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ABSTRACT: 
 
Terrestrial laser scanning provides a point cloud, but usually also the “intensity” values are available. These values are mainly 
influenced by the distance from sensor to object and by the object’s reflection properties. We demonstrate that it is possible to 
retrieve these reflection properties from the observed range and the intensity value. An experiment with targets of known reflectivity 
behaviour is described. Retrieving object reflectivity is also demonstrated for these targets in another experiment, which was not 
used to determine the functional relationship between range, reflectivity, and intensity. The Lidar equation describes the received 
optical power in terms of the emitted power, range, and target properties. Nonetheless, the intensity values do not follow this 
prescribed behaviour. Therefore, data driven approaches are used, allowing a better prediction of the observed intensity from the 
range and reflectivity of the targets. For a Riegl LMS-Z420i and an Optech ILRIS 3D these experiments were performed. Both 
scanners measure range by the travel time of a pulse. In our experiments, the reflectivity can be estimated from the laser scanning 
data with a standard deviation of 6% or better. This demonstrates the potential for retrieving material properties of natural surfaces, 
too. 
 
 

1. INTRODUCTION 

Obtaining geometrical information from terrestrial laser 
scanning (TLS) is an established surveying procedure (Grün 
and Kahmen, 2007, Fritsch, 2007) and used e.g. in cultural 
heritage recording and industrial plant reconstruction. The 
acquired point clouds, i.e. sets of xyz coordinates, are used to 
determine object surfaces by triangulation, surface fitting, or 
primitive instancing. Airborne laser scanning (ALS) is similar 
with respect to the data provided: the point cloud. Calibration 
of the ranging and scanning devices is an issue in the terrestrial 
(Lichti 2007, Nothegger et al., 2007, Reshetyuk, 2006) and the 
airborne case (Kager, 2006 and references therein). This allows 
obtaining high precision, well beyond 1:10000. Laser ranging 
uses energy emitted from the sensor for determining the range 
between sensor and object. It is retrieved by measuring the two-
way travel time of the signal bounced back at the object. 
Beyond the run-time it is possible to measure the strength of the 
backscattered signal as well. Object properties like specular and 
diffuse reflection behaviour, absorption, and transmission 
influence the strength of this backscatter. The so-called 
“intensity” value is related to the power (amplitude) or energy 
of the returned signal.1 With calibration it becomes possible to 
convert these intensity values into parameters related to the 
object surface. In ALS methods for radiometric calibration have 
been proposed (Briese et al. 2008, Höfle et al., 2007 and 
references therein). Independent thereof, these intensity values 
have been used in TLS applications, e.g. for orientation (Akca, 
2007), manual inspection of trees (Aschoff et al., 2004), and 
rock face investigation (Rosser et al., 2007). 
 

                                                                 

                                                                
1 We use the term “intensity” in this paper, but there is not 

necessarily a unique physical interpretation for these 
intensity values by the different scanner producers. 

In this paper we want to show that a radiometric calibration is 
possible for terrestrial laser scanners as well. It builds on and 
enhances previous work of our group (Pfeifer et al., 2007). The 
next section gives motivations for doing this research. This is 
followed by a section on the theoretical basis, discussing also 
issues of not strictly monostatic laser rangers. Thereafter we 
present our experiments, where a Riegl LMS-Z420i and an 
Optech ILRIS 3D were used2. The calibration results and the 
discussion follow in the subsequent chapters. 
 
 

2. MOTIVATION 

The overall aim is to extract more information than “only” the 
xyz point cloud from TLS. This becomes possible if influences 
on the loss of emitted energy in comparison to the detected 
energy can be grouped into those depending on the object and 
other influences, e.g. the distance from sensor to object. Not 
only absorption and reflection properties, i.e. the BRDF, but 
also the incidence angle of the measurement are counted in the 
following to the object properties.  
 
In many monitoring circumstances the objects observed are 
known. One example is TLS for snow monitoring (Prokop, 
2006) for research on and assessment of avalanche risk. In the 
work of Prokop it is also observed that under certain 
meteorological circumstances no range measurements are 
possible, actually referring to an energy level too low to be 
detected. Kaasalainen and Kukko (2007) advance this approach 
with a more physical approach. In (Rees, 2006) it is described 
how the grain size of snow and the snow temperature affect the 
backscatter strength. From the intensity values it should 
therefore, at least theoretically, be possible to reconstruct snow 

 
2 Much of this paper applies to phase-shift systems as well.  
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pack properties from the intensity values. Similarly, over wet 
sand in comparison to dry sand, backscatter strength is smaller.  
 
For the relative orientation of TLS data acquired from different 
stand points Wendt and Heipke (2006) have proposed using the 
intensities. They suggested a 1/r2 correction factor before using 
the intensity images in matching procedures. While this factor 
can be justified theoretically, our work shows that it may not be 
optimal. In any case, quality figures estimated in the matching 
process will measure more of the actual texture similarity and 
less of the device influences, if calibration methods are applied 
to the data in advance. Also the visual appearance of laser 
scanning intensity images can possibly be improved by 
applying calibration procedures.  
 
The ranging precision depends on the amount of backscattered 
energy, as higher energy levels lead to a higher signal-to-noise 
ratio, because the background noise can be considered as 
constant. The question arises, how much of the ranging 
precision depends on distance and on object brightness. 
 
Finally, studying the intensity values is a means of 
investigating the laser scanners as such and improves the 
understanding of the measurement process. In the airborne case, 
but also for terrestrial laser ranging, pulsed systems use the 
intensity values for correcting the raw travel-time observation. 
This correction may become as big as a decimeter (personal 
communication), and it is the original motivation for recording 
the intensity. This, but also noise behavior, may become 
relevant in geometric calibration procedures. 
 
Not all of these hypotheses will be investigated within this 
paper, but they show that there is a potential for using the 
intensity values. Especially the possibility to infer reflectivity 
of targets which are i) planar and have ii) known reflectivity 
behavior will be investigated. This builds the base for the other 
items of the above list. 
 
 

3. THEORY 

3.1 Model driven approach 

The basic equation for describing the strength of the backscatter 
from an object surface is the Lidar (light detection and ranging) 
equation (Jelalian, 1992). It relates the emitted optical power PE 
to the received optical power PR. 
 
PR =  PE DR

2 / (4π βE
2 r4) σ ηAtmηSys (1) 

 
The term σ is the backscattering cross section and is a product 
of the directional reflection strength (ρD) and the area of the 
object. βE is the beam divergence, r the range, DR the receiving 
aperture diameter, and the η-terms describe atmospheric and 
system transmission. If the reflecting surface is larger than the 
laser footprint, then the object is called an extended target. This 
removes the beam divergence from the equation and introduces 
a 1/r2 dependency of the emitted power as opposed to 1/r4.  
 
 
PR =  PE DR

2 / ( (4r) 2) ρD ηAtmηSys (2) 
 
 
This equation can be simplified further under the assumption, 
that the target is a perfect Lambertian reflector. In that case the 
backscatter strength depends on the (Lambertian) target 
reflectivity ρ and the angle of incidence α. 
 
 

PR = π PE ρ cos(α) / (4r2)  ηAtmηSys (3) 
 
 
Knowing the emitted and the received power, and having 
measured the range and intensity value, allows determining the 
product ρ cos(α). For smooth surfaces the angle of incidence 
may be estimated from a local surface model, which can be 
obtained by surface fitting to the neighbouring points. In ALS 
this has already proven successful (Höfle and Pfeifer, 2007).  
 
The above equations furthermore idealize the emitter-receiver 
configuration and therefore are not valid in close proximity of 
the sensor itself. The beam profile is more complex, too. It is 
minimal at the beam waist and a linear increase of the footprint 
is only given at larger distances (Young, 2000). 
 
In addition, emitter and receiver are assumed to be coaxial as in 
a strictly monostatic system. To avoid optical cross talk, emitter 
and detector are often separated (Ingensand, 2006). Thus, 
different fields of view (FoV) of detector and emitter have to be 
considered. Their opening angle and their direction can be 
different, and (see above) there is a small “base” between them. 
Depending on the i) geometrical configuration and the ii) range, 
the visibility of the beam footprint for the detector may run 
through the following stages: not visible - partly visible - fully 
visible - partly visible - not visible. This effect is overlaid to the 
1/r2 decrease of received energy. A simplified simulation is 
shown in Figure 1. As it is demonstrated the received energy 
starts increasing with increasing range, because more and more 
of the footprint gets into sight. For larger ranges it starts 
decreasing again, because most of the footprint is visible 
already, and the decay of received power with 1/r2 is stronger. 
An in-depth discussion of this “form factor” can be found in 
Riegl and Bernhard (1974) and Stelmaszczyk et al. (2005). 
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Figure 1. Simplified simulation of the effect of partly 
overlapping footprints. Beam diameter at exit: 3mm, 

beam divergence: 0.35mrad. The beam energy is 
distributed according to a Gaussian bell curve, and no 
energy is assumed to be outside of the circle where the 
energy drops to 1/e2. Base between emitter and receiver 

centre: 3cm, parallel axes, detector diameter: 3cm, 
opening angle: 1mrad. The dashed curve shows the 

portion of the visible footprint in the detector FoV. The 
solid light gray line shows the portion of footprint 

energy visible in the detector FoV. The footprint starts 
getting into sight at a range of 20m and is fully visible 
from 50m onwards. The thin, dash-dotted black curve 

shows the theoretical 1/r2 decay of received power 
according to Eq. (1), and the dark gray curve the 

combined effect. 
 
The effects of beam waist, detector aperture, and base, can be 
considered, provided these parameters are known. Servicing of 
the device may lead to new values, and long term stability may 
not necessarily be given. Additionally, these parameters may 
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not be disclosed by the device manufacturers. Also estimating 
these parameters requires knowledge of the system design. 
  
So far, the relation of emitted to received optical power was 
discussed. The received signal is usually converted to an 
electrical signal and amplified by an APD (avalanche photo 
diode) and then digitized. This amplification is not necessarily 
linear, and frequently a logarithmic behaviour is assumed. 
Furthermore, for round-trip-time systems the emitted pulse is 
not a Dirac impulse but has a duration in the order of a few ns, 
e.g. 5ns, corresponding to a pulse length of 1.5m. The 
“intensity” may refer to the maximum, the average below the 
pulse shape, or the energy level after a certain amount of time.  
It does stand to reason to evaluate alternative approaches, 
relating intensity values, ranges, and target reflectivity to each 
other without considering the physical foundation.  
 
3.2 Data driven approach 

In the previous section it has been shown that a number of 
unknown system parameters may exist. This complicates using 
a model driven approach, because the system parameters need 
to be known for estimating object properties, especially object 
cross section σ or object reflectivity ρ cos(α) for Lambertian 
targets, from the observed range r and intensity I.  
 
In a data driven approach the function f is determined. In a 
general case, but restricted to Lambertian targets, it can be 
written as f(r,I,α,ρ)=0. From a set of observations and 
corresponding known object properties the parameters of f can 
be estimated. For typical data from laser scanners r is 
determined more precisely, with a coefficient of variation 3  
below 1%, whereas the intensity value has a coefficient of 
variation of 3% to 10% (Pfeifer et al., 2007, Höfle and Pfeifer, 
2007). It therefore stands to reason to choose r, ρ, and α as 
function parameters, because they are determined more 
precisely, than the function value I. This allows formulating 
residuals eI in an observed quantity. 
 
I + eI = g (r, ρ, α) (4) 
 
The function g should fulfil the following requirements. Firstly, 
it should explain the data well. The I should have small 
residuals: eI,j = g (rj, ρj, αj) - Ij , for sets of data quadruples with 
j=1,… n, (n the number of points). The standard deviation σ0 of 
the residuals4, obtained from a function g with u parameters can 
be used to judge the explanatory power of g. 
 
σ0 =  ( Σ eI,j

2 /( n-u ) ) 0.5 (5) 
 
Secondly, the function g should not contradict basic physical 
principles. As details of the device model are unknown, this is 
limited. However, the parameters ρ and α of the object have 
similar effects on the backscattered power, namely decreasing it 
for smaller values of ρ and larger values of α. The beam 
diameter is small, in the order of a few mm, whereas the pulse 
length for a round-trip-time measurement system is in the order 
of meter. Thus, the stretching of the pulse may be neglected, 
too5. The effects of ρ and α may therefore be bundled to k = 
ρ cos(α), which is in line with the basic physical principles. 
                                                                 
3 The coefficient of variation is standard deviation / mean. 
4  N.B.: σ now refers to a quality measure, and not to the 

scattering target cross section, introduced in section 2.  
5 Assuming a pulse with constant distribution of power across 
and along the beam, a 5mm spot size, a target inclination of 45°, 
and a 4ns pulse duration (1.2m), this stretch is below 1%. 

Thirdly, the function should avoid effects not observed in the 
data. Properties like monotonic behaviour or smoothness, which 
are visually apparent in the data, should also be properties of 
the function g. A decreasing series of values strictly 
interpolated by a polynomial may give rise to an oscillatory     
function, which cannot be justified by the data. With an 
increasing number of parameters u the function g may also start 
modelling the noise. The noise would be different in a 
repetition of the experiment and should not be represented by g. 
 
Finally, the function should be invertible. This is necessary for 
uniquely finding the reflectivity given observations of r and I. 
The following types of functions are possible, of which 
especially the nested approach will be investigated.  
 

• Separation approach: I = g1( r )*g2( k ) + g3 
• Nested approach: I = g4( k, g5( r )) 
• Surface fitting approach: I = g6 ( r, k ) 

 
Next to σ0 also σr will be used to judge the distribution of 
residuals. The term σr refers to the root mean square value of 
the residuals, and is different from σ0 by the denominator under 
the root. 
 
 

4. EXPERIMENT 

Reference targets with known reflectivity behaviour were used. 
These targets are made of Spectralon®, which reflects 
according to a Lambertian scatterer (cosine-law). The targets 
are quadratic with an edge length of approximately 13cm, and 
mounted onto a metal frame, holding all six targets with 
reflectivities of about 5%, 20%, 40%, 60%, 80%, and 99%. The 
frame was placed in different distances to the laser scanners and 
at different aspects. Points measured on one target were 
selected, and for the point set of each target at each range and 
aspect, a number of parameters was determined. Also, a plane 
was fitted to the points minimizing the orthogonal distances. 
This allows computing further parameters. Finally, for each 
target the following parameters were used (Table 2). 
 

ρ [ ] Target reflectivity 
α [°] Mean angle of incidence (to the plane) 
r [m] Mean range 
I [ ] Mean observed intensity value 

 
Table 2. Parameters determined for each target in the 

experiments. Symbols are given with their units. 
 
Scanning was performed with a Riegl LMS-Z420i (termed 
Riegl) and an Optech ILRIS 3D (termed Optech). For each 
device, two series of measurements were performed. In the first 
series the distance of the target frame to the scanner was 
changed: up to 15m in 1m-steps, thereafter in 5m steps, up to 
the maximum length of the laboratory (50m). In the second 
series the target frame was placed at a distance of 
approximately 15m to the scanner, and rotated in 9° steps from 
0° to 72°. 
 
The Riegl scanner operates at a wavelength of approximately 
1550nm. At this wavelength the reflectivity of the targets are 
0.986, 0.828, 0.653, 0.433, 0.233, and 0.081.  
 
For the distance series the minimum and the maximum mean 
range were 2.02m and 50.04m, and mean intensities varied 
from 0.1207 to 0.3085. The maximum angle of incidence was 
11.4° for the target on the outer end of the frame at the shortest 
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distance. By the cosine-law this corresponds to a decrease of 
return energy of 2% (see Eq. (3)).  
 
For the angle series the minimum and maximum distance were 
within 14.89m and 15.15m6, originating in the rotation of the 
target frame. The largest angle of incidence for which the 
targets could be extracted from the measured data was 72.0°, 
which corresponds by the cosine-law to a decrease by 69%. The 
average intensities varied between 0.1156 and 0.1880. 
 
The Optech scanner operates at a wavelength of approximately 
1540nm. At this wavelength the reflectivity of the targets are 
0.986, 0.827, 0.653, 0.433, 0.233, and 0.080. For the distance 
series the minimum distance, at which measurements were 
recorded was 3.98m. No distances could be measured at the 3m 
step. The maximum incidence angle in this series is 4.5°, 
corresponding by the cosine-law to a decrease in return energy 
by 0.3%. The average intensities are between 0.0065 and 
0.2462. Originally, the values were up to 5 digit integers, but to 
make them comparable to the Riegl data they were scaled by 
setting the maximum single intensity in the entire data set to 1.  
 
For the series of measurements at different incidence angles, 
the ranges were between 14.84m and 15.09m. 7  Data from 
incidence angles up to 71.9° could be retrieved, corresponding 
by cosine to 0.311, i.e. a decrease in intensity by 69%. The 
averaged intensities for the individual targets are between 
0.0089 and 0.2138. 
 
Data of the range experiments is shown in Figure 3. 
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Figure 3. Mean intensities for the Riegl and the Optech 
laser scanner for three targets (99%, 40%, and 5% 

reflectivity) at different distances. 
 
 

5. RESULTS 

5.1 Modelling with the Lidar equation 

If the Lidar equation shall be used for modelling the intensity 
values, it is obvious that it can only apply to a selected range 
interval. For the Optech data this applies to the ranges above 
30m, thus for the experiments shown in the interval [30m,50m]. 
This is also suggested by Larsson et al. (2006). However, this 
approach is not pursued because of the obvious limitations. 
 

                                                                 
6 From the analysis performed thereafter, this range difference 

has an influence of 3% on the intensities. 
7 The previous footnote does not only apply to the Riegl device 

but also to the Optech device.  

5.2 Separation approach 

The separation approach was investigated previously in Pfeifer 
et al. (2007). As is shown below, other approaches allow higher 
precision, and therefore the presentation of results will be very 
limited. It is interesting, however, to compare the results 
obtained now to previous investigations.  
 
In 2007 experiments with the same Riegl scanner as used in this 
study, i.e. the same physical device, were performed, using a 
similar setup of measurements. The main difference is, that the 
angle experiment was performed at a distance of 5m. For the 
data acquired now, the following functions were determined by 
optimization in the separation approach:  
 
 

g1( r ) =  (6) 
1441.00019.0)(:m18
3338.00082.0)(:m15

1

1
+=>
+−=<

rrgr
rrgr

 
g2( ρ cos(α) ) = g2( k ) = k-a, with a = 0.22, g3=0 
 
 
The influence of the range in g1 is described by a piecewise 
linear function, first decreasing and then increasing with range. 
A smooth transition between the two intervals is added. The 
function g2 is an exponential function, and g3 identical to zero 
as in the previous study.  
 
The distribution of the residuals is characterized by σr = 0.0114 
for all observations, separated for the range and the angle 
experiment into σr = 0.0080 and σr = 0.0167, respectively. The 
mean values of the distribution are 0.0 and 0.0078.   
 
5.3 Nested approach 

The nested approach takes the form I + eI  = g4( k, g5( r )). The 
function g5 depends on the range only, but it determines one or 
several parameters of the function g4. These parameters are e.g. 
polynomial coefficients. In that case, g5 is a vector valued 
function. Specifically, the following form was used in this 
study. g4 is a cubic polynomial, and g5 is a vector-valued 
function in 4D, determining the coefficients of g4. Precisely put, 
g5 is a vector valued 3rd order polynomial. This describes a Bi-
Cubic Tensor-Product surface patch (Farin, 2002).  
 
For increasing flexibility, multiple patches can be laid out in the 
parameter domain ( r, k ), joining with suitable continuity 
conditions. For the data acquired with the Riegl and the Optech 
instrument, two patches were used, splitting the interval of r, 
similar as in the separation approach. Strict continuity was not 
enforced, but reached approximately. 
 
For the Riegl data the patch border is at r=15m. This split was 
obvious when looking at the curves of intensity vs. range 
(Figure 3). For estimating the functions, however, first the 
measurements to the six targets were analysed independently 
per distance step.  
For each distance step the data of mean target intensity I over k 
=ρ cos(α) was analysed. As this approach is formally expressed 
as I = g4( k, g5( r )), this means that at fixed values of r the 
function g4 could be fitted to the data. Different models were 
used for this, but for the clarity of the explanation only the  
cubic polynomial is considered. As six targets were available, 
this means that an overdetermination of two was available for 
the cubic fit. In Figure 4 the cubic polynomials together with 
the data are shown for all distance steps. The coefficients are 
shown in Figure 5. 
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Figure 4:  Data of the Riegl distance experiment series. 
Each bullet represents the data of one target at a certain 

range and k (product of reflectivity and cosine of 
incidence angle). The vertical axis is the mean intensity 
per target. Targets are grouped by distance, and for each 

distance the least squares fit 3rd order polynomial is 
shown.  
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Figure 5: Polynomial coefficients (fat black lines) of the 
functions of Figure 4, i.e. cubic polynomials in the 

monome form. These polygons are approximated by 
cubic polynomials each (thin gray lines), split for 

ranges below and above 15m. 
 
 
Experiment
series 

g4-
Model 

σ0 abs., 
σ0 rel. 

σr  

Distance Cubic 0.00297, 1% 0.00255  
Distance Log. 0.00659, 2% 0.00614  
Angle Cubic  0.00241 5% better
Angle Log.  0.00656 7% worse

 
Table 6: Precision values for the different data driven 

models (2nd col.) of the Riegl data. “σ0 abs.” is the a-
posteriori precision (Eq. 5), and “σ0 rel.” is the portion 

of σ0 on the maximum mean target intensity. The 4th col. 
shows the r.m.s. of the residuals, and the results can be 
compared between the distance experiment, used for 
parameter estimation, and the angle experiment (5th 

col.).  
The coefficients of the cubic polynomials for each distance step 
can also be regarded as discrete observations of curves: one 
curve for the constant term, one for the linear, etc. The vertices 
of these curves can again be used for fitting a curve model. If a 
cubic polynomial is chosen, then the resulting patch is bi-cubic.  
 
For g4 not only cubics, but the following functions were tested. 
• Logrithmic function, with constant offset and scale factor. 

This is suitable, if the conversion from optical to electronic 
power is a logarithmic amplification. 

• Linear scaling, suitable if received optical power and 
intensity value are directly proportional, termed “Scale” 
below. 

• Linear function: like “Scale”, but adding a constant offset, e.g. 
background noise.  

• Cubic polynomial, providing flexibility but still over-
determination in the estimation procedure.  

 
For g5 always cubic polynomials were used, as the data does 
not follow the Lidar equation (Figure 3). However, some 
similarity of the Optech data to the curve shape of Figure 1 can 
be noted.  
 
Next, the results of the different models will be presented. Only 
those models describing the data reasonably well are presented. 
Also the Optech data had to be split into two patches for ranges 
above and below 18m. As it can be seen in Figure 5, the data 
cannot be approximated well for the last distance step (50m). 
These measurements were excluded from further analysis.  
 
The model is determined from the range series as explained. 
The angle series can then be used to verify the suitability of the 
model. It should be kept in mind, that the mean intensity values 
of the Riegl angle experiment data drop below the lowest mean 
intensities of the distance experiment (0.1156 vs. 0.1207). Thus, 
there is a certain amount of extrapolation with respect to k. For 
the Optech data this is not the case. The Riegl results are 
summarized in Table 6, the Optech results in Table 7. 
 
 
Experiment g4 σ0 abs, σ0 rel σr  
Distance Cubic 0.00218, 1% 0.00180  
Distance Linear 0.00613, 3% 0.00508  
Distance Scale 0.00681, 3% 0.00564  
Angle Cubic  0.00814 452% worse
Angle Linear  0.00716 41% worse 
Angle Scale  0.00765 36% worse 

 
Table 7: Precision values for different data driven models 

for the Optech data. Columns as in Table 6. 
 
 

6. DISCUSSION 

With the data acquired in the previous experiment (Pfeifer et al., 
2007) with the Riegl scanner the precision σ was 0.0108. The 
precision obtained now for the separation approach is 
comparable and approximately worse by 10%. The parameters 
also changed, which is attributed to the new data distribution in 
the experiments. Nonetheless, the behaviour of the device, 
namely decrease and increase of intensity depending on the 
range with a minimum at ~15m was the same. The precision 
obtained with the new data driven approaches are much higher 
and the separation method will not be discussed further.  
 
The two scanners show different, i.e. opposite, behaviour of 
intensity vs. range. Both deviate strongly from the pure Lidar 
equation, showing that it does not hold for the distances 
investigated. To reach a better agreement the model would have 
to be extended, depending on the system design. The effect of 
overlapping footprints, simulated in Sec. 3, appears to be 
similar to the function shown for the Optech scanner in Figure 3. 
For the Riegl scanner the situation is more complicated, and 
currently we do not have a good explanation. However, this 
behaviour was also found in Pfeifer et al. (2007) and the 
stability of the device could be confirmed.  
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The nested models all produce satisfying results concerning the 
data of the range experiments. The mean intensity can be 
predicted with a precision of 1% for both scanners.  
 
For the Riegl scanner a bi-cubic model was found to provide 
best results. For each range the intensity is described as a cubic 
polynomial of the product of target reflectivity and cosine of 
the incidence angle. This function can be seen as the transfer 
(amplification) function from optical power to the digital 
intensity values. In all the experiments this function proved to 
be strictly monotonously growing. It is, therefore, invertible, 
allowing to infer reflectivity from range and intensity. Also, no 
oscillatory behaviour could be detected. The model is therefore 
suitable and fulfils the requirements of Sec. 3.2. For the Optech 
scanner, the cubic model is best for the range experiment. 
 
Concerning the angle experiment, the prediction is different for 
the two scanners. Testing the model for the Riegl scanner is an 
extrapolation, as lower mean intensities were obtained than in 
the range experiments. Still, the estimation of the intensity on 
the basis of the known reflectivity and the estimated incidence 
angle was possible with the same accuracy. This confirms that 
the model proposed fits well to the data and its temporal 
stability should be investigated next. For the Optech data the 
intensity in the angle experiments can be predicted not as good.  
 
While predicted intensities can be compared to observed ones, 
it has more applications to estimate the reflectivity ρE (or k, the 
target cross section, …) from the intensities. As noted above, 
for a given range r g4 is always monotonous and thus invertible. 
 
In Table 8 the distribution of estimated reflectivity residuals eρ 
= ρ−ρE, computed from mean range, incidence angle, and 
intensity, is shown. It should be considered that the model 
parameters were derived from the range experiment and then 
also applied to the angle series to evaluate these parameters. 
 
 
experiment g4 mean eρ std. eρ min.,  max. eρ
Riegl, range Cubic 0.0004 0.0271 -0.0699, 0.0897
Riegl, angle Cubic 0.0026 0.0549 -0.1628, 0.1089
Riegl, range Log. -0.0221 0.1273 -0.5412, 0.1209
Riegl, angle Log. 0.0291 0.1325 -0.3442, 0.2273
Optech, range Cubic -0.0001 0.0119 -0.0278, 0.0298
Optech, angle Cubic 0.0234 0.0609 -0.1069, 0.2028
Optech, range Linear 0.0000 0.0277 -0.0582, 0.0419
Optech, angle Linear 0.0204 0.0469 -0.0568, 0.1600
Optech, range Scale -0.0046 0.0287 -0.0696, 0.0526
Optech, angle Scale -0.0072 0.0466 -0.1012, 0.0851

 
Table 8: Residuals of reflectivity estimated from r, α, and I. 

 
For the Riegl data it holds that the cubic model fits much better 
for the inverse task than does the logarithmic model. Also, the 
extrapolation to low intensity values observed in the angle 
experiment obviously has a more severe influence. For the 
given distance range of [2m,45m] the reflectivity of smooth 
surfaces can, however, be estimated from the range and 
intensity data with a systematic error of 2% and a standard 
deviation of 6%. This assumes that the angle of incidence can 
be estimated precisely. The numbers for the estimation of k are 
similar. With the approach of Pfeifer et al. (2007) this inversion 
was possible with a standard deviation of 23% only.  
 
For the Optech data the values of the cubic model are similar to 
those of the Riegl data. However, the other two models fit also 

comparably good. For the angle experiment the linear and the 
scale model fit even better, and thus should be used for the 
inversion. In the distance range of [4m,40m] the reflectivity of 
smooth surface can, therefore, be estimated from the range and 
intensity data with a systematic error of maximum 2% and a 
standard deviation of 5%.  
 
 

7. CONCLUSIONS 

The purpose of terrestrial laser scanners is currently mainly in 
acquiring geometry. It was shown that the intensity values 
provided alongside the range are not realizations of the Lidar 
equation in its simple form (Eq. 1, Eq. 3). The inherent 
assumptions (coaxial system, etc.) do not hold. However, the 
components of these laser scanners work consistently and allow 
reconstructing also target properties like reflectivity, if the 
scattering properties are known. It was shown that this is 
possible in the range of the shortest measurable distances to 
approximately 50m for the specific devices used, namely a 
Riegl LMS-Z420i and an Optech ILRIS 3D. The reflectivity of 
Lambertian targets could be reconstructed with a precision of 
about 6% and a bias in the order of 2%. This demonstrates the 
great potential for using these devices in monitoring 
applications, where the backscatter strength depends on 
material properties. Laser scanning should therefore be 
considered a 4D measurement process, with each coordinate 
holding object information.  
 
The standard deviation of the intensity values and the plane fit 
results should be analysed next. Also, larger distances should be 
investigated. Likewise, the temporal stability of the function 
parameters has not been studied. Verifying the stability would 
allow calibrating once, with no need to use the reference targets 
for subsequent applications/experiments of the intensity values. 
Finally, also the properties of phase shift scanners should be 
studied with respect to “their” intensity values. Eventually, 
under the assumption that the “increasing intensity with range” 
behaviour originates in the changing overlap of emitter and 
receiver field of view, also the energy distribution within each 
footprint becomes important and should be investigated. The 
final aim is, of course, verifying the findings over natural 
surfaces.  
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