MFP for LyC photons was believed to increase rapidly as
the ionized bubbles overlap. However, this did not fit the observational picture; either
the Lyman limit systems were insufficient, or the bubbles were too big.

At z = 6, this MFP is very short (R. H. Becker et al., 2001) relative to the extrapo-
lation from lower z, and this has been interpreted as a sign of incomplete reionization,
i.e., there is some additional effective opacity from the presence of IGM-scale neutral
islands (edges of ionized bubbles). Another competing interpretation is that the opacity
primarily comes from increased HI within the large-scale ionized regions. In this work,
we will assess this reionization connection directly, by estimating what combinations of
source parameters and IGM neutral fractions would be required to reproduce the signal
in the former case. Before we proceed with the modeling and results, we must first set
the stage with a theoretical framework.

4.2 The Lyman Absorption Series

As discussed in the §1.5.4, the Lyman series refers to the transition of an electron from
the ground state (principal quantum number n = 1) to any excited state (n ≥ 2 or vice-
versa. The energy of this transition is given by the Rydberg formula,

En2→n1 = RH

(
1
n2

1
− 1
n2

2

)
(4.1)

where RH ≈ 13.6 eV is the Rydberg constant for hydrogen and n1 = 1 is the ground
state for the Lyman series. The excited states n2 = 2, 3, 4, ... represent Lyα (λα ≈



4. Understanding the short mean free path at z = 6 108

1215.67Å), Lyβ (λβ ≈ 1025.72Å), Lyγ (λγ ≈ 972.53Å), etc., series at the rest frame.
For n2 = ∞ or photons with energy greater than the ionization potential of hydrogen,
Eph ≥ 13.6 eV , we enter into the LyC regime. This corresponds to the wavelengths
shorter than the Lyman limit (λLyC = 912 Å).

4.2.1 Lyman Series Cross-Section

Any photon with energy Eph < 13.6 eV can be scattered away from the HI by the
absorption and subsequent emission from the electron within HI. The probability of
any photon being absorbed/ scattered is described by the LyS line absorption cross-
section, which is given by,

σj(ν) = πe2

mec
fjϕ(ν − νj) (4.2)

where ϕ(ν − νj) is the Voigt line profile, with νj as the frequency of the jth Ly-
man transition, and fj is the oscillator strength associated with the jth Lyman tran-
sition and is given by,

fj = 256 j5(j − 1)2n−4

3(j + 1)2j+4 . (4.3)

4.2.2 Lyman Continuum Cross-Section

On the other hand, any photon with the energy Eph ≥ 13.6 eV will suffer from the
photoionization absorption with the cross-section given as

σHI(ν) = σLyC

(
ν

νLyC

)−2.75

(4.4)

where, σLyC ≈ 6.30 × 10−18cm2 (Kirkman and Tytler, 2008) is the photoionization
cross-section at the Lyman limit.

4.2.3 Opacity and Optical Depth

The opacity of a medium is the measure of the medium’s ability to absorb or scatter the
incoming photons. For photons with frequency ν, passing through a medium with nHI

(in our case, the absorbers are HI) density of absorbers, with σ(ν) (either LyS or LyC)
being the absorption cross-section, the opacity can be written as,

κν = σ(ν)nHI (4.5)
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The opacity is the inverse of the MFP of the photons with the frequency ν, passing
through the same medium. It also relates to the optical depth. The optical depth, τ(ν),
as a function of the frequency of the incoming photons, helps quantify the amount of
absorption these photons suffer. For the photons with frequency ν, traveling through
the same medium and the absorption cross-section given by σν , the optical depth along
this infinitesimal distance dr is defined as,

dτ(ν) = nHI(r)σ(ν)(r)dr = κ(r, ν)dr (4.6)

If we assume the IGM to be uniform, then we can integrate the above equation to get
the optical depth for LyS and LyC transitions by using the definition of the cross-sections
defined in the Eq. (4.2) and Eq. (4.4). Let’s look at them one by one.

4.2.3.1 LyC optical Depth

We will first look at the LyC optical depth. After substituting the form of the LyC
cross-section from the Eq. (4.4) into the §4.2.3, and expressing it in terms of redshift,
we get the following equation:

κLyC(z) = κ912(z)
( 1 + z

1 + z912

)−2.75
(4.7)

where, κ912(z) = σLyC × nHI is the opacity at 912 Å. Now converting dr into dz
from FLRW cosmology,

dr

dz
≡ c

H(z)(1 + z)
= c/H0

(1 + z)
√

Ωm(1 + z)3 + ΩΛ
(4.8)

substituting the Eq. (4.7) and Eq. (4.8) in Eq. (4.6) and assuming the matter domi-
nated universe approximation dr/dz ≈ c/(H0Ω1/2

m )(1 + z)−5/2, we can integrate Eq. (4.6)
for the redshift range zqso (redshift of the quasar source) to the redshift at which the wave-
length of the emitted photon redshifts to 912 Å, to get the relation in (Prochaska et al.,
2009),

τeff,LyC(z912, zq) = c

H0Ω1/2
m

(1 + z912)2.75

×
∫ zq

z912
κ912(z′) (1 + z′)−5.25 dz′ (4.9)
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4.2.3.2 LyS optical Depth

For the LyS optical depth, we just need to substitute the frequency, ν, to the observed
frequency νobs = ν(1 + z) and use the Eq. (4.8) for dr/dz. Now substituting Eq. (4.2)
in the Eq. (4.6) and using the identity∫ ∞

−∞
ϕ(x)dx = 1,

we can integrate the Eq. (4.6) to get the following result,

τLyS
j = πe2

mec
fj

nHI

νjH(zj)
(4.10)

where zj is the redshift at which the ν(1 + z) = νj.

4.3 Quasar Photoionization Rate

The quasars’ high luminosity makes their ionizing flux dominate locally over the ul-
traviolet background radiation (UVB). Due to which the transmission near the quasar
increases compared to the background IGM transition. This increased transmission can
be used to measure the background photoionization rate of UVB, Γbkg, by measuring
the reduction in the number of strong absorption troughs (Bajtlik et al., 1988) or
using the flux statistics.

We can characterize the transmission flux using the concept of optical depth. For
any flux F, we can also define optical depth as τ as F = N0e−τ , where N0 is unattenuated
flux. Now, ignoring the gas motion or the temperature gradient in the vicinity of the
quasar, we can define the optical depth in the vicinity of the quasar proximity zone
using a very simple model (Calverley et al., 2011)

τ = τbkg[1 + ω(r)]−1 (4.11)

where τbkg is the background optical depth in the absence of the quasar, and ω(r) can
be defined as,

ω(r) = Γqso(r)
Γbkg

. (4.12)

The Γ terms here are the HI photoionization rates, where Γqso(r) is the quasar
photoionization rate and Γbkg is the background photoionization rate from UVB. We
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assume Γqso(r) to be spherically symmetric and only depend on the distance from the
quasar, r, which can be approximated as,

r ≃ c

H(z)
∆z

1 + z
. (4.13)

Now we define the characteristic length Req, which is a representative of the quasar
proximity zone. It is the distance from the quasar where the photoionization rate from
the quasar is equal to that of the UVB, i.e., Γqso(Req) = Γbkg. Using this definition,
we can rewrite the Eq. (4.11) as

τ = τforest

1 +
(
r

Req

)−2
−1

. (4.14)

Although we use Req as the proxy of quasar proximity zone, it must be noted that
observationally, the proximity zone is defined as, ”the maximum extent of the enhanced
transmission flux, i.e., the distance at which the transmission flux drops to 0.1 in the
spectrum, when the spectrum is smoothed with 20 Å filter” (Xiaohui Fan et al., 2006;
Carilli et al., 2010). Since this is the observational definition and not the physical, we
choose to stick to the definition of (Calverley et al., 2011), which is, it is the characteristic
length at which Γqso(Req) = Γbkg or ω = 1.

For our simplistic case, we can assume that the flux drops as 1/r2. We can further
consider the frequency dependence of the intrinsic flux (or the spectral energy density) to
follow a power law relation (in George D. Becker et al., 2021, the absolute magnitude of
the quasars was measured for the mean luminosity at restframe 1450 Å, but the choice of
this wavelength hence does not impact the understanding of the theoretical framework),

fν(ν) ∝

ν−αUV
ν , 912 Å < λ < 1450 Å

ν−αion
ν , λ < 912 Å

(4.15)

We can define the flux or the luminosity at the Lyman limit 912 Å by some normal-
ization, which will be f912 = f1450(ν912/ν1450)−αUV

ν . Where αUV
ν = 0.6 ± 0.1 taken from

Lusso et al., 2015 and αion
ν = 1.5 ± 0.3 taken from George D. Becker et al., 2021. Thus,

we can now define the luminosity at the Lyman limit as,

L912 = 4πd2
L

f912

(1 + zq)
(4.16)

where dL is the luminosity distance of the quasar. Using this, we define the Lyman
limit flux density at any distance r from the quasar,
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FQ
912(r) = L912

4πr2 . (4.17)

The general form of the photoionization rate of HI, Γ (in s−1) due to a source of
UV flux is given by (see Eq. (1.120)),

Γ =
∫ ∞

c/912

4πJ(ν)σHI(ν)
hν

dν (4.18)

where J(ν) is the source intensity, σHI(ν) is the ionization cross-section of HI as a
function of ionizing photon frequency ν, and h is Planck’s constant. For an isotropic
source, FQ

912 = πJ(ν) and integrating the Eq. (4.18) keeping in mind Γqso(Req) = Γbkg, we
get

Γbkg = σLyCF
Q
912(Req)

(αion
ν + 2.75)

(4.19)

where σLyC is the HI ionization cross-section at 912 Å, The above equation can
be rewritten in terms of luminosity,

Γbkg = σLyCL912

(αion
ν + 2.75)4πhR2

eq
(4.20)

here Γ is in the units of s−1, L912 is in erg s−1 Hz−1, and Req is in cm. We can
rearrange the above equation to get the definition of Req

Req =
[

L912σLyC

4πhΓbg(αion
ν + 2.75)

]1/2

(4.21)

4.4 Model setup

Similar to the model setup in Chapter 2 and Chapter 3, we begin by generating a suite
of astrophysical parameters dependent suite of patchy reionization models using 21cm-
FAST over large cosmological volumes (512 cMpc3) at z = 6. To study the parameter
dependency of the MFP, we select a much larger range of xHI, Mmin, and tq. The fiducial
values and the corresponding ranges of our astrophysical parameters are shown in the
Table 4.1. Again, we define an ionized box with a unique combination of xHI, Mmin,
and tq as one model. Thus, we generated a suite of 375 models. For each model, we
selected 12 mass bins for Mqso to effectively cover the entire mass range, with a larger
focus on heavier halos. Using the same halo finder algorithm as discussed in §2.2, we
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Figure 4.1. In this Figure, we show the changes in the reionization topology and its effects on
the ionized bubble as a function of xHI and Mmin. The rows show different values of xHI while
the columns show different values of Mmin. The changes in xHI change the overall HI density
within the box, whereas the changes in Mmin redistribute these HI densities.

randomly select a sample of 10,000 halo-sightline pairs for each mass bin. Along each
sightline, we calculate the HI fraction and trim the length of the sightline as soon as it
hits a neutral pixel. This trimmed sightline shows the shortest distance to the neutral
patch from the center of the halo, representing the size of the ionized bubble around the
halo. Since our reionization model is patchy, the ionized bubbles around any halo are
not spherical. In this case, we take the average of all the trimmed sightlines to get the
average bubble size around the halo of a given mass. The size of these bubbles depends
not only on the halo mass but also on the topology of reionization. As shown in the
Chapter 2, xHI and Mmin play a crucial role in governing the size and the distribution
of these ionized bubbles, while tq modifies the bubble size around the halo. In the
Fig. 4.1 we show the reionization topology as a function of xHI and Mmin. We see that
as we change the Mmin, the distribution of bubble size changes. For low Mmin we see
a lot more smaller and finer bubbles, while for large Mmin we see bigger and coarser
bubbles. This is already explored in §2.4.

Our models for the tq are the same as used in the Chapter 2 and Chapter 3 where we
carve out a bubble of radius Rtq , given by the Eq. (3.26) along the direction of sightline
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Parameter Fiducial model Range of values Parameter type
xHI 0.15 [0.05, 0.10, ..., 0.70, 0.75] IGM parameter

log Mmin/M⊙ 8.78 [8.28, 8.61, 8.78, 8.95, 9.28] Source parameter
tq yrs 6 [0, 104, 105, 106, 107] Quasar parameter

Table 4.1. Astrophysical Parameters Space: This table lists all the parameters used in our
study, along with their fiducial values, the constraints obtained after FIM analysis for Nquasars
= 64 at redshift z = 7, and parameter types.

Figure 4.2. In this Figure, we plot the transmission flux attenuation factor for the Lyman
series as a function of the restframe wavelength.

(assumed as our line of sight) in the post processing. Similar to the Chapter 3, we
take into account the variability of tq from quasar to quasar by drawing the values
of tq from a log-normal distribution with the mean value representing the required
tq and the standard deviation of 0.8. After generating the trimmed sightlines, we stack
them together to get the distribution of the bubble radii. To convert the bubble size
distribution to the transmission flux from the quasar, we assume the flux to be 1 within
the bubble and 0 outside of it. We then stack all the fluxes and normalize them. Thus
generating the general transmission flux as a function of distance. We then convert the
distance scale to the rest-frame wavelength scale of LyC, which peaks at 912 Å.

To derive the observed flux, we need to take into account the IGM absorption of
the flux. These absorptions will attenuate the overall signal. Since we want to look
at the MFP of the ionizing photons, we need to attenuate the general flux with the
effective Lyman series opacity due to the foreground IGM absorption, κLyS, and the
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attenuation due to the effective Lyman continuum absorption, κLyC. Thus, we can
write the final observed flux as,

Figure 4.3. In this Figure, we plot the raw transmission flux (blue curve), transmission flux
modified by the LyC attenuation only(orange dashed curve), transmission flux modified by the
LyS attenuation only(green dotted and dashed curve), and the final observed transmission flux
(red dotted curve). We also show the effective mean free path after the LyC absorption as well.

f obs
λ = N0f

gen exp (−τLyC) exp (−τLyS) (4.22)

Where N0 is the normalization free parameter, f gen is the general transmission flux we
get after stacking the sightlines, τLyC is the LyC optical depth and τLyS is the foreground
Lyman series absorption optical depth. This equation is analogous to equation 1 in
(George D. Becker et al., 2021).

4.4.1 LyC Absorption

We have already derived the LyC optical in the Eq. (4.9), where the optical depth
depends upon the opacity of the medium. Since our medium is now affected by the
presence of a quasar, we need to include the contribution from the quasar proximity
zone on the LyC opacity/ optical depth. We can calculate the effective LyC optical
depth as a function of distance r from the quasar, as:

τLyC =
∫ R

0
κLyCdr (4.23)
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where κLyC is the LyC opacity and can be written as a function of the quasar
photoionization rate,

κLyC(r) = κLyC
bg

[
1 + Γqso(r)

Γbg

]−ξ

. (4.24)

Where κLyC
bg is the background opacity which we equate to 1/42 h−1

70 (Worseck et al.,
2014; Qin et al., 2025). The power law index ξ = 2/3 is a fiducial number derived from
the radiative transfer simulations through IGM (S. R. Furlanetto and Oh, 2005; McQuinn
et al., 2011). Γqso(r) is the quasar photoionization rate at some distance r away from
the quasar, and Γbg is the background photoionization rate. The photoionization rate
at any distance r away from the quasar is then calculated using the cumulative optical
depth τLyC up to r. The quasar photoionization rate is further characterized by Req,
which represents the characteristic distance at which the Γqso(r) is equal to the Γbg in
the absence of any absorption/ attenuation of the ionizing photons from the quasar.
The Γqso(r) can thus be written as,

Γqso(r) = Γbg(r)
(
r

Req

)−2

e−τLyC(<r) (4.25)

4.4.2 LyS Absorption

The LyC spectrum of light, i.e., for the wavelength (λ ≤ 912Å), will also suffer from
the redshift effects while traveling through IGM and may enter into the Lyman series
regime. Thus, we need to correct for the Lyman series foreground opacity attenuation
at the observed wavelength (λobs < 912(1 + zqso)Å). The attenuation factor can be
derived in the same way we derived the LyC optical depth, but this time we have to
sum over the whole Lyman resonant series.

τLyS(λobs) =
∑

j=Lyα,Lyβ,...,

τ j(zj) (4.26)

The τ j is the optical depth of transition j at the redshift zj such that λj is the restframe
wavelength of the transition j, and λj × (1 + zj) = λobs. The quasar proximity zone
modifications on the LyS opacity/ optical depth are similar to the equations described
for LyC opacity. The only differences being, here when calculating Γqso, we do not use
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Figure 4.4. In this Figure, we show the composite quasar mean quasar spectra after stacking
the quasars from the Table 4.2. The flux has been normalized by the median of the continuum
flux over the range of 1270 − 1380Å.

the cumulative LyC optical depth (τLyC(< r), since it is a line transition and not the
continuum transition, we replace it with τ j(r). In Becker21, Zhu23, they calculate it
using a suite of Sherwood simulations (James S. Bolton et al., 2017) across a range of
redshifts and Γ values, for the first 39 Lyman series. They then include the effects of the
proximity zone by calibrating the values of Γ for each series such that the optical depth
τj(Γ), matches to that of Γqso + Γbg as a function of distance from the quasars. We skip
the details of these simulations as they are beyond the scope of this chapter; the curious
reader can refer to James S. Bolton et al., 2017. We received the final Lyman series
attenuation factor model from Yongda Zhu and a stack of 9 normalized quasar spectra,
which they also used in their calculations (Zhu et al., 2023). In the Fig. 4.2 we plot the
mean attenuation factor (⟨τLyS⟩ = exp (−τLyS)), as a function of restframe wavelength.

For our work, we adopt the Req values from George D. Becker et al., 2021; Zhu et al.,
2023, where they estimated the Req from observational constraints on the metagalactic
hydrogen ionization rate and the mean spectral energy distribution of high-redshift
quasars. We received the stack of pre-normalized quasar spectra from Yongda Zhu and
their respective values of Req. The average value of ⟨Req⟩ = 17.96 pMpc is calculated
from the Req values for the set of quasar spectra shown in Table 4.2. We calculated LyC
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Figure 4.5. In this Figure, we plot the observed flux as a function of the restframe LyC
wavelength for a range of mass bins. We plot it for the fiducial values of xHI, Mmin, and tq.
We see that the choice of the halo mass does not change the overall flux much.

Quasar Name R.A. (J2000) Dec (J2000) zqso Req (pMpc) Instrument
SDSSJ0836+0054 08:36:43.85 +00:54:53.3 5.805 21.41234719084271 ESI
SDSSJ0002+2550 00:02:39.40 +25:50:34.8 5.824 17.26091101003634 ESI

PSOJ242-12 16:09:45.53 −12:58:54.1 5.8468 14.757086164439244 X-Shooter
SDSSJ0840+5624 08:40:35.09 +56:24:19.8 5.8441 16.75118105781647 ESI

PSOJ183-12 12:13:11.81 −12:46:03.5 5.899 20.060635831726962 X-Shooter
SDSSJ0818+1722 08:18:27.40 +17:22:52.0 6.001 20.58434709674912 X-Shooter
SDSSJ1137+3549 11:37:17.72 +35:49:56.9 6.03 19.657898865487297 ESI
SDSSJ0842+1218 08:42:29.43 +12:18:50.6 6.0763 15.614824104210964 X-Shooter
SDSSJ1602+4228 16:02:53.98 +42:28:24.9 6.084 15.614824104210964 ESI

Table 4.2. Quasars spectra list: Column 1 shows the name of the quasar. Columns 2 and 3
show the coordinates of the quasar. Column 4 shows the quasar redshift. Column 5 shows the
Req values of these quasars, and column 6 shows the instrument used for λmfp measurements.

optical depth using the mean Req. We assume the value of Γbg = 1.5 × 10−13s−1 based
on the (Gaikwad et al., 2023). The value of κLyC

bg = 1/42 (Worseck et al., 2014), and
the power law index ξ = 2/3 (S. R. Furlanetto and Oh, 2005; McQuinn et al., 2011),
as defined above. This leaves only N0 as the free parameter. We fix the value of N0 by
normalizing our observed flux (as shown in the Eq. (4.22)) such that the transmission
from our models at 912Å is equal to the best fit model from (Zhu et al., 2023). In
the Fig. 4.3 we show the effective transmission flux for the raw profile, and profiles
attenuated by LyC, LyS, and by both LyC and LyS. It shows us how the shape of the
transmission flux is also affected by the different attenuation terms. In §1.5.4, we read
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that the absorption cross section of any LyS is much higher than the LyC absorption,
because of which, and also the fact that we added the contribution from multiple LyS
lines for LyS optical depth, we see much higher damping effects from the LyS attenuation
term as compared to the LyC attenuation term. In this plot, we use the fiducial values
of our parameter set and Mqso = 1011.52M⊙.

Figure 4.6. In this Figure, we show the distribution of the ionized bubbles as a function of
Mmin. The first five plots show the histogram of the ionized bubbles radii with their mean
radius ⟨r⟩, and the median radius M(r). On the sixth plot, we plot the ⟨r⟩ (orange curve) and
M(r) (blue curve) radii of ionized bubbles for all the values of Mmin. As expected, we see that
both the ⟨r⟩ and M(r) grow as Mmin is increased. But this growth is not very significant.

In the Fig. 4.4, we plot the stacked flux across all quasars mentioned in the Table 4.2
normalized with the median of the continuum flux over the range of 1270 − 1380Å,
with the average redshift ⟨z⟩= 5.93.

4.5 Results

Once our models are ready, we can now begin to analyze the parameter dependency
of the final observed flux after taking into account the attenuation from the LyC and
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Figure 4.7. Similar to the Fig. 4.5, in this Figure we plot the observed flux as a function of
the restframe LyC wavelength for a range of Mmin. There is a negligible effect of Mmin on the
final observed flux.

Figure 4.8. In this Figure, we plot the transmission/ final observed flux over the range of
Mmin for all xHI over the quasar spectra, along with the best fit model from (Zhu et al., 2023)
(solid black line). The distribution of xHI curves from one plot to another (or for different Mmin)
remains more or less the same.
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LyS absorptions. We then calculate the LyC MFP (λLyC
MFP) by calculating the distance

at which the general flux, when attenuated with the LyC absorption, drops to 1/e of
its maximum value. We will then fit our models to the quasar spectra as shown in the
Fig. 4.4 along with the best fit model from (Zhu et al., 2023) to figure out the range
of parameters which could explain the short MFP at redshift z = 6. Unless stated, we
will use the fiducial values of the astrophysical parameters as shown in the Table 4.1
for the rest of our plotting.

We begin by looking at the Mqso dependency of the observed flux as a function of
the rest-frame LyC wavelength regime. In the Fig. 4.5, we see that the overall flux does
not vary much with the choice of the Mqso. It can also be seen from Fig. A.6, where the
ionized bubble around the halo rises slowly with the halo mass. Thus, we can assume
the Mqso = 1011.52M⊙, to be constant for the rest of our study.

We will now look at the parameters that can alter the reionization topology. Namely,
xHI, Mmin, and tq. Where xHI and Mmin change the global topology, tq dominates
the local topology. As we have described already, xHI changes the overall HI fraction,
Mmin redistributes the ionized bubbles over the permitted halo-mass ranges. Since the
effect of Mqso is negligible on the final observed flux, we expect Mmin also to have
significantly less impact on the final observed flux.

In Fig. 4.6, we show the distribution of the ionized bubbles around the quasar for
different values of Mmin. The first five plots show the histogram of the ionized bubbles
with mean radius ⟨r⟩, and the median radius M(r). On the sixth plot, we plot the ⟨r⟩
(orange curve) and M(r) (blue curve) radii of ionized bubbles for all the values of Mmin.
As expected, we see that both the ⟨r⟩ andM(r) grow as Mmin is increased. This is because
as we increase the Mmin we allow only the massive halos, which are exponentially less in
number, to form the ionized bubbles, while keeping the xHI the same. This results in the
formation of coarser and larger bubbles. Whereas, when we allow even the less massive
halos to participate in the reionization process, we redistribute the ionized bubbles to
an exponentially larger set of halos. This results in the formation of smaller and finer
bubbles. As shown in the sixth panel of the Fig. 4.6, this redistribution of the bubbles
over the Mqso increases the effective bubble size slowly. Thus, the effect of Mmin can
also be neglected and can be kept constant for the rest of the analysis. In the Fig. 4.7
we see that the variation of the final observed flux over the range of Mmin is negligible,
as expected. Finally, in the Fig. 4.8 we plot the distribution of final observed flux for
all the values of xHI over the range of Mmin. We also plot the stacked quasar spectra
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Figure 4.9. In this Figure, we show the distribution of the ionized bubbles as a function of
xHI. Each plot shows the histogram of the ionized bubbles radii with their mean radius ⟨r⟩,
and the median radius M(r). The distribution shifts more and more towards the left (smaller
bubble size) as we increase the xHI. The upper limit of the bubble size is 300 cMpc because
the maximum distance traveled by our quasar sightline is 300 cMpc.

and best fit model from (Zhu et al., 2023) (solid black line) along with our models. The
distribution of xHI curves from one plot to another (or for different Mmin) remains more
or less the same. Even if we change the value of Mmin drastically (e.g., Mmin = 1011M⊙),
we see minimal changes in the final observed flux.

Now we look at the xHI, another parameter affecting the global reionization topology
as shown in the Fig. 4.1. In the Fig. 4.9, we plot the histogram of ionized bubble
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Figure 4.10. In this Figure, we plot the mean bubble radius ⟨r⟩ (blue curve) and the median
bubble radius M(r) (orange curve) radii of ionized bubbles as a function of xHI.

Figure 4.11. In this Figure, we plot the final observed flux for all xHI over the quasar spectra,
along with the best fit model from (Zhu et al., 2023) (solid black line). As we increase xHI and
hence the number of HI atoms, the damping of the transmission flux increases rapidly. The
models with xHI ≥ 0.35 provide a much better fit to the quasar spectra.
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radii distribution for all the values of xHI. While in the Fig. 4.10 we plot the mean
bubble radius ⟨r⟩ (blue curve) and the median bubble radius M(r) (orange curve) radii
of ionized bubbles as a function of xHI. From these two figures, we can see that the
xHI significantly affects the ionized bubble distribution. In the Fig. 4.11, we plot the
final observed flux for all xHI over the quasar spectra, along with the best fit model from
(Zhu et al., 2023) (solid black line). Since increasing the xHI increases the total number
of HI atoms, increasing the attenuation. We can produce shorter λLyC

MFP with higher xHI.
Our models with xHI ≥ 0.35 provide a much better fit to the quasar spectra, while the
models with xHI ∈ [0.35, 0.6] are very close to the best-fit model from (Zhu et al., 2023).

Figure 4.12. In this Figure, we show the distribution of the ionized bubbles as a function of
tq. The first five plots show the histogram of the ionized bubbles radii with their mean radius
⟨r⟩, and the median radius M(r). On the sixth plot, we plot the ⟨r⟩ (blue curve) and M(r)
(orange curve) radii of ionized bubbles for all the values of tq. As expected, we see that both
the ⟨r⟩ and M(r) grow rapidly as tq is increased.

Now let’s look at the effect of tq, a parameter that affects the reionization topology
locally. From our modeling, tq carves an additional bubble proportional to the quasar
luminosity (see Eq. (3.26)). This changes the size of the ionized bubbles drastically. In
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the Fig. 4.12, we plot the distribution of the ionized bubbles around the quasar for various
tq values. In the sixth plot of the same figure, we can see that the ⟨r⟩ (blue curve) and
M(r) (orange curve) radii of ionized bubbles grow rapidly as tq is increased, as expected.
In the Fig. 4.13 we show the distribution of the final observed flux with tq for a range of
xHI. As noted earlier for high xHI and the fiducial tq, we can match the best fit model
from (Zhu et al., 2023). As we have seen, tq affects the reionization topology by erasing
the HI density within the bubble radius carved by the quasar. If we decrease tq (or as
we bring back the local HI gas), we can get a better match to Zhu et al., 2023 even at
lower xHI. Although, even with tq = 0, we would still need xHI ≥ 0.35 for a good match.
This strongly indicates that we need some dense neutral patches or Lyman limit systems
within the quasar proximity zones to explain the shorter MFP. Finally, in the Fig. 4.14 we
plot the observed flux for the non-fiducial values of tq, for all xHI over the stacked quasar
spectra, along with the best fit model from Zhu et al., 2023. We see that tq strongly
affects the shape of the flux. From tq = 0 yrs to tq = 104 yrs, the curves remain more or
less the same, hence we can rather keep tq = 104 yrs as our minimum quasar lifetime.

4.6 Discussion and Conclusion

We use 21cmFAST to generate patchy reionization boxes at z = 6 for a wide range of
astrophysical parameters defined in the Table 4.1. We describe a model as a unique
combination of these parameters. Within each model, we locate halos for a set of mass
bins ranging from Mqso = 1010 − 1012M⊙. For each mass bin, we create a set of 10,000
randomly directed halo-sightline pairs. We then look at the distance to the first neutral
pixel on every sightline and define the transmission flux as 1 until the first neutral pixel
and 0 afterwards. We then stack and normalize all these fluxes for a given mass bin to
generate the general transmission flux as a function of Mqso and the other astrophysical
parameters. The wavelengths shorter than the λLL = 912Å will suffer the LyC absorption
from HI atoms present in the IGM. To account for this, we modify this general flux with
the LyC attenuation by modeling it using the equations from Eq. (4.23) to §4.4.1.

Some of these LyC photons could travel far enough to be redshifted into the LyS
regime and will suffer from the LyS absorption attenuation. Thus, we need to account
for this foreground LyS absorption, and we do so by using the effective LyS attenuation
optical depth as shown in the §4.4.2. The combination of the LyC and LyS attenuation
along with the general transmission flux gives us our final observed flux as shown in
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Figure 4.13. In this Figure, we draw a set of plots showing the distribution of the transmission/
final observed flux over the whole range of tq for a set of xHI values, along with the best fit
model from (Zhu et al., 2023) (solid black line). As we decrease tq, i.e., as we introduce back
the local HI gas, we get good fits to (Zhu et al., 2023) at lower xHI. But, even with tq = 0,
we would still need xHI ≥ 0.35 for a good match. This indicates that we need some dense HI
clouds or Lyman limit systems within the proximity zone of the quasars to explain the short
MFP for LyC photons.

the Eq. (4.22), with some normalization constant as a free parameter. We fix the
normalization constant by normalizing our final observed flux to match the flux of the
best fit model from (Zhu et al., 2023) at λobs = 912Å. We then plot all our final flux
models as a function of restframe wavelength for all the astrophysical models against
the quasar spectra for the set of quasars shown in the Table 4.2 and the best fit model
from (Zhu et al., 2023). For this project, we did a qualitative comparison to get a rough
estimate for the ranges of the models we would need to fit the quasar data.

While we compare our results with (Zhu et al., 2023), one significant distinction exists
between our models. In (Zhu et al., 2023), they assumed a very short IGM MFP (i.e.,
large κLyC

bg ), which causes their model to transition from low to high transmission flux
rapidly. Whereas in our case, we assumed a much longer MFP (short κLyC

bg ) (Worseck
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et al., 2014; Qin et al., 2025), due to which our models tend to have a long tail behaviour.
In the Appendix A.4 we demonstrate the same idea by varying κLyC

bg .

Figure 4.14. In this figure, we plot the transmission/ final observed flux over the range of
tq for all xHI over the quasar spectra, along with the best fit model from (Zhu et al., 2023)
(solid black line). The distribution of xHI curves from one plot to another varies a lot with tq.

From our analysis, we find that Mqso and Mmin have negligible impact on the final
observed flux, i.e., our flux is independent of the source models. xHI and tq, on the other
hand, affect both the shape and MFP of the observed flux significantly. Even if we reduce
tq to 0, we still need xHI ≥ 0.35 to get a good match to both the data and the best fit
from (Zhu et al., 2023). The idea of reducing tq is the same as adding more neutral pixels
within the quasar proximity zone, since we define tq by erasing all the neutral topology
in the vicinity of the quasar until a characteristic bubble radius Rtq (see the Eq. (3.26)).
Thus, if we assume just late reionization models (i.e. there is some additional effective
opacity from the presence of IGM-scale neutral islands around the edges of the ionized
bubbles), we would still need a very high xHI, much higher than the currently accepted
range of xHI to justify the short MFP at z = 6 (Gaikwad et al., 2023; Qin et al., 2025;
Cain et al., 2024). Whereas we know it has to end around z ≈ 5.3 (Bosman et al., 2022).
This indicates that we will need some dense HI gas or the Lyman limit systems within
the proximity zone of the quasars to explain such a short MFP of the LyC photons.

There are still some caveats to our analysis; we use the opacity κLyC
bg from (Worseck et
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al., 2014), which was derived by extrapolating their MFP to z = 6. We can, in principle,
treat κLyC

bg as a free parameter and jointly vary with xHI, and tq, then calculate its value by
fitting to the quasar data. In the future, we plan to quantitatively fit all our models to the
individual bootstrapped sample of all the quasars from (Zhu et al., 2023) to calculate the
distribution of models that would fit the data the best. Nonetheless, with our study, we
have shown that the current status of the short MFP of LyC photons cannot be explained
by late reionization models alone, and one needs to incorporate Lyman limit systems
within the quasar proximity zone to account for such strong absorption. Similar to the
(Roth et al., 2024), we plan to include the contribution to κLyC from the distribution
of neutral islands near the quasar. Including neutral islands’ contribution along with
variable κLyC

bg will give us more accurate constraints on the parameters and the LyC MFP.

• Mmin and Mqso have negligible effect on the final observed flux after the
LyC and LyS attenuation

• The mean of bubble size distribution increases rapidly after tq = 105 yrs.

• We need xHI as large as 0.5 with tq = 106 yrs to match the best fit model
from (Zhu et al., 2023)

• Even with tq = 0, we still need xHI ≈ 0.35. Thus indicating the need of
Lyman limit systems within the proximity zone.

• Late reionization models alone are insufficient to explain the short
photoionization MFP at z = 6.

Take away points



5
Conclusion

Throughout the thesis, we emphasised the strength of damping wings as an observational
tool to decode the reionization topology at high redshifts. Their collective spectra
can constrain the source parameters and help relax the degeneracy between all the
astrophysical parameters. In this chapter, we will briefly summarize the results of
Chapter 2, Chapter 3, and Chapter 4 and discuss the future prospects based on the
results of these studies.

5.1 Summary

In Chapter 2, we studied how the imprints of astrophysical parameters on the reionization
topology can be seen in the damping wings spectra of quasars. To study the effects, we
first need to generate an extensive suite of reionization boxes as a function of these
parameters, subjected to the same initial and boundary conditions. The parameters we
focused on, in this chapter, are described in the Table 2.1. We define a model as a box
generated by a unique combination of astrophysical parameters. We used 21cmFAST to
generate this suite of patchy reionization models and located the halos of desired mass
within these models. From each mass bin, we drew a set of 10,000 halo-sightline pairs.
Modeling up to this point is common in all projects (chapters).

In Chapter 2, using these halo-sightline pairs, we calculated the Lyα damping wing
optical depth along the sightline, treating it as the line of sight skewer. We then plot
the median (M(DW)) and 68-percentile sightline to sightline scatter around the median
(∆SW68) for each combination of the astrophysical parameters. By looking at the impact
of the parameters on both the shape and strength of M(DW) and ∆SW68, we selected
xHI, tq, Mmin, and Mqso as the final set of parameters for further study. Although
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M(DW) damping wing signal correlates strongly to the changes in both xHI and tq , it
also creates the issue of degeneracy. To counter this, we used ∆SW68 to qualitatively
differentiate between the signatures of xHI and tq on the ensemble of damping wing
spectra. Another significant result of this study was that we observed noticeable effects
on the M(DW) and ∆SW68 from the source parameters, namely, Mmin and Mqso. We
established that by using an ensemble of damping wings, we cannot only see the signature
of the multiple astrophysical parameters but also look at the scatter of this ensemble to
help relax the degeneracy between all our selected parameters.

Continuing with the models developed in Chapter 2, we described how an ensemble of
damping wings can provide much more relevant information than just a single spectrum.
But the set of 10,000 seems far-fetched at present. We want to give a more reasonable
number for the size of this ensemble. We began Chapter 3 in the search for the same.
In this Chapter, we quantitatively explored the constraining prowess of an ensemble of
Lyα damping wings using the FIM. We used the models established in Chapter 2 for
the filtered set of parameters shown in the Table 3.1 to derive our observables (M(DW),
∆SW68, and their combination) for the FIM analysis. We also modified the damping
wing profiles with the effects of the proximity zone, spectral noise, and continuum noise
for a more realistic analysis. We selected a batch of Nquasars number of quasars from the
initial ensemble of 10,000 to calculate the FIM constraints. We found that for Nquasars

≥ 32, the Gaussian likelihood assumption for the FIM is a valid approximation. We also
observed that for Nquasars ≈ 128 our constraints on Mmin are as good as those obtained
from 21 cm studies (Park et al., 2019; Charlotte A. Mason et al., 2023). Furthermore, by
extrapolating the constraints at Nquasars = 256, assuming the Gaussian likelihood, with
σ(Nquasars = 256) ×

√
256/

√
Nquasars curve for xHI we get for Nquasars = 1 σ(xHI) = 0.20

and for tq we get Nquasars = 1 σ(tq) = 0.95, which are close to the values obtained in Kist
et al., 2024 with full-continuum and full-simulation model for a single quasar spectra.
For Nquasars = 64 quasars at redshift 7, we got the following constrains; xHI = 0.5+0.02

−0.02,
Mmin = 8.78+0.53

−0.53, log tq/yr = 6.0+0.12
−0.12, and log Mqso/M⊙ = 11.52+0.32

−0.31.
In Chapter 4, we take a slightly different route from calculating Lyα damping wings.

The strength of the model routine isn’t just producing an ensemble of damping wings, but
also making an extensive suite of models for a wide range of astrophysical parameters.
This chapter aims to figure out the range of parameters that could explain the short
MFP of the ionizing photons at z = 6. We began by calculating the LyC transmission
flux across a wide range of models at z = 6 using the ensemble of halo-sightline pairs
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derived from the methodology of Chapter 2. We then stacked the step-wise transmission
fluxes from all the sightlines within a given model and , where the step occurs at the
position of the first neutral pixel. We multiplied this stack with the attenuation from
LyC and foreground LyS absorptions from the IGM, blueward of λLyC= 912Å. We called
this flux the “final observed flux”. We compared our final observed flux against the best-
fit model from Zhu et al., 2023 and the stack of normalized quasar spectra. With this
analysis, we showed that among our filtered parameters xHI and tq, both affect the shape
and MFP of the observed flux significantly. We found out that to match the observed
quasar spectra, we need very high xHI, much higher than the currently predicted values
of xHI at z = 6 Gaikwad et al., 2023; Cain et al., 2024; Qin et al., 2025. Even if we
reduce tq, which increases the neutral fraction in the vicinity of the quasar, the best fit
values of xHI ⪆ 0.35. Our study indicates that the current measurements of short MFP
photons cannot be explained by late reionization models alone; one needs to include the
contribution from the dense Lyman limit systems within the proximity zone.

5.2 Future Prospects

In the future, we will expand upon the applications of the suite of models that we
developed in this thesis. Although we developed models with tq = 0, we would like
to compare the spectra of halos without quasar lifetime to the galaxy damping wing
spectra. Since the abundance of galaxy damping wing spectra is much larger than current
quasar spectra, this case study will be instrumental in constraining the astrophysical
parameters. We will also work on developing an emulator based on our collection of
models to emulate the effective M(DW) and ∆SW68 profiles for any given combination
of the selected parameters. This Emulator will be helpful when we want to do the
parametric fit (finding the range of all the parameters that best fit the data) of the
quasar damping wing spectra data with our models.

While the results from Chapter 2 and Chapter 3 have compelling results, some caveats
remain to be addressed. In our proximity zone model of calculations, we neglected the
non-equilibrium effects, flickering effects Frederick B. Davies et al., 2020; Satyavolu et al.,
2023; Zhou et al., 2024, and heating from Helium reionization. We will address these
additional effects in the future extensions of this project. In Chapter 4 we used the
long IGM MFP for the ionizing photons (κLyC

bg = (1/42)h70), which was an extrapolation
from Worseck et al., 2014. For future work, we will treat κLyC

bg as a fitting parameter
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and instead derive its value by fitting our model to the quasar spectra. We will also
incorporate the effects of the neutral islands, as shown in Roth et al., 2024, for the
calculations of both LyC and foreground LyS optical depths. We expect that including
the contribution from neutral islands will give us more reasonable ranges for xHI. Finally,
we will quantitatively fit our models to the quasar spectra to derive more accurate
constraints on the parameters and the MFP of the ionizing photons.

Our work on damping wings has laid the groundwork for ambitious parametric
exploration of reionization physics using an ensemble of quasars. It motivates the search
for high redshift quasars with the upcoming surveys such as Euclid, Roman, LSST, and
in particular, motivates extensive follow-up spectroscopic campaigns with JWST/ELT.
Our simulation framework is independent of the choice of the observables and can be
easily modified to suit other light sources, such as galaxies. It is also independent of the
particular choice of observables. We demonstrated how, with the same set of sightlines,
we can constrain both Lyα damping wings and LyC photons MFP. Thus, enabling more
comprehensive analysis of other quasar-focused probes and other light sources.
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Appendix

A.1 Convergence Test

Throughout this work, we have emphasized the crucial role that large-scale structures
play in the analysis. It is then natural to consider what size of the box is required for the
strength and variance of the damping wing signal to converge. A small box may fail to
capture high-mass halos and large structures essential for analyzing sightline-to-sightline
scatter. On the other hand, larger boxes are more computationally expensive, inhibiting
exploration of the full parameter space. To identify an optimal box size, we perform a
convergence test of box size at fixed spatial resolution.

We begin by comparing the mean optical-depth of damping wing profiles for halos
at the highest and lowest common mass from each box. By analyzing the mean optical
depth, we aim to understand the average reionization topology surrounding a given halo.
In Fig. A.1, we observe that for low halo masses (Mqso ≈ 4 × 109M⊙), the optical depth
damping wing profiles converge within a 10% error limit. This indicates that for the
range of box sizes considered here, the topology and corresponding damping profiles for
low-mass halos remain consistent and stable.

However in Fig. A.2, the convergence test for high-mass halos (Mqso ≈ 1 × 1012M⊙)
shows an unexpected trend. We observe that the mean optical depth damping profiles
increase as we move from our fiducial model with box length (512Mpc)3 up to (768Mpc)3.
Beyond this size, however, the profiles start to decrease.

To ensure that this behavior is not a result of selecting a non-representative halo
(i.e., not the most massive), but instead stems from selecting the common most massive
halo across boxes, we replicate the analysis using the 100 most massive halos within
each box. This procedure mimics that used by past works on quasar damping wings
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Figure A.1. The convergence test results for the low-mass halos, Mqso ≈ 4 × 109M⊙. The
upper panel compares the difference between each box’s mean optical depth damping wing
relative to the fiducial box. The middle panel presents the mean optical depth for each box,
with the shaded region representing the scatter for the fiducial box (Lbox = 512 Mpc). The
bottom panel shows the ∆SW68 of all the boxes, color-coded as in the middle panel. We see
that the damping wings in this case seem to converge.

(e.g. Frederick B. Davies et al., 2018). Additionally, to account for uncertainties arising
from the randomness of the initial conditions, we generate six different initial condition
boxes for each box size and average the results. This analysis is presented in Fig. A.3,
where we observe a similar trend. The consistent behavior across different initial con-
ditions and multiple halos confirms that this phenomenon is not due to the choice of
halos or initial conditions.

We originally expected that, as box size increases, the average damping effect de-
creases. This is because high-mass halos are typically located in ionized regions, and
larger boxes, containing larger halos, would naturally have bigger ionized bubbles sur-
rounding them. Consequently, damping should continue to decrease, and the deviation
from the base model should increase monotonically. However, our simulation results
consistently indicate the opposite once the box size exceeds (768Mpc)3.

One possible explanation for this unexpected behavior could be related to the halo
mass function for high-mass halos, which decreases exponentially at the highest masses.
The increase in the total number of particles (and thus the volume of the box) may not be
enough to generate a sufficient number of high-mass halos. As a result, the reionization
topology around this exponential tail of massive halos in larger boxes might still be
dominated by a mix of smaller and larger ionized bubbles, rather than exclusively by
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Figure A.2. Similar to Fig. Fig. A.1, we show the convergence test results for the high-mass
halos, Mqso ≈ 1×1012M⊙. We see that the damping wings in this case do not seem to converge.

Figure A.3. The convergence test results for the 100 most massive halos from each box. The
middle panel shows the mean optical depth damping wing for 100 most massive halos from
each box. The upper and lower panels represent the difference between each box’s mean optical
depth damping wing relative to the fiducial box and the scatter ∆SW68, similar to the Fig. A.1.
The damping wings do not seem to converge even in this case either.

large-scale bubbles surrounding massive halos.
In all cases, we maintained a constant mean global neutral fraction (xHI = 0.5), which

should ensure consistency in the overall ionization state of the simulation. To further
test this hypothesis, we eliminate smaller bubbles from forming by setting the minimum
halo mass Mmin = 1011M⊙. This will exclude low-mass halos, effectively removing the
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contribution of smaller ionized bubbles from the topology.
In Fig. A.4, we observe that when we eliminate the smaller bubbles, the damping

wing profiles converge monotonically from (768Mpc)3 to (896Mpc)3 as expected. This
finding supports the idea that the issue of convergence likely arises from the interplay
between small and large ionized bubbles. When both types of bubbles are present,
as in the case of the larger (896Mpc)3 box, this interplay reduces the effective size of
the ionized bubbles surrounding high-mass halos, leading to a decrease in the damping
signal transmission instead of the anticipated increase.

Figure A.4. Similar to the Fig. A.3, we show the convergence test results for the 100 most
massive halos from each box with Mmin = 1011M⊙. We see that the damping wings have
started to converge as expected.

To further validate our hypothesis, we can take two approaches: (1) artificially
increase the size of the ionized bubbles by turning on the quasar (tq > 0) or (2) calculate
the bubble size distribution across different mass bins and box sizes.

In the first case, we repeat the convergence test for the 100 most massive halos, but
this time we set tq = 1 Myr, effectively increasing the ionized region surrounding each
halo. By activating the quasar, we artificially boost the size of the bubbles, thereby
mitigating the effect of small ionized bubbles. In Fig. A.5, we show the results of this
convergence test. As expected, the damping wing profiles begin to converge within
the 10% error limit, which supports the idea that the interplay between small and
large bubbles was indeed responsible for the earlier discrepancies in convergence. This
indicates that the effective size of the ionized bubbles from high-mass halos had been
reduced when small bubbles were present in the simulation, and this effect was mitigated
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when the quasar was turned on. Thus, we confirm that for larger boxes, the choice of
box size becomes crucial. Care must be taken to ensure that the size of the simulation
box adequately captures both large-scale structures and high-mass halos. For all of our
models, the fiducial box already assumes tq = 1 Myr, hence the box length of 512 Mpc
provides an optimum compromise between large and fast box volumes.

Figure A.5. Similar to the Fig. A.3, we show the convergence test results for the 100 most
massive halos from each box with tq = 1Myr. We see that the damping wings here converge
within the 10% error limit.

In the latter approach, we calculate the bubble size distribution. As before, we use
six different realizations of the initial conditions for each box size, referring to each as
a batch for the respective box size. Within each batch, we select 100 halos from each
mass bin. For each halo, we generate 10 sightlines in random directions, then measure
the neutral fraction xHI along the length of each sightline. If the number of halos in a
mass bin is less than 100, we compensate by generating additional random sightlines to
ensure that the total number of halo-sightline combinations remains consistent across
all mass bins. For each sightline, we clip the length as soon as we encounter a neutral
voxel (xHI = 1.0), representing the boundary of the ionized region. We then average
over all these sightlines for each halo to calculate the spherical average radius of the
ionized bubble around the halo. By repeating this process for all halos in the mass bin,
we obtain a distribution of bubble sizes for halos of a particular mass. We repeat this
procedure for all mass bins across all boxes in each batch, which results in the curves
shown in Fig. A.6. As we have seen, the average bubble size increases with the halo
mass while the scatter decreases Fig. 2.6.
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Figure A.6. The distribution of the average bubble radius vs the mass bin for the respective
boxes. The shaded region second panel shows the 68 percentile scatter of the radii for each
mass bin.

Figure A.7. Histogram of the ionized bubble radius distribution around the most massive
halos within each box. The mini panel on this plot shows the zoomed-in picture of the peak of
the distribution, where the dashed lines represent the median value of the distribution (color-
coded respectively). We see from the zoomed-in section that the box with length 7683 peaks
at a bigger radius than the other two boxes.
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We then select the mass bins corresponding to the 100 most massive halos from
each simulation box in a batch, concatenate them, and repeat the above calculation to
obtain the distribution of ionized region sizes. In Fig. A.7, we plot the aforementioned
distribution of ionized radii/sizes. From the inset panel of the same Figure, we observe
that the mean of the distribution for the (768 Mpc)3 box is higher than that of the
(896 Mpc)3 box, thus confirming our hypothesis.

Finally, to conclude, for our fiducial model, we assume tq = 1 Myr. Hence, for
all our analyses, the 512 Mpc box converges within the 10% error limit and is suffi-
cient for our study.
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A.2 Additional Contour Plots

In this section, we plot the corner plots obtained through the inverse of the FIM for
redshifts z = 6 and 7.

Figure A.8. Similar to the Fig. 3.4, here we show the 1D and 2D marginalized distributions,
representing the uncertainties and the covariances of all the parameters, with the contours
showing 1, 2σ confidence intervals, for z = 6, with Nquasars = 64, SNR − A = 10 and SNR − M
= 10.
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Figure A.9. In this figure, we plot the overlaying corner plot for three different observables,
with the parametric constraints stated in the Table Table 3.1. From the top left/ along the
diagonal plots show the 1D marginalized distributions, which show the uncertainties on the
individual parameter. The off-diagonal plots show the 2D marginalized distributions, showing
the correlation between a given combination of parameters. The contours show 1, 2σ confidence
intervals. The blue contours represent 1D, 2D distributions with M(DW) as the only observable;
the red contours represent the same for ∆SW68 as the only observable, while the orange contours
represent the combination of both the M(DW) and ∆SW68. The numbers on certainties are
for the combined signal only. These calculations are for z = 6.5, with Nquasars = 64, SNR − A
= 10 and SNR − M = 10.
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A.3 High Quasar Host Halo Mass

In this section, we explore the redshift dependency of the constraints on each study
parameter as a function of Nquasars, for higher Mqso. This is to study the bias introduced
by selecting more and more massive halos and how their location affects the estimation of
other parameters. In the figure Fig. A.10, we plot the combined signal for each parameter
at three different redshifts z = [6, 6.5, 7], as a function of Nquasars. As shown in (Sharma
et al., 2025), the massive halos live deep in the ionized regions, reducing the overall
damping effect and causing less suppression within the proximity zone compared to the
low Mqso. Due to this, the constraints on Mqso at z = 7 get slightly better.

While the constraints at z = 7 get a little worse for all the cases except for Mqso. The
constraints get better for Mqso due to massive halos only being localised to deeper ionized
regions.

Figure A.10. In this Figure we show the redshift dependency of the constraints on each
individual parameter as a function of Nquasars for larger Mqso ≈ 1012M⊙. In each plot, the
different line styles show the constraints obtained from: the solid lines are for the combined
(M(DW) +∆SW68) signal, the dashed lines are for the M(DW) signal, and the dotted lines are
for the ∆SW68 signal. Whereas the color-scheme represents the redshifts, red is for z = 6, blue
is for z = 6.5, and orange is for z = 7. The upper-left plot shows the variation of constraints
on xHI as a function of Nquasars, the upper-right plot shows the variation of constraints on tq
as a function of Nquasars, the lower-left plot shows the variation of constraints on Mmin as a
function of Nquasars, and the lower-right plot shows the variation of constraints on Mqso as a
function of Nquasars.
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A.4 Plots with short IGM MFP

In this section, we explore how our final normalized transmission flux varies as a function
of κLyC

bg . In the Fig. A.11, we plot our normalized flux with the fiducial model parameters
as a function of κLyC

bg . As expected, we see stronger attenuation for larger κLyC
bg and the

rise of our curves gets sharper. Our curves still have a much smoother transition as
compared to Zhu et al., 2023

Figure A.11. In this figure, we plot our models of the normalized transmission flux as a
function of the κLyC

bg . We assume the fiducial values for our model parameters, i.e., xHI 0.15,
Mmin 108.78M⊙, tq 106yrs, and Mqso 1052M⊙
, at redshift z = 6.
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